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OZET
AYRIK MORSE TEORI UZERINE
AKKAYA, Mustafa

Yiiksek Lisans Tezi, Matematik Anabilim Dali
Tez Damsmani: Prof. Dr. Ismet KARACA
Haziran 2018, 47 sayfa

Robin Forman tarafindan geligtirilen ayrik Morse teorisi, bir
simpleksler kompleksinin topolojisinin analiz edildigi kullanighh metotlardan
biridir. Bu tez ¢aligmasinda ele alinan makale Robin Forman’in “A User’s Guide
to Discrete Morse Theory” adli makalesidir. Ayrik Morse teorisinin, bilgisayar
bilimleri ve uygulamali matematik ic¢indeki ¢egitli alanlarda konfigiirasyon
uzaylari, homoloji hesaplama, giiriiltii arindirma, veri sikigtirma ve topolojik

veri analizi gibi cesitli kullanigh uygulamalar: vardir.

Morse teorisi en iyi gekilde CW-kompleksler araciligiyla ifade edildigi
icin, bu konu aciklanacaktir. Ayrik Morse teorisinin temelleri olan tamim ve
teoremler ile Morse fonksiyonunun tanimi, bu dilde ifade edilecek ve bazi
ornekler verilecektir. Fakat ayrik Morse fonksiyonu ile benzer karakteristik
ozellige sahip bir bagka yap1 olan gradyant vektor alanlar ile de ihtiya¢ duyulan
topolojik ozellikler elde edebilir. Ayrik Morse fonksiyonundan daha kullanigh
olan bu yapi aciklanacak ve bazi 6rnekler verilecektir. Son olarak, kombinatorik
bakis acisi, Hasse diyagramlari ve bir Morse fonksiyonunu daha kullanigh
bir duruma donitistiirebilen kritik nokta yok etme metodu verilecek ve Morse

homolojisi aciklanacaktir.

Anahtar sozciikler: Simpleksler kompleksi, homotopi gruplari, CW-

kompleksler, gradyant vektor alanlar:.
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ABSTRACT
ON DISCRETE MORSE THEORY
AKKAYA, Mustafa

MSc. in Mathematics Department
Supervisor: Prof. Dr. Ismet KARACA
June 2018, 47 pages

Discrete Morse theory devoloped by Robin Forman is one of the practical
methods, by which the topology of a simplicial complex is analysed. The article
discussed in this thesis is R.Forman’s paper titled “A User’s Guide to Discrete
Morse Theory”. Discrete Morse theory has various practical applications
in diverse fields of applied mathematics and computer science, such as
configuration spaces, homology computation, denoising, mesh compression,

and topological data analysis.

Since Morse theory is best stated by the language of CW-complexes,
this topic will be explained. Definitions, theorems which are the basics of the
subject and definition of Morse function will be stated in this language and
some examples will be given. However, the needed topological properties can
also be obtained by the gradient vector fields which is the other structure
has similar characteristic property as discrete Morse function. Being more
useful than discrete Morse function, this structure will be explained, and
some examples will be presented. At most, combinatorial point of view, Hasse
diagrams, and the method of cancelling critical points which can transform a
Morse function to a more useful case will be stated and Morse homology will

be explained.

Keywords: Simplicial complexes, homotopy groups, CW-complexes,

gradient vector fields.
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1 GIiRIS

Morse teorisi ilk olarak 1930°lu yillarda A.B.D’li matematik¢i Mars-
ton Morse tarafindan caligilmistir. Teori genel olarak bir diizgiin manifold
iizerindeki fonksiyonun kritik noktalari ile topolojik 6zellikleri arasindaki iligki
iizerine kuruludur. Bu nedenle teoriye kritik nokta teorisi de denir. Marston

Morse'un temel diigiincesine gore manifolddaki tipik bir diferansiyellenebilir

fonksiyon topolojiyi tamamen yansitir.

Matematigin bir¢ok alaninda 6nemli bir problem olan bir simpleksler
kompleksinin topolojisini analiz etmeye geldigimiz zaman elimizdeki kullanigh
yontemler ¢ok azdir. Bu problemi gidermek icin 1990 larda Robin Forman
tarafindan Morse teorisinin kombinatorik bir uygulamasi olan ayrik Morse
teorisi gelistirilmigtir. Boylece basit bir kombinatorik tanimla Morse teorisi

graflara ve gradyant vektor alanlarina uygulanabilmigtir.

Ayrica kritik noktalar1 kapali bir alt manifold olan manifoldlar
iizerindeki diizgiin fonksiyonlar1 inceleyen Morse-Bott teorisi ve Edward
Witten'in diferansiyel ve harmonik formlarin deformasyonunu kullanarak
hesapladigi Morse homolojisi Morse teorisinin diger uygulamalarina ornek

olarak verilebilir.

Bu tez c¢aligmasinda temel amacimiz ayrik Morse teorisine genel bir
bakis sunabilmektir. Bu baglamda gerekli olan temel tamim ve teoremler
ifade edilmigtir. Morse teorisi CW-komplekslerin dili ile ifade edildigi i¢in, 6n
bilgilerde bu konuya genis bir yer verilmis ve orneklerle agiklanmigtir. Morse
teorisi ile bir hiicre kompleksinin CW-ayrigiminin nasil tespit edildiginden
bahsedilmis ve Morse teorisinin temelleri olan tanim ve teoremler yine
orneklerle gosterilmistir. Sonrasinda, pratikte neler oldugu tizerinde durulmus
ve bir Morse fonksiyonuna gergekten ihtiya¢ olmadigi, aym isin gradyant
vektor alanlar1 ile de yapilabilecegi gosterilmigtir. Reel Projektif Diizlemin
CW-ayrigiminin bu yontemle nasil tespit edildigi gosterilmigtir. Dahasi, bu
yapimin sadece CW-ayrigimindaki hiicre sayisin1 bulmay1 degil, bu hiicrelerin

sinir homomorfizmalar: altindaki goriintiilerinin hesaplanmasini da sagladig:



gosterilmistir. Konuya aciklik getirmesi bakimindan Klein sigesinin homoloji

grubunun, bu yontem ile nasil hesaplandigi gosterilmistir.

Gradyant vektor alanlari, bir simpleksler kompleksi yerine bu simpleksi
doguran bir graflar ailesi iizerinde de tanimlanabilmistir ve Morse teorisi
graflara uygulanmigtir. Graflar ailesi iizerindeki kritik graflar tespit edilip,
bu graflarin temsil ettigi simplekslerin kritik simpleksler oldugu gosterilmigtir.
Bu yontem ile iki baglantisiz ve ii¢ baglantisiz graflarin topolojik 6zellikleri
tespit edilebilmektedir. Bu ¢alismada ise konuya aciklik getirmesi bakimindan
baglantisiz graflar 6rnegi agiklanmigtir. Boylece ayrik Morse teorisinin graflar

iizerine nasil uygulandig1 gosterilmigtir.

Gradyant vektor alanlarimin bir bagka ifade edilis sekli de Hasse
diyagramlaridir. Bu diyagramin nasil olusturuldugu ve kritik simplekslerin na-
sil tespit edildigi gosterilmigtir. Bir hiicre kompleksinin CW-ayrigimi, {izerinde
tanimli olan bir ayrik Morse fonksiyonu ya da gradyant vektor alani ile tespit
edilebilmektedir. Ancak bu ayrigimin ne kadar verimli oldugu tartigilabilir.
Miimkiin oldugunca az hiicreden olusan bir ayrigim arandigi i¢in, bir gradyant
vektor alanimin nasil daha az kritik simplekse sahip hale getirilebildigi yani

belirli 6zelliklere sahip kritik simplekslerin nasil yok edilebildigi gosterilmigtir.



2 ON BILGILER

Bu boliimde ayrik Morse teorisinin anlagilmasi igin ihtiyag duyulan temel

bilgiler verilecektir.

Tanim 2.0.1. (Dieck |, |2008) X wve Y topolojik uzaylar ve fo,f1 : X — Y

strekli dontstimler olsun. Eger her x € X i¢in
H(x,0) = fo(z) ve H(z,1) = fi(x)

olacak sekilde bir sureklh H : X x I — Y donisimi varsa fy ve f;

homotopiktir denir ve fg ~ f; seklinde gosterilir.

Ornek olarak deger kiimesi Oklid uzay1 olan tiim f,¢ : X — R™ siirekli
dontigiimleri verilebilir. Burada gerekli olan H : X x I — R™ homotopi
doniigiimii R”™ in konveks olmasindan dolayr H(z,t) = (1 — t)f(z) + tg(z)
seklinde kurulabilir.

Eger X ve Y topolojik uzaylar i¢gin f o g ~ 1y ve go f ~ 1x olacak
sekilde f: X — Y ve g: Y — X siirekli fonksiyonlar: varsa X ve Y topolojik
uzaylart aynm1 homotopi tipine sahiptir veya homotopi denktir denir.

g ile f ye de birbirlerinin homotopi tersi denir.

Ornek olarak tiim homeomorf uzaylar verilebilir. Homeomorf olmayip
ayni homotopi tipine sahip uzaylara 6rnek olarak birim disk ve tek noktali
uzay verilebilir. Bu ikisi homeomorf degildir ¢ilinkii birebir egleme kurulamaz.
Ancak disk biiziilebilir bir uzay olup tek noktali uzay ile ayn1 homotopi tipine

sahiptir.

Tanim 2.0.2. (Forman, 2002) A C X fo, f1 : X — Y strekli donigsimler ve
fo la= fi |a olsun. ¥Vt € I ve Va € A i¢in H(a,t) = fo(a) = fi(a) olacak
sekilde fo ile fi arasinda bir H homotopi donisimi varsa fo ile fi relatif

homotopiktir denir ve fy ~ f; relA seklinde gdsterilir.

A, bir X topolojik uzaymin bir alt kiimesi olsun. Eger Vx € A i¢gin
r(z) = x olacak gekilde r : X — A siirekli dontigiimii varsa A, X in retraktidir
denir ve bu r doniigiimiine de retraksiyon denir. Buna ek olarak i : A — X

kapsama doniisiimii i¢in sor ~ 1y oluyorsa A, X in deformasyon retraktidir



denir. Eger bu bahsedilen homotopi A ya gore relatif homotopi ise bu sefer de

A, X in giiglii deformasyon retraktidir denir.

Her giiclii deformasyon retrakt bir deformasyon retrakttir, her deformas-

yon retrakt da bir retrakttir. Ancak bunlarin karsiti her zaman dogru degildir.

Ornek olarak tor ve torun dis cemberi verilebilir. Torun dis cemberinden
bir nokta alindiginda, bu noktadan tor {izerinde merkez dogrultusunda hareket
ederek elde edecegimiz ¢cemberlerin goriintiisii  doniigiimii altinda bu noktaya
gitsin. Bu doniigtim siireklidir ve dig gember {izerindeki tiim noktalar: kendisine
gotiiriir. Oyleyse torun alt kiimesi olan bu cember torun retraktidir. Fakat
deformasyon retrakti degildir. Ciinki tor ile gemberin temel gruplar: farkhdir.
Torun temel grubu Z x 7Z iken ¢emberin temel grubu Z dir. Bu ise ¢emberin,

torun deformasyon retrakti olamayacagi anlamina gelir.

Tanmim 2.0.3. (Lundell, |1969) X ve Y topolojik uzaylar, A C X kapalr bir
alt kiime ve f : A =Y strekli bir doniisim olsun. X ile Y ayrmk birlesimleri
tzerinde A nan her bir a elemant ile f(a) € Y denk olacak sekildeki denklik
bagintisina gore elde edilen bolim uzayina ekli uzay denir ve bu uzay Y | f X

ile gosterilir. Buradakt f donisimine ekli donitigiim denir.

Tanim 2.0.4. (Karaca, 2010) po, p1,.--,pm € R™ noktalarinin konveks

kombinasyonu, Z;io t; =0 vet; =0 olmak tizere

T = Z Lipi
i=0
seklinde gdsterilir.

Buradaki p; noktalarimin konveks kombinasyonlarinin kiimesi, bu

noktalarin gerdigi konveks kiimedir. Bu ifade, simpleks tanimi i¢in gereklidir.

Tanmim 2.0.5. (Rotman, |1998) po, pi,-.-,pm € R™ noktalarinin siraly kiimesi
{P1 — Pos P2 — PO, -y, Pm — Do}, R"™ vektor uzayiman lineer bagimsiz bir alt uzay
15€

{Po, p1; -, P}

siraly kiimesine afin bagimsizdair denir.



Oklid uzayinda afin bagimsiz {vg, vy, ..y Ug} kiimesinin gerdigi konveks

kiimeye bir g-simpleks denir ve
S = [vg, V1, .., Vg
seklinde gosterilir. Bu simpleksin kogelerinin kiimesi ise
Ver(S) = {vo,v1,...,v,}

dir. Eger Sve S’ simpleksleri i¢gin Ver(S") C Ver(S) oluyorsa S’ simpleksine, S
simpleksinin bir yiizii denir. Bir simpleksler ailesi i¢in, ailedeki her simpleksin
yiizii o ailede ve iki simpleksin arakesiti ya simplekslerin ortak yiizii ya da
bog kiime ise, o zaman elemanlar1 simpleksler olan bu aileye bir simpleksler
kompleksi denir. Ailedeki simplekslerin birlegsimine ise kompleks altinda
yatan ¢ok yiizlii denir. Genel olarak her simpleks bir hiicre oldugundan bir

simpleksler kompleksi de bir hiicre kompleksi olarak goriilebilir.

Simdi ise graflar ile alakali temel tanimlardan bahsedelim.

Tamim 2.0.6. (Diestel, 2005) E C [V]? olacak sekilde V' késeler (noktalar)

kiimesi ve E kenarlar kimesinden olusan G = (V, E) ikilisine graf denir.

Graftaki koge sayisina grafin mertebesi denir ve |G| ile gosterilir. Kenar
sayist da |G| ile gosterilir. Graftaki iki koge bir kenar olugturuyorsa bu kogelere
komsu koseler; iki kenarin ortak bir kogesi var ise, bu kenarlara da komsu
kenarlar denir.

Bir GG grafinin tiim koseleri komsu ise, G ye tam graf denir. n kogeli bir

tam graf K" ile gosterilir.
Tanim 2.0.7. (Diestel, 2005) G = (V, E), G' = (V', E') iki graf olsun.
zy € B p(x)p(y) € £

olacak sekilde bir o : V. — V' bijeksiyonu varsa G ve G' izomorftur denir ve

G = G ile gosterilir. Boyle bir ¢ dontistimiine de izomorfizma denir.

Izomorf graflar iizerinde korunan ozelliklere graf 6zelligi denir. Ornek
olarak "Ucgen (her biri birbirine komsu olan ii¢ koge) icerme ézelligi" bir graf

ozelligidir.



G=(V,E), G = (V' E) iki graf olsun. V' C V ve E' C F ise G’ grafina
G grafinin alt grafi denir. Eger 6zel olarak V' = V ise G’ alt grafina geren

alt graf denir. Graftaki bir kosenin derecesi sifir ise o kise izoledir denir.

Hicbir kapali yol igermeyen graflara orman denir. Eger bir orman
baglantili ise bu ormana agac¢ denir.
Simdi, ayrik Morse teorisinin ifade edilmesinde kullanilan yapi olan

CW-komplekslerin nasil inga edildigi anlatilacaktir.

I ={teR|0<t<1}kapal araligimin n-defa kartezyen ¢arpimi ile elde
edilen n-kiibiin homeomorfik bir goriintiisii olan E™ ye bir kapali Oklidyen

n-hiicre denir.

Tanim 2.0.8. (Lundell, |1969) X bir kiime, ® Oklidyen hiicrelerden X e
tamamly olan dondstimlerin bir kimesi olsun. Asagidaki sartlar saglaniyor ise
(X, @) tkilisine X tizerinde bir hiicre yapisy denir.

1. ¢ € ® ve E™, ¢ nin tamm kimesi ise @, (E™ — OE™) fzerinde
ingektiftir.

2. {p(E" — OE™) | ¢ € ®}, X in bir parcalamisidir.

3. p e dve B, ¢ nin tamm kiimesi ise,

p(OE™) C U {U(E* — OFE") | E*, U nin tanim kiimesi ve ¥ € ®}

k<n—1

kapsamast vardar.
Ornek 2.0.1. (Lundell, 1969)

S ={x = (xo, 71, ..., Tn) €E R |< iz >= 22 + 2} + ... + 22 = 1} n-kiires:

iizerinde Yn > 0 igin (S™, ®) hiicre yapist vardir. @°, o™ € ® soyle tanamlansin:
@’ DY — 5" ©Ox) = (1,0,...,0)

" D" = S M) = 2 < x> —1,201\/1— < x,x >, ..., 20,0/ 1— <z, >).

Tanim 2.0.9. (Lundell, [1969) (X, ®), X duzerinde bir hiicre yapisi, ¢ € O ve
w nin tanmwm kimest E™ olsun.
1. o(E™) = o™ gorinti kimesine n-hiicre veya kapaly n-hiicre,

2. ¢ ye o™ in karakteristik fonksiyonu,



3. OE™, E™ in sumri olmak tzere p(OE"™) = OJo™ e o™ n-hiicresinin
ST,

4. p(E"—0E"™) ye, o™ n-hiicresinin i¢i, n > 0 ise a¢ik n-hiicre denir.

A /\

Sekil 2.1: 2-hiicre ve simir1

Sekil 2.2: 3-hiicre ve siir1

X, tizerinde (X,®) seklinde bir hiicre yapisi olan bir kiime olsun.
0 = {o" | ¢ € ®; ¢, o"in karakteristik fonksiyonu} olmak iizere
(X, ®) hiicre yapilarimin siki denkligine gore denklik simflarmma X {izerinde
bir hiicre kompleksi veya X in bir hiicresel ayrigimi denir ve (X,0)
ile gosterilir. Buradaki iki hiicre yapisinin siki denkligi, karakteristik fonk-
siyonlarin birebir eglenebilmesi {izerinedir. Hiicre kompleksindeki her bir
hiicre, kendisinden kii¢iik dereceli acgik hiicrelerden sonlu sayidakilere degiyor

(arakesiti bogtan farkli) ise, bu hiicre kompleksine kapanig-sonlu denir.

(X,0), X iizerinde bir hiicre kompleksi olsun. ¢ hiicrelerinin her birinde
karakteristik fonksiyonlarina gore identifikasyon topolojisi vardir. Her bir
o C X i koruyan X iizerindeki zayif topolojiye (F' C X in kapali olmasi

i¢in gerek ve yeter sart Vo € § igin F'N o nin kapah olmasidir.) § y1 koruyan



zayif topoloji denir. Bunlar ifade edildikten sonra CW-komplekslerin tanimi

verilebilir.

Tanim 2.0.10. (Lundell, |1969) X bir Hausdorff uzay, § hicreler ailesi ve
(X,0) bir hiicre kompleksi olmak tzere asagidaki sartlar saglaniyorsa X e, ¢

ailesi ile birlikte bir CW -kompleks denir.

1. (X,0) hiicre kompleksinin her o € 0 hiicresi i¢in strekli bir ¢

karakteristik fonksiyonu vardur.
2. X dizerindeki topoloji, 0 1 koruyan zayf topolojidir.
3. (X, 9) kapanig-sonludur.

Tanim 2.0.11. (Forman, 2002) i = 0,1,...,n i¢in X;, X;_1 e bir hicre

eklenmesi ile elde edilen i¢ ice gegmis
PCXoCXjC..CX, =X

dizist var ise, X topolojik uzayina
PCXoCX;C..CX,=X

CW -ayrisimly sonlu CW -kompleks denir.

(1) (i1)

Sekil 2.3: (i) 1-hiicre eklemesi (ii) hiicre eklemesi degil (Forman, 2002)

Kapali bir d-simpleks de bir d-hiicre oldugundan, sonlu bir simpleksler
kompleksi hiicreleri simpleksler olan bir sonlu CW-komplekstir. Ayrica aksi
sOylenmedikge bundan sonra CW-kompleks denildiginde sonlu oldugu anlagi-

lacaktar.



Ornek 2.0.2. (Forman, 2002) X, izerinde bir tane 0-hiicre, iki tane 1-hiicre

ve bir tane 2-hiicre ile belirlenen
PCXoCX;CXoCX3=X

CW -ayrisyma olan bir CW -kompleks olsun. Xo tek noktadir. Tek noktaya
1-hiicre eklenerek X, cemberi elde edilir ve benzer sekilde Xo de S* A S olur.
Simdi 2-hiicre dikdortgen seklinde alimip karsilikly kenarlar ayni cembere gelecek
sekilde ekli doniisiim olusturulsun. Boylece X3 = X bir tor olur. O halde torun

CW-ayrisima bir tane 0-hiicre, iki tane 1-hiicre ve bir tane 2-hiicreden olusur.

. 0 @ -
Xo X4 X3 X3

Sekil 2.4: Tor’un CW-ayrigim1 (Forman, 2002)

Teorem 2.0.1. (Lundell, |1969) W bir normal uzay, A C U C W, U bir
ack kiime, w : W — I siirekli bir donisim, Kerw = A ve A, U nun gii¢li
deformasyon retrakty olsun. Eger h : X — X' homotopi denklik, f; : A — X,
fo i A — X' sirekli donisiimler ve fy ile h o fi homotopik ise h homotopi
denkliginin bir H : X Uy, W — X' Uy, W homotopi denkligine genislemesi
vardir ve h nin bir homotopi tersi olan g nin, H nin homotopi tersi olacak

sekilde bir genislemesi vardar.

Teorem 2.0.2. (Forman, 2002) h : X — X' homotopi denklik, o bir hiicre
ve fi : 0o — X, fo: 0o — X' siirekli iki doniisiim olsun. Eger h o f ile fo
homotopik ise X Uy, o ile X' Uy, 0 ayne homotopi tipine sahiptir.

Teorem [2.0.2 den, X Uy o ekli uzaymin homotopi tipinin sadece X in

homotopi tipine ve f nin homotopi sinifina bagl oldugu anlagilir.

Sonug 2.0.1. (Forman, |2002) X bir topolojik wzay, o bir hiicre,

f1, fa 1 0o — X stirekli doniisimler olsun. ho fi ~ f5 ise

X Uy oile X Uy, 0
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aynr homotopt tipine sahiptir.

Ispat. Teorem|[2.0.2 de,
X' =X veh=1x

alinirsa, X Uy, o ile X Uy, 0 ekli uzaylarimin aynt homotopi tipine sahip oldugu

gorilir. [

Bu sonuca gore bir C'W-kompleksin homotopi tipi sadece, C'W-ayrigimi

olugturan ekli doniistimlerin homotopi simiflarina baghdir.

Ornek 2.0.3. (Forman, |2002) X, tzerinde bir O-hiicre ve bir d-hiicre ile
belirlenen

CXeCX =X

CW -ayrisima olan bir CW -kompleks olsun. Xy bir 0-hiicre olmak zorundadar.
Xy ise, Xg a bir d-hiicre eklenmesi ile elde edilir. Xo tek nokta oldugundan ekli
doniistim sabit dondisim olmak zorundadur. Oyleyse bir d-yuwvarin tim simar

noktalary es kilinap bir d-kiire elde edilmis olur.

Topolojik uzaylarin tek noktada kesisimi, uzaylarin ayrik birlesimi
iizerinde, uzaylardan secilen birer noktay1 birbirine denk kilarak elde edilen

uzaydir. X ve Y uzaylarinin tek noktada kesigimi X AY ile gosterilir.

Ornek 2.0.4. (Forman, 2002) X, iizerinde bir 0-hiicre ve n-tane d-hiicre ile
belirlenen

PCXpCXiC..CX,, =X

CW -ayrisvma olan bir CW -kompleks olsun. Xq, bir 0-hiicre olmak zorundadur
vei = 1,2,..,n icin X;, X,_1 e bir d-hiicre eklenmesi ile elde edilir. Ornek

2.0.3 den X in bir d-kire oldugu bilinmektedir.

Xy ise, Xy e d-hiicre eklenerek elde edilecektir. Ekli dontisim ise d-

hiicrenin sinirindan yani (d — 1)-kiireden X, e stirekli bir dontisim olacaktar.
Ta1(X1) 2 74 1(ST) 20

oldugundan (d — 1)-kiireden Xy e tanamly olan tim strekli donisimler sabit

doniisiime homotop olacaktir. Ekli dontisim sabit donisim segilirse

X, = 8% A 8¢
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oldugu gorilir. Ayrica Sonug [2.0.1 goz oniine alimirsa, ekli dénisim nasil

alvmarsa alinsin, Xy nin ST A S? ile homotopi denk oldugu goriliir.

X3 1 elde etmek i¢in bir d-hiicre Xo ye eklenmelidir. Bu ekli uzayn
homotopi tipini belirleyecek olan, ekli dontisimiin homotopi sinifidir. Yine

benzer diistince ile

7Td,1(X2) = ﬂd,l(Sd VAN Sd) =0

oldugundan S den X, ye tansmlanan tim siirekli dondisiimler homotopiktir.

Bu 1se

X3~ STA SN S?

olmasy demektir. Bu sekilde devam edersek X, n-tane d—kiirenin tek noktada

kesisimine homotopi denktir.

Ornek 2.0.5. (Forman, 2002) X, tzerinde bir tane 0-hiicre, bir tane 1-hiicre

ve bir tane 2-hiicre ile belirlenen
PCXoCXiCXo=X

CW -ayrisima olan bir CW -kompleks olsun. Xo bir 0-hiicre olmak zorundadar.
X1, Xo a bir tane 1-hiicre eklenmesi ile elde edilmektedir. Boylece Xy, bir

cember olmak zorundadar.

Xy ise, Xy e bir 2—hiicre eklenmesi ile elde edilecektir. Ekli dontisim,
2—hiicrenin  starindan S e sirekli bir déonisim olacaktir. Oyleyse ekli
déondisiim, St den S e siirekli bir doniisiimdiir. Bu déndisiimiin homotopi sinafi

negatif olmayan bir tamsaiy olan dolanim sayisina bagly olacaktar.

Eger dolanim sayist 0 ise ekli dontisim sabit dontisim olacaktir. Boylece
Xo=X~S'AS?

olur. Eger dolanim sayist 1 ise ekli dontisimi birim dontsim se¢mek Xo nin

homotopt tipint degistirmez ve
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olur. Eger dolanmim saiyst 2 1se ekli dontsimain standart 2-dereceli doniisim
(etrafina tam 2 kez dolanan ve asla geri gitmeyen déntsim) se¢ilmesi Xy nin
homotopi tipini degistirmez. Boylece X, RP? ye homotopi denk olur. Aslinda
her bir dolanim sayist i¢in farkly bir uzay elde edilir. Clinki dolanwm sayist n
icin, elde edilen uzayin homoloji gruplarina bakarsak,

Z
Hl(X7Z> = ﬁ

olup, n saysina bagldar.

Simdi, once 2-hiicre sonra 1-hiicre eklensin. Xo yine bir 0-hiicredir.
2-hiicre sabit ekli déniisiim ile eklenirse X, S* ye homotopi denk olacaktr.
1-hiicre, S? ye hangi ekli doniisiim ile eklenirse eklensin X in homotopi tipi
degismez. Clinkii, mo(S?) = 0 oldugundan S* baglantils olup tanymlanabilecek
tiim ekli dontisiimler sabit déniisiime homotoptur. Boylece X ~ S* A S? elde

edilir.

Sonlu bir C'W-kompleks, ayrisiminda eklenen hiicrelerle tam olarak ayni
boyutta ve ayni sayida hiicrenin, mertebeleri azalmayan sirayla eklenmesi ile
elde edilen bir CW-komplekse homotopi denktir. Yani bir C'W-kompleks 6nce
kii¢iik boyutlular1 sonra biiylik boyutlular: ekleyerek elde edilebilir. Simdi ise
bir C'W-kompleksin homoloji grubunun nasil hasaplandigini gosteren teoremi

ifade edelim.

Teorem 2.0.3. (Forman, |2002) X, tuzerinde d = 0,1,...,n saylary igin

d-mertebeli o4 hiicrelert ile belirlenen
PCXoCXiC..CX, =X

CW -ayrisima olan bir CW -kompleks olsun. Cy(X,7Z), o4 hiicreleri tarafindan

tiretilen serbest abel grup olmak tizere her d i¢in
04004-1 =0
olacak sekilde
803 : Cd(X, Z) — Cd,l(X, Z)

sinar homomorfizmalar, vardwr ve

0= Co(X,Z) 25 O (X,Z) 275 25 0n(X,Z) — 0
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diferansiyel kompleksi, X in singiiler homolojisi Hy(X,Z) yi

Ker(0y)

Hy(X,Z) = Hy(C,0) = Tm(@as)

seklinde hesaplar.

Teorem 2.0.4. (Milnor, |1965) (G1iglii Morse Egitsizligi) X, her k i¢in ¢y,

tane k-boyutlu hiicreden olusan bir CW -kompleks ve F cisim katsayisina gore
b = dim(Hy(X,F))
olsun. Her k i¢in
Cl — Cpp1 + Cl—g — ... + (—1)kco >bp —bp—q +bp_o — ... + (—1)kb0
dar.
Bu teoremin ispati igin Milnor(1963) incelenebilir.

Teorem 2.0.5. (Milnor, 1963) (Zayif Morse Egitsizligi) X, her d i¢in cq

tane d-boyutlu hiicreden olusan bir CW -kompleks ve F cisim katsayisina gore
bg = dim(Hy(X,TF))
olsun. Her d i¢in cq > by esitsizligi vardar.
ispat. Teoreml@, her k i¢in dogru oldugundan k = 0 alinirsa
co > bo

olur ve bu durum, teoremin d = 0 i¢in dogru oldugunu gésterir. Teorem[2.0.4,

herk = 0,1, ....d i¢in dogru oldugundan elde edilen esitsizlikler alt alta yazilirsa
co > bo
c1— ¢y = by — by

ca—c1+cy>by—b+ b

Cam1 — Ca—g + oo+ (=1)¥ ey > by — bg_g + ... + (—1)4 by
€4 — Ca—1 + Ca—g 4 ..+ (—=1)%o > bg — bg_1 + bg_o + ... + (=1
esitsizlikleri elde edilir. Bu egitsizlikler taraf tarafa toplanirsa
cq 2> bq

esitsizlige elde edilir. ]
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Morse egitsizlikleri tor i¢in uygulanirsa by = 1, by = 2 ve by = 1
oldugundan
co = by =
c1>b =
Co Z b2 =1

elde edilir. Zaten daha 6nce yapilan 6rnektecy =1>1, ¢, =22>2, co=12>1
bulunmustu. Halbuki hiicreler, simpleks olarak alinip inga edilmek istenseydi
yani lcgenlestirme yontemi kullanilsaydi, bunun icin en az yedi tane O-
simpleks, yirmi bir tane 1-simpleks ve on dort tane 2-simpleks kullanilmig
olacakti. Bu ise egitlikten ¢ok uzak oldugu i¢in kullanigsiz olacakti. Bu durum
simpleksler kompleksi yerine neden hiicre kompleksi kullanildigini anlamaya

yardimeci olur.
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3 AYRIK MORSE TEORISINE GIRIS

Bu béliimde bir simpleksler kompleksinin daha az sayida hiicre ile CW-
ayrigiminin  bulunup bulunamayacagi arastirilmistir. Ayrik Morse teori bu

baglamda uygun bir yoéntem olarak sunulmustur.

Tanim 3.0.1. (Forman, 2002) K bir simpleksler kompleksi olmak iizere her
o) € K i¢in asaqidaki sartlar saglanwyorsa f : K — R fonksiyonuna bir

ayrik Morse fonksiyonu denir:

#{BP > a | f(B) < fla)} <1, (1)

#(VPV <alf(y) 2 fla)} < L. (2)

Tanim 3.0.2. (Forman, 2002) f : K — R bir ayrk Morse fonksiyonu
olsun. o) € K simpleksi asaqudaki sartlar, saglyorsa bu simplekse bir kritik

simpleks denir:

#{B7 > a | f(B) < f(a)} =0, (3)
#{1V <al| f(1) 2 fl@)} =0 (4)
5
2 4
: 3
0

Sekil 3.1: Ayrik Morse fonksiyonu degil (Forman, |2002])

Ornek 3.0.1. (Forman, 2002) K simpleksler kompleksinin f reel degerli
fonksiyonu altinda aldign degerler Sekil 3.1°de wverilmistir. Gérildigi tizere
f7Y(0) simpleksi Tanim [3.0.1 deki (2) sartin saglamaz. Ciinki daha diistik
boyutlu ki komsusu daha yiiksek dejer almistr. f~1(5) simpleksinin de 2
yiiksek boyutlu komsusu kendisinden digik deger aldigindan Tanim[3.0.1 deki

(1) sartin saglamaz.
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Ornek 3.0.2. (Forman, |2002) Bir baska K simpleksler kompleksinin f reel

degerli fonksiyonu altinda aldige degerler Sekil 3.2°de verilmistir.

5

Sekil 3.2: Ayrik Morse fonksiyonu (Forman, 2002))

Bu drnekte ise tiim simpleksler Tanwm |3.0.1 de verilen sartlary sagladi-
gindan [ bir ayrik Morse fonksiyonudur. Ayrica f~1(0) ve f~1(5) simpleksleri

birer kritik simplekstir.

Lemma 3.0.1. (Forman, 2002) K bir simpleksler kompleksi, f de K tizerinde

bir ayrik Morse fonksiyonu olsun. Bir a € K simpleksi icin ya

#{BP > a| f(B) < fla)} =0, ()

ya da
#{" Y <al f(y) = f(@)} =0 (6)

dar.

ispat. Kabul edelim ki bir a p-simpleksi lemmadaki sartlarin tkisini birden

saglamasin. O halde bir vP=Y simpleksi ve bir BPTY simpleksi icin

() = fla) = f(B) (7)
esitsizlikleri vardwr. K bir simpleksler kompleksi ve p > 1 oldugundan

B(p+1) > a® > 7(p—l)

olacak sekilde bir &®) simpleksi vardur. f bir ayrik Morse fonksiyonu oldugun-

dan

f(B) > f(a) > f(v) (8)
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ifadesi mevcuttur. (@ ve (@ ifadeleri birlikte yazilirsa

fB)> fl@) > f(v) = fla) = f(B)
elde edilir. Bu ise bir celiski oldugundan kabulimiiz yanlistir. O

Tanim 3.0.3. (Forman, |2002) K, izerinde bir f ayrik Morse fonksiyonu olan

simpleksler kompleksi ve ¢ € R olsun. K(c) seviye alt kompleksi

- U Us

fla)<e pLa

seklinde tanimlanar.

Lemma 3.0.2. (Forman, |2002) a,b € R i¢in gérintisi [a,b] araliginda olan
herhangi bir kritik simpleks yoksa K(a) ve K(b) alt kompleksleri homotopi
denktir.

Ispat. f(o®) € [a,b] olacak sekilde bir o simpleksi yoksa

olup homotopi denk olurlar.

BPHY > o) simpleksleri icin f(B) < f(a) olsun. B mn f altinda aldife
deger, kritik noktalar: ve alt kompleksleri degistirmeyecek derecede kii¢iik bir
e sayst kadar daha disik bir degere gotirilirse ya da benzer disiince ile
a mn [ altinda aldigr deger € kadar daha biiyik bir degere gotirilirse f
birebir olur. Su halde, gerekirse bu kapaly aralik bir tek simpleksin gorintistni
kapsayacak sekilde alt araliklara ayrilabilir. Dolayiswyla ispat bir tek kritik
olmayan simpleks i¢in yapilabilir. f(«) € [a,b] simpleksi

F(BPHY) < f(a?) (9)

veya
f(@®) < f(r7Y) (10)

sartiny saglar.

@ durumunda [a,b] araliginda deger alan bir tek simpleks oldugundan

f(B) <a
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olmak zorundadur. o, 5 mn yizi oldugundan K(a) alt kompleksinde olmak

zorundadir. Boylece yine

olup, homotopi denk olurlar.

(@ durumunda Lemmal|3.0.1 geregince (@ durumu saglanmaz. Oyleyse
her B > a simpleksi i¢in f(BPTY) > f(aP)) olup

F(BD) > b

esitsizligi elde edilir. Boylece K (a) alt kompleksinde yiizi o olan hicbir simpleks
yoktur. Bu ise

Ka)nNa=o

olmast demektir. Ayrica (@) geregince

f(y) >0

olup v, K(a) alt kompleksinde yoktur. o man v disinda tim yizleri f(«) dan
kigiik deger almak zorunda oldugundan K(a) alt kompleksinde kapsanur. Yiizi
v olan bir diger p-simpleks & olsun. f(&) > f(v) olmak zorundadir, ayrica

f(v) > b oldugundan
fla)>b
olur. Boylece K(a) alt kompleksinde yiizii v olan hicbir simpleks yoktur. Bu ise
Ka)Nny=92
olmasiy demektir. Béylece

K(b)=K(a)UaUxy

bulunur. 7y, a simpleksinin serbest yizidir ve K (a) alt kompleksinde bulunmaz.
Bu ise K(b) N\ K(a) olmast yani K(a) ile K(b) nin homotopi denk olmas:

anlamwna gelir. [

Lemma|3.0.2 ile anlatilmak istenen simpleks ¢okmesi kisminda daha agik
olarak goriilmektedir (Forman, 2002).
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Lemma 3.0.3. (Forman, 2002) K ayrik Morse fonksiyonlu simpleksler komp-
leksinde sadece bir tek oP) kritik p-simpleksinin gorintiisi [a,b] arabgimda ise

K(b) ye homotopi denk olacak sekilde K (a) ya bir p-hiicre eklemesi yapilabilir.

Ispat. Ispat yine f nin birebir oldugu kabul edilerek yapilacaktor.
a<a <b <bwve fa,V]) = {a®} olacak sekilde a' ve b sayplar vardar.

Lemma|3.0.2 geregince
K(a') \ K(a)

ve

olup

oldugunu gostermek yeterlidir.

a®) Eritik oldugunda BPTY > a®) jcin f(BPTY) > f(al®)) olmak

zorundadir. Dolaysiyla

FB7) >

olup
Kd)yna=9o

dir. Benzer sekilde yine kritik olma sartindan YP~Y < o® simpleksi igin

f(vy*V) < f(a) olmak zorundadwr ve

fP ) <

dir. Bu ise

VY C K(d)

olmasy anlamana gelir. Boylece 0aP) C K(d') olup

K@) =K() | ] o®
Oa(r)

dir. o, e®) ye homeomorfik oldugundan istenen elde edilmis olur. ]

Boylece, iizerinde bir ayrik Morse fonksiyonu olan K simpleksler

kompleksinin, her bir kritik simpleksi i¢in tam olarak ayni boyutlu ve ayni
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sayida hiicreden olugan bir CW-komplekse homotopi denk oldugu séylenebilir.
Ornegin, bir tane kritik O-simpleks ve 2 tane kritik 3-simplekse sahip bir
simpleksler kompleksi tam olarak bir tane 0-hiicreden ve iki tane 3-hiicreden

olugsan bir CW-komplekse homotopi denktir.

Ornek 3.0.3. (Forman, 2002) Ornek|3.0.2 de bahsedilen simpleksler kompleksi
i¢in tim seviye alt kompleksler Sekil 3.3’deki gibidir.

5
2 2 4 2 4
°
0 0 0 0
KO K(1)=K(2) K(3)=K(4) K(5)=K

Sekil 3.3: Ornek nin tiim seviye alt kompleksleri (Forman, 2002)

Sekil 3.3 deki alt komplekslerin olusumunu agiklayalim. K(0) dan K(1) e
gegilirken herhangi bir kritik simpleks eklenmediginden Lemma[3.0.3 geregince
K(0) ile K(1) homotopi denktir. Ancak K(4) den K(5) e gegilirken f~1(5)
kritik 1-simpleksi eklenir. O halde Lemma @ geregince K(4) e bir 1-hicre
eklenerek K (5) e homotopi denk bir kompleks elde edilebilir. Dikkat edilirse alt
kompleksler olusturulurken f~1(5) simpleksinin tim yiizleri kendisinden dnce
eklenmistir. f~1(5) eklenecegi zaman ise simpleksin tim swarlar, daha dnce

eklendiginden, bu bir hiicre ekleme islemine doniismektedir.

Simdi K; ve K, iki simpleksler kompleksi ve Ky C K; olsun.
Ky — K5 nin «, [ seklinde sadece iki elemani olsun ve 3, a nin serbest
yiizii olsun. Yani 8 sadece a nin yiizii olsun. Oyleyse K5, K, in deformasyon
retrakti olup boylece K ile K, homotopi denktir. Iste bu sekilde K simpleksler
kompleksini Ky alt kompleksine deforme etmeye simpleks ¢okmesi denir ve

K\, K ile gosterilir (Forman, 2002).

Ornek 3.0.4. (Forman, 2002) Sekil 3.4 de K, simpleksler kompleksinin,
a simpleksi ve onun serbest yizii olan [ simpleksi silinirse K1 ile homotopi
denk olan Ky simpleksler kompleksi elde edilir. Yani K; \, Ky simpleks

c¢okmest elde edilir.
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p

N

K] KZ

Sekil 3.4: Simpleks ¢okmesine érnek (Forman, [2002)

Ornek 3.0.5. (Forman, 2002) Benzer sekilde, Sekil 3.5 géz oniine alinirsa
once simpleksler kompleksinde 2-simpleks ile onun bir serbest yiizi olan
1-simpleks silinmis sonra bir 1-simpleks ile onun bir serbest yuizi olan

0-simpleks silinerek 0-simpleks elde edilmistir.

VANNVARVARS

Sekil 3.5: Simpleks ¢okmesine érnek (Forman, [2002)

Simpleks ¢okmesi J.H.C. Whitehead tarafindan galisilmis ve simpleks
¢okmesi ile iiretilen denklik bagintisi i¢in basit homotopi denklik tanimi
yapilmigtir. Bu ise basit homotopi denklik kategorisi i¢in ayrik Morse teorisinin
kullanigh oldugunu gostermistir.

Bir simpleksler kompleksi iizerinde her simpleksi boyutuna gotiiren bir
fonksiyon alinirsa bu bir ayrik Morse fonksiyonu olur. Yani her simpleksler
kompleksi iizerinde bir ayrik Morse fonksiyonu tanimlanabilir. Bu durumda her
simpleks kritik simpleks olur. Halbuki istenen, miimkiin oldugunca az sayida

kritik simpleks olmasidir.

Morse esitsizlikleri, Teorem [2.0.4 ve Teorem [2.0.5 ile Milnor(1963) de
smooth manifoldlar i¢in verilmistir. Bu egitsizliklerin dogal sonucu olarak, For-
man(1998) de hiicre komplekslerine uyarlanmigtir. Bir simpleksler kompleksi
ayni zamanda hiicre kompleksi olup Forman(1998) de gegen ozellikler aynen

gegerlidir. O halde K, n-boyutlu bir simpleksler kompleksi ve b;, i-nci homoloji
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grubunun boyutu (Betti sayisi) olmak tizere

(i) (Giiglii Morse Esitsizligi) Her p =0,1,2,...,n,n + 1 igin
my — Mp_1 + ... + (=1)Pmg > b, — b1 + ... + (—1)Pbg

ve

(ii) (Zay:rf Morse Esitsizligi) Her p = 0,1,2,...,n igin

esitsizlikleri vardir.
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4 GRADYANT VEKTOR ALANLARI

Bir K simpleksler kompleksinin simplekslerini sayilarla eglemektense,
bir gradyant vektér alam1 bulmak daha kolaydir. Ornek @ gbz Oniine
alimirsa, f~1(1) simpleksinin kritik simpleks olmamasinin sebebi daha yiiksek
bir deger alan daha diigiik dereceli bir komsusu olan f~1(2) simpleksinin
var olmasidir. Benzer sekilde f~*(2) simpleksinin kritik simpleks olmamasinin
sebebi daha diigiik bir deger alan daha yiiksek dereceli bir komsgusu olan f~1(1)
simpleksinin var olmasidir. Yani kritik olmayan simpleksler ikiserli eslenip,
f7Y2) simpleksinden f~!(1) simpleksine bir ok gizilir. Benzer diisiince ile
f~1(4) simpleksinden f~!(3) simpleksine ok ¢izilir. Clizilen bu oklar simpleks
¢okmesi olarak da diisiiniilebilir. Sekil 4.1 de bu oklar gosterilmistir.

Sekil 4.1: Ornek tizerindeki gradyant vektor alani (Forman, 2002])

Bu islem herhangi bir simpleksler kompleksinin ayrik Morse fonksiyonu
icin uygulanabilir. Bir kritik olmayan a® simpleksi icin S®PT) > a® ve
f(a®)) > f(BP+1)) oluyorsa, o simpleksinden B simpleksine bir ok cizilir.

Sekil 4.2 de biraz daha karmasgik bir 6rnek gosterilmektedir.

Sekil 4.2: Ayrik Morse fonksiyonu ve gradyant vektor alan (Forman, [2002)

Bu 6rnekte f~1(0) ve f~!(11) kritik simplekslerdir. O halde bu simpleks-
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ler  kompleksi tam  olarak  bir tane 0O-hiicre ve bir tane
I-hiicreden olugan CW-komplekse homotopi denktir. Ayrica Lemma [3.0.1 goz
oniine alinirsa bir o simpleksi agagidakilerden yalnzca birini saglar.

(i) @ yalmzca bir okun kuyrugudur.

(ii)  yalnizca bir okun bagidir.

(iii) v herhangi bir okun kuyrugu ya da basgi degildir.

Son gart1 saglayan simpleks bir kritik simplekstir.

Simdi iizerinde oklar olan bir simpleksler kompleksi diisiinelim. Bu
oklarim, bir ayrik Morse fonksiyonunun gradyant vektor alani olup olmadigi
sorusunu cevaplamak i¢in agagidaki teoremler incelenebilir.

K simpleksler kompleksinin simplekslerinin {a® < B®+D} geklindeki
ikililerinin ailesi V' olmak {izere bu ailedeki her simpleks en fazla bir ikilide yer
aliyorsa, V' ye bir ayrik vektor alani denir. i = 0,...r igin {a < 5} € V ve

Bi > ;1 # «; Ozelligine sahip

o P00, B, 0. B,

dizisine bir V-yol denir. Eger bu V-yolu i¢in, » > 0 ve ag = .11 ise bu yola

asikar olmayan kapal1 yol denir.

Teorem 4.0.1. (Knudson, 2015) V', ayrik Morse fonksiyonu f nin gradyant

vektor alam olsun. Oyleyse a(()p), ép+1), a(lp), pr), ozép), o ﬁpﬂ), 047(}-21 n V-yol

olmasy i¢in gerek ve yeter sart her i =0, ...r ve o; < ; > ayiq i¢in
flao) = f(Bo) > flan) = f(Br) > ... = f(Br) > flowsr)
olmasudar.
Ispat. Yukaridaki gibi bir dizi, V-yol olsun. Oyleyse tansmdan i = 0, ...r i¢in
flew) = f(Bi)
dir. Ayrica a1, B; ile eslenmediginden
f(Bi) > flais)

dir. Simdi ise teoremdeki esitsizlik saglansin. O halde tansmdan {«;, 5;} € V
olacaktir. f ayrik Morse fonksiyonu oldugundan bu ; tek olup o; ve [3; bir tek
tkilide yer alacaktir. Boylece yukaridaks dize bir yol olacaktur. [
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Teorem 4.0.2. (Knudson, 2015) Bir ayrik vektor alans V' nin, ayrik Morse
fonksiyonunun gradyant vektér alant olmasi i¢in gerek ve yeter sart asikar

olmayan kapalr V -yollarimin var olmamasidar.

Ispat. (=) V, ayrik Morse fonksiyonu f nin belirledigi ayrik gradyant vektor
alany olsun. V' nin asikar olmayan kapaly bir yola sahip oldugunu kabul edelim.

Bu yol

% 75(p+1 L (p+1 p . B (p+1) gp) _ a(()p)

7 ) r—1 >

ile gosterilsin. Teorem [{.0.1 geregince

flao) = f(Bo) > flau) = f(B1) > .. = f(Bro1) > flar) = flaw)

esitsizligi saglanir. Bu ise ¢eliskidir. O halde kabulimiz yanhs olup, asikar

olmayan kapalr yol yoktur.

(<) V asikar olmayan kapali yollar barindirmayan bir ayrik vektor
alany olsun. {o, B} € V ise, V(a) = B ve V(B) = « seklinde bir gésterim
tanmamlansin. Ayrica o kritik olmayan bir simpleks ise V(a) = 0 olsun. Her
bir p icin, boyutu p ve daha kiiciik simplekslerin olusturdugu alt kompleks K ®

tizerinde V), soyle tanvmlansin:
q < pise V(o) = V(a?),

q=p ve V(D) =0 ise V,(a'?) = V(al?).

K® dgzerinde, Vp yardimayla bir f, fonksiyonu insa edilecektir. al®), Vo
de kritik ise f,(a) = ¢ olan ve [—— P+ ] kapaly araliginda deger alan, f,

fonksiyonu insa edilebilir.

p = 0 olsun. K da bulunan her simpleks kritiktir ve fy(a) = 0
dir. Su halde fy tanmimlanmastur. Artik f,_1 tanimb iken f,, f,—1 yardimayla
tanamlanabilir. ¢ < p—2 i¢in f,(a?) = f,_1(a'?) olsun. Yani f, tanemlanirken
boyutu p — 1 den kiigik olanlarin degeri degismesin. (p — 1) boyutlularin

gorintist tanimlanirken Vp ye gore kritik simpleksler
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fp(oz(qfl)) = q — 1 seklinde tamimlansin. Kritik olmayanlar i¢in ise asaqidaki d

dontisimi kullanilacaktur:
d(a'?™V) = maks{r | o, o, ay, ..., a, V,-yol ve V,(a,) = 0}
ve tim p — 1 boyutlu simpleksler i¢in
D = maks{d(a"V)}
olmak tizere
d(aP=)

2D +1

seklinde tanimlansin. Ayrica V' de kapalr yol olmadiginda V, de de olamaz.

Fo(@PD) = fp1y(@®™) +

Oyleyse r degerleri sonlu olup maks fonksiyonu anlamlidir. Burada tanvmlanan
fonksiyon kritik simpleksleri boyutlarina, kritik olmayanlar: ise kritik simplekse
giden en uzun yolun adim saysiyla orantily olacak sekilde f,—1 de aldige

degerden biraz daha biiyik veya esit bir sayiya gotirir.

p boyutlu simplekslerden kritik olanlar boyutlarina gitsin. Kritik olmayan-
lar p — 1 boyutlu hangi simpleksle eslendiyse o simpleksin gittigi degere gitsin.
Béylece yukarida bahsedildigi gibi [—%,p + %] aralvginda deger alan ve kritik

simpleksleri boyutuna gotiren bir f fonksiyonu insa edilir.

Oncelikle bu f fonksiyonunun ayrik Morse fonksiyonu oldugu gosterilme-
ludur. Kritik bir p stmpleksin boyutuna yani p ye gittiging biliyoruz. Boyutu p den
klictik olan simpleksler [—%,p— %] aralginda deger aldigindan Morse fonksiyon
olma sartlarine bozmaz. Boyutu p den biyik olan simpleksler kritik ise p + 1
e gider. Kritik degilse p-simpleks ile eslenip p den biraz biyik bir deger almas
olmalidir. Yine her kosulda, kritik olan p-simpleksinden biyik bir deger alvr.
Bu durumda [ bir ayrik Morse fonksiyonu ise V' nin kritik simpleksleri f ye
gore kritik olacak ve kritik olmayan simpleksler eslendigi simpleksle ayniy degeri
aldigindan [ ye gore kritik olamayacak. Yani f nin bir ayrik Morse fonksiyonu
oldugunu gdsterirsek f nin tanmamladigr gradyant vektor alany V' nin kendist

olur.

Simdi kritik olmayan bir p-simpleksinin ayrk Morse fonksiyon olma

sartlarim saglamadiging gosterirsek ispat tamamlanar. Kritik olmayan oP)
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simpleksi v*~Y simpleksi ile eslendiyse f altinda ayni degeri alrlar. Simdi
a®) nin bir baska yizi BP~Y olsun. SP~Y kritik simpleks ise zaten boyutuna
gidecegi i¢in f(a'P)) den kiigiik deger alwr. Kritik degilse 5%~V ile baslayan her
yol icin dizinin basina v~ a®) eklenip yol bir advm daha uzatilabilir. Demek
ki d fonksiyonu altinda v?~ daha biyik bir deger alyor. Oyleyse f altinda
da daha biiyik deger alir ve f(BP~V) < f(vP~V) = f(aP) elde edilir ve diger

yuzlerin daha kii¢iik deger aldigy gdsterilmis olur.

Benzer sekilde daha biiyik boyutlu bir komsusu 7 alinsin. T komsusu kritik
i1se zaten derecesine gidip daha biiyiik bir deger alir. Kritik degil ise de eslendigi
simpleks ile birlikte, o'P) ile baslayan her yolun basina eklenebilir ve dolayiswyla
f altinda daha biyik bir deger aldigu gosterilebilir. O halde f bir ayrik Morse

fonksiyonudur ve V', f nin ayrik gradyant vektor alanidar. O

G yonli bir graf olsun. Koseleri lizerinde reel degerli siirekli artan bir
fonksiyona sahip olmasi i¢in gerek ve yeter sart yonlii bir kapali yola sahip
olmamasidir. Bu ozellik, gradyant vektor alanlarinin graflara uygulanacag:
baglantisiz graflar 6rneginde, graf {izerindeki ayrik vektor alaninin, gradyant

vektor alani olup olmadigini tespit ederken kullanilacaktir.

Simdi gradyant vektor alani ile Reel Projektif Diizlemin CW-ayrigiminin

nasil bulunacag gosterilecektir.

Sekil 4.3: RP? nun (4)iicgenlestirmesi (i4)gradyant vektor alam (Forman, 2002)

Sekil 4.3(i) Reel Projektif Diizlemin bir tiggenlestirmesidir. Sekil 4.3(ii)’de

ise bir ayrik gradyant vektor alanmi verilmistir. Dikkat edilirse herhangi bir



28

kapali yol olmadig gériilecektir. Oyleyse kritik simpleksler, herhangi bir okun
kuyrugu ya da basi olmayan simpleksler olacaktir. Yani bir tane 0-simpleks,
bir tane 1-simpleks, bir tane 2-simpleks kritik simplekstir. Demek ki 1 tane
O-hiicre 1 tane 1-hiicre ve 1 tane 2-hiicreden olusan bir CW-kompleks, Reel
Projektif Diizlem ile homotopi denk olacaktir. Ayrica ilerideki boliimlerde bu
ayrik gradyant vektor alaninin bize bagka bilgiler de verdigi gosterilecektir.

Simdi bir graflar ailesinin, bir simpleksler kompleksini nasil dogurdugu ve bu
graflar ailesi iizerinde tanimlanacak bir yapi yardimiyla, grafin dogurdugu
simpleksin CW-ayrigiminin nasil bulunabildigi, bir érnek yardimiyla agikla-

nacaktir. Fakat oncelikle bazi tanimlarin ifade edilmesi gerekmektedir.

Tanmim 4.0.1. (Forman, |2002) K,, késeleri 1,2, ...,n olan tam graf, G, K, in
tiim geren alt graflarinin kimesit ve P C G, izomorf graflarin dahil olmasina
gore graf ozelligine sahip olsun. Eger Gy C Gy € G, i¢in Gy € P iken Gy € P

oluyorsa P ye monoton azalan denir.

Bir P monoton azalan graf o6zelligi d + 1 kenarh graflarin d-simpleks
oldugu bir I simpleksler kompleksi olugturur. Bu kompleksteki bir simpleksin
yiizleri ise o simplekse karsilik gelen grafin tiim geren alt graflaridir. Monoton
azalanlik 6zelligi ise bunu garanti eder. K min koseleri ise K, in kenarlaridir.
Bir koseler kiimesinin gerdigi simpleksin C da olup olmadigi o kosgeleri temsil

eden kenarlarin igerildigi bir geren alt grafin P de olup olmamasina baglhdir.

Ayrik Morse teori 6zel olarak 2-baglantisiz graflarin topolojisinin belir-
lenmesine katki saglamigtir ve 3-baglantisiz graflarin topolojisini hesaplamigtir.
Burada ise daha kolay bir 6rnegi olan baglantisiz graflar incelenecektir. n kogeli
baglantisiz graflarin belirledigi simpleksler kompleksi N, ile gosterilecek ve

iizerinde bir ayrik gradyant vektor alani olusturulmaya caligilacaktir.

Oncelikle V35 ayrik vektor alani olusturulacaktir. Bu ayrik vektor alan,
simpleksleri yani onlar1 temsil eden graflar egleyerek olugturulacaktir. (1,2)
kenarmni igermeyen baglantisiz graflara (1,2) kenarmi ekledigimizde yine
baglantisiz bir graf oluyorsa bu iki kenar eglenebilir ¢iinkii her ikisi de
baglantisiz oldugundan N,, in elemanidir. Diger bir deyigle (1, 2) kenarini igeren

bir baglantisiz graftan (1, 2) kenar1 gikarilirsa yine baglantisiz bir graf elde edilir
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ve bu baglantisiz graf (1,2) eklenmig haliyle eglenebilir.

Peki hangi graflar eslenemedi? (1,2) kenarmi igeren tiim baglantisiz
graflar eglendi. (1,2) kenarm igermeyen graflar ise (1,2) kenar1 eklenince
baglantisiz olma sarti ile eglenebildi. Demek ki (1, 2) kenar1 eklenince baglantil
olan ancak (1, 2) kenarim icermeyen ve baglantisiz olan graflar eglenemedi. Yani
1 noktasini igeren bir baglantili bilesen GG ve 2 noktasini igeren bir baglantil
bilesen G5 olmak iizere baglantisiz graflar kaldi. Sekil 4.4 ile bu graflarin tipi
goriilmektedir. Dikkatli diigiiniildiigiinde hicbir kenar icermeyen graf, sadece
(1,2) kenarin igeren graf ile eglenmelidir. Ancak bog graf herhangi bir simpleks

ifade etmediginden bu egleme yapilamayacaktir.

G G

1 2

Sekil 4.4: Gy ve G2 baglantisiz bilegenleri (Forman, 2002)

Simdi ise bu kalan, yani eslenemeyen graflar eslenmelidir. Bu asamada
eslenecek ikililerin olusturacagi ayrik vektor alam V3 ile gosterilecektir. Bunlar
eslenmeye 3 noktasi diigiiniilerek baglanir. 3 noktasi ya GGy baglantili bilegeninde
ya da G5 baglantih bilegenindedir. Eger G; baglantili bilegeninde ise (1,3)
kenarini igermeyen graflar (1,3) kenarimin eklenmesi ile elde edilen graf
ile eglensin. Diger bir deyigle (1,3) kenarmi igeren graflardan (1,3) kenari
gikarldiginda G4 hala baglantihi bilegen oluyorsa bu graf, (1, 3) kenar1 eklenerek
elde edilen graf ile eglensin. Peki bu agamada kimler eglenemedi? Eger (1, 3)
kenari ¢ikarildiginda GGy baglantili bilegen olmuyorsa o graf eglenemeyen graftir.
Ya da benzer durum 3 noktasinin G5 baglantili bilegenine ait olmasi igin

diigiiniilebilir. Sekil 4.5 ile bu graflarin tipi gorilebilir.
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Sekil 4.5: V3 ayrik vektor alaninda eglenemeyen graflarin tipi (Forman, 2002)

Benzer iglem n-defa yapilir ve en sonunda V,, elde edilir. Sonucta
iki baglantilh agaglarin birlegimi ile sadece (1,2) kenarimdan olugan graf
eslenememigtir. Ayrica dikkat edilirse agag asag1 dogru inerken daima kogelerin
aldig1 degerler artmaktadir. Bu gekilde tam olarak (n — 1)! tane graf vardir ve

her birinin n—2 tane kenar1 vardir ki bunlar da birer (n—3)-simpleks olugturur.

Simdi bu ayrik vektér alaninin gradyant vektor alani oldugu goste-
rilmelidir. Bunun i¢in agikar olmayan kapali V' — yol olmadigini gostermek
yeterlidir. Ozel olarak V3, icinde bir yol alimirsa ilk ikili aép ), B(()p 1 olur. Bu ise
AP = o) 4 (1,2) olmasi demektir. Buradan sonra 3. terim %™ in o
den farkli bir yiizii gelmelidir. O halde Bép ) den (1,2) haricinden bir kenar
silinmelidir. Bu ise (1,2) kenarmi igermesi demektir ve bu kenar1 igerenler
Vo igerisinde bir okun kuyrugu degil basi olmak zorundadir. Demek ki daha
uzun bir Vis-yol inga etmek miimkiin degildir. Bu ise agikar olmayan kapali bir
yolun olmadig1 anlamina gelir. Benzer diigiince, olugturulan diger ayrik vektor

alanlar1 i¢in de gecerlidir. Demek ki olusturulan ayrik vektor alani bir ayrik

gradyant vektor alanmidir.

Eslenemeyen graflar tekrar goz oOntine alinirsa oncelikle sadece (1,2)
kenarindan olusan graf eglenememistir. Bu ise bir 0-simplekse kargilik gelir.
Daha sonrasinda ise (n — 1)! tane (n — 2)-kenarh graf eslenememistir, bunlar

da (n — 3)-simpleks demektir.
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O halde n koseli baglantisiz graflarin belirledigi simpleksler kompleksi V,,,
(n — 3)-boyutlu (n — 1)! tane kiirenin tek noktada kesigimi ile ayn1 homotopi
tipine sahiptir.

Simdi n = 4 igin, kogeler kiimesi {1, 2, 3,4} olan baglantisiz graflar ele
alalim. Oncelikle (1,2) kenarina [a], (1,3) kenarma [b], (1,4) kenarma [c],
(2,3) kenarma [d], (2,4) kenarma [e], (3,4) kenarma [f] simpleksi kargilik
gelsin. Bu graflar ve karsilik gelen simpleksler Sekil 4.6 ile gosterilmistir.

1 2 1 2 1 2
.—a. [ ] L]
b
c
3 4 3 4 3 4
L L] [ ] [ ]
a b c
L] L] °
1 2 1 2 1 2
[ [ ] o L ]
d
e
4 3 4 3 4
[ ] [ ] .—f.
d e f
[ ] [} [ ]

Sekil 4.6: Bir kenarli graflar ve kargilik gelen simpleksler

Simdi graflarimizi ve bunlara karsilik gelen simplekslerimizi ifade edelim.

P={1L2)5{13)1{(1,4)1{(2,3) {24} {341, {(1,2), (1,3)},
{(1,2), (1,4)},{(1,2),(2,3)}, {(1,2), (2,4)},{(1,2), 3,4)},{(1,3), (1,4)},
{(1,3),(2,3)},{(1,3), (2,4}, {(1,3), 3, 4)}, {(1,4), (2,3)}, {(1,4), (2,4)},
{(1,4),3,4)},{(2,3), (2,4)},{(2,3), 3, 49)},{(2,4), 3,4)},
{(1,2),(1,3),(2,4)},{(2,3), (2,4), (3, 4)}, {(1,3), (1,4), (3,4)},
{(1,2),(1,4),(2,4)}}

baglantisiz graflar ailesidir.
Oyleyse P graflar ailesine karsilik gelen simpleksler kompleksi
K = {lal, [b], [c], [d], [e], [f], a, 0], [a, ], [a, d], [a, €], [a, ], [b, ], [b, d], [b, €],
[0, f1, e, dl, [e, el [e, f1, e, d), [d, [, [e, [, [a, b, d), [d e, f1, b, ¢, f1, [a, ¢, e]}
kiimesidir. Sekil 4.7 ve Sekil 4.8 incelenirse hangi simplekslere hangi graflarin

kargilik geldigi goriilebilir.
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Sekil 4.7: Tki kenarl graflar ve kargilik gelen simpleksler

1 a 2
1 2
L ]
b c c e
3 4
4 [}
f
b a
e

1 a 2 1 2
°
d
b e
4 4
°
a d

Sekil 4.8: Ug kenarh graflar ve karsilik gelen simpleksler

Oncelikle gradyant vektor alani olusturulsun.

Viz = {{[b], [a, 0]}, {[c], [a, ]}, {ld], [a, d]}, {[e], [a, €]}, {[S], [a, f]},

{[b,d], [a, b, d]}, {lc,e], la, c, e]}} ve Vs = {{lc, f], [b e, f1}. {le, f], [d, e, f1}} dir.
Su halde 1 + (4 — 1)! = 7 tane eglenemeyen simpleks vardir. Bu ise bunlarin
kritik simpleks oldugu anlamimna gelir. {[a], [b, ], [b, €], [b, f], [c, d], [e, d], [d, f]}
kritik simplekslerdir.

Daha once de bahsedildigi gibi ama¢ miimkiin oldugunca az kritik
noktaya sahip olan Morse fonksiyonun bulunabilmesidir. Bunun i¢in iizerinde
Morse fonksiyonu tanimli olan bir simpleksler kompleksinde kritik simpleksle-

rin sayisinin nasil azaltilabileceginden bahsedilecektir.
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Bir K simpleksler kompleksi {izerinde gradyant vektor alani tanimli olsun.
P+ kritik simpleksinin sinirimdan o kritik simpleksine giden yalnizca bir
tane gradyant yol varsa bu durumda a ve 8 kritik simpleksleri yok edilebilir.

Asgagidaki teorem bu iglemin nasil yapilacagin gostermektedir.

Teorem 4.0.3. (Forman, |2002) K iizerinde f Morse fonksiyonu 8P ve P
kritik simpleksleri ile tanamly olsun. Eger B nin stmrindan o ya tanimly sadece
bir tane gradyant yol var ise M 7dizerinde oyle bir g Morse fonksiyonu vardur
ki o ve B haricindeki tim kritik simpleksler yine kritiktir ve g nin belirttigi
gradyant vektor alany B nin stnarindan o ya giden tek bir yol disinda f dekiler

ile aynadar.

Ispat. K dizerinde, ayrik Morse fonksiyonu f nin belirttigi V. gradyant vektor

alany olsun. B min sinwre olan oy dan o ya giden bir tek yol var olsun. Bu yol

Qp, /807 ooy Ol /Bna «

seklinde gosterilsin.

Vi = {{QOa BO}a {a17 51}7 P {an7 Bn}}

‘/2 = {{Oé, 6n}> {am 6n—1}7 SET) {Oél, BO}? {a07 6}}

olmak tzere

V= (V-W)UV,

olsun. B ve o, V de kritik simpleks olduklarindan eslenmemislerdir. Oyleyse
V' olusturulurken eslenmesinde bir sakinca yoktur. Su halde V' bir ayrik
vektor alamidir. Eger herhangi bir asikar olmayan kapalr yola sahip olmadige
gosterilirse V' niin bir ayrik gradyant vektér alan oldugu dolayisiyla bir g
ayrik Morse fonksiyonunun gradyant vektor alans oldugu soylenebilir. Ustelik
V" olusturulurken V' de eslenen tim simpleksler eslenmis, bunlara ek olarak
a ve B disinda herhangi bir simpleks eslenmemistir. Bu da o ve B disinda
durumu degisen baska bir simpleks olmadiginy gosterir. V' ayrik vektor alaninin

bir gradyant vektor alant oldugu gosterilirse ispat tamamlanar.

V' ayrik vektor alaninda bir agikar olmayan kapal yolun var oldugu

kabul edilsin. V' gradyant vektér alan oldugundan V' de béyle bir yol yoktur.
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Dolayisiyla V- — Vi de de yoktur. O halde bu yol Vs ile eslenen simplekslerden

en az biring kullanmak zorundadir. Bu yolu
005 TOs -3 Oks Thes Oty Bt—15 Okt Tht1s - Ty Triy 00
ile gosterelim.

Qo, ﬁOa ceey Q1 ﬂtfla Ok+1y Tk+15 -+ 00, T0y --+y Oty Bta ey Oy ﬁ?ﬂ Q

V' de bir yoldur. Bu yol, V de B nin stmiri olan oy dan o ya giden ikinci bir
yol oldugunu gdsterir. Bu ise ¢eliski olup kabuliin yanhs oldugunu yani V' niin

bir g fonksiyonunun gradyant vektor alani oldugunu gosterir. O

Ornek olarak Sekil 4.9 goz 6niine alinirsa 3 kritik simpleksinden o kritik
simpleksine bir tek yol vardir. Oyleyse oklar tersine cevrilerek diger kritik
simplekslere hi¢ dokunulmadan sadece § ve a kritik simpleksleri yok olmus

olur.

&

2

VA

Sekil 4.9: Kritik nokta yok etme

Burada # dan o ya bagka bir yolun olmamasimin istenme sebebi yeni
tanimlanan oklarin kapali bir yol olugturmasina engel olunmak istenmesidir.
Aksi halde elde edecegimiz ayrik vektor alami kapali yola sahip olur ve bir

gradyant vektor alani olamaz.
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5 KOMBINATORIK BAKIS ACISI

Bu boéliimde komplekse ait simplekslerin yiiz iligkisine gore kismi sirali

bir kiimesi olan Hasse diyagramlarindan bahsedilecektir.

Hasse diyagrami noktalar1 simpleksler olan yonlii bir graf olarak diigii-
niilebilir. Eger iki koge arasinda yonlii bir kenar varsa bu; kenarin baglangig
noktasii temsil eden simpleksin, bitis noktasini temsil eden simpleksin bir
ylizii oldugunu soyler. Eger bir V' kombinatorik vektoér alaninda {a, 8} € V
ise bu durumda (o, 5) kenar1 yon degistirir. Bu vektér alamindaki bir yol,
yonlendirilmis grafta bir yonli yol olacaktir. Fakat kargiti her zaman dogru
olmak zorunda degildir. Su halde asagidaki teorem hangi sartlar altinda Hasse
diyagraminin bir ayrik gradyant vektor alamimi belirleyecegini anlamamiza

olanak saglar.

RN
€ € €
o
vl VZ v3

0
A
€ € €
o=
vl V2 v3

(i)

Sekil 5.1: Hasse diyagraminin iki agamada olusturulmas: (Forman, [2002)

Teorem 5.0.1. (Forman, 2002) Asikar olmayan kapalr V -yollarin var olma-
mast i¢in gerek ve yeter sart yonli Hasse diyagramini olusturdugumuz grafta

astkar olmayan kapaly bir yonli yolun var olmamasidar.

Ispat. V deki tiim yollar Hasse diyagramnda bir yol belirtir. Oyleyse Hasse

diyagramanda astkar olmayan kapali yol yoksa V' ayrik vektér alaminda da
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olamaz.

V' ayrik vektor alamnda asikar olmayan kapali yol olmasin. Oyleyse
Teorem [4.0.2 geregince bir f ayrik Morse fonksiyonu wvardir. Ayrica bu
fonksiyon Teorem|[3.0.2 nin ispatindaki gibi birebir hale getirilebilir. Bu f Hasse
diyagrama tzerindeki yollar izerinde monoton azalan olacaktir. Clinki Hasse
diyagramanda, SPHY) simpleksini temsil eden noktadan o simpleksini temsil
noktaya ¢izilen yonli kenar azalan olmak zorudadir. Aksi halde artan olup
kenarin tizerindeki yon tam ters donmelidir. Benzer sekilde vP~—Y) simpleksini
temsil eden noktadan o'P) simpleksini temsil eden noktaya ¢izilen yonli kenar
azalan olmak zorundadir. Akst halde artan olup bu simpleksler V' de eslenemez.
Demekki Hasse diyagramanin belirttigi grafta noktalar tzerinde tanmimlanan
oyle bir fonksiyon vardiwr ki yonli kenarlar tizerinde monoton azalandir. Bu

ise graf tzerinde agikar olmayan kapaly bir yol olmamasina denktir. [

Sonug olarak, Hasse diyagraminda agikar olmayan kapali yonlii yol
yoksa V' bir gradyant vektor alani belirler ve eslenemeyen simpleksler kritik
simpleksler olur. Boylece yine bir ayrik Morse fonksiyonu elde edilmis gibi,
ayni yorumlar yapilabilir, CW-ayrigimi inga edilirken kag¢ tane hangi boyuttan
hiicreye ihtiya¢ duyduldugu tespit edilebilir. Bu Hasse diyagraminda bos

simpleksin eglenmedigine dikkat edilmelidir.

Yukaridaki teoremi daha iyi anlamak i¢in agagidaki érnekler incelenebilir.

Ornek 5.0.1. Sekil 5.2 ile K simpleksler kompleksi tizerinde bir ayrik vektor
alany ve bu alanwnin belirledigi yonli Hasse diyagrami verimistir. Dikkat
edilirse wvg, g, Vs, €5, V3, €2, Vg, €4, Uy, €7,V Yyolu Hasse diyagrami tizerinde bir
kapaly yoldur. O halde Teorem [5.0.1 geregince V' ayrik vektor alaninda da bir
astkar olmayan kapalv yol vardwr. Bu ise V ayrik vektor alanwnin, bir ayrik
f Morse fonksiyonunun gradyant vektér alant olamayacage anlamina gelir.
Demek ki bu Hasse diyagrame kullanisly degil. Ancak graf tzerindeki yollar
Sekil 5.3 ile gosterildigi gibi tamimlansaydy durum farkly olabilirds.
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Sekil 5.2: Kapali bir yola sahip Hasse diyagrami ve ayrik vektor alani

Ornek 5.0.2. Sekil 5.3 ile K simpleksler kompleksi tzerinde bir ayrik vektor
alany ve bu alaminin belirledigi yonli Hasse diyagrami verilmistir. Dikkat
edilirse yonli Hasse diyagramanda herhangi bir kapale yol yoktur. Teorem[5.0.1
geregince V' ayrik vektor alaninda da astkar olmayan kapaly bir yol olmadige
soylenebilir. Sekil 5.2 kontrol edilirse gercekten ayrik vektor alaminda asikar
olmayan kapaly yol yoktur. Demek ki bu ayrik vektor alansy bir gradyant vektor
alanidir ve bir f ayrik Morse fonksiyonu bu gradyant vektor alanini belirler.
Bu ise Hasse diyagramanda kii¢ik boyutlu stmpleksi temsil eden kdseden biiyiik
boyutlu simpleksi temsil eden kdseye giden yollarin bu simpleksler: esledigini

yani krittk simpleks olmadiklaring belirlemeye yarar.
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Sekil 5.3: Kapali yol igermeyen bir Hasse diyagrami ve gradyant vektor alani
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6 MORSE KOMPLEKSLER

Gradyant vektor alanlart yardimi ile CW-ayrigiminin nasil bulunacagi
onceki boltimlerde gosterildi. Bu bolimde ise homoloji gruplarinin nasil
hesaplandigindan bahsedilecektir.

K, {izerinde bir f Morse fonksiyonu olan simpleksler kompleksi olsun.
M, p-kritik simplekslerinin iirettigi serbest abel grup ve m, de, bu simpleks-
lerin sayis1 olmak iizere

M, =7
dir.
Teorem 6.0.1. (Forman, 2002) Her bir d igin
501 o 50[,1 =0
olacak sekilde 5(1 : Mg — Mgy stmar homomorfizmalar, vardwr ve
0—>Mn5—">/\/ln_15”—’1>...5—1>/\/lo—>0

diferansiyel kompleksi, X in homolojisi Hy(M, 5) e asagrdakt sekilde hesaplar:

Hy(X,Z) =2 Hy(M,0) = Ker(Ga)
Im(0a41)

Simdi bu simnir homomorfizmalarinin nasil tanimlandigindan bahsedile-
cektir. Bunun i¢in kompleksin iizerinde bir gradyant vektor alani ve her simp-
leks iizerinde belirlenmis bir yon olmalidir. Amag, [ kritik p-simpleksinin sinir
homomorfizmas: altinda p — 1 simplekslere nasil gittiginin tespit edilmesidir.

Diger bir deyigle
ép (ﬁ) = Z Ca,pC¢

kritik a(P—1)
esitligini saglayan c, g sayisimun tespit edilmesidir. Bunun igin 8 nin bir
maksimal yiiziinden « ya giden gradyant V-yollarin 5 dan « ya indirgedigi
yon ile a nin kendi yoniiniin ayni1 mi1 zit m1 olduguna bakilir. Her bir V-yol i¢in
yon ayni ise +1, zit ise —1 alinip bu sayilar toplanir. Boylece ¢, g sayis1 tespit
edilir.
Sekil 6.1°de, iizerinde bir yon olan 3 simpleksinin, bir yiliziinden baglayan

bir V-yolun, iizerindeki yonii o simpleksine nasil indirgedigi gosterilmektedir.
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Sekil 6.1: 8 dan « ya indirgenen yon

4. Boliimde Reel Projektif Diizlem iizerinde bir gradyant vektor alani olugtu-
ruldu. Simdi bu gradyant vektor alami yardimiyla sinir homomorfizmalarinin

nasil caligtig1 gosterilecektir.

Ornek 6.0.1. (Forman, |2002) RP? Grneginde 3 adet kritik simpleks oldugu

belirtilmisti. Bunlar t ile gosterilen 2-simpleks, e ile gosterilen 1-simpleks ve
v ile gosterilen 0-simpleksti. Burada dncelikle her bir simpleks tizerinde yon
belirlenmelidir. Belirlenen yonler Sekil 6.2 deki gibi olsun. (%(i) yi hesaplamak
wein oncelikle t nin yiizlerinden e ye giden tim yollar belirlenmelidir. Dikkat
edilirse bu yollarin 2 tane oldugu ve her iki yol i¢in, t nin e tzerine indirgedigi

yon ile, e tzerinde tamimlanan yonin ayne oldugu gorilir. Boylece

52 (t) = 2e
olarak hesaplanar.
Simdi 51(6) nin hesaplanmast i¢in e nin stnarindan v ye giden tim yollar
tespit edilmelidir. ki e nin yizi olan v deki 0 advmdan olusan asikar yoldur.
Bu yol, e tzerindeki yonin bitim noktasinda basladigindan pozitif bir yon

tamamlar. Digert ise seklin sag tarafindaki 3,2, 1 noktalarini takip eden yoldur.
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1 e 3 2

Sekil 6.2: RP? {izerindeki kritik simplekslerin yonii (Forman, 2002)

Bu yol, e tizerindeki yoniin baslangi¢ noktasinda basladigindan, negatif bir yon

tanimlar ve katsay: O olur. Béylece
A1 (e) = Ov
bulunur. O halde asaqidaki diferansiyel kompleks

0522372%72 50

seklinde olusturulur ve

Ho(RP?,7) = li;:géf;) =~ % ~7
H\(RP,Z) = [j:;ga;;) o % ~ 7,
Hy(RP2,Z) = Ii:éz;) ~

homoloji gruplary hesaplanar.
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Bir bagka homoloji hesab1 Klein sisesi i¢in yapilabilir.

€

Sekil 6.3: Kb iizerindeki gradyant vektor alani ve kritik simpleksler

Ornek 6.0.2. Sekil 6.3, Klein sisesi tzerindeki bir Morse fonksiyonunun
gradyant vektor alamini gostermektedir. Burada bir tane kritik 2-simpleks,
ki tane kritik 1-simpleks, bir tane kritik 0-simpleks vardir. Bunlarin sinir

homomorfizmalary altindaki gorintiler: tespit edilmelidir.

m‘ /% j"' ﬂ\ v ‘(.l

A
¢ > ,1 ] - . £ !
€9 ‘y ;("g
yon +1 yon +1 yon +1 yon -1

Sekil 6.4: ¢ simpleksinin sinirindan e; ve e; ye giden yollar

t simpleksinin sinirindan ey ve ey ye giden yollar bulunup bunlarin tzerine
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indirgenen yonin, tzerinde tanimly olan yon ile ayni olup olmadigr kontrol
edilmelidir. Sekil 6.4 ile t nin ey tzerine iki farkl yoldan ayni yoni indirgedigi
gorilir ve buradan ey in katsayisi 2 elde edilir. t nin eq tizerine iki farklh yoldan
indirgedigi yonlere bakilirsa biri ayn digeri zit yonlidir 6yleyse eo nin katsayist
0 elde edilir ve

82(t) = 261 + 062

olur.

€1 /

yon +1 yon -1 yon +1 yon -1

Sekil 6.5: e; ve es simplekslerinin simirindan v ye giden yollar

Sekil 6.5 incelenirse ey in simrindan ve eo nin stmrindan v ye giden 2
farkly yol oldugu gérilir. Bunlarin indirgedigi yonlerin biri ayne digeri zit olup

katsaylar O olacaktir. O halde

61(61) =0v

81 (62) =0v

elde edilir.
Boylece asaqidaki diferansiyel kompleks elde edilmis olur.

05252% 7.72%7 50

Bu diferansiyel kompleks ile homoloji grubu hesaplanir ve

Ker(?o)) ~ Z ~ 7

Hy(Kb,Z) =
0( ) ) Im(@l) 0



elde edilir.
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H (Kb, Z) = =~ ~ 7, x L
1K, 2) m(d) 2L x {0}y
Hy(kb,7) = (2D o
Im(ag,
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