
EGE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

(YÜKSEK LİSANS TEZİ)

AYRIK MORSE TEORİ ÜZERİNE

MUSTAFA AKKAYA

Tez Danışmanı: Prof. Dr. İsmet KARACA

Matematik Anabilim Dalı

Bilim Dalı Kodu: 403.04.01

Sunuş Tarihi: 01.06.2018

Bornova-İzmir

2018













vii

ÖZET

AYRIK MORSE TEORİ ÜZERİNE

AKKAYA, Mustafa

Yüksek Lisans Tezi, Matematik Anabilim Dalı

Tez Danışmanı: Prof. Dr. İsmet KARACA

Haziran 2018, 47 sayfa

Robin Forman tarafından geliştirilen ayrık Morse teorisi, bir

simpleksler kompleksinin topolojisinin analiz edildiği kullanışlı metotlardan

biridir. Bu tez çalışmasında ele alınan makale Robin Forman’ın “A User’s Guide

to Discrete Morse Theory” adlı makalesidir. Ayrık Morse teorisinin, bilgisayar

bilimleri ve uygulamalı matematik içindeki çeşitli alanlarda konfigürasyon

uzayları, homoloji hesaplama, gürültü arındırma, veri sıkıştırma ve topolojik

veri analizi gibi çeşitli kullanışlı uygulamaları vardır.

Morse teorisi en iyi şekilde CW-kompleksler aracılığıyla ifade edildiği

için, bu konu açıklanacaktır. Ayrık Morse teorisinin temelleri olan tanım ve

teoremler ile Morse fonksiyonunun tanımı, bu dilde ifade edilecek ve bazı

örnekler verilecektir. Fakat ayrık Morse fonksiyonu ile benzer karakteristik

özelliğe sahip bir başka yapı olan gradyant vektör alanları ile de ihtiyaç duyulan

topolojik özellikler elde edebilir. Ayrık Morse fonksiyonundan daha kullanışlı

olan bu yapı açıklanacak ve bazı örnekler verilecektir. Son olarak, kombinatorik

bakış açısı, Hasse diyagramları ve bir Morse fonksiyonunu daha kullanışlı

bir duruma dönüştürebilen kritik nokta yok etme metodu verilecek ve Morse

homolojisi açıklanacaktır.

Anahtar sözcükler: Simpleksler kompleksi, homotopi grupları, CW-

kompleksler, gradyant vektör alanları.
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ABSTRACT

ON DISCRETE MORSE THEORY

AKKAYA, Mustafa

MSc. in Mathematics Department

Supervisor: Prof. Dr. İsmet KARACA

June 2018, 47 pages

Discrete Morse theory devoloped by Robin Forman is one of the practical

methods, by which the topology of a simplicial complex is analysed. The article

discussed in this thesis is R.Forman’s paper titled “A User’s Guide to Discrete

Morse Theory”. Discrete Morse theory has various practical applications

in diverse fields of applied mathematics and computer science, such as

configuration spaces, homology computation, denoising, mesh compression,

and topological data analysis.

Since Morse theory is best stated by the language of CW-complexes,

this topic will be explained. Definitions, theorems which are the basics of the

subject and definition of Morse function will be stated in this language and

some examples will be given. However, the needed topological properties can

also be obtained by the gradient vector fields which is the other structure

has similar characteristic property as discrete Morse function. Being more

useful than discrete Morse function, this structure will be explained, and

some examples will be presented. At most, combinatorial point of view, Hasse

diagrams, and the method of cancelling critical points which can transform a

Morse function to a more useful case will be stated and Morse homology will

be explained.

Keywords: Simplicial complexes, homotopy groups, CW-complexes,

gradient vector fields.
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1 GİRİŞ

Morse teorisi ilk olarak 1930’lu yıllarda A.B.D’li matematikçi Mars-

ton Morse tarafından çalışılmıştır. Teori genel olarak bir düzgün manifold

üzerindeki fonksiyonun kritik noktaları ile topolojik özellikleri arasındaki ilişki

üzerine kuruludur. Bu nedenle teoriye kritik nokta teorisi de denir. Marston

Morse’un temel düşüncesine göre manifolddaki tipik bir diferansiyellenebilir

fonksiyon topolojiyi tamamen yansıtır.

Matematiğin birçok alanında önemli bir problem olan bir simpleksler

kompleksinin topolojisini analiz etmeye geldiğimiz zaman elimizdeki kullanışlı

yöntemler çok azdır. Bu problemi gidermek için 1990 larda Robin Forman

tarafından Morse teorisinin kombinatorik bir uygulaması olan ayrık Morse

teorisi geliştirilmiştir. Böylece basit bir kombinatorik tanımla Morse teorisi

graflara ve gradyant vektör alanlarına uygulanabilmiştir.

Ayrıca kritik noktaları kapalı bir alt manifold olan manifoldlar

üzerindeki düzgün fonksiyonları inceleyen Morse-Bott teorisi ve Edward

Witten’ın diferansiyel ve harmonik formların deformasyonunu kullanarak

hesapladığı Morse homolojisi Morse teorisinin diğer uygulamalarına örnek

olarak verilebilir.

Bu tez çalışmasında temel amacımız ayrık Morse teorisine genel bir

bakış sunabilmektir. Bu bağlamda gerekli olan temel tanım ve teoremler

ifade edilmiştir. Morse teorisi CW-komplekslerin dili ile ifade edildiği için, ön

bilgilerde bu konuya geniş bir yer verilmiş ve örneklerle açıklanmıştır. Morse

teorisi ile bir hücre kompleksinin CW-ayrışımının nasıl tespit edildiğinden

bahsedilmiş ve Morse teorisinin temelleri olan tanım ve teoremler yine

örneklerle gösterilmiştir. Sonrasında, pratikte neler olduğu üzerinde durulmuş

ve bir Morse fonksiyonuna gerçekten ihtiyaç olmadığı, aynı işin gradyant

vektör alanları ile de yapılabileceği gösterilmiştir. Reel Projektif Düzlemin

CW-ayrışımının bu yöntemle nasıl tespit edildiği gösterilmiştir. Dahası, bu

yapının sadece CW-ayrışımındaki hücre sayısını bulmayı değil, bu hücrelerin

sınır homomorfizmaları altındaki görüntülerinin hesaplanmasını da sağladığı
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gösterilmiştir. Konuya açıklık getirmesi bakımından Klein şişesinin homoloji

grubunun, bu yöntem ile nasıl hesaplandığı gösterilmiştir.

Gradyant vektör alanları, bir simpleksler kompleksi yerine bu simpleksi

doğuran bir graflar ailesi üzerinde de tanımlanabilmiştir ve Morse teorisi

graflara uygulanmıştır. Graflar ailesi üzerindeki kritik graflar tespit edilip,

bu grafların temsil ettiği simplekslerin kritik simpleksler olduğu gösterilmiştir.

Bu yöntem ile iki bağlantısız ve üç bağlantısız grafların topolojik özellikleri

tespit edilebilmektedir. Bu çalışmada ise konuya açıklık getirmesi bakımından

bağlantısız graflar örneği açıklanmıştır. Böylece ayrık Morse teorisinin graflar

üzerine nasıl uygulandığı gösterilmiştir.

Gradyant vektör alanlarının bir başka ifade ediliş şekli de Hasse

diyagramlarıdır. Bu diyagramın nasıl oluşturulduğu ve kritik simplekslerin na-

sıl tespit edildiği gösterilmiştir. Bir hücre kompleksinin CW-ayrışımı, üzerinde

tanımlı olan bir ayrık Morse fonksiyonu ya da gradyant vektör alanı ile tespit

edilebilmektedir. Ancak bu ayrışımın ne kadar verimli olduğu tartışılabilir.

Mümkün olduğunca az hücreden oluşan bir ayrışım arandığı için, bir gradyant

vektör alanının nasıl daha az kritik simplekse sahip hale getirilebildiği yani

belirli özelliklere sahip kritik simplekslerin nasıl yok edilebildiği gösterilmiştir.
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2 ÖN BİLGİLER

Bu bölümde ayrık Morse teorisinin anlaşılması için ihtiyaç duyulan temel

bilgiler verilecektir.

Tanım 2.0.1. (Dieck , 2008) X ve Y topolojik uzaylar ve f0, f1 : X ! Y

sürekli dönüşümler olsun. Eğer her x 2 X için

H(x, 0) = f0(x) ve H(x, 1) = f1(x)

olacak şekilde bir sürekli H : X ⇥ I ! Y dönüşümü varsa f0 ve f1

homotopiktir denir ve f0 ' f1 şeklinde gösterilir.

Örnek olarak değer kümesi Öklid uzayı olan tüm f, g : X ! Rn sürekli

dönüşümleri verilebilir. Burada gerekli olan H : X ⇥ I ! Rn homotopi

dönüşümü Rn in konveks olmasından dolayı H(x, t) = (1 � t)f(x) + tg(x)

şeklinde kurulabilir.

Eğer X ve Y topolojik uzayları için f � g ' 1Y ve g � f ' 1X olacak

şekilde f : X ! Y ve g : Y ! X sürekli fonksiyonları varsa X ve Y topolojik

uzayları aynı homotopi tipine sahiptir veya homotopi denktir denir.

g ile f ye de birbirlerinin homotopi tersi denir.

Örnek olarak tüm homeomorf uzaylar verilebilir. Homeomorf olmayıp

aynı homotopi tipine sahip uzaylara örnek olarak birim disk ve tek noktalı

uzay verilebilir. Bu ikisi homeomorf değildir çünkü birebir eşleme kurulamaz.

Ancak disk büzülebilir bir uzay olup tek noktalı uzay ile aynı homotopi tipine

sahiptir.

Tanım 2.0.2. (Forman, 2002) A ✓ X f0, f1 : X ! Y sürekli dönüşümler ve

f0 |A= f1 |A olsun. 8t 2 I ve 8a 2 A için H(a, t) = f0(a) = f1(a) olacak

şekilde f0 ile f1 arasında bir H homotopi dönüşümü varsa f0 ile f1 relatif

homotopiktir denir ve f0 ' f1 relA şeklinde gösterilir.

A, bir X topolojik uzayının bir alt kümesi olsun. Eğer 8x 2 A için

r(x) = x olacak şekilde r : X ! A sürekli dönüşümü varsa A, X in retraktıdır

denir ve bu r dönüşümüne de retraksiyon denir. Buna ek olarak i : A ,! X

kapsama dönüşümü için i�r ' 1X oluyorsa A, X in deformasyon retraktıdır
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denir. Eğer bu bahsedilen homotopi A ya göre relatif homotopi ise bu sefer de

A, X in güçlü deformasyon retraktıdır denir.

Her güçlü deformasyon retrakt bir deformasyon retrakttır, her deformas-

yon retrakt da bir retrakttır. Ancak bunların karşıtı her zaman doğru değildir.

Örnek olarak tor ve torun dış çemberi verilebilir. Torun dış çemberinden

bir nokta alındığında, bu noktadan tor üzerinde merkez doğrultusunda hareket

ederek elde edeceğimiz çemberlerin görüntüsü r dönüşümü altında bu noktaya

gitsin. Bu dönüşüm süreklidir ve dış çember üzerindeki tüm noktaları kendisine

götürür. Öyleyse torun alt kümesi olan bu çember torun retraktıdır. Fakat

deformasyon retraktı değildir. Çünkü tor ile çemberin temel grupları farklıdır.

Torun temel grubu Z ⇥ Z iken çemberin temel grubu Z dir. Bu ise çemberin,

torun deformasyon retraktı olamayacağı anlamına gelir.

Tanım 2.0.3. (Lundell, 1969) X ve Y topolojik uzaylar, A ✓ X kapalı bir

alt küme ve f : A ! Y sürekli bir dönüşüm olsun. X ile Y ayrık birleşimleri

üzerinde A nın her bir a elemanı ile f(a) 2 Y denk olacak şekildeki denklik

bağıntısına göre elde edilen bölüm uzayına ekli uzay denir ve bu uzay Y
S

f X

ile gösterilir. Buradaki f dönüşümüne ekli dönüşüm denir.

Tanım 2.0.4. (Karaca, 2010) p0, p1,...,pm 2 Rn noktalarının konveks

kombinasyonu,
Pm

i=0 ti = 0 ve ti > 0 olmak üzere

x =
mX

i=0

tipi

şeklinde gösterilir.

Buradaki pi noktalarının konveks kombinasyonlarının kümesi, bu

noktaların gerdiği konveks kümedir. Bu ifade, simpleks tanımı için gereklidir.

Tanım 2.0.5. (Rotman, 1998) p0, p1,...,pm 2 Rn noktalarının sıralı kümesi

{p1 � p0, p2 � p0, ..., pm � p0}, Rn vektör uzayının lineer bağımsız bir alt uzayı

ise

{p0, p1, ..., pm}

sıralı kümesine afin bağımsızdır denir.
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Öklid uzayında afin bağımsız {v0, v1, ..., vq} kümesinin gerdiği konveks

kümeye bir q-simpleks denir ve

S = [v0, v1, ..., vq]

şeklinde gösterilir. Bu simpleksin köşelerinin kümesi ise

V er(S) = {v0, v1, ..., vq}

dir. Eğer Sve S 0 simpleksleri için V er(S 0) ⇢ V er(S) oluyorsa S
0 simpleksine, S

simpleksinin bir yüzü denir. Bir simpleksler ailesi için, ailedeki her simpleksin

yüzü o ailede ve iki simpleksin arakesiti ya simplekslerin ortak yüzü ya da

boş küme ise, o zaman elemanları simpleksler olan bu aileye bir simpleksler

kompleksi denir. Ailedeki simplekslerin birleşimine ise kompleks altında

yatan çok yüzlü denir. Genel olarak her simpleks bir hücre olduğundan bir

simpleksler kompleksi de bir hücre kompleksi olarak görülebilir.

Şimdi ise graflar ile alakalı temel tanımlardan bahsedelim.

Tanım 2.0.6. (Diestel, 2005) E ✓ [V ]2 olacak şekilde V köşeler (noktalar)

kümesi ve E kenarlar kümesinden oluşan G = (V,E) ikilisine graf denir.

Graftaki köşe sayısına grafın mertebesi denir ve |G| ile gösterilir. Kenar

sayısı da kGk ile gösterilir. Graftaki iki köşe bir kenar oluşturuyorsa bu köşelere

komşu köşeler; iki kenarın ortak bir köşesi var ise, bu kenarlara da komşu

kenarlar denir.

Bir G grafının tüm köşeleri komşu ise, G ye tam graf denir. n köşeli bir

tam graf Kn ile gösterilir.

Tanım 2.0.7. (Diestel, 2005) G = (V,E), G
0 = (V 0

, E
0) iki graf olsun.

xy 2 E , '(x)'(y) 2 E
0

olacak şekilde bir ' : V ! V
0 bijeksiyonu varsa G ve G

0 izomorftur denir ve

G ⇠= G
0 ile gösterilir. Böyle bir ' dönüşümüne de izomorfizma denir.

İzomorf graflar üzerinde korunan özelliklere graf özelliği denir. Örnek

olarak "Üçgen (her biri birbirine komşu olan üç köşe) içerme özelliği" bir graf

özelliğidir.
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G = (V,E), G0 = (V 0
, E

0) iki graf olsun. V 0 ✓ V ve E 0 ✓ E ise G0 grafına

G grafının alt grafı denir. Eğer özel olarak V
0 = V ise G

0 alt grafına geren

alt graf denir. Graftaki bir köşenin derecesi sıfır ise o köşe izoledir denir.

Hiçbir kapalı yol içermeyen graflara orman denir. Eğer bir orman

bağlantılı ise bu ormana ağaç denir.

Şimdi, ayrık Morse teorisinin ifade edilmesinde kullanılan yapı olan

CW-komplekslerin nasıl inşa edildiği anlatılacaktır.

I = {t 2 R | 0  t  1} kapalı aralığının n-defa kartezyen çarpımı ile elde

edilen n-kübün homeomorfik bir görüntüsü olan En ye bir kapalı Öklidyen

n-hücre denir.

Tanım 2.0.8. (Lundell, 1969) X bir küme, � Öklidyen hücrelerden X e

tanımlı olan dönüşümlerin bir kümesi olsun. Aşağıdaki şartlar sağlanıyor ise

(X,�) ikilisine X üzerinde bir hücre yapısı denir.

1. ' 2 � ve E
n
, ' nin tanım kümesi ise ', (En � @E

n) üzerinde

injektiftir.

2. {'(En � @E
n) | ' 2 �}, X in bir parçalanışıdır.

3. ' 2 � ve E
n
, ' nin tanım kümesi ise,

'(@En) ✓
[

kn�1

{ (Ek � @E
k) | Ek

,  nin tanım kümesi ve  2 �}

kapsaması vardır.

Örnek 2.0.1. (Lundell, 1969)

S
n = {x = (x0, x1, ..., xn) 2 Rn+1 |< x, x >= x

2
0 + x

2
1 + ... + x

2
n = 1} n-küresi

üzerinde 8n > 0 için (Sn
,�) hücre yapısı vardır. '0

,'
n 2 � şöyle tanımlansın:

'
0 : D0 ! S

n
, '

0(x) = (1, 0, ..., 0)

'
n : Dn ! S

n
, '

n(x) = (2 < x, x > �1, 2x1

p
1� < x, x >, ..., 2xn

p
1� < x, x >).

Tanım 2.0.9. (Lundell, 1969) (X,�), X üzerinde bir hücre yapısı, ' 2 � ve

' nin tanım kümesi En olsun.

1. '(En) = �
n görüntü kümesine n-hücre veya kapalı n-hücre,

2. ' ye �
n in karakteristik fonksiyonu,
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3. @E
n, E

n in sınırı olmak üzere '(@En) = @�
n e �

n n-hücresinin

sınırı,

4. '(En�@E
n) ye, �n n-hücresinin içi, n > 0 ise açık n-hücre denir.

Şekil 2.1: 2-hücre ve sınırı

Şekil 2.2: 3-hücre ve sınırı

X, üzerinde (X,�) şeklinde bir hücre yapısı olan bir küme olsun.

� = {�n | ' 2 �; ', �
n in karakteristik fonksiyonu} olmak üzere

(X,�) hücre yapılarının sıkı denkliğine göre denklik sınıflarına X üzerinde

bir hücre kompleksi veya X in bir hücresel ayrışımı denir ve (X, �)

ile gösterilir. Buradaki iki hücre yapısının sıkı denkliği, karakteristik fonk-

siyonların birebir eşlenebilmesi üzerinedir. Hücre kompleksindeki her bir

hücre, kendisinden küçük dereceli açık hücrelerden sonlu sayıdakilere değiyor

(arakesiti boştan farklı) ise, bu hücre kompleksine kapanış-sonlu denir.

(X, �), X üzerinde bir hücre kompleksi olsun. � hücrelerinin her birinde

karakteristik fonksiyonlarına göre identifikasyon topolojisi vardır. Her bir

� ⇢ X i koruyan X üzerindeki zayıf topolojiye (F ⇢ X in kapalı olması

için gerek ve yeter şart 8� 2 � için F \ � nın kapalı olmasıdır.) � yı koruyan
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zayıf topoloji denir. Bunlar ifade edildikten sonra CW-komplekslerin tanımı

verilebilir.

Tanım 2.0.10. (Lundell, 1969) X bir Hausdorff uzay, � hücreler ailesi ve

(X, �) bir hücre kompleksi olmak üzere aşağıdaki şartlar sağlanıyorsa X e, �

ailesi ile birlikte bir CW-kompleks denir.

1. (X, �) hücre kompleksinin her � 2 � hücresi için sürekli bir '

karakteristik fonksiyonu vardır.

2. X üzerindeki topoloji, � yı koruyan zayıf topolojidir.

3. (X, �) kapanış-sonludur.

Tanım 2.0.11. (Forman, 2002) i = 0, 1, ..., n için Xi, Xi�1 e bir hücre

eklenmesi ile elde edilen iç içe geçmiş

; ✓ X0 ✓ X1 ✓ ... ✓ Xn = X

dizisi var ise, X topolojik uzayına

; ✓ X0 ✓ X1 ✓ ... ✓ Xn = X

CW -ayrışımlı sonlu CW-kompleks denir.

Şekil 2.3: (i) 1-hücre eklemesi (ii) hücre eklemesi değil (Forman, 2002)

Kapalı bir d-simpleks de bir d-hücre olduğundan, sonlu bir simpleksler

kompleksi hücreleri simpleksler olan bir sonlu CW -komplekstir. Ayrıca aksi

söylenmedikçe bundan sonra CW-kompleks denildiğinde sonlu olduğu anlaşı-

lacaktır.
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Örnek 2.0.2. (Forman, 2002) X, üzerinde bir tane 0-hücre, iki tane 1-hücre

ve bir tane 2-hücre ile belirlenen

; ✓ X0 ✓ X1 ✓ X2 ✓ X3 = X

CW -ayrışımı olan bir CW -kompleks olsun. X0 tek noktadır. Tek noktaya

1-hücre eklenerek X1 çemberi elde edilir ve benzer şekilde X2 de S
1 ^ S

1 olur.

Şimdi 2-hücre dikdörtgen şeklinde alınıp karşılıklı kenarlar aynı çembere gelecek

şekilde ekli dönüşüm oluşturulsun. Böylece X3 = X bir tor olur. O halde torun

CW-ayrışımı bir tane 0-hücre, iki tane 1-hücre ve bir tane 2-hücreden oluşur.

Şekil 2.4: Tor’un CW -ayrışımı (Forman, 2002)

Teorem 2.0.1. (Lundell, 1969) W bir normal uzay, A ✓ U ✓ W , U bir

açık küme, w : W ! I sürekli bir dönüşüm, Kerw = A ve A, U nun güçlü

deformasyon retraktı olsun. Eğer h : X ! X
0 homotopi denklik, f1 : A ! X,

f2 : A ! X
0 sürekli dönüşümler ve f2 ile h � f1 homotopik ise h homotopi

denkliğinin bir H : X [f1 W ! X
0 [f2 W homotopi denkliğine genişlemesi

vardır ve h nin bir homotopi tersi olan g nin, H nin homotopi tersi olacak

şekilde bir genişlemesi vardır.

Teorem 2.0.2. (Forman, 2002) h : X ! X
0 homotopi denklik, � bir hücre

ve f1 : @� ! X, f2 : @� ! X
0 sürekli iki dönüşüm olsun. Eğer h � f1 ile f2

homotopik ise X [f1 � ile X
0 [f2 � aynı homotopi tipine sahiptir.

Teorem 2.0.2 den, X [f � ekli uzayının homotopi tipinin sadece X in

homotopi tipine ve f nin homotopi sınıfına bağlı olduğu anlaşılır.

Sonuç 2.0.1. (Forman, 2002) X bir topolojik uzay, � bir hücre,

f1, f2 : @� ! X sürekli dönüşümler olsun. h � f1 ' f2 ise

X [f1 � ile X [f2 �
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aynı homotopi tipine sahiptir.

İspat. Teorem 2.0.2 de,

X
0 = X ve h = 1X

alınırsa, X [f1 � ile X [f2 � ekli uzaylarının aynı homotopi tipine sahip olduğu

görülür.

Bu sonuca göre bir CW -kompleksin homotopi tipi sadece, CW -ayrışımı

oluşturan ekli dönüşümlerin homotopi sınıflarına bağlıdır.

Örnek 2.0.3. (Forman, 2002) X, üzerinde bir 0-hücre ve bir d-hücre ile

belirlenen

; ✓ X0 ✓ X1 = X

CW -ayrışımı olan bir CW -kompleks olsun. X0 bir 0-hücre olmak zorundadır.

X1 ise, X0 a bir d-hücre eklenmesi ile elde edilir. X0 tek nokta olduğundan ekli

dönüşüm sabit dönüşüm olmak zorundadır. Öyleyse bir d-yuvarın tüm sınır

noktaları eş kılınıp bir d-küre elde edilmiş olur.

Topolojik uzayların tek noktada kesişimi, uzayların ayrık birleşimi

üzerinde, uzaylardan seçilen birer noktayı birbirine denk kılarak elde edilen

uzaydır. X ve Y uzaylarının tek noktada kesişimi X ^ Y ile gösterilir.

Örnek 2.0.4. (Forman, 2002) X, üzerinde bir 0-hücre ve n-tane d-hücre ile

belirlenen

; ✓ X0 ✓ X1 ✓ ... ✓ Xn = X

CW -ayrışımı olan bir CW -kompleks olsun. X0, bir 0-hücre olmak zorundadır

ve i = 1, 2, ..., n için Xi, Xi�1 e bir d-hücre eklenmesi ile elde edilir. Örnek

2.0.3 den X1 in bir d-küre olduğu bilinmektedir.

X2 ise, X1 e d-hücre eklenerek elde edilecektir. Ekli dönüşüm ise d-

hücrenin sınırından yani (d� 1)-küreden X1 e sürekli bir dönüşüm olacaktır.

⇡d�1(X1) ⇠= ⇡d�1(S
d) ⇠= 0

olduğundan (d � 1)-küreden X1 e tanımlı olan tüm sürekli dönüşümler sabit

dönüşüme homotop olacaktır. Ekli dönüşüm sabit dönüşüm seçilirse

X2 = S
d ^ S

d
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olduğu görülür. Ayrıca Sonuç 2.0.1 göz önüne alınırsa, ekli dönüşüm nasıl

alınırsa alınsın, X2 nin S
d ^ S

d ile homotopi denk olduğu görülür.

X3 ü elde etmek için bir d-hücre X2 ye eklenmelidir. Bu ekli uzayın

homotopi tipini belirleyecek olan, ekli dönüşümün homotopi sınıfıdır. Yine

benzer düşünce ile

⇡d�1(X2) ⇠= ⇡d�1(S
d ^ S

d) ⇠= 0

olduğundan S
d�1 den X2 ye tanımlanan tüm sürekli dönüşümler homotopiktir.

Bu ise

X3 ' S
d ^ S

d ^ S
d

olması demektir. Bu şekilde devam edersek X, n-tane d�kürenin tek noktada

kesişimine homotopi denktir.

Örnek 2.0.5. (Forman, 2002) X, üzerinde bir tane 0-hücre, bir tane 1-hücre

ve bir tane 2-hücre ile belirlenen

; ✓ X0 ✓ X1 ✓ X2 = X

CW -ayrışımı olan bir CW -kompleks olsun. X0 bir 0-hücre olmak zorundadır.

X1, X0 a bir tane 1-hücre eklenmesi ile elde edilmektedir. Böylece X1, bir

çember olmak zorundadır.

X2 ise, X1 e bir 2�hücre eklenmesi ile elde edilecektir. Ekli dönüşüm,

2�hücrenin sınırından S
1 e sürekli bir dönüşüm olacaktır. Öyleyse ekli

dönüşüm, S1 den S
1 e sürekli bir dönüşümdür. Bu dönüşümün homotopi sınıfı

negatif olmayan bir tamsayı olan dolanım sayısına bağlı olacaktır.

Eğer dolanım sayısı 0 ise ekli dönüşüm sabit dönüşüm olacaktır. Böylece

X2 = X ' S
1 ^ S

2

olur. Eğer dolanım sayısı 1 ise ekli dönüşümü birim dönüşüm seçmek X2 nin

homotopi tipini değiştirmez ve

X ' D
2
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olur. Eğer dolanım sayısı 2 ise ekli dönüşümün standart 2-dereceli dönüşüm

(etrafına tam 2 kez dolanan ve asla geri gitmeyen dönüşüm) seçilmesi X2 nin

homotopi tipini değiştirmez. Böylece X, RP2 ye homotopi denk olur. Aslında

her bir dolanım sayısı için farklı bir uzay elde edilir. Çünkü dolanım sayısı n

için, elde edilen uzayın homoloji gruplarına bakarsak,

H1(X,Z) = Z
nZ

olup, n sayısına bağlıdır.

Şimdi, önce 2-hücre sonra 1-hücre eklensin. X0 yine bir 0-hücredir.

2-hücre sabit ekli dönüşüm ile eklenirse X1, S
2 ye homotopi denk olacaktır.

1-hücre, S
2 ye hangi ekli dönüşüm ile eklenirse eklensin X in homotopi tipi

değişmez. Çünkü, ⇡0(S2) = 0 olduğundan S
2 bağlantılı olup tanımlanabilecek

tüm ekli dönüşümler sabit dönüşüme homotoptur. Böylece X ' S
1 ^ S

2 elde

edilir.

Sonlu bir CW -kompleks, ayrışımında eklenen hücrelerle tam olarak aynı

boyutta ve aynı sayıda hücrenin, mertebeleri azalmayan sırayla eklenmesi ile

elde edilen bir CW -komplekse homotopi denktir. Yani bir CW -kompleks önce

küçük boyutluları sonra büyük boyutluları ekleyerek elde edilebilir. Şimdi ise

bir CW -kompleksin homoloji grubunun nasıl hasaplandığını gösteren teoremi

ifade edelim.

Teorem 2.0.3. (Forman, 2002) X, üzerinde d = 0, 1, ..., n sayıları için

d-mertebeli �d hücreleri ile belirlenen

; ✓ X0 ✓ X1 ✓ ... ✓ Xn = X

CW -ayrışımı olan bir CW -kompleks olsun. Cd(X,Z), �d hücreleri tarafından

üretilen serbest abel grup olmak üzere her d için

@d � @d�1 = 0

olacak şekilde

@d : Cd(X,Z) ! Cd�1(X,Z)

sınır homomorfizmaları vardır ve

0 ! Cn(X,Z) @n�! Cn�1(X,Z) @n�1���! ...
@1�! C0(X,Z) ! 0
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diferansiyel kompleksi, X in singüler homolojisi Hd(X,Z) yi

Hd(X,Z) ⇠= Hd(C, @) =
Ker(@d)

Im(@d+1)

şeklinde hesaplar.

Teorem 2.0.4. (Milnor, 1963) (Güçlü Morse Eşitsizliği) X, her k için ck

tane k-boyutlu hücreden oluşan bir CW -kompleks ve F cisim katsayısına göre

bk = dim(Hk(X,F))

olsun. Her k için

ck � ck�1 + ck�2 � ...+ (�1)kc0 � bk � bk�1 + bk�2 � ...+ (�1)kb0

dır.

Bu teoremin ispatı için Milnor(1963) incelenebilir.

Teorem 2.0.5. (Milnor, 1963) (Zayıf Morse Eşitsizliği) X, her d için cd

tane d-boyutlu hücreden oluşan bir CW -kompleks ve F cisim katsayısına göre

bd = dim(Hd(X,F))

olsun. Her d için cd � bd eşitsizliği vardır.

İspat. Teorem 2.0.4, her k için doğru olduğundan k = 0 alınırsa

c0 � b0

olur ve bu durum, teoremin d = 0 için doğru olduğunu gösterir. Teorem 2.0.4,

her k = 0, 1, ..., d için doğru olduğundan elde edilen eşitsizlikler alt alta yazılırsa

c0 � b0

c1 � c0 � b1 � b0

c2 � c1 + c0 � b2 � b1 + b0

...

cd�1 � cd�2 + ...+ (�1)d�1
c0 � bd�1 � bd�2 + ...+ (�1)d�1

b0

cd � cd�1 + cd�2 + ...+ (�1)dc0 � bd � bd�1 + bd�2 + ...+ (�1)db0

eşitsizlikleri elde edilir. Bu eşitsizlikler taraf tarafa toplanırsa

cd � bd

eşitsizliği elde edilir.



14

Morse eşitsizlikleri tor için uygulanırsa b0 = 1, b1 = 2 ve b2 = 1

olduğundan

c0 � b0 = 1

c1 � b1 = 2

c2 � b2 = 1

elde edilir. Zaten daha önce yapılan örnekte c0 = 1 � 1, c1 = 2 � 2, c2 = 1 � 1

bulunmuştu. Halbuki hücreler, simpleks olarak alınıp inşa edilmek istenseydi

yani üçgenleştirme yöntemi kullanılsaydı, bunun için en az yedi tane 0-

simpleks, yirmi bir tane 1-simpleks ve on dört tane 2-simpleks kullanılmış

olacaktı. Bu ise eşitlikten çok uzak olduğu için kullanışsız olacaktı. Bu durum

simpleksler kompleksi yerine neden hücre kompleksi kullanıldığını anlamaya

yardımcı olur.
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3 AYRIK MORSE TEORİSİNE GİRİŞ

Bu bölümde bir simpleksler kompleksinin daha az sayıda hücre ile CW-

ayrışımının bulunup bulunamayacağı araştırılmıştır. Ayrık Morse teori bu

bağlamda uygun bir yöntem olarak sunulmuştur.

Tanım 3.0.1. (Forman, 2002) K bir simpleksler kompleksi olmak üzere her

↵
(p) 2 K için aşağıdaki şartlar sağlanıyorsa f : K ! R fonksiyonuna bir

ayrık Morse fonksiyonu denir:

#{�(p+1)
> ↵ | f(�)  f(↵)}  1, (1)

#{�(p�1)
< ↵ | f(�) � f(↵)}  1. (2)

Tanım 3.0.2. (Forman, 2002) f : K ! R bir ayrık Morse fonksiyonu

olsun. ↵(p) 2 K simpleksi aşağıdaki şartları sağlıyorsa bu simplekse bir kritik

simpleks denir:

#{�(p+1)
> ↵ | f(�)  f(↵)} = 0, (3)

#{�(p�1)
< ↵ | f(�) � f(↵)} = 0. (4)

Şekil 3.1: Ayrık Morse fonksiyonu değil (Forman, 2002)

Örnek 3.0.1. (Forman, 2002) K simpleksler kompleksinin f reel değerli

fonksiyonu altında aldığı değerler Şekil 3.1’de verilmiştir. Görüldüğü üzere

f
�1(0) simpleksi Tanım 3.0.1 deki (2) şartını sağlamaz. Çünkü daha düşük

boyutlu iki komşusu daha yüksek değer almıştır. f
�1(5) simpleksinin de 2

yüksek boyutlu komşusu kendisinden düşük değer aldığından Tanım 3.0.1 deki

(1) şartını sağlamaz.
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Örnek 3.0.2. (Forman, 2002) Bir başka K simpleksler kompleksinin f reel

değerli fonksiyonu altında aldığı değerler Şekil 3.2’de verilmiştir.

Şekil 3.2: Ayrık Morse fonksiyonu (Forman, 2002)

Bu örnekte ise tüm simpleksler Tanım 3.0.1 de verilen şartları sağladı-

ğından f bir ayrık Morse fonksiyonudur. Ayrıca f
�1(0) ve f

�1(5) simpleksleri

birer kritik simplekstir.

Lemma 3.0.1. (Forman, 2002) K bir simpleksler kompleksi, f de K üzerinde

bir ayrık Morse fonksiyonu olsun. Bir ↵ 2 K simpleksi için ya

#{�(p+1)
> ↵ | f(�)  f(↵)} = 0, (5)

ya da

#{�(p�1)
< ↵ | f(�) � f(↵)} = 0 (6)

dır.

İspat. Kabul edelim ki bir ↵ p-simpleksi lemmadaki şartların ikisini birden

sağlamasın. O halde bir �
(p�1) simpleksi ve bir �

(p+1) simpleksi için

f(�) � f(↵) � f(�) (7)

eşitsizlikleri vardır. K bir simpleksler kompleksi ve p � 1 olduğundan

�
(p+1)

> ↵̃
(p)

> �
(p�1)

olacak şekilde bir ↵̃
(p) simpleksi vardır. f bir ayrık Morse fonksiyonu olduğun-

dan

f(�) > f(↵̃) > f(�) (8)
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ifadesi mevcuttur. (7) ve (8) ifadeleri birlikte yazılırsa

f(�) > f(↵̃) > f(�) � f(↵) � f(�)

elde edilir. Bu ise bir çelişki olduğundan kabulümüz yanlıştır.

Tanım 3.0.3. (Forman, 2002) K, üzerinde bir f ayrık Morse fonksiyonu olan

simpleksler kompleksi ve c 2 R olsun. K(c) seviye alt kompleksi

K(c) =
[

f(↵)c

[

�↵

�

şeklinde tanımlanır.

Lemma 3.0.2. (Forman, 2002) a, b 2 R için görüntüsü [a, b] aralığında olan

herhangi bir kritik simpleks yoksa K(a) ve K(b) alt kompleksleri homotopi

denktir.

İspat. f(�(p)) 2 [a, b] olacak şekilde bir ↵ simpleksi yoksa

K(a) = K(b)

olup homotopi denk olurlar.

�
(p+1)

> �
(p) simpleksleri için f(�)  f(↵) olsun. � nın f altında aldığı

değer, kritik noktaları ve alt kompleksleri değiştirmeyecek derecede küçük bir

✏ sayısı kadar daha düşük bir değere götürülürse ya da benzer düşünce ile

↵ nın f altında aldığı değer ✏ kadar daha büyük bir değere götürülürse f

birebir olur. Şu halde, gerekirse bu kapalı aralık bir tek simpleksin görüntüsünü

kapsayacak şekilde alt aralıklara ayrılabilir. Dolayısıyla ispat bir tek kritik

olmayan simpleks için yapılabilir. f(↵) 2 [a, b] simpleksi

f(�(p+1)) < f(↵(p)) (9)

veya

f(↵(p)) < f(�(p�1)) (10)

şartını sağlar.

(9) durumunda [a, b] aralığında değer alan bir tek simpleks olduğundan

f(�) < a
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olmak zorundadır. ↵, � nın yüzü olduğundan K(a) alt kompleksinde olmak

zorundadır. Böylece yine

K(a) = K(b)

olup, homotopi denk olurlar.

(10) durumunda Lemma 3.0.1 gereğince (9) durumu sağlanmaz. Öyleyse

her � > ↵ simpleksi için f(�(p+1)) > f(↵(p)) olup

f(�(p+1)) > b

eşitsizliği elde edilir. Böylece K(a) alt kompleksinde yüzü ↵ olan hiçbir simpleks

yoktur. Bu ise

K(a) \ ↵ = ?

olması demektir. Ayrıca (10) gereğince

f(�) > b

olup �, K(a) alt kompleksinde yoktur. ↵ nın � dışında tüm yüzleri f(↵) dan

küçük değer almak zorunda olduğundan K(a) alt kompleksinde kapsanır. Yüzü

� olan bir diğer p-simpleks ↵̃ olsun. f(↵̃) > f(�) olmak zorundadır, ayrıca

f(�) > b olduğundan

f(↵̃) > b

olur. Böylece K(a) alt kompleksinde yüzü � olan hiçbir simpleks yoktur. Bu ise

K(a) \ � = ?

olması demektir. Böylece

K(b) = K(a) [ ↵ [ �

bulunur. �, ↵ simpleksinin serbest yüzüdür ve K(a) alt kompleksinde bulunmaz.

Bu ise K(b) & K(a) olması yani K(a) ile K(b) nin homotopi denk olması

anlamına gelir.

Lemma 3.0.2 ile anlatılmak istenen simpleks çökmesi kısmında daha açık

olarak görülmektedir (Forman, 2002).
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Lemma 3.0.3. (Forman, 2002) K ayrık Morse fonksiyonlu simpleksler komp-

leksinde sadece bir tek ↵
(p) kritik p-simpleksinin görüntüsü [a, b] aralığında ise

K(b) ye homotopi denk olacak şekilde K(a) ya bir p-hücre eklemesi yapılabilir.

İspat. İspat yine f nin birebir olduğu kabul edilerek yapılacaktır.

a < a
0
< b

0
< b ve f

�1([a0, b0]) = {↵(p)} olacak şekilde a
0 ve b

0 sayıları vardır.

Lemma 3.0.2 gereğince

K(a0) & K(a)

ve

K(b) & K(b0)

olup

K(b0) ' K(a0)
[

@e(p)

e
(p)

olduğunu göstermek yeterlidir.

↵
(p) kritik olduğunda �

(p+1)
> ↵

(p) için f(�(p+1)) > f(↵(p)) olmak

zorundadır. Dolayısıyla

f(�(p+1)) > b
0

olup

K(a0) \ ↵ = ?

dir. Benzer şekilde yine kritik olma şartından �
(p�1)

< ↵
(p) simpleksi için

f(�(p�1)) < f(↵) olmak zorundadır ve

f(�(p�1)) < a
0

dür. Bu ise

�
(p�1) ⇢ K(a0)

olması anlamına gelir. Böylece @↵
(p) ✓ K(a0) olup

K(b0) = K(a0)
[

@↵(p)

↵
(p)

dır. ↵, e(p) ye homeomorfik olduğundan istenen elde edilmiş olur.

Böylece, üzerinde bir ayrık Morse fonksiyonu olan K simpleksler

kompleksinin, her bir kritik simpleksi için tam olarak aynı boyutlu ve aynı



20

sayıda hücreden oluşan bir CW-komplekse homotopi denk olduğu söylenebilir.

Örneğin, bir tane kritik 0-simpleks ve 2 tane kritik 3-simplekse sahip bir

simpleksler kompleksi tam olarak bir tane 0-hücreden ve iki tane 3-hücreden

oluşan bir CW-komplekse homotopi denktir.

Örnek 3.0.3. (Forman, 2002) Örnek 3.0.2 de bahsedilen simpleksler kompleksi

için tüm seviye alt kompleksler Şekil 3.3’deki gibidir.

Şekil 3.3: Örnek 3.0.2’nin tüm seviye alt kompleksleri (Forman, 2002)

Şekil 3.3 deki alt komplekslerin oluşumunu açıklayalım. K(0) dan K(1) e

geçilirken herhangi bir kritik simpleks eklenmediğinden Lemma 3.0.3 gereğince

K(0) ile K(1) homotopi denktir. Ancak K(4) den K(5) e geçilirken f
�1(5)

kritik 1-simpleksi eklenir. O halde Lemma 3.0.3 gereğince K(4) e bir 1-hücre

eklenerek K(5) e homotopi denk bir kompleks elde edilebilir. Dikkat edilirse alt

kompleksler oluşturulurken f
�1(5) simpleksinin tüm yüzleri kendisinden önce

eklenmiştir. f
�1(5) ekleneceği zaman ise simpleksin tüm sınırları daha önce

eklendiğinden, bu bir hücre ekleme işlemine dönüşmektedir.

Şimdi K1 ve K2 iki simpleksler kompleksi ve K2 ⇢ K1 olsun.

K1 � K2 nin ↵, � şeklinde sadece iki elemanı olsun ve �, ↵ nın serbest

yüzü olsun. Yani � sadece ↵ nın yüzü olsun. Öyleyse K2, K1 in deformasyon

retraktı olup böylece K1 ile K2 homotopi denktir. İşte bu şekilde K1 simpleksler

kompleksini K2 alt kompleksine deforme etmeye simpleks çökmesi denir ve

K1 & K2 ile gösterilir (Forman, 2002).

Örnek 3.0.4. (Forman, 2002) Şekil 3.4 de K1 simpleksler kompleksinin,

↵ simpleksi ve onun serbest yüzü olan � simpleksi silinirse K1 ile homotopi

denk olan K2 simpleksler kompleksi elde edilir. Yani K1 & K2 simpleks

çökmesi elde edilir.
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Şekil 3.4: Simpleks çökmesine örnek (Forman, 2002)

Örnek 3.0.5. (Forman, 2002) Benzer şekilde, Şekil 3.5 göz önüne alınırsa

önce simpleksler kompleksinde 2-simpleks ile onun bir serbest yüzü olan

1-simpleks silinmiş sonra bir 1-simpleks ile onun bir serbest yüzü olan

0-simpleks silinerek 0-simpleks elde edilmiştir.

Şekil 3.5: Simpleks çökmesine örnek (Forman, 2002)

Simpleks çökmesi J.H.C. Whitehead tarafından çalışılmış ve simpleks

çökmesi ile üretilen denklik bağıntısı için basit homotopi denklik tanımı

yapılmıştır. Bu ise basit homotopi denklik kategorisi için ayrık Morse teorisinin

kullanışlı olduğunu göstermiştir.

Bir simpleksler kompleksi üzerinde her simpleksi boyutuna götüren bir

fonksiyon alınırsa bu bir ayrık Morse fonksiyonu olur. Yani her simpleksler

kompleksi üzerinde bir ayrık Morse fonksiyonu tanımlanabilir. Bu durumda her

simpleks kritik simpleks olur. Halbuki istenen, mümkün olduğunca az sayıda

kritik simpleks olmasıdır.

Morse eşitsizlikleri, Teorem 2.0.4 ve Teorem 2.0.5 ile Milnor(1963) de

smooth manifoldlar için verilmiştir. Bu eşitsizliklerin doğal sonucu olarak, For-

man(1998) de hücre komplekslerine uyarlanmıştır. Bir simpleksler kompleksi

aynı zamanda hücre kompleksi olup Forman(1998) de geçen özellikler aynen

geçerlidir. O halde K, n-boyutlu bir simpleksler kompleksi ve bi, i-nci homoloji
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grubunun boyutu (Betti sayısı) olmak üzere

(i)(Güçlü Morse Eşitsizliği) Her p = 0, 1, 2, ..., n, n+ 1 için

mp �mp�1 + ...+ (�1)pm0 � bp � bp�1 + ...+ (�1)pb0

ve

(ii)(Zayıf Morse Eşitsizliği) Her p = 0, 1, 2, ..., n için

mp � bp

eşitsizlikleri vardır.
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4 GRADYANT VEKTÖR ALANLARI

Bir K simpleksler kompleksinin simplekslerini sayılarla eşlemektense,

bir gradyant vektör alanı bulmak daha kolaydır. Örnek 3.0.2 göz önüne

alınırsa, f�1(1) simpleksinin kritik simpleks olmamasının sebebi daha yüksek

bir değer alan daha düşük dereceli bir komşusu olan f
�1(2) simpleksinin

var olmasıdır. Benzer şekilde f
�1(2) simpleksinin kritik simpleks olmamasının

sebebi daha düşük bir değer alan daha yüksek dereceli bir komşusu olan f
�1(1)

simpleksinin var olmasıdır. Yani kritik olmayan simpleksler ikişerli eşlenip,

f
�1(2) simpleksinden f

�1(1) simpleksine bir ok çizilir. Benzer düşünce ile

f
�1(4) simpleksinden f

�1(3) simpleksine ok çizilir. Çizilen bu oklar simpleks

çökmesi olarak da düşünülebilir. Şekil 4.1 de bu oklar gösterilmiştir.

Şekil 4.1: Örnek 3.0.2 üzerindeki gradyant vektör alanı (Forman, 2002)

Bu işlem herhangi bir simpleksler kompleksinin ayrık Morse fonksiyonu

için uygulanabilir. Bir kritik olmayan ↵
(p) simpleksi için �

(p+1)
> ↵

(p) ve

f(↵(p)) � f(�(p+1)) oluyorsa, ↵ simpleksinden � simpleksine bir ok çizilir.

Şekil 4.2 de biraz daha karmaşık bir örnek gösterilmektedir.

Şekil 4.2: Ayrık Morse fonksiyonu ve gradyant vektör alanı (Forman, 2002)

Bu örnekte f
�1(0) ve f

�1(11) kritik simplekslerdir. O halde bu simpleks-
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ler kompleksi tam olarak bir tane 0-hücre ve bir tane

1-hücreden oluşan CW-komplekse homotopi denktir. Ayrıca Lemma 3.0.1 göz

önüne alınırsa bir ↵ simpleksi aşağıdakilerden yalnızca birini sağlar.

(i) ↵ yalnızca bir okun kuyruğudur.

(ii) ↵ yalnızca bir okun başıdır.

(iii) ↵ herhangi bir okun kuyruğu ya da başı değildir.

Son şartı sağlayan simpleks bir kritik simplekstir.

Şimdi üzerinde oklar olan bir simpleksler kompleksi düşünelim. Bu

okların, bir ayrık Morse fonksiyonunun gradyant vektör alanı olup olmadığı

sorusunu cevaplamak için aşağıdaki teoremler incelenebilir.

K simpleksler kompleksinin simplekslerinin {↵(p)
< �

(p+1)} şeklindeki

ikililerinin ailesi V olmak üzere bu ailedeki her simpleks en fazla bir ikilide yer

alıyorsa, V ye bir ayrık vektör alanı denir. i = 0, ...r için {↵ < �} 2 V ve

�i > ↵i+1 6= ↵i özelliğine sahip

↵
(p)
0 , �

(p+1)
0 ,↵

(p)
1 , �

(p+1)
1 ,↵

(p)
2 , ..., �

(p+1)
r ,↵

(p)
r+1

dizisine bir V -yol denir. Eğer bu V -yolu için, r � 0 ve ↵0 = ↵r+1 ise bu yola

aşikar olmayan kapalı yol denir.

Teorem 4.0.1. (Knudson, 2015) V , ayrık Morse fonksiyonu f nin gradyant

vektör alanı olsun. Öyleyse ↵
(p)
0 , �

(p+1)
0 ,↵

(p)
1 , �

(p+1)
1 ,↵

(p)
2 , ..., �

(p+1)
r ,↵

(p)
r+1 in V -yol

olması için gerek ve yeter şart her i = 0, ...r ve ↵i < �i > ↵i+1 için

f(↵0) � f(�0) > f(↵1) � f(�1) > ... � f(�r) > f(↵r+1)

olmasıdır.

İspat. Yukarıdaki gibi bir dizi, V -yol olsun. Öyleyse tanımdan i = 0, ...r için

f(↵i) � f(�i)

dir. Ayrıca ↵i+1, �i ile eşlenmediğinden

f(�i) > f(↵i+1)

dir. Şimdi ise teoremdeki eşitsizlik sağlansın. O halde tanımdan {↵i, �i} 2 V

olacaktır. f ayrık Morse fonksiyonu olduğundan bu �i tek olup ↵i ve �i bir tek

ikilide yer alacaktır. Böylece yukarıdaki dizi bir yol olacaktır.
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Teorem 4.0.2. (Knudson, 2015) Bir ayrık vektör alanı V nin, ayrık Morse

fonksiyonunun gradyant vektör alanı olması için gerek ve yeter şart aşikar

olmayan kapalı V -yollarının var olmamasıdır.

İspat. ()) V , ayrık Morse fonksiyonu f nin belirlediği ayrık gradyant vektör

alanı olsun. V nin aşikar olmayan kapalı bir yola sahip olduğunu kabul edelim.

Bu yol

↵
(p)
0 , �

(p+1)
0 ,↵

(p)
1 , �

(p+1)
1 ,↵

(p)
2 , ..., �

(p+1)
r�1 ,↵

(p)
r = ↵

(p)
0

ile gösterilsin. Teorem 4.0.1 gereğince

f(↵0) � f(�0) > f(↵1) � f(�1) > ... � f(�r�1) > f(↵r) = f(↵0)

eşitsizliği sağlanır. Bu ise çelişkidir. O halde kabulümüz yanlış olup, aşikar

olmayan kapalı yol yoktur.

(() V aşikar olmayan kapalı yollar barındırmayan bir ayrık vektör

alanı olsun. {↵, �} 2 V ise, V (↵) = � ve V (�) = ↵ şeklinde bir gösterim

tanımlansın. Ayrıca ↵ kritik olmayan bir simpleks ise V (↵) = 0 olsun. Her

bir p için, boyutu p ve daha küçük simplekslerin oluşturduğu alt kompleks K
(p)

üzerinde Vp şöyle tanımlansın:

q < p ise Vp(↵
(q)) = V (↵(q)),

q = p ve V (↵(q)) = 0 ise Vp(↵
(q)) = V (↵(q)).

K
(p) üzerinde, Vp yardımıyla bir fp fonksiyonu inşa edilecektir. ↵(q), Vp

de kritik ise fp(↵) = q olan ve [�1
2 , p + 1

2 ] kapalı aralığında değer alan, fp

fonksiyonu inşa edilebilir.

p = 0 olsun. K
(0) da bulunan her simpleks kritiktir ve f0(↵) = 0

dır. Şu halde f0 tanımlanmıştır. Artık fp�1 tanımlı iken fp, fp�1 yardımıyla

tanımlanabilir. q  p�2 için fp(↵(q)) = fp�1(↵(q)) olsun. Yani fp tanımlanırken

boyutu p � 1 den küçük olanların değeri değişmesin. (p � 1) boyutluların

görüntüsü tanımlanırken Vp ye göre kritik simpleksler
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fp(↵(q�1)) = q� 1 şeklinde tanımlansın. Kritik olmayanlar için ise aşağıdaki d

dönüşümü kullanılacaktır:

d(↵(p�1)) = maks{r | ↵, �0,↵1, ...,↵r Vp-yol ve Vp(↵r) = 0}

ve tüm p� 1 boyutlu simpleksler için

D = maks{d(↵(p�1))}

olmak üzere

fp(↵
(p�1)) = f(p�1)(↵

(p�1)) +
d(↵(p�1))

2D + 1

şeklinde tanımlansın. Ayrıca V de kapalı yol olmadığında Vp de de olamaz.

Öyleyse r değerleri sonlu olup maks fonksiyonu anlamlıdır. Burada tanımlanan

fonksiyon kritik simpleksleri boyutlarına, kritik olmayanları ise kritik simplekse

giden en uzun yolun adım sayısıyla orantılı olacak şekilde fp�1 de aldığı

değerden biraz daha büyük veya eşit bir sayıya götürür.

p boyutlu simplekslerden kritik olanlar boyutlarına gitsin. Kritik olmayan-

lar p� 1 boyutlu hangi simpleksle eşlendiyse o simpleksin gittiği değere gitsin.

Böylece yukarıda bahsedildiği gibi [�1
2 , p + 1

2 ] aralığında değer alan ve kritik

simpleksleri boyutuna götüren bir f fonksiyonu inşa edilir.

Öncelikle bu f fonksiyonunun ayrık Morse fonksiyonu olduğu gösterilme-

lidir. Kritik bir p simpleksin boyutuna yani p ye gittiğini biliyoruz. Boyutu p den

küçük olan simpleksler [�1
2 , p�

1
2 ] aralığında değer aldığından Morse fonksiyon

olma şartlarını bozmaz. Boyutu p den büyük olan simpleksler kritik ise p + 1

e gider. Kritik değilse p-simpleks ile eşlenip p den biraz büyük bir değer almış

olmalıdır. Yine her koşulda, kritik olan p-simpleksinden büyük bir değer alır.

Bu durumda f bir ayrık Morse fonksiyonu ise V nin kritik simpleksleri f ye

göre kritik olacak ve kritik olmayan simpleksler eşlendiği simpleksle aynı değeri

aldığından f ye göre kritik olamayacak. Yani f nin bir ayrık Morse fonksiyonu

olduğunu gösterirsek f nin tanımladığı gradyant vektör alanı V nin kendisi

olur.

Şimdi kritik olmayan bir p-simpleksinin ayrık Morse fonksiyon olma

şartlarını sağlamadığını gösterirsek ispat tamamlanır. Kritik olmayan ↵
(p)
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simpleksi �
(p�1) simpleksi ile eşlendiyse f altında aynı değeri alırlar. Şimdi

↵
(p) nin bir başka yüzü �

(p�1) olsun. �(p�1) kritik simpleks ise zaten boyutuna

gideceği için f(↵(p)) den küçük değer alır. Kritik değilse �
(p�1) ile başlayan her

yol için dizinin başına �
(p�1)

,↵
(p)
, eklenip yol bir adım daha uzatılabilir. Demek

ki d fonksiyonu altında �
(p�1) daha büyük bir değer alıyor. Öyleyse f altında

da daha büyük değer alır ve f(�(p�1)) < f(�(p�1)) = f(↵(p)) elde edilir ve diğer

yüzlerin daha küçük değer aldığı gösterilmiş olur.

Benzer şekilde daha büyük boyutlu bir komşusu ⌧ alınsın. ⌧ komşusu kritik

ise zaten derecesine gidip daha büyük bir değer alır. Kritik değil ise de eşlendiği

simpleks ile birlikte, ↵(p) ile başlayan her yolun başına eklenebilir ve dolayısıyla

f altında daha büyük bir değer aldığı gösterilebilir. O halde f bir ayrık Morse

fonksiyonudur ve V , f nin ayrık gradyant vektör alanıdır.

G yönlü bir graf olsun. Köşeleri üzerinde reel değerli sürekli artan bir

fonksiyona sahip olması için gerek ve yeter şart yönlü bir kapalı yola sahip

olmamasıdır. Bu özellik, gradyant vektör alanlarının graflara uygulanacağı

bağlantısız graflar örneğinde, graf üzerindeki ayrık vektör alanının, gradyant

vektör alanı olup olmadığını tespit ederken kullanılacaktır.

Şimdi gradyant vektör alanı ile Reel Projektif Düzlemin CW-ayrışımının

nasıl bulunacağı gösterilecektir.

Şekil 4.3: RP2
nun (i)üçgenleştirmesi (ii)gradyant vektör alanı (Forman, 2002)

Şekil 4.3(i) Reel Projektif Düzlemin bir üçgenleştirmesidir. Şekil 4.3(ii)’de

ise bir ayrık gradyant vektör alanı verilmiştir. Dikkat edilirse herhangi bir
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kapalı yol olmadığı görülecektir. Öyleyse kritik simpleksler, herhangi bir okun

kuyruğu ya da başı olmayan simpleksler olacaktır. Yani bir tane 0-simpleks,

bir tane 1-simpleks, bir tane 2-simpleks kritik simplekstir. Demek ki 1 tane

0-hücre 1 tane 1-hücre ve 1 tane 2-hücreden oluşan bir CW-kompleks, Reel

Projektif Düzlem ile homotopi denk olacaktır. Ayrıca ilerideki bölümlerde bu

ayrık gradyant vektör alanının bize başka bilgiler de verdiği gösterilecektir.

Şimdi bir graflar ailesinin, bir simpleksler kompleksini nasıl doğurduğu ve bu

graflar ailesi üzerinde tanımlanacak bir yapı yardımıyla, grafın doğurduğu

simpleksin CW-ayrışımının nasıl bulunabildiği, bir örnek yardımıyla açıkla-

nacaktır. Fakat öncelikle bazı tanımların ifade edilmesi gerekmektedir.

Tanım 4.0.1. (Forman, 2002) Kn köşeleri 1, 2, ..., n olan tam graf, Gn Kn in

tüm geren alt graflarının kümesi ve P ⇢ Gn izomorf grafların dahil olmasına

göre graf özelliğine sahip olsun. Eğer G1 ⇢ G2 2 Gn için G2 2 P iken G1 2 P

oluyorsa P ye monoton azalan denir.

Bir P monoton azalan graf özelliği d + 1 kenarlı grafların d-simpleks

olduğu bir K simpleksler kompleksi oluşturur. Bu kompleksteki bir simpleksin

yüzleri ise o simplekse karşılık gelen grafın tüm geren alt graflarıdır. Monoton

azalanlık özelliği ise bunu garanti eder. K nın köşeleri ise Kn in kenarlarıdır.

Bir köşeler kümesinin gerdiği simpleksin K da olup olmadığı o köşeleri temsil

eden kenarların içerildiği bir geren alt grafın P de olup olmamasına bağlıdır.

Ayrık Morse teori özel olarak 2-bağlantısız grafların topolojisinin belir-

lenmesine katkı sağlamıştır ve 3-bağlantısız grafların topolojisini hesaplamıştır.

Burada ise daha kolay bir örneği olan bağlantısız graflar incelenecektir. n köşeli

bağlantısız grafların belirlediği simpleksler kompleksi Nn ile gösterilecek ve

üzerinde bir ayrık gradyant vektör alanı oluşturulmaya çalışılacaktır.

Öncelikle V12 ayrık vektör alanı oluşturulacaktır. Bu ayrık vektör alanı,

simpleksleri yani onları temsil eden grafları eşleyerek oluşturulacaktır. (1, 2)

kenarını içermeyen bağlantısız graflara (1, 2) kenarını eklediğimizde yine

bağlantısız bir graf oluyorsa bu iki kenar eşlenebilir çünkü her ikisi de

bağlantısız olduğundan Nn in elemanıdır. Diğer bir deyişle (1, 2) kenarını içeren

bir bağlantısız graftan (1, 2) kenarı çıkarılırsa yine bağlantısız bir graf elde edilir



29

ve bu bağlantısız graf (1, 2) eklenmiş haliyle eşlenebilir.

Peki hangi graflar eşlenemedi? (1,2) kenarını içeren tüm bağlantısız

graflar eşlendi. (1, 2) kenarını içermeyen graflar ise (1, 2) kenarı eklenince

bağlantısız olma şartı ile eşlenebildi. Demek ki (1, 2) kenarı eklenince bağlantılı

olan ancak (1, 2) kenarını içermeyen ve bağlantısız olan graflar eşlenemedi. Yani

1 noktasını içeren bir bağlantılı bileşen G1 ve 2 noktasını içeren bir bağlantılı

bileşen G2 olmak üzere bağlantısız graflar kaldı. Şekil 4.4 ile bu grafların tipi

görülmektedir. Dikkatli düşünüldüğünde hiçbir kenar içermeyen graf, sadece

(1, 2) kenarını içeren graf ile eşlenmelidir. Ancak boş graf herhangi bir simpleks

ifade etmediğinden bu eşleme yapılamayacaktır.

Şekil 4.4: G1 ve G2 bağlantısız bileşenleri (Forman, 2002)

Şimdi ise bu kalan, yani eşlenemeyen graflar eşlenmelidir. Bu aşamada

eşlenecek ikililerin oluşturacağı ayrık vektör alanı V3 ile gösterilecektir. Bunlar

eşlenmeye 3 noktası düşünülerek başlanır. 3 noktası ya G1 bağlantılı bileşeninde

ya da G2 bağlantılı bileşenindedir. Eğer G1 bağlantılı bileşeninde ise (1, 3)

kenarını içermeyen graflar (1, 3) kenarının eklenmesi ile elde edilen graf

ile eşlensin. Diğer bir deyişle (1, 3) kenarını içeren graflardan (1, 3) kenarı

çıkarıldığında G1 hala bağlantılı bileşen oluyorsa bu graf, (1, 3) kenarı eklenerek

elde edilen graf ile eşlensin. Peki bu aşamada kimler eşlenemedi? Eğer (1, 3)

kenarı çıkarıldığında G1 bağlantılı bileşen olmuyorsa o graf eşlenemeyen graftır.

Ya da benzer durum 3 noktasının G2 bağlantılı bileşenine ait olması için

düşünülebilir. Şekil 4.5 ile bu grafların tipi görülebilir.
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Şekil 4.5: V3 ayrık vektör alanında eşlenemeyen grafların tipi (Forman, 2002)

Benzer işlem n-defa yapılır ve en sonunda Vn elde edilir. Sonuçta

iki bağlantılı ağaçların birleşimi ile sadece (1, 2) kenarından oluşan graf

eşlenememiştir. Ayrıca dikkat edilirse ağaç aşağı doğru inerken daima köşelerin

aldığı değerler artmaktadır. Bu şekilde tam olarak (n� 1)! tane graf vardır ve

her birinin n�2 tane kenarı vardır ki bunlar da birer (n�3)-simpleks oluşturur.

Şimdi bu ayrık vektör alanının gradyant vektör alanı olduğu göste-

rilmelidir. Bunun için aşikar olmayan kapalı V � yol olmadığını göstermek

yeterlidir. Özel olarak V12 içinde bir yol alınırsa ilk ikili ↵(p)
0 , �

(p+1)
0 olur. Bu ise

�
(p+1)
0 = ↵

(p)
0 + (1, 2) olması demektir. Buradan sonra 3. terim �

(p+1)
0 in ↵

(p)
0

den farklı bir yüzü gelmelidir. O halde �
(p+1)
0 den (1, 2) haricinden bir kenar

silinmelidir. Bu ise (1, 2) kenarını içermesi demektir ve bu kenarı içerenler

V12 içerisinde bir okun kuyruğu değil başı olmak zorundadır. Demek ki daha

uzun bir V12-yol inşa etmek mümkün değildir. Bu ise aşikar olmayan kapalı bir

yolun olmadığı anlamına gelir. Benzer düşünce, oluşturulan diğer ayrık vektör

alanları için de geçerlidir. Demek ki oluşturulan ayrık vektör alanı bir ayrık

gradyant vektör alanıdır.

Eşlenemeyen graflar tekrar göz önüne alınırsa öncelikle sadece (1, 2)

kenarından oluşan graf eşlenememiştir. Bu ise bir 0-simplekse karşılık gelir.

Daha sonrasında ise (n � 1)! tane (n � 2)-kenarlı graf eşlenememiştir, bunlar

da (n� 3)-simpleks demektir.



31

O halde n köşeli bağlantısız grafların belirlediği simpleksler kompleksi Nn,

(n � 3)-boyutlu (n � 1)! tane kürenin tek noktada kesişimi ile aynı homotopi

tipine sahiptir.

Şimdi n = 4 için, köşeler kümesi {1, 2, 3, 4} olan bağlantısız grafları ele

alalım. Öncelikle (1, 2) kenarına [a], (1, 3) kenarına [b], (1, 4) kenarına [c],

(2, 3) kenarına [d], (2, 4) kenarına [e], (3, 4) kenarına [f ] simpleksi karşılık

gelsin. Bu graflar ve karşılık gelen simpleksler Şekil 4.6 ile gösterilmiştir.

Şekil 4.6: Bir kenarlı graflar ve karşılık gelen simpleksler

Şimdi graflarımızı ve bunlara karşılık gelen simplekslerimizi ifade edelim.

P = {{(1, 2)}, {(1, 3)}, {(1, 4)}, {(2, 3)}, {(2, 4)}, {(3, 4)}, {(1, 2), (1, 3)},

{(1, 2), (1, 4)}, {(1, 2), (2, 3)}, {(1, 2), (2, 4)}, {(1, 2), (3, 4)}, {(1, 3), (1, 4)},

{(1, 3), (2, 3)}, {(1, 3), (2, 4)}, {(1, 3), (3, 4)}, {(1, 4), (2, 3)}, {(1, 4), (2, 4)},

{(1, 4), (3, 4)}, {(2, 3), (2, 4)}, {(2, 3), (3, 4)}, {(2, 4), (3, 4)},

{(1, 2), (1, 3), (2, 4)}, {(2, 3), (2, 4), (3, 4)}, {(1, 3), (1, 4), (3, 4)},

{(1, 2), (1, 4), (2, 4)}}

bağlantısız graflar ailesidir.

Öyleyse P graflar ailesine karşılık gelen simpleksler kompleksi

K = {[a], [b], [c], [d], [e], [f ], [a, b], [a, c], [a, d], [a, e], [a, f ], [b, c], [b, d], [b, e],

[b, f ], [c, d], [c, e], [c, f ], [e, d], [d, f ], [e, f ], [a, b, d], [d, e, f ], [b, c, f ], [a, c, e]}

kümesidir. Şekil 4.7 ve Şekil 4.8 incelenirse hangi simplekslere hangi grafların

karşılık geldiği görülebilir.
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Şekil 4.7: İki kenarlı graflar ve karşılık gelen simpleksler

Şekil 4.8: Üç kenarlı graflar ve karşılık gelen simpleksler

Öncelikle gradyant vektör alanı oluşturulsun.

V12 = {{[b], [a, b]}, {[c], [a, c]}, {[d], [a, d]}, {[e], [a, e]}, {[f ], [a, f ]},

{[b, d], [a, b, d]}, {[c, e], [a, c, e]}} ve V3 = {{[c, f ], [b, c, f ]}, {[e, f ], [d, e, f ]}} dir.

Şu halde 1 + (4 � 1)! = 7 tane eşlenemeyen simpleks vardır. Bu ise bunların

kritik simpleks olduğu anlamına gelir. {[a], [b, c], [b, e], [b, f ], [c, d], [e, d], [d, f ]}

kritik simplekslerdir.

Daha önce de bahsedildiği gibi amaç mümkün olduğunca az kritik

noktaya sahip olan Morse fonksiyonun bulunabilmesidir. Bunun için üzerinde

Morse fonksiyonu tanımlı olan bir simpleksler kompleksinde kritik simpleksle-

rin sayısının nasıl azaltılabileceğinden bahsedilecektir.
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Bir K simpleksler kompleksi üzerinde gradyant vektör alanı tanımlı olsun.

�
p+1 kritik simpleksinin sınırından ↵

p kritik simpleksine giden yalnızca bir

tane gradyant yol varsa bu durumda ↵ ve � kritik simpleksleri yok edilebilir.

Aşağıdaki teorem bu işlemin nasıl yapılacağını göstermektedir.

Teorem 4.0.3. (Forman, 2002) K üzerinde f Morse fonksiyonu �
p+1 ve ↵

p

kritik simpleksleri ile tanımlı olsun. Eğer � nın sınırından ↵ ya tanımlı sadece

bir tane gradyant yol var ise M üzerinde öyle bir g Morse fonksiyonu vardır

ki ↵ ve � haricindeki tüm kritik simpleksler yine kritiktir ve g nin belirttiği

gradyant vektör alanı � nın sınırından ↵ ya giden tek bir yol dışında f dekiler

ile aynıdır.

İspat. K üzerinde, ayrık Morse fonksiyonu f nin belirttiği V gradyant vektör

alanı olsun. � nın sınırı olan ↵0 dan ↵ ya giden bir tek yol var olsun. Bu yol

↵0, �0, ...,↵n, �n,↵

şeklinde gösterilsin.

V1 = {{↵0, �0}, {↵1, �1}, ..., {↵n, �n}}

ve

V2 = {{↵, �n}, {↵n, �n�1}, ..., {↵1, �0}, {↵0, �}}

olmak üzere

V
0 = (V � V1) [ V2

olsun. � ve ↵, V de kritik simpleks olduklarından eşlenmemişlerdir. Öyleyse

V
0 oluşturulurken eşlenmesinde bir sakınca yoktur. Şu halde V

0 bir ayrık

vektör alanıdır. Eğer herhangi bir aşikar olmayan kapalı yola sahip olmadığı

gösterilirse V
0 nün bir ayrık gradyant vektör alan olduğu dolayısıyla bir g

ayrık Morse fonksiyonunun gradyant vektör alanı olduğu söylenebilir. Üstelik

V
0 oluşturulurken V de eşlenen tüm simpleksler eşlenmiş, bunlara ek olarak

↵ ve � dışında herhangi bir simpleks eşlenmemiştir. Bu da ↵ ve � dışında

durumu değişen başka bir simpleks olmadığını gösterir. V 0 ayrık vektör alanının

bir gradyant vektör alanı olduğu gösterilirse ispat tamamlanır.

V
0 ayrık vektör alanında bir aşikar olmayan kapalı yolun var olduğu

kabul edilsin. V gradyant vektör alan olduğundan V de böyle bir yol yoktur.
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Dolayısıyla V � V1 de de yoktur. O halde bu yol V2 ile eşlenen simplekslerden

en az birini kullanmak zorundadır. Bu yolu

�0, ⌧0, ..., �k, ⌧k,↵t, �t�1, �k+1, ⌧k+1, ..., �n, ⌧n, �0

ile gösterelim.

↵0, �0, ...,↵t�1, �t�1, �k+1, ⌧k+1, ..., �0, ⌧0, ...,↵t, �t, ...,↵n, �n,↵

V de bir yoldur. Bu yol, V de � nın sınırı olan ↵0 dan ↵ ya giden ikinci bir

yol olduğunu gösterir. Bu ise çelişki olup kabulün yanlış olduğunu yani V 0 nün

bir g fonksiyonunun gradyant vektör alanı olduğunu gösterir.

Örnek olarak Şekil 4.9 göz önüne alınırsa � kritik simpleksinden ↵ kritik

simpleksine bir tek yol vardır. Öyleyse oklar tersine çevrilerek diğer kritik

simplekslere hiç dokunulmadan sadece � ve ↵ kritik simpleksleri yok olmuş

olur.

Şekil 4.9: Kritik nokta yok etme

Burada � dan ↵ ya başka bir yolun olmamasının istenme sebebi yeni

tanımlanan okların kapalı bir yol oluşturmasına engel olunmak istenmesidir.

Aksi halde elde edeceğimiz ayrık vektör alanı kapalı yola sahip olur ve bir

gradyant vektör alanı olamaz.
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5 KOMBİNATORİK BAKIŞ AÇISI

Bu bölümde komplekse ait simplekslerin yüz ilişkisine göre kısmi sıralı

bir kümesi olan Hasse diyagramlarından bahsedilecektir.

Hasse diyagramı noktaları simpleksler olan yönlü bir graf olarak düşü-

nülebilir. Eğer iki köşe arasında yönlü bir kenar varsa bu; kenarın başlangıç

noktasını temsil eden simpleksin, bitiş noktasını temsil eden simpleksin bir

yüzü olduğunu söyler. Eğer bir V kombinatorik vektör alanında {↵, �} 2 V

ise bu durumda (↵, �) kenarı yön değiştirir. Bu vektör alanındaki bir yol,

yönlendirilmiş grafta bir yönlü yol olacaktır. Fakat karşıtı her zaman doğru

olmak zorunda değildir. Şu halde aşağıdaki teorem hangi şartlar altında Hasse

diyagramının bir ayrık gradyant vektör alanını belirleyeceğini anlamamıza

olanak sağlar.

Şekil 5.1: Hasse diyagramının iki aşamada oluşturulması (Forman, 2002)

Teorem 5.0.1. (Forman, 2002) Aşikar olmayan kapalı V -yolların var olma-

ması için gerek ve yeter şart yönlü Hasse diyagramını oluşturduğumuz grafta

aşikar olmayan kapalı bir yönlü yolun var olmamasıdır.

İspat. V deki tüm yollar Hasse diyagramında bir yol belirtir. Öyleyse Hasse

diyagramında aşikar olmayan kapalı yol yoksa V ayrık vektör alanında da
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olamaz.

V ayrık vektör alanında aşikar olmayan kapalı yol olmasın. Öyleyse

Teorem 4.0.2 gereğince bir f ayrık Morse fonksiyonu vardır. Ayrıca bu

fonksiyon Teorem 3.0.2 nin ispatındaki gibi birebir hale getirilebilir. Bu f Hasse

diyagramı üzerindeki yollar üzerinde monoton azalan olacaktır. Çünkü Hasse

diyagramında, �(p+1) simpleksini temsil eden noktadan ↵
(p) simpleksini temsil

noktaya çizilen yönlü kenar azalan olmak zorudadır. Aksi halde artan olup

kenarın üzerindeki yön tam ters dönmelidir. Benzer şekilde �
(p�1) simpleksini

temsil eden noktadan ↵
(p) simpleksini temsil eden noktaya çizilen yönlü kenar

azalan olmak zorundadır. Aksi halde artan olup bu simpleksler V de eşlenemez.

Demekki Hasse diyagramının belirttiği grafta noktalar üzerinde tanımlanan

öyle bir fonksiyon vardır ki yönlü kenarlar üzerinde monoton azalandır. Bu

ise graf üzerinde aşikar olmayan kapalı bir yol olmamasına denktir.

Sonuç olarak, Hasse diyagramında aşikar olmayan kapalı yönlü yol

yoksa V bir gradyant vektör alanı belirler ve eşlenemeyen simpleksler kritik

simpleksler olur. Böylece yine bir ayrık Morse fonksiyonu elde edilmiş gibi,

aynı yorumlar yapılabilir, CW-ayrışımı inşa edilirken kaç tane hangi boyuttan

hücreye ihtiyaç duydulduğu tespit edilebilir. Bu Hasse diyagramında boş

simpleksin eşlenmediğine dikkat edilmelidir.

Yukarıdaki teoremi daha iyi anlamak için aşağıdaki örnekler incelenebilir.

Örnek 5.0.1. Şekil 5.2 ile K simpleksler kompleksi üzerinde bir ayrık vektör

alanı ve bu alanının belirlediği yönlü Hasse diyagramı verilmiştir. Dikkat

edilirse v6, e8, v5, e5, v3, e2, v2, e4, v4, e7, v6 yolu Hasse diyagramı üzerinde bir

kapalı yoldur. O halde Teorem 5.0.1 gereğince V ayrık vektör alanında da bir

aşikar olmayan kapalı yol vardır. Bu ise V ayrık vektör alanının, bir ayrık

f Morse fonksiyonunun gradyant vektör alanı olamayacağı anlamına gelir.

Demek ki bu Hasse diyagramı kullanışlı değil. Ancak graf üzerindeki yollar

Şekil 5.3 ile gösterildiği gibi tanımlansaydı durum farklı olabilirdi.
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Şekil 5.2: Kapalı bir yola sahip Hasse diyagramı ve ayrık vektör alanı

Örnek 5.0.2. Şekil 5.3 ile K simpleksler kompleksi üzerinde bir ayrık vektör

alanı ve bu alanının belirlediği yönlü Hasse diyagramı verilmiştir. Dikkat

edilirse yönlü Hasse diyagramında herhangi bir kapalı yol yoktur. Teorem 5.0.1

gereğince V ayrık vektör alanında da aşikar olmayan kapalı bir yol olmadığı

söylenebilir. Şekil 5.2 kontrol edilirse gerçekten ayrık vektör alanında aşikar

olmayan kapalı yol yoktur. Demek ki bu ayrık vektör alanı bir gradyant vektör

alanıdır ve bir f ayrık Morse fonksiyonu bu gradyant vektör alanını belirler.

Bu ise Hasse diyagramında küçük boyutlu simpleksi temsil eden köşeden büyük

boyutlu simpleksi temsil eden köşeye giden yolların bu simpleksleri eşlediğini

yani kritik simpleks olmadıklarını belirlemeye yarar.
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Şekil 5.3: Kapalı yol içermeyen bir Hasse diyagramı ve gradyant vektör alanı
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6 MORSE KOMPLEKSLER

Gradyant vektör alanları yardımı ile CW-ayrışımının nasıl bulunacağı

önceki bölümlerde gösterildi. Bu bölümde ise homoloji gruplarının nasıl

hesaplandığından bahsedilecektir.

K, üzerinde bir f Morse fonksiyonu olan simpleksler kompleksi olsun.

Mp, p-kritik simplekslerinin ürettiği serbest abel grup ve mp de, bu simpleks-

lerin sayısı olmak üzere

Mp
⇠= Zmp

dir.

Teorem 6.0.1. (Forman, 2002) Her bir d için

@̃d � @̃d�1 = 0

olacak şekilde @̃d : Md ! Md�1 sınır homomorfizmaları vardır ve

0 ! Mn
@̃n�! Mn�1

@̃n�1���! ...
@̃1�! M0 ! 0

diferansiyel kompleksi, X in homolojisi Hd(M, @̃) yı aşağıdaki şekilde hesaplar:

Hd(X,Z) ⇠= Hd(M, @̃) =
Ker(@̃d))

Im(@̃d+1)
.

Şimdi bu sınır homomorfizmalarının nasıl tanımlandığından bahsedile-

cektir. Bunun için kompleksin üzerinde bir gradyant vektör alanı ve her simp-

leks üzerinde belirlenmiş bir yön olmalıdır. Amaç, � kritik p-simpleksinin sınır

homomorfizması altında p � 1 simplekslere nasıl gittiğinin tespit edilmesidir.

Diğer bir deyişle

@̃p(�) =
X

kritik ↵(p�1)

c↵,�↵

eşitliğini sağlayan c↵,� sayısının tespit edilmesidir. Bunun için � nın bir

maksimal yüzünden ↵ ya giden gradyant V -yolların � dan ↵ ya indirgediği

yön ile ↵ nın kendi yönünün aynı mı zıt mı olduğuna bakılır. Her bir V -yol için

yön aynı ise +1, zıt ise �1 alınıp bu sayılar toplanır. Böylece c↵,� sayısı tespit

edilir.

Şekil 6.1’de, üzerinde bir yön olan � simpleksinin, bir yüzünden başlayan

bir V -yolun, üzerindeki yönü ↵ simpleksine nasıl indirgediği gösterilmektedir.
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Şekil 6.1: � dan ↵ ya indirgenen yön

4. Bölümde Reel Projektif Düzlem üzerinde bir gradyant vektör alanı oluştu-

ruldu. Şimdi bu gradyant vektör alanı yardımıyla sınır homomorfizmalarının

nasıl çalıştığı gösterilecektir.

Örnek 6.0.1. (Forman, 2002) RP2 örneğinde 3 adet kritik simpleks olduğu

belirtilmişti. Bunlar t ile gösterilen 2-simpleks, e ile gösterilen 1-simpleks ve

v ile gösterilen 0-simpleksti. Burada öncelikle her bir simpleks üzerinde yön

belirlenmelidir. Belirlenen yönler Şekil 6.2 deki gibi olsun. @̃2(t) yi hesaplamak

için öncelikle t nin yüzlerinden e ye giden tüm yollar belirlenmelidir. Dikkat

edilirse bu yolların 2 tane olduğu ve her iki yol için, t nin e üzerine indirgediği

yön ile, e üzerinde tanımlanan yönün aynı olduğu görülür. Böylece

@̃2(t) = 2e

olarak hesaplanır.

Şimdi @̃1(e) nin hesaplanması için e nin sınırından v ye giden tüm yollar

tespit edilmelidir. İlki e nin yüzü olan v deki 0 adımdan oluşan aşikar yoldur.

Bu yol, e üzerindeki yönün bitim noktasında başladığından pozitif bir yön

tanımlar. Diğeri ise şeklin sağ tarafındaki 3, 2, 1 noktalarını takip eden yoldur.
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Şekil 6.2: RP2
üzerindeki kritik simplekslerin yönü (Forman, 2002)

Bu yol, e üzerindeki yönün başlangıç noktasında başladığından, negatif bir yön

tanımlar ve katsayı 0 olur. Böylece

@̃1(e) = 0v

bulunur. O halde aşağıdaki diferansiyel kompleks

0 ! Z ⇥2�! Z 0�! Z ! 0

şeklinde oluşturulur ve

H0(RP2
,Z) ⇠=

Ker(@̃0))

Im(@̃1)
⇠=

Z
0
⇠= Z

H1(RP2
,Z) ⇠=

Ker(@̃1))

Im(@̃2)
⇠=

Z
2Z

⇠= Z2

H2(RP2
,Z) ⇠=

Ker(@̃2))

Im(@̃3)
⇠= 0

homoloji grupları hesaplanır.
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Bir başka homoloji hesabı Klein şişesi için yapılabilir.

Şekil 6.3: Kb üzerindeki gradyant vektör alanı ve kritik simpleksler

Örnek 6.0.2. Şekil 6.3, Klein şişesi üzerindeki bir Morse fonksiyonunun

gradyant vektör alanını göstermektedir. Burada bir tane kritik 2-simpleks,

iki tane kritik 1-simpleks, bir tane kritik 0-simpleks vardır. Bunların sınır

homomorfizmaları altındaki görüntüleri tespit edilmelidir.

Şekil 6.4: t simpleksinin sınırından e1 ve e2 ye giden yollar

t simpleksinin sınırından e1 ve e2 ye giden yollar bulunup bunların üzerine
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indirgenen yönün, üzerinde tanımlı olan yön ile aynı olup olmadığı kontrol

edilmelidir. Şekil 6.4 ile t nin e1 üzerine iki farklı yoldan aynı yönü indirgediği

görülür ve buradan e1 in katsayısı 2 elde edilir. t nin e2 üzerine iki farklı yoldan

indirgediği yönlere bakılırsa biri aynı diğeri zıt yönlüdür öyleyse e2 nin katsayısı

0 elde edilir ve

@̃2(t) = 2e1 + 0e2

olur.

Şekil 6.5: e1 ve e2 simplekslerinin sınırından v ye giden yollar

Şekil 6.5 incelenirse e1 in sınırından ve e2 nin sınırından v ye giden 2

farklı yol olduğu görülür. Bunların indirgediği yönlerin biri aynı diğeri zıt olup

katsayılar 0 olacaktır. O halde

@̃1(e1) = 0v

@̃1(e2) = 0v

elde edilir.

Böylece aşağıdaki diferansiyel kompleks elde edilmiş olur.

0 ! Z (⇥2,0)���! Z⇥ Z 0�! Z ! 0

Bu diferansiyel kompleks ile homoloji grubu hesaplanır ve

H0(Kb,Z) ⇠=
Ker(@̃0))

Im(@̃1)
⇠=

Z
0
⇠= Z
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H1(Kb,Z) ⇠=
Ker(@̃1))

Im(@̃2)
⇠=

Z⇥ Z
2Z⇥ {0}

⇠= Z2 ⇥ Z

H2(Kb,Z) ⇠=
Ker(@̃2))

Im(@̃3)
⇠= 0

elde edilir.
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