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GPS son asırda dünya tarihine kazandırılmış en önemli buluşlardan birisidir. GPS sivil ve askeri 

amaçlara uygun olarak her türlü koşulda kesintisiz ve hızlı ölçümü amaçlamaktadır.  Klasik ölçme 

yöntemlerine göre GPS her türlü hava şartında kolay uygulanabilir olması ve zamandan tasarruf 

sağlaması sebebiyle öne çıkmaktadır. Bu avantajlarına rağmen tam olarak matematiksel bir modele 

oturtulamayan Dünya’nın şekli nedeniyle yatay koordinatlar mühendislik amaçlı uygulamalarda doğrudan 

kullanılırken düşey koordinatlar doğrudan kullanılamamaktadır. Çünkü GPS ile elde edilen yükseklikler, 

elipsoide göre belirlenmiş elipsoidal yüksekliklerdir. Bu yüksekliklerin uygulamada kullanılan ortometrik 

yüsekliklere dönüştürülmesi gerekmektedir. Bu dönüşümü sağlamak amacıyla ortometrik yükseklikler ile 

elipsoidal yükseklikler arasındaki farkın yani jeoit yüksekliklerinin bilinmesi/modellenmesi 

gerekmektedir. Jeoit yüksekliklerinin modellenmesi genellikle polinomlar, radyal bazlı fonksiyonlar ve 

kriging enterpolasyonu gibi enterpolasyon yöntemleri yardımıyla gerçekleştirilir. Bu tez çalışması 

kapsamında polinomal yöntemler, radyal bazlı fonksiyonlar ve kriging yöntemlerini içeren toplam on iki 

adet farklı enterpolasyon yöntemi ele alınmıştır. Uygulama kapsamında Trakya Bölgesine dağılmış, 

ortometrik ve elipsoit yükseklikleri bilinen 175 adet nokta kullanılmıştır. Bu noktalardan 143 tanesi 

modelin oluşturulmasında dayanak noktası olarak geriye kalan 32 nokta ise test noktasıolarak 

sınıflandırılmıştır. Yapılan modellemeler sonucunda test noktalarına ait karesel ortalama hata değerleri 

hesaplanmış ve gerekli grafikler elde edilmiştir. Sonuçlar incelendiğinde, yüksek dereceli polinomlar ile 

multikuadratik, thin plate spline, natural kübik spline ve kriging yöntemlerinin yaklaşık 10 cm civarında 

doğruluk sağladığı gözlenmiştir. 
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GPS is one of the most important inventions of the world in the last century. GPS is intended for 

continuous and rapid measurement in all conditions in accordance with civil and military purposes. 

According to classical measurement methods, GPS stands out because of being easily applicable in all 

kinds of weather conditions and saving time. Despite these advantages, the horizontal coordinates are 

used directly in engineering applications,  the vertical coordinates can not be directly used due to the 

shape of the Earth which can not be fully mathematically modeled. Because the heights obtained by GPS 

are the ellipsoidal heights determined by the ellipsoid. These heights should be transformed into 

orthometric heights used in practice. In order to achieve this transformation, the difference between the 

orthometric heights and the ellipsoidal heights, ie the geoid heights, must be known / modeled. The 

modeling of geoid heights is usually performed by interpolation methods such as polynomials, radial 

basis functions and kriging interpolation. In this study, twelve different interpolation methods including 

polynomial methods, radial basis functions and kriging methods are discussed. In the scope of 

application, 175 points which known orthometric and ellipsoid heights were used  in Trakya region. Of 

these points, 143 as reference points and the remaining 32 as test points were classified. The root mean 

square error values of the test points were calculated and the necessary graphs were obtained. When the 

results are examined, it is observed that high-order polynomials and multiquadratic, thin plate splines, 

natural cubic splines and kriging methods provide accuracy of about 10 cm. 
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1 GİRİŞ 

GPS teknolojisi uzay yarışının hüküm sürdüğü soğuk savaş yıllarında dünya 

tarihine kazandırılmış en önemli buluşlardan birisidir. TRANSIT sistemine alternatif 

olarak geliştirilen GPS, 1980’li yıllarda sivil kullanıma açılana kadar askeri amaçlar 

için kullanılmıştır. 1 Mayıs 2000 yılında güvenlik amaçlı uydu sinyallerinin 

bozulmasını amaçlayan seçimli doğruluk erişimi (Selective Avability)’nin 

kaldırılmasıyla GPS sivil kullanıcılar içinde yüksek doğruluk sağlar hale gelmiştir. 

Kontrol bölümü, kullanıcı bölümü ve uzay bölümü olmak üzere üç ana bölümden 

oluşan GPS’in en önemli avantajları tüm hava koşullarında, sürekli olarak zaman ve 

mekandan bağımsız yüksek doğrulukta ve kısa sürede üç boyutlu koordinat elde 

edilmesi olarak sıralanabilir. 

GPS’e benzer şekilde bazı ülkeler farklı zamanlarda ve yörüngelerde konum 

belirlemek amacıyla kendi sistemlerini geliştirmişlerdir. Bu sistemler genel olarak, 

GLONASS, Galileo ve BeiDou/Compass olarak sıralanabilir. Bu sistemlerin 

oluşturduğu global sisteme GNSS (Global Navigation Satellite System) adı 

verilmektedir. Bu sistemlerden başka Amerika’nın geniş alan büyütmeli sistemi 

(WAAS), Japonya’nın navigasyon sistemi (MSAS), Hindistan’ın yer büyütmeli 

navigasyon sistemi (IRNSS/GAGAN), Avrupa Birliği’nin Avrupa yersabit 

navigasyon kapsama servisi (EGNOS) ve Japonya’nın kuazi zenit uydu sistemi 

(QZSS) gibi çok sayıda uydu bazlı alan büyütme sistemleri (SBAS) bulunmaktadır. 

GNSS’te ölçmeler referans alınan elipsoit üzerinde yapılmaktadır. Elipsoit 

elipsin küçük yarı ekseni etrafında döndürülmesiyle oluşan matematiksel bir şekildir. 

Mühendislik uygulamalarında GNSS ile elde edilen yatay koordinatlar doğrudan 

kullanılabilirken, düşey koordinatlar kullanılamamaktadır. Elde edilen düşey 

koordinatların uygulamada kullanılan, jeoite göre belirlenmiş ortometrik 

yüksekliklere dönüştürülmesi gerekmektedir. Hassas olarak belirlenmiş jeoit, 

elipsoidal ve ortometrik yüksekliklerin dönüşümünde kullanılan ara bir yüzeydir. 

Jeoit matematiksel olarak tanımı zor bir şekildir. Literatürde jeoit modelinin 

belirlenmesi için çeşitli yöntemler mevcuttur. BÖHHBÜY’de de jeoidin belirlenmesi 

için çeşitli ölçü ve hesap yöntemleri önerilmiştir.  
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2 LİTERATÜR TARAMASI 

Radyal bazlı fonksiyonlarla ilgili olarak yapılan ilk çalışma 1968 yılında 

Roland Hardy tarafından Multikuadrik yüzey adını verdiği çalışmasında 

yayınlanmıştır. Daha sonraları bu yöntem Franke, Michelli ve Kansa tarafından 

diferansiyel denklemlerin çözümünde kullanılmaya başlanmış ve yöntem ilave 

koşullarla genelleştirilerek radyal bazlı fonksiyonlar adını almıştır ve yöntem 

matematik ve jeodezinin yanı sıra tıp, elektrik-elektronik, makine, inşaat gibi bir çok 

bilim dalında başarıyla uygulanmıştır. 

Mustafa Yanalak 1997 yılında “Sayısal Arazi Modellerinden Hacim 

Hesaplarında En Uygun Enterpolasyon Yönteminin Araştırılması” adlı çalışmasında 

multikuadrik enterpolasyon, polinomlarla ve ağırlıklı ortalama ile enterpolasyona 

değinmiştir. Bu çalışmada multikuadrik enterpolasyonla hacim hesabı; kayan 

yüzeyler ve ağırlıklı ortalama ile hacim hesabı ile kıyaslanmış ve orantısal hatalar 

karşılaştırıldığında multikuadrik enterpolasyon tüm araziler için iyi sonuçlar verdiği 

gözlenmiştir.  

Abdülkerim Pekin 1999 yılında yaptığı “Açık İşletme Asamak Tenörlerinin 

Kriging Tahminlerinde İstatiksel Dağılım Modellerinin Etkileri” adlı çalışmada 

Kriging yöntemine yer vermiştir. Cengizhan İpbüker tarafından 1999 yılında yapılan 

çalışmada radyal bazlı fonksiyonlar “Uydu Görüntülerinin Dönüşümü” amacıyla 

kullanılmıştır. Hardy tarafından bulunun multikuadrik enterpolasyon yönteminin 

uydu görüntülerinin dönüşümü problemine uyarlanmış şekliyle büyük distorsiyonlara 

sahip olsalarda diğer yöntemlere göre daha iyi sonuçlar verdiği görülmüştür. Şekil 

parametresi için Fogel’in, Schul’min ve Mitel’man önerilerine yer verilmiştir. 

Hakan Akçin 2002 yılında yayınladığı makalede Kriging enterpolasyonu 

üzerine deneysel bir uygulama yapmıştır. Ercan Öztemel 2003 yılında yapay zeka ve 

yapay sinir ağlarını açıkladığı bir kitap yayınlamıştır. 

2004 yılında Esentürk “Bir Dizel Motorunun Performans Testi İçin İki Aşamalı 

İstatistiksel Motor Haritalama Modellerinin Geliştirilmesi” adlı tezinde radyal bazlı 



3 

 

fonksiyonları kullanmıştır. Şekil parametresinin doğru seçildiğinde sonuçların iyi 

olduğunu savunmuştur. 

2005 yılında Mehmet Yılmaz tarafından yayınlanan çalışmada İstanbul 

Metropolitanı için jeoit araştırması yapılmıştır. Hakan Uyar 2005 yılında yaptığı 

çalışmada jeoistatistik hakkında bilgi vermiştir. 

2007 yılında Servet Yaprak tarafından yapılan “Kriging Yönteminin Geoit 

Yüzeyi Modellemesinde Kullanılabilirliğinin Araştırılması ve Varolan Yöntemlerle 

Karşılaştırılması” adlı çalışmada Kriging yöntemi ve diğer enterpolasyon 

yöntemlerine yer verilmiştir. 

Wilna Du Toit tarafından 2008 yılında yayınlanan tezde radyal bazlı 

fonksiyonlarla enterpolasyon anlatılmıştır. Tezde şekil parametresinin sonuçlara 

etkisi grafiklerle gösterilmiştir. Marshall Üniversitesinde 2009 yılında Maggie E. 

Chenoweth tarafından yapılan çalışmada şekil parametresi için çalışmalar yapılmış 

ve sonuçlar irdelenmiştir. 

Nazan Yılmaz tarafın 2011 yılında ”Türkiye İçin Farklı Yöntem Ve Verilerle 

Belirlenen Jeoidlerin Karşılaştırılması” adlı çalışmada çeşitli enterpolasyon teknikleri 

ele alınmıştır. Bu çalışmada çeşitli yöntemlerle oluşturulan jeoitler istatiksel olarak 

karşılaştırılmış Türkiye için en uygun global modelin EGM08 olduğu kanaatine 

varılmıştır. Ayrıca çeşitli jeoit modellerinde dağlık bölgelerde ve denize yakın 

yerlerde sapmaların daha yüksek olduğu gözlemlenmiştir. Günümüze yaklaştıkça 

ilerleyen teknoloji ile birlikte jeoit modellerinin daha uyuşumlu olduğu 

gözlemlenmiştir. Sevim Bilge Keçeci 2011 yılında yaptığı “Sayısal Yükseklik 

Modellerinin Oluşturulmasında Kullanılan Enterpolasyon Yöntemlerinin 

Karşılaştırılması” adlı çalışmada enterpolasyon yöntemlerini sayısal yükseklik 

modellerini oluşturulması için kullanmış ve sonuçları birbiriyle karşılaştırmıştır. 

Leyla Çakır 2012 yılında yaptığı ”Ortometrik Yüksekliklerin Dolaylı Olarak 

GPS Gözlemlerinden Elde Edilmesinde Kullanılan Yöntemlerin İrdelenmesi” adlı 

çalışmasında radyal bazlı fonksiyonlara yer vermiştir. Bu çalışmada radyal bazlı 

fonksiyonlar hem kendi içinde hem de diğer yöntemlerle istatiksel olarak mukayese 

edilmiştir. Radyal bazlı fonksiyonlarda en iyi sonuçların multikuadrik fonksiyonla 
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alındığı gözlemlenmiştir. Çalışmada şekil parametresinin sonuçlara önemli etkisi 

olduğu bildirilmiştir. Radyal bazlı fonksiyonlar ile polinomlarla enterpolasyon kendi 

arasında kıyaslandığında radyal bazlı fonksiyonların daha iyi sonuçlar verdiği 

görülmüştür. Burcu Doğanalp 2012 yılında yaptığı “İnsan Kaynakları Seçme 

Sürecinde Bulanık Mantık Yaklaşımı: Görgül Bir Araştırma” adlı çalışmada Bulanık 

Mantık hakkında detaylı bilgi vermiştir. 

Cemal Özer Yiğit 2013 yılında yaptığı “Elipsoidal Yüksekliklerin Ortometrik 

Yüksekliğe Dönüşümünde Kullanılan Enterpolasyon Yöntemlerinin 

Karşılaştırılması” adlı çalışmada çeşitli enterpolasyon yöntemlerini karşılaştırmış ve 

sayısal uygulama ile kullanılabilirliklerini irdelemiştir. Selahattin Bolat 2013 yılında 

yaptığı Lokal Jeoid Belirleme Yöntemleri: Samsun İli Örneği adlı çalışmada Samsun 

ili için jeoit araştırması yapmıştır. 

Şentürk ve İnce tarafından 2014 yılında yayınlanan çalışmada jeoit belirlemede 

kullanılan çeşitli yöntemler istatiksel olarak kıyaslanmış ve multikuadrik yöntemin 

iyi sonuçlar verdiği görülmüştür. 2014 yılında Szu ve arkadaşları tarafından 

Tayvan’da yapılan çalışmada lokal jeoit belirlemenin gravimetrik yöntemlere göre 

avantajları incelenmiştir. 2014 yılında Selma Zengin Kazancı tarafından yapılan 

çalışmada Kriging yöntemi araştırılmıştır. 2014 yılında Olgu Aydın tarafından 

yayınlanan çalışmada Türkiye’de yıllık ortalama toplam yağışın kriging yöntemiyle 

belirlenmesi hedeflenmiştir. Berna Bulğurcu 2014 yılında yaptığı “Sinirsel Bulanık 

Mantık Yaklaşımı İle Öngörü Modellemesi: İşsizlik Oranı İçin Türkiye Örneği” adlı 

çalışmada Yapay sinir ağlarına yer vermiştir. 

2015 yılında Ahmet Kayabaşı “Kompakt Mikroşerit Antenlerin Rezonans 

Frekansının Yapay Sinir Ağları Ve Bulanık Mantık Sistemine Dayalı Uyarlanır Ağ 

Kullanarak Hesaplanması” adlı çalışmada yapay sinir ağları ve bulanık mantık 

hakkında bilgi vermiştir. 

2016 yılında Murat Çakar yayınladığı çalışmada Kriging, polinomlarla 

enterpolasyon, ağırlıklı ortalama ile enterpolasyon ve multikuadrik enterpolasyon 

yöntemlerine yer vermiş ve bunları C# programı üzerinden programlamayı 

amaçlamıştır. 2016 yılında Güllü ve arkadaşları tarafından yapılan çalışmada farklı 
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yöntemlerle elde edilen yerel jeoit modelleri karşılaştırılmıştır. Karesel ortalama 

hatalar dikkate alınarak yapılan çalışmada RBF ile enterpolasyonun sonuçlar 

açısından uygun olduğu görülmüştür. Sarra, Michelli ve Kansa tarafından 

diferansiyel denklemlerde kullanılmak amacıyla 𝛿2 parametresinin belirlenmesi 

amacıyla değişik yıllarda çeşitli çalışmalar yapılmıştır. 

Bülent Haznedar 2017 yılında yaptığı “Benzetilmiş Tavlama Algoritması ile 

Adaptif Ağ Tabanlı Bulanık Mantık Çıkarım Sisteminin (Anfıs) Eğitilmesi” adlı 

çalışmada bulanık mantık hakkında bilgi vermiştir. Enver Çakın 2017 yılında yaptığı 

“Ülkelerin İnovasyon Performansının Ölçülmesinde Yapay Sinir Ağları, Bulanık 

Dematel Tabanlı Analitik Ağ Süreci Ve Ağırlık Kısıtlı Veri Zarflama Analizi” adlı 

çalışmada yapay sinir ağları ve bulanık mantık hakkında bilgi vermiştir. 
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3 YÜKSEKLİK SİSTEMLERİ 

Günümüzde üç boyutlu konum bilgisine savunmada, planlamada, çeşitli 

yapıların konumlandırılmasında ve inşaatında ihtiyaç duyulur. Üç boyutlu konum 

yatay koordinatların yanında elde edilen düşey koordinatlarla sağlanır. Yani 

yükseklik bilgisi üçüncü boyutu kazandırır. 

Homojen bir küre kendisinden eşit mesafedeki tüm noktalarda eşit çekim 

potansiyeli oluşturur. Eşit potansiyelli noktaları birleştirdiğimizde eş potansiyelli 

yüzey meydana gelir. Yükseklik denilince akla bir eş potansiyelli yüzeyden başlangıç 

alınan başka bir yüzeye olan mesafe anlaşılır. 

Jeoit başlangıç olmak üzere, farklı yollardan gidilerek bir noktanın yüksekliği 

nivelmanla belirlense, sonuçların eşit olmadığı görülür. Nivo yüzeyleri birbirlerine 

paralel olmadıkları için nivelman sonuçları yola bağımlıdır. Yüksekliklerin açık ve 

kesin biçimde tanımlanması için yalnızca yükseklik farklarının ölçülmesi yeterli 

olmaz; nivelman yolları boyunca ağırlık (yerçekimi ivmesi) değerlerinin de 

ölçülmesi gerekir. Problemin çözümü için yükseklikler, ya potansiyel değerlerden 

dönüştürülür ya da ölçülen yükseklik farklarına bir düzeltme getirilerek elde edilir 

(Demirel, 1983). 

Yükseklik tanımlanmış bir referans yüzeyinden, referans yüzeyi normali 

boyunca olan uzaklıktır. Bu uzaklık seçilen referans yüzeyi ile nokta arasındaki en 

kısa mesafedir. Yükseklik fiziksel ya da geometrik anlamlı olarak tanımlanabilir. 

Jeodezide buna göre oluşturulan çeşitli yükseklik sistemleri mevcuttur. 

3.1 Jeopotansiyel Yükseklik 

Yeryüzünde bir A noktasının 𝑊𝐴 potansiyelinin jeoidin 𝑊0 potansiyelinden 

olan farkına o noktanın jeopotansiyel sayısı denir. Kgal*metre cinsinden ifade edilir 

ve fiziksel bir büyüklüktür. Geometrik bir anlamı olmasa da yoldan bağımsızdır ve 

yükseklikler için doğal bir ölçüttür. Jeoidin jeopotansiyel sayısı sıfıra eşittir. 
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𝐶𝐴 = 𝑊𝐴 −𝑊0 = −∫ 𝑑𝑊
𝐴

0
= ∫ 𝑔𝑑𝑛

𝐴

0
 (3.1) 

𝐶𝐴 = A noktasındaki jeopotansiyel yükseklik 

𝑊𝐴 = A noktasının gravite potansiyeli 

𝑊0 = Jeoidin gravite potansiyeli 

𝑑𝑊 = Diferansiyel anlamda potansiyel farkı 

𝑑𝑛 = Diferansiyel anlamda yükseklik farkı 

𝑔 = Diferansiyel anlamda yükseklik farkının oluşturduğu gravite 

3.2 Dinamik Yükseklikler 

Bir A noktasının jeopotansiyel sayısının sabit bir γ0
45 normal gravite değerine 

bölünmesiyle uzunluk birimine geçilir. Böylece dinamik yükseklik elde edilmiş olur. 

Jeoidin dinamik yüksekliği sıfıra eşittir. Her bir nivo yüzeyine karşılık bir dinamik 

yükseklik karşılık gelir. Geometrik olarak anlamsızdır.  

A ve B noktalarındaki dinamik yükseklik 

𝐻𝐴
𝑑𝑖𝑛 =

𝐶𝐴

γ0
45                   ;  𝐻𝐵

𝑑𝑖𝑛 =
𝐶𝐵

γ0
45 (3.2) 

olur. Bunlar arasındaki fark için ise,  

𝐻𝐵
𝑑𝑖𝑛 − 𝐻𝐴

𝑑𝑖𝑛 = ∆𝐻𝐴,𝐵
𝑑𝑖𝑛 = (𝐶𝐵 − 𝐶𝐴) γ0

45⁄ = ∆𝐶𝐴.𝐵 γ0
45⁄  (3.3) 

yazılabilir. Burada CA ve CB, A ve B noktalarındaki jeopotansiyel yüksekliklerdir.  

3.3 Normal Yükseklikler 

Yeryüzünün gerçek gravite alanının normal gravite alanı olduğu, yani W=U, 

g=γ, T=0 olduğu kabul edilsin. İşte bu varsayıma karşılık gelen ortometrik 

yüksekliklere normal yükseklik adı verilir ve 𝐻𝑁 = 𝐶 𝛾̅⁄  eşitliği ile ifade edilir.  
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W= Gerçek gravite potansiyeli 

U= Normal gravite potansiyeli 

T= Bozucu potansiyel 

𝐻𝑁 = Normal Yükseklik 

C= Jeopotansiyel Sayı 

𝛾̅= Çekül eğrisi boyunca olan ortalama normal gravitedir ve iteratif olarak aşağıdaki 

eşitlikten çözülür.  

𝛾̅ = 𝛾0[1 − (1 + 𝑓 +
𝜔2ab

𝑘𝑀
− 2𝑓 sin2 𝜑)

𝐻𝑁

𝑎
+ (

𝐻𝑁

𝑎
)
2

] (3.4) 

Burada 𝛾0, aynı 𝜑 enleminde elipsoit üzerindeki normal gravite, 𝜑 jeodezik 

enlem, f basıklık, ω yerin açısal dönme hızı, a ve b elipsoidin büyük ve küçük yarı 

eksenleri, kM Newton çekim sabiti ile yerin kitlesinin çarpımıdır (Demir ve Cingöz, 

2002). 

3.4 Ortometrik Yükseklikler 

Yeryüzünde bir noktanın çekül eğrisi boyunca jeoide uzaklığına ortometrik 

yükseklik denir. Ortometrik yükseklik, noktanın bulunduğu yerdeki gravite değerine 

bağlıdır. Ortometrik yükseklik kavramı geometrik bir anlamdan daha çok fiziksel bir 

anlam taşır. 

𝐻 =
𝐶

𝑔̅
 (3.5) 

H= Ortometrik yükseklik 

C=  Ortometrik yüksekliği bulunmak istenen noktanın jeopotansiyel sayısı 

𝑔̅ = Jeoit ile nokta arasında çekül eğrisi boyunca gravitenin ortalama değeridir. 

𝑔̅ değerini hesaplarkan yerin içindeki g gravite değeri ölçülemediğinden, yüzeyde 

ölçülen gravite değerleri Poincare ve Prey yöntemiyle indigenir. 𝑔̅ değeri 
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𝑔̅ = 𝑔 + 0.0424𝐻 

eşitliği ile hesaplanabilir. Burada g, gal; H, km cinsindendir (Berber, 2005). 

3.5 Elipsoidal Yükseklikler 

Yeryüzünde bir noktanın elipsoit normali boyunca elipsoide olan uzaklığına 

elipsoidal yükseklik denir. Yerin gerçek gravite değeri ile ilişkili olmadığından 

fiziksel bir anlam taşımaz yani geometrik anlamlıdır. Elipsoidin boyutları ve datumu 

ile ilişkilidir. Elipsoidal yükseklikler (h) ve ortometrik yükseklikler (H) arasında N 

jeoit yüksekliği olmak üzere, 

𝑁 = ℎ − 𝐻 (3.6) 

eşitliği vardır. 
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4 JEOİT BELİRLEME 

Listing’e göre jeoit kısmen durgun okyanus yüzeyleri ile de gösterilebilen, 

karaların altından devam ettiği varsayılan eş potansiyel yüzeydir. Jeoidi belirleyen en 

önemli unsur yeryuvarının içindeki kitlelerin yoğunluğudur. Kitle yoğunluğunun 

değiştiği yerlerde yüzeyin eğriliği süreksizleşir. Bu nedenle jeoit karmaşık ve 

matematiksel tanımı çok zor olan bir yüzeydir (Yılmaz, 2005). Jeoit belirleme 

jeodezinin önemini yitirmeyen konularındandır. Çünkü uydularla elde edilen 

elipsoidal yükseklikler ile nivelman sonucunda elde edilen ortometrik yükseklikler 

arasında (3.6) formülü gereği doğal bir bağ vardır. 

Elipsoit ise elipsin küçük yarı ekseni etrafında döndürülmesiyle elde edilen 

matematik şekildir. Elipsoit ile jeoit normal olarak çakışmamaktadır. Bunun nedeni, 

elipsoidin matematiksel olarak tanımlanmasına karşılık jeoidin fiziksel bir yüzey 

olmasıdır. Jeoit ile elipsoit arasındaki farklılıklar, yeryuvarının gravite alanındaki 

değişimlerini yansıtmaktadır. 

Genel olarak jeoidin belirlenmesi denilince anlaşılması gereken; yeterli sayıda 

noktada, jeoide ait W (gerçek gravite potansiyeli), H (ortometrik yükseklik), g 

(gerçek gravite), 𝛷, Λ (astronomik enlem ve boylam) büyüklükleri ile seçilen 

referans elipsoidine ait U (normal ya da standart gravite potansiyeli), h (elipsoit 

yüksekliği), 𝛾 (normal ya da standart gravite), 𝜑, 𝜆 (jeodezik enlem ve boylam) 

büyüklüklerinin karşılıklı farkından oluşan T (bozucu potansiyel), N (jeoit 

yüksekliği), ∆g (gravite anomalisi), n, ζ (çekül sapması bileşenleri) yaklaşım 

miktarlarının belirlenmesidir. Bu yaklaşım miktarları, elipsoit ve jeoit arasındaki 

farklılaşmanın şeklini ve büyüklüğünü gösterir. Pratikte jeoidin belirlenmesi 

genellikle N jeoit yükseklikleri yardımıyla yapılır. 

4.1 Jeoit Belirleme Yöntemleri 

Jeoidin belirlenmesi yatay konumu bilinen bir noktada jeoit yüksekliğinin 

sayısal ve analog olarak elde edilmesini sağlayacak biçimde modellenmesidir 

(Yılmaz, 2005; Yaprak, 2007).  
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Jeoit modelleri bölgesel ve global olarak belirlenebilir. Jeoit belirleme 

yöntemleri tarihsel olarak kullanılan verilere ve geliştirilen alet ve bilgisayar 

imkânlarına göre bir gelişim göstermiştir. İlk jeoit belirleme, bir noktadaki 

astronomik enlem ve boylam ile aynı noktadaki jeodezik enlem ve boylam arasındaki 

farkları (çekül sapmalarını) kullanarak jeoit belirlemeye dayanan astro-jeodezik 

yöntemle yapılmıştır. 1970’li yılların başlarında bilgisayarın hesaplarda kullanılmaya 

başlamasıyla birlikte düşük dereceli jeopotansiyel modeller geliştirilmiş ve jeoit 

belirlenmiştir. 1980’li yıllarda gravite verilerinin elde edilmesi ve bilgisayarlar 

sayesinde hızlı Fourier transformasyonu kullanılarak jeoit belirlenmiştir. 1990’lı 

yıllara gelindiğinde konum belirlemede uydu tekniklerinin kullanılmasıyla 

GPS/Nivelman yöntemi jeoit belirlemede yaygın olarak kullanılmaya başlanmıştır 

(Yılmaz ve Arslan, 2005).  

Jeoit belirleme yöntemleri, eldeki mevcut verilere ve kullanılan modellere göre 

sınıflandırılabilir. Jeoit belirleme yöntemleri, kullanılan veriler ve modeller dikkate 

alınarak aşağıdaki şekilde sınıflandırılır (Sjöberg, 1994). 

1) Astro-jeodezik yöntemle jeoit belirleme 

2) Gravite değerlerine göre jeoit belirleme 

a) Stokes fonksiyonu ile 

b) Hızlı Fourier transformasyonu ile 

i) Bir boyutlu hızlı Fourier transformasyonu ile (1d-fft) 

ii) İki boyutlu hızlı Fourier transformasyonu ile (2d-fft) 

3) Sayısal yoğunluk yöntemine göre jeoit belirleme 

4) Jeopotansiyel yaklaşımı ile jeoit belirleme 

5) Kombine yöntemle jeoit belirleme (remove - restore) 

6) GPS/Nivelman yöntemine göre jeoit belirleme 

a) Ağırlıklı aritmetik ortalama ile enterpolasyon 

b) Polinomlarla enterpolasyon 

c) Multikuadrik enterpolasyon 

d) Üçgenler ağında lineer enterpolasyon 

e) Sibson enterpolasyonu 

f) Non - Sibson enterpolasyonu 

g) Jeoistatistik enterpolasyon yöntemleri ile jeoit belirleme 
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h) Kollokasyon modelleme ile jeoit belirleme 

i) Sonlu elemanlar yardımı ile jeoit belirleme 

j) Bulanık mantık ile jeoit belirleme 

Global jeoit modelleri uzun dalga boyunda jeoit değişimlerini göstermekte 

mutlak doğrulukları düşük olup yerel etkileri içermemektedir. Bu sebeple 

GPS/Nivelman yöntemi küçük (lokal) alanlarda jeoit belirlemek amacıyla kullanılır. 

Yüksekliklerin belirlenmesinde nivelman işlemi hem zaman alan hem de yorucu bir 

işlemdir. Bu sorunun GPS ile çözülmesi için jeoit ondülasyonunun hassas bir 

biçimde belirlenmesi gerekir. GPS/Nivelman ölçüleri ile elipsoidal ve ortometrik 

yükseklikleri hassas bir şekilde belirlenmiş noktaları kapsayan bir çalışma alanında, 

çeşitli yöntemler ile jeoidi en iyi temsil eden analitik bir jeoit yüzey geçirilmesi ara 

noktalarda jeoit ondülasyonlarının kolaylıkla hesaplanmasını sağlar. 

4.2 Polinomlarla Enterpolasyon 

Polinomlarla enterpolasyon enterpolasyon yöntemleri içerisinde en sık 

kullanılan yöntemlerden bir tanesidir. Bu enterpolasyon tekniğinin amacı araziyi tek 

bir fonksiyonla ifade etmektir (Ayar, 2009). 

Tek değişkenli bir fonksiyonun matematiksel ifadesi; 

𝑃(𝑥) = 𝑎𝑛𝑥
𝑛 + 𝑎𝑛−1𝑥

𝑛−1 +⋯+ 𝑎2𝑥
2 + 𝑎𝑥 + 𝑎0 (𝑛 ∈ ℕ; 𝑎0 …𝑎𝑛 ∈ ℝ)         (4.1) 

şeklindedir. Bu polinomda en yüksek dereceli terimin derecesi n, polinomun 

derecesidir. n. dereceden bir polinom, (n-1) tane kırılmaya uğrar. 𝑎0 bu polinomda 

sabit sayıdır (Yiğit, 2003). 

Bir yüzey genellikle iki değişkenli yüksek dereceden polinomlarla ifade 

edilir. Yüzeyin oluşturulmasında ortogonal ve ortogonal olmayan polinomlar 

kullanılabilir. Yüzeyin belirlenmesi için yüksek katsayılı polinom seçilmesi 

oluşturulan yüzeyin daha doğru olacağı anlamına gelmez. Yani yüksek dereceli 

polinom seçilmesi hesap yükünü artıracaktır ve araziyi temsil niteliğini kayıp 

ettirecek şekilde gereksiz salınımlara neden olacaktır. 
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Tablo 4.1 Polinomlarla Enterpolasyon (Yiğit, 2003) 

ORTOGONAL ORTOGONAL OLMAYAN 

Genel Formül ∑ ∑ 𝑎𝑖𝑗𝑥
𝑖𝑦𝑗

𝑘

𝑗=𝑘−𝑖
𝑖=0

𝑛

𝑘=0

 Genel Formül ∑∑𝑎𝑖𝑗𝑥
𝑖𝑦𝑗

𝑛

𝑗=0

𝑛

𝑘=0

 

n=1 için 

Lineer 
N(x,y)=𝑎0 + 𝑎1𝑦 + 𝑎2𝑥 

n=1 için 

bilineer 
N(x,y)=𝑎0 + 𝑎1𝑦 + 𝑎2𝑥 + 𝑎3𝑥𝑦 

n=2 için 

quadratik 

N(x,y)=𝑎0 + 𝑎1𝑦 + 𝑎2𝑥 + 𝑎3𝑥
2 +

𝑎4𝑥𝑦 + 𝑎5𝑦
2 

n=2 için 

biquadratik 

N(x,y)=𝑎0 + 𝑎1𝑦 + 𝑎2𝑥 + 𝑎3𝑥
2 + 𝑎4𝑥𝑦 +

𝑎5𝑦
2 + 𝑎6𝑥

2𝑦 + 𝑎7𝑥𝑦
2 + 𝑎8𝑥

2𝑦2 

n=3 için 

kübik 

N(x,y)=𝑎0 + 𝑎1𝑦 + 𝑎2𝑥 + 𝑎3𝑥
2 +

𝑎4𝑥𝑦 + 𝑎5𝑦
2 + 𝑎6𝑥

3 + 𝑎7𝑥
2𝑦 +

𝑎8𝑥𝑦
2 + 𝑎9𝑥𝑦

3 

n=3 için 

bikübik 

N(x,y)=𝑎0 + 𝑎1𝑦 + 𝑎2𝑥 + 𝑎3𝑥
2 + 𝑎4𝑥𝑦 +

𝑎5𝑦
2 + 𝑎6𝑥

2𝑦 + 𝑎7𝑥𝑦
2 + 𝑎8𝑥

2𝑦2 +
𝑎9𝑦

3 + 𝑎10𝑥𝑦
3 + 𝑎11𝑥

2𝑦3 + 𝑎12𝑥
3 +

𝑎13𝑥
3𝑦 + 𝑎14𝑥

3𝑦2 + 𝑎15𝑥
3𝑦3 

Eşitliklerde; n polinomun derecesi, 𝑎𝑖𝑗polinomun bilinmeyen katsayıları, (x,y) düzlem koordinatları 

 

Yüzeyin oluşturulmasında quadratik yüzey seçilmesi durumunda genel 

formülde yer alan k değeri 0,1 ve 2 değerlerini alacaktır. Bu durumda yüzey tabloda 

gösterilen denklem ile ifade edilir. Denklemin çözümü için en az 6 tane dayanak 

noktasına ihtiyaç vardır. Dayanak nokta sayısı 6’dan fazla ise çözüm için En Küçük 

Kareler metodu kullanılır. İfadenin matris gösterimi 

𝐗 =  [

a1
a2
⋮
aS 

] 𝐀 =  

[
 
 
 
1 y1 x1 x1

2 x1y1 y1
2

1 y2 x2 x2
2 x2y2 y2

2

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
1 ys xS xS

2 xSyS yS
2]
 
 
 
𝐋 =  [

N1
N2
⋮
NS

]                        (4.2) 

X bilinmeyen katsayılar vektörü, A katsayılar matrisi, L ölçü vektörü olmak 

üzere 

𝑵 = 𝑨𝑻𝑨 , 𝒏 =  𝑨𝑻𝑳  , 𝒙 = 𝑵−𝟏𝒏                                                                      (4.3) 

eşitlikleri yazılabilir. Polinomun bilinmeyen katsayıları hesap edildikten sonra 

istenen noktalardaki jeoit ondülasyon değerleri eşitliği ile bulunabilir. 

4.3 Ağırlıklı Ortalama Yöntemi İle Jeoit Belirleme 

Uygulama kolaylığı nedeniyle en çok kullanılan yöntemlerden birisidir. 

Enterpolasyon noktasının yüksekliği, çevresinde bulunan dayanak noktalarının 
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ağırlıklı ortalaması olarak hesaplanır. Her bir dayanak noktasının yüksekliğine 

verilecek olan ağırlık değeri o noktanın enterpolasyon noktasına olan uzaklığın bir 

fonksiyonudur (Yanalak, 1997). Ağırlık değerleri 𝑃𝑖; 

𝑃𝑖 =
1

𝑑𝑖
𝑘 𝑖 = 1,2,3…𝑚𝑘 = 1,2,3,4                                                              (4.4) 

eşitliği ile veya 

𝑃𝑖 =
1

𝑒
𝑖

(
𝑑𝑖
2

𝑘2
)

𝑖 = 1,2,3…𝑚𝑘 = 1,2,3,4                                                         (4.5) 

olarak verilir. Burada, 

m : Dayanak nokta sayısı, 

𝑑𝑖 : Dayanak noktası ile enterpolasyon noktası arasındaki yatay uzaklık 

değerini(√(𝑥𝑖 − 𝑥𝑒)2 + (𝑦𝑖 − 𝑦𝑒)2) 

(𝑥𝑖, 𝑦𝑖): Dayanak noktasının koordinatlarını 

(𝑥𝑒 , 𝑦𝑒): Enterpolasyon noktasının koordinatlarını gösterir. 

Ağırlıklı ortalama yöntemine göre bir noktanın jeoit yüksekliği 

(𝑁 ) 
𝐸
=
∑ 𝑁𝑖𝑃𝑖
𝑚
𝑖=1

∑ 𝑃𝑖
𝑚
𝑖=1

                                                                                                   (4.6) 

şeklindedir. Formülde: 

Ne : Enterpolasyonla bulunacak jeoit ondülasyonu 

Ni : Enterpolasyon noktası çevresindeki dayanak noktalarının jeoit ondülasyonu 

Pi : Dayanak noktalarına atanacak ağırlık değerleri 

m : Enterpolasyonda kullanılacak dayanak nokta sayısını ifade eder. 
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Uzaktaki dayanak noktaları sonucu olumsuz etkileyeceği için uygun dayanak 

noktalarının seçimi için kritik daire çizilir. Kritik daire dışında kalan noktalar işleme 

dahil edilmez. Daire yerine kare ve dikdörtgende kullanılabilir (Yılmaz, 2011). 

4.4 Radyal Bazlı Fonksiyonlar 

Radyal bazlı fonksiyonlarla (RBF) enterpolasyon, 1968’de Hardy tarafından 

kartoğrafya alanında topoğrafik harita oluşturmak amacıyla geliştirilen Multikuadrik 

metodun genelleştirilmiş halidir (Çakır, 2012). Hardy’e göre matematiksel olarak 

tanımlanmamış bir yüzey, matematik olarak tanımlanmış yüzeylerin toplamı ile 

istenilen bir doğruluk derecesinde tanımlanabilir. Hardy tanımladığı bu yüzeye 

“Multikuadrik yüzey” adını vermiştir (Hardy, 1971; İpbüker, 1999). 

1979 yılında Franke çeşitli enterpolasyon yöntemlerini karşılaştırdığı bir 

çalışma yayınlamıştır. Bu çalışmaya göre Hardy’nin Multikuadrik yöntemi en 

istikrarlı, en iyi ya da en iyiye yakın sonuçlar veriyordu. 1986’da IBM matematikçisi 

Michelli’nin Multikuadrik yöntemin arkasındaki teoriyi geliştirmesinden 4 yıl sonra, 

fizikçi Edward Kansa ilk kez diferansiyel denklemlerin çözümü için kullanmıştır. 

1992’de Madych ve Nelson’un sonuçları multikuadrik enterpolasyonunun spektral 

yakınsama oranını gösterdi. Kansa’nın keşfinden sonra RBF için araştırmalar hızla 

artmıştır (Chenowet, 2009). RBF ile enterpolasyon tekniğinde yüzey modeli, çalışma 

bölgesindeki noktaların dağılımından anlamlı bir şekilde etkilenmez, hatta dayanak 

noktaları bölge içerisinde iyi bir şekilde dağılmamış bile olsa sonuçlar tatmin 

edicidir. Eğer dayanak noktası ile enterpolasyonu yapılacak noktalar arasındaki 

mesafe artarsa yüzey modeline dayanak noktasının katkısı azalır. Multikuadrik 

enterpolasyon tekniğinde yüzey modeli dayanak noktalarından geçer (Uluğtekin 

1994).  

Radyal bazlı fonksiyonlar teorisi çok değişkenli fonksiyonların 

enterpolasyonuna dayanmaktadır. Burada amaç (𝑥𝑠 , 𝑦𝑠)𝑠=1
𝑁  ifadelerinin 

enterpolasyonunu yapmaktır. Bu durumda 𝑥𝑠 ∈ 𝑅
𝑑olmalıdır. Bu denklemde f lineer 

uzayda bir fonksiyon olduğundan yani doğrusal bir fonksiyon olduğundan radyal 

bazlı fonksiyonlar yaklaşımında f enterpolasyon fonksiyonu temel bazı 

fonksiyonların lineer bir kombinasyonudur (Topaloğlu, 2007). Radyal bazlı 
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fonksiyonlar çok boyutlu uzayda eğri uydurma yaklaşımıdır. Eğri uydurma teorisi, 

herhangi birçok değişkenli ve sürekli f(x) fonksiyonunu yaklaştırma ya da enterpole 

etme problemi ile ilgilidir. Radyal bazlı fonksiyonlarla enterpolasyon fonksiyonu, 

f(x, y) = P(x, y) + ∑ w𝑖φ(
𝑁
𝑖=1 |(x , y) − (xi, yi) |) (4.7) 

olarak verilir. Burada , 

P(x, y) = Polinomu 

w𝑖 = Gerçek ağırlıkları 

|(x , y) − (xi, yi) | = Noktalar arasındaki Öklid uzunluğunu 

𝜑(𝑟) = Temel fonksiyonu 

gösterir. Enterpolasyon işlemi P(x,y) polinomunu kullanarak polinomal regresyon ile 

başlar. Sonrasında bilinmeyen ağırlıkların belirlenmesi için (4.8) lineer denklem 

sistemi çözülür. 

𝑍𝑗 − p(x, y) = ∑ w𝑖φ(
𝑁
𝑖=1 |(x , y) − (xi, yi) |)   j = 1,2, … n  (4.8) 

Ağırlıklar belirlendiğinde ise yüzeyi tanımlayan z değerleri (4.7) formülü 

yardımı ile bütün noktalar için bulunur (Dressler, 2009). Uzunluk temelli 

fonksiyonlar, veri grupları için çeşitli enterpolasyon fonksiyonları kullanarak (Ters 

multikuadrik, multilog, multikuadrik, natural cubic spline ve thin plate spline) en 

uygun yüzeyi belirlemeye çalışırlar.  

4.4.1 Radyal Bazlı Fonksiyon Türleri 

4.4.1.1 Gauss merkezcil RBF 

Sinir ağlarında kullanılan en genel RBF, Gauss Merkezcil Radyal Tabanlı 

(GRBF) fonksiyonudur. Profil fonksiyonu;  

φ(r) = e(
−r2

σ2⁄ ) (4.9)                      

Bu profil fonksiyonu şu şekilde bir radyal bazlı fonksiyon ortaya çıkarır :  
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Z(x) = exp [
‖x−μ‖

σ2
] (4.10) 

Bu ifadede genişlik parametresi Gauss fonksiyonunun standart sapması ile 

aynıdır.  Genişlik arttıkça eğri daha da genişlemekte ve fonksiyonun sayısal olarak 

duyarlı olduğu bölge genişlemektedir. 

4.4.1.2 Thin plate spline (TPS) RBF 

RBF türlerinden bir diğeri ise Grace Wahba tarafından ortaya atılan TPS radyal 

bazlı fonksiyonudur. TPS’nin önemli bir özelliği de dayanak noktalarından geçmesi 

tasarlanan yüzeyin oluşturulmasında harcanan (4.11) eşitliğindeki eğme (bending) 

enerji fonksiyonunu minimize etmesidir. Enerjiyi minimize eden bir yüzey olmasının 

anlamı, yüzeyin multikuadrik ve ters multikuadrik yüzeylere göre daha yumuşak bir 

yüzey olması ile ilişkilidir. 

𝐼(𝑓) = ∬ (
𝜕2𝑓

𝜕𝑥2
)
2

+ 2(
𝜕2𝑓

𝜕𝑥𝜕𝑦
)
2

+ (
𝜕2𝑓

𝜕𝑦2
)
2

𝑑𝑥 𝑑𝑦
 

𝑅2
 (4.11) 

Fonksiyonu; 

𝜑(𝑟) = (𝑟 𝜎⁄ )2 log 𝑟 𝜎⁄  (4.12)                                                                                                

şeklindedir. 

RBF'nin kendisi birçok farklı işlev türüne sahip olmakla birlikte, çoklu 

harmonik levha (spline) ailesi enterpolasyon için sıklıkla kullanılır, özellikle de 

yukarıda tanımlanan TPS fonksiyonu birçok uygulamada tercih edilir. 

Farklı ağırlıklarda bulunan farklı merkezler üzerinden bir toplam alınabilir ve 

isteğe bağlı olarak, ağırlıklı doğrusal bir polinom terimi eklenebilir. Bu durumda şu 

fonksiyon elde edilmektedir, 

𝑧(𝑥, 𝑦) = ∑ 𝜔𝑖 ∅(𝑟𝑖) + 𝑎0 + 𝑎1𝑥 + 𝑎2𝑦
𝑁
İ=1  (4.13)               

Yeterli merkez bulunması durumunda, bu RBF toplamı çok karmaşık tek 

değerli fonksiyonları temsil etmek için kullanılabilmektedir. TPS kullanırken, bu 

işlevin her yerde pürüzsüz olduğu ve sonsuz difarensiyellenebileceği ek bir avantaj 
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sağladığı bilinmektedir (Sastry, 2015). Bu RBF yöntemiyle düz bir yüzeyin nasıl 

enterpolasyon uygulanacağına bakılacak olursa; C(xc, yc) nokta koordinatları olmak 

üzere, merkez nokta konumları kümesi C1, C2, CN verildiğinde ve bunlara karşılık 

gelen yükseklik değerleri Z1, Z2, ZN, radyal bazlı fonksiyonun ağırlıkları 𝑤1…𝑤N, 

polinomal terimlerin ağırlıkları a0, a1, a2 ise denklem aşağıdaki gibi 

oluşturulmaktadır. 

[
 
 
 
 
 
 
 
∅1,1 ⋯ ∅1,𝑁
⋮ ⋱ ⋮

∅𝑁,1 ⋯ ∅𝑁,𝑁
𝑥𝑐,1 ⋯ 𝑥𝑐,𝑁
⋮  ⋮
𝑦𝑐,1  𝑦𝑐,𝑁 

 ]
 
 
 
 
 
 
 

{
  
 

  
 
𝑤1
⋮
𝑤𝑁
𝑎0
𝑎1
𝑎2
 }
  
 

  
 

=

{
  
 

  
 
𝑧1
⋮
𝑧𝑁
0
0
0
 }
  
 

  
 

 (4.14) 

Çapraz olmayan terimlerin neredeyse tamamı, ince plaka eğrisini kullanırken 

sıfır olmayacaktır, bu nedenle bu sistem matrisi oldukça yoğundur. Doğrusal sistem 

tüm ağırlıklar için çözülebilir ve sonra ağırlıklı RBF'lerin toplamını xy düzlemindeki 

diğer herhangi bir noktada değerlendirebilir, böylece düz bir enterpolasyon 

fonksiyonu elde edilir (Frei, 2016). 

4.4.1.3 Lojistik tabanlı fonksiyon 

Bu radyal tabanlı fonksiyon Hassoun tarafından ortaya atılmıştır. Fonksiyonu; 

𝜑(𝑟) =
1

1+exp(
𝑟

𝜎2
)
 (4.15)  

olarak verilmiştir. 

4.4.1.4 Multikuadrik RBF 

Jeodezik amaçlı birçok problemin çözümünde kullanılan bu analitik yöntem 

ilk olarak 1971 yılında Rolland L. Hardy tarafından önerilmiştir. Bu enterpolasyon 

tekniğinin amacı, çalışma alanında bilinen tüm dayanak noktalarının kullanılması ile 

tek bir fonksiyon kullanarak yüzeyi tanımlamaktır. Veri grubunu iyi temsil etmesi ve 

yumuşak yüzeyler oluşturması bakımından Multikuadrik yöntem genellikle iyi sonuç 

vermektedir (Doğruluk, 2013).  

https://www.comsol.com/blogs/author/walter-frei/
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Tekniğin uygulanabilmesi için ilk olarak dayanak noktaları kullanılarak bir 

trend yüzey geçirilmektedir. Trend yüzey olarak birinci ya da ikinci dereceden 

polinom kullanılmaktadır (Leberl, 1973). Bu aşamadan sonra, dayanak 

noktalarındaki artık jeoit yüksekliği değerleri (ΔNi) hesaplanır. Bu artık jeoit 

yüksekliği değerleri, multikuadratik yöntem için ℓ matrisi olarak kullanılmaktadır. 

ΔNi artık jeoit yüksekliği değerleri; 

∆N𝑖 = N𝑖 − N(x𝑖 − y𝑖) = N𝑖 − 𝑁𝑇𝑟𝑒𝑛𝑑=1,2,…., m (4.16) 

eşitliğiyle hesaplanır. (xe, ye) enterpolasyon noktasındaki ΔNe artık jeoit yüksekliği 

değeri ise, 

∆N𝑒 = N𝑒 − N(x𝑒 − y𝑒) = N𝑒 − 𝑁𝑇𝑟𝑒𝑛𝑑 (4.17) 

şeklinde yazılabilmektedir. Bu eşitlikteki ΔNe ve Ne değerleri bilinmeyen 

değerlerdir. Bu değerlerden birisinin bulunması halinde diğeri hesaplanabilir. Burada 

artık jeoit yüksekliği değerleri Multikuadratik yüzey diye bilinen, katsayıları 

tanımlanmış ikinci dereceden yüzey denklemlerinin toplamı olarak 

hesaplanabilmektedir. En genel gösterimiyle multikuadratik yüzey, 

∆N = ∑ C𝑖Q[
𝑁
𝑖=1 xi, yi; x , y ]  (4.18) 

şeklindedir (Hardy, 1971).  

Burada, Ci dayanak noktalarının bilinen ΔNi artık yükseklik değerlerinden 

hesaplanan bilinmeyen katsayıları, Q(x, y, xi , yi ) ise Kernel fonksiyonudur. (4.18) 

eşitliğinden başka multikuadrik yüzey çeşitleri de mevcuttur. Örneğin, 

∆N = ∑ 𝑐𝑖[(𝑥 − 𝑥𝑖)
2 + (𝑦 − 𝑦0𝑖)

2 + 𝛿2]
1

2𝑁
𝑖=1  (4.19) 

iki yapraklı dairesel hiperboloit serilerinin toplamları veya, 

∆N = ∑ 𝑐𝑖[(𝑥 − 𝑥𝑖)
2 + (𝑦 − 𝑦0𝑖)

2 + 𝛿2] 𝑁
𝑖=1  (4.20) 

şeklinde dairesel paraboloit serilerinin toplamları şeklinde ifade edilebilir. 

Bağıntılardaki δ isteğe bağlı bir katsayıdır. 
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(6.16) eşitliğinde δ=0 alınırsa multikuadratik yüzey, 

∆N = ∑ 𝑐𝑖[(𝑥 − 𝑥𝑖)
2 + (𝑦 − 𝑦𝑖)

2]
1

2𝑁
𝑖=1  (4.21) 

biçiminde olur. 

4.4.1.5 Ters Multikuadrik RBF 

Genelleştirilmiş ters multiquadrik 1982 yılında Franke tarafından 

tanımlanmıştır. 

Fonksiyonu 

𝜑(𝑟) =
1

√𝑟2+𝜎2
𝜎 ≠ 0 (4.22)   

şeklindedir.    

Tablo 4.2 Radyal Bazlı Fonksiyon Türleri 

RBF türü Formül 

Multikuadrik Q(d)=√𝑑2 + 𝛿2 

Ters Multikuadrik Q(d)=1/√𝑑2 + 𝛿2 

İnce Tabakalı Spline 𝑄(𝑑) = 𝑑2 log 𝑑  

Multilog 𝑄(𝑑) =log d2 

Gauss 𝑄(𝑑) = 𝑒−𝛿
2𝑑2   

Kübik spline 𝑄(𝑑) = 𝑑3  

Kuintik 𝑄(𝑑) = 𝑑5  

Doğal Kübik Spline 𝑄(𝑑) = (𝑑2 + 𝛿2)3/2  
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Tablo 4.3 Radyal Bazlı Fonksiyon Grafikler 

 

Piecewise Smooth 

 

 

Infinitely Smooth 

 

 

Kübik 

 

TP Spline 

 

Multikuadrik 

 

Gauss 

 

Ters Kuadrik 

 

 

 

 

 

 

 

 

 

 

 

4.5 RBF Kullanarak Yerel Jeoit Belirleme 

Bu enterpolasyon yönteminin amacı dayanak noktalarının tümünü aynı anda 

kullanarak araziyi tek bir fonksiyonla ifade etmektir. Yöntemin uygulamasında 

öncelikle, m sayıdaki dayanak noktası kullanılarak bir trend yüzeyi geçirilir. Bu 

yüzey için polinom, harmonik seri veya trigonometrik fonksiyonlar kullanılabilir. 

Şimdiye kadar yapılan uygulamalar 1. veya 2. derece bir polinomun yeterli olduğunu 

göstermiştir (Leberl, 1973; Yanalak, 1997). n. dereceden bir polinomunbilinmeyen 

katsayıları dayanak noktalarının Ni ondülasyon değerlerine bağlı olarak en küçük 

karelere göre çözümlendikten sonra, dayanak noktalarındaki ∆Ni artık ondülasyon 

değerleri hesaplanır. 

∆N𝑖 = N𝑖 − N(x𝑖 − y𝑖) = N𝑖 − 𝑁𝑇𝑟𝑒𝑛𝑑=1,2,…., m (4.23) 

Burada N(xi, yi,) trend fonksiyonundan elde edilen her hangi bir i noktasına ait 

ondülasyon değeridir. (x0, y0) enterpolasyon noktasındaki ∆N0 artık ondülasyon 

değeri ise, 

∆N0 = N0 − N(x0 − y0) = N0 −𝑁𝑇𝑟𝑒𝑛𝑑 (4.24) 



22 

 

şeklindedir. Fakat bu eşitlikte bilinmeyen hem ∆N0 hem de N0 enterpolasyon 

noktasının jeoit ondülasyon değerleridir. Bu bilinmeyenlerden biri çözümlendiğinde 

diğeri bulunabilecektir. (4.23) eşitliği dikkate alındığında (4.7) eşitliği 

∆N = ∑ C𝑖Q[
𝑁
𝑖=1 xi, yi; x , y ] (4.25) 

şekline dönüşür. Burada Ci, dayanak noktalarının bilinen ∆Ni değerlerinden hesap 

edilecek olan bilinmeyen katsayılardır. Ci katsayıları ikinci dereceden terimlerin 

işaretini ve eğimini belirler (Güler 1985). Ayrıca N, enterpolasyon nokta sayısını 

temsil eder. 

Q, y ve x’in fonksiyonları olan RBF yüzeylerini temsil eder. Hesaplamayı 

kolaylaştırmak için, Q yüzeyleri bir eksen etrafında dönen genellikle aynı tip basit 

fonksiyonlar olarak alınır. di, enterpolasyon noktası ile dayanak noktaları arasındaki 

yatay mesafe olmak üzere, Tablo (6.1)’e göre (4.25) bağıntısındaki Q fonksiyon 

türünün belirlenmesinden sonra, 

∑ 𝑐𝑖
𝑁
𝑖=1 𝑞𝑖𝑗  = ∆N i, j=1,2,…,n (4.26) 

eşitliğine göre ci katsayılarını belirlemek için n sayıda lineer denklem sistemi 

oluşturulur. 

C1q11+C2q12+.........+Cnq1n = ∆N1 

C1q21+C2q22+.........+Cnq2n=∆N2 (4.27)                                   

………………………………… 

C1q1n+C2qn2+.........+Cnqnn = ∆Nn 

(4.27) eşitliğindeki ifadelerin matris yapıları aşağıdaki gibidir. 

A= [

𝑞11 𝑞12 … 𝑞1𝑛
𝑞21 𝑎22 ⋯ 𝑎𝑞2𝑛
⋮  ⋮ ⋱ ⋮
𝑞𝑛1 𝑞𝑛2 ⋯ 𝑞𝑛𝑛

]c= [

𝑐1
𝑐2
⋮
𝑐𝑛

] ∆N= [

∆N1
∆N2
⋮
∆Nn

] (4.28) 

A: (nxn) boyutlu katsayılar matrisi, 
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c: n elemanlı bilinmeyenler vektörü, 

∆N: n sayıdaki dayanak noktalarına ait ∆N artık yükseklik değerleri için n elemanlı 

vektör olmak üzere, 

A.c= ∆N (4.29)   

biçiminde ifade edilebilir. Buradan ci katsayıları, 

c = A-1∆N (4.30) 

matris eşitliğinden hesaplanır. Son olarak (x0,y0) koordinatlarıyla bilinen herhangi bir 

enterpolasyon noktasının N0 değeri, 

N0  = P(𝑥0,𝑦0 ) + ∆N0 = P(𝑥0,𝑦0 ) + ∑ C𝑖𝑞𝑖0
𝑁
𝑖=1  (4.31) 

eşitliği ile hesaplanır (Hardy, 1971; Amidror, 2002; Yanalak, 2002; Çakır, 2012). 

RBF’den ince tabakalı spline fonksiyonu için (4.28) eşitliğindeki A matrisi singüler 

özellik gösterebilir (Çakır, 2012). Bu durumda çözüm sağlanamaz. Bundan dolayı 

(4.7) bağıntısına Micchelli’nin önerdiği (4.34) koşulları ilave edilerek çözüme devam 

edilir. (4.7) numaralı eşitlikte örneğin lineer fonksiyon kullanılması durumunda 

matematiksel ifade 

N = ∑ C𝑖𝑞𝑖𝑗 + 𝑏0 + 𝑏1𝑥 + 𝑏2𝑦
𝑁
𝑖=1  (4.32) 

şeklinde yazılabilir. B polinom bilinmeyenlerine ait katsayılar matrisi ve b 

polinomun bilinmeyen katsayıları vektörü olup (4.32) eşitliğinin matris gösterimi, 

N=A.c+Bb (4.33) 

biçimindedir. Lineer polinom kullanılması durumunda (6.23) eşitliğine aşağıdaki 

koşullar ilave edilerek (Franke, 1979, 1982; Michelli, 1984; Fogel ve Tinney 1996; 

Buhmann, 2000; Çakır, 2012). 

𝐁𝐜 = 0,∑ 𝑐𝑖
𝑛
𝑖=1 = ∑ 𝑐𝑖

𝑛
𝑖=1 𝑥𝑖 = ∑ 𝑐𝑖

𝑛
𝑖=1 𝑦𝑖 = 0 (4.34) 

ci ve bi değerleri, 
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c=A-1(N-Bb) (4.35) 

b=(BTA-1B)-1BTA-1N (4.36)        

matris eşitliklerinden ayrı ayrı hesaplanabilir (Çakır, 2012). Ya da  

[
𝐴 𝐵
𝐵𝑇 0

] [
𝑐𝑖
𝑏
] = [

𝑁
0
] (4.37) 

denkleminin hesaplanması gerekir. Eşitliğin sol tarafındaki blok matris tam ranka 

sahip olduğundan istenen katsayılar için tek çözüm vardır (Çakır, 2012) 

(4.37) eşitliğini daha açık bir şekilde ifade edersek, 

[
 
 
 
 
 
 
 
 
 
𝑞11 𝑞12 ⋯ 𝑞1𝑛 1 𝑥1 𝑦1

𝑞21 𝑞22 ⋯ 𝑞2𝑛 1 𝑥2 𝑦2

⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮

𝑞𝑛1 𝑞𝑛2 ⋯ 𝑞𝑛𝑛 1 𝑥𝑛 𝑦𝑛

1 1 … 1 0 0 0

𝑥1 𝑥2 … 𝑥𝑛 0 0 0

𝑦1 𝑦2 … 𝑦𝑛 0 0 0 ]
 
 
 
 
 
 
 
 
 

⏟                      
𝐺

[
 
 
 
 
 
 
 
 
 
𝑐1

𝑐1

⋮

𝑐𝑛

𝑏0

𝑏1

𝑏2]
 
 
 
 
 
 
 
 
 

⏟
𝑋

=

[
 
 
 
 
 
 
 
 
 
𝑁1

𝑁2

⋮

𝑁𝑛

0

0

0 ]
 
 
 
 
 
 
 
 
 

⏟
𝐿

 (4.38) 

biçiminde gösterilir. Buradan, radyal bazlı fonksiyonun katsayıları ci ve polinom 

fonksiyonun katsayıları bi, 

X=G-1L (4.39) 

matris eşitliğinden hesaplanabilir. Son olarak enterpolasyon noktasının yükseklik 

değeri  (4.32) eşitliğinden elde edilir. 

4.6 𝜹𝟐  Şekil Parametresinin Belirlenmesi 

Radyal bazlı fonksiyonlardan Gauss, multikuadrik ve ters multikuadrik 

fonksiyon eşitliklerinde geçen 𝛿2 geometrik parametresi kullanıcı tarafından 

belirlenen sabit bir sayıdır. Yüzeyin düzgünlüğünü veya keskinliğini gösteren 𝛿 

parametresinin üretilen sonuçlar üzerindeki etkisi de büyüktür. Multikuadrik 
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fonksiyonlarda 𝛿 için verilen küçük değerler bir zirve görünümü verirken, büyük 

değerler geniş yüzey özelliği gösteren düz yüzey görünümü vermektedir. Gauss 

fonksiyonu için tersi durum söz konusudur (Çakır, 2012). 

𝛿2parametresinin belirlenmesi için problemin ölçeğine, verilerin yoğunluğuna 

ve dağılımına göre çeşitli öneriler mevcuttur (Hardy, 1971; Schul’min ve Mitel’man, 

1974; Franke, 1979; Kansa, 1990; Çakır, 2012). Ayrıca Rippa, 𝛿2 parametresini 

belirlemek için çapraz doğrulama tekniğini önermiştir (Çakır, 2012). 

Tablo 4.4 𝜹𝟐 Parametresinin Belirlenmesi 

Önerenler Matematiksel ifade 

Hardy 𝛿=0.815s 

Franke 𝛿 = 1.25D/√n  

Fasshaurer 𝛿 =2/√n 

Kansa δ2 = δ2min (δ2max δ
2
min  ⁄ )(j−1)(n−1)   j = 1,2,3…n 

Schul’min ve Mitel’man 

𝛿2 =
∑  n
i=1 ∑ [(𝑥𝑖 − 𝑥𝑗)

2
+ (𝑦𝑖 − 𝑦𝑗)

2
]
 

𝑛
𝑗=1

n(n − 1)
 

 

Tablo 4.4’de, çalışma alanındaki tüm dayanak noktalarının en yakın 

komşuluğundaki nokta ile arasındaki mesafelerin ortalaması olup, D tüm dayanak 

noktalarını içine alan en küçük çemberin çapını, n ise dayanak nokta sayısını 

göstermektedir (Çakır, 2012).  



26 

 

Gauss 

 

Multikuadrik 

 

Ters Kuadrik 

 

Poliharmonik Spline 

 

Ters Multikuadrik  

 

Şekil 4.1 Radyal Bazlı Fonksiyon Türleri (Du Toit, 2008)  
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5 JEOİSTATİKSEL MODELLE JEOİT BELİRLEME 

5.1 Jeoistatistik 

Jeoistatistik istatistiğin uygulamalı bir dalıdır. Jeoistatistik ilk olarak Güney 

Afrikalı maden mühendisi, D.G. Krige tarafından 1950’li yıllarda cevher rezervi 

alanlarının daha doğru tahmini için kullanılmış olan bir enterpolasyon yöntemidir. 

Daha sonraları bu yöntemden esinlenen Fransız maden mühendisi Matheron Bölgesel 

değişkenler teorisini ortaya atmıştır. Bölgesel değişkenler bir noktadan başka bir 

noktaya sürekli olarak değişen fakat matematiksel fonksiyonla ifade edilemeyen 

mekansal değişkenlerdir (Matheron, 1963, 1971; Aydın, 2014). Jeoistatistiği diğer 

yöntemlerden ayıran en önemli fark örneklerin alınırken koordinatlarında hesaba 

katılmasıdır. Jeoistatikte hata oranıda güven aralığı içinde hesaplanabilir (Güzel, 

2017). 

5.2 Yarıvariogram 

İstatistiksel yöntemler, incelenen değişkenler arasında bir bağlantı olmadığını 

varsayarlar. Jeoistatistiksel yöntemlerde ise değişkenler birbirleriyle ilişkilidir. 

Jeoistatikte değişken değerleri arasındaki farkın uzaklığa bağlı değişimi 

yarıvariogram ile ortaya konulur. Bölgesel değişkenlerin tanımlandığı örnek 

noktaları ile bu noktaların değerleri arasındaki farkın noktalar arası uzaklığın 

fonksiyonu olarak uzaysal korelasyonu veren ve bunu miktar olarak belirten 

fonksiyona variogram denir (David, 1977; Pekin, 1999). Variogram fonksiyonu 

aşağıdaki gibidir: 

2𝛾(ℎ) =
1

𝑛
∑[𝑍(𝑥) − 𝑍(𝑥 + ℎ)]

2

                                                                      (5.1) 

n: Örnek çifti sayısı 

Z(x): Herhangi bir x noktasındaki  değişken değeri 

Z(x+h): x noktasından h mesafedeki diğer değişken değeri 
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Yarıvariogram için eşitlik tek boyutta 

𝛾(ℎ) =
1

2𝑁(ℎ)
∑[𝑍(𝑥) − 𝑍(𝑥 + ℎ)]2

𝑁(ℎ)

ℎ𝑖𝑗

                                                           (5.2) 

İki boyutta 

𝛾(ℎ) =
1

2𝑁(ℎ)
∑[𝑍(𝑥𝑖, 𝑦𝑖) − 𝑍(𝑥𝑗 , 𝑦𝑗)]

2

𝑁(ℎ)

ℎ𝑖𝑗

                                                        (5.3) 

şeklindedir. 

ℎ𝑖𝑗 = √[(𝑥𝑖 − 𝑥𝑗)
2
+ (𝑦𝑖 − 𝑦𝑗)

2
]  olmak üzere, i ve j noktaları arasındaki yatay 

uzaklık değeridir. 

𝑍(𝑥𝑖, 𝑦𝑖), 𝑍(𝑥𝑗 , 𝑦𝑗); i ve j konumundaki değişken değerlerini ( Yeryüzü yükseklikleri 

gibi) gösterir. 

𝑁(ℎ); h vektörü uzunluğundaki nokta çiftleri sayısıdır. 

Yarıvariogram bölgesel değişken değerlerinin uzaklığa bağlı olarak aralarındaki 

farkın varyansı olarak da ifade edilebilir. Eşitliği 

2𝛾(ℎ) = 𝑉𝑎𝑟[𝑍(𝑥) − 𝑍(𝑥 + ℎ)]                                                                           (5.4) 

şeklindedir. Yarıvariogramın üç temel özelliği vardır: 

 h=0 uzaklığındaki değeri sıfıra eşittir.( 2𝛾(0) = 0) 

 Yarıvariogram negatif değer alamaz. ( 2𝛾(0) ≥ 0 ∀ℎ 𝑖ç𝑖𝑛) 

 Yarıvariogram simetriktir. ( 2𝛾(ℎ) = 2𝛾(−ℎ)0 ∀ℎ 𝑖ç𝑖𝑛) 
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5.3 Deneysel ve Teorik Variogram 

Yarıvariogram/kovaryans bulutunun yarıvaryans değerlerinin belirli adım 

mesafelerine ayrılıp, o mesafeye düşen yarıvaryans değerlerinin ortalamasının 

alınmasıyla deneysel yarıvariogram elde edilir (Aydın, 2014). 

𝛾(ℎ𝑗̌) =
1

2𝑁(ℎ)
∑[𝑍(𝑥𝑖, 𝑦𝑖) − 𝑍(𝑥𝑗 , 𝑦𝑗)]

2

𝑁(ℎ)

ℎ𝑖𝑗

                                                      (5.5) 

𝑁(ℎ) = uzunluk vektörü h için verilen aralık 

ℎ𝑗̌: 𝑁(ℎ) daki şartları sağlayan vektörlerin modül değerlerinin ortalaması; 

ℎ𝑗̌ =
∑ ℎ𝑖𝑗
𝑁(ℎ)
𝑖=1

𝑛
                                                                                                           (5.6) 

şeklindedir. 

Bölgesel değişkenin verilerinin mesafeye bağlı değişimleri deneysel 

variogram ile grafiksel olarak gösterilmektedir. Grafik ile gösterilen verilerin 

değişim özelliklerinin daha sonraki aşamada kriging işlemlerinde kullanılabilmesi 

için matematiksel bir fonksiyonlar ifade edilmesi gerekir. Bu kuramsal fonksiyona 

matematiksel variogram modelleri denir (Pekin, 1999). 

Tablo 5.1 Teorik Yarıvariogram 

Küresel 𝛾(ℎ) =
𝐶0 + 𝐶 [(

3ℎ

2𝑎
) − (

ℎ

2𝑎
)
3

] ℎ ≤ 𝑎

𝐶0 + 𝐶 ℎ > 𝑎
  

Üssel 𝛾(ℎ) = 𝐶0 + 𝐶[1 − exp (−
ℎ

𝑎
)]  

Gaussian 𝛾(ℎ) = 𝐶0 + 𝐶[1 − exp (−
ℎ

𝑎
)2]  

Lineer 𝛾(ℎ) = 𝐶0 + 𝐶ℎ  

Logaritmik 𝛾(ℎ) = 𝐶0 + 𝐶 log ℎ ℎ > 0  

 



30 

 

Tabloda 𝐶0: teorik eğrinin h=0 noktasında düşey ekseni kestiği nokta (Nugget effect) 

C: variogramının yapısal bileşenleri için ölçek değeri 

a: variogramın yatay menzili (bu uzunluktan sonra veriler artık birbirine 

korelasyonsuzdur) 

h: örnekler arası yatay uzunluk 

𝐶0 + 𝐶1: variogramın toplam düşey ölçek değerini (sill) ifade eder. 

 

Şekil 5.1 Teorik Yarıvariogram 

 

 

Şekil 5.2 Sill ve Nugget Effect 
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5.4 Kriging Kestirimi 

Kriging başta maden olmak üzere, jeoloji, diş hekimliği, inşaat, çevre, 

meteoroloji gibi birçok dalda uygulaması ve makalesi bulunan popüler bir tekniktir. 

Kriging sözcüğü, maden yataklarının değerlendirilmesinde jeoistatiksel tahmin 

yöntemini ilk olarak uygulayan D.G. Krige’nin onuruna G. Matheron tarafından bu 

tahmin yöntemine verilen ad olmuştur (Journel and Huijbregts, 1978; Pekin, 1999). 

Kriging yöntemi bilinmeyen değişkenlerin örnek değişkenlerle tahmin 

edilmesini amaçlayan yöntemdir (Krige, 1951, 1976). Tahmin işlemi bilinen 

noktaların ağırlıklı ortalaması ile yapılmaktadır. Ağırlık katsayılarının hesabında 

varyansların minimum olması ve kriging hatalarının ortalamasının sıfır olması 

şeklinde iki koşulun sağlanması gerekir. Kriging varyansı verilerin gerçek 

değerlerine bağlı olmayıp uzaklığın bir fonksiyonudur. Bu şekilde yakındaki 

örneklere büyük ağırlık değerleri atanırken uzaktaki verilere zayıf ağırlık değerleri 

atanır. Kriging enterpolasyonu için genel denklem 

𝑍∗(𝑥0) =∑𝑊𝑖

𝑁

İ=1

𝑍(𝑥𝑖)                                                                                             (5.7) 

şeklindedir. Formülde Z*(x0) bilinmeyen fakat tahmin edilen değeri, N nokta sayısını, 

𝑍(𝑥𝑖) örneğe ait 𝑥𝑖noktasındaki değeri, 𝑊𝑖 her bir 𝑍(𝑥𝑖) değerine karşılık gelen 

ağırlık değerini ifade etmektedir. Yansızlık koşuluna göre;  

𝐸[Z(𝑥0) − 𝑍
∗(𝑥0)] = 0                                                                                           (5.8) 

olur. Buradan  

∑𝑊𝑖

𝑁

İ=1

= 1                                                                                                                (5.9) 

elde edilir. Kriging hatalarının sıfır olması koşuluna göre; 

𝑣𝑎𝑟[Z(𝑥0) − 𝑍
∗(𝑥0)] =  𝐸[Z(𝑥0) − 𝑍

∗(𝑥0)]
2                                                 (510) 

eşitliği oluşacaktır. Buradan da; 
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𝛾 =
1

2𝐸[𝑍(𝑥) + 𝑍(𝑥 + ℎ)]
                                                                                   (5.11) 

eşitliği göz önüne alınarak; 

𝐸[𝑍(𝑥0) − ∑ 𝑊𝑖
𝑁
İ=1 𝑍(𝑥𝑖)]

2 = −∑ ∑ 𝑊𝑖𝑊𝑗𝛾(
𝑁
𝑗=1

𝑁
İ=1 𝑥𝑖 − 𝑥𝑗) + 2∑ 𝑊𝑖𝛾(

𝑁
𝑗=1 𝑥0 −

𝑥𝑗)                                                                                                                                        (5.12)  

eşitliği elde edilir. Bu eşitliğin minumum olması ∑ 𝑊𝑖
𝑁
İ=1 = 1 yansızlık koşulu 

altında optimizasyon problemi olarak düşünülebilir ve bu problem Lagrange 

çarpanlarının kullanılmasıyla çözülür. Bu durumda (N+1) bilinmeyenden oluşan 

(N+1) bilinmeyenli aşağıdaki denklem sistemi elde edilir. 

∑𝑊𝑖𝛾(

𝑁

𝑗=1

𝑥𝑖 − 𝑥𝑗) + λ =  𝛾(𝑥0 − 𝑥𝑗),   𝑗 = 1,… , 𝑛                                      (5.13) 

∑𝑊𝑖

𝑁

İ=1

= 1                                                                                                             (5.14) 

Burada, λ Langrange çarpanı; 𝛾(𝑥i − 𝑥𝑗) ise 𝑥i ve 𝑥𝑗 noktaları arasındaki 

yarıvariogram değeridir. Eşitlikler daha açık bir şekilde ifade edilecek olursa; 

𝑊1𝛾11 +𝑊2𝛾12 +⋯……+𝑊1𝛾1𝑛 +  𝜆 =  𝛾10  

𝑊1𝛾21 +𝑊2𝛾22 +⋯……+𝑊𝑛𝛾2𝑛 +  𝜆 =  𝛾20                                                                                (5.15)  

…………………………………… ..    

𝑊1𝛾1n +𝑊2𝛾n2+. . . . . . . . . +𝑊𝑛𝛾n𝑛 +  𝜆 =  𝛾𝑛0  

𝑊1 +𝑊2+. . . . . . . . . +𝑊𝑛 =  1  

 

eşitliğindeki ifadelerin matris yapıları aşağıdaki gibidir. 
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𝜸= 

[
 
 
 
 
𝛾11 𝛾12 … 𝛾1𝑛 1
𝛾21 𝛾22 ⋯ 𝛾2𝑛 1
⋮  ⋮ ⋱ ⋮ ⋮
𝛾𝑛1 𝛾𝑛2 ⋯ 𝛾𝑛𝑛 1
1 1 ⋯ 1 0]

 
 
 
 

W= 

[
 
 
 
 
𝑊1
𝑊2
⋮
𝑊𝑛
 λ ]
 
 
 
 

𝜸0= 

[
 
 
 
 
𝛾10
𝛾20
⋮
𝛾𝑛0
1 ]
 
 
 
 

                                       (5.16) 

olmak üzere; matris gösterimi 

𝜸𝟎 =  𝑾𝜸                                                                                                                 (5.17)  

şeklindedir. Buradan bilinmeyen ağırlıklar  

𝑾 = 𝜸−𝟏𝜸𝟎                                                                                                             (5.18) 

denklem sistemine göre çözülür. Kriging ile yapılan kestirimin doğruluğu veya 

geçerliliği aşağıdaki faktörlere bağlıdır. Bunlar;  

 Dayanak noktalarının sayısı ve ölçü kalitesi,  

 Dayanak noktalarının alan içerisindeki konumları; dayanak noktalarının 

topografyayı temsil edebilme yeteneği,  

 Tahmin yapılacak noktalarla, dayanak noktaları arasındaki uzaklık; tahmini 

yapılacak nokta veya blokların, dayanak noktalarına yakın olması daha iyi 

sonuç verecektir.  

  



34 

 

6 YAPAY ZEKA 

Yapay zeka kavramının oluşmasında insan zekası temel alınmaktadır. 

Öğrenme, algılama, analiz etme, karar verme insan zekasına örnek davranışlardır. 

Önceleri verilerin depolamasında ve transferinde kullanılan bilgisayarlar daha 

sonraları karmaşık hesaplamalarda başarıyla kullanılmıştır. Zamanla bilgisayarlardan 

zeka gerektiren davranışlarda bulunması istenmiş ve yapay zeka kavramı oluşmuştur. 

Yapay zeka, zeka gerektiren yeteneklerle donatılmış bilgisayar sistemleri olarak 

düşünülebilir (Emir, 2013). 

İnsan zekası karmaşık bir özellik gösterir. Bu yönüyle bilgisayarlar, hesap 

yükünün bulunduğu karışık sayısal işlemleri insanlara göre daha hızlı 

yapabilmelerine rağmen düşünme, karar verme ve analiz etme gibi zeka gerektiren 

konularda insan zekasının gerisinde kalmaktadır. Yapay zeka ile ilgili ilk çalışmalar 

nörofizyolog Warren McCulloch ve matematikçi Walter Pitts’in sadece girdi ve 

çıktıları olan basit bir sinir ağını modellemesiyle başlamıştır (Çakır, 2012). 

Terim olarak yapay zeka olarak adlandırılması McCarthy tarafından 1956 yılında 

yapılmıştır. İlk temeller bilgisayar bilimlerinin kurucusu sayılan Turing tarafından 

atılmıştır. Turing, 1950’lerde yayınladığı makalesinde Turing Testi adı verilen bir 

test önermiş ve “makineler düşünebilir mi?” sorusuna yanıt aramıştır (Çakın, 2017). 

Yapay zeka konusunda yapılabilecek her tanım aşağıda belirtilen dört temel 

kategoriden birine uyar (Emir, 2013; Çakın, 2017). 

 İnsan gibi düşünen sistemler 

 İnsan gibi davranan sistemler 

 Rasyonel düşünen sistemler 

 Rasyonel davranan sistemler 
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Bir yapay zekanın çalışma şablonu ise aşağıdaki gibi basitçe gösterilebilir. 

• Görüntü tanıma  

• Arama     Bilgiyi elde etme  

• Veri analizi  

 

• Doğal dil işleme  

• Akıl yürütme    Bilgiyi kullanılır hale dönüştürme  

• Tahminde bulunma  

Bir şeyin neden olduğunu anlama 

 

Karar alma 

 

Karar sonucuna göre davranma 

6.1 Yapay Zeka Teknikleri 

Yapay zeka teknikleri aşağıdaki gibi sıralanabilir (Pirim, 2006):  

a) Bilgi tabanlı uzman sistem yaklaşımı  

b) Yapay sinir ağları yaklaşımı  

c) Bulanık mantık yaklaşımı  

d) Geleneksel olmayan optimizasyon teknikleri  

i)  Genetik algoritma 

ii) Tavlama benzetimi (Simulated annealing) 

iii) Tabu arama 

iv) Hybrid algoritmalar 

e) Nesne tabanlı (Object-oriented) programlama 

f) Coğrafi bilgi sistemleri (GIS) 

g) Karar destek sistemlerinin gelişimi 
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h) Yumuşak programlama (Soft computing ) 

6.2 Yapay Zeka ve İnsan Zekasının Karşılaştırılması 

Gelişmekte olan bir teknik olarak yapay zeka ile insan zekasının birbirine göre 

avantajlı olduğu noktalar mevcuttur. Tam gelişmiş bir yapay zeka sistemi, maliyeti 

azaltmasının yanında güvenirlik, doğruluk ve hız artışı sağlar. Pozitif ve negatif 

yönde değerlendirilebilecek bir konu olarak yapay zeka çok sayıda çalışanın yerine 

geçebilecektir. Yapay zekaya bir eleştiri olarak ünlü fizikçi Stephan Hawking insan 

zekasının sınırlı evrim kabiliyeti karşısında, yapay zekanın sürekli olarak kendini 

geliştireceğini varsaymış ve tam olarak gelişmiş bir yapay zekanın insanoğlunun 

sonu olabileceğini öne sürmüştür. Bir çok araştırmacıya göre ise yapay zeka hiçbir 

zaman bu aşamaya gelemeden insan bağımlı olarak gelişmeyi sürdürecektir. 

Tablo 6.1 İnsan Uzmanlığı ve Yapay Uzmanlık 

İnsan Uzmanlığı Yapay Uzmanlık 

Çabuk Etkilenebilir Kalıcı 

Aktarılması güç Kolay aktarılabilir 

Dokümantasyonu güç Kolay dokümante edilebilir 

Tahmini zor Tutarlı 

Pahalı Satın alınabilir 

Uyumludur Uyum dışarıdan sağlanmalıdır 

Hassas gözlem yapabilir Sembolik verilerle çalışır 

Geniş görüş açısına sahiptir Dar açıdan bakış 

Sosyal duyuma sahiptir Teknik duyuma sahiptir 

Yeni fikirler üretebilir Esinlenemez 

6.3 Yapay Sinir Ağları 

Bilim dünyasında birçok buluş doğadaki canlıların temel özellikleri dikkate 

alınarak yapılmaktadır. Yapay sinir ağlarının da esin kaynağı insan beynidir. Yapay 

sinir ağları insan beyninin bilgisayar ve elektronik devrelerle sınırlı şekilde 

taklitedilmesiyle meydan gelen sistemlerdir (Kayabaşı, 2015). Bu sebeple yapay 

sinir ağlarını incelemeden önce biyolojik sinir hücresini incelemekte fayda vardır. 
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6.3.1 Biyolojik sinir hücresi 

İnsan beyni çok karmaşık bir yapıya sahiptir. Beyin, nöron adı verilen sinir 

hücrelerinden meydana gelmektedir. Yapı olarak nöron soma, akson ve dentritlerden 

olmak üzere üç bölümden oluşur. İnsan beyninde yaklaşık 1011 tane nöron mevcuttur. 

Sinirsel bir impuls dentritler sayesinde başka bir sinir hücresinden alınır ve somaya 

iletilir. Somada işlenen ve depolanan veri somadan uzanan ve uzunca bir yapı olan 

aksonlar sayesinde başka bir sinir hücresinin dentritine iletilir. Soma hücrede enerji 

üretiminden sorumludur. Aksonların çevresinde miyelin kılıf adı verilen bir yapı 

bulunur. Aksonlar ile dentritler arasında veri iletimi sinaptik boşluklar ile kimyasal 

olarak gerçekleştirilir. 

 

Şekil 6.1 Biyolojik Sinir Hücresi 

6.3.2 Yapay sinir hücresi 

Yapay sinir ağları insan beynindeki nöronlara benzer şekilde yapay sinir 

hücrelerinin bir araya gelmesiyle oluşturulur. Yapay sinir hücresinin beş temel 

elemanı vardır (Öztemel, 2003). 

1. Girdiler: Dış dünyadan, başka bir process elemanından yada process 

elemanının kendisinden gelen bilgilerdir. 

2. Ağırlıklar: YSA’da bilginin gösterimi ağırlıklarla yapılır. Girdi elemanından 

gelen her bilgi önem derecesine göre değer alır. Bu sayede bilginin ağ 

üzerindeki etkisi ayarlanabilir. Ağırlığı sıfır olan bir bilginin ağ üzerinde 

etkisi yoktur. 
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3. Birleştirme(Toplama) Fonksiyonu: Hücreye gelen net girdiyi hesaplayan 

fonksiyonlardır. Net girdi hesaplamada birçok fonksiyon önerilse de genel bir 

kural yoktur. En uygun fonksiyon deneme yanılma yoluyla bulunur. En çok 

kullanılan fonksiyon ağırlıklı toplamdır. Burada her girdi kendi ağırlığıyla 

çarpılarak toplanır. 

Tablo 6.2 Toplam Fonksiyonları 

Birleştirme Fonksiyonu Net Girdi 

Ağırlıklı Toplam Net Girdi = ∑ 𝑥𝑖𝑖 𝑤𝑖  

Çarpım Net Girdi =∏ 𝑥𝑖𝑖 𝑤𝑖  

Maksimum Net Girdi = maks(𝑥𝑖𝑤𝑖  ) 

Minumum Net Girdi = min(𝑥𝑖𝑤𝑖  ) 

Çoğunluk Net Girdi = ∑ 𝑠𝑔𝑛(𝑥𝑖𝑖 𝑤𝑖) 

Kümülatif Toplam Net Girdi = net(eski)+∑ 𝑥𝑖𝑖 𝑤𝑖 

 

4. Aktivasyon Fonksiyonu:  Net girdi olarak gelen veriyi işleyerek çıkışa 

yönlendirir. Aktivasyon fonksiyonu olarak lineer olmayan fonksiyonlar 

seçilir. YSA’nın doğrusal olmama özelliği aktivasyon fonksiyonu sayesinde 

kazandırılır. Literatürde birçok aktivasyon fonksiyonu vardır bunlardan en 

çok kullanılanı sigmoid fonksiyonudur. 

5. Çıktılar: Aktivasyon fonksiyonu sonrasında elde edilen değer çıktı olarak 

yansıtılır. Sadece bir tane çıktı olmasına karşılık bir çıktı birden fazla nörona 

hatta kendisine bile girdi olarak kullanılabilir. 

Yapay sinir hücresi ile biyolojik sinir hücresi karşılaştırıldığında; ağırlıklar 

sinapslara, dentritler girdilere, aksonlar çıktılara, toplam fonksiyonu hücre gövdesine 

karşılık gelir. 

 

 



39 

 

Tablo 6.3 Aktivasyon Fonksiyonları 

 

Şekil 6.2 Yapay Sinir Hücresi 

Sigmoid 

Fonksiyonu 
y(x) = f(x) = 
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Lineer 

Fonksiyon 

f(u(t)) = gu(t) 
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6.3.3 YSA’nın avantaj ve dezavantajları 

Avantajları 

 Öğrenme: İnsan beyninin en önemli özelliği olan öğrenme YSA’da 

uyarlanmıştır. YSA’da çıkış ve giriş verileri arasında bağlantı kurulabilir. Bu 

şekilde öğrenme sağlanmış olur. 

 Lineer Olmama: Günlük hayatta karşılaşılan birçok problem lineer özellik 

göstermez. Bu sebeple YSA karmaşık problemlerin çözümünde doğrusallık 

gerektiren istatiksel yöntemlere göre daha avantajlıdır. YSA’da lineer olmama 

aktivasyon fonksiyonu ile sağlanır. 

 Genelleme: YSA değişkenlere dayalı olarak ilişkiler kurarak kendi ağırlıklarını 

oluşturabilir. YSA’da eksik parametrelerle dahi genelleme sayesinde işlem 

yapılabilir. Yani YSA problemin çözümü için tüm parametrelere ihtiyaç 

duymaz. 

 Uyarlanabilirlik: YSA çevredeki küçük değişikliklere göre tekrar tekrar 

eğitilebilir. 

 Paralel İşleme Yeteneği: Paralel yapı sayesinde aynı katmandaki birimler 

birbirinden bağımsız olduklarından aynı anda işlem yapabilme yeteneğine 

sahiptirler. Bu yapı hesaplamaların daha kolay ve hızlı yapılabilmelerini 

sağlamaktadır. 

Dezavantajları 

 Ağın davranışının nasıl olacağı bilinmemektedir. 

 Ağ mimarisinde en uygun parametrelerin seçimi deneme yanılma yoluyla 

mümkündür. 

 Ağ aşırı öğrenmeye düşerek genelleme yapmayabilir. 

 Ağın eğitilmesi uzun zaman alabilir. 

 Gelişmekte olan bir yöntem olduğu için güvenilirliği düşüktür. İstatiksel 

yöntemlerde mevcut güven aralığı ve hipotez testi mevcut değildir. 

6.3.4 YSA’nın sınıflandırılması 

YSA mimari yapılarına, öğrenme şekillerine ve öğrenme zamanlarına göre 

sınıflandırılabilir. 
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6.3.4.1 Mimari yapılarına göre YSA 

1. İleri Beslemeli YSA: İleri beslemeli YSA’da bir nöronun çıktısı kendinden 

sonraki nöronun girdisi olarak kullanılır. Bilgi akışı giriş katmanından çıkış 

katmanına doğrudur. Geri dönüş göstermediğinden döngüsel özellik 

göstermez. 

2. Geri Beslemeli YSA: Bu tip sinir ağlarında ileri beslemeli YSA2nın aksine bir 

nöronun çıktısı kendi katmanındaki bir nörona ya da kendinden önceki bir 

nörona girdi olarak verilir. Geri beslemeli YSA döngüsel özellik gösterir ve 

bu döngüsellik yakınsama sağlanana kadar devam eder. Geri beslemeli 

YSA’da eğitim süreci uzundur ve analizi zordur. 

6.3.4.2 Öğrenme algoritmalarına göre YSA 

1. Danışmanlı Öğrenme: Giriş değerleri için çıkış değerleride bulunur. Ağa 

verilen girdiler için istenen çıktıları elde edebilmek için ağ eğitilir. YSA’a 

örnek bir çıktı verilir. Örnek çıktı ile ağın ürettiği çıktı karşılaştırılır aradaki 

fark hata olarak alınır. Ağa başlangıçta rassal olarak verilen ağırlıklar hata 

minimize edilene kadar döngüler halinde güncellenir. 

2. Danışmansız Öğrenme: Sistemin doğru çıkış hakkında bir bilgisi yoktur. Ağa 

herhangi bir çıktı bilgisi verilmez. Ağ girdilere göre her bir örneği 

sınıflandıracak şekilde kendi kuralını oluşturur. 

3. Destekleyici Öğrenme: Üretilen her bir sonuca göre ağa sonucu doğru olup 

olmadığı hakkında verilir. 

İleri Beslemeli Yapay Sinir Ağı Geri Beslemeli Yapay Sinir Ağı 

  

Şekil 6.3 Mimari Yapılarına Göre YSA 
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6.3.5 YSA türleri 

6.3.5.1 Tek katmanlı algılayıcılar 

Tek katmanlı YSA sadece girdi ve çıktı katmanından oluşan ağlardır 

(Öztemel, 2003). Girdiler ve çıktılar birbirine tam olarak bağlanmış durumdadır. 

Girdi ve çıktılardan başka ağın çıktısının 0 olmasını engelleyen eşik değeri vardır. 

Ağ doğrusal yapıda olduğundan dolayı aktivasyon fonksiyonuda doğrusal yapıdadır. 

 

Şekil 6.4 Tek Katmanlı Algılayıcı 

6.3.5.1.1 Basit Algılayıcılar (Perceptron) 

1958 yılında Rosenblatt tarafından ortaya atılmıştır. Basit algılayıcı birden 

fazla girdiyi alarak tek bir çıktı üretme prensibine dayanır. Basit algılayıcılarda 

öğrenme mevcuttur. Öğrenme ağın ağırlıklarının değiştirilmesi ile olur. 

 

Şekil 6.5 Perceptron 

6.3.5.1.2 Adaptif doğrusal element ağı (ADALİNE) 

Widrow ve Hoff tarafından 1959 yılında geliştirilmiştir. Adaptif doğrusal 

element ağının kısaltılmış şeklidir. Bir tane process elemanından oluşur (Öztemel, 

2003). Adaline ve Perceptron’a benzer şekilde doğrusal özellik gösterir. Farklı olarak 
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Adaline, En Küçük Kareler Kestirimi (EKK) kullanarak öğrenme gerçekleştirir. 

Buna Delta Kuralı yada Widrow Hoff öğrenme kuralı da denir. 

6.3.5.1.3 Çoklu adaptif doğrusal element ağı (MADALİNE) 

Many Adaline şeklinde adlandırılan ağ, birden çok Adaline ağının bir araya 

gelmesiyle oluşan ağlardır. Öğrenme algoritması Adaline ile aynıdır. Doğrusal 

özellikte olmasına rağmen çok katmanlı algılayıcılara temel olması nedeniyle 

önemlidir. 

 

Şekil 6.6 Madaline 

6.3.5.2 Çok katmanlı algılayıcılar 

YSA ile çalışmalar 1970’li yıllarda durma noktasına gelmiştir. Bunun nedeni 

gündelik hayatta karşılaşılan birçok problemin doğrusal özellik göstermemesidir.  

Tek katmanlı algılayıcılar doğrusal özellik taşıdığı için problemlerin çözümünde 

yetersiz kalmıştır. Rumelhart ve arkadaşları tarafından geliştirilen çok katmanlı 

algılayıcılar sayesinde YSA’a ilgi yeniden artmıştır. Çok katmanlı algılayıcılarda bir 

ya da daha fazla ara katman bulunur. Çok katmanlı algılayıcılarda danışmanlı 

öğrenme metodu kullanılır. Ağa örnekler ve örneklerden elde edilmesi gereke çıktılar 

birlikte sunulur. 
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Şekil 6.7 Çok Katmanlı Algılayıcı 

6.3.5.3 Radyal tabanlı yapay sinir ağları 

Radyal bazlı fonksiyonlar sayısal analizde çok değişkenli problemlerin 

çözümünde sıkça kullanılır. Radyal bazlı fonksiyon teorisi çok boyutlu uzayda eğri 

uydurma ve yaklaştırma problemidir. Radyal tabanlı yapay sinir ağları (RTSYA) 

1988 yılında geliştirilmiş ve filtreleme problemine uygulanarak YSA tarihine 

geçmiştir (Okkan ve Dalkılıç, 2012). 

RTYSA, çok katmanlı algılayıcılara benzer şekilde, girdi katmanı, gizli 

katman ve çıktı katmanı olmak üzere 3 katmandan oluşmaktadır. Fakat RTYSA’da 

gizli katman sayısı birden fazla olamaz. RTYSA’ı çok katmanlı algılayıcılardan 

ayıran en önemli özellik aktivasyon fonksiyonu olarak radyal tabanlı fonksiyonların 

kullanılmasıdır. Dolayısıyla ağın eğitilmesi, çok boyutlu uzayda eğitim verilerine en 

uygun yüzeyin bulunması problemine dönüşür (Şenol, 2010). 

RTYSA’da aktivasyon fonksiyonu olarak Gauss, multikuadrik ve ters multikuadrik 

gibi birçok radyal bazlı fonksiyon kullanılabilir. 

6.4 Bulanık Mantık 

Mantık bilinenden bilinmeyenlerin elde edilmesine vasıta olan bilimdir (Öner, 

1986). Klasik mantık biliminin kurucusu Aristo olarak kabul edilir. Aristo mantığına 

göre “olmak” ya da ”olmamak” gibi kesin sınırlar vardır. Aristo mantığına göre bir 

şey ya siyahtır ya da beyaz. Klasik mantık yaklaşımında gri yoktur. Aristo mantığı 
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sade ve kesin sınırlarla çizili olsada bilimsel bilimsel araştırmaların çözümünde ve 

matematiksel modellenmesinde başarıyla uygulanmıştır (Doğanalp, 2012). Bulanık 

mantık kavramı ise Azeri bilim adamı Loutfi Zadeh tarafından 1965 yılında ortaya 

atılmıştır. Bulanık mantık matematiğin gerçek dünyaya uyarlanması olarak 

düşünülebilir. Bulanık mantık kesinlikler yerine insan hayatında yer alan sözel 

değişkenlerle modellemeye imkan tanır. Klasik mantık matematiksel olarak 0 ve 1 

den oluşurken, bulanık mantık ise 0 ve 1 arasında yer alan sonsuz tane ara değeri de 

içerir. 

6.4.1 Bulanık küme ve üyelik fonksiyonları 

Klasik küme mantığına göre bir eleman ya o kümenin elemanıdır ya da 

değildir. Kümeye ait olma değeri 1 ile ifade edilirken, 0 o kümeye kesin olarak ait 

olmamayı ifade eder. Bulanık küme kavramında ise bir elemanın kısmi üyeliğine izin 

verilir hatta bir eleman başka kümelerinde elemanı olabilir (Özat, 2011). 0 kesin 

olarak ait olmamayı, 1 kesin aitliği gösterirken (0,1) aralığı ise üyelik derecesini (𝜇) 

ifade eder. (𝜇˄(𝑥)) üyelik derecesi; X, x elemanlarının oluşturduğu uzay olmak üzere 

bulanık A kümesi  

𝐴̃ =  {(𝑥, 𝜇˄(𝑥))ǀ𝑥 ∈ 𝑋}                                                                                          (6.1) 

şeklinde tanımlanır (Şenol, 2010). 

Üyelik fonksiyonlarının üç temel özelliği vardır (Şen, 2009). 

1. Normallik (en az bir tane üyelik fonksiyonunun 1 olması ile sağlanır). 

2. Dışbükeylik (üyelik fonksiyonunun sürekli artan ya da azalan olmasıdır). 

3. Simetriklik 

Genel olarak kullanılan üyelik fonksiyonları şekil 6.8’de verilmiştir. 
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Şekil 6.8 Üyelik Fonksiyonları 

6.4.2 Bulanık küme işlemleri 

Ã ve B̃, X evrensel kümesinde tanımlanan iki bulanık küme olsun. Bunları 

A(x) ve B(x) üyelik fonksiyonlarıyla gösterelim. Burada xX durumu söz 

konusudur. 

Bulanık kümelere göre temel işlemler aşağıdaki gibidir: 
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 İki ayrı bulanık kümenin birbirine eşit olabilmesi için (A=B) aşağıdaki şart 

sağlanmalıdır. 

 X  S:A(x)=B(x) 

 Ã kümesinin B̃ kümesinin alt kümesi olabilmesi için aşağıdaki şart 

sağlanmalıdır. 

 x  X:A(x)B(x) 

 Her xX için ÃB̃ birleşiminin AB(x) üyelik fonksiyonu: 

AB(x)=max{A(x), B(x)} 

olarak yazılabilir (Kosko, 1992). 

 Her xX için ÃB̃ kesişiminin AB(x) üyelik fonksiyonu: 

AB(x)=min{A(x), B(x)} 

olarak yazılabilir (Fuller, 1995). 

 Her xX için Ã bulanık kümesinin tümleyeni olan (x)μ 1A
 üyelik fonksiyonu: 

(x)μ1(x)μ AA1   

olarak yazılabilir (Kosko, 1992; Sinecen, 2011). 

6.4.3 Bulanık sistemler 

Bulanık sistemler genel olarak mevcut verilerden seçilen giriş değerlerinin elde 

edilebilmesi için bulanık küme ilkelerini kullanan sistemlerdir (Haznedar, 2017). 

Bulanık sistemler 4 temel bileşenden oluşur. Bunlar; bulanıklaştırıcı, kural tabanı, 

çıkarım mekanizması ve durulaştırıcı birimdir. Bulanık sistemlerde girdi ve çıktı 

verileri kesindir yani gerçek sayılardır. Girişte nomalizasyona çıkışta, 

denormalizasyona uğrayarak sözel veriler kesin sayılara dönüştürülür. 
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Şekil 6.9 Bulanık Sistemler 

6.4.3.1 Bulanıklaştırıcı 

Bulanıklaştırma biriminde kesin olan değerlerden bulanık değerlerin elde 

edilmesi amaçlanır. Bulanıklaştırıcı; sözel olarak nitelendirilen değerlerin, bulanık 

kümelerdeki üyelik derecelerine göre üyelik fonksiyonlarıyla atanmasına yarayan 

işlemcidir. Her bilgiye üyelik dereceleri atanarak dilsel veriye dönüştürülerek kural 

birimine yönlendirilir. 

6.4.3.2 Kural işleme birimi 

Sistem operatörünün deneyimlerinin yer aldığı birimdir. Denetim kuralları “eğer…o 

halde…(if…then…) şeklindedir. Kural işleme biriminde sözel veriler denetim 

kurallarıyla birleştirilir. Bu katman bilinen gerçeklerden sonuçların çıkarıldığı 

birimdir. 

6.4.3.3 Durulaştırma 

Kural biriminde çıkarılan sonuçlar sözel ifadeler şeklindedir. Durulaştırma birimi 

bulanık ifadelerin kesin değerlere dönüştürüldüğü yani denormalizasyon işleminin 

yapıldığı birimdir. 
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6.4.3.3.1 Durulaştırma yöntemleri 

Bulanık sistemlerde kullanılan bazı durulaştırma yöntemleri aşağıdaki tabloda 

gösterildiği gibidir (Şenol, 2010). 

Yöntemin Adı Fonksiyonu Grafiği 

Ağırlık Merkezi 

Yöntemi 

 

 
*

μ u u du
u

μ u  du




 

 

Üyelik 

Fonksiyonlarının En 

Yüksek Noktalarının 

Ortalaması Yöntemi 
2

* a b
u


  

 

En Büyük Maksimum 

Yöntemi 
   *  μA u μA u  

 

u=bulanık değer, 
*u =durulaştırılmış değer 

Şekil 6.10 Durulaştırma Yöntemleri 

6.5 Mamdani Modeli 

İlk uygulaması 1974 yılında, Londra Üniversitesinden Prof. Mamdani 

tarafından buhar türbininin denetlenmesi şeklinde yapılmıştır. Bu model insan 

konuşma ve anlaşma yapısına uygun olduğundan oluşturulması basittir ve bu nedenle 

sıklıkla kullanılmaktadır. Bu modelde hem girdi değişkenlerihem de çıktı 

değişkeniüyelik fonksiyonları ile ifade edilir.  

Mamdani bulanık modeli, mevcut mevcut nitel bilgiyi EĞER- O HALDE 

kuralları biçiminde ifade etmek için öne sürülmüştür. 
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𝐾𝑖: 𝐸Ğ𝐸𝑅 𝑥 𝐴𝑖 𝑖𝑠𝑒 𝑂 𝐻𝐴𝐿𝐷𝐸 𝑦 𝐵𝑖’𝑑𝑖𝑟,             𝑖 = 1,2,3, … , 𝑟                        (6.2) 

x: dilsel giriş değişkeni 

𝐴𝑖: Ö𝑛𝑐ü𝑙 𝑑𝑖𝑙𝑠𝑒𝑙 𝑡𝑒𝑟𝑖𝑚  

y: dilsel çıkış değeri 

𝐵𝑖: 𝑆𝑜𝑛𝑢ç 𝑑𝑖𝑙𝑠𝑒𝑙 𝑡𝑒𝑟𝑖𝑚  

Dilsel terimler kendilerine ait üyelik fonksiyonları ile tanımlanır.  

Öncül ve sonuç bulanık kümelerin üyelik fonksiyonları  

(𝑥) = 𝑋 → [0,1] 𝑣𝑒 (𝑦) = 𝑌 → [0,1]                                                             (6.3)  

şeklindedir. 

6.6 Takagi-Sugeno Bulanık Modeli 

Takagi, Sugeno ve Kang tarafından 1985 yılında kullanımıştır. Mamdani tipi 

modelin bir uyarlamasıdır. Giriş değerlerinin bulanıklaştırılması ve bulanık işlemler 

Mamdani tipi ile tamamen aynıdır. Aradaki temel fark çıkış üyelik fonksiyonları T-S 

modelinde F(x,y) gibi lineer yada sabittir. 

Modelde çıkış üyelik fonksiyonu sabit ise sıfırıncı derece, eğer lineer ise 

birinci derece T-S bulanık modeli tanımlanır. 

‘Eger x = A ve y = B ise z = k’ (Sıfırıncı derece) 

‘Eğer x = A ve y = B ise z = f(x,y) = px+qy+r (c)’ (Birinci Derece) 
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Şekil 6.11 Mamdani ve Takagi Sugene Bulanık Modeli 

6.7 ANFİS Mimarisi 

ANFIS bulanık sistemlerimlerin ve yapay sinir ağlarının avantajlarının 

birleştirildiği hibrid sistemlerdir. Bu şekilde oluşturulan yapıya bulanık sinir ağı 

denir. Bulanık sistemlerin öğrenme kabiliyeti yoktur ve kendilerini yeni çevreye 

adapte edemezler. Diğer yandan yapay sinir ağları öğrenme kabiliyetine sahiptir; 

fakat kullanıcı tarafından anlaşılmazlar (Özkan ve diğerleri, 2007). Adaptif ağ tabanlı 

bulanık mantık çıkarım sistemi (ANFIS), Sugeno tipi bulanıksisteminin, sinirsel 

öğrenme kabiliyetine sahip bir ağ yapısı olarak temsilinden ibarettir (Yumuk, 2011).  

 

Şekil 6.12 ANFIS Mimarisi 



52 

 

Şekilde de belirtildiği gibi ANFIS 5 katmandan oluşmaktadır. ANFIS 

modelinin katmanlarını genel olarak özetlersek, 1. katmanda giriş verilerine üyelik 

fonksiyonları uygulanarak bulanıklaştırma işlemi yapılır. 2. katmanda bulanık mantık 

çıkarım sistemine göre kurallar oluşturulur. 3. katmanda kural katmanından gelen her 

bir düğüme, ağırlıklı ortalama ile normalizasyon işlemi uygulanır. 4. katmanda ise 

bulanık sonuçlar sayısal değerlere dönüştürülür ve son olarak 5. katmanda tüm 

düğümlerin çıkış değerleri toplanarak sistemin tek çıkış değeri üretilir. 

5 katmanı detaylı bir şekilde incelersek (Özkan ve diğerleri, 2007); 

1.Katman: 

Bulanıklaştırma katmanı olarak adlandırılır. Giriş değerlerini bulanık kümelere 

ayırmada Jang’ın ANFIS modeli, üyelik fonksiyonu şekli olarak genelleştirilmiş Bell 

aktivasyon fonksiyonunu kullanmaktadır. Burada, her bir düğümün çıkısı, 

girişdeğerlerine ve kullanılan üyelik fonksiyonuna bağlı olan üyelik derecelerinden 

oluşmaktadır ve 1. katmandan elde edilen üyelik dereceleri ( )
jA x ve ( )

jB y

şeklinde gösterilir. 

2.Katman: 

Kural katmanıdır. Bu katmandaki her bir düğüm, Sugeno bulanık mantık çıkarım 

sistemine göre oluşturulan kuralları ve sayısını ifade etmektedir. Her bir kural 

düğümünün çıkısı i , 2. katmandan gelen üyelik derecelerinin çarpımı olmaktadır. 

i  değerlerinin elde edilişi ise, (j=1,2) ve (i=1,….,n) olmak üzere 

𝑦𝑖
3 = ∏  i = 

𝐴𝑗
(𝑥) × 

𝐵𝑗
(𝑦) = 

𝐵𝑗
= 

𝑖
                                                (6.4)  

şeklindedir. Burada, 3

iy , 2. katmanın çıkış değerlerini; n ise, bu katmandaki düğüm 

sayısını ifade etmektedir. 

 

 



53 

 

3.Katman: 

Normalizasyon katmanıdır. Bu katmandaki her bir düğüm, kural katmanından gelen 

tüm düğümleri giriş değeri olarak kabul etmekte ve her bir kuralın normalleştirilmiş 

ateşleme seviyesini hesaplamaktadır. 

Normalleştirilmiş ateşleme seviyesi 
i ’nin hesaplanması ise, 

𝑦𝑖
4 = 𝑁𝑖 =


𝑖

∑ 
𝑖

𝑛
𝑖=1

= 
𝑖
(i = 1, n)                                                             (6.5)         

formülüne göre gerçekleştirilir.. 

4.Katman: 

Arındırma katmanıdır. Arındırma katmanındaki her bir düğümde verilen bir kuralın 

ağırlıklandırılmış sonuç değerleri hesaplanmaktadır. 4 katmandaki i. düğümün çıkış 

değeri ise, 

𝑦𝑖
5 = 

𝑖 1 2[ ]i i ip x q x r                                                                                     (6.6)     

şeklinde olmaktadır. Buradaki (pi, qi, ri) değişkenleri, i. kuralın sonuç parametreleri 

kümesidir. 

5.Katman: 

Toplam katmanıdır. Bu katmanda sadece bir düğüm vardır ve Σ ile etiketlenmiştir. 

Burada, 5. katmandaki her bir düğümün çıkış değeri toplanarak sonuçta, ANFIS 

sisteminin gerçek değeri elde edilir. 

Sistemin çıkış değeri olan y’nin hesaplanması ise, 

𝑦𝑖
5 =∑ 

𝑖 1 2[ ]i i ip x q x r 

n

i=1

                                                                            (6.7)    

denklemine göre olmaktadır (Özkan ve diğerleri, 2007).  
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7 SAYISAL UYGULAMA 

Bu çalışmada Trakya Bölgesine dağılmış, ortometrik ve elipsoit yükseklikleri 

bilinen 175 adet nokta kullanılmıştır. Bu noktalardan 143 tanesi modelin 

oluşturulmasında dayanak noktası olarak kullanılmış geriye kalan 32 nokta ise test 

noktası olarak kullanılmıştır. Dayanak noktaları için uyuşumsuz ölçüler testi 

yapılmış ve bunlar noktalardan uyuşumsuz olanlar modelin oluşturulmasında 

kullanılmamıştır.Hesaplamalar için Surface Surfer 13 adlı paket programı 

kullanılmıştır. Modelin oluşturulmasında polinomlarla enterpolasyon, radyal bazlı 

fonksiyonlar, Kriging ve mesafenin tersi metotları kullanılmıştır.Sonuçlar test 

noktalarına ait karesel ortalama hatalar hesaplanarak karşılaştırılmıştır. Dayanak 

noktalarının dağılımı aşağıda gösterilmiştir. 

 

Şekil 7.1 Dayanak Noktalarının Dağılımı 

7.1 Surface Surfer 13 Programının Modelleme İçin Kullanılması 

Dayanak noktalarına ait koordinatlar “excel” formatında kaydedilir. 

Kaydedilen dosyadaki sütunlarda nokta adı, X ve Y koordinat değerleri, elipsoit 

yüksekliği ve ortometrik yükseklik, jeoit yüksekliği değerleri yer alır. Kaydedilen 

“excel” dosyasının açılması için Surface Surfer 13 programında  ekranın 
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yukarısındabulunan menüden sırasıyla grid ve data tıklanır. Buradan dayanak 

noktalarının bulunduğu excel dosyası çağırılır. 

 

Şekil 7.2 Surface Surfer Ekran Görüntüsü-1 

 

Şekil 7.3 Surface Surfer Ekran Görüntüsü-2 

Bu menüde excel dosyasındaki sütunlar modelin oluşturulması için programa 

tanıtılır. X koordinatı için X kolonu, Y koordinatı Y kolonu ve jeoit yüksekliği için 

de Z kolonu seçilir . Modelin oluşturulmasında kullanılacak enterpolasyon yöntemi 

de bu menüden seçilir. Bu menüden dataların filtrelenmesi işlemi de yapılabilir. 

Kullanılacak modellerden hangisinin daha doğru olacağına karar vermek için “Cross 

Validation” seçeneği ile kullanılacak yönteme ait istatiksel sonuçlara ulaşılabilir. Bu 

aşamadan sonra oluşturulan “grd” uzantılı datanın çıktı yolu belirlenir. “OK” 

butonuna basıldığında grd uzantılı dosya kaydedilir ve istatiksel sonuçlar kullanıcıya 



56 

 

buradan verilir. Gridlenen data üstte bulunan menüden “MAP” butonuna basılarak 

okutulabilir. Oluşturulan data menüde bulunan vektör haritaları, kontur haritaları, 3D 

yüzey haritaları ve diğer seçeneklerden istenenler seçilerek yüzey görünümünün 

ekrana gelmesi sağlanır. 

 

Şekil 7.4 Surface Surfer Ekran Görüntüsü-3 

Ara noktalara ait enterpolasyon değerlerini hesaplamak için, hesaplamak 

istediğimiz nokta koordinatlarını excel dosyası olarak kayıt etmemiz gerekmektedir. 

Daha sonra yukarıda bulunan “GRID” menüsünden “RESIDUALS” seçilir. Bu 

menüde önce grd uzantılı dayanak noktalarına ait data seçilir daha sonra hesaplamak 

istediğimiz “excel” uzantılı dosya programa okutulur. Sonuçlar ekrana excel 

formatında yazdırılacaktır. 

 

Şekil 7.5 Surface Surfer Ekran Görüntüsü-4 
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7.2 Modelin Oluşturulması 

Modelin oluşturulmasında kullanılan dayanak noktalarına ait sayısal değerler 

Tablo 7.1’de verilmiştir. 

Tablo 7.1 Dayanak Noktaları (birimler:metre) 

NOKTA ADI SAĞA YUKARI h H N 

3H038-AN13 484684.307 4501399.052 40.096 0.593 39.503 

E1810014 510762.663 4603363.617 194.056 155.355 38.701 

E1810020 504968.427 4599780.062 185.614 146.821 38.793 

E1820026 526557.644 4635370.859 524.696 485.458 39.238 

E1820029 519407.387 4604839.658 198.433 159.782 38.651 

E1830137 520680.410 4640347.837 719.404 679.977 39.427 

E1830144 531106.037 4634762.428 471.425 432.218 39.207 

E1830145 540326.351 4634995.748 515.741 476.581 39.160 

E1830169 517460.892 4613776.628 200.699 161.915 38.784 

E1830172 515827.712 4617014.592 202.548 163.662 38.886 

E1830176 513673.209 4619733.742 249.808 210.793 39.015 

E1830177 513571.777 4621346.691 258.942 219.871 39.071 

E1830182 514928.559 4625975.855 282.818 243.672 39.146 

E1830191 512765.652 4637180.088 443.838 404.529 39.309 

E1830193 511655.707 4639544.703 486.504 447.176 39.328 

E1920009 555147.385 4620198.219 424.575 385.783 38.792 

E1920017 548554.806 4626009.889 557.737 518.774 38.963 

E1930066 546222.199 4629959.905 756.296 717.259 39.037 

E1930072 558081.670 4621206.100 550.508 511.756 38.752 

E1930073 563437.892 4620159.527 441.714 403.124 38.590 

E1930076 558321.217 4618483.140 422.588 383.862 38.726 

E1930094 561148.431 4607382.100 243.875 205.331 38.544 

E2010001 591034.838 4607961.547 273.355 235.318 38.037 

E2020003 594360.301 4600173.471 356.852 318.859 37.993 

F1720039_AN92 458039.445 4558877.952 138.573 99.165 39.408 

F1730118_AN46 468863.691 4566914.099 55.401 16.258 39.143 

F1730123_AN34 480507.720 4566876.664 81.621 42.702 38.919 

F1730126_AN30 487362.528 4566872.752 154.653 115.715 38.938 

F1730129_AN75 464318.895 4564198.498 49.376 10.073 39.303 

F1730146_AN58 487380.691 4562679.595 122.824 83.860 38.964 

F1730150_AN70 463984.275 4561382.603 51.246 11.955 39.291 

F1730153_AN67 471196.087 4561349.366 74.129 34.970 39.159 

F1730163_AN109 458419.690 4555870.343 47.398 8.016 39.382 

F1730189_AN144 460013.445 4548861.346 69.153 29.723 39.430 

F173H021 494189.980 4580533.566 109.892 71.082 38.810 

F1810010 525447.335 4552880.982 184.087 145.848 38.239 

F1810013 504168.903 4551170.647 165.120 126.448 38.672 

F1910010 580444.458 4552184.252 184.300 146.743 37.557 

F1920036/114 571257.371 4543478.751 186.487 148.851 37.636 

F1920037/376 570186.132 4546261.247 210.533 172.877 37.656 

F1920038 577521.770 4547311.632 146.704 109.131 37.573 

F1920039 570126.172 4549818.682 179.423 141.673 37.750 

F1920046/331 577190.167 4555818.483 213.764 176.069 37.695 

F1920048/328 582678.752 4559525.558 195.467 157.733 37.734 

F1920052/327 577054.935 4565100.972 236.832 199.003 37.829 
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F1920055 568181.232 4561718.764 199.998 162.133 37.865 

F192H005 583469.199 4547739.910 94.513 57.062 37.451 

F1930229 573170.681 4558191.912 237.503 199.739 37.764 

F1930255 572520.810 4557349.381 197.692 159.897 37.795 

F1930327 568909.242 4554579.029 154.255 116.404 37.851 

F1930348 568121.275 4553684.750 158.800 120.948 37.852 

F1930383 572963.876 4551913.018 167.214 129.465 37.749 

F1930395 569310.933 4550537.637 112.273 74.493 37.780 

F193H003 576463.319 4573873.849 224.285 186.485 37.800 

F201H001 589627.106 4595144.250 523.153 485.078 38.075 

F201H013 586220.109 4583153.988 274.559 236.626 37.933 

F2020449 603634.406 4565655.454 204.527 166.812 37.715 

F202H018 599829.657 4585515.701 173.422 135.504 37.918 

F202H042 600873.637 4576540.680 272.474 234.677 37.797 

F202H419 587918.213 4564163.245 189.794 152.045 37.749 

F202H437 585087.317 4556484.170 149.383 111.748 37.635 

F202H446 597504.167 4568714.425 271.242 233.467 37.775 

F202H455 597455.769 4565384.792 271.482 233.726 37.756 

F202H478 601904.688 4559495.395 127.164 89.554 37.610 

F202H482 600958.521 4557175.423 102.134 64.551 37.583 

F202H486 596206.291 4556811.710 146.601 109.066 37.535 

F202H518 600268.670 4549422.812 74.408 37.011 37.397 

F202H521 597127.474 4548964.340 45.374 8.008 37.366 

F202H535 593383.273 4550986.249 74.296 36.829 37.467 

F202H544 591489.769 4548460.580 91.717 54.330 37.387 

F202H552 587389.234 4545707.704 56.666 19.324 37.342 

G163H003 449738.789 4517928.039 73.251 33.417 39.834 

G163H004 448630.720 4519162.289 48.735 8.896 39.839 

G163H010 451880.071 4526209.362 90.289 50.533 39.756 

G1730214 489655.210 4496932.714 44.171 4.615 39.556 

G1730215 492403.521 4493612.372 74.516 34.949 39.567 

G1730218 458921.269 4525951.733 134.532 94.898 39.634 

G1730219 459401.539 4523671.490 91.154 51.519 39.635 

G1730222 462133.137 4521726.973 75.422 35.800 39.622 

G1730228 467308.697 4518179.269 95.358 55.777 39.581 

G1730238 474917.527 4515716.574 80.530 40.947 39.583 

G1730240 477039.977 4509984.493 200.075 160.458 39.617 

G1730244 494400.955 4490350.892 44.837 5.311 39.526 

G1730247 498666.738 4491424.403 47.099 7.586 39.513 

H162H001 454518.347 4434676.250 219.430 179.474 39.956 

 

Dayanak noktalarından yararlanarak polinomal, radyal ve kriging 

yöntemlerine ait model katsayıları elde edilmiş olup bu modellerden yararlanarak test 

noktalarının yükseklikleri ilgili modeller ile enterpole edilmiştir. Bu enterpolasyon 

işleminde sonra elde edilen ortometrik yükseklikler Tablo 7.2, 7.3 ve 7.4’de 

verilmiştir. 
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Tablo 7.2 Test Noktalarına Ait Sonuçlar-1(birimler:metre) 

NOKTA ADI SAĞA YUKARI h H(Lineer) 
H 

(Bilineer) 

H 

(Kuadratik) 
H(Kübik) 

H 

(Gerçek) 

E1810015 515705.147 4619996.599 239.649 200.6094 200.7167 200.6275 200.7090 200.658 

E1820036 513014.159 4633790.743 394.242 355.1155 355.2506 355.0714 354.9608 354.909 

E1830159 518748.717 4601742.611 178.985 140.0524 140.1450 140.1379 140.3449 140.448 

E1930083 558256.593 4612910.310 459.989 421.6273 421.3345 421.3773 421.4755 421.247 

F1720034_AN77 466059.929 4562949.962 70.967 31.3519 31.5621 31.6602 31.7407 31.748 

F1720036_AN166 461022.673 4560969.578 54.497 14.8109 15.0125 15.1232 15.2064 15.184 

F1730136_AN53 480482.375 4564193.050 106.443 67.0456 67.2403 67.3148 67.3905 67.425 

F1730177_AN125 473709.335 4551648.943 126.701 87.2408 87.3692 87.4648 87.4738 87.474 

F1830165 509355.007 4544472.846 152.670 113.7818 113.9164 113.9344 113.9169 114.002 

F1830198 515595.700 4587756.791 105.972 67.0370 67.1604 67.1853 67.4001 67.585 

F1830206 512371.260 4566672.693 125.245 86.3300 86.4700 86.5125 86.6470 86.876 

F192H001 583345.624 4551410.907 94.432 56.6590 56.8210 56.7966 56.8320 56.92 

F1930236 578678.306 4551196.628 149.911 112.0669 112.2297 112.2046 112.2599 112.285 

F1930323 570424.763 4555167.559 178.587 140.6028 140.7262 140.7216 140.8212 140.757 

F1930389 573000.374 4549131.443 163.689 125.7643 125.9450 125.9106 125.9755 126.043 

F1930391 570620.095 4550651.912 163.057 125.0907 125.2557 125.2299 125.3081 125.364 

F193H039 563243.308 4582922.640 139.675 101.4889 101.3905 101.4595 101.6583 101.797 

F193H486 581756.938 4544683.757 45.223 7.4477 7.6834 7.6201 7.6362 7.888 

F193H586 577307.768 4565449.393 233.428 195.5158 195.5313 195.5702 195.6810 195.789 

F2020004 591900.512 4584744.270 279.522 241.7706 241.5145 241.6307 241.6321 241.553 

F202H412 587687.249 4566817.410 199.973 162.2159 162.1952 162.2466 162.2959 162.2 

F202H451 599878.923 4566805.997 261.294 223.7245 223.6779 223.7407 223.6786 223.586 

F202H473 596854.992 4559217.450 168.990 131.3990 131.4607 131.4825 131.4445 131.393 

G162H001 451627.392 4522175.590 104.197 64.4943 64.3297 64.4733 64.4307 64.404 

G1730203 483862.195 4510430.374 455.486 416.3179 416.2598 416.2351 415.9985 415.881 

G1730220 461121.385 4525121.936 109.878 70.3117 70.2185 70.3301 70.2347 70.269 

G173H025 465547.329 4527745.749 109.272 69.7651 69.7116 69.8119 69.7072 69.6 

G173H029 468132.251 4523361.066 117.336 77.8833 77.8093 77.8910 77.7547 77.616 

G173H063 492838.636 4523825.608 188.406 149.3318 149.3776 149.3752 149.1972 149.081 

G173H099 472339.859 4524720.921 146.254 106.8615 106.8164 106.8862 106.7414 106.626 

G1830061 502335.244 4518086.028 192.837 153.9278 154.0089 153.9513 153.7457 153.483 

G1830075 505005.957 4534637.121 176.233 137.3103 137.4267 137.4269 137.3310 137.244 
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Tablo 7.3 Test Noktalarına Ait Sonuçlar-2(birimler:metre) 

NOKTA ADI SAĞA YUKARI h 
H 

(MQ) 

H 

(TersMQ) 

H 

(Multilog) 

H 

(TPS) 

H 

(Gerçek) 

E1810015 515705.147 4619996.599 239.649 200.6532 200.6471 200.6114 200.6565 200.658 

E1820036 513014.159 4633790.743 394.242 354.9716 355.0097 355.1074 354.9739 354.909 

E1830159 518748.717 4601742.611 178.985 140.3565 140.3291 140.0644 140.3630 140.448 

E1930083 558256.593 4612910.310 459.989 421.3446 421.3403 421.6000 421.3283 421.247 

F1720034_AN77 466059.929 4562949.962 70.967 31.7124 31.7054 31.3919 31.7121 31.748 

F1720036_AN166 461022.673 4560969.578 54.497 15.1482 15.1457 14.8471 15.1433 15.184 

F1730136_AN53 480482.375 4564193.050 106.443 67.4752 67.4880 67.0817 67.4841 67.425 

F1730177_AN125 473709.335 4551648.943 126.701 87.5024 87.5476 87.2646 87.4964 87.474 

F1830165 509355.007 4544472.846 152.670 114.0462 113.9676 113.7910 114.0596 114.002 

F1830198 515595.700 4587756.791 105.972 67.4033 67.2624 67.0518 67.4207 67.585 

F1830206 512371.260 4566672.693 125.245 86.7307 86.5764 86.3470 86.7478 86.876 

F192H001 583345.624 4551410.907 94.432 56.9157 56.9265 56.6798 56.9183 56.92 

F1930236 578678.306 4551196.628 149.911 112.3232 112.3317 112.0916 112.3260 112.285 

F1930323 570424.763 4555167.559 178.587 140.7624 140.7457 140.6280 140.7529 140.757 

F1930389 573000.374 4549131.443 163.689 126.0048 126.0109 125.7910 126.0020 126.043 

F1930391 570620.095 4550651.912 163.057 125.2971 125.2971 125.1188 125.2939 125.364 

F193H039 563243.308 4582922.640 139.675 101.5765 101.3785 101.4860 101.6097 101.797 

F193H486 581756.938 4544683.757 45.223 7.7630 7.6798 7.4675 7.7796 7.888 

F193H586 577307.768 4565449.393 233.428 195.6041 195.5972 195.5271 195.5999 195.789 

F2020004 591900.512 4584744.270 279.522 241.5846 241.5771 241.7543 241.5708 241.553 

F202H412 587687.249 4566817.410 199.973 162.1975 162.1846 162.2167 162.1948 162.2 

F202H451 599878.923 4566805.997 261.294 223.5457 223.5536 223.7126 223.5407 223.586 

F202H473 596854.992 4559217.450 168.990 131.3841 131.3964 131.3975 131.3892 131.393 

G162H001 451627.392 4522175.590 104.197 64.4157 64.3837 64.4860 64.4187 64.404 

G1730203 483862.195 4510430.374 455.486 415.9984 416.0420 416.2900 415.9768 415.881 

G1730220 461121.385 4525121.936 109.878 70.2715 70.2772 70.3039 70.2710 70.269 

G173H025 465547.329 4527745.749 109.272 69.7403 69.7918 69.7600 69.7370 69.6 

G173H029 468132.251 4523361.066 117.336 77.7986 77.8239 77.8725 77.7982 77.616 

G173H063 492838.636 4523825.608 188.406 149.2235 149.2958 149.3210 149.1754 149.081 

G173H099 472339.859 4524720.921 146.254 106.7723 106.8343 106.8518 106.7647 106.626 

G1830061 502335.244 4518086.028 192.837 153.7559 153.7981 153.9122 153.6938 153.483 

G1830075 505005.957 4534637.121 176.233 137.4171 137.3717 137.3111 137.4036 137.244 
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Tablo 7.4 Test Noktalarına Ait Sonuçlar-3(birimler:metre) 

 

NOKTA ADI SAĞA YUKARI h 

H 

(Naturel 

Kübik) 

H 

(Kriging 

Point) 

H 

(Kriging 

Block) 

H 

(Ters  

Mesafe) 

H 

(Gerçek) 

E1810015 515705.147 4619996.599 239.649 200.6613 200.6532 200.6414 200.6473 200.658 

E1820036 513014.159 4633790.743 394.242 354.9741 354.9716 354.9729 354.9572 354.909 

E1830159 518748.717 4601742.611 178.985 140.3591 140.3565 140.3265 140.3184 140.448 

E1930083 558256.593 4612910.310 459.989 421.3218 421.3446 421.3158 421.3158 421.247 

F1720034_AN77 466059.929 4562949.962 70.967 31.7136 31.7124 31.7133 31.6907 31.748 

F1720036_AN166 461022.673 4560969.578 54.497 15.1416 15.1482 15.1532 15.1688 15.184 

F1730136_AN53 480482.375 4564193.050 106.443 67.4820 67.4752 67.4612 67.5035 67.425 

F1730177_AN125 473709.335 4551648.943 126.701 87.4742 87.5024 87.5001 87.4823 87.474 

F1830165 509355.007 4544472.846 152.670 114.0690 114.0462 114.0161 113.9962 114.002 

F1830198 515595.700 4587756.791 105.972 67.3992 67.4033 67.3706 67.2342 67.585 

F1830206 512371.260 4566672.693 125.245 86.7280 86.7307 86.6954 86.5802 86.876 

F192H001 583345.624 4551410.907 94.432 56.9201 56.9157 56.8318 56.8868 56.92 

F1930236 578678.306 4551196.628 149.911 112.3279 112.3232 112.2427 112.3253 112.285 

F1930323 570424.763 4555167.559 178.587 140.7490 140.7624 140.6946 140.7596 140.757 

F1930389 573000.374 4549131.443 163.689 126.0022 126.0048 125.9296 125.9668 126.043 

F1930391 570620.095 4550651.912 163.057 125.2930 125.2971 125.2260 125.2960 125.364 

F193H039 563243.308 4582922.640 139.675 101.6474 101.5765 101.5212 101.7176 101.797 

F193H486 581756.938 4544683.757 45.223 7.7745 7.7630 7.6765 7.7194 7.888 

F193H586 577307.768 4565449.393 233.428 195.5969 195.6041 195.5371 195.6014 195.789 

F2020004 591900.512 4584744.270 279.522 241.5655 241.5846 241.5216 241.6057 241.553 

F202H412 587687.249 4566817.410 199.973 162.1935 162.1975 162.1267 162.2293 162.2 

F202H451 599878.923 4566805.997 261.294 223.5396 223.5457 223.4739 223.5453 223.586 

F202H473 596854.992 4559217.450 168.990 131.3971 131.3841 131.3048 131.4216 131.393 

G162H001 451627.392 4522175.590 104.197 64.4224 64.4157 64.4418 64.4157 64.404 

G1730203 483862.195 4510430.374 455.486 415.9505 415.9984 416.0101 415.9199 415.881 

G1730220 461121.385 4525121.936 109.878 70.2683 70.2715 70.2887 70.2449 70.269 

G173H025 465547.329 4527745.749 109.272 69.7247 69.7403 69.7541 69.6543 69.6 

G173H029 468132.251 4523361.066 117.336 77.7919 77.7986 77.8126 77.7362 77.616 

G173H063 492838.636 4523825.608 188.406 149.1160 149.2235 149.2205 149.0371 149.081 

G173H099 472339.859 4524720.921 146.254 106.7526 106.7723 106.7837 106.6730 106.626 

G1830061 502335.244 4518086.028 192.837 153.6090 153.7559 153.7480 153.5399 153.483 

G1830075 505005.957 4534637.121 176.233 137.3827 137.4171 137.3964 137.3608 137.244 

 

 Tablolar incelendiğinde özellikle polinomal modellerden kübik, radyal bazlı 

modellerden MQ, NKS ve TPS ve Kriging yöntemlerinin ortometrik yükseklikleri 

belirlemede ki başarısı göze çarpmaktadır. Elde edilen tüm modellere ilişkin kontur 

haritaları Şekil 7.6 ve 7.7’de, benzer şekilde üç boyutlu yüzeylere ait grafikler de 

Şekil 7.8 ve 7.9’da gösterilmiştir. 
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Şekil 7.6 Kontur Haritaları-1 

 

  

Lineer Yüzey Biliner Yüzey 

 
 

Kuadratik Yüzey Kübik Yüzey 

  

Multikuadrik Yüzey Ters Multikuadrik Yüzey 
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Multilog Yüzey Thin PLate Spline Yüzey 

  

Naturel Kübik Spline Yüzey Mesafenin Tersi 

  

Point Kriging Block Kriging 

Şekil 7.7 Kontur Haritaları-2 
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Lineer Yüzey Biliner Yüzey 

 
 

Kuadratik Yüzey Kübik Yüzey 

  

Multikuadrik Yüzey Ters Multikuadrik Yüzey 

Şekil 7.8 Üç Boyutlu Yüzeyler-1 
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Multilog Yüzey Thin PLate Spline Yüzey 

 
 

Naturel Kübik Spline Yüzey Mesafenin Tersi 

  

Point Kriging Block Kriging 

Şekil 7.9 Üç Boyutlu Yüzeyler-2 

 

Kontur haritaları ve üç boyutlu yüzeyler incelendiğinde yine polinomal 

modellerden kübik, radyal bazlı modellerden MQ, NKS ve TPS ve Kriging 
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yöntemlerinin yüzeyleri daha yumuşak ve detaylı bir biçimde temsil ettiği 

söylenebilir. Bunun yanında sayısal olarak tüm modellerde test noktalarına ilişkin 

karesel ortalama hata değerleri hesaplanmıştır (Tablo 7.5). Sayısal değerler 

incelendiğinde grafiksel olarak göze çarpan modellerin karesel ortalama hata 

değerlerinin yaklaşık 10 cm civarında bir doğruluk sağladığı görülmektedir. Bunun 

yanında çalışma alanı için, polinomal modellerin derecesi arttıkça daha iyi bir sonuç 

elde edildiği söylenebilir. Radyal bazlı fonksiyonlar incelendiğinde multilog yöntemi 

hariç diğer yöntemlerin benzer ve 10 cm civarında bir karesel ortalama hata değeri 

verdiği görülmektedir. Kriging metodunun iki farklı uygulamasında ve ters mesafe 

alınarak yapılan uygulamada da yine yaklaşık 10 cm karesel ortalama hata değeri 

elde edildiği görülmektedir. 

Diğer yandan ülkemizdeki jeoit belirleme çalışmalarına bakıldığında ve 

mevcut durum göz önüne alındığında önceki modeller ve en son güncel jeoit modeli 

olan Türkiye Hibrid Jeoidinin 2009 (THG-09) doğruluk değerleri Şekil 7.10’da 

verilmiştir. Genel olarak, THG-09 jeoit modelinin ortalama doğruluğu ±8 cm olup, 

gravite verisinin seyrek olduğu dağlık, sınır ve sulak alanlarda modelin doğruluğu 

düşmektedir (Kılıçoğlu ve ark., 2011). Sayısal uygulama sonucunda elde edilen 

değerler ile THG-09 jeoit modelinin ortalama doğruluğu karşılaştırıldığında bulunan 

değerlerin uyumlu olduğu söylenebilir. Aradaki uyuşumsuzluğun veya daha iyi 

karesel ortalama hata değerlerinin elde edilememesinde yatan en önemli unsurlar 

çalışma alanı içerisindeki verilerin kalitesi, kullanılan dayanak noktalarının dağılımı 

ve ölçümler esnasında yapılan hatalar olarak düşünülmektedir.  
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Tablo 7.5 Test noktalarına ait karesel ortalama hatalar (birim: metre) 

YönteminAdı KareselOrtalama Hata 

Polinomal 

Enterpolasyon 

Liner ∓0.30 m 

Biliner ∓0.23 m 

Kuadratik ∓0.21 m 

Kübik ∓0.12 m 

Radyal Bazlı 

Fonksiyonlar 

Multikuadrik ∓0.11m 

İnverse Multikuadrik ∓0.16m 

Naturel Kübik Spline ∓0.09 m 

Multilog ∓0.28 m 

Thin Plate Spline ∓0.10 m 

Kriging 
Point Kriging  ∓0.11 m 

Block Kriging ∓0.14 m 

Mesafenin 

Tersi 
Mesafenin Tersi ∓0.11m 

 

 

 

Şekil 7.10. Türkiye’deki mevcut durum ve Türkiye Hibrid Jeoit Modeli – 2009 (THG-09) (Direnç ve 

ark., 2012)  
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8 SONUÇLAR 

En genel ifadeyle yükseklik kavramı yeryüzünde bulunan bir nokta ile 

başlangıç yüzeyi arasındaki mesafe olarak tanımlanabilir. Yükseklikler fiziksel ve 

geometrik anlamlı olabilirler. Genel olarak yeryuvarının gravite ile ilişkisi olan yani 

fiziksel anlamlı yüksekliklerin mühendislik projelerinde kullanılması daha uygundur. 

Bunun en önemli nedeni fiziksel yasalardır yani en basit ifadeyle suyun akış yönünün 

gravite alanı ile ilişkili olmasından kaynaklanmaktadır. Genel olarak ülkemizde iki 

çeşit yükseklik türü diğerlerine oranla daha yaygın kullanılmaktadır. Bunlardan ilki 

mühendislik projelerinde ve haritalama uygulamalarında, geometrik bir ifadeden çok 

fiziksel bir anlam taşıyan ve çekül eğrisi boyunca yeryüzündeki nokta ile jeoit 

arasındaki düşey uzaklık olarak tanımlanan ortometrik yüksekliklerdir. Diğeri ise 

yine birçok uygulamada hızlı, ekonomik vb. olmasından dolayı GPS yardımıyla elde 

edilen, fiziksel bir anlam taşımayan ve geometrik esaslara dayanan elipsoidal 

yüksekliklerdir. 

Diğer yandan, noktalardaki ortometrik yüksekliklerin belirlenebilmesi için 

yapılan nivelman ölçüleri oldukça zahmetli ve zaman alıcı bir işlemdir. Ayrıca, 

GPS’ten elde edilen elipsoidal yüksekliklerin mühendislik uygulamalarında 

kullanılabilmesi için bölgenin yükseklik datumunda tanımlanmış ortometrik 

yüksekliklere dönüşümü yapılmalıdır. Bu sebeplerden ötürü kolaylığı ve 

uygulanabilirliğiaçısından kullanıcılar jeoit yüksekliklerinin belirlenmesinde 

GPS/Nivelman yöntemini tercih etmektedirler. Yöntemelipsoidal yüksekliklerinin 

ortometrik yüksekliklere dönüştürülmesi esasına dayanır. Bu dönüşüm işlemi için 

genellikle polinomal, trigonometrik, radyal bazlı fonksiyonlar, kriging vb. modeller 

kullanılabilir. 

Bu çalışmada toplam on iki farklı enterpolasyon yöntemi Trakya Bölgesine 

dağılmış, ortometrik ve elipsoit yükseklikleri bilinen 175 adet nokta için 

uygulanmıştır. Bu noktalardan 143 tanesi modelin oluşturulmasında referans  noktası 

olarak alınırken, 32 nokta test noktası olarak kullanılmıştır. Dayanak noktaları için 

uyuşumsuz ölçüler testi yapılmış ve uyuşumsuz noktalar modelden çıkarılmıştır. 

Modelin oluşturulmasında polinomlarla enterpolasyon, radyal bazlı fonksiyonlar, 
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Kriging ve mesafenin tersi metotları kullanılmış ve sonuçler elde edilmiştir. Sonuçlar 

incelendiğinde çalışma alanında, radyal bazlı fonksiyonlardan olan natural kübik 

spline yönteminin (9 cm) diğer yöntemlere göre daha iyi sonuçverdiği görülmüştür. 

Diğer yandan düşük dereceli polinomenterpolasyon yöntemlerin yüksek dereceli 

yöntemlere göre daha kaba sonuçlar verdiği ve araziyi doğru bir biçimde 

yansıtmadığı tespit edilmiştir. Radyal bazlı fonksiyonlar incelendiğinde multilog 

yöntemi hariç diğer yöntemlerin benzer ve 10 cm civarında bir karesel ortalama hata 

değeri verdiği görülmektedir. Kriging metodunun iki farklı uygulamasında ve ters 

mesafe alınarak yapılan uygulamada da yine yaklaşık 10 cm karesel ortalama hata 

değeri elde edildiği görülmektedir.  

Çalışma bölgesi için yapılan tüm bu uygulamalar sonucunda; 

 polinom model derecesinin minimum 3. derece olmasının yüzeyi temsil 

etmede daha etkin olacağı 

 radyal bazlı fonksiyonlardan multilog yöntemi hariç diğer yöntemlerin 

neredeyse benzer sonuçlar verdiği ve bunların herhangi birinin yükseklikleri 

belirlemede kullanılabileceği 

 Kriging ve Mesafenin tersi ile ağırlıklandırma yöntemlerinin de RBF 

yöntemleri ile benzer sonuçlar verdiği 

söylenebilir. Kısacası iyi olarak belirtilen yöntemler arasında çok büyük farklar 

olmamasına rağmen, test bölgesinde hesap edilen sonuçlara göre natural kübik spline 

yönteminin diğer yöntemlerden daha iyi sonuç verdiği elde edilmiştir. Genel olarak 

sonuçlar incelendiğinde, beklenenin altında bir doğrulukta kaldığı görülmektedir. Bu 

durumun muhtemel sebeplerini, çalışma alanının engebeli bir yapıya sahip olması, 

kullanılan veri kalitesinin tam olarak bilinememesi ve dayanak noktalarının 

dağılımındaki düzensizlikler olarak sıralamak mümkündür. 
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