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OZET

YUKSEK LiSANS TEZi

FARKLI ENTERPOLASYON TEKNIKLERIi KULLANILARAK YEREL JEOIT
BELIiRLEME

Kenan TETIK

Necmettin Erbakan Universitesi Fen Bilimleri Enstitiisii
Harita Miihendisligi Anabilim Dah

Damisman: Dog. Dr. Serkan DOGANALP
2018, 89 Sayfa

Jiiri
Doc¢. Dr. Serkan DOGANALP
Prof. Dr. ibrahim KALAYCI
Prof. Dr. Ekrem TUSAT

GPS son asirda diinya tarihine kazandirilmis en dnemli buluglardan birisidir. GPS sivil ve askeri
amaglara uygun olarak her tiirlii kosulda kesintisiz ve hizli dlgiimii amaclamaktadir. Klasik 6lgme
yontemlerine gére GPS her tiirli hava sartinda kolay uygulanabilir olmasi ve zamandan tasarruf
saglamasi sebebiyle one ¢ikmaktadir. Bu avantajlarina ragmen tam olarak matematiksel bir modele
oturtulamayan Diinya’nin sekli nedeniyle yatay koordinatlar miihendislik amag¢li uygulamalarda dogrudan
kullanilirken diisey koordinatlar dogrudan kullanilamamaktadir. Cilinkii GPS ile elde edilen yiikseklikler,
elipsoide gore belirlenmis elipsoidal yiiksekliklerdir. Bu yiiksekliklerin uygulamada kullanilan ortometrik
yiisekliklere doniistiiriilmesi gerekmektedir. Bu doniisiimii saglamak amactyla ortometrik yiikseklikler ile
elipsoidal yiikseklikler arasindaki farkin yani jeoit yiiksekliklerinin bilinmesi/modellenmesi
gerekmektedir. Jeoit yiiksekliklerinin modellenmesi genellikle polinomlar, radyal bazli fonksiyonlar ve
kriging enterpolasyonu gibi enterpolasyon yontemleri yardimiyla gergeklestirilir. Bu tez calismasi
kapsaminda polinomal yontemler, radyal bazli fonksiyonlar ve kriging yontemlerini igeren toplam on iki
adet farkli enterpolasyon yontemi ele alinmigtir. Uygulama kapsaminda Trakya Bélgesine dagilmus,
ortometrik ve elipsoit yiikseklikleri bilinen 175 adet nokta kullanilmistir. Bu noktalardan 143 tanesi
modelin olusturulmasinda dayanak noktasi olarak geriye kalan 32 nokta ise test noktasiolarak
siniflandirilmistir. Yapilan modellemeler sonucunda test noktalarina ait karesel ortalama hata degerleri
hesaplanmig ve gerekli grafikler elde edilmistir. Sonuglar incelendiginde, yiiksek dereceli polinomlar ile
multikuadratik, thin plate spline, natural kiibik spline ve kriging yontemlerinin yaklasik 10 cm civarinda
dogruluk sagladig1 gozlenmistir.

Anahtar Kelimeler:Déniisiim, Enterpolasyon, GNSS/Nivelmani, Jeoit
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LOCAL GEOID DETERMINATION BY USING DIFFERENT
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GPS is one of the most important inventions of the world in the last century. GPS is intended for
continuous and rapid measurement in all conditions in accordance with civil and military purposes.
According to classical measurement methods, GPS stands out because of being easily applicable in all
kinds of weather conditions and saving time. Despite these advantages, the horizontal coordinates are
used directly in engineering applications, the vertical coordinates can not be directly used due to the
shape of the Earth which can not be fully mathematically modeled. Because the heights obtained by GPS
are the ellipsoidal heights determined by the ellipsoid. These heights should be transformed into
orthometric heights used in practice. In order to achieve this transformation, the difference between the
orthometric heights and the ellipsoidal heights, ie the geoid heights, must be known / modeled. The
modeling of geoid heights is usually performed by interpolation methods such as polynomials, radial
basis functions and kriging interpolation. In this study, twelve different interpolation methods including
polynomial methods, radial basis functions and kriging methods are discussed. In the scope of
application, 175 points which known orthometric and ellipsoid heights were used in Trakya region. Of
these points, 143 as reference points and the remaining 32 as test points were classified. The root mean
square error values of the test points were calculated and the necessary graphs were obtained. When the
results are examined, it is observed that high-order polynomials and multiquadratic, thin plate splines,
natural cubic splines and kriging methods provide accuracy of about 10 cm.

Keywords: Transformation, Interpolation, GNSS/levelling, Geoid
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1  GIRIS

GPS teknolojisi uzay yariginin hiikiim siirdiigii soguk savas yillarinda diinya
tarihine kazandirilmis en 6nemli buluslardan birisidir. TRANSIT sistemine alternatif
olarak gelistirilen GPS, 1980’li yillarda sivil kullanima agilana kadar askeri amaglar
icin kullanilmigtir. 1 Mayis 2000 yilinda gilivenlik amagli uydu sinyallerinin
bozulmasini amaglayan se¢imli dogruluk erisimi (Selective Avability)’nin
kaldirilmasiyla GPS sivil kullanicilar i¢inde yiiksek dogruluk saglar hale gelmistir.
Kontrol boliimii, kullanici boliimii ve uzay boliimii olmak {izere {i¢ ana boliimden
olusan GPS’in en 6nemli avantajlar1 tim hava kosullarinda, siirekli olarak zaman ve
mekandan bagimsiz yliksek dogrulukta ve kisa siirede ii¢ boyutlu koordinat elde

edilmesi olarak siralanabilir.

GPS’e benzer sekilde bazi iilkeler farkli zamanlarda ve yoriingelerde konum
belirlemek amaciyla kendi sistemlerini gelistirmislerdir. Bu sistemler genel olarak,
GLONASS, Galileo ve BeiDou/Compass olarak siralanabilir. Bu sistemlerin
olusturdugu global sisteme GNSS (Global Navigation Satellite System) adi
verilmektedir. Bu sistemlerden baska Amerika’nin genis alan biyiitmeli sistemi
(WAAS), Japonya’nin navigasyon sistemi (MSAS), Hindistan’in yer biiylitmeli
navigasyon sistemi (IRNSS/GAGAN), Avrupa Birligi’nin Avrupa yersabit
navigasyon kapsama servisi (EGNOS) ve Japonya’nin kuazi zenit uydu sistemi

(QZSS) gibi ¢ok sayida uydu bazli alan biiyiitme sistemleri (SBAS) bulunmaktadir.

GNSS’te o6lgmeler referans alinan elipsoit {izerinde yapilmaktadir. Elipsoit
elipsin kii¢iik yar1 ekseni etrafinda dondiiriilmesiyle olusan matematiksel bir sekildir.
Miihendislik uygulamalarinda GNSS ile elde edilen yatay koordinatlar dogrudan
kullanilabilirken, diisey koordinatlar kullanilamamaktadir. Elde edilen diisey
koordinatlarin uygulamada kullanilan, jeoite gore belirlenmis ortometrik
yiiksekliklere doniistiiriilmesi gerekmektedir. Hassas olarak belirlenmis jeoit,

elipsoidal ve ortometrik yiiksekliklerin doniisiimiinde kullanilan ara bir yiizeydir.

Jeoit matematiksel olarak tanimi zor bir sekildir. Literatiirde jeoit modelinin
belirlenmesi icin gesitli yontemler mevcuttur. BOHHBUY ’de de jeoidin belirlenmesi

i¢in gesitli 6l¢ii ve hesap yontemleri onerilmistir.



2 LITERATUR TARAMASI

Radyal bazli fonksiyonlarla ilgili olarak yapilan ilk c¢alisma 1968 yilinda
Roland Hardy tarafindan Multikuadrik yiizey admi verdigi calismasinda
yayinlanmistir. Daha sonralar1 bu yontem Franke, Michelli ve Kansa tarafindan
diferansiyel denklemlerin ¢oziimiinde kullanilmaya baslanmis ve yoOntem ilave
kosullarla genellestirilerek radyal bazli fonksiyonlar adini almistir ve yontem
matematik ve jeodezinin yani sira tip, elektrik-elektronik, makine, insaat gibi bir ¢ok

bilim dalinda basariyla uygulanmistir.

Mustafa Yanalak 1997 yilinda “Sayisal Arazi Modellerinden Hacim
Hesaplarinda En Uygun Enterpolasyon Yonteminin Arastirilmast” adli ¢aligmasinda
multikuadrik enterpolasyon, polinomlarla ve agirlikli ortalama ile enterpolasyona
deginmistir. Bu c¢alismada multikuadrik enterpolasyonla hacim hesabi; kayan
yiizeyler ve agirlikli ortalama ile hacim hesabi ile kiyaslanmis ve orantisal hatalar
karsilagtirildiginda multikuadrik enterpolasyon tiim araziler i¢in iyi sonuclar verdigi

gbzlenmistir.

Abdiilkerim Pekin 1999 yilinda yaptifi “Acik Isletme Asamak Tenorlerinin
Kriging Tahminlerinde Istatiksel Dagilim Modellerinin Etkileri” adli calismada
Kriging yontemine yer vermistir. Cengizhan Ipbiiker tarafindan 1999 yilinda yapilan
calismada radyal bazli fonksiyonlar “Uydu Goriintlilerinin Doniisiimii” amaciyla
kullanilmistir. Hardy tarafindan bulunun multikuadrik enterpolasyon ydnteminin
uydu goriintiilerinin doniisiimii problemine uyarlanmis sekliyle biiyiik distorsiyonlara
sahip olsalarda diger yontemlere gore daha iyi sonuglar verdigi goriilmiistiir. Sekil

parametresi i¢in Fogel’in, Schul’min ve Mitel’man Onerilerine yer verilmistir.

Hakan Akg¢in 2002 yilinda yayinladigi makalede Kriging enterpolasyonu
lizerine deneysel bir uygulama yapmustir. Ercan Oztemel 2003 yilinda yapay zeka ve

yapay sinir aglarini agikladigi bir kitap yaymlamaistir.

2004 yilinda Esentiirk “Bir Dizel Motorunun Performans Testi I¢in Tki Asamali

[statistiksel Motor Haritalama Modellerinin Gelistirilmesi” adli tezinde radyal bazli



fonksiyonlart kullanmigtir. Sekil parametresinin dogru se¢ildiginde sonuglarin iyi

oldugunu savunmustur.

2005 yilinda Mehmet Yilmaz tarafindan yaymlanan calismada Istanbul
Metropolitani icin jeoit arastirmasi yapilmistir. Hakan Uyar 2005 yilinda yaptig
calismada jeoistatistik hakkinda bilgi vermistir.

2007 yilinda Servet Yaprak tarafindan yapilan “Kriging Yonteminin Geoit
Yiizeyi Modellemesinde Kullanilabilirliginin Arastirilmas: ve Varolan Yo6ntemlerle
Karsilastirilmas1” adli  ¢alismada Kriging yontemi ve diger enterpolasyon

yontemlerine yer verilmistir.

Wilna Du Toit tarafindan 2008 yilinda yayinlanan tezde radyal bazh
fonksiyonlarla enterpolasyon anlatilmistir. Tezde sekil parametresinin sonuclara
etkisi grafiklerle gosterilmistir. Marshall Universitesinde 2009 yilinda Maggie E.
Chenoweth tarafindan yapilan ¢alismada sekil parametresi i¢in ¢aligmalar yapilmig

ve sonuglar irdelenmistir.

Nazan Yilmaz tarafin 2011 yilinda “Tiirkiye I¢in Farkli Yontem Ve Verilerle
Belirlenen Jeoidlerin Karsilastirilmast” adl1 ¢aligmada ¢esitli enterpolasyon teknikleri
ele alinmistir. Bu ¢alismada ¢esitli yontemlerle olusturulan jeoitler istatiksel olarak
karsilagtiritlmis Tirkiye i¢in en uygun global modelin EGMOS oldugu kanaatine
varilmigtir. Ayrica c¢esitli jeoit modellerinde daglik bolgelerde ve denize yakin
yerlerde sapmalarin daha yiiksek oldugu gozlemlenmistir. Giinlimiize yaklastikca
ilerleyen teknoloji ile birlikte jeoit modellerinin daha uyusumlu oldugu
gozlemlenmistir. Sevim Bilge Kegeci 2011 yilinda yaptigi “Sayisal Yiikseklik
Modellerinin ~ Olusturulmasinda  Kullanilan ~ Enterpolasyon  Yontemlerinin
Karsilagtirllmas1” adli ¢alismada enterpolasyon yontemlerini sayisal yiikseklik

modellerini olusturulmasi i¢in kullanmis ve sonuglar1 birbiriyle karsilastirmistir.

Leyla Cakir 2012 yilinda yaptig1 ”Ortometrik Yiiksekliklerin Dolayli Olarak
GPS Gozlemlerinden Elde Edilmesinde Kullanilan Yéntemlerin Irdelenmesi” adl
calismasinda radyal bazli fonksiyonlara yer vermistir. Bu calismada radyal bazli
fonksiyonlar hem kendi i¢cinde hem de diger yontemlerle istatiksel olarak mukayese

edilmistir. Radyal bazli fonksiyonlarda en iyi sonuglarin multikuadrik fonksiyonla



alindigr gozlemlenmistir. Caligmada sekil parametresinin sonuglara 6nemli etkisi
oldugu bildirilmistir. Radyal bazli fonksiyonlar ile polinomlarla enterpolasyon kendi
arasinda kiyaslandiginda radyal bazli fonksiyonlarin daha iyi sonuglar verdigi
goriilmiistiir. Burcu Doganalp 2012 yilinda yaptigi “Insan Kaynaklar1 Se¢me
Siirecinde Bulanik Mantik Yaklagimi: Gorgiil Bir Arastirma” adli ¢aligmada Bulanik
Mantik hakkinda detayli bilgi vermistir.

Cemal Ozer Yigit 2013 yilinda yaptig1 “Elipsoidal Yiiksekliklerin Ortometrik
Yiikseklige Doniisiimiinde Kullanilan Enterpolasyon Y ontemlerinin
Karsilagtirllmasi” adli ¢alismada gesitli enterpolasyon yontemlerini karsilagtirmis ve
sayisal uygulama ile kullanilabilirliklerini irdelemistir. Selahattin Bolat 2013 yilinda
yapt1§1 Lokal Jeoid Belirleme Yontemleri: Samsun ili Ornegi adli galismada Samsun

ili i¢in jeoit arastirmasi yapmistir.

Sentiirk ve Ince tarafindan 2014 yilinda yayinlanan ¢alismada jeoit belirlemede
kullanilan ¢esitli yontemler istatiksel olarak kiyaslanmis ve multikuadrik yontemin
iyl sonuglar verdigi goriilmiistiir. 2014 yilinda Szu ve arkadaslar1 tarafindan
Tayvan’da yapilan caligmada lokal jeoit belirlemenin gravimetrik yontemlere gore
avantajlart incelenmistir. 2014 yilinda Selma Zengin Kazanci tarafindan yapilan
calismada Kriging yontemi arastirilmistir. 2014 yilinda Olgu Aydin tarafindan
yayinlanan calismada Tiirkiye’de yillik ortalama toplam yagisin kriging yontemiyle
belirlenmesi hedeflenmistir. Berna Bulgurcu 2014 yilinda yaptig1 “Sinirsel Bulanik
Mantik Yaklagimi Ile Ongérii Modellemesi: Issizlik Orani igin Tiirkiye Ornegi” adli

calismada Yapay sinir aglarina yer vermistir.

2015 yilinda Ahmet Kayabasi “Kompakt Mikroserit Antenlerin Rezonans
Frekansinin Yapay Sinir Aglar1 Ve Bulanik Mantik Sistemine Dayali Uyarlanir Ag
Kullanarak Hesaplanmas1” adli ¢alismada yapay sinir aglari ve bulanik mantik

hakkinda bilgi vermistir.

2016 yilinda Murat Cakar yayinladigi calismada Kriging, polinomlarla
enterpolasyon, agirlikli ortalama ile enterpolasyon ve multikuadrik enterpolasyon
yontemlerine yer vermis ve bunlart C# programi iizerinden programlamayi

amaclamistir. 2016 yilinda Giillii ve arkadaglar1 tarafindan yapilan ¢alismada farkli



yontemlerle elde edilen yerel jeoit modelleri karsilagtirilmistir. Karesel ortalama
hatalar dikkate alinarak yapilan calismada RBF ile enterpolasyonun sonuglar
acisindan uygun oldugu goriilmistiir. Sarra, Michelli ve Kansa tarafindan
diferansiyel denklemlerde kullanilmak amaciyla 62 parametresinin belirlenmesi

amactyla degisik yillarda gesitli calismalar yapilmistir.

Biilent Haznedar 2017 yilinda yaptigi “Benzetilmis Tavlama Algoritmasi ile
Adaptif Ag Tabanli Bulanik Mantik Cikarim Sisteminin (Anfis) Egitilmesi” adl
calismada bulanik mantik hakkinda bilgi vermistir. Enver Cakin 2017 yilinda yaptigi
“Ulkelerin Inovasyon Performansinin Olgiilmesinde Yapay Sinir Aglari, Bulanik
Dematel Tabanli Analitik Ag Siireci Ve Agirlik Kisith Veri Zarflama Analizi” adli

calismada yapay sinir aglar1 ve bulanik mantik hakkinda bilgi vermistir.



3  YUKSEKLIK SISTEMLERI

Gliniimiizde {i¢ boyutlu konum bilgisine savunmada, planlamada, cesitli
yapilarin konumlandirilmasinda ve insaatinda ihtiya¢ duyulur. U¢ boyutlu konum
yatay koordinatlarin yaninda elde edilen diisey koordinatlarla saglanir. Yani

yiikseklik bilgisi tiglincii boyutu kazandirir.

Homojen bir kiire kendisinden esit mesafedeki tiim noktalarda esit ¢ekim
potansiyeli olusturur. Esit potansiyelli noktalar1 birlestirdigimizde es potansiyelli
ylizey meydana gelir. Yiikseklik denilince akla bir es potansiyelli yiizeyden baslangi¢

alinan bagka bir yiizeye olan mesafe anlagilir.

Jeoit baslangic olmak iizere, farkli yollardan gidilerek bir noktanin yiiksekligi
nivelmanla belirlense, sonuglarin esit olmadig1 goriiliir. Nivo yiizeyleri birbirlerine
paralel olmadiklar1 i¢in nivelman sonuglar1 yola bagimhdir. Yiiksekliklerin agik ve
kesin bigimde tanimlanmasi i¢in yalnizca yiikseklik farklarmin olgiilmesi yeterli
olmaz; nivelman yollar1 boyunca agirlik (yergcekimi ivmesi) degerlerinin de
Olciilmesi gerekir. Problemin ¢oziimii i¢in yiikseklikler, ya potansiyel degerlerden
dontistiirtiliir ya da odlgiilen ylikseklik farklarina bir diizeltme getirilerek elde edilir

(Demirel, 1983).

Yiikseklik tanimlanmis bir referans ylizeyinden, referans yiizeyi normali
boyunca olan uzakliktir. Bu uzaklik segilen referans yiizeyi ile nokta arasindaki en
kisa mesafedir. Yiikseklik fiziksel ya da geometrik anlamli olarak tanimlanabilir.

Jeodezide buna gore olusturulan cesitli ylikseklik sistemleri mevcuttur.

3.1 Jeopotansiyel Yiikseklik

Yeryiiziinde bir A noktasinin W, potansiyelinin jeoidin W, potansiyelinden
olan farkina o noktanin jeopotansiyel sayis1 denir. Kgal*metre cinsinden ifade edilir
ve fiziksel bir biiyiikliiktiir. Geometrik bir anlam1 olmasa da yoldan bagimsizdir ve

yiikseklikler i¢in dogal bir dl¢iittiir. Jeoidin jeopotansiyel sayisi sifira esittir.



Ca=Wy—Wy=— [ dW = [ gdn (3.1)
C, = A noktasindaki jeopotansiyel yiikseklik
W, = A noktasinin gravite potansiyeli
W, = Jeoidin gravite potansiyeli
dW = Diferansiyel anlamda potansiyel farki

dn = Diferansiyel anlamda ylikseklik farki

g = Diferansiyel anlamda yiikseklik farkinin olusturdugu gravite
3.2 Dinamik Yiikseklikler

Bir A noktasinin jeopotansiyel sayisinin sabit bir y§> normal gravite degerine
boliinmesiyle uzunluk birimine gegilir. Boylece dinamik yiikseklik elde edilmis olur.
Jeoidin dinamik yiiksekligi sifira esittir. Her bir nivo yiizeyine karsilik bir dinamik
yiikseklik karsilik gelir. Geometrik olarak anlamsizdir.

A ve B noktalarindaki dinamik yiikseklik

din _ Ca . gdin _ €B
HA - .45 ) HB - .45 (32)
Yo Yo

olur. Bunlar arasindaki fark igin ise,
Hgin - Hflﬁn = AHfli,gl = (Cp — CA)/YgS = ACA.B/YgS (3.3)

yazilabilir. Burada Ca ve Cg, A ve B noktalarindaki jeopotansiyel yiiksekliklerdir.
3.3 Normal Yiikseklikler

Yeryliziiniin gergek gravite alanimin normal gravite alani oldugu, yani W=U,

g=y, T=0 oldugu kabul edilsin. Iste bu varsayima karsilik gelen ortometrik

yiiksekliklere normal yiikseklik ad1 verilir ve HY = 4 /]7 esitligi ile ifade edilir.



W= Gergek gravite potansiyeli

U= Normal gravite potansiyeli

T= Bozucu potansiyel

HY = Normal Yiikseklik

C= Jeopotansiyel Say1

y= Cekiil egrisi boyunca olan ortalama normal gravitedir ve iteratif olarak asagidaki

esitlikten ¢oziiliir.

_ w?ab . o HN HV\?

y—y0[1—<1+f+W—2fsm <p)7+(7)] (3.4)

Burada y,, ayn1 ¢ enleminde elipsoit tizerindeki normal gravite, ¢ jeodezik
enlem, f basiklik, @ yerin agisal déonme hizi, a ve b elipsoidin biiylik ve kiigiik yar1

eksenleri, kM Newton ¢ekim sabiti ile yerin kitlesinin ¢arpimidir (Demir ve Cingdz,

2002).
3.4 Ortometrik Yikseklikler

Yeryliziinde bir noktanin ¢ekiil egrisi boyunca jeoide uzakligina ortometrik
yiikseklik denir. Ortometrik yiikseklik, noktanin bulundugu yerdeki gravite degerine
baglidir. Ortometrik yiikseklik kavrami geometrik bir anlamdan daha ¢ok fiziksel bir

anlam tasir.

H = (3.5)

Qo

H= Ortometrik yiikseklik
C= Ortometrik yiiksekligi bulunmak istenen noktanin jeopotansiyel sayisi
g = Jeoit ile nokta arasinda c¢ekiil egrisi boyunca gravitenin ortalama degeridir.

g degerini hesaplarkan yerin icindeki g gravite degeri Olgiilemediginden, yiizeyde

Olciilen gravite degerleri Poincare ve Prey yontemiyle indigenir. g degeri



g =g+ 0.0424H

esitligi ile hesaplanabilir. Burada g, gal; H, km cinsindendir (Berber, 2005).

3.5 Elipsoidal Yiikseklikler

Yeryiiziinde bir noktanin elipsoit normali boyunca elipsoide olan uzakligina
elipsoidal yiikseklik denir. Yerin gercek gravite degeri ile iliskili olmadigindan
fiziksel bir anlam tagimaz yani geometrik anlamlidir. Elipsoidin boyutlar1 ve datumu
ile iligkilidir. Elipsoidal yiikseklikler (h) ve ortometrik yiikseklikler (H) arasinda N

jeoit yiiksekligi olmak iizere,
N=h—H (3.6)

esitligi vardir.
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4  JEOIT BELIRLEME

Listing’e gore jeoit kismen durgun okyanus yiizeyleri ile de gosterilebilen,
karalarin altindan devam ettigi varsayilan es potansiyel yiizeydir. Jeoidi belirleyen en
onemli unsur yeryuvarinin igindeki Kkitlelerin yogunlugudur. Kitle yogunlugunun
degistigi yerlerde ylizeyin egriligi siireksizlesir. Bu nedenle jeoit karmasik ve
matematiksel tanimi ¢ok zor olan bir yilizeydir (Yilmaz, 2005). Jeoit belirleme
jeodezinin Onemini yitirmeyen konularindandir. Ciinkii uydularla elde edilen
elipsoidal yiikseklikler ile nivelman sonucunda elde edilen ortometrik yiikseklikler

arasinda (3.6) formiilii geregi dogal bir bag vardir.

Elipsoit ise elipsin kiiciik yar1 ekseni etrafinda dondiiriilmesiyle elde edilen
matematik sekildir. Elipsoit ile jeoit normal olarak ¢akismamaktadir. Bunun nedeni,
elipsoidin matematiksel olarak tanimlanmasina karsilik jeoidin fiziksel bir yiizey
olmasidir. Jeoit ile elipsoit arasindaki farkliliklar, yeryuvarinin gravite alanindaki

degisimlerini yansitmaktadir.

Genel olarak jeoidin belirlenmesi denilince anlasilmasi gereken; yeterli sayida
noktada, jeoide ait W (gercek gravite potansiyeli), H (ortometrik yiikseklik), g
(gercek gravite), @, A (astronomik enlem ve boylam) biiyiikliikleri ile segilen
referans elipsoidine ait U (normal ya da standart gravite potansiyeli), h (elipsoit
yiiksekligi), y (hormal ya da standart gravite), ¢, (jeodezik enlem ve boylam)
biiyiikliiklerinin  karsilikli  farkindan olusan T (bozucu potansiyel), N (jeoit
yiksekligi), Ag (gravite anomalisi), n, {(cekiil sapmasi bilesenleri) yaklasim
miktarlarmin belirlenmesidir. Bu yaklasim miktarlari, elipsoit ve jeoit arasindaki
farklilasgmanin seklini ve biylikliglinii gosterir. Pratikte jeoidin belirlenmesi

genellikle N jeoit yiikseklikleri yardimiyla yapilir.

4.1 Jeoit Belirleme Yontemleri

Jeoidin belirlenmesi yatay konumu bilinen bir noktada jeoit yiiksekliginin
sayisal ve analog olarak elde edilmesini saglayacak bicimde modellenmesidir

(Y1lmaz, 2005; Yaprak, 2007).
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Jeoit modelleri bolgesel ve global olarak belirlenebilir. Jeoit belirleme
yontemleri tarihsel olarak kullanilan verilere ve gelistirilen alet ve bilgisayar
imkanlarina gore bir gelisim gdstermistir. Ilk jeoit belirleme, bir noktadaki
astronomik enlem ve boylam ile ayn1 noktadaki jeodezik enlem ve boylam arasindaki
farklar1 (gekiil sapmalarini) kullanarak jeoit belirlemeye dayanan astro-jeodezik
yontemle yapilmistir. 1970’11 yillarin baslarinda bilgisayarin hesaplarda kullanilmaya
baslamasiyla birlikte diisiik dereceli jeopotansiyel modeller gelistirilmis ve jeoit
belirlenmistir. 1980°1i yillarda gravite verilerinin elde edilmesi ve bilgisayarlar
sayesinde hizli Fourier transformasyonu kullanilarak jeoit belirlenmistir. 1990’1
yillara gelindiginde konum belirlemede uydu tekniklerinin kullanilmasiyla
GPS/Nivelman yontemi jeoit belirlemede yaygin olarak kullanilmaya baslanmistir

(Yilmaz ve Arslan, 2005).

Jeoit belirleme yontemleri, eldeki mevcut verilere ve kullanilan modellere gore
siiflandirilabilir. Jeoit belirleme yontemleri, kullanilan veriler ve modeller dikkate

alinarak asagidaki sekilde siniflandirilir (Sjoberg, 1994).

1) Astro-jeodezik yontemle jeoit belirleme
2) Gravite degerlerine gore jeoit belirleme
a) Stokes fonksiyonu ile
b) Hizli Fourier transformasyonu ile
i) Bir boyutlu hizli Fourier transformasyonu ile (1d-fft)
i) Iki boyutlu hizli Fourier transformasyonu ile (2d-fft)
3) Sayisal yogunluk yontemine gore jeoit belirleme
4) Jeopotansiyel yaklasimi ile jeoit belirleme
5) Kombine yontemle jeoit belirleme (remove - restore)
6) GPS/Nivelman yontemine gore jeoit belirleme
a) Agirlikli aritmetik ortalama ile enterpolasyon
b) Polinomlarla enterpolasyon
¢) Multikuadrik enterpolasyon
d) Ucggenler aginda lineer enterpolasyon
e) Sibson enterpolasyonu
f) Non - Sibson enterpolasyonu

g) Jeoistatistik enterpolasyon yontemleri ile jeoit belirleme
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h) Kollokasyon modelleme ile jeoit belirleme
i) Sonlu elemanlar yardimu ile jeoit belirleme

J) Bulanik mantik ile jeoit belirleme

Global jeoit modelleri uzun dalga boyunda jeoit degisimlerini gostermekte
mutlak dogruluklar1 diisiik olup yerel etkileri icermemektedir. Bu sebeple
GPS/Nivelman yontemi kiiciik (lokal) alanlarda jeoit belirlemek amaciyla kullanilir.
Yiiksekliklerin belirlenmesinde nivelman islemi hem zaman alan hem de yorucu bir
islemdir. Bu sorunun GPS ile ¢o6ziilmesi icin jeoit ondiilasyonunun hassas bir
bicimde belirlenmesi gerekir. GPS/Nivelman olg¢iileri ile elipsoidal ve ortometrik
yiikseklikleri hassas bir sekilde belirlenmis noktalar1 kapsayan bir ¢alisma alaninda,
cesitli yontemler ile jeoidi en iyi temsil eden analitik bir jeoit ylizey gegcirilmesi ara

noktalarda jeoit ondiilasyonlarinin kolaylikla hesaplanmasini saglar.

4.2 Polinomlarla Enterpolasyon

Polinomlarla enterpolasyon enterpolasyon yontemleri igerisinde en sik
kullanilan yontemlerden bir tanesidir. Bu enterpolasyon tekniginin amaci araziyi tek

bir fonksiyonla ifade etmektir (Ayar, 2009).
Tek degiskenli bir fonksiyonun matematiksel ifadesi;
P(x)=aux"+ap_x" 1+ +ax*+ax+ay,(m€EN; ay ...a, € R) (4.1)

seklindedir. Bu polinomda en yiiksek dereceli terimin derecesi n, polinomun
derecesidir. n. dereceden bir polinom, (n-1) tane kirilmaya ugrar. aybu polinomda
sabit sayidir (Yigit, 2003).

Bir yiizey genellikle iki degiskenli yiiksek dereceden polinomlarla ifade
edilir. Yiizeyin olusturulmasinda ortogonal ve ortogonal olmayan polinomlar
kullanilabilir. Yiizeyin belirlenmesi ic¢in yiiksek katsayili polinom segilmesi
Olusturulan yiizeyin daha dogru olacag anlamina gelmez. Yani yiiksek dereceli
polinom se¢ilmesi hesap ylkiinii artiracaktir ve araziyi temsil niteligini kayip

ettirecek sekilde gereksiz salinimlara neden olacaktir.
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Tablo 4.1 Polinomlarla Enterpolasyon (Yigit, 2003)

ORTOGONAL ORTOGONAL OLMAYAN
n k n n
Genel Formiil Z Z a;;x"y’ Genel Formiil Z a;jx‘y’!
k=0 j=k=i k=0 j=0
i=0
n=1 i¢in _ n=1 i¢in _
Lineer N(X,Y)=a, + a1y + a,x bilineer N(X,Y)=a, + a;y + a,x + asxy
n=2 i¢in N(X.Y)=ao + a;y + axx + azx? + | n=2igin N(X.Y)=ay + a1y + ayx + azx? + a,xy +
quadratik a,xy + asy? biquadratik asy? + agx?y + a;xy? + agx’y?
N(XY)=a, + a;y + a,x + azx? + a,xy +
- 2 0T 2 3 4
n=3 icin (’:l(;('y)_i_ ZO tﬁﬁt?f:;‘;x ++ n=3 igin asy? + agx?®y + a;xy? + agx?®y? +
kiibik a4x§2 + Cslyxy3 e ey bikiibik asy® + ajoxy® + a; x?y* + a;x° +
8 ? a13x°y + a1 x®y? + agsx’y?

Esitliklerde; n polinomun derecesi, a;;polinomun bilinmeyen katsayilari, (x,y) diizlem koordinatlar:

Yiizeyin olusturulmasinda quadratik yiizey secilmesi durumunda genel
formiilde yer alan k degeri 0,1 ve 2 degerlerini alacaktir. Bu durumda yiizey tabloda
gosterilen denklem ile ifade edilir. Denklemin ¢6ziimii ig¢in en az 6 tane dayanak
noktasina ihtiya¢ vardir. Dayanak nokta sayis1 6’dan fazla ise ¢oziim i¢in En Kiiciik

Kareler metodu kullanilir. ifadenin matris gdsterimi

a1 [T y1 x1 X2 Xiyi Y12] Ny
x=|F|a=|t Y2 % o0t oy vt N (42)
as 1 ys X5 Xs® Xg¥s Ys° Ns

X bilinmeyen katsayilar vektori, A katsayilar matrisi, L ol¢li vektorii olmak

lizere
N=ATA,n= A"L ,x=N"1n (4.3)

esitlikleri yazilabilir. Polinomun bilinmeyen katsayilar1 hesap edildikten sonra

istenen noktalardaki jeoit ondiilasyon degerleri esitligi ile bulunabilir.

4.3 Agirhkh Ortalama Yontemi fle Jeoit Belirleme

Uygulama kolayligi nedeniyle en c¢ok kullanilan yontemlerden birisidir.

Enterpolasyon noktasinin yiiksekligi, g¢evresinde bulunan dayanak noktalarinin
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agirhikli ortalamasi olarak hesaplanir. Her bir dayanak noktasmnin yiiksekligine

verilecek olan agirlik degeri o noktanin enterpolasyon noktasina olan uzakligin bir

fonksiyonudur (Yanalak, 1997). Agirlik degerleri P;;

1
Pi=—i=123..mk=1234
i

esitligi ile veya

1
a2
(#)

e;

Pi=

i=123..mk=1234

olarak verilir. Burada,
m : Dayanak nokta sayist,

d;: Dayanak noktas1 ile enterpolasyon noktasi arasindaki

degerini(y/ (o — x)? + (i — ¥)?)

(x;, y;): Dayanak noktasinin koordinatlarini
(xe, ye): Enterpolasyon noktasinin koordinatlarini gdsterir.
Agirlikli ortalama yontemine gore bir noktanin jeoit yiiksekligi

iz NiP;

) =S
E 7i11pi

seklindedir. Formiilde:

Ne: Enterpolasyonla bulunacak jeoit ondiilasyonu

(4.4)

(4.5)

yatay uzaklik

(4.6)

Ni: Enterpolasyon noktasi ¢evresindeki dayanak noktalarinin jeoit ondiilasyonu

Pi: Dayanak noktalarina atanacak agirlik degerleri

m : Enterpolasyonda kullanilacak dayanak nokta sayisini ifade eder.
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Uzaktaki dayanak noktalar1 sonucu olumsuz etkileyecegi i¢in uygun dayanak
noktalarinin se¢imi i¢in kritik daire ¢izilir. Kritik daire disinda kalan noktalar isleme

dahil edilmez. Daire yerine kare ve dikdortgende kullanilabilir (Yilmaz, 2011).

4.4 Radyal Bazh Fonksiyonlar

Radyal bazli fonksiyonlarla (RBF) enterpolasyon, 1968’de Hardy tarafindan
kartografya alaninda topografik harita olusturmak amaciyla gelistirilen Multikuadrik
metodun genellestirilmis halidir (Cakir, 2012). Hardy’e gbre matematiksel olarak
tanimlanmamis bir yiizey, matematik olarak tanimlanmis yiizeylerin toplami ile
istenilen bir dogruluk derecesinde tanimlanabilir. Hardy tanimladigi bu yiizeye

“Multikuadrik yiizey” adim vermistir (Hardy, 1971; Ipbiiker, 1999).

1979 yilinda Franke c¢esitli enterpolasyon yontemlerini karsilastirdigt bir
calisma yaymlamistir. Bu c¢alismaya goére Hardy’nin Multikuadrik yontemi en
istikrarli, en iyi ya da en iyiye yakin sonuglar veriyordu. 1986’da IBM matematikgisi
Michelli’nin Multikuadrik yontemin arkasindaki teoriyi gelistirmesinden 4 y1l sonra,
fizik¢i Edward Kansa ilk kez diferansiyel denklemlerin ¢oziimii i¢in kullanmistir.
1992°de Madych ve Nelson’un sonuglart multikuadrik enterpolasyonunun spektral
yakinsama oranini gosterdi. Kansa’nin kesfinden sonra RBF i¢in arastirmalar hizla
artmistir (Chenowet, 2009). RBF ile enterpolasyon tekniginde yiizey modeli, ¢alisma
bolgesindeki noktalarin dagilimindan anlamli bir sekilde etkilenmez, hatta dayanak
noktalar1 bolge igerisinde iyi bir sekilde dagilmamis bile olsa sonuglar tatmin
edicidir. Eger dayanak noktas:1 ile enterpolasyonu yapilacak noktalar arasindaki
mesafe artarsa yiizey modeline dayanak noktasinin katkisi azalir. Multikuadrik
enterpolasyon tekniginde yiizey modeli dayanak noktalarindan gecer (Ulugtekin
1994).

Radyal bazli fonksiyonlar teorisi ¢ok degiskenli fonksiyonlarin
enterpolasyonuna  dayanmaktadir. Burada amag¢  (x%,y%)Y, ifadelerinin
enterpolasyonunu yapmaktir. Bu durumda x; € R%olmalidir. Bu denklemde f lineer
uzayda bir fonksiyon oldugundan yani dogrusal bir fonksiyon oldugundan radyal
bazli fonksiyonlar yaklagiminda f enterpolasyon fonksiyonu temel bazi

fonksiyonlarin lineer bir kombinasyonudur (Topaloglu, 2007). Radyal bazh
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fonksiyonlar ¢ok boyutlu uzayda egri uydurma yaklagimidir. Egri uydurma teorisi,
herhangi bircok degiskenli ve siirekli f(x) fonksiyonunu yaklastirma ya da enterpole

etme problemi ile ilgilidir. Radyal bazli fonksiyonlarla enterpolasyon fonksiyonu,
fGoy) =P y) + XL wie(1(x,y) = (xi,yi) ) (4.7)

olarak verilir. Burada ,

P(x,y) = Polinomu

w; = Gergek agirliklar

|(x,y) — (x4, ¥i) | = Noktalar arasindaki Oklid uzunlugunu

¢ (r) = Temel fonksiyonu

gosterir. Enterpolasyon islemi P(x,y) polinomunu kullanarak polinomal regresyon ile
baglar. Sonrasinda bilinmeyen agirliklarin belirlenmesi i¢in (4.8) lineer denklem

sistemi ¢Oziiliir.

Zj - p(X'Y) = Z?,:lwi(p( |(X'Y) - (XiIYi) D ] =12,..n (48)

Agirliklar belirlendiginde ise yiizeyi tamimlayan z degerleri (4.7) formiilii
yardimi1 ile bitiin noktalar igin bulunur (Dressler, 2009). Uzunluk temelli
fonksiyonlar, veri gruplar i¢in cesitli enterpolasyon fonksiyonlar1 kullanarak (Ters
multikuadrik, multilog, multikuadrik, natural cubic spline ve thin plate spline) en

uygun ylizeyi belirlemeye calisirlar.
4.4.1 Radyal Bazh Fonksiyon Tiirleri

4.4.1.1 Gauss merkezcil RBF

Sinir aglarinda kullanilan en genel RBF, Gauss Merkezcil Radyal Tabanli
(GRBF) fonksiyonudur. Profil fonksiyonu;

(p(r) = e(_rz/o'z) (4.9

Bu profil fonksiyonu su sekilde bir radyal bazli fonksiyon ortaya ¢ikarir :
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Z(x) = exp [”X;—z“”] (4.10)
Bu ifadede genislik parametresi Gauss fonksiyonunun standart sapmasi ile

aynmidir. Genislik arttikca egri daha da genislemekte ve fonksiyonun sayisal olarak

duyarli oldugu bolge genislemektedir.

4.4.1.2 Thin plate spline (TPS) RBF

RBF tiirlerinden bir digeri ise Grace Wahba tarafindan ortaya atilan TPS radyal
bazl1 fonksiyonudur. TPS’nin 6nemli bir 6zelligi de dayanak noktalarindan gegmesi
tasarlanan yiizeyin olusturulmasinda harcanan (4.11) esitligindeki egme (bending)
enerji fonksiyonunu minimize etmesidir. Enerjiyi minimize eden bir yiizey olmasinin
anlami, ylizeyin multikuadrik ve ters multikuadrik yiizeylere gore daha yumusak bir

yiizey olmasi ile iliskilidir.

1) = [ () +2(2L) +(25) axay (4.11)
Fonksiyonu;

() = (r/o)*logr/c (4.12)
seklindedir.

RBF'nin kendisi birgok farkli islev tiiriine sahip olmakla birlikte, ¢oklu
harmonik levha (spline) ailesi enterpolasyon i¢in siklikla kullanilir, 6zellikle de

yukarida tanimlanan TPS fonksiyonu bir¢ok uygulamada tercih edilir.

Farkli agirliklarda bulunan farkli merkezler iizerinden bir toplam alinabilir ve
istege bagl olarak, agirlikli dogrusal bir polinom terimi eklenebilir. Bu durumda su

fonksiyon elde edilmektedir,
z(x,y) = Z?’zl w; O(r;) + ag + a;x + a,y (4.13)

Yeterli merkez bulunmast durumunda, bu RBF toplami ¢ok karmasik tek
degerli fonksiyonlar1 temsil etmek icin kullanilabilmektedir. TPS kullanirken, bu

islevin her yerde piirlizsiiz oldugu ve sonsuz difarensiyellenebilecegi ek bir avantaj
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sagladig1 bilinmektedir (Sastry, 2015). Bu RBF yontemiyle diiz bir yiizeyin nasil
enterpolasyon uygulanacagina bakilacak olursa; C(xc, Yc) nokta koordinatlar1 olmak
tizere, merkez nokta konumlar1 kiimesi Ci1, Cp, Cy verildiginde ve bunlara karsilik
gelen yiikseklik degerleri Z1, Z», Zn, radyal bazli fonksiyonun agirliklart wy ... wy,

polinomal terimlerin agirliklart ao, a1, a» ise denklem asagidaki gibi

olusturulmaktadir.
_Q)::['l -‘:- Q)];,N— (M‘/l\ (Z}\
Onys - Onw Wy Zn
Xeqx 0 XeN R ag p =<0 (4.14)
. . al O
Vea YeN a, 0
\ ) \ J

Capraz olmayan terimlerin neredeyse tamami, ince plaka egrisini kullanirken
sifir olmayacaktir, bu nedenle bu sistem matrisi olduk¢a yogundur. Dogrusal sistem
tiim agirliklar i¢in ¢oziilebilir ve sonra agirlikli RBF'lerin toplamini xy diizlemindeki
diger herhangi bir noktada degerlendirebilir, bdylece diiz bir enterpolasyon

fonksiyonu elde edilir (Frei, 2016).

4.4.1.3 Lojistik tabanh fonksiyon
Bu radyal tabanli fonksiyon Hassoun tarafindan ortaya atilmistir. Fonksiyonu;

o(r) = —~ (4.15)

1+exp(%)
olarak verilmistir.

4.4.1.4 Multikuadrik RBF

Jeodezik amagli bir¢ok problemin ¢6ziimiinde kullanilan bu analitik yontem
ilk olarak 1971 yilinda Rolland L. Hardy tarafindan onerilmistir. Bu enterpolasyon
tekniginin amaci, ¢alisma alaninda bilinen tiim dayanak noktalarinin kullanilmasi ile
tek bir fonksiyon kullanarak ylizeyi tanimlamaktir. Veri grubunu iyi temsil etmesi ve
yumusak ylizeyler olusturmasi bakimindan Multikuadrik yontem genellikle 1yi sonug

vermektedir (Dogruluk, 2013).


https://www.comsol.com/blogs/author/walter-frei/
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Teknigin uygulanabilmesi i¢in ilk olarak dayanak noktalar1 kullanilarak bir
trend ylizey gecirilmektedir. Trend ylizey olarak birinci ya da ikinci dereceden
polinom kullanilmaktadir (Leberl, 1973). Bu asamadan sonra, dayanak
noktalarindaki artik jeoit yliksekligi degerleri (ANi) hesaplanir. Bu artik jeoit
yiiksekligi degerleri, multikuadratik yontem i¢in £ matrisi olarak kullanilmaktadir.

AN; artik jeoit yiiksekligi degerleri;
ANi = Ni - N(Xi - YL) = Ni - NTrend=1329~~-~a m (416)

esitligiyle hesaplanir. (xe, Ye) enterpolasyon noktasindaki ANe artik jeoit yliksekligi

degeri ise,
AN, =N, — N(X, —¥e) = No — Nrreng (4.17)

seklinde yazilabilmektedir. Bu esitlikteki ANe ve Ne degerleri bilinmeyen
degerlerdir. Bu degerlerden birisinin bulunmasi halinde digeri hesaplanabilir. Burada
artik jeoit yiiksekligi degerleri Multikuadratik yiizey diye bilinen, katsayilari
tanimlanmis  ikinci  dereceden  yiizey  denklemlerinin  toplami  olarak

hesaplanabilmektedir. En genel gosterimiyle multikuadratik yiizey,
AN =¥, CQlxp, %,y ] (4.18)
seklindedir (Hardy, 1971).

Burada, Ci dayanak noktalarinin bilinen AN; artik yiikseklik degerlerinden
hesaplanan bilinmeyen katsayilari, Q(x, y, Xi , Vi ) ise Kernel fonksiyonudur. (4.18)

esitliginden baska multikuadrik yiizey ¢esitleri de mevcuttur. Ornegin,

1
AN =¥ il (x = x)? + (v —yo)? + 8%]2 (4.19)
iki yaprakli dairesel hiperboloit serilerinin toplamlar1 veya,
AN = 3N, ci[(x —x)* + (v — yo)? + 671 (4.20)

seklinde dairesel paraboloit serilerinin toplamlar1 seklinde ifade edilebilir.

Bagintilardaki d istege bagl bir katsayidir.



(6.16) esitliginde 6=0 alinirsa multikuadratik yiizey,

AN =YY ol — %)% + (v — y)2]

biciminde olur.

4415 Ters Multikuadrik RBF

Genellestirilmis

tanimlanmastir.

Fonksiyonu

1
2

o) = e

seklindedir.

Tablo 4.2 Radyal Bazli Fonksiyon Tiirleri

o+ 0

multiquadrik 1982  yilinda Franke

20

(4.21)

tarafindan

(4.22)

RBF tiirii

Formiil

Multikuadrik

QW)=Vd? + 52

Ters Multikuadrik

Q(d)=1/Vd? + 52

Ince Tabakal1 Spline

Q(d) = d?logd

Multilog Q(d) =log d?
Gauss Q(d) = e=5°@*
Kiibik spline Q(d) = d3
Kuintik Q(d) = d°

Dogal Kiibik Spline

Q(d) = (d? + 62)*2
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Tablo 4.3 Radyal Bazli Fonksiyon Grafikler

Piecewise Smooth Infinitely Smooth

Kiibik TP Spline Multikuadrik Gauss Ters Kuadrik

45 RBF Kullanarak Yerel Jeoit Belirleme

Bu enterpolasyon ydnteminin amaci dayanak noktalarinin tiimiinii ayn1 anda
kullanarak araziyi tek bir fonksiyonla ifade etmektir. Yontemin uygulamasinda
oncelikle, m sayidaki dayanak noktasi kullanilarak bir trend yiizeyi gegirilir. Bu
yiizey i¢in polinom, harmonik seri veya trigonometrik fonksiyonlar kullanilabilir.
Simdiye kadar yapilan uygulamalar 1. veya 2. derece bir polinomun yeterli oldugunu
gostermistir (Leberl, 1973; Yanalak, 1997). n. dereceden bir polinomunbilinmeyen
katsayilar1 dayanak noktalarinin Nj ondiilasyon degerlerine bagl olarak en kiiglik
karelere gore ¢oziimlendikten sonra, dayanak noktalarindaki AN; artik ondiilasyon

degerleri hesaplanir.
ANl' = Ni - N(Xl’ - YL) = Ni - NTrend=l,2,...., m (423)

Burada N(Xi, yi,) trend fonksiyonundan elde edilen her hangi bir i noktasina ait
ondiilasyon degeridir. (Xo, Yo) enterpolasyon noktasindaki ANg artik ondiilasyon

degeri ise,

ANy = No = N(Xp — ¥0) = Ng — Nrrena (4.24)
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seklindedir. Fakat bu esitlikte bilinmeyen hem ANg hem de No enterpolasyon
noktasinin jeoit ondiilasyon degerleridir. Bu bilinmeyenlerden biri ¢éziimlendiginde

digeri bulunabilecektir. (4.23) esitligi dikkate alindiginda (4.7) esitligi

AN = Z{V=1 CiQ[Xi;Yi;X;Y] (425)

sekline doniisiir. Burada Ci, dayanak noktalarinin bilinen AN; degerlerinden hesap
edilecek olan bilinmeyen katsayilardir. Ci katsayilar1 ikinci dereceden terimlerin
isaretini ve egimini belirler (Giiler 1985). Ayrica N, enterpolasyon nokta sayisini

temsil eder.

Q, y ve x’in fonksiyonlar1 olan RBF yiizeylerini temsil eder. Hesaplamay1
kolaylastirmak i¢in, Q yiizeyleri bir eksen etrafinda donen genellikle ayni tip basit
fonksiyonlar olarak alinir. di, enterpolasyon noktasi ile dayanak noktalar1 arasindaki
yatay mesafe olmak tizere, Tablo (6.1)’e gore (4.25) bagntisindaki Q fonksiyon

tiiriinlin belirlenmesinden sonra,
Z?Ll Ci qU = AN i,j=l,2,...,n (426)

esitligine gore ci katsayilarii belirlemek i¢in n sayida lineer denklem sistemi

olusturulur.
C1011+CoQguot......... +CnQ1n = ANz

C1021+Ca0a2+......... +CnQg2n=AN2 (4.27)

C101n+CoQnat......... +Cn0nn = ANp

(4.27) esitligindeki ifadelerin matris yapilar agsagidaki gibidir.

i1 912 - Gin AN,
421 azz aCIZn ANZ

qn1 dn2

A= (4.28)

n

A (nxn) boyutlu katsayilar matrisi,
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c: n elemanl bilinmeyenler vektorti,

AN: n sayidaki dayanak noktalaria ait AN artik yiikseklik degerleri i¢in n elemanl

vektor olmak iizere,

A.c= AN (4.29)
biciminde ifade edilebilir. Buradan c;i katsayilari,

c=A1AN (4.30)

matris esitliginden hesaplanir. Son olarak (Xo,Yo0) koordinatlariyla bilinen herhangi bir

enterpolasyon noktasinin No degeri,

No = P(x0¥0) + ANy = P(x0,0 ) + X4 Ciio (4.31)

esitligi ile hesaplanir (Hardy, 1971; Amidror, 2002; Yanalak, 2002; Cakir, 2012).
RBEF’den ince tabakali spline fonksiyonu icin (4.28) esitligindeki A matrisi singtiler
ozellik gosterebilir (Cakir, 2012). Bu durumda ¢6ziim saglanamaz. Bundan dolay1
(4.7) bagintisina Micchelli’nin 6nerdigi (4.34) kosullari ilave edilerek ¢6ziime devam
edilir. (4.7) numarali esitlikte 6rnegin lineer fonksiyon kullanilmasi durumunda

matematiksel ifade
N = Z?I:l Clql] + bO + blx + be (432)

seklinde yazilabilir. B polinom bilinmeyenlerine ait katsayilar matrisi ve b

polinomun bilinmeyen katsayilar1 vektorii olup (4.32) esitliginin matris gosterimi,
N=A.c+Bb (4.33)

bicimindedir. Lineer polinom kullanilmasi durumunda (6.23) esitligine asagidaki
kosullar ilave edilerek (Franke, 1979, 1982; Michelli, 1984; Fogel ve Tinney 1996;
Buhmann, 2000; Cakir, 2012).

Bc=0,Y,¢c=XL16x =X,y =0 (4.34)

Ci Ve bi degerleri,
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c=A"(N-Bb) (4.35)
b=(BTA'B)'BTAIN (4.36)

matris esitliklerinden ayr1 ayr1 hesaplanabilir (Cakir, 2012). Ya da

o oll2=[5] (4.37)

denkleminin hesaplanmasi1 gerekir. Esitligin sol tarafindaki blok matris tam ranka

sahip oldugundan istenen katsayilar i¢in tek ¢6ziim vardir (Cakir, 2012)

(4.37) esitligini daha acik bir sekilde ifade edersek,

[q11 G12 Qi 1 X1 Y1611 [Np
21 G222  Gan 1 x2 ¥a2lfCa N,
ni Gnz " Gun 1 Xn Yu[Cn| =[N, (4.38)
1 1 .. 1 0 0 0]lbo 0
X, X .. X, 0 0 0]|b 0
Y1 Y2 . ¥a 0 0 0Mlb) Lo
G X L

bigiminde gosterilir. Buradan, radyal bazli fonksiyonun katsayilart ci ve polinom

fonksiyonun katsayilari b,

X=GIL (4.39)
matris esitliginden hesaplanabilir. Son olarak enterpolasyon noktasmnin yiikseklik
degeri (4.32) esitliginden elde edilir.

4.6 &% Sekil Parametresinin Belirlenmesi

Radyal bazli fonksiyonlardan Gauss, multikuadrik ve ters multikuadrik
fonksiyon esitliklerinde gecen &2 geometrik parametresi kullanici tarafindan
belirlenen sabit bir sayidir. Yiizeyin diizgiinliiglinii veya keskinligini gosteren §

parametresinin iretilen sonuglar iizerindeki etkisi de biiyliktliir. Multikuadrik
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fonksiyonlarda & i¢in verilen kii¢iik degerler bir zirve goriiniimii verirken, biiyiik
degerler genis yiizey Ozelligi gosteren diiz ylizey goriinimii vermektedir. Gauss

fonksiyonu i¢in tersi durum s6z konusudur (Cakir, 2012).

§%parametresinin belirlenmesi i¢in problemin &lgegine, verilerin yogunluguna
ve dagilimina gore ¢esitli oneriler mevcuttur (Hardy, 1971; Schul’min ve Mitel’man,
1974; Franke, 1979; Kansa, 1990; Cakir, 2012). Ayrica Rippa, §2 parametresini

belirlemek i¢in ¢apraz dogrulama teknigini onermistir (Cakir, 2012).

Tablo 4.4 62 Parametresinin Belirlenmesi

Onerenler Matematiksel ifade

Hardy 6=0.815s

Franke 5 = 1.25D/v/n

Fasshaurer 5 =2l\/n

Kansa 82 = 82min(8%max/min) 9 P® D j=1,23..n

Schul’min ve Mitel’man & n, il [(xi _ xj)z + (- }’j)z]
n(n—1)

Tablo 4.4’de, calisma alanindaki tiim dayanak noktalarmin en yakin
komsulugundaki nokta ile arasindaki mesafelerin ortalamasi olup, D tiim dayanak
noktalarini ig¢ine alan en kiiciik ¢cemberin capini, n ise dayanak nokta sayisini

gostermektedir (Cakir, 2012).
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5  JEOISTATIKSEL MODELLE JEOIT BELIRLEME

5.1 Jeoistatistik

Jeoistatistik istatistigin uygulamali bir dahdir. Jeoistatistik ilk olarak Giiney
Afrikali maden mihendisi, D.G. Krige tarafindan 1950’11 yillarda cevher rezervi
alanlarmin daha dogru tahmini i¢in kullanilmis olan bir enterpolasyon yontemidir.
Daha sonralar1 bu yontemden esinlenen Fransiz maden miihendisi Matheron Bolgesel
degiskenler teorisini ortaya atmistir. Bolgesel degiskenler bir noktadan baska bir
noktaya siirekli olarak degisen fakat matematiksel fonksiyonla ifade edilemeyen
mekansal degiskenlerdir (Matheron, 1963, 1971; Aydin, 2014). Jeoistatistigi diger
yontemlerden ayiran en onemli fark Orneklerin alinirken koordinatlarinda hesaba

katilmasidir. Jeoistatikte hata oranida giiven araligi i¢inde hesaplanabilir (Giizel,

2017).
5.2 Yarivariogram

Istatistiksel yontemler, incelenen degiskenler arasinda bir baglant1 olmadigini
varsayarlar. Jeoistatistiksel yontemlerde ise degiskenler birbirleriyle iliskilidir.
Jeoistatikte degisken degerleri arasindaki farkin uzaklifa baghh degisimi
yarivariogram ile ortaya konulur. Bolgesel degiskenlerin tanimlandigr Ornek
noktalar1 ile bu noktalarin degerleri arasindaki farkin noktalar arasi uzakligin
fonksiyonu olarak uzaysal korelasyonu veren ve bunu miktar olarak belirten
fonksiyona variogram denir (David, 1977; Pekin, 1999). Variogram fonksiyonu
asagidaki gibidir:

2

1
2y(h) = = Y [20) = ZCx + )] (5
n: Ornek gifti sayisi
Z(x): Herhangi bir x noktasindaki degisken degeri

Z(x+h): x noktasindan h mesafedeki diger degisken degeri
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Yarivariogram igin esitlik tek boyutta

N(R)
1
y(h) = D 1260 - 2+ WY (5:2)
2N(h) 4
Iki boyutta
G
y(h) = N fZ [Z (i, y:) — Z(xj’Yj)]z (5.3)
seklindedir.

hij = J [(xl- — xj)z + (yi 4 yj)z] olmak {iizere, i ve j noktalar1 arasindaki yatay

uzaklik degeridir.

Z(x;, v, Z(xj,y;); i ve j konumundaki degisken degerlerini ( Yeryiizil yiikseklikleri

gibi) gosterir.
N (h); h vektorii uzunlugundaki nokta ciftleri sayisidir.

Yarivariogram bolgesel degisken degerlerinin uzakliga bagli olarak aralarindaki

farkin varyansi olarak da ifade edilebilir. Esitligi
2y(h) =Var[Z(x) — Z(x + h)] (5.4)
seklindedir. Yarivariogramin {i¢ temel 6zelligi vardir:

e h=0 uzakligindaki degeri sifira esittir.( 2y (0) = 0)
e Yarivariogram negatif deger alamaz. ( 2y(0) = 0 Vh i¢in)
e Yarvariogram simetriktir. ( 2y(h) = 2y(—h)0 Vh igin)
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5.3 Deneysel ve Teorik Variogram

Yarivariogram/kovaryans bulutunun yarivaryans degerlerinin belirli adim
mesafelerine ayrilip, o mesafeye diisen yarivaryans degerlerinin ortalamasinin
alinmasiyla deneysel yarivariogram elde edilir (Aydin, 2014).

N(h)

~

1
v(hy) = 2N(R) Z |Z(xy0) — Z(xj'Yj)]z (5.5)
hy;

N(h) = uzunluk vektorii h i¢in verilen aralik

fl}: N (h) daki sartlar1 saglayan vektorlerin modiil degerlerinin ortalamasi;

N(h)
- . his
h, =—Z‘—; J (5.6)

seklindedir.

Bolgesel degiskenin verilerinin mesafeye bagli degisimleri deneysel
variogram ile grafiksel olarak gosterilmektedir. Grafik ile gosterilen verilerin
degisim Ozelliklerinin daha sonraki asamada kriging islemlerinde kullanilabilmesi
icin matematiksel bir fonksiyonlar ifade edilmesi gerekir. Bu kuramsal fonksiyona

matematiksel variogram modelleri denir (Pekin, 1999).

Tablo 5.1 Teorik Yarivariogram

3h h\3
Kiiresel y(h) = Cot+ C [(Z) B (Z) ] h<a
Co+C h>a
Ussel y(h) = Co + C[1 — exp(— )]
Gaussian y(h) = Co + C[1 — exp(— %)2]
Lineer y(h) = Cy+ Ch
Logaritmik y(h) =Cy+Clogh h>0
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Tabloda Cy: teorik egrinin h=0 noktasinda diisey ekseni kestigi nokta (Nugget effect)
C: variograminin yapisal bilesenleri i¢in dlgek degeri

a: variogramin yatay menzili (bu uzunluktan sonra veriler artik birbirine

korelasyonsuzdur)
h: 6rnekler arasi yatay uzunluk

Co + C;: variogramin toplam diisey 6lgek degerini (sill) ifade eder.

Semivariance

/" Spherical

7/ Circular
Exponential
Linear

__!/' / Gaussian

Distance

Sekil 5.1 Teorik Yarivariogram

Semivariance
)]

Range a2y

P?ll'llal’ Sill
ol Sill

Nugget Effect |
Ca

0 Distance ki

Sekil 5.2 Sill ve Nugget Effect
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5.4 Kriging Kestirimi

Kriging basta maden olmak {izere, jeoloji, dis hekimligi, insaat, gevre,
meteoroloji gibi bir¢ok dalda uygulamasi ve makalesi bulunan popiiler bir tekniktir.
Kriging sozciigii, maden yataklarinin degerlendirilmesinde jeoistatiksel tahmin
yontemini ilk olarak uygulayan D.G. Krige’nin onuruna G. Matheron tarafindan bu

tahmin yontemine verilen ad olmustur (Journel and Huijbregts, 1978; Pekin, 1999).

Kriging yontemi bilinmeyen degiskenlerin o6rnek degiskenlerle tahmin
edilmesini amaglayan yontemdir (Krige, 1951, 1976). Tahmin islemi bilinen
noktalarin agirlikli ortalamasi ile yapilmaktadir. Agirlik katsayilarinin hesabinda
varyanslarin minimum olmast ve kriging hatalarinin ortalamasinin sifir olmasi
seklinde iki kosulun saglanmasi gerekir. Kriging varyansi verilerin gercek
degerlerine bagli olmayip uzaklhigin bir fonksiyonudur. Bu sekilde yakindaki
orneklere biiyiik agirlik degerleri atanirken uzaktaki verilere zayif agirlik degerleri

atanir. Kriging enterpolasyonu i¢in genel denklem

2°Gio) = ) Wi Z(x) (5.7)
=1

seklindedir. Formiilde Z"(Xo) bilinmeyen fakat tahmin edilen degeri, N nokta sayisini,
Z(x;) ornege ait x;noktasindaki degeri, W; her bir Z(x;) degerine karsilik gelen

agirlik degerini ifade etmektedir. Yansizlik kosuluna gore;
E[Z(xo) = Z"(x0)] = 0 (5.8)

olur. Buradan

N
Z W, =1 (5.9
=1

elde edilir. Kriging hatalarinin sifir olmasi kosuluna gore;

var[Z(xo) — Z* (xo)] = E[Z(x0) = Z" (x)]” (510)

esitligi olusacaktir. Buradan da;
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1
= 11
V= 2E[Z200) + Z(x + h)] 1D
esitligi géz Oniine alinarak;
E[Z(x0) = XL W Z(x)]? = = X{L X WiWy (o — %)) + 2 202, Wiy (%0 —
x;) (5.12)

esitligi elde edilir. Bu esitligin minumum olmasi Zf\':IWi = 1 yansizlik kosulu
altinda optimizasyon problemi olarak disiliniilebilir ve bu problem Lagrange
carpanlarmin kullanilmasiyla ¢oziiliir. Bu durumda (N+1) bilinmeyenden olusan

(N+1) bilinmeyenli asagidaki denklem sistemi elde edilir.

N
Z Wiy (x; — x;j) +A—y(x0—x]) j= ,n (5.13)

-

W, =1 (5.14)

—
Il
[y

Burada, A Langrange ¢arpani; y(xi —xj) ise x; ve x; noktalar1 arasindaki

yarvariogram degeridir. Esitlikler daha agik bir sekilde ifade edilecek olursa;

Wiy + Woyip + oo + Wiyin + 1= vy

W1y21 + WZYZZ + e s + WnVZn + A = )/20 (515)
Wiyin + WoVnet.ooooois +Wnynn + A= Yno

W1 + W2+ ......... +W1’l =1

esitligindeki ifadelerin matris yapilar1 asagidaki gibidir.



[Y11 V12
(V21 V22

Y= | P
l)’nl VYn2

1 1

Yin
Yan

Vnn

olmak tizere; matris gésterimi

Yo = Wy

N

—_
> -

seklindedir. Buradan bilinmeyen agirliklar

w=yly,
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(5.16)

(5.17)

(5.18)

denklem sistemine goére ¢oziiliir. Kriging ile yapilan kestirimin dogrulugu veya

gecerliligi asagidaki faktorlere baglidir. Bunlar;

e Dayanak noktalarinin sayis1 ve 6lgii kalitest,

e Dayanak noktalarinin alan igerisindeki konumlari; dayanak noktalarinin

topografyay1 temsil edebilme yetenegi,

e Tahmin yapilacak noktalarla, dayanak noktalar1 arasindaki uzaklik; tahmini

yapilacak nokta veya bloklarin, dayanak noktalarina yakin olmasi daha iyi

sonug verecektir.
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6 YAPAY ZEKA

Yapay zeka kavramimin olusmasinda insan zekasi temel alinmaktadir.
Ogrenme, algilama, analiz etme, karar verme insan zekasina ornek davranislardir.
Onceleri verilerin depolamasinda ve transferinde kullanilan bilgisayarlar daha
sonralar1 karmasik hesaplamalarda basariyla kullanilmigtir. Zamanla bilgisayarlardan
zeka gerektiren davraniglarda bulunmasi istenmis ve yapay zeka kavrami olusmustur.
Yapay zeka, zeka gerektiren yeteneklerle donatilmis bilgisayar sistemleri olarak

diistiniilebilir (Emir, 2013).

Insan zekasi karmasik bir 6zellik gosterir. Bu yoniiyle bilgisayarlar, hesap
yikiinlin  bulundugu karisik sayisal islemleri insanlara gore daha hizh
yapabilmelerine ragmen diisiinme, karar verme ve analiz etme gibi zeka gerektiren
konularda insan zekasinin gerisinde kalmaktadir. Yapay zeka ile ilgili ilk ¢aligsmalar
norofizyolog Warren McCulloch ve matematik¢i Walter Pitts’in sadece girdi ve

ciktilar1 olan basit bir sinir agini modellemesiyle baglamistir (Cakir, 2012).

Terim olarak yapay zeka olarak adlandirilmas1 McCarthy tarafindan 1956 yilinda
yapilmustir. ilk temeller bilgisayar bilimlerinin kurucusu sayilan Turing tarafindan
atilmigtir. Turing, 1950’lerde yaymladigi makalesinde Turing Testi ad1 verilen bir
test Onermis ve “makineler diisiinebilir mi?” sorusuna yanit aramistir (Cakin, 2017).
Yapay zeka konusunda yapilabilecek her tamim asagida belirtilen dort temel

kategoriden birine uyar (Emir, 2013; Cakin, 2017).

e Insan gibi diisiinen sistemler
e Insan gibi davranan sistemler
e Rasyonel diisiinen sistemler

e Rasyonel davranan sistemler



Bir yapay zekanin ¢aligma sablonu ise asagidaki gibi basitge gosterilebilir.

e Gorilintii tanima
+ Arama Bilgiyi elde etme

« Verianalizi

* Dogal dil isleme

v

* Akl yiirlitme Bilgiyi kullanilir hale doniistiirme
« Tahminde bulunma l

Bir seyin neden oldugunu anlama

|

Karar alma

|

Karar sonucuna gore davranma

6.1 Yapay Zeka Teknikleri

Yapay zeka teknikleri asagidaki gibi siralanabilir (Pirim, 2006):

a)
b)
c)
d)

f)
9)

Bilgi tabanli uzman sistem yaklasimi

Yapay sinir aglar1 yaklasimi

Bulanik mantik yaklasimi

Geleneksel olmayan optimizasyon teknikleri
i) Genetik algoritma

i) Tavlama benzetimi (Simulated annealing)
iii) Tabu arama

iv) Hybrid algoritmalar

Nesne tabanli (Object-oriented) programlama
Cografi bilgi sistemleri (GIS)

Karar destek sistemlerinin gelisimi
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h) Yumusak programlama (Soft computing )
6.2 Yapay Zeka ve Insan Zekasimin Karsilastirilmasi

Gelismekte olan bir teknik olarak yapay zeka ile insan zekasinin birbirine gore
avantajli oldugu noktalar mevcuttur. Tam gelismis bir yapay zeka sistemi, maliyeti
azaltmasmin yaninda giivenirlik, dogruluk ve hiz artis1 saglar. Pozitif ve negatif
yonde degerlendirilebilecek bir konu olarak yapay zeka ¢ok sayida c¢alisanin yerine
gecebilecektir. Yapay zekaya bir elestiri olarak iinlii fizik¢i Stephan Hawking insan
zekasimin sinirlt evrim kabiliyeti karsisinda, yapay zekanin siirekli olarak kendini
gelistirecegini varsaymis ve tam olarak gelismis bir yapay zekanin insanoglunun
sonu olabilecegini dne siirmiistiir. Bir ¢ok aragtirmaciya gore ise yapay zeka higbir

zaman bu asamaya gelemeden insan bagimli olarak gelismeyi siirdiirecektir.

Tablo 6.1 Insan Uzmanlig1 ve Yapay Uzmanlik

insan Uzmanhg Yapay Uzmanhk

Cabuk Etkilenebilir Kalic1

Aktarilmasi gii¢ Kolay aktarilabilir
Dokiimantasyonu gii¢ Kolay dokiimante edilebilir
Tahmini zor Tutarl

Pahali Satin alinabilir

Uyumludur Uyum disaridan saglanmalidir

Hassas gozlem yapabilir

Sembolik verilerle ¢aligir

Genis gOriis acgisina sahiptir Dar agidan bakis
Sosyal duyuma sahiptir Teknik duyuma sahiptir
Yeni fikirler iretebilir Esinlenemez

6.3 Yapay Sinir Aglar

Bilim diinyasinda bir¢cok bulus dogadaki canlilarin temel ozellikleri dikkate
aliarak yapilmaktadir. Yapay sinir aglarinin da esin kaynagi insan beynidir. Yapay
sinir aglar1 insan beyninin bilgisayar ve elektronik devrelerle sinirli sekilde
taklitedilmesiyle meydan gelen sistemlerdir (Kayabasi, 2015). Bu sebeple yapay

sinir aglarini incelemeden dnce biyolojik sinir hiicresini incelemekte fayda vardir.
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6.3.1 Biyolojik sinir hiicresi

Insan beyni ¢ok karmasik bir yapiya sahiptir. Beyin, ndron adi verilen sinir
hiicrelerinden meydana gelmektedir. Yap1 olarak néron soma, akson ve dentritlerden
olmak iizere ii¢ boliimden olusur. Insan beyninde yaklasik 10! tane néron mevcuttur.
Sinirsel bir impuls dentritler sayesinde baska bir sinir hiicresinden alinir ve somaya
iletilir. Somada islenen ve depolanan veri somadan uzanan ve uzunca bir yap1 olan
aksonlar sayesinde bagka bir sinir hiicresinin dentritine iletilir. Soma hiicrede enerji
tiretiminden sorumludur. Aksonlarin ¢evresinde miyelin kilif adi verilen bir yap1
bulunur. Aksonlar ile dentritler arasinda veri iletimi sinaptik bosluklar ile kimyasal

olarak gerceklestirilir.

Schwan  Ranviyer  Miyelin kilif
hiicresi bogumu

Gekirdek

“X‘-

Akson uglan

" PN )

Y Y

Hiicre gévdesi Akson
Sekil 6.1 Biyolojik Sinir Hiicresi

6.3.2 Yapay sinir hiicresi

Yapay sinir aglar1 insan beynindeki néronlara benzer sekilde yapay sinir
hiicrelerinin bir araya gelmesiyle olusturulur. Yapay sinir hiicresinin bes temel

eleman1 vardir (Oztemel, 2003).

1. Girdiler: Dis diinyadan, baska bir process elemanindan yada process
elemaninin kendisinden gelen bilgilerdir.

2. Agirhiklar: YSA’da bilginin gosterimi agirliklarla yapilir. Girdi elemanindan
gelen her bilgi 6onem derecesine gore deger alir. Bu sayede bilginin ag
tizerindeki etkisi ayarlanabilir. Agirhigr sifir olan bir bilginin ag {izerinde

etkisi yoktur.
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3. Birlestirme(Toplama) Fonksiyonu: Hiicreye gelen net girdiyi hesaplayan
fonksiyonlardir. Net girdi hesaplamada birgok fonksiyon onerilse de genel bir
kural yoktur. En uygun fonksiyon deneme yanilma yoluyla bulunur. En ¢ok
kullanilan fonksiyon agirlikli toplamdir. Burada her girdi kendi agirligiyla
carpilarak toplanir.

Tablo 6.2 Toplam Fonksiyonlari

Birlestirme Fonksiyonu Net Girdi

Agirlikli Toplam Net Girdi =Y, x; w;

Carpim Net Girdi =[; x; w;
Maksimum Net Girdi = maks(x;w; )
Minumum Net Girdi = min(x;w; )
Cogunluk Net Girdi = Y; sgn(x; w;)
Kiimiilatif Toplam Net Girdi = net(eski)+Y; x; w;

4. Aktivasyon Fonksiyonu: Net girdi olarak gelen veriyi isleyerek ¢ikisa
yonlendirir. Aktivasyon fonksiyonu olarak lineer olmayan fonksiyonlar
secilir. YSA’nin dogrusal olmama 6zelligi aktivasyon fonksiyonu sayesinde
kazandirilir. Literatiirde bir¢ok aktivasyon fonksiyonu vardir bunlardan en
cok kullanilan1 sigmoid fonksiyonudur.

5. Ciktilar: Aktivasyon fonksiyonu sonrasinda elde edilen deger ¢ikti olarak
yansitilir. Sadece bir tane ¢ikti olmasina karsilik bir ¢ikt1 birden fazla nérona

hatta kendisine bile girdi olarak kullanilabilir.

Yapay sinir hiicresi ile biyolojik sinir hiicresi karsilastirildiginda; agirliklar
sinapslara, dentritler girdilere, aksonlar ¢iktilara, toplam fonksiyonu hiicre govdesine

karsilik gelir.
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s =0 1 4
onksiyonu ;
|
ﬂl flu®]
_ +1, u(t)>0 e
Basamak f(u(t))=sign (u(t)) = ]
Fonksiyonu -1 u(t)<0 0 )
s
WL7:,
Hiperbolik ¥ —e* .
T;ﬂjant I y(x)=f(x)= tanh(X) = m '5_/7/"%\**9
E—
P I +1 if qu >1 H‘A:'-fm
arcal )
Dogrusal f(u®) =<gqu if |gu| <1 < -
Fonksiyon A i gu<-1 _4_1
Gauss - — Xx? /T\\
Fonksiyonu | Y09 =10 = exp( 2 ) B ‘ N
Unipolar 1 1M
Multimodal | f(u(t)) = —{1+—Ztanh(g”‘(u(t) - Wy ))}
Fonksiyon 2 M=
Lineer f(u(t)) = gu(t)
Fonksiyon ueo

Aktivasyon
Fonksiyonu

Cikti

)

Girdi Bias
degerleri b
Yerel
Alan
< Xy © W, z ) %
. .
. 3 Topla.ma
B . fonksiyonu
KXmO Wn
agirliklar

Sekil 6.2 Yapay Sinir Hiicresi
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6.3.3 YSA’nin avantaj ve dezavantajlar:

Avantajlari

Ogrenme: Insan beyninin en onemli o&zelligi olan &grenme YSA’da
uyarlanmistir. YSA’da ¢ikis ve giris verileri arasinda baglanti kurulabilir. Bu
sekilde 6grenme saglanmis olur.

Lineer Olmama: Giinliik hayatta karsilasilan bir¢ok problem lineer 6zellik
gostermez. Bu sebeple YSA karmasik problemlerin ¢oziimiinde dogrusallik
gerektiren istatiksel yontemlere gore daha avantajlidir. YSA’da lineer olmama
aktivasyon fonksiyonu ile saglanir.

Genelleme: YSA degiskenlere dayali olarak iligkiler kurarak kendi agirliklarini
olusturabilir. YSA’da eksik parametrelerle dahi genelleme sayesinde islem
yapilabilir. Yani YSA problemin ¢oziimii i¢in tiim parametrelere ihtiyag
duymaz.

Uyarlanabilirlik: YSA g¢evredeki kiigiik degisikliklere gore tekrar tekrar
egitilebilir.

Paralel Isleme Yetenegi: Paralel yapr sayesinde aym katmandaki birimler
birbirinden bagimsiz olduklarindan ayni anda islem yapabilme yetenegine
sahiptirler. Bu yap1t hesaplamalarin daha kolay ve hizli yapilabilmelerini

saglamaktadir.

Dezavantajlar

Agin davraniginin nasil olacagi bilinmemektedir.

Ag mimarisinde en uygun parametrelerin se¢imi deneme yanilma yoluyla
mumkiindiir.

Ag asin 6grenmeye diiserek genelleme yapmayabilir.

Agin egitilmesi uzun zaman alabilir.

Gelismekte olan bir ydntem oldugu i¢in giivenilirligi diisiiktiir. Istatiksel

yontemlerde mevcut giiven aralig1 ve hipotez testi mevcut degildir.

6.3.4 YSA’nmin siniflandirilmasi

YSA mimari yapilarina, Ogrenme sekillerine ve Ogrenme zamanlarina gore

siniflandirilabilir.
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6.3.4.1 Mimari yapilarina gore YSA

1. lleri Beslemeli YSA: Ileri beslemeli YSA’da bir néronun ¢iktis1 kendinden
sonraki noronun girdisi olarak kullanilir. Bilgi akisi giris katmanindan ¢ikis
katmanimna dogrudur. Geri doniis gostermediginden dongiisel 6zellik
gostermez.

2. Geri Beslemeli YSA: Bu tip sinir aglarinda ileri beslemeli YSA2nin aksine bir
ndéronun ¢iktis1 kendi katmanindaki bir nérona ya da kendinden 6nceki bir
norona girdi olarak verilir. Geri beslemeli YSA dongiisel 6zellik gosterir ve
bu dongiisellik yakinsama saglanana kadar devam eder. Geri beslemeli

YSA’da egitim siireci uzundur ve analizi zordur.

6.3.4.2 Ogrenme algoritmalarina gore YSA

1. Damsmanl Ogrenme: Giris degerleri icin ¢ikis degerleride bulunur. Aga
verilen girdiler icin istenen ¢iktilar1 elde edebilmek i¢in ag egitilir. YSA’a
ornek bir ¢ikt1 verilir. Ornek ¢ikt1 ile agn iirettigi ¢ikt1 karsilastirilir aradaki
fark hata olarak alinir. Aga baslangigta rassal olarak verilen agirliklar hata
minimize edilene kadar dongiiler halinde giincellenir.

2. Damismansiz Ogrenme: Sistemin dogru ¢ikis hakkinda bir bilgisi yoktur. Aga
herhangi bir ¢ikt1 bilgisi verilmez. Ag girdilere gore her bir Ornegi
siniflandiracak sekilde kendi kuralini olusturur.

3. Destekleyici Ogrenme: Uretilen her bir sonuca gore aga sonucu dogru olup

olmadig1 hakkinda verilir.

fleri Beslemeli Yapay Sinir Ag1 Geri Beslemeli Yapay Sinir Ag1

) P

g
O O/o 0

"

Sekil 6.3 Mimari Yapilarina Gore YSA
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6.3.5 YSA tiirleri

6.3.5.1 Tek katmanh algilayicilar

Tek katmanli YSA sadece girdi ve c¢ikti katmanindan olusan aglardir
(Oztemel, 2003). Girdiler ve giktilar birbirine tam olarak baglanmis durumdadir.
Girdi ve ¢iktilardan baska agin ¢iktisinin 0 olmasini engelleyen esik degeri vardir.

Ag dogrusal yapida oldugundan dolay1 aktivasyon fonksiyonuda dogrusal yapidadir.

Esik girdisi=1
¢
X W, ¢
TKA :

Sekil 6.4 Tek Katmanl Algilayici

6.3.5.1.1 Basit Algilayicilar (Perceptron)

1958 yilinda Rosenblatt tarafindan ortaya atilmistir. Basit algilayici birden
fazla girdiyi alarak tek bir ¢ikti liretme prensibine dayanir. Basit algilayicilarda
dgrenme mevcuttur. Ogrenme agin agirliklarinin degistirilmesi ile olur.

Inputs Weights Net input Activation
function function

@ output

Sekil 6.5 Perceptron

6.3.5.1.2 Adaptif dogrusal element agi (ADALINE)

Widrow ve Hoff tarafindan 1959 yilinda gelistirilmistir. Adaptif dogrusal
element agmin kisaltilmis seklidir. Bir tane process elemanindan olusur (Oztemel,

2003). Adaline ve Perceptron’a benzer sekilde dogrusal 6zellik gosterir. Farkli olarak
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Adaline, En Kiiclik Kareler Kestirimi (EKK) kullanarak 6grenme gerceklestirir.

Buna Delta Kural1 yada Widrow Hoff 6grenme kural1 da denir.

6.3.5.1.3 Coklu adaptif dogrusal element agy (MADALINE)

Many Adaline seklinde adlandirilan ag, birden ¢ok Adaline aginin bir araya
gelmesiyle olusan aglardir. Ogrenme algoritmasi Adaline ile aymidir. Dogrusal

Ozellikte olmasina ragmen c¢ok katmanli algilayicilara temel olmasi nedeniyle

Onemlidir.
>
° ° = F
\ AND
‘ o) veya OR |==>
G ° =l

Sekil 6.6 Madaline

6.3.5.2 Cok katmanh algilayicilar

YSA ile caligmalar 1970’11 yillarda durma noktasina gelmistir. Bunun nedeni
giindelik hayatta karsilasilan bircok problemin dogrusal o6zellik gdstermemesidir.
Tek katmanli algilayicilar dogrusal 6zellik tasidigr i¢in problemlerin ¢dziimiinde
yetersiz kalmistir. Rumelhart ve arkadaglar1 tarafindan gelistirilen ¢ok katmanl
algilayicilar sayesinde YSA’a ilgi yeniden artmistir. Cok katmanlh algilayicilarda bir
ya da daha fazla ara katman bulunur. Cok katmanli algilayicilarda danismanl
o6grenme metodu kullanilir. Aga 6rnekler ve 6rneklerden elde edilmesi gereke ciktilar

birlikte sunulur.
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Girdi Cikt1

Katmani d Katmani
G1 C1
G2 C2
G3 C3

Sekil 6.7 Cok Katmanli Algilayici

6.3.5.3 Radyal tabanh yapay sinir aglar

Radyal bazli fonksiyonlar sayisal analizde ¢ok degiskenli problemlerin
¢oziimiinde sikc¢a kullanilir. Radyal bazli fonksiyon teorisi ¢ok boyutlu uzayda egri
uydurma ve yaklastirma problemidir. Radyal tabanli yapay sinir aglar1 (RTSYA)
1988 yilinda gelistirilmis ve filtreleme problemine uygulanarak YSA tarihine
geemistir (Okkan ve Dalkilig, 2012).

RTYSA, c¢ok katmanli algilayicilara benzer sekilde, girdi katmani, gizli
katman ve ¢ikti katmani1 olmak iizere 3 katmandan olusmaktadir. Fakat RTYSA’da
gizli katman sayis1 birden fazla olamaz. RTYSA’1 ¢ok katmanli algilayicilardan
ayiran en onemli 6zellik aktivasyon fonksiyonu olarak radyal tabanli fonksiyonlarin
kullanilmasidir. Dolayisiyla agin egitilmesi, ¢ok boyutlu uzayda egitim verilerine en

uygun yilizeyin bulunmasi problemine dontisiir (Senol, 2010).

RTYSA’da aktivasyon fonksiyonu olarak Gauss, multikuadrik ve ters multikuadrik

gibi bir¢ok radyal bazli fonksiyon kullanilabilir.

6.4 Bulamik Mantik

Mantik bilinenden bilinmeyenlerin elde edilmesine vasita olan bilimdir (Oner,
1986). Klasik mantik biliminin kurucusu Aristo olarak kabul edilir. Aristo mantigina
gore “olmak” ya da “olmamak” gibi kesin sinirlar vardir. Aristo manti§ina gore bir

sey ya siyahtir ya da beyaz. Klasik mantik yaklagiminda gri yoktur. Aristo mantigi
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sade ve kesin sinirlarla ¢izili olsada bilimsel bilimsel arastirmalarin ¢éziimiinde ve
matematiksel modellenmesinde basariyla uygulanmistir (Doganalp, 2012). Bulanik
mantik kavrami ise Azeri bilim adami Loutfi Zadeh tarafindan 1965 yilinda ortaya
atilmistir. Bulanik mantik matematigin gercek dilinyaya uyarlanmasi olarak
diistintilebilir. Bulanik mantik kesinlikler yerine insan hayatinda yer alan sozel
degiskenlerle modellemeye imkan tanir. Klasik mantik matematiksel olarak 0 ve 1
den olusurken, bulanik mantik ise O ve 1 arasinda yer alan sonsuz tane ara degeri de

igerir.

6.4.1 Bulanik kiime ve iiyelik fonksiyonlar:

Klasik kiime mantigina gore bir eleman ya o kiimenin elemamidir ya da
degildir. Kiimeye ait olma degeri 1 ile ifade edilirken, 0 o kiimeye kesin olarak ait
olmamay1 ifade eder. Bulanik kiime kavraminda ise bir elemanin kismi tiyeligine izin
verilir hatta bir eleman baska kiimelerinde elemani olabilir (Ozat, 2011). 0 kesin
olarak ait olmamayi, 1 kesin aitligi gosterirken (0,1) araligi ise tiyelik derecesini (1)
ifade eder. (u,(x)) tyelik derecesi; X, x elemanlarinin olusturdugu uzay olmak {izere

bulanik A kiimesi

A= {(x p(x)lx € X} (6.1)
seklinde tanimlanir (Senol, 2010).
Uyelik fonksiyonlarinin ii¢ temel 6zelligi vardir (Sen, 2009).

1. Normallik (en az bir tane tiyelik fonksiyonunun 1 olmasi ile saglanir).
2. Dugbiikeylik (iiyelik fonksiyonunun siirekli artan ya da azalan olmasidir).

3. Simetriklik

Genel olarak kullanilan {iyelik fonksiyonlari sekil 6.8’de verilmistir.
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Fonkj'f bl Fonksiyonun Grafigi Matematiksel Gosterimi
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artan iiyelik I--—-— . _ju-a o<
fonksiyonu ! I'(u;0,p) = e a<u<p
r /|
o g u 1 ; pB<u
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Cizgisel olarak . ﬂ-u _ S
azalan tyelik L(u;a, B) f—a , as<u<pf
fonksiyonu :
L | 0 ; B<u
o g u
0 ;u<a
u-a ; afu<
Uggen iiyelik S i foy] = B-a
fonksiyonu /1 | - f-u
| —; fLuly
| By
coE Y 0 ; y<u
0 ;u<a
i
u_
a,aSuSﬁ
f—a
Yamuk  {iyelik S S S
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fonksiyonu 1/ : : [wa,p,6,7] 5 p 14
L ' L y<u<o
L B d—y
0 ;u<o

Sekil 6.8 Uyelik Fonksiyonlart

6.4.2 Bulanik kiime islemleri

A ve B, X evrensel kiimesinde tanimlanan iki bulanik kiime olsun. Bunlar
ua(X) ve ue(x) tyelik fonksiyonlariyla gosterelim. Burada xeX durumu so6z

konusudur.

Bulanik kiimelere gore temel islemler asagidaki gibidir:
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e Iki ayr1 bulanik kiimenin birbirine esit olabilmesi icin (A=B) asagidaki sart

saglanmalidir.
VvV X € S:pa(X)=us(X)

e Akiimesinin B kiimesinin alt kiimesi olabilmesi igin asagidaki sart

saglanmalidir.

V X € X:pa(X)<us(X)

e Her xeX i¢in AUB birlesiminin paus(x) iiyelik fonksiyonu:
naos(x)=max{pa(x), pe(x)}
olarak yazilabilir (Kosko, 1992).

e Her xeX i¢in ANB kesisiminin pa~s(x) iiyelik fonksiyonu:
rane(X)=min{pa(x), ue(x)}
olarak yazilabilir (Fuller, 1995).

e Her xeX icin A bulanik kiimesinin tiimleyeni olan . (¥ tyelik fonksiyonu:

Ha() =1-pa(¥)
olarak yazilabilir (Kosko, 1992; Sinecen, 2011).

6.4.3 Bulanik sistemler

Bulanik sistemler genel olarak mevcut verilerden secilen giris degerlerinin elde
edilebilmesi i¢in bulanik kiime ilkelerini kullanan sistemlerdir (Haznedar, 2017).
Bulanik sistemler 4 temel bilesenden olusur. Bunlar; bulaniklastirici, kural tabani,
¢ikarim mekanizmasi ve durulagtirict birimdir. Bulanik sistemlerde girdi ve c¢ikti
verileri  kesindir yani gercek sayilardir. Giriste nomalizasyona ¢ikista,

denormalizasyona ugrayarak sézel veriler kesin sayilara doniistiirtiliir.
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Sekil 6.9 Bulanik Sistemler

6.4.3.1 Bulaniklastirici

Bulaniklagtirma biriminde kesin olan degerlerden bulanik degerlerin elde
edilmesi amaclanir. Bulaniklastirict; sézel olarak nitelendirilen degerlerin, bulanik
kiimelerdeki tlyelik derecelerine gore iiyelik fonksiyonlariyla atanmasina yarayan
islemcidir. Her bilgiye iiyelik dereceleri atanarak dilsel veriye dontistiiriilerek kural

birimine yonlendirilir.

6.4.3.2 Kural isleme birimi

Sistem operatoriiniin deneyimlerinin yer aldigi birimdir. Denetim kurallar1 “eger...o
halde...(if...then...) seklindedir. Kural isleme biriminde sozel veriler denetim
kurallariyla birlestirilir. Bu katman bilinen gerceklerden sonuclarin ¢ikarildig

birimdir.

6.4.3.3 Durulastirma

Kural biriminde ¢ikarilan sonuglar sozel ifadeler seklindedir. Durulastirma birimi
bulanik ifadelerin kesin degerlere doniistiiriildiigii yani denormalizasyon igleminin

yapildig1 birimdir.
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6.4.3.3.1 Durulastirma yontemleri

Bulanik sistemlerde kullanilan bazi durulastirma yontemleri asagidaki tabloda

gosterildigi gibidir (Senol, 2010).

Yontemin Adi Fonksiyonu Grafigi
“a
1
Agirhk Merkezi u = .[ K (u)u du
Yontemi J' ,u(u) du
| ]
£
Uyelik T _
Fonksiyonlarinin En u = a+b i
Yiiksek Noktalarmin -
Ortalamas1 Yontemi §
| i o
I
E B-- --k M k 0 1 """"""""""""" )
n Bilyiik Maksimum *)> :
Yontemi ,uA(u )— ,uA(u)

u=bulanik deger, u’ =durulastirilmis deger

Sekil 6.10 Durulastirma Y dntemleri
6.5 Mamdani Modeli

[Ik uygulamasi 1974 yilinda, Londra Universitesinden Prof. Mamdani
tarafindan buhar tiirbininin denetlenmesi seklinde yapilmistir. Bu model insan
konusma ve anlagsma yapisina uygun oldugundan olusturulmasi basittir ve bu nedenle
siklikla kullanilmaktadir. Bu modelde hem girdi degiskenlerihem de ¢ikti
degiskeniiiyelik fonksiyonlari ile ifade edilir.

Mamdani bulanik modeli, mevcut mevcut nitel bilgiyi EGER- O HALDE

kurallar1 bigiminde ifade etmek i¢in 6ne siirtilmiistiir.
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K;: EGER x A; ise 0 HALDE y B;’dir, i=123,..,r (6.2)
x: dilsel girig degiskeni
A;: Onciil dilsel terim
y: dilsel ¢ikis degeri
B;: Sonug dilsel terim
Dilsel terimler kendilerine ait iiyelik fonksiyonlar1 ile tanimlanir.
Onciil ve sonug bulanik kiimelerin iiyelik fonksiyonlart
p(x) =X - [0,1] ve p(y) =Y - [0,1] (6.3)

seklindedir.
6.6 Takagi-Sugeno Bulanmik Modeli

Takagi, Sugeno ve Kang tarafindan 1985 yilinda kullanimigtir. Mamdani tipi
modelin bir uyarlamasidir. Giris degerlerinin bulaniklastirilmast ve bulanik islemler
Mamdani tipi ile tamamen aynidir. Aradaki temel fark ¢ikis tliyelik fonksiyonlar1 T-S

modelinde F(x,y) gibi lineer yada sabittir.

Modelde ¢ikis iiyelik fonksiyonu sabit ise sifirinct derece, eger lineer ise

birinci derece T-S bulanik modeli tanimlanir.
‘Eger x = A ve y = B ise z =k’ (Sifirinc1 derece)

‘Eger x = A ve y = B ise z = f(x,y) = px+qy-+r (¢)’ (Birinci Derece)
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Sekil 6.11 Mamdani ve Takagi Sugene Bulanik Modeli

=
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6.7 ANFIS Mimarisi

ANFIS bulanik sistemlerimlerin ve yapay sinir aglarinin avantajlarinin
birlestirildigi hibrid sistemlerdir. Bu sekilde olusturulan yapiya bulanik sinir agi
denir. Bulanik sistemlerin 6grenme kabiliyeti yoktur ve kendilerini yeni ¢evreye
adapte edemezler. Diger yandan yapay sinir aglart 6grenme kabiliyetine sahiptir;
fakat kullanici tarafindan anlasilmazlar (Ozkan ve digerleri, 2007). Adaptif ag tabanh
bulanik mantik ¢ikarim sistemi (ANFIS), Sugeno tipi bulaniksisteminin, sinirsel

ogrenme kabiliyetine sahip bir ag yapisi olarak temsilinden ibarettir (Yumuk, 2011).

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

A
x<:
A,

y

'

«
I~)W —w

# —]

<

Sekil 6.12 ANFIS Mimarisi
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Sekilde de belirtildigi gibi ANFIS 5 katmandan olusmaktadir. ANFIS
modelinin katmanlarii genel olarak ozetlersek, 1. katmanda giris verilerine iiyelik
fonksiyonlar1 uygulanarak bulaniklagtirma islemi yapilir. 2. katmanda bulanik mantik
cikarim sistemine gore kurallar olusturulur. 3. katmanda kural katmanindan gelen her
bir diiglime, agirlikli ortalama ile normalizasyon islemi uygulanir. 4. katmanda ise
bulanik sonuglar sayisal degerlere doniistiiriilir ve son olarak 5. katmanda tiim

diigtimlerin ¢ikis degerleri toplanarak sistemin tek ¢ikis degeri iiretilir.
5 katmani detayl1 bir sekilde incelersek (Ozkan ve digerleri, 2007);
1.Katman:

Bulaniklagtirma katmani olarak adlandirilir. Giris degerlerini bulanik kiimelere
ayirmada Jang’in ANFIS modeli, iiyelik fonksiyonu sekli olarak genellestirilmis Bell
aktivasyon fonksiyonunu kullanmaktadir. Burada, her bir diigiimiin c¢ikisi,
girisdegerlerine ve kullanilan iiyelik fonksiyonuna bagli olan iiyelik derecelerinden

olusmaktadir ve 1. katmandan elde edilen tyelik dereceleri Ha, (x) ve ,qu(y)

seklinde gosterilir.
2.Katman:

Kural katmanidir. Bu katmandaki her bir diigiim, Sugeno bulanik mantik ¢ikarim
sistemine gore olusturulan kurallar1 ve sayisimi ifade etmektedir. Her bir kural

diiglimiiniin ¢ikist g, 2. katmandan gelen iiyelik derecelerinin ¢arpimi olmaktadir.

4, degerlerinin elde edilisi ise, (j=1,2) ve (i=1,....,n) olmak iizere

yi=lh =p, @xu, )=u, =u, (6:4)

seklindedir. Burada, y®, 2. katmanin ¢ikis degerlerini; n ise, bu katmandaki diigiim

sayisini ifade etmektedir.
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3.Katman:

Normalizasyon katmanidir. Bu katmandaki her bir diigiim, kural katmanindan gelen
tim digtimleri giris degeri olarak kabul etmekte ve her bir kuralin normallestirilmis

atesleme seviyesini hesaplamaktadir.

Normallestirilmis atesleme seviyesi z 'nin hesaplanmast ise,

4 'ui .
Vi =Ni=gz——=p (i=1n) (6.5)

i1 M i
formiiliine gore gergeklestirilir..
4.Katman:

Arindirma katmanidir. Arindirma katmanindaki her bir diiglimde verilen bir kuralin
agirliklandirilmis sonug degerleri hesaplanmaktadir. 4 katmandaki i. diigiimiin ¢ikis

degeri ise,
i = [pX +0X, +1] (6.6)

seklinde olmaktadir. Buradaki (pi, Qi, ri) degiskenleri, 1. kuralin sonu¢ parametreleri

kimesidir.
5.Katman:

Toplam katmanidir. Bu katmanda sadece bir diigiim vardir ve ¥ ile etiketlenmistir.
Burada, 5. katmandaki her bir diigiimiin ¢ikis degeri toplanarak sonugta, ANFIS

sisteminin gercek degeri elde edilir.

Sistemin ¢ikig degeri olan y’nin hesaplanmasi ise,

yE = ) T Ip% +0%, +1] (6.7)
i=1

denklemine gore olmaktadir (Ozkan ve digerleri, 2007).
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7 SAYISAL UYGULAMA

Bu ¢aligmada Trakya Bolgesine dagilmis, ortometrik ve elipsoit yiikseklikleri
bilinen 175 adet nokta kullanilmistir. Bu noktalardan 143 tanesi modelin
olusturulmasinda dayanak noktasi olarak kullanilmis geriye kalan 32 nokta ise test
noktast olarak kullanilmigtir. Dayanak noktalar1 i¢in uyusumsuz Olgiiler testi
yapilmis ve bunlar noktalardan uyusumsuz olanlar modelin olusturulmasinda
kullanilmamistir.Hesaplamalar icin Surface Surfer 13 adli paket programi
kullanilmistir. Modelin olusturulmasinda polinomlarla enterpolasyon, radyal bazli
fonksiyonlar, Kriging ve mesafenin tersi metotlart kullanilmistir.Sonuglar test
noktalara ait karesel ortalama hatalar hesaplanarak karsilastirilmigtir. Dayanak

noktalarinin dagilimi asagida gosterilmistir.
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Sekil 7.1 Dayanak Noktalarinin Dagilimu
7.1 Surface Surfer 13 Programinin Modelleme i¢in Kullanilmasi

Dayanak noktalarina ait koordinatlar “excel” formatinda kaydedilir.
Kaydedilen dosyadaki siitunlarda nokta adi, X ve Y koordinat degerleri, elipsoit
yiiksekligi ve ortometrik yiikseklik, jeoit yiiksekligi degerleri yer alir. Kaydedilen

“excel” dosyasmin agilmasi i¢in Surface Surfer 13 programinda  ekranin
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yukarisindabulunan meniiden sirasiyla grid ve data tiklanir. Buradan dayanak

noktalarinin bulundugu excel dosyasi ¢agirilir.

viAS i DO E

BEBSBEG eS¢ i

Jadfuadatiluadarflandailanludloataailisdudlsaladabiadluabuilusd b Ll

LR YN KO e

Sekil 7.2 Surface Surfer Ekran Goriintiisii-1

Grid Data - CAUsers\Kentetik\Desktop\TEZ\TEZ\A- VERRDayanak.xls s S

Data Columns (0 data points)
¥: [Column A =] [ FiterData... |
¥z [Column B: ¥ '] [ View Data ]
Z: [Column C: x '] [ Statistics ] Gnd Report
Gridding Method

Inverse Distance to a Power & | Advanced Options... Cross Validate...
Inverse Distance to a Power

Kriging

Minimum Curvature imum Spadng # of Modes
Modified Shepard's Method o 100 =
Matural Neighbar =
Mearest Neighbor 0 100 =

Palynomial Regression
Radial Basis Function
Triangulation with Linear Interpalation

IData Metrics
Local Polynomial | Blank arid outside convex hull of data

Maximum: | None 1}

Output Grid File
C:\Users\Kentetik\Desktop \TEZ\TEZ\A-VERI\Dayanak.grd

W

||
[

Sekil 7.3 Surface Surfer Ekran Goriintiisi-2

Bu meniide excel dosyasindaki siitunlar modelin olusturulmasi i¢in programa
tanitilir. X koordinati i¢in X kolonu, Y koordinat1 Y kolonu ve jeoit yiliksekligi i¢in
de Z kolonu secilir . Modelin olusturulmasinda kullanilacak enterpolasyon yontemi
de bu meniiden secilir. Bu meniiden datalarin filtrelenmesi islemi de yapilabilir.
Kullanilacak modellerden hangisinin daha dogru olacagina karar vermek i¢in “Cross
Validation” segenegi ile kullanilacak yonteme ait istatiksel sonuglara ulasilabilir. Bu
asamadan sonra olusturulan ‘“grd” uzantili datanin ¢ikti yolu belirlenir. “OK”

butonuna basildiginda grd uzantil dosya kaydedilir ve istatiksel sonuclar kullaniciya
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buradan verilir. Gridlenen data iistte bulunan meniiden “MAP” butonuna basilarak
okutulabilir. Olusturulan data meniide bulunan vektor haritalari, kontur haritalari, 3D
ylizey haritalar1 ve diger seceneklerden istenenler secilerek yilizey goriiniimiiniin

ekrana gelmesi saglanir.

Propety Mansa
nfo
Mo selection

@E{Wm Casdamo

La -8
B X X I

02072008

Sekil 7.4 Surface Surfer Ekran Goriintiisii-3

Ara noktalara ait enterpolasyon degerlerini hesaplamak i¢in, hesaplamak
istedigimiz nokta koordinatlarini excel dosyasi olarak kayit etmemiz gerekmektedir.
Daha sonra yukarida bulunan “GRID” meniisiinden “RESIDUALS” segilir. Bu
meniide dnce grd uzantili dayanak noktalarina ait data secilir daha sonra hesaplamak
istedigimiz “excel” uzantili dosya programa okutulur. Sonuglar ekrana excel

formatinda yazdirilacaktir.

adwlaabidadutalatibalaalil

Sekil 7.5 Surface Surfer Ekran Goriintiisii-4
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7.2 Modelin Olusturulmasi

Modelin olusturulmasinda kullanilan dayanak noktalarina ait sayisal degerler

Tablo 7.1°de verilmistir.

Tablo 7.1 Dayanak Noktalar1 (birimler:metre)

NOKTA ADI SAGA YUKARI h H N

3HO038-AN13 484684.307 |4501399.052 |40.096 |0.593 39.503
E1810014 510762.663 | 4603363.617 |194.056 |155.355 |38.701
E1810020 504968.427 | 4599780.062 |185.614 |146.821 |38.793
E1820026 526557.644 | 4635370.859 |524.696 |485.458 |39.238
E1820029 519407.387 | 4604839.658 |198.433 |159.782 |38.651
E1830137 520680.410 |4640347.837 |719.404 |679.977 |39.427
E1830144 531106.037 |4634762.428 |471.425 |432.218 |39.207
E1830145 540326.351 | 4634995.748 |515.741 |476.581 |39.160
E1830169 517460.892 |4613776.628 |200.699 |161.915 |38.784
E1830172 515827.712 | 4617014.592 |202.548 |163.662 |38.886
E1830176 513673.209 |4619733.742 |249.808 |210.793 |39.015
E1830177 513571.777 |4621346.691 |258.942 |219.871 |39.071
E1830182 514928.559 |4625975.855 |282.818 |243.672 |39.146
E1830191 512765.652 | 4637180.088 |443.838 |404.529 |39.309
E1830193 511655.707 | 4639544.703 |486.504 |447.176 |39.328
E1920009 555147.385 |4620198.219 |424.575 |385.783 |38.792
E1920017 548554.806 | 4626009.889 |557.737 |518.774 |38.963
E1930066 546222.199 |4629959.905 |756.296 |717.259 |39.037
E1930072 558081.670 |4621206.100 |550.508 |511.756 |38.752
E1930073 563437.892 | 4620159.527 |441.714 |403.124 |38.590
E1930076 558321.217 |4618483.140 |422.588 |383.862 |38.726
E1930094 561148.431 |4607382.100 |243.875 |205.331 |38.544
E2010001 591034.838 | 4607961.547 |273.355 |235.318 |38.037
E2020003 594360.301 |4600173.471 |356.852 |318.859 |37.993
F1720039_AN92 |458039.445 |4558877.952 |138.573 [99.165 |39.408
F1730118_AN46 |468863.691 |4566914.099 |55.401 [16.258 |39.143
F1730123_AN34 |480507.720 |4566876.664 |81.621 [42.702 |38.919
F1730126_AN30 |487362.528 |4566872.752 |154.653 |115.715 |38.938
F1730129 AN75 |464318.895 |4564198.498 |49.376 |10.073 |39.303
F1730146_AN58 |487380.691 |4562679.595 |122.824 |83.860 |38.964
F1730150_AN70 |463984.275 |4561382.603 |51.246 [11.955 |39.291
F1730153_AN67 |471196.087 |4561349.366 |74.129 [34.970 |39.159
F1730163_AN109 | 458419.690 |4555870.343 |47.398 |8.016 39.382
F1730189_AN144 |460013.445 |4548861.346 |69.153 |29.723 |39.430
F173H021 494189.980 |4580533.566 |109.892 |71.082 |38.810
F1810010 525447.335 | 4552880.982 |184.087 |145.848 |38.239
F1810013 504168.903 |4551170.647 |165.120 |126.448 |38.672
F1910010 580444.458 | 4552184.252 |184.300 |146.743 |37.557
F1920036/114 571257.371 |4543478.751 |186.487 |148.851 |37.636
F1920037/376 570186.132 | 4546261.247 |210.533 |172.877 |37.656
F1920038 577521.770 |4547311.632 |146.704 |109.131 |37.573
F1920039 570126.172 | 4549818.682 |179.423 |141.673 |37.750
F1920046/331 577190.167 |4555818.483 |213.764 |176.069 |37.695
F1920048/328 582678.752 | 4559525.558 |195.467 |157.733 |37.734
F1920052/327 577054.935 |4565100.972 |236.832 |199.003 |37.829
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F1920055 568181.232 |4561718.764 |199.998 |162.133 |37.865
F192H005 583469.199 |4547739.910 |94.513 |57.062 |37.451
F1930229 573170.681 |4558191.912 |237.503 |199.739 |37.764
F1930255 572520.810 |4557349.381 |197.692 |159.897 |37.795
F1930327 568909.242 | 4554579.029 |154.255 |116.404 |37.851
F1930348 568121.275 |4553684.750 |158.800 |120.948 |37.852
F1930383 572963.876 |4551913.018 |167.214 |129.465 |37.749
F1930395 569310.933 | 4550537.637 |112.273 |74.493 |37.780
F193H003 576463.319 |4573873.849 |224.285 |186.485 |37.800
F201H001 589627.106 |4595144.250 |523.153 |485.078 |38.075
F201H013 586220.109 |4583153.988 |274.559 |236.626 |37.933
F2020449 603634.406 |4565655.454 |204.527 |166.812 |37.715
F202H018 599829.657 |4585515.701 |173.422 |135.504 |37.918
F202H042 600873.637 |4576540.680 |272.474 |234.677 |37.797
F202H419 587918.213 |4564163.245 |189.794 |152.045 |37.749
F202H437 585087.317 |4556484.170 |149.383 |111.748 |37.635
F202H446 597504.167 |4568714.425 |271.242 |233.467 |37.775
F202H455 597455.769 |4565384.792 |271.482 |233.726 |37.756
F202H478 601904.688 |4559495.395 |127.164 |89.554 |37.610
F202H482 600958.521 |4557175.423 |102.134 |64.551 |37.583
F202H486 596206.291 |4556811.710 |146.601 |109.066 |37.535
F202H518 600268.670 |4549422.812 |74.408 |37.011 |37.397
F202H521 597127.474 | 4548964.340 |45.374 |8.008 37.366
F202H535 593383.273 | 4550986.249 |74.296 |36.829 |37.467
F202H544 591489.769 |4548460.580 |91.717 |54.330 |37.387
F202H552 587389.234 | 4545707.704 |56.666 |19.324 |37.342
G163H003 449738.789 |4517928.039 |73.251 |33.417 |39.834
G163H004 448630.720 |4519162.289 |48.735 |8.896 39.839
G163H010 451880.071 |4526209.362 |90.289 |50.533 |39.756
G1730214 489655.210 |4496932.714 |44.171 |4.615 39.556
G1730215 492403.521 |4493612.372 | 74516 |34.949 |39.567
G1730218 458921.269 |4525951.733 |134.532 |94.898 |39.634
G1730219 459401.539 |4523671.490 |91.154 |51.519 |39.635
G1730222 462133.137 |4521726.973 |75.422 |35.800 |39.622
G1730228 467308.697 |4518179.269 |95.358 |55.777 |39.581
G1730238 474917.527 |4515716.574 |80.530 40.947 39.583
G1730240 477039.977 |4509984.493 |200.075 |160.458 |39.617
G1730244 494400.955 |4490350.892 |44.837 |5.311 39.526
G1730247 498666.738 | 4491424.403 |47.099 |7.586 39.513
H162H001 454518.347 | 4434676.250 |219.430 |179.474 |39.956
Dayanak noktalarindan yararlanarak polinomal, radyal ve kriging

yontemlerine ait model katsayilar1 elde edilmis olup bu modellerden yararlanarak test
noktalarinin yiikseklikleri ilgili modeller ile enterpole edilmistir. Bu enterpolasyon
isleminde sonra elde edilen ortometrik yiikseklikler Tablo 7.2, 7.3 ve 7.4°de

verilmistir.



Tablo 7.2 Test Noktalarina Ait Sonuglar-1(birimler:metre)
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NOKTA ADI SAGA YUKARI h H(Lineer) (B”meer) (KuadHratik) H(Kiibik) (Ge':cek)
E1810015 515705.147 | 4619996.599 | 239.649 | 200.6094 |200.7167 | 200.6275 200.7090 | 200.658
E1820036 513014.159 | 4633790.743 |394.242 | 355.1155 |355.2506 | 355.0714 354.9608 | 354.909
E1830159 518748.717 | 4601742.611 | 178.985 |140.0524 |140.1450 | 140.1379 140.3449 | 140.448
E1930083 558256.593 | 4612910.310 | 459.989 | 421.6273 |421.3345 | 421.3773 4214755 | 421.247
F1720034 AN77 | 466059.929 | 4562949.962 | 70.967  |31.3519 |31.5621 |31.6602 317407 |31.748
F1720036_AN166 | 461022.673 | 4560969578 |54.497 |14.8109 |15.0125 |15.1232 15.2064 | 15.184
F1730136_ANS53 | 480482.375 | 4564193.050 | 106.443 |67.0456 |67.2403 |67.3148 67.3905 | 67.425
F1730177 AN125 | 473709.335 | 4551648.943 | 126.701 |87.2408 |87.3692 | 87.4648 87.4738 | 87.474
F1830165 509355.007 | 4544472.846 | 152.670 | 113.7818 |113.9164 |113.9344 113.9169 | 114.002
F1830198 515595.700 | 4587756.791 | 105972 |67.0370 |67.1604 | 67.1853 67.4001 | 67.585
F1830206 512371260 | 4566672.693 | 125.245 | 86.3300 | 86.4700 | 86.5125 86.6470 | 86.876
F192H001 583345.624 | 4551410907 | 94.432 | 56.6590 |56.8210 | 56.7966 56.8320 | 56.92
F1930236 578678.306 | 4551196.628 | 149.911 | 112.0669 |112.2297 |112.2046 112.2599 | 112.285
F1930323 570424.763 | 4555167.559 | 178.587 | 140.6028 | 140.7262 | 140.7216 140.8212 | 140.757
F1930389 573000.374 | 4549131.443 | 163.689 | 125.7643 | 125.9450 | 125.9106 125.9755 | 126.043
F1930391 570620.095 | 4550651.912 | 163.057 | 125.0907 | 125.2557 | 125.2299 125.3081 | 125.364
F193H039 563243.308 | 4582922.640 | 139.675 | 101.4889 |101.3905 | 101.4595 101.6583 | 101.797
F193H486 581756.938 | 4544683.757 | 45.223 | 7.4477 | 7.6834 7.6201 76362 | 7.888
F193H586 577307.768 | 4565449.393 | 233.428 | 1955158 | 1955313 | 195.5702 195.6810 | 195.789
F2020004 591900512 | 4584744.270 | 279522 | 241.7706 | 2415145 | 241.6307 241.6321 |241.553
F202H412 587687.249 | 4566817.410 | 199.973 | 162.2159 | 162.1952 | 162.2466 162.2959 | 162.2
F202H451 599878.923 | 4566805.997 | 261.294 | 223.7245 | 223.6779 | 223.7407 223.6786 | 223.586
F202H473 596854.992 | 4559217.450 | 168.990 | 131.3990 | 131.4607 | 131.4825 1314445 | 131.393
G162H001 451627.392 | 4522175590 | 104.197 | 64.4943 |64.3297 | 64.4733 64.4307 | 64.404
G1730203 483862.195 | 4510430.374 | 455.486 | 416.3179 | 416.2598 | 416.2351 415.9985 | 415.881
G1730220 461121.385 | 4525121.936 | 109.878 |70.3117 |70.2185 |70.3301 70.2347 | 70.269
G173H025 465547.329 | 4527745749 |109.272 | 69.7651 | 69.7116 | 69.8119 69.7072 | 69.6
G173H029 468132.251 | 4523361.066 | 117.336 | 77.8833 | 77.8093 | 77.8910 77.7547 | 77.616
G173H063 492838.636 | 4523825.608 | 188.406 | 149.3318 |149.3776 | 149.3752 149.1972 | 149.081
G173H099 472339.859 | 4524720.921 | 146.254 | 106.8615 | 106.8164 | 106.8862 106.7414 | 106.626
G1830061 502335.244 | 4518086.028 | 192.837 | 153.9278 | 154.0089 | 153.9513 153.7457 | 153.483
G1830075 505005.957 | 4534637.121 | 176.233 | 137.3103 | 137.4267 | 137.4269 137.3310 | 137.244




Tablo 7.3 Test Noktalarina Ait Sonuglar-2(birimler:metre)
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NOKTA ADI SAGA | YUKARI h (I\;I—lQ) (TerI:MQ) (Mu|l_t|ilog) (TgS) (Gelr_igek)
E1810015 515705.147 | 4619996.599 | 230649 | 2006532 | 2006471 | 200.6114 | 2006565 | 200.658
E1820036 513014.159 | 4633790.743 | 394242 | 3549716 |355.0097 | 355.1074 | 3549739 |354.909
E1830159 518748.717 | 4601742.611 | 178.985 | 1403565 | 1403291 | 140.0644 | 1403630 | 140.448
1930083 558256.593 | 4612910.310 | 450.980 | 4213446 | 4213403 | 421.6000 | 4213283 |421.247
F1720034 AN77 | 466059.929 | 4562049.962 | 70967  |317124 |31.7054  |31.3910  |317121 |31.748
F1720036_AN166 | 461022.673 | 4560969.578 | 54497 | 151482 | 151457  |14.8471 | 151433 |15.184
F1730136_AN53 | 480482.375 | 4564193.050 | 106.443 | 67.4752 |67.4880 | 67.0817 | 67.4841 |67.425
F1730177 AN125 | 473709.335 | 4551648.943 | 126.701 |87.5024 |87.5476  |87.0646 | 87.4964 |87.474
F1830165 500355.007 | 4544472.846 | 152670 | 1140462 |113.9676 | 1137910 | 114.0596 | 114.002
F1830198 515595.700 | 4587756.791 | 105972 | 674033 |67.2624 | 67.0518 | 67.4207 | 67.585
F1830206 512371260 | 4566672.693 | 125.245 | 867307 |86.5764  |86.3470 | 86.7478 |86.876
F192H001 583345.624 | 4551410.907 | 94.432 | 569157 |56.9265  |56.6798 | 569183 |56.92
F1930236 578678.306 | 4551196.628 | 149.911 |112.3232 |1123317 | 1120016 |112.3260 |112.285
F1930323 570424.763 | 4555167.559 | 178.587 | 140.7624 | 1407457 | 1406280 | 140.7529 |140.757
F1930389 573000374 | 4549131.443 | 163.689 | 126.0048 | 1260109 | 1257910 |126.0020 |126.043
F1930391 570620.095 | 4550651.912 | 163.057 | 1252071 |1252971 |125.1188 |125.2039 |125.364
F193H039 563243308 | 4582922.640 | 139.675 |101.5765 | 1013785 | 1014860 | 101.6097 |101.797
F193H486 581756.938 | 4544683.757 | 45223 | 7.7630 | 7.6798 7.4675 77796 | 7.888
F193H586 577307.768 | 4565449.393 | 233.428 | 1956041 | 1955972 | 1955271 | 1955999 |195.789
F2020004 591000512 | 4584744.270 | 279522 | 2415846 | 2415771 | 2417543 | 2415708 | 241553
F202H412 587687.249 | 4566817.410 | 199.973 | 162.1975 |162.1846 | 1622167 | 162.1948 | 1622
F202H451 509878.923 | 4566805.997 | 261.294 | 2235457 | 2235536 | 2237126 | 2235407 | 223586
F202H473 506854.992 | 4550217.450 | 168.990 | 131.3841 |131.3964 | 1313975 |131.3892 |131.393
G162H001 451627392 | 4522175500 | 104.197 | 64.4157 |64.3837 | 64.4860 | 64.4187 |64.404
G1730203 483862.195 | 4510430.374 | 455.486 | 4159984 | 4160420 | 4162900 | 4159768 | 415.881
G1730220 461121385 | 4525121.936 | 109.878 | 702715 |70.2772 | 703039 | 702710 |70.269
G173H025 465547.329 | 4527745749 | 109.272 | 697403 |69.7918 | 69.7600 | 69.7370 | 69.6
G173H029 468132.251 | 4523361.066 | 117.336 | 77.7986 | 77.8239 | 77.8725 | 77.7982 | 77.616
G173H063 492838.636 | 4523825.608 | 188.406 | 149.2235 |149.2958 | 1493210 | 149.1754 | 149.081
G173H099 472339.859 | 4524720.921 | 146254 | 106.7723 | 1068343 | 106.8518 | 106.7647 | 106.626
G1830061 502335244 | 4518086.028 | 192.837 | 1537550 |153.7981 | 1539122 |153.6938 |153.483
G1830075 505005957 | 4534637.121 | 176233 | 137.4171 |137.3717 |137.3111 |137.4036 | 137.244




Tablo 7.4 Test Noktalarina Ait Sonuglar-3(birimler:metre)
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NOKTA ADI SAGA YUKARI h (Na|t_|urel (Kr|i_(;ing (Kr|i_g|;ing (T:|rs H
Kiibik) Point) Block) Mesafe) (Gergek)
E1810015 515705.147 | 4619996.599 | 239.649 | 200.6613 200.6532 | 200.6414 |200.6473 | 200.658
E1820036 513014.159 | 4633790.743 | 394.242 | 354.9741 | 354.9716 |354.9729 |354.9572 | 354.909
E1830159 518748.717 | 4601742.611 | 178.985 | 140.3591 | 140.3565 |140.3265 | 140.3184 |140.448
E1930083 558256.593 | 4612910.310 | 459.989 | 421.3218 421.3446 | 421.3158 |421.3158 | 421.247
F1720034_AN77 | 466059.929 | 4562949.962 | 70.967 31.7136 31.7124 31.7133 31.6907 | 31.748
F1720036_AN166 | 461022.673 | 4560969.578 | 54.497 15.1416 15.1482 15.1532 15.1688 15.184
F1730136_ANG3 | 480482.375 | 4564193.050 | 106.443 | 67.4820 67.4752 67.4612 67.5035 67.425
F1730177_AN125 | 473709.335 | 4551648.943 | 126.701 | 87.4742 87.5024 87.5001 87.4823 | 87.474
F1830165 509355.007 | 4544472.846 | 152.670 | 114.0690 114.0462 | 114.0161 |113.9962 | 114.002
F1830198 515595.700 | 4587756.791 | 105.972 | 67.3992 67.4033 67.3706 67.2342 67.585
F1830206 512371.260 | 4566672.693 | 125.245 | 86.7280 86.7307 86.6954 86.5802 | 86.876
F192H001 583345.624 | 4551410.907 | 94.432 | 56.9201 56.9157 56.8318 56.8868 | 56.92
F1930236 578678.306 | 4551196.628 | 149.911 | 112.3279 112.3232 | 112.2427 |112.3253 | 112.285
F1930323 570424.763 | 4555167.559 | 178.587 | 140.7490 140.7624 | 140.6946 | 140.7596 | 140.757
F1930389 573000.374 | 4549131.443 | 163.689 | 126.0022 | 126.0048 | 125.9296 | 125.9668 | 126.043
F1930391 570620.095 | 4550651.912 | 163.057 | 125.2930 | 125.2971 |125.2260 | 125.2960 | 125.364
F193H039 563243.308 | 4582922.640 | 139.675 | 101.6474 101.5765 |101.5212 |101.7176 |101.797
F193H486 581756.938 | 4544683.757 | 45.223 7.7745 7.7630 7.6765 7.7194 7.888
F193H586 577307.768 | 4565449.393 | 233.428 | 195.5969 195.6041 |195.5371 |195.6014 | 195.789
F2020004 591900.512 | 4584744.270 | 279.522 | 241.5655 2415846 | 2415216 |241.6057 |241.553
F202H412 587687.249 | 4566817.410 | 199.973 |162.1935 |162.1975 |162.1267 |162.2293 | 162.2
F202H451 599878.923 | 4566805.997 | 261.294 | 223.5396 | 223.5457 | 223.4739 | 223.5453 | 223.586
F202H473 596854.992 | 4559217.450 | 168.990 | 131.3971 [131.3841 |131.3048 |131.4216 |131.393
G162H001 451627.392 | 4522175.590 | 104.197 | 64.4224 64.4157 64.4418 64.4157 64.404
G1730203 483862.195 | 4510430.374 | 455.486 | 415.9505 | 415.9984 |416.0101 |415.9199 |415.881
G1730220 461121.385 | 4525121.936 | 109.878 | 70.2683 70.2715 70.2887 70.2449 | 70.269
G173H025 465547.329 | 4527745.749 | 109.272 | 69.7247 69.7403 69.7541 69.6543 69.6
G173H029 468132.251 | 4523361.066 | 117.336 | 77.7919 77.7986 77.8126 77.7362 77.616
G173H063 492838.636 | 4523825.608 | 188.406 | 149.1160 | 149.2235 | 149.2205 | 149.0371 | 149.081
G173H099 472339.859 | 4524720.921 | 146.254 | 106.7526 | 106.7723 | 106.7837 | 106.6730 | 106.626
(G1830061 502335.244 | 4518086.028 | 192.837 | 153.6090 | 153.7559 | 153.7480 | 153.5399 | 153.483
G1830075 505005.957 | 4534637.121 | 176.233 | 137.3827 1374171 |137.3964 |137.3608 | 137.244

Tablolar incelendiginde 6zellikle polinomal modellerden kiibik, radyal bazli

modellerden MQ, NKS ve TPS ve Kriging yontemlerinin ortometrik yiikseklikleri

belirlemede ki basaris1 géze ¢arpmaktadir. Elde edilen tiim modellere iliskin kontur

haritalar1 Sekil 7.6 ve 7.7°de, benzer sekilde {i¢ boyutlu yiizeylere ait grafikler de

Sekil 7.8 ve 7.9°da gosterilmistir.
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Sekil 7.8 Ug Boyutlu Yiizeyler-1
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Multilog Yiizey Thin PLate Spline Yuzey

Naturel Kiibik Spline Yiizey Mesafenin Tersi

Point Kriging Block Kriging

Sekil 7.9 Ug Boyutlu Yiizeyler-2

Kontur haritalart ve ii¢ boyutlu yiizeyler incelendiginde yine polinomal
modellerden kiibik, radyal bazli modellerden MQ, NKS ve TPS ve Kriging
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yontemlerinin yiizeyleri daha yumusak ve detayli bir bigimde temsil -ettigi
sOylenebilir. Bunun yaninda sayisal olarak tiim modellerde test noktalarina iliskin
karesel ortalama hata degerleri hesaplanmistir (Tablo 7.5). Sayisal degerler
incelendiginde grafiksel olarak gbéze carpan modellerin karesel ortalama hata
degerlerinin yaklagik 10 cm civarinda bir dogruluk sagladigi goriilmektedir. Bunun
yaninda calisma alani i¢in, polinomal modellerin derecesi arttik¢a daha iyi bir sonug
elde edildigi sOylenebilir. Radyal bazli fonksiyonlar incelendiginde multilog yontemi
hari¢ diger yontemlerin benzer ve 10 cm civarinda bir karesel ortalama hata degeri
verdigi goriilmektedir. Kriging metodunun iki farkli uygulamasinda ve ters mesafe
aliarak yapilan uygulamada da yine yaklasik 10 cm karesel ortalama hata degeri
elde edildigi goriilmektedir.

Diger yandan {lilkemizdeki jeoit belirleme caligmalarina bakildiginda ve
mevcut durum goz oniine alindiginda dnceki modeller ve en son giincel jeoit modeli
olan Tirkiye Hibrid Jeoidinin 2009 (THG-09) dogruluk degerleri Sekil 7.10’da
verilmistir. Genel olarak, THG-09 jeoit modelinin ortalama dogrulugu +8 cm olup,
gravite verisinin seyrek oldugu daglik, sinir ve sulak alanlarda modelin dogrulugu
diismektedir (Kiligoglu ve ark., 2011). Sayisal uygulama sonucunda elde edilen
degerler ile THG-09 jeoit modelinin ortalama dogrulugu karsilastirildiginda bulunan
degerlerin uyumlu oldugu soOylenebilir. Aradaki uyusumsuzlugun veya daha iyi
karesel ortalama hata degerlerinin elde edilememesinde yatan en onemli unsurlar
calisma alani icerisindeki verilerin kalitesi, kullanilan dayanak noktalarinin dagilimi

ve Ol¢iimler esnasinda yapilan hatalar olarak diistiniilmektedir.
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Tablo 7.5 Test noktalarina ait karesel ortalama hatalar (birim: metre)

YonteminAdi KareselOrtalama Hata
Liner +0.30m
Polinomal Biliner F0.23 m
Enterpolasyon | Kyadratik F0.21m
Kiibik F0.12m
Multikuadrik +0.11m
Inverse Multikuadrik F0.16m
?;?5:};3‘;‘.2; Naturel Kiibik Spline F0.09m
Multilog +0.28 m
Thin Plate Spline +0.10 m
o Point Kriging +0.11m
Kriging — —
Block Kriging +0.14 m
Mesafe_nin Mesafenin Tersi +0.11m
Tersi
TG-91/TG-9%A TG-03 THG-09
Yéntem Kaldir Yerine Koy Kaldir Yerine Koy Kaldir Yerine Koy
(EKKK} (EKKK) (FFT)
Yer Potansiyal Modsli GPM2-T1 EGMo6 EGMO8
Yerssl Gravite Olglisil 62250 61.597 262.212
Deniz Gravite Olglsi - Uydu Altimetresi Uydu Altimetresi
Sayisal Arazi Modeli 450m x 450m 450m x 450m 90m x90m
GPS/MNivelman Nok. 32 187 192 2464
Dig Dogrulugu 14_:_'2(:' :’;’:n +14.5cm +8.6cm +8.4.cm

Nm)

4 6 8 0 12 14 16 18 20 2 24 26 28 30 ¥ 34 3% 3B 4 42 44
Sekil 7.10. Tiirkiye’deki mevcut durum ve Tiirkiye Hibrid Jeoit Modeli — 2009 (THG-09) (Direng ve
ark., 2012)
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8 SONUCLAR

En genel ifadeyle yiikseklik kavrami yeryiiziinde bulunan bir nokta ile
baslangi¢ yiizeyi arasindaki mesafe olarak tanimlanabilir. Yiikseklikler fiziksel ve
geometrik anlamli olabilirler. Genel olarak yeryuvarinin gravite ile iliskisi olan yani
fiziksel anlaml ytiksekliklerin miihendislik projelerinde kullanilmasi daha uygundur.
Bunun en 6nemli nedeni fiziksel yasalardir yani en basit ifadeyle suyun akis yoniiniin
gravite alani ile iligkili olmasindan kaynaklanmaktadir. Genel olarak iilkemizde iki
cesit yiikseklik tiiri digerlerine oranla daha yaygin kullanilmaktadir. Bunlardan ilki
miithendislik projelerinde ve haritalama uygulamalarinda, geometrik bir ifadeden ¢cok
fiziksel bir anlam tasiyan ve gekiil egrisi boyunca yeryliziindeki nokta ile jeoit
arasindaki diisey uzaklik olarak tanimlanan ortometrik yiiksekliklerdir. Digeri ise
yine bir¢ok uygulamada hizli, ekonomik vb. olmasindan dolayr GPS yardimiyla elde
edilen, fiziksel bir anlam tasimayan ve geometrik esaslara dayanan elipsoidal
yiiksekliklerdir.

Diger yandan, noktalardaki ortometrik yiiksekliklerin belirlenebilmesi i¢in
yapilan nivelman oOlciileri olduk¢a zahmetli ve zaman alic1 bir islemdir. Ayrica,
GPS’ten elde edilen elipsoidal yiiksekliklerin miihendislik uygulamalarinda
kullanilabilmesi i¢in bolgenin yiikseklik datumunda tanimlanmis ortometrik
yiiksekliklere dontisimii  yapilmalidir. Bu sebeplerden o6tiirii  kolayligt  ve
uygulanabilirligiagisindan ~ kullanicilar  jeoit yiiksekliklerinin  belirlenmesinde
GPS/Nivelman yontemini tercih etmektedirler. Yontemelipsoidal yiiksekliklerinin
ortometrik yiiksekliklere doniistiiriilmesi esasina dayanir. Bu doniistim islemi igin
genellikle polinomal, trigonometrik, radyal bazli fonksiyonlar, kriging vb. modeller

kullanilabilir.

Bu ¢aligmada toplam on iki farkli enterpolasyon yontemi Trakya Bolgesine
dagilmis, ortometrik ve elipsoit yiikseklikleri bilinen 175 adet nokta igin
uygulanmistir. Bu noktalardan 143 tanesi modelin olusturulmasinda referans noktasi
olarak alinirken, 32 nokta test noktasi olarak kullanilmistir. Dayanak noktalart igin
uyusumsuz Olgiiler testi yapilmis ve uyusumsuz noktalar modelden c¢ikarilmistir.

Modelin olusturulmasinda polinomlarla enterpolasyon, radyal bazli fonksiyonlar,
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Kriging ve mesafenin tersi metotlar: kullanilmis ve sonugler elde edilmistir. Sonuglar
incelendiginde calisma alaninda, radyal bazli fonksiyonlardan olan natural kiibik
spline yonteminin (9 cm) diger yontemlere gore daha iyi sonugverdigi gortilmustiir.
Diger yandan diisiik dereceli polinomenterpolasyon yontemlerin yiiksek dereceli
yontemlere gore daha kaba sonuclar verdigi ve araziyi dogru bir bi¢imde
yansitmadig1 tespit edilmistir. Radyal bazli fonksiyonlar incelendiginde multilog
yontemi hari¢ diger yontemlerin benzer ve 10 cm civarinda bir karesel ortalama hata
degeri verdigi goriilmektedir. Kriging metodunun iki farkli uygulamasinda ve ters
mesafe alinarak yapilan uygulamada da yine yaklasik 10 cm karesel ortalama hata

degeri elde edildigi goriilmektedir.
Calisma bolgesi igin yapilan tiim bu uygulamalar sonucunda;

e polinom model derecesinin minimum 3. derece olmasinin yiizeyi temsil
etmede daha etkin olacagi

e radyal bazli fonksiyonlardan multilog yontemi hari¢ diger yontemlerin
neredeyse benzer sonuglar verdigi ve bunlarin herhangi birinin ytikseklikleri
belirlemede kullanilabilecegi

e Kriging ve Mesafenin tersi ile agirliklandirma yontemlerinin de RBF

yontemleri ile benzer sonuclar verdigi

sOylenebilir. Kisacasi iyi olarak belirtilen yontemler arasinda cok biiyiik farklar
olmamasina ragmen, test bolgesinde hesap edilen sonuglara gore natural kiibik spline
yonteminin diger yontemlerden daha iyi sonu¢ verdigi elde edilmistir. Genel olarak
sonuglar incelendiginde, beklenenin altinda bir dogrulukta kaldig1 gériilmektedir. Bu
durumun muhtemel sebeplerini, ¢aligma alaninin engebeli bir yapiya sahip olmasi,
kullanilan veri kalitesinin tam olarak bilinememesi ve dayanak noktalarinin

dagilimindaki diizensizlikler olarak siralamak miimkiindiir.
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