
 
 

 

 

 

DYNAMIC ITEMSET HIDING UNDER MULTIPLE 

SUPPORT THRESHOLDS 

 

 

 

 

 

 

 

 
A Thesis Submitted to 

 the Graduate School of Engineering and Sciences of 

Izmir Institute of Technology  

in Partial Fulfillment of the Requirements for the Degree of  

 

DOCTOR OF PHILOSOPHY 

 

in Computer Engineering 

 

 

 

 

by  

Ahmet Cumhur ÖZTÜRK 

 

 

 

 

 

 

 

July 2018 

İZMİR 

 



 
 

We approve the thesis of Ahmet Cumhur ÖZTÜRK 

Examining Committee Members: 

____________________________ 

Assoc. Prof. Dr. Belgin ERGENÇ BOSTANOĞLU 

Computer Engineering, Izmir Institute of Technology 

____________________________ 

Assoc. Prof. Dr. Adil ALPKOÇAK 

Computer Engineering, Dokuz Eylül University 

____________________________ 

Assoc. Prof. Dr. Orhan DAĞDEVİREN 

International Computer Institute, Ege University 

____________________________ 

Assoc. Prof. Dr. Tolga AYAV 

Computer Engineering, Izmir Institute of Technology 

____________________________ 

Dr. Serap ŞAHİN 

Computer Engineering, Izmir Institute of Technology 

 

 

 

2 July 2018 

___________________________      

Assoc. Prof. Dr. Belgin ERGENÇ BOSTANOĞLU                   

Supervisor, Computer Engineering, Izmir Institute of Technology   

     

 

 

 

____________________________      ____________________________ 

Assoc. Prof. Dr. Murat ERTEN         Prof. Dr. Aysun SOFUOĞLU 

Head of the Department of Computer                 Dean of the Graduate School of  

Engineering                             Engineering and Science             



 
 

ACKNOWLEDGEMENTS 

 
Firstly, I would like to thank my advisor Assoc. Prof. Belgin ERGENÇ 

BOSTANOĞLU and express my sincere gratitude to her for giving me the opportunity 

to work with her and for her endless support. I have learned many things from her. 

My gratitude and appreciation to my examiners Assoc. Prof. Adil ALPKOÇAK 

and Dr. Serap ŞAHİN for their time and effort spent on my thesis. 

I would also like to thank The Scientific and Technological Research Council of 

Turkey (TÜBİTAK) for supporting my thesis, under ARDEB 3501 Project No: 114E779. 

I would like to thank all my family, starting with my mother Safiye ÖZTÜRK, 

my father Mustafa ÖZTÜRK, my sister Çiçek ÖZTÜRK and my brother Murat ÖZTÜRK 

for supporting me throughout my whole life and encouraging me. I am very lucky to have 

a family like them. 

I especially thank my wife and love, Gözde ÖZTÜRK for her patience, 

encouragement and support. Writing this thesis would be very difficult without her. 

Finally, I would like to thank to my mother in love Gülten TIĞA and father in 

love Osman TIĞA for their supports. 

 

 

 

 

 

 



 
 

ABSTRACT 

DYNAMIC ITEMSET HIDING UNDER MULTIPLE SUPPORT 

THRESOLDS 

 

Data sharing is commonly performed between organizations for mutual benefits. 

However, if confidential knowledge is not hidden before the data is published it may pose 

threat to security and privacy. The privacy preserving frequent itemset mining is the 

process of hiding sensitive itemsets from being discovered with any frequent itemset 

mining algorithm. The privacy constraint of sensitive itemset hiding is sensitive 

threshold. If support of a given sensitive itemset is under the sensitive threshold, then this 

sensitive itemset is considered as non-interesting and hidden. One possible way of 

decreasing support of sensitive itemsets under predefined sensitive threshold is deleting 

items from a set of transaction. This type of frequent itemset sanitization is called 

distortion based frequent itemset hiding. 

The main focus of this thesis is to preserve sensitive itemsets with considering the 

multiple sensitive thresholds on both static and dynamic environments. Three different 

distortion based frequent itemset hiding algorithms proposed; Pseodo Graph Based 

Sanitization (PGBS), Itemset Oriented Pseudo Graph Based Sanitization (IPGBS) and 

DynamicPGBS are proposed. Both PGBS and IPGBS algorithms are designed for static 

environment and the DynamicPGBS algorithm is designed for the dynamic environment. 

The main objective of these three algorithms is to hide all sensitive itemsets with giving 

minimum distortion on non-sensitive knowledge and data in the resulting sanitized 

database.  

 

.   

 

 

 



 
 

ÖZET 

 

ÇOKLU DESTEK EŞİKLERİNDE DİNAMİK SIK KÜMELER 

GİZLEMESİ 

Veri paylaşımı, ortak yararlar için kuruluşlar arasında yaygın olarak 

yapılmaktadır. Ancak, gizli bilgi, veriler yayınlanmadan önce gizlenmez ise güvenlik ve 

gizlilik için tehdit oluşturabilir. Gizliliği koruyan sık kümeler madenciliği hassas 

kümelerin herhangi bir sık küme madencilik algoritması ile ortaya çıkarılmasını önleme 

işlemidir. Sık kümelerin gizlenmesindeki kısıtlama hassas eşiktir. Belirli bir hassas 

kümenin desteği hassas eşiğin altında ise bu hassas küme ilgi çekmez ve gizli olarak kabul 

edilir. Önceden tanımlanmış hassas eşik altındaki hassas kümelerin desteğini azaltmanın 

olası bir yolu, bir dizi kayıttan öğeleri silmektir. Bu tür temizleme işlemi bozma esaslı sık 

küme gizlemesi olarak adlandırılır. 

Bu tezin ana odak noktası, hassas kümeleri hem statik hem de dinamik ortamlarda 

çoklu hassas destek eşiklerini dikkate alarak korumaktır. Üç farklı bozma esaslı sık küme 

gizleme algoritması; Pseodo Graph Based Sanitization (PGBS), Itemset Oriented Pseudo 

Graph Based Sanitization (IPGBS) ve DynamicPGBS önerilmiştir. Hem PGBS hem de 

IPGBS algoritmaları statik ortam için tasarlanmıştır ve DynamicPGBS algoritması 

dinamik ortam için tasarlanmıştır. Bu üç algoritmanın temel amacı, temizlenmiş veri 

tabanında tüm hassas kümelerin saklanması, hassas olmayan bilgi ve verilerde ise en az 

bozulma oluşturmaktır.  
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CHAPTER 1 

INTRODUCTION 

 

With the rapid developments in storage devices and CPU technologies every day 

more and more transactional data is being kept by companies and organizations. This 

huge amount of data mostly contains unforeseen information beneficial for the data 

owner. The data mining is the process of extracting such information from the data with 

the help of artificial intelligence, machine learning, statistics and database systems. One 

of the tasks of data mining is association rule mining. The association rule mining task 

identifies frequent patterns in the transactional data in the form of dependencies among 

attributes. It was first proposed by [42] and used for analyzing market basket data. The 

association rule mining mainly has two steps where the first is called frequent itemset 

generation and the second is called association rule generation. The frequent itemsets are 

the set of items that are occurring together above a predefined support threshold and the 

association rules are the meaningful rules that can generated from the set of frequent 

itemsets. The second step of association rule mining is straightforward; it consists of 

uncovering all possible combinations of items of a given frequent itemset [56]. Besides 

the frequent itemset mining is a much more sophisticated task compared to association 

rule generation and as a result association rule mining algorithms focus on the first step.  

Many organizations implement itemset mining to their transactional data for short 

or long term planning and strategically decision making. They also share data with each 

other or with third parties for their mutual benefit. However, if the data being shared 

contains private or strategically important information this may pose threat to security 

and privacy of the organization. The protection of sensitive knowledge from being 

discovered by any data mining technique is called privacy preserving data mining 

(PPDM).  Privacy preserving frequent itemset mining (PPFIM) is a subtask of PPDM 

Similarly the protection of frequent itemsets from being discovered by any frequent 

itemset mining technique is called privacy preserving frequent itemsets mining. 
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1.1. The Problem Statement 

 

In this thesis the privacy preserving frequent itemset mining is investigated in two 

different database environments; dynamic and static. The following assumptions are 

made in the problem of protecting sensitive frequent itemsets. First the database owner 

has to know the sensitive itemsets in advance and the second the database owner has to 

define the sensitive threshold of each sensitive itemset before the sanitization process 

where the sensitive threshold is the support value for considering each sensitive itemset 

as being restricted.    

The protection of sensitive frequent itemsets in a given transactional database D 

can be handled by changing sufficient amount of transactions till every sensitive itemset 

becomes uninteresting in the modified database D’.  But this brings out the side effects 

as loss of non-sensitive frequent itemsets and the dissimilarity between original database 

D and D’. The most challenging problem of frequent itemset hiding is protecting the non-

sensitive knowledge while hiding all given predefined sensitive itemsets.   

Based on the environment they are designed for, the privacy preserving frequent 

itemset mining algorithms can be divided into two where the first is PPFIM algorithms 

for static environment and the second is PPFIM algorithms for dynamic environment. In 

static environment the state of the itemsets never change, on the other hand in dynamic 

environment the state of itemsets continuously change with the arriving batch of 

transactions. After a batch of transaction arrives to the database the state of a frequent 

itemset may become infrequent or remain frequent also the state of an infrequent itemset 

may become frequent or remain infrequent. This state imbalance of itemsets should be 

considered while designing the frequent itemset hiding algorithm in dynamic 

environment. Although any static environment frequent itemset hiding algorithm can be 

adapted to dynamic environment with waiting all increments to arrive and then perform 

the hiding process on the whole updated database, this will be inefficient. The inefficiency 

is due to running the hiding process from beginning whenever a database publish process 

is needed.  

In the literature most of the frequent itemset hiding algorithms are designed with 

considering a single sensitive threshold for all sensitive itemset but this does not reflect 

the reality. Because as stated in [46] some itemsets appear frequently while others appear 

rarely and unique support threshold for all itemsets does not reflect their importance. For 
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illustration in a super market the purchase amount of cooking pan and oven is most 

probably smaller than purchase amount of coffee and milk. The sales of cooking pan and 

oven because the profit obtained from them may carry more importance. Two problems 

arise if a unique sensitive threshold is defined for every sensitive itemset in the database; 

the first is this gives limitation to the database owner and the second is support of high 

frequent sensitive itemset is going to be decreased more if low frequent itemsets needed 

to be hidden. This will increase the loss in non-sensitive knowledge if items in the given 

transactional database are highly correlated with each other.  

 

1.2. Contributions of the Thesis 

 

The aim of this thesis is to give a contribution to the field of privacy preserving 

frequent itemset mining (PPFIM). First existing PPFIM techniques in the literature are 

surveyed and they are categorized according to hiding methodology they propose. Next 

three different frequent itemset hiding algorithms are proposed.  The first algorithm is 

Pseudo Graph Based Sanitization (PGBS), the second algorithm is Itemset Oriented 

Pseudo Graph (IPGBS) and the third algorithm is Dynamic Pseudo Graph based 

Sanitization (DynamicPGBS). The PGBS and the IPGBS algorithms are developed for 

static database environment and the DynamicPGBS is proposed for dynamic database 

environment. Unlike most of the existing frequent itemset hiding solutions, these three 

algorithms allow database owner to define different sensitive threshold for each sensitive 

itemset. The objective of these proposed itemset hiding algorithms is to hide all sensitive 

itemsets with minimizing the side effects such as execution time, loss of non-sensitive 

knowledge and amount of modification made on transactions. The PGBS, IPGBS and 

DynamicPGBS algorithms employ different graph based internal data structures for 

increasing the efficiency of the sanitization process.  

The contributions of this research are listed as follows: 

 Pseudo Graph Based Sanitization (PGBS) Algorithm [14]: This algorithm uses 

the Pseudo Graph (PG) data structure to represent each different transaction of 

the transactional database D. It directly converts all transactions of D into PG 

without filtering or eliminating any transaction, provides advantage on 

execution time but compromise disadvantage on memory consumption. The 

main methodology behind the PGBS algorithm is to group sensitive itemsets 
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sharing common item and then modifying transactions containing each 

different sensitive itemset group. This make possible to reduce support of more 

than one sensitive itemset simultaneously with single item removal by deleting 

the item that is common in the uncovered transactions. 

 Itemset Oriented Pseudo Graph Based Sanitization (IPGBS) Algorithm: This 

algorithm uses the Itemset Oriented Pseudo Graph (IPG) data structure to 

represent each different sensitive itemset of the transactional database D. The 

IPGBS algorithm uncovers each sensitive itemset from D and represents 

relation between transactions and sensitive itemsets with IPG. Representing 

only sensitive itemsets with the graph based data structure provides advantage 

on memory requirement but compromise is more execution time for creating 

the graph based data structure. This is because every sensitive itemset in each 

transaction is filtered out before they are converted into the IPG. The main 

methodology behind IPGBS algorithm is to modify transactions containing 

maximum number of non-sanitized sensitive itemsets. As in PGBS algorithm 

the IPGBS decreases support of more than one sensitive itemset at once with 

removing item that is common in more than one sensitive itemset. Also the 

IPGBS tries to prevent decreasing support of already sanitized sensitive 

itemsets overmuch with modifying transactions only containing sanitizing 

sensitive itemsets.  

 Dynamic Pseudo Graph Based Sanitization (DynamicPGBS) Algorithm [36]: 

This algorithm is designed for the dynamic environment and uses the 

Transaction Oriented Pseudo Graph (TPG) data structure for representing each 

sensitive transaction. The only difference between the PG and TPG is that PG 

keeps all transactions while TPG keeps only sensitive transactions of a given 

transaction database. Representing only sensitive transactions with the graph 

based data structure provides advantage on memory requirement but 

compromise is more execution time as in IPGBS algorithm. The main 

methodology behind DynamicPGBS algorithm is to modify transactions 

containing maximum number of sensitive itemsets. As in PGBS algorithm the 

IPGBS decreases support of more than one sensitive itemset at once with 

removing item that is common in more than one sensitive itemset.  
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 The performance of PGBS and IPGBS algorithms are evaluated together with 

one different similar counterpart. The results indicate that the PGBS algorithm 

is advantageous in terms of execution time and total number of item removals 

compared to IPGBS algorithms. On the other hand, the IPGBS algorithm is 

advantageous in terms of non-sensitive knowledge loss and data validity 

compared to PGBS algorithm. The performance of DynamicPGBS is evaluated 

with two different dynamic frequent itemset hiding algorithms. The first 

counterpart SPITF is similar to DynamicPGBS as both algorithms modify 

transactions in the whole updated database. On the other hand, the second 

counterpart RHID algorithm only modifies transactions in the incremental part 

of the database. The evaluation results indicate that the DynamicPGBS is 

capable of hiding all given sensitive itemsets while the SPITF algorithm fails 

to hide some of the sensitive itemsets. The DynamicPGBS is advantageous in 

terms of non-sensitive knowledge loss, execution time and data validity 

compared to SPITF [26] and RHID [24] algorithms.       

 

1.3. Organization of the Thesis  

 

In chapter 2 the fundamentals of knowledge discovery, association rule mining 

and frequent itemset mining are given. Then the process of protecting sensitive frequent 

itemsets in transactional database for both static and dynamic environment is described.  

In addition, the metrics for measuring the effectiveness of frequent itemset hiding 

algorithms is provided. 

In chapter 3 the state of art in frequent itemset hiding research is reviewed. The 

main methodologies behind existing frequent itemset hiding algorithms in the literature 

are introduced and described. 

In chapter 4 a set of frequent itemset hiding algorithms are introduced. Two of the 

hiding methods namely PGBS and IPGBS are designed for static database environment 

and one is namely DynamicPGBS is designed for dynamic environment.  

In chapter 5 the algorithms that are proposed are validated by using a set of 

experiments. These experiments are for measuring the execution time, the information 

loss, the distance, the accuracy and the total memory allocation. Also the databases and 

the set of itemsets defined as sensitive which are adopted in the experiments are described.  
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In chapter 6 conclusion of the work is given with a brief summary and future 

research planning with the direction of this work is discussed.         
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CHAPTER 2 

BASIC CONCEPTS 

 

The process of discovering previously unknown knowledge from huge amount of 

data with the help of database systems, artificial intelligence, machine learning, and 

statistics is called data mining. Data mining is different from analyzing the data with 

query processing tools. Query processing tools enable editing, finding, reporting and 

summarizing the data while data mining enables extracting previously unknown 

knowledge. Although the terms knowledge discovery and data mining are commonly 

used interchangeably they are different. Knowledge discovery (KDD) refers to overall 

process of discovering useful knowledge from data, it includes data selection, data 

cleaning, data transformation, data mining, interpretation and evaluation [55]. Data 

mining refers to application of algorithms for extracting patterns from data. Data mining 

is the key step in KDD process. As can be seen from Figure 1, data mining is a sub step 

in knowledge discovery. 

 

   

Figure 1. Steps in knowledge discovery. 

 

The data often contains noisy and missing values so the data from multiple data 

sources should be cleaned before integration. The cleaning phase includes filling the 

missing values, removing outliers and maintaining consistency of different data types. 

Next the data from heterogeneous data sources are combined into compatible data source 

called integrated database. After all data are cleaned and integrated the data relevant to 

analysis is selected and transformed into appropriate form for the data mining [57]. The 

transformation phase includes operations such as normalization, generalization or 

aggregation. Then the data mining is applied to the transformed data for gathering 

previously unknown, useful, interesting and hidden patterns. After the patterns are 
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generated, the knowledge is gathered by filtering out patterns by some measures such as 

the interestingness threshold. 

 

2.1. Data Mining Techniques 

 

There are various data mining tasks for extracting different kinds of pattern from 

the database and these data mining tasks can be can be categorized into two; descriptive 

data mining tasks and predictive data mining tasks. The descriptive data mining tasks 

derive patterns that summarize the underlying relationships between data and describe 

the general properties of the existing data such as web pages that are accessed together. 

The predictive data mining tasks predict the value of a specific attribute based on the 

value of other attributes such as deciding whether a patient has specific disease based on 

the medical test results. The classification, regression, time series analysis are examples 

for the prediction tasks while clustering, summarization and association rules are some of 

the examples for descriptive tasks [47-49].  

The outstanding tasks of data mining can be can be categorized as classification, 

clustering and association rule mining. 

Classification: The task of mapping data into predefined classes is called the 

classification [50]. This task first creates a predictive learning function that distinguishes 

the data according to its features and then it assigns the class of a newly presented data to 

its corresponding class with the help of this function. The classification of data consists 

of training phase and labelling phase. The training phase creates the predictive learning 

function (mapping function) with using the training set where the training set consists of 

previously labeled data. Then with using mapping function the label of the new data can 

estimated. 

Figure 2 illustrates a classification algorithm used for predicting whether a new 

arrival email is spam or not. The training data consists of categorized emails and a 

classification algorithm is applied to these data for generating rules to predict the status 

of a given email. 

Clustering: The clustering task divides data objects in to groups called clusters where 

each cluster consists of objects with similar characteristics [48]. The clustering task is 

sometimes referred as unsupervised classification because as in classification method the  
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Figure 2. Classification algorithm for predicting the status of a received email. 

 

clustering groups data into different groups however unlike classification the number of 

clusters are not predefined, they are derived from the given data. Cluster analysis is being 

used in many applications such as market segmentation, social network analysis, image 

processing medical segmentation and anomaly detection. 

Figure 3 illustrates a clustering algorithm applied to two dimensions of data 

objects where x and y axis represents two different features and the points represents each 

data objects. After a clustering algorithm is applied three different groups is discovered 

according to the features of data objects. 

 

 

Figure 3. Clustering data objects according to their features. 

 

Association rules: The task of uncovering interesting relations between items is called 

association rule mining. The association rule mining can be applied to transactional data 

and it was first used in analyzing shopping behaviors of customers [42]. Association rules 

are generated with two basic steps where the first step is frequent itemset (co-occurring 

itemsets) generation and the second step is meaningful rule generation from these 

discovered frequent itemsets. Association rules are considered interesting if they satisfy 

both minimum support and confidence thresholds. In a given associating rule ab c, 

support is the percentage of transactions containing “a”, “b” and “c”, confidence is the 

percentage of transactions containing “a” also contains “b” and “c”. The relations between 
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items is expressed with rules such as 80% of transactions containing item “a”, “b” and 

“c” at the same time and 60% of all transactions containing “a” also contains “b” and “c”.  

 

2.2. Frequent Itemset Mining 

 

Let I={i1,…in} be a set of items, an itemset  X is a non-empty subset of I. A 

transaction is a an ordered pair of items denoted as <TID,X> where TID is the unique 

identifier. The set of all TIDs may denote the set of all customers visiting the e-commerce 

web site, all customers making phone calls of a GSM company, all credit card users of a 

bank.  A transactional database is a set of transactions. The set of items I may denote the 

customer purchases from an e-commerce web site, log files of telephone calls carried out 

by a specific GSM company, credit card purchase information of customers and so on. 

The number of items located in an itemset is denoted as k and and the size of the itemset 

is denoted as k-itemset. There are 2𝑘 − 1 number of proper subset of a k-itemset. Figure 

4 illustrates the itemset lattice for the items I = {a,b,c,d}. In this figure there are 24 − 1 =

15 number of possible itemsets that can be generated from the set I [53]. 

 

 

Figure 4. Itemset lattice of four different items. 

 

A transactional database is a set of transactions and it consist of tuples where each 

tuple has a unique identifier and corresponding transaction. It is possible to represent a 

transactional database as table. A binary transactional database represents the relation 

between TIDs and items, a given transaction with transaction id n contains an itemset 

X={x1,x2,x3,…,xk} if {for all i=1 to k| xi=1}.  Figure 5 (a) shows an example of 

transactional database and Figure 5 (b) shows its binary representation. In the binary 
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database the set of all items are I={a,b,c,d,e,f,g} and the set of transaction ids are 

tids={1,2,3,4,5,6,7,8,9,10}.  

 
 

TID Transactions 

1 cf 

2 abe 

3 de 

4 afg 

5 ade 

6 ae 

7 acd 

8 abcde 

9 adfg 

10 acd 

  
 

TID a b c d e f g 

1 0 0 1 0 0 1 0 

2 1 1 0 0 1 0 0 

3 0 0 0 1 1 0 0 

4 1 0 0 0 0 1 1 

5 1 0 0 1 1 0 0 

6 1 0 0 0 1 0 0 

7 1 0 1 1 0 0 0 

8 1 1 1 1 1 0 0 

9 1 0 0 0 0 1 1 

10 1 0 1 1 0 0 0 

(a) Transactional database (b) Binary database 

 

Figure 5. Sample databases. 

 

The support count of an itemset X is the number of transactions containing X in 

D and it is denoted as scount(X). The fraction of transactions containing X in D is called 

support of X and it is denoted by supp(X). The support is an estimation of joint probability 

of items generating X. The support of an itemset X is calculated by equation (2.1) where 

|D| is the total number of transactions in D.  

 
𝑠𝑢𝑝𝑝(𝑋) =

𝑠𝑐𝑜𝑢𝑛𝑡(𝑋)

|𝐷|
  (2.1) 

An itemset X is frequent if supp(X) ≥ σ, where σ is the user specified minimum 

support threshold and the set of all frequent itemsets in D is denoted as FI. For illustration 

suppose the database in Figure 5 (a) is given and let σ =10%, then all frequent itemsets 

generated from this database is shown in Table 1, where itemset column gives the itemsets 

and the support column shows the support of the corresponding itemset. 

 

2.3. Association Rule Mining 

 

Association rules represent affinities among itemsets. An association rule is 

represented as YZ where X and Y are different itemsets in transactional database D and 

YZ=. An association rule relies on the support and confidence measures [42]. 
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Table 1. Frequent itemsets when σ =20%. 

 

itemset support itemset support itemset support 

A 0.2 fg 0.2 de 0.2 

C 0.4 ab 0.2 ad 0.5 

D 0.6 be 0.2 ae 0.4 

F 0.3 af 0.2 afg 0.2 

G 0.2 ac 0.3 abe 0.2 

E 0.5 cd 0.3 acd 0.3 

B 0.2 de 0.3 ade 0.2 

 

The support is the measure of frequency of a rule in the given database D, the confidence 

is the measure of strength between itemsets in the given rule. The confidence of a rule 

YZ is calculated with the following equation [58]:    

 
𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒(𝑌𝑍) =

𝑠𝑢𝑝𝑝(𝑌𝑍)

𝑠𝑢𝑝𝑝(𝑌)
 (2.2) 

Given a database D and user defined minimum support and confidence thresholds, 

the association rules are generated with following steps; 

Step1: Enumerate all itemsets that have support greater than the minimum support 

threshold. 

Step2: Generate all rules having confidence greater than minimum confidence threshold 

with using the frequent itemsets generated at step 1.    

Table 2 illustrates strong rules generated from the database given in Figure 5 (a) with 0.3 

minimum support and 0.6 minimum confidence thresholds. 

Table 2. Association rules with minimum support=0.3 and minimum confidence=0.6. 

 

Association rule Support Confidence 

da 0.5 0.83 

ad 0.5 0.625 

ea 0.4 0.8 

 

2.4. Privacy Preserving Frequent Itemset Mining 

 

In modern business, organizations make their database public or share it with 

other organizations or third parties for providing extraction of knowledge. However 

frequent itemset mining may lead to malicious usage of itemsets and pose security threat 



13 
 

on strategic or private information of data owners when the database is shared without 

any precautions. These set of itemsets are called sensitive frequent itemsets and they are 

defined as follows: 

Sensitive Itemset: Let IL be a set of all itemsets in the itemset lattice of transactional 

database D, and the SI be a set of itemsets that should be hidden and defined by owner of 

the database where SI  IL. A set of itemsets that are able to infer any itemset in SI are 

called sensitive itemsets. 

The privacy preserving frequent itemset mining is the problem of concealing 

sensitive itemsets from the shared or published database from being discovered with any 

frequent itemset mining algorithm. This problem can achieved by generating a new 

database D’ from the original database D in such a way that when frequent itemset mining 

is applied to the D’ none of the sensitive itemsets are revealed [59]. Two problems arise 

when the database is sanitized in such a way. The first one is protection of sensitive 

knowledge and the solution is to prevent sensitive itemsets from being discovered with 

any frequent itemset mining algorithm. The second problem is protecting non-sensitive 

knowledge and the solution is to find optimum hiding solution that distorts minimum 

amount of non-sensitive frequent itemsets. 

One possible way to hide sensitive itemsets from database D is to decrease their 

supports till the sensitive itemsets become infrequent. The support threshold used for 

hiding a given sensitive itemset X is the sensitive support threshold and it is defined by 

the database owner. This process of modifying the transactions to the point where no 

sensitive itemset can be discovered is called the sanitization process [9]. Decreasing the 

support of sensitive itemsets can be achieved by deleting items called victim items 

(selected for deletion) from a sufficient amount of transactions. The set of transactions 

that contain at least one sensitive itemset is called sensitive transaction and is defined as 

follows: 

Sensitive Transaction: If a transaction supports any itemset in SI then it is called 

sensitive transaction. Formally if T is a set of all transactions in database D and SI is the 

set of all sensitive itemsets, for any siSI if si  t where t  T, t is called sensitive 

transaction. 

The objective of itemset hiding is to produce a sanitized database D’ from original 

database D. It is mainly done by reducing the supports of sensitive itemsets under their 

predefined sensitive thresholds. The sensitive threshold is defined as follows: 
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Sensitive Threshold: The support threshold used for considering a sensitive itemset as 

non-interesting or hidden is called sensitive threshold and sensitive threshold of an 

itemset Y is denoted as st (Y). Formally if SI is the set of sensitive itemsets in D and ST 

is the set of all sensitive thresholds of these sensitive itemsets, then for all si  SI iff 

supp(si) < st(si) then all sensitive itemsets in D are hidden. 

One of the techniques for reducing the support of a sensitive itemset is deleting 

items called victims from sensitive transactions. This technique is called distortion based 

frequent itemset hiding. Identifying the transactions that will be modified and deciding 

the items that will be removed from these transactions are two main challenges of 

distortion based sanitization technique. 

 

 

Figure 6. Distortion based frequent itemset hiding process. 

 

The process of distortion based sensitive itemset hiding is illustrated in Figure 6. 

First the user defines the sanitization information which consist of sensitive itemsets and 

their sensitive threshold next the original database D and the sanitization information is 

given as input to the frequent itemsets hiding algorithm. The frequent itemsets hiding 

algorithm finds out the modification information which is the solution of the sanitization 

problem. Then with using the modification information the original database D is updated 

and the sanitized database D’ is generated. Each different sensitive transaction and victim 

set for solving the sanitization problem has different side effects to the database. These 

side effects are defined as follows: 

Hiding Failure (HF): The amount of sensitive itemsets failed to be hidden is represented 

with the hiding failure metric. It is calculated as follows; 

 
𝐻𝐹 =

|𝑆𝐼|

|𝑆𝐼′|
 (2.3) 
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where |SI’| is the number of sensitive itemsets in the sanitized database D’ and |SI| is the 

number of sensitive itemsets in the original database. 

Information Loss (IL): The amount of non-sensitive knowledge unintentionally 

removed from the original database during the sanitization process is represented with 

the Information Loss metric. It is calculated as follows; 

 
𝐼𝐿 =

(|𝐹𝐼| − |𝑆𝐼|) − (|𝐹𝐼′| − |𝑆𝐼′|)

|𝐹𝐼′| − |𝑆𝐼′|
 (2.4) 

where |FI| is the number of frequent itemsets in the original database D and |FI’| is the 

number of frequent itemsets in the sanitized database. 

Distance: The total number of items removed during the sanitization process is 

represented by the Distance metric and it is calculated as follows; 

 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = |𝐼| − |𝐼′| (2.5) 

where |I| is the total number of items in the original database and |I’| is the total number 

of items in the sanitized database. 

Accuracy Loss: The total number of transactions modified during the sanitization 

process is represented with the Accuracy Loss metric and it is calculated as follows; 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝐿𝑜𝑠 = (|𝐷 − 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠 𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝑖𝑛 𝐷)/|𝐷| (2.6) 

where D is the original database and |D| is the total number of transactions in D. 

Table 3. Sensitive itemsets and their sensitive thresholds. 

Sensitive Itemset Sensitive Threshold 

ab 0.3 

cd 0.15 

bd 0.1 

 

For illustrating the given definitions and distortion based frequent itemset hiding 

suppose the transactional database is given in Figure 5 (a) and sensitive itemsets with 

their sensitive thresholds are given in Table 3. The transaction ids of sensitive transactions 

in D are 2,7,8 and 10. The support of “ad” is 0.5, “bd” is 0.1 and “cd” is 0.3 where support 

of each sensitive itemset is not smaller than their sensitive thresholds. One possible 

sanitization solution may remove the item “d” from transactions 8, 9 and 10 and as a 

result support of “ad”, “bd” and “cd” reduce to 0.2,0.0,0.1 respectively which means all 

sensitive itemsets are hidden from the database D. The Hiding Failure in this sanitization 
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solution is zero because all sensitive itemsets are hidden; the Information Loss is 

calculated as ;( (44 - 4) - (28 - 0)) / (28 - 0) = 0.4285 if the minimum support threshold 

for mining itemsets in D and D’ is set to 0.1. The Distance is 3 because at total 3 items are 

removed from D, the accuracy is 0.7, in different word database D and D’ are 70% similar 

to each other. 
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CHAPTER 3 

RELATED WORK 

 

In this chapter a literature review on existing frequent itemset and association rule 

hiding approaches are presented. These techniques are classified into two main categories 

depending on the environment they are designed for; dynamic environment and static 

environment as illustrated in Figure 7. In dynamic environment transactional database is 

being continuously updated by the arrival of increments whereas in static databases the 

state of transactions never changes. In the literature only a few approaches are proposed 

for dynamic environment. As can be seen in the figure the sanitization approaches for 

static database environment can classified as; border based, exact, reconstruction based 

and heuristic based. The border based approaches separate the itemset lattice with a 

border and revise this border to sanitize the given database. The exact approaches convert 

the sanitization problem into constraint satisfaction problem (CSP) and then apply integer 

programming to solve the CSP. Reconstruction based approaches first eliminate sensitive 

itemsets and their supersets from the set of frequent itemsets of the original database and 

then try to generate a sanitized database from non-sensitive itemsets. Heuristic based 

sanitization algorithms rely on different heuristics in victim item and victim transaction 

selection.  

 

Figure 7. Rule/Itemset hiding approaches. 

 

Association Rule / Frequent 
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3.1. Sanitization Algorithms for Static Environment 

 

In static environment the status of transactions never change more precisely it is 

assumed that there is not update and delete operations performed on the database. The 

main categorizations of rule or itemset hiding approaches on static environment can be 

done as border based approaches, exact approaches, reconstruction based approaches and 

heuristic based approaches as shown in Figure 7. 

 

3.1.1. Border Based Sanitization Algorithms 

 

Borders enable to separate frequent itemsets from non-frequent itemsets in the 

itemset lattice [1]. The border based hiding solution is to revise the border so that all 

sensitive itemsets and their supersets are separated from non-sensitive frequent itemsets. 

The positive border denoted as 𝐵𝑑+and it consists of all frequent itemsets whose proposer 

supersets are non-frequent whereas the negative border is denoted as 𝐵𝑑−and it consists 

of all non-frequent itemsets whose proper subsets are frequent. For illustration suppose 

the itemset lattice generated from a database is given in Figure 8. In this figure consider 

the frequent itemsets based on the predefined minimum support minsup are separated 

from non-frequent itemsets with the border as shown in straight line. The itemsets on the 

right hand side of the border are frequent and itemsets on the left side of the border are 

infrequent. Also suppose that sensitive itemsets are defined as “AB” and “AC”. The 

optimal revised border line moves minimal set of non-sensitive frequent itemsets on the 

right hand side of the border while moves all sensitive itemsets and their supersets on the 

right hand side of the revised border. The dashed line in Figure 8. shows the revised 

border after the sanitization process where all sensitive itemsets are left on the right hand 

side of the revised border. 

 

Figure 8. Itemset lattice for illustrating border revision. 
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The revision of the border for hiding sensitive frequent itemsets was first proposed 

by [2]. To improve the quality of the resulting sanitized database they focus on obtaining 

the quality of the border. The basic idea of their proposed algorithm BBA is to 

dynamically assigning weight to each itemset on the positive border, based on the support 

of itemsets. The algorithm calculates all possible sum of weights for each possible item 

deletion to hide a given itemset and then it chooses the item to delete among items that 

gives minimum impact on sum of weights.  

The Max-Min1 and Max-Min2 [3] are two frequent itemset hiding approaches 

based on border revision. The main focus of these two algorithms is to modify the itemsets 

on the negative border while maintaining all itemsets on the revised positive border. For 

each item of a sensitive itemset the algorithm uncovers positive border itemsets 

containing the item and then among these itemsets the algorithms select the itemset that 

has the highest support in the database which is called max-min itemset. The algorithms 

try to modify the border in such a way that the support of the max-min itemset is 

minimally affected.  The Max-Min1 and Max-Min2 algorithms employ the basic 

properties; they differ in selecting the victim item to delete from transactions. While the 

Max-Min1 algorithm selects the victim item randomly the Max-Min2 algorithm selects 

the victim item that gives minimum knowledge loss in case of deletion. 

 

3.1.2. Exact Sanitization Algorithms  

 

Exact frequent itemset hiding approaches use both border based and integer 

programming methodologies to find a hiding solution. These approaches formulate the 

frequent itemset hiding problem into constraint satisfaction problem (CSP) and then apply 

integer programming to solve the CSP. A CSP consists of a set of variables and a set of 

constraints [4]. Each variable has non-empty set of potential values and each constraint 

represents non empty set of possible combinations of variables. The CSP is solved by 

choosing value for each variable that satisfies the constraints. The integer programming 

(IP) and binary integer programming (BIP) are linear programming models where in IP 

all variables are integers and in BIP each variable can only take 0 or 1. For illustration 

Figure 9. shows a constraint matrix of a database. The columns t1 to t5 indicates the 

sensitive transactions and rows r1 to r4 indicates the sensitive itemsets and also the 
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constraint matrix shows if the given itemset is contained in a sensitive transaction e.g. the 

sensitive itemset r1 is contained in only t4. If the integer program aims minimizing the 

number of transaction modification, then it can be formulated as to minimize 

x1+x2+x3+x4+x5 where the variable xi is 1 if the ith transaction is modified and 0 

otherwise. 

 

Figure 9. Constraint matrix with 4 different sensitive itemsets 

 

The exact frequent itemset was first proposed in [5]. In this work minimum 

number of transactions for modification is identified with formulating the frequent 

itemset hiding problem into CSP and this CSP is solved with using linear programming. 

Then two heuristics namely the blanket approach and intelligent approach are employed 

for modifying these previously identified transactions. The blanket approach deletes all 

items except one from transactions whereas the intelligence approach deletes as small as 

possible number of items from transactions. The blanket approach hides more non-

sensitive itemsets than intelligence approach because the intelligence approach tries to 

group sensitive itemsets and remove the item having maximum degree of conflict. The 

aim of the CSP they formulate is to find out minimum number of transaction modification 

for hiding all given sensitive itemsets. Also they make it possible to decompose the CSP 

into different parts for solving in a parallel manner to decrease the execution time.  

Inline algorithm [6] does not rely on any heuristic during the sanitization 

operation. This algorithm formulates the hiding problem into CSP and solves it by using 

Binary Integer Programming (BIP). The CSP employed in the Inline algorithm tries to 

find the hiding solution that has the minimum distance metric.  

Two Phase Iterative Algorithm [7] is an extension of the Inline algorithm. The 

Two Phase Iterative algorithm iterates till a solution of the given CSP is found and if not 

it iterates till a predefined number of iterations have taken place. 

Hybrid [8] algorithm combines the border revision, CSP and BIP for hiding 

sensitive itemsets. Instead of modifying transactions in the original database the Hybrid 
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algorithm adds database extension to the database. This extension consists of a set of 

transactions where attaching these transactions into the database lowers the importance 

of sensitive itemsets while minimally effects the non-sensitive itemsets. 

The full exact approach [37] uses integer programming for optimizing the 

information loss and distance side effects of the sanitization process. This algorithm is 

entirely exact because it does not employ any heuristics during the sanitization process. 

Constraints defined in the integer programming of this approach try to ensure that the 

frequency of sensitive itemsets are below support threshold while frequency of non-

sensitive itemsets are still above the threshold. 

 

3.1.3. Reconstruction Based Sanitization Algorithms  

 

The main idea in reconstruction based sanitization approaches is to release a new 

database that is constructed from sanitized knowledge. Rather than sanitizing the actual 

database these approaches first sanitize the sensitive rules or itemsets and then create a 

new database from this sanitized knowledge. These approaches are called knowledge 

based because they start the sanitization from the knowledge. The computational 

complexity of reconstruction based approaches are first analyzed in [32] and showed that 

for most of the cases the problem is NP-Complete for finding a compatible dataset from 

frequent itemsets. Figure 10 illustrates the reconstruction based frequent itemset approach 

proposed in [30]. First all frequent itemsets of the original database D is generated then 

the set of sensitive frequent itemsets (FI’) is removed from frequent itemsets (FI) and a 

new sanitized database (D’) is created from sanitized frequent itemsets (FI’). 

 

 

Figure 10. Inverse frequent itemset mining  
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The reconstruction based sanitization idea is first proposed in [30] called 

Constraint based Inverse Itemset Lattice Mining (CIILM). This algorithm is designed for 

hiding sensitive itemsets. The CIILM algorithm first sanitizes the itemset lattice and then 

recreates the database from the sanitized itemset lattice with performing inverse frequent 

itemset mining. 

Fp-Tree based approach is presented in [31].  This approach has three phases 

where the first phase generates all frequent itemsets with their support from the database. 

The second phase performs sanitization operation over this generated set. The third phase 

creates a new database from sanitized frequent itemsets with using an FP-Tree based 

inverse frequent itemset mining algorithm. 

Randomization of the transactions is proposed in [33]. This approach does not 

remove any item from the database instead it adds items to each transaction. In this 

approach first all possible frequent itemsets from the randomized transactions is 

generated with their support. Then the support of each possible frequent itemset is 

reconstructed to find out frequent itemsets.  

 

3.1.4. Heuristic Based Sanitization Algorithms  

 

A large amount of research has been conducted based on Heuristic sanitization 

approaches for static environment. These approaches perform the sanitization either with 

decreasing the support of sensitive itemsets or giving uncertainty to the support of 

sensitive itemsets. The heuristic based frequent itemset algorithms using the first 

technique are called distortion based frequent itemset hiding algorithms whereas the 

algorithms using the former technique are called blocking based frequent itemset hiding 

algorithms. 

 

3.1.4.1. Blocking Based Heuristic Approaches 

 

Blocking based sanitization approaches replaces some items with unknowns for 

hiding rules or itemsets. The aim of replacing unknowns is to give uncertainty to the 

support of sensitive itemsets or confidence of sensitive rules. Figure 11 illustrates a 

blocking based sanitization algorithm where Figure 11 (a) is the original database and 
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Figure 11 (b) is the sanitized database. For the itemset AC the support is 75% in the 

original database. The item A in the first transaction and the item C in the second 

transaction are replaced by unknown (?) in the sanitized database. As a result, the support 

of itemset AC becomes uncertain in the sanitized database and it can be expressed in the 

range between 0% and 50%. 

 

 

TID A B C D 

1 1 1 1 0 

2 1 0 1 1 

3 1 1 1 1 

4 1 0 0 1 

 

TID A B C D 

1 ? 1 1 0 

2 1 0 ? 1 

3 1 0 0 1 

4 1 0 0 1 

 

(a) Original database 

 

(b) Sanitized database 

Figure 11. Blocking based sanitization. 

 

Saygin et al. [23] proposed three blocking based sanitization approaches; CR, 

CR2 and GIH where CR and CR2 designed for hiding sensitive association rules with 

decreasing their confidence and GIH hides association rules by decreasing support of their 

generating itemsets. In this study a safety margin is used to define how much the MST of 

sensitive frequent itemsets or MCT of sensitive rules should be smaller to prevent 

recovery of hidden pattern by adversary. The CR and GIH algorithm choose transactions 

containing minimum number of items while the CR2 algorithm choose transactions 

containing maximum number of items on the left hand side of the sensitive rule.  The GIH 

algorithm selects the items having maximum support as victim items and then replaces 

unknown instead of these victim items.  

The ISL and DSR [41] algorithms are two blocking based sanitization algorithms 

designed for hiding informative association rules. The informative association rule set is 

the smallest set of association rules that makes the prediction of the entire association rule 

set of the database. The ISL algorithm increase support of the left hand side itemset of a 

given sensitive rule whereas the DSR algorithm decrease support of the right hand side 

itemset of a given sensitive rule. Both ISL and DSR algorithms choose the transactions 

for modification according to their size and they replace binary items with unknowns (?). 
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3.1.4.2. Distortion Based Heuristic Approaches 

 

The distortion based sanitization approaches conceal sensitive itemsets from the 

database by decreasing support of them with modifying or completely removing sensitive 

transactions from the database. Figure 12shows an example of distortion based frequent 

itemset hiding approach for the database given in Figure 12 (a). In Figure 12 (b) some 

itemsets are concealed from the database by deleting some items from a set of sensitive 

transactions. Distortion based sanitization algorithms differ in techniques that they 

employ during selection of victim item and selection of transactions for modification. 

Existing distortion based heuristic algorithms select the victim item according to support, 

degree of conflict or by trial and error and they select the sensitive transactions according 

to number of sensitive or non-sensitive itemsets they contain, transaction length or by 

trial and error.  

 

 

TID A B C D 

1 1 1 1 0 

2 1 0 1 1 

3 1 0 0 1 

4 1 0 0 1 

 

TID A B C D 

1 0 1 1 0 

2 1 0 0 1 

3 1 0 0 1 

4 1 0 0 1 

 

(a) Original database 

 

(b) Sanitized database 

 

Figure 12. Distortion based sanitization. 

 

Determining the transaction for modification and item to be removed from them 

can be handled in an iterative way by trying each different possible solution and then 

choosing the optimal solution among these solutions. This type of sanitization algorithms 

use the trial and error methodology. Atallah et al. [9] first proposed the privacy preserving 

association rule hiding problem and they proposed an association rule hiding algorithm 

that conceals the sensitive association rules by concealing the sensitive itemsets 

generating these rules. An itemset graph is presented by the authors and with using this 

graph they iteratively uncover itemsets and transaction set for modification that gives 

least distortion to rest of itemsets. Then they remove predefined victim items from 
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sensitive transactions. The Aggregate [10] algorithm selects sensitive transactions whose 

removal gives impact on minimum number of non-sensitive itemsets and at the same time 

gives impact on maximum number of sensitive itemset, then it removes the selected 

transactions from database. Disaggregate [10] approach removes items from sensitive 

transactions whose removal effect least number of non-sensitive itemsets and at same 

time effect maximum number of sensitive itemsets. The Hybrid [10] approach chooses 

the sensitive transactions for modification with using Aggregate approach then modifies 

selected transactions with using the Disaggregate approach. The Aggregate algorithm 

greedy selects sensitive transactions whose removal gives impact on minimum number 

of non-sensitive itemsets and at the same time gives impact on maximum number of 

sensitive itemset, then removes the selected transactions from database. Disaggregate 

approach removes items from sensitive transactions whose removal effects least number 

of non-sensitive itemsets and at same time effects maximum number of sensitive itemsets. 

The Hybrid approach chooses the sensitive transactions for modification with using 

Aggregate approach then modifies selected transactions with using the Disaggregate 

approach. 

Another type of sanitization methodology is grouping sensitive itemsets and then 

modifying transactions containing each different groups of sensitive itemset. This type of 

sanitization may conceal multiple sensitive itemsets at once. The sensitive itemsets can 

grouped according to the item common at each sensitive itemset.  Oliveria et al. [11] 

proposed four sanitization algorithms among these algorithms the IGA algorithm 

introduced the multiple itemset hiding concept. Template Table Sanitization Algorithm 

(TTBS) [13] overcomes the overlapping groups problem faced in IGA with using a table 

called Template Table. The PGBS [14] algorithm employs a graph based data structure 

to speed up the hiding process. As in IGA this algorithm groups sensitive itemsets sharing 

common item and selects the victim item among sensitive itemset that has the maximum 

degree of conflict and then deletes victim item from transactions containing maximum 

number of sensitive itemsets.   

The number of association rule or frequent itemset combinations may decrease 

with the size of the transaction where size is the number of items a transaction contains. 

As a result, the distortion given to the knowledge can be reduced by modifying small 

sized transactions. The Sliding Window Algorithm (SWA) [12] removes victim item from 

sensitive transactions with the shortest size. Verykios et al. [15] proposed five algorithms 



26 
 

based on two approaches, first approach prevents rules from being generated by hiding 

the frequent sets from which they are derived whereas the second approach reduces the 

importance of the rules by setting their confidence below a user-specified threshold. 

Algorithm 2b [15] hides sensitive itemsets by removing the item having maximum 

support from smallest length sensitive transactions and the Algorithm 2c [15] hides 

sensitive itemsets by removing sensitive itemsets from smallest length sensitive 

transactions. 

Modifying transactions according to number of itemsets or rules they contain may 

decrease the distortion on non-sensitive knowledge. Maximum Item Conflict First 

(MICF) [16] algorithm first sorts sensitive transactions in increasing order according to 

how many sensitive itemset a sensitive transaction contains and deletes the victim item 

from sensitive transactions. The victim item is selected among items in a sensitive 

itemsets which has the maximum degree of conflict where the degree of conflict is the 

number of sensitive itemsets containing the victim item. The algorithm SIF-IDF[17] is 

inspired from TF-IDF(Term Frequency-Inverse Document Frequency). The SIF-IDF 

gives the relation degree of a transaction with sensitive itemsets. First the algorithm 

calculates each transactions SIF-IDF value, then sorts them in decreasing order of SIF-

IDF values and starts modification from the transaction having maximum SIF-IDF value. 

Relevance Sorting [18] deletes the victim item among sensitive transactions containing 

less number of non-sensitive itemsets. The algorithm calculates the number of non-

sensitive itemsets in each sensitive transaction and then assigns a priority value called 

relevance to each sensitive transaction and according to the relevance value it selects the 

transactions for modification. 

Some algorithms in previous studies assign weight to each transaction and item to 

decide the solution for the modification. Priority-based Distortion Algorithm (PDA) [19] 

first uncovers all sensitive transactions then for each sensitive transaction it calculates the 

priority of each sensitive transaction by calculating how many non-sensitive rules will be 

affected for all possible item removal of a sensitive rule contained in a transaction. 

Weight-based Distortion Algorithm (WDA) [19] first assigns weights to sensitive rules 

where the weight is the measure how close the confidence of a sensitive rule to minimum 

confidence threshold value (MCT), the value of the weight is high if confidence of a 

sensitive rule is close to the MCT. Then using the weights WDA calculates each sensitive 

transactions priority. Because of the algorithm’s high complexity, it is almost impossible 
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to use it on datasets having so many distinct items or databases having so many 

transactions. The Fast Hiding Sensitive Association Rules (FHSAR) [20] algorithm first 

assigns weight to each sensitive transaction and items in sensitive rules where the 

transaction weight is proportional to the number of sensitive rules a transaction contains 

and inverse proportional to the length of the transaction, also the weights assigned to 

items are proportional to the degree of conflict. Then the algorithm sorts the sensitive 

transactions in descending order of their weights and from sufficient amount of sensitive 

transactions deletes the items whose weight is maximum in the given sensitive 

transaction. The HSARWI [21] algorithm assigns weight to each sensitive transaction and 

items in sensitive rules as in FHSAR algorithm. The sensitive transactions are selected 

with the same procedures used in FHSAR algorithm; two algorithms differ in victim item 

selection. The HSARWI algorithm considers whether an item is on the right or left hand 

side of the sensitive rule and increases the weight of the item if it is on the right hand side. 

The MDSRRC [25] algorithm assigns weight to each transaction and item in a given 

sensitive rule where the weight of an item is the number of sensitive association rules 

containing the item and weight of a transaction is the sum of weights of all items 

contained in a transaction. The MDSRRC first finds the victim item having maximum 

sensitivity where the sensitivity of an item is the number of sensitive association rules 

containing the item in the right hand side. Next the algorithm deletes the item having 

maximum sensitivity from the transactions containing the victim item and having 

maximum weight.   

Representative association rules are the smallest set of rules that covers all 

association rules in a given database with respect to the predefined support and confidence 

thresholds. The study in [27] first uncovers sensitive representative rules with using the 

GSEE algorithm and then selects all sensitive representative rules that have sensitive 

item(s) on the right hand side of the rule. Next the EDSR algorithm hides sensitive 

itemsets with deleting sensitive item(s) from transactions supporting these previously 

selected rules. The EDSR algorithm starts modifying the transactions according to the 

number of items they contain (size). The HRR algorithm which is combination of ISL 

(Increase Support of LHS) and DSR (Decrease Support of RHS) [29] is proposed in [28]. 

The HRR first uncovers representative rules containing the sensitive itemset on the left 

hand side of representative rules and then deletes sensitive itemsets from transactions 

supporting these uncovered representative rules. Next the algorithm uncovers transactions 
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containing the sensitive itemset on the right hand side of representative rules and then 

deletes sensitive itemset from transactions supporting these uncovered representative 

rules. 

Particle swarm optimization is first proposed by [34] and its inspired from bird 

flocking to find food sources. The particles represent the problem solutions and each 

particle has velocity representing the flying directions according to other solutions. 

PSO2DT [35] is a particle swarm optimization based frequent itemset hiding approach. 

In this approach the maximum number of transactions to be removed is equal to the 

particle size. The particle size is calculated with the difference between the highest 

support count of frequent itemset among all frequent itemsets and minimum support count 

threshold. PSO2DT sanitizes frequent itemsets with deleting sufficient amount of 

transactions from the database. 

The lattice theory was first proposed by [40] and the lattice of frequent itemsets 

can be used for selecting the victim item. Intersection lattice based frequent itemset hiding 

algorithms first generates the intersection lattice of all frequent itemsets, then it calculates 

the number of supersets of each itemset where an itemsets pi is a superset of itemset i if I 

 spi. If I is the set of all itemsets in database D then I  spi I so it can be inferred that 

I is a intersection lattice. The generating set of I is denoted as GS (I) and it is composed 

of smallest set of itemsets of I where every itemset in I can be generated by intersecting 

some itemsets in GS (I). The HCSRIL (Heuristic for Confidence and Support Reduction 

based on Intersection Lattice) [38] algorithm selects the victim item and minimum 

number of transactions modification of this victim item that causes the minimum impact 

on itemsets in GS (FI) where FI is the frequent itemsets in the original database. The 

AARHIL (Algorithm of association rule hiding based on intersection lattice) [39] 

algorithm tries to give minimum distortion on non-sensitive association rules and 

intersection lattice of frequent itemsets. This algorithm selects the transactions for 

modification according to their weights where the calculation of the weight is based on 

the number of sensitive and non-sensitive rules a transaction contains. Also the AARHIL 

algorithm selects the victim item that gives least impact on GS (FI). 

All these distortion based heuristic algorithms explained above try to reduce the 

side effects and execution time with employing different methodologies and with 

different data structures. Also most of them allow database owner to assign a single 

sensitive threshold for each sensitive itemset. However as indicated in [20] different 
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itemsets have different support values in the database and sensitive threshold of different 

itemsets should be set according to their importance such as sensitive threshold of cheaper 

itemsets in a supermarket transactional database should be set higher then expensive 

itemsets because the cheap itemsets have high support. 

 

3.2. Sanitization Algorithms for Dynamic Environment 

 

In this section literature review of existing distortion based frequent itemset hiding 

algorithms for dynamic environment is presented. These algorithms are called dynamic 

sanitization algorithms to ease the complicity of the explanation. In dynamic environment 

the transactional database is being continuously updated by increments. The main 

challenge of dynamic sanitization mechanisms is to maintain large number of sensitive 

transaction search space. As illustrated in Figure 13 the dynamic transactional database 

consists of original part and incremental part. In dynamic environment the sensitive 

itemsets can hidden with two different approaches. The first approach modifies 

transactions in only incremental part and the second approach modifies transactions in 

the whole updated database. For the first approach if the original database D has already 

been sanitized then concealing sensitive itemsets in only incremental part d and then 

unifying d with D is going to produce a sanitized updated database. The first approach 

sanitizes the incremental part and then unifies the original part D with the sanitized 

incremental part d’. For the second approach the first the incremental part d is unified 

with the original part D and then the sanitization process is performed on the whole 

updated database (𝐷 ∪ 𝑑). 

 

Figure 13. Dynamic transactional database. 
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3.2.1. Sanitization on Incremental Database 

 

Sanitizing only the incremental part is more efficient in terms of execution time 

and resource allocation because the transaction search space for the hiding solution is 

smaller than the whole transactions in the updated database. But this strategy causes high 

rate of corruption on non-sensitive knowledge and data because its search space only 

includes transactions of the incremental part.  

The RHID [24] algorithm is designed for hiding sensitive rules in dynamic 

environment with decreasing support of itemsets in the right hand side of a given rule. It 

uses the same methodologies and techniques as in MDSRRC [25] algorithm, the only 

difference is that, the RHID algorithm employs a table to keep actual number of necessary 

support decrease need for each sensitive rule. This table is updated whenever a new batch 

of transactions is inserted to the original part of the database. The RHID algorithm just 

modifies transactions of the incremental part so it does not guarantee to keep distortion 

on the database and loss of non-sensitive information at minimum level.  

 

3.2.2. Sanitization on Updated Database 

 

As the number of potential transactions for modification includes all transactions 

of the updated database (D  d), sanitizing the updated database is more efficient in terms 

of information loss, distance and accuracy. However, this strategy is disadvantageous in 

terms of execution time and memory consumption because of huge transaction search 

space. If necessary precautions are taken such as appropriate data structure usage then 

these disadvantages can be tolerated.  

A dynamic frequent itemset hiding algorithm SPITF is proposed in [26]. This 

algorithm uses same concepts of TTBS [13] algorithm for sanitizing the sensitive 

itemsets. The SPITF algorithm groups sensitive itemsets sharing common item and then 

uncovers transactions containing these itemsets. The SPITF selects the item having 

maximum degree of conflict as victim item and removes it from sufficient amount of 

sensitive transactions. Also a tree like data structure called Sensitive Pattern Indexed 

Transaction Forest (SPITF) was designed to increase the efficiency of execution time. 

This data structure stores all transaction in the database and allows modifying transactions 
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without accessing the database. This approach reduces side effects such as distance and 

information loss since it performs the sanitization process on the whole updated database.  

Although most of the transactional databases are dynamic in real life, there is only 

a two sanitization algorithms; SPITF and RHID designed for dynamic database 

environment. The RHID algorithms is incapable of finding the optimal hiding solution 

because the optimal hiding solution can only be found if the transaction search space for 

the modification encapsulates all transactions in the database. The SPITF on the other 

hand may fail to hide all given sensitive itemsets because uncovering all sensitive 

transactions from the tree like data structure that it employs may fail for some cases.  

 

3.3. Summary 

 

In this chapter we reviewed existing frequent itemset and rule hiding approaches 

in the literature. These approaches are classified into two major categories according to 

the environment they designed for; static and dynamic. In dynamic environment there is 

only two heuristic itemset/rule sanitization algorithms whereas for the static environment, 

there are many algorithms grouped as the border based, exact, reconstruction based and 

heuristic itemset/rule hiding approaches. The border based approaches separate the non-

frequent and frequent itemsets with a border in the itemset lattice and then revises this 

border to find out an optimal hiding solution. Border based approaches give minimum 

distortion to the original database but they may unable to find optimum hiding solution 

for some cases although there exists [22]. The exact approaches have very high 

computational time as they employ integer programming so this makes them 

impracticable. The reconstruct based approaches may have problem in generating the 

resulting database with the same size as the original database and also putting non-

frequent itemsets into transactions of the resulting sanitized database is a difficult task. 

Heuristic based approaches are not designed for finding an overall optimum solution to 

the sanitization problem but they usually find solution close to the best one with small 

response time and in the literature there are many studies based on heuristic approaches 

[38]. 

Basic properties of the existing distortion based heuristic sanitization approaches 

are given in Table 4. In this table the “Algorithm” column indicates the algorithm name, 
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the “Hiding” column shows if the algorithm is designed for hiding sensitive itemset or 

hiding sensitive association rules. The “Victim Item Selection” column gives the victim 

item selection criteria of the algorithm where “degree” shows the selection of the item is 

done according to degree of conflict which is the number of occurrences of the item in 

different sensitive itemsets, “support” shows the item selection is done according to its 

support in the database, “iterative” shows the item is selected in a trial and error way, 

“weight” shows the item selection is done according to weight of the item where the 

weight is calculated depending on some heuristics, “lattice” shows the item is selected 

according to intersection lattice and “none” shows the algorithm does not select any 

victim item instead it completely removes some set of sensitive transactions from the 

database. The “Transaction Selection” column indicates selection criteria of the 

transactions for modification where “size” shows that the transactions are selected 

according to number of items contained by transactions, “Degree” shows that the 

selection is done according to number of sensitive rules or itemsets contained by 

transactions, “Greedy” shows that the selection is done in a trial and error way and 

“Weight” shows that the selection is done with using previously calculated weights of 

transactions.  

The “Multiple rule/itemset Hiding” column shows whether the algorithm is 

designed for hiding more than one sensitive rules or itemsets at each iteration of the hiding 

process. The column “Multiple Support Threshold” indicates whether the algorithm 

enable assigning different sensitive thresholds for each sensitive itemset or not. The 

“Environment” column indicates if the algorithm is designed for the incremental or static 

database environment. 

 According to the Table 4, most of the algorithms are designed for hiding itemsets 

rather than association rules. Some of the algorithms employ different heuristics for 

modifying transactions besides some of the algorithms completely remove predefined set 

of transactions from the database. The modification set of transactions are mostly selected 

according to their weights and the weight of transactions are calculated based on some 

heuristics such as the number of sensitive itemset or rule a transaction supports. If 

intersection of sensitive itemsets or rules is not empty in other words if they share 

common item or items then they are called overlapping itemsets or rules. Most of the 

proposed approaches are designed with assuming that sensitive itemsets or rules are 

overlapping.  
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After the heuristic based itemset/association rule hiding algorithms are surveyed 

it can be discovered that most of these hiding algorithms allow database owner to define 

a unique sensitive threshold for all sensitive itemsets. However unique sensitive threshold 

gives limitation to the database owner and also prevents to consider the significance of 

different characteristics of sensitive itemsets. Also during the sanitization process if 

supports of all sensitive itemsets are decreased under a unique sensitive threshold then an 

adversary may infer that some itemsets are made uninteresting before the database is 

shared. 

The second problem of existing solutions is, there is only two algorithms designed 

for dynamic database environment. It is possible to use any static environment 

sanitization algorithm to the dynamic database environment with waiting all updates and 

performing the sanitization operation on the whole updated database. Applying this type 

of solution is going to bring an overhead the resource allocation and execution time 

because dynamic databases are updated to continuously and whenever a database publish 

operation is performed the sanitization process is going to start from beginning. 
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Table 4. Classification of distortion based heuristic frequent itemset hiding algorithms 
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RHID [24] Rule Weight Weight  ✔ 
Dynamic 

SPITF [26] Itemset Degree Degree  ✔ 

TTBS [13] Itemset Degree Degree  ✔ 

Static 

SWA [12] Itemset Support Size ✔ ✔ 

MDSRRC [25] Rule Weight Weight  ✔ 

HSARWI[21] Rule Weight Weight ✔  

FHSAR [20] Rule Degree Weight ✔  

MICF [16] Itemset Degree Weight ✔  

Aggregate [10] Itemset None Greedy ✔  

Disaggregate [10] Itemset Greedy Greedy ✔  

Hybrid [10] Itemset Greedy Greedy ✔  

IGA[11] Itemset Degree Degree ✔  

RelevanceSorting[18] Rule Support Weight   

EDSR[27] Itemset None Size   

HRR[28] Rule Support All   

SIF-IDF[17] Itemset Support Weight   

Algorithm 2b [15] Itemset Support Size   

Algorithm 2.c [15] Itemset None Size   

PDA[19] Rule Greedy Weight   

WDA [19] Rule None Weight   

Naïve[11] Rule All Degree   

MaxFIA  [11] Itemset Support Degree   

MinFIA [11] Itemset Support Degree   

PSO2DT [35] Itemset All Weight ✔  

PGBS [14] Itemset Degree Degree ✔ ✔ 

HCSRIL[38] Rule Lattice Size   

AARHIL[39] Rule Lattice Weight   
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CHAPTER 4 

PRIVACY PRESERVING FREQUENT ITEMSET HIDING 

 

In this thesis three different distortion based frequent itemset hiding algorithms; 

PGBS [14], IPGBS and DynamicPGBS [36] are proposed. Both PGBS and IPGBS are 

designed for static database environment whereas the DynamicPGBS is designed for 

dynamic database environment. These sanitization approaches hide given sensitive 

itemsets by decreasing their support under predefined sensitive thresholds with deleting 

victim items from some sensitive transactions.  In order to ease the complexity of the 

hiding solution some heuristic are employed in the design phase of these three algorithms. 

These heuristics are used for determining the transactions for modification and item to be 

deleted from them. In order to increase the efficiency of sensitive transaction and victim 

item identification all PGBS, IPGBS and DynamicPGBS use Pseudo Graph based data 

structure. 

 

4.1. The Pseudo Graph Data Structure 

 

The essential steps of distortion based frequent itemset hiding process includes 

identifying sensitive transactions, counting supports of sensitive itemsets and counting 

support of candidate victim items. All these steps can be acquired with multiple database 

scan operations however performing sequential search operation on the actual database 

for once has O (|D|) worst case time complexity. To decrease the time complexity of the 

search operation and reduce the number of database scan operations to one, the database 

is presented as Pseudo Graph data structure. Performing scan operations on Pseudo Graph 

rather than the actual database or other data structures like matrix or inverted index 

provides significant improvement in terms of execution time.  

Pseudo Graph.  A graph G (V, E) is a set vertices V and a set edges E where some 

vertices are connected by edges. If a graph consists of ordered pair of vertices, then it is 

called directed graph. A loop is an edge that connects a vertex to itself. A pseudo graph 

is a directed graph which allows multiple edges and loops. 
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In PGBS all transactions in the given database D are represented as Pseudo Graph 

(PG) without checking their contents.  The PGBS utilizes the advantage of PG for 

efficiently identifying the sensitive transactions and calculating support counts of items 

and sensitive itemsets. In IPGBS all sensitive itemsets are represented as Pseudo Graph. 

The IPGBS utilizes the advantage of PG for identifying sensitive transactions that contain 

maximum number of sensitive itemsets. In DynamicPGBS all sensitive transactions are 

represented as Pseudo Graph. The DynamicPGBS utilizes the advantage of PG for 

efficiently calculating support counts of items in sensitive transactions and sensitive 

itemsets. 

 

4.2. The Pseudo Graph based Sanitization Algorithm (PGBS) 

 

The PGBS algorithm sanitizes the given transactional database D by reducing 

support of sensitive itemsets under their predefined sensitive thresholds. The support 

reduction is done by removing sufficient amount of items from sufficient amount of 

sensitive transactions. The PGBS algorithm converts the given database D into sanitized 

database D’ with zero Hiding Failure in other words no sensitive itemsets can be extracted 

from D’. The aim of this algorithm is keeping maximum number of non-sensitive itemsets 

present in D and cause minimum item removal on D. The two main sub problem of this 

algorithm are determining the set of sensitive transactions for modification and selecting 

the victim item to be removed from these sensitive transaction set. The PGBS algorithm 

is based on two different heuristics for determining the set of transactions for modification 

and victim item selection. The number of sensitive itemsets that are uncovered from a 

single transaction is referred as cover degree. For illustration in Figure 14 (a) a sample 

transactional database and in Figure 14 (b) sensitive itemsets of this database are shown. 

The cover degree column of Figure 14 (a) indicates the cover degree of each transaction.  

For many cases it is possible to reduce the number of transaction modification by 

selecting high cover degree. Because this enables to sanitize more than one sensitive 

itemset at once by modifying a single transaction.  Also modifying less number of 

transactions reduce the number of iterations of the sanitization algorithm. The first 

heuristic is based on this fact and selects transactions according to their cover degrees. 
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(a) Transactional database (b) Sensitive itemsets 

Figure 14. Sample database and sensitive itemsets with their sensitive thresholds. 

 

If intersection of two or more sensitive itemsets is not empty with another 

meaning they share a common item then removing this item from sensitive transaction 

reduces support of more than one sensitive itemset at the same time. 

The flowchart of PGBS algorithm is given in Figure 15. The algorithm takes the 

database D, the set of sensitive itemsets (SI) and their sensitive thresholds (SI) as input. 

This algorithm consists of four main processes where the first process is converting the 

database D into PG. The second process is creating the Sensitive Count Table (SCT) 

where the SCT keeps the number of necessary support count decrease of each sensitive 

itemset. The third process creates the Sanitization Table (ST), this table keeps the 

information related to modification operation that is going to applied to D. The last 

process is the sanitization process; this process creates a copy of the database and applies 

the sanitization information stored in the ST to the copy of the database. 

 

 

Figure 15. The flowchart of PGBS algorithm. 
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4.2.1. Pseudo Graph (PG) 

 

The Pseudo Graph used in PGBS algorithm represents all transactions in the given 

database D with Pseudo Graph. The vertices represent each different item in D and they 

are connected to each other by edges where edges are labelled with transaction ids. As an 

example if item i1 is connected with item i2 with a directed edge labeled with n then this 

means that i1 appears with i2 in the nth transaction. The vertices having reflective edges 

represent the transactions containing a single item. 

To create the PG initially all transactions in D are sorted in lexicographic or 

alphabetic order and then each transaction in D is inserted one by one to the PG. The 

insertion process first checks whether there exists a vertex for each item i of the given 

transaction tr and if not vertex labelled with i is created. Then each item of transaction tr 

is connected to each other in sequential order and the edges connecting these vertices are 

labelled with the id of tr. If there exists any transaction tr containing only one item i then 

a self-loop labelled with the id of tr is created for the vertex i. The algorithm for creating 

the Pseudo Graph of a given database D is depicted in Algorithm 1. First transactions are 

read by one by from the database and then for each item of the transaction vertices are 

created if it is not present. Next vertices representing each item of a given transaction are 

connected sequentially labelled with the transaction ids.  
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The conversion process of the database D into PG is illustrated in Figure 16. 

Suppose the database D in Figure 14 (a) is given and all transactions in D are 

alphabetically sorted before the conversion process. The Pseudo Graph given in Figure 

16 (a) and (b) shows transactions “abcdef” and “bc” are inserted into PG respectively and 

the Figure 16 (c) shows PG after all remaining transactions in D are inserted PG. 

 

  

 
(a) PG after transaction 

“abcdef” inserted 

(b) PG after transaction “bc” 

inserted 

(c) PG after all transactions 

inserted 

 

Figure 16. Inserting transactions into PG. 

 

Transactions containing a given 2-itemset is uncovered from PG with using the 

intersection operation. Intersecting the transactions ids on the outgoing edge of one vertex 

with transaction ids on the incoming edge of the other vertex gives transactions containing 

both items at the same time. Suppose XY be a 2-itemset and prefix(X) detonate 

transaction ids on outgoing edges of vertex X and postfix denote transaction ids on 

incoming edges of vertex(Y). The support count of XY in database is calculated by 

prefix(X)  postfix(Y). Similarly the support count of a k-itemset is calculated by 

prefix(item1)  postfix(item2)  …  postfix (itemk) where the sequence of an item itemN 

in k-itemset is denoted as N. As an example transactions containing the itemset “ade” in 

Figure 16 (c) is calculated by ({1,4,5,6,8}  {1,3}  {1,3,4,5}) = {1} so the support 

count of itemset “ade” is 1. Also the support count of an item is equal to the total number 

of distinct transaction ids on the incoming and outgoing edges. As an example support 

count of “c” in Figure 16 (c) is {1,2,3,4,5,6}  {1,3,4,5} = {1,2,3,4,5,6} which means 

the support count of item “c” is 6. 
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4.2.2. Creating the Sensitive Count Table 

 

Sensitive Count Table (SCT) represents the minimum number of support count 

decrease required to hide a sensitive itemset. The SCT has three attributes, SID, SI and 

NModify. The SID is the unique identifier of records in SCT, SI is the sensitive itemset and 

NMoidfy is the minimum number of support count decrease to hide a given sensitive 

itemset. The Nmodify is calculated with the following equation; 

               𝑁𝑀𝑜𝑑𝑖𝑓𝑦 = ⌊𝑠𝑐𝑜𝑢𝑛𝑡(𝑋) − 𝑠𝑡(𝑋) ∗ |𝐷| + 1⌋                 (4.1) 

where X is the sensitive itemset, the scount (X) is the number of transactions supporting 

X in D, st (X) is the sensitive threshold of X and |D| is the total number of transactions in 

database D. After the SCT is created it is sorted in descending order of NModify attribute. 

For illustration, in Table 5 the NModify of the sensitive itemset “ab” is 3; it means after 

item “a” or item “b” is deleted from 3 transactions of the database then the sensitive 

itemset “ab” will become sanitized.     

Table 5. Sensitive Count Table (SCT) of PGBS and IPGBS algorithms. 

 

SID SI NModify 

0 ab 3 

1 df 3 

2 bc 2 

 

4.2.3. Creating the Sanitization Table 

 

The process of creating the Sanitization Table consists of creating the sanitization 

Table (ST) and updating PG. The Sanitization Table (ST) keeps the final modification 

information that will be applied to the database before it is published. The ST has two 

attributes, Victim and Transactions. The victim attribute keeps the victim item that is 

selected to be deleted and the transactions attribute keeps the list of transactions that this 

victim item will be deleted. After each victim and corresponding transaction set for 

modification is determined it is put into the Sanitization Table and consequently the 

Pseudo Graph is updated by deleting this victim item from the transactions determined.   

The algorithm of creating the Sanitization Table (ST) is depicted in Algorithm 2. 

The algorithm starts the sanitization process with the sensitive itemset having greatest 
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NModify value. The victim item is selected among items in a given sensitive itemset having 

maximum conflict degree. If there is more than one victim item having the same conflict 

degree the victim item is selected with maximum support count value among candidate 

victim items. If there is still more than one candidate victim item, then it is selected 

randomly among them and then put into the variable victim. The unifiedItemsets variable 

in the algorithm unifies all sensitive itemsets in SCT sharing the victim variable. If the 

number of sensitive itemsets in the unifiedItemsets variable is equal to one, then this 

implies that the variable victim is not contained in any different sensitive itemset than the 

active sensitive itemset si and it is impossible to unify the si with any other sensitive 

itemset in SCT. Next the ids of sensitive transactions supporting unifiedItemsets are 

uncovered from PG with not exceeding the NModify of the si and put into variable 

sensitiveTransactions. Then the victim and the sensitiveTransactions are added to the 

sanitization Table (ST). The PG is updated by deleting the victim from transactions stored 

in sensitiveTransactions and the NModify of each sensitive itemset in unifiedItemsets is 

reduced by the number of transaction ids stored in sensitiveTransactions. If NModify of any 

record in SCT becomes less than or equal to zero, then it is removed from both SCT and 

unifiedItemsets to avoid decreasing the support of already sanitized sensitive itemset more 

than necessary. Also database D may not contain sufficient number of transactions 

supporting unifiedItemsets, in such a case the sensitive itemset having the least NModify is 

removed from unifiedItemsets at each iteration till only the active sensitive itemset si 

remains in unifiedItemsets. The creation of the Sanitization Table terminates when there 

is no remaining row left in SCT. 

 

4.2.4. Illustrating Example 

 

To illustrate how the algorithm depicted in Algorithm 2 works suppose the 

Sensitive Count Table (SCT) is given in Table 5 and Pseudo Graph (PG) is given in Figure 

16 (c) as input. In this example there are three sensitive itemsets; “ab”, “df” and “bc” 

where the itemset “ab” has the maximum NModify value which is 3. So the sanitization 

process starts from the “ab” (step 1). The victim item is selected as “b” (line 2) among 

items in “ab” and put into variable victim because it has the maximum conflict degree 

(conflict degree= 3). Then the sensitive itemsets containing “b” are unified (line 3) and 
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put into the variable unfiedItemsets. The unifiedItemsets is “abc” and according to the PG 

in Figure 16 (c) transactions containing “abc” are {1,4,5} (line 11). NModify of “ab” and 

“bc” are updated in SCT as 0 and -1 respectively (line 12) and the sensitive itemsets “ab” 

and “bc” are removed from SCT and unifiedItemsets (lines 12-18) because their NModify 

value become less than or equal to zero. The victim “b” and transaction ids {1,4,5} pair 

is put into the Sanitization Table (line 19) and item “b” is removed from transaction 

{1,4,5} in PG as shown in Figure 17 (a) (line 20). The next non-sanitized sensitive itemset 

in SCT is “df” and the victim is selected as “f” because it has the maximum support count 

value (support count f = 4) (lines 1-2).  The unifiedItemsets variable is “df” because the 

only remaining sensitive itemset in SCT is “df” (line 3). Transactions containing “df” 

with not exiting the NModify of “df” are {1,3,6} and they are assigned to variable 

sensitiveTransactions (line 5). The PG is updated as in Figure 17 (b) where the item “f” 

is removed from transactions {1,3,6} (line 7) and the sensitive itemset “df” is removed 

from SCT (line 8). The creation of the Sanitization Table terminates because there is no 

record left in SCT.  

 

4.2.5. Sanitizing the Database 

 

The last process of PGBS is applying the sanitization solution stored in the 

Sanitization Table (ST) to the original database D and create a sanitized database D’. The 

whole sanitization process is illustrated in Figure 18. In this figure first the given database 

D is converted to the Pseudo Graph (PG) representation, then the Sensitive Count Table 

(SCT) is created with using the PG and the previously defined sensitive itemsets. The 

third step creates the Sanitization Table (ST) with using the PG and information stored in 

SCT. The final step creates a copy of the database D and applies the information stored 

in ST to this copy to produce the D’.  

 

4.3. The Itemset Oriented Pseudo Graph based Sanitization 

Algorithm (IPGBS)  

 

As the PGBS algorithm the Itemset Oriented Pseudo Graph (IPGBS) algorithm is 

designed for frequent itemset hiding in the static environment. The main similarities  
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(a) PG after item “b” is deleted from 

transactions {1,4,5} 

(b) PG after item “f” is deleted from 

transactions {1,3,6} 

  

Figure 17. Updating PG with deleting items. 
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Figure 18. The flow of the processes in PGBS. 

 

between these two algorithms are first both of them hide sensitive itemsets with 

decreasing their support under their sensitive thresholds and the second both employ the 

Pseudo Graph data structure during the sanitization process. However, the main focus of 

IPGBS algorithm is reducing the amount of information loss whereas the main focus of 

PGBS algorithm is to minimize the execution time. The Psudo Graph data structure used 

in IPGBS is called Itemset Oriented Pseudo Graph (IPG). The IPG keeps only the 

sensitive itemsets and the transactions containing them.  

 

4.3.1. Itemset Oriented Pseudo Graph (IPG) 

 

The Pseudo Graph used in IPGBS algorithm represents all sensitive itemsets in 

the given database D and it based on the Pseudo Graph proposed in PGBS algorithm. The 

vertices represent each different sensitive itemset and they are connected to each other by 

edges where edges are labelled with transaction ids. The transaction ids on the edges 

represent the set of transaction ids containing the sensitive itemsets on the path between 

starting vertex and its direct successor. As an example if itemset is1 is connected with 

item is2 with a directed edge labeled with n then this means that is1 appears with is2 in the 

nth transaction. The vertices having reflective edges represent the transactions containing 

a single itemset. 

The procedures of manipulating IPG include construction of the graph, insertion 

of transactions and deleting transactions from the graph. Constructing the IPG and 

insertion of the transactions is depicted in Algorithm 3. First each transaction in database 
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D is checked to find out whether it contains any sensitive itemset, and if so these sensitive 

itemsets are put into the variable sItemsets. Then if IPG does not contain any vertex 

labelled with any itemset si in sItemsets, a vertex labelled with si is created. Next, if the 

variable sItemsets contains more than one sensitive itemset then vertices in IPG labelled 

with these sensitive itemsets are connected with each. The label on the edge connecting 

these vertices is composed of transaction ids containing these sensitive itemsets. Also a 

reflective edge is created for the last sensitive itemset in sItemsets to indicate the finish 

vertex of the deepest path on the graph. If the transaction tr contains only one sensitive 

itemset then a loop is created in IPG for the vertex labelled with this sensitive itemset.   

The construction of the IPG is illustrated in Figure 19. Suppose the transactional 

database and sensitive itemsets are given in Figure 14 (a) and (b) respectively. First each 

transaction is checked in sequential order to find out if it is sensitive and if so it is inserted 

into the IPG. The first sensitive transaction in D is “abcdef” with transaction id 1. Vertices 

labelled with “ab”, ”bc” and “df” are created and connected with each other with edge 1 

as in Figure 19 (a).  The next transaction in D is “bc”, and it contains only one sensitive 

itemset “bc”, because there is no any other sensitive itemset in this transaction a reflective 

edge labelled with 2 is created on vertex “bc” as shown in Figure 19 (b). After all 

remaining sensitive transactions in D are inserted into the IPG the resulting IPG is shown 

in Figure 19 (c). 
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(a) IPG after transaction 

“abcdef” inserted 

(b) IPG after transaction 

“bc” inserted 

(c) IPG after all 

transactions inserted 

 

Figure 19. Inserting transactions into IPG. 

Transactions supporting a given sensitive itemsets si is equal to the distinct 

transaction ids on the incoming and outgoing edges of vertex si. Similarly transactions 

supporting N number of sensitive itemsets is calculated by Prefix (sensitiveItemset1)  

Postfix(sensitiveItemset2)  …  Postfix (sensitiveItemsetN). As an example the 

transactions supporting the sensitive itemsets “ab”, “bc” and “df” are uncovered from IPG 

in Figure 19 (c) by {1,4,5,6,8}  {1,2,4,5,6}  {1,3,6,7} = {1,6}.  The procedure deleting 

transaction from the graph is only includes deleting specified transaction from the 

outgoing edges of vertices. 

 

4.3.2. IPGBS Algorithm 

 

The IPGBS (Itemset Oriented Pseudo Graph Based Sanitization) algorithm is a 

distortion based frequent itemset hiding algorithm. The main objective of the IPGBS 

algorithm is to reduce the non-sensitive information loss during sanitization operation. In 

order to keep the difference between number of non-sensitive information in the original 

and sanitized database minimum number of transactions are modified. The IPGBS 

algorithm starts the modification operation from transactions containing maximum 

number of sensitive itemsets. To reduce the execution time complexity of uncovering 

transactions having maximum degree of conflict from the actual database D the Itemset 

Oriented Pseudo Graph (IPG) is employed. 

The flowchart of this algorithm is illustrated in Figure 20. As in PGBS the IPGBS 

algorithm takes the database D, the set of sensitive itemsets (SI) and their sensitive 

thresholds (SI) as input. The IPGBS algorithm consists of four main processes where the 

first process is converting the database D into IPG. The second process is creating the 

Sensitive Count Table (SCT) and the third process creates the Sanitization Table (ST). 
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The final process is the sanitization process; this process creates a copy of the database 

and applies the sanitization information stored in the ST to the copy of the database.  

 

Figure 20. The flowchart of IPGBS algorithm. 

 

Both Sensitive Count Table and Sanitization Table keep the same information as 

in PGBS. The detail information for creating the SCT is explained in previous sections 

and the same producers are followed in IPGBS. There is only one difference between the 

SCT created in IPGBS and PGBS. The SCT is sorted alphabetically or numerically 

according to SI values in IPGBS algorithm whereas SCT is sorted according to NModify in 

PGBS algorithm. 

 

4.3.3. Creating the Sanitization Table 

 

The IPGBS algorithm tries to find out transactions containing maximum number 

of sensitive non-sanitized sensitive itemsets and then deletes previously determined items 

(victims) from these transactions. It is possible to uncover transactions supporting 

maximum number of sensitive itemset by uncovering transaction ids of the deepest path 

in IPG. The deepest path of a sensitive itemset si is the longest path in IPG, starting from 

the si. The depth first search traversal method is the efficient way of finding the deepest 

path of a sensitive itemset.  

The algorithm for creating the Sanitization Table is depicted in Algorithm 4.   First 

each sensitive itemsetsi stored in the SI field of SCT is started to be selected by one by 

and if the si is not already sanitized the hiding operation for si starts. The variable 
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deepestPath stores the longest path in IPG starting from the given sensitive itemsetsi. The 

deepestPath does not contain any sensitive itemset that is already sanitized because in the 

opposite case support of sensitive itemset may decreased more than necessary and this 

may lead to effect more non-sensitive frequent itemsets in the resulting sanitized 

database. After the deepest path containing maximum number of strong sensitive itemsets 

is determined by using depth first search traversal technique, the transactions containing 

this path are extracted from IPG with not exceeding the NModify value of the corresponding 

sensitive itemset. Next the item having the maximum cover degree among items in 

deepestPath is selected as victim. If there exists more than one item having the same 

cover degree, the item with maximum support count is selected. If there is still  more than 

one, then the victim item is selected randomly. After the sensitive transactions for 

modification and victim item are determined the IPG is updated by removing these 

transactions from outgoing edges of the active sensitive itemsetsi. This update operation 

is for avoiding selecting the same transactions more than once in the next iteration. Then 

these transactions and victim item pair is inserted into the Sanitization Table (ST). If any 

of the sensitive itemset stored in deepestPath contain the victim item, then NModify value 

of them are decreased by the number of transactions uncovered. Besides the selected 

victim item may not be common in all sensitive itemsets of the deepest path. In such a 

case these sensitive itemsets are inserted into the variable NotContain and a new victim 

item is selected for these sensitive itemsets. Then this victim item and sufficient number 

of transactions from previously uncovered transactions are inserted into the Sanitization 

Table (ST). The algorithm continues to generate deepest path and select victim item and 

uncover sensitive transactions till the given sensitive itemset si is sanitized or there does 

not exist any new deepest path for si. If there are insufficient number of transactions 

uncovered to hide sensitive itemset si and there is no more different deepest path left for 

the vertex si then insufficient number of transactions problem arises, which means there 

is an insufficient number of transactions containing the paths with length more than one 

starting from the vertex si in IPG. This problem appears due to the fact that given sensitive 

itemset may appear as the last element in most or all sensitive transactions when sensitive 

itemsets are sorted in alphabetically or numerically and as a result there would not be 

sufficient number of longest paths different from the loop pointing to the same vertex in 

IPG. The algorithm solves the insufficient number of transactions problem by selecting 
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the victim item among items in si having maximum support count value and uncovering 

sufficient number of transactions from the incoming edges of a given sensitive itemset.  

 

4.3.4. Illustrating Example 

 

To illustrate how the algorithm depicted in Algorithm 4 works, suppose the 

Sensitive Count Table (SCT) is given in Table 1 and Itemset Oriented Pseudo Graph 

(IPG) is given in Figure 19 (c) as input. In this example there are three sensitive itemsets; 

“ad”, “cd” and “bd” where the itemset “ad” has the maximum NModify value which is 3. 

So the sanitization process starts from the “ab” (line 1). The deepest path starting from 

vertex “ab” is “abcdf” (line 2) and transactions {1,6} supports this path, so the transaction 

id {1,6} is inserted into the variable transactions (line 3). The item “b” is selected as 

victim item as it has the maximum conflict degree (conflict degree =2) and then put into 

the variable victim (line 4). The IPG is updated as in Figure 21 (a) by removing transaction 

{1,6} (line 5) and the victim and transactions pair is inserted into the Sanitization Table 

(ST) (line 6).  NModify of “ab” and “bc” are updated as 1 and 0 respectively. The sensitive 

itemset “df” in the path “abcdf” does not contain the victim item “b” so the item “f” is 

selected as victim item among items “d” and “f” because it has the maximum support 

count (support count=6). The NModify of “df” in SCT is updated as 1 and then the victim 

item “f” with transaction ids {1,6} are inserted into the ST (lines 8-13). The next deepest 

path containing maximum number of non-sanitized sensitive itemsets starting from vertex 

“ab” is “ab”, the deepest path “abc” is neglected because it contains the sanitized sensitive 

itemset “bc”. The item “a” is selected randomly as victim among the items “ab” because 

both support count of “a” and “b” are the same (support count of a = 5, support count of 

b=5). The IPG is updated by removing transaction {8} from vertex “ab” as shown in 

Figure 21 (b), the victim “a” and transaction {8} is added to the Sanitization Table (lines 

2-5). The next none sanitized sensitive itemset in SCT is “df” and the deepest path starting 

from the vertex “df” is “df” with transaction {7}. Finally, the victim “d” and transaction 

{7} is inserted into ST and the IPG is updated as in Figure 21 (c).  
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4.3.5. Sanitizing the Database 

 

The sanitization process of IPGBS creates a copy of the original database D and 

then applies the sanitization solution stored in Sanitization Table (ST) to this copy. The 

whole sanitization process is illustrated in Figure 22. In this figure first the given database 

 

 

   
(a) IPG after the path 

“abcdf” is deleted from 

transactions {1,6} 

(b) IPG after path “ab” 

is deleted from 

transaction {8} 

(c) IPG after path “df” is 

deleted from transaction  

{7} 

 

Figure 21. Updating IPG with deleting paths. 

 

D is converted to the Itemset Oriented Pseudo Graph (IPG) representation, then the 

Sensitive Count Table (SCT) is created with using the IPG and the previously defined 

sensitive itemsets. The third step creates the Sanitization Table (ST) with using the IPG 

and information stored in SCT. The final step creates a copy of the database D and applies 

the information stored in ST to this copy to produce the D’.   
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4.4. Dynamic Frequent Itemset Hiding Algorithm (DynamicPGBS) 

 

The Dynamic Pseudo Graph based Sanitization algorithm [36] is designed for 

hiding frequent itemsets in the dynamic environment. In dynamic environment 

transactional databases are continuously being updated by receiving increments. A static  

 

Figure 22. The flow of the processes in IPGBS algorithm. 

 

frequent itemset hiding algorithm can be applied to the dynamic database environment 

by waiting all increments and then applying the sanitization process to the whole updated 

database. However, this will be inefficient in terms of total resource allocation and 

execution time because whenever an incremental part arrives to the database the 

sanitization process should start from scratch to consider the updates.  

 

4.4.1. DynamicPGBS Algorithm  

 

The database D in a dynamic database environment is being continuously updated 

with receiving increments.  Figure 23 (a) illustrates this environment where the original 

part is denoted as D and the incremental part is denoted as d and Dd brings out the 

updated database. In order to hide sensitive itemsets in the updated database either the 

transactions in the incremental part d or transactions in the whole updated database D d 

need to be modified. Modifying only the transactions in the incremental part of the 

database is dealing with small number of transactions. Suppose there are three sensitive 

itemsets as in Figure 23 (b). The original database D is already sanitized because support 

of all these three sensitive itemsets are below their sensitive threshold where support of 
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“ad”, “cd” and “bd” are 28.6%,14.3% and 0% respectively. After the database D is 

updated with the incremental part d the support of “ad”, “cd” and “bd” becomes 50%, 

30%, and 10% respectively and this reveals the need for sanitization process before the 

updated database is published. One possible approach is to modify transactions in only 

incremental part d and the other possible approach is to modify transactions in the updated 

database. The first approach is adventurous in terms of execution time and resource 

allocation because there will be less transactions in the search space (transactions = 

{8,9,10}) compared to the second approach. However, the first approach may bring out 

more side effects such as loss of non-sensitive information and total number of item 

removal because all potential sensitive transactions will not be in the search space. On 

the other hand, the second approach is more advantageous in terms of side effects when 

compared to first approach but it will be inefficient in terms of execution time and 

resource allocation. However, it is possible to reduce these inefficiencies of the second 

approach by using an appropriate data structure. 

The DynamicPGBS algorithm uses a Transaction Oriented Pseudo Graph (TPG) 

data structure based on the PG used in PGBS. Unlike the PGBS algorithm the 

DynamicPGBS algorithm only puts the sensitive transactions in to the Pseudo Graph data 

structure.    

 

 

 

 

 

 

 

(a) Dynamic database (b) Sensitive itemsets 

 

Figure 23. Sample database and sensitive itemsets with their sensitive thresholds. 
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4.4.2. Transaction Oriented Pseudo Graph (TPG) 

 

The Transaction Oriented Pseudo Graph (TPG) data structure used in 

DynamicPGBS algorithm is very similar to the Pseudo Graph data structure used in 

PGBS. The only difference is the DynamicPGBS represents all sensitive transactions in 

the given database D rather than all transactions of D. The Pseudo Graph structure of 

DynamicPGBS is called TPG. It is assumed that items in each transaction are sorted in 

alphabetical or numerical order before they are converted to TPG. The algorithm for 

creating the TPG of a given database D is depicted in Algorithm 5. First each transaction 

in database D is checked to find out whether it is sensitive or not. Next vertices 

representing each item of a given sensitive transaction are connected sequentially labelled 

with the transaction ids. 

The conversion process of the database updated database D  d into TPG is 

illustrated in Figure 10. Suppose the updated dynamic database D  dis given in Figure 

23 (a) where all transactions in both D and d are alphabetically sorted. First each 

transaction is checked in sequential order to find out if it is sensitive and if so it is inserted 

into the TPG. The first sensitive transaction in D is “ade” with transaction id 5. Vertices 

labelled with “a”, ”d” and “e” are created and connected with each other with edge 5as in 

Figure 24 (a).  The next sensitive transaction in D is “acd”, because there is no vertex 

created for item “c” a vertex labelled with “c” is created and then vertices “a”, “c” and 

“d” are connected sequentially with edge labelled with 5 as in Figure 24 (b). After all 

remaining sensitive transactions in D are inserted into the TPG the resulting TPG is shown 

in Figure 24 (c). 

Calculating support count of sensitive itemsets is carried with same way as in 

PGBS. However unlike PG the TPG only represents the sensitive transactions because of 

this fact the support count of items that are generated from the TPG only represents 

number of appearances of items in sensitive transactions.   

 

4.4.3. DynamicPGBS Algorithm 

 

In dynamic database environment after each time the database is updated with a 

new batch of incoming transactions the state of a sensitive itemsets may change i.e. 

support of sensitive itemsets may exceed their sensitive thresholds, support of sensitive 
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(a) TPG after transaction 

“ade” is inserted 

(b) TPG after transaction 

acd is inserted 

(c) TPG after all transactions in  

D  d are inserted 

 

Figure 24. Inserting transactions into TPG. 

 

itemsets may fall behind their sensitive thresholds. The biggest problem in dynamic 

frequent itemset hiding problem is, while state of each sensitive itemset varies they should 

be hidden from the database with minimum execution time and side effects. These side 

effects include amount of non-sensitive knowledge loss, amount of data modified and 

total memory requirement. In order to speed up the execution time and minimize the 

resource allocation the Transaction oriented Pseudo Graph (TPG) data structure is 

employed. But unlike the PG as in PGBS, only sensitive transactions are put into the TPG 

structure. This is because first of all modification of non-sensitive transactions does not 

affect the support of any sensitive itemset and the second is the total number of vertices 

and edges in the graph can be reduced. Reducing the number of vertices and edges also 

reduces the total memory allocation of the TPG.  
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Before the database is published the DynamicPGBS algorithm deletes items called 

victims from predefined set of sensitive transactions for decreasing support of each 

sensitive itemset smaller than its sensitive threshold. None of the scan and transaction 

modification operations are performed on the actual database besides they are performed 

on the TPG. The information related to the sanitization operation is stored in Sanitization 

Table and whenever the database is published the sanitized database is generated from 

the copy of actual database by performing necessary modification. 

The flowchart of DynamicPGBS algorithm is illustrated in Figure 25. Similar to 

the PGBS algorithm the DynamicPGBS algorithm takes database D, sensitive itemsets 

(SI) and their sensitive thresholds as input. First the database is converted to the PG, next 

if a new batch of transactions (d) arrives then the PG and database (D) are updated. Either 

after the conversion of D to the PG or d arrives if the database owner wants to release the 

database, the hiding process starts. The hiding process composes of creating the Sensitive 

Count Table (SCT) and creating the Sanitization Table (ST). After the hiding process is 

finished the sanitized database (D’) is generated as output and all delete operations 

performed on PG are restored prior the sanitization process. The restore operation is 

performed by putting all victim and transaction pairs stored in ST into PG again and it is 

for utilizing all possible sensitive transaction modifications in the next sanitization 

process. Then the algorithm becomes ready to accept a new increment. 

 

Figure 25. The flowchart of DynamicPGBS algorithm. 
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4.4.4. Creating Sensitive Count Table 

 

As in PGBS algorithm Sensitive Count Table (SCT) represent the minimum 

number of support count decrease required to hide each sensitive itemset. The SCT has 

three attributes, SID, SI and NModify. The SID is the unique identifier of records in SCT, 

SI is the sensitive itemset and NMoidfy is the minimum number of support count decrease 

to hide a given sensitive itemset. The Nmodify is calculated with equation (1). 

For illustration in Table 6 the Sensitive Count Table is shown for the Transaction 

Oriented Pseudo Graph (TPG) given in Figure 24 (c) and corresponding sensitive itemsets 

with their sensitive thresholds given in Figure 23 (b). After the SCT is created it is sorted 

according to the NModify column, this is for starting the sanitization process from sensitive 

itemset having maximum support decrease need.  

Table 6. Sensitive Count Table (SCT) of DynamicPGBS algorithm. 

 

SID SI NModify 

0 ad 3 

1 cd 2 

2 bd 1 

 

4.4.5. Creating the Sanitization Table 

 

The process of creating the Sanitization Table consists of creating the sanitization 

Table (ST) and updating TPG. The Sanitization Table (ST) keeps the final modification 

information that will be applied to the database before it is published. As in PGBS the ST 

stores the victim and transaction pairs that represents the final modification information. 

The algorithm for creating the Sanitization Table is depicted in Algorithm 6. The 

sanitization process starts from the SI having maximum NModify value and also if NModify 

of a sensitive itemset is less than or equal to zero it indicates that the sensitive itemset is 

already hidden. In step 1 the first row of the SCT is assigned to the variable r1 because it 

has the maximum NModify. Then the victim item is selected among items of the r1.SI that 

has the maximum conflict degree, if there is more than one item having the same conflict 

degree then the victim item is selected with the highest support in TPG and if there is still 

more than one victim item then a random item is selected. The unifiedItemsets variable 
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stores sensitive itemsets of SCT and contain the victim item. The sensitiveTransactions 

is the set of sensitive transactions containing the unifiedItemsets and the number of 

transaction ids stored in sensitiveTransactions does not exceed the r1.NModify. The TPG is 

updated by removing victim item from sensitiveTransactions of PG and then the victim 

and sensitiveTransactionspair is inserted into the Sanitization Table (ST). Then if any 

sensitive itemset in SCT is a subset of unifiedItemsetsits NModify value is decreased by the 

number of transaction ids stored in sensitiveTransactions.If any of the NModify value of a 

sensitive itemset becomes less than or equal to zero it is removed from unifiedItemsets. If 

the sensitive itemset stored in r1 is still having NModify greater than zero, then the algorithm 

tries to find out different transactions by changing the unifiedItemsets with removing the 

sensitive itemset having least NModify value. 

 

 

 

 



58 
 

4.4.6. Illustrating Example 

 

To illustrate how the algorithm depicted in Algorithm 6 works suppose the 

Sensitive Count Table (SCT) is given in Table 6 and TPG is given in Figure 24 (c) as 

input. The first row stored in SCT is “ad” and the sanitization process starts from this 

sensitive itemset (line 1). The victim item is selected as “d” (line 2) among items in “ad” 

and put into variable victim because it has the maximum conflict degree (conflict degree 

item “d” = 3). Then all sensitive itemsets in SCT are unified and assigned to the variable 

unfiedItemsets because each of them contain the item “d”. The unfiedItemsets (line 3) 

becomes “abcd” and according to TPG in Figure 24 (c) only the transaction with id {8} 

contains this itemsets. The transaction id {8} is assigned to the sensitiveTransactions 

variable (line 4) and the TPG is updated by removing item “d” from transaction {8} (line 

5) as shown in Figure 26 (a). The victim “d” and transaction {8} pair is added to the 

Sanitization Table (ST) (line 6) and NModify of each sensitive itemset in SCT is decreased 

by 1 (lines 7-10). After SCT is updated NModify of “bd” becomes zero so this means it is 

sanitized and will be neglected while calculating the conflict degrees of items and 

unfiedItemsets variable in the next iteration. The algorithm again selects the victim item 

as “d” (line 2) because it has the maximum conflict degree (conflict degree “d” = 2). The 

unifiedItemsets becomes “acd” (line 3) and according to the TPG in Figure 26 (a) 

transactions {7} and {10} contain it (line 4). The victim is removed from transactions {7} 

and {10} as shown in Figure 26 (b) (line 5) and the victim “d” and transactions {7,10} 

pair is inserted to the ST(line 6). The new NModify of “ad” and “cd” becomes 0 and -1 

respectively so the hiding process terminates. After the ST is created a new copy of the 

original database D is created and the modification information stored in ST is applied to 

this copy. Then the TPG is recovered by using the ST and all records stored in ST are 

deleted and the algorithm becomes ready to accept new increments.   

 

4.4.7. Sanitizing the Database 

 

The sanitization process of DynamicPGBS creates a copy of the original updated 

database (D  d)and then applies the sanitization solution stored in Sanitization Table 

(ST) to this copy. The whole sanitization process after an incremental part d is arrived to  
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(a) TPG after item “d” is deleted 

from transaction {8} 

(b) TPG after item “d” is deleted 

from transactions {7,10} 

 

Figure 26. Updating TPG with deleting items. 

 

 

Figure 27. The flow of the processes in DynamicPGBS algorithm. 

 

the original database D is illustrated in Figure 27. In this figure first the given updated 

database D  d is converted to the Transaction oriented Pseudo Graph (TPG) 

representation, second the Sensitive Count Table (SCT) is created with using the TPG 

and the previously defined sensitive itemsets. Third the Sanitization Table (ST) is created 

with using the TPG and information stored in SCT. Finally a copy of the database D  d 

is created and the information stored in STis applied to this copy for producing the 

sanitized database D’.   
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CHAPTER 5 

PERFORMANCE EVALUATION 

 

This chapter presents experimental results undertaken to empirically validate 

proposed frequent itemsets hiding algorithms; PGBS, IPGBS and DynamicPGBS. The 

experiments are performed on both real and synthetic databases by varying different 

attributes of the databases. The evaluation results of PGBS and IPGBS are represented 

together because both are developed for static environment whereas the evaluation results 

of DynamicPGBS are presented in separately because it is designed for dynamic 

environment. 

All the experiments are conducted on a computer with Intel core i7-5500 2.4 GHZ 

processor and 8GB of RAM running on a Windows 10 operating system. In all test runs 

it is ensured that the system state is similar and gives close results when repeated. The 

algorithms are implemented in Visual Studio .NET C# 2015 Ultimate Edition. 

 

5.1. Databases 

 

The PGBS, IPGBS and DynamicPGBS algorithms are evaluated both on real and 

synthetic databases. The real databases used in the performance evaluations are Connect, 

and Retail where the Connect is obtained from UCI database repository [51] and the 

Retail is obtained from [52]. The Connect database contains all legal 8-ply positions of 

connect-4 game where none of the player has won yet and the next move is not forced. 

The Retail database contains anonymous market basket data from a Belgian retail 

supermarket store.  Also two synthetic databases; SyntheticSparse and SyntheticDense 

with different characteristics are generated by using the IBM quest data generator [53]. 

The characteristics of all databases in terms of size of database, number of distinct 

items, average transaction length, shortest and longest transaction length and density are 

given in Table 7. The ratio of average transaction length to number of distict items is 

denoted as density. Density of a database indicates whether a given database is dense or 

sparse. As the density of a given database increases the correlation between items 



61 
 

increases so the frequent itemsets generated from dense databases are usually long [43-

45].  

Table 7. Characteristics of databases. 

 

Name Transactions 
Distinct 

Items 

Average 

Length 

Shortest 

Length 

Longest 

Length 

Density 

(%) 

Connect 67,557 129 43 43 43 33.4 

Retail 88,162 16,470 10.3 2 77 0.0625 

SyntheticDense 29,166 99 43.09 2 44 43.5 

SyntheticSparse 28,417 9,479 11.48 2 11 0.1212 

 

5.2. Frequent Itemset Hiding Algorithms in Static Environment 

 

The sanitization algorithms that are analyzed in this section are Pseudo Graph 

Based Sanitization (PGBS), Itemset Oriented Pseudo Graph Based Sanitization (IPGBS) 

and Transaction Oriented Pseudo Graph (TGBS) algorithms. The TPGBS algorithm is 

similar to the Hiding Process of DynamicPGBS algorithm proposed in [36]. This 

algorithm employs same methodologies as in Dynamic PGBS algorithm. All these three 

algorithms enable to assign multiple sensitive thresholds and also they use pseudo graph 

data structure for representing the transactions of the database. The vertices in pseudo 

graph data structure of thePGBS algorithm represents all items of the original database, 

the TBGS algorithm represents only items of sensitive transactions and the IPGBS 

represents each different sensitive itemsets. The objective of all these three algorithms is 

to minimize the loss of non-sensitive knowledge with modifying minimum number of 

transactions.  

For each database a set of 10 to 100 sensitive itemsets are selected and different 

sensitive thresholds are assigned. The sensitive itemsets of each database is determined 

as follows; first the set of frequent itemsets from each database is generated with 

predefined minimum support thresholds, next this set of frequent itemsets in each 

database is partitioned into 5 support bins where each bin contains nearly the same 

number of itemsets. As the last step 2 to 20 itemsets are randomly selected from each bin 

as sensitive itemset and the sensitive threshold of each sensitive itemset is assigned as the 

corresponding support of the bin. The support bin of each database is shown in Table 8. 
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Table 8. Support bins of the databases in static environment. 

 

 

The basic aim of the performance evaluation is to observe how the number of 

sensitive itemsets affects the performance of the algorithms. The performance of all 

algorithms is evaluated with respect to execution time, distance, information loss, 

accuracy and total memory consumption.  The time need for performing the sanitization 

process by each algorithm is considered as execution time. The information loss, distance 

and accuracy are considered as side effects caused by the sanitization algorithms. The 

total memory allocation is considered as the total memory allocated by each algorithm 

for performing the sanitization process. 

 

5.2.1. Execution Time 

 

Execution time of PGBS, TPGBS and IPGBS algorithms on Connect, Retail, 

SyntheticDense and SyntheticSparse algorithms are shown in Figure 28 (a), (b), (c) and 

(d) respectively. It can be observed that PGBS algorithm has the least execution time on 

dense databases; Connect and SyntheticDense and the TGPS has the second lowest 

execution time. This is because both IPGBS and TBGS algorithms has execution time 

overhead while converting the database to IPG and TPG respectively. This overhead 

comes from analyzing the contents of each transaction in the database whereas this is not 

the case in PGBS, the PGBS algorithm directly converts all transactions in the database 

to Pseudo Graph (PG) without checking their contents. Dense databases contain too much 

distinct items and checking each item of all transactions increases the execution time of 

IPGBS and TPGBS. Figure 28 (c) and (d) show the execution time of algorithms on sparse 

databases. It can be inferred that the IPGBS has the least execution time on sparse 

databases and the TPGBS has the second lowest execution time. This is because 

compared to dense databases sparse databases have few different items. 

 Connect Retail SyntheticDense SyntheticSparse 

Bin Support Range Support Range Support Range Support Range 

1 (0.85, 0.857] (0.0001, 0.00011] (0.3, 0.308] (0.0002, 0.000024] 

2 (0.8576, 0.8672] (0.00011, 0.00013] (0.308, 0.3185] (0.00024, 0.00028] 

3 (0.8673, 0.8792] (0.00013, 0.0017] (0.3185, 0.3339] (0.00028, 0.00035] 

4 (0.8793, 0.8985] (0.00017, 0.00026] (0.3339, 0.3619] (0.00035, 0.00049] 

5 (0.8986, 0.9987] (0.00026, 0.05072] (0.3619, 0.9546] (0.00049, 0.038] 
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(a) Connect database (b) Retail database 

 

  
(c) SyntheticDense database (d) SyntheticSparse database 

 

Figure 28. Execution time varying the number of sensitive itemsets. 

 

5.2.2. Information Loss 

 

The information loss is the metric for showing the amount of non-sensitive 

frequent itemsets lost during the sanitization process. Figure 29 (a), (b), (c) and (d) shows 

information loss in percentage. It can be seen that the IPGBS algorithm has the least 

information loss on all databases. This is because the aim of the IPGBS algorithm is to 

modify least number of transactions during the sanitization process with modifying 

transactions containing maximum number of non-sanitized sensitive itemsets. As the total 

number of transaction modification decreases the information loss decreases at the same 

time. While the PGBS algorithm cause nearly the same information loss on Connect 

database with TPGS algorithm, the PGBS algorithm has the worst information loss on 

Retail, SyntheticDense and SyntheticSparse databases. Also it should be noted that the 

amount of information loss on dense databases Connect and SyntheticDense is higher 

than the information loss on sparse databases Retail and SyntheticSparse for all three 

algorithms.    
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(a) Connect database (b) Retail database 

 

  
(c) SyntheticDense database (d) SyntheticSparse database 

  

Figure 29. Information loss varying the number of sensitive itemsets. 

 

5.2.3. Distance 

 

The distance metric shows the total number of items deleted from the database 

during the sanitization process and it is shown in Figure 30 (a), (b), (c) and (d). On 

Connect database the PGBS and the TPGBS algorithms have the same and lowest 

distance. On Retail database the TPGBS has the lowest distance while the PGBS has the 

highest  distance. The IPGBS algorithm has the lowest distance on SyntheticDense and 

SyntheticSparse databases and the PGBS has the highest distance on sparse databases 

SyntheticDense and Retail. 

 

5.2.4. Accuracy Loss 

 

The accuracy loss metric indicates the total number of different transactions 

modified during the sanitization process and it is shown in percentage in Figure31 (a), 
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(b), (c) and (d). from Figure 31 (a) and (c) it can be inferred that the IPGBS algorithm has 

the minimum accuracy loss on dense databases. Also it is clear that there is no relation  

  
(a) Connect database (b) Retail database 

 

  
(c) SyntheticDense database (d) SyntheticSparse database 

  

Figure 30. Distance varying the number of sensitive itemsets. 

 

between the number of sensitive itemsets and accuracy loss for the IPGBS algorithm on 

dense databases while this is not the case for both PGBS and TPGBS algorithms. On 

Connect database the PGBS and the TPGBS have the same accuracy loss and it increases 

with the number of sensitive itemsets. On SyntheticDense database the PGBS algorithm 

has the maximum accuracy loss while the TPGBS has the second highest accuracy loss 

and also the accuracy loss of TPGBS is inverse proportional to the number of sensitive 

itemsets.  

Figure 31 (b) and (d) show accuracy loss for sparse databases Retail and 

SyntheticSparse. From these two figures it is clear that PGBS algorithm has the maximum 

accuracy loss on sparse databases, the IPGBS has the second highest accuracy loss and it 

is proportional to number of sensitive itemsets. 
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(a) Connect database (b) Retail database 

 

  
(c) SyntheticDense database (d) SyntheticSparse database 

  

Figure 31. Accuracy loss varying the number of sensitive itemsets. 

 

5.2.5. Memory Consumption 

 

The total memory allocation in megabytes (MB) of each algorithm; PGBS, IPGBS 

and TPGBS are shown in Figure 32 (a), (b), (c) and (d). It can be seen that memory 

consumption of IPGBS algorithm is proportional to the number of sensitive itemsets on 

dense databases Connect and SyntheticDense. This is because sensitive itemsets on dense 

databases have higher support compared to sparse databases and as the IPGS algorithm 

stores information directly related to the sensitive itemsets and transactions they are 

contained in the memory consumption increasing with the number of sensitive itemsets. 

On sparse databases both PGBS and the IPGBS algorithms have the minimum memory 

allocation while the TPGBS has the maximum memory allocation. 

 

5.2.6. Discussion of the Results 

 

The PGBS algorithm converts each item in every transaction of database D to  
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(a) Connect database (b) Retail database 

 

  
(c) SyntheticDense database (d) SyntheticSparse database 

  

Figure 32. Total memory consumption varying the number of sensitive itemsets. 

 

vertex of Pseudo Graph (PG) without checking the content of the transactions. Besides 

the IPGBS and TPGBS algorithms first check the content of each transaction and if the 

transaction contains any sensitive itemset then they convert the transaction either to 

Transaction Oriented Pseudo Graph (TPG) or Itemset Oriented Pseudo Graph (IPG). 

Because of this transaction content checking the PGBS algorithm is more advantageous 

in terms of execution time on dense databases because number of different items in dense 

databases are higher than sparse database so the number of item checking increases for 

both IPGBS and TPGBS algorithms. On sparse databases the IPGBS has the lowest 

execution time because support of itemsets in sparse databases is smaller than dense 

database consequently the number of sensitive transactions in sparse database is smaller 

than dense database. As the number of sensitive transactions decrease the iteration 

number of transaction content checking decreases. 

The IPGS algorithm has the minimum information loss on both dense and sparse 

databases because it tries to modify transactions containing maximum number of non-

sanitized sensitive itemsets. Besides both PGBS and TPGBS algorithms modify 

transactions containing maximum number of sensitive itemsets without checking they are 
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already sanitized or not. There is not direct relation between the distance and 

information loss metric. As the density of a given database increases the support of 

sensitive itemsets increases and this results in more execution time overhead during the 

Pseudo Graph data structure creation for both IPGBS and TPGBS algorithms. When the 

density of a given database is sparse the execution time of IPGBS increases proportional 

to the number of sensitive itemsets and it has the minimum execution time. 

In the performance evaluation the loss of non-sensitive knowledge is measured 

with the information loss metric and as it can be seen in the second subsection the IPGBS 

has the minimum information loss compared to TPGBS and PGBS for all databases. The 

memory allocation of IPGBS is better than both PGBS and TPGBS algorithms when the 

given database is sparse. Also the IPGBS has the best memory allocation score on 

Connect and Chess databases till 50 sensitive itemsets are sanitized and has the best 

memory allocation score on SyntheticDense database till 80 sensitive itemsets are 

sanitized. 

There is no direct relation between density of the database and distance metric. 

The distance directly depends on the set of sensitive itemsets. As the amount of common 

items in a given set of sensitive itemsets increases the distance is going to decrease 

because for all algorithms it is possible to sanitize more than one sensitive itemsets at 

once by deleting a single item from transactions.  

 

5.3. Frequent Itemset Hiding Algorithms in Dynamic Environment 

 

In this section the performance of the proposed dynamic environment frequent 

itemsets hiding algorithm DynamicPGBS is evaluated with using two similar counterparts 

SPITF and RHID algorithms. Both SPITF and RHID algorithms are designed for the 

dynamic environment as DynamicPGBS but they differ in sanitization methodologies. 

The SPITF algorithm performs the sanitization opetarion on the whole updated database 

(D d) where D is the original database and the d is the incremental part. The RHID 

algorithm performs the sanitization operation only in the incremental part d and then 

combines D with d’ where d’ is the sanitized incremental part. As in DynamicPGBS 

algorithm both SPITF and RHID allows to assign multiple sensitive thresholds for 

sensitive itemsets. 
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The experiments are conducted on 2 real databases Connect and Retail and two 

synthetic databases SytntheticSparse and SyntheticDense. The main purpose of the 

experiments is to evaluate the increment size on performance of each algorithm. So the 

experiments are conducted with fixed sized sensitive itemsets while varying the size of 

the arriving increments. 10 sensitive itemsets are selected randomly with using the 

support bins as in the previous section. The support bins of each database is given in Table 

9, and from each support bin, 2 itemsets are selected as sensitive. The algorithms are 

compared for 10 different increments in each database where the increment sizes are 

varied from 10% to 100% of the original database.  The performance of algorithms is 

evaluated with respect to execution time, information loss, distance and total memory 

allocation.  

Table 9. Support bins of the databases in dynamic environment. 

  

During the performance evaluation it was noticed that the SPITF algorithm is 

unable hide all given sensitive itemsets on dense databases Connect and SyntheticDense 

while both DynamicPGBS and RHID achieved hiding all given sensitive itemsets. The 

amount of sensitive itemsets failed to be hidden is represented with the hiding failure 

metric. The hiding failure of SPITF algorithm on Connect and SyntheticDense databases 

are shown in Figure 33. 

 

5.3.1. Execution Time 

 

The execution time of DynamicPGBS, SPITF and RHID are given in Figure 34. 

on sparse databases as in Figure 34 (c) and (d) the execution time of both SPITF and 

DynamicPGBS does not change linearly with the amount of new transactions added on 

 

 Connect Retail SyntheticDense SyntheticSparse 

Bin Support 

Range(%) 

Support 

Range(%) 

Support 

Range(%) 

Support 

Range(%) 

1 (85, 85.7] (0.1, 0.118] (30, 30.8] (0.5, 0.544] 

2 (85.76, 86.72] (0.12, 0.142] (30.8, 31.85] (0.544, 0.6] 

3 (86.73, 87.92] (0.144, 0.185] (31.85, 33.39] (0.6, 0.709] 

4 (87.93, 89.85] (0.186, 0.287] (33.39, 36.19] (0.709, 0.935] 

5 (89.86, 99.87] (0.288, 5.072] (36.19, 95.46] (0.935, 3.8] 
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the original database whereas this is not the case for the RHID algorithm. This is because 

as sparse databases have generally short sized frequent itemsets and the sensitive itemsets 

are selected among them, the size of the sensitive itemsets in sparse databases have small 

size compared to sensitive itemsets of dense databases. As the size of a sensitive itemset 

decreases, the execution time for uncovering transactions containing this itemset in the 

data structures of both DynamicPGBS and SPITF decreases. For all databases given in 

Figure 34 (a), (b), (c) and (d) the execution time of DynamicPBGSis less than SPITF and 

RHID algorithms and also the RHID algorithm has the highest execution time on all 

databases. 

  
(a) Connect database (b) Retail database 

 

  
(c) SyntheticDense database (d) SyntheticSparse database 

 

Figure 34. Execution time varying increment size. 

 

5.3.2. Information Loss 

 

Figure 35 shows the experimental results of Information Loss. The results indicate 

that SPITF causes minimum Information Loss on dense databases Connect and 

SyntheticDense. This is because the SPITF is not able to conceal all given sensitive 
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itemsets in these two databases. On the other hand the DynamicPGBS algorithm achieves 

the minimum Information Loss on sparse databases; Retail and SyntheticSparse.  

 

 

Figure 33. Hiding failure of SPITF algorithm varying the increment size. 

 

  
(a) Connect database (b) Retail database 

 

  
(c) SyntheticDense database (d) SyntheticSparse database 

 

Figure 35. Information loss varying increment size. 
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5.3.3. Distance 

 

In Figure 36 the experimental results for the distance are shown. As can be seen 

in Figure 36 (a) and (b) the SPITF has the lowest distance on dense databases Connect 

and SyntheticDense where as in Figure 36 (c) and (d) the DynamicPGBS has the lowest 

distance on sparse databases. The small distance of SPITF may due to fact that it is unable 

to hide all sensitive itemsets on dense databases and as a result less than necessary number 

of transaction modification causes less item removal.  

 

5.3.4. Accuracy Loss 

 

The accuracy loss of DynamicPGBS, SPITF and RHID are shown in Figure 37 

(a), (b), (c) and (d). For dense databases Connect and SyntheticDense the SPITF 

algorithm has the lowest accuracy loss as shown in Figure 37 (a) and (c) whereas the 

DynamicPGBS algorithm has the lowest accuracy loss for sparse databases Retail and 

  
(a) Connect database (b) Retail database 

 

  
(c) SyntheticDense database (d) SyntheticSparse database 

 

Figure 36. Distance varying increment size. 
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SyntheticSparse as shown in Figure 37 (b) and (d). The RHID algorithm has the maximum 

accuracy loss on three of the databases; Connect, Retail and SyntheticSparse. It can 

inferred from figures that there is no relation between the amount of the increment size 

and the accuracy loss.  

 

5.3.5. Memory Consumption 

 

The total memory allocation in megabytes (MB) of each algorithm during the 

sanitization process is given in Figure 38. For dense databases Connect and 

SyntheticDense, the RHID algorithm requires the minimum amount of memory as shown 

in Figure 38 (a) and (c). The DynamicPGBS algorithm requires the minimum amount of 

memory on sparse databases Retail and SyntheticSparse as in Figure 38 (b) and (d). This 

is because the average transaction length of sparse databases is smaller than dense 

databases and also support of itemsets in sparse databases are low.  

  
(a) Connect database (b) Retail database 

 

  
(c) SyntheticDense database (d) SyntheticSparse database 

 

Figure 37. Accuracy loss varying increment size. 

 



74 
 

The memory requirement of the TPG data structure of DynamicPGBS decreases as there 

is small sized and low support valued itemsets. The SPITF algorithm requires the greatest 

amount of memory in all databases. This high memory consumption is due to SPITF’s 

tree based internal data structure. This data structure represents items as vertices of the 

three and it does not prevent to represent the same item in more than one vertex.  On the 

other hand in TPG each item is only represented once as vertex of the graph. 

  
(e) Connect database (f) Retail database 

 

  
(g) SyntheticDense database (h) SyntheticSparse database 

 

Figure 38. Total memory consumption varying increment size. 

 

5.3.6. Discussion of the Results 

 

The SPITF algorithm represents each sensitive transaction of the updated database 

as a tree like data structure. Although this algorithm seems to be good in distance and 

information loss on dense databases it is unable to hide all given sensitive itemsets in the 

given database. Because of this fact it fails to modify sufficient quantity of transactions 

and as a result both information loss and distance seems to be smaller than DynamicPGBS 

and RHID algorithms on dense databases. 
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The RHID algorithm does not empty any data structure for representing the 

transactions and this causes smaller memory allocation on dense databases compared to 

DynamicPGBS and SPITF algorithms. But this small memory allocation comes with a 

tradeoff of high execution time compared to DynamicPGBS and SPITF algorithms. 

The DynamicPGBS algorithm has the minimum distance and information loss 

results and also it has the second best results on dense databases. The execution time of 

DynamicPGBS is better than both SPITF and RHID algorithm on both sparse and dense 

databases and it can have inferred that the Transaction Based Pseudo Graph (TPG) data 

structure is advantageous in scan operations. The DynamicPGBS allocates the minimum 

memory although it employs a data structure to represent transactions. This is because it 

only converts the sensitive transactions into TPG.  
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CHAPTER 6 

CONCLUSION 

 

The privacy preserving frequent itemset mining problem is to conceal sensitive 

itemsets before the database is shared between third parties. This process can be handled 

by transforming the database into a new one that does not contain any sensitive itemsets. 

One of the transformation techniques is deleting items from the database till support of 

given sensitive itemsets are decreased below the predefined support thresholds. This type 

of hiding technique is called distortion based frequent itemset hiding. The optimal 

solution for distortion based frequent itemset hiding problem is to hide all given sensitive 

itemsets while at the same time preserve the data and non-sensitive knowledge quality in 

the published or modified database at maximum level. 

The existing challenges of frequent itemset hiding algorithms are as follows. First 

in the literature there are a few algorithms that enable assigning multiple sensitive 

thresholds to sensitive itemsets. Decreasing support of every sensitive itemset under the 

same threshold may overprotect some of the sensitive itemsets. Also malicious user may 

infer the sanitized sensitive itemset if support of high and low support sensitive itemsets 

are decreased under the same support threshold. Second most of the databases are 

dynamic and they are continuously updated with arriving increments. In dynamic 

database environment two possible approaches can be followed for sanitizing the given 

database. The first approach conceals the sensitive itemsets after combining the 

incremental part with the original part. The second approach conceals the sensitive 

itemsets in only incremental part and then combines the sanitized incremental part with 

the already sanitized original part. Third preventing scan operations on the actual database 

increases the execution time efficiency. Appropriate data structures can be designed for 

representing the database and then the scan operations can be carried on this data 

structure. 

In this thesis I have developed frequent itemset hiding algorithms for static and 

dynamic environment to find out optimal frequent itemset hiding solution.  I proposed 

four different distortion based frequent itemset hiding algorithms where three of them are 

designed for static environment and one of them is designed for dynamic environment. 
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The algorithms designed for static environments are called PGBS (Pseudo Graph Based 

Sanitization), IPGBS (Itemset Oriented Pseudo Graph Based Sanitization) and TPGBS 

(Transaction Oriented Pseudo Graph Based Sanitization). The algorithm designed for 

dynamic environment is called DynamicPGBS. All of the four algorithms use different 

versions of pseudo graph data structure to hold the necessary information related with the 

input database in order to speed up sanitization process. Table 10 compares these 

proposed algorithms. The column “Transaction Selection” indicates the sensitive 

transactions uncovered for modification. The column “Main Objective” indicates the 

main focus of the algorithms. The “Environment” column shows the database 

environment the algorithm is designed for. The “Content of the vertex” column indicates 

what kind of data is stored in the vertex of the graph data structure of the algorithm. The 

“Content of the edge” column indicates what kind of transaction id is stored in the edges 

of the graph data structure of the algorithm. The “Support Count of Items” column 

indicates the possible support count of items that can be performed. The “MIS” column 

shows whether the algorithm enables assigning multiple sensitive thresholds for sensitive 

itemsets. The “Complexity of Creating Graph” column shows the computational 

complexity of creating the internal graph structure of each algorithm. The “Complexity 

of the Sanitization Process” indicates the computational complexity of sanitizing the 

database for each algorithm. 

The vertices of both PG (Pseudo Graph) and TPG (Transaction Oriented Pseudo 

Graph) data structures represent items of the transactional database and edges connecting 

these vertices represent the transaction ids containing these items. The main difference 

between PG and TPG is while PG stores all items in each transaction the TPG only 

represents items in sensitive transactions. As PG represents the full transactional database 

it is possible to calculate support of item with using this data structure which is not the 

case in TPG. In TPG it is only possible to calculate support of items that exists in sensitive 

transactions. The TPG is advantageous in terms of memory requirement because it does 

not represent all transactions of the given database. The IPG (Itemset Oriented Pseudo 

Graph) data structure represents the sensitive itemsets as vertices and edges connecting 

these vertices represent the transaction ids containing these sensitive itemsets. In IPG the 

total number of vertices is equal to total number of sensitive itemsets. It is not possible to 

calculate support of items in the database or support of items that exists in the sensitive  
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Table 10. Comparison of proposed algorithms. 

 PGBS IPGBS TPGBS DynamicPG

BS 

Transaction 

Selection 

Maximum 

cover degree 

transactions 

Maximum cover 

degree 

transactions with 

non-sanitized 

sensitive itemsets 

Maximum 

cover degree 

transactions 

Maximum 

cover degree 

transactions 

Main Objective Execution 

time 

Memory 

Information loss 

Execution 

time  

Execution 

time  

Memory  

Environment Static Static Static Dynamic 

Content of the 

Vertex of the 

Pseudo Graph 

All items Sensitive itemsets Items of 

sensitive 

transactions 

Items of 

sensitive 

transactions 

Content of the 

Edge of the 

Pseudo Graph 

Transaction 

ids of all 

items 

Transaction ids of 

sensitive itemsets 

Transaction 

ids of 

sensitive 

transactions  

Transaction 

ids of 

sensitive 

transactions 

Support Count 

of Items 

In all 

transactions 

None Only for 

sensitive 

transactions 

Only for 

sensitive 

transactions 

MIS ✔ ✔ ✔ ✔ 

Complexity of 

Creating 

Pseudo Graph 

O(AvgL*|D|) O(|SI|*|D|) O(|D|*|V|) O(|D|*|V|) 

Complexity of 

Sanitization 

Process 

O(|SI|*|V|) O(|SI|*(|V|+|E|)) O(|SI|*|V|) O(|SI|*|V|) 

 

transactions. The IPG is designed for finding out transactions containing sensitive 

itemsets. 
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The PGBS algorithm starts modification from transactions containing maximum 

number of sensitive itemsets because in this way decreasing support of more than one 

sensitive itemset with only a single transaction modification is possible. Also the PGBS 

algorithm directly converts all transactions in the given database to PG data structure 

without checking their contents. This is for reducing execution time overhead in creation 

of the PG. The PGBS first converts all transactions of the given database D to Pseudo 

Graph (PG) form. In the worst case scenario each transaction contains different items and 

the intersection set of items in each transaction is empty, converting a given transaction 

tr into PG takes O(|tr|) time where |tr| is the number of items in the tr.  Creating edges 

between vertices of PG takes O (|D|) where |D| is the database size. It should be apparent 

that the algorithm has a computational complexity O (AvgL*|D|) for creating the PG 

where the AvgL is the average length of transactions in D.  The hiding process uncovers 

transactions from PG in O (|V|) computational complexity where |V| is the total number 

of vertices in PG. The uncovering process is repeated as the number of victim items so at 

worst case where none of the sensitive itemsets share a common item, the hiding process 

has O (|SI|*|V|) computational complexity where |SI| is the number of sensitive itemsets. 

The main purpose of IPGBS algorithm is to achieve minimum amount of non-

sensitive knowledge loss during the sanitization process. For this reason, it tries not to 

modify transactions containing any hidden sensitive itemsets. The IPGBS algorithm starts 

modification from transactions containing maximum number of non-sanitized sensitive 

itemsets. This is because as deleting items from transactions containing already sanitized 

sensitive might decrease the support of sensitive itemsets more than necessary. The 

internal data structure in IPGBS algorithm is called Itemset Oriented Graph (IPG). The 

IPG represents the relation between the sensitive itemsets and transactions. Each 

transaction in the given database is checked whether it contains any sensitive itemset and 

if so it is inserted into the IPG. Compared to PG, this process causes execution time 

increase in the IPG creation phase but it is compensated with low memory requirement 

because of reduced number of vertices.  The IPGBS algorithm only represents the 

sensitive itemsets as Itemset Oriented Pseduo Graph (IPG). The algorithm checks 

contents of each transaction to identify whether it is sensitive or not. In the worst case 

scenario where each transaction in D is sensitive and every item in each transaction is a 

subset of at least one of the sensitive itemsets. Creating the Itemset Oriented Pseodo 

Graph (IPG) takes O(|SI|*|D|) where |SI| is the number of sensitive itemset and |D| is the 
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total number of transactions in D. The hiding process uncovers longest path from the IPG 

in a depth first search manner so identifying a path from a vertex takes (|V|+|E|) worst 

case computational complexity where |V| is the total number of vertices in IPG and |E| is 

the total number of edges in IPG. So identifying paths for all sensitive itemset takes 

O(|SI|*( V|+|E|)) where |SI| is the number of sensitive itemsets. 

The TPGBS algorithm is the static version of the DynamicPGBS algorithm. Both 

TPGBS and DynamicPGBS algorithms employ the TPG data structure to represent items 

in each sensitive transaction. As in PGBS both DynamicPGBS and TPGBS algorithms 

try to modify transactions containing maximum number of sensitive itemsets. The 

DynamicPGBS and the TPGBS algorithms represent the sensitive transactions as 

Transaction Based Pseudo Graph (TPG). These two algorithms scan the database to 

uncover sensitive transactions and computational complexity of this process is O (|D|) 

where |D| is the size of the transactional database D. In the worst scenario each transaction 

contains different items and the intersection set of items in each transaction is empty, 

converting a given transaction to TPG takes O (|V|) where |V| is the total number of 

vertices in TPG. As a result, uncovering all sensitive transactions from the database D 

and converting them to TPG takes O (|D|*|V|) computational complexity. The hiding 

process is to discover a certain set of transactions from the TPG, discovering a transaction 

from the TPG has O (|V|) computational complexity and this process is iterated as the 

number of sensitive itemsets. In the worst case scenario where the sensitive itemsets do 

not contain any common item, the computational complexity of the hiding process is O 

(|SI|*|D|) where |SI| is the number of sensitive itemsets and |D| is the total number of 

transaction in database D. 

As the database is being continuously updated in dynamic environment one of the 

problems in dynamic environment the memory requirement should be decreased. Because 

of this problem to reduce the memory requirement of the graph based data structure only 

items of the sensitive transactions are represented. 

I evaluated the efficiency of all these four algorithms with resource allocation, 

execution time, information loss and data distortion metrics. I used four different 

transactional databases with different characteristics during the performance evaluation. 

These databases are grouped as dense and sparse according to their densities where the 

density of the database is a measure to evaluate the similarity of transactions in a given 

database. As the density increases similar transactions appears in a given database. For 
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all experiments that I performed in static and dynamic environment the independent 

variables are execution time, information loss, distance, accuracy loss and total memory 

allocation while the set of sensitive itemsets are the dependent variables. The sensitive 

itemsets are selected randomly in each experiment without restricting any characteristics. 

The characteristics of sensitive itemsets include the number of items the sensitive itemsets 

contain and the number of common items the sensitive itemsets mutually contain. Since 

in the performance evaluation all participant algorithms have similar properties selecting 

sensitive itemsets based on their characteristics would have the same effect on all 

algorithms. The databases employed in the performance evaluation are categorized 

according to their densities where two of the databases were sparse and two of them are 

dense. By this way I evaluated the side effects of each algorithm based on the density of 

the databases. In addition two of the databases were real and two of them were synthetic. 

The real databases were used for reflecting the reality and the synthetic databases were 

used for evaluating the performance with two different databases with different densities 

but similar characteristics.  

The PGBS algorithm is advantageous in terms of execution time on dense 

databases as the PG data structure does not check the contents of each transaction. On the 

other hand, the IPGBS algorithm harms less non-sensitive knowledge during sanitization 

process which is the main purpose of this algorithm. The DynamicPGBS achieves 

minimum execution time on both sparse and dense databases and also it achieves 

minimum memory allocation on dense databases.  

This research can be continued with some challenges left to explore as follows:  

 The DynamicPGBS algorithm is designed for the dynamic environment 

where only database increments considered. The dynamicity of the database 

can be extended to include deletion of transactions in addition to the 

transaction insertion.  

 The heuristic sanitization approaches does not give a general optimal hiding 

solution. These approaches are designed with considering the features of 

databases and the efficiency of them can vary according to sensitive itemset 

and database. The exact hiding solutions on the other hand are able to find a 

general optimal hiding solution but they have high of execution time and 

resource allocation. To reduce the side effects of the sanitization process the 

exact and heuristic approaches can be combined in a hybrid way.   
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