

DYNAMIC ITEMSET HIDING UNDER MULTIPLE

SUPPORT THRESHOLDS

A Thesis Submitted to

 the Graduate School of Engineering and Sciences of

Izmir Institute of Technology

in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in Computer Engineering

by

Ahmet Cumhur ÖZTÜRK

July 2018

İZMİR

We approve the thesis of Ahmet Cumhur ÖZTÜRK

Examining Committee Members:

Assoc. Prof. Dr. Belgin ERGENÇ BOSTANOĞLU

Computer Engineering, Izmir Institute of Technology

Assoc. Prof. Dr. Adil ALPKOÇAK

Computer Engineering, Dokuz Eylül University

Assoc. Prof. Dr. Orhan DAĞDEVİREN

International Computer Institute, Ege University

Assoc. Prof. Dr. Tolga AYAV

Computer Engineering, Izmir Institute of Technology

Dr. Serap ŞAHİN

Computer Engineering, Izmir Institute of Technology

2 July 2018

Assoc. Prof. Dr. Belgin ERGENÇ BOSTANOĞLU

Supervisor, Computer Engineering, Izmir Institute of Technology

____________________________ ____________________________

Assoc. Prof. Dr. Murat ERTEN Prof. Dr. Aysun SOFUOĞLU

Head of the Department of Computer Dean of the Graduate School of

Engineering Engineering and Science

ACKNOWLEDGEMENTS

Firstly, I would like to thank my advisor Assoc. Prof. Belgin ERGENÇ

BOSTANOĞLU and express my sincere gratitude to her for giving me the opportunity

to work with her and for her endless support. I have learned many things from her.

My gratitude and appreciation to my examiners Assoc. Prof. Adil ALPKOÇAK

and Dr. Serap ŞAHİN for their time and effort spent on my thesis.

I would also like to thank The Scientific and Technological Research Council of

Turkey (TÜBİTAK) for supporting my thesis, under ARDEB 3501 Project No: 114E779.

I would like to thank all my family, starting with my mother Safiye ÖZTÜRK,

my father Mustafa ÖZTÜRK, my sister Çiçek ÖZTÜRK and my brother Murat ÖZTÜRK

for supporting me throughout my whole life and encouraging me. I am very lucky to have

a family like them.

I especially thank my wife and love, Gözde ÖZTÜRK for her patience,

encouragement and support. Writing this thesis would be very difficult without her.

Finally, I would like to thank to my mother in love Gülten TIĞA and father in

love Osman TIĞA for their supports.

ABSTRACT

DYNAMIC ITEMSET HIDING UNDER MULTIPLE SUPPORT

THRESOLDS

Data sharing is commonly performed between organizations for mutual benefits.

However, if confidential knowledge is not hidden before the data is published it may pose

threat to security and privacy. The privacy preserving frequent itemset mining is the

process of hiding sensitive itemsets from being discovered with any frequent itemset

mining algorithm. The privacy constraint of sensitive itemset hiding is sensitive

threshold. If support of a given sensitive itemset is under the sensitive threshold, then this

sensitive itemset is considered as non-interesting and hidden. One possible way of

decreasing support of sensitive itemsets under predefined sensitive threshold is deleting

items from a set of transaction. This type of frequent itemset sanitization is called

distortion based frequent itemset hiding.

The main focus of this thesis is to preserve sensitive itemsets with considering the

multiple sensitive thresholds on both static and dynamic environments. Three different

distortion based frequent itemset hiding algorithms proposed; Pseodo Graph Based

Sanitization (PGBS), Itemset Oriented Pseudo Graph Based Sanitization (IPGBS) and

DynamicPGBS are proposed. Both PGBS and IPGBS algorithms are designed for static

environment and the DynamicPGBS algorithm is designed for the dynamic environment.

The main objective of these three algorithms is to hide all sensitive itemsets with giving

minimum distortion on non-sensitive knowledge and data in the resulting sanitized

database.

.

ÖZET

ÇOKLU DESTEK EŞİKLERİNDE DİNAMİK SIK KÜMELER

GİZLEMESİ

Veri paylaşımı, ortak yararlar için kuruluşlar arasında yaygın olarak

yapılmaktadır. Ancak, gizli bilgi, veriler yayınlanmadan önce gizlenmez ise güvenlik ve

gizlilik için tehdit oluşturabilir. Gizliliği koruyan sık kümeler madenciliği hassas

kümelerin herhangi bir sık küme madencilik algoritması ile ortaya çıkarılmasını önleme

işlemidir. Sık kümelerin gizlenmesindeki kısıtlama hassas eşiktir. Belirli bir hassas

kümenin desteği hassas eşiğin altında ise bu hassas küme ilgi çekmez ve gizli olarak kabul

edilir. Önceden tanımlanmış hassas eşik altındaki hassas kümelerin desteğini azaltmanın

olası bir yolu, bir dizi kayıttan öğeleri silmektir. Bu tür temizleme işlemi bozma esaslı sık

küme gizlemesi olarak adlandırılır.

Bu tezin ana odak noktası, hassas kümeleri hem statik hem de dinamik ortamlarda

çoklu hassas destek eşiklerini dikkate alarak korumaktır. Üç farklı bozma esaslı sık küme

gizleme algoritması; Pseodo Graph Based Sanitization (PGBS), Itemset Oriented Pseudo

Graph Based Sanitization (IPGBS) ve DynamicPGBS önerilmiştir. Hem PGBS hem de

IPGBS algoritmaları statik ortam için tasarlanmıştır ve DynamicPGBS algoritması

dinamik ortam için tasarlanmıştır. Bu üç algoritmanın temel amacı, temizlenmiş veri

tabanında tüm hassas kümelerin saklanması, hassas olmayan bilgi ve verilerde ise en az

bozulma oluşturmaktır.

i

TABLE OF CONTENTS

LIST OF FIGURES ... iv

LIST OF TABLES ... vi

CHAPTER 1 ... 1

INTRODUCTION .. 1

1.1. The Problem Statement ... 2

1.2. Contributions of the Thesis ... 3

1.3. Organization of the Thesis ... 5

CHAPTER 2 ... 7

BASIC CONCEPTS ... 7

2.1. Data Mining Techniques ... 8

2.2. Frequent Itemset Mining ... 10

2.3. Association Rule Mining ... 11

2.4. Privacy Preserving Frequent Itemset Mining 12

CHAPTER 3 ... 17

RELATED WORK ... 17

3.1. Sanitization Algorithms for Static Environment 18

 3.1.1. Border Based Sanitization Algorithms ... 18

 3.1.2. Exact Sanitization Algorithms .. 19

 3.1.3. Reconstruction Based Sanitization Algorithms 21

 3.1.4. Heuristic Based Sanitization Algorithms 22

 3.1.4.1. Blocking Based Heuristic Approaches 22

 3.1.4.2. Distortion Based Heuristic Approaches 24

3.2. Sanitization Algorithms for Dynamic Environment 29

 3.2.1. Sanitization on Incremental Database .. 30

 3.2.2. Sanitization on Updated Database .. 30

ii

3.3. Summary .. 31

CHAPTER 4 ... 35

PRIVACY PRESERVING FREQUENT ITEMSET HIDING 35

4.1. The Pseudo Graph Data Structure ... 35

4.2. The Pseudo Graph based Sanitization Algorithm (PGBS) 36

 4.2.1. Pseudo Graph (PG) ... 38

 4.2.2. Creating the Sensitive Count Table .. 40

 4.2.3. Creating the Sanitization Table .. 40

 4.2.4. Illustrating Example .. 41

 4.2.5. Sanitizing the Database .. 42

4.3. The Itemset Oriented Pseudo Graph based Sanitization Algorithm

(IPGBS)…. ... 42

 4.3.1. Itemset Oriented Pseudo Graph (IPG) ... 44

 4.3.2. IPGBS Algorithm .. 46

 4.3.3. Creating the Sanitization Table .. 47

 4.3.4. Illustrating Example ... 49

 4.3.5. Sanitizing the Database .. 50

4.4. Dynamic Frequent Itemset Hiding Algorithm (DynamicPGBS) 51

 4.4.1. DynamicPGBS Algorithm .. 51

 4.4.2. Transaction Oriented Pseudo Graph (TPG) 53

 4.4.3. DynamicPGBS Algorithm .. 53

 4.4.4. Creating Sensitive Count Table .. 56

 4.4.5. Creating the Sanitization Table .. 56

 4.4.6. Illustrating Example ... 58

 4.4.7. Sanitizing the Database .. 58

CHAPTER 5 ... 60

PERFORMANCE EVALUATION .. 60

5.1. Databases ... 60

5.2. Frequent Itemset Hiding Algorithms in Static Environment 61

 5.2.1. Execution Time ... 62

 5.2.2. Information Loss ... 63

iii

 5.2.3. Distance... 64

 5.2.4. Accuracy Loss ... 64

 5.2.5. Memory Consumption .. 66

 5.2.6. Discussion of the Results... 66

5.3. Frequent Itemset Hiding Algorithms in Dynamic Environment 68

 5.3.1. Execution Time ... 69

 5.3.2. Information Loss ... 70

 5.3.3. Distance .. 72

 5.3.4. Accuracy Loss .. 72

 5.3.5. Memory Consumption .. 73

 5.3.6. Discussion of the Results .. 74

CHAPTER 6 ... 76

CONCLUSION ... 76

REFERENCES .. 82

iv

LIST OF FIGURES

Table Page

Figure 1. Steps in knowledge discovery. .. 7

Figure 2. Classification algorithm for predicting the status of a received email. 9

Figure 3. Clustering data objects according to their features. .. 9

Figure 4. Itemset lattice of four different items. ... 10

Figure 5. Sample databases. .. 11

Figure 6. Distortion based frequent itemset hiding process. ... 14

Figure 7. Rule/Itemset hiding approaches. ... 17

Figure 8. Itemset lattice for illustrating border revision. .. 18

Figure 9. Constraint matrix with 4 different sensitive itemsets 20

Figure 10. Inverse frequent itemset mining .. 21

Figure 11. Blocking based sanitization. .. 23

Figure 12. Distortion based sanitization ... 24

Figure 13. Dynamic transactional database. ... 29

Figure 14. Sample database and sensitive itemsets with their sensitive thresholds. 37

Figure 15. The flowchart of PGBS algorithm. .. 37

Figure 16. Inserting transactions into PG. .. 39

Figure 17. Updating PG with deleting items. ... 43

Figure 18. The flow of the processes in PGBS. .. 44

Figure 19. Inserting transactions into IPG. ... 46

Figure 20. The flowchart of IPGBS algorithm. .. 47

Figure 21. Updating IPG with deleting paths. .. 50

Figure 22. The flow of the processes in IPGBS algorithm. .. 51

Figure 23. Sample database and sensitive itemsets with their sensitive thresholds. 52

Figure 24. Inserting transactions into TPG. .. 54

Figure 25. The flowchart of DynamicPGBS algorithm. ... 55

Figure 26. Updating TPG with deleting items. ... 59

Figure 27. The flow of the processes in DynamicPGBS algorithm. 59

Figure 28. Execution time varying the number of sensitive itemsets. 63

Figure 29. Information loss varying the number of sensitive itemsets. 64

v

Figure 30. Distance varying the number of sensitive itemsets. 65

Figure 31. Accuracy loss varying the number of sensitive itemsets. 66

Figure 32. Total memory consumption varying the number of sensitive itemsets. 67

Figure 33. Hiding failure of SPITF algorithm varying the increment size. 71

Figure 34. Execution time varying increment size. .. 70

Figure 35. Information loss varying increment size. .. 71

Figure 36. Distance varying increment size. ... 72

Figure 37. Accuracy loss varying increment size. .. 73

Figure 38. Total memory consumption varying increment size. 74

vi

LIST OF TABLES

Table Page

Table 1. Frequent itemsets when σ =20%. .. 12

Table 2. Association rules with minimum support=0.3 and minimum confidence=0.6. 12

Table 3. Sensitive itemsets and their sensitive thresholds. ... 15

Table 4. Classification of distortion based heuristic frequent itemset hiding

algorithms ... 34

Table 5. Sensitive Count Table (SCT) of PGBS and IPGBS algorithms. 40

Table 6. Sensitive Count Table (SCT) of DynamicPGBS algorithm. 56

Table 7. Characteristics of databases .. 61

Table 8. Support bins of the databases in static environment. .. 62

Table 9. Support bins of the databases in dynamic environment. 69

Table 10. Comparison of proposed algorithms. .. 78

1

CHAPTER 1

INTRODUCTION

With the rapid developments in storage devices and CPU technologies every day

more and more transactional data is being kept by companies and organizations. This

huge amount of data mostly contains unforeseen information beneficial for the data

owner. The data mining is the process of extracting such information from the data with

the help of artificial intelligence, machine learning, statistics and database systems. One

of the tasks of data mining is association rule mining. The association rule mining task

identifies frequent patterns in the transactional data in the form of dependencies among

attributes. It was first proposed by [42] and used for analyzing market basket data. The

association rule mining mainly has two steps where the first is called frequent itemset

generation and the second is called association rule generation. The frequent itemsets are

the set of items that are occurring together above a predefined support threshold and the

association rules are the meaningful rules that can generated from the set of frequent

itemsets. The second step of association rule mining is straightforward; it consists of

uncovering all possible combinations of items of a given frequent itemset [56]. Besides

the frequent itemset mining is a much more sophisticated task compared to association

rule generation and as a result association rule mining algorithms focus on the first step.

Many organizations implement itemset mining to their transactional data for short

or long term planning and strategically decision making. They also share data with each

other or with third parties for their mutual benefit. However, if the data being shared

contains private or strategically important information this may pose threat to security

and privacy of the organization. The protection of sensitive knowledge from being

discovered by any data mining technique is called privacy preserving data mining

(PPDM). Privacy preserving frequent itemset mining (PPFIM) is a subtask of PPDM

Similarly the protection of frequent itemsets from being discovered by any frequent

itemset mining technique is called privacy preserving frequent itemsets mining.

2

1.1. The Problem Statement

In this thesis the privacy preserving frequent itemset mining is investigated in two

different database environments; dynamic and static. The following assumptions are

made in the problem of protecting sensitive frequent itemsets. First the database owner

has to know the sensitive itemsets in advance and the second the database owner has to

define the sensitive threshold of each sensitive itemset before the sanitization process

where the sensitive threshold is the support value for considering each sensitive itemset

as being restricted.

The protection of sensitive frequent itemsets in a given transactional database D

can be handled by changing sufficient amount of transactions till every sensitive itemset

becomes uninteresting in the modified database D’. But this brings out the side effects

as loss of non-sensitive frequent itemsets and the dissimilarity between original database

D and D’. The most challenging problem of frequent itemset hiding is protecting the non-

sensitive knowledge while hiding all given predefined sensitive itemsets.

Based on the environment they are designed for, the privacy preserving frequent

itemset mining algorithms can be divided into two where the first is PPFIM algorithms

for static environment and the second is PPFIM algorithms for dynamic environment. In

static environment the state of the itemsets never change, on the other hand in dynamic

environment the state of itemsets continuously change with the arriving batch of

transactions. After a batch of transaction arrives to the database the state of a frequent

itemset may become infrequent or remain frequent also the state of an infrequent itemset

may become frequent or remain infrequent. This state imbalance of itemsets should be

considered while designing the frequent itemset hiding algorithm in dynamic

environment. Although any static environment frequent itemset hiding algorithm can be

adapted to dynamic environment with waiting all increments to arrive and then perform

the hiding process on the whole updated database, this will be inefficient. The inefficiency

is due to running the hiding process from beginning whenever a database publish process

is needed.

In the literature most of the frequent itemset hiding algorithms are designed with

considering a single sensitive threshold for all sensitive itemset but this does not reflect

the reality. Because as stated in [46] some itemsets appear frequently while others appear

rarely and unique support threshold for all itemsets does not reflect their importance. For

3

illustration in a super market the purchase amount of cooking pan and oven is most

probably smaller than purchase amount of coffee and milk. The sales of cooking pan and

oven because the profit obtained from them may carry more importance. Two problems

arise if a unique sensitive threshold is defined for every sensitive itemset in the database;

the first is this gives limitation to the database owner and the second is support of high

frequent sensitive itemset is going to be decreased more if low frequent itemsets needed

to be hidden. This will increase the loss in non-sensitive knowledge if items in the given

transactional database are highly correlated with each other.

1.2. Contributions of the Thesis

The aim of this thesis is to give a contribution to the field of privacy preserving

frequent itemset mining (PPFIM). First existing PPFIM techniques in the literature are

surveyed and they are categorized according to hiding methodology they propose. Next

three different frequent itemset hiding algorithms are proposed. The first algorithm is

Pseudo Graph Based Sanitization (PGBS), the second algorithm is Itemset Oriented

Pseudo Graph (IPGBS) and the third algorithm is Dynamic Pseudo Graph based

Sanitization (DynamicPGBS). The PGBS and the IPGBS algorithms are developed for

static database environment and the DynamicPGBS is proposed for dynamic database

environment. Unlike most of the existing frequent itemset hiding solutions, these three

algorithms allow database owner to define different sensitive threshold for each sensitive

itemset. The objective of these proposed itemset hiding algorithms is to hide all sensitive

itemsets with minimizing the side effects such as execution time, loss of non-sensitive

knowledge and amount of modification made on transactions. The PGBS, IPGBS and

DynamicPGBS algorithms employ different graph based internal data structures for

increasing the efficiency of the sanitization process.

The contributions of this research are listed as follows:

 Pseudo Graph Based Sanitization (PGBS) Algorithm [14]: This algorithm uses

the Pseudo Graph (PG) data structure to represent each different transaction of

the transactional database D. It directly converts all transactions of D into PG

without filtering or eliminating any transaction, provides advantage on

execution time but compromise disadvantage on memory consumption. The

main methodology behind the PGBS algorithm is to group sensitive itemsets

4

sharing common item and then modifying transactions containing each

different sensitive itemset group. This make possible to reduce support of more

than one sensitive itemset simultaneously with single item removal by deleting

the item that is common in the uncovered transactions.

 Itemset Oriented Pseudo Graph Based Sanitization (IPGBS) Algorithm: This

algorithm uses the Itemset Oriented Pseudo Graph (IPG) data structure to

represent each different sensitive itemset of the transactional database D. The

IPGBS algorithm uncovers each sensitive itemset from D and represents

relation between transactions and sensitive itemsets with IPG. Representing

only sensitive itemsets with the graph based data structure provides advantage

on memory requirement but compromise is more execution time for creating

the graph based data structure. This is because every sensitive itemset in each

transaction is filtered out before they are converted into the IPG. The main

methodology behind IPGBS algorithm is to modify transactions containing

maximum number of non-sanitized sensitive itemsets. As in PGBS algorithm

the IPGBS decreases support of more than one sensitive itemset at once with

removing item that is common in more than one sensitive itemset. Also the

IPGBS tries to prevent decreasing support of already sanitized sensitive

itemsets overmuch with modifying transactions only containing sanitizing

sensitive itemsets.

 Dynamic Pseudo Graph Based Sanitization (DynamicPGBS) Algorithm [36]:

This algorithm is designed for the dynamic environment and uses the

Transaction Oriented Pseudo Graph (TPG) data structure for representing each

sensitive transaction. The only difference between the PG and TPG is that PG

keeps all transactions while TPG keeps only sensitive transactions of a given

transaction database. Representing only sensitive transactions with the graph

based data structure provides advantage on memory requirement but

compromise is more execution time as in IPGBS algorithm. The main

methodology behind DynamicPGBS algorithm is to modify transactions

containing maximum number of sensitive itemsets. As in PGBS algorithm the

IPGBS decreases support of more than one sensitive itemset at once with

removing item that is common in more than one sensitive itemset.

5

 The performance of PGBS and IPGBS algorithms are evaluated together with

one different similar counterpart. The results indicate that the PGBS algorithm

is advantageous in terms of execution time and total number of item removals

compared to IPGBS algorithms. On the other hand, the IPGBS algorithm is

advantageous in terms of non-sensitive knowledge loss and data validity

compared to PGBS algorithm. The performance of DynamicPGBS is evaluated

with two different dynamic frequent itemset hiding algorithms. The first

counterpart SPITF is similar to DynamicPGBS as both algorithms modify

transactions in the whole updated database. On the other hand, the second

counterpart RHID algorithm only modifies transactions in the incremental part

of the database. The evaluation results indicate that the DynamicPGBS is

capable of hiding all given sensitive itemsets while the SPITF algorithm fails

to hide some of the sensitive itemsets. The DynamicPGBS is advantageous in

terms of non-sensitive knowledge loss, execution time and data validity

compared to SPITF [26] and RHID [24] algorithms.

1.3. Organization of the Thesis

In chapter 2 the fundamentals of knowledge discovery, association rule mining

and frequent itemset mining are given. Then the process of protecting sensitive frequent

itemsets in transactional database for both static and dynamic environment is described.

In addition, the metrics for measuring the effectiveness of frequent itemset hiding

algorithms is provided.

In chapter 3 the state of art in frequent itemset hiding research is reviewed. The

main methodologies behind existing frequent itemset hiding algorithms in the literature

are introduced and described.

In chapter 4 a set of frequent itemset hiding algorithms are introduced. Two of the

hiding methods namely PGBS and IPGBS are designed for static database environment

and one is namely DynamicPGBS is designed for dynamic environment.

In chapter 5 the algorithms that are proposed are validated by using a set of

experiments. These experiments are for measuring the execution time, the information

loss, the distance, the accuracy and the total memory allocation. Also the databases and

the set of itemsets defined as sensitive which are adopted in the experiments are described.

6

In chapter 6 conclusion of the work is given with a brief summary and future

research planning with the direction of this work is discussed.

7

CHAPTER 2

BASIC CONCEPTS

The process of discovering previously unknown knowledge from huge amount of

data with the help of database systems, artificial intelligence, machine learning, and

statistics is called data mining. Data mining is different from analyzing the data with

query processing tools. Query processing tools enable editing, finding, reporting and

summarizing the data while data mining enables extracting previously unknown

knowledge. Although the terms knowledge discovery and data mining are commonly

used interchangeably they are different. Knowledge discovery (KDD) refers to overall

process of discovering useful knowledge from data, it includes data selection, data

cleaning, data transformation, data mining, interpretation and evaluation [55]. Data

mining refers to application of algorithms for extracting patterns from data. Data mining

is the key step in KDD process. As can be seen from Figure 1, data mining is a sub step

in knowledge discovery.

Figure 1. Steps in knowledge discovery.

The data often contains noisy and missing values so the data from multiple data

sources should be cleaned before integration. The cleaning phase includes filling the

missing values, removing outliers and maintaining consistency of different data types.

Next the data from heterogeneous data sources are combined into compatible data source

called integrated database. After all data are cleaned and integrated the data relevant to

analysis is selected and transformed into appropriate form for the data mining [57]. The

transformation phase includes operations such as normalization, generalization or

aggregation. Then the data mining is applied to the transformed data for gathering

previously unknown, useful, interesting and hidden patterns. After the patterns are

8

generated, the knowledge is gathered by filtering out patterns by some measures such as

the interestingness threshold.

2.1. Data Mining Techniques

There are various data mining tasks for extracting different kinds of pattern from

the database and these data mining tasks can be can be categorized into two; descriptive

data mining tasks and predictive data mining tasks. The descriptive data mining tasks

derive patterns that summarize the underlying relationships between data and describe

the general properties of the existing data such as web pages that are accessed together.

The predictive data mining tasks predict the value of a specific attribute based on the

value of other attributes such as deciding whether a patient has specific disease based on

the medical test results. The classification, regression, time series analysis are examples

for the prediction tasks while clustering, summarization and association rules are some of

the examples for descriptive tasks [47-49].

The outstanding tasks of data mining can be can be categorized as classification,

clustering and association rule mining.

Classification: The task of mapping data into predefined classes is called the

classification [50]. This task first creates a predictive learning function that distinguishes

the data according to its features and then it assigns the class of a newly presented data to

its corresponding class with the help of this function. The classification of data consists

of training phase and labelling phase. The training phase creates the predictive learning

function (mapping function) with using the training set where the training set consists of

previously labeled data. Then with using mapping function the label of the new data can

estimated.

Figure 2 illustrates a classification algorithm used for predicting whether a new

arrival email is spam or not. The training data consists of categorized emails and a

classification algorithm is applied to these data for generating rules to predict the status

of a given email.

Clustering: The clustering task divides data objects in to groups called clusters where

each cluster consists of objects with similar characteristics [48]. The clustering task is

sometimes referred as unsupervised classification because as in classification method the

9

Figure 2. Classification algorithm for predicting the status of a received email.

clustering groups data into different groups however unlike classification the number of

clusters are not predefined, they are derived from the given data. Cluster analysis is being

used in many applications such as market segmentation, social network analysis, image

processing medical segmentation and anomaly detection.

Figure 3 illustrates a clustering algorithm applied to two dimensions of data

objects where x and y axis represents two different features and the points represents each

data objects. After a clustering algorithm is applied three different groups is discovered

according to the features of data objects.

Figure 3. Clustering data objects according to their features.

Association rules: The task of uncovering interesting relations between items is called

association rule mining. The association rule mining can be applied to transactional data

and it was first used in analyzing shopping behaviors of customers [42]. Association rules

are generated with two basic steps where the first step is frequent itemset (co-occurring

itemsets) generation and the second step is meaningful rule generation from these

discovered frequent itemsets. Association rules are considered interesting if they satisfy

both minimum support and confidence thresholds. In a given associating rule ab c,

support is the percentage of transactions containing “a”, “b” and “c”, confidence is the

percentage of transactions containing “a” also contains “b” and “c”. The relations between

10

items is expressed with rules such as 80% of transactions containing item “a”, “b” and

“c” at the same time and 60% of all transactions containing “a” also contains “b” and “c”.

2.2. Frequent Itemset Mining

Let I={i1,…in} be a set of items, an itemset X is a non-empty subset of I. A

transaction is a an ordered pair of items denoted as <TID,X> where TID is the unique

identifier. The set of all TIDs may denote the set of all customers visiting the e-commerce

web site, all customers making phone calls of a GSM company, all credit card users of a

bank. A transactional database is a set of transactions. The set of items I may denote the

customer purchases from an e-commerce web site, log files of telephone calls carried out

by a specific GSM company, credit card purchase information of customers and so on.

The number of items located in an itemset is denoted as k and and the size of the itemset

is denoted as k-itemset. There are 2𝑘 − 1 number of proper subset of a k-itemset. Figure

4 illustrates the itemset lattice for the items I = {a,b,c,d}. In this figure there are 24 − 1 =

15 number of possible itemsets that can be generated from the set I [53].

Figure 4. Itemset lattice of four different items.

A transactional database is a set of transactions and it consist of tuples where each

tuple has a unique identifier and corresponding transaction. It is possible to represent a

transactional database as table. A binary transactional database represents the relation

between TIDs and items, a given transaction with transaction id n contains an itemset

X={x1,x2,x3,…,xk} if {for all i=1 to k| xi=1}. Figure 5 (a) shows an example of

transactional database and Figure 5 (b) shows its binary representation. In the binary

11

database the set of all items are I={a,b,c,d,e,f,g} and the set of transaction ids are

tids={1,2,3,4,5,6,7,8,9,10}.

TID Transactions

1 cf

2 abe

3 de

4 afg

5 ade

6 ae

7 acd

8 abcde

9 adfg

10 acd

TID a b c d e f g

1 0 0 1 0 0 1 0

2 1 1 0 0 1 0 0

3 0 0 0 1 1 0 0

4 1 0 0 0 0 1 1

5 1 0 0 1 1 0 0

6 1 0 0 0 1 0 0

7 1 0 1 1 0 0 0

8 1 1 1 1 1 0 0

9 1 0 0 0 0 1 1

10 1 0 1 1 0 0 0

(a) Transactional database (b) Binary database

Figure 5. Sample databases.

The support count of an itemset X is the number of transactions containing X in

D and it is denoted as scount(X). The fraction of transactions containing X in D is called

support of X and it is denoted by supp(X). The support is an estimation of joint probability

of items generating X. The support of an itemset X is calculated by equation (2.1) where

|D| is the total number of transactions in D.

𝑠𝑢𝑝𝑝(𝑋) =

𝑠𝑐𝑜𝑢𝑛𝑡(𝑋)

|𝐷|
 (2.1)

An itemset X is frequent if supp(X) ≥ σ, where σ is the user specified minimum

support threshold and the set of all frequent itemsets in D is denoted as FI. For illustration

suppose the database in Figure 5 (a) is given and let σ =10%, then all frequent itemsets

generated from this database is shown in Table 1, where itemset column gives the itemsets

and the support column shows the support of the corresponding itemset.

2.3. Association Rule Mining

Association rules represent affinities among itemsets. An association rule is

represented as YZ where X and Y are different itemsets in transactional database D and

YZ=. An association rule relies on the support and confidence measures [42].

12

Table 1. Frequent itemsets when σ =20%.

itemset support itemset support itemset support

A 0.2 fg 0.2 de 0.2

C 0.4 ab 0.2 ad 0.5

D 0.6 be 0.2 ae 0.4

F 0.3 af 0.2 afg 0.2

G 0.2 ac 0.3 abe 0.2

E 0.5 cd 0.3 acd 0.3

B 0.2 de 0.3 ade 0.2

The support is the measure of frequency of a rule in the given database D, the confidence

is the measure of strength between itemsets in the given rule. The confidence of a rule

YZ is calculated with the following equation [58]:

𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒(𝑌𝑍) =

𝑠𝑢𝑝𝑝(𝑌𝑍)

𝑠𝑢𝑝𝑝(𝑌)
 (2.2)

Given a database D and user defined minimum support and confidence thresholds,

the association rules are generated with following steps;

Step1: Enumerate all itemsets that have support greater than the minimum support

threshold.

Step2: Generate all rules having confidence greater than minimum confidence threshold

with using the frequent itemsets generated at step 1.

Table 2 illustrates strong rules generated from the database given in Figure 5 (a) with 0.3

minimum support and 0.6 minimum confidence thresholds.

Table 2. Association rules with minimum support=0.3 and minimum confidence=0.6.

Association rule Support Confidence

da 0.5 0.83

ad 0.5 0.625

ea 0.4 0.8

2.4. Privacy Preserving Frequent Itemset Mining

In modern business, organizations make their database public or share it with

other organizations or third parties for providing extraction of knowledge. However

frequent itemset mining may lead to malicious usage of itemsets and pose security threat

13

on strategic or private information of data owners when the database is shared without

any precautions. These set of itemsets are called sensitive frequent itemsets and they are

defined as follows:

Sensitive Itemset: Let IL be a set of all itemsets in the itemset lattice of transactional

database D, and the SI be a set of itemsets that should be hidden and defined by owner of

the database where SI  IL. A set of itemsets that are able to infer any itemset in SI are

called sensitive itemsets.

The privacy preserving frequent itemset mining is the problem of concealing

sensitive itemsets from the shared or published database from being discovered with any

frequent itemset mining algorithm. This problem can achieved by generating a new

database D’ from the original database D in such a way that when frequent itemset mining

is applied to the D’ none of the sensitive itemsets are revealed [59]. Two problems arise

when the database is sanitized in such a way. The first one is protection of sensitive

knowledge and the solution is to prevent sensitive itemsets from being discovered with

any frequent itemset mining algorithm. The second problem is protecting non-sensitive

knowledge and the solution is to find optimum hiding solution that distorts minimum

amount of non-sensitive frequent itemsets.

One possible way to hide sensitive itemsets from database D is to decrease their

supports till the sensitive itemsets become infrequent. The support threshold used for

hiding a given sensitive itemset X is the sensitive support threshold and it is defined by

the database owner. This process of modifying the transactions to the point where no

sensitive itemset can be discovered is called the sanitization process [9]. Decreasing the

support of sensitive itemsets can be achieved by deleting items called victim items

(selected for deletion) from a sufficient amount of transactions. The set of transactions

that contain at least one sensitive itemset is called sensitive transaction and is defined as

follows:

Sensitive Transaction: If a transaction supports any itemset in SI then it is called

sensitive transaction. Formally if T is a set of all transactions in database D and SI is the

set of all sensitive itemsets, for any siSI if si  t where t  T, t is called sensitive

transaction.

The objective of itemset hiding is to produce a sanitized database D’ from original

database D. It is mainly done by reducing the supports of sensitive itemsets under their

predefined sensitive thresholds. The sensitive threshold is defined as follows:

14

Sensitive Threshold: The support threshold used for considering a sensitive itemset as

non-interesting or hidden is called sensitive threshold and sensitive threshold of an

itemset Y is denoted as st (Y). Formally if SI is the set of sensitive itemsets in D and ST

is the set of all sensitive thresholds of these sensitive itemsets, then for all si  SI iff

supp(si) < st(si) then all sensitive itemsets in D are hidden.

One of the techniques for reducing the support of a sensitive itemset is deleting

items called victims from sensitive transactions. This technique is called distortion based

frequent itemset hiding. Identifying the transactions that will be modified and deciding

the items that will be removed from these transactions are two main challenges of

distortion based sanitization technique.

Figure 6. Distortion based frequent itemset hiding process.

The process of distortion based sensitive itemset hiding is illustrated in Figure 6.

First the user defines the sanitization information which consist of sensitive itemsets and

their sensitive threshold next the original database D and the sanitization information is

given as input to the frequent itemsets hiding algorithm. The frequent itemsets hiding

algorithm finds out the modification information which is the solution of the sanitization

problem. Then with using the modification information the original database D is updated

and the sanitized database D’ is generated. Each different sensitive transaction and victim

set for solving the sanitization problem has different side effects to the database. These

side effects are defined as follows:

Hiding Failure (HF): The amount of sensitive itemsets failed to be hidden is represented

with the hiding failure metric. It is calculated as follows;

𝐻𝐹 =

|𝑆𝐼|

|𝑆𝐼′|
 (2.3)

15

where |SI’| is the number of sensitive itemsets in the sanitized database D’ and |SI| is the

number of sensitive itemsets in the original database.

Information Loss (IL): The amount of non-sensitive knowledge unintentionally

removed from the original database during the sanitization process is represented with

the Information Loss metric. It is calculated as follows;

𝐼𝐿 =

(|𝐹𝐼| − |𝑆𝐼|) − (|𝐹𝐼′| − |𝑆𝐼′|)

|𝐹𝐼′| − |𝑆𝐼′|
 (2.4)

where |FI| is the number of frequent itemsets in the original database D and |FI’| is the

number of frequent itemsets in the sanitized database.

Distance: The total number of items removed during the sanitization process is

represented by the Distance metric and it is calculated as follows;

 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = |𝐼| − |𝐼′| (2.5)

where |I| is the total number of items in the original database and |I’| is the total number

of items in the sanitized database.

Accuracy Loss: The total number of transactions modified during the sanitization

process is represented with the Accuracy Loss metric and it is calculated as follows;

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝐿𝑜𝑠 = (|𝐷 − 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠 𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝑖𝑛 𝐷)/|𝐷| (2.6)

where D is the original database and |D| is the total number of transactions in D.

Table 3. Sensitive itemsets and their sensitive thresholds.

Sensitive Itemset Sensitive Threshold

ab 0.3

cd 0.15

bd 0.1

For illustrating the given definitions and distortion based frequent itemset hiding

suppose the transactional database is given in Figure 5 (a) and sensitive itemsets with

their sensitive thresholds are given in Table 3. The transaction ids of sensitive transactions

in D are 2,7,8 and 10. The support of “ad” is 0.5, “bd” is 0.1 and “cd” is 0.3 where support

of each sensitive itemset is not smaller than their sensitive thresholds. One possible

sanitization solution may remove the item “d” from transactions 8, 9 and 10 and as a

result support of “ad”, “bd” and “cd” reduce to 0.2,0.0,0.1 respectively which means all

sensitive itemsets are hidden from the database D. The Hiding Failure in this sanitization

16

solution is zero because all sensitive itemsets are hidden; the Information Loss is

calculated as ;((44 - 4) - (28 - 0)) / (28 - 0) = 0.4285 if the minimum support threshold

for mining itemsets in D and D’ is set to 0.1. The Distance is 3 because at total 3 items are

removed from D, the accuracy is 0.7, in different word database D and D’ are 70% similar

to each other.

17

CHAPTER 3

RELATED WORK

In this chapter a literature review on existing frequent itemset and association rule

hiding approaches are presented. These techniques are classified into two main categories

depending on the environment they are designed for; dynamic environment and static

environment as illustrated in Figure 7. In dynamic environment transactional database is

being continuously updated by the arrival of increments whereas in static databases the

state of transactions never changes. In the literature only a few approaches are proposed

for dynamic environment. As can be seen in the figure the sanitization approaches for

static database environment can classified as; border based, exact, reconstruction based

and heuristic based. The border based approaches separate the itemset lattice with a

border and revise this border to sanitize the given database. The exact approaches convert

the sanitization problem into constraint satisfaction problem (CSP) and then apply integer

programming to solve the CSP. Reconstruction based approaches first eliminate sensitive

itemsets and their supersets from the set of frequent itemsets of the original database and

then try to generate a sanitized database from non-sensitive itemsets. Heuristic based

sanitization algorithms rely on different heuristics in victim item and victim transaction

selection.

Figure 7. Rule/Itemset hiding approaches.

Association Rule / Frequent
Itemset Hiding Approaches

Static
Environment

Border
Based

Exact

Reconstructi
on Based

Heuristic
Based

Dynamic
Environment

18

3.1. Sanitization Algorithms for Static Environment

In static environment the status of transactions never change more precisely it is

assumed that there is not update and delete operations performed on the database. The

main categorizations of rule or itemset hiding approaches on static environment can be

done as border based approaches, exact approaches, reconstruction based approaches and

heuristic based approaches as shown in Figure 7.

3.1.1. Border Based Sanitization Algorithms

Borders enable to separate frequent itemsets from non-frequent itemsets in the

itemset lattice [1]. The border based hiding solution is to revise the border so that all

sensitive itemsets and their supersets are separated from non-sensitive frequent itemsets.

The positive border denoted as 𝐵𝑑+and it consists of all frequent itemsets whose proposer

supersets are non-frequent whereas the negative border is denoted as 𝐵𝑑−and it consists

of all non-frequent itemsets whose proper subsets are frequent. For illustration suppose

the itemset lattice generated from a database is given in Figure 8. In this figure consider

the frequent itemsets based on the predefined minimum support minsup are separated

from non-frequent itemsets with the border as shown in straight line. The itemsets on the

right hand side of the border are frequent and itemsets on the left side of the border are

infrequent. Also suppose that sensitive itemsets are defined as “AB” and “AC”. The

optimal revised border line moves minimal set of non-sensitive frequent itemsets on the

right hand side of the border while moves all sensitive itemsets and their supersets on the

right hand side of the revised border. The dashed line in Figure 8. shows the revised

border after the sanitization process where all sensitive itemsets are left on the right hand

side of the revised border.

Figure 8. Itemset lattice for illustrating border revision.

19

The revision of the border for hiding sensitive frequent itemsets was first proposed

by [2]. To improve the quality of the resulting sanitized database they focus on obtaining

the quality of the border. The basic idea of their proposed algorithm BBA is to

dynamically assigning weight to each itemset on the positive border, based on the support

of itemsets. The algorithm calculates all possible sum of weights for each possible item

deletion to hide a given itemset and then it chooses the item to delete among items that

gives minimum impact on sum of weights.

The Max-Min1 and Max-Min2 [3] are two frequent itemset hiding approaches

based on border revision. The main focus of these two algorithms is to modify the itemsets

on the negative border while maintaining all itemsets on the revised positive border. For

each item of a sensitive itemset the algorithm uncovers positive border itemsets

containing the item and then among these itemsets the algorithms select the itemset that

has the highest support in the database which is called max-min itemset. The algorithms

try to modify the border in such a way that the support of the max-min itemset is

minimally affected. The Max-Min1 and Max-Min2 algorithms employ the basic

properties; they differ in selecting the victim item to delete from transactions. While the

Max-Min1 algorithm selects the victim item randomly the Max-Min2 algorithm selects

the victim item that gives minimum knowledge loss in case of deletion.

3.1.2. Exact Sanitization Algorithms

Exact frequent itemset hiding approaches use both border based and integer

programming methodologies to find a hiding solution. These approaches formulate the

frequent itemset hiding problem into constraint satisfaction problem (CSP) and then apply

integer programming to solve the CSP. A CSP consists of a set of variables and a set of

constraints [4]. Each variable has non-empty set of potential values and each constraint

represents non empty set of possible combinations of variables. The CSP is solved by

choosing value for each variable that satisfies the constraints. The integer programming

(IP) and binary integer programming (BIP) are linear programming models where in IP

all variables are integers and in BIP each variable can only take 0 or 1. For illustration

Figure 9. shows a constraint matrix of a database. The columns t1 to t5 indicates the

sensitive transactions and rows r1 to r4 indicates the sensitive itemsets and also the

20

constraint matrix shows if the given itemset is contained in a sensitive transaction e.g. the

sensitive itemset r1 is contained in only t4. If the integer program aims minimizing the

number of transaction modification, then it can be formulated as to minimize

x1+x2+x3+x4+x5 where the variable xi is 1 if the ith transaction is modified and 0

otherwise.

Figure 9. Constraint matrix with 4 different sensitive itemsets

The exact frequent itemset was first proposed in [5]. In this work minimum

number of transactions for modification is identified with formulating the frequent

itemset hiding problem into CSP and this CSP is solved with using linear programming.

Then two heuristics namely the blanket approach and intelligent approach are employed

for modifying these previously identified transactions. The blanket approach deletes all

items except one from transactions whereas the intelligence approach deletes as small as

possible number of items from transactions. The blanket approach hides more non-

sensitive itemsets than intelligence approach because the intelligence approach tries to

group sensitive itemsets and remove the item having maximum degree of conflict. The

aim of the CSP they formulate is to find out minimum number of transaction modification

for hiding all given sensitive itemsets. Also they make it possible to decompose the CSP

into different parts for solving in a parallel manner to decrease the execution time.

Inline algorithm [6] does not rely on any heuristic during the sanitization

operation. This algorithm formulates the hiding problem into CSP and solves it by using

Binary Integer Programming (BIP). The CSP employed in the Inline algorithm tries to

find the hiding solution that has the minimum distance metric.

Two Phase Iterative Algorithm [7] is an extension of the Inline algorithm. The

Two Phase Iterative algorithm iterates till a solution of the given CSP is found and if not

it iterates till a predefined number of iterations have taken place.

Hybrid [8] algorithm combines the border revision, CSP and BIP for hiding

sensitive itemsets. Instead of modifying transactions in the original database the Hybrid

21

algorithm adds database extension to the database. This extension consists of a set of

transactions where attaching these transactions into the database lowers the importance

of sensitive itemsets while minimally effects the non-sensitive itemsets.

The full exact approach [37] uses integer programming for optimizing the

information loss and distance side effects of the sanitization process. This algorithm is

entirely exact because it does not employ any heuristics during the sanitization process.

Constraints defined in the integer programming of this approach try to ensure that the

frequency of sensitive itemsets are below support threshold while frequency of non-

sensitive itemsets are still above the threshold.

3.1.3. Reconstruction Based Sanitization Algorithms

The main idea in reconstruction based sanitization approaches is to release a new

database that is constructed from sanitized knowledge. Rather than sanitizing the actual

database these approaches first sanitize the sensitive rules or itemsets and then create a

new database from this sanitized knowledge. These approaches are called knowledge

based because they start the sanitization from the knowledge. The computational

complexity of reconstruction based approaches are first analyzed in [32] and showed that

for most of the cases the problem is NP-Complete for finding a compatible dataset from

frequent itemsets. Figure 10 illustrates the reconstruction based frequent itemset approach

proposed in [30]. First all frequent itemsets of the original database D is generated then

the set of sensitive frequent itemsets (FI’) is removed from frequent itemsets (FI) and a

new sanitized database (D’) is created from sanitized frequent itemsets (FI’).

Figure 10. Inverse frequent itemset mining

22

The reconstruction based sanitization idea is first proposed in [30] called

Constraint based Inverse Itemset Lattice Mining (CIILM). This algorithm is designed for

hiding sensitive itemsets. The CIILM algorithm first sanitizes the itemset lattice and then

recreates the database from the sanitized itemset lattice with performing inverse frequent

itemset mining.

Fp-Tree based approach is presented in [31]. This approach has three phases

where the first phase generates all frequent itemsets with their support from the database.

The second phase performs sanitization operation over this generated set. The third phase

creates a new database from sanitized frequent itemsets with using an FP-Tree based

inverse frequent itemset mining algorithm.

Randomization of the transactions is proposed in [33]. This approach does not

remove any item from the database instead it adds items to each transaction. In this

approach first all possible frequent itemsets from the randomized transactions is

generated with their support. Then the support of each possible frequent itemset is

reconstructed to find out frequent itemsets.

3.1.4. Heuristic Based Sanitization Algorithms

A large amount of research has been conducted based on Heuristic sanitization

approaches for static environment. These approaches perform the sanitization either with

decreasing the support of sensitive itemsets or giving uncertainty to the support of

sensitive itemsets. The heuristic based frequent itemset algorithms using the first

technique are called distortion based frequent itemset hiding algorithms whereas the

algorithms using the former technique are called blocking based frequent itemset hiding

algorithms.

3.1.4.1. Blocking Based Heuristic Approaches

Blocking based sanitization approaches replaces some items with unknowns for

hiding rules or itemsets. The aim of replacing unknowns is to give uncertainty to the

support of sensitive itemsets or confidence of sensitive rules. Figure 11 illustrates a

blocking based sanitization algorithm where Figure 11 (a) is the original database and

23

Figure 11 (b) is the sanitized database. For the itemset AC the support is 75% in the

original database. The item A in the first transaction and the item C in the second

transaction are replaced by unknown (?) in the sanitized database. As a result, the support

of itemset AC becomes uncertain in the sanitized database and it can be expressed in the

range between 0% and 50%.

TID A B C D

1 1 1 1 0

2 1 0 1 1

3 1 1 1 1

4 1 0 0 1

TID A B C D

1 ? 1 1 0

2 1 0 ? 1

3 1 0 0 1

4 1 0 0 1

(a) Original database

(b) Sanitized database

Figure 11. Blocking based sanitization.

Saygin et al. [23] proposed three blocking based sanitization approaches; CR,

CR2 and GIH where CR and CR2 designed for hiding sensitive association rules with

decreasing their confidence and GIH hides association rules by decreasing support of their

generating itemsets. In this study a safety margin is used to define how much the MST of

sensitive frequent itemsets or MCT of sensitive rules should be smaller to prevent

recovery of hidden pattern by adversary. The CR and GIH algorithm choose transactions

containing minimum number of items while the CR2 algorithm choose transactions

containing maximum number of items on the left hand side of the sensitive rule. The GIH

algorithm selects the items having maximum support as victim items and then replaces

unknown instead of these victim items.

The ISL and DSR [41] algorithms are two blocking based sanitization algorithms

designed for hiding informative association rules. The informative association rule set is

the smallest set of association rules that makes the prediction of the entire association rule

set of the database. The ISL algorithm increase support of the left hand side itemset of a

given sensitive rule whereas the DSR algorithm decrease support of the right hand side

itemset of a given sensitive rule. Both ISL and DSR algorithms choose the transactions

for modification according to their size and they replace binary items with unknowns (?).

24

3.1.4.2. Distortion Based Heuristic Approaches

The distortion based sanitization approaches conceal sensitive itemsets from the

database by decreasing support of them with modifying or completely removing sensitive

transactions from the database. Figure 12shows an example of distortion based frequent

itemset hiding approach for the database given in Figure 12 (a). In Figure 12 (b) some

itemsets are concealed from the database by deleting some items from a set of sensitive

transactions. Distortion based sanitization algorithms differ in techniques that they

employ during selection of victim item and selection of transactions for modification.

Existing distortion based heuristic algorithms select the victim item according to support,

degree of conflict or by trial and error and they select the sensitive transactions according

to number of sensitive or non-sensitive itemsets they contain, transaction length or by

trial and error.

TID A B C D

1 1 1 1 0

2 1 0 1 1

3 1 0 0 1

4 1 0 0 1

TID A B C D

1 0 1 1 0

2 1 0 0 1

3 1 0 0 1

4 1 0 0 1

(a) Original database

(b) Sanitized database

Figure 12. Distortion based sanitization.

Determining the transaction for modification and item to be removed from them

can be handled in an iterative way by trying each different possible solution and then

choosing the optimal solution among these solutions. This type of sanitization algorithms

use the trial and error methodology. Atallah et al. [9] first proposed the privacy preserving

association rule hiding problem and they proposed an association rule hiding algorithm

that conceals the sensitive association rules by concealing the sensitive itemsets

generating these rules. An itemset graph is presented by the authors and with using this

graph they iteratively uncover itemsets and transaction set for modification that gives

least distortion to rest of itemsets. Then they remove predefined victim items from

25

sensitive transactions. The Aggregate [10] algorithm selects sensitive transactions whose

removal gives impact on minimum number of non-sensitive itemsets and at the same time

gives impact on maximum number of sensitive itemset, then it removes the selected

transactions from database. Disaggregate [10] approach removes items from sensitive

transactions whose removal effect least number of non-sensitive itemsets and at same

time effect maximum number of sensitive itemsets. The Hybrid [10] approach chooses

the sensitive transactions for modification with using Aggregate approach then modifies

selected transactions with using the Disaggregate approach. The Aggregate algorithm

greedy selects sensitive transactions whose removal gives impact on minimum number

of non-sensitive itemsets and at the same time gives impact on maximum number of

sensitive itemset, then removes the selected transactions from database. Disaggregate

approach removes items from sensitive transactions whose removal effects least number

of non-sensitive itemsets and at same time effects maximum number of sensitive itemsets.

The Hybrid approach chooses the sensitive transactions for modification with using

Aggregate approach then modifies selected transactions with using the Disaggregate

approach.

Another type of sanitization methodology is grouping sensitive itemsets and then

modifying transactions containing each different groups of sensitive itemset. This type of

sanitization may conceal multiple sensitive itemsets at once. The sensitive itemsets can

grouped according to the item common at each sensitive itemset. Oliveria et al. [11]

proposed four sanitization algorithms among these algorithms the IGA algorithm

introduced the multiple itemset hiding concept. Template Table Sanitization Algorithm

(TTBS) [13] overcomes the overlapping groups problem faced in IGA with using a table

called Template Table. The PGBS [14] algorithm employs a graph based data structure

to speed up the hiding process. As in IGA this algorithm groups sensitive itemsets sharing

common item and selects the victim item among sensitive itemset that has the maximum

degree of conflict and then deletes victim item from transactions containing maximum

number of sensitive itemsets.

The number of association rule or frequent itemset combinations may decrease

with the size of the transaction where size is the number of items a transaction contains.

As a result, the distortion given to the knowledge can be reduced by modifying small

sized transactions. The Sliding Window Algorithm (SWA) [12] removes victim item from

sensitive transactions with the shortest size. Verykios et al. [15] proposed five algorithms

26

based on two approaches, first approach prevents rules from being generated by hiding

the frequent sets from which they are derived whereas the second approach reduces the

importance of the rules by setting their confidence below a user-specified threshold.

Algorithm 2b [15] hides sensitive itemsets by removing the item having maximum

support from smallest length sensitive transactions and the Algorithm 2c [15] hides

sensitive itemsets by removing sensitive itemsets from smallest length sensitive

transactions.

Modifying transactions according to number of itemsets or rules they contain may

decrease the distortion on non-sensitive knowledge. Maximum Item Conflict First

(MICF) [16] algorithm first sorts sensitive transactions in increasing order according to

how many sensitive itemset a sensitive transaction contains and deletes the victim item

from sensitive transactions. The victim item is selected among items in a sensitive

itemsets which has the maximum degree of conflict where the degree of conflict is the

number of sensitive itemsets containing the victim item. The algorithm SIF-IDF[17] is

inspired from TF-IDF(Term Frequency-Inverse Document Frequency). The SIF-IDF

gives the relation degree of a transaction with sensitive itemsets. First the algorithm

calculates each transactions SIF-IDF value, then sorts them in decreasing order of SIF-

IDF values and starts modification from the transaction having maximum SIF-IDF value.

Relevance Sorting [18] deletes the victim item among sensitive transactions containing

less number of non-sensitive itemsets. The algorithm calculates the number of non-

sensitive itemsets in each sensitive transaction and then assigns a priority value called

relevance to each sensitive transaction and according to the relevance value it selects the

transactions for modification.

Some algorithms in previous studies assign weight to each transaction and item to

decide the solution for the modification. Priority-based Distortion Algorithm (PDA) [19]

first uncovers all sensitive transactions then for each sensitive transaction it calculates the

priority of each sensitive transaction by calculating how many non-sensitive rules will be

affected for all possible item removal of a sensitive rule contained in a transaction.

Weight-based Distortion Algorithm (WDA) [19] first assigns weights to sensitive rules

where the weight is the measure how close the confidence of a sensitive rule to minimum

confidence threshold value (MCT), the value of the weight is high if confidence of a

sensitive rule is close to the MCT. Then using the weights WDA calculates each sensitive

transactions priority. Because of the algorithm’s high complexity, it is almost impossible

27

to use it on datasets having so many distinct items or databases having so many

transactions. The Fast Hiding Sensitive Association Rules (FHSAR) [20] algorithm first

assigns weight to each sensitive transaction and items in sensitive rules where the

transaction weight is proportional to the number of sensitive rules a transaction contains

and inverse proportional to the length of the transaction, also the weights assigned to

items are proportional to the degree of conflict. Then the algorithm sorts the sensitive

transactions in descending order of their weights and from sufficient amount of sensitive

transactions deletes the items whose weight is maximum in the given sensitive

transaction. The HSARWI [21] algorithm assigns weight to each sensitive transaction and

items in sensitive rules as in FHSAR algorithm. The sensitive transactions are selected

with the same procedures used in FHSAR algorithm; two algorithms differ in victim item

selection. The HSARWI algorithm considers whether an item is on the right or left hand

side of the sensitive rule and increases the weight of the item if it is on the right hand side.

The MDSRRC [25] algorithm assigns weight to each transaction and item in a given

sensitive rule where the weight of an item is the number of sensitive association rules

containing the item and weight of a transaction is the sum of weights of all items

contained in a transaction. The MDSRRC first finds the victim item having maximum

sensitivity where the sensitivity of an item is the number of sensitive association rules

containing the item in the right hand side. Next the algorithm deletes the item having

maximum sensitivity from the transactions containing the victim item and having

maximum weight.

Representative association rules are the smallest set of rules that covers all

association rules in a given database with respect to the predefined support and confidence

thresholds. The study in [27] first uncovers sensitive representative rules with using the

GSEE algorithm and then selects all sensitive representative rules that have sensitive

item(s) on the right hand side of the rule. Next the EDSR algorithm hides sensitive

itemsets with deleting sensitive item(s) from transactions supporting these previously

selected rules. The EDSR algorithm starts modifying the transactions according to the

number of items they contain (size). The HRR algorithm which is combination of ISL

(Increase Support of LHS) and DSR (Decrease Support of RHS) [29] is proposed in [28].

The HRR first uncovers representative rules containing the sensitive itemset on the left

hand side of representative rules and then deletes sensitive itemsets from transactions

supporting these uncovered representative rules. Next the algorithm uncovers transactions

28

containing the sensitive itemset on the right hand side of representative rules and then

deletes sensitive itemset from transactions supporting these uncovered representative

rules.

Particle swarm optimization is first proposed by [34] and its inspired from bird

flocking to find food sources. The particles represent the problem solutions and each

particle has velocity representing the flying directions according to other solutions.

PSO2DT [35] is a particle swarm optimization based frequent itemset hiding approach.

In this approach the maximum number of transactions to be removed is equal to the

particle size. The particle size is calculated with the difference between the highest

support count of frequent itemset among all frequent itemsets and minimum support count

threshold. PSO2DT sanitizes frequent itemsets with deleting sufficient amount of

transactions from the database.

The lattice theory was first proposed by [40] and the lattice of frequent itemsets

can be used for selecting the victim item. Intersection lattice based frequent itemset hiding

algorithms first generates the intersection lattice of all frequent itemsets, then it calculates

the number of supersets of each itemset where an itemsets pi is a superset of itemset i if I

 spi. If I is the set of all itemsets in database D then I  spi I so it can be inferred that

I is a intersection lattice. The generating set of I is denoted as GS (I) and it is composed

of smallest set of itemsets of I where every itemset in I can be generated by intersecting

some itemsets in GS (I). The HCSRIL (Heuristic for Confidence and Support Reduction

based on Intersection Lattice) [38] algorithm selects the victim item and minimum

number of transactions modification of this victim item that causes the minimum impact

on itemsets in GS (FI) where FI is the frequent itemsets in the original database. The

AARHIL (Algorithm of association rule hiding based on intersection lattice) [39]

algorithm tries to give minimum distortion on non-sensitive association rules and

intersection lattice of frequent itemsets. This algorithm selects the transactions for

modification according to their weights where the calculation of the weight is based on

the number of sensitive and non-sensitive rules a transaction contains. Also the AARHIL

algorithm selects the victim item that gives least impact on GS (FI).

All these distortion based heuristic algorithms explained above try to reduce the

side effects and execution time with employing different methodologies and with

different data structures. Also most of them allow database owner to assign a single

sensitive threshold for each sensitive itemset. However as indicated in [20] different

29

itemsets have different support values in the database and sensitive threshold of different

itemsets should be set according to their importance such as sensitive threshold of cheaper

itemsets in a supermarket transactional database should be set higher then expensive

itemsets because the cheap itemsets have high support.

3.2. Sanitization Algorithms for Dynamic Environment

In this section literature review of existing distortion based frequent itemset hiding

algorithms for dynamic environment is presented. These algorithms are called dynamic

sanitization algorithms to ease the complicity of the explanation. In dynamic environment

the transactional database is being continuously updated by increments. The main

challenge of dynamic sanitization mechanisms is to maintain large number of sensitive

transaction search space. As illustrated in Figure 13 the dynamic transactional database

consists of original part and incremental part. In dynamic environment the sensitive

itemsets can hidden with two different approaches. The first approach modifies

transactions in only incremental part and the second approach modifies transactions in

the whole updated database. For the first approach if the original database D has already

been sanitized then concealing sensitive itemsets in only incremental part d and then

unifying d with D is going to produce a sanitized updated database. The first approach

sanitizes the incremental part and then unifies the original part D with the sanitized

incremental part d’. For the second approach the first the incremental part d is unified

with the original part D and then the sanitization process is performed on the whole

updated database (𝐷 ∪ 𝑑).

Figure 13. Dynamic transactional database.

30

3.2.1. Sanitization on Incremental Database

Sanitizing only the incremental part is more efficient in terms of execution time

and resource allocation because the transaction search space for the hiding solution is

smaller than the whole transactions in the updated database. But this strategy causes high

rate of corruption on non-sensitive knowledge and data because its search space only

includes transactions of the incremental part.

The RHID [24] algorithm is designed for hiding sensitive rules in dynamic

environment with decreasing support of itemsets in the right hand side of a given rule. It

uses the same methodologies and techniques as in MDSRRC [25] algorithm, the only

difference is that, the RHID algorithm employs a table to keep actual number of necessary

support decrease need for each sensitive rule. This table is updated whenever a new batch

of transactions is inserted to the original part of the database. The RHID algorithm just

modifies transactions of the incremental part so it does not guarantee to keep distortion

on the database and loss of non-sensitive information at minimum level.

3.2.2. Sanitization on Updated Database

As the number of potential transactions for modification includes all transactions

of the updated database (D  d), sanitizing the updated database is more efficient in terms

of information loss, distance and accuracy. However, this strategy is disadvantageous in

terms of execution time and memory consumption because of huge transaction search

space. If necessary precautions are taken such as appropriate data structure usage then

these disadvantages can be tolerated.

A dynamic frequent itemset hiding algorithm SPITF is proposed in [26]. This

algorithm uses same concepts of TTBS [13] algorithm for sanitizing the sensitive

itemsets. The SPITF algorithm groups sensitive itemsets sharing common item and then

uncovers transactions containing these itemsets. The SPITF selects the item having

maximum degree of conflict as victim item and removes it from sufficient amount of

sensitive transactions. Also a tree like data structure called Sensitive Pattern Indexed

Transaction Forest (SPITF) was designed to increase the efficiency of execution time.

This data structure stores all transaction in the database and allows modifying transactions

31

without accessing the database. This approach reduces side effects such as distance and

information loss since it performs the sanitization process on the whole updated database.

Although most of the transactional databases are dynamic in real life, there is only

a two sanitization algorithms; SPITF and RHID designed for dynamic database

environment. The RHID algorithms is incapable of finding the optimal hiding solution

because the optimal hiding solution can only be found if the transaction search space for

the modification encapsulates all transactions in the database. The SPITF on the other

hand may fail to hide all given sensitive itemsets because uncovering all sensitive

transactions from the tree like data structure that it employs may fail for some cases.

3.3. Summary

In this chapter we reviewed existing frequent itemset and rule hiding approaches

in the literature. These approaches are classified into two major categories according to

the environment they designed for; static and dynamic. In dynamic environment there is

only two heuristic itemset/rule sanitization algorithms whereas for the static environment,

there are many algorithms grouped as the border based, exact, reconstruction based and

heuristic itemset/rule hiding approaches. The border based approaches separate the non-

frequent and frequent itemsets with a border in the itemset lattice and then revises this

border to find out an optimal hiding solution. Border based approaches give minimum

distortion to the original database but they may unable to find optimum hiding solution

for some cases although there exists [22]. The exact approaches have very high

computational time as they employ integer programming so this makes them

impracticable. The reconstruct based approaches may have problem in generating the

resulting database with the same size as the original database and also putting non-

frequent itemsets into transactions of the resulting sanitized database is a difficult task.

Heuristic based approaches are not designed for finding an overall optimum solution to

the sanitization problem but they usually find solution close to the best one with small

response time and in the literature there are many studies based on heuristic approaches

[38].

Basic properties of the existing distortion based heuristic sanitization approaches

are given in Table 4. In this table the “Algorithm” column indicates the algorithm name,

32

the “Hiding” column shows if the algorithm is designed for hiding sensitive itemset or

hiding sensitive association rules. The “Victim Item Selection” column gives the victim

item selection criteria of the algorithm where “degree” shows the selection of the item is

done according to degree of conflict which is the number of occurrences of the item in

different sensitive itemsets, “support” shows the item selection is done according to its

support in the database, “iterative” shows the item is selected in a trial and error way,

“weight” shows the item selection is done according to weight of the item where the

weight is calculated depending on some heuristics, “lattice” shows the item is selected

according to intersection lattice and “none” shows the algorithm does not select any

victim item instead it completely removes some set of sensitive transactions from the

database. The “Transaction Selection” column indicates selection criteria of the

transactions for modification where “size” shows that the transactions are selected

according to number of items contained by transactions, “Degree” shows that the

selection is done according to number of sensitive rules or itemsets contained by

transactions, “Greedy” shows that the selection is done in a trial and error way and

“Weight” shows that the selection is done with using previously calculated weights of

transactions.

The “Multiple rule/itemset Hiding” column shows whether the algorithm is

designed for hiding more than one sensitive rules or itemsets at each iteration of the hiding

process. The column “Multiple Support Threshold” indicates whether the algorithm

enable assigning different sensitive thresholds for each sensitive itemset or not. The

“Environment” column indicates if the algorithm is designed for the incremental or static

database environment.

 According to the Table 4, most of the algorithms are designed for hiding itemsets

rather than association rules. Some of the algorithms employ different heuristics for

modifying transactions besides some of the algorithms completely remove predefined set

of transactions from the database. The modification set of transactions are mostly selected

according to their weights and the weight of transactions are calculated based on some

heuristics such as the number of sensitive itemset or rule a transaction supports. If

intersection of sensitive itemsets or rules is not empty in other words if they share

common item or items then they are called overlapping itemsets or rules. Most of the

proposed approaches are designed with assuming that sensitive itemsets or rules are

overlapping.

33

After the heuristic based itemset/association rule hiding algorithms are surveyed

it can be discovered that most of these hiding algorithms allow database owner to define

a unique sensitive threshold for all sensitive itemsets. However unique sensitive threshold

gives limitation to the database owner and also prevents to consider the significance of

different characteristics of sensitive itemsets. Also during the sanitization process if

supports of all sensitive itemsets are decreased under a unique sensitive threshold then an

adversary may infer that some itemsets are made uninteresting before the database is

shared.

The second problem of existing solutions is, there is only two algorithms designed

for dynamic database environment. It is possible to use any static environment

sanitization algorithm to the dynamic database environment with waiting all updates and

performing the sanitization operation on the whole updated database. Applying this type

of solution is going to bring an overhead the resource allocation and execution time

because dynamic databases are updated to continuously and whenever a database publish

operation is performed the sanitization process is going to start from beginning.

34

Table 4. Classification of distortion based heuristic frequent itemset hiding algorithms

Algorithm

Hiding

V
ic

ti
m

 I
te

m

S
el

ec
ti

o
n

T
ra

n
sa

ct
io

n

S
el

ec
ti

o
n

M
u

lt
ip

le

ru
le

/i
te

m
se

t

H
id

in
g

M
u

lt
ip

le
 S

u
p

p
o
rt

T
h

re
sh

o
ld

E
n

v
ir

o
n

m
en

t

RHID [24] Rule Weight Weight ✔
Dynamic

SPITF [26] Itemset Degree Degree ✔

TTBS [13] Itemset Degree Degree ✔

Static

SWA [12] Itemset Support Size ✔ ✔

MDSRRC [25] Rule Weight Weight ✔

HSARWI[21] Rule Weight Weight ✔

FHSAR [20] Rule Degree Weight ✔

MICF [16] Itemset Degree Weight ✔

Aggregate [10] Itemset None Greedy ✔

Disaggregate [10] Itemset Greedy Greedy ✔

Hybrid [10] Itemset Greedy Greedy ✔

IGA[11] Itemset Degree Degree ✔

RelevanceSorting[18] Rule Support Weight

EDSR[27] Itemset None Size

HRR[28] Rule Support All

SIF-IDF[17] Itemset Support Weight

Algorithm 2b [15] Itemset Support Size

Algorithm 2.c [15] Itemset None Size

PDA[19] Rule Greedy Weight

WDA [19] Rule None Weight

Naïve[11] Rule All Degree

MaxFIA [11] Itemset Support Degree

MinFIA [11] Itemset Support Degree

PSO2DT [35] Itemset All Weight ✔

PGBS [14] Itemset Degree Degree ✔ ✔

HCSRIL[38] Rule Lattice Size

AARHIL[39] Rule Lattice Weight

35

CHAPTER 4

PRIVACY PRESERVING FREQUENT ITEMSET HIDING

In this thesis three different distortion based frequent itemset hiding algorithms;

PGBS [14], IPGBS and DynamicPGBS [36] are proposed. Both PGBS and IPGBS are

designed for static database environment whereas the DynamicPGBS is designed for

dynamic database environment. These sanitization approaches hide given sensitive

itemsets by decreasing their support under predefined sensitive thresholds with deleting

victim items from some sensitive transactions. In order to ease the complexity of the

hiding solution some heuristic are employed in the design phase of these three algorithms.

These heuristics are used for determining the transactions for modification and item to be

deleted from them. In order to increase the efficiency of sensitive transaction and victim

item identification all PGBS, IPGBS and DynamicPGBS use Pseudo Graph based data

structure.

4.1. The Pseudo Graph Data Structure

The essential steps of distortion based frequent itemset hiding process includes

identifying sensitive transactions, counting supports of sensitive itemsets and counting

support of candidate victim items. All these steps can be acquired with multiple database

scan operations however performing sequential search operation on the actual database

for once has O (|D|) worst case time complexity. To decrease the time complexity of the

search operation and reduce the number of database scan operations to one, the database

is presented as Pseudo Graph data structure. Performing scan operations on Pseudo Graph

rather than the actual database or other data structures like matrix or inverted index

provides significant improvement in terms of execution time.

Pseudo Graph. A graph G (V, E) is a set vertices V and a set edges E where some

vertices are connected by edges. If a graph consists of ordered pair of vertices, then it is

called directed graph. A loop is an edge that connects a vertex to itself. A pseudo graph

is a directed graph which allows multiple edges and loops.

36

In PGBS all transactions in the given database D are represented as Pseudo Graph

(PG) without checking their contents. The PGBS utilizes the advantage of PG for

efficiently identifying the sensitive transactions and calculating support counts of items

and sensitive itemsets. In IPGBS all sensitive itemsets are represented as Pseudo Graph.

The IPGBS utilizes the advantage of PG for identifying sensitive transactions that contain

maximum number of sensitive itemsets. In DynamicPGBS all sensitive transactions are

represented as Pseudo Graph. The DynamicPGBS utilizes the advantage of PG for

efficiently calculating support counts of items in sensitive transactions and sensitive

itemsets.

4.2. The Pseudo Graph based Sanitization Algorithm (PGBS)

The PGBS algorithm sanitizes the given transactional database D by reducing

support of sensitive itemsets under their predefined sensitive thresholds. The support

reduction is done by removing sufficient amount of items from sufficient amount of

sensitive transactions. The PGBS algorithm converts the given database D into sanitized

database D’ with zero Hiding Failure in other words no sensitive itemsets can be extracted

from D’. The aim of this algorithm is keeping maximum number of non-sensitive itemsets

present in D and cause minimum item removal on D. The two main sub problem of this

algorithm are determining the set of sensitive transactions for modification and selecting

the victim item to be removed from these sensitive transaction set. The PGBS algorithm

is based on two different heuristics for determining the set of transactions for modification

and victim item selection. The number of sensitive itemsets that are uncovered from a

single transaction is referred as cover degree. For illustration in Figure 14 (a) a sample

transactional database and in Figure 14 (b) sensitive itemsets of this database are shown.

The cover degree column of Figure 14 (a) indicates the cover degree of each transaction.

For many cases it is possible to reduce the number of transaction modification by

selecting high cover degree. Because this enables to sanitize more than one sensitive

itemset at once by modifying a single transaction. Also modifying less number of

transactions reduce the number of iterations of the sanitization algorithm. The first

heuristic is based on this fact and selects transactions according to their cover degrees.

37

(a) Transactional database (b) Sensitive itemsets

Figure 14. Sample database and sensitive itemsets with their sensitive thresholds.

If intersection of two or more sensitive itemsets is not empty with another

meaning they share a common item then removing this item from sensitive transaction

reduces support of more than one sensitive itemset at the same time.

The flowchart of PGBS algorithm is given in Figure 15. The algorithm takes the

database D, the set of sensitive itemsets (SI) and their sensitive thresholds (SI) as input.

This algorithm consists of four main processes where the first process is converting the

database D into PG. The second process is creating the Sensitive Count Table (SCT)

where the SCT keeps the number of necessary support count decrease of each sensitive

itemset. The third process creates the Sanitization Table (ST), this table keeps the

information related to modification operation that is going to applied to D. The last

process is the sanitization process; this process creates a copy of the database and applies

the sanitization information stored in the ST to the copy of the database.

Figure 15. The flowchart of PGBS algorithm.

38

4.2.1. Pseudo Graph (PG)

The Pseudo Graph used in PGBS algorithm represents all transactions in the given

database D with Pseudo Graph. The vertices represent each different item in D and they

are connected to each other by edges where edges are labelled with transaction ids. As an

example if item i1 is connected with item i2 with a directed edge labeled with n then this

means that i1 appears with i2 in the nth transaction. The vertices having reflective edges

represent the transactions containing a single item.

To create the PG initially all transactions in D are sorted in lexicographic or

alphabetic order and then each transaction in D is inserted one by one to the PG. The

insertion process first checks whether there exists a vertex for each item i of the given

transaction tr and if not vertex labelled with i is created. Then each item of transaction tr

is connected to each other in sequential order and the edges connecting these vertices are

labelled with the id of tr. If there exists any transaction tr containing only one item i then

a self-loop labelled with the id of tr is created for the vertex i. The algorithm for creating

the Pseudo Graph of a given database D is depicted in Algorithm 1. First transactions are

read by one by from the database and then for each item of the transaction vertices are

created if it is not present. Next vertices representing each item of a given transaction are

connected sequentially labelled with the transaction ids.

39

The conversion process of the database D into PG is illustrated in Figure 16.

Suppose the database D in Figure 14 (a) is given and all transactions in D are

alphabetically sorted before the conversion process. The Pseudo Graph given in Figure

16 (a) and (b) shows transactions “abcdef” and “bc” are inserted into PG respectively and

the Figure 16 (c) shows PG after all remaining transactions in D are inserted PG.

(a) PG after transaction

“abcdef” inserted

(b) PG after transaction “bc”

inserted

(c) PG after all transactions

inserted

Figure 16. Inserting transactions into PG.

Transactions containing a given 2-itemset is uncovered from PG with using the

intersection operation. Intersecting the transactions ids on the outgoing edge of one vertex

with transaction ids on the incoming edge of the other vertex gives transactions containing

both items at the same time. Suppose XY be a 2-itemset and prefix(X) detonate

transaction ids on outgoing edges of vertex X and postfix denote transaction ids on

incoming edges of vertex(Y). The support count of XY in database is calculated by

prefix(X)  postfix(Y). Similarly the support count of a k-itemset is calculated by

prefix(item1)  postfix(item2)  …  postfix (itemk) where the sequence of an item itemN

in k-itemset is denoted as N. As an example transactions containing the itemset “ade” in

Figure 16 (c) is calculated by ({1,4,5,6,8}  {1,3}  {1,3,4,5}) = {1} so the support

count of itemset “ade” is 1. Also the support count of an item is equal to the total number

of distinct transaction ids on the incoming and outgoing edges. As an example support

count of “c” in Figure 16 (c) is {1,2,3,4,5,6}  {1,3,4,5} = {1,2,3,4,5,6} which means

the support count of item “c” is 6.

40

4.2.2. Creating the Sensitive Count Table

Sensitive Count Table (SCT) represents the minimum number of support count

decrease required to hide a sensitive itemset. The SCT has three attributes, SID, SI and

NModify. The SID is the unique identifier of records in SCT, SI is the sensitive itemset and

NMoidfy is the minimum number of support count decrease to hide a given sensitive

itemset. The Nmodify is calculated with the following equation;

 𝑁𝑀𝑜𝑑𝑖𝑓𝑦 = ⌊𝑠𝑐𝑜𝑢𝑛𝑡(𝑋) − 𝑠𝑡(𝑋) ∗ |𝐷| + 1⌋ (4.1)

where X is the sensitive itemset, the scount (X) is the number of transactions supporting

X in D, st (X) is the sensitive threshold of X and |D| is the total number of transactions in

database D. After the SCT is created it is sorted in descending order of NModify attribute.

For illustration, in Table 5 the NModify of the sensitive itemset “ab” is 3; it means after

item “a” or item “b” is deleted from 3 transactions of the database then the sensitive

itemset “ab” will become sanitized.

Table 5. Sensitive Count Table (SCT) of PGBS and IPGBS algorithms.

SID SI NModify

0 ab 3

1 df 3

2 bc 2

4.2.3. Creating the Sanitization Table

The process of creating the Sanitization Table consists of creating the sanitization

Table (ST) and updating PG. The Sanitization Table (ST) keeps the final modification

information that will be applied to the database before it is published. The ST has two

attributes, Victim and Transactions. The victim attribute keeps the victim item that is

selected to be deleted and the transactions attribute keeps the list of transactions that this

victim item will be deleted. After each victim and corresponding transaction set for

modification is determined it is put into the Sanitization Table and consequently the

Pseudo Graph is updated by deleting this victim item from the transactions determined.

The algorithm of creating the Sanitization Table (ST) is depicted in Algorithm 2.

The algorithm starts the sanitization process with the sensitive itemset having greatest

41

NModify value. The victim item is selected among items in a given sensitive itemset having

maximum conflict degree. If there is more than one victim item having the same conflict

degree the victim item is selected with maximum support count value among candidate

victim items. If there is still more than one candidate victim item, then it is selected

randomly among them and then put into the variable victim. The unifiedItemsets variable

in the algorithm unifies all sensitive itemsets in SCT sharing the victim variable. If the

number of sensitive itemsets in the unifiedItemsets variable is equal to one, then this

implies that the variable victim is not contained in any different sensitive itemset than the

active sensitive itemset si and it is impossible to unify the si with any other sensitive

itemset in SCT. Next the ids of sensitive transactions supporting unifiedItemsets are

uncovered from PG with not exceeding the NModify of the si and put into variable

sensitiveTransactions. Then the victim and the sensitiveTransactions are added to the

sanitization Table (ST). The PG is updated by deleting the victim from transactions stored

in sensitiveTransactions and the NModify of each sensitive itemset in unifiedItemsets is

reduced by the number of transaction ids stored in sensitiveTransactions. If NModify of any

record in SCT becomes less than or equal to zero, then it is removed from both SCT and

unifiedItemsets to avoid decreasing the support of already sanitized sensitive itemset more

than necessary. Also database D may not contain sufficient number of transactions

supporting unifiedItemsets, in such a case the sensitive itemset having the least NModify is

removed from unifiedItemsets at each iteration till only the active sensitive itemset si

remains in unifiedItemsets. The creation of the Sanitization Table terminates when there

is no remaining row left in SCT.

4.2.4. Illustrating Example

To illustrate how the algorithm depicted in Algorithm 2 works suppose the

Sensitive Count Table (SCT) is given in Table 5 and Pseudo Graph (PG) is given in Figure

16 (c) as input. In this example there are three sensitive itemsets; “ab”, “df” and “bc”

where the itemset “ab” has the maximum NModify value which is 3. So the sanitization

process starts from the “ab” (step 1). The victim item is selected as “b” (line 2) among

items in “ab” and put into variable victim because it has the maximum conflict degree

(conflict degree= 3). Then the sensitive itemsets containing “b” are unified (line 3) and

42

put into the variable unfiedItemsets. The unifiedItemsets is “abc” and according to the PG

in Figure 16 (c) transactions containing “abc” are {1,4,5} (line 11). NModify of “ab” and

“bc” are updated in SCT as 0 and -1 respectively (line 12) and the sensitive itemsets “ab”

and “bc” are removed from SCT and unifiedItemsets (lines 12-18) because their NModify

value become less than or equal to zero. The victim “b” and transaction ids {1,4,5} pair

is put into the Sanitization Table (line 19) and item “b” is removed from transaction

{1,4,5} in PG as shown in Figure 17 (a) (line 20). The next non-sanitized sensitive itemset

in SCT is “df” and the victim is selected as “f” because it has the maximum support count

value (support count f = 4) (lines 1-2). The unifiedItemsets variable is “df” because the

only remaining sensitive itemset in SCT is “df” (line 3). Transactions containing “df”

with not exiting the NModify of “df” are {1,3,6} and they are assigned to variable

sensitiveTransactions (line 5). The PG is updated as in Figure 17 (b) where the item “f”

is removed from transactions {1,3,6} (line 7) and the sensitive itemset “df” is removed

from SCT (line 8). The creation of the Sanitization Table terminates because there is no

record left in SCT.

4.2.5. Sanitizing the Database

The last process of PGBS is applying the sanitization solution stored in the

Sanitization Table (ST) to the original database D and create a sanitized database D’. The

whole sanitization process is illustrated in Figure 18. In this figure first the given database

D is converted to the Pseudo Graph (PG) representation, then the Sensitive Count Table

(SCT) is created with using the PG and the previously defined sensitive itemsets. The

third step creates the Sanitization Table (ST) with using the PG and information stored in

SCT. The final step creates a copy of the database D and applies the information stored

in ST to this copy to produce the D’.

4.3. The Itemset Oriented Pseudo Graph based Sanitization

Algorithm (IPGBS)

As the PGBS algorithm the Itemset Oriented Pseudo Graph (IPGBS) algorithm is

designed for frequent itemset hiding in the static environment. The main similarities

43

(a) PG after item “b” is deleted from

transactions {1,4,5}

(b) PG after item “f” is deleted from

transactions {1,3,6}

Figure 17. Updating PG with deleting items.

44

Figure 18. The flow of the processes in PGBS.

between these two algorithms are first both of them hide sensitive itemsets with

decreasing their support under their sensitive thresholds and the second both employ the

Pseudo Graph data structure during the sanitization process. However, the main focus of

IPGBS algorithm is reducing the amount of information loss whereas the main focus of

PGBS algorithm is to minimize the execution time. The Psudo Graph data structure used

in IPGBS is called Itemset Oriented Pseudo Graph (IPG). The IPG keeps only the

sensitive itemsets and the transactions containing them.

4.3.1. Itemset Oriented Pseudo Graph (IPG)

The Pseudo Graph used in IPGBS algorithm represents all sensitive itemsets in

the given database D and it based on the Pseudo Graph proposed in PGBS algorithm. The

vertices represent each different sensitive itemset and they are connected to each other by

edges where edges are labelled with transaction ids. The transaction ids on the edges

represent the set of transaction ids containing the sensitive itemsets on the path between

starting vertex and its direct successor. As an example if itemset is1 is connected with

item is2 with a directed edge labeled with n then this means that is1 appears with is2 in the

nth transaction. The vertices having reflective edges represent the transactions containing

a single itemset.

The procedures of manipulating IPG include construction of the graph, insertion

of transactions and deleting transactions from the graph. Constructing the IPG and

insertion of the transactions is depicted in Algorithm 3. First each transaction in database

45

D is checked to find out whether it contains any sensitive itemset, and if so these sensitive

itemsets are put into the variable sItemsets. Then if IPG does not contain any vertex

labelled with any itemset si in sItemsets, a vertex labelled with si is created. Next, if the

variable sItemsets contains more than one sensitive itemset then vertices in IPG labelled

with these sensitive itemsets are connected with each. The label on the edge connecting

these vertices is composed of transaction ids containing these sensitive itemsets. Also a

reflective edge is created for the last sensitive itemset in sItemsets to indicate the finish

vertex of the deepest path on the graph. If the transaction tr contains only one sensitive

itemset then a loop is created in IPG for the vertex labelled with this sensitive itemset.

The construction of the IPG is illustrated in Figure 19. Suppose the transactional

database and sensitive itemsets are given in Figure 14 (a) and (b) respectively. First each

transaction is checked in sequential order to find out if it is sensitive and if so it is inserted

into the IPG. The first sensitive transaction in D is “abcdef” with transaction id 1. Vertices

labelled with “ab”, ”bc” and “df” are created and connected with each other with edge 1

as in Figure 19 (a). The next transaction in D is “bc”, and it contains only one sensitive

itemset “bc”, because there is no any other sensitive itemset in this transaction a reflective

edge labelled with 2 is created on vertex “bc” as shown in Figure 19 (b). After all

remaining sensitive transactions in D are inserted into the IPG the resulting IPG is shown

in Figure 19 (c).

46

(a) IPG after transaction

“abcdef” inserted

(b) IPG after transaction

“bc” inserted

(c) IPG after all

transactions inserted

Figure 19. Inserting transactions into IPG.

Transactions supporting a given sensitive itemsets si is equal to the distinct

transaction ids on the incoming and outgoing edges of vertex si. Similarly transactions

supporting N number of sensitive itemsets is calculated by Prefix (sensitiveItemset1) 

Postfix(sensitiveItemset2)  …  Postfix (sensitiveItemsetN). As an example the

transactions supporting the sensitive itemsets “ab”, “bc” and “df” are uncovered from IPG

in Figure 19 (c) by {1,4,5,6,8}  {1,2,4,5,6}  {1,3,6,7} = {1,6}. The procedure deleting

transaction from the graph is only includes deleting specified transaction from the

outgoing edges of vertices.

4.3.2. IPGBS Algorithm

The IPGBS (Itemset Oriented Pseudo Graph Based Sanitization) algorithm is a

distortion based frequent itemset hiding algorithm. The main objective of the IPGBS

algorithm is to reduce the non-sensitive information loss during sanitization operation. In

order to keep the difference between number of non-sensitive information in the original

and sanitized database minimum number of transactions are modified. The IPGBS

algorithm starts the modification operation from transactions containing maximum

number of sensitive itemsets. To reduce the execution time complexity of uncovering

transactions having maximum degree of conflict from the actual database D the Itemset

Oriented Pseudo Graph (IPG) is employed.

The flowchart of this algorithm is illustrated in Figure 20. As in PGBS the IPGBS

algorithm takes the database D, the set of sensitive itemsets (SI) and their sensitive

thresholds (SI) as input. The IPGBS algorithm consists of four main processes where the

first process is converting the database D into IPG. The second process is creating the

Sensitive Count Table (SCT) and the third process creates the Sanitization Table (ST).

47

The final process is the sanitization process; this process creates a copy of the database

and applies the sanitization information stored in the ST to the copy of the database.

Figure 20. The flowchart of IPGBS algorithm.

Both Sensitive Count Table and Sanitization Table keep the same information as

in PGBS. The detail information for creating the SCT is explained in previous sections

and the same producers are followed in IPGBS. There is only one difference between the

SCT created in IPGBS and PGBS. The SCT is sorted alphabetically or numerically

according to SI values in IPGBS algorithm whereas SCT is sorted according to NModify in

PGBS algorithm.

4.3.3. Creating the Sanitization Table

The IPGBS algorithm tries to find out transactions containing maximum number

of sensitive non-sanitized sensitive itemsets and then deletes previously determined items

(victims) from these transactions. It is possible to uncover transactions supporting

maximum number of sensitive itemset by uncovering transaction ids of the deepest path

in IPG. The deepest path of a sensitive itemset si is the longest path in IPG, starting from

the si. The depth first search traversal method is the efficient way of finding the deepest

path of a sensitive itemset.

The algorithm for creating the Sanitization Table is depicted in Algorithm 4. First

each sensitive itemsetsi stored in the SI field of SCT is started to be selected by one by

and if the si is not already sanitized the hiding operation for si starts. The variable

48

deepestPath stores the longest path in IPG starting from the given sensitive itemsetsi. The

deepestPath does not contain any sensitive itemset that is already sanitized because in the

opposite case support of sensitive itemset may decreased more than necessary and this

may lead to effect more non-sensitive frequent itemsets in the resulting sanitized

database. After the deepest path containing maximum number of strong sensitive itemsets

is determined by using depth first search traversal technique, the transactions containing

this path are extracted from IPG with not exceeding the NModify value of the corresponding

sensitive itemset. Next the item having the maximum cover degree among items in

deepestPath is selected as victim. If there exists more than one item having the same

cover degree, the item with maximum support count is selected. If there is still more than

one, then the victim item is selected randomly. After the sensitive transactions for

modification and victim item are determined the IPG is updated by removing these

transactions from outgoing edges of the active sensitive itemsetsi. This update operation

is for avoiding selecting the same transactions more than once in the next iteration. Then

these transactions and victim item pair is inserted into the Sanitization Table (ST). If any

of the sensitive itemset stored in deepestPath contain the victim item, then NModify value

of them are decreased by the number of transactions uncovered. Besides the selected

victim item may not be common in all sensitive itemsets of the deepest path. In such a

case these sensitive itemsets are inserted into the variable NotContain and a new victim

item is selected for these sensitive itemsets. Then this victim item and sufficient number

of transactions from previously uncovered transactions are inserted into the Sanitization

Table (ST). The algorithm continues to generate deepest path and select victim item and

uncover sensitive transactions till the given sensitive itemset si is sanitized or there does

not exist any new deepest path for si. If there are insufficient number of transactions

uncovered to hide sensitive itemset si and there is no more different deepest path left for

the vertex si then insufficient number of transactions problem arises, which means there

is an insufficient number of transactions containing the paths with length more than one

starting from the vertex si in IPG. This problem appears due to the fact that given sensitive

itemset may appear as the last element in most or all sensitive transactions when sensitive

itemsets are sorted in alphabetically or numerically and as a result there would not be

sufficient number of longest paths different from the loop pointing to the same vertex in

IPG. The algorithm solves the insufficient number of transactions problem by selecting

49

the victim item among items in si having maximum support count value and uncovering

sufficient number of transactions from the incoming edges of a given sensitive itemset.

4.3.4. Illustrating Example

To illustrate how the algorithm depicted in Algorithm 4 works, suppose the

Sensitive Count Table (SCT) is given in Table 1 and Itemset Oriented Pseudo Graph

(IPG) is given in Figure 19 (c) as input. In this example there are three sensitive itemsets;

“ad”, “cd” and “bd” where the itemset “ad” has the maximum NModify value which is 3.

So the sanitization process starts from the “ab” (line 1). The deepest path starting from

vertex “ab” is “abcdf” (line 2) and transactions {1,6} supports this path, so the transaction

id {1,6} is inserted into the variable transactions (line 3). The item “b” is selected as

victim item as it has the maximum conflict degree (conflict degree =2) and then put into

the variable victim (line 4). The IPG is updated as in Figure 21 (a) by removing transaction

{1,6} (line 5) and the victim and transactions pair is inserted into the Sanitization Table

(ST) (line 6). NModify of “ab” and “bc” are updated as 1 and 0 respectively. The sensitive

itemset “df” in the path “abcdf” does not contain the victim item “b” so the item “f” is

selected as victim item among items “d” and “f” because it has the maximum support

count (support count=6). The NModify of “df” in SCT is updated as 1 and then the victim

item “f” with transaction ids {1,6} are inserted into the ST (lines 8-13). The next deepest

path containing maximum number of non-sanitized sensitive itemsets starting from vertex

“ab” is “ab”, the deepest path “abc” is neglected because it contains the sanitized sensitive

itemset “bc”. The item “a” is selected randomly as victim among the items “ab” because

both support count of “a” and “b” are the same (support count of a = 5, support count of

b=5). The IPG is updated by removing transaction {8} from vertex “ab” as shown in

Figure 21 (b), the victim “a” and transaction {8} is added to the Sanitization Table (lines

2-5). The next none sanitized sensitive itemset in SCT is “df” and the deepest path starting

from the vertex “df” is “df” with transaction {7}. Finally, the victim “d” and transaction

{7} is inserted into ST and the IPG is updated as in Figure 21 (c).

50

4.3.5. Sanitizing the Database

The sanitization process of IPGBS creates a copy of the original database D and

then applies the sanitization solution stored in Sanitization Table (ST) to this copy. The

whole sanitization process is illustrated in Figure 22. In this figure first the given database

(a) IPG after the path

“abcdf” is deleted from

transactions {1,6}

(b) IPG after path “ab”

is deleted from

transaction {8}

(c) IPG after path “df” is

deleted from transaction

{7}

Figure 21. Updating IPG with deleting paths.

D is converted to the Itemset Oriented Pseudo Graph (IPG) representation, then the

Sensitive Count Table (SCT) is created with using the IPG and the previously defined

sensitive itemsets. The third step creates the Sanitization Table (ST) with using the IPG

and information stored in SCT. The final step creates a copy of the database D and applies

the information stored in ST to this copy to produce the D’.

51

4.4. Dynamic Frequent Itemset Hiding Algorithm (DynamicPGBS)

The Dynamic Pseudo Graph based Sanitization algorithm [36] is designed for

hiding frequent itemsets in the dynamic environment. In dynamic environment

transactional databases are continuously being updated by receiving increments. A static

Figure 22. The flow of the processes in IPGBS algorithm.

frequent itemset hiding algorithm can be applied to the dynamic database environment

by waiting all increments and then applying the sanitization process to the whole updated

database. However, this will be inefficient in terms of total resource allocation and

execution time because whenever an incremental part arrives to the database the

sanitization process should start from scratch to consider the updates.

4.4.1. DynamicPGBS Algorithm

The database D in a dynamic database environment is being continuously updated

with receiving increments. Figure 23 (a) illustrates this environment where the original

part is denoted as D and the incremental part is denoted as d and Dd brings out the

updated database. In order to hide sensitive itemsets in the updated database either the

transactions in the incremental part d or transactions in the whole updated database D d

need to be modified. Modifying only the transactions in the incremental part of the

database is dealing with small number of transactions. Suppose there are three sensitive

itemsets as in Figure 23 (b). The original database D is already sanitized because support

of all these three sensitive itemsets are below their sensitive threshold where support of

52

“ad”, “cd” and “bd” are 28.6%,14.3% and 0% respectively. After the database D is

updated with the incremental part d the support of “ad”, “cd” and “bd” becomes 50%,

30%, and 10% respectively and this reveals the need for sanitization process before the

updated database is published. One possible approach is to modify transactions in only

incremental part d and the other possible approach is to modify transactions in the updated

database. The first approach is adventurous in terms of execution time and resource

allocation because there will be less transactions in the search space (transactions =

{8,9,10}) compared to the second approach. However, the first approach may bring out

more side effects such as loss of non-sensitive information and total number of item

removal because all potential sensitive transactions will not be in the search space. On

the other hand, the second approach is more advantageous in terms of side effects when

compared to first approach but it will be inefficient in terms of execution time and

resource allocation. However, it is possible to reduce these inefficiencies of the second

approach by using an appropriate data structure.

The DynamicPGBS algorithm uses a Transaction Oriented Pseudo Graph (TPG)

data structure based on the PG used in PGBS. Unlike the PGBS algorithm the

DynamicPGBS algorithm only puts the sensitive transactions in to the Pseudo Graph data

structure.

(a) Dynamic database (b) Sensitive itemsets

Figure 23. Sample database and sensitive itemsets with their sensitive thresholds.

53

4.4.2. Transaction Oriented Pseudo Graph (TPG)

The Transaction Oriented Pseudo Graph (TPG) data structure used in

DynamicPGBS algorithm is very similar to the Pseudo Graph data structure used in

PGBS. The only difference is the DynamicPGBS represents all sensitive transactions in

the given database D rather than all transactions of D. The Pseudo Graph structure of

DynamicPGBS is called TPG. It is assumed that items in each transaction are sorted in

alphabetical or numerical order before they are converted to TPG. The algorithm for

creating the TPG of a given database D is depicted in Algorithm 5. First each transaction

in database D is checked to find out whether it is sensitive or not. Next vertices

representing each item of a given sensitive transaction are connected sequentially labelled

with the transaction ids.

The conversion process of the database updated database D  d into TPG is

illustrated in Figure 10. Suppose the updated dynamic database D  dis given in Figure

23 (a) where all transactions in both D and d are alphabetically sorted. First each

transaction is checked in sequential order to find out if it is sensitive and if so it is inserted

into the TPG. The first sensitive transaction in D is “ade” with transaction id 5. Vertices

labelled with “a”, ”d” and “e” are created and connected with each other with edge 5as in

Figure 24 (a). The next sensitive transaction in D is “acd”, because there is no vertex

created for item “c” a vertex labelled with “c” is created and then vertices “a”, “c” and

“d” are connected sequentially with edge labelled with 5 as in Figure 24 (b). After all

remaining sensitive transactions in D are inserted into the TPG the resulting TPG is shown

in Figure 24 (c).

Calculating support count of sensitive itemsets is carried with same way as in

PGBS. However unlike PG the TPG only represents the sensitive transactions because of

this fact the support count of items that are generated from the TPG only represents

number of appearances of items in sensitive transactions.

4.4.3. DynamicPGBS Algorithm

In dynamic database environment after each time the database is updated with a

new batch of incoming transactions the state of a sensitive itemsets may change i.e.

support of sensitive itemsets may exceed their sensitive thresholds, support of sensitive

54

(a) TPG after transaction

“ade” is inserted

(b) TPG after transaction

acd is inserted

(c) TPG after all transactions in

D  d are inserted

Figure 24. Inserting transactions into TPG.

itemsets may fall behind their sensitive thresholds. The biggest problem in dynamic

frequent itemset hiding problem is, while state of each sensitive itemset varies they should

be hidden from the database with minimum execution time and side effects. These side

effects include amount of non-sensitive knowledge loss, amount of data modified and

total memory requirement. In order to speed up the execution time and minimize the

resource allocation the Transaction oriented Pseudo Graph (TPG) data structure is

employed. But unlike the PG as in PGBS, only sensitive transactions are put into the TPG

structure. This is because first of all modification of non-sensitive transactions does not

affect the support of any sensitive itemset and the second is the total number of vertices

and edges in the graph can be reduced. Reducing the number of vertices and edges also

reduces the total memory allocation of the TPG.

55

Before the database is published the DynamicPGBS algorithm deletes items called

victims from predefined set of sensitive transactions for decreasing support of each

sensitive itemset smaller than its sensitive threshold. None of the scan and transaction

modification operations are performed on the actual database besides they are performed

on the TPG. The information related to the sanitization operation is stored in Sanitization

Table and whenever the database is published the sanitized database is generated from

the copy of actual database by performing necessary modification.

The flowchart of DynamicPGBS algorithm is illustrated in Figure 25. Similar to

the PGBS algorithm the DynamicPGBS algorithm takes database D, sensitive itemsets

(SI) and their sensitive thresholds as input. First the database is converted to the PG, next

if a new batch of transactions (d) arrives then the PG and database (D) are updated. Either

after the conversion of D to the PG or d arrives if the database owner wants to release the

database, the hiding process starts. The hiding process composes of creating the Sensitive

Count Table (SCT) and creating the Sanitization Table (ST). After the hiding process is

finished the sanitized database (D’) is generated as output and all delete operations

performed on PG are restored prior the sanitization process. The restore operation is

performed by putting all victim and transaction pairs stored in ST into PG again and it is

for utilizing all possible sensitive transaction modifications in the next sanitization

process. Then the algorithm becomes ready to accept a new increment.

Figure 25. The flowchart of DynamicPGBS algorithm.

56

4.4.4. Creating Sensitive Count Table

As in PGBS algorithm Sensitive Count Table (SCT) represent the minimum

number of support count decrease required to hide each sensitive itemset. The SCT has

three attributes, SID, SI and NModify. The SID is the unique identifier of records in SCT,

SI is the sensitive itemset and NMoidfy is the minimum number of support count decrease

to hide a given sensitive itemset. The Nmodify is calculated with equation (1).

For illustration in Table 6 the Sensitive Count Table is shown for the Transaction

Oriented Pseudo Graph (TPG) given in Figure 24 (c) and corresponding sensitive itemsets

with their sensitive thresholds given in Figure 23 (b). After the SCT is created it is sorted

according to the NModify column, this is for starting the sanitization process from sensitive

itemset having maximum support decrease need.

Table 6. Sensitive Count Table (SCT) of DynamicPGBS algorithm.

SID SI NModify

0 ad 3

1 cd 2

2 bd 1

4.4.5. Creating the Sanitization Table

The process of creating the Sanitization Table consists of creating the sanitization

Table (ST) and updating TPG. The Sanitization Table (ST) keeps the final modification

information that will be applied to the database before it is published. As in PGBS the ST

stores the victim and transaction pairs that represents the final modification information.

The algorithm for creating the Sanitization Table is depicted in Algorithm 6. The

sanitization process starts from the SI having maximum NModify value and also if NModify

of a sensitive itemset is less than or equal to zero it indicates that the sensitive itemset is

already hidden. In step 1 the first row of the SCT is assigned to the variable r1 because it

has the maximum NModify. Then the victim item is selected among items of the r1.SI that

has the maximum conflict degree, if there is more than one item having the same conflict

degree then the victim item is selected with the highest support in TPG and if there is still

more than one victim item then a random item is selected. The unifiedItemsets variable

57

stores sensitive itemsets of SCT and contain the victim item. The sensitiveTransactions

is the set of sensitive transactions containing the unifiedItemsets and the number of

transaction ids stored in sensitiveTransactions does not exceed the r1.NModify. The TPG is

updated by removing victim item from sensitiveTransactions of PG and then the victim

and sensitiveTransactionspair is inserted into the Sanitization Table (ST). Then if any

sensitive itemset in SCT is a subset of unifiedItemsetsits NModify value is decreased by the

number of transaction ids stored in sensitiveTransactions.If any of the NModify value of a

sensitive itemset becomes less than or equal to zero it is removed from unifiedItemsets. If

the sensitive itemset stored in r1 is still having NModify greater than zero, then the algorithm

tries to find out different transactions by changing the unifiedItemsets with removing the

sensitive itemset having least NModify value.

58

4.4.6. Illustrating Example

To illustrate how the algorithm depicted in Algorithm 6 works suppose the

Sensitive Count Table (SCT) is given in Table 6 and TPG is given in Figure 24 (c) as

input. The first row stored in SCT is “ad” and the sanitization process starts from this

sensitive itemset (line 1). The victim item is selected as “d” (line 2) among items in “ad”

and put into variable victim because it has the maximum conflict degree (conflict degree

item “d” = 3). Then all sensitive itemsets in SCT are unified and assigned to the variable

unfiedItemsets because each of them contain the item “d”. The unfiedItemsets (line 3)

becomes “abcd” and according to TPG in Figure 24 (c) only the transaction with id {8}

contains this itemsets. The transaction id {8} is assigned to the sensitiveTransactions

variable (line 4) and the TPG is updated by removing item “d” from transaction {8} (line

5) as shown in Figure 26 (a). The victim “d” and transaction {8} pair is added to the

Sanitization Table (ST) (line 6) and NModify of each sensitive itemset in SCT is decreased

by 1 (lines 7-10). After SCT is updated NModify of “bd” becomes zero so this means it is

sanitized and will be neglected while calculating the conflict degrees of items and

unfiedItemsets variable in the next iteration. The algorithm again selects the victim item

as “d” (line 2) because it has the maximum conflict degree (conflict degree “d” = 2). The

unifiedItemsets becomes “acd” (line 3) and according to the TPG in Figure 26 (a)

transactions {7} and {10} contain it (line 4). The victim is removed from transactions {7}

and {10} as shown in Figure 26 (b) (line 5) and the victim “d” and transactions {7,10}

pair is inserted to the ST(line 6). The new NModify of “ad” and “cd” becomes 0 and -1

respectively so the hiding process terminates. After the ST is created a new copy of the

original database D is created and the modification information stored in ST is applied to

this copy. Then the TPG is recovered by using the ST and all records stored in ST are

deleted and the algorithm becomes ready to accept new increments.

4.4.7. Sanitizing the Database

The sanitization process of DynamicPGBS creates a copy of the original updated

database (D  d)and then applies the sanitization solution stored in Sanitization Table

(ST) to this copy. The whole sanitization process after an incremental part d is arrived to

59

(a) TPG after item “d” is deleted

from transaction {8}

(b) TPG after item “d” is deleted

from transactions {7,10}

Figure 26. Updating TPG with deleting items.

Figure 27. The flow of the processes in DynamicPGBS algorithm.

the original database D is illustrated in Figure 27. In this figure first the given updated

database D  d is converted to the Transaction oriented Pseudo Graph (TPG)

representation, second the Sensitive Count Table (SCT) is created with using the TPG

and the previously defined sensitive itemsets. Third the Sanitization Table (ST) is created

with using the TPG and information stored in SCT. Finally a copy of the database D  d

is created and the information stored in STis applied to this copy for producing the

sanitized database D’.

60

CHAPTER 5

PERFORMANCE EVALUATION

This chapter presents experimental results undertaken to empirically validate

proposed frequent itemsets hiding algorithms; PGBS, IPGBS and DynamicPGBS. The

experiments are performed on both real and synthetic databases by varying different

attributes of the databases. The evaluation results of PGBS and IPGBS are represented

together because both are developed for static environment whereas the evaluation results

of DynamicPGBS are presented in separately because it is designed for dynamic

environment.

All the experiments are conducted on a computer with Intel core i7-5500 2.4 GHZ

processor and 8GB of RAM running on a Windows 10 operating system. In all test runs

it is ensured that the system state is similar and gives close results when repeated. The

algorithms are implemented in Visual Studio .NET C# 2015 Ultimate Edition.

5.1. Databases

The PGBS, IPGBS and DynamicPGBS algorithms are evaluated both on real and

synthetic databases. The real databases used in the performance evaluations are Connect,

and Retail where the Connect is obtained from UCI database repository [51] and the

Retail is obtained from [52]. The Connect database contains all legal 8-ply positions of

connect-4 game where none of the player has won yet and the next move is not forced.

The Retail database contains anonymous market basket data from a Belgian retail

supermarket store. Also two synthetic databases; SyntheticSparse and SyntheticDense

with different characteristics are generated by using the IBM quest data generator [53].

The characteristics of all databases in terms of size of database, number of distinct

items, average transaction length, shortest and longest transaction length and density are

given in Table 7. The ratio of average transaction length to number of distict items is

denoted as density. Density of a database indicates whether a given database is dense or

sparse. As the density of a given database increases the correlation between items

61

increases so the frequent itemsets generated from dense databases are usually long [43-

45].

Table 7. Characteristics of databases.

Name Transactions
Distinct

Items

Average

Length

Shortest

Length

Longest

Length

Density

(%)

Connect 67,557 129 43 43 43 33.4

Retail 88,162 16,470 10.3 2 77 0.0625

SyntheticDense 29,166 99 43.09 2 44 43.5

SyntheticSparse 28,417 9,479 11.48 2 11 0.1212

5.2. Frequent Itemset Hiding Algorithms in Static Environment

The sanitization algorithms that are analyzed in this section are Pseudo Graph

Based Sanitization (PGBS), Itemset Oriented Pseudo Graph Based Sanitization (IPGBS)

and Transaction Oriented Pseudo Graph (TGBS) algorithms. The TPGBS algorithm is

similar to the Hiding Process of DynamicPGBS algorithm proposed in [36]. This

algorithm employs same methodologies as in Dynamic PGBS algorithm. All these three

algorithms enable to assign multiple sensitive thresholds and also they use pseudo graph

data structure for representing the transactions of the database. The vertices in pseudo

graph data structure of thePGBS algorithm represents all items of the original database,

the TBGS algorithm represents only items of sensitive transactions and the IPGBS

represents each different sensitive itemsets. The objective of all these three algorithms is

to minimize the loss of non-sensitive knowledge with modifying minimum number of

transactions.

For each database a set of 10 to 100 sensitive itemsets are selected and different

sensitive thresholds are assigned. The sensitive itemsets of each database is determined

as follows; first the set of frequent itemsets from each database is generated with

predefined minimum support thresholds, next this set of frequent itemsets in each

database is partitioned into 5 support bins where each bin contains nearly the same

number of itemsets. As the last step 2 to 20 itemsets are randomly selected from each bin

as sensitive itemset and the sensitive threshold of each sensitive itemset is assigned as the

corresponding support of the bin. The support bin of each database is shown in Table 8.

62

Table 8. Support bins of the databases in static environment.

The basic aim of the performance evaluation is to observe how the number of

sensitive itemsets affects the performance of the algorithms. The performance of all

algorithms is evaluated with respect to execution time, distance, information loss,

accuracy and total memory consumption. The time need for performing the sanitization

process by each algorithm is considered as execution time. The information loss, distance

and accuracy are considered as side effects caused by the sanitization algorithms. The

total memory allocation is considered as the total memory allocated by each algorithm

for performing the sanitization process.

5.2.1. Execution Time

Execution time of PGBS, TPGBS and IPGBS algorithms on Connect, Retail,

SyntheticDense and SyntheticSparse algorithms are shown in Figure 28 (a), (b), (c) and

(d) respectively. It can be observed that PGBS algorithm has the least execution time on

dense databases; Connect and SyntheticDense and the TGPS has the second lowest

execution time. This is because both IPGBS and TBGS algorithms has execution time

overhead while converting the database to IPG and TPG respectively. This overhead

comes from analyzing the contents of each transaction in the database whereas this is not

the case in PGBS, the PGBS algorithm directly converts all transactions in the database

to Pseudo Graph (PG) without checking their contents. Dense databases contain too much

distinct items and checking each item of all transactions increases the execution time of

IPGBS and TPGBS. Figure 28 (c) and (d) show the execution time of algorithms on sparse

databases. It can be inferred that the IPGBS has the least execution time on sparse

databases and the TPGBS has the second lowest execution time. This is because

compared to dense databases sparse databases have few different items.

 Connect Retail SyntheticDense SyntheticSparse

Bin Support Range Support Range Support Range Support Range

1 (0.85, 0.857] (0.0001, 0.00011] (0.3, 0.308] (0.0002, 0.000024]

2 (0.8576, 0.8672] (0.00011, 0.00013] (0.308, 0.3185] (0.00024, 0.00028]

3 (0.8673, 0.8792] (0.00013, 0.0017] (0.3185, 0.3339] (0.00028, 0.00035]

4 (0.8793, 0.8985] (0.00017, 0.00026] (0.3339, 0.3619] (0.00035, 0.00049]

5 (0.8986, 0.9987] (0.00026, 0.05072] (0.3619, 0.9546] (0.00049, 0.038]

63

(a) Connect database (b) Retail database

(c) SyntheticDense database (d) SyntheticSparse database

Figure 28. Execution time varying the number of sensitive itemsets.

5.2.2. Information Loss

The information loss is the metric for showing the amount of non-sensitive

frequent itemsets lost during the sanitization process. Figure 29 (a), (b), (c) and (d) shows

information loss in percentage. It can be seen that the IPGBS algorithm has the least

information loss on all databases. This is because the aim of the IPGBS algorithm is to

modify least number of transactions during the sanitization process with modifying

transactions containing maximum number of non-sanitized sensitive itemsets. As the total

number of transaction modification decreases the information loss decreases at the same

time. While the PGBS algorithm cause nearly the same information loss on Connect

database with TPGS algorithm, the PGBS algorithm has the worst information loss on

Retail, SyntheticDense and SyntheticSparse databases. Also it should be noted that the

amount of information loss on dense databases Connect and SyntheticDense is higher

than the information loss on sparse databases Retail and SyntheticSparse for all three

algorithms.

64

(a) Connect database (b) Retail database

(c) SyntheticDense database (d) SyntheticSparse database

Figure 29. Information loss varying the number of sensitive itemsets.

5.2.3. Distance

The distance metric shows the total number of items deleted from the database

during the sanitization process and it is shown in Figure 30 (a), (b), (c) and (d). On

Connect database the PGBS and the TPGBS algorithms have the same and lowest

distance. On Retail database the TPGBS has the lowest distance while the PGBS has the

highest distance. The IPGBS algorithm has the lowest distance on SyntheticDense and

SyntheticSparse databases and the PGBS has the highest distance on sparse databases

SyntheticDense and Retail.

5.2.4. Accuracy Loss

The accuracy loss metric indicates the total number of different transactions

modified during the sanitization process and it is shown in percentage in Figure31 (a),

65

(b), (c) and (d). from Figure 31 (a) and (c) it can be inferred that the IPGBS algorithm has

the minimum accuracy loss on dense databases. Also it is clear that there is no relation

(a) Connect database (b) Retail database

(c) SyntheticDense database (d) SyntheticSparse database

Figure 30. Distance varying the number of sensitive itemsets.

between the number of sensitive itemsets and accuracy loss for the IPGBS algorithm on

dense databases while this is not the case for both PGBS and TPGBS algorithms. On

Connect database the PGBS and the TPGBS have the same accuracy loss and it increases

with the number of sensitive itemsets. On SyntheticDense database the PGBS algorithm

has the maximum accuracy loss while the TPGBS has the second highest accuracy loss

and also the accuracy loss of TPGBS is inverse proportional to the number of sensitive

itemsets.

Figure 31 (b) and (d) show accuracy loss for sparse databases Retail and

SyntheticSparse. From these two figures it is clear that PGBS algorithm has the maximum

accuracy loss on sparse databases, the IPGBS has the second highest accuracy loss and it

is proportional to number of sensitive itemsets.

66

(a) Connect database (b) Retail database

(c) SyntheticDense database (d) SyntheticSparse database

Figure 31. Accuracy loss varying the number of sensitive itemsets.

5.2.5. Memory Consumption

The total memory allocation in megabytes (MB) of each algorithm; PGBS, IPGBS

and TPGBS are shown in Figure 32 (a), (b), (c) and (d). It can be seen that memory

consumption of IPGBS algorithm is proportional to the number of sensitive itemsets on

dense databases Connect and SyntheticDense. This is because sensitive itemsets on dense

databases have higher support compared to sparse databases and as the IPGS algorithm

stores information directly related to the sensitive itemsets and transactions they are

contained in the memory consumption increasing with the number of sensitive itemsets.

On sparse databases both PGBS and the IPGBS algorithms have the minimum memory

allocation while the TPGBS has the maximum memory allocation.

5.2.6. Discussion of the Results

The PGBS algorithm converts each item in every transaction of database D to

67

(a) Connect database (b) Retail database

(c) SyntheticDense database (d) SyntheticSparse database

Figure 32. Total memory consumption varying the number of sensitive itemsets.

vertex of Pseudo Graph (PG) without checking the content of the transactions. Besides

the IPGBS and TPGBS algorithms first check the content of each transaction and if the

transaction contains any sensitive itemset then they convert the transaction either to

Transaction Oriented Pseudo Graph (TPG) or Itemset Oriented Pseudo Graph (IPG).

Because of this transaction content checking the PGBS algorithm is more advantageous

in terms of execution time on dense databases because number of different items in dense

databases are higher than sparse database so the number of item checking increases for

both IPGBS and TPGBS algorithms. On sparse databases the IPGBS has the lowest

execution time because support of itemsets in sparse databases is smaller than dense

database consequently the number of sensitive transactions in sparse database is smaller

than dense database. As the number of sensitive transactions decrease the iteration

number of transaction content checking decreases.

The IPGS algorithm has the minimum information loss on both dense and sparse

databases because it tries to modify transactions containing maximum number of non-

sanitized sensitive itemsets. Besides both PGBS and TPGBS algorithms modify

transactions containing maximum number of sensitive itemsets without checking they are

68

already sanitized or not. There is not direct relation between the distance and

information loss metric. As the density of a given database increases the support of

sensitive itemsets increases and this results in more execution time overhead during the

Pseudo Graph data structure creation for both IPGBS and TPGBS algorithms. When the

density of a given database is sparse the execution time of IPGBS increases proportional

to the number of sensitive itemsets and it has the minimum execution time.

In the performance evaluation the loss of non-sensitive knowledge is measured

with the information loss metric and as it can be seen in the second subsection the IPGBS

has the minimum information loss compared to TPGBS and PGBS for all databases. The

memory allocation of IPGBS is better than both PGBS and TPGBS algorithms when the

given database is sparse. Also the IPGBS has the best memory allocation score on

Connect and Chess databases till 50 sensitive itemsets are sanitized and has the best

memory allocation score on SyntheticDense database till 80 sensitive itemsets are

sanitized.

There is no direct relation between density of the database and distance metric.

The distance directly depends on the set of sensitive itemsets. As the amount of common

items in a given set of sensitive itemsets increases the distance is going to decrease

because for all algorithms it is possible to sanitize more than one sensitive itemsets at

once by deleting a single item from transactions.

5.3. Frequent Itemset Hiding Algorithms in Dynamic Environment

In this section the performance of the proposed dynamic environment frequent

itemsets hiding algorithm DynamicPGBS is evaluated with using two similar counterparts

SPITF and RHID algorithms. Both SPITF and RHID algorithms are designed for the

dynamic environment as DynamicPGBS but they differ in sanitization methodologies.

The SPITF algorithm performs the sanitization opetarion on the whole updated database

(D d) where D is the original database and the d is the incremental part. The RHID

algorithm performs the sanitization operation only in the incremental part d and then

combines D with d’ where d’ is the sanitized incremental part. As in DynamicPGBS

algorithm both SPITF and RHID allows to assign multiple sensitive thresholds for

sensitive itemsets.

69

The experiments are conducted on 2 real databases Connect and Retail and two

synthetic databases SytntheticSparse and SyntheticDense. The main purpose of the

experiments is to evaluate the increment size on performance of each algorithm. So the

experiments are conducted with fixed sized sensitive itemsets while varying the size of

the arriving increments. 10 sensitive itemsets are selected randomly with using the

support bins as in the previous section. The support bins of each database is given in Table

9, and from each support bin, 2 itemsets are selected as sensitive. The algorithms are

compared for 10 different increments in each database where the increment sizes are

varied from 10% to 100% of the original database. The performance of algorithms is

evaluated with respect to execution time, information loss, distance and total memory

allocation.

Table 9. Support bins of the databases in dynamic environment.

During the performance evaluation it was noticed that the SPITF algorithm is

unable hide all given sensitive itemsets on dense databases Connect and SyntheticDense

while both DynamicPGBS and RHID achieved hiding all given sensitive itemsets. The

amount of sensitive itemsets failed to be hidden is represented with the hiding failure

metric. The hiding failure of SPITF algorithm on Connect and SyntheticDense databases

are shown in Figure 33.

5.3.1. Execution Time

The execution time of DynamicPGBS, SPITF and RHID are given in Figure 34.

on sparse databases as in Figure 34 (c) and (d) the execution time of both SPITF and

DynamicPGBS does not change linearly with the amount of new transactions added on

 Connect Retail SyntheticDense SyntheticSparse

Bin Support

Range(%)

Support

Range(%)

Support

Range(%)

Support

Range(%)

1 (85, 85.7] (0.1, 0.118] (30, 30.8] (0.5, 0.544]

2 (85.76, 86.72] (0.12, 0.142] (30.8, 31.85] (0.544, 0.6]

3 (86.73, 87.92] (0.144, 0.185] (31.85, 33.39] (0.6, 0.709]

4 (87.93, 89.85] (0.186, 0.287] (33.39, 36.19] (0.709, 0.935]

5 (89.86, 99.87] (0.288, 5.072] (36.19, 95.46] (0.935, 3.8]

70

the original database whereas this is not the case for the RHID algorithm. This is because

as sparse databases have generally short sized frequent itemsets and the sensitive itemsets

are selected among them, the size of the sensitive itemsets in sparse databases have small

size compared to sensitive itemsets of dense databases. As the size of a sensitive itemset

decreases, the execution time for uncovering transactions containing this itemset in the

data structures of both DynamicPGBS and SPITF decreases. For all databases given in

Figure 34 (a), (b), (c) and (d) the execution time of DynamicPBGSis less than SPITF and

RHID algorithms and also the RHID algorithm has the highest execution time on all

databases.

(a) Connect database (b) Retail database

(c) SyntheticDense database (d) SyntheticSparse database

Figure 34. Execution time varying increment size.

5.3.2. Information Loss

Figure 35 shows the experimental results of Information Loss. The results indicate

that SPITF causes minimum Information Loss on dense databases Connect and

SyntheticDense. This is because the SPITF is not able to conceal all given sensitive

71

itemsets in these two databases. On the other hand the DynamicPGBS algorithm achieves

the minimum Information Loss on sparse databases; Retail and SyntheticSparse.

Figure 33. Hiding failure of SPITF algorithm varying the increment size.

(a) Connect database (b) Retail database

(c) SyntheticDense database (d) SyntheticSparse database

Figure 35. Information loss varying increment size.

0

10

20

30

40

50

60

10 20 30 40 50 60 70 80 90 100

H
id

in
g

Fa
ilu

re
 (

%
)

Increment Size (%)

Connect SyntheticDense

72

5.3.3. Distance

In Figure 36 the experimental results for the distance are shown. As can be seen

in Figure 36 (a) and (b) the SPITF has the lowest distance on dense databases Connect

and SyntheticDense where as in Figure 36 (c) and (d) the DynamicPGBS has the lowest

distance on sparse databases. The small distance of SPITF may due to fact that it is unable

to hide all sensitive itemsets on dense databases and as a result less than necessary number

of transaction modification causes less item removal.

5.3.4. Accuracy Loss

The accuracy loss of DynamicPGBS, SPITF and RHID are shown in Figure 37

(a), (b), (c) and (d). For dense databases Connect and SyntheticDense the SPITF

algorithm has the lowest accuracy loss as shown in Figure 37 (a) and (c) whereas the

DynamicPGBS algorithm has the lowest accuracy loss for sparse databases Retail and

(a) Connect database (b) Retail database

(c) SyntheticDense database (d) SyntheticSparse database

Figure 36. Distance varying increment size.

73

SyntheticSparse as shown in Figure 37 (b) and (d). The RHID algorithm has the maximum

accuracy loss on three of the databases; Connect, Retail and SyntheticSparse. It can

inferred from figures that there is no relation between the amount of the increment size

and the accuracy loss.

5.3.5. Memory Consumption

The total memory allocation in megabytes (MB) of each algorithm during the

sanitization process is given in Figure 38. For dense databases Connect and

SyntheticDense, the RHID algorithm requires the minimum amount of memory as shown

in Figure 38 (a) and (c). The DynamicPGBS algorithm requires the minimum amount of

memory on sparse databases Retail and SyntheticSparse as in Figure 38 (b) and (d). This

is because the average transaction length of sparse databases is smaller than dense

databases and also support of itemsets in sparse databases are low.

(a) Connect database (b) Retail database

(c) SyntheticDense database (d) SyntheticSparse database

Figure 37. Accuracy loss varying increment size.

74

The memory requirement of the TPG data structure of DynamicPGBS decreases as there

is small sized and low support valued itemsets. The SPITF algorithm requires the greatest

amount of memory in all databases. This high memory consumption is due to SPITF’s

tree based internal data structure. This data structure represents items as vertices of the

three and it does not prevent to represent the same item in more than one vertex. On the

other hand in TPG each item is only represented once as vertex of the graph.

(e) Connect database (f) Retail database

(g) SyntheticDense database (h) SyntheticSparse database

Figure 38. Total memory consumption varying increment size.

5.3.6. Discussion of the Results

The SPITF algorithm represents each sensitive transaction of the updated database

as a tree like data structure. Although this algorithm seems to be good in distance and

information loss on dense databases it is unable to hide all given sensitive itemsets in the

given database. Because of this fact it fails to modify sufficient quantity of transactions

and as a result both information loss and distance seems to be smaller than DynamicPGBS

and RHID algorithms on dense databases.

75

The RHID algorithm does not empty any data structure for representing the

transactions and this causes smaller memory allocation on dense databases compared to

DynamicPGBS and SPITF algorithms. But this small memory allocation comes with a

tradeoff of high execution time compared to DynamicPGBS and SPITF algorithms.

The DynamicPGBS algorithm has the minimum distance and information loss

results and also it has the second best results on dense databases. The execution time of

DynamicPGBS is better than both SPITF and RHID algorithm on both sparse and dense

databases and it can have inferred that the Transaction Based Pseudo Graph (TPG) data

structure is advantageous in scan operations. The DynamicPGBS allocates the minimum

memory although it employs a data structure to represent transactions. This is because it

only converts the sensitive transactions into TPG.

76

CHAPTER 6

CONCLUSION

The privacy preserving frequent itemset mining problem is to conceal sensitive

itemsets before the database is shared between third parties. This process can be handled

by transforming the database into a new one that does not contain any sensitive itemsets.

One of the transformation techniques is deleting items from the database till support of

given sensitive itemsets are decreased below the predefined support thresholds. This type

of hiding technique is called distortion based frequent itemset hiding. The optimal

solution for distortion based frequent itemset hiding problem is to hide all given sensitive

itemsets while at the same time preserve the data and non-sensitive knowledge quality in

the published or modified database at maximum level.

The existing challenges of frequent itemset hiding algorithms are as follows. First

in the literature there are a few algorithms that enable assigning multiple sensitive

thresholds to sensitive itemsets. Decreasing support of every sensitive itemset under the

same threshold may overprotect some of the sensitive itemsets. Also malicious user may

infer the sanitized sensitive itemset if support of high and low support sensitive itemsets

are decreased under the same support threshold. Second most of the databases are

dynamic and they are continuously updated with arriving increments. In dynamic

database environment two possible approaches can be followed for sanitizing the given

database. The first approach conceals the sensitive itemsets after combining the

incremental part with the original part. The second approach conceals the sensitive

itemsets in only incremental part and then combines the sanitized incremental part with

the already sanitized original part. Third preventing scan operations on the actual database

increases the execution time efficiency. Appropriate data structures can be designed for

representing the database and then the scan operations can be carried on this data

structure.

In this thesis I have developed frequent itemset hiding algorithms for static and

dynamic environment to find out optimal frequent itemset hiding solution. I proposed

four different distortion based frequent itemset hiding algorithms where three of them are

designed for static environment and one of them is designed for dynamic environment.

77

The algorithms designed for static environments are called PGBS (Pseudo Graph Based

Sanitization), IPGBS (Itemset Oriented Pseudo Graph Based Sanitization) and TPGBS

(Transaction Oriented Pseudo Graph Based Sanitization). The algorithm designed for

dynamic environment is called DynamicPGBS. All of the four algorithms use different

versions of pseudo graph data structure to hold the necessary information related with the

input database in order to speed up sanitization process. Table 10 compares these

proposed algorithms. The column “Transaction Selection” indicates the sensitive

transactions uncovered for modification. The column “Main Objective” indicates the

main focus of the algorithms. The “Environment” column shows the database

environment the algorithm is designed for. The “Content of the vertex” column indicates

what kind of data is stored in the vertex of the graph data structure of the algorithm. The

“Content of the edge” column indicates what kind of transaction id is stored in the edges

of the graph data structure of the algorithm. The “Support Count of Items” column

indicates the possible support count of items that can be performed. The “MIS” column

shows whether the algorithm enables assigning multiple sensitive thresholds for sensitive

itemsets. The “Complexity of Creating Graph” column shows the computational

complexity of creating the internal graph structure of each algorithm. The “Complexity

of the Sanitization Process” indicates the computational complexity of sanitizing the

database for each algorithm.

The vertices of both PG (Pseudo Graph) and TPG (Transaction Oriented Pseudo

Graph) data structures represent items of the transactional database and edges connecting

these vertices represent the transaction ids containing these items. The main difference

between PG and TPG is while PG stores all items in each transaction the TPG only

represents items in sensitive transactions. As PG represents the full transactional database

it is possible to calculate support of item with using this data structure which is not the

case in TPG. In TPG it is only possible to calculate support of items that exists in sensitive

transactions. The TPG is advantageous in terms of memory requirement because it does

not represent all transactions of the given database. The IPG (Itemset Oriented Pseudo

Graph) data structure represents the sensitive itemsets as vertices and edges connecting

these vertices represent the transaction ids containing these sensitive itemsets. In IPG the

total number of vertices is equal to total number of sensitive itemsets. It is not possible to

calculate support of items in the database or support of items that exists in the sensitive

78

Table 10. Comparison of proposed algorithms.

 PGBS IPGBS TPGBS DynamicPG

BS

Transaction

Selection

Maximum

cover degree

transactions

Maximum cover

degree

transactions with

non-sanitized

sensitive itemsets

Maximum

cover degree

transactions

Maximum

cover degree

transactions

Main Objective Execution

time

Memory

Information loss

Execution

time

Execution

time

Memory

Environment Static Static Static Dynamic

Content of the

Vertex of the

Pseudo Graph

All items Sensitive itemsets Items of

sensitive

transactions

Items of

sensitive

transactions

Content of the

Edge of the

Pseudo Graph

Transaction

ids of all

items

Transaction ids of

sensitive itemsets

Transaction

ids of

sensitive

transactions

Transaction

ids of

sensitive

transactions

Support Count

of Items

In all

transactions

None Only for

sensitive

transactions

Only for

sensitive

transactions

MIS ✔ ✔ ✔ ✔

Complexity of

Creating

Pseudo Graph

O(AvgL*|D|) O(|SI|*|D|) O(|D|*|V|) O(|D|*|V|)

Complexity of

Sanitization

Process

O(|SI|*|V|) O(|SI|*(|V|+|E|)) O(|SI|*|V|) O(|SI|*|V|)

transactions. The IPG is designed for finding out transactions containing sensitive

itemsets.

79

The PGBS algorithm starts modification from transactions containing maximum

number of sensitive itemsets because in this way decreasing support of more than one

sensitive itemset with only a single transaction modification is possible. Also the PGBS

algorithm directly converts all transactions in the given database to PG data structure

without checking their contents. This is for reducing execution time overhead in creation

of the PG. The PGBS first converts all transactions of the given database D to Pseudo

Graph (PG) form. In the worst case scenario each transaction contains different items and

the intersection set of items in each transaction is empty, converting a given transaction

tr into PG takes O(|tr|) time where |tr| is the number of items in the tr. Creating edges

between vertices of PG takes O (|D|) where |D| is the database size. It should be apparent

that the algorithm has a computational complexity O (AvgL*|D|) for creating the PG

where the AvgL is the average length of transactions in D. The hiding process uncovers

transactions from PG in O (|V|) computational complexity where |V| is the total number

of vertices in PG. The uncovering process is repeated as the number of victim items so at

worst case where none of the sensitive itemsets share a common item, the hiding process

has O (|SI|*|V|) computational complexity where |SI| is the number of sensitive itemsets.

The main purpose of IPGBS algorithm is to achieve minimum amount of non-

sensitive knowledge loss during the sanitization process. For this reason, it tries not to

modify transactions containing any hidden sensitive itemsets. The IPGBS algorithm starts

modification from transactions containing maximum number of non-sanitized sensitive

itemsets. This is because as deleting items from transactions containing already sanitized

sensitive might decrease the support of sensitive itemsets more than necessary. The

internal data structure in IPGBS algorithm is called Itemset Oriented Graph (IPG). The

IPG represents the relation between the sensitive itemsets and transactions. Each

transaction in the given database is checked whether it contains any sensitive itemset and

if so it is inserted into the IPG. Compared to PG, this process causes execution time

increase in the IPG creation phase but it is compensated with low memory requirement

because of reduced number of vertices. The IPGBS algorithm only represents the

sensitive itemsets as Itemset Oriented Pseduo Graph (IPG). The algorithm checks

contents of each transaction to identify whether it is sensitive or not. In the worst case

scenario where each transaction in D is sensitive and every item in each transaction is a

subset of at least one of the sensitive itemsets. Creating the Itemset Oriented Pseodo

Graph (IPG) takes O(|SI|*|D|) where |SI| is the number of sensitive itemset and |D| is the

80

total number of transactions in D. The hiding process uncovers longest path from the IPG

in a depth first search manner so identifying a path from a vertex takes (|V|+|E|) worst

case computational complexity where |V| is the total number of vertices in IPG and |E| is

the total number of edges in IPG. So identifying paths for all sensitive itemset takes

O(|SI|*(V|+|E|)) where |SI| is the number of sensitive itemsets.

The TPGBS algorithm is the static version of the DynamicPGBS algorithm. Both

TPGBS and DynamicPGBS algorithms employ the TPG data structure to represent items

in each sensitive transaction. As in PGBS both DynamicPGBS and TPGBS algorithms

try to modify transactions containing maximum number of sensitive itemsets. The

DynamicPGBS and the TPGBS algorithms represent the sensitive transactions as

Transaction Based Pseudo Graph (TPG). These two algorithms scan the database to

uncover sensitive transactions and computational complexity of this process is O (|D|)

where |D| is the size of the transactional database D. In the worst scenario each transaction

contains different items and the intersection set of items in each transaction is empty,

converting a given transaction to TPG takes O (|V|) where |V| is the total number of

vertices in TPG. As a result, uncovering all sensitive transactions from the database D

and converting them to TPG takes O (|D|*|V|) computational complexity. The hiding

process is to discover a certain set of transactions from the TPG, discovering a transaction

from the TPG has O (|V|) computational complexity and this process is iterated as the

number of sensitive itemsets. In the worst case scenario where the sensitive itemsets do

not contain any common item, the computational complexity of the hiding process is O

(|SI|*|D|) where |SI| is the number of sensitive itemsets and |D| is the total number of

transaction in database D.

As the database is being continuously updated in dynamic environment one of the

problems in dynamic environment the memory requirement should be decreased. Because

of this problem to reduce the memory requirement of the graph based data structure only

items of the sensitive transactions are represented.

I evaluated the efficiency of all these four algorithms with resource allocation,

execution time, information loss and data distortion metrics. I used four different

transactional databases with different characteristics during the performance evaluation.

These databases are grouped as dense and sparse according to their densities where the

density of the database is a measure to evaluate the similarity of transactions in a given

database. As the density increases similar transactions appears in a given database. For

81

all experiments that I performed in static and dynamic environment the independent

variables are execution time, information loss, distance, accuracy loss and total memory

allocation while the set of sensitive itemsets are the dependent variables. The sensitive

itemsets are selected randomly in each experiment without restricting any characteristics.

The characteristics of sensitive itemsets include the number of items the sensitive itemsets

contain and the number of common items the sensitive itemsets mutually contain. Since

in the performance evaluation all participant algorithms have similar properties selecting

sensitive itemsets based on their characteristics would have the same effect on all

algorithms. The databases employed in the performance evaluation are categorized

according to their densities where two of the databases were sparse and two of them are

dense. By this way I evaluated the side effects of each algorithm based on the density of

the databases. In addition two of the databases were real and two of them were synthetic.

The real databases were used for reflecting the reality and the synthetic databases were

used for evaluating the performance with two different databases with different densities

but similar characteristics.

The PGBS algorithm is advantageous in terms of execution time on dense

databases as the PG data structure does not check the contents of each transaction. On the

other hand, the IPGBS algorithm harms less non-sensitive knowledge during sanitization

process which is the main purpose of this algorithm. The DynamicPGBS achieves

minimum execution time on both sparse and dense databases and also it achieves

minimum memory allocation on dense databases.

This research can be continued with some challenges left to explore as follows:

 The DynamicPGBS algorithm is designed for the dynamic environment

where only database increments considered. The dynamicity of the database

can be extended to include deletion of transactions in addition to the

transaction insertion.

 The heuristic sanitization approaches does not give a general optimal hiding

solution. These approaches are designed with considering the features of

databases and the efficiency of them can vary according to sensitive itemset

and database. The exact hiding solutions on the other hand are able to find a

general optimal hiding solution but they have high of execution time and

resource allocation. To reduce the side effects of the sanitization process the

exact and heuristic approaches can be combined in a hybrid way.

82

REFERENCES

1. Mannila H.; Toivonen H. Levelwise search and borders of theories in knowledge

discovery. Data Mining and Knowledge Discovery. 1997, 3, 241–258.

2. Sun X.; Yu P. S. A border-based approach for hiding sensitive frequent itemsets.

Proceedings of the Fifth IEEE International Conference on Data Mining, Houston,

TX, USA, 27-30 November; 2005, 426–433.

3. Moustakides G.V.; Verykios V.S. A max–min approach for hiding frequent

itemsets. In 6th IEEE International Conference on Data Mining, Hong Kong,

China, 18-22 December; IEEE, 2006, 502–506.

4. Rusell S. ; Norving P. Artificial Intelligence: A Modern Approach. Prentice Hall,

2003; Vol.2.

5. Menon S.; Sarkar S.; Mukherjee S. Maximizing accuracy of shared databases

when concealing sensitive patterns. Information Systems Research. 2005, 3, 256–

270.

6. Divanis A.G. ; Verykios V.S. An integer programming approach for frequent

itemset hiding. Proceedings of the 15th ACM conference on information and

knowledge management, Arlington, Virginia, USA, ACM: New York, NY, USA,

2006, 5-11.

7. Divanis A.G.; Verykios V.S. Hiding sensitive knowledge without side effects.

Knowledge and Information Systems. 2008, 3, 263–299.

8. Divanis A.G.; Verykios V.S. Exact knowledge hiding through database extension.

IEEE Transactions on Knowledge and Data Engineering. 2009, 5, 699–713.

9. Atallah M.; Bertino E.; Elmagarmid A.; Ibrahim M., Verykios V S. Disclosure

limitation of sensitive rules. Proceedings of the IEEE Knowledge and Data

Engineering Exchange Workshop, Chicago, IL, USA, 7 November; IEEE:

Washington, DC, USA, 1999, 45–52.

10. Amiri A. Dare to share: Protecting sensitive knowledge with data sanitization.

Decision Support Systems. 2007, 1, 181–191.

11. Oliveira S.R.M.; Zaiane O.R. Privacy preserving frequent itemset mining. In

International Conference on Data Mining (ICDM), Maebashi City, Japan,

December; Australian Computer Society: Darlinghurst, Australia, 2002; 43-54.

83

12. Oliveira S.; Zaiane O. Protecting sensitive knowledge by data sanitization.

Proceedings of the Third IEEE International Conference on Data Mining

(ICDM'03), Melbourne, Florida, USA, November; IEEE, 2003, 99-106.

13. Kuo Y.; Lin P.Y.; Dai B.R. Hiding frequent patterns under multiple sensitive

thresholds. In Database and Expert Systems Applications (DEXA), Turin, Italy,

01-05 September 2008; Springer-Verlag: Berlin, Heidelberg, 5-18.

14. Öztürk A.C.; Ergenç B. Itemset Hiding under Multiple Sensitive Support

Thresholds, In 9th International Joint Conference Knowledge Engineering and

Knowledge Management, Funchal, Madeira, Portugal, 1-3 November 2017; SCI

Press, 222-231.

15. Verykios V.S.; Emagarmid A.K.; Bertino E.; Saygin Y. ; Dasseni E. Association

rule hiding. IEEE Transactions on Knowledge and Data Engineering. 2004, 4,

434–447.

16. Li Y.C; Yeh J.S.; Chang C.C. MICF: An effective sanitization algorithm for

hiding sensitive patterns on data mining. Advanced Engineering Informatics.

2007, 21, 269–280.

17. Hong T.P.; Lin C.W.; Yang K.T.; Wang S.L. Using tf-idf to hide sensitive

itemsets. Applied Intelligence. 2013, 4, 502–510.

18. Cheng P.; Roddick J.F.; Chu S.C. Privacy preservation through a greedy,

distortion-based rule hiding method. Applied Intelligence.2016, 44, 295-306.

19. Pontikakis E.D.; Tsitsonis A.A.; Verykios V.S. An experimental study of

distortion-based techniques for association rule hiding. In 18th Conference on

Database Security, Sitges, Catalonia, Spain, 25-28 July 2004; Springer USCY:

Boston, USA, 2004, 325–339.

20. Weng C.C.; Chen S.T.; Lo H.C. A novel algorithm for completely hiding sensitive

association rules. In Eighth International Conference on Intelligent Systems

Design and Applications, Kaohsiung, Taiwan, 26-28 November; IEEE, 2008,

202-208.

21. Dehkordi M.S.; Dehkordi M.N. Introducing an algorithm for use to hide sensitive

association rules through perturbation technique. Journal of AI and Data Mining.

2016, 4, 219-227.

84

22. Yildiz B.; Ergenç B. Integrated approach for privacy preserving itemset mining.

Lecture Notes in Electrical Engineering, 2012, 110, 247-260.

23. Saygin Y.; Verykios V.S.; Clifton C.Using unknowns to prevent discovery of

association rules. ACM SIGMOD Record. 2001, 4, 45–54.

24. Jadav K.B.; Vania J.; Patel D.R. Efficient hiding of sensitive association rules for

incremental datasets. International Journal of Innovations & Advancement in

Computer Science IJIACS. 2014, 4, 59-65.

25. Domadiya N.; Rao U. P. Hiding Sensitive Association Rules to Maintain Privacy

and Data Quality in Database. In 3rd IEEE International Advance Computing

Conference (IACC), Ghaziabad, India, 13 May 2013; IEEE, 1306- 1310.

26. Dai B.R.; Chiang L.H. Hiding frequent patterns in the updated database. In

International Conference on Information Science and Applications (ICISA),

Seoul, South Korea, 21-23 April 2010; IEEE,1-8.

27. Nourafkan M.; Rastegari H.; Dehkord M.N. An algorithm for hiding sensitive

frequent itemsets. International Journal of Advances in Soft Computing and its

Applications. 2015, 7, 51-63.

28. Garg V.; Singh A.; Singh D. A hybrid algorithm for association rule hiding using

representative rule. International Journal of Computer Applications. 2014, 97, 9-

14.

29. Wnag S.L.; Jafari A. Hiding sensitive predictive association rules. In IEEE

International Conference on Systems, Man and Cybernetics, Waikoloa, HI, USA,

12-12 October 2005; IEEE, 164-169.

30. Chen C.; Orlowska M.; Li X. A new framework for privacy preserving data

sharing. Proceeding of the 4th IEEE ICDM Workshop: Privacy and Security

Aspects of Data Mining, 2004; IEEE Computer Society, 47-56.

31. Guo Y. Reconstruction-based association rule hiding. In SIGMOD Ph.D.

Workshop on Innovative Database Research, 2007. http://www.borgelt.net/

apriori.html (accessed November 7, 2018)

32. Mielikainen T. On inverse frequent set mining. Proceeding of the 3rd IEEE ICDM

Workshop on Privacy Preserving Data Mining, IEEE Computer Society, p.p.18-

23, 2003.

http://www.borgelt.net/

85

33. Lin J.; Cheng Y. Privacy preserving item set mining through noisy items. Expert

Systems with Applications. 2009, 36, 5711–5717.

34. Kennedy J.; Eberhart R. Particle swarm optimization. In IEEE International

Conference on Neural Networks, Perth, WA, Australia, 27 November – 1

December 1995; IEEE,1942–1948.

35. Lin J. C.W.; Liu Q.; Viger P. F.; Hong T.P.; Voznak M.; Zhan J. A sanitization

approach for hiding sensitive itemsets based on particle swarm optimization.

Engineering Application of Artificial Intelligence. 2016, 53, 1-18.

36. Öztürk A.C.; Ergenç B. Dynamic Itemset Hiding Algorithm for Multiple Sensitive

Support Thresholds. International Journal of Data Warehousing and Mining.

2018, 14, 37-59.

37. Ayav T.; Ergenç B. Full Exact approach for itemset hiding. International Journal

of Data Warehousing and Mining. 2015, 11, 49-63.

38. Le H.Q.; Arch-Int S.; Nguyen H.X.; Arch-Int N. Association rule hiding in risk

management for retail supply chain collaboration, Computers in Industry. 2013,

64, 776-784.

39. Hai L.Q.; Somjit A.; Ngamnij A. Association rule hiding based on intersection

lattice. Mathematical Problems in Engineering, 2013, 1-11.

40. Grätzer G. Lattice theory: Foundation. Springer, 2010.

41. Wang S. L.; Jafari A. Using unknowns for hiding sensitive predictive association

rules. Proceedings of the IEEE international conference on information reuse and

integration, Las Vegas, NV, USA, USA, 15-17 August 2005; IEEE, 223–228.

42. Agrawal R.; Imilinski T.; Swami A. Mining association rules between sets of

items in large databases. In International Conference on Management of Data,

Washington DC, USA, 25-28 May 1993; ACM, 207-216.

43. Bayardo R. J.; Agrawal R.; Gunopulos D. Constraint based rule mining on large,

dense data sets. Data Mining and Knowledge Discovery. 1999, 4 , 217-240.

44. Gkoulalas-Divanis A.; Verykios V.S. Hiding sensitive knowledge without side

effects. Knowledge and Information Systems. 2009, 3, 263-299.

86

45. Han J.; Pei J.; Yin Y. Mining frequent patterns without candidate generation. In

ACM SIGMOD International Conference on Management of Data, Dallas, Texas,

USA, 15-18 May 2000; ACM: New York, USA, 1-12.

46. Liu B.; Hsu W.; Ma Y. Mining Association Rules with Multiple Minimum

Supports. Proceedings of the 5th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, San Diego, California, USA, 15-18

August 1999; ACM: New York, USA, 337–34.

47. Roiger R.; Geatz M.W. Data Mining: A Tutorial-Based Primer, Addison Wesley:

Boston, 2003; Vol.2.

48. Dunham M. H. Data mining: Introductory and Advanced Topics. Pearson

Education, 2006.

49. Jain S.; Raghuvanshi R.; Ilyas M.D. A Survey Paper on Overview of Basic Data

Mining Tasks. International Journal of Innovations & Advancement in Computer

Science (IJIACS). 2017, 6, 1-11.

50. Stephens S.; Pablo T. Supervised and Unsupervised Data Mining Techniques for

the Life Sciences. Technical Report, Oracle and Whitehead Institute, MIT: USA,

Thorn, 2003.

51. Dua D.; Karra Taniskidou E. UCI Machine Learning Repository. University of

California, School of Information and Computer Science, Irvine, California, 2017.

52. Brijs T.; Swinnen G.; Vanhoof K.; Wets G. The use of association rules for

product assortment decisions: A case study. Proceedings of the 5th International

Conference on Knowledge Discovery and Data Mining, San Dieago, CA, 15-19

August 1999; KDD, 254–260.

53. IBM Quest Market-Basket Synthetic Data Generator. Bhalodiya, Dharmesh,

2014.

54. Bonchi F.; Saygin Y.; Verykios V.S; Atzori M.; Gkoulalas-Divani A.; Kaya S.V.;

Savaş E. Privacy in Spatiotemporal Data Mining. Springer: Berlin, Heidelberg,

2008, pp 297-333.

55. Fayyad U.; Piatetsky - Shapiro G. ; Smith P. J.; Uthurasamy R. From data mining

to knowledge discovery: an overview. Advances in Knowledge Discovery and

Data Mining. 1996, 1-34.

56. Zhang C.; Zhang S. Association Rule Mining Models and Algorithms, Springer:

Berlini Heidelberg, 2002.

87

57. Varma D.M. Data Mining Classification Techniques Applied to Analyze the

Impact of Ambient Conditions on Aero Engine Performance - A Case Study Using

Xlminer. In IEEE conference on Electrical, Computer and Communication

Technologies, Coimbatore, India, 5-7 March 2015; IEEE, 1-5.

58. Torra V. Privacy models and disclosure risk measures. Data Privacy:

Foundations, New Developments and the Big Data Challenge, Springer

International Publishing, 2017, pp 111–189.

59. Wang H. Association Rule: From Mining to Hiding. Applied Mechanics and

Materials. 2013, 321-324, 2570-2573.

VITA

Ahmet Cumhur Öztürk received the BSc degree in Computer Engineering from Atılım

University, Turkey. From 2006 to 2009 he worked as a software engineer in IT industry.

In 2010 he joined Adnan Menderes University as lecturer. He received the MS degree in

Computer Engineering from Izmir Institute of Technology. He is currently a lecturer in

Adnan Menderes University.

