MULTIOBJECTIVE RELATIONAL DATA WAREHOUSE DESIGN
FOR THE CLOUD

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

TANSEL DOKEROGLU

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR
THE DEGREE OF DOCTOR OF PHILOSOPHY
IN
COMPUTER ENGINEERING

SEPTEMBER 2014

Approval of the thesis:

MULTIOBJECTIVE RELATIONAL DATA WAREHOUSE DESIGN
FOR THE CLOUD

submitted by TANSEL DOKEROGLU in partial fulfillment of the requirements for
the degree of Doctor of Philosophy in Computer Engineering Department, Mid-
dle East Technical University by,

Prof. Dr. Canan Ozgen
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Adnan Yazici
Head of Department, Computer Engineering

Prof. Dr. Ahmet Cosar
Supervisor, Computer Engineering Department, METU

Examining Committee Members:

Prof. Dr. Adnan Yazici
Computer Engineering Dept., METU

Prof. Dr. Ahmet Cosar
Computer Engineering Dept., METU

Prof. Dr. Ozgiir Ulusoy
Computer Engineering Dept., Bilkent University

Prof. Dr. Veysi Isler
Computer Engineering Dept., METU

Assist. Prof. Dr. Ismail Sengér Altingovde
Computer Engineering Dept., METU

Date:

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Last Name: TANSEL DOKEROGLU

Signature

v

ABSTRACT

MULTIOBJECTIVE RELATIONAL DATA WAREHOUSE DESIGN
FOR THE CLOUD

Dokeroglu, Tansel
Ph.D., Department of Computer Engineering
Supervisor : Prof. Dr. Ahmet Cosar

September 2014, [I37]pages

Conventional distributed Data Warehouse (DW) design techniques seek to assign data
tables/fragments to a given static database hardware setting optimally. However; it is
now possible to use elastic virtual resources provided by the Cloud environment, thus
achieve reductions in both the execution time and the monetary cost of a DW system
within predefined budget and response time constraints. Finding an optimal assign-
ment plan for database tables to machines for this design problem is NP-Hard. There-
fore, robust multiobjective heuristic algorithms are needed for cost-efficient Cloud
DWs in terms of query workload response time and the total ownership price of vir-
tual resources (CPU and/or cores, RAM, hard disk storage, network bandwidth, and
disk I/O bandwidth).

In this thesis we propose two algorithms for the solution of the relational Cloud DW
design problem; (1) Multiobjective Design with Branch and Bound (MOD-B&B) and
(2) Multiobjective Evolutionary Genetic Algorithm (MOD-GA). These algorithms
make use of a novel Cloud DW single query optimizer, DPACO, that can find the best
distributed query execution plan and accurately calculate its response time. By using
DPACO on an input query workload we find the best query execution plans for given
query workloads using the given virtual resource allocations.

The best allocation of virtual resources for a DW design is achieved by using MOD-
GA. We developed a special chromosome structure, along with crossover and muta-
tion operators, to achieve the best results from MOD-GA. We experimentally verified
the accuracy of the algorithm by comparing its output designs against the optimal de-
signs obtained by using an exhaustive MOD-B&B algorithm. Our evaluations show
that the obtained designs are very close to the optimal solution set and while MOD-
B&B algorithm requires hours to complete its execution, the MOD-GA is able to
return almost the same results within seconds.

In order to achieve further improvement in total response time of a query workload
with monetary savings from Cloud resources, we improved the Cloud DW designs
by using (near-) optimal and cost-efficient materialized views. Through our exper-
iments performed on a private Cloud server, remarkable improvements in both re-
sponse times of query workloads and monetary costs of consumed Cloud resources
have been achieved. The reason for these savings is that, by materializing join results
on hard disk, we obtain large CPU resource savings reducing Cloud cost, offsetting
the cost of extra hard disk storage by a wide margin.

Keywords: Cloud data warehouse, virtual resource, materialized view, assignment

vi

(0Y/

BULUT ICIN COK AMACLI iLiSKIiSEL
VERI AMBARI TASARIMI

Dokeroglu, Tansel
Doktora, Bilgisayar Miihendisligi Boliimii
Tez Yoneticisi : Prof. Dr. Ahmet Cosar

Eyliil 2014 , sayfa

Giiniimiiz dagitik veri ambarlar: tasarim teknikleri veri tablolarin1 daha 6nceden be-
lirlenmis bilgisayar donanimlarina en iyi sekilde atayan yontemler kullanmaktadir.
Bulut bilisimin kullanilmaya baslanmasi ile birlikte iliskisel dagitik veri ambarlarini
alternatif sanal donanimlar ile daha maliyet etkin tasarlayabilmek miimkiin olmakta-
dir. Bu tasarimi en iyi sekilde yapabilmek NP-Zor bir problem oldugu i¢in tecriibeye
dayal1 ve giivenilir algoritmalarin kullanilmasi kacinilmazdir. Bu algoritmalar ¢ok
amagli olarak sorgularin cevap zamanlarini ve bulut bilisim lizerinde en uygun ma-
liyetli olmasim saglamalidir. Sanal makine tipleri, veri saklama, iletisim ag1 ve 1/O
genigligi, maliyetleri dikkate alinmasi gereken noktalardir.

Bu tez ile birlikte, iki degisik algoritma Onerilmektedir. Problemin ¢oziimii i¢in 6ner-
digimiz bu algoritmalar, ¢cok amacli dallanma-sinirlandirma algoritmasi ve genetik
algoritmadir. Bu algoritmalar yeni gelistirilen ¢ok amaclh bir sorgu eniyileme yazi-
lim1, DPACO, kullanir ve bunun ile en iyi tasarimi elde etmeye calisir. DPACO eniyi-
leme yazilimi ile, sanal kaynaklar1 belli olan dagitik veri ambari tasarimlarinin sorgu
yiiklerinin cevap verme siireleri yaklagik olarak hesaplanmaktadir.

vii

Algoritmalardan tasarimi en iyi gerceklestiren olarak genetik algoritma tespit edildi.
Bu algoritma i¢in yeni bir kromozon yapisi ile birlikte, caprazlama ve mutasyon ope-
ratorleri gelistirildi. Genetik algoritmanin etkinligi en iyi sonuclar1 bulan ¢ok amach
dallanma-sinirlandirma algoritmasi ile kargilagtirildi. Sonuglarin birbirlerine cok ya-
kin oldugu gézlendi. Bunun yaninda, genetik algoritma ¢oziimleri saniyeler icerisinde
bulmay: bagarirken, dallanma-sinirlandirma algoritmasi saatlerce caligsarak eniyile-
meyi gerceklestirebildi.

Ayrica maliyet etkin maddelestirilmis goriiniimler kullanilarak tasarimlarin kalitesi
arttirildi. Ozel bir bulut bilisim sunumcusu iizerinde yapilan deneyler sonucunda, ta-
sarlanan dagitik bulut veri ambarlarinin ve gelistirilen algoritmalarin etkinligi dogru-
land1. Harcanan biitce ve sorgu siirelerinin iyilestirilmesinde belirgin ilerlemeler rapor
edildi.

Anahtar Kelimeler: Bulut veri ambari, sanal bilgisayarlar, maddelestirilmis goriiniim,
atama

viii

dedicated to my beloved family

X

ACKNOWLEDGMENTS

First and foremost I want to thank my supervisor Prof. Dr. Ahmet Cosar for all
the support and encouragement he gave me. His guidance and positive approach
throughout this time period made possible to complete this study.

I also would like to thank to Prof. Dr. Adnan Yazici, Prof. Dr. Ozgiir Ulusoy, Prof.
Dr. Veysi Isler, and Assist. Prof. Dr. Ismail Sengér Altingévde for providing their
valuable feedbacks.

TABLE OF CONTENTS

ABSTRACTI. v
m ... v
ACKNOWLEDGMENTS]. e e X
TABLEOF CONTENTS] e xi
................................ xiii
................................ XV

LIST OF ALGORITHMS|

LIST OF ABBREVIATIONS

CHAPTERS

1 INTRODUCTIONI 1

2

4

6

............................ 9
[2.1 Cloud Computing| 9

2.2 Data Warehousingonthe Cloud|. 16

2 H re Archi res for Relational Cl DWs|. 20

[2.4 Relational Cloud DW Design Techniques|. 22

[2.5 Query Optimization in Relational Cloud Data Warehouses| . . 26

[2.6 Summary|. e e 42
3 A NOVEL CLOUD DATA WAREHOUSE QUERY OPTIMIZER| . . 43
[3.1 Ant Colony Optimization (ACO) Metaheuristics| 44
[3.2 Dynamic Programming with ACO Algorithm (DPACO)| . . . 45

xi

[3.3 Performance Evaluation of DPACO Algorithm| 50

4 MULTIOBJECTIVE CLOUD DATA WAREHOUSE DESIGN| 57

“.1 Multiobjective Relational Cloud DW Design Formulation| . . 57

@.2 Infrastructure and Pricing Scheme Parameters of the Cloud, . 62

4.3 Multiobjective Cloud Data warehouse Design with Branch- |

| and-Bound Algorithm (MOD-B&B) 65
4.4 Multiobjective Cloud Data Warehouse Design with Genetic [

| Algorithm (MOD-GA)[. 67
4.5 Parameter Settings for Multiobjective Genetic Algorithm| . . 71

[5.4 Evolutionary Algorithm for Materialized View Selection|. . . 85

[5.5 Performance Evaluation of the Proposed Genetic Algorithm| . 87

6 EXPERIMENTAL SETUP AND RESULTS| 95

(6.1 Experimental Environment 95

(6.2 TPC-H Data Warehouse and Query Workloads| 97

(6.3 Comparison of the Proposed Data Warehouse Design Algo- [

| rithms: MOD-B&B and MOD-GA Algorithms| 100
(6.4 Performance Improvements Using the Selected Optimal Ma- [

terialized Views|

xii

LIST OF TABLES

TABLES

Table|l1.1 Pareto-optimal solutions for 25GB TPC-H database and query work-

[load (Elap.T.= Time Elapsed inthe Cloud)| 3
Table[1.2 Comparison of our design model with the other existing methods| . . 6
Table[2.1 Parameters used in the costmodel 32
Table 3.1 Parameter settings for Simple Genetic Algorithm (SGA)[. 52
Table [3.2 All possible left-deep tree orders of (A X B X C X D) 4-way join. |
| search space that 1s reduced to 4 instead of 4!|. 53
Table 4.1 'TPC-H Database configuration of 3 Extra Small (XS) Virtual Ma- |
.................................... 58
Table 4.2 'TPC-H Database configuration of 5 Extra Large (XL) Virtual Ma- |
.................................... 59
Table 4.3 Parameters used in the costmodell 61
Table 4.4 Virtual Machine prices| 63
Table 4.5 Cloud database storage prices| 64
Table 4.6 Network bandwidth prices| 64

Table4.7 Parameter settings for Multiobjective Genetic Algorithm (MOD-GA)| 72

Table 5.1 Environment settings for the relational Cloud DWs used 1n the ex-

[PEIIMENLS|. . .« . v ot e e e e e e e e e e e e 88
Table|5.2 Parameter settings for Genetic Algorithm (GA)[. 90
Table|6.1 Query workloads used in the experiments| 97
Table |6.2 Selected pareto-optimal solutions that are produced by MOD-GA |
| and MOD-B&B Algorithms for 1GB TPC-H Database and Workload- |
| 1 (Est.Resp.T.= Estimated Response Time; Est.Cost= Monetary Cost ; |
| Elap.T.= Time Elapsed inthe Cloud)] 102
Table 6.3 Selected pareto-optimal solutions that are produced by MOD-GA |
| and MOD-B&B algorithms for 0GB TPC-H database and query workload- |
| 2 (Est.Resp.T.= Estimated Response Time; Est.Cost= Monetary Cost ; |
| Elap.T.= Time Elapsed inthe Cloud), 103

xiil

Table 6.4 Selected pareto-optimal solutions that are produced by MOD-GA

and MOD-B&B Algorithms for 25GB TPC-H database and query workload-

3 (Est.Resp.T.= Estimated Response Time; Est.Cost= Monetary Cost ;

Elap.T.= Time Elapsed inthe Cloud)| 104
Table|6.5 Table and join usage frequencies of the query workloads| 106
Table[6.6 'Time spent for the creation of selected materialized views and their |

monetary cCosts| 109
Table|6.7 Comparison of the 0GB design results given 1n Table|6.3|with new |

DW designs implemented by using materialized views.| 111

X1V

LIST OF FIGURES

FIGURES

Figure [I.1 Pareto-optimal solutions for 25GB TPC-H database query work- |

0dd 101 ¢ d [lud SOu S and tab Oocations tndt d ODIAINEd
| from our proposed algorithms. | o000 3
Figure[2.1 Advantages and disadvantages of Cloud computing.| 11
Figure[2.2 Cloud computing servicemodels.| 13
Figure[2.3 High-level Cloud computing architecture.| 14
Figure[2.4 Costs vary in accordance with scalesovertime.. 16
Figure[2.5 Shared-memory and shared-disk architecture.|. 20
Figure[2.6 Shared-nothing architecture.| 21
Figure[2.7 Hybnd architecture.,| 21
Figure[2.8 Conventional database architecture.| 23
Figure 2.9 Database architecture where database servers and storages are at- |
| tached together to provide more scalability.| 24
Figure 2.10 Distributed control architecture.| 25
Figure[2.11 Query processing phases.| 27
Figure [2.12 Choosing efficient QEP depending on the cardinality estimation of |
[intermediate results) oL oL 32
Figure[2.13 Estimation of the range selectivity by using histograms.] 33
Figure[2.14 (1) a non-pipelined plan; (1) a pipelined plan| 34
Figure[2.15 Query executionplans.| 35
Figure (3.1 Dastributed shared-nothing data warehouse architecture. | 44
Figure (3.2 Illustration of the ants during DPACO algorithm| 49
Figure(3.3 Chromosome structure of SGA.| 51
Figure[3.4 Crossover operator.|. 53
Figure|3.5 Mutation operator.| 54
Figure[3.6 Optimization times of the algorithms.| 55
Figure 3.7 Query execution plan times found by the algorithms for DW 1.|. . . 56
Figure[3.8 Query execution plan times found by the algorithms for DW 2.|. . . 56
Figure[3.9 Query execution plan times found by the algorithms for DW 3.|. . . 56

Figure .1 Proposed heuristic point for MOD-B&B algorithm (total monetary |
| cost vs query workload response time). |. 67

XV

Figure 4.2 Chromosome structure for the proposed multiobjective genetic al- [
| gorithm that consists of the Virtual Machines, Tables, and a network layer. [

I 69
Figure 4.3 Crossover operator for the multiobjective optimization of query |
| workloadsl Lo 69
Figure 4.4 Mutation operator for virtual machmnes| 70
Figure4.5 Mutation operator for location of tables| 70
Figure 4.6 Average fitness value of populations on 10GB database and query |
| workload-2. | Lo 72
Figure 4./ Multiobjective optimization times for increasing population sizes. |. 73
Figure 4.8 Distribution of solutions for initial population and after 10 genera- [
I YT 74
Figure 4.9 Distribution of solutions after 10 and 100 generations. | 74

Figure|5.1 Alternative QPs for TPC-H Query3 (1) selections are pushed down, |

| (1)selections are pulledup.] o oL, 77
Figure[5.2 Query plans of TPC-Q3 and Q4 where they can share more of their |
| subexpressions with pulled up selection predicates.|. 78
Figure [5.3 An example for materialized view processing plan that merges [
| TPC-Hquertes.| 78
Figure[5.4 Chromosome segment for materialized views.|. 86

Figure [5.5 Population performance tests with 10, 50, and 100 individuals in |
| accordance with the number of fitness evaluations (environment-2 with 50 |
................................... 90
Figure |5.6 Population performance tests with 10, 50, and 100 individuals [
| in accordance with the number of generations (environment-2 with 50 [

................................... 90
Figure [5.7 Optimization times of GA, HCA, and Hybrid GHCA algorithms [
| (with increasing number of queries in environment-2). | 92
Figure|5.8 Solutions obtained by the proposed algorithms in environment-1.| . 93
Figure|[5.9 Solutions obtained by the proposed algorithms in environment-2.| . 93
Figure |5.10 Solutions obtained by the proposed algorithms in environment-3.| . 93
Figure/6.1 A sample Cloud DW architecture.| 96
Figure|6.2 Configuration interface of virtual machine monitor, Hyper-V.| . . . 96
Figure|6.3 Tables of TPC-H database. | 98

Figure 6.4 Response times of individual TPC-H queries obtained by query [
| generator with 10GB database executed on 5 XL virtual machines and [
| 200Mbps network bandwidth. |o oo oL 98
Figure[6.5 CPU consumption of the 5 VMs for Workload-2 (Tables Lineitem, |
| Orders, Customer, Part, and PartSupp are located at virtual machines 1,2,3,4, |
| and 5 respectively. Tables Supplier, Region, and Nation are replicated at [
| each virtual machine). |. L oL, 99

Xvi

Figure[6.6 Network consumption of query workload in Figure|6.5]|

Figure|6.7 Memory consumption of the virtual machines in Figure[6.5l |. . . . 99
Figure|6.8 Proposed pareto-optimal solutions for IGB TPC-H database query |
| workload-1 by MOD-GA and MOD-B&B algorithms. | 101
Figure|6.9 Proposed pareto-optimal solutions for I0GB TPC-H database query |
[workload-2 by MOD-GA and MOD-B&B algorithms. | 102
Figure|6.10 Proposed pareto-optimal solutions for 25GB TPC-H database query |
[workload-3 by MOD-GA and MOD-B&B Algorithms. | 103
Figure[6.11 Deviations of the estimated designs with 1GB tph-h DW.| 105
Figure[6.12 Deviations of the estimated designs with 10GB tph-h DW.|. 105
Figure[6.13 Deviations of the estimated designs with 25GB tph-h DW.|. 105
Figure|6.14 A selected Materialized View Processing Plan for query workload- |
I 107
Figure [6.15 Comparison of TPC-H 10 workload-2 execution results with and |
| without using materialized views. |0 0L 110
Figure |6.16 Average performance improvements against the set of randomly |
[selectedsolutions. |. 111

Xvil

LIST OF ALGORITHMS

ALGORITHMS

Algorithm 2.1 Dynamic Programming Algorithm| 30
Algorithm 3.1 Ant Colony Optimization (ACO) Metaheuristics| 45
Algorithm 3.2 Dynamic Programming Algorithm with Ant Colony (DPACO) . 47
Algorithm 3.3 Simple Genetic Algorithm (SGA)| 52
Algorithm@.1 Multiobjective Branch-and-Bound (MOD-B&B) Algorithm for |
| designinga Cloud DW|. 66
Algorithm 4.2 Multiobjective Genetic Algorithm (MOD-GA) for designing a |
| Cloud DWI o 68
Algorithm [5.1 Generating a materialized view processing plan from a set of [
.................................... 82
Algorithm 5.2 Simple Hill Climbing Algorithm, HCA| 88

Xviii

ACID
ACO
AWS
API
BASE
BI

DAG
DBaaS
DBMS
DDBMS
DP
DPACO
DQO
DW
EPT

FC

FIPS
GA
HPC
TaaS
IDP
MOBB
MOD-B&B
MOD-GA
MOLAP
MOGA
MQO
MPP
MVPP
NIC
NIST
OLAP
oS

OSI
PaaS
ROLAP

LIST OF ABBREVIATIONS

Atomicity, Consistency, Isolation, Durability

Ant Colony Optimization

Amazon Web Service

Application programming interface

Basically Available, Soft state, Eventual consistent
Business Intelligence

Directed Acyclic Graph

Database as a service

Database Management System

Distributed Database Management System
Dynamic Programming

Dynamic Programming with Ant Colony Optimization
Distributed Query Optimization

Data Warehouse

Extended Page Table

Fibre Channel

Fully Informed Particle Swarm

Genetic Algorithm

High Performance Computing

Infrastructure as a Service

Iterative Dynamic Programming

Multiobjective Branch and Bound Algorithm
MultiObjective Data Warehouse Design with Branch-and-Bound
MultiObjective Data Warehouse Design with with Genetic Algorithm
Multidimensional Online Analytical Processing
Multiobjective Genetic Algorithm

Multiple Query Optimization

Massively Parallel Processors

Materialized View Processing Plan

Network Interface Controller

National Institute of Standards and Technology
Online Analytical Processing

Operating System

Open Systems Interconnection

Platform as a Service

Relational Online Analytical Processing

Xix

ROWA
RVI
SLA
SMP
SynIC
SaaS
SAN
SGA
SSL
QEP
TPC-H
VM
VMM

Read-Once, Write All

Rapid Virtualization Indexing
Service Level Agreement
Symmetric Multiple Processor
Synthetic Interrupt Controller
Software as a Service

Storage Area Networks
Simple Genetic Algorithm
Search Space Limit

Query Execution Plan
Database Benchmark for Decision Support Systems
Virtual Machine

Virtual Machine Monitor

XX

CHAPTER 1

INTRODUCTION

In pioneer days they used oxen for heavy pulling, and when one ox couldn’t budge a
log, they didn’t try to grow a larger ox. We should not be trying for bigger computers

but for more system of computers.
Grace Murray Hopperﬂ

Cloud computing has emerged as a new computation paradigm that builds elastic and
scalable software systems. Vendors such as Amazon, Google, Microsoft, and Sales-
force offer several options for computing infrastructures, platforms, and software sys-
tems [[7][67][169][129] and supply highly-scalable database services with simplified
interfaces for reducing the total cost of ownership [6][9][170]. Users pay all costs as-
sociated with hosting and querying their data where database-as-a-service providers
present different choices to trade-off price and performance to increase the satisfaction
of the customers and optimize the overall performance [[14]][163]. Recently, extensive
academic and commercial research is being done to construct self-tuning, efficient,
and resource-economic Cloud database services that serve to the benefits of both the

customers and the vendors [43]][I87]][90] [I115]].

Virtualization that provides the illusion of infinite resources in many respects is the
main enabling technology of Cloud computing [[15]]. This skill is being used to sim-
plify the management of physical machines and provide efficient systems. The per-
ception of hardware and software resources is decoupled from the actual implementa-
tion and the virtual resources s are mapped to real physical resources. Through map-

ping virtual resources to physical ones as needed, the virtualization can be used by

' (1906-1992) The developer of the first compiler.

several databases that are located on physical servers to share and change the alloca-
tion of resources according to query workloads [[144]. This capability of virtualization
provides efficient Cloud Data Warehouses (DW) where each Virtual Machine (VM)
has its own operating system and resources (CPU, main memory, network bandwidth,

etc.) that are controlled by using a VM Monitor (VMM) [2][125][143][173]].

1.1 Problem Statement

In addition to answering queries efficiently in accordance with the Service Level
Agreements (SLA), contemporary relational Cloud DW systems need to optimize
a multicriteria problem that the overall cost of hardware ownership price must also be

minimized. This problem can be be stated more specifically as:

"Given a budget constraint and a query workload, how can the tables and available
virtual resources of the Cloud (CPU, main memory, network bandwidth, etc.) be
allocated to a set of VMs, each having a part of a distributed database, that the best

overall query performance can be achieved with minimum pricing?’

In order to solve this important design problem, we develop a framework that pro-
duces cost-efficient DW designs by using alternative virtual resource configurations,
assignment of data tables to VMs, and determining the selection of beneficial materi-

alized views.

A budgetary constraint can be a more important criterion for a finance manager,
whereas the response time of the queries is more crucial for a database administrator
[52]]. Therefore, to fully realize the potential of the Cloud, well configured virtual re-
sources, the location of the tables, and the materialized views are explored instead of
optimizing query workloads on statically designed virtual resources [28][S6/][118][166].
This means that instead of designing the database over standard VMs, we configure
the given virtual resources and the location of the tables for a cost-efficient DW to

handle query workloads successfully in terms of monetary cost and response time.

In order to explain our multiobjective problem, we give an illustrative example. When

a query workload of a TPC-H decision support benchmark with different virtual re-

2

sources and table locations is executed, we observe significant performance changes

in terms of monetary cost and response times.

Table 1.1: Pareto-optimal solutions for 25GB TPC-H database and query workload
(Elap.T.= Time Elapsed in the Cloud)

. Netw. | Elap.T. | Elap.T.Cost
Conf# | VMs and Assigned Tables
Mbps | (sec.) (¢)
1 XL (L,P,O,C,PS,S,R,N) - 1,423 31.3
XL (L,0,C,S,R,N)
2 200 337 13.8
XL (P,PS,S,R,N)
XL (L,0,S,R,N)
3 M (PS,S,R,N) 200 902 28.4
XS (P,S,R,N)
XL (O,PS,S,R,N)
XL (L,S,R,N)
4 100 620 31.3
L (PS,R,N)
M (C,S,R,N)
XL (L,0,S,R,N)
M (PS,S,R,N)
5 200 836 29.0
XS (P,S,R,N)
M (C,S,R,N)
2500
‘:)-‘ O MOD-B&B
2 X MOD-GA
~ 2000
@
0
Q
g 1500
= ideal point X
@
§ 1000 X X
o8 X
[O X
o 500 o H¥T o™ o (0]
0
0 10 20 30 40 50

Monetary cost (cent)

Figure 1.1: Pareto-optimal solutions for 25GB TPC-H database query workload for

selected virtual resources and table locations that are obtained from our proposed

algorithms.

Table[I.1I|presents alternative number of VMs, types of the VMs, network bandwidth,

the locations of the tables, response time of the workload, and the monetary cost for

a sample Cloud DW design (details of the Cloud infrastructure are given in Chapter
4). The pareto-optimal visualization of the alternative designs that we obtain with our
proposed algorithms are presented in Figure The hypothetical ideal point is the

main objective of the design problem.

Formally, our optimization problem can be stated as in Equation [[.1] (details are pre-

sented in Chapter 4).

¢ is the configurations for the selected virtual machines on which the DW tables will
be placed, 7 is the assigned VM locations of the physical tables, and last Q is the set
of queries in the workload. The resource consumption of the design is estimated in

accordance with the best query execution plans of the queries.

#VM #0

Mminyeoses() Y Cost(VM;, Best_Plan(¢,, Q) (1.1)

=1 j=1
1.2 Main Goals and Contributions

The studies concerning the performance of the Cloud DWs are at their early ages.
Most of the distributed database design and optimization concepts can be applied to
this area however; multiobjective optimization on the Cloud has many new issues to
research. There are many studies for tuning database system for specific workloads
[L67] [3] [150] [174]. On the other hand, to the best of our knowledge, there is no ap-
proach like ours that concerns both with the optimization of the total ownership price
and the performance of the queries of a distributed DW by taking into account alter-
native virtual resource allocation, data table assignment, and selection materialized

views.

Our study proposes two different algorithms for the solution of the problem, Multi-
objective Branch and Bound (MOD-B&B) and Multiobjective Evolutionary Genetic
Algorithm (MOD-GA). The algorithms focus on the elasticity of virtual Cloud re-
sources and produce multiple virtual resource and table allocation plans for a set of
queries in a workload, enabling the user to select the desired tradeoff with efficient

cost models.

Materialized views are effective techniques for speeding up query workloads and they
are increasingly being used by commercial DWs. Materialized views are specially
good for DWs because of their intensive usage of common subexpressions includ-
ing select-project-join operations. In our study, after finding the best configuration
of VMs and table locations for the DW design, we select the most appropriate mate-
rialized views to reduce the response time, communication cost, and the ownership
price of a relational DW with respect to the pricing scheme of the Cloud vendors. We
observe that in addition to reducing the response time of the queries, total ownership
price decreases significantly with appropriate use of the materialized views. Although
storing/maintainig the selected materialized view has an additional storage cost, it is
a very effective way of executing queries when indexes are constructed on the views.
No resource deployment processing system deals with the concept of elasticity and
cost-efficiency of relational Cloud DWs that make use of the appropriate materialized

views like our system.

In addition to these contributions, we propose a novel heuristic algorithm, Dynamic
Programming with Ant Colony Optimization Algorithm (DPACO), for relational Cloud
DWs query optimization. The main focus of the proposed algorithm is the optimiza-
tion of the multi-way chain join queries that spend most of the query execution time.
The algorithm finds (near-)optimal fast response times for the queries [47, 48, 49].
The proposed design algorithms make use of DPACO algorithm while optimizing
the response time of the query workloads on a given configuration of VMs and table

locations.

Table presents an overall comparison of our design method with other existing
methods. Cloud (virtual resources), cost-awareness (Multiobjective), data alloca-
tion (location of Tables), materialized views, replication, fragmentation, designing
at run-time, and MapReduce-based systems are the issues given in the Table. Our
system is static and optimizes data allocation, virtual resource assignment, replica-
tion, cost-awareness, and optimized materialized views. These features of our system
make it unique when compared with the previous design methods. Recent studies
are dynamic that they balance the virtual resource consumption by migrating the data
between VMs at run-time. The size of the relational databases in these studies are

not big (in MB scale). However; Cloud DWs handle large amount of data up to TB

Table 1.2: Comparison of our design model with the other existing methods

8

)

z 2 g

[P] ~ 3 T

~ 12 = .8 =

= & & » a B

= 5§ § Q2 o 2 B o

Z 5 28 8 8 = 2

< 2 =3 % 5 £ %

EREERE R RS

o 8 2= =5 & 8 § =

O 0O A2 o A =
Stonebraker et al. (1996) [149] v
Sidell et al. (1996) [139] v 7/
Tamhankar and Ram (1998) [155] Ve /
Ahmad et al. (2002) [5] v
Zilio et al. (2004) [183] v
Dash et al. (2009) [43] v v 7/
Hauglid et al. (2010) [78] v v /
Soror et al. (2010) [144] v v v
Kllapi et al. (2011) [90] v v
Xiong et al. (2011) [174] v / v v
Warneke and Kao (2011) [166] v / v /
Curino et al. (2011) [41] v e
Elmore et al. (2011) [53] v v
Nguyen et al. (2012) [115] v v
Koutris et al. (2013) [95] v /7
Our Study (2014) v v v v /

level therefore, we propose a well configured static design method for rarely updated

relational Cloud DWs.

1.3 Structure of the Thesis

The remainder of this thesis is organized as follows. In Chapter 2, we provide infor-
mation about the virtualization of the resources and the scalability of the Cloud DWs
before dealing with multiobjective design issues of relational Cloud DWs. We ex-
plain existing virtual and dynamically changing (scaling up/out and shrinking back)
environment of Cloud DWs to analyze/comprehend the problem better and see the

differences from the traditional database design problems. Layered architecture of

6

Cloud computing environment, virtualization (including the network virtualization),
the existing infrastructure of relational Cloud DWs, query cost models, related query

optimization techniques, and selected view materialization are explained.

In Chapter 3, we introduce our novel query optimizer (DPACO) for relational Cloud
DWs and give its experimental results. The query optimization is an important issue
for Cloud DWs in case you have several alternatives to execute a query. Our proposed
algorithm makes use of the state-of-the-art contemporary metaheuristic, Ant Colony
Optimization (ACO). It is efficient and has never been applied to this problem be-
fore. The algorithm has a single optimization objective, finding a fast response time,
and it is implemented to be used both for distributed databases and shared-nothing
Cloud DW architectures. The design algorithms proposed in Chapter 4 use DPACO
algorithm while evaluating the response time of the query workloads with given VM

configurations.

In Chapter 4, we define our multiobjective DW design formulation and present our
algorithms. Infrastructure and pricing scheme parameters of the Cloud are presented.
Two algorithms are proposed for the multiobjective Cloud DW design. (Near-) opti-

mal parameter settings for MOD-GA are presented at the end of this Chapter.

In Chapter 5, we define our approach for selecting materialized views on relational
Cloud DWs. We make use of a previously defined cost model developed in [177] and
enhance its single objective cost model to a multiobjective cost model for material-
ized view selection on the Cloud. Our distributed DW integrates data from different

relational databases and it is depicted as a relational OLAP (ROLAP) tool [[158][[76].

Chapter 6 presents the results of our experiments by using the proposed algorithms.
The obtained results of the algorithms are presented and the design options are mapped
to a real Cloud environment to evaluate the actual performance of our estimations and
measure the efficiency of the schemes found by the proposed algorithms. We inves-
tigate the possibility of further improving the performance of DW by using selected
materialized views. In the last Chapter, we present our concluding remarks and future

work respectively.

CHAPTER 2

BACKGROUND

The virtualization of the resources and the scalability of the Cloud DWs are the most
crucial factors of the Cloud DW design. Therefore, before dealing with multiobjective
design issues of relational Cloud databases, it will be wise to explain existing virtual
and dynamically changing (scaling up/out and shrinking back) environment of Cloud
databases to analyze/comprehend the problem better and see the differences from the
traditional database design problems. Although the architecture of the Cloud com-
puting providers can be different from each other, we assume a shared-nothing Cloud
infrastructure in our study. This Chapter first introduces the layered architecture of
Cloud computing environment and Cloud DWs, explains virtualization (including the
network virtualization), and later introduces the existing infrastructure of relational
Cloud DWs, cost models, related query optimization studies, and view materializa-

tion.

2.1 Cloud Computing

Unites States National Institute of Standards and Technology (NIST) defined Cloud
computing as "a model for enabling ubiquitous, convenient, on-demand network ac-
cess to a shared pool of configurable computing resources (e.g., networks, servers,
storage, applications, and services) that can be rapidly provisioned and released with

minimal management effort or service provider interaction" [[106].

The emergence of this new computation paradigm has launched many fundamental

modifications in information technology. It is now possible to spend computation as

9

a utility such as electricity. The abstraction of the computation infrastructure envi-
ronment as a Cloud terms the name of this new way of computing [104, [165]. With
the opportunities provided by Cloud computation, today’s developers no longer need
to concern about wasting costly resources, or underprovisioning popular technolo-
gies, thus missing customers and revenue [13}[168]. Also, companies requiring large
computation power can get solutions as soon as possible while their applications are

scaling out with virtual machines in a dynamic infrastructure.

Amazon was the first provider of Cloud computing services with Amazon Web Ser-
vice (AWS) on utility computing in 2006. However, Cloud computing concept dates
back to 1950s [151]. Cloud computing uses and combines the ideas of previously
developed computing paradigms such as client server model, autonomic computing,
grid computing, utility computing, mainframe computing, and peer-to-peer comput-
ing. Cloud computing includes applications delivered over internet, the hardware,

and the software running on these systems. Its main characteristics are:

Virtualization can be viewed as an autonomic computing. It is possible to build an
organization’s computing systems on utility computing that clients pay as they use.
Virtualization also centralizes tasks while providing scalability/elasticity with hard-
ware resources. With virtualization, it is possible to run multiple operating systems
on a single server. Using virtualization, it is easier to manage installations and make

rapid changes to the system and applications without disrupting the user.

Multitenancy provides sharing of resources across users therefore allows centraliza-
tion of infrastructure with minimum costs, automated load balancing, adaptability,

and utilization for idle waiting servers.

Scalability and Elasticity are on-demand dynamic provisioning of fine-grained re-

sources (near real-time response times) under peak workloads.

Application programming interface (API) provides accessibility to software with

Cloud software (REST-based).

Maintenance is easy and no installation is required on the client side for the applica-

tions and all the back-ups, system survival activities are being held by the provider.

10

elasticity

Figure 2.1: Advantages and disadvantages of Cloud computing.

Agility, Cost, and Performance Availability of new technological infrastructure,
high performance and lower costs are the crucial properties of Cloud computing that

make it more advantageous than other approaches.

With the advent of Cloud computing, many of the state-of-the art distributed compu-
tation approaches, techniques, and methods are combined together to provide high
performance guarantees, lower costs of ownership, quality of service guarantees,
zero-configuration, data privacy, scalability, and elasticity for the users even with
unexpected workloads. In addition to the benefits of this new computation paradigm,
some problems emerge in. These issues are shortly summarized in this part. Figure

illustrates the advantages and disadvantages of Cloud computing.

Advantages. Pay as you go model reduces the system ownership costs very much.
The cost of the hardware/software maintenance is also diminished remarkably by the
ubiquitous support of Cloud providers. The same computing system can be main-
tained and operated by fewer people. Following the technological advances in com-
puter hardware and software becomes easier and less costly. Patches and updates
are installed automatically. Any internet user can access to your platforms from any-
where in the world. Therefore, opening your ideas/products to world can be deployed
rapidly with small costs. Scaling up/out computation environment on-demand is one
of the most important opportunities of the Cloud. Elasticity, when the requests de-
crease for your software, shrinks the hardware usage of your system. This property of

Cloud prevents the unnecessary deployment of virtual machines during leisure times.

11

Cloud gives the sense of working with infinite number of computers to the users.

Disadvantages The Cloud introduces new problems to its users. The most thought-
provoking one is the security of the data in the environment. This is a very hot topic
nowadays and many scientists are applying different methods to achieve a secure
platform that will satisfy the users [27]. Data stored off-site have higher risks. With
technology always improving, there are ways to make sure of better encryption. How-
ever, there are always people with good hacking skills and/or software tools. Lock-in
is another drawback of the Cloud. The users are afraid of being dependent to a single
Cloud provider, not being able to assign responsibility to anybody for the lost of the
data, and not being able to recover it back. Cloud computing is dependent on the
network (internet). It means that this system is sensitive to network outages at any

time.

Large organizations such as government offices and financial institutions have their
own services and will not move/store their data off-site. There are no widely accepted
industry standards that can be applied to all systems when connecting to Cloud sys-
tems. The architecture of a Cloud computing platform can be categorized into three
different service layers as it is shown in Figure [2.2][179] [13]. These layers are Infras-
tructure as a service (IaaS), platform as a service (PaaS), and software as a service

(SaaS). Each service in this structure abstracts the layer below.

Infrastructure as a service (IaaS) The hardware layer is generally assumed to be a
part of IaaS. It manages the physical resources. A data center has several hardware
units. Configuration is handled by this layer. The virtualization layer generates re-
sources for storage and computing by dividing the physical resources using virtual
machine monitors such as Xen [172]], VMware [[175], and KVM [89]. Several cru-
cial features are made available by this layer (such as resource assignment). laaS
layer provides these resources on-demand from their resource pools. Virtual private
area networks are also one of their services (with IP support). In this model, Cloud
customers use infrastructure to install operating-system and their applications. Cloud
providers charge money depending on the amount of resources consumed. Windows
Azure Virtual Machines, Amazon CloudFormation, Amazon EC2, DynDNS, Google

Compute Engine, and HP Cloud are the main providers of IaaS.

12

4.1 117_;
end users
\ / Examples

5aas Application Google Apps,
aa Web browser, emulator, mobile,... Salesforce,...
Paas Platforms Google App Engine,
aa ;
0S,Frameworks,Java, .Net, DB, ... MicrosoftAzure,...
Infrastructure Amazon CloudFormation,
Virtual machines, servers, storage,... Google Compute Engine,
laaS Rackspace Cloud,
Hardware RightScale,
CPU,Memory, Disk, Bandwidth,... Flexiscale,..

Figure 2.2: Cloud computing service models.

Platform as a service (PaaS) PaaS layer is the layer above the infrastructure layer. It
manages operating systems, programming languages, databases, servers, and frame-
works. The purpose of this layer is to reduced the workload of Virtual Machines. The

data storages scale dynamically to meet the demand of the application.

Software as a Service (SaaS) locates on top of the PaaS layer. The application layer
handles applications. Scaling leverages the performnce of Cloud applications and
decrease operating cost. Cloud users use the software service of the Cloud. Users do
not tackle with the other platforms. Cloud applications have more scalability [[/7].

Workload is evenly distributed to virtual machines.

The layered architecture of Cloud computing is modular whereas traditional environ-
ments are dedicated servers. Each layer is loosely coupled with the other layers. This
is similar to the OSI model. The modularity make Cloud computing support require-
ments while reducing other overheads. Depending on the issues considered by the
Cloud users (security, availability, price, etc.), these services can be deployed in dif-
ferent types of Cloud environments. Private Cloud infrastructure operates for a single
organization. Public Cloud is a service where the resources are offered to the general

public.

13

/ . ‘
/ : Service Request Handler and Admission Control | N
| : ! A\
i | \
—)|
\ 1 - Accounting | |
/ " 3 /,I
/ . i : 3
Service Level : Virtual Machine W : //\.\
KAggrement Resourge W/ Controller ervice Request 3 AR
\ Allocator | Dispatcher Monitor | \
i | \

' |

\ ' . - - % !

\ 1 = | I |]
K

[QEe N\ /

\ virtual Machines ‘
L
' L
- - Pl \ B .
g _| Physical Layer]bf
P E - A
-------------\i----------------------------- --;f/'---""n;:_:-_::r'-'----

|
~_

/
. S
~ /
™

\

- -
~—

Figure 2.3: High-level Cloud computing architecture.

Although there are some hot topics going on the security, privacy, compliance, and
standards of the Cloud computing, we will not deal with these issues since they are
not much related with the main issues of this thesis. A high-level Cloud computing
architecture with its main components (physical layer, virtual machines, and service
level agreement (SLA) resource allocator) can be seen in Figure[2.3] The most related
opportunities of the Cloud computing for this study are the virtualization, scalability,
and elasticity. Therefore, particularly examining these properties of Cloud computing
more deeply will expand the vision to understand the advantages/disadvantages of
Cloud and inequalities from the statically distributed computation environments for

the queries.

Virtualization is the abstraction or decoupling of the application from the underly-
ing physical resources [130, [27]. The physical resource can be collected together
as logical/virtual resources are needed. This is called as provisioning. With Cloud

computing, the provisioning of the logical resources becomes dynamic. Logical re-

14

source can scale up, out, and down in accordance with the demand. This process
is called dynamic provisioning. In an efficient Cloud computing environment, ev-
ery computing element must be capable of being dynamically provisioned and man-
aged. Virtualization can mainly be applied to servers (partitioning a physical server
into smaller virtual servers), operating systems, data storages, networks, and appli-
cations. Virtualization of the servers is transforming the conventional infrastructures
from server-centric computing to network-centric Cloud computing architectures. It
is now possible to create virtual servers. All of these opportunities transform the ef-
ficiency of the data stores. Resources (CPU, main memory, data storages, network
capacities, etc.) can be increased and decreased as if working in an environment with
infinite resources. Advances in network services management have been virtualized

and it is possible to have the basic settings for Cloud computing.

The Cloud computing shares a set of distributed virtual computing resources opti-
mally, whereas the server-centric computing paradigm dedicates resources to an ap-
plication. The conventional model of servers is not designed to shrink up and down
to response to changing workload demands [61]. The virtual networks provide an al-
ternative to the physical network infrastructures. Resulting simplicity that is provided
by virtualization significantly reduces the management costs and hypervisors are the

tools that monitor this virtualized environment of Cloud [164]].

Scalability can be described as an ability to adapt a system to a growing amount of
work by increasing its resources to accommodate the growth. This can be typically
achieved by providing additional resources to the existing system. Scaling can be
done by vertically scaling up or by horizontally scaling out. Vertical scale up means
to improve the overall capacity by increasing the resources in an existing node. Hori-
zontal scale out is to increase capacity by introducing additional nodes. One of these

scaling techniques or both can be employed at the same time [[168]].

Scaling up can be applied to stand-alone and server-based applications. It is lim-
ited by the growing capacity (e.g. available expansion slots) of available hardware.
On the other hand, horizontally scaling out improves the overall system capacity by
adding new nodes. The architectural structure of vertical scaling is different from the

structure of horizontal scaling. The focus becomes the maximization of the overall

15

Eleje
peloeeugl
CICICINITI I IvIelvie

scaling
Figure 2.4: Costs vary in accordance with scales over time.

Cost(S)

system by combining the power of many nodes, therefore; horizontal scaling is more
complicated than vertical scaling. Scalability of a system becomes a necessity when
resource bottlenecks occur. The contention of a system can be prevented by using
fewer resources (which is not possible most of the time) or adding more resources.
Therefore, Cloud computing environments must be horizontally scalable with the il-
lusion of having infinite resources. There must be no system downtime during scaling

and these settings must be done automatically.

Cloud resources are available on-demand as virtual machines and services. This
model makes reversible scaling practical and important as a tool for resource utiliza-
tion and cost estimation as shown in Figure [2.4] This property of Cloud environment

is named as elasticity, i.e. reversible scaling.

2.2 Data Warehousing on the Cloud

Data warehousing emerged from the demand of using large data to achieve goals to
improve the success of the organizations. A large company has many sub-organizations
and managers need to evaluate how each on of these branches contributes to the prof-
its of business performance. The integrated database of large companies stores huge
data on the tasks performed by branches. This query can take very long. Finally,
a report is given to managers. Database designers observed that such an approach
is not feasible, because of the time and resources, and it does not always obtain the
expected results. Moreover, analytical queries can slow down the system when com-
bined with transactional queries. Contemporary DW tools process different (OLAP)
not the (OLTP) [88]].

16

In a DW, the whole data is brought together and organizations depend on the meta-
data obtained from the integration of these data sources [31]. The data can be queried
by means of a query language or data mining tools to give information to decision
makers. DWs can support on-line analytical processing (OLAP) tools that allow the
navigation of the data in a warehouse. Data warehousing systems can compute statis-
tics and predict trends within the data. Although DWs are highly demanding systems,
long periods of setting up the data, high monetary costs, and system expertise needs
are the limitations that restrict the usage of these systems. Recently, companies are
trying to make use of Cloud computing with software as service (SaaS) to customers.
The customers access the application via the internet. Google Apps, Skylnsight [142],
GoodData [66] are some of the examples of these systems. By using these systems,

there is no need for expertises and over-provisioning can be avoided.

Data marts are subsets of a DW that is usually oriented to a specific business. Data
marts are small parts of DWs. The information in data marts is related to a single
department, whereas a DW serves to whole company. Each department is considered
the owner of its data mart including all the hardware, software and data. Each de-
partment uses, manipulates and develops its data without altering information inside
other data marts or the DW. Business intelligence (BI) applications are the first use of
data marts. Data marts can be used by smaller businesses to make use of the data they
have. A data mart can be a cheaper solution than using a DW. A data mart can also
be installed faster than a DW. With low costs, data marts can be a suitable method for

storing data in small scale companies.

DW systems require different talents than conventional database systems. Conven-
tional database systems are mostly used for transaction intensive operations, DWs
are used for analytics (select-project-join operations) on large data. Although there
are many different solutions to data warehousing, main components are the same for
all of the systems. The information comes from typical OLTP systems. The DW
component keeps all of the incoming data and the data can be cleaned before being
processed to prevent the anomalies. After loading the data into the DW, it can be
used by OLAP and data mining tools. The performance increase of OLAP and data
mining tools are not the main goal of our study; however, they are heavily being used

by these systems. We more focus on the high-performance issues of the SQL queries.

17

In OLAP, data is presented in data hypercube forms and each one of the dimensions

represents a data dimension.

There are two main approaches for storing data in a warehouse. The Multidimen-
sional OLAP (MOLAP) stores data into multidimensional data cubes. Its advantage
is that it can be used by OLAP tools without much need for transformations. But
it is hard to integrate them to original data sources and SQL statements. And also
it does not scale well. The other approach is Relational OLAP (ROLAP). With this
approach, the DW can be used with conventional SQL statements. ROLAP is also

more scalable. Our main focus is the speed-up of the queries of ROLAP systems.

Cloud environments are new emerging efficient platforms for DWs. However; there
are some challenges when deploying data to a Cloud DW. Shipping the data to Cloud
can take long periods. Also taking back your data from Cloud provider can be an-
other important issue. The performance expectations may not be met by the Cloud
providers because of the low-performance planning of the end Virtual Machines (CPU,
memory, and disk bandwidth). WAN latency and security of the data are other issues
that concern the users of Cloud DWs. Cloud computing can handle the usage of a
DW in an efficient financial way. For example, a DW might not be used at night and
another DW may be in heavy use during daytime. An elastic Cloud DW can adjust

the number of virtual machines to minimize the budget.

In DWs where terabytes of data are being processed query optimization becomes an
important issue. Materialized views are important components of such systems [31].
A materialized view is a previously completed result of a generic query that may
be used by other queries. Determining the selection of the mostly used materialized
views is an important research area. Parallelism is another important issue that can be
used to speed up the queries of DWs. Using multi-core processors and partitioning
are some of the techniques that we have explained. Shared-nothing architectures are
promising solutions methods for scalable DWs because virtual machines can be used
in a fully parallel manner to provide linear speed-ups. Workload management of the
queries is another aspect of the DWs that must be monitored carefully. Elasticity of
the Cloud can provide a good infrastructure for these issues with its virtual resource

opportunities.

18

The idea of using the relational databases for warehouses is a very efficient way. The
relational model does not have measure and dimension. Therefore, specific types
of schema must be created to represent the multidimensional models. Star schema
is one of these approaches. Large joins are the main problems of ROLAP systems.
Redundancy (materialized views) becomes a key concept to improve the performance.
ROLAP requires a specialized middle layer between back-end servers and front-end

components.

Multidimensional engine is the main component of DWs and it can be connected
to any relational server. The performance of MOLAP system is excellent. There is
no standard model set for MOLAP. A standard is missing but it is being solved. Mi-
crosoft (Analysis Services) and Oracle (Hyperion) are successful projects in this field.
The architecture, hybrid OLAP (HOLAP) aims to mix the advantages of ROLAP ad
MOLAP.

If we look at some of the leading commercial DW tools. IBM DB2 is one of the im-
portant tools that use shared nothing architectures [83], which means that the different
databases do not share any information, making it more scalable and modular. It has
a cost-based optimizer. Materialized views is another crucial way to speed up DW
workloads. DB2 uses ‘shared scan’ to share results between data scans for the same
data. Oracle also offers DW products. Their most prominent product is ‘Database
11g’ [117]. It has OLAP capabilities and uses data cubes. Materialized views are
provided. Oracle also offers clustering capabilities, which is very useful for elasticity.
The information about the internal structures of these commercial systems are not
explained in detail because they are considered as commercial secrets. However, we
have not come across any information that both designs/optimizes the monetary cost
of the virtual resources and the response time of the query workloads at the same time

as it is proposed in our study.

Microsoft Parallel DW (PDW) is a parallel processing DW tool built for large volumes
of relational data (with up to hundred times performance gains) and integrates to
Hadoop [107, [74]. PDW reduces ongoing costs resulting in a solution that has the

lowest price/terabyte in the market.

19

(o) (i)
Com JTom) o

I I
BUS

= =
disk disk

Figure 2.5: Shared-memory and shared-disk architecture.

2.3 Hardware Architectures for Relational Cloud DWs

Relational Cloud DWs run on Cloud computing platforms. Users can run DWs on
the Cloud independently by themselves but automated management of the virtual re-
sources is more efficient and wanted way of managing of the Cloud DWs. This study
focuses on the performance and monetary cost of relational Cloud DWs which intro-
duces many interesting problems to provision a successful Cloud DW management

with changing requests.

Relational Cloud DWs architectures are designed mainly on the principles of dis-
tributed and parallel databases 58,39, [118, 156, 93]. In this Section, the underlying

hardware architectures will be summarized.

It is now possible to have a multiple processor computer in your home which was
only a dream a decade ago. Symmetric Multiple Processor (SMP) machines, clusters
of workstations, massively parallel processors (MPP), and clusters of SMP machines
are easily accessible and utilized hardware by the Cloud providers. The underlying
hardware structure of Cloud databases are constituted by making use of these archi-
tectures. Commonly, these distributed/parallel hardware architecture are classified

according to three categories.

(1) Shared-memory and shared-disk architecture.
(2) Shared-nothing architecture.
(3) Hybrid architecture.

Shared-memory and shared-disk architecture shares a common main memory and
a secondary memory. Figure [2.5] gives an example of this architecture. In this archi-

tecture, tasks are divided into sub-tasks and assigned to slave processors. Since the

20

| Interconnected Network |

memory

memory] (memory] ses
Cov J Cov

disk disk disk
Figure 2.6: Shared-nothing architecture.

| Interconnected Network |

Figure 2.7: Hybrid architecture.

memory is common to all processors, most of the coordination among the processors
is done easily. This architecture uses a bus interconnection network and when many
processors may compete for access to the shared data it suffers from memory and
bus contention. Therefore, a shared-memory computer is generally equipped with no
more than 64 processors. In shared-disk architecture, the secondary memory is shared
by the processors as in the shared-memory architecture. This architecture is mostly

used in SMP computers. The operating system allocates tasks processors.

Shared-nothing architecture In this architecture, each processor has its own local
main memory and disk and there is no contention due to the accesses to the shared
data. However; load balancing is difficult to achieve. Each processor uses its own
memory and disk during the processes. Therefore scaling out is known to be easier
with this architecture which is one of the main concern of Cloud computing environ-
ments. The data/computation skewness is another major problem for shared-nothing
architectures while processing data. Workstation farms and Massively Parallel Pro-
cessing (MPP) machines are examples of shared-nothing architectures. Since the
processing units do not share common data storage, they communicate among each

other via a network. Figure [2.6]shows a shared-nothing architecture.

Hybrid architecture. This architecture settles the limitations of shared-memory and

shared-nothing architectures. There can be different versions. The basic model can be

21

seen in Figure[2.7|that each node (a cluster of SMPs) has a shared-memory connected
to an interconnection network to form a shared-nothing architecture. Lower network
communication demand and flexibility are the most important features of hybrid ar-
chitecture. With this architecture, it is possible to plug in new elements to the current
system and take out the old ones. It is easier to add SMP machines into an existing

architecture.

Interconnection Networks In all of the aforementioned architectures, processors
need to communicate via a network. The main types of interconnection networks
are bus, mesh, and hypercube. Bus is a single communication line connecting proces-
sors usually in SMP architectures. CPUs components can send and receive messages
from a single line. Bus architecture does not scale well with increasing number of
processors. In Mesh architecture, each processor is connected directly to its adjacent
components in the Grid and can communicate with others by routing messages via
nodes that are connected to another. In Hypercube architecture processors are num-
bered in binary and connected to another if the representations of the numbers differ
in exactly one. Each component is connected to log(n) other components, where 7 is
the number processors in the system. This model is also scalable but the number of

links increases excessively as new processors are added.

2.4 Relational Cloud DW Design Techniques

Relational Cloud DWs rely on the basic hardware architectures of conventional dis-
tributed databases and their design techniques. The classic hardware architecture used
for many distributed databases is shown in Figure [2.8] Requests are processed by a
load balancer by sending them to available application servers. The SQL statements
are sent to the database servers to process the requests. Later, the storage system ships
physical blocks of data to and from database server. SAN or single disks are being
used by the traditional storage layers. Solid-state disks, large main memories (in-
memory databases), or a hybrid design of both will be the media of the data storages

in the near future [[159] [40][112].
The classic architecture allows using the best designed components at all layers and

22

& &p

htt
péwe“ .
servers

S
- -

a4 . =
(i

P N e —

[I DB server

storage

Figure 2.8: Conventional database architecture.

provides scalability and elasticity at the application and storage layers. If the work-
load of application servers increases due to the excessive number of clients, addi-
tional number of the application servers can be provided easily. It is also possible to
decrease the number of the machines when the workload decreases. The same tech-
nique can be applied to the storage layer as well. The database server layer has some
limitations in this architecture that it is not much possible to scale out its capacity
easily. Therefore, Cloud service providers have designed scalable computation en-
vironments with shared-nothing architectures to answer the changing requests of the
Cloud users under peak workloads. Partitioning, replication, caching, and distributed
control are the main techniques that are being used by the Cloud providers to design

efficient relational Cloud DWs.

Partitioning : This is the most widely used method of distributed database design
techniques and is being used efficiently by Cloud DWs. Partitioning is generally used
to divide a big data into fragments when it is not possible to process it in reason-
able times with a single processor or there is not enough storage to maintain it. The
relations are separated into fragments, by applying horizontal, vertical, round-robin,
hashing, range partitioning or a hybrid method. Each fragment is handled by sepa-
rate database server in this design [[161} [78] 28]. With partitioning, the database layer
is put on top of the storages and therefore a more scalable environment is provided.
Transparency of the partitioning is a desired property for this design. On the other
hand, partitioning has limitations that while scaling out, huge amount of data needs to

be shipped across the machines. Figure [2.9]illustrates an architecture where database

23

& G

htt
péweb, + app.
servers

/{/4‘;

e e i . —

Figure 2.9: Database architecture where database servers and storages are attached

together to provide more scalability.

servers and storages are attached together to provide more scalability. Sharding has
emerged as a new way of partitioning large databases for a few years. It is commonly
available for shared-nothing environments. Sharding provides a method for scalabil-
ity across independent servers, each with their own CPU, memory and disk. The basic
concept of sharding is very straightforward. Break a large database into a number of

smaller databases across servers.

Replication : In this model, each database server controls a copy of a relation, a frag-
ment, or whole database. Consistency of the replicas is important during the design.
ROWA (read-once, write all) is the most prominent protocol that uses a master copy
to keep the system consistent [120]. Application servers issue queries of read-only
transactions to any database server. If the workload has read-only operations mostly,
the architecture in Figure [2.9]scales-out and shrinks back nicely with replications. For
workloads with intensive updates, master copy becomes a bottleneck that prevents the
scalability. There are many successful studies to remove this drawback and provide

efficient and reliable Cloud databases with high consistency [[159].

Caching : has been an efficient tool to increase the performance of the database
servers. It can be combined with other design techniques such as partitioning, repli-
cation, and distributed control. It can be maintained by the dedicated servers as well
as database servers. Servers can keep intermediate results of queries/views in their
main memory. There are many different schemes in order to keep the cache consis-
tent with regard to updates to the database. Google AppEngine operates a farm of

dedicated MemCache servers to provide this service.

24

& Gip i

htt
-

a s

Figure 2.10: Distributed control architecture.

Distributed Storage Control : This approach uses a similar architecture of partition-
ing and replication and it has major impact on the implementation and performance
of a system (Figure [2.10). The Distributed Control architecture can also act like a
shared-disk model. It uses loosely coupled nodes to provide scalability. The storage
system and the database servers are separated from each other. The database servers
access the shared data from the storage system and different distributed protocols
can be applied. The distributed control architecture is probably the best model for
Cloud computing. Scalability and elasticity can be provided at each layer by direct-
ing each request to any application/database server. Replication and partitioning can
be achieved in a scalable manner. Commodity computers can be used at each layer of
this architecture. But as stated in CAP theorem [23, [1]], it is not possible to provide

consistency, availability, and resilience to network partitioning at the same time.

Consistency in Cloud Databases (ACID vs. BASE). Cloud DWs must make trade-
offs depending on the expectations of the users. Consistency and the availability are
the most two important ones due to the CAP Theory [23]. Therefore, new and effi-
cient consistency issues are being seriously developed by many researchers. Strong
consistency in database systems is defined by means of ACID properties of trans-
actions [62]]. ACID requires that for every transaction atomicity, consistency, isola-
tion, and durability attributes hold. If ACID is chosen for consistency, it emphasizes
consistency and diminishes the importance of availability and implies a pessimistic
view where inconsistencies should be avoided at any cost. Complex protocols such
as 2-phase-commit or consensus protocols like Paxos are required to achieve ACID
properties. On the other extreme, where availability is more important, BASE [23] is

proposed as the counter-part for ACID. BASE stands for: Basically Available, Soft

25

state, Eventual consistent. BASE is optimistic and accepts temporary inconsistency.
Eventual consistency only guarantees that updates will eventually become visible to
all clients and that the changes will persist if the system comes to a quiet state [128]].
Eventual consistency is easier to achieve and makes the system highly available. Be-
tween the two extremes, BASE and ACID, there is a range of consistency models
from the database community [[167] as well as from the distributed computing com-

munity [12].

2.5 Query Optimization in Relational Cloud Data Warehouses

Relational Cloud DWs make use of the query optimization techniques of distributed/-
parallel databases [93) 192, [156]. Therefore, this chapter surveys the state-of-the-art
key concepts of distributed query optimization (DQO) techniques that are applicable

to relational Cloud databases.

Query processing rewrites a query sentence as a physical query plan that has a set
of tasks. Query optimization chooses the best way of executing a given query. The
main stages of query processing can be seen in Figure DQO determines which
resources will be used to execute a query and its order. The optimizer generates alter-
native plans, estimates their costs and chooses the best one [84]. Finding the best way
to solve this problem is known to be an NP-Hard problem [82]. Distributed database
query optimization is much harder than the centralized database version of the same
problem and introduces issues of the cost of communication and an expanded search
space due to the data shipping and site selection for intermediate operations during

the optimization of a query.

The problem of determining a good query execution plan (QEP) for join expressions
has been addressed since 1979, the development of System R [[133,[79,[70, 132,137, 168]].
The work has two steps. The development of efficient algorithms and second, the al-
gorithms that determine the order of joins. The search space is the set of all possible
QEDPs that can be constructed in many different ways. A solution is defined as a pro-
cessing tree. The QEP tree is a simple binary tree. Its leaves correspond to base

relations and inner nodes correspond to join operations. Edges indicate the flow of

26

Query
I}

Query Parser

Plan Plan Cost
Generator Estimator Catalog

Query Optimizer

Execution Plan

Query Plan
Evaluator

Figure 2.11: Query processing phases.

partial results from the leaves to the root of the tree. Each evaluation plan (point of
the solution space) has a cost. The aim of the optimization is to find a QEP with the
lowest possible cost. The solution space is defined as the set of all processing trees
that compute the result of the join expression. The leaves of the processing trees han-
dle the relations, inner nodes handle joins [116]. Many algorithms for DDB query
optimization have been proposed and studied in the literature. SDD-1 was the first
developed distributed query processing algorithm and it was based on Hill-Climbing
strategy [147]. Dynamic Programming (DP) was also extensively studied for solv-
ing this problem by storing the sub-solutions in the main memory [94]. Distributed
INGRES algorithm is derived from the centralized INGRES algorithm [149]. The
Iterative Improvement algorithm makes small changes on an existing solution until
no more improvement can be achieved [84} [153]]. Simulated Annealing [85], Two-
Phase optimization [84], and Random Sampling [59] are the members of randomized
algorithms which have also been used for solving the problem. There are also ef-
forts to design new algorithms with hybrid approaches that make use of deterministic
and randomized algorithms. Mostly, deterministic algorithms provide a good starting
point and the following decisions are made either by randomization or Genetic Al-
gorithms [64]]. The Iterative-DP (IDP) is a member of this class of algorithms. IDP
starts exploring the search space by DP, in the later steps it prunes the search space

according to some heuristics [94]].

There are various algorithms developed to find a good join order for a DDB query.

27

Most of these algorithms are derived from centralized database query optimizers. Al-
gorithms developed for this problem can be categorized as deterministic (exhaustive),
metaheuristic [25] randomized, genetic, and hybrid algorithms according to Stein-

brunn [[147]].

Deterministic Algorithms. Members of the deterministic algorithms construct solu-
tions either in a top-down or a bottom-up manner and use a heuristic or an exhaustive-
based strategy. The amount of the search space for large DDB join queries is so big
that exhaustive deterministic algorithms are not always feasible. Dynamic Program-
ming is a well-known deterministic algorithm which is widely applied in the field of

database query optimization [147].

Some of the well-known deterministic algorithms are; Minimum Selectivity [171],
Krishnamurty-Boral-Zaniola (KBZ) algorithm [82][96], AB algorithm [154], and R*
algorithm [[133][118].

Randomized Algorithms. SDD-1 Algorithm is the first developed distributed query
processing algorithm and based on a hill-climbing algorithm [21]]. The initial fea-
sible solution is repeatedly improved until there is no possible other solution. The
algorithm does not use semijoins, replications or fragmentation and it is good for
point to point networks [118]. Distributed INGRES is derived from the centralized
INGRES algorithm [54] which recursively breaks up a relational calculus expression
into smaller pieces. Iterative Improvement [153} [84) |85]], Two-phase optimization
[84]], Toured simulated annealing [97], and Random Sampling [S9] are some exam-

ples.

Genetic Algorithms (GAs) try to simulate the evolution process [64]. GAs also
propagate solutions for a given problem between generations. A single solution is
called an individual, and the set of solutions is called population. Solutions are chro-
mosomes of genes. Encoding is the representation of a chromosome and selection is
used to separate the good and bad solutions of the population. Crossover is a way of
combining good partial solutions provided by two parents in order to obtain a better
result. Mutation introduces a new feature to an offspring that is not present in ei-
ther of its parents. A population of randomly selected chromosomes is created, and a

fraction of the fittest members of this population is selected and using crossover and

28

mutation operators a new generation is evolved. The termination condition of the al-
gorithm can be the achievement of a desired quality level, a limit on the number of the
generations, or achievement of no improvement for a certain number of generations

[136, 17,150, [71].

Hybrid algorithms make use of the strategies of deterministic and randomized al-
gorithms. Mostly, deterministic algorithms provide a good starting point then the
following decisions are made either by randomized algorithms or GAs. The Iterative-
DP (IDP) algorithm is a member of this class. IDP starts exploring the search space

by DP, in later steps it prunes the search space according to heuristics [94].

Dynamic Programming (DP) works in a bottom-up manner constructing all the sub-
plans until an optimal solution is obtained. Any given sub-problem is constructed
only once and saved in a table, therefore it is not computed again. The algorithm first
builds access plans for every relation in the query and there may be several different
access plans. If relation R, is replicated in different sites, say site 1 (S;) and S,, the
algorithm enumerates fable-scan (R,,S;) and table-scan (R;,S,) as alternative plans.
DP enumerates all two-way join plans in the second phase. Alternative join plans are
enumerated, including the data shipping cost of joins for all sites. All multi-way join
plans are built using individual relation access-plans and previously discovered opti-
mal multi-way join plans as building blocks. DP continues until it has enumerated all
the n-way join plans. The joinPlans function produces more and more complex plans
using the smaller plans as building blocks and returns a new plan for every alternative
join method. DP discards all of the inferior partial-plans (i.e. a better plan exists for
calculating the same output as that of the partial-plan). This is called pruning and
carried out by the prunePlan function. An efficient plan can prune another plan with
the same output. DP enumerates (R; X R,) and (R, X R;) as two alternative plans,
but only the better plan is kept in the optPlan(R;,R;) structure after pruning which
reduces the search space. In a DDBMS, table-scan (R;,S,) and table-scan(R,,S,) do
the same job, but they produce results at different sites. So, they cannot be pruned in
order to ensure that the optimizer is guaranteed to find the best plan. For example, if
the cost of table-scan(R,,S;) and the cost of shipping R; from S; to S, is lower than
the cost of table-scan(R,,S), then table-scan(R,S,) is pruned. DP algorithm is given
in Algorithm [2.1][92].

29

The running time complexity of DP for a centralized database is O(3") and the space
complexity is O(2") where n represents the number of relations [[116]. The distributed
query optimization time complexity of DP is O(s*3") and its space complexity is
O(s2"+5%) where s is the number of sites at which a copy of at least one of the tables
involved in the query is stored and the site issuing the query to which the results are

returned [94].

Algorithm 2.1: Dynamic Programming Algorithm
Input: Select Project Join query g on relations Ry, ... , R,

Output: a query plan for ¢

fori — 1tondo
optPlan ({R;})= accessPlans (R;)
prunePlans(optPlan ({R;}))

fori — 2tondo
forall S c {R,,...,R,} such that | S |=1do
optPlan (S)=0
for O c Sdo
optPlan (S)= optPlan (S) U joinPlans(optPlan(O), optPlans(S \ O))

prunePlans (optPlan (5))

finalizePlans(optPlan({Ry, ..., R,}))
prunePlans(optPlan({R;, ..., R,}))

return optPlan({R,, ..., R,})

Recent Relational Cloud DW Query Optimizers. There are studies to adapt tra-
ditional query optimizers to Cloud computing. In [20], a classical query optimizer
is adapted to Cloud computing workloads where it uses a partitioned database on a
shared-nothing architecture. In [137], a parallel DW system optimizer is developed
for single queries by considering a rich space of execution alternatives with bushy-
tree plans instead of simply parallelizing the best serial plans. Query optimizations
in Cloud environments can have different goals unlike the traditional query optimiz-
ers, and the search space is much larger because of the number of data processing

nodes provided by the Cloud environment. In an interesting study, the scheduling of

30

data processing workflows on the Cloud is considered from the perspective of min-
imizing the completion time given a fixed budget [90]. Kossmann et al. developed
a new database architecture that is based on batching queries and shared computa-
tion across many concurrent queries in a shared multi-processor environment [63]].
A framework is developed for a Cascade-style Cloud query optimizer to enhance the
performance by using MQO techniques for massive data analysis scripts that contain
common subexpressions [140]. In [65] a multi-colony ant algorithm is developed to
optimize the join queries of a distributed database where relations are replicated but
not fragmented. Four types of ants collaborate with each other to provide an efficient

execution plan and each colony makes a decision to find the optimal plan.

In order to estimate a query, it is important to provide an accurate cost model. Cost
models describe the process involved and compare the solution quality of a QEP with
others. There are two main cost models that are used to evaluate the efficiency of
QEPs [97, 165, [118} [156]. Total execution time cost models and response time cost
models. A cost model equation consists of data parameters, systems, query parame-

ters [[156].

The number of processors (sites), page size, the main memory size, and network
bandwidth are the most important system parameters that a cost model must use.
Projectivity ratio (i), Selectivity ratio (o), and the semi-join are the important query
parameters. Projectivity ratio, m, is the ratio between the selected attribute size and
the original record size. Selectivity ratio, o, is a ratio between the total output records
and the original total number of records. Projectivity and selectivity parameters are
associated with the number of records before and after the query processing, which
gives the processing time of the executions in the main memory. Communication cost
is calculated depending on the number of pages to be sent and message preparation

cost. The parameters are summarized in Table

Statistics Used for the Optimization of Query Expressions (Histograms). Given
a QEP, it is crucial to evaluate the cost of the execution accurately. Query optimizers
rely on these estimations to provide efficient QEPs. In order to make a good estima-
tion, it is vital to know the resources consumed by a QEP. The resources of a QEP

can be CPU usage, I/O cost, main memory limitations, network bandwidth, or com-

31

Table 2.1: Parameters used in the cost model.

Parameter Type | Name of the parameter

data size of the relation (fragment) (Byte)
data number of records in relation (Fragment)
system number of processors

system page size

system main memory size

query projectivity ratio

query selectivity ratio

time unit cost time to read a page from disk

time unit cost time to write a record to the main memory
time unit cost time to read a record in the main memory
communication | message protocol cost per page
communication | message latency for one page

bination of these. The estimation depends on the statistical summaries (cardinality
estimates) of the data. For every relation, the cost of scans, joins, and their mem-
ory requirements are kept as important statistical information [26]. The number of
physical pages used by the relation and the statistical information on columns are the
parameters used to estimate the selectivity of predicates. Cardinality estimation uses

this statistical information to provide accurate results.

For example, consider two different QEPs for the same query given in Figure[2.12] If
the query optimizer has the information that predicate (A.a < 15) produces less tuples

than predicate (C.a > 100) then QEP; is chosen by the query optimizer.

QEP, QEP,
A A
X \ X \
C A
/ \ C.a> 100 / \ Aa<15
A B C B
Aa<15 C.a>100

Figure 2.12: Choosing efficient QEP depending on the cardinality estimation of in-

termediate results.

In this part, we show how histograms are being used to estimate the cardinalities of

32

100

o]
o

frequency

N
o

b1 b2 b3 ba Aa

10 20 30 40 50
Figure 2.13: Estimation of the range selectivity by using histograms.

the tasks executed by QEPs. Histograms are the most common statistical tools used
by DBMSs [91,124]]. A histogram consists of a set of buckets that hold the information
on an attribute. Each bucket represents a sub-range of the values of the column. There
are two associated values in a bucket, the frequency of bucket (the number of tuples
in the data set) and the number of distinct values of all the tuples. The distribution of
tuples in each histogram bucket is assumed to be uniform. Other techniques such as

continuous and randomized models can also be used.

Figure @ gives a histogram on relation A (attribute a). Buckets b1, b2, b3, and b4
represent 80, 70, 40, and 100 tuples respectively. For predicate (A.a > 15), b4, b3,
and 50 % of the tuples in b3 are added and the total sum of tuples is found as 175.

For example, in case of multiple predicates such as in the query below :

SELECT *
FROM A
WHERE (A.a > 15) AND (A.b < 50)

The selectivity for the whole predicate is estimated as (A.a).(A.b) where A.a is the
selectivity of (A.a > 15) and A.b is the selectivity of (A.b < 50).

Estimation of cardinality for the join predicates is composed of three steps. In the first
step, the buckets are aligned to agree their boundaries. In the second step, each pair of
aligned buckets is analyzed and estimation per bucket of join sizes is done. At the last
step, the partial frequency aggregation from each resulting bucket is done to get the
cardinality estimation for the join. When arbitrary select-project-join (SPJ) operations

are considered, the cardinality estimation requires propagation of the statistics.

33

Nested-loops join N Nested-loops join N

N N
Hash join Dq/ D Hash join D<{ D

/ -~ - Materialization /
Merge join D(] hastable Hash join D(] hastable
Materialization = = =f= == =\c = = C C
(o]

A B
i i

Figure 2.14: (i) a non-pipelined plan; (ii) a pipelined plan

7 NG
WI/

hastable

Pipelining and Materializing in Query Execution Plans. The result of an operator
is sometimes passed to another operator without saving the intermediate result. This
is called pipelining and it saves the cost writing/reading the results back in. If the
output is saved in main memory or on a disk it is called materialization. Pipelining
has lower overhead than materialization. However it is not always possible to pipeline
the results [62]]. During the execution of the QEPs, blocking operators can be faced.
Blocking operator need to keep sub-solutions. Sorting operator or hash join operator
that the build relation is stored in a hash table and probed many times are the blocking
operators while processing a QEP [42]. Whether the QEP is executed with pipelining
or materialization constraints the processing schedule of the QEP [45]]. Non-pipelined
QEPs have at least a blocking operator during their execution. The materialized re-
sults are kept in the memory or sent to another processor to complete the QEP. Figure
shows non-pipelined and pipelined plans. Pipelined plans execute in parallel, by
sending the resulting tuples of an operator to the next operator. Figure[2.14](ii) shows

a pipelined plan using hash join operators.

Query Processing Trees. A QEP is a tree with each node representing a sub-query
and an edge between two nodes specifying the execution order (network) of the sub-
queries. Each node depends on the incoming edges and cannot be executed until its
children node(s) finish. An execution plan is performed by several phases. The first
phase involves only base tables. The next process comes after the completion of the
previous phase. They have dependencies. The last phase produces the result. In a
multi-processor environment, each operation is allocated to one or more processors
in parallel and expected to finish in harmony. Left/right-deep tree, bushy-tree, and

zig-zag tree are the main execution plan types used by the optimizers. They are given

34

in Figure[2.15] The purpose of parallelization is to reduce the height of the execution
tree. When each evaluation is independent, bushy-tree is the best performing option.
However, when each task depends to another, then bushy-tree is not possible. Left and
right-deep trees are similar to sequential processing. The output of a task becomes an
input to the next tasks. These execution trees are good when implemented together

with pipelining. The main objective of a QEP is to complete all sub-tasks as early as

possible.
ABCD ABCD
ABC [x]/ M\M BCD
~
AB g \ ~N
Dq CD
/\ /\
A B C D A B C D
left-deep right-deep
ABCD
X
D/ q ABCD
ABC
/ \ AB 4 DK cD
AB P4 c /‘1 o
/ N\ \ /\
A B A B ¢ D
zig-zag bushy

Figure 2.15: Query execution plans.

Access Path Selection. After parsing the SQL statement, optimizer use the names
of the relations and columns in the query and verifies statistics about them. The
database catalog holds the statistics. The optimizer selects the best access paths from
this catalog to obtain the most efficient QEP. The access paths that reduce the total
cost for the query blocks are selected from a tree of different choices. The primary
way of accessing data is through data storage. Scan is the basic operation to reach
data. There are currently two types of scans, namely, segment scan and index scan.
The first type of scan searches all the tuples in a relation whereas an index cares only
with the related tuples. Indexes are maintained on separate pages from those that
contain the tuples of relations. Index scan does not scan all the tuples in a relation.
Both segment and index scans can take a set of predicates. The optimizer examines
the predicates and the access paths on the relations and uses a formula to predict the
cost of the query. During the optimization of a query, WHERE tree of predicates is

examined. If it is possible to use an index on a column then it is exploited to obtain a

35

better QEP.

The optimizer gets the statistics in the database catalog. The most important statistics
are the cardinality of the relations, the number of pages, number of distinct keys in an
index, and the number of pages in an index [[133]. A selectivity factor is assigned for
each predicate in the query list. A detailed explanation of selectivity factors can be
found in [133]. For single queries, best access path selection is obtained by calculat-
ing the cost of each path. The ordering of the tuples is an important criterion if there
are GROUP BY and ORDER BY clauses. Then, the cost of sorting the tuples must
be considered to find the optimal solution. The join is another frequent operator that
must be carefully estimated to find the optimal QEP [[108]. Joins can be implemented
in many ways. Certain techniques can be better than the others depending on the de-
sign of the relations (indexes, sorted columns, etc.). In a join operation, there are two
relations that are called outer and inner relations. Outer one is the relation that a tuple
will be retrieved first and the inner one is the relation from which the tuples will be

retrieved. Join column is the matching criterion for both relations.

Nested-Loops, Sort-Merge, and Hash-Join are some of the main techniques applied
during the join operation. In a nested loop join, after fetching the first tuple of the
outer relation, a scan is performed on the inner relation to retrieve the tuples that
satisfy the join predicate. If the outer relation has m tuples and inner relation has n
tuples. Then the performance of this join is calculate as O(m x n). In sort-merge
join, both relations (or only one of them) are sorted on the join predicate. Later,
both relations are matched and resulting tuples that satisfy the join condition form
a relation. The performance of the algorithm is O(m+ nlogn). The sort-merge join
reduces the number of comparisons between the tuples of the relations. A tuple of
the outer relation is not compared with the tuples of inner relation in which it will
not join. Hash join methods provide the same solution. They isolate the tuples of
the outer relation that can join with a tuple from the inner relation. The tuples of the
inner relation are compared with a limited set of tuples from the outer relation. The
performance of hash-joins is O(m+n). During the evaluation of the join operators
in a distributed environment, communication cost of data shipping among sites must
be also taken into consideration. Shipping cost of the data mostly overshadows the

CPU cost of the join. Query optimizers must select faster networks to send/receive

36

data during these operations to obtain the optimal QEP. Partitioned data is another
factor. The type of the partitioning, horizontal, vertical or hybrid must be taken into
account during the selection. Replication, site of the join operation, semi-join are
other important issues. As it can be seen, selecting the best ways for better QEPs is

more complicated in a distributed environment [92, |94].

Semi-join algebraic operation is an efficient and commonly used way of joining two
relations in a distributed environment [19, 108}, [123]]. The semi-join operator can re-
duce the amount of work required to do a later expensive join. In a conventional
join operation, the resulting relation has all the attributes/columns of both input rela-
tions. However, this is not a desired way of executing a join operation in a distributed
database system. The main goal of semi-join is to reduce the cost of communication
by sending the join attribute(s) of one relation to the site of the other and later send-
ing all matching tuples from the second relation back to the site of the first relation.
SDD-1 [19]] was one the first distributed database management systems that make use
of semi-joins and it is still an efficient way of executing joins in the recent distributed

database query optimizers [63].

Multiobjective Query Optimization : In this part, we summarize some of the mul-
tiobjective query optimization studies related to our work. There has been a lot of
research related to the Cloud, but relatively there is no approach like ours that con-
cerns both with the optimization of the total ownership price and the performance of
the queries by taking into account alternative virtual resource allocation and materi-

alized view supported query plans.

Grid/Distributed databases can be considered as the first representatives of the Cloud
DWs. Therefore, we first analyzed Mariposa, an early distributed database system
that implements an economic paradigm to solve many drawbacks of wide-area net-
work cost-based optimizers [149]. In Mariposa, clients and servers have an account
in a network bank and users allocate a budget to each of their queries. The process-
ing mechanism aims to service the query in the limited budget by executing portions
of it on various sites. The latter place bids for the execution of query parts and the
bids are collected in query brokers. The decision of selecting the most appropriate

bids is delegated to the user. A series of similar works have been proposed for the

37

solution of the problem [103[][111]. Papadimitriou et al. [119] showed that Mari-
posa’s greedy heuristic can be far from the optimum solution and proposed that the
optimum cost-delay tradeoff (Pareto) curve in Mariposa’s framework can be approx-
imated fast within any desired accuracy. They also present a polynomial algorithm
for the general multiobjective query optimization problem, which approximates the

optimum cost-delay tradeoft.

An advisor automatically configures a set of VMs for database workloads where the
advisor requests domain knowledge in [144]. Although Soror’s approach concerns
with the efficient allocation of the VMs, it does not optimize the total ownership price

of the system.

Recently, efficient cost models have been proposed in the Cloud for scheduling of data
flows with regard to monetary cost and/or completion time [90] and cost amortization
of data structures to ensure the economic viability of the provider [87], particularly
for self-tuned caching [43] and for a real-life astronomy application using the Ama-
zon Cloud [18]]. New cost models that fit into the pay-as-you-go paradigm of Cloud
computing are introduced in [115)]. These cost models achieve a multiobjective op-
timization of the view materialization vs. CPU power consumption problem under
budget constraints. It is shown that Cloud view materialization is always desirable.
Koutris et al. [93] built a theoretical foundation, the first one towards a practical de-
sign and implementation of a pricing system. They present a formal framework for
query-based pricing. Central to this framework are the notions of arbitrage-free and

discount-free pricing.

In [44]], the cost performance tradeoffs of different execution and resource provision-
ing plans have been simulated, showing that by provisioning the right amount of stor-
age and computing resources, cost can be reduced significantly. The performance of
three workflow applications with different I/O, memory, and CPU requirements has
also been compared on Amazon EC2 and a typical high-performance cluster (HPC)
to identify what applications achieve the best performance in the Cloud at the lowest

cost [118]].

Recent research takes interest in various aspects of database and decision support

technologies in the Cloud. Different studies investigate the storage and processing

38

of structured data [33]], the optimization of join queries, and how to support analy-
sis operations such as aggregation [38]]. Cloud data warehousing and OLAP systems
also raise various problems related to storage and query performance [101]]. Adapta-
tions of these technologies to the Cloud are addressed in [13], or the calculation of
OLAP cuboids using the MapReduce runtime environment [[180]. In [162], a virtual-

machine provision policy based on marginal cost and revenue functions is proposed.

In [138]], a cost-aware provisioning system for Cloud applications that can optimize
either the rental cost for provisioning a certain capacity or the transition cost of re-
configuring an application’s current capacity is proposed. The system exploits both
replication and migration to dynamically provision capacity and uses an integer linear

program formulation to optimize cost.

There has been a great amount of work for tuning databases for workloads and exe-
cution environments [[167] [3] [[150]. Our study optimizes the objectives of minimum
money consumption and maximum benefit from the virtual resources and optimizes
this with an efficient multiobjective genetic algorithm. In summary, our study focuses
on the elasticity of Cloud resources and produces multiple resource deployment plans
with alternative query plans for a set of queries, enabling the user to select the de-
sired tradeoff with efficient cost models. To the best of our knowledge, no resource
deployment processing system deals with the concept of elasticity and cost-efficiency

on relational Cloud databases like our system.

The MQO problem was first defined in 1980s and finding a global optimal QP by
using MQO was shown to be an NP-Hard problem [134] [55] [135]. A detailed the-
oretical study of query scheduling, caching, and pipelining in MQO can be found
in [46]]. Considerable amount of MQO work has been done on relational databases
[113] [127] [11]. The idea of using joint subexpressions has been applied to batch
execution of multiple related queries and efficient maintenance of materialized views
[122] [126]. The studies in [S5] [152] considered these optimizations and used only
the best plans of queries, thus achieving less sharing (i.e. higher total cost) than that
could be obtained by using suboptimal query plans. Cosar et al. provide heuristics
and methods for generating alternative query plans that will improve the performance

of MQO in [[121]. The execution time of a batch of queries is improved by evaluating

39

a common subexpression once obtained by using a light-weight and effective mecha-

nism for detecting potential sharing opportunities among subexpressions [[180].

Detecting common expressions. It is mentioned that decomposition of the queries
at the early stages of MQP diminishes the complexity of the combinations for un-
correlated queries[81]. Wong proposed a matrix and graph connectivity algorithm
to detect connected components for processing single queries [[171]. This approach
is extended for connectivity detection of MQO in [36]. The problem of identifying
common subexpressions is proved to be NP-hard in [86]. Therefore, Jarke states
that multi-relation subexpressions can be addressed heuristically. Finkelstein shows
how a query can be improved by comparing an incoming query with materialized
results [S35]. Jarke analyzes common subexpression isolation in relational algebra.
Chakravarthy and Minker define the equivalence and subsumption of two expres-
sions at the logical level, using heuristics [29]. Rosenthal and Chakravarthy use an
AND/OR graph to represent queries and detect the subsumption by comparing each
pair of operator nodes from distinct queries [[134)]. The representation and the pro-
cessing of multiple queries is another issue. Chakravarthy proposed the multigraph
for representing multiple Select-project-join queries [29]. The multigraph facilitates
query processing by using Ingres’ instantiation and substitution [29, [171]. In [30],
the multigraph was modified to represent the initial state of multiple queries. The ap-
proach in [36] differs from these. They provided a simple technique to decompose a
set of queries into unrelated sets. After the creation of the subsets, the queries in each
subset are executed separately. This decomposition is performed before the determi-
nation of common subexpressions to reduce the size of query sets which the multiple
query processing algorithm needs to consider, which is similar to Chakravarthy and

Minker’s [29]].

When we survey MQO on distributed/parallel databases, we can see early studies

such as:

e Increasing inter-query locality by decomposing a query into parallel sub-tasks
so that a scheduler rearranges the execution order to maximize the reuse of

cached-data [[141],

e Resource usage models to perform multiple query scheduling on parallel query

40

processing systems in order to reduce the response times of queries [60]],

e Dividing a query into sub-queries that can be executed in parallel on many
processors and enabling already computed sub-query results to be re-used for

improving processing speeds of new queries [11]].

Mehta and DeWitt developed algorithms to take advantage of intra-operator paral-
lelism, used CPU loads and tuple production rates of select and hash-join database
operations for deciding on the number of allocated processors and the assignment
of database operations to these processors [105]. Distributed query processing mid-
dleware systems have also been extensively studied as a solution for data intensive
scientific applications. MOCHA [124] was one of the first sample database middle-
wares developed to execute database queries over distributed data sources. MOCHA
can move the code required to process the query to the location where the data re-
sides. In Beynon [22], user-defined functions can be executed at data storage sites to
perform subsetting operations and many filter (e.g. aggregation) operators can be run

in parallel on a large number of computers.

Indexing the data at each server is an efficient method for distributed query opti-
mization. R-trees are widely used to index and integrate the back-end servers as
a single query server. Parallel R-trees, Master R-trees, and Master-Client R-trees
are mechanisms used for improving the performance of shared-nothing environments
[131]. Mondal et al. used data migration to shift the workload from intensely working
servers to idle servers in shared-nothing environments [[110]. Chen et al. considered
the network layer of the problem and reduced the communication costs with a query
reconstruction algorithm to enable sharing of overlapped data through micro-engines

that collaborate for evaluating query batches [33].

IGNITE [99] , OGSA-DQP [[148]] [57], CoDIMS-G [114], and GridDB-Lite are some
of the important projects that focus on Cloud/Grid data integration [[75] [10] [92]. Ex-
cept IGNITE, none of these systems has MQO support and they focus on improving

the performance of only single queries.

Recently, there are studies to adapt traditional query optimizers to Cloud computing.

In [20]], a classical query optimizer is adapted to Cloud computing workloads where it

41

uses a partitioned database on a shared-nothing architecture. In [137], a parallel DW
system optimizer is developed for single queries by considering a rich space of execu-
tion alternatives with bushy-tree plans instead of simply parallelizing the best serial
plans. Query optimizations in Cloud environments can have different goals unlike
the traditional query optimizers, and the search space is much larger because of the
hardware flexibilities (e.g. number of data processing nodes) provided by the Cloud
environment. In an interesting study, the scheduling of data processing workflows
on the Cloud is considered from the perspective of minimizing the completion time

given a fixed budget [90].

Although there are some studies to integrate MQO techniques into existing relational
Cloud database query engines, to our knowledge, there is no approach that optimizes
a batch of queries into a relational Cloud database query optimizer by exploiting al-
ternative query execution plans. Recently, there were two remarkable projects. Koss-
mann et al. developed a new database architecture that is based on batching queries
and shared computation across many concurrent queries in a shared multi-processor
environment [63]]. Their model does not generate any new alternative plans for in-
put queries. A framework is developed for a Cascade-style Cloud query optimizer to
enhance the performance by using Multiple Query Optimization (MQO) techniques
for massive data analysis scripts that contain common subexpressions [140] but this
approach differs from our technique because new alternative plans are not generated

and subexpression costs are used for making optimization decisions only.

2.6 Summary

In this chapter, we gave brief information about Cloud computing, Cloud DWs, Cloud
DW hardware/software architectures, relational Cloud DW design techniques, and re-
lated query optimization techniques (in terms of single queries and multiple queries).
The information given here lays the ground for the next Chapters to comprehend the
details of the underlying architecture during the application of multiobjective design
of relational Cloud databases. Chosen architectures affect the efficiency of the Cloud
DWs. The model we will work throughout the study will be a shared-nothing archi-

tecture.

42

CHAPTER 3

A NOVEL CLOUD DATA WAREHOUSE QUERY OPTIMIZER

In this Chapter, we propose a novel heuristic algorithm for the query optimization
of Cloud DWs, Dynamic Programming with Ant Colony Optimization Algorithm
(DPACO). The proposed algorithm makes use of Dynamic Programming (DP) (see
Chapter 2 for details of DP) and the state-of-the-art contemporary metaheuristic, Ant
Colony Optimization (ACO) while pruning the search space of alternative query plans
[47, 149, 148]]. The algorithm optimizes the response time of a Cloud DW query very
efficiently and it is used by our design algorithms, MOD-B&B and MOD-GA, while
estimating the workload response times of the alternative Cloud DW designs. The
query optimization is an important issue for Cloud DWs in case you have several al-
ternatives to execute a query. The alternative ways of finding optimal plans increase
exponentially in accordance with the order of joins, the number of virtual machines
(VM), and the number of tables. DPACO finds optimal results for queries up to 6-
way joins. For larger multi-way chain join queries of the Cloud DWs, DPACO finds
(near-)optimal response times. With DPACO, we enhance the capabilities of DP, a
widely used algorithm in existing commercial query optimizers, by adding an effi-
cient pruning technique, Ant Colony Optimization (ACO) to reduce its exponentially

increasing search space.

The architecture of the Cloud DW that we study on is a shared-nothing environment
(see Figure [3.1), which is known as the most scalable architecture. The queries are
submitted to the control node. After decomposing the query into sub-tasks, they are

processed by VMs.

43

Queries
‘ ‘ data warehouse

query processor ‘ query processor query processor
Site1 Site 2 Site n

Figure 3.1: Distributed shared-nothing data warehouse architecture.

3.1 Ant Colony Optimization (ACO) Metaheuristics

Ant Colony Optimization (ACO) Metaheuristic is inspired by the behavior of real
ants where individuals cooperate through self-organization. Dorigo and colleagues
proposed this property of ants as a metaheuristic for solving difficult combinatorial
problems [51]]. French entomologist Pierre-Paul Grasse was the first researcher to
investigate the social behavior of insects. He used the term stigmery to define the
indirect communication among insects. A substance called pheromone is deposited
on the ground while the ants are foraging and thus pheromone trails are formed on the
ground. Stochastic fluctuations at the initial phases are reduced by this mechanism
and the shorter trails are used more frequently as they gain more pheromone. Goss et
al. developed a formula to explain the behavior of the ants [69]. Assuming m; ants
had passed the first bridge and m, the second one, the probability of (m;+1)-th ant to
choose the first bridge is given in Equation [3.1] The values of k and / are chosen to

fit the experimental data.

3 (my + k)"
Prm) = o o 1 k) G-1)

Analogously, pheromone laying of ants can be simulated by artificial agents that mod-
ify the appropriate pheromone values associated with the edges of a graph. For ex-

ample better solutions of the travelling salesman deposit more pheromones on the

44

paths and by the evaporation mechanism artificial ants may forget the history of the
solutions and search for new directions. After the initialization of the algorithm with
zero pheromones, a set of artificial ants constructs solutions using a domain spe-
cific partial solution construction algorithm. The actions that single ants cannot do
are implemented at the phase of ApplyLocalSearch procedure. By evaporating and
laying, the pheromone values for partial solutions are updated at the phase of Up-

datePheromones. ACO metaheuristic is presented in Algorithm 3.1

Algorithm 3.1: Ant Colony Optimization (ACO) Metaheuristics

while Termination conditions not met do
Construct Ant Solutions
Apply Local Search

Update Pheromones

3.2 Dynamic Programming with ACO Algorithm (DPACO)

DP works in a bottom-up manner constructing all the sub-plans untilan optimal so-
lution is obtained (See Chapter 2 for details of DP). Any given sub-problem is con-
structed only once and saved in a table, therefore it is not computed again. The
algorithm first builds access plans for every relation in the query and there may be
several different access plans. If relation R; is replicated in different sites, say Sitel
and Site2, the algorithm enumerates table-scan (Ry,Sitel) and table-scan (R;,Site2)
as alternative plans. DP enumerates all two-way join plans in the second phase. Al-
ternative join plans are enumerated, including the data shipping cost of joins for all
sites. All multi-way join plans are built using individual relation access-plans and
previously discovered optimal multi-way join plans as building blocks. DP continues
until it has enumerated all the n-way join plans. The joinPlans function produces
more and more complex plans using the smaller plans as building blocks and re-
turns a new plan for every alternative join method. DP discards all of the “inferior”
partial-plans (i.e. a better plan exists for calculating the same output as that of the
partial-plan). This is called pruning and carried out by the prunePlan function. An

efficient plan can prune another plan with the same output. DP enumerates (R; X

45

R,) and (R, X R;) as two alternative plans, but only the better plan is kept in the
optPlan(R,R;) structure after pruning which reduces the search space. table-scan
(Ry,Sitel) and table-scan(R,Site2) do the same job, but they produce results at differ-
ent sites. So, they cannot be pruned in order to ensure that the optimizer is guaranteed
to find the best plan. For example, if the cost of table-scan(R,Sitel) and the cost of
shipping R; from Sitel to Site2 is lower than the cost of table-scan(R,,Site2), then

table-scan(R,,Site2) is pruned.
Dynamic Programming with ACO Solution Model

DPACO simulates the actions of ants on the directed acyclic graph (DAG) of QEPs.
Each process attempting to discover the pheromone of the next execution plan simu-
lates ants and the solutions represent the food. Ants look for better execution plans
where the paths correspond to the edges of the communication infrastructure of the

Cloud. DPACO starts with the initial stage of the DP.

For example, in order to construct (AX B X C X D) join in a bottom-up manner, at
first stage of the algorithm 2-way sub-joins (A X B), (B X C), (C X D) are generated
at each site Sy ,..., S,,, where n is the number of the sites. Therefore, we have n times
(A X B) sub-joins, n times (B X C) sub-joins, and n times (C X D) sub-joins in the
list. The solution list holds the costs of all the sub-join of (A X B) at every site. Next,
we need to construct (A X B X C) and (B X C X D) 3-way joins to find the best
plan for the (A X B X C X D) multi-way join. Equation [3.2] shows the probability
of selecting the site of the new sub-join. For (A X B X C) sub-join, Pfj represents
the probability of ant number k making the choice of performing the join between
relation C (residing at any site) and (A X B) (residing at S;) to obtain (A X B X C)
result at S;. There are as many possible paths as the number of sites. The symbol /
represents all the allowed paths to construct (A X B X C). 7;; is the pheromone value
of (A X B) evaluated at S; that is based on the response time of (A X B) at different

sites. The faster the response time of (A X B), the higher its pheromone level is.

Pt = Lﬂlﬁf
T @l

leallowed),

(3.2)

46

Algorithm 3.2: Dynamic Programming Algorithm with Ant Colony (DPACO)

Input: Select Project Join query g on relations Ry, ... , R,

Output: a query plan for g

Set Search Space Limit (SSL)=k
fori — ltondo
optPlan ({R;})= accessPlans (R;)
prunePlans(optPlan ({R;}))

fori — 2tondo

forall S c {Ry,...,R,} such that | S |=1do
optPlan (S)=0

for Oc Sdo

updatePheromones (O)
calculateProbability(O)
prunePlans(S,SSL)

calculateCostsOfRemainingPlans(O)

finalizePlans(optPlan({Ry, ..., R,}))
prunePlans(optPlan({Ry, ..., R,}))

return optPlan({Ry, ..., R,})

47

1
nij = 74 (3.3)

d;
n;; 1s the heuristic information (Equation @) where d;; represents the distance of (A
X B) at S; from relation C at S;. (A X B) and relation C can be at the same site or
different sites. The site of the join determines the distance. If both are at the site of
the join, the distance is taken as 1, if one is at the join site the distance is taken as 2,
and if both are at different sites from the join site, then the distance is taken to be 4.
These values are decided after exhaustive tests with different values. @ and S control
the relative importance of pheromone (7;;) versus the heuristic information and are
decided as 1 (meaning that the heuristic information and pheromone level have the

same importance).

After finding the probabilities of all the (A X B X C) joins, plans are pruned by a
limitation value called, SSL. If the SSL is 2 then there are two plans left to prevent
the exponential expanding of the search space. The costs of these two plans are cal-
culated and prepared for the next level of the joins (see Algorithm [3.2). The total
value of all pheromones out of a partial solution is decided to be as 1. The costs
of the sub-solutions that are generated by joining a new base-relation to the current
partial-solution (or base relation) are calculated and pheromone levels for each pos-
sible path from that sub-solution are assigned accordingly. After finding all possible
sub-solutions achievable at that level, pruning is performed by selecting a fixed num-

ber (SSL) of the lowest cost sub-plans to obtain each distinct sub-solution.

In Figure [3.2] how DPACO explores the search space of left-deep QEP (A X B X C)
can be seen. All of the relations are located at different sites. Relation A is at Sy,

relation B is at S,, and etc. DPACO searches for the best order to evaluate the join of

(AXB X C).

At the initial step, the ants are located at the first level (access plan level) and they
can see the possible available open paths to construct a sub-join. The only possible
join for the leftmost ant without any cross-product is (A X B). Looking at the four
paths, each ant makes a decision. In the second step, the leftmost ant is at S; and can
perform the (A X B) sub-join. In the next level, this ant makes a decision and chooses

to join with relation C at S; depending on the most promising pheromone level. Now,

48

bd bd bd bd
-~ -~ -~
b4 \ bd \ N/\ /;-4 \

/\ /\ /\ \

A B CcC A B C A B C A B C
Site | Site 2 Site 3 Site 4

3-way joins

Jf% bd b b b b

/\ /\ /\ /\ /\ 2-way joins
A B A B A B A B A
Site | Site 2 Site 3 Site d Site |

A B c Access Plans
- Site | Site 2 Site 3

Figure 3.2: Illustration of the ants during DPACO algorithm

the leftmost ant has a (A X B X C) sub-join with itself. Meanwhile, the other ants also
keep searching for a complete solution. The number of ants searching for a solution
to problem depends on the initially fixed SSL value. In the final step, we can evaluate
all the solutions discovered by ants and choose the best one. Although the paths have
not been traversed by any other ant(s) before and there is no pheromone present, there
is sufficient information for the ants to use to choose the way ahead. The calculated
costs of the sub-solutions, bandwidth of the network, cardinalities of the relations
to be joined are some of the available information to guide the ants towards a good
solution. This decision mechanism can be extended by adding new parameters such

as available indexes and join methods.
Search Space Limit (SSL) :

SSL is a pruning mechanism for uncontrollably large search space of the join queries.
For example if the sub-join of (A X B) is constructed at 10 different sites while search-
ing for bigger query plans and the SSL value is 2, then the most promising two (A
X B) sub-joins are kept and the other eight sub-joins are pruned. Therefore, memory
demand for the optimization is reduced. Without any pruning, DPACO acts like DP.
The SSL can be set depending on the tradeoffs of the algorithm. Greater SSL values

49

increase the time and the search space demanded by DP while they can generate more

qualified query execution plans.

3.3 Performance Evaluation of DPACO Algorithm

We compared the performance of DPACO with DP, IDP, [94], and Simple Genetic
Algorithm (SGA) on left-deep trees of QEPs. The details of the algorithms are given

below.
IDP, Algorithm

IDP; is one of the most elegant hybrid algorithms in query optimization and produces
as good plans as DP if there are sufficient resources available. It is also very appro-
priate for the architecture of shared-nothing Cloud DWs. IDP; has been proven to
be better than any previously developed randomized algorithm [94]. This is the main
reason why we choose to compare IDP; with DPACO. IDP; introduces block size
strategy taking sub-optimal plans and pruning the search space when it reaches block
size. After pruning the sub-solutions, IDP; restarts applying DP until it reaches the
next block size. During the experiments, the block size of IDP; is selected as 1 to be
able to reach upper levels of joins. IDP; with larger block sizes give better execution
plans but this increases the running time complexity exponentially. At every block
size the best sub-plan is chosen and remaining plans are pruned. This sub-plan can

be any combination of the existing relations.

Increasing the block size parameter of IDP, and the SSL value of the DPACO causes

an exponential rise in its optimization time.
Simple Genetic Algorithm (SGA)

SGA is an efficient heuristic algorithm that works with the principles of evolutionary
computation. It is developed for comparison tests of DPACO algorithm. GAs are fre-
quently being used to solve optimization problems since they were first introduced by
Holland [80]. They have gained this prominence due to their robustness and simplic-
ity they offer. Individuals with higher aptitude have more probability to survive, to

reproduce, and to transmit their genetic characteristics to next generations. GAs can

50

perform efficient search operations in search spaces where it is not easy to understand
the environment. Each potential solution existing in the search space is considered
as an individual and individuals are represented by using bit-strings that are called
chromosomes. Genes are the atomic parts of chromosomes and they codify a specific

characteristic of a chromosome.

GAs have been previously used for the solution of database query optimization prob-
lem [1477]] but SGA is different in its approach that it makes use of the commutativity
property of the join operator and prunes the search space with a big ratio. SGA pro-
vides optimal solutions for the queries with a small number of joins (up to 5-6 joins)

and near optimal solutions for larger problems.

Selection mechanism of SGA is fournament and the size of the population is 100. At
every generation of the algorithm, as many as half of the population size mutations
and crossovers are applied and the worst query execution plans (QEP) are replaced
with the new and better QEPs. Mutations are randomly set with the defined probabil-
ity ratios and the crossovers are one-point. SGA terminates the optimization process
when the QEPs do not improve more than the previously defined refinement threshold
(5% less execution time than the best QEP in the population). The SGA algorithm and
the details of the parameters used by the SGA are given in Algorithm [3.3]and Table
B.1] respectively. The chromosome structure of SGA can be seen in Figure [3.3] The
numbers assigned to genes indicate the site where the corresponding join operation
will be executed. The execution order of the join (in accordance with the structure of
left-deep trees) is that relation A and B are joined at site 2 (S,) to build (A X B), the
obtained result and relation C are shipped to S; to build ((A X B) X C), Relation D is
shipped to S; for (A X B X C X D) with ((A X B) X C) and so on. The intermediate

results are materialized in the main memory.

AN BXCINXDINMETINXF
r t t 1 1

2 1 1 2 4

Figure 3.3: Chromosome structure of SGA.

The order of the joins are evaluated without any Cross-Product operator. An example

of join orders with respect to the names of the relations can be seen in Table

51

Algorithm 3.3: Simple Genetic Algorithm (SGA)

p: population

par: individual selected from population

s: generated individual
p < generate random individuals (Q)
evaluate fitness of individuals (p)

p < truncate (p)

for k < 1 to generations do

s «— evaluate (crossover (pary,pars))

s « evaluate (mutation (p,s))

(pary,par,)« select pair of parents (p)

replace with least-fit in the population (p,s)

replace with least-fit in the population (p,s)

return the best individual in the population

Commutativity property (A X B = B X A) of a join operation will also help in re-

ducing the search space of the multi-way chain joins. All possible permutations of

a 4-way chain-join left-deep tree of (A X B X C X D) without any Cross-Product

operators can be seen in Table [3.2] For a 10-way join operation the number of join

orders is 256 but with the property of commutativity the size of this search space is

reduced to 50 (the selection of the sites during the execution is not included).

Table 3.1: Parameter settings for Simple Genetic Algorithm (SGA)

Parameter

Value

population size

number of generations

population initialization

crossover
parent selection
tournament size

mutation ratio

100

100
random
one-point
tournament
10

1%

The SGA generates a random population at the first step of the algorithm and then

52

Table 3.2: All possible left-deep tree orders of (A X B X C X D) 4-way join. search
space that is reduced to 4 instead of 4!

Number | Join Order

1 AXBNXCNXD
2 BXCXANXD
3 BXCXDNXA
4 CXDNXBXA

selection, crossover, and mutation operations are applied repetitively, creating new
generations of individuals [64]. The individual with the best fitness value in the pop-
ulation will be the proposed solution of the problem. For each pair individuals chosen
for mating using a selection mechanism, the parent chromosomes are split into two
parts and the parts are exchanged (crossed) to generate two new chromosomes (see
Figure [3.4). The original solution pool is combined with the newly produced indi-
viduals and becomes the candidate set for the next generation. Another mechanism
for searching the solution space is to allow random "mutations" to occur in chro-
mosomes. Thus, the newly formed chromosomes also become part of the pool and
are used in the evaluation of next generation. Mutations prevent stagnation of the
search; enable the exploration of the search space that could not be reached with the
crossover operators alone [136] (see Figure[3.5). After executing genetic operators, a
new population is generated and another iteration begins. To measure the statistical
confidence of the SGA, standard deviation of each solution is calculated by executing
SGA 20 times and validated that all measurements are within 2% of averages with

95% confidence.

168|217 |19 |53 Parent 1
- Parent 2
2L {1 (242|672
Crossing point
2L {1 (27|19 |5 | 3| Offspringl
1168|2426 (7] 2 Offspring 2

Figure 3.4: Crossover operator.

We use synthetic relational DWs that are derived from the relations of TPC-H bench-

53

3 Parent

=
o
=]
[}
%]
p—
\O
wn

J

l

4168|271]9]|5]| 3] offspring

Figure 3.5: Mutation operator.

mark during our experiments. Relations are sorted by their primary keys and stored
in text files. Type of each data is a string with average length of five to ten char-
acters. Relations with increasing cardinalities are generated to test the performance
scalability of the developed algorithms with various queries and combinations of re-
lations. Joins are assumed to be implemented by using merge-sort. Database schemes
allow 15-way chain queries. All the relations are assumed to be stored in such a way
that each relation resides at a different site. The cardinality of the relations and the
selectivity of the join predicates are varied in the range of 10% to 50% for all the ex-
periments so that we were able to evaluate performance of our algorithms on different
databases. The selectivity of our queries are also varied so that the query result sizes
can be large or small. The referential integrity is guaranteed to be satisfied by all rela-
tions. Fragmentation and replication of relations are not modelled in our experiments
but their effect on our algorithms can be easily calculated by modelling fragments as
separate relations and re-writing our queries. We do not attempt to locally optimize a

given access path of a query therefore, all queries are assumed to be irreducible.

SQL statements are multi-way chain joins where relations are unique, as in (A X B
X C XD XE X F). We limited our SQL statements to chain equijoin queries with a
single selection predicate because complex queries might mislead the comparison of
algorithms. Semi-joins are also considered during plan generation in the experiments.
We added a new site for every new relation in the join operation. For ten relations, we
have ten sites. Relation A is at S;, Relation B is at S, and so on. The response time
of QEPs includes; Scanning relations from disk, shipping (if join site is different) the
relations over a network (with homogeneous bi-directional links), and equijoining the

relations. A sample SQL statement with 6-way joins is:

SELECT A.Name

FROM A,B,C,D,E, F
WHEREAXBXCNXDNXENXF
AND FE.shippingdate > ’2.3.2014°

54

With three different DW schema and different SQL statements, experiments are per-
formed using the DPACO, DP, IDP,, and SGA. SQL statements are extended up to
15-way joins. Running DP with more than 6-way joins requires a large amount of

time and memory resources. The optimization times of the algorithms are shown in

Figure[3.6

—~45 1 -&@-DP
E 40 4 -A-DPACO
~35 1 -%-IDP1
gs,o , -©-SGA
£25
2
=20
N
‘E15
"'3_1,0 ,
o

0,5

0,0

)) .nun.\ber pfjoins)
Figure 3.6: Optimization times of the algorithms.

The DPACO, DP, IDP;, and SGA algorithms produce the same solutions up to 6-
way joins. The running time of SGA algorithm is observed to increase as a polyno-
mial function with the corresponding number of joins and the termination condition.
When we use the experimentally determined proper values for the population size
and termination condition, the quality of SGA execution plans are similar to those
of the DPACO, DP, and IDP;. It is clear that optimization times of DPACO, IDP,
(with block size 1), and SGA are polynomial and the search space sizes of IDP; and
DPACO increased linearly with the number of sites, whereas the running time of the
SGA is not affected but its generated plan quality degraded as the number of sites
becomes larger. DPACO has an almost linearly increasing search space size (if SSL
value is kept as 1 or 2). The search space of IDP; is almost the same with DPACO.
However, for block sizes bigger than 1, DPACO outperforms IDP;. Calculating the
costs of the plans is the major factor that increases the running times of all the al-
gorithms. Because DPACO pre-prunes plans with lower pheromone values before

calculation and decreases the optimization time of the algorithm significantly.

DPACO algorithm produces QEPs in slightly shorter times than IDP; up to 15 joins,
and as the problem size grows beyond 10 joins the DPACO performs better than IDP; .

The QEPs produced by the algorithms can be seen in Figures 3.8 and for

55

databasel, database2, and database3 respectively. All the algorithms provide the same
quality solutions up to 6 way joins. Except DP, the optimization times of the algo-
rithms are reasonable with the given settings (black size is 1 for IDP;, and SSL is 1
for DPACO). DPACO, IDP; and SGA are able to produce QEPs up to 15 way chain
joins where it is not possible to produce QEPs with DP. The QEPs provided by IDP,
are slightly better than the plans of SGA. On the other hand, DPACO produces the

best performing QEPs when compared with the other algorithms.

o
S

0,4 4

0,3 4

0,3 4

0,2 A

0,2 1

0,1 4

query execution time (sec.)

0,1 g

", ‘ 5 6 7 s o 1o
number of joins
Figure 3.7: Query execution plan times found by the algorithms for DW 1.

100,0 4
90,0
80,0
70,0
60,0
50,0
40,0

30,0 -

20,0 A

query execution time (sec.)

10,0 -

Y : :) , s o 1o
number of joins
Figure 3.8: Query execution plan times found by the algorithms for DW 2.

35.0 1

-3-DP
-&-DPACO
250 -%-IDP1
-0-SGA

30,0 1

20,0 1

15,0

10,0 A

query execution time (sec.)

5.0

3 4‘1 é (; 7‘ é é 1‘0 1‘1 1‘2 1‘3 1‘4 1‘5
number of joins
Figure 3.9: Query execution plan times found by the algorithms for DW 3.

56

CHAPTER 4

MULTIOBJECTIVE CLOUD DATA WAREHOUSE DESIGN

In this Chapter, we define our multiobjective method for designing Cloud DWs. Two
objectives we aim to optimize are the monetary cost of the designed DW and the re-
sponse time of the query workloads on that design. The response time of the query
workloads improves as expensive DWs are designed and cheaper DW designs will
cause the monetary costs to be cheaper while also increasing the response time of
the query workloads. Therefore, these two objectives work in opposite directions and
make the design problem multiobjective. DPACO query optimization algorithm we
proposed in Chapter 3 is used to estimate the overall response time of a query work-
load with the given VM configuration and location of Tables. The total time spent
for the query workload response time is calculated in terms of the virtual resources

consumed by the design.

In the following sections, multiobjective relational Cloud DW design formulation,
Cloud infrastructure and pricing scheme parameters of the Cloud, two algorithms for
the multiobjective Cloud DW design, Branch-and-Bound Algorithm (MOD-B&B)
and Genetic Algorithm (MOD-GA), and (near-) optimal parameter settings for MOD-

GA are presented.

4.1 Multiobjective Relational Cloud DW Design Formulation

In this section, we explain our multiobjective design method and give the problem
formulation. Our design method can be used for any relational Cloud DW that has

select-project-join intensive queries. In the proposed model, the inputs of the system

57

are the tables of relational Cloud DW (including the histograms and statistics), Di-
rected Acyclic Graphs (DAGs) of the queries (most frequently used queries), and the
pricing schema of the virtual resources. After obtaining this information we choose
the most efficient virtual resources, optimal query execution plans to find the pareto-
optimal set of solutions with fast response times and minimum monetary costs. Ta-
bles .1 and [4.2] give a sample scenario of two alternative configuration for a TPC-H
decision support relational DW. Tables are located on 3 and 5 VM configurations re-
spectively. Small tables, Supplier, Region, and Nation are replicated at all VMs (we
use this heuristic for all designs throughout the study). After this assignment, they
are evaluated with the given queries to find the best performing configuration. The
configuration at Table d.T|has 3 XS VMs that use (1 x 2Ghz CPU, 768MB RAM, 100
Mbps network bandwidth) and the configuration at Table .2 uses 5 XL VMs (4 x
2Ghz CPU, 8GB RAM, 300Mbps network bandwidth). The location of the table on
the VM is indicated with number 1. The configurations give different response time
performances and monetary costs. The main goal of the design is to minimize the
cost given in Equation [4.7]
Table 4.1: TPC-H Database configuration of 3 Extra Small (XS) Virtual Machines

Table Name VMO (XS) | VM1 (XS) | VM2 (XS)
LINEITEM 1 0

CUSTOMER 0 1 0
ORDERS 0 0 1
PART 0 1 0
PARTSUPP 0 0 1
SUPPLIER (replicated) 1 1 1
REGION (replicated) 1 1 1
NATION (replicated) 1 1 1

In our approach, we have a query optimizer, DPACO, for estimating the response of
the query workload of a given distributed DW design. The monetary cost is calcu-
lated depending on the virtual resources spent by the design. Below, we first give the
definitions of some terms that are frequently used to provide the reader a better under-
standing and later, we present the mathematical representation of our multiobjective

design of a Cloud DW.

58

Table 4.2: TPC-H Database configuration of 5 Extra Large (XL) Virtual Machines

Table Name VMO (XL) | VM1 (XL) | VM2 (XL) | VM3 (XL) | VM4 (XL)
LINEITEM 1 0 0 0 0
CUSTOMER 0 1 0 0 0
ORDERS 0 0 1 0 0
PART 0 0 0 1 0
PARTSUPP 0 0 0 0 1
SUPPLIER (replicated) 1 1 1 1 1
REGION (replicated) 1 1 1 1 1
NATION (replicated) 1 1 1 1 1

Cloud DW : A DW that is located over a set of VMs on a network. Each table of the
relation DW is located on VMs. VMs communicate with each other by paying a cost

required by Cloud vendors (see Section[2.2]for detailed information).

Virtual machine (VM) : is a software that emulates the architecture and functions of
a real computer. A VM consists of CPUs, RAM, disk, and network parameters. The

number of its processors and main memory can be changed through virtualization.

Workload : A set of queries that are submitted to a distributed DW. Our relational
DW is a distributed database so that the tasks of the queries are sent to the related VM
and executed to produce a result. The workload consists of the standard queries of

well-known TPC-H decision support benchmark.

Response time (Resp_time) : The time that has elapsed between the submission of

the query workload and obtaining of the results.

Table Location (TL) : defines the number of the VM where the table of relational
Cloud DW is located.

Monetary cost (Money_cost) : of a Cloud DW workload includes renting the re-
sources to execute the workload on the relational Cloud DW. These resources are
mainly, data storage, processing time of the VMs, and the sum of data transfer cost
[115].

59

The formulation of the multiobjective Cloud DW design problem consists of two
parts. Finding the best response time of the query workload and executing these
tasks with minimum monetary cost that will work on the selected virtual resource
configuration with the optimized QPs of the queries. If we give a formal definition of
the problem. ¢ is the set of all VM configurations such as Extra Small (XS), Large
(L), etc.

¢ ={VMC,,..,.VMC,} 4.1)

where n is number of virtual machines, 7 is the set of table locations and m is the

number of Tables in DW.

v={TL,,....TL,} 4.2)

The solution vector x is :

X =<T, ¢a Qbest—plan > (43)

The monetary cost of the computation includes, data storage, CPU usage (VM type),
and communication cost. Data storage cost depends on the size of the data (including
the structures such as indexes, and replications) and its storage time. Processing time
of the VMs is the total price for CPU usage. During the execution of the queries, dif-
ferent VM configurations can be used and the configuration of a VM (RAM, number
of CPUs, and etc.) is flexible in accordance with the resources used. Micro, small,
large, and extra large are some of the configurations provided by the Cloud vendors
at various prices [[169]. Data transfer cost is related with the amount of data migrated

between sites and the pricing model applied by the Cloud provider.

Response time cost model : In order to measure the response time of a workload with
a configuration of VMs, we developed a response time based cost model [[118]][97]]
that uses left-deep QP trees [65]. The cost model depends on the statistics of the

database catalog. The main parameters used in the cost model are shown in Table

60

[100]. The response time of the query workload is calculated with the parameters and

statistics used by query optimizer, DPACO.

Table 4.3: Parameters used in the cost model

Symbol Definition

T0 I/O time for a page

#I/O number of page I/O operations
seq_#I/O max. number of sequential page I/O
Tery time for a CPU instruction

seq_#insts | max. number of sequential instructions
Tusc time to initiate and receive a message
seq_#msgs | max. number of sequential messages
Trr time to transmit a page

seq_#pages | max. number of sequential pages
#insts number of instructions

Using the number of pages as a parameter, the response time taken by a task is calcu-

lated as:

Resp_time = (Tcpy * seq_#insts) + (T 0 * seq_#1/0s) 44
+(Tysc * seq_#msgs) + (T * seq_#bytes)

The network communication time of transferring an intermediate query result from

one site to another is calculated as:

CT(#pages) = Tysc + (Trg * #pages) 4.5)

The main goal is to obtain the pareto-optimal set of solutions such that the overall
costs of workload and money are minimized. Equation §.6] is the formulation of

objective functions.

#VM #0

Mingrpses(Y " Cost(VM;, Best_Plan(,, 0))))

i=1 j=1

(4.6)

61

where S is the set of all VM configurations from 1,..., CF jernarives and the alternative

assignments of DW Tables with the best execution plans of the queries.

The overall multiobjective function can be represented as in Equation (finding
solutions closer to the hypothetical ideal point given in Equation [4.8)). Equation 4.9
is the response time distance of the given solution vector to best response time, Equa-
tion 4.10]is the monetary distance of the given solution vector to best monetary cost.
The best response time is obtained by using the most expensive VM configuration
and the cheapest monetary cost is obtained by using the cheapest VM configuration
(single extra small VM). These values are obtained heuristically. If any better value

is obtained during the optimization, they are updated.

min(\/ Objective_1 + Ob jective_2) 4.7

Ideal_Point(x) = (Min{Resp_Time(x)}, Min{ Money_Cost(x)}) 4.8)

Objective_1 = (Resp_time — Best_Resp_time(x))2 4.9)

Ob jective_2 = (Money_cost — Best_Money_cost(x))* 4.10)

Best_Resp_time(x) is the best response time and Best_Money_cost(x) is the minimal
monetary cost for the whole search space of vector x on the given VM configurations

and with table assignments.

4.2 Infrastructure and Pricing Scheme Parameters of the Cloud

In this section, we describe the infrastructure details of the Cloud DW and the pricing
scheme that we use during the design optimizations. Each customer requests queries
from the Cloud by using Internet and contacts with the aggregate node. The aggregate

node distributes the query to the appropriate VM. The cloud infrastructure provides

62

unlimited amount of storage space, CPU nodes, RAM, and very high speed intra-
cloud networking. All the resources of the Cloud are assumed to be on a network.
The CPU nodes, RAM, and I/O bandwidth of each VM are different from and can be
deployed by using VM Monitors in milliseconds [[15]]. The storage system is based on
a clustered file system where the disk blocks are stored close the CPU nodes accessing
them. I/O bandwidth of the storage is divided evenly to the VMs (that may have

multiple cores up to 8).

There are many Cloud Service Providers (CSP) in the market and they offer different
pricing schemes for the services they provide. Every different pricing schema of
Cloud server providers can be an opportunity for customers in accordance with the
tasks they want to complete. In our study, we will use a pricing scheme that is similar
to Window’s Azure [169]. Configurations such as Extra Small, Small, and Medium
VMs are provided by the Cloud service providers. The detailed information of VM
configurations can be seen in Table[d.4] The cost for a small VM (1GHz CPU, 768MB
RAM) is $0.02/hr, whereas A7 (8 x 1.6GHz CPU, 56GB RAM) is $1.64/hr.

Table 4.4: Virtual Machine prices

Symbol | Virtual Machine Configuration | Price

XS 1GHz CPU, 768MB RAM $0.02/hr
S 1.6GHz CPU, 1.75GB RAM $0.06/hr
M 2 x 1.6GHz CPU, 3.5GB RAM | $0.12/hr
L 4 x 1.6GHz CPU, 7GB RAM | $0.24/hr
XL 8 x 1.6GHz CPU, 14GB RAM | $0.48/hr
A6 4 x 1.6GHz CPU, 28GB RAM | $0.82/hr
A7 8 x 1.6GHz CPU, 56GB RAM | $1.64/hr

Data storage is also billed by the Cloud service providers. In our model, monthly
storage price is used. During our experiments, the data storage price was constant for
all the queries. But for design that use materialized views an additional storage cost
needs to be added. The detailed information of Database storage prices can be seen
in Table

Most of the Cloud providers do not charge for the data transfers in a private Cloud

but the data that leaves the Cloud. In order to make our problem more interesting and

63

Table 4.5: Cloud database storage prices

Database Size | Price
100MB $5.00/mo
1GB $9.99/mo
2GB $13.99/mo
5GB $25.98/mo
10GB $45.96/mo
50GB $125.88/mo
150GB $225.78/mo

Table 4.6: Network bandwidth prices

Bandwidth | Price
10Mbps $0.02/hr
20Mbps $0.04/hr
50Mbps $0.08/hr
100Mbps $0.1/hr
200Mbps $0.2/hr

handle this dimension of the optimization, we locate our VMs on a virtual switch.
Different bandwidth networks can be chosen. The pricing we use for the network
layer is given in Table 4.6] The bandwidth of the network is increased from 10 Mbps
up to 200 Mbps during the experiments.

64

4.3 Multiobjective Cloud Data warehouse Design with Branch-and-Bound Al-
gorithm (MOD-B&B)

Multiobjective Cloud DW Design Branch-and-bound Algorithm (MOD-B&B) is an
exhaustive optimization algorithm. It enumerates all candidate solutions, where fruit-
less subsets of candidates are discarded, by using upper and lower estimated bounds
of the problem instance being optimized [145]. MOD-B&B starts searching with null
initial values indicating that no query has yet been executed with the current VM and
location of Tables configuration. Later, queries are added to current selected con-
figuration. At each level of the tree, one additional query is assigned to the query

workload [16]]. This procedure is repeated for every VM and Tables configuration.

We define two initial upper bounds for MOD-B&B algorithm. The minimum mon-
etary cost is the running time of the cheapest VM configurations that execute the
queries in a workload. The response time is the finishing time of the workload with
the given VM configuration. In order to estimate a lower bound different heuristic
functions can be used. The heuristic we proposed here is reasonable and performs
well during the optimization process. We will explain the heuristic with a scenario.
In Figure .1 we can see the results of a sample multiobjective query workload opti-
mization. The best response time and the minimum monetary cost values are defined
and marked on the Figure. We can obtain these values with the most expensive and
the cheapest VM configurations easily. Hereby, we propose a heuristic value (marked
as Heuristic point on the Figure) that is the center of the square constructed by the
response time and monetary costs of the most expensive and the cheapest VM config-
urations. If the response time of a workload falls above heuristic point or if the mon-
etary cost is at the right-hand side of heuristic point on the Figure then it is pruned

according to our heuristic.

Pseudocode of our MOD-B&B algorithm is given in Algorithm[4.1]

65

Algorithm 4.1: Multiobjective Branch-and-Bound (MOD-B&B) Algorithm for de-

signing a Cloud DW
Input: Set of Virtual Resource Configurations with location of Tables (VMC(...,

VMC,), Queries (Qj ,..., O,,), Set of Tables in the DW (T

Output: Set of pareto-optimal solutions (S)

Q: Query workload;
Qcur: Current query workload;

Calculated_value : Multiobjective cost of a database design

S={}; // Solution set is empty at the beginning
Heuristic_point < Calculate_value (MostExpensiveVM_Point, CheapestVM_Point)

/* for all VMC and location of Tables configurations */
for (i=1 ton) do

chr:null;

/* for all the queries in the workload (Q) */

for (j=1tom) do
Ocur = Qeur U Qj; // Qj is the best plan of the query.

Calculated_value= Calculate_the_Cost_of_Design_with (VMC;, Q..r, T);

/* Bounding */

if (Calculated_value is worse than Heuristic_point) then
| Break and start with the next virtual resource configuration VMC,; ;

/* Adding solution to the pareto-optimal set after consuming all queries */

if (j == m and Calculated_value is better than Heuristic_point) then
L §:=SuU (VMCi’chr’T);

return S;

66

100 Cheapest VMs
CHOEE N) I
80

1

' \

—_ 1 I

£ 70 1 |

E 1 !

~ 60 1 1

£ I '

-40—_350 e e —:

2 40 I :

o | I

g 30 1 I

o 1 1
20 1 Most expensjve VMs

10 1 X X

0 e e e e e ———

0,00 0,50 1,00 1,50 2,00 2,50

monetary cost ($)

Figure 4.1: Proposed heuristic point for MOD-B&B algorithm (total monetary cost

vs query workload response time).

4.4 Multiobjective Cloud Data Warehouse Design with Genetic Algorithm (MOD-
GA)

The principles of applying natural evolution to optimization problems were first de-
scribed by Holland [80]. The GA theory has been further developed and GAs have
become very powerful tools for solving search and optimization problems [[160]. GAs
are based on the principle of genetics and evolution and have been frequently used
to solve many NP-Complete problems. GAs use a computational model that simu-
lates the natural processes of selection and evolution. Individuals with better quality
have more chance to survive, to reproduce, and to pass their genetic characteristics
to future generations. Each potential solution in the search space is considered as an
individual and is represented by strings called chromosomes. Genes are the atomic
parts of chromosomes and codify a specific characteristic. Chromosomes are encoded
in different ways for each application. A random population is generated in the first
step of the algorithm and by applying selection, crossover, and mutation operations
iteratively, new generations are created [64]. The individual having the best fitness
value in the population is returned as the solution of the problem. Algorithm[4.2|gives

the details of MOD-GA.

Our multiobjective data Cloud warehouse design problem can be modeled by using

evolutionary methods. A chromosome corresponds to a solution instance including

67

Algorithm 4.2: Multiobjective Genetic Algorithm (MOD-GA) for designing a Cloud

DW
Input: Set of Virtual Resource Configurations (VMC), Set of Queries Q,

Set of Tables in the DW (T)

Output: Set of pareto-optimal solutions (S)

Best_response_time : The fastest response time of queries
Cheapest_cost : The cheapest virtual resource configuration
p: Population

pary, pary: Individuals (parents) selected for crossover or mutation processes

p < Generate random individuals (VMC, Q, T)

p < Truncate (p)

Best_response_time «— Find_best_response_time (VMC, Q, T)
Cheapest_cost < Find_cheapest_cost (VMC, Q, T)

/* Generations start here */

for (i:=1 to generations) do
for (j:=1 to size of population (p)) do

(pary, par,)« Select parents (p)

p < Crossover (pary, par,)

par;< Select an individual (p)

p < Mutation (par)

Replace_duplicate_chromosomes (p)

Update Best_response_time

Update Cheapest_cost
/* population is the pareto-optimal set of solutions */
S=p;

return S;

a set of VMs (having different CPU, RAM, and etc.) with tables/replications located
on their databases, alternative query plans (QPs) of queries in the workload, and a
network gene. Figure [4.2] shows the chromosome structure of a solution. The left-

most segment represents the configuration of the VMs that the tables locate. Middle

68

VM VM. | : | Table: Table. | :| Networki

Figure 4.2: Chromosome structure for the proposed multiobjective genetic algorithm

that consists of the Virtual Machines, Tables, and a network layer.

segment is the location of the tables on the VMs given in the first segment of the chro-
mosome. Rightmost part gene represents the selected network layer of the solution
vector. Because we do not make use of partitioned fragments of the relations, the
size of the VM segment of the chromosome can be at most as many as the number of
tables in the database. Using fragments of larger tables can even further improve the
performance as it is used by most of the commercial data warehouses [83,[117]. Our

proposed genetic model can be enhanced to include the fragments of the tables.

We define two operators, crossover and mutation, for the solution of MOD-GA model.

Crossover operator : uses two parents that are selected from the population by tour-
nament selection method. Crossover operator swaps VM, Tables, or network part of
two selected chromosomes with the same part of the other chromosome. In Figure
4.3] we can see two parents and their VM parts are exchanged to provide two new

chromosomes.

Par-1: | VM: | VM: | VM| | Table:| Tables| Table. | :| Network:

Par-2: | VMs | VM. | VMs | | Table:| Table:.| Tables | :| Networks

Offs-1: | VM: | VM. | VMs| | Table:| Tables | Table: | :| Network:

Offs-2: | VM: | VM. | VM. | : | Table:| Table:| Tables | :| Networka

Figure 4.3: Crossover operator for the multiobjective optimization of query work-

loads

Mutation operator : acts on VM and the location of Tables segments. In Figure

we can see how the second VM is replaced with a new type of VM.

69

Par : VM: | VM; [VM1 | ;| Table:| Tables | Table: | ;| Network:

Offs: VM: | VM: |[VM:]| : | Table:| Tables | Table: | ;| Network:

Figure 4.4: Mutation operator for virtual machines

In Figure 4.5] the mutation operator swaps the location of the tables on VM, and
VM,.

Par: VM: | VM: | VM1 | : | Table:| Tables | Table: | ;| Network:

Offs: VM: | VM: |VM: | :| Tables| Table: |Table: | :| Network:

Figure 4.5: Mutation operator for location of tables

Fitness Calculation : Multiobjective fitness evaluation produces a set of solutions as
many as the number of individuals in the population. The fitness of the individuals
are evaluated in accordance with the Equation [4.7] and if the same values are found
they are not included in the population. The response time of the query workload is
evaluated by the DPACO query optimizer and the monetary cost is evaluated in terms

of the consumed virtual resources.

Parameters of MOD-GA : The parameters used in the implementation of MOD-GA

are:

e Population Size: Total number of chromosomes (individuals) in each genera-

tion.

o Number of generations: Each iteration of a GA that a number of crossovers and

mutations are applied.

e Selection Type (Tournament): r chromosomes (r is the tournament size) are
selected from the population, and the chromosome with the best fitness value
is chosen for the next generation from the r-element group. This process is

repeated as many times as the population size of the next generation.

e Tournament Size: Number of individuals entering a selection in tournament

selection technique.

70

e Truncate Ratio: Ratio of the best individuals, which are sorted according to

their fitness values, used for producing the next generation.
e Mutation Ratio: Probability of mutations in a single gene.
Selection Technique

Three different selection techniques can be used to determine the chromosomes to
survive to the next generation. The simplest way to select a chromosome is giving
a higher chance to better ones as it happens in nature. On the other hand, genetic
operators may sometimes produce chromosomes with better fitness values by using
unfit chromosomes. This provides a diversification for the generation process. We

prefer tournament as our selection method from our previous experiences.

Tournament. A number of chromosomes are selected from the population. This num-
ber must be at least two and at most the same as the population size. Among these
selected chromosomes, two best chromosomes are selected. With tournament selec-

tion technique, it is possible to choose the same chromosome several times.

Details of the experiments for parameter settings and performance evaluation of the

MOD-GAs are presented below.

4.5 Parameter Settings for Multiobjective Genetic Algorithm

In this part, we present our result concerning the parameter settings of the MOD-GA.
Population size and the number of generations of a genetic algorithm are the most im-
portant parameters that must be well tuned to obtain (near-)optimal solutions during
the optimizations. Larger number of individuals and generations explore the search
space more effectively. On the other hand, this may bring very long optimization
times. In order to diminish the effect of this drawback, we perform some experiments
with changing number of population sizes and generations. In Figure [5.5] we give
the performance details of MOD-GA with different population sizes (10 to 100) and
the number of generations (10 to 100) for workload-2 queries (10GB database). The
Figure gives the average fitness value of populations during the generations up to 100.

As it can be seen, populations that have small number of individuals converge earlier

71

(stuck into local optima) and cannot improve the overall fitness value of the popu-
lation. MOD-GA almost converges after 100 generations and continues to improve

itself slightly after this point.

380) -10Ind. ©O-20Ind. @40Ind. A60Ind. -A-100Ind.

360 -

3a0 O

Fitness value
w w
Q N
(=] (=]

™~
co
o

240

220

200 T T T T T T T T T 1

0 10 20 30 40 50 60 70 80 920 100
Number of generations

Figure 4.6: Average fitness value of populations on 10GB database and query

workload-2.

Figure|4.”/| gives the optimization times of MOD-GA with increasing number of popu-
lations. The optimization time of MOD-GA increases in accordance with the number
of individuals in the population. For 10 individuals optimization time is 2 seconds
and for 100 individuals it is 16 seconds. We select 100 individuals and 100 gener-
ations as our (near-)optimal parameters for the optimizations. These values provide

good solutions for moderate size problems such as ours.

Table 4.7: Parameter settings for Multiobjective Genetic Algorithm (MOD-GA)

parameter value
Population Size 100
Number of Generations 100
Selection Method Tournament
Tournament Size 10
Mutation Rate 1%

Table [4.7] shows our parameter settings used for MOD-GA. We tested three different

selection mechanisms (roulette wheel, truncation, and tournament) during the exper-

72

18 -

16 - H population size = 10

— H population size = 20
S 14 - pop ! !
b M population size = 40
g 12 4 M population size = 60
= 10 - i population size = 100
—
o
= 8
>
Q
L 6
>
[«}]

4

2

0

population size
Figure 4.7: Multiobjective optimization times for increasing population sizes.

iments. Tournament is the selection mechanism that has performed well in our previ-
ous studies [47,49]. We observe that roulette wheel selection technique needs more
time than the other selection techniques because it requires sorting of the individu-
als and construction of the wheel from the sorted individuals. Truncation selection
technique also needs sorting. On the other hand, tournament selection does not sort
or construct any value during the selection process therefore, it is the fastest selec-
tion technique among the three selection techniques. There are not big differences
between the solutions produced by the selection mechanisms. We select tournament
selection as our main selection mechanism because of its simplicity and execution

time during our experiments.

Figures 4.8 and .9 show how the solution quality of the individuals in a population
improve with respect to the increasing number of generations. Initial population gives
a picture of disorganized individuals but as the number of generations increases, the

population tends to get closer to the hypothetical ideal point.

73

2000

1800 X
X Initial population
8 1600 - X O Population after 10 generations
(%]
o 1400 ” y
@) X X x
O 1200 -
Y X X X
E 1000 X X x X X x X X
= . .
) ideal point
800
c
5 X X
Q. 600 * x
3 X
X, x X %
400 X KT K x
- oy
200 -
()
0 10 20 30 a0 50 60 70 80 %0

Monetary cost (cent)
Figure 4.8: Distribution of solutions for initial population and after 10 generations.

800 -

O Population after 10 generations
700

1
|
1
1
- 1 . .
8 A A Population after 100 generations
2 !
600 :
o
© 1
v 1
£ s 1 ideal point
b |
Q
vl 1
< |
O 400
o 1
o |
(7]
o 1
300 -
200 -
0 5 10 15 20 25 30

Monetary cost (cent)
Figure 4.9: Distribution of solutions after 10 and 100 generations.

74

CHAPTER 5

MATERIALIZED VIEW SELECTION FOR THE
MULTIOBJECTIVE OPTIMIZATION OF DATA WAREHOUSE
QUERY WORKLOADS

Some complicated game had been playing up and down the hillside all the afternoon.
E. M. Forsteif]

In this Chapter, we define our approach for selecting materialized views on Cloud
DW. We make use of a previously defined cost model developed in [[177] and en-
hance its single objective cost model to a multiobjective cost model for materialized
view selection on the Cloud. Materialized views are effective techniques for speed-
ing up query workloads and they are increasingly being used by many commercial
database systems. Materialized views are specially good for DWs because of the in-
tensive usage of common subexpressions such as select-project-join operations. Our
distributed DW integrates data from different relational databases and it is depicted
as a relational OLAP (ROLAP) tool [158][76]]. We show that selection of the appro-
priate materialized views remarkably reduces the communication cost, response time,

and the ownership price of a relational Cloud DW.

The materialized view selection design problem is NP-hard [72] and there can be
many alternatives to select a materialized view for a DW. For a distributed DW, the
complexity of selecting the most appropriate materialized views gets even harder. Its
complexity is due to selecting the most appropriate query subset, deciding the right

VMs to keep the materialized view, and reducing the cost of communication between

' From his novel "A Room with a View", 1908

75

virtual machines.

Materialized view selection seems to be the same problem with the multiple query
optimization (MQO). Both try to find the commonalities of the queries. However,
MQO is the process of finding an optimal plan for a set of queries executing at the
same time, whereas materialized view selection can serve for single queries executed
at different times (if they have any commonalities). In MQO, total execution time is
compared with the serial execution of queries. In materialized views, if a result is
materialized an index can be created on it and remarkable performance gains can be
obtained. If this subexpression can serve to more than a query then there is also a
performance gain in view maintenance. MQO tries to achieve the best performance
of a set of queries. Materialized views consider two objectives, query optimization

and view maintenance.

5.1 Motivating Example

A query can be executed with several query plans (QPs) on a relational Cloud DW.
The search space complexity of QPs gets larger with the number of sites, relations,
fragments of the relations, replications, and with the type of the processing trees (left-
deep, right-deep, zig-zag, and bushy tree). Existing query optimizers either use the
best QPs of the queries or if they have support for MQO they try to merge the best
QPs of the incoming queries. The best QPs are good for processing single queries
however; alternative QPs can provide more sharable sub-expressions, which is an

efficient way of executing query batches.

Query transformations : Join is the most expensive operation during the execution of
the queries therefore, finding sharable join operations increases the performance of
the system remarkably. In order to provide more sharable join operations, we pull up
the selection, projection, and aggregate operations of the queries when materialized
view processing plan (MVPP) is being generated. Later, we push down these oper-
ations back to their original locations on the query processing trees. If two queries
share the same join operation, the select conditions of these two queries are the dis-

junction of the select conditions of the queries. Like selection condition, projection

76

conditions (attributes) are unioned if they use the same join operation. If the group by
conditions are the same for the queries, then all the aggregation functions are included
in the global plan. If the group by operations are not the same, we use combinations
of the group by attribute. Two alternative QPs whose selection predicates are pushed

down and pulled up for TPC-H query Q3 can be seen in Figure[5.1]

T T
| O1_SHIPDATE >°1995-03-15'

SS M o, oae o

0_ORDERDATE <'1995-03-15

O MKTSEGMENT="BUILDING”

S N 53 M
1 O} SHIPDATE >'1995-03-15 A
/\ Lineitem S,
S, N Lineitem S,
OC MKTSEGMENT="8UILDING” 0L OROERCATE <1985 03145 /\
Customer Orders
S S Customer Orders
1 2
Sy S,
QEP, QEP,

Figure 5.1: Alternative QPs for TPC-H Query3 (i) selections are pushed down,

(ii)selections are pulled up.

If we give an example of how the QPs can exploit more of their subexpression, we
can show the global plan of queries TPC-H Q3 and Q4 (see Figure[5.2). The chosen
QP of Q3 shares more of its tasks with Q4. With this configuration of the TPC-H Q3
and Q4, the Q4 becomes the sub-expression of the Q3.

/*TPC-H Query 3%/

SELECT TOP 10 L_ORDERKEY, ,..., O_SHIPPRIORITY

FROM CUSTOMER, ORDERS, LINEITEM

WHERE C_MKTSEGMENT = "BUILDING’

AND C_CUSTKEY = O_CUSTKEY

AND L ORDERKEY = O_ORDERKEY

AND O_ORDERDATE < "1995-03-15°

AND L_SHIPDATE > *1995-03-15’

GROUP BY L_ORDERKEY, O_ORDERDATE, O_SHIPPRIORITY
ORDER BY REVENUE DESC, O_ORDERDATE;

Multiple view processing plan (MVPP) is one of the most important components
of the materialized view selection problem. It can be depicted as a global query

processing directed acyclic graph that combines the possible sub-queries together

77

e

OL_SHIPDATE >'1995-03-15
O0_ORDERDATE <'1995-03-15

o’CfMKTSEGMENT: ‘BUILDING™

T

O0_ORDERDATE < '1993-07-01"

Figure 5.2: Query plans of TPC-Q3 and Q4 where they can share more of their subex-

pressions with pulled up selection predicates.

al 4 Q3 Q22 Q2 Qi3 Q4 Q17 Q11 Q19 Q16 Qs
3<] D4 b
’ \/ A,
/]
N/ > <]
/>
| Lineitem | |0rders | | Customer | | Part | | Partsupp | | Supplier | | Nation || Region |

Figure 5.3: An example for materialized view processing plan that merges TPC-H

queries.

78

[177]]. It contains the query execution plan of the queries. For example Figure[5.3|can
be considered as a simplified MVPP for a set of TPC-H queries. There can be several
MVPPs in accordance with the alternative query execution plans of the queries. The
challenge of materialized view selection problem is to construct an optimal MVPP
and select the most efficient set of views to be materialized from this MVPP, which is

an NP-hard problem [72].

Materializing of all the views in an MVPP can provide the best performance but it has
the highest cost of view maintenance. Leaving all the views virtual gives the lowest
view maintenance cost but the worst performance. We can select a set of views to be
materialized and leave others as virtual views. In this way we may achieve a (near-

)optimal trade-off between the performance gain and maintenance cost.

5.2 Materialized View Selection Formulation

Traditionally, the criteria to consider in the materialized view selection process mainly
include view storage and maintenance costs. For Cloud databases, the optimization
problem is multiobjective that the monetary cost must also be considered. The tradi-

tional materialized view selection problem can be formulated as :

Given a set of queries (Q) and a set of alternative query execution plans for each query
(Q)={pi1, ---» pir} Where k is the number of alternative plans for (Q;), select a set of
views to be materialized with a global processing plan such that the total query and

maintenance cost is minimized.

Although storing the selected materialized view has an additional cost, it is a very
effective way of executing queries on the Cloud. Scan, computation, and communi-
cation sharing among concurrent queries in a database system always improve per-

formance by eliminating redundant data accesses and computation.

Hereby, we formulate the generation of a multiobjective materialized view processing
plan while optimizing the global monetary cost of storing and querying a database in
the Cloud. Our problem formulation is an enhanced variant of the single objective

formulation of the problem that is presented in [[1'77][178]].

79

A multiobjective multiple view processing plan (MVPP), M, can be generated de-

pending on the formulation below:

M=(V,A, CL, Cl, fo. fu)

where V is the set of vertices and A is the set of arcs over V.

e Create a vertex (v) for every base relation, every relational algebra operator

(select and join) in a query tree, and every distinct query.

e For (v) € V T(v) is the relation produced by the corresponding vertex v. T(v)
can be a relation at the leaf level or an intermediate result that is produced

during the processing of a query.
e For any leaf v, T(v) represents a base table. L is the set of leaf nodes.

o If a base relation or an intermediate result relation 7' («) corresponds to vertex u

is needed for a process at node v, an arc u — v is introduced.

e S(v) denotes the sources nodes that have edges pointed to vertex v. S(v)={} if v

is a member of leaf nodes L. S *{v} is the set of descendants of v.

e D(v) denotes the destination nodes to which v is pointed. For any v € R,

D(v)={}.

. CZ(v) is the cost of query ¢ that accesses to T(v), C (v) is the cost of main-
taining 7'(v) based on the changes to the base relation S*(v) N R, if T(v) is

materialized.
e f, and f, the frequencies of query and maintenance respectively.

If M is the set of materialized views, C,,(M) is the cost of computing g; from the set of
materialized views, M, and C,,(v) is the cost of maintenance when v is materialized,

then the total query execution cost is 3o f,Cy (M) and the total maintenance cost

is ZveM fuCM(V)~

The cost model for distributed computation environments needs to take into account

80

the communication cost of data transferring. If a query is submitted by node N; and
a view V; is used to answer the query, the communication cost is zero if V; is at the

same node. Otherwise, the cost for transferring V; from N; to N; is:
CommunCosty, n-n; = Cn,n X size(Vy)

where Cy; v, is the network transmission cost per unit of data transferred between N;

and NV, and size(V;) is the size of the view V; [[102] [34].

The total response time cost of the materialized view, M, is :

Resp_time(M)= Z f0:Cor(M) + Z JuCn(v)

qi€Q veM

Our objective is to minimize the multiobjective cost of the function :
F(M) = {Resp_time(M), Monetary_cost(M)}

where Monetary_cost(M) is the total monetary cost of materialized view processing
plan M including the storage costs of the relations, intermediate join storages, network

usage, and virtual machine consumptions.

During the generation of a materialized view processing plan (MVPP), we select a set
of query plans whose selection and projection predicates are pulled up. The selected
query plans are searched for the most expensive and the most common join operations
that exist in the query set. Since this operation is a very expensive operation, we limit
the number of the query plans of the queries (including the best query execution plans
of the queries). Therefore finding a solution is realized in more reasonable times.
Algorithm shows the details of generating MVPPs from a set of queries. In our
common subexpression detection method, we use a bottom-up model. The bushy-tree
query execution plans are inspected whether they have similar join operations or not.
Our main focus is on the join operations because they are the most time-consuming
part of a query. Moreover, for a distributed database the costs increase in accordance
with the bandwidth of the network. The detected common parts of the queries are
merged into the MVPP. Individual queries mostly communicate the same set of tuples
between each other. Efficient MVPPs prevent the redundant messages and packaging

the tuples in the same bundle (preparing packages for a set tuples instead of a single

81

tuple) provides an efficient way of executing query batches.

Algorithm 5.1: Generating a materialized view processing plan from a set of queries
Input: Queries (Q; ,..., Q)
Output: Materialized view processing plan (M)

M={};

for (i=1 to m) do
| Pull up select and project operations of query (Q,);

for (i=1 to (m-1)) do
for (j=i+1 to m) do

if Queries have the same join operations (Q;, Q;) then
| Merge queries (Q;, Q;, M) ;

for (i=1 to m) do
| Push down select and project operations of query (Q;);

return M,

5.3 Efficient Materialized View Maintenance on the Cloud

Materialized views provide fast access to the queried data. When views are complex,
and the query rate is high, they can gain big advantages. But when the data is up-
dated (gets dirty) at the source tables, the materialized views also need to be updated,
which is called as materialized view maintenance [/3]. Under heavy update work-
loads, materialized view maintenance can be a very expensive and time consuming
process. The communication overhead in a Cloud data warehouse can even worsen

this problem. Keeping the consistency with the resource tables can become very hard.

There are a number of studies concerning the materialized view maintenance in dis-
tributed (Cloud) databases [132]. The studies propose solutions ranging from a fully
virtual approach where there is no materialized data and queries are responded with
by using the resource tables to a full replication of data resources at the DW where the
updates can be handled locally. These solutions are not efficient in terms of communi-
cation and data storage respectively. An efficient solution is to materialize the updated

subsets of rows that are at the resource tables. The updates of the resource tables are

82

propagated to the materialized views and the views are maintained incrementally.

Most of the time, materialized views are not computed from scratch. This way of up-
dating views with only the dirty rows is called incremental materialized view. Incre-
mental view materialization only computes updates to a view in response to updates to
source tables [4]. If the intensity of the updates is now so high and the recomputation
of the materialized views is not interfered, the views maintenance can be executed in
a straightforward way. With this method, if an update is applied to the base relation,

the incremental changes are computed by selecting the rows from the data sources.

If a view (V) is given over two relations R; and R, as V = R; X R, and AR, is the

update of relation R, then the new materialized view can written as :
(R] + ARQ) XRy,=(R; ¥Ry + (AR] X R,)

For the incremental maintenance only the (AR, X R;) part needs to be computed and
incorporate the resulting tuples into the materialized view. If AR is an insert update,
then it will have the effect of adding the new tuples to the materialized view. If AR
is a delete operation, it will remove the related tuples from the materialized view.
With this approach, the views can be maintained incrementally. The updates must
be separated from each other far enough to complete the computation of the views.
This separation is not always possible between updates. Therefore, maintenance with

incremental updates can be a problem for DWs.

ECA [181] and Strobe [[182] algorithms are proposed for the solution of the problem.
In ECA, the number of data sources is limited to a single source data. Actually, the
data source may store several base tables. If we give an illustrative example of a
three-way join operation (R; X R, X Rj3), when an update AR; comes, then query
(AR; X R, M R3) needs to be computed. During this update, another update such as

AR, may occur. Thus, as a result of theses two updates, the view should be like:
(Ry X AR) M (R, X ARy) X R

The answer to the incremental query includes the effects of AR; and AR, and the
answer A; will be (AR; X R, X R3) + (AR; X AR, X R3). In the incremental answer

to the concurrent update AR,, (AR; X AR, X Rj3) is refereed as error term [4]]. Answer

83

A; will not provide the consistency of the data after two updates. (R; X AR, X R3)
will be missing. The formulation of the incremental query as (R; X AR, X R3) will be
incorrect because the first update has partially incorporated the effects of update AR;.
ECA algorithm uses the ’compensation’ notion to solve this problem. The solution

can be formulated as :
(Ry X AR, X R3) — (AR; X AR, X R3)

With the above formula, an optimization for ECA is easy to identify. If there is a
sequence of concurrent updates, A; X R;,A; X R,,...,A; X R,, occurring while

executing the (AR; M R, X Rj3), only an incremental update A; X R, is needed.

In the Strobe algorithm, a new method is proposed for maintaining the materialized
views incrementally in an environment with several data sources. There are some
assumptions made by the algorithm. The materialized views are assumed to include
key attributes of each relation. If update is a delete operation, it is handled by inserting
a delete marker as well as in an accumulated answer list for following incorporation
in materialized views. If the update is insert, a new query is started in accordance
with the definition of the view and executed at the sources. The Strobe also handles

the duplicate data.

If we give an example of how Strobe works with the same problem given above. In
(Ry M R, M R3), consider both updates AR; and AR, concurrently that insert data. If
AR, overlaps the (AR; X R, X Rj), unlike ECA, the second query does not satisfy
offsetting the error in query 1. It is formulated as : (R; X AR, X R3). The answers to

the queries are:

(AR; X Ry M R3) + (AR X AR, X R3)
(R X AR, M R3) + (AR X AR, X R3)
respectively.

The result of (AR; X AR, X R3) is included twice in the materialized views. There-
fore, suppressing the duplicates can be handled easily with Strobe algorithm. The
problem of the Strobe is that it must wait for quiescence in the system, which means

that all updates subside and the resulting answers are merged in the views. The ma-

84

terialized views are not updated until there is no period of quiescence in the system.
Strobe provides strong consistency but not complete because it incorporates the ef-

fects of the updates collectively.

In order to get rid of the quiescence effect of Strobe algorithm, C-strobe is proposed
[182]. In C-strobe, updates are handled at the DW before subsequent updates. An
answer is to a given update is computed by dealing with all the sources. This answer

may contain errors due to the concurrent updates.

For example, given an update AR; and multiple relation, the DW dispatches a query
(AR; X R, M R; X ..) to the data sources containing the relations Ry, R, If
there is no concurrent update, then the answer can be merged into the materialized
view. If a concurrent update AR, happens, then the answer will have an error of
(AR; X Ry, X Ry M ...). The DW send a query (AR; X AR, X R3; X ...) to R;
to subtract out the errors. If a current update occurs then a second order error term
(AR; X AR, X AR; X ...) happens. Another compensation query needs to be sent to

the base relations.

SWEEP is an efficient way of maintaining the materialized views [4] that works with
update at a time on the ware houses and constructs the changes in the view for that

update.

In our Cloud DW problem definition, we assume a rarely updated DW. Therefore, the
maintenance of the materialized views is done incrementally as the base relations are

updated.

5.4 Evolutionary Algorithm for Materialized View Selection

In this part we explain our solution model for the materialized view selection for
relational Cloud DWs. This model is proposed as an additional segment to MOD-GA
algorithm we present in Chapter d] The chromosome structure of the evolutionary
model can be seen in Figure [5.4] The chromosome holds the views that are derived
from the MVPP of the alternative query plans. The colored gene of the views part of

the chromosome shows the materialized view, whereas the white one shows a virtual

85

view.

The solution segment is added to the algorithm presented in Algorithm[4.2] At every
generation of the optimization, the selection of materialized views are evaluated in
accordance with the virtual resources. Every MVPP has a special set of views to
consider therefore, if a crossover operator is applied to the views segment it is most
likely that the newly generated views segment becomes an invalid solution. In order
to prevent this drawback, only mutation operator is applied to the views segment of
the chromosome. Mutation can provide efficient results when it is applied without
using crossover [[146]. The mutation operator changes the status of the view from a
materialized view to a virtual view. If MVVP is replaced with another MV VP (in
another meaning, if the query plans of the queries are changed), then view segment
of the chromosome is reconstructed to produce a valid view segment. In this way we

ensure that the solutions produced by the crossover/mutation operators are valid.

View1 Viewn
A N
I A
1 \
I ‘\
. @ @) a2 a2 a3 a4 Q7 a1 a9 N6 a5
I
A\
: \
1

)

JK

I Lineitem l |Orders | Customer | | Part | | Partsupp | | Supplier | | Nation | | Region |

>
A

Figure 5.4: Chromosome segment for materialized views.

Fitness calculation : The fitness of a chromosome gives us the performance of a
solution that is located a set of virtual resources and with selected materialized views.
The fitness value has two dimensions as explained in our previous sections. The
monetary cost and the response times of the query workload. The solutions that are
closer to the hypothetical point (having the best response time and cheapest resources

together) are kept in the population as proposed best solutions.

86

The solution space of the problem is huge. The varying elements in the solution space
can be listed as: number of alternative virtual machines, selected network, number of
data tables, alternative queries, number of materialized view processing plans, and
views that can be materialized in MVPPs. Therefore, finding an exhaustive solution
for this problem takes very long times (even not possible to obtain in months). With
the robustness of the MOD-GA algorithm, we intend to obtain solutions that are very
close (or the same) to the optimal solution set and improve the solutions in the pareto-

optimal set by introducing materialized views.

5.5 Performance Evaluation of the Proposed Genetic Algorithm

In this section, we evaluate the performance of our GA that is proposed for selec-
tion of materialized views. Well-known TPC-H decision support benchmark database
(10GB) is used in the experiments. Three different types of relational Cloud DW en-
vironments are prepared for the experiments. In the environments 1, 2, and 3 clusters
have 6, 10, and 15 virtual machines respectively. Virtual machines have equal com-
puting capabilities and have a DBMS that can access local data of other machines and
execute distributed queries. It is possible to store the intermediate results in the main
memory of the virtual machines and remove the least recently used cached query

results [35]].

In environment 1, each relation is located on a single virtual machine (except the
replicated N and R). In the environment 2, relation L is horizontally fragmented to 5
additional virtual machines. In environment 3, the relations O and PS are horizontally
fragmented and allocated to 4, 3 additional virtual machines respectively. Partitioned
relations are horizontally divided into equal size fragments. Small size relations R and
N are replicated at every virtual machine. Table gives the details of the relational

Cloud DW environments.

Queries that are executed on the environments given above are randomly selected
from standard 22 TPC-H queries. The average number of alternative query plan is 5,
20, and 50 for environments 1, 2, and 3 respectively. The average number of tasks for

each alternative query plan is 10. Initially, all of the virtual machines are assumed to

87

Table 5.1: Environment settings for the relational Cloud DWs used in the experiments

type | # Virtual machines | Network bandwidth | # Altr. QPs
1 6 100Mbps 5
2 10 1Gbps 20
3 15 10Gbps 50

be idle and the assigned set of queries is processed from scratch (meaning that neither
any task is assigned to any site previously nor there is any cached result in the main

memories).

The algorithms we compare are Hill Climbing Algorithm (HCA) and Hybrid Genetic
- Hill Climbing Algorithm (Hybrid-GHCA).

Hill Climbing Algorithm (HCA)

Hill climbing is an optimization algorithm that belongs to local search family [[109].
It works iteratively on an arbitrary solution and attempts to find a better solution by
visiting the neighbors of the current solution. If a better solution is found, it becomes
the current solution and this process continues until the termination condition is met.
Hill climbing does not guarantee to find the best possible solution of all possible
solutions. Instead, it gives a local optimum solution. The simplicity of hill climbing
makes it a popular algorithm. Hill climbing is observed to produce better results
than most of the algorithms when there is a time constraint. A sample hill climbing

algorithm is given in Algorithm[5.2]

Algorithm 5.2: Simple Hill Climbing Algorithm, HCA
curr = initial solution;

while termination condition is not satisfied do
new_solution = neigbour_of_(curr);

if new_solution is better than curr then
| curr:= new_solution,

return curr;

In our study, we propose a simple Hill Climbing Algorithm, HCA, for the solution

of the problem. HCA starts with a random initial solution and improves its quality

88

by visiting its neigbours. There can be defined many different neigbourhood relations
between solutions. We generate a new solution by replacing the query execution plan

of each query with every possible plan.

For example, if a solution for a set of four queries (each having three alternative plans)

is represented with the vector below.

curr = {pi11, P21, P3.1, P41}

then, the neighboring solutions are produced as :

neigby = {Py 2, P2.1> P3.1> P41}
neigb, = {P1,3, D215 P31 P41}

neigbs = {p1.1, P> P3.1, Pa1 }

neigh, = {p1.1, P21, P3.1, P43}

As it can be seen, every neighboring solution has only a single different alternative
plan than the original solution. When a better solution is found, it is replaced with the

current solution and the search process is restarted from scratch.
Hybrid Genetic - Hill Climbing Algorithm (Hybrid-GHCA)

Hybrid algorithms are known to benefit from the advantages of different heuristics.
They can further improve the solution quality of NP-Hard problems that have a large
search space. Therefore, we propose a hybrid algorithm, an extension of genetic
algorithm that combines the advantages of evolutionary with Hill Climbing (called
Hybrid-GHCA) [98]] [157]. It prevents the premature convergence and improves the
performance of both GA and HCA.

89

Hybrid-GHCA has two stages. At the first stage, GA is applied to the population
later, hill climbing algorithm, HCA, is applied to each one of the individual in the
population. The best performing individual is selected as the solution of the problem.

1.400

1.350

——10 individuals
1.300 - =50 individuals
=0=-100individuals

1.250 -

1.200 -

1150 -

1.100 -

1.050 -

fitnessvalue (sec.)

1.000 -

950 -

900

0 5.000 10.000 15.000 20.000
number of fitness evaluations

Figure 5.5: Population performance tests with 10, 50, and 100 individuals in accor-

dance with the number of fitness evaluations (environment-2 with 50 queries).

1.500

—%—10 individuals
1.400 =50 individuals
=0O=100individuals

1.300

1.200 -

1.100 -

fithess value (sec.)

1.000 -

900

0 200 400 600 800 1.000
number of generations

Figure 5.6: Population performance tests with 10, 50, and 100 individuals in accor-
dance with the number of generations (environment-2 with 50 queries).

Table 5.2: Parameter settings for Genetic Algorithm (GA)

Parameter Value

Population size 10

Number of generations (20,000 evaluations) | 1,000

Maximum number of genes to transfer 50%
Minimum number of genes to transfer 10%
Mutation Ratio 1%

The population size is fixed at 10 and the optimization process of GA terminates after

90

1,000 generations (20,000 evaluations).

Comparison of the proposed algorithms

Before comparing the performance of the proposed algorithms, we optimized the
number of individuals and the number of evaluations for GA. Figures [5.5] and [5.6]
present the results of the experiments with 10, 50, 100 individuals in accordance with
the number of chromosome fitness evaluations and generations respectively. In our
GA, the number of evaluations increases in accordance with the number of individuals
therefore, we present both of the Figures. The experiment is executed with a moderate
size relational Cloud database environment, environment-2 (with 50 queries). Small
size population with 10 individuals is observed to be the best performing population
size. It has better performance than larger population sizes and terminates much

earlier. Throughout the experiments, these parameter settings are used for GA (see

Table[5.2).

Two criteria are used to evaluate the performance of the proposed algorithms, opti-

mization times and the quality of the solutions.

Optimization times of the proposed algorithms

A heuristic search space analysis parameter can explain the complexity of the problem
more clearly. If |Q] is the number of queries, A is the average number of alternative

query execution plans for queries, then the search space size, SS, can be defined as :
§S = Al

In our experimental environment, there are 7 queries that have 20 alternative query

execution plans for each and the search space numberis SS = 207 (nearly 1,5 billion).

Optimization time of the genetic algorithms depends on its termination condition.
1,000 generations (20,000 evaluations) is defined as the (near-)optimal solution for the
proposed GA. HCA continues its optimization process until it cannot find any better
solution (or gets stuck in a local optimum value). Hybrid-GHCA includes both of the

optimization times of GA and HCA and because the starting solutions (individuals in

91

the population) are improved with GA, the optimization time of Hybrid-GHCA takes

less time than starting with random solutions.

In Figure optimization times of GA, HCA, and Hybrid-GHCA can be seen for

problem sets in environment-2 with increasing number of queries.

300 -

—¥—GA
—#A—HCA
—O—Hybrid-GHCA

250 -

= I N
o 17 o
=3 o =)

optimization time (sec.)

vl
=}

o - pro— : —}——K——X
0 20 40 60 80 100
number of queries

Figure 5.7: Optimization times of GA, HCA, and Hybrid GHCA algorithms (with

increasing number of queries in environment-2).

Solution quality of the proposed algorithms

In order to observe the solution quality of the results that are obtained by the pro-
posed algorithms, randomly generated TPC-H query batches are run on the relational
Cloud database environments given in Table [5.I] The search space complexity of
environment-1 is the smallest, the environment-3 has the largest complexity in ac-
cordance with the increasing number of queries in the query batch. Executed query

batches include [5-100] queries.

Figures [5.8] [5.9] and [5.10] give the optimization results found by the proposed algo-
rithms and a pure random research (that gives the best of 20,000 pure random solu-
tions). For all the environments, Hybrid-GHCA algorithm is observed to find the best
results. GA finds solutions that are mostly the same or slightly worse (0-5%) than
the solutions of Hybrid-GHCA for problem sets with very large complexity. HCA is
good and fast for small problems however; results found by HCA get worse when the
search space is very complex. With respect to the optimization time and the quality of
the solutions provided, GA algorithm is evaluated to be the best performing algorithm

among the others.

Conventional relational databases use the best query execution plans of the queries

92

1,600

00O
o]
1,400 - X GA o © ©
+HCA o © +
L2901 A Hybrid-GHCA o + t++ Z ..§
gl,oou ORandom o] © ++ 1 . KA x
2 o] + K K X
o (@] + x
S s00 o g X
g o t x %
2 s00 o i
g o %
% 400
1
200 - g X
0 : : : : :
o 20 40 60 80 100

number of queries

Figure 5.8: Solutions obtained by the proposed algorithms in environment-1.

2,000 -

1,800 - XGA o O ©
fo!
1,600 - +HCA o
0 © g + +
-~ 1,400 A Hybrid-GHCA o +
] o + o4 kX AA
< 1,200 ORandom 09+ + &
3 o ; ARA
S 1,000 -
s %
g 800 o © $
£ 600 | o %ii
400 O E
3 X
200 - g &
0 : : : : ‘
0 20 40 60 80 100

number of queries

Figure 5.9: Solutions obtained by the proposed algorithms in environment-2.

4,000 -

3500 | XGA 00O
+HCA o©
3,000 - o)
- A Hybrid-GHCA o ©O ++ 1
g 2% O Random o] © + + ¥ ﬁ X
3 © + AR KAa
3 2,000 - (o] + 3 AKX
2 099 & & z XA
é 1,500 - 0 © i $
= 1,000 | O X X
o]
500 - 2 * k
0 ‘ ‘ ‘ ‘ ‘
0 20 40 60 80 100

number of queries

Figure 5.10: Solutions obtained by the proposed algorithms in environment-3.

when executing query batches. The architecture we propose searches for query execu-
tion plan sets that share more of their tasks. With the experiments that are performed

on randomly selected set of [5-100] queries, 23%-55% improvements are observed.

93

94

CHAPTER 6

EXPERIMENTAL SETUP AND RESULTS

I've tried everything. I have not failed. I have just found 10,000 ways that won’t

work!
Thomas Edison

This Chapter presents the results of our experiments by using the proposed algo-
rithms. The algorithms use the multiobjective query optimizer during the design of
the relational Cloud DW. The obtained results of the algorithms are presented. The
design options are mapped to a real Cloud environment to evaluate the actual per-
formance of our algorithms and measure the efficiency of the schemes found by the
proposed algorithms. We investigate the possibility of further improving the DW

performance by using the selected materialized views.

Before giving the results, we describe our experimental environment, VMM Hyper-V,
the TPC-H database, selected query workloads, and present the results of the experi-
ments we obtain with Multiobjective Branch and Bound (MOD-B&B) and Multiob-
jective Genetic Algorithm (MOD-GA).

6.1 Experimental Environment

We perform our experiments on a private Cloud server, 4U DELL PowerEdge R910
having 32 (64 with Hyper Threading) cores and each core is Intel Xeon E7-4820
with a total of 2.00 Ghz processing power. Server has 128GB DDR3 1600 Mhz
virtualized memory and Broadcom Nextreme II 5709 1Gbps NICs. Operating system

95

is Windows Server 2012 Standard Edition and as guest operating systems Windows
Server 2008 R2 SP2 Enterprise Edition are used and on top of guest operating system,
SQL Server 2012 Enterprise Edition Service Pack 1 is implemented as the database
server. Windows Hyper-V 3.0 is used as virtualization platform. Network page size
is 4 KByte during the experiments. One of the the configuration DW infrastructure
we use during the experiments is given Figure [6.I] The number of the VMs and the
configurations (CPUs, main memory, and network bandwidth) are changed according

to the proposed solutions.

B ® ®F =y @

=y = .
N (= gam— g — N N e
VAL VM2 VM3 | VM4 | VM5 |
LINEITEM ORDERS PARTSUPP CUSTOMER PART
SUPPLIER SUPPLIER SUPPLIER SUPPLIER SUPPLIER
REGION ﬁ?:g: REGION REGION REGION
NATION NATION NATION NATION

Figure 6.1: A sample Cloud DW architecture.

Windows Server Virtualization, Hyper-V, is a hypervisor that enables virtualization

of x86-64 systems [[164]. Figure [6.2]shows the management console of Hyper-V.

Settings for node00 on OASISINTO1 \;li-

nodedd v G

=

Hardware - W' Network Adapter
4 Add Hardware

Specfy the configuration of the network adapter or remove the network adapter
Virtual switch:
[vour v

VLAN ID
[] Enable virtual LAN identification

= il IDE Controller 0

2
Ca Hard Drive
node00.vhdx

Bandwidth Management

HEF IDE Controller 1
Enable bandwidth management

& 5CsI Controller

= B Network Adapter Specify how this network adapter utizes network bandwidth. Both Minimum
vouT Bandwidth and Maximum Bandwidth are measured in Megabits per second.
Hardware Acceleration
Advanced Features Miimum bandwidth: e
¥ oM Maximum bandwidth: Mbps
¥ comz @ Toleave the minimum or maximum Lnrestricted, specify 0 as the value.
H Diskette Drive To remove the network adapter from this virtual machine, didk Remove.

A Management

@ Use alegacy network adapter instead of this network adapter to perform
network-based installation of the guest operating system or when integration
services are notinstalled in the guest operating system.

| Integration Services

All services offered i\ Some settings cannot be modified because the virtual machine was running when
this window was opened. To modify a setting that is unavailable, shut down the
virtual machine and then reopen this window.

{& | Snapshot File Location

Figure 6.2: Configuration interface of virtual machine monitor, Hyper-V.

96

6.2 TPC-H Data Warehouse and Query Workloads

TPC-H databases with 1GB, 10GB, and 25GB sizes are used in the experiments.
The TPC-H database has 8 tables. The tables are LINEITEM (8,145MB;60 mil-
lion rows), ORDERS (1,757MB;15 million rows), PARTSUPP (1,236MB;8 million
rows), PART (290MB;2 million rows), CUSTOMER (256MB;1,5 million rows),
SUPPLIER (15.5 MB;100,000 rows), REGION (0,008MB:5 rows), and NATION
(0,008 MB;25 rows). The parameters inside the parentheses show the size and num-
ber of rows of a 10GB TPC-H database. We used replications of small tables, NA-
TION, SUPPLIER, and REGION to obtain better performances from the proposed
databases and decrease the complexity of the query plans. Tables of TPC-H database
can be seen in Figure [0.3] Although TPC-H database is used in our experiments,
our framework is generic that it can develop Cloud database design for any relational

database.

We use three different workloads, workload-1, workload-2, and workload-3 for 1GB,
10GB, and 25GB databases respectively. Each workload consists of 10 to 14 different
TPC-H queries that are given in Table[6.1] The selected queries (workloads) represent
the most frequent set of queries of a database. We setup such an environment to test
the proposed algorithms under diverse set of queries and database sizes in terms of the
response time of query execution times and total cost of ownership. SQL statements

are input as Directed Acyclic Graphs (DAG) into the system [[176].

Table 6.1: Query workloads used in the experiments

Workload TPC-H Queries
Workload-1 (10 queries) 1,2,3,4,5,6,7,8,9,10
Workload-2 (14 queries) | 1,3,5,6,7,8,9,10,11,12,13,18,20,22
Workload-3 (10 queries) 2,3,4,9,10,11,12,13,18,22

In Figure [6.4] we present the response time of the selected TPC-H queries we use
during the experiments. These response times are obtained with the most expensive

configuration of VMs (XL) and the network bandwidths (200Mbps).
In order to show the changing needs of virtual machines in terms of CPU, RAM,

97

PART PARTSUPP LINEITEM ORDERS
PARTKEY | - |PARTKEY [| ORDERKEY ORDERKEY
NAME ——>|SUPPKEY _h_{ PARTKEY CUSTKEY
MFGR AVAILQTY SUPPKEY ORDERSTATUS
BRAND SUPPLYCOST LINENUMBER TOTALPRICE
TYPE COMMENT QUANTITY ORDERDATE
SIZE EXTENDEDPRICE ORDERPRIORITY
CONTAINER DISCOUNT SHIPPRIORITY
COMMENT TAX CLERK
CUSTOMER RETURNFLAG COMMENT
CUSTKEY |~ LINESTATUS
NAME SHIPDATE
SUPPLIER ADDRESS COMMITDATE
SUPPKEY | —>[NATIONKEY RECEIPTDATE
NAME PHONE SHIPINSTRUCT
ADDRESS ACCTBAL SHIPMODE
NATIONKEY MKTSEGMENT| COMMENT
PHONE COMMENT
ACCTBAL
COMMENT
NATION REGION
—{NATIONKEY REGIONKEY
NAME NAME
REGIONKEY [< COMMENT
COMMENT
Figure 6.3: Tables of TPC-H database.
180
160
~ 140
8]
3 120
£ 100
_g 80
§ 60
%
w40
20
0

1 2 3 4 5 6 7 8 9 10 11 12 13 18 20 22
Query name

Figure 6.4: Response times of individual TPC-H queries obtained by query genera-
tor with 10GB database executed on 5 XL virtual machines and 200Mbps network

bandwidth.

98

100
90
80
70
60
50
40
30
20
10

CPU Usage (%)

VM1 VM2

.
VM3 VM4 VM5
Virtual machine name

Figure 6.5: CPU consumption of the 5 VMs for Workload-2 (Tables Lineitem, Orders,

Customer, Part, and PartSupp are located at virtual machines 1,2,3,4, and 5 respec-

tively. Tables Supplier,

100
920
80
70
60
50
40
30
20
10

Network Usage (%)

Region, and Nation are replicated at each virtual machine).

VM1 VM2

VM3 VM4 VM5
Virtual machine name

Figure 6.6: Network consumption of query workload in Figure[6.5]

100
920
80
70
60
50
40
30
20
10

Main memory Usage (%)

; T I I T I
VM1 VM2

VM3 VM4 VM5
Virtual machine name

Figure 6.7: Memory consumption of the virtual machines in Figure [6.5]

99

and network bandwidth, we give the snapshots of the CPU, network, and memory
consumptions of WMs during the execution of workload-1 with the most expensive
virtual resources (5 XL virtual machines and 200Mbps network) (see Figures [6.5]
6.6l and[6.7). As it can be seen WM demands the largest CPU resource and memory
usage. VM2 and VM4 ship the largest amount of data to the other VMs to execute

the queries.

6.3 Comparison of the Proposed Data Warehouse Design Algorithms: MOD-
B&B and MOD-GA Algorithms

In this part, we give results of our tests with MOD-GA and MOD-B&B algorithms
on the selected TPC-H databases. MOD-B&B, a heuristic-based exhaustive algorithm
and produces exact solutions. MOD-GA is a robust metaheuristic algorithm that finds
(near-)optimal solutions in shorter optimization times. During the experiments, the
optimization times of the MOD-GA and MOD-B&B algorithms are observed to be 16
and 3,640 seconds (nearly 1 hour) respectively for workload-2. The optimization time
of MOD-B&B algorithm is reasonable for our problem that has moderate number of
queries, tables, and VMs. However, it can be prohibitive for problems with larger
search spaces. The optimization time of MOD-GA can be tuned depending on the
users requirements. If the user wants high-quality solutions or if the size of the search

space is very large then the optimization may take longer times.

The results of the solutions produced by the algorithms are presented in Figures [6.8]
[6.9] and [6.10|for workload-1 (1GB), workload-2 (10GB), and workload-3 (25GB) re-
spectively. After the optimization, we experienced some of the interesting solutions
on our private Cloud environment. Tables[6.2] [6.3] and [6.4] present the real execution
of the workloads. Since our optimization algorithms produce solutions depending
on query-optimizers, the mapping of to the solutions to the Cloud may display some
variations. During the experiments, we tried to minimize this variance by carefully
handling the statistics of each query in the workloads. The selectivity of the queries,
the execution time of the join operations, and the number of resulting tuples that will
be sent to another virtual machine are meticulously calculated during the optimiza-

tions.

100

The solutions shown in the Tables are selected from the results that are produced by
both of the algorithms. The column (VMs and Assigned Tables) in the Tables [6.2]
6.3] and [6.4] gives the types of the virtual machines and the tables that are located
on them. For example, (M(O,C,PS,S,R,N); L(L,P,S,R,N)) shows two VMs, M(2 x
1.6GHz CPU, 3.5GB RAM) and L(4 x 1.6GHz CPU, 7GB RAM). Capital letter in-
side the parentheses give the first letters of the tables (L=LINEITEM; O=ORDERS;
C=CUSTOMER; P=PART; PS=PARTSUPP; N=NATION; R=REGION; S: SUP-
PLIER). The abbreviations used in the Table are : Est.Resp.T.= Estimated Response
Time; Est.Cost= Monetary Cost of Estimated Response Time; Fit.= Fitness value;
Elap.T.= Time Elapsed in the Cloud; Elap.T.Cost= Monetary Cost of Elapsed Time
on the Cloud

It was possible to obtain a pareto-optimal convex curve with the solutions produced
by the algorithms. For small DW instances the usage of several virtual machines
does not show big performance gains. However, as the size of the DW gets larger (it
was possible for us to experience with TPC-H database sizes up to 25GB), additional
VMs and broader bandwidth networks highly improve the performance of the sys-
tem. 25GB DW response time was 1,423 seconds with a single XL virtual machine,
whereas this response time is improved to 337 seconds (76.3% decrease in the exe-
cution) with an additional XL virtual machine, 200Mbps network, and well located
tables. The monetary cost is also reduced by 55.9%.

60

|
|
1
’UT : O MOD-B&B
k3 50 ! ideal point X MOD-GA
= I
8 | X
S w ! %
9]
£ | XX %
= % % X
X XK gy REX
g 30 1) (X) o XXK X
2 1
2 2
0]
o

10

0
0 02 0,4 0,6 0,8 1 12 14 16 1,8
Monetary cost (cent)

Figure 6.8: Proposed pareto-optimal solutions for 1GB TPC-H database query
workload-1 by MOD-GA and MOD-B&B algorithms.

101

Table 6.2: Selected pareto-optimal solutions that are produced by MOD-GA and
MOD-B&B Algorithms for 1GB TPC-H Database and Workload-1 (Est.Resp.T.=
Estimated Response Time; Est.Cost= Monetary Cost ; Elap.T.= Time Elapsed in the

Cloud)
. Netw. | Est.Resp.T. | Est.Cost Elap.T. | Elap.T.Cost
Conf.# | VMs and Assigned Tables Fit.
Mbps (sec.) (¢) (sec.) (¢)
1 XL (L,C,0,P,PS,S,R,N) 33.7 0.46 22.7 25 0.34
M(O,C,PS,S,R,N)
2 100 39.28 0.52 414 34 0.45
L (L,PS,R,N)
XS(O,L,C,S,R,N)
3 10 30.87 0.46 15.3 21 0.31
XL (PS,P,S,R,N)
XS(C,PS,R,N)
4 XL (L,PS,S,R,N) 100 40.1 0.75 52.1 26 0.47
S(O,S,R,N)
S(PS,P.S,R,N)
5 M (O,L,S,R,N) 20 64.7 053 |124.1| 42 0.34
S(C,S,R,N)
L (L,PO,S,R,N)
XL (PS,S,R,N)
6 100 354 1.10 62.5 47 1.46
XS (C,S,R,N)
L (O,S,R,N)
L (L,S,R)N)
XS (C,S,R,N)
7 XS (O,S,R,N) 50 39.02 0.49 39.8 44 0.55
S (P,S,R.N)
XS (PS,S,R,N)
XL (L,S,R,N)
XL (C,S,R,N)
8 XS (O.S,R,N) 100 32.64 1.64 97.1 37 1.85
XL (P,S,R,N)
L (PS,S,R,N)
800
700 O MOD-B&B
- X MOD-GA
O 600
Q
«L
Hh 500
o
]
)
g 400 é
bt (o)
Y 300 iy
c
]
2 200
9]
[~

100

0 5

workload-2 by MOD-GA and MOD-B&B algorithms.

10 15
Monetary cost (cent)

Figure 6.9: Proposed pareto-optimal solutions for 10GB TPC-H database query

102

20

25

Table 6.3: Selected pareto-optimal solutions that are produced by MOD-GA
and MOD-B&B algorithms for 10GB TPC-H database and query workload-2
(Est.Resp.T.= Estimated Response Time; Est.Cost= Monetary Cost ; Elap.T.= Time
Elapsed in the Cloud)

. Netw. | Est.Resp.T. | Est.Cost Elap.T. | Elap.T.Cost
Conf.# | VMs and Assigned Tables Fit.
Mbps (sec.) (¢) (sec.) (¢)
1 XL (L,P,O,C,PS,S.R,N) - 410 6.2 38.3 252 3.8
L (L,C,S,R,N)
2 100 604 7.1 83.3 430 5.1
XS (PS,PO,S,R,N)
XL (L,PS,PS,R,N)
3 50 447 8.5 58.7 605 11.5
S (C,0.S,R,N)
XL (L,PS,R,N)
XL (PS,S,R,N)
4 200 378 2291 | 167.8 | 245 14.9
XL (O,S,R,N)
XL (C,S,R,N)
XL (L,S,R,N)
XS (C,S,R,N)
5 XS (O,S,R,N) 200 456 11.7 82.3 332 8.5
XS (PS,R,N)
M (PS,S,R,N)
L (L.S.R,N)
XS (C,S,R,N)
6 XS (O.S.R,N) 100 519 8.4 70.9 360 58
XS (P,S,R,N)
M (PS,S,R,N)

2500
:3\ O MOD-B&B
b X MOD-GA
= 2000
-
[%2]
0
Q
g 1500
= ideal point X
)
@ X
C 1000
S X
S
3 O § X
500 ¥T'0™ O (o]

0

0 10 20 30 40 50

Monetary cost (cent)

Figure 6.10: Proposed pareto-optimal solutions for 25GB TPC-H database query
workload-3 by MOD-GA and MOD-B&B Algorithms.

103

Table 6.4: Selected pareto-optimal solutions that are produced by MOD-GA
and MOD-B&B Algorithms for 25GB TPC-H database and query workload-3
(Est.Resp.T.= Estimated Response Time; Est.Cost= Monetary Cost ; Elap.T.= Time
Elapsed in the Cloud)

. Netw. | Est.Resp.T. | Est.Cost Elap.T. | Elap.T.Cost
Conf.# | VMs and Assigned Tables Fit.
Mbps (sec.) (¢) (sec.) (¢)
1 XL (L,P,O,C,PS,S.R,N) - 1,114 24.5 49.5 | 1,423 313
XL (L,0,C,S,R,N)
2 200 552 22.6 36.7 337 13.8
XL (P,PS,S,R,N)
XL (L,0,S,R,N)
3 M (PS,S,R,N) 200 702 22.1 36.4 902 28.4
XS (PS,R,N)
XL (O,PS,S,R,N)
XL (L,S,R,N)
4 100 844 40.6 75.6 620 313
L (PS,RN)
M (C,S,R,N)
XL (L,0,S,R,N)
M (PS,S,R.N)
5 200 1,016 353 67.3 836 29.0
XS (P,S.R,N)
M (C,S,R,N)
XL (L,S,R,N)
L (C.S,R,N)
6 M (O,S,R,N) 100 845 29.9 53.9 983 34.8
XS (P,S,R,N)
M (PS,S,R,N)
XL (L,S,R,N)
L (C.S,R,N)
7 M (O,S,R,N) 50 1,347 49.1 100.1 | 1,055 385
S (PS,R.N)
XS (PS,S,R,N)

104

Figures[6.11][6.12] and [6.13| show the percentage deviations of the evaluated designs

with respect to the real Cloud DW designs. x-axis represents the execution times of
real Cloud DW designs. The region above the x-axis is the over-estimation of the
designed DW. The deviation of the estimations is observed to be between % 40 and
% -40. The overestimation is due to the higher capabilities of SQL-Server database.
It implements multiple query optimization and scan sharing during the execution of
submitted queries. Underestimation of the performance is due our errors in estimating

the join operations and data distributions.

a0 -
30 4 ©
20 4
10 -
: : | : ; .
1 2 3 a 5 6 7 8
-10 solution number ® @

deviation percentage

40

Figure 6.1 1 Deviations of the estimated designs with 1GB tph-h DW.

50 4

a0 . .

30 0]
w . .
@a0
g
g
S 10 -
@
o
c 0 . . ‘ . ‘ .
2 1 2 3 4 5 6
=.10
4 solution number
20 |

=30

(0]

-40

Figure 6.12: Deviations of the estimated designs with 10GB tph-h DW.

50 4

40 @

30
w @
g ® Q
@
Q10 A
g
s 0 : . : : : : .
= " 1 2 3 4 5 6 7
5 solution number @
o

=20

-30 |] (&)

Figure 6.13: Deviations of the estimated designs with 25GB tph-h DW.

105

Table [6.5] gives the frequencies of the table and join usages of the query workloads. It
can be observed that the VM with Lineitem table should be a powerful machine (such
as XL). L and O tables should be located on the same machine or they have a broad
bandwidth between both. If the tables of the mostly executed joins are located at
separate VMs, then the network bandwidth between should be higher. These patterns

can be seen in the proposed designs we obtained with our proposed algorithms.

Table 6.5: Table and join usage frequencies of the query workloads

Table/Join name (scale factor) | W, — 1GB | W, — 10GB | W5 — 25GB
L (800) 8
O (175)
PS (125)

C (25)
P (29)
S(2)
N (1)
R (1)
LXO
CXO
LXP

[
=
=)

[y
<

AW W |®

—

NSRRI B NN o N O, U RS IO U B NS O |

L X PS
LXS
S XN
CXN
PSXP 1
N XR 3

[u—

[

N | W

N | OR[N U= DD ® W

NN O | W | O[3

106

6.4 Performance Improvements Using the Selected Optimal Materialized Views

In this part of the experiments, we analyze the efficiency of our materialized view
selection algorithm in terms of quality of the set of proposed solutions. A single
solution produced by the algorithm gives a Cloud DW that is designed by using virtual
resources and materialized views. With the results we obtain, we intend to improve

the quality of our solutions proposed for the design of the Cloud DWs.

First experiment we conducted was to observe the performance increase of a query Q5
for 10GB TPC-H DW. The query is executed on one of the pareto-optimal solutions
proposed by MOD-GA algorithm. There are two virtual machines in the solution
L(L,C,S,R,N) XS(PS,P,0,S,R,N). The location of the tables are given between the
parentheses. The network bandwidth is 100Mbps.

Figure [6.14]shows a materialized view processing plan (MVPP) for TPC-H workload-
2 that we have used during our simple experiment. In the Figure, some of the queries
of workload-2 are merged together. As we can see tables LINEITEM and ORDERS

can be joined together and serve many of the queries in this workload.

Q7 Qs Q3 Q10 Q22 Q12 Qi3 Q9 Q16 Q5

| Lineitem | |Orders | | Customer | | Part | | Partsupp | | Supplier | | Nation | | Region |

Figure 6.14: A selected Materialized View Processing Plan for query workload-2.

Materialized view for TPC-H Queries Q3, Q5, Q7, Q8, Q10, and Q12 is designed as
below. All of the predicates of the queries are combined together with OR statements.
The view is located on virtual machine 1. It does not need to communicate with the
other virtual machines during the execution of the queries. Its size is 5.1GB. It takes
about 300 seconds to build this materialized view. This causes an additional monetary

cost that comes from the storage of the data however the performance increase of the

107

queries is so remarkable that it pays back with its high-performance.

Materialized view, L_JOIN_O, for TPC-H Queries Q3, Q5, Q7, Q8, Q10, and Q12.

CREATE VIEW L_JOIN_O WITH SCHEMABINDING
AS

SELECT O_ORDERPRIORITY, L_ORDERKEY, L_LINENUMBER,
O_ORDERDATE, L._SHIPMODE, O_SHIPPRIORITY,
O_CUSTKEY, L_EXTENDEDNPRICE, L_DISCOUNT,
L_COMMITDATE, L_RECEIPTDATE, L._SHIPDATE,
L_SUPPKEY, L_RETURNFLAG

FROM LINEITEM, ORDERS

WHERE L ORDERKEY=0_ORDERKEY

AND

(O_ORDERDATE > *1993-07-01°

OR O_ORDERDATE < ’1993-03-15°

OR L_SHIPDATE > *1993-03-15°

OR O_ORDERDATE > *1993-10-01"

OR L_COMMITDATE < L_RECEIPTDATE

OR L_SHIPMODE IN "MAIL’, ’SHIP”)

OR L_RETURNFLAG ="R’

OR L_SHIPDATE < L_COMMITDATE

OR L_RECEIPTDATE > *1994-10-01")

CREATE UNIQUE CLUSTERED INDEX Idx_Myview_ClusteredIndex
ON DBO.O_JOIN_C(L_ORDERKEY, L_LINENUMBER)

Rewritten TPC-H QS5 query with the proposed L_JOIN_O materialized view as below.

SELECT N_NAME, SUM(L_EXTENDEDPRICE*(1-L_DISCOUNT))
AS REVENUE

FROM L_JOIN_O, CUSTOMER, SUPPLIER, NATION, REGION
WHERE C_CUSTKEY = L_JOIN_O.O_CUSTKEY

AND L_JOIN_O.L_SUPPKEY = S_SUPPKEY

AND C_NATIONKEY = S_NATIONKEY

AND S_NATIONKEY = N_NATIONKEY

AND N_REGIONKEY = R_REGIONKEY

AND R_NAME = "ASIA’

AND L_JOIN_O.O_ORDERDATE >="1994-01-01"

AND L_JOIN_O.O_ORDERDATE < DATEADD(YY, 1, cast(’1994-01-
01’ as datetime))

GROUP BY N_NAME

ORDER BY REVENUE DESC;

When query QS5 is run without a materialized view, it takes about 111 seconds to

complete the query with the given DW design. On the other hand, the same query is

108

executed within 17 seconds by using the L_JOIN_O materialized view. This shows

84.6% improvement in the response time of the query.

When the queries Q3, Q5, and Q10 are executed together with materialized views the
total response time is 28 seconds. The parallel query execution time of the queries is
139 seconds when executed without using the L_JOIN_O materialized view. This is

a 79.8% improvement in the response time of the queries of Q3, Q5, and Q10.

In Table [6.6] we present the time spent for the creation of the materialized views,
the size of the views, and the monetary costs. XL virtual machines are used while

creating the materialized views.

Table 6.6: Time spent for the creation of selected materialized views and their mone-
tary costs

Name of the mater. view Time spent for Monetary cost (¢) | Size(MB) | Index size (MB)
creation(sec.)

LXO 345 4.6 5,116 10.7
oXC 34 0.45 193 0.32
LIXP 215 2.86 1,246 2.6
PXPS 40 0.53 361 0.2

SXNNXR 2 0.026 8 0.064
Total 636 8.46 6,924 15.68

At this phase of our experiments, we compare the results of the selected materialized
views with the previous design solutions for I0GB TPC-H test data given in Table
6.3] The virtual machine settings given in the Table are taken as they are presented to
show the performance/cost increase in workload-2 when materialized views are used.
The selected materialized views and the location of these views are presented in Table
Location of the materialized views are given in the *VMs, Tables, and Views’

column.

From the results we obtained by using the materialized views, we observe that the
response time of the workload-2 is improved 71.6% on the average for the designs
presented in Table and Figure [6.15] The monetary costs are improved 67.5%.
These are remarkable results in accordance with both objectives that we aim to opti-

mize.

109

The initialization and maintenance cost of the views can be seen as additional weights
that need to be handled. This is true under heavy update workloads. If you have a
not frequently updated data warehouse (write once, read many times) this will not be
a big burden. Even with our small data warehouse we conclude that the materialized
views pay their extra storage costs when the queries are submitted for the second
time. As the storage costs continue to decrease for the Cloud, materialized views
will become more efficient tools with their capability to decrease the communication

between virtual machines.

Using Vi
600 X O Using Views
X Without Views

] X
g 500 -
5 x X *
S 400 -
@ X
£
5300 -
]
v
5

200 -
% O
o

100 - 090 O

0

° j Mo;Detary cost (clesnt} ? ®
Figure 6.15: Comparison of TPC-H 10 workload-2 execution results with and without

using materialized views.

Figure[6.16|presents the comparison of our results with randomly selected set of solu-
tions. The randomly selected solutions consist of the largest number of best VMs that
are as many as the number of tables, single VM with the cheapest and the most expen-
sive configurations, and such solutions that are obtained with heuristic approaches.
Workload 1, workload 2, and workload 3 can be executed with 35.5 %, 40.7 %, and

32.5 % improvements respectively.

110

Table 6.7: Comparison of the 10GB design results given in Table 6.3 with new DW
designs implemented by using materialized views.

Conf.#

VMs, Tables, and Views

Netw.
Mbps

Elap.T.

(sec.)

Elap.T. | V.Elap.T. | VElap.T. | Elap.T. | Elap.T.Cost
Cost(¢) (sec.) Cost (¢) | Impr.(%) | Impr.(%)

XL=(L,PO,C,PS,S,R,N,
LXO,0XC,LXP,PXPS,SXNIXR)

410

6.2 117 2.1 71.4 66.1

L=(L,C,S.R,N,
LXO,LXP,SXNIXR)
XS=(PS,P,0.S.R\N,

OXC,PXPS)

100

604

7.1 188 2.8 66.9 60.5

XL=(LPS,PS RN,
LXO,LXP,SXNXR)
S=(C,0,S.R.N,
OXC,PXPS)

50

447

8.5 115 2.5 74.2 70.5

XL=(L,PS,R,N,LxP)
XL=(PS,S,R,N,PXPS)
XL=(0,S.R,N,0XC)
XL=(C,S,R,N,SXNXR,LXO)

200

378

22.9 109 6.9 71.1 69.9

XL=(L,S,R,N,LXO)
XS=(C,S,R,N,0XC)
XS=(0,S,R,N,SXNXR)
XS=(P,S,R,N,LxP)
M=(PS,S,R,N,PXPS)

200

456

11.7 123 3.5 73.0 70.1

L=(L.S,R,N,LXO)
XS=(C,S,R.N,0XC)
XS=(0,S.R,N,SKNKXR)
XS=(P,S,R,N,LXP)
M=(PS,S,R,N,PXPS)

100

519

8.4 141 2.7 72.8 67.9

Average

469

10.8 1322 33 71.6 67.5

45.0

improvement percentage (%)

solutions.

40.0 ~
35.0 -
30.0 -
25.0 -
20.0 -
15.0 ~
10.0

355%

W1-1GB

40.7%

32.5%

W2-10GB W3-25GB
Workload and DW size
Figure 6.16: Average performance improvements against the set of randomly selected

11

1

112

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

Today, we are living in a world that computer scientists have to deal with very large
amounts of data. Users want to take advantage of these big data sources however;
relational databases stored on single servers cannot meet the requirements of big data
applications and must be prepared to work in distributed computation (Cloud) en-
vironments. The newly emerging database as a service paradigm is one of the best
promising areas to meet this demand of the users. The Cloud database systems offer
highly-scalable services with simplified interfaces and the goal of reducing the total
cost of ownership. Users pay all costs associated with hosting and querying their data
where database-as-a-service providers present different choices to trade-off price and
performance to increase the satisfaction of the customers and optimize the overall

performance.

Recently, extensive academic and commercial research is being done to construct
self-tuned, efficient, and resource-economic Cloud database services that protect the
benefits of both the customers and the vendors. Scalable, elastic, and fault-resilient
shared-nothing relational databases with cheaper commodity hardware seem to be
the most cost-efficient and dominating approach for such systems. Instead of using
expensive and powerful servers, databases that are located on numerous commodity

computers can be used to provide more cost-efficient systems.

113

7.1 Overview

The aim of the thesis was to design multiobjective (cost-efficient and high perfor-
mance) efficient and scalable Cloud DWs. The classical database design techniques
are intensively being used by the DBaaS providers. But this is not enough for the
Cloud database customers that also demand for cost-efficient solutions, which means
that they want fast response times in addition to the reduced monetary costs. There-
fore, classical optimization goal (response time) must be combined with the monetary
usage dimension of the Cloud resources. A design for a database that has the best re-
sponse time is not an only objective for the Cloud DW. Instead, the data warehouses
must be well designed to consume minimum amount of virtual resources in order to
provide smaller monetary costs. This demand of the consumers introduces the prob-
lem of multiobjective design of relational Cloud databases. Within these expectations,
optimization of the virtual resource use of the Cloud becomes a very important issue.
It is not possible to provide these facilities on a single server when the frequency
of the queries reach to a limit. The distributed computation environments need to
provide scalability and elasticity without the notice of the users. The same perfor-
mance of the database must be maintained in accordance with the expectations of the
users no matter how large the data becomes. This is not an easy task. This thesis
that approaches the problem from the perspective of the users provides a nice way
that balances the resource consumption and the monetary issues of the Cloud while

keeping the high performance of the database system.

7.2 Summary of the Results and Contributions

Our first contribution in this thesis was to design novel Cloud DW query optimization
algorithms that provide alternative options to the needs of the query optimizers. We
noticed that new state-of-the-art heuristic, Ant Colony Optimization has not been ap-
plied to this area until now and DPACO can provide efficient ways for the intractable

Cloud DW query optimization problem.

We proposed a novel and efficient heuristic algorithm for the query optimization of

relational Cloud DWs. The Dynamic Programming with Ant Colony Optimization

114

Algorithm (DPACO) optimizes multi-way chain join queries of the Cloud that operate
on shared-nothing architectures [47, 49, 48]. DPACO is an extension of well-known
commercial optimizer’s DP algorithm and can be adapted to the existing systems

easily.

In order to analyze this multiobjective problem, we selected the most used large
database systems, DWs, as our test environment and developed a framework that
makes use of the virtual Cloud resources and materialized views to design efficient
multiobjective Cloud DWs. Our framework designs scalable relational OLAP (RO-
LAP) systems. Given the tables and the query workload of a DW, we allocate the
data on (near-) optimal number of machines while considering the monetary cost and
efficient response time of the queries. We proposed two algorithms for the design
of the Cloud DW systems, Branch-and-Bound Algorithm (MOD-B&B) and Multi-
objective Data Warehouse Design with Genetic Algorithm (MOD-GA). MOD-B&B
is an exhaustive solution method with longer optimization times, whereas MOD-GA
produces (near-) optimal solutions with reasonable optimization times. After having
experienced with the algorithms we were able to verify the quality of our results on
a private Cloud environment. The proposed Cloud DW systems have fast responding

times and low-cost prices.

At the end of our study, we conclude that virtualization provides a scalable and elastic
means to design multiobjective Cloud DWs. Traditional way of designing DWs on
randomly selected virtual resources or most expensive hardware is not a good way.
It may cause the customer to lose money or time while waiting longer times to take
the results of the queries. With our proposed framework, we minimize the monetary
cost as well as providing fast response times. We formulated the DW design problem
and to the best of our knowledge, the multiobjective Cloud data warehouse design
problem is being solved for the first time with such a method. There are studies that
concern with the best virtual resource deployment or with the minimal monetary cost
of workloads in a static hardware environment individually. However we combined
both of these optimization techniques together with materialized views and obtained

remarkable results as they are presented.

115

Materialized views are effective techniques for speeding up query workloads and re-
ducing the prices. They are increasingly being used by many commercial DW. From
the perspective of a Cloud customer, materialized views can provide cost-effective
DWs. Because of the intensive usage of common subexpressions such as select-
project-join operations, materialized views are specially good for DWs. Our dis-
tributed DW integrates data from different relational database resources and it can
be depicted as a relational OLAP (ROLAP) tool. We show that selection of the ap-
propriate materialized views remarkably reduces the communication cost, response
time, and the ownership price of a relational Cloud database. From the results we
obtained by using the materialized views, we observe that the response time of the
workloads and the monetary costs are improved 71.6% and 67.5% on the average
respectively. These are remarkable results in accordance with both of the objectives
that we aim to optimize. Although the maintenance cost of the materialized views is
an issue to control, this becomes trivial when the intensity of the queries is more than

the updates.

Most of the recent studies are dynamic that they balance the virtual resource con-
sumption by migrating the data between virtual machines. The size of the databases
in these studies are not big (in MB scale). However, in our study, DWs handle large
amount of data up to TB level. Therefore it is not wise and efficient to migrate this
data at runtime. Instead, a well configured static design such as ours can be a more

appropriate approach.

7.3 Future Work

Certainly, this thesis does not present a complete solution to all of the problems as-
sociated with efficient and multiobjective relational Cloud DWs. There are still a
number of important issues to deal with. We can summarize some of these subjects

as:

e Partitioning the big tables as horizontal/vertical fragments significantly im-
proves the performance of the Cloud DWs. Finding scalable fragmentation

algorithms for Cloud DWs can be a research area.

116

e Replicating small data tables at different virtual machines improves the perfor-
mance of the Cloud DWs. In our study, we replicated small size tables with a
heuristic approach. Designing a self-adaptive system that selects the most ap-
propriate replication policy is a good area for research. The use of replication

can be decided automatically.

e Designing adaptive query optimization algorithms that make use of the dynamic
resources of the Cloud can be an interesting issue. Fault-resilient systems are

always desired to support the recovery issues.

e A self-monitoring approach can be designed for Cloud DWs. The system can
decide some of the optimizations in the run-time of the database. Meaning that
the virtual resources can be adjusted according to the current workload of the
database. Number of virtual machines, materialized selection, replication and
other performance increasing issues can be designed at run-time. Tracking the
nature of the queries (their frequency and resource demands) can be followed
and intelligent decision can be made by using machine-learning techniques,

such as reinforcement learning.

o This thesis focused on the cost-effectiveness and the response time issues of the
Cloud DWs. Energy consumption (green computing) can be another objective

for the research.

117

118

REFERENCES

[1] Abadi, D. (2012). Consistency tradeoffs in modern distributed database system
design: CAP is only part of the story. Computer, 45(2), 37-42.

[2] Aboulnaga, A., Amza, C., and Salem, K. (2008). Virtualization and databases:
State of the art and research challenges. In Proceedings of the 11th interna-
tional conference on Extending database technology: Advances in database
technology (746-747).

[3] Agrawal, S., Chaudhuri, S., Das, A., and Narasayya, V. (2003). Automating
layout of relational databases. ICDE (607-618).

[4] Agrawal, D., El Abbadi, A., Singh, A., and Yurek, T. (1997). Efficient view
maintenance at data warehouses. In ACM SIGMOD Record (Vol. 26, No. 2,
pp. 417-427).

[5] Ahmad, I., Karlapalem, K., Kwok, Y. K., and So, S. K. (2002). Evolutionary
algorithms for allocating data in distributed database systems. Distributed and
Parallel Databases, 11(1), 5-32.

[6] Amazon Elastic MapReduce. aws.amazon.com/elasticmapreduce (last ac-
cessed 5 September 2014).

[7] Amazon Web Services (AWS). aws.amazon.com (last accessed 5 September
2014).

[8] Amazon Redshift http://aws.amazon.com/redshift/ (last accessed 5 September
2014).

[9] Amazon Relational Database Service. aws.amazon.com/rds/ (last accessed 5
September 2014).

[10] Amol, D., Zachary, I., and Vijayshankar, R. (2007) Adaptive query processing.
Foundations and Trends in Databases. 1(1):1-140.

[11] Andrade, H., Kurc, T., Sussman, A., and Saltz, J. (2002) Multiple query op-
timization for data analysis applications on clusters of SMPs. Proceedings of
the 2nd IEEE/ACM Inter. Symposium on Cluster Computing and the Grid.

[12] Andrew S. Tanenbaum, and M. V. Steen. (2006). Distributed Systems: Princi-
ples and Paradigms. Prentice Hall, 2 edition.

119

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R., Konwinski, A., ...
and Zaharia, M. (2010). A view of cloud computing. Communications of the
ACM, 53(4), 50-58.

Balazinska, M., Howe, B., and Suciu, D. (2011). Data markets in the cloud:
An opportunity for the database community. PVLDB, 4(12).

Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., ... and
Warfield, A. (2003). Xen and the art of virtualization. ACM SIGOPS Oper-
ating Systems Review, 37(5), 164-177.

Bayir, M.A., Toroslu, I.H., and Cosar, A. (2007). Genetic Algorithm for the
Multiple-Query Optimization Problem. IEEE Transactions on Systems, Man,
and Cybernetics-Part C: Applications and Reviews, Vol. 37 (1):147-153.

Bennett, K., Ferris, M. C., and loannidis, Y. E. (1991). A genetic algorithm
for database query optimization (400-407). Computer Sciences Department,
University of Wisconsin, Center for Parallel Optimization.

Berriman, G. B., Juve, G., Deelman, E., Regelson, M., and Plavchan, P. (2010).
The application of cloud computing to astronomy: A study of cost and perfor-
mance. In Sixth IEEE International Conference e-Science Workshops(1-7).

Bernstein, P. A., and Chiu, D. M. W. (1981). Using semi-joins to solve rela-
tional queries. Journal of the ACM (JACM), 28(1), 25-40.

Bernstein, P.A., Cseri, I, D, Nishant, E, Nigel, Kalhan, A., Kakivaya, G.,
Lomet, D.B., Manne, R., Novik, L., and Talius, T., (2011) Adapting microsoft
SQL server for cloud computing. ICDE: 1255-1263.

Berstein, P.A., Goodman, N., Wong, E., Reeve, C.L., and Rothnie, J.B. (1981).
Query Processing in a System for Distributed Databases (SDD-1). ACM Trans.
Database Syst., 6(4): 602-625.

Beynon, M., Chang, C., Catalyurek, U., Kurc, T., Sussman, A., Andrade, H.,
Ferreira, R., and Saltz, J. (2002) Processing large-scale multi-dimensional data
in parallel and distributed environments. Parallel Computing, 28(5), 827-859.

Brewer, E. A. (2000). Towards robust distributed systems. In Proceedings of
the Annual ACM Symposium on Principles of Distributed Computing (Vol.
19, 7-10).

Bruno, N, Jain, S., and Zhou, J. (2013). Recurring Job Optimization for Mas-
sively Distributed Query Processing.

Bruno, N., Galindo-Legaria, C., and Joshi, M. (2010). Polynomial heuristics
for query optimization. In Data Engineering (ICDE) (pp. 589-600).

120

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

Bruno, N., and Chaudhuri, S. (2002). Exploiting statistics on query expressions
for optimization. In Proceedings of the 2002 ACM SIGMOD international con-
ference on Management of data (263-274).

Buyya, R., Yeo, C. S., Venugopal, S., Broberg, J., and Brandic, I. (2009). Cloud
computing and emerging IT platforms: Vision, hype, and reality for delivering

computing as the 5th utility. Future Generation computer systems, 25(6), 599-
616.

Ceri, S. and Pelagatti, G. (1984). Distributed databases principles and systems.
McGraw-Hill, Inc..

Chakravarthy, U. S., and Minker, J. (1986). Multiple query processing in de-
ductive databases using query graphs. In Proceedings of the 12th International
Conference on Very Large Data Bases (384-391).

Chakravarthy, S. (1991). Divide and conquer: A basis for augmenting a con-
ventional query optimizer with multiple query-processing capabilities. In Data
Engineering. Proceedings. Seventh International Conference on (482-490).
IEEE.

Chaudhuri, S., and Dayal, U. (1997). An overview of data warehousing and
OLAP technology. ACM Sigmod record, 26(1), 65-74.

Chaudhuri, S. (1998). An overview of query optimization in relational systems.
In Proceedings of the seventeenth ACM SIGACT-SIGMOD-SIGART sympo-
sium on Principles of database systems (34-43).

Chatziantoniou, D., and Tzortzakakis, E. (2009). Asset queries: a declarative
alternative to mapreduce. ACM SIGMOD Record, 38(2), 35-41.

Chaves, L. W. F., Buchmann, E., Hueske, F., and Bohm, K. (2009, March).
Towards materialized view selection for distributed databases. In Proceedings
of the 12th International Conference on Extending Database Technology: Ad-
vances in Database Technology (pp. 1088-1099). ACM.

Chen, G., Wu, Y, Liu, J., Yang, G., and Zheng, W. (2011) Optimization of
sub-query processing in distributed data integration systems. Jour. of Network
and Computer Applications 34: 1035-1042.

Chen, F. C. and Dunham, M. H. (1998). Common subexpression processing in
multiple-query processing. Knowledge and Data Engineering, IEEE Transac-
tions on, 10(3), 493-499.

Comito, C., Gounaris, A., Sakellariou, R., and Talia, D. (2009). A service-
oriented system for distributed data querying and integration on Grids. Future
Generation Computer Systems, 25(5), 511-524.

121

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

Condie, T., Conway, N., Alvaro, P., Hellerstein, J. M., Gerth, J., Talbot, J.,
... and Sears, R. (2010). Online aggregation and continuous query support in
mapreduce. In Proceedings SIGMOD (1115-1118).

Corbett, J. C., Dean, J., Epstein, M., Fikes, A., Frost, C., Furman, J. J., ... and
Woodford, D. (2012). Spanner: Google’s Globally-Distributed Database.

Curino, C., Jones, E., Popa, R., Malviya, N., Wu, E., Madden, S., Balakrish-
nan, H., and Zeldovich, N. (2011). Relational Cloud: A Database Service for
the Cloud. CIDR, pp.235-240.

Curino, C., Jones, E. P.,, Madden, S., and Balakrishnan, H. (2011). Workload-
aware database monitoring and consolidation. In Proceedings of the 2011 ACM
SIGMOD International Conference on Management of data (pp. 313-324).

Dalvi, N. N., Sanghai, S. K., Roy, P., and Sudarshan, S. (2003). Pipelining in
multi-query optimization. Journal of Computer and System Sciences, 66(4),
728-762.

Dash, D., Kantere, V., and Ailamaki, A. (2009). An economic model for self-
tuned cloud caching. In Data Engineering, 2009. ICDE’09. IEEE 25th Interna-
tional Conference on (pp. 1687-1693).

Deelman, E., Singh, G., Livny, M., Berriman, B., and Good, J. (2008). The
cost of doing science on the cloud: the montage example. In Proceedings of
the 2008 ACM/IEEE conference on Supercomputing (p. 50).

Deshpande, A., Ives, Z., and Raman, V. (2007). Adaptive query processing.
Foundations and Trends in Databases, 1(1), 1-140.

Diwan, A. A., Sudarshan, S., and Thomas, D. (2006). Scheduling and caching
in multi-query optimization. COMAD.

Dokeroglu, T. (2012). Parallel Genetic Algorithms for the Optimization of
Multi-Way Chain Join Queries of Distributed Databases 38th VLDB Ph.D.
Workshop, Istanbul/ TURKEY.

Dokeroglu, T., and Cosar, A. (2011). Dynamic Programming with Ant Colony
Optimization Metaheuristic for Optimization of Distributed Database Queries.
In Computer and Information Sciences II: 26th International Symposium on
Computer and Information Sciences. 107-113. Springer.

Dokeroglu, T., Tosun, U., and Cosar, A. (2012). Particle Swarm Intelligence as
a Novel Heuristic for the Optimization of Distributed Database Queries, The
6th International Conference on Application of Information and Communica-
tion Technologies AICT2012 Georgia, Thilisi.

122

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

Dong, H., and Liang, Y. (2007). Genetic algorithms for large join query opti-
mization. In Genetic And Evolutionary Computation Conference: Proceedings
of the 9 th annual conference on Genetic and evolutionary computation (Vol.
7, No. 11, 1211-1218).

Dorigo, M., Maniezzo, V., and Colorni, A. (1996). Ant system: optimization
by a colony of cooperating agents. Systems, Man, and Cybernetics, Part B:
Cybernetics, IEEE Transactions on, 26(1), 29-41.

D’Orazio, L., Bimonte, S., and Darmont, J. (2012). Cost Models for View Ma-
terialization in the Cloud. In Proceedings of the Workshop on Data Analytics
in the Cloud (EDBT-ICDT/DanaC).

Elmore, A. J., Das, S., Agrawal, D., & El Abbadi, A. (2011). Zephyr: live mi-
gration in shared nothing databases for elastic cloud platforms. In Proceedings
of the 2011 ACM SIGMOD International Conference on Management of data
(pp- 301-312). ACM.

Epstein, R., Stonebraker, M., and Wong, E. (1978). Query Processing in a
Distributed Relational Database System , In Proc. ACM SIGMOD Int. Conf.
On Management of Data, pp. 169-180.

Finkelstein, S. (1982) Common Expression Analysis in Database Applications.
In Proc. SIGMOD, 235-245.

Fiore S. and Aloisio, G. (2011). Grid and Cloud Database Management.
Springer-Verlag, Berlin Heidelberg.

Fontes, V., Schulze, B., and Dutra, M. (2004) CoDIMS-G: a data and program
integration service for the grid. Proceedings of the 2nd workshop on Middle-
ware for grid computing. Ontario, Canada,29-34.

Fox, A., and Griffith, R. (2009). Above the clouds: A Berkeley view of cloud
computing. Dept. Electrical Eng. and Comput. Sciences, University of Califor-
nia, Berkeley, Tech. Rep. UCB/EECS, 28.

Galindo-Legaria, C., Pellenkoft, A., and Kersten, M., (1994). Fast, randomized
join-order selection - why use transformations? Proceedings of Conf. Very
Large Data Bases, Santiago, Chile,85-95.

Garofalakis, M. N., and Ioannidis, Y. E. (1996). Multi-dimensional resource
scheduling for parallel queries. In ACM SIGMOD Record (Vol. 25, No. 2,365-
376).

Gartner’s 2008 Data Center Conference Instant Polling Results: Virtualization
Summary - March 2, 2009.

123

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

Gehrke, J. and Ramakrishnan, R. (2003). Database management systems. New
York.

Giannikis, G., Alonso, G., and Kossmann, D. (2012). SharedDB: Killing One
Thousand Queries with One Stone. In Proc.VLDB, Vol. 5, No.6.

Goldberg, D. (1989). Genetic algorithms in search, optimization and machine
learning. Addison-Wesley, Reading, Mass.

Golshanara, L., Rankoohi, S. M. T. R., and Shah-Hosseini, H. (2013). A multi-
colony ant algorithm for optimizing join queries in distributed database sys-
tems. Knowledge and Information Systems, 1-32.

GoodData, general website http://www.gooddata.com/ (last accessed 35
September 2014).

Google App Engine. http://code.google.com/appengine/ (last accessed 5
September 2014).

Gounaris , A. (2005). Resource aware query processing on the grid. PhD thesis.
University of Manchester.

Goss, S., Aron, S., Deneubourg, J. L., and Pasteels, J. (1989). Self-organized
shortcuts in the Argentine ant, Naturwissenschaften, vol.76,n0.12, 579-581.

Graefe, G. (1993) Query evaluation techniques for large databases. ACM Com-
put. Surv., 25(2):73-170.

Gregory, M. (1998). Genetic algorithm optimisation of distributed database
queries. In Evolutionary Computation Proceedings, IEEE World Congress
on Computational Intelligence., The 1998 IEEE International Conference on
(271-276).

Gupta, H., and Mumick, I. S. (2005). Selection of views to materialize in a data
warehouse. Knowledge and Data Engineering, IEEE Transactions on, 17(1),
24-43.

Gupta, A., and Mumick, I. S. (1995). Maintenance of materialized views:
Problems, techniques, and applications. IEEE Data Eng. Bull., 18(2), 3-18.

Apache Hadoop, 2014, http://hadoop.apache.org/ (last accessed 5 September
2014).

Halevy, A., Rajaraman, A., and Ordille, J. (2006) Data integration: the teenage
year. Proceedings of the VLDB, Seoul, Korea, 2006.9-16.

Halevy, A. Y. (2001). Answering queries using views: A survey. The VLDB
Journal, 10(4), 270-294.

124

[77] Hamdaga, M., Livogiannis, T., and Tahvildari, L. (2011). A reference model
for developing cloud applications. In proceedings of CLOSER, 11.

[78] Hauglid, J.O., Ryeng, N. H., and Nrvg, K. (2010). DYFRAM: dynamic frag-
mentation and replica management in distributed database systems. Distributed
and Parallel Databases, 28: pp.157-185.

[79] Herodotou, H., Borisov, N., and Babu, S. (2011). Query optimization tech-
niques for partitioned tables. In Proc. of SIGMOD, Athens, Greece.

[80] Holland, J. H. (1975) Adaptation in Natural and Artificial Systems. University
of Michigan Press, Ann Arbor, MI, USA.

[81] Hong, W. and Wong, E. (1989). Multiple Query Optimization Through State
Transition and Decomposition. Electronics Research Laboratory, College of
Engineering, University of California.

[82] Ibaraki, T., and Kameda, T. (1984). On the optimal nesting order for computing
N-relational joins. ACM Trans. Database Syst. 9, 3, 482-502.

[83] IBM DB2 http://www-01.ibm.com/software/data/db2/ (last accessed 5
September 2014).

[84] Ioannidis, YE., and Kang, YC. (1990). Randomized algorithms for optimizing
large join queries. Proceedings of ACM SIGMOD Conf Management of Data,
Atlantic City, NJ, April,312-321.

[85] Ioannidis, YE., and Wong, E. (1987). Query optimization by simulated anneal-
ing. Proceedings of ACM SIGMOD Conf Management of Data, San Francisco,
Calif,9-22.

[86] Jarke, M. (1985). Common subexpression isolation in multiple query optimiza-
tion. In Query Processing in Database Systems (pp. 191-205). Springer Berlin
Heidelberg.

[87] Kantere, V., Dash, D., Francois, G., Kyriakopoulou, S., and Ailamaki, A.
(2011). Optimal service pricing for a cloud cache. Knowledge and Data En-
gineering, IEEE Transactions on, 23(9), 1345-1358.

[88] Kelly, S. (1994). Data warehousing: the route to mass customisation. John
Wiley & Sons, Inc..

[89] Kernal Based Virtual Machine, www.linux-kvm.org/page/MainPage (last ac-
cessed 5 September 2014).

[90] Kllapi, H., Sitaridi, E., Tsangaris, M. M., and loannidis, Y. E. (2011). Schedule
optimization for data processing ows on the cloud. In Proceedings of the ACM

125

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

SIGMOD International Conference on Management of Data (289-300).

Konig, A. C., Ding, B., Chaudhuri, S., and Narasayya, V. R., (2012). A Statis-
tical Approach Towards Robust Progress, Proceedings of the VLDB Endow-
ment, Vol. 5, No. 4.

Kossmann, D. (2000). The state of the art in distributed query processing. ACM
Computing Surveys (CSUR), 32(4), 422-469.

Kossmann, D., Kraska, T., and Loesing, S. (2010). An evaluation of alternative
architectures for transaction processing in the cloud. In Proceedings of inter-
national conference on Management of data (pp. 579-590).

Kossmann, D., and Stocker, K. (2000). Iterative Dynamic Programming: a
New Class of Query Optimization Algorithms. ACM Transactions on Database
Systems, vol.25, issue 1, 43-82.

Koutris, P, Upadhyaya, P., Balazinska, M., Howe, B., and Suciu, D. (2013)
Toward Practical Query Pricing with QueryMarket, SIGMOD.

Krishnamurthy, R., Boral, H., and Zaniolo, C. (1986). Optimization of non-
recursive queries. In: Proc. Conf. Very Large Data Bases (VLDB), Kyoto,
Japan, 128-137.

Lanzelotte, R. S., Valduriez, P., and Zat, M. (1993). On the effectiveness of
optimization search strategies for paralel execution spaces. In Proceedings of
VLDB (493-493).

Lozano, M., Herrera, F., Krasnogor, N., and Molina, D. (2004). Real-coded
memetic algorithms with crossover hill-climbing. Evolutionary computation,
12(3), 273-302.

Lee, R., Zhou, M., and Liao, H. (2007) Request window: an approach to im-
prove throughput of RDBMS-based data integration system by utilizing data
sharing across concurrent distributed queries. Proceedings of the VLDB, Vi-
enna, Austria,1219-1230.

Lohman, G., Mohan, C., Haas, L., Daniels, D., Lindsay, B., Selinger, P. and
Wilms, P. (1985) Query processing in r*. In Query Processing in Database
Systems. Springer.

Mahboubi, H., and Darmont, J. (2009). Enhancing xml data warehouse query
performance by fragmentation. In Proceedings of ACM symposium on Applied
Computing (1555-1562).

Mami, I. and Bellahsene, Z. (2012). A survey of view selection methods. ACM
SIGMOD Record, 41(1), 20-29.

126

[103] Marbukh, V., and Mills, K. (2008). Demand pricing and resource allocation in
market-based compute grids: A model and initial results. ICN. (752-757).

[104] Marston, S., Li, Z., Bandyopadhyay, S., Zhang, J., and Ghalsasi, A. (2011).
Cloud computing-The business perspective. Decision Support Systems, 51(1),
176-189.

[105] Mehta, M. and DeWitt, D.J. (1995) Managing intra-operator parallelism in
parallel database systems. Proc. of the 21st VLDB, 382-394.

[106] Mell, P. and Grance, T. (2009). NIST definition of cloud computing. National
Institute of Standards and Technology.

[107] Microsoft Parallel Data Warehouse (PDW) http://www.microsoft.com/en-
us/sqlserver/solutions-technologies/data-warehousing/pdw.aspx (last accessed
5 September 2014).

[108] Mishra, P., and Eich M.H. (1992). Join Processing in Relational Databases.
ACM Comput. Surv. 24(1): 63-113.

[109] Mitchell, M., Holland, J. H., and Forrest, S. (1993). When will a genetic algo-
rithm outperform hill climbing?. In NIPS (pp. 51-58).

[110] Mondal, A., Kitsuregawa, M., Ooi, B.C., and Tan, K.L. (2001) R-treebased
data migration and self-tuning strategies in shared-nothing spatial databases,
ACM Proceedings of the 9th international symposium on Advances in Geo-
graphic Information Systems, GIS,28-33.

[111] Moreno, R., and Alonso-Conde, A. B. (2004). Job scheduling and resource
management techniques in economic grid environments. In Grid Computing
(25-32). Springer Berlin Heidelberg.

[112] Mozafari, B., Curino, C., and Madden, S. (2013) Resource and Performance
Prediction for Building a Next Generation Database Cloud, CIDR 2013, Sixth
Biennial Conference on Innovative Data Systems Research, Asilomar, CA,
USA, Online Proceedings.

[113] Myong, H.K., Henry, G.D., and Bharat, K.B. (1994) MQO at algorithm-level.
Data and Knowledge Engineering, 14 (1): 57-75.

[114] Narayanan, S., Kurc, T.M., and Saltz, J. (2003) Database support for data-
driven scientific applications in the grid. Parallel Processing Letters 13 (2):245-
271.

[115] Nguyen, T. V. A., Bimonte, S., d’Orazio, L., and Darmont, J. (2012). Cost
models for view materialization in the cloud. In Proceedings of EDBT/ICDT
Workshops (47-54).

127

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

Ono, K., and Lohman, G. (1990). Measuring the complexity of join enumera-
tion in query optimization. In Proceedings of the 16th Inernational Conference
on Very Large Data Bases, 314-325.

Oracle Database 11g http://www.oracle.com/us/products/database/index.html
(last accessed 5 September 2014).

Ozsu, M.T., and Valduriez, P. (2011). Principles of Distributed Database Sys-
tems. 3rd Edition, 245-293.

Papadimitriou, C. H., and Yannakakis, M. (2001). Multiobjective query opti-
mization. In Proceedings of the twentieth ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems (52-59).

Plattner, C. and Alonso, G. (2004). Ganymed: Scalable Replication for Trans-
actional Web Applications. In Proc. of Middleware, 155-174.

Polat, F., Cosar, A., and Alhajj, R. (2001). Semantic information-based alter-
native plan generation for multiple query optimization. Information Sciences,
137(1), 103-133.

Rao, J. and Ross, K.A. (1988) Reusing invariants: A new strategy for corre-
lated queries. In Proceedings of SIGMOD Conference.

Rho, S. and March, S. T. (1997). Optimizing distributed join queries: a genetic
algorithm approach. Annals of Operations Research, 71, 199-228.

Rodriguez-Martinez, M. and Roussopoulos, N. (2000) MOCHA: A self-
extensible database middleware system for distributed data sources. in: Pro-
ceedings of ACM SIGMOD ACM Press, pp.213-224. ACM SIGMOD Record,
Vol. 29, No.2.

Rosenblum, M. and Garfinkel, T. (2005) Virtual machine monitors: Current
technology and future trends. IEEE Computer, 38(5).

Ross, K.A., Srivastava, D., and Sudarshan, S. (1996) Materialized view main-

tenance and integrity constraint checking: Trading space for time. In Proceed-
ings of SIGMOD.

Roy, P., Sehadri, S., Sudarshan, S., and Bhobe, S. (2000) Efficient and exten-
sible algorithms for multi-query optimization. Proceedings of ACM SIGMOD
Conf. on Management of Data, 249-260.

Saito, Y. and Shapiro, M. (2005). Optimistic Replication. ACM Comput. Surv.,
37(1):42-81.

Salesforce. http://www.salesforce.com/.

128

[130] Sarathy, V., Narayan, P., and Mikkilineni, R. (2010). Next Generation Cloud
Computing Architecture: Enabling Real-Time Dynamism for Shared Dis-
tributed Physical Infrastructure. In Enabling Technologies: Infrastructures for
Collaborative Enterprises (WETICE) (48-53).

[131] Schnitzer, B. and Leutenegger, S.T. (1999) Master Client R-Trees: A new par-
allel R-tree architecture. Proc. of 11th Conference on Scientific and Statistical
Database Management, 68-77.

[132] Segev, A., and Park, J. (1989). Updating distributed materialized views.
Knowledge and Data Engineering, IEEE Transactions on, 1(2), 173-184.

[133] Selinger, P.G., and Adiba, M. (1980). Access Path Selection in Distributed
Database Management Systems. In Proc. First Int. Conf. on Databases, 204-
215.

[134] Sellis, T.K. (1988) Multiple query optimization. ACM Trans. Database Syst.,
vol. 13, no. 1, 23-52.

[135] Sellis, T.K. and Ghosh, S. (1990) On the multiple-query optimization prob-
lem," IEEE Transactions on Knowledge and Data Engineering. 2(2): 262-266.

[136] Sevinc, E. and Cosar, A. (2011). An Evolutionary Genetic Algorithm for Op-
timization of Distributed Database Queries, The Computer Journal, vol.54, is-
sue: 5, 717-725.

[137] Shankar, S., Nehme, R., Aguilar-Saborit, J., Chung, A., Elhemali, M., Halver-
son, A., ... and Galindo-Legaria, C. (2012). Query optimization in microsoft

SQL server PDW. In Proceedings of international conference on Management
of Data (767-776).

[138] Sharma, U., Shenoy, P., Sahu, S., and Shaikh, A. (2011). A cost-aware elas-
ticity provisioning system for the cloud. In Distributed Computing Systems
(ICDCS), 2011 31st International Conference on (559-570).

[139] Sidell, J., Aoki, P. M., Sah, A, Staelin, C., Stonebraker, M., and Yu, A. (1996).
Data replication in mariposa. In Data Engineering, 1996. Proceedings of the
Twelfth International Conference on (pp. 485-494).

[140] Silva, Y. N., Larson, P., and Zhou, J. (2012). Exploiting Common Subexpres-
sions for Cloud Query Processing. In Data Engineering (ICDE), 2012 IEEE
28th International Conference on (1337-1348).

[141] Sinha, A. and Chase, C. (1996) Prefetching and caching for query scheduling
in a special class of distributed applications. Proceedings International Confer-
ence on Parallel Processing, 95-102.

129

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

SkyInsight web page http://www.ingres.com/products/cloud/skyinsight (last
accessed 5 September 2014).

Smith, J. E., and Nair, R. (2005). The architecture of virtual machines. Com-
puter, 38(5), 32-38.

Soror, A. A., Minhas, U. F., Aboulnaga, A., Salem, K., Kokosielis, P., and Ka-
math, S. (2010). Automatic virtual machine configuration for database work-
loads. ACM Transactions on Database Systems (TODS), 35(1), 7.

Sourd, F., and Spanjaard, O. (2008). A multiobjective branch-and-bound
framework: Application to the biobjective spanning tree problem. INFORMS
Journal on Computing, 20(3), 472-484.

Stawowy, A. 2008. Evolutionary based heuristic for bin packing problem.
Computers & Industrial Engineering 55, 465-474.

Steinbrunn, M., Moerkotte, G., and Kemper, A. (1997). Heuristic and random-
ized optimization for the join ordering problem. Very Large Data Bases Journal
6, 3, 191-208.

Steven, L., Arijit, M., and Alastair, H. (2009) The design and implementation
of OGSA-DQP: A service-based distributed query processor. Future Genera-
tion Computer Systems, 25 (3):224-36.

Stonebraker, M., Aoki, P. M., Litwin, W., Pfeffer, A., Sah, A., Sidell, J., ... and
Yu, A. (1996). Mariposa: a wide-area distributed database system. The VLDB
Journal, 5(1), 48-63.

Storm, A.J., Garcia-Arellano, C., Lightstone, S. S., Diao, Y., and Surendra,
M. (2006). Adaptive self-tuning memory in DB2. In Proceedings of VLDB
(1081-1092).

Strachey, C., (1959). Time Sharing in Large Fast Computers. Proceedings
of the International Conference on Information processing, UNESCO. paper
B.2.19: 336-341.

Subramanian, S.N. and Venkataraman, S. (1998). Cost-based optimization of
decision support queries using transient-views, Proceedings of the 1998 ACM
SIGMOD international conference on Management of data. New York, NY,
319-330.

Swami, A., and Gupta, A. (1988). Optimization of large join queries. Proceed-
ings of ACM SIGMOD Conf. on Management of Data, Chicago, Ill, May,
8-17.

Swami, A., and Iyer, B. (1993). A Polynomial Time Algorithm for Optimizing

130

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

[165]

Join Queries. In Proc. of ICDE, pp.345-354.

Tamhankar, A. M., and Ram, S. (1998). Database fragmentation and allocation:
an integrated methodology and case study. Systems, Man and Cybernetics, Part
A: Systems and Humans, IEEE Transactions on, 28(3), 288-305.

Taniar, D., Leung, C.H.C., Rahayu, W., and Goel, S. (2008). High-
Performance Parallel Database Processing and Grid Databases. A John Wiley
and Sons, Inc., Publication.

Tao, F,, Feng, Y., Zhang, L., and Liao, T. W. (2014). CLPS-GA: A case library
and Pareto solution-based hybrid genetic algorithm for energy-aware cloud ser-
vice scheduling. Applied Soft Computing, 19, 264-279.

Theodoratos, D., Ligoudistianos, S., and Sellis, T. (2001). View selection for
designing the global data warehouse. Data and Knowledge Engineering, 39(3),
219-240.

Thomson, A., Diamond, T., Weng, S. C., Ren, K., Shao, P., and Abadi, D. J.
(2012). Calvin: Fast distributed transactions for partitioned database systems.
In Proceedings of the 2012 international conference on Management of Data
(1-12).

Tosun, U., Dokeroglu, T., and Cosar, A. (2013). A robust Island Parallel Ge-
netic Algorithm for the Quadratic Assignment Problem. International Journal
of Production Research, 1-17.

Tozun, P., Pandis, 1., Johnson, R., and Ailamaki, A. (2012). Scalable and dy-
namically balanced shared-everything OLTP with physiological partitioning.
The VLDB Journal, 1-25.

Tsakalozos, K., Kllapi, H., Sitaridi, E., Roussopoulos, M., Paparas, D., and
Delis, A. (2011). Flexible use of cloud resources through profit maximization
and price discrimination. In Data Engineering (ICDE), IEEE 27th International
Conference on (75-86).

Upadhyaya, P., Balazinska, M., and Suciu, D. (2012). How to price shared
optimizations in the cloud. Proceedings of the VLDB Endowment, 5(6), 562-
573.

Velte, A. and Velte, T. (2009). Microsoft virtualization with Hyper-V. McGraw-
Hill, Inc..

Voorsluys, W., Broberg, J., Buyya, R. (2011). Introduction to Cloud Comput-
ing. In R. Buyya, J. Broberg, A.Goscinski. Cloud Computing: Principles and
Paradigms. New York, USA: Wiley Press. (1-44).

131

[166] Warneke, D., and Kao, O. (2011). Exploiting dynamic resource allocation for
efficient parallel data processing in the cloud. Parallel and Distributed Systems,
IEEE Transactions on, 22(6), 985-997.

[167] Weikum, G. and Vossen, G. (2002). Transactional Information Systems. Mor-
gan Kaufmann.

[168] Wilder, B. (2012). Cloud Architecture Patterns. O’Reilly Media.

[169] Windows Azure Platform. microsoft.com/windowsazure/(last accessed 5
September 2014).

[170] Windows Azure Storage Services REST API Ref.
http://msdn.microsoft.com/en-us/library/dd179355.aspx (last accessed 35
September 2014).

[171] Wong, E., and Youssefi, K. (1976). Decomposition-a strategy for query pro-
cessing. ACM Transactions on Database Systems (TODS), 1(3), 223-241.

[172] XenSource Inc, Xen, www.xensource.com (last accessed 5 September 2014).
[173] http://www.xen.org/ (last accessed 5 September 2014).

[174] Xiong, P., Chi, Y., Zhu, S., Moon, H. J., Pu, C., and Hacigumus, H. (2011).
Intelligent management of virtualized resources for database systems in cloud
environment. In Data Engineering (ICDE), IEEE 27th International Confer-
ence on (pp. 87-98).

[175] VMWare ESX Server, www.vmware.com/products/esx (last accessed 5
September 2014).

[176] Wu, W., Chi, Y., Hacigiimiis, H., and Naughton, J. F. (2013). Towards pre-
dicting query execution time for concurrent and dynamic database workloads.
Proceedings of the VLDB Endowment, 6(10), 925-936.

[177] Yang, J., Karlapalem, K., and Li, Q. (1997). Algorithms for materialized view
design in data warehousing environment. In VLDB (Vol. 97, pp. 136-145).

[178] Zhang, C., Yao, X., and Yang, J. (2001). An evolutionary approach to mate-
rialized views selection in a data warehouse environment. Systems, Man, and
Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, 31(3),
282-294.

[179] Zhang, Q., Cheng, L., and Boutaba, R. (2010). Cloud computing: state-of-
the-art and research challenges. Journal of Internet Services and Applications,
1(1), 7-18.

[180] Zhou, J., Larson, P-A , Freytag, J.C., and Lehner, W., (2007).Efficient ex-

132

[181]

[182]

[183]

ploitation of similar subexpressions for query processing. SIGMOD Confer-
ence, 533-544.

Zhuge, Y., Garcia-Molina, H., Hammer, J., and Widom, J. (1995). View main-
tenance in a warehousing environment. ACM SIGMOD Record, 24(2), 316-
327.

Zhuge, Y., Garcia-Molina, H., and Wiener, J. L. (1996). The Strobe algorithms
for multi-source warehouse consistency. In Parallel and Distributed Informa-
tion Systems, 1996., Fourth International Conference on (pp. 146-157).

Zilio, D. C., Rao, J., Lightstone, S., Lohman, G., Storm, A., Garcia-Arellano,
C., and Fadden, S. (2004). DB2 design advisor: integrated automatic physical
database design. In Proceedings of the Thirtieth international conference on
Very large data bases-Volume 30 (pp. 1087-1097). VLDB Endowment.

133

134

CURRICULUM VITAE

PERSONAL INFORMATION

Surname, Name:

Dokeroglu, Tansel

Year of Graduation

Nationality: Turkish (TC)

Date and Place of Birth: 24 May 1969, Luleburgaz

Marital Status: Married

Phone: +90 312 441 4475

e-Mail: tansel @ceng.metu.edu.tr
EDUCATION

Degree Institution

MS METU-Computer Engineering 2006

BS Turkish Land Force Academy 1991

High School Kuleli Military High School 1987

WORK EXPERIENCE

Year Place

2000-2002 General Staff HQ CIS Department

2002-2004 Land Force HQ Decision Support Department

2004-2007 General Staff HQ CIS Department
2007-2008 Ministry of Defence CIS Department
2008-2014 Land Force HQ Distance Learning Center

FOREIGN LANGUAGES

Advanced English

135

Enrollment

Software Developer
Project Manager
System Administrator
Database Administrator

Software Developer

PUBLICATIONS

Published Journals

1. Dokeroglu T., Ozal S., Bayir M.A., Cinar M..S., Cosar A., (2014) Improving the
performance of Hadoop Hive by sharing scan and computation tasks, Journal

of Cloud Computing: Advances, Systems and Applications 3(1), 12. Springer.

2. Dokeroglu, T., Cosar, A. (2014). Optimization of one-dimensional Bin Pack-
ing Problem with island parallel grouping genetic algorithms. Computers &

Industrial Engineering, 75, 176-186.

3. Dokeroglu, T., Sert, S.A., and Cinar, M.S. (2014) Evolutionary multiobjective
query workload optimization of Cloud data warehouses, The Scientific World

Journal.

4. Tosun, U., Dokeroglu, T., and Cosar, A., (2013) A Robust Island Parallel Ge-
netic Algorithm for the Quadratic Assignment Problem, International Journal

of Production Research 51(14), 4117-4133.

136

Published Conferences

1. Dokeroglu, T., Cosar, A. (2014). Integer Linear Programming for MQO prob-
lem, Proceedings of the 29th ISCIS, Krakow, Poland.

2. Dokeroglu, T., Sert, S.A., Cinar, M.S., and Cosar, A. (2014). Designing Cloud
Data Warehouses using Multiobjective Evolutionary Algorithms, International
Conference on Agents and Artificial Intelligence (ICAART) Eseo, Angers, Loire
Valley, France.

3. Dokeroglu,T., Tosun, U., and Cosar, A. (2013). Evaluating the Performance
of Recombination Operators with Island Parallel Genetic Algorithms, Interna-

tional Federation of Automatic Control (IFAC), Saint Petersburg, Russia.

4. Dokeroglu, T. (supervised by Ahmet Cosar) (2012). Parallel Genetic Algo-
rithms for the Optimization of Multi-Way Chain Join Queries of Distributed
Databases, the 38th VLDB Ph.D. Workshop, August 27-31, Istanbul/ TURKEY.

5. Dokeroglu, T., Tosun, U., and Cosar, A. (2012). Particle Swarm Intelligence
as a Novel Heuristic for the Optimization of Distributed Database Queries, The
6th International Conference on Application of Information and Communica-

tion Technologies AICT2012 Georgia, Tbilisi, 17-19.

6. Dokeroglu, T. Tosun, U., and Cosar, A. (2012). Parallel Optimization with Mu-
tation Operator for the Quadratic Assignment Problem Proceedings of WIVACE,
Italian Workshop on Artificial Life and Evolutionary Computation, Parma/Italy.

7. Dokeroglu, T and Cosar, A. (2011). Dynamic Programming with Ant Colony
Optimization Metaheuristic for The Optimization of Distributed Database Queries,

Proceedings of the 26th ISCIS, London, UK.

8. Tosun, U., Dokeroglu, T., and Cosar, A. (2012). Heuristic Algorithms for Frag-
ment Allocation in a Distributed Database System, 27th ISCIS, October 3-5,

Paris/France.

137

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ALGORITHMS
	LIST OF ABBREVIATIONS
	INTRODUCTION
	Problem Statement
	Main Goals and Contributions
	Structure of the Thesis

	BACKGROUND
	Cloud Computing
	Data Warehousing on the Cloud
	Hardware Architectures for Relational Cloud DWs
	Relational Cloud DW Design Techniques
	Query Optimization in Relational Cloud Data Warehouses
	Summary

	A NOVEL CLOUD DATA WAREHOUSE QUERY OPTIMIZER
	Ant Colony Optimization (ACO) Metaheuristics
	Dynamic Programming with ACO Algorithm (DPACO)
	Performance Evaluation of DPACO Algorithm

	MULTIOBJECTIVE CLOUD DATA WAREHOUSE DESIGN
	Multiobjective Relational Cloud DW Design Formulation
	Infrastructure and Pricing Scheme Parameters of the Cloud
	Multiobjective Cloud Data warehouse Design with Branch-and-Bound Algorithm (MOD-B&B)
	Multiobjective Cloud Data Warehouse Design with Genetic Algorithm (MOD-GA)
	Parameter Settings for Multiobjective Genetic Algorithm

	MATERIALIZED VIEW SELECTION FOR THE MULTIOBJECTIVE OPTIMIZATION OF DATA WAREHOUSE QUERY WORKLOADS
	Motivating Example
	Materialized View Selection Formulation
	Efficient Materialized View Maintenance on the Cloud
	Evolutionary Algorithm for Materialized View Selection
	Performance Evaluation of the Proposed Genetic Algorithm

	EXPERIMENTAL SETUP AND RESULTS
	Experimental Environment
	TPC-H Data Warehouse and Query Workloads
	Comparison of the Proposed Data Warehouse Design Algorithms: MOD-B&B and MOD-GA Algorithms
	 Performance Improvements Using the Selected Optimal Materialized Views

	CONCLUSIONS AND FUTURE WORK
	Overview
	Summary of the Results and Contributions
	Future Work

	REFERENCES
	CURRICULUM VITAE

