
EFFICIENT ANALYSIS OF LARGE-SCALE
SOCIAL NETWORKS USING BIG-DATA

PLATFORMS

a dissertation submitted to

the department of computer engineering

and the Graduate School of engineering and science

of bilkent university

in partial fulfillment of the requirements

for the degree of

doctor of philosophy

By

Hidayet AKSU

July, 2014

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a dissertation for the degree of Doctor of Philosophy.

Assoc. Prof. Dr. İbrahim Körpeoğlu (Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a dissertation for the degree of Doctor of Philosophy.

Prof. Dr. Özgür Ulusoy

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a dissertation for the degree of Doctor of Philosophy.

Assoc. Prof. Dr. Sinan Gezici

ii

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a dissertation for the degree of Doctor of Philosophy.

Assist. Prof. Dr. Buğra Gedik

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a dissertation for the degree of Doctor of Philosophy.

Prof. Dr. Ahmet Coşar

Approved for the Graduate School of Engineering and Science:

Prof. Dr. Levent Onural
Director of the Graduate School

iii

ABSTRACT

EFFICIENT ANALYSIS OF LARGE-SCALE SOCIAL
NETWORKS USING BIG-DATA PLATFORMS

Hidayet AKSU

Ph.D. in Computer Engineering

Supervisor: Assoc. Prof. Dr. İbrahim Körpeoğlu

July, 2014

In recent years, the rise of very large, rich content networks re-ignited interest to

complex/social network analysis at the big data scale, which makes it possible

to understand social interactions at large scale while it poses computation chal-

lenges to early works with algorithm complexity greater than O(n). This thesis

analyzes social networks at very large-scales to derive important parameters and

characteristics in an efficient and effective way using big-data platforms. With the

popularization of mobile phone usage, telecommunication networks have turned

into a socially binding medium and enables researches to analyze social inter-

actions at very large scales. Degree distribution is one of the most important

characteristics of social networks and to study degree characteristics and struc-

tural properties in large-scale social networks, in this thesis we first gathered

a tera-scale dataset of telecommunication call detail records. Using this data

we empirically evaluate some statistical models against the degree distribution

of the country’s call graph and determine that a Pareto log-normal distribution

provides the best fit, despite claims in the literature that power-law distribution

is the best model. We also question and derive answers for how network operator,

size, density and location affect degree distribution to understand the parameters

governing it in social networks.

Besides structural property analysis, community identification is of great in-

terest in practice to learn high cohesive subnetworks about different subjects in a

social network. In graph theory, k-core is a key metric used to identify subgraphs

of high cohesion, also known as the ‘dense’ regions of a graph. As the real world

graphs such as social network graphs grow in size, the contents get richer and the

topologies change dynamically, we are challenged not only to materialize k-core

subgraphs for one time but also to maintain them in order to keep up with con-

tinuous updates. These challenges inspired us to propose a new set of distributed

iv

v

algorithms for k-core view construction and maintenance on a horizontally scaling

storage and computing platform. Experimental evaluation results demonstrated

orders of magnitude speedup and advantages of maintaining k-core incrementally

and in batch windows over complete reconstruction approaches.

Moreover, the intensity of community engagement can be distinguished at

multiple levels, resulting in a multiresolution community representation that has

to be maintained over time. We also propose distributed algorithms to construct

and maintain a multi-k-core graphs, implemented on the scalable big-data plat-

form Apache HBase. Our experimental evaluation results demonstrate orders

of magnitude speedup by maintaining multi-k-core incrementally over complete

reconstruction. Furthermore, we propose a graph aware cache system designed

for distributed graph processing. Experimental results demonstrate up to 15x

speedup compared to traditional LRU based cache systems.

Keywords: social network analysis, Big Data analytics, degree distributions, k-

core, graph theory, distributed computing, dynamic networks.

ÖZET

BÜYÜK ÖLÇEKLİ SOSYAL AĞLARIN BÜYÜK VERİ
PLATFORMU KULLANARAK ETKİN ANALİZİ

Hidayet AKSU

Bilgisayar Mühendisliği, Doktora

Tez Yöneticisi: Doç. Dr. İbrahim Körpeoğlu

Temmuz, 2014

Son yıllarda zengin içerikli çok büyük ağlardaki artış kompleks/sosyal ağ analizine

dönük ilgiyi yeniden arttırmıştır. Söz konusu analizler bir taraftan büyük çapta

sosyal etkileşimleri anlamayı mümkün kılarken diğer taraftan O(n) üzeri komp-

leksitiye sahip algoritmalara dayalı önceki çalışmalarda sorun oluşturmaktadır.

Bu tez önemli parametrelerini ve özelliklerini etkin ve verimli bir şekilde bulmak

amacıyla büyük veri platformu kullanarak çok büyük ölçekli sosyal ağları analiz

eder. Mobil telefon kullanımının popülerleşmesi ile birlikte telekomünikasyon

ağları sosyal bağlayıcı ortamlara dönüşmüştür ve araştırmacıların sosyal etk-

ileşimleri çok büyük ölçekte analiz etmesine olanak sağlamıştır. Derece dağılımları

sosyal ağların en önemli karakteristikleri arasında yer alır ve büyük ölçekli

sosyal ağlarda derece karakteristiği ile yapısal özellikleri araştırmak için biz

bu tezde öncelikle tera-ölçekli bir telekomünikasyon arama detay kaydı veriseti

derledik. Biz bu veriyi kullanarak bazı istatistik modelleri ülke çağrı çizgesi

derece dağılımına karşı deneysel olarak değerlendirdik ve literatürdeki “power-

law en iyi modeldir” iddalarına karşın, Pareto log-normal dağılımının en iyi

uyumu sağladığına karar verdik. Ayrıca, sosyal ağlarda derece dağılımını yöneten

parametreleri anlamak amacıyla, ağ operatörünün, büyüklüğünün, yoğunluğunun

ve lokasyonunun derece dağılımını nasıl etkilediğini sorguladık ve cevap elde ettik.

Yapısal özellik analizi dışında, bir sosyal ağda farklı konularda çok bağlantılı

alt ağları bulmak için yapılan topluluk tespiti çalışmaları pratikte büyük ilgi

çekmektedir. Çizge teorisinde, k-core çizgenin ‘yoğun’ alanları olarakta bi-

linen çok bağlantılı alt çizgelerin tespiti için kullanılan anahtar bir ölçüttür.

Sosyal ağ çizgeleri gibi gerçek dünya çizgeleri boyut yönünden büyüyüp, içerik

yönünden zenginleşip ve topolojiler dinamik olarak değiştikçe, yalnız k-core

altçizgesini bir defalığına hesaplama problemi ile değil ayrıca bunu dinamik

değişikliklere göre güncel tutma problemi ile karşılaştık. Bu zorluklar bize

vi

vii

yatay ölçeklenebilir saklama ve hesaplama platformu üzerinde k-core görüntü

hesaplama ve sürdürme amaçlı bir takım algoritmalar önerme konusunda esin

vermiştir. Önerdiğimiz algoritmaların deneysel değerlendirme sonuçları bütün

yeniden hesaplama yaklaşımına göre aşamalı ve yığın olarak k-core sürdürme

avantajı ile birlikte birkaç basamak hızlandırma göstermiştir.

Bununla birlikte, topluluğa katılımın yoğunluğu birçok seviyede seçilebilir

ki bu da zamanla sürdürülmesi gerekli çok-çözünürlüklü topluluk gösterimini

sonuç doğurur. Bu nedenle biz ayrıca çoklu-k-core çizgesi hesaplayıp sürdürecek

Apache HBase ölçeklenebilir büyük-veri platformunda uygulanmış dağıtık al-

goritmalar önerdik. Deneysel değerlendirme sonuçları aşamalı çoklu-k-core

sürdürmenin bütün yeniden hesaplamaya göre birkaç basamak hızlandırma

sağladığını göstermiştir. Diğer taraftan, dağıtık çizge işleme amaçlı tasarlanmış

bir çizge-bilinçli önbellek sistemi önerdik. Deney sonuçları geleneksel LRU bazlı

sistemlerle karşılaştırıldığında 15 kata kadar hızlanma göstermiştir.

Anahtar sözcükler : sosyal ağ analizi, Büyük Veri analitiği, derece dağılımları,

k-core, çizge teorisi, dağıtık hesaplama, dinamik ağlar.

Acknowledgement

First of all, I am very grateful to my supervisor Assoc. Prof. Dr.

İbrahim Körpeoğlu for his invaluable support, guidance and motivation during

my graduate study, and for encouraging me a lot in my academic life. His vast

experience and encouragement have been of great value during the entire study.

It was a great pleasure for me to have a chance of working with him. I learned a

lot from my supervisor, especially the endurance needed for this kind of study.

I would like to thank to the thesis committee members Prof. Dr. Özgür

Ulusoy and Assoc. Prof. Dr. Sinan Gezici for their valuable comments for the

past six years. I would also like to thank to the thesis jury members Assist. Prof.

Dr. Buğra Gedik and Prof. Dr. Ahmet Coşar for kindly accepting to spend their

valuable time and to evaluate this work.

I owe my warmest thanks to Dr. Mustafa Canım and Dr. Yuan-Chi Chang for

their cooperation during this study. I would like to thank Mahmut Kutlukaya for

his expert contributions on statistical tests. I also would like to express my ap-

preciation to IBM Thomas J. Watson Research Center, Information and Commu-

nication Technologies Authority (ICTA), and my superiors for the understanding

and support during my academic studies.

I would like to thank to my parents and grandparents for raising me with

all their love. I would not be the person who I am without their never-ending

support. I would also like to thank to my brothers and sisters. Despite the

physical distance between us throughout our lives, they always cheer me up.

And most of all, my beloved wife Zeynep who has lived every stage of this

long journey with me. Thank you for bearing with me for all this time. I cannot

express how valuable your support has been to me, I love you. I apologize for the

time I have stolen from you. I promise to be a better husband from now on.

viii

Contents

1 Introduction 1

1.1 Contributions . 8

1.2 Outline of the Dissertation . 9

2 Related Work and Background 10

2.1 Call Graphs Analysis . 10

2.2 k-core Decomposition . 11

2.3 Other Parallel Graph Algorithms 13

2.4 Graph-Aware Caching . 14

3 An Analysis of Social Networks based on Tera-scale Telecommu-

nication Datasets 16

3.1 Dataset . 18

3.2 Analysis . 20

3.2.1 Social Network Modeling 23

3.2.2 Network Operator . 31

ix

CONTENTS x

3.2.3 Network Size . 34

3.2.4 Population Density . 40

3.2.5 Geographic Location . 41

3.3 Structural Properties of the Communication Network 44

3.4 Conclusion . 49

4 Distributed k-Core View Materialization and Maintenance for

Large Dynamic Graphs 50

4.1 Algorithm Implementation on Apache HBase 52

4.1.1 A Concrete Example of a Distributed Social Graph With

Metadata . 56

4.2 Preliminaries . 58

4.3 Distributed k-core Construction 59

4.3.1 Base Algorithm . 60

4.3.2 Early Pruning . 61

4.4 Incremental k-core Maintenance 63

4.4.1 Inserting an Edge . 64

4.4.2 Deleting an Edge . 66

4.5 Batch k-core Maintenance . 69

4.6 Performance Evaluation . 71

4.6.1 Implementation on HBase 72

4.6.2 System Setup . 73

CONTENTS xi

4.6.3 Datasets . 74

4.6.4 k-core Construction Experiments 75

4.6.5 Batch Maintenance Experiments 82

4.7 Conclusion . 87

5 Network Community Identification and Maintenance at Multiple

Resolutions 88

5.1 Preliminaries . 90

5.2 Distributed Multi k-core Construction 91

5.2.1 Base Algorithm . 91

5.2.2 Multi k-core Construction 92

5.3 Incremental Multi k-core Maintenance 94

5.3.1 Edge Insertion . 94

5.3.2 Edge Deletion . 97

5.4 Batch Multi k-core Maintenance 99

5.5 Performance Evaluation . 102

5.5.1 System Setup and Datasets 103

5.5.2 Experiments . 105

5.5.3 Batch Maintenance Experiments 109

5.6 Conclusion . 113

6 Graph Aware Caching 114

CONTENTS xii

6.1 Introduction . 114

6.2 Distributed Graph Handling with

Apache HBase . 116

6.2.1 HBase and Coprocessors 116

6.2.2 Graph Processing on HBase 118

6.3 Cache Systems . 119

6.3.1 Fetch Algorithms . 120

6.3.2 Eviction Algorithms . 120

6.3.3 Clock Based Graph Aware Cache (CBGA) 121

6.4 Performance Evaluation . 123

6.4.1 System Setup and Datasets 124

6.4.2 Experiments . 125

6.5 Conclusion . 129

7 Conclusions and Future Work 130

List of Figures

1.1 Degree distribution of vertices in nine social network datasets on

the log scale. 4

3.1 CDR data tables and number of entries in each table. There are

approximately 1.19 billion records in each of daily GSM tables

while there are 1.93 billion records in monthly PSTN table. . . . 21

3.2 Network degree distributions and model fits for (a) 0-Core GSM

ALL network (b) 1-Core GSM All network (c) 0-Core PSTN ALL

network (d) 1-Core PSTN All network. Qualitative visual analysis

suggest that PNL and DPLN distributions provides tightest fit

while power-law distribution deviates most. See Table 3.3 for p-

value based quantitative results. 27

3.3 Model fits for 0-Core variations of GSM A, GSM B and GSM C

networks are illustrated. In all networks DPLN and PLN models

perform better then the rest of models. See Table 3.3 for p-value

based quantitative results. 28

3.4 Model fits for 1-Core variations of GSM A, GSM B and GSM C

networks are illustrated. In all networks DPLN and PLN models

perform better then the rest of models. See Table 3.3 for p-value

based quantitative results. 29

xiii

LIST OF FIGURES xiv

3.5 1-Core GSM and PSTN network operators degree pdf distribution.

Test shows that GSM and PSTN are not identical distribution at

0.05 significance. 32

3.6 Degree distributions for different network operators are compared.

Degree distributions are statistically identical for different network

operators. 33

3.7 1000 circles around base stations. Each circle is drawn to cover

the nearest 17 base stations that are not yet covered by a circle. 35

3.8 Degree distribution for increasing network size. Size unit is 17 base

station, e.g., 100 means network size is 1700 base stations. Degree

distribution for 1000 samples are plotted with gradient colors in

green-blue-red range to visually follow network size v.s distribution

shape change. Statistical test reject the hypothesis claiming that

degree distributions for varied sized networks are identical. . . . 36

3.9 PLN β parameter versus network size in (a) linear-linear and (b)

linear-log scale. 38

3.10 PLN ν parameter versus network size in (a) linear-linear and (b)

linear-log scale. 39

3.11 Network degree pdf versus network density plots. 41

3.12 Locations of chosen cities in the country. 42

3.13 Network degree pdf versus network location. 43

3.14 Average clustering coefficient distribution versus node degree for

(a) 1-Core GSM and (b) 1-Core PSTN networks. Clustering co-

efficients decay with node degree with exponents (a) −0.57 and

(b)−0.63, respectively. Variance increases after d ∼ 150 where

non-social entities appear more. Neighbors of non-social entities

tend to know each other with high instability. 45

LIST OF FIGURES xv

3.15 Distribution of connected components in (a) GSM (b) PSTN net-

works. Over 99% of the nodes belong to the largest connected

component. Many small components exist against a few large com-

ponents. 46

3.16 Size distribution of k-cores in (a) GSM (b) PSTN networks. The

densest region in GSM network is composed of 352 nodes where

each node has more than 72 edges inside the set, while the densest

region in PSTN network is composed of 236 nodes where each

node has more than 38 edges inside the set. The decay in k-core

sizes is stable up to a cutoff value kpstn cutoff ≈ 5 in PSTN and

kgsm cutoff ≈ 12 in GSM, and then the k-core size drops rapidly

which means that the nodes with degrees of less than the cutoff

value are on the fringe of the network. 47

4.1 An HBase cluster consists of one or multiple master servers and

region servers, each of which manages range partitioned regions of

HBase tables. Coprocessors are user-deployed programs running in

the region servers. They read and process data from local HRegion

and can access remote data by remote calls to other region servers. 54

4.2 An example graph to illustrate the relationship between a vertex’s

core number, dGk and Nk
G. 59

4.3 k-core construction times for Base and Pruned k-core construction

algorithms are shown for each dataset with three chosen k val-

ues. Relative speedup achievement of Pruned algorithm over Base

algorithm is provided above each bar. 77

4.4 Network activities on 14 physical nodes while constructing k-core

on Flickr dataset. 78

LIST OF FIGURES xvi

4.5 k-core maintenance speedups for each dataset with insertion, dele-

tion, mix workload combinations. Maintenance algorithm speedup

for both base and pruned construction algorithms is shown in the

plot. Relative speedups are also provided above the bars. 79

4.6 Insert latency over 1,000 random edges to the LiveJournal dataset. 81

4.7 k-core maintenance times for each dataset-scenario where time

slices for Base HBase insert/delete operation, auxiliary informa-

tion maintenance and graph traversals are illustrated. 82

4.8 10K sized batch maintenance speedups for Extending window,

Shrinking window and Moving window scenarios. 84

4.9 Average edge update cost for increasing batch sizes from 1K up to

50K. 85

4.10 Overall processing time of each batch of updates versus reconstruc-

tion time of k-core algorithm on Flickr dataset. 86

5.1 Upon an edge {u, v} insertion where u or v resides in ki-core

Gki , first tightly bounded Gcandidate graph is discovered exploiting

maintained auxiliary information, then it is processed to compute

Gqualified subgraph qualifying for ki+1-core. 95

5.2 k-core construction times for Base and Multi k-core construction

algorithms are shown for each dataset with three chosen k val-

ues. Relative speedup achievement of Multi algorithm over Base

algorithm is provided above each bar. 106

5.3 k-core maintenance algorithm speedup over construction algo-

rithms for Extending, Shrinking, and Moving window scenario.

. 110

5.4 10K sized batch maintenance speedups for Extending window sce-

nario. 111

LIST OF FIGURES xvii

5.5 10K sized batch maintenance speedups for Shrinking window sce-

nario. 111

5.6 10K sized batch maintenance speedups for Moving window sce-

nario. 112

6.1 Cache layer is located between graph storage and distributed pro-

cessing node. Cache layer knows if a graph file is local or remote

and designed to fetch and evict items with graph-aware optimiza-

tions. 115

6.2 Coprocessors are user-deployed programs running in the region

servers. Cache is distributed with graph regions and used by co-

processors. It is located between Coprocessor and HRegions where

HRegion accesses are first handled by the cache layer. 117

6.3 Performance for Twitter dataset under 10M cache and 10K queries

in which the first 500 are warmup queries. Left y axis shows hit

ratio while right y axis shows execution times in msec. 126

6.4 Speedup achieved for each dataset when CBGA and LRU are com-

pared. 126

6.5 Performance of various policies under long runs of Flickr dataset. 127

6.6 Average query time is decreased while cache warms up for Twitter

dataset. Red bintime line displays the average execution time for

the last 10 queries instead of individual queries. 128

6.7 The number of queries processed per minute increase while cache

warms up for Twitter dataset. A stable high query-per-minute

performance is observed when the cache is warm. 128

List of Tables

3.1 Structure of the data used in this work 20

3.2 Definitions of several common statistical distributions referred to

in SNA studies . 25

3.3 Numerical distribution fit success results for various networks . . . 30

4.1 Vertices in Fig. 4.2 and their 2-core and 3-core properties 60

4.2 Notations used in algorithms . 61

4.3 Mapping of graph notations in Table 4.2 to the HBase implemen-

tation . 73

4.4 Key characteristics of the datasets used in the experiments 75

4.5 k values used in the experiments and the ratio of vertices with

degree at least k in the corresponding graphs 76

4.6 Graph update latency in msec to maintain k-core. For each dataset

and experiment scenario mean and standard deviation of update

time is provided. For large graphs, scenarios with insertions show

high standard deviation. Smaller dataset scenarios and Shrinking-

Window scenarios show low update times. 80

5.1 Notations used in algorithms . 91

xviii

LIST OF TABLES xix

5.2 Mapping of graph notations in Table 5.1 to implementation in HBase107

5.3 Key characteristics of the datasets used in the experiments 108

5.4 k values used in the experiments and the ratio of vertices with

degree at least k in the corresponding graphs 108

6.1 Key characteristics of the datasets used in the experiments 124

Chapter 1

Introduction

In recent years, the rise of very large, rich content social and complex networks

has made it possible to understand social interactions at large scale. Thus a

new era for social network analysis field has emerged in which early study results

and methods need to be re-visited. Previous results with limited empirical sup-

port require re-evaluation with large real data while early works with algorithm

complexity greater than O(n) are not feasible for big data scale studies.

Social networks were first analyzed by social scientists, who performed man-

ual data collection and considered at most hundreds of individuals [1]. Later,

social network analysis (SNA) became an interesting topic for many other sec-

tors and research fields, including recommender systems [2, 3]; marketing [4];

web document clustering [5, 6]; intelligence analysis [7]; clustering and commu-

nity detection [8, 9, 10, 11, 12, 13] and urban planning [14]. Massive use of

electronic devices and online communication leaves traces of human interaction

and relationships, such as phone call records, e-mail records, etc. Using these

traces, collective human behavior and social interactions can be understood on

a large scale, which was previously impossible [15]. Recently telecommunication

datasets with location information have also been used to conduct research on

human behavioral patterns [16, 17, 18].

Social network analysis tries to understand the characteristics a social network

1

exhibits. The first and most-cited characteristic among others is degree distribu-

tion of nodes constituting a social network. A bulk of studies in the literature on

this topic reports that power-law with certain parameters fits best [19, 20, 21].

Other studies, however, propose different statistical fit models [22, 23, 24].

Since current studies are limited by the used datasets from which their pro-

posals are derived/obtained, it is necessary to explore the influence of dataset

specific parameters on discovered social network characteristics. This observation

motivated us as part of this thesis to first conduct research on degree distribu-

tion on larger scales to discover the parameters governing degree distribution in

social networks. Among many current research issues to be investigated, we pre-

ferred this less studied problem which requires a complete dataset. Therefore, in

this thesis we first explore how parameters like network operator, network size,

population density, and geographic location affect degree distribution in social

networks.

On the other hand, community identification in social networks is of great

interest and with dynamic changes to its graph representation and content, the

incremental maintenance of community poses significant challenges in compu-

tation. An ACM Computing Surveys article in 1984 began its introduction in

the following words: Graph theory is widely applied to problems in science and

engineering. Practical graph problems often require large amounts of computer

time [25]. In today’s graph applications, not only the graph size is larger, but

also the data characterizing vertices and edges are richer and increasingly more

dynamic, enabling new hybrid content and graph analysis. One key challenge to

understanding large graph data is the identification of subgraphs of high cohesion,

also known as “dense” regions, which represent higher inter-vertex connectivity

(or interactions in the case of a social network).

In the literature, there is a growing list of subgraph density measures that

may be suited in different application context. Examples of such measures in-

clude cliques, quasi-cliques [26], k-core, k-edge-connectivity [27], etc. Among

these graph density measures, k-core stands out to be the least computation-

ally expensive one that is still giving reasonable results. An O(n) algorithm is

2

known to compute k-core decomposition in a graph with n edges [28], where other

measures have complexity growing super-linearly or NP-hard.

In this thesis, we also propose scalable, distributed algorithms for k-core graph

construction as well as its incremental and batch maintenance as dynamic changes

are made to the graph. For practical considerations, our focus is to identify and

maintain k-core with fixed, large k values in particular. In contrast, a full k-core

decomposition assigns a core number to every vertex in the graph. To under-

stand “dense” areas in a graph, vertices with low core numbers do not contribute

much and thus the computational expense of a full decomposition is not justi-

fied. Fig. 1.1 illustrates the degree distribution of nine published graph datasets,

where partly due to their nature of power-law distribution, a significant percent-

age of graph vertices have low degrees and thus low core numbers. In addition

to reduced cost in constructing k-core, it is also computationally less expensive

to maintain it, compared to maintaining core numbers for large numbers of low

degree vertices.

Real world graph data is not just about relationship topology but also the

associated metadata attributes and possibly unstructured content. For example,

a call graph contains not just the phone numbers, but also the duration, time of

the day, geolocation, etc. In many practical applications graph data is stored in

a distributed data store via sharded SQL or NoSQL technologies. This improves

reliability, availability and performance. The data store continuously receives

updates and may have other non-graph analytics executed along with graph an-

alytics such as k-core. In addition, there are likely many projected graphs based

on the metadata or content topic with snapshot or temporal evolution. There are

various studies in the literature dealing with k-core construction in the presence

of metadata. Giatsidis et al. in [29, 30] use co-authorship as edge weight in the

graph. In [31], Wei and Ram consider organization of social bookmarking tags

using k-core with tag weight as a metric. Chun et al. in [32] consider friends and

their bidirectional relations on a graph. The paper compares k-core of friendships

and k-core of bidirectional activity relationships.

Moreover, the intensity of community engagement can be distinguished at

3

1 100 10000

1e
+

00
1e

+
02

1e
+

04
1e

+
06

Degree Distributions

degree

pd
f

BerkStan
Dblp
Flickr
LiveJournal
Orkut
Patents
Skitter
WikiTalk
YouTube

Figure 1.1: Degree distribution of vertices in nine social network datasets on the
log scale.

4

multiple levels, resulting in a multi-resolution community representation that

has to be maintained over time. A further distinction from the decade-old graph

problem formulation is that multi-attributed content associated vertices and edges

must be included in creating, managing, interpreting and maintaining results.

Thus the problem of multi-resolution community analysis is a hybrid of content

and graph analysis on various subjects of interest. The problem is made further

complex with the observation that interactions with a community happen not

just at one but multiple levels of intensity, which reflects in reality active to

passive participants in a group. This results with multiple levels of depth in

multi-resolution community identification. To make the solution practical, it is

thus necessary to make community identification and continuing maintenance at

multiple resolutions.

Our first study on the identification and maintenance of k-core subgraphs

considers a fixed k value. We also propose algorithms to perform batch oper-

ations for maintenance purposes. The proposed approaches are quite effective

when a constant k value is used. On the other hand, when subgraphs at multiple

resolutions are needed, one has to run separate instances of the algorithms for

each k value. In order to cope with this limitation, significant design changes

are considered in our algorithms to efficiently handle k-core subgraphs at multi-

ple, fixed k values. Integrated algorithms are proposed for k-core construction,

maintenance and bulk processing of update operations. As we demonstrate with

our experimental results, these algorithms yield orders of magnitude speed up

compared to the base case k-core construction.

Consider the following scenario as an example of how the distributed multi

k-core construction and maintenance algorithms we propose could be used in

real life problems. Suppose that a data analytics company provides keyword

based analytics services to its customers based on the Retweet graph of Twit-

ter data. The customers subscribe to the service by providing certain keywords

along with the queries and the company runs them whenever the customers want

to get the results. The queries are periodically resubmitted by the customers

as new Tweets get processed over time. Because of the incremental updates on

the Retweet graph, the data grow rapidly. To keep up with the growing size of

5

the data and manage the query load on the system, the graph is horizontally

partitioned and stored on distributed computing nodes. Suppose further that a

customer is working on franchising Japanese restaurants and interested in finding

communities potentially interested in Japanese food and their physical locations.

To address this customer’s needs, the analytics company runs k-core algorithm

on the entire Retweet graph while filtering the tweets where Japanese food re-

lated keywords are used and returns the results to the customer. The customer

periodically resubmits the query to get informed about the most recent trends

to make healthier marketing decisions as the graph changes over time. The ana-

lytics company however has to reconstruct the entire k-core subgraph whenever

the customer submits the same query repeatedly. As the company gets more

popular over time and millions of customers subscribe to the system with dif-

ferent keywords, the load on the system becomes unmanageable. The company

employees are now compelled to find a solution to reduce the computation load

on the system and find a way of improving the response time. As a solution they

decide to materialize the results of user queries and update them as the Retweet

graph changes. They want to design a solution that supports both instant up-

dates on the maintained results as well as batch updates depending on customer

needs. The price charged to the customer increases with respect to the recency of

the results and the speed with which these results are generated. For customers

who care less about the recency of the results but more about the price of the

service, the updates are accumulated and applied in batches to the materialized

subgraphs.

The aforementioned scenario is quite realistic these days. As the popularity

of social media sites increases, the demand for doing analytics on these large

graphs grows dramatically. In the last few years many web companies, such

as “Followerwonk” [33], “Tweetwall” [34], “SimplyMeasured” [35], emerged for

helping customers make better marketing decisions based on the content of social

media tools such as Twitter and Google+. These web companies have to deal

with very large graphs to perform analytics. These graphs are considered large

not only because they have many vertices and edges but also they maintain

significantly large amounts of metadata associated with them. Many of these

6

social web companies tend to store these graphs in distributed datastores such

as Google BigTable, MegaStore, Apache HBase or distributed parallel databases,

with motivations behind Big Data trend, i.e., high availability, fault-tolerance,

scalability, persistence. They have to provide high availability to their customers

to maintain their popularity. Facebook, for instance, recently announced that

1.11 billion users connect to the site every month. Also the average number of

users per day as of March 2013 is 665 million. The user related metadata such as

messages, chats, emails, SMS messages and attachments are stored on thousands

of HBase clusters. 6 Billion messages are sent between Facebook users daily.

At peak times 1.5 million operations are executed per second on the metadata

associated with graph vertices and edges. To keep up with the scale, store, and

maintain these datasets efficiently, companies are compelled to use distributed

data architectures. We believe that the distributed algorithms we present in this

thesis can be leveraged on these large graph datasets to perform better analytics.

On the other hand, Big Data platforms utilize disk storage both to provide

persistence and to handle the data that do not fit into the main memory. Because

of this, distributed graph algorithm implementations display poor performance

on big data platform when compared with traditional single server in memory im-

plementations. Employing a caching layer is one of the most effective approaches

to reduce performance bottlenecks due to slow disks. A high performance cache

layer can hide most of the slow disk operations and improve the overall system

performance. Most operating systems and applications implement disk buffering

at some degree. However random access pattern, which is frequently observed

in the graph algorithms, causes low performance at such disk buffers, i.e., buffer

cache.

Thus, in this thesis we also study the caching problem in big data platforms.

We focus on distributed graph processing use case and propose a graph-aware

caching which is designed to exploit graph specific data access patterns. We revisit

the principle of locality in the distributed graph algorithms context and figure out

specific data reference patterns. Our proposed algorithms benefit from discovered

locality of references and provide improved data access speed. Reducing data

access overhead, graph algorithms perform faster on Big Data platforms and

7

allow working with larger data.

1.1 Contributions

Our contributions in this thesis can be summarized as follows:

• We first constructed a countrywide call graph utilizing a full call detail

record (CDR) set of all mobile and fixed-line telco network operators. This

comprehensive dataset allowed us to analyze a social network without won-

dering about possible bias from single-operator, size, location or density-

limited datasets.

• We questioned the root cause of different conclusions in the literature about

degree distribution in social networks, suggesting that they might be related

to utilized datasets’ density, location, size, and source operator.

• We performed controlled empirical analyses for various densities, sizes, lo-

cations and operators, and formed conclusions on density-degree, location-

degree, size-degree and operator-degree distribution relations.

• We developed and accelerated distributed k-core construction algorithms

through aggressive pruning of the graph that will not be in the final k-core

subgraph.

• We developed new k-core maintenance algorithms to keep the previously

materialized subgraph up-to-date with incremental changes to the under-

lying graph. We developed pruning techniques to limit the scope of k-core

updates in the face of edge insertions and deletions.

• We further improved the maintenance algorithm with batch window up-

dates for practical applications. Batch update maintenance allows more

expensive graph traversal steps to be aggregated for additional computa-

tional efficiency.

8

• We presented a robust implementation of our algorithms on top of Apache

HBase, a horizontally scaling distributed storage platform through its Co-

processor computing framework [36]. Our system built on HBase stores

graph data, including metadata and unstructured content, in the HBase

tables.

• We proposed a novel cache design which is both graph access and distributed

deployment aware.

1.2 Outline of the Dissertation

Organization of the thesis is as follows. In the next chapter we give the related

studies in the literature together with some background information. In Chap-

ter 3, we present an analysis of social networks based on tera-scale telecommunica-

tion datasets, mainly focusing on the degree distributions. We next introduce our

distributed k-Core view materialization and maintenance algorithms for large dy-

namic graphs for social networks in Chapter 4. Chapter 5 describes our multiple

resolution network community identification and maintenance algorithms. Our

proposed graph-aware caching and its performance are presented in Chapter 6.

Finally, in Chapter 7, we present our conclusions.

9

Chapter 2

Related Work and Background

In this chapter, we describe the previous work related to our study on efficient

analysis of social networks on Big Data platform. We first give studies on social

networks degree analysis using call graphs. Next, we present studies related to

k-core decomposition, since our community identification studies focus on k-core

algorithm. Then, we present other parallel graph algorithms. Finally, we discuss

the studies related to caching of distributed graphs.

2.1 Call Graphs Analysis

Aiello et al. [19] study the statistics of phone call graphs for long-distance fixed-

lines and report that in-degree distribution is fitted by power-law distribution with

exponent γ = 2.1. In [20], Onnela et al. work on mobile phone data containing

N = 4.6× 106 nodes and L = 7.0× 106 links and report a power-law distribution

fit with exponent γ = 8.4. They describe the dataset as ”all mobile phone call

records of calls among ≈ 20% of the entire population of the country”, which

implies that they used a sub-network of a country’s operator network. Dasgupta

et al. [21] present another study on mobile phone data, with a reciprocal call graph

containing N = 2.1× 106 nodes and L = 9.3× 106 directed edges. That dataset

belongs to one of the world’s largest mobile operators. The authors report that

10

degree distribution is fitted well by power-law distribution with exponent γ =

2.91. On the other hand, Bi et al. [22] propose the discrete Gaussian exponential

(DGX) distribution and report that it provides a very good fit with many datasets,

including telco data. Moreover, Seshadri et al. [23], using mobile phone data

from an anonymous operator in the US, study modeling degree characteristics

and report that degree distribution significantly deviates from what would be

expected by power-law and log-normal distributions. Their findings suggest that

double Pareto log-normal distribution (DPLN) provides better fits for degree

distribution. In [24], Sala et al. analyze Facebook’s social network data and

report that Pareto log-normal (PLN) distributions are much better predictors of

degree distributions in real graphs than power-law distributions are.

2.2 k-core Decomposition

k-core decomposition on a single machine: Extracting dense regions in large

graphs has been a critical problem in many applications. Among the solutions

proposed, k-core decomposition became a very popular one and many studies

have been conducted on k-core decomposition on graphs efficiently [37, 38, 39,

40, 41]. k-core decomposition has been used in many applications such as network

visualization [42, 43, 44, 45, 46, 47], Internet topology analysis [48, 49, 50], social

networks [29, 51], and biological networks [52, 53, 54]. The notion of k-core is

first introduced in [42] for measuring group cohesion in social networks. The

approach introduced generates subgraphs iteratively that has higher cohesion.

This approach has been very popular for characterizing and comparing network

structures. Although the concept of k-core is first introduced in [42] a well known

algorithm for computing k-core decomposition is first proposed by Batagelj and

Zaversnik (BZ) [28]. The BZ algorithm first sorts the vertices in the increasing

order of degrees and starts deleting the vertices with degree less than k. At each

iteration, it needs to sort the vertices list to keep the vertices list ordered. Due to

high random accesses to the graph, the algorithm can run efficiently if the entire

graph fits in main memory of a single machine. To tackle this problem Cheng

et al. in [55] proposed an external-memory solution which can spill into disk

11

when the graph is too large to fit into main memory. The proposed algorithm,

however, does not consider any distributed scenario where the graph resides on

large cluster of machines.

Distributed k-core decomposition: A distributed k-core decomposition

algorithm is introduced in [56] targeting a different computing platform. In this

paper it is assumed that each graph vertex is located on a different computing

node similar to P2P networks or sensor networks. In our case, however, we

horizontally partition a large graph and keep each large partition on a different

computing node. Each of these nodes may store millions or billions of edges.

Therefore we never make an assumption that each graph partition will fit into

main memories of computing nodes and we keep them on disks. As opposed to

our algorithms, in [56], it is assumed that everything is held in the memories in

computing nodes. The third important point is that in [56], only the number

of iterations required to compute k-core decomposition is reported but not real

execution times. In this thesis, however, we provide real execution times for our

experiments conducted on large real graphs.

None of the papers mentioned so far targets k-core maintenance in dynamic

graphs where the data does not fit into main memories of computing nodes.

k-core decomposition in dynamic graphs: k-core decomposition in dy-

namic graphs was first studied in [57] and an improved alternative was introduced

by Li et al. in [58]. In [57], Miorandi et al. provide a statistical model for con-

tacts among vertices and compute k-core decomposition as a tool to understand

the spreaders’ influence in diffusion of epidemics. k-core decomposition was re-

computed at given time intervals using the BZ algorithm. The largest graph in

those experiments had 300 vertices and 20K edges. This approach is not feasible

for large dynamic networks where k-core recomputation likely will take a long

time. In [58], Li and Yu addressed the problem of efficiently computing the k-

core decomposition in dynamic graphs. The main idea is that when a dynamic

graph is updated, instead of recomputing k-core decomposition over the whole

graph, their algorithm tries to determine a minimal subgraph for which k-core

decomposition might get changed. The proposed coloring based algorithm keeps

12

track of core number for each vertex and upon an update provides the subgraph

for which k-core decomposition needs to be updated. This approach was reported

for single server in-memory processing only and a straightforward extension of

the algorithm for distributed processing is far more costly. On the other hand,

Sariyüce et al. [59] proposes state-of-the-art algorithms for incremental mainte-

nance of k-core decomposition for streaming graph data which outperform the

work by Li and Yu. They provide extensive theoretical and experimental analysis

with various graph models and different graph sizes. Empirical evaluations show

up to 6 orders of magnitude speedup for RMAT graph with 224 vertices.

Also, in [60], Nguyen et al. focus on overlapping community detection and

maintenance in mobile applications. However, the proposed approach is a cen-

tralized algorithm to maintain overlapping communities. It is neither distributed

nor applicable to hierarchical community structure. In this thesis we propose

algorithms for batch window updates which could provide greater performance

improvement compared to performing updates step by step. To our knowledge,

our work is the first one proposing algorithms for performing batch window up-

dates for the maintenance of k-core subgraphs in distributed dynamic graphs.

A wide-range of applications from social science to physics need to identify

communities in complex networks that share certain characteristics at various

scales and resolutions [61] [62] [63]. Challenges remain, however, to address both

intensity and dynamicity of communities at large scale. We thus focus on metrics

and algorithms whose complexity is no greater than O(n).

2.3 Other Parallel Graph Algorithms

Parallel graph algorithms, on the other hand, have been studied extensively since

the beginning of parallel computing era. Most of these studies, however, targeted

static graphs [64] [25]. In the recent years the studies in this field gained momen-

tum again due to the growing popularity of social media tools. To deal with the

13

scalability concerns graph algorithms were implemented on MapReduce frame-

work [65] and its open source implementation Apache Hadoop [66] [67] [68]. By

formulating common graph algorithms as iterations of matrix-vector multiplica-

tions, coupled with compression, [69] and [70] demonstrated significant speedup

and storage savings, although such formulation would prevent the inclusion of

metadata and content as part of the analysis. The iterative nature of graph

algorithms soon prompted many to realize that static data is needlessly shuf-

fled between MapReduce tasks [71] [68] [72]. Pregel [73] thus proposed a new

parallel graph programming framework following the bulk synchronous parallel

(BSP) model and message passing constructs. In Pregel, vertices are assigned

to distributed machines and only messages about their states are passed back

and forth. In our work, we achieved the same objective through coprocessors.

Pregel did not elaborate, however, how to manage temporary data, if it is large,

with a main memory implementation nor did it state if updates are allowed in

its partitioned graph. Furthermore, by introducing a new framework, compati-

bility with MapReduce-based analytics is lost. Two Apache incubator projects

Giraph [74] and Hama [75], inspired by Pregel, are looking to implement BSP

with degrees of Hadoop compatibility. In addition to the above systems focus-

ing mostly on global graph queries, plenty of needs exist for target queries and

explorations, especially in intelligence and law enforcement communities. Sys-

tems such as InfiniteGraph [76] and Trinity [77] scale horizontally in memory and

support parallel target queries well.

2.4 Graph-Aware Caching

Many major large scale applications rely on distributed key-value stores [78, 79,

80, 81]. Meanwhile, distributed graphs are used by many web-scale applications.

An effective way to improve the system performance is to employ a cache system.

Facebook utilizes memcached [82] as a cache layer over its distributed social graph.

Memcached is a general-purpose distributed memory cache which employs LRU

eviction policy [83] where it groups data into multiple slabs with different sizes.

Neo4j [84] is a popular open-source graph database with the ability to shard

14

data across several machines. It provides two levels of caching [85]. The file

buffer cache caches the Neo4j durable storage media data to improve both read

and write performance. The object cache caches individual vertices and edges

and metadata in a traversal optimized format. The object cache is not aware

of graph topology and facilitates LRU as eviction policy. On the other hand,

Facebooks distributed data store for its social graph [86], which is called TAO,

is designed to serve as a cache layer for Facebook’s social graph. It implements

its own graph data model and uses a database for persistent storage. TAO is the

closest work in the literature to our study. TAO keeps many copies of sharded

graph regions in servers called Followers and provides consistency by using single

Leader server per graph shard to coordinate write operations. TAO employs LRU

eviction policy similar to memcached. Pregel [87] provides a system for large-scale

graph processing, however, it does not provide a caching layer. It touches on poor

locality in graph operations while we study on how to obtain high locality and

achieve it through prefetching using graph topology information. Neither TAO

nor other studies exploit graph characteristics but they handle graph data as

ordinary objects. Thus, our study is novel in the sense that it exploits graph

specific attributes.

15

Chapter 3

An Analysis of Social Networks

based on Tera-scale

Telecommunication Datasets

Human communication behavior is the root of the usage pattern in physical and

virtual communication networks, including telecommunication (telco) networks

and on-line social networks. While fixed-line phones and shared computers in

homes and offices reflect family or colleague behavior, mobile phones and portable

computers better reflect individual usage behavior. Technological developments

in the last two decades have resulted in two significant trends in human behavior:

1) going frequently online and 2) owning personal mobile computing and com-

munication devices. Thus, the end-user behavior of communication networks has

changed from group behavior to individual behavior.

Human communication behavior is highly related to underlying social network

relationships. Mobile phone communication patterns provide strong insights into

human social relationships [88]. For instance, person A calls person B usually

because of a social relationship, e.g., B is a friend of A or B does business with

A. The more social interactions dominate communication networks and online

media, the more user behavior on those networks is dominated by human social

16

relationships and networks. Hence, managing and planning today’s communica-

tion networks require a deep understanding about user behavior on those networks

and about their social structures.

Social network analysis tries to understand the characteristics a social network

exhibits. The first and most-cited characteristic among others is degree distribu-

tion of nodes constituting a social network. A bulk of studies in the literature on

this topic reports that power-law best fits with certain parameters [19, 20, 21].

Other studies, however, propose different statistical fit models [22, 23, 24]. Since

current studies are limited by the used datasets from which their proposals are

derived/obtained, it is necessary to explore the influence of dataset specific pa-

rameters on discovered social network characteristics. This observation motivates

us to conduct research on degree distribution on larger scales to discover the pa-

rameters governing degree distribution in social networks. Among many current

research issues to be investigated, we prefer this less studied problem which re-

quires a complete dataset.

Therefore, we explore how

• network operator,

• network size,

• population density, and

• geographic location

affect degree distribution in social networks.

To investigate these issues, we perform degree analysis on different social

networks derived from the telecommunication network call data of a country’s1

different mobile (GSM) and fixed-line (PSTN) telco operators. We obtain degree

distribution results for these networks to understand how well existing distribu-

tion models fit reality.

1Data was provided on the condition of anonymization, including country anonymity.

17

The chapter proceeds as follows: In Section 3.1, we describe the dataset used

in this study and highlight its unique features. In Section 3.2, we discuss the

statistical modeling of degree distribution in social networks and report the re-

sults of our empirical analysis. We also provide an analysis and interpretation

for each of the following factors, any or all of which may affect social network

characteristics: network operator, network size, network density and network lo-

cation. Then we provide structural properties of the communication network in

Section 3.3. Finally, in Section 3.4, we conclude the chapter.

3.1 Dataset

Obtaining necessary and sufficient data is one of the most difficult steps in social

network analysis. Until the current pervasive use of mobile phones, the lack of

large-scale data has limited our knowledge regarding human relationships and

social networks. Now, however, the situation has changed. Mobile phone compa-

nies can collect CDRs for all subscriber calls going through their networks, and

this CDR database is the most exhaustive dataset to date on human mobility and

social interactions. For billing purposes, GSM networks record the base station

each mobile phone call is made from, and this data thus holds the details of indi-

vidual user movements. Having almost 100% penetration of mobile phones, the

GSM network can now function as the most comprehensive proxy of a large-scale

social network available today [89].

The dataset used in this study covers all GSM (three networks) and PSTN

(one network) CDRs for a whole country between 1 January 2010 and 31 January

20102. Data is anonymized and used solely for this research. The structure

of the data is presented in Table 3.1. Fig. 3.1 shows the list of data tables

and the number of records in each table. Each table contains records belonging

to one days CDRs for the three GSM networks for the one month. All the

PSTN network CDRs for the month are stored in one data table. The dataset

2 Unfortunately, we cannot make this dataset available due to a non-disclosure agreement
signed.

18

contains N ≈ 5× 107 nodes and L ≈ 3.6× 1010 links for the GSM networks, and

N ≈ 1.4×107 nodes and L ≈ 1.9×109 links for the PSTN network. We modeled

the network growth in our dataset and found out that the daily CDR volume

grows linearly over time according to the following relationship: cdr volume ∼
3.433e06 ∗ day + 1.132e09 form. This is a very slow growth-rate and it takes

approximately 330 days to double the CDR volume. In this study we also refer

to this dataset as the SNA (social network analysis) database.

Lack of large and comprehensive data was one of the main reasons for

doubts behind social network claims like Milgram’s six degrees of separation

(his small-world experiment) [90]. Now, however, one can (with permission) ac-

cess anonymized CDRs from all network carriers providing service in a country.

Thus, we can extract information about social interactions and construct a social

network of the whole country from data provided by all mobile and fixed-line

operators. This situation has the following advantages over previous studies:

• To the best of our knowledge, the dataset we use is much larger than the

largest dataset containing trajectories and social interactions analyzed to

date [89].

• Our data represents all country communication interaction, which is free

from bias for a particular operator, size, location or density.

• The data contains spatial positions so we can also analyze the effect of

location on social networks.

We are aware of the following limitations of our dataset:

• It covers calls of a one-month period and therefore some infrequent links

might be missing.

• It comprises data from only voice and SMS communications. People might

be using many other communication channels including e-mails, instant

messaging tools, smart phone apps, etc.

19

Consequently, our dataset does not contain whole social network but a projection

of it. It also contains many non-social entities.

Table 3.1: Structure of the data used in this work

Field name Value description

source source party of communica-
tion: calling party

destination destination party of communi-
cation: called party

operator network operator ID
communication type voice, SMS services, etc.
date time time of communication in sec-

onds resolution
duration duration of communication in

seconds resolution
cell ID location of communication in

connected base-station loca-
tion resolution

3.2 Analysis

For a sound and complete understanding of degree distribution in a large-scale

social network, we investigate the effects of the following factors: 1) network

operator to which the dataset belongs; 2) size of the community network; 3)

population density; 4) geographic location where the community live. For each

factor, we perform an analysis to determine how it affects degree distribution.

3.2.0.1 Distribution Model Fitting

For each hypothesized distribution, we modeled datasets with the distribution and

then solved least-squares estimates of the distribution parameters of the nonlinear

model using Gauss-Newton algorithm [91]. We used the R language [92] for sta-

tistical computations and graphics. We used the internal statistical functions of R

and wrote many R scripts to make the necessary computations, model fittings and

20

GSM 20100102
GSM 20100103
GSM 20100104
GSM 20100105
GSM 20100106
GSM 20100107
GSM 20100108
GSM 20100109
GSM 20100110
GSM 20100111
GSM 20100112
GSM 20100113
GSM 20100114
GSM 20100115
GSM 20100116
GSM 20100117
GSM 20100118
GSM 20100119
GSM 20100120
GSM 20100121
GSM 20100122
GSM 20100123
GSM 20100124
GSM 20100125
GSM 20100126
GSM 20100127
GSM 20100128
GSM 20100129
GSM 20100130
PSTN 201001

 0 200
 400

 600
 800

 1000
 1200

 1400
 1600

 1800
 2000

Number of CDR entries (millions)

Figure 3.1: CDR data tables and number of entries in each table. There are
approximately 1.19 billion records in each of daily GSM tables while there are
1.93 billion records in monthly PSTN table.

21

graphical plots. All analysis code including our fitness function implementation

is available online3

For a set of n points (xi, yi), i = 1 . . . n where (xi) is independent variable and

(yi) is known from dataset, let fitting model function be m(x, parametersp) which

guesses y value for given x value for parameters parametersp. Then modeling

error (distance) is the residual sum-of-squares RSSp as

RSSp =
n∑
i=1

(yi −m(xi, parametersp))
2

The employed Gauss-Newton algorithm computes model parameters which

minimize the residual sum-of-squares measure.

3.2.0.2 Goodness-of-fit

In order to compare different distributions, we need a method to measure how

good a hypothesized distribution fits to given dataset. The distance between

the distribution of the empirical data and the hypothesized model is the base

of goodness-of-fit test [93]. In this study we use ”distance” to be the residual

sum-of-squares.

To compute model fit success (p-value), we first compute normalized distance,

then subtract it from 1. Thus we get a p-value which measures how tight the

model fits the real dataset. A large p value indicates better fit to the empirical

data.

TSS =
n∑
i=1

(yi)
2

normalizedRSS = RSS/TSS

p− value = 1− normalizedRSS
3see www.cs.bilkent.edu.tr/~haksu/callgraph/.

22

 www.cs.bilkent.edu.tr/~haksu/callgraph/

3.2.0.3 Working With Large Datasets

We encountered some limitations while working with large datasets. Initially we

started with a commercial relational database management system (RDBMS) on

high-end hardware with ∼ 45 terabyte disk, 24 CPU cores and 96 GB memory.

Extract, transform, and load processes take long time (i.e., days) and require

careful performance tuning. Using this RDBMS solution, we are able to compute

and export the degree distributions used in Sections 3.2.2, 3.2.3, 3.2.4, 3.2.5. 8 GB

memory is sufficient for R programs to compute our fitting models, statistics and

plots. On the other hand, relational databases perform poorly on graph traversal

operations, i.e., multiple self-joins of large edges table become computationally

infeasible. In order to be able to compute traversal-based network properties

(e.g., clustering-coefficients) we setup a Hadoop/HBase cluster and loaded our

dataset into HBase tables. We then implemented network analysis algorithms for

graphs stored in HBase (see [94] for used platform details). Hadoop/HBase cluster

solution enables us to compute the network properties reported in Section 3.3.

3.2.1 Social Network Modeling

A call graph is a projection of a social graph and reflects some properties of it

(i.e., a call graph is considered to reveal citizens social interactions). Our dataset

consists of call traces from the one PSTN and the three GSM operators in the

country. Hence, we separately construct call graphs of the whole country for the

three GSM operators and one PSTN operator. We also construct a call graph

of the whole country for all GSM networks. Then we try to analyze degree

distribution characteristics. We first compute the degree distribution of the call

graph with no filtering. We call such a network 0-Core network. Then we filter out

automated one-way calls which may not imply a work-, family-, leisure- or service-

based relationship [20]. To eliminate the automated calls, we use our so-called 1-

Core network (reciprocal network) to also characterize degree distribution. Each

pair of nodes (A,B) in the 1-Core network has an edge if and only if A has called

B and B has called A at least once in the observation duration. Please note that,

23

this filtering eliminates only non-social entities which make one-way calls. Still

there may be many non-social entities in the dataset like customer support lines,

business lines.

When we plot the degree distributions (i.e., degree versus frequency of ap-

pearance of that degree in the call graph) on linear x-y scales, all distributions

resemble an L shape (the curve quickly declines and most of the x-axis is close-to-

zero valued). Visually, it is hard to interpret behavior from these plots. If we plot

the degree distributions in log-log scales, however, the plots are easier to follow.

Thus, we use log-log plots in this study. Degree distributions in Fig. 3.2 are heavy

tailed until a certain degree; then it takes an out-of-pattern fat-tail like shape.

This means that the probability of having very high degree nodes is higher than

what you would expect under a model fitting low-degree nodes. In Fig. 3.2 (a)

we see a slope change around degree 5000 where 1/106 of the nodes are covered.

We can see similar situation in parts (b), (c), and (d). Nodes with large degree

present a particular behavior, we think this is caused by non-social entities (e.g.,

business related phone numbers, customer support lines, etc.). Comparing 0-C

GSM, 1-C GSM, 0-C PSTN and 1-C PSTN graphs, we see that out-of-pattern

vertex ratio is higher in the PSTN network than the GSM network. Also in both

PSTN and GSM networks, 1-C networks show lower out-of-pattern vertex ratio

compared to 0-C networks. This observation support that out-of-pattern vertices

are business phones or automated agents since 1-C networks cover less number

of such non-social entities.

The literature related to degree distribution in call graphs and social networks

includes various works on power-law distributions, power-law with cutoff distri-

butions, log-normal distributions, exponential distributions, DPLN distributions

and PLN distributions. All these distributions are possible candidates to sta-

tistically model degree distribution in a complex network with an L-shape-like

degree-frequency distribution. Table 3.2 provides some general information about

these distributions.

For each constructed social network (call graph) in our dataset, we try to fit all

24

Table 3.2: Definitions of several common statistical distributions referred to in
SNA studies

Distribution
Name

Probability Density Function (pdf) Parameters

Power-law
pdfpower−law(x) = x−γ

γ

Power-law
with cutoff pdfpower−law with cutoff (x) = x−γe−λx

γ , λ

Log-normal
pdflog−normal(x) =

1

x
√

2πσ2
exp[−(log(x)− µ)2

2σ2
]

µ, σ

Exponential
pdfexponential(x) = λe−λx

λ

Double
Pareto
log-normal

pdfDPLN(x) = (αβ)
(α+β)

[eαν+
α2τ2

2 x−α−1Φ(log(x)−ν−ατ
2

τ
) +

xβ−1e−βτ+
β2τ2

2 (1− Φ(log(x)−ν+βτ
2

τ
))]

α, β, τ , ν

Pareto log-
normal pdfPLN(x) = βxβ−1e(−βν+

β2τ2

2
)
(

1− Φ
(
log(x)−ν+βτ2

τ

)) β, τ , ν

25

candidate distributions and compute their goodness of fit. Fig. 3.2 shows GSM 0-

Core, GSM 1-Core, PSTN 0-Core and PSTN 1-Core network fit results. In GSM

0-Core and 1-Core networks, power-law distribution provides the worst fit, while

DPLN and PLN provide the best fit. When we look at each operator network

shown in Fig. 3.4 and Fig. 3.3, DPLN and PLN continue to be the best-fitting

models.

We also evaluate the fit success of these distribution models numerically. Ta-

ble 3.3 summarizes the residual sum of squares (RSS)-based fit success values for

each network-distribution pair. The best fits are shown in bold in the table. (See

Section 3.2.0.2 on model fit success computation.)

26

(a) 0-Core GSM ALL (c) 0-Core PSTN ALL

(b) 1-Core GSM ALL (d) 1-Core PSTN ALL

Figure 3.2: Network degree distributions and model fits for (a) 0-Core GSM
ALL network (b) 1-Core GSM All network (c) 0-Core PSTN ALL network (d)
1-Core PSTN All network. Qualitative visual analysis suggest that PNL and
DPLN distributions provides tightest fit while power-law distribution deviates
most. See Table 3.3 for p-value based quantitative results.

27

(a) 0-Core GSM A (b) 0-Core GSM B

(c) 0-Core GSM C

Figure 3.3: Model fits for 0-Core variations of GSM A, GSM B and GSM C
networks are illustrated. In all networks DPLN and PLN models perform better
then the rest of models. See Table 3.3 for p-value based quantitative results.

28

(d) 1-Core GSM A (e) 1-Core GSM B

(f) 1-Core GSM C

Figure 3.4: Model fits for 1-Core variations of GSM A, GSM B and GSM C
networks are illustrated. In all networks DPLN and PLN models perform better
then the rest of models. See Table 3.3 for p-value based quantitative results.

29

T
ab

le
3.

3:
N

u
m

er
ic

al
d
is

tr
ib

u
ti

on
fi
t

su
cc

es
s

re
su

lt
s

fo
r

va
ri

ou
s

n
et

w
or

k
s

N
et

w
or

k
\

D
is

tr
ib

u
ti

on
P

ow
er

-l
aw

P
ow

er
-l

aw
w

it
h

cu
to

ff
E

x
p

on
en

ti
al

L
og

-n
or

m
al

(D
G

X
)

D
P

L
N

P
L

N

1-
C

or
e

G
S

M
A

L
L

0.
85

97
15

6
0.

99
80

27
4

0.
99

83
44

6
0.

99
54

54
4

0
.9
9
9
9
6
3
6

0
.9
9
9
9
6
3
9

1-
C

or
e

G
S

M
B

0.
85

79
53

1
0.

99
85

91
3

0.
99

76
06

1
0.

99
78

55
2

0.
99

9
9
7
0
7

0
.9
9
9
9
7
0
9

1-
C

or
e

G
S

M
A

0.
85

79
37

2
0.

99
81

94
7

0.
99

78
76

0.
99

50
69

9
0.

99
9
9
4
2
9

0
.9
9
9
9
4
3
2

1-
C

or
e

G
S

M
C

0.
87

99
33

2
0.

99
77

32
3

0.
99

91
96

1
0.

99
61

85
1

0
.9
9
9
9
6
3
7

0
.9

9
9
9
6
1
2

1-
C

or
e

P
S

T
N

A
L

L
0.

84
73

29
5

0.
99

91
81

2
0.

99
55

96
6

0.
99

76
01

8
0
.9
9
9
9
0
6
9

0
.9

9
9
6
4
3
7

0-
C

or
e

G
S

M
A

L
L

0.
77

14
90

6
0.

99
66

97
4

0.
99

53
06

6
0.

99
15

38
0.

99
9
8
2
6

0
.9
9
9
8
2
6
3

0-
C

or
e

G
S

M
B

0.
77

33
19

8
0.

99
49

63
0.

99
66

67
3

0.
99

02
13

2
0
.9
9
9
9
4
8
8

0
.9
9
9
9
4
8
8

0-
C

or
e

G
S

M
A

0.
76

42
55

3
0.

99
78

63
0.

99
33

41
6

0.
99

36
48

0.
99

9
7
4
1
1

0
.9
9
9
7
4
1
6

0-
C

or
e

G
S

M
C

0.
79

57
19

8
0.

99
38

65
1

0.
99

78
52

0.
98

79
22

2
0
.9
9
9
7
5
1
7

0
.9
9
9
7
5
1
7

0-
C

or
e

P
S

T
N

A
L

L
0.

72
28

17
1

0.
98

68
19

0.
99

04
48

3
0.

98
67

84
6

0
.9
9
6
9
7
3
9

0
.9

9
4
6
0
7
1

30

The fit success results in Table 3.3 put forward two distributions: DPLN and

PLN. The former provides the best fit for three social networks (0C PSTN, 1C

PSTN and 1C GSM C), while the latter provides the best fit for four social net-

works (0C GSM A, 0C GSM ALL, 1C GSM Aand 1C GSM B). Both distributions

provide equally good fits for three social networks (1C GSM ALL, 0C GSM B0C

GSM C). There is no significant difference in their fit success; PLN is only slightly

better than DPLN. Nevertheless, considering its lower number of parameters, we

choose PLN distribution as the representative distribution (the best model) for

our social network datasets. Hereafter, when we need to model a network, we use

PLN.

3.2.2 Network Operator

By comparing the degree distribution characteristics of social networks derived

from different operator data, we try to answer the question of whether char-

acteristics are dependent on network operators or not. Doing so will clarify if

investigating one operators social network of users is sufficient for social network

analysis.

To analyze the effect of network operator, we again use the social networks

constructed in Section 3.2.1, i.e., three GSM operators’ social networks, one PSTN

operator’s social network and the GSM operators’ joint social network. Fig. 3.5

illustrates and compares degree distribution in the GSM and PSTN networks.

The former displays a higher density for lower degrees, while the latter displays

a higher density for degrees larger than 122. We think that the high density

for higher degrees in the PSTN network might be because fixed-line phones are

used as household items rather than personal belongings, and are shared by many

members in the house. Thus, PSTN node degrees can be considered as the sum

of social degrees of multiple individuals. Fig. 3.6 shows the degree distributions

of the various GSM operator networks. We can see that there is no significant

difference between degree distributions of the three GSM operators networks and

31

the joint network derived from the three operators. We also apply the Kruskal-

Wallis Test to compare the degree distribution of complex communication net-

works breakdown by network-operator. As the result of this test, the p-value

turns out to be greater than the 0.05 significance level (p-value=0.84). Hence,

we conclude that with 95% confidence the degree distributions of the analyzed

social networks at network-operator breakdown are statistically identical.

1 10 100 1000 10000

1e
−

07
1e

−
05

1e
−

03
1e

−
01

degree

pd
f o

f f
re

qu
en

cy

1−C GSM ALL
1−C PSTN ALL

chi−squared = 19.43
df = 1
p.value = 1.045e−05

Figure 3.5: 1-Core GSM and PSTN network operators degree pdf distribution.
Test shows that GSM and PSTN are not identical distribution at 0.05 significance.

32

1 10 100 1000 10000

1e
−

07
1e

−
05

1e
−

03
1e

−
01

degree

pd
f o

f f
re

qu
en

cy

1−C GSM ALL
1−C GSM A
1−C GSM B
1−C GSM C

chi−squared = 0.3072
df = 3
p.value = 0.9587

Figure 3.6: Degree distributions for different network operators are compared.
Degree distributions are statistically identical for different network operators.

33

3.2.3 Network Size

To analyze the effect of network size on degree distribution, we start with a net-

work around one base station and then expand it by including neighbor base

station networks, just like snowball sampling (as described in Algorithm 3.1).

Thus, we construct social networks of different sizes for a city.4 Then for each

social network of a different size, we compute and plot the corresponding de-

gree distribution, resulting in a chart of network size versus degree distribution

parameters.

Algorithm 3.1. NetworkSizeEvaluation

Input: K-List of base stations in neighborhood order.
N-Whole-city network.

Output:ctable-degree characteristic, network size, value table.

1: sn⇐ empty network
2: for i = 1→ size(K) do
3: s← generateNetwork(N,K[i])
4: sn← sn ∪ s
5: v ← computeDegreeCharacteristic(sn)
6: ctable[size(sn)]← v

7: analyze(ctable) return ctable

To obtain networks of various sizes, we use the SNA database, which has

the cell IDs and geographic coordinates of the GSM base stations. We divide a

dense urban part of city Xinto 1000 sub-parts, which host an approximately equal

number of cell phones (users). Using Google Maps, we determine the coordinates

of the urban part of city X. The dataset lists around 17000 base stations in this

region, so each sub-part hosts about 17 base stations. Starting from a point in

the city, we draw circles around the nearest 17 base stations and label the circles

from 1 to 1000. Thus, in each iteration we draw a new circle around the nearest

17 base stations that are not yet covered by a circle as shown in Fig. 3.7.

Having 1000 circles determined, we start to filter the calls in these circles so

that we have networks with an increasing number of nodes inside. We define a

4 As part of anonymization, we refer to the chosen city as city X.

34

Figure 3.7: 1000 circles around base stations. Each circle is drawn to cover the
nearest 17 base stations that are not yet covered by a circle.

ring as a circle containing all other circles with a label lower than its label. More

precisely, ringN is the set of circles Cm, where m ≤ N . In this manner, 1000 rings

(ring1 . . . ring1000) are defined. By filtering the calls established in each ring, we

come up with 1000 networks that differ only in size (i.e., density, location, etc.,

are not considered).

To determine whether there is any effect of size on degree distribution we

plot the pdf of degree versus network size. Since there are 1000 networks with

increasing size, in order to make the plot easier to interpret we create a color

list with a gradient of 1000 green-blue-red colors. As illustrated in Fig. 3.8, for

increasing network size, the degree distribution curves in a specific direction: the

pdf for low degrees decreases while the pdf for high degrees increases. We also

apply the Kruskal-Wallis Test to compare the degree distribution of complex

communication networks breakdown by network-size. As the result of this test,

the p-value turns out to be less than the 0.05 significance level (p-value=5.122e-5).

Hence, we conclude that the degree distributions of the analyzed social networks

at network-size breakdown are statistically nonidentical.

35

1 2 5 10 20 50 100 200

5e
−

04
5e

−
03

5e
−

02
5e

−
01

degree

pd
f o

f f
re

qu
en

cy

size 1−333
size 334−666
size 667−1000

chi−squared = 1182
df = 999
p.value = 5.112e−05

Figure 3.8: Degree distribution for increasing network size. Size unit is 17 base
station, e.g., 100 means network size is 1700 base stations. Degree distribution
for 1000 samples are plotted with gradient colors in green-blue-red range to vi-
sually follow network size v.s distribution shape change. Statistical test reject
the hypothesis claiming that degree distributions for varied sized networks are
identical.

36

To further investigate the effect of network size, we fit the PLN distribution

to all 1000 networks with increasing size. Then we analyze each PLN distribu-

tion model parameter against the change in size. The PLN distribution has the

following pdf function:

pdfPLN(x) = βxβ−1e(−βν+
β2τ2

2
)
(

1− Φ
(
log(x)−ν+βτ2

τ

))
and E[X] = ν − 1

β
.

Fig. 3.9 shows the β parameter behavior of the PLN distribution as a function

of network size. The linear-log scale figure indicates that β ∼ log(size). Thus,

when we try to fit β = a ∗ log(size) + b to the results, we get a tight fit as

illustrated by the blue dashed line.

We get similar results when we focus on PLN distribution ν parameter behav-

ior versus network size. Fig. 3.10 demonstrates the ν ∼ log(size) relationship,

where ν = a ∗ log(size) + b fit is represented by the blue dashed line. Since

E[X] = ν − 1
β
, considering the ν ∼ log(size) and β ∼ log(size) observation,

we conclude that the average degree of observed networks is proportional to the

logarithm of the network size.

Following green-blue-red transition in Fig. 3.8 size v.s. degree distribution,

we see that the distribution function shape changes from a line into a curve while

the size of network increases. This empirical result does not follow power-law

generating evolution models discussed in [95]. We know that our dataset is com-

posed of both social and non-social (complex) entities. Considering the evolution

of complex networks study, we think that while complex network entities follow

preferential attachment, social entities do not, due to the natural upper-bound

on a node degree. Therefore, small-size samples might result in overestimating

the density of popular nodes where this natural upper bound is not hitted. For

instance, the average number of received calls (in-degree) is less than 2 in the

telephone call graph sample analysed in [95]. Thus, power-law fit for in-degree

in this case may not remain valid for a larger sample. In fact, the study reports

that it was impossible to fit out-degree by any power-law dependence.

37

0 200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

Network size

β
pa

ra
m

et
er

real data
y = a*log(x)+b
for a =0.1686,b=−0.3663
line at size= 27

(a)

1 5 10 50 100 500 1000

0.
0

0.
2

0.
4

0.
6

0.
8

Network size

β
pa

ra
m

et
er

real data
y = a*log(x)+b
for a =0.1686,b=−0.3663
line at size= 27

(b)

Figure 3.9: PLN β parameter versus network size in (a) linear-linear and (b)
linear-log scale. 38

0 200 400 600 800 1000

1.
4

1.
6

1.
8

2.
0

2.
2

2.
4

Network size

ν
pa

ra
m

et
er

real data
y = a*log(x)+b
for a =0.2479,b=0.7654
line at size= 27

(a)

1 5 10 50 100 500 1000

1.
4

1.
6

1.
8

2.
0

2.
2

2.
4

Network size

ν
pa

ra
m

et
er

real data
y = a*log(x)+b
for a =0.2479,b=0.7654
line at size= 27

(b)

Figure 3.10: PLN ν parameter versus network size in (a) linear-linear and (b)
linear-log scale. 39

3.2.4 Population Density

Algorithm 3.2. NetworkDensityEvaluation

Input: B-List of geographical locations in increasing density order.
N-Whole-city network.

Output ctable-degree characteristic, network density, value table.

1: sn⇐ empty network
2: for i = 1→ size(B) do
3: s← generateNetwork(N,B[i])
4: sn← sn ∪ s
5: v ← computeDegreeCharacteristic(sn)
6: ctable[density(sn)]← v

7: analyze(ctable) return ctable

Here we aim to understand the effect of population density (number of users

in a geographic region) on degree distribution in social networks. We would like

to see whether, for example, a denser region has a denser social network. For

this analysis, we again use the SNA database with GSM base station cell IDs and

geographic coordinates. We draw a rectangle that incorporates the dense urban

area and naighbouring sparse rural areas. We divide the rectangle into 10 parts

with approximately equal population sizes. The entire rectangle covers nearly

450 base stations, therefore, starting from the city center, each of 45 base station

cells are grouped as a ring (see Algorithm 3.2). Then, by filtering the calls made

in each ring, we get 10 social networks. For each ring, density is computed as the

number of base stations per kilometer square.5

Fig. 3.11 shows the degree distributions for social networks of different densi-

ties. These distributions have no specific behavior regarding increasing network

density. All distributions are close to each other and they cross many times.

The highest-density line (dashed blue line) falls in the middle of all the density

lines. We also apply the Kruskal-Wallis Test to compare the degree distribution

of complex communication networks breakdown by network-density. As the re-

sult of this test, the p-value turns out to be greater than the 0.05 significance

5Because base stations are located with a density proportional to population density, we
consider base station density to be a measure of population density.

40

level (p-value=0.98). Hence, we conclude that with 95% confidence the degree

distributions of the analyzed social networks at network-density breakdown are

statistically identical.

1 2 5 10 20 50 100

1e
−

04
5e

−
04

5e
−

03
5e

−
02

5e
−

01

degree

pd
f o

f f
re

qu
en

cy

1
2
3
4
11
14
20
21
22
30
44

chi−squared = 3.111
df = 10
p.value = 0.9787

Figure 3.11: Network degree pdf versus network density plots.

3.2.5 Geographic Location

Next, we aim to understand the impact of geographic location on degree distri-

bution characteristics. We investigate how degree distribution in social networks

41

changes when the networks are physically located in different places. As before,

we use the SNA database, GSM base stations and geographic coordinates. For

analysis, we construct some social networks for which the geographic locations

are different, but network size, density, etc. are similar. To derive such networks,

we choose cities with similar population sizes from different parts of the country.

We sort all cities in the country by the number of base stations they have, and

then we look for a consecutive sub-list of cities located as far apart as possible

but with a similar number of base stations. As illustrated in Fig. 3.12, we choose

10 such cities, each having 1000± 100 base stations. We filter the calls made in

each city and then construct 10 social networks.

Figure 3.12: Locations of chosen cities in the country.

Fig. 3.13 shows degree distributions of the social networks of the selected

cities. The anonymized list of cities north to south is: E, Z, G, T, B, Y, A, I, M,

R; and west to east is: E, T, M, I, A, B, Z, Y, G, R. As can be observed from

the figure, degree distribution curves are very close to each other and there is no

specific curve behavior following city locations.

We also apply the Kruskal-Wallis Test to compare the degree distribution

of complex communication networks breakdown by network-location. As the

result of this test, the p-value turns out to be greater than the 0.05 significance

level (p-value=0.99). Hence, we conclude that with 95% confidence the degree

distributions of the analyzed social networks at network-location breakdown are

statistically identical.

42

1 2 5 10 20 50 100 200

1e
−

05
1e

−
04

1e
−

03
1e

−
02

1e
−

01

degree

pd
f o

f f
re

qu
en

cy

A
B
E
G
I
M
R
T
Y
Z

chi−squared = 2.124
df = 9
p.value = 0.9894

Figure 3.13: Network degree pdf versus network location.

43

3.3 Structural Properties of the Communica-

tion Network

So far we have examined the effects of certain parameters on degree distribution.

We now construct a general communication network from the dataset and ana-

lyze it for structural properties. Clustering coefficient is defined as the fraction of

triangles around a node. This measure says how well a node’s neighbors are con-

nected. Social networks are known to have large clustering coefficients. Fig. 3.14

displays the clustering coefficient values as a function of the degree of a node for

GSM and PSTN networks. The clustering coefficient decays slowly with expo-

nent −0.37 (c ∼ d−0.57) with the degree of a node till degree d (∼ 150), and then

scatters around. Results on web graphs and theoretical analysis on hierarchical

networks report decays with exponent -1 [96], while results on Messenger network

report decays with exponent −0.37 [97]. Comparatively, our results suggest that

clustering in phone call graphs is much higher than the theoretical expectation

and web graph results, however, it is lower compared to the clustering in Messen-

ger communication graph. In other words, phone users with common friends tend

to be connected more probably than the theoretical expectation, and connected

less probably than Messenger users with common friends. Scattering after a cer-

tain degree d (∼ 150) implies that neighbors with high degree nodes know each

other less, thus such nodes are non-social entities like customer support lines.

Fig. 3.15 displays size distribution of connected components in networks. Over

99% of the nodes belong to the largest connected component, and the remaining

small components show a power-law like distribution. We further study commu-

nity structure in the networks by computing k-core decomposition of the graph.

k-core decomposition is a subgraph density measure and it identifies dense re-

gions in the graph6. Fig. 3.16 displays the distribution of k-core sizes for (A)

GSM and (b) PSTN networks. The decay in k-core sizes is stable up to a cutoff

value (kpstn cutoff ≈ 5 in PSTN and kgsm cutoff ≈ 12 in GSM), then the k-core

size drops rapidly which means that the nodes with degrees of less than the cutoff

value are on the fringe of the network. This structure is similar to the Messenger

6The k-core of a graph is a subgraph K, where each vertex in K has at least k edges to other
vertices in K.

44

1 5 10 50 100 500

0.
00

1
0.

00
5

0.
05

0
0.

50
0

Degree (d)

C
lu

st
er

in
g

co
ef

fic
ie

nt
 (

c)

c = 0.39*d0.57

(a)

1 5 10 50 100 500

0.
00

1
0.

00
5

0.
05

0
0.

50
0

Degree (d)

C
lu

st
er

in
g

co
ef

fic
ie

nt
 (

c)

c = 0.37*d0.63

(b)

Figure 3.14: Average clustering coefficient distribution versus node degree for
(a) 1-Core GSM and (b) 1-Core PSTN networks. Clustering coefficients decay
with node degree with exponents (a) −0.57 and (b)−0.63, respectively. Variance
increases after d ∼ 150 where non-social entities appear more. Neighbors of
non-social entities tend to know each other with high instability.

45

1e+01 1e+03 1e+05 1e+07

1
10

0
10

00
0

Connected component size

C
ou

nt

Largest component cover
99.22% of all nodes

(a)

1e+01 1e+03 1e+05 1e+07

1
10

10
0

10
00

10
00

0

Connected component size

C
ou

nt

Largest component cover
99.44% of all nodes

(b)

Figure 3.15: Distribution of connected components in (a) GSM (b) PSTN net-
works. Over 99% of the nodes belong to the largest connected component. Many
small components exist against a few large components.

46

1 2 5 10 20 50

1e
+

00
1e

+
02

1e
+

04
1e

+
06

Core of order k

N
um

be
r

of
 n

od
es

 (
n)

k=12

k=72 n=352

(a)

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1 10 100

N
u

m
b

e
r

o
f

n
o

d
e

s
 (

n
)

Core of order k

k=5

k=38 n=236

(b)

Figure 3.16: Size distribution of k-cores in (a) GSM (b) PSTN networks. The
densest region in GSM network is composed of 352 nodes where each node has
more than 72 edges inside the set, while the densest region in PSTN network is
composed of 236 nodes where each node has more than 38 edges inside the set.
The decay in k-core sizes is stable up to a cutoff value kpstn cutoff ≈ 5 in PSTN
and kgsm cutoff ≈ 12 in GSM, and then the k-core size drops rapidly which means
that the nodes with degrees of less than the cutoff value are on the fringe of the
network.

47

communication network with kmsn cutoff ≈ 20 [97], while it is quite different from

the Internet graph in which k-core size decays as a power-law with k [98]. The

densest region in GSM network is composed of 352 nodes where each of the nodes

has more than 72 edges inside the set.

48

3.4 Conclusion

Collecting social network data is traditionally difficult, requiring extensive contact

with the group of people being studied. Practically, research efforts are generally

limited to between tens and hundreds of individuals [99, 100]. On the other

hand, social interactions over telco infrastructures generate detailed traces of

interactions and movements. Large-scale networks, even ones covering a whole

society, can be generated from such traces. The ability to construct such rich and

representative social networks makes it feasible to develop and evaluate social

network models.

Different observations exist regarding degree distribution in social networks.

For instance, some works (e.g., [20, 101]) claim that the degree distribution follows

power-law distribution, while others (e.g., [23]) claim it follows double Pareto log-

normal distribution. Using different datasets, different degree distributions have

been obtained. In this study, we attempt to empirically test degree distribution

versus different dataset scenarios to understand the parameters governing degree

distribution in social networks. We observe that degree distribution in social net-

works does not show a significant correlation with population density, user telco

operator, and user geographic location; however, population size directly affects

the average degree of social network. Therefore, it is important to keep social

network size as a parameter while interpreting degree distribution. It also seems

acceptable to study a social network without considering its location, density

and referred telco operator. For instance, a researcher could gather data from

an urban part or a rural part of a country, or may choose a specific city or telco

operator. However, any change in the size of the studied network would result in

a considerable change in degree distribution characteristics and overall network

topology. Hence, social network studies must indicate the size of the studied

network and consider different size cases to come up with a sound and complete

conclusion.

49

Chapter 4

Distributed k-Core View

Materialization and Maintenance

for Large Dynamic Graphs

In our study we mainly focus on large dynamic graphs maintained by social media

companies and some government agencies. In the last few years many web com-

panies, such as Followerwonk, SocialPing, SimplyMeasured and Gravity, emerged

for helping customers to make better marketing decisions based on the content

of social media tools such as Twitter, Google+, Orkut, Youtube. Government

agencies also have a growing interest in performing analytics on these datasets

for event detection and tracking. These web companies and agencies have to deal

with massively large graphs to run various analytics queries.

These graphs are considered as large not only because they have many ver-

tices and edges but also they maintain significantly large amount of metadata

associated with them. These graphs are also considered dynamic because the

interactions between the users such as tweets, chats, messages are all considered

as part of the graph which changes over time. Since all of these interactions are

recorded for further use for analytics, an unprecedented growth rate is observed

in the data size. Twitter for instance reports that the average number of tweets

50

per day is 58 million and 2.1 billion user queries are processed every day as of May

2013 [102]. Because of the massive size of these datasets and user load, many

of these social web companies tend to store these graphs in distributed datas-

tores such as Google BigTable, MegaStore, Apache HBase or distributed parallel

databases, with motivations behind Big Data trend, i.e., high availability, fault-

tolerance, scalability, persistence. The underlying storage system should be able

to process the queries instantly to maintain site popularity.

Unfortunately, centralized solutions do not scale well when it comes to an-

swering billions of user queries expecting instant answers. Another social media

company, Facebook, recently announced that 1.11 billion users connect to the

site every month and the average number of users per day as of March 2013 is

665 million. The user related metadata such as messages, chats, emails, SMS

messages and attachments are stored on hundreds of HBase clusters. 6 billion

messages are sent between Facebook users daily. At peak times 1.5 million op-

erations are executed per second on the metadata associated with graph vertices

and edges. To keep up with the scale of these datasets the companies are com-

pelled to use distributed data architectures for storage and maintenance. This

chapter1 proposes scalable, distributed algorithms for k-core graph construction

as well as its incremental and batch maintenance as dynamic changes are made

to the graph. One critical aspect to understand large graph data is through the

identification of “dense” areas in the graph which represent higher inter-vertex

connectivity (or interactions in the case of a social network). In the literature,

there is a growing list of subgraph density measures that may be suited in dif-

ferent application context. Examples include cliques, quasi-cliques [26], k-core,

k-edge-connectivity [27], etc. Among these graph density measures, k-core stands

out to be the least computationally expensive one that is still giving reasonable

results. An O(n) algorithm is known to compute k-core decomposition in a graph

with n edges [28], where other measures have complexity growing super-linearly

or NP-hard. For practical considerations, our focus is to identify and maintain

12014 IEEE. Reprinted, with permission, from H. Aksu, M. Canim, Y. Chang, I. Korpeoglu,
and O. Ulusoy, ”Distributed k-core view materialization and maintenance for large dynamic
graphs,” Knowledge and Data Engineering, IEEE Transactions on, 1/2014.

51

k-core with fixed, large k values in particular. In contrast, a full k-core decompo-

sition assigns a core number to every vertex in the graph. To understand “dense”

areas in a graph, vertices with low core numbers do not contribute much and

thus the computational expense of a full decomposition is not justified. Fig. 1.1

illustrates the degree distribution of nine published graph datasets, where partly

due to their nature of power-law distribution, a significant percentage of graph

vertices have low degrees and thus low core numbers. In addition to reduced cost

in constructing k-core, it is also computationally less expensive to maintain it,

compared to maintaining core numbers for large numbers of low degree vertices.

We recognize that depending on the specific k value, it is plausible that some

may be more conveniently kept centralized, independent of other applications.

In practice, however the k-core subgraph, once identified, can also be added as

additional metadata to the vertices and edges of the distributed raw data. Such

metadata is useful in conjunction with other analytics to weigh the k-core labeled

vertices and edges differently or cross correlate k-core subgraphs from multiple

topics. Our proposed implementation can accommodate both centralized and

distributed maintenance by taking advantage of the flexible scale-out data store.

The rest of the chapter is structured as follows. We introduce our distributed

graph computing framework implemented on top of Apache HBase and its co-

processor feature to set the context of algorithm presentation in Section 4.1. We

formally define and introduce key k-core properties in Section 4.2. Section 4.3

describes our distributed k-core construction algorithms in näıve implementation

and pruning techniques. Section 4.4 details our incremental maintenance algo-

rithms for edge insertions and deletions. Section 4.5 makes further improvement

for maintenance over batch window updates. Experimental results are reported

and discussed in Section 4.6. Finally, Section 4.7 concludes the chapter.

4.1 Algorithm Implementation on Apache HBase

We model interactions between pairs of objects, including structured metadata

and rich, unstructured textual content, in the graph representation materialized

as adjacency list known as edge table. An edge table is stored and managed

52

as an ordered collection of row records in an HTable by Apache HBase [36].

Apache HBase is a non-relational, distributed data management system mod-

eled after Google’s BigTable [103]. Written in Java, HBase is developed as a

part of the Apache Hadoop project and runs on top of Hadoop Distributed File

System (HDFS). Unlike conventional Hadoop whose saved data becomes read-

only, HBase supports random, fast insert, update and delete (IUD) access at the

granularity of row records, mimicking transactional databases. Prominent HBase

partitioners include Facebook [104] and many others [105]. Fig. 4.1(a) depicts a

simplified architectural diagram of HBase with several key components relevant

to this study. An HBase cluster consists of master servers, which maintain HBase

metadata, and region servers, which perform data operations. An HBase table,

or HTable, may grow large and get split into multiple HRegions to be distributed

across region servers. In the example of Fig. 4.1(a), HTable 1 has four regions

managed by region servers 4, 7 and 10 respectively while HTable 2 has three re-

gions stored in region servers 4 and 10. After consulting with the master server,

an HBase client can directly communicate with region servers to read and write

data. An HRegion is a single logical block of record data, which is physically

materialized into multiple HFiles stored in HDFS for availability. Within each

HRegion, row records are organized with their keys sorted in alphanumeric order.

This sorted order is always preserved after new row insertions. Each HRegion

thus has a start (the lowest) key and an end (the highest) key. Our algorithms

take advantage of range partitioning to reduce the amount of data shuffling.

HBase’s coprocessor feature was first introduced in version 0.92, released in

January 2012 [106]. Like HBase itself, the idea of coprocessors was inspired by

Google’s BigTable coprocessors. It was recognized that pushing the computation

to the server where user deployed code can operate on the data directly without

communication overheads can give further performance benefit. The Endpoint

Coprocessor (CP) is a user-deployed program, resembling database stored proce-

dures, that runs natively in region servers. It can be invoked by an HBase client

to execute at one or multiple target regions in parallel. Results from the remote

executions can be returned directly to the client, or inserted into other HTables

in HBase, as exemplified in our algorithms.

53

HRegion 4

Region Server 4

Coprocessors

Region Server 7

Coprocessors

Region Server 10

Coprocessors

H
Ta

b
le

 t
o
 s

to
re

 g
ra

p
h
 d

a
ta

H
Ta

b
le

 1

Put GetScan / Filter

A
1
0
B

1
3

,
..

..

A
1
0
B

2
5

,
..

..

A
1
0
B

3
4

,
..

..

A
1
0
B

6
1

,
..

..

. A
2
1
B

4
1

,
..

..

A
4
1
B

5
1

,
..

..

B
1
4
C

2
1
,

..
..

B
1
4
D

1
2

,
..

..

B
1
4
F
1

3
,

..
..

B
6
1
A

1
0

,
..

..

B
6
1
A

2
1

,
..

..

C
4
1

C
4
2

,
..

..

Z
1

2
B

1
3

.
..

..

Table 1

HRegion 2

HRegion 1
HRegion 3

H
Ta

b
le

 2

HRegion 3
HRegion 2Table 2

HRegion 1

Hadoop Distributed File System

Master Server(s)

HBase Client

Get, Put, Scan/Filter

(a)

(b)

Figure 4.1: An HBase cluster consists of one or multiple master servers and
region servers, each of which manages range partitioned regions of HBase tables.
Coprocessors are user-deployed programs running in the region servers. They
read and process data from local HRegion and can access remote data by remote
calls to other region servers.

54

Fig. 4.1(a) depicts common deployment scenarios for Endpoint CP to access

data. A CP may scan every row from the start to the end keys in the HRe-

gion or it may impose filters to retrieve a subset in selected rows and/or selected

columns. Note that the row keys are sorted alphanumerically in ascending order

in the HRegion and the scan results preserve the order of sorted keys. In addition

to reading local data, a CP may be implemented to behave like an HBase client.

Through the Scan, Get, Put and Delete methods and their bulk processing vari-

ants, a CP can access other HTables hosted in the HBase cluster. For example,

a CP can request to scan another table, at the expense of remote procedure calls

(RPC). Similarly a CP can insert or delete rows into another table through RPC.

The latter scenario usually applies when the results of CP processing are too large

to be returned to the client.

The flexibility of CP introduced many possibilities to process local data in

a targeted way. On the other hand, spreading the reads and writes across the

cluster and incurring RPC penalty must be carefully worked into algorithm design

as presented in the following sections.

We map the rich graph representation G = {V,E,M,C} defined in Section 4.2

to an HTable. We first format the vertex identifier v ∈ V into a fixed length

string pad(v). Extra bytes are padded to make up for identifiers whose length is

shorter than the fixed length format. The padding aims to preserve the natural

representation of the id’s for other applications and avoids id remapping.

The row key of a vertex v is its padded id pad(v). The row key of an edge

e = {u, v} ∈ E is encoded as the concatenation of the fixed length formatted

strings of the source vertex pad(u), and the target vertex pad(v). The encoded

row key thus will also be a fixed length string pad(u) + pad(v). This encoding

convention guarantees a vertex’s row always immediately proceeds the rows of its

outbound edges in an HTable. Our graph algorithms exploit the strict ordering

to join ranges of two tables. Respective metadata M [V,E] and content C[V,E]

are stored in the columns. Fig. 4.1(b) includes a simple example of encoded

graph table, whose partitioned HRegions are shown across three servers. In this

table, a vertex is encoded as a string of three characters such as ‘A10’, ‘B13’,

55

‘B25’, ‘A21’, etc. A row key encoded like ‘A10B13’ represents a graph edge from

vertex ‘A10’, with fanout of four, to another vertex ‘B13’. This layout retains

minimal clustering, only a vertex and its immediate outbound edges are stored

consecutively. Our current work does not attempt to partition or cluster the

graph data, although we can adopt partitioning techniques such as [107]. Note

that, we use the terms partition and region interchangeably.

k-core algorithms in the study are implemented as several HBase coproces-

sors to achieve maximal parallelism. Take degree computation as an example.

Multiple instances of coprocessors scan the graph data table’s local partitions in

parallel and then insert vertices’ degrees into another HBase table for subsequent

computing. When an edge needs to be deleted, a coprocessor instance issues the

row delete message to a possibly remote HBase region server, which holds the cur-

rent row. Our algorithms are optimized to minimize the messaging exchanges by

achieving as much processing in the local partition as possible. Note that, k-core

view maintenance algorithms depend on raw graph and possibly metadata, hence

keeping a small k-core view result in a centralized location would still require

working with the raw graph on each update. On the other hand, if the view is

stored as additional metadata as part of the raw graph data, the improved affin-

ity helps not only incremental maintenance but also the consumption by other

analytics that weights the input of k-core. A concrete example of a distributed

social graph with metadata is provided below.

4.1.1 A Concrete Example of a Distributed Social Graph

With Metadata

Lets consider a facebook like social networking application called XBook. XBook

keeps users as vertices and theirs profiles as vertex metadata. Also, user messages

and published files are stored as vertex content. Users social acts are stored as

edges and act details are stored as edge metadata, i.e., user A is a friend of user

B, user B likes company C, or user D likes photo P posted by user A. XBook uses

HBase to store its rich graph on a Hadoop cluster using the schema described in

56

this study.

4.1.1.1 The Role of k-core Subgraph in Presence of the Metadata

k-core analytics simply provides the dense regions of a graph and the meaning

of a k-core sub-graph depends on the initial graph from which it is derived.

Rich graph storing all XBook data needs to be interpreted according to analytics

targeted to the raw graph. Real world analytics inherently targets some interest

domain graphs which emerge as projections in social network graph. For instance,

a camera manufacturing company asks for a query like display my advertisement

to ones in the k-core of users who live in the US, older than the age of 18 and have

more than 300 photos which requires a projection of raw XBook graph based on

which k-core will be constructed and maintained. Meanwhile a security company

requests k-core of users who like video V and live in NY to monitor a crime-net

evaluation via the particularly uploaded video V.

4.1.1.2 Advantage of Storing k-core in Distributed Sites

XBook stores all its data in an HBase cluster in distributed sites. All of the

data related to a user is stored in the associated vertex metadata and content.

Similarly, for each k-core materialized view maintained by the XBook, a field

in vertex metadata holds vertex/k-core status. Whenever XBook application re-

ceives query related to a vertex, it is dispatched to the associated distributed site.

Similarly, queries related to a vertex participating at a certain k-core subgraph are

responded by the associated distributed site. Thus, XBook application handles

the user related processing locally, i.e., constructs user customized pages holding

k-core participation specific advertisements using minimal out-of-site communica-

tion. On the other hand, a k-core graph search is handled just like another graph

search with metadata filtering. By keeping k-core data with vertex together,

XBook accomplishes working with inherently distributed rich social graph with-

out introducing a centralized single point of failure to the architecture.

57

4.2 Preliminaries

We define a rich graph representation G

G = {V,E,M [V,E], C[V,E]} (4.1)

where V is the set of vertices, E is the set of edges, M [V,E] is the structured

metadata associated with a vertex or an edge, and C[V,E] is the unstructured

context respectively. We simplified the description in this study by including all

vertices in the k-core computation while in practice, our system is used to con-

struct and maintain multiple k-core subgraphs projected over different metadata

and context simultaneously.

The problem of k-core subgraph identification is formally defined as follows:

Definition 1. A subgraph Gk = {Vk, Ek} induced from G where Vk ⊂ V , Ek ⊂ E,

is a k-core if and only if ∀v ∈ Vk, its degree, dGk(v) to the other vertices in Gk is

greater than or equal to k. Gk is the maximum subgraph in G with this property.

Definition 2. The core number of a vertex, v, is the maximum k where v ∈ Vk
and v /∈ Vk+1.

From the definitions, we can deduce the following lemmas, which are used

extensively in our algorithms to prune the search space.

Lemma 1. ∀v ∈ Vk, dG(v) ≥ k

Proof. By definition, dGk(v) ≥ k. Since v ∈ Gk ⊂ G, dG(v) ≥ dGk(v). Thus,

dG(v) ≥ k.

We further defineNk
G(v) as the number of neighbors of the vertex v inG, whose

degree is greater than or equal to k, i.e. Nk
G(v) = |{w|(w, v) ∈ E, dG(w) ≥ k}|.

In later sections, we sometimes refer to Nk
G(v) as qualifying neighbor count (qnc)

or shorthand as qnck(v).

Lemma 2. ∀v ∈ Vk, Nk
G(v) ≥ k

58

Proof. By Lemma 1, we know that every vertex in Vk has degree greater than or

equal to k. Since by definition, a vertex in Vk has at least k neighbors, we thus

deduct that it must have at least k neighbors whose degree is greater than or

equal to k, i.e. Nk
G(v) ≥ k.

We illustrate the relationship between a vertex’s core number, its degree in

the entire graph, its degree and neighbor count in the 2-core and 3-core subgraphs

respectively in Fig. 4.2 and Table 4.1. From this simple example, it is easy to

observe that a vertex with high degree, such as T , can have a low core number.

For commonly known social graph structures that follow power law distribution,

this suggests those vertices with very high degrees are likely to have a relatively

small core number. This example also illustrates that as k increases, both dGk and

Nk
G stay the same or decrease, which is a key property applied to our distributed

construction and maintenance algorithms.

Figure 4.2: An example graph to illustrate the relationship between a vertex’s
core number, dGk and Nk

G.

4.3 Distributed k-core Construction

In this section, we first describe a näıve distributed algorithm that constructs

a k-core subgraph by progressively removing edges in parallel with the help of

59

Table 4.1: Vertices in Fig. 4.2 and their 2-core and 3-core properties

Vertices Core dG dG2 N2
G dG3 N3

G

A - C 4 4 4 4 4 4
D - F 4 5 5 5 5 5
G - I 4 4 4 4 4 4
J 4 5 5 5 5 5
K 4 6 6 6 6 6
L 4 5 5 5 5 5
M 3 4 4 4 4 4
N - O 3 3 3 3 3 3
P 3 5 5 5 3 3
Q - S 2 2 2 2 0 0
T 2 6 2 2 0 0
U 2 2 2 2 0 0
V - Y 1 1 0 0 0 0

remote calls running on server nodes. As indicated earlier, the given graph data

is partitioned to server nodes, hence the computed k-core subgraph will also

be partitioned. Next, we describe how to improve the base algorithm with an

early pruning technique. The proposed improvement reduces the message traffic

between the computing nodes dramatically and yields significant speedup as we

demonstrate with the experiments.

Our k-core construction algorithms alter the BZ algorithm [28] by leaping to

the fixed k value directly in a distributed computing environment where graph

data is partitioned and remote references are expensive. As described in Sec-

tion 4.1, edges are sorted and clustered by their source vertex ids. The degree of

a vertex thus can be computed locally by node. Nodes request edges stored on

remote servers by sending messages. Table 4.2 summarizes notations used in our

pseudocodes.

4.3.1 Base Algorithm

The base algorithm, as described in Algorithms 4.1 and 4.2, runs at server nodes

and the client coordinates the execution of these remote servers. Each node scans

60

Table 4.2: Notations used in algorithms

G Dynamic graph partitioned into regions
stored in multiple nodes

Gk k-core materialized view graph of G
partitions(GA) Partition list of graph GA

Pi i’th partition of graph stored on
and processed by node i

Ni i’th node storing partition i
(X)← RCf (Pi, S) Remote call to function f on partition i takes

parameter S and returns value X to client
{u, v} Graph edge from vertex u to vertex v
Pi(GA) Partition of graph GA processed by node Ni

TA(CX , CY) Lookup table A with columns CX and CY
d(u), dGk(u) Degree of vertex u in G and Gk

qnck(u) Qualified Neighbor Count for vertex u
in G with respect to core value k

its own partition and deletes those edges incident to the vertices with degrees

lower than k. Unlike the BZ algorithm where the vertices can be immediately

sorted by their degrees in memory, our distributed algorithm relies on iterations

until all remote calls run out of work. The remaining graph is the k-core subgraph

with all its vertices having core number no less than k.

For high k values, one would expect to have fewer vertices qualifying for k-

core subgraph. Thus the algorithm described above would incur a large number

of edge deletions in its first iteration. This can be improved with an early pruning

technique described next.

4.3.2 Early Pruning

The insight leads us to have nodes check for a given edge {u, v}, if dG(u) and

dG(v) are both greater than or equal to k. In addition, the degrees of neighboring

vertices must be greater than or equal to k, i.e., Nk
G(u) ≥ k and Nk

G(v) ≥ k. A

pruned edge list is populated by those edges passing this minimum requirement.

61

Algorithm 4.1. Base distributed k-core construction algorithm (Base k-Core)
- Client Side

Input: Graph G = (V,E),
k: target core value

Output: Gk the k-core graph

1: Gk ← clone graph G
2: doIterate← true
3: while doIterate do
4: for each partition Pi in partitions(Gk) do
5: anyEdgeDeletedi ← RCFilter Out Edges(Pi, Gk, k)

6: doIterate← if any RC return edge delete

7: return Gk

Algorithm 4.2. Base distributed k-core construction algorithm - Node Ni Side

1: Upon receiving (anyEdgeDeleted)← RCFilter Out Edges(Gk, k)
2: anyEdgeDeleted← false
3: for each edge {u, v} ∈ Pi(Gk) do
4: if d(u) < k then
5: delete {u, v} from Gk

6: anyEdgeDeleted← true

7: return anyEdgeDeleted

62

The pruned graph is the same as the remaining graph after the first iteration

of the base algorithm. For a large k, if the iteration reduces the graph size by

90%, applying the base algorithm will delete 90% of the edges, while applying

the early pruning technique will insert 10% of the edges. In practice, we observed

significant speedup due to the dramatic messaging and I/O reduction.

The algorithm is described in Algorithms 4.3 and 4.4 for client and node part,

respectively. It simply first computes degrees, then computes qnc values and then

filters out qualified edges into a new table, and finally calls the basic algorithm

over this new table.

Algorithm 4.3. Distributed k-core construction algorithm with early pruning-
Client Side

Input: Graph G = (V,E),
k: target core value

Output: Gk the k-core graph

1: Create new table TL(Cdegree, Cqnc)

2: for each partition Pi in partitions(G) do
3: RCCompute Degrees(Pi, G, TL, k)

4: for each partition Pi in partitions(G) do
5: RCCompute Qnc(Pi, G, TL, k)

6: Create new graph Gk

7: for each partition Pi in partitions(G) do
8: RCFiltered Export(Pi, G, TL, Gk, k)

9: Gk ← Base k-Core(Gk, k)
10: return Gk

4.4 Incremental k-core Maintenance

We formulate incremental k-core maintenance as a series of edge insertions and

deletions to the graph. In case a vertex is deleted, the action to delete its edges

63

Algorithm 4.4. Distributed k-core construction algorithm with early pruning-
Node Ni Side

1: Upon receiving RCCompute Degrees(G, TL, k)
2: for each vertex u ∈ Pi(G) do
3: compute the d(u)
4: if d(u) ≥ k then
5: put d(u) into TL(Cdegree)

6: return
7: Upon receiving RCCompute Qnc(G, TL, k)
8: for each vertex u ∈ Pi(G) do
9: if qnck(u) ≥ k then

10: put qnck(u) into TL(Cqnc)

11: return
12: Upon receiving RCFiltered Export(G, TL, Gk, k)
13: for each edge {u, v} ∈ Pi(G) do
14: if qnck(u) ≥ k and qnck(v) ≥ k then
15: put {u, v} into Gk

16: return

is serialized and maintained as if the edges were deleted one at a time. We first

describe edge insertion and then edge deletion logic.

4.4.1 Inserting an Edge

With graph G = {V,E} and its materialized k-core subgraph Gk = {Vk, Ek}, we

give the following edge insertion theorem.

Theorem 1. Given a graph G = {V,E} and its k-core subgraph Gk = {Vk, Ek},
and an edge {u, v} is inserted to G,

• If both u, v ∈ Vk, then Gk does not change.

• If u or v or both /∈ Vk, then the subgraph consisting of vertices in {w|w ∈
V, dG(w) ≥ k,Nk

G(w) ≥ k}, where every vertex is reachable from u or v,

may need to be updated to include additional vertices into Gk.

To prove the theorem, we first prove the following lemma.

64

Lemma 3. If the vertex q is included in the k-core after the edge {u, v} is inserted,

then there exists at least one path originating from either u or v connecting to q

on which every vertex also has a core number greater than or equal to k after the

insertion of the new edge.

Proof. Since q was not in Vk and is in Ṽk after the edge insertion, its core number

must have been increased from k − 1 to k. The increase of q’s core number is

due to one or more of its neighboring vertices whose core numbers increased to

k as well. The same logic applies to those neighbors and leads to one or more

connected paths to the vertices u or v, where the graph topology is changed.

Using the above lemma, we now prove the edge insertion theorem by contra-

diction.

Proof. Case 1: If u, v ∈ Vk, the new edge {u, v} is inserted to Ek and there is no

change to Vk.

Case 2: We prove by contradiction that a vertex q in G cannot be in the

k-core, unless q ∈ {w|w ∈ V, dG(w) ≥ k,Nk
G(w) ≥ k} where all the vertices in

the set are reachable by either u or v. Suppose q is in the k-core but q /∈ {w|w ∈
V, dG(w) ≥ k,Nk

G(w) ≥ k} where all the vertices in the set are reachable by either

u or v. The above lemma states that there exists at least one path originating

from either u or v connecting to q on which every vertex also has a core number

greater than or equal to k. By definition of k-core in Section 4.2, the vertices on

the path must have dG ≥ k and Nk
G ≥ k. Therefore, the vertices on the path to

q and including q must have dG ≥ k and Nk
G ≥ k as well. Therefore, q must be

in the subgraph expanded from u and v.

Algorithms 4.5 and 4.6 implement the edge insertion theorem. The algorithm

maintains two auxiliary information for every vertex in the graph, ∀v ∈ V , its

degree d(v) and its qnc, qnck(v) for the given k.

The algorithm starts by updating the auxiliary values of u and v and their

direct neighbors, since a new edge is inserted. Next, if the vertices u and v are

65

Algorithm 4.5. Edge Insertion/Deletion- Client Side

Input: Graph G = (V,E),
Gk: the k-core graph,
{u, v}: updated edge,
Request: Insertion or Deletion edge,
k: maintained core value

Output: the updated k-core graph

1: Pi ← get partition of u in G
2: if Request == Insertion then
3: RCEdge Insertion(Pi, G,Gk, {u, v}, k)

4: if Request == Deletion then
5: RCEdge Deletion(Pi, G,Gk, {u, v}, k)

already part of the existing k-core subgraph, then the algorithm terminates after

inserting this edge into k-core subgraph. When the degree of either u or v is less

than k, then the algorithm terminates. Otherwise, Find Possible Edges to Insert

subroutine, which is described in Algorithm 4.7, returns a set of candidate edges in

C that may be part of the k-core. Then another subroutine Partial KCore, which

is described in Algorithm 4.8, filters out the edges in C that are not part of the

k-core. The remaining edges are returned to be inserted into the updated k-core

subgraph. Perform Insert Traversals subroutine provides the same functionality

utilizing parallel search in case parallel execution is preferred. For practical rea-

sons sequential search can over-perform parallel search when available resources

are limited (e.g., single core available to program), or parallelism cost i.e., thread

related overhead, is high with respect to paralleled operation cost. Hence, we

provide both sequential and parallel algorithms.

4.4.2 Deleting an Edge

We first give the following edge delete theorem.

Theorem 2. Given a graph G = {V,E} and its k-core subgraph Gk = {Vk, Ek},
and an edge {u, v} is deleted from G,

66

Algorithm 4.6. Edge Insertion- Node Ni Side

Input: Graph G = (V,E),
Gk: the k-core graph,
{u, v}: new edge,
k: maintained core value

Output: the updated k-core graph

1: if u ∈ Gk and v ∈ Gk then
2: insert edge {u, v} to Gk

3: return
4: if d(u) < k or d(v) < k then
5: return

Sequential version:
6: C ← ∅
7: if (d(u) ≥ k and qnck(u) ≥ k) or (d(v) ≥ k and qnck(v) ≥ k) then
8: C ←Find Possible Edges to Insert(G, Gk,C,k, u)

9: if C 6= ∅ then
10: G′k ← Partial KCore (C, k)
11: Gk ← Gk ∪G′k

Parallel version: . calls Algorithm 4.14
12: if (d(u) ≥ k and qnck(u) ≥ k) or (d(v) ≥ k and qnck(v) ≥ k) then
13: insertTraversals← {u}
14: Perform Insert Traversals(G, Gk, insertTraversals,k)

• If {u, v} /∈ Ek, then Gk does not change.

• If {u, v} ∈ Ek, then the subgraph consisting of vertices in {w|w ∈
V, dG(w) ≥ k,Nk

G(w) ≥ k}, where every vertex is reachable from u or v,

may need to be updated to delete additional vertices from Gk.

The logic of its proof is similar to that of the edge insertion theorem and thus

needs not be repeated here. The k-core subgraph is only updated when one of

its edges is deleted. One can easily construct an extreme example where a single

edge delete removes the entire k-core.

Algorithm 4.9 implements the theorem on the server side. After auxiliary

data updates, if the deleted edge {u, v} was not in the k-core subgraph Gk, per

theorem, the k-core does not change. Otherwise, the edge is deleted from Gk and

67

Algorithm 4.7. Find Possible Edges to Insert

Input: Graph G = (V,E),
Gk: the k-core graph,
C: set of candidate edges,
k: maintained core value,
u: start vertex

Output: C: set of candidate edges

1: Q← new queue
2: Q.enqueue(u)
3: mark(u)
4: while Q 6= ∅ do
5: v ← Q.dequeue()
6: for each vertex w adjacent to v do
7: if {v, w} /∈ C then
8: if d(w) ≥ k and qnck(w) ≥ k then
9: C ← C ∪ {v, w}

10: if w /∈ Gk and w is not marked then
11: Q.enqueue(w)
12: mark(w)

13: return C

the updated G̃k is recomputed by the k-core construction algorithm. We further

improve this basic version by checking the in-core degrees dGk(u), and dGk(v)

of u and v, respectively. If their in-core degrees remain above k after the edge

deletion, the current k-core subgraph does not change. Otherwise, the Delete

Edges Cascaded subroutine is invoked to traverse Gk and update the portion of

the k-core subgraph that needs update.

Delete Edges Cascaded algorithm described in Algorithm 4.10 first starts with

a vertex with in-core-degree less than k, deletes all its edges, and then updates

its neighbors’ in-core-degree counts accordingly. Then it recursively traverses the

neighbors whose in-core-degrees are now below k. The algorithm accelerates k-

core re-computing by knowing, at each iteration, which vertices have changed

their in-core degrees. Therefore, it can avoid recomputing all the in-core degrees

for all the vertices in the k-core. For the average case where an edge deletion

impacts a small fraction of vertices in the k-core, we have found this improved

68

Algorithm 4.8. Partial KCore

Input: C: set of candidate edges,
k: maintained core value

Output: C: the updated set of edges qualifying for k-core

1: changed← true
2: while changed do
3: changed← false
4: for each {u, v} ∈ C do
5: if dC(u) < k then
6: delete {u, v} from C
7: changed← true

8: return C

algorithm to be very effective. Perform Delete Traversals algorithm provides

parallel version of Delete Edges Cascaded algorithm for the case parallel algorithm

is preferred.

4.5 Batch k-core Maintenance

In update-heavy workload, k-core does not need to be kept in lock steps with

data updates and thus presents the opportunity to periodically maintain k-core

in batch windows. Accumulating data updates and refreshing k-core in a batch

bundles up expensive graph traversals and thus speeds up maintenance time,

compared to maintaining each update incrementally. Batch maintenance mitigate

the cost of BFS overhead dramatically. In such batch maintenance scenario,

edge insertion or deletion incurs immediate updates to the auxiliary information,

degree and qnc, while updates to the k-core subgraph are deferred. The system

maintains a list of updates and flushes them based on update count or clocked

window. As described in Algorithm 4.11, when the list is flushed, updates that

cancel each other are first removed from the list. Edge deletions, which typically

incur shorter graph traversal, are then treated next followed by edge insertions,

which may include longer traversal. Regardless of the processing order, the net

effect is the same. Algorithm 4.12, run at client side, presents the batch edge

69

Algorithm 4.9. Edge Deletion- Node Ni Side

Input: Graph G = (V,E),
Gk: the k-core graph,
{u, v}: the edge to be deleted,
k: maintained core value

Output: the updated k-core graph

1: if u /∈ Gk or v /∈ Gk then
2: return
3: delete {u, v} from Gk

Pruned sequential version:

4: if dGk(u) ≥ k and dGk(v) ≥ k then
5: return

6: if dGk(u) < k then
7: Delete Edges Cascaded(Gk,k,u)

8: if dGk(v) < k then
9: Delete Edges Cascaded(Gk,k,v)

Pruned parallel version: . uses Algorithm 4.12
10: if dGk(u) < k then
11: deleteList← {u}
12: Perform Delete Traversals(Gk,deleteList,k)

13: if dGk(v) < k then
14: deleteList← {v}
15: Perform Delete Traversals(Gk,deleteList,k)

deletions in more detail. Edges in the deletion list deleteList are grouped and sent

to respective partition’s node, where each remote call returns a list of cascaded

deletion requests. The client then regroups the requests.

Algorithm 4.14 presents batch edge insertion maintenance in detail. In

essence, the independently launched graph traversal in each incremental mainte-

nance is now aggregated into a single parallel graph traversal launched simulta-

neously from all the new edges. It first takes the list of edges insertTraversals,

and traverses them in parallel. Once the parallel traversal is done, candidate list

C will be processed by Partial KCore algorithm to compute k-core over traversed

graph.

70

Algorithm 4.10. Delete Edges Cascaded

Input: Gk: the k-core graph,
k: maintained core value,
u: start vertex

Output: the updated Gk

1: Q← new queue
2: Q.enqueue(u)
3: mark(u)
4: while Q 6= ∅ do
5: v ← Q.dequeue()
6: for each vertex w adjacent to v do
7: delete {v, w} from Gk

8: if dGk(w) < k then
9: if w is not marked then

10: Q.enqueue(w)
11: mark(w)

The Pruned Traversal algorithm described in Algorithm 4.15 runs on

the node side and performs a single BFS iteration for the vertices in the

insertTraversals list.

4.6 Performance Evaluation

Our experiments consist of three parts. In the first part, we evaluate the perfor-

mance of running distributed k-core construction algorithms. The experiments

show that the k-core construction algorithm with early pruning provides signif-

icant speedup compared to the base algorithm. In the second part, we evaluate

the performance of the incremental k-core maintenance algorithms on dynamic

graphs. We show that recomputing the whole k-core subgraph is much costlier

than incrementally maintaining it. In the third part, we show that maintaining

the k-core subgraph with batch updates provides further speedup compared to

applying the updates one by one. Thus we can keep the recency of the results

with much lower cost compared to reconstruction of the k-core.

71

Algorithm 4.11. Batch Process- Client Side

Input: Graph G = (V,E),
k: maintained core value,
Gk: k-core graph,
batchOperations: list of operations stored in batch part

Output: the updated k-core graph

1: deleteList← choose delete operations from batchOperations
2: Perform Delete Traversals(Gk, deleteList, k)
3: insertTraversals← choose insert operations from batchOperations
4: Perform Insert Traversals(G,Gk, insertTraversals, k)

Algorithm 4.12. Perform Delete Traversals- Client Side

Input: Gk: k-core graph,
deleteList: list of edges to be deleted,
k: maintained core value

Output: the updated k-core graph

1: while deleteList 6= ∅ do . at each iteration
2: for each partition Pi in partitions(Gk) do
3: bucketi ← from deleteList filter edges stored in Pi
4: cascadedDeletesi ← RCDelete Edges(Pi, Gk, bucketi, k)

5: deleteList← ∅
6: for each partition Pi in partitions(Gk) do
7: if cascadedDeletesi 6= ∅ then
8: add cascadedDeletesi to deleteList

4.6.1 Implementation on HBase

The server side of the algorithms were implemented as HBase coprocessors to

take advantage of distributed parallelism. Table 5.2 describes the mapping from

the graph construct in Table 4.2 to physically materialized tables, table regions

and coprocessors in HBase. While we instantiate and quantify the benefits of our

algorithms through HBase, alternative implementation of the same algorithms

may also be developed for other distributed processing platforms.

72

Algorithm 4.13. Delete Edges- Node Ni Side

Input: Gk: k-core graph,
deleteList: list of edges to be deleted,
k: maintained k value

Output: cascadedDeletes the cascaded delete list

1: cascadedDeletes← ∅
2: for each edge {u, v} in deleteList do
3: delete {u, v} from Gk

4: if dGk(u) < k then
5: for each vertex w adjacent to u do
6: delete {u,w} from Gk

7: cascadedDeletes← cascadedDeletes ∪ {w, u}
8: return cascadedDeletes

Table 4.3: Mapping of graph notations in Table 4.2 to the HBase implementation

G HBase table holding graph edges partitioned
into regions over multiple region servers

Gk HBase table holding k-core graph edges
Pi i’th region processed by coprocessor Ni

Ni i’th coprocessor running on region i
(X)← RCf (Ri, S) Coprocessor function f on region i takes

parameter S and returns value X to client
Pi(GA) Region of GA processed by coprocessor Ni

TA(CX , CY) Table A created on HBase with column CX and CY

4.6.2 System Setup

The experiment cluster consists of one master server and thirteen slave servers,

each of which is an Intel CPU based blade running Linux connected by a 10-

gigabit Ethernet. We use vanilla HBase environment running Hadoop 1.0.3 and

HBase 0.94 with data nodes and region servers co-located on the slave servers.

The HDFS (Hadoop File System) replication factor is set at the default three

replicas.

73

Algorithm 4.14. Perform Insert Traversals- Client Side

Input: Graph G = (V,E),
Gk: k-core graph,
insertTraversals: list of vertices to be traversed,
k: maintained core value

Output: the updated k-core graph

1: C ← ∅
2: while insertTraversals 6= ∅ do . at each iteration
3: for each partition Pi in partitions(G) do
4: bucketi ← from insertTraversals filter edges stored in Pi
5: qualifyingListi ← RCPruned Traversal(Pi, bucketi, k)

6: insertTraversals← ∅
. Aggregate this turn results and compute next turn input

7: for each partition Pi in partitions(G) do
8: for each edge {u, v} in qualifyingListi do
9: if {u, v} /∈ C then . Select a vertex only once

10: C ← C ∪ {u, v}
11: if v /∈ Gk then . do not go over vertices already in Gk

12: insertTraversals← insertTraversals ∪ {v}
13: G′k ← Partial KCore (C, k)
14: Gk ← Gk ∪G′k

4.6.3 Datasets

The datasets we used in the experiments were made available by Milove et al. [108]

and the Stanford Network Analysis Project [109]. We appreciate their generous

offer to make the data openly available for research. For details, please see the

references and we only briefly recap the key characteristics of the data in Ta-

ble 4.4. Different from traditional graph processing approach, vertices and edges

are stored in a distributed manner with large attribute data associated. Thus,

total graph size is much larger than topology-only graphs in matrix or adjacency

list form with possible edge weights.

74

Algorithm 4.15. Pruned Traversal- Node Ni Side

Input: Graph G = (V,E),
insertTraversals: list of vertices to be traversed,
k: maintained k value

Output: qualifyingList: list of edges to qualifying neighbors

1: returnList← ∅
2: for each vertex u in insertTraversals do
3: for each vertex w adjacent to u do
4: if d(w) ≥ k and n(w) ≥ k then
5: qualifyingList← qualifyingList ∪ {u,w}
6: return qualifyingList

Table 4.4: Key characteristics of the datasets used in the experiments

Name Vertex
Count

Bidirectional Edge Count Ref

Orkut 3.1 M 234 M [108]
LiveJournal 5.2 M 144 M [108]
Flickr 1.8 M 44 M [108]
Patents 3.8 M 33 M [109]
Skitter 1.7 M 22.2 M [109]
BerkStan 685 K 13.2 M [109]
YouTube 1.1 M 9.8 M [108]
WikiTalk 2.4 M 9.3 M [109]
Dblp 317 K 2.10 M [109]

4.6.4 k-core Construction Experiments

In Section 4.3 we provided two algorithms for distributed k-core construction.

The first algorithm we proposed, which is referred to as Base k-core algorithm,

is described in Algorithms 4.1 and 4.2 in Section 4.3. The second algorithm,

which is referred to as Pruned k-core algorithm, is an improved version of the

first algorithm and is described in Algorithms 4.3 and 4.4. We implemented both

of these distributed algorithms on HBase and compared their execution times of

building a k-core subgraph for different k values. These k values are determined

based on the degree distributions in our datasets. A vast majority of the vertices

in these graphs have very low degrees as can be seen in the degree-distribution plot

75

given in Fig. 1.1. As we want to identify the dense subgraphs with high cohesion

in these real world datasets, we selected the k values based on the percentage of

vertices with top degrees. We selected three different k values so that 4, 8 and 16

percent of the vertices in the datasets have a degree of at least k. Table 4.5 lists

the chosen k values along with the percentage and the number of vertices with

degree greater or equal to chosen k value for each dataset.

Table 4.5: k values used in the experiments and the ratio of vertices with degree
at least k in the corresponding graphs

Name degree per-
centage

k value Number of
vertices

Orkut 4 263 123,241
Orkut 8 183 247,134
Orkut 16 123 493,426
LiveJournal 4 80 194,417
LiveJournal 8 50 391,560
LiveJournal 16 28 787,161
Flickr 4 65 69,095
Flickr 8 24 140,283
Flickr 16 9 288,479
Patents 4 28 162,270
Patents 8 21 332,484
Patents 16 15 670,183
Skitter 4 42 68,612
Skitter 8 26 139,518
Skitter 16 15 277,190
BerkStan 4 57 27,993
BerkStan 8 38 56,982
BerkStan 16 24 110,185
WikiTalk 4 5 115,846
WikiTalk 8 3 277,500
WikiTalk 16 2 626,474
YouTube 4 18 46,471
YouTube 8 10 91,787
YouTube 16 5 201,529
Dblp 4 25 13,031
Dblp 8 16 27,065
Dblp 16 10 53,801

Fig. 4.3 compares the execution times between the base and pruned algorithms

for 9 different datasets and 3 different k values. The execution time is shown

76

 1

 10

 100

 1000

 10000

Y
ouT

ube 18

Y
ouT

ube 10

Y
ouT

ube 5

F
lickr 65

F
lickr 24

F
lickr 9

Livejournal 80

Livejournal 50

Livejournal 28

O
rkut 263

O
rkut 183

O
rkut 123

S
kitter 42

S
kitter 26

S
kitter 15

P
atents 28

P
atents 21

P
atents 15

D
blp 25

D
blp 16

D
blp 10

B
erkS

tan 57

B
erkS

tan 38

B
erkS

tan 24

W
ikiT

alk 5

W
ikiT

alk 3

W
ikiT

alk 2

E
xe

cu
tio

n
tim

e
in

 s
ec

on
ds

k-core construction times

Base Alg. Pruned Alg.

6.5x 6.3x
3.6x

5.9x 4.8x
3.4x

8.0x
8.1x 4.5x

8.2x 14.9x
5.9x

4.9x
3.5x 2.8x

6.4x 7.5x 5.7x

1.8x 1.8x 1.7x

5.7x 4.5x
3.0x

4.7x 4.3x
3.1x

Figure 4.3: k-core construction times for Base and Pruned k-core construction al-
gorithms are shown for each dataset with three chosen k values. Relative speedup
achievement of Pruned algorithm over Base algorithm is provided above each bar.

in log-scale. The speedup factor of the pruned algorithm compared to the base

algorithm is shown on the top of each bar corresponding to the pruned algorithm.

As can be seen, pruned algorithm dramatically reduces the execution time, hence

provides dramatic speedup. One key observation is that as the dataset size gets

bigger, the speedup also increases due to the significant reduction in messaging

I/O among computing nodes. For the largest graphs such as Orkut, almost

an order of magnitude improvement is observed. Further experiments showed

the k-core construction time decreases with an increasing number of servers as

expected. We monitored the cluster using Ganglia [110] software while running

our experiments. To give an example of how the workload is distributed among

the cluster nodes, a snapshot of the network traffic is provided in Fig. 4.4. The

plot shows the network traffic during one experiment in k-core construction on

the Flickr dataset. What is notable is that besides the master node on the server

sg01, all other HBase region server nodes exhibits similar network traffic patterns.

This means our implementation on HBase takes full advantage of the distributed

parallelism and balances the workload during algorithm execution.

In Section 4.4, we presented distributed insertion and deletion algorithms

to maintain k-core subgraph when edges are inserted into or deleted from the

graph. Here, we evaluate the performance of these algorithms. We compare the

77

Figure 4.4: Network activities on 14 physical nodes while constructing k-core on
Flickr dataset.

maintenance time of each update with reconstruction time of the k-core subgraph

every time an edge is inserted or deleted. Below are three update scenarios we

consider on the given graph. For each scenario we measured the performance of

the system to maintain the previously materialized k-core subgraph.

1. In Extending Window scenario, a constant number of edges are continuously

inserted into the original graph. We randomly choose 1000 edges and insert

them into the graph. Those random edges are selected from the graph and

deleted before materialized k-core graph is constructed.

2. In Shrinking Window scenario, a constant number of edges are continuously

deleted from the original graph. We first construct the k-core subgraph.

Later, we randomly choose 1000 edges from the graph to delete them one

by one while maintaining the k-core subgraph.

3. In Moving Window (Mix) scenario, Extending and Shrinking scenarios are

run simultaneously where one insertion is followed by one deletion.

We repeat these three scenarios with each dataset and measure their execution

78

times. The largest k value chosen for each dataset is used in the experiments.

Fig. 4.5 plots the speedup through our incremental maintenance algorithms over

recomputing k-core from scratch, for 9 different datasets. The y-axis shows the

speedup in log-scale. For each dataset and scenario, the figure gives the speedup

of incremental update approach with respect to two versions of from-scratch con-

struction, base construction algorithm and pruned construction algorithm. As

the figure shows, three to four orders of magnitude speedup can be expected

when the only updates are edge insertions (extending window scenario). Similar

speedup factors can be observed for mixed edge insertions and deletions with one

to one ratio (moving window -mix- scenario). Higher speedup, up to six orders of

magnitude can be expected when the only updates are edge deletions (shrinking

window scenario).

 1

 10

 100

 1000

 10000

 100000

 1e+006

 1e+007

O
rkut Insertion

Livejournal Insertion

F
lickr Insertion

B
erkS

tan Insertion

S
kitter Insertion

Y
ouT

ube Insertion

W
ikiT

alk Insertion

P
atents Insertion

D
blp Insertion

O
rkut D

eletion

Livejournal D
eletion

F
lickr D

eletion

B
erkS

tan D
eletion

S
kitter D

eletion

Y
ouT

ube D
eletion

W
ikiT

alk D
eletion

P
atents D

eletion

D
blp D

eletion

O
rkut M

ix

Livejournal M
ix

F
lickr M

ix

B
erkS

tan M
ix

S
kitter M

ix

Y
ouT

ube M
ix

W
ikiT

alk M
ix

P
atents M

ix

D
blp M

ix

S
pe

ed
up

Speedup for each dataset

Speedup vs Base Alg. Speedup vs Pruned Alg.

8x

8x

6x

6x

5x

7x

5x

6x

2x

8x
8x

6x 6x
5x

7x 5x

6x

2x

8x

8x

6x
6x

5x
7x

5x

6x

2x

Figure 4.5: k-core maintenance speedups for each dataset with insertion, deletion,
mix workload combinations. Maintenance algorithm speedup for both base and
pruned construction algorithms is shown in the plot. Relative speedups are also
provided above the bars.

During our experiments, even though we measured the individual latencies

for the three scenarios, we are not reporting them here due to space limitations.

We observed that in the Shrinking Window workload, the average latencies are

much smaller than those in the Extending Window workload. This is expected

since in k-core maintenance, random edge deletes rarely incur the overhead of

graph traversal and partial k-core recomputation. Table 4.6 lists the mean time

and standard deviation for each dataset and experiment scenario.

79

Table 4.6: Graph update latency in msec to maintain k-core. For each dataset
and experiment scenario mean and standard deviation of update time is provided.
For large graphs, scenarios with insertions show high standard deviation. Smaller
dataset scenarios and ShrinkingWindow scenarios show low update times.

Name scenario mean std
Orkut ExtendingWindow 45,266.27 1,017,132
Orkut ShrinkingWindow 4.09 6.05
Orkut MovingWindow 23,520.74 743,701
LiveJournal ExtendingWindow 923.46 20566
LiveJournal ShrinkingWindow 3.41 3.51
LiveJournal MovingWindow 458.78 14,423
Flickr ExtendingWindow 20.14 392.85
Flickr ShrinkingWindow 4.74 16.39
Flickr MovingWindow 11.89 275.23
Patents ExtendingWindow 168.83 2,624
Patents ShrinkingWindow 3.99 2.47
Patents MovingWindow 83.55 1,799
Skitter ExtendingWindow 27.39 785.4
Skitter ShrinkingWindow 3.51 1.66
Skitter MovingWindow 17.8 663.94
BerkStan ExtendingWindow 2.94 4.38
BerkStan ShrinkingWindow 3.87 4.47
BerkStan MovingWindow 3.09 3.26
WikiTalk ExtendingWindow 4.41 3.62
WikiTalk ShrinkingWindow 6.78 7.24
WikiTalk MovingWindow 4.94 4.45
YouTube ExtendingWindow 68.63 690.4
YouTube ShrinkingWindow 4.39 9.17
YouTube MovingWindow 35.46 485.78
Dblp ExtendingWindow 15.25 180.38
Dblp ShrinkingWindow 4.05 2
Dblp MovingWindow 9.1 122.23

80

Another notable observation is that few edge insertions take much longer

time than average update latency. The main rationale behind this observation is

the long traversals of the graph performed by calling the procedure described in

Algorithm 4.7. Fig. 4.6 illustrates the latency measured over 1,000 random edge

inserts. While the majority of inserts took 20 msec or less, a couple of inserts

took longer than 10 seconds, which skewed the average and standard deviation.

We observed as the graph gets larger, long graph traversals over the distributed

servers are costly.

0 200 400 600 800 1000

1
10

0
10

00
0

number of runs

E
xe

cu
tio

n
tim

e
in

 m
se

c

Figure 4.6: Insert latency over 1,000 random edges to the LiveJournal dataset.

We further break down the update latency of k-core maintenance in Fig. 4.7

into three components: the first component is the normal update latency in

HBase; the second component is the time spent in updating the vertex degree and

qnc; and the third component is the time in traversing the neighboring subgraph

and partial k-core update. The first component stays mostly constant, while edge

insertions contribute the most update latency due to graph traversal, when they

occur. By performing batch updates our goal is to merge these costly traversals

as much as possible as we discuss the batch maintenance experiments in the next

81

section.

1

10

100

1000

10000

100000

F
lickr Insertions

F
lickr D

eletions
F

lickr M
ix

Y
ouT

ube Insertions
Y

ouT
ube D

eletions
Y

ouT
ube M

ix
Livejournal Insertions
Livejournal D

eletions
Livejournal M

ix
O

rkut Insertions
O

rkut D
eletions

O
rkut M

ix
S

kitter Insertions
S

kitter D
eletions

S
kitter M

ix
P

atents Insertions
P

atents D
eletions

P
atents M

ix
D

blp Insertions
D

blp D
eletions

D
blp M

ix
B

erkS
tan Insertions

B
erkS

tan D
eletions

B
erkS

tan M
ix

W
ikiT

alk Insertions
W

ikiT
alk D

eletions
W

ikiT
alk M

ix
E

xe
cu

tio
n

tim
e

in
 m

se
c

Maintenance Time Slices

Base HBase time
Aux maintenance time

Traversal time

Figure 4.7: k-core maintenance times for each dataset-scenario where time slices
for Base HBase insert/delete operation, auxiliary information maintenance and
graph traversals are illustrated.

4.6.5 Batch Maintenance Experiments

To evaluate our batch update approach for maintaining the k-core subgraph, we

run experiments to investigate

• to what extent batch processing provides speedup for different datasets,

• how batch size affects the mean update time, and

• how large batch size can grow before batch update gets slower than con-

structing k-core subgraph from scratch.

To measure the performance improvement of batch processing approach com-

pared to individual updates, we set up experiments for each dataset for the up-

date scenarios described in Section 4.6.4. For each scenario we use 10K batch size.

82

Fig. 4.8 shows batch processing speedup versus individual processing in k-core

maintenance for three different update scenarios and for 9 different datasets. The

speedup is shown in the y-axis in log-scale. For each speedup bar, we also indicate

on top of the bar the speedup factor explicitly. Each subfigure also illustrates the

size of the respective dataset in the secondary y-axes using a curve of crosses.

For extending window scenario, we get greater performance improvement, up

to three orders of magnitude speedup particularly for large graphs. Results indi-

cate a strong correlation between dataset size and speedup from batch approach.

As the datasets get bigger we get better performance improvement which is quite

promising in terms of scalability of the proposed algorithms. On the other hand,

for the datasets with less than 10M edges we observed a performance loss as op-

posed to having faster maintenance. This is mainly caused by the fact that, batch

processing traversals are strictly parallelized and this results in many coprocessor

calls. When a graph is small, the work performed by the coprocessors become

quite negligible and therefore coprocessor call overhead outweighs the benefit it

provides. For the shrinking window scenario, the batch processing approach does

not provide significant speedup, as the deletion cost in individual processing is

already minimal, i.e., close to auxiliary maintenance cost plus base HBase up-

date times. The moving window case provides speedups in between extending

and shrinking window cases, which is as expected considering that it is a mixture

of insertion and deletion operations.

We also conducted experiments to evaluate the relationship between batch

size and mean update time of the k-core subgraph. For illustrative purposes, we

reported results from the Flickr dataset. By changing the batch size, we measured

the average update time for each of the three update scenarios. Fig. 4.9 shows that

the average update time gets smaller as the batch size increases. This is because

a large batch size incurs more traversals to run in parallel and join together

in case search space overlap. Thus, for larger batch sizes, average update time

decreases and the traversal time no longer constitutes a significant cost for the

updates. Instead auxiliary maintenance and base HBase updates become the

main contributors of the overall cost. This is particularly valid for batch sizes

greater than 10K-20K.

83

0.01

0.1

1

10

100

1000

O
rk

u
t

L
iv

e
jo

u
rn

a
l

F
lic

k
r

S
k
itte

r

P
a
te

n
ts

B
e
rk

S
ta

n

Y
o
u
T
u
b
e

W
ik

iT
a
lk

D
b
lp

1

10

100

1000

S
p
e
e
d
u
p

S
iz

e
 (
M

)

Extending window

Speedup Size
1085.1x

34.6x

4.5x
2.6x

6.1x

1.0x

9.7x

0.6x

0.1x

0.01

0.1

1

O
rk

u
t

L
iv

e
jo

u
rn

a
l

F
lic

k
r

P
a
te

n
ts

S
k
itte

r

B
e
rk

S
ta

n

Y
o
u
T
u
b
e

W
ik

iT
a
lk

D
b
lp

1

10

100

1000

S
p
e
e
d
u
p

S
iz

e
 (
M

)

Shrinking window

Speedup Size

1.3x
1.0x

1.6x 1.3x

0.4x

1.4x 1.2x
1.5x

0.02x

0.1

1

10

100

O
rk

u
t

L
iv

e
jo

u
rn

a
l

F
lic

k
r

P
a
te

n
ts

S
k
itte

r

B
e
rk

S
ta

n

Y
o
u
T
u
b
e

W
ik

iT
a
lk

D
b
lp

1

10

100

1000

S
p
e
e
d
u
p

S
iz

e
 (
M

)

Moving window

Speedup Size520.2x

15.2x

1.3x

31.3x

1.0x 1.0x

3.6x

0.7x

2.2x

Figure 4.8: 10K sized batch maintenance speedups for Extending window, Shrink-
ing window and Moving window scenarios.

84

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 10 20 30 40 50

A
ve

ra
ge

 u
pd

at
e

tim
e

(m
s)

Batch size (K)

Batch process times

Insertion
Deletion

Mix

Figure 4.9: Average edge update cost for increasing batch sizes from 1K up to
50K.

Lastly, we studied the break even point before exhausting the benefit of batch

maintenance compared to simply reconstructing k-core. Fig. 4.10 shows the to-

tal update time of each batch processing and reconstruction time of k-core. As

expected, when the batch size increases, the total update time increases for all

insertion, deletion and mix updates as more edges need to be processed for larger

batches. For the Flickr graph, batch maintenance cost crosses the cost of the

pruned construction algorithm around 12K-40K updates and crosses the cost of

the base construction algorithm around 290K-320K updates. Application require-

ments dictate the tradeoff between data recency and maintenance cost.

85

 0

 200

 400

 600

 800

 1000

 1200

 50 100 150 200 250 300

O
ve

ra
ll

up
da

te
 ti

m
e

(s
ec

)

Batch size (K)

Batch vs. construction times

Insertion
Deletion

Mix
Pruned const.

Base const.

Figure 4.10: Overall processing time of each batch of updates versus reconstruc-
tion time of k-core algorithm on Flickr dataset.

86

4.7 Conclusion

To the best of our knowledge, our study is the first to propose a horizontally

scaling solution for the k-core view materialization and maintenance of large,

dynamic graphs that do not fit into memory. Our proposed set of algorithms

aggressively prune the search space to minimize messaging among computing

nodes holding partitioned data. Our experimental results demonstrated orders

of magnitude speedup with the aggressive pruning and fairly low maintenance

overhead in the majority of graph updates at relatively high k-valued cores.

For the simplicity of the presentation, we left out the metadata and content

associated with graph vertices and edges. In practice, a k-core subgraph is often

associated with application context and semantic meaning. Our efficient main-

tenance algorithms now enable many practical applications to keep many k-core

materialized views up to date and ready for user exploration.

We provided a distributed implementation of the algorithms on top of Apache

HBase, leveraging its horizontal scaling, range-based data partitioning, and the

newly introduced coprocessor framework. Our implementation fully took advan-

tage of distributed, parallel processing of the HBase coprocessors. Building the

graph data store and processing on HBase also benefits from the robustness of

the platform and its future improvements. We observed opportunities to further

optimize for efficiency when two or more k-core views for the same raw graph

share overlaps. This may be resulted from semantic hierarchies such as technol-

ogy, computer, and IBM or simply different k values on the same topic, say IBM.

Our current algorithms serve as the foundation to pursue these optimization op-

portunities.

87

Chapter 5

Network Community

Identification and Maintenance

at Multiple Resolutions

Multi-resolution community identification and evolution in a complex network has

applications spanning multiple disciplines ranging from social science to physics.

In recent years, the rise of very large, rich content networks re-ignited interests

to the problem at the big data scale that poses computation challenges to early

work with algorithm complexity greater than O(n). A further distinction from

the decade-old graph problem formulation is that multi-attributed content associ-

ated vertices and edges must be included in creating, managing, interpreting and

maintaining results. Thus the problem of multi-resolution community analysis

is a hybrid of content and graph analysis on various subjects of interest. The

problem is made further complex with the observation that interactions with a

community happen not just at one but multiple levels of intensity, which reflects

in reality active to passive participants in a group. This results with multiple lev-

els of depth in multi-resolution community identification. To make the solution

practical, it is thus necessary to make community identification and continuing

maintenance at multiple resolutions.

88

In this chapter1, we propose a set of algorithms built on the k-core metric

to identify and maintain a content-projected community at multiple resolutions

on an open-source big data platform, Apache HBase. We formulate the commu-

nity identification problem as first projecting a subgraph by content topic of the

social network interaction, such as microblog or message, and then locating the

“dense” areas in the subgraph which represent higher inter-vertex connectivity

(or interactions in the case of a social network) at multiple resolutions. In the

literature, there is a long list of subgraph density measures that may be suited in

different application context. Examples include cliques, quasi-cliques [26], k-core,

k-edge-connectivity [27], etc. Among these graph density measures, k-core stands

out to be the least computationally expensive one that is still giving reasonable

results. An O(n) algorithm is known to compute k-core decomposition in a graph

with n edges [28], where other measures have complexity growing super-linear or

NP-hard.

Our first study on the identification and maintenance of k-core subgraphs

considers a fixed k value. We also propose algorithms to perform batch oper-

ations for maintenance purposes. The proposed approaches are quite effective

when a constant k value is used. On the other hand, when subgraphs at multiple

resolutions are needed, one has to run separate instances of the algorithms for

each k value. In order to cope with this limitation, significant design changes

are considered in our algorithms to efficiently handle k-core subgraphs at multi-

ple, fixed k values. Integrated algorithms are proposed for k-core construction,

maintenance and bulk processing of update operations. As we demonstrate with

our experimental results, these algorithms yield orders of magnitude speed up

compared to the base case k-core construction.

For practical considerations, our focus is to identify and maintain k-core with

fixed, large k values in particular. In contrast, a full k-core decomposition assigns

a core number to every vertex in the graph. To understand “dense” areas in a

graph, vertices with low core numbers do not contribute much and thus the

12013 IEEE. Reprinted, with permission, from H. Aksu, M. Canim, Y. Chang, I. Korpeoglu,
and O. Ulusoy, ”Multi-resolution Social Network Community Identification and Maintenance
on Big Data Platform,” Big Data (BigData Congress), 2013 IEEE International Congress on,
7/2013.

89

computational expense of a full decomposition is not justified. In addition to

reduced cost in constructing k-core, it is also computationally less expense to

maintain it, compared to maintaining core numbers for large numbers of low

degree vertices.

5.1 Preliminaries

We define a rich graph representation G

G = {V,E,M [V,E], C[V,E]} (5.1)

where V is the set of vertices, E is the set of edges, M [V,E] and C[V,E] are

the structured metadata and unstructured content respectively. This study sim-

plified its description by including all vertices in the k-core computation while

in practice, our system can be used to construct and maintain multiple k-core

subgraphs on different metadata topics and context simultaneously.

The problem of k-core subgraph identification is formally defined as follows:

Definition 3. A subgraph Gk = {Vk, Ek} induced from G where Vk ⊂ V , Ek ⊂ E,

is a k-core if and only if ∀v ∈ Vk, its degree, DGk(v) to the other vertices in Gk is

greater than or equal to k. Gk is the maximum subgraph in G with this property.

Definition 4. The core number of a vertex, v, is the maximum k where v ∈ Vk
and v /∈ Vk+1.

From the definitions, we can deduce the following lemmas, which are used

extensively in our algorithms to prune the search space.

Lemma 4. ∀v ∈ Vk, DG(v) ≥ k

We further defineNk
G(v) as the number of neighbors of the vertex v inG, whose

degree is greater than or equal to k, i.e. Nk
G(v) = |{w|(w, v) ∈ E,DG(w) ≥ k}|.

In later sections, we sometimes refer to Nk
G(v) as Qualifying Neighbor Count

(QNC) or shorthand as qnck(v).

Lemma 5. ∀v ∈ Vk, Nk
G(v) ≥ k

90

5.2 Distributed Multi k-core Construction

In this section, we first describe a näıve distributed algorithm that constructs a

k-core subgraph, then we propose a novel algorithm to compute k-core graph for

multiple k values simultaneously. Table 5.1 summarizes notations used in our

pseudocode.

Table 5.1: Notations used in algorithms

G Dynamic graph partitioned into
regions stored in multiple server
nodes

Gk k-core materialized view graph of G
Gki Subgraph of Gk holding k-core for

core value ki
k1...n Target core values in ascending order
Ri i’th region of graph stored on

and processed by node i
Ni i’th node storing region i
(X, Y)← RCf (Ri, S) Remote call to function f on region

i takes parameter S and returns
values X, Y to client

{u, v} Graph edge from vertex u to vertex v
Ri(GA) Region of graph GA processed by

node Ni

TA(CX , CY) Lookup table A with column CX
and CY

d(u), dGki (u) Degree of vertex u in G and Gki

qncki(u) Qualified Neighbor Count for vertex
u in Gki with respect to next core
value ki+1

5.2.1 Base Algorithm

The base algorithm is an adaptation of the BZ algorithm to distributed processing

for a fixed k value. As described in Algorithms 5.1 and 5.2, the server side

algorithm executes in parallel as HBase coprocessors to scan partitioned graph

91

data in the local regions and delete those vertices with degrees less than k. The

client side program monitors parallel execution and issues iterations until k-core

is found. To compute k-core graph for multiple k values, this algorithm is called

for each k value separately.

Algorithm 5.1. Base k-core construction- Client Side

Input: Graph G = (V,E),
k: target core value

Output: Gk the k-core graph

1: Gk ← clone graph G
2: doIterate← true
3: while doIterate do
4: for each region i in regions(Gk) do
5: anyEdgeDeletedi ← RCFilter Out Edges(Ri, Gk, k)

6: Wait RCs to complete
7: doIterate← false
8: for each region i in regions(Gk) do
9: doIterate← doIterate||anyEdgeDeletedi

10: return Gk

Algorithm 5.2. Base k-core construction- Node Ni Side

1: Upon receiving (anyEdgeDeleted)← RCFilter Out Edges(Gk, k)
2: anyEdgeDeleted← false
3: for each edge {u, v} ∈ Ri(Gk) do
4: if d(u) < k then
5: delete {u, v} and {v, u} from Gk

6: anyEdgeDeleted← true

7: Return anyEdgeDeleted

5.2.2 Multi k-core Construction

Our proposed algorithm computes k-core subgraphs for a list of distinct k values.

As stated in the notation, k values are ordered and ki is the i’th k value, e.g.

k1...3 = {15, 20, 30}. In the degenerate case, k0 = 0, Gk0 = G. The algorithm

starts with computing k-core graph for k1 and progressively moves up the index

by reusing previously found k-core subgraph.

92

The algorithms are described in Algorithms 5.3 and 5.4 for the client and

server side, respectively. It first computes k-core graph for k1 using the Base

algorithm. Next, the client invokes distributed parallel processing Compute Core

at the server side to compute core values for vertices with degree greater than

or equal to ki and less than ki+1. On the server side, it checks a vertex’s degree

count and decrements its neighbors’ if their degree counts are greater than ki+1.

Iterations continue until all the parallel execution reported vertices in Gki+1
have

been identified.

Algorithm 5.3. Multi k-core construction- Client Side

Input: Graph G = (V,E),
k1...n: target core values

Output: Gk the k-core graph

1: Gk ← Base k-core construction(G, k1)

2: Create new table TL(Cdegree)
3: for each region i in regions(Gk) do
4: RCCompute Degrees(Ri, Gk, TL)

5: Wait RCs to complete

6: kn+1 ← infinity
7: next← k1
8: for each ki in k1...n do
9: while next ≥ ki and next < ki+1 do

10: next← infinity
11: for each region j in regions(Gk) do
12: nextj ← RCCompute Core(Rj, ki, ki+1)

13: Wait RCs to complete
14: for each region j in regions(Gk) do
15: next← min(next, nextj)

93

Algorithm 5.4. Multi k-core construction- Node Ni Side

1: Upon receiving RCCompute Degrees(Gk, TL)
2: for each vertex u ∈ Ri(Gk) do
3: compute dGk(u) and put it into TL(Cdegree)

4: return
5: Upon receiving Compute Core(ki, ki+1)
6: next← infinity
7: for each vertex u ∈ Ri do
8: if dGk(u) ≥ ki and dGk(u) < ki+1 then
9: core[{u}]← ki

10: for each vertex v adjacent to u do
11: if dGk(v) ≥ ki+1 then
12: dGk(v)← dGk(v)− 1
13: if dGk(v) < ki+1 then
14: next← dGk(v)

15: if dGk(u) ≥ ki+1 then
16: next← min(next, dGk(u))

17: return next

5.3 Incremental Multi k-core Maintenance

5.3.1 Edge Insertion

With graph G = {V,E} and its materialized multi k-core subgraph Gk =

∪i=1..nGki where Gki = {Vki , Eki}, we give the following edge insertion theorem

without proof due to space limitation.

Theorem 3. Given a graph G = {V,E} and its k-core subgraph Gk = ∪i=1..nGki,

and an edge {u, v} is inserted to G,

• If both u, v ∈ Vkn, then Gkn stays the same.

• If u or v or both ∈ Vki and i is maximal, i.e. @(j, k)|j > i, k > i, u ∈
Vkj and v ∈ Vkk , then the subgraph consisting of vertices in {w|w ∈
Vki , dGki (w) ≥ ki+1, qncGki (w) ≥ ki+1}, where every vertex is reachable from

u or v, may need to be updated to include additional vertices into Gki+1
.

94

The intuition behind the theorem is that an edge insertion can at most increase

core number by one. An edge inserted to the highest k-core Gkn does not change

the subgraph. However, an edge inserted to vertices in Gki may push some

vertices to Gki+1
but not further up in the hierarchy. Figure 5.1 depicts this

scenario, where a new edge and its update is always sandwiched between two

rings of k-core graph. Bounding by the two rings implies that our maintenance

algorithm can exploit this property to minimize traversal.

Dynamic Graph

Insert {u,v}

Gcandidate

Gqualified
u v

G=G0=Gk0

Gki-1

Gki

Gki+1

Gkn

Gk1

Figure 5.1: Upon an edge {u, v} insertion where u or v resides in ki-core Gki , first
tightly bounded Gcandidate graph is discovered exploiting maintained auxiliary
information, then it is processed to compute Gqualified subgraph qualifying for
ki+1-core.

Algorithms 5.5, 5.6 and 5.7 present the algorithms in detail. There are several

auxiliary counts maintained for all vertices, ∀v ∈ V , its degree dGki (v) and its

qualifying neighbor count qncGki (v) for each maintained ki. For each insert, the

algorithm first looks for the maximal subgraph Gki in which u or v is found. If any

such Gki graph is found for i > 0, new edge is inserted and auxiliary information

is updated. When i is equal to n, which means both vertices are in the inner most

95

core graph, no update is required so the algorithm terminates. If qnc value for

either vertex is no less than the next target ki+1 value, then there is a possibility

that Gki+1
will be updated because of the new edge. In this case, the algorithm

searches the graph and marks a tightly bounded subgraph of vertices which needs

to be updated. Find Candidate Graph subroutine in Algorithm 5.6 traverses Gki

subgraph and returns the Gcandidate subgraph which covers the set of candidate

edges that may be part of the ki+1-core. The edges whose vertex w satisfy the

condition d(w) ≥ ki+1 and qncki+1
(w) ≥ ki+1 are considered as candidate edges

for Gki+1
. Partial KCore in Algorithm 5.7 then processes Gcandidate subgraph and

returns the graph qualified for ki+1 core into Gqualified.

Algorithm 5.5. Edge Insertion- Node Ni Side

Input: Graph G = (V,E),
Gk: the multi k-core graph,
{u, v}: new edge,
k1...n: maintained core values

Output: the updated k-core graph

1: Auxiliary Update(G, u, v, k1...n) . Update the auxiliary values
2: i = min{i|u ∈ Gki or v ∈ Gki}
3: if i > 0 then . both vertices are in core graph
4: insert edge {u, v} and {v, u} into Gki

5: Auxiliary Update(Gk, u, v, k1...n)

6: if i == n then
7: return
8: if d(u) < ki+1 or d(v) < ki+1 then
9: return

10: Gcandidate ← ∅
11: if qncki+1

(u) ≥ ki+1 or qncki+1
(v) ≥ ki+1 then

12: Gcandidate ←Find Candidate Graph(Gki , Gki+1
,C,ki+1, u)

13: if Gcandidate 6= ∅ then
14: Gqualified ← Partial KCore (Gcandidate, ki+1)
15: Gki+1

← Gki+1
∪Gqualified

96

Algorithm 5.6. Find Candidate Graph

Input: Gki : base k-core graph,
Gki+1

: target k-core graph,
C: set of candidate edges,
kj: target core value,
u: start vertex

Output: C: set of candidate edges

1: Q← new queue
2: Q.enqueue(u)
3: mark(u)
4: while Q 6= ∅ do
5: v ← Q.dequeue()
6: if v is not local then remote request for edges of v

7: for each vertex w adjacent to v in Gki do
8: if {v, w} /∈ C then
9: if d(w) ≥ kj and qnckj(w) ≥ kj then

10: C ← C ∪ {v, w}
11: if w /∈ Gki+1

then
12: C ← C ∪ {w, v}
13: if w is not marked then
14: Q.enqueue(w)
15: mark(w)

16: return C

5.3.2 Edge Deletion

We begin with the following edge deletion theorem, which mirrors the edge in-

sertion theorem.

Theorem 4. Given a graph G = {V,E} and its k-core subgraph Gk = ∪i=1..nGki,

and an edge {u, v} is deleted from G,

• If {u, v} /∈ Eki, then Gki does not change.

• If {u, v} ∈ Eki and i is maximal, then the subgraph consisting of vertices in

{w|w ∈ Vki}, where every vertex is reachable from u or v, may need to be

updated to maintain edge deletion from Gki.

97

Algorithm 5.7. Partial KCore

Input: C: set of candidate edges,
kj: target core value,

Output: C: the updated set of edges qualifying for k-core

1: changed← true
2: while changed do
3: changed← false
4: for each {u, v} ∈ C do
5: if dC(u) < kj then
6: delete {u, v} and {v, u} from C
7: changed← true

8: return C

The intuition behind this theorem is that an edge deletion can at most decrease

core number by one and thus an edge deleted from Gki may push some vertices

from Gki to Gki−1
but not further down in the hierarchy. Again, our algorithm

exploits the property to minimize traversal.

Algorithm 5.8 implements the theorem on the server side. Edge deletion logic

is similar to edge insertion case. Upon receiving an edge deletion, it first finds

out in which k-core graph this edges resides, say Gki . If it does not reside in any

k-core, then the algorithm terminates. Otherwise, Update Coreness Cascaded

algorithm described in Algorithm 5.9 starts with the vertex with dGki less than

ki, moves it to the lower k-core graph Gki−1
. Then it recursively traverses the

neighbors whose degrees in Gki are now below ki. The algorithm accelerates k-

core re-computing by knowing, at each iteration, which vertices have changed

their degrees. For the majority of cases where an edge deletion impacts a small

fraction of vertices in the k-core, we have found this improved algorithm to be

very effective.

98

Algorithm 5.8. Edge Deletion- Node Ni Side

Input: Graph G = (V,E),
Gk: the multi k-core graph,
{u, v}: the edge to be deleted,
k1...n: maintained core values

Output: the updated k-core graph

1: Auxiliary Update(G, u, v, k1...n) . Update the auxiliary values
2: i = min{i|u ∈ Gki or v ∈ Gki}
3: if i == 0 then . when edge is not in Gk, no change occurs
4: return
5: delete {u, v} and {v, u} from Gki

6: Auxiliary Update(Gk, u, v, k1...n)

7: if dGki (u) ≥ ki and dGki (v) ≥ ki then
8: return

9: if dGki (u) < ki then
10: Update Coreness Cascaded(Gk,i,u)

11: if dGki (v) < ki then
12: Update Coreness Cascaded(Gk,i,v)

5.4 Batch Multi k-core Maintenance

In update-heavy workload, k-core does not need to be kept in lock steps with

data updates and thus presents the opportunity to periodically maintain k-core

in batch windows. Accumulating data updates and refreshing k-core in a batch

bundles up expensive graph traversals and thus speeds up maintenance time,

compared to maintaining each update incrementally.

In such a batch maintenance scenario, edge insertion and deletion incurs im-

mediate updates to the auxiliary information, degree and QNC, while updates

to the k-core subgraph are deferred. The system maintains a list of updates

and flushes them based on update count or clocked window. As described in

Algorithm 5.10, when the list is flushed, updates that cancel each other are first

removed from the list. Edge deletions, which typically incur shorter graph traver-

sal, are then treated next followed by edge insertions, which may include longer

traversal. Regardless of the processing order, the net effect is the same.

99

Algorithm 5.9. Update Coreness Cascaded

Input: Gk: the multi k-core graph,
i: maintained core value index,
u: start vertex

Output: the updated Gk

1: Q← new queue
2: Q.enqueue(u)
3: mark(u)
4: while Q 6= ∅ do
5: v ← Q.dequeue()
6: core[v]← ki−1 . decrease vertex core value.
7: for each vertex w adjacent to v in Gki do
8: if ki−1 == 0 then
9: delete {v, w} and {w, v} from Gki

10: if dGki (w) < ki then
11: if w is not marked then
12: Q.enqueue(w)
13: mark(w)

Algorithm 5.11 presents the batch edge deletions in more detail. Edges in

the deletion list deleteList are grouped and sent to the respective region’s node,

where each remote call returns a list of cascaded deletion requests. The client

then regroups the requests.

Algorithm 5.12 describes the node side of edge deletions. The algorithm

first receives the list deleteList, the list of edges to be deleted, and the list

downgradeList, the list of vertices to be updated into one lower k values in

maintained k-core list k1...n. For each edge {u, v} in deleteList the edge is first

deleted. To do that, all outgoing edges of u are deleted and incoming edges are

returned to the client as cascaded delete. We do not delete incoming edges in this

remote call since those edges are not necessarily reside in the current region (edges

are stored according to source vertex). If the degree of u gets smaller than the

k value of core in which it currently resides, this vertex should be downgraded.

Such vertices are added to downgradeList. Each vertex in downgradeList is

moved from its current core value, lets say ki, to one lower core value ki−1. When

the vertex gets lower than minimum maintained k value, it is deleted from the

100

Algorithm 5.10. Batch Process- Client Side

Input: Graph G = (V,E),
k1...n: maintained core values,
Gk: k-core graph,
batchOperations: list of operations stored in batch part

Output: the updated k-core graph

1: deleteList← choose delete operations from batchOperations
2: Perform Delete Traversals(Gk, deleteList, k1...n)
3: insertList← choose insert operations from batchOperations
4: Perform Insert Traversals(G,Gk, insertTraversals, k1...n)

materialized view and any cascaded delete is added to cascadedDeletes list. Af-

ter each core change, if any direct neighbor also needs to be updated, it is added

to cascadedDowngrades list to be processed in the next iteration.

Algorithm 5.13 presents batched edge insertion maintenance in detail. In

essence, the independently launched graph traversal in each incremental main-

tenance is now aggregated into a single parallel graph traversal launched simul-

taneously from all the new edges. The Algorithm first takes the list of edges

insertList, and traverses them in parallel. All candidate edges discovered during

BFS traversals are kept in the client side in the sets called Gcandidate1...n for post

traversal computation. Firstly, the client groups all vertices in insertList ac-

cording to their regions. A BFS operation is performed for each region by calling

qualifyingListi ← RCPruned MultiTraversal(Ri, bucketi, k1...n) remote call function.

Each node handles the BFS iterations over its associated region and then returns

the selected edge list to the client. The list insertList is cleared after all re-

mote calls are made. An edge {u, v} returned from the remote call is skipped

if it already exists in the set Gcandidate1...n , which means it was already traversed

previously. When the new edge {u, v} is not connected to the next inner k-core

subgraph, then v is inserted into the list insertList to be traversed in the next

iteration.

Once the parallel traversal is done, candidate lists Gcandidate1...n will be pro-

cessed by the Partial KCore algorithm to compute each maintained k-core over

101

Algorithm 5.11. Perform Delete Traversals- Client Side

Input: Gk: k-core graph,
deleteList: list of edges to be deleted,
k1...n: maintained core values

Output: the updated k-core graph

1: downgradeCoreList← ∅
2: while deleteList 6= ∅ or downgradeCoreList 6= ∅ do
3: for each region i in regions(Gk) do
4: deli ← from deleteList filter edges stored in Ri

5: downi ← from downgradeCoreList filter vertices stored in Ri

6: {cDeli, cDowni} ← RCHandle Delete(Ri, Gk, deli, downi, k1...n)

7: Wait RCs to complete
8: deleteList← ∅
9: downgradeCoreList← ∅

10: for each region i in regions(Gk) do
11: if cDeli 6= ∅ then
12: add cDeli to deleteList

13: if cDowni 6= ∅ then
14: add cDowni to downgradeCoreList

traversed graph.

The Pruned MultiTraversal algorithm described in Algorithm 5.14 runs on

the node side and performs a single BFS iteration for the vertices in the insertList

list. It selects the edges to the vertices with QNC value greater than the next

maintained core value.

5.5 Performance Evaluation

We ran experiments to demonstrate the performance of our proposed multi k-core

construction algorithm and the performance of our proposed k-core maintenance

algorithms on dynamic graphs. We show that recomputing the k-core subgraphs

is much costlier than incrementally maintaining it in dynamic graphs where edges

are inserted and deleted.

102

Algorithm 5.12. Handle Delete- Node Ni Side

Input: Gk: k-core graph,
deleteList: list of edges to be deleted,
downgradeList: list of vertices to be downgraded,
k1...n: maintained core values

Output: cascadedDeletes the cascaded delete list,
cascadedDowngrades: the cascaded downgrade list

1: for each edge {u, v} in deleteList do
2: delete {u, v} from Gk

3: i← core index for core[u]
4: if dGki (u) < ki then
5: downgradeList← downgradeList ∪ {u}
6: cascadedDeletes← ∅
7: cascadedDowngrades← ∅
8: for each vertex {u} in downgradeList do
9: i← core index for core[u]

10: core[u]← ki−1
11: for each vertex w adjacent to u in Gki do
12: if ki−1 == 0 then
13: delete {u,w} from Gki

14: cascadedDeletes← cascadedDeletes ∪ {w, u}
15: if dGki (w) < ki then
16: cascadedDowngrades← cascadedDowngrades ∪ {w}
17: return {cascadedDeletes, cascadedDowngrades}

5.5.1 System Setup and Datasets

Graph data is stored in HBase and the algorithms are implemented as HBase

Coprocessors where distributed parallelism is applicable. Table 5.2 shows how

notations in algorithms are interpreted in HBase implementation. Our cluster

consists of one master server and 13 slave servers, each of which is an Intel

CPU based blade running Linux connected by a 10-gigabit Ethernet. We use

vanilla HBase environment running Hadoop 1.0.3 and HBase 0.94 with data nodes

and region servers co-located on the slave servers. We configured HBase with

maximum 16 GB Java heap space and Hadoop with 16 GB heap to avoid long

garbage collection in the Java virtual machine. The HDFS (Hadoop File System)

103

Algorithm 5.13. Perform Insert Traversals- Client Side

Input: Graph G = (V,E),
Gk: k-core graph,
insertList: list of vertices to be traversed,
k1...n: maintained core values

Output: the updated k-core graph

1: Gcandidate1...n ← ∅
2: while insertList 6= ∅ do . at each iteration
3: for each region i in regions(G) do
4: bucketi ← from insertList filter vertices stored in Ri

5: qualifyingListi ← RCPruned MultiTraversal(Ri, bucketi, k1...n)

6: Wait RCs to complete
7: insertList← ∅

. Aggregate this turn results and compute next turn input
8: for each region j in regions(G) do
9: for each edge {u, v} in qualifyingListj do

10: i← core index for core[u]
11: if {u, v} /∈ Gcandidatei then . Select a vertex only once
12: Gcandidatei ← Gcandidatei ∪ {u, v}
13: if v /∈ Gki+1

then . do not go over vertices already in Gki+1

14: Gcandidatei ← Gcandidatei ∪ {v, u}
15: insertList← insertList ∪ {v} . continue traverse

16: for i in 1 . . . n do
17: if Gcandidatei 6= ∅ then
18: Gqualifiedi ← Partial KCore (Gcandidatei , ki+1)
19: for each vertex {u} in Gqualifiedi do
20: core[u]← ki+1

replication factor is set at the default three replicas. There was no significant

interference from other workloads on the cluster during the experiments.

The datasets we used in the experiments were made available by Milove et

al. [108] and the Stanford Network Analysis Project [109]. We appreciate their

generous offer to make the data openly available for research. For details, please

see the references and we only briefly recap the key characteristics of the data in

Table 5.3.

104

Algorithm 5.14. Pruned MultiTraversal- Node Ni Side

Input: Graph G = (V,E),
insertList: list of vertices to be traversed,
k1...n: maintained core values

Output: qualifyingList: list of edges to qualifying neighbors

1: returnList← ∅
2: for each vertex u in insertList do
3: i← core index for core[u]
4: for each vertex w adjacent to u in Gki do
5: if dGki (w) ≥ ki+1 and qncGki (w) ≥ ki+1 then
6: qualifyingList← qualifyingList ∪ {u,w}
7: return qualifyingList

5.5.2 Experiments

We use multiple k values to represent a community at multiple resolutions. For

each social network dataset, we select three distinct k values so that 4, 8 and 16

percent of the vertices in that dataset have a degree of at least k. The higher

the k value, the stronger or tightly knit the communities are. Conversely, the

lower the k value, the weaker or loosely connected the communities are. Ta-

ble 5.4 lists the chosen k values. We first run Base k-core construction algorithm

to measure the baseline k-core construction time for each dataset and k value.

Then we run Multi k-core construction algorithm, which is described in Algo-

rithms 5.3 and 5.4, for each dataset with all chosen k values at once to measure

k-core construction for multiple k values. Figure 5.2 shows the construction times

for both algorithms. Speedup achieved by Multi k-core construction algorithm

is upper bounded by the number of distinct values which is 3 in this case. We

observe that, for larger datasets the algorithm achieved higher speedup due to

the redundant computation saved.

To evaluate the performance of maintenance Algorithms 5.5 and 5.6, we first

construct and materialize k-core graph for selected multiple k values and under

three scenarios explained below we measure average maintenance times.

105

 1

 10

 100

 1000

 10000

 100000

Y
o
u
T
u
b
e

F
l
i
c
k
r

L
i
v
e
j
o
u
r
n
a
l

O
r
k
u
t

A
s
-
S
k
i
t
t
e
r

C
i
t
-
P
a
t
e
n
t
s

C
o
m
-
d
b
l
p

W
e
b
-
B
e
r
k
S
t
a
n

W
i
k
i
-
T
a
l
k

E
x
e
c
u
t
i
o
n

t
i
m
e

i
n

s
e
c
o
n
d
s

k-core Construction Times

Base k-core construction alg.
Multi k-core construction alg.

2.0x1.2x

2.4x
2.3x

1.3x

2.8x

0.5x

1.2x

2.0x

Figure 5.2: k-core construction times for Base and Multi k-core construction al-
gorithms are shown for each dataset with three chosen k values. Relative speedup
achievement of Multi algorithm over Base algorithm is provided above each bar.

106

Table 5.2: Mapping of graph notations in Table 5.1 to implementation in HBase

G HBase table holding graph edges
partitioned into regions over
multiple region servers

Gk HBase table holding k-core graph
edges

Ri i’th region processed by
coprocessor Ni

Ni i’th coprocessor running on region
i

(X, Y)← RCf (Ri, S) Coprocessor function f on region i
takes parameter S and returns
values X, Y to client

Ri(GA) Region of GA processed by
coprocessor Ni

TA(CX , CY) Table A created on HBase with
column CX and CY

1. In Extending window scenario, a constant number of edges are continuously

inserted into the original graph. We randomly choose 1000 vertices from

the graph and exclude a random edge of each vertex at the beginning. Later

we construct the k-core subgraph. Once the system is ready for changes we

insert the excluded edges into the graph one by one while we maintain the

k-core subgraph.

2. In Shrinking window scenario, a constant number of edges are continuously

deleted from the original graph. We first construct the k-core subgraph.

Later, we randomly choose 1000 vertices from the graph to delete them one

by one while we maintain the k-core subgraph.

3. In Moving window (Mix) scenario, a constant number of edges are both

inserted and deleted continuously. We choose 1000 random vertices from

the graph and exclude a random edge of each vertex at the beginning. We

use them for insertion. Next we construct the k-core subgraph. Once the

system is ready for changes we keep inserting these edges while deleting a

random edge from the original graph. So, each insertion is followed by a

107

Table 5.3: Key characteristics of the datasets used in the experiments

Name Vertex
Count

Bidirectional Edge Ref

Count
Orkut 3.1 M 234 M [108]
LiveJournal 5.2 M 144 M [108]
Flickr 1.8 M 44 M [108]
Patents 3.8 M 33 M [109]
Skitter 1.7 M 22.2 M [109]
BerkStan 685 K 13.2 M [109]
YouTube 1.1 M 9.8 M [108]
WikiTalk 2.4 M 9.3 M [109]
Dblp 317 K 2.10 M [109]

random deletion from the graph. By doing so we insert 1000 edges to the

graph and delete 1000 edges from the graph while maintaining the k-core

subgraph.

Table 5.4: k values used in the experiments and the ratio of vertices with degree
at least k in the corresponding graphs

Dataset - k values 4% 8% 16%
Orkut 263 183 123
LiveJournal 80 50 28
Flickr 65 24 9
Patents 28 21 15
Skitter 42 26 15
BerkStan 57 38 24
WikiTalk 5 3 2
YouTube 18 10 5
Dblp 25 16 10

We repeated these three scenarios with each dataset and measured their ex-

ecution times. Figs. 5.3 plot the speedup through our incremental maintenance

algorithms over recomputing k-core from scratch, for 9 different datasets. The

y-axis shows the speedup in log-scale. For Extending, Shrinking, Moving window

scenarios and each dataset, the figures give the speedup of incremental update ap-

proach with respect to from-scratch construction using the multi k-core construc-

tion algorithm. As the figures show, three to five orders of magnitude speedup

108

can be expected for edge insertion workload. Similar speedup factors are also

observed for mixed edge insertions and deletions with one to one ratio. Higher

speedup, more then five orders of magnitude was achieved for edge deletion only

workload.

5.5.3 Batch Maintenance Experiments

In order to investigate the speedup provided by our batch update approach for

maintaining the multi-k-core subgraph, we run experiments on different datasets.

To measure the performance improvement of batch processing approach com-

pared to individual updates and full reconstruction, we set up experiments for

each dataset and for each update scenario described in Section 5.5. For each

experiment, we use 10K batch size. Figs. 5.4- 5.6 show batch processing speedup

versus individual processing in k-core individual maintenance and reconstruc-

tion for three different update scenarios and 9 different datasets. The speedup

is shown in the y-axis in log-scale. Each figure illustrates batch maintenance

speedup versus both individual maintenance and reconstruction.

For extending window scenario, in Fig. 5.4 we get greater performance im-

provement, four to five orders of magnitude speedup when compared with recon-

struction case. We get upto 2 orders of magnitude speedup compared to individ-

ual maintenance. When compared with Fig. 5.3, we figure out that batch window

extending approach provides a more stable speedup ratio for different datasets.

For instance, Cit-Patent dataset shows the largest speedup in batch maintenance

case compared to individual maintenance while it provides the smallest speedup in

individual maintenance case. Totally, its speedup is close to the average speedup

of other datasets. For the shrinking window scenario, the batch processing ap-

proach does not provide significant speedup, as the deletion cost in individual

processing is already minimal, i.e., close to auxiliary maintenance cost plus the

base HBase update times. The moving window case provides speedups in be-

tween extending and shrinking window cases, which is as expected considering

that it is a mixture of insertion and deletion operations. Experiment results show

that batch processing provides stable speedup for all scenarios and datasets with

109

 1

 10

 100

 1000

 10000

 100000

O
r
k
u
t

L
i
v
e
j
o
u
r
n
a
l

F
l
i
c
k
r

C
i
t
-
P
a
t
e
n
t
s

A
s
-
S
k
i
t
t
e
r

W
e
b
-
B
e
r
k
S
t
a
n

W
i
k
i
-
T
a
l
k

Y
o
u
T
u
b
e

C
o
m
-
d
b
l
p

S
p
e
e
d
u
p

Extending Window Individual Maintenance

Speedup v.s. construction

 1

 10

 100

 1000

 10000

 100000

 1e+006

O
r
k
u
t

L
i
v
e
j
o
u
r
n
a
l

F
l
i
c
k
r

C
i
t
-
P
a
t
e
n
t
s

A
s
-
S
k
i
t
t
e
r

W
e
b
-
B
e
r
k
S
t
a
n

W
i
k
i
-
T
a
l
k

Y
o
u
T
u
b
e

C
o
m
-
d
b
l
p

S
p
e
e
d
u
p

Shrinking Window Individual Maintenance

Speedup v.s. construction

 1000

 10000

 100000

 1e+006

O
r
k
u
t

L
i
v
e
j
o
u
r
n
a
l

F
l
i
c
k
r

C
i
t
-
P
a
t
e
n
t
s

A
s
-
S
k
i
t
t
e
r

W
e
b
-
B
e
r
k
S
t
a
n

W
i
k
i
-
T
a
l
k

Y
o
u
T
u
b
e

C
o
m
-
d
b
l
p

S
p
e
e
d
u
p

Moving Window Individual Maintenance

Speedup v.s. construction

Figure 5.3: k-core maintenance algorithm speedup over construction algorithms
for Extending, Shrinking, and Moving window scenario.

110

different sizes and topologies.

 1

 10

 100

 1000

 10000

 100000

 1e+006

O
r
k
u
t

L
i
v
e
j
o
u
r
n
a
l

F
l
i
c
k
r

C
i
t
-
P
a
t
e
n
t
s

A
s
-
S
k
i
t
t
e
r

W
e
b
-
B
e
r
k
S
t
a
n

W
i
k
i
-
T
a
l
k

Y
o
u
T
u
b
e

C
o
m
-
d
b
l
p

S
p
e
e
d
u
p

Extending Window 10K Batch

Speedup v.s. construction
Speedup v.s. maintenance

Figure 5.4: 10K sized batch maintenance speedups for Extending window sce-
nario.

 1

 10

 100

 1000

 10000

 100000

 1e+006

O
r
k
u
t

L
i
v
e
j
o
u
r
n
a
l

F
l
i
c
k
r

C
i
t
-
P
a
t
e
n
t
s

A
s
-
S
k
i
t
t
e
r

W
e
b
-
B
e
r
k
S
t
a
n

W
i
k
i
-
T
a
l
k

Y
o
u
T
u
b
e

C
o
m
-
d
b
l
p

S
p
e
e
d
u
p

Shrinking Window 10K Batch

Speedup v.s. construction
Speedup v.s. maintenance

Figure 5.5: 10K sized batch maintenance speedups for Shrinking window scenario.

111

 1

 10

 100

 1000

 10000

 100000

 1e+006

O
r
k
u
t

L
i
v
e
j
o
u
r
n
a
l

F
l
i
c
k
r

C
i
t
-
P
a
t
e
n
t
s

A
s
-
S
k
i
t
t
e
r

W
e
b
-
B
e
r
k
S
t
a
n

W
i
k
i
-
T
a
l
k

Y
o
u
T
u
b
e

C
o
m
-
d
b
l
p

S
p
e
e
d
u
p

Moving Window 10K Batch

Speedup v.s. construction
Speedup v.s. maintenance

Figure 5.6: 10K sized batch maintenance speedups for Moving window scenario.

112

5.6 Conclusion

To the best of our knowledge, our study is the first to propose a horizontally scal-

ing solution on the big data platform for multiresolution social network commu-

nity identification and maintenance. By using k-core as the measure of community

intensity, we proposed multi-k-core construction and incremental maintenance al-

gorithms and ran experiments to demonstrate orders of magnitude speedup with

the aggressive pruning and fairly low maintenance overhead in the majority of

graph updates at relatively high k-valued cores. We further extend algorithms

to handle batch maintenance of a window of updates, which provides larger and

more stable speedup for multi-k-core maintenance.

For the simplicity of the presentation, we left out the metadata and content

associated with graph vertices and edges. In practice, a k-core subgraph is often

associated with application context and semantic meaning. Our efficient main-

tenance algorithms now enable many practical applications to keep many k-core

materialized views up to date and ready for user exploration.

We provided a distributed implementation of the algorithms on top of Apache

HBase, leveraging its horizontal scaling, range-based data partitioning, and the

newly introduced Coprocessor framework. Our implementation fully took advan-

tage of distributed, parallel processing of the HBase Coprocessors. Building the

graph data store and processing on HBase also benefits from the robustness of

the platform and its future improvements.

113

Chapter 6

Graph Aware Caching

6.1 Introduction

The technique of data caching is well known and widely applied across tiers of

computing and storage systems. With the emergence of a new generation of

social and mobile applications built on graph data stores or graph data model

implemented on legacy database technology, the knowledge about graph traversal

based queries can be exploited to devise efficient caching policies that are graph

topology aware. Simultaneously, the policy must address metadata properties

that come with nodes and edges in the graph, since query predicates are often

imposed on those properties to select next steps in the traversal.

Among the use cases of graph data store such as social networks, knowledge

representations, and Internet of things, while their respective graph topology

may be small and fit on a single server, adding all the metadata properties easily

drives up computing and storage requirements beyond the capacity of one server.

The context of our investigation thus is anchored on scale out, big data clusters

in which the graph and its data is partitioned horizontally across servers in the

cluster. We assume topology and metadata about a node or edge are co-located

since they are most often accessed together. In addition, as reflected in real-world

workload, updates to change graph topology are allowed, which makes one-time

114

static graph clustering less beneficial.

Figure 6.1 illustrates the context in which our cache solutions fit. The graph

data is partitioned and distributed over a cluster of servers with low communica-

tion latency. Each distributed node hosts its own data cache and manages data

stored in the cache with knowledge of local vs. remote graph data. A client issu-

ing query to the server hosting the queried root node and the server communicates

with its peers to process the client’s query.

Figure 6.1: Cache layer is located between graph storage and distributed process-
ing node. Cache layer knows if a graph file is local or remote and designed to
fetch and evict items with graph-aware optimizations.

The rest of the chapter is organized as follows. We discuss the graph imple-

mentation on big data platform in Section 6.2. Our proposed graph-aware cache

is presented in Section 6.3 and we evaluate its performance on real social network

datasets in Section 6.4. Finally, Section 6.5 concludes the chapter.

115

6.2 Distributed Graph Handling with

Apache HBase

We model interactions between pairs of objects, including structured metadata

and rich, unstructured textual content, in a graph representation materialized as

an adjacency list known as edge table. An edge table is stored and managed as

an ordered collection of row records in an HTable by Apache HBase [36]. Since

Apache HBase is relatively new to the research community, we first describe its

architectural foundation briefly to lay the context of its latest feature known as

Coprocessor, which our algorithms make use of for graph query processing.

6.2.1 HBase and Coprocessors

Apache HBase is a non-relational, distributed data management system modeled

after Google’s BigTable [103]. HBase is developed as a part of the Apache Hadoop

project and runs on top of Hadoop Distributed File System (HDFS). Unlike con-

ventional Hadoop whose saved data becomes read-only, HBase supports random,

fast insert, update and delete (IUD) access.

Fig. 6.2 depicts a simplified diagram of HBase with several key components

relevant to this chapter. An HBase cluster consists of master servers, which

maintain HBase metadata, and region servers, which perform data operations.

An HBase table, or HTable, may grow large and get split into multiple HRegions

to be distributed across region servers. HTable split operations are managed by

HBase by default and can be controlled via API also. In the example of Fig. 6.2,

HTable 1 has four regions managed by region servers 1, 2 and 10 respectively,

while HTable 2 has three regions stored in region servers 1 and 2. An HBase

client can directly communicate with region servers to read and write data. An

HRegion is a single logical block of record data, in which row records are stored

starting with a row key, followed by column families and their column values.

HBase’s Coprocessor feature was introduced to selectively push computation

116

Figure 6.2: Coprocessors are user-deployed programs running in the region
servers. Cache is distributed with graph regions and used by coprocessors. It
is located between Coprocessor and HRegions where HRegion accesses are first
handled by the cache layer.

117

to the server where user deployed code can operate on the data directly without

communication overheads for performance benefit. The Endpoint Coprocessor

(CP) is a user-deployed program, resembling database stored procedures, that

runs natively in region servers. It can be invoked by an HBase client to execute

at one or multiple target regions in parallel. Results from the remote executions

can be returned directly to the client, or inserted into other HTables in HBase,

as exemplified in our algorithms.

Fig. 6.2 depicts common deployment scenarios for Endpoint CP to access data.

A CP may scan every row from the start to the end keys in the HRegion or it may

impose filters to retrieve a subset in selected rows and/or selected columns. Note

that the row keys are sorted alphanumerically in ascending order in the HRegion

and the scan results preserve the order of sorted keys. In addition to reading

local data, a CP may be implemented to behave like an HBase client. Through

the Scan, Get, Put and Delete methods and their bulk processing variants, a CP

can access other HTables hosted in the HBase cluster.

6.2.2 Graph Processing on HBase

We map the rich graph representation G = {V,E,M,C} to an HTable. We first

format the vertex identifier v ∈ V into a fixed length string pad(v). Extra bytes

are padded to make up for identifiers whose length is shorter than the fixed length

format. The row key of a vertex v is its padded id pad(v). The row key of an

edge e = {s, t} ∈ E is encoded as the concatenation of the fixed length formatted

strings of the source vertex pad(s), and the target vertex pad(t). The encoded

row key thus will also be a fixed length string pad(s) + pad(t). This encoding

convention guarantees that a vertex’s row always immediately proceeds the rows

of its outbound edges in an HTable. Fig. 6.2, includes a simple example of encoded

graph table, whose partitioned HRegions are shown across three servers. In this

table, a vertex is encoded as a string of three characters such as ‘A10’, ‘B13’,

‘B25’, ‘A21’, etc. A row key encoded like ‘A10B13’ represents a graph edge from

vertex ‘A10’ to ‘B13’.

118

k-hop neighbors queries in Section 6.4 are implemented in several HBase Co-

processors to achieve maximal parallelism. When a non-local vertex neighbors

are to be read, a Coprocessor instance issues a “neighbors read message” to the

remote HBase region server, which reads and returns the neighbors.

6.3 Cache Systems

Big-Data philosophy suggests working with commodity servers. While working

on Hadoop/HBase systems, we realized that a significant amount of memory

on commodity servers is available with optimized configurations. Meanwhile,

such databases suffer from low I/O speed of distributed file systems. Therefore,

implementing a caching mechanism would improve overall system performance.

A straightforward approach is to use existing caching techniques. On the other

hand, we are working on a graph specific system. Thus, we know access patterns

and insight about the data characteristics which allow us to design domain specific

cache with improved performance. Cache systems try to predict future data access

requests and optimize its resources accordingly. Future data access prediction in

generic cache algorithms is based on two data access patterns:

1. spatial locality, which indicates that future data accesses will target spa-

tially close data to current accesses.

2. temporal locality, which means that future data accesses will target the

same data currently accessed.

Spatial locality feature is exploited to prefetch data into the cache even before

it is accessed for the first time. Temporal locality feature is exploited to keep

already accessed data in the cache to serve possible future requests received under

limited cache size challenge. We discuss spatial locality exploiting features in

Fetch algorithms section and temporal locality exploiting features in Eviction

algorithms section below.

119

6.3.1 Fetch Algorithms

6.3.1.1 Traditional Fetching

Generic cache algorithms assume that iteration over logical data order is corre-

lated to physical data order in lower layer in cache hierarchy. For instance, let’s

consider an iteration over array elements as illustrated in Algorithm 6.1. Access

to a[i] proceeds with an access to a[i+ 1] where a[i] and a[i+ 1] are stored next

to each other. Thus, prefetching a[i + 1] upon fetch operation on a[i] achieves a

hit due to right prediction of future access.

Algorithm 6.1. ArrayAccessPattern

1: for i = 1→ size(a) do
2: s← a[i]

6.3.1.2 Graph Fetching

Comparing iterations over arrays with those over graphs, graph accesses are not

following physical data order in lower layer in cache hierarchy. Algorithm 6.2

illustrates a simple traversal in a graph. Graph traversal is correlated with graph

topology rather then its storage pattern. It is obvious that graph access prediction

as suggesting next element in storage layout will be a poor prediction although

it is acceptable for non-graph access patterns.

Algorithm 6.2. GraphAccessPattern

1: for vertex u in v.neighbors() do
2: enqueue(u)

6.3.2 Eviction Algorithms

Temporal locality concept states that currently requested data will be requested

again in near future. Keeping every requested item in the cache would exploit

120

temporal locality at maximum benefit. However, cache systems come with limited

memory space, thus when the cache area gets full, some items should be evicted

from it. When such evicted items are requested from the cache, a cache miss will

happen. Therefore, eviction algorithms are designed to find optimal suggestion

in item selection for eviction such that overall miss penalty is minimized.

Least Recently Used algorithm (LRU) [84, 86, 83] is the most popular

eviction policy in the literature. LRU keeps track of access order and selects the

least recently used item for eviction.

Largest Item First algorithm is item size sensitive where it evicts largest

item in the cache. Evicting largest item allows cache to store several small items.

This algorithm does not assume any correlation with item size and its access

frequency.

Smallest Item First algorithm is also item size sensitive and it evicts the

smallest item in the cache. Thus, the algorithm tries to minimize miss penalty

where small items are fetched faster then large items.

Clock Based Graph Aware algorithm is a hybrid algorithm we propose,

which assigns a time-to-live value to each item and evicts the one expired first.

Next we discuss this algorithm.

6.3.3 Clock Based Graph Aware Cache (CBGA)

Distributed graph context has its specific characteristics which can be exploited

by the cache system. Different from generic applications, distributed graphs

display the following characteristics:

1. local/remote placement : some items are stored locally while some others

are stored in remote server which has an additional network call overhead.

2. different sizes : graph vertices have different number of neighbors and its

metadata might have variable size. Thus some items require more space in

121

cache.

3. uneven access probabilities : graph vertices have different central-

ity/popularity in networks. Thus some central items are requested more

frequently than others.

4. iteration on topology : graph traversal algorithms use vertex-neighbor jumps

which are stored randomly in storage layout.

We introduce clock-based graph aware caching to exploit all graph specific

access patterns. First, interpreting spatial locality to handle topological closeness

instead of storage-level closeness, we propose the graph-aware fetching algorithm

in Algorithm 6.3 which prefetchs topological neighbors instead of neighbors in

storage layout.

Algorithm 6.3. Graph− AwareFetching

1: upon get(Vertex v)
2: put cache(v, v.neighbors())
3: for vertex u in v.neighbors() do
4: put cache(u, u.neighbors)

Furthermore, we assign a time-to-live (TTL) value to each cached item so that

the graph-aware eviction algorithm minimizes overall miss penalty in distributed

graph context. The TTL value is computed using the following equation:

TTL =
l

s ∗ d
(6.1)

where l is the average duration (latency) to fetch an item into the cache, d is the

fetched distance to the source vertex which triggers this fetch operation, and s

is the size of the cached item. The latency (l) parameter makes TTL value to

become local/remote placement sensitive while the distance parameter (d) assists

the vertices close to query source stay longer in the cache. Thus, the large local

vertices on the fringe of the graph are preferred for eviction. In other words,

small, remotely served and central vertices are given priority to be kept in the

cache. Important procedures of the graph aware eviction algorithm are presented

122

in Algorithm 6.4. The normalize procedure scales up the computed TTL value

to make sure it is larger than or equal to 1.

Algorithm 6.4. Graph− AwareEviction

1: upon put cache(v,...) call
2: if v ∈ local partition then
3: latency ← LOCAL ACCESS LATENCY
4: else
5: latency ← REMOTE ACCESS LATENCY

6: size← get size(v)
7: distance← get distance(v, s)
8: TTLv ← latency

(size∗distance)
9: TTLv ← normalize(TTLv) return

10:

11: upon CBGA evict() call
12: while TRUE do
13: for item u in cache.items() starting from last index do
14: TTLu ← TTLu − 1
15: if TTLu ≤ 0 then
16: evict(u) return

CBGA uses eventual consistency model for cache coherency, a relaxed consis-

tency model that is described by Terry et al. [111] and discussed by Werner [112].

Any item in the cache is associated with a TTL value which eventually decreases

to zero and causes the item to be evicted. Essentially, any change on items is

reflected to the cache after a sufficient period of time which is acceptable for many

social network applications, e.g., Facebook [86]. Thus, all copies of an item in

the cache will be consistent and reflect all updates to the item.

6.4 Performance Evaluation

We ran experiments to evaluate the performance of the discussed caching policies.

123

Table 6.1: Key characteristics of the datasets used in the experiments

Name Vertex
Count

Bidirectional Edge Ref

Count
Twitter 1.1 M 170 M [113]
Orkut 3.1 M 234 M [108]
LiveJournal 5.2 M 144 M [108]
Flickr 1.8 M 44 M [108]
Patents 3.8 M 33 M [109]
Skitter 1.7 M 22.2 M [109]
BerkStan 685 K 13.2 M [109]
YouTube 1.1 M 9.8 M [108]
WikiTalk 2.4 M 9.3 M [109]
Dblp 317 K 2.10 M [109]

6.4.1 System Setup and Datasets

Our graph data are stored in HBase and the algorithms are implemented as HBase

Coprocessors where distributed parallelism is applicable. HBase Coprocessors

can access to local and remote cache areas. Our cluster consists of 1 master

server and 5 slave servers, each of which is a c3.large instance running Linux

on Amazon EC2. We use vanilla HBase environment running Hadoop 1.0.3 and

HBase 0.94 with data nodes and region servers co-located on the slave servers.

The HDFS (Hadoop File System) replication factor is set at one replica. There

was no significant interference from other workloads on the cluster during the

experiments.

The datasets we used in the experiments were made available by Milove et

al. [108], Social Computing Data Repository at ASU [113], and the Stanford

Network Analysis Project [109]. We appreciate their generous offer to make the

data openly available for research. For details, please see the references and we

only briefly recap the key characteristics of the data in Table 6.1.

124

6.4.2 Experiments

We implemented all cache approaches discussed in Section 6.3 in HBase Copro-

cessors. Each Coprocessor reserves 10MB cache area in memory. Whenever a

graph read operation is received, we first try to serve the operation from the

cache. When it fails to serve from the cache, it reads the graph data from local

or remote storage depending on where the requested data resides. Each miss is

handled according to Algorithm 6.3, and when the cache becomes full, appropri-

ate eviction policy is executed. However, in LRU case only the requested item is

read from HBase, i.e., no prefetching is done.

In order to evaluate cache policy performance, we set up our HBase cluster

to use the chosen policy, and then we run 10000 random k-hop neighbors queries

on each social network dataset. We limit a k-hop neighbors query result to top

10K vertices, since this is a large enough size for most of the graph applications,

i.e, social network applications.

We measure both hit-ratio and execution-time for each test case. Figure 6.3

shows the hit-ratio at left vertical axis and the execution-time at right vertical

axis for each evaluated policy on Twitter dataset. We observe similar results

for the other datasets. Our CBGA policy achieves the highest hit-ratio and

the lowest execution-time, while the traditional LRU policy shows the poorest

performance. The LRU-SP policy (which is LRU with graph-aware spatial locality

caching extension) displays sharp increase in hit-ratio while its execution-time

performance is still behind the other policies with size and path awareness. CBGA

versus LRU speedup for all datasets is shown in Figure 6.4 where the speedup

is computed by dividing the execution time of LRU by the execution time of

CBGA. Different datasets provide different speed up values. The datasets used

in the experiments are real graphs from different domains, for instance Twitter

is a social network, BerkStan is a web graph while Patents is a citation network

among US Patents. Each network has different network properties which result in

different performance results when the proposed cache system is employed. Note

that, for all datasets CBGA cache outperforms LRU based cache.

125

Figure 6.3: Performance for Twitter dataset under 10M cache and 10K queries
in which the first 500 are warmup queries. Left y axis shows hit ratio while right
y axis shows execution times in msec.

Figure 6.4: Speedup achieved for each dataset when CBGA and LRU are com-
pared.

126

Figure 6.5 presents the performance of the policies under long runs for Flickr

dataset. For increasing number of queries from 10K to 100K, our CBGA policy

provides stable lowest execution time.

Figure 6.5: Performance of various policies under long runs of Flickr dataset.

We trace the query execution times and Figure 6.6 shows that the average

query execution time initially decreases and then stabilizes as the caches warm

up. Since queries are random and their overhead is not equal (e.g., a vertex might

have 10 neighbors in two hops while another vertex have 10000 neighbors in two

hops) individual query times display some fluctuation. Thus, we also compute

bintime line shown in red which displays the average execution time for the last 10

queries. Similarly, the average number of queries executed per minute increases

and then stabilizes while cache warms up as displayed in Figure 6.7. Here we

provide two representatives from all datasets to save space.

127

Figure 6.6: Average query time is decreased while cache warms up for Twitter
dataset. Red bintime line displays the average execution time for the last 10
queries instead of individual queries.

Figure 6.7: The number of queries processed per minute increase while cache
warms up for Twitter dataset. A stable high query-per-minute performance is
observed when the cache is warm.

128

6.5 Conclusion

To the best of our knowledge, this study is the first to propose a graph aware

caching scheme for efficient graph processing in horizontally scaling solutions on

big data platforms. We proposed a clock based graph aware cache (CBGA) system

with cache and eviction algorithms designed with distributed graph processing

context in mind. We ran experiments on our HBASE cluster, which demonstrate

up to 15x speedup compared to traditional LRU based cache systems.

We provided a distributed implementation of the caching algorithms on top of

Apache HBase, leveraging its horizontal scaling, range-based data partitioning,

and the newly introduced Coprocessor framework. Our implementation fully took

advantage of distributed, parallel processing of the HBase Coprocessors. Building

the graph data store and processing on HBase also benefits from the robustness

of the platform and its future improvements.

129

Chapter 7

Conclusions and Future Work

Collecting social network data is traditionally difficult, requiring extensive contact

with the group of people being studied. Practically, research efforts are generally

limited to between tens and hundreds of individuals [99, 100]. On the other

hand, social interactions over telco infrastructures generate detailed traces of

interactions and movements. Large-scale networks, even ones covering a whole

society, can be generated from such traces. The ability to construct such rich and

representative social networks makes it feasible to develop and evaluate social

network models.

One of the most interesting properties summarizing the structure of a social

network is the degree distribution of nodes. The degree of a social node is the

number of other nodes the node has a social interaction. Different observations

exist regarding degree distribution in social networks. For instance, some works

(e.g., [20, 101]) claim that the degree distribution follows power-law distribution,

while others (e.g., [23]) claim it follows double Pareto log-normal distribution.

Using different datasets, different degree distributions have been obtained in the

literature.

In this thesis, we first attempt to empirically test degree distribution versus

different dataset scenarios to understand the parameters governing degree distri-

bution in social networks. We observe that degree distribution in social networks

130

does not show a significant correlation with population density, user telco oper-

ator, and user geographic location; however, population size directly affects the

average degree of social network. Therefore, it is important to keep social net-

work size as a parameter while interpreting degree distribution. It also seems

acceptable to study a social network without considering its location, density

and referred telco operator. For instance, a researcher could gather data from

an urban part or a rural part of a country, or may choose a specific city or telco

operator. However, any change in the size of the studied network would result in

a considerable change in degree distribution characteristics and overall network

topology. Hence, social network studies must indicate the size of the studied

network and consider different size cases to come up with a sound and complete

conclusion.

We also study community identification problem in social networks which is

reduced to k-core metric in graph theory. To the best of our knowledge, our study

is the first to propose a horizontally scaling solution on the big data platform for

multiresolution social network community identification and maintenance. By

using k-core as the measure of community intensity, we propose multi-k-core

construction and incremental maintenance algorithms and run experiments to

demonstrate orders of magnitude speedup with the aggressive pruning and fairly

low maintenance overhead in the majority of graph updates at relatively high

k-valued cores. We further extend algorithms to handle batch maintenance of a

window of updates, which provides larger and more stable speedup for multi-k-

core maintenance.

For the simplicity of the presentation, we left out the metadata and content

associated with graph vertices and edges. In practice, a k-core subgraph is often

associated with application context and semantic meaning. Our efficient main-

tenance algorithms now enable many practical applications to keep many k-core

materialized views up to date and ready for user exploration.

Finally, we propose a clock based graph aware cache system with cache and

eviction algorithms designed with distributed graph processing context in mind.

We provide experimental results on our HBase cluster, which demonstrate up to

131

15x speedup compared to traditional LRU based cache systems.

We provide a distributed implementation of the algorithms on top of Apache

HBase, leveraging its horizontal scaling, range-based data partitioning, and the

newly introduced Coprocessor framework. Our implementation fully takes ad-

vantage of distributed, parallel processing of the HBase Coprocessors. Building

the graph data store and processing on HBase also benefits from the robustness

of the platform and its future improvements.

The studies presented in this thesis can be extended in various dimensions.

The analysis that is presented in Chapter 3 on degree distribution can be repeated

for other social network characteristics. For instance, the effect of network size,

density, operator, and location on clustering co-efficient or k-core distribution can

be discovered. Also, temporal evaluation of social network characteristics can be

studies using datasets with time attributes.

On the other hand, coprocessor based distributed processing framework de-

scribed in the Chapter 4 can be extended for other social network algorithms,

e.g., centrality computation algorithms, link recommendation algorithms. In this

way, a generic social network analysis framework on Big Data platform would be

obtained.

132

Bibliography

[1] S. Wasserman and K. Faust, Social network analysis: methods and appli-

cations (structural analysis in the social sciences). Cambridge University

Press, January 1995.

[2] J. Palau, M. Montaner, B. Lpez, and J. de la Rosa, “Collaboration analysis

in recommender systems using social networks,” in Cooperative Information

Agents VIII (M. Klusch, S. Ossowski, V. Kashyap, and R. Unland, eds.),

vol. 3191 of Lecture Notes in Computer Science, pp. 137–151, Springer

Berlin Heidelberg, 2004.

[3] P. Kazienko, K. Musial, and T. Kajdanowicz, “Multidimensional social net-

work in the social recommender system,” Systems, Man and Cybernetics,

Part A: Systems and Humans, IEEE Transactions on, vol. 41, pp. 746–759,

July 2011.

[4] J. Carrasco, D. Fain, K. Lang, and L. Zhukov, “Clustering of bipartite

advertiser-keyword graph,” in Proceedings of international Conference on

Data Mining, (Melbourne, Florida), November 2003.

[5] C. Yang and T. Dorbin Ng, “Analyzing and visualizing web opinion de-

velopment and social interactions with density-based clustering,” Systems,

Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions

on, vol. 41, pp. 1144–1155, November 2011.

[6] C. Lu, X. Hu, and J. R. Park, “Exploiting the social tagging network for web

clustering,” Systems, Man and Cybernetics, Part A: Systems and Humans,

IEEE Transactions on, vol. 41, no. 5, pp. 840–852, 2011.

133

[7] J. Schroeder, J. Xu, and H. Chen, “Crimelink explorer: using domain

knowledge to facilitate automated crime association analysis,” in Intelli-

gence and Security Informatics (H. Chen, R. Miranda, D. Zeng, C. Dem-

chak, J. Schroeder, and T. Madhusudan, eds.), vol. 2665 of Lecture Notes

in Computer Science, pp. 168–180, Springer Berlin Heidelberg, 2003.

[8] M. Girvan and M. E. J. Newman, “Community structure in social and

biological networks,” in Proceedings of the National Academy of Sciences,

vol. 99, pp. 7821–7826, June 2002.

[9] R. Guimerà, M. Sales-Pardo, and L. A. N. Amaral, “Modularity from fluc-

tuations in random graphs and complex networks,” Physical Review E (Sta-

tistical, Nonlinear, and Soft Matter Physics), vol. 70, no. 2, 2004.

[10] S. Fortunato and M. Barthélemy, “Resolution limit in community detec-

tion,” in Proceedings of the National Academy of Sciences, vol. 104, pp. 36–

41, National Academy of Sciences, January 2007.

[11] A. Clauset, M. E. J. Newman, and C. Moore, “Finding community structure

in very large networks,” Physical Review E, vol. 70, pp. 066111+, December

2004.

[12] B. Karrer, E. Levina, and M. E. J. Newman, “Robustness of community

structure in networks,” Physical Review E, vol. 77, pp. 046119+, September

2007.

[13] M. Cha, F. Benevenuto, H. Haddadi, and P. K. Gummadi, “The world of

connections and information flow in twitter,” Systems, Man and Cybernet-

ics, Part A: Systems and Humans, IEEE Transactions on, vol. 42, no. 4,

pp. 991–998, 2012.

[14] C. Ratti, Pulselli, S. Williams, and D. Frenchman, “Mobile landscapes:

using location data from cell-phones for urban analysis,” Environment and

Planning B: Planning and Design, vol. 33, no. 5, pp. 727–748, 2006.

[15] D. J. Watts, “A twenty-first century science,” Nature, vol. 445, p. 489,

January 2007.

134

[16] A. Wesolowski, N. Eagle, A. J. Tatem, D. L. Smith, A. M. Noor, R. W.

Snow, and C. O. Buckee, “Quantifying the impact of human mobility on

malaria,” Science, vol. 338, no. 6104, pp. 267–270, 2012.

[17] N. Eagle, A. S. Pentland, and D. Lazer, “Inferring friendship network struc-

ture by using mobile phone data,” in Proceedings of the National Academy

of Sciences, vol. 106, pp. 15274–15278, National Acad Sciences, 2009.

[18] A. Le Menach, A. J. Tatem, J. M. Cohen, S. I. Hay, H. Randell, A. P. Patil,

and D. L. Smith, “Travel risk, malaria importation and malaria transmis-

sion in zanzibar,” Scientific Reports, vol. 1, 2011.

[19] W. Aiello, F. Chung, and L. Lu, “A random graph model for massive

graphs,” in Proceedings of the 32nd annual ACM symposium on Theory

of computing, STOC ’00, (New York, NY, USA), pp. 171–180, ACM, 2000.

[20] J. P. Onnela, J. Saramäki, J. Hyvönen, G. Szabó, D. Lazer, K. Kaski,

J. Kertész, and A. L. Barabási, “Structure and tie strengths in mobile com-

munication networks,” in Proceedings of the National Academy of Sciences,

vol. 104, pp. 7332–7336, May 2007.

[21] K. Dasgupta, R. Singh, B. Viswanathan, D. Chakraborty, S. Mukherjea,

A. A. Nanavati, and A. Joshi, “Social ties and their relevance to churn in

mobile telecom networks,” in Proceedings of the 11th international confer-

ence on Extending database technology: Advances in database technology,

EDBT ’08, (New York, NY, USA), pp. 668–677, ACM, 2008.

[22] Z. Bi, C. Faloutsos, and F. Korn, “The ”dgx” distribution for mining mas-

sive, skewed data,” in Proceedings of the 7th ACM SIGKDD international

conference on Knowledge discovery and data mining, KDD ’01, (New York,

NY, USA), pp. 17–26, ACM, 2001.

[23] M. Seshadri, S. Machiraju, A. Sridharan, J. Bolot, C. Faloutsos, and

J. Leskove, “Mobile call graphs: beyond power-law and lognormal distribu-

tions,” in Proceeding of the 14th ACM SIGKDD international conference

on Knowledge discovery and data mining, KDD ’08, (New York, NY, USA),

pp. 596–604, ACM, 2008.

135

[24] A. Sala, S. Gaito, G. P. Rossi, H. Zheng, and B. Y. Zhao, “Revisit-

ing degree distribution models for social graph analysis,” arXiv preprint

arXiv:1108.0027, vol. abs/1108.0027, 2011.

[25] M. J. Quinn and N. Deo, “Parallel graph algorithms,” ACM Computing

Surveys, vol. 16, pp. 319–348, September 1984.

[26] Z. Zeng, J. Wang, L. Zhou, and G. Karypis, “Out-of-core coherent closed

quasi-clique mining from large dense graph databases,” ACM Transactions

on Database Systems, vol. 32, June 2007.

[27] R. Zhou, C. Liu, J. X. Yu, W. Liang, B. Chen, and J. Li, “Finding maximal

k-edge-connected subgraphs from a large graph,” in Proceedings of the 15th

International Conference on Extending Database Technology, EDBT ’12,

(New York, NY, USA), pp. 480–491, ACM, 2012.

[28] V. Batagelj and M. Zaversnik, “An o(m) algorithm for cores decomposition

of networks,” arXiv preprint arXiv:1207.4567, vol. cs.DS/0310049, 2003.

[29] C. Giatsidis, D. M. Thilikos, and M. Vazirgiannis, “Evaluating cooperation

in communities with the k-core structure,” in Proceedings of the 2011 Inter-

national Conference on Advances in Social Networks Analysis and Mining,

ASONAM ’11, (Washington, DC, USA), pp. 87–93, IEEE Computer Soci-

ety, 2011.

[30] C. Giatsidis, K. Berberich, D. M. Thilikos, and M. Vazirgiannis, “Visual

exploration of collaboration networks based on graph degeneracy,” in Pro-

ceedings of the 18th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, KDD ’12, (New York, NY, USA), pp. 1512–

1515, ACM, 2012.

[31] W. Wei and S. Ram, “Using a network analysis approach for organizing so-

cial bookmarking tags and enabling web content discovery,” ACM Transac-

tions on Management Information Systems, vol. 3, pp. 15:1–15:16, October

2012.

136

[32] H. Chun, H. Kwak, Y.-H. Eom, Y.-Y. Ahn, S. Moon, and H. Jeong, “Com-

parison of online social relations in volume vs interaction: a case study of

cyworld,” in Proceedings of the 8th ACM SIGCOMM Conference on In-

ternet Measurement, IMC ’08, (New York, NY, USA), pp. 57–70, ACM,

2008.

[33] “Followerwonk: twitter analytics, follower segmentation, social graph track-

ing.” Available from: http://followerwonk.com/, Last Access: July,

2014.

[34] “The original twitter wall.” Available from: http://tweetwall.com/, Last

Access: July, 2014.

[35] “Easy social media analytics & measurement — simply measured.” Avail-

able from: http://simplymeasured.com/, Last Access: July, 2014.

[36] “Hbase - apache hbase home.” Available from: http://hbase.apache.

org/, Last Access: July, 2014.

[37] T. Luczak, “Size and connectivity of the k-core of a random graph,” Discrete

Mathematics, vol. 91, pp. 61–68, July 1991.

[38] B. Pittel, J. Spencer, and N. Wormald, “Sudden emergence of a giant k-

core in a random graph,” Journal of Combinatorial Theory Series B, vol. 67,

pp. 111–151, May 1996.

[39] C. Cooper, “The cores of random hypergraphs with a given degree se-

quence,” Random Structures & Algorithms, vol. 25, pp. 353–375, December

2004.

[40] M. Molloy, “Cores in random hypergraphs and boolean formulas,” Random

Structures & Algorithms, vol. 27, pp. 124–135, August 2005.

[41] S. Janson and M. J. Luczak, “A simple solution to the k-core problem,”

Random Structures & Algorithms, vol. 30, pp. 50–62, January 2007.

[42] S. B. Seidman, “Network structure and minimum degree,” Social Networks,

vol. 5, no. 3, pp. 269 – 287, 1983.

137

http://followerwonk.com/
http://tweetwall.com/
http://simplymeasured.com/
http://hbase.apache.org/
http://hbase.apache.org/

[43] J. I. A. Hamelin, L. Dall’Asta, A. Barrat, and A. Vespignani, “k-core de-

composition: a tool for the visualization of large scale networks,” arXiv

preprint arXiv:1207.4567, vol. abs/cs/0504107, 2005.

[44] J. I. A. Hamelin, L. Dall’Asta, A. Barrat, and A. Vespignani, “Large scale

networks fingerprinting and visualization using the k-core decomposition,”

in Advances in neural information processing systems, pp. 41–50, 2005.

[45] Batagelj, Mrvar, and Zaversnik, “Partitioning approach to visualization of

large graphs,” in GDRAWING: Conference on Graph Drawing (GD), 1999.

[46] Baur, Brandes, Gaertler, and Wagner, “Drawing the as graph in 2.5 dimen-

sions,” in GDRAWING: Conference on Graph Drawing (GD), 2004.

[47] Y. Zhang and S. Parthasarathy, “Extracting analyzing and visualizing tri-

angle k-core motifs within networks,” in Data Engineering, 2012 IEEE 28th

International Conference on, pp. 1049–1060, April 2012.

[48] S. Carmi, S. Havlin, S. Kirkpatrick, Y. Shavitt, and E. Shir, “A model

of internet topology using k-shell decomposition,” in Proceedings of the

National Academy of Sciences, vol. 104, pp. 11150–11154, National Acad

Sciences, 2007.

[49] J. I. A. Hamelin, M. G. Beiró, and J. R. Busch, “Understanding edge con-

nectivity in the internet through core decomposition,” Internet Mathemat-

ics, vol. 7, no. 1, pp. 45–66, 2011.

[50] J. I. A. Hamelin, L. Dall’Asta, A. Barrat, and A. Vespignani, “K-core

decomposition of internet graphs: hierarchies, self-similarity and measure-

ment biases,” Networks and Heterogeneous Media, vol. 3, no. 2, pp. 371–393,

2008.

[51] D. A. Bader, H. Meyerhenke, P. Sanders, and D. Wagner, eds., Graph Par-

titioning and Graph Clustering - 10th DIMACS Implementation Challenge

Workshop, Georgia Institute of Technology, Atlanta, GA, USA, February

13-14, 2012. Proceedings, vol. 588 of Contemporary Mathematics, American

Mathematical Society, 2013.

138

[52] M. Altaf-Ul-Amin, K. Nishikata, T. Koma, T. Miyasato, Y. Shinbo, M. Ar-

ifuzzaman, C. Wada, M. Maeda, T. Oshima, H. Mori, et al., “Prediction of

protein functions based on k-cores of protein-protein interaction networks

and amino acid sequences,” Genome Informatics Series, pp. 498–499, 2003.

[53] G. D. Bader and C. W. V. Hogue, “An automated method for finding molec-

ular complexes in large protein interaction networks,” BMC Bioinformatics,

vol. 4, p. 2, 2003.

[54] S. Wuchty and E. Almaas, “Peeling the yeast protein network,” Proteomics,

vol. 5, no. 2, pp. 444–449, 2005.

[55] J. Cheng, Y. Ke, S. Chu, and M. T. Özsu, “Efficient core decomposition in

massive networks,” in ICDE (S. Abiteboul, K. Böhm, C. Koch, and K.-L.

Tan, eds.), pp. 51–62, IEEE Computer Society, 2011.

[56] A. Montresor, F. De Pellegrini, and D. Miorandi, “Distributed k-core de-

composition,” Parallel and Distributed Systems, IEEE Transactions on,

vol. 24, no. 2, pp. 288–300, 2013.

[57] D. Miorandi and F. De Pellegrini, “K-shell decomposition for dynamic com-

plex networks,” in Modeling and Optimization in Mobile, Ad Hoc and Wire-

less Networks, 2010 Proceedings of the 8th International Symposium on,

pp. 488–496, IEEE, 2010.

[58] R. Li and J. Yu, “Efficient core maintenance in large dynamic graphs,”

arXiv preprint arXiv:1207.4567, 2012.

[59] A. E. Sariyüce, B. Gedik, G. Jacques-Silva, K.-L. Wu, and Ü. V. Çatalyürek,

“Streaming algorithms for k-core decomposition,” in Proceedings of the

VLDB Endowment, vol. 6, pp. 433–444, 2013.

[60] N. P. Nguyen, T. N. Dinh, S. Tokala, and M. T. Thai, “Overlapping com-

munities in dynamic networks: their detection and mobile applications,” in

Proceedings of the 17th Annual International Conference on Mobile Com-

puting and Networking, MobiCom ’11, (New York, NY, USA), pp. 85–96,

ACM, 2011.

139

[61] A. Lancichinetti and S. Fortunato, “Community detection algorithms: a

comparative analysis,” Physical Review E, vol. 80, no. 5, p. 056117, 2009.

[62] L. Danon, A. Dı́az-Guilera, J. Duch, and A. Arenas, “Comparing commu-

nity structure identification,” Journal of Statistical Mechanics: Theory and

Experiment, vol. 2005, no. 09, p. P09008, 2005.

[63] C. Tantipathananandh, T. Berger-Wolf, and D. Kempe, “A framework for

community identification in dynamic social networks,” in Proceedings of the

13th ACM SIGKDD international conference on Knowledge discovery and

data mining, KDD ’07, (New York, NY, USA), pp. 717–726, ACM, 2007.

[64] J. Greiner, “A comparison of parallel algorithms for connected compo-

nents,” in Proceedings of the 6th annual ACM symposium on Parallel al-

gorithms and architectures, SPAA ’94, (New York, NY, USA), pp. 16–25,

ACM, 1994.

[65] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on large

clusters,” Communications of the ACM, vol. 51, pp. 107–113, January 2008.

[66] “Welcome to apache hadoop!.” Available from: http://hadoop.apache.

org/, Last Access: July, 2014.

[67] J. Cohen, “Graph twiddling in a mapreduce world,” Computing in Science

Engineering, vol. 11, pp. 29 –41, july-aug. 2009.

[68] J. Lin and M. Schatz, “Design patterns for efficient graph algorithms in

mapreduce,” in Proceedings of the 8th Workshop on Mining and Learning

with Graphs, MLG ’10, (New York, NY, USA), pp. 78–85, ACM, 2010.

[69] U. Kang, C. E. Tsourakakis, and C. Faloutsos, “Pegasus: mining peta-scale

graphs,” Knowledge and Information Systems, vol. 27, pp. 303–325, May

2011.

[70] U. Kang, H. Tong, J. Sun, C.-Y. Lin, and C. Faloutsos, “Gbase: a scal-

able and general graph management system,” in Proceedings of the 17th

ACM SIGKDD international conference on Knowledge discovery and data

mining, KDD ’11, (New York, NY, USA), pp. 1091–1099, ACM, 2011.

140

http://hadoop.apache.org/
http://hadoop.apache.org/

[71] Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst, “Haloop: efficient iter-

ative data processing on large clusters,” in Proceedings of the VLDB En-

dowment, vol. 3, pp. 285–296, VLDB Endowment, September 2010.

[72] J. Huang, D. J. Abadi, and K. Ren, “Scalable sparql querying of large rdf

graphs,” in Proceedings of the VLDB Endowment, vol. 4, VLDB Endow-

ment, September 2011.

[73] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser,

and G. Czajkowski, “Pregel: a system for large-scale graph processing,” in

Proceedings of the 2010 international conference on Management of data,

SIGMOD ’10, (New York, NY, USA), pp. 135–146, ACM, 2010.

[74] “Giraph - welcome to apache giraph!.” Available from: http://giraph.

apache.org/, Last Access: July, 2014.

[75] “Hama - a general bsp framework on top of hadoop.” Available from: http:

//hama.apache.org/, Last Access: July, 2014.

[76] “Objectivity infinitegraph.” Available from: http://infinitegraph.

com/, Last Access: July, 2014.

[77] “Trinity - microsoft research.” Available from: http://research.

microsoft.com/en-us/projects/trinity/, Last Access: July, 2014.

[78] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,

A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:

Amazon’s highly available key-value store,” in ACM SIGOPS Operating

Systems Review, vol. 41, pp. 205–220, ACM, 2007.

[79] “Project voldemort: a distributed database.” Online, March 2012.

[80] “Redis.” Available from: http://redis.io, Last Access: July, 2014.

[81] “The apache cassandra project.” Available from: http://cassandra.

apache.org, Last Access: July, 2014.

[82] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C. Li,

R. McElroy, M. Paleczny, D. Peek, P. Saab, et al., “Scaling memcache at

141

http://giraph.apache.org/
http://giraph.apache.org/
http://hama.apache.org/
http://hama.apache.org/
http://infinitegraph.com/
http://infinitegraph.com/
http://research.microsoft.com/en-us/projects/trinity/
http://research.microsoft.com/en-us/projects/trinity/
http://redis.io
http://cassandra.apache.org
http://cassandra.apache.org

facebook,” in Proceedings of the 10th USENIX Symposium on Networked

Systems Design and Implementation, pp. 385–398, 2013.

[83] C. Xu, X. Huang, N. Wu, P. Xu, and G. Yang, “Using memcached to

promote read throughput in massive small-file storage system,” in Grid and

Cooperative Computing, 2010 9th International Conference on, pp. 24–29,

November 2010.

[84] “Neo4j - the world’s leading graph database.” Available from: http://

neo4j.org/, Last Access: July, 2014.

[85] “Caches in neo4j - the neo4j manual v2.1.2.” Available from: http://docs.

neo4j.org/chunked/milestone/configuration-caches.html, Last Ac-

cess: July, 2014.

[86] N. Bronson, Z. Amsden, G. Cabrera, P. Chakka, P. Dimov, H. Ding, J. Fer-

ris, A. Giardullo, S. Kulkarni, H. C. Li, et al., “Tao: Facebook’s distributed

data store for the social graph,” in USENIX Annual Technical Conference,

pp. 49–60, 2013.

[87] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser,

and G. Czajkowski, “Pregel: a system for large-scale graph processing,”

in Proceedings of the 2010 ACM SIGMOD International Conference on

Management of data, pp. 135–146, ACM, 2010.

[88] J.-K. Min and S.-B. Cho, “Mobile human network management and recom-

mendation by probabilistic social mining,” Systems, Man, and Cybernetics,

Part B: Cybernetics, IEEE Transactions on, vol. 41, no. 3, pp. 761–771,

2011.

[89] D. Wang, D. Pedreschi, C. Song, F. Giannotti, and A. L. Barabasi, “Hu-

man mobility, social ties, and link prediction,” in Proceedings of the 17th

ACM SIGKDD international conference on Knowledge discovery and data

mining, KDD ’11, (New York, NY, USA), pp. 1100–1108, ACM, 2011.

[90] S. Milgram, “The small world problem,” Psychology Today, vol. 2, pp. 60–

67, 1967.

142

http://neo4j.org/
http://neo4j.org/
http://docs.neo4j.org/chunked/milestone/configuration-caches.html
http://docs.neo4j.org/chunked/milestone/configuration-caches.html

[91] Å. Björck, Numerical methods for least squares problems. Philadelphia, PA:

SIAM, 1996.

[92] R Development Core Team, R: a language and environment for statistical

computing. R Foundation for Statistical Computing, Vienna, Austria, 2010.

ISBN 3-900051-07-0.

[93] A. Clauset, C. R. Shalizi, and M. E. J. Newman, “Power-law distributions

in empirical data,” SIAM Reviews, June 2007.

[94] H. Aksu, M. Canim, Y. Chang, I. Korpeoglu, and O. Ulusoy, “Distributed

k-core view materialization and maintenance for large dynamic graphs,”

Knowledge and Data Engineering, IEEE Transactions on, vol. PP, no. 99,

pp. 1–1, 2014.

[95] S. N. Dorogovtsev and J. F. Mendes, “Evolution of networks,” Advances in

Physics, vol. 51, no. 4, pp. 1079–1187, 2002.

[96] E. Ravasz and A. L. Barabási, “Hierarchical organization in complex net-

works,” Physical Review E, vol. 67, pp. 026112+, February 2003.

[97] J. Leskovec and E. Horvitz, “Planetary-scale views on a large instant-

messaging network,” in Proceeding of the 17th international conference on

World Wide Web, WWW ’08, (New York, NY, USA), pp. 915–924, ACM,

2008.

[98] J. I. Alvarez-Hamelin, L. DallAsta, A. Barrat, and A. Vespignani, “Analysis

and visualization of large scale networks using the k-core decomposition,”

in European Conference on Complex Systems, 2005.

[99] J. Kleinberg, “The convergence of social and technological networks,” Com-

munications of the ACM, vol. 51, pp. 66–72, November 2008.

[100] H. Zhang, R. Dantu, and J. W. Cangussu, “Socioscope: human relationship

and behavior analysis in social networks,” Systems, Man and Cybernetics,

Part A: Systems and Humans, IEEE Transactions on, vol. 41, pp. 1122–

1143, November 2011.

143

[101] A. A. Nanavati, S. Gurumurthy, G. Das, D. Chakraborty, K. Dasgupta,

S. Mukherjea, and A. Joshi, “On the structural properties of massive tele-

com call graphs: findings and implications,” in Proceedings of the 15th ACM

international conference on Information and knowledge management, (New

York, NY, USA), pp. 435–444, ACM, 2006.

[102] “Twitter statistics.” Available from: http://www.statisticbrain.com/

twitter-statistics, Last Access: July, 2014.

[103] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Bur-

rows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: a distributed

storage system for structured data,” ACM Transactions on Computer Sys-

tems, vol. 26, pp. 4:1–4:26, June 2008.

[104] D. Borthakur, J. Gray, J. S. Sarma, K. Muthukkaruppan, N. Spiegelberg,

H. Kuang, K. Ranganathan, D. Molkov, A. Menon, S. Rash, R. Schmidt,

and A. Aiyer, “Apache hadoop goes realtime at facebook,” in Proceedings

of the 2011 international conference on Management of data, SIGMOD ’11,

(New York, NY, USA), pp. 1071–1080, ACM, 2011.

[105] “Hbase/poweredby - hadoop wiki.” Available from: http://wiki.apache.

org/hadoop/Hbase/PoweredBy/, Last Access: July, 2014.

[106] “Coprocessor introduction : apache hbase.” Available from: http:

//blogs.apache.org/hbase/entry/coprocessor_introduction/, Last

Access: July, 2014.

[107] J. Mondal and A. Deshpande, “Managing large dynamic graphs efficiently,”

in Proceedings of the 2012 international conference on Management of data,

SIGMOD ’12, ACM, 2012.

[108] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, and B. Bhattacharjee,

“Measurement and analysis of online social networks,” in Proceedings of the

5th ACM/Usenix Internet Measurement Conference (IMC’07), (San Diego,

CA), October 2007.

[109] “Snap: Stanford network analysis project.” Available from: http://snap.

stanford.edu/, Last Access: July, 2014.

144

http://www.statisticbrain.com/twitter-statistics
http://www.statisticbrain.com/twitter-statistics
http://wiki.apache.org/hadoop/Hbase/PoweredBy/
http://wiki.apache.org/hadoop/Hbase/PoweredBy/
http://blogs.apache.org/hbase/entry/coprocessor_introduction/
http://blogs.apache.org/hbase/entry/coprocessor_introduction/
http://snap.stanford.edu/
http://snap.stanford.edu/

[110] “Ganglia monitoring system.” Available from: http://ganglia.info/,

Last Access: July, 2014.

[111] D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers, M. J. Spreitzer,

and C. H. Hauser, “Managing update conflicts in bayou, a weakly con-

nected replicated storage system,” in Proceedings of the 15th Symposium on

Operating Systems Principles (15th SOSP’95), Operating Systems Review,

(Copper Mountain, CO), pp. 172–183, ACM SIGOPS, December 1995.

[112] W. Vogels, “Eventually consistent,” Communications of the ACM, vol. 52,

pp. 40–44, January 2009.

[113] R. Zafarani and H. Liu, “Social computing data repository at ASU.” Avail-

able from: http://socialcomputing.asu.edu/. Last Access: July, 2014.

145

http://ganglia.info/
http://socialcomputing.asu.edu/

	Introduction
	Contributions
	Outline of the Dissertation

	Related Work and Background
	Call Graphs Analysis
	k-core Decomposition
	Other Parallel Graph Algorithms
	Graph-Aware Caching

	An Analysis of Social Networks based on Tera-scale Telecommunication Datasets
	Dataset
	Analysis
	Distribution Model Fitting
	Goodness-of-fit
	 Working With Large Datasets

	Social Network Modeling
	Network Operator
	Network Size
	Population Density
	Geographic Location

	Structural Properties of the Communication Network
	Conclusion

	Distributed k-Core View Materialization and Maintenance for Large Dynamic Graphs
	Algorithm Implementation on Apache HBase
	A Concrete Example of a Distributed Social Graph With Metadata
	The Role of k-core Subgraph in Presence of the Metadata
	Advantage of Storing k-core in Distributed Sites

	Preliminaries
	Distributed k-core Construction
	Base Algorithm
	Early Pruning

	Incremental k-core Maintenance
	Inserting an Edge
	Deleting an Edge

	Batch k-core Maintenance
	Performance Evaluation
	Implementation on HBase
	System Setup
	Datasets
	k-core Construction Experiments
	Batch Maintenance Experiments

	Conclusion

	Network Community Identification and Maintenance at Multiple Resolutions
	Preliminaries
	Distributed Multi k-core Construction
	Base Algorithm
	Multi k-core Construction

	Incremental Multi k-core Maintenance
	Edge Insertion
	Edge Deletion

	Batch Multi k-core Maintenance
	Performance Evaluation
	System Setup and Datasets
	Experiments
	Batch Maintenance Experiments

	Conclusion

	Graph Aware Caching
	Introduction
	Distributed Graph Handling with Apache HBase
	HBase and Coprocessors
	Graph Processing on HBase

	Cache Systems
	Fetch Algorithms
	Traditional Fetching
	Graph Fetching

	Eviction Algorithms
	Clock Based Graph Aware Cache (CBGA)

	Performance Evaluation
	System Setup and Datasets
	Experiments

	Conclusion

	Conclusions and Future Work

