MODEL-DRIVEN VARIABILITY MANAGEMENT IN CHOREOGRAPHY
SPECIFICATION

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

SELMA SULOGLU

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR
THE DEGREE OF DOCTOR OF PHILOSOPHY
IN
COMPUTER ENGINEERING

SEPTEMBER 2013

Approval of the thesis:

MODEL-DRIVEN VARIABILITY MANAGEMENT IN CHOREOGRAPHY
SPECIFICATION

submitted by SELMA SULOGLU in partial fulfillment of the requirements for the
degree of Doctor of Philosophy in Computer Engineering Department, Middle
East Technical University by,

Prof. Dr. Canan Ozgen
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Adnan Yazici
Head of Department, Computer Engineering

Prof. Dr. Ali H. Dogru
Supervisor, Computer Engineering Department, METU

Assist. Prof. Dr. Bedir Tekinerdogan
Co-supervisor, Computer Engineering Dept., Bilkent Uni.

Examining Committee Members:

Prof. Dr. Ismail Hakki Toroslu
Computer Engineering Department, METU

Prof. Dr. Ali H. Dogru
Computer Engineering Department, METU

Assoc. Prof. Dr. Pinar Karagoz
Computer Engineering Department, METU

Assist. Prof. Dr. Selim Temizer
Computer Engineering Department, METU

Assist. Prof. Dr. Aykut Erdem
Computer Engineering Department, Hacettepe University

Date:

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Last Name: SELMA SULOGLU

Signature

v

ABSTRACT

MODEL-DRIVEN VARIABILITY MANAGEMENT IN CHOREOGRAPHY
SPECIFICATION

Siiloglu, Selma
Ph.D., Department of Computer Engineering
Supervisor : Prof. Dr. Ali H. Dogru
Co-Supervisor : Assist. Prof. Dr. Bedir Tekinerdogan

September 2013, [352] pages

In this thesis, model driven variability management in choreography model is intro-
duced, which brings variability management and choreography specification together
in one single model. Service Oriented Architecture (SOA) is a means of facilitat-
ing inner and inter-organizational computing which reveals a reusable architecture
comprising service consumer, producer and broker. To achieve assembling and com-
position of services, orchestration and choreography concepts are utilized, which are
two interrelated views of the system architecture. In the architectural level, orches-
tration and choreography models are tailored by variability specifications in order to
deal with reuse challenge. Several approaches have been introduced to support vari-
ability in orchestration and choreography languages. Unfortunately, variability spec-
ifications are not explicitly addressed in current choreography languages and are not
integrated with variable orchestration specifications. Specification of consistent vari-
ability binding and configuration of interacting services accordingly have not been
considered in the choreography language level. Moreover, there is a lack of support
to reuse existing choreographies. A metamodel and its realization, XChor language
is presented and validated with regard to service variability needs and service interac-
tions patterns. XChorS Tool is developed to facilitate pre and post analysis of models,
configuration of models regarding variability bindings in a consistent way and trans-
formation of models to existing languages. Verification of XChor models is enabled

and implemented by means of transforming to a model checking system, Featured
Transition Systems. Lastly, variability management of assets and artifacts in software
product lines with the help of XChor metamodel and language is explained. Case
studies are provided for demonstration purposes.

Keywords: Service-Oriented Architecture, Choreography Model, Choreography Lan-
guage, Variability Management, Model Driven, Software Product Lines

vi

(0Y/

KOREOGRAFI TANIMINDA MODEL TABANLI DEGISKENLIK YONETIMi

Siiloglu, Selma
Doktora, Bilgisayar Miihendisligi Boliimii
Tez Yoneticisi : Prof. Dr. Ali H. Dogru
Ortak Tez Yoneticisi : Yrd. Doc¢. Dr. Bedir Tekinerdogan

Eyliil 2013 ,[352]sayfa

Bu tezde, degiskenlik yonetimini ve koreografi belirtimini bir modelde birlestiren, ko-
reografi modelinde model odakli degiskenlik yonetimi 6nerilmistir. Servis Odakli Mi-
mari (SOM), servis kullanicilarini, saglayicilarim ve arabuluculari igeren ve yeniden
kullanilabilir bir mimari temelinde organizasyonlarin kendi i¢inde ve organizasyonlar
arasi birliktelikler gerektiren sistemlerin gerceklenmesine olanak saglar. Servisleri bi-
raraya getirmek ve onlarin tiimlestirilmesini saglamak i¢cin SOM’da orkestrasyon ve
koreografi kavramlar1 kullanilir. Bu iki kavram birbirleriyle siki iligkiler icerisinde
olan sistem mimarisinin birbirleriyle iligkili bakis agilaridir. Mimari seviyede, yeni-
den kullanilabilirligi saglamada yasanan zorluklarla bas etmek i¢in orkestrasyon ve
koreografi degiskenlik tanimlamalarina gore uyarlanir. Degiskenligi orkestrasyon ve
koreografi seviyesinde destekleyen bir¢ok yaklasim bulunmaktadir. Ancak su anki
koreografi dillerinde degiskenlik tanimlamalarina acik bir sekilde deginilmemis olup
degisken orkestrastyonlarla biitiinlestirilmesi yapilmamaktadir. Birbirleriyle iligkili
olan servislerin tutarli bir sekilde degiskenlik iligkilendirilmesi ve bu iligkilendirmeye
gore konfigiire edilmesi koreografi dili seviyesinde ele alinmamigtir. Ayrica, varolan
degisken koreografilerin kullanimi konusunda dil seviyesinde destek verilmemekte-
dir. Bir metamodel ve gerceklestirimi olan XChor dili anlatilmis olup XChor dili
servis degiskenlik gereksinimlerine ve servis etkilesim oOrgiilerine gore gecerlenmis-
tir. XChor modellerini 6n ve son analizlerini yapmak, degiskenligi tutarli bir sekilde
ilisikilendirerek modelleri konfigiire etmek ve varolan dillere doniistiirmek icin XC-

vii

horS araci gelistirilmistir. XChor modellerinin Ozellikli Gegis Sistem modellerine
doniistiiriilme kurallar1 tanimlanarak ve gergeklenerek XChor modellerinin dogrulan-
mas1 adim adim anlatilmistir. Son olarak yazilim tiretim bantlarinda varlik ve yapi
birimlerinde degiskenlik yonetiminin XChor metamodeli ve dili ile nasil yapilacagi
gosterilmistir. Durum senaryolart gdsterim amacgli sunulmustur.

Anahtar Kelimeler: Servis Odakli Mimari, Koreografi Modeli, Koreografi Dili, De-
giskenlik Yonetemi, Model Tabanli, Yazilim Uretim Bantlari

viii

To my family and the ones who are now reading this page

X

ACKNOWLEDGMENTS

I would like to thank my supervisor Professor Ali H. Dogru and co-supervisor Asso-
ciate Professor Bedir Tekinerdogan for their constant support, guidance and friend-
ship. It was a great honor to work with them for the last seven years and our coop-
eration influenced my academical and world view highly. I also would like to thank
Associate Professor Halit Oguztiiziin for his support and guidance. He also motivated
and infuenced me highly in scientific context.

And there are a lot of people that were with me in these seven years. They defined
me, they made me who I am, they are true owners of this work. It is not possible to
write down why each of them is important to me and this work, because it will take
more space than the work itself. I am very grateful to all people I know during my
research assistantship in METU-CENG, they changed me deeply; my vision towards
life, happiness and friendship. I am very luck to have them all. So I’ll just give names
of some of them; Hande Celikkanat, Omer Nebil Yaveroglu, Burgin Sapaz, Sinan
Kalkan, Nilgiin Dag, Utku Erdogdu, Onur Deniz, Ozgiir Kaya, Gokdeniz Karadag,
Can Erogul, Ali Anil Sinaci, Erdal Sivri, Hilal Kili¢, and Cengiz Togay. I would also
like to thank you Meltem Turhan Ydndem for always listening and leading me from
the start of my masters. I am greatly indebted for Utku Erdogdu’s endless time and
effort preparing me last versions of latex. This work is also supported by TUBITAK-
BIDEB National Graduate Scholarship Programme for PhD (2211).

Lastly, sincerest thanks to each of my family members for supporting and believing
in me all the way through my academic life.

TABLE OF CONTENTS

ABSTRACTI. e \%
OZ . . . vii
ACKNOWLEDGMENTS|. o .. X
TABLE OF CONTENTSI o . Xi
LIST OFTABLES| e Xviii
................................ xxii

LIST OF ABBREVIATIONS

CHAPTERS

1 INTRODUCTIONI 1
(1.1 Background| o oo 3

1.2 Problem Statement|. 5

(1.3 Approach|. L 8

10

11

2 BACKGROUND 13

2.1 Chronological History of Web Standards, Organizations and |
Paradigms| o 13

xi

[2.2 Definitions and Main Terminology| 18

2.2.1 Service Oriented Architecture (SOA) 18

[2.2.2 Composition in SOA| 19

[2.3 Systematic Literature Review| 21
[2.3.0.1 Orchestration Languages| 23

[2.3.0.2 Choreography Languages| 28

[2.3.1 Variability Management| 34

[2.3.1.1 Variability in Software Systems| 34

[2.3.1.2 Variability Notion in SOA|. 35

[2.3.1.3 Variation Support in Existing Approaches| 36

[2.3.1.4 Existing Variability Models| 40

[2.4 Comparison Framework| 45
2.4.1 Variability Modeling| 48

[2.4.2 Composition and Configuration of Models|. 54

[2.4.3 Tool Support| 56

60

3 VARIABILITY IN CHOREOGRAPHY LANGUAGE: XCHOR| . . . 63
[3.1 Variability Modeling Requirements for Choreography Lan- [
GUAZES| . . v o e e e e e e e e e e e e e e e 63

[3.2 CaseStudy| 65
[3.2.1 Case Study: Travel Itinerary System|. 65

(3.2.2 Case Study: Adaptable Security System| 67

xii

[3.3 A Metamodel for Variability Management in Choreography| . 69

[3.3.1 Variability Specification| 71

[3.3.2 Choreography Specification] 72

[3.3.3 Choreography to Variability Mapping| 72

[3.4 XChor Language|. 74
[3.4.1 XChor Language Constructs| 74

[3.4.1.1 Variation Specification Constructs| . . 74

[3.4.1.2 Choreography Specification Constructs.| 85

(3.4.1.3 Variation and Choreography Mapping

Constructs. 97

3.42 XChorModelsl 105
(3.4.2.1 Configuration Interface| 105

[3.4.2.2 Choreography| 111

(3.4.2.3 Service and Choreography Interface] . 115

[3.5 Tool Support for XChor| 116
[3.6 Application Development with XChory 127
[3.7 XChor Language Evaluation under Comparison Framework| . 128
3.8 Validationof XChor L. 129

[3.8.1 Modeling Service Variability through XChor Lan-

GUAZE| « . v o e e e e e e e e e e e e e 129
(3.8.1.1 Exposed variability| 131
[3.8.1.2 Composition variability| 132

xiil

[3.8.1.3 Partner variability| 133

[3.8.1.4 Partner exposed variability| 134

[3.8.2 Modeling Choreography through XChor Language| 135

[3.8.2.1 Single-transmission bilateral interac- |
tion patterns| 135
[3.8.2.2 Single-transmission multilateral inter- [
action patterns| 143
[3.8.2.3 Multi-transmission interaction patterns| 155
[3.8.2.4 Routing patterns| 166

4 VERIFICATION OF XCHOR MODELS]

4.1 Needto Verify| 171
%) Verification Approaches for Variable Systems| 172
‘4.3 Model Checking of Variable XChor Choreographies| 173

4.3.1 From Variability Model in XChor to TVL Feature [

Modell 174

“4.3.2 From XChor Behavior Model to fPromelal 175

4.3.3 Model Checking After Transformation|. 180

4.4 Verification of The Case Study| 181
4.4.1 Travel Itinerary - Single Choreography|. 181

4.4.2 Biometric Security System - Multiple Choreography|(l 83

D1 100] . . .o e e 189

X1V

ransformation to or, VX and BPEL| 194

D111 BPELAChor and XChor Models| . 194

G112 VxBPEL and XChor Models| 195

A1 BPEL and XChor Models| 196

[5.1.2 Assumptions and Requirements for Model Trans- |

[formation| oL Lo 196

[5.2 The Transformation Approach to BPEL4Chor, VxBPEL and |

[BPELI. 198
2.1 Transformation to BPEL4Chor 199
2.2 Transtformation from BPEL.4Chor] 199
2 Transformation xBPEL and BPELJ. 209

[6.1.1 Variability Notion 1n Software Product Lines| . . . 227

(6.2 Software Product Lines and Variability of SOA|. 228

[6.2.1 Choreography/Orchestration Relation with Asset/Ar- |
[tifacts|o 229

XV

[6.2.2 Component and Service Interfaces| 231

(6.3 Managing Variability with XChor 1n Software Product Lines| 232

CePLS|. .« . v o e 232

.32 XChor in Software Product Line Frameworkl . 234

(6.4 Application of our approach to Axiomatic Design for Com- |

| ponent Orientation| 235

[/ CONCLUSION AND FUTURE WORKI

2 ntributions| Lo 239

(7.3 Evaluationl 241

7.4 Future Workl 242

R RENCES| o 245
APPENDICES

A XCHOR METAMODEL REALIZATION IN XTEXT]

D.1 TVL Feature Model File for Travel Itinerary System| 313

D.2 fPromela File for Travel Itinerary System| 315

D.3 TVL Feature Model File for Adaptable Security System| . . . 324

D.4 fPromela File for Adaptable Security System| 325

Xvi

CURRICULUM VITAE

Xvil

LIST OF TABLES

TABLES

Table[2.1 Similarities and differences of orchestration and choreography| . . . 20
Table 2.2 Publication Sources Searched| 22
Table|[2.3 Languages Introduced by Standard Bodies|. 22
Table[2.4 VxBPEL Language Constructs| 26
Table[2.5 Comparison of variation support in existing approaches|. 37
Table[2.6 Comparison of variation support in existing approaches|. 38
Table[2.7 Comparison of variation support 1n existing approaches - cont'd|. . . 39
Table|[2.8 Comparison for Variability Modeling Component, 49
Table|[2.9 Comparison for Variability Modeling Component-cont’'d| 50
Table|2.10 Comparison for Variability Modeling Component-cont’'d] 51
Table[2.11 Comparison for Composition and Configuration of Models Compo- [
Cment. . - o o e e 56
Table [2.12 Comparison of Tool Support Component for Existing Variability [
[Modelsl 57
Table[2.13 Comparison of Tool Support Component for Existing Orchestration [
| and Choreography Languages| 58
Table(3.1 Mapping of Metamodel and XChor Metamodel Concepts| 71
Table[3.2 Internal and External Variation Point Syntaxes and Examples| 78
Table|[3.3 Configuration Variation Point Syntax| 80
Table|[3.4 Configuration Variation Point Example|. 81
Table (3.5 Logical Constraint Syntax and Example, 83

Xviii

Table (3.6 Numerical Constraint Syntax and Example{. 84

Table 3.7 Send and Receive Atomic Interaction Syntaxes and Examples|. . . . 90
Table 3.8 Sequence Interaction Syntax and Example| 91
Table 3.9 Select Interaction Syntax and Example| 92
Table [3.10 Repeat Interaction Syntax and Example] 93
Table [3.11 Parallel Interaction Syntax and Example| 94
Table(3.12 VMMapping Syntax|. 102
Table(3.13 VMMapping Example|. 103
Table [3.14 Variability Attachment Syntax| 104
Table [3.15 Variability Attachment Example| 104
Table [3.16 Configuration Interface of adaptive security system| 107
Table 3.17 Configuration Interface of adaptive security system-contd’| 108
Table [3.18 Configuration Interface of adaptive security system-contd’| 109
Table 3.19 Configuration Interface of comparison orchestration| 110
Table [3.20 Adaptable security system choreography| 112
Table 3.21 Adaptable security system choreography-cont'd 113
Table [3.22 Adaptable security system choreography-cont’d 114
Table 3.23 Adaptable security system choreography-cont'd 115
Table [3.24 Encryption Service Interface] 116
Table [3.25 Adaptable Security System Choreography Interface| 117
Table [3.26 Configured adaptable security system choreography| 122
Table [3.2°7 Configured adaptable security system choreography-cont’d| 123
Table [3.28 Algorithmic Complexity of Parsing XChor Models| 124
Table [3.29 Algorithmic Complexity of Pre-analysis of XChor Models| 125
Table 3.30 Algorithmic Complexity of Configuration of XChor Models|. 126

Table [3.31 XChor Evaluation under Components of the Comparison Framework| 130

Xix

Table|3.32 A part of adaptable security system choreography| 132
Table|3.33 Newly Specified Variability Binding Effect on Configuration Syntax |
| and Example| 134
Table4.1 Variability and Behavior Models in XChor and FTS| 174
Table4.2 TransformationRules 177
Table 4.3 Transformation Rules-cont’dl 178
Table 4.4 Transformation Rules-cont’d| 179
Table|4.5 An excerpt of feature list for fPromela specification| 180
Table 4.6 An excerpt from constructed feature model in TVL] 181
Tabled.7 An excerpt from generated fPromela code for travelitinerary chore- [
| ography of Travel Itinerary System| 182
Table 4.8 An excerpt from constructed feature model in TVL| 183
Table 4.9 An excerpt of feature list for fPromela specification| 184
Table 4.10 An excerpt from generated fPromela code for Adaptable Security [

SYSIEIM| e e e e e e e e e e e e e e e 184
Table 4.11 An excerpt from generated fPromela code for Adaptable Security [
| System-cont’'d| 185
Table4.12 Verification Results| 190
Table|5.1 Mapping of Variability Modeling of XChor and VxBPEL} 198
Tablel5.2 Rules for Transformation to BPEL.4Chon 200
Table[3.3 Rules for Transformation to BPEL.4Chor-cont’dl 201
Table 3.4 Rules for Transformation to BPEL.4Chor-cont’d/ 202
Tablel5.5 Rules for Transformation to BPEI 4Chor-cont'dl 203
Tablel5.6 Rules for Transtformation to BPEI.4Chor-cont’d| 204
Table 3.7 Rules for Transformation to BPEL4Chor-cont’d/ 205
Table[5.8 Rules for Transformation to BPEI 4Chor-cont'dl 206
Tablel5.9 Rules for Transformation from BPEL.4Chod 208

XX

Table3.11 Rules for Transformation from BPEL4Chor- cont’d 211
Table 3.12 Rules for Transformation from BPEL4Chor- cont’dl 212
Table|5.13 Rules for Transformation from BPEL4Chor-cont 213
Table[5.14 Rules for Transformation to VXBPEL and BPELJ. 214
Table|5.15 Rules for Transformation to VXBPEL and BPEL!. 215
Table [5.16 Rules for Transformation to VXBPEIL and BPEL- cont’d|. 216
Table5.17 Rules for Transformation to VXBPEL and BPEL- cont'd|. 217
Table3.18 Rules for Transformation to VXBPEL and BPEL- cont’d|. 218
Table 5.19 Rules for Transformation to VXxBPEL and BPEL.- cont’d|. 219
Table 5.20 Rules for Transformation to VXBPEL and BPEL- cont'd|. 220

Xxi

LIST OF FIGURES

FIGURES
Figure|l.I Relations Between SOA, Model Driven and SPL Approaches.| . . . 4
Figure|l.2 Relation with SOA Structure, Dynamicty and Effet of Variability| . 6

Figure|l.3 Orchestration and Choreography Relation and Effect of Variability, 6

Figure|l.4 'The approach answering why, how and what questions.|. 8

Figure|l.5 Chapter Content Dependency.| 12

Figure[2.1 Chronological History of Web Standards, Organizations and Paradigms.| 15

Figure[2.2 Service Oriented Architecture.|. 19
Figure|[3.1 UML Sequence Diagram for Travel Itinerary System.| 66
Figure|3.2 UML Sequence Diagram for User Verification in Adaptable Secu- |
| Ity System.|o e e e 68
Figure (3.3 Overview of the approach based on the Metamodel.| 70
Figure[3.4 XChor Metamodel for Variable Choreography Specification.| 73
Figure (3.5 Variation Point Specification Constructs of XChor Metamodel.|. . . 75
Figure (3.6 Constraint Specification Constructs of XChor Metamodel.| 82
Figure[3.7 Choreography Specification Constructs of XChor Metamodel.| . . . 87
Figure (3.8 A part of XChor Metamodel for Interface Specification.| 96

Figure[3.9 Configuration Model Specification Constructs of XChor Metamodel.| 98

Figure|3.10 A part of XChor Metamodel for Variability Attachment Specification.|]101

Figure(3.11 XChor Tool Execution Flow.,|. 120

Figure(3.12 Send Pattern.| 136

xXxii

Figure[3.13 Recetve Pattern.| 139

Figure[3.14 Send/Receive Pattern.| 0. 141
Figure[3.15 Racing Incoming Messages Pattern.| 144
Figure(3.16 One to Many Send Pattern.|. 147
Figure[3.17 One to Many Receive Pattern.| 150
Figure[3.18 One to Many Send/Receive Pattern.| 153
Figure[3.19 Multi Responses Pattern.|. 157
Figure [3.20 Contingent Request Pattern.| 162
Figure3.21 Atomic Multicast Notification Pattern.|. 164
Figure 3.22 Request with Referral Pattern.| 167
Figure[3.23 Relayed Request Pattern.|. 169
Figure[6.1 The Roles and Interactions[S2]. 226
Figure|6.2 SPL and SOA Concept Relations.| 230
Figure[6.3 SPL and SOA Concept Relations.| 233

Figure|6.4 Axiomatic Design for Component Orientation (ADCO) Approach |
[with XChor[123]| 235

xxiii

ASM
BPEL
BPEL4WS
BPML
BPMN
CA

CBFM
CBS
ConIPF
COVAMOF
CVL

Cvp
ebXML
ESB

featureRSEB

FODA
Forfamel
FTS
GML
HTML
IETF
MDE
OASIS

OVvM

00

OMG
RAS
RequiLine

LIST OF ABBREVIATIONS

Abstract State Machines

Business Process Execution Language

Web Service Business Process Execution Language
Business Process Markup Language

Business Process Markup Notation

Constraint Automata

Cardinality-Based Feature Modeling
Coordination Behavioral Structure
Configuration in Industrial Product Families
ConlPF Variability Modelling Framework
Common Variability Language

Configuration Variation Point

eXtensible Markup Language

Enterprise Service Bus

feature Reuse-Driven Software Engineering Business
Feature-Oriented Domain Analysis

Feature Modeling For Software Product Families
Featured Transition System

Generalized Markup Language

Hyper Text Markup Language

Internet Engineering Task Force

Model Driven Engineering

Organization for the Advancement of Structured Information
Standards

Orthagonal Variability Model
Object Orientated

Object Management Group(OMG)
Reusable Asset Specification

A Requirements Engineering Tool for Software Product Lines

XXiv

SaaS Software as a Service

SGML Standard Generalized Markup Language

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

SPL Software Product Lines

XML-RPC XML-Remote Procedure Call

TVL Text-based Variability Language

UDDI Universal Description, Descovery and Integration
UML Unified Modeling Language

VP Variation Point

VSL Variation Specification Language

WIDL Web Interface Definition Language

WS Web Service

WSCI Web Service Choreography Interface

WS-CDL Web Services Choreography Description Language
WSCG Web Services Chroegraphy Group

WSDL Web Service Description Language

WSFL Web Services Flow Language

WSMO Web Service Modelig Ontolgy

Www World Wide Web

XXV

XXVi

CHAPTER 1

INTRODUCTION

Complexity and change are major challenges that software development industry have
been facing. Dealing with change is an inevitable and essential concern, inherent in
software development nature. During software life cycle, software evolves in re-
sponse to change. This evolution which comprises alteration in software structure
and behavior directly reflects to its design and implementation accordingly. Changes
in business needs and user demands cause alteration in problem domain which result
from requirement inconsistency. On the other hand, rapid and unpredictable technol-
ogy evolution, new technologies and new trends, and other external factors require
alteration in the solution domain. These can be overcome with iterative or agile de-
velopment strategies, adaptive design techniques and refactoring. Another significant
consideration is dealing with complexity. Software development industry, while be-
ing the key driver of modern economy has an unacceptably high level of failures,
caused to a large extent by high complexity of software systems. Software devel-
opment industry has significant problems with managing this complexity, with rais-
ing the level of abstractions and narrowing the abstraction gap between problem and
solution domains, keeping track of changes, and reusing knowledge from previous
projects. The main barrier in overcoming these problems is the lack of widely ac-
cepted and easy to apply mechanisms for expressing and reusing coherent solutions
to problems formulated as user requirements. Software reuse is the use of existing
assets and reapplication of various kinds of knowledge in some form within the soft-
ware product development process. The reused knowledge includes such things as
domain knowledge, technology expertise and development experience. More than

just code, assets are products and by-products of the software development life cycle

and include software components, test suites, designs and documentation[115, [70].

Several organizations develop, share and reuse business processes by establishing
collaboration with other organizations in order to fulfill different stakeholder needs.
Being agile is an important challenge in business process integration context which re-
quires a dynamic environment. In this respect, Service-Oriented Architecture (SOA)
is a promising approach to realize such environments by designing and developing
distributed systems[60]. SOA aims to facilitate reuse of services and incorporates
service consumers and service providers. A service is self-contained, and can be in-
dependently deployed in a distributed component. Building enterprise solutions to
realize business processes typically requires the composition of multiple existing en-
terprise services. Composite services can be further recursively composed with other
services to derive higher level solutions. Two different types of service compositions

are defined.

Service choreography where the interaction protocol between several partner ser-

vices is defined from a global perspective without a central mechanism.

Service orchestration where the interaction logic is specified from the local point of

view of one single participant, called the orchestrator.

Many approaches have been proposed to tackle with complexity and change via vari-
ability management mechanisms, middleware and reconfiguration solutions, dynamic
adaptations, and rule-based approaches. Within these approaches, using variability
management mechanisms in different granularity levels, namely choreography, or-
chestration and atomic services, enables reuse in services. Assuming that all granu-
larity levels can be treated as services, variability can come from (i) their interfaces
(functions and parameters), (ii) connectors (the way they interact) and (iii) compo-
sition (the way they are gathered in order to achieve a goal). Interface variability
requires a configuration mechanism specifying when and how to change its functions
and parameters. Connector variability needs a relation mechanism to indicate when
and which connector is used between two services. Composition variability necessi-
tates a tailoring mechanism to define in which order and how services are interact-

ing with each other. Services offer different functionalities regarding their variability

2

bindings. Therefore, it is the composition’s responsibility to provide a consistent vari-
ability binding between interacting services. This requires a mechanism to establish
variability associations which determines when and how interacting services bind to
specific variants. In other words, composition is responsible for handling consistent
variability binding of interacting services and providing a configuration infrastruc-
ture to reveal seamless integration of services. To cope with such challenges several
approaches have been introduced. However, explicit introduction of variability in-
tegrated with choreography languages is not addressed. Specification of consistent
variability binding and configuration of interacting services are not considered in the
choreography language level. Moreover, there is a lack of support to reuse existing
choreographies. All in all, reusing existing services and service architectures in an

efficient and systematic way is a difficult task.

1.1 Background

Ad-hoc approaches to reuse in software development lead to the process more ex-
pensive and more time consuming because of building software from scratch. To
realize the benefits of reuse, a mature approach must be adopted called systematic
reuse, increasing the returns on investments in production assets, implementation as-
sets through economies of scale and scope.[69] Three basic strategies are pointed
out for leveraging systematic reuse: working faster via tools to automate the labor-
intensive tasks, working smarter with process improvement, and working less via
reuse of software artifacts. An extensive analysis is made on the question that which
strategy will produce the highest payoff and concluded that “working less” is more
valuable three times than “working smarter” and six times than “working faster”[38]].
Therefore, reusability is a key to improving productivity in the software development

area.[[116, 38, 189, [31]]

Service-Oriented Architecture reuses services, service descriptions and architecture,
as well as providing flexibility and adaptation with dynamic discovery mechanisms
and late binding of services to improve productivity. Services are composed in order
to achieve a common goal as a reusable asset. Orchestration, Choreography, Coordi-

nation and Assembly are four types of composition models followed by SOA. Within

these, orchestration and choreography are tightly related concepts, as interrelated
views of architecture. Orchestration, as a central mechanism, provides coordination
between related services; on the other hand choreography is a non-executable specifi-
cation of global view on interacted services without a central mechanism. Tightly re-
lation causes orchestration and choreography view consistency with each other while
constituting service architecture[l60} 59} [34]. Several standardizations, approaches,
graphical and development tools defined for orchestration, choreography and coor-
dination languages exist. Examples for orchestration are WS-BPEL-Executable Pro-
cesses (BPEL, BPEL4WS)[102], BPML[38], BPMN[104], for choreography WS-
BPEL-Abstract Processes[102], WSCI[124], WS-CDL|[137]], and BPMN.

Service Oriented
Architecture

Reuse of Service

Model Driven And Architecture

Variability
Management

Product Lines

Figure 1.1: Relations Between SOA, Model Driven and SPL Approaches.

As expected, flexibility and reuse are important features of SOA to tackle dynamic
business environments and process flows. Dynamicity and change requires man-
agement of variability, rather in a systematic way. Software Product Lines (SPL)
approach offers variability management environment by sharing a common and man-
aged set of features, reusing a common set of core assets in a prescribed way. Possible
variability types in SOA are variation in service function, in required parameters, pro-
tocols and composition of services. These types of variability can be handled within
specified variability model in architectural levels namely orchestration and choreog-
raphy. Several variability models are defined in SPL comprising specification and

modelling of variation points and types, related variants, constraints on them, rela-

4

tion with other artifacts such as features, realizations. CVL, VSL, ConIPF, CBFM,
COVAMOF, and OVM are some examples of variability models. Not only defini-
tion of variability, but also management and its impact on other artifacts (such as
requirements, features, and code) should be taken into account. In order to provide
variability consistency between orchestration and choreography, Model Driven Engi-
neering (MDE) techniques such as models, meta-modeling and transformation can be
utilized. As models play an important role, they are not the whole solution if vari-
ability in choreography is applied to SPLs. Scaling up to higher levels of productivity
will require the ability to rapidly configure, adapt and assemble independently de-
veloped, self-describing, location independent services to produce families of similar
but distinct systems. Therefore, a Domain Specific Language and related tools are

required.

Relationship between SOA, MDE and SPL approaches in order to improve productiv-
ity while tackling complexity and change is depicted in Figure [[.I] The intersection
of the approaches represents the techniques while these are applied together. SOA
and SPL approaches enable reuse of services, architectures and managing variability
in SOA systems in a systematic way. While using MDE and SPL together, reuse of
models and architectures is achieved and variability in models is managed efficiently.
Service Models are defined and model and meta-model transformation of services can
be applied as model-to-model or model-to-text style while MDE and SOA approaches
are used together. Therefore, the intersection of the three brings more benefits rang-
ing from modeling variability and transforming at the meta-model level to managing

variability in a systematic way.

1.2 Problem Statement

Service Oriented Architecture (SOA) is a means of facilitating inner and inter-organiza
tional computing which is a way of developing distributed and autonomous systems
where the components of the system are services. As in all systems, SOA has a struc-
ture and a dynamic nature. While structure comprises services, their functional and
non-functional properties, interfaces and relation between other services, dynamicity

includes behavior of services while achieving a goal together and rules on these in-

5

teractions. A bidirectional effect between structure and dynamicity represents a tight
relationship. Any effect on one of these reflects to other, as stated in Figure [1.2]
Therefore, when variability is added to the system in order to tackle complexity and
change, it affects system structure and dynamicity and should be managed in both

VIEWS.

SOA Structure SOA Dynamicty

Yariability

Figure 1.2: Relation with SOA Structure, Dynamicty and Effet of Variability.

Orchestration and choreography are views for service architecture defining a central
mechanism and a non-central representation respectively. SOA architectures address-
ing variability efficiently and in a systematic way should handle variability manage-
ment in orchestration and choreography in a consistent manner as depicted in Figure
[1.3] Aseach view has different requirements to define and express variability to outer
SOA space, the variability model should fulfill the needs of each and relate variability

of each other.

504 Architecture

Orchestration patibili Choreography

Variability

Figure 1.3: Orchestration and Choreography Relation and Effect of Variability.

There are existing approaches proposed to support variability which can be cate-
gorized in different groups: Adaptation managers/modules, Enterprise Service Bus
(ESB) like middleware and reconfiguration of components, rule-based systems and
variable modeling and variability supported languages. In these approaches variabil-
ity is mapped from problem domain artifacts - features, functional and non-functional
requirements, UML diagrams and components- to solution domain artifacts - decision
models, business process templates, orchestration and/or choreography languages,
components, adaptation rules, plans and so on. In the literature, several approaches
and languages are proposed to define and manage variability. However, variability
in choreography models compatible with variability in orchestration models is not
handled. Therefore, specification of variability in choreography consistent with or-
chestration cannot be achieved and a global view of variability cannot be gathered
which provides a coarse grained variability model. Therefore, a variability model is
needed to manage variability in choreography as variability depiction globally and to

map the variability to orchestration and services as variability depiction locally.

From SPL perspective, SPL specifies a reference architecture for possible products
with variabilities, while choreography represents a product configuration in SOA.
Therefore in the context of SOA, a reference architecture should include possible
choreographies with variabilities. Besides, the success of a variability supported SOA
is largely dependent on effective variability management throughout the development
life cycle, in our case architecture. Therefore, there should be a variability model
defined for possible choreographies. However, there is no choreography model with
variability support which depicts possible products while consistent with interacted

orchestrations.

Orchestration and choreography concepts in SOA can be related with artifacts and
assets respectively. Seamless collaboration between artifacts to behave according to
required product features should be achieved via a systematic variability management

in choreography and orchestration in a consistent manner.

1.3 Approach

The motivation is to response to changing requirements and fulfilling diverse range
of user demands fast and easily in service-oriented environments. One of the main
challenges is to cope with change with little effort in a short time. The main idea is
reusing existing service architectures; choreographies and orchestrations via explicit
variability definition and management. That is, establishing a configurable service
architecture realized through choreography specifications while taking into account

variability needs of services is the ultimate target.

Reuse Why

ReLEaof
Serdice-Oriented Architecturs (Fine and Coarse Grained)

RelE= of
Coarse Grained 5erdoes

ReEs of
Choreoera phy

v

ReEeof
Choreoeraphy Behawvior

!

Commonality and ¥a nability Management Howy

Yariahility in

v

Serdces Sendice

Interactioms

A=y stermatic approachto define and What
manage variability in

I
Service Interface | Service Compos ition
and P arametems | E=havior

hﬂ:\emtﬂe ﬁ

Inteeration of Composition of Wariable
Warable Serdoes Serdice Interadiomns

Figure 1.4: The approach answering why, how and what questions.

Our main purpose is the reuse of service-oriented architectures, namely the coarse
grained ones which are realized as choreographies. Reuse of choreographies brings
about reuse of choreography behavior which describes the way how services are in-

teracting with each other.

In Figure Why part is dedicated to the purpose of our approach. The way how to
reach our goal is by managing commonality and variability of service architectures,
defining variability in services and service interactions depicted in How part. To put
into practice this kind of service systems, a metamodel and its realization XChor
is specified to define variability in service interface (in functions and parameters)
and service composition behavior. Here service concept comprises choreography,
orchestration and atomic services. In our approach service composition is realized by
choreography specifications. The systematic approach enables to integrate variable

services and composite variable service interactions.

In this thesis, firstly SOA ecosystem constituents, service composition, orchestration
and choreography views on composition are investigated. Existing orchestration and
choreography languages are examined and compared according to basic functionali-
ties, composition mechanism, tool support, variability support, and explicit variabil-
ity specification. It is found that variability support of choreography languages and
consistency of variability between choreography and related orchestrations are not
fully covered. For addressing variability issue, SPL approach which defines a way
to effectively manage variability and enable systematic reuse is analyzed and exist-
ing variability models affecting architecture are compared. Variability notion in SPL
is discussed and required variability types are specified in the context of variability

needs of service-oriented systems.

Two example cases describing the necessity of variability in choreography languages
is presented with UML sequence diagrams. Requirements for managing variability in
all levels, respectively choreography, orchestration and atomic services are revealed.
Existing variability models and variability supporting languages are a starting point to
define the way to integrate variability model with choreography constructs. Although
there exist different orchestration and choreography models, a few supports variabil-

ity in metamodel and language level. Therefore, required interface types, variation

depiction and the mechanism to configure services and their composition are inves-
tigated. In consideration of required variability mechanism and service composition
needs, a meta-model and its realization XChor is defined which enable to form a vari-
able SOA environment in a prescribed way. The comparison of existing languages
with XChor language is presented and explained. The metamodel and XChor lan-

guage are validated against service variability types and service interaction patterns.

Transformations from XChor language to existing choreography and orchestration
languages are defined with rules. Verification of XChor language is enabled by trans-
forming XChor models to one of the model checking approaches, namely Featured
Transition Systems. XChor is applied to SPL. domain to manage asset and artifact
variability. Lastly, the thesis is finished by discussions, short and long term future
works. Xtext specification of XChor Language, case study implementations in XChor

and XChorS tool code reference manual are presented as appendices.

1.4 Contribution

As a result of this thesis study, (1) summary and comparison of existing orchestra-
tion and choreography languages are revealed, (2) a variability metamodel for chore-
ography and its realization XChor language are defined,(3) XChorS tool facilitating
analysis, configuration, verification and transformation to existing languages is imple-
mented, (4) transformation rules are described and metamodel and XChor language
is applied to SPL domain. Moreover, in order to manage variability in choreography

model, following tools are developed:

e An analysis tool to analyse, sketch, define and modify variability specifications.
e A validation tool which analyses specified variabilities and checks consistency.

e A configuration tool to form ultimate service-oriented application according to

user specified bindings.

e A transformation tool to convert XChor models to appropriate existing chore-

ography and orchestration language models.

10

e A verification tool to transform XChor models to Featured Transition System

models.

e A design tool which enables to specify domain choreographies and services
with their variability specifications and to derive application choreographies

and services regarding user selected features.

User requirement dynamicity reflects to architecture, in our case orchestration and
choreography. Realizing reflection from requirements to architecture requires a rela-
tion mechanism between them. Requirements are mapped into services and variabil-
ity points. However, this mapping mechanism is out of scope of this thesis. Main
contribution of this thesis stands for defining, modifying, and managing variability
scattered over orchestration and choreography, which have already mapped to re-

quirements.

1.5 Outline Of Thesis

Chapter 2] represents existing orchestration and choreography languages, analysis of
variability support in SOA domain. Then obstacles are depicted and problems are
stated in detail. In Chapter [3] XChor metamodel and language facilitating variabil-
ity in choreography language is specified and validation of XChor is explained in
detail. Chapter [5] introduces transformation from XChor models to existing chore-
ography and orchestration languages, namely BPEL4Chor and VxBPEL. Chapter [
explains verification of XChor metamodel via transformation from XChor models to
Feature Transition System models. In Chapter [6] variability management approach
in choreography for SOA domain is applied to SPL domain. Variability management
in software product lines with XChor metamodel and language is depicted in detail.
Thesis concludes with Chapter[7] Dependency among chapters are depicted in Figure
The arrows represent information dependency where the source chapter needs

specifications done in destination chapter.

11

Chapter 1
Introduction

Problerm staterent

4

Chapter 3

warahility in Chore ography

Case Studies

r s

Approach

Outline of Thesis

F Y

Chapter 2
Backzround

Service-Orientation

Orchestration and
Choreography
Languages

wariability in Software
Swstems

r

#Chor Metamodel and
Language

¥Chors Tool

Chapter 4
Werification of XChor Models

werification Approaches

fodel Checking of XChar
Transformation Rules

werification of Case
Studies

I

Chapter 7
Conclusion

Walidation of XChor

»

Chapter 5
Transformation of XChor
Models to Existing

Transformation to
BPEL4Chor

Transformation to
WxBPEL

Chapter 6

wariability Management in

SPL with XChor

Driscussion

Software Product
Lines

3PLand xChor
Concept Relations

Future Work

SPL Framework with
*Chor

Case Study

Chapter Content Dependency.

Figure 1.5

12

CHAPTER 2

BACKGROUND

This chapter elaborates first the history of web standards, organizations and paradigms,
along with a brief introduction of Service Oriented Architecture (SOA) and composi-
tion in SOA. Then, the details of our systematic literature review is given with respect
to variability modeling in orchestration and choreography languages and selected or-
chestration and choreography languages are explained briefly. After analyzing vari-
ability notion in software systems especially in SOA, variation support in existing
approaches are compared and existing variability models addressing architecture and
product derivation are listed. In order to elaborate capabilities of existing orchestra-
tion and choreography languages, a Comparison Framework is introduces with three
components in detail. Selected languages and variability models are compared and
discussed accordingly. Lastly, existing problems are stated according to the results of

comparison framework.

2.1 Chronological History of Web Standards, Organizations and Paradigms

When we look at the development of computer science, we can see that the need to
overcome data integration and representation problem always present. The chrono-
logical history of introduced web standards, concepts, paradigms and organizations
are depicted as a time line in Figure The roots of the work stand on the invention
and development of Generalized Markup Language (GML) by IBM in 1969. The
usage of (GML) in text processing was in later 1973. Then, Standard Generalized
Markup Language (SGML) is followed GML, a ISO Standard[2].

13

Linda[67]], a model of coordination and communication among parallel processes
operating on an ordered sequence, is implemented as a a coordination language. The
language is developed originally for the SBN network computer in 1982 and was used

in coordination of processes/tasks later.

In 1989/90 World Wide Web (WWW) was founded by Tim Burners-Lee at CERN
integration of PCs, servers, applications over internet[3]] In early 90’s Object Oriented

(OO) approach was appeared even if it was invented in 60’s.

In 1991, Object Management Group (OMG) introduced Common Object Request
Broker Architecture[[103]]. In the same year, Tim Burners-Lee is developed Hyper

Text Markup Language (HTML)[136].

In 1993, freeness of WWW to everyone and formally definition of first draft of
HTML (SGML was used to define) by IEFT (Internet Engineering Task Force) af-

fected graphical and textual browser occurrence, such as Viola, Mozaic.

In 1994, WWW was founded at MIT and supported by DARPA & EU Commission

and W3C organization was founded for standardization.

HTML 2.0 was released by IEFT, HTML Working Group in 1995 and since 1996
the work done for HTML was conducted by W3C[4]] with input from other software

vendors.

In 1996 first version of XML, extended from SGML, was developed by W3C[5] and
Microsoft introduced COM/ DCOM[92]. Webmethods was submitted Web Inter-
face Definition Language (WIDL) to W3C in 1997. WIDL was affected by ORB
mechanism resided in CORBA. Simple Object Access Protocol (SOAP)[135] was
first defined in 1998 whose predecessor was XML-RPC (XML-Remote Procedure
Call). XML 1.0 W3C Recommendation was published in the same year.

Electronic Business using eXtensible Markup Language (ebXML)[8]] was defined by
Organization for the Advancement of Structured Information Standards (OASIS)[!1]]
in 1999. In the same year, Microsoft first introduced the concept of Web services|[7/]]

and Indigo project was started[6].

HTML became ISO Standard in 2000, Universal Description, Descovery and Inte-

14

1VSM ‘abenbue uoneuipiood
210 “Yeiq BUPLOM TADSM ‘SISVO AQ 0'Z T3dESM “UOSODIN = DEM 03 UOISSIWGNS TAIM =
4q uoniuyaq 1d20u03 YOS ‘IEM Aq Paupuu3 1d20u0) SM

104Db13dg DEM AQ 0'Z 1ASM = uoRepunod DEM ‘LI 38 PApUNoS MMM =

YosoniW Aq 1afo1d 0BIpUT 05

432 ‘NiHdd 'OWSH ‘uonepuawiooay 2iepipued TADSM -, SIME A PSSR0

"U0NRRY BDIAIAS-S53201d ‘4008 YOS ‘paseaisu] abesn 1adN

IWOS <~ TWD =

295hieA "eqiof = 41314902 WIH = N¥3D 18 MMM =
a6enbue UORRUIPIOD) SED =
PI06 13d8 ‘0'Z NWdE = dV “13d8XA — pauyad dvos —
croe 0ToC 8002 9002 002 200e 0002 866T 966T

66T 66T 066T 886T 986T 86T 86T 086T

SISVO Aq uoneulpioo)
-SM ‘adueq s3a7 ‘abenbuen aijof ‘pesop Auew 1aan
905M ‘SISVO 1
0} UOISSIWIANS SMpT3dE ‘2T TASM ‘DEM AQ UOIUYEPIAYOS
19POW walshs xseL. 1
“IOSM ‘IDSM "30u3B19AU0D THSMBONYIX DEM Aq 3daou0D Sm
abenbuet uoneuipioo) 03y
“3EM 4q 1n0 pajuiod AydeiB0a104D ‘DEM Ul eiq BuIOM TaSM

UOSODIW

4q ONVTIX ‘siaded uoRISOdWOD) 2DINIBS “YOSODIN AQ UIOPEId =
N’ ‘1S3 “1aSM ‘SISVO Aq 100N ‘PiepURIS OST Ue TWLH

O0SO0IW AQ WODA/WOD “TWX UOISISA 3214 “DEM AQ TWIH

S1BSMOIE “IWLH 4O
URIQ [eUI0] 15113 ‘334 MMM

@benbue uoneulp100) epury

SWO Aq V0D “TWLH

0661 Alea ur uoneuaLQ P3(qo

swBIPDIDg PUD SUOKDZIUDBIQ ‘SPIDPUDIS GOM JO AIO}SIH [PI1BOjOUOIYD

igms.

d Parad

1zations an

tory of Web Standards, Organi

1S

1 Hi

1ca

Chronolog

Figure 2.1

15

gration (UDDI)[9] was introduced by OASIS, Web Service Description Language
(WSDL)[10] was specified by IBM, Microsoft and Ariba. Representational State
Transfer (REST) was introduced and published in Fielding’s dissertation[63]. At the
same time Microsoft advertised .NET platform. Papers about service composition
was seen in the literature[46, 45, 91]]. For service orchestration, Web Services Flow
Language (WSFL)[11] was defined by IBM, on the other hand XLANG](13] was in-
troduced by Microsoft used in BizTalk. The two specifications are related with each

other.

In 2001, working draft of WSDL at W3C was seen as version 1.1, and W3C pointed
need for choreography[12]. A coordination language, Reo was proposed by Farhad
Arbab at Centrum Wiskunde & Informatical/14].

In 2002, W3C Web Service Architecture Working Group defined Web Service con-
cept as "a software system designed to support interoperable machine-to-machine
interaction over a network. It has an interface described in a machine-processable
format (specifically WSDL)”[[18]. XLANG & WSFL specifications were worked for
converge. For choreography consideration, Web Services Choreography Interface
(WSCI) was defined by Sun, SAP, BEA, and Intalio. Concurrently Web Service Con-
versation Language (WSCL)[15] was specified by Hewlett Packard. Task System

Model[|88]] aiming at process decomposition and process relations is proposed.

In 2003, SOAP was redefined and WSDL version 1.2 was published by W3C. BPEL4
WS was submitted to OASIS. Web Services Choreography Group (WSCGQG) organiza-
tion founded at W3C.

In 2004, Web Service concept was enriched by W3C. Service Oriented Architecture
(SOA) was first defined by Microsoft, Don Box (one contributors of SOAP specifi-
cation) explaining fundamental tenets of Service Orientation[17]. XLANG & WSFL
specifications were worked for converged to BPEL4WS which was submitted to OA-
SIS, commonly known as BPEL. Web Service Choreography Language (WS-CDL)
was Working Draft at W3C. Orc coordination language is defined[16].

In 2005, the utilization of UDDI was increased because of being open to use and

WS-CDL was Candidate Recommendation of W3C. Published SOA books has been

16

increased and process service relation was started to point out. Web Service Modeling
Ontolgy (WSMO) was proposed [109]. A framework for on-demand choreography
deployment named as Executable Choreography Framework (ECF) is specified and
an XML based language Executable Choreography Language (ECL) is introduced
into which activity diagrams or WS-CDL specifications are translated [S3]]. Moreover,
Choreography Language (CL) was introduced as a simple choreography language
which provides a formal framework including declarative and conversational parts of

choreography.

In 2006, many UDDIs were closed to use. WS-Coordination[21] was specified by
OASIS in order to coordinate web services by registration and activation services.
Jolie Language and interpretation engine for orchestration of services was proposed
[20]]. On the other hand, for choreography Let’s Dance view for assembling services

and the tool were introduced in [141} (140, 55]].

WSDL 2.0 was published by W3C in 2007. Extracting three models for a chore-
ography specification from BPEL orchestrations, BPEL4Chor is proposed[S6]. In
2008, Coordination Behavioral Structure (CBS) was proposed to represent topology

of interactions in a formal way within coordination approaches [[142].

In 2009, Multiagent Protocols (MAP) Web service choreography language [32] is
introduced for choreography modeling, verifying and enacting via simple process
language along with its open-source framework. Supporting variability for Web ser-
vices in BPEL, VXBPEL was proposed in 2009 and an analysis tool, ValySec was
implemented in 2010 [80, [125]. As a domain specific language, Business Choreog-
raphy Language (BCL), was proposed which is heavily influenced by UN/CEFACT
Modeling Methodology (UMM).

Jorba laying over Jolie orchestration language is proposed to enable dynamicty in or-
chestrations [85]. Early 2011, BPMN 2.0[104] by OMG was avaliable and almost
all BPEL engines supported new specification. BPE L4 was proposed as an exten-
sion to BPEL language[81]. Another language, eSML was introduced for modeling
e-business collaborations whose formalism is based on Petri-nets. Recently, AB-
WSCL, based on actor system theory, was proposed as a web service composition

language for choreography purposes.

17

2.2 Definitions and Main Terminology

2.2.1 Service Oriented Architecture (SOA)

Service Oriented Architecture (SOA) is a means of facilitating inner and inter-organiza
tional computing which is a way of developing distributed and autonomous systems
where the constituents of the system are services. According to W3C’s Web Service
Glossary[18] in 2004, a service is “an abstract resource that represents a capabil-
ity of performing tasks that form a coherent functionality from the point of view of
providers entities and requesters entities. To be used, a service must be realized by a
concrete provider agent”. In this respect, web services technology is a way to realize
the concept of services, and to model interrelations and interaction constraints among
them. The service forms a contractual agreement between a provider and a consumer
through its interface. The service interface reveals its functionalities to the consumers
with their signature regardless of internal implementation details. Even services be-
come prominent with their functionalities, non-functional properties are as important
as functional ones. The service should also provide required quality of service such
as performance, availability and reliability along with its functionalities. Moreover,
service middleware concept is introduced in order to overcome service integration
problems and quality conflicts. As a middleware, Enterprise Service Bus (ESB) is the
facilitator of enabling implementation, deployment and management of SOA-based
enterprise solutions, which is constructed to be an open standards based message
backbone. The Figure [2.2] depicts service utilization where service provider pub-
lishes implemented service interfaces to service broker, service consumer searches
and finds related web services from service broker, service consumer binds found

services via agreed messaging protocols and the interaction starts.

Service consumers can be end users and other services. In the context of web services
technology; UDDI is the service broker, WSDL is the provided services interface

language and SOAP is the messaging protocol between consumer and provider.

SOA reuses services, service descriptions and relying architecture which represents
static and dynamic behavior of the system through service interaction modeling.

Moreover, it provides flexibility and adaptation with dynamic discovery mechanisms

18

Service Consumer Semce PT’O‘UIdET
— [Service)

{Requestor Bird [SOAP
Requ ! (S0AP) <l

B T
T - . . d\\."'-'

o

Service Broker

(Registry)
unni

Figure 2.2: Service Oriented Architecture.

by means of published interfaces and enables late binding of services to improve pro-
ductivity. Services can be categorized according to their granularity; atomic service,
orchestration and choreography. An atomic service serves basic functionalities as an
autonomous entity, whereas an orchestration is a service composition providing high
level and complex functionalities. As a coarse-grained structure, a choreography in-
cludes atomic services and orchestrations to model globally defined interactions. As
every system has a different service architecture specified by orchestration and/or
choreography, service composition plays an important role to achieve flexibility to

respond rapid changes. [105} (119, 120]

2.2.2 Composition in SOA

Concept development sequence in service world starts with single services and con-
tinues towards higher level concepts with to composite services, orchestration and
choreography. After the need for choreography was pointed out in 2001, WSCG or-
ganization was founded by W3C in 2003 and launched WS Choreography model and
WS-CDL in 2004. In the meantime, although the idea has origins in 60’s, Open In-
novation concept appeared in 2003. ”Open innovation is a paradigm that assumes
that firms can and should use external ideas and internal ideas, and internal and ex-
ternal paths to market, as the firms look to advance their technology. The boundaries
between a firm and its environment have become more permeable; innovations can
easily transfer inward and outward.”[49] Therefore, by definition, choreography con-

cept can be influenced by open innovation paradigm.

19

In service-orientation orchestration and choreography are two tightly interrelated con-
cepts in service composition and their specifications should be consistent with each
other. Orchestration of web services defines the ordering of service invocations and
conditions. An orchestrator, as a central mechanism, is responsible for coordinating
services which are interacting with each other at the message level. These interac-
tions can be long lived, transactional and multi step. However, service choreography
defines inter and intra collaboration including temporal and logical dependencies for
each service without a central mechanism. Choreography tracks the sequence of mes-
sages between different parties. In Table [2.1] similarities and differences properties

of orchestration and choreography are depicted.

Table 2.1: Similarities and differences of orchestration and choreography

Orchestration Choreography
Content Depicts detailed information | Depicts a restricted set of in-
about composition such as | terface definitions with rules
connections and sequences and constraints
View Description of interactions as | Description of interactions as
local view global view
Relation Intra organizational Inter and intra organizational
Depiction a descriptive and formal for- | a descriptive and formal for-
mat mat
Execution Executable Non-executable
Design Level Low level High level
Serve for Composition Composition

Although the role and importance of the architecture is mentioned in SOA, neither a
defined architecture structure nor a road map to form a service architecture is intro-
duced. In fact, orchestration and choreography constitute the architecture of the sys-
tem. Therefore, choreography can be thought as a view of service architecture defin-
ing (i) components as participants, (ii) their properties as their interface definitions
and (iii) relations between them, constraints on them, and control flow. Choreogra-
phy and orchestration can also be taken as composition viewpoints. Choreography
is seemed as a global view, a behavioral interface as a view of choreography from
one participant, whereas orchestration is handled as an internal view of the partici-

pant. The relations between them are that choreography can be used as generating

20

orchestration skeleton and analyzing contradictions between choreography and or-
chestration, making out behavioral interfaces.[26l] There have been several languages

and graphical notations to model service orchestrations and choreographies.

2.3 Systematic Literature Review

To investigate the way how orchestration and choreography languages address vari-
ability, we have conducted an extensive search of papers in the literature. The guide-
lines described by Kitchenham [79] is used to develop the systematic literature re-
view regarding variability modeling in orchestration and choreography languages.
Research questions and the strategy in order to select related studies are given as

follows.

Research Questions are derived an listed based on our research objectives:

RQ1 What are the current languages for modeling orchestration and choreography?

RQ2 What are the main characteristics, common and variant features among differ-

ent orchestration and choreography languages?

RQ3 What are the research challenges and needs in the context of variability model-

ing of services orchestrations and choreography in language level?

RQ4 Which types of variability are supported by current orchestration and choreog-

raphy languages?

Our search scope included the papers that were published over the period between
2000 and 2013, as service composition concept and related studies appeared after
2000. We searched for full papers in selected venues that publish high quality papers.
We used the following search databases: IEEE Xplore, ACM Digital Library, Science
Direct, Springer Link and ISI Web of Knowledge. Table I represents the numbers
of studuies searched for each source. Our targeted search items were journal papers,

conference papers, workshop papers.

To search the selected databases we used both manual and automatic search. Auto-

matic search is realized through entering search strings on the search engines of the

21

electronic data source. Manual search is realized through manually browsing indus-
trial standards introduced by standardization bodies, World Wide Web-W3C, OASIS,
and OMG. The manual searches appeared to be quite useful since such industrial wide

used languages are important for practitioners.

Table 2.2: Publication Sources Searched

Source Number of Included =~ Number of Included
Studies After Applying Studies After

Search Query Exclusion Criterion

IEEE Xplore 132 9

ACM Digital Library 31 3

Springer Link 94 4

Science Direct 142 3

ISI Web of Knowledge 98 0

Total 497 19

A set of key terms are used to reveal related studies which are "orchestration lan-
guage", "choreography language", "variable service composition", "business process
language". These terms are combined with an OR operator with "service behavior

" n

modeling", "variable", and "variability" and with a NOT operator with "analysis",

non

"verification", "test" and "framework" in order to scope the search relevant.

The adopted search string was as follows: ("orchestration language" OR "choreogra-
phy language" OR "variable service composition" OR "business process language")
AND ("web service" OR "service behavior modeling") NOT ("analysis" AND "veri-
fication" AND "test" AND "framework")

Table 2.3: Languages Introduced by Standard Bodies

Standard Organizations Number of Languages Languages

W3C WS-CDL, WSMO 2

OASIS ebXML, WSCI, 4
BPEL, WS-Coordination

OMG BPMN 1

Total 7

22

The result of the overall search process after applying the search queries and the
manual search is shown in the second column of Table As it can be seen from

the table we could identify 493 papers at this stage of the search process.

Selection of relevant studies is determined regarding to the title of the paper, its ab-
stract, its introduction and conclusion sections, and the whole body. Relevant papers

are selected among

e peer-reviewed papers from conferences and journals
e papers written in English, with full text available

e papers that propose new orchestration and/or choreography language rather

than presenting case studies, reviews and the application of existing techniques

Purely theoretical papers or the ones having empirical validation are excluded. Ac-
cording to our best knowledge, there was no secondary study related to variability
modeling in orchestration and choreography languages. After applying the selection
criteria 19 papers of the 497 papers remained. We have finally selected 11 orchestra-
tion languages and 17 choreography languages with the ones which standard organi-

zations are introduced.

2.3.0.1 Orchestration Languages

There have been orchestration languages and notations introduced since service com-
position concept took in place in service-orientation. Although they target the same
goal of gathering interacting services to seamlessly work in an order, they have dif-

ferent characteristics.

BPEL is a de-facto standard which specifies executable language syntax and oper-
ational semantics for implementing business processes through web services.
BPEL comes with a wide range of constructs covering from basic send and
receive actions to structural ones; conditional behaviors, sequences, repetitive
actions, and selective actions. Defining variables, assigning data and specifying

expressions through data handling, and interacting service definitions through

23

partner link definitions are specified. BPEL has two interrelated sides; exe-
cutable and abstract. An executable BPEL process expresses all detailed infor-
mation about business process to be executed directly. On the other hand, an
abstract BPEL process definition indicates observable behavior from the point
of other orchestration and services. SOAP is the underlying technology for
messaging and WSDL is used for service interface specification. BPEL en-
ables to define participants, roles, partner links, variables and flow and ordering
constraints. An orchestration gathers atomic services and other orchestrations
where other orchestrations are exposed as services with their service interfaces.
BPEL focuses specifying processes from a single organization point of view,
that is BPEL processes have a local view, it only knows the interacting services

regardless of system’s global behavior.

BPMN is a set of graphical notations in order to model intra and inter organizational
interactions by defining control flow constructs; sequence and message flows.
Therefore, both orchestration and choreography of services can be expressed.
BPMN 2.0 was released in early 2011 by OMG and almost all modeling tools
supports this notation. Five basic categories of elements are flow objects, data,
connecting objects, swimlanes and artifacts. As flow elements, events, activi-
ties and gateways are graphical elements so as to specify business process be-
havior which are connected by sequence flows, message flows, associations
and data associations. Processed data is represented by data objects, data in-
puts, data outputs and data stored. Grouping these elements can be achievable
by pools and lanes. Artifacts are additional information sources for business
processes. Although BPMN covers composition specifications, it lacks formal
semantics which leaves formal verification of the process undone. In order
to overcome this problem, there are approaches mapping BPMN to other lan-
guages which holds formal semantics such as BPEL, State Machines, and Petri

Nets.

VxBPEL, as an extension to BPEL, provides a variable orchestration specification
based on the COVAMOF model. It enables variability definition in service,
service parameters, and service composition by using specific variation related

constructs. Variation points and related variants are scattered over variable or-

24

Jolie

chestrations encapsulating related BPEL specifications. Variability model com-
prising a subset of COVAMOF model, includes not only definition of variation
point (VP) and, related variants, but also realization relations and mapping of
variation to service orchestration. Realization relations provide a high level un-
derstanding for configuration purposes while hiding details of how low level
bindings are done. The approach, in order to use existing BPEL engine, adapts
ActiveBPEL and specifies a configuration file in which variation point determi-

nations are specified. VXBPEL Constructs in XML notation in Table [2.4]

introduced in [20, 94]] is an orchestration language providing a C like syntax
having an available interpreter and an execution engine, based on the formal
orchestration process calculus. It more provides an easy to use environment
for programmers through its C/Java like structure instead of XML documents.
For instance, except expression and condition syntaxes are similar to those in
C. The language covers specifying shared memory for a location, an opera-
tion, a variable or a link through identifiers, a predefined program structure by
the Jolie grammar and messaging through socket-based communications. The
model defines two types of operations; input and output. Input operations spec-
ifies the points other orchestrators can access and output operations are used
to depict invoking other orchestration’s input operations. Input operations sup-
port two types of interaction; one-way and request-response. Program control
flow, operation, synchronizing, console input/output statements are introduced

in detail.

Jorba is a rule-based approach for dynamic adaptation, implemented on top of the

Jolie language. Separation between the application and the adaptation specifi-
cation constitutes the core of the approach. Adaptation hooks are defined to in-
dicate information on structure and behavior of application parts. Jorba defines
adaptation interfaces specifying function replacements whenever a change in
service interface and parameter is required. Adapter manager checks environ-
ment condition changes and user needs. Then it apply a set of adaptation rules
if required and reconfigures the application by means of adaptation hooks. The
prototype just considers "on activity enter" as an approach for checking rule

applicability, and sequential order of rules. Different moments are identified

25

Table 2.4: VXBPEL Language Constructs

Definition VxBPEL Specification

<vxbpel:VariationPoint name = "name">

Variation Point ce
</vxbpel:VariationPoint>

<vxbpel:Variants>
Variant List ...a list of variants...
</vxbpel:Variants>

<vxbpel:Variant name = "name">

Variant <o
</vxbpel:Variant>

<vxbpel :VPBpelCode>
Inline BPEL ...BPEL Code...

Code </vxbpel : VPBpelCode>

<ConfigurableVariationPoints>
<ConfigurableVariationPoint>
<Name> </Name>
<Rationale> </Rationale>
<Variants>
<Variant>
<RequiredConfiguration>
Realization <VPChoices>
Relation <VPChoice>
</VPChoice>
</VPChoices>
</RequiredConfiguration>
<Variant>
<Variants>
</ConfigurableVariationPoint>
</ConfigurableVariationPoints>

26

when application rules can be checked. Moreover, rules can be applied in dif-
ferent orders, such as following some priority, can be applied in sequence. The
possibility that an already checked rule may become applicable because of such

a change is not considered.

WSMO provides the conceptual underpinning and a formal language for semanti-
cally describing all relevant aspects of web services. The aim is providing
automation of discovering, combining and invoking services over the network
via four basic elements, namely ontologies, web services, goals and mediators.
Ontologies, central enabling technology for semantic web, enables data mod-
eling which includes resource descriptors and interchanged data. Web services
defines computational entities comprising capabilities, interfaces and internal
working of the service. When capabilities describes functionality, one or more
interfaces are used to define orchestration and choreography. The orchestration
depicts the coordination of web services to achieve its capability. Goals rep-
resenting user desires, model the user view in the web service usage process.
WSMO comprises mediators to resolve incompatibilities on data, protocol and

process level.[62]

BPML, Business Process Modeling Language, provides modeling of business pro-
cesses in which four basic entities are addressed, namely process, activities,
data and control. BPML utilizes XSD to represent data shared among business
infrastructures. Value based, state Based, time based and cycle based control
flows can be specified inside and among business processes. Activities can
be nested as in sequence or in parallel and can be repeated with use of fore-
achs and while structures. Exception handling mechanism, coordinated and

extended transactions are supported by BPML.[130]

PML, is a high level and simple process modeling language which facilitates to ex-
press models at abstract and concrete specification levels. The language follows
simplicity, flexibility, expressiveness and enactability goals. PML facilitates to
model activities as actions, to define pre and post conditions of actions, to spec-
ify control flow with the help of sequence, iteration, selection and branch. For
user-defined specifications, PML employs a language construct "qualifier" to

represent characteristics of a resource.[29]]

27

RBXPDL, Role-Based XML Process Description Language, provides a way to model
business processes taking role concept as first class entity. Roles has granular-
ity specifying the responsible participants with their own authority. Roles pro-
cess information, meaning that completing an activity with a state. Modeling a
system starts with goal decomposing by breaking final goal into several units.

Then roles and role interactions are defined respectively.[86]]

EPML, Executable Process Modeling Language, is a graphical flow language pro-
vided along with its enactment engine. It has graphic notation, formal seman-
tics, expressive power and composability characterictics. EPML facilitates to
model flow of executions and interactions among activities through a directed
graph where nodes are activities or processors. Activities are computational
elements whereas processors handles coordination. The language is given with

its operational semantics based on a transition system.[110]

2.3.0.2 Choreography Languages

There have been choreography languages and notations introduced after the need of a
global view for service-oriented systems. Although they aim at gathering interacting

services to seamlessly work in an order, they have different characteristics.

ebXML BPSS was defined by Organization for the Advancement of Structured In-
formation Standards (OASIS)[1]] in 1999 to address standardization of exchanged
documents among partners and specify business transactions during collabora-
tion of business-to-business commerce, Electronic Business using eXtensible
Markup Language (ebXML)[8]]. Shared business documents, partner descrip-
tions and roles, business transactions and collaborations are specified in eXten-
sible Markup Language (XML). One of the components of ebXML, Business
Process Specification Schema (BPSS) facilitates to define collaboration of one
way or two way business transactions along with handling roles of interacting
partners. The language supports binary collaborations only, that is collabora-

tions between two partners can only be described [?].
BPMN is the graphical modeling notation of developing business processes to real-

28

ize service composition; namely orchestration and choreography. BPMN has
choreography constructs to define a global overview, however the definition
has no enforcement on web services. Choreographies are outside or within the
pools (participants) where sequence of interactions are specified via messages,
involving more than one participant. Message flows connect process elements
of different participants. In order to specify interactions between participants
(1) conditional sequence and default sequence flows, (ii) exclusive, event-based
, inclusive, parallel and complex gateways, and (iii) start, intermediate and end
events can be defined. Due to non-central structure of choreography, a cen-
tral source for interacting data is not maintained. Sub-choreography concept
is introduced for reusability purposes which is a compound activity which is

defined as a flow of other activities.

BPEL expresses choreography as abstract BPEL process definitions which indicates
observable behavior from the point of other orchestration and services. Ab-
stract BPEL processes can be formed by using executable ones and vice versa,
and there exists one abstract process for each of the executable processes. Al-
though choreography specification of each orchestration resides in their inter-
faces, BPEL lacks expressing a global view of participant interaction. Abstract

process specifications can be mapped to UML2.0 sequence diagrams.[139, 35]]

BPELA4Chor is an extension to the BPEL language in order to depict choreogra-
phy related constructs which can be mapped to BPEL. BPEL4Chor consists of
three basic components, namely participant behavior descriptions, participant
topology, and groundings. It uses BPEL abstract process definitions so as to
construct participant behavior descriptions. Participant topology is the global
view of interacting services and their message interactions. Groundings as the
technical view of choreography, specifies data and port types for message in-
teractions. BPEL4Chor makes use of participant topology in order to gather
interacting participant behaviors. The language is notable for introducing a

choreography model integrated with BPEL orchestrations.

WS-CDL is a W3C standard aiming to specify web service choreography which rep-
resents a descriptive model including basic concepts and important constructs.

Reuse in WS-CDL can be achieved through hierarchic models; namely abstract,

29

portable and concrete. In order to define interactions, participants, roles and re-
lationships between two participants are specified. For information definition
and declaration, types, variables and tokens are used. Variables contain infor-
mation about objects in the choreography such as the messages exchanged or
the state of the roles involved. Interactions involving exchanges of information
between two roles have two types; one way and request-response interaction.
Activities are the lowest level components of the choreography which do the
actual work. Control structures combine these activities with other control
structures in a nested way to specify the sequence and flow of the exchange of
information within the choreography. However at the highest level, the chore-
ographies consist of work units, which contains a single activity that is per-
formed whenever an optional enabling condition, a guard, is true. The model
separates process view and information view. Choreographies can be defined
locally (within a defined choreography scope) or globally (sub-choreographies
can be included by <perform> tag). Sub-choreographies can be defined and

used by the tag <perform> for reusability.

pidsoa, described in [43], is a way to leverage WS-CDL and Pi Calculus to build
more robust SOA where some of the concepts are not directly related with
WS-CDL. It includes (i) type definitions (participant, role, behavior, relation-
ship,channel, information,tokens and locators), (ii) activities (assign, choice,
conditional, finalize, interaction noaction, paralel, perform, sequence, silent ac-
tion, when, while), (iii) expressions, and (iv) structure (choreography, variables,
exception handling). The choreography structure gathers a set of interactions
which can also be reused by other choreographies. State information and chan-
nel instances are represented by variables. pi4soa supports also an exception
handling mechanism which enables choreography to be terminated in prede-

fined occurrences.

Let’s Dance is a choreography modeling and representation pointing locally enforce-
ability problem. The language aims to be abstract (conceptual), indicating for-
mal and executable semantics, comprehensible for different stakeholders, ex-
pressive and suitable. Without technical specific details the language provides

a conceptual level choreography specification. Coming with a behavioral view

30

of choreography, interactions between more than one service can be expressed
with constraints by means of message exchanges. Precedes, inhibits, and weak
precedes relationships between interactions enable to define different service
behaviors. Not focusing on supporting the implementation phase, Let’s Dance
is not based on imperative programming constructs (variable assignment, if-

then-else and switch statements, sequence, and while loops).

MAP, Multi agent protocols web service choreography language is used for choreog-
raphy modeling, verifying and enacting via a simple process language. MAP is
directly executable at runtime without pre-configuration in design time with
multiparty support. It provides choreography interfaces along with service
WSDL interfaces so as to describe complex collaborations. Having a formal
ground, it provides a transformation to PROMELA verification language in or-
der to check MAP models prior to enactment. Role concept is strongly related
with each peer which decides the parts of flow the peer should follow. Roles fa-
cilitates to realize multi-cast communications via sending messages to all peers

of a specific role.

WSCI, as a descriptive model introduced by OASIS, target the same goal as WS-
CDL, defining choreography. Although WS-CDL and WSCI languages have
different constructs, WSCI has additional features such as eventhandler and
faulthandler. It is an XML-based interface description language indicating the
flow of exchanged messages between web services. The observable behavior
of service is expressed via temporal and logical dependencies among the ex-
changed messages, featuring sequencing rules, correlation, exception handling,
and transactions. For interface specification, WSCI works with WSDL. There
exist some work conducted on mapping petri nets with WSCI specification for

verification purposes.

WSMO, like in WS-BPEL, has a similar approach for choreography specification
with semantic additions, through ontology. WSMO behaves as a choreography
model in a communication perspective; choreography decomposes a capabil-
ity in terms of interaction with the web service. The approach uses abstract
state machines (ASMs) in order to execute state transitions. It provides the

conceptual underpinning and a formal language for semantically describing all

31

relevant aspects of web services.

Coordination Languages; Linda, Reo, Orc and CBS based on their own formal
models offer different solutions to composition which can be applicable to or-
chestration and choreography. Orc can be used for formal orchestration mod-
eling which deals well with asynchronous structures and failures. On the other
hand, Reo is suitable both for orchestration and choreography and mainly syn-
chronous structures. Reo can be used for transaction and compensation han-
dling in service composition. Among these, Reo is of importance expressing
choreography models which use Constraint Automata (CA) for formal founda-
tion. For QoS extension, Stochastic Reo is proposed with verification model

(Vereoty) and CTMC for transformation.

WS-Coordination is introduced by OASIS so as to be an extensible framework for
coordinating activities (in this context web services as computation units) us-
ing a coordinator and a set of coordination protocols. WS-Coordination covers
long running business transactions and atomic transactions. It can be used in
conjunction with other specifications and application specific protocols to ac-
commodate a wide variety of protocols related to the operation of distributed
Web services. The model has three parts: (1) Protocols comprise coordina-
tion type-specific coordination protocols, (2) Activation Service enables cre-
ation of coordination context, and (3) Registration Service enables registration
for coordination protocols. Coordination Service consists of Activation and
Registration Service. Applications may not use the same coordination, instead
can bound to different coordinators. WS-Addressing can be used for endpoint
interpretation. For security issues, WS-Security, WS-Trust, WS-Policy, WS-

SecureConversation specifications can be utilized.

CL, Choreography Language, is introduced as a simple choreography language with
formal semantics. It provides a formal framework including declarative and
conversational parts of choreography. Variables and roles are specified for the
declarative part. A process algebraic approach is followed for specification
of the conversational part which includes role interactions. The interactions
are specified by one-way and request-response basic operations combined with

parallel, choice and sequence operations.[44]

32

ScriptOre providing a modular specification of choreography with the help of scripts
by abstracting conversations among agents. Orchestrations are integrated with
scripts including roles, data parameters and executable abstractions. Attributes
of scripts are delayed and immediate initiation, delayed and immediate termi-
nation. Syntax and operational semantics of ScriptOrc is given formally. Orc
orchestration language is used for orchestration specification which are inte-

grated thorough ScriptOrc scripts with timeouts. [37/]

BCL, Business Choreography Language, is a domain specific language which is
heavily influenced by UN/CEFACT Modeling Methodology (UMM). UMM is
an approach for modeling B2B global choreographies built upon UML as a pro-
file. BCL is a means of defining a reduced set of UMM elements which gathers
business collaborations and business transactions in a single diagram. The lan-

guage also provides a graphical visualization for modeling choreographies.[95]]

AB-WSCL, based on actor system theory, is a web service composition language
given with its syntax. The aim lies in capturing the relationship between web
service orchestrations and choreographies. The system is modeled with respect
to actors which comprises a set of states, control thread and a set of local com-
putations as a functional unit. The messaging among actors are asynchronous.
The types of actors are activity actor, web service, web service orchestration

and web service choreography which have different characteristics.[138]

eSML, eSourcing Markup Language, is a choreography language for modeling e-
business collaborations whose formalism is based on Petri-nets. The language
is an adoption of ECML (Electronic Contracting Markup Language) which
deals with three levels of business processes, namely internal, conceptual and
external levels. eSML is provided with its schema, models and examples. SML
model includes who, where and what blocks in which the company data, ex-
changed and resource data, process and its tasks and mapping of collaborating

process’ lifecycles are defined. [101]]

33

2.3.1 Variability Management

2.3.1.1 Variability in Software Systems

Complexity and change require dynamicity and adaptation of software systems. One
way to achieve this is to develop systems supporting large amounts of variability
which represents the ability to be extended, changed, configured and adapted for spe-
cific contexts. Variability modeling is often closely associated with product lines.
Software Product Lines (SPL) is famous about utilizing a systematic way for man-
aging variability. Likewise self adaptive systems, open platforms, and Software as a
Service (SaaS) applications are designed to be variable in order to fulfill user needs.
By designing with variability, reusability of artifacts and productivity increase. How-
ever, complexity of variability management, a complicated task, requires more sys-
tematic approaches.[61} 129, 42] Several variability modeling approaches have been
proposed in order to manage variability through all levels of software development;
from requirements to source code. Though introduced modeling approaches have the
same goal, they differ in modeling characteristics such as model choices, abstrac-
tions, modeling of quality models, tooling, guidance, and focusing on development

activities. A classification of variability modeling techniques is given in [[117].

Variability can be modeled in all phases of product family development which ad-
dresses traceability and automation issues ranging from requirements to implementa-
tion. Different modeling techniques focus different parts of development processes,
for instance expressing requirement variability in terms of features; feature model-
ing with commonality and variability of product lines/families. Moreover, variabil-
ity modeling supports evolution in which several evolution categories are (i) New
product line, (ii) Introduction of new product, (iii) Adding new feature, (iv) Extend
standards support, (v) New version of infrastructure, (vi) Improvement of quality at-

tribute. [[127, [128]]

For modeling variability during product line development, variability points can be in-
troduced in various levels of abstraction; namely architecture description, detailed de-
sign documentation, source code, compiled code, linked code, and running code[98]].

Each variability point can be in one of the following states at each variability level

34

stated in [72]; implicit, designed and bound. When a variability point is introduced to
a feature model, it is denoted as implicit. When its design is decided in the architec-
tural design phase, it becomes designed. After the variability point is finally bound
to a particular variant, it is bound. Binding, when a variability point is bound to a
variant, can occur at product architecture, derivation time, compilation time, linking
time, start-up time and runtime. A variability point can be either open or closed. If
new variants can be added to a variation point, then the variation point is open. On

the other hand, if there is no way to add new variants, then it is closed.

2.3.1.2 Variability Notion in SOA

In the context of service orientation, variability modeling comprises specification of
variability points, constraints and dependencies between them, related variants, vari-
ant bindings and realizations as in SPL. Variability modeling approaches should be
elaborated and applied to SOA context in that the needs of service variability is dif-
ferent from a general SPL. Types of variability which influences behavioral part of
the architecture, namely orchestration and choreography, described in [[133]] are listed

as follows:

variation in the web service function,

variation in the required parameters,

variation in the protocols, and

variability for coordinating web services.

Moreover, different views of variability in service-orientation is addressed by [25,
80, [100]. Variability support in all composition levels, namely choreography and or-
chestration, is needed in order to define variable interactions between services which
forms behavior of possible composite services observed from a global viewpoint. As-
suming that all granularity levels can be treated as services, variability can come from

following structural and behavioral views of the system:

Structural. This view comprises services, service attributes and the way they linked

to each other, connectors.

35

e Service interface including its functions and parameters: Interface vari-
ability requires a configuration mechanism specifying when and how to

change its functions and parameters.

e Service connectors: Connector variability needs a relation mechanism to

indicate when and which connector is used between two services.

Behavioral. This view specifies the way the services are gathered in order to achieve

a goal.

e Service composition: Composition variability necessitates a tailoring mech-
anism to define in which order and how services are interacting with each
other. There is an important consideration on how to achieve interoper-
ability between services provided with different variability. Interacting
services offer different functionalities regarding their variability bindings.
Therefore, service composition is responsible for associating proper bind-
ings of interacting services. In other words, service composition should
specify when and how to bind which variation points of interacting ser-
vices to which variants. By this way, consistent bindings of service vari-
ability can be achieved, meaning that services can provide required func-
tionalities. This requires a mechanism and a configuration infrastructure

to establish variability associations among interacting services.

2.3.1.3 Variation Support in Existing Approaches

Several approaches have been introduced to facilitate development of variable service
architectures in the context of Service Oriented Software Product Lines (SOSPL)[126,
931125,1133,166,165, 111,180, 85,139, [108]. These approaches are evaluated with respect
to the following criterias in Table [2.6|and Table

Feature Modeling Support Defines whether the approach has feature modeling sup-
port to model variability. "Yes" indicates that the approach associates a feature
model. "No" means that the approach does not utilize a feature model. "Not

known" means that whether the approach uses a feature model is not known.

36

3urpuiq pue uondJ[As 10§

Io3eurW 9I1AISS pue ‘raddewr

Joeds yoreas
uontsodwoo pue s3uirddew
Qo1azas/Ainua ‘yder3 Aouop

-uadop AjIqenea ‘wyuIos3

amed) ‘rpepowr ssadoid -1e Aronb ‘wyinio3[e Sunem

popuowodar surdped u3Iso ssoursng ‘IOPEpow amed ydei3 sosn [opouwl UOISIOA SANII() [BUONIPPY

ON ON ON ja0ddng [oof,
Aiqerrea
Surpuey-1o110 ‘Ajiqerrea 3urpuiq
pue AN[IQeIOAOOSIp ‘AJI[IqeLIBA
jutodpua ‘Ayrfiqeriea jodsuen Ay

-T1qetrea sioyowered pue suonerad(QUON JuoN j1oddng Liqeraiep jo adAj,

uonisodwo))

ON ON ON ul uopeoynadg Apfiqerres

SQIIAIAS Jrerdwag, $S90014 ssaursng [opow UOISIId(o], paddeyy Aiqeries

sad£1091918 TINN [OPOIN 2Injedq syuowaanbar JYN pue Jq woa] paddey HIpiqeries

SOX SOX ON 31oddng SurpPpop) danyed |

[S2] (€6l [92T] yrorddy

soyoroxdde Sunsixa ur roddns uonerrea jo uosuedwo)) ¢z AqeL

37

Table 2.6: Comparison of variation support in existing approaches

Approach [133] [39] [108]

Feature Modeling Support No No Not known

Variability Mapped From UML Class diagrams Requirements OVM Model

Variability Mapped To UML Class diagrams with Process Variants and Context UML Diagrams
use of patterns Profiles

Variability Specification in No No Yes

Composition

Type of Variability Support Variation in the web service None Variation in the web service func-
function, in the required pa- tion, in the required parameters, in
rameters, in the protocols and the protocols
for coordinating web services

Tool Support No No Yes

Additional Utilities Strategy,Decorator,Adapter, Variability management in 2 level representation of architec-

Iterator and Chain of respon-

sibility

the process level. Integration

rules

ture; such that the main representa-
tion excludes variants, and the sec-
ondary diagrams model realizations

of variabilities separately

38

so[nI

uoneldepe paseq-o[ni yim a3ens

pay1oads o[y uoneIn3y
-uod & pue paydepe THJgAD

sueld ‘uonouny A

-UB[UONBIISAYIIO JI[O[0} UOISUAXH -0y QUISud THdg Sunsixg -[mn ‘A30[01U0 S-TAMO [A] T SaNII() [BUODIPPY
SOX SOX SAX ja0ddng [oof,

SQOIAIQS QoM

SOOIAIOS QoM SUNBUIPIOOD 10] JUNBUIPIOOD IOJ PUE SIJOWEI

pue s19jowered parmbar oy) ur ‘uon -ed paxmbar oY) ur ‘uonouny
-0unJ AJIAIAS oM JY) Ul UONBLIBA QOIAIIS oM JU) Ul UOTJBLIBA JuoN j1oddng Liqeriep yo adAj,
uonisodwo))
ON SR ON Uur uoneoynadg AIIiqerre;
soINy 93en3ueT UONBIISAYIIO) ue[d o], paddey Aiqeries
sjuowaanbay [PPOIN HOINVAOD sjuouodwo)) woa] paddey Aiqeries
ON SOX SOx ja10ddng SuIPpoJA dInjed
[Ss] [08] [TT1]159 1991 yrorddy

P.3u0d - sayoreoadde Sunsixa ur yroddns uonerea jo uostedwo)) :/ 7 A[qeL

39

Variability Mapped From Defines the models where the variability information of

the system comes from.

Variability Mapped To Defines the models to where the variability information of

the system is mapped.

Variability Specification in Composition Defines whether the approach enables to
define variability in service composition. "Yes" indicates that the approach has
models or constructs to specify variation in composition. "No" means that the

approach does not variability in composition.

Type of Variability Support Defines supported variability types by the approach.
"None" indicates that the approach does not support any variability specifica-

tion.

Tool Support Defines availability of tools. ’No’ means not available, ’Yes’ means

available.

Additional Utilities Defines a set of models, implementations, representations, files,

algorithms or patterns utilized to support variability.

2.3.1.4 Existing Variability Models

Several variability models have been proposed over the years to capture, organize
and represent variability which differ in the concepts. In [48], thirty-three approaches
are reviewed, categorized into issue groups and analyzed. Within these, variability
models dealing with architecture and product derivation are taken into account and

explained separately.

xADL proposed in [134] is an architecture description language devised for mod-
eling product line architectures based on XML syntax. The language uses (i)
Structure and Types schema to define modeling architectural constructs for cap-
turing a single architecture which includes components and connectors, (ii)
Options, Variants, and Boolean Guard schemas to model variability in space
through explicit variation points in the architecture, (iii) Boolean Guard schema

to guard optional and variant elements by boolean expressions which decides

40

inclusion or exclusion of optional elements and selection of particular variants,
and (iv) Versions schema to enable evolution of the architecture building on top

of the other schemas.

Koalish proposed in [28] is an architectural description language extending Koala
with variability, intended to model product line architectures. It is a product
configuration based and an architectural centric approach. The language mod-
els and configures components and interfaces to form a logical structure of the
system, which extends Koala with explicit variability constructs and resolves
variability in compile time. Alternative and optional components and con-
straints on how components, their attributes and interfaces can be used are spec-
ified explicitly. The reasoning for configuration of component models comes
from an existing inference tool for Weight Constraint Rule Language (WCRL).
The Koalish configurator facilitates to construct valid products with regard to

bound variables.

Systematic Integration of Variability into Product Line Architecture Design pro
posed in [[131], an architecture centric approach, deals with variability in mul-
tiple views. It is an extension to the IEEE P1471 recommended practice for
architectural description which uses variation points to model variability in the

architecture description.

Divide and Conquer Variation Management proposed in [82], is a configuration-
based approach following two dimensional view of variation management which
operates on the file system level and is neutral to architecture, design, and
language. The approach divides variation management into nine issues and
then conquers them by addressing each of these sub-problems. The issues
are categorized under three clusters; (i) Basic Configuration Management (ver-
sion management, branch management, baseline management, branched base-
line management), (ii) Component Composition (composition management,
branched composition management), and (iii) Software Mass Customization
(variation point management, customization management, customization com-
position management). Mass customization suggests a path starting from the
file, then a customized component and finally to a customized product. Vari-

ation points are defined and selection logic is implemented with a set of file

41

variants. Instantiation of a customized component and a product is achieved by

instantiating each variation point in the components of a product.

COVAMOF proposed in [118] is a framework for variability modeling which rep-

resents a variation point as a first class entity in all abstraction layers. The
framework allows hierarchical organization of the variability by specifying re-
alization relations between variation points. It facilitates to represent dependen-
cies among variation points and modeling dependency relations. COVAMOF
Variability view comprises two views over all abstraction layers (feature model,
architecture and component implementation); variation point view and depen-
dency view. In variation point view, variation points, variants, realization rela-
tions and dependencies are specified. In dependency view, dependencies and
dependency interactions are handled in order to provide a strategy to resolve

dependencies.

OVM proposed in [30] stands for Orthogonal Variability Model which intends to

VSL

represent variability in architecture through establishing dependency relations
between development artifacts which is used to document variability in design
and realization artifacts. The model captures product line variability by speci-
fying external and internal variation points, variants, constraints between them

and supporting optional, and alternative variation points.

proposed in [36] stands for Variation Specification Language which distin-
guishes variability at the specification and at the realization level. The spec-
ification level comprises user choices under variabilities, on the other hand
the realization level variation points are mapped to assets depicting the places
where the choices are implemented by taken actions. The language supports
two sets of variation point; Dynamic Variation Points (runtime variability) and

Static Variation Points (preruntime variability).

Kumbang proposed in [27] is a domain ontology for representing variability in soft-

ware product families and combining Koalish with concepts from feature mod-
eling. The ontology is developed as a profile extending the UML metamodel.
It incorporates components and features with compositional structure and at-

tributes, the interfaces of components and connections, and constraints.

42

Model-driven approach for SPLs proposed in [97] introduces a single metamodel

comprising whole development process in which relationships and constraints
among all artifacts are specified and decisions on variant features are propa-
gated consistently throughout all artifacts. The variation points are located in
one place which captures relationships and constraints among variation points,
or decisions, without a direct link to a development artifact’s variation point.
Each variation point is related to a decision which constrain other variation

points and that can explicitly be related to a domain concept.

Variability Expression proposed in [112]] explains a process, methods and tech-

niques to express the variability and its usage to derive new products, based on
Software Product Line Integration Technology (SPLIT). The approach com-
prises a global framework for software product lines, having variability and
decision modeling support, binding and instantiation of products and facili-
tating asset storage and evaluation within domain and application engineering
activities. It provides a multi-level decision model covering levels for variation
points, assets and to core assets. However, global consistency of the model is

an open issue.

First class feature abstractions for product derivation proposed in [23] introduces

FDL

an approach focusing on design and implementation level with formal descrip-
tion of features in the scope of software product families (SPFs). At the design
level, features are formally expressed as a collection of roles which can be real-
ized by different base components. Then these base components become actors
of the system, satisfying a required set of functionality. A specific product
is derived by selecting a number of features which result in a set of derived
components and the mapping from the actors to the derived component imple-

mentations.

proposed in [S7] is a feature description language which is used to address
variability management in product line architectures where software products
are constructed from customer-specific feature selections. Specified features
are mapped to software packages whose sources are then merged by the source
tree composition technique to construct software components. The software

packages can realize a feature or implement a functionality shared by other

43

packages.

Staged Configuration Using Feature Models proposed in [84, [83]] indicated a car

CVL

dinality-based notation for feature modeling in software product lines. Cardina
lity-based feature models are cast to context-free grammars to provide formal-
ism. Staged configuration approach satisfies the need for collaborating different
stakeholders by stepwise specialization of feature models, staged configuration
of platforms, components, and services. At each stage a feature model is taken

and a specialized feature model is yielded.

proposed in [74] stands for Common Variability Language facilitating to ex-
press a generic and standardized variability model which brings together a vari-
ation and a resolution model and transformations to resolved domain models.
Revised version of CVL is submitted to OMG in 2012, on the way to be an
OMG standard. CVL Architecture incorporates variability points, variability
specification, constraints and resolutions. Variability Specification is similar to
features in feature modeling, likewise a tree structure where variation points
can be bound to. Constraints expressed by sub-language of OCL intricate re-
lations between Variation Specifications. Variation Points refer to base objects

and define their modifications precisely.

Variability Model for SOA proposed in [99] introduces a mechanism to modify ser-

vices to suit business process requirements. The model and approach are based
on VOE methodology and VOSD service derivation algorithm, targeting ser-
vice orientation. Variations in service, data graphs of services and variants are
formally modeled. An algorithm is provided to check whether the variant of a
service is a "legal variant". The prototype is built on IBM’s Rational Software

Architect modeling tool.

Modeling Variability in Component and Connector View of Architecture using U

nified Modeling Language (UML) proposed in [108] introduces a modeling
method which extends OVM fulfilling and addressing realization and trace-
ability issues. Variation in components, connectors and interfaces is expressed
using a UML 2.0 profile. A two-level representation of architecture is pro-

posed; (1) A simplified model exhibiting big picture of the system with abstract

44

components, connectors and interfaces regardless of variability and (2) a more

detailed variability model including variability points, variants and realizations.

Managing service variability proposed in [100] introduces exposed, composition,
partner, partner exposed variability types and their relationships in the con-
text of service-orientation. Dynamic and recursive variability communication
among service providers, service composers and service consumers are pin-
pointed. Inherited characteristics from software and service variability man-
agement are discussed; namely types of variation points, constraints, their real-
izations, variability at different levels of abstraction. The variability type needs

and their relationships are explained in detail with a case study.

2.4 Comparison Framework

Architecture modeling is expected to end up with the architectural components, their
connectors and the composition context. Based on this principle, service-oriented
architecture defines services, messaging protocols, connections and service compo-
sitions by capturing interactions between services. Reusing existing service-oriented
artifacts requires a systematic approach one of which is modeling variability in service-
oriented architecture. To this end, existing orchestration and choreography languages
are compared through the comparison framework. The framework is based on three
basic components; Variability modeling, Composition and configuration of models,
and Tool Support. The framework aims at elaborating and revealing capabilities of
existing languages focusing on variability support in particular which requires differ-

ent mechanisms to handle at the language level.

1 Variability modeling Evaluation questions related to modeling variability compo-

nent are explained one by one.
1.1 Types of Variation Point and Variants Which types are supported by the
approach which enables to specify variation point and variant?

1.2 Constraints Which mechanisms is supported for defining constraints be-

tween variations?

45

1.3 External and Internal Representation of Variation Point Does the app
roach have a support to express external and/or internal variation points?
External (Ext.) variation point stands for externalization to outer world
to be configured by others, whereas internal (Int.) variation point means
internalized to be bound by itself. "None" indicates that the model does

not specify variation points as external and internal.

1.4 Realization Which mechanism is supported to define a relation in which (i)
a high level variation point is specified by means of other variation points
as configuration purposes or (ii) a higher level abstraction that enables to
bind low-level variation points? Here, low-level variation point stands for

a variation point directly related with development artifacts.

1.5 Design Artifact Mapping Which mappings can be defined among varia-
tion points and variants to design artifacts such as development artifacts,

assets or products?

2 Composition and Configuration of Models Evaluation questions has two sub-com
ponents; (i) Composition which defines the way to gather service interactions
and (i1) Configuration of Models which defines handling of service oriented
model configurations according to variability bindings if the approach support

variability.

2.1 Composition includes how existing languages capture interactions between

a services and their environment even from a global or local perspective.

2.1.1 Composition Approach Which approach does the language fol-

low, either choreography or orchestration or both?

2.1.2 Modeling Approach Which adopted modeling approach does the
language follow? The language can be either based on interaction
or interconnection or both. Modeling based on interaction represents
definition of one building block (document or specification) for the
whole system, whereas interconnection suggests modeling control

flow logic per participant.

2.2. Configuration of Models comprises the mechanisms to support variabil-

ity in service interfaces (parameters and functions), connectors and/or

46

composition and variability associations among variable services. Vari-
ability association defines the relation of variability bindings between ser-
vices in any level, namely choreography, orchestration or atomic service
levels. Here, service concept consists of choreography, orchestration, and

atomic services.

2.2.1 Variability Support Does the language support variability? ’Yes’
indicates that the language provides explicit language mechanisms
for variability. ’Implicit’ indicates that although the language does
not provide explicit mechanisms, variability is supported implicitly.
’No’ means that there is no variability support.

2.2.2 Variability in Service Interface Does the language has constructs
or a mechanism to express variability in interfaces, namely in param-

eters and functions?

2.2.3 Variability in Connectors Does the language have constructs or a
mechanism to express variability in connectors which services are

connected with?

2.2.4 Variability in Composition Does the language have constructs or
a mechanism to express variability in service composition?

2.2.5 Variability Association Specification Does the language have con-

structs or a mechanism to express variability associations?

3 Tool Support Evaluation questions related to aiding tools to specify, analyze, ver-

ify and generate code from related specification.

3.1 Specification Does the approach provide a tool to specify language con-

structs? "Yes" indicates the approach is supported by a tool. "No" means

there is no tool support for specification.

3.2 Analysis Does the approach provide a tool to analyze language models or

specifications? "Yes" indicates the approach is supported by a tool. "No"

means there is no tool support for analysis.

3.3 Verification Does the approach provide a tool to verify language constructs

or specifications? "Yes" indicates the approach is supported by a tool.

"No" means there is no tool support for verification.

47

3.4 Code Generation Does the approach provide a tool to generate code from
language constructs or specifications? "Yes" indicates the approach is sup-

ported by a tool. "No" means there is no tool support for code generation.

3.5 Configuration Does the approach provide a tool to configure language
constructs or specifications? "Yes" indicates the approach is supported

by a tool. "No" means there is no tool support for configuration.

3.6 Tool What is (are) the name (s) of tool that which carries out supported
features? "Not in Use" means the tool is out of use. "None" indicates that

the approach does not have any implemented tool support.

In the following sections selected orchestration and choreography languages are com-

pared according to the comparison framework components one by one.

2.4.1 Variability Modeling

The variability models explained in Section [2.3.1.4]are evaluated with respect to the
variability modeling component in Table [2.8]and Table [2.10|where the abbreviations
"VP", "V", "Ext." and "Int." stand for "Variation Point", "Variant", "External” and

"Internal” respectively.

Variability Approach and Variation Point Specification In xADL, by schema mech-
anisms, the language enables component interface and connector variability.
The language provides variability both in space (binding in design time, in-
vocation time and runtime) and time (versioning). Although variation points
are specified explicitly, the conceptual difference between external and inter-
nal variation points does not exist. The language is generic and dedicated to

Software Product Lines approach.

The Koalish component model targets configuration by means of models, how-
ever variation point and variants are not specified. Configuration component
enables to define possible structural inclusions (the number and type of compo-
nents) with constraints which brings about optional, mandatory, and alternative

components. The component model and Koalish language enable component,

48

sjoejnIe (Aypeurpaes) aan
juowdofoasp 03 SopN[o -RUIY ‘Teuon
A pPue JA WoL] QUON dA W pue IXg -Xqg ‘soxnbay -dp ‘A1ojepuey IWAO
weidelq
SdA uonorIAU[JUIOg
uooMlaq suone| UONBLIBA BIA QANRUIA Y
1PNpold -9y UONRZI[BY QUON Kouopuadog ‘onrep ‘reuondp HOIWVAOD
K10}
SO QUON QUON Ied[0 10N -epueA ‘[euondp 28]
S10RJIIY QUON QUON [opoW UOISIIA(umouy JoN [T
(TIOM) 23en3
SQOBJIOIUI pUB -ue o[y jurens
soinquye IRy} -uo) Y31oM.
‘syuouoduwo)) QUON JuoN Aq sjurensuo)) QUON ysIeoy]
10J09UU0d pue
(eory1oun) Jusuod pIeno uedoog
SO {SJUSWI Aq SIUTRI)S QATIBUI)Y ‘AIO}
[BINOAIYIIY QUON QUON -U0D) [ed130 -epuely ‘TeuondQ 1AVX
(o) surddepy dA Jo "day A PU® A
1oeNIy usIsd(q uonezIeRy ‘Juj pue)Xy sjureIjsuo)) JosadAy, yorvoaddy

jusuodwo)) SurepolN AiqeLiep Joj uosuedwo)) :8°7 AqeL

49

Table 2.9: Comparison for Variability Modeling Component-cont’d

Approach Types of Constraints Ext. and Int. Realization Design Artifact
VP and V Rep. of VP Mapping (To)
VSL Not specified Dependency None Realization Re- VP and V to as-
lation between sets
Variability and
VPs
Kumbang None Constraints by None None From feature
Kumbang Con- model to com-
straint Language ponents, their
attributes and
interfaces
[97] Optional, Manda- Constraints None None All artifacts of
tory among VPs in each develop-
decision model ment phase
[112] Optional, Manda- Constraints by None Multi-level deci- All artifacts of
tory, Alternative decision models sion models each develop-
ment phase
CVL Optional, Manda- Constraints by None Configurable UML models
tory, Alternative sub-language of units

OCL

50

Aiqe
-IJeA [euIdul se

omred pue uon

Apiqetrea

pasodxa 1oured

syjuauodwod -1sodwos ‘gA [eu ‘Jomred ‘uonis
[BINJOAIYIIY QUON -I9IXd st pasodxa opn[oxd ‘axmbar -odwod ‘pasodxd [00TI
uone)} aATIRU
syjuouodwod -udsardar a1nyo9) sopnpd -1y ‘TeuondQ
[BIMOAIYITY -IYdIe [9A9] OM1 JA W[pue Ixg -Xg ‘saxinboy ‘KI0jRpURIA [R0711]
$9SS90
-oxd ssoursnq K10}
pue SQOTAIXS QUON QUON JuoN -epuey ‘TeuondQ [66]
SQOIA
-19s pue‘sjuauod
-wod ‘swIrojie[d QUON QUON QUON QUON [+
[siuouodwo)) QUON JUON QUON QUON 1a4
[Siusuodwod
oseq pue suon
-ounj ‘s1ojoe of, QUON QUON QUON QUON <zl
(o1) 3urddepy dA Jo "doy A PU® A
eIy usIsd(q uonezieay ‘Juf pue “IXy sjure)suo)) Jo sadA], yoeoaddy

p.Juod-juauodwo)) SuIpoIA ANiqerreA Joj uostredwo)) ()1 Z J[qeL

51

interface and connector variability in space. The language is dedicated to Con-
figurable Software Product Families approach. Bindings denote the flow of
function calls in a network of components connected through bindings between

their interfaces.

In Systematic Integration of Variability in to Product Line Architecture De-
sign (SIVPLAD) approach, the language enables variability in space. How-
ever, variation point concept and dependencies are not first class entities in the
modeling approach. Although product architecture is represented as a decision

model, modeling language is not clearly defined.

In Divide and Conquer Variation Management (DCVM) approach, the language
provides variability both in space (domain space) and time (sequential, paral-
lel). The approach is neutral to architecture, design, and language, instead
file-based.

COVAMOF is a general variability model in space applied for all software ar-

tifacts.

OVM model is dedicated to software product lines which interrelates variation

information to software artifacts.

VSL language is a generic variability model in space, gathering specification

and realization levels together and supporting runtime and preruntime variation.

Kumbang model targets configuration by means of Koalish component model
incorporating with feature model, however variation point and variants are not
specified. Kumbang enables component, interface and connector variability in

space.

Model-driven approach for SPLs (MDAS) approach facilitates to specify and
manage variation point and variants in a single model throughout development
process. The approach enables to define component and interface, code vari-

ability in space.

In Variability Expression (VE) approach, even though the approach does not as-
sume a particular notation, UML is used for demonstration and experimentation

purposes. Therefore, variation points and variants are represented as classes.

First class feature abstractions (FCFA) approach employs a formal feature model

52

for software product families (SPFs) to configure domain components. There-
fore, no variation point and variant specification exists. FDL approach employs
a formal feature description language for software product lines. Therefore, no

variation point and variant specification exists.

Likewise, Staged Configuration Using Feature Models (SCUFM) approach in-
cludes a novel cardinality-based notation for software product lines. Therefore,

no variation point and variant specification exists.

Variability Model for SOA (VMS) approach enables to define service interface
variability and to integrate it with business process variability. However, in-
tegration with business process variability is not pinpointed enough. Besides,

there is no explicit mechanism to specify a variation point and a variant.

In Modeling Variability in Component and Connector View (MVCCV) ap-
proach, types of variation points, variants and their realizations are addressed
with the proposed variability modeling approach. Variability in architectural

constructs, namely components, connectors and interfaces are specified.

Managing service variability (MSV) approach is important for elaborating dif-
ferent characteristics of service variability which covers service, service inter-
face and composition variability concepts. External and internal variation point

concepts are mapped to newly introduced variability types.

In Divide and Conquer Variation Management (DCVM) approach, COVAMOF
model, VSL language, FCFA approach and CVL, although variation points
are specified explicitly, the conceptual difference between external and inter-

nal variation points is missing.

Realization Higher level configurations, variability mappings are not taken into ac-
count in XADL, Koalish, SIVPLAD, DCVM, OVM, Kumbang model, MDAS,
FCFA, FDL, SCUFM, VMS and MSV approaches. On the other hand, in CO-
VAMOF, variations on higher-level abstractions are realized by variation points
in lower-levels of abstraction by realization relation mechanism. In VSL, re-
alization of variabilities in specification layer is achieved by variation points
in the realization level which provides a higher-level configuration. In VE ap-
proach, a multi-level decision model facilitates to configure the product line

from higher level (core asset level) to lower-level (variation point level). In

53

MVCCYV approach, two views are provided for abstracting complexity in vari-
able architecture. The first one represents the big picture of the system with
abstract components which includes variation details. The second one includes

system variability details and their realizations.

Variability in composition In xADL, Koalish, Kumbang model, MDAS, VE, FCFA,
CVL and MVCCYV approaches, although the infrastructure is convenient to
specify variability in composition, process view of the architecture is not ex-
plicitly mentioned. In SIPLAD, process view of the architecture is not explic-
itly mentioned. In DCVM, it is stated that variability in composition is achieved

by instantiation of variation points, however how it is achieved is not clear.

2.4.2 Composition and Configuration of Models

Obviously for small systems in which variability is limited we could handle configura-
tion of the composition of services and the corresponding orchestration specifications
using traditional approaches such as interaction diagrams. Variable parts and their re-
lations can be modeled and implemented by data and through ‘if” control structures.
However, for integration of large scale systems soon the traditional approaches are
less expressive and not tractable. Therefore, existing orchestration and choreography
languages explained in Section [2.2.2]are evaluated with respect to composition and

configuration of models component in Table [2.11

BPML, BPEL, VXBPEL, Jolie, Jorba, PML, RBXPDL and EPML follow intercon-
nection approach providing constructs for service orchestration. The only orchestra-
tion language which supports variability explicitly with a separate variability model
is VXBPEL. As a rule-based approach built on top of Jolie language, Jorba enables

dynamicity in orchestrations with an adaptation mechanism.

BPEL abstract processes, BPEL4Chor, Let’s Dance,WS-CDL, MAP, CL, ScriptOrc,
eSML, BCL and WS-Coordination facilitate to define service choreography specifi-
cations. Among them, BPEL4Chor follows interconnection approach by scattering
service interaction definitions to each of the service. Global message links are gath-

ered in a single Topology model. However, the language does not fulfill interaction

54

approach completely because global control flow logic is missing. MAP provides an

interaction model through separation of choreography definition to service peers.

The languages which targeting both orchestration and choreography are WSMO,
BPMN, Reo and AB-WSCL. WSMO is different than BPMN and Reo in following
solely interconnection model.The other two comprise interaction and interconnection
models. Among them, Reo provides a hyper-graph transformation mechanism in or-

der to support variability.

Although VXBPEL, Jorba and Reo languages have variability support, no one enables
to specify connector variability. Both of them targets service composition variability,
whereas none of them provides a variability association mechanism. The only one
providing interface variability is Jorba by reconfiguration with adaptation interfaces.
The only explicit variability model, COVAMOF, integrated with the orchestration
language is VXBPEL in which BPEL is extended with variability constructs. The
language does not provide a global view of variability when a set of orchestrations are
interacting with each other. Jorba defines adaptation interfaces and manager which
reconfigures the interfaces whenever a change in a function or a parameter is required.
As the variability logic is hidden between rules and implicit, the management of rules

and variability is usually difficult.

Comprising orchestration and choreography models in one place, Reo proposes a
hyper-graph transformation mechanism to reconfigure service interactions. In this
mechanism, services are treated as nodes which are connected via edges. Reconfigu-
ration of edges enables reconfiguration of service interactions meaning composition
variability as an internal part of the system. Therefore, composition variability cannot

be specified as an explicit variability model.

Based on the results of Table [2.11]variability in both orchestration and choreography
is not supported in any of the languages. That is, there is no explicit representa-
tion of variability and variability dependency, and a single variability model incor-
porated with all granularity levels, namely choreographies, orchestrations and atomic
services. Moreover, none of the languages addresses variability associations which

enable proper variation point bindings of interacting services.

55

Table 2.11: Comparison for Composition and Configuration of Models Component

Language Composition Modeling Variability Variability In
Approach Approach Support
BPEL 2.0 Orchestration Interconnection No None
VxBPEL Orchestration Interconnection Yes Composition
Jolie Orchestration Interconnection No None
Jorba Orchestration Interconnection Implicit Interface,
Composition
BPML Orchestration Interconnection No None
PML Orchestration Interconnection No None
RBXPDL Orchestration Interconnection No None
EPML Orchestration Interconnection No None
WSMO Orchestration, Interconnection No None
Choreography
WS-CDL Choreography Interaction No None
Let’s Dance Choreography Interaction No None
BPEL4Chor Choreography Interconnection No None
WS-Coordination Choreography Interaction No None
WSCI Choreography Interaction No None
CL Choreography Interaction No None
eSML Choreography Interaction No None
ScriptOrc Choreography Interaction No None
BCL Choreography Interaction No None
MAP Choreography Interconnection, No None
Interaction
AB-WSCL Orchestration, Interconnection, No None
Choreography Interaction
BPMN 2.0 Orchestration, Interconnection, No None
Choreography Interaction
Reo Orchestration, Interconnection,Implicit ~ Composition
Choreography Interaction

2.4.3 Tool Support

Existing variability models, orchestration and choreography languages, explained in

Section [2.3.1.4]and Section [2.2.2]respectively, are evaluated with respect to the tool
support component in Table and Table [2.13

56

Table 2.12: Comparison of Tool Support Component for Existing Variability Models

Approach Spec. Anal. Verif. Code Conf. Tool

Gen.

xADL Yes Yes No Yes Yes xArch and
Menage

Koalish Yes Yes No No Yes Koalish Tool

[131]] Yes Yes No No No None

[182]] No No No No No None

COVAMOF Yes Yes No No No COVAMOF-VS
Tool Suite

OVM No No No No No None

VSL No No No No No None

Kumbang Yes Yes No No Yes Kumbang Con-
figurator

(971 No No No No No None

[112]] Yes Yes No No Yes UML

CVL Yes Yes No No Yes CVL Tools

[23] Yes Yes No No No Prototypical Tool

FDL Yes Yes No No No autobundle Tool

[84] Yes Yes No No No Prototypical tool

[99] Yes Yes No No Yes Prototype

[108]] Yes No No No No UML2.0

[100] Yes No No No No UML2.0

xADL Tools, xArch and Menage, enable to specify, analyze, generate Java classes,
and configure XADL models. Components are specified, analyzed and configured by
the Koalish Tool. SIVPLAD Tool[131]] only facilitates to specify and to analyze file
variants. Variation points, variants, variation realizations and constraints are specified
and analyzed by the COVAMOF-VS Tool Suite. Components are specified, analyzed
and configured by Kumbang Configurator with the help of Koalish code. A prototypi-
cal tool for VE [112]] facilitates to specify UML diagrams with stereotypes, to analyze
and configure models via decision models. Autobundle tool for FDL, a prototypical
tool for SCUFM [84] and a tool for FCFA [23]] enable to specify and analyze feature
diagrams and to configure the product line models. A prototype for VMS [99] has

ability to specify variation, to analyze whether variants are"legal" or not, and to con-

57

figure via service interface customization for business process creation. In MVCCV

[108] and MSV [100] approaches, UML is used for specification via stereotypes.
DCVM [82], OVM, VSL, and MDAS [97] approaches do not provide any tools.

Table 2.13: Comparison of Tool Support Component for Existing Orchestration and
Choreography Languages

Approach Spec. Anal. Verif. Code Conf. Tool
Gen.

BPML No No No No No None

BPEL 2.0 Yes Yes Yes No No BPEL Tools

VxBPEL Yes Yes No No Yes Adapted Ac-
tiveBPEL engine
prototype and
ValySec

Jolie Yes No No No No Jolie Interpreter
Engine

Jorba Yes No No No Yes Jorba Prototype

PML Yes Yes Yes No No PMLCHECK

Reo Yes Yes Yes Yes No Reo Tools

WSMO Yes Yes Yes No No WSMX

BPMN 2.0 Yes Yes Yes Yes No BPMN Tools

WS-CDL Yes Yes Yes Yes No Not in use

Let’s Dance Yes No No No No None

BPELA4Chor Yes Yes Yes Yes No BPELA4Chor
Tools

MAP Yes Yes Yes Yes No MagentA

WS-Coordination Yes No Yes No No XML Tools

WSCI Yes No No No No XML Tools

CL No No No No No None

ScriptOrc No No No No No None

BCL Yes No No No No Visual Studio
IDE

AB-WSCL No No No No No None

RBXPDL Yes No No No No XML Tools

EPML Yes No No No No EPML engine

eSML Yes No Yes No No eSML Verifica-
tion Tool

pidsoa Yes Yes Yes Yes No pi4SOA Tools
Suite

58

BPML is not supported currently. For BPEL and BPMN language, several tools are
available even for industrial level. Existing approaches introduce different models
for verification of BPEL and BPMN models. For VXBPEL, ValySec analysis tool is
implemented and ActiveBPEL engine is adapted to process variability information.
The tools are not in use; will be open sourced soon. Jolie is currently supported by
an interpreter implemented in the Java language, which can be run in multiple oper-
ating systems including Linux-based operating systems, Apple OS X, and Microsoft
Windows. Jorba tool as a prototype is very limited, and it will need a lot of work to
become fully able to deal with complex adaptation scenarios available for use. PML
comes along with its specification, analysis and verification tool, PMLCHECK which
translates a process model into a graph representation. For the Reo language, BPMN
modeller, BPMN2Reo converter, Reo graphical editor, Reo reconfiguration plug-in,
Reo simulation engine, Reo validation plug-in (to Eclipse) and java code generation
engine are developed. WSMO approach has several tools for modeling and an exe-
cution environment for dynamic matchmaking, selection, mediation and invocation
of semantic web services based on WSMO; WSMX. For WS-CDL, a visualization
tool was implemented in Erlang; however it is currently unavailable [77]. Maestro
tool is implemented for Let’s dance, however, not available and SAP ended its sup-
port in 2006. BPEL4Chor has several tools [[73]; Oryx editor for specification, BPEL
to BPEL4Chor and BPELAChor to BPEL converter tools which can be run inside
Eclipse. Verification of BPEL4Chor constructs are achieved by BPEL2oWFEN [87].
MagentA, an implementation of MAP which provides a concrete, and open-source
framework for the enactment of distributed choreographies. Besides, verification of
MAP is achieved via its model transformation to PROMELA language. CL, Scrip-
tOrc, and AB-WSCL have no tool support. BCL is developed based on Microsoft
Domain-Specific Language Tools (DSL Tools) on top of the Visual Studio IDE. For
EPML, process specifications in XML representation is executed by its enactment en-
gine written in Java. pi4soa tools suite includes tools from Choreography Description
Designer to Choreography Validation Framework which are released (and supported)

through JBoss Tools[43]].

59

2.4.4 Discussion and Problem Statement

State of the art variability support in orchestration and choreography languages are
evaluated under the comparison framework. The analysis of the existing languages
shows that variability in both orchestration and choreography is not supported in any
of the languages. Besides, interface and composition variability support is not ex-
plicitly addressed with a single variability model incorporated with choreographies,
orchestrations and atomic services. Only VxBPEL language has an explicit variability
specification based on the COVAMOF model which enables definition of variability
in service composition. However the language can not cover all service variability
needs, namely variability in interface and connector. Variability associations can be
defined by means of CVV dependency view, but it still needs an additional mecha-
nism to specify which interacting services of which orchestration is dependent each
other. Because variability association logic lies in revealing correlations of variation

point bindings of interacting services within an orchestration.

No single orchestration or choreography language addresses all variability needs.
Several variability models are proposed to capture, organize and represent variability
which differ in emphasizing concepts since 2000. A review of variability model cat-
egorizations can be found in [48]. COVAMOF [118], OVM [30]and CVL [74] like
variation models can be used to represent service variability, however still they are
lack of representing all variability needs. Beyond that, there is no specified mecha-

nism to map orchestration and choreography variability consistently.

The analysis of the current orchestration and choreography languages shows that none
of the current languages supports variability both at orchestration and choreography
level. None of them provides interface, connector and composition variability in one
place with variability association mechanism. Moreover, there is no language sup-
porting interface and composition variability in a single model explicitly addressing
at all levels; namely choreography, orchestration and atomic service. The following

problems are identified concretely:

e Lack of explicit expressiveness of variability in choreography specifica-

tions. There is no language that explicitly represents variability in choreog-

60

raphy in order to integrate orchestration specifications. Moreover, variability
modeling in choreography, orchestration and atomic services as a whole is not
explicitly covered in one single model. This impedes the consistent configura-
tion of choreography and orchestration specifications with respect to variability.
The lack of explicit abstractions for variability easily leads to the scattering of
variability concerns over service compositions. Likewise, enabling or disabling
a variability results in reorganization of the composition. This complicates the
understanding of variable parts, relations amongst them and the overall goal for
business process engineers and developers. Tracing these scattered variations
can be achieved to a certain degree, but in large scale systems traceability and
understandability decrease gradually. As a result, this scattering reduces the

maintenance of the system.

Lack of explicit specification of variability associations among interacting
services. A choreography interrelates a set of orchestrations, atomic services
and establishes connection with other choreographies. Interacting service vari-
ability constraints and shapes possible choreography abilities and composition.
Likewise, variability of choreography dictates proper service variability bind-
ings and specified configurations which bring along service interfaces with dif-
ferent functionality and parameters. In order to reveal these dependencies and
relations between choreography and services, an explicit association of varia-
tion point bindings should be defined. In other words, configuring choreogra-
phy requires configuring other services in order to consistently collaborate with
each other. Therefore, configuration and binding of service variability requires
an integrated model comprising choreography, orchestration specifications, and
atomic services with variability. There is no language supporting such inte-

grated configuration model dealt with variability of all granularity levels.

Lack of support for reusing existing choreographies. The importance of
reusing existing choreographies is addressed in some approaches, but reusing
as a part of the other choreography is not emphasized sufficiently. There are
ways to handle choreography-to-choreography relationships such as collabo-
rating via exposed choreography interfaces. In case of variability, it is more

difficult to utilize choreography specifications with proper bindings. Therefore,

61

the way to bind to other choreographies should be specified.

In order to fully support variability, needs of each level namely choreography, orches-
tration and atomic service should be addressed. As each view has different needs,
variability specification and management at all views are related but different. The
challenges of variability representation needs within service-oriented context lie in

determination of following items:
e the types of variation points and variants,
e associations between variation points and variants,
e the parts where and how variability associations is stated,

e the effect of variation points to shared elements of choreography,

e the parts where and how choreography variability in composition is stated or

referenced from outside,

e the relationships of service and choreography capabilities with variability and

where they are specified.

The target variability model faces with following obstacles:

e External specification of variability opened to outer world in order to configure

in an intended manner,

e Depiction of composition variability realizing external variability while dealing

with internal variability, and

e Association of external service variability with the composition variability

All in all, all interacting services should define their external variability if exists,
which can be either orchestration and atomic services. While configuring interacting
services, their variability bindings should be consistent with each other, if one of the
service variability binding affects that of the other one’s. Therefore, a comprehensive
variability model from the global point of view is missing to manage variability in
choreography level which can then be mapped to the variability of interacting services

in order to achieve a consistent architecture.

62

CHAPTER 3

VARIABILITY IN CHOREOGRAPHY LANGUAGE: XCHOR

This chapter introduces a new metamodel and its realization XChor language which
addresses variability support at choreography level in order to integrate variable or-
chestrations and atomic services consistently. A variability model integrated with
choreography model is proposed as a single model so as to systematically manage
variability from a global point of view. After variability modeling requirements are
revealed, two real life case study are explained for demonstrating variability in chore-
ography level. Afterwards, the proposed metamodel and XChor language are ex-
plained with language constructs and exemplified via case studies. XChorS Tool is
that supports specification, analysis, and configuration of XChor models is repre-
sented with its capabilities. Then, validation of the XChor language is studied for

modeling service variability and choreography specification.

3.1 Variability Modeling Requirements for Choreography Languages

A choreography comprises a set of orchestrations, atomic services and collaborates
with other choreographies. All interacting services knows only their variability infor-
mation regardless of other ones’. Variability binding of a service can entail a proper
variability binding of another one. Associations can be established one to one, how-
ever, the whole such associations can not be observed at their level, instead it should
be managed in a high level abstraction, namely choreography. By this way, the chore-
ography establishes a mechanism that interacting services can behave as expected by

means of consistent configurations. In fact, the choreography forms a context when

63

and how variability of interacting services bound along with variable service inter-
action specification. Therefore, a variability model addressing all levels should be
elaborated indicating which types of variability is supported and how. To this end, re-
quirements for variability model in choreography language and its relation with other

choreographies, orchestrations and atomic services are listed as follows:

e Variability should be uniform and treated as a first class concept at all abstrac-
tion levels of architecture, namely atomic service, orchestration, and choreog-

raphy. In other words, multi-level variation representation should be specified.

e Variability should be represented in an hierarchical organization explicitly which
reduces complexity of variability points and eases variability management. A
global view on variability points helps product developers to understand ulti-

mate goals of the system.
e Constraints on variability should be specified in all levels of architecture.

e Variability associations defined by means of explicit variability mappings should

be treated as first class entities in order to realize a valid set of products.

e In order to establish variability associations, orchestrations and atomic services
should offer and open their variability explicitly to the choreography in a global

view.

e Variability of a choreography specification should be specified explicitly for
utilization. The choreography can be used by other ones, which requires ex-

plicit variability representation in choreography level.

e Both centralized (choreography) and decentralized (orchestration and atomic
services) variability management should be conducted at the same time for con-

sistency. A centralized view is based on decentralized ones.

e Variability should be correlated with design artifacts, namely service interfaces

and choreography specifications.

e A process for specification and management of variability on architecture should

be defined for developers and a set of tools should be provided to ease variabil-

64

ity management ranging from variability specification, analysis, configuration,

verification to code generation.

3.2 Case Study

In order to demonstrate variability in choreography, two case studies are explained
expressing variable parts with UML Sequence Diagrams. The first one is Travel
Itinerary System where several services are composed under one choreography speci-
fication. The second one is Adaptable Security System which comprises three chore-
ography specifications with interrelated services. These case studies are specified

using the metamodel and the XChor language constructs.

3.2.1 Case Study: Travel Itinerary System

Travel itinerary system is an online booking facility which organizes travelers’ trip
plans even for complex trips with multiple stops and changes. The system can option-
ally provide hotel and flight booking, car rental, booking of activities, and vacation
packages. Vacation packages contain at least hotel and flight bundle and optionally
additional activities. Traveler can choose any booking type (flight and/or hotel), ar-
rival and departure dates of his/her trip, the destination place and other details such
as traveling with pets. Travel agency gathers convenient hotel and flight options from
available hotels and airlines which are presented with detailed information to the trav-
eler with regard to his/her selected booking type. According to traveler’s choice,
additional activities, cruise options and advantageous vacation packages are offered.
Traveler can choose one among them and can book hotel and/or flight. After getting
booking confirmations, travel agency sends the trip plan to the traveler with all re-
quired information. In case of any booking problem, travel agency sends a message

indicating the booking cancellation and directs to him/her rearrange her/his itinerary.

A UML diagram describing how the travel itinerary system works is depicted in Fig-
ure [3.1] Traveler, Travel Agency, Hotel, Airline, Cruise, Car Rental and Activity
Provider are the main actors of the Travel Itinerary System. Hotel and Airline book-

ing are processed with regard to selection of booking type by the Traveler. Therefore,

65

the parts of flow belonging to airline or hotel are covered by if clauses. Likewise,

optional cruise, car rental and/or activities are represented by if clauses in the flow.

Car Rental H Activity Provider H

Fas o ‘ - H

seq J 3query’Tnp(startdate,enddata,details)
par J

opt if {aitine = true) H
requestPrice(startdate enddate)

available airing information

opt if (hotel = true)

requestPrice(startdate, enddate, conditions) -

avaliable hatel inforfnation !
opt Fcruise—true) J requestPricelpackageid)date) - :

ayaliable cruise informptipn u

opt fcarrental = true)] requestpricg{{armodel date)

avaliable Faf information

opt \F(a::twitypruvider:true) J listactivities(place,date) : : - :

m

2
[

o

o,

g

2

=

=

=z
=

requestpriceselectedist, date)

=
e

activity prices

opt IF thotel = trus)]

select_hotel()

opt if da\r\ine=true) J

select_arplane() I-%

opt f (oruise=true))

selecteruise()

opt \f(&arrenta\=true) J

selectcarrental{carmadel) U
opt F(a=tivityprovider—trus))
: selectactivitiestactivitylist) [
par

b if{ airline =t

M book_Flight(arrival,departure)
Crder Confirmation J

opt Fihatei=true)] make_rezervation(arrivy,departure)

Order Confirmatit

alt hotelfand flight confirmation = true)

e Ttinerary Plan-- -~ -~

opt flairling =true) J
: gkt
(e' i A,

opt flhotel = true)]
- oucher
S RETERTERRE B ot
e e e
| Plan Cancellation

Figure 3.1: UML Sequence Diagram for Travel Itinerary System.

The flow of the booking changes with regard to booking type; only flight, only hotel,

66

or flight and hotel. Therefore, booking type causes travel itinerary system behavior
change whose variants are the hotel and the airline. Besides, inclusion of additional
features such as cruise, car rental, and activities alters the way services interact with

each other. These are also variants of the travel itinerary plan.

3.2.2 Case Study: Adaptable Security System

The Adaptable Security System is an authentication system residing between cus-
tomers and third party applications or institutions that support different authentica-
tion types of data, including software and hardware (biometric device) parts. The
system has the ability to be integrated and applied on a military installation or to a
banking system, which requires fulfilling different stakeholder needs. Applicability
to different stakeholder systems requires different functionality support and behavior.
In other words, the adaptable security system has the ability to comprise all structures

and compositions in order to fulfill application needs for different stakeholders.

The system includes two basic functions; user enrollment and verification which can
be offered by offline or online by a third party authority such as web services or
certain devices like: PDA, PC, ATM, or mobile phone. The third party authority
gets different types of data as required user credentials: (1) user name and password,
(2) user name and password with instant mobile text, (3) e-sign, (4) biometric data;
fingerprint, finger vein, and/or iris. According to the verification result, the system

will allow or ban users entering the integrated application.

Device support is important as different devices have different capabilities. ATM,
PDA and mobile phone can be used with (1), (2) and (3). PC supports (1), (2), (3)
and (4). Therefore, the system should change authentication processing functions ac-
cording to used devices. Moreover, users can combine different data types in order to
authenticate; for instance in the PC case user can enter his/her user name, password
and biometric data. Feeding the system with different possibilities of user creden-
tials should be considered, as (i) internal encryption algorithm is affected by changed
parameters and (ii) biometric processing algorithm usage should be configured ac-

cording to the type of biometric data.

67

A UML interaction diagram is used to define the various configurations for verifica-
tion of a user as shown in Figure [3.2] Adaptable Security System, as itself a choreog-
raphy, interacts with credential manager and alert choreographies colored with dark
blue, the others are treated as orchestration or atomic services. Adaptable Security
System choreography realizes two functionalities; verify and enroll. Verification of a
user generally includes four steps: (i) processing of his/her credentials; (i1) encryp-
tion of processed data, (ii1) comparison of encrypted processed data and pre-existing
encrypted data, (iv) showing the verification result to the end user. Processing of third

step changes with regard to authentication types; online or offline.

thirdparty | | credentials

credentialmng | | encryption storage atterrptealc responsewindow | | interfaceprep warning connection alert

user

if biometric authentcation = rue)

comparison

repeat number of biometric data

getoredentials()

L setparams() }

get_sessionkey ()

params()
jetcredentials :
9 0 setparams()_ |

if oniine authertization = rue verify()

if oniine authertization = rue J

fakeanalysis() }

gethasheddata(y

if offire autertiston = rue)

U corpare()

if fokeirmerface < fake J calculatewrohgatempts()

i wrongattepts <3 J

sHowever ific ationresult

warng)

else wrongatterps == 3

showver ficationresult(y
closecornection()

if Fakeintetface = true paralel)

if faketansaction == e)

prepare_fake_interface()

=

alert()

Figure 3.2: UML Sequence Diagram for User Verification in Adaptable Security Sys-

tem.

68

Online verification requires gathering comparison result from a third party appli-
cation, whereas offline verification needs data comparison within the device by es-
tablishing connection to storage. Likewise, fake transaction support of the system
changes the way to respond user, in our case the system prepares a fake interface and
alerts bank or police station. Credential manager choreography gathers user’s bio-
metric data from biometric readers and extracts biometric features, which is reused
by verification and enroll functions of adaptive security system. Alert choreography
can take pictures, record a scene video and send them to bank and/or police station

along with place and date information in case of emergency.

Given different user credential types such as biometric authentication, supported au-
thentication modes (online and/or offline), transaction types (real or fake transaction)
the system’s behaviors need to be configured differently. As such we will need to
compose different choreography and orchestration specifications. The composition
of the services depends on the selected items of the orchestration and choreography
elements. The selected orchestration elements will typically have an impact on the
choreography specification. Likewise it is important that this be done in a consistent

way.

3.3 A Metamodel for Variability Management in Choreography

To enable integration of orchestrations and atomic services in the scope of chore-
ography, we propose a metamodel in which atomic services and orchestrations are
evaluated under the service concept. The main difference between specifications of
orchestration and atomic service comes from revealing external behavior to service
environment. That is, an orchestration can define its external interactions with other
services if required. Moreover, there is no constraint that an atomic service can not
specify its interactions. Therefore, atomic services and orchestrations are treated as
services in our metamodel. The metamodel basically enables to define choreogra-
phies and services, to specify variability of each one and to integrate these variabil-
ities in order to provide a consistent collaboration. Figure [3.3]depicts an overview
of service and choreography relations based on our metamodel so as to support inter-

face and composition variability. Two main blocks are depicted; choreography and

69

service.

Internal, external variations and internal variability bindings for configuration pur-
poses are specified for choreography. On the other hand, only external variations can
be defined for services. Choreography and service interfaces without variation are
identified which fulfill all possible functional requirements and then are configured
by variations. Choreography interface is merely configured with regard to its own
variability specification, whereas service interface is configured by both its own vari-
ability and variability specification of choreography that takes part in. Configuration
of a service is achieved by activating/deactivating functions and setting/unsetting pa-
rameters. With this mechanism, different choreographies utilize different interfaces

of the same service which brings service reusability.

activates / activates / activates /
£ deactives deactives deactives —‘
e . r
(CThoreography A Sermice
Interface Choreography f Interf Service
Functions Variability . nierrace < ahili
Binds ather Functiohs Vanability
. Parameters e || ‘t char's I‘\H_Parameters) y
Speci .|es.|ntema variability -
bindings hinds
refers inline
refersinline |
| External
Choreography BEI:'a"":'_r
e as Specification
Specification
{f needed)
Choreography Service

Figure 3.3: Overview of the approach based on the Metamodel.

Choreography variation leads to proper bindings of variations of other choreographies
and services via mapping to provide interacting interface consistency. Choreography
and external behavior specification of services include inline references of their own
variability to point out the changeable parts. By this way, choreographies and services
include a set of possible required behavior in order to fulfill different composition

needs, which enables reuse of choreography and services.

The analogy between metamodel and model instance with metamodel of XChor is

represented in Table

70

Table 3.1: Mapping of Metamodel and XChor Metamodel Concepts

Metamodel = XChor Metamodel
Model XChor Models: choreography, service/choreography inter-
face, configuration interface model
Model instance choreography specification, service interfaces, choreogra-
phy interfaces, configuration interfaces

XChor metamodel with all construct are depicted in Figure [3.4 The metamodel
is separated logically in three blocks for understandability purposes; Choreography
Specification, Choreography to Variability Mapping and Variability Specification.

3.3.1 Variability Specification

The right most part of the metamodel in Figure presents the variability speci-
fication constructs. The variability metamodel has been defined based on variabil-
ity needs of service-orientation and existing variability metamodels in the literature,

which comprises standard entities for modeling variability as described in Chapter

Section 2.3.1.4]

Choreographies and services reveal their hidden variability as internal and expose
them as external variability. Internal variation points are invisible to outer context.
Whereas, external variation points are explicit to users of choreography and services
in order to be referenced, utilized and configured with a set of variants. A special
variation point, configuration variation point (CVP) is responsible for reducing com-
plexity of internal variation bindings. It provides a high level understanding for con-

figuration purposes while hiding details of how the internal bindings are done.

Variants play the role of activating/deactivating functions and/or setting parameters
of a function belonging to a choreography or a service interface for configuration
purposes. For different variation point relationships, constraints provide a mechanism
to establish a convenient binding and selection by defining numerical and logical

constraints.

71

3.3.2 Choreography Specification

The left most part of the metamodel represents the elements to specify a choreography
composition and interfaces of choreography and services. Choreography comprises a
set of interacting services and other choreographies and identifies composability rules
via service interactions. Here service interaction specifies the way how the services
collaborate by means of atomic and composite interactions. Composite Interaction
defines an interaction between services and choreographies with/without a guard. It
can be either a selection of an interaction among others (Selectlnt), repetition of a
set of interactions (Repeatlnt), parallelization of a set of interactions (Parallellnt) or
flowing down in a sequence (Sequencelnt) with a basic fault specification. The build-
ing block of a composite interaction is the atomic interaction which is a specification

of a basic interaction between two services with variability attachment.

As choreography has its own interface, choreography specification comprises a set
of interacting service and choreography interfaces. Choreography and service inter-
faces expose a set of functions without variability specifications. Different from a
service, a choreography interface declares required functions from other services and

choreographies.

3.3.3 Choreography to Variability Mapping

The middle part of the metamodel represents the concepts to define the mapping be-
tween choreography and variability constructs. Mainly these constructs are responsi-
ble for configuration of interfaces, establishment of variability associations and indi-

cating variability references in composition.

Variability Configuration Model of service and choreography includes a set of varia-
tion points, constraints among them and service interactions (for services only). Vari-
ability Association facilitates choreography to identify proper bindings of utilized
service and choreography variability. The need for associations comes from choreog-
raphy variability to support different compositions and provide consistent variability
bindings. For this purpose, firstly variation points are mapped and then each variant

of related choreography variation point is mapped to that of service or that of utilized

72

ConditianS et ’ Required Tethod
Funaion p-refers to—y Interface Withour
Defined
w e
Imvariam
Candition Hiethnds
Wwith
_— | Chorengraphy Defined
Interfac | Senices
refers to
. T BINDING
arams Interface _ 1
efers t
has Serice
| ___ d Interface)
—— | Canfiguration
— o Veriants with
Famm e e Chaices
Variant
ChorGamputation —{-set value—S mn__“HH_ﬁ izns val A
impors AW
configures Canfieuration
Variation Pairt
Chaicss
< Parameter
= Charaers
chareography Setting _
_ > refers ta
refers 1o Serice Charegraphy % \r
| W ariabili anstrains
Seleat Wapping —
Interaction I3
Q_Emnn:a N Variaion Foint \ariants
. { sraphy ariant Set
_ Faralel by H__f Varisbility) —
It I=1
interactian e efers to nuz_m_m:n_a_:ﬂ_ _V
odel
. ,n”auw.:m — 1 Canstraint
Repem ntermctian
Interaction _ Far External Internal
refes 1y 2 i [Variation Paint | | Variation Paint T
refers ta
Sequence li
Interaction
IntCandition refersto Numerical Logical
> !
R e
amic €L
Interaction Variabil ity
Attachment Froperty
Mess e

Choreo graphy Specification

7

Faul

yto Yariability

ility Spe cification

101.

XChor Metamodel for Variable Choreography Specificati

Figure 3.4

73

choreography variation point.

Methods And Parameter Activation for Configuration provides a configuration mech-
anism to define method activation/deactivation and parameter setting/unsetting of the

referred service interface.

Variability Attachment specifies conditions of variation point and variant selections
used in choreography composition, namely in composite and atomic interactions.
Tagging with variability attachment specifications, the parts of the composition gains
dynamicity that changes the behavior of choreography. When conditions are satis-
fied, the part is added to the final composition. The conditions including variation
point and variants are: (i) one of the variants in a variant set is selected, (ii) all of the
variants in a variant set are selected and (iii) some of the variants in a variant set are

selected.

3.4 XChor Language

The metamodel that we have described in the previous section has been realized as a
new domain specific language that we call XChor. XChor[122] has been implemented

using Xtext[22] in the Eclipse development environment.

3.4.1 XChor Language Constructs

3.4.1.1 Variation Specification Constructs

Explanations of each variation specification construct are given in detail with Xtext
specifications. Variation point specification constructs of XChor metamodel is de-

picted in Figure [3.5]

VarPoint is a representation of a variable property of an item which identifies one or
more locations at which the variation will occur. VarPoint is an abstraction of three

types of variation point: internal, external and configuration variation point.

74

Configuration Configuration
wariantswith = Wariation
Choices Point

| “ariant

refersta
EHNDING ‘J{
IN 3
_|—<>

Yariation
Paint F— wariant
TAG Set
Extermal Internal
Yaration Yariation
Paint Paint

Figure 3.5: Variation Point Specification Constructs of XChor Metamodel.

VarPoint:

ConfigurationVarPoint | InternalVarPoint | ExternalVarPoint

.
14

InternalVarPoint is hidden from users of choreographies, orchestrations and atomic
services. Internal VarPoint defines a variation point which is invisible to outer context
so as to describe a variability with a VariantSet and specified binding time. Internal

Variation points can be specified inside the configuration interfaces of choreography.

InternalVarPoint:
vt = "internalVP" name=ID ' :’
variants = VariantSet

"bindingTime" btime =BINDING

14

External VarPoint is explicit to users of choreographies, orchestrations and atomic
services in order to reference, utilize and configure with a VariantSet and speci-

fied binding time. External Variation points can reside in configuration interfaces

75

of choreography and services. "external VP" should be used while defining a varia-
tion point for choreography in a configuration interface and "vp" should be used for

service variation in the configuration interface.

ExternalVarPoint:
(vt = "externalVP" | vt2 = "vp") name=ID ' :’/
variants = VariantSet

"bindingTime" btime =BINDING

.
’

VariantSet is a set of defined set of variants grouped as mandatory, optional and

alternative. Alternative variants are specified with minimum and maximum number

of selections.

VariantSet:

{VariantSet} ("mandatory" (variants += Variant)sx)?
("optional " (variants += Variant)x)?

("alternative " (variants += Variant) *

"(min:"INT", max:"INT")")?

.
’

Variant is a representation of a particular instance of a variable property. Variant is a
variable definition of a variation point which can activate functions of services (Meth-
odsWithoutDefinedServices) or its functions stated in the interface (MethodsWithout-
DefinedServices) and/or can set a parameter (Function) to a function (Function) stated

in service interface if required.

Variant returns Variant

"variant" name = ID ((":activateMethods (" (

ml MethodsWithDefinedServices |
m2 = MethodsWithoutDefinedServices) ")")?
(":setParameter (toFunct:" f = [Function] ",parameter:"

pars = Param (

76

";toFunct:" func += [Function]

",parameter:" fpars += Param) *

Tag is an ID assigned to variation points whether they reside in composition or
take part in configuring service interfaces via mapping. It can reside in composi-
tion (@composition) or take part in configuring service interfaces (@vconfservice)

or take part in configuration variation point realization (@ vconfrealization)
Tag:

"@" name = ID

Binding is a set of specified times indicating when a variation point can be bound to

a set of variant.

BINDING:

devt = "devtime"| derv = "derivation"

| comp = "compilation" | link = "linking"
| strt= "start-up" | runt ="runtime"

14

In configuration interfaces of orchestration and atomic services, vp is used instead of
external VP. <vpname> indicates a unique name of the variation point, <varname>
is also a unique name representing variant descriptor. <number> is an integer used
to specify the minimum or maximum amounts of the variant to be selected within
alternative variants. <binding> indicates the time when the variation point is bound
to one or more of its variants and can be one among the set; devtime, derivation

compilation, linking, start-up, and runtime.

Examples and syntaxes of internal and external variation points are given in Table

3.2] The example variation points are taken from the configuration interface of the

77

adaptive security system choreography. Developers can choose to internalize or ex-
ternalize selection of authentication type supported by the adaptable security system
choreography. Authentication type (i_auth_type, auth_type) is a variation point which
changes the behavior of the choreography, hence the composition of the system. It has
a mandatory variant which is username and password (line 4). Two optional variants

are one time password (line 6) and e-sign (line 7).

Table 3.2: Internal and External Variation Point Syntaxes and Examples

internalVP vpname : 1 | internalVP i_authtype:
mandatory 2 mandatory
variant varname 3 variant username_passw
4 optional
optional 5 variant onetimepassw
variant varname 6 variant esign
7 alternative
alternative 8 variant fingerprint
variant varname 9 variant fingervein
10 variant iris
(min: number ,max: number 1 variant face
) 12 (min:1 ,max:2)
bindingTime binding 13 bindingTime devtime
XChor Language - Internal Varia- XChor Language - Internal Varia-
tion Point Syntax tion Point Example
external VP vpname : 1 | external VP auth_type:
mandatory 2 mandatory
variant varname 3 variant username_passw
4 optional
optional 5 variant onetimepassw
variant varname 6 variant esign
S 7 alternative
alternative 8 variant fingerprint
variant varname 9 variant fingervein
10 variant iris
(min: number ,max: number 1 variant face
) 12 (min:1 ,max:2)
bindingTime binding 13 bindingTime devtime
XChor Language - External Varia- XChor Language - External Varia-
tion Point Syntax tion Point Example

78

Alternative variants range from fingerprint (line 9), finger vein (line 10), iris (line 11)
and face (line 12) among which minimum one and maximum two are selected. All

these variants can be bound at development time (line 14).

ConfigurationVarPoint is a higher-level variation point including type and informa-
tion about its variation points which are realized by low level variation points. It maps
its variants to a set of internal variation points with their variant selections. It can be
either internal or external which is specified by the "vartype" keyword. It defines a
set of variants (VariantSet) and their realization (ConfVariantWithChoices), default

variant (Variant) selection and binding time (BINDING).

ConfigurationVarPoint returns ConfigurationVarPoint:
"configuration" (

{InternalVarPoint} name=QualifiedName '’ :’

"varType" vt = "internalVP" |

{ExternalVarPoint} name=QualifiedName '’ :’

"varType" vt = "externalVP")
(variants = VariantSet)
("realization" rea = STRING)

((confvariants += ConfVariantWithChoices)+)
("defaultVariant" defaultVariant = [Variant])
("type" type= CONFTYPE

"bindingTime" btime = BINDING)

ConfVariantWithChoices is a variant of a configuration variation point including a

set of choices for realization.

ConfVariantWithChoices:
"confvariant" name = ID "mapping"

(choices += Choice)+

14

79

Table 3.3: Configuration Variation Point Syntax

1 | configuration <vpname>:

2 varType <externalVP | internalVP>

3 mandatory

4 variant <varname>

5

6 optional

7 variant <varname>

8

9 alternative

10 variant <varname>

11

12 (min:<number>,max :<number>)

13 realization <explanation>

14 confvariant <confvarname> mapping

15 VPName <referencedvpname> selectedVariants (<refvarname_1>,
<refvarname_2> ,...)

16

17

18 defaultVariant <oneofconfvarname>

19 type <type>

20 bindingTime <binding>

Choice. It is a selection definition of a variation point among defined ones and re-
lated selected variants for the realization of a configuration variation point. Minimum

and/or maximum number of variant selections can optionally be specified.

Choice:
"VPName" vp = [VarPoint] "selectedVariants/(
" (vars += [Variant])+ ("; min:" INT)? (", max:" INT)?

||) nw

Syntax of the configuration variation point is given in Table [3.3] where <vpname>
indicates a unique name of the configuration variation point. <confvarname> and
<varname> are also unique names representing variant descriptors. <number> is an

integer used to specify minimum or maximum counts of a variant to be selected within

80

alternative variants. <explanation> is a string clarifying realization of the configura-
tion variation point. <referencedvpname> is a reference of an already defined vari-
ation point. <refvarname_1>,<refvarname_2>,... is a set of variants of referenced
variation point. <oneofconfvarname> is one of the variants defined for configuration
variant as default selected variant. <type> depicts the aim of configuration which can
be substitution or parameterization. <binding> indicates the time when the variation
point is bound to one or more of its variants and can be one among the set; devtime,

derivation compilation, linking, start-up, and runtime.

Table 3.4: Configuration Variation Point Example

1 |configuration authentication_type:

2 varType externalVP

3 optional

4 variant userinfo

5 variant biometrics

6 realization "it is realized by i_encryption_parameters and

i_auth_type variability points"

7 confvariant userinfo mapping

8 VPName i_encryption_parameters selectedVariants(
defaultparams)

9 confvariant biometrics mapping

10 VPName i_auth_type selectedVariants(fingerprint

fingervein iris face; min:1, max:1)
11 VPName i_encryption_parameters selectedVariants (setparams

)
12 defaultVariant userinfo
13 type parameterization
14 bindingTime devtime

authentication type configuration variation point is indicated as an external variation
given in Table [3.4] The variation point hides encryption parameter and authentica-
tion type variation point binding logic and presents a high level configuration struc-
ture. It has two optional variants specified as (lines 4-5); “userinfo” and ‘“biomet-
rics”. “userinfo” variant is realized (line 8) by selection of “defaultparams” variant of
“i_encryption_parameters” variation point. For “biometrics”, the realization requires

two selections at the same time: (i) minimum one variant among “fingerprint fin-

81

gervein iris face” set should be selected from “i_auth_type” variation point (line 10)
and “setparams” variant of i_encryption_parameters variation point (line 11). De-
fault variant of the “authentication_type” configuration variation point is “userinfo”
(line 12). Configuration type is parameterization and it is bound at development time

depicted as “devtime” (line 14).

Constraint is a description of a relation among variation points and variants, as an

abstraction of two types of constraints: LogicalConstraint and NumericalConstraint
depicted in Figure

Constraint:

LogicalConstraint | NumericalConstraint

4

Variant jE——————constraint s—‘

)

LY

Canstraint
Yariant
et .
J‘ constraints ’_T—‘
")
MurmeHcal Logical
“ariation
Paint |
Uuses
o)
Froperty

Figure 3.6: Constraint Specification Constructs of XChor Metamodel.

LogicalConstraint. It is a definition depicting a constraining relationship in which
a variation point and/or related variants decide another variation points and/or its
selected variants status as either excluded, implied, required or negated. Logical
relationships are requires, excludes, negates and implies. Logical relationships are

applied:

82

e Between two variation points.

e Between a variation point and a variant which is not related with the variation
points. In other words, let’s assume a variation point vpl that has vl and v2
as variants and vp2 has v3 and v4. A logical relationship can be represented

between vpl and v3 and/or vp4 as well as vp2 and v1 and/or v2.

e Between two variants.

LogicalConstraint:

(pl = [VarPoint] (p2 = [Variant])?) c =CONST
p3 = [VarPoint] (

"selectedVariants (" (vars += [Variant])+

(", min:"™ INT)? (", max:" INT)? ")"

) ?

.
14

The syntax and an example of logical constraint are given in Table

Table 3.5: Logical Constraint Syntax and Example

I |[<vpname 1> <varname 1> <logicalconstraint> <vpname_2>
selectedVariants (<varname_2-1>,<vpname_2-2> ,... , min:<number
>,max :<number>)

XChor Language - Logical Constraint Syntax

1 | i_auth_type face requires i_auth_mode selectedVariants (mode

_online)

XChor Language - Logical Constraint Example

NumericalConstraint is a definition depicting a constraining relationship in which
a variation point and related variant result in an assignment of a value to another
variation point and related variant or to a property with expressions (greater than, less
than, greater than or equal, less than or equal, equal, not equal). The syntax and an

example of logical constraint are given in Table [3.6]

83

NumericalConstraint:

pl = [VarPoint] p2 = [Variant] nconst = NUMCONST
(pll = [VarPoint] p3 = [Variant] | p4 =Property)
exp = EXPR (STRING | p5 = Property

| "valueOf{" (vars += [Variant])x "}")

.
14

Property is a specification of a system property with its name.

Property:

name = 1D

Table 3.6: Numerical Constraint Syntax and Example

| |<vpname_1> <varname_1l> const (<vpname_2> <varname_2> |
<property>) <expr> (<string> | <property>)

XChor Language - Numerical Constraint Syntax

1 |i_auth_mode mode_online const protocol = "https"

> |i_auth_type esign const i_encryption_parameters defaultparams

= valueOf username_passw esign

XChor Language - Numerical Constraint Example

<vpname_1> and <vpname_2> are already defined variation points. <varname_1>

is a variant of <vpname_1>, whereas (<varname_2-1>,<vpname_2-2>,.. are variants

of <varname_2>. <number> is an integer used to specify minimum or maximum

amounts of variant to be selected within alternative variants. <logicalconstraint> is a

constraint which can be one among the set, requires, excludes, implies, and negates.

<property> is a string depicting a system property.

One of the authentication types, face needs authentication mode to be online. In

other words, if authentication of users is done through face recognition, the system

should operate online. This constraint is represented as numerical logical constraint.

84

If the system is operated online, the protocol should be “https” which is depicted as
a numerical constraint in line 1. Username, password and e-sign should be set as
the default parameters of encryption if e-sign is used for user authentication, and is

represented as a numerical constraint in line 2.

3.4.1.2 Choreography Specification Constructs.

Explanations of each choreography specification construct are presented in detail with

Xtext specifications.

Choreography includes its configuration interface (VConfModellmport), imports in-
teracting choreographies (Chorlmport) and services (Servicelmport), defines shared
variables (Context Elements), maps choreography and service variability over related
variation point and variant specifications (VMMapping). It also defines the chore-
ography composition with in-line variation point and selected variants as a guard to
execute the piece of choreography (Composition). Choreography specification con-

structs of XChor metamodel is presented in Figure

Choreography:

"choreography" name=ID

(vconfmodelimport = VConfModelImport) ?

(cimports += ChorImport) *

(simports += ServiceImport)+

("Context Elements" (contexts += ContextElement) x)?
("Choreography Variability Mapping"

(mappings += VMMapping) %) ?

("Function" func += [Function] ":" comp += Composition)+

14

VConfModellmport is an import mechanism to include choreography’s configura-

tion Interface. There can be more than one configuration Interface of the same chore-

ography.

VConfModelImport:

85

"import configuration"

importedNamespace = [VarConfigurationModel4Chor]

ServiceImport is an import mechanism to include utilized services (Servicelnterface)
in choreography composition with specified service configuration interface (VarCon-
figurationModel4Service) if required. There can be more than one configuration In-

terface for the same service.

ServiceImport:
"import service" s = [Servicelnterface] (
"with configuration”

importedNamespace = [VarConfigurationModel4Service]

) ?

.
14

ChorImport is an import mechanism to include other choreographies (Chorlnter-

face) interacting with the current choreography.

ChorImport:

"use choreography" name = [ChorInterface]

.
’

ContextElement is a shared element definition used in choreography composition.

ContextElement:
name = QualifiedName (defaultvalue = INT | STRING | ID

| BOOLEAN)

.
14

ChorComputation is an assignment of the return value of a service (Interface) func-

tion (Function) to a ContextElement which is a shared variable of choreography.

86

ChorComputation:
"$comp" name = [ContextElement] "="

s = [Interface] "." f = [Function] "&"

Context
Element

4

=" Choreosraphy

— ChorComputation p——set ‘-'H|IJE$&

L5 &5
Select

Interaction

Faralel
Interaction

5 Composite
Repaat Interaction
Interaction

Sequence
Interaction

Int Candition

|

Atomic
Interaction

vorme L] T

VO

Fault

Figure 3.7: Choreography Specification Constructs of XChor Metamodel.

Composition is a definition of a set of interactions in order to realize a common goal
via one or more atomic (Atomiclnteractions) and/or composite (Compositelnterac-

tion) interactions tangled with each other.

Composition:

(interactions +=

87

(AtomicInteraction | Compositelnteraction)
(WS interactions +=

(AtomicInteraction | CompositeInteraction))*)+

14

Message is a definition of message including set of parameters (Param), semantical

description, referring service (Interface) and its function (Function).

Message:
"message" name = [Function]
("(" (par += [Param] ("," par += [Param])*)? ")")

("refers" (service += [Interface]
"." funct += [Function])*)?

("semantic (" s = STRING ")")?

.
’

IntCondition is a specification of a condition used to guard a part of an interaction. It
can be either a definition of a condition with expression and numerical/non-numerical

values or a specification of number.

IntCondition:
pl = GUARDTEXT ((exp = EXPR (STRING | INT | ID
| BOOLEAN)) | "times")?

14

AtomicInteraction is a specification of a basic interaction between two services with-
/without variability attachment (Variability Attachment). It is written
e with/without a guard condition (IntCondition),

e with depiction of source and destination services (Interface) with "send" or

"receive" actions,
e with a message (Message),

88

e with/without a computation effect to a ContextElement (ChorComputation) and

o with other additional constructs.

If the action is "receive" from a set of services and one should be selected then "pick-
One" is added. If more than one receive is accomplished from a source to a destina-
tion, then "multiple times" should be added. If the "send" action requires notification
from destination, then "withNotification" is added. If an atomic action is limited with
a duration, then the "wait" keyword with a time specification should be provided.
When an atomic action wants to explicitly depict a fault when a problem occurs, a
"fault" should be defined. If interaction is "send" that is willing to get a request from
one of the available destinations with a limited duration, then "callingSequence" is
defined with a sequence of destinations. If the interaction causes another interaction;
sending the value of the computation to another service/services, then "referedDesti-
nations" is defined. If the Atomiclnteraction causes one or more changes in Contex-

tElement’s values, then a set of ChorComputation is defined.

AtomicInteraction:

(va = VariabilityAttachment) ?

("guard (" guard = IntCondition")")?
(source = [Interface]
type = "send" "{" (destionation += [Interface])+ "} "
("in-sequence")? ("atomic")? ("viewer")? |
destination = [Interface]
type = "receive" ("from{" (rsource += [Interface])*"}")?
("multiple times")? ("pickOne")?)

(message += Message)

("stopmessage from" stopservice = [Interface])?
("wait" (t = Time)? ("until"™ INT "messagescame")?)?
("inactivity—-interval" inact = Time)?
("referedDestinations (" refpart += [Interface]
(("," refpart += [Interface])*)? ")")7
("withNotification"

("(min:" min = INT ",max:" max = INT")")?)?

89

(f += Faults ("toreferrals")?)?

(comp +=ChorComputation) *

.
14

Syntaxes and examples of send and receive atomic interactions are presented in Table

B7

Table 3.7: Send and Receive Atomic Interaction Syntaxes and Examples

1 <service_A> send <service_B> message <function>(<params>)

XChor Language - Atomic Interaction - Send Syntax

1 thirdparty send encryption message setparams(parameters)

XChor Language - Atomic Interaction - Send Example

1 <service_A> receive from <service_B> message <function>(

<params>)

XChor Language - Atomic Interaction - Receive Syntax

1 imageretrieval receive message extractfeatures (
biometricdata)

XChor Language - Atomic Interaction - Receive Example

Compositelnteraction is a definition of an interaction between services with/with-
out a guard (IntCondition) including a set of selection of an interaction among others
(SelectInt), repeating a set of interactions (Repeatlnt), parallelization of a set of inter-

actions (Paralellnt) and flowing down in a sequence (Sequencelnt).

CompositeInteraction:
("guard (" guard = IntCondition ")")?

("precedent")? (

interaction = SelectInt |
interaction = RepeatInt |
interaction = ParalellInt |

90

interaction = Sequencelnt)

("timeout™ INT)?

.
14

Sequencelnt is a definition of a sequence of a set of interactions between services
which can be atomic (Atomiclnteraction) or composite (Compositelnteraction) with-
/without variability attachment (VariabilityAttachment). It is written in such a way
that the block is started with "sequence". Interactions are surrounded with parenthe-

sis. The syntax and an example of sequence interaction is presented in Table

Sequencelnt:
(va = VariabilityAttachment)??
"sequence ("

(interactions +=

(AtomicInteraction | CompositelInteraction))+

Table 3.8: Sequence Interaction Syntax and Example

i1 | sequence (

2 <Composite or Atomic Interaction>
3 <Composite or Atomic Interaction>
4 .

5 <Composite or Atomic Interaction>

6 1)

XChor Language - Composite Interaction - Sequence

1 | sequence (
2 thirdparty receive from encryption message getconnection ()
3 thirdparty send encryption message setparams(parameters)

4 1)

XChor Language - Composite Interaction - Sequence Example

SelectInt is a definition of a selection between a set of interactions among services

91

which can be atomic (Atomiclnteraction) or composite (Compositelnteraction) with-
/without variability attachment (VariabilityAttachment). It is written in such a way
that the block is started with "select", interactions are surrounded with parenthesis.

The syntax and an example of sequence interaction is presented in Table [3.9]

Table 3.9: Select Interaction Syntax and Example

1 [select (

2 <Composite or Atomic Interaction>
3 <Composite or Atomic Interaction>
4 .

5 <Composite or Atomic Interaction>
6 1)

XChor Language - Composite Interaction - Select

1 [select (

2 sequence (

3 itineraryplanner receive from hotel message
rejectbooking (customelD)

4 itineraryplanner send customer message showresult(
bookingrejected)

5)

6 sequence (

7 itineraryplanner receive from hotel message
acceptbooking (customerID)

8 itineraryplanner send customer message makepayment(
bookinglID)

9)

0 |)

XChor Language - Composite Interaction - Select Example

SelectInt:
(va = VariabilityAttachment)? "select"

(cond = IntCondition)?

interactions +=

(AtomicInteraction | CompositelInteraction)+

92

RepeatInt is a definition of a repetition of a set of interactions between services
which can be atomic (Atomiclnteraction) or composite (Compositelnteraction) with
an exit condition and with/without variability attachment (Variability Attachment). It
is written in such a way that the block is started with "repeat" following a condition
and a set of interactions are surrounded with parenthesis. The syntax and an example

of repeat interaction is presented in Table [3.10]

RepeatInt:

(va = VariabilityAttachment)? "repeat"”

cond = IntCondition

"(" (interactions +=

(AtomicInteraction | CompositelInteraction))+ ")"

14

Table 3.10: Repeat Interaction Syntax and Example

1 |repeat condition (

2 Composite or Atomic Interaction
3 Composite or Atomic Interaction
4

5 Composite or Atomic Interaction

6 1)

XChor Language - Composite Interaction - Repeat

1 |repeat noofbiometricauthtype times (
2 imageretrieval receive message extractfeatures (
biometric data) refers imageretrieval.extract features

3)

XChor Language - Composite Interaction - Repeat Example

Paralellnt is a definition of a paralelization of a set of interactions between services
which can be atomic (Atomiclnteraction) or composite (Compositelnteraction) with-

/without variability attachment (VariabilityAttachment). It is written in such a way

93

that the block starts with "paralel”, and interactions are surrounded with parenthesis.

The syntax and an example of parallel interaction is presented in Table [3.11]

ParalellInt:
(va = VariabilityAttachment)? "parallel ("
(interactions +=

(AtomicInteraction | CompositelInteraction))+ ")"

.
’

Faults is a system failure with its name and explanation and sends fault notification

to corresponding senders. Termination condition can be specified if required.

Faults:
"fault (" fnamel = FAULTTYPES ("," fname2 += FAULTTYPES) *

(", terminateIf" number = INT "fails")? ")"

.
14

Table 3.11: Parallel Interaction Syntax and Example

1 | parallel (
2 Composite or Atomic Interaction
3 Composite or Atomic Interaction

5 Composite or Atomic Interaction

6 1)

XChor Language - Composite Interaction - Parallel

1 | parallel (

2 thirdparty receive from encryption message getconnection ()
3 credentials receive message getcredentials () refers
credentials. getcredentials

“1)

XChor Language - Composite Interaction - Parallel Example

Interface is an abstraction of two types of interface: Choreography and Service

94

which depicts provided functionalities to be used by other choreographies and ser-

vices whose constructs are presented in Figure [3.10]

Interface:

ChorInterface | ServicelInterface

Chorlnterface is a definition of interface for a choreography, the opened face to
other choreographies including invariants (Invariant), externalized functions (Func-

tion), port description (Port) and required interfaces from other choreographies (Re-

quiredInterface).

ChorInterface:

"Choreography interface" name = QualifiedName
"of " chorname = ID

(invariants += Invariant) =

((functions += Function)+)

port += Port

("required interfaces”

(regints += RequiredInterface)x)?

14

RequiredInterface is a definition of demanded functions from other choreographies

separated by semicolon (;).

RequiredInterface:
"from" name = QualifiedName "function" "{"

(£ 4= [Function]) ("," (f += [Function])) *

" } "
7
Servicelnterface is a definition of a service interface including invariants (Invariant),

functions (Function) and port specification (Port).

95

Servicelnterface:

"Service interface" name = ID
((invariants += Invariant) *)
((functions += Function)+)

port += Port

.
14

Fequired
Interface

ConditionSet

Fundion fE=refers to—

¢

T Invariant l
Condition

1 Choreography |
Farams Port Interface
refeﬁe Interface [} has
Serdice
Interface
Faram
ChorComputation
refers to
L pors <+ Choreography
refersto

| Atomic
—_
LISSses - Imteraction

Figure 3.8: A part of XChor Metamodel for Interface Specification.

Function is a definition of a function including its name, pre and post conditions

(ConditionSet), input parameters (Params) and its output (Param).

Function:
"function" name = ID
("precondition" precond += ConditionSet)?

("postcondition" postcond += ConditionSet)?

("input" ipars Params) ?
("output" opar = Param)?

.
14

ConditionSet is a set of conditions (Condition) composed via "or" and "and" logical

relationships.

96

ConditionSet:

"(" cl += Condition (("or™ | "and") c2 += Condition) ™)"

.
14

Condition is a definition of a property of an object with a boolean value (true or

false).

Condition:

name = ID ("==" "1=") BOOLEAN

Invariant is a variable definition in choreography/service interface assigned to a

boolean value which is valid throughout the choreography/service composition.

Invariant:

"invariant" name = ID "==" BOOLEAN

Port is a binding definition of other services with a defined host to current service/-

choreography.

Port:

"portName" name = ID "binding" host = TEXT

’
Params is a set of parameters separated by comma and surrounded with parenthesis.

Params:
pars = " (" pl = Param ("," p2 += Param)x ")"

.
14

3.4.1.3 Variation and Choreography Mapping Constructs.

Explanations of variation and choreography mapping constructs are given in detail

with Xtext specifications and presented in Figure

97

VarConfigurationModel is an abstraction of two types of configuration models namely

VarConfigurationModel4Service for services and VarConfigurationModel4Chor for

choreographies.
I
-
o
g (L}
a
o
2 il o
o - ag g mo
o 3 & 3 o o O
o w5 o= a k—q 32
o a g a8 = T
b o3 g = o a
o &
20 s Z
3
A 0 2
) 5 o ek
= T o T
El 3, 2 %tﬂ
oo o a
g o=
oT
-
= -
BEE d4=
EE 4 =7
m
=g d
3@ i
b =2 =)
| w F =g z
g gz oy
& o oW Wl =
g =% 4
g ﬁz:: . -
g
E)
2 <
= ’—‘ b
o
g2
o
2 F g g
L {7 Y &2 o 25
&
B g @ 2
= T
E
J L T
0o (=)
¥ g
£ o
2cg a
T = 5
=
a
{3
I
-
4 g
5 2
- o,
g E]
z gn B
§E g
%’! 3 3 a
g e ® S
=} 3 3
g
2

Figure 3.9: Configuration Model Specification Constructs of XChor Metamodel.

VarConfigurationModel:

VarConfigurationModel4Service | VarConfigurationModel4Chor

98

VarConfigurationModel4Service is a definition of a configuration interface for a

service including

1. a set of external variation points (ExternalVarPoint) with a tag (Tag) defining

the role of it if required,
2. constraints (Constraint) among external variation points and

3. its abstract process definition (Composition) which specifies external behavior

of the service with other services.

VarConfigurationModel4Service:

"Configuration interface" name = ID "of service"
servicename = [Servicelnterface]

((tag += Tag)? vars += ExternalVarPoint) *
("Constraints"

(constraints += Constraint)«*)?

("abstract process definition"

processdef = Composition

) ?

14

VarConfigurationModel4Chor is a definition of a configuration interface for a chore-

ography including
1. a set of internal, external and configuration variation points (VarPoint) with a
tag (Tag) defining the role of them if required,
2. constraints (Constraint) among variation points and

3. parameter settings (ParameterSetting) which includes a set of defined parame-

ters used in choreography.

99

VarConfigurationModel4Chor:

"Configuration interface" name = ID "of choreography"
chorname = QualifiedName

((tag += Tag)? wvars += VarPoint) *

("Constraints™"

(constraints += Constraint)«*)?

("Parameter Settings"

(parametersetting += ParameterSetting)x)?

.
’

ParameterSetting is an assignment of a value to ContextElements residing in chore-

ography specification.

ParameterSetting:
"parameter" name = [ContextElement] "=" ("
#ofSelectedVariants{"

(vars += [Variant])+

"y Of M
vp = [VarPoint] |
"valueOf ("

var += [Variant] ("," vars += [Variant]) =

") ")

14

VMMapping is an abstraction of two types of variability mapping VMServiceMap-
ping for service and VMChorMapping for choreography. The syntax and an example
of the construct are presented in Table [3.12]and Table [3.13]

VMMapping:
VMServiceMapping | VMChorMapping

VMServiceMapping is a structural mapping from choreography variation to service

100

variation. First variation points are mapped and then each variant of related choreog-

raphy variation point is mapped to that of service variation point.

VMServiceMapping:
"VP" vp = [VarPoint] "maps service"
service = [Servicelnterface]

"VP" svp = [VarPoint]
("Variant" wvars += [Variant]
"maps Variant"

(mvars += [Variant])+)+

Faram 1
MMethods)
L Without L%
4] Defined L
Services == Warant
Farams Ilethods
With Q
Defined
Services
Sendice
Interface fefers to
Compmite inline
Interagion [~ - O
Wariability L .
T Attachment ——rifamrm tu% Wariation Foint
Atomic inline
Interagion [~ b
& Pan of Yariabilit
A Part of Choreograp hy e . v
e . Specification
Specification

Figure 3.10: A part of XChor Metamodel for Variability Attachment Specification.

VMChorMapping is a structural mapping from choreography variation to utilized

choreography variation. First variation points are mapped and then each variant of

101

related choreography variation point is mapped to that of utilized choreography vari-

ation point.

VMChorMapping:
"VP" vp = [VarPoint] "maps choreography"”
chor = [Choreography]
"VP" cvp = [VarPoint]
("Variant"™ wvars += [Variant]
"maps Variant"

(mvars += [Variant])+)+

Table 3.12: VMMapping Syntax

1 |VP <chorvpname> maps service <servicename> VP <servicevpname>
2 Variant <chorvarname_I> maps Variant <servicevarname_1>

4 |VP <chorvpname> maps choreography <chorname_1> VP <chorvpname
1>

5 Variant <chorvarname_1> maps Variant <chorname_lvarname_1>

In Table [3.12] <chorvpname>, <chorvpname_1> and <servicevpname> are varia-
tion points of current choreography, other interacting chorography and interacting
service in composition respectively. <servicename> and <chorname> are names of
interacting service and choreography. <chorvarname_1>, <chorname_1varname_1>
and <servicevarname_ 1> are variants of <chorvpname>, <chorvpname_1> and <ser-

vicevpname> respectively.

In Table [3.13] adaptive security system choreography associates its internal varia-
tion points and related variants to those of utilized services’ in order to configure
service interface variability. The association between lines 1-3 ensures that when
“i_encryption_parameters” variation point is bound to one of its variants, “encryp-

tion_params” variation point of encryption service is bound accordingly to provide a

102

consistent interaction. With this, when defaultparams is selected, encryption service

interface is configured with regard to withdefaultparams variant (line 2).

Table 3.13: VMMapping Example

1 |VP i_encryption_parameters maps service encryption VP
encryption_params

2 Variant defaultparams maps Variant withdefaultparams

3 Variant setparams maps Variant withparams

4 |VP i_transaction_type maps service comparison VP analysis
5 Variant faketransaction maps Variant fake

6 Variant realtransaction maps Variant real

7 |VP i_auth_type maps service thirdparty VP user_device

8 Variant username_passw maps Variant ATM Mobile PDA PC
9 Variant onetimepassw maps Variant ATM Mobile PDA PC
10 Variant esign maps Variant ATM Mobile PDA PC

11 Variant fingerprint maps Variant PC

12 Variant fingervein maps Variant PC
13 Variant iris maps Variant PC
14 Variant face maps Variant PC

VariabilityAttachment is a definition of an attachment to choreography composition
in order to define the conditions of variation point and variant selections. Relation-
ships between variation point and variants used are:

e "ifOneSelected" if one of the variants in a variant set is selected.

o "ifAllSelected" if all of the variants in a variant set is selected.

e "ifSelected" if some of the variants in a variant set is selected.
"excl:"is used when a set of variants needed not to be selected. The composition seg-

ment tagged with Variability Attachment is added to the composition if the selections

are realized.

VariabilityAttachment:

"#yp" vp += [VarPoint]

103

("1fOneSelected (" | "ifAllSelected ("™ | "ifSelected (")

(vs += [Variant])+

(";excl:" (vsexc += [Variant])+)? ")"
(("and" | "Or") sz _I_: ID
("1fOneSelected (" | "ifAllSelected("]| "ifSelected (")

(vs2 += [Variant])+
(";excl:" (vsexc2 += [Variant])+)?2 ")")=*

"#"

Table 3.14: Variability Attachment Syntax

1 vp <vpname> <condition> (<varname_1> <varname_2>
<varname_n>) Composite or Atomic Interaction

The syntax of variability attachment is presented in Table [3.14] where <condition>
can be one of among “ifOneSelected”, “ifAllSelected” and “ifSelected”, designating
the selection condition of variants. <varname_1> <varname_2> ... <varname_n> is a

set of variants of <vpname>.

Table 3.15: Variability Attachment Example

1| vp i_auth_type ifOneSelected(fingerprint fingervein iris)
Interactionl

2 vp i_auth_mode ifSelected (mode_online) Interaction?2

3 vp i_auth_mode ifAllSelected (mode_online model_offline)

Interaction3

In Table [3.15] when at least one of the authentication types; fingerprint, fingervein
and iris is selected, then Interactionl resides in the composition (line 1). If authen-

tication mode is online, then Interaction2 is taking part in the flow (line 2). Only if

104

online and offline modes are selected at the same time, Interaction3 will be in the

composition (line 3).

MethodsWithDefinedServices is a set of functions (Function) with related services

separated by comma.

MethodsWithDefinedServices:

"service:" s = [Servicelnterface]

", funct:" funct = [Function] ("," functs += [Function]) *
("; service:" s2 += [ServicelInterface]

", funct:" funct2 += [Function]

("," functs2 += [Function]))

.
14

MethodsWithoutDefinedServices is a set of functions of its own separated by comma.

MethodsWithoutDefinedServices:

funct = [Function] ("," functs += [Function]) *

14

3.4.2 XChor Models

XChor Language facilitates to create three different models which covers different
parts of the metamodel; configuration interface, choreography, service and choreog-
raphy interfaces. The coverage of three model is depicted in Figure [3.4] The basic
elements of XChor under three model to cope with variability in choreography is

shown in the following subsections.

3.4.2.1 Configuration Interface

Configuration interface model covers service and choreography variability specifica-
tions internally and externally to depict possible abilities, to configure others and to be

configured by others. To depict possible abilities, a choreography can specify internal,

105

external and configuration variation points, whereas services can only depict external
variation points. The external ones are used to be configured by choreographies and
services. Capabilities to configure its own interface or other services’ interfaces as ac-
tivating/deactivating and setting/unsetting parameters are also specified in this model.

Numerical or logical constraints among variability specifications are included.

In Table [3.16] Table and Table [3.18]different user authentication types such
as biometric authentication, supported authentication modes (online and/or offline),
transaction types (real or fake transaction) are the system’s behaviors that need to
be configured differently. Each is treated as variability in configuration interface of

adaptive security system choreography.

To enable authentication variability, both types of authentication and parameters used
in encryption function are changed with regard to the usage of biometrics or not.
For this purpose, an external configuration variation point named as ‘“‘authentica-
tion_type” and two internal variation points “i_auth_type” and “i_encryption_parame
ters” are defined. Binding of “authentication_type” configures consistent bindings of

“i_auth_type” and “i_encryption_parameters”.

In Table [3.16] “i_auth_type” is specified with “internal VP” keyword (line 5). “user-
name_passw’ 1s a mandatory variant, whereas “onetimepassw’ (line 9) and “esign”
(line 10) are optional. At least one and at most two variants can be selected among
the following alternatives: "fingerprint” (line 12), “fingervein” (line 13), “iris” (line

14), and “face” (line 15). The binding time of this variation point is runtime (line 17).

In Table [3.17, “authentication_type” is specified as external (line 8). The varia-
tion point has two optional variants specified (lines 11-12); “userinfo” and “biomet-
rics”. “userinfo” variant is realized (line 15) by selection of “defaultparams” variant
of “i_encryption_parameters” variation point. For realization of “biometrics” variant
two variation bindings should be done simultaneously. Minimum one variant among
“fingerprint fingervein iris face” set should be selected from “i_auth_type” variation
point (line 17) and “setparams” variant of “i_encryption_parameters” variation point
(line 18) should be bound. Default variant of the “authentication_type” configuration

variation point is “userinfo” (line 8). Configuration type is parametrization and it is

bound at development time represented as “devtime” (line 21).

106

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

Table 3.16: Configuration Interface of adaptive security system

Configuration interface vconf_adaptablesecuritysystem of
choreography adaptablesecuritysystem

// determines number of different biometric authentication
types
@composition
internalVP i_auth_type:
mandatory
variant username_passw
optional
variant onetimepassw
variant esign
alternative
variant fingerprint
variant fingervein
variant iris
variant face
(min:1 ,max:2)
bindingTime runtime

// determines authentication mode
@composition
internalVP 1i_auth_mode:
alternative
variant mode_online:activateMethods (service: thirdparty ,
funct: getconnection ,savehasheddata , verify)
variant mode_offline :activateMethods (service:storage ,
funct: gethasheddata)
(min:1 ,max:1)
bindingTime devtime

// determines transaction type
@composition
internalVP i_transaction_type:
optional
variant realtransaction
variant faketransaction
bindingTime devtime

107

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

Table 3.17: Configuration Interface of adaptive security system-contd’

internal VP i_encryption_parameters:
alternative
variant defaultparams
variant setparams
(min:1 ,max:1)
bindingTime runtime

configuration authentication_type:
varType externalVP
optional
variant userinfo
variant biometrics

realization "it is realized by i_encryption_parameters

and i_auth_type variability points"
confvariant userinfo mapping
VPName i_encryption_parameters selectedVariants (
defaultparams)
confvariant biometrics mapping
VPName i_auth_type selectedVariants(fingerprint
fingervein iris face; min:1, max:1)
VPName i_encryption_parameters selectedVariants(
setparams)
defaultVariant userinfo
type parameterization
bindingTime devtime

configuration authentication_mode:
varType externalVP
alternative
variant online
variant offline
(min:1 ,max:1)
realization "it is realized by i_auth_mode and i

_encryption_parameters variability points, setting

params for sessionkey"
confvariant online mapping
VPName i_auth_mode selectedVariants (mode_online)
VPName i_encryption_parameters selectedVariants (
setparams)
confvariant offline mapping
VPName i_auth_mode selectedVariants (mode_offline)
defaultVariant offline
type parameterization
bindingTime devtime

108

Table 3.18: Configuration Interface of adaptive security system-contd’

1 configuration fake_transaction_enabling:

2 varType externalVP

3 optional

4 variant fake trans

5 variant real trans

6 realization "it is realized by i_transaction_type
variability point"

7 confvariant fake_trans mapping

8 VPName i_transaction_type selectedVariants(

faketransaction)
9 confvariant real_trans mapping
10 VPName i_transaction_type selectedVariants(

realtransaction)
1 defaultVariant fake_trans

12 type addition

13 bindingTime devtime

14

15 Constraints

16 i_auth_type face requires i_auth_mode selectedVariants
(mode_online)

17 i_auth_mode mode_online const protocol="https"

18 i_auth_type esign const i_encryption_parameters
defaultparams=valueOf{username_passw esign}

19 i_auth_type esign const i_encryption_parameters Mobile

=valueOf{Mobile PC}
20
21 Parameter Settings

2 parameter noofbiometricauthtypeselected =
#ofVariantsSelected{fingerprint fingervein iris face}
Of i_auth_type

23 parameter defaultparams = value (username_passw,
onetimepassw ,esign)

24 parameter fakeinterface existswhenselected{i_transaction
_type.faketransaction}

Any variant can activate required functions in service and choreography interfaces.
“i_auth_m ode”, internal variation point (line 21) is responsible for activation of dif-
ferent functions of storage and thirdparty services when its related variants are se-

lected. For instance, “mode_onli ne” variant activates “getconnection, savehashed-

109

data, verify” functions of thirdparty service when selected (line 23).

In Table Constraints part includes a logical constraint (line 16), stating that
"face" variant of “i_auth_type” variation point requires “mode_onli ne” variant of
“i_auth_mode” variation point to be selected. In lines 17-18 numerical constraints are
presented in one of which “mode_online” variant of “i_auth_mode” variation point

constraints the “protocol” property to be set to “https”.

Moreover, any variability in choreography configuration interface that affects context
elements in choreography can be defined in Parameter Settings part. Their values are
set when the choreography is configured. For instance, “noofbiometricauthtypese-
lected” in Table (line 22) identifies the number of times for extracting features

from biometric data. Its value is assigned when variants of “i_auth_type” are selected.

Table 3.19: Configuration Interface of comparison orchestration

i1 | Configuration interface vconf_comparison of service
comparison

2 @vconfservice

3 vp analysis:

4 optional

5 variant fake :activateMethods(fakeanalysis ,compare)

6 variant real:activateMethods (compare)

7 bindingTime devtime

An example for configuration interface of comparison orchestration is listed in Table
[3.19] where analysis in comparison of the user credentials varies as fake and/or real.
Fake analysis enables system to enact the alarm state whenever a user uses his/her
alarm finger being under threat. Real analysis neglects this type of alarm states; ba-
sically compares coming data with existing user credentials. In order to represent
this kind of variability, a variation point (line 2) is defined with fake (line 5) and real
(line 6) variants. Fake variant activates fakeanalysis and compare methods residing
in comparison service interface and real variant only activates the compare method.
When a method is activated, this method is included in the service interface. In other

words, activation is used for configuring service interfaces, deciding which methods

110

and related parameters should take place.

3.4.2.2 Choreography

Choreography model includes composition constructs with variability attachments,
context elements and variability mappings between interacting services and chore-
ographies. Basic fault handling mechanism is supported by choreography. For this
purpose, different types of faults are specified and generated. Predetermined fault
types are delivery, parameter, notready, waittimeout, insufficientmessage, notavali-

able and termination with condition.

As presented in Table [3.20] Table [3.21] Table [3.22] and Table [3.23] adaptable
security system choreography firstly imports its configuration interface. This is used
to relate its external and internal variability with composition variability and to map
it to utilized service variability. Then interacting choreographies and services are
imported with or without their configuration interfaces. This provides an opportunity
to utilize services with different configuration interfaces, that is with different service

interfaces.

Variables defined within Context Elements take part with their default values in com-
position and are shared within the choreography. For instance, in Table [3.20] “noof-
biometricauthtypeselected” (line 23) is a referred variable, and its value is set in the
configuration interface. “wrongattempts” is newly specified in here to store the num-

ber of wrong attempts to limit verification trials.

Adaptable security system choreography maps its internal variation points and related
variants to those of utilized services’ in order to configure service variability. The
mapping between lines 32-34 ensures that when “i_encryption_parameters” variation
point is bound to one of its variants, “encryption_params” variation point of encryp-

tion service is bound accordingly to provide a consistent interaction.

Adaptable security system choreography carries out “verify” (line 15) in Table [3.21]
and "enroll" (line 28) in Table [3.22]functionalities comprising a set of interactions.
Atomic and composite interactions are tagged with variability attachments when vari-

ability in that part of the composition is needed.

111

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

Table 3.20: Adaptable security system choreography

choreography adaptablesecuritysystem

import configuration vconf_adaptablesecuritysystem

use choreography chor_alert
use choreography chor_credentialmng
import service connection

import service encryption with configuration vconf

_encryption
import service credentials
import service attemptcalc

import service comparison with configuration vconf

_comparison
import service responsewindow

import service interfaceprep with configuration vm

_interfaceprep

import service thirdparty with configuration vm_thirdparty

import service user
import service warning

// Shared variables

Context Elements
//user s wrong attempts
wrongattempts 0
// fake interface content enabling
fakeinterface false
// biometric selected authentication

specifies the number

noofbiometricauthtypeselected 0
// defualt parameters for encryption
defaultparams "username_passw"
//user entered credential data

nn

usernamepass

variants

// extracted features of user biometric data

nn

processeddata

Choreography Variability Mapping

VP i_encryption_parameters maps service encryption VP

encryption_params
Variant defaultparams maps Variant

withdefaultparams

Variant setparams maps Variant withparams

VP i_transaction_type maps service comparison VP analysis

Variant faketransaction maps Variant fake

Variant realtransaction maps Variant real

112

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

Table 3.21: Adaptable security system choreography-cont’d

VP i_auth_type maps service thirdparty VP user_device
Variant username_passw maps Variant ATM Mobile PDA PC
Variant onetimepassw maps Variant ATM Mobile PDA PC
Variant esign maps Variant ATM Mobile PDA PC
Variant fingerprint maps Variant PC
Variant fingervein maps Variant PC
Variant iris maps Variant PC
Variant face maps Variant PC

VP i_auth_type maps choreography credentialmng VP

devicecon

Variant fingerprint maps Variant biometricdevice
Variant fingervein maps Variant biometricdevice
Variant iris maps Variant biometricdevice
Variant face maps Variant biometricdevice

Function verify:
sequence (

#vp i_auth_type ifOneSelected(fingerprint fingervein
iris face) # repeat noofbiometricauthtypeselected
times (

user send{chor_credentialmng} message getcredentials (
deviceparameter)

Jocomp processeddata =chor_credentialmng.
getcredentials%

chor_credentialmng send{encryption} message setparams (
parameters)

#vp i_auth_mode ifSelected (mode_online)# sequence (
thirdparty receive message getconnection ()
thirdparty send{encryption} message setparams (

parameters)

)

user send{chor_credentialmng} message getcredentials (

deviceparameter)

%comp usernamepass =chor_credentialmng. getcredentials%

chor_credentialmng send{encryption} message setparams (

parameters)

encryption receive message encrypt(credentials)

#vp i_auth_mode ifSelected (mode_online)# sequence (
encryption send{thirdparty} message verify(data)
#vp i_transaction_type ifSelected (faketransaction)#
thirdparty send{comparison} message fakeanalysis
(comparisonresult)

113

21

22

23

24

25

26

27

28

29

30

31

Table 3.22: Adaptable security system choreography-cont’d

J%comp fakeinterface=comparison.fakeanalysis%
)
#vp i_auth_mode ifSelected (mode_offline)# sequence (
encryption send{storage} message gethasheddata ()
referedDestinations (comparison)
#vp i_transaction_type ifSelected (faketransaction)#
storage send{comparison} message fakeanalysis ()

guard (fakeinterface==false) sequence (
comparison sendf{attemptcalc} message calculate_wrong
_attempts(result)
J%comp wrongattempts=attemptcalc.calculate_wrong
_attempts%
guard (wrongattempts == 3) parallel (
comparison send{responsewindow} message show ()
attemptcalc send{connection} message closeconnection
0
)
guard (wrongattempts 3) parallel (
comparison send{responsewindow} message show ()
attemptcalc send{warning} message warn(response
_warning)

)

guard (fakeinterface==true) #vp i_transaction_type
ifSelected (faketransaction)#parallel (
sequence (
comparison send{interfaceprep} message
prepareinterface ()
interfaceprep send{responsewindow} message show ()

)

comparison send{chor_alert} message alert ()

)

Function enroll:
sequence (
user send{chor_credentialmng} message getcredentials (
deviceparameter)
Y%comp usernamepass =chor_credentialmng. getcredentials%

114

Table 3.23: Adaptable security system choreography-cont’d

1 chor_credentialmng send{encryption} message setparams (
parameters)

2 #vp i_auth_type ifOneSelected(fingerprint fingervein
iris face)# repeat noofbiometricauthtypeselected

times (
3 user send {chor_credentialmng} message
getcredentials (deviceparameter)
4 Jocomp processeddata =chor_credentialmng.
getcredentials%
5 chor_credentialmng send{encryption} message
setparams (parameters)
6)
7 encryption receive message encrypt(credentials)
8 #vp i_auth_mode ifSelected (mode_online)# encryption send
{thirdparty} message savehasheddata(hasheddata)
9 #vp i_auth_mode ifSelected (mode_offline)# encryption
send{storage} message sethasheddata(hasheddata)
10 interfaceprep send{responsewindow} message show ()
11)

The lines 17-21, 23-26 and 32-34 in Table [3.21] lines 3-6 in Table [3.22]and lines 2-
6,8, 9 in Table include attachments referring to specified variation declarations
in the configuration interface of the adaptable security system choreography. For
instance, “# vp i_auth_mode ifSelected(mode_online)” to indicate the point which

composition can change (line 64).

3.4.2.3 Service and Choreography Interface

Service and choreography interface model comprises only interface specifications
without variability. Each choreography and service has its own interface including all
possible functionalities to be configured by configuration interfaces. In Table [3.24]
encryption service interface is shown with its exposed functionality as “encrypt” (line
3), and “setparams” (line 9) with pre-post conditions, input and outputs. Other ser-

vices and choreographies can collaborate with it using “encryption” port (line 14).

115

Table 3.24: Encryption Service Interface

1 | Service interface encryption

2

3 function encrypt

4 precondition (sessioncreated == true)
5 postcondition (data_encrypted == true)
6 input(credentials)

7 output hasheddata

8

9 function setparams

10 precondition (params_required == true)
1 postcondition (set_params == true)

12 input(parameters)

13

14 portName encryption binding hostname:8082

In Table [3.25] adaptable security system choreography interface named as “chor_adap
tablesecuritysystem” declares its functionalities “verify” and "enroll" with pre-post
conditions, and input and output parameters. Different from service interfaces, it

explicitly states required choreographies with a list of functions.

3.5 Tool Support for XChor

Xtext is used to implement XChor Language which provides a development envi-
ronment for domain specific languages to developers with Eclipse IDE integration.
XChor files created from three models are: (i) choreography interface, (ii) service in-
terface, (iii) configuration interface for choreography, (iv) configuration interface for
service, and (v) choreography specification. These files are categorized under con-
figuration, services, and choreographies packages respectively in order to increase

understandability.

Choreography, orchestration and atomic services are specified with variability speci-
fications in Xtext. Binding variability and revealing a consistent collaboration require

analysis of variability specifications. This analysis requires considering constraints,

116

choreography and service configurations with regard to variation selections. For this

purpose, XChorsS tool is developed

e to analyze variability relations which reveal configuration effects on orchestra-
tion and service interfaces,

e to configure choreographies, services regarding variant selections, and

e to output configured XChor files in a specified destination folder.

Table 3.25: Adaptable Security System Choreography Interface

1 | Choreography interface chor_adaptablesecuritysystem of
adaptablesecuritysystem

2

3 function verify

4 precondition (authentication_mode_selected == true)

5 postcondition (verification_result_set == true)

6 input (user_info)

7 output response

8

9 function enroll

10 output enrollmentnotification

11

12 portName verifyuser binding hostname:8082

13

14 required interfaces

15 from chor_credentialmng function { getcredentials }

16 from chor_alert function { alert }

Consequently, service architecture can be reused in constituting related orchestra-
tions and services, such a reuse may be beneficial for different stakeholders, needs,
and choreographies. XChorS tool employs parsing, dependency analysis, and config-

uration phases.

Parsing Phase In this phase all XChor files are parsed in order to be analyzed and

configured afterwards. Parsed files are configuration interfaces of service and

117

choreographies, service interfaces, choreography interfaces and choreography

specifications.

Analysis Phase This phase starts after variation bindings specified by tool users.
Some analysis is done before configuration of files with regard to variation

bindings. All selected variation points are stored in a list.

e Missing Variation Point Bindings: All development time variability of
services are bound according to direct user selections or variability bind-
ings coming from choreography variability mappings. Therefore, whether
all required variation bindings are specified by tool users or not is ana-
lyzed with regard to variability of services and variability mappings de-
fined in the choreography specification. The tool first tries to find proper
variants, such as selection of variants among alternative ones. However,
if the tool can not find a proper binding, it warns and asks for missing
bindings.

e Additional Variation Point Bindings: Configuration Variation Points
(CVP) facilitate a high level understanding for configuration purposes
while hiding details of how low level bindings are done. In other words,
realization of each CVP is described by a set of variation points and vari-
ant selections. For this reason, after all CVP’s and their realization in-
formation are picked, required variation bindings realizing the selected
variant for each CVP are added to the proper variation binding list. If
variant selection of a CVP is not bound, then default variant is assumed to
be selected and related required variation point bindings are done. How-
ever, if there are additional variation point bindings which should be done

by tool users, then tool asks for these selections.

e Constraints: All constraints VP to VP or VP to V defined within chore-
ographies are analyzed and checked whether these are satisfied by the

bound variation. If they are not satisfied, the tool warns the user.

¢ Binding Time Consistency: All selected variation point binding times
are gathered and checked whether the variation points can be bound in
development/design time. If they are not bound in design time, the tool

warns user about the inconsistency of binding times. Moreover, in CVP

118

binding case, realization of a CVP needs other VP bindings. Therefore,
binding times of additional variation points which realize the selected

variant of CVP should be analyzed and checked also.

¢ Existence of Redundant Variation Points: The variation point specifi-
cations which do not take part in realization of a CVP or does not reside
in composition variation are analyzed, revealed and then shown to tool

users.

Configuration Phase This phase is applied after analysis, after being sure all re-
quired VPs and variants are selected. All choreography, orchestration and

atomic services are configured with regard to user variation point selections.

e Proper VP Bindings: Bindings of VPs to its variants are revealed.

e Parameter Settings: Existence or values of parameters, which are uti-
lized within choreography, depend on selected VP bindings. The decision
whether the parameter takes part in the composition is made with regard to

VP bindings or the value of each is assigned after analyzing the binding.

e Configuration of Service and Choreography Interfaces: Interfaces of
service and choreography can be tailored by configuration interfaces. Func-
tions and related parameters are added or removed from interfaces accord-
ing to VP bindings. For this reason, the configurations resulted from VP
bindings are revealed and the changes are applied to interfaces. Then a set

of configured interfaces are the outputs.

e Composition Variation Bindings: Choreography composition is formed
according to VP bindings, the parts which are guarded by VPs are added
if the variants are selected. All resolved VP information is removed from

composition.

The analysis phase shows which variation points are related with which services and
service functions. It helps in the configuration phase to determine which services

interact with each other and which functions reside in their interfaces.

119

=4 Rpoy 4
10u7 ¥ pranSyuny

swaqmd umpaEs
JUE BM XELI-LIW
LOpaES
dapaanbay,
10113

[o0] SJoUIX

sPpow 2ndYyua]
o,
SIEHR M =l En._mhwn_w._n_.ﬂ
FOUMES pUE pUE 303 g
SydeiSnaaoygy T
Y
¥
uopsalEg
([ipeuaud uonenSyuny e
fjnges=0on g o uomdwoy & e
_/ upeanSyuny S SAyderSnaioyy _ue“_h__u__.__m_w._wmh_;
[=DUI1E5UDL|
4 swi] Supuig
Suyeg
JFRWELEY % sishjeuy-ald SPPON asieg
waishg
suing A
uoiElE s
JUBpUNpaY
—_— \\/
iPRHOgY ¢ ‘ - - Supay)
\m:u_«m._:mz:uu “_ = S, ._n_.:wh_._m.__ ~ ¢ WIB11EU0]
\\ ////\ L
HECET
awWi) Supuig
F Y
h
.._ uonesndung ,._
LT RRLTEr __
| SUIWE it |
uoHEUEA, ___ L ___ AydesSoainyy \h
AFRERENE | / sIPOW JoyIx
4 i —

Figure 3.11: XChor Tool Execution Flow.

According to variation selections, the tool (i) configures interfaces by enabling and

120

disabling its functions and parameters, (ii) prepares choreography compositions and
abstract process definitions of orchestration by examining whether the parts with vari-
ation attachments are included. Finally, the tool outputs configured choreography and
related services and configuration interfaces if there are variation points that will be

bound at runtime.

The flow diagram for representing execution of XChor Tool is presented in Figure
B.T1] After parsing XChor models, warnings can be generated if there are binding in-
consistencies between related variation points. These inconsistencies can arise from
variation associations or variability mappings specified in choreography. Moreover,
if any redundant variation point specified in configuration interfaces which does not
take part in configuration variation point or is not referenced inside composition , a
warning is shown to user including variation point information. After checking con-
straints and analyzing required variation point bindings, the tool can generate errors
indicating additional variation point bindings or problems with minimum/maximum

variant selections.

Adaptable security system choreography has been depicted in Table before vari-
ation binding. Table [3.26|and Table shows configured choreography after selec-
tion of (i) "onetimepassw","fin gervein" and "face" variants of "i_auth_type" variation

point and (i1) "biometrics" variant of "authentication_type" variation point.

The tool includes three main blocks of functionality: Parse, Pre-analysis and Con-
figuration. Algorithmic Complexities of Parse, Pre-analysis and Configuration are
presented in Table [3.28] in Table [3.29]and in Table [3.30]respectively where "No of"
stands for "Number of", "Fs" is "Files", "VP" represents "Variation Points", "VA" in-
dicates "Variation Associations", "Consts" is "Constraints", "PS" stands for "Parame-
ter Settings", "Ints" is "Interactions", "Invs" indicates "Invariants", "Funcs" represents
"Functions", "UC" is "Used Choreographies", "CE" stands for "Context Elements",
"VM" represents "Variation Mappings", "CI" is "Configuration Interfaces", "Servs"
stands for "Services", "Chor" represents "Choreography", "Chors" indicates "Chore-

ographies", and "CS" is "Choreography Specification".

121

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

Table 3.26: Configured adaptable security system choreography

choreography adaptablesecuritysystem

use choreography chor_alert

use choreography chor_credentialmng

import
import
import
import
import
import
import
import
import
import

service
service
service
service
service
service
service
service
service
service

connection
encryption
credentials
attemptcalc
comparison
responsewindow
interfaceprep
thirdparty
user

warning

Context Elements

wrongattempts 0
noofbiometricauthtypeselected 2

nn

usernamepass

nn

processeddata

Function verify:
sequence (
repeat noofbiometricauthtypeselected times(
user send{chor_credentialmng} message getcredentials(
deviceparameter)
Y%comp processeddata =chor_credentialmng.
getcredentials %
chor_credentialmng send{encryption} message setparams (
parameters)

sequence (
thirdparty receive message getconnection ()
thirdparty send{encryption} message setparams (
parameters)

user send{chor_credentialmng} message
getcredentials (deviceparameter)
Y%comp usernamepass =chor_credentialmng. getcredentials%
chor_credentialmng send{encryption} message setparams (
parameters)
encryption receive message encrypt(credentials)

122

20

21

22

23

24

25

26

27

28

29

30

Table 3.27: Configured adaptable security system choreography-cont’d

encryption send{thirdparty} message verify(data)

sequence (

comparison sendf{attemptcalc} message calculate_wrong
_attempts(result)

Ycomp wrongattempts=attemptcalc.calculate_wrong
_attempts%

guard (wrongattempts == 3) parallel (
comparison send{responsewindow} message show ()
attemptcalc send{connection} message closeconnection

0
)
guard (wrongattempts 3) parallel (
comparison send{responsewindow} message show ()
attemptcalc send{warning} message warn(response
_warning)

Function enroll:
sequence (
user send{chor_credentialmng} message getcredentials (
deviceparameter)
%comp usernamepass =chor_credentialmng. getcredentials%
chor_credentialmng send{encryption} message setparams (
parameters)
repeat noofbiometricauthtypeselected times(
user send {chor_credentialmng} message
getcredentials (deviceparameter)
%%comp processeddata =chor_credentialmng.
getcredentials%
chor_credentialmng send{encryption} message
setparams (parameters)
)
encryption receive message encrypt(credentials)
encryption send{thirdparty} message savehasheddata (
hasheddata)
interfaceprep send{responsewindow} message show ()

123

Table 3.28: Algorithmic Complexity of Parsing XChor Models

Pseudo-code ‘ Complexity
FOR file IN XChor_file_directory: 1
read_file_content () n (No of Fs)
IF file is configuration_interface: 1
FOR variation_point IN variation_point_list: m (No of VP
parse_variation_point() 1
IF variation_association in variation_point: k (No of VA)
parse_variation_association() 1
FOR constraint IN constraints: 1 (No of Consts)
parse_constraint() 1
FOR parameter_setting IN parameter_settings: p (No of PS)
parse_parameter_setting() 1
IF abstract_process_definition EXISTS: 1
parse_abstract_process_definition() r (No of Ints)
IF file IS service_interface OR choreography_interface: | 1

FOR invariant IN invariants:
parse_invariant()

FOR function IN functions:
parse_precondition()
parse_postcondition()
parse_input()
parse_output()

FOR port IN ports:
parse_port()

IF file IS choreography_specification:

FOR choreography IN used_choreographies:
parse_choreography()

FOR service IN imported_services:
parse_service()

FOR context_element IN context_elements:
parse_context_element()

FOR variability_mapping IN variability_mappings:

parse_variability_mapping()
FOR function IN functions:
FOR interaction IN function:
parse_interaction()
FOR variability_attachment IN function:
parse_variability_attachment()

s (No of Invs)
1

t (No of Funcs)
1

1

1

1

u (No of ports)
1

1

v (No of UC)

1

y (No of IS)

1

z (No of CE)

1

a (No of VM)
1

b (No of Funcs)
¢ (No of Ints)
1

d (No of VA)

1

124

Table 3.29: Algorithmic Complexity of Pre-analysis of XChor Models

Pseudo-code ‘ Complexity
FOR file IN parsed_files: n (No of Fs)
IF file IS choreography: 1

Variability_mappings = get_variability_mappings () | 1
FOR variability_mapping IN variability_mappings: | a (No of VM)

analyze_binding_time_consistency() 1
get_configuration_interface_of_choreography() 1
FOR variation_point in variation_points: m (No of VP)
is_taking_participation_in_composition() 1
is_taking_participation_in_configuration() 1

The complexity of pre-analysis functionality is calculated as follows:

O(PreAn) = n(l+l+a+1+2m)

= O(nm + na)

Pre-analysis complexity directly relates with the product of number of XChor models,

variation points and their associations and increases expeditiously.

The complexity of parse functionality is calculated as follows:

O(Parse)= (n+1l)+ (1l+m(k+2)+1l+p+r)+ (1l+s+4t+u)

+(1+v+y+z+b (c(d+1)))

O (n+mk+p+r+s+t+u+v+y+z+bcd)

O(n + mk + bc)

Parsing complexity increases with number of XChor models (n), the number of vari-
ation points (m) along with their associations (v), number of choreography functions

and interactions within functions.

The complexity of configuration functionality is calculated as follows:

O(Conf) = e(m+3+a+3+1+3+f+a+gth+i)
= O(e (mtat+l+f+at+g+h+i))

= O(e(m+f+g+i))

125

Table 3.30: Algorithmic Complexity of Configuration of XChor Models

Pseudo-code Complexity
FOR choreography IN files: e (No of Chors)
error = gather_all_required_vp_bindings() m (No of VP)
IF error EXISTS: 1
show_error() 1
stop_configuration() 1
error = binding_time_analysis (user_variation_selections) a (No of VM)
IF error EXISTS: 1
show_error() 1
stop_configuration() 1
error = check_constraints((user_variation_selections)) 1 (No of Consts)
IF error EXISTS: 1
show_error() 1
stop_configuration() 1
configure_choreography_configuration_interface(user_variation_selections) | f (No of VP in CI)
variability_mappings = get_variability_mapping() a (No of VM)
prepare_service_interfaces(variability_mappings) g (No of Servs in Chor)
prepare_service_interfaces(variability_mappings) h (No of CI of Servs)
prepare_choreography_composition(user_variation_selections) 1 (No of Ints in CS)

126

Configuration complexity is dependent on the product of number of choreographies
and the sum of variation points, interacting services and interactions within choreog-

raphy specification and increases mercurially.

3.6 Application Development with XChor

To develop such variable service compositions by means of one or more choreogra-
phies and interacting services, top-down, bottom-up or both of these strategies can be

applied.

Top-down development First choreography capabilities as choreography interface
and its variability are determined in its configuration interface. Then, during
choreography specification collaborating services and their functionality and
possible service variability are specified. With these decisions, the service inter-
face with its possible functionalities without variability is created. If a service
provides variability, then its configuration interface is prepared. Afterwards,
the newly created service is included by means of importing its interface with
or without its configuration interface. If choreography variability bindings af-
fect newly created service variability bindings, a variability mapping is added
into the choreography specification. Required context variables are identified
which are used for changing parts of choreography composition. The addition
and change in choreography specification and services are done until reaching
intended service-oriented application. Then the system is ready to be analyzed

and configured by the user via XChorS tool.

Bottom-up development Contrary to top-down development, first possible service
interfaces are created with their functionality. If required, their variations are
specified in their own configuration interfaces. One or more choreography in-
terfaces with possible functionalities are created. Then, with the help of defined
services, choreography specifications are filled with service interactions along
with required variability mappings. Shared information stored in context vari-
ables is defined for serving service interaction flow. Choreography functionali-

ties that can be altered as service interactions are defined. By this way, as new

127

choreographies are defined, they are ready to be used by other choreographies
specified beforehand. This addition and alteration process continues until the
intended functionalities of choreography specification are achieved. Then, the

system is ready to be analyzed and configured by user via the XChorsS tool.

The two approaches can be used simultaneously as a hybrid approach. With regard
to variability association specification, each service and choreography can change its
interface with specified variants with the constructs activatemethods and setParame-
ters defined in their configuration interfaces. Only variants can alter interface func-
tions and parameters. However, only a choreography can change a service’s interface
which interacts with other services in the context of this choreography. Services are

not allowed to change other service’s interfaces.

In service and choreography interfaces, pre and post conditions can be defined but not
analyzed by XChorS at this moment. In fact, the metamodel forms a structure which

you can extend to be analyzed for these type of semantic information.

3.7 XChor Language Evaluation under Comparison Framework

XChor Language is evaluated according to the components of comparison framework
explained in Chapter [2] Section [2.4, The metamodel of XChor comprises variabil-
ity modeling, choreography modeling for service composition and mapping between

these models. Some properties of the XChor language are evaluated in Table [3.31]

Variability modeling part of XChor is evaluated with regard to the Variability Mod-
eling Component. Variability model of XChor enables to specify external and
internal variation points with mandatory, optional and alternative variants. Con-
figuration Variation Points are the structures where high level variation points
can be mapped to low level variation points. Configuration variation points
are not mapped to choreography composition, they are only used for abstract-
ing details of variation point bindings in order to increase understandability
and decrease complexity. Logical and numerical constraints are defined among

variation points and variants.

128

Choreography modeling part of XChor is evaluated with regard to Composition
and Configuration of Models Component. Choreography model of XChor fa-
cilitates the definition of service compositions as choreography specifications
with variability support in a composition. With use of XChor variability model,
choreography, orchestration and atomic services can define their own interface
variability in their configuration interfaces where existing function and related
parameters can be altered. By this way, choreography can associate its own
variability bindings to that of interacting service’s either specifying a one-to-
one mapping or altering service interface functions or parameters by enabling

and disabling.

XChorsS Tool is evaluated with regard to Tool Support Component. An eclipse plu-
gin Xtext enables to define XChor models depending on the XChor metamodel.
Pre-analysis, parsing and configuration of these models with regard to user
variability selections are supported by the XChorS Tool. After variability bind-
ings, BPEL4Chor and VXBPEL specifications can be generated from the XChor
models. Moreover, verification of variable XChor models is achieved by trans-

formation to fPromela language.

3.8 Validation of XChor

The metamodel of XChor brings together two parts: variability management and
choreography as service composition, each of which should be validated separately.
The capability of XChor to cover variability is validated and examined with character-
istics, types and needs of variability in service-oriented applications. The capability
of XChor to realize recurring service interactions are validated with patterns defined

in the context of service-orientation.

3.8.1 Modeling Service Variability through XChor Language

There have been approaches for modelling and managing variability within service-

oriented [133} 80, 100, [106] and service-oriented software product line[25} 47, [78,

129

Table 3.31: XChor Evaluation under Components of the Comparison Framework

Approach Types of Constraints Ext. and Int. Realization Design Artifact
VP and V Rep. of VP Relation
XChor Optional, Logical and Ext. and Int. Conf. VP Mapping to Orchestration
Mandatory, = Numerical VP Choreography, and
Alternative Constraints Atomic Services
Language Composition Modeling Variability Variability In Variability
Approach Approach Support Interface Connector Composition Association
XChor Choreography Interaction Yes Yes None Yes Yes
Approach Specification Analysis Verification Code Configuration Tool
Generation
XChor Yes Yes Yes Yes Yes XChorS

and Xtext

130

114] contexts. Among them, [100] is a comprehensive study covering types, char-
acteristics and needs of service variability in detail and presenting a review of works

and challenges in variability management in service-oriented systems.

The study categorizes services into two groups; atomic and composite services. Our
notion of service also covers atomic services and composite services realized as or-
chestration and choreography. According to the study, there are four kinds of vari-
ability that should be addressed to model variability completely: exposed variability,

composition variability, partner variability and partner exposed variability.

X Chor metamodel facilitates definition, organization, relation and binding of variabil-
ity in service interfaces and compositions in choreography level. In our context, ser-
vice covers choreography, orchestration and atomic service concepts. The realization

of each type in XChor language is explained in detail in the following subsections.

3.8.1.1 Exposed variability

The variability revealed in a composite service’s interface is the exposed variability.
In our context, services have two types of interfaces: (1) Service interface without
variability which includes all possible functionalities and (2) configuration interfaces
of the service which covers variability aspects. Therefore, exposed variability of com-
posite services (orchestration and choreography) is included in their configuration

interfaces in XChor language.

To represent variability explicitly in configuration interfaces in XChor, internal, exter-
nal, configuration variation points and constraints among them are specified. Internal
variation point is invisible to outer context, namely service users so as to describe
variability with a set of variants and specified binding time. External variation point
is explicit to users of the service in order to be referenced, utilized and configured
with a set of variants and specified binding time. Internal and external variation point
syntax is the same except their type indication, that is either internal or external. The
syntax and examples for variation point specifications are given in Table [3.2] Logical
or numerical constraints among variation points can be represented in configuration

interfaces whose syntaxes and examples are given in Table and Table [3.6]

131

Configuration interface as a whole facilitates the representation of exposed variability
for choreography, orchestration and atomic services, whose examples are given in

Table 3.19and Table B3.16l

3.8.1.2 Composition variability

Composition variability refers to variability specified in behavior, the way services
are interacted with each other. In XChor scope, variability in composition is specified
in choreography specification where a set of choreography functionality is defined.
Variable parts of composition are tagged with variability attachment which enacts
the parts surrounded with it when referred variants of a variation point are selected.
In other words, the parts of composition can participate in the composition when

specified conditions are met in variability attachments, otherwise the parts cannot

Table 3.32: A part of adaptable security system choreography

1 | choreography adaptablesecuritysystem

4 Function verify:

5 sequence (

6 #vp i_auth_type ifOneSelected(fingerprint fingervein
iris face) # repeat noofbiometricauthtypeselected
times (

7 user send{chor_credentialmng} message getcredentials (

deviceparameter)

8 Jocomp processeddata =chor_credentialmng.
getcredentials%

9 chor_credentialmng send{encryption} message setparams (
parameters)

12 #vp i_auth_mode ifSelected (mode_online)# sequence (
13 thirdparty receive message getconnection ()
14 thirdparty send{encryption} message setparams (

parameters)

132

participate. Variability attachment syntax and an example are given in Table [3.14]and

Table [3.15

A part of adaptable security system choreography including two composition vari-
abilities in line 6-10 and line 12-15 are shown in Table [3.32] In the first variability,
whenever one of the variants among fingerprint, fingervein, iris or face is selected,
the "repeat" composite interaction is included in verify functions (line 6). As such,
if online authentication is selected, then the "sequence" composite interaction should

reside in the composition (line 12).

3.8.1.3 Partner variability

Partner variability includes its bound variability of the service within a composition
context. In the XChor scope, interacting services take part in composition with their
configuration interfaces. Therefore, services can join interactions with different con-
figuration interfaces, meaning with different variability. Variability of interacting ser-

vices playing role in a composition can be achieved in two ways:

1. Establishing association between choreography variability and interacting ser-
vice variability. This enables to describe which variation points and related
variants of choreography are related with those of the interacting service. It
facilitates the establishment of a direct association between the variant of the
variation point when selected, and the variant of the determined variation point.
In this way, the service can be configured with regard to choreography variation

binding. The way how to establish variability association is presented with its
syntax in Table and Table [3.13]

2. Establishing variability binding effect on a service interface while introducing
a new variant within a configuration interface. In configuration interfaces, a
variant can enable or disable functions of a service interface and can change
the parameters of functions accordingly. By this way, variants can configure
service interfaces with required consistency. This configuration occurs in a

choreography configuration interface to configure interacting service interfaces.

133

Table 3.33: Newly Specified Variability Binding Effect on Configuration Syntax and
Example

1 | variant <varname>:activateMethods (service :<servicename>, funct
:<function_1>,<function_2>,...)

2 :setParameter (toFunct:
<function>,parameter:

<params>)

XChor Language - Newly Specified Variability Binding Effect on Configura-
tion Syntax

1 |internalVP 1iauth mode:

2 optional

3 variant mode_online:activateMethods (service: thirdparty ,
funct: getconnection ,savehasheddata , verify)

4 variant mode_offline:activateMethods (service:storage ,
funct: gethasheddata)

5 bindingTime devtime

XChor Language - Newly Specified Variability Binding Effect on Configura-
tion Example

In Table [3.33] authentication mode internal variation point is defined within the
configuration interface of an adaptable security system choreography. When
authentication is done online, the "thirdparty" service needs to support getcon-
nection, savehasheddata and verify functions (line 3). If user is authenticated
offline, storage service should have the function gethasheddata in its interface
(line 4). With regard to authentication mode bindings "thirdparty" and "stor-

age" service interfaces are configured to provide consistency.

3.8.1.4 Partner exposed variability

Partner exposed variability defines the offered variability of a service to other services
which is strongly related with partner variability. In our context, all configuration in-

terfaces of a service interface provides all possible functional variations of the service.

134

3.8.2 Modeling Choreography through XChor Language

There have been categorizations with regard to interactions between services [33} 24,
96,168]. Among them, although informally described, Service Interaction Patterns[33]]
facilitates the assessment of choreography languages as a benchmark. The patterns
represent a collection of patterns describing bilateral, multilateral, competing, atomic
and causally related interactions. The patterns, revealing service functionality and
behavior, are pertaining to service composition, namely orchestration and choreog-
raphy. Service interactions define the collaboration among a number of interacting
services with regard to predefined rules. Interaction patterns are categorized under
four groups: Single-transmission bilateral, Single-transmission multilateral, multi-
transmission and routing. Each group comprises a set of patterns. These recurring
patterns are used to represent the fulfillment of XChor language constructs for service
interactions. Atomic and composite interactions of XChor are utilized for depicting

realization of the patterns described.

Realization of service interaction patterns are explained in detail as in the same way
in [33]]. The subtitles for each pattern (Pattern name, description, example, issues/de-
sign choices) are used as is. Solution subtitle is replaced by realization in XChor
language which describes the use of XChor to realize the corresponding pattern. Two
new subtitles: "graphical representation” and "explanation" are added. Graphical rep-
resentation is to depict the pattern with box and line drawing without addressing all

pattern details. Explanation is to describe the graphical representation.

3.8.2.1 Single-transmission bilateral interaction patterns

The first categorization is the single-transmission bilateral interaction patterns com-
prising send, receive, and send/receive which correspond to elementary interactions.

Detailed explanations of each are given with graphical representations.

Pattern 1: Send

Description A service sends a message to another service.

135

Example
A user credentials gathering service sends user credentials as parameters

to be encrypted to an encryption service.

Issues/design choices The send interaction pattern can be blocking or non-

blocking and can result in faults.

e In blocking send pattern, the source service waits for acknowledg-
ment from destination service and choreography does not progress
until the acknowledgment is received. In the non-blocking send pat-
tern, the source is only responsible for preparing and sending the mes-
sage. The distinction between blocking and non-blocking interaction
mode is determined at the level of the executable choreography lan-
guage.

e Faults can be originated from delivery problems or from destina-
tion side. Delivery fault occurs when the message is not delivered
to the destination service. Faults from the destination side are oc-
curred when an error arises in destination and should be directed to
the source service. For example, a purchase order sent to a supplier
may result in a fault message from the supplier because the customer

ID does not match the customer name.

Graphical Representation

funcionlparams J—|

Sardice_A Senice B

lf— adn owile dgemeant— —

Figure 3.12: Send Pattern.

Explanation
In Figure [3.8.2.1] service_A sends a message comprising the function
with parameters to Service_B. Acknowledgement is sent to Service_A
only in the blocking case. Faults can be resulted from delivery problems
or from destination side; however they are not depicted in this graphical

representation.

136

Realization in XChor Language

1. Basic send

<service_A> send{<service_ B>}

message <function> (<params>)

where

<service_A>: message sending service, source service
<service_B>: message receiving service, destination service
<function>: the name of function residing in service_B interface
<params>: a list of parameters separated by comma

Example

1 |credentials send encryption message encrypt(

credentialData)

2. Non-blocking send Same as basic send.
3. Blocking send
<service_A> send{<service_B>}
message <function> (<params>)

withNotification

where
withNotification keyword enables service_A to waits the acknowl-
edgement as notification.

Example

1 |credentials send encryption message encrypt(

credentialData) withNotification

4. Non-blocking send with fault

<service_A> send{<service_B>}
message <function> (<params>)

fault (<names>)

137

where
fault keyword enables to define a fault. <names> is a list of fault
names.

Example

1 | credentials send encryption message encrypt(

credentialData) fault (delivery)

5. Blocking send with fault

<service_A> send{<service_B>}
message <function> (<params>)
withNotification

fault (<names>)

where
fault keyword enables to define a fault. <names> is a list of fault
names.

Example

1 | credentials send encryption message encrypt(

credentialData) withNotification fault(delivery)

Pattern 2: Receive

Description A service receives a message from another service.

Example
An image retrieval service receives a message indicating that features of

biometric data are extracted.

Issues/design choices The send interaction pattern can be blocking or non-

blocking and can result in faults.

e The destination service may wait for an acknowledgment from a called

service.

e The destination service can be ready/not ready to consume the mes-

sage. A fault is generated if the destination service is not ready to

138

process the message and no queuing system is applied. Otherwise,
the message is appended to queue waiting to be processed after a

predefined time.

Graphical Representation

l——Funcion|params}

Sersice_A Service_B

- — — —fautt — — =

Figure 3.13: Receive Pattern.

Explanation

In Figure [3.8.2.1] Service_A receives a message comprising the function

with parameters. A fault can result from delivery problems or readiness

of the processing. Indication of the source service, Service_B is optional

for realizing blocking patterns.

Realization in XChor Language

1. Basic receive

<service_A> receive from {<service_B>}

message <function> (<params>)

where

<service_A>: message receiving service, destination service
<service_B>: message sending service, source service
<function>: the name of function residing in service_A interface
<params>: a list of parameters separated by comma

Example

imageretrieval receive message extract features (
biometric data)

comparison receive from storage message compare (data

)

139

2. Receive with fault

<service A> receive
message <function> (<params>)

fault (<names>)

where
fault keyword enables to define a fault. <names> is a list of fault
names.

Example

1 |imageretrieval receive message extract features (

biometric data) fault (notready)

Pattern 3: Send/Receive

Description A service can send a message to another service then receives the
response message or receives a message from another service and sends a

response message.

Example
A storage service sends credentials to be encrypted to the encryption ser-

vice and then receives encrypted data from it.

Issues/design choices The send interaction pattern can be blocking or non-

blocking and can result in faults.

e Source service can wait for a response or for a fault indicator to en-

able blocking send pattern.

e Outgoing and incoming messages are correlated in order to provide

consistency in data.

e Send, receive or both interactions can result in fault messages.

Graphical Representation

140

funaioni params }—

Service_A adinmele dee ment Serdce_ B
[- or fault —
or response

Lard First

l—Functionlparams |—
Sardice_A Service B
acknowd edeem ent
- — or fauk —
Or res pors &

Reczive First

Figure 3.14: Send/Receive Pattern.

Explanation

In Figure two cases are covered:

Send First Service_A sends a message comprising the function with pa-
rameters to Service_B. A fault, acknowledgement message or re-
sponse can be generated by Service_B and received by Service_A.

Receive First Service_A receives a message comprising the function with
parameters from Service B. A fault, acknowledgement message or

response can be generated by Service_A and received by Service_B.

Realization in XChor Language
Fault specification, blocking and non-blocking realization are the same in
send and receive patterns. In this case, after fault is generated the sending

and receiving services (Service_A and Service_B) are aborted.

1. Basic Send First
sequence (
<service_A> send{<service_B>} message
<function_B> (<params_B>)
<service_A> receive from {<service_B>} message

<function_A> (<params_A>)

141

where

<service_A>: message sending and receiving service

<service_B>: message sending and receiving service
<function_A>: the name of function residing in service_A interface
<function_B>: the name of function residing in service_B interface
<params_A>: alist of parameters pertaining to function_A separated
by comma <params_B>: a list of parameters pertaining to func-
tion_B separated by comma

Example

sequence (
storage send encryption message encrypt(data)
storage receive from encryption message

saveencrypted data(encrypteddata)

. Basic Receive First

sequence (

<service_A> receive from {<service_B>} message
<function_A> (<params_A>)

<service_A> send{<service_B>} message
<function_B> (<params_B>)

)

where

<service_A>: message sending and receiving service

<service_B>: message sending and receiving service
<function_A>: the name of function residing in service_A interface
<function_B>: the name of function residing in service_B interface
<params_A>: a list of parameters pertaining to function_A seper-
ated by comma <params_B>: a list of parameters pertaining to func-
tion_B seperated by comma

Example

142

1 | sequence (

2 thirdparty receive from encryption message
getconnection ()

3 thirdparty send encryption message setparams (

parameters)

3.8.2.2 Single-transmission multilateral interaction patterns

The second categorization is the single-transmission multi-lateral interaction patterns
comprising racing incoming messages, one-to-many send, one-from-many receive,
one-to-many send/receive where multiple services come into play. Detailed explana-

tions of each are given with graphical representations.

Pattern 4: Racing incoming messages

Description A service expects to receive one among a set of messages. These
messages may be structurally different, coming from different source ser-
vices. The processing of messages is changed with regard to the source

service.

Example

e Multiple messages in the same structure: A customer waits for a con-
nection to receive a movie among a set of service providers. If one
connection is established, the others are ignored.

e Multiple messages in different structures, exclusive: Hotel booking
request is processed with regard to coming message indicating that it
rejects the booking or accepts the booking. If one of the messages is
received, the other one is neglected. One excludes the other.

e Multiple messages in different structures, not-exclusive: User au-
thentication data is processed with respect to the device they use ei-

ther be a keyboard, a fingerprint device or finger-vein device.

143

Issues/design choices

e Incoming messages are of same or different types.

e The processing that follows the message consumption may be differ-
ent depending on the consumed message.

e When one of the expected messages is received, the corresponding
continuation is triggered. The remaining messages may or may not
need to be discarded.

e Depending on the underlying communication infrastructure, several
of the expected messages may be simultaneously available for con-
sumption. In this case, two approaches may be adopted: (i) let the
system make a non-deterministic choice, or (ii) provide a "ranking"
among the competing messages. In any case, only one message is

chosen for consumption.

Graphical Representation

funcionipa mms }l—————— Service B

Servioe_ A l—Fun ction [p arams }—— Semice_C

T—Tunn:til:ln [params}——

functionlparams) Service_X

Figure 3.15: Racing Incoming Messages Pattern.

Explanation

In Figure [3.8.2.2] Service_A receives a set of messages from Service_B,

144

Service_C.., Service_X and selects one of them to continue to process.

Realization in XChor Language

1. Multiple messages in same structure
<service_ A> receive from
{<service_B> <service_C> ... <service_X>}

pickOne message <function> (<params>)

where

<service_A>: message receiving service, destination service
<service_B> <service_C> ... <service_X>: a set of message send-
ing services, source services

<function>: the name of function residing in service_A interface
<params>: a list of parameters separated by comma

Example

1 | customer receive from providerl provider2 provider3
pickOne message establish connection (customer

IP)

2. Multiple messages in different structure

select (
<Proccesing_wrt_B>
<Proccesing_wrt_C>
<Proccesing_wrt_X>

)

where

<Proccesing_wrt_B>: Start with a receive interaction which refers to
single transmission bilateral receive pattern. Then followed by a set
of interactions including all types of patterns surrounded with possi-
ble sequence, parallel, repeat or select structures.

The select keyword chooses non-deterministically one of the branches

145

with regard to coming message which can be either from service_B,

service_C ... or service_X.

Example
1 | select (
2 sequence (
3 itineraryplanner receive from hotel message

reject booking (customerID)
4 itineraryplanner send customer message

showresult(bookingrejected)

s)

6 sequence (

7 itineraryplanner receive from hotel message
acceptbooking (customerID)

8 itineraryplanner send customer message
make payment (booking ID)

9

10)

1)

Pattern 5: One-to-many send

Description A service sends messages to a set of services having the same

type of message.

Example
A travel itinerary sends a price quote to all available hotels to gather dif-
ferent offers. A travel itinerary sends price quote notification indicating
that one of them is selected for reservation after traveler chooses one of

them. The message content of the selected one is different than others.

Issues/design choices

e The number of destination services is known at design time. All
instances of the same service get the message even if the function

names on the service interfaces are different.

146

e For reliable delivery concern, each destination service can generate
and send fault notification to source service. Fault handling mecha-
nism depends on selection of the way how the application responds
to one or more faults. The application can terminate even if one fault

occurs or can tolerate all faults, and uses logging.

Graphical Representation

funaion|paams jJ——————= Semice_B

Serice_A ——function [para ms }— Senice C

\—fundinn(params]—h

fundioniparams} Service_X

Figure 3.16: One to Many Send Pattern.

Explanation

In Figure [3.8.2.2] Service_A sends messages to Service_B, Service_C..,

Service_X.

Realization in XChor Language

1. Send without fault
<service_A> send
{<service_B> <service_C> ... <service_X>}
message <function> (<params>) refers
<service_B>.<function_B>

<service_C>.<function_C>

147

<service X>.<function_ X>

where

<service_A>: message sending service, source service

<service_B> <service_C> ... <service_X>: >: a set of message re-
ceiving services, destination services

<function>: the name of function residing in service_B, service_C,...
service_X interface

<params>: a list of parameters separated by comma

refers keyword can be optionally used if the <function> names are
not same as service B, service_C and service_X interface. Most
common function name is written in place of <function>, for each
different function names following piece of code is added:
<service_B>.<function_B> is an example of the reference to <func-
tion_B> in <service_B> interface.

Example

! travel itinerary send sherton rixos
jwmarriot fourseasons message
price quote (startDate , endDate,
additionalRequests)

2 travel itinerary send sherton rixos
jwmarriot fourseasons message
price quote (startDate , endDate,
additionalRequests) refers sherton.

get price rixos.getquote

2. Send with fault

<service_A> send
{<service_B> <service_C> ... <service_ X>}
message <function> (<params>)
refers
<service B>.<function_ B>

<service_ C>.<function_C>

148

<service_X>.<function_X>

fault (<names>, terminateIf <number> fails)

where

<service_A>: message sending service, source service

<service_B> <service_C> ... <service_X>: >: a set of message re-
ceiving services, destination services

<function>: the name of function resided in service_B, service_C,...
service_X interface

<params>: a list of parameters separated by comma

refers keyword can be optionally used if the <function> names are
not same as service B, service_C and service_X interface. Most
common function name is written in place of <function>, for each
different function names following piece of code is added:
<service_B>.<function_B> is an example of the reference to <func-
tion_B> in <service_B> interface. fault keyword enables to define
fault. <name> is a list of fault names. terminatelf <number> fails
represents termination condition where <number> is the amount of
faults generated.

Example

1 | travelitinerary send sherton rixos jwmarriot
fourseasons message price quote (startDate, endDate
, additionalRequests) fault (delivery, terminatelf

1 fails)

Pattern 6: One-to-many receive

Description A service receives a number of logically related messages from a
set of services which then are gathered as a single message. Because of
this, each message should arrive in time. The success of the interaction

depends on gathered messages and time constraint if exists.

Example

149

A travel itinerary receives a set of prices which belongs to previously
requested price offers for fulfilling a customer request. Travel itinerary
collects all received messages to present all available hotel prices to the
customer. It can wait for a specified time frame for messages to arrive. It
can wait only for a specified number of price offers to come, for instance

if three price offers are enough out of five.

Issues/design choices

A mechanism is required for correlating messages coming from dif-
ferent sources via the message content or not.
e Message correlation should be constrained with a specified time not

to let destination service wait forever.

A number of messages can be sufficient to proceed without waiting

for other messages to come.

A timeout can occur with insufficient number of messages. In this
case, a fault can be generated by the destination service indicating

that receive interaction ended unsuccessfully.

Graphical Representation

fundion{paams }—— Semice_E
T,
I'_:.—'":

Service A —fun ction{p ara rms }— Serdice C
Ir,.i._‘\l
E

T—1'un|:ti|:|n [params}———

funcioniparams} Service X

Figure 3.17: One to Many Receive Pattern.

150

Explanation
In Figure [3.8.2.2] Service_A receives messages from Service_B, Ser-

vice_C,..., Service_X with a time and success condition.

Realization in XChor Language

<service_A> receive from
{<service_B> <service_C> ... <service_X>}
message
<function> (<params>)
wait <duration> <time>
until <number>

messagescame fault (<names>)

where

<service_A>: message receiving service, destination service
<service_B> <service_C> ... <service_X>: >: a set of message sending
services, source services

<function>: the name of function residing in service_A, service_C,... ser-
vice_X interface

<params>: a list of parameters separated by comma

wait keyword enables to define time and success condition specification.
<duration> 1is an integer to indicate the waiting period. <time> is a string
indicating the type of duration as second, minute, hour, day and month.
until keyword enables to define the success condition. <number> is an in-
teger with which messagescame keyword indicates the condition the des-
tination service completes the receiving interaction.

fault keyword enables to define fault. <name> is a list of fault names.

Example
1 | travel itinerary receive from sheraton rixos jwmarriot
fourseasons message price quote (customer id) wait

10 seconds

2 [travel itinerary receive from sheraton rixos jwmarriot

fourseasons message price quote (customer id) wait

151

until 2 messagescame

3 |travel itinerary receive from sheraton rixos jwmarriot
fourseasons message price quote (customer id)
wait 10 seconds until 2 messagescame

4 | travel itinerary receive from sheraton rixos jwmarriot
fourseasons message price quote (customer id) wait
10 seconds fault(waittimeout)

s [travel itinerary receive from sheraton rixos jwmarriot
fourseasons message price quote (customer id) wait

10 seconds until 2 messagescame fault(waittimeout)

Pattern 7: One-to-many send/ receive

Description A service sends messages to a set of services having the same type
of message and may be related. Then the service receives a number of
logically related messages from a set of services which then are gathered
as a single message. Because of this, each message should arrive in time.
The success of the interaction depends on gathered messages and time

constraint if exists.

Example
A travel itinerary sends a price quote to all available hotels to gather dif-
ferent offers. The travel itinerary sends price quote notification indicating
that one of them is selected for reservation after traveler chooses one of
them. The message content of the selected one is different from others.
Then the travel itinerary receives a set of price offers for fulfilling the
customer request. The travel itinerary collects all received messages to
present all available hotel prices to the customer. It can wait for a speci-
fied time frame for messages to come. It can wait only a specified number
of price offers to come, for instance if three price offers are enough out of

five.

Issues/design choices

e The number of destination services is known at design time. All

152

instances of the same service get the message even if the function

names on the service interfaces are different.

e For reliable delivery concern, each destination service can generate
and send fault indications to the source service. Fault handling mech-
anism depends on the selection of the way how the application re-
sponds to one or more faults. The application can terminate even if

one fault has occurred or can tolerate all faults, and only use logging.

e A mechanism is required for correlating messages coming from dif-

ferent sources via the message content.

e Message correlation should be constrained with a specified time not

to let destination service wait forever.

e A number of messages can be sufficient to proceed without waiting

for other messages to come.

e A timeout can occur with in sufficient number of messages. In this
case, a fault can be generated by the destination service indicating

that receive interaction has ended unsuccessfully.

Graphical Representation

rfunctionirparams

fundionispaams}———————8= Semice_B
AT
I'\.:x’: .
s function s params | —
Sendice_ A Semice
Ir"i"\, l—rfun ction {rparams }—
=/
F A

3
\—5fu netionlsoarams l———

rfunctionfrparams }———

funaionls params jJ———————————p» Service X

Lrfun ction(rparams)

Figure 3.18: One to Many Send/Receive Pattern.

153

Explanation
In Figure [3.8.2.2] Service_A sends messages to and receives from Ser-

vice_B, Service_C.., Service_X with a time and success condition.

Realization in XChor Language

sequence (
<service_A> send
{<service_B> <service_C> ... <service_ X>}
message <function> (<params>) refers
<service B>.<function_ B>

<service C>.<function_C>

<service X>.<function_X>

fault (<names>)

<service_A> receive from

{<service_ B> <service_C> ... <service_ X>}
message <function_A> (<params_A>)

wait <duration> <time>

until <number>

messagescame fault (<names>)

where

<service_A>: message sending and receiving service

<service_B> <service_C> ... <service_X>: >: a set of message receiv-

ing and sending services

<function>: the name of function residing in service_B, service_C,...service_X
interface

<function_A>: the name of function residing in service_A interface
<params>: a list of parameters of <function>, separated by comma

<params_A>: alist of parameters of <function_A>, separated by comma

154

wait keyword enables to define time and success condition specification.
<duration> is an integer to depict waiting period. <time> is a string de-
picting the type of duration as second, minute, hour, day and month. until
keyword enables to define success condition. <number> is an integer
with which messagescame keyword depicts the condition the destination
service completes the receiving interaction.

fault keyword enables to define fault. <name> is a list of fault names.

Example

1 | sequence (

2 travel itinerary send sheraton rixos jwmarriot
fourseasons message price quote (startDate , endDate
, additionalRequests) fault (delivery)

3 travel itinerary receive from sheraton rixos jwmarriot
fourseasons message price quote(customerid) wait

10 seconds until 2 messagescame fault(waittimeout)

3.8.2.3 Multi-transmission interaction patterns

The third categorization is the multi-transmission interaction patterns comprising
multi-responses, contingent requests and atomic multicast notification where mul-
tiple services come into play. Detailed explanations of each are given with graphical

representations.

Pattern 8 : Multi-responses

Description A service sends a request to another service, then a set of re-
sponses are received from the service until no further response is required.
The completion or the sign of no further response can come from the re-
questor service or the responder service, or specified by a duration or in a

message content.

155

Example
A customer of Hurriyet online news service subscribed for latest news
about the protests in Taksim, Istanbul. Hurriyet provides last-minute events
when available. Customer can think received news are enough and decide
to stop getting latest news or Hurriyet can stop posting more news updates

after sending detailed events.

Issues/design choices

e The sign of no further messages can be in four cases:
1. the requestor service sends a notification to stop,
2. arelative or absolute deadline specified by the requestor service,

3. an interval of inactivity during which the requestor service does

not receive any response from the responder service,

4. amessage from the responder service indicating no messages are

sent anymore.

e After observing the sign of no further messages, the requestor service

does not accept any messages from the responder service.

e Requester service accepts multiple messages from the responder ser-

vice whose number is determined in runtime

e Eachreceived message is treated individually, that is the fault resulted

from one received message does not affect the others.

e In the case of the requester service sending a notification, a mecha-
nism should inform responder service about rejected messages sent
between the time the requester sends notification and the time respon-

der service receives it.

Graphical Representation

156

T
o
Service_A —function [param s]—; Service_B
<
L Case1: A relative or absolute deadline st bv Service_&
-
i
<
j—functiun [pararm s)]—
Sandice A - Sarvice B
- — -notification to stop- —Je
_\% Case 2: stop notification sent by Service_2
-~
«—function [params)—
Service_A * Service_B
| —notification tostop— —
Cased: Stop hotification sent by Service B
M
Service_ A ;—Fu nction [param s)— Serdice_B
4l
—
Casz 4; Aninteryd of inactivity to Lop
.
Figure 3.19: Multi Responses Pattern.
Explanation

Four cases are presented in Figure [3.8.2.3} Case I: Service_A receives
multiple messages from service_B during a specified time. Service A
specifies a deadline to stop reeving messages from Service_B.

Case 2: Service_A receives multiple messages from Service_B until Ser-

vice_A sends a notification to stop.

Case 3: Service_A receives multiple messages from Service_B until Ser-

157

vice_B sends a notification indicating that it stops sending further mes-
sages.
Case 4: Service_A receives multiple messages from Service_B until a

specified interval of inactivity occurs.

Realization in XChor Language

1. Case 1 — A relative or absolute deadline set by Service_A
<service_ A> receive from {<service_B>}
multiple times
message <function> (<params>)

wait <duration> <time>

fault (<names>)

where

<service_A>: message receiving service, destination service
<service_B>: message sending service, source service

<function>: the name of function residing in service_A interface
<params>: a list of parameters separated by comma

multiple times keyword enables to specify that service_A receives
more than one message from service_B.

wait keyword enables to define time and success condition specifica-
tion. <duration> is an integer to depict waiting period. <time> is
a string describing the type of duration as second, minute, hour, day
and month.

fault keyword enables to define fault. <name> is a list of fault names.

Example

1 | customer receive from hurriyet multiple times

message latestnews () wait 60 seconds

2. Case 2 - Stop notification sent by Service_A

<service_A> receive from {<service_B>}

multiple times message

158

<function> (<params>)
stopmessage from <service_A>

fault (<names>)

where

<service_A>: message receiving service, destination service
<service_B>: message sending service, source service

<function>: the name of function residing in service_A interface
<params>: a list of parameters separated by comma

multiple times keyword enables to specify that service_A receives
more than one message from service_B.

stopmessage from keyword enables to specify the service which sends
the notification to stop the receive interaction. In this case service_A
is the sender.

fault keyword enables to define fault. <name> is a list of fault names.

Example

customer receive from hurriyet multiple times

message latest news () stopmessage from customer

. Case 3 - Stop notification sent by Service_B

<service_ A> receive from {<service_B>}
multiple times
message <function> (<params>)
stopmessage from <service_B>

fault (<names>)

where

<service_A>: message receiving service, destination service
<service_B>: message sending service, source service
<function>: the name of function residing in service_A interface
<params>: a list of parameters separated by comma

multiple times keyword enables to specify that service_A receives

159

more than one message from service_B.

stopmessage from keyword enables to specify the service which sends
the notification to stop the receive interaction. In this case service_A
is the sender.

fault keyword enables to define fault. <name> is a list of fault names.

Example

customer receive from hurriyet multiple times

message latestnews () stopmessage from hurriyet

. Case 4 — An interval of inactivity to stop

<service_A> receive from {<service_B>}
multiple times
message <function> (<params>)
inactivity-interval <duration> <time>

fault (<names>)

where

<service_A>: message receiving service, destination service
<service_B>: message sending service, source service

<function>: the name of function residing in service_A interface
<params>: a list of parameters separated by comma

multiple times keyword enables to specify that service_A receives
more than one message from service_B.

inactivity-interval keyword enables to define time interval that the re-
ceive activity stops if the specified duration is exceeded. <duration>
is an integer to indicate the waiting period. <time> is a string depict-
ing the type of duration as second, minute, hour, day and month.
fault keyword enables to define fault. <name> is a list of fault names.

Example

customer receive from hurriyet multiple times
message latestnews () inactivity interval 10

seconds

160

Pattern 9 : Contingent request

Description A service, service_A sends a request to another service, service_B.
If service_A can not get any response from service_B within a specified
time frame, then service_A sends a request to service_C and waits for the
response as it did in the service_B case. Service A continues to sending
requests to a number of services until getting a response from the current

called service.

Example
A user of emergency service requests for ambulance due to a car crush.
The the emergency service sends ambulance request from the nearest hos-
pital. If the nearest one does not provide any response within a specified
time, let’s say 5 seconds, then the request is sent to the second nearest

hospital. Request is sent until a response comes from within the set of

hospitals.

Issues/design choices

e There can be issues such as response can come from previous request
after the specified time frame; that is response comes late. In this
situation, only the response coming from the current called service

can be accepted and the other ones are discarded.

Graphical Representation

161

Service_B

Y

1. @l

. ifno response from 1. @l .
Senvice_A — then 2. call —_— Senvice C

if no res pors efrom 2. call
N

then 2. @ll

ifno response from {n-1). call
then n. call

Service X

h 4

Figure 3.20: Contingent Request Pattern.

Explanation
In Figure [3.8.2.3] Service_A sends messages to Service_B, Service_C..,
Service_X sequentially if Service_A cannot get any response from the

current called service during a time frame.

Realization in XChor Language

<service_A> send
{<service_B> <service_C> ... <service_X>}
in-sequence
message <function> (<params>)
wait <duration> <time>

fault (<names>)

where

<service_A>: message sending service, source service

<service_B> <service_C> ... <service_X>: >: a set of message receiv-
ing services, destination services

<function>: the name of the function residing in service_B, service_C,...service_X

162

interface

<params>: a list of parameters of <function>, separated by comma
in-sequence keyword enables to specify that the list of services are called
in sequence.

wait keyword enables to define time and success condition specification.
<duration> 1s an integer to depict waiting period. <time> is a string indi-
cating the type of duration as second, minute, hour, day and month. until
keyword enables to define success condition. <number> is an integer
used with messagescame keyword. The messagescame keyword defines
the condition the destination service completes the receiving interaction.
fault keyword enables to define fault. <name> is a list of fault names.

Example

1 | emergencyservice send ataturk hospital medicana
hospital bayindir hospital 100.yil hospital in
sequence message getambulance (coordinates ,helpmessage)

wait 5 seconds

Pattern 10 : Atomic multicast notification

Description A service, service_A sends notifications to a set of services which
are expected to accept the notification within a specified time frame. The

number of notification acceptances can have a minimum and maximum.

Example
A travel agent allows the booking of both flight and hotel travel require-
ments as part of a comprehensive travel packaging. Customers nominate
their preferred flight carriers and hotel accommodation. Hotel and related
flight details can be seen as an atomic group. Within this group, the flight
carrier, and the booking agencies for hotels, identify the services con-
tacted. All such atomic groups need to succeed in order for the interaction

to succeed as a whole.

Issues/design choices

163

The number of notified services can be known at design time or at

run-time.

The required minimum and maximum number of acceptance should

be specified.

The need for transactional support which enables notifying all related
services as a group, selected or not. Identification of the group to be
based on message content, such as customer id, request id or group
id.

The minimum number of services to accept the notification can range
from one to the total number of services targeted, while the maximum
number can range from the minimum number specified to the total

number of services targeted.

Graphical Representation

funcionlparams} i Service_E

— naotification acceptane- — — —

./ r— notification acceptance— —

Serdice A fun ction [p ara ms }——ps Serdice C

LI
functionioarams l——

| L— notification acceptance— — — —

| notification acceptance— — — — — —
fun ctionf params) - Service X

Figure 3.21: Atomic Multicast Notification Pattern.

Explanation

In Figure [3.8.2.3] Service_A sends a notification message to Service_B,

Service_C.., Service_X and waits for acceptance of this notification within

a time frame.

164

Realization in XChor Language

<service_ A> send
{<service_B> <service_C> ... <service_X>}
atomic
message <function> (<params>)
wait <duration> <time>
withNotification (min:<number> ,max:<number>)

fault (<names>)

where

<service_A>: message sending service, source service

<service_B> <service_C> ... <service_X>: >: a set of message receiv-
ing services, destination services

<function>: the name of function residing in service_B, service_C,... ser-
vice_X interface

<params>: a list of parameters of <function>, separated by comma
atomic keyword enables to specify transactional behavior.

wait keyword enables to define time and success condition specification.
<duration> is an integer to define waiting period. <time> is a string
depicting the type of duration as second, minute, hour, day and month.
withNotification keyword enables service_A to wait the acceptance of no-
tification sent by service_A. min and max keywords enable to define the
least and the most amounts of acceptance notification from the destination
services.<number> is an integer to indicate the minimum and maximum
amounts. fault keyword enables to define fault. <name> is a list of fault
names.

Example

1 | travel itinerary send sheraton rixos jwmarriot
fourseasons pegasus anadolujet thy atomic message book
(startDate , endDate, additionalRequests , customerid)

wait 60 seconds withNotification(min:2 ,max:7)

165

3.8.2.4 Routing patterns

The fourth categorization is the routing patterns comprising request with referral, re-
layed request and dynamic routing where multiple referred destination services come

into play. Detailed explanations of each are given with graphical representations.

Pattern 11 : Request with referral

Description A service, service_A sends a message to another service, ser-
vice_B which then sends the response to a set of services (service_l,
service_2..., service_n). Faults can be sent to service_A or the set of

services by service_B.

Example
A customer requests to make a reservation with the hotel between speci-
fied dates and with some conditions. Travel itinerary can send reservation
request to the hotel and make the hotel respond to the customer directly.

In other words, travel itinerary fades from the scene.

Issues/design choices

e The faults are sent to the source service, service_A by default if not

specified otherwise.

e service_B may or may not have prior knowledge of the identity of the

other services which are transferred by service_A.

Graphical Representation

166

1 Serice_1

—function(params | — — — — —fauk — — — —
Service_A Service_B

Spo Serdice_2

A 4

- — —fault — — —

++ | oans

>
L T e — — — — — —

[— —faut — — — — — — — -
=p

- Serdoz_N

Figure 3.22: Request with Referral Pattern.

Explanation

In Figure [3.8.2.4] Service_A sends a message to Service_B which then
sends related response to referred destination services(Service_1, Ser-
vice_2.., Service_N). Faults can be sent to Service_B by destination ser-

vices or to Service_A by Service_B.

Realization in XChor Language

<service_A> send {<service_ B>}
message <function> (<params>)
referredDestinations (
<service_1>,

<service_2>,

<service_ N>
)
fault (<names>)

toreferrals

where

<service_A>: message sending service, source service
<service_B>: message receiving service, destination service

<function>: the name of function residing in service_B interface

167

<params>: a list of parameters of <function>, separated by comma
referredDestinations keyword enables to specify a set of services that
the response from service_B is sent. <service_I>,<service_2>,... <ser-
vice_N> 18 a set of referred services.

fault keyword enables to define fault. <name> is a list of fault names.forefer
rals keyword depicts that the fault is sent to referred services, service_l,
service_2.... This keyword is optional used to change destination of fault.

Example

1 | customer send travel itinerary message reserve (
startDate , endDate, additionalRequests)

> [travelitinerary send sheraton message reserve (
startDate , endDate, additionalRequests)
referredDestinations (customer) fault(notready)

toreferrals

1 | customer send travel itinerary message reserve (
startDate , endDate, additionalRequests)
2> |travelitinerary send sheraton message reserve (
startDate , endDate, additionalRequests)

referredDestinations (customer) fault(notavaliable)

Pattern 12 : Relayed request

Description A service, service_A sends a message to another service, ser-
vice_B which then sends this request message to a set of services (ser-
vice_1, service_2,..., service_n). After that, the set of service interact

with service_A and service_B stays as a viewer of interactions and faults.

Example
A client seeking his/her debt status which can be queried from e-government
services. Social Security Institution (SGK), tax department and credit dor-
mitories institution are outsourced service providers of e-government ser-
vices. The government authority stipulates that interactions between the

client and debt status service providers be sent to it.

168

Issues/design choices

e The referred services may or may not have prior knowledge of ser-

vice_A. It is the service_B’s duty to inform about the source service,
service_A.
e service_B can receive interested messages from referred destination

services while playing viewer role.

Graphical Representation

|- ——- rssponseorfault — — — — — — — — — — — — — —
: function lparams }—————————J»| Service 1
|
| |———————— === response or fault- — — — — — — — —
L B, | | [
|
——function|pararms) — i [E—
Service_A [:r:ile?;r_e?] fundion [params | —| Semvice_ 2
F A
| I function [params }——
| T T T T T T respomse or faut- — — — — — — — — — — —
|
|
| function lpaAms}————] Serdce_N
- responseor faut— — — — — — — — — — — — — —
Figure 3.23: Relayed Request Pattern.
Explanation

. In Figure [3.8.2.4] Service_A sends a message to service_B which then
sends the request to referred destination services(service_1, service_2..,

service_IN). After that, all responses or faults are directed to service_A.

Realization in XChor Language

<service_A> send {<service_B>}
viewer
message <function> (<params>)
referredDestinations (

<service_1>,

169

<service_2>,
<service_ N>

)

fault (<names>)

where

<service_A>: message sending service, source service

<service_B>: message receiving service, destination service
<function>: the name of function residing in service_B interface
<params>: a list of parameters of <function>, separated by comma
viewer keyword enables service_B play the viewer role and responses are
directed to service_A instead of service_B.

referredDestinations keyword enables to specify a set of services that
the response from service_B is sent. <service_I>,<service_2>,... <ser-
vice_N> is a set of referred services.

fault keyword enables to define fault. <name> is a list of fault names.forefer
rals keyword depicts that the fault is sent to referred services, service_1,
service_2.... This keyword is optionally used to change the destination of
fault.

Example

customer send e government viewer message deptstatus(
customerid) referredDestinations (sgk,taxdepartment ,

creditdormitoriesinstitution) fault(notavaliable)

parallel (
customer send e government viewer message
deptstatus(customerid) referredDestinations (sgk,
taxdepartment ,creditdormitoriesinstitution)
e government receive from sgk,taxdepartment,
creditdormitoriesinstitution message report(

customerid)

170

CHAPTER 4

VERIFICATION OF XCHOR MODELS

This chapter is dedicated to representing a step by step approach in order to formally
verify variable XChor models through model checking using Feature Transition Sys-
tems (FTS). Transformations from XChor to FTS model are introduced and required
feature model of the variable choreography(ies) and related fPromela specification(s)
are produced. Applying verification with the help of SNIP model is demonstrated and
exemplified through case studies described in Chapter [3]

4.1 Need to Verify

XChor specification, which describes the behavior of service-oriented systems, sup-
ports variability in order to provide flexibility and to increase reusability of services.
In variable-intensive service systems such as XChor choreography, verification is a
costly and complex task due to having to check consistency of all possible choreogra-
phies and related services (orchestrations and atomic services). In XChor variable-
intensive systems, variation points and related variants are scattered over variable
choreography, orchestrations and atomic services. For small systems where variabil-
ity is limited, consistency checking of variable choreography and related interacting
services can be handled. Due to the complexity that comes with variability, dead-
locks and incompleteness in composition behavior cannot be seen directly from vari-
able choreography specification, even if variability is limited. For large scale systems
this process is very complicated and error prune due to having to check all possible

choreography against required variable behavior. To achieve consistent service ar-

171

chitecture and to reduce complexity of verification during adaptation to changes and

maintenance, a formal model is required for quality assurance purposes.

4.2 Verification Approaches for Variable Systems

One of the approaches addressing formal verification of systems is model checking.
System models and system properties are two main artifacts in model checking. Sys-
tem models describe the system behavior, while system properties define the speci-
fications that are supposed to be satisfied by the system. Among these approaches,
Modal Transition Systems (MTS)[64]], PL-CSS (Product Line - Concurrent Commu-
nicating Systems, adaptation of the CCS process algebra) [71]], and FTS[50] are the
ones tackling formal verification of variable-intensive systems. In variable systems,
it is important to relate product behavior to its properties in order to analyze where
and how a property is violated. Focusing on software product lines, FTS enables such
relations by linking possible product features with transitions which describes inner
processes of possible products. To this end, FTS approach utilizes a feature model of
a product line to reveal product features and constraints over them in TVL (Text based
Variability Language) syntax[S1]. It makes use of the product line behavior written
in fPromela language along with the feature model [S0]. fPromela language is an
extension of Promela language which enables to guard statements with features and
includes assertion statements. Assertion statements in fPromela specification are used
for checking properties of the system through comparing the property with a value.
SNIP model checker [50] is used as the verification tool which takes the feature model
and fPromela specification of the product line. The tool verifies the fPromela specit-
cation against temporal properties and checks possible deadlocks. That the flow graph
of choreography composition is not connected leads to a deadlock in fPromela. That
is the situation when a variation binding causes a non-complete graph which is rep-
resented by fPromela specification. In that case, SNIP results with a deadlock along
with violated product features and additional information about where the deadlock
occurs. Likewise in assertion violation where the system property is not satisfied is

provided with violated product features.

FTS approach is selected and applied for verification purposes of XChor variable

172

choreography in that

e Variability of a system is specified explicitly by means of a feature model.

e Explicit variability of the system, features are associated with behavior of the

product line.

e Information about possible deadlocks and assertion violations are presented

with the violated features which eases the error finding and correction.

e Even XChor variability model and feature model of the product lines are not
mapped one-to-one, feature model construction is achievable from configura-

tion interfaces of service and choreographies.

e Composition behavior specification in fPromela Language and XChor choreog-

raphy specification are close to each other which makes transformation easier.

e Parallel composition is achievable which enables to run several choreographies

simultaneously.

Along with its advantages to apply model checking to choreographies, the coverage
of model checking is only for behavior variability. In XChor language, service and
choreography interfaces can be changed by configuration interfaces and variability
associations defined in choreography specifications. These interface changes lead to
existence or non-existence of functions and parameters which are referenced within
choreography specifications. In other words, due to service interface changes, one of
the service function cannot be provided by a service even though it is stated that the
service takes part in an interaction. Therefore, the service interaction with this func-
tionality cannot occur within the choreography. Such interface consistency checking
cannot be directly addressed by FTS. Therefore, an additional mechanism is needed

to achieve interface variability checking which is left as future work.

4.3 Model Checking of Variable XChor Choreographies

The application of FTS model to XChor variable choreographies requires model

transformation, because variability and behavior modeling are handled differently

173

Table 4.1: Variability and Behavior Models in XChor and FTS

Variability Model Behaviour Model
XChor XChor Variability Model XChor Choreography Model
FTS Feature model in TVL fPromela

which is shown in Table The source model XChor, utilizes its own variability
model in order to specify variation points and their associations between choreogra-
phy and services. On the other hand, the target model, FTS utilizes TVL for repre-
senting product line’s feature model as the input for verification of the product line
behavior defined in fPromela. Therefore, a transformation needs to be conducted

between these models while preserving their semantics.

According to Table[4.1] transformation is twofold; one for variability model explained
in Section M.3.1] and one for behavior model indicated with transformation rules in
Section After then, the usage of created FT'S models for model checking of
choreographies is explained in Section #.3.3]

4.3.1 From Variability Model in XChor to TVL Feature Model

The target model, TVL employs a hierarchical structure including features, their at-
tributes and constraints among them. The source model, XChor includes variation
points (internal, external and configuration), related variants, constraints and varia-
tion point associations. Due to the semantic difference between TVL and XChor
variability model, a mapping should be defined. Variability model in XChor requires
all specified variation points to be added to the root of newly created feature model as
mandatory. Moreover, TVL has no support for directly mapping configuration varia-
tion point logic to features. Variation points taking part in configurations should not
be added to the root of the feature model, as the semantic relations among a set of
variation point is hidden. The rest can be added to the root. A step by step description

of constructing a TVL model from variability in XChor model is as follows:

Step 1 Variability Information Extraction Extract variation points stated as "exter-

nalVP", "internal VP", "configuration" and "vp" from configuration interfaces

174

of choreography and services. Extract related variants labeled as "mandatory",

"optional" and "alternative".
Step 2 Root Construction Construct a root and name it with the application name.

Step 3 Feature Additions Assume that all variant and variation point names are dis-

tinct.

For Choreography For all choreographies

3.1 Add a mandatory feature to the root with choreography name, let’s

say chorl.

3.2 If and only if a VP does not participate in any configuration vari-
ation point, add it to chorl as a feature and its related variants as
sub-features. Otherwise, skip it.

3.3 If a VP is a configuration variation point, then add it to the chorl
as a mandatory feature and its variants as "optional", "mandatory"
or "alternative" sub-features. For optional add someOf relation, for
alternative add oneOf relation and for mandatory add allOf relation.
For each of its variant, add a new feature as optional with new sub-
features stated under "mapping" part as mandatory.

3.4 Repeat 3.2 and 3.3 steps until no variation point exists.

3.5 By use of variability association information gathered from Step 2,

add each association as constraint.

Add all logical constraints of choreography as feature constraints.

Step 4 fPromela Feature List Construction Construct a list of leaf features resid-

ing in fPromela which are annotations for variability in behavior.

4.3.2 From XChor Behavior Model to fPromela

The process logic in XChor specification is transformed to the fPromela equivalent.
The syntax of fPromela and Promela are the same. fPromela has almost all function-
alities of Promela. The main difference between fPromela and Promela lies in the

feature convention. fPromela has a new type called features that can be used to guard

175

statements with feature specific expressions. In [[113] transforming VXBPEL variabil-
ity logic to fPromela is explicitly defined for variable orchestrations. However, this

approach does not cover choreography but sheds light to the way to transform.

Among variation point types, configuration variation point provides a high level un-
derstanding for configuration purposes while hiding details of how low level, internal
binding logic is done. Therefore, these types of variation points do not take part in
process specification, thus they do not need to be transformed to fPromela. All varia-
tion points except configuration should be transformed to fPromela in order to prevent

information loss.

Each function realized by choreographies is transformed to fPromela equivalent sepa-
rately. Then these functions are gathered in a single fPromela file as a pml file named
with the application. The rules for transforming XChor behaviour specification and
variability to equivalent fPromela constructs are listed in Table Table |5.4|and Ta-
ble @] where P1, P2,.., Pn represent XChor Composite or Atomic Interaction specifi-
cations, fPromela-equvalent-P1, fPromela-equvalent-P2,..., fPromela-equvalent-Pn

represent fPromela equivalent specifications of P1, P2,..., Pn.

Atomic interaction covers basic send and receive operations along with additional
keywords; refers, in-sequence, atomic, viewer, multiple times, pickOne, stopmessage
from, wait .. until, inactivity-interval, referedDestinations, withNotification. Among

these keywords,

e viewer and refers keywords are not transformed to fPRomela in that it does not

add any interaction to the behavior.

e wait .. until and inactivity-interval are not transformed to fPRomela equivalent
because real time representation is not modeled in Promela. A relative counter

can be set instead.

The gd...dg; part in Table [5.4]covers variable parts which is interpreted as if structures
in Promela. Variation points and selected variants are references to features in the
extracted feature model explained in Section {.3.1] Transformation rules and feature

model construction are implemented by using python programming language.

176

dwreu uonoduny Ay} SI <JouUNy> pue
US* ‘¢SS AIIAIIS Yova 10J ‘utvd zavd [1vd;<jounf>xs [~ upyd 113su]
1STXQ 10U S0P I JI (U 1)d3URI UL ST X IYM ‘<Jounf>xs[s~ uvyd uvyd 9yeard (ured gred‘yred)<iouny> agessown

US* " “gS7S Ul IIAIAS YOrd 10] {us‘¢s ‘gs} puds s

Us™‘gS‘ZS AIIAIIS Yord 10 ‘udvd zavd [avd; <jounf>xs [s~uvyd 113su|

177

AAQ ‘A4q ‘94q 2dA) Jo [1] = <1ouny>XSS™ ueyd ueyd :s1djoweted ¢ dIe 1Y) JI ‘QOUBISUL JO]
Qwieu UONoUNy Y} SI <JoUny> pue
(ured--zaed‘red) ur pojess s1ojowered Jo roquunu Ay} Yrm

(ur"7)a3uel UL ST X UM <Jounf>xs[s~ upyo unyd [ouueyd e djeard (ured gred‘yred)<iounj> agessawn

Us™‘¢s“zs Ul 90IAIIS YOrd I0J {us-‘¢s ‘gs 101y 9AIIAI TS

e[owoIdJ oyDx

SO[NY UONBULIOJSURL], (7 ¥ 9[qRL

XChor

Table 4.3: Transformation Rules-cont’d

fPromela

sequence(P1 P2)

paralel(P1 P2)

select expr (P1 P2)

{fPromela — equivalent — P1};{ f Promela — equvalent — P2};

fPromela-equvalent-P1; fPromela-equivalent-P2;

if
:: fPromela-equivalent-expr —
if
::fPromela-equivalent-P1;
:: fPromela-equivalent-P2;
fi;
:: else = skip;

fi;

178

‘3p
(drys « aspo
‘1d-1uareanbo-e[owoig) « juawyoeneda-juareamnbo-eowoigy ::
p3
‘g
‘dDys « os[o ::

‘1d-1usreArnbo-ejowo1j « Jdxo-juareambo-eowoidy

JuowIyOeNY AN[IqRLIBA

hi! 1d (adx9)paend

‘po

eaIq « IS ::

‘Zd-1udreamba-eowo1dy ¢ [J-1useamnba-eowold) « Idxo-juareamnba-eowogy
op (2d 1d) 1dxa yeadaax
B[owoIdJ h(01119) %

P.JUOD-S[NY UOTIBWIOJSURI], ' 9[QRL

179

4.3.3 Model Checking After Transformation

After the transformation, fPromela specification and related feature model of the ap-
plication which includes a set of choreography and services is ready to be checked
against deadlocks and assertions. No assertion is added during the transformation.
Developers and testers can add user defined assertions and required system properties
to fPromela specification, which can afterwards be checked against these properties

with the help of SNIP tool[50].

From the src folder of the model checker SNIP, user verification can be verified with
following command line code, meaning that appname.pml fPromela file is checked

with appname.tvl feature model file, where appname is the name of the application:
/snip -check -fm path/to/appname.tvl path/to/appname.pml

If there are no deadlocks or assertion violations, the model works fine. Otherwise, via
SNIP output, the developer can investigate the source of the problem. The process
flow might not be able to continue and reach the final state because of its feature
model selections and restrictions. SNIP outputs the line where the process gets stuck
in the infinite loop. For instance, if one of the interactions, send or receive, is absent
which results in the whole choreography is not processing any further, then a deadlock
occurs. It repeats itself waiting for a result and finally produces an error indicating
where the deadlock occurs as an expression with features. The feature expression or
absent interaction give a clue about what to change. Correction can be done directly
in fPromela and feature model or in XChor models. If XChor models or variability

specifications are tailored, fPromela and feature model files can be reproduced by

Table 4.5: An excerpt of feature list for fPromela specification

typedef features {
bool Cruise;
bool Carrental;
bool Activities;
bool Hotel;
bool Airline

Vi

features f;

180

using transformation implementation which is a time saving approach for service
oriented application developers. Moreover, for semantic flow of the application, de-
velopers can define new variables and write assertion statements in order to ensure

the choreographies behave as intended.

4.4 Verification of The Case Study

Case Studies provided in Section are used here to demonstrate the verification

approach step by step.

4.4.1 Travel Itinerary - Single Choreography

As a single choreography specification, travel itinerary along with its configuration
interface are transformed to FTS. A TVL model file is constructed by following the
steps explained in Section |.3.1|and PML file describing planitinerary function of

the choreography with variability in Section {4.3.2] Excerpts from constructed feature

Table 4.6: An excerpt from constructed feature model in TVL

root Applicationf{
group allOf({
Travelitinerary group allOf{
Itinerary group oneOf({
Vacationpackage group allOf({
Facilities group group[0..3]{
Cruise,
Carrental,
Activities
br
Booking group allOf{
Hotel,
Airline
by
b
Regular group allOf({

181

model is listed in Table 4.6 and a part of fPromela specification in Table

Travel itinerary feature model includes only features related to "Itinerary" configura-
tion variation point and related constraints. Feature list includes only the leaf nodes of
the feature model which are used in PML file in order to specify variation in behavior.

Full TVL and PML file contents can be found in Appendix [D]

Travel itinerary choreography realizes only one function planitinerary which is trans-
formed to fPromela as an active proctype. In the excerpt of generated fPromela code
indicated in the variable parts dependent on Airline feature (f.Airline) are covered
with gd..dg;. Traveler sends travel agency a trip query with startdate, enddate and de-
tails parameters in the first chan_travelertravelagency_querytrip!startdate,enddate,de
tails; line. Then if Airline features becomes true, chan_travelagencyairline_request
pricelstartdate,enddate; line is executed; travel agency service sends a price request

to airline service along with startdate and enddate parameters.

Table 4.7: An excerpt from generated fPromela code for travelitinerary choreography
of Travel Itinerary System

active proctype planitinerary () {

{
chan_travelertravelagency_querytrip!startdate,enddate,details;

bi

{
gd
::f.Airline ->
chan_travelagencyairline_requestprice!startdate, enddate;
::else —> skip;
dg;

if
ciif
t:if
::(hotelbookingconfirmation == temp_hotelbookingconfirmation
&& flightticketconfirmation == temp_flightticketconfirmation) ->
gd
::f.Airline —>
temp = temp+l;
{
chan_travelagencyairline bookflight!arrival, departure;
chan_travelagencyairline_bookflightnot?notification;
bi

182

4.4.2 Biometric Security System - Multiple Choreography

Biometric Security System has three choreographies interacting with each other, namely
adaptablesecuritysystem, credentialmng and alert. These three choreographies along

with their configuration interfaces are transformed to FTS.

Table 4.8: An excerpt from constructed feature model in TVL

root Application{
group allOf({
Adaptablesecuritysystem group allOf({
Authentication_type group someOf {
Biometrics group allOf({
I_encryption_parameters group allOf{
Setparams
br
I_auth_type group [1..1]{
Fingerprint,
Fingervein,
Iris,
Face

}I
Credentialmng group allOf({
opt Biometricdevice,

Alert group allOf{
Emergency_notification group someOf{
Telephonecall,
Mediasend

}

Setparams_4 —-> Setparams;

A TVL model file is constructed by following the steps explained in Section [{.3.1]
and fPromela specification file indicating verify and enroll functions of adaptablese-
curitysystem choreography, alert function of alert choreography, and getcredentials
function of credentialmng choreography with variability in Section [{4.3.2] Excerpts
from constructed feature model is presented in Table [.8] and a part of fPromela
specification in Table @.10/and Table @.TT] Adaptable security system feature model

includes features for each choreography indicating their configuration variation points

183

and external variation points and related constraints. Feature list includes only the leaf
nodes of the feature model which are used in PML file in order to depict variation in

behavior. Full TVL and fPromela specification as a PML file content can be found in

Appendix [D]

Table 4.9: An excerpt of feature list for fPromela specification

typedef features {
bool Setparams;
bool Fingerprint;
bool Fingervein;
bool Iris;
bool Face;
bool Defaultparams;
bool Mode_offline;
bool Mode_online;
bool Faketransaction

bi

features f;

Adaptable security system choreography realizes four functions verify, enroll, alert
and getcredentials which are transformed to fPromela as an active proctype. In the

excerpt of generated fPromela code depicted in Table

Table 4.10: An excerpt from generated fPromela code for Adaptable Security System

active proctype verify () {
{
gd
::((f.Fingerprint && !f.Fingervein && !f.Iris && !f.Face) ||
(f.Fingervein && !f.Fingerprint && !f.Iris && !f.Face) ||
(£f.Iris && !f.Fingerprint && !f.Fingervein && !f.Face) ||
(f.Face && !f.Fingerprint && !f.Fingervein && !f.Iris)) ->
do
:: (noofbiometricauthtypeselected!= 0) ->
chan_userchor_credentialmng_getcredentials!34;
chan_userchor_credentialmng_getcredentials?processeddata;
chan_chor_credentialmngencryption_setparams!parameters;
noofbiometricauthtypeselected = noofbiometricauthtypeselected - 1;
::else -> break;
od
::else —> skip;
dg;
bi

184

Table 4.11: An excerpt from generated fPromela code for Adaptable Security System-
cont’d

gd
::f.Mode_online -> temp = temp+l;
{ chan_tempthirdparty_getconnection?temp; };
{ chan_thirdpartyencryption_setparams!parameters;};
:else -> skip;
dg;

}

active proctype enroll () {

gd

::f.Mode_online -> chan_encryptionthirdparty_savehasheddata!hasheddata;
::else —> skip;

dg;

gd

::f.Mode_offline -> chan_encryptionstorage_sethasheddata!hasheddata;
::else —> skip;

dg;

}
active proctype alert () {

gd

::f.Telephonecall -> chan_cameraalertsender_call!destination;
::else —> skip;

dg;

}
active proctype getcredentials () {
{
gd
::f.Biometricdevice -> temp = temp+l;
{chan_tempconnection_connectdevice!deviceid; };

::else —> skip;
dg;

the variable part condition related to Fingerprint, Fingervein, Iris and Face features
represents that if one of the features are selected, then the do..od; repeating part is

executed until noofbiometricauthtypeselected is zero. After this part is executed or

185

skipped, if Mode_online feature is true, the variable part is executed sequentially; first

!

"chan_tempthirdparty_getconnection?temp;"” and then " chan_thirdpartyencryption
_setparams!parameters;". In other words, after thirdparty service receives a getcon-

nection message, it sets the key information as parameters to encryption service.

After TVL and fPromela files are generated, they are ready to be verified by the SNIP
tool. Travel itinerary system has no deadlocks or assertion violations, so the output
of the SNIP tool is as follows indicating that 772 states are explored while executing

possible choreoraphies:

No never claim, checking only asserts and deadlocks..
No assertion violations or deadlocks found

[explored 772 states, re-explored 0].

There are several reasons why a deadlock occurs in choreographies; for instance a
receive without a send action and the number of receives exceeding the available
channel size. It can be thought that when a send interaction is specified, there is
an implied receive associated with that send interaction. However, if only a receive
interaction is defined, there is no way to make sure an associated send interaction
exists. This situation results in a deadlock and whole choreography cannot process

any further.

When there is no associated send interaction with the following receive statement
as in "responsewindow receive fromcomparison message show()", SNIP tool outputs
information about (i) where the deadlock occurs, (ii) which feature selection causes

this deadlock and (iii) the program stack information provided as follows:

No never claim, checking only asserts and deadlocks..
Found deadlock [explored 42 states, re-explored 0].
- Products by which it is violated (as feature expression):
(Videorecord & Biometricdevice & Faketransaction &
!'Fingerprint & Fingervein) | (Videorecord & Biometricdevice

& Faketransaction & Fingerprint & !Fingervein)

- Stack trace:

features =/
globals.temp =0
globals.notification =0

186

—— Final state repeated in full:

features = (Videorecord &
Biometricdevice & Faketransaction & !Fingerprint & Fingervein) |
(Videorecord & Biometricdevice & Faketransaction & Fingerprint

& !Fingervein)

globals.temp =0
globals.notification =0
globals.usernamepass = 34
globals.fakeinterface =1
globals.temp_fakeinterface =1

pid 00, encryption @ end
pid 01, credentials @ end
pid 02, verify @ NL129

The deadlock can be resolved in two different ways.

1. Convert receive interaction "responsewindow receive fromcomparison message

show()" to a send interaction "comparison sendresponsewindow message show()".

2. Add a new send interaction before receive: "comparison sendresponsewindow
" " . . .
message show()" preceeds "responsewindow receive fromcomparison message

show()".

Developers can also provide their own TVL feature models to be used in verifica-
tion in SNIP. Transformation from XChor to fPromela does not add any assertion to
the behavior model. Developers can insert additional assert statements to verify the
system semantically. Assertion violations can result from wrong semantics of TVL

feature model.

The TVL model of adaptable security system choreography, mode_online and mode_
offline are optional variants of authentication_mode. In adaptable security system,
result is defined for newly inserted assertion statement as "int result;”. In verify
function, result indicates that "user" is verified when it equals to one or that "user" is
rejected when it equals to zero. In the following setting of adaptive security system,
the "comparison" service returns zero as the comparison result which is the case for

mode_offline.

187

active proctype comparison() {

chan_tempcomparison_compare!0;

active proctype verify () {

gd
::f.Mode_online ->
temp = temp+l;
{
chan_encryptionthirdparty_verify!l;

chan_encryptionthirdparty_verify?result;

gd
::f.Faketransaction —>
chan_thirdpartycomparison_fakeanalysis!l;
chan_thirdpartycomparison_fakeanalysis?fakeinterface;
::else —> skip;
dg;

bi

::else —> skip;

dg;

gd
::f.Mode_offline —->
temp = temp+l;
{
chan_encryptionstorage_gethasheddata!temp;

chan_storagecomparison!temp;

chan_tempcomparison_compare?result;

assert (result == 1);

gd
::f.Faketransaction ->
chan_storagecomparison_fakeanalysis!comparisonresult;
::else —> skip;
dg;

i

::else —> skip;

dg;

188

As the optional behavior of mode_online and mode_offline variants, there is a pos-
sible selection that two of them are set to be true simultaneously. Then, the vari-
able parts guarded by f.Mode_online and f.Mode_offline conditions are executed se-
quentially. First the result coming from "thirdparty" service is set to one because
f.Mode_online part is executed. Then with the result sent by "comparison" service,
the value of result is set to zero. The assertion ensuring that whether the result came
from "thirdparty" service or not is violated. SNIP output of assertion violation is

depicted as follows:

No never claim, checking only asserts and deadlocks..
Assertion at line 139 violated [explored 21 states, re-explored 0].
— Products by which it is violated (as feature expression):
(Faketransaction & !Fingerprint & Fingervein & Mode_offline &
Mode_online) | (Faketransaction & Fingerprint & !Fingervein &

Mode_offline & Mode_online)

Il
-

globals.temp_fakeinterface

pid 00, encryption @ end
pid 01, comparison @ end
pid 02, credentials @ end
pid 03, verify @ NL139
pid 04, enroll @ NL198
pid 05, alert @ NL230
pid 06, getcredentials @ NL265

The system generates two different results values due to an error of TVL seman-
tics because two different comparisons are executed at the same time. Therefore,
mode_online and mode_offline features should be mutually exclusive and the rela-
tion between them should be changed from optional to alternative in the TVL feature

model.

4.5 Discussion

It might seem that constructs are easily converted to fPromela equivalent ones; how-

ever structural activities preserving sequential behavior need more effort due to native

189

concurrent behavior of fPromela. Transforming more than one choreography to a sin-
gle fPromela specification is another challenging issue. Moreover, transforming vari-
ability associations and their logic are handled choreography-wide. Fault handling

requires further research and will be also transformed into fPromela.

Table 4.12: Verification Results

Choreography Verification
Choreography Function Interact Variation TT (ms) EX (ms) ES
Point

1 1 10 1 12 447 41

1 1 20 1 20 483 316

1 2 20 1 111 437 2356

1 1 10 3 29 427 81

1 1 20 3 159 595 772

1 2 20 3 146 589 17408

1 1 10 5 74 462 337

1 1 20 5 81 496 1636

1 2 20 5 195 963 32100

2 2 15 5 439 758 10082

2 2 30 5 529 1200 37244

2 2 30 10 307 5734 114926

3 3 30 5 940 2109 69314

3 3 30 10 704 7671 109336

3 4 30 5 638 9352 323331

3 4 30 10 334 46704 509925

A set of experiments are conducted with one to three choreographies (Chor) including
one to four functions with totally ten to thirty service interactions (Interact) and vari-
ation points (internal, external and configuration) ranging from one to ten. For one
choreography experimentation travel itinerary choreography is utilized, while two
and three choreography experiments adaptable security system is used. Transforma-
tion times (TT) based on our approach, the execution times (EX) of verification with
SNIP in milliseconds and the number of explored states (ES) are represented in Table

4.12
The results show that the execution time to transform and prepare FTS models in-

190

creases with the number of variations, choreographies and functions along with their
interactions. Verification is getting slower with the increase in the variation, due to
increase in the number of explored states. Because each choreography function is
executed as a parallel active process in FTS, an increase in function number results
in increase in execution time and explored states. Considering execution times in
milliseconds, verification of variable choreographies takes reasonable effort even in
case of increasing the numbers of variations, choreographies, functions and interac-
tions. Our approach provides the verification basis for variable XChor choreographies

which can then be enhanced by user defined assertion and property additions.

191

192

CHAPTER 5

TRANSFORMATION OF XCHOR MODELS TO EXISTING
LANGUAGES

This chapter comprises a step by step approach for transforming XChor models to
existing languages, namely BPEL4Chor, VXBPEL and BPEL. Existing choreography
or orchestration languages can not fulfill the requirements of variability specification
in choreography and variability association with interacting orchestrations. Although
XChor Language is a richer model, VXBPEL and BPEL4Chor are closer specifica-
tions to XChor representing variable orchestrations and choreography respectively.
For VxBPEL, the lack of information about internalization or externalization of vari-
ation points restricts our approach. Whole COVAMOF model should be provided
along with VXxBPEL specification. Moreover, XChor variability attachment specifi-
cations have a complex structure to directly transform to VXBPEL variability specifi-
cation easily. In order to overcome this situation, an additional mechanism is needed.
For BPEL4Chor, there is no support for variability specification which requires a
variability handling mechanism other than choreography specification. Transform-
ing to BPEL4Chor model after resolving all variability is a solution to this situation.
On the other hand, BPEL4Chor model can be transformed to XChor models without
variability specification. Therefore, XChor models are not directly transformed fully
to existing languages and transformations are processed along with assumptions and

further requirements.

193

5.1 Transformation to BPEL4Chor, VXBPEL and BPEL

The target models can not satisfy representation of variable XChor models wholly.
Therefore, first differences and similarities between models are discussed, then as-
sumptions and requirements for the transformation are stated in the following subsec-

tions.

5.1.1 Differences and Similarities Between Models

5.1.1.1 BPEL4Chor and XChor Models

Forming Choreographies Creating and generating choreographies using BPEL4Chor
Language can be top-down and bottom-up. In the top-down approach, a chore-
ography including topology and grounding is specified in BPEL4Chor language
and all interacting orchestration skeletons as abstract business processes are
created. In bottom-up approach, a choreography specification in BPEL4Chor
can be generated from a set of already abstract process definitions of BPEL
orchestrations. Message links and technical information in groundings are
gathered from WSDL interfaces of orchestrations. Like BPEL4Chor, chore-
ographies can be formed and gathered either top-down or bottom-up in XChor.
However, XChor does not include all technical information required for chore-
ography grounding, therefore the skeleton of choreography grounding is gen-
erated with blanks to filled later by developers. The developer should fill the
blanks with the appropriate function names in WSDL. In the presence of the
abstract process definition in a configuration interface, the BPEL orchestration
skeleton is constituted using this definition and parts of choreography ground-

ing is filled through this information.

Multiple Choreography Specification BPEL4Chor allows developers to define only
one choreography, whereas XChor facilitates to define and reuse multiple chore-
ographies. Therefore, for each choreography in XChor, there should be one
BPEL4Chor choreography topology and grounding models. To interrelate all
choreographies in XChor, each choreography specification in BPEL4Chor re-

veals its interface as a service to enroll in the ultimate choreography in BPEL4

194

Chor.

Executability Netiher XChor nor BPEL4Chor models are executable. BPEL4Chor
is transformed to BPEL abstract process definitions which requires further spec-
ification for executable processes. Likewise, XChor models are not relying on

any executable structure.

Service Interactions BPEL4Chor has bindSenderTo to send a link from source to
destination. Besides, it is used for the realization of refersTo(<a set of ser-
vices>) withnotification in XChor. With partifipantRefs, when service A sends
a message to service B, if service C is defined in partifipantRefs, then service

B can directly interacting with service C and service A is out of concern.

Event Handling BPEL4Chor is based on BPEL specification which includes event
handling mechanism. Therefore the whole choreography with orchestration
specifications can specify required events, whereas XChor has no support of

event handling.

Fault Handling BPEL4Chor is based on BPEL specification which enables the defi-
nition and handling of faults, while XChor has a basic fault specification mech-

anism which can be mapped to that of BPEL4Chor.

5.1.1.2 VxBPEL and XChor Models

Abstract Process Definition Configuration files of services comprise abstract pro-
cess definitions if specified which can be seen as BPEL abstract processes with
variability. VXBPEL does not specify abstract business processes. However,
from abstract process definitions of services, a skeleton of VXBPEL orchestra-

tions can be generated with variability information specified in COVAMOF.

Variability Representation Some variability specifications in abstract process def-
initions can not directly be transformed to VXBPEL equivalent ones due to
different characteristics of variability reference mechanism in service compo-

sitions, namely the variability attachment structure.

Interface Variability VxBPEL does not address interface variability, while XChor

has the ability to alter service and choreography functions and parameters via

195

their configuration interfaces. VXBPEL can only be used for variability in com-

position in XChor context.

5.1.1.3 BPEL and XChor Models

Service Interactions Main goal of BPEL specifications is to represent composition
among collaborating services at orchestration level. Therefore, BPEL is ca-
pable of designating all service interactions specified in XChor choreography
specifications and interactions stated in abstract business process part of the

services.

Variability Representation Only the parts without variation indicating service in-
teractions can be transformed to BPEL specifications due to lack of variability

support in BPEL.

5.1.2 Assumptions and Requirements for Model Transformation

5.1.2.1 XChor Models to BPEL4Chor Transformation

o All interactions have sender and receiver specification.

e No unbound variation point exists in XChor choreography specification, be-
cause BPEL4Chor does not have any support for variability management mech-
anism. All variation points of XChor choreography specification should be re-

solved and bound before transforming to BEPL4Chor.

e All choreographies should have a service interface in which choreography func-

tionalities are declared. This is a must for multiple choreography interaction.

e WSDL files of interacting services and choreographies are created for web ser-
vices from technical point of view which resides in grounding part. But these

creations in transformation is not a must.

e BPELA4Chor can interrelate VXBPEL variable orchestrations by means of or-

chestrations’ provided interfaces without variability.

196

e [If any choreography has variability in choreography specification, an error is

generated and transformation of XChor models to BPEL4Chor is suspended.

e BPELA4Chor enables the specification of different types explicitly via partic-
ipantTypes, whereas XChor assumes that every service has its own type. In

other words, every service represents a different type in XChor.

o All interacting services have abstract process definition parts in their configu-
ration interfaces. In BPEL4Chor, topology model includes only message links
and all structured interaction logic reside in the abstract business process defini-
tions of services. However, in XChor all interactions are modeled within chore-
ography specification if service configuration interfaces do not include abstract
process definition parts. Therefore, the behavioral logic of each interacting ser-

vice should be specified and be consistent with choreography specification.

5.1.2.2 BPEL4Chor Models to XChor Transformation

o BPEL4Chor follows single choreography approach, so there is only one chore-
ography specification defined.

e As BPEL4Chor does not have any support for variability management mecha-
nism, no variability in configuration interface for service and choreography is

specified.

e WSDL files should be provided which specifies service functions and their pa-

rameters. The service functions are used to construct service interfaces.

e XChor supports a a basic fault handling mechanism and does not support event
handling. Therefore, the parts specifying event handling mechanism in BPEL4Chor

are not transformed to XChor.

e The global view indicating control flow is not provided by BPEL4Chor mod-
els. Therefore, to help constructing choreography specifications, messagelLink

specifications are specified sequentially.

197

5.1.2.3 XChor Model to VXxBPEL Transformation

e XChor choreographies are transformed to a set of variable VXxBPEL orchestra-

tions.

e XChor service orchestrations, transformed to VXBPEL equivalent, are these

that have no variability mapping specification across a choreography.

e Due to structural differences in variability specification, an additional configu-
ration file which includes variability attachment logic should be generated after

transformation.

e All transformed VXBPEL orchestrations have a service interface; it can be a

WSDL file.

Table 5.1: Mapping of Variability Modeling of XChor and VxBPEL

XChor COVAMOF
Variation Point Variation Point
External Variation Point None
Internal Variation Point Variation Point
Configuration Variation Point Configurable Variation Point
Variant Variant
Constraint Dependency

5.2 The Transformation Approach to BPEL4Chor, VxXBPEL and BPEL

After binding variability of choreographies, two approaches can be applied:

1. The choreographies are transformed to BPEL4Chor choreography models and
interacting services are transformed either to BPEL or VXBPEL depending on

whether configuration interfaces exist or not.

2. The choreographies are transformed to VXBPEL variable orchestrations and
interacting services are transformed either to BPEL or VxBPEL depending on

whether configuration interfaces exist or not.

198

5.2.1 Transformation to BPEL4Chor

Each XChor choreography specification and its interacting services are transformed
to BPEL4 Chor models; a topology, a grounding and a set of abstract process defini-
tions due to lack of support for multi choreography concept in BPEL4Chor. Besides,
XChor supports multi functionality in choreography specification, so there should be
one BPEL4Chor topology for each defined function in the choreography specifica-
tion. Topology model, comprising participants and message links, is constructed from
choreography specification. Grounding model and wsdl definitions are formed with
the help of interacting service interfaces. Participant Behavior Description model is
created from the abstract process definition part of each interacting services. How-
ever, XChor does not force to define all send activities corresponding to receive ones.
Therefore, all related corresponding send and receive activities are created during
transformation. If any interacting service has unbound variability, then the service is
transformed to VXBPEL specification which is described in Section Transfor-
mation rules are listed in Table [5.2]and Table [5.4]for the Topology model, Table [5.5]
for the Grounding model, and Table for the Abstract Business Process Definition
model. Table [5.7]displays the case if a service starts with its interaction with a receive

interaction, then createlnstance = "yes" is added within receive tag.

In Topology, message links describe the connection between two services along with
their activities; send and receive. The technical part, the binding of activities to real
wsdl functions is done in Grounding. Therefore, there is always a corresponding

entry in grounding related with a message link.

5.2.2 Transformation from BPEL4Chor

BPEL4Chor models defining a choreography; namely topology, grounding and par-
ticipant behavior description model are transformed to XChor models; choreogra-
phy specification, service interfaces, configuration interfaces of services respectively.
As BPEL4Chor models define only one choreography through topology model, only
one choreography specification in XChor is created. The topology model specifies

only message links between service, so the control flow semantics are scattered over

199

Table 5.2: Rules for Transformation to BPEL4Chor

XChor Choreography Model

BPELA4Chor Topology Model

Choreography name

Topology name

choreography <chorname>

Function <functionname>:

<topology name="<chorname_functionname>"
targetNamespace="http://example.com/configuredchoreography/"<chorname>"
xmlns="urn:HPI_IAAS:choreography:schemas:choreography:topology:2006/12"
xmlns:chordef="http://example.com/configuredchoreography/"<chorname>"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="urn:HPI_IAAS:choreography:schemas:choreography:

topology:2006/12 http://www.iaas.uni-stuttgart.de/schemas/bpel4chor/topology.xsd">

</topology>

200

<sadA1yuedronied/>
</, <[QOTAIIS> < [IDIAISS>, =UOT)

-duosaqaonaeyagiuedronred | odA)~<901A19s> =owreu adA juedronred>
</, <[PWBUIOYD >:<[dweuIoyd >, =uondLos

-orotaeyagqiuedionied | odA1"<[owreuioyd >, =oweu adA[juedonred>

<sadAyuedonred>
saqdeaso
sadf yuedpnaied -310yd pue SIDIAIIS SUrORINUI JO SIAAT,
<sjuedonied/>

</, 2dAY < 1901A19s>, =2dA) | <]901AT9s>, =owreu Juedronred>
</, 2dA)y < 1owreuwIoyd>, =adA) |, [oweuIoyo>, =sweu juedonred>

<syuedronied>

<]QIIAIIS> 2014428 J1oduil

<JowrewIoyd> Aydp.1302.40Yyd> asn

sjuednieq

sayd

-BIS02J0YD puR SIIAIS JundeIdul

P.IU02-10YD ' TAd g 0 UONBULIOJSURIL], J0J SO[NY :€°C 9[qeL

201

Table 5.4: Rules for Transformation to BPEL4Chor-cont’d

XChor Choreography Model

BPELAChor Topology Model

Choreography specification

Participant Types

Partner type definitions for multiple send

Partner Set definition

Partner type definitions for multiple re-
ceive
Partner type definitions for multiple re-

ceive

<participantType name="< function>_<sender>_type" participantBehav-
iorDescription="< function>_<sender>:< function>_<sender>"/>
<participantSet =~ name="< function>_<sender>" type="< func-
tion>_<sender>_type">

<participant name="<service2>" scope="<service2>:<function>_FE" /> for
each receiver service2,service3,...servicen

</participantSet>

<participantType name="< function>_<sender>_type" participantBehav-
iorDescription="< function>_<sender>:< function>_<sender>"/>
<participantType name="< function>_<receiver>_type" participantBehav-

iorDescription="< function>_<receiver>:< function>_<receiver>"/>

202

,<uonodUNI>1a3, =ANANOYPUSS |, <[JTAIIS> =IOPUIS (<s1910wrered>)<uonouny> agessow

SUIT<uonouny>, =ouleu yurjogessow>

{< 72910495 >} WOIJ 9ATII <[IDIAIIS>

</, <U0ToUNJ>, =dWENQFBSSoW
<uonNOUNJ>, =AITANOYIAISIAI |, <ZIIIAIIS> =IOATIIAI

"

L, <u0noUNI>193, =AJAIIOYPUSS , <[JIAIIS>, =I9PUIS

Surj<uonouny>, =oweu yurjogessouws> (<s1ojowrered>)<uonouny> oFessow

{< g@910.495 >} puas <[901AIS>

SYUI'] 93BSSIA] SAIydea30310Yd pue SINIAIIS SundeIu]

[2Po £3ojodof 10y TAdd

12POW &ydpi3oatoy)) 10yH)x

P.JU0d-10YD ' T g O} UONRWLIOJSURI], 10J S9[NY :G°GC 9[qeL.

203

Table 5.6: Rules for Transformation to BPEL4Chor-cont’d

XChor Choreography Model

BPELA4Chor Grounding Model

For every messagelink created in topology

a corresponding groundign specification

<messagelLink name="<receiverfunction>Link" porttype =

n

"ns:receiver_pt

operation = <receiverfunction/>

<servicel> send {< service2 >}

message <function>(<parameters>)

PBD of servicel

<"invoke" wsu:id="<function>"/>

<servicel> send
send {< service2 >, < service3 >,.. < servicen >}

message <function>(<parameters>)

PBD of servicel
< forEach wsu:id="<function>FE" paralel = "yes">
<scope wsu:id="<function>Scope">
<sequence>
<invoke wsu:id="<function>">
</sequence>
</scope>

<forEach>

204

<yoeHIO}>
<adoos/>
<douanbas/>
</,S9K,, = 90UBISU[AIBAID , <UOIIOUNJ>, =PL:NSM JATIII>
<douanbos>
<, 2doog<uonouny>, =pr:nsm 2doos>
<, S9K,, = [orered , g<uonounj>, =pLnsm yoegioj >

[991A13s JO d49d

(<s1yowered>)<uonouny> d3essow
{< uarauas > ‘< ¢a010.495 > ‘< 721495 >}

WOIJ QAT <[IDIAIIS>

</ ,<uonoduny> =pr.nsm dAI0I>

10 </,S9K,, = 90UR)SU[ILAID , <UOTIOUNJ>, =PL:NSM IATOII>

791AIAS JOo 9d

(<s1oyowrered>)<uonouny> a3essow

{< 79210495 >} WOIJ IATIII <[IOTAIIS>

(@gd) uondiidsaq 101avyag jupdidivd 10y Tadd

12POW &ydpi3oatoy)) 10yH)x

P.JU0d-10YDH T g O} UONBWLIOJSURL], J0J S9[NY /'S 9[qeL

205

Table 5.8: Rules for Transformation to BPEL4Chor-cont’d

XChor Choreography Model

BPELA4Chor Participant Behavior Description (PBD)

repeat expr (P1 P2)

<while>

<condition opaque = "yes">
BPEL4Chor-equivalent P1
BPEL4Chor-equivalent P2

</while>

sequence (P1 P2)

<sequence>
BPEL4Chor-equivalent P1
BPEL4Chor-equivalent P2

</sequence>

paralel expr (P1 P2)

<flow>
BPEL4Chor-equivalent P1
BPEL4Chor-equivalent P2

</flow>

guard(expr) P1

<if>
<condition opaque = "yes">
BPEL4Chor-equivalent P1

</if>

206

participant behavior descriptions. The sequence of the participantSet specifications
and scoping mechanism are used to reveal which participant behavior descriptions
are interacting with each other. Type definitions and partnerSet specifications are
not covered by XChor, so these are not transformed. While service interactions are
formed by message links in topology model, concrete service functions are taken
from grounding model and control flow semantics come from participant behavior
description in order to create choreography specification. However, still developer
intervention is needed to preserve control flow semantics, because although message
links are provided in topology, the control flow of the global interaction is missing.
Service interfaces are constructed based on the grounding model. For each participant
behavior description model, one configuration interface without variability specifica-
tion is constructed. Abstract process definition part of service configuration interface
is filled with participant behavior description model content. Transformation rules are
listed in Table [5.9]for Choreography Specification, Table [5.10]for the Configuration
Interface, and Table [5.13]for the the Service Interfaces.

As XChor enables to define more than one function for a choreography, a <func-
tionname> should be provided by developer describing the whole service interaction
in BPEL4Chor. MessageLinks in Topology model cannot specify service composi-
tion on its own, Participant Behavior Descriptions are used for revealing control flow

semantics. The process of forming choreography specification is as follows:
1. Follow the messageLink specification sequence in Topology model.

2. Start from the first messageLink specification within messageLinks.

3. Process Participant Behavior Descriptions of sender and receiver and find sendAc-

tivity and receiveActivity in BPEL specification.

4. If there is a structured activity above this service interaction, then use this struc-

tured activity in choreography specification as is.

5. Check the consistency of structured activity including these activities in Partic-
ipant Behavior Descriptions of sender and receiver. If they are not consistent
with each other, add this new structured activity of callee service to the chore-

ography specification.

207

Table 5.9: Rules for Transformation from BPEL4Chor

BPEILA4Chor Topology Model

XChor Choreography Model

Choreography name

Topology name

<topology name="<chorname>"
targetNamespace= "http://example.com/

configuredchoreography/"<chorname>"

choreography <chorname>

</topology>
Participants Interacting services and choreographies
<participants>

<participant name="<servicel>" import service <servicel>

type="<servicetype>_type"/>

</participants>

participantTypes

<participantTypes>
<participantType name="<servicetype>" participant-
BehaviorDescription="<servicel>:<servicel>"/>

</participantTypes>

Choreography Function

Function <functionname>:

where <functionname> is provided by developer

208

6. Process the next messageLink and go to step 3.

5.2.3 Transformation to VXBPEL and BPEL

There are two cases; transforming from XChor choreography and transforming from
abstract process definition for any XChor service. In the XChor choreography trans-
formation case, for each function of the choreography specification there is one equiv-
alent VXBPEL variable orchestration with its interface represented in WSDL. In ab-
stract process definition of service case, only one VXBPEL variable orchestration
is created as an abstract process in BPEL with variability attachments. Interac-
tions in functions of choreography and abstract business processes are transformed
to VXxBPEL or BPEL-equivalent ones with the help of transformation rules listed in
Table [5.14] Table [5.16] and Table If any unbound variability exist in ser-
vice’s configuration file, then abstract process definition is converted to VXBPEL-
equivalent, otherwise to BPEL-equivalent. Variation point specifications in XChor
configuration interfaces and variability attachments indicating variable parts of chore-
ography specification are transformed to VXBPEL ones as displayed in Table [5.1I§]
and Table

VxBPEL configures service composition based on specified configurable variation
points which are realized by variation points defined within an orchestration. Con-
figuration variation points in configuration interfaces are directly converted to Con-
figurable variation points, however the relation between variants can not be spec-
ified, such as mandatory, optional or alternative. In XChor the variable parts are
labeled with variability attachments which can include more than one variation point
and related variant selection. For instance "#vp i_auth_type ifOneSelected(finger-
print fingervein iris face)" and "i_auth_mode ifSelected (mode_online)#". However
in VxbPEL inline variability enables to define simple variation point and variant spec-
ifications such as one variation point along with multiple variants. We can not easily
settle complex variability logic like in "#vp i_auth_type ifOneSelected(fingerprint
fingervein iris face) and i_auth_mode ifSelected(mode_online)#". The complex logic
can be converted to VXBPEL one, but the VXBPEL code gets complicated. There-

fore, variability attachment transformation is changed with regard to its complexity.

209

Table 5.10: Rules for Transformation from BPEL4Chor- cont’d

BPEILAChor Participant Behavior Description (PBD) XChor Configuration Interface

For each PBD

<process ... Configuration interface vconf_<servicename> of service
<servicename>

name=<servicename> ... >
PBD of servicel <servicel> receive from <service2>
<receive wsu:id="<function>" message <function>(<parameters>)
<parameters> information comes from WSDL interfaces

and <service2> information comes from messageLinks

PBD of servicel <servicel> send <service2>
<reply wsu:id="<function>" message <function>(<parameters>)
<parameters> information comes from WSDL interfaces

and <service2> information comes from messageLinks

210

<o[ym/>
7d usreamba-1oyH
1d wusreambe-1oyyx

<, S9K,, = anbedo uonipuoo>

(2d 1d) 1dxa yeadaa <QIyMm>
SQOBJIAUI T(SA\ WOIJ SOWO0D <yoegIo}>
uoneuLIOJUI <s1djowered> pue <adoos/>

<pradoas> yym pajefar

<uoneoyroads joiuedonred woly sawod uonewIojul
'K EAIIAIISS> ‘<ZIITAIIS> QIAYM
(<s1dowrered>)<uonouny> o3essow

{ ‘< gamnauas > ‘< gaoralas >}

UWIOTJ QATOOQI <]OITAIIS>

<dduanbas/>
/,S9K,, = Q0UBISUIIBAID
,<UONOUNJ> =PL:NSM JAIII>
<ouanbas>
<, <prodoos>, =pr:nsm 2doos>
<, Sk, = [orered <pr>,=pr:nsm yoegioj >

[901A13S JO d9d

2opf127u] UODINSLUO) J0Y)X

(@gd) uondridsa(101avyag jupdidivd 10y TAdd

P.u0d -10YDH Tdd g WOIJ UoneWIOJSURL], 10§ S9[ny :11°S 9[qeBL

211

Table 5.12: Rules for Transformation from BPEL4Chor- cont’d

BPELAChor Participant Behavior Description (PBD) XChor Configuration Interface

<sequence> sequence (P1 P2)
XChor-equivalent P1
XChor-equivalent P2

</sequence>

<flow> paralel expr (P1 P2)
XChor-equivalent P1
XChor-equivalent P2

</flow>

if guard(<exp>) P1
<condition opaque = "yes"> where <exp> is provided
BPEL4Chor-equivalent P1 by developer

</if>

212

<y10d/>
<,,<uoned0[3UIpuIq>, =uoned0] ssaippe:deos>

<, <[9J1AIds>,=dwreu 3ulpulg oweueuonouny:suy, = 3urpuiq jrod>

<uoneodo[3ur

-puIgq> 3uUIpuIq <QWEBUIIIAIIS> dweNIod

(‘<zowreuweIRd>‘< [oWRU
-wered>) ndur

<dWeuuonNdUNJ> UONOUNJ

<[QOTAIIS> QOBLIIUI QIIAIIS

<, <OWEBUIIIAIIS>, =OWRU IIATIS>

<a3essow/>

<zoweuwered> =oweu jed>

</, <Jewruwered> =owreu jred>
<, <QWRUUONOUNI>, =dWeu J3essow>
a3essowl yora 10

L <[QOIAIOS> =dUleU SUONIUYIP>

[2POJN 2oDfa21U] 2214425 L0YDX

$I111 "TASM

"JU0d -10YDH TAd g WOIJ uonewlIojsuel], 10J S9Ny :€1°C 9[qeL

213

Table 5.14: Rules for Transformation to VXBPEL and BPEL

XChor Choreography Model

BPEL Model

Choreography specification

<servicel> send {< service2 >}

message <function>(<parameters>)

<bpel:invoke aei:id="<id>" name="<service2>"
operation="<function>" partnerlink="<function>"

inputVariable="<parameters>"/>

<servicel>
send {< service2 >, < service3 >,.. < servicen >}

message <function>(<parameters>)

<bpel:flow>
<bpel:invoke aei:id="<id>" name="<service2>"
operation="<function>" partner-
link="<function>"
inputVariable="<parameters>"/>

<bpel:invoke aei:id="<id>" name="<service3>"

<bpel:invoke aei:id="<id>" name="<servicen>"

</bpel:flow>

<servicel> send <service2>
message <function>(<parameters>)

%<context element> = <service2>.<function>%

<bpel:invoke aei:id="<id>" name="<service2>"
operation="<function>" partnerlink="<function>"
outputVariable="<context element>"

inputVariable="<parameters>">

214

</, <uonesynou>, =d[qerreAindino

J<s1pwered>, =d1qeueA indur

,<uonouny> =yuipouped <uonounj>, =uonerado uoneoyNONIM (<s1ojowered>)<uonouny> a3essow
(<TAIIAIDS> =doWel , <pr>, =plL:Ioe joAur:[adg> {< g@910.495 >} puas <[901AIS>
<mopg:[edq/>

W<]JTAIIS> =0kl , <pPI>,=pIL:Iok dA12dL[adg>

W<JOOIAIIS> =dWRU | <PI> =PIL:Io. dAI0dX:[odq>
</, <sIduwered> =o[qerrea

L<uonoung>, =>yur|

-1ouyred .<uonouny> =uonerado (<s1drowered>)<uonouny> d3esSoW

W<[QOIAIIS> =oWeU <pI>, =pLIdk JAIAL[adq> {< u2020.495 > ‘< £2010.495 > ‘< 72911195 >} WOIJ QAT

<mop:[edg> <]OIAIIS>
</ <sIpouwered>, =o[qeLIEA
L<uonouny>, =yurpouyed <uonounj>, =uonerado (<s1v)owrered>)<uonouny> d3essow

W<[OOIAIIS> =dWRU , <PI>, =PIL:Io. dAT0A1[2dq>

{< 79910495 >} WOIJ IATIII <[IITAIIS>

12PON "TAdd

12POW &ydpa3oatoy)) 10y)H)x

Tddd pue TAdFGXA 0} UONRWIOJSURL], 10§ SI[NY S[°G J[quL

215

Table 5.16: Rules for Transformation to VXBPEL and BPEL- cont’d

XChor Choreography Model BPEL Model
<servicel> <bpel:invoke aei:id="<id>" name="<service2>"
send {< service2 >} message <function>(<parameters>) operation="<function>" partnerlink="<function>"
referedDestinations {< service3 >, .. < servicen >} inputVariable="<parameters>"/>
<bpel:flow>

<bpel:invoke aei:id="<id>" name="<service3>"

<bpel:invoke aei:id="<id>" name="<servicen>"

</bpel:flow>
<servicel> <bpel:sequence>
send {< service2 >, < service3 >,.. < servicen >} <bpel:invoke aei:id="<id>" name="<service2>"
message <function>(<parameters>) operation="<function>" partner-

link="<function>"
in-sequence inputVariable="<parameters>"/>
<bpel:invoke aei:id="<id>" name="<service3>"

<bpel:invoke aei:id="<id>" name="<servicen>"

</bpel:sequence>

216

<Jrodg/>
9pod-uonodeIAU] JuaTeAnba-THdg
<uonipuod:[adq/>, <idxa
wReAIMba-TA4 >, <uonipuod:adg>

<.<pr>,=pree jr:[odq>

uonoeIdu] 9)1sodwo)) 10 JIW0}Y

<1dxo> pren3

<Qym:1odq/>
opod-uonorIAU] JuaTeAINba-THdYg
<uonipuod:[adq/>, <idxa
wReAIba-TA4 >, <uonipuod:[adg>

<,<pr>,=pr:oe aym:pdq>

uonoeIdu] 9)1sodwo)) 10 JIW0}Y

) <1dxo> jeadarx

< douanboas:jodq/>
9poo-uonorIAU] JudTeAINba-TJd g

<,<pr>,=pr:1oe aouanbes:jodg>

(
uonorINU] 9)1sodwo)) Jo JIWoIy

)aouanbas

<mopg:[edq/>
9poo-uonoeIdu] Jud[eAnba-THJg

<,<pr>,=pr:1oe mop:1odq>

(
uornorIAU] 91sodwo)) 10 dIWoYy

)1oqered

19PON TAdd

19POW &ydpi3oatoy)) 10yH)x

PAU0d -Tad 9 pue TAdGXA O} UOneuLIOJsuel], 10J s9[ny :L1°S 2[qeL

217

Table 5.18: Rules for Transformation to VXBPEL and BPEL- cont’d

XChor Choreography Model

VxBPEL Model

<Simple Variability Attachment>
(i) #vp <VP1>

ifSelected(<V1>)
... # Atomic or Composite Interaction
(i))#vp <VPI>

ifOneSelected(<V1>)
... # Atomic or Composite Interaction
(iii) #vp <VP1>

ifAllSelected(<V1>)

... # Atomic or Composite Interaction

<vxbpel:VariationPoint name = VP1>
<vxbpel: Variants>
<vxbpel:Variant name = V1>
<vxbpel:VPBpelCode>
BPEL-equivalent
interaction-code
</vxbpel:VPBpelCode>
</vxbpel:Variant>
</vxbpel:Variants>

</vxbpel:VariationPoint>

218

<uroquonere :;jodqxa/>
<sjueLIeA :[odgxA/>
<jueLeA ;[edgxa/>
<opoDRdgd A 1edgxas>
9pOo-uoIOBIAUI
juareambe-1949g
<9poDredgdA jedgxa>
<IQUNOD A = dwku JueLieA :[odgxa>
<SsjueLIBA :[odqxA>

<IQUNODJA = dWeu juroJuonereA ;jodgxa>

uonoeINuy Aisodwo)) 10 IO}y #
<syuawyoeny Aiqenrep xodwo)H>

dag

12PON "THAd XA

19PO &ydpidoatoy)) 10yH)x

PIU0d -Td 9 pue TAdgXA O} UoneuLIojsuel], 10J so[ny :61°S 2[qeL

219

Table 5.20: Rules for Transformation to VXBPEL and BPEL- cont’d

XChor Choreography Model

VxBPEL Model

<vxbpel:ConfigurableVariationPoint id = "<id>" default-
Variant = "<defaultVariant>">
<vxbpel:Name>"<explanation>"</vxbpel:Name>
<vxbpel:Rationale>...</vxbpel:Rationale>
<vxbpel: Variants>
<vxbpel:Variant name = "<name>">
<vxbpel: VariantInfo>...</vxbpel: VariantInfo>
<vxbpel:RequiredConfiguration>
<vxbpel:VPChoices>
<vxbpel:VPChoice
vpname = "<vpname>"

variant = "<variant>"/>

</vxbpel:VPChoices>
</vxbpel:RequiredConfiguration>
</vxbpel:Variant>
</vxbpel:Variants>

</vxbpel:Configurable VariationPoint>

220

For simple cases the variability is converted to VXBPEL equivalent one, for complex
cases a new variation point is created automatically and the logic of the complex vari-
ability attachment is stored in a newly created configuration file. For instance if there
is a variation attachment residing in choreography specification, then vp_1 and v_1

are created and an assignment is added to the configuration file.

For configuration of VXBPEL variable orchestrations, an additional configuration
mechnasim needed to analyze both VXxBPEL variability specification in configurable
variation points and assignments in configuration file. Contents of the file is as fol-

lows:

vp_l.v_1 = #vp i_auth_type ifOneSelected(fingerprint fingervein iris face) #

Transformation to BPEL4Chor, VXBPEL and BPEL are applied to travel itinerary
system case study and related models and the following files are generated and can

be found in Appendix
e Generated BPEL4Chor files: topology and grounding for travelitinerary chore-
ography and participant behavior description for travel agency,

e Generated VXBPEL file for travelitinerary choreography and its BPEL model
after selection of "airline" variant of "booking" and "activities" variant of "fa-

cilities" variation point.

221

222

CHAPTER 6

VARIABILITY MANAGEMENT IN SOFTWARE PRODUCT
LINES WITH XCHOR

This chapter represents the usage of XChor models in order to provide a solution to
achieve management of variability in Software Product Lines. Software product lines
(SPL) is a set of methods, tools and techniques for developing similar software sys-
tems from a common set of software assets via systematic reuse of commonalities
and management of variability. The coarse building blocks of the system, software
assets define composition rules between a collection of artifacts to achieve a com-
mon goal plus a set of variability. The key issue for effective creation of products
is reusing SPL architecture, both in asset and artifact levels by extending and con-
figuring through variation points. In the asset level, specification of variability, its
effects on composition, its relation with other asset and artifact variability need to be
addressed. In artifact level, variation should be exposed to be configured by assets.
Due to the complex nature of variability, providing a consistent configuration of as-
sets and artifacts is a challenging issue. To address this challenge, XChor is applied to
Software Product Lines approach as a way to cope with variation specifications and

integration of these in both asset and artifact levels.

6.1 Software Product Lines

A software product line is a set of software intensive systems sharing a common,
managed set of features that satisfy the specific needs of a particular market segment

or mission and that are developed from a common set of core assets in a prescribed

223

way[52]. An increasing number of organizations are building their products within
product line settings in order to achieve large scale productivity gains, improve time
to market, maintain a market presence, compensate for an inability to hire, leverage

existing resources, and achieve mass customization.

In January 1997, the Carnegie Mellon Software Engineering Institute (SEI) launched
the Product Line Practice Initiative to help facilitate and accelerate the transition to
sound software engineering practices using a product line approach. The goal of
this initiative is to provide organizations with an integrated business and technical
approach to systematic reuse, so they can produce and maintain similar systems of

predictable quality more efficiently and at a lower cost.

A key strategy for achieving this goal has been the creation of a conceptual framework
for product line practice. The SEI Framework for Software Product Line Practice
describes the foundational product line concepts and identifies the essential activities
and practices that an organization must master before it can expect to successfully
field a product line of software or software intensive systems. The framework is a

living document that is evolving as experience with product line practice grows.

The framework’s contents are based on information gathering workshops, extensive
work with collaboration partners, surveys and investigations, and continued research.
The SEI has also incorporated practices reported at its international Software Product

Line Conferences and collected from the community.

In March 1998, the SEI hosted its first Department of Defense (DoD) product line
practice workshop, "Product Lines: Bridging the Gap—Commercial Success to DoD
Practice". Topics discussed and documented included DoD barriers and mitigation
strategies, and similarities and differences between DoD product line practice and
commercial product line practices. Subsequent workshops were held in successive

years[73]].

Software product lines capitalize on the commonalities and bounded variabilities
among similar products, can address problems such as [54]] dissatisfaction with cur-
rent project/product performance need to reduce cost and schedule complexity of

managing and maintaining too many product variants, and need to quickly respond

224

to customer and marketplace demands. A key component enabling the effective res-
olution of these problems is the use of a product line architecture that allows an orga-
nization to identify and reuse software artifacts for the efficient creation of products

sharing some commonality, but varying in known and managed ways.

Software product families have achieved a broad recognition in the software industry.
Many organizations either have adopted or are considering adopting the technology.
The key artifacts in software product families are the development, evolution and
use of a product family architecture and a set of shared components. Being able to
develop a software artifact once and use it in several products or systems is, obviously,

one of the main benefits to be achieved.[41]]

The software product line strategy for producing software intensive products has pro-
duced very promising results for early adopters of the approach. Hewlett-Packard,
for example, experienced a twenty fivefold decrease in defects using a product line
approach. Cummins, Inc., the world’s largest manufacturer of large diesel engines,
reduced the effort needed to produce the software for a new engine from 250 person

months to three person-months or less.

The product line strategy is widely used in hard goods manufacturing but has only re-
cently been a major influence on software product development processes. A product
line approach seeks to achieve gains in productivity and time to market by designing
a set of products to have many parts in common. So this is, in a sense, yet another
software reuse scheme, but it is one that has proven effective in actual industrial ex-
perience. The product line approach also seeks to identify and manage the variations

among the products.

The success of the software product line strategy is due, at least partially, to its com-
prehensive nature. The software product line strategy defines specific tasks for the or-
ganizational management, technical management, and software engineering aspects
of product production. However, its comprehensive nature also means that the ef-
fort to initiate a software product line can be more than that required to adopt a new

programming language or change the design method being used.

The comprehensive nature of the product line strategy makes it an umbrella under

225

Domain Engineering Product Engineering
BesetsTor Pradudt

Asset Davelopars Product Developars
Feedback on asseks
sﬁ't- -]
“hog,, g pec® ,I.l-;n'-"-‘-'
5 '.'3“
Product Line
hanagem ent

Figure 6.1: The Roles and Interactions[52]].

which a range of techniques and methods can be assembled. Agile development
methods, model driven architectures, and generative programming can all be part of

a successful product line organization.

The product line definition identifies the main roles in a product line organization.
Core asset developers provide a range of assets, such as architectures, specifications,
and implementations, to product developers for their use in producing products. Prod-
uct line managers coordinate and facilitate the work of these two groups as illustrated
in Figure Executives in the organization set strategic goals such as producing

more products more quickly and allocate responsibility for achieving those goals.

The organization adopting the product line approach develops a business case that
defines objectives, such as increasing productivity, for the product line. The orga-
nization identifies the set of products to be included in the product line using scop-
ing techniques that determine the areas of commonality among the products and the
points at which the products vary from one another. The products to be produced in
the product line are selected so that the objectives of the product line are achieved. If
the goal is improved productivity, products might be chosen so that variations among

the products are minimized and reuse of components is maximized.

Using the information from the scoping activity and considering the objectives de-
fined in the business case, the organization develops a product line architecture. This
architecture incorporates sufficient variation to encompass all of the products in the
product line. The architecture serves as the basic guide for specifying and acquiring

the other resources that will be used to create the products.

The core asset developers provide the resources needed to produce the selected prod-

226

ucts. This includes the architecture, the system components that populate the ar-
chitecture, plans such as production plans and test plans, and templates for process
definitions. At points of variation among the products, multiple assets are designed

and implemented to cover the possible product permutations.

The core assets of a product line can be more completely specified than traditional
reusable components. This is possible because they are designed to work for the
specific products in the product line. The assets can be produced for less cost than a

similar asset intended for general use in an unspecified environment.

The product developers select the appropriate assets and use these to produce the
products identified during product line scoping. Products are assembled quickly and
efficiently due to all of the planning and design done by the core asset developers.
The product developers may add product specific features that are not shared by other
products and hence are not created using core assets. Product line organizations have
used a variety of techniques ranging from standard component integration techniques

to program generators to produce products from the assets[90]].

6.1.1 Variability Notion in Software Product Lines

The success of the software product line strategy is due to its comprehensive nature as
well as effective variability management[42]. Variability can be modeled in all phases
of product family development addressing traceability and automation issues ranging
from requirements to implementation. Different modeling techniques focus differ-
ent parts of development processes, for instance expressing requirement variability
in terms of features; feature modeling with commonality and variability of product
lines/families. Moreover, variability modeling and traceability supports evolution in

which several evolution categories are presented[127, [128)]] :

New product line

Introduction of new product

Adding new feature

Extend standards support

227

e New version of infrastructure

e Improvement of quality attribute

For effective management issues and reusability of variability models, some models
support the separation of concerns idea in which variability is separated from domain
knowledge, defined and related with domain artifacts. As stated in [129] in the context
of identifying, constraining, implementing and managing of variability, main parts
and issues are features, types of features, variability points, types of variability points,

variants, realization techniques, software entities, components and frameworks.

Variability points can be introduced in various levels of abstraction in development of
product lines; architecture description, detailed design documentation, source code,
compiled code, linked code, and running code[98]. Each variability point can be in
one of the following states at each variability level stated in [[72]]; implicit, designed
and bound. When a variability point is introduced to a feature model, it is denoted as
implicit. When its design is decided in the architectural design phase, it becomes de-
signed. After the variability point is finally bound to a particular variant, it is bound.
Binding, when a variability point is bound to a variant, can occur at product archi-
tecture, derivation time, compilation time, linking time, start-up time and runtime. A
variability point can be either open or closed. If new variants can be added to a vari-
ation point, then it is open. On the other hand, if there is no way to add new variants,

then it is closed.

6.2 Software Product Lines and Variability of SOA

A software product line is a set of software intensive systems sharing a common,
managed set of features that satisfy the specific needs of a particular market segment
or mission and that are developed from a common set of core assets in a prescribed
way[52]. Software product lines capitalize on the commonalities and bounded vari-
abilities among similar products. Therefore, variability management is the key issue
enabling product line architecture incorporate sufficient variation to encompass all of
the products in the product line. In the level of assets, variation points, variants and

relation with each other are defined and managed. In the level of artifacts, supported

228

variabilities are provided to be configured by assets. Asset and related artifact vari-
ability should be mapped and compatible with each other for consistency. By this
way, artifacts can provide desired behavior stated in the asset. Therefore, variability

consistency check can be done at the asset level.

One way to specify variation is expressing requirement variability in terms of fea-
tures; feature modeling with commonality and variability of product lines. Besides,
this mechanism can be used to support evolution as stated in [[127,[128]]. Along with
features specified in the problem domain, a variability model indicating solution do-
main variability points, constraints and dependencies between them, related variants,
variant bindings and realizations are defined. Variability points can be introduced
in various levels of abstraction in development of SPL: Architecture description, de-
tailed design documentation, source code, compiled code, linked code, and running
code. Here, we focused on architecture description level of abstraction revealing be-
havioral model where feature model, variability model and architectural views are

depicted in Figure [6.2]

6.2.1 Choreography/Orchestration Relation with Asset/Artifacts

Assets and artifacts are reusable parts shaped with the analysis of domain feature
model and reference architecture. Assets are not usually executable, but descriptive
abstractions including a collection of artifacts plus variabilities. They are used in

order to:

Provide conceptual modularization for understandability,

e Manage variability in one place,

Define composibility rules between artifacts, and

Define and encapsulate context information which comes from reference archi-

tecture.

Choreography in SOA space deals with other choreographies, orchestrations and

atomic services. Likewise, asset in SPL gathers interacting artifacts together while

229

managing their variability as in this global view. The choreography model in asset
describes a collaboration/composition between a collection of artifacts in order to
achieve a common goal. Assets and their choreography definitions form the required
behavior of product observed from a global viewpoint. There is no restriction on
how artifacts are composed to achieve a common goal. Therefore, orchestration and
choreography concepts can be used to realize artifact composition. In our scope, as-
set is not a process which is strongly related with orchestration in the SOA context.

Instead, assets deal with composition in choreography point of view as depicted in

Figure [6.2]

Feature MWodel Warigbility Model

I—m app ing;r 1Fmau:u |:uing;J

Architeaural Wiews

— T

—
Orchestration related Choreoeraphy

/ fe=ets
; [Service

r.-"' Compositions)

Artifacts
[Services)

Figure 6.2: SPL and SOA Concept Relations.

Artifacts can be seen orchestrations or atomic services, whereas assets can be real-
ized with choreography revealing service compositions. Composition context, de-
pendency on usage of other artifacts, and composition rules over artifact types are

strongly related with choreography definition of an asset. Asset Model includes:

Artifacts and their dependencies

Variability points and their dependencies

Public artifacts (provided)

External artifacts (required)

Context

230

e Constraints

e Choreography

Choreography defines the behavioral part of the asset by specifying artifact composi-
tion. At first sight, choreography can be seen as a flow of artifacts or can be modeled
by orchestration concepts. In fact, specifications of orchestration and choreography
resemble each other but they are different in their composition approaches; first one
requires a central orchestrator, whereas the second one is a description of how par-
ticipants work together without a control mechanism. In this case, an asset includes
more than one process in it without a central mechanism, meaning choreography. In
this setting, to manage variability at the asset level, there needs to be a choreography

model and a language with variability support.

In Reusable Asset Specification (RAS)[[19], assets are categorized as executable and
non-executable. For executable assets, usage part describes how to compose which
can be mapped to choreography in our case. The approach uses MDA approach
without including feature mapping. Moreover, RAS asset includes activity for artifact
composition, as a simple workflow. Moreover, RAS asset includes activity in order

to compose artifacts, however activity comprises a simple workflow.

6.2.2 Component and Service Interfaces

Within component-oriented and service-oriented approaches, at least three kinds of
interface categories supported by a component can be identified:

e Provided interfaces

e Required interfaces

e Configuration interfaces
Services provided by a component are exposed through provided interfaces. Required

interfaces instead represent services that the component expects from other compo-

nents. Components are connected through connectors that wire each compatible pair

231

of provided and required interfaces together. Configuration interface is specific to
product lines. It provides a point of access for a product developer to configure the
component instance according to product specific requirements. A component con-
figuration interface is associated with each variability point. So basically, the config-
uration interfaces make variability of the component explicit for the developer.[40] At
the architectural level we have three entities that can be made to vary: components,
their relationships and connectors as variants. In this context, component identifica-
tion and related interfaces can be mapped to assets. An asset can have a configuration
interface enabling variability management which can be seen by the developers. Here,
mainly asset variability is taken into consideration, however connector variability can

also be handled.

6.3 Managing Variability with XChor in Software Product Lines

This section elaborates how XChor models can be used in SPL in order to manage
variability after analyzing XChor and SPL concepts and depicting XChor under Soft-

ware Product Line Engineering Framework introduced in [[107]].

6.3.1 Relation of Software Product Line and XChor Concepts

Software Product Line (SPL) engineering comprises two interrelated processes: do-
main and application engineering in which requirements engineering, design, imple-
mentation and testing phases are applied for each. Within this context, XChor ap-
proach targets domain and application design, a part of implementation and testing
phases for service-orientation. XChor covers a part of implementation, yet choreog-
raphy specifications are not executable artifacts. In fact, services can be realized with
use of intended technologies by using provided XChor service interfaces. In domain
engineering process, to represent domain design and a part of implementation, XChor
models with their variability are provided. XChor models are verified according to
specified variability via Featured Transition Systems explained in Chapter @ In ap-
plication engineering process, application design and a part of implementation are

revealed with the analysis and configuration of XChor models via variability binding.

232

Application testing can be achieved by Promela and SNIP model checker.

In order to cover and satisfy all phases in SPL:

e Domain requirements engineering phase should be related with XChor vari-
ability model. For instance if a feature model is provided for variability repre-
sentation, then proper mappings between feature model and variability model

should be defined.

e Domain implementation phase should include a consistently associated runtime
environment for XChor service models. A transformation should be defined

from XChor models to runtime environment data model.

XChor choreography models, including interface, configuration interface and speci-
fication, satisfy the asset model in SPL and XChor services are handled as artifacts

which can be an orchestration or an atomic service. An abstract derivation process is

depicted in Figure

Domain Engineering

Domain Choreographiss . Domain 5 erdices
{Assets) ——intemelat es— {Artifacts |

Wariability binding with use Warability binding with use
of mnfieuration imTarfacE of configuration intefaces

Wariability bindines resulted
from wanability sssodatioms

h 4 Yy

Application Choreographies
[Confizurad Assets)

Application Serdces

[intermelates—in [Configured Artifacs)

Application Engineering

Figure 6.3: SPL and SOA Concept Relations.

In order to derive possible choreographies from domain design, XChor choreogra-
phy includes variability mechanism. Variability of choreography can be categorized

in two; (i) Variability resulting from SPL requirements, and feature model and (i)

233

Variability resulting from inner variability structure of the architecture.

Variability resulting from SPL requirements: Functional requirements represent do-
main capabilities which can be realized by domain artifacts and assets. Vari-
ability of these functional requirements can be represented by different models,
one of which is feature modeling, a prominent one. While a feature model is re-
lated with the XChor model variability, functional requirements are associated

with a set of choreography functionalities.

Variability resulting from inner variability structure of the architecture: Abstraction
of inner variability details of variation point bindings requires high level vari-
ation point descriptions, in our case configuration variation points. For config-
uration purposes a configurable variation point specifies proper bindings to a
set of variation points which are referenced from choreography specifications.
Apart from that, choreography can establish variability associations between

services in order to form a consistent interaction.

6.3.2 XChor in Software Product Line Framework

The Software Product Line Engineering Framework introduced in [[107] has two main
processes; domain and application engineering. Domain engineering process is com-
posed of five key sub-processes dealing with domain artifacts; product management,
domain requirements engineering, domain design, domain realization, and domain
testing. Application engineering comprises four sub-processes dealing with applica-
tion artifacts; namely application requirements engineering, application design, ap-

plication realization, and application testing.

XChor targets variability in space while focusing on service interactions as choreogra-
phies and services within the SOA context. Within this framework, XChor facilitates

following abilities:
e to define domain artifacts via choreography specification and interfaces of ser-
vice and choreography,
e to represent domain variability model via configuration interfaces,

234

e toreveal domain architecture via service interactions within choreography spec-

ifications,

e to form domain realization artifacts from detailed design view via all XChor

models.

6.4 Application of our approach to Axiomatic Design for Component Orienta-

tion

Within component oriented software development approaches, Axiomatic Design for
Component Orientation (ADCO)[132] is a way to design systems based on divide-

and-conquer and find and integrate techniques.

IMapping

Mapping f apping

Dornain
Application

Iapping Mapping

Enabled FRs Enabled OPs Enablec
Mapping \
Magping Methods Services
Usage
Darmain

Application

Application

Figure 6.4: Axiomatic Design for Component Orientation (ADCO) Approach with
XChor[123]].

ADCO brings together Axiomatic Design (AD) and Component Orientation (CO)

which supports service-oriented development. The approach utilizes Feature Model[76]

235

and Axiomatic Design Theory[121] to identify requirements and components that sat-
isfies requirements in mature domains including all functional requirements (FRs),
design parameters (DPs) and process variables (PVs). The alteration process of ma-
ture domains includes creation of new services or alteration of existing ones in which
service maintenance appears as a challenge. In case of variability in service compo-
sition specifying and managing variability explicitly cannot be achieved easily with

collaboration diagrams or even if a feature model is integrated with FRs.

An application of the usage of XChor within SPL is explained in [123] in which a
step by step method is proposed to enrich ADCO approach with XChor Language
to fulfill the need of developing reusable service-oriented systems. The integration
of ADCO and XChor is represented in Figure [6.4] by connecting into two phases,
respectively feature model and DP-PV mapping. Two main approaches of handling
ADCO with XChor in domain engineering are defined; fully automatic and evolving.
In fully automatic approach, all mappings have been completed beforehand in order
to reveal intended applications after feature selection without developer intervention.
In evolving approach, a step by step explanation is provided to establish a mature
domain with the help of ADCO and XChor. Mapping of feature model to XChor
variability model has preconditions: (i) Feature model should be syntactically correct,
(i1) Feature model must represent at least one product, (iii) Feature model has at least

one variability in that this variability differentiates the derivated products.

236

CHAPTER 7

CONCLUSION AND FUTURE WORK

This chapter summarizes this thesis study, reveals contributions, and faced challenges

and states future work.

7.1 Summary

Several organizations develop business processes for the use within and across orga-
nization boundaries. Being agile and flexible requires easily changeable processes
where reusable service interactions play a key role. The challenge comes from reuse
in composition and coordination of interacting services. For this purpose, many ap-
proaches have been proposed to tackle complexity and change via variability manage-
ment mechanisms, middleware and reconfiguration solutions, dynamic adaptations,
and rule-based approaches. Within these approaches, by using variability manage-
ment mechanisms, reusing existing services and service architecture in an efficient

and systematic way is a difficult task.

This study proposes a metamodel and its realization XChor Language. They both are
based on reusing existing architecture via explicit variability definition and manage-
ment in SOA, systematically modeling commonalities and variations across a similar
set of service-oriented applications provided by an organization. In this direction, a
comparison framework is introduced with three main components; (i)variability mod-
eling, (i1) composition and configuration of models and (iii) tool support. Existing
variability models, orchestration and choreography languages are compared based on

this comparison framework. Based on this comparison results, shortcomings of ex-

237

isting approaches, needs and requirements of systematically managing variability in
choreography level in SOA are revealed. The challenges of designation of variability

needs within service-oriented context lie in determination of

e the types of variation points and variants,

e associations between variation points and variants,

o the parts where and how variability associations are stated,

o the effect of variation points on shared elements of choreography,

e the parts where and how choreography variability in composition is stated or

referenced from outside,

e the relationships of service and choreography capabilities with variability and

where they are specified.

This study follows choreography approach in order to integrate variable orchestration
and atomic services consistently from the global point of view. Taking into account
challenges of variability scattered throughout the architecture in order to make vari-
able service-oriented system development feasible, the metamodel of XChor com-

prises variability model, choreography model and their mapping.

Variability model of XChor enables to specify external and internal variation points
with mandatory, optional and alternative variants. Configuration Variation Points are
the structures where high level variation points can be mapped to low level variation
points in order to increase understandability and decrease complexity. Logical and

numerical constraints are defined among variation points and variants.

Choreography model of XChor facilitates to define service interactions as choreog-
raphy specifications with variability support in composition. Following separation of
concerns paradigm, variability of choreography and services is specified outside their
capability definition. In other words, all possible capabilities are specified in chore-
ography and service interfaces without variability. With the use of XChor variability
model, choreography, orchestration and atomic services can define their own inter-

face variability in their configuration interfaces where existing function and related

238

parameters can be altered. By this way, choreography can associate its own variabil-
ity bindings to that of interacting service’s either specifying a one-to-one mapping or
altering service interface functions or parameters by enabling and disabling. In this
model, type, role and participant type concepts, with which role based specifications

and multiple service behavior of the same time are specified, are not covered.

Mapping of Choreography and Variability Models creates an alteration mechanism
for service and choreography interfaces via variation points. The values and existence
of shared variables utilized in choreography specifications and system variables are
determined by variation point bindings with use of Parameter Settings part in con-
figuration interfaces of choreography. The variability referencing mechanism from

choreography specification enables to define the variable parts of service interactions.

7.2 Contributions

Main contribution lies on the ability of metamodel and XChor Language to specify
variability in interface (service and choreography), variability in composition and
variability associations. Variability constructs are treated as first class entities and
can be defined in all levels of SOA, namely choreography, orchestration, and atomic
services. This explicit variation specification and establishment of their associations
enable to develop consistent service-oriented compositions. By this way, our study
addressed consistent variability bindings and configurations scattered over interacting

orchestrations and atomic services.

Specification. The metamodel and XChor Language facilitates to define variation
points, variants, and constraints the explicitly treating them as first class en-
tities. The metamodel differentiates between external and internal variation
points, and enriches variation point concept by providing a high level con-
figuration facility, namely configuration variation point specification. By the
variation point mechanism, services and choreographies can alter their own
interfaces internally or externally. The important part of the metamodel ad-
dresses variation point associations, mappings in choreography specifications

which facilitate to interrelate variation point bindings of interacting services.

239

However, misuse of variation point associations can lead to inconsistent con-
figurations, because of intervention to the same part of the service interface
from configuration interfaces of choreography and the service interface. In any
case, inconsistencies are captured during analysis of XChor models. In chore-
ography and service level, optional and alternative variation point types are not
supported by XChor. In other words, all specified variation points are treated
as mandatory. For creation and specification of XChor models, Eclipse envi-
ronment with Xtext Domain Specific Language Framework is used. In order
to create XChor models, developers should download Eclipse Environment for
Xtext from [22], create a new project under a directory, include XChor.xtext
metamodel specification in Xtext. A developer manual is provided indicating

usage details of the metamodel and XChor Language.

Analysis. Analysis of XChor models, such as consistency checking can be done after
their specification. To this end, XChorS tool is implemented for analyzing
specified variabilities and revealing missing variations, inconsistencies where

all warnings and errors are shown to developers.

Configuration. XChor model configuration enables to bind proper variation point
bindings, to set parameters, to configure service and choreography interfaces
and to form choreography specifications with regard to variation point bindings.

XChor model configuration can be available only for development time.

Verification XChor models are transformed to Featured Transition models in order
to be formally verified. FTS enables to check system behavior regardless of
interface variability. Basic transformed models enables to be checked whether
the system has deadlocks or not. For further verification, additional assertions

can be inserted by developers to analyze and verify system behavior.

Transformation. Transformation from XChor models to BPEL4Chor, VXBPEL and
BPEL represents the applicability of XChor models in existing environments,
even if XChor models can not fully be mapped because of lack of variability
support in BPEL4Chor and difference between VXxBPEL and XChor variabil-
ity models. Moreover, after transformation, generated models can be verified

with different mechanisms; BPEL4Chor language models can be verified via

240

BPEL20WEFN]87] approach and VXBPEL variable orchestrations via the ap-
proach introduced in [113].

Executability. XChor is a non-executable modeling approach, therefore there is no
executable environment developed. The models can be mapped to BPEL or-
chestrations for executability with a limited coverage. Because in case of vari-
ability, there should be a management mechanism to handle linking time, start

time and runtime variability.

As a summary, main contribution of this thesis stands for defining, modifying, and
managing variability scattered over atomic service, orchestration and choreography,
as well as configuring all XChor models in a consistent way. As a result of our
contributions, we improve development of variable service-oriented systems reducing
its complexity level while providing consistent configuration and behavior among

choreography, orchestration and atomic services with regard to variability binding.

7.3 Evaluation

The metamodel and XChor language brings a new approach of specification and man-
agement of variability in all granularity levels with a single model which provides a
consistent collaboration among namely choreography, orchestration and atomic ser-
vice. The approach reveals the variability needs of interacting services and how they
can be configured consistently. The metamodel and language become prominent
with specification of relations between choreography and variability models. Among
them, variability association mechanism is introduced with the use of explicit behav-
ior of variability. By this way, choreography variability and specification of required
proper bindings of interacting services are managed at an abstract, choreography level
which eases understanding of choreography goals. Revealing variability logic explic-
itly through specification of variation points and variability associations establishes a
structure that is easy to manage and understand by non-technical and technical busi-
ness process developers. Hidden variation logic is removed from service interfaces,
compositions and configuration logic. While interface and composition variability

are supported, connector variability is left as a future work.

241

The metamodel and language supports interaction model by defining choreography
specifications and interconnection model by enabling services to define their abstract
business processes. Because the main focus is managing variability integrated with
all granularity levels, it is not claimed that fully mapping from current languages is
achieved. For instance, BPEL statements in Participant Behavior Descriptions model
of BPEL4Chor can not be fully transformed to XChor because XChor does not sup-
port event handling and a full fault handling mechanism. All required tools are pro-
vided to developers including (i) specification and constructing a variable service
compositions, (ii) analysis and configuration of variable XChor models, (iii) veri-
fication of variable XChor models, and (iv) transformation to closer specifications;

namely BPEL4Chor and VxBPEL.

7.4 Future Work

While the study represents a significant improvement in variability management in
choreography model for developing consistent service-oriented systems and provid-
ing reuse, it also opens a number of further long term or short term research areas.
Metamodel and its realization XChor Language have been studied, constructs, analy-
sis, configuration, verification tools have been provided in this study. In order to form
a complete approach from head to toe, the following long term research areas can be

addressed:

Runtime environment There are different approaches to handle the runtime vari-
ability management ranging from agent-oriented decision models, rule based
systems to dynamic linking. A runtime environment should be provided so as

to fully support variability management in all binding times.

Configuration A mechanism should be provided in order to support derivation time,
compile time, linking, startup and runtime configurations so as to fully support

processing in all variation binding times.

Variability in Connectors The metamodel and XChor language tools are available

as open source. The metamodel and accordingly language should be extended

242

to fulfill variability in connectors, for instance via mediations, artificial intelli-

gence structures, decision models.

Transformation from XChor to FTS model for verification In XChor functions and
function parameters of service and choreography interfaces can be changed
by configuration interfaces and variability associations defined within XChor
choreographies. These interface changes lead to existence or non-existence of
functions and parameters which are referenced within choreography specifi-
cations. In other words, due to service interface changes, one of the service
function can not be provided by a service. Therefore, the service interaction
including this function can not be achieved in choreography behavior. These
interface consistency checking can not be directly addressed by FT'S. Therefore,

an additional mechanism is applied to fulfill this need.

Transformation from BPEL4Chor and VXBPEL Although BPEL4Chor does not
support variability specification, transformation from a set of BPEL4Chor spec-
ifications to XChor models eases choreography specification process. Then
developers can create configuration interfaces with a set of variability and man-
ually fill choreography specifications with variability associations, context ele-
ments and variability attachments, the structures where a set of variation points
are referenced. Due to non-existence of multiple choreography support (more
than one interacting choreographies) in BPEL4Chor, an additional mechanism
is needed to differentiate and gather possible choreographies. Participant be-
havior descriptions is partially created from abstract process definition parts of
services which needs human intervention in some case. Therefore, the trans-
formation does not cover all semantics which are left as a future work. In
transformation from VXBPEL case, the differences between variability mod-
els requires additional information of variability types specified by developers.
Moreover, one choreography specification can be generated from one VxBPEL
variable orchestration. In case of multiple VXBPEL orchestration specification,
a new high level choreography specification is created indicating all VXBPEL

orchestration interactions.

Short term issues that can be addressed are as follows:

243

e Developer and user manuals indicating installation and usage guides with an

example project should be provided.

e XChorS GUI which eases development and configuration process, guides de-
velopers and users ,increases understanding of XChor models with XChor ap-
plication developer and user view options should be provided. For instance,
whereas developer can see external and internal variation points and internal
structure of the choreography specification, the model user can only observe

external variability and behavior of the models.

244

REFERENCES

[1] Organization for the advancement of structured information standards, oasis.
http://www.oasis-open.org’/home/index.php, last visited on November 2013.

[2] Standard generalized markup language,sgml. (ISO 8879:1986,
http://www.iso.org/iso/catalogue_detail ’csnumber=16387, 1986, last vis-
ited on November 2013.

[3] World wide web. http://en.wikipedia.org/wiki/Www, 1989, last visited on
November 2013.

[4] W3c. http://www.w3.org/, 1994, last visited on November 2013.

[5] extensible markup language specification, xml. http://www.w3.org/TR/WD-
xml-961114, http://www.w3.org/XML/hist2002, 1996, last visited on Novem-
ber 2013.

[6] Indigo project. http://msdn.microsoft.com/en-us/magazine/cc164026.aspx,
1999, last visited on November 2013.

[7] Web service concept. http://msdn.microsoft.com/en-
us/library/ms954826.aspx, 1999, last visited on November 2013.

[8] Electronic business using extensible markup language, ebxml.
http://www.ebxml.org/, 2000, last visited on November 2013.

[9] Universal description, descovery and integration specification, uddi.
http://uddi.xml.org/, 2000, last visited on November 2013.

[10] Web service description language specification, wsdl.
http://www.w3.org/TR/wsdl, 2000, last visited on November 2013.

[11] Web services flow language specification, wsfl.
http://xml.coverpages.org/wsfl.html, 2000, last visited on November 2013.

[12] Working draft of wsdl pointing need for choreography.
http://www.w3.0rg/2005/12/wscwg-charter.html, 2000, last visited on
November 2013.

[13] Xlang specification. http://www.ebpml.org/xlang.htm, 2000, last visited on
November 2013.

245

[14] Reo coordination language, reo. http://reo.project.cwi.nl, 2001, last visited on
November 2013.

[15] Web service conversation language specification, wscl.
http://www.w3.org/TR/wscl10/, 2002, last visited on November 2013.

[16] Orc coordination lanugage, orc. http://orc.csres.utexas.edu/index.shtml, 2004,
last visited on November 2013.

[17] Service oriented architecturei soa. http://msdn.microsoft.com/en-
us/magazine/cc164026.aspx, 2004, last visited on November 2013.

[18] W3c web services glossary. http://www.w3.org/TR/ws-gloss/, 2004, last vis-
ited on November 2013.

[19] Ras ,reusable asset specification 2.2. http://www.omg.org/spec/RAS/, 2005,
last visited on November 2013.

[20] Jolie language specification. http://www.jolie-lang.org/, 2006, last visited on
November 2013.

[21] Web services coordination specification, ws-coordination. http://docs.oasis-
open.org/ws-tx/wscoor/2006/06, 2006, last visited on November 2013.

[22] Xtext 2.3.1. http://www.eclipse.org/Xtext/, 2012, last visited on November
2013.

[23] J. van Gurp A. G. J. Jansen, R. Smedinga and J. Bosch. First class feature
abstractions for product derivation. Software, IEE Proceedings, 151(4):187—
197, January 20048.

[24] Wil M. Aalst, Arjan J. Mooij, Christian Stahl, and Karsten Wolf. Formal meth-
ods for web services. chapter Service Interaction: Patterns, Formalization, and
Analysis, pages 42-88. Springer-Verlag, Berlin, Heidelberg, 2009.

[25] M. Abu-Matar. Toward a service-oriented analy-
sis and design methodology for software product lines.
http://www.ibm.com/developerworks/webservices/library/ar-
soaspl/index.html, 2007.

[26] Phillipa Oaks Alistair Barros, Marlon Dumas. A critical overview of the web
services choreography description language (ws-cdl). BPTrends Newsletter,
www.bptrends.com, 2005.

[27] Timo Asikainen, Tomi Ménnistd, and Timo Soininen. Kumbang: A domain

ontology for modelling variability in software product families. Adv. Eng. In-
form., 21(1):23-40, January 2007.

246

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

Timo Asikainen, Timo Soininen, and Tomi Ménnistd. A koala-based ap-
proach for modelling and deploying configurable software product families.
In Frank]. Linden, editor, Software Product-Family Engineering, volume 3014
of Lecture Notes in Computer Science, pages 225-249. Springer Berlin Hei-
delberg, 2004.

Darren C. Atkinson, Daniel C. Weeks, and John Noll. The design of evolu-
tionary process modeling languages. In APSEC, pages 73-82. IEEE Computer
Society, 2004.

Felix Bachmann, Michael Goedicke, Julio Leite, Robert Nord, Klaus Pohl,
Balasubramaniam Ramesh, and Alexander Vilbig. A meta-model for repre-
senting variability in product family development. In Frank]J. Linden, editor,
Software Product-Family Engineering, volume 3014 of Lecture Notes in Com-
puter Science, pages 66—80. Springer Berlin Heidelberg, 2004.

M.R. Barbacci, N.A. Habermann, and M. Shaw. The Software Engineering
Institute: Bridging Practice and Potential. 1985.

Adam Barker, Christopher D. Walton, and David Robertson. Choreographing
web services. IEEE Trans. Serv. Comput., 2(2):152—-166, April 2009.

Alistair Barros, Marlon Dumas, and ArthurH.M. Hofstede. Service interac-
tion patterns. In WiIM.P. Aalst, Boualem Benatallah, Fabio Casati, and Fran-
cisco Curbera, editors, Business Process Management, volume 3649 of Lecture
Notes in Computer Science, pages 302-318. Springer Berlin Heidelberg, 2005.

George Baryannis, Olha Danylevych, Dimka Karastoyanova, Kyriakos Kri-
tikos, Philipp Leitner, Florian Rosenberg, and Branimir Wetzstein. Service
research challenges and solutions for the future internet. pages 55-84, Berlin,
Heidelberg, 2010. Springer-Verlag.

Bernhard Bauer and JorgP. Miiller. Mda applied: From sequence diagrams to
web service choreography. In Nora Koch, Piero Fraternali, and Martin Wirs-
ing, editors, Web Engineering, volume 3140 of Lecture Notes in Computer
Science, pages 132—136. Springer Berlin Heidelberg, 2004.

Martin Becker. Towards a general model of variability in product families. In
Proceedings of the First Workshop on Software Variability Management, 2003.

A. K. Bhattacharjee and R. K. Shyamasundar. Scriptorc: A specification lan-
guage for web service choreography. In APSCC, pages 1089-1096. IEEE,
2008.

Barry Boehm. Managing software productivity and reuse. volume 32, pages
111-113, Los Alamitos, CA, USA, September 1999. IEEE Computer Society
Press.

247

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

Nicola Boffoli, Marta Cimitile, Maria Maggi Fabrizio, and Giuseppe Visaggio.
Managing soa system variation through business process lines and process ori-
ented development. In Workshop on Service-Oriented Architectures and Soft-
ware Product Lines (SOAPL), pages 61-68. Springer Berlin Heidelberg, 2009.

Jan Bosch. Design and use of software architectures: adopting and evolving
a product-line approach. ACM Press/Addison-Wesley Publishing Co., New
York, NY, USA, 2000.

Jan Bosch. Staged adoption of software product families. Software Process:
Improvement and Practice, 10(2):125-142, 2005.

Jan Bosch, Gert Florijn, Danny Greefhorst, Juha Kuusela, J. Henk Obbink,
and Klaus Pohl. Variability issues in software product lines. In Revised Papers
from the 4th International Workshop on Software Product-Family Engineering,
PFE °01, pages 13-21, London, UK, UK, 2002. Springer-Verlag.

Gary Brown. Pi calculus for soa. http://sourceforge.net/projects/pidsoa/, last
visited on November 2013.

Nadia Busi, Roberto Gorrieri, Claudio Guidi, Roberto Lucchi, and Gianluigi
Zavattaro. Towards a formal framework for choreography. In WETICE, pages
107-112. IEEE Computer Society, 2005.

Fabio Casati, Ski Ilnicki, Li-jie Jin, Vasudev Krishnamoorthy, and Ming-Chien
Shan. Adaptive and dynamic service composition in eflow. In Proceedings of
the 12th International Conference on Advanced Information Systems Engineer-
ing, CAiSE "00, pages 13-31, London, UK, UK, 2000. Springer-Verlag.

Fabio Casati, Ski Ilnicki, Li-Jie Jin, and Ming-Chien Shan. An open, flexible,
and configurable system for service composition. In Proceedings of the Second
International Workshop on Advance Issues of E-Commerce and Web-Based In-
formation Systems (WECWIS 2000), WECWIS ’00, pages 125—, Washington,
DC, USA, 2000. IEEE Computer Society.

Soo Ho Chang and Soo Dong Kim. A variability modeling method for adapt-
able services in service-oriented computing. In Proceedings of the 11th Inter-
national Software Product Line Conference, SPLC *07, pages 261-268, Wash-
ington, DC, USA, 2007. IEEE Computer Society.

Lianping Chen, Muhammad Ali Babar, and Nour Ali. Variability manage-
ment in software product lines: a systematic review. In Proceedings of the
13th International Software Product Line Conference, SPLC 09, pages 81—
90, Pittsburgh, PA, USA, 2009. Carnegie Mellon University.

Henry William Chesbrough. Open Innovation: The new imperative for creat-
ing and profiting from technology. Harvard Business Review Press, 2003.

248

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

Andreas Classen. Modelling and Model Checking Variability-Intensive Sys-
tems. PhD thesis, PReCISE Research Centre, Faculty of Computer Science,
University of Namur (FUNDP), 5000 Namur, Belgium, October 2011.

Andreas Classen, Quentin Boucher, and Patrick Heymans. A text-based ap-
proach to feature modelling: Syntax and semantics of tvl. Sci. Comput. Pro-
gram., 76(12):1130-1143, December 2011.

Paul Clements and Linda Northrop. Software Product Lines: Practices and
Patterns. Addison-Wesley, Boston, 2002.

Thomas Cottenier and Tzilla Elrad. Engineering distributed service compo-
sitions. In Proceedings of the First International Workshop on Engineering
Service Compositions, WECS’05, pages 51-58, Amsterdam, The Netherlands,
2005. IEEE Computer Society.

Gary Chastek Dave Zubrow. Measures for software product lines, software
engineering measurement and analysis initiative. Technical Report TN-031,
CMU/SEI, 2005. Technical Note.

Gero Decker, Margarit Kirov, Johannes Maria Zaha, and Marlon Dumas. Mae-
stro for let’s dance: An environment for modeling service interactions. In
Demonstration Session of the 4th International Conference on Business Pro-
cess Management (BPM), 2006.

Gero Decker, Oliver Kopp, Frank Leymann, Kerstin Pfitzner, and Mathias
Weske. Modeling service choreographies using bpmn and bpel4chor. In
Proceedings of the 20th international conference on Advanced Information
Systems Engineering, CAiSE 08, pages 79-93, Berlin, Heidelberg, 2008.
Springer-Verlag.

Arie van Deursen, Merijn de Jonge, and Tobias Kuipers. Feature-based prod-
uct line instantiation using source-level packages. In Proceedings of the Sec-
ond International Conference on Software Product Lines, SPLC 2, pages 217—
234, London, UK, UK, 2002. Springer-Verlag.

Business Modeling & Integration (BMI) Domain Task Force
(DTF). Business process markup language specification, bpml.
http://www.ebpml.org/bpml.htm, 2002, last visited on November 2013.

Schahram Dustdar and Wolfgang Schreiner. A survey on web services compo-
sition. Int. J. Web Grid Serv., 1(1):1-30, August 2005.

Thomas Erl. Service-Oriented Architecture: Concepts, Technology, and De-
sign. Printice Hall, 2005.

Paul C. Clements Felix Bachmann. Variability in software product lines. Tech-
nical Report TR-012, ESC-TR-2005-012, CMU/SEI, 2005.

249

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

Dieter Fensel, Holger Lausen, Axel Polleres, Jos de Bruijn, Michael Stollberg,
Dumitru Roman, and John Domingue. Enabling Semantic Web Services: The
Web Service Modeling Ontology. Springer-Verlag New York, Inc., Secaucus,
NJ, USA, 2006.

Roy Thomas Fielding. Representational State Transfer, REST. Phd thesis,

University of California, Irvine, http://www.ics.uci.edu/ fielding/pubs/disser-
tation/top.htm, 2000.

Dario Fischbein, Sebastian Uchitel, and Victor Braberman. A foundation for
behavioural conformance in software product line architectures. In Proceed-
ings of the ISSTA 2006 workshop on Role of software architecture for testing
and analysis, ROSATEA 06, pages 39—48, New York, NY, USA, 2006. ACM.

Kurt Geihs, Roland Reichle, Michael Wagner, and Mohammad Ullah Khan.
Service-oriented adaptation in ubiquitous computing environments. In Pro-
ceedings of the 2009 International Conference on Computational Science and
Engineering - Volume 02, CSE 09, pages 458-463, Washington, DC, USA,
2009. IEEE Computer Society.

Kurt Geihs, Roland Reichle, Michael Wagner, and MohammadUllah Khan.
Modeling of context-aware self-adaptive applications in ubiquitous and
service-oriented environments. In Software Engineering for Self-Adaptive Sys-

tems, volume 5525 of Lecture Notes in Computer Science, pages 146—163.
Springer Berlin Heidelberg, 2009.

David Gelernter and Arthur J. Bernstein. Distributed communication via
global buffer. pages 1018, 1982.

Roberto Gorrieri, Claudio Guidi, and Roberto Lucchi. Reasoning about inter-
action patterns in choreography. In Proceedings of the 2005 international con-
ference on European Performance Engineering, and Web Services and Formal
Methods, international conference on Formal Techniques for Computer Sys-
tems and Business Processes, EPEW’05/WS-FM’05, pages 333-348, Berlin,
Heidelberg, 2005. Springer-Verlag.

Short Keith with Cook Steve Greenfield Jack and Kent Stuart. Software Facto-
ries: Assembling Applications with Patterns, Models, Frameworks and Tools.
Wiley Publishing, 2004.

Lombard Hill Group. What is software reuse? http://www.lombardhill.com/,
last visited on November 2013.

Alexander Gruler, Martin Leucker, and Kathrin Scheidemann. Modeling and
model checking software product lines. In Proceedings of the 10th IFIP WG
6.1 international conference on Formal Methods for Open Object-Based Dis-
tributed Systems, FMOOQODS ’08, pages 113-131, Berlin, Heidelberg, 2008.
Springer-Verlag.

250

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

Jilles Van Gurp, Jan Bosch, and Mikael Svahnberg. On the notion of vari-
ability in software product lines. In Proceedings of the Working IEEE/IFIP
Conference on Software Architecture, WICSA ’01, pages 45—, Washington,
DC, USA, 2001. IEEE Computer Society.

TAAS. Open source bpel4chor tools. https://github.com/IAAS, last visited on
November 2013.

Thales Tat Consultancy Service IBM, Franhoufer FOKUS. Common variabil-
ity language (cvl). http://www.omgwiki.org/variability/doku.php, last visited
on November 2013.

Patrick Donohoe Lawrence G. Jones John K. Bergey, Sholom Cohen. Soft-
ware product lines: Experiences from the eighth dod software product line
workshop. Technical Report TR-023 ESC-TR-2005-023, CMU/SEI, 2005.

K. C.Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson. Feature-
oriented domain analysis (foda) feasibility study. Technical report, Carnegie-
Mellon University Software Engineering Institute, November 1990.

Lars Ake Fredlund. Implementing ws-cdl. In Proceedings of JSWEB 2006 (11
Jornadas Cientifico-Técnicas en Servicios Web), BPM’05, Santiago de Com-
postela, Spain, 2006.

Sedigheh Khoshnevis. An approach to variability management in service-
oriented product lines. In Proceedings of the 2012 International Conference
on Software Engineering, ICSE 2012, pages 1483—1486, Piscataway, NJ, USA,
2012. IEEE Press.

Barbara Kitchenham and Stuart Charters. Guidelines for performing System-
atic Literature Reviews in Software Engineering. Technical Report EBSE
2007-001, Keele University and Durham University Joint Report, 2007.

Michiel Koning, Chang-ai Sun, Marco Sinnema, and Paris Avgeriou. Vxbpel:
Supporting variability for web services in bpel. Inf. Softw. Technol., 51(2):258—
269, February 2009.

Oliver Kopp, Lasse Engler, Tammo Lessen, Frank Leymann, and Jorg
Nitzsche. Interaction choreography models in bpel: Choreographies on the en-
terprise service bus. In Albert Fleischmann, Werner Schmidt, Robert Singer,
and Detlef Seese, editors, Subject-Oriented Business Process Management,
volume 138 of Communications in Computer and Information Science, pages
36-53. Springer Berlin Heidelberg, 2011.

Charles W. Krueger. Variation management for software production lines.
In Proceedings of the Second International Conference on Software Product
Lines, SPLC 2, pages 37-48, London, UK, UK, 2002. Springer-Verlag.

251

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

Peter Kim Krzysztof Czarnecki, Chang Hwan. Cardinality-based feature mod-
eling and constraints: A progress report. OOPSLA’05, 2005.

Ulrich W. Eisenecker Krzysztof Czarnecki, Simon Helsen. Staged configura-
tion using feature models. In SPLC, pages 266-283, 2004.

Ivan Lanese, Antonio Bucchiarone, and Fabrizio Montesi. A framework for
rule-based dynamic adaptation. In Proceedings of the 5th international con-
ference on Trustworthly global computing, TGC’10, pages 284-300, Berlin,
Heidelberg, 2010. Springer-Verlag.

Gang Liu, Shengqi Lu, and Ronghua Chen. The role-oriented process mod-
eling language. In Software Engineering and Service Science (ICSESS), 2013
4th IEEE International Conference on, pages 1-5, 2013.

Niels Lohmann, Oliver Kopp, Frank Leymann, and Wolfgang Reisig. Ana-
lyzing BPEL4Chor: Verification and Participant Synthesis. In Web Services
and Formal Methods, Forth International Workshop, WS-FM 2007 Brisbane,
Australia, pages 46—60. Springer-Verlag, September 2007.

Ayesha Manzer. Formalization of Core-competency Process for Integration
of Value-add Chains. Phd thesis, Middle East technical University, Ankara,
Turkey, 2002.

Deasy Kevin M. Martin Anne C. The effect of software support needs on
the department of defense software acquisition policy: Part 1 a framework for
analyzing legal issues. Technical Report 87-TR-2, CMU/SEI, 1987.

John D. McGregor. Software product lines. Journal of Object Technology,
3(3):65-74, 2004.

David William Mennie. An architecture to support dynamic composition of
service components and its applicability to internet security. In 5 th Interna-
tional Workshop on Component-Oriented Programming — WCOP 2000 at the
14th European Conference on Object-Oriented Programming - ECOOP 2000,
2000.

Microsoft. Component object model / distributed component object model,
com/ dcom. http://www.microsoft.com/com/default.mspx, 1996, last visited
on November 2013.

Bardia Mohabbati, Marek Hatala, Dragan GaSevi¢, Mohsen Asadi, and Marko
Boskovié. Development and configuration of service-oriented systems fami-
lies. In Proceedings of the 2011 ACM Symposium on Applied Computing, SAC
11, pages 1606—-1613, New York, NY, USA, 2011. ACM.

Fabrizio Montesi, Claudio Guidi, Roberto Lucchi, and Gianluigi Zavattaro.
Jolie: a java orchestration language interpreter engine. Electron. Notes Theor.
Comput. Sci., 181:19-33, June 2007.

252

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

Thomas Motal, Marco Zapletal, and Hannes Werthner. The business choreog-
raphy language (bcl) - a domain-specific language for global choreographies.
In SERVICES 11, pages 150-159. IEEE Computer Society, 2009.

Nataliya A. Mulyar. Patterns for Process-Aware Information Systems: An Ap-
proach Based on Colored Petri Nets. Phd thesis, Technische Universiteit Eind-
hoven, 2009.

Dirk Muthig and Colin Atkinson. Model-driven product line architectures.
In Proceedings of the Second International Conference on Software Product
Lines, SPLC 2, pages 110-129, London, UK, UK, 2002. Springer-Verlag.

Tommi Myllyméki. Variability management in software product-lines. Tech-
nical Report 30, Institute of Software Systems, Tampere University of Tech-
nology, 2002.

Nanjangud C. Narendra and Karthikeyan Ponnalagu. Towards a variability
model for soa-based solutions. 2012 SC Companion: High Performance Com-
puting, Networking Storage and Analysis, 0:562-569, 2010.

Tuan Nguyen, Alan Colman, Muhammad Adeel Talib, and Jun Han. Managing
service variability: state of the art and open issues. In Proceedings of the 5th
Workshop on Variability Modeling of Software-Intensive Systems, VaMoS ’11,
pages 165-173, New York, NY, USA, 2011. ACM.

Alex Norta. A choreography language for ebusiness collaboration. In Pro-
ceedings of the 2011 ACM Symposium on Applied Computing, SAC " 11, pages
468-469, New York, NY, USA, 2011. ACM.

OASIS. Web services business process execution
language specification, ws-bpel. https://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=wsbpel, 2007, last visited
on November 2013.

OMG. Common object request broker architecture specification, corba.
http://www.corba.org/, 1991, last visited on November 2013.

OMG. Business process model and notation-bpmn 2.0 specification.
http://www.omg.org/spec/BPMN/2.0/, 2011, last visited on November 2013.

Michael P. Papazoglou, Paolo Traverso, Schahram Dustdar, and Frank Ley-
mann. Service-oriented computing: State of the art and research challenges.
Computer, 40(11):38-45, November 2007.

Joonseok Park, Mikyeong Moon, and Keunhyuk Yeom. Variability modeling
to develop flexible service-oriented applications. Journal of Systems Science
and Systems Engineering, 20(2):193-216, 2011.

253

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

Klaus Pohl, Giinter Bockle, and Frank J. van der Linden. Software Product
Line Engineering: Foundations, Principles and Techniques. Springer-Verlag
New York, Inc., Secaucus, NJ, USA, 2005.

Maryam Razavian and Ramtin Khosravi. Modeling variability in the compo-
nent and connector view of architecture using uml. In Proceedings of the 2008
IEEE/ACS International Conference on Computer Systems and Applications,
AICCSA °08, pages 801-809, Washington, DC, USA, 2008. IEEE Computer
Society.

Dumitru Roman, Uwe Keller, Holger Lausen, Jos de Bruijn, Rubén Lara,
Michael Stollberg, Axel Polleres, Cristina Feier, Cristoph Bussler, and Dieter
Fensel. Web service modeling ontology. Appl. Ontol., 1(1):77-106, January
2005.

Davide Rossi and Elisa Turrini. Epml: an executable process modeling lan-
guage for process-aware applications. In Proceedings of the 2008 ACM sym-
posium on Applied computing, SAC *08, pages 132-133, New York, NY, USA,
2008. ACM.

Romain Rouvoy, Paolo Barone, Yun Ding, Frank Eliassen, Svein Hallsteinsen,
Jorge Lorenzo, Alessandro Mamelli, and Ulrich Scholz. Music: Middleware
support for self-adaptation in ubiquitous and service-oriented environments.
In Software Engineering for Self-Adaptive Systems, volume 5525 of Lecture
Notes in Computer Science, pages 164—182. Springer Berlin Heidelberg, 2009.

Serge Salicki and Nicolas Farcet. Expression and usage of the variability in
the software product lines. In Frank Linden, editor, Software Product-Family
Engineering, volume 2290 of Lecture Notes in Computer Science, pages 304—
318. Springer Berlin Heidelberg, 2002.

Mustafa Yucefaydali Selma Siiloglu, Riza Aktunc. Verification of variable ser-
vice orchestrations using model checking. In Proceedings of 3rd International
Symposium on Business Modeling and Software Design. ACM, 2013.

Antonio Ruiz-Cortes Pablo Trinidad Sergio Segura, David Benavides. An ap-
proach to variability management in service-oriented product lines. In In first
Workshop on Service-oriented Architectures and Product Lines. SEI, 2007.

Robert Wolfe-Steve Olding Shahin Samadi, Nadine Alameh and David Isaac.
Strategies for enabling software reuse within the earth science community. In
Proceedings of the IEEE International Geoscience and Remote Sensing Sym-
posium, volume 3. IEEE International, 2004.

B.G. Silverman. Software cost and productivity improvements: An analogical
view. Computer, 18(5):86-96, 1985.

254

[117] Marco Sinnema and Sybren Deelstra. Classifying variability modeling tech-
niques. Inf. Softw. Technol., 49(7):717-739, July 2007.

[118] Marco Sinnema, Sybren Deelstra, Jos Nijhuis, and Jan Bosch. Covamof: A
framework for modeling variability in software product families. In RobertL.
Nord, editor, Software Product Lines, volume 3154 of Lecture Notes in Com-
puter Science, pages 197-213. Springer Berlin Heidelberg, 2004.

[119] Ian Sommerville. Software Engineering. Addison-Wesley, 2010.

[120] Zoran Stojanovic and Ajantha Dahanayake. Service-oriented Software System
Engineering Challenges And Practices. 1GI Publishing, Hershey, PA, USA,
2005.

[121] Nam Pyo Suh. Axiomatic Design: Advances and Applications. Oxford Uni-
versity Press, USA, 2001.

[122] Selma Suloglu. Xchor language representation in Xtext.
http://www.xchor.com/XChorLanguage-xtext.pdf, 2012, last visited on
November 2013.

[123] Selma Suloglu, Cengiz Togay, and Ali H. Dogru. Managing variability in ser-
vice composition with axiomatic design. In Proceedings of 18th International
Conference on Society for Design and Process Science, SDPS 2013. SDPS,
2013.

[124] BEA Sun, SAP and Intalio. Web services choreography interface specification,
wsci. http://www.w3.org/TR/wsci/, 2002, last visited on November 2013.

[125] Chang-ai Sun, Tieheng Xue, and Marco Aiello. Valysec: A variability anal-
ysis tool for service compositions using vxbpel. In Proceedings of the 2010
IEEE Asia-Pacific Services Computing Conference, APSCC ’10, pages 307—
314, Washington, DC, USA, 2010. IEEE Computer Society.

[126] Hongyu Sun, Robyn R. Lutz, and Samik Basu. Product-line-based require-
ments customization for web service compositions. In Proceedings of the 13th
International Software Product Line Conference, SPLC ’09, pages 141-150,
Pittsburgh, PA, USA, 2009. Carnegie Mellon University.

[127] Mikael Svahnberg and Jan Bosch. Characterizing evolution in product line
architectures. In Proceedings of the 3rd annual IASTED, International Con-
ference on Software Engineering and Applications, pages 92-97.

[128] Mikael Svahnberg and Jan Bosch. Evolution in software product lines: Two
cases. Journal of Software Maintenance, 11(6):391-422, November 1999.

[129] Mikael Svahnberg and Bosch Jan van Gurp, Jilles. A taxonomy of variability
realization techniques: Research articles. Softw. Pract. Exper., 35(8):705-754,
July 2005.

255

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

Rajesh K. Thiagarajan, Amit K. Srivastava, Ashis K. Pujari, and Visweswar K.
Bulusu. Bpml: A process modeling language for dynamic business models. In
WECWIS, pages 239-241.

Steffen Thiel and Andreas Hein. Systematic integration of variability into
product line architecture design. In GarylJ. Chastek, editor, Software Product
Lines, volume 2379 of Lecture Notes in Computer Science, pages 130-153.
Springer Berlin Heidelberg, 2002.

Cengiz Togay, Ali H. Dogru, and John Urcun Tanik. Systematic component-
oriented development with axiomatic design. Journal of Systems and Software,
81(11):1803-1815, 2008.

N.Yasemin Topaloglu and Rafael Capilla. Modeling the variability of web ser-
vices from a pattern point of view. In Liang-Jie(LJ) Zhang and Mario Jeckle,
editors, Web Services, volume 3250 of Lecture Notes in Computer Science,
pages 128—138. Springer Berlin Heidelberg, 2004.

André van der Hoek. Design-time product line architectures for any-time vari-
ability. Sci. Comput. Program., 53(3):285-304, December 2004.

W3C. Simple object access protocol, soap. http://www.w3.org/TR/soap/,
1998, last visited on November 2013.

W3C. Text markup language specification, html. http://www.w3.org/html/,
2004, last visited on November 2013.

World Wide Web W3C. Web services choreography description language
specification, ws-cdl. http://www.w3.0rg/2005/12/wscwg-charter.html, 2005,
last visited on November 2013.

Yong Wang, Xiang Yi, Kai Li, and Meilin Liu. An actor-based language to uni-
fying web service orchestration and web service choreography. In Computer
Science and Information Processing (CSIP), 2012 International Conference
on, pages 1055-1060, 2012.

Hanpin Wang Yu Huang. A petri net semantics for web service choreography.
In SAC, pages 1689-1690, 2007.

J. M. Zaha, M. Dumas, A. H.M. ter Hofstede, A. Barros, and G. Decker. Bridg-
ing global and local models of service-oriented systems. Trans. Sys. Man Cy-
ber Part C, 38(3):302-318, May 2008.

Johannes Maria Zaha, Alistair Barros, Marlon Dumas, and Arthur ter Hofst-
ede. Let’s dance: a language for service behavior modeling. In Proceedings
of the 2006 Confederated international conference on On the Move to Mean-
ingful Internet Systems: CooplS, DOA, GADA, and ODBASE - Volume Part

256

[142]

I, ODBASE’06/0TM’ 06, pages 145-162, Berlin, Heidelberg, 2006. Springer-
Verlag.

Yongwang Zhao, Dianfu Ma, Min Liu, and Chunyang Hu. Coordination be-
havioral structure: A web services coordination model in dynamic environ-
ment. In Proceedings of the Seventh IEEE/ACIS International Conference
on Computer and Information Science (icis 2008), ICIS ’08, pages 611-617,
Washington, DC, USA, 2008. IEEE Computer Society.

257

258

20

21

22

23

APPENDIX A

XCHOR METAMODEL REALIZATION IN XTEXT

grammar oorg.xtext.doctorate.xchor.Xchor with org.eclipse. xtext.

common. Terminals

generate xchor "http ://www. xtext.oorg/doctorate/xchor/Xchor"

/**
* Variable Choreography Model is a set of Abstract Elements
specified to define
* (i) choreography specifications with variabilities ,
* (i1) service and choreography interfaces and
* (i1i1) their configuration interfaces.

* Root of the grammar

*k
*/
VarChorModel :
(elements += AbstractElement)*
/**
* An ID assigned to variation points whether they reside in
composition or

* take part in configuring service interfaces via mapping or

*

Reside in composition: @composition

*

Take part in configuring service interfaces: @vconfservice

*

Take part in configuration variation point realization:

@vconfrealization

259

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

*/
Tag:

"@" (name = "composition" | name ="vconfservice" | name =

vconfrealization")

/**
* Assignment of the return value of a service (Interface) function
(Function) to a

* ContextElement which is a shared variable of choreography

%
*/
ChorComputation:
"%comp" name = [ContextElement] "=" s = [Interface] "." f = [

Function] "%"

/**

* Abstract Element definition which can be either

* a choreography definition (Choreography),

* configuration of a service/choreography (VarConfigurationModel)
or

* interface of service/choreography (Interface).

* Here service concept covers atomic and orchestrated services

*/

AbstractElement:

Choreography | VarConfigurationModel | Interface

/**

* Choreography definition which

* (i) imports its configuration interface (via VConfModellmport),

* interacting choreographies (via ChorImport) and services (via
Servicelmport),

* (i1i) defines shared variables (via Context Elements),

* (1ii) maps choreography variability with other service s and

choreography s

260

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

71

78

79

80

81

82

* variation point and variant specifications (via VMMapping)
* (iv) defines the choreography composition for each function with
inline variation
* attachments as a guard to execute the piece of choreography (via
Composition)
*
*/
Choreography:
"choreography" name=ID
(vconfmodelimport = VConfModellmport)?
(cimports += ChorImport)*
(simports += Servicelmport)+
(" Context Elements" (contexts += ContextElement)*)?
(" Choreography Variability Mapping" (mappings += VMMapping)*)?

"n,n

("Function" func += [Function] comp += Composition)+

/**
* Import mechanism to include choreography s configuration
Interface

* There can be more than one configuration Interface of the same

choreography .
*
*/
VConfModellmport:
"import configuration" importedNamespace = [
VarConfigurationModel4Chor]
/**

* Import mechanism to include services utilized (Servicelnterface)
in choreography

* composition with specified service configuration interface (
VarConfigurationModel4Service)

* if required.

261

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

* There can be more than one configuration Interface of the same

service .
*
*/
Servicelmport:
"import service" s = [Servicelnterface] ("with configuration"
importedNamespace = [VarConfigurationModel4Service])?
Yok

* Import mechanism to include other choreographies (ChorlInterface)

interacted with the current choreography

*
*/
ChorImport:

"use choreography" name = [ChorlInterface]

/**
* An abstraction of two types of interface: Choreography and

Service

ES
*/
Interface:

ChorlInterface | Servicelnterface

/**

* A definition of interface for a choreography, the opened face to
other choreographies

* incuding invariants (Invariant), externalized functions (
Function), port description (Port) and

* required interfaces from other choreographies (RequiredInterface

).
*
*/
Chorlnterface:

262

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

"

"Choreography interface" name = QualifiedName "of chorname = ID
(invariants += Invariant)*

((functions += Function)+)

port += Port

("required interfaces"

(reqints += RequiredInterface)*)?

[k%

* A definition of demanded functions from other choreographies
seperated by ;
%
*/
RequiredInterface:
"from" name = QualifiedName "function" "{" (f += [Function]) (","

(f += [Function]))* "}"

/**
* A definition of a service interface including invariants (
Invariant),
* functions (Function) and port specification (Port).
%k
*/
Servicelnterface :
"Service interface" name = ID
((invariants += Invariant)¥*)
((functions += Function)+)

port += Port

/**

* Definition of a function including its name, pre and post
conditions (ConditionSet),

* input parameters (Params) and

* its output (Param).

*k

263

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

*/

Function:
"function" name = ID
("precondition" precond += ConditionSet)?
("postcondition" postcond += ConditionSet)?

("input" ipars = Params)?

("output" opar Param)?

e

" "

* A set of conditions (Condition) composed via "or" and "and"

logical relationships.

*
*/
ConditionSet:
"(" ¢l += Condition (("or" | "and") ¢2 += Condition)* ")"
/**

* A definition of the value of an object is equal or not equal
a booelan value

* (true or false).

*

*/

Condition:

name = ID ("==" | "!=") BOOLEAN

] **

to

* A variable definition in choreography/service interface assigned

to

* a boolean value which is valid throughout the choreography/
service composition

*/

Invariant:

"invariant" name = ID "==" BOOLEAN

264

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

/**
* An abstraction of three types of variation point:

* internal , external and configuration variation point.

k
*/
VarPoint:

ConfigurationVarPoint | InternalVarPoint | ExternalVarPoint

[%
* A variation point definition which is invisible to outer context
so as to

* describe a variability with a set of variants (VariantSet) and

specified binding time (BINDING).

*
*/
InternalVarPoint:
vt = "internalVP" name=ID : variants = VariantSet "bindingTime
" btime =BINDING
/**

* A variation point definition which is visible to outer context
to be configured by other

* gservices/choreographies. It specifies its variability with a set
of variants (VariantSet) and

* specified binding time (BINDING).

* Note that "externalVP" should be used while defining a variation
point for choreograph in

* configuration interface and "vp" should be used for service

variation in configuration interface

%
*/
ExternalVarPoint:
(vt = "externalVP" | vt2 = "vp") name=ID : variants =

VariantSet "bindingTime" btime =BINDING

265

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

] **

* An abstract high level variation point definition that maps its
variants to

* a set of internal variation points with their variant selections
, specifying each realization.

* It can be either internal or external which is specified by "
vartype" keyword.

* It defines a set of variants (VariantSet) and their realization
(ConfVariantWithChoices) ,

* default variant (Variant) selection and binding time (BINDING).

*

*/

ConfigurationVarPoint returns ConfigurationVarPoint:

"configuration" ({InternalVarPoint} name=QualifiedName

varType" vt = "internalVP" | {ExternalVarPoint} name=
QualifiedName : "varType" vt = "externalVP")
(variants = VariantSet)

("realization" rea = STRING) ((confvariants +=
ConfVariantWithChoices)+)

("defaultVariant" defaultVariant = [Variant]) ("type" type=
CONFTYPE "bindingTime" btime = BINDING)

] k¥

* A variant definition of a configuration variation point

including a set of choices.

*
*/

ConfVariantWithChoices:
"confvariant" name = ID "mapping"

(choices += Choice)+

] **

266

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

* Selection defition of a variation point among defined ones and
related selected variants

* as well as minimum and/or maximum number of variant selections
as optional

%k

*/

Choice:

"VPName" vp = [VarPoint] "selectedVariants (" (vars += [Variant])+

("; min:" INT)? (", max:" INT)? ")"

/**

* A set of variants (Variant) grouped by as mandatory, optional
and alternative.

* Alternative variants are specified with minimum and maximum
number of selections.

*

*/

VariantSet:

{VariantSet} ("mandatory" (variants += Variant)*)?

"

("optional (variants += Variant)*)?

("alternative (variants += Variant)* "(min:" INT ", max:"INT ")

n)?

/**

* A variable definition of a variation point which activates
functions of services (MethodsWithoutDefinedServices)

* or its functions stated in the interface (
MethodsWithoutDefinedServices) and/or

* sets a parameter (Function) to a function (Function) stated in

service interface if required.

%
*/
Variant returns Variant
"variant" name = ID ((":activateMethods (" (ml =

MethodsWithDefinedServices | m2 = MethodsWithoutDefinedServices

267

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

) M2

(":setParameter (toFunct:" f = [Function]

',parameter:" pars =

1 '

Param (";toFunct:" func += [Function] ",parameter:" fpars +=

Param)*")")?

] **

* A set of functions (Function) with related services seperated
by comma.

%

*/

MethodsWithDefinedServices:

1

"service:" s = [Servicelnterface] ",funct:" funct = [Function]

("," functs += [Function])* ("; service:" s2 += [

' 1

Servicelnterface] ",funct:" funct2 += [Function] ("," functs2

+= [Function])*)*

] k¥

* A set of functions of its own seperated by comma.

ES
*/
MethodsWithoutDefinedServices:

funct = [Function] ("," functs += [Function])*

/**
* Binding definition of other services to current service/

choreography with a defined host.

*
*/
Port :

"portName" name = ID "binding" host = TEXT

] **

268

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

316

317

318

319

320

321

322

323

324

* An abstraction of two types of configuration model

* VarConfigurationModel4Service for service and
* VarConfigurationModel4Chor for choreography
*k

*/

VarConfigurationModel :

VarConfigurationModel4Service | VarConfigurationModel4Chor

JES

* A definition of a configuration interface for a service

including

* (1) a set of external variation points (ExternalVarPoint) with a

tag (Tag)

* defining the role of it if required,

* (i1) constraints (Constraint) among external variation points

and

* (1i1) its abstract process definition (Composition) which

specifies external behavior

* of the service with other services.

*
*/
VarConfigurationModel4Service:

"Configuration interface" name = ID "of service"

Servicelnterface]

((tag += Tag)? vars += ExternalVarPoint)*

("Constraints"

(constraints += Constraint)*)?

("abstract process definition"

processdef = Composition

)?

269

servicename

325

326

327

328

329

330

331

332

333

334

335

336

338

339

340

341

342

343

344

345

346

347

349

350

351

352

353

354

] **

* A definition of a configuration interface for a choreography
including

* (i) a set of internal , external and configuration variation
points (VarPoint)

* with a tag (Tag) defining the role of them if required,

* (i1) constraints (Constraint) among variation points and

* (ii1) parameter settings (ParameterSetting) which includes a set
of defined

* parameters used in choreography.

*
*/
VarConfigurationModel4Chor:
"Configuration interface" name = ID "of choreography" chorname =

QualifiedName

((tag += Tag)? vars += VarPoint)*

("Constraints"

(constraints += Constraint)*)?

("Parameter Settings"

(parametersetting += ParameterSetting)*)?

Yok

* An assignment of a value to ContextElements resided in
choreography specification.
%
*/
ParameterSetting :
"parameter" name = [ContextElement] ("= #ofVariantsSelected{" (
vars += [Variant])+ "} Of " vp = [VarPoint] |
"= value (" var += [Variant] ("," vars += [Variant])* ")" | "

existswhenselected{" vp=[VarPoint]"."v =[Variant]

("," vp2+=[VarPoint]"."v2 +=[Variant])* "}")

270

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

3

%
X

JEE

* An abstraction of two types of constraints:
* LogicalConstraint and NumericalConstraint
*

*/

Constraint:

LogicalConstraint | NumericalConstraint

/**

* A definition depicting a constraining relationship in which a
variation

* point and/or related variants decide another variation points
and/or its selected variants

* status either excluded, implied, required or negated.

*
*/
LogicalConstraint:
(pl = [VarPoint] (p2 = [Variant])?) ¢ =CONST p3 = [VarPoint]
("selectedVariants ("(vars += [Variant])+ (", min:" INT)? (",

max:" INT)? ")")?

/**

* A definition depicting a constraining relationship in which a
variation

* point and related variant result in an assignment of a value to
another variation point

* and related variant or to a property with expressions (greater
than, less than, greater than or equal,

* less than or equal, equal, not equal)

*

*/

NumericalConstraint:

vpl = [VarPoint] vl = [Variant] nconst = NUMCONST

271

385

3

%

6

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

rhs = RHS exp = EXPR
(STRING | pro2 = Property | "valueOf{" (vars += [Variant])* "}")

RHS:
prol=Property | (vp2 = [VarPoint] v2 = [Variant])

] **

* A specification of a system property with its name

*
*/
Property:

name = ID

] k%

* A shared element definition used in choreography composition

ES
*/
ContextElement:

name = QualifiedName (defaultvalue = INT | STRING | ID | BOOLEAN)

L

* An abstraction of two types of varaibility mapping

* VMServiceMapping for service and
* VMChorMapping for choreography
*/
VMMapping :
VMServiceMapping | VMChorMapping
/**
* A structural mapping from choreography variation to service
variation .
* First variation points are mapped and then each variant of

related choreography

272

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

* variation point is mapped to that of service variation point.

*
*/
VMServiceMapping :
"VP" vp = [VarPoint] "maps service" service = [Servicelnterface]
"VP" svp = [VarPoint]
("Variant" vars += [Variant] "maps Variant" (mvars += [Variant]
)+)+
[%

* A structural mapping from choreography variation to utilized
choreography variation.

* First variation points are mapped and then each variant of
realted choreography variation

* point is mapped to that of utilized choreography variation point

*
*/
VMChorMapping :
"VP" vp = [VarPoint] "maps choreography" chor = [Choreography] "
VP" cvp = [VarPoint]
("Variant" vars += [Variant] "maps Variant" (mvars += [Variant]
)+)+
/**
* A definition of an attachment to choreography composition in
order to define the conditions of
* variation point and variant selections.
* Relationships between variation point and variants used are:
* "ifOneSelected" if one of the variants in a variant set is
selected
* "ifAllSelected" if all of the variants in a variant set 1is
selected
* "ifSelected" if some of the variants in a variant set is
selected

* "excl:"is used when a set of variants needed not to be selected.

273

446

447

448

449

450

451

452

453

454

455

456

458

459

460

461

462

463

464

466

467

468

469

470

471

* The composition segment tagged with VariabilityAttachment is

added to the composition if
* the selections are realized.
*/

VariabilityAttachment:

"#vp" vp += [VarPoint] ("ifOneSelected ("

| "ifAllSelected (" | "

ifSelected (") (vs += [Variant])+ (";excl:" (vsexc += [Variant
N2 "
(("and" | "or") vp2 += [VarPoint] ("ifOneSelected (" | "

ifAllSelected ("I "ifSelected (") (vs2 += [Variant])+ (";

excl:" (vsexc2 += [Variant])+)?

L

* A definition of a set of interactions

common goal via one or more atomic

H)ll)* n#n

in order to realize a

* (AtomiclInteractions) and/or composite (Compositelnteraction)

interactions tangled with each other.

*
*/

Composition :

(interactions += (AtomicInteraction | Compositelnteraction) (WS

interactions += (Atomiclnteraction | Compositelnteraction))*)

+

] k¥

* A definition of an interaction between services

guard (IntCondition) including

with/without a

* a set of selection of an interaction among others (Selectlnt),

* repeating a set of interactions

* paralellization of a set of interactions

(Repeatlnt),

(Paralellnt)

* and flowing down in a sequence (Sequencelnt).

*
*/

Compositelnteraction:

274

472

473

474

475

476

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

("guard (" guard = IntConditionSet ")")? ("precedent")? (
interaction = SelectInt | interaction = Repeatlnt | interaction
= Paralellnt | interaction = Sequencelnt)

("timeout" INT)?

/**

* A definition of a selection between a set of interactions among
services which can be atomic (AtomicInteraction) or

* composite (Compositelnteraction) with/without variability
attachment (VariabilityAttachment).

* SelectInt is written in such a way that the block is started
with "select", interactions

* are surrounded with paranthesis.

%
*/
Selectlnt:
(va = VariabilityAttachment)? "select" (cond = IntConditionSet)?
" (" interactions += (AtomicInteraction | Compositelnteraction)

+ n) "

/**

* A definition of a repeatition of a set of interactions between
services which can be atomic (AtomicInteraction) or

* composite (Compositelnteraction) with an exit condition and with

/without variability attachment (VariabilityAttachment).

*

Repeatlnt is written in such a way that the block is started
with "repeat" following a condition and

* a set of interactions are surrounded with paranthesis.

%k
*/
Repeatlnt:
(va = VariabilityAttachment)? "repeat" cond = IntConditionSet
"("(interactions += (AtomiclInteraction | Compositelnteraction))

+ n) "

275

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

] E*

* A definition of a paralelization of a set of interactions
between services which can be atomic (AtomiclInteraction) or

* composite (Compositelnteraction) with/without variability
attachment (VariabilityAttachment).

* Paralellnt is written in such a way that the block is started
with "paralel", interactions

* are surrounded with paranthesis.

*

*/

Paralellnt:

(va = VariabilityAttachment)? "parallel (" (interactions += (

Atomiclnteraction | Compositelnteraction))+ ")"

/**

* A definition of a sequence of a set of interactions between
services which can be atomic (AtomicInteraction) or

* composite (Compositelnteraction) with/without variability
attachment (VariabilityAttachment).

* Sequencelnt is written in such a way that the block is started
with "sequence", interactions

* are surrounded with paranthesis.

*
*/
Sequencelnt:
(va = VariabilityAttachment)? "sequence (" (interactions += (
Atomiclnteraction | Compositelnteraction))+ ")"
/**

* A specification of a basic interaction between two services with

/without variability attachment (VariabilityAttachment).
* Atomiclnteraction is written

* with/without a guard condition (IntCondition),

276

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

* depiction of source and destination services (Interface) with

send" or "receive"

* a message (Message),

"

actions ,

* with/without a computation effect to a ContextElement (

ChorComputation) an

d

* with other additional constructs.

* If the action is "receive" from a set of services and one should

be selected then

messages pattern)

pickOne" is added. (for racing incoming

* If more than one receive is accomplished from a source to a

destination , then "
* If the "send" action

then "withNotificat
* If an atomic action

keyword with a time

multiple times" should be added.
requires notification from destination ,
ion" 1is added.

is limited with a duration, then "wait"

specification should be provided.

* When an atomic action wants to explicitly depict a fault when a

problem is occurred

, a "fault" should be defined.

* If interaction is "send" willing to get a request from one of

avaliable destionat

ions with a limited duration, then

* "callingSequence" (for contingent requests pattern) is defined

with a sequence of
* If the interaction c
the computation to
* then "referedDestina

* Jf the Atomiclnterac

destinations .

auses an interaction; sending the value of
another service/services ,

tions" is defined.

tion causes one or more changes in

ContextElement s values, then a set of ChorComputation is

defined.
*
*/
AtomicInteraction :

(va = VariabilityAttac

hment)?

("guard (" guard = IntConditionSet")")?

(source = [Interface]

Interface])+ "}

type = "send" "{" (destionation += [

("in sequence")? ("atomic")? ("viewer")? |

destination = [Interface] type = "receive" ("from{" (rsource +=

[Interface])* "}

(message += Message)

")? ("multiple times")? ("pickOne")?)

277

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

570

571

572

573

574

575

)

("stopmessage from" stopservice = [Interface])?
("wait" (t = Time)? ("until" INT "messagescame")?)?
("inactivity interval" inact = Time)?
("referedDestinations (" refpart += [Interface] (("," refpart += [
Interface])*)? ")")?
("withNotification" ("(min:" min = INT " ,max:" max = INT ")")?
?
(f += Faults ("toreferrals")?)?
(comp +=ChorComputation)*
/**
* A definition of message including set of parameters (Param),
semantical description ,
* refering service (Interface) and its function (Function).
%
*/
Message :
"message" name = [Function] ("(" (par += [Param] ("," par += [
Param])*)? ")")
("refers" (service += [Interface] "." funct += [Function])*)?
117? *
("semantic (" s = STRING ")")?
/**
* A set of Interaction Conditions (IntCondition).
*
*/
IntConditionSet:
icond += IntCondition (("or" | "and") icond += IntCondition)¥*
/**
* A specification of a condition used to guard a part of an

interaction .

278

s.s * IntCondition can be either a definition of a condition with
expression and numerical/non numerical values or
s * a specification of number.

578 *

s %/

sso. IntCondition :

581 pl = GUARDTEXT ((exp = EXPR (STRING | INT | ID | BOOLEAN)) | "times
"9

&2)

583

584 /**

sss * A set of parameters separated by comma and surrounded with
parenthesis

586 *

ss1 ¥/

sss Params:

589 pars = "(" pl = Param ("," p2 += Param)* ")"
590 5

591

592 /**

593 * A parameter definition with its name

594 *

595 */

so6 Param:

597 name = ID
508

599

600 [/ **

ot * A system failure with its name and explanation and sends fault
notification to corresponding senders

602 %

603 ¥/

e+ Faults:

605 "fault (" fnamel = FAULTTYPES ("," fname2 += FAULTTYPES)* (",
terminatelf" number = INT "fails")? ")"

606}

607

279

608 [**
609 * A specification of how names of some elements in choreography
should be defined.

610 *

611 */
2 QualifiedName:
613 ID (_ ID)*;

6

614
615 [**

616 * The amount of duration with related wunits

617 ¥

618 */

619 Time:

620 name = INT ("second" I|"seconds" | "hour" | "hours" | "day"l "days"l "
month"l "months")

621

62 [**

623 * The rest of the grammar rules define constant values used in
other rules.

64 F

6s ¥/

626 GUARDTEXT:

627 ID | INT

628

629

630 TEXT:

631 (ID I'INT | ":" | "/")+

632

633

63+ CONST:

635 requires = requires | excludes = excludes | implies = implies
| negates = negates

636 3

637

633 enum NUMCONST:
639 const = "const"

640

280

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

BOOLEAN::

"true" | "false"
enum EXPR:
gt - n n Igte - " =ll|1t = n III lte - " =ll I equ - ||==||| neq = ||!=ll
eq = ”:H

enum CONFTYPE:

subs = "substitution" | para ="parameterization" | add ="addition"
BINDING:
devt = "devtime"l derv = "derivation" | comp = "compilation" | link
= "linking" Istrt= "start up" | runt ="runtime"
FAULTTYPES:
"delivery" | "parameter" | "notready" | "waittimeout" | "
insufficientmessage" | "notavaliable"

281

282

20

21

22

23

24

25

26

27

APPENDIX B

TRAVEL ITINERARY SYSTEM IN XCHOR LANGUAGE

choreography travelitinerary

import configuration vconf_travelitinerary

import service airline

import service hotel

import service travelagency with configuration vconf_travelagency
import service traveler with configuration vconf_traveler

import service carrental

import service cruise

import service activityprovider

Context Elements
flightticketconfirmation false
hotelbookingconfirmation false
cruiseconfirmation false
carrentalconfirmation false
activityconfirmation false

intelem O

" "

stringelem "str
Choreography Variability Mapping
VP booking maps service travelagency VP plan
Variant airline maps Variant withairline
Variant hotel maps Variant withhotel
VP facilities maps service travelagency VP plan
Variant activities maps Variant withactivities

Variant carrental maps Variant withcarrental

283

28

30

31

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

Variant cruise maps Variant withcruise
VP facilities maps service traveler VP activityselection

Variant activities maps Variant withactivity

Function planitinerary:

sequence (

traveler send{travelagency} message querytrip(startdate ,
enddate ,details)
parallel (
#vp booking ifSelected (airline)# travelagency send{airline}
message requestprice(startdate ,enddate)
#vp booking ifOneSelected (hotel)# travelagency send{hotel}
message requestprice(startdate ,enddate , details)
#vp facilities ifAllSelected (cruise)# travelagency send
{cruise} message requestprice (packageid,h date)
#vp facilities ifSelected(carrental)# travelagency send
{carrental} message requestprice (carmodel ,date)
#vp facilities ifSelected (activities)# sequence (
travelagency send{activityprovider} message listactivities
(place ,date) referedDestinations(traveler)
traveler send{travelagency} message setselectedactivities (
selectedlist)
travelagency send{activityprovider} message requestprice (

selectedlist ,date)

travelagency send {traveler} message
getavaliabletripoptions (travelerID)
traveler receive from{travelagency} message
getavaliabletripoptions (travelerID)
#vp booking ifSelected (airline)# sequence (
traveler send{travelagency} message selectairline (airlinelID)
Jcomp intelem=travelagency.selectairline%
)
#vp booking ifSelected (hotel)# sequence (
traveler send{travelagency} message selecthotel (hotelID)

J%comp stringelem=travelagency.selecthotel%

284

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

#vp facilities ifSelected (cruise)# sequence (

traveler send{travelagency} message selectcruise (packageid,

date)

Jcomp cruiseconfirmation=travelagency.selectcruise%

#vp facilities ifSelected(carrental)# sequence (

traveler send{travelagency} message selectcarrental (carmodel

)

Ycomp carrentalconfirmation=travelagency.selectcarrental%

#vp facilities ifSelected (activities)# sequence (

traveler send{travelagency} message setselectedactivities (

activitylist)
Jcomp activityconfirmation=travelagency.

setselectedactivities%

travelagency send{traveler} message getconfirmedplan

O
)
select (
guard (hotelbookingconfirmation == true and
flightticketconfirmation == true) parallel (

#vp booking ifSelected (airline)# sequence (

travelagency send{airline} message bookflight(arrival,

departure) wait 3 seconds withNotification
travelagency send{airline} message processticket(
customerID) referedDestinations (traveler)
)
#vp booking ifSelected (hotel)# sequence (

travelagency send{hotel} message bookroom(arrival ,

departure ,details) wait 3 seconds withNotification

travelagency send{hotel} message processvoucher(

customerID) referedDestinations (traveler)

285

82

83

84

85

86

87

88

89

90

91

92

traveler receive from{travelagency} message
getconfirmedplan ()
)
sequence (
travelagency send{traveler} message
gettripplancancelation ()
travelagency send{traveler} message gettripplancancelation
O
traveler receive from{travelagency} message

gettripplancancelation ()

Configuration interface vconf_travelitinerary of choreography

travelitinerary

external VP booking:
optional
variant hotel
variant airline

bindingTime devtime

external VP facilities :
optional
variant cruise:activateMethods(planitinerary):setParameter (
toFunct: planitinerary , parameter: planned)
variant carrental:activateMethods (service:carrental ,funct:
rent)
variant activities

bindingTime devtime

configuration itinerary:
varType externalVP

alternative

286

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

variant regular
variant vacationpackage
(min:1 ,max:1)
realization "it is realized by booking and facilities variation
points"”
confvariant regular mapping
VPName booking selectedVariants (hotel airline; min:1, max:2)
VPName facilities selectedVariants(cruise carrental
activities; min:0, max:3)
confvariant vacationpackage mapping
VPName booking selectedVariants (hotel airline)
VPName facilities selectedVariants(cruise carrental
activities; min:0, max:3)
defaultVariant regular
type parameterization

bindingTime devtime

Parameter Settings

parameter hotelbookingconfirmation existswhenselected{booking.
hotel}

parameter flightticketconfirmation existswhenselected{booking.
airline}

parameter cruiseconfirmation existswhenselected{facilities.
cruise}

parameter carrentalconfirmation existswhenselected{facilities.
carrental}

parameter activityconfirmation existswhenselected{facilities .

activities}

Choreography interface travel of travelitinerary

function planitinerary
input(plan)

output tripplan

portName travel binding localhost:8081

Service interface travelagency

287

20

21

22

23

24

25

26

27

28

29

30

31

32

function querytrip

input(startdate ,enddate ,details)

output tripinfo

function selecthotel

input(hotellD)

function selectairline

input(airlinelD)

function sendconfirmedplan

input (customerID)

output confirmedplan

function sendtripplancancelation

input(customerID)

function setselectedactivities

input(selectedlist)

function selectactivities

input(activitylist)

function selectcruise

input (packageid , date)

function selectcarrental

input(carmodel)

portName agency binding

Configuration interface vconf_travelagency of service travelagency

external VP plan:

optional

localhost:8080

288

20

21

22

23

24

25

26

variant withhotel:activateMethods (selecthotel ,querytrip ,
sendconfirmedplan , sendtripplancancelation)

variant withairline:activateMethods (selectairline ,querytrip ,
sendconfirmedplan , sendtripplancancelation)

variant withcruise:activateMethods(selectcruise ,querytrip ,
sendconfirmedplan , sendtripplancancelation)

variant withcarrental:activateMethods (selectcarrental ,
querytrip ,sendconfirmedplan , sendtripplancancelation)

variant withactivities:activateMethods(setselectedactivities ,
selectactivities ,querytrip ,sendconfirmedplan ,
sendtripplancancelation)

bindingTime devtime

abstract process definition

sequence (
travelagency receive from{traveler} message querytrip(startdate ,
enddate , details)
parallel (
#vp plan ifSelected (withairline)# travelagency send{airline}
message requestprice(startdate ,enddate)
#vp plan ifSelected (withhotel)# travelagency send{hotel}
message requestprice (startdate ,enddate ,details)
#vp plan ifSelected (withcruise)# travelagency send{cruise}
message requestprice (packageid , date)
#vp plan ifSelected (withcarrental)# travelagency send
{carrental} message requestprice (carmodel , date)
#vp plan ifSelected (withactivities)# sequence (
travelagency send{activityprovider} message listactivities (
place ,date) referedDestinations (traveler)
travelagency receive from{traveler} message
setselectedactivities (selectedlist)
travelagency send{activityprovider} message requestprice (

selectedlist ,date)

)
travelagency send{traveler} message getavaliabletripoptions (

travelerID)

289

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

4

43

44

45

46

47

48

49

50

51

52

53

54

#vp plan ifSelected (withairline)# sequence (
travelagency receive from{traveler} message selectairline (
airlinelD)
%comp flightticketconfirmation=travelagency.selectairline%
)
#vp plan ifSelected (withhotel)# sequence (
travelagency receive from{traveler} message selecthotel(
hotellD)

%%comp hotelbookingconfirmation=travelagency.selecthotel%

#vp plan ifSelected (withcruise)# sequence (
travelagency receive from{traveler} message selectcruise (
packageid , date)

Jcomp cruiseconfirmation=travelagency.selectcruise%

#vp plan ifSelected (withcarrental)# sequence (
travelagency receive from{traveler} message selectcarrental (
carmodel)

%comp carrentalconfirmation=travelagency.selectcarrental%

#vp plan ifSelected (withactivities)# sequence (
travelagency receive from{traveler} message selectactivities (
activitylist)

Jcomp activityconfirmation=travelagency.setselectedactivities

%
)
select (
guard (hotelbookingconfirmation == "true" and
flightticketconfirmation == "true") parallel (

#vp plan ifSelected (withairline)# sequence (
travelagency send{airline} message bookflight(arrival,

departure) wait 3 seconds

290

55

56

57

58

59

60

61

62

63

64

65

travelagency send{airline} message processticket(
customerID) referedDestinations (traveler)
)
#vp plan ifSelected (withhotel)# sequence (
travelagency send{hotel} message bookroom(arrival ,
departure ,details) wait 3 seconds
travelagency send{hotel} message processvoucher(customerID
) referedDestinations (traveler)
)
travelagency send{traveler} message sendconfirmedplan (
customerlID)
)
travelagency send{traveler} message sendtripplancancelation (

customerID)

Service interface traveler

function getavaliabletripoptions

input(travelerID)

function selectactivities
input(activitylist)

output selectedlist

function getconfirmedplan

input(confirmedplan)

function gettripplancancelation

input(cancellation)

portName traveler binding localhost:8082

Configuration interface vconf_traveler of service traveler

external VP activityselection:

alternative

291

variant withactivity :activateMethods(getavaliabletripoptions
,selectactivities)
variant withoutactivity :activateMethods(
getavaliabletripoptions)
(min:1 ,max:1)

bindingTime devtime

abstract process definition
sequence (

traveler send{travelagency} message querytrip(startdate ,
enddate ,details)

traveler receive from{travelagency} message
getavaliabletripoptions (travelerID)

#vp activityselection ifSelected(withactivity)#traveler send
{travelagency} message selectactivities(activitylist)

traveler receive from{travelagency} message getconfirmedplan ()

traveler receive from{travelagency} message

gettripplancancelation ()

Service interface hotel

function requestprice
input(startdate ,enddate ,additionalrequests)

output price

function makereservation
input(arrival ,departure ,additionalrequests)

output confirmation

function bookroom
input(arrival ,departure ,additionalrequests)

output confirmation

function processvoucher
input(customerID)

output voucher

292

portName hotel binding localhost:8087

Service interface airline

function requestprice
input(startdate ,enddate)

output price

function bookflight
input(arrival ,departure ,additionalrequests)

output confirmation

function processticket
input (customerID)

output eticket

portName airline binding localhost:8084

Service interface cruise

function requestprice
input(packageid , date)

output price

function bookcruise
input(packageid ,date ,numbeofperson)

output confirmation

portName cruise binding localhost:8087

Service interface carrental

function requestprice
input(carmodel , date)

output price

function rent

293

input(dateinterval ,carmodel)

output confirmation

portName carrental binding localhost:8085

Service interface activityprovider

function listactivities
input(place ,date)

output activitylist

function requestprice
input(activitylist , date)

output price

function enrollactivity
input(activity ,date ,numbeofperson)

output confirmation

portName activityprovider binding localhost:8089

294

20

21

22

23

24

25

26

APPENDIX C

ADAPTABLE SECURITY SYSTEM IN XCHOR LANGUAGE

choreography adaptablesecuritysystem

import configuration vconf_adaptablesecuritysystem

use choreography chor_alert

use choreography chor_credentialmng

import
import
import
import
import
import
import
import
import

import

service
service
service
service
service
service
service
service
service

service

connection

encryption with configuration vconf_encryption
credentials

attemptcalc

comparison with configuration vconf_comparison
responsewindow

interfaceprep with configuration vm_interfaceprep
thirdparty with configuration vm_thirdparty

user

warning

// Shared variables

Context Elements

// user

s wrong attempts

wrongattempts 0O

/1 fake

interface content enabling

fakeinterface false

// biometric

number

selected authentication type variants specifies the

295

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

noofbiometricauthtypeselected 0

// defualt parameters for encryption
defaultparams "username_passw"

//user entered credential data
usernamepass "

// extracted features of user biometric data

nn

processeddata

Choreography Variability Mapping

VP i_encryption_parameters maps service encryption VP
encryption_params

Variant defaultparams maps Variant withdefaultparams
Variant setparams maps Variant withparams

VP i_transaction_type maps service comparison VP analysis
Variant faketransaction maps Variant fake
Variant realtransaction maps Variant real

VP i_auth_type maps service thirdparty VP user_device
Variant username_passw maps Variant ATM Mobile PDA PC
Variant onetimepassw maps Variant ATM Mobile PDA PC
Variant esign maps Variant ATM Mobile PDA PC
Variant fingerprint maps Variant PC
Variant fingervein maps Variant PC
Variant iris maps Variant PC
Variant face maps Variant PC

VP i_auth_type maps choreography credentialmng VP devicecon
Variant fingerprint maps Variant biometricdevice
Variant fingervein maps Variant biometricdevice
Variant iris maps Variant biometricdevice

Variant face maps Variant biometricdevice

Function verify:
sequence (
#vp i_auth_type ifOneSelected(fingerprint fingervein iris
face) # repeat noofbiometricauthtypeselected times(
user send{chor_credentialmng} message getcredentials (
deviceparameter)

J%comp processeddata =chor_credentialmng. getcredentials%

296

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

chor_credentialmng send{encryption} message setparams (

parameters)

#vp i_auth_mode ifSelected (mode_online)# sequence (
thirdparty receive message getconnection ()
thirdparty send{encryption} message setparams(parameters)

)

user send{chor_credentialmng} message getcredentials(
deviceparameter)

Jcomp usernamepass =chor_credentialmng. getcredentials%

chor_credentialmng send{encryption} message setparams (
parameters)

encryption receive message encrypt(credentials)

#vp i_auth_mode ifSelected (mode_online)# sequence (
encryption send{thirdparty} message verify (data)
#vp i_transaction_type ifSelected (faketransaction)#
thirdparty send{comparison} message fakeanalysis(
comparisonresult)

%comp fakeinterface=comparison.fakeanalysis%

#vp i_auth_mode ifSelected (mode_offline)# sequence (
encryption send{storage} message gethasheddata ()
referedDestinations (comparison)
#vp i_transaction_type ifSelected (faketransaction)#

storage send{comparison} message fakeanalysis ()

guard(fakeinterface==false) sequence (
comparison send{attemptcalc} message calculate_wrong
_attempts(result)
Jcomp wrongattempts=attemptcalc.calculate_wrong_attempts%
guard (wrongattempts == 3) parallel (
comparison send{responsewindow} message show ()

attemptcalc send{connection} message closeconnection ()

297

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

guard (wrongattempts 3) parallel (
comparison send{responsewindow} message show ()

attemptcalc send{warning} message warn(response_warning)

)

guard (fakeinterface==true) #vp i_transaction_type ifSelected (
faketransaction)#parallel (
sequence (
comparison send{interfaceprep} message prepareinterface ()
interfaceprep send{responsewindow} message show ()

)

comparison send{chor_alert} message alert ()

)

Function enroll:
sequence (

user send{chor_credentialmng} message getcredentials (
deviceparameter)

Jcomp usernamepass =chor_credentialmng. getcredentials%

chor_credentialmng send{encryption} message setparams (
parameters)

#vp i_auth_type ifOneSelected(fingerprint fingervein iris
face)# repeat noofbiometricauthtypeselected times(
user send {chor_credentialmng} message getcredentials (

deviceparameter)
%%comp processeddata =chor_credentialmng. getcredentials%
chor_credentialmng send{encryption} message setparams (
parameters)

)

encryption receive message encrypt(credentials)

#vp i_auth_mode ifSelected (mode_online)# encryption send
{thirdparty} message savehasheddata(hasheddata)

#vp i_auth_mode ifSelected (mode_offline)# encryption send
{storage} message sethasheddata (hasheddata)

interfaceprep send{responsewindow} message show ()

298

Choreography interface chor_adaptablesecuritysystem of

adaptablesecuritysystem

function verify
precondition(authentication_mode_selected == true)
postcondition (verification_result_set == true)
input(user_info)

output response

function enroll

output enrollmentnotification

portName verifyuser binding hostname:8082

required interfaces

from chor_credentialmng function { getcredentials }

from chor_alert function { alert }

Configuration interface vconf_adaptablesecuritysystem of

choreography adaptablesecuritysystem

// determines number of different biometric authentication types

@composition
internalVP i_auth_type:
mandatory
variant username_passw
optional
variant onetimepassw
variant esign
alternative
variant fingerprint
variant fingervein
variant iris
variant face
(min:1 ,max:2)

bindingTime runtime

299

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

4

43

44

45

46

47

48

49

50

51

52

// determines

@composition

authentication mode

internalVP i_auth_mode:

alternative

variant mode_online:activateMethods (service:thirdparty ,funct:

getconnection ,savehasheddata , verify)

variant mode_offline:activateMethods(service:storage , funct:

gethasheddata)

(min:1 ,max:1)

bindingTime devtime

// determines

@composition

transaction type

internalVP i_transaction_type:

optional

variant realtransaction

variant faketransaction

bindingTime devtime

// determines the content of encryption

@vconfrealization

internalVP i_encryption_parameters:

alternative

variant defaultparams

variant setparams

(min:1 ,max:1)

bindingTime runtime

configuration authentication_type:

varType externalVP

optional

variant userinfo

variant biometrics

realization

_auth_type variability points"

confvariant

"it is realized by i_encryption_parameters and i

userinfo mapping

300

parameters

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

71

78

79

80

81

82

83

84

85

VPName i_encryption_parameters selectedVariants (defaultparams)

confvariant biometrics mapping
VPName i_auth_type selectedVariants(fingerprint fingervein
iris face; min:1, max:1)
VPName i_encryption_parameters selectedVariants (setparams)
defaultVariant userinfo
type parameterization

bindingTime devtime

configuration authentication_mode:

varType externalVP
alternative
variant online
variant offline
(min:1 ,max:1)
realization "it is realized by i_auth_mode and i_encryption
_parameters variability points, setting params for
sessionkey "
confvariant online mapping
VPName i_auth_mode selectedVariants (mode_online)
VPName i_encryption_parameters selectedVariants (setparams)
confvariant offline mapping
VPName i_auth_mode selectedVariants (mode_offline)
defaultVariant offline
type parameterization

bindingTime devtime

configuration fake_transaction_enabling:

varType externalVP
optional
variant fake trans
variant real_trans
realization "it is realized by i_transaction_type variability
point"
confvariant fake_trans mapping
VPName i_transaction_type selectedVariants(faketransaction)

confvariant real_trans mapping

301

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

VPName i_transaction_type selectedVariants(realtransaction)
defaultVariant fake trans
type addition

bindingTime devtime

Constraints
i_auth_type face requires i_auth_mode selectedVariants (mode
_online)
i_auth_mode mode_online const protocol="https"
i_auth_type esign const i_encryption_parameters
defaultparams=valueOf{username_passw esign}
i_auth_type esign const i_encryption_parameters Mobile =

valueOf{Mobile PC}

Parameter Settings
parameter noofbiometricauthtypeselected = #ofVariantsSelected
{fingerprint fingervein iris face} Of i_auth_type
parameter defaultparams = value(username_passw,onetimepassw ,
esign)
parameter fakeinterface existswhenselected{i_transaction_type.

faketransaction}

choreography alert

import configuration vconf_alert

import service gpslocator
import service camera with configuration vconf_camera

import service alertsender

Function alert:
sequence (
gpslocator receive message getaddress ()
#vp emergency_notification ifSelected (telephonecall)# camera
send {alertsender} message call(destination)
#vp emergency_content ifSelected (picture)# sequence (

gpslocator send{camera} message takepicture ()

302

20

21

22

camera send{alertsender} message setcontent(picture)

)

#vp emergency_content ifSelected (videorecord)# sequence (
gpslocator send{camera} message recordvideo(duration)
camera send{alertsender} message setcontent(video)

)

#vp emergency_notification ifSelected (mediasend)# camera send

{alertsender} message sendmediacontent ()

Choreography interface chor_alert of alert

function alert
precondition(session == false)

postcondition (thirdparty_alerted == true and alarm_mode == true)

portName alert binding hostname:5555

Configuration interface vconf_alert of choreography alert

external VP destination:
mandatory
variant bank
optional
variant police

bindingTime devtime

external VP emergency_notification :
optional
variant telephonecall:activateMethods(service:alertsender ,
funct:setcontent ,call)
variant mediasend: activateMethods (service:alertsender , funct:
setcontent ,sendmediacontent)

bindingTime devtime

external VP emergency_content:
mandatory

variant gpsdata

303

20

21

22

23

20

21

22

23

variant datetime
optional

variant picture

variant videorecord

bindingTime devtime

choreography credentialmng

import configuration vconf_credentialmng

import service connection
import service imageretrieval

import service credentials

Context Elements

nn

biometric_data

processeddata

deviceparameter

Function getcredentials:
sequence (
#vp devicecon ifSelected (biometricdevice) #sequence (
connection receive message connectdevice (deviceid)
J%comp biometric_data =connection.connectdevice%
connection send {imageretrieval} message extract_features (
biometric_data)
J%comp processeddata =imageretrieval.extract_features%

)

credentials receive message getcredential ()

Choreography interface chor_credentialmng of <credentialmng

function getcredentials
input(deviceparameter)

output processeddata

portName credentialmng binding localhost:8050

304

required interfaces

Configuration interface vconf_credentialmng of choreography

credentialmng

external VP devicecon:
mandatory
variant usernamepassword
optional
variant biometricdevice

bindingTime devtime

Service interface alertsender

function setcontent

input(content)

function call

input(destination)

function sendmediacontent

portName alertsender binding localhost:8040

Service interface attemptcalc

function calculate_wrong_attempts
postcondition (connection_closed==true or user_warned ==
input(session_id)

output no_wrong_attempts

portName attemptcalc binding hostname:5055

Service interface camera

function takepicture

output picture

305

true)

function recordvideo
input(duration)

output video

portName camera binding localhost:8020

Configuration interface vconf_camera of service camera

external VP mode:
optional
variant picture :activateMethods(takepicture)
variant video :activateMethods(recordvideo)

bindingTime devtime

Service interface comparison

function compare

output result

function fakeanalysis
input(comparisonresult)

output result

portName comparison binding hostname:2011

Configuration interface vconf_comparison of service comparison
@vconfservice
vp analysis:
optional
variant fake :activateMethods(fakeanalysis ,compare)
variant real:activateMethods (compare)

bindingTime devtime

abstract process definition
sequence (

comparison receive from{storage} message compare(data)

comparison send{attemptcalc} message calculate_wrong_attempts (

result)

306

)
#vp analysis ifSelected (fake)# sequence (
comparison receive from{thirdparty} message fakeanalysis(
comparisonresult)
comparison send{interfaceprep} message prepareinterface ()
)

comparison send{responsewindow} message show ()

Service interface connection

function openconnection

output sessionid

function connectdevice

input(deviceid)

function closeconnection
precondition (conn_opened == true)
postcondition (conn_closed == true)

input(session_id)

portName connection binding hostname:4544

Service interface credentials

function getcredential
precondition(credentials_entered == true)
postcondition(credentials_gathered == true)

output credentials

portName credentials_gathering binding hostname:8080

Service interface encryption

function encrypt
precondition(sessioncreated == true)
postcondition (data_encrypted == true)

input(credentials)

307

output hasheddata

function setparams
precondition (params_required == true)
postcondition (set_params == true)

input(parameters)

portName encryption binding hostname:8082

Configuration interface vconf_encryption of service encryption
vp encryption_params:
alternative
variant withparams:activateMethods (encrypt,setparams):
setParameter (toFunct:encrypt ,parameter:params)
variant withdefaultparams:activateMethods (encrypt)
(min:1 ,max:1)

bindingTime runtime

Service interface gpslocator

function getaddress
input(longtitudelattitude)

output address

portName gpslocator binding localhost:8050

Service interface imageretrieval
function extract_features
precondition (bio_data_gathered == true)
postcondition (features_extracted == true)
input(biometric_data)

output extracted_template

portName imageretrieval binding hostname:8080

Service interface interfaceprep

function prepareinterface

postcondition (interface_prepared == true)

308

output interface_content

portName interfacecontent binding hostname:2000

Configuration interface vm_interfaceprep of service interfaceprep
vp content:
optional
variant fake
variant real

bindingTime devtime

Service interface responsewindow

function show
precondition (content_prepared == true)
postcondition(result_showed == true)
input(content)

output response_window

portName responsewindow binding hostname:4444

Service interface storage

function gethasheddata
precondition (data_stored == true)

output storedhasheddata

function sethasheddata

input(hasheddata)

portName storage binding hostname:2010

Service interface thirdparty

invariant connection == true

function getconnection
precondition(driver_installation == true)

postcondition(sessioncreated == true)

309

20

21

22

23

input (user_id)

output session_key

function savehasheddata
precondition (data_prepared == true)
postcondition (successfull_save == true or failed_save == true)
input(hasheddata)

output successful_save_ack

function verify
precondition (data_prepared == true)
postcondition (user_verified == true or user_denied == true)
input(data)

output response_warning

portName datasending binding hostname:8081

Configuration interface vm_thirdparty of service thirdparty
vp user_device:
optional
variant PC
variant Mobile
variant ATM
variant PDA

bindingTime runtime

Service interface user

function providecredentails

output usercredentials

portName user binding locahost:8045

Service interface warning

function warn
precondition(session == false)

postcondition (user_warned == true)

310

output warning_message

portName warning binding hostname:4555

311

312

APPENDIX D

GENERATED FTS FILES FOR VERIFICATION OF CASE
STUDIES

D.1 TVL Feature Model File for Travel Itinerary System

root Application {
group allOf{
Adaptablesecuritysystem group allOf{
Authentication_type group someOf{
Biometrics group allOf{
I_encryption_parameters group allOf{
Setparams
}s
I_auth_type group [1..1]{
Fingerprint ,
Fingervein ,
Iris ,

Face

}’
Userinfo group allOf{
I_encryption_parameters_1 group allOf{

Defaultparams

}7
Authentication_mode group oneOf{

Offline group allOf{

313

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

4

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

I_auth_mode group allOf{
Mode_offline

}7
Online group allOf{
I_auth_mode_2 group allOf{

Mode_online

b

I_encryption_parameters_3 group allOf{

Setparams_4

}s

Fake_transaction_enabling group someOf{

Real_trans group allOf{
I_transaction_type group allOf{

Realtransaction

}7
Fake_trans group allOf{
I_transaction_type_5 group allOf{

Faketransaction

}s
Credentialmng group allOf{
Devicecon group someOf{
Biometricdevice
}s
Devicecon_6 group allOf{

Usernamepassword

}’
Alert group allOf{
Emergency_notification group someOf{

Telephonecall ,

314

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

71

78

79

80

Mediasend

}s

Destination group someOf{
Police

}s

Destination_7 group allOf{
Bank

}s

Emergency_content group someOf{
Picture ,
Videorecord

}s

Emergency_content_8 group allOf{
Gpsdata,

Datetime

}

Setparams_4 -> Setparams;

D.2 fPromela File for Travel Itinerary System

chan chan_tempthirdparty_getconnection = [1] of {byte}

chan chan_comparisoninterfaceprep_prepareinterface = [1] of {byte}

chan chan_chor_credentialmngencryption_setparams = [4] of {byte}

chan chan_storagecomparison_compare = [1] of {byte}

chan chan_comparisonattemptcalc_calculate_wrong_attempts = [1] of
{byte}

chan chan_tempencryption_encrypt = [1] of {byte}

chan chan_encryptionstorage_gethasheddata = [1] of {byte}

chan chan_storagecomparison = [1] of {byte}

chan chan_attemptcalcconnection_closeconnection = [1] of {byte}
chan chan_attemptcalcwarning_warn = [1] of {byte}

chan chan_encryptionthirdparty_verify = [1] of {byte}

chan chan_comparisonchor_alert_alert = [1] of {byte}

chan chan_encryptionthirdparty_savehasheddata = [1] of {byte}

315

chan chan_comparisonresponsewindow_show = [2] of {byte}

chan chan_thirdpartycomparison_fakeanalysis = [1] of {byte}
chan chan_thirdpartyencryption_setparams = [1] of {byte}

chan chan_userchor_credentialmng_getcredentials = [4] of {byte}
chan chan_interfaceprepresponsewindow_show = [2] of {byte}

chan chan_encryptionstorage_sethasheddata = [1] of {byte}

chan chan_cameraalertsender_sendmediacontent = [1] of {byte}
chan chan_tempgpslocator_getaddress = [1] of {byte}

chan chan_cameraalertsender_setcontent = [2] of {byte}

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

chan
chan
chan
chan
chan
chan
byte
byte
byte
byte
byte
byte
byte
byte
byte
byte
byte
byte
byte
byte
byte
byte

chan_cameraalertsender_call = [1] of {byte}

chan_gpslocatorcamera_takepicture
chan_gpslocatorcamera_recordvideo
chan_tempconnection_connectdevice
chan_connectionimageretrieval _extract_features = [1] of {byte}

chan_tempcredentials_getcredential

deviceid ;
biometric_data;
temp ;
destination ;
picture ;
duration ;

video ;
notification ;
deviceparameter;
parameters;
credentials ;
data ;
comparisonresult;
result;
response_warning;

hasheddata ;

int wrongattempts=0;

int noofbiometricauthtypeselected =0;

byte
byte
byte
byte

defaultparams=117;
temp_processeddata=98;
deviceparameter =34;

usernamepass=34;

316

[1] of {byte}
[1] of {byte}
[I] of {byte}

[1] of {byte}

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

71

78

79

80

81

82

83

84

85

86

87

byte processeddata=34;
byte biometric_data=34;
bool fakeinterface =0;

bool temp_fakeinterface=1;

typedef features {
bool Setparams;
bool Fingerprint;
bool Fingervein;
bool Iris;
bool Face;
bool Defaultparams;
bool Mode_offline ;
bool Mode_online ;
bool Realtransaction;
bool Faketransaction;
bool Biometricdevice;
bool Usernamepassword;
bool Telephonecall;
bool Mediasend;
bool Police;
bool Bank;
bool Picture;
bool Videorecord;
bool Gpsdata;
bool Datetime

1

features f;

active proctype encryption () {
chan_tempencryption_encrypt!credentials;
chan_tempencryption_encrypt!credentials;

}

active proctype thirdparty () {
chan_tempthirdparty_getconnection !temp;

}

active proctype credentials () {

317

88 chan_tempcredentials_getcredential !temp;
8}

90 active proctype verify () {

91 {

) ed

93 ::((f.Fingerprint && !f.Fingervein && !f.Iris && !f.Face) Il (
f.Fingervein && !f.Fingerprint && !f.Iris && !f.Face) Il (
f.Iris && !f.Fingerprint && !f.Fingervein && !f.Face) Il (f
.Face && !f.Fingerprint && !f.Fingervein && !f.Iris)) ->

94 do

95 ::(noofbiometricauthtypeselected!= 0) ->

9 chan_userchor_credentialmng_getcredentials !34;

97 chan_userchor_credentialmng_getcredentials ?processeddata;

98 chan_chor_credentialmngencryption_setparams ! parameters;

99 noofbiometricauthtypeselected = noofbiometricauthtypeselected

-1

100 ::else -> break;

101 od

102 :relse -> skip;

103 dg;

104 3

105 {

106 ed

107 ::f.Mode_online ->

108 temp = temp+1;

109 {

110 chan_tempthirdparty_getconnection ?temp;

m }s

12 {

13 chan_thirdpartyencryption_setparams ! parameters;

14 b

11s :relse -> skip;

116 dg;

17 }s

118 {

119

120

chan_userchor_credentialmng_getcredentials !34;

chan_userchor_credentialmng_getcredentials 7usernamepass;

318

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

{
chan_chor_credentialmngencryption_setparams ! parameters;
3
{
chan_tempencryption_encrypt?credentials;
3
{
ed
::f.Mode_online ->
temp = temp+1;
{
chan_encryptionthirdparty_verify !data;
}
{
ed
::f.Faketransaction ->
chan_thirdpartycomparison_fakeanalysis!l;
chan_thirdpartycomparison_fakeanalysis?fakeinterface;
:relse -> skip;
dg;
1
:relse -> skip;
dg;
3
{

ed
::f.Mode_offline ->
temp = temp+1;
{
chan_encryptionstorage_gethasheddata !temp;
chan_storagecomparison !temp;
1
{
gd
::f.Faketransaction ->

chan_storagecomparison_compare !temp;

319

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

:relse -> skip;

dg;
}s
:relse -> skip;
dg;
}s
{
if
::(fakeinterface==temp_fakeinterface) ->
{
chan_comparisonattemptcalc_calculate_wrong_attempts !0;
chan_comparisonattemptcalc_calculate_wrong_attempts?
wrongattempts ;
}s
{
if
::(wrongattempts == 3) ->
chan_comparisonresponsewindow_show !temp;
chan_attemptcalcconnection_closeconnection !temp;
:relse -> skip;
fi;
}s
{
if
::(wrongattempts < 3) ->
chan_comparisonresponsewindow_show !temp;
chan_attemptcalcwarning_warn!response_warning;
irelse -> skip;
fi;
}s
:relse -> skip;
fi;
}s
{
if

::(fakeinterface==temp_fakeinterface && processeddata==temp

_processeddata) ->

320

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

s
}

ed

.. f.Faketransaction ->

temp = temp+1;
{
chan_comparisoninterfaceprep_prepareinterface !temp;
b
{
chan_interfaceprepresponsewindow_show!temp;
1

chan_comparisonchor_alert_alert !temp;

:relse -> skip;

dg;
::else -> skip;

fi;

active proctype enroll () {

{

chan_userchor_credentialmng_getcredentials !34;

chan_userchor_credentialmng_getcredentials 2usernamepass;

chan_chor_credentialmngencryption_setparams ! parameters;

ed
::((f.Fingerprint && !f.Fingervein && !f.Iris && !f.Face) Il (
f.Fingervein && !f.Fingerprint && !f.Iris && !f.Face) Il (
f.Iris && !f.Fingerprint && !f.Fingervein && !f.Face) Il (f
.Face && !f.Fingerprint && !f.Fingervein && !f.Iris)) ->
do
::(noofbiometricauthtypeselected!= 0) ->
chan_userchor_credentialmng_getcredentials !34;
chan_userchor_credentialmng_getcredentials ?processeddata;
chan_chor_credentialmngencryption_setparams ! parameters ;
noofbiometricauthtypeselected = noofbiometricauthtypeselected

-1

321

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

::else -> break;
od

:relse -> skip;

dg;
1
{
chan_tempencryption_encrypt?credentials;
1
{
egd

::f.Mode_online ->
chan_encryptionthirdparty_savehasheddata!hasheddata;
:relse -> skip;

dg;

ed
::f.Mode_offline ->
chan_encryptionstorage_sethasheddata!hasheddata;

:relse -> skip;

dg;
}s
{

chan_interfaceprepresponsewindow_show !temp;
1

active proctype alert() {

{
chan_tempgpslocator_getaddress !temp;
}s
{
chan_tempgpslocator_getaddress ?temp;
1
{
ed

::f.Telephonecall ->

322

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

chan_cameraalertsender_call ! destination;
::else -> skip;

dg;

ed

::f.Picture ->

temp = temp+1;
{

chan_gpslocatorcamera_takepicture !temp;

chan_cameraalertsender_setcontent!picture ;
}s
::else -> skip;

dg;

ed
::f.Videorecord ->
temp = temp+1;

{

chan_gpslocatorcamera_recordvideo ! duration;

chan_cameraalertsender_setcontent !video;
}s
:relse -> skip;

dg;

gd

:: f.Mediasend ->
chan_cameraalertsender_sendmediacontent !temp;
:relse -> skip;

dg;

323

300 }
301

32 active proctype getcredentials () {

S

303 {

304 ed

305 ::f.Biometricdevice ->

306 temp = temp+1;

307 {

308 chan_tempconnection_connectdevice ! deviceid;

309 b

310 {

311 chan_tempconnection_connectdevice?biometric_data;

312 }s

313 {

314 chan_connectionimageretrieval _extract_features !34;

315 chan_connectionimageretrieval _extract_features?
processeddata;

316 }s

317 :relse -> skip;

318 dg;

319 }s

320 {

21 chan_tempcredentials_getcredential 7temp;

322 }s

23}

D.3 TVL Feature Model File for Adaptable Security System

1 root Application{

2 group allOf{

3 Travelitinerary group allOf{

4 Itinerary group oneOf{

5 Vacationpackage group allOf{
6 Facilities group [0..3]{
7 Cruise ,

8 Carrental ,

9 Activities

324

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

}’
Booking group allOf{
Hotel ,

Airline

b
Regular group allOf{
Facilities_1 group [0..3]{
Cruise_2,
Carrental 3,

Activities_4

}s

Booking 5 group [1..2]{
Hotel _6,
Airline_7

}

}

Activities_4 -> Activities;
Hotel_6 -> Hotel;
Carrental_3 -> Carrental;
Airline_7 -> Airline;

Cruise_2 -> Cruise;

D.4 fPromela File for Adaptable Security System

chan chan_airlinetraveler = [1] of {byte}

chan chan_travelagencyairline_requestprice = [1] of {byte, byte}

chan chan_travelagencyactivityprovider_requestprice = [1] of {byte,
byte}

chan chan_travelagencytraveler_getavaliabletripoptions = [1] of
{byte}

chan chan_travelertravelagency_selectcruise = [1] of {byte}

chan chan_travelertravelagency_selectcarrental = [1] of {byte}

325

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

chan
chan
chan
chan
chan
chan
chan
chan
chan
chan
chan

chan

chan

chan
chan
chan
chan
chan
byte
byte
byte
byte
byte
byte
byte
byte
byte
byte
byte
byte
byte
byte
byte
byte
byte

chan_travelertravelagency_querytrip = [1] of {byte, byte, byte}

chan_travelertravelagency_setselectedactivities = [2] of {byte}
chan_travelertravelagency_selectairline = [1] of {byte}
chan_travelertravelagency_selecthotel = [1] of {byte}

chan_travelagencyhotel_requestprice = [1] of {byte, byte, byte}
chan_hoteltraveler = [1] of {byte}
chan_travelagencycruise_requestprice = [1] of {byte, byte}
chan_travelagencyairline_bookflight = [1] of {byte, byte}
chan_travelagencyairline_processticket = [1] of {byte}
chan_travelagencytraveler_getconfirmedplan = [1] of {byte}

chan_travelagencyairline_bookflightnot = [1] of {byte}

chan_travelagencyactivityprovider_listactivities = [1] of {byte
byte}
chan_travelagencytraveler_gettripplancancelation = [2] of {byte

chan_travelagencyhotel_bookroom = [1] of {byte, byte, byte}
chan_activityprovidertraveler = [1] of {byte}
chan_travelagencycarrental_requestprice = [1] of {byte, byte}
chan_travelagencyhotel_bookroomnot = [1] of {byte}
chan_travelagencyhotel_processvoucher = [1] of {byte}
temp ;

notification ;

startdate ;

enddate ;

details ;

packageid;

date ;

carmodel;

place;

selectedlist ;

travelerID ;

airlinelD;

hotellD ;

activitylist;

temp ;

arrival;

departure;

326

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

71

78

byte
int

byte
bool
bool
bool
bool
bool
bool
bool

customerlID ;

intelem =0;
stringelem=115;
flightticketconfirmation =0;
hotelbookingconfirmation=0;
carrentalconfirmation =0;
activityconfirmation =0;
cruiseconfirmation =0;
temp_flightticketconfirmation =1;

temp_hotelbookingconfirmation =1;

typedef features {

bool Cruise;

bool Carrental;

bool Activities;

bool Hotel;

bool Airline

}s

features f;

active proctype proc_chan_travelagencyairline_bookflightnot () {

}

active proctype proc_chan_travelagencyhotel_bookroomnot () {

}

chan_travelagencyairline_bookflightnot!notification

chan_travelagencyhotel_bookroomnot! notification

active proctype planitinerary () {

{

chan_travelertravelagency_querytrip!startdate ,enddate ,details

}s
{

gd
o f.Airline ->

chan_travelagencyairline_requestprice !startdate ,enddate;

:relse -> skip;
dg;
ed

327

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

::f.Hotel ->
chan_travelagencyhotel_requestprice ! startdate ,enddate ,details;
:relse -> skip;
dg;
ed
::f.Cruise ->
chan_travelagencycruise_requestprice ! packageid , date;
:relse -> skip;
dg;
egd
::f.Carrental ->
chan_travelagencycarrental _requestprice ! carmodel , date;
:relse -> skip;
dg;
ed
i f. Activities ->
temp = temp+1;
{
chan_travelagencyactivityprovider_listactivities !place , date;
chan_activityprovidertraveler !temp;
}s
{
chan_travelertravelagency_setselectedactivities!selectedlist;
}s
{
chan_travelagencyactivityprovider_requestprice!selectedlist ,
date ;
}s
:relse -> skip;

dg;

chan_travelagencytraveler_getavaliabletripoptions!travelerID

328

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

chan_travelagencytraveler_getavaliabletripoptions?travelerID

chan_travelertravelagency_selectairline !0;

chan_travelertravelagency_selectairline ?intelem;

chan_travelertravelagency_selecthotel !115;

chan_travelertravelagency_selecthotel ?stringelem ;

}
{
ed
;. f. Airline ->
temp = temp+1;
{
}
::else -> skip;
dg;
¥
{
ed
::f.Hotel ->
temp = temp+1;
{
}s
:relse -> skip;
dg;
}s
{

ed
::f.Cruise ->
temp = temp+1;

{

chan_travelertravelagency_selectcruise !1;
chan_travelertravelagency_selectcruise?

cruiseconfirmation ;

:relse -> skip;

dg;

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

ed

::f.Carrental ->

temp = temp+1;
{
chan_travelertravelagency_selectcarrental !1;
chan_travelertravelagency_selectcarrental?

carrentalconfirmation ;

}s

:relse -> skip;

dg;

ed

i f. Activities ->

temp = temp+1;
{
chan_travelertravelagency_setselectedactivities !1;
chan_travelertravelagency_setselectedactivities?

activityco