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OZET

MOMENT METODUYLA EFIE DENKLEMi KULLANILARAK
ELEKTROMANYETIK SAGILIM VE RADAR KESIT ALANI MODELLEME

Evren BAL

Elektronik Sistemleri Muhendisligi YUksek Lisans Tezi, 2014

Danisman: Yrd.Dog¢.Dr.Fatih ERDEN

Anahtar Kelimeler: Moment metodu (MoM), Sagilma, MATLAB, Radar
kesit alani (RKA), Elektrik Alan integral Denklemi (EFIE)

Bu calismada, MoM sayisal yonteminde EFIE denklemi kullanilarak
Uc boyutlu cisimlerde elektromanyetik sagilim modellemesi ve Radar Kesit
Alani (RKA) gosterimi yapilmistir. Hedeflerin saciima karakteristikleri buylk
dlgide gelen dalganin frekansina baglidir. llgi alanindaki hedeflerin
karakteristik dalga boyunun, gelen dalga boyuna gore ¢ok kugiuk oldugu
alcak frekans bolgesinde ya da yaklasik olarak ayni seviyede oldugu
rezonans bolgesinde, uzun ve karmasik matematiksel denklemler barindiran
elektromanyetik alan veya sacilim hesaplamalarinin kolaylikla yapilabilmesi
icin MoM gibi sayisal yontemler kullanihr. Bu yontemde amag, normal
sartlarda analitik olarak hesaplanmasi ¢ok zor olan elektromanyetik
denklemleri, uygun programlama dilinde yazilan bir kod vasitasiyla yeterli
donanima sahip bir bilgisayara ¢dzdirmektir. Buna paralel olarak, MATLAB
programlama dilinde yazilmig bir kod kullanilimig ve c¢alisma suresince
ihtiyaca gore gelistiriimistir. Calismada, o6rnek sekillere iligkin denenen
frekans bandi, gergcek uygulamalarda hava arama radarlarinin frekans
bandina karsilik gelmektedir. Bu nedenle, yapilan denemeler ve RKA
orneklerinin, muhtemel hava hedeflerinin sagilim paternleri ve hava arama
radarlarinin yakalama ihtimalleri konularinda yapilacak ¢alismalara iliskin bir

fikir verebilecegi degerlendirilmigtir.



ABSTRACT

ELECTROMAGNETIC SCATTERING AND RADAR CROSS SECTION
MODELING BY METHOD OF MOMENT USING EFIE

Evren BAL

Master Thesis for Electronics Systems Engineering, 2014

Advisor: Asst.Prof.Dr. Fatih ERDEN

Key Words: Method of Moment (MoM), Scattering, MATLAB,
Radar cross section (RCS), EFIE

In this study, electromagnetic scattering modeling and Radar Cross
Section (RCS) representation by MoM numerical method using EFIE was
studied. Scattering characteristics of targets mostly depend on the frequency
of the incident wave. Among Low Frequency Zone, in which the characteristic
wavelength of the targets is much more smaller than the incident wavelength,
or among Resonance Frequency Zone, in which they are approximately at
the same level, numerical methods like MoM are used in order to make the
electromagnetic field and scattering calculations, which include long and
complex mathematical equations, easier. The main aim of this method is to
make a well-equipped computer to solve the electromagnetic equations,
which are normally and analitically very hard, via a code that is written with a
suitable programming language. Parallel to this fact, a pre-written MATLAB
code was used and improved due to the calculation needs during the study.
The frequency band, on which the examples was studied, is equivalent to the
frequency band of the air search radars. Therefore, the trials and RCS
examples are considered to be beneficial for whom studies on the scattering
patterns of probable air targets and catching probabilities of air search

radars.
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|. GIRIS

Bilgisayar tabanli elektromanyetik (Computational Electromagnetics-CEM)
hesaplama yontemleri, modern elektronik bilgisayarlar kullanarak Maxwell
denklemlerini sayisal olarak ¢6zme Dbilimiyle ilgilenir. Gunumuzde
bilgisayarlarin hizla yukselen yeteneklerinin de yardimiyla bilgisayar tabanli
elektromanyetik hesaplama yontemleri; elektromanyetik, radyo frekans teorisi
(RF) ve mikrodalga muhendisliginde kullanilan ¢ok énemli bir ara¢ haline

gelmigtir.

Maxwell denklemleri, denklemler dogru ¢o6zuldigu takdirde tasarim
performanslari ve deneysel ¢iktilar hakkinda saglam éngoértler elde etmemizi
sagdlar. Yillar iginde, teorinin guvenilirliginin altinda yatan temel sebebin bu
Ongoru gucu oldugu kanitlanmigtir. Elektriksel etkilesimlerin arkasindaki
temel prensipleri net bir sekilde acgiklayan teori, elektrik muhendisligi ve
bilimsel teknolojilere yol gdstermesi acisindan son derece faydali olmustur.
Radarlar, antenler, uzaktan algilama cihazlari, geoelektromanyetik,
biyoelektromanyetik, kablosuz haberlesme, optik ve yuksek frekans devreleri
bu teknolojilere ornektir. Dahasi Maxwell teorisi, statikten optige genis bir
frekans bandinda ve subatomikten intergalaktige genis bir dinamik menzilde
gecerlidir. Bundan dolayl, Maxwell denklemlerinin her zaman sayisal
yontemler kullanilarak dogru bir sekilde ¢dzilmesine yonelik arastirmalar
yapillmistir. Boylece artan zorluk derecesindeki problemler daha kolay

modellenip analiz edilebilmigtir.

19’'uncu yuzyillda Maxwell teorisinin gelistiriimesinin ardindan, ilk
elektromanyetik (EM) analizler kure, silindir ve duzlemler Uzerinde
yapilmistir. Cok yonlUlik ve ihtiyaglar kapsaminda bilimsel ve muhendislik
talepleri arttikga, daha karmasik geometrilere iliskin ¢dzimlere ihtiyag
duyulmaya baslanmistir. Uzerlerine gelen radar dalgalarinin sacilma
karakteristiginin onem teskil ettigi askeri gemi ya da savas ucaklari bunlara
verilebilecek orneklerden bazilaridir. Sonug olarak, Maxwell denklemlerinin

¢6zllmesi icin bazi yaklagim teknikleri geligtirilmigtir [1].



Devre teorisi, farkli bir bakis acgisiyla Maxwell teorisinin, birgok karmagik
geometrinin yaklagik analizinin ylksek bir bagari oraniyla yapilabildigi alcak
frekans bdlgesiyle sinirlandiriimis sekli olarak tanimlanabilir. Spektrumun
diger ucunda, Maxwell denklemlerine yaklagik ¢ozumler Uretebilmek igin;
yuksek-frekans dalga teorisi, kirinim teorisi ve perturbasyon teorisi gibi
teoriler gelistirilmigtir. Bilgisayar teknolojisinin gelismesiyle birlikte 1960’larda
¢6zUm metotlarinda ¢ok yonlulik ve dogruluk saglamak maksadiyla sayisal
yontemler gelistiriimistir. Bu metotlar igerisinde 6ne cikanlar Sonlu Farklar
Metodu (FDM-The Finite Difference Method), Sonlu Elemanlar Metodu (FEM-
The Finite Element Method) ve Moment Metodu (MoM-The Method of
Moments) olmus ve bilgisayar tabanl elektromanyetik hesaplama

yontemlerinin ¢ekirdegini olusturmuslardir.

Bu calismada 6ncelikle, Moment Metodu esas alinarak Matlab’de yaziimig
bir kod, geometrileri farkh bir programda hazirlanmis sekilleri taniyacak
sekilde gelistiriimistir. Daha sonra, geometrileri tanimlanan sekillerin
Uzerinden sacgilan EM dalgalarin olusturdugu yltzey akimlari modellenerek
cisimlerin farkh frekanslardaki elektromanyetik sacilim karakteristigi ve radar
kesit alanlari incelenmis, bunlara iligkin elde edilen veriler yorumlanmistir.
Sayisal sonuglarin, Matlab kodunun ve yapilan islemlerin dogrulugu, analitik
metot sonugclariyla karsilastirilarak analizler yapiimigtir. Bu ¢alismadaki 6rnek
sekillere iliskin frekans bandi, hava arama radarlarinin frekans bandina

karsilik gelecek sekilde segilmistir.



Il. GENEL BILGILER

A. SAGILMA PROBLEMi VE RADAR KESIT ALANI (RKA)

Elektromanyetik teori, temel olarak G¢ ana problem Uzerinde durur. Bunlar
Isima  (radiation), yayllma (propagation) ve sagilma (scattering)
problemleridir. Isima ve yayilma, elektromanyetik dalgalarin boslukta ya da
yogun ortamlarda ilerlemesiyle ve bu eylem sonucunda olusturduklari
alanlarla ilgilenir. Sacima ise Isima ve yayllma olaylariyla iletilen
elektromanyetik dalgalarin bir cisme c¢arptiginda ya da farkli yogunluktaki bir
ortama gecis yaptigindaki davranisiyla ilgilenir. Saciima problemini
digerlerinden ayiran ve o6nemli kilan etken, askeri uygulamalar agisindan
yuksek onem arz eden radar kesit alani (RKA) gibi parametrelerin bu
problem tipi yardimiyla ¢ozuluyor olmasidir. Bu ¢alismada, sacgiima problemi

ve RKA uygulamalariyla ilgilenilmistir.

RKA, bir cismin veya platformun bir radardaki gorunurlik miktari veya
elektromanyetik dalgalar olan radar sinyallerini yansitma miktari olarak
tanimlanabilir [2]. RKA su sekilde ifade edilebilir;

Hedeften sacilan gii
RKA ¢ guc

~ Hedefe m? basina gelen giic

Hedefe gbre alicinin ayni ya da farkl yerlerde olmasina badli olarak,
siraslyla, mono-statik ya da bi-statik RKA olarak tanimlanir. Her iki durumda
da matematiksel olarak, hedeften cok uzaklarda (dalga boyuna goére R
uzakhgi sonsuza giderken) sacilan alanin (Eg) genliginin, gelen alanin (E;)
genligi ile karesel olarak oranlanmasi seklinde gosterilir;

|E;|?
— = I 2
RKA =0 = llmRiL)gR IE, 2

RKA’nin birimi metrekare (m?2)'dir. Fakat bir cismin degisik agilardaki RKA
degeri 10° m? ile 10~ m? arasinda degisim gosterebilmektedir [3]. Bu kadar
genis araliktaki RKA degerlerini ayni grafik Gzerinde gostermek zor oldugu

icin RKA olgumlerinde genellikle logaritmik bir Olgekle gosterilen “desibel



metrekare” (dBm?) veya ingilizce “decibel square-meter” teriminin kisaltmasi
olan ‘dBsm’ birimi kullanilir [3]. Metrekare ile dBsm cinsinden RKA degerleri

arasinda;
O-dB == 10 10g10 o

o= 10(0.1x0d3)
formdalleri ile gecis saglanabilir.

Hedeflerin RKA degerleri, kullanilan frekansa ve hedef geometrisi ile
hedefin elektriksel 6zelliklerine baghdir. Frekansa bagl olarak hedefler farkl

davranis gosterdikleri G¢ degisik RKA bdlgesinde ele alinirlar [2]. Bunlar;

e Hedef boyutlarinin dalga boyundan c¢ok kigik kaldigi algak frekans
(Rayleigh) bolgesi,

e Hedef boyutlarinin dalga boyu mertebelerinde oldugu orta frekanslar
(Rezonans) bolgesi ve

e Hedef boyutlarinin dalga boyuna goére ¢ok buyluk oldugu yuksek
frekans (Optik) bolge olarak isimlendirilir.

Hedefin fiziksel boyutu radarin g¢alistiyi dalga boyuna gére kiyaslandiginda
ne kadar buyuk olursa, elde edilen RKA degeri de o kadar artacaktir. Aksi
durumda, cismin fiziksel boyu, dalga boyu ile kiyaslandiginda g¢ok kuguk
kalirsa, elde edilen RKA degeri de ¢ok duslk olacaktir. Bununla beraber
hedefin geometrik yapisi da ¢ok blytk dnem tasimaktadir. Hedef gelen radar
sinyalini ayni dogrultuda yansitacak bir geometriye sahipse, beklenen RKA
degerleri daha yuksek olacaktir. Ancak hedef, gelen radar sinyallerini radara
degil de farkh yonlere sagacak 6zel bir geometriye sahipse, beklenen RKA
degerleri dusuk olacaktir. Bunun yaninda hedefe hangi agidan bakildigi ve
hedefin hangi malzemeden yapildidi da blylik énem tasimaktadir. Hedef
teorik olarak mikemmel iletken (Perfect Electric Conductor-PEC) yapida ise,
gelen radar sinyalini oldugu gibi geri yansitacaktir. Ancak hedef 6rnegin
teflon gibi kayipl bir malzemeden yapilmis ise, hedeften geriye yansiyan
sinyal orani PEC yapiya sahip hedefteki kadar yiksek olmayacaktir.



Hedeften sacilmanin her frekans ve her bakis acisi i¢in azaltilmasi ¢ok
gug¢ bir problemdir. Bu nedenle, algilamada kullanilan radarlarin birinde
goérilemeyen bir hedef bir digerinde kolaylikla gorulebilir. Hedeflerin RKA

degerlerini azaltmak igin kullanilan en etkili iki teknik;

o Metal yuzeylerin hedefe gelen elektromanyetik enerjiyi radar yonunde
yansitmayacak bicimde sekillendirilmesi,
e Metal yuzeylerin azaltilmasi ve var olanlarin da radar isaretini yutacak

malzemelerle (radar absorbing material-RAM) kaplanmasidir.

Gunumuzde, Ozellikle askeri hedeflerde (gemi ya da ucgak) RKA
degerlerinin kdgultilmesi, yani radara yakalanmayan hayalet hedeflerin
tasarimi  olduk¢a yogun ilgi cekmektedir. Amerikan B-2 ve F-117
bombardiman ucaklari ile Fransiz La Fayette sinifi ve Alman Sachsen sinifi
firkateynler hayalet olarak tasarlanmis, radarlara ¢ok disuk RKA gdésteren

orneklerdir [3].

RKA izi dusUk hedeflerin tasarlanmasinda en énemli nokta, hedeflerin EM
davraniglarinin frekansa, geometriye ve radar isaretine bagl olarak ¢ok iyi
anlagilabilmesidir. Matematiksel analizi ¢gok zor, hatta olanaksiz olan bu
problemler ancak sayisal yontemlerle ele alinabilen karmasik yapidadirlar.
Sayisal yontemlerde ise en 6nemli sorun, elde edilen sonuglarin fiziksel

yorumlarinin saglikh yapilabilmesidir.
B. BIiLGISAYAR TABANLI EM HESAPLAMA YONTEMLERI

1960’li yillardaki baslangicindan beri, bilgisayar tabanl hesaplama
yontemleri Uzerindeki calismalar yaklagik 50 yillik bir gecmige taniklik
etmiglerdir [4]. Sayisiz arastirmacinin gayretleri sayesinde, bir¢ok cesit
elektromanyetik problemin ¢6zimu igin hesaplama yontemleri gelistirilmistir.
Bu calismada bahse konu hesaplama yontemlerinden Moment Metodu
kullanilmis olmasina ragmen, konunun daha iyi anlasilabilmesi amaciyla
yontemlerin geneli ve c¢ikis noktalari hakkinda kisa ve temel bilgileri

hatirlamak faydali olacaktir.



Elektromanyetik analiz amacgli tim hesaplama yontemleri iki gruba

ayrilabilir [1];

e Zaman Uzayl Metodlari,

e Frekans Uzayi Metodlari

Bu iki grup birbirine Fourier donusumleri ile baghdir. Elektrostatik ve
manyetostatik problemlerin ¢ézimune yonelik olan yontemler frekans uzayi
metotlarina dahildirler. Bu grup yontemler icerisinde, 1SIn ve kirinim optigi
temeline dayali ve elektriksel olarak genis kapasiteli problemler igin
kullanilabilecek ylUksek-frekans asimptotik metotlardan (high-frequency
asymptotic methods) olusan bir alt grup bulunmaktadir. Diger alt grup ise,
Maxwell denklemlerini direk olarak ¢ozen ve daha kapsamli hesaplama
araclari gerektirmesi karsiiginda her zorlukta probleme uyarlanabilen

metotlardan olusur (first-principle numerical methods) [1].
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Sekil Il.1 Bilgisayar Tabanli EM Hesaplama Yontemleri Semasi

1. Frekans-Zaman Uzayi Karsilagtirmasi

Maxwell denklemleri hem frekans hem de zaman uzayinda ¢ozulebildikleri
icin elektromanyetik problemlerin ¢6zimuU igin ge¢miste iki grup metot

geligtiriimigtir: zaman ve frekans uzayl metotlari. Ancak iki uzayin da ¢6zim



suregleri farklihk gosterdiginden, iki tip ¢6zim de farkli avantajlar
saglamaktadir. Ornegin, Maxwell denklemlerine bir frekans-uzayi sayisal
yontemi uygulandiginda bir lineer denklem sistemini (matris denklemleri) her
frekans icin ayri olarak ¢ozimlememiz gerekecektir. Oysa sistem matrisi
genellikle uyarimlardan bagimsizdir. Matris bir kere donusturaldigunde ya da
carpanlarina ayrildiginda, batin uyarimlar i¢in ¢é6zim elde edilebilecek bir
hale gelecektir. Bu 0Ozellik frekans-uzayi yontemlerini, birgok uyarimi goz
onlnde bulundurmamizi gerektirecek (monostatik sacilim analizinde oldugu
gibi) problemler icin daha c¢ekici hale getirmektedir. Dahasi, frekans uzayi
yontemleri Maxwell denklemlerini her frekansta ¢dzdugu icin, dispersif yani
dagitici ortamlarda daha rahat kullanilabilmektedirler. Diger yandan bir
zaman uzay! sayisal yontemi Maxwell denklemlerine uygulandiginda her
uyarim icin zamanla degisen ayri ¢ozumler bulunmasi gerekir. Zaman
uzayinda ¢6zum bir kere bulundugunda, ters Fourier donisumu kullanilarak
genis bir frekans bandinda ¢6zim elde edilebilir. Ancak ¢6zim surecinin her
uyarim icin ayri olarak tekrarlanmasi gerekecektir. Buradan, zaman uzayi
yontemlerinin, yalnizca birka¢ uyarimin s6z konusu oldugu genis frekans
bandi problemlerinin ¢ozumu i¢in daha ideal olacagi sonucuna varilabilir.
Cunkd zaman uzayi yontemleri Maxwell denklemlerini zaman iginde adim
adim c¢Ozerler ve hesaplama uzayinin elektromanyetik 6zelliklerinin alan
bayuklukleriyle degistigi  lineer olmayan problemlere etkin  olarak

uygulanabilirler.

Zamana bagimli Maxwell denklemleri 4-boyutlu bir matematiksel problem
barindirirlar; 3 uzaysal boyut ve zaman boyutu. Genellikle bir problemin
zorlugu boyutlari buyudukge, bir bagka deyigle bagimsiz degiskenlerin sayisi
arttikga, katlanarak artar. Boyutlarin sayisini azaltabilmek igin, Fourier
donlUsimul uygulanarak Maxwell denklemleri frekans uzayina gegirilebilir.
Bdylece zamana bagimlilik ortadan kaldirilmis yani boyut sayisi tGge indirilmis
olur. Frekans uzayinda ¢dozum elde edildikten sonra, ters Fourier dontusumu
uygulanarak zamana bagimli cevap da elde edilebilir. Buradaki tek olumsuz
nokta frekans uzayinda bulunan ¢b6zumlerin  birgcok frekansta

tekrarlanmasinin gerekecek olmasidir.



Elektromanyetik problemlerin olaganistli genis bir Olgekte olmasi, her
birinde ayri faydalar ve kisittamalarla kargilasilmakla birlikte, bilgisayar
tabanli elektromanyetik hesaplama ydntemlerine iligkin algoritmalarin
gelistiriimesinde ana etken olmustur. Bir onceki baslikta da belirtildigi gibi
hesaplamalarin zaman ve frekans uzayinda yapilmasina gore iki ayri grupta
siniflandinlabilen bu algoritmalar, daha kesin bir dogruluk derecesine sahip
olduklari Algak-Frekans (Low Frequency-LF) ve daha genel sonuglar veren
Yuksek-Frekans (High Frequency-HF) yontemleri olarak da siniflandirilabilir.
Calismada kullandigimiz moment metodunun, aralarinda nasil bir yerde
oldugunu daha iyi anlayabilmek amaciyla bu algoritmalarin en sik kullanim

alani bulanlarindan bazilarini 6zetlemek faydali olacaktir [1].
2. Algak-Frekans (LF) Yontemleri

Alcak-Frekans yontemlerinin bdyle adlandiriimasinin altinda yatan temel
sebepler; Maxwell denklemlerini kesin bir yaklasiklikla ¢dzmeleri ve
hesaplama zamani, sistem hafizasi, vb. gibi nedenlere bagl olarak kiglk
elektriksel boyutlardaki problemlerle  uygulanabiliyor  olmalandir.
Bilgisayarlarin gelisiyor olmalarina bagl olarak daha buylk boyutlardaki
problemleri ¢ozebilecek olmalarina ragmen, bu husus simdilik literatlrdeki

yerini koruyacak gibi goérinuyor [8].

a. Zaman Uzayinda Sonlu Farklar Yontemi (Finite Difference Time
Domain-FDTD)

Sonlu fark zaman uzay! yontemi, Maxwell denklemlerini zaman uzayinda
¢b6zebilmek amaciyla sonlu farklar yéntemini kullanir [5]. Bu ydntemin
uygulamasi genellikle ¢ok aciktir: ¢d6zim wuzay! tipik olarak kuguk
dikdortgensel ya da egrisel parcalara ayrilir, bunlarin birbirine gore etkisi
ifade edilip zamana gore integrali alinarak elektrik ve manyetik alanlari
hesaplanir. Butin ¢6zUm uzayinin ayriklastirimasi igin ylUksek hafiza
gerektirmesi, uygulanmasinda dagilim konusunda sikintilar yagsanmasi ve
¢o6zUm  sinirlarinin - yapay olarak belilenmesinin  gerekmesi  gibi
olumsuzluklara ragmen FDTD, homojen ve dogrusal olmayan ortamlarin

analizinde on plana c¢ikmaktadir. FDTD, karmasik dielektriklerdeki dalga



yaylhmi ¢alismalarinda oldugu gibi, dalga kilavuzu problemlerinde de

uygulama alani bulmaktadir [8].

b. Sonlu Elemanlar Yontemi (Finite Element Method-FEM)

Sonlu eleman ydntemi, frekans uzayindaki sinir degerli elektromanyetik
problemleri degdisimsel bir form kullanarak ¢6zmek icgin kullanilan bir
yontemdir. CozUm uzayinin yuksek dogrulukla ayriklagtiriimasina olanak
saglayan degisik sekillere sahip iki ya da U¢ boyutlu elemanlarla uygulanir.
FEM genellikle, oyuk (kavite) ya da dalga kilavuzu problemleri gibi kapali ve
karmasik alanlardaki alan dagihminin hesaplanmasi igin frekans uzayinda
kullanilir. FDTD yonteminde oldugu gibi ¢ozum uzayi sinirlandiriimahdir,
¢unkl yontemin bir sinir integrali denklemiyle birlestiriimeden 1sima ve

sacllma problemlerine uygulanmasi mumkun olamayacaktir [8].

c. Moment Metodu (Method of Moments-MoM)

Moment metodu, elektromanyetik sinir ve hacim integral denklemlerini
frekans uzayinda ¢6zmek icin kullanilan bir tekniktir. Elektromanyetik
kaynaklar ilgi alaninda oldugu icin MoM, i1sima ve sacilma (radiation and

scattering) problemleri icin ¢cok kullanighdir [8].

3. Yuksek Frekans (HF) Yontemleri

Genis Olgeklerdeki elektromanyetik problemler, onlari ¢dzebilecek
bilgisayarlardan ¢ok daha once mevcutlardi. Bu problemlere 6rnek olarak
radar kesit alani (RKA) tahmini ve genis yapilarin Uzerine monte edilen
antenlerin 1si1ma paternlerinin hesaplanmasini verebiliriz. Bu problemleri
¢Ozulebilir hale getirmek maksadiyla 1sima ve sacgilma denklemlerine birgok
yaklasim getirilmistir. Bunlarin gogu, asimptotik ya da yuksek-frekans (HF)
sinirinda alanlari iyilestirmekte ve 1sin optigi ve kenar kirinimi kurallarini
uygulamaktadir. Problem elektriksel olarak blyuk oldugunda asimptotik
yontemlerin ¢ogu, kendileri igin ilk agsamada yeterli olabilecek ya da dogruluk
derecesi daha yuksek bilgisayar tabanli bir ¢cozum bulunana kadar baslangi¢
degeri olarak kullanilabilecek sonuglar uretirler [8].



a. Geometrik Kirinim Teorisi (Geometric Theory of Diffraction-
GTD)

Geometrik kirinim teorisi, elektromanyetik dalga yayilimini belirleyebilmek
icin 181n optigini kullanir. Isin demetinin yayilim karakteristigi, genlik siddeti ve
bozulma, Fermat prensibi ve yansima noktalarindaki egriligin yarigapi ile
hesaplanir. Bu teori, golge bolgelerdeki alanin hesaplanmasina izin vererek
kenarlar boyunca yayilan alanin telafi edilmesini saglar. GTD nisbeten hizli
bir yontemdir ancak daha karmasik geometriler icin disuk dizeyde bir

dogruluga sahiptir [8].

b. Fiziksel Optik (Physical Optics-PO)

Fiziksel optik, yuksek-frekans yuzey akimlarini yakinsayarak bulmaya
yarayan ve bunun icin de bir sinir integralinden faydalanan bir yontemdir.
Fiziksel optik (PO) ve Moment Metodu (MoM) ayni integral denklemini
¢bzmek icin kullanilan ydntemlerdir, ancak moment metodu, farkli olarak
yuzey akimlarini yakinsamadan direk olarak bulur. PO, kenarlardan yayilan
ya da ¢oklu yansimalar sonucu ortaya ¢ikan alan degerlerini hesaplamada
yetersiz oldugundan genelde bu yontemle bulunan ¢6zime tamamlayici
dizeltmeler ilave edilir. PO ydntemi, radar kesit alani (RKA) tahmin
kodlarinda kullanildi§i gibi, yuksek-frekans yansitici anten analizinde de

yuksek oranda kullaniimaktadir [8].

c. Fiziksel Kinnnim Teorisi (Physical Theory of Diffraction-PTD)

Fiziksel kirinim teorisi (PTD), bir cismin kirnim meydana gelen
kenarlarinda olusan kuralsiz akimlarin etkisini de ¢bézime eklemek suretiyle,
fiziksel optik (PO) yontemiyle elde edilen ¢ozumu tamamlayici bir ara¢ olarak
kullanihir. Bu yontem genellikle yiksek-frekans radar kesit alani ve sagiima
analizlerinde kullanilir [8].
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C. MOMENT METODUNUN ELEKTROMANYETIK TEMELI

Elektromanyetik problemlerin ¢o6zimu, Maxwell denklemlerinin uygun
formulasyon ve sinir kosullariyla uygulanmasini gerektirir. Bu bélimde, EM
teorinin - moment metoduyla ilgili kisimlarina iligkin temel bilgiler
hatirlatilacaktir. Maxwell denklemleri ve 1sima igin formaller hatirlatilacak,
Green fonksiyonu ve moment metodunda kullanilacak olan isima ve sagiima

igin yuzey integral denklemleri elde edilecektir.

1. Maxwell Denklemleri

Homojen bir ortamda, dielektrik sabiti € ve manyetik gegirgenlik p
parametreleriyle birlikte, elektrik alan E ve manyetik alan siddetine H iligkin

Maxwell denklemleri frekans uzayinda asagidaki gibi ifade edilir [6].

VXE=-M — jopH (2.1.)
VXH=]+jweE (2.2))
V.D =q, (2.3))
V.B=qn (2.4)

Bunlarin yani sira blnye denklemleri, D = €E ve B = pH seklinde ifade
edilir ve zamana bagh e/“t ifadesi ihmal edilmistir. Manyetik akim M ve
manyetik yuk q,, fiziksel olarak dogrulanabilir buyuklukler olmamalarina
ragmen, genellikle 1Isima ve sagilma problemlerinin ¢éziminde matematiksel

araclar olarak kullanilirlar.

2. Elektromanyetik Sinir Kosullari

Farkli dielektrik parametreleri olan bdlgelerin arasindaki sinir kosulu
denklemleri;

—fix (E, — E;) = M, (2.5.)

i x (H, —H;) = J (2.6.)

11



n.(D;-D;)=qe (2.7.)

n.(B;—B)) =qnm (2.8

seklinde yazilabilir.

Burada n iki yuzeyin birlesme noktasindaki normal vektord olmak uzere
M, ], q. veya q,,’nin herhangi birinin var oldugu durumlar i¢in gecerlidir (2’'nci
bdlgeden 1’inci bdlgeye). Dielektrik bir ortamdan (2’'nci ortam) mukemmel

elektrik iletken (PEC) bir ortama (1’inci ortam) gegis icin sinir kosullari

—nxE, = (2.9.)
fi x H, = J, (2.10.)
A.D, = qe (2.11.)

n.B,=0 (2.12))

olarak ifade edilirken, dielektrik bir ortam ile mikemmel manyetik iletken

(PMC) bir ortam arasindaki sinir kosullari ise

—AXE, = M (2.13.)
fixH, = (2.14.)
f.D, =0 (2.15.)
i.B, = qp, (2.16.)

3. Isima Formulleri

Elektromanyetik 1s1ma problemi, bir dizi elektriksel ve manyetik akimdan
kaynaklanan uzaydaki bitin alan buyuklUklerini igerir. Sagiima problemleri,
yerel akimlarin bir dizi farkh akimdan ya da tetiklenmis alandan

kaynaklandigi isima problemleri olarak dustnulebilir. Yalnizca elektrik akimi ]
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ve elektrik yuku g, bulunan andaki (M = 0, q,, = 0) 1sIma integral denklemini

elde etmek igin (2.1.)’in rotasyoneli alinarak (2.2.)’de yerine yazilirsa [7]

VX VXE=—jouV X H= w?ueE — jop]J (2.17))
ya da
VXV XE— w?ueE = —jop] (2.18))
elde edilir.
VxVxE = V(V.E) — V2E (2.19.)

vektor 6zelligi kullanilarak

V(V.E) — V2E — k?E = —jwy] (2.20.)

elde edilir. Bulunan denklemde k dalga sayisi, k = w+/pe = 2nt/A esitligi ile
ifade edilir. (2.3.) kullanilarak

v
V2E + K2E = jou] + ge (2.21.)

ifadesi elde edilir. Bu ifadeye sureklilik denklemi olan V.J = —jwq. (2.22.)

ifadesi uygulanarak

1
2 2F — -
V°E + k“E = joy] e V(V.]) (2.23))
elde edilir.

Maxwell denklemlerinin dogrusal olmalari nedeniyle J bir hacim Uzerinde
dagitilmis noktasal kaynaklarin gakismasi olarak dusunulebilir. Boylece bir
kaynagin tepkisinin bilinmesi durumunda orijinal problem, bu tepkinin o hacim
uzerinden integrali alinarak ¢ézulebilir. Bu distinceden yola gikarak, (2.23.)
bir integral denklemine donusturulebilir. Bu denklemin U¢ ayr skaler esgitlik

icerdigi goz onune alindiginda, yalnizca X yonundeki bileseni dikkate alinarak

10
V2E, + k%E, = jou(Jx + F&V' D (2.24.)
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ifadesi elde edilir. (2.24.)e, asagidaki skaler Helmholtz denklemini saglayan

Green fonksiyonu G(r,r") uygulanarak,

V2G(r, ') + K2G(r,r') = =8(r,1") (2.25.)

bilinen Green fonksiyonu G(r,r") i¢in E, ifadesi

10

E,(r) = —joop f f fv G, 1) [ () + 155V J)] dr (2.26.)

seklinde vyazilabilir. Bulunan ifadenin vektér formuna genellenmesi

durumunda, J'nin kuvveti olarak alinirsa

1
E(r) = —jooufffv G(r,r) [ J(r) +FV’V’.](r’)]dr’ (2.27.)

elde edilir. Benzer bir turetiime ile manyetik akim M ve manyetik yuk q,

kaynakli olarak 1gilyan manyetik alan

H(r) = —jwe jﬂ G(r,r") [ M(r') +k—12V’V’.M(r’)]dr’ (2.28.)
v

olarak bulunur. Bu denklemlerin kullanilabilmeleri igin (2.25) ¢ozulmeli ve
G(r,r') elde edilmelidir [8].

a. Uc¢ Boyutlu Green Fonksiyonu

V2G(r,r’) + kK2G(r,r") = =8(r, 1) (2.29.)

Uc boyutlu skaler Helmholtz denkleminin ¢éziimi icin éncelikle homojen
versiyonu dikkate alinacak, daha sonra homojen olmayan durumun sinir
kosullariyla karsilastirilarak daha 6zgln bir ¢ézim bulunacaktir. G(r,r")’'nin
noktasal bir elektromanyetik kaynak i¢in ¢ézimu ifade etmesi nedeniyle Ug
boyutta bir kiresel simetriye sahip olmasi gerektigi sdylenebilir. Bu sebepten,
Laplace’in yalniz radyal ifadesi alinir ve
1d ( 2dG) d?G 2dG

V26 =——(r?—) =

- 4= 2.30.
r2dr dr dr2 + r dr ( )
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elde edilir. Sonrasinda,

2 2
1d4°@r6) =li(rd_0 )zd_G+Zd_G (2.31)
r dr? rdr\ dr dr? rdr

oldugu gdézlemlenir ve fonksiyonda ile r > 0 i¢in r ile rG yer dedistirirse,

d?(rG)

oz T k2(rG) = 0 (2.32))

olarak yazilabilir. Butun bu ifadelerin sonucunda

e—jkr ejkr

G=A + BT (233)

olarak ifade edilir ve bu ifade gelen ve uzaklasan dalgalari icermektedir.
Ancak ¢bzimin yalnizca uzaklagsan dalgalari icermesi gerekmesi ve e/t
zaman Dbilesenini kullanmis olmamiz nedeniyle yalnizca ilk terim
alinmaktadir.

e—jkr

G=A (2.34.)

r

Green fonksiyonunun degerinin yalnizca kaynak ve goézlem noktalari r ve
r’ arasindaki nispi mesafeye r bagli olmasindan dolayi, r = |r — r’| oldugu
yerde G(r,r") notasyonu kullanilacaktir. Burada Green fonksiyonundaki Uslu
ifadenin faz gosteriminin literatirde bir standardinin olmadigi belirtiimelidir.
(2.34)deki gosterim cogu kaynakta aynidir ancak bazi kaynaklarda Green
fonksiyonu, zaman harmonik ifadenin e7®t oldugu varsayilarak, pozitif Gsli

olarak gosterilmigtir.

Burada simdi 6zgun bir ¢6zim bulabilmek amaciyla sinir kosullarinin
karsilastinimasi gerekir. Dalga, artan mesafe r ile birlikte azalmak zorunda
oldugundan, r — oo oldukg¢a G(r,r") —» 0 olmasi gerekmektedir. G(r,r") ifadesi
yazildigi Uzere bu ifadeyi zaten saglamaktadir. Burada bunun, A‘nin
belirlenmesi maksadiyla, noktasal kaynagin oldugu vyerle (r=0)
kargilastiriimasi gerekmektedir. Bunun igin (2.25)in a yarigapli kiuresel bir
hacim Uzerinden integralinin alinmasi gerekir. (2.34)te G(r,r’) ifadesi yerine

koyulursa
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A f f f v. V(e_rjkr) + K2 e_rjkr]dv -1 (2.35.)
\%

elde edilir. Burada ilk terimi degerlendirmek amaciyla Diverjans Teoremi

kullanilarak
e_jkr e—jkl‘
fﬂV.V( . )dV=ﬂﬁ.V( . )dS (2.36.)
v S
bulunur. Kure Uzerinde n = t oldugu igin
e—jkr 0 e—jkr
f. = (| — 2.37.
ﬂr V(—)ds ﬂar( —)ds (2.37.)
S S
olarak yazilir ve bu da
Kl e—jkr
4na2[a< . )]r=a (2.38.)
ifadesi seklinde yazilabilir. a — 0 icin limiti alinirsa
. ) 0 e—jkr
lllilg 4ma [E< . >]r=a = —4m (2.39.)
olarak bulunur. ikinci terim ise
a ,—jkr a .
k? J . 4mr?dr = 4mk? J re ikrdr (2.40.)
0 0

olarak bulunur. Bulunan ifade incelenirse a - 0 durumunda integralin sifira
yaklasacagi gorulir. Buradan A = 1/4m (2.41.) olarak bulunduguna goére Ug¢
boyuttaki elektrodinamik Green fonksiyonu da asagidaki gibi ifade edilir.

e—jk|r—r’|

"N — 2.42.
G(r,r") yr— ( )
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b. iki Boyutlu Green Fonksiyonu

Iki boyuttaki skaler Helmholtz denklemi

V2G(p, p") +K*G(p,p") = —8(p,p") (2.43.)

seklinde yazilabilir. Yukaridaki ifade igin homojen durumdaki ¢ézim, sifirinci
dereceden birinci ve ikinci tir Hankel fonksiyonlari ile bulunur. Cé6zUmun

yalniz uzaklasan dalgalari icermesi nedeniyle

Gp,p") = AHg” (Klp — p']) (2.44.)

olarak yazilir. A’y1 elde edebilmek igin Hankel fonksiyonuna kuguk deger

yakinsamasi (small argument approximation) uygulanir

2 vk
H® (kp) ~ 1 — jElogyTp p—0 (2.45.)

ve (2.43.)un, merkezi baslangi¢ noktasi olan a yarigapli ¢ok kiiguk bir daire

uzerinden integrali alinarak

2 k
Aﬂ[V.V+k2] [1—j;log¥] ds = -1 (2.46.)
S
ifadesi bulunur. Diverjans teoremi ile ilk terim ¢izgi integraline gevrilir ve

2 (2" Ykp .
—j=1 V|log—|pde = —4j (2.47))
T J, 2

olarak yazilir. ikinci terim ise

a2k
K2 f [1—jElog\%]21Tpdp (2.48.)
0

olarak yazilir. integralin ilk kismi a — 0 nedeniyle sifira gider. ikinci kismin

integrali alindiginda

P g tke P
2 4

a a
: Ykp
4]k2f long dp = logT ] (2.49.)
0 0
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ifadesi elde edilir ve lim,_,, p?logp = 0 (2.50.) oldugundan A = —j/4 (2.51.)

olarak bulunur. Buna gore iki boyutlu elektrodinamik Green fonksiyonu da

1A ] 1A
G(p,p') = — 7 Ho” (klp = ') (2.52.)

olarak bulunur.

4. Vektor Potansiyelleri

Bir onceki bolumde, uzayda her yerde, elektrik ve manyetik akim
dagihmindan kaynaklanan, 1sima alanlarini belirlememizi saglayan ifadeler
ve formuller elde edildi. Birgok uygulamada bu alanlarin denklemlerini
¢ozmek zor ya da imkansiz olabilir. Bu durumu ¢6zmek igin, 1siyan alanlar
icin de kullanilan bir dizi yardimci vektor potansiyeli turetilir. Bu potansiyeller
akim integralleri vasitasiyla, i1siyan alanlar ise direk olarak potansiyellerden
elde edilir. Vektor potansiyeli formulleri cogunlukla sagilma ve anten isimasi
problemlerinin analizinde kullanilirlar ve bilgisayar tabanli EM yontemlerin
uygulanmasinda da siklikla faydalanilirlar. Bu formulasyonlar bir énceki
bdlimde elde edilen integral denklemleriyle, anlatilacak ufak farklar disinda,

benzerlik gosterirler.

a. Manyetik Vektor Potansiyeli

Oncelikle kaynaksiz ve homojen bir ortam igin manyetik vektor potansiyeli
elde edilecektir. Manyetik alanin H her zaman solenoidal yani sarmal yapida
olmasindan dolayi A gibi keyfi olarak secilen bir vektoriin rotasyoneli olarak

yazilabilir. Bu ylzden

1
H=-VxA (2.53))
1
seklinde yazilabilir. Bu ifadeyi (2.1.)'de yerine koyarsak

VXE=—-jwVxA (2.54.)
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ifadesi elde edilir ve bu da
Vx (E+jwA) =0 (2.55.)

seklinde yazilabilir. Sonrasinda V x (=V®,) = 0 (2.56.) 6zelligi kullanilarak

E=—jwA -V, (2.57.)

olarak yazilir. Burada @, rastgele segilen elektrik skaler potansiyelini temsil
eder. Daha sonra Vx V x A = V(V.A) — V2A (2.58.) 6zelligi kullanilarak ve iki

tarafin da rotasyoneli alinarak

uWv x H = V(V.A) — V2A (2.59.)
ifadesi elde edilir ve bu ifade (2.2.) ile birlestirilerek
uJ + jopeE = V(V.A) — VA (2.60.)
olarak yazilir. Burada (2.57.)’'deki ifade, yerine koyulursa
uJ + jope(—jwA — Vd,) = V(V.A) — V2A (2.61))
elde edilir ve bu da
VZA + k?A = —pJ + V(V.A + jousd,) (2.62))
seklinde yazilabilir.
A’nin rotasyoneli (2.53.)te tanimlanmistt ancak henlz diverjansi

tanimlanmadi. Bu yuzden, gelecekte de bu kurala bagh kalindigi surece

istenilen sekilde tanimlanabilir. Burada A’nin diverjansi

V.A = —joued, (2.63.)
olarak ifade edilmistir ve bu ifade yardimiyla (2.62.) kolaylikla
VZA + k%A = —j (2.64.)

seklinde sadelestirilebilir ve elde edilen bu ifade A igin homojen olmayan
vektér Helmholtz denklemidir. Artik kaynaksiz ortamda herhangi bir yerdeki

elektrik alan
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. . j
E=—jwA—-Vd, = —jwA——V(V.A .65.
jo e = oA - (V.A) (2.65.)

ifadesinin de yardimiyla

A@%ﬂ%UG@fN@Nr—uﬂ - e sy

41|r — |

ifadesi ile elde edilebilir. iki boyutlu manyetik vektdr potansiyel ifadesi de
(2.52.) yardimiyla

Amfﬂﬂmwﬂm o'Ddp’ (2.67)

seklinde ifade edilebilir.

b. Elektrik Vektor Potansiyeli

Maxwell denklemlerinin simetri 6zelliginin yardimiyla elektrik vektor
potansiyeli F icin de benzer denklemler elde edilebilir. Cikarim asagidaki

formaller yardimiyla 6zetlenebilir.

1

E=—VxF (2.68))

b, = ! V.F 2.69
m= e (2.69.)
V?F + k*F = —uM (2.70.)

 iwF — V. = —iwF —

H = —joF =V, = —joF — = _V(V.F) 2.71)

e M r' 2.72
F(r)—aﬂjG(rr)M(r)dr —sﬂ M(r)41T|r | (2.72.)

Burada (2.70.), F igin homojen olmayan vektér Helmholtz denklemidir.
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5. Yakin ve Uzak Alanlar

Pratik problemlerde genellikle 1simanin kaynagina yakin ya da uzak
alanlardaki elektromanyetik alan degerlerine ihtiyagc duyulur. Yakin alan
degerine ya da istyan kaynaga yakin olan alana, anten besleme ya da
elektronik kaplama uygulamalarinda ihtiya¢ duyulur. Uzak alan degerine ya
da i1slyan kaynaga c¢ok uzak olan alan ise ¢ogunlukla sagiima ve RKA
problemlerinde ihtiya¢ duyulur. Calismanin bu kisminda, ileriki bélimlerde de

ihtiya¢ duyacagimiz, yakin ve uzak alan iligkileri 6zetlenecektir.

ZA ZA
Source Source I-r £
r-r’
i v r
r ] "
o Y 0 b4
X X
a) Yakin Alan Geometrisi b) Uzak Alan Geometrisi

Sekil 1.2 Yakin ve Uzak Alan Geometrileri
a. Yakin Alan

Oncelikle, Sekil Il.2a’da g6sterildigi gibi, 1siyan kaynaga yakin bir
noktadaki alanlar igin ifadeler bulunur. Bunun igin, bir elektrik akimi

tarafindan tetiklenen manyetik alanin (2.53.) ve (2.66.) yardimiyla

1 —jkr
H() = 7 X A(X) =V x m Jr' Z?dr’ (2.73.)
A\

seklinde ifade edildigi hatirlanabilir. Bu ifadede r = |r — r’|'dir. Rotasyonel

isaretini integralin igine atarak ve vektor 6zelliginin de yardimiyla
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x [fJ(r)] = (V) x J(r') + f[V x J(r)] (2.74)

olarak yazilir ve sonug olarak

—]kr

H(r) = ff J(r') x ( )dr’ (2.75.)

seklinde ifade edilir. Burada V x J(r') = 0'dir ve Green fonksiyonunun

gradyani alindiginda

—ikr .
v <e J ) _ -y (2.76.)

4mr 4mr3

ifadesi elde edilir ve bu sonuca istinaden manyetik alan ifadesi

(2.77.)

H(r) = fvf (=) X )]

seklinde yazilabilir. Bulunan ifade, dikdértgensel bilesenlerine ayrildiginda

asagida belirtildigi gibi ifade edilir.
(r)—fff{(z—z'ny—(y YOl i axdy dz

Hy(r) = ﬂf [(x—x)],— (z— z')]x] dx dy’ dz’ (2.78.)

H(r)—ﬂ (=¥~ =y | K 4xdy dz

(2.2.) kullanilarak elde edilen elektrik alan ifadesi de asagida oldugu gibidir.

E4(r) = ﬂj [G,]x + B(x — x")G,]e *rdx'dy’ dz’
s
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Ey(r) = f f [G4]y + B(y — y)G,|e T dx'dy’ dz’ (2.79.)
\%

E,(r) = ﬂ.f [G4], + B(z — z')G,le k" dx'dy’ dz’
v

Bu elektrik alan ifadeleri icindeki bilinmeyenler

B=x—-x)x+—-y)ly+ -2, (2.80.)
—1 — jkr + k?r?
= 2.81.
G 4mr3 ( )
e 10212
- 3 + 3jkr — k°r (2.82)
4mr>

seklinde ifade edilir.

(2.78.) ve (2.79.), bilinen bir elektrik akim dagihmina yakin herhangi bir
noktadaki 1siyan alanlari hesaplamak icin kullanilabilir. Bilinen bir manyetik
akim dagihmina yakin herhangi bir noktadaki isiyan alanlarin ifadeleri de

yukarida anlatilan yontem dogrultusunda elde edilebilir.

b. Uzak Alan

Go6zlem noktasi kaynaktan ¢ok uzakta secildiginde (kr > 1) yakinsamalar,
Istyan alanlarin hesaplamasini ¢ok buyuk 6l¢lide kolaylastiracak sekilde
yapilabilir. Bu durumda r ve r —r' Sekil 11.2’de de gosterildigi Uzere gorsel

olarak paraleldir. Bu kabule dayanarak r'yi

. {r —r'.r faz degisimleri icin (2.83.)

r genlik degisimleri icin
seklinde oldukga yakinsayabiliriz.
(2.65.)te diferansiyel operatorlerden dolayi, sagd taraftaki ilk terimin

alanlara 1/r’ yle, ikinci terimin ise 1/r?, 1/r3, vs. ile orantili olarak degiserek
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katkida bulundugu gorulmektedir. Uzak alanda yalnizca 1/r ile orantili olarak
degisen alanlarin kayda deger genlikte olmasi beklenir. Bu bilesenler yayilim
yonu boyunca, bilesenleri olmayan duzlemsel dalgalar gibi davranirlar.

Dolayisiyla uzak elektrik alan

E(r) = —jwA(r) (2.84.)

olarak ve buna bagl olarak manyetik alan da

H(r) = %r’ x E(r) (2.85.)

2

seklinde hesaplanabilir. Burada, alanin t vektorU boyunca yayilan bir

duzlemsel dalga oldugu kabul edilmistir.

i) Ug Boyutlu Uzak Alan

Uzak bolge elektrik alan ifadesi, (2.83.) ve (2.84.) yardimiyla

joope ([ e

= —— ! Tdr’ 2.86.

E(r) yr— J(re dr ( )
\Y%

seklinde yazilabilir. Gelen alanin E!, sagilan uzak alanin E° oldudu ve

hesaplamada uygunluk igin |E‘| = 1 olarak kabul edilen sagilma problemleri

icin Ug boyutlu radar kesit alani o5p

|SZ

T = B 287

O3p = 4mr?

olarak hesaplanir.
ii) iki Boyutlu Uzak Alan

iki boyutta, 1styan uzak elektrik alan

() = —j0A®) = -5 [ 16O (o - o' (2.88)
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olarak ifade edilir. Hankel fonksiyonunun p — o igin Hflz)(kp) = /nz—ljpjne‘jkp

(2.89.) seklinde ifade edilen genig ifade yakinsamasi 6zelligi kullanilarak

2i . PN
H® (kp) = ’T[_k]pe—]kpe—]kp P (2.90.)

ifadesi elde edilir ve uzak elektrik alan ifadesi

B(p) = —o |- [ 160 ee'2ap (2.91)
[

seklinde yazilir. Gelen alanin E!, sacgillan uzak alanin ES oldugu ve
hesaplamada uygunluk igin |E!| = 1 olarak kabul edilen sagilma problemleri
igin iki boyutlu radar kesit alani o,y

IsZ

Ozp = ZRrﬁ = 2mr|ES|? (2.92.)

olarak hesaplanir.
6. Esdegerlik Problemleri

Isima ve sagilma problemlerini ¢d6zmek igin problemi, ¢6zUmUu daha kolay
veya daha uygun olacak esdeger bir problem cinsinden formile etmek
genellikle faydali olmaktadir. Bu esdegerler genellikle orijinal problemdeki
engellerin varhgini matematiksel olarak zayiflatan ya da yok eden yuzey
akimlar cinsinden ifade edilirler. Birgok integral denkleminin bu esdegerlik
probleminden elde edildigi dusunaldigunde, yuzey esdegerlerinin onemi
ortaya cikar [7].

a. Yuzey Esdegeri

Yuzey esdegerligi teoremi ya da Huygen’s Prensibi, ilerleyen bir dalga
cephesindeki her noktanin i1siyan dalgalar icgin bir kaynak oldugu dusuncesine
dayanir. Bu teorem sayesinde gercek isiyan bir kaynak, farkli ama esdeger

bir dizi kurgusal kaynakla yer degistirebilir. Bu akimlar, orijinal kaynaklar
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cevreleyen ve rastgele kapatilmis bir ylzey Uzerine yerlestirilir. Uygun sinir
kosullariyla eglestirildiginde bu akimlar, kapali ylzeyin disinda orijinal
kaynaklarla ayni 1siyan alani olustururlar. Teorem, yakin alan biliniyorsa
ISlyan yapinin uzak alaninin bulunmasina ya da gelen alan tarafindan bir
cisim Uzerinde induklenen akimlarin ¢d6zUmu igin bir ylzey integral

denkleminin olusturulmasini saglar.

E}{'IL -——— \R: 1 a
s E.H I
¢+ EH RN HuE :,1—‘ it
! R ;7 EN o W
! S 1 1 N
N\ 1 ~
! \ i N
\ Histr \ ., \’
\ / \ /
\ / \ //
\ ’ \ -
\ J M, i 9\\ ,’/(,\1_,= A x (E-E)
S N 7 \ P
b -7 Vone” T I=0xEH-B)
AN - - s 1
N =
a) Orijinal Problem b) Esdeger Problem

Sekil 1.3 YUzey Esdegerligi Teoremi

Sekil Il.3a’da; manyetik gecirgenligi ve dielektrik sabiti £,ve y, olan, J; ve
M, elektrik ve manyetik akimlarinin E; ve H; alanlarini olusturdugu homojen
bir ortam gorulmektedir. Bir dizi esdeger kaynak olusturmak amaciyla J; ve
M; akimlari hayali bir S ylUzeyiyle kaplanip ortam R, ve R, olarak iki bolgeye
ayrilir. Burada E; ve H; degerlerinin S yuzeyinin her yerinde bilindigi kabul
edilir. Burada sinir kosullarina konu olan J5 ve Mg akimlari S ylzeyinde yerine

koyuldugunda

Js = fi X (H, — H) (2.93.)

Mg = —fi X (E, — E) (2.94.)

olarak ifade edilir. Burada S yuzeyinin igindeki alanlar temsil eden E ve H
hala taniml degildir. R; ve R, ayni dielektrik 6zelliklere sahip olduklarindan,

Js ve Mg homojen bir ortamda i1sima yaparlar ve R,’deki 1s1yan alanlar elde
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etmek igin (2.65.) ve (2.71.) kullanilabilir. Bu ylizey esdegeri olarak
adlandirihr ve Sekil I1.3b’de gosterilmistir. Digerleri Maxwell denklemleri (2.1.)
ve (2.2.) vasitasiyla elde edilebilecedinden, bu durumda yalnizca S yuzeyi

uzerindeki E; ve H; degerlerinin bilinmesi gerekmektedir.

Ea'/Ha’ -==~J R E,Hy, _-o <« R
\ -
2 - ~
EH » g
/ R, N K18y ¢+~ ExH; R Vg ik
! \ e
N ! \\

J \ /
) My b r ‘ p B M 77
\ ,’ \ //
\ J‘\ .\I‘» 7 « \ rd
S ' 7 J_; ll» S 4
\ 78 " \ s
N - N -
~ . Ny e
a) Orijinal Harici Problem b) Orijinal Dahili Problem

Sekil 11.4 Orijinal Problemler

S yuzeyi Uzerindeki E ve H tamamen keyfi oldugundan, ylizey esdegerligi
teoremi daha genel bir ifade seklinde yazilimalidir. Sekil Il.4a’da gorilen
problemde harici akimlar J; ve M, ile dahili akimlar J, ve M,’nin her bdlgede
E, ve H, alanlarini olusturdugu ve Sekil Il.4b’de gérilen benzer ikinci
problemde harici akimlar J, ve M, ile dahili akimlar J; ve M5’'un her bdlgede
E, ve Hy, alanlarini olusturdugu varsaylimistir. Burada Sekil Il.4a’ya harici
esdeger, Sekil 1l.4b’ye ise dahili esdeger bir problem olusturuldugu kabul
edilir. Bu kabul icin S ylzeyinin disindaki kaynaklar ve alanlar Sekil 1l.4a’da
oldugu gibi, S ylzeyinin icindeki kaynaklar ise Sekil 11.4b’de oldugu gibi
kalmalidir. S yuzeyi Uzerindeki yluzey akimlarinin sinir kosullarini karsilamak

zorunda olduklari g6z 6nune alindiginda

Js = fix (H, — Hy) (2.95.)

M = —fi x (E, — Ep) (2.96.)
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seklinde yazilir. Bu durum Sekil 11.5a’da gosterilmigtir. Benzer yaklasimlarla
Sekil 1l.4a'ya dahili, Sekil 1l.4b’ye de harici esdegerler olusturulabilir. Bu

durumda akimlar diger benzer durumda oldugu gibi

Js = A X (H, — Hp) (2.97.)

Mg = —fi X (E, — E,) (2.98.)

sinir kosullarini saglamak zorundadirlar. Bu da Sekil 11.5b’de gdsterilmistir.

7/
7
s\ /’/-“-:'?”(Ea'Eb) Lo 7 M- Ax(E-E)
\ 4 Jo M, BY, F 52 4 : g
S I ik Se oD —b@men)
a) Harici Esdeger Akimlar b) Dahili Esdeger Akimlar

Sekil 1.5 YlUzey Esdeger Problemleri

b. Fiziksel Esdeger

Sacilma ve 1sima problemleri alanindaki cok dnemli kavramlardan biri de
fiziksel esdegderliktir. Manyetik gecirgenligi ve dielektrik sabiti ¢;ve p;olan J;
ve M; elektrik ve manyetik akimlarinin E; ve H; alanlarini olusturdugu
homojen bir ortamda, iletken bir nesne olmasi durumunda yansiyan (ya da
sacilan) alanlar E5 ve H®'nin meydana geldigi Sekil 1l.6a’da gorilmektedir.
Amac bu alanlari elde etmek oldugundan, iletken nesnenin c¢ikarilarak
esdeger yuzey akimlariyla degistiriimesini saglayacak bir esdeger problemin
olusturulmasi gerekmektedir. Burada sagicinin ylzeyindeki elektrik ve
manyetik alanlara sinir kosullarinin uygulanmasi gerekir. Sinir Uzerinde

toplam tegetsel elektrik alanin sifir olmasi gerektiginden
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—-AX(E—EY)=-fix(E,—E) =M, =0 (2.99.)

olarak yazilir. Toplam tegetsel manyetik alanin, induklenen elektrik akim

yogunluguna esit olmasi gerektiginden

Ax(H—-—HY) =fx(H; —H% =], (2.100.)

olarak ifade edilir.
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a) Orijinal Problem b) Esdeger Problem
Sekil I.6 Fiziksel Esdegerlik Teoremi

Elde edilen son iki denklem, (2.99.) ve (2.100.), Sekil 11.6b’de gdsterilen ve
fiziksel esdeger olarak adlandirilan esdegerlik problemini olusturur. Ne yazik
ki induklenen akim J, bilinmeyen sacilan alan H®'in yani sira, bilinen gelen
alan H;’e de baglidir. (2.99.) ve (2.100.), calismanin bir sonraki bélimunde
yalnizca gelen alan ve induklenen akimlara bagh olan ve moment metodu
tarafindan ¢ozulecek bir dizi integral denkleminin elde edilmesinde

kullanilacaktir.

7. Yiizey integral Denklemleri

Sacilma problemleri, bolgesel olarak isiyan akimlarin baska akimlar ya da
alanlar tarafindan tetiklendigi 1sima problemleri olarak dusunulebilir. Bu
nedenle yapilacak analiz, akimlarin, harici olarak uygulanan bir gerilim
kaynagi vasitasiyla Uretildigi bir sagilma problemi olarak dusunalebilir. RKA

problemleri, harici kaynaklar tarafindan Uretilen elektromanyetik 1simayi
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icerir. Bu harici kaynaklar, sagici Uzerinde, sagilan alanin tekrar 1simasini

saglayan akimlar yaratirlar.

Isima problemleri, (2.27.) ve (2.28.)'in yardimiyla alanlari elde etmek igin,
bilinen akimlar J ve M’nin integralinin alinmasina ihtiya¢ duyarlar [8]. Sa¢iima
problemlerinde, bu denklemlerdeki akimlar bilinmeyen buayUkliklerdir. Bu

nedenle, bir sagiima probleminin ¢dzuUmunun iki agamasi vardir:

Harici ancak bilinen alanlardan E! ya da H! tarafindan tetiklenen

bilinmeyen yerel akimlar J ve M igin bir integral denklemi ¢ozmek.

Il. Sacilan alanlar E5 ve H®'nin elde edilmesi i¢in indiklenen J ve M

akimlarinin integralini almak.

Bu boélumde, mukemmel iletken cisimlerde sagilma problemleri igin
kullanilan elektrik ve manyetik alan integral denklemlerini elde edecegiz [7].
Bu denklemlerin nasil elde edildiginin bilinmesi moment metodunun ve

MATLAB kod uygulamasinin daha iyi anlasilmasi i¢in faydal olacaktir.

a. Elektrik Alan integral Denklemi (Electric Field Integral
Equation-EFIE)

Istyan elektrik alan, indUklenen yuzey akimindan

1
E*(r) = —jop f f G(r,r) () + 5 V'V J()]dr’ (2.101.)
S
denklemi vasitasiyla elde edilir. Bu denklemdeki ES(r)’'ye olan bagimlihgi,

tegetsel elektrik alana sinir kosullari uygulanarak giderilebilir:

fi(r) x ES(r) = —fi(r) x Ei(r) (2.102.)

Burada ni(r) yuzey normalidir. Bu kosul, yukaridaki denklemi, bilinen gelen

elektrik alan ifadesi E;(r) cinsinden yazabilmemizi saglar:
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j PN i N ’ 1 1 Avli l l
—w—un(r) x E'(r) = n(r) x 'g G(r,r") [J(r') + FV V. J(r")]dr (2.103.)

(2.103.), mikemmel iletken bir yiizey icin Elektrik Alan integral Denklemi
(Electric Field Integral Equation-EFIE) olarak bilinir. Bilinmeyen akim J(r) i¢in
bir kere ¢dzuldiglu zaman her bolgedeki 1siyan alan (2.65.) vasitasiyla elde
edilebilir. EFIE, ayni zamanda coklukla manyetik vektdr potansiyeli A(r)

kullanilarak da

_wluﬁ(r) x Ei(r) = fi(r) x [A(r) + k—12VV-A(r)] (2.104.)

seklinde yazilabilir. Bu da gradyan ve diverjansin gozlem koordinatlarinda
ifade edildigi

1

[t(r). EI(0)] = t(r). f f [1+Z VV.J()G(r,r)dr’ (2.105.)
S

_J

wp

denklemi seklinde yazilir. Problemin tipine goére birini kullanmak digerine gore
daha avantajli olabileceginden bunun sec¢imini dogru yapmak ¢o6zumun

dogrulugunu etkileyecektir.

EFIE, akim ifadesinin yalnizca integral isaretinin icinde yer aldigi, birinci
dereceden bir Fredholm integral denklemidir *. Denklemin tiretimi sagicinin
sekline dair herhangi bir kisittamaya isaret etmediginden, EFIE acik ince
cisimlerin yaninda kapall ylizeylere de uygulanabilir. ince yiizeyler igin J(r)
akimi, sagicinin her iki tarafindaki akim yogunlugunun vektérel toplamini

temsil eder.

* Birinci dereceden Fredholm integral denklemi, Lu = f tiiriinde bir denklemdir.
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b. Manyetik Alan integral Denklemi (Magnetic Field Integral
Equation-MFIE)

iletken bir cismin yiizeyindeki manyetik alana sinir kosullarinin
uygulanmasiyla benzer bir denklem elde edilebilir. (2.100.)’de belirtilen

fiziksel esdeger ifadesinden, yuzeyde induklenen akim J(r)

fi(r) x (Hi(r) — H5(r)) = J(r) (2.106.)

olarak ifade edilir. Sacgilan manyetik alan, (2.53.) yardimiyla

1
Hy(r) =—-VXxA(r) =Vx || G(r,r")]J(r")dr’ (2.107.)
i g

seklinde yazilabilir. Bu ifadenin, r, S yuzeyine cismin digindan yaklagirken
(r - S*) limiti alinirsa (2.107.)'den (2.106.)'ya gegiste Hy ifadesi yok edilebilir.

Bu durum da

J(r) = fi(r) x H(r) + rli)r§1+[ii(r) x V x ff G(r,r)](r")dr'] (2.108.)
S

seklinde ifade edilir. Bu ifadede vektor Ozelligi kullanilarak rotasyonel

operatoru integralin icine alinirsa

VX [J(r)G(r,r)] = G(r, r )V x J(r") = J(r") X VG(r,1") (2.109.)

olur. Rotasyonel operatoru gozlem koordinatlari Gzerinde islem yaptigindan
V x J(r") = 0 olarak yazilir ve VG(r,r") = —V'G(r, 1) esitliginden faydalanarak
(2.108.)

fi(r) x H(r) = J(r) — lirg1+[ﬁ(r) X ff J(r") X V'G(r,r')dr’] (2.110.)
r—
S
seklinde yazilabilir. Bu denklemdeki isima integralini bulmak amaciyla, r’nin S

ylzeyinin digindan r’ ‘ye yakinsadigindaki degeri elde edilmelidir. Bunu elde

etmek amaciyla integral iki pargcaya bollnur ve r — r' igin limiti hesaplanarak
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S-8S 6S

n(r) x [ f J(r") X V'G(r,r")dr’ + ff J(r") X V'G(r, r")dr’ (2.111)

ifadesi elde edilir. Bu ifadede &S, S yuzeyi igerisinde, r‘ye yakin, a yarigapli

cok kuglk bir dairesel bolgeyi temsil eder (Sekil 11.7).

I'e

Sekil 1.7 S Yuzeyindeki Kuguk Alan

8S’in merkezi, yerel bir silindirik koordinat sisteminin merkezi olarak segilirse

Ir—r'| = (p)? + (2 —2')? (2.112)

olarak yazilabilir ve &S icindeki Green fonksiyonu yaklasik olarak

e—jk|r—r'| 1
G(r,r') = ~ Ir—r'| «1 2.113.
() 4mt|r —r'| 4my/(p")? + (z — 2")2 ( )

seklinde yazilabilir. Silindirik koordinatlardaki gradyan

V= aA+1 J <T>+aA 2.114
"o P T e " et (2114

olarak ifade edildiginden, &S icinde fi(r) = Z oldugundan ve J(r') her yerde

6S’e tegetsel olacagindan

0
2xJ(r") x V'G(r,r) = J(r) [

G(r,r")] (2.115))

olarak yazilabilir ve bu da

33



Z

](l")[ 4nt[(p")? + (z — 2/)?]3/?

N1=10"

(2.116.)

seklinde ifade edilebilir. 86S ¢ok kuglk oldugundan, J(r’)’nin sabit oldugu ve
yaklasik olarak J(r)'ye esit oldugu varsayilacaktir. Uyumluluk igin z' =0

olarak alinirsa bu durumda &S Uzerinden integral

! ! ]( ) I l
n(r) x ﬂ J(r') X V'G(r,r")dr’ = f i )2 n (z) EE dp (2.117.)
seklinde yazilabilir. Bu ifadenin integrali alindiginda
J(r) z vA
2.118.
[|Z| a?+ 22] ( )
¢ikar ve burada z — 0 igin limit alinirsa
_J(r) z z J(r)
= 2.119.
zlir(l)l’f 2 [|Z| a? +z? 2 ( )
sonucuna ulasilir. Bu sonug kullanilarak (2.110.)
fi(r) x Hi(r) = ( ) —1(r) x ff J(r") X V'G(r,r")dr’ (2.120.)

S-8S

seklinde ifade edilebilir. Bu ifadede, sonsuz kuguklukteki &S alaninin katkisi
artik J(r)/2 teriminin bir parcasidir. (2.120.), mukemmel iletken ortam igin
Manyetik Alan Integral Denklemi (MFIE-Magnetic Field Integral Equation)
olarak bilinmektedir. Bu denklemin, bir koninin tepesi ya da iki duzlemsel
yuzey arasindaki kenar gibi, 6S alaninin duzlemsel olmadigi durumlara

adapte edilmesi gerekir.

(2.120.) bilinmeyen akim J(r) igin ¢cozuldigunde, her bdlgedeki 1siyan alan
(2.65.) yardimiyla elde edilebilir. MFIE, J(r)’'nin integral isaretinin hem i¢inde

hem disinda var oldugu ikinci dereceden bir Fredholm integral denklemidir ™.

T ikinci dereceden Fredholm integral denklemi, Lu + u = f tiiriinde bir denklemdir.
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Fiziksel esdegerlik vasitasiyla elde edilmis olmasi nedeniyle, teoride
EFIE’den elde edilenlerle esdeger sonuglar Uretecegi varsayilmaktadir.
Ancak kapali sagicilar igin limit islemi kullanilarak elde edildiginden, EFIE gibi
aclk ve ince nesnelere uygulanamaz. Gradyan operatorinin varligindan
dolayl denklemin cekirdedi EFIE’den daha farklidir ve sayisal sonuglari da

EFIE’ye gore farklilik gosterebilir.

c. Birlesik Alan integral Denklemi (Combined Field Integral
Equation-CFIE)

Kapali yuzeyler icin EFIE yalnizca sagicinin yuzeyine uygulanabilir. Bu
yluzden, mikemmel iletken (PEC) bir cisimden sacgilan alan problemi
¢ozlllyor olsa bile, EFIE bunu, ince kabuklu mikemmel iletken (PEC) bir
cismin ¢oziUmunden ayiramaz. Bu yontem, kolay gérunmesine ragmen bir
sorun barindirmaktadir. ince kabuklu mikemmel iletken bir cisim, ayni
zamanda bir rezonans Kkavitesidir. Moment metodu, gercek bir nesneyi
fasetlerle modelleyerek sonuca gittiginden, elektromanyetik eneriji, kavitenin
dahili rezonans modlarini tetikleyecek sekilde ince kabuklu mikemmel iletken
cismin igine sizacaktir. Bu tetiklenen dahili rezonanslar, asil bulunmak
istenen mukemmel iletken cismin ylizey akimindan farkli olarak, S yuzeyinde
olusan harici yuzey akimina katki saglarlar. Dahasi, ¢alisma frekansi dahili
kavitenin rezonansina yakin oldugunda, dahili rezonans modu, sacilan alanin
hatali hesaplanmasina neden olacak sekilde, disariya enerji sizmasina

neden olacaktir [9].

Sonug olarak, kapal bir yuzeye uygulandiklarinda, EFIE ve MFIE her
frekans igin 6zgun bir ¢ézim Uretemezler. Bu durum, homojen ¢ézimlerin,
gelen alanin sifir oldugu sinir kosullarini  karsiladiklarinda elde
edilebilmesinden kaynaklanmaktadir. Bu yapay ¢dzumler, nesnenin kendi
dahili rezonant modlarina uymakta ve nesnenin disina herhangi bir i1sima
yapmamaktadirlar. Bu sorun genellikle, sonuglarin istenen yaninda bir miktar
istenmeyen rezonant ¢ézimuanu de igerdigi, rezonans frekansina yakin kliguk
bir bant genigliginde meydana gelmektedir. Bundaki temel neden, tekil gelen

alanin tegetsel bilesenlerinin, bu rezonans frekanslarindaki yizey akimlarinin
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0zgun olarak belirlenmesinde yetersiz kalmalaridir. Anilan sorunun
giderilmesinde kullanilan yontemlerden biri; orijinal integral denklemlerinin,
nesnenin igindeki alanin degeri sifir olacak sekilde degistirildigi, genisletilmis
bir sinir kosulunun uygulanmasidir. Cift-ylzey elektrik ve manyetik integral
denklemleri (DSEFIE-Dual surface electric field integral equation, DSMFIE-
Dual surface magnetic field integral equation), bu genigletiimis sinir
kosullarina verilebilecek orneklerdendir. Bu uygulamalarda orijinal yuzeyin
igerisine ikinci bir yuzey yerlestirilir. Bu yuzeydeki dahili alanlari bulma amacl
ilave bir integral denklemi olusturmak igin uygun sinir kosulu kullanilir. Bu
yeni denklemin orijinal denklemle birlestiriimesi sonucunda, her frekanstaki
akim igin 6zgun bir ¢dzUm Uretecek birlesik bir denklem ortaya cikar.
Anlatilan avantajlarinin yaninda bu yontem; ikincil yuzeyin olusturulmasinda
ilave bir gaba gerektirir ve MoM matris sistemindeki bilinmeyenlerin sayisinin

artmasi nedeniyle igslem zamanini ve bellekteki yer gereksinimini artirir.

Rezonans probleminin giderilmesinde uygulanmakta olan yontem EFIE ve
MFIE’nin dogrusal bir kombinasyonudur ve birlesik alan integral denklemi
(CFIE) olarak adlandirilir [10]. Bu yeni denklem, sinir kosullarini elektrik ve
manyetik alanlar Gzerine uygular ve EFIE ile MFIE’nin sifir oldugu yerler
farklihk gosterdiginden sonuca dahil olmasi istenmeyen alanlardan
badimsizdir. CFIE,

CFIE = o EFIE + %(1 — ). MFIE (2.121.)

seklinde ifade edilir [7]. Burada a sabiti, 0.2 < a < 0.5 olarak segilebilir.

CFIE, yapay bir ylzey olusturmak veya yulzeyin igindeki noktalar
orneklemek zorunda kalinmamasi yonlerinden avantajli gérinmektedir. Ayni
zamanda EFIE ve MFIE ile ayni sayida bilinmeyen icermektedir. Metodun
olumsuz yonu; yuzeyin olduk¢ca dar kenarlara ve uglara sahip oldugu
durumlarda dogru sonuglar udretmesi konusunda MFIE'nin guvenilir

olmamasidir.
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G. MOMENT METODU

Onceki boélimde temel elektromanyetik kavramlar incelendi ve bu
kavramlar yardimiyla 1sima ve sacgiima problemlerinde kullanilan bir dizi
integral denklemi elde edildi. ilgi alanimizdaki bircok gercek hayat
uygulamasinda bu denklemler analitik olarak ¢oztulememektedir. Bu yuzden
¢ozumu elde etmek icin bilgisayar tabanlh yontemlerin kullaniimasi zorunlu
hale gelmistir. Bu bolumde, bu integral denklemlerini, bir bilgisayar yardimiyla
sayisal olarak g¢ozulebilecekleri dogrusal bir sisteme c¢evirecek bir yontem

olan moment metodu (MoM) anlatilacaktir.

Oncelikle MoM tanimlanacak, bilinmeyen bir fonksiyonun agirlk
fonksiyonlarinin toplamindan faydalanilarak genisletiimesi incelenecek ve
Point Matching ile Galerkin Metodu karsilastirilarak aralarindaki farklar ortaya
koyulacaktir. Daha sonra dogrusal denklemlerin ¢ézimunde kullanilan Gauss

Eliminasyonu ve LU Dekomposizyonu incelenecektir.

Moment metodundaki temel yaklagsim, belirsiz buydklagan, iginde
bilinmeyen katsayillar barindiran bir dizi fonksiyon kullanilarak
genigletiimesidir [11]. Daha sonra elde edilen denklem sinir kogullari
uygulanarak dogrusal bir denklem sistemine c¢evrilir. Bulunan dogrusal
sistem, bilinmeyen katsayilarin sayisal olarak bulunmasi igin ¢oézulur. Bu
¢6zUm, ayni zamanda weighted residuals ybntemi olarak bilinen Moment
Metodu yardimiyla bulunabilir. L dogrusal operatér, g bilinen kuvvet

fonksiyonu ve f bilinmeyen olmak Gzere genel problem

L(f)=g (2.122.)

olarak ifade edilebilir. Elektromanyetik problemlerde genellikle, L integro-
diferansiyel operatorunu, f bilinmeyen fonksiyonu (yuk, akim) ve g bilinen
kaynagi (gelen alan) temsil eder. Burada f, N adet agirhk temel

fonksiyonunun (weighted basis functions) toplami seklinde yazilirsa
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N

f= Z ayf, (2.123)

n=1

ifadesi elde edilir. Burada a, bilinmeyen agirlik katsayilaridir. L dogrusal

oldugundan bu ifade (2.122.)’'de yerine yazilirsa

N

Z a L(f,) ~ g (2.124)

n=1

ifadesi elde edilir ve bu ifadeden istifade ile R, residual

N
R=g— ) al(fy) (2.125))
n=1

olarak yazilir.

Temel fonksiyonlar, bilinmeyen fonksiyonun ilgi uzayi igerisindeki tahmini
davranisini modellemek igin kullanilirlar ve problemine goére skaler veya
vektorel olabilirler. Eger temel fonksiyonlar uzay icerisinde yerel olarak ifade
edilebiliyorlarsa yerel (local, subsectional), butin uzay boyunca ifade
edilebiliyorlarsa global ya da tiim-uzay (entire-domain) temel fonksiyonlari
olarak adlandirilirlar. Moment metodunda yerel temel fonksiyonlar Uzerinde

durulacaktir.

Bu asamada yontemin, sinir kosullarinin uygulandigi  sekliyle
genellestiriimesi gerekir. Bunun igin, bir temel fonksiyon f,(r') ve bir test ya

da agirlik fonksiyonu £, (r)’yla ¢arpilirsa

< fy f, >=f f,(r).| f,(r").dr'dr (2.126.)

fm fn

ifadesi elde edilir. Burada integraller, temel ve agirlhk fonksiyonlarina bagli
olarak, ¢izgi, yuzey ya da hacim integrali olabilirler. Her agirlik fonksiyonunun

artik fonksiyonla i¢ carpiminin sifir olmasi gerektiginden yola ¢ikarak
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N
Z a, < o, L(E) > =< f,,8 > (2.127.)

n=1

seklinde yazilir. Bu ifade N x N buyukliglinde ve Za = b seklinde ifade edilen

bir matrise karsilik gelir. Bu matrisin elemanlari

Zonn =< £, L(£,) > (2.128.)

seklinde, sag taraf vektodr elemanlari ise

by =< fo, 8 > (2.129.)

seklinde ifade edilir [7].

Moment metodunda, her temel fonksiyon bir digeriyle Green fonksiyonu
vasitasiyla etkilesir ve sonucta elde edilen sistem matrisinde hig¢bir eleman

sifir degildir. Bu yuzden matrisin her elemani bellekte muhafaza edilmelidir.

1. Point Matching

integral denkleminin cisim tizerinde bir dizi ayrik noktada denenerek sinir
kosullarinin uygulanmasi iglemi, o denklemde agirlik fonksiyonu olarak

(2.126.)’da oldugu gibi delta fonksiyonunun kullaniimasina denktir.

W (r) = 8(r) (2.130.)

Bu yéntem point matching ya da point collaboration olarak tanimlanir ve
dezavantajlar oldugu kadar kayda deger avantajlari da olan bir ydntemdir.
Bunlardan  biri, matris elemanlarinin  degerlendiriimesinde  agirlik
fonksiyonunun etki sinirlari  igerisinde integral alinmasina ihtiyag
duyulmamasidir. En buyuk dezavantaj ise sinir kosullarinin ¢gézUm uzayinda
yalnizca ayrik noktalarda saglanabiliyor olmasidir. Birgok durumda sonuglar
oldukga tatmin edici olmakta ve yontem iki boyutlu problemlerin birgogunda
siklikla kullaniimaktadir [7].
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2. Galerkin Metodu

Test icin arzu edilen herhangi bir agirlik fonksiyonu kullanilabilir ancak
¢ogu problemde bu fonksiyonun sec¢imi ¢b6zim agisindan ¢ok hayati olabilir.
Burada en ¢ok kullanilan yéontemlerden biri, temel fonksiyonlarin kendilerinin
agirhk fonksiyonu olarak kullanildigi Galerkin Metodudur. Bu yontem sinir
kosullarinin, point matching yénteminde oldugu gibi ayrik noktalar haricinde,
¢6zUm uzayinda uygulanabilmesi avantajina sahiptir. Birgok problemin

¢ozumunde Galerkin-tipi agirlik fonksiyonlari kullaniimaktadir [7].

3. iki-Boyutlu Temel Fonksiyonlar

Bir temel fonksiyonun en dnemli karakteristik 6zelligi, ilgi uzay icerisinde
bilinmeyen fonksiyonun davranisini sergilemesidir. Eger ¢ézum belirli bir
bdlge igerisinde yUksek oranda degisim gosteriyorsa, darbe temel
fonksiyonlarinin kullanimi dogrusal ya da daha yuksek dereceden bir
fonksiyonun kullanimi kadar iyi bir tercih olmayabilir. Temel fonksiyonun
secimi, bazi durumlarda ¢ok karmasik olabilen MoM matris elemanlarinin
¢ozUmunde Kkarsilagilacak zorlugun derecesini de belirler. Bu bdlimde,
moment metodu problemlerinde siklikla kullanilan bazi iki-boyutlu yerel temel

fonksiyonlar tanimlanacaktir.

a. Darbe Fonksiyonlari

Sekil 11.8'de uzayin, N tane noktaya ve N —1 adet alt segmente ya da
darbeye bolindugu bir dizi darbe temel fonksiyonu goésterilmistir. Zorunlu
olmamasina ragmen sekildeki darbeler ayni uzunlukta secilmistir. Darbe

fonksiyonu

f,(x)=1 Xpn <x<x,+1 (2.131)

f,x) =0 diger (2.132))

olarak tanimlanir.
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a 3.f 1 (x)

as f3(x)

Ay Sy ()

a,fi(x)

Sekil 1.8 Darbe Fonksiyonlari

Darbe fonksiyonlari, her segmentteki sonuca iliskin basit bir yakinsama
icerirler, ancak MoM matris elemanlarinin bulunmasini buyuk Olgude
kolaylastirirlar. Darbe fonksiyonlarinin tirevi impulsif oldugundan, L, x’e

bagli bir tirev ifadesi icerdigi strece kullanilamazlar.

b. Pargali Uggen Fonksiyonlari

Darbe fonksiyonlarinin tek bir segmentte sabit oldugu durumlarda, bir
ucgen fonksiyon iki segmenti birlestirir ve dis noktalarda sifirdan farkli bir
deger alir. Sekil 11.9’da bir dizi U¢ggen fonksiyon gdsterilmigtir. Uzay, N tane
noktaya ve N — 1 adet alt segmente bolinmus ve N — 2 adet temel fonksiyon

ortaya ¢gikmistir.

a, /() , Frn(®)

(llfl(.\‘)’ e

X 4 '\.AN- 1 XA‘r

Sekil 11.9 Uggen Fonksiyonlar (1. Durum)
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Segmentler esit uzunlukta olacak sekilde Sekil 11.10’da bir daha
gOsterilmigtir. Burada bitisik fonksiyonlar bir segmentte ¢akistiklarindan,

ucgenler, segmentler arasindaki ¢6zUmun pargali dogrusal degdisimini
sagdlarlar.

ayfx)
~ I fV—l(‘\;), e

-~ -

$
X1 X X X4 Xp-1 XN
Sekil 11.10 Uggen Fonksiyonlar (2. Durum)
Bir iggen fonksiyon asagida gosterilen sekilde tanimlanabilir.

X —Xp-1

fo(X) = ———— Xp-1 SX <Xy (2.133))
Xp — Xp-1
Xp41 — X

fo(x) =/ — X, <X<Xnp (2.134.)
Xn+1 — Xn

Bu fonksiyonlar, L, x’e bagli bir turev ifadesi icerdiginde kullanilabilirler.
Bu o6zellik, diferansiyel operatdrlerinin yeniden dagihmi agisindan énem teskil
etmektedir.

Sekil 11.9°da gdsterilen ifade, ¢6zUmU x; ve xy noktalarinda sifira goturar.
Bu vyapi, ilgi uzayinin sonlarinda ¢6zimuin sifir oldugunun bilindigi
durumlarda kullanilabilir, ancak sonucun sifir olmayabilecedi durumlarda
kullaniimamalidir. EQer farkli olarak ilk ve son segmentlere bir yarim l¢gen
eklenmesi durumunda sonug artik sifira gitmeyecektir. Bu durum, toplamda N

adet temel fonksiyonun bulundugu $ekil I1.10’da gésterilmistir.
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c. Parcgali Sinlizoidal Fonksiyonlar

Parcali sintzoidal fonksiyonlar, Sekil 11.11°de gO0sterildigi gibi Ug¢gen
fonksiyonlarla benzerlik gosterirler. Genellikle, sintzoidal akim dagilimlarini

goOsterebilmelerinden dolayi, tel antenlerin analizinde kullanilirlar.

a,fyx) S0

S ey

X4 X1 Xy

Sekil 1.11 Parcall Sinuzoidal Fonksiyonlar
Bu fonksiyonlar asagida gosterilen sekilde tanimlanabilirler.

sink(x — xp_1)

f,(x) = Xp-1 S X< Xy (2.135.)

sink(x, — x,-1)

sin k(x —X
(ny1 = %) Xp <X < Xpyq (2.136.)

T = KOs — )

Burada k dalga sayisini ifade eder ve segmentlerin uzunlugu genellikle

sintzoidin periyodundan oldukg¢a azdir.

¢. Tum-Uzay Siniizoidal Fonksiyonlar

Diger temel fonksiyonlardan farkli olarak tiim-uzay siniizoidal fonksiyonlar,
problem uzayinin her yerinde tanimhdirlar. Eder ¢6zUmun nasil elde
edilecegine dair guvenilir bir bilgi varsa bu fonksiyonlar kullanilabilir. C6zim,
agirlik polinomlarinin ya da sinus ve kosinus fonksiyonlarinin toplami olarak
modellenebilir. Ornedin L uzunlugundaki ince bir dipol anten zerindeki I1(x)

akimi toplam ifadesi olarak
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N
1(x) =Z 1—| | (2.137)

seklinde gosterilebilir. Matris denkleminin ¢oézulmesi sonrasinda, bu toplam
ifadesinin igindeki akimin dogru ifade edilebilmesi icin yalnizca ilk birkag

katsayiya (a,) ihtiya¢ duyulacaktir.

Tam-uzay sintzoidal fonksiyonlarin dezavantajlarindan biri, rastgele sekilli
geometriler i¢in uygulanabilir olmayisidir. Sonu¢ olarak literatirde MoM

problemlerinde genellikle yerel temel fonksiyonlar uygulanmaktadir.
d. Temel Fonksiyonlarin Sayisi

Bir elektromanyetik problemde temel fonksiyonlarin sayisi, ¢6zimuin
dogrulugunu saglayacak sekilde segilmelidir. Zamanla harmonik problemlerle
ilgilenildiginden, ¢6zUmun faz davraniginin  yaninda genliginin de
modellenmesi gerekir. Uggen fonksiyonlar gibi dogrusal temel fonksiyonlarda
dalga boyu basina en az on bilinmeyenin kullanilmasi, bir sinidzoidin
gosterilmesi icin pratik bir yontem haline gelmistir. Bu sayi, genligin belirgin
bir sekilde degisiklik gosterdigi, yuzey uzerindeki bogluklar, yariklar ve
kenarlar icin artinimahdir. Daha ylksek dereceden temel fonksiyonlar
kullanmak, MoM formulasyonundaki karmasikli§i artiracak olmasinin

yaninda, bilinmeyen sayisini azaltabilecektir.

Bilinmeyenlerin sayisi her zaman problemin boyutlariyla dogru orantih
olarak artar. Bu artigin orani, problem uzayinin ¢izgi, yuzey ya da hacim
olmasina baglidir. MoM’'da N, tek-boyutlu problemler i¢in dogrusal, yluzey
problemleri icin Ustel olarak artar. Ortaya ¢ikan bilinmeyen sayisi birkag yiz
kadar az olabilecegi gibi, cok genis problemler igin binler hatta milyonlar
mertebesine kadar ¢ikabilir. Bu, N x N buyukligundeki bir matris sisteminin
depolanmasi igin gerekli sistem bellegi ve ¢6zim igin gerekli hesaplama

zamani agisindan onemli sonuglar dogurur. Bu matris problemlerinin
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¢6zimuinde kullanilabilecek ydntemlerden bazilari bir sonraki bdélimde

anlatilmistir [7].

4. Matris Denklemlerinin Gozimu

Bu boliumde, matrislere iligkin basit ¢ézimler saglayan Gauss eleme ve
LU ayristirma metotlari anlatilacaktir. Bu algoritmalar, N bilinmeyen sayisi
olmak Uzere, O(N3) mertebesinde bir hesaplama zamani gerektirir. Bu
metotlar N kiglk oldugunda iyi sonuglar vermelerine ragmen, buyuk boyutlu
problemler icin hesaplama zamani oldukg¢a artabilmektedir. Bilgisayarlarin
performanslarinin zamanla gelisiyor olmasina ragmen, her zaman daha
buyuk problemler bulunacagindan, bu konu gundemde kalmaya devam

etmektedir.

a. Gauss Eleme Yontemi

Gauss eleme yontemi, bir matrisin, temel satir igslemleri uygulanarak satir
matris kademesine indirilmesini saglayan basit bir metottur. Bu bir kez
basarildiginda, bilinmeyen vektor basit bir yerine koyma islemiyle elde
edilebilir. Bu iglemi géstermek icin, N X N buyukliginde bir matristen Ax = b

seklinde bir matris denklemi elde edilmek istenirse

[311 a1 dz3 aiN bl]
dz1 Az A3 -+ AzN|b,
dzy a3z azz dsNlbs (2.138.)
[am anz ans - annlby

ifadesi yazilabilir. isleme ilk satirla baslanir ve her eleman a;;’e bdliinerek
kdsegen uzerindeki ifadenin 1 olmasi saglanir. Daha sonra bu satir, uygun
katsayiyla carpilarak alttaki her satirdan c¢ikarilir ve satirlarin ilk elemanlari

sifir yapilir. Sonugta
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4 ! ! !
[1 a1z a3 ain|bs

! ! ! !
0 az az -+ ap|bz
0 aj, aj; asn| b3 (2.139.)
lo st ahy - aeltid

anz anz -+ annlbw

gibi bir matris elde edilir. Ayni igslem, kdsegen Uzerinde yalniz birler kalincaya
ve matrisin alt U¢geni tumuyle sifir oluncaya kadar, sirayla diger satirlar igin

de uygulanir. Bu igslem sonucunda orijinal matris

[1 aj, ais aéN bé

[0 1 a) an|b2 |

Io 0o 1 aly | b5 I (2.140.)
lo o o - 1] b’NJ

sekline donusur. Bu matrisin ¢dzUmu, asagida gosterilen yerine koyma

islemleri yardimiyla elde edilir.

Xy = bl (2.141)
N
x; = bl — z dx i< N (2.142)
k=i+1

Eliminasyon, toplamda N3/3 tane islem ve N2?/2 adet yerine koyma
icerecektir. (2.141.) ile ilgili satir iglemlerinin matrisin sag sutununu da
etkiledigi unutulmamalidir. Bu, eleme iglemi yapilirken dnceden hesaplanmig
olmalari gerekmesi nedeniyle, arzu edilmeyen bir durum olacaktir. Bu
sinirlama, bir sonraki bélumde de anlatilacak olan, LU ayrigtirma yontemi ile

giderilecektir.

b. LU Ayristirma Yontemi

Matrisin sag tarafinda bir degisiklige neden olmayan bir ¢arpanlara ayirma
isleminin Gauss eleme yonteminden daha avantajli olacagindan daha 6nce
bahsedildiginden, A matrisinin alt ve Ust Uggenler seklinde ayristiriimasi

uygun olacaktir. Bu durum LU = A (2.143.) seklinde ifade edilebilir ve bu da
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by 0 O 0 JrU11 U112 Uiz UiN
[121 l, 0 - 0 ] 0 uy upz e Upy
LU=|131 sy, lag o| 0 0 |us; LEN (2.144.)

I N e
seklinde gosterilir. Ayrigtirma yontemi yardimiyla,
Ax=(LU).x=L{Ux)=b (2.145.)

matrisi oncelikle L.y = b (2.146.) denklemi ¢ozllerek bulunabilir. Burada y

asagida belirtilen yerine koyma yontemiyle bulunur.

g

i—1
1

Vi =1 [bi - Z likyk
i o]

Daha sonra U.x =y (2.149.) denklemi de, x’in agsagida belirtilen yerine

v (2.147.)

- i>1 (2.148.)

koyma yontemiyle bulunur.

y
Xy = (2.150.)
UNN
1 N
Xj =— yi — z Uik Xk - i<N (2151)
Uii K=it1

Yapilacak son islem L ve Unun elemanlarinin belirlenmesidir. LU matris
carpimi yapilirsa, N + N adet I;; ve u;; bilinmeyeni igin N* adet denklem elde
edilecektir. Kdsegen iki kere gosterildigi igin, N adet bilinmeyen istege bagl
olarak

lii = 1 i= 1,2, ey N (2152)

seklinde gosterilebilir. Boylece matris
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1 0 O 01rU11 Uiz Ujg U;N

I,y 10 0[] 0 uzpy uyz o Upn
LU=|1; L, 1 0[] 0 0 |us LEIN (2.153.)

th INZ 1N3 1Jl 0 0 0 uNNJ

seklinde bir ifadeye donugsur ve u;; = a;; esitligi saglanabilir. L matrisi, U

matrisinin ilk satiriyla ¢carpilirsa

d d
Iy = ==, gy =—= (2.154.)

Ugq Ugq

ifadeleri elde edilir. Ayni iglem u,, = a;, esitligi saglanarak, U matrisinin ikinci

satirina da uygulanirsa
Uy = Az — lp1uypp

1
l3; = — [a3; — I37uy5] (2.155.)
Uzo

lyz = — [a42 — l41u42]
Uzo

ifadeleri elde edilir. Bu iglemler sonucunda matrisin yapisi artik, Crout
Algoritmasi olarak bilinen matris ¢éziUmunun uygulanmasina olanak verir
hale gelmistir. j = 1,2,...,N olmak Uzere Oncelikle U matrisinde, kdsegenin

Uzerinde ve altinda kalan elemanlar igin

uj = a— ) lgwg i=12,.,] (2.156.)

daha sonra L matrisinde, kdsegenin altinda kalan elemanlar i¢in uygulanir.

j—1
1
lij = — ai]- - Z likuk]- i= ] + 1,] + 2, ey N (2157)
4 k=1
Bu algoritmanin uygulanmasi sonrasinda, her adimda ihtiya¢ duyulacak
elemanlar islem sirasi geldiginde hesaplanmis olacaktir. A matrisi bu sayede,

L ve U matrisleri icin ilave bellege ihtiyagc duymayacak sekilde ¢arpanlarina

48



ayrilmis olur. LU ayrnistirma ve yerine koyma islemleri, Gauss eleme

yontemindeki islemlerle ayni zorlukta olacaktir.

Carpanlarina ayirma islemi tamamlandiginda, matris artik, rastgele
sayidaki sag taraf islemleri icin de kullanilabilir hale gelecektir. Bu matris,
daha sonra ihtiyag oldugunda kullanilmak uUzere kaydedilerek bellekte

muhafaza edilebilir [7].

5. Ug Boyutlu Problemler

Rastgele sekilli G¢ boyutlu yuzeylerden 1gima ve sacilma problemlerin
¢ozUmune; elektromanyetik girisim, elektronik kaplama, radar kesit alani ve
anten tasarimi gibi alanlarda siklikla ihtiya¢ duyulmaktadir. Bu alan 6zellikle
son otuz yilda olduk¢a buyuk ilgi géormus ve Ug¢ boyutlu ylzey problemlerinin
¢ozUmune iligkin birgok yontem geligtirilmistir. Bilgisayarlar ve belleklerinden
kaynakli sinirlamalar nedeniyle ¢ boyutlu problemlerin ¢cogu, su ana kadar
nisbeten kuguk elektriksel boyutta olmuslardir. Daha buyudk problemlerin
¢6zUmu i¢in yakin zamana kadar kullanimi yayginlasmamig olan ¢ok gelismis
bilgisayarlara ihtiya¢ duyulmustur. Son on yilda meydana gelen islemci hizi,
bellek kapasitesi ve konfiglirasyon gelisimleri sonucunda halihazirda blyuk
capli problemler bile mutevazi masaustu bilgisayarlarinda ¢ozulebilir hale
gelmistir. Bu gelisim, daha Once olabilecegine ihtimal dahi veriimeyen

¢alisma alanlarinin agilmasina olanak saglamistir.

a. Ug Boyutlu Yiizeylerin Gosterimi

Oncelikle G¢ boyutlu cisimlerin bilgisayarda sayisal olarak nasil
gosterilecekleri  belirtiimelidir. Bu husustaki temel yaklasim, oncelikle
bilgisayar tabanh bir tasarim yazihmi (computer aided design-CAD)
kullanarak cismin detayl bir modelinin ¢ikariimasidir. AUTOCAD, ALLYCAD
ve CADDIE gibi modern benzetim programlari, matematiksel tanimlamalar
kullanarak serbest sekillerdeki cisimlerin benzetimlerini yapabilir. Bu

programlarda uygulanan yaklagim sayesinde yuzey normali ve her noktadaki
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egriliklerin yarigaplarina iligskin bilgiler elde edilir ve bellege kaydedilir. Egimli
yuzey modeli bir defa geligtiriidiginde, daha sonra Uzerinde islem
yapilabilecek geometrik yapitaglarina ayrilir. Bu amagla yapitagl olarak en
yaygin kullanilan sekil, her turlu cismin yuzey egilimiyle uyum gosterebilen
duzlemsel Ug¢genlerdir. Bu Uggenler icin yuksek etkinlikte integrasyon kurallari
gelistirilmigtir. Ayrica elektromanyetik modelleme igin cazip bir tercih olmasi
amaciyla, ug¢gensel uzaylardaki integral denklemlerinin ¢ozuma igin analitik
cozimler ortaya konulmustur. Uggenler, bilgisayar grafiklerinde standart
yapitasl olarak secilmislerdir ve bilgisayar tabanl tasarim (Computer Aided
Design-CAD) programlarinin bircogu son derece yuksek kalitede ylzey

benzetim agi (mesh) olusturabilme kapasitesine sahiptir.

Bir ylzeyin ug¢genler kullanilarak tanimlanmasinda kullanilan en yaygin yol
sonlu eleman baglantisi dosyasidir ve bu yola bir érnek Sekil 11.12°de
gosterilmigtir. Bu dosya, butin uggen dugumlerinin (node) kartezyen
koordinat sistemindeki mevkilerini iceren bir ddgidm listesini ve bu dugim
listesinden aldig1 Uclu tepe noktalarindan hareketle olusan uggenleri

tanimlayan bir faset listesini igerir.

OO O K M
cooooo
OO0 O0OO0O0O0o
cooooo0

O0OO0OO0OO0OOOOoOO
|
SIS

o O O
(ool e)
O O O

(oo e o RS RS IO 1 IO 1 I S S o o]
WO WoN
[o T © 2 B I S VO T O I\ T S

Sekil 11.12 Ornek Baglant Listesi
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Sekil 11.12'deki 6rnek [7], 9 dugum ve 8 fasetten meydana gelmektedir. Bu
bilginin depolanmasi igin birgok degisik yontem gelistiriimistir. Bu yontemlerin
¢ogu, ayni zamanda bilgisayar grafikleri ve animasyon araglari igin de
kullanildiklarindan, geometriye iligkin olmayan bilgileri de igerirler. Bu
calismada bu bilgilerden, yalnizca moment metodunun ¢ézimu igin gerekli
olan faset dosyasi kullaniimigtir. Sekil 11.13'te, Uggen fasetlere boéllnerek
modellenmis bir kire, bir flUze ve bir tank gosterilmistir [7]. Bu yontemin
esnekligi sayesinde, tasarimda uygun sayida uc¢gen kullanildigi ve gerekli
0zen gosterildigi takdirde, kara ve hava araglari gibi gok karmasik geometriler

bile yiksek dogruluk ve hassasiyetle modellenebilmektedir.

Sekil 11.13 Ornek Ug Boyutlu Faset Modelleri
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b. Bir Uggen Uzerindeki Yiizey Akimlari

Duzlemsel Uggenler olarak tanimlanmig ylzeylerin Uzerinde olusan
akimlarin tanimlanmasi moment metodu agisindan ¢ok buyuk 6nem arz
etmektedir. Onceki bolumlerde J(r) akimi, agirlik temel fonksiyonlarinin

toplami olarak

N

J(r) = z anfy(r) (2.158.)

n=1
seklinde gosterilmisti. SUphesiz son 25 yildir burada kullanilan en basarili

temel fonksiyon Rao-Wilton-Glisson (RWG) liggen temel fonksiyonudur [12)].

Bu fonksiyon

L
f,(r)= 2An+ pi(r) rinT/ (2.159.)
n
Ln _ R
f,(r) = A= po(r) rinT, (2.160.)
n
f,(r)=0 diger (2.161.)

seklinde tanimlanmigtir. Burada T;f ve T, , n ortak kenarl lggenlerdir ve L,
bu kenarin uzunlugudur. T Gzerinde, p; (r), ortak kenarin aksi tarafindaki v*

tepe noktasina dogrudur ve

pt(r)=vt—r rinT} (2.162.)

seklinde ifade edilir. T, Uzerinde ise, p,(r), v aksi tepe noktasindan diger

tarafa dogrudur ve

po(r)=r—v~- rinT, (2.163.)

seklinde gosterilir. RWG temel fonksiyonu Sekil 11.14’te gOsterilmigstir. Yapilan
tanima gére RWG fonksiyonlari, her bitisik ikili Gggen grubunun i¢ tarafta
kalan ortak kenarlarini esas alarak aciklanmistir. Bu formulasyonun
geometrinin butlninl kaplayacagi goruldugunden, sinir kenarlari icin temel

fonksiyonlar tanimlanmamistir.
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Sekil I1.14 RWG Temel Fonksiyonu

RWG fonksiyonunun, tanimlandigi kenar diginda, herhangi bir kenarla

normal bileseni yoktur. f,,(r)’nin ylizeye gore diverjansi alinirsa

Ln :
Vo.fn(r) =—— rinTy (2.164.)
Ay
Ln R
Ve.fp(r) =—  rinT, (2.165.)
Aq
V. fo(r) =0 diger (2.166.)

ifadeleri elde edilir. Akimin diverjansinin, sureklilik denklemi nedeniyle ylzey
yuk yogunluguyla orantili olmasi nedeniyle, (2.164.) ve (2.166.)da da
gorulecegi Uzere bitisik Uggen ciftlerinin toplam yuk yogunlugu sifirdir. Bir
kenar Uzerinde yuk birikimi olmadigindan, RWG fonksiyonunun diverjans
uyumlu oldugu sodylenebilir. Bilgisayar tabanli elektromanyetik problemlerde,
daha vyuksek dereceli temel fonksiyonlarin da kullanildi§i géz 6nlne

alindiginda, rotasyonel uyumlu oldugu da ifade edilebilir.

c. Kenar Tanimlama Algoritmasi (Edge Finding Algorithm)

Faset model elde edildikten sonra, her bir kenarin tanimlanmasi ve
kaydedilmesi igin bir algoritma olusturulmasi ihtiyaci ortaya c¢ikar. Kenar
tanimlama algoritmasinin gosterimi igin, xy duzleminde tanimli basit bir diz

plakaya iliskin Sekil 11.12’de yer alan bilgiler esas alinmigtir. Bu modeldeki
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digum ve fasetlerin numaralandiriimasi Sekil 11.15°te gdsterilmistir [7].
Burada ilk yapilmasi gereken her dugum ve olusturduklari fasetler arasindaki
baglantiyl tanimlamaktir. Fasetlerin hangi kenarlari paylastiginin ve bagimsiz
kenarlarin belirlenmesi bu sayede saglanacaktir. Bunun yapilabilmesi igin
dugim baglanti listesi ve faset baglanti listesi olarak iki ayri liste olusturulur.
Dugum bagdlanti listesi, her bir dugum ve digerleri arasindaki butin
baglantilari, faset baglanti listesi ise, her dugum igin o dugumu tanimlayan
fasetleri icerir. Daha sonra her bir Gggen kontrol edilir ve o Gg¢geni olusturan
dugumler belirlenerek artan sirayla kaydedilir. Daha sonra fasetlerin igerigi,

her digume iligkin faset

a) DUgum Numaralandirmasib) Faset Numaralandirmasi
Sekil 11.15 Basit Duz Plaka Geometrisi

baglanti listesine eklenir. Eger listede bulunmuyorlarsa, kendisinden iki
Ustteki diigimiin bilgileri en alt siradaki diigimiin listesine eklenir. Ikinci
digumun igerigi tanimli degilse, uglincd dUgumun igerigi ikinci dUgumun
listesine yazilir. Uglincli diigiim igin herhangi bir islem yapilmaz. Bu
islemlerin tamamlanmasi sonucunda olusan dugum ve faset baglanti listesi
Tablo Il.1’de oldugu gibidir [7]. Dugum baglanti listesi tanimlanmamig

baglanti icermemelidir.
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Dugum (Node) # Birlegtirilen Dagumler Birlestirilen Fasetler

1 24 1

2 453 123

3 56 34

4 57 125

5 678 234567

6 89 478

7 8 56

8 9 678

9 - 8

Tablo 1.1 Digum ve Faset Baglanti Listeleri

Bu noktada baglanti listeleri, modelde bulunan tim kenarlara iligskin her
bilgiyi icermektedir. Yapilmasi gereken; her dugum igin baglanti listesine
gidilerek, giris bagina bir kenar olusturmaktir. Her kenarin bitis noktasina
ortak olan fasetler kaydedilir. Eger kenar yalniz bir (¢gene aitse, o bir sinir
kenaridir ve temel fonksiyon tanimlanmaz. iki liggen icin ortak olan kenarlar,
ic kenarlardir (interior edges) ve bunlara temel fonksiyon tanimlanir. Ug ya da
daha fazla Ug¢gen igin ortak kenarlari olan geometriler icin de tanimlama

yapilimayacaktir.
¢. Ug Boyutlu iletken Yiizeyler igcin EFIE

Yapilmasi gereken son islem, tanimlanan ve iletken olduklari varsayilan
rastgele sekilli geometriler icin bir elektrik alan integral denklemi (EFIE)
olusturmak ve ¢dzmektir. (2.158.)'deki ifade (2.104.)'te yerine koyuldugunda

N bilinmeyenli

j | 1 . eIkr

£ i — l /

o B = ﬂm +FVV.)Zanfn(r )5 —dr (2.167))
S n=1

denklemi ortaya c¢ikar. N adet test fonksiyonunun uygulanmasi ve vektor

diferansiyel operatorlerinin igeriye dagitiimasi sonucunda Z matrisi elde edilir

ve matris elemanlari
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—jkr

2 = f j f f (fm(r)fn(r’ —k—lz[v. fm(r)][v'fn(r')])e41Tr dridr  (2.168.)
£ T

__J i
by, = wu!f f..(r).E\(r)dr (2.169.)

seklinde ifade edilir. (2.168.)'de gosterilen kaynak ve test (agirlik) integralleri,
her biri iki Gggene bagh iki RWG fonksiyonu olusturularak ¢ézultr. Her tGg¢gen
en fazla ¢ RWG fonksiyonunda tanimlandigindan, kaynak integrali ve
g6zlem Uggeni, en fazla dokuz matris elemanina katki saglar. Bu sebeple, dis
integral gevrimini kaynak ve test tg¢genleri Uzerinden, i¢ integral ¢cevrimini ise
temel fonksiyonlar Uzerinden hesaplayip, sonrasinda sonuglari matriste
uygun yerlere koymak daha etkili olacaktir.
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lll. UYGULAMALAR VE ANALiZ

A. EFIE DENKLEMINE iLISKiN MATLAB KODU

Bu caligmada kullanilan kodlar temel olarak iki kisma ayriimistir. ilki,
incelenen geometrinin modellendigi, degiskenlerinin tanitildigi ve sonucunda
ylizey akimlarinin hesaplandigi kod dizinidir. ikincisi ise; dncelikle ilgilenilen
yuzeyin bir noktasinda olugsan manyetik ve elektrik alanin hesaplanarak tim
yuzeydeki 1simanin ya da sacilimin hesaplanmasini saglayan, sonrasinda

bulunan alanlarin bir kiire ylzeyindeki dagilimini inceleyen kod dizinidir.

Kullanilan kod dizinleri igin verilen ornekler, genelde iki ancak bazilari da
uc¢ boyutlu basit geometrileri icermektedir ve bu geometriler “.mat’ uzantih
dosyalardir. Calismanin daha ¢ok gercek hayatta karsilasilan ve ¢dzimune
ihtiyac duyulan geometrileri icermesi gerektigi dustnulerek, ‘.facet’ uzantil
olarak hazirlanmig olan geometrilerin, bir kod dizenlemesi yardimiyla ‘.mat’
uzantisina c¢evrilmeleri saglanmigtir. Kod Uzerinde vyapilan diger bir
dizenleme ise, oOncelikle geometrinin tanitildigi ve sonucunda yuzey
akimlarinin hesaplandigi ilk kisim kod dizininin, dguncu boyutun da
hesaplanmasini saglayacak sekilde revize edilmesi olmustur. Bu
duzenlemeler sayesinde artik U¢ boyutlu ve gergek hayatta karsilasilan

otomobil, fuze ve tank gibi geometriler incelenebilecektir.

1. Yuzey Akimlarinin Hesaplanmasini Saglayan Kod Dizini

Bu kod dizini temel olarak rwgl.m-rwg5.m seklinde adlandirilan bes
parcadan olusmaktadir ve kodlara iliskin akis semasi Tablo Ill.1de
gorilmektedir [13]. Bu dizinler, moment metodunun sirali sayisal adimlarini
hesaplamaktadir. En son dizin galistirildiginda, uzerinde ¢alisilan yuzeydeki
akim dagilimi gosterilecektir.

Tabloda gorilen akig, degisik geometrilere sahip sekillere de

uygulanabilecek gsekilde tasarlanmigtir. Burada dikkat edilecek husus,
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incelenecek seklin isminin rwgl.m dizininde, 7oad’ komutunun ardina
yazilmasidir. Boylece sekil bellekten cagirilacak ve hesaplamalar dogru
geometriye iligkin olacaktir. Frekans, dielektrik sabiti ve manyetik gecirgenlik
degiskenleri rwg2.m dizininde girilmektedir. Bu kod dizinleri yalniz sagilim igin
degil ayni zamanda 1sima problemleri icin de kullanilabilir. Tek énemli fark,
Isimada bir gerilim kaynagiyla besleme yapilirken, saciiimda kaynak gelen
elektromanyetik dalganin kendisidir.

Sekil geometrisi
bellekten cagirilir

rowgl.m

RWG kenar
meshl.mat elemanlarini
olustururlar
rwg2.m
mesh2.mat

Empedans matrisini
hesaplar

rwg3.m

impedance.mat

ve MoM

Uyari voltajini belirler
denklemlerini ¢bzer

current.mat

= 1=

AW AN AW AN
K—

rwgs.m hesaplar ve

gérintiler

| Yiizey akimlarini

Tablo Ill.1 Yizey Akimlari Kod Dizini Akis Semasi

Tablo 1ll.1°"de de goruldugu uzere, rwgl.m ve rwg2.m dizinleri

calistinldiginda bellekten geometri c¢agirilarak programa tanitilir ve
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sonucunda meshl.mat ve mesh2.mat dosyalari olusturulur. rwg3.m dizini,
MoM ¢6zumu icin temel teskil eden empedans matrisini olusturur. Bu dizinin
sonucunda olusan dosya impedance.mat ismiyle kaydedilir. rwg4.m dizininde
ikaz voltaji belirlenir ve MoM denklemleri ¢dzulur. Bu dizinin sonucunda da,
birim uUc¢gen basina yuzey akimlari hesaplanarak current.mat dosyasi
olusturulur. Son olarak rwg5.m dizininde ise, bir dnceki dizinde olusturulan
current.mat dosyasi kullanilarak yuzey akimlari hesaplanir ve yluzey akim

dagilimi goruntulenir.

2. Sagilan Alanlarin Hesaplanmasini ve Gosterimini Saglayan Kod

Dizini

Bu kod dizini temel olarak efieldl.m-efield3.m seklinde adlandirilan Gg¢
parcadan olusmaktadir ve kodlara iliskin akis semasi Tablo Ill.2’de
gorulmektedir. Bu dizinler, ilk dizinlerde hesaplanan yluzey akimlari
yardimiyla sagilan elektrik ve manyetik alanin bulunmasini saglar ve bulunan

alanlari bir kure yuzeyinde modeller.

efieldl.m Bir noktadaki alani
hesaplar

mesh2.mat
. Bir kiire ylizeyindeki
efield2.m 1sima hassasiyetini
hesaplar
current.mat
efield3.m Sagl{n?a/l§lma
Paternini Hesaplar

Tablo Ill.2 Sacilma Paterni Kod Dizini Akis Semasi

ik kod dizininde ylizey akimlarinin bulunmasi igin olusturulan mesh2.mat
ve current.mat dosyalari, bu kod dizinlerinde de kullanilir. efield1.m dizini, bir

noktada olusan elektrik E ve manyetik alanlari H hesaplar. efield2.m dizini,
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incelenen cismin Uzerinde meydana gelen Isima/sacgiima hassasiyeti
dagiliminin genis bir sanal kure yuzeyinde gosteriimesini saglar. Bu dizin
sonucunda, hesaplanan toplam gug¢ bilgilerinin kaydedildigi gainpower.mat
isimli bir dosya olusturulur. efield3.m dizini ise, olusturulan gainpower.mat
dosyasini da kullanarak, kutupsal ve kartezyen dizlemlerde sagiima

paternini hesaplar ve gosterir.

B. YUZEY AKIMI VE SAGILIM MODELLEMES|I UYGULANAN
GEOMETRILER

Calismada, yuzey akimi ve sacgilim modellemesi yapilacak sekiller
secilirken, kodun algoritmasinin daha rahat anlasilabilmesi amaciyla,
geometrileri basitten karmasiga dogru olacak sekilde segilmis ve
siralanmigtir. Ylzey akimi ve sagilim modellemesi uygulanan cisimlerin
degerlendiriimesini standart hale getirmek amaciyla; frekans, polarizasyon,
dielektrik sabiti, manyetik gecirgenlik, gelen EM dalganin yonu ve siddeti gibi
parametreler, kip ve kire hari¢g degistiriimeden uygulanmistir (Tablo 11.3).
Gelen EM dalganin yonu sekiller tzerinde okla gosterilmistir. Calismanin
basinda da belirtildigi Uzere, gelen dalganin frekansi, AN/SPS-40 ve

AN/SPS-49 gibi hava arama radarlarinin frekansi g6z énunde bulundurularak

secilmigtir.

Parametre Girilen Deger
Frekans (Mhz) 450-900
Polarizasyon (x, y,z) (1,0,0)
Dielektrik Sabiti (F/m) 1/36mT x 10~°
Manyetik Gegirgenlik (H/m) 4 x 1077
EM Dalganin Yonu (x, y,z) ©, -1, -1)
EM Dalganin Siddeti (V/m) 1
Gosterim Kuresi Yarigapi (m) 10

Tablo 111.3 Kod Dizinine Girilen Degerler Listesi
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1. Duzlem (1mx1m) i¢in Yuzey Akim Dagilimi ve EM Sacilim

Hesaplama yapilan ilk sekil olan diizlem, 1 m? alana sahiptir. 512 adet

ucgenle modellenen seklin geometrisi Sekil 1ll.1’de gosterilmigtir.

Dazlem (TrmxTm)

y 05 05

Sekil lll.1 Duzlem (1mx1m)

rwg5.m’e kadar kod dizinleri ¢calistirildiginda, yuzey uzerindeki en yuksek
akim degeri 0,018864 A/m olarak bulunur. Yizeydeki genel akim dagilimi ise
Sekil 111.2°de oldugu gibidir.

efield1l.m-efield3.m dizinleri sonucunda elde edilen verilerden; sacilan
elektrik ve manyetik alanlarin kure Uzerindeki gdOsterimi Sekil 111.3'te, yz

dizlemindeki sagiima paterni Sekil I11.4’te gosterilmistir.
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Yizey Akam Dagqiim (Dozlem)

0.5

0.4

0.3

0.2
0.5

Sekil lll.2 Ylzey Akim Dagilimi (Dizlem)

Elektrik ve Manyetik Alanlann Kire Uzerinde Gasterimi (Diizlem)

1016

0.03

0.0&

0.04

0.02

Sekil l11.3 Elektrik ve Manyetik Alanlarin Kire Uzerinde Gosterimi (Diizlem)
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sagima Paterni (Didzlem)
Oftset=40 dB

&

>~

270

Sekil 1.4 Sacilma Paterni (Duzlem)

a. Cikintili Diizlem Karsilagtirmasi

Sekiller Uzerinde vyapilacak degisikliklerin nasil sonuglar vereceginin
anlasilabilmesi amaciyla, Uzerine bir anten yerlestirildigi varsayillan ayni

boyutlardaki bir duzlemle karsilastiriimistir.

266 adet lU¢genle modellenen seklin geometrisi Sekil 111.5'te gdsterilmis ve
Sekil 1ll.1°de goéruntllenen dizlemin 512 uggenle modellendigi géz 6nline
alindiginda, orada bulunan sonucun daha hassas olabilecegi, ancak
kargilagstirmada sorun yaratabilecek bir etkiye sahip olmadigi

degerlendirilmistir.
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Cikintil Dazlem (1mexlm)

Sekil 1.5 Cikintil Dazlem (1mx1m)

Yizey Akm Dadihmi (Cikantil Dizlem)

Sekil lll.6 Ylzey Akim Dagilimi (Dizlem)
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rwg5.m’e kadar kod dizinleri sonucunda, yuzey Uzerindeki en yuksek akim
degeri 0,015932 A/m olarak bulunur. Sekle eklenen cismin, yluzeye gelen EM
dalganin enerijisinin bir kismini Uzerinde toplamasi nedeniyle, yluzeydeki en
yuksek akim degerini yaklagik % 15 oraninda disurdigu goériimektedir.
Yuzeydeki genel akim dagilimi ise Sekil 111.6’da oldugu gibidir. Bu sekildeki
renk dagilimina bakildiginda, genel akim dagiliminin dizleme gore daha
yuksek oldugu, yalnizca anten oldugu varsayilan cismin tzerindeki akimlarin

nisbeten daha duguk seviyeli oldugu gortulmektedir.

Elektrik we Manyetik Alanlann Kire Yizeyinde Gasterimi (Gikintih Ddzlem)

1016

1014

1012

0.03

0.06

0.04

0.0z

¥ X

Sekil l1l.7 Elektrik ve Manyetik Alanlarin Kiire Uzerinde Gosterimi
(Cikintili DUzlem)

efieldl.m-efield2.m dizinleri sonucunda elde edilen, sacilan elektrik ve
manyetik alana iligkin gdsterim Sekil 111.7°7de oldugu gibidir. Buradan da
gorulebilecedi gibi kure uzerindeki alan dagilimi neredeyse duzleminkiyle
ayni olmusg, yalnizca sagiimanin oldugu bodlgelerde genlikte yukselme
meydana gelmistir. Bu yukselmenin, anten oldugu varsayilan cikintidan

kaynaklandigi degerlendirilmigtir.
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efield3.m dizini sonucunda elde edilen yz duzlemindeki sagiima paterni
Sekil 111.8'de gosterilmistir. Buradaki degisikligin de, geometrideki farkliliktan

kaynaklandigi degerlendirilmigtir.

magilma Paterni (Cikintih Dizlem)
Offset=40 dB

M s

> wim

270

¥

Sekil 1.8 Saciima Paterni (Cikintili Dazlem)

b. Cikintili Dizlem Karsilastirmasi (2)

Sekil degisikliginin ne gibi sonuclar dogurabilecedinin gértilmesi amacli
ikinci deneme, diuzlem Uzerine ikinci bir plakanin eklenmesiyle yapilmigtir.
Karsilastirmanin yapilacagr 88 adet Uggenle modellenen geometri Sekil

[11.9°da gOsterilmigtir.

Sekil Ill.1°de gorintilenen diuzlemin 512 tggenle modellendigi géz 6niine
alindiginda, orada bulunan sonucun daha hassas olabilecedi, ancak ilk
karsilastirmada da oldugu gibi sorun yaratabilecek bir etkiye sahip olmadigi

degerlendirilmistir.
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Gkt Dizlem (2

Sekil 1.9 Cikintih Dazlem-2

Yizey Akim Dafgibmi (Cikintih Dozlem-2)

Sekil lIl.10 Yizey Akim Dagilimi (Cikintili Dizlem-2)
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rwg5.m’e kadar kod dizinleri sonucunda, ytizey Uzerindeki en ylksek akim
degeri 0,010853 A/m olarak bulunur. Sekle eklenen cismin, yuzeydeki en
yuksek akim dederini, ilk 6rnegin aksine neredeyse yari yariya dusurdugu
gorilmektedir. YUlzeydeki genel akim dagilimi ise Sekil 111.10’da oldugu
gibidir. Bu sekildeki renk dagilimina bakildiginda, genel akim dagiliminin,

duzleme ve ilk ¢cikintili duzleme kiyasla daha yuksek oldugu gorulmektedir.

efield1.m-efield2.m dizinleri ¢alistirildiginda elde edilen, sagilan elektrik ve
manyetik alana iliskin gdsterim Sekil 111.11’de oldugu gibidir. Buradan da
gorulebilecegi gibi kiure Uzerindeki alan dagilimi neredeyse duzleminkiyle
ayni olmus, yalnizca sac¢iimanin oldugu bdlgelerde genlikte yukselme
meydana gelmistir. Bu yukselmenin de, ilk karsilastirmada oldugu gibi ¢ikinti

duzlemden kaynaklandigi degerlendirilmistir.

Elektrik ve Manyetik Alanlann Kiire Uzerinde Gasterimi (Cikintih Diizlem-2)

1012

+0.08

0.06

0.04

0.02

Sekil lll.11 Elektrik ve Manyetik Alanlarin Kiire Uzerinde Gdsterimi
(Cikintili DUzlem-2)
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sagima Paterni (Cikintih Dizlem-2)
Oftset=40 dB

M &

>~

270

Sekil 111.12 Saciima Paterni (Cikintilh Dazlem (2))

efield3.m dizini sonucunda elde edilen yz dizlemindeki saciima paterni
Sekil 1ll.12'de gosterilmigtir. Buradaki degisikligin, hem asil hem de
kargilastirma yapilan duzlemlerden farkli olmasinin sebebinin, gelen alanin

carptigl yuzeydeki artis oldugu degerlendirilmigtir.

c. Yiizey Akim Dagilimi Analizi

Matlab kodunun dogrulanmasi; 1 m? alana sahip kare dizlem Uzerindeki
yuzey akimlarinin modellenmesine iliskin [14]teki analitik sonugclar ile

kargilastirma yapilarak saglanmigtir.

Hesaplamalar, -y-z (0,-1,-1) yoninde 75 MHz'de goénderilen EM dalgaya
iliskin yapiimis olup, elde edilen yluzey akim dagilimlarina iligkin iki ydontemde
de MoM c¢ozumlerinin [14]'teki ¢ozumler ile karsilastirmasi Sekil 111.13’te

gosterilmis olup sonuglarin uyumlu oldugu goérulmektedir.
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Yizey Akim Dagiimi Analizi (Dizlem)

12 . . . ! ! ! . I I
: : : : : : : Mah A&
5 5 5 5 5 5 | T MeMEE f
1D_ ............ .............. .............. .............. .............. ............. ..... _*_ Ana““kAAl .......... f_
: : : : : : C | v AnlitikBE f
B B I[
8.1 ........................................................................................................................................... .II"_
\ Jf
£ l\\, !
'E E_l\ ..................................................................................................................................... I_
S
= 1 f

wflambda or y/lambda

Sekil 111.13 Yuzey Akim Dagihimi Analizi (Duzlem)

2. Kup (1mx1mx1m) igin Yiizey Akim Dagilimi ve EM Sagilim

Hesaplama yapilan, 334 adet Uggenle modellenen kip, 1 m3® hacme
sahiptir ve Sekil 111.14’te gosterilmistir. Bu 6rnekte, EM dalganin, onceki
orneklerden farkli olarak, z yonunden geldigi kabul edilmigtir. Gelen dalganin

polarizasyonu yine x yonundedir.
rwg5.m’e kadar kod dizinleri sonucunda, yuzey Uzerindeki en yuksek akim

degeri 0,0061987 A/m olarak bulunmustur. Yuzeydeki genel akim dagilimi
ise Sekil 111.15’te oldugu gibidir.
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kaOp (TrmxT melm)

0.5

05

1]

a

Y 05 05 y

Sekil I1I.14 Kiip (Imx1mx1m)

Yiazey Akm Dadiim (Kap)

y 05 05 y

108

0.8

0.7

Sekil lI1.15 Yuzey Akim Dagilimi (Kup)
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Elektrik ve Manyetik Alanlann Kiire Uzerinde Gasterimi (Kiip)

1025

1015

0.1

0.05

Sekil 111.16 Elektrik ve Manyetik Alanlarin Kiire Uzerinde Gosterimi
(Kip)

macilma Paterni (Kip)
Offzet=40 dB

90 50

ra 180

270

¥

Sekil lll.17 Sagiima Paterni (Kup)
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efield1l.m-efield3.m dizinleri sonucunda elde edilen verilerden; sacilan
elektrik ve manyetik alanlarin kure Uzerindeki gosterimi Sekil 111.16’da, yz

duzlemindeki sagiima paterni Sekil 111.17°de gosterilmigtir.

3. Kiire (r=1m) i¢in Yuzey Akim Dagilimi ve EM Sagilim

Hesaplama yapilan GguUnclU sekil, 392 adet Uggenle modellenen, 1 m
yaricapindaki ve Sekil 111.18’de gosterilmis olan bir kiredir. EM dalga, bu
ornekte de oOnceki oOrneklerden farkli olarak z yoninden geldigi kabul

edilmigtir. Gelen dalganin polarizasyonu yine x yonuindedir.

rwg5.m’e kadar kod dizinleri sonucunda, ylzey Uzerindeki en yuksek akim
degeri 0,0069097 A/m olarak bulunmustur. Ylzeydeki genel akim dagilimi
ise Sekil 111.19°da oldugu gibidir.

Kire (=1m)

Sekil 111.18 Kure (r=1m)
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Yizey Akam Dadiimi (Kire)

0.5

0.4

0.3

0.2

0.1

Sekil 111.19 Yizey Akim Dagihmi (Kure)

Elektrik ve Manyetik Alanlann Kire Uzerinde Gasterimi (Kiire)

ra.2
- 018

1016

1012

0.1

0.03

0.0&

0.04

0.0z

Sekil 111.20 Elektrik ve Manyetik Alanlarin Kiire Uzerinde Gosterimi (Kire)
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Sagima Paterni (Kire)
Oftset=40 dB

50 gn

r 180

270

¥

Sekil 111.21 Saciima Paterni (Kire)

efield1.m-efield3.m dizinleri ¢alistirildiginda elde edilen verilerden; sagilan
elektrik ve manyetik alanlarin kire Uzerindeki gdsterimi Sekil 111.20’da, yz

duzlemindeki sacgiima paterni Sekil 111.21°’de gosterilmigtir.

4. Silindir i¢in Yliizey Akim Dagilimi ve EM Sagilim

Hesaplama yapilan dérdincl sekil, 238 adet liggenle modellenen ve Sekil

[11.22°de gosterilen silindirdir.

rwg5.m’e kadar kod dizinleri sonucunda, yuzey uzerindeki en yuksek akim
degeri 0,009064 A/m olarak bulunur. Yuzeydeki genel akim dagilimi ise Sekil
[11.23’te oldugu gibidir.

efieldl.m-efield3.m dizinleri sonucunda elde edilen verilerden; sacilan
elektrik ve manyetik alanlarin kiure Uzerindeki gosterimi Sekil 111.24'te, yz

duzlemindeki sagiima paterni Sekil Ill.25’te gosterilmistir.
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Silindir

Sekil lI1.22 Silindir

Yizey Akim Dadilirn (Silindir)

0.35 -
0.3
0.25 -
0.2
015+
0.1 -]
0.05 -

0-l

-0.05 -

-0.05

0.05 =
0.1

—

0.1

0.6

0.5

0.4

0.3

0.2

0.1

Sekil 111.23 Yiizey Akim Dagilimi (Silindir)
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Elektrik ve Manyetik Alanlann Kiire Uzerinde Dagilimi (Silindin)

10.02
10.05

0.06
0.05
. 0.04
0.03
0.02

0.01

Sekil .24 Elektrik ve Manyetik Alanlarin Kiire Uzerinde Gésterimi (Silindir)

sagilma Paterni (Silindir)
Offset=40 dB

M

ra 180

270

¥

Sekil 111.25 Saciima Paterni (Silindir)
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Farkl

frekanslarda vyapilacak hesaplamalarin sacilim farkhliklarinin

incelenmesi amaciyla, silindir Uzerinde, 300-600-900 Mhz frekanslarinda

yapilan hesaplamalara iligkin sonuglar Sekil I11.26’da gosterilmistir.

W80 E e o

Sagima Paterni (Silindir-300 MHz)
Offset=40 dB

T m

Lo

'S T

20N,

erii]

~ 180

Sagima Paterni (Silindir-600 MHz)
Offset=40 dB

)

~ 180

Sacima Paterni (Silindir-900 MHz)
Offset=40 dB

B &

150 _ )

210,

270

Sekil 111.26 Saciima Paternleri (Silindir) (300 MHz, 600 MHz, 900 MHz)

5. Flize i¢in Yuzey Akim Dagilimi ve EM Sagilim

Hesaplama yapilan besinci sekil, 768 adet G¢genle modellenen ve Sekil

[11.27°de gosterilen flzedir.

rwg5.m’e kadar kod dizinleri sonucunda, ytzey Uzerindeki en ylksek akim

degeri 0,010745 A/m olarak bulunur. Yluzeydeki genel akim dagilimi ise Sekil

[11.28’de oldugu gibidir.

efield1l.m-efield3.m dizinleri sonucunda elde edilen verilerden; sacilan

elektrik ve manyetik alanlarin kire Uzerindeki gosterimi Sekil 111.29°da, yz

dizlemindeki sagiima paterni Sekil [11.30’da gésterilmistir.

78




Fize

Sekil lIl.27 Fuze

Yizey Akim Dadilirmi (Fize)
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0.2

Ha" %

¥ X
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0.3

0.2
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Sekil 111.28 Yluzey Akim Dagihmi (Fuze)
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Elektrik ve Manyetik Alanlann Kiire Uzerinde Gasterimi (Fiize)

0.35

@ B

10.25

0. 15

0.1

0.05

Sekil 111.29 Elektrik ve Manyetik Alanlarin Kiire Uzerinde Gosterimi (Fiize)

Sacilma Paterni (Faze)
Offset=40 dB

=

r4 180

270

¥

Sekil 111.30 Saciima Paterni (Fuze)
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a. Gelen Dalganin Yonuniin Degistiriimesinin Sonuca Etkisi

Gelen dalganin yonunun degistiriimesinin sonucu nasil etkiledigini gormek
amaciyla, dalga, flze Uzerine —y ydénunden gonderilmis ve bunun Gzerine
olusan yuzey akim dagihmi Sekil 111.31’de, olusan elektrik ve manyetik

alanlarin kure Uzerinde gosterimi ise Sekil 111.32’de gosterilmigtir.

Yizey Akim Da@ihm DIR@-1,0)

R
108

0.7

0.6

0.5

0.4

0.3

0.2

Sekil 11l.31 Yiizey Akim Dagilimi (Fiize) DIR (0,-1,0)

Elektrik ve Manyetik Alanlann Kire Uzerinde Gasterimi (Fize)
DIR(OD-1,0)
10.25
100
&0 10.2
ra o : 0.15
50
0.1
-100
0.05
0 o
¥ ¥

Sekil 111.32 Olusan Alanlarin Kiire Uzerinde Gosterimi (Fiize) DIR (0,-1,0)
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Yapilan karsilastirma sonucunda, kullanilan kod dizininin ve hesaplama

algoritmasinin dogru ve tutarli sonuglar verdigi gozlenmistir.

6. Tank i¢in Yuzey Akim Dagilimi ve EM Sagilim

Son olarak, 8334 adet Uggenle modellenen ve Sekil 111.33'te gosterilen

tank Uzerinde yuzey akimlari ve sagilim modellemesi yapiimistir.

rwg5.m’e kadar kod dizinleri sonucunda, yuzey uzerindeki en yuksek akim
degeri 1,1345 A/m olarak bulunur. Ylizeydeki genel akim dagihmi ise Sekil
[11.34’te oldugu gibidir.

efieldl.m-efield3.m dizinleri sonucunda elde edilen verilerden; sagilan
elektrik ve manyetik alanlarin kire Gzerindeki gosterimi Sekil 111.35’te, xy ve

yz duzlemlerindeki sagiima paternleri Sekil 111.36’da gdsterilmistir.

Tank

Sekil ll1.33 Tank
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Yizey Akirn Dadilir (Tank) r 0.9

0.5

0.4

0.3

0.2

0.1

Sekil 111.34 Ylzey Akim Dagihmi (Tank)

Elektrik ve Manyetik Alanlann Kire Uzerinde Gasterimi (Tank)

025

10.15

0.1

0.05

Sekil 111.35 Elektrik ve Manyetik Alanlarin Kire Uzerinde Gosterimi
(Tank)
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Sagilma Paterni (Tank) Sacilma Paterni (Tank)
Offset=40 dB Offzet=40 dB

H w0 I e

:a—.']BD""'".' 10 r 180

Sekil 111.36 Saciima Paternleri (xy-dizlemi solda, yz-duzlemi sagda) (Tank)
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IV. SONUGLAR VE DEGERLENDIRMELER

Elektromanyetigin U¢ onemli bagligindan biri olan sacgilma (scattering)
problemi, 6zellikle radar teknolojisinin gelismesi ve buna bagl olarak askeri
ilginin bu yonde toplanmasi neticesinde, buyuk onem arz etmeye baslamigtir.
Intiyaca gore; sivil kullanimda, cisimlerin radarla tespit edilmesinin
kolaylastirilmasinin ve hassaslastiriimasinin, askeri kullanimda ise tam tersi
olarak tespit edilmenin zorlastirlmasinin hedeflenmesi, artan bu énemin
temel sebepleri olmuglardir. Burada, tasarlanan sistemlerin gergek
durumlarda nasil bir elektromanyetik davranis sergileyeceginin bilinmesi ya
da en azindan yaklagik olarak tahmin edilebilmesi gerekliligi ortaya
cikmaktadir. Bu tahmin basariyla yapilabildigi takdirde, hem tasarim maliyeti
dusurulebilecek hem de daha Kkaliteli UrUnlerin ortaya c¢ikariimasi
kolaylasacaktir. Bilgisayar Tabanli Elektromanyetik Hesaplama Y&ntemleri
(Computational  Electromagnetics-CEM) bahse  konu  problemlerin
¢6zUmunde, gunimuzde yaygin olarak kullanilmakta ve hizla gelismektedir.
Bu konuya iligkin geligtirilen yOntemler sayesinde Uretim asamasina
gecilmeden modelleme yapilabilmekte ve tasarlanan drinin EM

karakteristigi hakkinda bilgi sahibi olunabilmektedir.

Fizik, matematik ve bilgisayar teknolojilerinin son yillardaki kayda deger
gelisimi sonucunda, bilgisayar tabanl elektromanyetik hesaplama yontemleri
da buna paralel olarak inanilmasi gug¢ bir ilerleme kaydetmistir. Moment
metodu da kaydedilen bu ilerlemenin en 6nemli basamaklarindan biri
olmustur. Bu ¢aligsmanin, moment metodunun alaninda oneminin anlasiimasi
agisindan yuksek lisans seviyesinde calisma yurGten arastirmacilar igin

faydali oldugu degerlendirilmigtir.

Bir elektromanyetik problemin ¢6zumu igin izlenmesi gereken temel
adimlar Tablo [IV.1’de goérulmektedir [1]. Bu c¢alismada cisimlerin,
elektromanyetik olarak simule edilmesinde baslica adimlar, geometrinin
modellenmesi, uygun bir programlama dilinde hesaplamayi yaptiracak kod
dizininin geligtiriimesi, modellenen geometriye iliskin hesaplamalarin dogru

bir sekilde yapiimasi ve bulunan sonuglarin gergek durumla uyusmasi olarak
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belirlenmistir. Sonug olarak; moment metodunda kullanilan Gggen modelleme
teknigi [11] ile yapilan hesaplama neticesinde literatlrdeki sonuglara yaklagik

ve guvenilir sonuglar elde edildigi gorulmustar.

Fiziksel Matematiksel Sayldsal
Problem Formiilasyon Metodun

Gelistirilmesi

[l

Ayriklastirma
(Meshing)

J

SONUGC |<:| Hesaplama |<:I

Programlama

Tablo 1V.1 Bir EM Problemin Sayisal C6ziimi Igin Uygulanacak Temel
Adimlar

Calismada ¢o6zulen sagilim problemlerine iligkin kullanilan kod dizini,
elektrik alan integral denklemi (EFIE) esas alinarak olusturulmus bir kod
dizinidir. EFIE, akim ifadesinin yalnizca integral isaretinin icinde yer aldigi,
birinci dereceden bir Fredholm integral denklemidir. Denklemin tlretimi,
sacicinin sekline dair herhangi bir kisitlamaya isaret etmediginden, EFIE agik
ince cisimlerin yaninda kapali yuzeylere de uygulanabilir. Bu avantajinin
yaninda, rezonans frekanslarinda kure, silindir, vb. gibi kapali yizeyler icin
kullanimi uygun olmayabilir. Rezonans bdlgesinde hesaplama yapilmasi
gereken problemler i¢in, manyetik alan integral denkleminin de
hesaplanmasiyla olusturulacak birlesik alan integral denklemi (CFIE)'nin

kullaniilmasi gerekecektir.

MFIE, yuzey akimi ifadesinin, integral isaretinin hem icinde hem de
disinda var oldugu ikinci dereceden bir Fredholm integral denklemidir.
Fiziksel esdegerlik vasitasiyla elde edilmis olmasi nedeniyle, teoride
EFIE’den elde edilenlerle esdeger sonuglar Uretecegi varsayilimaktadir.

Ancak MFIE, kapali sacicilar igin limit iglemi kullanilarak elde edildiginden,
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EFIE gibi agik ve ince nesnelere uygulanamayacaktir. Gradyan operatorunin
varligindan dolayi denklemin cekirdedi EFIE’den daha farkhdir ve sayisal

sonuglari da EFIE’ye gore farklilik gosterebilir.

Elektrik alan integral denkleminin (EFIE), bu c¢alismadakine benzer
problemler igin tatmin edici sonuglar verdigi, ancak ileriki zamanlarda
yapilacak calismalarda, manyetik alan integral denklemine (MFIE) iliskin

cozumler de ilave edilerek,

CFIE = o EFIE + %(1 — ). MFIE (4.1)

denkleminde belirtilen oranlarda EFIE ile birlestirilip, birlesik alan integral
denklemi (CFIE)'nin olugsturulmasiyla, daha genis bir frekans bandinda

guvenilir sonuglar elde edilebilecektir.

CFIE, ayni zamanda agik ylUzeylere de uygulanabilir olmasindan dolayi,
yuzeyin icindeki noktalarin ilave olarak 6rneklenmek zorunda kalinmamasi
yonunden de avantajlidir. Bununla birlikte CFIE, EFIE ve MFIE ile ayni
sayida bilinmeyen icermektedir. Denklemin olumsuz yonu; yuzeyin oldukca
dar kenarlara ve uglara sahip oldugu durumlarda dogru sonuglar Uretmesi

konusunda MFIE’nin guvenilir olmamasidir.

Bu galismada yuzey akimi ve sacilim modellemesi uygulanan geometriler
icin kullanilan kod dizini, geometrinin modellenmesi igin kullanilan tg¢gen
sayisinin 10000’i astigi durumlarda kabul edilebilir stre igerisinde hesaplama
yapamamaktadir. Kullanilan kod dizininin, modelleme ug¢gen sayisinin
10000’i astigi geometrilerde kullanilabilmesi i¢in hesaplamayi hizlandirici
yontemler kullanarak dizenlenmesi gerekmektedir. Bu sekilde duzenlenecek
bir kod ile ylizey akimi ve sacilim modellemesi yapilabilecek, 10000’den fazla
ucgenle modellenen bir otomobil (Chevrolet CAMARO) Sekil 1V.1'de

gOsterilmigtir.
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Ctarmobil (Chevrolet CARARD

-100

Sekil IV.1 Otomobil (Chevrolet CAMARO)

Calismada kullanilan frekans bandinin, halihazirda kullaniimakta olan
AN/SPS-40 ve AN/SPS-49 [15] gibi hava arama radarlarinin frekansina
karsilik gelecek sekilde secilmis olmasi nedeniyle, ileride, muhtemel hava
hedeflerinin sacgilim paternleri ve hava arama radarlarinin yakalama
olasiliklari konularinda yapilacak c¢alismalara iligkin de fikir verebilecegi

dusunulmektedir.

Calismada, sacilim paterni incelenen sekillerin mukemmel iletken (perfect
electric conductor-PEC) olduklari ve bulunduklari ortamin homojen oldugu
kabul edilmig ve hesaplamalar buna goére yapilmistir. Kullanilan yontem
gelistirilerek, ileride yapilacak calismalarda, dielektrik madde ve homojen

olmayan ortam i¢in ¢cozumler elde edilebilir.

Blyuk capli ve karmasik elektromanyetik problemlerin ¢éziminde, farkli
yontemlerin avantajlarindan yararlanabilmek amaciyla, Sekil 11.1°de gorilen
hesaplama yontemlerinden uygun olan ikililerin birlestirilerek uygulanmasi

(6rn.:moment metodu ile sonlu eleman metodu) gibi melez yéntemler de
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Ozellikle son yillarda sik¢a kullaniimaya baslanmis ve basarili sonuglar elde
edilmistir.

O(N?) (N log N)
(a) (b)

O(N log N)
(c)

Sekil IV.2 Hizli Yontemlerin Modelleme Mantigi

Diger yandan, moment metodundaki gibi her tGg¢gen ig¢in ayri ayri hesap
yapilmasi vyerine, Ucgenlerden olusan gruplar kurarak (Sekil 1V.2),
hesaplanacak empedans matrisinin boyutunu kugulten FMM (Fast Multipole
Method) ve MLFMA (Multilevel Fast Multipole Algorithm) gibi yontemlerle,
bellek kullanimi ve iglem hizi konularinda onemli ilerlemeler kaydedilmistir.
Moment metoduyla yapilan bilgisayar tabanli EM hesaplama c¢alismalarinin
geleceginin bu alanlarda oldugu gorulmustar.
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