
T.C. 
DENİZ HARP OKULU 

DENİZ BİLİMLERİ VE MÜHENDİSLİĞİ ENSTİTÜSÜ 
ELEKTRONİK SİSTEMLERİ MÜHENDİSLİĞİ ANABİLİM DALI  

 
 
 
 
 
 
 
 
 
 
 

 

MOMENT METODUYLA EFIE DENKLEMİ 
KULLANILARAK ELEKTROMANYETİK SAÇILIM VE 

RADAR KESİT ALANI MODELLEME 
 
 
 
 

Yüksek Lisans Tezi 

 
 

 
EVREN BAL 

 
 
 
 

 

Tez Danışmanı: Yrd.Doç.Dr.Fatih Erden 

 
 
 
 
 
 
 
 

İstanbul, 2014 
 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Çalışmanın Tüm Hakları Deniz Harp Okulu Komutanlığı Deniz Bilimleri ve 
Mühendisliği Enstitüsü’ne aittir, 2014 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 



 

T.C. 
DENİZ HARP OKULU 

DENİZ BİLİMLERİ VE MÜHENDİSLİĞİ ENSTİTÜSÜ 
ELEKTRONİK SİSTEMLERİ MÜHENDİSLİĞİ ANABİLİM DALI  

 
 
 
 
 
 
 
 
 
 
 
 

 

MOMENT METODUYLA EFIE DENKLEMİ 
KULLANILARAK ELEKTROMANYETİK SAÇILIM VE 

RADAR KESİT ALANI MODELLEME 
 
 
 
 

Yüksek Lisans Tezi 

 
 
 
 

 
EVREN BAL 

 
 
 
 

 

Tez Danışmanı: Yrd.Doç.Dr. Fatih Erden 

 
 
 
 
 
 
 

İstanbul, 2014 
 





 

 

 

i 

 

TEŞEKKÜR 

 

Yüksek lisans eğitimim boyunca değerli bilgi birikimi ve katkılarıyla 

beni yönlendiren ve yardımlarını esirgemeyen tez danışmanım 

Yrd.Doç.Dr.Fatih ERDEN’e teşekkürlerimi sunarım. 

Sadece bu son dönemeçte değil bütün eğitim hayatım boyunca her 

daim yanımda olan ve beni destekleyen, maddi ve manevi yardımlarını hiç bir 

zaman eksik etmeyen çok değerli aileme sonsuz teşekkürlerimi sunarım. 

 



 

 

 

ii 

ÖZET 
TÜRKÇE ÖZET 

MOMENT METODUYLA EFIE DENKLEMİ KULLANILARAK 

ELEKTROMANYETİK SAÇILIM VE RADAR KESİT ALANI MODELLEME 

 

Evren BAL 

 

Elektronik Sistemleri Mühendisliği Yüksek Lisans Tezi, 2014 

 

Danışman: Yrd.Doç.Dr.Fatih ERDEN 
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kesit alanı (RKA), Elektrik Alan İntegral Denklemi (EFIE) 

Bu çalışmada, MoM sayısal yönteminde EFIE denklemi kullanılarak 

üç boyutlu cisimlerde elektromanyetik saçılım modellemesi ve Radar Kesit 

Alanı (RKA) gösterimi yapılmıştır. Hedeflerin saçılma karakteristikleri büyük 

ölçüde gelen dalganın frekansına bağlıdır. İlgi alanındaki hedeflerin 

karakteristik dalga boyunun, gelen dalga boyuna göre çok küçük olduğu 

alçak frekans bölgesinde ya da yaklaşık olarak aynı seviyede olduğu 

rezonans bölgesinde, uzun ve karmaşık matematiksel denklemler barındıran 

elektromanyetik alan veya saçılım hesaplamalarının kolaylıkla yapılabilmesi 

için MoM gibi sayısal yöntemler kullanılır. Bu yöntemde amaç, normal 

şartlarda analitik olarak hesaplanması çok zor olan elektromanyetik 

denklemleri, uygun programlama dilinde yazılan bir kod vasıtasıyla yeterli 

donanıma sahip bir bilgisayara çözdürmektir. Buna paralel olarak, MATLAB 

programlama dilinde yazılmış bir kod kullanılmış ve çalışma süresince 

ihtiyaca göre geliştirilmiştir. Çalışmada, örnek şekillere ilişkin denenen 

frekans bandı, gerçek uygulamalarda hava arama radarlarının frekans 

bandına karşılık gelmektedir. Bu nedenle, yapılan denemeler ve RKA 

örneklerinin, muhtemel hava hedeflerinin saçılım paternleri ve hava arama 

radarlarının yakalama ihtimalleri konularında yapılacak çalışmalara ilişkin bir 

fikir verebileceği değerlendirilmiştir. 
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ABSTRACT 

ELECTROMAGNETIC SCATTERING AND RADAR CROSS SECTION 

MODELING BY METHOD OF MOMENT USING EFIE 

 

Evren BAL 
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Advisor: Asst.Prof.Dr. Fatih ERDEN 

 

Key Words: Method of Moment (MoM), Scattering, MATLAB,           

Radar cross section (RCS), EFIE 

In this study, electromagnetic scattering modeling and Radar Cross 

Section (RCS) representation by MoM numerical method using EFIE was 

studied. Scattering characteristics of targets mostly depend on the frequency 

of the incident wave. Among Low Frequency Zone, in which the characteristic 

wavelength of the targets is much more smaller than the incident wavelength, 

or among Resonance Frequency Zone, in which they are approximately at 

the same level, numerical methods like MoM are used in order to make the 

electromagnetic field and scattering calculations, which include long and 

complex mathematical equations, easier. The main aim of this method is to 

make a well-equipped computer to solve the electromagnetic equations, 

which are normally and analitically very hard, via a code that is written with a 

suitable programming language. Parallel to this fact, a pre-written MATLAB 

code was used and improved due to the calculation needs during the study. 

The frequency band, on which the examples was studied, is equivalent to the 

frequency band of the air search radars. Therefore, the trials and RCS 

examples are considered to be beneficial for whom studies on the scattering 

patterns of probable air targets and catching probabilities of air search 

radars. 
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I. GİRİŞ 

 Bilgisayar tabanlı elektromanyetik (Computational Electromagnetics-CEM) 

hesaplama yöntemleri, modern elektronik bilgisayarlar kullanarak Maxwell 

denklemlerini sayısal olarak çözme bilimiyle ilgilenir. Günümüzde 

bilgisayarların hızla yükselen yeteneklerinin de yardımıyla bilgisayar tabanlı 

elektromanyetik hesaplama yöntemleri; elektromanyetik, radyo frekans teorisi 

(RF) ve mikrodalga mühendisliğinde kullanılan çok önemli bir araç haline 

gelmiştir. 

 Maxwell denklemleri, denklemler doğru çözüldüğü takdirde tasarım 

performansları ve deneysel çıktılar hakkında sağlam öngörüler elde etmemizi 

sağlar. Yıllar içinde, teorinin güvenilirliğinin altında yatan temel sebebin bu 

öngörü gücü olduğu kanıtlanmıştır. Elektriksel etkileşimlerin arkasındaki 

temel prensipleri net bir şekilde açıklayan teori, elektrik mühendisliği ve 

bilimsel teknolojilere yol göstermesi açısından son derece faydalı olmuştur. 

Radarlar, antenler, uzaktan algılama cihazları, geoelektromanyetik, 

biyoelektromanyetik, kablosuz haberleşme, optik ve yüksek frekans devreleri 

bu teknolojilere örnektir. Dahası Maxwell teorisi, statikten optiğe geniş bir 

frekans bandında ve subatomikten intergalaktiğe geniş bir dinamik menzilde 

geçerlidir. Bundan dolayı, Maxwell denklemlerinin her zaman sayısal 

yöntemler kullanılarak doğru bir şekilde çözülmesine yönelik araştırmalar 

yapılmıştır. Böylece artan zorluk derecesindeki problemler daha kolay 

modellenip analiz edilebilmiştir. 

 19’uncu yüzyılda Maxwell teorisinin geliştirilmesinin ardından, ilk 

elektromanyetik (EM) analizler küre, silindir ve düzlemler üzerinde 

yapılmıştır. Çok yönlülük ve ihtiyaçlar kapsamında bilimsel ve mühendislik 

talepleri arttıkça, daha karmaşık geometrilere ilişkin çözümlere ihtiyaç 

duyulmaya başlanmıştır. Üzerlerine gelen radar dalgalarının saçılma 

karakteristiğinin önem teşkil ettiği askeri gemi ya da savaş uçakları bunlara 

verilebilecek örneklerden bazılarıdır. Sonuç olarak, Maxwell denklemlerinin 

çözülmesi için bazı yaklaşım teknikleri geliştirilmiştir [1]. 
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 Devre teorisi, farklı bir bakış açısıyla Maxwell teorisinin, birçok karmaşık 

geometrinin yaklaşık analizinin yüksek bir başarı oranıyla yapılabildiği alçak 

frekans bölgesiyle sınırlandırılmış şekli olarak tanımlanabilir. Spektrumun 

diğer ucunda, Maxwell denklemlerine yaklaşık çözümler üretebilmek için; 

yüksek-frekans dalga teorisi, kırınım teorisi ve pertürbasyon teorisi gibi 

teoriler geliştirilmiştir. Bilgisayar teknolojisinin gelişmesiyle birlikte 1960’larda 

çözüm metotlarında çok yönlülük ve doğruluk sağlamak maksadıyla sayısal 

yöntemler geliştirilmiştir. Bu metotlar içerisinde öne çıkanlar Sonlu Farklar 

Metodu (FDM-The Finite Difference Method), Sonlu Elemanlar Metodu (FEM-

The Finite Element Method) ve Moment Metodu (MoM-The Method of 

Moments) olmuş ve bilgisayar tabanlı elektromanyetik hesaplama 

yöntemlerinin çekirdeğini oluşturmuşlardır. 

 Bu çalışmada öncelikle, Moment Metodu esas alınarak Matlab’de yazılmış 

bir kod, geometrileri farklı bir programda hazırlanmış şekilleri tanıyacak 

şekilde geliştirilmiştir. Daha sonra, geometrileri tanımlanan şekillerin 

üzerinden saçılan EM dalgaların oluşturduğu yüzey akımları modellenerek 

cisimlerin farklı frekanslardaki elektromanyetik saçılım karakteristiği ve radar 

kesit alanları incelenmiş, bunlara ilişkin elde edilen veriler yorumlanmıştır. 

Sayısal sonuçların, Matlab kodunun ve yapılan işlemlerin doğruluğu, analitik 

metot sonuçlarıyla karşılaştırılarak analizler yapılmıştır. Bu çalışmadaki örnek 

şekillere ilişkin frekans bandı, hava arama radarlarının frekans bandına 

karşılık gelecek şekilde seçilmiştir. 
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II. GENEL BİLGİLER 

A. SAÇILMA PROBLEMİ VE RADAR KESİT ALANI (RKA) 

 Elektromanyetik teori, temel olarak üç ana problem üzerinde durur. Bunlar 

ışıma (radiation), yayılma (propagation) ve saçılma (scattering) 

problemleridir. Işıma ve yayılma, elektromanyetik dalgaların boşlukta ya da 

yoğun ortamlarda ilerlemesiyle ve bu eylem sonucunda oluşturdukları 

alanlarla ilgilenir. Saçılma ise ışıma ve yayılma olaylarıyla iletilen 

elektromanyetik dalgaların bir cisme çarptığında ya da farklı yoğunluktaki bir 

ortama geçiş yaptığındaki davranışıyla ilgilenir. Saçılma problemini 

diğerlerinden ayıran ve önemli kılan etken, askeri uygulamalar açısından 

yüksek önem arz eden radar kesit alanı (RKA) gibi parametrelerin bu 

problem tipi yardımıyla çözülüyor olmasıdır. Bu çalışmada, saçılma problemi 

ve RKA uygulamalarıyla ilgilenilmiştir. 

 RKA, bir cismin veya platformun bir radardaki görünürlük miktarı veya 

elektromanyetik dalgalar olan radar sinyallerini yansıtma miktarı olarak 

tanımlanabilir [2]. RKA şu şekilde ifade edilebilir; 

    
                    

                          
 

 Hedefe göre alıcının aynı ya da farklı yerlerde olmasına bağlı olarak, 

sırasıyla, mono-statik ya da bi-statik RKA olarak tanımlanır. Her iki durumda 

da matematiksel olarak, hedeften çok uzaklarda (dalga boyuna göre R 

uzaklığı sonsuza giderken) saçılan alanın (  ) genliğinin, gelen alanın (  ) 

genliği ile karesel olarak oranlanması şeklinde gösterilir; 

               

   

    
 

     
 

 RKA’nın birimi metrekare (  )’dir. Fakat bir cismin değişik açılardaki RKA 

değeri        ile         arasında değişim gösterebilmektedir [3]. Bu kadar 

geniş aralıktaki RKA değerlerini aynı grafik üzerinde göstermek zor olduğu 

için RKA ölçümlerinde genellikle logaritmik bir ölçekle gösterilen “desibel 



 

 

 
4 

metrekare” (dB  ) veya ingilizce “decibel square-meter” teriminin kısaltması 

olan ‘dBsm’ birimi kullanılır [3]. Metrekare ile dBsm cinsinden RKA değerleri 

arasında; 

              

               

formülleri ile geçiş sağlanabilir. 

 Hedeflerin RKA değerleri, kullanılan frekansa ve hedef geometrisi ile 

hedefin elektriksel özelliklerine bağlıdır. Frekansa bağlı olarak hedefler farklı 

davranış gösterdikleri üç değişik RKA bölgesinde ele alınırlar  [2]. Bunlar; 

 Hedef boyutlarının dalga boyundan çok küçük kaldığı alçak frekans 

(Rayleigh) bölgesi, 

 Hedef boyutlarının dalga boyu mertebelerinde olduğu orta frekanslar 

(Rezonans) bölgesi ve 

 Hedef boyutlarının dalga boyuna göre çok büyük olduğu yüksek 

frekans (Optik) bölge olarak isimlendirilir. 

 Hedefin fiziksel boyutu radarın çalıştığı dalga boyuna göre kıyaslandığında 

ne kadar büyük olursa, elde edilen RKA değeri de o kadar artacaktır. Aksi 

durumda, cismin fiziksel boyu, dalga boyu ile kıyaslandığında çok küçük 

kalırsa, elde edilen RKA değeri de çok düşük olacaktır. Bununla beraber 

hedefin geometrik yapısı da çok büyük önem taşımaktadır. Hedef gelen radar 

sinyalini aynı doğrultuda yansıtacak bir geometriye sahipse, beklenen RKA 

değerleri daha yüksek olacaktır. Ancak hedef, gelen radar sinyallerini radara 

değil de farklı yönlere saçacak özel bir geometriye sahipse, beklenen RKA 

değerleri düşük olacaktır. Bunun yanında hedefe hangi açıdan bakıldığı ve 

hedefin hangi malzemeden yapıldığı da büyük önem taşımaktadır. Hedef 

teorik olarak mükemmel iletken (Perfect Electric Conductor-PEC) yapıda ise, 

gelen radar sinyalini olduğu gibi geri yansıtacaktır. Ancak hedef örneğin 

teflon gibi kayıplı bir malzemeden yapılmış ise, hedeften geriye yansıyan 

sinyal oranı PEC yapıya sahip hedefteki kadar yüksek olmayacaktır.  
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 Hedeften saçılmanın her frekans ve her bakış açısı için azaltılması çok 

güç bir problemdir. Bu nedenle, algılamada kullanılan radarların birinde 

görülemeyen bir hedef bir diğerinde kolaylıkla görülebilir. Hedeflerin RKA 

değerlerini azaltmak için kullanılan en etkili iki teknik; 

 Metal yüzeylerin hedefe gelen elektromanyetik enerjiyi radar yönünde 

yansıtmayacak biçimde şekillendirilmesi, 

 Metal yüzeylerin azaltılması ve var olanların da radar işaretini yutacak 

malzemelerle (radar absorbing material-RAM) kaplanmasıdır. 

 Günümüzde, özellikle askeri hedeflerde (gemi ya da uçak) RKA 

değerlerinin küçültülmesi, yani radara yakalanmayan hayalet hedeflerin 

tasarımı oldukça yoğun ilgi çekmektedir. Amerikan B-2 ve F-117 

bombardıman uçakları ile Fransız La Fayette sınıfı ve Alman Sachsen sınıfı 

fırkateynler hayalet olarak tasarlanmış, radarlara çok düşük RKA gösteren 

örneklerdir [3]. 

 RKA izi düşük hedeflerin tasarlanmasında en önemli nokta, hedeflerin EM 

davranışlarının frekansa, geometriye ve radar işaretine bağlı olarak çok iyi 

anlaşılabilmesidir. Matematiksel analizi çok zor, hatta olanaksız olan bu 

problemler ancak sayısal yöntemlerle ele alınabilen karmaşık yapıdadırlar. 

Sayısal yöntemlerde ise en önemli sorun, elde edilen sonuçların fiziksel 

yorumlarının sağlıklı yapılabilmesidir. 

B. BİLGİSAYAR TABANLI EM HESAPLAMA YÖNTEMLERİ 

 1960’lı yıllardaki başlangıcından beri, bilgisayar tabanlı hesaplama 

yöntemleri üzerindeki çalışmalar yaklaşık 50 yıllık bir geçmişe tanıklık 

etmişlerdir [4]. Sayısız araştırmacının gayretleri sayesinde, birçok çeşit 

elektromanyetik problemin çözümü için hesaplama yöntemleri geliştirilmiştir. 

Bu çalışmada bahse konu hesaplama yöntemlerinden Moment Metodu 

kullanılmış olmasına rağmen, konunun daha iyi anlaşılabilmesi amacıyla 

yöntemlerin geneli ve çıkış noktaları hakkında kısa ve temel bilgileri 

hatırlamak faydalı olacaktır. 



 

 

 
6 

 Elektromanyetik analiz amaçlı tüm hesaplama yöntemleri iki gruba 

ayrılabilir [1]; 

 Zaman Uzayı Metodları, 

 Frekans Uzayı Metodları 

 Bu iki grup birbirine Fourier dönüşümleri ile bağlıdır. Elektrostatik ve 

manyetostatik problemlerin çözümüne yönelik olan yöntemler frekans uzayı 

metotlarına dâhildirler. Bu grup yöntemler içerisinde, ışın ve kırınım optiği 

temeline dayalı ve elektriksel olarak geniş kapasiteli problemler için 

kullanılabilecek yüksek-frekans asimptotik metotlardan (high-frequency 

asymptotic methods) oluşan bir alt grup bulunmaktadır. Diğer alt grup ise, 

Maxwell denklemlerini direk olarak çözen ve daha kapsamlı hesaplama 

araçları gerektirmesi karşılığında her zorlukta probleme uyarlanabilen 

metotlardan oluşur (first-principle numerical methods) [1]. 

 

 

Şekil II.1 Bilgisayar Tabanlı EM Hesaplama Yöntemleri Şeması 

1. Frekans-Zaman Uzayı Karşılaştırması 

 Maxwell denklemleri hem frekans hem de zaman uzayında çözülebildikleri 

için elektromanyetik problemlerin çözümü için geçmişte iki grup metot 

geliştirilmiştir: zaman ve frekans uzayı metotları. Ancak iki uzayın da çözüm 



 

 

 
7 

süreçleri farklılık gösterdiğinden, iki tip çözüm de farklı avantajlar 

sağlamaktadır. Örneğin, Maxwell denklemlerine bir frekans-uzayı sayısal 

yöntemi uygulandığında bir lineer denklem sistemini (matris denklemleri) her 

frekans için ayrı olarak çözümlememiz gerekecektir. Oysa sistem matrisi 

genellikle uyarımlardan bağımsızdır. Matris bir kere dönüştürüldüğünde ya da 

çarpanlarına ayrıldığında, bütün uyarımlar için çözüm elde edilebilecek bir 

hale gelecektir. Bu özellik frekans-uzayı yöntemlerini, birçok uyarımı göz 

önünde bulundurmamızı gerektirecek (monostatik saçılım analizinde olduğu 

gibi) problemler için daha çekici hale getirmektedir. Dahası, frekans uzayı 

yöntemleri Maxwell denklemlerini her frekansta çözdüğü için, dispersif yani 

dağıtıcı ortamlarda daha rahat kullanılabilmektedirler. Diğer yandan bir 

zaman uzayı sayısal yöntemi Maxwell denklemlerine uygulandığında her 

uyarım için zamanla değişen ayrı çözümler bulunması gerekir. Zaman 

uzayında çözüm bir kere bulunduğunda, ters Fourier dönüşümü kullanılarak 

geniş bir frekans bandında çözüm elde edilebilir. Ancak çözüm sürecinin her 

uyarım için ayrı olarak tekrarlanması gerekecektir. Buradan, zaman uzayı 

yöntemlerinin, yalnızca birkaç uyarımın söz konusu olduğu geniş frekans 

bandı problemlerinin çözümü için daha ideal olacağı sonucuna varılabilir. 

Çünkü zaman uzayı yöntemleri Maxwell denklemlerini zaman içinde adım 

adım çözerler ve hesaplama uzayının elektromanyetik özelliklerinin alan 

büyüklükleriyle değiştiği lineer olmayan problemlere etkin olarak 

uygulanabilirler. 

 Zamana bağımlı Maxwell denklemleri 4-boyutlu bir matematiksel problem 

barındırırlar; 3 uzaysal boyut ve zaman boyutu. Genellikle bir problemin 

zorluğu boyutları büyüdükçe, bir başka deyişle bağımsız değişkenlerin sayısı 

arttıkça, katlanarak artar. Boyutların sayısını azaltabilmek için, Fourier 

dönüşümü uygulanarak Maxwell denklemleri frekans uzayına geçirilebilir. 

Böylece zamana bağımlılık ortadan kaldırılmış yani boyut sayısı üçe indirilmiş 

olur. Frekans uzayında çözüm elde edildikten sonra, ters Fourier dönüşümü 

uygulanarak zamana bağımlı cevap da elde edilebilir. Buradaki tek olumsuz 

nokta frekans uzayında bulunan çözümlerin birçok frekansta 

tekrarlanmasının gerekecek olmasıdır. 
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 Elektromanyetik problemlerin olağanüstü geniş bir ölçekte olması, her 

birinde ayrı faydalar ve kısıtlamalarla karşılaşılmakla birlikte, bilgisayar 

tabanlı elektromanyetik hesaplama yöntemlerine ilişkin algoritmaların 

geliştirilmesinde ana etken olmuştur. Bir önceki başlıkta da belirtildiği gibi 

hesaplamaların zaman ve frekans uzayında yapılmasına göre iki ayrı grupta 

sınıflandırılabilen bu algoritmalar, daha kesin bir doğruluk derecesine sahip 

oldukları Alçak-Frekans (Low Frequency-LF) ve daha genel sonuçlar veren 

Yüksek-Frekans (High Frequency-HF) yöntemleri olarak da sınıflandırılabilir. 

Çalışmada kullandığımız moment metodunun, aralarında nasıl bir yerde 

olduğunu daha iyi anlayabilmek amacıyla bu algoritmaların en sık kullanım 

alanı bulanlarından bazılarını özetlemek faydalı olacaktır [1]. 

2. Alçak-Frekans (LF) Yöntemleri 

 Alçak-Frekans yöntemlerinin böyle adlandırılmasının altında yatan temel 

sebepler; Maxwell denklemlerini kesin bir yaklaşıklıkla çözmeleri ve 

hesaplama zamanı, sistem hafızası, vb. gibi nedenlere bağlı olarak küçük 

elektriksel boyutlardaki problemlerle uygulanabiliyor olmalarıdır. 

Bilgisayarların gelişiyor olmalarına bağlı olarak daha büyük boyutlardaki 

problemleri çözebilecek olmalarına rağmen, bu husus şimdilik literatürdeki 

yerini koruyacak gibi görünüyor [8]. 

a. Zaman Uzayında Sonlu Farklar Yöntemi (Finite Difference Time 

Domain-FDTD) 

 Sonlu fark zaman uzayı yöntemi, Maxwell denklemlerini zaman uzayında 

çözebilmek amacıyla sonlu farklar yöntemini kullanır [5]. Bu yöntemin 

uygulaması genellikle çok açıktır: çözüm uzayı tipik olarak küçük 

dikdörtgensel ya da eğrisel parçalara ayrılır, bunların birbirine göre etkisi 

ifade edilip zamana göre integrali alınarak elektrik ve manyetik alanları 

hesaplanır. Bütün çözüm uzayının ayrıklaştırılması için yüksek hafıza 

gerektirmesi, uygulanmasında dağılım konusunda sıkıntılar yaşanması ve 

çözüm sınırlarının yapay olarak belirlenmesinin gerekmesi gibi 

olumsuzluklara rağmen FDTD, homojen ve doğrusal olmayan ortamların 

analizinde ön plana çıkmaktadır. FDTD, karmaşık dielektriklerdeki dalga 
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yayılımı çalışmalarında olduğu gibi, dalga kılavuzu problemlerinde de 

uygulama alanı bulmaktadır [8]. 

b. Sonlu Elemanlar Yöntemi (Finite Element Method-FEM) 

 Sonlu eleman yöntemi, frekans uzayındaki sınır değerli elektromanyetik 

problemleri değişimsel bir form kullanarak çözmek için kullanılan bir 

yöntemdir. Çözüm uzayının yüksek doğrulukla ayrıklaştırılmasına olanak 

sağlayan değişik şekillere sahip iki ya da üç boyutlu elemanlarla uygulanır. 

FEM genellikle, oyuk (kavite) ya da dalga kılavuzu problemleri gibi kapalı ve 

karmaşık alanlardaki alan dağılımının hesaplanması için frekans uzayında 

kullanılır. FDTD yönteminde olduğu gibi çözüm uzayı sınırlandırılmalıdır, 

çünkü yöntemin bir sınır integrali denklemiyle birleştirilmeden ışıma ve 

saçılma problemlerine uygulanması mümkün olamayacaktır [8]. 

c. Moment Metodu (Method of Moments-MoM) 

 Moment metodu, elektromanyetik sınır ve hacim integral denklemlerini 

frekans uzayında çözmek için kullanılan bir tekniktir. Elektromanyetik 

kaynaklar ilgi alanında olduğu için MoM, ışıma ve saçılma (radiation and 

scattering) problemleri için çok kullanışlıdır [8]. 

3. Yüksek Frekans (HF) Yöntemleri 

 Geniş ölçeklerdeki elektromanyetik problemler, onları çözebilecek 

bilgisayarlardan çok daha önce mevcutlardı. Bu problemlere örnek olarak 

radar kesit alanı (RKA) tahmini ve geniş yapıların üzerine monte edilen 

antenlerin ışıma paternlerinin hesaplanmasını verebiliriz. Bu problemleri 

çözülebilir hale getirmek maksadıyla ışıma ve saçılma denklemlerine birçok 

yaklaşım getirilmiştir. Bunların çoğu, asimptotik ya da yüksek-frekans (HF) 

sınırında alanları iyileştirmekte ve ışın optiği ve kenar kırınımı kurallarını 

uygulamaktadır. Problem elektriksel olarak büyük olduğunda asimptotik 

yöntemlerin çoğu, kendileri için ilk aşamada yeterli olabilecek ya da doğruluk 

derecesi daha yüksek bilgisayar tabanlı bir çözüm bulunana kadar başlangıç 

değeri olarak kullanılabilecek sonuçlar üretirler [8]. 
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a. Geometrik Kırınım Teorisi (Geometric Theory of Diffraction-
GTD) 

 Geometrik kırınım teorisi, elektromanyetik dalga yayılımını belirleyebilmek 

için ışın optiğini kullanır. Işın demetinin yayılım karakteristiği, genlik şiddeti ve 

bozulma, Fermat prensibi ve yansıma noktalarındaki eğriliğin yarıçapı ile 

hesaplanır. Bu teori, gölge bölgelerdeki alanın hesaplanmasına izin vererek 

kenarlar boyunca yayılan alanın telafi edilmesini sağlar. GTD nisbeten hızlı 

bir yöntemdir ancak daha karmaşık geometriler için düşük düzeyde bir 

doğruluğa sahiptir [8]. 

b. Fiziksel Optik (Physical Optics-PO) 

 Fiziksel optik, yüksek-frekans yüzey akımlarını yakınsayarak bulmaya 

yarayan ve bunun için de bir sınır integralinden faydalanan bir yöntemdir. 

Fiziksel optik (PO) ve Moment Metodu (MoM) aynı integral denklemini 

çözmek için kullanılan yöntemlerdir, ancak moment metodu, farklı olarak 

yüzey akımlarını yakınsamadan direk olarak bulur. PO, kenarlardan yayılan 

ya da çoklu yansımalar sonucu ortaya çıkan alan değerlerini hesaplamada 

yetersiz olduğundan genelde bu yöntemle bulunan çözüme tamamlayıcı 

düzeltmeler ilave edilir. PO yöntemi, radar kesit alanı (RKA) tahmin 

kodlarında kullanıldığı gibi, yüksek-frekans yansıtıcı anten analizinde de 

yüksek oranda kullanılmaktadır [8]. 

c. Fiziksel Kırınım Teorisi (Physical Theory of Diffraction-PTD) 

 Fiziksel kırınım teorisi (PTD), bir cismin kırınım meydana gelen 

kenarlarında oluşan kuralsız akımların etkisini de çözüme eklemek suretiyle, 

fiziksel optik (PO) yöntemiyle elde edilen çözümü tamamlayıcı bir araç olarak 

kullanılır. Bu yöntem genellikle yüksek-frekans radar kesit alanı ve saçılma 

analizlerinde kullanılır [8]. 
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C. MOMENT METODUNUN ELEKTROMANYETİK TEMELİ 

 Elektromanyetik problemlerin çözümü, Maxwell denklemlerinin uygun 

formülasyon ve sınır koşullarıyla uygulanmasını gerektirir. Bu bölümde, EM 

teorinin moment metoduyla ilgili kısımlarına ilişkin temel bilgiler 

hatırlatılacaktır. Maxwell denklemleri ve ışıma için formüller hatırlatılacak,  

Green fonksiyonu ve moment metodunda kullanılacak olan ışıma ve saçılma 

için yüzey integral denklemleri elde edilecektir. 

1. Maxwell Denklemleri 

 Homojen bir ortamda, dielektrik sabiti ε ve manyetik geçirgenlik μ 

parametreleriyle birlikte, elektrik alan   ve manyetik alan şiddetine   ilişkin 

Maxwell denklemleri frekans uzayında aşağıdaki gibi ifade edilir [6]. 

              (2.1.) 

            (2.2.) 

        (2.3.) 

        (2.4.) 

 Bunların yanı sıra bünye denklemleri,      ve      şeklinde ifade 

edilir ve zamana bağlı      ifadesi ihmal edilmiştir. Manyetik akım   ve 

manyetik yük    fiziksel olarak doğrulanabilir büyüklükler olmamalarına 

rağmen, genellikle ışıma ve saçılma problemlerinin çözümünde matematiksel 

araçlar olarak kullanılırlar. 

2. Elektromanyetik Sınır Koşulları 

 Farklı dielektrik parametreleri olan bölgelerin arasındaki sınır koşulu 
denklemleri; 

                (2.5.) 

               (2.6.) 
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               (2.7.) 

               (2.8.) 

şeklinde yazılabilir. 

 Burada    iki yüzeyin birleşme noktasındaki normal vektörü olmak üzere 

       veya    ’nin herhangi birinin var olduğu durumlar için geçerlidir (2’nci 

bölgeden 1’inci bölgeye). Dielektrik bir ortamdan (2’nci ortam) mükemmel 

elektrik iletken (PEC) bir ortama (1’inci ortam) geçiş için sınır koşulları 

          (2.9.) 

          (2.10.) 

          (2.11.) 

         (2.12.) 

olarak ifade edilirken, dielektrik bir ortam ile mükemmel manyetik iletken 

(PMC) bir ortam arasındaki sınır koşulları ise 

           (2.13.) 

         (2.14.) 

         (2.15.) 

          (2.16.) 

3. Işıma Formülleri 

 Elektromanyetik ışıma problemi, bir dizi elektriksel ve manyetik akımdan 

kaynaklanan uzaydaki bütün alan büyüklüklerini içerir. Saçılma problemleri, 

yerel akımların bir dizi farklı akımdan ya da tetiklenmiş alandan 

kaynaklandığı ışıma problemleri olarak düşünülebilir. Yalnızca elektrik akımı   



 

 

 
13 

ve elektrik yükü    bulunan andaki (        ) ışıma integral denklemini 

elde etmek için (2.1.)’in rotasyoneli alınarak (2.2.)’de yerine yazılırsa [7] 

                          (2.17.) 

ya da 

                   (2.18.) 

elde edilir. 

                  (2.19.) 

vektör özelliği kullanılarak 

                      (2.20.) 

elde edilir. Bulunan denklemde   dalga sayısı,              eşitliği ile 

ifade edilir. (2.3.) kullanılarak 

 
             

   

 
 (2.21.) 

ifadesi elde edilir. Bu ifadeye süreklilik denklemi olan           (2.22.) 

ifadesi uygulanarak 

 
             

 

   
       (2.23.) 

elde edilir. 

 Maxwell denklemlerinin doğrusal olmaları nedeniyle   bir hacim üzerinde 

dağıtılmış noktasal kaynakların çakışması olarak düşünülebilir. Böylece bir 

kaynağın tepkisinin bilinmesi durumunda orijinal problem, bu tepkinin o hacim 

üzerinden integrali alınarak çözülebilir. Bu düşünceden yola çıkarak, (2.23.) 

bir integral denklemine dönüştürülebilir. Bu denklemin üç ayrı skaler eşitlik 

içerdiği göz önüne alındığında, yalnızca    yönündeki bileşeni dikkate alınarak 

 
                 

 

  

 

  
     (2.24.) 
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ifadesi elde edilir. (2.24.)’e, aşağıdaki skaler Helmholtz denklemini sağlayan 

Green fonksiyonu         uygulanarak, 

                              (2.25.) 

bilinen Green fonksiyonu         için    ifadesi 

 
                    

 

     
   

 

  

 

  
              (2.26.) 

şeklinde yazılabilir. Bulunan ifadenin vektör formuna genellenmesi 

durumunda,   nin kuvveti olarak alınırsa 

 
                   

 

       
 

  
               (2.27.) 

elde edilir. Benzer bir türetilme ile manyetik akım   ve manyetik yük    

kaynaklı olarak ışıyan manyetik alan 

 
                   

 

       
 

  
               (2.28.) 

olarak bulunur. Bu denklemlerin kullanılabilmeleri için (2.25) çözülmeli ve 

        elde edilmelidir [8]. 

a. Üç Boyutlu Green Fonksiyonu 

                              (2.29.) 

 Üç boyutlu skaler Helmholtz denkleminin çözümü için öncelikle homojen 

versiyonu dikkate alınacak, daha sonra homojen olmayan durumun sınır 

koşullarıyla karşılaştırılarak daha özgün bir çözüm bulunacaktır.        ’nin 

noktasal bir elektromanyetik kaynak için çözümü ifade etmesi nedeniyle üç 

boyutta bir küresel simetriye sahip olması gerektiği söylenebilir. Bu sebepten, 

Laplace’ın yalnız radyal ifadesi alınır ve 

 
    

 

  

 

  
   

  

  
  

   

   
 

 

 

  

  
 (2.30.) 
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elde edilir. Sonrasında, 

  

 

      

   
 

 

 

 

  
  

  

  
    

   

   
 

 

 

  

  
 (2.31.) 

olduğu gözlemlenir ve fonksiyonda ile     için   ile    yer değiştirirse, 

       

   
           (2.32.) 

olarak yazılabilir. Bütün bu ifadelerin sonucunda 

 
   

     

 
  

    

 
 (2.33.) 

olarak ifade edilir ve bu ifade gelen ve uzaklaşan dalgaları içermektedir. 

Ancak çözümün yalnızca uzaklaşan dalgaları içermesi gerekmesi ve      

zaman bileşenini kullanmış olmamız nedeniyle yalnızca ilk terim 

alınmaktadır. 

 
   

     

 
 (2.34.) 

 Green fonksiyonunun değerinin yalnızca kaynak ve gözlem noktaları   ve 

   arasındaki nispi mesafeye   bağlı olmasından dolayı,          olduğu 

yerde         notasyonu kullanılacaktır. Burada Green fonksiyonundaki üslü 

ifadenin faz gösteriminin literatürde bir standardının olmadığı belirtilmelidir. 

(2.34)’deki gösterim çoğu kaynakta aynıdır ancak bazı kaynaklarda Green 

fonksiyonu, zaman harmonik ifadenin       olduğu varsayılarak, pozitif üslü 

olarak gösterilmiştir. 

 Burada şimdi özgün bir çözüm bulabilmek amacıyla sınır koşullarının 

karşılaştırılması gerekir. Dalga, artan mesafe   ile birlikte azalmak zorunda 

olduğundan,     oldukça           olması gerekmektedir.         ifadesi 

yazıldığı üzere bu ifadeyi zaten sağlamaktadır. Burada bunun,  ‘nın 

belirlenmesi maksadıyla, noktasal kaynağın olduğu yerle       

karşılaştırılması gerekmektedir. Bunun için (2.25)’in   yarıçaplı küresel bir 

hacim üzerinden integralinin alınması gerekir. (2.34)’te         ifadesi yerine 

koyulursa 
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       (2.35.) 

elde edilir. Burada ilk terimi değerlendirmek amacıyla Diverjans Teoremi 

kullanılarak 

 

     
     

 
 

           

 

     

 
    (2.36.) 

bulunur. Küre üzerinde       olduğu için 

 

       

 

     

 
     

 

  
 

 

     

 
    (2.37.) 

olarak yazılır ve bu da 

 
     

 

  
 
     

 
      (2.38.) 

ifadesi şeklinde yazılabilir.     için limiti alınırsa 

 
   
   

     
 

  
 
     

 
          (2.39.) 

olarak bulunur. İkinci terim ise 

 
   

     

 
 

 

 

                   
 

 

 (2.40.) 

olarak bulunur. Bulunan ifade incelenirse     durumunda integralin sıfıra 

yaklaşacağı görülür. Buradan        (2.41.) olarak bulunduğuna göre üç 

boyuttaki elektrodinamik Green fonksiyonu da aşağıdaki gibi ifade edilir. 

 
        

          

        
 (2.42.) 
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b. İki Boyutlu Green Fonksiyonu 

 İki boyuttaki skaler Helmholtz denklemi 

                              (2.43.) 

şeklinde yazılabilir. Yukarıdaki ifade için homojen durumdaki çözüm, sıfırıncı 

dereceden birinci ve ikinci tür Hankel fonksiyonları ile bulunur. Çözümün 

yalnız uzaklaşan dalgaları içermesi nedeniyle 

            
   

          (2.44.) 

olarak yazılır.  ’yı elde edebilmek için Hankel fonksiyonuna küçük değer 

yakınsaması (small argument approximation) uygulanır 

 
  

           
 

 
   

   

 
        (2.45.) 

ve (2.43.)’ün, merkezi başlangıç noktası olan   yarıçaplı çok küçük bir daire 

üzerinden integrali alınarak 

 

              
 

 
   

   

 
      

 

 (2.46.) 

ifadesi bulunur. Diverjans teoremi ile ilk terim çizgi integraline çevrilir ve 

 
  

 

 
  

  

 

    
   

 
         (2.47.) 

olarak yazılır. İkinci terim ise 

 
       

 

 
   

   

 
      

 

 

 (2.48.) 

olarak yazılır. İntegralin ilk kısmı     nedeniyle sıfıra gider. İkinci kısmın 

integrali alındığında 

 
        

   

 
       

  

 
   

   

 
 

  

 
  

 

  

 

 (2.49.) 
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ifadesi elde edilir ve                (2.50.) olduğundan        (2.51.) 

olarak bulunur. Buna göre iki boyutlu elektrodinamik Green fonksiyonu da 

 
         

 

 
  

   
          (2.52.) 

olarak bulunur. 

4. Vektör Potansiyelleri 

 Bir önceki bölümde, uzayda her yerde, elektrik ve manyetik akım 

dağılımından kaynaklanan, ışıma alanlarını belirlememizi sağlayan ifadeler 

ve formüller elde edildi. Birçok uygulamada bu alanların denklemlerini 

çözmek zor ya da imkânsız olabilir. Bu durumu çözmek için, ışıyan alanlar 

için de kullanılan bir dizi yardımcı vektör potansiyeli türetilir. Bu potansiyeller 

akım integralleri vasıtasıyla, ışıyan alanlar ise direk olarak potansiyellerden 

elde edilir. Vektör potansiyeli formülleri çoğunlukla saçılma ve anten ışıması 

problemlerinin analizinde kullanılırlar ve bilgisayar tabanlı EM yöntemlerin 

uygulanmasında da sıklıkla faydalanılırlar. Bu formülasyonlar bir önceki 

bölümde elde edilen integral denklemleriyle, anlatılacak ufak farklar dışında, 

benzerlik gösterirler. 

a. Manyetik Vektör Potansiyeli 

 Öncelikle kaynaksız ve homojen bir ortam için manyetik vektör potansiyeli 

elde edilecektir. Manyetik alanın   her zaman solenoidal yani sarmal yapıda 

olmasından dolayı   gibi keyfi olarak seçilen bir vektörün rotasyoneli olarak 

yazılabilir. Bu yüzden 

 
  

 

 
    (2.53.) 

şeklinde yazılabilir. Bu ifadeyi (2.1.)’de yerine koyarsak 

            (2.54.) 
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ifadesi elde edilir ve bu da 

             (2.55.) 

şeklinde yazılabilir. Sonrasında            (2.56.) özelliği kullanılarak 

            (2.57.) 

olarak yazılır. Burada    rastgele seçilen elektrik skaler potansiyelini temsil 

eder. Daha sonra                  (2.58.) özelliği kullanılarak ve iki 

tarafın da rotasyoneli alınarak 

                 (2.59.) 

ifadesi elde edilir ve bu ifade (2.2.) ile birleştirilerek 

                     (2.60.) 

olarak yazılır. Burada (2.57.)’deki ifade, yerine koyulursa 

                              (2.61.) 

elde edilir ve bu da 

                           (2.62.) 

şeklinde yazılabilir. 

  ’nın rotasyoneli (2.53.)’te tanımlanmıştı ancak henüz diverjansı 

tanımlanmadı. Bu yüzden, gelecekte de bu kurala bağlı kalındığı sürece 

istenilen şekilde tanımlanabilir. Burada  ’nın diverjansı 

             (2.63.) 

olarak ifade edilmiştir ve bu ifade yardımıyla (2.62.) kolaylıkla 

             (2.64.) 

şeklinde sadeleştirilebilir ve elde edilen bu ifade   için homojen olmayan 

vektör Helmholtz denklemidir. Artık kaynaksız ortamda herhangi bir yerdeki 

elektrik alan 
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       (2.65.) 

ifadesinin de yardımıyla 

 

                       

 

         
          

        
   

 

 (2.66.) 

ifadesi ile elde edilebilir. İki boyutlu manyetik vektör potansiyel ifadesi de 

(2.52.) yardımıyla 

 

     
   

 
        

   
          

 

   (2.67.) 

şeklinde ifade edilebilir. 

b. Elektrik Vektör Potansiyeli 

 Maxwell denklemlerinin simetri özelliğinin yardımıyla elektrik vektör 

potansiyeli   için de benzer denklemler elde edilebilir. Çıkarım aşağıdaki 

formüller yardımıyla özetlenebilir. 

 
  

 

 
    (2.68.) 

 
    

 

    
    (2.69.) 

             (2.70.) 

 
                

 

   
       (2.71.) 

 

                      

 

        
          

        
   

 

 (2.72.) 

 Burada (2.70.),   için homojen olmayan vektör Helmholtz denklemidir. 
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5. Yakın ve Uzak Alanlar 

 Pratik problemlerde genellikle ışımanın kaynağına yakın ya da uzak 

alanlardaki elektromanyetik alan değerlerine ihtiyaç duyulur. Yakın alan 

değerine ya da ışıyan kaynağa yakın olan alana, anten besleme ya da 

elektronik kaplama uygulamalarında ihtiyaç duyulur. Uzak alan değerine ya 

da ışıyan kaynağa çok uzak olan alan ise çoğunlukla saçılma ve RKA 

problemlerinde ihtiyaç duyulur. Çalışmanın bu kısmında, ileriki bölümlerde de 

ihtiyaç duyacağımız, yakın ve uzak alan ilişkileri özetlenecektir. 

  

  a) Yakın Alan Geometrisi    b) Uzak Alan Geometrisi 

Şekil II.2 Yakın ve Uzak Alan Geometrileri 

a. Yakın Alan 

 Öncelikle, Şekil II.2a’da gösterildiği gibi, ışıyan kaynağa yakın bir 

noktadaki alanlar için ifadeler bulunur. Bunun için, bir elektrik akımı 

tarafından tetiklenen manyetik alanın (2.53.) ve (2.66.) yardımıyla 

 

     
 

 
               

     

   
   

 

 (2.73.) 

şeklinde ifade edildiği hatırlanabilir. Bu ifadede         ’dir. Rotasyonel 

işaretini integralin içine atarak ve vektör özelliğinin de yardımıyla 
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                                   (2.74.) 

olarak yazılır ve sonuç olarak 

 

             
     

   
    

 

 (2.75.) 

şeklinde ifade edilir. Burada           ’dır ve Green fonksiyonunun 

gradyanı alındığında 

 
  

     

   
         

     

    
 (2.76.) 

ifadesi elde edilir ve bu sonuca istinaden manyetik alan ifadesi 

 

                    
     

    
   

 

 (2.77.) 

şeklinde yazılabilir. Bulunan ifade, dikdörtgensel bileşenlerine ayrıldığında 

aşağıda belirtildiği gibi ifade edilir. 

 

                          
     

    
      

 

    

 

 

                          
     

    
      

 

    (2.78.) 

 

                          
     

    
      

 

    

 

(2.2.) kullanılarak elde edilen elektrik alan ifadesi de aşağıda olduğu gibidir. 
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    (2.79.) 

 

                        
          

 

    

 

Bu elektrik alan ifadeleri içindeki bilinmeyenler 

                              (2.80.) 

 
   

           

    
 (2.81.) 

 
   

           

    
 (2.82.) 

şeklinde ifade edilir. 

 (2.78.) ve (2.79.), bilinen bir elektrik akım dağılımına yakın herhangi bir 

noktadaki ışıyan alanları hesaplamak için kullanılabilir. Bilinen bir manyetik 

akım dağılımına yakın herhangi bir noktadaki ışıyan alanların ifadeleri de 

yukarıda anlatılan yöntem doğrultusunda elde edilebilir. 

b. Uzak Alan 

 Gözlem noktası kaynaktan çok uzakta seçildiğinde (    ) yakınsamalar, 

ışıyan alanların hesaplamasını çok büyük ölçüde kolaylaştıracak şekilde 

yapılabilir. Bu durumda   ve      Şekil II.2’de de gösterildiği üzere görsel 

olarak paraleldir. Bu kabule dayanarak  ’yi 

 
   

                                         
                                             

  (2.83.) 

şeklinde oldukça yakınsayabiliriz. 

 (2.65.)’te diferansiyel operatörlerden dolayı, sağ taraftaki ilk terimin 

alanlara    ’ yle, ikinci terimin ise     ,     , vs. ile orantılı olarak değişerek 
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katkıda bulunduğu görülmektedir. Uzak alanda yalnızca     ile orantılı olarak 

değişen alanların kayda değer genlikte olması beklenir. Bu bileşenler yayılım 

yönü boyunca, bileşenleri olmayan düzlemsel dalgalar gibi davranırlar. 

Dolayısıyla uzak elektrik alan 

              (2.84.) 

olarak ve buna bağlı olarak manyetik alan da 

 
     

 

 
        (2.85.) 

şeklinde hesaplanabilir. Burada, alanın    vektörü boyunca yayılan bir 

düzlemsel dalga olduğu kabul edilmiştir. 

i) Üç Boyutlu Uzak Alan 

 Uzak bölge elektrik alan ifadesi, (2.83.) ve (2.84.) yardımıyla 

 

      
   

  

     

 
                  

 

 (2.86.) 

şeklinde yazılabilir. Gelen alanın   , saçılan uzak alanın    olduğu ve 

hesaplamada uygunluk için        olarak kabul edilen saçılma problemleri 

için üç boyutlu radar kesit alanı     

 
        

     

     
           (2.87.) 

olarak hesaplanır. 

ii) İki Boyutlu Uzak Alan 

 İki boyutta, ışıyan uzak elektrik alan 

 
              

  

 
        

   
             (2.88.) 
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olarak ifade edilir. Hankel fonksiyonunun     için   
   

      
  

   
        

(2.89.) şeklinde ifade edilen geniş ifade yakınsaması özelliği kullanılarak 

 

  
   

      
  

   
               (2.90.) 

ifadesi elde edilir ve uzak elektrik alan ifadesi 

 

         
 

   

     

  
                   (2.91.) 

şeklinde yazılır. Gelen alanın   , saçılan uzak alanın    olduğu ve 

hesaplamada uygunluk için        olarak kabul edilen saçılma problemleri 

için iki boyutlu radar kesit alanı     

 
       

     

     
          (2.92.) 

olarak hesaplanır. 

6. Eşdeğerlik Problemleri 

 Işıma ve saçılma problemlerini çözmek için problemi, çözümü daha kolay 

veya daha uygun olacak eşdeğer bir problem cinsinden formüle etmek 

genellikle faydalı olmaktadır. Bu eşdeğerler genellikle orijinal problemdeki 

engellerin varlığını matematiksel olarak zayıflatan ya da yok eden yüzey 

akımları cinsinden ifade edilirler. Birçok integral denkleminin bu eşdeğerlik 

probleminden elde edildiği düşünüldüğünde, yüzey eşdeğerlerinin önemi 

ortaya çıkar [7]. 

a. Yüzey Eşdeğeri 

 Yüzey eşdeğerliği teoremi ya da Huygen’s Prensibi, ilerleyen bir dalga 

cephesindeki her noktanın ışıyan dalgalar için bir kaynak olduğu düşüncesine 

dayanır. Bu teorem sayesinde gerçek ışıyan bir kaynak, farklı ama eşdeğer 

bir dizi kurgusal kaynakla yer değiştirebilir. Bu akımlar, orijinal kaynakları 
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çevreleyen ve rastgele kapatılmış bir yüzey üzerine yerleştirilir. Uygun sınır 

koşullarıyla eşleştirildiğinde bu akımlar, kapalı yüzeyin dışında orijinal 

kaynaklarla aynı ışıyan alanı oluştururlar. Teorem, yakın alan biliniyorsa 

ışıyan yapının uzak alanının bulunmasına ya da gelen alan tarafından bir 

cisim üzerinde indüklenen akımların çözümü için bir yüzey integral 

denkleminin oluşturulmasını sağlar. 

 

   a) Orijinal Problem      b) Eşdeğer Problem 

Şekil II.3 Yüzey Eşdeğerliği Teoremi 

 

 Şekil II.3a’da; manyetik geçirgenliği ve dielektrik sabiti   ve    olan,    ve 

   elektrik ve manyetik akımlarının    ve    alanlarını oluşturduğu homojen 

bir ortam görülmektedir. Bir dizi eşdeğer kaynak oluşturmak amacıyla    ve 

   akımları hayali bir   yüzeyiyle kaplanıp ortam    ve    olarak iki bölgeye 

ayrılır. Burada    ve    değerlerinin   yüzeyinin her yerinde bilindiği kabul 

edilir. Burada sınır koşullarına konu olan    ve    akımları   yüzeyinde yerine 

koyulduğunda 

              (2.93.) 

               (2.94.) 

olarak ifade edilir. Burada   yüzeyinin içindeki alanları temsil eden   ve   

hala tanımlı değildir.    ve    aynı dielektrik özelliklere sahip olduklarından, 

   ve    homojen bir ortamda ışıma yaparlar ve   ’deki ışıyan alanları elde 
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etmek için (2.65.) ve (2.71.) kullanılabilir. Bu yüzey eşdeğeri olarak 

adlandırılır ve Şekil II.3b’de gösterilmiştir. Diğerleri Maxwell denklemleri (2.1.) 

ve (2.2.) vasıtasıyla elde edilebileceğinden, bu durumda yalnızca   yüzeyi 

üzerindeki    ve    değerlerinin bilinmesi gerekmektedir. 

 
 

  a) Orijinal Harici Problem     b) Orijinal Dâhili Problem 

Şekil II.4 Orijinal Problemler 

   yüzeyi üzerindeki   ve   tamamen keyfi olduğundan, yüzey eşdeğerliği 

teoremi daha genel bir ifade şeklinde yazılmalıdır. Şekil II.4a’da görülen 

problemde harici akımlar    ve    ile dahili akımlar    ve   ’nin her bölgede 

   ve    alanlarını oluşturduğu ve Şekil II.4b’de görülen benzer ikinci 

problemde harici akımlar    ve    ile dahili akımlar    ve   ’ün her bölgede 

   ve    alanlarını oluşturduğu varsayılmıştır. Burada Şekil II.4a’ya harici 

eşdeğer, Şekil II.4b’ye ise dâhili eşdeğer bir problem oluşturulduğu kabul 

edilir. Bu kabul için   yüzeyinin dışındaki kaynaklar ve alanlar Şekil II.4a’da 

olduğu gibi,   yüzeyinin içindeki kaynaklar ise Şekil II.4b’de olduğu gibi 

kalmalıdır.   yüzeyi üzerindeki yüzey akımlarının sınır koşullarını karşılamak 

zorunda oldukları göz önüne alındığında 

               (2.95.) 

                (2.96.) 
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şeklinde yazılır. Bu durum Şekil II.5a’da gösterilmiştir. Benzer yaklaşımlarla 

Şekil II.4a’ya dâhili, Şekil II.4b’ye de harici eşdeğerler oluşturulabilir. Bu 

durumda akımlar diğer benzer durumda olduğu gibi 

               (2.97.) 

                (2.98.) 

sınır koşullarını sağlamak zorundadırlar. Bu da Şekil II.5b’de gösterilmiştir. 

 

  a) Harici Eşdeğer Akımlar     b) Dâhili Eşdeğer Akımlar 

Şekil II.5 Yüzey Eşdeğer Problemleri 

b. Fiziksel Eşdeğer 

 Saçılma ve ışıma problemleri alanındaki çok önemli kavramlardan biri de 

fiziksel eşdeğerliktir. Manyetik geçirgenliği ve dielektrik sabiti   ve   olan    

ve    elektrik ve manyetik akımlarının    ve    alanlarını oluşturduğu 

homojen bir ortamda, iletken bir nesne olması durumunda yansıyan (ya da 

saçılan) alanlar    ve   ’nin meydana geldiği Şekil II.6a’da görülmektedir. 

Amaç bu alanları elde etmek olduğundan, iletken nesnenin çıkarılarak 

eşdeğer yüzey akımlarıyla değiştirilmesini sağlayacak bir eşdeğer problemin 

oluşturulması gerekmektedir. Burada saçıcının yüzeyindeki elektrik ve 

manyetik alanlara sınır koşullarının uygulanması gerekir. Sınır üzerinde 

toplam teğetsel elektrik alanın sıfır olması gerektiğinden 
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                             (2.99.) 

olarak yazılır. Toplam teğetsel manyetik alanın, indüklenen elektrik akım 

yoğunluğuna eşit olması gerektiğinden 

                         (2.100.) 

olarak ifade edilir. 

 

   a) Orijinal Problem      b) Eşdeğer Problem 

Şekil II.6 Fiziksel Eşdeğerlik Teoremi 

 Elde edilen son iki denklem, (2.99.) ve (2.100.), Şekil II.6b’de gösterilen ve 

fiziksel eşdeğer olarak adlandırılan eşdeğerlik problemini oluşturur. Ne yazık 

ki indüklenen akım   , bilinmeyen saçılan alan   ’in yanı sıra, bilinen gelen 

alan   ’e de bağlıdır. (2.99.) ve (2.100.), çalışmanın bir sonraki bölümünde 

yalnızca gelen alan ve indüklenen akımlara bağlı olan ve moment metodu 

tarafından çözülecek bir dizi integral denkleminin elde edilmesinde 

kullanılacaktır. 

7. Yüzey İntegral Denklemleri 

 Saçılma problemleri, bölgesel olarak ışıyan akımların başka akımlar ya da 

alanlar tarafından tetiklendiği ışıma problemleri olarak düşünülebilir. Bu 

nedenle yapılacak analiz, akımların, harici olarak uygulanan bir gerilim 

kaynağı vasıtasıyla üretildiği bir saçılma problemi olarak düşünülebilir. RKA 

problemleri, harici kaynaklar tarafından üretilen elektromanyetik ışımayı 
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içerir. Bu harici kaynaklar, saçıcı üzerinde, saçılan alanın tekrar ışımasını 

sağlayan akımlar yaratırlar. 

 Işıma problemleri, (2.27.) ve (2.28.)’in yardımıyla alanları elde etmek için, 

bilinen akımlar   ve  ’nin integralinin alınmasına ihtiyaç duyarlar [8]. Saçılma 

problemlerinde, bu denklemlerdeki akımlar bilinmeyen büyüklüklerdir. Bu 

nedenle, bir saçılma probleminin çözümünün iki aşaması vardır: 

I. Harici ancak bilinen alanlardan    ya da    tarafından tetiklenen 

bilinmeyen yerel akımlar   ve   için bir integral denklemi çözmek. 

II.  Saçılan alanlar    ve   ’nin elde edilmesi için indüklenen   ve   

akımlarının integralini almak. 

 Bu bölümde, mükemmel iletken cisimlerde saçılma problemleri için 

kullanılan elektrik ve manyetik alan integral denklemlerini elde edeceğiz [7]. 

Bu denklemlerin nasıl elde edildiğinin bilinmesi moment metodunun ve 

MATLAB kod uygulamasının daha iyi anlaşılması için faydalı olacaktır. 

a. Elektrik Alan İntegral Denklemi (Electric Field Integral 
Equation-EFIE) 

 Işıyan elektrik alan, indüklenen yüzey akımından 

 

                  

 

       
 

  
               (2.101.) 

denklemi vasıtasıyla elde edilir. Bu denklemdeki      ’ye olan bağımlılığı, 

teğetsel elektrik alana sınır koşulları uygulanarak giderilebilir: 

                          (2.102.) 

 Burada       yüzey normalidir. Bu koşul, yukarıdaki denklemi, bilinen gelen 

elektrik alan ifadesi       cinsinden yazabilmemizi sağlar: 
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               (2.103.) 

 (2.103.), mükemmel iletken bir yüzey için Elektrik Alan İntegral Denklemi 

(Electric Field Integral Equation-EFIE) olarak bilinir. Bilinmeyen akım      için 

bir kere çözüldüğü zaman her bölgedeki ışıyan alan (2.65.) vasıtasıyla elde 

edilebilir. EFIE, aynı zamanda çoklukla manyetik vektör potansiyeli      

kullanılarak da 

 
 

 

  
                        

 

  
         (2.104.) 

şeklinde yazılabilir. Bu da gradyan ve diverjansın gözlem koordinatlarında 

ifade edildiği 

 

 
 

  
                      

 

  

 

                   (2.105.) 

denklemi şeklinde yazılır. Problemin tipine göre birini kullanmak diğerine göre 

daha avantajlı olabileceğinden bunun seçimini doğru yapmak çözümün 

doğruluğunu etkileyecektir. 

 EFIE, akım ifadesinin yalnızca integral işaretinin içinde yer aldığı, birinci 

dereceden bir Fredholm integral denklemidir *. Denklemin türetimi saçıcının 

şekline dair herhangi bir kısıtlamaya işaret etmediğinden, EFIE açık ince 

cisimlerin yanında kapalı yüzeylere de uygulanabilir. İnce yüzeyler için      

akımı, saçıcının her iki tarafındaki akım yoğunluğunun vektörel toplamını 

temsil eder. 

 

 

* Birinci dereceden Fredholm integral denklemi,      türünde bir denklemdir. 
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b. Manyetik Alan İntegral Denklemi (Magnetic Field Integral 
Equation-MFIE) 

 İletken bir cismin yüzeyindeki manyetik alana sınır koşullarının 

uygulanmasıyla benzer bir denklem elde edilebilir. (2.100.)’de belirtilen 

fiziksel eşdeğer ifadesinden, yüzeyde indüklenen akım      

                          (2.106.) 

olarak ifade edilir. Saçılan manyetik alan, (2.53.) yardımıyla 

 

      
 

 
                         

 

 (2.107.) 

şeklinde yazılabilir. Bu ifadenin,  ,   yüzeyine cismin dışından yaklaşırken 

(    ) limiti alınırsa (2.107.)’den (2.106.)’ya geçişte    ifadesi yok edilebilir. 

Bu durum da 

                    
    

                         

 

  (2.108.) 

şeklinde ifade edilir. Bu ifadede vektör özelliği kullanılarak rotasyonel 

operatörü integralin içine alınırsa 

                                                (2.109.) 

olur. Rotasyonel operatörü gözlem koordinatları üzerinde işlem yaptığından 

          olarak yazılır ve                     eşitliğinden faydalanarak 

(2.108.) 

 

                    
    

                          

 

  (2.110.) 

şeklinde yazılabilir. Bu denklemdeki ışıma integralini bulmak amacıyla,  ’nin   

yüzeyinin dışından    ‘ye yakınsadığındaki değeri elde edilmelidir. Bunu elde 

etmek amacıyla integral iki parçaya bölünür ve      için limiti hesaplanarak 
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  (2.111.) 

ifadesi elde edilir. Bu ifadede   ,   yüzeyi içerisinde,  ‘ye yakın,   yarıçaplı 

çok küçük bir dairesel bölgeyi temsil eder (Şekil II.7). 

 

Şekil II.7   Yüzeyindeki Küçük Alan 

  ’in merkezi, yerel bir silindirik koordinat sisteminin merkezi olarak seçilirse 

                       (2.112.) 

olarak yazılabilir ve    içindeki Green fonksiyonu yaklaşık olarak 

 
        

          

        
 

 

                
            (2.113.) 

şeklinde yazılabilir. Silindirik koordinatlardaki gradyan 

 
   

 

   
   

 

  

 

   
   

 

   
   (2.114.) 

olarak ifade edildiğinden,    içinde          olduğundan ve       her yerde 

  ’e teğetsel olacağından 

 
                         

 

   
         (2.115.) 

olarak yazılabilir ve bu da 
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 (2.116.) 

şeklinde ifade edilebilir.    çok küçük olduğundan,      ’nin sabit olduğu ve 

yaklaşık olarak     ’ye eşit olduğu varsayılacaktır. Uyumluluk için      

olarak alınırsa bu durumda    üzerinden integral 

 

                          
    

 
  

 
   

               

 

 

    (2.117.) 

şeklinde yazılabilir. Bu ifadenin integrali alındığında 

     

 
 
 

   
 

 

     
  (2.118.) 

çıkar ve burada     için limit alınırsa 

 
   
    

    

 
 
 

   
 

 

     
  

    

 
 (2.119.) 

sonucuna ulaşılır. Bu sonuç kullanılarak (2.110.) 

 

            
    

 
                          

    

 (2.120.) 

şeklinde ifade edilebilir. Bu ifadede, sonsuz küçüklükteki    alanının katkısı 

artık        teriminin bir parçasıdır. (2.120.), mükemmel iletken ortam için 

Manyetik Alan İntegral Denklemi (MFIE-Magnetic Field Integral Equation) 

olarak bilinmektedir. Bu denklemin, bir koninin tepesi ya da iki düzlemsel 

yüzey arasındaki kenar gibi,    alanının düzlemsel olmadığı durumlara 

adapte edilmesi gerekir. 

 (2.120.) bilinmeyen akım      için çözüldüğünde, her bölgedeki ışıyan alan 

(2.65.) yardımıyla elde edilebilir. MFIE,     ’nin integral işaretinin hem içinde 

hem dışında var olduğu ikinci dereceden bir Fredholm integral denklemidir †. 

†
 İkinci dereceden Fredholm integral denklemi,        türünde bir denklemdir. 
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 Fiziksel eşdeğerlik vasıtasıyla elde edilmiş olması nedeniyle, teoride 

EFIE’den elde edilenlerle eşdeğer sonuçlar üreteceği varsayılmaktadır. 

Ancak kapalı saçıcılar için limit işlemi kullanılarak elde edildiğinden, EFIE gibi 

açık ve ince nesnelere uygulanamaz. Gradyan operatörünün varlığından 

dolayı denklemin çekirdeği EFIE’den daha farklıdır ve sayısal sonuçları da 

EFIE’ye göre farklılık gösterebilir. 

c. Birleşik Alan İntegral Denklemi (Combined Field Integral 
Equation-CFIE) 

 Kapalı yüzeyler için EFIE yalnızca saçıcının yüzeyine uygulanabilir. Bu 

yüzden, mükemmel iletken (PEC) bir cisimden saçılan alan problemi 

çözülüyor olsa bile, EFIE bunu, ince kabuklu mükemmel iletken (PEC) bir 

cismin çözümünden ayıramaz. Bu yöntem, kolay görünmesine rağmen bir 

sorun barındırmaktadır. İnce kabuklu mükemmel iletken bir cisim, aynı 

zamanda bir rezonans kavitesidir. Moment metodu, gerçek bir nesneyi 

fasetlerle modelleyerek sonuca gittiğinden, elektromanyetik enerji, kavitenin 

dahili rezonans modlarını tetikleyecek şekilde ince kabuklu mükemmel iletken 

cismin içine sızacaktır. Bu tetiklenen dahili rezonanslar, asıl bulunmak 

istenen mükemmel iletken cismin yüzey akımından farklı olarak,   yüzeyinde 

oluşan harici yüzey akımına katkı sağlarlar. Dahası, çalışma frekansı dahili 

kavitenin rezonansına yakın olduğunda, dahili rezonans modu, saçılan alanın 

hatalı hesaplanmasına neden olacak şekilde, dışarıya enerji sızmasına 

neden olacaktır [9]. 

 Sonuç olarak, kapalı bir yüzeye uygulandıklarında, EFIE ve MFIE her 

frekans için özgün bir çözüm üretemezler. Bu durum, homojen çözümlerin, 

gelen alanın sıfır olduğu sınır koşullarını karşıladıklarında elde 

edilebilmesinden kaynaklanmaktadır. Bu yapay çözümler, nesnenin kendi 

dâhili rezonant modlarına uymakta ve nesnenin dışına herhangi bir ışıma 

yapmamaktadırlar. Bu sorun genellikle, sonuçların istenen yanında bir miktar 

istenmeyen rezonant çözümünü de içerdiği, rezonans frekansına yakın küçük 

bir bant genişliğinde meydana gelmektedir. Bundaki temel neden, tekil gelen 

alanın teğetsel bileşenlerinin, bu rezonans frekanslarındaki yüzey akımlarının 
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özgün olarak belirlenmesinde yetersiz kalmalarıdır. Anılan sorunun 

giderilmesinde kullanılan yöntemlerden biri; orijinal integral denklemlerinin, 

nesnenin içindeki alanın değeri sıfır olacak şekilde değiştirildiği, genişletilmiş 

bir sınır koşulunun uygulanmasıdır. Çift-yüzey elektrik ve manyetik integral 

denklemleri (DSEFIE-Dual surface electric field integral equation, DSMFIE- 

Dual surface magnetic field integral equation), bu genişletilmiş sınır 

koşullarına verilebilecek örneklerdendir. Bu uygulamalarda orijinal yüzeyin 

içerisine ikinci bir yüzey yerleştirilir. Bu yüzeydeki dâhili alanları bulma amaçlı 

ilave bir integral denklemi oluşturmak için uygun sınır koşulu kullanılır. Bu 

yeni denklemin orijinal denklemle birleştirilmesi sonucunda, her frekanstaki 

akım için özgün bir çözüm üretecek birleşik bir denklem ortaya çıkar. 

Anlatılan avantajlarının yanında bu yöntem; ikincil yüzeyin oluşturulmasında 

ilave bir çaba gerektirir ve MoM matris sistemindeki bilinmeyenlerin sayısının 

artması nedeniyle işlem zamanını ve bellekteki yer gereksinimini artırır. 

 Rezonans probleminin giderilmesinde uygulanmakta olan yöntem EFIE ve 

MFIE’nin doğrusal bir kombinasyonudur ve birleşik alan integral denklemi 

(CFIE) olarak adlandırılır [10]. Bu yeni denklem, sınır koşullarını elektrik ve 

manyetik alanlar üzerine uygular ve EFIE ile MFIE’nin sıfır olduğu yerler 

farklılık gösterdiğinden sonuca dahil olması istenmeyen alanlardan 

bağımsızdır. CFIE, 

 
            

 

 
           (2.121.) 

şeklinde ifade edilir [7]. Burada   sabiti,           olarak seçilebilir. 

 CFIE, yapay bir yüzey oluşturmak veya yüzeyin içindeki noktaları 

örneklemek zorunda kalınmaması yönlerinden avantajlı görünmektedir. Aynı 

zamanda EFIE ve MFIE ile aynı sayıda bilinmeyen içermektedir. Metodun 

olumsuz yönü; yüzeyin oldukça dar kenarlara ve uçlara sahip olduğu 

durumlarda doğru sonuçlar üretmesi konusunda MFIE’nin güvenilir 

olmamasıdır. 
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Ç. MOMENT METODU 

 Önceki bölümde temel elektromanyetik kavramlar incelendi ve bu 

kavramlar yardımıyla ışıma ve saçılma problemlerinde kullanılan bir dizi 

integral denklemi elde edildi. İlgi alanımızdaki birçok gerçek hayat 

uygulamasında bu denklemler analitik olarak çözülememektedir. Bu yüzden 

çözümü elde etmek için bilgisayar tabanlı yöntemlerin kullanılması zorunlu 

hale gelmiştir. Bu bölümde, bu integral denklemlerini, bir bilgisayar yardımıyla 

sayısal olarak çözülebilecekleri doğrusal bir sisteme çevirecek bir yöntem 

olan moment metodu (MoM) anlatılacaktır. 

 Öncelikle MoM tanımlanacak, bilinmeyen bir fonksiyonun ağırlık 

fonksiyonlarının toplamından faydalanılarak genişletilmesi incelenecek ve 

Point Matching ile Galerkin Metodu karşılaştırılarak aralarındaki farklar ortaya 

koyulacaktır. Daha sonra doğrusal denklemlerin çözümünde kullanılan Gauss 

Eliminasyonu ve LU Dekomposizyonu incelenecektir. 

 Moment metodundaki temel yaklaşım, belirsiz büyüklüğün, içinde 

bilinmeyen katsayılar barındıran bir dizi fonksiyon kullanılarak 

genişletilmesidir [11]. Daha sonra elde edilen denklem sınır koşulları 

uygulanarak doğrusal bir denklem sistemine çevrilir. Bulunan doğrusal 

sistem, bilinmeyen katsayıların sayısal olarak bulunması için çözülür. Bu 

çözüm, aynı zamanda weighted residuals yöntemi olarak bilinen Moment 

Metodu yardımıyla bulunabilir.   doğrusal operatör,   bilinen kuvvet 

fonksiyonu ve   bilinmeyen olmak üzere genel problem 

        (2.122.) 

olarak ifade edilebilir. Elektromanyetik problemlerde genellikle,   integro-

diferansiyel operatörünü,   bilinmeyen fonksiyonu (yük, akım) ve   bilinen 

kaynağı (gelen alan) temsil eder. Burada  ,   adet ağırlık temel 

fonksiyonunun (weighted basis functions) toplamı şeklinde yazılırsa 
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 (2.123.) 

ifadesi elde edilir. Burada    bilinmeyen ağırlık katsayılarıdır.   doğrusal 

olduğundan bu ifade (2.122.)’de yerine yazılırsa 

 

        

 

   

   (2.124.) 

ifadesi elde edilir ve bu ifadeden istifade ile  , residual 

 

            

 

   

 (2.125.) 

olarak yazılır. 

 Temel fonksiyonlar, bilinmeyen fonksiyonun ilgi uzayı içerisindeki tahmini 

davranışını modellemek için kullanılırlar ve problemine göre skaler veya 

vektörel olabilirler. Eğer temel fonksiyonlar uzay içerisinde yerel olarak ifade 

edilebiliyorlarsa yerel (local, subsectional), bütün uzay boyunca ifade 

edilebiliyorlarsa global ya da tüm-uzay (entire-domain) temel fonksiyonları 

olarak adlandırılırlar. Moment metodunda yerel temel fonksiyonlar üzerinde 

durulacaktır. 

 Bu aşamada yöntemin, sınır koşullarının uygulandığı şekliyle 

genelleştirilmesi gerekir. Bunun için, bir temel fonksiyon        ve bir test ya 

da ağırlık fonksiyonu      ’yla çarpılırsa 

 
               

  

        
  

      (2.126.) 

ifadesi elde edilir. Burada integraller, temel ve ağırlık fonksiyonlarına bağlı 

olarak, çizgi, yüzey ya da hacim integrali olabilirler. Her ağırlık fonksiyonunun 

artık fonksiyonla iç çarpımının sıfır olması gerektiğinden yola çıkarak 
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        (2.127.) 

şeklinde yazılır. Bu ifade     büyüklüğünde ve      şeklinde ifade edilen 

bir matrise karşılık gelir. Bu matrisin elemanları 

                (2.128.) 

şeklinde, sağ taraf vektör elemanları ise 

           (2.129.) 

şeklinde ifade edilir [7]. 

 Moment metodunda, her temel fonksiyon bir diğeriyle Green fonksiyonu 

vasıtasıyla etkileşir ve sonuçta elde edilen sistem matrisinde hiçbir eleman 

sıfır değildir. Bu yüzden matrisin her elemanı bellekte muhafaza edilmelidir. 

1. Point Matching 

 İntegral denkleminin cisim üzerinde bir dizi ayrık noktada denenerek sınır 

koşullarının uygulanması işlemi, o denklemde ağırlık fonksiyonu olarak 

(2.126.)’da olduğu gibi delta fonksiyonunun kullanılmasına denktir. 

            (2.130.) 

 Bu yöntem point matching ya da point collaboration olarak tanımlanır ve 

dezavantajları olduğu kadar kayda değer avantajları da olan bir yöntemdir. 

Bunlardan biri, matris elemanlarının değerlendirilmesinde ağırlık 

fonksiyonunun etki sınırları içerisinde integral alınmasına ihtiyaç 

duyulmamasıdır. En büyük dezavantaj ise sınır koşullarının çözüm uzayında 

yalnızca ayrık noktalarda sağlanabiliyor olmasıdır. Birçok durumda sonuçlar 

oldukça tatmin edici olmakta ve yöntem iki boyutlu problemlerin birçoğunda 

sıklıkla kullanılmaktadır [7]. 
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2. Galerkin Metodu 

 Test için arzu edilen herhangi bir ağırlık fonksiyonu kullanılabilir ancak 

çoğu problemde bu fonksiyonun seçimi çözüm açısından çok hayati olabilir. 

Burada en çok kullanılan yöntemlerden biri, temel fonksiyonların kendilerinin 

ağırlık fonksiyonu olarak kullanıldığı Galerkin Metodudur. Bu yöntem sınır 

koşullarının, point matching yönteminde olduğu gibi ayrık noktalar haricinde, 

çözüm uzayında uygulanabilmesi avantajına sahiptir. Birçok problemin 

çözümünde Galerkin-tipi ağırlık fonksiyonları kullanılmaktadır [7]. 

3. İki-Boyutlu Temel Fonksiyonlar 

 Bir temel fonksiyonun en önemli karakteristik özelliği, ilgi uzayı içerisinde 

bilinmeyen fonksiyonun davranışını sergilemesidir. Eğer çözüm belirli bir 

bölge içerisinde yüksek oranda değişim gösteriyorsa, darbe temel 

fonksiyonlarının kullanımı doğrusal ya da daha yüksek dereceden bir 

fonksiyonun kullanımı kadar iyi bir tercih olmayabilir. Temel fonksiyonun 

seçimi, bazı durumlarda çok karmaşık olabilen MoM matris elemanlarının 

çözümünde karşılaşılacak zorluğun derecesini de belirler. Bu bölümde, 

moment metodu problemlerinde sıklıkla kullanılan bazı iki-boyutlu yerel temel 

fonksiyonlar tanımlanacaktır. 

a. Darbe Fonksiyonları 

 Şekil II.8’de uzayın,   tane noktaya ve     adet alt segmente ya da 

darbeye bölündüğü bir dizi darbe temel fonksiyonu gösterilmiştir. Zorunlu 

olmamasına rağmen şekildeki darbeler aynı uzunlukta seçilmiştir. Darbe 

fonksiyonu 

                             (2.131.) 

                                               (2.132.) 

olarak tanımlanır. 
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Şekil II.8 Darbe Fonksiyonları 

 Darbe fonksiyonları, her segmentteki sonuca ilişkin basit bir yakınsama 

içerirler, ancak MoM matris elemanlarının bulunmasını büyük ölçüde 

kolaylaştırırlar. Darbe fonksiyonlarının türevi impulsif olduğundan,  ,   ’e 

bağlı bir türev ifadesi içerdiği sürece kullanılamazlar. 

b. Parçalı Üçgen Fonksiyonları 

 Darbe fonksiyonlarının tek bir segmentte sabit olduğu durumlarda, bir 

üçgen fonksiyon iki segmenti birleştirir ve dış noktalarda sıfırdan farklı bir 

değer alır. Şekil II.9’da bir dizi üçgen fonksiyon gösterilmiştir. Uzay,   tane 

noktaya ve     adet alt segmente bölünmüş ve     adet temel fonksiyon 

ortaya çıkmıştır. 

 

Şekil II.9 Üçgen Fonksiyonlar (1. Durum) 
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 Segmentler eşit uzunlukta olacak şekilde Şekil II.10’da bir daha 

gösterilmiştir. Burada bitişik fonksiyonlar bir segmentte çakıştıklarından, 

üçgenler, segmentler arasındaki çözümün parçalı doğrusal değişimini 

sağlarlar. 

 

Şekil II.10 Üçgen Fonksiyonlar (2. Durum) 

 Bir üçgen fonksiyon aşağıda gösterilen şekilde tanımlanabilir. 

       
      

       
              (2.133.) 

       
      

       
              (2.134.) 

 Bu fonksiyonlar,  ,   ’e bağlı bir türev ifadesi içerdiğinde kullanılabilirler. 

Bu özellik, diferansiyel operatörlerinin yeniden dağılımı açısından önem teşkil 

etmektedir. 

 Şekil II.9’da gösterilen ifade, çözümü    ve    noktalarında sıfıra götürür. 

Bu yapı, ilgi uzayının sonlarında çözümün sıfır olduğunun bilindiği 

durumlarda kullanılabilir, ancak sonucun sıfır olmayabileceği durumlarda 

kullanılmamalıdır. Eğer farklı olarak ilk ve son segmentlere bir yarım üçgen 

eklenmesi durumunda sonuç artık sıfıra gitmeyecektir. Bu durum, toplamda   

adet temel fonksiyonun bulunduğu Şekil II.10’da gösterilmiştir. 
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c. Parçalı Sinüzoidal Fonksiyonlar 

 Parçalı sinüzoidal fonksiyonlar, Şekil II.11’de gösterildiği gibi üçgen 

fonksiyonlarla benzerlik gösterirler. Genellikle, sinüzoidal akım dağılımlarını 

gösterebilmelerinden dolayı, tel antenlerin analizinde kullanılırlar. 

 

Şekil II.11 Parçalı Sinüzoidal Fonksiyonlar 

 Bu fonksiyonlar aşağıda gösterilen şekilde tanımlanabilirler. 

 
      

            

             
              (2.135.) 

 
      

            

             
              (2.136.) 

Burada   dalga sayısını ifade eder ve segmentlerin uzunluğu genellikle 

sinüzoidin periyodundan oldukça azdır. 

ç. Tüm-Uzay Sinüzoidal Fonksiyonlar 

 Diğer temel fonksiyonlardan farklı olarak tüm-uzay sinüzoidal fonksiyonlar, 

problem uzayının her yerinde tanımlıdırlar. Eğer çözümün nasıl elde 

edileceğine dair güvenilir bir bilgi varsa bu fonksiyonlar kullanılabilir. Çözüm, 

ağırlık polinomlarının ya da sinüs ve kosinüs fonksiyonlarının toplamı olarak 

modellenebilir. Örneğin   uzunluğundaki ince bir dipol anten üzerindeki      

akımı toplam ifadesi olarak 
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 (2.137.) 

şeklinde gösterilebilir. Matris denkleminin çözülmesi sonrasında, bu toplam 

ifadesinin içindeki akımın doğru ifade edilebilmesi için yalnızca ilk birkaç 

katsayıya (  ) ihtiyaç duyulacaktır. 

 Tüm-uzay sinüzoidal fonksiyonların dezavantajlarından biri, rastgele şekilli 

geometriler için uygulanabilir olmayışıdır. Sonuç olarak literatürde MoM 

problemlerinde genellikle yerel temel fonksiyonlar uygulanmaktadır. 

d. Temel Fonksiyonların Sayısı 

 Bir elektromanyetik problemde temel fonksiyonların sayısı, çözümün 

doğruluğunu sağlayacak şekilde seçilmelidir. Zamanla harmonik problemlerle 

ilgilenildiğinden, çözümün faz davranışının yanında genliğinin de 

modellenmesi gerekir. Üçgen fonksiyonlar gibi doğrusal temel fonksiyonlarda 

dalga boyu başına en az on bilinmeyenin kullanılması, bir sinüzoidin 

gösterilmesi için pratik bir yöntem haline gelmiştir. Bu sayı, genliğin belirgin 

bir şekilde değişiklik gösterdiği, yüzey üzerindeki boşluklar, yarıklar ve 

kenarlar için artırılmalıdır. Daha yüksek dereceden temel fonksiyonlar 

kullanmak, MoM formülasyonundaki karmaşıklığı artıracak olmasının 

yanında, bilinmeyen sayısını azaltabilecektir. 

 Bilinmeyenlerin sayısı her zaman problemin boyutlarıyla doğru orantılı 

olarak artar. Bu artışın oranı, problem uzayının çizgi, yüzey ya da hacim 

olmasına bağlıdır. MoM’da  , tek-boyutlu problemler için doğrusal, yüzey 

problemleri için üstel olarak artar. Ortaya çıkan bilinmeyen sayısı birkaç yüz 

kadar az olabileceği gibi, çok geniş problemler için binler hatta milyonlar 

mertebesine kadar çıkabilir. Bu,     büyüklüğündeki bir matris sisteminin 

depolanması için gerekli sistem belleği ve çözüm için gerekli hesaplama 

zamanı açısından önemli sonuçlar doğurur. Bu matris problemlerinin 
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çözümünde kullanılabilecek yöntemlerden bazıları bir sonraki bölümde 

anlatılmıştır [7]. 

4. Matris Denklemlerinin Çözümü 

 Bu bölümde, matrislere ilişkin basit çözümler sağlayan Gauss eleme ve 

LU ayrıştırma metotları anlatılacaktır. Bu algoritmalar,   bilinmeyen sayısı 

olmak üzere,       mertebesinde bir hesaplama zamanı gerektirir. Bu 

metotlar   küçük olduğunda iyi sonuçlar vermelerine rağmen, büyük boyutlu 

problemler için hesaplama zamanı oldukça artabilmektedir. Bilgisayarların 

performanslarının zamanla gelişiyor olmasına rağmen, her zaman daha 

büyük problemler bulunacağından, bu konu gündemde kalmaya devam 

etmektedir. 

a. Gauss Eleme Yöntemi 

 Gauss eleme yöntemi, bir matrisin, temel satır işlemleri uygulanarak satır 

matris kademesine indirilmesini sağlayan basit bir metottur. Bu bir kez 

başarıldığında, bilinmeyen vektör basit bir yerine koyma işlemiyle elde 

edilebilir. Bu işlemi göstermek için,     büyüklüğünde bir matristen      

şeklinde bir matris denklemi elde edilmek istenirse 

 

 
 
 
 
 
         

         

         

  
   

   

   

 

   
               

  

  

  

 
   

 
 
 
 

 (2.138.) 

ifadesi yazılabilir. İşleme ilk satırla başlanır ve her eleman    ’e bölünerek 

köşegen üzerindeki ifadenin 1 olması sağlanır. Daha sonra bu satır, uygun 

katsayıyla çarpılarak alttaki her satırdan çıkarılır ve satırların ilk elemanları 

sıfır yapılır. Sonuçta 
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 (2.139.) 

gibi bir matris elde edilir. Aynı işlem, köşegen üzerinde yalnız birler kalıncaya 

ve matrisin alt üçgeni tümüyle sıfır oluncaya kadar, sırayla diğer satırlar için 

de uygulanır. Bu işlem sonucunda orijinal matris 

 

 
 
 
 
     

    
 

     
 

   

  
   

 

   
 

   
 

 

   
              

  
 

  
 

  
 

 
  

  
 
 
 
 

 (2.140.) 

şekline dönüşür. Bu matrisin çözümü, aşağıda gösterilen yerine koyma 

işlemleri yardımıyla elde edilir. 

      
  (2.141.) 

 
     

      
 

 

     

          (2.142.) 

 Eliminasyon, toplamda      tane işlem ve      adet yerine koyma 

içerecektir. (2.141.) ile ilgili satır işlemlerinin matrisin sağ sütununu da 

etkilediği unutulmamalıdır. Bu, eleme işlemi yapılırken önceden hesaplanmış 

olmaları gerekmesi nedeniyle, arzu edilmeyen bir durum olacaktır. Bu 

sınırlama, bir sonraki bölümde de anlatılacak olan, LU ayrıştırma yöntemi ile 

giderilecektir. 

b. LU Ayrıştırma Yöntemi 

 Matrisin sağ tarafında bir değişikliğe neden olmayan bir çarpanlara ayırma 

işleminin Gauss eleme yönteminden daha avantajlı olacağından daha önce 

bahsedildiğinden,   matrisinin alt ve üst üçgenler şeklinde ayrıştırılması 

uygun olacaktır. Bu durum      (2.143.) şeklinde ifade edilebilir ve bu da 
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 (2.144.) 

şeklinde gösterilir. Ayrıştırma yöntemi yardımıyla, 

                       (2.145.) 

matrisi öncelikle       (2.146.) denklemi çözülerek bulunabilir. Burada   

aşağıda belirtilen yerine koyma yöntemiyle bulunur. 

 
   

  

   
 (2.147.) 

 

   
 

   
          

   

   

          (2.148.) 

Daha sonra       (2.149.) denklemi de,  ’in aşağıda belirtilen yerine 

koyma yöntemiyle bulunur. 

    
  

   
 (2.150.) 

 
   

 

   
          

 

     

          (2.151) 

Yapılacak son işlem   ve  ’nun elemanlarının belirlenmesidir.    matris 

çarpımı yapılırsa,      adet     ve     bilinmeyeni için    adet denklem elde 

edilecektir. Köşegen iki kere gösterildiği için,   adet bilinmeyen isteğe bağlı 

olarak 

                   (2.152.) 

 

şeklinde gösterilebilir. Böylece matris 
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 (2.153.) 

şeklinde bir ifadeye dönüşür ve         eşitliği sağlanabilir.   matrisi,   

matrisinin ilk satırıyla çarpılırsa 

     
   

   
      

   

   
 (2.154.) 

ifadeleri elde edilir. Aynı işlem         eşitliği sağlanarak,   matrisinin ikinci 

satırına da uygulanırsa 

                 

 
    

 

   
              (2.155.) 

 
    

 

   
               

ifadeleri elde edilir. Bu işlemler sonucunda matrisin yapısı artık,  Crout 

Algoritması olarak bilinen matris çözümünün uygulanmasına olanak verir 

hale gelmiştir.           olmak üzere öncelikle   matrisinde, köşegenin 

üzerinde ve altında kalan elemanlar için 

 

               

   

   

              (2.156.) 

daha sonra   matrisinde, köşegenin altında kalan elemanlar için uygulanır. 

 

    
 

   
            

   

   

                  (2.157.) 

Bu algoritmanın uygulanması sonrasında, her adımda ihtiyaç duyulacak 

elemanlar işlem sırası geldiğinde hesaplanmış olacaktır.   matrisi bu sayede, 

  ve   matrisleri için ilave belleğe ihtiyaç duymayacak şekilde çarpanlarına 
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ayrılmış olur. LU ayrıştırma ve yerine koyma işlemleri, Gauss eleme 

yöntemindeki işlemlerle aynı zorlukta olacaktır. 

 Çarpanlarına ayırma işlemi tamamlandığında, matris artık, rastgele 

sayıdaki sağ taraf işlemleri için de kullanılabilir hale gelecektir. Bu matris, 

daha sonra ihtiyaç olduğunda kullanılmak üzere kaydedilerek bellekte 

muhafaza edilebilir [7]. 

5. Üç Boyutlu Problemler 

 Rastgele şekilli üç boyutlu yüzeylerden ışıma ve saçılma problemlerin 

çözümüne; elektromanyetik girişim, elektronik kaplama, radar kesit alanı ve 

anten tasarımı gibi alanlarda sıklıkla ihtiyaç duyulmaktadır. Bu alan özellikle 

son otuz yılda oldukça büyük ilgi görmüş ve üç boyutlu yüzey problemlerinin 

çözümüne ilişkin birçok yöntem geliştirilmiştir. Bilgisayarlar ve belleklerinden 

kaynaklı sınırlamalar nedeniyle üç boyutlu problemlerin çoğu, şu ana kadar 

nisbeten küçük elektriksel boyutta olmuşlardır. Daha büyük problemlerin 

çözümü için yakın zamana kadar kullanımı yaygınlaşmamış olan çok gelişmiş 

bilgisayarlara ihtiyaç duyulmuştur. Son on yılda meydana gelen işlemci hızı, 

bellek kapasitesi ve konfigürasyon gelişimleri sonucunda halihazırda büyük 

çaplı problemler bile mütevazi masaüstü bilgisayarlarında çözülebilir hale 

gelmiştir. Bu gelişim, daha önce olabileceğine ihtimal dahi verilmeyen 

çalışma alanlarının açılmasına olanak sağlamıştır. 

a. Üç Boyutlu Yüzeylerin Gösterimi 

 Öncelikle üç boyutlu cisimlerin bilgisayarda sayısal olarak nasıl 

gösterilecekleri belirtilmelidir. Bu husustaki temel yaklaşım, öncelikle 

bilgisayar tabanlı bir tasarım yazılımı (computer aided design-CAD) 

kullanarak cismin detaylı bir modelinin çıkarılmasıdır. AUTOCAD, ALLYCAD 

ve CADDIE gibi modern benzetim programları, matematiksel tanımlamalar 

kullanarak serbest şekillerdeki cisimlerin benzetimlerini yapabilir. Bu 

programlarda uygulanan yaklaşım sayesinde yüzey normali ve her noktadaki 
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eğriliklerin yarıçaplarına ilişkin bilgiler elde edilir ve belleğe kaydedilir. Eğimli 

yüzey modeli bir defa geliştirildiğinde, daha sonra üzerinde işlem 

yapılabilecek geometrik yapıtaşlarına ayrılır. Bu amaçla yapıtaşı olarak en 

yaygın kullanılan şekil,  her türlü cismin yüzey eğilimiyle uyum gösterebilen 

düzlemsel üçgenlerdir. Bu üçgenler için yüksek etkinlikte integrasyon kuralları 

geliştirilmiştir. Ayrıca elektromanyetik modelleme için cazip bir tercih olması 

amacıyla, üçgensel uzaylardaki integral denklemlerinin çözümü için analitik 

çözümler ortaya konulmuştur. Üçgenler, bilgisayar grafiklerinde standart 

yapıtaşı olarak seçilmişlerdir ve bilgisayar tabanlı tasarım (Computer Aided 

Design-CAD) programlarının birçoğu son derece yüksek kalitede yüzey 

benzetim ağı (mesh) oluşturabilme kapasitesine sahiptir. 

 Bir yüzeyin üçgenler kullanılarak tanımlanmasında kullanılan en yaygın yol 

sonlu eleman bağlantısı dosyasıdır ve bu yola bir örnek Şekil II.12’de 

gösterilmiştir. Bu dosya, bütün üçgen düğümlerinin (node) kartezyen 

koordinat sistemindeki mevkilerini içeren bir düğüm listesini ve bu düğüm 

listesinden aldığı üçlü tepe noktalarından hareketle oluşan üçgenleri 

tanımlayan bir faset listesini içerir. 

 

Şekil II.12 Örnek Bağlantı Listesi 
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 Şekil II.12’deki örnek [7], 9 düğüm ve 8 fasetten meydana gelmektedir. Bu 

bilginin depolanması için birçok değişik yöntem geliştirilmiştir. Bu yöntemlerin 

çoğu, aynı zamanda bilgisayar grafikleri ve animasyon araçları için de 

kullanıldıklarından, geometriye ilişkin olmayan bilgileri de içerirler. Bu 

çalışmada bu bilgilerden, yalnızca moment metodunun çözümü için gerekli 

olan faset dosyası kullanılmıştır. Şekil II.13’te, üçgen fasetlere bölünerek 

modellenmiş bir küre, bir füze ve bir tank gösterilmiştir [7]. Bu yöntemin 

esnekliği sayesinde, tasarımda uygun sayıda üçgen kullanıldığı ve gerekli 

özen gösterildiği takdirde, kara ve hava araçları gibi çok karmaşık geometriler 

bile yüksek doğruluk ve hassasiyetle modellenebilmektedir. 

  

 

Şekil II.13 Örnek Üç Boyutlu Faset Modelleri 
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b. Bir Üçgen Üzerindeki Yüzey Akımları 

 Düzlemsel üçgenler olarak tanımlanmış yüzeylerin üzerinde oluşan 

akımların tanımlanması moment metodu açısından çok büyük önem arz 

etmektedir. Önceki bölümlerde      akımı, ağırlık temel fonksiyonlarının 

toplamı olarak 

 

             

 

   

 (2.158.) 

şeklinde gösterilmişti. Şüphesiz son 25 yıldır burada kullanılan en başarılı 

temel fonksiyon Rao-Wİlton-Glisson (RWG) üçgen temel fonksiyonudur [12].  

Bu fonksiyon 

 
      

  

   
   

                 
  (2.159.) 

 
      

  

   
 

  
                 

  (2.160.) 

                                       (2.161.) 

şeklinde tanımlanmıştır. Burada   
  ve   

 ,   ortak kenarlı üçgenlerdir ve    

bu kenarın uzunluğudur.   
  üzerinde,   

    , ortak kenarın aksi tarafındaki    

tepe noktasına doğrudur ve 

   
                      

  (2.162.) 

şeklinde ifade edilir.   
  üzerinde ise,   

    ,    aksi tepe noktasından diğer 

tarafa doğrudur ve 

   
                      

  (2.163.) 

şeklinde gösterilir. RWG temel fonksiyonu Şekil II.14’te gösterilmiştir. Yapılan 

tanıma göre RWG fonksiyonları, her bitişik ikili üçgen grubunun iç tarafta 

kalan ortak kenarlarını esas alarak açıklanmıştır. Bu formülasyonun 

geometrinin bütününü kaplayacağı görüldüğünden, sınır kenarları için temel 

fonksiyonlar tanımlanmamıştır. 
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Şekil II.14 RWG Temel Fonksiyonu 

 RWG fonksiyonunun, tanımlandığı kenar dışında, herhangi bir kenarla 

normal bileşeni yoktur.      ’nin yüzeye göre diverjansı alınırsa 

 
          

  

  
              

  (2.164.) 

 
         

  

  
 

             
  (2.165.) 

                             (2.166.) 

ifadeleri elde edilir. Akımın diverjansının, süreklilik denklemi nedeniyle yüzey 

yük yoğunluğuyla orantılı olması nedeniyle, (2.164.) ve (2.166.)’da da 

görüleceği üzere bitişik üçgen çiftlerinin toplam yük yoğunluğu sıfırdır. Bir 

kenar üzerinde yük birikimi olmadığından, RWG fonksiyonunun diverjans 

uyumlu olduğu söylenebilir. Bilgisayar tabanlı elektromanyetik problemlerde, 

daha yüksek dereceli temel fonksiyonların da kullanıldığı göz önüne 

alındığında, rotasyonel uyumlu olduğu da ifade edilebilir. 

c. Kenar Tanımlama Algoritması (Edge Finding Algorithm) 

 Faset model elde edildikten sonra, her bir kenarın tanımlanması ve 

kaydedilmesi için bir algoritma oluşturulması ihtiyacı ortaya çıkar. Kenar 

tanımlama algoritmasının gösterimi için,    düzleminde tanımlı basit bir düz 

plakaya ilişkin Şekil II.12’de yer alan bilgiler esas alınmıştır. Bu modeldeki 
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düğüm ve fasetlerin numaralandırılması Şekil II.15’te gösterilmiştir [7]. 

Burada ilk yapılması gereken her düğüm ve oluşturdukları fasetler arasındaki 

bağlantıyı tanımlamaktır. Fasetlerin hangi kenarları paylaştığının ve bağımsız 

kenarların belirlenmesi bu sayede sağlanacaktır. Bunun yapılabilmesi için 

düğüm bağlantı listesi ve faset bağlantı listesi olarak iki ayrı liste oluşturulur. 

Düğüm bağlantı listesi, her bir düğüm ve diğerleri arasındaki bütün 

bağlantıları, faset bağlantı listesi ise, her düğüm için o düğümü tanımlayan 

fasetleri içerir. Daha sonra her bir üçgen kontrol edilir ve o üçgeni oluşturan 

düğümler belirlenerek artan sırayla kaydedilir. Daha sonra fasetlerin içeriği, 

her düğüme ilişkin faset 

 

a) Düğüm Numaralandırması b) Faset Numaralandırması 

Şekil II.15 Basit Düz Plaka Geometrisi 

bağlantı listesine eklenir. Eğer listede bulunmuyorlarsa, kendisinden iki 

üstteki düğümün bilgileri en alt sıradaki düğümün listesine eklenir. İkinci 

düğümün içeriği tanımlı değilse, üçüncü düğümün içeriği ikinci düğümün 

listesine yazılır. Üçüncü düğüm için herhangi bir işlem yapılmaz. Bu 

işlemlerin tamamlanması sonucunda oluşan düğüm ve faset bağlantı listesi 

Tablo II.1’de olduğu gibidir [7]. Düğüm bağlantı listesi tanımlanmamış 

bağlantı içermemelidir. 
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Düğüm (Node) # Birleştirilen Düğümler Birleştirilen Fasetler 

1 24 1 
2 453 123 
3 56 34 
4 57 125 
5 678 234567 
6 89 478 
7 8 56 
8 9 678 
9 - 8 

Tablo II.1 Düğüm ve Faset Bağlantı Listeleri 

 Bu noktada bağlantı listeleri, modelde bulunan tüm kenarlara ilişkin her 

bilgiyi içermektedir. Yapılması gereken; her düğüm için bağlantı listesine 

gidilerek, giriş başına bir kenar oluşturmaktır. Her kenarın bitiş noktasına 

ortak olan fasetler kaydedilir. Eğer kenar yalnız bir üçgene aitse, o bir sınır 

kenarıdır ve temel fonksiyon tanımlanmaz. İki üçgen için ortak olan kenarlar, 

iç kenarlardır (interior edges) ve bunlara temel fonksiyon tanımlanır. Üç ya da 

daha fazla üçgen için ortak kenarları olan geometriler için de tanımlama 

yapılmayacaktır. 

ç. Üç Boyutlu İletken Yüzeyler İçin EFIE 

 Yapılması gereken son işlem, tanımlanan ve iletken oldukları varsayılan 

rastgele şekilli geometriler için bir elektrik alan integral denklemi (EFIE) 

oluşturmak ve çözmektir. (2.158.)’deki ifade (2.104.)’te yerine koyulduğunda 

  bilinmeyenli 

 

 
 

  
                

 

  
             

     

   
   

 

    

 (2.167.) 

denklemi ortaya çıkar.   adet test fonksiyonunun uygulanması ve vektör 

diferansiyel operatörlerinin içeriye dağıtılması sonucunda   matrisi elde edilir 

ve matris elemanları 
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      (2.168.) 

    
 

  
       

  

        (2.169.) 

şeklinde ifade edilir. (2.168.)’de gösterilen kaynak ve test (ağırlık) integralleri, 

her biri iki üçgene bağlı iki RWG fonksiyonu oluşturularak çözülür. Her üçgen 

en fazla üç RWG fonksiyonunda tanımlandığından, kaynak integrali ve 

gözlem üçgeni, en fazla dokuz matris elemanına katkı sağlar. Bu sebeple, dış 

integral çevrimini kaynak ve test üçgenleri üzerinden, iç integral çevrimini ise 

temel fonksiyonlar üzerinden hesaplayıp, sonrasında sonuçları matriste 

uygun yerlere koymak daha etkili olacaktır.  
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III. UYGULAMALAR VE ANALİZ 

A. EFIE DENKLEMİNE İLİŞKİN MATLAB KODU 

 Bu çalışmada kullanılan kodlar temel olarak iki kısma ayrılmıştır. İlki, 

incelenen geometrinin modellendiği, değişkenlerinin tanıtıldığı ve sonucunda 

yüzey akımlarının hesaplandığı kod dizinidir. İkincisi ise; öncelikle ilgilenilen 

yüzeyin bir noktasında oluşan manyetik ve elektrik alanın hesaplanarak tüm 

yüzeydeki ışımanın ya da saçılımın hesaplanmasını sağlayan, sonrasında 

bulunan alanların bir küre yüzeyindeki dağılımını inceleyen kod dizinidir. 

 Kullanılan kod dizinleri için verilen örnekler, genelde iki ancak bazıları da 

üç boyutlu basit geometrileri içermektedir ve bu geometriler ‘.mat’ uzantılı 

dosyalardır. Çalışmanın daha çok gerçek hayatta karşılaşılan ve çözümüne 

ihtiyaç duyulan geometrileri içermesi gerektiği düşünülerek, ‘.facet’ uzantılı 

olarak hazırlanmış olan geometrilerin, bir kod düzenlemesi yardımıyla ‘.mat’ 

uzantısına çevrilmeleri sağlanmıştır. Kod üzerinde yapılan diğer bir 

düzenleme ise, öncelikle geometrinin tanıtıldığı ve sonucunda yüzey 

akımlarının hesaplandığı ilk kısım kod dizininin, üçüncü boyutun da 

hesaplanmasını sağlayacak şekilde revize edilmesi olmuştur. Bu 

düzenlemeler sayesinde artık üç boyutlu ve gerçek hayatta karşılaşılan 

otomobil, füze ve tank gibi geometriler incelenebilecektir. 

1. Yüzey Akımlarının Hesaplanmasını Sağlayan Kod Dizini 

 Bu kod dizini temel olarak rwg1.m-rwg5.m şeklinde adlandırılan beş 

parçadan oluşmaktadır ve kodlara ilişkin akış şeması Tablo III.1’de 

görülmektedir [13]. Bu dizinler, moment metodunun sıralı sayısal adımlarını 

hesaplamaktadır. En son dizin çalıştırıldığında, üzerinde çalışılan yüzeydeki 

akım dağılımı gösterilecektir. 

 Tabloda görülen akış, değişik geometrilere sahip şekillere de 

uygulanabilecek şekilde tasarlanmıştır. Burada dikkat edilecek husus, 
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incelenecek şeklin isminin rwg1.m dizininde, ‘load’ komutunun ardına 

yazılmasıdır. Böylece şekil bellekten çağırılacak ve hesaplamalar doğru 

geometriye ilişkin olacaktır. Frekans, dielektrik sabiti ve manyetik geçirgenlik 

değişkenleri rwg2.m dizininde girilmektedir. Bu kod dizinleri yalnız saçılım için 

değil aynı zamanda ışıma problemleri için de kullanılabilir. Tek önemli fark, 

ışımada bir gerilim kaynağıyla besleme yapılırken, saçılımda kaynak gelen 

elektromanyetik dalganın kendisidir. 

 

 

 

 

 

 

 

 

 

 

Tablo III.1 Yüzey Akımları Kod Dizini Akış Şeması 

 Tablo III.1’de de görüldüğü üzere, rwg1.m ve rwg2.m dizinleri 

çalıştırıldığında bellekten geometri çağırılarak programa tanıtılır ve 

rwg1.m 

rwg2.m 

rwg3.m 

rwg4.m 

rwg5.m 

mesh1.mat 

mesh2.mat 

impedance.mat 

current.mat 

RWG kenar 

elemanlarını 

oluştururlar 

Empedans matrisini 

hesaplar 

Uyarı voltajını belirler 

ve MoM 

denklemlerini çözer 

Yüzey akımlarını 

hesaplar ve 

görüntüler 

Şekil geometrisi 

bellekten çağırılır 
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sonucunda mesh1.mat ve mesh2.mat dosyaları oluşturulur. rwg3.m dizini, 

MoM çözümü için temel teşkil eden empedans matrisini oluşturur. Bu dizinin 

sonucunda oluşan dosya impedance.mat ismiyle kaydedilir. rwg4.m dizininde 

ikaz voltajı belirlenir ve MoM denklemleri çözülür. Bu dizinin sonucunda da, 

birim üçgen başına yüzey akımları hesaplanarak current.mat dosyası 

oluşturulur. Son olarak rwg5.m dizininde ise, bir önceki dizinde oluşturulan 

current.mat dosyası kullanılarak yüzey akımları hesaplanır ve yüzey akım 

dağılımı görüntülenir. 

2. Saçılan Alanların Hesaplanmasını ve Gösterimini Sağlayan Kod 

Dizini 

 Bu kod dizini temel olarak efield1.m-efield3.m şeklinde adlandırılan üç 

parçadan oluşmaktadır ve kodlara ilişkin akış şeması Tablo III.2’de 

görülmektedir. Bu dizinler, ilk dizinlerde hesaplanan yüzey akımları 

yardımıyla saçılan elektrik ve manyetik alanın bulunmasını sağlar ve bulunan 

alanları bir küre yüzeyinde modeller. 

 

 

 

 

 

Tablo III.2 Saçılma Paterni Kod Dizini Akış Şeması 

 İlk kod dizininde yüzey akımlarının bulunması için oluşturulan mesh2.mat 

ve current.mat dosyaları, bu kod dizinlerinde de kullanılır. efield1.m dizini, bir 

noktada oluşan elektrik   ve manyetik alanları   hesaplar. efield2.m dizini, 

efield1.m 

efield2.m 

efield3.m 

mesh2.mat 

current.mat 

Saçılma/Işıma 

Paternini Hesaplar 

Bir küre yüzeyindeki 

ışıma hassasiyetini 

hesaplar 

Bir noktadaki alanı 

hesaplar 
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incelenen cismin üzerinde meydana gelen ışıma/saçılma hassasiyeti 

dağılımının geniş bir sanal küre yüzeyinde gösterilmesini sağlar. Bu dizin 

sonucunda, hesaplanan toplam güç bilgilerinin kaydedildiği gainpower.mat 

isimli bir dosya oluşturulur. efield3.m dizini ise, oluşturulan gainpower.mat 

dosyasını da kullanarak, kutupsal ve kartezyen düzlemlerde saçılma 

paternini hesaplar ve gösterir. 

B. YÜZEY AKIMI VE SAÇILIM MODELLEMESİ UYGULANAN 

GEOMETRİLER 

 Çalışmada, yüzey akımı ve saçılım modellemesi yapılacak şekiller 

seçilirken, kodun algoritmasının daha rahat anlaşılabilmesi amacıyla, 

geometrileri basitten karmaşığa doğru olacak şekilde seçilmiş ve 

sıralanmıştır. Yüzey akımı ve saçılım modellemesi uygulanan cisimlerin 

değerlendirilmesini standart hale getirmek amacıyla; frekans, polarizasyon, 

dielektrik sabiti, manyetik geçirgenlik, gelen EM dalganın yönü ve şiddeti gibi 

parametreler, küp ve küre hariç değiştirilmeden uygulanmıştır (Tablo III.3). 

Gelen EM dalganın yönü şekiller üzerinde okla gösterilmiştir. Çalışmanın 

başında da belirtildiği üzere, gelen dalganın frekansı, AN/SPS-40 ve 

AN/SPS-49 gibi hava arama radarlarının frekansı göz önünde bulundurularak 

seçilmiştir. 

Parametre Girilen Değer 

Frekans (Mhz) 450-900 

Polarizasyon (x, y,z) (1, 0, 0)  

Dielektrik Sabiti (F/m) 1/36π x      

Manyetik Geçirgenlik (H/m) 4π x      

EM Dalganın Yönü (x, y,z) (0, -1, -1) 

EM Dalganın Şiddeti (V/m) 1 

Gösterim Küresi Yarıçapı (m) 10 

Tablo III.3 Kod Dizinine Girilen Değerler Listesi 
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1. Düzlem (1mx1m) için Yüzey Akım Dağılımı ve EM Saçılım 

 Hesaplama yapılan ilk şekil olan düzlem, 1    alana sahiptir. 512 adet 

üçgenle modellenen şeklin geometrisi Şekil III.1’de gösterilmiştir. 

 

Şekil III.1 Düzlem (1mx1m) 

 rwg5.m’e kadar kod dizinleri çalıştırıldığında, yüzey üzerindeki en yüksek 

akım değeri 0,018864 A/m olarak bulunur. Yüzeydeki genel akım dağılımı ise 

Şekil III.2’de olduğu gibidir. 

 efield1.m-efield3.m dizinleri sonucunda elde edilen verilerden; saçılan 

elektrik ve manyetik alanların küre üzerindeki gösterimi Şekil III.3’te, yz 

düzlemindeki saçılma paterni Şekil III.4’te gösterilmiştir. 
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Şekil III.2 Yüzey Akım Dağılımı (Düzlem) 

 

 

Şekil III.3 Elektrik ve Manyetik Alanların Küre Üzerinde Gösterimi (Düzlem) 
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Şekil III.4 Saçılma Paterni (Düzlem) 

 

a. Çıkıntılı Düzlem Karşılaştırması 

 Şekiller üzerinde yapılacak değişikliklerin nasıl sonuçlar vereceğinin 

anlaşılabilmesi amacıyla, üzerine bir anten yerleştirildiği varsayılan aynı 

boyutlardaki bir düzlemle karşılaştırılmıştır. 

 266 adet üçgenle modellenen şeklin geometrisi Şekil III.5’te gösterilmiş ve 

Şekil III.1’de görüntülenen düzlemin 512 üçgenle modellendiği göz önüne 

alındığında, orada bulunan sonucun daha hassas olabileceği, ancak 

karşılaştırmada sorun yaratabilecek bir etkiye sahip olmadığı 

değerlendirilmiştir. 
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Şekil III.5 Çıkıntılı Düzlem (1mx1m) 

 
Şekil III.6 Yüzey Akım Dağılımı (Düzlem) 
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 rwg5.m’e kadar kod dizinleri sonucunda, yüzey üzerindeki en yüksek akım 

değeri 0,015932 A/m olarak bulunur. Şekle eklenen cismin, yüzeye gelen EM 

dalganın enerjisinin bir kısmını üzerinde toplaması nedeniyle, yüzeydeki en 

yüksek akım değerini yaklaşık % 15 oranında düşürdüğü görülmektedir. 

Yüzeydeki genel akım dağılımı ise Şekil III.6’da olduğu gibidir. Bu şekildeki 

renk dağılımına bakıldığında, genel akım dağılımının düzleme göre daha 

yüksek olduğu, yalnızca anten olduğu varsayılan cismin üzerindeki akımların 

nisbeten daha düşük seviyeli olduğu görülmektedir. 

 
Şekil III.7 Elektrik ve Manyetik Alanların Küre Üzerinde Gösterimi 

(Çıkıntılı Düzlem) 
 

 efield1.m-efield2.m dizinleri sonucunda elde edilen, saçılan elektrik ve 

manyetik alana ilişkin gösterim Şekil III.7’de olduğu gibidir. Buradan da 

görülebileceği gibi küre üzerindeki alan dağılımı neredeyse düzleminkiyle 

aynı olmuş, yalnızca saçılmanın olduğu bölgelerde genlikte yükselme 

meydana gelmiştir. Bu yükselmenin, anten olduğu varsayılan çıkıntıdan 

kaynaklandığı değerlendirilmiştir. 



 

 

 
66 

 efield3.m dizini sonucunda elde edilen yz düzlemindeki saçılma paterni 

Şekil III.8’de gösterilmiştir. Buradaki değişikliğin de, geometrideki farklılıktan 

kaynaklandığı değerlendirilmiştir. 

 

Şekil III.8 Saçılma Paterni (Çıkıntılı Düzlem) 

b. Çıkıntılı Düzlem Karşılaştırması (2) 

 Şekil değişikliğinin ne gibi sonuçlar doğurabileceğinin görülmesi amaçlı 

ikinci deneme, düzlem üzerine ikinci bir plakanın eklenmesiyle yapılmıştır. 

Karşılaştırmanın yapılacağı 88 adet üçgenle modellenen geometri Şekil 

III.9’da gösterilmiştir. 

 Şekil III.1’de görüntülenen düzlemin 512 üçgenle modellendiği göz önüne 

alındığında, orada bulunan sonucun daha hassas olabileceği, ancak ilk 

karşılaştırmada da olduğu gibi sorun yaratabilecek bir etkiye sahip olmadığı 

değerlendirilmiştir. 
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Şekil III.9 Çıkıntılı Düzlem-2 

 

Şekil III.10 Yüzey Akım Dağılımı (Çıkıntılı Düzlem-2) 
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 rwg5.m’e kadar kod dizinleri sonucunda, yüzey üzerindeki en yüksek akım 

değeri 0,010853 A/m olarak bulunur. Şekle eklenen cismin, yüzeydeki en 

yüksek akım değerini, ilk örneğin aksine neredeyse yarı yarıya düşürdüğü 

görülmektedir. Yüzeydeki genel akım dağılımı ise Şekil III.10’da olduğu 

gibidir. Bu şekildeki renk dağılımına bakıldığında, genel akım dağılımının, 

düzleme ve ilk çıkıntılı düzleme kıyasla daha yüksek olduğu görülmektedir. 

 efield1.m-efield2.m dizinleri çalıştırıldığında elde edilen, saçılan elektrik ve 

manyetik alana ilişkin gösterim Şekil III.11’de olduğu gibidir. Buradan da 

görülebileceği gibi küre üzerindeki alan dağılımı neredeyse düzleminkiyle 

aynı olmuş, yalnızca saçılmanın olduğu bölgelerde genlikte yükselme 

meydana gelmiştir. Bu yükselmenin de, ilk karşılaştırmada olduğu gibi çıkıntı 

düzlemden kaynaklandığı değerlendirilmiştir. 

 

Şekil III.11 Elektrik ve Manyetik Alanların Küre Üzerinde Gösterimi 

(Çıkıntılı Düzlem-2) 
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Şekil III.12 Saçılma Paterni (Çıkıntılı Düzlem (2)) 

 efield3.m dizini sonucunda elde edilen yz düzlemindeki saçılma paterni 

Şekil III.12’de gösterilmiştir. Buradaki değişikliğin, hem asıl hem de 

karşılaştırma yapılan düzlemlerden farklı olmasının sebebinin, gelen alanın 

çarptığı yüzeydeki artış olduğu değerlendirilmiştir. 

c. Yüzey Akım Dağılımı Analizi 

 Matlab kodunun doğrulanması; 1    alana sahip kare düzlem üzerindeki 

yüzey akımlarının modellenmesine ilişkin [14]’teki analitik sonuçlar ile 

karşılaştırma yapılarak sağlanmıştır. 

 Hesaplamalar, -y-z (0,-1,-1) yönünde 75 MHz’de gönderilen EM dalgaya 

ilişkin yapılmış olup, elde edilen yüzey akım dağılımlarına ilişkin iki yöntemde 

de MoM çözümlerinin [14]’teki çözümler ile karşılaştırması Şekil III.13’te 

gösterilmiş olup sonuçların uyumlu olduğu görülmektedir. 
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Şekil III.13 Yüzey Akım Dağılımı Analizi (Düzlem) 

 

2. Küp (1mx1mx1m) için Yüzey Akım Dağılımı ve EM Saçılım 

 Hesaplama yapılan, 334 adet üçgenle modellenen küp, 1    hacme 

sahiptir ve Şekil III.14’te gösterilmiştir. Bu örnekte, EM dalganın, önceki 

örneklerden farklı olarak, z yönünden geldiği kabul edilmiştir. Gelen dalganın 

polarizasyonu yine x yönündedir. 

 rwg5.m’e kadar kod dizinleri sonucunda, yüzey üzerindeki en yüksek akım 

değeri 0,0061987 A/m olarak bulunmuştur. Yüzeydeki genel akım dağılımı 

ise Şekil III.15’te olduğu gibidir. 

A 

B’ 

A’ 

B 
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Şekil III.14 Küp (1mx1mx1m) 

 

 

Şekil III.15 Yüzey Akım Dağılımı (Küp) 
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Şekil III.16 Elektrik ve Manyetik Alanların Küre Üzerinde Gösterimi 

(Küp) 

 

Şekil III.17 Saçılma Paterni (Küp) 
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 efield1.m-efield3.m dizinleri sonucunda elde edilen verilerden; saçılan 

elektrik ve manyetik alanların küre üzerindeki gösterimi Şekil III.16’da, yz 

düzlemindeki saçılma paterni Şekil III.17’de gösterilmiştir. 

3. Küre (r=1m) için Yüzey Akım Dağılımı ve EM Saçılım 

 Hesaplama yapılan üçüncü şekil, 392 adet üçgenle modellenen, 1   

yarıçapındaki ve Şekil III.18’de gösterilmiş olan bir küredir. EM dalga, bu 

örnekte de önceki örneklerden farklı olarak z yönünden geldiği kabul 

edilmiştir. Gelen dalganın polarizasyonu yine x yönündedir. 

 rwg5.m’e kadar kod dizinleri sonucunda, yüzey üzerindeki en yüksek akım 

değeri 0,0069097 A/m olarak bulunmuştur. Yüzeydeki genel akım dağılımı 

ise Şekil III.19’da olduğu gibidir. 

 

Şekil III.18 Küre (r=1m) 
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Şekil III.19 Yüzey Akım Dağılımı (Küre) 

 

Şekil III.20 Elektrik ve Manyetik Alanların Küre Üzerinde Gösterimi (Küre) 
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Şekil III.21 Saçılma Paterni (Küre) 

 efield1.m-efield3.m dizinleri çalıştırıldığında elde edilen verilerden; saçılan 

elektrik ve manyetik alanların küre üzerindeki gösterimi Şekil III.20’da, yz 

düzlemindeki saçılma paterni Şekil III.21’de gösterilmiştir. 

4. Silindir için Yüzey Akım Dağılımı ve EM Saçılım 

 Hesaplama yapılan dördüncü şekil, 238 adet üçgenle modellenen ve Şekil 

III.22’de gösterilen silindirdir. 

 rwg5.m’e kadar kod dizinleri sonucunda, yüzey üzerindeki en yüksek akım 

değeri 0,009064 A/m olarak bulunur. Yüzeydeki genel akım dağılımı ise Şekil 

III.23’te olduğu gibidir. 

 efield1.m-efield3.m dizinleri sonucunda elde edilen verilerden; saçılan 

elektrik ve manyetik alanların küre üzerindeki gösterimi Şekil III.24’te, yz 

düzlemindeki saçılma paterni Şekil III.25’te gösterilmiştir. 
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Şekil III.22 Silindir 

 

Şekil III.23 Yüzey Akım Dağılımı (Silindir) 
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Şekil III.24 Elektrik ve Manyetik Alanların Küre Üzerinde Gösterimi (Silindir) 

 

Şekil III.25 Saçılma Paterni (Silindir) 
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 Farklı frekanslarda yapılacak hesaplamaların saçılım farklılıklarının 

incelenmesi amacıyla, silindir üzerinde, 300-600-900 Mhz frekanslarında 

yapılan hesaplamalara ilişkin sonuçlar Şekil III.26’da gösterilmiştir. 

   

Şekil III.26 Saçılma Paternleri (Silindir) (300 MHz, 600 MHz, 900 MHz) 

 

5. Füze için Yüzey Akım Dağılımı ve EM Saçılım 

 Hesaplama yapılan beşinci şekil, 768 adet üçgenle modellenen ve Şekil 

III.27’de gösterilen füzedir. 

 rwg5.m’e kadar kod dizinleri sonucunda, yüzey üzerindeki en yüksek akım 

değeri 0,010745 A/m olarak bulunur. Yüzeydeki genel akım dağılımı ise Şekil 

III.28’de olduğu gibidir. 

 efield1.m-efield3.m dizinleri sonucunda elde edilen verilerden; saçılan 

elektrik ve manyetik alanların küre üzerindeki gösterimi Şekil III.29’da, yz 

düzlemindeki saçılma paterni Şekil III.30’da gösterilmiştir. 
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Şekil III.27 Füze 

 

Şekil III.28 Yüzey Akım Dağılımı (Füze) 
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Şekil III.29 Elektrik ve Manyetik Alanların Küre Üzerinde Gösterimi (Füze) 

 

Şekil III.30 Saçılma Paterni (Füze) 
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a. Gelen Dalganın Yönünün Değiştirilmesinin Sonuca Etkisi 

 Gelen dalganın yönünün değiştirilmesinin sonucu nasıl etkilediğini görmek 

amacıyla, dalga,  füze üzerine –y yönünden gönderilmiş ve bunun üzerine 

oluşan yüzey akım dağılımı Şekil III.31’de, oluşan elektrik ve manyetik 

alanların küre üzerinde gösterimi ise Şekil III.32’de gösterilmiştir. 

 

Şekil III.31 Yüzey Akım Dağılımı (Füze) DIR (0,-1,0) 
 

 

Şekil III.32 Oluşan Alanların Küre Üzerinde Gösterimi (Füze) DIR (0,-1,0) 
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 Yapılan karşılaştırma sonucunda, kullanılan kod dizininin ve hesaplama 

algoritmasının doğru ve tutarlı sonuçlar verdiği gözlenmiştir. 

 

6. Tank için Yüzey Akım Dağılımı ve EM Saçılım 

 Son olarak, 8334 adet üçgenle modellenen ve Şekil III.33’te gösterilen 

tank üzerinde yüzey akımları ve saçılım modellemesi yapılmıştır. 

 rwg5.m’e kadar kod dizinleri sonucunda, yüzey üzerindeki en yüksek akım 

değeri 1,1345 A/m olarak bulunur. Yüzeydeki genel akım dağılımı ise Şekil 

III.34’te olduğu gibidir. 

 efield1.m-efield3.m dizinleri sonucunda elde edilen verilerden; saçılan 

elektrik ve manyetik alanların küre üzerindeki gösterimi Şekil III.35’te, xy ve 

yz düzlemlerindeki saçılma paternleri Şekil III.36’da gösterilmiştir. 

 

Şekil III.33 Tank 
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Şekil III.34 Yüzey Akım Dağılımı (Tank) 

 

Şekil III.35 Elektrik ve Manyetik Alanların Küre Üzerinde Gösterimi 
(Tank) 
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Şekil III.36 Saçılma Paternleri (xy-düzlemi solda, yz-düzlemi sağda) (Tank) 
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IV. SONUÇLAR VE DEĞERLENDİRMELER 

 Elektromanyetiğin üç önemli başlığından biri olan saçılma (scattering) 

problemi, özellikle radar teknolojisinin gelişmesi ve buna bağlı olarak askeri 

ilginin bu yönde toplanması neticesinde, büyük önem arz etmeye başlamıştır. 

İhtiyaca göre; sivil kullanımda, cisimlerin radarla tespit edilmesinin 

kolaylaştırılmasının ve hassaslaştırılmasının, askeri kullanımda ise tam tersi 

olarak tespit edilmenin zorlaştırılmasının hedeflenmesi, artan bu önemin 

temel sebepleri olmuşlardır. Burada, tasarlanan sistemlerin gerçek 

durumlarda nasıl bir elektromanyetik davranış sergileyeceğinin bilinmesi ya 

da en azından yaklaşık olarak tahmin edilebilmesi gerekliliği ortaya 

çıkmaktadır. Bu tahmin başarıyla yapılabildiği takdirde, hem tasarım maliyeti 

düşürülebilecek hem de daha kaliteli ürünlerin ortaya çıkarılması 

kolaylaşacaktır. Bilgisayar Tabanlı Elektromanyetik Hesaplama Yöntemleri 

(Computational Electromagnetics-CEM) bahse konu problemlerin 

çözümünde, günümüzde yaygın olarak kullanılmakta ve hızla gelişmektedir. 

Bu konuya ilişkin geliştirilen yöntemler sayesinde üretim aşamasına 

geçilmeden modelleme yapılabilmekte ve tasarlanan ürünün EM 

karakteristiği hakkında bilgi sahibi olunabilmektedir. 

 Fizik, matematik ve bilgisayar teknolojilerinin son yıllardaki kayda değer 

gelişimi sonucunda, bilgisayar tabanlı elektromanyetik hesaplama yöntemleri 

da buna paralel olarak inanılması güç bir ilerleme kaydetmiştir. Moment 

metodu da kaydedilen bu ilerlemenin en önemli basamaklarından biri 

olmuştur. Bu çalışmanın, moment metodunun alanında öneminin anlaşılması 

açısından yüksek lisans seviyesinde çalışma yürüten araştırmacılar için 

faydalı olduğu değerlendirilmiştir. 

 Bir elektromanyetik problemin çözümü için izlenmesi gereken temel 

adımlar Tablo IV.1’de görülmektedir [1]. Bu çalışmada cisimlerin, 

elektromanyetik olarak simüle edilmesinde başlıca adımlar, geometrinin 

modellenmesi, uygun bir programlama dilinde hesaplamayı yaptıracak kod 

dizininin geliştirilmesi, modellenen geometriye ilişkin hesaplamaların doğru 

bir şekilde yapılması ve bulunan sonuçların gerçek durumla uyuşması olarak 
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belirlenmiştir. Sonuç olarak; moment metodunda kullanılan üçgen modelleme 

tekniği [11] ile yapılan hesaplama neticesinde literatürdeki sonuçlara yaklaşık 

ve güvenilir sonuçlar elde edildiği görülmüştür. 

 

 

 

 

 

 

 

Tablo IV.1 Bir EM Problemin Sayısal Çözümü İçin Uygulanacak Temel 
Adımlar 

 Çalışmada çözülen saçılım problemlerine ilişkin kullanılan kod dizini, 

elektrik alan integral denklemi (EFIE) esas alınarak oluşturulmuş bir kod 

dizinidir. EFIE, akım ifadesinin yalnızca integral işaretinin içinde yer aldığı, 

birinci dereceden bir Fredholm integral denklemidir. Denklemin türetimi, 

saçıcının şekline dair herhangi bir kısıtlamaya işaret etmediğinden, EFIE açık 

ince cisimlerin yanında kapalı yüzeylere de uygulanabilir. Bu avantajının 

yanında, rezonans frekanslarında küre, silindir, vb. gibi kapalı yüzeyler için 

kullanımı uygun olmayabilir. Rezonans bölgesinde hesaplama yapılması 

gereken problemler için, manyetik alan integral denkleminin de 

hesaplanmasıyla oluşturulacak birleşik alan integral denklemi (CFIE)’nin 

kullanılması gerekecektir. 

 MFIE, yüzey akımı ifadesinin, integral işaretinin hem içinde hem de 

dışında var olduğu ikinci dereceden bir Fredholm integral denklemidir. 

Fiziksel eşdeğerlik vasıtasıyla elde edilmiş olması nedeniyle, teoride 

EFIE’den elde edilenlerle eşdeğer sonuçlar üreteceği varsayılmaktadır. 

Ancak MFIE, kapalı saçıcılar için limit işlemi kullanılarak elde edildiğinden, 

Fiziksel 

Problem 

Hesaplama 

Matematiksel 

Formülasyon 

Sayısal 

Metodun 

Geliştirilmesi 

Ayrıklaştırma 

(Meshing) 

Programlama SONUÇ 
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EFIE gibi açık ve ince nesnelere uygulanamayacaktır. Gradyan operatörünün 

varlığından dolayı denklemin çekirdeği EFIE’den daha farklıdır ve sayısal 

sonuçları da EFIE’ye göre farklılık gösterebilir. 

 Elektrik alan integral denkleminin (EFIE), bu çalışmadakine benzer 

problemler için tatmin edici sonuçlar verdiği, ancak ileriki zamanlarda 

yapılacak çalışmalarda, manyetik alan integral denklemine (MFIE) ilişkin 

çözümler de ilave edilerek, 

 
            

 

 
           (4.1.) 

denkleminde belirtilen oranlarda EFIE ile birleştirilip, birleşik alan integral 

denklemi (CFIE)’nin oluşturulmasıyla, daha geniş bir frekans bandında 

güvenilir sonuçlar elde edilebilecektir. 

 CFIE, aynı zamanda açık yüzeylere de uygulanabilir olmasından dolayı, 

yüzeyin içindeki noktaların ilave olarak örneklenmek zorunda kalınmaması 

yönünden de avantajlıdır. Bununla birlikte CFIE, EFIE ve MFIE ile aynı 

sayıda bilinmeyen içermektedir. Denklemin olumsuz yönü; yüzeyin oldukça 

dar kenarlara ve uçlara sahip olduğu durumlarda doğru sonuçlar üretmesi 

konusunda MFIE’nin güvenilir olmamasıdır. 

 Bu çalışmada yüzey akımı ve saçılım modellemesi uygulanan geometriler 

için kullanılan kod dizini, geometrinin modellenmesi için kullanılan üçgen 

sayısının 10000’i aştığı durumlarda kabul edilebilir süre içerisinde hesaplama 

yapamamaktadır. Kullanılan kod dizininin, modelleme üçgen sayısının 

10000’i aştığı geometrilerde kullanılabilmesi için hesaplamayı hızlandırıcı 

yöntemler kullanarak düzenlenmesi gerekmektedir. Bu şekilde düzenlenecek 

bir kod ile yüzey akımı ve saçılım modellemesi yapılabilecek, 10000’den fazla 

üçgenle modellenen bir otomobil (Chevrolet CAMARO) Şekil IV.1’de 

gösterilmiştir. 
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Şekil IV.1 Otomobil (Chevrolet CAMARO) 

 

 Çalışmada kullanılan frekans bandının, halihazırda kullanılmakta olan 

AN/SPS-40 ve AN/SPS-49 [15] gibi hava arama radarlarının frekansına 

karşılık gelecek şekilde seçilmiş olması nedeniyle, ileride, muhtemel hava 

hedeflerinin saçılım paternleri ve hava arama radarlarının yakalama 

olasılıkları konularında yapılacak çalışmalara ilişkin de fikir verebileceği 

düşünülmektedir. 

 Çalışmada, saçılım paterni incelenen şekillerin mükemmel iletken (perfect 

electric conductor-PEC) oldukları ve bulundukları ortamın homojen olduğu 

kabul edilmiş ve hesaplamalar buna göre yapılmıştır. Kullanılan yöntem 

geliştirilerek, ileride yapılacak çalışmalarda, dielektrik madde ve homojen 

olmayan ortam için çözümler elde edilebilir. 

 Büyük çaplı ve karmaşık elektromanyetik problemlerin çözümünde, farklı 

yöntemlerin avantajlarından yararlanabilmek amacıyla, Şekil II.1’de görülen 

hesaplama yöntemlerinden uygun olan ikililerin birleştirilerek uygulanması 

(örn.:moment metodu ile sonlu eleman metodu) gibi melez yöntemler de 
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özellikle son yıllarda sıkça kullanılmaya başlanmış ve başarılı sonuçlar elde 

edilmiştir. 

 

Şekil IV.2 Hızlı Yöntemlerin Modelleme Mantığı 

 Diğer yandan, moment metodundaki gibi her üçgen için ayrı ayrı hesap 

yapılması yerine, üçgenlerden oluşan gruplar kurarak (Şekil IV.2), 

hesaplanacak empedans matrisinin boyutunu küçülten FMM (Fast Multipole 

Method) ve MLFMA (Multilevel Fast Multipole Algorithm) gibi yöntemlerle, 

bellek kullanımı ve işlem hızı konularında önemli ilerlemeler kaydedilmiştir. 

Moment metoduyla yapılan bilgisayar tabanlı EM hesaplama çalışmalarının 

geleceğinin bu alanlarda olduğu görülmüştür. 
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