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KOMPLEKS DUZLEMDE 1-PARAMETRELI HAREKETLER
VE HOLDITCH TEOREMIi

OZET

Bu ¢alisma temelde bes bolimden olugmaktadir. Girig bolimiinde konunun ele
alimma sebebi, ikinci bolimde ise konuya temel olan galigmalar ortaya konuldu. Genel
Bilgiler boliimiinde ise hareketler ile ilgili temel kavramlara yer verildi.

Materyal ve Metot bolumiinde, 1-parametreli diizlemsel hareketler ve 1-parametreli
dizlemsel homotetik hareketler altinda lizlar ve ivmeler incelendi. Daha sonra kapah
hareketler altinda bir noktanin Steiner alan formili verildi ve Holditch teoremi ifade ve
ispat edildi. Bundan bagka kompleks diizlemde 1-parametreli kapali hareketlerde
yoriinge alan formiilii ve kangik alan formili verildi. Bu kangik alan formiili
yardimiyla Holditch teoremi tekrar ispat edildi.

Caliymamizin orijinal kismum olusturan Bulgular boliimiinde, kompleks diizlemde
1-parametreli hareketler ve 1-parametreli homotetik hareketler altinda hizlar ve ivmeler
yeniden incelenerek bunlarin kompleks dizlemdeki ifadeleri elde edildi. Daha sonra,
kompleks diizlemde 1-parametreli kapali homotetik hareketlerde bir noktanin yériinge
alan formili ve kangik alan formili elde edildi. Bu kangik alan formiilii yardimiyla
kompleks diizlemde 1-parametreli kapali homotetik hareketler altinda Holditch teoremi
ispat edildi.

Anahtar Kelimeler:

Homotetik Hareketler, Steiner alan formiilii, Kangik alan formiilii, Holditch teoremi
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1-PARAMETER MOTIONS AND HOLDITCH THEOREM
ON THE COMPLEX PLANE

ABSTRACT

This study consists of five basic chapters. In introduction, the reason why this study
is taken into consideration is given and in the second chapter the basic studies have been
presented. In the third chapter, fundamental concepts about motions are given.

In the fourth chapter, velocities and accelerations are examined under the 1-
parameter motions and 1-parameter homothetic motions. Then, Steiner area formula of
a point under the closed motions is given and the Holditch theorem is expressed and
proved. Moreover, the orbit area formula and the mixture area formula are expressed
under the 1-parameter motions in the complex plane. The Holditch theorem is proved
again by means of this mixture area formula.

The fifth chapter is the original part of our study. In this chapter, velocities and
accelerations under the 1-parameter motions and 1-parameter homothetic motions in the
complex plane are examined and the complex expressions of these velocities and
accelerations are obtained. Then, the orbit area formula of a point and the mixture area
formula are obtained under the 1-parameter closed homothetic motions in the complex
plane. Finally, the Holditch theorem is proved by means of this mixture area formula
under the closed homothetic motions.

Key Words:

Homothetic Motions, Steiner area formula, Mixture area formula, Holditch theorem
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1. GIRIS

Bu ¢alismanin amaci “The Steiner formula and the Holditch Theorem for the
homothetic motions on the planar kinematics [8]” adli makalede Oklid diizleminde 1-
parametreli homotetik hareketler altinda verilen hizlar ve ivmeler ile ilgili bagmnt1 ve
sonuglarin kompleks diizlemde 1-parametreli homotetik hareketlerde nasil elde
edildiginin arastirilmasi ve “Verallgemeinerung einer Formel von Steiner [3]” isimli
makalede kompleks diizlemde 1-parametreli kapali hareketler altinda elde edilen
ifadelerin kompleks diizlemde 1-parametreli kapali homotetik hareketler altinda ne

sekilde elde edileceginin gosterilmesidir.



2. LITERATUR OZETi

Literatiirde [8] de Oklid diizleminde 1-parametreli homotetik hareketlerde hizlar ve
ivmeler ile ilgili bagntilar ve sonuglar verilmis ve 1-parametreli kapali diizlemsel
homotetik hareketler altinda sabit bir noktanin yo6riinge alan formiilii elde edilmistir.
Ayrica, homotetik oraninin “1” e egit olmas1 durumunda [2] de verilen sonuglar 6zel hal
olarak elde edilmigtir. Bundan bagka 1-parametreli diizlemsel hareketlerde ifade ve ispat
edilen Holditch teoremi homotetik hareketlere genellestirilmistir.

Diger taraftan, [3] te kompleks diizlemde 1-parametreli kapali hareketlerde
hareketli diizlemde alinan farkli iki sabit noktanin karisik alan formiilii ifade edilmis ve
bu karngik alan formiilii yardimiyla [4] te kompleks diizlemde 1-parametreli kapali
hareketlerde Holditch teoreminin ispati yapumstir. Ayrica [3] ve [4] te elde edilen
sonuclar [5] te homotetik hareketlere genellestirilmeye caligiimig, fakat elde edilen
teorem ve sonuglar homotetik oranmina bagh olarak ifade edilememistir. Bu ¢alismada
ise [3] te verilen tiim sonuglar ve Holditch teoremi kompleks diizlemde 1-parametreli
homotetik hareketlere genellestirilmis ve elde edilen sonuglar homotetik oranina bagl
olarak ifade edilmistir. Ayrica homotetik oranimin “1”
Ozel hal olarak elde edilmistir.

alinmasi halinde [3] teki sonuglar



3. GENEL BILGILER

TANIM 3.1.
A#® bir cimle ve V' de K cismi ilizerinde bir vektor uzayr olsun. Asagidaki
ozellikleri saglayan bir
f:AxA->V
fonksiyonu varsa 4 ya V' ile birlesen bir afin uzay denir.
(Al). VP,Q,Re 4 i¢in f(P,Q)+ f(Q,R)=f(P,R)
(A2). YPe A ve VaeV igin f(P,Q)=a olacak sekilde bir tek O € 4 noktasi vardr.

TANIM 3.2.
V', n-boyutlu reel vektor uzay1 ve A da V' ile birlegen bir afin uzay olsun. Eger V'

bir ig-garpim uzay1 ise 4 ya Oklid uzay: denir ve genellikle £ ile gosterilir.
TANIM 3.3.
K cismi iizerinde iki vektor uzayr ¥, ve V, olsun. V; ve V,ile birlesen afin uzaylar
A, ve A, olmak tizere f: A — A, bir donisim olsun. P,Q € 4, olmak uizere
vV oV,
PQ - v,(PQ)=f(P)/(©)

seklinde tammlansin. Burada v, dontsimine f ile birlegen doniigiim adi verilir. Eger

v, donisimi lineer ise f ye bir afin doniigiim denir.
TANIM 3.4.
E" ve E,", siraswyla, V; ve V, n-boyutlu i¢ ¢arpim uzaylan ile birlegen birer 6klid
uzayi olsunlar. Bir
f:E">E
afin dontisimi Ve, eV igin
(W), y(®)) =({ct.B)
olacak sekilde bir
v =7,

lineer doniisimii ile birlesiyorsa ‘ f ye bir izometri denir.



TANIM 3.5.

n-boyutlu bir E" o6klid uzaymn izometrilerinden biri folsun. E"deki bir
{x,,%,,...,x,} dik koordinat sistemine gore f nin matrisel ifadesi 4 €O(n), yani
det A =F1 ve C € R"i olmak lizere

HbRiH
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formundadir. f ye E" de bir hareket adi verilir. f hareketine, det4 =1lise direkt
hareket, det 4 = —1 ise karsit hareket denir.
TANIM 3.6.

E”, n-boyutlu Oklid uzaymmn bir f izometrisi igin f(O)=0 olacak sekilde bir
O € E" noktasi varsa f ye O noktas: etrafinda E"in bir donmesi adi1 verilir. Eger
hareket direkt hareket ise f ye direkt donme, kargit hareket ise karsit donme denir.

E" de baslangic noktast O olan bir dik koordinat sistemi {x,,x,,...,x,} olsun.
f:E" > E" izometrisi O noktas: etrafindaki bir donme ise f nin bu dik koordinat
sistemine gore ifadesi

x'= Ax
seklindedir. Burada, 4 € O(n) ve x,x'e R" dir.
TANIM 3.7.

E", n-boyutlu Oklid uzaymmn bir f izometrisi ve VX € E” igin f(X)=X +1¢
olacak sekilde bir tek 7 =(¢,,1,,...,2,) € E” noktasi varsa f ye E” in ¢ ile belirtilen
bir 6telemesi denir.

E" de baglangig noktasi O olan bir dik koordinat sistemi {x,,x,,...,x,}olsun.
f:E" = E" izometrisi ¢ = (¢,1,,...,2,) noktasi ile belli olan bir 6teleme olsun. f nin
bu dik koordinat sistemine gore ifadesi

b
1 0 1|1

veya X=X+t
dir.



TANIM 3.8.

E hareketli dizleminin E’ sabit dizlemine gore hareketi B=E/E' ile
gosteriimek Gzere B hareketinin ¢ donme agis1 ve u OGteleme vektorinin u,,u,
bilesenleri @ = @(#), u, =u,(t), u, =u,(f) seklinde bir ¢ reel parametresinin siirekli
diferensiyellenebilen fonksiyonu iseler B hareketine 1-parametreli diizlemsel hareket
denir.

TANIM 3.9.

u,,u,ve @; bir ¢ reel parametresinin strekli diferensiyellenebilen fonksiyonlan
olmak lizere u, =u,(f), u,=u,(t), @ =¢() fonksiyonlan aym ¢z, <t <t arahfinda
tarumlanmg olsun. Ayrica

u,t+D)=u;(t) , 1,2
ot+T)=0()+2nv
bagintilar1 saglanacak sekilde en kiigiik bir 7 >0 sayisi varsa, x'=x—u denklemi ile
tammlanan harekete T periyotlu ve v donme sayih 1-parametreli kapal diizlemsel
hareket denir.
TANIM 3.10.
n -boyutlu Oklid uzayinda bir cismin homotetik hareketi

HytH
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doniigiimil ile ifade edilir. Burada A, nxn tipinde ortogonal bir matris, # =4/, skaler bir
matris ve X, x', u birer nx1-tipinde matrislerdir[1].

TANIM 3.11.

u,u,, ¢ ve h bir ¢ reel parametresinin- sirekli diferensiyellenebilen fonksiyonlan
olmak tlizere wu, =u,(f), u,=u,(t), @=@@) ve h=h(t) fonksiyonlan aym
t, <t <t araliginda tammlanmis olsun. Ayrica

u,+TN)=u,(t) , j=1,2
o(t+T)=0()+2nv
bagintilan saglanacak gekilde en kiigik bir 7 > 0 sayis1 varsa, x'= 4x —u denklemi ile

tanimlanan harekete T' periyotlu ve v donme sayih 1-parametreli kapah diizlemsel

homotetik hareket denir.



4. MATERYAL VE METOT
4.1. 1-Parametreli Hareketler

E ve E’ birbiri lizerinde hareket eden iki diizlem olsun. Burada E hareketli, E’
ise sabit diizlemdir.

Hareketi inceleyebilmek i¢in bir O’ € E’ baslangig noktasim alalim ve bu noktaya
{€,,€;} koordinat sistemini tesbit edelim. Aym sekilde E -diizleminde alinan O
baslangi¢ noktasina {€,,&,}koordinat sistemini tesbit edelim. Bu iki koordinat sistemini
E ve E’'-dizlemlerinin temsilcisi olarak kabul edecek ve hareketli koordinat sisteminin
sabit koordinat sistemine gore hareketini inceleyecegiz.

Bu koordinat sistemlerinin gesitli konumlan, su iki buyiklik yardim ile ifade
edilebilir.

i.) Hareketli sistemin baslangi¢ noktasindan sabit sistemin baglangi¢ noktasina giden
00’ =u oteleme vektori,

ii.) Her iki koordinat sisteminin birbirine nazaran dénme agisi.

TANIM 4.1.1.

Sabit ve hareketli sistemin aymt indisli birim vektorleri arasindaki ¢ agisina dénme
aqisi denir.

00" =u oteleme vektorii, asagndaki gibi hareketli sistemin e ve g,
dogrultularindaki iki bilesene ayrilabilir.

(4.1.1) u=ug¢, +u,e,
TANIM 4.1.2.

E hareketli diizleminin E’ sabit dizlemine goére hareketi B=E/E' ile
gosterilmek iizere B hareketinin ¢ donme acist ve u Oteleme vektdrinin u,,u,
bilesenleri @ =o(f), u, =u,(t), u, =u,(f) seklinde reel bir ¢ parametresinin
fonksiyonu iseler B =FE/E' hareketine 1-parametreli diizlemsel hareket denir.

Buradaki ¢ parametresi genel olarak zaman olarak alinur.
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Sekil 4.1.1

O =0’ oldugu zaman, €, ve ¢, vektorleri €; ve €, dogrultularinda bilesenlerine
ayrilabilir ve buradan

" L,
€, =cos@eé, +sin@e,

4.1.2) - . —
€, =—sinQe, +cospe,

esitlikleri elde edilir.

4.1.1. Tiirev Denklemleri

Bir X noktasinin her iki £, £’ -diizlemlerine nazaran hizlarim arastirmak i¢in dnce
hareketimizin tlirev denklemlerini tegkil edecegiz. (4.1.2) denkleminde, € ve &

vektorlerini sabit kabul ederek, ¢ zamanina goére tiirev alinirsa,

de, - C ey o ey -
7=el =—@singe, +Pcospeé, =@(—sinpe, +cospe,)
de, .- , o . o =
7 =€, =—Qcospe, —@sinpe, =—@p(cospe, +singpe;)
bulunur. Bunlar kisaca
(4.1.3) €, =08, , & =-0F,

seklinde yazabiliriz.
Benzer olarak (4.1.1) denkleminin ¢ ye gore tiirevi alinirsa
du .

— =u=1i,e, +u,€, +u,e, +u,e,

dat



elde edilir. €, ve €, nin (4.1.3) deki degerleri burada yerlerine konursa
4.1.4) u=u -u,0)e + @, +up)e,
bulunur.
(4.1.3) ve (4.1.4) denklemlerine B = E/E’ hareketinin tiirev denklemleri denir.

4.1.2. Hizlar ve Hizlarin Terkibi

E -duzleminin bizzat kendisi E’-dizlemine gore 1-parametreli hareket yaparken,
bir X noktas: da hareketli E -diizlemindeki yerini ¢ zamam ile degistirsin. Boylece iki
hareketi bir araya getiriyor ve bu durumda hizlann nasil terkip edilecegini aragtirtyoruz.
TANIM 4.1.3.

X noktasmin FE-diizlemine goére iz vektoriine, yani X noktasi FE -deki
yoriingesini ¢gizerken sahip oldugu vektorel hiza X noktasiun relatif(izafi) hizi denir
ve V, ile gosterilir. Bu iz igin

X =X,€, +X,6€,
denkleminden, €, ve €, yi sabit tutarak, tiirev almak suretiyle
(4.1.5) V., = X€, +X,¢,
bulunur. Eger X noktasi E -de sabit ise V. relatif mzi sifirdir.
TANIM 4.1.4.

X noktasimn E’-ne gore iz vektorine X noktasimn mutlak hizi denir ve V, ile
gosterilir.
(4.1.6) x'=0X=00+0X =0X -00'
=x-u=(x —u)e, +(x, —u,)e,

esitliginin ¢ ye gore tiirevi alimirsa V, i¢in su elde edilir:

V, = (% ~)&, +(x, —u,)e, +(%, —1,)&, +(x, ~u,)F,.
Burada €, ve &, min (4.1.3) deki degerleri dikkate aliirsa

V, ={~, +(u, - x,)0}&, +{—u, + (—u, +x,)P}€, +X,€, +%,8&,
veya

V, ={-u, +(u, —x,)0}€, +{~u, +(-u, +x,)d}€, + V.
elde edilir. Burada
(4.1.7) Vi ={-u +(u, ~x,)0} €, + {1, + (~u, + x,)¢}€,



ile gosterilen vektore X noktasinin siiriiklenme hiz vektérii denir.

O halde hizlarin terkibine ait su teorem verilebilir:

TEOREM 4.1.1.
Eger X noktas: her iki sisteme gore hareketli ise huz vektorleri arasinda
4.1.8) V,=V, +V,

bagintis1 vardir[2].

TANIM 4.1.5.

Donme agisinin Z—T = ¢ tlirevine B hareketinin a¢isal hiz1 denir. Bundan sonra

surf 6teleme hareketinden kaginmak igin ¢ # 0 kabul edecegiz.

Simdi B hareketinin her ¢ aninda siirtiklenme hiz1 sifir olan noktalarini arastiralim.
Bdyle noktalar, ¢ aninda, yalmiz hareketli E -diizleminde degil aym1 zamanda sabit E' -
diizleminde de sabit bulunmak zorundadirlar. O halde
V,=0
olacagindan (4.1.7) den
-+ (U, —%)=0 , —u,+(—u, +x)p=0
elde edilir.

¢ # 0 olduguna gore bu iki denklem her zaman tek tiirlii olarak ¢éziilebilir. Bu

¢oziimlere p, ve p, denilirse

2 du,
D =x =y + =“1+7
(4.1.9) ¢ ?
U, du,
Py =% SUy =" FUy ———
¢ do
bulunur.
TANIM 4.1.6.

OP = p=pe, +p,e, yer vektorine karsihk gelen P =(p,,p,) noktasina
B =E/E' hareketinin ¢ amindaki pol(kutup) noktasi, donme polii veya ani donme
merkezi denir.

Bundan dolay: agagidaki teorem verilebilir:
TEOREM 4.1.2.

Agisal iz sifir olmayan bir harekette, her ¢ aninda, siiriiklenme hizi sifir olan yani
her iki diizlemde de sabit kalan bir tek nokta (pol noktas1) vardir[2].
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P pol noktasi yardim ile herhangi bir X noktasinin V, siiriikklenme hzim su
sekilde de yazabiliriz:
Bunun igin (4.1.9) dan
i =, =p)o Uy =~ - p)o
ifadelerini hesaplar (4.1.7) de yerine yazarsak
(4.1.10) Ve ={-(x, - p,)e, +(x, — p,)&, }d
elde edilir.
X noktasimn siriiklenme hizimn bu sekildeki ifadesinden 6nemli iki sonug
¢ikartilabilir:
SONUC 4.1.1.
P poliinden X noktasina giden pol 1gininin
PX = (x, = p)&, + (%, ~ p,)&,
vektori V, ye diktir; ¢linkii

<FX-:’Vr> =—(x, = p,)0x - p)+(x - p)x, - p,)=0

dir. Yani pol 1511 hareketin her ¢ aninda siiriiklenme hizina diktir.
SONUC 4.1.2.

YV, vektoriniin uzunlugu i¢in su bagmnti vardir:

vl = o|PX]|

TANIM 4.1.7.

Her ¢ anmna bir P pol noktasi ait olacagindan B hareketi esnasinda P pol noktast
her iki £ ve E’-dizlemlerinde muhtelif konumlar alir. P noktasiun hareketli E-
diizlemindeki yeri genel olarak bir egridir, bu egriye B nin hareketli pol egrisi denir
ve (P) ile gosterilir. P noktasimn E’-dizlemindeki geometrik yerine ise sabit pol

egrisi denir ve (P’) ile gosterilir.
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4.1.3. ivmeler ve Ivmelerin Terkibi
TANIM 4.1.8.

X noktasimin E -diizlemine gore olan ivme vektoriine relatif ivme vektdrii denir
ve b, ile gosterilir.

X noktasiun FE-diizlemine nazaran V, relatif mzinin ¢/ zamammna gore tiirevi
alinarak bu vektorel ivme bulunur. Yani
(4.1.11) b, =V, = ¥§, +%,¢,
dir. Burada €, ve €, sabit kabul edilmistir.
TANIM 4.1.9.

X noktasiin E’-diizlemine gore olan ivme vektoérine mutlak ivme vektdrii
denir ve b, ile gosterilir.

V, =V, + V. ={(x, - p,)é, +(x, - ), }o + %8, +%,8,

mutlak hizinin # ye gore tiirevi alinarak bu vektorel ivme bulunur.

.

b, =V, ={= (= £2)8, — (6, = P2)R, + 6 = 5% + (5~ )& Jo
+{-(x, ~ P,)&, + (x, = P)E, JB + X,&, + %8, + %,8, + %,8,
elde edilir. él ve 'é'z nn (4.1.3) deki degerlerini yerine yazarsak
(“.112) b, ={£,6- (% - P)9* ~(x; — )i,
+ £ 2006, = )07 + 05 - pBJE,
+20f-%,8, + %8, }+b,
elde edilir. (4.1.12) deki
(“.113) b ={£.6-(x - )6* - (v, ~ P},
+{- o= 0 - P20 + (5, - PIGJE,
vektoriine X noktasimun siiriiklenme ivme vektorii denir.
O halde siiriklenme ivme vektorti hareketli sistemdeki sabit noktalarin sabit
sisteme gore ivmesidir.
(4.1.14) b, = 20{ x,8, + %, }
ile gosterilen b, vektorune ise Coriolis-ivme vektorii denir.

O halde ivmelerin terkibi su teoremle ifade edilir:
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TEOREM 4.1.3.
Iki hareketin terkibinde bir noktamn mutlak ivme vektori, striiklenme ivme
vektorii ile Coriolis-ivme vektorii ve relatif ivme vektériiniin toplamina esittir, yani
b, =b; +b_ +b,
dir{2].
SONUC 4.1.3.
b, Coriolis-ivmesi V, relatif mzina diktir. Cunkii,
(b, V,)=20(-%%, + %,%,)=0.
Bundan baska (4.1.14) den sunu sdyleyebiliriz:
E -de sabit olmayan bir X noktasimn Coriolis-ivmesi ancak ve ancak ¢ =0, yani
B hareketi bir kaymaya(6telemeye) ugradigi zaman, ¢ nin bitiin degerleri igin sifir
olur. Bu takdirde, (4.1.7) ve (4.1.8) den dolay:
V, =V, +V_=(-u, +x)e, +(-u, +x,)¢e,
ve buradan tiirev alarak
b, =b, +b, = (i, +%)e, +(-ii, +%,)e,
bulunur. Demek ki ancak bir kayma hareketi halinde ivmeler hizlar gibi terkip
olunurlar.
Simdi genel bir B hareketinde, ¢ zamaninda, stiriklenme ivmesi sifir olan
noktalan aragtiralm. b, =0 dan
(e = P)O* +(x; = p)o = P
(x; = PO - (x, — p,)0* = p,6
elde edilirr =0 ise, (x,-p,) ve (x,—p,) ye gore homojen olmayan denklem

sisteminin A ile gosterilen katsayilar determinantt

.2

LR

.2

¢ -0

A= =—(@* +§*) =0

dir. Buna gore yukandaki denklem sistemi ¢ozilebilir.
TANIM 4.1.10.

¢ # 0 olmak iizere, ¢ amnda, siiriikklenme ivmesi sifir olan bir tek nokta vardir. Bu
noktaya ivme polii denir.

Ivme poliiniin koordinatlar
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, 92,0 + py)

xl =pl . 4 2
+
(4.1.15) e
_ o(p,0° — p,0)
x2 "Pz - 4 .2
¢+
dir.

4.1.4. Kapah Hareketler
TANIM 4.1.11.
u,,u, ve @; bir ¢ reel parametresinin strekli diferensiyellenebilir fonksiyonlan
olmak tzere
= (t), u, =u,(0), ¢©=0()
fonksiyonlan aym ¢, <f <¢, aralifinda tamimlanmug olsun. Eger
u,t+T)=u, @), j=12
ot+T)=0o()+2nv
bagintilan saglanacak sekilde 7 >0 en kugiik say: ise; E/E’ hareketine T periyotlu
ve v donme sayili 1-parametreli kapali diiziemsel hareket denir.
Burada v bir tamsayidir ve E’-ye gore E -diizleminin ilk durumuna gelinceye
kadar (T zamaninda) kag tam devir yaptiginu gosterir.
X noktasmin E’'-ye gore dx’ degisimi, Xin siriklenme hizina kargilik
geldiginden (4.1.10) dan
(4.1.16) dx' ={-(x, - p,)e, +(x, — p,)&, }do
dir.

4.1.5. Kapah Bir Hareketin Yoriinge Alani
E -dizleminin sabit bir X noktasiun F, yoringe alanim hesaplamak istiyoruz.

Bunun igin
1 ’ ! 14 !
(4.1.17) F, = 5§ (xldic, — x.dx!)

Gauss alan formiiliinden faydalanacagiz[6]. Burada egri integrali X noktasin kapal
yoringe egrisi tizerinde alinmaktadir.

!
1\ *

— e ! e
dxl (ix, - xlkz dexl
1 2
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esitligi géz oniine alimirsa (4.1.17) den
1 ! !
(4.1.18) Fe=> §lx’,ax’]

yazilabilir. (4.1.18) ifadesinde (4.1.6) ve (4.1.16) bagintilan kullamhirsa,

1
= 5§(x12 +x22 =X\ D, — X, Py — XUy — XUy TULD, +u,p,)do

—U,

do
(xz pz) X — D

elde edilir. (4.1.9) denklemlerinden

du du
4.1.19 u, =p, —-——= u,=p, +—=
( ) 1= P do =P, do

bulunur. Bu degerler son esitlikte yerine yazilirsa

1 du du
Fy = §§(x12 + xzz —2x,p, = 2%, 0, + X ;,(’%— X, —£+u1p1 +u,p,)do
veya buradan
1 1
(4.1.20) Fy = E(xl2 b x22)§d¢ =35 §pld¢ = x2§p2d¢ b > §a’u2

1 1
_Exz§du1 +—2-§(u1p1 +u,p,)de
elde edilir.

Diger taraftan X = O(x, = x, = 0) orijin noktasinmn yoriinge alam hesaplanirsa
1 - u1

F, ==
° 2 § P

1
= E§(u1p1 +u,p,)do

bulunur.

Diizlemsel hareket kapali oldugundan, ¢ =0 igin
o(T) = ¢(0) +2mv
olup

[dott) = o(t)], = o(1) - 0(0) = 27v

diir. Benzer sekilde # =0 igin u(T) =u,(0) oldugundan
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iduj(z)zuj(z)ﬁ=uj(T)—u,.(0)=o

elde edilir. Bulunan bu degerler (4.1.20) de yerine yazilirsa
(4.1.21) Fy =nv(x” +x,") - x,{ pdo-x,§ p,do + F,
bulunur.
v#0 ise § Steiner noktasin elde ederiz.
TANIM 4.1.12.
do kitle elementli kitle 6rtillmesinde hareketli (P) pol egrisinin agirhk merkezine
Steiner noktasi denir ve S ile gosterilir.
S nin koordinatlan s, ve s, olmak tzere

s _§pjd(p_—1—
i §d(p T 2mv

(4.1.22) § pde, j=12

dir. Burada pay koordinat eksenlerine goére statik momenti, payda ise bu suretle
ortulmis (P) pol egrisinin bitin kitlesini gosterir.

O halde (4.1.21) den X noktasimn yoriinge alam igin
(4.1.23) Fo =Fy+mv(x,” +x," —2x,5, —2x,5,)

Steiner alan formiilii elde edilirf2].

4.1.6. Holditch Teoremi
TEOREM 4.1.4.

E'-dizleminde bir & ovali verilsin. Uzunlugu sabit olan bir dogru pargasimn iki
ucunu bu oval Gzerinde hareket ettirelim. Dogru pargas: {izerinde tespit edilen bir X
noktasmmn E/E’ diizlemsel hareketi esnasinda ¢izdigi kapal egri ile £ ovali arasindaki
bolgenin alamt sadece X noktasinin dogru pargasi iizerinde segiligine baghdir, yani bu
alan k£ ovaline ve E/E' diizlemsel hareketine bagh degildir[2].
ispat:

Sekil 4,1.2 de verilen &£ ovalini ve 5@ dogru parcasim ele alalim. @ dogru

pargasinin uzunlugu da g olsun. _05 dogru pargasinin O ve Q uglan £ yi1 tam bir defa

kat edecek sekilde hareket etsin. Bu durumda v=1 dénme sayili kapali bir hareket

meydana gelir.
¢y
- 1 .&Wﬁf@“@ '
m@%m%m‘:ﬁ”@ﬁmm
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Sekil 4.1.2

0, bir {0;%,,&,} dik koordinat sisteminin baslangici olarak segilirse, X noktasmin
yoriinge alam igin (4.1.23) Steiner alan formillinde x; = x, x, =0 alnarak
F, =F, +w(x* - 2s,x)
elde edilir. O ve Q noktalar1 aym % ovalini ¢izdigi i¢in O ve Q noktalaninin yoriinge
alanlan igin
F,=F, =F, +m(q” —25,9)
bulunur. Buradan da
m(g* —25,9)=0
veya
q=25
elde edilir. Sekil 4.1.2 de x + y = ¢ oldugundan
Fy = Fp +(x* - q)
=F, +n(x* -x* - xy)
veya
Fy = Fp —mory
bulunur.

k ovali ile X noktasmmn kapah yoriinge egrisi arasindaki tarali bolgenin alamm F

ile gosterirsek

oldugundan

bulunur,
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O halde tarall bolgenin alamm % min segilisine degil, yalmz X noktasmn &
ovalinin i¢ini tarayan O—Q_ dogru parcasimin O ve O ug noktalarindan olan uzakhgina,

yani X noktasimn 5@ dogru pargasi Uizerindeki yerine baglidir.
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4.2. Homotetik Hareketler

E -diizleminde hareketli koordinat sistemi {0;%,,¢é,} ve E’-dizleminde sabit
koordinat sistemi {0’;€,,€, } olsun.

E -diizleminde alinan sabit bir X noktasimin, herhangi bir # aninda,
(4.2.1) X' =hx—u=(hx, —u,)e, +(hx, —u,)e,
denklemi ile tammlanan homotetik hareketini inceleyelim. Burada 4, ¢ reel
parametresinin surekli diferensiyellenebilir fonksiyonudur.

Hareketli sistemin baglangic noktasindan sabit sistemin baglangi¢ noktasina giden
00’ =u vektoril
4.2.2) u=ue +u,g,
seklinde ifade edilebilir.

Hareketli diizlemin sabit diizleme gore donme agist ¢ dir.

Bir an i¢in her iki koordinat sistemini ¢akisacak gekilde kaydinlmig olarak

diistinelim. Bu durumda € ve €, vektorleri €; ve e, dogrultularinda bilesenlerine

ayrilabilir ve

4.2.3) €, = CcosQe,; +sin g€,
o €, =—SinQe, +Ccosne,

seklinde yazilabilir.

4.2.1. Kapah Diizlemsel Homotetik Hareket
TANIM 4.2.1.

u,u,, ® ve h, bir ¢ reel parametresinin siirekli diferensiyellenebilir fonksiyonlarn
olmak tizere
w, =u (), u,=u,(t), o0=0@), h=h@)
fonksiyonlari aym £, < <, arahginda tanimlanmus olsun. Eger
u,(t+T)=u;(®), j=12
ot +1)=0(t)+2nv
bagntilan saglanacak sekilde 7 > 0 en kiigiik sayi ise,
x' = (hx, —u,)e, +(hx, —u,)E,

(4.2.4)
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denklemi ile tammlanan harekete 7' periyotlu ve v dénme sayili 1-parametreli kapal
diizilemsel homotetik hareket denir. E -diizleminin E’-diizlemine gore kapali
homotetik hareketini B= E/E’' ile g6sterelim.

X noktasimn hareketli sistemdeki koordinatlar (x,,x,) olmak iizere
(4.2.5) X =Xx€, +x,€,

dir.

4.2.2. Hizlar ve Hizlarin Terkibi
X noktasmin E ve E'-dlizlemlerine gore hizlarimi hesaplamak igin 6nce B
hareketinin tiirev denklemlerini teskil edelim. Bunun i¢in (4.1.3) den

(4.2.6) 6, =08, , & =-0F
ve (4.1.4) den
4.2.7) u =, —u,p)e, + U, +u,Q)e,
oldugunu biliyoruz. (4.2.6) ve (4.2.7) denklemlerine B hareketinin tiirev denklemleri
denir.
B hareketinin relatif hizi, (4.2.5) den tiirev alinarak
4.2.8) V, =X€, +X,€,

ve mutlak hiz ise (4.2.1) den tiirev alinarak

i ARy
(4.2.9) % =—dt—={—u1+(u2—hx2)(p+hxl}e1

a

+ {— iy + (=, + hx,)p + hx, }éz +hV,

olarak bulunur. (4.2.9) esitliginde
(4.2.10) Vi = {=thy + (u, — hoe, ) + Fox, Y&, +{—ih, + (—u, + hx, )¢ + hx, } 6,
vektoriine X noktasinin siiriiklenme hiz vektorii denir. Eger X noktasi E -de sabit
ise, yani V, =0 ise, bu durumda mutlak hiz siiriiklenme hizina esit olur.
TEOREM 4.2.1.

E/E' homotetik hareketinde bir X noktasimin hiz vektorleri arasinda
4.2.11) V, =V, +hV,
bagintis1 vardir[7].

Donme agisinin Z—T = ¢ tlirevine B hareketinin agisal hizi denildigini biliyoruz.
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Suf Gteleme ve sif dénme durumlanndan kaginmak i¢in ¢ =0, k= h(t) # sabit
kabul edecegiz.

Simdi suriiklenme hizimin sifir oldugu noktalarn aragtiraim. Boyle noktalar ¢
amnda yalniz hareketli E -diizleminde degil aym1 zamanda sabit E’-diizleminde de sabit
olmak zorundadir. Buna gore

vV, =0
olacagindan (4.2.10) dan
—t, + (u, = hx,)o+Fx, =0
—t, +(he, —u)p+hx, =0
bulunur. Bu denklemleri x, ve x, ye gore diizenlersek
hx, ~ hox, =i, —u,®
hox, +hx, =u, +u,

elde edilir. Bu sistemin ¢ozamleri p, ve p, ile gosterilirse

_ iy ~u,0) + oG, +u,9)

1 3 .
h2 h2 2
(4.2.12) b ) " (p ) 4
_ h(u, +u, @) — ho(u, —u,®)
2 }‘12 +h2(b2
bulunur.

OP = p=p& +p,e, yer vektorine karsiik gelen P=(p,,p,) noktasina
B = E/E' homotetik hareketinin ¢ amundaki pol(kutup) noktas: denir.

Bu pol noktasindan faydalanarak herhangi bir X noktasin (4.2.10) esitligi ile
verilen striiklenme hizi asagidaki sekilde de ifade edilebilir. Bunun igin (4.2.12) den #,

ve u, degerleri hesaplanirsa

(4.2.13) i, =ph-pho+u,o , u,=phd+ph-ud
elde edilir. Bunlan (4.2.10) da yerine yazarsak
(4.2.14) V= {(xl - b )h —(x, - p, )h¢}é1 + {(xl —-pho+(x, - p, )I:'}éz

bulunur. Stirikklenme hizimin bu ifadesinden asagidaki sonuglar verilebilir:
SONUC 4.2.1.
P poliinden X noktasina giden

PX = (hx, - p,)&, +(Ix, — p,)&,
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pol igim ile V, nin i¢-garpimu
(Ve PX ) = (e, = p)(x, = )= (e, = P = P2
+ (ke = p,)(x =~ PR + (e, = )%, — o)k
dir. 2 =1 6zel durumunda
(v,,P_'X> =0
bulunur. Buise 2 =1 igin PX pol 1ginimin her ¢ aninda V; ye dik oldugunu gosterir.

SONUC 4.2.2.

V, vektoriniin uzunlugu

[Vel = V@ + B0 - p1)* +(x, — p2)’]
olarak elde edilir. Eger bu son esitlikte s =1 6zel hali alinirsa diizlemsel hareketteki
V1= ofPx]

esitliginin saglandig1 gorulir.

4.2.3. fvmeler ve Ivmelerin Terkibi

B kapali homotetik hareketinin ivmelerini bulmak i¢in (4.2.8) ve (4.2.9)
ifadelerinin ¢ ye gore turevlerini almabyiz. (4.2.8) den ¢ ye gore tlrev aliursa b_
relatif ivme vektorii igin
(4.2.15) b, =X €, +%,¢,
bulunur.

X noktasimn E’-diizlemine gore olan b, mutlak ivme vektori igin (4.2.8) ve
(4.2.14) esitliklerinin (4.2.11) de yerine yaziimasiyla elde edilen mutlak hzin ¢ ye goére
tiirevi alinirsa,

(4.2.16) b, = {(x, - P )i~ h$?) ~ (x, - )2k + hi) - pih+ p,ho
+{0r = )0+ 3+ (x, = pa )i~ ho™) — pr— pro e,
+ 2(hx, — h%,@)€, +2(hgx, + hx,)é, +hb,

elde edilir. Bu son ifadede
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(4217) b, ={(n = )i~ h9?) ~ (5, — P, )2 + ) = pi+ ol
+{0x, = 2 ) @b+ B + (x, = p )i - o) = Py = pihofe,

vektoriine X noktasinin siiriiklenme ivme vektorii,

(4.2.18) b, = 2(hx, — h%,0)e, + 2(hox, + hx,)e,

vektoriine de Coriolis-ivime vektrii denir. O halde asagidaki teoremi verebiliriz.

TEOREM 4.2.2.

Iki hareketin terkibinde bir noktamin mutlak ivme vektori, siiriklenme ivme
vektorii ile Coriolis-ivme vektorii ve relatif ivme vektdriiniin # katimin toplamina
esittir, yani
4.2.19) b, =b; +b_+5b,
dir[7].

Simdi diizlemsel hareketler igin verilen ivme pollerinin koordinatlarimi homotetik
hareketlere genellestiren bir teorem verelim.

TEOREM 4.2.3.
Genel bir B diizlemsel homotetik hareketinde ivme poliiniin koordinatlari

asagidaki esitliklerle verilir[7]:
| DR+ piRhg” =yl + by’ Q7 +2p,R7 0+ B pipf + phh

X = I ;
(42.20) e (h—h¢?)? +(2hg + h)?
v, = p, - Dot DBhG — PG + prhhG” ~2p W6~ hp\h + by} 66
P (h~h¢*)? +(2hg + hi)?
Ispat:

Striiklenme ivme vektoriiniin sifir oldugu noktalar ivme pollerini verdigi icin
(4.2.17) den
(x, = (=~ h™) = (x, = p,)(2h§ + h§) = pih =~ prhd
(¥, ~ P)2h + h§) + (%, = Py ) = ho®) = prhr+ prhp
elde edilir. Bu ise homojen olmayan bir lineer denklem sistemidir. =0 ve ¢ =0
oldugundan sistemin katsayilar determinant: sifirdan farklidir. O halde sistem ¢6ziiliirse
istenen bulunur.
SONUC 4.2.3.
Ozel olarak (4.2.20) esitliklerinde 4 =1 alinirsa 1-parametreli diizlemsel hareketin

(4.1.15) ile verilen ivme poliiniin koordinatlan elde edilir.
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4.2.4. Kapah Bir Homotetik Hareketin Yoriinge Alam
X noktasmin E'-diizlemine gore dx’ degisinﬁ X noktasiin  stiriklenme hizim
verdiginden (4.2.14) den

(4.2.21) dx’' ={(x, - p)dh - (x, - p,)hdo}e, +{(x, - p,)hdo + (x, - p,)dh}%,
yazilabilir.
O halde (4.2.1) ve (4.2.21) egitliklerinden
[xr dx'] - foe, —u hx, —u,

(= p)dh~(x, = p)hde (% = p)hdo+(x, ~ p,)dh
=(x,” +x,° Yh*do - x, p,h*do — x, p,h*do +u, p hdo +u, p,hdo
+u,p,dh—u,p,dh+u,x dh—hp,x dh—ux,dh
+ hp,x,dh —u,x,hdo - u,x,hdo
elde edilir. Diger taraftan, (4.2.13) den u; ve u, hesaplanirsa

(4.2.22) v Wy ALY A

dp do dp do
bulunur. Bu degerleri son esitlikte yerine yazarsak
(4.2.23) [x',dx']= (x* + x,” YW’ do - 2x, p h*do — 2x, p,hdo + u, p hdo

+u,p,hdo +u,p,dh—u, p,dh+x,(-2hp,dh -+ hdu, +u,dh)
+x,(2hp,dh — hdu, —u,dh)
elde edilir. (4.2.23) ifadesini (4.1.18) alan formiiliinde yerine yazarsak,

(4.2.24) Fy = %(xl2 + x22)§h2d(p -x, §p1h2d(p - x2§p2h2dcp
1
+ —2-§(u1p,hd(p +u, p,hdo +u, p,dh—u,p,dh)

1 1
+o% §(~2hp,dh + hdu, +u,dh) + 2% § (2hp,dh — hu, —u,dh)

bulunur.

Diger taraftan, X = O(x, = x, = 0) aliirsa, O orijin noktasiun yoriinge alan igin

(4.2.25) F, ==§ \ ~h ~¥2
2°| - pdh+ p,hdo - phdo— p,dh

1
= 5§(”1plhdq) +u,p,hdo +u, p,dh—u, p,dh)
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bulunur.

Simdi §h2d(p integralini goz oniine alalm. Bunu
T
§$nido = [ (O)o(r)dt
0

olarak yazabiliriz. Burada f(f)=h*(t) ve g(¢)= @) diyelim. A= h(f) ¢ nin sirekli
fonksiyonu oldugundan f(f) = A*(¢) de siireklidir. @ = @(f) ¢ nin siirekli fonksiyonu
oldugundan tamum geregi tiirevi var ve turevi siireklidir, yani g(f) = ¢(¢) sureklidir.
Ayrica hareket esnasinda @(¢) #0 oldugundan ve @(f) strekli bir fonksiyon
oldugundan @(f) <0 veya (f)>O0dir, yani () fonksiyonu [O, T] araliginda her
yerde ayni isaretlidir.

O halde f(¢)=h*(t) ve g(t) = ¢(t) fonksiyonlan [0, T] aralifinda siirekli ve g(¢)
bu aralikta her yerde aym igaretlidir. Siirekli iki fonksiyonun g¢arpimu siirekli ve surekli
bir fonksiyon integrallenebilir oldugundan g(¢) ile f(#)g(¢) fonksiyonlan [0, T ]
arahfinda integrallenebilirdir. O halde integral hesabin ortalama deger teoremi

geregince
[ fogwat = £¢,)| g)dr

olacak sekilde 3¢, € [O, T] vardir. Burada f(f) ve g(¢) nin degerlerini yerine yazarsak,
T T
[ @@t = n*(t,) [ o(e)ar
0 0

A ECH

=1 (t;)lo(1) - (0]
bulunur. Homotetik hareket kapal oldugundan
o(t+T)=0o()+2nv
dir. ¢ =0 igin
o(T) = p(0) +21v
veya
o(T)~o(0) = 2rv
olur. O halde
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f[h’ Oo@)dt = h*(2,).2mv

yani
(4.2.26) $hdo = 2h* (1, )mv
elde edilir[8].
v # 0i¢in kapali homotetik hareketin S Steiner noktasim elde edelim.
TANIM 4.2.2.

h*do kitle elementli kitle ortilmesinde hareketli (P) pol egrisinin agirlik
merkezine Steiner noktasi denir ve § ile gosterilir.

S nin koordinatlan s, ve s, olmak iizere

2
(4.2.27) s, = %, j=12
dir. (4.2.26) esitligi goz oniine alinirsa
(4.2.28) § pi*do =21 (t)nvs,, j=12
bulunur.

O halde (4.2.25), (4.2.26) ve (4.2.28) esitliklerini (4.2.24) de yerine yazarsak

Fy =Fy+(x, +x,7 )R (t,)mv — 2h% (8, )mv, s, — 27 (2, v, s,)
+ %xl § (—2hp,dh + hdu, +u,dh) + -;—xz § (2hp,dh — hdu, —u,dh)

elde edilir. Bu son egitlikte

(4.2.29) W = %§ (~2hp,dh+hdu, +u,dh) | = %§ (2hp,dh — hau, —u,dh)
denilirse
(4.2.30) Fy =F, + R (t,)nv(x,” +x,° = 2x,5, — 2x,8,) + 1, X, + 1, X,

bulunur. Bu denklem kapali diizlemsel homotetik hareketler igin Steiner alan

formiiliidiir[8].
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4.2.5. Diizlemsel Kinematikte Homotetik Hareketler I¢in Holditch Teoremi
TEOREM 4.2.4.

E/E' -diizlemsel homotetik hareketinde E’-diizleminde bir & ovali verilsin.
Uzunlugu sabit olan bir dogru pargasimn iki ucunu bu oval tizerinde hareket ettirelim.
Dogru pargasi lizerinde tespit edilen bir X noktasiin E/E’ diizlemsel homotetik
hareketi esnasinda ¢izdigi kapali egri ile £ ovali arasindaki bélgenin alami sadece X
noktasinin dogru pargasi tizerinde segiligine ve hareketin # homotetik oranina baglidir.

Ispat:

Sekil 4.2.1

Sekil 4.2.1 de verilen k& ovalini ve uzunlufu g olan O—Q dogru parcasin ele
alalim. 5Q_ dogru pargasmun O ve O ug noktalar1 k£ y1 tam bir defa kat edecek sekilde

hareket etsin. Bu durumda v =1 dénme sayili kapali bir hareket meydana gelir.

O, bir {O;'é, ,éz} dik koordinat sisteminin baslangici olarak segilirse, X noktasinin
koordinatlan X =(x,0) ve O noktasmin koordinatlari Q =(g,0) olur. Bu durumda
(4.2.30) alan formiiliinden X in y6riinge alan:

(4.2.31) Fy, = F, + B (t)n(x* — 25,x) + p,x
bulunur. O ve Q noktalan aym k ovalini ¢izdigi i¢cin O ve Q noktalarimin yériinge
alanlan i¢in
Fy=F, =F, +h*(t)n(q” - 25,9) + m,q
elde edilir. Buradan
qln* (to)7(q —25,) + 1] =0

olup, g # 0 olacagindan
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R (t,)m(g —2s5,) +p, =0
veya

Hy
(L

25, =q+

bulunur. Diger taraftan
x+y=gq
oldugundan (4.2.31) ifadesinden

Fy=F,+h*(t,)n|x* —(g+ Hy )x}ﬂ,tlx

R (t,)m
I n
=F, +h? (to)n_xz -(x+y+ hz(tlo)n)x}+p.1x
m
=F, +h* (¢t )n(x* —x> —xy— hz(tlo)n X)+p,x

= F, —h*(t,)nxy
bulunur.

k ovali ile X noktasimn kapali yoriinge egrisi arasindaki tarali bélgenin alanim F

ile g6sterirsek

F=F,-F,
oldugundan
(4.2.32) F=h()nxy
elde edilir[8].

O halde taral1 b6lgenin alan1 £ nn segilisine degil, yalmz X noktasinuin & ovalinin
icini tarayan @ dogru parcasimin O ve Q ug noktalarindan olan uzaklifina, yani X

noktasinin O_Q dogru parcas: iizerindeki yerine ve hareketin # homotetik oranina

baglidur.
SONUC 4.24.
h =1 olmasi durumunda (4.2.32) den

F=nxy

elde edilir. Bu ise 1-parametreli kapali hareketlerde Holditch teoreminin sonucudur.
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4.3. Kompleks Diizlemde Steiner ve Kargsik Alan Formiilleri ve Holditch Teoremi

4.3.1. Kompleks Diizlemde 1-parametreli Hareketler
TANIM 4.3.1.
E ve E’, sirasiyla, hareketli ve sabit kompleks diizlemler ve O ile O’ de onlarin

koordinat sistemlerinin orijin noktalar: olsun. 0’0 = u’ olmak tizere

4.3.1) x'=u'+xe”

doniiglimii ile tammlanan harekete 1-parametreli diizlemsel hareket denir ve E/E’
ile gosterilir[3]. Burada ¢, E-nin E’'-ye gére dénme agis1 ve x=x, +ix, ile
X' =x, +ix; ise X eE noktasimn, sirasiyla, hareketli ve sabit dik koordinat
sistemlerine gore konum vektdrleridir. @ donme agis1 ve x, x’,u’ vektorleri reel bir ¢
parametresinin siirekli diferensiyellenebilir fonksiyonlaridir. Bundan baska, =t¢,
baglangi¢ aninda koordinat sistemleri ¢akisik olsun.

Eger 00 =u alimrsa,

4.3.2) u =-ue'
elde edilir. (4.3.1) ve (4.3.2) den

4.3.3) X' =(x-u)e”
bulunur.

X noktasinin V| relatif hizi, X noktasinin hareketli E -diizlemine nazaran hizidir.

Bu hiz hareketli eksen sistemine gére

4.34) L= % =X

ifadesiyle verilir. Bu vektdr sabit koordinat sisteminde
4.3.5) X, =X, e =xe”

ile ifade edilir[2].

(4.3.1) den V, mutlak mz1, yani X noktasinin E’-diizlemine gére hizi i¢in

(4.3.6) X! = el X' = i +ipxe® + xe™
bulunur|2].

(4.3.2) ifadesinin ¢ ye gore tiirevi alinirsa
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(4.3.7) W' = —ite® —inge® = —(it + iup)e’
bulunur. Bunu (4.3.6) da yerine yazarsak

(4.3.8) X' =ipxe® ~ (i +iud)e” +xe*
elde edilir. Burada

(4.3.9) X! = ipxe® — (i +iug)e®

X noktasimn V, suriklenme hiz vektoridirf2].

(4.3.8) ve (4.3.9) iz vektorlerinin hareketli diizlemin koordinat eksenlerine gore

ifadeleri, sirasi ile,

(4.3.10) X, =X'e™ =ipx - (@ +iug) + x
ve
(4.3.11) X, =X!e™ =ipx - (a +iud)
dir.

(4.3.5), (4.3.8) ve (4.3.9) ifadelerinden, bir X noktasinn hiz vektérleri arasinda
(4.3.12) X =X{+X
bagntis1 vardir[2].
TANIM 4.3.2.

do

Do6nme agisinin T = ¢ turevine E/E’ hareketinin agisal hiz1 denir.

Bundan sonra, suf dteleme hareketinden kaginmak igin ¢ # 0 kabul edecegiz.
Simdi E/E' hareketinin her ¢ aninda siiriklenme iz sifir olan noktalarini, yani
pol noktalarim arastiralim.
X, =0
esitliginden
ipxe'® — (i +iu@)e® =0

olup buradan

x= u+uo
0
veya
(4.3.13) X=p=u—i—-
o)

elde edilir. Buradan
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i = i(p-u)p
olup bu ifadeyi (4.3.9) da yerine yazarsak
(4.3.14) X! =ip(x - p)e”

bulunur.
Simdi hareketli diizlemin farkh iki sabit noktasimn kapali yoriinge egrilerinin

Steiner ve karigik alan formiillerini hesaplayahim.

4.3.2. Kapali Hareketler icin Steiner ve Karisik Alan Formiilleri
TANIM 4.3.3.

E/E', 1-parametreli diizlemsel hareket ve ¢ e [t,,#,] reel bir kapal aralik olsun.
Eger
w'(t+T)=u'(r)
o(t+T) = o(t) + 2nv, veelt,,t]

olacak sekilde en kiigiik bir 7 > 0 sayisi varsa, £E/E' hareketine 1-parametreli kapah

(4.3.15)

diizlemsel hareket denir. Burada 7, kapall hareketin periyodu ve v de kapah
hareketin donme sayisidir.

X, E-de sabit bir nokta olsun. X in E’-ye gore dx’' degisimi X in striiklenme
hizina kargilik geldiginden, (4.3.14) den
(4.3.16) dx’ = i(x - p)e®dop
dir.

Aynica X noktasmmn F, yoringe alam

l ’ ’ ’ ] 1 ’ ’
(4.3.17) F, = E§(xldx2 —xldx!) = E§[x ,dx']
formiild ile verilir[6]. Burada a = a, +ia,, b =5, +ib, olmak izere [a, b] sembolii

a. a
[a’b]zlb: bzz =a,b, - a,b,

determinantimn yerine kullamlmigtir.
Eger (4.3.3) ve (4.3.16) ifadeleri (4.3.17) de yerine yazilir ve
[ae"‘",be"‘p =[a,b]

4.3.18
( ) [a,ib]= %(a5+ib)
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esitlikleri gz oniine alimrsa
1 — - —

(43.19) Fy =2 §{x-w)E-D)+@-Hx-p)}do
elde edilir.

Eger X =O(x, = x, =0) alimrsa, O orijin noktasimn yoriinge alam igin
(4.3.20) F, = % §up +p)do
bulunur.

Ayrica, ¢ =0 igin (4.3.15) den

o(T) = ¢(0) + 21ty

olur. O halde
T
] T
§do = oyt = o(t)|, = &(T) - 0(0)
0
olup
(4.3.21) §do = 2my
elde edilir. Benzer sekilde ¢ =0 igin (4.3.15) den
u'(T) = u'(0)
veya
u;(I)=u,(0), j=12
olup
T T
§au, = [, (Ot =u, (O =u, (D) ~u,(0)=0
0
bulunur.

Diger taraftan, v#0 olmak t{izere, l-parametreli kapall diizlemsel hareketin

S =(s,,s,) Steiner noktasi igin

$pdo

(4.3.22) s=§ +is, =—=—
geo

oldugunu biliyoruz.
O halde (4.3.21) ve (4.3.22) den

(4.3.23) § pdo = 2mvs
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elde edilir. (4.3.19) dan
F, = %§{2x§— Xp —Xp —ux-—ux +uﬁ+ip}d(p
olup, X sabit bir nokta oldugundan

(4.3.24) F, = —;-xi§ do— % xfpdo- %Tx"§ pdo

_%‘x‘§ud(p—%x§ﬁ'd(p +%§(uﬁ+ip)d¢

bulunur.

Diger taraftan (4.3.13) den
du
do =¢(u—i—)d
$pdo = §( 2%
= fudo - ifdu

= §udo ~i(§du, +ifdu,)

olup buradan

(4.3.25) § pdo = § udo
elde edilir.

(4.3.20), (4.3.21), (4.3.23) ve (4.3.25) esitliklerini (4.3.24) de yerine yazarsak
(4.3.26) F, =F, + Tv(xX — x5 — Xs)

bulunur. (4.3.26) esitligine Steiner alan formiilii ad: verilir[3].
(4.3.26) esitliginde x = x, +ix, ve s =s, +is, degerleri yerlerine yazlirsa,
F, =F, +nv(x,* +x,° —2x,5, —2x,5,)
bulunur. Buradan

Fo—Fx
v

2 2
X" +x,” —285x —2s,x, + =0

yazabiliriz. O halde bu son esitlikten asagidaki teorem verilebilir.
TEOREM 4.3.1.
Esit yoriinge alammna sahip E hareketli diizleminin bitiin sabit noktalan E’

diizleminde merkezi Steiner noktasi olan aym bir gember iizerinde bulunurlar{4].



33

X ve Y hareketli diizlemin sabit iki noktas: ve Z de XY dogru pargasi lUzerinde

diger bir sabit nokta olsun. Bu durumda

(4.3.27) z=Ax+Ey, A+E=1 AEecIR
yazilabilir. (4.3.3) kullanilarak

(4.3.28) z'=Ax +8y’

bulunur.

Simdi F,F, yorunge alanlan yardimiyla F, yorunge alanim bulalm.
(4.3.17) ve (4.3.28) ifadeleri gbz Oniine almrsa
1 ' r] 1 ’ ' ' '
F, :E§[z d ]—Eﬂkx +Ey’, Adx’ +Edy’]
bulunur. Bu son egsitlikten
1 ! ' ’ L4 ! ! ’ !
F, =~ §( ' ax+ ael dy 1+ aely ax T+ €[y ay )

=Rl nef (e T+ [y ax D)+ 287 Ly ]

2
olup burada
1 14 ! 4 14
(4.3.29) Fo =2 §(Ixdy ]+ [y’ ax])
denilirse
(4.3.30) F, =N'F, +2AEF,, +£°F,

elde edilir. Burada F,, ye X ve ¥ noktalarinin karisik alan formiilii adi verilir[3].

Simdi bu kangik alan formilinii hesaplayalim.
(4.3.3) ve (4.3.16) esitliklerini (4.3.29) da yerine yazarsak

Fer = §([x~we®, iy - ppe J+[or - we, itx - pye] o
olup (4.3.18) esitliklerini kullamrsak

For =5 ([x-w.ity - p)}+ [y -y icx -]y

veya

Fer =14 [x-wF -5)+ @~ -p)+ (¥ ~WE-B) + F - Dx-p)ldo

T o I
= 5§ X7 + 2%y - (x+ )P - @+ TP - (x + )T~ (X +¥)u + 2 + 20pdo
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For =5 (3 + i) dp - < (x+)fpdp - £ &+ Pf pio

- % (x+ y)§id(p - —;—(i + ?)§ud(p + %§(uﬁ +1p)do
bulunur. (4.3.20), (4.3.21) ve (4.3.23) ifadelerini son egitlikte yerine yazarsak
(4.3.31) F, =F, +12‘i(xi+'x‘y —(X+y)§ - (X+¥)s)
elde edilir[3].

(4.3.31) den
F, =F, +32‘i(2xi-zx§-2is)

= F, +7v(xX — x§ — Xs)

yani

bulunur.

Simdi F,, alamm F, ve F, alanlan yardimiyla ifade edelim.
(4.3.26) ve (4.3.31) esitliklerinden
Fy —2Fy, +F, = F, +nv(xX — x5 - %5)- 2F,
—nv[x?—l—iy -(x+y)s—-(x +i)s] +F, +nv(yy-ys ~¥s)
= V(XX —xy - Xy + YY)
=Tv(x-y)X-Y)
= mv(x-y)(x-Y)
olup X ve Y noktalan arasindaki uzaklifa d denilirse
Fy —-2F,, +F, =nvd*®
elde edilir. Buradan

(4.3.32) Fp = %(FX +F, -nvd?)

bulunur.
O halde (4.3.27) ve (4.3.32) ifadeleri (4.3.30) da yerine yazilirsa

F,=(1-&VF, +2(1-§)¢=B(FX +F, —de)]Jrng,

veya
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4.3.33) F, =\F, +EF, ~AEmvd’
elde edilir[3].

4.3.3. Kapah Hareketler i¢cin Holditch Teoremi
TEOREM 4.3.2.

k, E'-diizleminde bir oval (yani kapal bir konveks egri) ve XY de k nmn sabit d
uzunluklu kirisi olsun. Bu kirigin Z noktas: tarafindan a ve b uzunluklu iki parcaya
bSlindiigiini kabul edelim. £/E’ kapal diizlemsel hareketi esnasinda, eger XY kirigi
k ovali etrafinda tam bir donme yaparsa, k& ovali ile Z noktasi tarafindan ¢izilen kapali
egri arasindaki alan a ve b parametrelerine, yani Z noktasin XY kirisi {izerindeki
seciligine, baglidir.
ispat:

Kabul edelim ki XY reel eksenin yOniini gostersin. Bu durumda
(4.3.39) d=y-x, a=z-x=&d, b=y-z=2Ad, a+b=d
esitlikleri elde edilir.

Z noktasinin yériinge alam i¢in dénme sayis1 v =1 oldugundan (4.3.33) den
(4.3.35) F, = %(bFX +aF, )—nab

elde edilir.
Ayrica, X ve Y noktalar1 aym & ovalini ¢izdi§inden F, = F, dir. Bu takdirde
(4.3.35) den

F, =—(b+a)F, —nab

1
d
=F, —nab
bulunur.
k ovaliile Z noktasinin ¢izdigi kapal: egri arasindaki alan F' ile gosterilirse

F=F,-F,

oldugundan
F =nab

bulunur{4]. Bu ise ispat1 tamamlar.
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5. BULGULAR

Caliymamizin orijjinal kismim tegkil eden bu béliimde, diizlemler kompleks diizlem
olarak g6z Onine abnmugtir. Bu durumda 1-parametreli dizlemsel hareketler ve 1-
parametreli diizlemsel homotetik hareketlerde hizlar ve ivmeler incelenerek bunlarla
ilgii bagint1 ve sonuglar yeniden ifade edilmigtir. Ayrica kompleks dizlemde, 1-
parametreli diizlemsel homotetik hareketler altinda karigik alan formiilii elde edilmis ve

bu alan formili yardimu ile Holditch teoremi ispat edilmigtir.

5.1. Kompleks Diizlemde 1-parametreli Hareketler

5.1.1. Hazlar ve Hizlarin Terkibi

E -dizlemi E'-dtizlemine gore 1-parametreli hareket yaparken, bir X noktast da
hareketli E -diizlemindeki yerini ¢+ zamam ile degistirsin. Boylece iki hareketi bir araya
getiriyor ve bu durumda hizlann nasil terkip edilecegini arastinyoruz.

X noktasmin V_ relatif hizi hareketli eksen sistemine gore (4.3.4) den

5.1.1 X, =—=x
(5.1.1) r =g
ifadesiyle veya sabit koordinat sistemine gore (4.3.5) den
(5.1.2) X' =X e =xe"

ile ifade edilir.
X noktasimn V, mutlak iz, sabit eksen sistemine gore (4.3.8) den
(5.1.3) X' =ipxe'® — (i +iud)e® +xe
ile veya hareketli koordinat sistemine gére (4.3.10) dan
(5.1.4) X, =X'e™ =ipx — (4 +iug) +x
ifadesi ile verilir.
X noktasinin V, siriiklenme hiz1 sabit koordinat sistemine gore (4.3.9) dan
(5.1.5) X! =ipxe'® — (i +iup)e”
ile veya hareketli eksen sistemine gére (4.3.11) den
(5.1.6) X, =X\e™ =ipx —(a+iud)
seklinde ifade edilir.
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Diger taraftan, £/E’ hareketinin pol noktasi i¢in (4.3.13) den

(5.1.7) x=p=u—-il.l—
¢

oldugunu biliyoruz. Pol noktas: yardimiyla siiriikklenme hizinin ifadesi (4.3.14) den

(5.1.8) X, =ip(x—p)e*
dir.
X noktasiun sturiklenme hzinin (5.1.8) ifadesinden asagidaki sonuglar
¢ikartilabilir:
SONUC 5.1.1.

P polinden X noktasina giden pol 15ininin
PR - (x-pe”
vektori X ye diktir. Gergekten, a =a, +ia,, b =5, +ib, olmak iizere
(aei“’ ,be™ ) ={((a, +ia, )(cosp +isin @), (b, +ib, )(cosp +isin p))
= {(a1 cos® —a, sin @, a, sin @ +a, cos®), (b, cos® — b, sin @, b, sin @ + b, cos (p))
=ab, +a,b,
oldugundan
(5.1.9) (ae™® ,be’ ) = (a,b)
bulunur. O halde
<X},7’Y> = (ip(x - p)e”,(x~p)e”)
olup (5.1.9) kullamlirsa
(X1, PX) = (ip(x - p),(x~p))
=((%, = Py, %, = P (06, = P2 %, — P1))O

=[x - )%, = )+ (%, - P, - PO
=0

elde edilir. Yani pol 151m hareketin her ¢ amnda siiriiklenme hmzina diktir.

SONUC 5.1.2.

X vektorinin uzunlugu

e = (X5 X5)
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X, = (igp(x - p).igp(x — p))
= \/((_ (x; = p,), %, - pl):('" (x,; =P, — p1)>¢2
=@ [0x, —py)* + (5~ p))’]

-ofp

dir.

Simdi (P) ve (P") pol egrilerini gizen P pol noktasimn hizlarim aragtiralim. Pol
noktas: X} =0 ile tanimlandigindan (4.3.12) esitliginden X = P igin

X, =X, = pe”

bulunur. Boylece asagidaki teoremi verebiliriz:
TEOREM 5.1.1.

Sabit ve hareketli diizlemlerdeki pol egrilerini ¢izen P pol noktasmin her ¢
anindaki hizlan birbirinin aymdir.
TEOREM 5.1.2,

l-parametreli diizlemsel bir E/E’ hareketinde FE -diizleminin (P) hareketli pol

egrisi £’ -diizleminin (P') sabit pol egrisi iizerinde kaymaksizin yuvarlamir.
Ispat: Teorem (5.1.1) den dolayr her ¢ amnda (P) ve (P') pol egrileri P pol
noktasinda birbirine tegettir(Sekil 5.1.1). Ayrica, (P) nin #,, t, e karsihk gelen
noktalan arasindaki yay uzunlugu
ds =X, |dt
dir.
(P") niin ¢,, ¢, e kargilik gelen noktalan arasindaki yay uzunlugu
ds' = X, |
olur. P pol noktasi i¢in X = X' oldugundan
ds' =ds
bulunur. O halde (P) ve (P’) pol egrileri her ¢ aninda birbirine teget ve aldiklan ds ve
ds' yollann aymdir. Dolayisiyla tammdan (P) hareketli pol egrisi (P') sabit pol egrisi

tizerinde kaymaksizin yuvarlamir.
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E!

Sekil 5.1.1

5.1.2. Ifvmeler ve Ivmelerin Terkibi
X noktasinin relatif ivme vektoérii, X noktasinin E -diizlemine gore olan ivme
vektoriidiir ve X in E -diizlemine nazaran X_ vektorel hizinin ¢ zamanina gore tiirevi

alinarak bulunur. O halde (5.1.1) den

(5.1.10) b, =X, =%
elde edilir. Bu vektor sabit koordinat sistemine gore
(5.1.11) b, =b,e® = %e”

ile ifade edilir.

X noktasinin mutlak ivme vektérii X noktasinin E'-diizlemine gore olan ivme
vektoriidiir. Bu ivme vektorii (5.1.2) ve (5.1.8) den elde edilen

X! =X} +X. =ig(x—p)e’ +xe”
mutlak hzinin ¢ ye gore tiirevi aliarak bulunur. O halde
b, =X! =ig(x—p)e”® +ip(x—p)e”® -~ @’ (x~p)e” + ke +igxe’?
=(X-p)ip—d*)e” +ipxe” —ippe’® +ipxe™® + Xe™
olup
(5.1.12) b, = (x-p)ip—d*)e™ —ippe’ + 2ipxe™ +b’,
elde edilir. Buradaki
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(5.1.13) b = (x—p)(—¢*)e” —ippe”
vektorine X noktasinin siiriikklenme ivme vektorii ve
(5.1.14) b’ = 2ijpxe™

vektoriine de X noktasinin Coriolis- ivme vektorii denir.

O halde siiriiklenme ivme vektori hareketli sistemdeki sabit noktalanin sabit
sisteme gore ivmesidir.

O halde ivmelerin terkibi su teoremle ifade edilir:
TEOREM 5.1.3.

iki hareketin terkibinde bir noktamn mutlak ivme vektori; siiriklenme ivme

vektorii, Coriolis-ivme vektorii ve relatif ivme vektdriiniin toplamina egittir:

(5.1.15) b, =b; +b_ +b,.
(5.1.12), (5.1.13) ve (5.1.14) ile verilen ivme vektorleri hareketli sisteme gore,
sirasi ile,
(5.1.16) b, =ble™ = (x—p)(id - ¢*) - ipp + 2ipx + b,
(5.1.17) b, =bje™ = (x~p)($- ) ~ipp
(5.1.18) b, =ble™ =2ipx

vektorleri ile ifade edilirler.
SONUC 5.1.3.
b, Coriolis-ivmesi X! relatif mzina diktir. Canku, (5.1.2) ve (5.1.14) den

(X, b.)=(xe",2ipxe”)

olup (5.1.9) kullanilirsa
(X.,b.)=(x,2ipx )
=2k +1,), i (%, +i%,) )
=2((k,, %, ), (- 9 %, 0 5,)
= 2~ i, %, + P %, )
=0
dir.
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Teorem 5.1.3 de ifade edilen (5.1.15) esitligi ivmelerin hizlardan farkli bir yapi ile
birbirleri arasindaki ilgiyi vermektedir. Eger E -deki hareketli X noktasinin Coriolis-
ivmesi sifir ise ivmeler de lmzlardaki gibi (4.3.12) esitligine benzer sekilde

b, =b; +b
esitligine sahip olur. Bununla ilgili asagidaki sonucu verebiliriz.
SONUC 5.1.4.

E -hareketli dizleminde hareketli X noktasinin Coriolis-ivmesi sifir ise; E/E’
hareketi bir kayma (6teleme) hareketidir ve bu ifadenin tersi de dogrudur.
ispat:

X noktasimun b! Coriolis-ivme vektorii

b. =2igxe™ =0
olsun. Bu durumda

¢=0
elde edilir. Bu ise ¢ nin sabit oldugunu, yani E/E’ hareketinin sadece kaymadan
ibaret oldugunu gosterir.
Tersine, E/E’ hareketi sadece bir kayma hareketi olsun. Bu durumda ¢ = sabit
olacagindan b, =0 elde edilir.

Simdi genel bir £/E’ hareketinde, # amnda, siiriklenme ivmesi sifir olan noktalan
aragtiralim. Bu durumda

b; =0
esitliginden
(x-p)(ip—*)e” ~ippe™ =0

bulunur. Buradan

x—p =
-0
olup ivme polini
x=p+—r
10-0
veya
oop o’p
X=Ppt—F— 7l
(pz +(P4 (pz +(P4
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seklinde elde ederiz. O halde asagidaki teoremi ifade edebiliriz:
TEOREM 5.1.4.
Agisal hizi sifir olmayan bir harekette, # amnda, siriikklenme ivmesi sifir olan

nokta, yani ivme poli,

V3.
(5.1.19) x=p+—b__; PP
o’ +¢" P’ +9

esitligi ile verilir. Burada p, hareketin ¢z amndaki pol noktasidir.
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5.2. Kompleks Diizlemde 1-parametreli Homotetik Hareketler

TANIM 5.2.1.

E ve E', sirastyla, hareketli ve sabit kompleks diizlemler ve O ile O’ de onlarin

koordinat sistemlerinin orijin noktalar: olsun. O’'O =u’ olmak {izere

(5.2.1) X' =u'+hxe?

déniigiimii ile tamimlanan harekete 1-parametreli diizlemsel homotetik hareket denir

ve E/E' ile gosterilir. Burada # E/E' hareketinin homotetik oram, ¢ E -nin E'-ye

gore donme agis1 ve x=x, +ix, ile xX'=x +ix; ise X € £ noktasinmn, swrasiyla,

hareketli ve sabit dik koordinat sistemlerine gore konum vektorleridir. # homotetik

orani, ¢ donme agist ve X, x',u’ vektdrleri reel bir ¢ parametresinin stirekli

diferensiyellenebilir fonksiyonlaridir. Ayrica, ¢=¢,
sistemleri ¢akigik olsun.

Eger 00 =u alinirsa,

(5.2.2) u' =-ue'®
elde edilir. (5.2.1) ve (5.2.2) den
(5.2.3) x' = (hx—u)e®
bulunur.

5.2.1. Hizlar ve Hizlarin Terkibi

baslangic aninda koordinat

X, E-diizleminde bir nokta olsun. X noktasimin V_ relatif hizi, X in hareketli

E -diizlemine gore hizidir. Bu hiz hareketli eksen sistemine gére

(5.2.4) X, = dx X

dt
ifadesiyle verilir. Bu vektor sabit koordinat sisteminde
(5.2.5) X! =X, e" =xe"

ile ifade edilir.

X noktasinin E’-diizlemine gére hizi, X in V, mutlak hzidir. (5.2.3) ifadesinin

t ye gore tiirevi alinirsa, mutlak hiz

X! = hxe® + hxe ~ie” +ihpxe® —iuge™



olup buradan

X' = (h+ihd)xe® —(a +iup)e® + hxe™

veya

(5.2.6) X' = (h+ih)xe — (a+iud)e™ +hX'
elde edilir. Burada

(5.2.7) X! = (h+ihp)xe® — (i +iud)e™

X noktasimn V, striklenme hiz vektoradiir.

Mutlak hiz ve siriiklenme hiz vektdrlerinin  hareketli diizlemin koordinat
eksenlerine gore ifadeleri (5.2.6) ve (5.2.7) den

(5.2.8) X, = X'e™ = (h+ihd)x — (i +iug)+ hX,
(5.2.9) X, =X\e™ = (h+ih¢)x — (i +iud)
seklinde bulunur.

Eger X noktasi E -diizleminde sabit bir nokta ise X, =X/ =0dir. Bu durumda
mutlak iz stiriiklenme hizina esit olur.

(5.2.5), (5.2.6) ve (5.2.7) ifadelerinden asagidaki teoremi verebiliriz:

TEOREM 5.2.1.

E/E’' homotetik hareketinde bir X noktasimn mutlak hizi, siirikklenme huzi ile
relatif uzin A katinin toplamina egittir, yani
(5.2.10) X, =X +4X].

Bundan sonra, sirf donme ve sirf 6teleme durumlarindan kaginmak igin

o)=0 , h=h(t)+ sabit
kabul edecegiz.

Simdi suriklenme hzinin sifir oldugu noktalan aragtiralm. Béyle noktalar, ¢
aninda, sadece E hareketli diizleminde degil aym zamanda E’ sabit diizleminde de
sabit olmak zorundadir. Bu durumda (5.2.7) ifadesi g6z 6niine alinir ve sifira egitlenirse

u+i
T zzc(g

elde edilir. Buradan

fopo t iu@)(h —iho)
(A +ih)(h - ihd)
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b= uh+uhg® +i(uhe —uhe)
A + h*¢?

olup
_ uh+uhd? +iuh(’p—ﬁhc‘p

5.2.11 - ;
( ) hZ +h2(-p2 h2 +h2¢2

bulunur. (5.2.11) de p = p, +ip, ve u =u, +iu, yazilirsa

_ dh(du, —u,do)+ hdo(du, +u,do)

! dh® + hdo*
(5.2.12)
_ dn(du, +u,do)— hdo(du, —u,do)
7 A + hdo?
elde edilir.

OP = p = p, +ip, noktast E/E' homotetik hareketinin pol (kutup) noktasidir.
Pol noktasindan faydalanarak X noktasiun (5.2.7) ile verilen suriiklenme hiz
asagidaki gibi de ifade edilebilir. Bunun igin
_ u -+
h+iho

esitliginden u degeri hesaplanirsa
u = p(h +ihd) - iud
bulunur. Bunu (5.2.7) de yerine yazarsak

(5.2.13) X! = (h+ihd)(x—p)e®
elde edilir.

Suriklenme hizinin bu ifadesinden agagidaki sonuglar verilebilir:
SONUC 5.2.1.

P poliinden X noktasina giden
PX = (hx—p)e”
pol g ile X} stiruklenme hizinin ig-garpimi
(Xt PX) = ((h+ ing)x ~pe’”, (rx — pe’”)

olup, (5.1.9) goz 6niine alinmirsa
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(X;,PX) = ((h+ing)(x~p), (hx - p))
= < (hxl ~ Py, hx, — pz)v (]:l(xl - p,)—ho(x, - Pz)’h(xz - P,)+ho(x, — p, ))>

= hl(he, = p)0 = pr) + (e, = p,)(x, = o) ]
+h[(x, = p,)(x, = py) = (= p))(x, - py)]
olur. Burada 6zel olarak /# =1 alinirsa
(x;,F)?> =0
bulunur. Buise 2=1 i¢in PX pol 1g1mn her # aminda X ye dik oldugunu gosterir.
SONUC 5.2.2.
X vektoruntn uzunlugu igin

] = Vx5 X5)

- \/<(;i +ih$)(x - p)e’®, (b +ihp)(x —pe”)

= @ + 1297 ((x~ p)e®, (x - p)e”)
elde edilir. Bu son esitlikte # =1 aliursa
Ix:| = o[Px]

bulunur.

Simdi (P) ve (P') pol egrilerini gizen P pol noktasimin hizlarim aragtiralim. Pol
noktast X; =0 ile tammlandigindan (5.2.10) esitliginden X = P igin
(5.2.14) X! =hX] = hpe™
bulunur. Boylece asagidaki teoremi verebiliriz;
TEOREM 5.2.2.

Sabit ve hareketli dizlemlerdeki pol egrilerini ¢izen P donme poliiniin her ¢
anindaki hizlan birbirinden farklidir.

TEOREM 5.2.3.
l-parametreli £/E’ dizlemsel homotetik hareketinde E -diizleminin (P) hareketli

pol egrisi E’-diizleminin (P’) sabit pol egrisi tizerinde kayarak yuvarlanir.
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Ispat:
(P) nin ¢t,, t, e karsilik gelen noktalar: arasindaki yay uzunlugu
ds =X |ar
dir.
(P') niin ¢, ¢, e karsilik gelen noktalar arasindaki yay uzunlugu
ds' =[X [t
olur. P pol noktasi i¢in X! = /4X| oldugundan
ds' #ds
dir. O halde (P) hareketli pol egrisi (P') sabit pol egrisi izerinde kayarak yuvarlanir,
SONUC 5.2.3.

h=1 olmas1 durumunda ds'=ds elde edilir. Bu durumda pol egrileri birbiri

tizerinde kaymaksizin yuvarlanir.

5.2.2. ivmeler ve ivmelerin Terkibi
X noktasimin relatif ivme vektorii (5.2.4) ile verilen relatif hizin ¢ ye gére tiirevi

alinmasiyla

(5.2.15) b =X, =%

elde edilir. Bu vektor sabit koordinat sisteminde
(5.2.16) b, =b_e" = %"

ile ifade edilir.

X noktasinin mutlak ivme vektérii, mutlak hizin ¢ ye gore tiirevi alinarak bulunur.

O halde (5.2.5) ve (5.2.13) esitliklerinin (5.2.10) da yerine yazilmasiyla elde edilen
X' =X, +hX. = (h+ihd)(x ~p)e® + hxe™
mutlak hizinin ¢ ye gére tiirevi alinirsa
b, =X = (h+ihg+ihP)x—p)e”® +(h+ihp)(x-p)e”
+ (h+ ihd)(X — p)ide™ + hxe™ + hxe™ + ihpxe™
= (h + ih + ihp)(x — p)e”® + (h+ ihp)xe™ ~ (A + ihp)pe™
+ (b + ihd)(x - p)ige™ +K(h+ih()e® + hie™
olup
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(5.2.17) b, = [ii - he? +i(his + 2hp)|(x - p)e’® ~ (h +ihg)pe”
+2%(h +ihg)e +hb!

elde edilir. Buradaki

(5.2.18) b, = [ii — hop* +i(hip + 2h)|(x - p)e® — ( + ihgp)pe’®

vektoriine X noktasinin siiriiklenme ivme vektorii ve

(5.2.19) b, = 2x(h +ihp)e™

vektoriine X noktasinin Coriolis- ivme vektorii denir.

O halde siiriikklenme ivme vektorii, hareketli sistemdeki sabit noktalarin sabit
sisteme gore ivmesidir.

(5.2.17), (5.2.18) ve (5.2.19) dan ivmelerin terkibine ait asagidaki teoremi
verebiliriz.

TEOREM 5.2.4.

Iki hareketin terkibinde bir noktamn mutlak ivme vektor, struklenme ivme
vektorii ile Coriolis-ivme vektéri ve relatif ivme vektoriniin /# katimn toplamina
esittir:

(5.2.20) b, =b; +b. +hb..
(5.2.17), (5.2.18) ve (5.2.19) esitlikleri ile verilen ivme vektorleri hareketli

sistemde, sirasiyla,

(5.2.21) b, =ble™ = i~ hg? +i(h +2hp)|(x ~ p) - (h + ih)p
+2x(h +ihg) + hb,

(5.2.22) b, =ble™ = [ ~hg* +i(hip + 2hp)|(x ~ p) - (h +ihg)p

(5.2.23) b_=ble™ = 2x(h+ih¢)

vektorleri ile ifade edilir.

Diizlemsel hareketler i¢in verilen ivme poliinii homotetik hareketlere genellestiren

asagidaki teoremi verelim.
TEOREM 35.2.5,
Genel bir £/E’ diizlemsel homotetik hareketinde ivme poli
(5.2.24) x=pho— (htihg)p "'@Fm@”&:g,;m
—~h¢® +i(h$ +2hgp) iy, :g;’,ﬂ%@
esitligi ile verilir. iy 0y
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Ispat:
Stiriklenme ivme vektorinin sifir oldufu noktalar ivme poliini verdiginden
(5.2.18) den

i - ng? +i(hs + 2h)|(x - pe™® — (h+ ing)pe =0

olup buradan

x—p= (h+ihg)pe”
h—hg? +i(h$ +2hp)e”
veya
cpe G
h—hg* +i(hp +2he)
elde edilir.

Burada 6zel olarak A =1 alimirsa 1-parametreli diizlemsel hareketler igin verilen
ipp
ip-¢

x=p+ -

ivme polii elde edilir.
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5.2.3. Kapah Homotetik Hareketler icin Steiner ve Karisik Alan Formiilleri

E/E', T peryotlu ve v donme sayih 1-parametreli kapal diizlemsel homotetik
hareket olsun. O halde

u'(t+7)=u'(t

(5.2.25) go((t N T))= o (5))+ oy
esitlikleri saglamr.

Simdi hareketli diizlemdeki sabit bir noktamn E/E’ kapali homotetik hareketi
esnasinda ¢izdigi kapali egrinin yoriinge alanum hesaplayalim.

X, E-de sabit bir nokta olsun. X in E’-ye gore dx’ degisimi X in siiriikklenme
hizina karsiik geldiginden (5.2.13) den
(5.2.26) dx’ = (dh +ihdo)(x —p)e'®
dir.

X noktasmin F, yoriinge alaniun
(5.2.27) Fy = %§ [x',ax]

oldugunu (4.3.17) den biliyoruz.
(5.2.3) ve (5.2.26) egitliklerini (5.2.27) de yerine yazarsak

(5.2.28) F, = %§ [(hx —~u)e”, (x—p)(dh + ihd(p)e""]
bulunur.
Eger
(5.2.29) lae®,be]=[a,b]
ve
. It— _
(5.2.30) [a, (dh + ihdp)b] = [a,b]dh + 3 [ab +ab]hdg
esitlikleri goz oniine alimirsa (5.2.28) den
1 1 - — _ —
(5.2.31) F, = E§{[hx —u,x—pldh+ 5[(hx —u)X-p)+(Ix-u)(x- p)]hd(p}
elde edilir.

Eger X =O(x, = x, =0) alimrsa, O orijin noktasinin yoriinge alam igin

1
(5.2.32) Fy = E§[(u1p2 —u,p,)dh+(u,p, +u,p, )hd(p]



51

bulunur,

Ayrica (4.2.26) dan
(5.2.33) $h*do =21 (t)nv, 1, €[0,T]
oldugunu biliyoruz.
Diger taraftan, v # 0 alinarak, 1-parametreli kapali diizlemsel homotetik hareketin
S =(s,,s,) Steiner noktasi igin (4.2.27) den
ph’de
(5.2.34) s=§, +is, =F%F—
§ h’do

dir. O halde buradan

§ph2d<p = s§h2d<p
veya (5.2.33) kullanmilirsa
(5.2.35) fph*de =217 (t;)vs
bulunur.

Ayrica (5.2.12) den u, ve u, yi hesaplarsak

(5.2.36) u :ph+p2dh_% U, = p J’L‘@J’i
1 1 d(p d(p > 2 2 d(p d(p
elde edilir.
(5.2.31) den

1
Fy =408, —)(x, = py )l = (e, =1, )(x, — p, )
+%(2hx’i—hip — hxp — ux — ux + up +up)hdo}
olup, X sabit bir nokta oldugundan
1
Fy = E§[(u1pz —u,p,)dh+ (u,p, +u2pz)hd(P]
+ 2 xxX{ Wy — - x§ B dp—~ X§ph*do — = x, §u hdo ~~x, fu,hdp
2 4 4 2 1 1 2 2 2
+lx §(—hp dh+u dh)+—1—x §(hp dh—u,dh)
2 1 2 2 2 2 1 1

bulunur. Burada (5.2.32), (5.2.33), (5.2.35) ve (5.2.36) esitlikleri kullanilirsa
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F, =F, +%xi2h2 t)mv - %thz (1, )7vs — %Tx‘ZhZ (t,)mvs
——;—xl§(p1h2dcp+p2hdh—hdu2)—-él—x2§(pzh2d(p—p‘hdh+hdul)

1 1
+o% $(~hp,dh +u,dh) %, § (hp,dh —u,dh)
elde edilir. Bu son egitlikte

1 1
(5.2.37) b, = E§ (-2p,hdh+hu, +u,dh) , p,= 5-§ (2p,hdh — hu, —u,dh)
aliir ve gerekli diizenlemeler yapilirsa

Fy =F, +h*(t,)mv(xX — X5 — XS) + W, X, +L,X,

bulunur. p = g +iu, alinirsa,
(5.2.38) Fy, =F, +h*(t,)nv(xX — x5 — X8) + %(xﬁ +Xn)

elde edilir.
(5.2.38) formila 1-parametreli kapali diizlemsel homotetik hareketler icin Steiner
alan formiiliidiir.
(5.2.38) de 6zel olarak # =1 alinirsa,
F, =F, + mv(xX — x§ - X§)
elde edilir. Bu ise [3] te verilen 1-parametreli kapal diizlemsel hareketler igin Steiner
alan formulidiir.
(5.2.38) ifadesi diizenlenirse
Fy = Fy + B (t)mv(x” +x,° = 2x,8, — 2%,5,) + 4, X, + 1, X,

veya buradan

xl2 +x22 —2(5‘1 —mjxl - 2(82 ~E}7(l;:)7]x2 +%(;% =0
elde edilir. O halde asagidaki teoremi verebiliriz.
TEOREM 5.2.6.
Esit yoringe alanna sahip E hareketli diizleminin biitiin sabit noktalan E'

diizleminde

_ H H
=S~ 2 392 T3
( 2h*(t,)v 2h°(t, )m/j
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merkezli aym bir gember Gizerinde bulunurlar.

h =1 6zel durumunda M noktasi § Steiner noktasi olur.

Simdi hareketli diizZlemde alinan farkh iki sabit noktanin kangik alan formilinii
hesaplayalim.

X ve Y hareketli dizlemde sabit iki nokta ve XY dogru pargas: tizerinde diger

bir nokta Z olsun. Bu durumda

(5.2.39) z=2Ax+8y, A+E&=1 AEe€IR
yazilabilir. (5.2.1) kullanilarak

(5.2.40) z' =Ax"+E&y’

bulunur.

Simdi F,,F, yorunge alanlan yardimiyla F, yoringe alamm bulalim.
(5.2.27) ve (5.2.40) kullamlirsa,
F, = %ﬂz',dz']: %§[/1x'+§y',,1dx'+§dy']

bulunur, Bu son egitlikten,

(5.2.41) Fy = %§ (x',dy']+y",ax'])
olmak tzere
(5.2.42) F, =N'F ¥ T2AEF,, + &ZF,

elde edilir. F,, ye X ve ¥ noktalarimin karigik alan formiilii ad: verilir.

(5.2.3) ve (5.2.26) esitliklerini (5.2.41) de yerine yazarsak
1 i : i i : i
Fo =24 ([rx - w)e™®, (dh + indg)(y - p)e™ |+ [y - wye™ . (dh + indp)(x - p)e’® | oo
olup, (5.2.29) ve (5.2.30) esitlikleri kullamirsa

Far = §((Ix-uy - pl+[hy - v,x - p])ds
+ [0~ B+ O~ W)y - p) + oy ~w)E - )+ (4F - W)(x - p) L)

1
=Z§{ (hx\y, —hx,p, —uy, +u,p, ~hx,y, +hx,p, +u,y, —u,p,
the,y, —hy,p, —u\x, +u,p, —hx,y, + hy,p, +u,x, —u,p,)dh

+ 2 [2H +7) ~ H(x-+ )P + R+ 7)p) - (x-+ )8 ~ R+ )u-+ 2uB + 2uplhdo)
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bulunur. X sabit bir nokta oldugundan

1 .
Fo = -2—§[(u1p2 —u,p,)dh+(u,p, +u,p, )hd(P]
1
+ {08 = ) (padh -+ uydh) + (v, + y,)§ (s — i)
+ (F + ) do —— (x-+)fFhdo - G+ T ph'dp

— (%, + ) §u hdo - (x, + y, Yyu, hdo)
elde edilir. Bu son egsitlikte (5.2.32), (5.2.33), (5.2.35) ve (5.2.36) ifadeleri yerlerine

yazilirsa

F,=F,+ —i(xﬁ +Xy)2h* (¢, )V ——;—(x +y)2h% (2,)mvs - %(i +¥)2H (t,)mvs
1 1
=G+ 2§ (P do -+ hpydh ~ haduy) =2 (e, + y,)§ ;' do— hp,dh -+ h,)

1 1
+ Z(xl +0 )f(_hpzdh +u,dh) + Z(xz +Y, )§(hp1dh ~u,dh)

elde edilir. Bu ifadeyi diizenler ve (5.2.37) yi gz Oniine alirsak

h*(t,)mv

(5243) Fy =F,+ [xy +Xy - (x +y)s - (i+?)s]+i—[(x+y)ﬁ+(i+'y‘)u]

bulunur. (5.2.43) formiilii 1-parametreli kapali diizlemsel homotetik hareketler igin
karngik alan formiiliidiir.
h=1 o06zel durumunda p=p =0 olacagindan (5.2.43) kangik alan formiilinden

[3] tarafindan verilen 1-parametreli kapali diizlemsel hareketler igin
Frp = Fo + T (xF + 3y~ (x +Y)8 ~ (X +)8)
kansik alan formiilii bulunur.
(5.2.43) de Y noktasi yerine X noktasi alimrsa
F,=F,
elde edilir.

Simdi F,, alanm F, ve F, alanlan yardimiyla ifade edelim.
(5.2.38) ve (5.2.43) esitliklerinden
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F,-2F, +F, =F, +h2(to)ﬂv(xi—x§—is)+%(xﬁ+ip)
—2F, —h*(t,)nv[xy +Xy - (x +y)§ - X +7)s]

~Hx+ )R+ G+ u]

N
+F, +h2(to)ﬂV(yy—ys—y8)+5(yu+yu)

= I’ (t,)nv(xX ~xy - Xy +yy)
= h(t,)7v(x - y)E - )

=h*(t,)nv(x - y)(x~y)
bulunur. X ve ¥ noktalan arasindaki uzakliga d denirse
Fy =2F +F, = h*(t,)nvd?

elde edilir. Buradan
(5.2.44) F, = -;-(FX +F, ~h*(t,)nvd? )

bulunur.
(5.2.39) ve (5.2.44) ifadeleri (5.2.42) de yerine yazlirsa

1

Fz :(1—5)2FX +2(1_§)§|:—2_(FX +FY —hz(lo)”"dz)]"‘ngy

=l-o2 + -l +[a-2) +£2]F, - 1-&)an* ¢ty
veya
(5.2.45) F, =AF, +&F, - A&h*(t,)mvd?
elde edilir.

5.2.4. Kapal Homotetik Hareketler Icin Holditch Teoremi
TEOREM 5.2.7.

k, E'-dizleminde bir oval (yani kapali bir konveks egri) ve XY de & nn sabit d
uzunluklu kirii olsun. Bu kirigin Z noktas: tarafindan @ ve & uzunluklu iki pargaya

bolindiigiini kabul edelim. E/E’ kapah dizlemsel homotetik hareketi esnasinda, eger
XY kirigi £ ovali etrafinda tam bir donme yaparsa, & ovali ile Z noktas: tarafindan
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gizilen kapal egri arasindaki alan a, b ve h parametrelerine, yani Z noktasmin XY

kirigi (izerindeki segiligine ve hareketin homotetik oranina, baghdir.

Ispat:

Kabul edelim ki XY reel eksenin yoniinii gostersin. Bu durumda
(5.2.46) d=y-x, a=z-x=&d, b=y-z=»M, a+b=d
esitlikleri elde edilir.

Z noktasinin yoriinge alam igin donme sayis1 v =1 oldugundan (5.2.45) den

b a ba
FZ = Zi-FX + ZFY -Z?jhz (to)Ttdz

veya
(5.2.47) F,= -j?(bFX +aF, )~ K (t,ynab
bulunur.

Ayrica, X ve Y noktalan aym k ovalini ¢izdiginden F, = F, dir. Bu takdirde
(5.2.47) den

F, = %(b +a)F, —h*(t,)mab

= F, = h*(t,)rab

elde edilir.
k ovaliile Z noktasin ¢izdigi kapali egri arasindaki alan F ile gosterilirse
F=F,-F,
oldugundan
F =h*(t,)mab
bulunur.

SONUC 5.2.4. h=1 6zel durumunda [4] de 1-parametreli diizlemsel hareketler i¢in
verilen

F =nab
bagintisi elde edilir.
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6. TARTISMA

[7]1 de Oklid diizleminde 1-parametreli homotetik hareketlerde incelenmis olan
hizlar ve ivmeler, kompleks diizlemde 1-parametreli homotetik hareketler altinda
incelenmistir. Oklid diizleminde hizlar ve ivmeler ile ilgili elde edilen bagntilarm
kompleks diizlemde de saglandifi gorilmigtir. Aynca Oklid dizleminde noktanin
koordinatlarina bagh olarak ifade edilen sonuglar kompleks diizlemde sadece noktaya
bagh olarak ifade edilmis ve boylece hizlar ve ivmelerin ifadeleri agik ve daha anlagilir
sekilde elde edilmigtir. Daha sonra [8] de Oklid diizleminde 1-parametreli kapal
homotetik hareketlerde verilen bir noktanin Steiner alan formilintn kompleks
dizlemde 1-parametreli kapah homotetik hareketlerdeki ifadesi elde edilmistir.

Diger taraftan, [3] te kompleks diizlemde 1-parametreli hareketlerde ifade edilen
hareketli dizlemin farkli iki sabit noktasimin kangik alan formiilii, kompleks diizlemde
1-parametreli kapali homotetik hareketlere genellestirilmistir. Ozel olarak homotetik
oraninin “1” alinmas1 durumunda [3] tarafindan verilen formiil elde edilmistir. Bundan
baska kangik alan formiili noktalarin yoringe alanlart cinsinden ifade edilmis ve
kompleks diizlemde 1-parametreli kapali homotetik hareketlerde Holditch teoremi
ispatlanmsgtir. Bundan bagka [S] te homotetik oramina bagh olarak ifade edilemeyen

teorem ve sonuglar galigmamizda homotetik oranina bagh olarak ifade edilmisgtir.
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7. SONUC VE ONERILER

Kompleks diizlemde 1-parametreli hareketler ve 1-parametreli homotetik hareketler
altinda incelenen hizlar ve ivmeler ile ilgili elde edilen sonuglar Bulgular boliimiinde
ifade edilmistir. Aynca 1-parametreli kapah diizlemsel homotetik hareketlerde ifade
edilen kangik alan formili ve bu alan yardimiyla elde edilen sonuglar Buigular
bolimiinde verilmigtir.

Benzer ¢aligmalarda, 1-parametreli kapali diizlemsel hareketlerde elde edilen bir
noktamn yoringe alan formiilii yerine agik hareketlerde, yani kapali olmayan

hareketlerde bir dogru pargas: tarafindan taranan alan formiilii hesaplanabilir.
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