END TO END 3D FACE MODEL SYNTHESIS USING
TEXTUAL DESCRIPTIONS

A Thesis
by

M. Ulug Sahin

Submitted to the
Graduate School of Sciences and Engineering
In Partial Fulfillment of the Requirements for
the Degree of

Master of Science

in the
Department of Computer Science

Ozyegin University
June 2020

Copyright (©) 2020 by M. Ulu¢ Sahin

END TO END 3D FACE MODEL SYNTHESIS USING
TEXTUAL DESCRIPTIONS

Approved by:

Asst. Prof. M. Furkan Kirag, Advisor
Department of Computer Science
Ozyegin University

Prof. Erhan Oztop
Department of Computer Science
Ozyegin University

Prof. H. Kemal Ekenel
Department of Computer Engineering
Istanbul Technical University

Date Approved: 10 June 2020

To my family and friends.

1l

ABSTRACT

Although there are various generative models that successfully generate photo-realistic
images, these models have no way of controlling generated images. Research on condi-
tional generative models, which allow us to control generated images, is quite limited.
Furthermore, research on generating realistic human face images from given natural
language descriptions is limited as well. Generated images are either low quality, or
lack variance. To solve this problem, we propose Conditional StyleGAN (cStyleGAN),
a variation of StyleGAN that is capable of separating high dimensional features and
generating high quality images that are conditioned on supplied text descriptions.
Our cStyleGAN is able to generate high quality human face images that align with
the given text descriptions. We are also extending CelebA human face dataset with
our Description Generation Module by providing additional natural language descrip-
tions for images, which can be used in training of cGANs to generate 2D human face
images. 2D images can provide good information. However, being able to see an im-
age from different angles and in different illumination, and being able to see it with
depth information as a 3D model can transmit more valuable information compared
to 2D images. For this reason, we are also providing an end-to-end architecture for

generating 3D facial structures from given natural language descriptions.

v

OZETCE

Gergek resim kalitesinde resimler tiretebilen cesitli tiretici modeller olmasina ragmen,
bu modeller iiretilen resimleri kontrol edememektedir. Uretilen resimlerinin kon-
troliinii saglayan Kosullu Cekismeli Uretici Aglar alanindaki arastirmalar oldukea
limitlidir. Dahasi, dogal dil yapisinda verilen betimleyici agiklamalar1 kullanarak
gercekei insan yiizii resmi iiretebilen sinir aglar ile ilgili aragtirmalar da yetersizdir.
Uretilen resimler ya diisiik kalitede olmakta, ya da cesitlilik saglayamamaktadir. Bu
sorunu ¢ozmek icin, Stil Cekilmeli Uretici Aglar (StyleGAN) yapisinin bir gesidi
olan, ve yiiksek boyuttaki ozellikleri ayirip, yiksek kaliteli, verilen betimlemeler
{izerinde kosullanmig resimler iiretebilen Kogullu Stil Cekismeli Uretici Ag (cStyle-
GAN) yapisimi 6ne siiriiyoruz. Ayrica, CelebA veri kiimesini, Tanimlama Uretim
Modiilii'miiz (Description Generation Module) ile resimler igin tirettigimiz dogal dil
yapisindaki, iki boyutlu resimlerin tiretiminde kullanilacak olan kogullu iiretici aglarin
egitiminde faydali olacak tanimlamalar ile genigletiyoruz. Iki boyutlu resimler iyi bir
bilgi saglamasina ragmen, bir resmi farkl acilardan, fark: igiklar altinda, ve bir de-
rinlik bilgisi ile gozlemlemek daha fazla bilgi iletebilir. Bu yiizden, verilen dogal dil
tanimlamalarindan tli¢ boyutlu insan ytizii modelleri iiretebilen uctan uca yapimizi da

one suriiyoruz.

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my thesis advisor Asst. Prof. M.
Furkan Kirag. He guided me and mentored me patiently throughout my study with
his experience and knowledge.

I would also like to thank my family; my parents Sibel and Ali, for supporting me

and believing me throughout my life.

vi

TABLE OF CONTENTS

DEDICATION iii
ABSTRACT iv
OZETCE o o v
ACKNOWLEDGEMENTS vi
LIST OF TABLES o X
LIST OF FIGURES xi
I INTRODUCTION e 1
1.1 Contributions 4

1.2 Thesis Outline 5

I BACKGROUND s 6
2.1 Autoencoders 6
2.1.1 Likelihood Ratio 7

2.1.2 Kullback-Leibler Divergence 8

2.1.3 Variational Autoencoders 9

2.1.4 Conditional Variational Autoencoders 10

2.2 Generative Adversarial Networks 11
221 Naive GANs 11

2.2.2 Wasserstein GANs o 18

2.2.3 Conditional GANs 22

2.2.4 Evaluation Metrics of GANs 25

2.3 Natural Language Processing 27
2.3.1 Skip-Gram Model 28

232 FastText 28

24 StyleGAN . . . o 29
2.4.1 Batch Normalization 31

vii

II1

v

2.4.2 Instance Normalization 32

2.4.3 Adaptive Instance Normalization (AdaIN). 33
2.4.4 Mapping Network L. 34
2.4.5 Synthesis Network 34
2.5 Position-map Regression Network 35
251 UV Mapping« . 35
2.5.2 What is Position-map Regression Network 35
2.6 Learned Perceptual Image Patch Similarity (LPIPS) 37
PREVIOUS WORK 39
METHODOLOGY e 44
4.1 Perceptual Quality Distance 46
4.2 Conditional StyleGAN oL o 49
4.2.1 Discriminator Type 1 ol
4.2.2 Discriminator Type 2o L. o1
4.3 3D Facial Structure Pipeline 53
4.4 Datasets L 55
4.4.1 Extended Dataset 56
4.4.2 Shapes Toy Dataset 56
4.5 Description Generation Module 57
4.6 Experiments 59
4.6.1 cStyleGAN on Face2Text Dataset 60
4.6.2 cStyleGAN on Extended Dataset 60
4.6.3 Noise Scaling and Effect of Noise 61
4.6.4 Data Augmentation 62
4.6.5 Ablation Study: Disabling Blocks in Synthesis Network . . . 63
4.7 Results 64
4.7.1 Results of cStyleGAN Trained on Face2Text 65
4.7.2 Results of ¢StyleGAN Trained on Extended Dataset 67

viil

4.7.3 Comparison with Existing Work 69

4.7.4 Results of 3D Generation 70
V. CONCLUSION e 72
APPENDIX A — SAMPLES 74
APPENDIX B — CSTYLEGAN LAYERS 80
REFERENCES 85

1X

LIST OF TABLES

Number of eliminated images for corresponding reason and total gen-
erated description count.

Applied transformations with their chance of being applied.

Comparison of PQD scores. Best result achieved with our model when
trained with Extended Dataset.

Comparison of Inception Scores. Best result achieved with our model
when trained with Extended Dataset.

Comparison of 3D generation speed of PRN for different input sizes.

40 annotations available in CelebA Dataset.

99
63

70

(S P V)

10

11

12
13
14
15
16

17

18
19
20
21
22

LIST OF FIGURES

An autoencoder architecture example.
A variational autoencoder architecture example.
An example architecture of Conditional Variational Autoencoder.

Generative Adversarial Network architecture..

An example of mode collapse. Images generated with different inputs
are the same. L L

Architecture of conditional GAN.

Network architecture of StyleGAN proposed by [9]. Above the dashed
line is mapping network while below is synthesis network.

Network architecture of Position-map Regression Network.
Proposed end-to-end system architecture.

PQD between similar quality samples and CelebA dataset. One exam-
ple from each category is shown.

Architecture of cStyleGAN Generator. Above the dashed line is map-
ping network while below is synthesis network.

Architecture of Discriminator Type 1.
Architecture of Discriminator Type 2.
Height-map estimation obtained from generated 2D images.
Comparison of default PRN models and improved models.

Examples on toy dataset with Discriminator Type 1. Only one in four
images is aligned with given descriptions.

Examples on toy dataset with Discriminator Type 2. All images are
correctly aligned with descriptions.

Examples images from c¢StyleGAN trained on Face2Text dataset. . . .
Generator and Discriminator losses over training epochs.
Results of same description with different noise values.
Examples from model trained with augmented training set.

Results of disabling different early blocks in synthesis network of gen-
erator.

x1

23

24

25
26

27
28

29
30

31
32

cStyleGAN mode collapsed on Face2Text dataset with 1.5 million it-
erations for each resolution.

Results of ¢StyleGAN on Face2Text dataset trained 600K iterations
per resolution.

Results of cStyleGAN trained on Extended dataset.

Results of ¢StyleGAN trained on Extended dataset in zero-shot (unseen
text) setting.

Comparison of outputs from Pro-StackGAN and cStyleGAN.

Examples of 2D images and corresponding 3D facial structures gener-
ated from textual descriptions.

Face2Text data training samples with human written descriptions. . .

Samples from CelebA dataset which does not exist in Face2Text dataset,
with added descriptions generated by our module.

Voxelated human face model with 64x64x64 resolution.

Voxelated human face model with 128x128x128 resolution.

xii

66

66
67

68
69

71
74

CHAPTER 1

INTRODUCTION

Inspired by how neurons in human brain works, history of artificial neural networks
has its roots as early as early 1940s. In 1943, neurophysiologist Warren McCulloch and
mathematician Walter Pitts published their paper [1] where they discussed relation
between neurons and logical calculus, followed by Donald Hebb in his book named The
Organization of Behaviour [2]. In 1954, Massachusetts Institute of Technology (MIT)
developed Hebbian Networks, which translated neural networks onto computational
systems for the first time. Followed by many others [3][4][5][6][7], neural networks
have increased in popularity as computational power increased. Computers became
more accessible and got faster, and translating neural networks onto computer systems
became a viable option. Especially in the last decade, along with increased popularity
of neural networks in various scientific domains, we even have started to witness that
they are becoming an integrated part of our daily lives.

As research on neural networks increased, different types of neural networks with
different use cases have emerged. In this work, we have used Generative Adversarial
Networks (GANs) [8], which are a type of generative neural networks that are used to
generate new samples from underlying data distribution of a given dataset. Samples
generated by GANs are new instances, meaning that they don’t exist in the dataset,
but are similar to available instances in learned samples. GANs achieve this by
training two neural networks that compete against each other in a minimax game. A
generator tries to generate images that can trick the discriminator, and a discriminator
that tries to detect if a given image instance is coming from the dataset or generated

by a generator.

It is important to understand what is happening in the background of used neural
networks, various techniques and other decisions. Without background knowledge, it
is not possible to go further and improve upon existing work. In this thesis, mathe-
matical background of used techniques as well as techniques themselves are explained
in detail. For the same reason, autoencoders are discussed in their separate section.

There are various problems about GANSs, such as instability in training, lack of
proper evaluation metric, long training times, and not being able to control the output
of network. Which are partly solved by improvements made in the last years. We are
utilizing Wasserstein Metric for better training stability and as a better evaluation
metric, we are also using progressively growing method of GANs for improved train-
ing times and further increased stability in training. Specifically, we have utilized
StyleGAN [9], which is an improved Progressively Growing GAN (ProGAN) [10] that
allows separating style and content information of an image. Output conditioning
is achieved in our work by feeding a conditional variable as an extra input to our
GAN. In this work, we propose Conditional StyleGAN (cStyleGAN), which achieves
competitive performance with previous text to face generation methods while gen-
erating high quality human face images that align with the given text descriptions.
Our approach allows increased image fidelity and resolution in generated human face
images while maintaining description-image alignment.

There is insufficient research in generating human face images from given natural
language descriptions. Likewise, existing data in this literature is insufficient. Al-
though there are datasets such as CelebA [11], which contains 202599 celebrity face
images, these datasets do not contain natural language descriptions written by hu-
mans. CelebA contains 40 annotations for each image in the dataset, which describe
visual properties of the person in the image. We have developed a module that gener-
ates natural language descriptions from these annotations, which is used for training

our cStyleGAN. Another dataset is Face2Text [12], which contains 4076 human face

images that are annotated by humans. However, this dataset alone is insufficient for
our task. We have combined the data existing in Face2Text dataset with the data
obtained by generating descriptions with our module for using in the training of our
network.

Describing a human face has important applications, such as describing a criminal
to police for criminal identification. However, visualising a human face described by
other people is a hard task for humans, and given descriptions may not always be
accurate. Person who describes the face may not be remembering all the details, or
even worse, may remember the details wrong. In such circumstances, using a tool that
generates human faces from given descriptions would be invaluable. Seeing an image
of a person which suits given description may help remembering the details, or in
the best case, person being tried to be described may be visualized exactly by neural
network, which removes the need of manually sketching the person. Despite focused
studies in this field, this problem is far from being solved. Generated images are
either low quality, or not completely aligned with given descriptions. In this study,
we have achieved competitive results with state of the art methods, and achieved
high quality images with high variance, which are aligned with descriptions, with the
ability of observing generated faces in three dimensions.

2D images can provide important information. However, being able to see an
image from different angles and in different illumination, and being able to see it with
depth information as a 3D model can transmit more valuable information compared
to 2D images. For this reason, we also generate 3D facial structures of 2D human
face images generated from textual descriptions by using Position-map Regression
Network (PRN) [13]. Generated 3D models can be easily used in 3D software, and

can be utilized like any other 3D model.

1.1 Contributions

Our contributions in this work has different key-points. In the existing research, gen-
erated images are either low quality, not completely aligned with given descriptions,
or lacking variety. We have improved upon existing methods and have achieved high
quality images with high variety which are aligned with descriptions. Utilizing Style-
GAN architecture, we have implemented c¢StyleGAN, which is capable of separating
high dimensional features, such as hair color, hair type and length, facial structure
features, gender etc. Generated images are conditioned on conditioning variable given
as input, meaning that we can change said features of generated output in a control-
lable manner by giving natural sentence descriptions. Our model achieves competitive
results with state of the art methods in text to face generation domain, and success-
fully generates high quality human face images that are aligned with the given text
descriptions. Additionally, we are providing an end-to-end structure for generating
3D facial structures that are aligned with the given text descriptions. We have im-
proved results of 3D generated facial structures by applying various processes to 3D
generation pipeline.

We are also extending CelebA dataset by generating natural language descrip-
tions from annotations available in CelebA dataset. Our system is able to generate
descriptions for 203K images in few seconds, which can be used with (or in place
of) annotations and descriptions written by humans to train neural networks. Our
Description Generation Module uses a rule based algorithm to generate sentences in
grammatically correct form, with added randomness to descriptions for minimizing
memorizing problem in neural network during training. Furthermore, the system
eliminates low quality annotations by using multiple methods: annotations that are
conflicting are eliminated, such as marking beard as not available while marking a
goatee as available. Also, annotations that contain no information about an impor-

tant feature, such as hair, is eliminated. Finally, images which do not have certain

amount of annotations marked as available are eliminated, where the number is a
parameter that can be changed according to needs of users.

Finally, we are proposing our novel GAN evaluation measure, Perceptual Quality
Distance (PQD). To our knowledge, this is the first GAN evaluation measure that
directly uses perceptual properties of images. We show that PQD distance is inversely
proportional (lower is better) to image quality and similarity of image to real dataset,
and we show our results on images of various qualities. We show that our model
achieves better PQD score compared to existing work, which is also aligned with

Inception Score rankings reported in this thesis.

1.2 Thesis Outline

Rest of this thesis is structured as follows:

Chapter 2 talks about previous work that our work is built upon: Chapter 2.1
talks about Autoencoders and variations, which GANs are based upon. Chapter 2.2
has explanations of GANs and variations, along with techniques, loss functions and
mathematics used in GANs. Chapter 2.3 covers the Natural Language Processing
techniques that is relevant for our work. Chapter 2.4 covers the StyleGAN which our
work is based upon and discusses our contribution, ¢StyleGAN. Chapter 2.5 explains
how PRN works and how it is beneficial in our work for creating 3D facial structures.

Chapter 3 discusses previous work in the domain of generating human face images
from natural language descriptions.

In Chapter 4 we show our experiments and results on both Face2Text dataset and
our extended dataset, and we discuss upon our results.

In Chapter 5 we conclude this thesis with an overview of our work and discussion.

CHAPTER 11

BACKGROUND

In this Chapter, we discuss previous work that this thesis is built upon. First, we
discuss about autoencoders, which GANs are built upon. Then we extend our dis-
cussion to GANs. We discuss about NLP to show methods that are beneficial for our

work. We talk about StyleGAN, which our c¢StyleGAN is based upon. Finally, we

talk about PRN, which is used for generating 3D models in our work.

2.1 Autoencoders

Autoencoders are a type of neural network architecture that are used for learning
efficient, low dimensional data encodings for a given input. In its simplest form, an
autoencoder consists of two main parts; an encoder and a decoder, where encoder
maps given input into a low dimensional representation, which we refer as bottleneck
in this work, and the decoder, which uses this representation for generating an image,
ideally same as the given input. Currently, some of the most popular applications of
autoencoders are denoising and dimensionality reduction. In our work, we may think
of autoencoders as a stepping stone for Generative Adversarial Networks. We discuss

about autoencoders in this work as an introduction to GANs.

| Reconstructed
Image

Input Image >

Bottleneck
S I

Encoder Decoder

Figure 1: An autoencoder architecture example.

Although there may be different cost functions for autoencoders with different
purposes, such as denoising autoencoders, cost function for calculating how good the
generated image in a basic autoencoder is simply calculated as pixelwise difference
between input image and generated image. Two main types of loss function are
used for autoencoders that try to reconstruct given input image; Mean Squared Error
(MSE), and Kullback-Leibler (KL) divergence. In this work, we talk about Likelihood
Ratio (LR) as it is used in KL divergence, and we discuss KL Divergence itself. We

omit the discussion about MSE as it is not used in our work.
2.1.1 Likelihood Ratio

Let us assume we have two probability distributions p, generated by our neural net-
work, and ¢, distribution of the dataset being used. A metric is required for measuring
how good p is compared to ¢q. LR can be described as ratio of two probability distri-

butions, which can be used for this purpose.

LR = p(x)/q(x), (1)

where x is any sample. We want p to be as close as ¢. LR measures the probability
of a sample being in p compared to ¢, a LR value larger than 1 means that the sample
x is most probably in p, while a value smaller than 1 indicates that x is most probably

in q.

We can compute LR for a dataset by multiplying LR values of independent samples

in the dataset:

i=0 q(z;)

Calculations may get quite expensive if there are a lot of data. For decreasing

computational complexity, it is desirable to use logl0 form of (2):

logLr = é log (p(xi)) : (3)

Q(sz)

which has summation instead of multiplication.
2.1.2 Kullback-Leibler Divergence

In simplest words, Kullback-Leibler Divergence (KL Divergence) measures divergence
between p and ¢. In the following examples, we make the assumption that both p
and ¢ are continuous distributions, however, KL, Divergence is applicable for discrete
distributions as well. KL Divergence for continuous probability distributions can be

found by taking expected value of likelihood ratio:

Dra(P11 @) = Y- plootog (42, (@)

KL Divergence is valid for both discrete and continuous probability distributions.
For continuous probability distributions, Equation (4) changes slightly and uses inte-

gral instead of summation:

[e.o]

Dia(P Q) = [

— 00

ploiog (1) @

KL Divergence considers one probability as the ground truth while comparing
distributions. Changing places of distributions in formula would mean that changing

the ground truth, therefore it should be noted that KL Divergence is not symmetrical:

Dii(P | Q) # Dkr(Q]| P). (6)

While calculating Dy (P || @), in cases where ¢(x) takes the value 0 results in
p(z)/q(z) value to be infinity. Value of KL divergence would not make sense if there
is no overlap between two probability distributions. This is not desirable from neural
network perspective since it would cause gradients to go in unwanted directions. A
solution is adding continuous noise to input to achieve overlapping at between the

two probability distributions.
2.1.3 Variational Autoencoders

Autoencoders may not generate meaningful output for an input which is taken from
an unknown probability distribution. Output for such input would be randomly gen-
erated pixels. Autoencoder has no idea if the vectors that we are passing to decoder
are valid vectors or not. Variational Autoencoders (VAE) on the other hand, can
get a random input and still generate meaningful outputs. VAEs solve this problem
by forcing encoder to produce a probability distribution function over encodings in-
stead of producing single encoding of a particular image. Instead of different single
values, VAEs have distribution function for each value in the latent variable. VAEs
restrict latent variable p generated by encoder to some predefined distribution (such
as normal distribution). Encoder in VAE generates parameters for such distribution
instead of generating values in latent space directly. So, the decoder trained with
such values generates meaningful images when a random p from this distribution is

selected as input to the decoder.

— I
1
Mean Reconstructed
Input Image S
p Sampled
|| Latent |
=i Std. dev. Vector L
Encoder Decoder

Figure 2: A variational autoencoder architecture example.

2.1.4 Conditional Variational Autoencoders

Although VAEs generate meaningful images even from randomly selected values, it
is not possible to control generated output using VAEs. In VAESs, there is no such
parameter that controls the output for a given input. That is, values in latent rep-
resentation, which are generated by encoder, cannot be interpreted (at least with
current technology), and the output of VAE cannot be controlled. This also means
that while VAEs are good for reconstructing input, it cannot work as a controlled
generative model. If we feed a random latent vector to decoder it may not give a
reasonable image, or the generated image may be different than what we desired it
to be.

To solve this problem, another input called Conditioning Variable is fed into both
encoder and decoder during the training. So that values in latent space generated
by encoder are conditioned on this extra input, and decoder learns to output images
that represent desired shape or form corresponding to given conditioning variable. For
example, if MNIST [14] dataset is being used, it is feasible to feed a 10 dimensional
one hot vector that represents classes in MNIST dataset. If we feed one hot vector
which has 71”7 in the first dimension along with pictures of zero during training, then
the network learns to output picture of number zero if we give a one hot vector
which has 717 in the first dimension along with a randomly selected latent vector.
In layman’s terms, decoder is correlating a class of image with a certain value and
generates from that class when correlated input is given.

An important point to note here is, Conditional VAEs (¢cVAESs) rely on provided
conditioning variable to generate an image from a certain class while it relies on latent
vector taken from a probability distribution to chose other properties of selected class.
For example, such as angle, thickness etc. are decided according to values in the

sampled latent values if we are generating images of numbers in MNIST dataset.

10

— -
5] _
i
Conditioning y
. > ean
Variable > 4,5
Sampled Reconstructed
G
E— | Latent || Image
T Vector —

— Std. dev.

Input Image
P g Encoder Decoder

Figure 3: An example architecture of Conditional Variational Autoencoder.

2.2 Generative Adversarial Networks

Generative Adversarial Networks (GANSs) are type of generative neural networks that
are used to generate new samples from underlying data distribution of a given dataset.
Similar to autoencoders, samples generated by GANs are new instances, meaning that
they do not exist in the dataset, but are similar. In this section, we discuss Conditional
GANs (cGANs) [15] that are used in our work, and Naive GANs which Conditional
GANs are based upon. We also discuss various loss functions and metrics that are

used in GANSs in this section.
2.2.1 Naive GANs

We use the word ”adversarial”, which means ”involving or characterized by conflict
or opposition” . GANs are composed of two different neural networks which compete
against each other in a minimax game. This is where the word adversarial is coming
from. A generator, which is a generative model that tries to generate samples that
can trick the discriminator, and a discriminator, which is a discriminative model that
classifies a given sample as either real, meaning that instance is coming from the
dataset, or as fake, meaning that instance is generated by a generator.

Aim of generator is to output samples that are close to real samples, which can

thttps://www.lexico.com/en/definition/adversarial

11

Y

7 Fake

Generator > Image Discriminator —>{ Fake / Real
——

Y

Real
Image

Figure 4: Generative Adversarial Network architecture.

be mistaken as real by the discriminator. Here, generator only takes some noise, or
a latent space from a random distribution as input. Discriminator similarly, receives
single input in the form of a sample along with corresponding label. However, this
sample may be coming from two different sources: a fake sample generated by the
generator, or a real sample taken from the dataset. Labels are given during training,
so that the discriminator learns to discriminate between real and fake samples as the
training continues. As the discriminator gets better in distinguishing between fake
and real samples, the generator would need to generate samples that are closer to real
data in order to continue tricking the discriminator. This minimax game ensures that
the generator is good at outputting samples that are close to underlying probability
distribution of dataset used during training.

Here the discriminator outputs values between 0 and 1, 0 if it is perfectly sure
that it is a fake sample, and 1 if it is perfectly sure that it is a real image, or vice
versa. In the case of perfectly trained, ideal generator, discriminator would output
0.5, which means that samples generated by a generator are so close to real samples
that discriminator cannot decide if a sample is coming from the generator or from
dataset.

Discriminator is trained with both fake samples and real samples. It is easy to
label data as fake or real because we know which samples are fake, and which sam-
ples are coming from dataset. These labels are consistent throughout the training,

meaning that real samples stay in the real category and fake samples always stay

12

in fake category. However, we cannot say that there is a similar consistency for the
generator. Generator’s ability to generate realistic samples are measured by discrim-
inator, since the discriminator is always changing throughout the training, there is
no such consistent measure available for generator. It is harder to train generator
compared to discriminator in GANs because of discussed conditions. Discriminator
is a network that only learns how to classify between real and fake samples, whereas
generator needs to learn how to generate realistic looking, diverse samples that are
similar to real data.

Another point that should be noted is that generator and discriminator are trained
in alternate. We discussed that consistency for measuring discriminator does not ap-
ply for generator. To compensate, in some architectures, discriminator is trained
k iterations for each training iteration of generator, which ensures the metric that
measures generator’s performance is based on a more optimal, better trained discrim-
inator.

Back propagation algorithm of GAN works in a similar fashion with other neural
networks. Loss obtained from discriminator is back-propagated through network
for updating weights and parameters. However, since we do not have a distinctive
loss function for generator, updating weights of generator network depends on loss

obtained from the discriminator.
2.2.1.1 Loss Function of Naive GANs

In GANSs, we have two different loss functions; one for discriminator, and another one
for generator. GAN’s aim is finding the underlying probability distribution so that
the generator can generate samples that are as close as possible to real samples.

In 2.2.1 we stated that discriminator and generator are competing against each

other in a minimax game. Equation for this minimax game is shown in (7).

13

minmax V(D, G) = Epmpyya(@)[109D(2)] + Bz, (5 [log(1 = D(G(2)))], - (7)

where GG is Generator, D is Discriminator, x is real sample and z is noise. D
tries to maximize probability of classifying samples into correct label, while G tries to
minimize log(1 — D(G(z)). Note that while D is directly affecting the error function
while G does this through D. G can only achieve lower loss (or error) values by
making sure that D has high loss value. G can only affect log(1 — D(G(z)), so,
log(D(x)) part has no direct effect on generator during the training.

In the GAN paper [8], it is stated that this error function may cause generator to
stuck. Discriminator’s job is easy at the beginning since generated samples are very
different from real samples. This causes log (1 - D(G(z)) to saturate. To solve this
problem, [8] states that it is better to train G to maximize log D(G(z)) instead of
training G to minimize log (1 - D(G(z)). This provides a better training for GAN

early on.
2.2.1.2 Pros and Cons of Naive GANs

Neural network models are generally known as data hungry. Usually, obtaining data
is hard and may be expensive depending on the type and amount of data is required.
In case of supervised learning, we need data that is labeled so that we can train our
model. Although amount of data required is considerably high, an advantage of GANs
is that they do not need labeled data as it is a form of semi-supervised learning.

An important weakness of GANs is that there is no evaluation metric which mea-
sures performance of them. Both Inception Score and Fréchet Inception Distance are
not directly evaluating the quality of generated samples. There is not a suitable met-
ric that can be used to compare two different GANs. Despite GANs being a popular
area of research, results are often measured by human eye. GANs are also harder

to train compared to VAEs since there is not a clear evaluation metric, and thus no

14

clear objective, to minimize in GANs.

Training of GANs is not always stable. During the training GAN, it is not un-
usual to face mode collapse. In case of mode collapse, some modes of multi-modal
data are missed by the generator. In the example of a GAN trained on MNIST
dataset, the generator may generate only few classes no matter what input is given to
it. For example, generator may only generate images of 70” and ”5” and not others,
or even worse, generator may generate the same image of a single class among all
the classes. This occurs when generator finds a single solution that the discriminator
cannot, distinguish from real image. In naive GANSs, there is no incentive for gen-
erator to generate different distribution of samples, so, generating same image that
successfully tricks the discriminator is completely acceptable by generator. In such
a case, minimax equation reaches to an equilibrium and the training stops. Training
must be restarted or continued from a previous checkpoint. An example of mode

collapse on model trained on CelebA dataset can be seen in Figure 5.

Figure 5: An example of mode collapse. Images generated with different inputs are
the same.

15

Although not exactly a disadvantage, we should point that practically it is not
possible to control the samples generated by GANs. GANSs in this form (without a
conditioning variable) have no way of controlling the output. Similar to VAEs, theo-
retically it is possible to control output by changing latent variables that effect certain
properties of generated samples. However, this is practically not viable with current
technology. Conditional GANs solve this problem and allow controlling output with

additional input variable, which is discussed in Section 2.2.3.
2.2.1.8 Jensen-Shannon Divergence

Jensen-Shannon Divergence (JSD) is a method based on KL Divergence. Similar to
KL Divergence, (JSD) is used for measuring the similarity between two probability
distributions. Unlike KL Divergence, JSD has finite boundary which is quite useful

for generative neural networks. JSD is defined as follows:

JSD(P] Q) = JKL(P || M)+ SKL(@ || M), ®)

where M = $D(P + Q).

Square root of JSD is Jensen-Shannon Distance, which is a metric (satisfies prop-
erties of a distance measure). It should also be noted that JSD is symmetric unlike
KL Divergence:

JSD(P || Q) = JSD(Q || P) (9)

The most important contribution of JSD is that it works even if there is no overlap
between the two probability distributions. JSD is bounded by 1 for two probability
distributions:

0< JSD(P]|Q) <1 (10)

However, JSD falls short in taking the distance between two probability distribu-
tions into consideration. Let us assume we have three Gaussian probability distri-

butions pl, p2 and p3 with p values of 1, 10 and 50 respectively, and o values of 1

16

for each. Assuming there is no overlap between these three distributions, although
similarity between pl and p2 is higher than the similarity between pl and p3, JSD
between pl and p2 is equal to JSD between pl and p3.

If two probability distributions are far away from each other, meaning that they
have no overlap, then JSD would take value of log2. Derivative at this point would
be 0, we cannot get useful gradient information, and the training gets very slow or

completely halts.
2.2.1.4 Wasserstein Distance (Earth Mover Distance)

In Section 2.2.1.3, we discussed that JSD falls short in taking the distance between
two probability distributions into consideration. Wasserstein Distance (also known as
Earth Mover’s Distance) is a metric that is used for measuring how different the two
probability distributions are from each other. Similar to JSD, Wasserstein Distance
is symmetric. In this work, the term Wasserstein Distance is used to denote 1%
Wasserstein Distance (or Wasserstein - 1).

It would be correct to make the following comment about KL Divergence, JSD
and Wasserstein Distance: assuming we have x values on x axis, and p(x) and ¢(z)
values on y axis where p and ¢ is a probability distribution. KL and JSD would
not take horizontal space (distance on x axis) between distributions into consider-
ation whereas Wasserstein Distance does when calculating how different these two
probability distributions are. In case where there is no overlap between distributions,
KL Divergence would be infinity whereas JSD and Wasserstein Distance would give
definite values.

Wasserstein Distance is also known as Earth Mover’s Distance (EMD) in computer
science. There is a famous example given when EMD is being explained: assume that
there are two piles of dirt with same mass, EMD between these two piles of dirt is

how much energy required to transform one pile of dirt into another. Here, energy

17

is measured by distance each unit of dirt moved. So, we can explain Wasserstein
Distance as minimum amount of work required to change one shape of probability
distribution into shape of other probability distribution. The p!* Wasserstein Distance

is defined as follows:

W)=t ||x,yupdv<x,y>)l/p, (1)

el (v

where p > 1 and I'(p,) denotes all joint distributions « for (x,y) with marginals p
and v. When p = 1, the formula is equal to EMD.

Another important feature of Wasserstein Distance is that it is continuous and
differentiable almost everywhere. This is especially helpful in GAN training for ob-
taining meaningful gradients during training, which is an important part of success

of wGANSs.
2.2.2 Wasserstein GANs

We have discussed that GANs may face mode collapse during training, where gen-
erated samples are same even if the inputs are different. Wasserstein Distance is an
important step towards solving this problem, as well as alleviating vanishing gradi-
ent problem even though it does not completely solve it. Arjovsky et al. [16] used
Wasserstein-1 Distance in their GAN architecture, which is called Wasserstein Gen-
erative Adversarial Network (wGAN). wGANSs also offer a better loss function in the
form of Wasserstein Distance where it is correlated with quality of images.

In Section 2.1.2 we have discussed that KL divergence is infinite (or not defined)
when there is no intersection between two probability distributions. So, adding a noise
to form an intersection between two probability distributions is a common approach
in neural networks. In wGANSs, since Wasserstein Distance works even if there is no
overlapping between the two probability distributions, adding noise for creating an

overlapping between them is not necessary, although still used for purposes such as

18

avoiding memorizing training data.

It is beneficial to discuss how Wasserstein Distance is used in wGANs. First,
we should look at the definition of Lipschitz Continuity: if a real-valued function
f: R — R satisfies the property ||f||. < K, then it is called K-Lipschitz Continu-
ous. Functions that are continuously differentiable everywhere are called Lipschitz

Continuous if a real constant exists such that K > 0 for all x;,xs € R,

|f(z1) = f(22)| £ Kl|zy — 22]. (12)

If we look at how [16] transformed Wasserstein Distance and used following equa-

tion in wGAN:

Wo(pr9g) = = 5up Euupe[f ()], (13)
K 1<K

we see that sup (supremum) is used as opposed to inf (infimum) in Equation
(11), which is the least upper bound. Supremum in this formula is defined over
all 1-Lipschitz functions, meaning that it is Lipschitz Continuous and continuously
differentiable everywhere. Assuming that parameterized family of functions { fy, }wew
are all K-Lipschitz for some K, then Wasserstein Distance between p, and p, can be

written as:

Wp<prapg> = we%(EINPT [fw<x>] - EszT(Z) [fw(gG(Z))] (14)

We used the word ”discriminator” up until this point, it is important to note that
”discriminator” in wGAN is actually a ”critic” and not a discriminator. In Naive
GANSs, discriminator outputs values between 0 and 1 depending on how close given
sample is to dataset. However, in wGANSs, critic does not bound values between 0
and 1. Commenting on Equation (14), critic in wGAN does not directly tell us if the

given sample is fake or real, but instead learns the Equation (14) and outputs the

19

Wasserstein Distance between the probability distributions. Aim of critic is separating
outputted values obtained from real samples and fake samples.

To enforce Lipschitz Constraint, gradients are clipped between values, usually in
the range [—0.01,0.01]. Although this enforces Lipschitz Continuity, it is not a great
way of enforcing it. Clipping weights limits the capability of model since it basically
removes gradient information. Gradient Penalty (WGAN-GP) [17] aims to ensure
Lipschitz Continuity without sacrificing model’s capabilities, which is discussed in
Section 2.2.2.1.

Wasserstein Distance is continuous and differentiable almost everywhere, which
means that, unlike Naive GANs where there is delicate balance between training the
generator and discriminator, discriminator in wGAN can be trained until optimality.
This is usually provided by training discriminator &k times for each generator update,
in most cases k = 5 is used. If the discriminator is optimally trained, then the
gradients for updating generator network is more reliable. In the case of JSD, gradi-
ents become 0 if the discriminator is trained until optimality, which causes vanishing
gradient problem and results in worse training conditions.

Using Wasserstein Distance helps alleviating the mode collapse problem, where
generated outputs are same no matter what input is given. It is beneficial to dis-
cuss why mode collapse happens before discussing how wGANs solve this problem.
As explained by [18], we can explain why mode collapse happens in following fash-
ion: first, re-write minimax equation for Naive GAN with respective generator and

discriminator parameters 64 and 6p:

f(0c.0p) = Evpy,,llog(D(z;0p))] + Eoonoy[log(1 — D(G(2:06);0p))], (15)

where x is data, z is latent variable, and pgq, is the data distribution. Solving for
optimal discriminator parameters 63,(6¢) for each update step of generator G is not

computationally feasible. So, the parameters 65 and 6p are updated in an alternated

20

fashion. The optimal solution 0* = {0f, 05} is a fixed point. If f(0g,0p) is convex
in 5 and concave in #p, then trust region updates are guaranteed to converge to a
fixed point. However, this is not the case in practice, and updates are not constrained
appropriately. As a result, generator collapses many values into same region where it
can achieve a low loss value.

Mode collapse occurs when generator finds a small set of outputs that can trick
discriminator well. If the discriminator is stuck in local minima, then it cannot
penalize these outputs and generator continues to output same values. In case of
wGAN, since we can train discriminator to optimality, it is harder for it to stuck in

local minima, which helps improving mode collapse problem.
2.2.2.1 Gradient Penalty (WGAN-GP)

Lipschitz Continuity must be ensured in order to make use of Wasserstein Distance
in GANs. A way of ensuring this is simply clipping gradients between certain values,
usually in the range [—0.01,0.01]. However, this limits capabilities of the model and
makes training harder. As proposed by [17], Lipschitz Continuity can be ensured by
constraining gradient norm of critic’s output with respect to output. Following this

statement, new loss function can be written as Equation (16)

L = Esp,[D(2)] — Eonr, [D(2)] + ABsnr, [(||2: D(2)] |2 — 1)7], (16)

where X is constant taken as 10 by [17], P, is data distribution, [P, is generated
sample distribution. Note that first two terms in (16) is the original critic loss, whereas

third term is added gradient penalty. Z is sampled from Z as follows:

T=tt+ (1 —t)zwith0 <t <1 (17)

When gradient penalty is used, batch normalization should be avoided. Batch Nor-

malization creates correlations between samples composing the batch, which harms

21

the effectiveness of gradient penalty. Gradient penalty penalizes norm of critic’s
gradient for each output individually, when batch normalization is used, problem is
changed to outputting a batch of samples from an input batch of samples, which is
not compatible with working systematic of gradient penalty. To solve this problem,
batch normalization layers should be omitted from the network architecture, and layer

normalization [19] should be used instead.
2.2.3 Conditional GANs

Similar to Conditional VAEs, we can add a conditioning variable to Naive GANs
which allows us to control properties of generated outputs. Naive GANs have no
way of controlling modes of generated output. They have no conditioning input, and
generated samples are not conditioned on anything practically controllable. In the
case of MNIST example, a generated image may be a 70”7, ”1” or any other digit,
which we cannot control. To solve this problem, an additional input is given to both
discriminator and generator, which can be used to control the output of the network.

Compared to Naive GANs, generator and discriminator of a conditional GAN
(cGAN) takes an additional input, a conditioning variable, which is used to train
generator and discriminator in such a way that generated samples are correlated with
given conditioning variable. Both generator and discriminator are now conditioned

on conditioning variable, minimax equation for cGAN is shown in Equation (18):

minmax V(D, G) = Epvpyyo@)l0gD(]y)] + Eep. (9 [log(1 = D(G(2|y)))}, (18)

where y is conditioning variable. Note that as opposed to to Naive GANs, discrimi-
nator tries to minimize logD(x|y), and generator tries to minimize log(1—D(G(z|y))),

which are both including conditional probabilities conditioned on .

22

Conditioning
Variable

Conditioning
Variable

T\
| Fake

Image Discriminator
|

A 4

(GGenerator

A

Loss

Noise

)
Real
Image
——

Figure 6: Architecture of conditional GAN.

2.2.3.1 Matching-aware Discriminator (GAN-CLS)

One way of improving cGANs to generate samples that are better aligned with condi-
tioning variable is using Matching-aware discriminator(GAN-CLS) [20]. In 2.2.1, we
discussed that discriminator takes samples from two different sources: samples from
dataset, and samples generated by generator. In the case of cGANs, conditional vari-
ables corresponding to these inputs are also being given to discriminator. However,
in this format, discriminator has no way of knowing if the conditioning label matches
the given input or not. Discriminator in cGAN should get good at distinguishing fake
samples from real samples, and it should also penalize if a generated sample is not
conforming the given conditioning variable. In the case of cGANs without Matching-
aware discriminator, generated samples that are not aligned with given conditioning
variables are not penalized by the discriminator.

To solve this problem, a third type of input is given to discriminator: a sample from
dataset with incorrect conditioning variable. In the beginning of training, it is easy
for discriminator to distinguish fake samples from real samples since generator is not
generating samples close to real distribution. As training progresses, generator gets
better at outputting realistic samples. To be able to decrease the loss, the generator
should also learn to generate samples that are aligned with given conditioning variable.

Another contribution of [20] is interpolating between two conditioning variables.

23

In their work, they used word embeddings (which is discussed in more detail in Section
2.3) as conditioning variables, however, it it also viable to apply this method for other
types of conditioning variables if it is feasible to interpolate between them. In cGAN,
generator learns to generate samples that correspond to given conditioning variables.
Word embeddings that are obtained from given sentences are sparse, there are gaps
in the data manifold. Interpolating between embeddings allows network to fill these
gaps, allowing it to generate a more diverse set of samples. Here, generator should

also optimize the following additional term:

Et1 oo (109 (1 = D(G(2, ft1 + (1 = B)12)))], (19)

where z is noise, and [is interpolating parameter between conditioning variables

t1 (correct conditioning variable) and ¢, (incorrect conditioning variable).
2.2.3.2 Conditioning Augmentation

In Chapter 2.1, we have discussed that encoder part of autoencoders generate single
encoding for a particular image, while encoder in Variational Autoencoders generate
a probability distribution function over encodings. Similar to VAEs, in Conditioning
Augmentation (CA) [21], latent variables are randomly sampled from an independent
Gaussian Distribution from mean and variance of conditioning variable (in the case
of [21], conditioning variables are text embeddings). Intuition behind CA is, latent
space for text embeddings are high dimensional for representing the meaning of words,
however, when data is limited, it is not possible to fill all the dimensions of embeddings
with meaningful variables, which causes discontinuity in the latent space. This is
not a desirable situation for training the generator. CA solves this by sampling
latent variables from Gaussian Distribution, which encourages smoothness in latent
space. Additionally, it allows small disturbances in latent space by adding a degree of

randomness since latent variables are sampled from a Gaussian Distribution, which

24

in return allows generated images to be more diverse.
Additionally, following regularization term is used in CA to avoid overfitting and

for better smoothness:

Dicr(N(ulepr), () || N (0, 1)), (20)

where N (1(p:), X(¢¢)) is an independent Gaussian Distribution, p(y;) is mean
and X(¢;)) is covariance matrix of the text embedding ¢,. It can be seen that the
regularization term is KL Divergence between Gaussian Distribution and Condition-

ing Gaussian Distribution.
2.2.4 Evaluation Metrics of GANs

There are different approaches for evaluating the performance of GANs. In this
section, two quantitative evaluation metrics will be discussed: Inception Score (IS)
[22] and Fréchet Inception Distance (FID) [23]. Although only IS is being used in
this work, it is still important to discuss FID as it is a popular evaluation metric used

when evaluating GANs, and because it is relevant to IS.
2.2.4.1 Inception Score

IS is used for evaluating the variety and quality of samples generated by a generator.
Calculation of IS relies on an external, pre-trained Inception v3 model [24] which is
used for calculating class probabilities for generated samples.

IS aims to evaluate two key points: quality of samples, and how diverse the gen-
erates samples are. Inception v3 model can classify between 1000 classes of ILSVRC
2012 dataset [25], which means that the highest possible IS score obtainable is 1000.
Lowest possible IS of 0 means that generated samples lack both diversity and quality
while an IS of 1000 means that the generated images are diverse, high quality images.

An important weakness of IS is, since real sample distribution is not utilized during

25

the calculation, it cannot measure how close generated samples are to real samples.

IS calculation can be seen in Equation (21):

18(6) = exp (1 [Dr(plule) 1 0]) 1)

~Dg

where x is samples generated by generator from distribution p,, Dg, is KL diver-
gence between conditional class distribution p(y|x) and class distribution p(y), and y
is label for sample x. We can see that KL is directly proportional to IS. That is, a set
of generated samples cover different classes and if the generated individual samples
belong in one distinct class, then KL and IS values are high. Meaning that, gener-
ator can generate images belonging to different classes, and each generated sample
particularly fits into one distinctive class.

As discussed, IS encourages generated samples to be meaningful and diverse, how-
ever, it is not an ideal metric for comparing distribution of generated samples with
distribution of real samples since it is not using information from real samples, which

FID attempts to solve.
2.2.4.2 Fréchet Inception Distance

Another metric that is used to evaluate performance of GANs is Fréchet Inception
Distance. IS has no notion of real samples when measuring quality and diversity
of generated images. It is more desirable to use a metric that utilizes real samples,
so that we can compare generated samples with samples from real data. FID is
used for measuring distance between two probability distributions. In our case, it is
used for calculating the distance between probability distribution of real samples and
probability distribution of generated samples, which is a better approach if results
are desired to be similar with real samples.

Similar to IS, FID is dependent on an external, pre-trained Inception v3 model.

Here, output layer of Inception v3 is removed and pooling layer before the output layer

26

is used for obtaining logits that is used to calculate FID. These logits are summarised
as multivariate normal distribution by calculating mean and variance. Same process
is repeated for obtaining mean and variance of both real sample distribution and
fake sample distribution, which then be used in calculation of FID to find distance

between the two distributions. Equation of FID can be seen in (22):

FID = (|1, — pgl[> + Tr(E, + 5, - 2(5,5,)"7), (22)

where p, and pi4 are feature-wise mean for real samples and generated samples, 3,

and ¥, are covariance matrices for real samples and generated samples respectively.

2.3 Natural Language Processing

We can express our ideas, emotions, knowledge, or anything that can be expressed
in verbal or written form through sentences using natural language. Another person
can understand what we are trying to communicate or transmit with the use of words
and sentences. However, neural networks has no way of understanding these natural
language description in the same way that we do. For neural networks, it should be
in a format that it is well structured and well defined.

For this purpose, we use ”embedders”, which is a form of encoder. These encoders
can be used to encode words and sentences so that the information that wanted to
be transmitted can be encoded in well structured array form, which can be used to
represent words mathematically, so we can feed into neural networks in a form that
these networks can understand what information we are trying to convey.

Natural Language Processing (NLP) is a huge topic itself, and it is not suitable
to discuss every aspect of NLP in this thesis. Therefore, in this chapter, we will
discuss only the part that is related to our work, which is Word Embeddings, where
each individual word is represented in the encoded array form, Sentence Embeddings,

where whole sentences are encoded instead of individual words, the FastText model

27

[26] which is used to obtain said encodings, and finally, we discuss Skip-Gram Model
that FastText uses. In this section we omit discussion about other word embeddings
since they are not used in our work, such as Word2Vec [27], GloVe [28], ELMo [29]

etc.
2.3.1 Skip-Gram Model

Skip-Gram model works in the following fashion: For each word in corpus, it also
takes words surrounding the current word in a range defined by a parameter. Then,
feeds the words to neural network during training, so that the network can predict
probability of a word appearing in the window of word that is selected. However, it
is not possible to feed words as subsequent characters to neural network, a numerical
or mathematical representation is needed. This can simply be done by creating a
one-hot vector for each word in the vocabulary, where dimension of one-hot vector is
same as vocabulary size. One-hot vector can be fed into the neural network, which in
return outputs probability of a word appearing next to given words. However, similar
to autoencoders discussed in Section 2.1, we are not interested in output, but instead,
we are interested in values in middle layers, which we call embeddings. Since we are
looking from a window perspective, each word will ideally have close probability with
words that most frequently appear in its window. As a result, since output will be
similar for words that are close to each other, values in hidden layers will be close
to each other as well. So, two different words with close meaning will have similar

embeddings.
2.3.2 FastText

FastText uses a similar method to Skip-Gram Model introduced by [27]. Instead of
computing embeddings of words directly, it computes embeddings for each character
n-gram. For example, if n = 2, for the word ”"when”, FastText will represent embed-

ding of this word as a sum of n-grams of "wh”, "he” and "en”. This method allows

28

computing representations for words that are not available in the corpus, which is
an important feature when working with human generated text descriptions. This
approach is known for generating better embeddings for words that are not used fre-
quently, it is also a good way of computing embeddings with words that has typos. In
the case of human written sentences, probability of including a typo is always present.
FastText minimizes loss of information due to a typo.

Word embeddings are useful for obtaining information about them in mathemat-
ical form which can be used in neural networks. However, two problems arise when
feeding a sentence to a neural network: first, amount of words in sentences are usually
different, which changes the shape of input each time a sentence of different length is
present. Second, dimension of input gets bigger as sentence gets longer, which slows
down training since neural network needs to process an input with bigger dimensions
for longer sentences. First problem is easily solvable by padding each sentence to a
fixed length. This is a viable method even though this may result in some sentences
to get shorter, which causes a loss of information, and may cause short sentences to
get unnecessarily long with padding.

For the second problem, it is a good idea to use sentence embeddings instead of
using embeddings for each individual word that forms the sentence as a way of fixing
input dimension size. Sentence embeddings can be obtained by taking element-wise
mean of embeddings of word that form the sentence. However, this causes loss of
information about each word’s location in the sentence. This method is more suitable

for applications where location of words are not important.

2.4 StyleGAN

In this section, we will discuss about StyleGAN introduced by [9], a Wasserstein
GAN architecture that is capable of separating high dimensional features by using

convolutional blocks, and is able to generate high quality images.

29

Before going into details of StyleGAN, it is beneficial to discuss Progressively
Growing GAN (ProGAN), which StyleGAN is based upon. In ProGAN, generator
architecture is structured in the form of convolutional layers or blocks, where each
block is responsible of generating a certain resolution image and takes input as output
of previous block. Training starts from smaller resolutions, and resolution of output
is iteratively increased by activating blocks until resolution is as large as desired
size. Similarly, discriminator layers are activated as generator starts to output bigger
images to match the resolution. By starting from smaller resolutions, we are simply
asking the network to solve a much smaller, easier problem, and iteratively increasing
the difficulty of the task. This allows a more stable training, while also achieving
much faster training times since number of iterations required for higher resolutions
are drastically decreased.

StyleGAN makes significant changes in traditional generator architecture, while
keeping discriminator architecture same. In contrast to regular generator architec-
tures, StyleGAN includes two different networks in generator structure: mapping
network and synthesis network. Before discussing these two sub-networks in more
detail, it is beneficial to discuss Adaptive Instance Normalization (AdaIN) [30], as
it is an aspect that should be understood before trying to understand what map-
ping network and synthesis network does. We also discuss Batch Normalization and
Instance Normalization here, as they are the steps that lead to AdaIN. StyleGAN

network architecture can be seen in Figure 7.

30

Latent
- —> Fc|Fc|Fe|Fe|Fe|Fe[Fc|Fc
Z € Z. | Normalize

y
=
m
=

Block 1 Block 2

4x4

8x8

h 4

Const 4x4x512 Conv 3x3 Conv 3x3 Conv 3x3

+ 5 + S

Figure 7: Network architecture of StyleGAN proposed by [9]. Above the dashed line
is mapping network while below is synthesis network.

Noise

2.4.1 Batch Normalization

Normalizing inputs is a widely used method in the neural network training. Although
different inputs may have the same importance, their range of values may differ greatly
as if their importances are different. Normalizing the input to have 0 mean would
achieve faster convergence, and in some cases, it would allow network to not get stuck
in a local minima.

During the training of most neural networks, each layer depends values obtained
from previous layers. A common problem faced during training is how quickly these
values can change and affect subsequent layers. Since layers get their inputs from
previous layers (except the input layer), changes made in gradients of previous layers
also effect next layers, combined with this, updating gradients of next layers may
cause a domino effect that may cause network to be unstable even with a carefully

selected learning rate.

31

Similarly, in Batch Normalization [31], values in hidden layers can be normal-
ized (or standardized) with mean and standard deviation of inputs in mini-batch.
This technique aims to achieve better synchronisation across different layers in the
neural network in order to prevent discussed domino effect. As [31] showed, Batch

Normalization algorithm is as follows:

Algorithm 1: Batch Normalizing Transform algorithm

Input: Values of x over a mini-batch B = { z7._,, }, Parameters to be
learned: ~, 8
Output: {y; = BN, s(;)}
ftg < —= > " x; // Mini-batch mean
0%+ =5 " (x; — pg)® // Mini-batch variance
Tj % // Normalize

Yi < Vi + = BN, g, // Scale and shift

As can be seen from the Algorithm 1, v and 8 are learned during training and
calculated over all samples in mini-batch. Here, BN, g(z) is dependent on both
current training sample, and other samples in the current mini-batch.

For a better understanding, we can write Batch Normalization in the form:

y Ttijk — Mi y 1 -
tijk — 3 3 7 tilm
Voi t€ HWT t=1 |=1 m=1

1 T W H
02-2 = H—VVT Z Z Z(wtilm - mui)Qa (23)

m
where T form a batch, 4, represent T’s tijk-th element, while k& and j span spatial

dimensions, i is the feature channel and ¢ is the index of sample in batch.
2.4.2 Instance Normalization

Instance Normalization (IN) [32] normalizes each channel independent of mini-batch
in contrast to Batch Normalization. This is especially important in topics such as style
transfer, where each image may have different properties that does not effect style,

such as contrast and brightness. In the case of Batch Normalization, these properties

32

would effect mini-batch mean and mini-batch variance. IN prevents instance-specific
mean and covariance shift which simplifies learning process. We can spot differences

compared to (23) when we look at equation of IN in (24):

1 w H
% = T O D P ram — mu)” (24)

We see that summation Y, = 17 is omitted and averages taken over pixels over

individual samples for each separate sample in the mini-batch.
2.4.3 Adaptive Instance Normalization (AdalIN)

[30] made the following observation that IN also performs as style normalization
technique by normalizing mean and variance. Interpreting this observation, we can
say that AdalN is developed based on the idea that IN can be used to adjust style
of generated images by normalizing certain features. It is a method that is especially
useful in style transfer because of its speed, and cheapness considering memory and
computational requirements.

AdalN is an extention to existing IN method. It is defined as follows:

MMM%wza@(fi%9)+mw, (25)

where normalized content input is scaled with o(y) and biased by amount of u(y)
where y is style. Here, each feature map z is normalized separately. We can describe
intuition behind AdaIN with a simple example similar to example in [30]: assume
that we an image A which has a lot of vertical lines. In the style transfer literature,
it is possible to transfer this property to another image B, obtaining another image
which has lots of vertical lines. If we have a feature channel that detects vertical

lines, then this channel will produce high activation for vertical features. AdalIN will

33

produce an output which have same high activation values for this feature, which
then can be decoded (with the help of a decoder) into image space [33]. Variance of
this feature space is transferred to AdalN output and then to the final output image

generated by the network.
2.4.4 Mapping Network

In style transfer literature, style y is computed from input directly. However, Style-
GAN follows a different approach where it is computed from vector W, which is
learned by mapping network for given input. Mapping network maps input to an in-
termediate latent space a vector W, which is then given to AdalN layers in synthesis
network in the form of style vectors.

Mapping network also helps in ”disentangling” the latent space. For example,
different properties such as hair length and gender may be correlated by network if
the dataset has a bias between these two properties. If all males in the dataset are
short haired, network may not be able to separate hair length from gender, which
is entanglement. Mapping network helps disentangling such latent variables with

learned fully connected layers.
2.4.5 Synthesis Network

In contrast to traditional generator architectures, synthesis network starts with a
learned constant. Synthesis network is composed of blocks which start with an up-
sampling layer, followed by convolutional layer which then followed by AdalN layer
with two repetitions for convolutional and AdalN layers. Each block is responsible
for generating an output with certain resolution. With the exception of first block
where it starts from a learned constant, each block takes input of previous block,
and after being upsampled to next resolution, it is given into convolution layers and
AdalN layers for adding more high resolution and finer details. Gaussian noise is

added after each convolution. Intuition behind this architecture is making each block

34

responsible from scale specific styles. Synthesis network can be taught as an archi-
tecture where each block adds certain component of style which composes the overall
style of generated image.

Synthesis network has important implications. Most of the time, neural networks
act as a black box, where it is very hard to interpret, or not possible to interpret at
all. Synthesis network can be seen as a step towards successfully interpreting these

black boxes, understanding how low level features work in latent space.

2.5 Position-map Regression Network

In this chapter, we discuss about UV Mapping, then we describe what Position-map
Regression Network (PRN), how it uses UV Mapping, and how PRN is used in this
thesis to generate 3D human face structures from 2D images that are generated by

our cStyleGAN.
2.5.1 UV Mapping

UV Mapping is a method that is used to project points in 2D space into 3D model
space. It is a mapping that tells us where each point in 2D image corresponds to in 3D
model’s surface. Here, ”U” and ”V” represent coordinates in 2D space of the image
(UV Texture Map). Aim of UV Mapping is creating a "mapping” from ”U” and ”V”
coordinates to X", ”"Y” and ”Z” coordinates in 3D space. If we think about a paper
as UV Texture Map and a sphere as our 3D object that we want to paint with this

texture, UV Mapping can be taught about as wrapping this paper onto the sphere.
2.5.2 What is Position-map Regression Network

To summarize PRN in one sentence, we could say that PRN is a neural network
architecture that is used for generating textured 3D face models from 2D face images.
Here, we can split this process into two main parts: face alignment, and regressing

3D facial geometry.

35

One method of generating 3D facial geometry is concatenating all points in 3D
space to a 1D vector, and using a neural network to predict it. However, each point
in 3D space has a correspondence with neighbouring points. Representing these
points in 1D space causes loss of spatial information. Predicting each point in 1D
form requires a fully connected layer which increases training difficulty. Other model
based methods [34][35][36] train models that predict parameters instead of predicting
coordinates directly. However, this method is discussed as being hard as training
models that generate good results require special care.

As a solution to these problems, PRN proposes UV Position Map to represent 3D
facial structure. UV Position Map is 2D representation of points in 3D structure.
We can see that it is a similar idea discussed in Section 2.5.1. However, PRN uses
UV Mapping as a way of storing 3D coordinates instead of creating a mapping from
2D image to already existing 3D structure. Here, UV Coordinates are based on 3D
structure for keeping semantic meaning. Note that UV Mapping in this method
also contains dense alignment information. For training such a system, end-to-end
2D images with corresponding 3D structures are required. Authors state that PRN
is trained on 300W-LP [34], which contains more than 60K images with fitted 3D
Morphable Model (3DMM) [37].

PRN transfers input RGB image into position map image. This is done by an
encoder-decoder architecture where both encoder and decoder parts utilize convolu-
tional layers. A mnovel loss function, which measures the difference between ground
truth position map and the network output is proposed by authors for learning pa-
rameters of this network. A gray-scale weight mask is used where each point in weight
mask represents the weight of corresponding point in position map. This mask and
position map has the same width and height to provide pixel to pixel correspondence
from mask to position map. Since facial points such as eyes, noses and mouth have

the highest importance, mask is adjusted so that these areas have the highest weights

36

in loss function for enforcing model to learn accurate points for these areas. Since
neck area is often occluded by hairs or clothes, this region has the lowest importance,
and thus lowest weight.

The encoder part of the network is composed of a convolution layer, which is
followed by 10 residual blocks [38] that reduce input image into feature maps. The
decoder part contains 17 transposed convolution layers that is used for generating

position map. Architecture of PRN is shown in Figure 8:

8§x8x 512
Feature Maps

256 x 256 x 3 256 x 256 % 3

— N Position Map
Residual Blocks Transposed

Convolutional Layers

Figure 8: Network architecture of Position-map Regression Network.

2.6 Learned Perceptual Image Patch Similarity (LPIPS)

Comparing different data has various difficulties in different domains. For example,
Euclidean Distance is useful for comparing two vectors. However, if we want to
compare two image, measures such as Euclidean Distance is not very useful. Two
images that are looking very similar may have large Euclidean Distance values. A
small shift in pixels’ locations would not change the perceived image’s similarity for
human perception, but it would mean a big increase in Euclidean Distance. Similarly,
blurring an image would not change Euclidean Distance between two images as much,
but it would change the visual properties of image greatly. Euclidean Distance is
just an example to show why it is difficult to measure similarity between two images,
encountering similar problems is also possible in methods such as Structural Similarity

Index (SSIM) [39].

37

Perceptive similarity of images in computer vision is still an important problem.
However, there are important improvements in this field with the help of deep neural
networks. Zhang et al. [40] used deep features that are obtained from intermediate
layers of neural networks for comparing image similarity, which they call Learned
Perceptual Image Patch Similarity (LPIPS). They used SqueezeNet [41], AlexNet
[42], and VGG [43] for testing their method and reported notable results for all three

architectures. Equation for calculating similarity between two images is as follows:

1 " A
d(z,z0) =) A D wr © Ghow = Jona)ll3, (26)
l h,w

€ R xWixC where [is

where d is similarity, and x, are images, and ¢!,)
current layer. Features §' and ¢, are extracted from layer [, and unit normalized in
channel dimension. Then, activations are scaled by the vector w!, and ¢, distance is
computed.

Although Euclidean Distance is still used, using information obtained from middle
layers of a network trained for measuring image similarity can help measuring distance

between semantic similarity of two images. The paper [40] also discusses that results

are aligned with human judgments about similarity between two images.

38

CHAPTER II1

PREVIOUS WORK

Work in this field is focused on two major areas; generating high quality images, and
generating images that are aligned with given text descriptions. Zhang et al. [21]
proposed StackGAN which is composed of two different GANs that first generate low
resolution images from given descriptions, and then increase resolution of generated
images by adding finer details. They also introduced Conditioning Augmentation
method, which helps generating more diverse images. In Conditioning Augmentation
technique, instead of using word embeddings directly, they randomly sample latent
variables from an independent Gaussian distribution where mean and covariance are
functions of text embedding generated from given descriptions.

Akanimax [44] made use of Conditioning Augmentation in his work and used
ProGAN and StackGAN for synthesizing facial images, which we will refer as Pro-
StackGAN throughout this thesis. Writers also employed GAN-CLS loss. In regular
conditional text-to-image GANSs, discriminator loss is calculated by using two differ-
ent inputs; image with corresponding description, and generated image with given
description. In GAN-CLS loss, a third input, which is an image with mismatched
description is also taken into consideration when calculating discriminator loss. They
used an older version of Face2Text dataset, which includes only 400 images with
annotations. Although generated images were somewhat aligned with given descrip-
tions, image quality was poor and sometimes almost unrecognizable. Still, results are
notable considering how small of a dataset have been used.

In Text2FaceGAN, Nasir et al. [45] utilized DC-GAN [46] with GAN-CLS loss

for generating human face images from text descriptions. Similar to our work, they

39

utilized CelebA dataset, and generated captions from CelebA annotations. However,
they have used annotations for all 203K images in the dataset whereas in our work
low quality annotations are eliminated for increasing quality of generated descriptions.
Also, their text generation algorithm lacks randomness that is important for neural
networks to avoid memorizing.

Text to image domain has increased in popularity with improvements made in
GANs. Although not in text to human face domain, there are various works which
generate images from textual descriptions. In [20], Reed et al. also utilized DC-
GAN for generating bird and flower images. Their networks are trained on CUB-200
dataset [47], which includes 11788 images, and Oxford-102 flowers dataset [48], which
includes 8198 flower images. They have conditioned both the generator and the
discriminator in their network by using text embeddings which they obtain from the
text encoder they trained. They also proposed GAN-CLS loss, and utilized it in their
discriminator, which helps the generator to generate images that are better aligned
with descriptions, since the discriminator can distinguish between images with correct
descriptions and images with incorrect descriptions.

In the work [21], Zhang et al. also synthesized bird and flower images from given
textual descriptions with their networks, which they trained on CUB-200 dataset and
Oxford-102 flowers dataset similar to [20]. In their proposed StackGAN architecture,
low resolution images are generated before generating high resolution images with
finer details. They accomplished this by implementing two different generator and
discriminator in their network structure, which are separated as Stage 1 and Stage
2. In this first stage, low resolution images are generated by the generator. Dis-
criminator of the first stage learns to discriminate images generated only by the first
stage generator. Stage 2 improves upon results generated by Stage 1 and adds finer
details while also increasing the resolution of generated images. Instead of directly

generating high resolution images that are conditioned on descriptions, first, a low

40

resolution image is generated, then higher resolution image is generated, and more
details are added. This method helps stabilizing training as it is easier to generate
low resolution images. It also helps increasing the training speed as it is faster to
generate low resolution images.

Work in [49] improved upon existing StackGAN and introduced tree like structure
of multiple discriminators and generators. In their proposed architecture StackGAN-
v2, there are multiple discriminators and generators which operate on different res-
olution scales of images. This architecture works in similar manner with StackGAN
where each discriminator-generator pair for a given resolution is similar to a stage
in StackGAN. According to their experiments, StackGAN-v2 does not face mode
collapse and generate images with higher quality compared to Stack GAN.

Xu et al. [50] proposed AttnGAN architecture, which allows synthesizing finer
details in different subregions. AttnGAN pays attention to different relevant words
for different areas of generated images. Instead of correlating whole image with a sen-
tence, different subregions which are related to corresponding words are associated
by the network. They have utilized both COCO dataset [51], and CUB dataset in
their work. Their network succesfully generated bird images from descriptions, and
also generated various scene images which are learned from COCO dataset. They
displayed strengths of their network by analysing different layers of AttnGAN and
showing that the network is automatically selecting the conditioned word for gener-
ating different parts of the image. They also proposed deep attentional multimodal
similarity model (DAMSM) for computing image-text matching score. Their DAMSM
module is composed of two different parts: a text encoder, which is a bi-directional
LSTM [52] network that is used for extracting word-specific information, and an im-
age encoder, which is a convolutional neural network that maps given images into
vectors. They state that, intermediate layers of their image encoder learn local fea-

tures while later layers learn global features of given images. This image encoder is

41

based on Inception-v3 model.

In a different work, Hinz et al. [53] utilized AttnGAN, and COCO dataset for
training their network. Similarly, they have generated various scene images from
given text descriptions. However, their work makes modifications upon AttnGAN
and their proposed architecture is called OP-GAN. They state that OP-GAN fo-
cuses specifically on individual objects. Objects generated are placed in meaningful
locations in the generated image. Background is generated simultaneously while gen-
erating the individual objects by OP-GAN. To accomplish this, they have utilized
object pathway similar to work in [54]. They proposed a metric called Semantic Ob-
ject Accuracy (SOA) for scoring image-text alignment by using a pre-trained object
detector. SOA evaluates image-text alignment according to if described objects are
in the given image or not.

There are also works on 3D object generation conditioned on external inputs.
However, work in this field is usually based on voxels rather than generating 3D mod-
els based on vertices. Wu et al. [55] proposed their architecture 3D-GAN, which
generates voxelated 3D objects from given latent space. In this work, generated ob-
jects are not based on text descriptions and directly generated from given latent space
variables. As en extension, they proposed 3D-VAE-GAN, which generates 3D vox-
elated objects from given 2D images. Here, 2D images of objects are conditioning
variables, which generated 3D objects are aligned with. They have succesfully gener-
ated 3D objects of chair, table, sofa, gun, and cars with up to 64 x 64 x 64 resolution.
Objects in this work are lacking different colors and composed of same color.

Work in [56] generated colored 3D chair and table shapes composed of voxels
with up to 128 x 128 x 128 resolution. They utilized conditional Wasserstein GAN
for generating colored 3D voxelated structures. Their network is trained on chair
and table models available in ShapeNet dataset [57], which contains with 8,447 table

and 6,591 chair instances. Therefore, their model can only generate table and chair

42

objects.

Improving upon [56], Fukamizu et al. [58] utilized a similar structure used in
StackGAN, and generated 3D voxelated shapes in two steps: first, a 3D object with
smaller resolution is generated. Then, in the stage 2, objects with higher resolution
are generated based on smaller resolution objects. Similarly, their network generated
objects based on text descriptions. Generated objects in the first stage are reflecting
properties described in the description roughly, also, shape of generated object is
not high quality. In the second stage, objects have higher quality and better aligned
with given descriptions. This method helps stabilizing the network training as well
as increasing training speed considerably. Especially in 3D objects, amount of data

generated is too much due to the nature of 3D objects.

43

CHAPTER IV

METHODOLOGY

In this section we discuss our methodology and show our experimental results. We
have tested our proposed network conditional StyleGAN (cStyleGAN) on both Face2Text
dataset, and on Extended dataset. Extended dataset is the combination of Face2Text
dataset, and images with descriptions generated from CelebA annotations by using
our Description Generation Module. Additionally, we have tested two different con-
ditional discriminator architecture. In the first version, results are not successfully
conditioned on outputs. In the second version of discriminator architecture, obtained
results are perfectly aligned with given descriptions. We discuss the reasoning be-
hind why the first discriminator is failed to condition generated images, and why the
second discriminator succeeded, in their respective subsections. We also show our
3D facial structure generation pipeline and structures generated by our system using
images generated with c¢StyleGAN in this section.

We discuss our proposed Perceptual Quality Distance and show the results of it
on models that are trained on Face2Text dataset and Extended dataset separately,
we show that such method can be used for evaluating quality of images generated by
generative models. We also show that it gives high values for irrelevant images such
as samples taken from our toy shapes dataset, which means the similarity between
two images are very low.

Before showing results with our model with real data, we test our model to see
if it correctly conditions output on given text descriptions. To test this, we used a
simple toy dataset of shapes with three different colors, which are generated with a

simple Python script. This is also the methodology that we used during our research.

44

First, we made sure that network is correctly conditioning outputs on given condi-
tioning inputs, then more extensive research for increasing the image quality have
been conducted.

We discuss our Description Generation Module that we used for generating de-
scriptions by using 40 annotations available for each image in CelebA dataset. We
show that our model generates more realistic images while still keeping images aligned
with given descriptions when additional data from CelebA dataset is used. As an addi-
tional test, to further show the effects of Extended dataset, we trained Pro-StackGAN
on both Face2Text dataset, and on our combined dataset.

We have performed ablation studies for understanding effects and importance
of different parts in our system. In previous sections, we have discussed that each
block in Synthesis Network of generator learns different parts of desired output. For
example lowest resolution (4x4 pixels) block learns to generate a non-detailed, overall
representation of a human face image while second block which outputs an 8x8 image
may learn finer details and so on. Although this is correct in theory, we need to do
experimentation for seeing effects of different blocks, which we tested in Section 4.6.5.

Our end-to-end system architecture that generates 3D facial structures from text

descriptions can be seen in the following Figure:

45

[| | cStyleGAN
I | [Discriminator
Mismatched [~
Embedding Real Fake v
Image) Image Loss
DCorrect | FastText |, Correct 1
escription Embedding
Module @] [cStyleGAN
1 Generator
Mismatched
Description
Fake 3D Facial
Image PRN Structure

Figure 9: Proposed end-to-end system architecture.

4.1 Perceptual Quality Distance

In Section 2.2.4 we have discussed the widely used Inception Score (IS), and Fréchet
Inception Distance (FID) for evaluating GANs. IS gives high scores if images are high
quality and diverse. However, there is no such criteria about how close the images
are to real dataset. A network that generates images which are both high quality
and diverse would achieve high IS, even if the images are nothing like the real dataset
which generated images are based on. Improving on this, FID utilizes information of
real dataset for measuring the distance. Both of these methods are dependent on pre-
trained Inception v3 model. IS uses KL Divergence, while FID calculates mean and
variance for measuring the distance. However, these methods do not use perceptive
properties of images directly. FID calculates mean and covariance of images in order
to summarize activations that are used to compare real images and generated images.
IS on the other hand, disregards real image information completely and calculated

score is based only on generated images’ label distributions computed by Inception

46

v3 model. Although these methods are proved to be useful, an alternative method
that directly uses perceptive properties of generated images and real images would
be valuable for evaluating performances of GANs.

Our proposed method, Perceptual Quality Distance (PQD), is based on LPIPS
discussed in Section 2.6, which measures the similarity between two images. In our
case, we have used LPIPS method for measuring the perceptive similarity between
generated images and targeted dataset for calculating quality of images which our
model generated. In theory, if generated images are high quality and close to the
training dataset, then the PQD value would be low, meaning that generated images
are similar to the ones in the training dataset, which also means that generated images
are high quality. In our tests, we have seen that PQD is inversely proportional to
quality of human face images generated when compared with CelebA dataset. We
have observed that PQD value is high when images generated by our network is
compared with an irrelevant dataset, such as our toy shapes dataset. This is expected
since human face images are not similar with colored geometrical shapes.

If we assume that x; is real image from dataset A and x5 is image generated by
network trained on A, our acceptance criteria is as follows:

Cl: PQD(z4,x9) is small if x4 is perceptually close to x; and/or has high quality.

C2: PQD(x1,x9) is large if x5 is not similar to x; and/or has low quality.

Our method is based on AlexNet model publicly available in Torchvision [59]
library for applying LPIPS method to images. We first generate a number of images
from network that is being evaluated, then compare each generated image to images
from CelebA dataset to measure quality and perceptual similarity of generated images
with CelebA dataset. To increase robustness of our method, we have eliminated
outliers when calculating distances by applying two-pass elimination system: on the
first pass, we have eliminated outlier scores when comparing an image with images

from CelebA dataset, then average score for current image is calculated. On the

47

second pass, we have eliminated outlier average scores among all images for further
increasing robustness against outliers. For eliminating outliers, we have calculated
standard deviation and mean of PQD score of current image with CelebA dataset,
and eliminated scores that are more than one standard deviation away from mean.
Same procedure is also applied to scores in the second pass. Calculation of PQD is

shown in Equation (27).

M N
11
PQD(xzy,x,) = Z tm Z tnE (24, xrm)ﬁﬂ? (27)

where z, is generated image, z, is real image, M is number of real images used,
and N is number of generated images used. F is LPIPS function. t, is 0 if PQD
score is one std. away from mean of PQD scores of current image with all real images
compared, otherwise 1, ,, is 0 if average PQD score of current image is one std. away
from mean of average PQD scores of other generated images, otherwise 1.

To test our proposed method, we have computed PQD between samples generated
from our networks and 100 images chosen from CelebA dataset and reported results.
We have categorised images according to their quality based on human perception.
In the first category, irrelevant images from toy shapes dataset is used. Then, images
are categorised by increasing quality. PQD is supposed to decrease as images get
higher quality, and in our case, as they get closer to CelebA dataset. PQD between

images and CelebA dataset can be seen in Figure 10.

48

0.6058

0.6

9 0.5

0.4

0.3373
0.2103

0.3 4
0.2619

0.2

Image Samples

Figure 10: PQD between similar quality samples and CelebA dataset. One example
from each category is shown.

4.2 Conditional StyleGAN

We have discussed conditional GANs in Section 2.2.3 in more detail. Here, we discuss
how we changed StyleGAN architecture in order to condition outputs on given text
embeddings. Our cStyleGAN is able to generate images that are aligned with given
natural language descriptions with the help of sentence embeddings.

cStyleGAN, similar to StyleGAN, does not make big differences in discriminator
architecture. However, it uses a non-traditional generator architecture. Generator in

cStyleGAN can be seen in following figure:

49

Normalize

Latentz € Z

#FC|FC|FC|FC|FC|FC|FC|FC

A A
&
m
=

Description

FastText

Const 4x4x512 Conv 3x3 Conv 3x3 Conv 3x3
[B] B B B
1

Figure 11: Architecture of ¢StyleGAN Generator. Above the dashed line is mapping
network while below is synthesis network.

Noise

Mapping network in the c¢StyleGAN, in contrast to StyleGAN, takes noise vector
concatenated with sentence embeddings. Although we have used FastText for encod-
ing sentences, changing input layer for using different embedding types is a matter of
changing amount of neurons in the input layer. An important application of mapping
network is that it acts as a substitute for Conditioning Augmentation discussed in
2.2.3.2. We observed that adding an additional CA network before generator results
in a qualitative loss of quality and loss of conditioning variable-output alignment in
generated images. For this reason, an additional CA network have not been used in
cStyleGAN.

For enforcing conditioning variable stronger and achieving better description-
output alignment, similar to GAN-CLS loss, we have added a third input to dis-

criminator in order to convert it to matching-aware discriminator: real samples with

20

description of another sample which does not match. Our architecture uses Wasser-
stein GAN for reasons discussed in Section 2.2.2. We have combined properties of
Wasserstein Distance with GAN-CLS loss.

In our model, we have used FastText model for encoding natural language sen-
tences, which produces 300 dimension sentence embeddings. However, input shape
changes as layers in discriminator activated since each subsequent layer has a differ-
ent input shape compared to previous one. As a reshape method, we have used fully
connected layers that takes embeddings as input and outputs with shape according
to input shapes of discriminator layers. We observed that this method works consid-
erably better compared to adding conditional variables to layer output before feeding
it through another fully connected layer at the end of discriminator architecture. In
current version, result obtained from convolutional layers is directly fed into fully

connected layer since it already contains information from conditioning variable.
4.2.1 Discriminator Type 1

In our first discriminator type, we have concatenated embeddings (which are our
conditioning variable) with the output of last convolutional layer. Then we fed con-
catenated input into fully connected layer for obtaining discriminator output. This
method produced results that are not aligned with given descriptions. Architecture

diagram of this Discriminator Type 1 can be seen in Figure 12.
4.2.2 Discriminator Type 2

Instead of concatenating embeddings with output of the convolution layers and then
feeding it to the fully connected layer, we concatenated the embeddings with the
image and fed it directly into the convolution layers. We have used an additional
fully connected layer for reshaping embeddings to convert input shape into suitable
form that can be feed into our first convolution layer. We have observed that our

model works best with this discriminator type. Architecture diagram of Discriminator

o1

Description

v

FastText
Image > » Output
Concat
FC Layer
Convolution Layers
Figure 12: Architecture of Discriminator Type 1.
Type 2 can be seen in Figure 13.
Description
FastText L
FC Layer ~
EI— Output
1 Concat
- FC Layer
Image I

Convolution Layers

Figure 13: Architecture of Discriminator Type 2.

Compared to Discriminator Type 1, this type utilizes embeddings throughout the
architecture instead of only utilizing at the fully connected layer at the end. Weights

of the convolution layers also use information from the embeddings, which helps in

conditioning outputs better.

We have used Discriminator Type 2 in our model throughout this thesis as it

produces the best results.

52

4.3 3D Facial Structure Pipeline

We have used Position-map Regression Network (PRN) for generating 3D facial struc-
tures from 2D images. PRN uses UV Position Map to represent 3D facial structure.
UV Position Map is 2D representation of points in 3D structure. PRN transfers input
2D image into position map image using encoder-decoder architecture. In our case,
position map generated by PRN is 3D facial structures of images generated by given
text descriptions. We have chosen PRN over other methods, such as using a GAN
architecture that creates voxels (similar to [56]). There are multiple reasons for this
decision: first, number of voxels generated by GAN is not enough in our case. Even
the smallest changes in human face may cause the person to look like another person.
Representing a human face in 3D with voxels with this much detail requires a high
number of voxels, which is a very hard task. Secondly, there are a many unneeded
voxels when a human face is generated with voxels, such as voxels behind the head,
or voxels represents the location of inside the head, which are unnecessary. Example
images of voxelated 3D human face models can be seen in Appendix A.3.

We have applied various processing to generated 3D models for improving the
quality. Facial structures generated by PRN was lacking detail if the texture resolu-
tion is low. This is not a problem caused by PRN and it is natural to have blurry
textures when low resolution textures are used. However, we can increase quality of
the texture by up-scaling the image with existing Al methods. We have used ES-
RGAN [60] for increasing texture resolution applied to 3D models. Although this
may cause unwanted relics on textures for 2D applications, we have observed that
overall quality of texture on 3D model increased when up-scaling is applied to low
resolution textures. We also observed jagged lines on default generated model. We
have normalized vertices in z, y and z channels separately in a size 7 window for
smoothing out the surface of the model. This would cause a small loss in details of

generated model. To add finer details to model and to emphasize depth information

93

of facial depth further, we have used color information in input images to calculate an
estimation of height of certain areas in the images for creating an estimated height-
map, and applied this height-map estimation to facial structure. We have converted
image to grayscale by taking max of RGB values for each pixel, then the values are
normalized between the range [—0.5,0.5]. We have clipped values that are outside of
range [—0.49,0.49] for eliminating unwanted parts that are pure black or pure white,
which may cause unrealistic edges in the 3D model. We also clipped values between
the range [—0.35,0.26] for emphasizing effect of higher and lower areas. Finally, we
have applied a rectangular mask that crops face area for making our height-map us-
able by PRN. Results of generated height-map estimations can be seen in Figure 14.
A comparison of default 3D facial structures generated by PRN and our improved

models can be seen in Figure 15.

(a) Original Image (b) Grayscale (c) Height-map Esti-
mation

Figure 14: Height-map estimation obtained from generated 2D images.

o4

(a) Default PRN Results (b) Improved Models

Figure 15: Comparison of default PRN models and improved models.

4.4 Datasets

Neural networks require sufficient amount of data for achieving good results. In this
work, two datasets are utilized for increasing the quality of the results: Face2Text
and CelebA. Face2Text dataset contains 4076 images with descriptions written by
humans. CelebA dataset contains 202599 celebrity face images with 40 annotations
that describe the qualitative properties present in the each image. However, these
annotations are numerical values and are not in natural language form, which are

needed to be converted to sentence form using Description Generation Module. We

95

also tested our model with a toy dataset of colored shaped for ensuring that our model

correctly conditions outputs on given conditioning variables.
4.4.1 Extended Dataset

Face2Text dataset contains 4K images from CelebA dataset with textual descriptions
annotated by humans. Although it is possible to train a GAN with this data, it
is insufficient to train for the state of the art results with such a limited dataset.
Descriptions for additional images from CelebA dataset have been generated using
our Description Generation Module to cope with this problem. An additional 48069
instances chosen from image-text pairs where descriptions are generated from CelebA
annotations are added, which results in 52145 image-description pairs in total. We re-
fer to this combined dataset as ” Extended dataset” throughout this thesis. Additional
images in this dataset are selected according to the quality of available annotations,

which we discussed in more detail in Section 4.5.
4.4.2 Shapes Toy Dataset

We have generated a dataset that contains three different shapes of circle, square
and triangle, with three different colors each, red, green, and blue. This dataset is
used for testing the ¢StyleGAN on how successful it is when conditioning output on
given inputs. In our experiments, we always made sure that output is conditioned
on inputs correctly before trying to increase the generated image quality. This test
also shows that our model can be applied not only on human face images, but also
images in other modalities. In our tests, we saw that c¢StyleGAN with Discriminator
Type 1 is not successfully conditioning outputs on given inputs (shown in Figure 16),
while Discriminator Type 2 perfectly conditions (shown in Figure 17). Only one in
four outputs are aligned with given inputs when Discriminator Type 1 is used, while

all of them are aligned when Discriminator Type 2 is used.

o6

A green colored
triangle.

A rectangle that . A triangle which A

A triangle which is
green in color.

has red color. is red in color.

Figure 16: Examples on toy dataset with Discriminator Type 1. Only one in four
images is aligned with given descriptions.

A green colored
circle.

A rectangle
which is blue in
color.

A triangle which is
red in color.

A rectangle
which is green in
color.

Figure 17: Examples on toy dataset with Discriminator Type 2. All images are
correctly aligned with descriptions.

This is merely a test for ensuring that outputs are aligned with given conditioning
variables as input. In Section 4.6.1 and Section 4.6.2 we show our results on real

datasets.

4.5 Description Generation Module

GANSs require large amounts of data to generate high quality outputs. Face2Text
dataset contains 4K images + descriptions. Although it is possible to generate out-
puts that are aligned with descriptions of this data, it is insufficient for generating

photo-realistic images.

o7

There are 40 annotations available for each image in CelebA dataset. These
annotations are used to describe certain physical properties of the person in the
image, such as gender, hair color, hair length, and so on. Each one of 40 annotations
have the value of either 71”7 or ”-1”, where ”1” means person in the image has that
quality while a ”-1” means not having that quality. For example, if ”mustache” and
"black hair” annotations of an image is ”-17 and 71”7 respectively, that means the
person in the image does not have mustache and has black hair.

A rule based generation system have been used to generate additional descriptions
by using these annotations. Images that have very few number of ”1”s as annotations
are eliminated since they are lacking enough information to describe given images.
In our work, we have chosen to eliminate an image if amount of annotations marked
as 71”7 for that image is less than a certain value, where we chosen this value as
8. This eliminates images with inadequate information. Additionally, images with
annotations that has no information about hair are eliminated. Finally, images with
conflicting annotations, for example, having "no beard” marked as ”1” and ”goatee”
marked as 71”7, are eliminated.

For the remaining images, a sentence is generated according to annotations by
using a rule based system. A description is chosen from predefined set of multi-
ple descriptions for each annotation to increase diversity of generated descriptions.
This randomness helps the model to avoid memorizing given sentences and generate
meaningful images when a different, never seen before description is queried. Order
of sentences in generated descriptions are also randomized by changing order of de-
scriptive sentences in one description. We have used a permutation based system for
randomizing order of sentences except the first sentence in (n — 1)! ways where n is
number of sentences in the description.

In our experiments, descriptions are generated for 48K undescribed images us-

ing this method, resulting in 52K total image-description pairs when combined with

o8

Face2Text dataset. CelebA dataset has an uneven ratio between male and female
images, which may create an unwanted bias in our model. Our module preserves 1
to 1 ratio between male and female images when generating descriptions. Number of
eliminated images for parameters used in our experiments with elimination reasons
are shown in Table 1. Note that eliminations are not mutually exclusive and may be

counted in multiple reasons.

Table 1: Number of eliminated images for corresponding reason and total generated
description count.

Reason Number of images eliminated

Have less than specified amount (8) | 84251
of annotations marked as ”1”

Conflicting annotations marked as | 77236

2 177

Skipped for preserving male to female | 70138
ratio

Generated description amount 48069

Our algorithm generates sentences over annotations in one pass. For each image,
only one pass is applied. Our algorithm runs in O(nl) time where n is number of

images, [is number of annotations for each image, which is 40 in CelebA dataset.

4.6 Experiments

Here we share our experiments with our model c¢StyleGAN on two different datasets:
Face2Text dataset, and Extended dataset. As a comparison to existing work, we also
compare our results with Pro-StackGAN. In our experiments, for cStyleGAN, we have
used Adam optimizer [61] with learning rate 0.001 for resolutions up to 128x128, and
0.0015 for 128x128, for both generator and discriminator with 31 = 0.0 and 32 = 0.99.
We have trained our model for 1.5 million iterations per each resolution, starting from
8x8 up to 128x128. Although, we have early stopped our training during 128x128

resolution phase due to loss in image quality, decreased loss in generated images and

29

increased generator loss. We have used batch-size of 8 for all resolutions. Embedding

size generated from FastText module set as 300 dimensions.
4.6.1 cStyleGAN on Face2Text Dataset

Earlier work of this thesis was developed using Face2Text dataset. We have already
ensured that output is aligned with given conditioning variables by using our toy
shapes dataset. However, another important aspect is image quality of generated
outputs. Face2Text dataset contains 4K human face images which are annotated by
humans. This data is insufficient for our task as neural networks, especially GANs
require large amounts of data. Images generated from given descriptions with model

trained on only Face2Text dataset can be seen in Figure 18.

A young man with short
brown hair and small
eyes. His eyebrows are
thick. His nose is small
and his lips are thin. A
stubble is growing on his
face. He has got a well -
defined jawline.

A man with short,
brunette hair, thick
eyebrows, light eyes, a
long nose and a stubble
beard and moustache.
He has thin, smiling lips
and a prominent chin.

A woman with A woman with long
curtained, blond hair, a blonde hair, big green
beaky nose, dark eyes, eyes and full pouting
thin eyebrows and a lips. She is wearing
wide smile. makeup.

Figure 18: Examples images from cStyleGAN trained on Face2Text dataset.

4.6.2 cStyleGAN on Extended Dataset

We have trained our network on Extended dataset for 1.5 million iterations per each

resolution. This corresponds to 30 epochs per each resolution starting from 8x8 and

60

going up to 128x128 on 52K data instances, which in total makes 150 epochs. How-
ever, in our experiments, we have observed that best results are achieved when the
model finished training for 64x64 resolution (120 epochs), before activating another
block in synthesis network to train for 128x128 resolution. During our experimen-
tation, we have observed that generator loss explodes as discriminator loss goes to
smaller values after epoch 120, which is the end of training for 64x64 images. Gen-
erated images do not improve after this point, and get worse. Therefore, we have
early stopped our training. Our best results are achieved at epoch 120, so, our re-
ported results are from our model trained for 120 epochs. Losses of generator and

discriminator over epochs can be seen in Figure 19.

4.0
—— Discriminator
—— Generator
3.5 1
|
3.0 | l
2.5 1
&
S
2.0 1
1.5 - I l
' | | |
i L |
1.0 - ‘
0.5 T T T T T T T |||
0 20 40 60 80 100 120 140

Epoch

Figure 19: Generator and Discriminator losses over training epochs.

4.6.3 Noise Scaling and Effect of Noise

Earlier during our experiments, we have observed that if scale of noise is too high
compared to input text embeddings obtained from descriptions, then generated im-
ages are mostly based on the noise and not correctly aligned with descriptions given.

This was a trivial problem, but an important one. We have found that simply scaling

61

noise with a constant value during training fixes the problem. In our experiments,
we have observed that average of absolute values in noise was 14 times higher than
average of absolute values in text embeddings. Therefore, we have scaled noise with
0.07 (or roughly +5), which solved the problem. This is same as sampling noise from
the distribution N(0,0.07).

We also tested effect of noise on generated images. We have fixed the input
descriptions and generated images with different noise values sampled from same
normal distribution of N (0,0.07). We observed that properties of generated image
changed while still being aligned with given descriptions. Examples of this experiment

can be seen in Figure 20.

A serious looking woman with
straight blond hair. She has
arched eyebrows. Her eyes are
brown and big and her lips
are thin. She has got a heavy
lower lip.

Figure 20: Results of same description with different noise values.

4.6.4 Data Augmentation

Data augmenting during GAN training may cause generator to learn generating aug-
mented images as well, which is an undesired result in our case. We have tried
augmenting our training set for increasing variety in the training set for any possible
improvements. Some transformations have big effects on the image, so we decided to
apply those transformation with a probability only. Transformations and their chance
of being applied with the order they applied (from top to bottom in table) are shown

in following table:

62

Table 2: Applied transformations with their chance of being applied.

Applied Transform Probability of Being Applied
Random Horizontal Flip 50%

5 degrees of random rotation 100%

Adding Gaussian Noise N(0,0.07) 30%

Erasing random patch from image 1%

Aim of this test is achieving an improvement in the generated image quality. So,
we tested this method with Extended dataset, however, we have encountered the
transformations that we applied also in generated images, which is unwanted. Image

quality was not increased noticeably. Noise and rotation can be seen in most generated

images. We haven’t encountered erased patches in generated images. Examples of

this test can be seen in Figure 21.

Figure 21: Examples from model trained with augmented training set.

4.6.5 Ablation Study: Disabling Blocks in Synthesis Network

We have disabled different blocks in our experiments and compared outputs to see
effects of individual blocks in synthesis network. In this experiment, we refer to
first block which generates 4x4 resolution output as Block 1, second block which
generates 8x8 resolution output as Block 2 and so on. A number of combinations of
blocks are disabled to see the effects. Eliminating first few layers has dramatic effect
on the output since subsequent layers depend on output of previous layers. First, we
have disabled Block 2, which outputs 8x8 resolution image. Image generated roughly

represented a human face image, got blurry and lost detail. Even the parts that are

63

easier to spot in image such as hair were barely recognizable. Next, we only disabled
Block 3. This time information were not lost up to Block 3, so output has more
detail compared to previous test. Although still very blurry, this time a general facial
structure is present in the image, such as eyes and nose. From these results, we can
infer that Block 2 is more directed towards learning overall facial key-points. When
we disabled both Block 2 and Block 3, we saw that even the rough details of facial

structure are lost again. Results of this experimentation can be seen in Figure 22.

(5] Al

a) Original Out-) Block 2 Dis-) Block 3 Dis-) Block 2 and 3
put abled abled Dlsabled

Figure 22: Results of disabling different early blocks in synthesis network of generator.

Disabling Block 2 resulted in loss of both general facial structure details and
overall image composition, only a very rough human face is visible. Disabling only
Block 3 resulted in more detailed but still very blurry face image. Disabling both
Block 2 and Block 3 has a similar result of only disabling Block 3 since Block 3 is

dependent on the output of Block 2.

4.7 Results

In this section we show our results of cStyleGAN in one-shot setting, and discuss the
implications and weak points of the results. We show results of 3D images generated
from 2D human face images. We also compare existing work (Pro-StackGAN) and
cStyleGAN trained on both Face2Text and Extended datasets separately to show
effectiveness of Extended dataset. All results of cStyleGAN are aligned with given
descriptions. However, we do not show descriptions for every result as it would make

this section messy. Instead, we are showing examples also with descriptions in Section

64

4.7.2 separately.
4.7.1 Results of cStyleGAN Trained on Face2Text

In this section we show results of our c¢StyleGAN when trained only on Face2Text
dataset. As expected, image quality is worse compared to cStyleGAN trained on
Extended dataset. We have trained our model with same parameters explained in
Section 4.6. cStyleGAN achieved Inception Score of 1.9 & 0.2 when trained only on
Face2Text dataset. When we trained until the end of 64x64 resolution with 1.5 million
iterations for each resolution, we observed that model faces mode collapse. This is a
good test for showing a weakness of Inception Score as it is not taking variety into
consideration as long as generated images belong to different classes.

First we show cStyleGAN trained only on Face2Text with 1.5 million iterations for
each resolution to show how cStyleGAN mode collapses when there is not sufficient
data for desired iterations. Although Wasserstein GANs are better in terms of mode
collapse compared to Naive GANSs, it still can happen when model is over-trained.
Results can be seen in Figure 23.

Our model mode collapsed with 1.5 million iterations on each resolution when
trained with Face2Text dataset, we decided to decrease iterations for each resolution
to 600K since data is smaller. We have observed that our model does not mode

collapse with this setup. Results can be seen in Figure 24.

65

Figure 23: ¢StyleGAN mode collapsed on Face2Text dataset with 1.5 million itera-
tions for each resolution.

Figure 24: Results of cStyleGAN on Face2Text dataset trained 600K iterations per
resolution.

66

4.7.2 Results of cStyleGAN Trained on Extended Dataset

Results of images generated by cStyleGAN trained on Extended dataset can be seen

in Figure 25.

Figure 25: Results of ¢StyleGAN trained on Extended dataset.

We show capabilities of our model by doing the following test: first, we generate
a 2D face image from a given description. Then, we make small changes in given
description and regenerate the image to show how our model captures word specific
information in given descriptions. We observed that our model is able to make drastic
changes according to differences in given descriptions. For example, changing ”black
hair” to ”"blond hair” drastically changes hair color in generated images. Similarly,
changing ”looks serious” to "smiling” changes expression of generated face in a no-
ticeable way. However, properties that are relatively harder to notice such as "heavy
lower lip” is not expressed as successfully as other properties. This is a problem that
can be improved with a larger and more diverse dataset. Results of this method can
be seen in Figure 26, changed keywords compared to previous image (from left to

right) are marked with red color.

67

A woman with wavy
black hair. She has
arched eyebrows. Her
eyes are brown and
small and her lips are
thin. She has got a
heavy lower lip. She
looks serious.

A woman with wavy
black hair with bangs.
She has arched
eyebrows. Her eyes are
brown and small and her
lips are thin. She has
got a heavy lower lip.
She is smiling.

A pale skinned woman
with straight blond hair
with bangs. She has
arched eyebrows. Her
eyes are brown and small
and her lips are thin.
She has got a heavy
lower lip. She is smiling.

A male with brown hair.
The man is smiling. He
has big nose. He has
bags under his eyes. He
has no beard.

A woman with straight
black hair. She has
arched eyebrows. Her
eyes are brown and small
and her lips are thin.
She has got a heavy
lower lip. She is smiling.

A woman with straight
blond hair with bangs.
She has arched
eyebrows. Her eyes are
brown and small and her
lips are thin. She has
got a heavy lower lip.
She is smiling.

A male with brown hair.
The man has a serious
look on his face. He has
big nose. He has bags
under his eyes. He has
no beard.

A male with brown hair.
He has oval face. The
man is smiling. He has
small, pointy nose. He
has bags under his eyes.
He has a goatee.

Figure 26: Results of c¢StyleGAN trained on Extended dataset in zero-shot (unseen
text) setting.

68

4.7.3 Comparison with Existing Work

We have tested Pro-StackGAN as a comparison and to show improvements made by
our Extended dataset. In this section we combine results of different models as a
comparison for better a understanding of our results.

As expected, results of models trained on Extended dataset have higher quality.
Examples from both Pro-StackGAN and c¢StyleGAN trained on Face2Text dataset

and Extended dataset can be seen in Figure 27.

(b) (¢) cStyleGAN (d) cStyleGAN
Pro-StackGAN Pro-StackGAN on Face2Text on Extended
on Face2Text on Extended (600K iterations)

Figure 27: Comparison of outputs from Pro-StackGAN and c¢StyleGAN.

A comparison of PQD scores achieved by trained networks are shown in Table 3.

69

Table 3: Comparison of PQD scores. Best result achieved with our model when
trained with Extended Dataset.

Model Dataset PQD

Pro-StackGAN Face2Text | 0.36279
Pro-StackGAN Extended | 0.31031
cStyleGAN (ours) | Face2Text | 0.28584
cStyleGAN (ours) | Extended | 0.26478

Our model trained with same parameters explained in Section 4.6 achieved In-
ception Score of 2.4 4+ 0.1 when trained on Extended dataset. Work in [45] have
also reported inception score on generated images. A comparison of Inception Scores

achieved with our model compared to existing work can be seen in Table 4.

Table 4: Comparison of Inception Scores. Best result achieved with our model when
trained with Extended Dataset.

Inception Score
Text2FaceGAN 1.4+0.7
Ours (Face2Text Dataset) | 1.94+0.2
Ours (Extended Dataset) 24+0.1

4.7.4 Results of 3D Generation

Examples of 3D facial structures generated from our 2D images are shown in Fig-

ure 28.

70

A serious looking woman with
straight blond hair. She has arched
eyebrows. Her eyes are brown and
big and her lips are thin. She has
got a heavy lower lip.

A young male with black straight

hair. He has bags under his eyes. He
has no beard. The man is attractive.
He has big nose. The man is smiling.

A young female with blond hair
with bangs. The woman is
attractive. She has bags under her
eyes. The woman is smiling. She has
pointy and big nose.

from textual descriptions.

£

1
E

Figure 28: Examples of 2D images and corresponding 3D facial structures generated

¢
¢
€

We also tested computation time of PRN as it is important in most applications.

Speed of PRN directly correlates with 2D input image. We have tested speed of PRN

on a GTX 1070 GPU with Python 3.7.6 and TensorFlow 1.14.0. A comparison of

3D generation speed averaged over 10 tries for each different input resolutions can be

seen in Table 5. PRN could not detect a face in resolutions of 32x32 and under.

Table 5: Comparison of 3D generation speed of PRN for different input sizes.

Input Resolution Time

8x8 N/A

16x16 N/A

32x32 N/A

64x64 1.471 seconds
128x128 3.713 seconds
256x256 12.517 seconds

71

CHAPTER V

CONCLUSION

This thesis aims to improve image quality and diversity of generated images in the
domain of human face images. We propose cStyleGAN for generating high qual-
ity human face images that are conditioned on given natural language descriptions.
cStyleGAN is a conditional Wasserstein GAN which is modified from existing Style-
GAN and trained with our extended dataset, which is a combination of Face2Text
dataset and images with descriptions generated by our Description Generation Mod-
ule. Our cStyleGan trained on extended dataset achieved 2.4 + 0.1 inception score.

Due to lack of research in this field, available datasets are insufficient in this
domain. Although there are datasets such as CelebA with data as much as 203K,
these datasets do not contain descriptions, or do not contain annotations in natural
language form, or both. Our Description Generation Module aims to generate de-
scriptions for images using numerical annotations in CelebA dataset to increase data
which we can use in conditional networks. We believe that this approach can help
researchers that work on conditional models.

We have tested our proposed network with different settings and different datasets.
We have observed that additional images with descriptions obtained by Description
Generation Module helped in improving image quality noticeably while still keeping
images aligned with given conditioning variables. We have observed that mode col-
lapse can happen even with Wasserstein GANs and encountered mode collapse during
some our tests. Extra data used during training also helped alleviating this problem.

We have showed results of our proposed GAN evaluation method, Perceptual

Quality Distance (PQD). We have shown that our PQD results are also aligned with

72

popular GAN evaluation metrics such as Inception Score and Fréchet Inception Dis-
tance. We have tested our trained models and discussed that PQD score decreases
as models generate higher quality images that are closer to real images taken from
training dataset. We believe that this method can prove to be a useful alternative to
currently available metrics.

Images are a good way for obtaining information visually. However, 3D models
can provide more information as it is not possible to see an entity from different angles
just by looking a 2D image. Converting 2D images into 3D models can help obtaining
more information with the help of illumination, depth information, and being able
to seeing it from different perspectives. We generate 3D human face models from
2D images by using PRN, which can carry more information to observers. We also
improved 3D results by upscaling textures for more fidelity and applying our estimated
height-map to models for better 3D facial shapes.

As future work, evaluation methods for measuring output alignment of conditional
GANs with given conditioning variables can be explored, which can be useful for mea-
suring performance of conditional GANs while also keeping input-output alignment.
There is still no widely-used evaluation method for measuring input-output alignment
in different conditional GANs.

Controllable image generation can have important applications. Especially in
human face image generation, controlling the properties of generated images may help
in identifying suspects. Manually drawing suspects from given descriptions from eye-
witnesses is a time consuming and hard process, drawing such images requires training
and proficiency. We believe that developments in conditional image generation will

aid people in this field.

73

APPENDIX A

SAMPLES

A.1 Face2Text Data Training Samples with Descriptions

A young woman with voluminous brown
hair parted at the side. She is light -
skinned and her eyes are blue, around
which there is a small amount of make -
up. The girl has freckles mostly on her
cheeks. Her lips are thin and are painted
pink. They are slightly parted and one
can see her teeth

A man with short, dark - brown hair,
protruding ears, a long nose, a weak chin
and a long face with an open - mouthed
smile.

A blue eyed man with messy brown hair,
a large nose, sparse peach fuzz beard and
an intimidated expression.

A young woman with blonde hair and
dark roots. Her eyes are dark - coloured
and there is dark make - up around
them. Her lips are somewhat thick and
she looks serious.

Figure 29: Face2Text data training samples with human written descriptions.

74

A.2 FExtended Data Training Samples with Descriptions

A young female with black straight hair.
The attractive woman is wearing heavy
make up. She has oval face. She has
arched eyebrows.

A young male that has pale skin with
brown straight hair with bangs. He has
big nose. The man is attractive. He has
no beard. The man is smiling.

A young female with blond wavy hair.
The attractive woman is wearing heavy
make up. She has oval face. The woman
is smiling. She has pointy nose. She has
narrow eyes.

A middle aged male with brown hair. He
has no beard. The man is smiling. He
has narrow eyes with bags under his eyes.
He has a face with double chin. He has
big nose.

Figure 30: Samples from CelebA dataset which does not exist in Face2Text dataset,
with added descriptions generated by our module.

75

A.3 Vozxelated 3D Human Face Models

Figure 31: Voxelated human face model with 64x64x64 resolution.

\ A 4

Figure 32: Voxelated human face model with 128x128x128 resolution.

76

A.}, CelebA Annotation Index Map

Table 6: 40 annotations available in CelebA Dataset.

Annotation Index Meaning

0 5_0_Clockghadow
1 Arched_Eyebrows
2 Attractive

3 Bags_Under_Eyes
4 Bald

) Bangs

6 Big_Lips

7 Big_Nose

8 Black_Hair

9 Blond_Hair

10 Blurry

11 Brown_Hair

12 Bushy _Eyebrows
13 Chubby

14 Double_Chin

15 Eyeglasses

16 Goatee

17 Gray_Hair

18 Heavy_Makeup

19 High_Cheekbones
20 Male

21 Mouth_Slightly_Open
22 Mustache

23 Narrow_Eyes

24 No_Beard

25 Oval_Face

26 Pale_Skin

27 Pointy _Nose

28 Receding_Hairline
29 Rosy_Cheeks

30 Sideburns

31 Smiling

32 Straight_Hair

33 Wavy_Hair

34 Wearing Earrings
35 Wearing Hat

36 Wearing_Lipstick
37 Wearing Necklace
38 Wearing Necktie
39 Young

7

A.5 Samples from Description Generation Module

Annotation: [-1°, -1’ ’1’, -1’ *-1’, ’-1", -1’ -1, -1, 1, -1, -1, -1 -1 =17, -1,
L R R R R T e N U O Y U IR IR R IS Y RO L RO
-1, -1, -1

Generated Description: An old female with blond wavy hair. She has pointy nose.
The attractive woman is wearing heavy make up..

Annotation: [-1°,°-1°, -1’ 1’ ’-1’, -1°, 1", =17, °-17, =17, °-17, °1, ') -1, -1, -1,
-r,-r)-r, -y e, - -1, e, 'y, -, -1, -1, -1, -1, -1, -1 1) -1, -1,
S R L R S

Generated Description: A young male with brown straight hair. He has narrow eyes
with bags under his eyes. The man looks serious. He has no beard.

Annotation: [-1°,’-1", -1, -1’ -1’ ', -1 -1 10, -1 -1 -1 -1 -1 -1 -1
R T e O e e R PR T P S L S) U U RO
A L S R

Generated Description: A young male with black hair with bangs. He has no beard.
He has pointy nose. The man is smiling.

Annotation: [-1°, 1", 1", -1, -1’ -1’ °-1’, -1, =17, ’17, -1, -1, =17, -1, -1, -1,
L R R R O T e P A UL U U Y S RS O U R L R
Y -1 -1

Generated Description: A middle aged female with blond wavy hair. The attractive
woman is wearing heavy make up. She has arched eyebrows. She has pointy nose.
The woman is smiling.

Annotation: [-1°,°-1", -1’ 1’ -1, "1’ °-17, ', =17, -1, =17 10, -1 -1, -1 -1
L R O R O O N T T O e o U L TS N R LR R
o R A A A

Generated Description: A young male with brown straight hair with bangs. He has

no beard. He has bags under his eyes. He has big nose. The man is smiling.

78

Annotation: [-1’,’1’, ’1’, -1, -1°, -1, -1°, -1, =17, 17, -1’1, -1, -1, -1, -1,
U RATREY RUR RO IR U I R R R R AP U RO RN RO R R R R
0, -1 T

Generated Description: A young female with blond straight hair. She has pointy nose.
She has a face with rosy cheeks. The woman is smiling. She has arched eyebrows.
The attractive woman is wearing heavy make up.

Annotation: ['1’, -1, ’1°, 1", -7, -1, °-1, =17, 1) -1, -1 -1 L, -1 -1 -1
L T e O N R O e N A PR U I IR O AR I S S A
o R S R A

Generated Description: A young male with black hair. He has bags under his eyes.
The man is attractive. The man has a slightly open mouth

Annotation: [-1, 1, '1’, -1, -17, -1, =17, 1", 1, =17, -1, -1, -1, =17, -1, -1,
U RAIREY R RO R U I IS RO RO R I R O U R R RS RO R
-1, -1, T

Generated Description: A young female with black hair and a receding hairline. The
woman is smiling. She has arched eyebrows. She has oval face. The attractive woman
is wearing heavy make up. She has big nose.

Annotation: [-1°,°-1°, -1°, -1, -17, -1, -1’ 1", ', =17, -1, =17, 17, 10, -1, -1,
O R e O o L R P U U U U IR N R R R AP R
o R A R S

Generated Description: A young male with black hair. He has a goatee. He has
chubby oval face. He has big nose.

Annotation: [-1’, ’-1°, ’1’, *-1’, -1, ', =17, =17, 17, -1, -1 =10, -1, -1 -1 -1
L T O e I I T o R O L N A P P RO A O
L L S R

Generated Description: A young male with black straight hair with bangs. He has

no beard. He has oval face. The man is smiling. The man is attractive.

79

APPENDIX B

CSTYLEGAN LAYERS

B.1 cStyleGAN Discriminator Layers

Biases excluded.

from_rgbs.0.conv.weight_orig torch.Size([16, 4, 1, 1])
from_rgbs.1.conv.weight_orig torch.Size([32, 4, 1, 1])
from_rgbs.2.conv.weight_orig torch.Size([64, 4, 1, 1])

from_rgbs.3.conv.weight_orig torch.Size([128, 4, 1, 1])

)
D
D
)
)

from_rgbs.5.conv.weight_orig torch.Size([512, 4,

1,1
1,1
from_rgbs.6.conv.weight_orig torch.Size([512, 4, 1, 1
1,1

]

from_rgbs.8.conv.weight_orig torch.Size([512, 4, 1, 1]

(
(
(
(
from_rgbs.4.conv.weight_orig torch.Size([256, 4,
(
(
from_rgbs.7.conv.weight_orig torch.Size([512, 4,
(

convs.0.conv.0.conv.weight_orig torch.Size([32, 16, 3, 3]
convs.0.conv.2.conv.weight_orig torch.Size([32, 32, 3, 3]

convs.1.conv.0.conv.weight_orig torch.Size([64, 32, 3, 3]

)
)
)
convs.l.conv.2.conv.weight_orig torch.Size([64, 64, 3, 3])
convs.2.conv.0.conv.weight_orig torch.Size([128, 64, 3, 3|)

convs.3.conv.0.conv.weight_orig torch.Size([256, 128, 3, 3|

convs.4.conv.0.conv.weight_orig torch.Size([512, 256, 3, 3|

(

(

(

(

(

convs.2.conv.2.conv.weight_orig torch.Size([128, 128, 3, 3|

(

(

(

convs.4.conv.2.conv.weight_orig torch.Size([512, 512, 3, 3]
(

)
)
convs.3.conv.2.conv.weight_orig torch.Size([256, 256, 3, 3])
)
)
)

convs.5.conv.0.conv.weight_orig torch.Size([512, 512, 3, 3]

80

convs.5.conv.2.conv.weight_orig torch.Size([512, 512, 3, 3])
convs.6.conv.0.conv.weight_orig torch.Size([512, 512, 3, 3])
convs.6.conv.2.conv.weight_orig torch.Size([512, 512, 3, 3])
convs.7.conv.0.conv.weight_orig torch.Size([512, 512, 3, 3])
convs.7.conv.2.conv.weight_orig torch.Size([512, 512, 3, 3])
convs.8.conv.0.conv.weight_orig torch.Size([512, 513, 3, 3])
convs.8.conv.2.conv.weight_orig torch.Size([512, 512, 4, 4])
embedding_shapers.0.linear.weight_orig torch.Size([1, 300])
embedding_shapers.1.linear.weight_orig torch.Size([1, 300])
embedding_shapers.2.linear.weight_orig torch.Size([65536, 300])

embedding_shapers.3.linear.weight_orig torch.Size([16384, 300])

(
(
(
(
embedding_shapers.4.linear.weight_orig torch.Size([4096, 300])
embedding_shapers.5.linear.weight_orig torch.Size([1024, 300])
embedding_shapers.6.linear.weight_orig torch.Size([256, 300])
embedding_shapers.7 linear.weight_orig torch.Size([64, 300])
embedding_shapers.8.linear.weight_orig torch.Size([16, 300])

fc.linear.weight_orig torch.Size([1, 512])

B.2 cStyleGAN Generator Layers

Biases excluded.

fcs.mapping.1.linear.weight_orig torch.Size([400, 400]
fcs.mapping.3.linear.weight _orig torch.Size([400, 400]
fcs.mapping.5.linear.weight_orig torch.Size([400, 400]
fcs.mapping.7.linear.weight_orig torch.Size([400, 400]
fes.mapping.9.linear.weight_orig torch.Size([400, 400]
fes.mapping.11.linear.weight_orig torch.Size([400, 400]

fes.mapping.13.linear.weight_orig torch.Size([400, 400]

81

fecs.mapping.15.linear.weight_orig torch.Size([400, 400]
convs.(.constant torch.Size([1, 600, 4, 4]
convs.0.stylel.transform.linear.weight_orig torch.Size([1200, 400]
convs.0.style2.transform.linear.weight_orig torch.Size([1200, 400]
convs.0.noisel.weight_orig torch.Size([1, 600, 1, 1]
convs.0.noise2.weight_orig torch.Size([1, 600, 1, 1]
convs.0.conv.conv.weight_orig torch.Size([600, 600, 3, 3]
convs.1.stylel.transform.linear.weight_orig torch.Size([1024, 400]
convs.1.style2.transform.linear.weight_orig torch.Size([1024, 400]
convs.1l.noisel.weight_orig torch.Size([1, 512, 1, 1]
convs.l.noise2.weight_orig torch.Size([1, 512, 1, 1]
convs.1l.convl.conv.weight_orig torch.Size([512, 600, 3, 3]
convs.1.conv2.conv.weight_orig torch.Size([512, 512, 3, 3]
convs.2.stylel.transform.linear.weight_orig torch.Size([1024, 400]
convs.2.style2.transform.linear.weight_orig torch.Size([1024, 400]
convs.2.noisel.weight_orig torch.Size([1, 512, 1, 1]
convs.2.noise2.weight_orig torch.Size([1, 512, 1, 1]
convs.2.convl.conv.weight_orig torch.Size([512, 512, 3, 3]
convs.2.conv2.conv.weight_orig torch.Size([512, 512, 3, 3]
convs.3.stylel.transform.linear.weight_orig torch.Size([1024, 400]
convs.3.style2.transform.linear.weight_orig torch.Size([1024, 400]
convs.3.noisel.weight_orig torch.Size([1, 512, 1, 1]
convs.3.noise2.weight_orig torch.Size([1, 512, 1, 1]
convs.3.convl.conv.weight_orig torch.Size([512, 512, 3, 3]
convs.3.conv2.conv.weight_orig torch.Size([512, 512, 3, 3]
convs.4.stylel.transform.linear.weight_orig torch.Size([512, 400]

convs.4.style2.transform.linear.weight_orig torch.Size([512, 400]

82

convs.4.noisel.weight_orig torch.Size([1, 256, 1, 1]
convs.4.noise2.weight_orig torch.Size([1, 256, 1, 1]
convs.4.convl.conv.weight_orig torch.Size([256, 512, 3, 3]
convs.4.conv2.conv.weight_orig torch.Size([256, 256, 3, 3]
convs.b.stylel.transform.linear.weight_orig torch.Size([256, 400]
convs.b.style2.transform.linear.weight_orig torch.Size([256, 400]
convs.b.noisel.weight_orig torch.Size([1, 128, 1, 1]
convs.b.noise2.weight_orig torch.Size([1, 128, 1, 1]
convs.b.convl.conv.weight_orig torch.Size([128, 256, 3, 3]
convs.b.conv2.conv.weight_orig torch.Size([128, 128, 3, 3]
convs.6.stylel.transform.linear.weight_orig torch.Size([128, 400]
convs.6.style2.transform.linear.weight_orig torch.Size([128, 400]
convs.6.noisel.weight_orig torch.Size([1, 64, 1, 1]
convs.6.noise2.weight_orig torch.Size([1, 64, 1, 1]
convs.6.convl.conv.weight_orig torch.Size([64, 128, 3, 3]
convs.6.conv2.conv.weight_orig torch.Size([64, 64, 3, 3]
convs.7.stylel.transform.linear.weight_orig torch.Size([64, 400]
convs.7.style2.transform.linear.weight_orig torch.Size([64, 400]
convs.7.noisel.weight_orig torch.Size([1, 32, 1, 1]
convs.7.noise2.weight_orig torch.Size([1, 32, 1, 1]
convs.7.convl.conv.weight_orig torch.Size([32, 64, 3, 3]
convs.7.conv2.conv.weight_orig torch.Size([32, 32, 3, 3]
convs.8.stylel.transform.linear.weight_orig torch.Size([32, 400]
convs.8.style2.transform.linear.weight_orig torch.Size([32, 400]
convs.8.noisel.weight_orig torch.Size([1, 16, 1, 1]
convs.8.noise2.weight_orig torch.Size([1, 16, 1, 1]

convs.8.convl.conv.weight_orig torch.Size([16, 32, 3, 3]

83

convs.8.conv2.conv.weight_orig torch.Size([16, 16, 3, 3]
to_rgbs.0.conv.weight_orig torch.Size([3, 600, 1, 1]
to_rgbs.1.conv.weight_orig torch.Size([3, 512, 1, 1]
to_rgbs.2.conv.weight_orig torch.Size([3, 512, 1, 1]

to_rgbs.3.conv.weight_orig torch.Size([3, 512, 1, 1]
to_rgbs.5.conv.weight_orig torch.Size([3, 128, 1, 1]

to_rgbs.6.conv.weight_orig torch.Size([3, 64, 1, 1]

(
(
(
(
to_rgbs.4.conv.weight_orig torch.Size([3, 256, 1, 1]
(
(
to_rgbs.7.conv.weight_orig torch.Size([3, 32, 1, 1]
(

to_rgbs.8.conv.weight_orig torch.Size([3, 16, 1, 1]

84

1]

Bibliography

W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in
nervous activity,” The bulletin of mathematical biophysics, vol. 5, no. 4, pp. 115—
133, 1943.

D. O. Hebb, The organization of behavior: a neuropsychological theory. J. Wiley;
Chapman & Hall, 1949.

B. Widrow and M. E. Hoff, “Adaptive switching circuits,” tech. rep., Stanford
Univ Ca Stanford Electronics Labs, 1960.

B. Widrow and M. E. Hoff, “Associative storage and retrieval of digital informa-

tion in networks of adaptive “neurons”,” in Biological Prototypes and Synthetic
Systems, pp. 160-160, Springer, 1962.

K. Nakano, “Associatron-a model of associative memory,” IEFE Transactions
on Systems, Man, and Cybernetics, no. 3, pp. 380-388, 1972.

T. Kohonen, “Correlation matrix memories,” IEEFE transactions on computers,
vol. 100, no. 4, pp. 353-359, 1972.

J. A. Anderson, “A simple neural network generating an interactive memory,”
Mathematical biosciences, vol. 14, no. 3-4, pp. 197-220, 1972.

[. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative adversarial nets,” in Advances in neural
information processing systems, pp. 2672-2680, 2014.

T. Karras, S. Laine, and T. Aila, “A style-based generator architecture for gener-
ative adversarial networks,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 4401-4410, 2019.

T. Karras, T. Aila, S. Laine, and J. Lehtinen, “Progressive growing of gans
for improved quality, stability, and variation,” arXiv preprint arXiv:1710.10196,
2017.

Z. Liu, P. Luo, X. Wang, and X. Tang, “Large-scale celebfaces attributes (celeba)
dataset,” Retrieved August, vol. 15, p. 2018, 2018.

A. Gatt, M. Tanti, A. Muscat, P. Paggio, R. A. Farrugia, C. Borg, K. P. Camilleri,
M. Rosner, and L. Van der Plas, “Face2text: collecting an annotated image
description corpus for the generation of rich face descriptions,” arXiv preprint
arXiw:1803.03827, 2018.

Y. Feng, F. Wu, X. Shao, Y. Wang, and X. Zhou, “Joint 3d face reconstruction
and dense alignment with position map regression network,” in Proceedings of
the European Conference on Computer Vision (ECCV), pp. 534-551, 2018.

85

[14]
[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[26]

[27]

Y. LeCun and C. Cortes, “MNIST handwritten digit database,” 2010.

M. Mirza and S. Osindero, “Conditional generative adversarial nets,” arXiv
preprint arXiwv:1411.1784, 2014.

M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein gan,” arXiv preprint
arXww:1701.07875, 2017.

[. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville, “Im-
proved training of wasserstein gans,” in Advances in neural information process-
ing systems, pp. o767-5777, 2017.

L. Metz, B. Poole, D. Pfau, and J. Sohl-Dickstein, “Unrolled generative adver-
sarial networks,” arXiv preprint arXiv:1611.02163, 2016.

J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” arXiv preprint
arXiw:1607.06450, 2016.

S. Reed, Z. Akata, X. Yan, L. Logeswaran, B. Schiele, and H. Lee, “Generative
adversarial text to image synthesis,” arXiv preprint arXiw:1605.05396, 2016.

H. Zhang, T. Xu, H. Li, S. Zhang, X. Wang, X. Huang, and D. N. Metaxas,
“Stackgan: Text to photo-realistic image synthesis with stacked generative ad-
versarial networks,” in Proceedings of the IEEFE international conference on com-
puter vision, pp. 5907-5915, 2017.

T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen,
“Improved techniques for training gans,” in Advances in neural information pro-
cessing systems, pp. 2234-2242, 2016.

M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter, “Gans
trained by a two time-scale update rule converge to a local nash equilibrium,” in
Advances in neural information processing systems, pp. 6626-6637, 2017.

C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the in-
ception architecture for computer vision,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 2818-2826, 2016.

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “ImageNet
Large Scale Visual Recognition Challenge,” International Journal of Computer
Vision (IJCV), vol. 115, no. 3, pp. 211-252, 2015.

A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov, “Bag of tricks for efficient
text classification,” arXiv preprint arXiv:1607.01759, 2016.

T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word
representations in vector space,” arXiv preprint arXiw:1301.3781, 2013.

86

[28]

[29]

[34]

[35]

[36]

J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors for word
representation,” in Proceedings of the 201} conference on empirical methods in
natural language processing (EMNLP), pp. 1532-1543, 2014.

M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and
L. Zettlemoyer, “Deep contextualized word representations,” arXiv preprint
arXiv:1802.05365, 2018.

X. Huang and S. Belongie, “Arbitrary style transfer in real-time with adaptive
instance normalization,” in Proceedings of the IEEFE International Conference on
Computer Vision, pp. 1501-1510, 2017.

S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network train-
ing by reducing internal covariate shift,” arXiv preprint arXiv:1502.03167, 2015.

D. Ulyanov, A. Vedaldi, and V. Lempitsky, “Instance normalization: The missing
ingredient for fast stylization,” arXww preprint arXiv:1607.08022, 2016.

A. Dosovitskiy and T. Brox, “Inverting visual representations with convolutional
networks,” in Proceedings of the IEEFE conference on computer vision and pattern
recognition, pp. 4829-4837, 2016.

X. Zhu, Z. Lei, X. Liu, H. Shi, and S. Z. Li, “Face alignment across large poses:
A 3d solution,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 146-155, 2016.

Y. Liu, A. Jourabloo, W. Ren, and X. Liu, “Dense face alignment,” in Proceedings
of the IEEE International Conference on Computer Vision Workshops, pp. 1619—
1628, 2017.

P. Dou, S. K. Shah, and I. A. Kakadiaris, “End-to-end 3d face reconstruction
with deep neural networks,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 5908-5917, 2017.

V. Blanz and T. Vetter, “A morphable model for the synthesis of 3d faces,” in
Proceedings of the 26th annual conference on Computer graphics and interactive
techniques, pp. 187-194, 1999.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-
nition,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 770-778, 2016.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assess-
ment: from error visibility to structural similarity,” IEEFE transactions on image
processing, vol. 13, no. 4, pp. 600-612, 2004.

R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang, “The unreasonable
effectiveness of deep features as a perceptual metric,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 586-595, 2018.

87

[41]

[42]

[46]

[47]

[48]

[49]

[51]

[52]

F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and K. Keutzer,
“Squeezenet: Alexnet-level accuracy with 50x fewer parameters andj 0.5 mb
model size,” arXww preprint arXiv:1602.07360, 2016.

A. Krizhevsky, 1. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” in Advances in neural information processing
systems, pp. 1097-1105, 2012.

K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale
image recognition,” arXw preprint arXiv:1409.1556, 2014.

Akanimax, “Akanimax.t2f: text to face generation using deep learning,” GitHub
repository, hitps://qgithub.com/akanimax/T2F, 2018.

O. R. Nasir, S. K. Jha, M. S. Grover, Y. Yu, A. Kumar, and R. R. Shah,
“Text2facegan: Face generation from fine grained textual descriptions,” in 2019
IEEE Fifth International Conference on Multimedia Big Data (BigMM), pp. 58—
67, IEEE, 2019.

A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learn-
ing with deep convolutional generative adversarial networks,” arXwv preprint
arXiw:1511.06434, 2015.

P. Welinder, S. Branson, T. Mita, C. Wah, F. Schroff, S. Belongie, and P. Perona,
“Caltech-UCSD Birds 200,” Tech. Rep. CNS-TR-2010-001, California Institute
of Technology, 2010.

M.-E. Nilsback and A. Zisserman, “Automated flower classification over a large
number of classes,” in Proceedings of the Indian Conference on Computer Vision,
Graphics and Image Processing, Dec 2008.

H. Zhang, T. Xu, H. Li, S. Zhang, X. Wang, X. Huang, and D. N. Metaxas,
“Stackgan—++: Realistic image synthesis with stacked generative adversarial net-

works,” IEEFE transactions on pattern analysis and machine intelligence, vol. 41,
no. 8, pp. 1947-1962, 2018.

T. Xu, P. Zhang, Q. Huang, H. Zhang, Z. Gan, X. Huang, and X. He, “Attngan:
Fine-grained text to image generation with attentional generative adversarial

networks,” in Proceedings of the IEEFE conference on computer vision and pattern
recognition, pp. 1316-1324, 2018.

T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollar,
and C. L. Zitnick, “Microsoft coco: Common objects in context,” in Furopean
conference on computer vision, pp. 740-755, Springer, 2014.

S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural compu-
tation, vol. 9, no. 8, pp. 1735-1780, 1997.

88

[53]

[54]

[55]

[56]

[61]

[62]

T. Hinz, S. Heinrich, and S. Wermter, “Semantic object accuracy for generative
text-to-image synthesis,” arXiv preprint arXiv:1910.13321, 2019.

T. Hinz, S. Heinrich, and S. Wermter, “Generating multiple objects at spatially
distinct locations,” arXwv preprint arXiv:1901.00686, 2019.

J. Wu, C. Zhang, T. Xue, B. Freeman, and J. Tenenbaum, “Learning a proba-
bilistic latent space of object shapes via 3d generative-adversarial modeling,” in
Advances in neural information processing systems, pp. 82-90, 2016.

K. Chen, C. B. Choy, M. Savva, A. X. Chang, T. Funkhouser, and S. Savarese,
“Text2shape: Generating shapes from natural language by learning joint embed-
dings,” in Asian Conference on Computer Vision, pp. 100-116, Springer, 2018.

A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li,
S. Savarese, M. Savva, S. Song, H. Su, et al., “Shapenet: An information-rich 3d
model repository,” arXwv preprint arXiv:1512.05012, 2015.

K. Fukamizu, M. Kondo, and R. Sakamoto, “Generation high resolution 3d
model from natural language by generative adversarial network,” arXiv preprint
arXiv:1901.07165, 2019.

S. Marcel and Y. Rodriguez, “Torchvision the machine-vision package of
torch,” in Proceedings of the 18th ACM international conference on Multime-
dia, pp. 1485-1488, 2010.

X. Wang, K. Yu, S. Wu, J. Gu, Y. Liu, C. Dong, Y. Qiao, and C. C. Loy,
“Esrgan: Enhanced super-resolution generative adversarial networks,” in The
European Conference on Computer Vision Workshops (ECCVW), September
2018.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980, 2014.

M. Kettunen, E. Harkonen, and J. Lehtinen, “E-Ipips: Robust percep-
tual image similarity via random transformation ensembles,” arXiv preprint
arXw:1906.03973, 2019.

89

