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ABSTRACT

Computer assisted radiology becomes an interdisciplinary domain between mathemat-
ics, medicine and engineering. Tumor detection, analysis, classification are main prob-
lems in digital radiology for diagnosis and follow-up. A physician or an oncologist
involves in the care of patients by regarding detailed reports of carcinoma in situ that
analyze the pathology of suspicious lesions. Deep learning applied to several fields in
medicine is considered as an intervention for oncology. Even if the final treatment of
the lesion is decided by the oncologists or the surgeons in a case of resection, image
based analysis of lesions (benign or malign) promises automated decision making for
radiology. Because of the increased ability of machine learning techniques to trans-
form input data into high level presentations, deep learning techniques used for image
analysis have become important for helping physicians in the last few years. Skin le-
sion detection and classification are current challenges in medical image analysis. Skin
diseases are difficult to recognize because of the similarity between lesions and low con-
trast between the lesions and the skin. Dermatologic image processing benefits from
the evaluation scores of neural nets. To help the physicians for the accurate diagno-
sis, the medical field has an increasing interest in this technology, especially in the
diagnosis of skin lesions. This thesis presents a comparision between various state-of-
the-art deep learning frameworks namely U-Net, SegAN and MultiResUNet to solve
skin lesion analysis problems using a dermatoscopic image that contains a skin tumor.
SegAN which is a special type of Generative Adversarial Network (GAN) brings a new
architecture in machine learning by adding generator and discriminator steps in data
analysis. MultiResUNet is a U-Net-based neural network architecture which aims to
overcome the insufficient data problem in medical imaging field by extracting contexual
details even if the dataset is small. In this thesis, U-Net, SegAN and MultiResUNet
architectures have been implemented on two dimensional skin lesion images from the
International Symposium on Biomedical Imaging (ISBI) 2017 Challenge. After the
preprocessing, colored images have been trained in U-Net, SegAN and MultiResUNet.
The experiment setup has been enriched by adding incremental noise on tumor images

before models training. The evaluation has been tested through accuracy, sensitiv-



ity, specificity, Dice coefficient and Jaccard coefficient parameters. In conclusion, test
results showed that both SegAN and MultiResUNet architectures provide a robust ap-
proach against U-Net which is well known medical image segmentation framework in

skin lesion analysis.

Keywords : DEEP LEARNING, IMAGE PROCESSING, MEDICAL IMAGING,
MACHINE LEARNING, NEURAL NETWORKS



RESUME

La radiologie assistée par ordinateur devient un domaine interdisciplinaire entre les
mathématiques, la médecine et I'ingénierie. La détection, 'analyse, la classification des
tumeurs sont les principaux problémes en radiologie numérique pour le diagnostic et le
suivi. Un médecin ou un oncologue intervient dans la prise en charge des patients en
consultant des rapports détaillés de carcinome in situ qui analysent la pathologie des
lésions suspectes. L’apprentissage profond appliqué a plusieurs domaines de la méde-
cine est considéré comme une intervention en oncologie. Méme si le traitement final de
la 1ésion est décidé par les oncologues ou les chirurgiens en cas de résection, ’analyse
d’images des lésions (bénignes ou malignes) promet une prise de décision automatisée
en radiologie. En raison de la capacité accrue des techniques d’apprentissage automa-
tique a transformer les données d’entrée en présentations de haut niveau, les techniques
d’apprentissage approfondi utilisées pour 'analyse d’images sont devenues importantes
pour aider les médecins au cours des derniéres années. La détection et la classification
des 1ésions cutanées sont des défis actuels dans I’analyse d’images médicales. Les mala-
dies de la peau sont difficiles a reconnaitre en raison de la similitude entre les lésions et
du faible contraste entre les lésions et la peau. Le traitement d’image dermatologique
bénéficie des scores d’évaluation des réseaux neuronaux. Pour aider les médecins & poser
un diagnostic précis, le domaine médical s’intéresse de plus en plus a cette technologie,
notamment au diagnostic des lésions cutanées. Cette thése présente une comparaison
entre divers cadres d’apprentissage en profondeur de pointe, a savoir U-Net, SegAN
et MultiResUNet pour résoudre les problémes d’analyse des 1ésions cutanées a 1’aide
d’une image dermatoscopique contenant une tumeur cutanée. SegAN qui est un type
spécial de Réseau Génératif Adversaire (GAN) apporte une nouvelle architecture dans
I’apprentissage automatique en ajoutant des étapes de générateur et de discrimina-
teur dans ’analyse des données. MultiResUNet est une architecture de réseau neuronal
basée sur U-Net qui vise a surmonter le probléme de données insuffisantes dans le do-
maine de I'imagerie médicale en extrayant des détails contextuels méme si I’ensemble de
données est petit. Dans cette thése, les architectures U-Net, SegAN et MultiResUNet

ont été implémentées sur des images de lésions cutanées bidimensionnelles Défi 2017



du Symposium international sur I'imagerie biomédicale (ISBI). Aprés le prétraitement,
des images en couleur ont été formées en U-Net, SegAN et MultiResUNet. La confi-
guration de I'expérience a été enrichie par I’ajout de bruit incrémentiel sur les images
tumorales avant la formation des modéles. L’évaluation a été testée par les parameétres
d’exactitude, de sensibilité, de spécificité, de coefficient de dés et de coefficient de Jac-
card. En conclusion, les résultats des tests ont montré que les architectures SegAN
et MultiResUNet fournissent une approche robuste contre U-Net qui est un cadre de

segmentation d’image médicale bien connu dans ’analyse des lésions cutanées.

Mots Clés : ’APPRENTISSAGE EN PROFONDEUR, TRAITEMENT D'IMAGE,
L'IMAGERIE MEDICALE, APPRENTISSAGE DE LA MACHINE, LES RESEAUX
DE NEURONES



OZET

Bilgisayar destekli radyoloji, matematik, tip ve miihendislik arasinda disiplinlerarasi
bir alan haline gelmigtir. Ttmor tespiti, analizi ve stmflandirmasi, tani ve takip igin di-
jital radyolojideki temel problemlerdendir. Bir doktor veya onkolog, siipheli lezyonlarin
patolojisini analiz eden in situ karsinomun detayh raporlarini dikkate alarak hastala-
rin bakiminda yer alir. Tipta cesitli alanlara uygulanan derin 6grenme, onkolojiye bir
miidahale olarak kabul edilir. Rezeksiyon durumunda lezyonun son tedavisine onkolog-
lar veya cerrahlar karar verse bile, goriintii temelli lezyon (iyi huylu veya kotii huylu)
analizi, radyolojide otomatik karar vermeyi vaat eder. Son yillarda makine 6grenimi
tekniklerinin insan algisi i¢in anlamsiz olabilecek verileri anlamli hale doniigtiirme ye-
teneginin artmasiyla beraber, goriintii analizi i¢in kullanilan derin 6grenme teknikleri,
son yillarda hekimlere yardimci olan 6nemli bir ara¢ haline gelmistir. Deri lezyonla-
rinin saptanmasi ve siniflandirilmasi tibbi goriintii analizinde giincel zorluklardandir.
Lezyonlar arasindaki benzerlik ve lezyonlar ile cilt arasindaki diigiik kontrast nedeniyle
cilt hastaliklarini tanimak zordur. Dermatolojik goriintii isleme, doktorlarin dogru tani
koymasina yardimci olmak i¢in bu teknolojiyle, ézellikle cilt lezyonlarinin teghisiyle ilgili
olan kismina yogun ilgi gostermektedir. Bu tez, U-Net, bir generatif adversial ag (GAN)
tiirevi olan SegAN ve MultiResUNet gibi son teknoloji derin 6grenme yaklagimlariyla
cilt tiimorii igeren dermatoskopik goriintiileri kullanarak cilt lezyonu analiz problemle-
rini ¢ézmede yol gostermeyi amaglayan bir kargilagtirma sunmaktadir. SegAN, klasik
CNN’lerden farkli olarak derin 6grenme modeline iiretici ve ayirici adimlar ekleyerek
yeni bir mimari sunmugtur. MultiResUNet, medikal goriintiileme alaninin temel sorun-
larindan biri olan yetersiz veri problemini baglamsal detaylar1 az veriden basarili bir
sekilde ¢ikararak agsmay1 amaglayan bir derin sinir ag1 mimarisidir. Bu makalede, U-Net,
SegAN ve MultiResUNet mimarileri Uluslararasi Biyomedikal Gorilintiileme Sempoz-
yumu (ISBI) 2017 Yarigmasi’'ndan alman iki boyutlu cilt lezyonu goriintiileri {izerine
uygulanmistir. On islemeden sonra, renkli goriintiiler hem SegAN da hem de Multi-
ResUNet’te egitilmigtir. Deney diizenegi, model egitimi 6ncesinde tiimor goriintiilerine
artimh giiriiltii eklenerek zenginlestirilmigtir. Degerlendirme; dogruluk, duyarlilik, 6z-

giilliik, Dice katsayisi ve Jaccard katsayisi parametreleri ile yapilmigtir. Sonug olarak,



test sonuglart hem SegAN hem de MultiResUNet mimarilerinin cilt lezyonu analizinde,
farkli giiriiltii oranlarinda tutarli bir yaklagim sagladigini ve U-Net mimarisine gore

daha bagarili olduklarini géstermistir.

Anahtar Kelimeler : DERIN OGRENME, GORUNTU ISLEME, MEDIKAL GO-
RUNTULEME, MAKINE OGRENMESI, SINIR AGLARI
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1 INTRODUCTION

During the last few years, deep neural networks have gained considerable attention
in several problems of computer vision. The new network hierarchies present com-
plex transfer modalities to deal with adaptive learning tasks. Deep neural networks
(DNN) allow machines to learn hybrid data structures of mathematical models which
can be used to achieve comprehensive data analysis. Image semantics would be resol-
ved using relevant models. The learning rate is measured in DNN by the achievement
of comprehensive data analysis. Generative adversarial networks (GANs) deal with a
new hierarchy in intelligent systems. The network scheme conforms to better training
performance with less annotations. GAN achievement is derived through a competi-
tive learning where the model consists of different stacks. The processing in layers is

characterized with multiple levels of abstraction from high-dimensional input data.

In medicine, lesion detection becomes more efficient with new models based on deep
learning networks from histological to radiological acquisitions. Recent studies reveal
that detection performance of deep networks has even matched or exceeded human-
level performance in several tasks such as diabetic retinopathy and tumor detection
(Gulshan et al., [2016),(Isin et al. 2016]). Early detection of cancer is considered as
one the most complex and hard problems in radiology. The follow-ups and repeated
cases are also challenges for the correct decision making. Over the last decade, the
progress and the integration of DNN enable rapid diagnosis of patients at these risk
groups. Even if the final medical decision must be taken with a specialist, DNNs might
reduce the time for the diagnostic errors and workload of physicians. Therefore, DNN
performance is not compared with physicians in our study. The evaluation of DNN
based segmentation is performed through Ground Truth; a mask which identifies the

whole area or volume in target images.

The common goal of deep learning techniques is to recursively learn computational mo-
del parameters using a training dataset to gradually improve the model in performing
the desired purpose. Using many previously unseen data, models can also perform the
same task accurately once a computer is trained for a specific task. Deep learning is
distinguish from the other techniques of machine learning because of its strong genera-
lization ability. The detection and evaluation criteria result that the use of multilayered
hierarchy of GAN shows valid scores. The variation of inter observer, the inhomogeneity

in image scale encompass the complexity of automatic lesion detection. In skin lesion



segmentation, International Skin Imaging Collaboration (ISIC) focuses on the analysis
and the improvement of big datasets. Annotated image corpora is considered as a chal-
lenge in deep learning for detection and classification. Even if recent studies in data
challenges promised valid results for clinical applications, the performance evaluation
shows that training datasets might cause variation in skin lesion detection. In order
to promote automatic analysis in this field, GAN technique that represents promising
scores is preferred. Although many studies have been presented in this area, it can be
seen that the success in the field of skin segmentation can be increased even further.
The International Skin Imaging Collaboration (ISIC) focused on automatic analysis of
skin lesions, it has been trying to enrich the dataset regularly since 2016. Annotated
skin lesion images are presented by ISIC for ISBI 2017 Challenge which can be used in

feature extraction for automatic lesion segmentation tasks.

In this thesis, we provide a new application area of deep neural networks in skin lesion
analysis. We note that dermoscopic feature extraction is relatively a new problem in
deep learning to address the detection and the classification of lesions. The following
section presents the medical imaging techniques, image segmentation architectures for
automatic diagnosis of skin lesions from dermoscopic images and related studies of DNN
for medicine. The third section shows the basis of neural networks and convolutional
neural networks. Used neural network architectures, dataset, tools and deep learning
frameworks are explained in fourth section along with our corresponding formulation
through computational parameters and the statistical evaluation. Our detection results
are given through statistical parameters in the fifth section. Finally, the assessment of
examined neural networks in skin lesion detection is concluded through the current
state-of-the-art and prospective improvements. The flow of the study in this thesis is

summarized in Figure | 1.1}
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Figure 1.1: Flowchart of the analysis



2 RELATED WORKS

In this section, both common medical imaging techniques and dermatology imaging
techniques are presented. Furthermore, skin lesion segmentation is detailed through
commonly image segmentation architectures. Finally, related works are given to illus-

trate recent approaches in dermoscopic image analysis

2.1 Medical Imaging Techniques

Medical Image Segmentation aims to determine the location and shape of the body part
or structure within a 2D or 3D image automatically or semi-automatically (Merjulah
and Chandra, 2019). The medical images are acquired using different modalities. Wide
modality range and the high variability of human anatomy is the major difference of
medical image segmentation. Medical images are divided into several interests related
with the problem definition to detect or segment the tumor or mass. Irregularities,
blurred vision borders, low contrast between lesion and skin, air bubles are the some
of various artifacts that makes segmentation medical imaging challenging (Guo and

Ashour, [2019)).

Medical Imaging Techniques (MIT) are concerned to create medical images to be able
to examine internal structures of body without opening up it (Kasban et al. 2015). In

this section, common medical imaging techniques are being investigated.

2.1.1 Common Diagnostic Modalities

This section represent the review of widely-used medical imaging techniques namely
X-ray Radiography, Magnetic Resonance Imaging, and Computed Tomography. The

flowchart of a generic procedure in medical imaging is given in Figure

Detectors Result

Mathematical
algorithms

Ener
. :

10

Figure 2.1: Medical Imaging Concept



Figure 2.3: Sample MRI Images (Lovblad et al., 2010)

— X-ray Radiography is an imaging technique that uses ionizing electromagnet
radiation, such as X-ray which is a type of high-energy electromagnetic radiation
(Kasban et al., [2015). As it can be seen in Figure there is a trade-off between
radiation level and image contrast which should be chosen carefully. X-ray passes
through the body and is absorbed at different levels according to several factors
such as the different tissue density. Mammography which deals with the scanning

of breast tissue is one of the well-known application areas of X-ray Radiography.

— Magnetic Resonance Imaging (MRI) is a commonly used imaging techniques
for medical tasks which uses magnetic fields and frequencies in the radio wave
spectrum to create images of body tissue (Mehmood et al., 2013). Magnetic spin
relaxation times and proton density changes can be used as distinctive in detec-
ting abnormal tissues. MRI is based on visualizing these changes. MRI imaging
can be enhanced by using a contrast solution, e.g. gadolinium, which will change

the relaxation properties of some tissues under certain conditions.

Advantages of using MRI include painless, ionizing-free radiation, and high spa-
tial resolution with operator independent usage. MRI does not offer real time

results because of the relatively long scanning and post processing time. Moreo-



Figure 2.4: Sample CT Images (Chilamkurthy et al. 2018)

ver, patient comfort is an issue due to limited space within the gantry and long

acquisition time. An MRI sample is shown in Figure [2.3]

Computed Tomography (CT) is supported with a cathode ray tube used
to create detailed image of parts of the human body such as internal organs,
blood vessels, bones and soft tissues. CT scanning is a common method in cancer
diagnosis, as it is widely used to determine the size and location of a tumor. It
is used to create not only for two dimensional (2D) images but also for three
dimensional (3D) images using spiral CT which is basically reconstructing the
collected volume data to provide 3D images. Figure [2.4] shows some examples of

generated CT images.

Analyzing the parts of human body, diagnosing the abnormalities and traumas,
observing the results of the cancer treatments are the common use cases of CTs.
It comes with several benefits sucs as getting good spatial resolution, detecting
issues quickly and painlessly. On the other hand, CTs do not provide real time

analysis and relatively useless results with the soft tissues with low contrast.

Table 2.1: Comparision of medical imaging techniques

tmaging Techmiques | | (NS S0l Cost
Ultrasonography Imm Soft tissues Low Supported
X-ray Imm SZflt dt%sz?des Medium Unsupported
CT 0.5mm S(})Ifir‘?iszﬁjs High Unsupported
MRI 0.5mm sljf?r‘?iszﬁ(ejs High Unsupported

A general comparison for common medical imaging technique is given in Table [2.1]

Ultrasonography which is the first technique in Table is examined in Section |



2.1.2

Figure 2.5: Sample Multispectral Images (]Dhawan et al.|, |2009|)

2.1.2 Dermatology Imaging Techniques

In this section, imaging techniques used in skin lesions are being investigated.

Traditional Photography (TP) is the well-known techniques which makes

visualizing and monitoring the top layer of the lesion possible (Feit et al., 2004).

Dermoscopy Imaging Technique (DIT) is a real-time noninvasive diagnostic

imaging technique which is more successful in distinguishing melanoma concen-

tration than traditional photography (Aljanabi et al., [2019).

Multispectral Imaging (MI) provides information in both spectral and spatial
domains. MI systems increase accuracy by calibrating image intensity, controlling
exposure time automatically with the help of a multispectral camera that includes

different optical filters selected by the problem definition. MI is used in medical

imaging to support detecting the lesions about 2 mm (Aljanabi et all 2019).

Figure shows the images of a skin lesion taken by using different optical
filters.

Confocal Laser Scanning Microscopy (CLSM) is an imaging technique

that provides real-time details of skin morphology and provides images with the

same resolution as traditional microscopes (Gerger et al.,[2005). CLSMs are very

sensitive for clinical applications but they are relatively expensive to use in there.



Figure 2.6: From right to left clinical, dermoscopical, confocal images of a skin lesion

(Ruini et al., 2016)

From right to left clinical, dermoscopical, confocal images of a skin lesion is shown
in Figure [2.6]

— Ultrasonography which is also known as diagnostic sonography is another ima-
ging technique that is used to create medical imaging to create internal body parts
using high frequency broadband sound waves. Because different tissues behave
differently under these sound waves, the images generated using the waves reflec-

ted by tissue (Sahuquillo et al., 2013). Calculating the depth of skin cancer is the

focused usage of Ultrasonography for this kind of projects.

Ultrasonography offer painless real time visualization without ionized radiation in
high resolution. But it is a time consuming and operator dependendent imaging

technique.

2.2 Image Segmentation Architectures

Fully convolutional network (FCN) is a CNN variant which is a turning point for

semantic segmentation literature (Long et al., 2015)). After that, many variants of CNN

for segmentation have been developed. In this section, commonly used CNNs which are

used for image segmentation starting from FCN are examined.

2.2.1 Fully Convolutional Network

Fully convolutional networks (FCNs) indicate that the convolutional neural networks
are obtained by dismantling the fully connected layers from deep CNNs (Ulku and
‘Akagunduz|, |2019). FCNs are built on traditional classification networks such as VGG




(Simonyan and Zisserman, 2014), AlexNet (Krizhevsky et al. 2012), GoogLeNet (Sze-
gedy et al. 2014), and ResNet (He et al., [2016).

Convolutional layers are used instead of fully connected layers to produce outputs with
the same size of inputs instead of classification scores which are the outputs of CNNs.
FCNs consist of two units encoding and decoding. Convolution and subsampling opera-
tions are performed in the encoding unit to encode the lower dimensional latent space.
Deconvolution and upsampling are performed in the decoding unit which guarantee the
same size of output with the input. Since FCNs do not include fully connected layers,

it is faster to get an image with respect to the classical CNNs.

Besides the including convolutional layers, skip architecture is one of the main reasons
that makes FCNs faster over CNNs. Skip architectures help to prevent losing some
information which can be lost becauseSkip connections are also p of the dropout or any
other architectural decisions which may cause losing information. They provide flowing
the summed or concatenated data between downsampling and upsamling blocks. Skip
connections preserve the localised information which might be lost in pooling layers

with bypassing them.

2.2.2 SegNet

Badrinarayanan et al.| (2017) proposed a FCN based network architecture, called Se-
gNet, aiming to increase the accuracy of segmentation tasks. As it can be seen in Figure|
the encoder network consists of 13 convolutional layers of VGG16 network instead
of the original fully connected layers of FCN. A pixel-wise classification layer is added
to help the upsampling on the lower resolution images in the decoder network. The
upsampling part is the novel improvement of SegNet. Encoder is not fully connected
in Segnet. Then, it causes the train parameters to decrease by 90%. There is a corres-
ponding decoder for every 13 encoders and they are responsible for the upsampling of

the feature map.

2.2.3 U-Net

Ronneberger et al.| (2015) proposed a new CNN namely U-Net designed for medical

imaging. Because medical image segmentation suffers from lack of large dataset, it is
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Figure 2.7: SegNet architecture (Badrinarayanan et al., 2017)
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Figure 2.8: U-Net architecture (Ronneberger et al., 2015)

relatively hard to capture image context with localized lesions. U-Net aims to achieve

competitive results even if the training data are relatively small.

Classical feed-forward CNNs can learn many small information via the fully connected
layers. Large datasets provide a number of parameters to train. However, they are often
hard to gather or not accesible in medical domain. U-Net architecture provides more
accurate results with smaller datasets by capturing the detailed context. As it can be
shown in Figure [ 2.8 U-Nets are made up of a compact hierarchy using upsampled
and downsapled layers till the output layer. These layers are called as contracting and

expanding layers respectively in Figure | 2.8

The purpose of the contracting path is to increase resolutions and learn features to
capture context while the role of the expanding path is to aid in precise localization

with a series of upsampling operations. The contracting path consist of two three-by-
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Figure 2.9: GAN architecture

three convolutions followed by a ReLU and two-by-two max pooling layers. On the
other side, up convolution layers exist to upsample the outputs. Skip connections help
to prevent to lose the spatial context combining with upsampled outputs by transfering
the low resolution features to expanding path. The authors used a large-weighted loss
function to separate boundaries of background labels and touching segments which is

a known problem of medical image segmentation.

2.2.4 Generative Adversarial Network

\Goodfellow et al.|(2014)) proposed a deep learning framework which is called generative

adversarial network (GAN) consisting of two neural networks namely generator and
discriminator. The proposed network can be considered as an autoencoder trying to

produce a fake version of the real data.

The generator which is the first part of the GANSs, generates a sample and the dis-
criminator interprets the sample as a real or fake. The ‘real’ means that whether the

source of the data is training set. The flow can be seen in Figure[2.9

It looks like a game where the generator tries to fool the discriminator with the samples
it creates. The generator are update itself using the output of the discriminator on each

iteration to get accurate results. GANs have proved its success in many image analysis

tasks, such as creating very realistic synthetic images (Shrivastava et al.,[2017)), domain

adaption (Bousmalis et al., [2017) and data completion (Yeh et al., 2017).
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2.3 Related Works

Publication of AlexNet in 2012 have triggered a paradigm change in image segmen-
tation, and then deep learning methods have provided prominent results and became
the state-of-the-art in this area in recent years (Quang et al., 2017). In this section,
the studies that propose deep architectures for skin lesion segmentation are discussed.

Table [ 2.3 shows the summary of the discussed surveys.

Long et al. (2015) proposed an FCN from the CNNs known to be successful in semantic
segmentation. They adapted well-known classification networks such as AlexNet, VGG,
GoogleLeNet to fully convolutional networks. Then, to create a successful segmentation,
they combined semantic details from a deep layer and the appearance details from a
shallow layer to define a new skip architecture. The proposed architecture achieved

remarkable results compared to state-of-the-art models on PASCAL VOC.

Ronneberger et al. (2015) built a new neural network aimed to be able to get accu-
rate results with insufficient data by using them more effectively. U-Net, the propo-
sed network, is based on classical FCNs and consist of two symmetric paths namely
contracting and expanding which is responsible for capturing the context and enabling
precise localization respectively. The new neural network proved its success with very
few images by winning the International Symposium on Biomedical Imaging (ISBI)
2015 Cell Tracking Challenge. In addition to being able to work with insufficient data,
U-Net offers prominent results for training duration with images with relatively hi-
gher resolutions such as 512x512. In the following years, new studies showed that the
proposed U-shaped network is more successful than C-Means Clustering in ISBI 2017
challenge dataset (Lin et al., [2017)).

Yuan et al.| (2017)) introduced an improved version of FCN model using Jaccard distance
as loss function. The aim of this network is increasing segmentation accuracy with
solving common dermoscopic image problems such as imbalanced skin and lesion pixels,
the existence of various artifacts, and irregular lesion borders. The proposed network
achieved better results than the other state-of-the-art networks in ISBI 2016 challenge
and PH2 databases.

Yuan (2017) presented a new skin lesion segmentation framework base on Fully Convo-

lutional Deconvolutional Neural Networks (CDNN). Their main focus is to improve net-
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work architecture rather than pre and post processings. Rectified Linear Unit (ReL.U)
is used as the activation of each layer in the network except to output layer. Internal
covariate shift is reduced by adding batch normalization to the output of CD layers.

The proposed CDNN model won the ISBI 2017 challenge.

Yuan and Lo| (2017)) improved their other skin lesion segmentation architectures by
using smaller kernels to optimize the discriminant capacity of their newly proposed
neural network. The improved version of the previous work is evaluated on the ISBI

2017 challenge dataset and placed among the top 21 in the ranking.

Bi et al.| (2017) proposed a multistage FCN to increase segmentation accuracy of classi-
cal FCNs. In this network, first stage FCN focused on learning localization information
and coarse appearance, whereas second stage FCN focused on subtle characteristics
of the lesion boundaries. A parallel integration method is also introduced to combine
the results of the first and second stage FCNs. [Yu et al.| (2018)) presented a novel deep
neural network architecture consisting of two stages called segmentation and classifica-
tion. The network combines a deep learning method with a local descriptor encoding
strategy for dermoscopy image recognition. A pretrained large image dataset is used
to extract deep representations of a rescaled image. After that, extracted descriptors
are aggregated and encoded with a Fisher Vector to get global features. At the end,
the global features are used to classify images with the help of a support vector ma-
chine. The proposed network is a fully convolutional residual network (FCRN) and

took second place in the segmentation category of the ISBI 2016 challenge.

Al-Masni et al| (2018) developed a framework for skin lesion segmentation via full
resolution convolutional networks (FrCN). This method eliminated subsampling layers
and learned the full resolution features directly. It is tested with ISBI 2017 challenge
and PH2 datasets and has achieved better results against the well-known state-of-the-

art segmentation networks such as U-Net, SegNet and FCN.

Li et al.| (2018) introduced a new dense deconvolutional network (DDN) for skin lesion
segmentation. The proposed network is based on residual learning. It consist of three
main parts namely dense convolutional layer, hierarchical supervision (HS), and chained
residual pooling (CRP). Dimensions of the input and output images remain unchanged
in DDLs. CRP helps to capture contextual background features while HS is responsible
for improving the prediction mask. They tested the network with the ISBI 2017 dataset

and it achieved 86.6% Dice coefficient indices.
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Xue, Xu and Huang| (2018) proposed an Adversarial Neural Network (GAN), called
SeGAN, based deep neural network aimed to increase accuracy of medical image seg-
mentation. Classical GANs are not as good as expected in providing gradient feedback
to the network, because their output is single which may not represent pixel level de-
tails of images. Segmentation label maps are created with the help of newly created
FCN based segmentor network with a new activation function. Another significant im-
provement in the proposed network is multi-scale L1 loss function aimed to extract

both local and global features which represent the relations between pixels.

Peng et al| (2019) introduced a new adversarial network based segmentation archi-
tecture consisting of a CNN based discrimination and a U-Net based segmentation
networks. This utilized generative adversarial network is evaluated on the ISBI 2016

challenge dataset and achieved 97.0% Accuracy rate.

Tu et al.| (2019) proposed an adversarial network based deep learning framework focused
on solving the imbalanced lesion-background problem. The segmentation block of the
proposed network is an encoder-decoder network with Dense-Residual block. Deep
supervision is utilized with a multi-scale loss function. The network is evaluated on
the ISBI 2017 challenge dataset and gained better segmentation results than the other
state-of-the-art methods participating in that challenge.

Tschandl et al. (2019) introduced a new FCN where pretrained ImageNet weights are
being used to feed the network on ResNet34 layers which are reused as encoding layers.
The evaluation results showed that using pretrained weights improved the segmentation

score on the ISBI 2017 challenge dataset.

Ninh et al.| (2019) proposed a SegNet architecure based FCN framework which aimed
to decrease the number of upsampling and downsampling layers of classical SegNet
architecture to reduce the learned parameters. The proposed network is evaluated on
the ISBI 2017 challenge dataset and gained sufficient results in terms of Jaccard Index

and Dice coeflicient.

Mirikharaji et al.| (2019)) proposed a deep CNN framework focused on segmenting skin
lesions. The main focus of the proposed network was the use of two different annota-
tion set consisting of reliable and unreliable annotations. The reliable annotations are
marked by experts and showed reliable segmentation results. This reweighting is done

by a newly deployed meta-learning approach. The proposed network shows that using
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different levels of annotation noise on weighting affects the segmentation results and

model robustness positively.

Sarker et al.| (2019) proposed a lightweight GAN framework, called MobileGAN, aiming
to reduce the number of training parameters while keeping the segmentation accuracy
high. They combined the channel attention module with the 1D non-bottleneck facto-
rization networks for the generator part of the GAN. MobileGAN is trained with ISIC
2018 training dataset and was evaluated with ISBI 2017 challenge dataset. Compared
to state-of-the-art models such as FCN, U-Net, or SegNet, the results showed that the
proposed network had fewer parameters, about 2.3 million, and achieved considerable

Scores.

Lei et al.| (2020)) proposed a GAN framework aiming to increase skin lesion segmentation
accuracy and won the first part of ISBI 2017 challenge. The segmentation part of the
proposed GAN was construct with a skip connection and dense convolution U-Net
while the discrimination part was consist of a dual discriminator module. One of the
discriminators was responsible for increasing the detection of boundaries while the

other one was responsible for learning the contextual informations.

Zafar et al.| (2020) proposed an automated neural network architecture aimed to seg-
ment skin lesion accurately. Res-Unet, the proposed network, is a combination of two
well-known neural networks in image segmentation namely U-Net and ResNet. The
other major improvement in this network is using image inpainting for hair removal. It
was evaluated on the ISBI 2017 challenge and PH2 datasets and gained Jaccard Index
of 77.2% and 85.4% respectively.

Xie et al. (2020) introduced a CNN variant, called MB-DCNN, which consisted of three
sub CNNs namely coarse segmentation network, mask guided segmentation network,
and enhanced segmentation network respectively. The first network was responsible for
creating coarse masks which had been used on the next network to classify the lesions.
The third network was a segmentation network fedded from the second classification
network. There were learning transfer between networks to increase the segmentation
accuracy. MB-DCNN was tested with the ISBI 2017challenge and PH2 datasets and it
achieved Jaccard index of 80.4% and 89.4%.

Table 2.2: Summary of related skin lesion segmentation surveys

Publication Architecture Title Highlights
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3 NEURAL NETWORKS IN TUMOR DETECTION

In this section, firstly Artificial Neural Networks (ANNs), and then Convolutional Neu-
ral Networks (CNNs) are examined with the commonly used regularization techniques

in the orientation of tumor detection.

3.1 Artificial Neural Networks

ANNSs are a category of supervised machine learning algorithms whose design has been
inspired by the neurophysiological workings of the human brain (Hill et al.,[1994)). These
networks consist of several layers mainly first layer, last layer and middle layer(s). The
first layer is known as the input layer, middle layer which is called as hidden layer
and the last layer is the output layer where each layer has several artificial neurons.
A sample ANN model is given with two inputs, one hidden layer, and output layer
with two neurons (Babu and Shailesh| [2000) in Figure [ 3.1 The most common layer
organization is the fully connected layer, where each neuron is fully paired with adjacent

neurons.

An ANN transforms the inputs into outputs using the activation function, bias and
weights. The sum of inputs is multiplied by weights; the deviation is added and the
result is passed through the activation function. The neurons are activated by the

activation function.

During the training, training samples are sent one by one through the network. The

output value is calculated for each sample sent. Output values are compared to the tar-

NEURON

INPUT LAYER OUTPUT LAYER
HIDDEN LAYER

Figure 3.1: A sample ANN model




20

get with the help of a loss function to minimize the error rate. At the backpropagation
step, the network is updated by propagating errors backwards through the network
(LeCun et al., [1988]).

3.1.1 Weight Update

Gradient descent is used to minimize the loss function of the neural network. The
first-order derivative of the loss function, namely gradient is computed at the current
point and it is used to increase the slope in the opposite direction by moving in by the
value of self. These two steps are applied to the weights in each cycle. Batch gradient
descent (BGD), stochastic gradient descent (SGD), and mini-batch gradient descent are
some of the commonly used weight update methods. In SGD, the training samples are
randomly shuffled, to put it another way, the weights are updated after each training
sample (Bottou, [2010). On the other hand, all the training samples are used at weight
update in batch gradient descent. SGD requires more calculations than batch gradient
descent and it is more sensitive than the other. Because SGD is suitable for larger
datasets and batch gradient descent is for the smaller datasets, mini-batch gradient
descent which is a combination of SGD and batch gradient descent is developed. It use

a batch of a limited number of samples to update the weights.

3.1.2 Activation Functions

An activation function is used to decide whether an artificial neuron should be activated
by calculating the weighted sum of its input. It decides whether the information that
the neurons receive is relevant, and ignores it if not. The activation functions can be
basically divided into 2 groups as linear and non-linear activation functions. Because
linear functions have constant derivatives, there is no relation between the derivative
of the linear function and the input value of x. Therefore, the output of functions will

not be limited across any range.

The non-linear activation functions which are preferred over the linear activation func-
tions can be seen in Figure [3.2] It helps to the model to generalize or adapt data. They
are basically grouped by their curves and ranges. Commonly used activation functions
such as Softmax, Sigmoid, Tanh, ReLU, Leaky ReLLU and PReLLU are examined in this

section.
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Figure 3.2: Nonlinear activation functions (a) Sigmoid, (b) Tanh, (c¢) ReLU, and (d)
Leaky ReLLU (Yang and Yang, 2018])

— Sigmoid functions are smooth and continuously differentiable which means the
slope of the Sigmoids can be found for any two points. The Sigmoids are monoto-
nic but their derivatives are not. In Sigmoids, the Y values tend to respond very
less to changes in X as it can be seen in Equation . It means that small
changes in the X values will cause larger changes in the Y values in this range. So
the purpose of this function is to try to keep the Y values to the extremes. This
is helpful when classifying the values into a particular class. If they are compared
to linear functions, the outputs stay always in a fixed range [0,1] unlike the linear
functions whose outputs can be in the range of infinity. It is clearly understood
that the Sigmoid function produces positive values for all the points and it is not

symmetric around the origin.

1

hole) = T gty

(3.1)

— Softmax is a Sigmoid function derivative which gives remarkable results in multi

variant image classification.

e*

yi(2i) = m (3.2)

— Tanh function is an activation function which is a scaled version of the Sigmoid

function. The difference between the Sigmoid and the Tanh is that the Tanh is
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symmetric over the origin whereas the Sigmoid is not symmetric, so the range
of the Tanh is between -1 and 1. Continuity and differantiability of the Tanh is

similiar to the Sigmoid, it is continuous and differentiable.

2
(1+el—22))—1

It is preferred to Softmax if there are no more than two classes in a classification

tanh(zx) =

(3.3)

problem. The advantage is that the negative inputs will be mapped strongly

negative and the zero inputs will be mapped near zero in the Tanh graph.

Rectified Linear Unit (ReLU) is an activation function which is non-linear
and the most widely used activation function while designing neural networks

today.

f(x) =27 = max(0, z) (3.4)

The non-linearity makes backpropagation of the errors and have multiple layers
of neurons being activated by ReLU function easy. ReLU does not activate all
neurons at once. As it can be seen in Equation , the neuron is not activated
if the input is not positive. This may cause the dead neurons problem which is
the main problem of ReLU. In this activation function, only a few neurons are
activated at a time. This makes the network sparse which increases the efficiency

in computation.

Leaky ReLU function is an improved version of the ReLLU function. The gradient
which is 0 for z < 0 in ReLU make the neurons die for activations in that region.
Leaky ReLU is focused on solving the dead neurons problem. The function is

defined as a small linear component of z.

T if x>0,
flz) = (3.5)

0.01z otherwise.

PReLU which is also known as Parameterised ReLU is very similar to the Leaky
ReLU.

r ifx >0,
f(z) = (3.6)

ax otherwise.

In this context, a is a trainable parameter which its values are learnt for a fast

network to get an optimum convergence. PReLU is preferred when Leaky ReLLU
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fails to passing the relevant information to the next layer with solving the dead

neurons problem.

3.1.3 Loss Functions

Loss function which is also called cost function evaluates the penalty between the
ground truth label and the prediction during the training process to detect how well
neural network models are for the dataset. The output of the loss function is inversely
proportional to the success of the model, meanly higher numbers in the output are the
sign of the unsuccessful model. Loss function used the error which is calculated during

backpropagation to update the weights in the negative direction of its derivative.

In this section, some of the commonly used loss functions for image segmentation such

as weighted cross entropy, balanced cross entropy, and Dice loss are examined.

— Weighted Cross Entropy (WCE) weights the classes based on the fraction of
the respective class in the total dataset as it can be seen in Equation which
is the definition of WCE for prediction p and label p. Thus, a class with a low
fraction of the pixels in the dataset will get a high weighting. This is particularly

interesting when the dataset contains unbalanced classes.

WCE (p, p) = — (Bplog (p) + (1 — p) log (1 — p)) (3.7)
B> 1 should be setted to reduce the false negative rates while §< I should be
setted to reduce the false positive rates.

— Balanced Cross Entropy (BCE) another variant of cross entropy which differs
from WCE is that weighting the negative examples also.

BCE (p, ) = — (Bplog (p) + (1 — B)(1 — p)log (1 — §) (3.8)

— Dice Loss

The values of Dice ranges from zero to one, and high value means high similarity
between the segmentations. For two overlapping regions, the Dice is defined as
two times the intersection over the union. Dice loss is defined in Equation
for prediction p and label p.
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DL (p,p) =1 - (3.9)

3.2 Convolutional Neural Networks

A convolutional neural network (also known as CNN) is a deep neural network inspired
in the behavior of biological systems through artificial neurons with learnable weights
and biases for image recognition tasks. D.H Hubel and T.N Wiesel discovered that the
visual cortex consists of receptive fields that detect light in overlapping subregions. It
is the entry point of modeling CNNs (Hubel and Wiesel, [1968)). Every neuron responds
to stimuli in a restricted region, as in visual cortex of the human brain, and that the

overlapping regions of the neurons together cover the entire visual area.

A CNN mainly consists of different types of layers as it can be seen in Figure [ 3.3

including input, convolutional, non-linearity, pooling, and fully connected layers.

— Input layer contains input images as a matrix of the raw pixel values.

— Convolutional layer is used to extract features of the input data. Each neuron
has a local receptive field which means it is not fully connected, but connected to
some section of the input to provide abstractions of small sections of the input
data. Convolution layers calculate a dot product between the receptive field and
the filter by performing convolution. The result of this convolution is a single
integer which will be used as the input of the next layer.

The filter is slided over the next receptive fields of the input image repeatedly

until there is no unconvolved receptive field left.

— Non-linearity layer consists of an activation function, which applies an ele-

mentwise activation by thresholding at zero, creates and activation map with

@

[ input } [ Cnnvnl%ltinh.and | | Pooling | ] Cnrw::h{ﬁﬂnf'_-md || Pooling _' Co::!!::l_ed }-I Output
Non linearity 1 layers l Non linearity ) | layers layers L )

Figure 3.3: A CNN architecture for skin lesion classification
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taking the output of the convolutional layer in CNNs.

— Pooling layer applies a spatial downsampling along the output volume. Pooling
layers are commonly used to reduce the computational requirements of the neural

networks progressively and minimize the overfitting.

— Fully connected layer mainly computes the class scores based on the training
dataset. They connect the neurons in layers to each other. The last fully connected

layer classifies the generated features with the help of an activation function.

3.3 Regularization Techniques

Commonly used neural network regularization techniques are explained in this section

in details.

— Data Augmentation
Data augmentation is artificially boosting the diversity and number of training
examples by performing random transformations to existing images to create a
set of new variants without altering the meaning of the data. Flipping, rotating,

adding noise are commonly used data augmentation techniques.

Data augmentation is used to prevent overfitting and especially useful when the
training dataset is relatively small. While some augmentation increases the ro-
bustness of the algorithm, irrelevant transformations might make the task hard to
learn, and adding new data to the training set will increase the model complexity

and reqiured time to build the model.

— Dropout

Overfitting is a common problem which is not limited only deep neural networks
but includes the different disciplines such as several supervised and unsupervised
methods in machine learning. Neural networks can be used to create relation
between their input and output to predict the newly added input with acceptible
result. It can be said that there is an overfitting if the results are not good for

the unknown test data but good for the training data.

Feeding the neural network with more training data is the simplest way which
can be tried to prevent overfitting. This may be effective if the newly added
training data bring new features which might increase the representativeness of

the model. On the other hand, more training data will require more training
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Figure 3.4: Dropout neural network model

time because it increase the model complexity. Bootstrap aggregating is another
method which increase the network success (Breiman), [1996)). This method classify
different subsets of the training data, and fit a model based on these subsets.

Srivastava et al.| (2014)) said that feature vectors should be combined instead of a
single feature detector in order to describe meaningful features. They found out

that individual feature detectors start to detect helpful features after dropping
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units from the neural network randomly.

Dropout is a method of improvement which aims to increase the network perfor-
mance by reducing the overfitting (Srivastava et al., 2014)). At each training step,
a new subset is excluded to improve the network ability for generalization. The
amount of exclusion is regulated by the dropout rate. Figure[3.4) shows a regular

neural network (a) and a thinned network by applying dropout (b).

— Weight Decay

Weight decay is another technique used to prevent overfitting by adding a regu-
larization term such as L1 or L2 to the loss function. L1 regularization is the sum
of the absolute value of the weights and produces sparse weight matrices while
L2 regularization is the sum of the squares of all the feature weights and make

the calculation more computationally efficient.

Ly regularization term = ||wl||3 = w] + w3 + ... + w?

In L2 regularization, model complexity is dramatically affected by the outlier
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weights.

Early Stopping

Early stopping is a technique to reduce overfitting using the some part of the
training data as a validation set. Training process does not include this data. If
the error of the validation set reaches a certain amount, training is stopped at

the training phase. It can be said that there is an overfitting exists in the current

neural network for the training data.
A significant point of eary stopping is the selection of validation set. It should
represent all the data. It can be understood how well the model is generalizing

beyond the training data.



4 METHODOLOGY

In this section, used dataset, neural networks, tools and frameworks are summarized

and the details of the experiment are represented through the evaluation metrics.

4.1 Dataset

The first part of ISBI Challenge 2017 (Codella et al., 2018) - Skin Lesion Analysis
Towards Melanoma Detection : Lesion Segmentation dataset is used in this thesis. This
dataset has train, validation and test data separately. The training dataset consists
of 2000 dermoscopic JPEG images and related masks in PNG format. The dataset
includes various type of lesions such as malignant melanoma, nevus and seborrhoeic
keratosis. Sample images are given with corresponding masks in Figure where the
first row represents original images and second row shows the ground truth aka the

corresponding masks.

There are also validation and test datasets which contain 150 and 600 images respecti-
vely. The results are based on several common image similarity metrics which are given

related section.

The images are of various dimensions and neural network model can not handle re-
latively big images because of the inner constraints in the architecture and memory.
Therefore, all images have been resized into same dimension to reduce the memory
consumption and to increase the accuracy as a preprocessing stage. As it can be stated
at Figure arrays of mask files have been converted to uint8 to reduce the size of

the masks.
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Figure 4.1: Sample skin lesions from the dataset.

Resize Normalize
Resize the images and masks to Normalize the array of vectors with
proper dimensions converting the masks to binary
format to reduce the memory usage
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O 0O O )
h < < <
e 2
Collect Array of Vectors St
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of vectors to be able to manipulate
them and train the model easily

Figure 4.2: Data preparation process
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4.2 Networks

In this section MultiResUNet and SegAN models are presented. Since U-Net architec-
ture was considered as the baseline in this thesis, their advantages and their bootlenecks
were shown through their trade-off in computation complexity and their detection per-

formance.

4.2.1 MultiResUNet

As discussed in Section [ 2.2.3] U-Net is a state-of-the-art neural network in medical
imaging, but it has some drawbacks in certain conditions. Starting from this point,
Ibtehaz and Rahman| (2020)) proposed a new U-Net variant, MultiResUNet including

several modifications examined below.

Irregularity and images in different scales are common conditions in medical imaging
samples. Neural networks aiming to get accurate results in medical imaging should
be able to overcome these kind of problems. Images in different scales is an ongoing
situation for medical imaging even if there are some studies about it, because of that,
it is not possible to say that this issue has been definitely resolved. [Szegedy et al.
(2015)) proposed Inception architecure built on convolutional layers with various kernel
size to minimize the difference of the scales between images. MultiResUNet has an
improvement similar to Inception architecture. In addition to the 3x3 convolution layer
in the classic U-Net, MultiResUnet has convolution layers in different kernels such as
5x5 and 7x7. Figure [ 4.3] shows the evolution of the MultiRes blocks with different
attempts, resulting from the different uses of these kernels. These multires blocks have

replaced the sequences of two convolutional layer in the vanilla U-Net.

N
VNN
/ [ O\
/ O\ .
Input ——— 3X3—%—> 3y 5 Sll3x3—» |———> output Input T»sxs—»’/ axa—L flaxal —q+ }—> Output
/)

put
x
' (e
1x1 3x3 5X5 X7 Concatenation (
7X7 Com \'t/) Addition

wolution Convolution Convolution Convolution Operation

(a) o) (©)

Figure 4.3: Evalution of MultiRes block : (a) Inception-like block (b) a more expensive
attempt (c) MultiRes block (Ibtehaz and Rahman, [2020)
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Figure 4.4: Proposed Res path with residual connections (Ibtehaz and Rahman, 2020)
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Figure 4.5: MultiResUnet architecture

One of the significant improvement in U-Net is using the skip connections between the
encoder and decoder. Thus, features which are lost during pooling are recovered and
transferred from encoder block to decoder block. It is expected that the features sent
by encoder to decoder are low level while the features in the decoder are expected to
be high level. They thought that this may cause a semantic gap between the encoder
and decoder and proposed another improvement called Res path which can be seen

in Figure [ 4.4l The proposed Res path consists of convolutional layers connected by

residual connections to make learning easier (Drozdzal et al., [2016). The features are

being sent from encoder to decoder are transmitted over the Res paths instead of
classical skip connections of U-Net. The proposed MultiResUNet framework is shown

in Figure [4.5] with the all improvements.

MultiResUNet has been tested and evaluated through several datasets including Mur-
phy lab, ISBI 2012, ISIC 2018, CVC-ClinicDB, and BraTS17 with different modalities
such as fluorescence microscopy, electron microscopy, dermoscopy, endoscopy, and MRI
respectively. Their results show that the MultiResUNet offers more accurate results

than the classical U-Net for the all 5 different datasets especially in dermoscopy and



32

endoscopy images.

4.2.2 SegAN

Xue, Xu, Zhang, Long and Huang| (2018]) proposed a new semantic segmentation net-
work inspired by classical generative adversarial networks (GANs). Their motivation
about proposing a GAN based segmentation network is that there was no such GAN
based network that give accurate results. Luc et al. (2016)) have tried to segment images
with a GAN-like network but explained that the network is unstable for image segmen-
tation tasks. The creators of SegAN claim that the single scalar input, which was crea-
ted by the discriminator, might the reason of the unstability in image segmentation of
conventional GANs. Because semantic segmentation requires pixel-level mapping, and
the discriminator network of GAN may not be able to produce sufficient gradient feed-
back with single scalar output. The differences of the proposed network for semantic

segmentation compared to classical GAN are mentioned below.

SegAN consists of two networks segmentor and critic which can be seen in Figure |
[4.6] similar to Generator and Discriminator networks of conventional GANSs. It looks
like a game as in GAN where the segmentor tries to fool the critic with the samples it

creates.

The main difference arises with multi-scale loss function. While two separate loss func-
tions are defined for generator and discriminator in GAN, segmentor and critic use a
common multi-scale loss function to force the both networks of SegAN to learn local

and global features which acquires relations between pixels.

The critic network aims to maximize multi-scale loss function using the differences of
CNN features between the predicted images and the ground truth. On the other hand,
segmentor network, which is an FCN, tries to minimize the loss function used in the
critic network. They claim that the SegAN can learn spatial pixel features with the

help of the proposed multi-scale loss function even the images are in different scales.

SegAN is trained with the BRATS 2015 dataset and achieved remarkable results com-
pared to other state-of-the-art models, including U-Net, in the field of semantic seg-

mentation.
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Figure 4.6: SegAN architecture

4.3 Tools and Frameworks

This section presents tools used for development and testing during the thesis. Python

is selected as the main programming language for this thesis.

Tools

— Numpy (Numerical Python) is a scientific computing library for the Python

that allows us to perform scientific calculations quickly (Oliphant|, [2006). Numpy

arrays form the basis of Numpy. Numpy arrays are similar to Python lists, but

are more useful in terms of speed and functionality than Python lists.

— Scipy is a package for scientific computing which includes functionality several
clustering algorithms, Fourier transforms, linear algebra, interpolation, regres-
sion, image and signal processing for the Python programming language (Virta-
men et al., 2020)).

— Python Imaging Library (PIL) is a free Python library which supports several

widely-used image manipulation procedures like per-pixed manipulating, image

filtering, image enhancing, masking etc (Anjal and Patil, 2019).
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— ImageMagick is a open-source, free image editing tool that makes many mor-
phological operation easy for more than 200 image format with its built-in fea-
tures like resize, flip, transform, or special filters (ImageMagick - Convert, Edit,
or Compose Bitmap Images, n.d.|). It runs on multiple thread to increase perfor-
mance and supports command-line usage that makes image editing possible for

scripting languages.

— Jupyter Notebook is an open source web application that allows editing and
running code which can be used with over 40 different programming languages
(Kluyver et al., [2016)). It is a Json based document that has ordered cells which

can be live code, equations, visualizations or narrative text.

Deep Learning Frameworks

— TensorFlow is an open source library for performing numerical computations.
Although it can be used for computations in general, it is most commonly used as
a tool for machine learning research. TensorFlow can be interfaced using Python
and is then translated to a computational graph (Abadi et al., 2015). The com-
putational graph can be fed with the tensors by launching a TensorFlow session
which are generalization of N-dimensional arrays. Weight matrices and biases are
trainable variables in the TensorFlow graph during a session. Loss functions and
optimization algorithms for backpropagation exist in TensorFlow (Johansen and
Pedersen), 2019). Therefore, training a model becomes as simple as specifying an
objective function to optimize for, as well as running the optimizer with a batch

of data inside a session.

— Keras is a neural networks API for Python (Chollet, n.d.). It runs on top of
TensorFlow or Theano (Mohan and Subashini, 2019) which is used as the main
neural network framework. Keras is user-friendly and allows for complex models
to be created with relatively few lines of code. Keras consists of many commonly
used building blocks of neural networks. These are parts as layers, objectives,
activation functions and optimizers. The components include parts for convolu-
tional and recurrent neural networks as convolutions, pooling, dropout and batch

normalization.

— PyTorch is a machine learning framework introduced by Facebook which has
relatively advantages over TensorFlow in terms of simplicity and usability. It

implements dynamic computational graphs which makes dynamic changes on the
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networks possible with a little effort. Debugging is relatively easy with Pytorch.

Hardware Requirements

Google Colab which is also known as Colaboratory that requires no setup and runs
entirely in the cloud is used in this thesis. Colab is a Jupyter Notebook environment
aims to support Machine Learning and Artificial Intelligence researches for free, because
this kind of process requires serious computational power. Many deep learning projects
can be developed with Google Colaboratory on the default GPU processor of it, Tesla
K80, using common Deep Learning frameworks and tools like Keras, TensorFlow and
PyTorch. Google Colab runs on a connected Google Drive accounts. All models were
trained and tested using Tesla K80 GPU which has 25 GB of video memory on a
Ubuntu 18.04.

4.4 Experiments

Our study is composed of three steps; preprocessing, implementations of networks,
and evaluation. During the preprocessing, image normalization procedures have been
applied to data explained in Section [4.1]; the image resizing and the conversion of file
formats. Moreover, data size has been augmented by creating additional images files in
different noise levels. Because our main focus is comparing the proposed network under
the same conditions, the preprocessing stages were kept the same for a fair comparison

of U-Net, MultiResUNet and SegAN.

Hyperparameters of training proses are explained below while the compared networks

are explained in details in Section [4.2]

— Batch size refers to the number of samples utilized in one iteration before up-
dating the model parameters. It looks like an iteration where the error rate is
calculated at the end of the iteration by comparing the batch predictions with

ground truth. The calculated error is used to update model parameters.

— Epoch is an hyperparameters shows the number of passes of the algorithm
through the entire training data. It depends on several criteria such as problem
definition and data distribution and can changed from hundreds to thousands

until the error rate of the learning algorithm reduced by a certain level.
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— Learning rate determines how much an update step affects the current value
of the model weights. In other words, it is used to decide how quickly the model

will forget what it has already learned.

— Optimizers try to minimize the loss function with the help of them by updating

the model parameters.

U-Net and MultiResUnet have been trained for 200 epochs with a batch size of 8 and
binary cross entropy loss function. As the performance did not increase epoch size
has been kept as 200. Adam optimizer has been used as optimizer with the default

parameters stated in the original paper.

Furthermore SegAN has been trained for 200 epochs with a batch size of 200 and an
adaptive learning rate for Adam optimizer which started from 2.0210~* and multiplied
by a decay rate of 0.5 every 25 epochs. Several learning and decay rates have been tried

but the given parameters were found optimal like the original article.

Early stopping has been used for the all networks. If the performances of models stoped

improving after a certain number of epochs, 30 was set to stop the training.

The experiments have been designed by giving additive noise into initial dataset. Five
different noise levels except to noise free have been tested using Gaussian noise given

as it follows through the initial image I;;

[final = I’L + In (41)

Iting and I, in Equation (| 4.1]) are the noisy image and Gaussian noise, respectively.

The Gaussian noise is defined in the Equation (| 4.2)).

1 (z—w)?
pa(z) = T (4.2)
o\ 2w

pe(z) denotes the noise distribution in single channel image. Our images have been
encoded in RGB channels. Therefore, the noise has been applied for the all three

channels.

i and o represents the mean value and the standard deviation, respectively. We used

5 noise levels for the experiments with different o values from 0 to 50 by 10.
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4.5 FEvaluation Metrics

Several evaluation metrics were used to determine the quality of the models. Dice
coefficient, Jaccard index, Accuracy, Sensitivity and Specificity were used to compare
the target and predicted segmentation mask. The true positives (TP) determine pixels
(or voxels) correctly classified as being part of the segmentation, a false positive (FP)
is a pixel incorrectly classified as being part of the segmentation, and a false negative

(FN) is a pixel which should have been part of the segmentation but was not.

— Dice coefficient which is also known as similarity coefficient or F1 score is a
similarity metrics computed by comparing the pixel-wise agreement between the
groundtruth and its predicted segmentation. Specially, this metric is just used to

evaluate the segmentation performance of the model.

2« TP
Dice = 4.
T X TPYFN+ FP (43)

— Jaccard index also known as the Jaccard similarity coefficient, is a similarity
metrics which compares predictions with the ground truths by dividing the size

of the intersections by size of the unions.

TP
d= 4.4
Jaccar TPLEN T FP (4.4)

— Accuracy measures the proportion of true positives and true negatives whose
are correctly segmented instances to the total number of instances. It is derived

from sensitivity and specificity which are given below.

TP +TN
TP+ FP+TN+ FN

Accuracy = (4.5)

— Sensitivity and Specificity are the other metrics used in this thesis. Sensitivity
alms to measure correctly segmented instance ratio while specificity measures

incorrectly segmented instance ratio.

TP
TN
Speci ficity = (4.7)

TN+ FP



5 RESULTS

Experiments show that the both SegAN and MultiResUNet achieved almost the same
dice coefficient result for the noise free images but vanilla U-Net did not achieved
similar results in terms of the same similarity metrics. It’s not as successful as the
others. MultiResUNet is slightly more successful than SegAN if they compared with
Jaccard coeflicient. The detailed results are given in the Table and
through statistical metrics. Although the dice results of MultiResUNet and SegAN are
very close for the noiseless datasets, the dice results differ for the all models as the

noise level increases.

Both MultiResUnet and SegAN achieved their best results around the epoch size of
50. The results were found similar after this point. Figure [5.7] and point
out the dice results of models at different levels of epoch size. Figure and |
[5.3] show the evaluation results of dermoscopic images from the evaluation dataset with
different success rates. Furthermore, Figure [5.4] and show the results of
MultiResUNet with different success rates.

When the noise level is 50%, the dice results of MultiResUNet’s decreased up to 28%,
the U-Net’s decreased up to 23%, while the SegAN’s decreased up to 53%. As it explai-
ned in Section [4.2.1] SegAN introduces fake skin lesions during the generator level and
the discriminator takes a decision after the training if test image is a lesion. The noise
added during the training phase of SegAN makes the model more successful against

noisy data.

Figure shows the change of success of the models against noise. As can be seen

(a) Original image (b) Ground truth (c) Result(dice=0.82)

Figure 5.1: SegAN result with average score at 0% of Gaussian noise
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(a) Original image (b) Ground truth (c¢) Result(dice=0.50)

Figure 5.2: SegAN result with low success compared to average at 0% of Gaussian
noise

(a) Original image ) Ground truth ) Result(dice=0.91)

Figure 5.3: SegAN result with high success compared to average at 0% of Gaussian
noise

(a) Original image ) Ground truth ) Result(dice=0.80)

Figure 5.4: MultiResUNet result with average score at 0% of Gaussian noise
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(a) Original image (b) Ground truth (c) Result(dice=0.54)

Figure 5.5: MultiResUNet result with low success compared to average at 0% of Gaus-
sian noise

a) Original image ) Ground truth ) Result(dice=0.90)

Figure 5.6: MultiResUNet result with high success compared to average at 0% of
Gaussian noise
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Figure 5.7: Dice results for U-Net at different Gaussian noises by number of epochs
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Figure 5.8: Dice results for SegAN at different Gaussian noises by number of epochs

here, SegAN is more robust than vanilla U-Net and MultiResUNet at increased levels

of Gaussian noises.

Although it is not possible to create a model that fit all dataset, it is the main objective
to present a model that best generalizes them Figures and Figure are the
outputs obtained by evaluating 2 pictures with two models in different levels of noises.
While SegAN give more successful results for the image in Figure MultiResUNet
is more successful in the image of Figure [5.13] As can be seen from that comparision,

there is no precise superiority of the models to each other for certain data.
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Table 5.1: Comparision of segmentation results of U-Net at different levels of Gaussian
noise with evaluation metrics

Gaussian noise(%) | Dice  Jaccard Accuracy Sensitivity Specificity
0 0.6437 0.5343 0.8619 0.7350 0.8825
10 0.6156  0.5087 0.8559 0.7562 0.8718
20 0.5584 0.4482 0.8423 0.7680 0.8507
30 0.4746  0.3707 0.8282 0.7817 0.8316
40 0.2562 0.1737 0.7853 0.6236 0.7941
50 0.2345 0.1638 0.7954 0.7575 0.7869

Table 5.2: Comparision of segmentation results of SegAN at different levels of Gaussian
noise with evaluation metrics

Gaussian noise(%) | Dice Jaccard Accuracy Sensitivity Specificity
0 0.8110  0.6968 0.9236 0.8998 0.9240
10 0.5570 0.4 0.8129 0.6232 0.8445
20 0.5518  0.3936 0.8134 0.6322 0.8417
30 0.5456  0.3878 0.8132 0.6329 0.8398
40 0.5378  0.3791 0.809 0.6085 0.8442
50 0.5368 0.3783 0.8115 0.6364 0.8351

Table 5.3: Comparision of segmentation results of MultiResUNet at different levels of
Gaussian noise with evaluation metrics

Gaussian noise(%) | Dice Jaccard Accuracy Sensitivity Specificity
0 0.8169  0.7221 0.922 0.964 0.9482
10 0.7707  0.6747 0.9058 0.8923 0.9024
20 0.7395  0.624 0.8829 0.8788 0.8705
30 0.6056 0.4784 0.6056 0.8402 0.7949
40 0.4345 0.3061 0.8062 0.7033 0.8104
50 0.2851  0.1969 0.7878 0.7729 0.7847




6 DISCUSSION

In this thesis, different neural network models have been studied by using Gaussian

noise models through skin lesion dataset. The performance analysis showed the success

ratio for U-Net, MultiResUNet and SegAN models.

Even if the performance of SegAN architecture was below MultiResUnet for noise
free images, the segmentation through gradual noise showed that SegAN could derive
better evaluation scores. The architectures used in this thesis have been observed to
examine both the evaluation metrics and the reaction against the gradual noise. In the
MultiResUNet architecture, the most significant improvement compared to U-Net was
the multi-scale loss function. MultiResUNet and SegAN results have been compared
with respect to the initial model U-Net to be able to see their behaviours. On the other
hand, all models can be subjected to more detailed pre and post processing steps. It
can be understood whether the models are successful only in medical images by testing
all of them with different datasets. Because it is not our main purpose to extend the
models success, all inner process has been set via the initial configurations of models.
In this context, adding different noises to relevant points in networks such as activation
functions, loss functions, weights or hidden layers can be sensible to see the results of

these kind of circumstances.

Instead of choosing FCN as the segmentor network of SegAN architecture, MultiResU-
Net could be implemented within SegAN to extend the model and to derive an hybrid

performance.



7 CONCLUSION

Skin lesions or tumors may have severe results in human heath. The early analysis
of potential moles can increase the survival rate by using appropriate detection para-
digms. Advanced technologies such as deep learning are actually used in several fields
in medicine to increase the diagnosis of the illnesses in the early stages. Image based
analysis can help to the oncologists or the surgeons when detecting the skin tumors.
It is clearly stated that the main purpose of the deep learning in medical imaging is
to help to the medicians instead of replacing them. These kind of supportive methods

can help to the medicians before their final diagnosis.

In this thesis, the problem of skin lesion segmentation is addressed by providing a uni-
fied hierarchy to compare several deep learning methods. Medical image segmentation
has been performed using U-Net, SegAN and MultiResUNet. The dataset has created
along ISIC for ISBI 2017 Challenge and has been enriched by adding Gaussian noises
at different levels of sigmas. Insufficient data is a big challenge in medical imaging and
this thesis aimed to provide accurate guidance, even if the dataset is insufficient. The
experiment results showed that MultiResUNet and SegAN give more accurate results
compared to vanilla U-Net and none of MultiResUNet or SegAN is superior to other
for the all dataset.
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