

YALOVA ÜNİVERSİTESİ  FEN BİLİMLERİ ENSTİTÜSÜ

YÜKSEK LİSANS TEZİ

HAZİRAN 2018

GENETİK ALGORİTMA TABANLI AKILLI TEST SAYFASI ÜRETİMİ

Ufuk TÜL

Bilgisayar Mühendisliği Anabilim Dalı

Bilgisayar Mühendisliği Programı

Anabilim Dalı : Herhangi Mühendislik, Bilim

Programı : Herhangi Program

HAZİRAN 2018

YALOVA ÜNİVERSİTESİ  FEN BİLİMLERİ ENSTİTÜSÜ

GENETİK ALGORİTMA TABANLI AKILLI TEST SAYFASI ÜRETİMİ

YÜKSEK LİSANS TEZİ

Ufuk TÜL

135105001

Bilgisayar Mühendisliği Anabilim Dalı

Bilgisayar Mühendisliği Programı

Anabilim Dalı : Herhangi Mühendislik, Bilim

Programı : Herhangi Program

Tez Danışmanı: Dr. Öğr. Üyesi Adem TUNCER

iii

iv

v

Çok değerli aileme,

vi

vii

ÖNSÖZ

Teknolojik gelişmeler ve her çeşit verinin dijital ortamda saklanmasıyla hayat daha

da kolaylaşmakta, insan iş gücü ve zaman kaybı azaltılmaktadır. Eğitim ve öğretim

alanında da istenilen kriter ve özelliklere göre test sayfası oluşturma işleminin kolay,

etkin ve hızlı bir şekilde yapılması önemli bir hale gelmektedir. Bu tez çalışmasında

test sayfası oluşturma problemine çözüm için genetik algoritma kullanılmış ve

istenen özelliklerde test sayfaları üretebilen web tabanlı bir uygulama geliştirilmiştir.

Tez çalışması boyunca bilgi ve tecrübelerini aktaran, zaman ve mekan farketmeden

her zaman ulaşabildiğim, beni doğru şekilde motive eden, titizlikle çalışarak ilham

veren ve bana yardımcı olan çok değerli tez danışmanım Dr. Öğr. Üyesi Adem

TUNCER’e teşekkürlerimi bir borç bilirim.

Ayrıca, bu süreçte bana verdikleri destek için tüm aileme, göstermiş olduğu sabır,

anlayış ve her türlü yardımlarından dolayı eşim Havva ve oğlum Kerem’e

teşekkürlerimi ve sevgilerimi sunarım.

 Mayıs 2018

Ufuk Tül

Bilgisayar Mühendisi

viii

ix

İÇİNDEKİLER

Sayfa

ÖNSÖZ .. vii
İÇİNDEKİLER ... ix
KISALTMALAR .. xi
ÇİZELGE LİSTESİ .. xiii

ŞEKİL LİSTESİ ... xv
ÖZET ... xvii
SUMMARY ... xix
1. GİRİŞ .. 1

1.1 E-Öğrenme ve E-Sınav ... 1
1.2 Akıllı Test Sayfası .. 3
1.3 Test Sayfası Oluşturma Problemi ... 4
1.4 Literatür Araştırması .. 4

2. OPTİMİZASYON VE SEZGİSEL ALGORİTMALAR 11
2.1 Optimizasyon ... 11

2.2 Sezgisel Algoritmalar ... 11
2.2.1 Tepe tırmanma algoritması ... 13
2.2.2 Tabu arama algoritması ... 13

2.2.3 Benzetimli tavlama algoritması .. 14

2.2.4 Karınca koloni algoritması .. 15
3. GENETİK ALGORİTMA... 17

3.1 Gen ... 18

3.2 Kromozom (birey) .. 19
3.3 Nüfus (popülasyon) .. 19

3.4 Kodlama ... 20
3.4.1 İkili kodlama ... 20

3.4.2 Değer kodlama .. 20
3.4.3 Permutasyon kodlama ... 21

3.5 Seçim .. 21
3.5.1 Rulet tekerleği seçim yöntemi ... 21
3.5.2 Rank seçim yöntemi .. 22

3.5.3 Turnuva seçim yöntemi ... 22
3.6 Çaprazlama ... 23
3.7 Mutasyon .. 24
3.8 Elitizm .. 24
3.9 Amaç Fonksiyonu .. 25
3.10 Algoritma Sonlandırma İşlemi ... 25

4. GENETİK ALGORİTMA İLE TEST SAYFASI OLUŞTURMA 27

4.1 Genetik Algoritma ile Test Sayfası İlişkilendirmesi .. 27
4.2 Başlangıç Nüfusu Oluşturma ... 30
4.3 Amaç Fonksiyonu .. 31

4.4 Seçim .. 32

x

4.5 Çaprazlama ... 33

4.6 Mutasyon .. 34

5. TEST SAYFASI OLUŞTURMA UYGULAMASI .. 37
5.1 Nesne Tabanlı Model ... 37
5.2 Soru Bankası ve Özellikleri .. 38
5.3 Web Uygulaması .. 41
5.4 Deneysel Çalışmalar ... 43

6. SONUÇ VE ÖNERİLER ... 55
KAYNAKLAR .. 57
EKLER .. 61
ÖZGEÇMİŞ .. 93

xi

KISALTMALAR

e-YDS : Elektronik Yabancı Dil Sınavı

FIFO : First In First Out

GA : Genetik Algoritma

IEEE : The Institute of Electrical and Electronics Engineers

IELTS : International English Language Testing System

KKA : Karınca Koloni Algoritması

PSO : Parçacık Sürü Optimizasyonu

TOEFL : Test of English as a Foreign Language

xii

xiii

ÇİZELGE LİSTESİ

Sayfa

Çizelge 4.1 : GA – Test Sayfası İlişki Tablosu. .. 27
Çizelge 5.1 : Zorluk seviyesine göre soru dağılımı. .. 38
Çizelge 5.2 : Bilgi puanı seviyesine göre soru dağılımı. ... 38
Çizelge 5.3 : Bölümlere göre soru dağılımı. .. 38

Çizelge 5.4 : Çözüm süresine göre soru dağılımı. ... 39
Çizelge 5.5 : Seçilme sıklığına göre soru dağılımı. ... 39
Çizelge 5.6 : Kriterlerin ortalama değerleri. .. 39
Çizelge 5.7 : Zorluk seviyesi için algoritmaların performans karşılaştırması. 44

Çizelge 5.8 : Bilgi puanı seviyesi için algoritmaların performans karşılaştırması. ... 45
Çizelge 5.9 : Seçilme sıklığı için algoritmaların performans karşılaştırması. 46

xiv

xv

ŞEKİL LİSTESİ

Sayfa

Şekil 2.1 : Sezgisel algoritmaların sınıflandırılması. ... 12
Şekil 3.1 : Nüfusta kromozom ve genlerin görünümü. .. 19
Şekil 3.2 : Genetik algoritma akış diyagramı. ... 20
Şekil 3.3 : Rulet tekerleği ile seçim örneği. ... 22

Şekil 3.4 : Turnuva seçim yöntemi örneği. .. 23
Şekil 3.5 : Çaprazlama örneği. ... 24
Şekil 3.6 : Mutasyon örneği. .. 24
Şekil 4.1 : Sistem modeli. .. 27

Şekil 4.2 : GA - test sayfası üretimi akış diyagramı. ... 30
Şekil 4.3 : Test sayfası için kromozom gösterimi. .. 31
Şekil 4.4 : Test sayfası oluşturma için çaprazlama işlemi. .. 33
Şekil 4.5 : Test sayfası oluşturma için çaprazlama akış diyagramı. 34

Şekil 4.6 : Test sayfası oluşturma için mutasyon işlemi. ... 34
Şekil 4.7 : Test sayfası üretimi - mutasyon akış diyagramı. 35

Şekil 5.1 : Bir soruya ait özellikler. ... 40
Şekil 5.2 : Sorulara ait özellikler ... 40
Şekil 5.3 : Ayarlar ekranı. .. 41

Şekil 5.4 : Test sayfası oluşturma ekranı. .. 42

Şekil 5.5 : Soru bankası ekranı. ... 42
Şekil 5.6 : Test sayfası sonuç ekranı. ... 43
Şekil 5.7 : Seçilme sıklığı için yakınsama grafiği karşılaştırma örneği. 46

Şekil 5.8 : Seçilme sıklığı ağırlık çarpanı %100 olan sonuç örneği. 47
Şekil 5.9 : Zorluk ve seçilme sıklığı için ağırlık çarpanı %50 olan sonuç örneği. 48

Şekil 5.10 : Zorluk ve bilgi puanı için ağırlık çarpanı %50 olan sonuç örneği. 48
Şekil 5.11 : Her kriterin ağırlık çarpanı %25 olan sonuç örneği. 49

Şekil 5.12 : 20 soruluk test sayfası için karşılaştırmalı yakınsama grafiği. 49
Şekil 5.13 : 50 soruluk test sayfası için karşılaştırmalı yakınsama grafiği. 50
Şekil 5.14 : 100 soruluk test sayfası için karşılaştırmalı yakınsama grafiği. 50
Şekil 5.15 : 200 soruluk test sayfası için karşılaştırmalı yakınsama grafiği. 50
Şekil 5.16 : 20 soruluk test sayfası için karşılaştırmalı yakınsama grafiği. 51

Şekil 5.17 : 50 soruluk test sayfası için karşılaştırmalı yakınsama grafiği. 51
Şekil 5.18 : 100 soruluk test sayfası için karşılaştırmalı yakınsama grafiği. 52
Şekil 5.19 : 200 soruluk test sayfası için karşılaştırmalı yakınsama grafiği. 52
Şekil 5.20 : 20 soruluk test sayfası için karşılaştırmalı yakınsama grafiği. 53
Şekil 5.21 : 50 soruluk test sayfası için karşılaştırmalı yakınsama grafiği. 53
Şekil 5.22 : 100 soruluk test sayfası için karşılaştırmalı yakınsama grafiği. 53
Şekil 5.23 : 200 soruluk test sayfası için karşılaştırmalı yakınsama grafiği. 54

xvi

xvii

GENETİK ALGORİTMA TABANLI AKILLI TEST SAYFASI ÜRETİMİ

ÖZET

Son yıllarda teknolojinin hızlı gelişimine bağlı olarak, verilerin hayatın her alanında

olduğu gibi eğitim alanında da elektronik ortamda etkin bir şekilde saklanması ve

kullanılması mümkün hale gelmiştir. Elektronik ortamların ve kâğıtsız çözümlerin

giderek yaygınlaştığı bu çağda teknolojinin sağladığı yenilikler her geçen gün

hayatımızı daha da kolaylaştırmaktadır. Eğitim sisteminin bir parçası olan ölçme-

değerlendirme çalışmaları için uygulanan sınavlar da elektronik ortamlarda

hazırlanarak zaman ve mekandan bağımsız olarak yapılabilmekte ve böylece geniş

kitlelere kolay ulaşabilme kabiliyeti sunabilmektedir. Sınavlar için hazırlanan test

soruları da her birinin kendine ait çeşitli özellikleriyle birlikte elektronik ortamda

saklanabilmekte ve kullanılabilmektedir.

Eğitim ve öğretim alanında elektronik soru bankalarının kullanılmasıyla birlikte,

istenilen özelliklerde test sayfalarının hazırlanabilmesi ihtiyacı ortaya çıkmaktadır.

Akıllı test sayfalarının oluşturulması konusunda farklı yöntem ve algoritmalar

kullanılarak insan yerine bilgisayar vb. çalışmakta ve böylece zamandan tasarruf

sağlanırken istenilen seviyede kaliteli ve etkin test sayfaları oluşturulabilmektedir.

Elektronik ortamda bulunan bir soru bankasından istenen kriterlerde test sayfası

oluşturma işlemi için geleneksel algoritma ve yöntemlerinin kullanıldığı çalışmalar

mevcuttur. Fakat bu yöntemlerin uygulanması genellikle çözüm süresini uzatır, test

sayfasının geçmişte oluşturulan sayfalarla aynı olması gibi durumlar meydana

getirebilir ve test sayfası üretimi için verimi düşürebilir. Matematiksel veya

geleneksel yöntemlerle çözümü zor olan veya çözüm süresi uzun süren problemler

için alternatif olarak sezgisel yöntemler sıkça kullanılmaktadır. Bu problemler yapay

zeka alanında kullanılmakta olan sezgisel optimizasyon yöntemleri ile aşılabilmekte,

kısıtlı sorulara sahip olan bir soru bankasında bile istenilen kriterlere göre optimum

sonuçlar elde edilebilmektedir. Sezgisel optimizasyon yöntemleriyle her zaman en

iyi çözümü üretme gibi bir amaç olmadan, rastgele seçilen sorular üzerinden

gidilerek çözüm en iyiye yakınlaştırılabilmektedir. İstenilen çok sayıda kriter

değerlendirilerek çözüm için optimum sonuç bulunabilmektedir.

Tez çalışmasında çoklu kısıtlara sahip olan test sayfası oluşturma problemine

sezgisel bir yaklaşım ile çözüm aranmış, aynı zamanda insan iş gücü ve zaman

kaybının azaltılması amaçlanmıştır. Test sayfası problemine uyarlanmış genetik

algoritma istenilen kriterlerde ve özelliklerde test sayfası oluşturulması işlemi hızlı

ve etkin bir şekilde sağlanmıştır. Çalışmada test sayfası oluşturma işleminin

kullanıcılar tarafından da kolay bir şekilde gerçekleştirilebilmesi amacıyla web

tabanlı bir uygulama yazılımı gerçekleştirilmiştir. Çalışmada kullanılan genetik

algoritma ile standart genetik algoritma sonuçları karşılaştırmalı olarak verilmiş ve

çalışmada kullanılan genetik algoritmanın daha iyi sonuçlar verdiği görülmüştür.

xviii

xix

GENETIC ALGORITHM BASED INTELLIGENT TEST PAPER

GENERATION

SUMMARY

In recent years, due to the rapid development of technology, it has become possible

to store and use the data effectively in an electronic environment as well as in all

areas of life. The innovations provided by technology in this era, where electronic

media and paperless solutions are becoming more and more widespread, make our

lives easier every day. The exams that are applied for the measurement and

evaluation studies which are part of the education system can be prepared in the

electronic environment and can be made independent of time and place, thus offering

easy access to large communities. The test questions prepared for the exams can also

be stored and used in the electronic environment together with their various

properties.

Along with the use of electronic question banks in the education and training, the

need for the preparation of test pages in the desired characteristics emerges. In order

to generate intelligent test pages, different methods and algorithms are used instead

of human being, so that high quality and effective test pages can be generated at the

desired level while saving time. There are studies in which traditional algorithms and

methods are used for generating a test page on the desired test page from a question

bank. However, the application of these methods often increases the solution time,

can cause situations such as the test page being the same as the one generated in the

past and may reduce the yield for test page production. Heuristic methods are often

used as an alternative for problems that are difficult to solve by mathematical or

traditional methods or that have a long solution time. These problems can be

overcome by the heuristic optimization methods used in the artificial intelligence and

optimum results can be obtained according to the desired criteria even in a question

bank having limited questions. With the heuristic optimization methods, the solution

can be brought to the best possible by going through the randomly selected questions

without any aim of producing the best solution. The optimum result can be found for

the solution by evaluating the many required criteria.

In the thesis study, a problem was solved by using an heuristic approach to the

problem of generating test pages with multiple criterias and at the same time, it was

aimed to reduce human labor force and time loss. The genetic algorithm adapted to

the problem of the test page has been provided in a fast and efficient manner to

generate the test page in the desired criteria and specifications. Web-based

application software has been implemented in order to make the test page generation

in this work easier for users. The genetic algorithm used in the study is compared

with the standard genetic algorithm results and it is seen that the genetic algorithm

used in the study gave better results.

xx

1

1. GİRİŞ

Günümüz teknolojisi hızlı bir şekilde ilerlerken bununla beraber yapay zeka, makine

öğrenmesi, derin öğrenme, sezisel optimizasyon alanları da gelişmekte ve daha çok

hayatımıza dokunur hale gelmektedir. Yapay zeka ve makine öğrenmesi konularında

geliştirilen makine ve robotlar, insanın deneyerek öğrenme yeteneklerini taklit

etmekte, hatalarından ders çıkarabilmekte, insan gibi öğrenebilmekte ve vereceği

kararlarda insana yakın davranabilmektedir. Bu gelişmelerle beraber teknolojiyi

yakından takip eden ve teknolojiye hakim olan toplumların diğer toplumlara bir çok

alanda fark atabileceği aşikardır. Teknolojiyi bilmek ve kullanmak, beraberinde gücü

getirmektedir.

Teknolojinin her alanda hayatımıza girmesiyle bilgi de artık elektronik hale gelip

saklanmakta ve verimli bir şekilde kullanılabilmektedir. Bilgiyi elinde tutan ve etkili

bir şekilde kullanan toplumlar bu alandaki teknolojisini ileri götürebilmektedir.

Bu tez çalışmasında, yapay zekâ alanında kullanılan algoritmalardan biri olan genetik

algoritma (GA) ile hatalı sonuçlardan çıkarımlar yaparak kendini iyileştiren ve en iyi

çözüme kısa sürede ulaşmayı hedefleyen bir uygulama geliştirilmiştir. Çalışma ile

elektronik ortamda tutulan bilgiler kullanılarak eğitim sisteminde kullanılan test

sayfalarının, insan gücü kullanmadan verimli ve hızlı bir şekilde otomatik olarak

oluşturulabilmesi sağlanmaktadır. Çalışma, insanın gelişiminde temel konu olan

eğitim alanında kullanılan test sayfalarının oluşturulması konusunda daha etkin ve

verimli bir yöntem öne sürmektedir. Çalışma ile beraber geliştirilmiş uygulama test

sayfası oluşturma sürecinde insan iş gücü ve zaman kaybını oldukça azaltmakta ve

çıktıların istenilen kriterlerde, verimli ve kaliteli olmasını sağlanmaktadır.

1.1 E-Öğrenme ve E-Sınav

Tüm dünyada büyük bir ilgi görerek her geçen gün daha çok yaygınlaşmakta olan e-

öğrenme, bilgi teknolojilerindeki gelişmelere paralel olarak gelişip büyüyen bir

eğitim şekli olmaktadır. Büyük bir hızla gelişmekte olan bilgi teknolojileri birçok

2

alanda olduğu gibi eğitim alanında da çeşitli araç ve metotların kullanılması için

zemin hazırlamaktadır (Emir, 2006). Bilgi teknolojilerinin hazırlamış olduğu bu

zeminle beraber eğitim alanında oldukça uzun bir yol alınmıştır. Geçmişten bugüne

kadar ilerleyen teknolojilerle beraber internet, bilgisayarlar, telefon, tabletler ve diğer

araçlar e-öğrenme alanının büyüklüğünü her geçen gün genişletmekte ve hızlı bir

şekilde yaygınlaşmasını sağlamaktadır. E-öğrenme sisteminin sahip olduğu esneklik,

zaman ve mekândan bağımsızlık bu sistemin gelişmesindeki en önemli

faktörlerdendir. E-öğrenme sisteminin eğitim alanına getirdiği yenilikler ile beraber

bu sistemin maliyetleri düşürmesi en büyük avantajlarından biri olmaktadır (Cheng

ve diğ., 2009).

Geçmişte çok yaygın bir şekilde kullanılmıyor olsa da bilgi ve iletişim altyapısı

konularında ilerleme sağlayan ülkemizde her geçen gün e-öğrenme teknolojilerinin,

imkânlarının ve bunlara bağlı olarak kullanımının artması beklenmektedir.

Eğitim alanındaki değerlendirme işlemleri büyük ölçüde sınav sistemleriyle

yapılmaktadır. Ölçme ve değerlendirme kavramları eğitim sistemiyle birlikte değer

kazanan kavramlardır. Ölçme, eğitimle kazanılmış olan bilgiler, değerlendirme ise

ölçme işlemine anlam kazandırma şeklinde ifade edilebilir. E-sınav, elektronik

ortamda ölçme işleminin yapılması olup test tipindeki sınav sistemlerinde en yaygın

şekilde kullanılan sistemdir. Test şeklindeki sınavlar diğer sınav tiplerine göre

hazırlama süresi, değerlendirme süresi, rastgele soru seçimi, maliyet, saklama

kolaylığı, kolay erişilebilirlik vb. birçok avantaja sahiptir (Torkul, 2004). Test

şeklindeki sınav sisteminde test oluşturulmadan önce sınav zorluğu, soru sayısı,

sınav süresi, geçmişte sorunun seçilme sıklığı gibi birçok parametre

belirlenebilmekte olup üst seviye bilgi ve becerilerin dahi ölçülebilmesine imkân

sağlamaktadır.

Günümüzde e-YDS, TOEFL, IELTS gibi İngilizce sınavları, bununla beraber Cisco,

Microsoft gibi firmaların sınavları da elektronik ortamda yapılmakta ve

değerlendirilmektedir (Akşam, 2014).

Bu çalışmada konu olan test sayfası üretme işlemi sonucunda belirlenen sorular,

sadece elektronik ortamda değil klasik yöntemlerle de sorularak test sınavı

uygulanabilir.

3

1.2 Akıllı Test Sayfası

Günümüz dünyasında bilgi, toplumların ekonomik seviyelerini, birbirleriyle rekabet

güçlerini ve gelişmişlik seviyelerini belirleyen en önemli faktör haline gelmiştir.

Bilgi bu derece önemliyken eğitim ve öğretim alanında bilgiyi sunmak, etkin bir

şekilde kullanmak ve sorgulamanın da önemi her geçen gün artmaktadır. Bilgi

çağında insanlar yaşları ne olursa olsun her mekânda ve her anda internetle ve çeşitli

e-öğrenme metotlarıyla bilgiye erişebilmektedir. Bilgi bu derece önemliyken

teknolojik gelişmelerle beraber öğrenilmiş bilgilerin ölçülmesi, değerlendirme amaçlı

olarak sınavlar ve testler için etkin ve akıllı şekilde soru hazırlanması işlemleri de

oldukça önemli hale gelmektedir.

Elektronik ortamda hızlı ve etkin bir şekilde hazırlanmış olan sınavlar her geçen gün

artmakta ve gün geçtikçe önceden kullanılan klasik sınavların yerini almaktadır.

Bilgi ve teknoloji çağında elektronik ve kâğıtsız olan çözümlerin zamanla büyük

ölçüde klasik yöntemlerin yerine geçmesi kaçınılmaz bir gerçektir. Bilgilerin artık

tamamen elektronik ortamda saklanacağı bu çağda, eğitim sisteminin bir parçası olan

sınav sorularının da, her sorunun kendine ait çeşitli özelliklerle beraber, elektronik

sistemde saklanmasını gerektirecektir. Akıllı test sayfalarının önemi de bu noktada

başlamaktadır. Sorular elektronik ortama kendi özellikleriyle beraber aktarılarak

elektronik soru bankaları oluşturuldukça bu soru bankalarından istenilen özelliklerde

akıllı test sayfaları oluşturulabilmektedir. Bu sayede soru hazırlama bakımından

zamandan kazanç olmakta, bu işlemi insan yerine hızlı bir şekilde makine yapmakta,

istenilen seviyede olan test sayfasıyla, etkin ve kaliteli şekilde sınav soruları

oluşturulabilmektedir. Akıllı test sayfalarının avantajları aşağıdaki gibi belirtilebilir;

• Zamandan kazanç

• Düşük maliyet

• İnsan faktörünün ve gereken iş gücünün azalması

• İnsan kaynaklı hata oranının azalması

• İstenilen seviyede kaliteli sorular oluşturulması

• Bilgi ölçümünün etkin bir şekilde yapılması

• Büyük soru bankaları için çok sorulu testleri verimli olarak hazırlama

• Güvenlik ve güvenirlilik

4

1.3 Test Sayfası Oluşturma Problemi

Elektronik soru bankalarında, soru bankasının büyüklüğüne, soru çeşitliliğine ve soru

sayılarına göre bir konu ile ilgili sınırlı sayıda soru olabilmekte ve bu durum,

soruların istenilen kriterlere bağlı olarak en uygun şekilde seçilme işlemini

zorlaştırmaktadır. Soru bankası içerisinden test sayfası oluşturma işleminin

geleneksel yöntemlerle çözülmeye çalışılması durumunda, test sayfası daha önce

üretilen test sayfalarıyla aynı olabilmektedir. Geleneksel yöntemler, test sayfası için

istenilen çok sayıda kriter söz konusu olduğunda istenilen çözüm için daha uzun süre

alabilir ya da belirli bir sürede iyi bir çözüme ulaşamayabilirler. Yapılan

çalışmalarda select-random, backtracking algoritmaları gibi algoritmalar kullanılmış

olsa da bu algoritmaların uzun süre alması ve istenilen kriterlere uygunluğu

konusunda yeteri kadar başarılı olamaması gibi dezavantajları olmuştur (Jun, 2014;

Zhang ve Zhu, 2015; Zhong ve Wang, 2010). Sezgisel optimizasyon yöntemleri

kullanılarak test sayfası oluşturma problemi çözüldüğünde ise çok kısıtlı sorulara

sahip olan bir soru bankasında bile kısa süre içerisinde istenilen kriterlere göre en iyi

veya en iyiye yakın çözümler elde edilebilmektedir. Sezgisel optimizasyon

yöntemleriyle her zaman en iyi çözümü üretme gibi bir amaç güdülmeden, rastgele

seçilen sorular üzerinden gidilerek çözüm en iyiye yakınlaştırılabilmektedir. İstenilen

çok sayıda kriter değerlendirilerek çözüm için kabul edilebilir seviyede sonuçlar

bulunabilmektedir.

1.4 Literatür Araştırması

Akşam (2014) tarafından gerçekleştirilen yüksek lisans tez çalışmasında, soru

bankası üzerinden test sayfası oluşturulmuştur. Geliştirilen web uygulamasında

sorular zorluk seviyeleri girilerek hazırlanabilmektedir. Test sayfası oluşturulurken

amaç fonksiyonunda kriter olarak yalnızca sorunun zorluk seviyesi yer almakta olup

problemin çözümü için sezgisel yöntemlerden biri olan parçacık sürü optimizasyon

(PSO) yöntemi tercih edilmiştir.

Karataş (2009) tarafından gerçekleştirilen yüksek lisans tez çalışmasında, akıllı bir e-

soru sınav sistemi tasarımı ve uygulaması yapılmıştır. Buna göre dil işleme teknikleri

kullanılarak sözcüklerden soru cümleleri elde edilebilmektedir. Ders içeriği ile ilgili

metinlerin sisteme girilmesiyle beraber o metinlerle ilgili sorular oluşturulmakta, bu

5

sayede öğrencinin konu hakkındaki bilgisini ve eksiklerini anlaması

hedeflenmektedir. Doğal dil çözümleme yöntemlerinin ve cümle öğelerinin

çözümleme algoritmasının kullanıldığı bu çalışmada üretilmiş olan anlamsız soruları

öğretmenin hazırlama aşamasında elemesi beklenmektedir.

Beyazşekeroğlu (2015) tarafından gerçekleştirilen yüksek lisans tez çalışmasında,

Moodle öğrenme yönetim sistemleri üzerinde 240 soruluk bir soru bankası içinden

GA kullanılarak test soruları hazırlanmıştır. Yapılan bu çalışmada eğitmen, soru

sayısı ve sınavın ortalama zorluk seviyesini girmekte ve amaç fonksiyonunda da bu

değerler kullanılarak test sayfası oluşturma problemine çözüm aranmaktadır. Ayrıca

amaç fonksiyonunda soruların geçmiş sınavda seçilme durumları da ihlal kısıtlaması

olarak değerlendirilmiştir.

Yıldırım (2008) tarafından gerçekleştirilen çalışmada, bir soru bankası üzerinde GA

ile test sayfası oluşturma problemine çözüm aranmıştır. Bu çalışmada, standart

GA’nın test sayfası oluşturma problemi üzerinde doğrudan kullanılamayacağı, testte

aynı soruların oluşabileceği ifade edilmiştir. Çalışmada tekrarlı soruları önleyen bir

mutasyon işlemi önerilmiş, yapılan analiz ve testlerde farklı zorluk seviyeleri ve

farklı soru sayıları için önerilen algoritmanın başarı değerleri incelenmiştir. Test

sayfası oluşturma probleminin çözümü için amaç fonksiyonu içinde soruların zorluk

seviyeleri ve geçmişteki sorulma sıklığı bilgileri kullanılmıştır.

Zhong ve Wang (2010) tarafından gerçekleştirilen çalışmada, test sayfası oluşturma

problemininin GA ile çözümü üzerinde durulmuştur. Çalışmada GA için uygulanan

farklı çaprazlama ve mutasyon işlemlerinin, çok kriterli test sayfası oluşturma

problemi üzerindeki verimi gösterilmiştir. Çaprazlama işleminde geleneksel

yöntemden farklı olarak bir olasılık formülü kullanılmıştır. Soru sayısı, soru tipi,

toplam puan ve süre gibi kriterler kullanılarak amaç fonksiyonunda sorunun zorluk

derecesinin dikkate alındığı belirtilmiştir.

Nguyen ve diğ. (2011) tarafından gerçekleştirilen çalışmada, test sayfası oluşturma

probleminin çözümü için sezgisel algoritmalardan daha farklı bir metot önerilmiştir.

Çalışmada kısıt tabanlı böl ve yönet tekniği (Constraint-based Divide-and-Conquer

technique) önerilmekte olup bu teknik GA, karınca koloni algoritması (KKA), PSO,

tabu arama algoritması gibi farklı sezgisel metotlarla karşılaştırılmış ve dört farklı

veri seti için sonuçlar değerlendirilmiştir. Önerilen algoritmanın, zaman konusunda,

6

kısıtlara uyum konusunda, kalite ve farklılık konularında diğer metotlara göre daha

performanslı olduğu test sonuçlarına dayanan grafiklerle gösterilmiştir. Çalışmada

önerilen algoritmanın test sayfası probleminin çözümü için sezgisel yöntemlere göre

daha başarılı olduğu öne sürülmüştür.

Bhirangi ve Bhoir (2016) tarafından gerçekleştirilen çalışmada, test sayfası

oluşturma problemine rastsal bir algoritma yaklaşımı sunulmuştur. Rastsallık esasına

dayanan shuffling algoritmasının kullanıldığı bu çalışmada seçilen sorular

işaretlenerek tekrar seçilmelerinin önüne geçilmiştir. Rastgele bir yaklaşımla beraber

soruların tekrarsız şekilde olması üzerinde durulan çalışmada, sistemi kullanacak

kişiler için rol bazlı bir yetkilendirme işlemleri yapılarak soruların güvenliğinin,

kaynaklara erişimin kontrol altında tutulduğu belirtilmiş olup bununla ilgili Java

platformunda bir uygulama geliştirilmiştir.

Yong-kang ve Wang-ren (2011) tarafından gerçekleştirilen çalışmada, otomatik test

sayfası üretimi konusuna çözüm ararken aralık bulanık teorisi (interval fuzzy theory)

kullanılmış ve test sayfasının zorluk seviyesinin kapsamlı bir şekilde

değerlendirildiği belirtilmiştir. Çalışmada kriter olarak zorluk seviyesi ve bilgi puanı

ele alınmıştır. Test sayfasının zorluk derecesi değerlendirilirken bulanık mantık

teorisi ile sayfalar değerlendirilmekte ve bu yaklaşım öğrencilerin cevaplarıyla

beraber kombine edilmektedir. Sınavlarda kullanılabilecek çevrimiçi bir sistem

üzerinde çalışabilen ve otomatik olarak test sayfası üretebilen bir yaklaşım

geliştirilmiştir.

Hairui ve Hua (2008) tarafından gerçekleştirilen çalışmada, test sayfası oluşturma

problemine çözüm aranırken öğretmen, test sayfası, internet, sınav bazlı sosyal

kavramlar üzerinde çoklu faktör tabanlı bir yaklaşım kullanılmıştır. Algoritma içinde

rastgele seçim (random selection) ve yaklaşık eşleştirme (approximate match)

yöntemleri uygulanmıştır.

Li ve diğ. (2016) tarafından gerçekleştirilen çalışmada, nesne tabanlı programlarda

test veri üretiminin doğruluğu ve test verisi üretirken uyulması gereken yöntemlerin

sırasını öngörecek test zinciri kavramı sunulmuştur. Çalışmada nesne tabanlı

programların test veri üretimi için bir çerçeve çizilmiştir. Parametre listesinin

güncellenmesi için PSO algoritmasını ve metot sırası güncellemesi için GA’yı

kullanmışlardır. Çalışmada test verilerini kullanarak başlangıç nüfusunu iyileştirmek

7

için bir yöntem sunulmuştur. Sonuçların önerilen yöntemin nesne tabanlı programlar

için test verileri üretmede başarı oranını ve verimliliği arttırdığı ifade edilmiştir.

Ming-Zhu ve diğ. (2013) tarafından gerçekleştirilen ve otomatik test sayfası

üretiminin sınav sistemindeki öneminin vurgulandığı çalışmada, geliştirilmiş bir GA

yaklaşımı önerilmektedir. Çalışmada rastgele iterasyon yöntemi, standart GA ve

önerilen GA üzerinde deneysel sonuçlar karşılaştırılmış olup önerilen GA’nın

diğerlerine göre zaman ve hata oranı bakımından daha iyi olduğu belirtilmiştir. Soru

sayısı, soru tipleri ve puan gibi bilgiler isteğe göre belirlenerek amaç fonksiyonunda

ise zorluk derecesi, bilgi puanı gibi faktörlerin göz önüne alındığı ifade edilmiştir.

Jia ve diğ. (2011) tarafından gerçekleştirilen çalışmada, bilgisayar ağındaki test

sistemlerinde otomatik test sayfası oluşturma işleminin önemi anlatılarak

geliştirilmiş bir GA ile probleme çözüm arandığı ifade edilmiştir. Kullanılan soru

bankası için soru tipine göre her bölüme ait soru sayısı, ortalama zorluk, ortalama

farklılık, ortalama bilgi puanı gibi bilgileri gösterilmiştir. Çalışmanın sonuçları,

önerilen algoritma, standart GA ve geri izleme (backtracking) algoritmalarıyla

karşılaştırılmıştır.

Xiumin ve diğ. (2011) tarafından gerçekleştirilen çalışmada, GA kullanılarak akıllı

test sayfası üretme problemine çözüm arandığı ifade edilmiştir. Çalışmada GA için

kullanılacak olan başlangıç nüfusu rastgele değil, optimize edilip iyileştirilmiş olarak

oluşturulmuştur. Duruma göre kendini adapte eden çaprazlama ve mutasyon

işlemleri kullanılmıştır. Bu yönteme göre önceki nüfusun ve yeni nüfusun ortalama

uygunluk değerleri karşılaştırılarak bunun sonuca göre mutasyon ve çaprazlama

işlemlerinin uygulanıp uygulanmayacağına karar verilmektedir. Adaptif yöntem ile

standart yöntem, rastgele oluşturulan nüfus ile iyileştirilmeyle oluşturulan nüfus gibi

farklı yöntemler test edilerek, sonuçlar gösterilmiştir. Önerilen yöntemlerin standart

yöntemlere göre daha başarılı sonuçlar verdiği açıklanmıştır.

Jun (2014) tarafından gerçekleştirilen çalışmada, geliştirilmiş bir GA ile test sayfası

oluşturma probleminin çözüldüğü ifade edilmiştir. Çalışmada bölüm bazlı bir

çaprazlama işlemi uygulanmıştır. Çaprazlama işleminde iki birey arasındaki sorular

çaprazlanırken aynı bölümlerde olması gerekmektedir ve her bir bölüme ait sorular

kendi aralarında çaprazlanmaktadır. Mutasyon ve çaprazlama işlemleri uygulanırken

belirli bir olasılık formülüne göre işlemlerin yapılmasına karar verilmiştir. Test

8

sayfasının mevcut özellikleri göz önüne alınarak çaprazlama işleminin

uygulanmasına karar verilmiş ve bu şekilde adaptif bir yöntem kullanılmıştır.

Çalışmada kullanılan amaç fonksiyonu içinde teste ait puan, bilgi puanı, zorluk

derecesi, farklılık puanı gibi faktörler bulunmaktadır. Çalışmada önerilmekte olan

yöntemin standart GA’ya göre daha iyi sonuçlara sahip olduğu testler sonucunda elde

edilen grafiklerle gösterilmiştir.

Zhang ve Zhu (2015) tarafından gerçekleştirilen çalışmada, GA ile otomatik test

sayfası oluşturma problemi için çözüm geliştirildiği belirtilmiştir. Çalışmada farklı

olarak, bölüm bazlı bir çaprazlama işlemi olmayıp soru tipine göre çaprazlama işlemi

uygulanmıştır. Çaprazlama işleminde iki birey arasındaki sorular çaprazlanırken aynı

soru tiplerinde olmaları kuralı uygulanmıştır ve her bir soru tipine ait sorular kendi

aralarında çaprazlanmaktadır. Amaç fonksiyonunda kriter olarak zorluk seviyesi ve

puan kriterleri kullanılmıştır. Elde edilen sonuçlar, süreye göre, iterasyon sayısına

göre, soru tiplerine göre karşılaştırılmış ve standart GA’ya göre önerilen

algoritmanın daha iyi sonuçlar verdiği ifade edilmiştir.

Sun (2009) tarafından gerçekleştirilen çalışmada, test sayfası oluşturma problemi için

PSO yönteminden geliştirilmiş olan ayrık PSO yöntemi önerilmektedir. Önerilen

yöntemde hata oranları ile ağırlıkların çarpımı amaç fonksiyonunu oluşturmaktadır.

Yapılan çalışmada çaprazlama ve mutasyon işlemleri de kullanılmıştır.

Shan (2010) tarafından gerçekleştirilen çalışmada, GA üzerinde faklı bir strateji

kullanılarak, çoklu iş parçacığı (multi-threaded) yaklaşımıyla test sayfası üretme

problemini daha hızlı şekilde çözeceği öne sürülen bir çözüm geliştirildiği ifade

edilmiştir. Standart GA ile önerilen algoritma karşılaştırılarak, önerilen algoritmanın

daha iyi sürelerde ve daha etkin bir şekilde problemi çözdüğü belirtilmiştir.

Xiong ve Shi (2010) tarafından gerçekleştirilen çalışmada, GA ile test sayfası

oluşturma problemine çözüm aranırken matematiksel model üzerinde durulmuştur.

Çalışmada standart GA üzerinde çaprazlama ve mutasyon işlemlerinde iyileştirmeler

yapılmış olup parametrelerin girildiği ve sonuçların gösterildiği bir uygulama da

gerçekleştirilmiştir. Çaprazlama ve mutasyon işlemleri belirlenmiş bir olasılık

formülüne göre gerçekleşmektedir. Çaprazlama işleminde standart GA’ya göre farklı

bir yaklaşımla çocuk bireylerin elendiği bir yapı tasarlanmıştır. Buna göre

çaprazlama işleminden sonra oluşan çocuk bireylerin uygunluk değerleri

9

hesaplanarak ebeveyn bireyleriyle karşılaştırılmış ve bunun sonucunda çocuk

bireylerin uygunluk değerleri ebeveynlerden daha kötü ya da eşit ise bu şartı

sağlayan çocuk bireyler elenmiştir. Bu şekilde nüfusun daha iyi olacağı öne

sürülmüştür.

10

11

2. OPTİMİZASYON VE SEZGİSEL ALGORİTMALAR

2.1 Optimizasyon

Bir problemin çözümünde, belirli koşullar altında olabilecek bütün alternatifler

arasından en iyisinin seçilme işlemine optimizasyon denir. Farklı bir ifadeyle

optimizasyon, soruna en uygun çözümün bulunmasıdır. Karmaşıklık derecesi fazla

olan ve karar verme işlemlerinin gerektiği problemler optimizasyon problemleridir.

Bilgisayar bilimlerinin de dahil olduğu çeşitli bilim ve mühendislik problemlerinde

optimizasyon amacıyla birden fazla mevcut çözüm arasından en iyisi aranır.

Optimizasyon problemlerinin çözümü için amaçlanan işlem fonksiyonun değerini

minimum ya da maksimum yapmaya çalışmaktır. Bir fabrikanın verimliliğini

arttırmak için üretimini arttırması maksimuma optimizasyon, üretim süresini azalmak

ise minimuma optimizasyon yapmak olarak görülür. Matematiksel optimizasyon,

problemlerin çözümü için matematiksel bir formüle dayanarak en iyi sonucu bulan

yöntemlerdir. Bu yöntemlerde belirsizlik, rastgelelik, tahmin ve olasılığa dayalı

işlemler yer almaz. Deterministik yöntemlerde algoritma kaç defa çalıştırılırsa

çalıştırılsın aynı sonuç üretilmektedir (Sel, 2013).

2.2 Sezgisel Algoritmalar

Sezgisel algoritmalar, karmaşık ve büyük boyutlu optimizasyon problemlerinin

çözülmesinde optimum sonuca yakın makul sonuçlar vermeyi hedefleyen

yöntemlerdir. Sezgisel algoritmalar aslında günlük hayatımızda sürekli kullanıyor

olduğumuz algoritmalardır. Örneğin bir yere giderken bulunduğumuz konuma göre

yön duygularımıza güvenerek yolun bizi nereye götüreceğini bilmeden hareket etmek

ve yol ayrımlarında sezgilerimizi kullanarak yönümüzü belirlemek böyle bir

yaklaşımdır.

Bilgisayar bilimleri ve yapay zekâ alanında problem çözme tekniklerinden biri olan

sezgisel algoritmalar kullanılarak bulunan sonuçların en iyi olup olmadığı

12

önemsenmez, bunun yerine en iyi sonuca yakın sonuçlar da kabul edilebilir. En iyi

sonucu garanti etmeyen bu algoritmalar makul bir sürede en iyi sonuca yakın bir

çözümü garanti ederler. Bu yapılarıyla beraber en iyiye yakın sonuca hızlı ve kolay

bir şekilde ulaşmayı hedeflemektedirler. Sezgisel algoritmalar iyi bir sonuca ne kadar

kısa sürede yaklaşıyorlarsa o kadar etkili oldukları kabul edilebilir. Bununla beraber

sezgisel algoritmalar, problemi makul bir zamanda çözerken, bir problemi her

defasında aynı sürede çözeceklerini de garanti etmezler. Sezgisel algoritmalar

problemin kesin bir çözüme sahip olmadığı ve problemin birçok parametre ve

kısıtlara bağlı olması durumunda, öğrenme amaçlı olarak tercih edilebilirler.

Genellikle doğadan esinlenerek geliştirilmiş olan sezgisel algoritmalar pek çok

problemin çözümünde başarılı sonuçlar elde etmişlerdir. Özellikle büyük boyutlu

veya karmaşık optimizasyon poblemlerinde kabul edilebilir sürelerde en iyiye yakın

çözümler bulabildiklerinden dolayı son yıllarda sıkça tercih edilmektedir.

Problemlerin kesin tek bir çözüme sahip olmadığı durumlar yine sezgisel

algoritmaların tercih edilme sebeplerindendir. Literatürde başarılı bir şekilde

problemlere çözüm üretebilen sezgisel algoritmalara örnek olarak; genetik algoritma,

parçacık sürü optimizasyonu, karınca kolonisi algoritması, tabu arama, benzetimli

tavlama, yapay arı kolonisi algoritması gibi pekçok yöntem verilebilir. Sezgisel

optimizasyon metotları Şekil 2.1 olduğu gibi sınıflandırılabilir (Akay, 2009).

Şekil 2.1 : Sezgisel algoritmaların sınıflandırılması.

13

2.2.1 Tepe tırmanma algoritması

İteratif yerel arama algoritmalarından biridir. Bir grafikte bulunan maksimum değere

sahip tepe noktasının aranması işlemine tek bir noktadan başlanır (Ackley, 1987). Bu

grafikte bulunan noktalar aranırken yapılan hareket tepe tırmanmaya benzetilmiş ve

algoritma adını bu şekilde almıştır. Algoritmadaki amaç başlangıç noktası olarak

belirlenen bir noktadan komşu noktalara bakarak daha iyi bir sonucu aramaktır. Her

iterasyon ile mevcut çözümün komşusundaki çözümlere bakılır ve komşu

çözümlerde mevcut çözümden daha iyi bir çözüm varsa yeni çözüm olarak seçilir.

Komşu çözümlerin olası durumları aşağıda belirtilmiştir;

• Mevcut noktanın bir tarafında çözüm iyileşirken diğer tarafında çözüm

kötüleşebilir.

• Mevcut noktanın iki tarafındaki komşularda da çözüm kötüleşebilir. Bu

durumda algoritma bulunduğu noktayı tepe noktası sanarak yerel optimum

değerde takılmış olur ve algoritma bu noktada kalarak daha iyi sonuçları

bulamaz.

• Mevcut noktanın iki komşusunda da çözüm iyileşiyor olabilir. Bu durumda

bulunulan nokta çözüm için kötü sonuçlardan biri olabilir.

Tepe tırmanma algoritması sezgisel arama algoritmaları arasında en iyisi değildir

ancak basit yapısı, tasarım kolaylığı ve çözüme hızlı ulaşma gibi avatajlarından

dolayı basit optimizasyon problemlerinde tercih edilmektedir. Klasik tepe tırmanma

algoritmasından farklı olarak iki yöne tırmanan, rastgele komşu seçilen, rastgele

tekrar başlamalı algoritmalar gibi tepe tırmanmanın farklı şekillerde geliştirildiği

algoritmalar da mevcuttur.

2.2.2 Tabu arama algoritması

Tabu arama, Glover tarafından geliştirilmiş iteratif bir arama algoritmasıdır. Tepe

tırmanma algoritmasında istenmeyen bir durum olan yerel optimum değerlere

takılmayarak genel optimum değeri bulmaya çalışır (Glover, 1989). Hafıza olarak bir

tabu listesi kullanır ve her iterasyonda en iyi komşu çözümü bir değerlendirme

fonksiyonu kullanarak bulur. Her iterasyonda gerçekleştirilen hareket tabu listesinde

tutulur. Karşılaşılan durumlar hakkında uygulayan tarafından belirlenmiş olan

bilgiler belirli bir uzunlukta olacak şekilde bu listede tutulmaktadır. Bu sayede arama

işleminin sonsuz döngü olan çember hareketini yapması engellenir ve çözüme daha

14

kolay ulaşmak hedeflenir. Başlangıç çözümü rastgele ya da bir algoritmaya göre

seçilebilir. Yeni çözüm oluşturma fonksiyonu problemin türüne göre değişebilir ve

sonucu doğrudan etkiler.

Tabu arama metodunda önceki iterasyonlarda karşılaşılan durumlar hafızada tutulur

ve belirli bir stratejiye göre uygulanacak seçimlerle daha iyi sonuçlara ulaşılmaya

çalışılır. Bu stratejiye göre belirlenmiş kötü bir seçim rastgele olarak belirlenmiş bir

seçimden daha iyi olabilmektedir. Hafızanın kullanıldığı akıllı bir sistemde

belirlenmiş olan stratejiye göre yapılacak kötü bir seçim bu stratejinin iyileştirilmesi

için yol gösterici olabilmektedir (Glover ve Laguna, 1997).

Tabu arama algoritmasında kısa ve uzun süreli hafıza tutulabilir. Tabu listesi kısa

süreli hafıza olarak değerlendirilir, arama sırasında yapılan hareketler sınırlı sayılı

olan bu tabu listesinde tutulur. Belirli bir süre sonunda algoritmanın sabit bir çözüme

bağlı kalmasını önlemek amacıyla tabular yıkılarak kayıtlar tabu listesinden çıkarılır.

Tabu listesinden kısıtları çıkarma işlemi genellikle FIFO (ilk giren ilk çıkar) stratejisi

ile yapılmaktadır. Uzun süreli hafıza ile arama işlemi çözüm uzayında şimdiye kadar

arama yapılmamış yeni bölgelere yönlendirilir (Reeves, 1993). İyi çözümlerin

bulunma olasılığı tabu listesi ile beraber uzun süreli hafıza kullanımıyla beraber

güçlendirilir. Araştırmanın sadece belirli dönemi değil bütünü ile ilgili bilgiler bu

hafıza türünde tutulabilir (Gülcü, 2006). Algoritma daha önceden belirlenmiş olan

maksimum iterasyon sayısına ulaşınca ya da bulunan çözümün yeterlilik şartını

sağlaması durumunda sonlandırılır.

2.2.3 Benzetimli tavlama algoritması

1983 yılında Kirkpatrick ve arkadaşları tarafından önerilmiş olan bu algoritma metal

gibi katı maddelerin ısıtılması ve sonrasında yavaş yavaş soğutulması işlemine

benzetilmiş ve adını buradan almıştır (Kirkpatrick, 1983). Katı malzemenin şekil

alması ve malzemeyi işlemenin kolaylaşması amacıyla ona uygulanan ısıl işlemlere

genel olarak tavlama adı verilir. Bu işlemde, belirli bir sıcaklığa ulaşıncaya kadar

ısıtılan malzeme sıcaklığı maksimum dereceye geldikten belirli bir süre sonra

soğutulma işlemine başlanır. Bu soğuma işleminin doğru şekilde uygulanması

durumunda malzemeden beklenilen sonuçlar alınabilir.

15

Yerel optimum değerlerinden kurtulmak için daha kötü olan komşu çözümler de

küçük bir ihtimalle de olsa kabul edilebilir. Böylece genel optimum noktasına

ulaşılabilir.

Algoritmada yerel optimum değerlerden korunmak için komşu çözümler bazı

durumlarda kabul edilmekte ve bu şekilde genel optimum değeri aranmaya

çalışılmaktadır. Komşu çözümlerin kabul edilmesini sağlayan olasılık değeri ise

sıcaklık değerine bağlıdır. Algoritmada sıcaklık yüksek olursa olasılık değeri de

yüksek olmakta, sıcaklık düşük olduğunda ise olasılık değeri azalmaktadır, bundan

dolayı sıcaklık değerinin uygun bir seviye ile başlatılması gerekmektedir.

Algoritma özellikle lineer bir modele sahip olmayan ve kombinasyonel problemlerin

çözümünde kullanılmaktadır.

2.2.4 Karınca koloni algoritması

Doğadaki canlılardan esinlenen karınca koloni algoritması (KKA), optimizasyon

problemlerinin çözümleri için etkin bir şekilde kullanılan popülasyon tabanlı

algoritmalardan biridir (Dorigo, 1997). Bugüne kadar birçok KKA geliştirilmiş olup

bunlardan ilki Dorigo ve arkadaşları tarafından geliştirilerek Gezgin Satıcı Problemi

(Travelling Salesman Problem) üzerinde uygulanmıştır (Maniezzo, 2004).

Doğadaki gerçek karınca kolonileri incelendiğinde karıncaların birbirleri arasındaki

bağı koruyan bir feromon maddesi olduğu görülmüştür. Feromon, karıncaların

yönlerini bulmasını, birbirleriyle iletişim kurmasını sağlayan karıncaların üretmiş

olduğu doğal bir salgıdır. Karıncaların geçtikleri yolda feromon salgısının fazla

olması o yolun karıncalar tarafından daha yoğun şekilde kullanıldığını göstermekte

ve buna bağlı olarak bu yolun seçilme olasılığını arttırmaktadır. KKA’da bu

durumdan esinlenilir ve sanal karıncalar kullanılarak mesafelerin belirli olduğu bir

model üzerinden en kısa yolu bulma problemine çözüm aranır. Birim zamanda kısa

olan yoldan geçen karıncaların miktarı uzun yoldan giden karıncaların miktarına göre

daha fazla olacak ve bu da kısa yolda uzun yola göre feromon miktarının daha fazla

olmasına sebep olacaktır. Kısa olan yolda fazla, uzun olan yolda ise az feromon

birikir ve bundan dolayı feromon miktarı ile yol uzunluğu arasında ters orantılı bir

ilişki olur (Url-2).

16

17

3. GENETİK ALGORİTMA

Genetik Algoritma (GA), doğadaki seçim ilkelerini temel alarak çalışan arama ve

optimizasyon yöntemlerinden biridir. GA, evrim teorisinden esinlenerek geliştirilmiş

olup biyolojik evrimin işleyiş sürecini taklit eden bir algoritmadır. Bu yapısıyla da

yapay zekânın hızla gelişmekte olan alanlarından biri olarak kabul edilmektedir.

Mevcut çözüm, algoritmanın çalışmasıyla sürekli olarak daha da iyileştirilmeye

çalışılır. Algoritma, çaprazlama, mutasyon ve seçim işlemleri olmak üzere

genetikteki üç temel biyolojik süreç üzerine kurulmuştur.

GA’yı bugünkü yapısından çok farklı olsa da ilk olarak Bagley, Rosenberg, De Jong

gibi isimler kendi çalışmalarından kullanmışlardır. Bagley 1967 yılında bir oyun

programını yenmek üzerinde çalışarak GA’nın bugüne ait temellerini atmıştır

(Özkan, 2003). Aynı dönemlerde Rosenberg’de yaptığı çalışmasında GA’ya

biyolojik faktörleri dahil etmiştir. De Jong ise algoritmaya fonksiyon minimum

değerini ekleyerek matematiksel olarak katkı sağlamıştır (Goldberg, 1989).

GA ilk olarak Michigan Üniversitesinde psikoloji ve bilgisayar bilimi uzmanı olan

John Holland tarafından literatüre kazandırılmıştır (Goldberg, 1989). Holland’ın

1975 yılında yayınlanan “Adaptation in Natural and Artificial Systems” adlı

kitabında GA biyolojik sistemlerin soyut bir hali olarak ifade edilmiştir (Holland,

1992).

Holland’ın doktora öğrencisi ve aynı zamanda bir inşaat mühendisi olan Goldberg

bayrağı Holland’dan devralarak GA’yı pratikte daha ilerilere taşımıştır. Goldberg’in

yayınlanan kitabına kadar GA’nın gerçek hayatta kullanımı mümkün olmayan ve

fazla yararı olmayan bir araştırma konusu olduğu düşünülmüştür. Ancak Goldberg,

yazdığı kitabında (Goldberg, 1989) GA’nın kullanılabileceği 83 farklı uygulamayı

sunarak, GA’nın pratikte yararlı bir araştırma konusu olduğunu göstermiştir. Öyle ki

Goldberg’in gaz boru hatlarının denetimi üzerine yaptığı doktora tezi doktora tezi

(Goldberg, 1983) ona 1985 yılında National Science Foundation genç araştırmacı

ödülünü kazandırmıştır.

18

Algoritma, genetikten esinlenen bir yapıda doğal seçim, çaprazlama, mutasyon

işlemleriyle bir sonraki nüfusun (popülasyon) iyileştirilmesini hedefler. GA,

kromozomlardan oluşan bir nüfusa sahiptir. Her bir kromozom en küçük yapı taşı

olan genlerden oluşur. Seçim işleminde, nüfus içinde yer alan bu koromozomlardan

çiftleşme yapılacak olanlar belirlenir. Çaprazlama işleminde, seçilmiş olan iki

kromozomun genlerinin karşılıklı olarak değiştirilmesi ile yeni kromozomlar

oluşturulur. Mutasyon işlemi, rastgele olarak kromozomlardaki bazı genlerin

değiştirilmesiyle yapılır. Bu yaklaşım, seçime daha uygun kromozomların çiftleşmesi

sonucu oluşacak olan yeni nesillerin daha kaliteli ve uygun olacağı temeline dayanır.

Holland’ın keşfetmiş olduğu nüfus temelli çaprazlama, mutasyon gibi metotlar bu

alanda büyük bir yenilik olmuştur.

GA başlangıç çözümünden bağımsızdır ve çözüm adayları üzerinden paralel olarak

arama yapar. Nüfus adı verilen ve içinde rastgele oluşturulmuş adayların oluşturduğu

bir çözüm kümesiyle algoritma başlatılır. Bu nüfus, genetikte kullanılan çaprazlama,

mutasyon ve seçim gibi temel metotlar ile iyileştirilirken, yeni oluşacak olan nüfusun

öncekine göre daha iyi olacağı beklenir. Nüfusun iyileştirilme süreci en iyi çözüm

bulunana kadar ya da en başta belirlenmiş olan bir döngü limiti tamamlanıncaya

kadar devam eder.

GA, mühendislik, finans, pazarlama, üretim, çizelgeleme, yerleşim, sistem

güvenilirliği, taşıma, araç rotası belirleme, makine öğrenmesi, yapay zeka gibi bir

çok alanda optimizasyon problemlerinin çözümü için kullanılmaktadır. GA’da

kullanılan temel terimler aşağıda verilmiştir.

3.1 Gen

Bireyin kalıtsal özelliklerini taşıyan kalıtımın en temel ünitesidir. Gen, genetik

unsurun en küçük yapı taşıdır. Kalıtsal özellik taşıyan bu genlerin bir araya

gelmesiyle tüm bilgileri taşıyan kromozomlar oluşur. GA’da hedef problemin aday

çözümlerini oluşturan bir kromozomdaki anlamlı en küçük bilgi gen olarak ifade

edilmektedir.

19

3.2 Kromozom (birey)

Genlerden oluşan dizidir. Birey olarak insan düşünülecek olursa; insan vücudunda

trilyonlarca hücre bulunmaktadır. Her bir hücrenin çekirdeklerinde ise 23 çift

kromozom bulunur. Bu kromozomlar ise ebeveyn olan anne ve babadan gelmektedir.

GA’da kromozom nüfus içindeki bireye karşılık gelmekte olup aynı zamanda hedef

problemin adayı çözümünü temsil etmektedir.

3.3 Nüfus (popülasyon)

Kromozomlardan oluşan bir topluluktur. Nüfus içerisindeki her bir birey, problemin

olası bir çözümünü temsil etmektedir. Nüfus her jenerasyonda daha iyi bireylerden

oluşmaya çalışacağı için zamanla değişip iyileşmektedir. Probleme göre nüfusta yer

alan kromozom sayısının fazla olması, daha fazla hesaplama gerektirerek çözüme

giden zamanı arttırmakta, kromozom sayısının sayının az olması ise nüfus içindeki

çeşitliliği yok edebilmektedir. Nüfus içinde yer alacak kromozom sayısı problemin

yapısına uygun olarak belirlenebilir. Nüfus, kromozom ve genler arasındaki ilişki

Şekil 3.1’de, GA’nın akış diyagramı Şekil 3.2’de gösterilmektedir.

Şekil 3.1 : Nüfusta kromozom ve genlerin görünümü.

20

Şekil 3.2 : Genetik algoritma akış diyagramı.

3.4 Kodlama

GA’nın önemli bir kısmı olan kodlama, problemin çözümü için en başta belirlenmesi

gereken yapılardandır. Oluşturulacak olan GA’nın hızlı ve sağlıklı çalışması için

kodlama doğru tercih edilerek yapılmalıdır. Probleme göre uygulanabilecek farklı

kodlama türleri vardır.

3.4.1 İkili kodlama

Bu kodlama türünde her kromozom 0 ve 1’lerden oluşan bit dizisidir. Bu bit

disizindeki her bit çözümün belli bir karakteristik özelliğini taşır. Bit dizisi ise bir

sayıyı temsil etmektedir (Nabiyev, 2005). Bu kodlama türü, arama uzayını bazı

durumlarda istenilen şekilde temsil edememektedir.

3.4.2 Değer kodlama

Bu kodlama türünde her kromozom değerlerden oluşan bir dizidir. Reel sayılar gibi

karmaşık değerlerin kullanıldığı problemlerin çözümünde ikili kodlama yerine tercih

21

edilmektedir. Bu kodlama yönteminde kromozom, reel sayıların oluşturduğu bir

vektör şeklinde kodlanmaktadır. Bu yöntemle çok sayıda karar değişkeninin yer

aldığı büyük vektörlerin temsili mümkündür (Erdal, 2007).

3.4.3 Permutasyon kodlama

Permutasyon kodlama yönteminde kromozomlar numaralar dizisinden oluşmaktadır

(Dilaver, 2015). Bu kodlama türünde kromozomlar sıradaki konumu belirten

numerik karakterlerden oluşturulabilir. Daha çok gezgin satıcı, çizelgeleme, görev

sıralama gibi sıralamanın önemli olduğu problemlerde kullanılır.

3.5 Seçim

Mevcut nüfus kullanılarak yeni nüfusun oluşturulması için çaprazlama ve mutasyon

işlemlerine tabi tutulacak bireylerin belirlenmesi gerekmektedir. GA’nın temel

prensibine göre iyi bireyler ebeveyn olarak kullanılarak yeni bireyler

oluşturulmalıdır. Kötü bireylerin elenmesi, iyi bireylerin oluşması ve yeni nesillere

aktarılması amacıyla iyi bireyleri belirlemek için bir seçim yapılması gerekmektedir.

Seçim işlemi 3 adımdan oluşmaktadır; Birinci adım tüm bireylerin amaç fonksiyon

değerlerinin hesaplanması, ikinci adım bireylere amaç fonksiyonu değerlerine göre

uygunluk değerlerinin atanması, üçüncü adım ise bireylerin sahip oldukları uygunluk

değerlerine göre seçilmeleri ve yeni birey üretimi için eşleştirme havuzuna

atılmalarıdır (Tuncer ve Yıldırım, 2012).

En çok bilinen seçim yöntemleri arasında rulet tekerleği seçimi, turnuva seçimi, sıralı

seçim yöntemi yer almaktadır. Tüm seçim yöntemlerinde, uygunluk değeri iyi olan

bireylerin seçilme olasılıkları da fazla olmaktadır.

3.5.1 Rulet tekerleği seçim yöntemi

Rulet tekerleği seçimi yöntemi, rastgele bir şekilde rulet tekerleğinin döndürülmesi

sonucunda belirlenen noktanın hangi alanın üzerinde duracağı örneğine benzetilebilir

(Url-3). Seçim işleminde bireyler için uygulanan f(x) amaç fonksiyonunun

sonucundaki uygunluk değerlerini kullanır. Şekil 3.3’te örnek bir rulet tekerleği

gösterilmektedir. Örnekte f(x) değeri en büyük olan bireyin en iyi birey olduğu kabul

edilirse, “Birey 3” en iyi birey olmaktadır. f(x) değerleri yüksek olan bireylerin

uygunluk değerleri de yüksek olacağından, rulet tekerleğinin dilimleri arasında

22

diğerlerine göre daha büyük paya sahip olmakta ve seçilme olasılıkları da diğer

bireylere göre daha yüksek olmaktadır. Bu yöntem düşük uygunluk değeri olan

bireye daha az seçilme şansı, yüksek uygunluk değeri olan bireye de daha çok

seçilme şansı tanımaktadır. Bundan dolayı yüksek uygunluk değerine sahip bireyin

tüm nüfus üzerinde baskın ve egemen olmasına sebep olabilmektedir (Melanie, 1999).

Şekil 3.3 : Rulet tekerleği ile seçim örneği.

3.5.2 Rank seçim yöntemi

Bu seçim yönteminde bireylere uygunluk değerlerine göre sıralı şekilde değerler

verilmektedir. Uygunluk değerlerine göre küçükten büyüğe doğru sıralı olan bir

nüfusu düşünülürse, uygunluk değeri en kötü olan bireye 1, sonrakine bireye 2,

sonrakine 3 değeri verilerek bu şekilde tüm bireylere sırayla rank değeri verilir.

Nüfus sayısının n olduğu düşünülürse en iyi birey de n rank değerini alır. Bu verilen

değerler aynı zamanda bireylerin seçilme şansını doğrudan etkiler. Bireyler tekerlek

üzerinde sahip oldukları rank değerlerine göre alan kaplarlar. Bu sayede rulet

tekerleği seçim yöntemine göre en iyi birey nüfusa egemen olamayacak ve çözüm

uzayındaki arama işleminin genişlemesi rank seçimi yöntemi ile sağlanabilecektir

(Er, 2013).

3.5.3 Turnuva seçim yöntemi

Bu yöntemde mevcut nüfustaki bireylerden rastgele belirli sayıda birey seçilir. Bu

bireyler kendi aralarında uygunluk değerlerine göre turnuvaya girer ve uygunluğu en

yüksek olan birey turnuvayı kazanarak seçilmiş olur. Örneğin rastgele 3 birey seçimi

23

sonucunda 2. birey, 7. birey ve 9. bireyin turnuvaya gireceği düşünülürse bu bireyler

arasında uygunluk değerleri karşılaştırılır ve en iyi olan birey seçilir. Aşağıdaki

şekilde uygunluk değeri U ile gösterilerek, turnuva seçim yöntemi ile seçilen birey

örnek olarak gösterilmektedir. Turnuva seçim örneği Şekil 3.4’de gösterilmektedir.

Şekil 3.4 : Turnuva seçim yöntemi örneği.

Seçim yöntemlerinin farklı özellikleri vardır. Farklı özelliklere sahip bu seçim

yöntemlerine göre gen havuzundaki çeşitliliğin zamanla azalması söz konusu

olabilir. Nüfus içinde bireylerin benzerlikleri fazla olursa bu durum farklı

olasılıkların değerlendirilmemesi ve yerel optimum değere takılma gibi riskleri de

beraberinde getirebilir. Problemin büyüklüğü ve karmaşıklığına göre uygun seçim

yönteminin belirlenmesi gerekmektedir. Aynı probleme göre farklı seçim yöntemleri

denendiğinde bu seçim yöntemlerinin de birbirleri arasında avantaj ve dezavantajları

olabilmektedir (Razali ve Geraghty, 2011).

3.6 Çaprazlama

Daha iyi bireylerin üretimi için seçilen ebeveynlerdeki bazı genlerin karşılıklı olarak

değiştirilmesiyle oluşan işlemdir. Çaprazlamadaki amaç uygunluk değeri daha iyi

olan çocuk bireylerin üretilmesidir (Anand ve Spears, 1991). Çaprazlama işlemi GA

için büyük bir öneme sahiptir çünkü algoritmanın arama uzayının araştırılmamış

kısımlarına erişimini çaprazlama işlemi sağlamaktadır (Gen ve Cheng, 1997).

Çaprazlama işlemi rastgele belirlenen bir çaprazlama noktasına göre yapılır ve bu

noktaya göre belirlenen bireylerin genleri karşılıklı takas edilir. Çaprazlama işlemi

genel olarak tek noktadan yapılıyor olsa da problemin yapısına göre birden fazla

noktadan yapılan çalışmalar da mevcuttur. Şekil 3.5’de örnek olarak verilen tek

noktalı bir çaprazlama işleminde ebeveyn bireylerin 4. geninden itibaren

çaprazlandığı ve bu noktadan itibaren karşılıklı olarak genlerinin değiştirildiği

görülmektedir.

24

Şekil 3.5 : Çaprazlama örneği.

3.7 Mutasyon

Mutasyon işleminde bireye ait genler belirli bir mutasyon oranına göre rastgele

olarak değiştirilir. Mutasyon işlemi, bireyler birbirlerine benzemeye başladığında ve

aynı bireyler üzerinde kısır döngü oluşmaya başladığında, GA’yı sıkıştığı bu

durumdan kurtarmak için kullanılır. Mutasyon işlemi ile nüfus içindeki birey

çeşitliliğinin artması amaçlanmaktadır. (Yang, 1997). Bu açıdan algoritmanın yerel

optimum değerlere takılması önlenerek daha geniş bir arama uzayında çözüm

aranmaktadır.

Mutasyon işlemi için kullanılan olasılık değeri, gereğinden fazla büyük olursa,

mutasyon işlemi bireyin sahip olduğu her bir gen için meydana gelebilir ve bu durum

algoritmayı rastsal bir aramaya dönüştüreceği için çözüme ulaşmak da zor bir hale

gelebilir. Mutasyon işlemi için kullanılan olasılık değeri az olursa bu durumda arama

uzayının farklı noktaları değerlendirilememiş olacaktır. Bu sebeplerden dolayı

mutasyon olasılık değerini doğru ayarlamak gerekir. Mutasyon olasılık değeri

genellikle <= %1 olacak şekilde belirlenmektedir. Şekil 3.6’da verilen örnek bir

mutasyon işleminde verilen mutasyon oranına bağlı olarak bireydeki 8. genin

mutasyona uğrayıp, rastgele değiştirildiği görülmektedir.

Şekil 3.6 : Mutasyon örneği.

3.8 Elitizm

Çaprazlama ve mutasyon işlemleriyle oluşan yeni bireylerde en iyi bireyi kaybetme

olasılığı bulunmaktadır. Elitizm yöntemi kullanılarak bu durumun önüne geçilir ve

en iyi bireyler saklanarak sonraki nesle aktarılır. Elitizm işleminde, her nesilde nüfus

içerisindeki bireylerden amaç fonksiyon değeri en kötü olan birey ile bir önceki

nesilde saklanan en iyi birey yer değiştirilerek, elit birey yeni nüfusa katılmaktadır.

Bu sayede en iyi bireyin kaybolması önlenmiş olmaktadır.

25

3.9 Amaç Fonksiyonu

GA’da bireyin kalitesini belirlemek için kullanılan en önemli fonksiyondur. Mevcut

nüfustaki her birey için amaç fonksiyonuna göre uygunluk değerleri bulunur. Bireyin

sahip olduğu bu uygunluk değeri, bireyin kalitesini gösterirken aynı zamanda

çözüme ne kadar yakın olduğunu da ifade etmektedir. Amaç fonksiyonu probleme

göre farklılık gösterebilen ve hedeflenecek optimum çözümü sağlayabilecek bir

fonksiyondur (Tang ve diğ., 1996, Deb ve diğ., 2002).

3.10 Algoritma Sonlandırma İşlemi

Algoritmanın çalışacağı süreyi veya algoritmanın iterasyon sayısını sınırlandırmak

amacıyla kullanılan ve algoritmanın çalışmasını durduran işlemdir. Sonlandırma

kriteri, algoritmada iterasyonlar devam ederken nüfusta çeşitlilik olmadığında, aday

çözümlerde bulunan en iyi birey değişmediğinde algoritmanın daha fazla zaman

harcanmaması amacıyla uygun şekilde belirlenebilir. Bu kriter maksimum iterasyon

sayısı olarak belirlenebileceği gibi beklenen kalite değerine göre de olabilir. Örneğin

en iyi çözümde amaç fonksiyon değerinin 0,01 gibi bir değer olması (istenen

çözümün 0 olduğu varsayılırsa, 0 değerine çok yaklaşması) çözüm için yeterli kabul

edilerek sonlandırma kriteri olarak verilebilir.

26

27

4. GENETİK ALGORİTMA İLE TEST SAYFASI OLUŞTURMA

4.1 Genetik Algoritma ile Test Sayfası İlişkilendirmesi

Test sayfası üretimi çoklu kısıtlar arasında istenilen şekilde soruların tespit

edilmesini gerektiren çok amaçlı bir optimizasyon problemi olarak ele alınabilir.

Yapay zekâ algoritmalarından biri olan GA’nın kullanıldığı bu problem için farklı

kriterlere göre (soru sayısı, bölümler, zorluk derecesi, bilgi puanı, cevaplama süresi

ve seçilme sıklığı gibi) adaptif şekilde en iyi çözüm aranabilmektedir. Problemin

çözümü için oluşturulan sistemin modeli Şekil 4.1’de gösterilmiştir.

Şekil 4.1 : Sistem modeli.

GA’daki terminoloji ile test sayfası karşılaştırıldığında Çizelge 4.1’deki gibi bir ilişki

tablosu ortaya çıkarılabilir.

Çizelge 4.1 : GA – Test Sayfası İlişki Tablosu.

GA Test Sayfası Açıklama

Nüfus
Test sayfaları

Kümesi

Algoritma için başlangıçta

belirlenen test sayfası aday sayısı

Kromozom Test sayfası Her bir test sayfası adayı

Gen Soru Test içindeki bir soru

Gen özellikleri Soru öznitelikleri Test içindeki sorunun özellikleri

Test sayfası sorularında her bir soruya ait soru ID, soru metni, sorunun bölümü,

zorluk derecesi, soru puanı, bilgi puanı, seçilme sıklığı, çözüm süresi, yetenek

seviyesi gibi öznitelikler bulunmaktadır. Bu bilgiler soru bankası veri tabanında

bulunmaktadır. Soru bankasında n adet soru olduğu ve her bir sorunun m adet

28

özniteliği olduğu esas alındığında tüm sorulara ait bilgileri barındıran S matrisi

aşağıdaki gibi ifade edilebilir (Wu ve Song, 2009).

𝑆 = [

𝑎11 𝑎12 … 𝑎1𝑚

𝑎21 𝑎22 … 𝑎2𝑚

… … … …
𝑎𝑛1 𝑎𝑛2 … 𝑎𝑛𝑚

] (1)

Tüm sorulara ait bilgilerin olduğu S matrisinde her bir satır bir test sorusunu ve o

soruya ait olan öznitelikleri ifade etmektedir. İstenilen çoklu kısıtlamalara uymak

için test sayfasında yer alacak her bir soruya ait bu özniteliklerin değerlendirilmesi

gerekmektedir. Çoklu kısıtlamalarla beraber bu durum ise istenilen test sayfasının

hazırlanması için bir optimizasyon problemini ortaya çıkarmaktadır. Bu tez

çalışmasında, test sayfası üretiminde kullanılacak soruların en önemli

özniteliklerinden olan sorunun bölümü, sorunun zorluk seviyesi, sorunun puanı,

sorunun bilgi puanı, sorunun seçilme sıklığı, sorunun cevaplama süresi değerleri ve

bu değerlerin test içindeki ağırlık katsayıları esas alınmaktadır. Test sayfası için

istenilen çoklu kısıtlamalara bağlı olarak ve sayfanın istenilene ne kadar yakın

olduğunu anlamaya yönelik, aşağıdaki formüllerde hata değerleri belirlenmektedir.

Bu hesaplanacak olan hata değerleriyle beraber daha sonra ilgili ağırlık katsayıları da

kullanılarak test sayfası adayının istenilen çoklu kriterlere ne kadar uyuyor olduğu ve

buna bağlı olarak test sayfasının kalitesi belirlenmektedir. Test sayfasının kalitesi

belirlenirken, amaç fonksiyonu içinde kullanılacak olan hata değerlerine ait formüller

bu tez çalışması kapsamında oluşturulmuş ve aşağıdaki gibi e hata değerleriyle ifade

edilmiştir.

𝑒1 = |𝐷𝑑 −
∑ 𝑎𝑖1𝑎𝑖2

𝑛
𝑖=1

∑ 𝑎𝑖2
𝑛
𝑖=1

| (2)

𝑒2 = |𝐷𝑘 −
(∑ 𝑎𝑖3

𝑛
𝑖=1)

𝑛
 | (3)

𝑒3 = |
(∑ 𝑎𝑖4

𝑛
𝑖=1)

𝑛
| (4)

29

𝑒4 = |
𝐷𝑠− (∑ 𝑎𝑖5

𝑛
𝑖=1)

𝑛
 | (5)

Bu formüllerde;

e1: Sorunun zorluk seviyesi için hesaplanan hata değerini (2),

e2: Sorunun bilgi puanı için hesaplanan hata değerini (3),

e3: Soruların seçilme sıklığının en az olması için hesaplanan hata değerini (4),

e4: Soruların toplam süresi ile istenen süre arasındaki hata değerini (5),

Dd: İstenilen zorluk derecesi faktörünü,

Dk: İstenilen bilgi puanı faktörünü,

Ds: İstenilen toplam süre faktörünü ifade etmektedir.

ai1: Sorunun zorluk derecesini,

ai2: Soru puanını,

ai3: Sorunun bilgi puanını,

ai4: Sorunun seçilme sıklığını,

ai5: Sorunun cevaplama süresi gibi sorulara ait öznitelikleri ifade etmektedir.

Bilgi puanı; sorunun çözülmesi için ne kadar bilgi gerektirdiği, bölüme ait bilgi

seviyesini belirtmektedir. Seçilme sıklığı; sorunun daha önceki test sayfalarında

kullanılma oranını belirtmektedir. Test sayfası oluşturma işleminde daha önce

sorulmamış olan sorulara öncelik verilmesi dikkate alınması gereken ölçütlerden

biridir. Sorunun bölümü; sorunun ait olduğu bölümü göstermektedir. Bu öznitelik

soruların bölümlere göre uygun olarak seçilmesini doğrudan etkileyen faktördür.

Şekil 4.2’de tez çalışmasında kullanılan GA ile test sayfası üretimi işlemi için akış

diyagramı gösterilmiştir. Akış diyagramına göre; başlangıç nüfusu oluşturulduktan

sonra her bir aday çözümün amaç fonksiyon değerleri hesaplanır. Optimizasyon

kriteri sağlandığı anda algoritma sonlandırılır ve bulunan en iyi aday çözüm,

problemin çözümü olarak saklanır. Optimizasyon kriteri sağlanmadıysa elitizm

işlemi uygulanır. Daha sonra bireyler amaç fonksiyon değerlerine bağlı olarak sahip

oldukları uygunluk değerlerine göre rulet tekerleği yöntemi ile seçim işlemine tabi

tutulurlar. Seçim işleminden sonra seçilen bireylere bölüm bazlı olarak çaprazlama

ve mutasyon işlemleri uygulanır. Mutasyondan sonra oluşan yeni nüfusun amaç

fonksiyon değerleri hesaplanıp, algoritma bu şekilde durdurma kriteri sağlanana

kadar iteratif olarak çalışır.

30

Şekil 4.2 : GA - test sayfası üretimi akış diyagramı.

4.2 Başlangıç Nüfusu Oluşturma

GA’da başlangıç nüfusu genellikle rastgele oluşturulur. Tez çalışmasında, her bir

birey (kromozom) bir test sayfasını ve bireydeki genler de test sayfasındaki soruları

temsil etmektedir. Soru özelliklerinde bölüm bilgisi de mevcuttur ve her bir bölüme

ait soru numaraları da belirlidir. İstenilen bölümlere ait belirli sayıda soru üretimi göz

önüne alındığında, başlangıç nüfusu oluşturulurken tamamen rastgele bir nüfusun

oluşturulması çözüm için gereken zamanı da arttırmaktadır. Aday çözüm olan test

sayfasındaki bölümler için istenilen sayıda soru olması beklenirken, bölümler baz

alınmadan rastgele soru seçimi yapılması bölümlere ait soru sayılarının da

istenilenden farklı olmasına sebep olmaktadır. Bu durumlar göz önüne alındığında

başlangıç nüfusu oluşturulurken tamamı rastgele oluşturulan bir nüfus yerine, seçili

bölümlerden istenen soru sayısına göre ilgili bölümler için rastgele nüfus oluşturma

gerçekleştirilmiştir. Soruların diğer özelliklerinden olan zorluk seviyesi, puanı, bilgi

puanı, seçilme sıklığı gibi özellikler başlangıç nüfusu oluştururken kullanılmamakta

olup bu özellikler amaç fonksiyonunda kullanılmıştır.

31

Nüfus oluşturma işleminde üretilen aday test sayfaları (bireyler) ikili kodlamanın

daha fazla yer kaplamasından, hesaplama süresinin artmasından ve program

kolaylığından dolayı tam sayı kodlama ile kodlanarak oluşturulmuştur. Şekil 4.3

çalışmada n adet sorudan oluşan bir test sayfası oluşturma işleminde kullanılan örnek

bir test sayfası için kromozomu göstermektedir.

Şekil 4.3 : Test sayfası için kromozom gösterimi.

4.3 Amaç Fonksiyonu

Test sayfası oluşturma problemi için oluşturulacak test sayfasının kalitesini ve

istenilen özelliklerde olmasını belirleyen en önemli metot amaç fonksiyonudur. Test

sayfası oluşturma problemindeki asıl amaç; istenilen bölümler içerisinden istenilen

sayıda soru seçilmesi ve bu seçilen soruların öznitelikleri ve istenilen çoklu kısıtlar

göz önüne alınarak bir test sayfasının optimum şekilde oluşturulmasıdır. Bu tez

çalışmasında amaç fonksiyonu için bölüm 4.1’de açıklanan formüllerde belirtilmiş

olan her bir hata değeri ile kısıtları kullanıcı tarafından belirlenmiş olan ağırlık

katsayıları çarpılır, bu çarpımların sonucu toplanarak problemin amaç fonksiyon

değeri hesaplanır. Bu amaç fonksiyonu sonucunda 0’a en yakın olan sonuç en az hata

değerine sahip olacağından en iyi sonuç olarak kabul edilmektedir. Amaç fonksiyonu

denklem (6) ile belirtilmiştir.

𝑓 = ∑ 𝑤𝑖𝑒𝑖
4
𝑖=1 (6)

Bu formülde;

 f: amaç fonksiyon değerini,

ei: i. kısıt fonksiyonunun hata değerini,

wi: i. hata değeri için ağırlık katsayısını ifade etmektedir.

Test sayfası oluşturma işleminde istenilen çoklu kriterlerin çözüm kalitesine etki

oranı wi ağırlıkları ile belirlenmektedir. Kullanıcı tarafından belirlenen wi

ağırlıklarının toplamı olan wt denklem (7)’deki gibi ifade edilmiş olup bu değerlerin

toplamı 1’e eşit olacak şekilde belirlenmiştir.

32

𝑤𝑡 = ∑ 𝑤𝑖
4
𝑖=1 = 1 (7)

Bu formülde;

w1: zorluk seviyesi için ağırlık katsayısını,

w2: bilgi puanı için ağırlık katsayısını,

w3: seçilme sıklığı için ağırlık katsayısını,

w4: cevaplama süresi için ağırlık katsayısını ifade etmektedir.

Amaç fonksiyonunda kullanılan ve isteğe göre belirlenebilen zorluk derecesi, bilgi

puanı, cevaplama süresi, seçilme sıklığı kriterleri ve bu kritlerlerin ağırlık çarpan

değerleri (w1, w2, w3, w4) ile kullanıcının istediği özelliklerde bir test sayfası

üretilmesine imkan sağlanmaktadır. Test sayfası üretiminden önce zorluk derecesi ve

seçilme sıklığı kriterleri önemliyse bu kriterlere ait ağırlık çarpan değerleri yüksek

olarak girilir. Bu sayede oluşturulan test sayfasının zorluk derecesi ve geçmişte

sorulmuş sorulardan oluşmaması kriterlerine daha çok uyması sağlanır. Benzer

şekilde zorluk derecesi ve bilgi puanı kriterleri diğer kriterlerden daha önemliyse bu

durumda bu kriterlere ait ağırlık çarpan değerleri yüksek olarak girilir ve test

sayfasının bu kriterlerle belirlenen özelliklere daha çok uyması beklenir. Kriterlerden

seçilme sıklığı kriterinin bir önemi yoksa ve test sayfasında geçmişte çıkan soruların

olması önemli değilse, bu kritere ait ağırlık çarpan değeri 0 olarak girilir, bu durumda

algoritma için bu kriter önemsiz ve etkisiz hale getirilmiş olur. Kriterler için

kullanılan bu ağırlık çarpanları ile esnek bir yapı oluşturmak hedeflenmiştir.

4.4 Seçim

Tez çalışmasında kaliteli bireylere öncelik verme amaçlı yapılacak seçim işlemi için

GA’da yaygın olarak kullanılan rulet tekerleği metodu kullanılmıştır. Bireylerin

uygunluk değerleri sonuçlarına göre rulet tekerleğinde sahip olacakları dilimler için

yüzdeleri hesaplanır. Bu yüzdelik değerlerine göre bireylere büyükten küçüğe doğru

sıralama işlemi yapılır. Rastgele üretilmiş 1-100 arasındaki bir sayının hangi bireyin

yüzdelik olasılık değerinde olduğuna bakılarak birey seçim işlemi yapılır. Örneğin;

en iyi bireyin yüzdelik diliminin %21 sonraki en iyi 2. bireyin %16 olduğunu

düşünürsek, 1 ile 100 arasında rastgele seçilmiş olan ve 0-21 arasında gelen her sayı

en iyi bireyi, 22-37 arasında gelen her sayı ise en iyi 2. bireyi işaret edecektir.

33

Bireyler seçim işlemi yapılacağı zaman bu şekilde seçilme olasılık değerlerine göre

seçilirler, bu sayede iyi bireylerin seçilme şansı diğerlerine göre daha çok olmakta ve

iyi bireylerin genleri kullanılarak nüfusun daha da iyileşmesi amaçlanmaktadır.

4.5 Çaprazlama

Tez çalışmasında standart GA’dan farklı olarak bölüm bazlı çaprazlama işlemi

uygulanmıştır. Başlangıç nüfusunda bölümlere ait soru sayıları dikkate alınarak

alınarak elde edilmiş olan test sayfasının, çaprazlama işlemlerinden sonra

bölümlerdeki soru sayılarının değişmeyecek şekilde kalması gerektiği dikkate

alınarak bölüm bazlı çaprazlama ihtiyacı olmuştur. Çaprazlama işleminde ilk olarak

çaprazlama noktası belirlenmeden önce bireyin sahip olduğu bölüm soruları kendi

aralarında gruplanarak sıralanmış ve her bölüme özgü olmak üzere çaprazlama

noktaları ayrı ayrı rastgele olacak şekilde belirlenmiştir. Bu aşamadan sonra iki

bireyin çaprazlama işlemleri sadece aynı bölümler arasında gerçekleştirilmektedir.

Bu sayede bir bölüme ait olan sorunun diğer bölüme ait olan bir soru ile yer

değiştirmesi önlenmiş olmaktadır. Şekil 4.4’te çalışmada kullanılan çaprazlama

işlemi için bir örnek gösterilmektedir.

Şekil 4.4 : Test sayfası oluşturma için çaprazlama işlemi.

İki ebeveynin çaprazlanması sonucu oluşturulacak çocuk bireyde birden fazla aynı

sorudan oluşmamasının da önüne geçilmesi gerekmektedir. Bunun için soru

ebeveynden alınmadan önce yeni bireyde daha önce olup olmadığına bakılarak

kontrol edilmektedir. Eğer soru yeni bireyde önceden mevcut olan bir soru ise bu

durumda bu soru yerine diğer ebeveynin sorusu alınır. Çaprazlama işleminde

nüfusdaki birey sayısı kadar iterasyon yapılarak her iterasyonda bir çocuk birey

oluşturulmuş ve bu şekilde yeni nüfusdaki birey sayısının da aynı kalması

34

sağlanmıştır. Şekil 4.5’de çalışmada kullanılan çaprazlama işlemi ile ilgili akış

diyagramı verilmiştir.

Şekil 4.5 : Test sayfası oluşturma için çaprazlama akış diyagramı.

4.6 Mutasyon

Standart GA’daki mutasyon işleminin uygulanması tekrarlı soruların oluşmasına

veya mutasyona uğrayacak olan sorunun ait olduğu bölüm yerine başka bir bölümden

soru seçilmesine sebep olabilmektedir. Tez çalışmasında, mutasyon işleminde

standart GA’dan farklı olarak mutasyona uğrayacak olan soru hangi bölümde yer

alıyorsa soru havuzundan o bölüme ait rastgele bir soru seçilmektedir. Şekil 4.6’da

çalışmadaki mutasyon işlemi ve Şekil 4.7’de mutasyon işlemine ait akış diyagramı

gösterilmiştir.

Şekil 4.6 : Test sayfası oluşturma için mutasyon işlemi.

35

Şekil 4.7 : Test sayfası üretimi - mutasyon akış diyagramı.

36

37

5. TEST SAYFASI OLUŞTURMA UYGULAMASI

GA ile test üretimi için Web tabanlı bir uygulama gerçekleştirilmiştir. Uygulama için

Java, SpringBoot teknolojileri ve Thymeleaf gibi template yapılar kullanılmıştır. Veri

tabanı olarak MongoDB (noSql) veri tabanı kullanılmıştır. Uygulama, kullanıcının

test sayfası için girebileceği parametre ve kriter arayüzlerine sahiptir. Kullanıcı

istediği özellikteki test sayfası için bu ayarları girerek algoritmanın çalışması

sonucunda test sayfası oluşturabilmekte ve sonuç olarak üretilen test sayfasındaki

soruları görebilmektedir. Uygulama arayüzünde GA ile ilgili ayarlar da

belirlenebilmektedir. Soru bankasındaki soruların da görülebileceği arayüzler Türkçe

ve İngilizce dillerini destekleyecek şekilde hazırlanmıştır.

5.1 Nesne Tabanlı Model

Test sayfası oluşturma işleminde nesne tabanlı uygulamada kullanılan sınıf yapıları

aşağıdaki gibidir;

1- Soru (Gen): id, soru no, zorluk derecesi, puan, tahmini cevaplama süresi,

seçilme oranı, bilgi seviyesi puanı, bölüm, soru metni, cevap gibi bilgileri

içerir.

2- Test Sayfası (Kromozom/Birey): soru sayısı, ortalama zorluk derecesi,

toplam puanı, toplam cevaplama süresi, ortalama bilgi seviyesi gibi bilgileri

içerir.

3- Nüfus (Popülasyon): test sayfaları, en iyi test sayfası, istenilen özellikler gibi

bilgileri içerir.

4- Özellikler: istenilen soru sayısı, istenilen zorluk seviyesi, istenilen bilgi puanı

seviyesi, istenilen bölümlere ait soru sayıları, ağırlık oranları, test sayısı,

maksimum iterasyon sayısı, soru bankası soru sayısı, uygunluk fonksiyonu

maksimum değeri, son seçilen test soruları gibi bilgileri içerir.

5- Algoritma: çaprazlama oranı, mutasyon oranı, elitizm gibi bilgileri içerir.

38

5.2 Soru Bankası ve Özellikleri

Kullanılan soru bankasında toplam 2455 soru bulunmaktadır (Url-1). Sorular 5 farklı

bölümden oluşur. Her sorunun kendine ait zorluk seviyesi, puanı, bilgi puanı

seviyesi, çözüm süresi, geçmişteki sorulma sıklığı gibi özellikler bulunmaktadır.

Çalışmadaki soru bankası ve sorular MongoDB veri tabanı üzerinde tutulmuştur.

Deneysel çalışmalardaki sonuçlar değerlendirilirken soru bankasının ve sahip olduğu

soruların özellikleri önemli olmaktadır. Örneğin çok kolay soruların sayısının çok az

olduğu bir soru bankasından, zorluk seviyesi çok kolay bir test elde edilmek

istenirse, bu durumda sonuçlar beklenen hata seviyesinin üzerinde olabilir.

Kullanılan soru bankasının genel olarak sahip olduğu bilgiler aşağıdaki çizelgelerde

gösterilmiştir. Çizelge 5.1’de kullanılan soru bankasının zorluk seviyesine göre

dağılımı gösterilmektedir. Soru bankasındaki soruların zorluk seviyeleri 0 ile 4

arasında değişmekte olup zorluk seviyelerinin ortalaması 1,986’dır.

Çizelge 5.1 : Zorluk seviyesine göre soru dağılımı.

Zorluk Seviyesi Soru Sayısı

Zorluk Seviyesi 0 10

Zorluk Seviyesi 1 937

Zorluk Seviyesi 2 779

Zorluk Seviyesi 3 536

Zorluk Seviyesi 4 193

Soru bankasındaki soruların bilgi puanı seviyelerine göre dağılımı Çizelge 5.2’de

gösterilmiştir.

Çizelge 5.2 : Bilgi puanı seviyesine göre soru dağılımı.

Bilgi Puanı Soru Sayısı

Bilgi Puanı 0 963

Bilgi Puanı 1 773

Bilgi Puanı 2 719

Soru bankasındaki soruların bölümlere göre dağılımı Çizelge 5.3’de gösterilmiştir.

Çizelge 5.3 : Bölümlere göre soru dağılımı.

Bölüm Soru Sayısı

Bölüm 1 513

Bölüm 2 564

Bölüm 3 551

Bölüm 4 453

Bölüm 5 373

39

Soru bankasındaki soruların çözüm sürelerine göre dağılımı Çizelge 5.4’te

gösterilmiştir.

Çizelge 5.4 : Çözüm süresine göre soru dağılımı.

Çözüm Süresi Soru Sayısı

1 dk 963

2 dk 773

3 dk 719

Soru bankasındaki soruların seçilme sıklığı değerine göre dağılımı Çizelge 5.5’de

gösterilmiştir.

Çizelge 5.5 : Seçilme sıklığına göre soru dağılımı.

Seçilme Sıklığı Soru Sayısı

0 519

1 491

2 517

3 464

4 464

Soru bankasındaki soruların kriterlere göre ortalamaları Çizelge 5.6’da gösterilmiştir.

Çizelge 5.6 : Kriterlerin ortalama değerleri.

Kriter Ortalama

Zorluk Seviyesi 1,986

Bilgi Puanı Seviyesi 1,900

Çözüm Süresi 1,900

Seçilme Sıklığı 1,991

Seçilme sıklığı kullanılmasıyla daha önce seçilmemiş sorulara avantaj sağlanarak

formüldeki ağırlık oranına göre onlara öncelik verilebilmektedir. Soruların geçmişte

sorulma sıklığı bilgisi istenirse tüm sorular için sıfırlanabilmekte ve tüm sorular için

arayüzden rastgele olarak da belirlenebilmektedir. Bu tez çalışmasında ise seçilme

sıklığı tüm sorular için rastgele belirlenmiş olup deneysel çalışmalarda yanıltıcı

sonuçlar oluşturmaması için sabit tutulmuştur.

Veri tabanı olarak kullanılan MongoDB’de arayüz için MongoBooster aracı

kullanılmıştır. Bu araçta tek soruya ait özellikler Şekil 5.1’de, tüm sorulara ait

özellikler Şekil 5.2’de olduğu gibi görülebilmektedir.

40

Şekil 5.1 : Bir soruya ait özellikler.

Şekil 5.2 : Sorulara ait özellikler

41

5.3 Web Uygulaması

Tez çalışması için gerçekleştirilmiş olan web uygulamasının ayarlar arayüzünde

kullanıcı, GA’ya ait gen sayısı, nüfus büyüklüğü, algoritmanın iterasyon sayısı gibi

bazı parametreleri girebilmektedir. Ayrıca soruların seçilme sıklığı, son seçilen soru

bilgilerini sıfırlayabilmekte ve sorulara rastgele seçim sıklığı atayabilmektedir.

Kullanıcı test sayfası ayarlarıyla ilgili olarak zorluk seviyesi, bilgi puanı, test süresi

gibi kriterleri belirleyebilmektedir. Bu kriterlerin belirlenebildiği ayarlar ekranı Şekil

5.3’de gösterilmiştir.

Şekil 5.3 : Ayarlar ekranı.

Tez çalışması için gerçekleştirilmiş olan web uygulamasının “GA Başlat”

arayüzünde kullanıcı, test sayfası için istediği soru sayısını girerek bu soruların hangi

bölümlere ait olacağını belirleyebilmektedir. Aynı arayüzden test sayfası için zorluk

seviyesi, bilgi puanı, seçim sıklığı ve test süresi gibi kriterlerin ağırlık katsayılarını

girebilmektedir. “Son Sorular Hariç” özelliği seçildiğinde ise en son sorulmuş olan

test sayfasındaki sorular hariç tutularak o sorular olmadan bir test sayfası

hazırlanması mümkün olabilmektedir. Ağırlık çarpanı değerlerinin, bölümlere ait

soruların belirlenebildiği ekran Şekil 5.4’de gösterilmektedir.

42

Şekil 5.4 : Test sayfası oluşturma ekranı.

Soru bankasındaki soruların görülebildiği ekran Şekil 5.5’de gösterilmektedir.

Şekil 5.5 : Soru bankası ekranı.

43

Web uygulamasının “Soru Bankası” arayüzünde soru bankasında yer alan tüm

sorular ve onlara ait özellikler görüntülenebilmektedir. Bu sorular özelliğe göre

sıralanabilmekte ve sorular içinde arama yapılabilmektedir.

Web uygulamasının “Sonuçlar” arayüzünde ise algoritmanın sonucunda üretilmiş

olan test sayfasına ait belirlenmiş sorular görüntülenmektedir. Ayrıca algoritmanın

hangi iterasyonunda istenilen sonuca ne kadar yaklaştığı yakınsama grafiği şeklinde

gösterilmektedir. Test sonucunun ve testteki soruların yakınsama grafiği ile beraber

sunumu Şekil 5.6’da göserilmektedir.

Şekil 5.6 : Test sayfası sonuç ekranı.

5.4 Deneysel Çalışmalar

Deneysel çalışmalarda test sayfalarındaki soru sayıları 20, 50, 100 ve 200 olacak

şekilde belirlenmiş ve standart GA ile çalışmadaki GA’nın ürettiği sonuçlar üzerinde

karşılaştırmalar yapılmıştır. Sonuçları karşılaştırılan her deneysel çalışma için

algoritmalardan her biri 10’ar kez çalıştırılmış ve sonuçların ortalama değerleri

çizelgelerde gösterilmiştir.

44

Nüfus sayısı, iterasyon sayısı, çaprazlama ve mutasyon oranları her iki algoritma için

de aynı olacak şekilde belirlenmiştir. Zorluk seviyelerinin sonuçları karşılaştırılırken

bilgi puanı seviyesi, seçilme sıklığı ve cevaplama süresi gibi diğer kriterler ve bu

kriterlere bağlı ağırlık çarpan değerleri de sabit tutulmuştur. Algoritmaların uygunluk

fonksiyonları aynıdır. Böylece aynı soru sayıları ve aynı zorluk seviyelerine sahip

olan test sayfalarını üretmek için algoritmaların sonuçları ve performansları

incelenebilmiştir. İki algoritma için de nüfus sayısı 80, iterasyon sayısı 100,

çaprazlama oranı 1 ve mutasyon oranı ise 0,015 olacak şekilde belirlenmiştir. (Tül ve

Tuncer, 2017)

Kriterler için w ağırlık çarpanları 0 olarak belirlendiğinde o kriterler dikkate

alınmamış olmaktadır. Kritere ait ağırlık çarpanı (yüzdesi) ne kadar büyük değere

sahip olursa kriter test için o kadar önemli olmaktadır.

Zorluk seviyesi için algoritmaların karşılaştırılması ve sonuç değerleri Çizelge 5.7’de

gösterilmektedir.

Çizelge 5.7 : Zorluk seviyesi için algoritmaların performans karşılaştırması.

Zorluk

Seviyesi

Test Soru

Sayısı

Nüfus

Sayısı

Standart GA

Uygunluk Değeri

Çalışmadaki GA

Uygunluk Değeri

3 200 80 0,226 0,132

3 100 80 0,203 0,051

3 50 80 0,151 0,046

3 20 80 0,086 0,051

2 200 80 0,057 0,045

2 100 80 0,051 0,038

2 50 80 0,048 0,038

2 20 80 0,059 0,037

1 200 80 0,466 0,248

1 100 80 0,250 0,128

1 50 80 0,206 0,066

1 20 80 0,168 0,055

45

Çizelge 5.8’de bilgi puanı seviyesi ile ilgili standart GA ve çalışmadaki GA’nın

karşılaştırılması verilmiştir. Çizelgeyi oluşturmak için yapılan bu testlerde zorluk

seviyesi=2 ve soru ortalama cevaplama süresi=2 değerleriyle sabit tutularak istenilen

bilgi puanı kriterinin değiştirilmesi sonucu uygunluk değeri sonuçlarının nasıl

değiştiği karşılaştırmalı olarak gösterilmiştir.

Çizelge 5.8 : Bilgi puanı seviyesi için algoritmaların performans karşılaştırması.

Bilgi Puanı

Seviyesi

Test Soru

Sayısı

Nüfus

Sayısı

Standart GA

Uygunluk Değeri

Çalışmadaki GA

Uygunluk Değeri

3 200 80 0,303 0,281

3 100 80 0,292 0,271

3 50 80 0,283 0,258

3 20 80 0,252 0,227

2 200 80 0,055 0,048

2 100 80 0,057 0,037

2 50 80 0,053 0,034

2 20 80 0,059 0,036

1 200 80 0,306 0,286

1 100 80 0,303 0,280

1 50 80 0,304 0,275

1 20 80 0,310 0,276

Çizelge 5.9’da seçilme sıklığının ile ilgili standart GA ve çalışmadaki GA’nın

karşılaştırılması verilmiştir. Çizelgeyi oluşturmak için yapılan bu testlerde zorluk

değeri=2, bilgi puanı değeri=2, soru ortalama cevaplama süresi=2 kriterleri sabit

tutularak ağırlık çarpanlarının değiştirilmesi sonucu seçilme sıklığı kritlerinin nasıl

değiştiği karşılaştırmalı olarak gösterilmiştir. Çizelgede gösterilmekte olan değerler

elde edilirken her bir satır için ortalama değerler alınmıştır. Seçilme sıklığı toplamı,

testte yer alan soruların seçilme sıklığı değerlerinin toplamı ile elde edilmiştir. Soru

bankasındaki bir sorunun seçilme sıklığı değeri, 0-4 arasındadır ve soru bankasındaki

soruların seçilme sıklığı ortalaması ise 1,9’dur. Seçilme sıklığı ağırlık çarpanı (w3=4)

%100 olarak belirlenmiş olan ve farklı sayılardaki testler için çizelgede, çalışmadaki

GA kullanılarak soru başına seçilme sıklığı ortalamasının 0’a yakın olduğu

görülmektedir.

46

Çizelge 5.9 : Seçilme sıklığı için algoritmaların performans karşılaştırması.

Seçilme

Sıklığı

Ağırlık

%

Ağırlık Çarpanları Test

Soru

Sayısı

Standart GA

Sorunun

Seçilme Sıklığı

Ortalaması

Çalışmadaki

GA Sorunun

Seçilme Sıklığı

Ortalaması
w1 w2 w3 w4

%100 0 0 4 0 100 1,202 0,146

%100 0 0 4 0 50 0,728 0

%100 0 0 4 0 20 0,06 0

%50 2 0 2 0 100 1,636 0,714

%50 2 0 2 0 50 1,284 0,348

%50 2 0 2 0 20 0,54 0

%25 3 0 1 0 100 1,898 1,108

%25 3 0 1 0 50 1,436 0,636

%25 3 0 1 0 20 0,84 0,06

Şekil 5.7’de seçilme sıklığı için (w3) çarpan değeri %100 olarak belirlenerek diğer

kriterleri dikkate alınmamış, 50 sorudan oluşması istenilen bir testin yakınsama

grafiği görülmektedir. 80. iterasyonda çalışmadaki GA’nın belirlenen tüm kriterlere

göre sıfır hata ile çözümü bulduğu görülmektedir.

Şekil 5.7 : Seçilme sıklığı için yakınsama grafiği karşılaştırma örneği.

47

Şekil 5.8’de karşılaştırması yapılmış standart GA ve çalışmadaki GA sonuçlarının

olduğu örnek bir konsol ekranı gösterilmektedir. Bu test örneğinde, seçilme sıklığı

için kullanılan w3 ağırlık çarpan değeri %100 olarak belirlenmiş ve 50 soruluk bir

test sayfası oluşturulmak istenmiştir. Seçilme sıklığı ile ilgili ağırlık çarpanı w3 %100

olarak belirlendiği için w1, w2, w4 değerleri 0 olmakta ve zorluk derecesi, bilgi puanı

ve cevaplama süresi kriterleri etkisiz hale gelmektedir. Bu ekranda, standart GA ve

çalışmadaki GA karşılaştırması amacıyla üretilen test sayfasına ait e1, e2, e3, e4 hata

değerleri, test uygunluk değeri ve sorularla ilgili soru ID, zorluk derecesi, bilgi puanı,

soru puanı, seçilme sıklığı, bölümler, cevaplama süreleri ve seçilme sıklığı toplamı

gibi bilgiler de detaylı olarak görünmektedir. Sonuca göre standart GA, toplamda 36

defa önceden seçilmiş soru içerirken (ürettiği testteki her bir sorunun daha önce

seçilme ortalaması 0,72 iken) çalışmadaki GA hiçbir seçilmiş soru içermemektedir.

e1, e2, ve e4 hata değerlerinin ağırlıkları w1, w2, w4 = 0 ağırlık çarpan değerlerine

bağlı olarak dikkate alınmamaktadır.

Şekil 5.8 : Seçilme sıklığı ağırlık çarpanı %100 olan sonuç örneği.

Şekil 5.9’da zorluk derecesi ve seçilme sıklığı kriterleri kullanılarak ağırlık çarpan

değerleri w1 ve w3 %50’şer olarak ayarlanmıştır. Bu örnekte w2 ve w4 değerleri 0 yani

etkisiz olarak belirlenmiştir. 50 soruluk olan bu örnekte, zorluk seviyesi ve seçilme

sıklığı kriterleri yarı yarıya önemli olarak oluşturulan sonuç test sayfasının

özelliklerine bakıldığında çalışmadaki GA’nın uygunluk değeri olarak daha başarılı

sonuçlar verdiği görülmektedir. Zorluk derecesi olarak iki algoritma sonucu da e1

hata değerini 0 olarak elde ederek bu kriter için istenileni vermiş olsa da, seçilme

sıklığı hata değeri olan e3 hata değerine bakıldığında çalışmadaki GA’nın daha iyi bir

sonuç bulduğu görülmektedir.

48

Şekil 5.9 : Zorluk ve seçilme sıklığı için ağırlık çarpanı %50 olan sonuç örneği.

Şekil 5.10’da sonuçları verilen karşılaştırma örneğinde, zorluk derecesi ve bilgi

puanı kriterleri kullanılarak ağırlık çarpan değerleri w1 ve w2, %50’şer olarak

ayarlanmıştır. Bu örnekte seçilme sıklığı ağırlık çarpanı w3 ve cevaplama süresi

ağırlık çarpanı w4 değerleri 0 yani etkisiz olarak belirlenmiştir. Buna göre soruların

önceden seçilmiş olması ve testin toplam cevaplama süresi etkisiz olmaktadır. 50

soruluk olan bu örnekte zorluk seviyesi kriteri 3, bilgi puanı kriteri ise 2 olarak

girilmiştir. Zorluk seviyesi ve bilgi puanı kriterleri yarı yarıya önemli olarak

oluşturulan sonuç test sayfasının özelliklerine bakıldığında GA’nın uygunluk değeri

olarak daha başarılı sonuçlar verdiği görülmektedir. Çalışmadaki GA, zorluk derecesi

için e1 hata değerini ve bilgi puanı için e2 hata değerini 0 olarak bulurken, standart

GA e1 ve e2 hata değerlerini daha yüksek bulmuştur. Bu durum, iki algoritmanın

çalıştırılması sonucunda oluşturdukları test sayfalarının arasındaki farkı

göstermektedir.

Şekil 5.10 : Zorluk ve bilgi puanı için ağırlık çarpanı %50 olan sonuç örneği.

49

Şekil 5.11’de sonuçları verilen karşılaştırma örneğinde, zorluk derecesi, bilgi puanı,

seçilme sıklığı ve cevaplama süresi kriterleri kullanılarak ağırlık çarpan değerleri w1,

w2, w3 ve w4 hepsi eşit olacak şekilde (her biri %25) ayarlanmıştır. 50 soruluk olan

bu örnekte zorluk seviyesi kriteri 3, bilgi puanı kriteri ise 2 olarak girilmiştir. Bu

kriterlere göre sonuçlar karşılaştırıldığında çalışmadaki GA’nın daha başarılı olduğu

görülmektedir. Çalışmadaki GA’nın zorluk derecesi için kullanılan e1 hata değeri ve

seçilme sıklığı için kullanılan e2 hata değerinin, standart GA’nın bulduğu değerlere

göre daha iyi olduğu görülmektedir.

Şekil 5.11 : Her kriterin ağırlık çarpanı %25 olan sonuç örneği.

Şekil 5.12, Şekil 5.13, Şekil 5.14 ve Şekil 5.15’de, zorluk seviyesi 3, iterasyon sayısı

100 ve nüfus sayısı 80 olarak belirlenmiş ve soru sayısı farklı olan test sayfaları

üretiminde standart GA ile çalışmadaki GA uygunluk değerlerinin iterasyona göre

yakınsama grafikleri gösterilmektedir.

Şekil 5.12 : 20 soruluk test sayfası için karşılaştırmalı yakınsama grafiği.

50

Şekil 5.13 : 50 soruluk test sayfası için karşılaştırmalı yakınsama grafiği.

Şekil 5.14 : 100 soruluk test sayfası için karşılaştırmalı yakınsama grafiği.

Şekil 5.15 : 200 soruluk test sayfası için karşılaştırmalı yakınsama grafiği.

51

Şekil 5.16, Şekil 5.17, Şekil 5.18 ve Şekil 5.19’da, zorluk seviyesi 2, iterasyon sayısı

100 ve nüfus sayısı 80 olarak belirlenmiş ve soru sayısı farklı olan test sayfaları

üretiminde standart GA ile çalışmadaki GA uygunluk değerlerinin iterasyona göre

yakınsama grafikleri gösterilmektedir.

Şekil 5.16 : 20 soruluk test sayfası için karşılaştırmalı yakınsama grafiği.

Şekil 5.17 : 50 soruluk test sayfası için karşılaştırmalı yakınsama grafiği.

52

Şekil 5.18 : 100 soruluk test sayfası için karşılaştırmalı yakınsama grafiği.

Şekil 5.19 : 200 soruluk test sayfası için karşılaştırmalı yakınsama grafiği.

Şekil 5.20, Şekil 5.21, Şekil 5.22 ve Şekil 5.23’de, zorluk seviyesi 1, iterasyon sayısı

100 ve nüfus sayısı 80 olarak belirlenmiş ve soru sayısı farklı olan test sayfaları

üretiminde standart GA ile çalışmadaki GA uygunluk değerlerinin iterasyona göre

değişim grafikleri gösterilmektedir.

53

Şekil 5.20 : 20 soruluk test sayfası için karşılaştırmalı yakınsama grafiği.

Şekil 5.21 : 50 soruluk test sayfası için karşılaştırmalı yakınsama grafiği.

Şekil 5.22 : 100 soruluk test sayfası için karşılaştırmalı yakınsama grafiği.

54

Şekil 5.23 : 200 soruluk test sayfası için karşılaştırmalı yakınsama grafiği.

55

6. SONUÇ VE ÖNERİLER

Bu tez çalışmasında, test sayfası oluşturma konusu üzerinde durulmuş ve GA tabanlı

bir çözüm yöntemi sunulmuştur. İnsan faktörüne bağlı olabilecek hataları azaltarak

zamandan ve iş gücünden kazanç sağlayan bu yöntemle etkin bir şekilde test

sayfaları oluşturulabilmektedir.

Literatür çalışmaları değerlendirilerek, çaprazlama ve mutasyon işlemleri standart

GA’dan farklı olarak bölüm bazlı seçilen sorular üzerinden uygulanmıştır. Test

soruları oluşturma işleminde sorular için zorluk seviyesi, bilgi puanı, cevaplama

süresi ve seçilme sıklığı gibi dört farklı kriter kullanılarak, hazırlanan test sorularının

daha etkin ve verimli olması sağlanmıştır. Yapılan deneysel çalışmalarda, önerilen

GA ile standart GA sonuçları karşılaştırılmış ve önerilen algoritmanın daha başarılı

sonuçlar verdiği görülmüştür.

İstenen kriterde test sorularının üretimi için kullanıcıların da kolay bir şekilde

kullanabilecekleri web tabanlı bir kullanıcı arayüzü tasarımı gerçekleştirilmiştir. Web

tabanlı kullanıcı arayüzü ile GA’nın parametreleri, test sayfası için istenilen

özellikler ve özelliklerin ağırlıkları kullanıcı tarafından belirlenebilmekte ve buna

göre istenilen özelliklere sahip veya en yakın özellikte test sayfaları

oluşturulabilmektedir. Uygulama için Java, SpringBoot teknolojileri ve Thymeleaf

gibi template yapılar kullanılmıştır. Veri tabanı olarak MongoDB (noSql) veri tabanı

tercih edilirken arayüz için MongoBooster aracı kullanılmıştır.

Çalışmadaki bu yöntem, kullanımı gittikçe artan ve gelecekte klasik sınavların yerini

alacağı düşünülen e-sınav sisteminde kullanılabileceği gibi soru bankası elektronik

ortamda olan klasik sınav ve testler için de kullanılabilir.

Bu tez çalışmasının sonraki aşamalarında sorulara ait farklı özelliklerin belirlenip

amaç fonksiyonunda kullanılmasıyla ya da nüfusun o özelliklere bağlı kalarak

oluşturulup değiştirilmesiyle daha detaylı test sayfalarının hazırlanması mümkün

olabilecektir. Çaprazlama ve mutasyon işlemleri, nüfusun anlık durumu dikkate

alınarak belirlenebilecek olasılık formülleri ile gerçekleştirilerek algoritmanın daha

da iyileştirilmesi sağlanabilir.

56

57

KAYNAKLAR

Ackley, D. H., 1987: A Connectionist Machine for Genetic Hillclimbing. Kluver

Academic Publishers, Boston.

Akay, B., 2009: Nümerik Optimizasyon Problemlerinde Yapay Arı Kolonisi

(Artificial Bee Colony) Algoritmasının Performans Analizi, Doktora

Tezi, Erciyes Üniversitesi, Fen Bilimleri Enstitüsü, Kayseri.

Akşam, M. İ., 2014: Parçacık Sürü Optimizasyonu ile E-Sınav Uygulaması, Yüksek

Lisans Tezi, Gazi Üniversitesi, Bilişim Enstitüsü, Ankara.

Anand, V., Spears, W. M., 1991: A Study Of Crossover Operators in Genetic

Programming. The 6th International Symposium on Methodologies

for Intelligent Systems. Charlotte, N:C, USA.

Beyazşekeroğlu, Ü., 2015: Moodle Öğrenme Yönetim Sistemi Üzerinde Matlab

Yazılımı Kullanılarak Akıllı Soru Bankası Gerçekleştirilmesi, Yüksek

Lisans Tezi, Kocaeli Üniversitesi, Fen Bilimleri Enstitüsü, Kocaeli.

Bhirangi, R., Bhoir, S., 2016: Automated Question Paper Generation System,

International Journal of Emerging Research in Management &

Technology ISSN: 2278-9359 (Volume-5, Issue-4), IEEE.

Cheng, S. C., Lin, Y. T., & Huang, Y. M., 2009: Dynamic question generation

system for web-based testing using particle swarm

optimization. Expert systems with applications, 36(1), 616-624.

Deb, K., Pratap, A., Agarwal, S. & Meyarivan, T., 2002: A Fast and Elitist

Multiobjective Genetic Algorithm: NSGA-II, IEEE Transactions on

Evolutionary Computation, vol. 6, no. 2, pp. 182-197.

Dilaver, D., 2015: Genetik algoritmalar yardımıyla iş atölye çizelgelemesi üzerine

bir çalışma, Yüksek Lisans Tezi, Dokuz Eylül Üniversitesi, Sosyal

Bilimler Enstitüsü, İzmir.

Dorigo, M., Gambardella, L. M., 1997: Ant Colonies for the Travelling Salesman

Problem, Biosystems, 43 (2), 73–81.

Emir, Ş., 2006: E-öğrenmede sınav modelleri ve uygulaması, Yüksek Lisans Tezi,

İstanbul Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul.

Er, H. Ş., 2013: Gezgin satıcı probleminin hadoop üzerinde çalışan paralel genetik

algoritma ile çözümü, Yüksek Lisans Tezi, İstanbul Teknik

Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul.

Erdal, M., 2007: Kısıtlı Kaynak Koşullarında Yapı Projelerinin Genetik Algoritma

ile Programlanması, Doktora Tezi, Gazi Üniversitesi, Fen Bilimleri

Enstitüsü, Ankara.

Gen, M., Cheng, R., 1997: Genetic Algorithms and Engineering Desing. John Wiley

& Sons, Inc. ISBN 0-471-12741-8.

58

Genetic Algorithm, (t.y.). In Wikipedia. Alındığı tarih: 06.09.2016

http://en.wikipedia.org/wiki/Genetic_algorithm.

Glover, F., 1989: Tabu Search – Part I Part . ORSA Journal on Computing, Vol. 1,

No. 3, pp 190-206.

Glover, F., Laguna, M., 1997: Tabu Search, Kluwer Academic Publishers, 61.

Goldberg, D. E., 1983: Computer-aided gas pipeline operation using genetic

algorithms and rule learning, PhD thesis. University of Michigan.

Ann Arbor, MI.

Goldberg, D. E., 1989: Genetic Algorithms in Search, Optimization and Machine

Learning, Addison-Wesley Publishing Company.

Gülcü, A., 2006: Yapay zeka tekniklerinden genetik algoritma ve tabu arama

yöntemlerinin eğitim kurumlarının haftalık ders programlarının

hazırlanmasında kullanımı, Yüksek Lisans Tezi, Marmara

Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul.

Hairui, W., & Hua, W., 2008: Research and implementation of multi-agent based

test paper generation algorithm. In Computer Science and Software

Engineering, 2008 International Conference on (Vol. 1, pp. 493-496),

IEEE.

Holland, J. H., 1992: Adaptation in Natural and Artificial Systems, University of

Michigan Press, Ann Arbor, Michigan; re-issued by MIT Press.

Jia, Z. H., Zhang, C. E., & Fang, H. S., 2011: The research and application of

general item bank automatic test paper generation based on improved

genetic algorithms. In Computing, Control and Industrial Engineering

(CCIE), 2011 IEEE 2nd International Conference on (Vol. 1, pp. 14-

18), IEEE.

Jun, N., 2014: An improved genetic algorithm for Intelligent test paper generation,

Intelligent Computation Technology and Automation (ICICTA), 7th

International Conference on IEEE, 72-75, IEEE.

Kirkpatrick, S., Gelatt, C. D., Vecchi, M. P., 1983: Optimization by Simulated

Annealing, Science, 220, ss. 671–680.

Karataş, Ş., 2009: Akıllı e-Soru Sınav Sistemi Tasarımı ve Uygulaması, Yüksek

Lisans Tezi, Beykent Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul.

Li, G., Yu, L., & Sun, H., 2016: A framework for test data generation of object-

oriented programs based on complete testing chain. In Software

Engineering, Artificial Intelligence, Networking and

Parallel/Distributed Computing (SNPD), 2016 17th IEEE/ACIS

International Conference on (pp. 391-397), IEEE.

Melanie, M., 1999: An Introduction to Genetic Algorithms (5. baskı), Bradford

Book The MIT Press, Cambridge, Massachusetts, London, England,

978-0-262-13316-6.

Maniezzo, V., Gambardella L. M., De Luigi, F., 2004: Ant Colony Optimization,

New optimization techniques in engineering, Springer, Heidelberg,

Germany, 101–121.

http://en.wikipedia.org/wiki/Genetic_algorithm

59

Ming-Zhu, S., Wei-Feng, L., & Jing-Yi, D., 2013: The Research and

Implementation of Technology of Generating Test Paper Based on

Genetic Algorithm. In Intelligence Computation and Evolutionary

Computation (pp. 657-663). Springer, Berlin, Heidelberg, IEEE.

Nabiyev, V. V., 2005: Yapay Zeka Problemler, Yöntemler Ve Algoritmalar. Seçkin

Yayıncılık.

Nguyen M. L., Hui S. C., Fong A. C., 2011: An efficient multi-objective

optimization approach for online test paper generation,

In Computational Intelligence in Multicriteria Decision-Making

(MDCM), 2011 IEEE Symposium on (pp. 182-189), IEEE.

Özkan, R., 2003: Tek Modelli Deterministik Montaj Hattı Dengelem Problemlerine

Genetik Algoritma ile Çözüm Yaklaşımı. Yüksek Lisans Tezi,

İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul.

Razali, N. M., & Geraghty, J., 2011: Genetic algorithm performance with different

selection strategies in solving TSP. In Proceedings of the world

congress on engineering (Vol. 2, pp. 1134-1139). Hong Kong:

International Association of Engineers.

Reeves, C. R., 1993, Modern Heuristic Techniques for Combinatorial Problems,

Halsted Press, John Wiley & Sons. Inc., New York, 303s.

Sel, Ç., 2013: Genetik Atama Problemlerinin Çözümünde Deterministik, Olasılık

Temelli ve Sezgisel Yöntemlerin Uygulanması, Yüksek Lisans Tezi,

Ankara Üniversitesi, Fen Bilimleri Enstitüsü, Ankara.

Shan, Y., 2010 : The Research and Realization of Multi-threaded Intelligent Test

Paper Generation Based on Genetic Algorithm, International

Conference on Computer and Information Application (ICCIA), 461-

464, IEEE.

Sun, X., 2009: Study on Test Databank Construction And Algorithm of Test Paper

Generation System, Second International Symposium on Electronic

Commerce and Security (ISECS), 297-302, IEEE.

Tang, K. S., Man, K. F., Kwong, S. & He, Q., 1996: Genetic Algorithms and Their

Applications, IEEE Signal Processing Magazine, vol. 13, no. 6, pp.

22-37.

Torkul, O., Kibar, A., Taşcı, T., 2004: Web tabanlı sınav sistemleri, Sakarya

Üniversitesi, Enformatik Bölüm Başkanlığı, 54187, Sakarya.

Tuncer, A., Yıldırım, M., 2012: Dynamic path planning of mobile robots with

improved genetic algorithm, Computers & Electrical Engineering, Cilt

38, No 6, 1564-1572.

Tül, U., Tuncer, A., 2017: Genetik Algoritma ile Akıllı Test Sayfası Oluşturma.

Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji,

5 (4), 27-34. DOI: 10.29109, http-gujsc-gazi-edu-tr.341977.

Url-1, <http://www.cs.cmu.edu/~ark/QA-data/>, Carnegie Mellon

University, Question-Answer Dataset, alındığı tarih: 01.08.2017.

Url-2, <http://web.firat.edu.tr/iaydin/bmu579/bmu_579_bolum6.pdf>,

alındığı tarih: 04.12.2017.

http://www.cs.cmu.edu/~ark/QA-data/

60

Url-3, <http://w3.gazi.edu.tr/~akcayol/files/ZOL5Genetik.pdf> alındığı tarih:

17.12.2017.

Wu, X., Song, Y., 2009: Research on Intelligent Auto-generating Test Paper Based

on Improved Genetic Algorithms, International Conference on

Computational Intelligence and Software Engineering, International

Conference on IEEE.

Xiong, L., Shi, J., 2010: Automatic Generating Test Paper System Based On

Genetic Algorithm, Second International Workshop on Education

Technology and Computer Science, IEEE.

Xiumin, C., Dengcai, W., Meining, Z., Yanping, Y., 2011: Research on Intelligent

Test Paper Generation Base on Improved Genetic Algorithm, The 6th

International Conference on Computer Science & Education (ICCSE),

269-272, IEEE.

Yang, R., 1997: Solving Large Travelling Salesman Problems with Small

Populations, Department of Computer Science, University of Bristol,

U.K.

Yıldırım, M., 2008: A genetic algorithm for generating test from a question

bank. Computer Applications in Engineering Education, 18(2), 298-

305.

Yong-kang, P., Wang-ren, Q., 2011: Intelligent test paper generation research

based on the interval-valued fuzzy theory. In System Science,

Engineering Design and Manufacturing Informatization (ICSEM),

2011 International Conference on (Vol. 1, pp. 271-274), IEEE.

Zhang, K., Zhu, L., 2015: Application of Improved Genetic Algorithm in Automatic

Test Paper Generation, Chinese Automation Congress (CAC), 495-

499, IEEE.

Zhong, R. W., Wang, H. P., 2010: Genetic Algorithm in Test Paper Generation

System, In E-Product E-Service and E-Entertainment (ICEEE), 2010

International Conference on (pp. 1-4), IEEE.

http://w3.gazi.edu.tr/~akcayol/files/ZOL5Genetik.pdf

61

EKLER

 EK A.1 : Uygulama Kaynak Kodları (Sınıf ve metotların bazılarını içerir)

62

EK A.1

package testpaper.generation.model;

import org.springframework.data.mongodb.core.mapping.Document;

@Document(collection = "questions")

public class Question {

 private String id;

 private Integer questionId;

 private String articleTitle;

 private String text;

 private String answer;

 private String articleFile;

 private Integer chapter;

 private Integer knowledgePoint;

 private Integer difficulty;

 private String difficultyFromQuestioner;

 private String difficultyFromAnswerer;

 private Integer estimatedAnswerTime;

 private Integer score;

 private Integer selectionRatio;

 public String getId() {

 return id;

 }

 public void setId(String id) {

 this.id = id;

 }

 public String getArticleTitle() {

 return articleTitle;

 }

 public void setArticleTitle(String articleTitle) {

 this.articleTitle = articleTitle;

 }

 public String getText() {

 return text;

 }

 public void setText(String text) {

 this.text = text;

 }

63

 public Integer getScore() {

 return score / 10;

 }

 public void setScore(Integer score) {

 this.score = score;

 }

 public String getAnswer() {

 return answer;

 }

 public void setAnswer(String answer) {

 this.answer = answer;

 }

 public String getArticleFile() {

 return articleFile;

 }

 public void setArticleFile(String articleFile) {

 this.articleFile = articleFile;

 }

 public Integer getChapter() {

 return chapter;

 }

 public void setChapter(Integer chapter) {

 this.chapter = chapter;

 }

 public Integer getKnowledgePoint() {

 return knowledgePoint;

 }

 public void setKnowledgePoint(Integer knowledgePoint) {

 this.knowledgePoint = knowledgePoint;

 }

 public Integer getDifficulty() {

 return difficulty;

 }

 public void setDifficulty(Integer difficulty) {

 this.difficulty = difficulty;

 }

 public Integer getEstimatedAnswerTime() {

 return estimatedAnswerTime;

 }

 public void setEstimatedAnswerTime(Integer estimatedAnswerTime) {

 this.estimatedAnswerTime = estimatedAnswerTime;

 }

 public Integer getQuestionId() {

 return questionId;

 }

64

 public void setQuestionId(Integer questionId) {

 this.questionId = questionId;

 }

 public String getDifficultyFromQuestioner() {

 return difficultyFromQuestioner;

 }

 public void setDifficultyFromQuestioner(String difficultyFromQuestioner) {

 this.difficultyFromQuestioner = difficultyFromQuestioner;

 }

 public String getDifficultyFromAnswerer() {

 return difficultyFromAnswerer;

 }

 public void setDifficultyFromAnswerer(String difficultyFromAnswerer) {

 this.difficultyFromAnswerer = difficultyFromAnswerer;

 }

 public Integer getSelectionRatio() {

 return selectionRatio;

 }

 public void setSelectionRatio(Integer selectionRatio) {

 this.selectionRatio = selectionRatio;

 }

 @Override

 public int hashCode() {

 final int prime = 31;

 int result = 1;

 result = prime * result + ((questionId == null) ? 0 : questionId.hashCode());

 return result;

 }

 @Override

 public boolean equals(Object obj) {

 if (this == obj)

 return true;

 if (obj == null)

 return false;

 if (getClass() != obj.getClass())

 return false;

 Question other = (Question) obj;

 if (questionId == null) {

 if (other.questionId != null)

 return false;

 } else if (!questionId.equals(other.questionId))

 return false;

 return true;

 }

 @Override

 public String toString(){

 return "" + this.questionId;

 }

}

65

package testpaper.GA;

import testpaper.generation.model.Properties;

public class Population implements Cloneable {

 public TestPaper[] testPapers;

 private Properties properties;

 private TestPaper fittest;

 /***

 * Constructor, verilen özellikler bilgisine göre populasyon oluşturur.

 *

 * @param populationSize

 * @param initialise

 */

 public Population(final Properties properties) {

 this.properties = properties;

 this.testPapers = new TestPaper[properties.getPOPULATION_SIZE()];

 }

 /***

 * Verilen indexdeki test sayfasını doner

 *

 * @param index

 * @return

 */

 public TestPaper getTestPaper(final int index) {

 return this.testPapers[index];

 }

 /***

 * Populasyondaki en iyi test sayfasını verir

 *

 * @return

 */

 public TestPaper getFittest() {

 this.fittest = this.testPapers[0];

 for (int i = 0; i < this.size(); i++) {

 if (this.getTestPaper(i).getFitnessValue() < this.fittest.getFitnessValue()) {

 this.fittest = this.getTestPaper(i);

 }

 }

 return this.fittest;

 }

 /***

 * Populasyon size bilgisini verir

 *

 * @return

 */

 public int size() {

 return this.testPapers.length;

 }

 /***

 * Verilen indexe göre verilen test sayfasını atar

66

 *

 * @param index

 * @param testPaper

 */

 public void saveTestPaper(final int index, final TestPaper testPaper) {

 this.testPapers[index] = testPaper;

 }

 public Properties getProperties() {

 return this.properties;

 }

 public void setProperties(final Properties properties) {

 this.properties = properties;

 }

 @Override

 public Object clone() throws CloneNotSupportedException {

 return super.clone();

 }

}

package testpaper.GA;

import java.util.ArrayList;

import java.util.List;

import testpaper.generation.controllers.Algorithm;

import testpaper.generation.model.Properties;

import testpaper.generation.model.Question;

/**

 * The Class TestPaper.

 */

public class TestPaper {

 public List<Question> questionList;

 private int punishment;

 private double difficulty = 0.0;

 private double knowledgePoint = 0.0;

 private double score = 0.0;

 private double estimatedAnswerTime = 0.0;

 private double chapterCompliance = 0.0;

 private double ui = 0.0;

 private double fitnessValue = 0.0;

 private double difficultyCoefficient_W = 0.0;

 private double totalScore_S = 0.0;

 private double knowledgePoint_Q = 0.0;

67

 private double totalTime_T = 0.0;

 private double selectionRatio = 0.0;

 private Properties properties;

 private double weight1;

 private double weight2;

 private double weight3;

 private double weight4;

 /**

 * Instantiates a new testPaper.

 */

 public TestPaper(final Properties properties) {

 this.questionList = new ArrayList<Question>();

 this.properties = properties;

 this.calculateWeights();

 }

 public Question getQuestion(final int index) {

 return this.questionList.get(index);

 }

 public void setQuestion(final int index, final Question question) {

 this.questionList.set(index, question);

 }

 public int getPunishment() {

 this.punishment = FitnessCalc.getPunishment(this);

 return this.punishment;

 }

 public void calculateWeights() {

 final int totalW = this.getProperties().getW1() + this.getProperties().getW2() +

this.getProperties().getW3() + this.getProperties().getW4();

 this.weight1 = (double) this.getProperties().getW1() / totalW;

 this.weight2 = (double) this.getProperties().getW2() / totalW;

 this.weight3 = (double) this.getProperties().getW3() / totalW;

 this.weight4 = (double) this.getProperties().getW4() / totalW;

 }

 public void sortByQuestionID() {

 this.questionList.sort((p1, p2) -> p1.getQuestionId().compareTo(p2.getQuestionId()));

 }

 public String getQuestionsAsString() {

 String value = "";

 for (final Question q : this.questionList) {

 value += q + " | ";

 }

 return value;

 }

 public String getDifficultiesAsString() {

 String value = "";

68

 for (final Question q : this.questionList) {

 value += " " + q.getDifficulty() + " - ";

 }

 return value;

 }

 public String getScoresAsString() {

 String value = "";

 for (final Question q : this.questionList) {

 value += q.getScore() + " - ";

 }

 return value;

 }

 public String getSelectionRatioAsString() {

 String value = "";

 for (final Question q : this.questionList) {

 value += q.getSelectionRatio() + " - ";

 }

 return value;

 }

 public String getKnowledgePointsAsString() {

 String value = "";

 for (final Question q : this.questionList) {

 value += q.getKnowledgePoint() + " - ";

 }

 return value;

 }

 public String getGeneScoreAsString() {

 String value = "";

 for (final Question q : this.questionList) {

 value += q.getScore() + " - ";

 }

 return value;

 }

 public String getQuestionListAsString() {

 String value = "";

 for (final Question q : this.questionList) {

 value += q.getQuestionId() + " - ";

 }

 return value;

 }

 public String getQuestionChaptersAsString() {

 String value = "";

 for (final Question q : this.questionList) {

 value += q.getChapter() + " - ";

 }

 return value;

 }

 public String getQuestionAnswerTimesAsString() {

 String value = "";

 for (final Question q : this.questionList) {

 value += q.getEstimatedAnswerTime() + " - ";

 }

 return value;

69

 }

 /***

 * TestPaper zorluk derecesi farkını (genleri değiştiği için her çağrımında) hesaplayarak tutar.

 *

 * Zorluk derecesi farkını #.## şeklinde round ederek mutlak değerini alır.

 *

 * @return testin zorluk derecesi farkı

 */

 public double getDifficulty() {

 this.difficulty = FitnessCalc.getDifficulty(this);

 this.difficulty = Math.abs(this.round(this.difficulty));

 return this.difficulty;

 }

 public void setDifficulty(final double difficulty) {

 this.difficulty = difficulty;

 }

 public double getKnowledgePoint() {

 this.knowledgePoint = 0.0;

 for (final Question q : this.questionList) {

 this.knowledgePoint += q.getKnowledgePoint();

 }

 return this.knowledgePoint;

 }

 public double getSelectionRatio() {

 this.selectionRatio = 0.0;

 for (final Question q : this.questionList) {

 this.selectionRatio += q.getSelectionRatio();

 }

 return this.selectionRatio;

 }

 public double getScore() {

 this.score = 0.0;

 for (final Question q : this.questionList) {

 this.score += q.getScore();

 }

 return this.score;

 }

 public double getEstimatedAnswerTime() {

 this.estimatedAnswerTime = 0.0;

 for (final Question q : this.questionList) {

 this.estimatedAnswerTime += q.getEstimatedAnswerTime();

 }

 return this.estimatedAnswerTime;

 }

 public double getE1() {

 final double e = this.getDifficulty();

 return this.round(e);

 }

 public double getE2() {

 final double e = Math.abs(FitnessCalc.desiredKnowledgePoint - this.getKnowledgePointAvg());

 return this.round(e);

 }

70

 public double getE3() {

 final double e = this.getSRatio();

 return this.round(e);

 }

 public double getE4() {

 final double e = Math.abs(FitnessCalc.desiredAnswerTime - this.getEstimatedAnswerTime()) /

this.getProperties().getDEFAULT_GENE_LENGTH();

 return this.round(e);

 }

 public double getSRatio() {

 final double sr = this.getSelectionRatio() /

(this.getProperties().getDEFAULT_GENE_LENGTH());

 return this.round(sr);

 }

 public double round(double value) {

 value = Math.round(value * 100);

 value = value / 100;

 return value;

 }

 public double getFitnessValue() {

 this.fitnessValue = (this.getE1() * this.weight1) // Difficulty

 + (this.getE2() * this.weight2) // Knowledge Point

 + (this.getE3() * this.weight3) // Selection Ratio

 + (this.getE4() * this.weight4) // Answer Time

 + Algorithm.getPunismentValue(this);

 return this.round(this.fitnessValue);

 }

 public double getUi() {

 return this.ui;

 }

 public void setUi(final double ui) {

 this.ui = ui;

 }

 public String toDetailString() {

 return super.toString()

 + " diff:"

 + this.getDifficulty()

 + ", AvgScore:"

 + this.getScoreAvg()

 + ", AvgKnwPoint:"

 + this.getKnowledgePointAvg()

 + ", E1:"

 + this.getE1()

 + ", E2:"

 + this.getE2()

 + ", E3:"

 + this.getE3()

 + ", E4:"

 + this.getE4()

 + ", FTN:"

 + this.getFitnessValue();

71

 }

 public String toResultString() {

 return "tekrarli soru:" + this.getPunishment() + " | zorluk farki:" + this.getDifficulty();

 }

 public double getDifficultyCoefficient_W() {

 double temp = 0.0;

 for (final Question q : this.questionList) {

 temp += q.getScore() * q.getDifficulty();

 }

 this.difficultyCoefficient_W = temp / this.getTotalScore_S();

 return this.round(this.difficultyCoefficient_W);

 }

 public void setDifficultyCoefficient_W(final double difficultyCoefficient_W) {

 this.difficultyCoefficient_W = difficultyCoefficient_W;

 }

 public double getTotalScore_S() {

 this.totalScore_S = this.getScore();

 return this.totalScore_S;

 }

 public double getScoreAvg() {

 return this.round(this.getTotalScore_S() / this.questionList.size());

 }

 public double getDesiredScoreAvg() {

 return this.round(FitnessCalc.desiredScore / this.questionList.size());

 }

 public double getKnowledgePointAvg() {

 for (final Question q : this.questionList) {

 this.knowledgePoint_Q += q.getKnowledgePoint();

 }

 this.knowledgePoint_Q = this.knowledgePoint_Q / this.questionList.size();

 return this.round(this.knowledgePoint_Q);

 }

 public void setTotalScore_S(final double totalScore_S) {

 this.totalScore_S = totalScore_S;

 }

 public void setKnowledgePoint_Q(final double knowledgePoint_Q) {

 this.knowledgePoint_Q = knowledgePoint_Q;

 }

 public double getTotalTime_T() {

 this.totalTime_T = this.getEstimatedAnswerTime();

 return this.totalTime_T;

 }

 public void setTotalTime_T(final double totalTime_T) {

 this.totalTime_T = totalTime_T;

 }

 public void setKnowledgePoint(final double knowledgePoint) {

 this.knowledgePoint = knowledgePoint;

 }

72

 public void setScore(final double score) {

 this.score = score;

 }

 public void setEstimatedAnswerTime(final double estimatedAnswerTime) {

 this.estimatedAnswerTime = estimatedAnswerTime;

 }

 public double getChapterCompliance() {

 return this.chapterCompliance;

 }

 public void setChapterCompliance(final double chapterCompliance) {

 this.chapterCompliance = chapterCompliance;

 }

 public void setPunishment(final int punishment) {

 this.punishment = punishment;

 }

 public Properties getProperties() {

 return this.properties;

 }

 public void setProperties(final Properties properties) {

 this.properties = properties;

 }

 public void setSelectionRatio(final double selectionRatio) {

 this.selectionRatio = selectionRatio;

 }

 public List<Question> getQuestionList() {

 return this.questionList;

 }

 public void setQuestionList(final List<Question> questionList) {

 this.questionList = questionList;

 }

}

package testpaper.generation.model;

import java.util.Comparator;

import java.util.Random;

import testpaper.GA.TestPaper;

/**

 * The Class Constant.

 */

public class Properties {

 /** The Constant DEFAULT_GENE_LENGTH. */

 private int DEFAULT_GENE_LENGTH = 50;

 /** The Constant POPULATION SIZE */

 private int POPULATION_SIZE = 50;

73

 /** The Constant POOL_SIZE. */

 private int STATE_SPACE = 2455;

 /** The Constant MAX_ITERATION. */

 private int MAX_ITERATION = 100;

 /** The Constant TEST DIFFICULTY. */

 private int DIFFICULTY = 3;

 /** The Constant TEST SCORE. */

 private int SCORE = 100;

 /** The Constant KNOWLEDGE_POINT. */

 private int KNOWLEDGE_POINT = 2;

 /** The Constant ESTIMATED_ANSWER_TIME. */

 private int ESTIMATED_ANSWER_TIME = this.DEFAULT_GENE_LENGTH * 2;

 /** Uygunluk fonksiyonu MAX degeri */

 public static final int U_MAX = 1;

 private int chapter1 = 10;

 private int chapter2 = 10;

 private int chapter3 = 10;

 private int chapter4 = 10;

 private int chapter5 = 10;

 private boolean excludeLastQuestions;

 private int w1 = 1, w2 = 1, w3 = 1, w4 = 1;

 private boolean improvedAlgorithm = true;

 /** The random. */

 private static Random random = new Random();

 /**

 * Instantiates a new statics.

 */

 public Properties() {

 }

 public int getDEFAULT_GENE_LENGTH() {

 return this.DEFAULT_GENE_LENGTH;

 }

 public void setDEFAULT_GENE_LENGTH(final int dEFAULT_GENE_LENGTH) {

 this.DEFAULT_GENE_LENGTH = dEFAULT_GENE_LENGTH;

 }

 public int getPOPULATION_SIZE() {

 return this.POPULATION_SIZE;

 }

 public void setPOPULATION_SIZE(final int pOPULATION_SIZE) {

 this.POPULATION_SIZE = pOPULATION_SIZE;

74

 }

 public int getSTATE_SPACE() {

 return this.STATE_SPACE;

 }

 public void setSTATE_SPACE(final int sTATE_SPACE) {

 this.STATE_SPACE = sTATE_SPACE;

 }

 public int getMAX_ITERATION() {

 return this.MAX_ITERATION;

 }

 public void setMAX_ITERATION(final int mAX_ITERATION) {

 this.MAX_ITERATION = mAX_ITERATION;

 }

 public int getDIFFICULTY() {

 return this.DIFFICULTY;

 }

 public void setDIFFICULTY(final int dIFFICULTY) {

 this.DIFFICULTY = dIFFICULTY;

 }

 public Random getRandom() {

 return random;

 }

 public void setRandom(final Random random) {

 Properties.random = random;

 }

 public int getuMax() {

 return U_MAX;

 }

 public int getSCORE() {

 return this.SCORE;

 }

 public void setSCORE(final int SCORE) {

 this.SCORE = SCORE;

 }

 public int getKNOWLEDGE_POINT() {

 return this.KNOWLEDGE_POINT;

 }

 public void setKNOWLEDGE_POINT(final int kNOWLEDGE_POINT) {

 this.KNOWLEDGE_POINT = kNOWLEDGE_POINT;

 }

 public int getESTIMATED_ANSWER_TIME() {

 return this.ESTIMATED_ANSWER_TIME;

 }

 public void setESTIMATED_ANSWER_TIME(final int eSTIMATED_ANSWER_TIME) {

 this.ESTIMATED_ANSWER_TIME = eSTIMATED_ANSWER_TIME;

75

 }

 public int getU_MAX() {

 return U_MAX;

 }

 public int getChapter1() {

 return this.chapter1;

 }

 public void setChapter1(final int chapter1) {

 this.chapter1 = chapter1;

 }

 public int getChapter2() {

 return this.chapter2;

 }

 public void setChapter2(final int chapter2) {

 this.chapter2 = chapter2;

 }

 public int getChapter3() {

 return this.chapter3;

 }

 public void setChapter3(final int chapter3) {

 this.chapter3 = chapter3;

 }

 public int getChapter4() {

 return this.chapter4;

 }

 public void setChapter4(final int chapter4) {

 this.chapter4 = chapter4;

 }

 public int getChapter5() {

 return this.chapter5;

 }

 public void setChapter5(final int chapter5) {

 this.chapter5 = chapter5;

 }

 public int getW1() {

 return this.w1;

 }

 public void setW1(final int w1) {

 this.w1 = w1;

 }

 public int getW2() {

 return this.w2;

 }

 public void setW2(final int w2) {

 this.w2 = w2;

76

 }

 public int getW3() {

 return this.w3;

 }

 public void setW3(final int w3) {

 this.w3 = w3;

 }

 public int getW4() {

 return this.w4;

 }

 public void setW4(final int w4) {

 this.w4 = w4;

 }

 public boolean isExcludeLastQuestions() {

 return this.excludeLastQuestions;

 }

 public void setExcludeLastQuestions(final boolean excludeLastQuestions) {

 this.excludeLastQuestions = excludeLastQuestions;

 }

 public boolean isImprovedAlgorithm() {

 return this.improvedAlgorithm;

 }

 public void setImprovedAlgorithm(final boolean improvedAlgorithm) {

 this.improvedAlgorithm = improvedAlgorithm;

 }

 /***

 * Dizi ya da listeyi siralamak icin kullanilir. Test sayfası zorluk derecesini sıralamak icin.

 */

 public static final Comparator<TestPaper> testPaperComparator = new

Comparator<TestPaper>() {

 @Override

 public int compare(final TestPaper t1, final TestPaper t2) {

 return Double.compare(t1.getFitnessValue(), t2.getFitnessValue());

 }

 };

}

package testpaper.GA;

import testpaper.generation.model.Question;

public class FitnessCalc {

 static double desiredQuestionCount;

 static double desiredDifficulty;

 static double desiredScore;

77

 static double desiredKnowledgePoint;

 static double desiredAnswerTime;

 static double desiredChapterCompliance;

 /***

 * Test sayfasinin kac tane tekrarli soruya sahip oldugunu doner

 *

 * @param testPaper

 * @return

 */

 static int getPunishment(TestPaper testPaper) {

 int punishment = 0;

 for (int i = 0; i < testPaper.questionList.size(); i++) {

 int count = 0;

 Question question = testPaper.getQuestion(i);

 for (Question q : testPaper.questionList) {

 if (q.getQuestionId() == question.getQuestionId()) {

 count++;

 }

 }

 punishment = punishment + count;

 }

 punishment = (punishment - testPaper.questionList.size()) / 2;

 return punishment;

 }

 /***

 * Verilen Test sayfasının zorluk derecesini hesaplar, istenilen zorluk derecesiyle farkını

alarak döner.

 *

 * @param testPaper

 * @return zorluk derecesi

 */

 static double getDifficulty(TestPaper testPaper) {

 double difficulty = 0;

 for (Question q : testPaper.questionList) {

 difficulty = difficulty + q.getDifficulty();

 }

 double avgDifficulty = difficulty / testPaper.questionList.size();

 return avgDifficulty - getDesiredDifficulty();

 }

 /***

 * Test sayfasinin hangi zorluk seviyesinde olacagini set eder

 *

 * @param solution

 */

 public static void setDesiredDifficulty(double desiredDifficulty) {

 FitnessCalc.desiredDifficulty = desiredDifficulty;

 }

 /***

 * Beklenen sonuç değeri

 *

 * @return

78

 */

 static double getDesiredDifficulty() {

 return desiredDifficulty;

 }

 public static double getDesiredScore() {

 return desiredScore;

 }

 public static void setDesiredScore(double desiredScore) {

 FitnessCalc.desiredScore = desiredScore;

 }

 public static double getDesiredKnowledgePoint() {

 return desiredKnowledgePoint;

 }

 public static void setDesiredKnowledgePoint(double desiredKnowledgePoint) {

 FitnessCalc.desiredKnowledgePoint = desiredKnowledgePoint;

 }

 public static double getDesiredAnswerTime() {

 return desiredAnswerTime;

 }

 public static void setDesiredAnswerTime(double desiredAnswerTime) {

 FitnessCalc.desiredAnswerTime = desiredAnswerTime;

 }

 public static double getDesiredChapterCompliance() {

 return desiredChapterCompliance;

 }

 public static void setDesiredChapterCompliance(double desiredChapterCompliance) {

 FitnessCalc.desiredChapterCompliance = desiredChapterCompliance;

 }

 public static double getDesiredQuestionCount() {

 return desiredQuestionCount;

 }

 public static void setDesiredQuestionCount(double desiredQuestionCount) {

 FitnessCalc.desiredQuestionCount = desiredQuestionCount;

 }

}

package testpaper.generation.controllers;

79

import java.util.Arrays;

import java.util.List;

import java.util.Random;

import java.util.stream.Collectors;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.stereotype.Controller;

import testpaper.GA.Population;

import testpaper.GA.TestPaper;

import testpaper.generation.model.Properties;

import testpaper.generation.model.Question;

import testpaper.generation.repository.QuestionSearchRepository;

@Controller

public class Algorithm {

 @Autowired

 QuestionSearchRepository questionSearchRepository;

 @Autowired

 QuestionGenerator questionGenerator;

 @Autowired

 ConfigController configController;

 // GA parameters

 private static final double mutationRate = 0.015;

 private static final double uniformRate = 0.5;

 private static final boolean elitism = true;

 /***

 * Populasyonu evolve eder, elit bireyi saklar, çaprazlama ve mutasyon methodlarını çağırır

 *

 * @param population

 * @return

 */

 public Population evolvePopulation(final Population population, final Properties properties) {

 final Population newPopulation = new Population(properties);

 if (elitism) {

 newPopulation.saveTestPaper(0, population.getFittest());

 }

 // Crossover

 int elitismOffset;

 if (elitism) {

 elitismOffset = 1;

 } else {

 elitismOffset = 0;

 }

 for (int i = elitismOffset; i < population.size(); i++) {

 final TestPaper t1 = rouletteWheelSelection(population);

 final TestPaper t2 = rouletteWheelSelection(population);

 TestPaper newTestPaper = null;

 if (properties.isChapterSelected() && properties.isImprovedAlgorithm()) {

 newTestPaper = this.crossoverByChapter(t1, t2, properties); // Chapter bazlı

 } else {

80

 newTestPaper = this.crossover(t1, t2, properties);

 }

 newPopulation.saveTestPaper(i, newTestPaper);

 }

 // Mutate population

 for (int i = elitismOffset; i < newPopulation.size(); i++) {

 this.mutate(newPopulation.getTestPaper(i), properties);

 }

 return newPopulation;

 }

 /***

 * Crossover ile testpaperlar içindeki questionlar çaprazlanır

 *

 * @param t1

 * @param t2

 * @return

 */

 private TestPaper crossover(final TestPaper t1, final TestPaper t2, final Properties properties) {

 final TestPaper newTestPaper = new TestPaper(properties);

 final int crossPoint = randInt(0, properties.getDEFAULT_GENE_LENGTH());

 for (int i = 0; i < this.configController.properties.getDEFAULT_GENE_LENGTH(); i++) {

 if ((i < crossPoint) && !newTestPaper.questionList.contains(t1.getQuestion(i))) {

 newTestPaper.questionList.add(i, t1.getQuestion(i));

 } else if (!newTestPaper.questionList.contains(t2.getQuestion(i))) {

 newTestPaper.questionList.add(i, t2.getQuestion(i));

 } else {

 newTestPaper.questionList.add(i,

this.questionGenerator.getUniqueRandomQuestion(newTestPaper));

 }

 }

 return newTestPaper;

 }

 /***

 * Mutation ile test paperdaki question mutasyon oranına göre değiştirilebilir.

 *

 * @param testPaper

 */

 private void mutate(final TestPaper testPaper, final Properties properties) {

 for (int i = 0; i < properties.getDEFAULT_GENE_LENGTH(); i++) {

 if (Math.random() <= mutationRate) {

 if (properties.isChapterSelected() && properties.isImprovedAlgorithm()) {

 final Question q =

this.questionGenerator.getRandomUniqueQuestionByChapter(testPaper.questionList.get(i).getChapte

r(), testPaper);

 testPaper.questionList.set(i, q);

 } else {

 testPaper.questionList.set(i, this.questionGenerator.getRandomQuestion());

 }

 }

 }

 }

 /***

 * Uygunluk fonksiyonu: bireyler arasinda iyi bireyden kotuye dogru siralama yapar ve uygunluk

degerlerini belirler

 *

81

 * @param population

 */

 public void sortAndCalculateFitness(final Population population) {

 System.setProperty("java.util.Arrays.useLegacyMergeSort", "true");

 Arrays.sort(population.testPapers, Properties.testPaperComparator); // f(x)'e göre değişir ***

 for (int i = 0; i < population.testPapers.length; i++) {

 final TestPaper testPaper = population.testPapers[i];

 final double ui = (Properties.U_MAX *

Double.valueOf((this.configController.properties.getPOPULATION_SIZE() - (i + 1))))

 / (this.configController.properties.getPOPULATION_SIZE() - 1);

 testPaper.setUi(testPaper.round(ui));

 }

 }

 /***

 * Roullette Wheel yontemi ile secim

 *

 * @param population

 * @return

 */

 public static TestPaper rouletteWheelSelection(final Population population) {

 double range = 0;

 for (final TestPaper testPaper : population.testPapers) {

 range += testPaper.getUi();

 }

 final Random random = new Random();

 final double randomValue = random.nextDouble() * range;

 double sum = 0;

 for (int i = 0; i < population.testPapers.length; i++) {

 if (randomValue <= (population.testPapers[i].getUi() + sum)) {

 return population.testPapers[i];

 } else {

 sum += population.testPapers[i].getUi();

 }

 }

 return null;

 }

 /***

 * Ayni question varsa random question ile degistirir. Tekrarli sorulari onlemek amaclidir.

 *

 * @param testPaper

 */

 public void punishmentControl(final TestPaper testPaper, final Properties properties) {

 for (int i = 0; i < properties.getDEFAULT_GENE_LENGTH(); i++) {

 final Question currentQuestion = testPaper.getQuestion(i);

 int count = 0;

 for (final Question q : testPaper.questionList) {

 if (q.getId() == currentQuestion.getId()) {

 count++;

 if (count >= 2) {

 // Create random question

 if (properties.isChapterSelected() && properties.isImprovedAlgorithm()) {

 testPaper.questionList.set(i,

this.questionGenerator.getRandomUniqueQuestionByChapter(testPaper.questionList.get(i)

 .getChapter(),

82

 testPaper));

 } else {

 testPaper.questionList.set(i, this.questionGenerator.getRandomQuestion());

 }

 }

 }

 }

 }

 }

 /***

 * Tekrarlanan soru sayisini verir Geleneksel GA'da ceza amaçlı kullanılacak

 *

 * @param testPaper

 * @param properties

 * @return

 */

 public static int duplicationCount(final TestPaper testPaper) {

 final List<String> idList =

testPaper.questionList.stream().map(Question::getId).collect(Collectors.toList());

 return (idList.size() - (int) idList.stream().distinct().count());

 }

 public static double getPunismentValue(final TestPaper testPaper) {

 final int dupCount = duplicationCount(testPaper);

 final int vioCount = chapterViolationCount(testPaper);

 final double dupFactor = dupCount > 0 ? ((double) dupCount / testPaper.questionList.size()) : 0;

 final double vioFactor = vioCount > 0 ? ((double) vioCount / testPaper.questionList.size()) : 0;

 return dupFactor + vioFactor;

 }

 public static int randInt(final int min, final int max) {

 final Random rand = new Random();

 final int randomNum = rand.nextInt((max - min) + 1) + min;

 return randomNum;

 }

}

package testpaper.generation.repository;

import org.springframework.data.repository.CrudRepository;

import testpaper.generation.model.Question;

public interface QuestionMongoRepository extends CrudRepository<Question, String>{}

package testpaper.generation.repository;

import static org.springframework.data.mongodb.core.query.Criteria.where;

import static org.springframework.data.mongodb.core.query.Query.query;

import static org.springframework.data.mongodb.core.query.Update.update;

import java.util.Collection;

import java.util.List;

import java.util.Random;

import java.util.stream.Collectors;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.data.mongodb.core.MongoTemplate;

83

import org.springframework.data.mongodb.core.query.BasicQuery;

import org.springframework.data.mongodb.core.query.Criteria;

import org.springframework.data.mongodb.core.query.Query;

import org.springframework.data.mongodb.core.query.Update;

import org.springframework.stereotype.Repository;

import testpaper.GA.TestPaper;

import testpaper.generation.model.Question;

@Repository

public class QuestionSearchRepository {

 @Autowired

 MongoTemplate mongoTemplate;

 public Collection<Question> searchQuestions(final String text) {

 return this.mongoTemplate.find(Query.query(new

Criteria().orOperator(Criteria.where("text").regex(text, "i"),

 Criteria.where("articleTitle").regex(text, "i"),

 Criteria.where("chapter").regex(text, "i"))),

 Question.class);

 }

 public Question getQuestionById(final String id) {

 final BasicQuery query = new BasicQuery("{ questionId : " + id + " }");

 final Question q = this.mongoTemplate.findOne(query, Question.class);

 return q;

 }

 public List<Question> getQuestionsByChapter(final int chapter) {

 final BasicQuery query = new BasicQuery("{chapter: " + chapter + "}");

 final List<Question> qList = this.mongoTemplate.find(query, Question.class);

 return qList;

 }

 public List<Question> getUniqueQuestionsByChapter(final int chapter, final TestPaper testPaper)

{

 final BasicQuery query = new BasicQuery("{chapter: "

 + chapter

 + ", questionId:{$nin:["

 + this.getQuestionIDsByChapter(chapter, testPaper)

 + "]} }");

 final List<Question> qList = this.mongoTemplate.find(query, Question.class);

 return qList;

 }

 public List<Question> getUniqueQuestions(final TestPaper testPaper) {

 final BasicQuery query = new BasicQuery("{questionId:{$nin:[" +

this.getQuestionIDs(testPaper) + "]} }");

 final List<Question> qList = this.mongoTemplate.find(query, Question.class);

 return qList;

 }

 public void updateSelectionRatio(final Question q) {

 final Query query = query(where("questionId").is(q.getQuestionId()));

 final Update update = update("selectionRatio", q.getSelectionRatio() + 1);

 this.mongoTemplate.updateFirst(query, update, Question.class);

 }

 public void updateSelectionRatio(final TestPaper t) {

84

 for (final Question q : t.questionList) {

 this.updateSelectionRatio(q);

 }

 }

 public void resetSelectionRatios() {

 final Query query = query(where("selectionRatio").ne(0));

 final Update update = update("selectionRatio", 0);

 this.mongoTemplate.updateMulti(query, update, Question.class);

 }

 public void resetLastSelections() {

 final Query query = query(where("lastSelection").ne(0));

 final Update update = update("lastSelection", 0);

 this.mongoTemplate.updateMulti(query, update, Question.class);

 }

 public void setRandomSelectionRatio(final int stateSpaceCount) {

 final Random r = new Random();

 for (int i = 1; i <= stateSpaceCount; i++) {

 final Query query = query(where("questionId").is(i));

 final int randomSelectionRatio = r.ints(1, 0, 5).findFirst().getAsInt(); // random value of

(0,1,2,3,4)

 final Update update = update("selectionRatio", randomSelectionRatio);

 this.mongoTemplate.updateFirst(query, update, Question.class);

 }

 }

 public void updateLastSelections(final TestPaper t) {

 for (final Question q : t.questionList) {

 final Query query = query(where("questionId").is(q.getQuestionId()));

 final Update update = update("lastSelection", 1);

 this.mongoTemplate.updateFirst(query, update, Question.class);

 }

 }

 public List<String> getAllChapters() {

 final BasicQuery query = new BasicQuery("{}, {'chapter': 1}");

 List<String> cList = this.mongoTemplate.find(query, String.class);

 cList = cList.stream().distinct().collect(Collectors.toList());

 return cList;

 }

 public String getQuestionIDsByChapter(final int chapter, final TestPaper testPaper) {

 final List<Question> list = testPaper.questionList.stream().filter(q -> q.getChapter() ==

chapter).collect(Collectors.toList());

 String result = "";

 for (final Question question : list) {

 result += question.getQuestionId() + ",";

 }

 if (result.contains(",")) {

 result = result.substring(0, result.lastIndexOf(","));

 }

 return result;

 }

 public String getQuestionIDs(final TestPaper testPaper) {

 String result = "";

 for (final Question question : testPaper.questionList) {

 result += question.getQuestionId() + ",";

85

 }

 if (result.contains(",")) {

 result = result.substring(0, result.lastIndexOf(","));

 }

 return result;

 }

}

package testpaper.generation;

import org.springframework.boot.SpringApplication;

import org.springframework.boot.autoconfigure.SpringBootApplication;

import org.springframework.data.mongodb.repository.config.EnableMongoRepositories;

@SpringBootApplication

@EnableMongoRepositories("testpaper.generation.repository")

public class TestPaperApplication {

 public static void main(final String[] args) {

 SpringApplication.run(TestPaperApplication.class, args);

 }

}

package testpaper.generation.controllers;

import java.util.ArrayList;

import java.util.List;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.stereotype.Controller;

import org.springframework.ui.Model;

import org.springframework.web.bind.annotation.RequestMapping;

import org.springframework.web.bind.annotation.RequestParam;

import testpaper.generation.model.Question;

import testpaper.generation.repository.QuestionMongoRepository;

import testpaper.generation.repository.QuestionSearchRepository;

@Controller

public class QuestionController {

 @Autowired

 QuestionMongoRepository questionRepository;

 @Autowired

 QuestionSearchRepository questionSearchRepository;

 private List<Question> questionList = new ArrayList<Question>();

 @RequestMapping("/questions")

 public String questions(Model model) {

 model.addAttribute("questionList", questionRepository.findAll());

 return "questions";

 }

 @RequestMapping(value = "/questionSearch")

 public String search(Model model, @RequestParam String search) {

86

 model.addAttribute("questionList",

questionSearchRepository.searchQuestions(search));

 model.addAttribute("search", search);

 return "questions";

 }

 public List<Question> getQuestionList() {

 if(questionList.size() == 0){

 questionRepository.findAll().iterator().forEachRemaining(questionList::add);

 }

 return questionList;

 }

}

package testpaper.generation.controllers;

import java.util.Collections;

import java.util.List;

import java.util.Random;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.stereotype.Controller;

import testpaper.GA.Population;

import testpaper.GA.TestPaper;

import testpaper.generation.model.Properties;

import testpaper.generation.model.Question;

import testpaper.generation.repository.QuestionSearchRepository;

@Controller

public class QuestionGenerator {

 @Autowired

 QuestionSearchRepository questionSearchRepository;

 @Autowired

 ConfigController configController;

 /** The random. */

 private static Random random = new Random();

 /***

 * Verilen size bilgisine göre populasyon oluşturur.

 *

 * @param populationSize

 * @param initialise

 */

 public void generatePopulation(Population population) {

 for (int i = 0; i < population.testPapers.length; i++) {

 TestPaper testPaper = new TestPaper(population.getProperties());

 this.generateQuestions(testPaper, population.getProperties());

 population.testPapers[i] = testPaper;

 }

 }

 /**

 * * Yeni random question uretir.

 *

87

 * @return the random question

 */

 public synchronized Question getRandomQuestion() {

 int randomInt =

random.nextInt(this.configController.properties.getSTATE_SPACE()) + 1;

 final Question question = questionSearchRepository.getQuestionById("" +

randomInt);

 if (question == null) {

 System.out.println("ERROR : question is null for id = " + randomInt);

 }

 return question;

 }

 /**

 * * Verilen test sayfasinda olmayan yeni bir random question uretir.

 *

 * @return the random question

 */

 public synchronized Question getUniqueRandomQuestion(TestPaper testPaper) {

 final List<Question> questions =

questionSearchRepository.getUniqueQuestions(testPaper);

 int randomInt = random.nextInt(questions.size());

 Question question = questions.get(randomInt);

 if (question == null) {

 System.out.println("ERROR : question is null for id = " + randomInt);

 }

 return question;

 }

 /**

 * * Verilen test sayfasina ve istenilen chapter'a göre yeni bir random question uretir.

 *

 * @return the random question

 */

 public synchronized Question getRandomUniqueQuestionByChapter(int chapter, TestPaper

testPaper) {

 final List<Question> questions =

questionSearchRepository.getUniqueQuestionsByChapter(chapter, testPaper);

 int randomInt = random.nextInt(questions.size());

 Question question = questions.get(randomInt);

 return question;

 }

 /**

 * * Chapter'a göre istenilen sayıda random question uretir. Popülasyonun

 * ilk oluşturulmasında chapter bilgisine göre soruları random üretmek için

 * kullanılır.

 *

 * @return the random question

 */

 public synchronized void getRandomQuestionsByChapter(int chapter, int amount,

TestPaper testPaper) {

 if (amount > 0) {

 final List<Question> randomQuestions =

questionSearchRepository.getQuestionsByChapter(chapter);

 // shuffle list

 Collections.shuffle(randomQuestions);

 // adding numbers to random list

 for (int j = 0; j < amount; j++) {

 testPaper.questionList.add(randomQuestions.get(j));

88

 }

 }

 }

}

package testpaper.generation.controllers;

import java.util.List;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.stereotype.Controller;

import org.springframework.ui.Model;

import org.springframework.web.bind.annotation.ModelAttribute;

import org.springframework.web.bind.annotation.RequestMapping;

import org.springframework.web.bind.annotation.RequestMethod;

import testpaper.GA.FitnessCalc;

import testpaper.GA.Population;

import testpaper.generation.model.Properties;

import testpaper.generation.model.Question;

import testpaper.generation.repository.QuestionSearchRepository;

@Controller

public class GAController {

 @Autowired

 QuestionSearchRepository questionSearchRepository;

 @Autowired

 QuestionGenerator questionGenerator;

 @Autowired

 ConfigController configController;

 @Autowired

 Algorithm algorithm;

 public String result;

 public String resultQuestionIDs;

 public String resultQuestionsDificulty;

 public String resultIteration;

 public String resultFitness;

 public Population population;

 public List<Question> resultQuestions;

 /***

 * Constructor.

 */

 public GAController() {

 }

 @RequestMapping(value = "/startGA", method = RequestMethod.GET)

 public String test(final Model model) {

 model.addAttribute("DEFAULT_GENE_LENGTH",

this.configController.properties.getDEFAULT_GENE_LENGTH());

 model.addAttribute("POPULATION_SIZE",

this.configController.properties.getPOPULATION_SIZE());

89

 model.addAttribute("MAX_ITERATION",

this.configController.properties.getMAX_ITERATION());

 model.addAttribute("DIFFICULTY", this.configController.properties.getDIFFICULTY());

 model.addAttribute("SCORE", this.configController.properties.getSCORE());

 model.addAttribute("KNOWLEDGE_POINT",

this.configController.properties.getKNOWLEDGE_POINT());

 model.addAttribute("ESTIMATED_ANSWER_TIME",

this.configController.properties.getESTIMATED_ANSWER_TIME());

 model.addAttribute("chapter1", this.configController.properties.getChapter1());

 model.addAttribute("chapter2", this.configController.properties.getChapter2());

 model.addAttribute("chapter3", this.configController.properties.getChapter3());

 model.addAttribute("chapter4", this.configController.properties.getChapter4());

 model.addAttribute("chapter5", this.configController.properties.getChapter5());

 model.addAttribute("w1", this.configController.properties.getW1());

 model.addAttribute("w2", this.configController.properties.getW2());

 model.addAttribute("w3", this.configController.properties.getW3());

 model.addAttribute("w4", this.configController.properties.getW4());

 model.addAttribute("excludeLastQuestions",

this.configController.properties.isExcludeLastQuestions());

 return "startGA";

 }

 @RequestMapping(value = "/startGA", method = RequestMethod.POST)

 public String constant(final Model model, @ModelAttribute

 final Properties constant) {

this.configController.properties.setDEFAULT_GENE_LENGTH(constant.getDEFAULT_GENE_LE

NGTH());

 this.configController.properties.setChapter1(constant.getChapter1());

 this.configController.properties.setChapter2(constant.getChapter2());

 this.configController.properties.setChapter3(constant.getChapter3());

 this.configController.properties.setChapter4(constant.getChapter4());

 this.configController.properties.setChapter5(constant.getChapter5());

 this.configController.properties.setW1(constant.getW1());

 this.configController.properties.setW2(constant.getW2());

 this.configController.properties.setW3(constant.getW3());

 this.configController.properties.setExcludeLastQuestions(constant.isExcludeLastQuestions());

 model.addAttribute("DEFAULT_GENE_LENGTH",

this.configController.properties.getDEFAULT_GENE_LENGTH());

 model.addAttribute("POPULATION_SIZE",

this.configController.properties.getPOPULATION_SIZE());

 model.addAttribute("MAX_ITERATION",

this.configController.properties.getMAX_ITERATION());

 model.addAttribute("DIFFICULTY", this.configController.properties.getDIFFICULTY());

 model.addAttribute("SCORE", this.configController.properties.getSCORE());

 model.addAttribute("KNOWLEDGE_POINT",

this.configController.properties.getKNOWLEDGE_POINT());

 model.addAttribute("ESTIMATED_ANSWER_TIME",

this.configController.properties.getESTIMATED_ANSWER_TIME());

 model.addAttribute("chapter1", this.configController.properties.getChapter1());

 model.addAttribute("chapter2", this.configController.properties.getChapter2());

 model.addAttribute("chapter3", this.configController.properties.getChapter3());

 model.addAttribute("chapter4", this.configController.properties.getChapter4());

 model.addAttribute("chapter5", this.configController.properties.getChapter5());

 model.addAttribute("w1", this.configController.properties.getW1());

 model.addAttribute("w2", this.configController.properties.getW2());

 model.addAttribute("w3", this.configController.properties.getW3());

 model.addAttribute("w4", this.configController.properties.getW4());

90

 model.addAttribute("excludeLastQuestions",

this.configController.properties.isExcludeLastQuestions());

 this.start();

 model.addAttribute("hdnLabels", this.getLabels());

 model.addAttribute("hdnFitness", this.resultFitness);

 model.addAttribute("resultQuestions", this.population.getFittest().getQuestionList());

 return "result";

 }

 /***

 * Algoritmayı baslatmak icindir

 */

 public void start() {

 // Ekrandan girilen değerler

FitnessCalc.setDesiredQuestionCount(this.configController.properties.getDEFAULT_GENE_LENG

TH());

 FitnessCalc.setDesiredDifficulty(this.configController.properties.getDIFFICULTY());

 FitnessCalc.setDesiredScore(this.configController.properties.getSCORE());

FitnessCalc.setDesiredAnswerTime(this.configController.properties.getESTIMATED_ANSWER_TI

ME());

FitnessCalc.setDesiredKnowledgePoint(this.configController.properties.getKNOWLEDGE_POINT()

);

 // Populasyonu yapılandırır

 this.population = new Population(this.configController.getProperties());

 this.questionGenerator.generatePopulation(this.population);

 int generationCount = 0;

 // Amaç fonksiyonunu ve fitness değerlerini hesapla

 this.population.targetFunction();

 this.algorithm.sortAndCalculateFitness(this.population);

 // FITNESS'a göre sıralama

 final StringBuilder sb = new StringBuilder();

 // f(x)'e göre değişiyor ***

 while ((this.population.getFittest().getFitnessValue() <= 10) ||

(this.population.getFittest().getPunishment() != 0)) {

 generationCount++;

 System.out.println("Iteration: " + generationCount + " Fittest: " +

this.population.getFittest().toDetailString());

 this.population = this.algorithm.evolvePopulation(this.population,

this.configController.getProperties());

 this.population.targetFunction();

 this.algorithm.sortAndCalculateFitness(this.population);

 // tekrarli soru olma ihtimaline karsi

 this.algorithm.punishmentControl(this.population.getFittest(),

this.population.getProperties());

91

 sb.append(this.population.getFittest().getFitnessValue() + "-");

 if (generationCount >= this.configController.properties.getMAX_ITERATION()) {

 System.out.println("THE LAST ITERATION COMPLETED !!!");

 break;

 }

 }

 this.resultFitness = sb.toString();

 this.result = this.population.getFittest().toResultString();

 this.resultIteration = "" + generationCount;

 this.population.getFittest().sortByQuestionID();

 this.resultQuestionIDs = this.population.getFittest().getQuestionsAsString();

 this.resultQuestionsDificulty = this.population.getFittest().getDifficultiesAsString();

 System.out.println(this.population.getFittest().toDetailString());

 System.out.println("Iteration : " + generationCount + " Questions: " +

this.population.getFittest().getQuestionListAsString());

 System.out.println("Question IDs : " + this.resultQuestionIDs);

 System.out.println("Difficulties : " + this.resultQuestionsDificulty);

 System.out.println("Know. Points : " +

this.population.getFittest().getKnowledgePointsAsString());

 System.out.println("Q. Scores : " + this.population.getFittest().getScoresAsString());

 System.out.println("Q. S.Ratio : " + this.population.getFittest().getSelectionRatioAsString());

 System.out.println("Q. Chapters : " +

this.population.getFittest().getQuestionChaptersAsString());

 System.out.println("Answer Times : " +

this.population.getFittest().getQuestionAnswerTimesAsString());

 }

 private String getLabels() {

 final StringBuilder sb = new StringBuilder();

 for (int i = 1; i <= this.configController.properties.getMAX_ITERATION(); i++) {

 sb.append(i);

 sb.append("-");

 }

 return sb.toString();

 }

 @RequestMapping(value = "/result", method = RequestMethod.GET)

 public String result(final Model model, @ModelAttribute

 final Properties constant) {

this.configController.properties.setDEFAULT_GENE_LENGTH(constant.getDEFAULT_GENE_LE

NGTH());

 this.configController.properties.setChapter1(constant.getChapter1());

 this.configController.properties.setChapter2(constant.getChapter2());

 this.configController.properties.setChapter3(constant.getChapter3());

 this.configController.properties.setChapter4(constant.getChapter4());

 this.configController.properties.setChapter5(constant.getChapter5());

 this.configController.properties.setW1(constant.getW1());

 this.configController.properties.setW2(constant.getW2());

 this.configController.properties.setW3(constant.getW3());

 this.configController.properties.setExcludeLastQuestions(constant.isExcludeLastQuestions());

 model.addAttribute("DEFAULT_GENE_LENGTH",

this.configController.properties.getDEFAULT_GENE_LENGTH());

 model.addAttribute("POPULATION_SIZE",

this.configController.properties.getPOPULATION_SIZE());

92

 model.addAttribute("MAX_ITERATION",

this.configController.properties.getMAX_ITERATION());

 model.addAttribute("DIFFICULTY", this.configController.properties.getDIFFICULTY());

 model.addAttribute("SCORE", this.configController.properties.getSCORE());

 model.addAttribute("KNOWLEDGE_POINT",

this.configController.properties.getKNOWLEDGE_POINT());

 model.addAttribute("ESTIMATED_ANSWER_TIME",

this.configController.properties.getESTIMATED_ANSWER_TIME());

 model.addAttribute("chapter1", this.configController.properties.getChapter1());

 model.addAttribute("chapter2", this.configController.properties.getChapter2());

 model.addAttribute("chapter3", this.configController.properties.getChapter3());

 model.addAttribute("chapter4", this.configController.properties.getChapter4());

 model.addAttribute("chapter5", this.configController.properties.getChapter5());

 model.addAttribute("w1", this.configController.properties.getW1());

 model.addAttribute("w2", this.configController.properties.getW2());

 model.addAttribute("w3", this.configController.properties.getW3());

 model.addAttribute("w4", this.configController.properties.getW4());

 model.addAttribute("excludeLastQuestions",

this.configController.properties.isExcludeLastQuestions());

 model.addAttribute("hdnLabels", this.getLabels());

 model.addAttribute("hdnFitness", this.resultFitness);

 model.addAttribute("resultQuestions", this.population.getFittest().getQuestionList());

 return "result";

 }

 public Population getPopulation() {

 return this.population;

 }

 public void setPopulation(final Population population) {

 this.population = population;

 }

 public List<Question> getResultQuestions() {

 return this.resultQuestions;

 }

 public void setResultQuestions(final List<Question> resultQuestions) {

 this.resultQuestions = resultQuestions;

 }

}

93

ÖZGEÇMİŞ

Ad Soyad: Ufuk TÜL

Doğum Yeri ve Tarihi: Elazığ / 1980

E-Posta: ufuktul@gmail.com

Lisans: Fırat Üni. Bilgisayar Mühendisliği 2003

Mesleki Deneyim ve İlgi Alanları: Open source platform çözümleri, Java

teknolojileri, makine öğrenmesi, yapay sinir ağları, derin öğrenme, yapay zeka ve

sezgisel algoritmalar

TEZDEN TÜRETİLEN YAYINLAR

▪ Tül, U., Tuncer, A., 2017: Genetik Algoritma ile Akıllı Test Sayfası Oluşturma.

Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 5 (4), 27-34.

DOI: 10.29109/http-gujsc-gazi-edu-tr.341977

