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GENETIK ALGORITMA TABANLI AKILLI TEST SAYFASI URETIiMi
OZET

Son yillarda teknolojinin hizli gelisimine bagli olarak, verilerin hayatin her alaninda
oldugu gibi egitim alaninda da elektronik ortamda etkin bir sekilde saklanmasi ve
kullanilmast miimkiin hale gelmistir. Elektronik ortamlarin ve kagitsiz ¢éztimlerin
giderek yayginlastigi bu ¢agda teknolojinin sagladigi yenilikler her gegen giin
hayatimizi daha da kolaylagtirmaktadir. Egitim sisteminin bir parcasi olan dlgme-
degerlendirme ¢alismalar1 i¢in uygulanan sinavlar da elektronik ortamlarda
hazirlanarak zaman ve mekandan bagimsiz olarak yapilabilmekte ve boylece genis
kitlelere kolay ulasabilme kabiliyeti sunabilmektedir. Sinavlar i¢in hazirlanan test
sorular1 da her birinin kendine ait ¢esitli 6zellikleriyle birlikte elektronik ortamda
saklanabilmekte ve kullanilabilmektedir.

Egitim ve 6gretim alaninda elektronik soru bankalarinin kullanilmasiyla birlikte,
istenilen Ozelliklerde test sayfalarinin hazirlanabilmesi ihtiyaci ortaya ¢ikmaktadir.
Akillt test sayfalarinin olusturulmasi konusunda farkli yontem ve algoritmalar
kullanilarak insan yerine bilgisayar vb. calismakta ve boylece zamandan tasarruf
saglanirken istenilen seviyede kaliteli ve etkin test sayfalar1 olusturulabilmektedir.
Elektronik ortamda bulunan bir soru bankasindan istenen kriterlerde test sayfasi
olusturma islemi icin geleneksel algoritma ve yontemlerinin kullanildig: calismalar
mevcuttur. Fakat bu yontemlerin uygulanmasi genellikle ¢ozlim siiresini uzatir, test
sayfasinin ge¢miste olusturulan sayfalarla aynm1 olmasi gibi durumlar meydana
getirebilir ve test sayfasi {iretimi igin verimi distirebilir. Matematiksel veya
geleneksel yontemlerle ¢6zimi zor olan veya ¢d6zim suresi uzun stiren problemler
icin alternatif olarak sezgisel yontemler sikc¢a kullanilmaktadir. Bu problemler yapay
zeka alaninda kullanilmakta olan sezgisel optimizasyon yontemleri ile agilabilmekte,
kisith sorulara sahip olan bir soru bankasinda bile istenilen kriterlere gére optimum
sonuglar elde edilebilmektedir. Sezgisel optimizasyon yontemleriyle her zaman en
iyi ¢Ozimi Uretme gibi bir ama¢ olmadan, rastgele secilen sorular Uzerinden
gidilerek ¢6ziim en iyiye yakinlastirilabilmektedir. Istenilen ¢ok sayida kriter
degerlendirilerek ¢6ziim i¢in optimum sonug¢ bulunabilmektedir.

Tez calismasinda c¢oklu kisitlara sahip olan test sayfasi olusturma problemine
sezgisel bir yaklagim ile ¢oziim aranmis, ayni zamanda insan is giicii ve zaman
kaybinin azaltilmasi amacglanmistir. Test sayfasi problemine uyarlanmis genetik
algoritma istenilen kriterlerde ve ozelliklerde test sayfasi olusturulmasi islemi hizl
ve etkin bir sekilde saglanmistir. Calismada test sayfasi olusturma isleminin
kullanicilar tarafindan da kolay bir sekilde gerceklestirilebilmesi amaciyla web
tabanli bir uygulama yazilimi gerceklestirilmistir. Calismada kullanilan genetik
algoritma ile standart genetik algoritma sonuglari1 karsilastirmali olarak verilmis ve
caligmada kullanilan genetik algoritmanin daha 1yi sonuglar verdigi goriilmiistir.

Xvii






GENETIC ALGORITHM BASED INTELLIGENT TEST PAPER
GENERATION

SUMMARY

In recent years, due to the rapid development of technology, it has become possible
to store and use the data effectively in an electronic environment as well as in all
areas of life. The innovations provided by technology in this era, where electronic
media and paperless solutions are becoming more and more widespread, make our
lives easier every day. The exams that are applied for the measurement and
evaluation studies which are part of the education system can be prepared in the
electronic environment and can be made independent of time and place, thus offering
easy access to large communities. The test questions prepared for the exams can also
be stored and used in the electronic environment together with their various
properties.

Along with the use of electronic question banks in the education and training, the
need for the preparation of test pages in the desired characteristics emerges. In order
to generate intelligent test pages, different methods and algorithms are used instead
of human being, so that high quality and effective test pages can be generated at the
desired level while saving time. There are studies in which traditional algorithms and
methods are used for generating a test page on the desired test page from a question
bank. However, the application of these methods often increases the solution time,
can cause situations such as the test page being the same as the one generated in the
past and may reduce the yield for test page production. Heuristic methods are often
used as an alternative for problems that are difficult to solve by mathematical or
traditional methods or that have a long solution time. These problems can be
overcome by the heuristic optimization methods used in the artificial intelligence and
optimum results can be obtained according to the desired criteria even in a question
bank having limited questions. With the heuristic optimization methods, the solution
can be brought to the best possible by going through the randomly selected questions
without any aim of producing the best solution. The optimum result can be found for
the solution by evaluating the many required criteria.

In the thesis study, a problem was solved by using an heuristic approach to the
problem of generating test pages with multiple criterias and at the same time, it was
aimed to reduce human labor force and time loss. The genetic algorithm adapted to
the problem of the test page has been provided in a fast and efficient manner to
generate the test page in the desired criteria and specifications. Web-based
application software has been implemented in order to make the test page generation
in this work easier for users. The genetic algorithm used in the study is compared
with the standard genetic algorithm results and it is seen that the genetic algorithm
used in the study gave better results.
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1. GIRIS

Glintimiiz teknolojisi hizli bir gekilde ilerlerken bununla beraber yapay zeka, makine
O0grenmesi, derin 6grenme, sezisel optimizasyon alanlar1 da gelismekte ve daha ¢ok
hayatimiza dokunur hale gelmektedir. Yapay zeka ve makine 6grenmesi konularinda
gelistirilen makine ve robotlar, insanin deneyerek O6grenme yeteneklerini taklit
etmekte, hatalarindan ders ¢ikarabilmekte, insan gibi &grenebilmekte ve verecegi
kararlarda insana yakin davranabilmektedir. Bu gelismelerle beraber teknolojiyi
yakindan takip eden ve teknolojiye hakim olan toplumlarin diger toplumlara bir ¢ok
alanda fark atabilecegi asikardir. Teknolojiyi bilmek ve kullanmak, beraberinde giicl
getirmektedir.

Teknolojinin her alanda hayatimiza girmesiyle bilgi de artik elektronik hale gelip
saklanmakta ve verimli bir sekilde kullanilabilmektedir. Bilgiyi elinde tutan ve etkili

bir sekilde kullanan toplumlar bu alandaki teknolojisini ileri gotiirebilmektedir.

Bu tez galismasinda, yapay zekéa alaninda kullanilan algoritmalardan biri olan genetik
algoritma (GA) ile hatali sonuglardan ¢ikarimlar yaparak kendini iyilestiren ve en iyi
cozlme kisa siirede ulasmay1 hedefleyen bir uygulama gelistirilmistir. Calisma ile
elektronik ortamda tutulan bilgiler kullanilarak egitim sisteminde kullanilan test
sayfalarmin, insan gict kullanmadan verimli ve hizli bir sekilde otomatik olarak
olusturulabilmesi saglanmaktadir. Calisma, insanin gelisiminde temel konu olan
egitim alaninda kullanilan test sayfalarinin olusturulmas: konusunda daha etkin ve
verimli bir yéntem 6ne siirmektedir. Calisma ile beraber gelistirilmis uygulama test
sayfasi olusturma siirecinde insan is giici ve zaman kaybini1 oldukca azaltmakta ve

ciktilarin istenilen kriterlerde, verimli ve kaliteli olmasini saglanmaktadir.

1.1 E-Ogrenme ve E-Smav

Tiim diinyada biiytik bir ilgi gorerek her gecen giin daha ¢ok yayginlagmakta olan e-
O0grenme, bilgi teknolojilerindeki gelismelere paralel olarak gelisip biiyliyen bir

egitim sekli olmaktadir. Biiylik bir hizla gelismekte olan bilgi teknolojileri birgok



alanda oldugu gibi egitim alaninda da cesitli ara¢ ve metotlarin kullanilmasi igin
zemin hazirlamaktadir (Emir, 2006). Bilgi teknolojilerinin hazirlamis oldugu bu
zeminle beraber egitim alaninda oldukca uzun bir yol alinmistir. Gegmisten bugiine
kadar ilerleyen teknolojilerle beraber internet, bilgisayarlar, telefon, tabletler ve diger
araglar e-6grenme alaninin biiyiikliigiinii her gegen giin genisletmekte ve hizli bir
sekilde yayginlasmasini saglamaktadir. E-6grenme sisteminin sahip oldugu esneklik,
zaman ve mekandan bagimsizlik bu sistemin gelismesindeki en Onemli
faktorlerdendir. E-6grenme sisteminin egitim alanina getirdigi yenilikler ile beraber
bu sistemin maliyetleri diigiirmesi en biiyiik avantajlarindan biri olmaktadir (Cheng

ve dig., 2009).

Gegmiste ¢ok yaygin bir sekilde kullanmilmiyor olsa da bilgi ve iletisim altyapisi
konularinda ilerleme saglayan iilkemizde her gegen giin e-6grenme teknolojilerinin,

imkanlarinin ve bunlara bagl olarak kullaniminin artmasi beklenmektedir.

Egitim alanindaki degerlendirme islemleri biiylik Olgliide sinav sistemleriyle
yapilmaktadir. Olgme ve degerlendirme kavramlari egitim sistemiyle birlikte deger
kazanan kavramlardir. Olgme, egitimle kazanilmis olan bilgiler, degerlendirme ise
O0lcme islemine anlam kazandirma seklinde ifade edilebilir. E-smav, elektronik
ortamda 6lgme isleminin yapilmasi olup test tipindeki sinav sistemlerinde en yaygin
sekilde kullanilan sistemdir. Test seklindeki sinavlar diger smav tiplerine gore
hazirlama siiresi, degerlendirme siiresi, rastgele soru se¢imi, maliyet, saklama
kolayligi, kolay erisilebilirlik vb. bircok avantaja sahiptir (Torkul, 2004). Test
seklindeki sinav sisteminde test olusturulmadan 6nce smav zorlugu, soru sayisi,
sinav  siiresi, gegmiste sorunun segilme sikhigi gibi  bircok parametre
belirlenebilmekte olup (st seviye bilgi ve becerilerin dahi élgilebilmesine imkan

saglamaktadir.

Guntumuzde e-YDS, TOEFL, IELTS gibi Ingilizce sinavlari, bununla beraber Cisco,
Microsoft gibi firmalarin sinavlart da elektronik ortamda yapilmakta ve

degerlendirilmektedir (Aksam, 2014).

Bu c¢aligmada konu olan test sayfasi iiretme islemi sonucunda belirlenen sorular,
sadece elektronik ortamda degil klasik yontemlerle de sorularak test sinavi

uygulanabilir.



1.2 Akalh Test Sayfasi

Glinilimiiz diinyasinda bilgi, toplumlarin ekonomik seviyelerini, birbirleriyle rekabet
giiclerini ve gelismislik seviyelerini belirleyen en onemli faktdr haline gelmistir.
Bilgi bu derece onemliyken egitim ve 6gretim alaninda bilgiyi sunmak, etkin bir
sekilde kullanmak ve sorgulamanin da onemi her gegen giin artmaktadir. Bilgi
caginda insanlar yaslari ne olursa olsun her mekanda ve her anda internetle ve ¢esitli
e-0grenme metotlariyla bilgiye erisebilmektedir. Bilgi bu derece Onemliyken
teknolojik gelismelerle beraber 6grenilmis bilgilerin 6l¢iilmesi, degerlendirme amagh
olarak sinavlar ve testler igin etkin ve akilli sekilde soru hazirlanmasi islemleri de

oldukga 6nemli hale gelmektedir.

Elektronik ortamda hizli ve etkin bir sekilde hazirlanmis olan sinavlar her gecen giin
artmakta ve gin gectikce onceden kullanilan klasik smavlarin yerini almaktadir.
Bilgi ve teknoloji ¢aginda elektronik ve kagitsiz olan ¢ozlimlerin zamanla blyuk
Olciide klasik yontemlerin yerine gecmesi kaginilmaz bir gergektir. Bilgilerin artik
tamamen elektronik ortamda saklanacagi bu ¢cagda, egitim sisteminin bir pargast olan
smav sorularinin da, her sorunun kendine ait cesitli ozelliklerle beraber, elektronik
sistemde saklanmasin1 gerektirecektir. Akilli test sayfalarinin 6nemi de bu noktada
baglamaktadir. Sorular elektronik ortama kendi ozellikleriyle beraber aktarilarak
elektronik soru bankalar1 olusturulduk¢a bu soru bankalarindan istenilen 6zelliklerde
akilli test sayfalari olusturulabilmektedir. Bu sayede soru hazirlama bakimindan
zamandan kazan¢ olmakta, bu islemi insan yerine hizli bir sekilde makine yapmakta,
istenilen seviyede olan test sayfasiyla, etkin ve kaliteli sekilde sinav sorulari

olusturulabilmektedir. Akill test sayfalarinin avantajlar1 agagidaki gibi belirtilebilir;

e Zamandan kazang

e Diisiik maliyet

e Insan faktoriiniin ve gereken is giiciiniin azalmasi

e Insan kaynakli hata oraninin azalmasi

e Istenilen seviyede kaliteli sorular olusturulmasi

e Bilgi dl¢limiiniin etkin bir sekilde yapilmasi

e Biyuk soru bankalar1 i¢in ¢ok sorulu testleri verimli olarak hazirlama

e Guvenlik ve givenirlilik



1.3 Test Sayfas1 Olusturma Problemi

Elektronik soru bankalarinda, soru bankasinin biiyiikliigiine, soru ¢esitliligine ve soru
sayllarina gore bir konu ile ilgili simirli sayida soru olabilmekte ve bu durum,
sorularin istenilen kriterlere bagli olarak en uygun sekilde secilme islemini
zorlagtirmaktadir. Soru bankasi igerisinden test sayfasi olusturma igleminin
geleneksel yontemlerle ¢oziilmeye calisilmasi durumunda, test sayfasi daha once
tiretilen test sayfalariyla ayni olabilmektedir. Geleneksel yontemler, test sayfasi igin
istenilen ¢ok sayida kriter s6z konusu oldugunda istenilen ¢6ziim i¢in daha uzun siire
alabilir ya da belirli bir siirede iyi bir ¢6ziime ulasamayabilirler. Yapilan
caligmalarda select-random, backtracking algoritmalar1 gibi algoritmalar kullanilmis
olsa da bu algoritmalarin uzun siire almasi ve istenilen kriterlere uygunlugu
konusunda yeteri kadar basarili olamamasi gibi dezavantajlari olmustur (Jun, 2014;
Zhang ve Zhu, 2015; Zhong ve Wang, 2010). Sezgisel optimizasyon yontemleri
kullanilarak test sayfasi olusturma problemi ¢oziildiigiinde ise ¢ok kisitli sorulara
sahip olan bir soru bankasinda bile kisa siire igerisinde istenilen Kriterlere gore en iyi
veya en iyiye yakin ¢oOziimler elde edilebilmektedir. Sezgisel optimizasyon
yontemleriyle her zaman en iyi ¢ozimu Uretme gibi bir amag gudilmeden, rastgele
secilen sorular tizerinden gidilerek ¢oziim en iyiye yakinlastirilabilmektedir. Istenilen
cok sayida kriter degerlendirilerek ¢oziim igin kabul edilebilir seviyede sonuclar

bulunabilmektedir.

1.4 LiteratUr Arastirmasi

Aksam (2014) tarafindan gergeklestirilen yiiksek lisans tez caligmasinda, soru
bankas1 {izerinden test sayfasi olusturulmustur. Gelistirilen web uygulamasinda
sorular zorluk seviyeleri girilerek hazirlanabilmektedir. Test sayfasi olusturulurken
amag¢ fonksiyonunda kriter olarak yalnizca sorunun zorluk seviyesi yer almakta olup
problemin ¢6zumi igin sezgisel yontemlerden biri olan pargacik siirii optimizasyon

(PSO) yontemi tercih edilmistir.

Karatas (2009) tarafindan gerceklestirilen yiiksek lisans tez calismasinda, akilli bir e-
soru smav sistemi tasarimi ve uygulamasi yapilmistir. Buna gore dil isleme teknikleri
kullanilarak sozciiklerden soru ciimleleri elde edilebilmektedir. Ders igerigi ile ilgili

metinlerin sisteme girilmesiyle beraber o metinlerle ilgili sorular olusturulmakta, bu



sayede Ogrencinin konu hakkindaki bilgisini ve eksiklerini anlamasi
hedeflenmektedir. Dogal dil ¢6ziimleme yoOntemlerinin ve ciimle 6gelerinin
¢Ozlimleme algoritmasinin kullanildigi bu ¢alismada tiretilmis olan anlamsiz sorulari

O0gretmenin hazirlama asamasinda elemesi beklenmektedir.

Beyazsekeroglu (2015) tarafindan gergeklestirilen yuksek lisans tez calismasinda,
Moodle 6grenme yonetim sistemleri tizerinde 240 soruluk bir soru bankasi i¢inden
GA kullanilarak test sorulari hazirlanmistir. Yapilan bu ¢alismada egitmen, soru
sayis1 ve smavin ortalama zorluk seviyesini girmekte ve amag fonksiyonunda da bu
degerler kullanilarak test sayfasi olusturma problemine ¢6ziim aranmaktadir. Ayrica
amag¢ fonksiyonunda sorularin gegmis sinavda segilme durumlart da ihlal kisitlamasi

olarak degerlendirilmistir.

Yildirim (2008) tarafindan gergeklestirilen calismada, bir soru bankasi lizerinde GA
ile test sayfasi olusturma problemine ¢oziim aranmistir. Bu calismada, standart
GA’nin test sayfasi olusturma problemi iizerinde dogrudan kullanilamayacagi, testte
ayni sorularin olusabilecegi ifade edilmistir. Calismada tekrarli sorulari dnleyen bir
mutasyon islemi Onerilmis, yapilan analiz ve testlerde farkli zorluk seviyeleri ve
farkli soru sayilari i¢in Onerilen algoritmanin basari degerleri incelenmistir. Test
sayfasi olusturma probleminin ¢dziimii i¢in amag¢ fonksiyonu iginde sorularin zorluk

seviyeleri ve ge¢misteki sorulma siklig1 bilgileri kullanilmistir.

Zhong ve Wang (2010) tarafindan gergeklestirilen ¢alismada, test sayfasi olusturma
problemininin GA ile ¢6ziimii {izerinde durulmustur. Calismada GA igin uygulanan
farkli caprazlama ve mutasyon islemlerinin, ¢ok Kriterli test sayfasi olusturma
problemi iizerindeki verimi gosterilmistir. Caprazlama isleminde geleneksel
yontemden farkli olarak bir olasilik formilii kullanilmigtir. Soru sayisi, soru tipi,
toplam puan ve siire gibi kriterler kullanilarak amag¢ fonksiyonunda sorunun zorluk

derecesinin dikkate alindig: belirtilmistir.

Nguyen ve dig. (2011) tarafindan gergeklestirilen calismada, test sayfasi olusturma
probleminin ¢6ziimii i¢in sezgisel algoritmalardan daha farkli bir metot 6nerilmistir.
Calismada kisit tabanli bol ve yonet teknigi (Constraint-based Divide-and-Conquer
technique) 6nerilmekte olup bu teknik GA, karinca koloni algoritmasi: (KKA), PSO,
tabu arama algoritmasi gibi farkli sezgisel metotlarla karsilastirilmis ve dort farkl

veri seti icin sonuglar degerlendirilmistir. Onerilen algoritmanin, zaman konusunda,



kisitlara uyum konusunda, kalite ve farklilik konularinda diger metotlara gore daha
performansli oldugu test sonuglarina dayanan grafiklerle gosterilmistir. Calismada
Onerilen algoritmanin test sayfasi probleminin ¢6ziimii i¢in sezgisel yontemlere gore

daha basarili oldugu 6ne siiriilmiistiir.

Bhirangi ve Bhoir (2016) tarafindan gerceklestirilen c¢alismada, test sayfasi
olusturma problemine rastsal bir algoritma yaklasimi1 sunulmustur. Rastsallik esasina
dayanan shuffling algoritmasinin kullanildigi bu c¢alismada secgilen sorular
isaretlenerek tekrar se¢ilmelerinin Oniine gecilmistir. Rastgele bir yaklagimla beraber
sorularin tekrarsiz sekilde olmasi lizerinde durulan ¢alismada, sistemi kullanacak
kisiler icin rol bazli bir yetkilendirme islemleri yapilarak sorularin giivenliginin,
kaynaklara erisimin kontrol altinda tutuldugu belirtilmis olup bununla ilgili Java

platformunda bir uygulama gelistirilmistir.

Yong-kang ve Wang-ren (2011) tarafindan gerceklestirilen calismada, otomatik test
sayfasi iiretimi konusuna ¢6ziim ararken aralik bulanik teorisi (interval fuzzy theory)
kullanilmis  ve test sayfasiin zorluk seviyesinin  kapsamli bir sekilde
degerlendirildigi belirtilmistir. Calismada kriter olarak zorluk seviyesi ve bilgi puani
ele alinmigtir. Test sayfasinin zorluk derecesi degerlendirilirken bulanik mantik
teorisi ile sayfalar degerlendirilmekte ve bu yaklasim Ogrencilerin cevaplariyla
beraber kombine edilmektedir. Sinavlarda kullanilabilecek gevrimici bir sistem
Uzerinde ¢alisabilen ve otomatik olarak test sayfasi firetebilen bir yaklasim

gelistirilmistir.

Hairui ve Hua (2008) tarafindan gergeklestirilen ¢alismada, test sayfasi olusturma
problemine ¢oziim aranirken Ogretmen, test sayfasi, internet, sinav bazli sosyal
kavramlar tzerinde ¢oklu faktor tabanli bir yaklagim kullanilmistir. Algoritma iginde
rastgele secim (random selection) ve yaklasik eslestirme (approximate match)

yontemleri uygulanmustir.

Li ve dig. (2016) tarafindan gergeklestirilen ¢alismada, nesne tabanli programlarda
test veri liretiminin dogrulugu ve test verisi tiretirken uyulmasi gereken yontemlerin
sirasint  Ongorecek test zinciri kavrami sunulmustur. Calismada nesne tabanli
programlarin test veri iretimi i¢in bir ¢ergeve ¢izilmistir. Parametre listesinin
guncellenmesi icin PSO algoritmasini ve metot sirast giincellemesi igin GA’y1

kullanmislardir. Calismada test verilerini kullanarak baslangi¢ niifusunu iyilestirmek



icin bir yontem sunulmustur. Sonuglarin 6nerilen yontemin nesne tabanli programlar

i¢in test verileri liretmede basar1 oranini ve verimliligi arttirdigi ifade edilmistir.

Ming-Zhu ve dig. (2013) tarafindan gergeklestirilen ve otomatik test sayfasi
iretiminin sinav sistemindeki 6neminin vurgulandig: ¢alismada, gelistirilmis bir GA
yaklasimi Onerilmektedir. Calismada rastgele iterasyon yontemi, standart GA ve
Onerilen GA iizerinde deneysel sonuglar karsilagtiritlmis olup Onerilen GA’nin
digerlerine gore zaman ve hata orani1 bakimindan daha iyi oldugu belirtilmistir. Soru
sayis1, soru tipleri ve puan gibi bilgiler istege gore belirlenerek amag¢ fonksiyonunda

ise zorluk derecesi, bilgi puani gibi faktorlerin g6z 6nulne alindigi ifade edilmistir.

Jia ve dig. (2011) tarafindan gergeklestirilen ¢alismada, bilgisayar agindaki test
sistemlerinde otomatik test sayfasi olusturma isleminin Onemi anlatilarak
gelistirilmis bir GA ile probleme ¢oziim arandig: ifade edilmistir. Kullanilan soru
bankasi i¢in soru tipine gore her boliime ait soru sayisi, ortalama zorluk, ortalama
farklilik, ortalama bilgi puani gibi bilgileri gosterilmistir. Calismanin sonuglari,
Onerilen algoritma, standart GA ve geri izleme (backtracking) algoritmalariyla

karsilastirilmustir.

Xiumin ve dig. (2011) tarafindan gergeklestirilen calismada, GA kullanilarak akilli
test sayfasi iiretme problemine ¢6zim arandigi ifade edilmistir. Calismada GA igin
kullanilacak olan baslangi¢ niifusu rastgele degil, optimize edilip iyilestirilmis olarak
olusturulmustur. Duruma gore kendini adapte eden caprazlama ve mutasyon
islemleri kullanilmistir. Bu yonteme gore dnceki niifusun ve yeni niifusun ortalama
uygunluk degerleri karsilastirilarak bunun sonuca gére mutasyon ve g¢aprazlama
islemlerinin uygulanip uygulanmayacagina karar verilmektedir. Adaptif yontem ile
standart yontem, rastgele olusturulan nifus ile iyilestirilmeyle olusturulan nufus gibi
farkl1 yontemler test edilerek, sonuglar gosterilmistir. Onerilen ydntemlerin standart

yontemlere gore daha basarili sonuclar verdigi agiklanmistir.

Jun (2014) tarafindan gergeklestirilen ¢alismada, gelistirilmis bir GA ile test sayfasi
olusturma probleminin ¢ozlldiigli ifade edilmistir. Calismada boliim bazli bir
caprazlama islemi uygulanmistir. Caprazlama isleminde iki birey arasindaki sorular
caprazlanirken ayni1 boliimlerde olmasi gerekmektedir ve her bir bdliime ait sorular
kendi aralarinda caprazlanmaktadir. Mutasyon ve caprazlama islemleri uygulanirken

belirli bir olasilik formiiline gore islemlerin yapilmasina karar verilmigtir. Test



sayfasinin  mevcut Ozellikleri g6z Oniine alinarak caprazlama isleminin
uygulanmasina karar verilmis ve bu sekilde adaptif bir yontem kullanilmistir.
Calismada kullanilan amag¢ fonksiyonu iginde teste ait puan, bilgi puani, zorluk
derecesi, farklilik puani gibi faktorler bulunmaktadir. Calismada onerilmekte olan
yontemin standart GA’ya gore daha iyi sonuglara sahip oldugu testler sonucunda elde

edilen grafiklerle gosterilmistir.

Zhang ve Zhu (2015) tarafindan gergeklestirilen ¢alismada, GA ile otomatik test
sayfasi olusturma problemi i¢in ¢oziim gelistirildigi belirtilmistir. Calismada farkli
olarak, boliim bazli bir ¢aprazlama islemi olmayip soru tipine gore ¢caprazlama islemi
uygulanmistir. Caprazlama isleminde iki birey arasindaki sorular ¢aprazlanirken ayni
soru tiplerinde olmalar1 kurali uygulanmistir ve her bir soru tipine ait sorular kendi
aralarinda ¢aprazlanmaktadir. Amac fonksiyonunda kriter olarak zorluk seviyesi ve
puan kriterleri kullanilmistir. Elde edilen sonuglar, slreye gore, iterasyon sayisina
gore, soru tiplerine gore karsilastirlmis ve standart GA’ya gore Onerilen

algoritmanin daha iyi sonuclar verdigi ifade edilmistir.

Sun (2009) tarafindan gergeklestirilen ¢caligmada, test sayfasi olusturma problemi igin
PSO yonteminden gelistirilmis olan ayrik PSO yontemi onerilmektedir. Onerilen
yontemde hata oranlari ile agirliklarin ¢arpimi1 amag fonksiyonunu olusturmaktadir.

Yapilan calismada ¢aprazlama ve mutasyon islemleri de kullanilmastir.

Shan (2010) tarafindan gergeklestirilen ¢alismada, GA iizerinde fakli bir strateji
kullanilarak, ¢oklu is pargacigr (multi-threaded) yaklasimiyla test sayfasi iiretme
problemini daha hizli sekilde ¢6zecegi One siiriilen bir ¢oziim gelistirildigi ifade
edilmistir. Standart GA ile onerilen algoritma karsilastirilarak, dnerilen algoritmanin

daha iyi siirelerde ve daha etkin bir sekilde problemi ¢6zdiigii belirtilmistir.

Xiong ve Shi (2010) tarafindan gerceklestirilen calismada, GA ile test sayfasi
olusturma problemine ¢6zlim aranirken matematiksel model iizerinde durulmustur.
Calismada standart GA iizerinde ¢aprazlama ve mutasyon islemlerinde iyilestirmeler
yapilmis olup parametrelerin girildigi ve sonuclarin gosterildigi bir uygulama da
gerceklestirilmistir. Caprazlama ve mutasyon islemleri belirlenmis bir olasilik
formillne gore gergeklesmektedir. Caprazlama isleminde standart GA’ya gore farkl
bir yaklagimla ¢ocuk bireylerin elendigi bir yapt tasarlanmistir. Buna gore

caprazlama isleminden sonra olusan ¢ocuk bireylerin uygunluk degerleri



hesaplanarak ebeveyn bireyleriyle Kkarsilastirilmis ve bunun sonucunda ¢ocuk
bireylerin uygunluk degerleri ebeveynlerden daha kotii ya da esit ise bu sarti
saglayan cocuk bireyler elenmistir. Bu sekilde niifusun daha iyi olacagi one

stirtilmistiir.






2. OPTIMIZASYON VE SEZGISEL ALGORITMALAR

2.1 Optimizasyon

Bir problemin ¢o6ziimiinde, belirli kosullar altinda olabilecek biitlin alternatifler
arasindan en iyisinin se¢ilme islemine optimizasyon denir. Farkli bir ifadeyle
optimizasyon, soruna en uygun ¢oziimiin bulunmasidir. Karmasiklik derecesi fazla

olan ve karar verme islemlerinin gerektigi problemler optimizasyon problemleridir.

Bilgisayar bilimlerinin de dahil oldugu ¢esitli bilim ve miihendislik problemlerinde
optimizasyon amaciyla birden fazla mevcut ¢6ziim arasindan en iyisi aranir.
Optimizasyon problemlerinin ¢dziimii i¢in amaglanan islem fonksiyonun degerini
minimum ya da maksimum yapmaya calismaktir. Bir fabrikanin verimliligini
arttirmak i¢in tiretimini arttirmasi maksimuma optimizasyon, Uretim stresini azalmak
ise minimuma optimizasyon yapmak olarak gorilur. Matematiksel optimizasyon,
problemlerin ¢6ziimu i¢in matematiksel bir formile dayanarak en iyi sonucu bulan
yontemlerdir. Bu yontemlerde belirsizlik, rastgelelik, tahmin ve olasiliga dayal
islemler yer almaz. Deterministik yontemlerde algoritma ka¢ defa calistirilirsa

calistirilsin ayn1 sonug iiretilmektedir (Sel, 2013).

2.2 Sezgisel Algoritmalar

Sezgisel algoritmalar, karmasik ve biiyilk boyutlu optimizasyon problemlerinin
¢oziilmesinde optimum sonuca yakin makul sonuglar vermeyi hedefleyen
yontemlerdir. Sezgisel algoritmalar aslinda giinliik hayatimizda siirekli kullaniyor
oldugumuz algoritmalardir. Ornegin bir yere giderken bulundugumuz konuma gére
yon duygularimiza gilivenerek yolun bizi nereye gotiirecegini bilmeden hareket etmek
ve yol ayrimlarinda sezgilerimizi kullanarak yonumuzi belirlemek bdyle bir

yaklasimdir.

Bilgisayar bilimleri ve yapay zeka alaninda problem ¢6zme tekniklerinden biri olan

sezgisel algoritmalar kullanilarak bulunan sonuglarin en iyi olup olmadigi
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6nemsenmez, bunun yerine en iyi sonuca yakin sonuglar da kabul edilebilir. En iyi
sonucu garanti etmeyen bu algoritmalar makul bir siirede en iyi sonuca yakin bir
¢0zUmU garanti ederler. Bu yapilariyla beraber en iyiye yakin sonuca hizli ve kolay
bir sekilde ulasmay1 hedeflemektedirler. Sezgisel algoritmalar iyi bir sonuca ne kadar
kisa siirede yaklasiyorlarsa o kadar etkili olduklar1 kabul edilebilir. Bununla beraber
sezgisel algoritmalar, problemi makul bir zamanda cozerken, bir problemi her
defasinda aymi siirede ¢ozeceklerini de garanti etmezler. Sezgisel algoritmalar
problemin kesin bir ¢6ziime sahip olmadigi ve problemin bircok parametre ve

kisitlara bagli olmasi durumunda, 6grenme amagl olarak tercih edilebilirler.

Genellikle dogadan esinlenerek gelistirilmis olan sezgisel algoritmalar pek gok
problemin ¢dziimiinde basarili sonuglar elde etmislerdir. Ozellikle bilyiik boyutlu
veya karmasik optimizasyon poblemlerinde kabul edilebilir siirelerde en iyiye yakin
¢oziimler bulabildiklerinden dolayr son yillarda sikg¢a tercih edilmektedir.
Problemlerin kesin tek bir ¢6ziime sahip olmadigi durumlar yine sezgisel
algoritmalarin tercih edilme sebeplerindendir. Literatiirde basarili bir sekilde
problemlere ¢6zim Uretebilen sezgisel algoritmalara 6rnek olarak; genetik algoritma,
parcacik siirii optimizasyonu, karinca kolonisi algoritmasi, tabu arama, benzetimli
tavlama, yapay ar1 kolonisi algoritmasi gibi pek¢ok yontem verilebilir. Sezgisel

optimizasyon metotlar1 Sekil 2.1 oldugu gibi siniflandirilabilir (Akay, 2009).

Sezgisel

Optimizasyon

Metotlan
I 1
Deterministik Olasilik Temelli
Metotlar Metotlar
|
' ]
Tek Coziimiin .
+ TabuArama Gelistirildigi Popiilasyon Tabanh
Metotlar

Metotlar

* Tepe Tirmanma
= BenzetimliTavlama

Evrimsel Metotlar

= Evrimsel Algoritma

= Genetik Algoritma

* Farksal Geligim

» Bagisiklik Algoritmasi
Siirii Zekasina Day. Met.
* Karinca Kolonisi

= Parcacik Stris

* YapayAri Kolonisi

Sekil 2.1 : Sezgisel algoritmalarin Siniflandirilmasi.
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2.2.1 Tepe tirmanma algoritmasi

Iteratif yerel arama algoritmalarindan biridir. Bir grafikte bulunan maksimum degere
sahip tepe noktasinin aranmasi islemine tek bir noktadan baslanir (Ackley, 1987). Bu
grafikte bulunan noktalar aranirken yapilan hareket tepe tirmanmaya benzetilmis ve
algoritma admi bu sekilde almistir. Algoritmadaki amag¢ baslangic noktasi olarak
belirlenen bir noktadan komsu noktalara bakarak daha iyi bir sonucu aramaktir. Her
iterasyon ile mevcut ¢6zUmin komsusundaki ¢oziimlere bakilir ve komsu
cozimlerde mevcut ¢6zimden daha iyi bir ¢6ziim varsa yeni ¢6ziim olarak secilir.
Komsu ¢6ziimlerin olas1 durumlari asagida belirtilmistir;

e Mevcut noktanin bir tarafinda ¢oziim iyilesirken diger tarafinda ¢oziim
kotiilesebilir.

e Mevcut noktanin iki tarafindaki komsularda da ¢oziim kotiilesebilir. Bu
durumda algoritma bulundugu noktay1 tepe noktasi sanarak yerel optimum
degerde takilmis olur ve algoritma bu noktada kalarak daha iyi sonuglari
bulamaz.

e Mevcut noktanin iki komsusunda da ¢oziim iyilesiyor olabilir. Bu durumda

bulunulan nokta ¢6zim icin kot sonuclardan biri olabilir.

Tepe tirmanma algoritmas: sezgisel arama algoritmalar1 arasinda en iyisi degildir
ancak basit yapisi, tasarim kolayligi ve ¢oziime hizli ulagma gibi avatajlarindan
dolay1 basit optimizasyon problemlerinde tercih edilmektedir. Klasik tepe tirmanma
algoritmasindan farkli olarak iki yone tirmanan, rastgele komsu secilen, rastgele
tekrar baglamali algoritmalar gibi tepe tirmanmanin farkli sekillerde gelistirildigi

algoritmalar da mevcuttur.

2.2.2 Tabu arama algoritmasi

Tabu arama, Glover tarafindan gelistirilmis iteratif bir arama algoritmasidir. Tepe
tirmanma algoritmasinda istenmeyen bir durum olan yerel optimum degerlere
takilmayarak genel optimum degeri bulmaya caligir (Glover, 1989). Hafiza olarak bir
tabu listesi kullanir ve her iterasyonda en iyi komsu ¢Oziimii bir degerlendirme
fonksiyonu kullanarak bulur. Her iterasyonda gergeklestirilen hareket tabu listesinde
tutulur. Karsilasilan durumlar hakkinda uygulayan tarafindan belirlenmis olan
bilgiler belirli bir uzunlukta olacak sekilde bu listede tutulmaktadir. Bu sayede arama

isleminin sonsuz dongii olan ¢ember hareketini yapmasi engellenir ve ¢ozlime daha
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kolay ulasmak hedeflenir. Baslangic ¢6zimi rastgele ya da bir algoritmaya gore
secilebilir. Yeni ¢oziim olusturma fonksiyonu problemin tiiriine gore degisebilir ve

sonucu dogrudan etkiler.

Tabu arama metodunda onceki iterasyonlarda karsilasilan durumlar hafizada tutulur
ve belirli bir stratejiye gore uygulanacak segimlerle daha iyi sonuglara ulasilmaya
calisilir. Bu stratejiye gore belirlenmis kotli bir secim rastgele olarak belirlenmis bir
secimden daha iyi olabilmektedir. Hafizanin kullanildigi akilli bir sistemde
belirlenmis olan stratejiye gore yapilacak kotii bir secim bu stratejinin iyilestirilmesi

icin yol gosterici olabilmektedir (Glover ve Laguna, 1997).

Tabu arama algoritmasinda kisa ve uzun siireli hafiza tutulabilir. Tabu listesi kisa
stireli hafiza olarak degerlendirilir, arama sirasinda yapilan hareketler sinirli sayili
olan bu tabu listesinde tutulur. Belirli bir stire sonunda algoritmanin sabit bir ¢6ziime
bagl kalmasini1 6nlemek amaciyla tabular yikilarak kayitlar tabu listesinden ¢ikarilir.
Tabu listesinden kisitlar1 ¢ikarma islemi genellikle FIFO (ilk giren ilk ¢ikar) stratejisi
ile yapilmaktadir. Uzun siireli hafiza ile arama iglemi ¢6ziim uzayinda simdiye kadar
arama yapilmamis yeni bdlgelere yonlendirilir (Reeves, 1993). lyi ¢oziimlerin
bulunma olasilig1 tabu listesi ile beraber uzun siireli hafiza kullanimiyla beraber
guclendirilir. Arastirmanin sadece belirli donemi degil biitiinii ile ilgili bilgiler bu
hafiza tiiriinde tutulabilir (Giilcli, 2006). Algoritma daha onceden belirlenmis olan
maksimum iterasyon sayisina ulaginca ya da bulunan ¢dziimiin yeterlilik sartini

saglamasi durumunda sonlandirilir.

2.2.3 Benzetimli tavlama algoritmasi

1983 yilinda Kirkpatrick ve arkadaglar1 tarafindan onerilmis olan bu algoritma metal
gibi kati maddelerin 1sitilmas1 ve sonrasinda yavas yavas sogutulmasi islemine
benzetilmis ve adin1 buradan almistir (Kirkpatrick, 1983). Kati malzemenin sekil
almasi ve malzemeyi islemenin kolaylasmasi amaciyla ona uygulanan 1s1l iglemlere
genel olarak tavlama adi verilir. Bu islemde, belirli bir sicakliga ulasincaya kadar
isitilan malzeme sicakligt maksimum dereceye geldikten belirli bir siire sonra
sogutulma islemine baslanir. Bu soguma isleminin dogru sekilde uygulanmasi

durumunda malzemeden beklenilen sonuglar alinabilir.
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Yerel optimum degerlerinden kurtulmak i¢in daha kotii olan komsu ¢oziimler de
kiigiik bir ihtimalle de olsa kabul edilebilir. Boylece genel optimum noktasina

ulasilabilir.

Algoritmada yerel optimum degerlerden korunmak igin komsu c¢oziimler bazi
durumlarda kabul edilmekte ve bu sekilde genel optimum degeri aranmaya
calisilmaktadir. Komsu ¢oziimlerin kabul edilmesini saglayan olasilik degeri ise
sicaklik degerine baghdir. Algoritmada sicaklik yiiksek olursa olasilik degeri de
yiiksek olmakta, sicaklik diisiik oldugunda ise olasilik degeri azalmaktadir, bundan

dolay1 sicaklik degerinin uygun bir seviye ile baslatilmasi gerekmektedir.

Algoritma 0zellikle lineer bir modele sahip olmayan ve kombinasyonel problemlerin

¢Oziimiinde kullanilmaktadir.

2.2.4 Karinca koloni algoritmasi

Dogadaki canlilardan esinlenen karinca koloni algoritmas: (KKA), optimizasyon
problemlerinin ¢dzlimleri i¢in etkin bir sekilde kullanilan popiilasyon tabanl
algoritmalardan biridir (Dorigo, 1997). Bugtine kadar bircok KKA gelistirilmis olup
bunlardan ilki Dorigo ve arkadaslar tarafindan gelistirilerek Gezgin Satic1 Problemi

(Travelling Salesman Problem) (zerinde uygulanmistir (Maniezzo, 2004).

Dogadaki gercek karinca kolonileri incelendiginde karincalarin birbirleri arasindaki
bagi koruyan bir feromon maddesi oldugu gorilmiistiir. Feromon, karincalarin
yonlerini bulmasini, birbirleriyle iletisim kurmasini saglayan karincalarin iiretmis
oldugu dogal bir salgidir. Karincalarin gectikleri yolda feromon salgisinin fazla
olmast o yolun karincalar tarafindan daha yogun sekilde kullanildigin1 gostermekte
ve buna bagl olarak bu yolun secilme olasiligini arttirmaktadir. KKA’da bu
durumdan esinlenilir ve sanal karincalar kullanilarak mesafelerin belirli oldugu bir
model zerinden en kisa yolu bulma problemine ¢6ziim aranir. Birim zamanda kisa
olan yoldan ge¢en karincalarin miktar1 uzun yoldan giden karincalarin miktarina gore
daha fazla olacak ve bu da kisa yolda uzun yola gére feromon miktarinin daha fazla
olmasima sebep olacaktir. Kisa olan yolda fazla, uzun olan yolda ise az feromon
birikir ve bundan dolay1 feromon miktar1 ile yol uzunlugu arasinda ters orantili bir

iligki olur (Url-2).
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3. GENETIiK ALGORITMA

Genetik Algoritma (GA), dogadaki segim ilkelerini temel alarak calisan arama ve
optimizasyon yontemlerinden biridir. GA, evrim teorisinden esinlenerek gelistirilmis
olup biyolojik evrimin isleyis siirecini taklit eden bir algoritmadir. Bu yapisiyla da
yapay zekanin hizla gelismekte olan alanlarindan biri olarak kabul edilmektedir.
Mevcut ¢Oziim, algoritmanin c¢alismasiyla silirekli olarak daha da iyilestirilmeye
caligilir. Algoritma, c¢aprazlama, mutasyon ve se¢im islemleri olmak Uzere

genetikteki ¢ temel biyolojik sure¢ tizerine kurulmustur.

GA’y1 bugiinkii yapisindan ¢ok farkli olsa da ilk olarak Bagley, Rosenberg, De Jong
gibi isimler kendi ¢alismalarindan kullanmislardir. Bagley 1967 yilinda bir oyun
programini yenmek tiizerinde c¢alisarak GA’min bugine ait temellerini atmistir
(Ozkan, 2003). Aym1 donemlerde Rosenberg’de yaptigi calismasinda GA’ya
biyolojik faktorleri dahil etmistir. De Jong ise algoritmaya fonksiyon minimum

degerini ekleyerek matematiksel olarak katki saglamistir (Goldberg, 1989).

GA ilk olarak Michigan Universitesinde psikoloji ve bilgisayar bilimi uzmani olan
John Holland tarafindan literatiire kazandirilmistir (Goldberg, 1989). Holland’in
1975 yilinda yaymnlanan “Adaptation in Natural and Artificial Systems” adli
kitabinda GA biyolojik sistemlerin soyut bir hali olarak ifade edilmistir (Holland,
1992).

Holland’in doktora 6grencisi ve ayn1 zamanda bir ingaat miithendisi olan Goldberg
bayragi Holland’dan devralarak GA’y1 pratikte daha ilerilere tasimistir. Goldberg’in
yayinlanan kitabina kadar GA’nin gergek hayatta kullanimi miimkiin olmayan ve
fazla yarar1 olmayan bir arastirma konusu oldugu diisiiniilmiistiir. Ancak Goldberg,
yazdig1 kitabinda (Goldberg, 1989) GA’nin kullanilabilecegi 83 farkli uygulamay1
sunarak, GA’nin pratikte yararli bir arastirma konusu oldugunu géstermistir. Oyle ki
Goldberg’in gaz boru hatlariin denetimi iizerine yaptigr doktora tezi doktora tezi
(Goldberg, 1983) ona 1985 yilinda National Science Foundation geng¢ arastirmact

Odiiliinii kazandirmastir.
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Algoritma, genetikten esinlenen bir yapida dogal sec¢im, ¢aprazlama, mutasyon
islemleriyle bir sonraki nufusun (populasyon) iyilestirilmesini hedefler. GA,
kromozomlardan olusan bir nifusa sahiptir. Her bir kromozom en kiigiik yap1 tasi
olan genlerden olusur. Se¢im isleminde, nufus icinde yer alan bu koromozomlardan
ciftlesme yapilacak olanlar belirlenir. Caprazlama isleminde, se¢ilmis olan iki
kromozomun genlerinin karsilikli olarak degistirilmesi ile yeni kromozomlar
olusturulur. Mutasyon islemi, rastgele olarak kromozomlardaki bazi genlerin
degistirilmesiyle yapilir. Bu yaklasim, se¢ime daha uygun kromozomlarin ¢iftlesmesi
sonucu olusacak olan yeni nesillerin daha kaliteli ve uygun olacagi temeline dayanir.
Holland’in kesfetmis oldugu nufus temelli caprazlama, mutasyon gibi metotlar bu

alanda buyuk bir yenilik olmustur.

GA baslangic ¢oziimiinden bagimsizdir ve ¢éziim adaylar1 ilizerinden paralel olarak
arama yapar. Niifus ad1 verilen ve i¢inde rastgele olusturulmus adaylarin olusturdugu
bir ¢6ziim kiimesiyle algoritma baslatilir. Bu niifus, genetikte kullanilan ¢aprazlama,
mutasyon ve se¢im gibi temel metotlar ile iyilestirilirken, yeni olusacak olan niifusun
oncekine gore daha iyi olacagi beklenir. Niifusun iyilestirilme siireci en iyi ¢éziim
bulunana kadar ya da en basta belirlenmis olan bir déngl limiti tamamlanincaya

kadar devam eder.

GA, miihendislik, finans, pazarlama, {iretim, ¢izelgeleme, yerlesim, sistem
giivenilirligi, tasima, arag rotasi belirleme, makine 6grenmesi, yapay zeka gibi bir
cok alanda optimizasyon problemlerinin ¢oziimii i¢in kullanilmaktadir. GA’da

kullanilan temel terimler asagida verilmistir.

3.1 Gen

Bireyin kalitsal ozelliklerini tasiyan kalitmin en temel initesidir. Gen, genetik
unsurun en kiiglik yap1 tasidir. Kalitsal ozellik tasiyan bu genlerin bir araya
gelmesiyle tiim bilgileri tagiyan kromozomlar olusur. GA’da hedef problemin aday
¢ozlimlerini olusturan bir kromozomdaki anlamli en kiglk bilgi gen olarak ifade

edilmektedir.
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3.2 Kromozom (birey)

Genlerden olusan dizidir. Birey olarak insan diigiiniilecek olursa; insan viicudunda
trilyonlarca hiicre bulunmaktadir. Her bir hiicrenin c¢ekirdeklerinde ise 23 cift
kromozom bulunur. Bu kromozomlar ise ebeveyn olan anne ve babadan gelmektedir.
GA’da kromozom nifus igindeki bireye karsilik gelmekte olup ayni zamanda hedef

problemin aday1 ¢6ziimiinii temsil etmektedir.

3.3 Nifus (populasyon)

Kromozomlardan olusan bir topluluktur. Nufus igerisindeki her bir birey, problemin
olast bir ¢oziimiinii temsil etmektedir. Nufus her jenerasyonda daha iyi bireylerden
olusmaya galisacagi i¢in zamanla degisip iyilesmektedir. Probleme gore nifusta yer
alan kromozom sayisinin fazla olmasi, daha fazla hesaplama gerektirerek ¢ézlime
giden zamani arttirmakta, kromozom sayisinin sayinin az olmasi ise nufus igindeki
cesitliligi yok edebilmektedir. Niifus i¢inde yer alacak kromozom sayist problemin
yapisina uygun olarak belirlenebilir. Nifus, kromozom ve genler arasindaki iliski
Sekil 3.1’de, GA’nin akis diyagrami Sekil 3.2°de gosterilmektedir.

Kromozom 1 Gen Gen

Kromozom 2 Gen Gen

Kromozom 3 Gen Gen

NUFUS

& Kromozom Dizisi =

Kromozom n Gen Gen

< Gen Dizisi =

Sekil 3.1 : Nufusta kromozom ve genlerin gorinimd.



Basla

|

Baslangig
nifusu
Amag
> Fonksiyonu
Optimizasyon
Secim kriteri
saglandi mi?
Caprazlama
v Eniyi ¢ozim
— Mutasyon
\ 4
Bitir

Sekil 3.2 : Genetik algoritma akis diyagrami.
3.4 Kodlama

GA’nin 6nemli bir kism1 olan kodlama, problemin ¢6ziimii i¢in en basta belirlenmesi
gereken yapilardandir. Olusturulacak olan GA’nin hizli ve saglikli ¢alismasi i¢in
kodlama dogru tercih edilerek yapilmalidir. Probleme gore uygulanabilecek farkli

kodlama tiirleri vardir.

3.4.1 ikili kodlama

Bu kodlama tiirlinde her kromozom 0 ve I’lerden olusan bit dizisidir. Bu bit
disizindeki her bit ¢ézimdin belli bir karakteristik 6zelligini tasir. Bit dizisi ise bir
sayty1 temsil etmektedir (Nabiyev, 2005). Bu kodlama tiirli, arama uzaymi bazi

durumlarda istenilen sekilde temsil edememektedir.

3.4.2 Deger kodlama

Bu kodlama tiirlinde her kromozom degerlerden olusan bir dizidir. Reel sayilar gibi

karmasik degerlerin kullanildig1 problemlerin ¢éziimiinde ikili kodlama yerine tercih
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edilmektedir. Bu kodlama yonteminde kromozom, reel sayilarin olusturdugu bir
vektor seklinde kodlanmaktadir. Bu yontemle ¢ok sayida karar degiskeninin yer

aldig1 biiyiik vektorlerin temsili mimkunddr (Erdal, 2007).

3.4.3 Permutasyon kodlama

Permutasyon kodlama yonteminde kromozomlar numaralar dizisinden olusmaktadir
(Dilaver, 2015). Bu kodlama tiiriinde kromozomlar siradaki konumu belirten
numerik karakterlerden olusturulabilir. Daha ¢ok gezgin satici, Gizelgeleme, gorev

siralama gibi siralamanin 6nemli oldugu problemlerde kullanilir.

3.5 Sec¢im

Mevcut niifus kullanilarak yeni niifusun olusturulmasi i¢in ¢aprazlama ve mutasyon
islemlerine tabi tutulacak bireylerin belirlenmesi gerekmektedir. GA’nin temel
prensibine gore 1iyi bireyler ebeveyn olarak kullanilarak yeni bireyler
olusturulmalidir. Koétii bireylerin elenmesi, iyi bireylerin olusmasi ve yeni nesillere
aktarilmasi amaciyla iyi bireyleri belirlemek igin bir se¢cim yapilmasi gerekmektedir.
Secim iglemi 3 adimdan olugmaktadir; Birinci adim tiim bireylerin amag¢ fonksiyon
degerlerinin hesaplanmasi, ikinci adim bireylere amag¢ fonksiyonu degerlerine gore
uygunluk degerlerinin atanmasi, liclincii adim ise bireylerin sahip olduklar1 uygunluk
degerlerine gore secilmeleri ve yeni birey lretimi i¢in eslestirme havuzuna

atilmalaridir (Tuncer ve Yildirim, 2012).

En ¢ok bilinen se¢cim yontemleri arasinda rulet tekerlegi se¢imi, turnuva secimi, sirali
secim yontemi yer almaktadir. Tiim se¢im yontemlerinde, uygunluk degeri iyi olan

bireylerin se¢ilme olasiliklar: da fazla olmaktadir.

3.5.1 Rulet tekerlegi secim yontemi

Rulet tekerlegi secimi yontemi, rastgele bir sekilde rulet tekerleginin dondiiriilmesi
sonucunda belirlenen noktanin hangi alanin iizerinde duracagi érnegine benzetilebilir
(Url-3). Sec¢im isleminde bireyler i¢in uygulanan f(x) amag¢ fonksiyonunun
sonucundaki uygunluk degerlerini kullanir. Sekil 3.3’te ornek bir rulet tekerlegi
gosterilmektedir. Ornekte f(x) degeri en biiyiik olan bireyin en iyi birey oldugu kabul
edilirse, “Birey 3” en iyi birey olmaktadir. f(x) degerleri yiiksek olan bireylerin

uygunluk degerleri de yiiksek olacagindan, rulet tekerleginin dilimleri arasinda
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digerlerine gore daha biiylik paya sahip olmakta ve se¢ilme olasiliklar1 da diger
bireylere gore daha yuksek olmaktadir. Bu yontem diisiik uygunluk degeri olan
bireye daha az segilme sansi, yiikksek uygunluk degeri olan bireye de daha ¢ok
secilme sans1 tanimaktadir. Bundan dolay1 yiiksek uygunluk degerine sahip bireyin

tim nufus lizerinde baskin ve egemen olmasina sebep olabilmektedir (Melanie, 1999).

Rulet Tekerlegi

21 M Birey 3 : f(x) = 21
M Birey 5: f(x) = 16
M Birey 1:f(x) =15
M Birey 6 : f(x) = 14
M Birey 4 : f(x) =9
M Birey 2 : f(x) = 8
Birey 10 : f(x) =7
Birey 7 : f(x) =5
Birey 9 : f(x) = 3
I Birey 8 : f(x) = 2
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Sekil 3.3 : Rulet tekerlegi ile se¢cim Grnegi.
3.5.2 Rank secim yontemi

Bu se¢im yonteminde bireylere uygunluk degerlerine gore sirali sekilde degerler
verilmektedir. Uygunluk degerlerine gore kiigiikten biiyiige dogru sirali olan bir
niifusu disiindlirse, uygunluk degeri en koti olan bireye 1, sonrakine bireye 2,
sonrakine 3 degeri verilerek bu sekilde tim bireylere sirayla rank degeri verilir.
Niifus sayisinin n oldugu diistiniiliirse en iyi birey de n rank degerini alir. Bu verilen
degerler ayn1 zamanda bireylerin se¢ilme sansini dogrudan etkiler. Bireyler tekerlek
tizerinde sahip olduklar1 rank degerlerine gore alan kaplarlar. Bu sayede rulet
tekerlegi se¢im yontemine gore en iyi birey niifusa egemen olamayacak ve ¢OzUm
uzaymdaki arama isleminin genislemesi rank se¢imi yontemi ile saglanabilecektir

(Er, 2013).

3.5.3 Turnuva secim yontemi

Bu yontemde mevcut niifustaki bireylerden rastgele belirli sayida birey segilir. Bu
bireyler kendi aralarinda uygunluk degerlerine gore turnuvaya girer ve uygunlugu en

yiiksek olan birey turnuvayi kazanarak secilmis olur. Ornegin rastgele 3 birey segimi
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sonucunda 2. birey, 7. birey ve 9. bireyin turnuvaya girecegi diisliniiliirse bu bireyler
arasinda uygunluk degerleri karsilastirilir ve en iyi olan birey secilir. Asagidaki
sekilde uygunluk degeri U ile gosterilerek, turnuva secim yontemi ile secilen birey

ornek olarak gosterilmektedir. Turnuva se¢im 6rnegi Sekil 3.4’de gosterilmektedir.

Sekil 3.4 : Turnuva secim yontemi 6rnegi.

Secim yontemlerinin farkli 6zellikleri vardir. Farkli 6zelliklere sahip bu segim
yontemlerine gore gen havuzundaki ¢esitliligin zamanla azalmasi s6z konusu
olabilir. Niifus icinde bireylerin benzerlikleri fazla olursa bu durum farkli
olasiliklarin degerlendirilmemesi ve yerel optimum degere takilma gibi riskleri de
beraberinde getirebilir. Problemin biiylikliigli ve karmasikligina gore uygun segim
yonteminin belirlenmesi gerekmektedir. Ayni probleme gore farkli segim yontemleri
denendiginde bu se¢cim yontemlerinin de birbirleri arasinda avantaj ve dezavantajlari

olabilmektedir (Razali ve Geraghty, 2011).

3.6 Caprazlama

Daha iyi1 bireylerin {iretimi i¢in secilen ebeveynlerdeki bazi genlerin karsilikli olarak
degistirilmesiyle olusan islemdir. Caprazlamadaki ama¢ uygunluk degeri daha iyi
olan ¢ocuk bireylerin retilmesidir (Anand ve Spears, 1991). Caprazlama islemi GA
icin biiytik bir 6neme sahiptir ¢ilinkii algoritmanin arama uzaymin arastirilmamis

kisimlarina erisimini ¢aprazlama islemi saglamaktadir (Gen ve Cheng, 1997).

Caprazlama islemi rastgele belirlenen bir ¢aprazlama noktasina gore yapilir ve bu
noktaya gore belirlenen bireylerin genleri karsilikli takas edilir. Caprazlama iglemi
genel olarak tek noktadan yapiliyor olsa da problemin yapisina gore birden fazla
noktadan yapilan ¢alismalar da mevcuttur. Sekil 3.5’de 6rnek olarak verilen tek
noktali bir c¢aprazlama isleminde ebeveyn bireylerin 4. geninden itibaren
caprazlandigi ve bu noktadan itibaren karsilikli olarak genlerinin degistirildigi

gorulmektedir.
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12 23 30 32|37 45 52 55 61 66 12 23 30 32 87 91 93 95 96 99

Sekil 3.5 : Caprazlama 6rnegi.
3.7 Mutasyon

Mutasyon isleminde bireye ait genler belirli bir mutasyon oranina gore rastgele
olarak degistirilir. Mutasyon islemi, bireyler birbirlerine benzemeye basladiginda ve
aynt bireyler lizerinde kisir dongli olusmaya basladiginda, GA’y1 sikistigt bu
durumdan kurtarmak ic¢in kullanilir. Mutasyon islemi ile niifus igindeki birey
cesitliliginin artmas1 amaglanmaktadir. (Yang, 1997). Bu agidan algoritmanin yerel
optimum degerlere takilmasi Onlenerek daha genis bir arama uzayinda ¢oziim

aranmaktadir.

Mutasyon islemi i¢in kullanilan olasilik degeri, gereginden fazla buyik olursa,
mutasyon islemi bireyin sahip oldugu her bir gen icin meydana gelebilir ve bu durum
algoritmayi rastsal bir aramaya doniistiirecegi i¢in ¢oziime ulagsmak da zor bir hale
gelebilir. Mutasyon islemi igin kullanilan olasilik degeri az olursa bu durumda arama
uzaymin farkli noktalar1 degerlendirilememis olacaktir. Bu sebeplerden dolay:
mutasyon olasilik degerini dogru ayarlamak gerekir. Mutasyon olasilik degeri
genellikle <= %1 olacak sekilde belirlenmektedir. Sekil 3.6’da verilen 6rnek bir
mutasyon igleminde verilen mutasyon oranina bagli olarak bireydeki 8. genin

mutasyona ugrayip, rastgele degistirildigi goriilmektedir.

12 23 30 32 37 45 52 55 61 66 12 23 30 32 37 45 52 58 61 66

Sekil 3.6 : Mutasyon 6rnegi.
3.8 Elitizm

Caprazlama ve mutasyon islemleriyle olusan yeni bireylerde en iyi bireyi kaybetme
olasiligt bulunmaktadir. Elitizm yontemi kullanilarak bu durumun 6niine gegilir ve
en iyi bireyler saklanarak sonraki nesle aktarilir. Elitizm isleminde, her nesilde niifus
icerisindeki bireylerden amag fonksiyon degeri en koti olan birey ile bir dnceki
nesilde saklanan en iyi birey yer degistirilerek, elit birey yeni niifusa katilmaktadir.

Bu sayede en iyi bireyin kaybolmasi 6nlenmis olmaktadir.
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3.9 Amag Fonksiyonu

GA’da bireyin kalitesini belirlemek igin kullanilan en 6nemli fonksiyondur. Mevcut
nlfustaki her birey icin amag fonksiyonuna gore uygunluk degerleri bulunur. Bireyin
sahip oldugu bu uygunluk degeri, bireyin kalitesini gosterirken ayni zamanda
¢oziime ne kadar yakin oldugunu da ifade etmektedir. Amag fonksiyonu probleme
gore farklilik gosterebilen ve hedeflenecek optimum c¢oziimii saglayabilecek bir

fonksiyondur (Tang ve dig., 1996, Deb ve dig., 2002).

3.10 Algoritma Sonlandirma islemi

Algoritmanin ¢alisacagl siireyi veya algoritmanin iterasyon sayisini sinirlandirmak
amaciyla kullanilan ve algoritmanin calismasini durduran islemdir. Sonlandirma
kriteri, algoritmada iterasyonlar devam ederken niifusta ¢esitlilik olmadiginda, aday
coziimlerde bulunan en iyi birey degismediginde algoritmanin daha fazla zaman
harcanmamasi amaciyla uygun sekilde belirlenebilir. Bu kriter maksimum iterasyon
sayis1 olarak belirlenebilecegi gibi beklenen kalite degerine gore de olabilir. Ornegin
en iyi ¢6zimde amag fonksiyon degerinin 0,01 gibi bir deger olmasi (istenen
¢O6zumin 0 oldugu varsayilirsa, 0 degerine ¢ok yaklasmasi) ¢6ziim i¢in yeterli kabul

edilerek sonlandirma kriteri olarak verilebilir.
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4. GENETIK ALGORITMA iLE TEST SAYFASI OLUSTURMA

4.1 Genetik Algoritma ile Test Sayfasi iliskilendirmesi

Test sayfas1 iiretimi ¢oklu kisitlar arasinda istenilen sekilde sorularin tespit
edilmesini gerektiren ¢cok amagli bir optimizasyon problemi olarak ele alinabilir.
Yapay zeka algoritmalarindan biri olan GA’nin kullanildigi bu problem igin farkl
kriterlere gore (soru sayisi, bolimler, zorluk derecesi, bilgi puani, cevaplama siiresi
ve secilme sikhigr gibi) adaptif sekilde en iyi ¢6zim aranabilmektedir. Problemin

¢Oziimii i¢in olusturulan sistemin modeli Sekil 4.1°de gosterilmistir.

Agirhk Agirhk

) [ SISTEM Test
Sayfasi
a

Algoritma Soru Bankasi

Sekil 4.1 : Sistem modeli.

GA’daki terminoloji ile test sayfasi karsilagtirildiginda Cizelge 4.1°deki gibi bir iligki
tablosu ortaya ¢ikarilabilir.

Cizelge 4.1 : GA — Test Sayfasi iliski Tablosu.

GA Test Sayfasi Agiklama
Ni Test sayfalari Algoritma i¢in baglangicta
ufus o .
Kumesi belirlenen test sayfasi aday sayist
Kromozom Test sayfasi Her bir test sayfast aday1
Gen Soru Test icindeki bir soru

Gen Ozellikleri ~ Soru 6znitelikleri Test icindeki sorunun 6zellikleri

Test sayfas1 sorularinda her bir soruya ait soru ID, soru metni, sorunun bélimd,
zorluk derecesi, soru puani, bilgi puani, segilme sikligi, ¢OzUm siresi, yetenek
seviyesi gibi Oznitelikler bulunmaktadir. Bu bilgiler soru bankasi veri tabaninda

bulunmaktadir. Soru bankasinda n adet soru oldugu ve her bir sorunun m adet
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Ozniteligi oldugu esas alindiginda tiim sorulara ait bilgileri barindiran S matrisi

asagidaki gibi ifade edilebilir (Wu ve Song, 2009).

ai1 412 - Aim
a21 a22 es aZm

S = 1)
Ap1 Apz - QAum

Tlm sorulara ait bilgilerin oldugu S matrisinde her bir satir bir test sorusunu ve o
soruya ait olan oznitelikleri ifade etmektedir. Istenilen ¢oklu kisitlamalara uymak
icin test sayfasinda yer alacak her bir soruya ait bu 6zniteliklerin degerlendirilmesi
gerekmektedir. Coklu kisitlamalarla beraber bu durum ise istenilen test sayfasinin
hazirlanmas1 i¢in bir optimizasyon problemini ortaya ¢ikarmaktadir. Bu tez
calismasinda, test sayfasi iiretiminde kullanilacak sorularin en Onemli
Ozniteliklerinden olan sorunun bélimii, sorunun zorluk seviyesi, sorunun puani,
sorunun bilgi puani, sorunun seg¢ilme siklig1, sorunun cevaplama siiresi degerleri ve
bu degerlerin test icindeki agirlik katsayilari esas alinmaktadir. Test sayfasi icin
istenilen coklu kisitlamalara bagli olarak ve sayfanin istenilene ne kadar yakin
oldugunu anlamaya yonelik, asagidaki formiillerde hata degerleri belirlenmektedir.
Bu hesaplanacak olan hata degerleriyle beraber daha sonra ilgili agirlik katsayilar1 da
kullanilarak test sayfasi adayinin istenilen ¢oklu kriterlere ne kadar uyuyor oldugu ve
buna bagli olarak test sayfasinin kalitesi belirlenmektedir. Test sayfasinin kalitesi
belirlenirken, amag fonksiyonu i¢inde kullanilacak olan hata degerlerine ait formiiller

bu tez caligmasi kapsaminda olusturulmus ve asagidaki gibi e hata degerleriyle ifade

edilmistir.
— _ Xit1 i1 Giz
ey = |pa—Eepu @
n .
e = |p— EErti) ©
n .
e; = |(Zl=n;al4) (4)
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e, = Ds— (Ziz1 dis) (5)

n

Bu formdillerde;
e1: Sorunun zorluk seviyesi igin hesaplanan hata degerini (2),
e2: Sorunun bilgi puani i¢in hesaplanan hata degerini (3),
e3: Sorularin secilme sikliginin en az olmasi i¢in hesaplanan hata degerini (4),
e4: Sorularin toplam siiresi ile istenen siire arasindaki hata degerini (5),
Dd: Istenilen zorluk derecesi faktoriind,
Dk: Istenilen bilgi puan1 faktdriind,
Ds: Istenilen toplam siire faktoriini ifade etmektedir.

ai1: Sorunun zorluk derecesini,

ai2: Soru puanini,

ai3: Sorunun bilgi puanini,

ais: Sorunun segilme sikligini,

ais: Sorunun cevaplama siresi gibi sorulara ait 6znitelikleri ifade etmektedir.

Bilgi puani; Sorunun c¢oziilmesi i¢in ne kadar bilgi gerektirdigi, boliime ait bilgi
seviyesini belirtmektedir. Seg¢ilme sikligi; Sorunun daha Onceki test sayfalarinda
kullanilma oranint belirtmektedir. Test sayfasi olusturma isleminde daha &nce
sorulmamis olan sorulara oncelik verilmesi dikkate alinmasi gereken Olgiitlerden
biridir. Sorunun bolimd; sorunun ait oldugu bolimii gostermektedir. Bu 6znitelik
sorularin boliimlere gére uygun olarak segilmesini dogrudan etkileyen faktordir.

Sekil 4.2°de tez caligmasinda kullanilan GA ile test sayfasi iiretimi islemi i¢in akis
diyagrami gosterilmistir. Akis diyagramina gore; baslangi¢ niifusu olusturulduktan
sonra her bir aday ¢ozliimilin amag¢ fonksiyon degerleri hesaplanir. Optimizasyon
kriteri saglandigr anda algoritma sonlandirilir ve bulunan en iyi aday c¢oziim,
problemin ¢oziimii olarak saklanir. Optimizasyon kriteri saglanmadiysa elitizm
islemi uygulanir. Daha sonra bireyler amag fonksiyon degerlerine bagl olarak sahip
olduklart uygunluk degerlerine gore rulet tekerlegi yontemi ile se¢im islemine tabi
tutulurlar. Sec¢im isleminden sonra secilen bireylere boliim bazli olarak ¢aprazlama
ve mutasyon islemleri uygulanir. Mutasyondan sonra olusan yeni niifusun amag
fonksiyon degerleri hesaplanip, algoritma bu sekilde durdurma kriteri saglanana

kadar iteratif olarak ¢alisir.
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Baglangic
Nifusu

v

- Amag
Fonksiyonu

Optimizasyon
kriteri
saglandi mi?

Elitizm

v

Rulet Tekerlegi
Yéntemiyle
Secim

Eniyi gdziim

\ 4

B&lim Bazh
Caprazlama

Y
Bodlime gbre I Bitir |
Mutasyon

Sekil 4.2 : GA - test sayfasi Uretimi akis diyagrami.

4.2 Baslangi¢c NUfusu Olusturma

GA’da baslangi¢ niifusu genellikle rastgele olusturulur. Tez ¢alismasinda, her bir
birey (kromozom) bir test sayfasini ve bireydeki genler de test sayfasindaki sorulari
temsil etmektedir. Soru 6zelliklerinde bélim bilgisi de mevcuttur ve her bir bélime
ait soru numaralar1 da belirlidir. Istenilen béliimlere ait belirli sayida soru iiretimi goz
Oniine alindiginda, baslangi¢ niifusu olusturulurken tamamen rastgele bir niifusun
olusturulmasi ¢6zlim igin gereken zamani da arttirmaktadir. Aday ¢6zim olan test
sayfasindaki boliimler icin istenilen sayida soru olmasi beklenirken, bdliimler baz
alinmadan rastgele soru sec¢imi yapilmasi bdoliimlere ait soru sayilarmin da
istenilenden farkli olmasina sebep olmaktadir. Bu durumlar g6z oniline alindiginda
baslangi¢ niifusu olusturulurken tamamu rastgele olusturulan bir niifus yerine, se¢ili
boélimlerden istenen soru sayisina gore ilgili boliimler igin rastgele niifus olusturma
gerceklestirilmistir. Sorularin diger 6zelliklerinden olan zorluk seviyesi, puani, bilgi
puani, se¢ilme siklig1 gibi 6zellikler baslangic niifusu olustururken kullanilmamakta

olup bu 6zellikler amag fonksiyonunda kullanilmistir.
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Niifus olusturma isleminde iiretilen aday test sayfalari (bireyler) ikili kodlamanin
daha fazla yer kaplamasindan, hesaplama siiresinin artmasindan ve program
kolayligindan dolayr tam sayr kodlama ile kodlanarak olusturulmustur. Sekil 4.3
calismada n adet sorudan olusan bir test sayfasi olusturma isleminde kullanilan 6rnek

bir test sayfasi i¢in kromozomu gostermektedir.

St | S2 | Sz | o | Sz Sa
e —_—
1.bolim n.bolim

Sekil 4.3 : Test sayfasi icin kromozom gosterimi.
4.3 Amag Fonksiyonu

Test sayfasi olusturma problemi i¢in olusturulacak test sayfasinin kalitesini ve
istenilen 6zelliklerde olmasini belirleyen en 6nemli metot amag fonksiyonudur. Test
sayfasi olusturma problemindeki asil amag; istenilen boliimler icerisinden istenilen
sayida soru secilmesi ve bu secilen sorularin 6znitelikleri ve istenilen ¢oklu kisitlar
g0z Oniine alinarak bir test sayfasinin optimum sekilde olusturulmasidir. Bu tez
calismasinda amag fonksiyonu i¢in boliim 4.1°de agiklanan formiillerde belirtilmis
olan her bir hata degeri ile kisitlar1 kullanici tarafindan belirlenmis olan agirlik
katsayilar1 carpilir, bu ¢arpimlarin sonucu toplanarak problemin amag fonksiyon
degeri hesaplanir. Bu amag fonksiyonu sonucunda 0’a en yakin olan sonug en az hata
degerine sahip olacagindan en iyi sonug olarak kabul edilmektedir. Amag fonksiyonu
denklem (6) ile belirtilmistir.

f=2Xiiwe (6)
Bu formilde;
f: amag fonksiyon degerini,
ei: 1. kisit fonksiyonunun hata degerini,
wi: I. hata degeri i¢in agirlik katsayisini ifade etmektedir.

Test sayfasi olusturma isleminde istenilen ¢oklu kriterlerin ¢6ziim kalitesine etki

oran1 W; agirliklar1 ile belirlenmektedir. Kullanici tarafindan belirlenen Wi
agirliklariin toplami olan wt denklem (7)’deki gibi ifade edilmis olup bu degerlerin

toplami 1’e esit olacak sekilde belirlenmistir.
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we =Yisaw; =1 (7)
Bu formdilde;
wi1: zorluk seviyesi i¢in agirlik katsayisini,
Wo: bilgi puani i¢in agirlik katsayisini,
ws: sec¢ilme siklig1 icin agirlik katsayisini,
Wa: cevaplama siiresi i¢in agirlik katsayisini ifade etmektedir.

Amag fonksiyonunda kullanilan ve istege gore belirlenebilen zorluk derecesi, bilgi
puani, cevaplama siiresi, se¢ilme siklig1 kriterleri ve bu kritlerlerin agirlik carpan
degerleri (w1, W2, W3, Wa) ile kullanicinin istedigi O6zelliklerde bir test sayfasi
tiretilmesine imkan saglanmaktadir. Test sayfasi iiretiminden 6nce zorluk derecesi ve
secilme siklig1 kriterleri 6nemliyse bu kriterlere ait agirlik ¢carpan degerleri yiiksek
olarak girilir. Bu sayede olusturulan test sayfasinin zorluk derecesi ve gec¢miste
sorulmus sorulardan olugsmamasi kriterlerine daha c¢ok uymasi saglanir. Benzer
sekilde zorluk derecesi ve bilgi puani kriterleri diger kriterlerden daha énemliyse bu
durumda bu kriterlere ait agirlik carpan degerleri yiiksek olarak girilir ve test
sayfasinin bu kriterlerle belirlenen 6zelliklere daha ¢ok uymasi beklenir. Kriterlerden
secilme siklig1 kriterinin bir 6nemi yoksa ve test sayfasinda ge¢miste ¢ikan sorularin
olmasi1 6nemli degilse, bu kritere ait agirlik carpan degeri 0 olarak girilir, bu durumda
algoritma i¢in bu kriter onemsiz ve etkisiz hale getirilmis olur. Kriterler icin

kullanilan bu agirlik carpanlari ile esnek bir yap1 olusturmak hedeflenmistir.

4.4 Secim

Tez ¢alismasinda kaliteli bireylere oncelik verme amagh yapilacak se¢im islemi i¢in
GA’da yaygin olarak kullanilan rulet tekerlegi metodu kullanilmistir. Bireylerin
uygunluk degerleri sonuglarina gore rulet tekerleginde sahip olacaklar: dilimler igin
yiizdeleri hesaplanir. Bu yiizdelik degerlerine gore bireylere biiyiikten kiigiige dogru
siralama islemi yapilir. Rastgele {iretilmis 1-100 arasindaki bir sayinin hangi bireyin
yiizdelik olasilik degerinde olduguna bakilarak birey se¢im islemi yapilir. Ornegin;
en iyi bireyin yizdelik diliminin %21 sonraki en iyi 2. bireyin %16 oldugunu
diisiiniirsek, 1 ile 100 arasinda rastgele se¢ilmis olan ve 0-21 arasinda gelen her say1

en iyi bireyi, 22-37 arasinda gelen her say1 ise en iyi 2. bireyi isaret edecektir.
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Bireyler se¢im islemi yapilacagi zaman bu sekilde se¢ilme olasilik degerlerine gore
secilirler, bu sayede iyi bireylerin se¢ilme sansi1 digerlerine gore daha ¢ok olmakta ve

1yi bireylerin genleri kullanilarak niifusun daha da iyilesmesi amaglanmaktadir.

4.5 Caprazlama

Tez c¢alismasinda standart GA’dan farkli olarak boliim bazli gaprazlama islemi
uygulanmistir. Baglangic niifusunda boliimlere ait soru sayilari dikkate alinarak
almmarak elde edilmis olan test sayfasinin, c¢aprazlama islemlerinden sonra
boliimlerdeki soru sayilarmin degismeyecek sekilde kalmasi gerektigi dikkate
aliarak boliim bazli ¢aprazlama ihtiyact olmustur. Caprazlama isleminde ilk olarak
caprazlama noktas1 belirlenmeden dnce bireyin sahip oldugu bdliim sorulari kendi
aralarinda gruplanarak siralanmis ve her bolime 6zgl olmak Uzere caprazlama
noktalar1 ayr1 ayr1 rastgele olacak sekilde belirlenmistir. Bu asamadan sonra iki
bireyin ¢aprazlama islemleri sadece ayni bolimler arasinda gergeklestirilmektedir.
Bu sayede bir boliime ait olan sorunun diger bdliime ait olan bir soru ile yer
degistirmesi Onlenmis olmaktadir. Sekil 4.4’te calismada kullanilan caprazlama

islemi i¢in bir 6rnek gosterilmektedir.

1 .b(ﬁlh'im 2.b6|11'1m 3.b6|h'im

ebeveyn 1 21154 78|102 1781191 233 2431256 278
cheveyn2 34165 99137 1451188 [212 2391267 276

cocuk 1 21:65 991102 178:188 |212 2391256 278
cocuk 2 34154 781137 1451191 |233 2431267 276

caprazlama
noktasi

Sekil 4.4 : Test sayfasi1 olusturma i¢in ¢caprazlama iglemi.

Iki ebeveynin gaprazlanmasi sonucu olusturulacak cocuk bireyde birden fazla aym
sorudan olugsmamasinin da Oniine gecilmesi gerekmektedir. Bunun icin soru
ebeveynden alinmadan once yeni bireyde daha once olup olmadigina bakilarak
kontrol edilmektedir. Eger soru yeni bireyde dnceden mevcut olan bir soru ise bu
durumda bu soru yerine diger ebeveynin sorusu alinir. Caprazlama isleminde
niifusdaki birey sayis1 kadar iterasyon yapilarak her iterasyonda bir ¢ocuk birey

olusturulmus ve bu sekilde yeni niifusdaki birey sayisinin da ayni kalmasi

33



saglanmistir. Sekil 4.5°de c¢alismada kullanilan caprazlama islemi ile ilgili akig

diyagrami verilmistir.

| Basla |

4

B5lim Bazli Siradaki Bolim Gaprazlama Ebeveynden .
| icinrastgele 4| noktasina gére alinacak soru Soruyu yeni
Grupla ve > o .
Siral caprazlama ebeveynden yeni bireyde bireye ata
rala noktasi belirle soruyu al mevcut mu?

A

Bolim Diger

sorulari ebeveyndeki

atandi soruyu yeni
mi? bireye ata

Sonraki
b&lim

mevcut
mu?

Sekil 4.5 : Test sayfas1 olusturma i¢in ¢aprazlama akis diyagrama.
4.6 Mutasyon

Standart GA’daki mutasyon isleminin uygulanmasi tekrarli sorularin olusmasina
veya mutasyona ugrayacak olan sorunun ait oldugu bdliim yerine bagka bir béliimden
soru secilmesine sebep olabilmektedir. Tez calismasinda, mutasyon isleminde
standart GA’dan farkli olarak mutasyona ugrayacak olan soru hangi boliimde yer
aliyorsa soru havuzundan o bdliime ait rastgele bir soru sec¢ilmektedir. Sekil 4.6’da
calismadaki mutasyon islemi ve Sekil 4.7°de mutasyon islemine ait akis diyagrami
gosterilmistir.

mutasyon dncesi

21 54 78 | 102 178 191 |233 243 256 278

mutasyon sonrasi
21 54 78 | 102 178 180 | 233 243 264 278

Sekil 4.6 : Test sayfasi olugturma i¢in mutasyon islemi.
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\ 4
Rastgele
Bireyde degere gore
siradaki mutasyon
soruyu al olasihg
saglandi mi?
N

Sirada bir

Soru uzayindan genin
bélimine gore bireyde
mevcut olmayan bir soru al

Soruyu eskisi
ile degistir

soruvar mi?

Sekil 4.7 : Test sayfas1 Uretimi - mutasyon akis diyagrami.

N
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5. TEST SAYFASI OLUSTURMA UYGULAMASI

GA ile test Gretimi icin Web tabanli bir uygulama gergeklestirilmistir. Uygulama igin
Java, SpringBoot teknolojileri ve Thymeleaf gibi template yapilar kullanilmistir. Veri
taban1 olarak MongoDB (noSql) veri tabani kullanilmistir. Uygulama, kullanicinin
test sayfasi i¢in girebilecegi parametre ve kriter arayiizlerine sahiptir. Kullanici
istedigi oOzellikteki test sayfasi i¢in bu ayarlari girerek algoritmanin ¢aligmasi
sonucunda test sayfasi olusturabilmekte ve sonug¢ olarak iiretilen test sayfasindaki
sorular1  gorebilmektedir. Uygulama arayuzinde GA ile ilgili ayarlar da
belirlenebilmektedir. Soru bankasindaki sorularin da goriilebilecegi arayuzler Tirkce

ve Ingilizce dillerini destekleyecek sekilde hazirlanmistir.

5.1 Nesne Tabanhh Model

Test sayfasi olusturma isleminde nesne tabanli uygulamada kullanilan sinif yapilari
asagidaki gibidir;

1- Soru (Gen): id, soru no, zorluk derecesi, puan, tahmini cevaplama suresi,
secilme orani, bilgi seviyesi puani, boliim, soru metni, cevap gibi bilgileri
icerir.

2- Test Sayfasi (Kromozom/Birey): soru sayisi, ortalama zorluk derecesi,
toplam puani, toplam cevaplama siiresi, ortalama bilgi seviyesi gibi bilgileri
icerir.

3- Nifus (Populasyon): test sayfalari, en iyi test sayfasi, istenilen 6zellikler gibi
bilgileri igerir.

4- Ogzellikler: istenilen soru sayis1, istenilen zorluk seviyesi, istenilen bilgi puani
seviyesi, istenilen bolimlere ait soru sayilari, agirlik oranlari, test sayisi,

maksimum iterasyon sayisi, soru bankasi soru sayisi, uygunluk fonksiyonu

maksimum degeri, son segilen test sorulari gibi bilgileri igerir.

5- Algoritma: ¢aprazlama orani, mutasyon orani, elitizm gibi bilgileri igerir.
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5.2 Soru Bankasi ve Ozellikleri

Kullanilan soru bankasinda toplam 2455 soru bulunmaktadir (Url-1). Sorular 5 farkl
boliimden olusur. Her sorunun kendine ait zorluk seviyesi, puani, bilgi puani
seviyesi, ¢Oziim siiresi, ge¢misteki sorulma siklig1 gibi 6zellikler bulunmaktadir.
Calismadaki soru bankasi ve sorular MongoDB veri tabani {izerinde tutulmustur.
Deneysel calismalardaki sonuglar degerlendirilirken soru bankasinin ve sahip oldugu
sorularin dzellikleri 6nemli olmaktadir. Ornegin ¢ok kolay sorularin sayisinin ¢ok az
oldugu bir soru bankasindan, zorluk seviyesi ¢ok kolay bir test elde edilmek
istenirse, bu durumda sonuglar beklenen hata seviyesinin (zerinde olabilir.
Kullanilan soru bankasinin genel olarak sahip oldugu bilgiler asagidaki ¢izelgelerde
gosterilmistir. Cizelge 5.1°de kullanilan soru bankasinin zorluk seviyesine gore
dagilimi gosterilmektedir. Soru bankasindaki sorularin zorluk seviyeleri 0 ile 4

arasinda degismekte olup zorluk seviyelerinin ortalamasi 1,986°dur.

Cizelge 5.1 : Zorluk seviyesine gore soru dagilimi.

Zorluk Seviyesi  Soru Sayisi

Zorluk Seviyesi 0 10
Zorluk Seviyesi 1 937
Zorluk Seviyesi 2 779
Zorluk Seviyesi 3 536
Zorluk Seviyesi 4 193

Soru bankasindaki sorularin bilgi puami seviyelerine gore dagilimi Cizelge 5.2°de

gosterilmistir.

Cizelge 5.2 : Bilgi puani seviyesine gore soru dagilimi.

Bilgi Puani Soru Sayis1
Bilgi Puan1 0 963
Bilgi Puani 1 773
Bilgi Puani 2 719

Soru bankasindaki sorularin boliimlere gére dagilimi Cizelge 5.3°de gosterilmistir.

Cizelge 5.3 : Boliimlere gore soru dagilimi.

Bolim Soru Sayisi
Bolim 1 513
B6lim 2 564
Bolim 3 551
B6lim 4 453
Bolim 5 373
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Soru bankasindaki sorularin ¢oziim siirelerine gore dagilimi Cizelge 5.4te

gosterilmistir.

Cizelge 5.4 : Coziim siiresine gore soru dagilimi.

COzUm Siresi Soru Sayisi
1dk 963
2 dk 773
3dk 719

Soru bankasindaki sorularin secilme siklig1 degerine gore dagilimi Cizelge 5.5°de

gosterilmistir.

Cizelge 5.5 : Secilme sikligina gore soru dagilimi.

Secilme Siklig Soru Sayis1

0 519
1 491
2 517
3 464
4 464

Soru bankasindaki sorularin kriterlere gore ortalamalar1 Cizelge 5.6’da gosterilmistir.

Cizelge 5.6 : Kriterlerin ortalama degerleri.

Kriter Ortalama
Zorluk Seviyesi 1,986
Bilgi Puan1 Seviyesi 1,900
COzum Siresi 1,900
Secilme Siklig1 1,991

Secilme siklig1 kullanilmasiyla daha 6nce se¢ilmemis sorulara avantaj saglanarak
formiildeki agirlik oranina gore onlara dncelik verilebilmektedir. Sorularin ge¢miste
sorulma siklig1 bilgisi istenirse tiim sorular i¢in sifirlanabilmekte ve tim sorular igin
arayuzden rastgele olarak da belirlenebilmektedir. Bu tez ¢alismasinda ise se¢ilme
siklig1 tiim sorular icin rastgele belirlenmis olup deneysel calismalarda yaniltici

sonuglar olusturmamasi i¢in sabit tutulmustur.

Veri tabani olarak kullanilan MongoDB’de arayiiz i¢cin MongoBooster araci
kullanilmistir. Bu aragta tek soruya ait ozellikler Sekil 5.1°de, tim sorulara ait

ozellikler Sekil 5.2°de oldugu gibi goriilebilmektedir.
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File Edit Options View Window Help

[# connect v & Open » [Fsave & import + & Export ¥ ongotop  P<] Mongostat g TestData m( Schema [ Run @ Stop  Theme
> J questionDB:questions x ] -
@ localnost27017 (v3.2.4) (B questionDB A sk i Favorite = @ History =
1 db.questions.find({}) .

[ questions [ 0.010s | 2.455 Docs g g 2 7 = 4y O PageEl No.1-20 [T

Key value T Type

4 i (1) Objectid('58a8¢ 11606f8195b1632077) {15 fields } Document
} _id Objectld("58a8c 116d6f8f95bf6 372071 Chjectid
[ answer yes String
(v articleFile datasseti/a8 String
|27 articleTitle Abraham_Lincaln String
22| chapter 1 Int32
2| difficulty 1 Int32
|7 difficultyFromAnswerer easy String
[ difficultyFromQuestioner easy String
|22 estimatedAnswerTime 1 Int32
|2 knowledgePoint 1 Int32
l1zsl lastSelection 0.0 Double
|i22| questionid 1 Int32
32| score 10 Int32
li=2| selectionRatio 4 Int32
[ text Was Abraham Lincoln the sixteenth President of the United States? String

Copyright® mongoboostercom  Version 3.5.7 @ Free Edition

(® Feedback/Support g Show Log 03:33:58 pm

Sekil 5.1 : Bir soruya ait 6zellikler.

File Edit Options View Window Help

[# connect v & Open » [Fsave & import + & Export ¥ ongotop  P<] Mongostat g TestData m( Schema [ Run @ Stop  Theme
> J questionDB:questions x ] -
@ localnost27017 (v3.2.4) (B questionDB % sk i Favorte = QF History -
1 db.questions.find({})
[ questions 3 0.010s | 2.455 Docs L ld @ [ [x 4y O PageEl No.1-20 [T:
chapter < difficulty < estimatedAnswerTime < ' knowledgePoint <  lastSelection <  questionld = ' score +  selectionRatio +  text <
11 2 3 3 0.0 ] 30 0 Did Lincoln beat John C
a1 3 3! 3 0.0 8 30 1 When did the Gettysbur
3 1 2 3 3 0.0 7 30 4 Who suggested Lincoln
4 1 1 2 2 0.0 6 20 2 What did The Legal Ten:
5 i1 1 2 2 0.0 ] 20 4 When did Lincoln begin
6 1 2 2 2 0.0 4 20 2 How many long was Lin
T 1 1 1 1 0.0 3 10 1 Did his mother die of pn
[ | 1 1 1 0.0 20 10 0 Did lincoln have 18 mo
9 1 3 1 1 0.0 2 10 2 Did Lincoln sign the Na
10 1 1 1 1 00 16 10 0 Do scholars rank lincaln
11 1 2 3 3 0.0 18 30 2 Why did Lincoln issue
12 1 3 3 3 0.0 17 a0 1 Who was the general in
12 1 3 3 3 0o 16 ao 1 Did Lincoln win the elec’
14 1 2 2 2 0.0 15 20 2 Who assassinated Lincc
15 1 3 2 2 0.0 14 20 3 When did Lincoln first se
16 ¢ ? ’ ossssssi—————f——— """ "

Copyright® mongoboostercom  Version 3.5.7 @ Free Edition

(® FeedbackSupport g Show Log 03:4321pm

Sekil 5.2 : Sorulara ait dzellikler
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5.3 Web Uygulamasi

Tez galismasi igin gergeklestirilmis olan web uygulamasinin ayarlar arayizinde
kullanici, GA’ya ait gen sayisi, niifus bliyiikliigli, algoritmanin iterasyon sayisi gibi
bazi1 parametreleri girebilmektedir. Ayrica sorularin se¢ilme sikligi, son secilen soru

bilgilerini sifirlayabilmekte ve sorulara rastgele se¢im siklig1 atayabilmektedir.

Kullanici test sayfasi ayarlariyla ilgili olarak zorluk seviyesi, bilgi puani, test siiresi
gibi kriterleri belirleyebilmektedir. Bu kriterlerin belirlenebildigi ayarlar ekran1 Sekil
5.3°de gosterilmistir.

Ana Sayfa | TSO = o

@ Test Sayfast Olusturma Ayarlar
Online

Genetic Algoritma Parametreleri Test Sayfasi Ayarlan

Gen (Soru) Sayisi Zorluk

50

/& Ayarlar

Niifus Biiyiikliigi Bilgi Puami
P GABaslat 50
iterasyon Sayisi Test Siiresi
100 100

Puan

Kaydet 100
Kaydet

Segim Sikligini Sifirla Son Segilen Sorulan Sifirla Rastgele Secim Sikligi Ata

Copyright © 2017-2018 Test Sayfasi Olugturma. Tim haklan saklidir.

Sekil 5.3 : Ayarlar ekrani.

Tez calismasit icin gerceklestirilmis olan web uygulamasinin “GA Baglat”
arayliziinde kullanici, test sayfasi icin istedigi soru sayisini girerek bu sorularin hangi
boliimlere ait olacagini belirleyebilmektedir. Ayni araylizden test sayfasi i¢in zorluk
seviyesi, bilgi puani, se¢cim siklig1 ve test siiresi gibi kriterlerin agirlik katsayilarini
girebilmektedir. “Son Sorular Hari¢” 6zelligi segildiginde ise en son sorulmus olan
test sayfasindaki sorular hari¢ tutularak o sorular olmadan bir test sayfasi
hazirlanmasi miimkiin olabilmektedir. Agirlik ¢arpani degerlerinin, béliimlere ait

sorularin belirlenebildigi ekran Sekil 5.4’de gosterilmektedir.
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Ana Sayfa | TSO =

@ Test Sayfasi Olugturma Test sayfaSI Ayarla"

Online

Genetic Algoritma Parametreleri Test Sayfasi Ayarlar
Gen (Soru) Sayisi Niifus Biiyiikligi iterasyon Sayisi Zorluk Bilgi Puam
50 50 100 3 2
Test Siiresi Puan
P GABaglat - -
Bélimler

|

Bolim1 Boliim2 Boliim3 Béliima Bliims
Agirlik Carpanlari

10 10 10 10 10
Zorluk Bilgi Puam Secim Sikligi Test Siiresi
1 1 1 1
’ %25 %25 %25 %25
Baglat

Diger Ozellikler

Son Sorular Harig

Copyright © 2017-2018 Test Sayfasi Olugturma. Tiim haklan saklidir.

Sekil 5.4 : Test sayfasi olusturma ekrani.
Soru bankasindaki sorularin gortilebildigi ekran Sekil 5.5°de gosterilmektedir.
Ana Sayfa | TSO =

@ Test Sayfasi Olusturma Soru Bankasi

Online

Sorular
Show 10 v entries Search:
1t Bilgi Test
[1+] Text Yaz Baghi Boliim Zorluk Puan Puam Siiresi
1 ‘Was Abraham Lincoln the sixteenth President  Abraham_Lincoln 1 1 1 1 1
of the United States?
2 Did Lincoln sign the Mational Banking Act of Abraham_Lincoln 1 3 1 1 1
18637
£ SoruBankasi
3 Did his mother die of pneumonia? Abraham_Lincoln 1 1 1 1 1
4 How many long was Lincoln's formal Abraham_Lincoln 1 2 2 2 2
education?
5 When did Lincoln begin his political career? Abraham_Lincoln 1 1 2 2 2
6 What did The Legal Tender Act of 1862 Abraham_Lincoln 1 1 2 2 2
establish?
7 Whao suggested Lincoln grow a beard? Abraham_Lincoln 1 2 3 3 3
8 When did the Gettysburg address argue that Abraham_Lincoln 1 3 3 3 3
America was born?
9 Did Lincoln beat John C. Breckinridge in the Abraham_Lincoln 1 2 3 3 3
1860 election?
10 ‘Was Abraham Lincoln the first President of Abraham_Lincoln 1 1 1 1 1
the United States?
Showing 1to 10 of 2,455 entries Previous . 23| 4|5 246 Next

Sekil 5.5 : Soru bankas1 ekrani.
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Web uygulamasmin “Soru Bankasi” arayliziinde soru bankasinda yer alan tiim
sorular ve onlara ait Ozellikler goriintiilenebilmektedir. Bu sorular 6zellige gore

siralanabilmekte ve sorular iginde arama yapilabilmektedir.

Web uygulamasimin “Sonuclar” arayiiziinde ise algoritmanin sonucunda iretilmis
olan test sayfasina ait belirlenmis sorular goruntiilenmektedir. Ayrica algoritmanin
hangi iterasyonunda istenilen sonuca ne kadar yaklastig1 yakinsama grafigi seklinde
gosterilmektedir. Test sonucunun ve testteki sorularin yakinsama grafigi ile beraber

sunumu Sekil 5.6’da gdserilmektedir.

Test Sayfasi Sonuglari

GA Yakinsama Grafigi (Uygunluk-iterasyon)

20 40 . (1] 80 100
lterasyon Sayisi
Sonug Sorular

1D Text Biéliim Zorluk  Puan  Bilgi Puam Tahmini Cevaplama Siiresi

131 Did Coolidge meet and marry Grace Anna Goodhue? 1 2 2 2 2

150 He later what? 1 1 1 1 1

249 How do elephants communicate aver long distances? 1 2

267 Which Russian army general conguered Finland in 18097 1 2 2 2 2

290 What is a country with which Finland is involved in an international conflict? 1 1 1 1 1

Sekil 5.6 : Test sayfas1 sonug ekrani.
5.4 Deneysel Calismalar

Deneysel ¢alismalarda test sayfalarindaki soru sayilar1 20, 50, 100 ve 200 olacak
sekilde belirlenmis ve standart GA ile ¢alismadaki GA’nin trettigi sonuclar Gzerinde
karsilagtirmalar yapilmistir. Sonuglar1 karsilastirilan her deneysel c¢alisma igin
algoritmalardan her biri 10’ar kez calistirllmis ve sonuglarin ortalama degerleri

cizelgelerde gosterilmistir.
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Niifus sayisi, iterasyon sayisi, ¢aprazlama ve mutasyon oranlari her iki algoritma igin
de ayni olacak sekilde belirlenmistir. Zorluk seviyelerinin sonuglar1 karsilastirilirken
bilgi puanmi seviyesi, secilme siklig1 ve cevaplama siiresi gibi diger kriterler ve bu
kriterlere bagli agirlik ¢arpan degerleri de sabit tutulmustur. Algoritmalarin uygunluk
fonksiyonlar1 aynidir. Bdylece ayni soru sayilar1 ve ayni zorluk seviyelerine sahip
olan test sayfalarini iiretmek i¢in algoritmalarin sonuglart ve performanslari
incelenebilmistir. ki algoritma igin de niifus sayis1 80, iterasyon sayisi 100,
¢aprazlama orani 1 ve mutasyon orani ise 0,015 olacak sekilde belirlenmistir. (Tl ve

Tuncer, 2017)

Kriterler icin w agirlik c¢arpanlart 0 olarak belirlendiginde o kriterler dikkate
alimmamis olmaktadir. Kritere ait agirlik carpani (ylizdesi) ne kadar biiyiik degere

sahip olursa kriter test i¢in o kadar 6nemli olmaktadir.

Zorluk seviyesi i¢in algoritmalarin karsilastirilmasi ve sonug degerleri Cizelge 5.7°de

gosterilmektedir.

Cizelge 5.7 : Zorluk seviyesi i¢in algoritmalarin performans karsilagtirmasi.

Zorluk Test Soru Nufus Standart GA Calismadaki GA
Seviyesi Sayisi Sayisi Uygunluk Degeri Uygunluk Degeri

3 200 80 0,226 0,132

3 100 80 0,203 0,051

3 50 80 0,151 0,046

3 20 80 0,086 0,051

2 200 80 0,057 0,045

2 100 80 0,051 0,038

2 50 80 0,048 0,038

2 20 80 0,059 0,037

1 200 80 0,466 0,248

1 100 80 0,250 0,128

1 50 80 0,206 0,066

1 20 80 0,168 0,055
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Cizelge 5.8’de bilgi puani seviyesi ile ilgili standart GA ve galismadaki GA’nin
karsilagtiritlmast verilmistir. Cizelgeyi olusturmak igin yapilan bu testlerde zorluk
seviyesi=2 ve soru ortalama cevaplama siiresi=2 degerleriyle sabit tutularak istenilen
bilgi puani kriterinin degistirilmesi sonucu uygunluk degeri sonuglarinin nasil

v

degistigi karsilastirmali olarak gdsterilmistir.

Cizelge 5.8 : Bilgi puani seviyesi i¢in algoritmalarin performans karsilagtirmast.

Bilgi Puan1  Test Soru Nufus Standart GA Calismadaki GA
Seviyesi Sayisi Sayisi Uygunluk Degeri Uygunluk Degeri

3 200 80 0,303 0,281

3 100 80 0,292 0,271

3 50 80 0,283 0,258

3 20 80 0,252 0,227

2 200 80 0,055 0,048

2 100 80 0,057 0,037

2 50 80 0,053 0,034

2 20 80 0,059 0,036

1 200 80 0,306 0,286

1 100 80 0,303 0,280

1 50 80 0,304 0,275

1 20 80 0,310 0,276

Cizelge 5.9°da se¢ilme sikligmin ile ilgili standart GA ve calismadaki GA’nin
karsilastirilmasi verilmistir. Cizelgeyi olusturmak igin yapilan bu testlerde zorluk
degeri=2, bilgi puan1 degeri=2, soru ortalama cevaplama siiresi=2 kriterleri sabit
tutularak agirlik carpanlarinin degistirilmesi sonucu se¢ilme sikligr kritlerinin nasil
degistigi karsilagtirmali olarak gosterilmistir. Cizelgede gosterilmekte olan degerler
elde edilirken her bir satir i¢in ortalama degerler alinmistir. Sec¢ilme siklig1 toplamu,
testte yer alan sorularin secilme siklig1 degerlerinin toplamu ile elde edilmistir. Soru
bankasindaki bir sorunun seg¢ilme siklig1 degeri, 0-4 arasindadir ve soru bankasindaki
sorularin segilme siklig1 ortalamasi ise 1,9’dur. Secilme siklig1 agirlik carpani (wz=4)
%100 olarak belirlenmis olan ve farkli sayilardaki testler icin ¢izelgede, ¢alismadaki

GA kullanilarak soru basina secilme sikligi ortalamasinin 0’a yakin oldugu

gorulmektedir.
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Cizelge 5.9 : Segilme siklig1 igin algoritmalarin performans karsilastirmasi.

Standart GA Caligsmadaki

Secilme Agirlik Carpanlart  Test

S1}<11g1 Soru $orunun ] GASorununv
%100 0 0 4 O 100 1,202 0,146
%100 0 0 4 O 50 0,728 0
%100 0 0 4 O 20 0,06 0
%50 2 0 2 O 100 1,636 0,714
%50 2 0 2 O 50 1,284 0,348
%50 2 0 2 O 20 0,54 0
%25 3 0 1 o0 100 1,898 1,108
%25 3 0 1 o0 50 1,436 0,636
%25 3 0 1 o0 20 0,84 0,06

Sekil 5.7°de se¢ilme sikligr igin (w3) ¢arpan degeri %100 olarak belirlenerek diger
kriterleri dikkate alinmamis, 50 sorudan olusmasi istenilen bir testin yakinsama
grafigi goriilmektedir. 80. iterasyonda ¢alismadaki GA’nin belirlenen tim kriterlere

gore sifir hata ile ¢0zUmuU buldugu goriilmektedir.

0,30 = Calismadaki GA

0,25 = === Standart GA
0,20
0,15
0,10

-
e,

0,05

Secilme Sikhigi Uygunluk Degeri

0,00

0 20 40 60 80 100

iterasyon Sayisi

Sekil 5.7 : Se¢ilme siklig1 i¢in yakinsama grafigi karsilastirma 6rnegi.
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Sekil 5.8’de karsilagtirmasi yapilmis standart GA ve calismadaki GA sonuglarinin
oldugu 6rnek bir konsol ekrani1 gosterilmektedir. Bu test drneginde, secilme siklig
icin kullanilan w3 agirlik ¢arpan degeri %100 olarak belirlenmis ve 50 soruluk bir
test sayfasi olusturulmak istenmistir. Secilme siklig1 ile ilgili agirlik ¢arpant wz %100
olarak belirlendigi i¢in W1, Wz, W4 degerleri 0 olmakta ve zorluk derecesi, bilgi puani
ve cevaplama suresi kriterleri etkisiz hale gelmektedir. Bu ekranda, standart GA ve
calismadaki GA karsilastirmasi amaciyla iiretilen test sayfasina ait €1, €2, €3, €4 hata
degerleri, test uygunluk degeri ve sorularla ilgili soru ID, zorluk derecesi, bilgi puani,
soru puani, se¢ilme sikligi, boliimler, cevaplama siireleri ve se¢ilme siklig1 toplami
gibi bilgiler de detayli olarak goriinmektedir. Sonuca gore standart GA, toplamda 36
defa 6nceden secilmis soru igerirken (iirettigi testteki her bir sorunun daha 6nce
se¢ilme ortalamasi 0,72 iken) ¢alismadaki GA hig¢bir se¢ilmis soru icermemektedir.
e1, €2, Ve e4 hata degerlerinin agirhiklart wi, wo, Ws = 0 agirlik ¢arpan degerlerine

bagli olarak dikkate alinmamaktadir.

-- RESULTS For Improved GA --------------
Difficulty:8.18 | avgKnwPoint:2.143 | avgSelection:@.@ | totalAnswerTime:185.@ | el:8.18 | e2:8.143 | e3:8.8 | e4:@.1 | FITNESS:@.@

Question IDs 1 35(41|72|17@|204|299|336| 348|405 |486 522|530 |567|627|735| 773|850 | 918|947 |951| 1143|1147 | 1156|1187 | 1261 | 1321
1360|1420|1443 | 1608 | 1642 |17208|1733 | 1786 | 1808|1522 | 1845|1927 | 2005 | 2012 | 2087 | 2164 | 2307 | 2320 2346|2350 | 2380 | 2420 | 2440|2443 |

Question Difficulties :21312122224311123311441331332141431332123421333111
Question Know. Peints 21312132333311133311331331332331331332112321232111
Question Prev. Selected : € 2P 80P 0D R0OREOEROOEODOODROOPAOPEREERERERREERRRARODORREE
Question Answer Times 21312132333311133311331331332331331332112321232111
Question Chapters 1111111111222222222233333333334444444444555555555°5
Question Scores £21312132333311133311331331332331331332112321232111

Total Prev. Selected Q. : @.8

-- RESULTS For Traditional GA --------------

Difficulty:8.1 | avgKnwPoint:1.878 | avgSelection:®.72 | totalAnswerTime:92.8 | el:@.1 | e2:8.122 | e3:08.872 | e4:08.16 | FITNESS:9.872
Question IDs ¢ 54|79]|84|136|176]194|249| 300|492 |5087 | 530|545 | 592 | 596|646 | 832|864 |866|959|1638|1126]1198(1192 | 1248| 1259|1369 |
1401 |1470|1543|1592 | 1661 |1678| 1691|1703 | 1749|1762 | 1799|1845 | 1886 | 2672 | 2094|2112 | 2116| 2136|2342 | 2379 | 2392|2407 | 2413 | 2420 |

Question Difficulties :32©11322213134432321211231311111141313231141112311
Question Know. Points 32112332213133332331211231111111131313131121113311
Question Prev. Selected : @21 2@11@@08@ 1101300200109 1021006311830611180022030680
Question Answer Times :32112332213133332331211231111111131313131121113311
Question Chapters $1111111111222222222233333333334444444444555555555°5
Question Scores ©32112332213133332331211231111111131313131121113311

Total Prev. Selected Q. : 36.8

Sekil 5.8 : Se¢ilme sikligi agirlik ¢garpan1 %100 olan sonug 6rnegi.

Sekil 5.9°da zorluk derecesi ve secgilme siklig1 kriterleri kullanilarak agirlik garpan
degerleri w1 ve ws %50’ser olarak ayarlanmigtir. Bu 6rnekte w2 ve wa degerleri 0 yani
etkisiz olarak belirlenmistir. 50 soruluk olan bu 6rnekte, zorluk seviyesi ve se¢ilme
sikligr kriterleri yar1 yartya Onemli olarak olusturulan sonug test sayfasinin
ozelliklerine bakildiginda ¢aligmadaki GA’nin uygunluk degeri olarak daha basarili
sonuclar verdigi goriilmektedir. Zorluk derecesi olarak iki algoritma sonucu da €1
hata degerini 0 olarak elde ederek bu kriter i¢in istenileni vermis olsa da, se¢ilme
siklig1 hata degeri olan ez hata degerine bakildiginda ¢alismadaki GA’nin daha iyi bir

sonug buldugu goriilmektedir.
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--- RESULTS For Improved GA ----—---------—-

Difficulty:@.8 | avgknwPoint:1.898 | awvgSelection:8.24 | totalAnswerTime:93.8 | el:8.8 | e2:8.102 | e3:0.824 | e4:0.14 | FITNESS:0.812
Question IDs : 13|27|232|233|328|342|360| 435|447 | 474|572 | 651|720 | 724 | 886 | 936|969 | 981 | 1001 | 1821|1125 | 1137 | 1261|1259 | 1287|1297 |
1479|1493 | 1585|1608 | 1689|1752 | 1778|1841 | 1849|1986 | 1922 | 1935 | 1985 | 2062 | 2173 | 2177| 2183 | 2264 | 2274|2321 | 2329 2337|2369 | 2454 |

Question Difficulties 2211132111343 2332133141311222121324112133331211
Question Know. Points 2
Question Prev. Selected : @
Question Answer Times r 2
Question Chapters H S
Question Scores 2
Total Prev. Selected Q. 1
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--- RESULTS For Traditional GA --------------

Difficulty:@.8 | avgknwPoint:1.959 | awgSelection:1.2 | totalAnswerTime:96.8 | el:8.8 | e2:8.841 | e3:0.12 | e4:0.088 | FITNESS:0.06
Question IDs : 6|136|182|248|256|262|325|483| 494|497 528|569 | 694 | 746 | 755 | 768 | 818|853 | 983 | 1857 | 1878 | 1156|1267 | 1253|1275 |1293|
1426|1455 | 1557|1628 | 1656|1764 | 1788|1799 | 1838|1913 | 2013 | 2838 | 2865 | 2873 | 2084 | 2163 | 2168 | 2226 | 2256|2389 | 2351 | 2362|2372 | 2411 |

Question Difficulties :11322222222324322221118211233243311141311333131311
Question Know. Points 21123233232223312321111111233333311111231222131221
Question Prev. Selected : 49 3 1992 1202114140106 061210000100221206411042002022104
Question Answer Times £ 21123233232223312321111111233333311111231222131221
Question Chapters $111111111122222232222333333333344444444445555555555
Question Scores 21123233232223312321111111233333311111231222131221
Total Prev. Selected Q. 68.8

Sekil 5.9 : Zorluk ve secilme siklig1 i¢in agirlik ¢arpani %50 olan sonug drnegi.

Sekil 5.10°da sonuglar1 verilen karsilastirma Orneginde, zorluk derecesi ve bilgi
puant kriterleri kullanilarak agirlik ¢arpan degerleri w1 ve wa, %50’ser olarak
ayarlanmistir. Bu Ornekte segilme sikligi agirlik ¢arpani ws ve cevaplama siresi
agirlik carpan1 ws degerleri O yani etkisiz olarak belirlenmistir. Buna gore sorularin
onceden secilmis olmasi ve testin toplam cevaplama siiresi etkisiz olmaktadir. 50
soruluk olan bu ornekte zorluk seviyesi kriteri 3, bilgi puani kriteri ise 2 olarak
girilmistir. Zorluk seviyesi ve bilgi puanmi kriterleri yar1 yariya onemli olarak
olusturulan sonug test sayfasinin ozelliklerine bakildiginda GA’nin uygunluk degeri
olarak daha basarili sonuglar verdigi goriilmektedir. Calismadaki GA, zorluk derecesi
icin e1 hata degerini ve bilgi puani igin ez hata degerini 0 olarak bulurken, standart
GA e1 ve e; hata degerlerini daha yiikksek bulmustur. Bu durum, iki algoritmanin
calistirilmas1  sonucunda olusturduklart  test sayfalarinin  arasindaki  farka

gOstermektedir.

--- RESULTS For Improved GA --------------

Difficulty:@.8 | avgKnwPoint:2.8 | avgSelection:2.8 | totalAnswerTime:98.8 | el:0.80 | e2:0.8 | e3:0.2 | e4:0.84 | FITNESS: 0.0
Question IDs : 14|96|118|127|182|235| 372|394 | 416|453 |597 | 600|616 | 646 | 649 | 726|631 | 842|947 1012 | 1115|1137 | 1151 | 1228|1343 |1378|
1485|1489 | 1587|1621 | 1655|1662 | 1696 | 1707|1749 | 1849 | 1874 | 1900|2027 | 2076 | 2110|2115 | 2118|2137 | 2216|2217 | 2324 | 2401 | 2415 | 2435 |

Question Difficulties $:33143134334444444113144314322144441433434431334242
Question Know. Points 221111131333333111131332133121333311233122212212112
Question Prev, Selected : 448483438 3334114020812420802032411141134402234012012
Question Answer Times 2211111313333 33111131332133121333311233122212212112
Question Chapters :11111111112222222222333333333344444444445555555555
Question Scores 221111131333333111131332133121333311233122212212112
Total Prewv. Selected @. 168.8

--- RESULTS For Traditional GA --------------
Difficulty:®.86 | avgKnwPoint:2.122 | avgSelection:2.8 | totalAnswerTime:184.8 | el:8.86 | e2:8.122 | e3:8.2 | e4:8.88 | FITNESS:8.891

Question IDs 1 82|127|147| 284|242 | 265|382 | 484|485 |496| 635|637 | 643|671 | 726|794 | 889|957 | 966|992 | 1137 | 1183|1254 | 1281 | 1386 | 1481 |
1489|1583 | 1608|1664 | 1646 | 1768|1711 | 1741|1762 1821|1822 |15849|1988 | 1994|2186 | 2167 | 2116|2121 | 2146 | 2263 | 2243 | 2293 | 2415 | 2439 |

Question Difficulties :34321213234441412422423433244244413334244443333341
Question Know. Points 31321213233331112222311321133133313331213322223211
Question Prev. Selected : 44108 138262140246822314121323812083223141444124186414
Question Answer Times :31321213233331112222311321133133313331213322223211
Question Chapters £11111111112222222222333333333344444444445555555555
Question Scores 31321213233331112222311321133133313331213322223211

Total Prev. Selected Q. 168.8

Sekil 5.10 : Zorluk ve bilgi puani i¢in agirlik ¢arpani %50 olan sonug 6rnegi.
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Sekil 5.11°de sonuglar verilen karsilastirma 6rneginde, zorluk derecesi, bilgi puani,
secilme siklig1 ve cevaplama siiresi kriterleri kullanilarak agirlik carpan degerleri wi,
W2, W3 Ve Wy hepsi esit olacak sekilde (her biri %25) ayarlanmistir. 50 soruluk olan
bu Ornekte zorluk seviyesi kriteri 3, bilgi puani kriteri ise 2 olarak girilmistir. Bu
Kriterlere gore sonuglar karsilastirildiginda ¢alismadaki GA’nin daha basarili oldugu
goriilmektedir. Calismadaki GA’nin zorluk derecesi i¢in kullanilan e; hata degeri ve
secilme siklig1 i¢in kullanilan e, hata degerinin, standart GA’nin buldugu degerlere

gore daha iyi oldugu goriilmektedir.

-- RESULTS For Improved GA ---—-—-----—-----
Difficulty:@.® | avgknwPoint:2.841 | avgSelection:@.84 | totalAnswerTime:188.@ | e1:8.@ | e2:8.841 | e3:8.884 | ed4:8.8 | FITNESS:@.831

Question IDs 1 20|96|127|212|226|286| 357|370 |416| 494|594 | 597|635 | 652 | 664|778 | 831 | 903|923 | 925 | 1850|1151 1432|1442 | 1449|1460 |
1466|1475|1525| 1618 | 1634|1662 | 1766|1729 | 1773|1863 | 1578|1925 | 2813 | 2844|2162 | 2167 | 2115| 2119|2124 | 2138 | 2148|2176 | 2182 | 2191 |

Question Difficulties :13432223324444334333243234222344422333434443133333
Question Know. Points 12122223123333311112131211221333312133133322122222
Question Prev. Selected : @1 300 11010611100812106300@311033010130112186400000080
Question Answer Times 12122223123333311112131211221333312133133322122222
Question Chapters ©111111111122222222223333333333444444444455555555655
Question Scores $12122223123333311112131211221333312133133322122222

Total Prev. Selected Q. : 42.8

-- RESULTS For Traditional GA --------------
Difficulty:8.3 | avgknwPoint:2.841 | avgSelection:1.56 | totalAnswerTime:188.8 | e1:8.3 | e2:0.841 | e3:8.156 | e4:8.@ | FITNESS:@.124

Question IDs : 11]|98|144|153|172|311| 321|371 | 395|424 |548 | 542|593 | 596 | 682 | 612|632 | 725|745 | 894 | 1143|1154 | 1195|1251 | 1275|1368 |
1366|1371|1572|1622| 1645|1648 | 1656|166@|1719| 1783|1874 | 1878|1955 | 2052 | 2089 | 2100|2188 | 2177 | 2183 | 2216|2299 | 2302 | 2324 | 2448 |

Question Difficulties :23222313431144443211423313422142441334344443331141
Question Know. Points 13221111311133333211322313122132331223323332221111
Question Prev. Selected : 3211489119830 201320214233824122411410009813201342001
Question Answer Times 13221111311133333211322313122132331223323332221111
Question Chapters $111111111122222222223333333333444444444455555555565
Question Scores $13221111311133333211322313122132331223323332221111

Total Prev. Selected Q. : 78.@

Sekil 5.11 : Her kriterin agirlik carpani %25 olan sonug 6rnegi.

Sekil 5.12, Sekil 5.13, Sekil 5.14 ve Sekil 5.15°de, zorluk seviyesi 3, iterasyon sayisi
100 ve niifus sayist 80 olarak belirlenmis ve soru sayist farkli olan test sayfalar
uretiminde standart GA ile ¢alismadaki GA uygunluk degerlerinin iterasyona gore

yakinsama grafikleri gosterilmektedir.

0,35 = (Calismadaki GA
=== =Standart GA
S
El=Ts)
a
o
-
=
E ———————
® ‘o
= -
= il W
0,00
0 20 40 60 80 100

iterasyon Sayisi

Sekil 5.12 : 20 soruluk test sayfasi i¢in karsilagtirmali yakinsama grafigi.
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Sekil 5.13 :

Sekil 5.14 :

0,60 = Calismadaki GA

0,50 = === Standart GA

0,20

Uygunluk Degeri
=
J
S

0,10

0,00
0 20 40 60 80 100

iterasyon Sayisi
50 soruluk test sayfasi i¢in karsilagtirmali yakinsama grafigi.

0,40 e Calismadaki GA

0,35
! - ——-Standart GA

\
0,30 | =©
0,25 \

3

oo
0,20 e S

0,15

Uygunluk Deger

0,10
0,05

0,00

0 20 40 60 80 100

iterasyon Sayisi

100 soruluk test sayfas igin karsilagtirmali yakinsama grafigi.

0,40 i
: = (Calismadaki GA
1
0,35 % ====Standart GA
-
0,30 l|

Uygunluk Degeri

0 20 40 60 80 100

iterasyon Sayisi

Sekil 5.15 : 200 soruluk test sayfasi i¢in karsilagtirmali yakinsama grafigi.
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Sekil 5.16, Sekil 5.17, Sekil 5.18 ve Sekil 5.19°da, zorluk seviyesi 2, iterasyon sayist
100 ve niifus sayis1 80 olarak belirlenmis ve soru sayisi farkli olan test sayfalari
Uretiminde standart GA ile ¢alismadaki GA uygunluk degerlerinin iterasyona goére

yakinsama grafikleri gosterilmektedir.

0,25 = (Calismadaki GA
Standart GA

0,2
b
&
2 0,15
s
=
S 01
[T
P
3 W

0,05 —

0
0 20 40 60 80 100

iterasyon Sayisi

Sekil 5.16 : 20 soruluk test sayfasi i¢in karsilagtirmali yakinsama grafigi.

0,16 = Caligmadaki GA

0,14 Standart GA

0,12

=l
=

0,08

0,06 |
0,04

—
0,02

Uygunluk Deger

0

0 20 40 60 80 100
iterasyon Sayisi

Sekil 5.17 : 50 soruluk test sayfasi i¢in karsilagtirmali yakinsama grafigi.
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0,16 = Calismadaki GA
0,14 —>Standart GA

0,1

Uygunluk Degeri
\_O
o
&

0 20 40 60 80 100

iterasyon Sayisi
Sekil 5.18 : 100 soruluk test sayfasi igin karsilastirmali yakinsama grafigi.

0,4 —Calismadaki GA
0,35

= Standart GA
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0,15
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w
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0,05

0 20 40 60 80 100

iterasyon Sayisi

Sekil 5.19 : 200 soruluk test sayfasi i¢in karsilagtirmali yakinsama grafigi.

Sekil 5.20, Sekil 5.21, Sekil 5.22 ve Sekil 5.23’de, zorluk seviyesi 1, iterasyon sayisi
100 ve niifus sayist 80 olarak belirlenmis ve soru sayist farkli olan test sayfalari
uretiminde standart GA ile ¢alismadaki GA uygunluk degerlerinin iterasyona gore

degisim grafikleri gosterilmektedir.
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0,6 = (aligmadaki GA
Standart GA

0,5
0,4
0,3

0,2

il

Uygunluk Degeri

0,1

0 20 40 60 80 100

iterasyon Sayisi
Sekil 5.20 : 20 soruluk test sayfasi i¢in karsilagtirmali yakinsama grafigi.

0,45 = Caligmadaki GA
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Sekil 5.21 : 50 soruluk test sayfasi i¢in karsilagtirmali yakinsama grafigi.
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Sekil 5.22 : 100 soruluk test sayfasi i¢in karsilagtirmali yakinsama grafigi.
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Sekil 5.23 : 200 soruluk test sayfasi i¢in karsilagtirmali yakinsama grafigi.
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6. SONUC VE ONERILER

Bu tez ¢alismasinda, test sayfasi olusturma konusu iizerinde durulmus ve GA tabanl
bir ¢6zim ydntemi sunulmustur. Insan faktdriine bagl olabilecek hatalari azaltarak
zamandan ve is giiclinden kazang saglayan bu yontemle etkin bir sekilde test

sayfalari olusturulabilmektedir.

Literatiir ¢calismalar1 degerlendirilerek, ¢aprazlama ve mutasyon islemleri standart
GA’dan farkli olarak bolim bazli segilen sorular iizerinden uygulanmistir. Test
sorular1 olusturma isleminde sorular icin zorluk seviyesi, bilgi puani, cevaplama
stiresi ve se¢ilme siklig1 gibi dort farkl: kriter kullanilarak, hazirlanan test sorularinin
daha etkin ve verimli olmasi saglanmistir. Yapilan deneysel ¢alismalarda, Onerilen
GA ile standart GA sonuglar1 karsilagtiritlmis ve onerilen algoritmanin daha basarili

sonuclar verdigi goriilmiistiir.

Istenen kriterde test sorularmnimn iretimi icin kullanicilarin da kolay bir sekilde
kullanabilecekleri web tabanli bir kullanici arayiizii tasarimi gergeklestirilmistir. Web
tabanli kullanict arayiizii ile GA’nin parametreleri, test sayfasi igin istenilen
ozellikler ve ozelliklerin agirliklart kullanici tarafindan belirlenebilmekte ve buna
gore istenilen Ozelliklere sahip veya en yakin Ozellikte test sayfalar
olusturulabilmektedir. Uygulama igin Java, SpringBoot teknolojileri ve Thymeleaf
gibi template yapilar kullanilmigtir. Veri tabani olarak MongoDB (noSql) veri tabani

tercih edilirken arayiiz i¢in MongoBooster araci kullanilmustir.

Calismadaki bu yontem, kullanimi gittik¢e artan ve gelecekte klasik sinavlarin yerini
alacagi diisiiniilen e-smav sisteminde kullanilabilecegi gibi soru bankasi elektronik

ortamda olan klasik sinav ve testler i¢in de kullanilabilir.

Bu tez calismasinin sonraki asamalarinda sorulara ait farkli 6zelliklerin belirlenip
ama¢ fonksiyonunda kullanilmasiyla ya da nifusun o Ozelliklere bagli kalarak
olusturulup degistirilmesiyle daha detayli test sayfalarinin hazirlanmasi miimkiin
olabilecektir. Caprazlama ve mutasyon islemleri, nifusun anlik durumu dikkate
alinarak belirlenebilecek olasilik formiilleri ile gergeklestirilerek algoritmanin daha

da iyilestirilmesi saglanabilir.
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EKLER

EK A.1 : Uygulama Kaynak Kodlar1 (Sinif ve metotlarin bazilarini igerir)
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EKA1l

package testpaper.generation.model;
import org.springframework.data.mongodb.core.mapping.Document;

@Document(collection = "questions")
public class Question {

private String id;

private Integer questionld;

private String articleTitle;

private String text;

private String answer;

private String articleFile;

private Integer chapter;

private Integer knowledgePoint;
private Integer difficulty;

private String difficultyFromQuestioner;
private String difficultyFromAnswerer;
private Integer estimatedAnswerTime;
private Integer score;

private Integer selectionRatio;

public String getld() {

return id;

}

public void setld(String id) {
this.id = id;

}

public String getArticleTitle() {
return articleTitle;
}

public void setArticleTitle(String articleTitle) {
this.articleTitle = articleTitle;
}

public String getText() {
return text;
}

public void setText(String text) {
this.text = text;
}
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public Integer getScore() {
return score / 10;
}

public void setScore(Integer score) {
this.score = score;
}

public String getAnswer() {
return answer;
}

public void setAnswer(String answer) {
this.answer = answer;
}

public String getArticleFile() {
return articleFile;
}

public void setArticleFile(String articleFile) {
this.articleFile = articleFile;
}

public Integer getChapter() {
return chapter;
}

public void setChapter(Integer chapter) {
this.chapter = chapter;
}

public Integer getKnowledgePoint() {
return knowledgePoint;
}

public void setkKnowledgePoint(Integer knowledgePoint) {
this.knowledgePoint = knowledgePoint;
}

public Integer getDifficulty() {
return difficulty;
}

public void setDifficulty(Integer difficulty) {
this.difficulty = difficulty;
}

public Integer getEstimatedAnswerTime() {
return estimatedAnswerTime;
}

public void setEstimated AnswerTime(Integer estimatedAnswerTime) {
this.estimated AnswerTime = estimated AnswerTime;
}

public Integer getQuestionld() {
return questionld;
}
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public void setQuestionld(Integer questionld) {
this.questionld = questionld;
}

public String getDifficultyFromQuestioner() {
return difficultyFromQuestioner;
}

public void setDifficultyFromQuestioner(String difficultyFromQuestioner) {
this.difficultyFromQuestioner = difficultyFromQuestioner;
}

public String getDifficultyFromAnswerer() {
return difficultyFromAnswerer;
}

public void setDifficultyFromAnswerer(String difficultyFromAnswerer) {
this.difficultyFromAnswerer = difficultyFromAnswerer;
}

public Integer getSelectionRatio() {
return selectionRatio;
}

public void setSelectionRatio(Integer selectionRatio) {
this.selectionRatio = selectionRatio;
}

@Override
public int hashCode() {
final int prime = 31;
int result = 1;
result = prime * result + ((questionld == null) ? 0 : questionld.hashCode());
return result;

}
@Override
public boolean equals(Object obj) {
if (this == obj)
return true;
if (obj == null)
return false;
if (getClass() != obj.getClass())
return false;
Question other = (Question) obj;
if (questionld == null) {
if (other.questionld != null)
return false;
} else if ('questionld.equals(other.questionlid))
return false;
return true;
}
@Override
public String toString(){
return """ + this.questionld;
}

64



package testpaper.GA;
import testpaper.generation.model.Properties;
public class Population implements Cloneable {
public TestPaper[] testPapers;
private Properties properties;

private TestPaper fittest;

/***

* Constructor, verilen ézellikler bilgisine gére populasyon olusturur.
*
* @param populationSize
* @param initialise
*/
public Population(final Properties properties) {
this.properties = properties;
this.testPapers = new TestPaper[properties.getPOPULATION_SIZE()];
}

/***

* Verilen indexdeki test sayfasini doner

*

* @param index

* @return

*/

public TestPaper getTestPaper(final int index) {
return this.testPapers[index];

}
/***

* Populasyondaki en iyi test sayfasini verir
*

* @return
*/
public TestPaper getFittest() {
this.fittest = this.testPapers[0];
for (inti=0; i< this.size(); i++) {
if (this.getTestPaper(i).getFitnessValue() < this.fittest.getFitnessValue()) {
this.fittest = this.getTestPaper(i);
}
}
return this.fittest;
}

/***

* Populasyon size bilgisini verir
*
* @return
*/
public int size() {

return this.testPapers.length;
}

/***

* Verilen indexe gore verilen test sayfasini atar
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* index

* testPaper

*/

public void saveTestPaper(final int index, final TestPaper testPaper) {
this.testPapers[index] = testPaper;

}

public Properties getProperties() {
return this.properties;

}

public void setProperties(final Properties properties) {
this.properties = properties;

}

@Override
public Object clone() throws CloneNotSupportedException {
return super.clone();
}
}

package testpaper.GA;

import java.util. ArrayList;
import java.util.List;

import testpaper.generation.controllers.Algorithm;
import testpaper.generation.model.Properties;
import testpaper.generation.model.Question;

/**

* The Class TestPaper.
*/

public class TestPaper {

public List<Question> questionList;

private int punishment;

private double difficulty =0.0;
private double knowledgePoint =0.0;
private double score =0.0;

private double estimatedAnswerTime = 0.0;

private double chapterCompliance  =0.0;
private double ui =0.0;
private double fitnessValue =0.0;

private double difficultyCoefficient. W = 0.0;
private double totalScore_S =0.0;

private double knowledgePoint_Q =0.0;
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private double

private double

totalTime_T

selectionRatio

0.0;

0.0;

private Properties properties;
private double weightl;
private double weight2;
private double weight3;
private double weight4;
[Hx

:/Instantiates a new testPaper.

public TestPaper(final Properties properties) {
this.questionList = new ArrayList<Question>();
this.properties = properties;
this.calculateWeights();

}

public Question getQuestion(final int index) {
return this.questionList.get(index);

}

public void setQuestion(final int index, final Question question) {
this.questionList.set(index, question);

}

public int getPunishment() {
this.punishment = FitnessCalc.getPunishment(this);
return this.punishment;

}

public void calculateWeights() {
final int totalW = this.getProperties().getW1() + this.getProperties().getW2() +
this.getProperties().getW3() + this.getProperties().getW4();
this.weightl = (double) this.getProperties().getW1() / totalW;
this.weight2 = (double) this.getProperties().getW2() / total\W;
this.weight3 = (double) this.getProperties().getW3() / total\W;
this.weight4 = (double) this.getProperties().getW4() / total\W;

}

public void sortByQuestionID() {
this.questionList.sort((p1, p2) -> p1l.getQuestionld().compareTo(p2.getQuestionld()));

}

public String getQuestionsAsString() {
String value ="";
for (final Question q : this.questionList) {
value +=q+"|"
}

return value;

}

public String getDifficultiesAsString() {
String value ="";
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for (final Question g : this.questionList) {
value +=" " + g.getDifficulty() + " - ";
¥

return value;

}

public String getScoresAsString() {
String value =",
for (final Question g : this.questionList) {
value += g.getScore() + " - *;
}

return value;

}

public String getSelectionRatioAsString() {
String value =",
for (final Question g : this.questionList) {
value += q.getSelectionRatio() + " - ";
}

return value;

}

public String getKnowledgePointsAsString() {
String value ="";
for (final Question g : this.questionList) {
value += ¢.getKnowledgePoint() + " - *;
}

return value;

}

public String getGeneScoreAsString() {
String value ="";
for (final Question g : this.questionList) {
value += g.getScore() + " - ";
}

return value;

}

public String getQuestionListAsString() {
String value ="";
for (final Question g : this.questionList) {
value += g.getQuestionld() + " - ™;

return value;

}

public String getQuestionChaptersAsString() {
String value ="";
for (final Question g : this.questionList) {
value += g.getChapter() + " - ";
}

return value;

}

public String getQuestionAnswerTimesAsString() {
String value ="";
for (final Question g : this.questionList) {
value += g.getEstimatedAnswerTime() + " - ";

}

return value;
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}

/***

* TestPaper zorluk derecesi farkini (genleri degistigi icin her ¢agriminda) hesaplayarak tutar.

*

* Zorluk derecesi farkini #.## seklinde round ederek mutlak degerini alir.
* @return testin zorluk derecesi farki
*/
public double getDifficulty() {
this.difficulty = FitnessCalc.getDifficulty(this);
this.difficulty = Math.abs(this.round(this.difficulty));
return this.difficulty;

}

public void setDifficulty(final double difficulty) {
this.difficulty = difficulty;
}

public double getKnowledgePoint() {
this.knowledgePoint = 0.0;
for (final Question q : this.questionList) {
this.knowledgePoint += g.getKnowledgePoint();
}

return this.knowledgePoint;

}

public double getSelectionRatio() {
this.selectionRatio = 0.0;
for (final Question g : this.questionList) {
this.selectionRatio += g.getSelectionRatio();

}

return this.selectionRatio;

}

public double getScore() {
this.score = 0.0;
for (final Question g : this.questionList) {
this.score += q.getScore();
}

return this.score;

}

public double getEstimatedAnswerTime() {
this.estimated AnswerTime = 0.0;
for (final Question g : this.questionList) {
this.estimated AnswerTime += g.getEstimatedAnswerTime();

}

return this.estimatedAnswerTime;

}

public double getE1() {
final double e = this.getDifficulty();
return this.round(e);

}

public double getE2() {
final double e = Math.abs(FitnessCalc.desiredKnowledgePoint - this.getKnowledgePointAvg());
return this.round(e);

}
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public double getE3() {
final double e = this.getSRatio();
return this.round(e);

}

public double getE4() {
final double e = Math.abs(FitnessCalc.desiredAnswerTime - this.getEstimatedAnswerTime()) /
this.getProperties().getDEFAULT_GENE_LENGTH();
return this.round(e);
}

public double getSRatio() {
final double sr = this.getSelectionRatio() /
(this.getProperties().getDEFAULT_GENE_LENGTH());
return this.round(sr);
}

public double round(double value) {
value = Math.round(value * 100);
value = value / 100;
return value;

}

public double getFitnessValue() {
this.fitnessValue = (this.getE1() * this.weightl) // Difficulty
+ (this.getE2() * this.weight2) // Knowledge Point
+ (this.getE3() * this.weight3) // Selection Ratio
+ (this.getE4() * this.weight4) // Answer Time
+ Algorithm.getPunismentValue(this);

return this.round(this.fitnessValue);

}

public double getUi() {
return this.ui;

}

public void setUi(final double ui) {
this.ui = ui;

}

public String toDetailString() {
return super.toString()
+ " diff:"
+ this.getDifficulty()
+", AvgScore:"
+ this.getScoreAvg()
+ ", AvgKnwPoint:"
+ this.getknowledgePointAvg()
+" E1:"
+ this.getE1()
+" E2:"
+ this.getE2()
+" E3:"
+ this.getE3()
+" E4:"
+ this.getE4()
+" FTN:"
+ this.getFitnessValue();
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}

public String toResultString() {
return "tekrarli soru:" + this.getPunishment() + " | zorluk farki:" + this.getDifficulty();

}

public double getDifficultyCoefficient_W() {
double temp = 0.0;
for (final Question g : this.questionList) {
temp += g.getScore() * g.getDifficulty();

this.difficultyCoefficient_W = temp / this.getTotalScore_S();
return this.round(this.difficultyCoefficient_ W);

}

public void setDifficultyCoefficient_W(final double difficultyCoefficient_W) {
this.difficultyCoefficient_W = difficultyCoefficient_W;
}

public double getTotalScore_S() {
this.totalScore_S = this.getScore();
return this.totalScore_S;

}

public double getScoreAvg() {
return this.round(this.getTotalScore_S() / this.questionList.size());

}

public double getDesiredScoreAvg() {
return this.round(FitnessCalc.desiredScore / this.questionList.size());

}

public double getkKnowledgePointAvg() {
for (final Question g : this.questionList) {
this.knowledgePoint_Q += g.getkKnowledgePoint();

this.knowledgePoint_Q = this.knowledgePoint_Q / this.questionList.size();
return this.round(this.knowledgePoint_Q);

}

public void setTotalScore_S(final double totalScore_S) {
this.totalScore_S = totalScore_S;
}

public void setKnowledgePoint_Q(final double knowledgePoint_Q) {
this.knowledgePoint_Q = knowledgePoint_Q;
}

public double getTotalTime_T() {
this.total Time_T = this.getEstimatedAnswerTime();
return this.totalTime_T;

}

public void setTotalTime_T(final double totalTime_T) {
this.totalTime_T = totalTime_T;
}

public void setkKnowledgePoint(final double knowledgePoint) {
this.knowledgePoint = knowledgePoint;
}
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public void setScore(final double score) {
this.score = score;

}

public void setEstimatedAnswerTime(final double estimated AnswerTime) {
this.estimated AnswerTime = estimated AnswerTime;

}

public double getChapterCompliance() {
return this.chapterCompliance;

}

public void setChapterCompliance(final double chapterCompliance) {
this.chapterCompliance = chapterCompliance;

}

public void setPunishment(final int punishment) {
this.punishment = punishment;

}

public Properties getProperties() {
return this.properties;

}

public void setProperties(final Properties properties) {
this.properties = properties;

}

public void setSelectionRatio(final double selectionRatio) {
this.selectionRatio = selectionRatio;

}

public List<Question> getQuestionList() {
return this.questionList;

}

public void setQuestionList(final List<Question> questionList) {
this.questionList = questionList;

}
}

package testpaper.generation.model;

import java.util. Comparator;
import java.util.Random;

import testpaper.GA.TestPaper;

/**

* The Class Constant.
*/

public class Properties {

[** The Constant DEFAULT_GENE_LENGTH. */
private int DEFAULT_GENE_LENGTH =50;

[** The Constant POPULATION SIZE */
private int POPULATION_SIZE  =50;
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[** The Constant POOL_SIZE. */

private int STATE_SPACE = 2455;
/** The Constant MAX_ITERATION. */

private int MAX_ITERATION =100;
[** The Constant TEST DIFFICULTY. */

private int DIFFICULTY =3;

[** The Constant TEST SCORE. */

private int SCORE =100;

[** The Constant KNOWLEDGE_POINT. */

private int KNOWLEDGE_POINT  =2;
[** The Constant ESTIMATED_ANSWER_TIME. */
private int ESTIMATED_ANSWER_TIME = this.DEFAULT_GENE_LENGTH * 2;
/** Uygunluk fonksiyonu MAX degeri */

public static final int U_MAX =1;

private int chapterl =10;

private int chapter2 =10;

private int chapter3 =10;

private int chapter4 =10;

private int chapterb =10;

private boolean excludeLastQuestions;

private int wl =1l,w2=1w3=1w4=1;
private boolean improvedAlgorithm = true;

[** The random. */
private static Random random = new Random();

/**

* |nstantiates a new statics.
*/

public Properties() {

}

public int getDEFAULT_GENE_LENGTH() {
return this. DEFAULT_GENE_LENGTH;
}

public void setDEFAULT_GENE_LENGTH(final int dEFAULT_GENE_LENGTH) {
this. DEFAULT_GENE_LENGTH = dEFAULT_GENE_LENGTH;
}

public int getPOPULATION_SIZE() {
return this.POPULATION_SIZE;
}

public void setPOPULATION_SIZE(final int pPOPULATION_SIZE) {
this.POPULATION_SIZE = pOPULATION_SIZE;
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}

public int getSTATE_SPACE() {
return this.STATE_SPACE;

}

public void setSTATE_SPACE(final int STATE_SPACE) {
this.STATE_SPACE = sTATE_SPACE;

}

public int getMAX_ITERATION() {
return this.MAX_ITERATION;

}

public void setMAX_ITERATION(final int mAX_ITERATION) {
this. MAX_ITERATION = mAX_ITERATION;

}

public int getDIFFICULTY() {
return this.DIFFICULTY;

}

public void setDIFFICULTY (final int dIFFICULTY) {
this.DIFFICULTY =dIFFICULTY;

}

public Random getRandom() {
return random;

}

public void setRandom(final Random random) {
Properties.random = random;

}

public int getuMax() {
return U_MAX;

}

public int getSCORE() {
return this.SCORE;

}

public void setSCORE(final int SCORE) {
this.SCORE = SCORE;

}

public int getKNOWLEDGE_POINT() {
return this. KNOWLEDGE_POINT;

}

public void setkNOWLEDGE_POINT (final int KNOWLEDGE_POINT) {
this. KNOWLEDGE_POINT = kNOWLEDGE_POINT;

}

public int getESTIMATED_ANSWER_TIME() {
return this.ESTIMATED_ANSWER_TIME;

}

public void setESTIMATED_ANSWER_TIME(final int eSTIMATED_ANSWER_TIME) {
this.ESTIMATED_ANSWER_TIME = eSTIMATED_ANSWER_TIME;
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}

public int getU_MAX() {
return U_MAX;

}

public int getChapter1() {
return this.chapterl;

}

public void setChapterl(final int chapterl) {
this.chapterl = chapterl;

}

public int getChapter2() {
return this.chapter2;

}

public void setChapter2(final int chapter2) {
this.chapter2 = chapter2;

}

public int getChapter3() {
return this.chapter3;

}

public void setChapter3(final int chapter3) {
this.chapter3 = chapter3;

}

public int getChapter4() {
return this.chapter4;

}

public void setChapter4(final int chapter4) {
this.chapter4 = chapter4;

}

public int getChapter5() {
return this.chapter5;

}

public void setChapter5(final int chapter5) {
this.chapter5 = chapter5;

}

public int getW1() {
return this.wi;

}

public void setW1(final int wl) {
this.wl = wl;

}

public int getWw2() {
return this.w2;

}

public void setW2(final int w2) {
this.w2 = w2;
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}

public int getW3() {
return this.w3;

}

public void setW3(final int w3) {
this.w3 = w3;

}

public int getWw4() {
return this.w4;

}

public void setW4(final int w4) {
this.w4 = w4,

}

public boolean isExcludeLastQuestions() {
return this.excludeLastQuestions;

}

public void setExcludeLastQuestions(final boolean excludelLastQuestions) {
this.excludeLastQuestions = excludeLastQuestions;

}

public boolean isimprovedAlgorithm() {
return this.improvedAlgorithm;

}

public void setimprovedAlgorithm(final boolean improvedAlgorithm) {
this.improvedAlgorithm = improvedAlgorithm;

}

/***

* Dizi ya da listeyi siralamak icin kullanilir. Test sayfasi zorluk derecesini siralamak icin.
*/
public static final Comparator<TestPaper> testPaperComparator = new
Comparator<TestPaper>() {
@Override
public int compare(final TestPaper t1, final TestPaper t2) {
return Double.compare(tl.getFitnessValue(), t2.getFitnessValue());

}

h

package testpaper.GA,;
import testpaper.generation.model.Question;
public class FitnessCalc {
static double desiredQuestionCount;
static double desiredDifficulty;

static double desiredScore;
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static double desiredKnowledgePoint;
static double desiredAnswerTime;

static double desiredChapterCompliance;

/***

* Test sayfasinin kac tane tekrarli soruya sahip oldugunu doner
*
* @param testPaper
* @return
*/
static int getPunishment(TestPaper testPaper) {
int punishment = 0;
for (inti = 0; i < testPaper.questionList.size(); i++) {
int count = 0;
Question question = testPaper.getQuestion(i);
for (Question q : testPaper.questionList) {
if (g.getQuestionld() == question.getQuestionld()) {
count++;
}
}

punishment = punishment + count;

}

punishment = (punishment - testPaper.questionList.size()) / 2;
return punishment;

/***
* Verilen Test sayfasinin zorluk derecesini hesaplar, istenilen zorluk derecesiyle farkini

alarak doner.
*
* @param testPaper
* @return zorluk derecesi
*/
static double getDifficulty(TestPaper testPaper) {
double difficulty = 0;
for (Question q : testPaper.questionList) {
difficulty = difficulty + g.getDifficulty();

}
double avgDifficulty = difficulty / testPaper.questionList.size();
return avgDifficulty - getDesiredDifficulty();

/***

* Test sayfasinin hangi zorluk seviyesinde olacagini set eder

*

* @param solution

*/

public static void setDesiredDifficulty(double desiredDifficulty) {
FitnessCalc.desiredDifficulty = desiredDifficulty;

¥

/***

* Beklenen sonug degeri
*

* @return
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*/

static double getDesiredDifficulty() {
return desiredDifficulty;

}

public static double getDesiredScore() {
return desiredScore;
}

public static void setDesiredScore(double desiredScore) {
FitnessCalc.desiredScore = desiredScore;
}

public static double getDesiredKnowledgePoint() {
return desiredKnowledgePoint;
}

public static void setDesiredKnowledgePoint(double desiredKnowledgePoint) {
FitnessCalc.desiredKnowledgePoint = desiredKnowledgePoint;
}

public static double getDesiredAnswerTime() {
return desiredAnswerTime;
}

public static void setDesiredAnswerTime(double desiredAnswerTime) {
FitnessCalc.desiredAnswerTime = desiredAnswerTime;
}

public static double getDesiredChapterCompliance() {
return desiredChapterCompliance;
}

public static void setDesiredChapterCompliance(double desiredChapterCompliance) {
FitnessCalc.desiredChapterCompliance = desiredChapterCompliance;
}

public static double getDesiredQuestionCount() {
return desiredQuestionCount;
}

public static void setDesiredQuestionCount(double desiredQuestionCount) {
FitnessCalc.desiredQuestionCount = desiredQuestionCount;
}

package testpaper.generation.controllers;
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import java.util. Arrays;

import java.util.List;

import java.util.Random;

import java.util.stream.Collectors;

import org.springframework.beans.factory.annotation. Autowired;
import org.springframework.stereotype.Controller;

import testpaper.GA.Population;

import testpaper. GA.TestPaper;

import testpaper.generation.model.Properties;

import testpaper.generation.model.Question;

import testpaper.generation.repository.QuestionSearchRepository;

@Controller
public class Algorithm {

@Autowired
QuestionSearchRepository  questionSearchRepository;

@Autowired
QuestionGenerator questionGenerator;

@Autowired
ConfigController configController;

/I GA parameters

private static final double mutationRate = 0.015;
private static final double uniformRate = 0.5;
private static final boolean elitism = true;

/***

* Populasyonu evolve eder, elit bireyi saklar, caprazlama ve mutasyon methodlarini ¢agirir

*

* @param population

* @return

*/

public Population evolvePopulation(final Population population, final Properties properties) {
final Population newPopulation = new Population(properties);

if (elitism) {
newPopulation.saveTestPaper(0, population.getFittest());

}

/I Crossover

int elitismOffset;

if (elitism) {
elitismOffset = 1;

Yelse {
elitismOffset = 0;

}

for (int i = elitismOffset; i < population.size(); i++) {
final TestPaper t1 = rouletteWheelSelection(population);
final TestPaper t2 = rouletteWheelSelection(population);

TestPaper newTestPaper = null;
if (properties.isChapterSelected() && properties.isimprovedAlgorithm()) {
newTestPaper = this.crossoverByChapter(t1, t2, properties); // Chapter bazli

Telse {
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newTestPaper = this.crossover(tl, t2, properties);

}

newPopulation.saveTestPaper(i, newTestPaper);

}

/I Mutate population
for (int i = elitismOffset; i < newPopulation.size(); i++) {
this.mutate(newPopulation.getTestPaper(i), properties);

}

return newPopulation;

}

/***

* Crossover ile testpaperlar icindeki guestionlar ¢aprazlanir
*
* @param tl
* @param t2
* @return
*/
private TestPaper crossover(final TestPaper t1, final TestPaper t2, final Properties properties) {
final TestPaper newTestPaper = new TestPaper(properties);
final int crossPoint = randInt(0, properties.getDEFAULT _GENE_LENGTH());
for (int i = 0; i < this.configController.properties.getDEFAULT _GENE_LENGTH(); i++) {
if ((i <crossPoint) && !newTestPaper.questionList.contains(t1.getQuestion(i))) {
newTestPaper.questionList.add(i, t1.getQuestion(i));
} else if ('newTestPaper.questionList.contains(t2.getQuestion(i))) {
newTestPaper.questionList.add(i, t2.getQuestion(i));
}else {
newTestPaper.questionList.add(i,
this.questionGenerator.getUniqueRandomQuestion(newTestPaper));
}
}

return newTestPaper;

}

/***

* Mutation ile test paperdaki question mutasyon oranina gére degistirilebilir.
*
* @param testPaper
*/
private void mutate(final TestPaper testPaper, final Properties properties) {
for (inti=0; i< properties.getDEFAULT_GENE_LENGTHY(); i++) {
if (Math.random() <= mutationRate) {
if (properties.isChapterSelected() && properties.isimprovedAlgorithm()) {
final Question g =
this.questionGenerator.getRandomUniqueQuestionByChapter(testPaper.questionList.get(i).getChapte
r(), testPaper);
testPaper.questionList.set(i, q);

Yelse {

testPaper.questionList.set(i, this.questionGenerator.getRandomQuestion());
}

¥
}
}

/***

* Uygunluk fonksiyonu: bireyler arasinda iyi bireyden kotuye dogru siralama yapar ve uygunluk
degerlerini belirler

*
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* @param population
*/
public void sortAndCalculateFitness(final Population population) {
System.setProperty(“java.util.Arrays.useLegacyMergeSort”, "true");
Arrays.sort(population.testPapers, Properties.testPaperComparator); // f(x)'e gore degisir ***
for (inti = 0; i < population.testPapers.length; i++) {
final TestPaper testPaper = population.testPapers[il;
final double ui = (Properties.U_MAX *
Double.valueOf((this.configController.properties.getPOPULATION_SIZE() - (i + 1))))
/ (this.configController.properties.getPOPULATION_SIZE() - 1);

testPaper.setUi(testPaper.round(ui));
}

}

/***

* Roullette Wheel yontemi ile secim
*
* @param population
* @return
&/
public static TestPaper rouletteWheelSelection(final Population population) {
double range = 0;
for (final TestPaper testPaper : population.testPapers) {
range += testPaper.getUi();
}

final Random random = new Random();
final double randomValue = random.nextDouble() * range;

double sum = 0;
for (inti = 0; i < population.testPapers.length; i++) {
if (randomValue <= (population.testPapers[i].getUi() + sum)) {
return population.testPapers[i];
}else {
sum += population.testPapers[i].getUi();
}
}

return null;

}

/***

* Ayni question varsa random question ile degistirir. Tekrarli sorulari onlemek amaclidir.
*

* @param testPaper
*/
public void punishmentControl(final TestPaper testPaper, final Properties properties) {
for (inti=0; i< properties.getDEFAULT_GENE_LENGTH(); i++) {
final Question currentQuestion = testPaper.getQuestion(i);
int count = 0;
for (final Question q : testPaper.questionList) {
if (g.getld() == currentQuestion.getld()) {
count++;
if (count >=2) {
/I Create random question
if (properties.isChapterSelected() && properties.isimprovedAlgorithm()) {
testPaper.questionList.set(i,

this.questionGenerator.getRandomUniqueQuestionByChapter(testPaper.questionList.get(i)
.getChapter(),
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testPaper));
}else {

testPaper.questionList.set(i, this.questionGenerator.getRandomQuestion());

/***

* Tekrarlanan soru sayisini verir Geleneksel GA'da ceza amach kullanilacak

*

* testPaper
* properties
*

*/

public static int duplicationCount(final TestPaper testPaper) {
final List<String> idList =
testPaper.questionL.ist.stream().map(Question::getld).collect(Collectors.toList());
return (idList.size() - (int) idList.stream().distinct().count());

}

public static double getPunismentValue(final TestPaper testPaper) {
final int dupCount = duplicationCount(testPaper);
final int vioCount = chapterViolationCount(testPaper);
final double dupFactor = dupCount > 0 ? ((double) dupCount / testPaper.questionL.ist.size()) : O;
final double vioFactor = vioCount > 0 ? ((double) vioCount / testPaper.questionL.ist.size()) : O;
return dupFactor + vioFactor;

}

public static int randInt(final int min, final int max) {
final Random rand = new Random();
final int randomNum = rand.nextInt((max - min) + 1) + min;
return randomNum;

}

package testpaper.generation.repository;

import org.springframework.data.repository.CrudRepository;
import testpaper.generation.model.Question;

public interface QuestionMongoRepository extends CrudRepository<Question, String>{}
package testpaper.generation.repository;

import static org.springframework.data.mongodb.core.query.Criteria.where;

import static org.springframework.data.mongodb.core.query.Query.query;

import static org.springframework.data.mongodb.core.query.Update.update;

import java.util.Collection;

import java.util.List;

import java.util.Random;

import java.util.stream.Collectors;

import org.springframework.beans.factory.annotation. Autowired;
import org.springframework.data.mongodb.core.MongoTemplate;
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import org.springframework.data.mongodb.core.query.BasicQuery;
import org.springframework.data.mongodb.core.query.Criteria;
import org.springframework.data.mongodb.core.query.Query;
import org.springframework.data.mongodb.core.query.Update;
import org.springframework.stereotype.Repository;

import testpaper.GA.TestPaper;
import testpaper.generation.model.Question;

@Repository
public class QuestionSearchRepository {

@Autowired
MongoTemplate mongoTemplate;

public Collection<Question> searchQuestions(final String text) {
return this.mongoTemplate.find(Query.query(new
Criteria().orOperator(Criteria.where("text").regex(text, "i"),
Criteria.where("articleTitle").regex(text, "i"),
Criteria.where(""chapter").regex(text, "i'))),
Question.class);

}

public Question getQuestionByld(final String id) {
final BasicQuery query = new BasicQuery("{ questionld : " +id + " }");
final Question ¢ = this.mongoTemplate.findOne(query, Question.class);
return g;

}

public List<Question> getQuestionsByChapter(final int chapter) {
final BasicQuery query = new BasicQuery("{chapter: " + chapter + "}");
final List<Question> gList = this.mongoTemplate.find(query, Question.class);
return qgList;

}

public List<Question> getUniqueQuestionsByChapter(final int chapter, final TestPaper testPaper)

{

final BasicQuery query = new BasicQuery("{chapter: "
+ chapter
+", questionld:{$nin:["
+ this.getQuestionlDsByChapter(chapter, testPaper)
+TH;

final List<Question> gList = this.mongoTemplate.find(query, Question.class);

return qgList;

}

public List<Question> getUniqueQuestions(final TestPaper testPaper) {
final BasicQuery query = new BasicQuery("{questionld:{$nin:[" +
this.getQuestionIDs(testPaper) + "1} }'");
final List<Question> gList = this.mongoTemplate.find(query, Question.class);
return qList;

}

public void updateSelectionRatio(final Question q) {
final Query query = query(where("questionld").is(g.getQuestionld()));
final Update update = update("selectionRatio", g.getSelectionRatio() + 1);
this.mongoTemplate.updateFirst(query, update, Question.class);

}

public void updateSelectionRatio(final TestPaper t) {
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for (final Question g : t.questionList) {
this.updateSelectionRatio(q);
}
}

public void resetSelectionRatios() {
final Query query = query(where("selectionRatio™).ne(0));
final Update update = update("'selectionRatio", 0);
this.mongoTemplate.updateMulti(query, update, Question.class);

}

public void resetLastSelections() {
final Query query = query(where("lastSelection™).ne(0));
final Update update = update(*lastSelection", 0);
this.mongoTemplate.updateMulti(query, update, Question.class);

}

public void setRandomSelectionRatio(final int stateSpaceCount) {
final Random r = new Random();
for (inti=1; i <= stateSpaceCount; i++) {
final Query query = query(where("questionld™).is(i));
final int randomSelectionRatio = r.ints(1, 0, 5).findFirst().getAsInt(); // random value of
0,1,2,3,4)
final Update update = update("selectionRatio", randomSelectionRatio);
this.mongoTemplate.updateFirst(query, update, Question.class);
}
}

public void updateLastSelections(final TestPaper t) {
for (final Question g : t.questionList) {
final Query query = query(where("questionld").is(g.getQuestionld()));
final Update update = update("lastSelection”, 1);
this.mongoTemplate.updateFirst(query, update, Question.class);
}
}

public List<String> getAllChapters() {
final BasicQuery query = new BasicQuery("{}, {'chapter": 1}");
List<String> cList = this.mongoTemplate.find(query, String.class);
cList = cList.stream().distinct().collect(Collectors.toList());
return cList;

}

public String getQuestionlDsByChapter(final int chapter, final TestPaper testPaper) {
final List<Question> list = testPaper.questionList.stream().filter(q -> g.getChapter() ==
chapter).collect(Collectors.toList());
String result = "";
for (final Question question : list) {
result += question.getQuestionld() +",";
}
if (result.contains(",")) {
result = result.substring(0, result.lastindexOf(","));
}

return result;

}

public String getQuestionlDs(final TestPaper testPaper) {
String result = """;
for (final Question question : testPaper.questionList) {
result += question.getQuestionld() +",";
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}

if (result.contains(",")) {
result = result.substring(0, result.lastindexOf(","));
}

return result;

}
}

package testpaper.generation;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.data.mongodb.repository.config.EnableMongoRepositories;

@SpringBootApplication
@EnableMongoRepositories(“testpaper.generation.repository")
public class TestPaperApplication {

public static void main(final String[] args) {
SpringApplication.run(TestPaperApplication.class, args);

package testpaper.generation.controllers;

import java.util. ArrayList;
import java.util.List;

import org.springframework.beans.factory.annotation. Autowired,;
import org.springframework.stereotype.Controller;

import org.springframework.ui.Model;

import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestParam;
import testpaper.generation.model.Question;

import testpaper.generation.repository.QuestionMongoRepository;
import testpaper.generation.repository.QuestionSearchRepository;

@Controller
public class QuestionController {

@Autowired
QuestionMongoRepository questionRepository;

@Autowired
QuestionSearchRepository questionSearchRepository;

private List<Question> questionList = new ArrayList<Question>();

@RequestMapping("/questions™)

public String questions(Model model) {
model.addAttribute("questionList", questionRepository.findAll());
return "questions";

}

@RequestMapping(value = "/questionSearch™)
public String search(Model model, @RequestParam String search) {
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model.addAttribute("questionList",

questionSearchRepository.searchQuestions(search));
model.addAttribute(*'search”, search);
return "questions";

}

public List<Question> getQuestionList() {
if(questionList.size() == 0){

questionRepository.findAll().iterator().forEachRemaining(questionList::add);

return questionList;

}

package testpaper.generation.controllers;

import java.util.Collections;
import java.util.List;
import java.util.Random;

import org.springframework.beans.factory.annotation. Autowired;
import org.springframework.stereotype.Controller;

import testpaper.GA.Population;

import testpaper.GA.TestPaper;

import testpaper.generation.model.Properties;

import testpaper.generation.model.Question;

import testpaper.generation.repository.QuestionSearchRepository;

@Controller
public class QuestionGenerator {

@Autowired
QuestionSearchRepository questionSearchRepository;

@Autowired
ConfigController configController;

/** The random. */
private static Random random = new Random();

/***

* Verilen size bilgisine gbre populasyon olusturur.

*

* populationSize
* initialise
*/

public void generatePopulation(Population population) {
for (inti = 0; i < population.testPapers.length; i++) {
TestPaper testPaper = new TestPaper(population.getProperties());
this.generateQuestions(testPaper, population.getProperties());
population.testPapers[i] = testPaper;

}
/**

** Yeni random question uretir.

*
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* @return the random question
*
/
public synchronized Question getRandomQuestion() {
int randomint =
random.nextInt(this.configController.properties.getSTATE_SPACE()) + 1;
final Question question = questionSearchRepository.getQuestionByld("" +

randomint);
if (question == null) {
System.out.printin("ERROR : question is null for id =" + randomInt);
}
return question;
}
/**

** Verilen test sayfasinda olmayan yeni bir random question uretir.
*
* @return the random question
*/
public synchronized Question getUniqueRandomQuestion(TestPaper testPaper) {
final List<Question> questions =
questionSearchRepository.getUniqueQuestions(testPaper);
int randomint = random.nextInt(questions.size());
Question question = questions.get(randomint);
if (question == null) {
System.out.printin("ERROR : question is null for id =" + randomInt);
}

return question;

}
/**

** Verilen test sayfasina ve istenilen chapter'a gore yeni bir random question uretir.

*

* @return the random question
*/
public synchronized Question getRandomUniqueQuestionByChapter(int chapter, TestPaper
testPaper) {
final List<Question> questions =
questionSearchRepository.getUniqueQuestionsByChapter(chapter, testPaper);
int randomInt = random.nextint(questions.size());
Question question = questions.get(randomInt);
return question;

}
/**
* * Chapter'a gdre istenilen sayida random question uretir. Popiilasyonun
* ilk olusturulmasinda chapter bilgisine gdre sorulari random Gretmek icin
* kullanilir.
*
* @return the random question
*/
public synchronized void getRandomQuestionsByChapter(int chapter, int amount,
TestPaper testPaper) {
if (amount > 0) {
final List<Question> randomQuestions =
questionSearchRepository.getQuestionsByChapter(chapter);
/I shuffle list
Collections.shuffle(randomQuestions);
/I adding numbers to random list
for (intj = 0; j <amount; j++) {
testPaper.questionList.add(randomQuestions.get(j));
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package testpaper.generation.controllers;
import java.util.List;

import org.springframework.beans.factory.annotation. Autowired;
import org.springframework.stereotype.Controller;

import org.springframework.ui.Model;

import org.springframework.web.bind.annotation.Model Attribute;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestMethod:;

import testpaper.GA.FitnessCalc;

import testpaper.GA.Population;

import testpaper.generation.model.Properties;

import testpaper.generation.model.Question;

import testpaper.generation.repository.QuestionSearchRepository;

@Controller
public class GAController {

@Autowired

QuestionSearchRepository questionSearchRepository;
@Autowired

QuestionGenerator questionGenerator;
@Autowired

ConfigController configController;
@Autowired

Algorithm algorithm;

public String result;

public String resultQuestionIDs;
public String resultQuestionsDificulty;
public String resultlteration;

public String resultFitness;

public Population population;
public List<Question> resultQuestions;

/***

* Constructor.

*/

public GAController() {
}

@RequestMapping(value = "/startGA", method = RequestMethod.GET)
public String test(final Model model) {
model.addAttribute("DEFAULT_GENE_LENGTH",
this.configController.properties.getDEFAULT_GENE_LENGTH());
model.addAttribute("POPULATION_SIZE",
this.configController.properties.getPOPULATION_SIZE());
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model.addAttribute("MAX_ITERATION",
this.configController.properties.getMAX_ITERATION());
model.addAttribute("DIFFICULTY™, this.configController.properties.getDIFFICULTY());
model.addAttribute("SCORE", this.configController.properties.getSCORE());
model.addAttribute("KNOWLEDGE_POINT",
this.configController.properties.getKNOWLEDGE_POINT());
model.addAttribute("ESTIMATED _ANSWER_TIME",
this.configController.properties.getESTIMATED_ANSWER_TIME());
model.addAttribute("chapterl”, this.configController.properties.getChapter1());
model.addAttribute(""chapter2”, this.configController.properties.getChapter2());
model.addAttribute(""chapter3", this.configController.properties.getChapter3());
model.addAttribute(""chapter4”, this.configController.properties.getChapter4());
model.addAttribute(""chapter5”, this.configController.properties.getChapter5());
model.addAttribute("w1", this.configController.properties.getW1());
model.addAttribute("w2", this.configController.properties.getW2());
model.addAttribute("w3", this.configController.properties.getW3());
model.addAttribute("w4", this.configController.properties.getW4());
model.addAttribute("excludeLastQuestions",
this.configController.properties.isExcludeLastQuestions());
return "startGA";
}

@RequestMapping(value = "/startGA™, method = RequestMethod.POST)
public String constant(final Model model, @Model Attribute
final Properties constant) {

this.configController.properties.setDEFAULT_GENE_LENGTH(constant.getDEFAULT_GENE_LE

NGTH());
this.configController.properties.setChapterl(constant.getChapter1());
this.configController.properties.setChapter2(constant.getChapter2());
this.configController.properties.setChapter3(constant.getChapter3());
this.configController.properties.setChapter4(constant.getChapter4());
this.configController.properties.setChapter5(constant.getChapter5());
this.configController.properties.setW1(constant.getW1());
this.configController.properties.setW?2(constant.getW2());
this.configController.properties.setW3(constant.getW3());
this.configController.properties.setExcludeLastQuestions(constant.isExcludeLastQuestions());

model.addAttribute("DEFAULT_GENE_LENGTH",
this.configController.properties.getDEFAULT_GENE_LENGTHY());
model.addAttribute("POPULATION_SIZE",
this.configController.properties.getPOPULATION_SIZE());
model.addAttribute("MAX_ITERATION",
this.configController.properties.getMAX_ITERATION());
model.addAttribute("DIFFICULTY", this.configController.properties.getDIFFICULTY());
model.addAttribute("SCORE", this.configController.properties.getSCORE());
model.addAttribute("KNOWLEDGE_POINT",
this.configController.properties.getKNOWLEDGE_POINT());
model.addAttribute("ESTIMATED _ANSWER_TIME",
this.configController.properties.getESTIMATED_ANSWER_TIME());
model.addAttribute(""chapterl”, this.configController.properties.getChapter1());
model.addAttribute(""chapter2”, this.configController.properties.getChapter2());
model.addAttribute(""chapter3", this.configController.properties.getChapter3());
model.addAttribute(""chapter4”, this.configController.properties.getChapter4());
model.addAttribute(""chapter5”, this.configController.properties.getChapter5());
model.addAttribute("w1", this.configController.properties.getW1());
model.addAttribute("w2", this.configController.properties.getW?2());
model.addAttribute("w3", this.configController.properties.getW3());
model.addAttribute("w4", this.configController.properties.getW4());
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model.addAttribute("excludeLastQuestions",
this.configController.properties.isExcludeLastQuestions());

this.start();

model.addAttribute("hdnLabels", this.getLabels());
model.addAttribute("hdnFitness", this.resultFitness);
model.addAttribute("resultQuestions”, this.population.getFittest().getQuestionList());

return "result™;

}

/***

* Algoritmayi baslatmak icindir
*/

public void start() {

/I Ekrandan girilen degerler

FitnessCalc.setDesiredQuestionCount(this.configController.properties.getDEFAULT_GENE_LENG
THO);
FitnessCalc.setDesiredDifficulty(this.configController.properties.getDIFFICULTY());
FitnessCalc.setDesiredScore(this.configController.properties.getSCORE());

FitnessCalc.setDesiredAnswerTime(this.configController.properties.getESTIMATED _ANSWER_TI
ME());

FitnessCalc.setDesiredKnowledgePoint(this.configController.properties.getKNOWLEDGE_POINT()
)i

/I Populasyonu yapilandirir
this.population = new Population(this.configController.getProperties());
this.questionGenerator.generatePopulation(this.population);

int generationCount = 0;

/I Amag fonksiyonunu ve fitness degerlerini hesapla
this.population.targetFunction();
this.algorithm.sortAndCalculateFitness(this.population);
/I FITNESS'a gbre siralama

final StringBuilder sb = new StringBuilder();

Il f(x)'e gbre degisiyor ***
while ((this.population.getFittest().getFitnessValue() <= 10) ||
(this.population.getFittest().getPunishment() 1= 0)) {
generationCount++;
System.out.printin("lteration: " + generationCount + " Fittest: " +
this.population.getFittest().toDetailString());

this.population = this.algorithm.evolvePopulation(this.population,
this.configController.getProperties());

this.population.targetFunction();
this.algorithm.sortAndCalculateFitness(this.population);

/I tekrarli soru olma ihtimaline karsi
this.algorithm.punishmentControl(this.population.getFittest(),
this.population.getProperties());
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sh.append(this.population.getFittest().getFitnessValue() + "-");

if (generationCount >= this.configController.properties.getMAX_ITERATION()) {
System.out.printin("THE LAST ITERATION COMPLETED !!");
break;

¥
¥

this.resultFitness = sh.toString();

this.result = this.population.getFittest().toResultString();

this.resultlteration = " + generationCount;
this.population.getFittest().sortByQuestionID();

this.resultQuestionlDs = this.population.getFittest().getQuestionsAsString();
this.resultQuestionsDificulty = this.population.getFittest().getDifficultiesAsString();

System.out.printIn(this.population.getFittest().toDetailString());

System.out.printin("Iteration : " + generationCount + " Questions: " +
this.population.getFittest().getQuestionListAsString());

System.out.printin("Question IDs : " + this.resultQuestionlDs);

System.out.printIn("Difficulties : " + this.resultQuestionsDificulty);

System.out.printIn(*Know. Points : " +
this.population.getFittest().getKnowledgePointsAsString());

System.out.printin("Q. Scores : " + this.population.getFittest().getScoresAsString());

System.out.printin("Q. S.Ratio : " + this.population.getFittest().getSelectionRatioAsString());

System.out.printin("Q. Chapters: " +
this.population.getFittest().getQuestionChaptersAsString());

System.out.printin("Answer Times : " +
this.population.getFittest().getQuestionAnswerTimesAsString());

private String getLabels() {
final StringBuilder sb = new StringBuilder();
for (int i = 1; i <= this.configController.properties.getMAX_ITERATION(); i++) {
sh.append(i);
sh.append("-");

return sb.toString();
}

@RequestMapping(value = "/result”, method = RequestMethod.GET)
public String result(final Model model, @ModelAttribute
final Properties constant) {

this.configController.properties.setDEFAULT_GENE_LENGTH(constant.getDEFAULT_GENE_LE

NGTH());
this.configController.properties.setChapterl(constant.getChapterl());
this.configController.properties.setChapter2(constant.getChapter2());
this.configController.properties.setChapter3(constant.getChapter3());
this.configController.properties.setChapter4(constant.getChapter4());
this.configController.properties.setChapter5(constant.getChapter5());
this.configController.properties.setW1(constant.getW1());
this.configController.properties.setW2(constant.getW2());
this.configController.properties.setW3(constant.getW3());
this.configController.properties.setExcludeLastQuestions(constant.isExcludeLastQuestions());

model.addAttribute("DEFAULT_GENE_LENGTH",
this.configController.properties.getDEFAULT_GENE_LENGTH());

model.addAttribute("POPULATION_SIZE",
this.configController.properties.getPOPULATION_SIZE());
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model.addAttribute("MAX_ITERATION",
this.configController.properties.getMAX_ITERATION());
model.addAttribute("DIFFICULTY™, this.configController.properties.getDIFFICULTY());
model.addAttribute("SCORE", this.configController.properties.getSCORE());
model.addAttribute("KNOWLEDGE_POINT",
this.configController.properties.getKNOWLEDGE_POINT());
model.addAttribute("ESTIMATED _ANSWER_TIME",
this.configController.properties.getESTIMATED_ANSWER_TIME());
model.addAttribute(""chapterl”, this.configController.properties.getChapter1());
model.addAttribute("chapter2”, this.configController.properties.getChapter2());
model.addAttribute(""chapter3", this.configController.properties.getChapter3());
model.addAttribute(""chapter4”, this.configController.properties.getChapter4());
model.addAttribute(""chapter5”, this.configController.properties.getChapter5());
model.addAttribute("w1", this.configController.properties.getW1());
model.addAttribute("w2", this.configController.properties.getW2());
model.addAttribute("w3", this.configController.properties.getW3());
model.addAttribute("w4", this.configController.properties.getW4());
model.addAttribute("excludeLastQuestions",
this.configController.properties.isExcludeLastQuestions());
model.addAttribute("hdnLabels", this.getLabels());
model.addAttribute("hdnFitness”, this.resultFitness);
model.addAttribute("resultQuestions”, this.population.getFittest().getQuestionList());

return "result";

}

public Population getPopulation() {
return this.population;

}

public void setPopulation(final Population population) {
this.population = population;

}

public List<Question> getResultQuestions() {
return this.resultQuestions;

}

public void setResultQuestions(final List<Question> resultQuestions) {
this.resultQuestions = resultQuestions;

}
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