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YÜKSEK LİSANS TEZİ
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1.4 Tezin Amacı ve Bölümlerin İçeriği . . . . . . . . . . . . . . . . . . . . 21
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6.3 Metrik, Öz Uzaklık, Öz Zaman, 4’lü Vektor . . . . . . . . . . . . . . . 76
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6.4 Klein-Gordon Denkleminin Çıkarılışı . . . . . . . . . . . . . . . . . . 78
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ÖZET

Deterministik yapıdaki bir yorum üzerinden kuantum teorisi ve onun fenomenleri-
nin açıklanabileceği fikrine dayanan Bohm mekaniği, sahip olduğu yapının sonucu
olarak, genel yorumun aksine, teorinin bütünlüğünün korunabilmesi için gerekli olan
birçok özelliğin açık ifadelerini içermesi nedeniyle alternatif yorumlar arasında özel
bir konumda bulunmaktadır.

Bu özelliklerden ilki EPR deneyinin argümanlarından yeniden doğan ve dalga fonksi-
yonunun tasviri için elzem sayılabilecek gizli değişkenler olup diğeri ise Bell eşitsizlik-
leri aracılığı ile ispatlanmış olan kuantum teorisinin lokal bir teori olmadığı gerçeğidir.
Her iki özellik de Bohm mekaniğinde sırasıyla başlangıç koşulları, q(x, t), ve kuan-
tum potansiyeli, Q(x, t), kavramları gibi açık ifadeler üzerinden kendine yer bulmak-
tadırlar. Bu ifadelerin çıkarımları ve yoruma yaptıkları katkıyla birlikte teorideki
karşılıkları da tez içerisinde verilmektedir.

Bahsi geçen gizli değişkenler ve lokal olmayışlık özellikleri birbirleriyle yakından
ilişkili olup bilhassa EPR ve Hardy deneylerinde öngörüldüğü gibi rölativistik koşul-
ları içinde barındıran kuantum sistemlerinin tasvirinde kilit rol oynamaktadırlar.
Öyle ki, birbirleriyle dolanık ve uzaysal olarak ayrık alt sistemlerden meydana ge-
len kuantum sistemlerinin, kuantum teorisi aracılığıyla açıklanabilmesi için gizli
değişkenler arasında lokal olmayan etkileşimlere ihtiyaç vardır. Varılan bu sonuç
hem klasik mekanik hem de rölativite teorisi gibi sistemler arasındaki etkileşimlerin
lokal olması gerektiği varsayımı üzerine kurulmuş teoriler için aykırı bir durum
ifade etmesine rağmen, CHSH deneyi ve Aspect’in elde ettiği sonuçlarla da göste-
rildiği üzere, lokal olmayışlık doğanın kendisinde varolan bir özellik olarak karşımıza
çıkmaktadır.

Teorik ve deneysel boyutta kuantum teorisinin lokal olmayan bir teori olduğunun
anlaşılması kaçınılmaz olarak, özellikle rölativistik koşulları barındıran sistemler göz
önünde bulundurulduğunda, diğer teorilere (lokal teorilere) kıyasla farklı bir uzay-
zaman yapısına sahip olması gerektiği görülmektedir. Bu farklı yapının geliştirilebil-
mesine olanak sağlayan adaylardan birisi ise Lorentz yorumuna dayanan Lorentz
ether teorisi olup özellikle tezin sonuç kısmında ele alınarak detaylı bir açıklamasına
yer verilmiştir.

Ayrıca kuantum teorisinin genel yorumunun bir diğer önemli konsepti olan dalga
fonksiyonunun çökmesini konu alan alternatif yorumlara da, tezin başlıca konuları ile
yakından ilişkili olmaları nedeniyle, kısa açıklamalar üzerinden yer verilmiştir.
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SUMMARY

Bohmian mechanics as an interpretation which is based upon the idea of determinis-
tic explanation of quantum theory and its phenomenons is possible (by the nature of
its structure), on the contrary of general interpretation, holds the explicit descripti-
ons of the essential features that are vital for the completeness of the theory. Because
of this, it has a very unique place among the alternative interpretations.

Two of these essential features; first, hidden variables which had been reanscended
from the arguments of EPR experiment and second, nonlocality feature of the quan-
tum theory which had been proved by the Bell inequalities, constitute the main area
of interests of the thesis. Both of them can be described by the expressions; initial
conditions, q(x, t), and quantum potential, Q(x, t), in Bohmian mechanics respec-
tively. Deductions and contributions of these expressions are issued in the related
chapters of the thesis.

Hidden variables and nonlocality feature of the quantum theory are closely correla-
ted to each other and especially take a great part in the description of the quantum
systems that possess the relativistic conditions which had been predicted by EPR
and Hardy experiments. Such that, the explanation of the interaction between these
subsystems, which are space-like seperated and entangled, demands nonlocal inte-
ractions between hidden variables that are embedded in each one of them. Neither
classical theories nor relativistic ones can not support (accept) this kind of results
(nonlocal interactions), yet according to the outcome of CHSH and Aspect’s expe-
riments nonlocal interactions is not just a result unique to the quantum theory but
an observable feature of the nature itself.

In conclusion, because of the understanding of quantum theory is a nonlocal one,
which had been proved both at the theoretical and the experimental scale, it de-
mands a different kind of space-time structure compare to the other theories (local
ones), especially for the quantum systems that possess relativistic conditions. On
the mission of developing such structure, Lorenzt ether theory, which is based on
the Lorentz interpretation of space-time structure, can be an adequate candidate
among the others. The explanation and the criticism of this conclusion can be found
in the thesis.

In addition to these, because of the intimate relation with the main subjects and
due to its importance; the collapse of the wave functions’s brief explanation, with its
associated interpretations (collapse theories), can be found in the thesis aswell.





1 GİRİŞ

1.1 Kuantum Teorisi ve Yorumları

Tarihsel olarak ortaya çıkışı bir asır öncesine dayanan kuantum teorisi, kendinden
önceki teorilerin açıklamakta yetersiz kaldığı birçok fenomene verdiği cevap ve za-
manının ilerisindeki bakış açısıyla fizik dünyasında büyük bir devrime yol açmıştır.
Bu devrimin kısıtlı sürede meydana gelmesinin sonucunda ise formalizmi ve var-
sayımlarına dair fikir birliği oluşamadığından ötürü teori kaçınılmaz olarak farklı
bakış açılarından türemiş birçok yoruma kavuşmuştur. Yorum kavramını açacak
olursak; dayandığı düşünce sistemi üzerinden geliştirdiği formalizm ve varsayımlar
yardımyla bir teorinin açıklanması olarak tanımlanabilir. Bu bağlamda teori için
geliştirilebilecek farklı yorumlar sahip oldukları kendine özgü içerikler sebebiyle
birçok münazaraya ilham kaynağı olabilirler. Bu münazaralara verilebilecek en iyi
örneklerden birisi ise elektronlar ve fotonlar üzerine 1927 yılında düzenlenen 5. Sol-
vay Konferansı’nda gerçekleşmiştir. Öyle ki, kuantum teorisi için kritik bir döneme
denk gelmesinin de etkisiyle teori adına hayati sayılabilecek gelişmelerden birinin
gerçekleşmesine ön ayak olmuştur. Bu gelişme ise konferansa kadar iki yorum, Paris
ve Kopenhag yorumu, üzerinden (kendilerine özgü içeriklerle) açıklanmaya çalışılan
kuantum teorisinin yoğun tartışmalar sonucunda Kopenhag yorumunun diğerlerine
karşı üstünlük sağlamasıdır. Konferans dahilinde varılan bu sonuç ile Kopenhag yo-
rumu sonraki yıllarda genel yorum (general interpretation) ismini almıştır. Gerçekle-
şen bu gelişmenin nedenini tam olarak anlamak ve teoriye dair hem genel hem
de alternatif yorumların dayandığı düşünceleri görmek adına kuantum teorisinin,
gelişmeye kadar olan, kısa tarihine göz atmak yararlı olacaktır.

1901 yılında kara cisim ışıması fenomeni ile doğadaki süreksiz durumların, ki klasik
mekanikte bu durumlar açıklanabilir olmakla birlikte kayda değer bir yeri bulun-
mamaktadır, Planck sabiti, h, üzerinden çözümlerinin mümkün olduğunu gösteren
Max Planck [1] kuantum teorisinin (eski kuantum teorisi) temelini atmıştır. Bunu
takiben Planck’ın çözümlerini destekleyen Albert Einstein’ın fotoelektrik olay [2] ve
Niels Bohr’un atomun iç yapısı ve elektron yörüngelerini [3] ele aldığı makaleleri-
nin yardımıyla diğer teorilerin açıklamakta yetersiz kaldığı birçok fenomene getir-
dikleri çözümler sayesinde teorinin yeri daha da sağlamlaşmıştır. Einstein ve Bohr
tarafından yapılan bu katkıların ardından ise 1924 yılında L. de Broglie madde-
nin parçacık karakteristiğinin yanı sıra dalga karakteristiğine de sahip olduğunu
gösterdiği doktora tezi ile [4] teorinin kendi içinde bir evrim geçirmesine neden
olmuştur. Bu evrimin en önemli ayaklarından birisi ise Erwin Schrödinger’in Brog-
lie’nin çalışmasına dayanarak ortaya koyduğu ve ele alınan sistemin dinamiğinin
matematiksel bir gösterimini veren, sonraki yıllarda kendi ismi ile anılacak olan,

1



Schrödinger dalga denklemini [5] kuantum teorisine kazandırmasıdır. Bu gelişme ile
eski kuantum teorisi miadını doldurmuş ve özellikle matematiksel anlamda temelle-
rini sorgulayan yeni kuantum teorisinin ilk adımları atılmıştır.

Yeni kuantum teorisine geçişin ardından John Von Neumann [6]1932 yılında sunduğu
formalizmle teorinin matematiksel olarak temellerini atmıştır. Hilbert uzayı (H), ge-
nellikle, kompleks sayılardan meydana gelen bir alan üzerinde tanımlı ve iç çarpımları
kesinlikle pozitif olan lineer bir uzaydır. Bu uzay, tanımlanan iç çarpımlar tarafından
üretilen metriğe göre tam ve ayrılabilirdir. David Hilbert böyle bir uzayın iki farklı
realizasyonunun bulunduğunu göstermiştir. Bunlarndan birisi reel doğru üzerindeki
bir aralıkta tanımlanan Lebesque ölçekli, L2, bütün kompleks değerli fonksiyonları
içerirken, diğeri ise mutlak kare toplamlarının, l2, yakınsak olduğu sayılar dizilerin-
den meydana gelir. Bu iki uzay görünüşteki farklı yapılarına rağmen aynı Hilbert
uzayı üzerindeki operatör hesabının realizasyonlarıdır. Kuantum teroisi bağlamında
Heisenberg matris mekaniği ve Schrödinger dalga mekaniği arasında eşdeğerlik ise
bu gerçeğe dayanmaktadır.1 Hilber uzayının sahip olduğu bu özelliklerin farkında
olan Von Neumann ise kuantum teorisi için uzayın elemanlarını vektör olarak isim-
lendirmiş onlarını iç çarpımlarının, ya da mutlak karelerinin, ise skaler olduklarını
göstermiş olduğu ve beş aksiyomdan oluşan formalizmini geliştirmiştir (Bu aksi-
yomların daha güncel ve kabul edilen versiyonu ise Ballentine tarafından devam
eden yıllarda teoriye kazandırılmış olmakla birlikte tezin ilerleyen başlılarından ge-
nel yorumun açıklandığı bölüm içerisinde verilecektir). Ayrıca kuantum teorisine
dair geliştirilmiş diğer formalizmler, Dirac formalizmi, ve daha detaylı bir açıklama
için Max Jammer’ın ilgili kitabına [7] bakılabilir.

Kısa sürede geçirdiği bu büyük evrimle birlikte formalizmi sayesinde matematiksel
boyutta da gelişimine devam eden kuantum teorisi, bu süreç boyunca etkin rol alan
bilim adamlarının teori hakkında, fenomenler ve formalizm itibariyle, farklı bakış
açılarına sahip olduklarını daha bariz bir şekilde gözler önüne sermiştir. Ortaya çıkan
bu farklılık ise kaçınılmaz olarak teoriye dair birden fazla yorumun geliştirilmesine
neden olmuştur. Ancak bu yorumlara geçmeden evvel yorum kavramı ile ne an-
latılmak istediğini kısaca açıklamak gerekmektedir.

Yorum kavramı, bölümün devamında sunulan örneklerle gösterileceği üzere, fiziksel
bir teori için, özellikle soyut konuları ele alan teorilerle kıyaslandığında, daha sık rast-
lanan bir olgudur. Öyle ki, soyut teoriler için gerçeklik, gözlenen, ölçüm... v.b. gibi
deneysel olarak elde edilen dış etmenlerin (formalizme dışardan etki eden anlamında)
varolmaması sebebiyle, tamamen mantıksal yapıya sahip, soyut bir formalizm yeterli
olabilmektedir. Bu nedenle soyut konuları ele alan bu teoriler için sadece formalizm
düzeyinde farklılıkların mümkün olduğunu ve bu farklılıkların da yorum olarak ka-
bul edilemeyeceğini söylemek yanlış olmaz. Öte yandan fiziksel bir teori, deneysel
etmenlerin teoride önemli bir yeri olması nedeniyle, 1) teoriye ait soyut bir forma-
lizm, F, 2) bu formalizme karşılık gelen, deneysel etmenler üzerinden geliştirilmiş,
kurallar bütünü, R, şeklinde iki yapı üzerine temellendirilebilir. Burada formalizm
F teorinin mantıksal iskeletini oluştururken, tümdengelimci yapısıyla ampirik an-
lamlı kavramları genellikle için bulundurmaz ama bununla birlikte mantıksal yapıda
spesifik bir anlamı bulunmayan parçacık, durum fonksiyonu gibi, fiziksel teorilerin

1”The fact that this isomorphsim entails the equivalence between Heisenberg’s matrix mechanics
and Schrödinger’s wave mechanics made Von Neumann aware of the importance of Hilbert spaces
for the mathematical formulation of quantum mechanics.”[7]
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deneysel tarafına ait, kavramlara da sahiptir. R ise en yalın ifadeyle, formalizm F
içinde bulunan ve mantıksal olmayan kavramların F ile ilişkisini deneysel etmenler
ve fenomenler üzerinden kuran kurallar bütünü olarak tanımlanabilir. Bu kuralların
getirdiği düzenlemeler aracılığıyla formalizm F fiziksel anlamına kavuşur. Bu nedenle
fiziksel bir teori için sadece F’in geliştirilmesi yetersiz olup R’nin de sürece katılarak
F ile ilişkilendirilmesi tam bir teori elde edilebilmesi adına kaçınılmazdır. Yorum
kavramı ise tam olarak bu noktada, F ve R arasındaki ilişkiye bağlı olarak, farklı
durumların meydana gelmesi sonucu ortaya çıkmaktadır. Daha açık bir dille, F ve
R’nin ilişkilendirilmesi sonrasında, farklı bakış açılarından kaynaklı olarak, ortaya
çıkan özgün durumların FR şeklinde bir küme oluşturduğunu düşünelim, böylece
kümenin her bir elemanı teoriye dair geliştirilmesi mümkün olan farklı bir yorumu
ifade edecektir. Buna verilebilecek en iyi örneklerden birisi ise kuantum teorisinin
temel kavramlarından birisi olan dalga fonksiyonuna teorinin yorumları tarafından
yüklenmiş farklı anlamlardır. Öyle ki, dalga fonksiyonu genel yoruma göre sistemin
tasvirini, olasılıksal yapıdaki bir dağılım üzerinden, veren soyut bir dalga olarak
kabul edilirken, pilot-dalga teorisi içinse ortama yayılmış olan fiziksel dalgaların
varlığı ile birlikte sistemi tasvir eden, ve belirli koşullar sağlanması durumunda ise
olasılıksal yapısını kaybederek tam bir kesinlik ile sistemi betimleyebilecek, bir kav-
ram olduğu varsayılmaktadır. Küme benzetmesinden bakacak olursak genel yorum
ve pilot-dalga teorisi burada kuantum teorisi için oluşturulabilecek FR kümesinin
özgün birer elemanı olup teoriye katılmış oldukları görülmektedir.

Bu yorumlar arasından, zamanı itibariyle, öne çıkanları ise Paris yorumu ve Kopen-
hagen yorumu olup, kendilerinden çok daha önce ortaya çıkmış olan bilimsel deter-
minizm (scientific determinism) ve indeterminizm (indeterminism) düşüncelerinin
bir anlamda kuantum teorisindeki karşılıkları olarak kabul edilebilirler. Yorumlar
baz aldıkları düşünceler üzerinden ele alınırsa; bilimsel determiniz, Paris yorumu,
sistemin (ya da olayın) yeterli derecede bir kesinlikle geçmişinin (ölçümün hassa-
siyetine bağlı olarak), ki geçmiş kavramının fiziksel teorilerdeki karşılığı başlangıç
koşulları olduğunu burada belirtmek yararlı olacaktır, ölçüm öncesi bilindiği tak-
tirde eldeki hareket denklemlerinin (Schrödinger dalga denklemi gibi) yardımıyla
sistemin dinamiğinin istenilen derecede bir kesinlikle tasvir edilebileceğini savunur-
ken, indeterminizm, Kopenhag yorumu, böyle bir tasvirin başlangıç koşullarının
ölçüm öncesi bilinemeyeceği varsayımından hareketle bilimsel determinizmin sadece
bir adet mümkün durumu dahi öngörememesi halinde sistemin tasvirinin indeter-
minizm ile elde edilebileceğini savunur. Daha açık olarak; determinizm geçmiş ve
geleceği açıklanabilirlik açısından aynı kefeye koyan bir yol izlemektedir, öyle ki
geçmiş sahip olduğu tüm koşulların etkisiyle tam bir bilinebilirlik ile şimdiye (şu
ana) ulaşırken gelecek ise ona sebep olan tüm koşulların bilindiği varsayımı netice-
sinde aynı geçmişte olduğu gibi tüm mümkün versiyonları bilinebilir ve öngörülebilir
olarak karşımıza çıkacaktır. Bu durumların sadece birinin dahi öngörülememesi ya
da bilinememesi ise indeterminizmin geçerli olduğu sonucu ortaya koyacaktır (her
iki düşüncenin daha detaylı açıklamaları için Karl Popper’ın ilgili kitabına [8] ve
EKLER 6.6’ya bakılabilir).

İki yorum taban tabana zıt düşüncelere sahip olmalarına rağmen kuantum teori-
sine zaman içerisinde çok önemli katkılar vermiş ancak bununla birlikte birçok
tartışmanın da nedeni olmuşlardır. Bu tartışmaların en sonuncusu ise Solvay Kon-
feransı’nda sahne bulmuş olup, indeterminizm ve teorideki karşılığı olan Kopenhag
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yorumunun, özellikle süreksiz durumlara dair getirdiği çözümlerin o dönem itibariyle
Paris yorumuna kıyasla daha tutarlı olan açıklamaları nedeniyle, genel yorum olarak
kabul edilmesinin teorinin geleceği açısından daha uygun olacağı düşünülmüştür.

Şekil 1.1: Kuantum Teorisinin Evrimi ve Yorumları

Bu düşünce fizik dünyasının çoğunluğu tarafından benimsenmesine karşın teoriye
dair diğer alternatif yorumların ortaya çıkmasına engel olamamıştır. Solvay Konfe-
ransı öncesi ve sonrasında anlatılan bu süreç ise Şekil 1.1’de verilmektedir.

Şekil 1.1 üzerinden bir analiz yapılırsa açıkça şu sonuca varılabilir ki; kuantum te-
orisi geçirdiği evrimlerle beraber yeni yorumlara kavuşmuş ve bu yorumlar sayesinde
daha da zenginleşmiştir. Bu nedenden ötürü teorinin her bir yorumunun genel yahut
alternatif olmasına bakılmaksızın kısa açıklamalarının giriş bölümünde yer verilmesi
hem tezin ana konuları hem de kuantum teorisinin daha iyi anlaşılabilmesi adına
yararlı olacaktır.

Ayrıca Şekil 1.1 baz alınarak eski kuantum teorisinden yeni kuantum teorisine geçiş
sonrasında ortaya çıkmış yorumlar olan genel yorum (general interpretation) ve pilot-
dalga teorisi (pilot-wave theory), teoriyi temelden etkilemeleri sebebiyle daha geniş
bir açıklama ile aralarındaki farklılıklar üzerinde durulacaktır.

Tezin devam eden bölümlerinde ise ana konu olan Bohm Mekaniği ve onun üzerinden
EPR Deneyinin (Einstein, Podolsky, Rosen Deneyi) tasviri yapılacak ve buna ek
olarak Hardy Deneyi de gene Bohm Mekaniğinin bakış açısıyla ele alınacaktır.
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1.1.1 Genel Yorum (General Interpretation)

Solvay Konferansı nihayetinde diğer yorumlar (pilot-dalga teorisi) üzerinde üstünlük
kazanması ardından genel yorum, içerdiği postülaları ve sunduğu matematiksel for-
malizmle kuantum teorisinin geleceğini tayin etmiştir. Bu nedenle hem teori hem de
diğer yorumların çıkış noktaları ve getirdikleri eleştirileri anlamak adına öncelikle
matematiksel formalizmi sonrasında ise postülalarını ele almak doğru olacaktır.

Bilhassa Von Neumann’ın eşsiz katkıları [6] ile ilk adımları atılan genel yorumun
matematiksel formalizmi sonraki yıllarda L.E. Ballentine’ın ilgili makalesinde [9] yer
verdiği aksiyomlar üzerinden ele aldığı versiyonla güncel haline kavuşmuştur. Bu
aksiyomları sıralayacak olursak;

1. Gözlenebilir (observable), R, Hilbert uzayındaki, H, hermitsel operatör ile
temsil edilir. Pn R’nin ortonormal özvektörlerine denk düşen ortogonal pro-
jeksiyon operatörleri, rn ise R’nin özdeğerleri olmak üzere;

R =
∑
n

rnPn (1.1)

şeklinde gösterilebilir. Buna ek olarak Pn’nin açılımı ise dejenere özvektörler,
a, üzerinden;

Pn =
∑
n

|a, rn〉 〈a, rn| (1.2)

ifadesine sahip olacaktır. Bununla birlikte süreksiz durumların ele alınması
nedeniyle toplam sembolü kullanılırken eğer sürekli durumlar için bir çıkarım
yapılırsa toplam yerine integre etmek yeterlidir.

2. Durum (state), %, hermitsel, kesinlikle negatif olmayan ve birim izli (unite
trace) olan durum operatörü ile temsil edilir. φn özdurum vektörü, %n özdurum
değerleri olmak üzere(superpozisyon prensibi bozmayacak şekilde);

% =
∑
n

%n |φn〉 〈φn| (1.3)

şeklinde ifade edilebilir (0 ≤ %n ≤ 1 ve
∑

n %n = 1).

3. Durumlar, saf (pure) ve karışık (mixed) olmak üzere iki ayrılırlar;

• saf durum:

%2 = % (1.4)

Tr(%2) = 1 (1.5)

• karışık durum:

%2 6= % (1.6)

Tr(%2) ≤ 1 (1.7)
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4. Gözlenebilirin beklenen değeri (average value), < R >, durumu üzerinden
yazılırsa;

< R >= Tr(%R) (1.8)

ile gösterilir. Normalize olmuş vektör, |ψ〉, içinse < R >= 〈ψ|R |ψ〉 ifadesine
indirgenir.

5. Bir gözlenebilirin sahip olabileceği özdeğerlerin, o özdeğerlerin olasılıkları ile
beraber, hesabı;

P =
∑
n

| 〈ψ|a, rn〉 |2 (1.9)

şeklinde verilir (burada | 〈ψ|a, rn〉 |2 aslında olasılık yoğunluğunun, ρ, daha
detaylı bir versiyonudur).

6. Hilbert uzayı, saf durumlara karşılık gelen vektörlerden oluşan altuzayların
koherent toplamından ibarettir. Bununla birlikte karışık durumlar da belirli
kıstaslar altında saf durumlar üzerinden tasvir edilebileceğinden sadece saf
durumlar üzerine kurulu bir uzay tanımlamak yeterlidir.

7. 6. aksiyom ile ele alınan Hilbert uzayındaki vektörlere karşılık her hermitsel
operatör bir gözlenebilir ile temsil edilebilir.

8. Fiziksel bir sistemin hareket denklemi, U , üniter operatör olmak üzere;

%(t) = U%(t0)U−1 (1.10)

veya

|ψ(t)〉 = U |ψ(t0〉 (1.11)

şeklinde ifade edilebilir (saf durum için U = U(t, to)).

Ballentine’ın açıkça sunduğu matematiksel formalizm ardından genel yorumun pos-
tülalarına bakılırsa, biraz sonra da gösterileceği gibi, tek veya topluluk kuantum
sisteminin sürece bağlı olarak bir seçime tabi tutulduğu görülür. Bunları ise Bohm
ilgili makalesinde [10] şu şekilde sıralamaktadır;

1. Bir kuantum sisteminin durumu, tek kuantum sistemini esas alan bir dalga
fonksiyonu üzerinden, deterministik yapıdaki hareket denklemi, Schrödinger
denklemi ile;

i~
(
∂Ψ(x, t)

∂t

)
=

[
− ~2

2m
∇2 + V (x, t)

]
Ψ(x, t) (1.12)

ifade edilebilir.
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2. Tek kuantum sisteminin fiziksel durumunu veren dalga fonksiyonunun tasviri,
birbirine benzer tek kuantum sistemlerinden oluşan topluluk kuantum sistemi
üzerinden elde edilir. Bu varsayımın istatistiksel bir yapıya sahip olduğunu
ise matematiksel formalizmde sunulan 5. aksiyomdaki olasılık yoğunluğu ifa-
desiyle açıkça görülmektedir. Bu bağlamda varılabilecek bir diğer sonuç ise
sistem üzerine yapılan ölçüm sonucu R gözlenebilirine değil 4. aksiyomla göste-
rildiği gibi onun dalga fonksiyonuna göre olan olasılık katsayıları ile beraber
özvektörlerinden birinin elde edileceğidir.

3. R operatörüyle temsil edilen gözlenebilirin, dalga fonksiyonu üzerinde yapılan
bir ölçüm sonucunda, Ri, özdeğerler, φi, özfonksiyonlar olmak üzere;

Ψ(x) =
∑
i

Riφi(x) (1.13)

ifadesi ile gösterilen özdurumlarından (φi;Ri...) birine çöker. Buna kısaca dalga
fonksiyonunun çökmesi (wave function collapse) denir. Süreç boyunca dalga
fonksiyonun hangi özduruma çökeceğinin tamamen istatistiksel olması ise genel
yorumun indeterministik yapıya sahip olmasının temel nedenini oluşturmaktadır.
Bununla birlikte çökme işlemi dalga fonksiyonunda süreksizliğe yol açacağından
1. postülada verilen Schrödinger denklemiyle tezat bir durum ortaya koy-
maktadır. Öyle ki, bu tezat durum sonraki yıllarda yeni alternatif yorum-
ların (Çökme Teorileri, Çoklu-Dünyalar Yorumu... vb.) ortaya çıkmasına neden
olmuştur.

Postülalar haricinde genel yorumun temelinde yatan, hatta birçok durumu anlamak
ve açıklamak konusunda başvurulan, önemli bir diğer konsept ise belirsizlik ilkesi-
dir. Heisenberg tarafından geliştirilen ilke kısaca açıklanırsa; herhangi bir sistemin
konumunun (x bileşeninin) yapılacak ölçüm sonucu elde edilmesinin sistemin mo-
mentumunda (p bileşeninde) ∆p gibi bir sapmaya neden olacağını (tabi ki bu durum
tam tersi için de geçerlidir) ve bu nedende ötürü x− p gibi birbiriyle komüte etme-
yen bileşenlerin eş zamanlı olarak elde edilemeyeceğini şart koşmaktadır (varılan bu
kısıtlamanın daha detaylı bir açıklaması için David Bohm’un ”Quantum Theory”
kitabının 5. bölümüne bakılabilir [11]).

Bununla birlikte ilkenin matematiksel gösterimi ise ∆p momentumdaki standard
sapma, ∆x konumdaki standard sapma ve ~ = h/2π, indirgenmiş Planck sabiti, olmak
üzere;

∆p.∆x ≥ ~ (1.14)

(1.14) ifadesi ile gösterilebilir. Bu eşitsizliğin başka bir versiyonu ise eneji ve zaman
ikilisi için ∆E.∆t ≥ ~ şeklinde elde edilebilir.

Pilot-dalga teorisi ve Bohm mekaniği açısından ele alınacak olunursa; belirsizlik
ilkesinde birbiriyle komüte etmeyen nicelikler aracılığıyla ulaşılan bu eşitsizlik o ni-
celiklerin değerlerini elde etmek amacıyla sistemde yapılan ölçümün sistem üzerinde
neden oldukları göz ardı edilemez etkinin bir sonucudur. Yani bir başka deyişle,
yapılan ölçüm sistemdeki belirsizliğin ana kaynağı olup ölçüm yapılmadığı takdirde
sisteme dair herhangi bir belirsizlik söz konusu değildir. Bu nedenle belirsizlik ilkesi
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sistemin doğasında olan bir durum değil ölçenden kaynaklı bir sonuçtur. Bohm bunu
”Causality and Chance in Modern Physics” kitabının [12] 3. bölümünde şu şekilde
belirtmektedir:

”...ışığın parçacık karakteristiğinden ötürü, ölçülen elektronun momentumunda kaçı-
nılmaz olarak değişiklik gözleneceğinden, elektronun momentumu üzerinde ön görüle-
meyen ve kontrol edilemeyen ∆p kadarlık bir sapma oluşur. Işığın dalga karakte-
ristiğinden ötürü ise, gözardı edemediğimiz bir belirsizlik sebebiyle, resimdeki kes-
kinliğe bağlı olarak elektronun konumunda ∆x kadar bir sapma oluşur. Böylece ba-
sit bir hesaplama ardından Heisenberg belirsizlik ilkesi, ∆p.∆x ≥ ~ elde edilmiş
olur.”2

Buna benzer bir başka açıklama ise Solvay Konferansı sırasında Hendrik A. Lo-
rentz tarafından dile getirilmiştir. Açıklamasında Lorentz, belirsizlik ilkesinin sistem
üzerinde yapılan ölçümün hassasiyetinin sınırlarının neler olacağını dayattığını an-
latırken bunun yanı sıra olasılık kavramının da sürece peşinen dahil edilmesi yerine
sonuç kısmında katılması gerektiğini savunmuştur.

Genel yoruma dair açıklanması gereken bir diğer önemli ilke ise Niels Bohr’un ta-
mamlayıcılık ilkesidir (complementarity principle)[13]. Teorik ve deneysel boyutta
yoruma, doğada varolan düalizmin bir sonucu olarak, düzenleme getiren ilke, be-
lirsizlik ilkesi ile açıklanmış olan, sistemin birbiriyle yakından ilişkili bileşenlerinin
seçilmiş ikilileri bağlamında eş zamanlı olarak ölçülemeyeceğini savunur. Bu ikililer-
den birkaçı ise;

• Konum ve momentum

• Enerji ve zaman

• Farklı spin doğrultuları

• Dalga ve parçacık ikilisine dair özellikler

• Uzay-zaman ve nedensellik (dolanıklık ve uyumluluk)

şeklinde sıralanabilirler. Tamamlayıcılık ilkesi adından da anlaşılabileceği gibi sis-
tem üzerinde yapılacak ölçümlerin o sisteme dair elde edilebilecek ikili özelikler
bağlamında belirli bir sınırlamaya sahip olması gerektiğini mantıksal boyutta or-
taya koyarak kuantum teorisini tam bir teori yapmayı amaçlayan bir ilkedir. Bu
amaç ise kuantum teorisinin sistem üzerinde yapılacak herhangi bir ölçümün, kla-
sik mekaniğin aksine, sistemde gözardı edilemeyen ve kontrolü de mümkün olmayan
etkisinden kaynaklanmaktadır.

1.1.2 Çökme Teorileri (Collapse Theories)

Genel yorumun açıklamasında sistemin dinamiksel işleyişini açıklamak adına gelişti-
rilmiş 1.postüla, Schrödinger denklemi, ve 3.postüla, dalga fonksiyonunun çökmesi,

2”Because of the particle character of light, we cannot avoid disturbing the particle momentum,
creating an unpredictable and uncontrollable disturbance which we denote by ∆p. Because of the
wave character of light, we cannot avoid an uncertainty, ∆x, in the position of the electron, coming
from lack of sharpness of the image. A simple calculation which we shall not, however, give here
leads to the indeterminacy relations of Heisenberg, ∆p.∆x ≥ ~, where h is Planck’s constant.”[12]
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önceki bölümde kısaca değinildiği üzere, sahip oldukları deterministik ve indeter-
ministik yapının sonucu olarak birbirleriyle tezat oluşturmaktadırlar. Yorumun te-
melindeki postülalar arasında ortaya çıkan bu tezatlığa bir çözüm sunmak amacıyla
geliştirilen çökme teorileri bu sayede sistemin dinamiksel işleyişine dair tam açıklama
getirmeyi amaçlar. Ancak bu açıklamadan evvel hem çökme teorilerinin çıkış nok-
tası olan hem de genel yorumla birlikte kuantum teorisinin önemli konularından biri
olan ölçme sürecine bakmak gerekir.

Kuantum teorisinin ölçme süreci, David Bohm’un ilgili kitabının [14] 22. bölümünde
açıkladığı üzere, makro boyutlardaki ölçen ve mikro boyutlardaki ölçülenden oluşan
bir sistemin (tamamen çevreden soyutlandığı varsayılarak) bileşenleri arasındaki et-
kileşimlerden ve onların dinamiksel işleyişlerinden oluşmaktadır. Bu bağlamda sis-
tem üzerinde yapılan bir ölçüm onun özdurumlarından birine (olasılık katsayılarına
bağlı olarak) çökmesine neden olur. Ancak dalga fonksiyonunda gerçekleşen bu
çöküşün doğası genel yorumun 1. ve 2. aksiyomları sebebiyle ölçüm sonucu hangi
özduruma geçileceğini sadece istatistiksel olarak verebilecektir (bu istatistiksel du-
rum en basit şartlar (iki özdurumun lineer toplamından oluşan dalga fonksiyonu)
için dahi geçerli olduğu unutulmamalıdır). Zira 2.postüla ile açıklandığı üzere ge-
nel yoruma göre sistem üzerinde yapılan ölçüm, o sistemin benzerlerinden oluşan
topluluk üzerinden yapılması nedeniyle kaçınılmaz olarak istatistiksel bir sonuç ve-
recektir.

Schrödinger denkleminin deterministik yapısıyla uyuşmayan bu durum (az önce
açıklan sistemin özdurumlardan birine geçişle lineerliğini kaybettiği indeterminis-
tik yapıya sahip dalga fonksiyonunun çökmesi) açıklamak amacıyla birden fazla
çökme teorisi geliştirilmiştir. Bu teorilerin temelinde ise P. Pearle’nin lineer olma-
yan Schrödinger denklemi üzerine ele aldığı ilgili makalesi [15] bulunmaktadır. Bu
makaleden hareketle ortaya çıkan teorilerden ilki ise kuantum mekaniğinde spontane
lokalizayonlar (quantum mechanics with spontaneous localizations) adıyla bilinen ve
dalga fonksiyonunun çökmesini; nasıl olduğu, nerede olduğu ve gerçekleşme süresi
bazında açıklamaya çalışan teoridir. Sonrasında geliştirilen diğer çökme teorileri
arasından GRW [16] modeli sürecin gerçekleşme süresine ve nerede olduğuna dair ge-
tirdiği açıklama nedeniyle önemli bir yere sahiptir. Bununla birlikte diğer bir önemli
teori ise Roger Penrose’un dalga fonksiyonunun çökmesinin kuantum gravitasyonel
etkilerin bir sonucu olduğunu öngördüğü teorisidir [17]. Her iki teori de geliş nok-
taları farklı olmasına rağmen özellikle vardıkları sonuçların benzerlikleri itibariyle
bibirlerini destekleyerek çökme sürecine dair önemli katkılar sunmaktadırlar.

Çökme teorileri hakkında daha detaylı bir açıklamaya ise Giancarlo Ghirardi’nin
”Collapse Theories” [18] adlı yazısında dalga fonksiyonunun çökmesinin genel yorum
üzerinden kısa tarihi ile birlikte yer verilmektedir.

1.1.3 Çoklu-Dünyalar Yorumu (Many-Worlds Interpretation)

Hugh Everett [19] tarafından evrenin tümünün tek bir kuantum sistemi olarak ele
alınabileceği fikri üzerinden hareketle ortaya çıkan çoklu-dünyalar yorumu özellikle
dalga fonksiyonunun çökmesi konseptine getirdiği farklı bakış açısıyla kuantum yo-
rumları arasında özel bir yere sahiptir.
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Everett’in çoklu-dünyalar yorumuna göre ele alınan her bir kuantum sistemi içinde
bulunduğu evrenden soyutlanamazlar. Bu nedenle sistemin tanımı yapılırken, genel
yorumun aksine, ölçen ve ölçülen kavramlarının yeniden gözden geçirilerek tüm ev-
renin ölçme süreçi boyunca hesaba katılması gerekmektedir. Yani bir başka deyişle,
ölçülenin tüm evreni kapsadığı ve ölçenin de bu evrenin bileşenlerinden biri olduğu
var sayılmaktadır. Böyle bir sistem için dalga fonksiyonu yazılacak olunursa: A(a)
ölçen, ζ(b, t) ölçülen (ölçen dışındaki tüm evren) ve sistemin dalga fonksiyonu Ψ(a, b, t)
olmak üzere;

Ψ(a, b, t) =
∑
n

An(a)ζn(b, t) (1.15)

şeklinde ifade edilebilir. Burada An(a) ölçenin özfonksiyonları olup gerçekleşme süre-
cinin ölçenin ömrüne kıyasla çok kısa olması nedeniyle zamandan bağımsız ka-
bul edilmektedir, ζn(b, t) ise ölçülenin özfonksiyonlarıdır. (1.15) ifadesi üzerinde
yapılabilecek her ölçüm ise sonuç olarak, dalga fonksiyonunun tüm evreni tasvir et-
mesinden ötürü, evrenin tamamında bir değişime sebep olacaktır. Birbaşka deyişle
çoklu-dünyalar yorumuna göre mümkün her bir ölçüm sistemin özdurumlarından
birisine çökmesiyle sonuçlanacaktır. Bu süreç genel yorumdaki dalga fonksiyonun
çökmesine çok benzemekle birlikte sistemin tüm evreni kapsaması sebebiyle hem
ölçen hem de ölçülen üzerinden bir değişime sebep olduğudan çok daha komplike bir
yapıya sahiptir. Ölçüm işlemiyle gerçekleşen süreci bir şekil yardımıyla açıklanacak
olunursa: A(a) 1.ölçüm ve C(c) 2.ölçüm olmak üzere;

Şekil 1.2: Çoklu-Dünyalar Yorumunda Muhtemel Dalga Fonksiyonu Oluşumları

şeklinde gösterilebilir. Şekil 1.2’de gösterildiği gibi başlangıç dalga fonksiyonu Ψ(a, b, t)
üzerinde yapılan ölçüm A(a) onun öz durumlarına çökmesini sağlar. Ancak bu çökme
işlemi genel yorumdakinden farklıdır zira çoklu-dünyalar yorumunda ölçen de aynı
ölçülen gibi kendi özdurumlarının toplamından oluşur bu da genel yorumun ak-
sine ölçüm sonucunda dalga fonksiyonunun ölçen ve ölçülenin öz durumlarının ko-
relasyonlarından her birine çökmesi anlamına gelmektedir. Bu süreç yapılacak her
ölçümde (A(a), C(c)...) kendini tekrarlayarak devam eder. Oluşan öz durumlarsa
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hem birbirleri hem de diğer ölçümlerde ortaya çıkan öz durumlarla dejenere ol-
madığından herhangi bir etkileşim veya ilişkiye sahip olamazlar. Süreç daha somut
olarak açıklanacak olunursa, başlangıç durumundaki evren üzerinde yapılacak bir
ölçüm onun birbirleriyle paralel olan alt evrenlerine çökmesine sebep olur (sadece
bir alt evrene değil her birine) ve bu evrenlerin hepsi kendi özelliklerine sahip olacak
şekilde gerçekliklerini kazanmış olurlar.

Özet olarak çoklu-dünyalar yorumuna göre sistem üzerinde yapılan her bir ölçüm
sistemin özdurumlarından sadece birine değil birbiriyle dejenere olmayan (bu tüm
ölçümlerin özdurumları için geçerlidir) tüm özdurumlarına çökmesi anlamına gel-
mektedir.

1.1.4 Kuantum Hidrodinamiği (Quantum Hydrodynamic)

1926 yılında Erwin Madelung ilgili makalesinin [20] özetinde tek kuantum sistemleri-
nin Schrödinger denklemiyle verilen dinamiğinin, hidrodinamiğin hareket denklem-
leriyle de ifade edilebileceğini ileri sürmüş ve makalesindeki birebir kıyaslamalarla
bunu aşama aşama göstermiştir. Bahsi geçen gösterimin makalede açıkça verilmesi
nedeniyle yeniden çıkarılışını yapmanın bir yararı olmadığını düşünmekle birlikte
bilhassa Schrödinger denkleminin süreklilik denklemiyle olan yakından benzerliği
dikkat edilmesi gereken önemli noktalardan birisidir.

Sunulan bu gösterim haricinde makalede ulaşılan bir diğer önemli sonuçsa Schrödin-
ger denkleminin tek kuantum sistemlerinin dinamiğini verebilirken topluluk ku-
antum sistemleri için kabul edilebilir bir açıklamaya sahip olmadığı eleştirisidir.
Bu eleştiri takip eden yıllarda kuantum teorisinin merkezinde yer alarak birçok
araştırma ve makaleye konu olmuştur. Bu makalelerden birkaçı, özellikle kuantum
hidrodinamiği yorumunu geliştirmeleri açısından, Bohm-Vigier, M.Schönberg ve Ta-
kabayasi’nin makaleleri olarak gösterilebilir [21], [22], [23].

1.1.5 Pilot-Dalga Teorisi (Pilot-Wave Theory)

Yeni kuantum teorisinin ortaya çıkışıyla, Schrödinger dalga denkleminin geliştirilmesi
ile, parçacığın dinamiğinin tasvirine dair birçok fikir geliştirilmiştir. Bunlardan birisi
ise pilot-dalga teorisinin atası olan çifte çözüm teorisidir (theory of double solution).
Schrödinger’in dalga mekaniği ve Born’un parçacığın olasılıksal yorumuna dayanan
teori; parçacığa eşlik eden gerçekten de fiziksel bir dalganın, v-dalgası, olduğunu
ve genliğinin ise, de Broglie’nin tabiriyle, genel yorumun ele aldığı ψ-dalgasıyla
kıyaslandığında ”çok küçük” olduğunu varsaymaktadır. Bu iki dalganın arasındaki
ilişki ise, C; normalizasyon katsayısı olmak üzere, ψ = Cv eşitliği ile ifade edilebilir.
Teorinin ismi veya özü ise direkt bu iki, fiziksel ve olasılıksal yapıdaki, dalganın,
parçacığın dinamiğini açıklayan dalga denkleminin çözümleri olmalarından gelmek-
tedir. Bu çözümlere bakacak olursak, aralarında (az önce belirtilen eşitlikte gösteri-
len) ilişkinin de yardımıyla sadece v-dalgasının yazılması yeterli olacağından, a ve φ
gerçek fonksiyonlar olmak üzere v-dalgası:
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v = a(x, y, z, t)exp
( i
~
φ(x, y, z, t)

)
(1.16)

şeklinde ifade edilebilir. v-dalgası üzerinden parçacığın dinamiğini veren rehber denk-
lemi ise; W enerji, p momentum olmak üzere:

v =
c2p

W
= −c2 ∇φ

∂φ/∂t
(1.17)

olarak elde edilebilir. Yazılan bu rehber denklemi, bölümün devamında daha detaylı
olarak anlatılacağı gibi, parçacığın başlangıç koşullarına bağlı olarak geliştirilmiş
olup onun zamana göre evrimini elde etmemizi sağlar. Başlangıç koşullarının bili-
nemediği durumda ise olasılıksal bakış açısından yaklaşarak ψ-dalgası üzerinden bir
çözüm elde etmek mümkün olacaktır. Özetle teori, ψ-dalgası üzerinden elde edi-
len olasılıksal çözümü ile birlikte, v-dalgası yardımıyla dalga mekaniğine dayanan
çözümü de içinde barındırmaktadır.[24]

Çifte çözüm teorisini temel alarak kuantum teorisinde deterministik bakış açısının
mümkün olduğunu benimseyen ve bu noktadan hareketle tek kuantum sisteminin
dinamiğini klasik mekaniğin temel ilkelerinden biri olan en az eylem ”at least action”,
δS = 0, pirensibi aracılığı ile açıklanabileceğini düşünen Luis de Broglie pilot-dalga
teorisini geliştirmiştir.

Pilot-dalga teorisini kısaca açıklanacak olunursa; farzedelim elimizde bir topluluk
kuantum sistemi var ve bu sistem N tane spinsiz ve rölativistik olmayan hızlarda
hareket eden parçacıklar (tek kuantum sistemi) topluluğundan meydana gelsin. Ge-
nel yorumun aksine pilot-dalga teorisi bahsi geçen her bir parçacığın konfigürasyon
uzayında (Ω) belli bir konuma q = (q1, q2, ...qN ) sahip olduğunu kabul eder ve
parçacıkların oluşturduğu topluluk kuantum sisteminin ise Ψ(q, t) dalga fonksiyonu
ile tasvir edilebileceğini savunur. Buradan hareketle matematiksel olarak Ψ(q, t) üze-
rinden sistemin hareket denklemini yazarsak, V zamandan bağımsız potansiyel, mj

j.parçacığının kütlesi, ∇j j. parçacığa etkiyen nabla öperatörü olmak üzere;

i~
∂Ψ(q, t)

∂t
=

[ N∑
j=1

(
−~2

2mj

)
∇j

2 + V

]
Ψ(q, t) (1.18)

ifadesini elde etmiş oluruz (hareket denkleminde parçacıklar arasındaki etkileşimler
hesaba katılmamıştır).

Pilot-dalga teorisine göre parçacıkların koordinatlarının konfigürasyon uzayında be-
lirli olması sayesinde gidişatlarının (trajectories) elde edebileceğini ve bunun da reh-
ber denklem (guiding equation) yardımıyla yapılabileceğini savunur.(Rehber denk-
lemin çıkarılışı EKLER 6.1)
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Tek parçacık (tek kuantum sistemi)için rehber denklem;

q̇ =
dq(t)

dt
=

~
m
=∇Ψ

Ψ
(q, t) (1.19)

Çok parçacık (topluluk kuantum sistemi) için rehber denklem;

q̇j =
dqj(t)

dt
=

~
m
=∇jΨ

Ψ
(q1, q2, ...qN , t) (1.20)

şeklinde ifade edilebilir. Burada tek parçacık için konfigürasyon uzayı <3 iken çok
parçacık için <3N dir. Rehber denklem sayesinde başlangıç koşullarının bilinmesi ha-
linde tek parçacığın ve doğal olarak bu parçaçıklardan oluşan çok parçacıklı sistemin
gidişatları elde edilebilir.

Deterministik yapısı nedeniyle, (1.18) ifadesiyle de gösterildiği gibi, ölçüm öncesi
başlangıç koşullarının belli olduğunu savunan pilot-dalga teorisi genel yorumun te-
mel araçlarından olan olasılık yoğunluğunun (probability density), ρ = |Ψ|2, yo-
rum içindeki karşılığını konfigürasyon uzayında ele alarak ρ = |Ψ(q, t)2|dΩ şeklinde
tanımlar. Pilot-dalga teorisinin sunduğu bu tanım ilerleyen bölümlerde detaylıca an-
latılacak olan kuantum denkliği (quantum equilibrium) olarak bilinmektedir. Kısa
bir açıklama ile kuantum denkliği, pilot-dalga teorisi ve Bohm mekaniği yorum-
ları gibi deterministik (bilimsel deterministik) yorumların hesap verebilirlik ilkesi
(the principle of accountability)[8] sınıları dahilinde, şartlara bağlı olarak, genel yo-
rum gibi indeterministik yapıdaki yorumlara denk sonuçlar elde edilmesine imkan
sağlayan bir nevi dönüşüm olarak kabul edilebilir. Bu kabul aracılığıyla sistem için
olasılık denklemi yazılırsa, P olasılık olmak üzere,

P =

∫
Ω

|Ψ(q, t)|2dΩ (1.21)

şeklinde ifade edilebilir. Bunu takiben olasılık akısının (probability current), j,
yardımı ile süreklilik denklemi (continuity equation);

∂|Ψ(q, t)|2

∂t
+

N∑
i=1

∇iji = 0 (1.22)

i. parçacık için elde edilmiş olur(Süreklilik denkleminin çıkarılışı EKLER 6.2). Bun-
lara ek olarak ji = q̇i(t)|Ψ(q, t)|2 olması nedeniyle rehber denklemi de;

q̇i(t) =
ji

|Ψ|2
(1.23)

şeklinde elde edilebilir.Rehber denkleminin bu (1.23) ifadesi daha sade bir gösterim
olmakla birlikte olasılık yoğunluğu, ρ, ile olasılık akısı, j, arasındaki oranın aynı
anda sistemin hızının tasvirini de vermektedir.
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Elde edilen bu çıkarımları dalga fonksiyonunun polar formu Ψ = ReiS/~ (S(q, t))
olmak üzere) yardımıyla tekrar yazılırsa;

q̇i(t) =
∇S
mi

(1.24)

rehber denkleminin daha kullanışlı versiyonu olan (1.24) ifadesi elde edilmiş olur.
Burada S dalga fonksiyonunun fazı ve R ise genliğidir. Rehber denklem bu versi-
yonu nedeniyle daha kullanılabilir olup Bohm mekaniğinin anlatıldığı ikinci bölümde
tekrar ve daha detaylıca açıklanarak tam bir çıkarımı yapılacaktır.

Pilot-dalga teorisi ilk kez açıklanma fırsatı bulduğu Solvay Konferansı boyunca
karşılaştığı yoğun eleştiriler sonucu (özellikle Wolfgang Pauli’nin elastik olmayan
saçılamalarda teorinin yetersiz kaldığı eleştirisi bu konuda başı çekerken ona karşı
getirilecek cevap ise gizli değişkenlerin teoriye katılmasıyla verilebilmektedir), Eins-
tein’ın izlenen yolun doğru olduğunu belirterek teorinin doğru yolda ilerlediğini dile
getirmesine rağmen, de Broglie tarafından terk edilmiştir (çifte çözüm teorisi ve pilot
dalga teorisinin yaşadığı bu sürecin tam bir açıklamasına Max Jammer’ın ”The Phy-
losophy of Quantum Mechanics” [7] kitabında yer verilmektedir). Ancak 1952 yılında
David Bohm aynı sene içerisinde yazdığı iki makalesiyle tamamen klasik mekaniğin
sunduğu araçları kullanarak pilot-dalga teorisinin vardığı sonuçlara matematiksel
olarak daha açık bir yöntemle ulaşmış ve teorinin gelişerek önce nedensel yorum
(causal interpretation) daha sonraki ismiyle ise Bohm mekaniğine dönüşmesine ne-
den olmuştur.

1.2 Genel Yorum ve Pilot-Dalga Teorisinin Kıyaslanması:
Çift Yarık Deneyi

Genel yorum ve pilot-dalga teorisi olmak üzere iki yorumun konumuzla ilgisi olan
özelliklerini tasvir ettik fakat bu iki yorumun bilinen bir deneye bakış açılarını kısaca
anlatmak sanırım aralarındaki farklılıkları anlayabilmek adına çok yardımcı ola-
caktır. Bu nedenden ötürü çift yarık deneyi hem yorumların gelişmesinde etkin rol
oynaması hem de sunduğu sonuçların teoriye dair önemli saptamalarda bulunması
sebebiyle uygun bir seçim olacaktır.

Çift yarık deneyinin amacı elektronun doğasının tam olarak anlaşılarak parçacık mı
yoksa dalga karakteristiğine mi sahip olduğunu tespit etmektir. Deneyin bir ben-
zeri ise kendisinden yaklaşık bir asır önce bu sefer ışığın doğasını anlamak adına
gerçekleştirilmiş olan Young girişim deneyidir. Benzer düzeneklere sahip olan her iki
deney için değişen tek unsur ise çift yarık deneyinde elektron kullanılırken, Young
girişim deneyinde ışık kullanılıyor olmasıdır. Konumuza daha yakın olması ve tarih-
rihsel olarak da güncel bir deney olması sebebiyle çift yarık deneyini anlatmak uygun
olacaktır.

Deney düzeneği Şekil 1.3 de görülebileceği gibi bir adet elektron kaynağı, üze-
rinde A ve B olmak üzere iki adet özdeş yarık bulunan bir engel ve ekrandan
oluşmaktadır.
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Şekil 1.3: Çift Yarık Deney Düzeneği

Farzedelim elektron kaynağı her bir ∆t zaman aralığında Ψ dalga fonksiyonuyla ifade
edilen bir adet elektronu (elektron burada tek kuantum sistemi olarak düşünülme-
lidir) yayımlayacak şekilde ayarlansın ve her birinin kaynaktan çıkıp ekrana ulaşma
süresi de τ gösterilsin (deney esnasında sırasıyla kaynaktan çıkan elektronların bir-
birleriyle etkileşmemeleri için ∆t� τ olması gerektiği unutulmamalıdır).

Deney perdedeki yarıkların kapalı ve açık olmalarına bağlı olarak üç durumdan
oluşur;

1. Durum: A yarığı açık, B yarığı kapalı.

2. Durum: A yarığı kapalı, B yarığı açık.

3. Durum: A yarığı açık, B yarığı açık.

Şekil 1.4: Çift Yarık Deneyi: A yarığının açık olduğu durum

1. Durum için elektronlar Şekil 1.4 ile gösterildiği gibi doğal olarak A yarığından
geçerek ekrana ulaşırlar. Bu elektronların her birinin dalga fonksiyonunu ΨA(x)
şeklinde kabul edersek, elektronların A yarığından geçme olasılığı;
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PA = |ΨA(x)|2 (1.25)

şeklinde gösterilebilir.

Şekil 1.5: Çift Yarık Deneyi: B yarığının açık olduğu durum

2. Durum içinse Şekil 1.5 ile gösterilen süreç gerçekleşeceğinden dalga fonkisyonu
ΨB(x) olmak üzere elekronun B yarığından geçme olasılığı ise;

PB = |ΨB(x)|2 (1.26)

olarak gösterilebilir.

Şekil 1.6: Çift Yarık Deneyi: her iki yarığın açık olduğu durum
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3. Durum’da ise elektronlar Şekil 1.6 ile gösterildiği gibi %50 olasılıkla A veya B
yarıklarından birinden geçerek ekrana ulaşırlar. Bu durum için olasılık ifadesini ya-
zacak olursak;

P = |ΨA(x) + ΨB(x|2 (1.27)

P = |ΨA(x)|2 + |ΨB(x)|2 + ΨA(x)ΨB
∗(x) + ΨA

∗(x)ΨB(x) (1.28)

şeklinde olacaktır.

3. Durum sonucunda elde edilen olasılık değeri (1.28) denkleminde gösterildiği üzere
gibi klasik mekaniğin elektronun sadece parçacık karakteristiğine sahip olduğunu
varsayan bakış açısıyla açıklanamaz. Çünkü klasik mekaniğe göre (1.28) ifadesi sa-
dece 1. ve 2. terimlerden oluşması gerekirken onlara ek olarak 3. ve 4. terimlerle
karşılaşılmaktadır. Bu terimler bize elektronun sadece parçacık karakteristiğine değil
onunla birlikte dalga karakteristiğine de sahip olduğunu göstererek klasik mekaniğin
deney sonuçlarını açıklamada yetersiz kaldığını göstermektedir. Kuantum teorisinin
gösterdiği üzere 3. ve 4. terimlerinin hesaba katılmasıyla elektronun dalga karakte-
ristiğine de sahip olduğunun ortaya çıkması kendini fiziksel olarak ekrandaki girişim
deseni ile gözler önüne serer ve deney sonuçlarıyla tam bir uyum gösterir.

Bu noktaya kadar gerçekleşen süreci Feynmann şu şekilde açıklamaktadır [25]:

”Varılan sonuç şudur ki: Elektronlar engele, parçacıklar gibi, yumrular ”lumps”
şeklinde varırken bu yumruların varış olasılıklarının dağılımı bir dalganın yoğunluk
dağılımına benzemektedir. Bu bakımdan elektron ”bazen parçacık, bazense dalga”
davranışı göstermektedir.”3

Ancak deney bir adım daha ileri taşınarak elektronun hangi yarıktan geçtiğini belir-
lemek adına gözlemcinin hesaba katılmasıyla ortaya farklı bir sonuç çıkmaktadır. Bu
sonuç ise şekil 1.7 gösterildiği gibi 1. ve 2. durumların lineer toplamından meydana
gelen, klasik mekanik dahilinde beklenen, parçacık karakteristiğinden başka bir şey
değildir.

Sonuç olarak şekil 1.6 ve 1.7 ile gösterildiği üzere elektronun hangi yarıktan geçtiğinin
bilinmesi konumu üzerinde yapılan ölçüm sonucu dalga fonksiyonunda bir çökmeye
neden olarak dalga karakteristiğini kaybetmesine yol açmaktadır. Herhangi bir ölçüme
maruz kalmadığında ise dalga karakteristiğini koruyarak ekranda girişim deseniyle
kendini göstermektedir. Yani bir başka deyişle, genel yoruma göre elektron süreç
boyunca karşılaştığı duruma bağlı olarak parçacık veya dalga karakteristiği göster-
mektedir.

Pilot-dalga teorisi ise bu sürece farklı bir bakış açısıyla yaklaşmaktadır. Öyle ki,
pilot-dalga teorisi, genel yorumun aksine, elektronu tek kuantum sistemi olarak ele
alır ve onun deney süreci boyunca sadece yarıklardan birinden geçtiğini gösteren
gidişatın açık tasvirini sunar (bu tasvir ise yorumun açıklamasında verilmiştir). Şekil
1.7 ile gösterilen gözlemcinin varlığındaki deney düzeneğinde ise yorumun baz aldığı

3”We conclude the following: The electrons arrive in lumps, like particles, and the probability of
arrival of these lumps is distributed like the distribution of intensity of a wave. It is in this sense
that an electron behaves “sometimes like a particle and sometimes like a wave.””[25]
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Şekil 1.7: Çift Yarık Deneyi: gözlemci varlığında her iki yarık açık olduğu durum

dalga fonksiyonu yapılan ölçüm sonucu altsistemin şartlı dalga fonksiyonuna (the
conditional wavefunction of a subsytem) geçiş yapar (bu durum ölçümün ortamda
kaçınılmaz olarak neden olduğu etkinin doğal sonucudur). Bu geçişin ekranda neden
olduğu değişiklik ise dalga girişiminin yok olarak elektronların sadece parçacık ka-
rakteristiği göstermesi olarak kendini göstermektedir. Sonuç olarak her iki yorum da
farklı yollardan gözlemcinin elektronlar üzerindeki etkisini kendilerine özgü yöntemle
açıklayabilmektedirler.

3.durumda karşılaşılan ekrandaki dalga girişimini ise ortama dağılmış olan pilot
dalgaların elektronun, başlangıç koşullarına bağlı olarak, gidişatı üzerindeki etki-
lerinden başka bir şey değildir. Pilot dalgaların konuma bağlı etkisiyle şekillenen
bu gidişat ise daha önce de açıklandığı gibi rehber dalga denklemi ile gösterilebil-
mektedir (Şekil 1.8’de görülebileceği gibi pilot dalgalar ortama dağılmış olan farklı
fazlardaki özdeş durağan dalgalar olup elektronla olan etkileşimleri üzerinden onun
gidişatını belirleyen temel etkenlerdir).

Şekil 1.8: Çift Yarık Deneyi: pilot-dalga yorumunun bakış açısıyla
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Daha açık bir yorumla, kaynaktan çıkan her elektron perdeye doğru olan hareketini
ortamdaki pilot dalgaların belirdiği gidişatlar üzerinden gerçekleştirmektedir. Bu
gidişat ise pilot dalgaların fazı ve başlangıç koşullarına bağlı olarak tayin edilir ve
tamamen deterministiktir.

Özetle pilot dalga teorisine göre elektron süreç boyunca, genel yorumun aksine,
parçacık ve dalga karakteristiğine birlikte sahip olmaktadır (burada bahsi geçen süreç
tamamiyle 3.durum için ele alınmıştır). Gözlemcinin varlığındaki durumda ise elekt-
ron, genel yorumda dalga fonksiyonunun çökmesi ile açıklanan süreci, pilot dalga-
ların etkilerinin ,ölçüm aletinin etkisi sonucu, dalga fonsiyonuunda meydana gelen
değişimlerle açıklamaktadır.

Pilot-dalga teorisinin öne sürdüğü bu sürecin bir benzerine makro boyutlarda da
rastlamak mümkündür [26]. İlgili makaleye konu olan deneyde gösterildiği üzere
yürüyen damlalar (walking droplets) olarak adlandırılan makro boyutlu parçacıklar
aynı kuantum seviyesinde ele aldığımız elektronlar gibi makro boyuttaki pilot dal-
gaların (ki deneyde bu pilot dalgaların karşılığı su dalgalarıdır) etkisiyle ortamda
hareket ederken parçacık ve dalga karakteristiğini sergilerler.

Tüm bu farklılıklarına rağmen iki yorum da deneyle örtüşen sonuçlara varmak-
tadırlar. Ancak pilot-dalga teorisi deterministik yapısı sonucu stokastik olmadığından
fiziksel olarak açıklaması daha açık ve yalındır. Bununla beraber Bohm mekaniğinin
anlatıldığı 2. bölümde çift yarık deneyi tekrar ele alınarak elektronun yarıklardan
sonra izlediği yol hakkında da bir açıklama yapılacaktır.

1.3 Ölçüm Süreci

Giriş bölümü boyunca genel yorum başta olmak üzere diğer yorumlarda da tabiatı
itibariyle önemli bir yere sahip olan ölçüm süreci, kuantum teorisindeki birçok ko-
nuyla yakından ilişkili olduğundan bir alt başlık ile açıklanmayı haketmektedir. An-
cak bu açıklamaya geçmeden evvel ölçüm süreci boyunca ele alınacak olan sistemin
bileşenleri üzerinden tam bir betimlemesini yapmak gerekir. Bu bağlamda yapılacak
ilk varsayım ise yorumların tamamı için mümkün en ideal çerçevenin baz alınması
doğru olacağından çoklu-dünyalar yorumunun dayandığı varsayım olan sistemin tüm
evrenden oluştuğu kabulü gözardı edilecektir. Bu ise doğal olarak ele alınacak sis-
temin çevresinden soyutlanmış, en azından ölçüm süreci boyunca, olduğunu kabul
etmek demektir ve bu soyutlanmışlık sayesinde sistem; ölçülen, ölçüm aleti ve ölçen
gözlemci olmak üzere üç bileşenden oluşmuş olur. Bileşenler arasından ise ölçümü ya-
pan gözlemcinin ölçülen üzerindeki etkisi sadece klasik boyutlarda bir etkiye ne-
den olduğundan kuantum seviyesinde kayda değer bir sonuca sebebiyet vereme-
yeceğinden ölçüm sürecinden çıkarılabilir. Yapılan bu varsayımlar sonucunda siste-
min, kuantum boyutunda ele alınan bir sistemin, ölçülen ve ölçüm aleti olmak üzere
iki bileşenden meydana geldiğini daha doğrusu kuantum boyutundaki sonuçların
önemsendiği bir ölçüm süreci için sadece bu iki bileşenin etkin rol oynadığı kabul
edilebilir.
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Sistemin her bir bileşeni için ayrı dalga fonksiyonlarını yazacak olursak, ölçülenin
dalga fonksiyonu:

ψo =
∑
m

Cmvm(x, t) (1.29)

ölçüm aletinin dalga fonksiyonu ise:

fa =
∑
n

Dnun(y, t) (1.30)

şeklinde gösterilebilirler. Bileşenlerden meydana gelen sistemin Schrödinger dalga
denklemi ise Hamiltonyen gösterimi kullanılarak ölçüm öncesi için (bileşenlerin ara-
larında herhangi bir etkileşim olmadığı koşuluyla):

H = Ho(x) +Ha(y) (1.31)

olarak ifade edilebilirken, ölçüm sırasındaysa (ölçüm kaynaklı olarak aralarında oluşan
etkileşimin hesaba katılmasıyla beraber):

H = Ho(x) +Ha(y) +He(x, y) (1.32)

şeklinde ele alınabilir. Ölçüm sonrasında ise ölçümden kaynaklı ölçülen ve ölçüm
aletinde oluşabilecek değişimlerin verilen eşitliklerdeki değişkenlere kıyasla gözardı
edilebilir olduğundan, zira yapılan ölçüm gerçekleşme süresi bakımından Bohm’un
tabiriyle dürtüsel ölçüm (impulsive measurement) olarak kabul edildiğinden, yani
∆Ho,∆Ha << Ho, Ha, He olması nedeniyle sistemin Hamiltonyeni ölçüm öncesi ile
aynı olacaktır. Yani toparlayacak olursak; dürtüsel bir ölçüm için ölçümün öncesi ve
sonrasında sistemin Schrödinger dalga denklemi, Ψ sistemin dalga fonksiyonu olmak
üzere,:

i~
∂Ψ

∂t
= (Ho +Ha)Ψ (1.33)

şeklinde olacaktır. Ölçüm süreci için elde ettiğimiz (1.32) ifadesinde He = 0 olması
durumunda ise v(x, t) ve u(y, t) fonksiyonları eşitliğin çözümlerini verecektir. Ele
alınan süreç çok kısa bir zaman aralığını baz alması nedeniyle bu çözümler zamana
göre sabit olacaklarından v(x) ve u(y) şeklinde yazılabilirler.

Sistemi bir bütün olarak kabul edip üzerinde yapılan ölçümü m özdeğerlerine ve
vm(x) özvektörlerine sahip bir operatör, M , ile ifade edecek olursak etkileşim Ha-
miltonyeni bu operatörün bir fonksiyonu olacaktır, He = He(M, y),. Sistemin dalga
fonksiyonu ise en yalın haliyle, fm =

∫
vm ∗Ψ(x, y, t)dx olmak üzere,:
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Ψ(x, y, t) =
∑
m

fm(y, t)vm(x) (1.34)

ifadesi ile gösterilebilir. Ölçüm sırasındaki dalga denklemi ise:

i~
∂fm(y, t)

∂t
vm(x) =

∑
m

Hefm(y, t)vm(x) (1.35)

olmak üzere He, M operatörünün fonksiyonu olduğundan (1.35) ifadesi düzenlene-
rek:

i~
∑
m

∂fm(y, t)

∂t
vm(x) =

∑
m

He(m, y)vm(x)fm(y, t) (1.36)

sonucunu elde etmiş oluruz. Zamana bağlı olmamasından yararlanarak eşitliğin sağ
ve sol tarafını vr(x) ile çarpar ve integre edersek:

i~
∂fr(y, t)

∂t
= He(r, y)fr(y, t) (1.37)

durumlarını elde etmiş oluruz ki bu da ölçümün kendisi olan M operatörünün
r ile gösterilen özdeğerlerine karşılık gelen farklı durumları için genel bir ifadeye
ulaştığımız anlamına gelir. Genel yoruma göreM operatörü üzerinden gerçekleşen bu
süreç dalga fonksiyonunun çökmesi olarak açıklanırken, pilot-dalga teorisi ve Bohm
mekaniği yorumuna göre ise, bu yorumların açıklamalarında yer verildiği gibi, siste-
min durumları arasındaki öngörülebilir geçişlerdir. İki yorumun sürece dair getirdiği
farklı bakış açılarının detaylı bir açıklaması için ”Applied Bohmian Mechanics” [27]
kitabının ilk bölümüne bakılabilir.

1.4 Tezin Amacı ve Bölümlerin İçeriği

Genel yorum ve pilot-dalga teorisi, kuantum teorisini ve ele aldığı fenomenleri açıkla-
ma amacıyla geliştirilmiş ilk yorumlar olmakla birlikte sonraki yıllarda ortaya çıkan
diğer yorumlar üzerinde de büyük etkilere sebep olmuşlardır. Bu sebeple tezin amacı
ve konusunun daha kolay anlaşılabilmesi adına giriş bölümünde mümkün olduğunca
kısa ve yalın bir açıklamayla üzerinden geçilmiştir. Diğer bölümleri kısaca özetle-
yecek olursak;

Tezin ikinci bölümü pilot-dalga teorisi ile aynı görüşe ve yapıya sahip olan Bohm
mekaniği üzerinedir. Bu bölümde Bohm mekaniğinin ortaya çıkış sebebi anlatılıp for-
malizmi ile beraber açıklaması üzerinde durulmuş ve genel yorumla karşılaştırılması
yapılmıştır.
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Tezin üçüncü bölümünde genel yoruma eleştiri amacıyla geliştirilmiş EPR deneyi yer
almaktadır. Bu bölümde EPR deneyinin açıklanması ile birlikte Bell eşitsizlikleri ve
kuantum teorisi üzerindeki etkisi ele alınmıştır.

Tezin dördüncü bölümde ise EPR deneyinin bir nevi modern versiyonu olan Hardy
deneyi üzerinden rölativistik Bohm mekaniğinin kısa bir tartışmasından oluşmaktadır.

Son bölüm olan beşinci bölümde ise tezin genelinde varılan sonuçlar ve çıkarımlar
üzerinden yola çıkılarak yazarın konuya dair getirdiği eleştiri ve fikirlere yer ve-
rilmiştir.

Bunlara ek olarak, tarihsel bir sıralama yapsaydık ikinci bölümün ardından dördüncü
bölüm olan EPR Deneyi ile devam etmemiz gerekirdi fakat deneyin sebep olduğu en
önemli sonuçlardan biri olan gizli değişkenlerin (hidden variables) doğasını anlamak
adına öncelikle Bohm Mekaniğinin açıklamasının yapılmasının daha doğru olacağına
karar verildiğinden bölümlerin sıralamasında kronoloji esas alınmamıştır.
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2 BOHM MEKANİĞİ (BOHMIAN MECHANICS)

2.1 Bohm Mekaniği’nin Çıkışı ve Sebebi

1952 yılında David Bohm, rölativistik olmayan kuantum teorisinin tamamen deter-
ministik bir bakış açısıyla açıklanabileceği fikrinden hareketle, aynı sene içerisinde
yayınlanan iki makalesi üzerinden, kendine göre nedensel yorum (causal interpre-
tation) ama ilerleyen zamanlarda Bohm mekaniği olarak adlandırılacak olan genel
yoruma alternatif nitelikteki yorumunu geliştirmiştir. Bohm makalelerinin ilkinde
[28] genel yoruma zamanının şartları dahilinde dayandığı varsayımlar ve bakış açısı
üzerinden bir eleştiri yapıp devam eden bölümlerde ise geliştirdiği alternatif yoru-
mun formalizmi ile beraber kuantum teorisinin temel fenomenlerinin kendi yorumu
üzerinden tasvirine ayırarak yeni bir yorumun gerekliliğini savunduğu bölümle ma-
kalesini sonlandırmıştır. İkinci makalede [29] ise kuantum teorisindeki ölçüm süreci,
gizli değişkenler (hidden variables), EPR deneyi gibi bu tezin de temelini oluşturan
konular üzerine açıklamalarda bulunmuştur.

Bohm mekaniğinin açıklanmasına geçmeden evvel Bohm’un neden bu denli radikal
sayılabilecek bir karar alarak alternatif bir yorum geliştirdiğini açıklamak bölümün
anlaşılabilirliği açısından çok yardımcı olacaktır.

Solvay Konferansı ardından kuantum teorisinin genel yorumunun eksik olduğunu
savunan düşünceler zamanın önde gelen fizikçileri ve matematikçileri tarafından
büyük bir eleştiriyle karşılanmışlar ve bunun sonucu olarak da teorinin genel kit-
lesi tarafından dışlanmışlardır. Bu durumun ilk örneği pilot-dalga teorisidir, öyle
ki ortaya çıktığı yıl içerisinde yapılan yoğun eleştiriler sonucunda terk edilmek zo-
runda bırakılmıştır (Solvay Konferansı). Bu dışlanmaya verilecek bir diğer örnek
ise EPR deneyinin, genel yorumun dalga fonksiyonu kavramının fiziksel gerçekliğin
tam olarak ifade etmediği, ya da dalga fonksiyonunun eksik olduğu, argümanı ve
onun bir sonucu olarak gizli değişkenlerin (hidden variables) var olduğu düşüncesi-
dir. Ancak bu düşünce de pilot-dalga teorisi ile benzer kaderi paylaşmış ve John Von
Neumann [30] (kuantum teorisinin matematiksel formalizmini verdiği aksiyomlar ile)
tarafından kuantum teorisinin yapısının gizli değişkenler gibi eklemelere ihtiyacı ol-
madığı çıkarımı ile önü kesilmiştir. Bu iki örnekle ilgili olarak literatürde birçok
kaynak mevcuttur. Ancak özellikle gizli değişkenlere değinecek olursak konuya dair
eleştirilerin sadece Von Neumann ile sınırlı kalmayıp devam eden yıllarda birçok fi-
zikçi tarafından da (Gleason, Kochen ve Specker, Jauch ve Piron) farklı matematik-
sel aksiyomlar aracılığıyla kuantum teorisinden çıkarılmaya çalışıldığı görülmektedir.
Bunların hepsine ise Bell 1966 yılındaki ilgili makalesi [31] üzerinden ele alarak sunu-
lan her bir formalizmin gene kendileri tarafından geliştirilmiş kısıtlayıcı aksiyomlar
ile mümkün olduğunu ve bu nedenle de genelleştirilemeyeceğini ispatlamıştır. Bu-
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nunla birlikte Bohm, Bell’in makalesinden onbeş yıl önce, gizli değişkenlerin kuan-
tum teorisinde yerinin olmadığı fikrini kabul etmediğini özellikle ikinci makalesinin
9. bölümünün sonuç bölümündeki şu paragraf ile açıkça görebiliriz [29]:

”Burada, not edilmelidir ki Von Neumann’ın teoremi konuyla (gizli değişkenler)
alakasızdır, çünkü bu sefer kuantum teorisinin genel yorumunun kayıtsızca geçerli
olduğu varsayımının ötesine, kuantum seviyesinin de ötesine, gidiyoruz.”1

Bu paragrafta Bohm, genel yorumunun dalga fonksiyonunun mümkün tüm durum-
ları tasvir edemeyeceğini düşünmesi sebebiyle, yani gizli değişkenlerin katılması ge-
rektiğini düşündüğünden, Von Neumann’ın kendi geliştirdiği aksiyomlar üzerinden
yaptığı çıkarımların genelleştirilemeyeceğini açıkça ifade etmektedir.

Özetle, kuantum teorisinin genel yorumunun indeterministik yapısının tek kuan-
tum sisteminin tam bir tasvirini veremeyeceği ile birlikte Von Neumann’ın gizli
değişkenleri dışarladığı formalizasyonunun ise bütün durumları açıklayabilecek şekilde
genelleştirilemeyeceğini düşünen Bohm alternatif bir yorumun geliştirilmesi yolunu
seçmiş ve bu seçimin de deterministik yapıyı esas alması gerektiğini dile getirmiştir.
Yaptığı seçimin en büyük sebebini ise ilk makalesinin özetinde ve giriş bölümünde
açıkça belirtmiş olduğu gibi gizli değişkenler yardımıyla takviye yapılmamış bir ku-
antum teorisinin özellikle kuantum altı (subquantum) seviyede, Bohm bu sınırı
makalesinde 10−13cm ve altı olarak almıştır, yetersiz kalacağını düşünmesidir. Bu
düşünce Bohm Mekaniğinde Determinizm ve Ölçüm sorunu isimli alt bölümde tek-
rar ele alınacaktır. Ancak öncelikle Bohm mekaniğinin matematiksel olarak forma-
lizmine bakmak daha yararlı olacaktır.

2.2 Bohm Mekaniği Formalizmi ve Özellikleri

David Bohm, Bohm mekaniğini geliştirirken de Broglie ile benzer amaca sahip
olmasına rağmen kendinden yirmibeş yıl önce geliştirilmiş pilot-dalga teorisinden
bihaberdi lakin buna rağmen her iki yorum da determinizm düşüncesine dayan-
maları nedeniyle birbiri ile çok benzer sonuçlara varmışlardır. Bununla birlikte,
varılan sonuçlarda izlenen yolların (her iki yorum da klasik mekaniği esas almakla
birlikte izledikleri yollar değişiktir) farklı olması sebebiyle, Bohm mekaniği kuan-
tum teorisinin açıklamaya çalıştığı doğanın yapısındaki karakteristiği daha iyi kav-
rayarak pilot-dalga teorisine kıyasla matematiksel anlamda daha tatmin edici bir
formalizm sunmuştur. Bunun en önemli kanıtı ise Bohm mekaniğinin çıkarılışında
tüm çıplaklığı ile karşımıza çıkacak olan kuantum potansiyeli (quantum potential),
Q(x, t), kavramının ta kendisidir. Kuantum potansiyeli klasik mekanik ve kuantum
teorisi arasındaki farkın tam olarak neden kaynaklandığını gösteren çok önemli bir
kavramdır. Ayrıca iki yorumun matematiksel olarak izlediği yollar arasındaki fark
hakkında konuşmak gerekirse; pilot-dalga teorisi 1. dereceden differansiyel denklem-
ler aracılığıyla çıkarımlarnı elde edip eylem pirensibi (action principle) üzerinden
hareket ederken, Bohm mekaniği 2. dereceden differansiyel denklemleri kullanarak

1”Here, it should be noted that Von Neumann’s theorem is likewise irrelevant, this time because
we are going beyond the assumption of the unlimited validity of the present general form of quantum
theory...”[29]
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klasik mekaniğin önemli araçlarından biri olan Hamilton-Jacobi denklemini:

H(x,
∂S(x, t)

∂x
, t) +

∂S(x, t)

∂t
= 0 (2.1)

esas almaktadır. Bohm’un Hamilton-Jacobi denklemini seçmesindeki sebepler ise sis-
temin zaman ve konum boyutundaki değişiminlerinin birbiri ile olan ilişkisinin tasvir
etmenin yanı sıra sistemin başlangıç ve bitiş koşullarının da belirli olduğunu kabul
etmesine dayanmaktadır. Hamilton-jacobi denklemi verilen bu iki önemli koşulla
beraber sistemin tasvirinin yapılabilmesi için ideal bir yapı sunmaktadır. Bu yapıyı
ise Bohm mekaniği temel kavramlarının çıkarımını yaparak göstermek en ideal yol
olacaktır.

Kolaylık olması adına farz edelim ki elimizde bir parçacıktan oluşan ve tek boyutlu
bir sistem olsun. Bu sistemi de R ve S reel olmak üzere Ψ(x, t) = R(x, t)eiS(x, t)/~ po-
lar dalga fonksiyonu ile gösterelim. Bu dalga fonksiyonu için Schrödinger denklemini
yazacak olursak:

i~
∂

∂t
R(x, t)e

iS(x, t)/~ =

(
− ~2

2m
∇2 + V (x)

)
R(x, t)e

iS(x, t)/~ (2.2)

(2.2) eşitliği ile gösterebiliriz. Eşitliğin sol tarafını açılıp düzenlenirse:

i~
∂

∂t
Re

iS/~ =

(
i~
∂R

∂t
−R∂S

∂t

)
e
iS/~ (2.3)

sonucunu elde ederiz. Bu ifadeyle beraber, ∇2 = ∇.∇ eşitliğinin de yardımıyla
Schrödinger denklemini yeniden yazalım:

(
i~
∂R

∂t
−R∂S

∂t

)
e
iS/~ = − ~2

2m
∇.
(
∇ReiS/~

)
+ V Re

iS/~ (2.4)

= − ~2

2m
∇.
(
e
iS/~∇R +R

i

~
∇SeiS/~

)
+ V Re

iS/~ (2.5)

eşitliğin sağ tarafında yer alan ikinci türevi de alıp üstel ifadeleri silelim:

i~
∂R

∂t
−R∂S

∂t
= − ~2

2m

[
i

~

(
2∇S.∇R +R∇2S

)
+∇2R− 1

~2
R(∇S)2

]
+ V R (2.6)

tüm işlemlerden sonra her iki tarafında da imajiner ve reel kısımların olduğu bir
eşitlik elde ederiz. Bu kısımları birbirleriyle eşleştirirsek:
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∂R

∂t
= − 1

2m

(
2∇S.∇R +R∇2S

)
(2.7)

∂S

∂t
= −(∇S)2

2m
+

~2

2m

∇2R

R
− V (2.8)

(2.7) ve (2.8) denklemlerine ulaşmış oluruz. Reel değerler R ve S’nin zamana göre
değişimlerinin gösteren bu denklemler aynı zamanda Schrödinger denkleminin farklı
bir şekilde yeniden yazılmasına da imkan verirler. Ancak bu versiyonu elde etmeden
evvel ρ(x) = R2(x) eşitliğini de hesaba katarak öncelikle 2.7 denklemini yeniden
yazarsak:

∂ρ

∂t
+∇.

(
ρ
∇S
m

)
= 0 (2.9)

eşitliğini elde ederiz. Daha önce de (1.24) eşitliğinde belirtildiği gibi ∇S/m hız ifade-
sine eşit olduğundan yani (2.9) ifadesi süreklilik denkleminin, (1.22),

(
∂ρ/∂t+∇j = 0

)
bir başka versiyonu olduğundan olasılık yoğunluğunun zamana göre değişiminin sis-
temin hızıyla yakından ilişkili olduğunu göstermektedir. Bu durumu daha açık ya-
zarsak:

∂ρ

∂t
+∇.

(
ρv
)

= 0 (2.10)

ifadesini elde etmiş oluruz. Benzer düzenlemeyi (2.8) eşitliği üzerinden tekrarlar-
sak:

∂S

∂t
+

(∇S)2

2m
+ V (x)− ~2

4m

[
∇2ρ

ρ
− 1

2

(∇ρ)2

ρ2

]
= 0 (2.11)

Hamilton-Jacobi denklemine benzer bir eşitlik elde ederiz. (2.11) ile elde edilen ifade
Bohm mekaniğinin temel denklemlerinden biridir ve sistemin tasvirini yapmakla
birlikte çok önemli bir farklılığa sahiptir. Bu farklılık ise eşitliğin ~ katsayısı ile
birlikte denklemin olasılık yoğunluğuna bağlı olan kısmını içeren parçadır ve bu
parçayı da David Bohm kuantum potansiyeli Q(x):

Q(x) = − ~2

4m

[
∇2ρ

ρ
− 1

2

(∇ρ)2

ρ2

]
= − ~2

2m

∇2R

R
(2.12)

olarak adlandırmıştır. Bunun sebebi ise içeriğinden de anlaşılabileceği gibi sadece
kuantum seviyesinde yapılan ölçümlerde hesaba katılabilir olmasıdır.

Kuantum potansiyelinin doğasını ve denklemdeki yerini anlamak adına (2.11) eşitli-
ğine tekrar dönüp mümkün durumlara bakacak olursak; klasik durumlarda (~→ 0)
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Q(x) kuantum potansiyelinin yok olduğunu görürüz, bunun sonucunda da klasik
mekanikte karşılaştığımız Hamilton-Jacobi denklemine ulaşmış oluruz. Diğer durum
ise kuantum durumlarıdır (~ 6= 0), bu durumlarda klasik durumların aksine hem
klasik potansiyel V (x) hem de kuantum potansiyeli Q(x) sistem üzerinde belirli bir
etkiye sahiptirler.

Özetle, Bohm Mekaniği geliştirdiği alternatif Schrödinger denklemi sayesinde hem
klasik mekanikte hem de kuantum teorisinde ele alınan sistemlerin tam bir tasvirini
verebilmekte ve bu özelliğini de denklemlerinde açıkça göstermektedir. Bu çıkarımlar
aracılığı ile Bohm mekaniğinin gözünde klasik potansiyel V (x) ve kuantum potan-
siyelinin Q(x) etkisi altındaki bir parçacığın hareket denklemini Newton hareket
denklemi (ya da Euler hareket denklemi) yardımıyla yazacak olursak:

m
d

dt
v(x, t) = m

d

dt

[
∇S(x, t)

m

]
(2.13)

hızın tam diferansiyeli (d/dt) hem konum hem zamanı barındırdığı için ∇S(x, t) üze-
rindeki etkisi ise d/dt = ∂/∂t+ẋ∇ şeklinde olacaktır. (2.13) ifadesini yeniden (∇ = ∂/∂x
olmak üzere) yazarsak:

m
d

dt
v(x, t) =

∂

∂x

[
1

2m

(∂S
∂x

)2

+
∂S

∂t

]
(2.14)

= − ∂

∂x

[
V (x, t) +Q(x, t)

]
(2.15)

ifadesini elde etmiş oluruz. Bu çıkarımı Euler hareket denklemi aracılığıyla da çıkar-
mak mümkündür. Böylelikle Bohm mekaniği üzerinden klasik ve kuantum potansi-
yeli etkisindeki bir parçacık için hareket denklemi elde edilmiş olur.

Buraya kadar yapılan çıkarımlar tek kuantum sisteminin tasviri üzerine olup son
eşitliklerle birlikte sistemin hareket denklemi sayeside gidişatlarının elde edilebi-
leceğini görülmüş olur (2.13). Peki çok parçacıklı bir sistem için kuantum potansiyeli
nasıl bir karakteristiğe sahiptir ve alternatif Schrödinger denklemi nasıl olmalıdır?
Şimdi bir de kısaca buna bakalım.

Kolaylık olması adına özdeş parçacıklardan oluşan çok parçacıklı bir sistemimiz
olduğunu kabul edelim ve bu sistemin dalga fonksiyonunu da Ψ(x, t) = R(x, t)eiS(x, t)/~

şeklinde ifade edelim. Ancak burada x ile sistemin bütünü tasvir edilirken sis-
temi oluşturan özdeş parçacıkların herbirini ise xk ile ifade edildiğini unutmayalım.
ρ(x, t) = R2(x, t) olmak üzere, bu sistem için, (2.9) ve (2.11) eşitlikleri yardımıyla,
bir takım düzenlemeler yapacak olursak:

∂

∂t
R2(x, t) +

N∑
k=1

∇k

(
1

m
∇kS(x, t)R2(x, t)

)
= 0 (2.16)

∂

∂t
S(x, t) +

N∑
k=1

1

2m

(
∇kS(x, t)

)2

+ V (x, t) +Q(x, t) = 0 (2.17)
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alternatif Schrödinger denklemi olarak adlandırabileceğimiz (2.17) ifadesini elde
etmiş oluruz. Bunlara ek olarak k. parçacığın hızını ve kuantum potansiyelinin açık
halini yazalım:

vk(x, t) =
∇kS(x, t)

m
(2.18)

Qk(x, t) = − h2

2m

∇k
2R(x, t)

R(x, t)
(2.19)

sistemin tamamı için kuantum potansiyeli ise:

Q(x, t) =
N∑
k=1

Qk(x, t) (2.20)

şeklinde ifade edebiliriz. Çok parçacıklı sistem için yazdığımız alternatif Schrödinger
denkleminde (2.17) eklenen kuantum potansiyeli, Q, (2.20) denklemi ile gösterildiği
üzere her bir parçacığa aitQk’lerin toplamına dayandığından ve buQk’lerin ise (2.19)
denkleminde verilen iç yapısında anlaşılacağı gibi sistemin bütününe bağlı olması
sebebiyle sistemin hareket denklemi de her bir parçacığa ait Qk’lere bağlı olacaktır.
Bunu daha açık şekilde görmek için çok parçacıklı sistemin her parçacığının hareket
denklemine bakmak yararlı olacaktır. k. parçacık için (2.15) eşitliğini yazalım:

m
d2xk
dt2

= − ∂

∂xk

[
V (x, t) +Q(x, t)

]
(2.21)

(2.21) eşitliğinde daha açık şekilde görebileceğimiz gibi k. parçacığın harekete denk-
lemi sisteme etkiyen toplam kuantum potansiyeli Q(x, t) etkisi altındadır. Ayrıca
(2.19) denkleminde iç yapısı açıkça gösterilen kuantum potansiyeli dalga fonksiyo-
nunun genliğinin eğriliğine (curvature) dayanması ve buna ek olarak bir önceki pa-
ragrafta açıklanmış olan sistemi oluşturan her bir parçacığın birbirleriyle olan anlık
etkileşimlerine bağlı olması nedeniyle lokalite özelliğine sahip değildir. Bu durum ise
kuantum teorisinin açık olarak lokal bir teori olmağının kabulü anlamına gelmekte-
dir. Yani bir başka deyişle, kuantum teorisi iç yapısı ve ilkelerinden ötürü, Newton
mekaniği ve klasik mekanik gibi, lokal olmayan (nonlocal) bir teoridir. Teorinin sa-
hip olduğu bu özellik, lokal olmayışlık (nonlocality), ise genel yorumda kapalı olarak
(implicitly) ele alınırken, Bohm mekaniğinde ise açık (explicitly) bir şekilde kuantum
potansiyeli üzerinden gösterilmektedir. Lokal olmayışlık özelliği EPR deneyine konu
olan uzaysal olarak ayrık (spacelike seperated) ve aynı zamanda dolanık (entangled)
parçacıkların aralarındaki etkileşimi açıklarken tekrar ele alınacaktır.

Bunlara ek olarak Bohm mekaniği hakkında daha detaylı bilgi edinmek için Xavier
Oriols ve Jordi Mompart [27] ile birlikte Detlef Dürr ve Stefan Teufel’in [32] konuya
dair yazdıkları kitaplara bakılabilir.
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2.3 Bohm Mekaniğinde Determinizm ve Ölçüm

Giriş bölümünde değinildiği gibi, yeni kuantum teorisinin ortaya çıkışı ve sonrasında
genel yorumun onun birincil yorumu olarak üstünlüğü sağlamasıyla beraber, kuan-
tum teorisi tek düşüncenin baskın olduğu bir gelişim sürecine girmiştir. Bu düşünce
ise genel yorumun temelinde yatan ve tamamen stokastik sonuçlar vermeye dönük
olan indeterminizm düşüncesidir. Fakat bu düşünceyi benimseyen ilk yorum ol-
mamakla birlikte onu bir araç olarak görmeyip ele aldığı sistemin doğasında var
olduğunu kabul eden genel yorum, yaptığı bu varsayımla yapısal bakımdan kıyasla-
nabileceği diğer bütün yorum ve teorilerden ayrılmaktadır. İlk bakışta etkisini tam
olarak anlamanın zor olduğu bu varsayım, yorum üzerinde radikal sonuçlara sebep
olmaktadır. Zira genel yorum üzerinden şekillenmeye başlayan kuantum teorisinin
ilgili deneyilerinde (tek kuantum sistemlerinin baz alınması gereken deneyler başta
olmak üzere; EPR deneyi bunlara örnek gösterilebilir) bu durum kendini bariz olarak
göstermektedir.

Kuantum teorisine (genel yorum bazındaki kuantum teorisine) değin klasik meka-
nik, elektromagnetik teori gibi deterministik teorilerin yanı sıra determiniz ve in-
determinizm düşüncesini beraber bünyesinde barındıran istatistik mekanikte dahi,
eşine rastlanmayan bu varsayım teori üzerinde çalışan birçok bilim insanı tarafından
kuşkuyla karşılanmıştır. Bunlardan birisi olan, klasik mekaniği benimseyen ve ku-
antum teorisine dair deterministik bir yorumun mümkün olduğunu savunan, David
Bohm bu amaçla tamamen nedenselliği (causality) temel alan Bohm mekaniğini
geliştirmiştir.

Peki genel yorumla fiziksel teoriler bağlamında yeni bir anlam kazanan indetermi-
nistik yapıya karşı duyulan bu kuşkunun sebebi ve deterministik yapıyı bu denli
benimsemenin sebebi nedir? Bu sorunun cevabı bölümün ana konularını açıklamak
açısından kilit bir önem taşımaktadır.

Başlangıç olarak klasik mekanik ya da onu temel almış Bohm mekaniği üzerin-
den hareket edecek olursak; sistemin başlangıç koşulları belli olduğundan (deter-
minizm düşüncesinin getirisi olarak) onun Newton hareket denklemleri kullanılarak
dinamiğini hesaplamak ve tam bir tasvirini vermek mümkün olmakla birlikte tek sis-
tem üzerinde ölçüm yapılabilmesine, topluluk sistemlerine ihtiyaç olmaksızın, imkan
sağlamaktadır. Sağlanan bu imkan ise tek sistemin dahi bir ölçülebilen olduğunu
varsaydığından sistemin doğasında herhangi bir belirsizlik olmadığının açıkça ka-
bulü anlamına gelmektedir. Bu kabul yapılırken hesaba katılması gereken, ya da
unutulmaması gereken, bir başka varsayım ise ölçüm sırasında ölçen tarafından sis-
tem üzerinde oluşabilecek tüm değişimlerin kontrol edilebilir olduğudur. Determi-
nizm düşüncesinin temel argümanları olan bu iki varsayımla beraber sisteme dair
muhtemel bütün belirsizlikler ortadan kalkmış olur. Ancak burada not edilmesi ge-
reken önemli bir ayrıntı vardır; bu da klasik mekaniğin tamamen ideal durumları ele
alarak deney şartlarında, ölçen, ölçülen ve ortam şartlarından ortaya çıkabilecek ha-
taları gözardı ettiği gerçeğidir. Bu noktada bir diğer önemli teori olan istatistik me-
kanik ise determinizm düşüncesini temel almakla birlikte indeterminizm düşüncesini
ölçüm süreci için araç niteliğinde kullandığından bir adım öne çıkmaktadır. Ayrıca
her iki düşünceyi de kullanması nedeni ile istatistik mekaniği hibrid bir teori olarak
görmek mümkündür.
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Bohm mekaniği ise temelinde klasik mekanik ve determinizm düşüncesinin tüm var-
sayımlarını kabul etmesine rağmen ölçüm sürecinde istatistik mekanikle benzer bir
yol izler. Bu yol ise daha önce kısaca bahsedilmiş olan, kuantum denkliği konseptinin
de merkezinde bulunan, olasılık yoğunluğu, ρ(x, t) = |Ψ(x, t)|2dΩ, ifadesi üzerine te-
mellendirilmiştir (kuantum denkliğinin detaylı açıklaması 4. bölümde verilmektedir).
Bu bakımdan açıkça görülebilir ki, Bohm mekaniği deneysel anlamda kuantum teori-
sinin sahip olduğu hassasiyeti açıklayabilirken, teorik anlamda ise klasik mekaniğin
mümkün olduğunu savunduğu ve ideal durumlar olarak tasvir ettiği herhangi bir
belirsizliğin olmadığı durumların, belirli koşullar sağlandığı taktirde, açıklanabilir
olduğunu kabul etmektedir.

Genel yoruma gelecek olursak; yorumun, temelinde yatan indeterminizm düşüncesi
ve onun doğal sonucu olan stokastik yapısı nedeniyle, determinizmi esas almış yo-
rumların aksine, tek sistemin (kuantum seviyesindeki) tasvirinden feragat ettiği
görülmektedir (zira genel yoruma göre sistemde değişime neden olmayacak herhangi
bir ölçüm işlemi mümkün değildir). Varılan bu durum (veya seçim) ise kaçınılmaz
olarak tek sistem üzerinde gerçekleşecek bir ölçümün sistemi üzerinde sebep olacağı
değişim nedeniyle topluluk sisteminin baz alınarak istatistiksel bir yapının ele alın-
ması gerektiğini öngörmektedir. Buna ek olarak üzere genel yorum, tek sistem üze-
rinde herhangi bir işlem, ölçme gibi, yapıldığı taktirde meydana gelen değişim hari-
cinde sistemin doğasından kaynaklı bir belirsizliğe sahip olduğunu varsayması nede-
niyle sadece stokastik bir yapının sistemi tasvir edebileceğini öngörmektedir. Bu da
hem istatiksel mekanik hem de Bohm mekaniğinde kullanılan olasılık yoğunluğunun
artık bir araç değil bir anlamda sistemin kendisini ifade ettiğinin kabulü anlamına
gelmektedir. Sunulan bu varsayımın ölçüm sürecine dair bir açıklamasını yapacak
olursak; topluluk sistemi üzerinde yapılan bir ölçüm, ölçenin kaçınılmaz etkisi sonu-
cunda sistemde bir değişime (dalga fonksiyonundaki indirgenme sonucu onun özdu-
rumlarından birine geçmesine) neden olur. Bu değişim ölçenden değil ölçülen siste-
min doğasındaki belirsizliğe bağlı olarak istatistiksel sonuçlarla ifade edilebilmekte-
dir.

Bohm mekaniği ise daha önce de bahsedildiği gibi duruma klasik mekanikteki de-
terminizm düşüncesi üzerinden yaklaşır ve belirsizliğin genel yorumun aksine sis-
temin doğasından değil tamamen ölçüm yaparken kullanılan aygıtın etkisi sonucu
ölçümü yapandan kaynaklandığını kabul eder. Bu nedenle olasılık yoğunluğunu he-
saplamalarda kolaylık sağlaması amacıyla sadece matematiksel bir araç olarak kul-
lanılması gerektiğini savunur. Bu durumu David Bohm ilgili makalesinde [28] şöyle
dile getirmektedir;

”Bohm mekaniğinde elden edilen olasılık yoğunluğu sayısal olarak genel yorum-
daki olasılık yoğunluğuna eşittir. Ancak genel yorumda olasılık kavramı sistemin
doğasından kaynaklandığı varsayımı olduğundan ...”2

ve devamında yayınladığı diğer makalede [29] ise iki yorum arasındaki farkı şu şekilde
özetler;

”Bu yüzden, bizim yorumumuzda, istatistiksel bir topluluğun kullanılma nedeni (kla-
sik mekanikte olduğu gibi) sadece pratiksel bir gerekliliktir, ve (bizce göz önünde bu-

2”This probability density is numerically equal to the probability density of particles obtained in
the usual interpretation. In the usual interpretation, however, the need for a probability description
is regarded as inherent in the very structure of matter...”[28]
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lundurulması doğru olan) sistemin durumunu tanımlayan değişkenlerin hassasiyetlik
noktasındaki içsel taklidinin bir yansıması değildir.”3

2.4 Lokal Olmayışlık (Nonlocality) ve Bohm Mekaniği

Kuantum teorisi, hem genel yorum hem de Bohm mekaniğinde kabul edildiği üzere
lokal olmayışlık (nonlocality) özelliğine sahip bir teoridir. Bu özellik kendini ge-
nel yorumda sadece ilkesel olarak (belirsizlik ilkesinin şart koştuğu üzere) göste-
rirken Bohm mekaniğindeyse ilkesel olmakla birlikte matematiksel olarak da kuan-
tum potansiyeli Q(x, t) üzerinden açık şekilde göstermektedir. 4. bölümde detaylıca
açıklanacak olan lokal olmayışlık özelliği, birbiriyle dolanık (entangled) parçacıklar-
dan oluşan çok parçacıklı bir kuantum sisteminde parçacıkların aralarında konum-
dan bağımsız olarak karşılıklı anlık bir etkileşimi belirsizlik ilkesinin korunabilmesi
adına şart koşmaktadır. Bu özellik kendine genel yorumda direk matematiksel bir
karşılık bulamasa da hesaplamalar üzerinden kendini göstermektedir (bu gösterim
ise EPR deneyi sonrasında Bell eşitsizlikleri başlığı altında detaylıca ele alınacaktır).
Bununla birlikte Bohm mekaniğinde lokal olmayışlık özelliğinin gösterimi matema-
tiksel olarak çok yalın ve direktir. Öyle ki, çok parçacıklı kuantum sistemi için yazılan
alternatif Schrödinger denklemini özelleştirerek tekrar yazarsak:

∂

∂t
S(x, t) +

2∑
k=1

1

2m

(
∇kS(x, t)

)2

+ V (x, t) +Q(x, t) = 0 (2.22)

iki parçacık için özel bir durum elde etmiş oluruz. Bu denklem aracılığıyla parçacık-
lardan herhangi biri için hareket denklemi k = 1, 2 olmak üzere yazılırsa:

m
d

dt
vk(xk, t) = − ∂

∂xk

[
V (x, t) +Q(x, t)

]
(2.23)

(2.23) ifadesi elde edilecektir. Eşitlikte de görüldüğü gibi hem kuantum potansiye-
linin Q(x, t) hem de klasik potansiyelin V (x, t) konuma bağlı olarak kısmi türevi
alınmaktadır. Bu da her iki potansiyelin parçacıklar üzerinde uyguladığı kuvvet
anlamına gelmektedir. Bununla birlikte eşitlikte verilen klasik potansiyelin sisteme
dışardan (dışardan kelimesiyle sistem dışında kalanlar kastedilmekle birlikte faz-
lasıyla muğlaklık içerdiği unutlmamalıdır) etkiyen tüm potansiyelleri ifade etmesin-
den ötürü yapısal olarak farklı birçok potansiyeli kapsamaktadır. Bu nedenle klasik
potansiyel, ele alınan etkilere bağlı olarak lokallik (lokalite) veya lokal olmayışlık
özelliğine sahip olabilmenin yanı sıra çeşitli özel durumlarda (EPR gibi) lokal ol-
mayışlık özelliğine sahip olsa dahi göz önünden bulundurulmasına yetecek etkiyi

3”Thus, in our interpretation, the use of a statistical ensemble is (as in the case of classical
statistical mechanics) only a practical necessity, and not a reflection of an inherent imitation on
the precision with which it is correct for us to conceive of the variables defining the state of the
system.”[29]
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ortaya koyamayabilmektedir (Newton potansiyeli gibi). Bu bakımdan sisteme etki-
yen kuvvetler irdelendiğinde, 2.19 denklemine bağlı olarak, kuantum potansiyelinin,
klasik potansiyellerin birçoğundan farklı bir tutum izleyerek, sistemin durumundan
bağımsız lokal olmayışlık özelliğine sahip olduğu açıkça görülmektedir. Öyle ki, EPR
deneyi özelinde sürece bakıldığında muhtemel dış potansiyellerin ele alınan sistem
üzerinde uyguladıkları kuvvetlerin kuantum potansiyeli ile kıyaslandığında göz ardı
edilebilir olduğu spesifik durumlar dahi ortaya çıkabilmektedir.

Kuantum potansiyelinin eklenmesi aracılığıyla alternatif Schrödinger denklemini
(2.11) geliştiren Bohm mekaniği, klasik mekaniğin, klasik potansiyelin doğasından
ötürü, sahip olduğu lokal olmayışlık özelliğinin kuantum teorisi için de geçerli olduğu-
nu yaptığı matematiksel çıkarımla açıkça göstermiştir. Ancak bununla birlikte, lo-
kal olmayışlığın her iki teoride aynı davranışa sahip olmadığı ise ayrı bir gerçektir.
Çünkü kuantum potansiyeli, klasik potansiyelin aksine konumla ters orantılı değildir
yani bir başka deyişle parçacıklar (buradaki ve konu boyunca bahsi geçen parçacık-
ların EPR deneyinde ele alınan parçacıklar olduğu unutulmamalıdır) arasındaki me-
safeye bağlı olarak bir değişim göstermez. Bu nedenle klasik potansiyel uzaysal olarak
ayrık mesafelerdeki parçacıklar için kuantum potansiyeline kıyasla ihmal edilebilir
bir etkiye sahip olacaktır.

Özetle, EPR deneyi bağlamında kuantum teorisi, kuantum potansiyeline sahip ol-
ması sebebiyle, lokal olmayışlık özelliğini korurken, klasik mekanik ise, mesafeden
kaynaklı, bu özelliği koruyamayacağı aşikardır.

2.5 Çift Yarık Deneyi ve Bohm Mekaniği

Bölüm boyunca açıklandığı gibi Bohm mekaniği kuantum sistemlerinin determinis-
tik (klasik mekanikteki gibi) bir yapı üzerinden dinamiklerinin tasvir edilebileceğini
savunmaktadır ve bunun da sistemlerin gidişatlarının tanımlanmasıyla mümkün
olduğu fikrine dayandırmaktadır. Bu fikrin işleyişinin ve vardığı sonuçların daha iyi
anlaşılabilmesi adına kullanılabilecek en uygun örneklerden birisi de şüphesiz ki hem
genel yorum hem de pilot-dalga teorisinde ele alınmış olan çift yarık deneyidir.

Bohm mekaniği üzerinden ele alınan çift yarık deneyinin açıklaması birçok yönden
pilot-dalga teorisine çok benzemektedir ve özellikle elektronun yarıklardan çıkışına
kadar süreçte izlediği gidişat tamamen aynıdır. Bu sebepten ötürü pilot-dalga teori-
sinde verilmiş olan Şekil (1.4)’ün tasvir ettiği durum Bohm mekaniği için de aynen
geçerli olduğundan sadece elektronun yarıkları terk ettikten sonra ekrana ulaşma
sürecinde yaşadığı fiziksel süreci açıklamak yeterli olacaktır.

Yarıklardan sonraki süreci ise Şekil (2.1) [33] üzerinden ele alacak olursak kolayca
görülebileceği gibi, A veya B yarıklarından geçen her bir elektronun yarıktan sonra
ekrana kadar kendine has bir yol takip ettiği gösterilmektedir. Bunun sebebi ise
pilot-dalga teorisinde olduğu gibi elektrona bu süreçte etki eden pilot dalgaların
varolmasıdır ve bu pilot dalgalar deney düzeneğinin (deneyin tüm evrenden soyut-
landığı kabulü üzerinden) tamamına dağılmış durumdadırlar. Bununla birlikte, pilot
dalgaların hepsinin φ(x, t) = Aei(kx−wt) veya φ(x, t) = Aei(kx+wt) ifade edilebilen
durağan dalga oldukları unutulmamalıdır.
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Şekil 2.1: Çift Yarık Deneyi: yarıklardan sonraki Bohm gidişatları[33]

Elektronun gidişatının açıklanmasında nedensel olarak pilot-dalga teorisiyle aynı
noktadan hareket eden Bohm mekaniği, sürece dair sunduğu tasvire detaylıca bakıla-
cak olunursa selefinden farklı bir yol izlediği görülür. Bu yol ise yorumun formaliz-
minde karşımıza çıkan ve kuantum potansiyeli kavramının, Q(x, t), dahil edilmesiyle
elde edilen alternatif Schrödinger denklemi üzerinden gidişatların tasvir edilmesidir.
Bu tasvirde kuantum potansiyeli varlığındaki dalga fonksiyonu kendisiyle etkileşime
geçerek (ki pilot dalgaları bir bütün olarak düşündüğümüzde aralarındaki etkileşimin
aracısının kuantum potansiyeli olduğu açıklamakta yarar vardır) gidişat üzerinde
yaratıcı ve yokedici (Şekil 2.1’ de aşağı ve yukarı yönlü gösterilmiş olan) girişimler
geçirmesine neden olmaktadırlar. Bunun sonucundaysa aynı genel yorum ve pilot-
dalga teorisinde gözlendiği gibi ekranda bir girişm deseni oluşmaktadır.

Şekil 2.1’de de gösterildiği gibi elektron kendisine etki eden pilot dalganın fazından
doğan etkiyle gidişatına yön vererek ekrana ulaşır. Bu süreç yeterli miktarda tek-
rarlanırsa da şekildeki tüm mümkün gidişatların hesaba katıldığı deney sonuçlarıyla
benzer bir girişim deseni oluşacaktır. Oluşan girişim deseni deneyin tekrar sayısı
ve ekranla yarıklar arasındaki mesafenin büyüklüğüne göre değişiklik göstermekle
birlikte deney boyunca pilot dalgaların ortama homojen bir şekilde dağıldıkları var-
sayılmaktadır.

Özetle Bohm mekaniği çift yarık deneyinde elektronun yaşadığı fiziksel süreci stokas-
tik bir açıklamaya başvurmaksızın, pilot dalgaların fazına (ya da başlangıç koşulları-
na) bağımlı olarak şekillenen gidişatlar üzerinden açıklanabileceğini göstermekte-
dir.
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3 EPR DENEYİ

3.1 EPR Düşünce Deneyi’nin Açıklanışı

Genel yorumun bakış açısıyla gelişimini sürdüren yeni kuantum teorisi, 1935 yılında
Albert Einstein, Boris Podolsky ve Nathan Rosen’ın ortaklaşa çıkardıkları, son-
raki yıllarda EPR düşünce deneyi (EPR Gedanken Experiment) ismiyle anılacak
olan, ilgili makaleleri [34] üzerinden çok önemli bir eleştiriye ve aynı zamanda ilk
sınavına tabi tutulmuştur. Makale genel hatlarıyla, özetinde de bahsedildiği gibi,
fiziksel gerçekçiliği tasvir etmeyi amaç edinen bir teorinin üç temel kritere sahip
olması gerektiğini öngörmektedir. Bu kriterleri sıralayacak olursak[35];

1. Tamlık gereksinimi(completeness requirement): Bir teorinin tam olabilmesi için
fiziksel gerçekliğin her bir unsuruna karşılık bir unsura sahip olması gerektir
(birebirlik).

2. Fiziksel gerçeklik kriteri(physical reality criterion): Fiziksel bir nicelik hak-
kında elde edilebilecek bilginin kesinliği onun üzerinde herhangi bir değişime
sebep olmayan ölçümle mümkün olabilir.

3. Konumda ayrılabilirlik(Separability in location veya no signal theorem): Ku-
antum teorisine göre (ki burada genel yorum temel alınıyor) birbiriyle komüte
etmeyen operatörler aracılığıyla gösterilen iki fiziksel nicelikten biri hakkında
bilgi edinmek diğerine dair bilgi edinmeyi engeller.

Bu üç kriterin genel yorum bağlamında meydana getireceği sonuçlar ise;

a) Genel yorumun dalga fonksiyonu kavramı fiziksel gerçekliğin tam ifadesini ve-
remez.

b) Konumda ayrılabilirlik kriteriyle tasvir edilen fiziksel niceliklere dair bilgiler
asla eş-zamanlı olarak elde edilemezler, gerçeklik kazanamazlar, ölçülemezler,.

Varılan bu iki sonuç ise bölümün devamında EPR deneyi kapsamında bahsi geçecek
olan birbirleriyle dolanık sistemler göz önünde bulundurulduğunda: a) sonucunun
yanlış olması durumunda otomatik olarak b) sonucunun da yanlış olması gerektiğini
göstermektedir. Bu nedenden ötürü a)’nın kaçınılmaz olarak doğru olması gerektiği
görülmektedir. Özetle, Einstein ve arkadaşlarına göre genel yorumun dalga fonk-
siyonu kavramı fiziksel gerçekliğin tam ifadesini verememektedir. Makale itibariyle
varılan bu argümanı daha iyi anlamakla birlikte EPR deneyinin özel rölativite ve ge-
nel yorum üzerinden analizini yapmak konuya dair, devam eden yıllarda, geliştirilen
diğer fikirleri anlama açısından yardımcı olacaktır. Bu bağlamda deneyi anlatacak
olursak;

34



Farzedelim elimizde I ve II olmak üzere iki adet, parçacık, sistem olsun. Bu sistem-
ler, aralarında herhangi bir etkileşim meydana gelmeden önceki durumlarının bi-
lindiği varsayımıyla, t = 0’dan t < T anına kadar etkileşimde bulunsunlar. Sürecin
ardındansa sistemler arasında herhangi bir etkileşim olmadığı göz önünde bulun-
durularak dalga fonksiyonu, etkileşim öncesine dair yapılan varsayımın yardımıyla
kabaca I+II (sistemlerin durumlarının toplamı) olacak şekilde, Ψ ile gösterilebi-
lir. Ancak Ψ dalga fonksiyonu sistemlerin tekil durumlarını tasvir etmediğinden
çeşitli ölçümler yardımıyla her bir sisteme ait fiziksel nicelikleri (gözlenebilirleri)
elde etmek mümkün olacaktır. Bu ölçümler ise doğal olarak tezin başında da ele
alındığı üzere dalga fonksiyonunun ölçüme bağılı olarak belli bir durumuna çökme-
siyle sonuçlanacaktır.

Ölçüm sürecine bakacak olursak; elimizde özdeğerleri a1, a2, a3..., özfonksiyonları
u1(x1), u2(x1), u3(x1)... olmak üzere sadece I sistemine etkiyen bir fiziksel nicelik,
A, olsun. Dalga fonksiyonu, Ψ, bu fiziksel nicelik için x1:I sistemi, x2:II sisteminin
değişikenleri olmak üzere:

Ψ(x1, x2) =
∞∑
n=1

ψn(x2)un(x1) (3.1)

şeklinde yazılabilir. Burada ψn(x2) II sistemini ifade eden katsayılar, un(x1) ise
Ψ’nun ortogonal fonksiyonlarıdır. I sistemindeA fiziksel niceliğinin elde edilmesi için
yapılacak ölçüm sonucunda ise dalga fonksiyonu ψk(x2)uk(x1) tekil durumuna çöke-
cektir. I sisteminin baz alındığı bir başka fiziksel nicelik, B, için süreci tekrarlayacak
olursak; ona karşılık gelen özdeğerler b1, b2, b3..., özfonksiyonlar v1(x1), v2(x1), v3(x1)...
olmak üzere dalga fonksiyonu:

Ψ(x1, x2) =
∞∑
s=1

ϕs(x2)vs(x1) (3.2)

şeklinde ifade edilebilir. B fiziksel niceliği için yapılacak ölçüm sonrasında ise dalga
fonksiyonu ϕr(x2)vr(x1) tekil durumuna çökecektir. Böylece I sistemi üzerinde yapılan
ölçümlerin II sisteminin farklı, ψk ve ϕr fonksiyonları gibi, durumlara geçiş yap-
masına neden olduğu açıkça gösterilmiş olur. Ancak daha önce belirtildiği üzere
sistemlerin ölçüm esnasında, t > T zaman diliminde, aralarında bir etkileşimin
gerçekleşmediğinden II sisteminde herhangi bir değişim (EPR makalesinde bu nok-
tada muğlak bir tabir olan gerçek değişim kavramı kullanılıyor) olmadığı varsayıl-
maktadır. Bu nedenden ötürü ψk ve ϕr fonksiyonları aynı gerçekliğin parçası ola-
bilirler. Hatta bir adıma daha ileri gidilerek bu fonksiyonların sırasıyla P ve Q
gibi birbirleri ile komüte etmeyen iki fiziksel niceliğin özfonksiyonları olarak ele
alınabilirler. Bu fiziksel nicelikler için ölçüm sürecine bakmadan önce dalga fonk-
siyonunu iki parçacığı ifadece edecek şekilde yeniden düzenlersek:

Ψ(x1, x2) =

∫ ∞
−∞

e(2πi/h)(x1−x2+x0)pdp (3.3)
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şeklinde yazılabilir. Bu ise aslında 3.1 ifadesinde toplam olarak yazılan dalga fonk-
siyonunun sürekli versiyonuna denktir:

Ψ(x1, x2) =

∫ ∞
−∞

ψp(x2)up(x1)dp (3.4)

İntegralde, up(x1) fonksiyonu birinci parçacığa ait A fiziksel niceliğinin, ki burada
momentumu belirtmektedir, özfonksiyonu olup p özdeğerini verir; Ψp(x2) fonksi-
yonu ise P = (h/2πi)∂/∂x2 fiziksel niceliğinin özfonksiyonu olup ikinci parçacığın −p
özdeğerine karşılık gelmektedir.

Sürecin benzeri momentum yerine konuma dair olan B ve Q = x2 fiziksel nicelikleri
için tekrarlandığında ise; vx(x1) = δ(x1−x2), ϕx(x2) = hδ(x−x2 +x0) olmak üzere
dalga fonksiyonu:

Ψ(x1, x2) =

∫ ∞
−∞

ϕx(x2)vx(x1)dx (3.5)

şeklinde yazılabilir. Burada birinci parçacığın konumunun ölçümü, B fiziksel ni-
celiğinin elde edilmesi, sonucu elde edilecek özdeğer x iken, Q fiziksel niceliğine
bağlı olarak ikinci parçacığa dair elde edilecek özdeğer ise x+ x0 dır.

Varılan sonuç gösteriyor ki birbirleriyle komüte etmeyen fiziksel nicelikler olan P ve
Q, PQ − QP = h/2πi, özfonksiyonlarının aynı gerçekliğe ait olmalarına rağmen
yapılan ölçümler sonucu sırasıyla pk ve qr özdeğerleri vermektediler. Ancak bu
durum bölümün başında verilmiş olan konumda ayrılabilirlik ilkesinin açıkça ih-
lal edeceğinden ona dair genel yorum bağlamında geliştirilmiş olan sonuçların da
yok sayılması anlamına gelmektedir.

Ayrıca makalenin temel üç kriterinden biri olan fiziksel gerçeklik kriterinin, ko-
numda ayrılabilirlik kriteri de göz önünde bulundurulduğunda, Einstein tarafından
konuya dair, makale öncesi, dile getirilmiş olan lokalite kriterini üstü kapalı da olsa
içinde barındırdığı anlaşılmaktadır. Deneyin temelinde yatan bir kriter olarak da
öne çıkan lokalitenin makalede bu şekilde ele alınması ise yazarlardan Podolsky’nin
kişisel seçiminin bir sonucudur. Öyle ki, Podolsky yayınlandıktan sonra makale-
nin bir örneğini Einstein’a göndermiş ve böylece üzerinde yapılacak muhtemel bir
düzenlemeye imkan bırakmamıştır. Bununla birlikte lokaliteyi kısaca açıklayacak
olursak; birbirinden uzaysal olarak ayrık ve dolanık iki parçacıktan 1. parçacık üze-
rinde yapılacak bir ölçümün 2. parçacık üzerinde herhangi bir değişime neden olama-
yacağı şeklinde tanımlanabilir. Zira bu değişime neden olacak bir etkileşimin hızının
c < v ≤ ∞ aralığından (ki kuantum teorisinin ilkelerinin korunması adına v = ∞
olmalıdır) olması gerekmektedir.

Açıkça görülebileceği üzere lokalite kriteri, ya da kısaca lokalite, lokal teorilerin ana
unsuru olup Einstein’ın kuantum teorisine getirdiği eleştirilerde de kilit bir role
sahiptir. EPR deneyi ve lokalite hakkında daha detaylı bir açıklama için Travis
Norsen’in ilgili kitabının [36] 1. ve 4. bölümlerine bakılabilir.
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3.1.1 Muhtemel Gizli Değişkenlerin Açıklanışı ve Özellik-
leri

Genel yoruma göre, sistem hakkında gerekli olan tüm bilgiler dalga fonksiyonunda
yer aldığından, dalga fonksiyonu sistemin tam bir tasvirini hiçbir ek değişken gerek-
meksizin vermektedir. Ancak EPR düşünce deneyinden elde edilen sonuçlara göre
bu durumda kuantum teorisi lokal olmayan bir teori (nonlocal theory) olmalıdır ve
kaçınılmaz olarak da anlık etkileşim özelliğine sahiptir. Bu ise ışık hızından yüksek
hızların varlığını kabul etmek demektir. Einstein ve arkadaşları böyle bir sonucun
mümküm olmadığını düşündüklerinden (lokal realizm düşüncesinin öngördüğü üzere)
dalga fonksiyonunun, sistemin (yani her iki parçacığı da kapsayan toplam sistemin)
tam bir tasvirini vermediği düşüncesini ortaya koydular. Sundukları bu argüman her
ne kadar gizli değişkenlerden (hidden variables) bahsetmiyor olsa da (ki bahsettik-
leri taktirde bunların lokal olacakları aşikardır) ilerleyen yıllarda konuyla yakından
ilişkili birçok bilim insanı makaleyi gizli değişkenlerin çıkış kaynağı olarak kabul
etmektedirler. Ancak bu doğru değildir. Öyle ki, makaleden çok daha önce gizli
değişkenler kuantum teorisi dahilinde tartışılmakla birlikte John Von Neumann ta-
rafından geliştirilem genel yorumun ilk temel aksiyomlarını verdiği kitabında [37]
bahsedilmiştirler. Bu aksiyomlar arasından 5a ve 5b direkt olarak gizli değişkenlerle
(dispersion free states) ilişkili olup kuantum teorisinin genel yorumunda yeri ol-
madıkları savunulmuştur. Fakat bu savunmanın sadece, bir sonraki bölümde tüm
detaylarıyla açıklanacak olan, lokal gizli değişkenleri kapsadığını ve kuantum teorisi
dahilinde mümkün tüm durumlar için geçerli olamayacağını J. S. Bell ilgili makale-
sinde [31] göstermiştir.

Bununla birlikte sonraki bölüme giriş olması adına EPR deneyi üzerinden kısa bir
özet yapılacak olunursa; gizli değişkenler, alt sistemlerin oluştuğu anda, buna örnek
olarak π0 −→ e−+e+ bozunduğu anda, e− ve e+ parçacıklarının bozunma anına ka-
darki etkileşimlerinin sistemin ilerleyen aşamalarında parçacıklar üzerinde yapılacak
mümkün tüm ölçümler için her iki parçacığın da birbirlerine göre durumlarının ne
olması gerektiğini söyleyen bir nevi talimatlar topluluğu olarak kabul edilmelidir-
ler. Bu talimatlar bozunma anında ortaya çıkıp her iki parçacığın dalga fonksiyo-
nunda da yer almaktadırlar. Böylelikle parçacıklardan biri üzerinde yapılan herhangi
bir ölçüm otomatik olarak gizli değişkenler sayesinde, talimatlarda belirli olan il-
gili öz duruma göre, tüm sistemin durumunu da belirlemiş olurlar. Bu sayede ışık
hızından hızlı herhangi bir iletişime gerek kalmaksızın parçacıklar arasındaki ko-
relasyon sağlanabileceğinden hem kuantum hem de özel rölativite teorisinin çizdiği
sınırlar içinde beklenen değerler elde edilmiş olur (özel rölativitenin teorisinin çizdiği
sınırlar 4. bölümde anlatılmaktadır).

3.2 Bell Eşitsizliği

Gizli değişkenler fikri ortaya çıktığı ilk tarihten itibaren takip eden yıllarda kuantum
teorisinin önde gelen isimleri tarafından birçok defa ele alınmıştır. Bu isimlerden ilki
olan Niels Bohr [38] gizli değişkenlerin varolsa dahi hiçbir zaman gözlemlenemeyeceği
düşüncesiyle bir eleştiri getirirken Von Neumann ise kendi geliştirdiği kuantum te-
orisinin muhtemel aksiyomları [37] üzerinden teoride yeri olmadığını savunmuştur.
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Niels Bohr ve Von Neumann’ın gizli değişkenler üzerine vardıkları bu sonuçlar konu-
nun gelişmesinin önünde çok büyük engel olmuştur. Zira Bohr genel yorumun fikir
babası iken Neumann ise yorumun matematiksel olarak ilk gösterimini yapan kişi ol-
ması sebebiyle kuantum teorisi üzerine çalışan topluluklar üzerinde derin bir etkiye
sahiplerdi. Ancak bu durum David Bohm’un Aharanov ile birlikte kuantum teori-
sinde gizli değişkenlerin varlığını sorguladıkları 1957 tarihli makalede [39] tersine
dönmüştür. Makalede Bohm ve Aharanov, birbirine dolanık parçacıkların bozunma
anından sonra toplam spinlerinin 0 olduğu durumu ele alarak dalga fonksiyonunun
(z-ekseninde) tekli durum (spin singlet);

ψ =
1√
2

[
ψ+(1)ψ−(2)− ψ−(1)ψ+(2)

]
(3.6)

(3.6) ifadesiyle gösterilebileceğini öngörmüşlerdir (tekli durumun seçilmesinin sebebi
ise mümkün olan her doğrultuda toplam spin değerinin başlangıç durumdanki gibi
yani 0 olmasıdır). Bu gösterim özellikle pratiksel açıdan EPR deneyinin orjinal ver-
siyonuna kıyasla uygulaması daha müsait olduğundan konunun deneysel boyutta ele
alınmasının yolunu açmıştır.

Ancak gizli değişkenlerin deneysel olarak uygulamasından evvel konunun teorik an-
lamda ele alınarak kuantum teorisindeki yerinin ve içeriğinin açıklanması gerekliydi
ve bunu da 1964 yılında yayınlanan makalesiyle J. S. Bell başarmıştır [40]. Bell
bu makalesinde sonraki yıllarda Bell eşitsiziliği ismiyle anılacak olan ve herhangi
bir modelin kuantum teorisiyle uyuşup uyuşmadığını (bir başka deyişle lokal olup
olmadığını) test etmeye imkan tanıyan formalizmini ortaya koymuştur. Şimdi bu
matematiksel ifadenin çıkarımını yapalım;

Bohm ve Aharonov’un makalelerinde ele aldıkları gibi tekli duruma sahip iki parçacı-
ğımız olsun ve bu parçacıklar etkileşim anından sonra birbirlerine zıt yönlerde hare-
ket etsinler. Hareketleri esnasında her iki parçacığa da spinleri üzerinden bir ölçüm
yapılsın, örneğin 1. parçacık üzerinde a doğrultusunda yapılan σ1.a ölçümü sonucu
1
2

değeri elde edilsin. Bu sonuç parçacıklar arasındaki dolanıklık sebebiyle, doğal
olarak, 2. parçacığın spin değerinin σ2.a = −1

2
olmasına neden olacaktır.

Farzedelim ki ölçümler yapılırken baz aldığımız doğrultular farklılık göstersin; örneğin
1. parçacık a doğrultusunda σ1.a ölçümüne maruz kalırken 2. parçacığa b doğrultu-
sunda σ2.b ölçümü yapılsın. Bu durumda az önce vardığımız 1

2
ve −1

2
değerleri

yerine a ve b doğrultularının aralarındaki açıya bağımlı olacak sonuçlar elde etme-
miz gerekir. Bu sonuçları elde etmek için a doğrultusunu sabit kabul edip b(θ, φ)
doğrultusunun alacağı değerleri sırasıyla yazarsak;

|b >= sin
θ

2
ei
φ/2|ψ−(2) > + cos

θ

2
e−i

φ/2|ψ+(2) > (3.7)
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olmak üzere, b doğrultusunda elde edilebilecek muhtemel olasılıkları da sırasıyla;

P+|b > = | < b|ψ−(2) > |2 = | sin θ
2
ei
φ/2 < ψ−(2)|ψ−(2) > |2 = sin2 θ

2
(3.8)

P−|b > = | < b|ψ+(2) > |2 = | cos
θ

2
e−i

φ/2 < ψ+(2)|ψ+(2) > |2 = cos2 θ

2
(3.9)

değerlerine denk olacaktır. Sadece b doğrultusunda yaptığımız açı değişikliğinden
ötürü ise a doğrultusundaki değerler ±1

2
olarak sabit kalacaktır. Bu değerleri (3.6)

ifadesini kullanarak açıkça görülebilecegi gibi iki ölçümün sonucu oluşan toplam
değer σA = σ1.a ve σB = σ2.b olmak üzere;

< σA.σB >= −1

4
a.b = −1

4
cos θ (3.10)

şeklinde ifade edebilmek mümkündür. Bu sayede (3.10) ifadesini kullanarak kuan-
tum teorisi bakımındanA veB aygıtlarınıın ölçümleri sonucu beklenen değerlerinin,
θ’nın açısal bir değişken olması aracılığıyla, genel bir gösterimini elde etmiş oluruz.
Peki bu duruma gizli değişkenlerin (bu bölüm boyunca ele alınan gizli değişkenlerin
yapılacak işlemlerde de gösterildiği üzere lokal gizli değişkenler oldukları unutul-
mamalıdır.) var olduğunu kabul ederek yaklaşırsak sonuç ne olur bir de ona ba-
kalım. Gizli değişkenlerin varlığında elde edilecek değerleri yazarsak (λ, lokal gizli
değişkenleri ifade sürekli bir parametre ve n boyutlu, küre yüzeyin dağıtılmış, bir
vektör olmak üzere);

σ1(λ,a) = ±1

2
(3.11)

σ2(λ, b) = ±1

2
(3.12)

eşitliklerini elde etmiş oluruz. Ayrıca parçacıkların birbiriyle dolanık olmaları sebe-
biyle −σ1(λ,a) = σ2(λ, b) olduğunu da göz önünde bulundurmak gerekir. Bu durum
için beklenen değeri tekrar yazacak olursak;

< σ1(λ,a)σ2(λ, b) >=

∫
dλρ(λ)σ1(λ,a)σ2(λ, b) (3.13)

ifadesini elde ederiz ve buna ek < σ1(λ,a)σ2(λ, b) >=< σ1(a)σ2(b) >λ olacağından
ifadenin son hali;

< σ1(a)σ2(b) >λ= −
∫
dλρ(λ)σ1(λ,a)σ1(λ, b) (3.14)

şeklinde olacaktır. Bu eşitlikle gizli değişkenlere sahip 1. ve 2. parçacıklar üzerinde,
farklı doğrultularda yapılacak aynı ölçüm sonucu elde edilecek beklenen değerin ne
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olacağı açık bir şekilde verilmektedir. Bununla birlikte beklenen değer ifadesi elde
edilirken normalize edilmiş olasılık dağılımının

∫
dλρ(λ) = 1 olduğunu unutulma-

malıdır. Şimdi a ve b doğrultularına ek başka bir doğrultu, c doğrultusu, seçip
beklenen değerin ne şekilde değiştiğine bakalım;

< σ1.aσ2.b >λ − < σ1.aσ2.c >λ= −
∫
dλρ(λ)σ1(λ,a)

[
σ1(λ, b)− σ1(λ, c)

]
(3.15)

eşitliğin sağ tarafını σ1
2(λ, b) = 1

4
değeriyle çarparsak;

P (a, b)− P (a, c) = −
∫
dλρ(λ)σ1(λ,a)4σ1

2(λ, b)
[
σ1(λ, b)− σ1(λ, c)

]
(3.16)

şeklinde bir ifade elde ederiz. Bu ifadeyse birkaç düzenleme ardından;

P (a, b)− P (a, c) = −
∫
dλρ(λ)σ1(λ,a)σ1(λ, b)

[
1− 4σ1(λ, b)σ1(λ, c)

]
(3.17)

(3.17) eşitliğini verir. Eşitliğin sağ tarafındaki a ve b doğrultularına bağlı ölçüm
değerini veren kısım (3.10) ifadesinin yardımıyla σ1(λ,aσ1(λ, b) = ±1

4
aralığındaki

değerleri alacaktır. Bu çıkarım üzerinden (3.17) ifadesini yeniden düzenlersek;

|P (a, b)− P (a, c)| ≤ 1

4

∫
dλρ(λ)

[
1− 4σ1(λ, b)σ1(λ, c)

]
(3.18)

≤ 1

4

[
1 + 4σ1(λ, a)σ2(λ, c)

]
(3.19)

bulduğumuz bu ifadeyi kuantum teorisindeki haliyle yazarsak;

| < σ1.aσ2.b >λ − < σ1.aσ2.c >λ | ≤
1

4

[
1 + 4 < σ1(λ, a)σ2(λ, c) >

]
(3.20)

Bell eşitsizliğini elde etmiş oluruz. Bell Eşitsizliğinin sağ ve sol tarafını tekrar (3.10)
ifadesi yardımıyla ele alıp sade bir şekilde yazarsak sol taraf ve sağ taraf için;

sol =⇒ 1

4
|a.(c− b)| (3.21)

sağ =⇒ 1

4
(1− b.c) (3.22)

(3.21) ve (3.22) ifadelerini elde etmiş oluruz.
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Şekil 3.1: Bell Eşitsizliği ve Gizli Değişkenler Varlığındaki Mümkün Durumlar

Bu ifadelerde a.b = 0 ve c = a sinϕ+ b cosϕ kabul aracılığı ile c doğrultusu a ve b
arasında olmak üzere iki tarafın (3.21 ve 3.22) birbirine eşit olduğu durumlar Şekil
(3.1) ile gösterildiği gibi sadece 0 ve π

2
değerlerinde mümkündür.

Bu da sonuç olarak şu göstermektedir, parçacıkların birbirleriyle olan etkileşimleri
sırasında oluşan lokal gizli değişkenlerin kabulü üzerinden varılabilecek sonuçlar
sınırlı olup kuantum teorisiyle elde edilebilecek sonuçlara kıyasla sadece ekstra-
mum değerleri verebilmektedirler (Şekil 3.1). Varılan bu sonuç sebebiyle lokal gizli
değişkenler üzerine geliştirilen herhangi bir model kuantum teorisine göre yetersiz
kaldığından teoriye getirilmiş bir düzeltmeden çok kısıtlayıcı bir hamle olarak kal-
maktadır.

Bell eşitsizliği gösteriyor ki gizli değişkenlerin (λ) kabulü üzerinden geliştirilmiş
modeller, c doğrultusuyla c-b ekseni arasındaki ϕ açısının 0 ve π/2 değerlerini al-
madığı durumlar haricinde eşitlisizliği bozmaktadırlar. Diğer taraftan bakacak olur-
sak; parçacıkların meydana geldikleri andaki ilk ve son etkileşimleri sonucu ortaya
çıkan lokal gizli değişkenler, devam eden süreçte bu parçacıklar arasında herhangi
bir etkileşim olmadığı kabulüne dayandığından, ilerleyen zamanlarda sistem üzerinde
yapılan ölçümler sonucu ortaya çıkacak beklenen bütün değerleri veremeyeceğinden
doğal olarak kuantum teorisinin öngördüğü tüm durumları da tasvir edemezler. Bu-
radan hareketle EPR deneyinin argümanından türemiş olan gizli değişkenlere sergile-
dikleri bu yapı nedeniyle lokal gizli değişkenler (local hidden variables) denmektedir
ve kuantum teorisinin olasılıksal sonuçlarını verme konusunda yetersizdirler. Lokal
gizli değişkenlerin (vardığımız sonuca göre lokal gizli değişkenler) sahip olduğu bu
özelliği Bell makalesinin genel bir özetini ele alırken şu sözlerle ifade ediyor;

”Öyleyse en az bir kuantum mekaniksel durumda, alt-uzaylarda kombine edilmiş
”tekli” durumda, kuantum mekaniğinin bu istatistiksel tahminleri ayrılabilir olan
önceden belirlenmişlikle uyuşmamaktadır.”1

1”Then for at least one quantum mechanical state, the ”singlet” state in the combined subspa-
ces, this statistical predictions of quantum mechanics are incompatible with separable predetermi-
nation”.[40]
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Bu açıklamanın ardındansa EPR argümanının getirdiği gizli değişkenler fikrinin ma-
kalesinde açıkça gösterdiği lokal gizli değişkenler olduğunu ise şu sözleriyle dile ge-
tiriyor;

”Tekil ölçümlerin sonuçlarını, istatistiksel tahminlerde değişikliğe neden olmaksızın,
elde etmek amacıyla kuantum mekaniğine çeşitli parametrelerin eklenmesini öngören
bir teoride ölçüm aletinin, uzaktan da olsa (ki bu uzaklık uzaysal olarak ayrık du-
rumlardaki mesafeleri de kapsamaktadır), diğer ölçüm aletini etkileyebildiği bir me-
kanizma varolmalıdır. Dahası böyle bir mekanizma için, ölçüm aletleri arasında,
sinyalleşmenin anlık olması gerektiğinden bu tarz bir teori Lorentz değişmezliğine
sahip olamaz.”2

Bell bu makalesi ile kısaca gizli değişikenlerin kuantum teorisinde yeri olmadığı so-
nucuna değil lokal gizli değişkenleri kuantum teorisinin vardığı olasılıksal değerlere
kıyasla yetersiz kalacağını açıklamaktadır. Genel intibanın aksine varılan bu sonuç
gizli değişkenlerin kuantum teorisinde yeri olmadığı anlamına gelmez sadece teoriye
katılabilecek gizli değişkenlerin lokal olmayışlık özelliğine sahip olması gerektiği an-
lamına gelmektedir.

Ortaya koyduğu kanıtla Bell gizli değişkenlerin kuantum teorisinde yeri olmadığı
çıkarımından çok, Neumann ve Bohr’un vardıkları gibi, onun doğasını açıklamaya
çalışmıştır. Öyle ki, makalesinin son bölümünde konuya dair o zamana kadar yapılmış
eleştirilerin açık bir şekilde ifade edilmemesine rağmen lokal gizli değişkenler üzerinde
olduğunun altını çizerek lokal olmayan gizli değişkenlerin kuantum sistemlerinin tas-
virinde kullanabilir olduğunu ve bu nedenle kuantum teorisinde de önemli bir yeri
olabileceğinin öngörüsünde bulunmuştur. Bahsi geçen bu öngörüyü ise Bell’in devam
eden çalışmalarında daha açık bir şekilde görmek mümkündür ([41].

3.3 CHSH Deneyi

Bell’in makalesinde EPR deneyine ve lokal gizli değişkenlere getirdiği yorum ardından
sadece beş yıl sonra 1969 yılında Clauser ve Shimony deneysel olarak konuyu ele
aldıkları makalelerini [42] yayınladılar. Yaptıkları deney temelinde Bohm ve Aharo-
nov’un tekli durumdaki birbiriyle dolanık olan fotonları konu almaktadır. Deneyin
anafikri ise Bell’in vardığı sonuç olan;

”...hiçbir lokal gizli değişken kuantum teorisinin sunduğu bütün istatistiksel tahmin-
leri sağlayamaz.”3

düşüncesinin deneysel olarak kanıtlanabilir olup olmadığıdır. Bununla birlikte lo-
kal gizli değişkenleri konfigürasyon uzayında ele alarak deneysel anlamda kolaylık
sağlayan daha uygun bir ifadesini tasarlamışlardır.

2”In a theory in which parameters are added to quantum mechanics to determine the results of
individual measurements, without changing the statictical predictions, there must be a machanism
whereby the setting of one measuring device can influence the reading of another instrument, ho-
wever remote. Moreover, the signal involved must propagate instantaneously, so that such a theory
could not be Lorentz invariant.”[40]

3”...no local-hidden variable theory can produce all of the statistical predictions of quantum
mechanism.[42]
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CHSH deneyini açıklayacak olursak; hem EPR deneyinde hem de Bell’in makale-
sinde ele alındığı gibi birbiriyle dolanık olan iki parçacık ele alalım 1. parçacığın
dalga fonksiyonu ψ1(r, t), 2. parçacığın dalga fonksiyonu ise ψ2(r, t) olmak üzere
parçacıkların oluşturduğu sistemin dalga fonksiyonu;

Ψ(r, t) = ψ1(r, t)ψ2(r, t) (3.23)

şekilde gösterelim. Parçacıklar aralarındaki etkileşim sonucu dolanıklık kazandıktan
sonra aynı EPR deneyindeki gibi birbirine zıt doğrultularda hareket etsinler ve
daha önce de kabul edildiği gibi (a ve b parçacıklar üzerindeki ölçümlerin sırasıyla
doğrultuları olmak üzere) 1. parçacık A(a) ölçümüne, 2. parçacık ise B(b) ölçümüne
maruz kalsın. Bu ölçümler parçacıkların aygıtların ölçüm yaptıkları doğrultulardan
geçip geçmemesine göre ±1 değerlerinden birini alsınlar. Lokal gizli değişkenler ise
EPR deneyinde ve Bell’in makalesinde olduğu gibi, fakat buna ek olarak konfigüras-
yon uzayı üzerinden daha genelleştirilmiş halde oldukları kabulü ile, parçacıkların
dalga fonksiyonuna dahil edilmiş hali ele alınarak Bell eşitsizliği yardımıyla yazılırsa;

|P (a, b)− P (a, c)| ≤ 1−
∫

Γ

dλρ(λ)B(a,λ)B(c,λ) (3.24)

eşitsizliğini elde ederiz. (3.24) ifadesinin genel bir versiyonunu yazabilmek adına
doğrultular arasındaki ufak farklılıkları, örneğin b ve b′ doğrultuları için olasılık
değerleri P (b′, b) = 1 − δ ve 0 ≤ δ ≤ 1 olmak üzere, hesaba katarsak (3.24) ifade-
sini;

|P (a, b)− P (a, c)| ≤ 2− P (b′, b)− P (b′, c) (3.25)

şeklinde tekrar yazabiliriz. Kolaylık olması adına b, b′ doğrultularında olduğu gibi
diğer ikili doğrultular içinde beklenen değerleri aralarındaki açı üzerinden ifade edip
Bell eşitsizliğinin genel halini yazmak istersek;

P (a, b) : b− a =⇒ α = b− a (3.26)

P (b′, b) : b− b′ =⇒ γ = b− b′ (3.27)

P (c, b) : c− b =⇒ β = c− b (3.28)

açılarını da kullanarak;

|P (α)− P (α + β)| ≤ 2− P (δ)− P (β + α) (3.29)

(3.25) eşitsizliğinin son ve en genel halini elde etmiş oluruz. Elde edilen bu ge-
nel hal Bell eşitsizliğine kıyasla hem deneysel ortamda hem de teorik hesaplama
alanında sağladığı kolaylık nedeniyle çok daha kullanışlı bir versiyondur. Bu sebep-
ten ötürü gizli değişkenler üzerine yapılan deney ve makalelerin nitel ve nicel boyutta
gelişmesine de ön ayak olmuştur.
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3.4 EPR Deneyi’nin Kuantum Teorisi Üzerindeki Etkisi

Kuantum teorisi gösterildiği gibi temelleri itibariyle klasik mekanik, elektromanye-
tik teori veya özel rölativite teorisi gibi determinizm üzerine kurulmuş olmayıp yapı
olarak kendine en çok benzerliği gösteren istatistik teorisiyle bile bu konuda tam
bir uyum göstermez. Öyle ki, istatistik teorisinde dahi kuantum teorisindeki inde-
terminizmin, yani belirsizliğin gözlemlenen sistemlerin doğasından kaynaklı olduğu
fikri, kabul edilmeyip bu yapının kendisini sadece hesaplama aşamasında pratiksel
anlamda gösterdiği düşüncesi olduğundan deterministik bir teori olarak kabul edi-
lebilir. Daha önceki bölümde ele alındığı gibi Bohm mekaniği de istatistik teorisiyle
benzer bir yapıya sahip olup sonuca varmada sağlayabileceği kolaylıklar sebebiyle is-
tatistik hesaplamanın matematiksel bir araç olarak pratikte kullanılabileceğini ancak
asla sistemin doğasının bu yapıya sahip olduğu fikrine varılamayacağını söylemek-
tedir.

EPR deneyi ise sunduğu argümanla kuantum teorisinin indeterministik yapısından
inşa edilen dalga fonksiyonunun sistemin tam bir tasvirini vermediğini ile sürmek-
tedir. Bu nedenle ilave edilebilecek çeşitli değişkenler yardımıyla bu sorunun üste-
sinden gelinebileceğinin yolunu açmakla birlikte kuantum teorisine katılabilecek bu
değişkenlerin lokal olmayan değişkenler olması gerektiği de Bell’in makalesi ile göste-
rilmiştir. Bu gösterim sistemin paçacıkları arasındaki etkileşim sonrası, parçacıkların
birbirlerinden ayrılmadan önce ve sonra herbirinin sahip olduğu kabul edilen dalga
fonksiyonları üzerinden gösterilise; ri sistemin etkileşim anındaki konumu ve λi et-
kileşim anında ortaya çıkıp parçacıkların dolanıklığını tayin eden lokal gizli değişken
olmak üzere,

etkileşimden hemen sonra ve parçacıklar birbirinden ayrılmadan önce;

Ψ(ri,λ, t) = ψ(ri,λ, t)φ(ri,λ, t) (3.30)

parçacıklar birbirinden uzaysal ayrık konumlardayken;

Ψ(r,λ, t) = ψ(r1,λ, t) + φ(r2,λ, t) (3.31)

şeklinde yazılabilir. (3.30) ifadesinden (3.31) ifadesine geçiş esnasında dikkat edilmesi
gereken önemli noktalardan birisi ölçüm süreci daha gerçekleşmediği için parçacıklar-
dan herbirinin dalga fonksiyonunda gösterilen lokal gizli değişkenlerin hiçbir değişime
uğramadan etkileşim anındaki değerini koruması ve parçacıkların lokal olmayan bir
etkileşime maruz kalma ihtimali olmadığı varsayıldığından lineer bir toplam olacak
şekilde ifade edilebilmesidir. Süreci bir adım daha ilerletip parçacıkların herbiri üze-
rinde (3.10) ifadesinde belirtilen ölçümlerden sadece ilki yapıldığı vakit şu sonuca
ulaşılır;

Ψ(r,λ, t) = ψ1(r1,λ, t) + φ(r2,λ, t) (3.32)

44



Yapılan ilk ölçümle, ölçüm yapılan parçacığın dalga fonksiyonu öz dalga fonksiyon-
larından birine çöker. Bununla birlikte loka gizli değişkenlerin yardımıyla da diğer
parçacığın yapılan ölçüme dair vereceği değer hakkında bilgi sahip olunur. Bir son-
raki aşamada ise hakkında bilgi sahibi olunan ancak ölçüm yapılmamış parçacık
üzerinde bir ölçüm yapılırsa;

Ψ(r,λ, t) = ψ1(r1,λ, t) + φ1(r2,λ, t) (3.33)

(3.33) ifadesine ulaşılır. Yapılan ikinci ölçüm sonrasında ölçülen parçacığa dair varı-
labilecek sonuçlar EPR argümanının ileri sürdüğüne göre tamamen lokal gizli değiş-
kenlerin davranışına göre değişiklik gösterecektir. Lokal gizli değişkenler parçacıkların
etkileşimi sırasında şekillenip ölçümler yapılmadan çok daha önce evrimlerini ta-
mamlamış olmaları itibariyle ölçümlerin (özellikle uzaysal olarak ayrık durumdayken
gerçekleştirilen ölçümlerin) parçacıklar üzerinde sebep olabileceği olası her değişime
anlık bir cevap verebilmeleri mümkün değildir. Çünkü Bell eşitsizliğinin çıkarımında
da gösterildiği gibi her iki ölçüm birbirini, parçacıkların dolanık olması sebebiyle,
etkilemesi gerektiğinden; parçacıkların dolanıklıklarını kazandıkları yaratılışları sıra-
sında ortaya çıkıp sonrasında herhangi bir değişime uğramamış olan lokal gizli
değişkenler ile, sadece maksimum durumlara cevap verebilmelerinden ötürü, açıkla-
nabilmesi mümkün değildir. Aynı süreci lokal olmayan gizli değişkenler üzerinden ye-
niden ele alacak olursak, (3.30) ifadesinden sonra parçacıklar uzaysal olarak ayrıkken
dalga fonksiyonunun ifadesi şu şekilde olacaktır;

Ψ(r,λ, t) = ψ(r1,λ, t)φ(r2,λ, t) (3.34)

ilk ölçümün ardından;

Ψ(r,λ, t) = ψ1(r1,λα, t)φα1(r2,λα, t) (3.35)

ikinci ölçümün ardından ise;

Ψ(r,λ, t) = ψ1(r1,λα, t)φ11(r2,λα, t) (3.36)

(3.35) ve (3.36) ifadelerinden görülebileceği gibi lokal olmayan gizli değişkenler ilk
ölçüm sonucu her iki parçacığın da dalga fonksiyonunda değişime uğramıştır. Bu
değişim sistemi oluşturan parçacıklar arasındaki etkileşimin anlık olması sebebiyle
sıradaki ölçüm gerçekleşmeden önce ölçüm yapılmayan parçacığın dalga fonksiyonu
üzerinde bir değişime yol açmıştır. Bu değişimi (3.35) ifadesindeki lokal olmayan gizli
değişken ve onun sonucunda ölçüm yapılmamış parçacığın dalga fonksiyonunda göre-
bilmek mümkündür. Bunun devamında ise yapılan ikinci ölçümün ardından ölçüm
yapılan parçacığın dalga fonksiyonu son halini almıştır. Tabi ki, ikinci ölçüm sonu-
cunda elde edilen bu son hal yapılan ölçümün içeriğine göre değişiklik gösterecek
belirsizlik ilkesinin sınırları dahilinde sonuçlar verecektir.

45



Einstein ve arkadaşlarının genel yorumun dalga fonksiyonu tanımını sorguladıkları
makalelerinin vardığı argümanlar neticesinde kuantum teorisinde yeniden varlığının
tartışılmasına neden olan gizli değişkenler, önceleri teorinin lokal olduğu varsayımın-
dan hareketle lokal olarak alınmış olmasına rağmen Bell’in varmış olduğu çıkarımlar
nihayetinde lokal olmamaları gerektiği anlaşılarak son hallerine kavuşmuşlardır. Bu
sebeple EPR deneyinin kuantum teorisinde iki önemli değişikliğe neden olmuştur;
bunlardan ilki, kuantum teorisinin lokal olmayışlık özelliğine sahip olduğunun anla-
şılması iken, ikinci değişikliğinse genel yorumun dalga fonksiyonu tanımının sistemin
tam bir tasvirini veremeyeceğidir. Bu iki değişiklik birlikte ele alındığında ise lokal ol-
mayan gizli değişkenlerin kuantum teorisinin tam bir teori olabilmesi (completeness
requirement) adına teoriye eklenmesi gerektiği sonucunu doğurmuştur. Kısaca özet-
lenecek olunursa EPR deneyi sunduğu argümanlar sebebiyle kuantum teorisinin hem
tamamlanmamış hem de lokal olmayışlık özelliğine sahip olduğunun anlaşılmasına
sebep olmuştur.

3.4.1 Lokal Olmayışlığın Kuantum Teorisindeki Yeri

Bell eşitsizliğinin ele alındığı 3.2 bölümünde gösterildiği gibi kuantum teorisinin
ilkeleri ve özelliklerini taşıyan her model ve bu modelle tasvir edilen her sistem lo-
kal olmayışlık özelliğine sahip olmak zorundadır. Bu zorunluluk teorinin her yorumu
için geçerli olup Bohm mekaniğinde kuantum potansiyeli üzerinden açık (explicit) bir
gösterime sahiptir. Ancak aynı durum genel yorum için geçerli değildir. Zira lokal ol-
mayışlık genel yorumda açık bir ifadeye sahip olmadığından kuantum teorisinin diğer
bir ilkesi olan belirsizlik ilkesinin kısıtlaması olarak kendini göstermektedir.

Sadece lokal sayılabilecek yani uzaysal olarak ayrık olmayan bir başka deyişle ışık
konisinin içinde kalan durumlar için lokal olmayışlık herhangi bir soruna neden ol-
mamamktadır fakat ışık konisinin dışındaki durumlar için ele alındığıda bu durum
geçerliliğini yitirmektedir. Öyle ki, kuantum teorisinin ortaya çıkışından çok daha
evvel Newton tarafından ”mesafede etki” (”action at a distance”) veya Einstein ta-
rafından ”tuhaf” (”spooky”) ismiyle varlığı sorgulanmış bu özellik tek yönlü kabul
edilen zaman olgusunun işleyişini ihlal edeceğinden birçok bilim insanı tarafından
şüpheyle karşılanmıştır. Ancak tüm şüphelere karşın kuantum teorisinde vazgeçilmez
bir yeri olduğunu ise EPR deneyi ile varlığından söz edilmiş olan birbiriyle dolanık ve
uzaysal olarak ayık alt sistemlerin (DUAAS) sayesinde kabul etmek bir mecburiyete
dönüşmüştür. Bu mecburiyet daha açık bir ifadeyle, DUAAS’ler arasındaki etkileşim
Bell eşitsizliğinde açıkça belirtildiği üzere sadece lokal gizli değişkenler yardımıyla
mümkün tüm durumları kapsayacak bir çözüm üretemezler ama bu çözüm ürete-
memezlik DUAAS’lerden değil tamamen lokal gizli değişkenlerin yapısından kay-
naklanır. Çünkü lokal gizli değişkenler DUAAS’lerin hem belirsizlik hem de özel
rölativite teorisinin ışık hızı ilkesini ihlal etmemesi amacıyla geliştirilmiş değişkenler
olmakla birlikte DUAAS’lerin zamanla geçirdiği değişimlerin konumdan bağımsız
olarak tüm alt sistemlerinde anlık değişimlere sebep olduğunu kendi üzerinde bir
değişimin mümkün olmaması sebebiyle açıklayamaz. Bu çözümsüzlüğü aşabilmenin
tek yolu ise DUAAS’lerin anlık etkileşimlerine imkan tanıyan (bir anlamda lokal
olmayışlık özelliği kazandıran) lokal olmayan gizli değişkenlerin varlığını kabul et-
mekten geçer ve bu da doğal olarak ışık hızı ilkesinin ihlali anlamına gelir.
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Bu durumun fiziksel olarak karşılığı ise DUAAS’lerin birbiriyle anlık etkileşim içinde
olduğu ve etkileşimin lokal olmayan gizli değişken üzerinden gösterildiği dalga fonk-
siyonu (3.34) ifadesinde açıkça verilmiştir. Lokal olmayışlığın kuantum teorisindeki
yerini ve lokal olmayan gizli değişkenlerin oynadığı bu rolü ise Sheldon Goldstein
1995 yılındaki makalesinde [43] şu şekilde özetlemektedir:

”...Bell’in analizleri çok daha fazlasını göstermektedir. Öyle ki, kuantum fenomenleri
için hiçbir gizli değişkenin lokal olmaması gerektiğini açıklamakla birlikte, fakat bu
lokal olmayışlık standard kuantum teorisinin gözlemsel sonuçlarında kendini çok az
göstermektedir, eğer doğa bu öngörülerle tasvir edilebiliyorsa doğanın kendisi lokal
olmamalıdır!”4

Sheldon Goldstein yaptığı açıklamada (eleştiride) lokal olmayışlığın sadece kuantum
teorisinin bir özelliği olmadığını dile getirerek doğanın da bu özelliğe sahip olması
gerektiğinin altını çiziyor, bunun kanıtının da Alan Aspect ve arkadaşlarını ilgili
makalesinde [44] gösterdiği sonuçlar olduğunu dile getiriyor.

4”...Bell’s analysis shows much more. It shows not only that any hidden variables account of
quantum phenomena must be nonlocal, but that nonlocality is implied merely by the observational
consequences of standard quantum theory itself, so that if nature is governed by these predictions,
then nature is nonlocal!”[43]
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4 RÖLATİVİSTİK BOHM MEKANİĞİ

4.1 Rölativistik Bohm Mekaniği’nin Tasviri

Giriş ve ikinci bölümde gösterildiği üzere kuantum teorisinin genel yorum ve Bohm
mekaniği tamamen rölativistik olmayan durumları açıklamak adına geliştirilmişlerdir.
Bu yüzden rölativistik durumlara dair tatmin edici sonuçlara varmaları da çok zor-
dur. Bu durumun en önemli örneklerinden birisi EPR deneyi ve onun daha güncel
bir versiyonu olan Hardy deneyi olup açıklamaya çalıştıkları fenomenin özellikleri
bakımından her iki yorumun da alanını aşabilecek bir yapıya sahiptirler. Bu bölümde
iki deney arasından Hardy deneyi üzerinde durulacak ve öngörülen rölativistik Bohm
mekaniği aracılığıyla deney yeniden ele alınacaktır.

Bohm mekaniğinin rölativistik versiyonunu geliştirebilmek için öncelikle mümkün en
yalın duruma yani tek parçacıktan oluşan bir sisteme bakmak yararlı olacaktır. Tek
parçacıktan oluşan bu sistemin 4 boyutulu uzay-zamanda, Xµ(s), tasviri ise dalga
fonksiyonu ψ(xµ) ve parçacığın gidişatı:

dXµ

ds
= jµ(Xµ) (4.1)

üzerinden elde edilebilir. Eşitlikteki jµ = ψγµψ ifadesi Dirac akısı (Dirac cur-
rent) olup daha önce rölativistik olmayan durumlar için çıkarılmış olasılık akısının
4-boyutlu uzay-zamanın baz alınmasından ötürü 4’lü vektör ile yazılmış halidir.
4’lü vektörlerin genel özelliklerine sahip olan Dirac akısı jµj

µ > 0 değerleri için za-
mansal bölgeyi ifade eder ve c ışık hızının üst sınır olması sebebiyle sistemin tek
yönlü (−∞ → +∞) zaman akışına sahip oluğunu gösterir (zira ışık hızında ve
altındaki bölgeler için zamanda geriye gitme gibi bir durum söz konusu olamaz). Bu
dalga fonksiyonlarının hareket denklemleri üzerinden parçacığın zamansal bölgede
izlediği yollar elde edilmek istenirse (4.1) eşitliğinin t = −∞’dan t = +∞’a integre
edilmesi yeterli olacaktır. 4-boyutlu uzay-zamanda yer alan diğer bölgeler ise Şekil
4.1’de zaman boyutunda geçmiş ve gelecek, uzay boyutunda ise kolaylık olması adına
sadece bir ekseni hesaba katacak şekilde gösterilmiştir.
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Şekil 4.1: 4-Boyutlu Uzay-Zamanda Işık Konisi

Şekil 4.1’e ek olarak bu bölgelerin Dirac akısı üzerinden sahip oldukları değerleri
veya sınırlarını ise;

jµj
µ > 0 =⇒ ”ışık konisinin içerisinde” (4.2)

jµj
µ < 0 =⇒ ”ışık konisinin dışarısında” (4.3)

jµj
µ = 0 =⇒ ”ışık konisini yüzeyinde” (4.4)

şeklinde ifade edilebilir. Buna ek olarak Dirac akısının diverjasının sıfır olması,
∂µj

µ = 0, (bu eşitliğin çıkarılışı EKLER 6.4 bölümünde yapılmıştır) olması sebe-
biyle herhangi bir Lorentz referans çerçevesinde varılan sonucun tüm Lorentz refe-
rans çerçeveleriyle aynı olmasını sağlayacaktır. Bu durumu daha açık göstermek için
farzedelim ki, parçacık keyfi bir Lorentz referans çerçevesinde Dirac akısının sadece
zamana bağlı olduğu yani γ0 zamana bağlı spin matrisine tabi olduğu (EKLER 6.3
bölümünde bu matrisin açık halini bulabilirsiniz);

j0 = ψ†(γ0)2ψ = ψ†ψ (4.5)

bir duruma sahip olsun. Daha önce de gösterildiği gibi ρ = ψ†ψ olduğundan olasılık
yoğunluğunun, ρ, Dirac akısına, j0, eşit olduğu anlamına gelir ve bu da kuantum
denkliğinin rölativistik durumlardaki karşılığıdır. Dirac akısının diverjansının 0 ol-
ması sebebiyle de bu durum tüm Lorentz çerçeveleri için tüm zamanlarda geçerli
olacaktır. Bu eşitlik sayesinde rölativistik olmayan kuantum teorisindeki olasılık
yoğunluğu ifadesinin rölativistik durumlardaki karşılığı elde edilmiş olur. Bir başka
deyişle rölativistik durumlar için kuantum denkliğini gösteren ρ = j0 = ψ†ψ eşitliği
rölativistik olmayan olasılık yoğunluğu ρ = |ψ|2’un rölativistik durumları da kapsa-
yacak şekilde genelleştirilmiş halidir [45].

Tek parçacıktan oluşan bir sistemin referans çerçeveye göre Lorentz dönüşümleri
altında değişmez kaldığını bu şekilde gösterilebilirken aynı süreci birden fazla parçacık-
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tan oluşan sistemler için geliştirmek çok daha zordur. Zira özellikle sistemi oluşturan
parçacıkların uzaysal olarak ayrık konumlandığı EPR ve Hardy deneyi gibi rölativis-
tik durumları içeren uygulamalarda bu durum kendini daha da bariz gösterir.

Bununla birlikte rölativistik durumlara ait bir diğer önemli unsur ise Lorentz değiş-
mezliği ve lokalliğin sahip oldukları özellikler itibariyle birbirlerini kısıtlayıcı ol-
madıklarıdır. Öyle ki, Lorentz değişmezliği göz önüne aldığı sistemin baz özellikleri
ile (öz-zaman ve öz uzunluk gibi) referans çerçevesi arasındaki ilişkiye dayanırken
(EKLER 6.3.1 açıkça gösterildiği gibi), lokallik birden fazla parçacığa sahip bir sis-
temde, parçacıklar sistemin alt sistemi olmak üzere, alt sistemlerin karşılıklı et-
kileşiminin yapısının nasıl olması gerektiği üzerinde çeşitli koşullara dayanmaktadır.
Yani Lorentz değişmezliği referans çerçevesi ile göz önüne alınan sistemler arasındaki
ilişkiyi ele alırken, lokallik sadece alt sistemler arasındaki ilişkiyle ilgilenir. Bu se-
beple birbirleri üzerinde etkiye sahip olamayacaklarından, lokal olmanın (ya da ol-
mayışlığın) ve Lorentz değişmezliğinin korunduğu bir teori geliştirilebilir. İki kavram
arasındaki ilişki; referans çerçevesi; x− t, gözlenen sistemin(S) alt sistemleri; S1, S2

olmak üzere Şekil 4.2 ile gösterilmektedir.

Şekil 4.2: Lorentz Değişmezliği ve Lokallik

Bohm mekaniği açısından bu sonuca bakacak olursak, referans çerçevesini hareketsiz
kabul edip gözlenen sistemin birbirine dolanık alt sistemlerinin hızlarını referans
çerçevesine göre sırasıyla s1

′ → ẋ1 ve s2
′ → ẋ2 olarak kabul edersek Bell’in kitabının

15. bölümünde ele aldığı gibi [41] 1. parçacık için ölçülen değer h1 = +h, 2. parçacık
içinse h2 = −h, |amn|2, olasılık değerleri ve g ölçüm aletinden kaynaklanan zamana-
bağlı çiftlenim değeri (time-dependent coupling) olmak üzere (m,n = 1, 2);

ẋ1 = g1

∑
m,n(−1)m|amn|2|φ(x1 − (−1)mh1)2|φ(x2 − (−1)nh2|2∑

m,n |amn|2|φ(x1 − (−1)mh1)2|φ(x2 − (−1)nh2|2
(4.6)

ẋ2 = g2

∑
m,n(−1)n|amn|2|φ(x1 − (−1)mh1)2|φ(x2 − (−1)nh2|2∑

m,n |amn|2|φ(x1 − (−1)mh1)2|φ(x2 − (−1)nh2|2
(4.7)
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şeklinde elde edilerbilirler. (4.6) ve (4.7) ifadelerinin yardımıyla alt sistemlerin refe-
rans çerçevesine göre hızlarının, birbirine bağlı olduğunu açıka görülebilir. Bu ifadeler
daha önce Bohm mekaniği bölümünde çıkarımı yapılmış olan hareket denkleminin
(rehber denkleminin) sadece ele alınan duruma göre her bir parçacık için yazılmış
versiyonlarıdır. Bununla birlikte bölümün başında verilen ilgili makaleden [45] bir
alıntı yapacak olursak Dirac parçacıklarını ele alan rehber denkleminin içeriği şu
şekilde açıklanmaktadır:

”Birçok Dirac parçacığından meydana gelen sistem için Bohm, belirli bir referans
çerçevesi esas alınarak formüle edilmiş ve aslında Lorentz değişmezi olmayan rehber
denkleminin:

vk =
ψ†αkψ

ψ†ψ
(4.8)

şeklinde yazılabileceğini ile sürmüştür. Rölativistik olmayan teoriye benzer olarak,
çok-parçacıklı Dirac denkleminin bir sonucu olan kuantum akısı denkleminin garanti
ettiği gibi ψ†ψ ifadesi seçilmiş referans çerçevesindeki dinamik sistemin eşdeğişkenli
bir topluluğu tasvir ettiğinden, bu teori kuantum öngörülerini, olasılık yoğunluğu
ψ†ψ ifadesinden türeterek, yeniden üretmektedir. Bu öngörüler ise tercih edilen refe-
rans çerçevesinin izini içermez: Lorentz değişmezliği gözlemsel düzeyde korunmakla
birlikte, temel düzeyde bu söz konusu değildir.”1

Alıntıda açık bir şekilde ifade edildiği gibi Bohm’un ileri sürdüğü rehber denkleminin
seçilmiş referans çerçevesini (chosen reference frame) baz almasından ötürü Bohm
mekaniğine çeşitli eleştiriler getirilmiştir. Bunların en önemlilerinden biri ise Lucien
Hardy’nin [46] Bohm mekaniğinin tercih edilen bir referans çerçevesini kapsaması zo-
runda olduğu varsayımından hareketle Lorent değişmezliğini bozduğu eleştirisidir.
Deterministik (literatürde genellikle gerçekçi (realistic) olarak geçmektedir) kuan-
tum teorisi yorumlarından biri olan Bohm mekaniğine getirdiği bu eleştiri üzerinden
Hardy’nin varmış olduğu sonuç ise bütün gerçekçi kuantum teorilerin tercih edilen
bir referans çerçevesi kapsaması gerektiğinden Lorentz değişmezliğini ihlal etmeyen
gerçekçi bir kuantum teorisi geliştirilemeyeceğidir. Ancak Bell tarafından GRW yo-
rumu kapsamında ele alınmış bir çıkarım olan çoklu-zaman dönüşümlerinde de göste-
rildiği gibi tercih edilen bir referans çerçevesi olmadan böyle bir teori geliştirmek
mümkündür.

1”For a system of many Dirac particles, Bohm has proposed the following guiding condition:

vk =
ψ†αkψ

ψ†ψ

which is formulated with respect to a certain reference frame, and is in fact not Lorentz invari-
ant. Analogously to the nonrelativistic theory, the quantum flux equation which is a consequence of
the many-particle Dirac equation guarantees that ψ†ψ is an equivariant ensemble density for this
dynamical system in the chosen reference frame, and therefore this theory reproduces the quantum
predictions insofar as they derive from the probability density ψ†ψ. These predictions don’t con-
tain a trace of the preferred frame: Lorentz invariance holds on the observational, but not on the
fundamental level.”[45]
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4.2 Çoklu-zaman Dönüşümleri

Bu çıkarımı kanıtlamak amacıyla, bir önceki bölümde ele aldığımız makalenin [45] de
yardımıyla, farzedelim elimizde EPR deneyinde olduğu gibi birbiriyle belli bir süre
etkileşimde bulunmuş iki adet dolanık parçacık olsun ve bu parçacıklar birbirlerine
göre zıt yönlerde rölativistik olmayan hızlarla hareket etsinler. Gene EPR deneyinde
ele alındığı gibi birbirlerinden uzaysal olarak ayrık oldukları konumda ,xα ve xβ,
parçacıkların herbiri üzerinde eş-zamanlı ölçümler yapılsın, tα = tβ.

Seçilmiş bir referans çerçevesi, x−t, için ölçümler yapıldığı anda parçacıkların konum
ve zaman koordinatlarını yazacak olursak;

xα = 0 , tα = 0 (4.9)

xβ � 1 , tβ = 0 (4.10)

ifadelerini elde etmiş oluruz. Seçilmiş referans çerçevesine göre hızı v ≈ 0 olan başka
bir referans çerçevesi,x′ − t′, için γ = 1 ve vxβ = ϑ(birimsel değer) olmak üzere
parçacıkların konum ve zaman koordinatları ise;

xα
′ = 0 , tα

′ = 0 (4.11)

xβ
′ ≈ xβ � 1 , tβ

′ = tβ − vxβ = −ϑ (4.12)

şeklinde gösterilebilir. (4.9) ve (4.11) ifadelerinde verilen konum ve zaman eşitlikleri
ile açıkça anlaşılabileceği gibi parçacıkların herbiri üzerinde yapılan ölçümlerin x− t
referans çerçevesinde ele alındığında eş-zamanlı olduğu görülürken x′ − t′ referans
çerçevesi için aynı durumun geçerli olmadığı gözlenmektedir.

Bu duruma daha yakından bakacak olursak göze çarpan ilk noktanın, parçacıklar
üzerinde yapılan ölçümlerin farklı referans çerçevelerine göre ifadelerinin yalnız za-
man boyutunda bir değişiklik göstermesi nedeniyle sadece basit bir zaman dönüşümü
olarak kabul edilebilir olduğudur. Bununla birlikte bu zaman dönüşümünün birimsel
boyutta, ϑ, olması nedeniyle rölativistik olmayan kuantum durumlarına çok benzer
doğaya sahip olduğundan Lorentz değişmezi olarak ele alınabilir. Bu benzerlikten
hareketle sistem daha basit bir versiyona indirgenebilir. Bu durumun, kompakt ol-
ması nedeniyle, konfigurasyon uzayı üzerinden gösterimi daha kolay olacağından a
ve b alt sistemleri için çoklu-zaman dönüşümü Lτ → τ = (τa, τb) olmak üzere;

z = (za, zb) = (ta, qa, tb, qb) −→ z′ = (ta − τa, qa, tb − τb, qb) = Lτz (4.13)

şeklinde gösterilebilir. (4.13) ifadesiyle, rölativistik olmayan sistemlerin zaman dö-
nüşümü ve çoklu-zaman dönüşümü arasındaki benzerliğin özellikle konfigurasyon
uzayı ele alındığında daha da açık olarak görülebilmektedir.

Bu benzerliğin yardımıyla rölativistik olmayan sistemlerin zaman dönüşümünün
çoklu-zaman dönüşümü cinsinden yazmanın rölativistik sistemlere kıyasla daha ko-
lay olacağından hareketle farzedelim ki elimizde birbiriyle etkileşim içerisinde olma-
yan a ve b alt sistemlerinden oluşan bir kuantum sistemi olsun ve sistemin dalga
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fonksiyonu alt sistemlerin kendi zaman ifadeleri üzerinden ψ(ta, tb) şeklinde gösteril-
sin. Zaman evrim operatörü ψt = e−iHtψ0 = Utψ0 olmak üzere dalga fonksiyonunun
parçacıkların zaman ifadelerine göre evrimi;

ψ(ta, tb) = e−iHatae−iHbtbψ0 = Ua
taU

b
tb
ψ0 = Utψ0 (4.14)

şeklinde gösterilebilir. Burada:

i
∂ψ

∂ta
= Haψ , i

∂ψ

∂tb
= Hbψ (4.15)

eşitlikleri sırasıyla a ve b parçacıklarının zaman evrim operatörleri olup, parçacıklar
arası ölçüm öncesi bir etkileşim olmadığından

[
Ha, Hb

]
= 0 yani HI = 0 olması se-

bebiyle (4.14) ifadesinde gösterildiği gibi her bir parçacık için ayrı olarak yazılabilir.
Sistemin konfigurasyon uzayı baz alınarak elde edilecek çoklu-zaman dönüşümleri
ise;

ψ(z) = ψ ◦ L−1
τ (Lτz) = ψ′(z′) (4.16)

şeklinde gösterilebilirken, Uτ = Ua
τaU

b
τb olmak üzere;

ψ′ = e−iHaτae−iHbτbψ = Ua
τaU

b
τbψ = Uτψ (4.17)

sistemin çoklu-zaman dönüşümü (4.17) ifadesi ile elde edilebilmektedir. (4.14) ve
(4.17) ifadeler-
indeki benzerlikten de görülebileceği gibi alt sistemler arasındaki konum farkından
bağımsız olarak kuantum sistemi üzerinde yapılan ölçümler, zaman evrim operatörü
ve çoklu-zaman dönüşümleri için açıkça gösterildiği gibi, tüm referans çerçevelerine
göre bir Lorentz değişmezi olarak ortaya çıkmaktadır. Bu durum sadece çoklu-zaman
ya da zaman evrim operatörüne özel olmayıp kuantum ölçüm formalizmini (quan-
tum measurement formalism) esas alan bütün operatörler için geçerli bir durumdur
(bahsi geçen geçerlilik durumunun ispatı için makalenin ilerleyen bölümlerine bak-
mak yeterli olacaktır).

Özetlenecek olunursa, kuantum teorisinin temel yapı ve ilkelerinin üzerine kurulmuş
kuantum ölçüm formalizmi teorinin bütünlüğünü koruması gerektiğinden belirli (seç-
ilmiş) referans çerçevesine bağlı kalmadan bir başka deyişle herhangi bir gözlemci için
özel bir sonuç vermeksizin değişmez kalmak zorundadırlar. Goldstein ve arkadaşları
ise ilgili makalesinin 13. sayfasında bu durumu şu şekilde açıklamaktadırlar;
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”Özellikle belirtmek gerekir ki, kuantum ölçüm formalismin öngörüleri referans çer-
çevesinden bağımsızdır. Bu sebeple, birbirinden büyük ölçüde ayrık alt-sistemlerden
oluşmuş bir sistem için kuantum ölçüm formalismi çoklu-zaman dönüşümleri altında
değişmezdir.”2

Bununla birlikte varılan bu sonuç üzerinden lokal olmayışlığa dair şu çıkarımı yap-
maktadırlar;

”Bu yapı bakımından EPR deneyi – açık etkileşim içinde olmayan fakat ortak bir
dalga fonksiyonuna ψ(ta, tb) sahip alt-sistemlerin ele alındığı – için açıkça görüle-
bilir ki, bu iki-zamanlı ortodoks model için, EPR-Bell lokal olmayışlığı seçilmiş bir
referans çerçevesinin varlığına ihtiyaç duymaz.”3

1. alıntıda varılan sonuca tamamen katılmakla beraber, zira bu sonuç kuantum teori-
sine dair getirilen bütün yorumlar için kabul edilmesi gereken mantıksal ve makalede
gösterildiği kadarıyla da matematiksel bir çıkarımdır, 2. alıntının doğru ancak yeter-
siz olduğunu kanısındayım ve bunun açıklamasını da tezin son bölümünde yaptığım
eleştiri üzerinden açıklamam sebebiyle şimdilik bu durumu es geçmenin daha doğru
olduğunu düşünmekteyim.

Bununla birlikte çoklu-zaman dönüşümü ve onun bir Lorentz değişmezi olduğunun
ispatı esasında sadece genel yorum için bir gereklilik olmakla birlikte Schrödinger
denkleminin genel yapısı, GRW ve Bohm mekaniği için benzer bir ispat yapmak ge-
reksizdir. Çünkü bu yorumlar özünde mutlak zaman (absolute time) ve mutlak uzayı
(absolute space) kabul etmeleriden ötürü çoklu-zaman dönüşümü gibi dönüşümler
herhangi bir sorun teşkil etmemektedirler.

Buradan hareketle genel yorum için çoklu-zaman dönüşümlerinin bir Lorentz değiş-
mezi olması durumu, mutlak zamanı esas almaları nedeniyle, seçilmiş ve tercih edi-
len referans çerçevesi gibi dinamiklere ihtiyaç duymayan Bohm mekaniği için de
geçerlidir. Bu çıkarıma varmak Bohm mekaniğinin deterministik bir yapıya sahip
olması ve sistemler arasındaki etkileşimin açık (rehber dalga denklemi bunun en
önemli örneklerindendir) olarak gösterilmesi sebebiyle referans çerçevesinin tercihi
gibi bir bakış açısına gerek bırakmamaktadır. Bu nedenle Bohm mekaniği çoklu-
zaman dönüşümleri altında değişmezliğinin koruyabilmektedir. Süreci aynı genel
yorumda olduğu gibi daha açık bir şekilde görebilmek için gene Goldstein ve ar-
kadaşlarının makalesine bakılabilir [45].

Hem yukarıda bahsedilen değişmezliğin bir testi hem de Hardy deneyine geçmeden
hazırlık olması adına ufak bir örnek paylaşmak yararlı olacaktır. Genel yorum için
verilen örneğe benzer birbiriyle dolanık ve bu sebeple senkronize olan iki sistem ele
alalım, bu sistemler için zaman değerleri;

Ta(0) = s0 , Tb(0) = s0 + h ve Ta(s) = s0 + s , Tb(s) = s0 + h + s (h zaman sabiti)
olmak üzere, sistemin dalga fonksiyonu;

2”In particular, the predictions of the quantum measurement formalism are independent of the
frame of reference. Thus the quantum mechanical measurement formalism for a system which
consists of independent widely separated subsystems is multitime translation invariant.”[45]

3”Within this framework an EPR experiment can be described—the subsystems, while not expli-
citly interacting, are coupled by their common wave function ψ(ta, tb)—and one can explicitly see,
for this two-time yet orthodox model, that the EPR-Bell nonlocality does not demand the existence
of a preferred frame of reference.”[45]
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ψh(s, qa, qb) = ψ(Ta(s), qa, Tb(s), qb) = ψ(s0 + s, qa, s0 + h+ s, qb) (4.18)

şeklinde yazılabilir. Bu dalga fonksiyonu üzerinden sistemi oluşturan her bir alt
sisteme denk düşen rehber denklemi ise, ηa ve ηb konfigrasyon uzayı parametreleri
olmak üzere;

dηa
ds

= vψ
h

a (s, ηa(s), ηb(s)) (4.19)

dηb
ds

= vψ
h

b (s, ηa(s), ηb(s)) (4.20)

eşitlikleri ile gösterilebilir ve süreklilik denklemi de;

∂ρh

∂s
+∇qa(ρ

hvψ
h

a ) +∇qb(ρ
hvψ

h

b ) = 0 (4.21)

olarak yazılabilir. (4.21) ifadesinde açıkça görüleceği gibi süreklilik denklemi olasılık
yoğunluğunun zamana göre türevi olup bu durum için senkronizasyon değişkeni
olan s üzerinden ele alınmaktadır, olasılık akısı içinse senkronizsyona bağlılık kapalı
olarak kendini göstermektedir. Ayrıca unutulmaması gereken bir başka durumsa
verilen tüm örneklerde kuantum denkliğinin geçerli olduğu durumların göz önünde
bulundurulduğudur. Yani sadece ρ = |ψ|2 olan hiperyüzeyler hesaba katılmaktadır.
Bunun sebebi ise sadece kuantum teorisinin sınırları içinde kalan sistemlerin ele
alınıyor olmasıdır.

4.3 Hardy Deneyi

Hardy deneyi [46] EPR deneyinin daha modern bir versiyonu olup onu bir adım
daha ileri götürerek uzaysal olarak ayrık parçacıkların aralarındaki ilişkiye dair daha
derin bir açıklama getirir. Deneyi kısaca açıklayacak olursak, EPR deneyinde de
açıklandığı gibi π0 −→ e− + e+ parçacık saçılması ardından e− ve e+ parçacıkları
sahip oldukları spin değerlerine bağlı olarak (Şekil 4.3’te gösterildiği gibi);

öncelikle BS1
sol ve BS1

sag mıknatıslarından geçerek e+ için v+, w+; e− içinse v−,
w− yollarından birini takip edip sırasıyla BS2

sol ve BS2
sag mıknatıslarına ulaşırlar.

Bundan sonra ise v+ ve v− yolunu takip ettiklerinde ikincil mıknatısların etkisiyle
gene bir yol ayrımına uğrayarak, c yapıcı girişim (constructive interference) ve d
yıkıcı girişim (deconstructive interference) olmak üzere, e+ için c+, d+; e− içinse c−,
d− yollarından birini seçecek ya da w+ ve w− yolunu izledilerse yeniden birleşerek
(birbirlerinin parçacık ve antiparçacıkları olduklarından) foton ışıması yapacaktırlar.
Bu süreç matematiksel olarak ifade edilecek olunursa;
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Şekil 4.3: Hardy Deneyi[47]

|e+〉 → |v
+〉+ i |w+〉√

2
=⇒ |c±〉 =

|v±〉+ i |w±〉√
2

(4.22)

|e−〉 → |v
−〉 − i |w−〉√

2
=⇒ |d±〉 =

|v±〉 − i |w±〉√
2

(4.23)

olmak üzere;

|e+e−〉 =
1

4

[
3 |c+c−〉+ |c+d−〉+ |c−d+〉 − |d+d−〉 − 2 |γγ〉

]
(4.24)

(4.24) şeklinde gösterilebilir. Burada 2 |γγ〉 ifadesi muhtemel durumlardan birisi olan
parçacıkların birleşerek ışıma yaptıkları senaryodur ve deneyde sadece alt durum-
larından birisi olan parçacıkların uzaysal olarak ayrık olduğu durumların önemli
olması nedeniyle ifadeyi;

|e+e−〉 =
1√
12

[
|+〉e

+

x |+〉
e−

x − |+〉
e+

x |−〉
e−

x − |−〉
e+

x |+〉
e−

x − 3 |−〉e
+

x |−〉
e−

x

]
(4.25)

şeklinde düzenleyerek (4.25) ifadesiyle yazmak yeterli olacaktır. Bu nedenle (4.25)
ifadesi (4.24) ifadesinin özelleşmiş bir versiyonudur da denilebilir. (4.25) ifadesinde

gösterildiği gibi parçacıklar 1/12 olasılığıyla |+〉e
+

x ; |+〉e
−

x durumuna, 9/12 olasılıkla

|−〉e
+

x ; |−〉e
−

x , 1/12 olasılıkla |+〉e
+

x ; |−〉e
−

x ve |−〉e
+

x ; |+〉e
−

x durumlarına geçiş yapa-

bilirler. x-doğrultusunda ölçüm yapan BS1 mıknatıslarını geçen parçacıklar |+〉e
+

x ;

|−〉e
−

x ve |−〉e
+

x ;|+〉e
−

x durumlarına geçtikten sonra dolanıklık özelliği sayesinde BS2

mıknatıslarından geçmelerinin ardından aşağıdaki alt durumlara geçerler;
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1. durum |+〉e
+

x ; |−〉e
−

x :

1a: |+〉e
+

x |+〉
e+

z ⇐⇒ |−〉e
−

x |−〉
e−

z (4.26)

1b: |+〉e
+

x |−〉
e+

z ⇐⇒ |−〉e
−

x |+〉
e−

z (4.27)

2. durum |−〉e
+

x ; |+〉e
−

x :

2a: |−〉e
+

x |+〉
e+

z ⇐⇒ |+〉e
−

x |−〉
e−

z (4.28)

2b: |−〉e
+

x |−〉
e+

z ⇐⇒ |+〉e
−

x |+〉
e−

z (4.29)

Diğer durumlar içinse;

3. durum |+〉e
+

x ; |+〉e
−

x :

3a: |+〉e
+

x |+〉
e+

z ⇐⇒ |+〉e
−

x |−〉
e−

z (4.30)

3b: |+〉e
+

x |−〉
e+

z ⇐⇒ |+〉e
−

x |+〉
e−

z (4.31)

4. durum |−〉e
+

x ; |−〉e
−

x :

4a: |−〉e
+

x |+〉
e+

z ⇐⇒ |−〉e
−

x |−〉
e−

z (4.32)

4b: |−〉e
+

x |−〉
e+

z ⇐⇒ |−〉e
−

x |+〉
e−

z (4.33)

Burada belirtilen muhtemel durumların çoklu-zaman dönüşümleri altında değişmez
kalan Bohm mekaniği açısından gerçekleşmesi, daha doğrusu parçacıkların izledik-
leri yolların doğası, nasıl açıklanabilir? Bu sorunun cevabını verebilmek için çoklu-
zaman dönüşümlerinin açıklandığı bölümde Bohm mekaniğinin bu dönüşümler üze-
rinden yeniden ele alındığı ifadelere bakmak yararlı olacaktır. Zira sistemin top-
lam dalga fonksiyonunun senkronizasyon özelliğine göre yazıldığı ifadeden açıkça
anlaşılabileceği gibi sistemin doğası tamamen onu oluşturan alt sistemler (ki Hardy
deneyi için bunlar e− ve e+ parçacıklarıdır) üzerinde yapılan ölçümlerin birbirlerine
göre zamanlamalarına bağlıdır.

Bir örnek üzeriden açıklayacak olursak, farzedelim deneyde ele aldığımız e− ve e+

parçacıkları x-doğrultusundaki BS1 mıknatıslarına uğradıktan sonra sırasıyla |+〉e
+

x

ve |+〉e
−

x spin değerlerini alarak yukarıda gösterilen durumlar arasından 3. duruma
geçiş yapsınlar. 3. duruma geçiş yaptıktan sonra ise parçacıklar z-doğrultusunda BS2

mıknatıslarından da geçerek gene yukarıda gösterildiği gibi 3a ve 3b alt durumlarına
indirgeneceklerdir. 2. mıknatıslardan geçişin ardından alt durumlardan hangisine
indirgeneceğinin seçimi ise bu dolanık parçacıklar arasındaki senkronizasyonla ilişkili

olduğundan onların geçiş sıralarına bağlı olacaktır. Bu sıralama üzerinden |+〉e
+

x ve

|+〉e
−

x için mümkün alt durumlar ise;
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Te+ = 0 ve Te− = t durumu için:

3a: |+〉e
+

x |+〉
e+

z ⇐⇒ |+〉e
−

x |−〉
e−

z (4.34)

Te+ = t ve Te− = 0 durumu için:

3b: |+〉e
+

x |−〉
e+

z ⇐⇒ |−〉e
−

x |+〉
e−

z (4.35)

şeklinde gerçekleşecektir. Böylece çoklu-zaman dönüşümleri altında değişmez kalan
Bohm mekaniği üzerinden uzaysal olarak ayrık dolanık parçacıkların izleyebilecekleri
gidişatların rehber denklem ve başlangıç koşulları yardımıyla açıklanabileceği sonu-
cuna varılmış olur. Burada özellikle başlangıç koşullarının parçacıklar arasındaki
senkronizasyon üzerindeki etkisi ile beraber, aralarındaki anlık etkileşim yardımıyla
konuma bağlı olmaksızın, izlenen gidişatın seçiminde temel rolü oynadığının altı
tekrar çizilmelidir.

Buna ek olarak deneyde ele alınan bu parçacıkların üç farklı referans çerçevesine göre
izleyecekleri gidişatların gösterildiği ilgili makaledeki figüre bakmak süreci daha iyi
anlamak adına yardımcı olacaktır.

Şekil 4.4: Hardy Deneyinde Ele Alınan Farklı Referans Çerçevelerine Göre Dalga
Fonksiyonunun Evriminin Uzay-Zaman Diyagramı [45]

Şekil 4.4’te koyu olarak gösterilen bölgeler; Ax → BS1
sol, Az → BS2

sol, Bx → BS1
sag,

Bz → BS2
sag olmak üzere Şekil 4.3 ile daha önce verilmiş olan Stern-Gerlach mıkna-

tıslarıdır. tI = t1
I , t2

I ; tII ; tIII parametreleri ise sırasıyla I; II; III referans çerçevele-
rini esas alan zaman parametrelerdir.
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Şekilde açıkça gösterildiği üzere farklı referans çerçevelerinden bakıldığı taktirde do-
lanık parçacıkların, karşılıklı olarak, izledikleri gidişatların farklı olduğu gözlenmek-
tedir. Öyle ki, referans çerçevelerine bağlı olarak parçacıkların mıknatıslara geçiş
sıralarında gerçekleşen değişiklik nedeniyle parçacıkların izledikleri gidişatlar da,
karşılıklı olarak, kaçınılmaz olarak değişmektedir. Bu durum ise özetle kuantum
denkliğinin, ρ = |ψ|2, bütün referans çerçevelerinde korunamayacağını resmeder-
ken ancak aynı referans çerçevesine ait olan hiperyüzeyler için bu korunabilirliğin
mümkün olduğu anlamına gelmektedir.

4.4 Kuantum Denkliği, Lokal Olmayışlık ve Işık Hızından
Hızlı Sinyalleşme

Bölüm başında kısaca açıklanan kuantum denkliği aslında genel yorumun temel
çıkarımlarından birisi olan Born kuralının (Born rule) Bohm mekaniğindeki karşılığı-
dır. Ancak kuantum denkliği her ne kadar Born kuralının karşılığı olsa da genel yo-
ruma kıyasla Bohm mekaniğinde çok daha derin bir yere sahiptir, zira genel yorum
tamamen vektör uzayını esas alması nedeniyle kuantum denkliğinin dalga fonksi-
yonunun şekline bağlı (morfolojik) bir çıkarım olmasından tam anlamıyla yararla-
namamaktadır. Buna karşın Bohm mekaniği ise konfigurasyon uzayını esas alması
sebebiyle kuantum denkliğinin sağladığı ilişkiyi çok daha elverişli olarak kullana-
bilmektedir (vektör uzayı ve konfigurasyon uzayının genel özellikleri için Dürr ve
Teufel’in [32] kitabına bakılabilir).

Bu durumun en bariz örneklerinden birisi ise EPR ve Hardy deneylerinde ele alınan
uzaysal olarak ayrık parçacıklar arasındaki lokal olmayan etkileşimlerdir. Parçacık-
lar arasındaki bu etkileşimler, bölüm boyunca da ele alındığı gibi, deney şartları
itibariyle ışık hızından dahi daha hızlı bir etkileşime sahip olmak zorundadırlar. Peki
bu durum nasıl mümkün olabilir? Özel rölativite teorisinin açıkça imkansız olduğunu
açıkladığı ışık hızından daha hızlı bir ”haberleşmenin” (sinyalleşmenin) birbiriyle
dolanık parçacıklar arasında kuantum teorisine göre mümkün olduğu, hatta tam
anlamıyla mecburiyet olduğu, nasıl açıklanabilir?

Her iki sorunun cevabı aslında ortaya çıkmalarına sebebiyet veren kuantum denkliği
çıkarımında yatmaktadır. Bu sebeple kuantum denkliğinin matematiksel açılımı üze-
rinden durumu açıklamak en sağlıklı yöntem olacaktır. Hatta bir adım daha ileri
giderek tezin de genel yapısını oluşturan dolanık parçacıklar üzerinden açılımı elde
edelim. Bu doğrultuda birbiriyle dolanık iki parçacıktan oluşan sistemin dalga fonk-
siyonu |a|2 + |b|2 + |c|2 + |d|2 = 1 olmak üzere:

Ψ = a |↑〉1 |↓〉2 + b |↓〉1 |↑〉2 + c |↓〉1 |↓〉2 + d |↑〉1 |↑〉2 (4.36)

şeklinde ifade edilebilir. EPR ve Hardy deneylerinde ele alındığı gibi 1. parçacığın
ölçümü soldaki ölçüm aleti olan BSsol ile yapılırken 2. parçacığın ölümü ise sağdaki
ölçüm aleti olan BSsag ile yapılmaktadır. Dalga fonksiyonundan açıkça görülebi-
leceği gibi ikinci parçacığın BSsag ile yapılan ölçümü sonucu yukarı spinli olduğu
|↑〉2 durumların elde edilme olasılığı basitçe |b|2 + |d|2 olarak ifade edilebilir (burada
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ölçüm aletlerinin sadece belirli doğrultularda ↑ ve ↓ durumlarını ölçtüğüne dikkat
edilmedilir). Ölçüm aletlerinin ölçüm doğrultularında herhangi bir değişiklik yapıl-
madığı takdirde az önce vardığımız |a|2, |b|2|, |c|2, |d|2 değerlerinin çeşitli ikili kom-
binasyonlarını elde etmiş oluruz. Ölçüm aletlerinin birinin doğrultusunda yapılan
değişiklik sonucunda gene benzer bir sonuçla mı karşılacağız bir de ona bakalım.
Farzedelim birinci parçacık üzerinde ölçüm yapan BSsol’un z-doğrultusu üzerinde
θ kadar bir açı değişikliği olsun. 1. parçacığın bu açı değişikliği sonu yeni ↑ ve ↓
durumları sırasıyla:

|↑〉1 = i1 cos θ + j1 sin θ (4.37)

|↓〉1 = −i1 sin θ + j1 cos θ (4.38)

şeklinde ifade edilebilir. |↑〉 ve |↓〉 yeni durumları üzerinden dalga fonksiyonu yazacak
olursak:

Ψ =i1

[
cos θ

(
a |↓〉2 + d |↑〉2

)
− sin θ

(
c |↓〉2 b |↑〉2

]
+j1

[
cos θ

(
b |↑〉2 + c |↓〉2

)
+ sin θ

(
a |↓〉2 + d |↑〉2

)] (4.39)

(4.39) eşitliğini elde etmiş oluruz. Elde edilen yeni dalga fonksiyonunda i1 parante-
zinde yer alan kısım 1. parçacığın yukarı spinli durumlarını verirken, j1 parantezinde
yer alan kısım ise aşağı spinli durumlarına karşılık gelir. Bu kısımları sırasıyla Ψi1 ve
Ψj1 şeklinde ifade edecek olursak 1. parçacık üzerinde yapılacak bir ölçüm sonucu
yukarı ve aşağı yönlü spin durumlarının elde edilme olasılığı gene sırasıyla |Ψi1|2 ve
|Ψj1|

2 olarak gösterilebilir. 1.parçacık üzerinde BSsol aleti ile yapılacak bir ölçüm
elde edilen yeni dalga fonksiyonunun özfonksiyonlarına çökmesine neden olacaktır.
Ölçüm nedeniyle gerçekleşen dalga fonksiyonunun çöküşünün ardından farzedelim
ki bölüm başındaki gibi 2. parçacığın yukarı spinli değerleri bizim için kıstas olsun.
Yani bölüm başında bahsedildiği gibi 2. parçacığın BSsag ile ölçümü sonucu elde edi-
lebilecek muhtemel sonuçlarından yukarı spinli durumlarına bakacak olursak; olasılık
değerlerini toplam olarak:

|Ψi1|2
|i1 |↑〉2

(
d cos θ − b sin θ

)
|2

|Ψi1|2
+ |Ψj1 |2

|i1 |↑〉2
(
b cos θ + d sin θ

)
|2

|Ψi1 |2
(4.40)

şeklinde yazılabilir ki bu da aslında en başta 2. parçacığın ölçüm sonrası elde edile-
bilecek yukarı spin durumlarının toplam olasılık değeri olan |b|2 + |d|2 ile ifade edilen
değere denktir. Özetleyecek olursak, birbiriyle dolanık ve uzaysal olarak ayrık olan
parçacıklardan oluşan bir sistemde parçacıklardan biri üzerinde yapılan bir değişimin
(ki bu değişim örnekte bahsedildiği gibi parçacığın ölçümünü yapacak olan alet üze-
rinde de yapılabilir) konumdan bağımsız olarak diğer parçacığı etkilediğini görmüş
olduk. Bu etkinin temel sebebi ise dalga fonksiyonunun bütünlüğünü korumak adına
kuantum teorisinin temelinden gelen bir zorunluluk olarak kendini göstermektedir.
Bu durumu bir analoji üzerinden anlatacak olursak, dalga fonksiyonunu bir bardağın
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içindeki su olarak düşünelim; bu suyun bardaktan farklı bir morfolojiye sahip bir
kaba aktarıldığını hayal edelim. Bu işlemin ardından suyun değişen tek özelliğinin,
içinde bulunduğu kabın şeklini almasından ötürü, morfolojisi olduğunu görmüş olu-
ruz. Bu durum ele aldığımız dalga fonksiyonunun geçirdiği değişim için de aynen
geçerlidir zira dalga fonksiyonunun değişen tek özelliği, ölçüm aletindeki etkiden
ötürü, morfolojisinde meydana gelen farklılıktır.

Genel yorum ve Bohm mekaniğine göre ise oluşan bu morfolojik farklılık sonucu
dalga fonksiyonunun yapısını muhafaza etmesinin bir zorunluluk olması nedeniyle,
sistemin bileşenleri arasındaki mesafe ne kadar büyük olursa olsun, anlık bir et-
kileşimi şart koşmaktadır. Bahsi geçen bu etkileşim kuantum teorisine göre nedensel
(causal) bir etkileşim olduğundan kontrol edilemez. Yani bir başka deyişle sistemi
oluşturan bileşenler arasındaki etkileşim sistemin içinden geçtiği sürecin bir sonucu
olduğundan tamamen nedensel olarak ortaya çıkar ve deterministik bir yapı ile kont-
rol edilemezler. Bu sebeple kontol edilebilir yapıdaki klasik determinizme dayalı sin-
yalleşme üzerine kurulmuş bilinçli bir haberleşmeden çok etki-tepki ilkesini esas alan
refklese benzer bir doğaya sahip olan nedensel etkileşimler anlık olmakla birlikte kul-
lanılabilir bir haberleşme aracı olmaktan uzaktırlar. Bu konu üzerinde daha geniş
bir açıklama için Tim Maudlin’in ”Quantum Non-Locality and Relativity” [48] adlı
kitabının dördüncü bölümüne bakılabilir.

Sonuç olarak kuantum teorisi her ne kadar ışık hızından hızlı bir etkileşimi şart
koşsa da şart koştuğu etkileşimin kontol edilemeyen doğası itibariyle özel rölativite
ile herhangi bir anlaşmazlığa düşmemektedir. Bu nedenden ötürü kuantum denkliği
lokal olmayışlığın varlığını kanıtlayan ve onun kuantum sistemlerinin mecburiyeti
olduğunu göstermesi açısından kuantum teorisinde önemli bir çıkarım olarak yerini
almaktadır.
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5 SONUÇLAR

5.1 Kuantum Teorsinin Yorumları ve Ortak Hedefler

Tezin tamamında ele alındığı gibi kuantum teorisinin genel yorumu ve Bohm me-
kaniği arasındaki temel ayrım, ölçüm süreci ve onun her bir yorum adına ne ifade
ettiğine dayanmaktadır. Öyle ki, genel yorumda ölçüm kavramı ölçüleni reelleştirmek
anlamına geldiği için onun öncesi hakkında konuşmanın dahi gereksiz olduğunu sa-
vunurken, Bohm mekaniğine göre ise ölçüm öncesinde de sistemin reel değerlere
(başlangıç koşulları = gizli değişkenler) sahip olduğu ve bunların bizzat ölçümün
sonucuna etkisi olduğu savunulmaktadır. Bu savunmayı yaparken genel yorumun
öngörüsünden ötürü (yani ölçenin ölçüm öncesi hakkında tamamen bilgisiz olduğu
durum) olanaklar dahilindeki tüm olasılıkları içinde barındıracak bir yapı geliştirirken,
ki bu yapı daha önce de ele alındığı gibi indeterministiktir, Bohm mekaniği deter-
ministik bir yapı geliştirmektedir. Her iki yorum da özleri itibariyle kolaylıklar ve
zorluklar sunmakla birlikte deney sonuçlarıyla örtüşen cevaplar vermeleri sebebiyle
kuantum teorisinde önemli yerlere sahiptirler. Buna ek olarak iki yorumun birlikte
ele alındığı bir üst yorumun dahi geliştirilebilme imkanı da bulunmaktadır. Kuantum
teorisinin tüm yorumları göz önünde bulundurularak bir yapboz olarak ele alınırsa,
teoriye dair geliştiriliş herbir yorum da yapbozun farklı parçaları olarak kabul edi-
lebilir. Yapbozda özellikle yanyana gelen yorumlar ortaya çıkardıkları alt resimle
birlikte ele alındıkları zaman daha da çok katkı verebilirler.

Bu alt resimlere en iyi örneklerden birisi ise Bohm mekaniği ve kuantum hidrodi-
namiğinin birlikteliğinden oluşan parçadır. Kuantum hidrodinamiği, özellikle siste-
min bulunduğu ortamı anlamak adına diğer yorumlara kıyasla, dayandığı akışkanlar
mekaniğinin de yardımıyla, daha açık bir ifade sunmaktadır. Zira ortamda oluşabile-
cek yahut oluşmuş farklılıkları, ortam ve ölçülen sistemi bir bütün olarak ele aldığın-
dan, daha detaylıca tanımlayabilmektedir. Bohm mekaniği ise kuantum hidrodi-
namiğiyle aynı fikirden hareket ettiğinden benzer ifadeleri bünyesinde barındırmakla
birlikte kavramsal (düşüncesel) olarak ortam hakkında onun kadar berrak bir yapı
göstermez. Bununla birlikte bir başka yönden ele alınırsa özellikle tezin 2. bölümün-
den itibaren sıkça bahsedildiği üzere Bohm mekaniği de kuantum sistemlerinin lokal
olmayışlık özelliğine sahip olduğunu sunduğu kuantum potansiyeli Q(x, t) ifadesiyle
açıkça ifade etmektedir. İki yorumun bu özelllikleri birbirleri üzerinde bir kısıtlama
getirmediğinden her ikisini de içinde barındıracak bir üst yorum elde etmek hem
kolay hem de kullanışlı olacaktır. Bunun güzel bir örneğini ise Bohm ve Vigier’in
ilgili makalesinde [21] görülebilmektedir.
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Bohm mekaniği ve genel yorum için benzer bir üst yorum geliştirilmek istenirse
bakılması gereken ilk nokta az önce de ele alındığı gibi yorumların birbirine katabi-
leceği özelliklere bakmak olacaktır. Bu özellikler de sırasıyla;

Bohm mekaniği adına

• Belirli bir limite kadar çevrenin ölçüm üzerindeki etkisini hesaba katar

• Hesaplar potansiyeller arasındaki etkileşime dayanır

Genel yorum adına

• Ölçüm sırasında ölçen ve ölçülen çevreden soyutlanmıştır

• Hesaplamalar ölçümlerin sonucunda elde edilen muhtemel olasılıklara dayanır

şeklinde yazılabilir. Bu özelliklerin harmanlanarak, tezat oldukları noktalarda çözüm-

ler üreterek, bir üst yorum geliştirebilir olmakla birlikte bilhassa yorumların or-
tak bir yapıya sahip olmamaları (determinizm ve indeterminizm) süreçteki en kritik
rolü oynayacaktır.

Tekrar kuantum hidrodinamiği ve Bohm mekaniği ikilisine dönecek olursak, her iki
yorumu da içinde barındıran üst yorumun sahip olması gereken ilk sonucun ortamın
kendisinin lokal olmayışlık özelliğine sahip olması gerektiği olacaktır. Varılan sonucu
daha iyi anlamak adına üst yorum üzerinden EPR yahut Hardy deneyi ele alınıp
birbiriyle dolanık ve uzaysal olarak ayrık olan alt sistemler (DUAAS) arasındaki
etkileşime bakılacak olunursa, hem genel yorum hem de alternatif diğer yorumlara
kıyasla daha açık bir ifade verilebilir. Öyle ki, oluşturulan bu üst yorum Bohm me-
kaniğinden ödünç alınan kuantum potansiyelinin lokal olmayan etkileşimleri açıkça
verebilmesi, kuantum hidrodinamiğinin ise ortamın dinamik yapısını açıklayan sürek-
lilik denklemi ve gene ortama belli bir yoğunlukla dağılmış olan dalgaların açık göste-
rimini içermesi nedeniyle ele alınan DUAAS’lerin tam bir tasvirini verebilecektir. İlk
bakışta bahsedilen tasvirin sadece Bohm mekaniği kullanılarak dahi erişilebileceği
gözükmektedir ancak durum biraz daha dikkatlice ele alındığı vakit Bohm me-
kaniğinin alt sistemlerin aralarındaki ilişkiyi (6.5) ifadesinde belirtildiği gibi açıkça
gösterirken ortama dağılmış dalgaların aralarındaki ilişkiyi açıkça belirtmemektedir.
Birbaşka deyişle üst yorum, Bohm mekaniğine ek olarak alt sistemlerin durumuyla
beraber ortamdaki dalgaların aralarındaki etkileşimleri de hesaba katarak tam bir
tasvirini mümkün kılmaktadır. Şüphesiz ki üst yorumun sunduğu bu durum EPR
yahut Hardy deneyi gibi uzaysal olarak ayrık mesafeleri konu alan deneylerde he-
saplama ve tespit açısından büyük zorluklara neden olmakla beraber varılabilecek
en üst çözüm olarak kendine yer bulmaktadır. Bu zorlukların en önemlisi ve belki
elde edilmesi en zor olanı ise toplam sistemin (ölçen, ölçülen ve ölçümün yapıldığı
ortam olarak tüm evrenin hesaba katıldığı öngörülebilecek mümkün en üst sistem)
tam bir tasvirini verecek olan dalga fonksiyonunun yazılabilmesi olacaktır. Toplam
sistem olarak evrenin tümünün kabul edildiği bu durumda sistemin tam bir tasvirini
veren dalga fonksiyonları literatürde Wheeler-de Witt veya Hartle-Hawking dalga
fonksiyonları olarak adlandırılmışlardır.

Wheeler-de Witt veya Hartle-Hawking dalga fonksiyonları varılabilecek nihai çözümü
sunmakla birlikte elde edilmesi şu an için mümkün değildir. Bu sebeple de ona alter-
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natif olabilecek çözümler üretmek gerekmektedir. Bu alternatif çözümlerden birisi
ise özellikle DUASS’lerin aralarındaki etkileşimi açıklayabilme yetisine sahip olan
foliasyon (foliation) işlemidir. Foliasyon matematikte çokkatmanlı (manifolds) ge-
ometrik yapılar için geliştirilmiş bir işlem olup çokkatmanlı yapıların belirli şartlara
göre geçirebileceği modifikasyonları ele almaktadır. Foliasyon işlemini bahsedilen
DUASS’ler üzerinden ele alacak olunursa;

Farzedelim elimizde uzay-zaman koordinatları (Minkowski uzay-zaman koordinat-
ları) ile tasvir edilen bir evren içerisinde Hardy deneyinde gösterildiği gibi referans
çerçevesine göre çoklu-zaman dönüşümleri altında değişmez kalan DUAAS’ler bu-
lunsun (tabi ki bu değişmezlik durumu 4. bölümde gösterildiği gibi DUAAS’lerin
referans çerçevesi ve birbirine göre rölativistik olmayan hızlarda hareket etmeleri
sebebiyle mümkündür). Bu DUASS’ler Şekil 5.1’de gösterildiği gibi zamanın sabit
(t = sabit) alındığı uzaysal olarak ayrık durumları içeren hiperyüzeylerde (UAH’ler)
çift olacak şekilde konumlandırılmışlardır.

Şekil 5.1: UAH’lerin Foliasyon Gösterimi

Mümkün olan bütün UAH’lerin öz zamanı esas almasından ötürü zaman koordi-
natındaki değişim de sıfır (∂t = 0) olacağından, klasik mekanikteki mekaniksel
benzerlik konusu yahut kozmolojideki evrenin genişlemesi konusunda olduğu gibi,
her biri aynı izotmerik (isometric) büyümeye mağruz kalarak benzer geometrik
değişimden geçeceklerdir. 4.bölümde varılan referans çerçevesi için UAH’ler arasında
bir fark olmadığı kabulünden yola çıkarak varılan sonuç daha genel şekilde ele alınırsa
bütün UAH’ler yerine sadece bir UAH’i esas almak yeterli olacaktır. Yapılan bu ge-
nelleme sonucu Hardy deneyinde ele alınan her iki alt sistem de başlangıç koşulları ve
izometrik büyümeye bağlı olarak aynı UAH’de orjine göre aynı uzaklıktaki konum-
lara sahip olacaklardır. Bu durum da sonuç olarak UAH üzerinde orjin noktası baz
alınarak yapılan foliasyon işlemini, UAH’in geometrisinin değişiminin her bölgede
aynı olması sebebiyle, mümkün kılacaktır. Foliasyon işleminin sürecine dair daha
detaylı bir açıklama ilgili makalelerden [49], [50] elde edilebilir.

Foliasyon işleminin fiziksel boyuttaki karşılığı ise Susskind’in 2016 tarihli EPR=ER
adlı makalesinde [51] verilmiştir.Makalede Susskind matematiksel (geometrik) olarak
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az önce açıklanan foliasyon işlemini, Einstein ve Rosen tarafından EPR deneyinin
geliştirildiği makale ile aynı yılda yayınlanmış olan ve gene Einstein ve Rosen’a ait
ilgili makale [52] ile ilişkilendirerek açıklanabileceği bir konsept geliştirmiştir. Bu
konsept kısaca ER makalesinde ortaya atılmış olan Einstein-Rosen Köprüsü’nün
(ERK) (Einstein-Rosen Bridge (ERB)) çift taraflı bir versiyonunun (normal ola-
rak ERK’sü tek taraflı çalışan bir yapıya sahiptir) yardımıyla aynı UAH içerisinde
yer alan DUAAS arasındaki karşılıklı lokal olmayan etkileşimin mümkün olabileceği
fikrine dayanmaktadır. Ayrıca bu çift taraflı ERK sadece DUAAS’in dolanıklık
özelliğine bağlı olup tek işlevi bu durumun devamlılığını sağlamak olduğundan siste-
min toplamı üzerinde bir etkisi olmaması gerektiğinden planck ölçeğinde (10−80 m3)
(planck scale) varolmaları gerekmektedir.

Susskind geliştirdiği bu konsept lokal olmayışlık adına fiziksel boyutta teorik ola-
rak kabul edilebilir bir açıklama sunmakla beraber deneysel olarak kanıtlanması
günümüz için mümkün değildir. Ancak deneysel olarak kanıtlanma açısından Wheeler-
de Witt veya Hartle-Hawking dalga fonksiyonlarıyla benzer kaderi paylaşsa da teorik
olarak belli bir konsept sunabildiği için DUAAS adına daha fazla umut vermektedir.
Ayrıca çift taraflı ERK sunduğu kolaylıklar açısından özellikle rölativistik kuantum
teorisinin geliştirilebilmesi konusunda önemli bir potansiyele sahiptir.

5.2 Lokal Olmayışlık ve Uzay-Zaman Yapısı: Seçilmiş bir Re-
ferans Çerçevesi Arayışı

Tezin özellikle son bölümlerinde, rölativistik durumların ele alındığı bölümlerde, ele
alındığı gibi birbirleriyle dolanık ve uzaysal olarak ayrık alt sistemler (DUASS) için
lokal olmayışlık bertaraf edilemez bir sonuç olarak karşımıza çıkmaktadır. Bu da
doğal olarak lokalliği esas almış teorilerin sorgunlanmasına neden olmuştur. Lokalliği
esas almış bu teorilerden en çok bilineni ise şüphesiz ki özel rölativite teorisi (ÖRT)
olup konuya dair en yoğun eleştirilere maruz kalmıştır (burada alsında kuantum alan
teorisi de lokalliği esas alan yapıya sahip olduğundan benzer muameleye uğramıştır
ama tezin geneli itibariyle ÖRT üzerinden gidilmiş olması nedeniyle sonuç kısmında
da aynı seçimle devam etmek daha doğru olacaktır).

Lokal olmayışlığın ÖRT üzerinde neden olduğu bu yoğun eleştirinin sebebini anla-
mak için uzay-zaman yapısına dair getirdiği açıklamalara bakmak ve bu açıklamayı
kendisiyle aynı hedefi amaç edinmiş diğer teorilerle karşılaştırmak yararlı olacaktır.
Bu teorileri esas aldıkları ilkelere göre sınıflandıracak olursak üç temel yorum altında
toplandıklarını görebiliriz:

Einstein Yorumu

• Klasik 3+1 boyutlu uzay-zaman yapısını temel alır.

• Eylemsiz referans çerçeveleri birbirine denktir.

• Uzunlukların kısalması ve zamanın genleşmesini destekler.

• Özel Rölativite Teorisi (ÖRT).
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Minkowski Yorumu

• 4 boyutlu uzay-zaman yapısını temel alır (3 boyutlu parçacıkların 4 boyutlu
uzay zamanda hareket ettiğini kabul eder).

• Diğer yorumların aksine zaman boyutunu tek yönlü kabul etmeyip konum
boyutları gibi çift yönlü olarak ele aldığından geçmiş, şu an ve gelecek gibi
zaman konseptlerini içinde barındırmaz.

• Uzunların kısalması ve zamanın genişlemesini tamamen referans çerçevesinden
kaynaklı bir sonuç olduğunu kabul eder.

• Meydana gelen tüm sistemlerin kendi gerçekliğinde, kendi zamanında gerçek-
leştiğini savunur.

• Minkowski Uzay-Zaman Teorileri.

Lorentz Yorumu

• Klasik 3+1 boyutlu uzay-zaman yapısını temel alır.

• Tek referans çerçevesi (the one inertial frame) veya seçilmiş referans çerçevesi
üzerinden sistemlerin açıklanabileceğini savunur (ether düşüncesine benzer
ama burada savunulan düşünce (hareketsiz ether) düşüncesi üzerinden gelişti-
rilmiştir).

• Uzunlukların kısalması ve zamanın genleşmesi desteklemekle birlikte bunların
nedensel açıklamasını da sunar.

• Mutlak uzay ve zamanın varlığını savunur.

• Nedensel etkileşimleri (lokal olmayan etkileşimler) ve geçici sistemleri (kuan-
tum teorisi içinde karşılaşılan geçiş durumları gibi) destekler.

• Lorentz Ether Teorisi (LET).

Bu üç yorum arasından Minskowski Yorumu lokallik ve lokal olmayışlık arasında
doğası itibariyle tatmin edici bir ayrım yapamadığı için tezin amacına dair kul-
lanılabilir yahut önemli bir açılım vermekten uzaktır. Bu nedenle diğer iki yorumun
lokal olmayan etkileşimlere (nedensel etkileşimler = lokal olmayan etkileşimler) dair
getirdiği açıklamaları ele alarak konuya devam etmek daha doğru olacaktır.

5.2.1 Einstein Yorumu ve Lokal Olmayan Etkileşimler

Galileo’nun uzay-yapsını esas alan Einstein yorumu ve onun teorisi ÖRT tek(mutlak)
referans çerçevesi fikrinin böyle bir durum varolsa dahi doğası itibariyle gereksiz
(superfluous) olduğunu ve gözlemlenemeyeceği eleştirisini getirir. Bununla birlikte
ışık hızını hem üst limit hem de bütün referans çerçeveleri için bir Lorentz değişmezi
olduğunu kabul eder.

ÖRT’nin sunduğu bu uzay-zaman yapısını üstteki şekilde görmek mümkündür. Teo-
rinin sunduğu bu yapı içerisinde lokal olmayan etkileşimleri (esasen eş-zamanlı et-
kileşimler olmaları nedeniyle) ise hiperyüzeyler aracılığı ile her bir referans çerçevesi
için o referans sisteminin şartlarına özel olacak şekilde tasarlanabilir.
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Şekil 5.2: Einstein Yorumunda Hiperyüzeyler

Şekil 5.3: Farklı Referans Çerçevelerindeki Aynı Hiperyüzey

Şekilde gösterildiği gibi eş-zamanlı bir etkileşimin x − t referans çerçevesine göre
gösterimi hy hiperyüzeyi ile gösterilirken, x′ − t′ referans çerçevesindeki karşılığı ise
hy′ hiperyüzeyidir.

ÖRT’ne göre eş-zamanlı etkileşimler şekillerden de açıkça anlaşılabileceği gibi refe-
rans çerçevesine bağlı olarak farklılıklar göstermektedir. Bir başka deyişle bir refe-
rans çerçevesinde gözlemlenen eş-zamanlı bir etkileşim baz alınan diğer bir referans
çerçevesine göre bu özelliğini koruyamamaktadır. Bu sebeple ÖRT üzerinden tasar-
lanmış bir uzay-zaman yapısı için eş-zamanlılık sadece bir tane referans çerçevesi
için varolduğundan farklı referans çerçevelerinde tüm anlamını yitiren bir konsept-
ten öteye gidememektedir.
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5.2.2 Lorentz Yorumu ve Lokal Olmayışlık

Klasik bakış açısını (tek referans çerçevesi) ya da literatürdeki ismiyle Newton bakış
açısını esas alan Lorentz yorumu ve onun teorisi olan LET seleflerine ek olarak hare-
ketli ether yerine hareketsiz etheri koyarak ÖRT’nin ortaya koyduğu ışık hızının re-
ferans çerçeveler için bir üst limit ve Lorent değişmezi olduğu fikrini paylaşmaktadır.
Bu nedenle hem ÖRT hem de LET Michelson-Morley deneyi gibi ışık hızının karak-
teristiğini ortaya çıkarmayı amaçlamış deneylerin verdiği sonuçları koşulsuz olarak
destelemektedirler. Ancak bu mutabakat eş-zamanlı etkileşimleri konu alan deneyler
için varlığını sürdüremez. Bunun şüphesiz en önemli sebebi ise referans çerçeveler
hakkında farklı düşüncelere sahip olmalarıdır.

Şekil 5.4: Lorentz Yorumunda Hiperyüzeyler

Çünkü üstteki şekilde de açıkça görülebileceği gibi x−t tek(mutlak) referans çerçeve-
sine göre hy1 hiperyüzeyi ile gösterilen eş-zamanlı bir etkileşim ÖRT’nin aksine
seçilmiş bir referans çerçevesinde ortaya koyulduktan sonra diğer referans çerçeveleri-
ne göre ele alındığı vakit değişime uğrayarak tüm anlamını yitiren bir konsept
olmayıp aksine ışık hızının sahip olduğu karakteristik gibi bir Lorentz değişmezi
(4. bölümde ele alınan çoklu-zaman dönüşümleri altında değişime uğramayan ku-
antum mekaniksel formalizminde de olduğu gibi) olduğu kabul edilmektedir. Bir
başka deyişle eş-zamanlı etkileşimler ve onun kuantum teorisindeki karşılığı olan
lokal olmayan etkileşimler LET’ne göre tek(mutlak) referans çerçevesinde zaman
dönüşümleri (çoklu-zaman dönüşümleri) altında bir Lorentz değişmezi olduğundan
bu durum diğer tüm referans çerçeveleri için de aynen geçerlidir. Çünkü tanımı iti-
bariyle tek(mutlak) referans çerçevesi diğer referans çerçeveleri üzerinde karşılıklı
olmayan bir etkiye sahip olduğundan bu referans çerçevesi altında değişmez olduğu
kabul edilen herhangi bir konsept de aynı özelliği göstermek zorundadır.

Bu bağlamda 4. bölümün çoklu-zaman dönüşümleri başlığında konuya dair verilen
2. alıntıda 1. alıntının bir sonucu olarak ortaya konulan lokal olmayışlığın belirli
bir referans çerçevesine ihtiyaç duymadığı doğru olmakla birlikte özellikle LET’nin
bakış açısı üzerinden sonuç bölümünde açıklandığı gibi eksik bir çıkarımdır.
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Özetle, lokal olmayışlık genel yorumun bakış açısı ile ele alınacak olunursa eş-zaman-
lılık konusunda getirdiği sorunlar itibariyle ÖRT yerine kaçınılmaz olarak LET’ni
kullanmak zordundandır. Çünkü varılan sonuç itibariyle sadece iki seçenekle duru-
mun açıklanması mümkündür, bu seçenekler ise:

• Kuantum mekaniksel formalizme dayanan operatörler sistem üzerinde anlık
bir değişime neden olmamaktadır.

• Lokal olmayışlık tek(mutlak) referans çerçevesi içerisinde bir Lorentz değişmezi
olması sebebiyle tüm referans çerçeveleri için de bu özelliğini ortaya koymak-
tadır.

Bu iki seçenekten ilki, açıkça kuantum teorisinin en temel ilkelerinden biri olan be-
lirsizlik ilkesini ihlal edeceğinden (tez boyunca bu durum detaylıca anlatıldı) kabul
edilebilirlikten fazlasıyla uzaktır. İkinci seçenek ise bariz bir şekilde ÖRT’nin kuan-
tum teorisinin ortaya koyduğu lokal olmayışlığa tatmin edici vir cevap verememesi
nedeniyle yukarıda da belirtildiği üzere LET veya benzeri teorinin gerekli olduğunu
belirtmektedir.

Lokal olmayışlığın LET veya benzeri bir teoriyi gerekli kılması sadece genel yoruma
has bir gereksinim değildir, zira Bohm mekaniği zaten dayandığı temeller nedeniyle
tek(mutlak) referans çerçevesini kabul ettiği ve bununla birlikte doğal olarak mutlak
zamanı da içinde barındırdığı tezin 4. bölümünde çoklu-zaman dönüşümleri başlığı
altında verilen basit bir örnekle gösterilmiştir.

Varılan bu sonuçlar itibariyle açıkça görüldüğü üzere kuantum teorisinin en temel
yorumlarından iki tanesi olan genel yorum ve Bohm mekaniğine göre Einstein yo-
rumunu esas alan ÖRT’nin, konuya dair birçok deneyin (CHSH ve Aspect gibi)
verdiği sonuçlar ışığında ve matematiksel boyutta Bell eşitsizliğinin de gösterdiği
gibi, lokal olmayışlığı açıklamakta yetersiz kaldığı açıktır. Bu nedenle tezin özellikle
sonuç bölümünde gösterildiği gibi rölativistik boyutlardaki kuantum sistemlerinin
ele alındığı durumlarda LET’nin sunduğu bakış açısını kabul etmek gerekir. Bu ne-
denle LET’nin sunduğu bir uzay-zaman düşüncesini baz alan ve tüm iç mekaniklerin
de hesaba katılıdığı bir yapı geliştirmek yazarın bu tezden sonraki esas amacı ola-
caktır.
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6 EKLER

6.1 Rehber Denklemin Çıkarılışı

(6.4) denkleminin elde edilişi;

de Broglie bağıntısı p = ~k, düzlem dalga Ψ(x, t) = Aei(kx−wt) yardımıyla ve ek
olarak x = x1 ∈ q olmak üzere; Düzlem dalganın x’e göre birinci dereceden türevini
alalım;

dΨ(x, t)

dx
= A(ik)ei(kx−wt) =⇒ ik =

∇Ψ(x, t)

Ψ(x, t)
(6.1)

sonucunu elde ederiz. Bu sonucu de Broglie bağıntısında yerine koyarsak;

p = ~=∇Ψ(x, t)

Ψ(x, t)
(6.2)

elde etmiş oluruz (= sembolü burada sadece imajiner kısmın ele alındığını göster-
mektedir). p = ~k = mv olmak üzere rehber denklemi;

v =
dx(t)

dt
=

~
m
=∇Ψ(x, t)

Ψ(x, t)
(6.3)

şeklinde elde edilmiş olur.
Tek kuantum sistemi için genel gösterimi;

q̇ =
dq(t)

dt
=

~
m
=∇Ψ

Ψ
(q, t) (6.4)

N tane tek kuantum sisteminden oluşan topluluk kuantum sistemindeki j. parçaçık
için genel gösterim;

q̇j =
dqj(t)

dt
=

~
m
=∇jΨ

Ψ
(q1, q2, ...qN , t) (6.5)
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6.2 Süreklilik Denkleminin Çıkarılışı

Kolaylık olması adına bir boyutta hareket tek kuantum sistemini ele alalım ve bu
sistemi de Ψ(x, t) dalga fonksiyonu ile gösterelim. Bu sistem için j olasılık akısını
tanımlayıp süreklilik denklemini yazmak istersek, sistemin dalga denklemi;

i~
∂Ψ(x, t)

∂t
=
−~2

2m

∂2Ψ(x, t)

∂t
+ V (x)Ψ(x, t) (6.6)

olmak üzere, (6.6) ifadesinin sol tarafındaki dalga fonksiyonunun eşleniği ile çarparız.
Bunu yapmadaki amaç x konumu ve t zamanına ait olasılık yoğunluğu üzerinden
zamana bağlı değişimi elde etmektir. Bu işlemin ardından (6.6) eşitliğinin sol tarafı
şu hali alır;

i~
(∂Ψ∗Ψ)

∂t
= i~

(
Ψ
∂Ψ∗

∂t
+ Ψ∗

∂Ψ

∂t

)
(6.7)

i~Ψ∗
∂Ψ

∂t
= −Ψ∗

~2

2m

∂2Ψ

∂x2
+ Ψ∗VΨ↔ i~Ψ

∂Ψ∗

∂t
= Ψ

~2

2m

∂2Ψ∗

∂x2
−ΨVΨ∗ (6.8)

olmak üzere;

∂|Ψ|2

∂t
=

∂

∂x

i~
2m

(
Ψ∗
∂Ψ

∂x
−Ψ

∂Ψ∗

∂x

)
(6.9)

denklemini elde ederiz. (6.9) denkleminin sağ tarafı −j = i~
2m

(
Ψ∗ ∂Ψ

∂x
−Ψ∂Ψ∗

∂x

)
negatif

olasılık akısının x’e göre türevidir. Olasılık akısının kaynaklardaki bir başka göste-
rimi ise j = h

m
=(Ψ∗∇Ψ) versiyonudur ve rehber denklemde de bu ifade kullanılır.

Eşitliğin sol tarafı ise bildiğimiz gibi ρ = |Ψ(x, t)|2 olasılık yoğunluğunun zaman
göre türevidir. Bu ifadelerin yardımıyla (6.9)’yi yeniden yazarsak;

∂ρ

∂t
+∇j = 0 (6.10)

süreklilik denkleminin bir boyuttaki gösterimini elde etmiş oluruz.
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6.3 Metrik, Öz Uzaklık, Öz Zaman, 4’lü Vektor

4 boyutlu uzay-zaman için Minskowski metriği;

g =


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


olmak üzere, bileşelenlerini yazarsak;

T =
∑
µ0

∑
ν0

gµνx
µxν = gµνx

µxν (6.11)

= g00x
0x0 + g11x

1x1 + g22x
2x2 + g33x

3x3 (6.12)

= (x0)2 + (x1)2 + (x2)2 + (x3)2 (6.13)

(6.14)

şeklinde gösterilebilir. Ayrıca gg−1 = I olduğundan gµν = gµν olacaktır. Minkowski
metriği için öz uzunluk ve öz zaman ifadesi ise ds2 = gµνdx

µdxν = c2dτ 2 ve γ =√
1− v2/c2 yardımıyla hareketsiz durum için;

ds = cdτ =⇒ ∆s = c

∫
dτ (6.15)

dτ =
dt

γ
=⇒ ∆τ =

1

γ

∫
dt (6.16)

olarak yazılır. 4’lü vektör Λ;

Λ =


γ −γβ 0 0

−γβ γ 0 0

0 0 1 0

0 0 0 1


xµ = 0, 1, 2, 3 referans çerçevesinin koordinatları, β = v/c ve ona göre v hızıyla
hareket eden sistemin koordinatları olmak üzere;

(xµ)′ =
3∑

ν=0

Λµ
νx

ν (6.17)
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şeklinde ifade edilebilir ve Einstein toplama kuralı yardımıyla xµ
′

= Λµ
νx

ν şeklinde
yazabilir. Bununla birlikte Λ0

0 = Λ1
1 = γ , Λ1

0 = Λ0
1 = −γβ , Λ2

2 = Λ3
3 = 1 ve gerisi 0

olmak üzere;

x0 = ct =⇒ (x0)′ = γ(x0 − βx1) (6.18)

x1 = x =⇒ (x1)′ = γ(x1 − βx0) (6.19)

x2 = y =⇒ (x2)′ = x2 (6.20)

x3 = z =⇒ (x3)′ = x3 (6.21)

olarak yazılır. Örnek olarak aµ ve aµ 4’lü vektörleri;

aµ = gµνaν (6.22)

aµ = gµνa
ν (6.23)

aµaµ = (a0)2 − (a.a) = aµa
µ (6.24)

şeklinde ifade edilebilir. Ayrıca a2 = (a0)2 − a.a olmak üzere;

a2 > 0 =⇒ aµ; ”zamansal” (6.25)

a2 < 0 =⇒ aµ; ”uzaysal” (6.26)

a2 = 0 =⇒ aµ; ”ışıksal” (6.27)

ise 4’lü vektörün gösterilen durumlara denk olduğu kabul edilir.

6.3.1 Lorentz Değişmezleri

6.18 yardımıyla ds2 ve ds22
’yi yeniden yazarsak;

ds2 = g00dx
0dx0 + g11dx

1dx1 + g22dx
2dx2 + g33dx

3dx3 (6.28)

ds2′ = g00dx
0′dx0′ + g11dx

1′dx1′ + g22dx
2′dx2′ + g33dx

3′dx3′ (6.29)

(6.28) ve (6.29) ifadelerinde (dx0)2− (dx1)2 = (dx0)′
2− (dx1)′

2
, (dx2)2 = (dx2)′

2
ve

(dx3)2 = (dx3)′
2

değerleri birine eşit olduğundan,

ds2 = ds′
2

(6.30)

Yani ds2 bir Lorentz değişmezi olduğundan öz uzunluk da bir Lorentz değişmezidir.
Aynı süreci öz zaman için tek konum boyutuna sahip duruma uygularsak (6.16)
yardımıyla;
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dt = γ
(
dt′ − v

c2
dx′
)

=⇒ dτ = dt′ − v

c2
dx′ (6.31)

dt′ = γ
(
dt− v

c2
dx
)

=⇒ dτ ′ = dt− v

c2
dx (6.32)

(6.33)

ifadelerine ulaşılır, buna ek olarak dx′ = γ(dx+ vdt) olmak üzere;

dτ = γ
(
dt+

v

c2
dx
)
− γv

c2

(
dx+ vdt) =

dt

γ
(6.34)

dτ ′ = γ
(
dt′ − v

c2
dx′
)

+
γv

c2

(
dx′ + vdt) =

dt

γ
(6.35)

sonuç olarak dτ = dτ ′ olduğundan öz zaman da bir Lorentz değişmezidir.

6.4 Klein-Gordon Denkleminin Çıkarılışı

Rölativistik hızlarla hareket eden kütleli bir parçacık için, m0: parçacığın kütlesi, c:
ışık hızı, p: momentum olmak üzere toplam eneji denklemi;

E2 = p2c2 +m0
2c4 (6.36)

şeklinde ifade edilir. Toplam enerji denklemini E = i~ ∂
∂t

ve p = −i~ ∂
∂t

operatörlerini
kullanarak yeniden yazarsak;

(
i~
∂

∂t

)2

=

(
− i~ ∂

∂x

)2

c2 +m0
2c4 =⇒ −~2 ∂

2

∂t2
= −~2 ∂

2

∂x2
c2 +m0

2c4 (6.37)

sadeleştirmelerle düzenleyelim;

m0
2c4

~2
=
∂2c2

∂x2
− ∂2

∂t2
=⇒ m0

2c4

~2
=

∂

∂2
− 1

c2

∂2

∂t2
(6.38)

ifadesini elde ederiz. Eşitliğe dalga fonksiyonunu ekleyip denklemi genelleştirirsek;

m0
2c4

~2
Ψ = ∇2Ψ− 1

c2

∂2Ψ

∂t2
(6.39)

denklemine ulaşırız. Bu denklemi kütlesiz bir parçacık için c = 1 kabul ederek yeni-
den yazarsak;
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∇2Ψ− ∂2

∂t2
Ψ = 0 (6.40)

Klein Gordon denklemini elde etmiş oluruz. Kütleli bir parçacık için bu denklemin
gösterimi ise ~ = c = 1 olmak üzere;

E2 − p2 −m2 = 0 =⇒ − ∂2

∂t2
+∇2Ψ−m2 = 0 (6.41)

bu denklemin Minkowski uzayındaki gösterimi ise µ = 0, 1, 2, 3 olmak üzere;

−∂µ∂µΨ−m2Ψ = 0 (6.42)

şeklinde ifade edilebilir.

6.5 Rölativistik Durumlar İçin Olasılık Akısı

4-boyutlu uzay-zamanda parçacıkların Pauli spin matrisleri (µ = 1, 2, 3);

γ0 =

(
1 0

0 −1

)
, γµ =

(
0 σµ

−σµ 0

)

olmak üzere ~ = c = 1 kabul ederek Dirac denklemini yazarsak;

iγ0∂ψ

∂t
+ iγ1∂ψ

∂x
+ iγ2∂ψ

∂y
+ iγ3∂ψ

∂z
−mψ = 0 (6.43)

eşitliğini elde ederiz. Denklemin hermitsel eşleniği ise;

[
iγ0∂ψ

∂t
+ iγ1∂ψ

∂x
+ iγ2∂ψ

∂y
+ iγ3 ψ

∂z
−mΨ

]†
= 0 (6.44)

şeklinde elde edilir. (6.44) ifadesinin her iki tarafını γ0 matrisiyle çarpar ve

[
γ0∂ψ

∂t

]†
=

∂ψ†

∂t
γ0 (6.45)

γµ† = −γµ (6.46)

γµγ0 = −γ0γµ (6.47)
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eşitliklerinin de yardımıyla düzenleyerek yazarsak;

−iψ
†

∂t
γ0γ0 − i∂ψ

†

∂x
γ0γ1 − iψ

†

∂y
γ0γ2 − i∂ψ

†

∂z
γ0γ3 −mψ†γ0 (6.48)

ifadesine ulaşırız, eşitliği ufak bir sadeleştirme ψ = ψ†γ0 yardımıyla yeniden ya-
zalım;

−i∂ψ
∂t
γ0 − i∂ψ

∂x
γ1 − i∂ψ

∂y
γ2 − i∂ψ

∂z
γ3 −mψ = 0 (6.49)

ifadesini yani Dirac denkleminin hermitsel eşleniği olan;

ψ(i∂µγ
µ +m) = 0 (6.50)

(6.50) eşitliğine ulaşmış oluruz. Dirac denklemi üzerinden olasılık akısını diğer is-
miyle dirac aksını (dirac current) yazmak için Dirac denkleminin her iki tarafını
soldan ψ ile çarparsak;

ψ(i∂µγ
µ −m)ψ = 0 (6.51)

elde ederiz. Bundan sonra Dirac denkleminin eşleniğinin her tarafını ψ, ile sağdan
çarparsak;

ψ(iγµ∂
µ +m)ψ = 0 (6.52)

her iki eşitliğin toplamı da 0 olduğundan ve m’e bağlı ifadeler yok olduğundan;

∂µ(ψγµψ) = 0 (6.53)

sonucunu elde etmiş oluruz. Dirac akısını, olasılık yoğunluğu ve olasılık akısı üzerin-
den gösterimi ise:

jµ = (ρ, j) (6.54)

jµ = ψγµψ olmak üzere (6.53) ifadesi korunum denklemi olarak dirac aksının 4-
boyutlu uzay-zamanda için diverjansının 0 a eşit yani ∂µj

µ = 0 olduğunu göster-
mektedir. Ayrıca burada olasılık akısı ρ = ψγ0ψ = ψ†γ0γ0ψ = ψ†ψ ve olasılık akısı
ise j = ψ†γ0γµψ şeklinde yazılabilir.
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6.6 Determinizm ve Indeterminizm

Karl Popper’ın The Open Universe [8] kitabının giriş bölümünde determinizmi:

”...eğer doğanın tüm kanunları ile birlikte geçmiş olayların yeterli kesinlikteki bir
betimlemesine sahipsek, dünyanın yapısı mümkün tüm olayları itibariyle rasyonel
olarak öngörülebilir.”1

şeklinde tanımlamaktadır. Popper’ın determinizm tanımı kitabın ek bölümünde de
anlatıldığı üzere aslında Laplace’ın geliştirdiği klasik determinizmin:

”...bir zaman aralığında evrendeki bütün parçacıkların kütleleri, konumları ve hızları
kesin olarak bilinirse; geçmişte gerçekleşmiş olan ve gelecekte ise gerçekleşecek olan
bütün olaylar, Newton mekaniğinin yardımıyla, prensipte hesaplanabilirler.”2

genelleştirilmiş bir versiyonudur. Laplace’ın klasik determinizmi üzerinden kuantum
teorisi için Popper’ın tanımını yeniden ele alacak olursak (kitaptaki bölümün tam
bir çevirisi olmadığı belirtmek gerekir):

”...eğer sistemin dalga fonksiyonunun zamana göre evrimini betimleyen denklemle-
riyle birlikte başlangıç koşullarının yeterli kesinlikteki betimlemesine sahipsek, sis-
tem ve içinde bulunduğu çevre mümkün tüm durumları ile beraber, rasyonel olarak,
öngörülebilir.”3

şeklinde melez bir tanıma ulaşmış oluruz. Bu melezlik ise Laplace’ın tüm evreni baz
alan klasik determinizminin, kuantum teorisinde sistemin kısmen evrenden soyutla-
narak etkileşim içinde bulunduğu çevresinin esas alınması ile birlikte tanımın diğer
özelliklerini aynen kabul etmesinden kaynaklanır.

Tanımda bahsi geçen öngörülebilirliğin, sistemin mümkün olan sadece bir durumunu
dahi karşılayamaması halinde ise determinizm düşüncesi yetersiz kalarak yerini inde-
terminizme bırakacaktır. Bunun en bariz örneği ise kuantum teorisinin genel olarak,
determinizm üzerine kurulu olan klasik mekaniğin çeşitli fenomenler ve deneylerde
ortaya çıkan sonuçları açıklamada yetersiz kalmasından kaynaklı olarak, indetermi-
nizmi esas almış yorumlarından yana bir tutum izlemiş olmasıdır. Ancak bu tu-
tum teoriye dair geliştirilen yorumlarda çeşitli zorluklara neden olmakla birlikte,
giriş bölümünde kısaca açıklandığı gibi, ortak sonuçları öngören genel yorum ve
pilot-dalga teorisi (ayrıca Bohm mekaniği) gibi taban tabana zıt yorumların ortaya
çıkmasına engel olamamıştır.

Bu zıtlığın ilk örneği ise, Schrödinger dalga denkleminin her iki yorumun da te-
melinde aynı şekilde yer almasına karşın, Born’un parçacığın olasılıksal yapısını
açıklayan konseptinin yorumlara göre, dayandıkları düşünceler itibariyle, farklı an-
lamlara sahip olmasıdır. Öyle ki, genel yorum bu olasılıksal yapının parçacığın

1”...the structure of the world is such that any event can be rationally predicted, with any desired
degree of presicion, if we are given a suffiently precise description of past events, together with all
the law of nature.” [8]

2”...given the exact masses, positions, and velocities of all material particles in the universe at
some moment of time; then we can in principle calculate, with the help of Newtonian mechanics ,
all that has ever happened in the past and all that will ever happen in the future.”[8]

3” Assume we are given the exact masses, positions, and velocities of all material particles in
the universe at some moment of time; the we can in principle calculate, with the help of Newtoian
mechanics, all that has ever happened in the past and all that will ever happen in the future.”[8]
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doğasından kaynaklı olup kaçınılmaz olarak indeterminizm üzerinden hareket edil-
mesi gerektiğini savunurken, pilot-dalga teorisi (Bohm mekaniği) bu yapının ölçenden
kaynaklandığını ve sonuca göre sürece katılıp determinizmin, eğer ölçümden kaynaklı
ortaya çıkan tüm etkenler öngörülebilirse, yeterli olacağını savunmaktadır. Buna ek
olarak her iki yorumun da parçacığın olasılıksal yapısını kendilerince getirdikleri
koşullar dahilinde desteklediğinin yanı sıra Schrödinger dalga denklemini temel al-
maları nedeniyle de bir noktaya kadar determinizm düşüncesinin benimsedikleri not
etmek doğru olacaktır.

Determinizm ve indeterminizmi temel alan kuantum teorisi yorumlarını, gene te-
oride önemli yeri olan, bir örnek üzerinden açıklamak istersek, Schrödinger’in kedisi
düşünce deneyi bunun için uygun adaylardan birisi olarak öne çıkmaktadır. Deney,
kısaca, açıklanacak olunursa; belirli bir süre zarfında bozunma ya da bozunmama
ihtimali olan mikro boyuttaki bir radyoaktif madde, bu maddenin anlık olarak du-
rumunu kontrol eden bir Geiger sayacı, sayaca düzenekle bağlı bir çekiç, çekicin ha-
reketi sonucunda kırılacak kap, kabın içinde odaya yayılmaya müsait zehirli gaz ve
son olarak da bu bileşenlerle birlikte aynı odaya hapsedilmiş olan zavallı bir kediden
meydana gelmektedir. Radyoaktif maddenin durumuna bağlı olarak gerçekleşecek
(ya da gerçekleşmeyecek) süreç ise genel yoruma göre stokastik bir yapıyla ifade edi-
lebileceğinden deneyin bileşenlerinin durumu üzerinden tasvirini veren dalga fonksi-
yonu:

Ψ =
1√
2
ψbozunmaφkirilmaχolu +

1√
2
ψbozunmamaφsaglamχdiri (6.55)

şeklinde yazılabilir. Bu ifade ile odada hapsolmuş kedinin %50 olasılıkla yaşamına
devam ederken, %50 olasılık ölü olduğu varsayılmakta yani diğer bir deyişle kedi-
nin, genel yoruma göre, deney boyunca ölü ve diri olduğu durumların süperposizyo-
nunda olduğu açıklanmaktadır. Ancak genel yorumun mikro boyuttaki sistemleri için
gerçekleşen süreçleri açıklamak için kullandığı bu konsept (süperpozisyon) makro
boyuttaki bir sistem, kedi, için kullanılamaz. Zira ontolojik olarak, yani var olan
gözlenen gerçeklik için, makro boyuttaki sistemlerin açıklanmasında yeterli olduğu
birçok defa kanıtlanmış olan determinizme dayalı klasik mekaniğe göre kedinin aynı
anda hem ölü hem de diri olması mümkün olmadığından sadece bu durumlardan
birinde bulunması gerekmektedir.

Schrödinger özetle, genel yorumun, tek sistemin tasviri de dahil olmak üzere, sistem-
lerin tasviri için dalga fonksiyonunun kesinlikle yeterli olduğu varsayımının makro
boyutta neden olabileceği muhtemel bir paradoksa, geliştirdiği düşünce deneyiyle
dikkat çekmek istemektedir. Buna ek olarak getirdiği eleştiri üzerinden genel yoru-
mun aksine dalga fonksiyonunun sistemin doğasının tam bir tasvirini vermekten zi-
yade bizim sistemi açıklamak için kullandığımız bir araç olarak tanımlamaktadır.

Pilot-dalga teorisi ve (veya) Bohm mekaniği açısından deneyi ele alacak olursak; de-
neyin başlangıç koşulları, burada bahsi geçen radyoaktif maddenin başlangıç koşulla-
rıdır, bilinmesi dahilinde genel yorumun ortaya koyduğu indeterministik yapıya da-
yalı olarak ele alınan süreç yerini mümkün durumların zamana göre evrimini açıkça
ifade eden deterministik yapıdaki dinamik denklemlerine bırakacaktır. Başlangıç
koşullarının bilinmemesi durumunda ise kuantum denkliği ile ifade edildiği üzere
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genel yorumda açıklanan süreç aynen geçerli olacaktır. Deneyle ilgili olarak daha
detaylı bir açıklama ile birlikte Schrödinger ve Einstein’ın konuya dair fikirlerinin
de yer aldığı Travis Norsen’in ”Foundations of Quantum Mechanics”[36] kitabına
bakılabilir.
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