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OZET

Deterministik yapidaki bir yorum iizerinden kuantum teorisi ve onun fenomenleri-
nin aciklanabilecegi fikrine dayanan Bohm mekanigi, sahip oldugu yapinin sonucu
olarak, genel yorumun aksine, teorinin biitiinliigiiniin korunabilmesi i¢in gerekli olan
bircok o6zelligin acik ifadelerini igermesi nedeniyle alternatif yorumlar arasinda 6zel
bir konumda bulunmaktadir.

Bu 6zelliklerden ilki EPR deneyinin argiimanlarindan yeniden dogan ve dalga fonksi-
yonunun tasviri i¢in elzem sayilabilecek gizli degiskenler olup digeri ise Bell egitsizlik-
leri araciligi ile ispatlanmig olan kuantum teorisinin lokal bir teori olmadig1 gergegidir.
Her iki 6zellik de Bohm mekaniginde sirasiyla baslangic kosullar, g(x,t), ve kuan-
tum potansiyeli, Q(x, t), kavramlar1 gibi acik ifadeler tizerinden kendine yer bulmak-
tadirlar. Bu ifadelerin ¢ikarimlar1 ve yoruma yaptiklar: katkiyla birlikte teorideki
kargiliklar1 da tez igerisinde verilmektedir.

Bahsi gecen gizli degiskenler ve lokal olmayishik oOzellikleri birbirleriyle yakindan
iligkili olup bilhassa EPR ve Hardy deneylerinde ongoriildiigii gibi rolativistik kogul-
lar i¢inde barindiran kuantum sistemlerinin tasvirinde kilit rol oynamaktadirlar.
Oyle ki, birbirleriyle dolamk ve uzaysal olarak ayrik alt sistemlerden meydana ge-
len kuantum sistemlerinin, kuantum teorisi aracihigiyla aciklanabilmesi i¢in gizli
degiskenler arasinda lokal olmayan etkilegimlere ihtiyac vardir. Varilan bu sonug
hem klasik mekanik hem de rolativite teorisi gibi sistemler arasindaki etkilegimlerin
lokal olmas1 gerektigi varsayimi iizerine kurulmus teoriler i¢in aykiri bir durum
ifade etmesine ragmen, CHSH deneyi ve Aspect’in elde ettigi sonuglarla da goste-
rildigi tizere, lokal olmayislik doganin kendisinde varolan bir 6zellik olarak kargimiza
gikmaktadir.

Teorik ve deneysel boyutta kuantum teorisinin lokal olmayan bir teori oldugunun
anlagilmasi kacinilmaz olarak, 6zellikle rolativistik kogullar1 barindiran sistemler goz
ontinde bulunduruldugunda, diger teorilere (lokal teorilere) kiyasla farkhi bir uzay-
zaman yapisina sahip olmasi gerektigi goriilmektedir. Bu farkli yapinin gelistirilebil-
mesine olanak saglayan adaylardan birisi ise Lorentz yorumuna dayanan Lorentz
ether teorisi olup ozellikle tezin sonug¢ kisminda ele alinarak detaylh bir agiklamasina
yer verilmigtir.

Ayrica kuantum teorisinin genel yorumunun bir diger 6nemli konsepti olan dalga
fonksiyonunun ¢okmesini konu alan alternatif yorumlara da, tezin baglica konular ile
yakindan iligkili olmalar1 nedeniyle, kisa aciklamalar iizerinden yer verilmistir.
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SUMMARY

Bohmian mechanics as an interpretation which is based upon the idea of determinis-
tic explanation of quantum theory and its phenomenons is possible (by the nature of
its structure), on the contrary of general interpretation, holds the explicit descripti-
ons of the essential features that are vital for the completeness of the theory. Because
of this, it has a very unique place among the alternative interpretations.

Two of these essential features; first, hidden variables which had been reanscended
from the arguments of EPR experiment and second, nonlocality feature of the quan-
tum theory which had been proved by the Bell inequalities, constitute the main area
of interests of the thesis. Both of them can be described by the expressions; initial
conditions, g(x,t), and quantum potential, Q(x,t), in Bohmian mechanics respec-
tively. Deductions and contributions of these expressions are issued in the related
chapters of the thesis.

Hidden variables and nonlocality feature of the quantum theory are closely correla-
ted to each other and especially take a great part in the description of the quantum
systems that possess the relativistic conditions which had been predicted by EPR
and Hardy experiments. Such that, the explanation of the interaction between these
subsystems, which are space-like seperated and entangled, demands nonlocal inte-
ractions between hidden variables that are embedded in each one of them. Neither
classical theories nor relativistic ones can not support (accept) this kind of results
(nonlocal interactions), yet according to the outcome of CHSH and Aspect’s expe-
riments nonlocal interactions is not just a result unique to the quantum theory but
an observable feature of the nature itself.

In conclusion, because of the understanding of quantum theory is a nonlocal one,
which had been proved both at the theoretical and the experimental scale, it de-
mands a different kind of space-time structure compare to the other theories (local
ones), especially for the quantum systems that possess relativistic conditions. On
the mission of developing such structure, Lorenzt ether theory, which is based on
the Lorentz interpretation of space-time structure, can be an adequate candidate
among the others. The explanation and the criticism of this conclusion can be found
in the thesis.

In addition to these, because of the intimate relation with the main subjects and
due to its importance; the collapse of the wave functions’s brief explanation, with its
associated interpretations (collapse theories), can be found in the thesis aswell.






1 GIRIS

1.1 Kuantum Teorisi ve Yorumlari

Tarihsel olarak ortaya cikisi bir asir oncesine dayanan kuantum teorisi, kendinden
onceki teorilerin agiklamakta yetersiz kaldigi bircok fenomene verdigi cevap ve za-
maninin ilerisindeki bakig agisiyla fizik diinyasinda biiytik bir devrime yol agmigtir.
Bu devrimin kisith siirede meydana gelmesinin sonucunda ise formalizmi ve var-
sayimlarina dair fikir birligi olugsamadigindan ottiri teori kaginilmaz olarak farklh
bakig agilarindan tiiremig bircok yoruma kavugmustur. Yorum kavramini acacak
olursak; dayandigi diigiince sistemi iizerinden gelistirdigi formalizm ve varsayimlar
yardimyla bir teorinin aciklanmasi olarak tanimlanabilir. Bu baglamda teori igin
geligtirilebilecek farkli yorumlar sahip olduklari kendine 6zgii igerikler sebebiyle
bir¢cok miinazaraya ilham kaynagi olabilirler. Bu miinazaralara verilebilecek en iyi
orneklerden birisi ise elektronlar ve fotonlar tizerine 1927 yilinda diizenlenen 5. Sol-
vay Konferansi'nda gerceklesmistir. Oyle ki, kuantum teorisi i¢in kritik bir déneme
denk gelmesinin de etkisiyle teori adina hayati sayilabilecek geligmelerden birinin
gerceklesmesine 6n ayak olmustur. Bu gelisme ise konferansa kadar iki yorum, Paris
ve Kopenhag yorumu, tizerinden (kendilerine 6zgii igeriklerle) aciklanmaya galigilan
kuantum teorisinin yogun tartigmalar sonucunda Kopenhag yorumunun digerlerine
karst iistiinliik saglamasidir. Konferans dahilinde varilan bu sonug ile Kopenhag yo-
rumu sonraki yillarda genel yorum (general interpretation) ismini almigtir. Gergekle-
sen bu gelismenin nedenini tam olarak anlamak ve teoriye dair hem genel hem
de alternatif yorumlarin dayandigi diigtinceleri gérmek adina kuantum teorisinin,
gelismeye kadar olan, kisa tarihine goz atmak yararl olacaktir.

1901 yilinda kara cisim 1s1mas1 fenomeni ile dogadaki siireksiz durumlarin, ki klasik
mekanikte bu durumlar acgiklanabilir olmakla birlikte kayda deger bir yeri bulun-
mamaktadir, Planck sabiti, h, lizerinden ¢oziimlerinin miimkiin oldugunu gosteren
Max Planck [1] kuantum teorisinin (eski kuantum teorisi) temelini atmistir. Bunu
takiben Planck’in ¢oziimlerini destekleyen Albert Einstein’in fotoelektrik olay [2] ve
Niels Bohr'un atomun i¢ yapisi ve elektron yoriingelerini [3] ele aldigi makaleleri-
nin yardimiyla diger teorilerin aciklamakta yetersiz kaldigi bir¢ok fenomene getir-
dikleri ¢oziimler sayesinde teorinin yeri daha da saglamlagmistir. Finstein ve Bohr
tarafindan yapilan bu katkilarin ardindan ise 1924 yilinda L. de Broglie madde-
nin parcacik karakteristiginin yan sira dalga karakteristigine de sahip oldugunu
gosterdigi doktora tezi ile [1] teorinin kendi iginde bir evrim gecirmesine neden
olmugtur. Bu evrimin en 6nemli ayaklarindan birisi ise Erwin Schrédinger’in Brog-
lie'nin galigmasina dayanarak ortaya koydugu ve ele alinan sistemin dinamiginin
matematiksel bir gosterimini veren, sonraki yillarda kendi ismi ile anilacak olan,



Schrodinger dalga denklemini [5] kuantum teorisine kazandirmasidir. Bu geligme ile
eski kuantum teorisi miadini doldurmus ve ozellikle matematiksel anlamda temelle-
rini sorgulayan yeni kuantum teorisinin ilk adimlar1 atilmigtir.

Yeni kuantum teorisine gegigin ardindan John Von Neumann [6]1932 yilinda sundugu
formalizmle teorinin matematiksel olarak temellerini atmigtir. Hilbert uzay: (H), ge-
nellikle, kompleks sayilardan meydana gelen bir alan tizerinde tanimh ve i¢ carpimlari
kesinlikle pozitif olan lineer bir uzaydir. Bu uzay, tanimlanan i¢ carpimlar tarafindan
iiretilen metrige gore tam ve ayrilabilirdir. David Hilbert boyle bir uzayin iki farkh
realizasyonunun bulundugunu gostermistir. Bunlarndan birisi reel dogru tizerindeki
bir aralikta tanmimlanan Lebesque olgekli, £2, biitiin kompleks degerli fonksiyonlar:
icerirken, digeri ise mutlak kare toplamlarinin, 2, yakinsak oldugu sayilar dizilerin-
den meydana gelir. Bu iki uzay gortintisteki farkli yapilarina ragmen aym Hilbert
uzay1 lzerindeki operator hesabinin realizasyonlaridir. Kuantum teroisi baglaminda
Heisenberg matris mekanigi ve Schrodinger dalga mekanigi arasinda esdegerlik ise
bu gercege dayanmaktadir.! Hilber uzaymimn sahip oldugu bu o6zelliklerin farkinda
olan Von Neumann ise kuantum teorisi i¢in uzayin elemanlarini vektor olarak isim-
lendirmis onlarini i¢ ¢arpimlarinin, ya da mutlak karelerinin, ise skaler olduklarini
gostermig oldugu ve besg aksiyomdan olugan formalizmini geligtirmigtir (Bu aksi-
yomlarin daha giincel ve kabul edilen versiyonu ise Ballentine tarafindan devam
eden yillarda teoriye kazandirilmig olmakla birlikte tezin ilerleyen baglilarindan ge-
nel yorumun aciklandigi boliim igerisinde verilecektir). Ayrica kuantum teorisine
dair geligtirilmig diger formalizmler, Dirac formalizmi, ve daha detayli bir agiklama
icin Max Jammer'n ilgili kitabia [7] bakilabilir.

Kisa stirede gecirdigi bu biiyiik evrimle birlikte formalizmi sayesinde matematiksel
boyutta da gelisimine devam eden kuantum teorisi, bu stire¢ boyunca etkin rol alan
bilim adamlarinin teori hakkinda, fenomenler ve formalizm itibariyle, farkli bakisg
acilarina sahip olduklarini daha bariz bir sekilde gozler 6niine sermistir. Ortaya ¢ikan
bu farklilik ise kaginilmaz olarak teoriye dair birden fazla yorumun geligtirilmesine
neden olmustur. Ancak bu yorumlara ge¢gmeden evvel yorum kavrami ile ne an-
latilmak istedigini kisaca agiklamak gerekmektedir.

Yorum kavrami, boliimiin devaminda sunulan orneklerle gosterilecegi tizere, fiziksel
bir teori icin, 6zellikle soyut konulari ele alan teorilerle kiyaslandiginda, daha sik rast-
lanan bir olgudur. Oyle ki, soyut teoriler icin gerceklik, gozlenen, 6l¢iim... v.b. gibi
deneysel olarak elde edilen dig etmenlerin (formalizme digardan etki eden anlaminda)
varolmamasi sebebiyle, tamamen mantiksal yapiya sahip, soyut bir formalizm yeterli
olabilmektedir. Bu nedenle soyut konulari ele alan bu teoriler i¢in sadece formalizm
diizeyinde farkliliklarin miimkiin oldugunu ve bu farkliliklarin da yorum olarak ka-
bul edilemeyecegini sdylemek yanhs olmaz. Ote yandan fiziksel bir teori, deneysel
etmenlerin teoride 6nemli bir yeri olmasi nedeniyle, 1) teoriye ait soyut bir forma-
lizm, F, 2) bu formalizme karsilik gelen, deneysel etmenler iizerinden geligtirilmis,
kurallar biitlinii, R, seklinde iki yapi tizerine temellendirilebilir. Burada formalizm
F teorinin mantiksal iskeletini olugtururken, tiimdengelimci yapisiyla ampirik an-
laml kavramlari genellikle i¢in bulundurmaz ama bununla birlikte mantiksal yapida
spesifik bir anlami1 bulunmayan parcacik, durum fonksiyonu gibi, fiziksel teorilerin

L7 The fact that this isomorphsim entails the equivalence between Heisenberg’s matriz mechanics
and Schrédinger’s wave mechanics made Von Neumann aware of the importance of Hilbert spaces
for the mathematical formulation of quantum mechanics.”|[7]



deneysel tarafina ait, kavramlara da sahiptir. R ise en yalin ifadeyle, formalizm F
icinde bulunan ve mantiksal olmayan kavramlarin F ile iligkisini deneysel etmenler
ve fenomenler tizerinden kuran kurallar biitiinii olarak tanimlanabilir. Bu kurallarin
getirdigi diizenlemeler araciligiyla formalizm F fiziksel anlamina kavusur. Bu nedenle
fiziksel bir teori i¢in sadece F’in geligtirilmesi yetersiz olup R'nin de siirece katilarak
F ile iligkilendirilmesi tam bir teori elde edilebilmesi adina kaginilmazdir. Yorum
kavrami ise tam olarak bu noktada, F ve R arasindaki iligskiye bagh olarak, farkh
durumlarin meydana gelmesi sonucu ortaya ¢ikmaktadir. Daha acik bir dille, F ve
R'nin iligkilendirilmesi sonrasinda, farkli bakig agilarindan kaynaklh olarak, ortaya
¢ikan Ozgiin durumlarin Fr seklinde bir kiime olugturdugunu diisiinelim, boylece
kiimenin her bir elemani teoriye dair gelistirilmesi miimkiin olan farkl bir yorumu
ifade edecektir. Buna verilebilecek en iyi 6rneklerden birisi ise kuantum teorisinin
temel kavramlarindan birisi olan dalga fonksiyonuna teorinin yorumlar: tarafindan
yitklenmis farkli anlamlardir. Oyle ki, dalga fonksiyonu genel yoruma gore sistemin
tasvirini, olasiliksal yapidaki bir dagilim iizerinden, veren soyut bir dalga olarak
kabul edilirken, pilot-dalga teorisi iginse ortama yayilmig olan fiziksel dalgalarin
varligi ile birlikte sistemi tasvir eden, ve belirli kogullar saglanmasi durumunda ise
olasiliksal yapisini kaybederek tam bir kesinlik ile sistemi betimleyebilecek, bir kav-
ram oldugu varsayilmaktadir. Kiime benzetmesinden bakacak olursak genel yorum
ve pilot-dalga teorisi burada kuantum teorisi i¢in olusturulabilecek Fr kiimesinin
Ozgiin birer elemani olup teoriye katilmis olduklar1 goriilmektedir.

Bu yorumlar arasindan, zamani itibariyle, one ¢ikanlari ise Paris yorumu ve Kopen-
hagen yorumu olup, kendilerinden ¢ok daha once ortaya ¢ikmig olan bilimsel deter-
minizm (scientific determinism) ve indeterminizm (indeterminism) disiincelerinin
bir anlamda kuantum teorisindeki karsiliklari olarak kabul edilebilirler. Yorumlar
baz aldiklar1 diigiinceler iizerinden ele alinirsa; bilimsel determiniz, Paris yorumu,
sistemin (ya da olayin) yeterli derecede bir kesinlikle ge¢miginin (6lglimiin hassa-
siyetine bagh olarak), ki gegmig kavraminin fiziksel teorilerdeki kargihigi baglangig
kosullar1 oldugunu burada belirtmek yararli olacaktir, ol¢iim oncesi bilindigi tak-
tirde eldeki hareket denklemlerinin (Schrodinger dalga denklemi gibi) yardimiyla
sistemin dinamiginin istenilen derecede bir kesinlikle tasvir edilebilecegini savunur-
ken, indeterminizm, Kopenhag yorumu, boyle bir tasvirin baglangic kogullarinin
olctim Oncesi bilinemeyecegi varsayimindan hareketle bilimsel determinizmin sadece
bir adet miimkiin durumu dahi ongorememesi halinde sistemin tasvirinin indeter-
minizm ile elde edilebilecegini savunur. Daha agik olarak; determinizm ge¢mis ve
gelecegi aciklanabilirlik agisindan ayni kefeye koyan bir yol izlemektedir, 6yle ki
gecmis sahip oldugu tiim kogullarin etkisiyle tam bir bilinebilirlik ile simdiye (su
ana) ulagirken gelecek ise ona sebep olan tiim kogullarin bilindigi varsayimi netice-
sinde ayni ge¢gmiste oldugu gibi tiim miimkiin versiyonlar: bilinebilir ve 6ngoriilebilir
olarak kargimiza cikacaktir. Bu durumlarin sadece birinin dahi ongoriillememesi ya
da bilinememesi ise indeterminizmin gegerli oldugu sonucu ortaya koyacaktir (her
iki diigiincenin daha detayl agiklamalar1 i¢in Karl Popper’in ilgili kitabma [3] ve
EKLER 6.6’ya bakilabilir).

Iki yorum taban tabana zit diisiincelere sahip olmalarma ragmen kuantum teori-
sine zaman icerisinde ¢ok onemli katkilar vermis ancak bununla birlikte birgok
tartigmanin da nedeni olmuglardir. Bu tartigmalarin en sonuncusu ise Solvay Kon-
feransi'nda sahne bulmus olup, indeterminizm ve teorideki karsiligi olan Kopenhag



yorumunun, ozellikle siireksiz durumlara dair getirdigi ¢oziimlerin o donem itibariyle
Paris yorumuna kiyasla daha tutarl olan agiklamalar: nedeniyle, genel yorum olarak
kabul edilmesinin teorinin gelecegi acisindan daha uygun olacagi diigtiniilmiistiir.

Eski Kuantum
Teorisi
(Plank, Einstein, Bohr)

Dalga-Pargacik
Dualitesi
(de Broglie)

Yeni Kuantum

Teorisi
(Schradinger, II?eisenher.
Bohr, Born)

Kuantum
Hidrodinamigi
(Madelung)

Kopenhag Yorumu
(Bohr, Born, Pauli,
Dirac)

Pilot-Dalga Teorisi

(de Broglie)

okme Teorileri Genel Yorum Coklu Diinyalar lefgl:?‘i
{Bell, Ghirardi, (Pauli, Born, g

Wi
Rimini, Weber) Heisenber, Bohr (Everaft, DeWitt) (Bohm)

Sekil 1.1: Kuantum Teorisinin Evrimi ve Yorumlar:

Bu diigtince fizik diinyasinin ¢ogunlugu tarafindan benimsenmesine kargin teoriye
dair diger alternatif yorumlarin ortaya ¢ikmasina engel olamamigtir. Solvay Konfe-
ransi oncesi ve sonrasinda anlatilan bu siireg ise Sekil 1.1’de verilmektedir.

Sekil 1.1 tizerinden bir analiz yapilirsa acik¢a su sonuca varilabilir ki; kuantum te-
orisi gecirdigi evrimlerle beraber yeni yorumlara kavugmus ve bu yorumlar sayesinde
daha da zenginlegmistir. Bu nedenden 6tiirii teorinin her bir yorumunun genel yahut
alternatif olmasina bakilmaksizin kisa agiklamalarinin girig boliimiinde yer verilmesi
hem tezin ana konulari hem de kuantum teorisinin daha iyi anlasilabilmesi adina
yararl olacaktir.

Ayrica Sekil 1.1 baz alinarak eski kuantum teorisinden yeni kuantum teorisine gecis
sonrasinda ortaya gikmig yorumlar olan genel yorum (general interpretation) ve pilot-
dalga teorisi (pilot-wave theory), teoriyi temelden etkilemeleri sebebiyle daha genis
bir aciklama ile aralarindaki farkliliklar tizerinde durulacaktir.

Tezin devam eden boliimlerinde ise ana konu olan Bohm Mekanigi ve onun iizerinden
EPR Deneyinin (Einstein, Podolsky, Rosen Deneyi) tasviri yapilacak ve buna ek
olarak Hardy Deneyi de gene Bohm Mekaniginin bakig acisiyla ele alinacaktir.



1.1.1 Genel Yorum (General Interpretation)

Solvay Konferansi nihayetinde diger yorumlar (pilot-dalga teorisi) iizerinde tistiinliik
kazanmas1 ardindan genel yorum, igerdigi postiilalari1 ve sundugu matematiksel for-
malizmle kuantum teorisinin gelecegini tayin etmistir. Bu nedenle hem teori hem de
diger yorumlarin ¢ikig noktalar:1 ve getirdikleri elegtirileri anlamak adina oncelikle
matematiksel formalizmi sonrasinda ise postiilalarini ele almak dogru olacaktir.

Bilhassa Von Neumannin essiz katkilar: [0] ile ilk adimlari atilan genel yorumun
matematiksel formalizmi sonraki yillarda L.E. Ballentinein ilgili makalesinde [9] yer
verdigi aksiyomlar tizerinden ele aldig1 versiyonla giincel haline kavugmustur. Bu
aksiyomlar1 siralayacak olursak;

1. Gozlenebilir (observable), R, Hilbert uzayindaki, #, hermitsel operator ile
temsil edilir. P,, R'nin ortonormal 6zvektorlerine denk diigen ortogonal pro-
jeksiyon operatorleri, r,, ise R'nin 6zdegerleri olmak ftizere;

R=> rP, (1.1)

seklinde gosterilebilir. Buna ek olarak P,’nin agilimi ise dejenere 6zvektorler,
a, lizerinden;

P, =) la,r,){(a,r| (1.2)

ifadesine sahip olacaktir. Bununla birlikte siireksiz durumlarin ele alinmasi
nedeniyle toplam sembolii kullanilirken eger stirekli durumlar i¢in bir ¢ikarim
yapilirsa toplam yerine integre etmek yeterlidir.

2. Durum (state), o, hermitsel, kesinlikle negatif olmayan ve birim izli (unite
trace) olan durum operatorii ile temsil edilir. ¢,, 6zdurum vektori, g,, 6zdurum
degerleri olmak iizere(superpozisyon prensibi bozmayacak sekilde);

Q:Zann) (¢nl (1.3)

seklinde ifade edilebilir (0 < g, <1ve ) 0, =1).
3. Durumlar, saf (pure) ve karigik (mixed) olmak tizere iki ayrilirlar;

e saf durum:

=0 (14
Tr(e®) =1 (1.5
e karisik durum:
o' # 0 1.6)
Tr(o*) <1



4. Gozlenebilirin beklenen degeri (average value), < R >, durumu iizerinden
yazilirsa;

<R >=Tr(oR) (1.8)
ile gosterilir. Normalize olmug vektor, |¢), i¢inse < R >= (¢| R |¢) ifadesine
indirgenir.

5. Bir gozlenebilirin sahip olabilecegi 6zdegerlerin, o 6zdegerlerin olasiliklar ile
beraber, hesabi;

P =3l (Wla,r) (19)

seklinde verilir (burada | (¢]a,r,)|* ashnda olasihk yogunlugunun, p, daha
detayli bir versiyonudur).

6. Hilbert uzayi, saf durumlara karsihik gelen vektorlerden olusan altuzaylarin
koherent toplamindan ibarettir. Bununla birlikte karigitk durumlar da belirli
kistaslar altinda saf durumlar iizerinden tasvir edilebileceginden sadece saf
durumlar tizerine kurulu bir uzay tanmimlamak yeterlidir.

7. 6. aksiyom ile ele alinan Hilbert uzayindaki vektorlere karsilik her hermitsel
operator bir gozlenebilir ile temsil edilebilir.

8. Fiziksel bir sistemin hareket denklemi, U, iiniter operatér olmak tizere;

o(t) = Ue(to)U™" (1.10)

veya

[¥(8)) = U li(to) (1.11)

seklinde ifade edilebilir (saf durum igin U = U(t,1,)).

Ballentine'in acik¢a sundugu matematiksel formalizm ardindan genel yorumun pos-
tiilalarina bakilirsa, biraz sonra da gosterilecegi gibi, tek veya topluluk kuantum
sisteminin siirece bagl olarak bir se¢cime tabi tutuldugu goriliir. Bunlari ise Bohm
ilgili makalesinde [10] su sekilde siralamaktadir;

1. Bir kuantum sisteminin durumu, tek kuantum sistemini esas alan bir dalga
fonksiyonu iizerinden, deterministik yapidaki hareket denklemi, Schrodinger
denklemi ile;

ih(%) = {— %W + V(x, t)|V(x,t) (1.12)

ifade edilebilir.



2. Tek kuantum sisteminin fiziksel durumunu veren dalga fonksiyonunun tasviri,
birbirine benzer tek kuantum sistemlerinden olusan topluluk kuantum sistemi
iizerinden elde edilir. Bu varsayimin istatistiksel bir yapiya sahip oldugunu
ise matematiksel formalizmde sunulan 5. aksiyomdaki olasilik yogunlugu ifa-
desiyle acikca goriilmektedir. Bu baglamda varilabilecek bir diger sonug ise
sistem iizerine yapilan 6l¢iim sonucu R gozlenebilirine degil 4. aksiyomla goste-
rildigi gibi onun dalga fonksiyonuna gore olan olasilik katsayilar: ile beraber
ozvektorlerinden birinin elde edilecegidir.

3. R operatoriiyle temsil edilen gozlenebilirin, dalga fonksiyonu iizerinde yapilan
bir ol¢iim sonucunda, R;, 6zdegerler, ¢;, ozfonksiyonlar olmak tizere;

U(x) = Z Ripi(x) (1.13)

ifadesi ile gosterilen 6zdurumlarindan (¢;; R;...) birine ¢oker. Buna kisaca dalga
fonksiyonunun ¢okmesi (wave function collapse) denir. Siire¢ boyunca dalga
fonksiyonun hangi 6zduruma ¢okeceginin tamamen istatistiksel olmasi ise genel
yorumun indeterministik yapiya sahip olmasinin temel nedenini olusturmaktadir.
Bununla birlikte ¢cokme iglemi dalga fonksiyonunda stireksizlige yol acacagindan
1. postilada verilen Schrodinger denklemiyle tezat bir durum ortaya koy-
maktadir. Oyle ki, bu tezat durum sonraki yillarda yeni alternatif yorum-
larm (Qokme Teorileri, Coklu-Diinyalar Yorumu... vb.) ortaya gikmasina neden
olmustur.

Postiilalar haricinde genel yorumun temelinde yatan, hatta bircok durumu anlamak
ve aciklamak konusunda bagvurulan, onemli bir diger konsept ise belirsizlik ilkesi-
dir. Heisenberg tarafindan gelistirilen ilke kisaca acgiklanirsa; herhangi bir sistemin
konumunun (z bilegeninin) yapilacak 6l¢iim sonucu elde edilmesinin sistemin mo-
mentumunda (p bilegeninde) Ap gibi bir sapmaya neden olacagim (tabi ki bu durum
tam tersi i¢in de gegerlidir) ve bu nedende 6tiirti & — p gibi birbiriyle komiite etme-
yen bilegenlerin eg zamanl olarak elde edilemeyecegini sart kogmaktadir (varilan bu
kisitlamanin daha detayli bir agiklamasi i¢cin David Bohm’un ”Quantum Theory”
kitabinin 5. boliimiine bakilabilir [11]).

Bununla birlikte ilkenin matematiksel gosterimi ise Ap momentumdaki standard
sapma, Az konumdaki standard sapma ve ii = "/2r, indirgenmisg Planck sabiti, olmak
uzere;

Ap. Az > h (1.14)

(1.14) ifadesi ile gosterilebilir. Bu egitsizligin bagka bir versiyonu ise eneji ve zaman
ikilisi icin AFE.At > h seklinde elde edilebilir.

Pilot-dalga teorisi ve Bohm mekanigi agisindan ele alinacak olunursa; belirsizlik
ilkesinde birbiriyle komiite etmeyen nicelikler aracihigiyla ulagilan bu esitsizlik o ni-
celiklerin degerlerini elde etmek amaciyla sistemde yapilan ol¢timiin sistem tizerinde
neden olduklar1 goz ardi edilemez etkinin bir sonucudur. Yani bir bagka deyisle,
yapilan 6l¢iim sistemdeki belirsizligin ana kaynagi olup ol¢iim yapilmadigi takdirde
sisteme dair herhangi bir belirsizlik s6z konusu degildir. Bu nedenle belirsizlik ilkesi



sistemin dogasinda olan bir durum degil 6l¢cenden kaynakli bir sonuctur. Bohm bunu
”Causality and Chance in Modern Physics” kitabinin [12] 3. béliimiinde su sekilde
belirtmektedir:

7. asigain parcacik karakteristiginden otiuri, olgilen elektronun momentumunda kaci-
nilmaz olarak degisiklik gozleneceginden, elektronun momentumu tzerinde on gorile-
meyen ve kontrol edilemeyen Ap kadarhk bir sapma olusur. Isigin dalga karakte-
ristiginden oturi ise, gozardy edemedigimiz bir belirsizlik sebebiyle, resimdeki kes-
kinlige bagl olarak elektronun konumunda Az kadar bir sapma olusur. Boylece ba-
sit bir hesaplama ardindan Heisenberg belirsizlik ilkesi, Ap.Ax > h elde edilmis
olur.”?

Buna benzer bir bagka aciklama ise Solvay Konferansi sirasinda Hendrik A. Lo-
rentz tarafindan dile getirilmigtir. Agiklamasinda Lorentz, belirsizlik ilkesinin sistem
iizerinde yapilan ol¢iimiin hassasiyetinin sinirlarinin neler olacagini dayattigini an-
latirken bunun yani sira olasilik kavraminin da siirece pesinen dahil edilmesi yerine
sonu¢ kisminda katilmasi gerektigini savunmustur.

Genel yoruma dair agiklanmasi gereken bir diger énemli ilke ise Niels Bohr'un ta-
mamlayicilik ilkesidir (complementarity principle)[13]. Teorik ve deneysel boyutta
yoruma, dogada varolan diializmin bir sonucu olarak, diizenleme getiren ilke, be-
lirsizlik ilkesi ile agiklanmig olan, sistemin birbiriyle yakindan iligkili bilegsenlerinin
secilmig ikilileri baglaminda es zamanli olarak ol¢iillemeyecegini savunur. Bu ikililer-
den birkagi ise;

e Konum ve momentum

e Enerji ve zaman

Farkli spin dogrultular:
e Dalga ve parcacik ikilisine dair 6zellikler
e Uzay-zaman ve nedensellik (dolaniklik ve uyumluluk)

seklinde siralanabilirler. Tamamlayicilik ilkesi adindan da anlasilabilecegi gibi sis-
tem tzerinde yapilacak ol¢timlerin o sisteme dair elde edilebilecek ikili ozelikler
baglaminda belirli bir sinirlamaya sahip olmasi gerektigini mantiksal boyutta or-
taya koyarak kuantum teorisini tam bir teori yapmay1 amaclayan bir ilkedir. Bu
amag ise kuantum teorisinin sistem tizerinde yapilacak herhangi bir olgiimiin, kla-
sik mekanigin aksine, sistemde gozardi edilemeyen ve kontrolii de miimkiin olmayan
etkisinden kaynaklanmaktadir.

1.1.2 Cokme Teorileri (Collapse Theories)

Genel yorumun agiklamasinda sistemin dinamiksel igleyigini agiklamak adina geligti-
rilmig 1.postiila, Schrodinger denklemi, ve 3.postila, dalga fonksiyonunun ¢okmesi,

27 Because of the particle character of light, we cannot avoid disturbing the particle momentum,
creating an unpredictable and uncontrollable disturbance which we denote by Ap. Because of the
wave character of light, we cannot avoid an uncertainty, Az, in the position of the electron, coming
from lack of sharpness of the image. A simple calculation which we shall not, however, give here
leads to the indeterminacy relations of Heisenberg, Ap.Ax > h, where h is Planck’s constant.”[12]



onceki boliimde kisaca deginildigi tlizere, sahip olduklari deterministik ve indeter-
ministik yapinin sonucu olarak birbirleriyle tezat olugturmaktadirlar. Yorumun te-
melindeki postiilalar arasinda ortaya ¢ikan bu tezathiga bir ¢oziim sunmak amaciyla
geligtirilen ¢cokme teorileri bu sayede sistemin dinamiksel igleyigine dair tam agiklama
getirmeyi amaclar. Ancak bu aciklamadan evvel hem ¢okme teorilerinin ¢ikis nok-
tasi olan hem de genel yorumla birlikte kuantum teorisinin énemli konularindan biri
olan ol¢gme stirecine bakmak gerekir.

Kuantum teorisinin 6lgme siireci, David Bohm™un ilgili kitabinin [14] 22. béliimiinde
acikladigr tizere, makro boyutlardaki 6lgen ve mikro boyutlardaki 6lciilenden olugan
bir sistemin (tamamen ¢evreden soyutlandigi varsayilarak) bilegenleri arasindaki et-
kilesimlerden ve onlarin dinamiksel igleyislerinden olugsmaktadir. Bu baglamda sis-
tem tizerinde yapilan bir 6lgiim onun 6zdurumlarindan birine (olasilik katsayilarina
bagl olarak) ¢okmesine neden olur. Ancak dalga fonksiyonunda gergeklesen bu
¢okiiglin dogas1 genel yorumun 1. ve 2. aksiyomlar1 sebebiyle 6l¢iim sonucu hangi
6zduruma gegilecegini sadece istatistiksel olarak verebilecektir (bu istatistiksel du-
rum en basit sartlar (iki ézdurumun lineer toplamindan olusan dalga fonksiyonu)
i¢in dahi gegerli oldugu unutulmamahdir). Zira 2.postiila ile aciklandig: iizere ge-
nel yoruma gore sistem tzerinde yapilan ol¢iim, o sistemin benzerlerinden olugan
topluluk iizerinden yapilmasi nedeniyle kacinilmaz olarak istatistiksel bir sonug ve-
recektir.

Schrodinger denkleminin deterministik yapisiyla uyusmayan bu durum (az énce
aciklan sistemin ozdurumlardan birine gecisle lineerligini kaybettigi indeterminis-
tik yapiya sahip dalga fonksiyonunun ¢okmesi) aciklamak amaciyla birden fazla
¢okme teorisi geligtirilmistir. Bu teorilerin temelinde ise P. Pearle’nin lineer olma-
yan Schrodinger denklemi tizerine ele aldigr ilgili makalesi [15] bulunmaktadir. Bu
makaleden hareketle ortaya ¢ikan teorilerden ilki ise kuantum mekaniginde spontane
lokalizayonlar (quantum mechanics with spontaneous localizations) adiyla bilinen ve
dalga fonksiyonunun ¢okmesini; nasil oldugu, nerede oldugu ve gerceklesme stiresi
bazinda aciklamaya calisan teoridir. Sonrasinda gelistirilen diger ¢okme teorileri
arasindan GRW [16] modeli siirecin gergeklesme siiresine ve nerede olduguna dair ge-
tirdigi aciklama nedeniyle onemli bir yere sahiptir. Bununla birlikte diger bir 6nemli
teori ise Roger Penrose’un dalga fonksiyonunun ¢ékmesinin kuantum gravitasyonel
etkilerin bir sonucu oldugunu éngordiigi teorisidir [17]. Her iki teori de gelig nok-
talar1 farkli olmasina ragmen ozellikle vardiklar1 sonuglarin benzerlikleri itibariyle
bibirlerini destekleyerek ¢okme siirecine dair énemli katkilar sunmaktadirlar.

(Cokme teorileri hakkinda daha detayl bir aciklamaya ise Giancarlo Ghirardi'nin
”Collapse Theories” [18] adli yazisinda dalga fonksiyonunun ¢tkmesinin genel yorum
iizerinden kisa tarihi ile birlikte yer verilmektedir.

1.1.3 Coklu-Diinyalar Yorumu (Many-Worlds Interpretation)

Hugh Everett [19] tarafindan evrenin tiimiintin tek bir kuantum sistemi olarak ele
alinabilecegi fikri tizerinden hareketle ortaya cikan ¢oklu-diinyalar yorumu 6zellikle
dalga fonksiyonunun ¢okmesi konseptine getirdigi farkl bakig agisiyla kuantum yo-
rumlar1 arasinda 6zel bir yere sahiptir.



Everett’in ¢oklu-diinyalar yorumuna gore ele alinan her bir kuantum sistemi i¢inde
bulundugu evrenden soyutlanamazlar. Bu nedenle sistemin tanimi yapilirken, genel
yorumun aksine, ol¢en ve olgiilen kavramlarinin yeniden gozden gegirilerek tiim ev-
renin Ol¢gme siire¢i boyunca hesaba katilmasi gerekmektedir. Yani bir bagka deyisle,
Olciilenin tiim evreni kapsadigi ve 6lgenin de bu evrenin bilegenlerinden biri oldugu
var sayillmaktadir. Boyle bir sistem igin dalga fonksiyonu yazilacak olunursa: A(a)
olgen, C(b, t) olgiilen (6lgen digindaki tiim evren) ve sistemin dalga fonksiyonu ¥(a, b, t)
olmak tizere;

U(a,b,t) ZA )G (D, 1) (1.15)

seklinde ifade edilebilir. Burada A, (a) 6l¢enin 6zfonksiyonlar1 olup gergeklegme siire-
cinin 6lgenin omriine kiyasla ¢ok kisa olmasi nedeniyle zamandan bagimsiz ka-
bul edilmektedir, (,(b,t) ise olgiilenin zfonksiyonlaridir. (1.15) ifadesi {izerinde
yapilabilecek her 6lgiim ise sonug olarak, dalga fonksiyonunun tiim evreni tasvir et-
mesinden otiirii, evrenin tamaminda bir degisime sebep olacaktir. Birbagka deyisle
coklu-diinyalar yorumuna gore miimkiin her bir 6l¢iim sistemin 6zdurumlarindan
birisine ¢okmesiyle sonuglanacaktir. Bu siire¢ genel yorumdaki dalga fonksiyonun
¢okmesine ¢ok benzemekle birlikte sistemin tiim evreni kapsamasi sebebiyle hem
olcen hem de olciilen iizerinden bir degisime sebep oldugudan ¢ok daha komplike bir
yapiya sahiptir. Olciim iglemiyle gerceklesen siireci bir sekil yardimiyla aciklanacak
olunursa: A(a) 1.6l¢iim ve C'(c) 2.6l¢tim olmak iizere;

Cyy,
Gy,
Clc)
AICJ]

Cn
g~

A(a) f
W(a,b.r) L’

V(a,b,t) ZA”(U)Q”(JJ I)] [AIC_(L'JI'J) = 2(1((')‘,&{(!.!)
j=1

Sekil 1.2: Coklu-Diinyalar Yorumunda Muhtemel Dalga Fonksiyonu Olusumlari

seklinde gosterilebilir. Sekil 1.2’de gosterildigi gibi baglangig dalga fonksiyonu W(a, b, t)
tizerinde yapilan 6l¢iim A(a) onun 6z durumlarina ¢gokmesini saglar. Ancak bu ¢ékme
islemi genel yorumdakinden farklidir zira ¢oklu-diinyalar yorumunda oOlgen de ayni
olciilen gibi kendi 6zdurumlarinin toplamindan olusur bu da genel yorumun ak-
sine ol¢iim sonucunda dalga fonksiyonunun 6lcen ve Olgiilenin 6z durumlarimin ko-
relasyonlarindan her birine ¢okmesi anlamina gelmektedir. Bu siire¢ yapilacak her
olgiimde (A(a),C(c)...) kendini tekrarlayarak devam eder. Olusan 6z durumlarsa
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hem birbirleri hem de diger oOl¢iimlerde ortaya cikan 6z durumlarla dejenere ol-
madigindan herhangi bir etkilesim veya iliskiye sahip olamazlar. Siire¢ daha somut
olarak agiklanacak olunursa, baglangic durumundaki evren tizerinde yapilacak bir
olgiim onun birbirleriyle paralel olan alt evrenlerine ¢6kmesine sebep olur (sadece
bir alt evrene degil her birine) ve bu evrenlerin hepsi kendi 6zelliklerine sahip olacak
sekilde gercekliklerini kazanmig olurlar.

Ozet olarak coklu-diinyalar yorumuna gore sistem ftizerinde yapilan her bir 6lciim
sistemin 6zdurumlarindan sadece birine degil birbiriyle dejenere olmayan (bu tiim
6lglimlerin 6zdurumlar i¢in gegerlidir) tiim 6zdurumlarima ¢okmesi anlamina gel-
mektedir.

1.1.4 Kuantum Hidrodinamigi (Quantum Hydrodynamic)

1926 yilinda Erwin Madelung ilgili makalesinin [20] 6zetinde tek kuantum sistemleri-
nin Schrodinger denklemiyle verilen dinamiginin, hidrodinamigin hareket denklem-
leriyle de ifade edilebilecegini ileri stirmiis ve makalesindeki birebir kiyaslamalarla
bunu agama asama gostermigtir. Bahsi gecen gosterimin makalede acikca verilmesi
nedeniyle yeniden ¢ikariligini yapmanin bir yarari olmadigini diigiinmekle birlikte
bilhassa Schrodinger denkleminin siireklilik denklemiyle olan yakindan benzerligi
dikkat edilmesi gereken onemli noktalardan birisidir.

Sunulan bu gosterim haricinde makalede ulagilan bir diger 6nemli sonugsa Schrodin-
ger denkleminin tek kuantum sistemlerinin dinamigini verebilirken topluluk ku-
antum sistemleri i¢in kabul edilebilir bir agiklamaya sahip olmadigi elestirisidir.
Bu elestiri takip eden yillarda kuantum teorisinin merkezinde yer alarak bircok
arastirma ve makaleye konu olmustur. Bu makalelerden birkaci, ozellikle kuantum
hidrodinamigi yorumunu gelistirmeleri agisindan, Bohm-Vigier, M.Schonberg ve Ta-
kabayasi'nin makaleleri olarak gosterilebilir [21], [22], [23].

1.1.5 Pilot-Dalga Teorisi (Pilot-Wave Theory)

Yeni kuantum teorisinin ortaya ¢ikigiyla, Schrodinger dalga denkleminin gelistirilmesi
ile, parcacigin dinamiginin tasvirine dair birgok fikir geligtirilmigtir. Bunlardan birisi
ise pilot-dalga teorisinin atasi olan ¢ifte ¢dziim teorisidir (theory of double solution).
Schrédinger’in dalga mekanigi ve Born’un parcacigin olasiliksal yorumuna dayanan
teori; parcaciga eslik eden gercekten de fiziksel bir dalganin, v-dalgasi, oldugunu
ve genliginin ise, de Broglie'nin tabiriyle, genel yorumun ele aldigi v-dalgasiyla
kiyaslandiginda ”¢ok kii¢iik” oldugunu varsaymaktadir. Bu iki dalganin arasindaki
iligki ise, C'; normalizasyon katsayis1 olmak iizere, v = C'v esitligi ile ifade edilebilir.
Teorinin ismi veya 6zii ise direkt bu iki, fiziksel ve olasiliksal yapidaki, dalganin,
parcacigin dinamigini acgiklayan dalga denkleminin ¢oziimleri olmalarindan gelmek-
tedir. Bu ¢ozlimlere bakacak olursak, aralarinda (az 6nce belirtilen esgitlikte gosteri-
len) iligkinin de yardimiyla sadece v-dalgasinin yazilmasi yeterli olacagindan, a ve ¢
gercek fonksiyonlar olmak tizere v-dalgasi:
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v=a(z,y,z, t)eq:p(f.igﬁ(x y,2,1)) (1.16)

seklinde ifade edilebilir. v-dalgasi tizerinden parcgacigin dinamigini veren rehber denk-
lemi ise; W enerji, p momentum olmak iizere:

p o VO
UZW:_C 84’/{% (117)

olarak elde edilebilir. Yazilan bu rehber denklemi, boliimiin devaminda daha detayl
olarak anlatilacagi gibi, parcacigin baglangic kosullarina bagh olarak geligtirilmis
olup onun zamana gore evrimini elde etmemizi saglar. Basglangi¢ kogullarinin bili-
nemedigi durumda ise olasiliksal bakig acisindan yaklagarak 1-dalgasi lizerinden bir
coziim elde etmek miimkiin olacaktir. Ozetle teori, -dalgas: iizerinden elde edi-
len olasiliksal ¢oziimii ile birlikte, v-dalgasi yardimiyla dalga mekanigine dayanan
¢Oztiimii de iginde barmdirmaktadir.[2]

Cifte ¢oziim teorisini temel alarak kuantum teorisinde deterministik bakig agisinin
miimkiin oldugunu benimseyen ve bu noktadan hareketle tek kuantum sisteminin
dinamigini klasik mekanigin temel ilkelerinden biri olan en az eylem ” at least action”,
0S8 = 0, pirensibi araciligi ile agiklanabilecegini diisiinen Luis de Broglie pilot-dalga
teorisini geligtirmigtir.

Pilot-dalga teorisini kisaca aciklanacak olunursa; farzedelim elimizde bir topluluk
kuantum sistemi var ve bu sistem N tane spinsiz ve rolativistik olmayan hizlarda
hareket eden parcaciklar (tek kuantum sistemi) toplulugundan meydana gelsin. Ge-
nel yorumun aksine pilot-dalga teorisi bahsi gecen her bir parcacigin konfigiirasyon
uzaymda () belli bir konuma q = (g1, g2, ...gqn) sahip oldugunu kabul eder ve
parcaciklarin olugturdugu topluluk kuantum sisteminin ise ¥(q,t) dalga fonksiyonu
ile tasvir edilebilecegini savunur. Buradan hareketle matematiksel olarak ¥(q, t) tize-
rinden sistemin hareket denklemini yazarsak, V' zamandan bagimsiz potansiyel, m;
j.parcaciginin kiitlesi, V; j. parcaciga etkiyen nabla operatorii olmak tizere;

in2Y q’ [Z (zmj) Vi + V]xp(q,t) (1.18)

ifadesini elde etmis oluruz (hareket denkleminde parcaciklar arasindaki etkilegimler
hesaba katilmamigtir).

Pilot-dalga teorisine gore parcaciklarin koordinatlarinin konfigiirasyon uzayinda be-
lirli olmasi sayesinde gidisatlarinin (trajectories) elde edebilecegini ve bunun da reh-

ber denklem (guiding equation) yardimiyla yapilabilecegini savunur.(Rehber denk-
lemin ¢ikarihgt EKLER 6.1)
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Tek parcacik (tek kuantum sistemi)igin rehber denklem;

dq(t) h V¥

Lo M\ R VE 11
q=— —S (q,1) (1.19)

Cok pargacik (topluluk kuantum sistemi) igin rehber denklem;

dg;(t) _ h  V;¥
d m U

(QIa(Iz’"-(INat) (1.20)

qgj =

seklinde ifade edilebilir. Burada tek parcacik icin konfigiirasyon uzay1 ®* iken cok
parcacik icin R*" dir. Rehber denklem sayesinde baslangic kosullarinin bilinmesi ha-
linde tek parcacigin ve dogal olarak bu pargaciklardan olugsan ¢ok parcacikl sistemin
gidisatlar: elde edilebilir.

Deterministik yapisi nedeniyle, (1.18) ifadesiyle de gosterildigi gibi, dl¢iim 6ncesi
baslangi¢c kosullarinin belli oldugunu savunan pilot-dalga teorisi genel yorumun te-
mel araclaridan olan olasilik yogunlugunun (probability density), p = |¥]*, yo-
rum i¢indeki karsihgim konfigiirasyon uzaymda ele alarak p = |¥(q, t)*|dQ seklinde
tanimlar. Pilot-dalga teorisinin sundugu bu tanim ilerleyen boliimlerde detaylica an-
latilacak olan kuantum denkligi (quantum equilibrium) olarak bilinmektedir. Kisa
bir agiklama ile kuantum denkligi, pilot-dalga teorisi ve Bohm mekanigi yorum-
lar1 gibi deterministik (bilimsel deterministik) yorumlarm hesap verebilirlik ilkesi
(the principle of accountability)[%] sinilar1 dahilinde, sartlara baglh olarak, genel yo-
rum gibi indeterministik yapidaki yorumlara denk sonuglar elde edilmesine imkan
saglayan bir nevi doniisiim olarak kabul edilebilir. Bu kabul aracihigiyla sistem igin
olasilik denklemi yazilirsa, P olasilik olmak ftizere,

= /Q |U(q,t)]2d (1.21)

seklinde ifade edilebilir. Bunu takiben olasiik akisinin (probability current), j,
yardimu ile siireklilik denklemi (continuity equation);

dC Dl q’ Z Viji =0 (1.22)

i. pargacik igin elde edilmig olur(Siireklilik denkleminin gikarihgt EKLER 6.2). Bun-
lara ek olarak j7; = g;(t)|¥(q,t)|* olmas1 nedeniyle rehber denklemi de;

i
v’

q;(t) = (1.23)

seklinde elde edilebilir.Rehber denkleminin bu (1.23) ifadesi daha sade bir gésterim

olmakla birlikte olasilik yogunlugu, p, ile olasilik akisi, 7, arasindaki oranin ayni
anda sistemin hizinin tasvirini de vermektedir.
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Elde edilen bu cikarimlar1 dalga fonksiyonunun polar formu ¥ = Re’S/" (S(q,t))
olmak iizere) yardimiyla tekrar yazilirsa;

q;(t) = (1.24)

rehber denkleminin daha kullanigh versiyonu olan (1.24) ifadesi elde edilmis olur.
Burada S dalga fonksiyonunun fazi ve R ise genligidir. Rehber denklem bu versi-
yonu nedeniyle daha kullanilabilir olup Bohm mekaniginin anlatildigi ikinci boliimde
tekrar ve daha detaylica agiklanarak tam bir ¢ikarimi yapilacaktir.

Pilot-dalga teorisi ilk kez aciklanma firsati buldugu Solvay Konferansi boyunca
kargilagtigr yogun elestiriler sonucu (6zellikle Wolfgang Pauli'nin elastik olmayan
sagilamalarda teorinin yetersiz kaldigi elestirisi bu konuda bagi ¢ekerken ona karsi
getirilecek cevap ise gizli degiskenlerin teoriye katilmasiyla verilebilmektedir), Eins-
tein’in izlenen yolun dogru oldugunu belirterek teorinin dogru yolda ilerledigini dile
getirmesine ragmen, de Broglie tarafindan terk edilmistir (¢ifte ¢dziim teorisi ve pilot
dalga teorisinin yagadigi bu siirecin tam bir aciklamasina Max Jammer'in ” The Phy-
losophy of Quantum Mechanics” [7] kitabinda yer verilmektedir). Ancak 1952 yilinda
David Bohm aymi sene igerisinde yazdig1 iki makalesiyle tamamen klasik mekanigin
sundugu araglar1 kullanarak pilot-dalga teorisinin vardigi sonuclara matematiksel
olarak daha agik bir yontemle ulagmig ve teorinin geliserek once nedensel yorum
(causal interpretation) daha sonraki ismiyle ise Bohm mekanigine déniigmesine ne-
den olmustur.

1.2 Genel Yorum ve Pilot-Dalga Teorisinin Kiyaslanmasi:
Cift Yarik Deneyi

Genel yorum ve pilot-dalga teorisi olmak tizere iki yorumun konumuzla ilgisi olan
ozelliklerini tasvir ettik fakat bu iki yorumun bilinen bir deneye bakig agilarini kisaca
anlatmak sanmirim aralarindaki farklhiliklar1 anlayabilmek adina ¢ok yardimci ola-
caktir. Bu nedenden otiirii ¢ift yarik deneyi hem yorumlarin gelismesinde etkin rol
oynamasl hem de sundugu sonuglarin teoriye dair énemli saptamalarda bulunmasi
sebebiyle uygun bir secim olacaktir.

Cift yarik deneyinin amaci elektronun dogasinin tam olarak anlagilarak pargacik mi
yoksa dalga karakteristigine mi sahip oldugunu tespit etmektir. Deneyin bir ben-
zeri ise kendisinden yaklagik bir asir once bu sefer 1g1gin dogasini anlamak adina
gerceklegtirilmis olan Young girigsim deneyidir. Benzer diizeneklere sahip olan her iki
deney icin degigsen tek unsur ise ¢ift yarik deneyinde elektron kullanilirken, Young
girisim deneyinde 151k kullaniliyor olmasidir. Konumuza daha yakin olmasi ve tarih-
rihsel olarak da giincel bir deney olmasi sebebiyle ¢ift yarik deneyini anlatmak uygun
olacaktir.

Deney diizenegi Sekil 1.3 de goriilebilecegi gibi bir adet elektron kaynag, tize-
rinde A ve B olmak iizere iki adet 6zdes yarik bulunan bir engel ve ekrandan
olugmaktadir.
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engel ekran

Sekil 1.3: Cift Yarik Deney Diizenegi

Farzedelim elektron kaynagi her bir At zaman araliginda ¥ dalga fonksiyonuyla ifade
edilen bir adet elektronu (elektron burada tek kuantum sistemi olarak diigtiniilme-
lidir) yaymmlayacak sekilde ayarlansin ve her birinin kaynaktan ¢ikip ekrana ulagma
stiresi de 7 gosterilsin (deney esnasinda sirasiyla kaynaktan gikan elektronlarm bir-
birleriyle etkilesmemeleri i¢in At > 7 olmasi gerektigi unutulmamalidir).

Deney perdedeki yariklarin kapali ve acgik olmalarina bagh olarak ti¢ durumdan
olusur;

1. Durum: A yarigi acik, B yarigi kapali.
2. Durum: A yarigi kapali, B yarigi agik.
3. Durum: A yarnig acik, B yarigi agik.

A

B

engel ekran

Sekil 1.4: Cift Yarik Deneyi: A yariginin agik oldugu durum

1. Durum ic¢in elektronlar Sekil 1.4 ile gosterildigi gibi dogal olarak A yarigindan
gecerek ekrana ulagirlar. Bu elektronlarin her birinin dalga fonksiyonunu W4 ()
seklinde kabul edersek, elektronlarin A yarigindan ge¢me olasiligy;
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Py = |Uy(x)| (1.25)

seklinde gosterilebilir.

A

B

engel ekran

Sekil 1.5: Cift Yarik Deneyi: B yariginin acik oldugu durum

2. Durum iginse Sekil 1.5 ile gosterilen siire¢ gercekleseceginden dalga fonkisyonu
Up(x) olmak iizere elekronun B yarigindan ge¢gme olasiligl ise;

Py = |Ug(x)]? (1.26)

olarak gosterilebilir.

A )>>

)

engel ekran deseni

Sekil 1.6: Cift Yarik Deneyi: her iki yarigin acik oldugu durum
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3. Durum’da ise elektronlar Sekil 1.6 ile gosterildigi gibi %50 olasihikla A veya B
yariklarindan birinden gecerek ekrana ulagirlar. Bu durum igin olasilik ifadesini ya-
zacak olursak;

P = U (x) + Up(x| (1.27)

P = |Va(a)]” + [Up(@)]" + Va() Vs () + Va" (@) Vp(2) (1.28)

seklinde olacaktir.

3. Durum sonucunda elde edilen olasilik degeri (1.28) denkleminde gosterildigi tizere
gibi klasik mekanigin elektronun sadece parcacik karakteristigine sahip oldugunu
varsayan bakig agisiyla agiklanamaz. Cilinkii klasik mekanige gore (1.28) ifadesi sa-
dece 1. ve 2. terimlerden olugsmas: gerekirken onlara ek olarak 3. ve 4. terimlerle
karsilagilmaktadir. Bu terimler bize elektronun sadece parcacik karakteristigine degil
onunla birlikte dalga karakteristigine de sahip oldugunu gostererek klasik mekanigin
deney sonuclarini aciklamada yetersiz kaldigini gostermektedir. Kuantum teorisinin
gosterdigi lizere 3. ve 4. terimlerinin hesaba katilmasiyla elektronun dalga karakte-
ristigine de sahip oldugunun ortaya ¢gikmasi kendini fiziksel olarak ekrandaki girigim
deseni ile gozler ontine serer ve deney sonuclariyla tam bir uyum gosterir.

Bu noktaya kadar gergeklegen siireci Feynmann su sekilde agiklamaktadir [25]:

"Varilan sonu¢ sudur ki: Elektronlar engele, parcaciklar gibi, yumrular “lumps”
seklinde varirken bu yumrularin varis olasiliklarinin dagilima bir dalganin yogunluk
dagilimina benzemektedir. Bu bakimdan elektron “bazen parcacik, bazense dalga”
davrams: gostermektedir.”

Ancak deney bir adim daha ileri taginarak elektronun hangi yariktan gegtigini belir-
lemek adina gozlemcinin hesaba katilmasiyla ortaya farkli bir sonug ¢ikmaktadir. Bu
sonug ise sekil 1.7 gosterildigi gibi 1. ve 2. durumlarin lineer toplamindan meydana
gelen, klasik mekanik dahilinde beklenen, parcacik karakteristiginden bagka bir sey
degildir.

Sonug olarak gekil 1.6 ve 1.7 ile gosterildigi iizere elektronun hangi yariktan gegtiginin
bilinmesi konumu tizerinde yapilan ol¢iim sonucu dalga fonksiyonunda bir ¢ckmeye
neden olarak dalga karakteristigini kaybetmesine yol agmaktadir. Herhangi bir 6l¢iime
maruz kalmadiginda ise dalga karakteristigini koruyarak ekranda girisim deseniyle
kendini gostermektedir. Yani bir baska deyisle, genel yoruma gore elektron siireg
boyunca karsilagtigi duruma bagh olarak parcacik veya dalga karakteristigi goster-
mektedir.

Pilot-dalga teorisi ise bu siirece farkli bir bakig acisiyla yaklagmaktadir. Oyle ki,
pilot-dalga teorisi, genel yorumun aksine, elektronu tek kuantum sistemi olarak ele
alir ve onun deney siireci boyunca sadece yariklardan birinden gegtigini gosteren
gidigatin agik tasvirini sunar (bu tasvir ise yorumun agiklamasinda verilmistir). Sekil
1.7 ile gosterilen gozlemcinin varligindaki deney diizeneginde ise yorumun baz aldig:

37We conclude the following: The electrons arrive in lumps, like particles, and the probability of
arrival of these lumps is distributed like the distribution of intensity of a wave. It is in this sense
that an electron behaves “sometimes like a particle and sometimes like a wave.””[25]
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gézlemci

P,
A
B

5
engel ekran

Sekil 1.7: Cift Yarik Deneyi: gozlemci varhiginda her iki yarik acik oldugu durum

dalga fonksiyonu yapilan 6lgiim sonucu altsistemin sarth dalga fonksiyonuna (the
conditional wavefunction of a subsytem) gegis yapar (bu durum 6lglimiin ortamda
kaginilmaz olarak neden oldugu etkinin dogal sonucudur). Bu gegigin ekranda neden
oldugu degisiklik ise dalga girisiminin yok olarak elektronlarin sadece parcacik ka-
rakteristigi gostermesi olarak kendini gostermektedir. Sonug olarak her iki yorum da
farkl yollardan gozlemcinin elektronlar iizerindeki etkisini kendilerine 6zgii yontemle
aciklayabilmektedirler.

3.durumda karsilagilan ekrandaki dalga girigimini ise ortama dagilmig olan pilot
dalgalarin elektronun, basglangi¢ kosullarina baglh olarak, gidisat1 tizerindeki etki-
lerinden bagka bir sey degildir. Pilot dalgalarin konuma bagh etkisiyle sekillenen
bu gidigsat ise daha once de agiklandigi gibi rehber dalga denklemi ile gosterilebil-
mektedir (Sekil 1.8’de goriilebilecegi gibi pilot dalgalar ortama dagilmig olan farkh
fazlardaki ozdeg duragan dalgalar olup elektronla olan etkilesimleri iizerinden onun
gidisatini belirleyen temel etkenlerdir).

A )>>
e B )>>

engel ekran deseni

Sekil 1.8: Cift Yarik Deneyi: pilot-dalga yorumunun bakig acisiyla
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Daha acik bir yorumla, kaynaktan ¢ikan her elektron perdeye dogru olan hareketini
ortamdaki pilot dalgalarin belirdigi gidigatlar iizerinden gerceklestirmektedir. Bu
gidigat ise pilot dalgalarin fazi ve baslangic kogullarina baglh olarak tayin edilir ve
tamamen deterministiktir.

Ozetle pilot dalga teorisine gore elektron siirec boyunca, genel yorumun aksine,
parcacik ve dalga karakteristigine birlikte sahip olmaktadir (burada bahsi gegen siireg
tamamiyle 3.durum i¢in ele almmigtir). Gozlemcinin varligindaki durumda ise elekt-
ron, genel yorumda dalga fonksiyonunun ¢okmesi ile aciklanan stireci, pilot dalga-
larin etkilerinin ,0lgiim aletinin etkisi sonucu, dalga fonsiyonuunda meydana gelen
degisimlerle aciklamaktadir.

Pilot-dalga teorisinin One siirdiigii bu stirecin bir benzerine makro boyutlarda da
rastlamak miimkiindiir [26]. Tlgili makaleye konu olan deneyde gésterildigi iizere
yiriyen damlalar (walking droplets) olarak adlandirilan makro boyutlu parcaciklar
ayni kuantum seviyesinde ele aldigimiz elektronlar gibi makro boyuttaki pilot dal-
galarin (ki deneyde bu pilot dalgalarin karsiligi su dalgalaridir) etkisiyle ortamda
hareket ederken parcacik ve dalga karakteristigini sergilerler.

Tim bu farkhliklarina ragmen iki yorum da deneyle ortiigen sonuglara varmak-
tadirlar. Ancak pilot-dalga teorisi deterministik yapisi sonucu stokastik olmadigindan
fiziksel olarak agiklamasi daha acik ve yalindir. Bununla beraber Bohm mekaniginin
anlatildigr 2. boliimde c¢ift yarik deneyi tekrar ele alinarak elektronun yariklardan
sonra izledigi yol hakkinda da bir aciklama yapilacaktir.

1.3 C)lgiim Stuireci

Girig bolimii boyunca genel yorum basgta olmak tizere diger yorumlarda da tabiati
itibariyle 6nemli bir yere sahip olan Ol¢iim siireci, kuantum teorisindeki birgok ko-
nuyla yakindan iligkili oldugundan bir alt baglik ile aciklanmay1 haketmektedir. An-
cak bu aciklamaya ge¢meden evvel ol¢iim stireci boyunca ele alinacak olan sistemin
bilegenleri iizerinden tam bir betimlemesini yapmak gerekir. Bu baglamda yapilacak
ilk varsayim ise yorumlarin tamami i¢in miimkiin en ideal ¢ergevenin baz alinmasi
dogru olacagindan ¢oklu-diinyalar yorumunun dayandigi varsayim olan sistemin tiim
evrenden olugtugu kabulii gézardi edilecektir. Bu ise dogal olarak ele alinacak sis-
temin g¢evresinden soyutlanmig, en azindan olgiim siireci boyunca, oldugunu kabul
etmek demektir ve bu soyutlanmiglik sayesinde sistem; ol¢iilen, ol¢tim aleti ve 6lgen
gozlemci olmak tizere ii¢ bilesenden olugmus olur. Bilegenler arasindan ise 6l¢iimii ya-
pan gozlemcinin Olgiilen iizerindeki etkisi sadece klasik boyutlarda bir etkiye ne-
den oldugundan kuantum seviyesinde kayda deger bir sonuca sebebiyet vereme-
yeceginden oOlgiim siirecinden cikarilabilir. Yapilan bu varsayimlar sonucunda siste-
min, kuantum boyutunda ele alinan bir sistemin, olciilen ve 6lgiim aleti olmak iizere
iki bilesenden meydana geldigini daha dogrusu kuantum boyutundaki sonuglarin
onemsendigi bir 6l¢iim siireci i¢in sadece bu iki bilegenin etkin rol oynadigi kabul

edilebilir.
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Sistemin her bir bilegeni i¢in ayr1 dalga fonksiyonlarini yazacak olursak, olciilenin
dalga fonksiyonu:

Vo= Conm(z,t) (1.29)

ol¢iim aletinin dalga fonksiyonu ise:

fa=>_ Dnun(y,t) (1.30)

seklinde gosterilebilirler. Bilegenlerden meydana gelen sistemin Schrodinger dalga
denklemi ise Hamiltonyen gosterimi kullamlarak l¢iim 6ncesi i¢in (bilegenlerin ara-
larinda herhangi bir etkilesim olmadigi koguluyla):

H = Ho(x) + Ha(y) (1.31)

olarak ifade edilebilirken, 6l¢iim sirasindaysa (6lgtim kaynaklh olarak aralarinda olugan
etkilesimin hesaba katilmasiyla beraber):

H = Ho(x) + Ha(y) + He(xa y) (132)

seklinde ele alinabilir. Ol¢iim sonrasinda ise élciimden kaynakl olcillen ve 6lciim
aletinde olugabilecek degigimlerin verilen egitliklerdeki degiskenlere kiyasla gozardi
edilebilir oldugundan, zira yapilan o6l¢iim gerceklesme siiresi bakimindan Bohm™un
tabiriyle diirtiisel 6lglim (impulsive measurement) olarak kabul edildiginden, yani
AH, AH, << H,, H,, H, olmas1 nedeniyle sistemin Hamiltonyeni ol¢iim oncesi ile
ayni olacaktir. Yani toparlayacak olursak; diirtiisel bir 6l¢iim i¢in 6l¢timiin Oncesi ve
sonrasinda sistemin Schrodinger dalga denklemi, ¥ sistemin dalga fonksiyonu olmak
tizere,:

m%—f — (H, + H,)V (1.33)

seklinde olacaktir. Olgﬁm stireci igin elde ettigimiz (1.32) ifadesinde H, = 0 olmasi
durumunda ise v(x,t) ve u(y,t) fonksiyonlar egitligin ¢oziimlerini verecektir. Ele
alinan siire¢ ¢ok kisa bir zaman araligin1 baz almasi nedeniyle bu ¢oziimler zamana
gore sabit olacaklarimdan v(x) ve u(y) seklinde yazlabilirler.

Sistemi bir biitiin olarak kabul edip tizerinde yapilan ol¢iimi m o6zdegerlerine ve
U () Ozvektorlerine sahip bir operator, M, ile ifade edecek olursak etkilesim Ha-
miltonyeni bu operatoriin bir fonksiyonu olacaktir, H, = H.(M,y),. Sistemin dalga
fonksiyonu ise en yaln haliyle, f,,, = [ v, * ¥(z,y,t)dz olmak tzere,:
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U(a,y,t) = > funly, t)om(z) (1.34)
ifadesi ile gosterilebilir. Olciim sirasmdaki dalga denklemi ise:

thum(:ﬂ) = Hofu(y, t)om(z) (1.35)

olmak tizere H,, M operatoriiniin fonksiyonu oldugundan (1.35) ifadesi diizenlene-
rek:

vy IOt (0 = 37 Holm, y)oae) . (1.36)

m

sonucunu elde etmig oluruz. Zamana bagl olmamasindan yararlanarak egitligin sag
ve sol tarafin1 v,.(z) ile carpar ve integre edersek:

T ) g0 (1.37)

durumlarini elde etmig oluruz ki bu da ol¢timiin kendisi olan M operatoriiniin
r ile gosterilen ozdegerlerine karsilik gelen farkli durumlar: i¢in genel bir ifadeye
ulagtigimiz anlamina gelir. Genel yoruma gore M operatorii iizerinden gergeklegsen bu
siire¢ dalga fonksiyonunun ¢okmesi olarak agiklanirken, pilot-dalga teorisi ve Bohm
mekanigi yorumuna gore ise, bu yorumlarin aciklamalarinda yer verildigi gibi, siste-
min durumlar1 arasindaki éngoriilebilir geciglerdir. Iki yorumun siirece dair getirdigi
farkli bakig agilarmin detayh bir agiklamasi i¢in ” Applied Bohmian Mechanics” [27]
kitabinin ilk boliimiine bakilabilir.

1.4 Tezin Amaci ve Boliimlerin igerigi

Genel yorum ve pilot-dalga teorisi, kuantum teorisini ve ele aldigi fenomenleri acikla-
ma amaciyla geligtirilmig ilk yorumlar olmakla birlikte sonraki yillarda ortaya ¢ikan
diger yorumlar tizerinde de biiyiik etkilere sebep olmuglardir. Bu sebeple tezin amaci
ve konusunun daha kolay anlagilabilmesi adina girig bolimiinde miimkiin oldugunca
kisa ve yalin bir aciklamayla iizerinden gegilmistir. Diger boltimleri kisaca o6zetle-
yecek olursak;

Tezin ikinci boliimii pilot-dalga teorisi ile ayni goriise ve yapiya sahip olan Bohm
mekanigi tizerinedir. Bu béliimde Bohm mekaniginin ortaya ¢ikig sebebi anlatilip for-
malizmi ile beraber aciklamasi tizerinde durulmus ve genel yorumla karsilagtirilmasi
yapilmigtir.
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Tezin ticlincii boliimiinde genel yoruma elegtiri amaciyla gelistirilmis EPR deneyi yer
almaktadir. Bu boliimde EPR deneyinin agiklanmasi ile birlikte Bell egitsizlikleri ve
kuantum teorisi tizerindeki etkisi ele alinmigtir.

Tezin dordiincii boliimde ise EPR deneyinin bir nevi modern versiyonu olan Hardy
deneyi tizerinden rolativistik Bohm mekaniginin kisa bir tartigmasindan olugmaktadir.

Son boliim olan beginci boliimde ise tezin genelinde varilan sonuglar ve ¢ikarimlar
iizerinden yola ¢ikilarak yazarin konuya dair getirdigi elestiri ve fikirlere yer ve-
rilmigtir.

Bunlara ek olarak, tarihsel bir siralama yapsaydik ikinci boliimiin ardindan dérdiinci
boliim olan EPR Deneyi ile devam etmemiz gerekirdi fakat deneyin sebep oldugu en
onemli sonuglardan biri olan gizli degiskenlerin (hidden variables) dogasini anlamak
adina oncelikle Bohm Mekaniginin aciklamasinin yapilmasinin daha dogru olacagina
karar verildiginden boliimlerin siralamasinda kronoloji esas alinmamaigtir.
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2 BOHM MEKANIGI (BOHMIAN MECHANICS)

2.1 Bohm Mekanigi’nin Cikis1 ve Sebebi

1952 yilinda David Bohm, rolativistik olmayan kuantum teorisinin tamamen deter-
ministik bir bakig acgisiyla agiklanabilecegi fikrinden hareketle, ayni sene igerisinde
yaymlanan iki makalesi tizerinden, kendine gore nedensel yorum (causal interpre-
tation) ama ilerleyen zamanlarda Bohm mekanigi olarak adlandirilacak olan genel
yoruma alternatif nitelikteki yorumunu geligtirmigtir. Bohm makalelerinin ilkinde
[28] genel yoruma zamanimin sartlar1 dahilinde dayandigi varsayimlar ve bakig agisi
iizerinden bir elestiri yapip devam eden boltimlerde ise gelistirdigi alternatif yoru-
mun formalizmi ile beraber kuantum teorisinin temel fenomenlerinin kendi yorumu
lizerinden tasvirine ayirarak yeni bir yorumun gerekliligini savundugu boliimle ma-
kalesini sonlandirmistir. Tkinci makalede [29] ise kuantum teorisindeki ¢l¢iim siireci,
gizli degiskenler (hidden variables), EPR deneyi gibi bu tezin de temelini olugturan
konular tizerine agiklamalarda bulunmustur.

Bohm mekaniginin agiklanmasina ge¢gmeden evvel Bohm’un neden bu denli radikal
sayilabilecek bir karar alarak alternatif bir yorum gelistirdigini aciklamak boliimiin
anlagilabilirligi agisindan ¢ok yardimei olacaktir.

Solvay Konferansi ardindan kuantum teorisinin genel yorumunun eksik oldugunu
savunan diiginceler zamanin 6nde gelen fizikcileri ve matematikg¢ileri tarafindan
biiyiik bir elestiriyle karsilanmiglar ve bunun sonucu olarak da teorinin genel kit-
lesi tarafindan diglanmiglardir. Bu durumun ilk ornegi pilot-dalga teorisidir, 6yle
ki ortaya ciktigi yil icerisinde yapilan yogun elestiriler sonucunda terk edilmek zo-
runda birakilmigtir (Solvay Konferansi). Bu diglanmaya verilecek bir diger 6rnek
ise EPR deneyinin, genel yorumun dalga fonksiyonu kavraminin fiziksel gergekligin
tam olarak ifade etmedigi, ya da dalga fonksiyonunun eksik oldugu, argiimani ve
onun bir sonucu olarak gizli degiskenlerin (hidden variables) var oldugu diigiincesi-
dir. Ancak bu diiglince de pilot-dalga teorisi ile benzer kaderi paylagmig ve John Von
Neumann [30] (kuantum teorisinin matematiksel formalizmini verdigi aksiyomlar ile)
tarafindan kuantum teorisinin yapisinin gizli degiskenler gibi eklemelere ihtiyaci ol-
madigr ¢ikarimi ile 6nii kesilmistir. Bu iki ornekle ilgili olarak literatiirde bircok
kaynak mevcuttur. Ancak ozellikle gizli degiskenlere deginecek olursak konuya dair
elegtirilerin sadece Von Neumann ile sinirh kalmayip devam eden yillarda bircok fi-
zik¢i tarafindan da (Gleason, Kochen ve Specker, Jauch ve Piron) farkl matematik-
sel aksiyomlar araciligiyla kuantum teorisinden ¢ikarilmaya calisildigi goriilmektedir.
Bunlarin hepsine ise Bell 1966 yilindaki ilgili makalesi [31] {izerinden ele alarak sunu-
lan her bir formalizmin gene kendileri tarafindan geligtirilmis kisitlayici aksiyomlar
ile miimkiin oldugunu ve bu nedenle de genellestirilemeyecegini ispatlamigtir. Bu-
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nunla birlikte Bohm, Bell’in makalesinden onbes yil 6nce, gizli degiskenlerin kuan-
tum teorisinde yerinin olmadig: fikrini kabul etmedigini 6zellikle ikinci makalesinin
9. boliimiiniin sonug boliimiindeki gu paragraf ile agik¢a gorebiliriz [29]:

"Burada, not edilmelidir ki Von Neumann’in teoremi konuyla (gizli degiskenler)
alakasizdir, ¢inki bu sefer kuantum teorisinin genel yorumunun kayitsizca gecgerli
oldugu varsayvmimn étesine, kuantum seviyesinin de otesine, gidiyoruz.”!

Bu paragrafta Bohm, genel yorumunun dalga fonksiyonunun miimkiin tiim durum-
lar1 tasvir edemeyecegini diigiinmesi sebebiyle, yani gizli degigskenlerin katilmasi ge-
rektigini diisiindiigiinden, Von Neumann'in kendi gelistirdigi aksiyomlar iizerinden
yaptigl ¢ikarimlarin genellestirilemeyecegini acikca ifade etmektedir.

Ozetle, kuantum teorisinin genel yorumunun indeterministik yapisinin tek kuan-
tum sisteminin tam bir tasvirini veremeyecegi ile birlikte Von Neumann’in gizli
degigkenleri digarladigl formalizasyonunun ise biitiin durumlar: agiklayabilecek sekilde
genellestirilemeyecegini diigiinen Bohm alternatif bir yorumun geligtirilmesi yolunu
se¢mis ve bu secimin de deterministik yapiy1 esas almasi gerektigini dile getirmistir.
Yaptigl secimin en biiytlik sebebini ise ilk makalesinin 6zetinde ve girig boliimiinde
acikca belirtmis oldugu gibi gizli degiskenler yardimiyla takviye yapilmamig bir ku-
antum teorisinin 6zellikle kuantum alti1 (subquantum) seviyede, Bohm bu sinir
makalesinde 10~ cm ve alt1 olarak almustir, yetersiz kalacagim diigiinmesidir. Bu
diigiince Bohm Mekaniginde Determinizm ve Ol¢iim sorunu isimli alt boliimde tek-
rar ele alinacaktir. Ancak oncelikle Bohm mekaniginin matematiksel olarak forma-
lizmine bakmak daha yararh olacaktur.

2.2 Bohm Mekanigi Formalizmi ve Ozellikleri

David Bohm, Bohm mekanigini gelistirirken de Broglie ile benzer amaca sahip
olmasina ragmen kendinden yirmibes yil once gelistirilmig pilot-dalga teorisinden
bihaberdi lakin buna ragmen her iki yorum da determinizm diigiincesine dayan-
malar1 nedeniyle birbiri ile ¢ok benzer sonucglara varmislardir. Bununla birlikte,
varilan sonuglarda izlenen yollarin (her iki yorum da klasik mekanigi esas almakla
birlikte izledikleri yollar degisiktir) farkli olmasi sebebiyle, Bohm mekanigi kuan-
tum teorisinin agiklamaya caligtigi doganin yapisindaki karakteristigi daha iyi kav-
rayarak pilot-dalga teorisine kiyasla matematiksel anlamda daha tatmin edici bir
formalizm sunmustur. Bunun en 6nemli kanit1 ise Bohm mekaniginin ¢ikariliginda
ttim giplakligr ile karsimiza ¢ikacak olan kuantum potansiyeli (quantum potential),
Q(x,t), kavramiin ta kendisidir. Kuantum potansiyeli klasik mekanik ve kuantum
teorisi arasindaki farkin tam olarak neden kaynaklandigini gosteren ¢ok onemli bir
kavramdir. Ayrica iki yorumun matematiksel olarak izledigi yollar arasindaki fark
hakkinda konugmak gerekirse; pilot-dalga teorisi 1. dereceden differansiyel denklem-
ler aracihgiyla gikarimlarm elde edip eylem pirensibi (action principle) tizerinden
hareket ederken, Bohm mekanigi 2. dereceden differansiyel denklemleri kullanarak

L7 Here, it should be noted that Von Neumann’s theorem is likewise irrelevant, this time because
we are going beyond the assumption of the unlimited validity of the present general form of quantum
theory...”[29]
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klasik mekanigin énemli araclarindan biri olan Hamilton-Jacobi denklemini:

aS(x,t) . 9S(x,1)

H(x, p )+ 5

=0 (2.1)

esas almaktadir. Bohm’un Hamilton-Jacobi denklemini segcmesindeki sebepler ise sis-
temin zaman ve konum boyutundaki degigiminlerinin birbiri ile olan iligkisinin tasvir
etmenin yani sira sistemin baslangic ve bitis kosullarinin da belirli oldugunu kabul
etmesine dayanmaktadir. Hamilton-jacobi denklemi verilen bu iki onemli kosulla
beraber sistemin tasvirinin yapilabilmesi icin ideal bir yap1 sunmaktadir. Bu yapiy1
ise Bohm mekanigi temel kavramlarinin ¢ikarimini yaparak gostermek en ideal yol
olacaktir.

Kolaylik olmasi adina farz edelim ki elimizde bir pargaciktan olusan ve tek boyutlu
bir sistem olsun. Bu sistemi de R ve S reel olmak iizere ¥(x,t) = R(zx,t)e* ™"/ po-
lar dalga fonksiyonu ile gosterelim. Bu dalga fonksiyonu i¢in Schrodinger denklemini
yazacak olursak:

. 0 iS(@, t)/n __ h2 2 iS(®, t) /n
zhatR(ac,t)e = 2mv + V(x) | R(x,t)e (2.2)

(2.2) esitligi ile gosterebiliriz. Esitligin sol tarafin1 agihp diizenlenirse:

o0 s, L OR IS\ s
zhatRe ih o Rat e (2.3)
sonucunu elde ederiz. Bu ifadeyle beraber, V? = V.V esgitliginin de yardimiyla

Schrédinger denklemini yeniden yazalim:

2
(m@ — R8—5> on = Iy (VRe™") + VRe™ (2.4)

2m

! |
- 5V (e“/hva%VS@”/h) + VR (25)

esitligin sag tarafinda yer alan ikinci tiirevi de alip tistel ifadeleri silelim:

R oS h? [ 1
h— — R— = ——|Z(2VS.V \V& V2R — —R(VSY| + VR (2.
ihr — R, 2m{h< SVR+R S)+ R~ R S)}+ R (2.6)

tiim iglemlerden sonra her iki tarafinda da imajiner ve reel kisimlarin oldugu bir
esitlik elde ederiz. Bu kisimlar: birbirleriyle eslestirirsek:
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OR | ,
= = —%<2VS.VR+RV S) (2.7)
S (VS K’ V2R

- om Tmmom ¥ (2:8)

(2.7) ve (2.8) denklemlerine ulagmig oluruz. Reel degerler R ve S’nin zamana gore
degisimlerinin gosteren bu denklemler ayni zamanda Schrodinger denkleminin farkl
bir sekilde yeniden yazilmasina da imkan verirler. Ancak bu versiyonu elde etmeden
evvel p(x) = R?*(x) esitligini de hesaba katarak oncelikle 2.7 denklemini yeniden
yazarsak:

% + V.(p%) =0 (2.9)

esitligini elde ederiz. Daha énce de (1.24) esitliginde belirtildigi gibi V5/m iz ifade-
sine egit oldugundan yani (2.9) ifadesi siireklilik denkleminin, (1.22), (9%/ar+Vj = 0)
bir bagka versiyonu oldugundan olasilik yogunlugunun zamana gore degigiminin sis-
temin hiziyla yakindan iligkili oldugunu gostermektedir. Bu durumu daha acik ya-
zarsak:

% + V.(p'v) =0 (2.10)

ifadesini elde etmis oluruz. Benzer diizenlemeyi (2.8) esitligi iizerinden tekrarlar-
sak:

98  (VS)?

ot 2m

+ V(x)

_” [V2p l(qu _ 0 (2.11)

am| p 2 p?

Hamilton-Jacobi denklemine benzer bir esitlik elde ederiz. (2.11) ile elde edilen ifade
Bohm mekaniginin temel denklemlerinden biridir ve sistemin tasvirini yapmakla
birlikte ¢ok 6nemli bir farklihga sahiptir. Bu farklilik ise esitligin A katsayisi ile
birlikte denklemin olasilik yogunluguna bagl olan kismini igeren parcadir ve bu
parcay1 da David Bohm kuantum potansiyeli Q(x):

Q(x) = (2.12)

T LT T

am| p 2 p? “2m R

olarak adlandirmigtir. Bunun sebebi ise igeriginden de anlasilabilecegi gibi sadece
kuantum seviyesinde yapilan ol¢iimlerde hesaba katilabilir olmasidir.

Kuantum potansiyelinin dogasini ve denklemdeki yerini anlamak adma (2.11) esitli-
gine tekrar doniip miimkiin durumlara bakacak olursak; klasik durumlarda (A — 0)
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Q(x) kuantum potansiyelinin yok oldugunu goriiriiz, bunun sonucunda da klasik
mekanikte kargilagtigimiz Hamilton-Jacobi denklemine ulagmig oluruz. Diger durum
ise kuantum durumlandir (A # 0), bu durumlarda klasik durumlarin aksine hem
klasik potansiyel V' (x) hem de kuantum potansiyeli Q(x) sistem {izerinde belirli bir
etkiye sahiptirler.

Ozetle, Bohm Mekanigi gelistirdigi alternatif Schrodinger denklemi sayesinde hem
klasik mekanikte hem de kuantum teorisinde ele alinan sistemlerin tam bir tasvirini
verebilmekte ve bu 0zelligini de denklemlerinde agikca gostermektedir. Bu ¢ikarimlar
aracihigl ile Bohm mekaniginin goziinde klasik potansiyel V(x) ve kuantum potan-
siyelinin Q(x) etkisi altindaki bir pargacigin hareket denklemini Newton hareket
denklemi (ya da Euler hareket denklemi) yardimiyla yazacak olursak:

d d [VS(z,t)
ma'v(m, t) = m— [T] (2.13)

hizin tam diferansiyeli (¢/a:) hem konum hem zamani barindirdigy i¢in V.S(x, t) tize-
rindeki etkisi ise ¢/ar = 9/oi4+&V seklinde olacaktir. (2.13) ifadesini yeniden (V = 9/ax
olmak tizere) yazarsak:

m%v(w, t) = % {%(g—iy b aa—f] (2.14)
= —% [V(w, t) + Q(=x, t)} (2.15)

ifadesini elde etmis oluruz. Bu gikarimi Euler hareket denklemi araciligiyla da cikar-
mak mimkiindiir. Boylelikle Bohm mekanigi tizerinden klasik ve kuantum potansi-
yeli etkisindeki bir parcacik i¢in hareket denklemi elde edilmis olur.

Buraya kadar yapilan cikarimlar tek kuantum sisteminin tasviri tizerine olup son
esitliklerle birlikte sistemin hareket denklemi sayeside gidigsatlarinin elde edilebi-
lecegini goriilmiig olur (2.13). Peki gok pargacikli bir sistem i¢in kuantum potansiyeli
nasil bir karakteristige sahiptir ve alternatif Schrodinger denklemi nasil olmalidir?
Simdi bir de kisaca buna bakalim.

Kolaylik olmasi adina 6zdeg parcaciklardan olugsan ¢ok parcacikli bir sistemimiz
oldugunu kabul edelim ve bu sistemin dalga fonksiyonunu da ¥(zx, t) = R(x,t)e” ™/
seklinde ifade edelim. Ancak burada @ ile sistemin biitiinii tasvir edilirken sis-
temi olusturan ozdesg parcaciklarin herbirini ise @, ile ifade edildigini unutmayalim.
p(x,t) = R*(x,t) olmak iizere, bu sistem igin, (2.9) ve (2.11) esitlikleri yardimiyla,
bir takim diizenlemeler yapacak olursak:

%Rz(w, t) + ; Vi <%VRS(CU, t)R2<lU, t)) =0 (216)
%S(m, t) + Z % <Vk5(a:, t)) + Ve, t) + Q(x,t) =0 (2.17)
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alternatif Schrédinger denklemi olarak adlandirabilecegimiz (2.17) ifadesini elde
etmis oluruz. Bunlara ek olarak k. parcacigin hizini ve kuantum potansiyelinin acik
halini yazalim:

Wwwzzyggﬂ (2.18)
Qul(x,t) = —;—m%%w (2.19)

sistemin tamami i¢in kuantum potansiyeli ise:

Qx,t) = )  Qulw,t) (2.20)

I

seklinde ifade edebiliriz. Cok pargacikli sistem i¢in yazdigimiz alternatif Schrodinger
denkleminde (2.17) eklenen kuantum potansiyeli, @, (2.20) denklemi ile gosterildigi
tizere her bir pargaciga ait () 'lerin toplamina dayandigindan ve bu @y ’lerin ise (2.19)
denkleminde verilen i¢ yapisinda anlasilacagi gibi sistemin biitiintine bagl olmasi
sebebiyle sistemin hareket denklemi de her bir pargaciga ait Q);’lere bagh olacaktir.
Bunu daha acik gekilde gormek icin ¢ok parcacikl sistemin her parcaciginin hareket
denklemine bakmak yararh olacaktir. k. parcacik i¢in (2.15) esitligini yazalim:

d2.’13k 0
mg =g | V@ 0+ Q1) (2.21)

(2.21) esitliginde daha acik sekilde gorebilecegimiz gibi k. parcacigin harekete denk-
lemi sisteme etkiyen toplam kuantum potansiyeli Q(x,t) etkisi altindadir. Ayrica
(2.19) denkleminde i¢ yapist agikca gosterilen kuantum potansiyeli dalga fonksiyo-
nunun genliginin egriligine (curvature) dayanmasi ve buna ek olarak bir 6nceki pa-
ragrafta aciklanmis olan sistemi olusturan her bir parcacigin birbirleriyle olan anlik
etkilesimlerine bagl olmasi nedeniyle lokalite 6zelligine sahip degildir. Bu durum ise
kuantum teorisinin acik olarak lokal bir teori olmaginin kabulii anlamina gelmekte-
dir. Yani bir bagka deyisle, kuantum teorisi i¢ yapisi ve ilkelerinden 6tiirii, Newton
mekanigi ve klasik mekanik gibi, lokal olmayan (nonlocal) bir teoridir. Teorinin sa-
hip oldugu bu 6zellik, lokal olmayiglik (nonlocality), ise genel yorumda kapal olarak
(implicitly) ele alimrken, Bohm mekaniginde ise acik (explicitly) bir sekilde kuantum
potansiyeli iizerinden gosterilmektedir. Lokal olmayislik 6zelligi EPR deneyine konu
olan uzaysal olarak ayrik (spacelike seperated) ve ayni zamanda dolanik (entangled)
parcaciklarin aralarindaki etkilesimi aciklarken tekrar ele alinacaktir.

Bunlara ek olarak Bohm mekanigi hakkinda daha detayl bilgi edinmek i¢in Xavier
Oriols ve Jordi Mompart [27] ile birlikte Detlef Diirr ve Stefan Teufel’in [32] konuya
dair yazdiklar1 kitaplara bakilabilir.
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2.3 Bohm Mekaniginde Determinizm ve élgﬁm

Giris boliimiinde deginildigi gibi, yeni kuantum teorisinin ortaya ¢ikisi ve sonrasinda
genel yorumun onun birincil yorumu olarak iistiinliigii saglamasiyla beraber, kuan-
tum teorisi tek diiglincenin baskin oldugu bir gelisim siirecine girmistir. Bu diisiince
ise genel yorumun temelinde yatan ve tamamen stokastik sonuglar vermeye doniik
olan indeterminizm diigiincesidir. Fakat bu diigiinceyi benimseyen ilk yorum ol-
mamakla birlikte onu bir arag olarak gormeyip ele aldigi sistemin dogasinda var
oldugunu kabul eden genel yorum, yaptigi bu varsayimla yapisal bakimdan kiyasla-
nabilecegi diger biitiin yorum ve teorilerden ayrilmaktadir. Ik bakista etkisini tam
olarak anlamanin zor oldugu bu varsayim, yorum iizerinde radikal sonuglara sebep
olmaktadir. Zira genel yorum iizerinden sekillenmeye baglayan kuantum teorisinin
ilgili deneyilerinde (tek kuantum sistemlerinin baz alimmasi gereken deneyler basta
olmak {izere; EPR deneyi bunlara 6rnek gosterilebilir) bu durum kendini bariz olarak
gostermektedir.

Kuantum teorisine (genel yorum bazindaki kuantum teorisine) degin klasik meka-
nik, elektromagnetik teori gibi deterministik teorilerin yam sira determiniz ve in-
determinizm diigiincesini beraber biinyesinde barindiran istatistik mekanikte dahi,
esine rastlanmayan bu varsayim teori iizerinde ¢aligan birgok bilim insani tarafindan
kuskuyla kargilanmigtir. Bunlardan birisi olan, klasik mekanigi benimseyen ve ku-
antum teorisine dair deterministik bir yorumun miimkiin oldugunu savunan, David
Bohm bu amagla tamamen nedenselligi (causality) temel alan Bohm mekanigini
geligtirmistir.

Peki genel yorumla fiziksel teoriler baglaminda yeni bir anlam kazanan indetermi-
nistik yapiya karsi duyulan bu kuskunun sebebi ve deterministik yapiy1 bu denli
benimsemenin sebebi nedir? Bu sorunun cevabi boliimiin ana konularini agiklamak
acisindan kilit bir 6nem tagimaktadir.

Baslangic olarak klasik mekanik ya da onu temel almig Bohm mekanigi tizerin-
den hareket edecek olursak; sistemin baglangig kogullar1 belli oldugundan (deter-
minizm diigiincesinin getirisi olarak) onun Newton hareket denklemleri kullamlarak
dinamigini hesaplamak ve tam bir tasvirini vermek miimkiin olmakla birlikte tek sis-
tem tizerinde Ol¢iim yapilabilmesine, topluluk sistemlerine ihtiya¢ olmaksizin, imkan
saglamaktadir. Saglanan bu imkan ise tek sistemin dahi bir odl¢tilebilen oldugunu
varsaydigindan sistemin dogasinda herhangi bir belirsizlik olmadiginin agikca ka-
bult anlamina gelmektedir. Bu kabul yapilirken hesaba katilmasi gereken, ya da
unutulmamasi gereken, bir bagka varsayim ise 6l¢iim sirasinda Olgen tarafindan sis-
tem iizerinde olusabilecek tiim degisimlerin kontrol edilebilir oldugudur. Determi-
nizm diigtincesinin temel argiimanlar1 olan bu iki varsayimla beraber sisteme dair
muhtemel biitiin belirsizlikler ortadan kalkmig olur. Ancak burada not edilmesi ge-
reken onemli bir ayrinti vardir; bu da klasik mekanigin tamamen ideal durumlar ele
alarak deney sartlarinda, olgen, oOlciilen ve ortam sartlarindan ortaya gikabilecek ha-
talar1 gozard: ettigi gergegidir. Bu noktada bir diger onemli teori olan istatistik me-
kanik ise determinizm diisiincesini temel almakla birlikte indeterminizm diigtincesini
ol¢iim stireci i¢in arag niteliginde kullandigindan bir adim 6ne ¢ikmaktadir. Ayrica
her iki digiinceyi de kullanmasi nedeni ile istatistik mekanigi hibrid bir teori olarak
gormek miimkiindiir.
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Bohm mekanigi ise temelinde klasik mekanik ve determinizm diigiincesinin tiim var-
sayimlarini kabul etmesine ragmen oOlgiim stirecinde istatistik mekanikle benzer bir
yol izler. Bu yol ise daha once kisaca bahsedilmig olan, kuantum denkligi konseptinin
de merkezinde bulunan, olasilik yogunlugu, p(z,t) = |¥(x,t)|>dS, ifadesi iizerine te-
mellendirilmistir (kuantum denkliginin detaylh agiklamasi 4. béliimde verilmektedir).
Bu bakimdan acikca goriilebilir ki, Bohm mekanigi deneysel anlamda kuantum teori-
sinin sahip oldugu hassasiyeti acgiklayabilirken, teorik anlamda ise klasik mekanigin
miimkiin oldugunu savundugu ve ideal durumlar olarak tasvir ettigi herhangi bir
belirsizligin olmadigi durumlarin, belirli kogullar saglandig1 taktirde, aciklanabilir
oldugunu kabul etmektedir.

Genel yoruma gelecek olursak; yorumun, temelinde yatan indeterminizm diigiincesi
ve onun dogal sonucu olan stokastik yapisi nedeniyle, determinizmi esas almig yo-
rumlarin aksine, tek sistemin (kuantum seviyesindeki) tasvirinden feragat ettigi
goriilmektedir (zira genel yoruma gore sistemde degigime neden olmayacak herhangi
bir 6l¢iim iglemi miimkiin degildir). Varilan bu durum (veya secim) ise kaginilmaz
olarak tek sistem iizerinde gercgeklesecek bir 6l¢iimiin sistemi iizerinde sebep olacagi
degisim nedeniyle topluluk sisteminin baz alinarak istatistiksel bir yapinin ele alin-
masi1 gerektigini ongormektedir. Buna ek olarak tizere genel yorum, tek sistem tize-
rinde herhangi bir iglem, 6lgme gibi, yapildigi taktirde meydana gelen degisim hari-
cinde sistemin dogasindan kaynakl bir belirsizlige sahip oldugunu varsaymasi nede-
niyle sadece stokastik bir yapinin sistemi tasvir edebilecegini ongormektedir. Bu da
hem istatiksel mekanik hem de Bohm mekaniginde kullanilan olasilik yogunlugunun
artik bir ara¢ degil bir anlamda sistemin kendisini ifade ettiginin kabulii anlamina
gelmektedir. Sunulan bu varsayimin 6lgiim siirecine dair bir agiklamasini yapacak
olursak; topluluk sistemi iizerinde yapilan bir ol¢iim, 6l¢enin kaginilmaz etkisi sonu-
cunda sistemde bir degigime (dalga fonksiyonundaki indirgenme sonucu onun 6zdu-
rumlarindan birine gegmesine) neden olur. Bu degigim dlgenden degil 6lgiilen siste-
min dogasindaki belirsizlige bagl olarak istatistiksel sonuglarla ifade edilebilmekte-
dir.

Bohm mekanigi ise daha 6nce de bahsedildigi gibi duruma klasik mekanikteki de-
terminizm diigiincesi iizerinden yaklagir ve belirsizligin genel yorumun aksine sis-
temin dogasindan degil tamamen oOl¢iim yaparken kullanilan aygitin etkisi sonucu
ol¢iimi yapandan kaynaklandigim kabul eder. Bu nedenle olasilik yogunlugunu he-
saplamalarda kolaylik saglamasi amaciyla sadece matematiksel bir arag olarak kul-
lanilmas gerektigini savunur. Bu durumu David Bohm ilgili makalesinde [28] soyle
dile getirmektedir;

"Bohm mekaniginde elden edilen olasilik yogunlugu sayisal olarak genel yorum-
daki olasihk yogunluguna esittir. Ancak genel yorumda olasihk kavrama sistemin
dogasimdan kaynaklandigr varsayima oldugundan ...">

ve devaminda yaymladigi diger makalede [29] ise iki yorum arasindaki fark: gu sekilde
ozetler;

"Bu yiizden, bizim yorumumuzda, istatistiksel bir toplulugun kullanilma nedeni (kla-
sik mekanikte oldugu gibi) sadece pratiksel bir gerekliliktir, ve (bizce goz éniinde bu-

27This probability density is numerically equal to the probability density of particles obtained in
the usual interpretation. In the usual interpretation, however, the need for a probability description
is regarded as inherent in the very structure of matter...”[28]

30



lundurulmase dogru olan) sistemin durumunu tanvmlayan degiskenlerin hassasiyetlik
noktasindaki icsel taklidinin bir yansimas: degildir.”

2.4 Lokal Olmayigslik (Nonlocality) ve Bohm Mekanigi

Kuantum teorisi, hem genel yorum hem de Bohm mekaniginde kabul edildigi tizere
lokal olmayiglik (nonlocality) ozelligine sahip bir teoridir. Bu 6zellik kendini ge-
nel yorumda sadece ilkesel olarak (belirsizlik ilkesinin sart kostugu iizere) goste-
rirken Bohm mekanigindeyse ilkesel olmakla birlikte matematiksel olarak da kuan-
tum potansiyeli Q(x, t) lizerinden agik sekilde gostermektedir. 4. boliimde detaylica
agiklanacak olan lokal olmayighk 6zelligi, birbiriyle dolanik (entangled) pargaciklar-
dan olusan ¢ok parcacikli bir kuantum sisteminde parcaciklarin aralarinda konum-
dan bagimsiz olarak kargilikli anlik bir etkilegimi belirsizlik ilkesinin korunabilmesi
adina sart kogmaktadir. Bu ozellik kendine genel yorumda direk matematiksel bir
kargilik bulamasa da hesaplamalar {izerinden kendini gostermektedir (bu gosterim
ise EPR deneyi sonrasinda Bell egitsizlikleri baghigi altinda detaylica ele ahnacaktir).
Bununla birlikte Bohm mekaniginde lokal olmayiglik ozelliginin gosterimi matema-
tiksel olarak ¢ok yaln ve direktir. Oyle ki, cok parcacikli kuantum sistemi icin yazilan
alternatif Schrodinger denklemini 6zellegtirerek tekrar yazarsak:

S8+ Y L (VkS(:I:, t)>2 YV (@ t) +Qa,t) =0 (2.22)

iki parcacik i¢in 0zel bir durum elde etmig oluruz. Bu denklem araciligiyla parcacik-
lardan herhangi biri i¢in hareket denklemi k& = 1,2 olmak tizere yazilirsa:

m%vk(a}k, t) = _(%k [V(az, t) + Qx, t)] (2.23)

(2.23) ifadesi elde edilecektir. Esitlikte de goriildiigii gibi hem kuantum potansiye-
linin Q(x,t) hem de klasik potansiyelin V' (&,t) konuma bagl olarak kismi tiirevi
alinmaktadir. Bu da her iki potansiyelin parcaciklar iizerinde uyguladigi kuvvet
anlamina gelmektedir. Bununla birlikte esitlikte verilen klasik potansiyelin sisteme
digardan (digsardan kelimesiyle sistem diginda kalanlar kastedilmekle birlikte faz-
lasiyla muglaklik igerdigi unutlmamalidir) etkiyen tiim potansiyelleri ifade etmesin-
den otirii yapisal olarak farkli bircok potansiyeli kapsamaktadir. Bu nedenle klasik
potansiyel, ele alman etkilere bagh olarak lokallik (lokalite) veya lokal olmayighik
ozelligine sahip olabilmenin yani sira gesitli 6zel durumlarda (EPR gibi) lokal ol-
mayishik ozelligine sahip olsa dahi géz oniinden bulundurulmasina yetecek etkiyi

37Thus, in our interpretation, the use of a statistical ensemble is (as in the case of classical
statistical mechanics) only a practical necessity, and not a reflection of an inherent imitation on
the precision with which it is correct for us to conceive of the variables defining the state of the
system.”[29]
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ortaya koyamayabilmektedir (Newton potansiyeli gibi). Bu bakimdan sisteme etki-
yen kuvvetler irdelendiginde, 2.19 denklemine bagh olarak, kuantum potansiyelinin,
klasik potansiyellerin bircogundan farkli bir tutum izleyerek, sistemin durumundan
bagimsiz lokal olmayighk 6zelligine sahip oldugu acikca goriilmektedir. Oyle ki, EPR
deneyi Ozelinde siirece bakildiginda muhtemel dig potansiyellerin ele alinan sistem
iizerinde uyguladiklari kuvvetlerin kuantum potansiyeli ile kiyaslandiginda goz ardi
edilebilir oldugu spesifik durumlar dahi ortaya cikabilmektedir.

Kuantum potansiyelinin eklenmesi araciligiyla alternatif Schrédinger denklemini
(2.11) geligtiren Bohm mekanigi, klasik mekanigin, klasik potansiyelin dogasimdan
otiirii, sahip oldugu lokal olmayiglik 6zelliginin kuantum teorisi i¢in de gegerli oldugu-
nu yaptigl matematiksel ¢ikarimla agikga gostermistir. Ancak bununla birlikte, lo-
kal olmayighigin her iki teoride ayni1 davraniga sahip olmadig: ise ayr1 bir gercektir.
Clinkii kuantum potansiyeli, klasik potansiyelin aksine konumla ters orantili degildir
yani bir bagka deyisle pargaciklar (buradaki ve konu boyunca bahsi gegen pargacik-
larim EPR deneyinde ele alinan pargaciklar oldugu unutulmamalidir) arasindaki me-
safeye bagli olarak bir degisim gostermez. Bu nedenle klasik potansiyel uzaysal olarak
ayrik mesafelerdeki parcaciklar icin kuantum potansiyeline kiyasla ihmal edilebilir
bir etkiye sahip olacaktir.

Ozetle, EPR deneyi baglammda kuantum teorisi, kuantum potansiyeline sahip ol-
mas1 sebebiyle, lokal olmayighik ozelligini korurken, klasik mekanik ise, mesafeden
kaynakli, bu 6zelligi koruyamayacag: agikardir.

2.5 Cift Yarik Deneyi ve Bohm Mekanigi

Boliim boyunca agiklandigi gibi Bohm mekanigi kuantum sistemlerinin determinis-
tik (klasik mekanikteki gibi) bir yapi tizerinden dinamiklerinin tasvir edilebilecegini
savunmaktadir ve bunun da sistemlerin gidisatlarinin tanimlanmasiyla miimkiin
oldugu fikrine dayandirmaktadir. Bu fikrin igleyisinin ve vardigi sonuclarin daha iyi
anlagilabilmesi adina kullanilabilecek en uygun orneklerden birisi de siiphesiz ki hem
genel yorum hem de pilot-dalga teorisinde ele alinmig olan ¢ift yarik deneyidir.

Bohm mekanigi iizerinden ele alinan ¢ift yarik deneyinin agiklamasi bir¢ok yonden
pilot-dalga teorisine ¢ok benzemektedir ve o6zellikle elektronun yariklardan cikigina
kadar siirecte izledigi gidisat tamamen aynidir. Bu sebepten otiirii pilot-dalga teori-
sinde verilmig olan Sekil (1.4)’lin tasvir ettigi durum Bohm mekanigi i¢in de aynen
gecerli oldugundan sadece elektronun yariklari terk ettikten sonra ekrana ulagma
stirecinde yasadigi fiziksel siireci aciklamak yeterli olacaktir.

Yariklardan sonraki siireci ise Sekil (2.1) [33] tizerinden ele alacak olursak kolayca
goriilebilecegi gibi, A veya B yariklarindan gegen her bir elektronun yariktan sonra
ekrana kadar kendine has bir yol takip ettigi gosterilmektedir. Bunun sebebi ise
pilot-dalga teorisinde oldugu gibi elektrona bu siirecte etki eden pilot dalgalarin
varolmasidir ve bu pilot dalgalar deney diizeneginin (deneyin tiim evrenden soyut-
landig1 kabulii tizerinden) tamamina dagilmig durumdadirlar. Bununla birlikte, pilot
dalgalarin hepsinin ¢(x,t) = Ae!k*=D veya ¢(x,t) = Ae'*@+v%) ifade edilebilen
duragan dalga olduklar1 unutulmamaldir.
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Sekil 2.1: Cift Yarik Deneyi: yariklardan sonraki Bohm gidisatlari[33]

Elektronun gidisatinin agiklanmasinda nedensel olarak pilot-dalga teorisiyle ayni
noktadan hareket eden Bohm mekanigi, siirece dair sundugu tasvire detaylica bakila-
cak olunursa selefinden farkli bir yol izledigi goriiliir. Bu yol ise yorumun formaliz-
minde kargimiza ¢ikan ve kuantum potansiyeli kavraminin, Q(z, t), dahil edilmesiyle
elde edilen alternatif Schrodinger denklemi iizerinden gidisatlarin tasvir edilmesidir.
Bu tasvirde kuantum potansiyeli varhigindaki dalga fonksiyonu kendisiyle etkilegime
gegerek (ki pilot dalgalar1 bir biitiin olarak diistindiigiimiizde aralarindaki etkilegimin
aracisinin kuantum potansiyeli oldugu agiklamakta yarar vardir) gidisat tizerinde
yaratict ve yokedici (Sekil 2.1" de agag1 ve yukar1 yonlii gosterilmis olan) girigimler
gecirmesine neden olmaktadirlar. Bunun sonucundaysa ayni genel yorum ve pilot-
dalga teorisinde gozlendigi gibi ekranda bir girigm deseni olugmaktadir.

Sekil 2.1’de de gosterildigi gibi elektron kendisine etki eden pilot dalganin fazindan
dogan etkiyle gidigatina yon vererek ekrana ulagir. Bu siire¢ yeterli miktarda tek-
rarlanirsa da sekildeki tiim miimkiin gidisatlarin hesaba katildig1 deney sonuglariyla
benzer bir girigim deseni olugacaktir. Olusan girisim deseni deneyin tekrar sayisi
ve ekranla yariklar arasindaki mesafenin biyiikligiine gore degisiklik gostermekle
birlikte deney boyunca pilot dalgalarin ortama homojen bir sekilde dagildiklar: var-
say1llmaktadir.

Ozetle Bohm mekanigi ¢ift yarik deneyinde elektronun yasadig: fiziksel siireci stokas-
tik bir agiklamaya bagvurmaksizin, pilot dalgalarin fazina (ya da baslangi¢ kogullari-
na) bagimh olarak gekillenen gidigatlar tizerinden agiklanabilecegini géstermekte-
dir.
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3 EPR DENEYI

3.1 EPR Diisiince Deneyi’nin Acgiklanisi

Genel yorumun bakig acgisiyla geligimini siirdiiren yeni kuantum teorisi, 1935 yilinda
Albert Einstein, Boris Podolsky ve Nathan Rosen’in ortaklaga g¢ikardiklari, son-
raki yillarda EPR diigiince deneyi (EPR Gedanken Experiment) ismiyle anilacak
olan, ilgili makaleleri [3/] iizerinden ¢ok 6nemli bir elegtiriye ve ayni zamanda ilk
sinavina tabi tutulmustur. Makale genel hatlariyla, 6zetinde de bahsedildigi gibi,
fiziksel gergekciligi tasvir etmeyi amag edinen bir teorinin ii¢ temel kritere sahip
olmasi gerektigini 6ngérmektedir. Bu kriterleri siralayacak olursak[35];

1. Tamlik gereksinimi(completeness requirement): Bir teorinin tam olabilmesi igin
fiziksel gercekligin her bir unsuruna kargilik bir unsura sahip olmasi gerektir
(birebirlik).

2. Fiziksel gerceklik kriteri(physical reality criterion): Fiziksel bir nicelik hak-
kinda elde edilebilecek bilginin kesinligi onun iizerinde herhangi bir degigime
sebep olmayan olctimle miimkiin olabilir.

3. Konumda ayrilabilirlik(Separability in location veya no signal theorem): Ku-
antum teorisine gore (ki burada genel yorum temel aliniyor) birbiriyle komiite
etmeyen operatorler aracihigiyla gosterilen iki fiziksel nicelikten biri hakkinda
bilgi edinmek digerine dair bilgi edinmeyi engeller.

Bu ti¢ kriterin genel yorum baglaminda meydana getirecegi sonuclar ise;

a) Genel yorumun dalga fonksiyonu kavram fiziksel gergekligin tam ifadesini ve-
remez.

b) Konumda ayrilabilirlik kriteriyle tasvir edilen fiziksel niceliklere dair bilgiler
asla es-zamanl olarak elde edilemezler, gerceklik kazanamagzlar, olciilemezler,.

Varilan bu iki sonug ise boliimiin devaminda EPR deneyi kapsaminda bahsi gececek
olan birbirleriyle dolanik sistemler goz oniinde bulunduruldugunda: a) sonucunun
yanhg olmasi durumunda otomatik olarak b) sonucunun da yanlig olmasi gerektigini
gostermektedir. Bu nedenden 6tiirii a)'nin kagimilmaz olarak dogru olmasi gerektigi
goriilmektedir. Ozetle, Einstein ve arkadaglarma gore genel yorumun dalga fonk-
siyonu kavram fiziksel gercekligin tam ifadesini verememektedir. Makale itibariyle
varilan bu argiimani daha iyi anlamakla birlikte EPR deneyinin 6zel rolativite ve ge-
nel yorum tiizerinden analizini yapmak konuya dair, devam eden yillarda, gelistirilen
diger fikirleri anlama acisindan yardimei olacaktir. Bu baglamda deneyi anlatacak
olursak;
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Farzedelim elimizde I ve II olmak iizere iki adet, parcacik, sistem olsun. Bu sistem-
ler, aralarinda herhangi bir etkilesim meydana gelmeden onceki durumlarinin bi-
lindigi varsayimiyla, t = 0’dan t < T" anina kadar etkilesimde bulunsunlar. Siirecin
ardindansa sistemler arasinda herhangi bir etkilesim olmadigi géz ontinde bulun-
durularak dalga fonksiyonu, etkilesim oncesine dair yapilan varsayimin yardimiyla
kabaca I4+1I (sistemlerin durumlarmin toplami) olacak sekilde, ¥ ile gosterilebi-
lir. Ancak U dalga fonksiyonu sistemlerin tekil durumlarini tasvir etmediginden
gesitli olgiimler yardimiyla her bir sisteme ait fiziksel nicelikleri (gozlenebilirleri)
elde etmek miimkiin olacaktir. Bu ol¢timler ise dogal olarak tezin baginda da ele
alindigi iizere dalga fonksiyonunun olc¢iime bagili olarak belli bir durumuna ¢okme-
siyle sonuclanacaktir.

Olgiim siirecine bakacak olursak; elimizde 6zdegerleri ay, as, as..., zfonksiyonlar:
uy (1), ug(z1), ug(zy)... olmak iizere sadece I sistemine etkiyen bir fiziksel nicelik,
A, olsun. Dalga fonksiyonu, W, bu fiziksel nicelik icin x;:I sistemi, x5:II sisteminin
degisikenleri olmak tizere:

‘I]<x17x2> 3 an(l’g)unCﬁ) (31)

seklinde yazlabilir. Burada ), (zs) II sistemini ifade eden katsayilar, u,(x;) ise
U’nun ortogonal fonksiyonlaridir. I sisteminde A fiziksel niceliginin elde edilmesi i¢in
yapilacak 6lglim sonucunda ise dalga fonksiyonu vy (z9)ug (1) tekil durumuna ¢oke-
cektir. I sisteminin baz alindig1 bir baska fiziksel nicelik, B, igin siireci tekrarlayacak
olursak; ona kargilik gelen 6zdegerler by, bo, bs..., 6zfonksiyonlar vy (x1), va(x1), v3(21)...
olmak tizere dalga fonksiyonu:

Uy, m2) = D palw2)vs(m1) (3.2)

seklinde ifade edilebilir. B fiziksel niceligi i¢in yapilacak 6l¢iim sonrasinda ise dalga
fonksiyonu ¢, (z2)v, (1) tekil durumuna ¢okecektir. Boylece I sistemi iizerinde yapilan
Olgiimlerin II sisteminin farkli, ¢ ve ¢, fonksiyonlari gibi, durumlara gecis yap-
masina neden oldugu acikca gosterilmis olur. Ancak daha once belirtildigi iizere
sistemlerin Ol¢ciim esnasinda, ¢ > 7' zaman diliminde, aralarinda bir etkilesimin
gerceklegsmediginden II sisteminde herhangi bir degisim (EPR makalesinde bu nok-
tada muglak bir tabir olan gergek degisim kavrami kullaniliyor) olmadig varsayil-
maktadir. Bu nedenden 6tiirt ¢ ve ¢, fonksiyonlari ayni gercekligin parcasi ola-
bilirler. Hatta bir adima daha ileri gidilerek bu fonksiyonlarin sirasiyla P ve Q
gibi birbirleri ile komiite etmeyen iki fiziksel niceligin 6zfonksiyonlari olarak ele
aliabilirler. Bu fiziksel nicelikler i¢in Ol¢iim siirecine bakmadan once dalga fonk-
siyonunu iki parcacigi ifadece edecek sekilde yeniden diizenlersek:

War) = [ e (3.3)

—00
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seklinde yazilabilir. Bu ise aslinda 3.1 ifadesinde toplam olarak yazilan dalga fonk-
siyonunun stirekli versiyonuna denktir:

Warms) = [ ey (3.4

Integralde, u,(x;) fonksiyonu birinci parcaciga ait A fiziksel niceliginin, ki burada
momentumu belirtmektedir, ézfonksiyonu olup p 6zdegerini verir; W,(z,) fonksi-
yonu ise P = ("/2ri)9/ox, fiziksel niceliginin 6zfonksiyonu olup ikinci pargacigin —p
ozdegerine karsilik gelmektedir.

Stirecin benzeri momentum yerine konuma dair olan B ve Q = x5 fiziksel nicelikleri
icin tekrarlandiginda ise; v, (z1) = §(x1 — x2), Pz (x2) = hd(x — 19 + 1¢) olmak lizere
dalga fonksiyonu:

U(zy,29) = /_OO O (x2) vy (21)d (3.5)

o0

seklinde yazilabilir. Burada birinci parcacigin konumunun ol¢timii, B fiziksel ni-
celiginin elde edilmesi, sonucu elde edilecek 6zdeger x iken, @ fiziksel niceligine
bagl olarak ikinci parcaciga dair elde edilecek ozdeger ise & + xq dir.

Varilan sonug gosteriyor ki birbirleriyle komiite etmeyen fiziksel nicelikler olan P ve
Q, PQ — QP = "/ori, dzfonksiyonlarimin ayni gergeklige ait olmalarima ragmen
yapilan ol¢iimler sonucu sirasiyla pp ve @, Ozdegerleri vermektediler. Ancak bu
durum boliimiin baginda verilmis olan konumda ayrilabilirlik ilkesinin acikca ih-
lal edeceginden ona dair genel yorum baglaminda gelistirilmig olan sonuclarin da
yok sayilmasi anlamina gelmektedir.

Ayrica makalenin temel {i¢ kriterinden biri olan fiziksel gergeklik kriterinin, ko-
numda ayrilabilirlik kriteri de goz ontinde bulunduruldugunda, Einstein tarafindan
konuya dair, makale oncesi, dile getirilmig olan lokalite kriterini tistii kapali da olsa
icinde barindirdig1 anlagilmaktadir. Deneyin temelinde yatan bir kriter olarak da
one c¢ikan lokalitenin makalede bu gekilde ele alinmasi ise yazarlardan Podolsky nin
kigisel seciminin bir sonucudur. Oyle ki, Podolsky vaymlandiktan sonra makale-
nin bir 6rnegini Einstein’a gondermis ve boylece tizerinde yapilacak muhtemel bir
diizenlemeye imkan birakmamigtir. Bununla birlikte lokaliteyi kisaca agiklayacak
olursak; birbirinden uzaysal olarak ayrik ve dolanik iki pargaciktan 1. parcacik tize-
rinde yapilacak bir 6l¢iimiin 2. parcacik tizerinde herhangi bir degisime neden olama-
yacagl seklinde tanimlanabilir. Zira bu degigime neden olacak bir etkilesimin hizinin
¢ < v < oo araligindan (ki kuantum teorisinin ilkelerinin korunmasi adina v = oo
olmalidir) olmas1 gerekmektedir.

Acikca goriilebilecegi tizere lokalite kriteri, ya da kisaca lokalite, lokal teorilerin ana
unsuru olup Einstein’in kuantum teorisine getirdigi elestirilerde de kilit bir role
sahiptir. EPR deneyi ve lokalite hakkinda daha detayli bir aciklama i¢in Travis
Norsen’in ilgili kitabinin [36] 1. ve 4. boliimlerine bakilabilir.

36



3.1.1 Muhtemel Gizli Degiskenlerin Aciklanis1 ve Ozellik-
leri

Genel yoruma gore, sistem hakkinda gerekli olan tiim bilgiler dalga fonksiyonunda
yer aldigindan, dalga fonksiyonu sistemin tam bir tasvirini hicbir ek degigken gerek-
meksizin vermektedir. Ancak EPR diigiince deneyinden elde edilen sonuglara gore
bu durumda kuantum teorisi lokal olmayan bir teori (nonlocal theory) olmalidir ve
kacinilmaz olarak da anlik etkilesim ozelligine sahiptir. Bu ise 151k hizindan yiiksek
hizlarin varhgini kabul etmek demektir. Einstein ve arkadaslari boyle bir sonucun
miimkiim olmadigini diigiindiiklerinden (lokal realizm diigiincesinin éngordiigi tizere)
dalga fonksiyonunun, sistemin (yani her iki pargacigi da kapsayan toplam sistemin)
tam bir tasvirini vermedigi diiglincesini ortaya koydular. Sunduklar1 bu argiiman her
ne kadar gizli degigskenlerden (hidden variables) bahsetmiyor olsa da (ki bahsettik-
leri taktirde bunlarin lokal olacaklar1 agikardir) ilerleyen yillarda konuyla yakindan
iligkili bircok bilim insani1 makaleyi gizli degiskenlerin ¢ikig kaynagi olarak kabul
etmektedirler. Ancak bu dogru degildir. Oyle ki, makaleden cok daha once gizli
degiskenler kuantum teorisi dahilinde tartigilmakla birlikte John Von Neumann ta-
rafindan gelistirilem genel yorumun ilk temel aksiyomlarii verdigi kitabinda [37]
bahsedilmigtirler. Bu aksiyomlar arasindan 5a ve 5b direkt olarak gizli degiskenlerle
(dispersion free states) iligkili olup kuantum teorisinin genel yorumunda yeri ol-
madiklar1 savunulmustur. Fakat bu savunmanin sadece, bir sonraki boliimde tiim
detaylariyla aciklanacak olan, lokal gizli degiskenleri kapsadigini ve kuantum teorisi
dahilinde miimkiin tiim durumlar icin gegerli olamayacagini J. S. Bell ilgili makale-
sinde [31] gostermistir.

Bununla birlikte sonraki bolime girig olmas1 adina EPR deneyi tizerinden kisa bir
ozet yapilacak olunursa; gizli degigkenler, alt sistemlerin olustugu anda, buna érnek
olarak 7 — e~ +e* bozundugu anda, e~ ve e parcaciklarinin bozunma anina ka-
darki etkilesimlerinin sistemin ilerleyen asamalarinda parcaciklar tizerinde yapilacak
mimkiin tim ol¢imler icin her iki parcacigin da birbirlerine gore durumlarinin ne
olmas1 gerektigini soyleyen bir nevi talimatlar toplulugu olarak kabul edilmelidir-
ler. Bu talimatlar bozunma aninda ortaya cikip her iki parcacigin dalga fonksiyo-
nunda da yer almaktadirlar. Boylelikle parcaciklardan biri tizerinde yapilan herhangi
bir Ol¢giim otomatik olarak gizli degiskenler sayesinde, talimatlarda belirli olan il-
gili 6z duruma gore, tiim sistemin durumunu da belirlemis olurlar. Bu sayede 151k
hizindan hizli herhangi bir iletisime gerek kalmaksizin parcaciklar arasindaki ko-
relasyon saglanabileceginden hem kuantum hem de 6zel rolativite teorisinin ¢izdigi
smirlar iginde beklenen degerler elde edilmig olur (6zel rélativitenin teorisinin ¢izdigi
siurlar 4. béliimde anlatilmaktadir).

3.2 Bell Esitsizligi

Gizli degiskenler fikri ortaya ¢iktigi ilk tarihten itibaren takip eden yillarda kuantum
teorisinin onde gelen isimleri tarafindan bircok defa ele alinmigtir. Bu isimlerden ilki
olan Niels Bohr [38] gizli degigskenlerin varolsa dahi higbir zaman gozlemlenemeyecegi
diigiincesiyle bir elestiri getirirken Von Neumann ise kendi gelistirdigi kuantum te-
orisinin muhtemel aksiyomlar1 [37] fizerinden teoride yeri olmadigini savunmustur.
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Niels Bohr ve Von Neumann’in gizli degiskenler iizerine vardiklar: bu sonuclar konu-
nun gelismesinin ontinde ¢ok biiyiik engel olmustur. Zira Bohr genel yorumun fikir
babasi iken Neumann ise yorumun matematiksel olarak ilk gosterimini yapan kisi ol-
mas1 sebebiyle kuantum teorisi lizerine caligan topluluklar iizerinde derin bir etkiye
sahiplerdi. Ancak bu durum David Bohm’un Aharanov ile birlikte kuantum teori-
sinde gizli degiskenlerin varligin1 sorguladiklar1 1957 tarihli makalede [39] tersine
donmiigtiir. Makalede Bohm ve Aharanov, birbirine dolanik parcaciklarin bozunma
anindan sonra toplam spinlerinin 0 oldugu durumu ele alarak dalga fonksiyonunun
(z-ekseninde) tekli durum (spin singlet);

1

¢:ﬁ¢+

(1)p-(2) — - (1)94(2) (3.6)

(3.6) ifadesiyle gosterilebilecegini 6ngdérmiiglerdir (tekli durumun segilmesinin sebebi
ise miimkiin olan her dogrultuda toplam spin degerinin baglangi¢c durumdanki gibi
yani 0 olmasidir). Bu gosterim 6zellikle pratiksel agidan EPR deneyinin orjinal ver-
siyonuna kiyasla uygulamasi daha miisait oldugundan konunun deneysel boyutta ele
alinmasinin yolunu agmigtir.

Ancak gizli degiskenlerin deneysel olarak uygulamasimdan evvel konunun teorik an-
lamda ele alinarak kuantum teorisindeki yerinin ve iceriginin agiklanmasi gerekliydi
ve bunu da 1964 yilinda yayinlanan makalesiyle J. S. Bell bagarmigtir [10]. Bell
bu makalesinde sonraki yillarda Bell egitsiziligi ismiyle anilacak olan ve herhangi
bir modelin kuantum teorisiyle uyusup uyusmadigim (bir bagka deyisle lokal olup
olmadigini) test etmeye imkan taniyan formalizmini ortaya koymustur. Simdi bu
matematiksel ifadenin ¢ikarimini yapalim;

Bohm ve Aharonov’un makalelerinde ele aldiklar1 gibi tekli duruma sahip iki parcaci-
g1miz olsun ve bu parcaciklar etkilesim anindan sonra birbirlerine zit yonlerde hare-
ket etsinler. Hareketleri esnasinda her iki parcaciga da spinleri tizerinden bir olgiim
yapilsin, 6rnegin 1. parcgacik tizerinde a dogrultusunda yapilan o;.a 6l¢iimi sonucu
% degeri elde edilsin. Bu sonu¢ parcaciklar arasindaki dolaniklik sebebiyle, dogal
olarak, 2. parcacigin spin degerinin 0y.a = —% olmasina neden olacaktir.

Farzedelim ki 6l¢iimler yapilirken baz aldigimiz dogrultular farklilik gostersin; 6rnegin
1. parcacik a dogrultusunda oy.a Ol¢imiine maruz kalirken 2. parcaciga b dogrultu-
sunda o09.b Ol¢imii yapilsin. Bu durumda az once vardigimiz % ve —% degerleri
yerine a ve b dogrultularinin aralarindaki aciya bagimli olacak sonuclar elde etme-
miz gerekir. Bu sonuclar elde etmek i¢in a dogrultusunu sabit kabul edip b(6, ¢)

dogrultusunun alacagi degerleri sirasiyla yazarsak;

b >= singeimw_@) > + cos ge_i¢/2|1/z+(2) > (3.7)
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olmak tizere, b dogrultusunda elde edilebilecek muhtemel olasiliklar: da sirasiyla;

P b> = |<bltp_(2) > | =sin ge”’ﬁ <P (2[_(2) > |*= sin2g (3.8)

0 . 0
Pb> = [ <Bp(2) > [P = [eos ge ™ < gy () (2) > P = cos? £ (3.9)

degerlerine denk olacaktir. Sadece b dogrultusunda yaptigimiz agi degisikliginden
otiirti ise a dogrultusundaki degerler i% olarak sabit kalacaktir. Bu degerleri (3.6)
ifadesini kullanarak acikca goriilebilecegi gibi iki 6l¢iimiin sonucu olusan toplam
deger o4 = 01.a ve og = 05.b olmak iizere;

1 1
< 0p.0p >= —Za.b =-7 cos 6 (3.10)

seklinde ifade edebilmek miimkiindiir. Bu sayede (3.10) ifadesini kullanarak kuan-
tum teorisi bakimindan A ve B aygitlarinun 6l¢iimleri sonucu beklenen degerlerinin,
f’'nin agisal bir degisken olmasi araciligiyla, genel bir gosterimini elde etmis oluruz.
Peki bu duruma gizli degiskenlerin (bu boliim boyunca ele alinan gizli degiskenlerin
yapilacak iglemlerde de gosterildigi iizere lokal gizli degigkenler olduklari unutul-
mamalidir.) var oldugunu kabul ederek yaklagirsak sonug ne olur bir de ona ba-
kalim. Gizli degigkenlerin varhginda elde edilecek degerleri yazarsak (A, lokal gizli
degiskenleri ifade stirekli bir parametre ve n boyutlu, kiire yiizeyin dagitilmig, bir
vektor olmak tizere);

ri(ha) — % (3.11)
(A b) = :I:% (3.12)

egitliklerini elde etmis oluruz. Ayrica parcaciklarin birbiriyle dolanik olmalar: sebe-
biyle —o1 (X, @) = 02(A, b) oldugunu da goéz 6niinde bulundurmak gerekir. Bu durum
icin beklenen degeri tekrar yazacak olursak;

< 01(A,a)oa(A,b) >= /d)\p(/\)al()\,a)@()\, b) (3.13)

ifadesini elde ederiz ve buna ek < g1 (X, @)oa(A, b) >=< o1(a)o2(b) >, olacagindan
ifadenin son hali;

< 01(@)s(b) >y= — / p(N)or(A, a)or (A, b) (3.14)

seklinde olacaktir. Bu egitlikle gizli degigkenlere sahip 1. ve 2. parcaciklar tizerinde,
farkli dogrultularda yapilacak aymi Ol¢tim sonucu elde edilecek beklenen degerin ne
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olacag1 acgik bir sekilde verilmektedir. Bununla birlikte beklenen deger ifadesi elde
edilirken normalize edilmig olasihk dagilimmm [ dAp(A) = 1 oldugunu unutulma-
malidir. Simdi a ve b dogrultularina ek baska bir dogrultu, ¢ dogrultusu, segip
beklenen degerin ne gekilde degistigine bakalim;

< 01.a402.b >\ — < 01.a09.¢c > = — /d)\p(/\)al()\, a)[o1(X,b) — a1(A, )] (3.15)

esitligin sag tarafim o1%(X, b) = 1 degeriyle carparsak;

P(a,b) — Pla,c) = — / IAp(Nor(A a)do’ (A, B)[or(Ab) — o1 (A e)]  (3.16)

seklinde bir ifade elde ederiz. Bu ifadeyse birkag diizenleme ardindan;

P(a,b) — P(a,c) = — / dAp(N)ar (A, @)ar (A, b)[1 — 401 (A, B)oy (A, ¢)]  (3.17)

(3.17) esitligini verir. Esitligin sag tarafindaki a ve b dogrultularina bagh 6lgiim
degerini veren kisim (3.10) ifadesinin yardimiyla o1(X, ao1 (A, b) = £ arahgmmdaki
degerleri alacaktir. Bu ¢ikarim iizerinden (3.17) ifadesini yeniden diizenlersek;

P(a,b) — Pla,¢)| < }1 / D[ - do(A DA e)]  (3.18)
< }1[1+4al(>\,a>@<,\,c)} (3.19)

buldugumuz bu ifadeyi kuantum teorisindeki haliyle yazarsak;

1
| < 01.a09.b >, — < gy1.a03.¢ >) ‘ < Z[l +4 < O'l(A, a)ag()\,c) > ] (320)

Bell esitsizligini elde etmig oluruz. Bell Esitsizliginin sag ve sol tarafini tekrar (3.10)
ifadesi yardimiyla ele alip sade bir sekilde yazarsak sol taraf ve sag taraf icin;

1

sol = Z|a.(c—b)| (3.21)
1

say = Z(l—b.c) (3.22)

(3.21) ve (3.22) ifadelerini elde etmig oluruz.
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Sekil 3.1: Bell Esitsizligi ve Gizli Degiskenler Varligindaki Miimkiin Durumlar

Bu ifadelerde a.b = 0 ve ¢ = a sin ¢ + bcos ¢ kabul araciligi ile ¢ dogrultusu a ve b
arasinda olmak tizere iki tarafin (3.21 ve 3.22) birbirine egit oldugu durumlar Sekil
(3.1) ile gosterildigi gibi sadece 0 ve 7 degerlerinde miimkiindiir.

Bu da sonug olarak su gostermektedir, parcaciklarin birbirleriyle olan etkilegimleri
sirasinda olusan lokal gizli degiskenlerin kabulii tizerinden varilabilecek sonuglar
sinirli olup kuantum teorisiyle elde edilebilecek sonuglara kiyasla sadece ekstra-
mum degerleri verebilmektedirler (Sekil 3.1). Varilan bu sonug sebebiyle lokal gizli
degigkenler iizerine geligtirilen herhangi bir model kuantum teorisine gore yetersiz
kaldigindan teoriye getirilmig bir diizeltmeden ¢ok kisitlayici bir hamle olarak kal-
maktadir.

Bell esitsizligi gosteriyor ki gizli degiskenlerin (A) kabulii tizerinden geligtirilmisg
modeller, ¢ dogrultusuyla c-b ekseni arasindaki ¢ agisimin 0 ve 7/2 degerlerini al-
madig1 durumlar haricinde esitlisizligi bozmaktadirlar. Diger taraftan bakacak olur-
sak; parcaciklarin meydana geldikleri andaki ilk ve son etkilegimleri sonucu ortaya
¢ikan lokal gizli degigkenler, devam eden stire¢cte bu pargaciklar arasinda herhangi
bir etkilesim olmadig1 kabuliine dayandigindan, ilerleyen zamanlarda sistem iizerinde
yapilan ol¢iimler sonucu ortaya ¢ikacak beklenen biitiin degerleri veremeyeceginden
dogal olarak kuantum teorisinin ongordiigii tiim durumlar: da tasvir edemezler. Bu-
radan hareketle EPR deneyinin argiimanindan tiiremis olan gizli degiskenlere sergile-
dikleri bu yap1 nedeniyle lokal gizli degigkenler (local hidden variables) denmektedir
ve kuantum teorisinin olasiliksal sonuclarini verme konusunda yetersizdirler. Lokal
gizli degiskenlerin (vardigimiz sonuca gore lokal gizli degigskenler) sahip oldugu bu
ozelligi Bell makalesinin genel bir 6zetini ele alirken su sozlerle ifade ediyor;

"Oyleyse en az bir kuantum mekaniksel durumda, alt-uzaylarda kombine edilmis
“tekly” durumda, kuantum mekaniginin bu istatistiksel tahminlert ayrilabilir olan
onceden belirlenmislikle uyusmamaktadir. ™!

L”Then for at least one quantum mechanical state, the ”singlet” state in the combined subspa-
ces, this statistical predictions of quantum mechanics are incompatible with separable predetermi-
nation”.[10]
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Bu agiklamanin ardindansa EPR argiimaninin getirdigi gizli degiskenler fikrinin ma-
kalesinde agikca gosterdigi lokal gizli degiskenler oldugunu ise su sozleriyle dile ge-
tiriyor;

"Tekil ol¢timlerin sonuglarim, istatistiksel tahminlerde degisiklige neden olmaksizin,
elde etmek amaciyla kuantum mekanigine cesitli parametrelerin eklenmesini 6ngoren
bir teoride olgiim aletinin, uzaktan da olsa (ki bu uzaklbk uzaysal olarak ayrik du-
rumlardaki mesafeleri de kapsamaktadir), diger dl¢im aletini etkileyebildigi bir me-
kanizma varolmalidir. Dahasy boyle bir mekanizma i¢in, ol¢uim aletleri arasinda,
sinyallesmenin anlk olmasy gerektiginden bu tarz bir teori Lorentz degismezligine
sahip olamaz.”?

Bell bu makalesi ile kisaca gizli degisikenlerin kuantum teorisinde yeri olmadig1 so-
nucuna degil lokal gizli degiskenleri kuantum teorisinin vardigi olasiliksal degerlere
kiyasla yetersiz kalacagini agiklamaktadir. Genel intibanin aksine varilan bu sonug
gizli degigkenlerin kuantum teorisinde yeri olmadigi anlamina gelmez sadece teoriye
katilabilecek gizli degiskenlerin lokal olmayislik 6zelligine sahip olmasi gerektigi an-
lamina gelmektedir.

Ortaya koydugu kanitla Bell gizli degiskenlerin kuantum teorisinde yeri olmadigi
¢ikarimindan ¢ok, Neumann ve Bohr’un vardiklar: gibi, onun dogasini agiklamaya
calismugtir. Oyle ki, makalesinin son boliimiinde konuya dair o zamana kadar yapilmig
elestirilerin agik bir gekilde ifade edilmemesine ragmen lokal gizli degiskenler iizerinde
oldugunun altim ¢izerek lokal olmayan gizli degiskenlerin kuantum sistemlerinin tas-
virinde kullanabilir oldugunu ve bu nedenle kuantum teorisinde de 6nemli bir yeri
olabileceginin ongoriisiinde bulunmustur. Bahsi gecen bu ongoriiyii ise Bell’in devam
eden ¢aligmalarinda daha agik bir gekilde gormek miimkiindur ([41].

3.3 CHSH Deneyi

Bell’in makalesinde EPR deneyine ve lokal gizli degigkenlere getirdigi yorum ardindan
sadece besg yil sonra 1969 yilinda Clauser ve Shimony deneysel olarak konuyu ele
aldiklar1 makalelerini [12] yaymnladilar. Yaptiklar1 deney temelinde Bohm ve Aharo-
nov'un tekli durumdaki birbiriyle dolanik olan fotonlar:1 konu almaktadir. Deneyin
anafikri ise Bell’in vardigi sonug olan;

7. highir lokal gizli degisken kuantum teorisinin sundugu biutin istatistiksel tahmin-
leri saglayamaz.”

diistincesinin deneysel olarak kanitlanabilir olup olmadigidir. Bununla birlikte lo-
kal gizli degiskenleri konfigiirasyon uzayinda ele alarak deneysel anlamda kolaylik
saglayan daha uygun bir ifadesini tasarlamiglardir.

27In a theory in which parameters are added to quantum mechanics to determine the results of
individual measurements, without changing the statictical predictions, there must be a machanism
whereby the setting of one measuring device can influence the reading of another instrument, ho-
wever remote. Moreover, the signal involved must propagate instantaneously, so that such a theory
could not be Lorentz invariant.”[40]

37 _no local-hidden variable theory can produce all of the statistical predictions of quantum
mechanism.[12)
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CHSH deneyini aciklayacak olursak; hem EPR deneyinde hem de Bell’in makale-
sinde ele alindig1 gibi birbiriyle dolanik olan iki parcacik ele alalim 1. pargacigin
dalga fonksiyonu ;(r,t), 2. parcacigin dalga fonksiyonu ise 15(r,t) olmak iizere
parcaciklarin olugturdugu sistemin dalga fonksiyonu;

\I/(’r',t) = ¢1(r7t)¢2(r7t) (323)

sekilde gosterelim. Parcaciklar aralarindaki etkilesim sonucu dolaniklik kazandiktan
sonra ayni EPR deneyindeki gibi birbirine zit dogrultularda hareket etsinler ve
daha oénce de kabul edildigi gibi (a ve b pargaciklar tizerindeki 6lgimlerin sirasiyla
dogrultular: olmak iizere) 1. pargacik A(a) dl¢iimiine, 2. pargacik ise B(b) dlglimiine
maruz kalsin. Bu ol¢imler parcaciklarin aygitlarin 6l¢iim yaptiklar:t dogrultulardan
gecip ge¢gmemesine gore +1 degerlerinden birini alsinlar. Lokal gizli degiskenler ise
EPR deneyinde ve Bell’in makalesinde oldugu gibi, fakat buna ek olarak konfigiiras-
yon uzay1 lizerinden daha genellestirilmis halde olduklar1 kabulii ile, parcaciklarin
dalga fonksiyonuna dahil edilmig hali ele alinarak Bell egitsizligi yardimiyla yazilirsa;

|P(a,b) — P(a,c)| <1-— /Fd)\p()\)B(a, A)B(c, A) (3.24)

esitsizligini elde ederiz. (3.24) ifadesinin genel bir versiyonunu yazabilmek adina
dogrultular arasmndaki ufak farkhiliklari, érnegin b ve b’ dogrultular icin olasilik
degerleri P(b',b) =1 —6 ve 0 < 6 < 1 olmak tizere, hesaba katarsak (3.24) ifade-
sini;

|P(a,b) — P(a,c)| <2—P(b,b) — P(b,c) (3.25)
seklinde tekrar yazabiliriz. Kolaylik olmasi adina b, " dogrultularinda oldugu gibi

diger ikili dogrultular i¢cinde beklenen degerleri aralarindaki aci iizerinden ifade edip
Bell esitsizliginin genel halini yazmak istersek;

P(a,b):b—a = a=b—-a (3.26)
PU.b):b—b = y=b-0b (3.27)
P(e,b):c—b = f=c—b (3.28)
acilarini da kullanarak;
|P(a) — Pla+ )| <2—P(0) — P(B+ «) (3.29)

(3.25) esitsizliginin son ve en genel halini elde etmis oluruz. Elde edilen bu ge-
nel hal Bell esgitsizligine kiyasla hem deneysel ortamda hem de teorik hesaplama
alaninda sagladigi kolaylik nedeniyle ¢cok daha kullanigh bir versiyondur. Bu sebep-
ten otiiri gizli degiskenler iizerine yapilan deney ve makalelerin nitel ve nicel boyutta
gelismesine de on ayak olmustur.
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3.4 EPR Deneyi’nin Kuantum Teorisi Uzerindeki Etkisi

Kuantum teorisi gosterildigi gibi temelleri itibariyle klasik mekanik, elektromanye-
tik teori veya ozel rolativite teorisi gibi determinizm tizerine kurulmus olmayip yapi
olarak kendine en c¢ok benzerligi gosteren istatistik teorisiyle bile bu konuda tam
bir uyum gostermez. Oyle ki, istatistik teorisinde dahi kuantum teorisindeki inde-
terminizmin, yani belirsizligin gozlemlenen sistemlerin dogasindan kaynakli oldugu
fikri, kabul edilmeyip bu yapinin kendisini sadece hesaplama asamasinda pratiksel
anlamda gosterdigi diigtincesi oldugundan deterministik bir teori olarak kabul edi-
lebilir. Daha onceki boliimde ele alindig1 gibi Bohm mekanigi de istatistik teorisiyle
benzer bir yapiya sahip olup sonuca varmada saglayabilecegi kolayliklar sebebiyle is-
tatistik hesaplamanin matematiksel bir arag olarak pratikte kullanilabilecegini ancak
asla sistemin dogasinin bu yapiya sahip oldugu fikrine varilamayacagini soylemek-
tedir.

EPR deneyi ise sundugu argiimanla kuantum teorisinin indeterministik yapisindan
inga edilen dalga fonksiyonunun sistemin tam bir tasvirini vermedigini ile stirmek-
tedir. Bu nedenle ilave edilebilecek ¢esitli degiskenler yardimiyla bu sorunun tiste-
sinden gelinebileceginin yolunu agmakla birlikte kuantum teorisine katilabilecek bu
degigkenlerin lokal olmayan degiskenler olmasi gerektigi de Bell’in makalesi ile goste-
rilmigtir. Bu gosterim sistemin pagaciklar: arasindaki etkilegim sonrasi, pargaciklarin
birbirlerinden ayrilmadan once ve sonra herbirinin sahip oldugu kabul edilen dalga
fonksiyonlar: iizerinden gosterilise; r; sistemin etkilesim anindaki konumu ve \; et-
kilesim aninda ortaya c¢ikip parcaciklarin dolanikligini tayin eden lokal gizli degisken
olmak tizere,

etkilesimden hemen sonra ve parcgaciklar birbirinden ayrilmadan once;

T, A, t) = (ri, A, Dé(ri, A, 1) (3.30)

pargaciklar birbirinden uzaysal ayrik konumlardayken;

U(r, A t) =(r, A\ t) + o(re, A t) (3.31)

seklinde yazilabilir. (3.30) ifadesinden (3.31) ifadesine gegis esnasinda dikkat edilmesi
gereken onemli noktalardan birisi ol¢tim siireci daha gerceklesmedigi i¢in parcaciklar-
dan herbirinin dalga fonksiyonunda gosterilen lokal gizli degiskenlerin hi¢bir degisime
ugramadan etkilegsim anindaki degerini korumasi ve parcgaciklarin lokal olmayan bir
etkilesime maruz kalma ihtimali olmadig1 varsayildigindan lineer bir toplam olacak
sekilde ifade edilebilmesidir. Siireci bir adim daha ilerletip parcaciklarin herbiri tize-
rinde (3.10) ifadesinde belirtilen &lgiimlerden sadece ilki yapildigi vakit su sonuca
ulagilir;

\II(T,A,t) = 1/}1(7'1,A, t) + ¢(T2,A,t> (332)
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Yapilan ilk ol¢timle, ol¢tim yapilan parcacigin dalga fonksiyonu 6z dalga fonksiyon-
larindan birine ¢oker. Bununla birlikte loka gizli degiskenlerin yardimiyla da diger
parcacigin yapilan ol¢giime dair verecegi deger hakkinda bilgi sahip olunur. Bir son-
raki agsamada ise hakkinda bilgi sahibi olunan ancak olgiim yapilmamig pargacik
iizerinde bir ol¢tim yapilirsa;

\I[(’l“, A, t) = ’le (’l”l, A, t) + ¢1 (7”2, A, t) (333)

(3.33) ifadesine ulagilir. Yapilan ikinci 6l¢iim sonrasinda 6lgiilen parcaciga dair vari-
labilecek sonuclar EPR argiimaninin ileri stirdiigiine gore tamamen lokal gizli degis-
kenlerin davranigina gore degisiklik gosterecektir. Lokal gizli degiskenler parcaciklarin
etkilesimi sirasinda gekillenip ol¢iimler yapilmadan ¢ok daha once evrimlerini ta-
mamlamig olmalari itibariyle dl¢iimlerin (6zellikle uzaysal olarak ayrik durumdayken
gergeklegtirilen 6lgtimlerin) pargaciklar tizerinde sebep olabilecegi olasi her degisime
anlik bir cevap verebilmeleri miimkiin degildir. Ciinkii Bell egitsizliginin ¢ikariminda
da gosterildigi gibi her iki ol¢iim birbirini, parcaciklarin dolanik olmasi sebebiyle,
etkilemesi gerektiginden; parcaciklarin dolanikliklarini kazandiklar: yaratiliglar: sira-
sinda ortaya cikip sonrasinda herhangi bir degisime ugramamig olan lokal gizli
degigkenler ile, sadece maksimum durumlara cevap verebilmelerinden otiirii, agikla-
nabilmesi miimkiin degildir. Ayni siireci lokal olmayan gizli degiskenler tizerinden ye-
niden ele alacak olursak, (3.30) ifadesinden sonra parcaciklar uzaysal olarak ayrikken
dalga fonksiyonunun ifadesi su sekilde olacaktir;

T(r, A ) = (1, A )d(ra, A, ) (3.34)

ilk o6l¢iimiin ardindan;

U(r, A, t) = U1(r1, Ay 1) Par (T2, Aa, ) (3.35)

ikinci 6l¢iimiin ardindan ise;

U(r, A t) = Y1(r1, Aas 1) d11(r2, Mg, t) (3.36)

(3.35) ve (3.36) ifadelerinden goriilebilecegi gibi lokal olmayan gizli degiskenler ilk
Ol¢iim sonucu her iki parcacigin da dalga fonksiyonunda degisime ugramistir. Bu
degisim sistemi olugturan parcaciklar arasindaki etkilegsimin anlik olmasi sebebiyle
siradaki 6lgiim gergeklesmeden 6nce olgiim yapilmayan parcacigin dalga fonksiyonu
tizerinde bir degigime yol agmigtir. Bu degigimi (3.35) ifadesindeki lokal olmayan gizli
degigken ve onun sonucunda ol¢iim yapilmamig parcacigin dalga fonksiyonunda gore-
bilmek miimkiindiir. Bunun devaminda ise yapilan ikinci 6l¢iimiin ardindan 6lgiim
yapilan parcacigin dalga fonksiyonu son halini almigtir. Tabi ki, ikinci 6l¢iim sonu-
cunda elde edilen bu son hal yapilan Ol¢timiin igerigine gore degisiklik gosterecek
belirsizlik ilkesinin sinirlar1 dahilinde sonuglar verecektir.
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Einstein ve arkadaslarinin genel yorumun dalga fonksiyonu tanimini sorguladiklar:
makalelerinin vardigi argiimanlar neticesinde kuantum teorisinde yeniden varliginin
tartigilmasina neden olan gizli degiskenler, onceleri teorinin lokal oldugu varsayimin-
dan hareketle lokal olarak alinmig olmasina ragmen Bell’in varmig oldugu ¢ikarimlar
nihayetinde lokal olmamalar1 gerektigi anlasilarak son hallerine kavugsmuslardir. Bu
sebeple EPR deneyinin kuantum teorisinde iki onemli degisiklige neden olmustur;
bunlardan ilki, kuantum teorisinin lokal olmayighk 6zelligine sahip oldugunun anla-
silmasi iken, ikinci degisikliginse genel yorumun dalga fonksiyonu taniminin sistemin
tam bir tasvirini veremeyecegidir. Bu iki degigiklik birlikte ele alindiginda ise lokal ol-
mayan gizli degiskenlerin kuantum teorisinin tam bir teori olabilmesi (completeness
requirement) adina teoriye eklenmesi gerektigi sonucunu dogurmustur. Kisaca 6zet-
lenecek olunursa EPR deneyi sundugu argiimanlar sebebiyle kuantum teorisinin hem
tamamlanmamig hem de lokal olmayighk 6zelligine sahip oldugunun anlagilmasina
sebep olmustur.

3.4.1 Lokal Olmayishgin Kuantum Teorisindeki Yeri

Bell esitsizliginin ele alindigi 3.2 boliimiinde gosterildigi gibi kuantum teorisinin
ilkeleri ve ozelliklerini tagiyan her model ve bu modelle tasvir edilen her sistem lo-
kal olmayislik ozelligine sahip olmak zorundadir. Bu zorunluluk teorinin her yorumu
i¢in gegerli olup Bohm mekaniginde kuantum potansiyeli tizerinden agik (explicit) bir
gosterime sahiptir. Ancak ayni durum genel yorum i¢in gecerli degildir. Zira lokal ol-
mayishik genel yorumda agik bir ifadeye sahip olmadigindan kuantum teorisinin diger
bir ilkesi olan belirsizlik ilkesinin kisitlamasi olarak kendini gostermektedir.

Sadece lokal sayilabilecek yani uzaysal olarak ayrik olmayan bir bagka deyisle 151k
konisinin i¢inde kalan durumlar icin lokal olmayiglik herhangi bir soruna neden ol-
mamamktadir fakat 1gik konisinin digindaki durumlar i¢in ele alindigida bu durum
gecerliligini yitirmektedir. Oyle ki, kuantum teorisinin ortaya cikigindan cok daha
evvel Newton tarafindan "mesafede etki” (”action at a distance”) veya Einstein ta-
rafindan "tuhaf” ("spooky”) ismiyle varligi sorgulanmig bu 6zellik tek yonlii kabul
edilen zaman olgusunun igleyigini ihlal edeceginden bircok bilim insam tarafindan
siipheyle kargilanmistir. Ancak tiim siiphelere kargin kuantum teorisinde vazgecilmez
bir yeri oldugunu ise EPR deneyi ile varligindan s6z edilmis olan birbiriyle dolanik ve
uzaysal olarak ayik alt sistemlerin (DUAAS) sayesinde kabul etmek bir mecburiyete
doniigmiigtiir. Bu mecburiyet daha agik bir ifadeyle, DUAAS’ler arasindaki etkilegim
Bell esitsizliginde agikca belirtildigi tizere sadece lokal gizli degiskenler yardimiyla
miimkiin tim durumlart kapsayacak bir ¢oziim tiretemezler ama bu ¢oziim tirete-
memezlik DUAAS’lerden degil tamamen lokal gizli degigkenlerin yapisindan kay-
naklanir. Cilinkii lokal gizli degiskenler DUAAS’lerin hem belirsizlik hem de 6zel
rolativite teorisinin 1g1k hizi ilkesini ihlal etmemesi amaciyla geligtirilmis degiskenler
olmakla birlikte DUAAS’lerin zamanla gegirdigi degisimlerin konumdan bagimsiz
olarak tiim alt sistemlerinde anlik degigsimlere sebep oldugunu kendi tizerinde bir
degisimin miimkiin olmamasi sebebiyle aciklayamaz. Bu ¢oziimstizliigii asabilmenin
tek yolu ise DUAAS’lerin anlik etkilegimlerine imkan taniyan (bir anlamda lokal
olmayiglik 6zelligi kazandiran) lokal olmayan gizli degiskenlerin varhgimi kabul et-
mekten gecer ve bu da dogal olarak 1g1k hiz1 ilkesinin ihlali anlamina gelir.
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Bu durumun fiziksel olarak karsiligi ise DUA AS’lerin birbiriyle anlik etkilegim i¢inde
oldugu ve etkilegimin lokal olmayan gizli degisken tizerinden gosterildigi dalga fonk-
siyonu (3.34) ifadesinde agikga verilmistir. Lokal olmayighgim kuantum teorisindeki
yerini ve lokal olmayan gizli degiskenlerin oynadigi bu roli ise Sheldon Goldstein
1995 yihindaki makalesinde [13] su sekilde 6zetlemektedir:

... Bell’in analizleri ¢cok daha fazlasini gostermektedir. Oyle ki, kuantum fenomenleri
i¢in hicbir gizli degiskenin lokal olmamast gerektigini agiklamakla birlikte, fakat bu
lokal olmayislik standard kuantum teorisinin gozlemsel sonuglarinda kendini ¢ok az
gostermektedir, eger doga bu ongorilerle tasvir edilebiliyorsa doganin kendisi lokal
olmamalidar!”*

Sheldon Goldstein yaptig1 agiklamada (elestiride) lokal olmayighgin sadece kuantum
teorisinin bir ozelligi olmadigini dile getirerek doganin da bu o6zellige sahip olmasi
gerektiginin altini ¢iziyor, bunun kamitinin da Alan Aspect ve arkadaslarini ilgili
makalesinde [141] gosterdigi sonuglar oldugunu dile getiriyor.

47 Bell’s analysis shows much more. It shows not only that any hidden variables account of
quantum phenomena must be nonlocal, but that nonlocality is implied merely by the observational
consequences of standard quantum theory itself, so that if nature is governed by these predictions,
then nature is nonlocal!”[13]
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4 ROLATIVISTIK BOHM MEKANIGI

4.1 Rolativistik Bohm Mekanigi’nin Tasviri

Giris ve ikinci boliimde gosterildigi tizere kuantum teorisinin genel yorum ve Bohm
mekanigi tamamen rolativistik olmayan durumlari agiklamak adina geligtirilmiglerdir.
Bu yiizden rolativistik durumlara dair tatmin edici sonuglara varmalari da ¢ok zor-
dur. Bu durumun en onemli orneklerinden birisi EPR deneyi ve onun daha giincel
bir versiyonu olan Hardy deneyi olup agiklamaya caligtiklari fenomenin 6zellikleri
bakimindan her iki yorumun da alanini agabilecek bir yapiya sahiptirler. Bu boliimde
iki deney arasindan Hardy deneyi iizerinde durulacak ve éngoriilen rolativistik Bohm
mekanigi araciligiyla deney yeniden ele alinacaktir.

Bohm mekaniginin rolativistik versiyonunu gelistirebilmek icin oncelikle mimkiin en
yalin duruma yani tek parcaciktan olusan bir sisteme bakmak yararh olacaktir. Tek
parcaciktan olugan bu sistemin 4 boyutulu uzay-zamanda, X*(s), tasviri ise dalga
fonksiyonu ¥ (z*) ve parcacigin gidigati:

dXH
ds

— (X" (4.1)

iizerinden elde edilebilir. Esitlikteki j# = 1) ifadesi Dirac akis1 (Dirac cur-
rent) olup daha 6nce roélativistik olmayan durumlar igin ¢ikarilmig olasihik akisinin
4-boyutlu uzay-zamanin baz alinmasindan otiirii 4’14 vektor ile yazilmig halidir.
4’14 vektorlerin genel ozelliklerine sahip olan Dirac akisi j,j* > 0 degerleri i¢in za-
mansal bolgeyi ifade eder ve ¢ 151k hizinin iist sinir olmasi sebebiyle sistemin tek
yonli (—oo — +o00) zaman akigina sahip olugunu gosterir (zira 191k hizinda ve
altindaki bolgeler i¢in zamanda geriye gitme gibi bir durum sz konusu olamaz). Bu
dalga fonksiyonlarimin hareket denklemleri tizerinden parcacigin zamansal bolgede
izledigi yollar elde edilmek istenirse (4.1) egitliginin ¢ = —oo’dan t = +o00’a integre
edilmesi yeterli olacaktir. 4-boyutlu uzay-zamanda yer alan diger bolgeler ise Sekil
4.1’de zaman boyutunda gecmis ve gelecek, uzay boyutunda ise kolaylik olmasi adina
sadece bir ekseni hesaba katacak gekilde gosterilmistir.
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gézlemci

Sekil 4.1: 4-Boyutlu Uzay-Zamanda Isik Konisi

Sekil 4.1’e ek olarak bu bolgelerin Dirac akisi lizerinden sahip olduklar1 degerleri
veya sinirlarini ise;

Jug" >0 = Tk konisinin icerisinde”
Judt <0 = sk konisinin disarsinda” 4.3
Juj" =0 = Tk konisini yuzeyinde” 4.4)

seklinde ifade edilebilir. Buna ek olarak Dirac akisinin diverjasimin sifir olmasi,
d,j* = 0, (bu esitligin ¢ikarihgt EKLER 6.4 béliimiinde yapilmigtir) olmasi sebe-
biyle herhangi bir Lorentz referans cercevesinde varilan sonucun tiim Lorentz refe-
rans cerceveleriyle ayni olmasini saglayacaktir. Bu durumu daha agik gostermek igin
farzedelim ki, parcacik keyfi bir Lorentz referans gercevesinde Dirac akisinin sadece
zamana bagh oldugu yani 7° zamana bagh spin matrisine tabi oldugu (EKLER 6.3
boliimiinde bu matrisin acik halini bulabilirsiniz);

3 =01 =l (4.5)

bir duruma sahip olsun. Daha ¢énce de gosterildigi gibi p = 119 oldugundan olasilik
yogunlugunun, p, Dirac akisma, j°, esit oldugu anlamina gelir ve bu da kuantum
denkliginin rolativistik durumlardaki karsiligidir. Dirac akisinin diverjansinin 0 ol-
mas1 sebebiyle de bu durum tiim Lorentz cerceveleri i¢in tiim zamanlarda gegerli
olacaktir. Bu egitlik sayesinde rolativistik olmayan kuantum teorisindeki olasilik
yogunlugu ifadesinin rolativistik durumlardaki karsiligi elde edilmig olur. Bir bagka
deyisle rolativistik durumlar icin kuantum denkligini gosteren p = j° = 1 esitligi
rolativistik olmayan olasihk yogunlugu p = |[¢)|*’un rolativistik durumlan da kapsa-
yacak sekilde genellegtirilmig halidir [15].

Tek parcaciktan olusan bir sistemin referans gergeveye gore Lorentz doniigiimleri
altinda degismez kaldigini bu sekilde gosterilebilirken ayni stireci birden fazla parcacik-
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tan olusan sistemler i¢in gelistirmek ¢ok daha zordur. Zira ozellikle sistemi olusturan
parcaciklarin uzaysal olarak ayrik konumlandigi EPR ve Hardy deneyi gibi rolativis-
tik durumlari igeren uygulamalarda bu durum kendini daha da bariz gosterir.

Bununla birlikte rolativistik durumlara ait bir diger 6nemli unsur ise Lorentz degis-
mezligi ve lokalligin sahip olduklar1 ozellikler itibariyle birbirlerini kisitlayici ol-
madiklaridir. Oyle ki, Lorentz degismezligi goz ontine aldigi sistemin baz ozellikleri
ile (6z-zaman ve 6z uzunluk gibi) referans gercevesi arasindaki iligkiye dayanirken
(EKLER 6.3.1 agikca gosterildigi gibi), lokallik birden fazla pargaciga sahip bir sis-
temde, parcgaciklar sistemin alt sistemi olmak iizere, alt sistemlerin kargilikli et-
kilesiminin yapisinin nasil olmasi gerektigi iizerinde cesitli kosullara dayanmaktadir.
Yani Lorentz degismezligi referans cercevesi ile goz ontine alinan sistemler arasindaki
iliskiyi ele alirken, lokallik sadece alt sistemler arasindaki iligkiyle ilgilenir. Bu se-
beple birbirleri iizerinde etkiye sahip olamayacaklaridan, lokal olmanin (ya da ol-
mayighgin) ve Lorentz degigmezliginin korundugu bir teori geligtirilebilir. Iki kavram
arasindaki iligki; referans gergevesi; x — ¢, gozlenen sistemin(S) alt sistemleri; Sy, S
olmak iizere Sekil 4.2 ile gosterilmektedir.

A Sy
lokallik
32
Lorentz
degismezligi
- x »~
\ J

Sekil 4.2: Lorentz Degismezligi ve Lokallik

Bohm mekanigi agisindan bu sonuca bakacak olursak, referans gergevesini hareketsiz
kabul edip gozlenen sistemin birbirine dolanik alt sistemlerinin hizlarini referans
gercevesine gore sirasiyla s;” — @ ve s’ — @5 olarak kabul edersek Bell’in kitabimin
15. boliimiinde ele aldigi gibi [41] 1. parcacik i¢in 6lgiilen deger hy = +h, 2. pargacik
icinse hy = —h, |am,|?, olasilik degerleri ve g lgiim aletinden kaynaklanan zamana-
bagl ¢iftlenim degeri (time-dependent coupling) olmak iizere (m,n = 1, 2);

2 (=D amn [ S(x1 — (=1)"ha)?|¢(a2 — (=1)"haf?

S P16 (r — (1)) [z — (—1)7hsP (46)

T =g

D (D) |amn P p(1 — (=1)"h1)?|$(x2 — (—1)"ho|?
2 | *[@(x1 = (=1)™h1)?| @ (22 — (=1)"hal?
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seklinde elde edilerbilirler. (4.6) ve (4.7) ifadelerinin yardimiyla alt sistemlerin refe-
rans gercevesine gore hizlarinin, birbirine bagh oldugunu agika goriilebilir. Bu ifadeler
daha 6nce Bohm mekanigi boliimiinde ¢ikarimi yapilmig olan hareket denkleminin
(rehber denkleminin) sadece ele alman duruma gore her bir pargacik igin yazilmig
versiyonlaridir. Bununla birlikte boliimiin baginda verilen ilgili makaleden [15] bir
alint1 yapacak olursak Dirac parcaciklarini ele alan rehber denkleminin igerigi su
sekilde aciklanmaktadir:

"Bir¢ok Dirac parcacigindan meydana gelen sistem i¢in Bohm, belirli bir referans
cercevesi esas alinarak formaile edilmis ve aslinda Lorentz degismezi olmayan rehber
denkleminin:

_ Vlagy

b (4.8)

Vg

seklinde yazilabilecegini ile sirmistir. Rolativistik olmayan teoriye benzer olarak,
cok-parcacikl Dirac denkleminin bir sonucu olan kuantum akist denkleminin garanti
ettigi gibi YTy ifadesi secilmis referans cercevesindeki dinamik sistemin esdegiskenli
bir toplulugu tasvir ettiginden, bu teori kuantum ongorilerini, olasilik yogunlugu
Y1) ifadesinden tiireterek, yeniden tiretmektedir. Bu éngériiler ise tercih edilen refe-
rans ¢ercevesinin izini icermez: Lorentz degismezligi gozlemsel dizeyde korunmakla
birlikte, temel diizeyde bu s0z konusu degildir.”*

Alintida acik bir sekilde ifade edildigi gibi Bohm’un ileri stirdiigii rehber denkleminin
se¢ilmis referans gergevesini (chosen reference frame) baz almasindan 6tiirii Bohm
mekanigine cesitli elegtiriler getirilmistir. Bunlarin en onemlilerinden biri ise Lucien
Hardy’ nin [16] Bohm mekaniginin tercih edilen bir referans gergevesini kapsamasi zo-
runda oldugu varsayimindan hareketle Lorent degismezligini bozdugu elestirisidir.
Deterministik (literatiirde genellikle gergekei (realistic) olarak gegmektedir) kuan-
tum teorisi yorumlarindan biri olan Bohm mekanigine getirdigi bu elestiri iizerinden
Hardy’nin varmig oldugu sonug ise biitiin gergekci kuantum teorilerin tercih edilen
bir referans cercevesi kapsamasi gerektiginden Lorentz degismezligini ihlal etmeyen
gergekei bir kuantum teorisi geligtirilemeyecegidir. Ancak Bell tarafindan GRW yo-
rumu kapsaminda ele alinmig bir ¢ikarim olan ¢oklu-zaman doniigtimlerinde de goste-
rildigi gibi tercih edilen bir referans gercevesi olmadan boyle bir teori geligtirmek
mimkiindiir.

L7 For o system of many Dirac particles, Bohm has proposed the following quiding condition:

_ Yiagy
YTy

which is formulated with respect to a certain reference frame, and is in fact not Lorentz invari-
ant. Analogously to the nonrelativistic theory, the quantum flux equation which is a consequence of
the many-particle Dirac equation guarantees that 1) is an equivariant ensemble density for this
dynamical system in the chosen reference frame, and therefore this theory reproduces the quantum
predictions insofar as they derive from the probability density 11v. These predictions don’t con-
tain a trace of the preferred frame: Lorentz invariance holds on the observational, but not on the
fundamental level.”[15)

Uk

o1



4.2 Coklu-zaman Dontisiimleri

Bu gikarimi kanitlamak amaciyla, bir 6nceki boliimde ele aldigimiz makalenin [15] de
yardimiyla, farzedelim elimizde EPR deneyinde oldugu gibi birbiriyle belli bir siire
etkilesimde bulunmusg iki adet dolanik parcacik olsun ve bu parcaciklar birbirlerine
gore z1t yonlerde rolativistik olmayan hizlarla hareket etsinler. Gene EPR deneyinde
ele alindig gibi birbirlerinden uzaysal olarak ayrik olduklari konumda ,z, ve zg,
parcaciklarin herbiri izerinde es-zamanh olgtimler yapilsin, ¢, = tg.

Secilmig bir referans gercevesi, x—t, i¢in 6l¢iimler yapildigi anda pargaciklarin konum
ve zaman koordinatlarini yazacak olursak;

Ta=0 , ta=0 (4.9)
zg>1 | t3=0 (4.10)

ifadelerini elde etmis oluruz. Secilmis referans cergevesine gore hizi v ~ 0 olan bagka
bir referans cergevesi,x’ — ¢, i¢in v = 1 ve vaxg = ¥(birimsel deger) olmak {izere
pargaciklarin konum ve zaman koordinatlar ise;

2 =0 , t/=0 (4.11)
.Ig/ rRrg>1 tﬁl =tg —vrg = — (4.12)

seklinde gosterilebilir. (4.9) ve (4.11) ifadelerinde verilen konum ve zaman esitlikleri
ile agikca anlagilabilecegi gibi parcaciklarin herbiri tizerinde yapilan 6l¢iimlerin x —¢
referans cercevesinde ele alindiginda eg-zamanlh oldugu goriiliirken z’ — t' referans
gercevesi i¢in ayni durumun gecerli olmadigi gézlenmektedir.

Bu duruma daha yakindan bakacak olursak goze ¢arpan ilk noktanin, parcaciklar
izerinde yapilan olgiimlerin farkh referans cercevelerine gore ifadelerinin yalniz za-
man boyutunda bir degisiklik gostermesi nedeniyle sadece basit bir zaman doniigtimii
olarak kabul edilebilir oldugudur. Bununla birlikte bu zaman dontigiimiiniin birimsel
boyutta, ¥, olmasi nedeniyle rolativistik olmayan kuantum durumlarina ¢ok benzer
dogaya sahip oldugundan Lorentz degismezi olarak ele alinabilir. Bu benzerlikten
hareketle sistem daha basit bir versiyona indirgenebilir. Bu durumun, kompakt ol-
mas1 nedeniyle, konfigurasyon uzay iizerinden gosterimi daha kolay olacagindan a
ve b alt sistemleri i¢in ¢oklu-zaman doéntigimii L, — 7 = (7,, 7) olmak {izere;

z = (Zm Zb) = (taa Qa7tb7 Qb) — Z/ = (ta — Ta, Qavtb — Tb, Qb) = LTZ (413)

seklinde gosterilebilir. (4.13) ifadesiyle, rolativistik olmayan sistemlerin zaman dé-
niigimii ve ¢oklu-zaman dontisimii arasindaki benzerligin o6zellikle konfigurasyon
uzay1 ele alindiginda daha da acgik olarak goriilebilmektedir.

Bu benzerligin yardimiyla rolativistik olmayan sistemlerin zaman dontisiimiintin
¢oklu-zaman dontlisiimii cinsinden yazmanin rolativistik sistemlere kiyasla daha ko-
lay olacagindan hareketle farzedelim ki elimizde birbiriyle etkilegim icerisinde olma-
yan a ve b alt sistemlerinden olugan bir kuantum sistemi olsun ve sistemin dalga
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fonksiyonu alt sistemlerin kendi zaman ifadeleri iizerinden v (t,, t;) seklinde gosteril-
sin. Zaman evrim operatorii v, = e~*'1)y = Usrhy olmak iizere dalga fonksiyonunun
parcaciklarin zaman ifadelerine gore evrimi;

U(ta ty) = e Haleemilyy = o Utbb o = Uy (4.14)

seklinde gosterilebilir. Burada:

o W
i = Hyap | i o Hy) (4.15)

esitlikleri sirasiyla a ve b pargaciklarinin zaman evrim operatorleri olup, pargaciklar
arasi ol¢iim oncesi bir etkilegsim olmadigindan [Ha, Hb} = 0 yani H; = 0 olmas: se-
bebiyle (4.14) ifadesinde gosterildigi gibi her bir parcacik i¢in ayr1 olarak yazilabilir.
Sistemin konfigurasyon uzay1 baz alinarak elde edilecek ¢oklu-zaman doniigiimleri
ise;

¥(2) = ¢o L7 (Lr2) = ¢/(2) (4.16)
seklinde gosterilebilirken, U, = U2 U?, olmak tizere;
Y = e HeTaem oy — U2 Ulyp = Urnt) (4.17)

sistemin ¢oklu-zaman doniigiimii (4.17) ifadesi ile elde edilebilmektedir. (4.14) ve
(4.17) ifadeler-

indeki benzerlikten de goriilebilecegi gibi alt sistemler arasindaki konum farkindan
bagimsiz olarak kuantum sistemi tizerinde yapilan ol¢timler, zaman evrim operatorii
ve ¢oklu-zaman doniigimleri igin agikca gosterildigi gibi, tiim referans gergevelerine
gore bir Lorentz degismezi olarak ortaya ¢ikmaktadir. Bu durum sadece ¢oklu-zaman
ya da zaman evrim operatoriine 6zel olmayip kuantum 6lgim formalizmini (quan-
tum measurement formalism) esas alan biitiin operatorler igin gegerli bir durumdur
(bahsi gegen gegerlilik durumunun ispati igin makalenin ilerleyen boliimlerine bak-
mak yeterli olacaktir).

Ozetlenecek olunursa, kuantum teorisinin temel yap: ve ilkelerinin {izerine kurulmus
kuantum 6lgtim formalizmi teorinin biitiinliigiinii korumasi gerektiginden belirli (se¢-
ilmig) referans gercevesine bagh kalmadan bir bagka deyigle herhangi bir gézlemci i¢in
ozel bir sonug vermeksizin degismez kalmak zorundadirlar. Goldstein ve arkadaslar:
ise ilgili makalesinin 13. sayfasinda bu durumu su sekilde agiklamaktadirlar;
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"Ozellikle belirtmek gerekir ki, kuantum ol¢im formalismin ongorileri referans cer-
cevesinden bagimsizdir. Bu sebeple, birbirinden buyik ol¢iide ayrik alt-sistemlerden
olusmus bir sistem icin kuantum ol¢tim formalismi ¢oklu-zaman dontsiumleri altinda
degismezdir.”?

Bununla birlikte varilan bu sonug iizerinden lokal olmayishga dair su ¢ikarimi yap-
maktadirlar;

"Bu yapr bakimandan EPR deneyi — ac¢ik etkilesim i¢inde olmayan fakat ortak bir
dalga fonksiyonuna 1 (t,,t,) sahip alt-sistemlerin ele alindigr — i¢in agik¢a gorile-
bilir ki, bu iki-zamanly ortodoks model i¢in, EPR-Bell lokal olmainshgr secilmis bir
referans cercevesinin varhgqina ihtiyag duymaz.”

1. alintida varilan sonuca tamamen katilmakla beraber, zira bu sonu¢ kuantum teori-
sine dair getirilen biitiin yorumlar i¢in kabul edilmesi gereken mantiksal ve makalede
gosterildigi kadariyla da matematiksel bir ¢ikarimdir, 2. alintinin dogru ancak yeter-
siz oldugunu kanisindayim ve bunun agiklamasini da tezin son boliimiinde yaptigim
elestiri tizerinden agiklamam sebebiyle simdilik bu durumu es ge¢gmenin daha dogru
oldugunu diigiinmekteyim.

Bununla birlikte ¢oklu-zaman doniigimii ve onun bir Lorentz degismezi oldugunun
ispat1 esasinda sadece genel yorum icin bir gereklilik olmakla birlikte Schrodinger
denkleminin genel yapisi, GRW ve Bohm mekanigi i¢in benzer bir ispat yapmak ge-
reksizdir. Clinkii bu yorumlar 6ztinde mutlak zaman (absolute time) ve mutlak uzay1
(absolute space) kabul etmeleriden 6tiirii ¢oklu-zaman doniigimii gibi déntigiimler
herhangi bir sorun tegkil etmemektedirler.

Buradan hareketle genel yorum i¢in ¢oklu-zaman doniisiimlerinin bir Lorentz degis-
mezi olmast durumu, mutlak zamani esas almalar1 nedeniyle, segilmis ve tercih edi-
len referans gergevesi gibi dinamiklere ihtiya¢ duymayan Bohm mekanigi i¢in de
gecerlidir. Bu cikarima varmak Bohm mekaniginin deterministik bir yapiya sahip
olmasi ve sistemler arasindaki etkilegsimin agik (rehber dalga denklemi bunun en
onemli 6rneklerindendir) olarak gosterilmesi sebebiyle referans gergevesinin tercihi
gibi bir bakig acisina gerek birakmamaktadir. Bu nedenle Bohm mekanigi ¢oklu-
zaman dontsiimleri altinda degismezliginin koruyabilmektedir. Siireci ayni genel
yorumda oldugu gibi daha acik bir sekilde gorebilmek icin gene Goldstein ve ar-
kadaglarinin makalesine bakilabilir [15].

Hem yukarida bahsedilen degismezligin bir testi hem de Hardy deneyine ge¢cmeden
hazirlik olmast adina ufak bir 6rnek paylagsmak yararli olacaktir. Genel yorum igin
verilen ornege benzer birbiriyle dolanik ve bu sebeple senkronize olan iki sistem ele
alalim, bu sistemler i¢in zaman degerleri;

T.(0) = s, T,(0) = so+ h ve T,(s) = so+ s, Ty(s) = so + h + s (h zaman sabiti)
olmak tizere, sistemin dalga fonksiyonu;

27In particular, the predictions of the quantum measurement formalism are independent of the
frame of reference. Thus the quantum mechanical measurement formalism for a system which
consists of independent widely separated subsystems is multitime translation invariant.”[45]

37 Within this framework an EPR experiment can be described—the subsystems, while not expli-
citly interacting, are coupled by their common wave function 1 (ta,tb)—and one can explicitly see,
for this two-time yet orthodox model, that the EPR-Bell nonlocality does not demand the existence
of a preferred frame of reference.”[15]
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V8, qay @) = Y(Tu(8), ¢as To(8), @) = (S0 + S, qas So + h + 8, q) (4.18)

seklinde yazilabilir. Bu dalga fonksiyonu iizerinden sistemi olusturan her bir alt
sisteme denk diigen rehber denklemi ise, 1, ve 7, konfigrasyon uzay1 parametreleri
olmak tizere;

dng

2o = U (5,1a(s). mo(5)) (4.19)
o (s mls)m5) (4.20)

esitlikleri ile gosterilebilir ve siireklilik denklemi de;

op"

T T Va0 + Vg (o) = 0 (4.21)
olarak yazlabilir. (4.21) ifadesinde agikga goriilecegi gibi siireklilik denklemi olasilik
yogunlugunun zamana gore tiirevi olup bu durum i¢in senkronizasyon degiskeni
olan s tlizerinden ele alinmaktadir, olasilik akisi i¢inse senkronizsyona baglhlik kapal
olarak kendini gostermektedir. Ayrica unutulmamasi gereken bir bagka durumsa
verilen tiim orneklerde kuantum denkliginin gecerli oldugu durumlarin g6z ontiinde
bulunduruldugudur. Yani sadece p = [¢)|* olan hiperyiizeyler hesaba katilmaktadir.
Bunun sebebi ise sadece kuantum teorisinin sinirlari i¢cinde kalan sistemlerin ele
aliniyor olmasidir.

4.3 Hardy Deneyi

Hardy deneyi [16] EPR deneyinin daha modern bir versiyonu olup onu bir adim
daha ileri gotiirerek uzaysal olarak ayrik parcaciklarin aralarindaki iligkiye dair daha
derin bir aciklama getirir. Deneyi kisaca aciklayacak olursak, EPR deneyinde de
aciklandigr gibi 7° — e~ + et parcacik sacilmasi ardindan e~ ve et parcaciklari
sahip olduklar1 spin degerlerine bagh olarak (Sekil 4.3'te gosterildigi gibi);

oncelikle BS;, ve BS},, miknatislarindan gegerek e™ igin v, w*; e~ icinse v,
w~ yollarmdan birini takip edip swrasiyla BSZ, ve BSZ,, miknatislarma ulagilar.
Bundan sonra ise v ve v~ yolunu takip ettiklerinde ikincil miknatislarin etkisiyle
gene bir yol ayrimina ugrayarak, ¢ yapict girisim (constructive interference) ve d
yikicr girigim (deconstructive interference) olmak {izere, et igin ¢, d™; e™ iginse ¢~
d~ yollarindan birini sececek ya da wt ve w™ yolunu izledilerse yeniden birleserek
(birbirlerinin parcacik ve antipargaciklar: olduklarindan) foton 1gimasi yapacaktirlar.

Bu siire¢ matematiksel olarak ifade edilecek olunursa;
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Sekil 4.3: Hardy Deneyi[17]

") +ijw™) [0%) + i [w*)

let) v = |cF) = 73 (4.22)
oy o) —dfw) o JoE) —i|w)
olmak tizere;
e = 7 [Blefe) +letd ) + |emd®) — |dtd) — 2|) (4.24)

(4.24) seklinde gosterilebilir. Burada 2 |y) ifadesi muhtemel durumlardan birisi olan
parcaciklarin birlegserek 1gima yaptiklar:t senaryodur ve deneyde sadece alt durum-
larindan birisi olan parcaciklarin uzaysal olarak ayrik oldugu durumlarin 6nemli
olmasi nedeniyle ifadeyi;

lete™) = —=| )5 |18 =[98 =) — =0 |98 =310 =) | (4.25)

T T

seklinde diizenleyerek (4.25) ifadesiyle yazmak yeterli olacaktir. Bu nedenle (4.25)
ifadesi (4.24) ifadesinin 6zellesmis bir versiyonudur da denilebilir. (4.25) ifadesinde

gosterildigi gibi parcaciklar /12 olasihigiyla |+)Z+; |+)¢ durumuna, 9/12 olasilikla
|—>§+; =)o, Y12 olasilikla |+)§+; =) ve ]—>§+; |4+)¢  durumlarina gegis yapa-
bilirler. z-dogrultusunda olgiim yapan BS' miknatislarini gegen pargaciklar |—|—)Z+;
=) ve \—>§+;|+)j durumlaria gectikten sonra dolaniklik ozelligi sayesinde BS?

miknatislarindan ge¢gmelerinin ardindan asagidaki alt durumlara gecerler;
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6_.
z

1. durum |+)¢'; |—)

la: [+); [+H): = =) -) (4.26)
et et e e
Ib: [4+), [2). <= =) [+ (4.27)
et e
2. durum |—)¢ ; [+)S
et et e e
2a: [=), [4). = |+, ) (4.28)
et et e e
2b: =), [2). = [+ (4.29)
Diger durumlar i¢inse;
3. durum |+)¢; |4+)°
et et e e
3a: [+), [+). <= [+ |- (4.30)
et et @ @
3b: ) =), = |4 [+ (4.31)
4. durum |—)i+; EE
et et e e
et et e e

Burada belirtilen muhtemel durumlarin ¢oklu-zaman doniigiimleri altinda degismez
kalan Bohm mekanigi agisindan gerceklesmesi, daha dogrusu parcaciklarin izledik-
leri yollarin dogasi, nasil agiklanabilir? Bu sorunun cevabini verebilmek i¢in goklu-
zaman dontigiimlerinin agiklandigr boliimde Bohm mekaniginin bu dontisimler tize-
rinden yeniden ele alindigi ifadelere bakmak yararli olacaktir. Zira sistemin top-
lam dalga fonksiyonunun senkronizasyon oOzelligine gore yazildigi ifadeden acikca
anlagilabilecegi gibi sistemin dogasi tamamen onu olugturan alt sistemler (ki Hardy
deneyi igin bunlar e~ ve e pargaciklaridir) iizerinde yapilan 6l¢timlerin birbirlerine
gore zamanlamalarina baghdir.

Bir ornek tizeriden aciklayacak olursak, farzedelim deneyde ele aldigimz e~ ve et
parcaciklar: z-dogrultusundaki BS' miknatislarina ugradiktan sonra sirasiyla H—)j
ve |+>§7 spin degerlerini alarak yukarida gosterilen durumlar arasindan 3. duruma
gecis vapsinlar. 3. duruma gecis yaptiktan sonra ise parcaciklar z-dogrultusunda BS?
miknatislarindan da gecerek gene yukarida gosterildigi gibi 3a ve 3b alt durumlarina
indirgeneceklerdir. 2. miknatislardan gecigin ardindan alt durumlardan hangisine
indirgeneceginin se¢imi ise bu dolanik pargaciklar arasindaki senkronizasyonla iligkili
oldugundan onlarin gecis siralarina bagh olacaktir. Bu siralama tizerinden |—|—)Z+ ve

|4+)¢  i¢in miimkiin alt durumlar ise;
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T.+ =0veT,- =t durumu icin:

et et e e
3a: [+), [+). = [+), ) (4.34)
T.+ =tveT,- =0 durumu icin:
et et e~ e~

seklinde gergeklesecektir. Boylece ¢coklu-zaman dontigiimleri altinda degismez kalan
Bohm mekanigi iizerinden uzaysal olarak ayrik dolanik pargaciklarin izleyebilecekleri
gidigatlarin rehber denklem ve baslangi¢ kogullar1 yardimiyla agiklanabilecegi sonu-
cuna varilmig olur. Burada ozellikle baglangi¢ kosullarinin parcaciklar arasindaki
senkronizasyon tlizerindeki etkisi ile beraber, aralarindaki anlik etkilesim yardimiyla
konuma baglh olmaksizin, izlenen gidisatin se¢iminde temel rolii oynadiginin alti
tekrar cizilmelidir.

Buna ek olarak deneyde ele alinan bu parcaciklarin ti¢ farkl referans gergevesine gore
izleyecekleri gidisatlarin gosterildigi ilgili makaledeki figlire bakmak stireci daha iyi
anlamak adina yardimci olacaktir.

Sekil 4.4: Hardy Deneyinde Ele Alinan Farkli Referans Cergevelerine Gore Dalga
Fonksiyonunun Evriminin Uzay-Zaman Diyagram [15]

Sekil 4.4’te koyu olarak gésterilen bélgeler; A, — BS,,, A. — BSZ,, B, — BS.,,,
B, — BS?ag olmak tizere Sekil 4.3 ile daha 6nce verilmig olan Stern-Gerlach mikna-
tislanidir. ¢ = ¢, t,7; t11; 711 parametreleri ise sirasiyla I; I1; I11 referans cercevele-

rini esas alan zaman parametrelerdir.
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Sekilde acikga gosterildigi tizere farkh referans gergevelerinden bakildig: taktirde do-
lanik parcaciklarin, karsilikli olarak, izledikleri gidisatlarin farkli oldugu gozlenmek-
tedir. Oyle ki, referans cercevelerine bagh olarak parcaciklarm miknatislara gecis
siralarinda gerceklegsen degisiklik nedeniyle parcaciklarin izledikleri gidisatlar da,
kargilikli olarak, kaginilmaz olarak degismektedir. Bu durum ise ozetle kuantum
denkliginin, p = [¢|?, biitiin referans gercevelerinde korunamayacagini resmeder-
ken ancak ayni referans cergevesine ait olan hiperyiizeyler i¢in bu korunabilirligin
miimkiin oldugu anlamina gelmektedir.

4.4 Kuantum Denkligi, Lokal Olmayishk ve Isik Hizindan
Hizli Sinyallesme

Boliim baginda kisaca aciklanan kuantum denkligi aslinda genel yorumun temel
gikarimlarindan birisi olan Born kuralinin (Born rule) Bohm mekanigindeki kargihigi-
dir. Ancak kuantum denkligi her ne kadar Born kuralinin karsiligi olsa da genel yo-
ruma kiyasla Bohm mekaniginde ¢cok daha derin bir yere sahiptir, zira genel yorum
tamamen vektor uzayini esas almasi nedeniyle kuantum denkliginin dalga fonksi-
yonunun sekline bagh (morfolojik) bir ¢ikarim olmasindan tam anlamiyla yararla-
namamaktadir. Buna kargin Bohm mekanigi ise konfigurasyon uzayimi esas almasi
sebebiyle kuantum denkliginin sagladig: iligkiyi cok daha elverigli olarak kullana-
bilmektedir (vektor uzay1 ve konfigurasyon uzaymin genel ozellikleri i¢in Diirr ve
Teufel’in [32] kitabma bakilabilir).

Bu durumun en bariz orneklerinden birisi ise EPR ve Hardy deneylerinde ele alinan
uzaysal olarak ayrik parcaciklar arasindaki lokal olmayan etkilesimlerdir. Parcacik-
lar arasindaki bu etkilesimler, boliim boyunca da ele alindig1 gibi, deney sartlari
itibariyle 151k hizindan dahi daha hizli bir etkilegsime sahip olmak zorundadirlar. Peki
bu durum nasil miimkiin olabilir? Ozel rélativite teorisinin acik¢a imkansiz oldugunu
acgikladigr 11k hizindan daha hizhi bir "haberlesmenin” (sinyallesmenin) birbiriyle
dolanik parcaciklar arasinda kuantum teorisine gore miimkiin oldugu, hatta tam
anlamiyla mecburiyet oldugu, nasil agiklanabilir?

Her iki sorunun cevabi aslinda ortaya ¢ikmalarina sebebiyet veren kuantum denkligi
¢ikariminda yatmaktadir. Bu sebeple kuantum denkliginin matematiksel acilim tize-
rinden durumu acgiklamak en saglikli yontem olacaktir. Hatta bir adim daha ileri
giderek tezin de genel yapisini olusturan dolanik parcaciklar tizerinden acgilimi elde
edelim. Bu dogrultuda birbiriyle dolanik iki parcaciktan olugan sistemin dalga fonk-
siyonu |a|* + b2 + |c|* + |d|* = 1 olmak iizere:

U= a ), [y + b1, g + 4y (1 +d 1), 1), (4.36)

seklinde ifade edilebilir. EPR ve Hardy deneylerinde ele alindigi gibi 1. parcacigin
Olciimii soldaki ol¢iim aleti olan BS,,; ile yapilirken 2. pargacigin olimi ise sagdaki
olgim aleti olan BSy,, ile yapilmaktadir. Dalga fonksiyonundan agikga goriilebi-
lecegi gibi ikinci parcacigin BSs,, ile yapilan 6l¢limii sonucu yukar: spinli oldugu
1), durumlarin elde edilme olasilig1 basitge [b|? + |d|? olarak ifade edilebilir (burada
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Olctim aletlerinin sadece belirli dogrultularda 1 ve | durumlarim olctiigiine dikkat
edilmedilir). Olciim aletlerinin 6lciim dogrultularinda herhangi bir degisiklik yapil-
madig1 takdirde az once vardigimiz |al?, [b[%], |c|?, |d|* degerlerinin gesitli ikili kom-
binasyonlarimi elde etmis oluruz. Olciim aletlerinin birinin dogrultusunda yapilan
degisiklik sonucunda gene benzer bir sonucla mi karsilacagiz bir de ona bakalim.
Farzedelim birinci pargacik tizerinde ol¢iim yapan BS,, un z-dogrultusu tizerinde
0 kadar bir ag1 degisikligi olsun. 1. parcacigin bu agi degisikligi sonu yeni 1 ve |
durumlar sirasiyla:

1), = ticosf+ j,sind (4.37)
1), = —tisinf+ j,cosd (4.38)

seklinde ifade edilebilir. |1) ve |]) yeni durumlari tizerinden dalga fonksiyonu yazacak
olursak:

U =4, [cos@(a 1), +d |T>2) - sin@(c [1)o b |T>2]
(4.39)

+7, |:COS Q(b 1)y +c |¢)2) + sin@(a )y +d 1), )}

(4.39) esitligini elde etmig oluruz. Elde edilen yeni dalga fonksiyonunda ¢; parante-
zinde yer alan kisim 1. parcacigin yukari spinli durumlarim verirken, j, parantezinde
yer alan kisim ise agagi spinli durumlarina kargilik gelir. Bu kisimlar sirasiyla ¥;, ve
U, seklinde ifade edecek olursak 1. parcacik tizerinde yapilacak bir dlgiim sonucu
yukar1 ve agag1 yonlii spin durumlarinin elde edilme olasihigi gene sirasiyla |U;, |? ve
|W;,|* olarak gosterilebilir. 1.parcacik tizerinde BS,, aleti ile yapilacak bir 6lgiim
elde edilen yeni dalga fonksiyonunun ozfonksiyonlarina ¢ékmesine neden olacaktir.
Olgiim nedeniyle gerceklesen dalga fonksiyonunun ¢okiisiiniin ardindan farzedelim
ki boliim bagindaki gibi 2. pargacigin yukar: spinli degerleri bizim igin kistas olsun.
Yani boliim baginda bahsedildigi gibi 2. parcacigin BS,,, ile dl¢iimii sonucu elde edi-
lebilecek muhtemel sonuclarindan yukari spinli durumlarina bakacak olursak; olasilik
degerlerini toplam olarak:

2 |31 [1), (dcos @ — bsin ) |2

2 |31 1), (bcosd + dsin6)|?
|\Ij'i1|2

|\Ij’i1
|\I}i1 |2

+ Wy, (4.40)

seklinde yazilabilir ki bu da aslinda en basta 2. parcacigin ol¢iim sonrasi elde edile-
bilecek yukar1 spin durumlarinin toplam olasilik degeri olan |b]? 4 |d|? ile ifade edilen
degere denktir. Ozetleyecek olursak, birbiriyle dolanik ve uzaysal olarak ayrik olan
parcaciklardan olusan bir sistemde parcaciklardan biri iizerinde yapilan bir degigimin
(ki bu degisim 6rnekte bahsedildigi gibi parcacigin 6lgiimiinii yapacak olan alet tize-
rinde de yapilabilir) konumdan bagimsiz olarak diger parcacigi etkiledigini gérmiis
olduk. Bu etkinin temel sebebi ise dalga fonksiyonunun biitiinliigtinti korumak adina
kuantum teorisinin temelinden gelen bir zorunluluk olarak kendini gostermektedir.
Bu durumu bir analoji tizerinden anlatacak olursak, dalga fonksiyonunu bir bardagin
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igindeki su olarak diiglinelim; bu suyun bardaktan farkli bir morfolojiye sahip bir
kaba aktarildigini hayal edelim. Bu iglemin ardindan suyun degigen tek ozelliginin,
iginde bulundugu kabin geklini almasindan 6tiirti, morfolojisi oldugunu gormiis olu-
ruz. Bu durum ele aldigimiz dalga fonksiyonunun gecirdigi degisim icin de aynen
gecerlidir zira dalga fonksiyonunun degisen tek ozelligi, 6l¢iim aletindeki etkiden
otiiri, morfolojisinde meydana gelen farkliliktir.

Genel yorum ve Bohm mekanigine gore ise olusan bu morfolojik farklilik sonucu
dalga fonksiyonunun yapisini muhafaza etmesinin bir zorunluluk olmasi nedeniyle,
sistemin bilegenleri arasindaki mesafe ne kadar biiyiik olursa olsun, anlik bir et-
kilesimi sart kogsmaktadir. Bahsi gecen bu etkilegsim kuantum teorisine gore nedensel
(causal) bir etkilegsim oldugundan kontrol edilemez. Yani bir bagka deyisle sistemi
olugturan bilegenler arasindaki etkilegim sistemin i¢inden gegtigi siirecin bir sonucu
oldugundan tamamen nedensel olarak ortaya cikar ve deterministik bir yapi ile kont-
rol edilemezler. Bu sebeple kontol edilebilir yapidaki klasik determinizme dayali sin-
yallesme tizerine kurulmusg bilingli bir haberlesmeden ¢ok etki-tepki ilkesini esas alan
refklese benzer bir dogaya sahip olan nedensel etkilesimler anlik olmakla birlikte kul-
lanilabilir bir haberlesme araci olmaktan uzaktirlar. Bu konu tizerinde daha genis
bir agiklama i¢in Tim Maudlin’in ”Quantum Non-Locality and Relativity” [18] adl
kitabinin dordiincii boliimiine bakilabilir.

Sonug olarak kuantum teorisi her ne kadar 1sitk hizindan hizlhi bir etkilesimi sart
kogsa da sart kostugu etkilegimin kontol edilemeyen dogas itibariyle 6zel rolativite
ile herhangi bir anlagmazliga diismemektedir. Bu nedenden otiirii kuantum denkligi
lokal olmayighgin varligini kanitlayan ve onun kuantum sistemlerinin mecburiyeti
oldugunu gostermesi agisindan kuantum teorisinde énemli bir ¢ikarim olarak yerini
almaktadir.
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5 SONUCLAR

5.1 Kuantum Teorsinin Yorumlar: ve Ortak Hedefler

Tezin tamaminda ele alindigi gibi kuantum teorisinin genel yorumu ve Bohm me-
kanigi arasindaki temel ayrim, olgiim stireci ve onun her bir yorum adna ne ifade
ettigine dayanmaktadir. Oyle ki, genel yorumda 6l¢iim kavram dlciileni reellegtirmek
anlamina geldigi i¢in onun oncesi hakkinda konugmanin dahi gereksiz oldugunu sa-
vunurken, Bohm mekanigine gore ise ol¢iim Oncesinde de sistemin reel degerlere
(baglangig kogullar1 = gizli degiskenler) sahip oldugu ve bunlarin bizzat l¢iimiin
sonucuna etkisi oldugu savunulmaktadir. Bu savunmay1 yaparken genel yorumun
ongoriisiinden 6tiirii (yani 6lgenin 6lgiim 6ncesi hakkinda tamamen bilgisiz oldugu
durum) olanaklar dahilindeki tiim olasiliklar: iginde barindiracak bir yap: geligtirirken,
ki bu yap1 daha once de ele alindig1 gibi indeterministiktir, Bohm mekanigi deter-
ministik bir yap1 geligtirmektedir. Her iki yorum da ozleri itibariyle kolayliklar ve
zorluklar sunmakla birlikte deney sonuclariyla ortiigsen cevaplar vermeleri sebebiyle
kuantum teorisinde 6nemli yerlere sahiptirler. Buna ek olarak iki yorumun birlikte
ele alindig1 bir iist yorumun dahi gelistirilebilme imkani da bulunmaktadir. Kuantum
teorisinin tiim yorumlar1 géz oniinde bulundurularak bir yapboz olarak ele alinirsa,
teoriye dair gelistirilis herbir yorum da yapbozun farkl parcalar: olarak kabul edi-
lebilir. Yapbozda ozellikle yanyana gelen yorumlar ortaya cikardiklari alt resimle
birlikte ele alindiklar1 zaman daha da c¢ok katki verebilirler.

Bu alt resimlere en iyi 6rneklerden birisi ise Bohm mekanigi ve kuantum hidrodi-
namiginin birlikteliginden olusan parcadir. Kuantum hidrodinamigi, ozellikle siste-
min bulundugu ortami anlamak adina diger yorumlara kiyasla, dayandigi akigkanlar
mekaniginin de yardimiyla, daha agik bir ifade sunmaktadir. Zira ortamda olugabile-
cek yahut olugsmus farkliliklar:, ortam ve oOl¢iilen sistemi bir biitiin olarak ele aldigin-
dan, daha detaylica tanmimlayabilmektedir. Bohm mekanigi ise kuantum hidrodi-
namigiyle ayni fikirden hareket ettiginden benzer ifadeleri biinyesinde barindirmakla
birlikte kavramsal (diigiincesel) olarak ortam hakkinda onun kadar berrak bir yapi
gostermez. Bununla birlikte bir bagka yonden ele alinirsa ozellikle tezin 2. boliimiin-
den itibaren sikca bahsedildigi iizere Bohm mekanigi de kuantum sistemlerinin lokal
olmayiglik 6zelligine sahip oldugunu sundugu kuantum potansiyeli Q(x, t) ifadesiyle
acikca ifade etmektedir. Iki yorumun bu 6zelllikleri birbirleri iizerinde bir kisitlama
getirmediginden her ikisini de i¢inde barindiracak bir iist yorum elde etmek hem
kolay hem de kullanigh olacaktir. Bunun giizel bir 6rnegini ise Bohm ve Vigier’in
ilgili makalesinde [21] goriilebilmektedir.
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Bohm mekanigi ve genel yorum i¢in benzer bir iist yorum geligtirilmek istenirse
bakilmas: gereken ilk nokta az once de ele alindigl gibi yorumlarin birbirine katabi-
lecegi ozelliklere bakmak olacaktir. Bu 6zellikler de sirasiyla;

Bohm mekanigi adina

e Belirli bir limite kadar ¢evrenin Ol¢tim iizerindeki etkisini hesaba katar
e Hesaplar potansiyeller arasindaki etkilesime dayanir

Genel yorum adina

e Ol¢iim sirasida dlcen ve Sliilen cevreden soyutlanmigtir
e Hesaplamalar ol¢iimlerin sonucunda elde edilen muhtemel olasiliklara dayanir

seklinde yazilabilir. Bu ozelliklerin harmanlanarak, tezat olduklar: noktalarda ¢oziim-

ler treterek, bir tist yorum geligtirebilir olmakla birlikte bilhassa yorumlarin or-
tak bir yapiya sahip olmamalar1 (determinizm ve indeterminizm) siiregteki en kritik
rolii oynayacaktir.

Tekrar kuantum hidrodinamigi ve Bohm mekanigi ikilisine donecek olursak, her iki
yorumu da i¢inde barindiran tist yorumun sahip olmasi gereken ilk sonucun ortamin
kendisinin lokal olmayislik ozelligine sahip olmas1 gerektigi olacaktir. Varilan sonucu
daha iyi anlamak adima tist yorum tizerinden EPR yahut Hardy deneyi ele alinip
birbiriyle dolanik ve uzaysal olarak ayrik olan alt sistemler (DUAAS) arasindaki
etkilesime bakilacak olunursa, hem genel yorum hem de alternatif diger yorumlara
kiyasla daha acik bir ifade verilebilir. Oyle ki, olugturulan bu tist yorum Bohm me-
kaniginden 6diing alinan kuantum potansiyelinin lokal olmayan etkilegimleri agikca
verebilmesi, kuantum hidrodinamiginin ise ortamin dinamik yapisini agiklayan stirek-
lilik denklemi ve gene ortama belli bir yogunlukla dagilmig olan dalgalarin acik goste-
rimini icermesi nedeniyle ele aliman DUAAS’lerin tam bir tasvirini verebilecektir. Tlk
bakista bahsedilen tasvirin sadece Bohm mekanigi kullanilarak dahi erisilebilecegi
goziikmektedir ancak durum biraz daha dikkatlice ele alindigi vakit Bohm me-
kaniginin alt sistemlerin aralarindaki iligkiyi (6.5) ifadesinde belirtildigi gibi agikga
gosterirken ortama dagilmig dalgalarin aralarindaki iligkiyi acikca belirtmemektedir.
Birbagka deyisle iist yorum, Bohm mekanigine ek olarak alt sistemlerin durumuyla
beraber ortamdaki dalgalarin aralarindaki etkilesimleri de hesaba katarak tam bir
tasvirini miimkiin kilmaktadir. Stiphesiz ki iist yorumun sundugu bu durum EPR
yahut Hardy deneyi gibi uzaysal olarak ayrik mesafeleri konu alan deneylerde he-
saplama ve tespit acisindan biiyiik zorluklara neden olmakla beraber varilabilecek
en st ¢oziim olarak kendine yer bulmaktadir. Bu zorluklarin en 6nemlisi ve belki
elde edilmesi en zor olani ise toplam sistemin (6lgen, 6lgiilen ve 6lgtimiin yapildig:
ortam olarak tiim evrenin hesaba katildigi éngoriilebilecek miimkiin en iist sistem)
tam bir tasvirini verecek olan dalga fonksiyonunun yazilabilmesi olacaktir. Toplam
sistem olarak evrenin tiimiiniin kabul edildigi bu durumda sistemin tam bir tasvirini
veren dalga fonksiyonlar: literatiirde Wheeler-de Witt veya Hartle-Hawking dalga
fonksiyonlar1 olarak adlandirilmiglardir.

Wheeler-de Witt veya Hartle-Hawking dalga fonksiyonlar: varilabilecek nihai ¢oziimii
sunmakla birlikte elde edilmesi su an i¢in miimkiin degildir. Bu sebeple de ona alter-
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natif olabilecek ¢ozlimler tiretmek gerekmektedir. Bu alternatif ¢oziimlerden birisi
ise Ozellikle DUASS’lerin aralarindaki etkilesimi aciklayabilme yetisine sahip olan
foliasyon (foliation) islemidir. Foliasyon matematikte ¢okkatmanh (manifolds) ge-
ometrik yapilar i¢in geligtirilmig bir iglem olup ¢okkatmanl yapilarin belirli sartlara
gore gecirebilecegi modifikasyonlar: ele almaktadir. Foliasyon islemini bahsedilen
DUASS’ler iizerinden ele alacak olunursa;

Farzedelim elimizde uzay-zaman koordinatlari (Minkowski uzay-zaman koordinat-
lar1) ile tasvir edilen bir evren igerisinde Hardy deneyinde gosterildigi gibi referans
gercevesine gore ¢oklu-zaman dontigimleri altinda degismez kalan DUAAS’ler bu-
lunsun (tabi ki bu degigmezlik durumu 4. béliimde gosterildigi gibi DUAAS’lerin
referans cercgevesi ve birbirine gore rolativistik olmayan hizlarda hareket etmeleri
sebebiyle miimkiindiir). Bu DUASS’ler Sekil 5.1’de gosterildigi gibi zamanin sabit
(t = sabit) alindig1 uzaysal olarak ayrik durumlar: igeren hiperyiizeylerde (UAHler)
¢ift olacak gekilde konumlandirilmiglardir.

ik Ik

hy,

hy;

hyy

r 3

H"

Y

Sekil 5.1: UAH’lerin Foliasyon Gosterimi

Mimkiin olan biittin UAH’lerin 6z zamani esas almasindan 6tiirii zaman koordi-
natindaki degisim de sifir (9, = 0) olacagindan, klasik mekanikteki mekaniksel
benzerlik konusu yahut kozmolojideki evrenin geniglemesi konusunda oldugu gibi,
her biri ayni izotmerik (isometric) biiyiimeye magruz kalarak benzer geometrik
degisimden gececeklerdir. 4.boliimde varilan referans gergevesi icin UAH’ler arasinda
bir fark olmadig1 kabuliinden yola ¢ikarak varilan sonu¢ daha genel sekilde ele alinirsa
biitiin UAH’ler yerine sadece bir UAH’i esas almak yeterli olacaktir. Yapilan bu ge-
nelleme sonucu Hardy deneyinde ele alinan her iki alt sistem de baglangic kosullar: ve
izometrik biiytimeye bagl olarak ayn1t UAH’de orjine gore ayni uzakliktaki konum-
lara sahip olacaklardir. Bu durum da sonug olarak UAH {izerinde orjin noktasi baz
alimarak yapilan foliasyon iglemini, UAH’in geometrisinin degigiminin her bolgede
ayni olmasi sebebiyle, miimkiin kilacaktir. Foliasyon isleminin stirecine dair daha
detayli bir aciklama ilgili makalelerden [19], [50] elde edilebilir.

Foliasyon igleminin fiziksel boyuttaki kargiligi ise Susskind’in 2016 tarihli EPR=ER
adli makalesinde [51] verilmigtir. Makalede Susskind matematiksel (geometrik) olarak
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az once aciklanan foliasyon iglemini, Einstein ve Rosen tarafindan EPR deneyinin
geligtirildigi makale ile ayn1 yilda yayinlanmig olan ve gene Einstein ve Rosen’a ait
ilgili makale [52] ile iligkilendirerek agiklanabilecegi bir konsept gelistirmistir. Bu
konsept kisaca ER makalesinde ortaya atilmig olan Einstein-Rosen Kopriisiiniin
(ERK) (Einstein-Rosen Bridge (ERB)) ¢ift tarafli bir versiyonunun (normal ola-
rak ERK’sti tek tarafli ¢alisan bir yapiya sahiptir) yardimiyla aymi UAH igerisinde
yer alan DUAAS arasindaki kargilikli lokal olmayan etkilesimin miimkiin olabilecegi
fikrine dayanmaktadir. Ayrica bu ¢ift tarafli ERK sadece DUAAS’in dolaniklik
ozelligine bagh olup tek iglevi bu durumun devamliligini saglamak oldugundan siste-
min toplam iizerinde bir etkisi olmamasi gerektiginden planck olgeginde (10780 m3)
(planck scale) varolmalar1 gerekmektedir.

Susskind gelistirdigi bu konsept lokal olmayiglik adina fiziksel boyutta teorik ola-
rak kabul edilebilir bir agiklama sunmakla beraber deneysel olarak kanitlanmasi
giiniimiiz i¢in mimkiin degildir. Ancak deneysel olarak kanitlanma agisindan Wheeler-
de Witt veya Hartle-Hawking dalga fonksiyonlariyla benzer kaderi paylagsa da teorik
olarak belli bir konsept sunabildigi icin DUAAS adina daha fazla umut vermektedir.
Ayrica ¢ift tarafli ERK sundugu kolayliklar acisindan 6zellikle rolativistik kuantum
teorisinin geligtirilebilmesi konusunda 6énemli bir potansiyele sahiptir.

5.2 Lokal Olmayislik ve Uzay-Zaman Yapisi: Secilmis bir Re-
ferans Cercevesi Arayisi

Tezin ozellikle son boltimlerinde, rolativistik durumlarin ele alindigi béliimlerde, ele
alindigr gibi birbirleriyle dolanik ve uzaysal olarak ayrik alt sistemler (DUASS) i¢in
lokal olmayiglik bertaraf edilemez bir sonug¢ olarak kargimiza ¢ikmaktadir. Bu da
dogal olarak lokalligi esas almig teorilerin sorgunlanmasina neden olmustur. Lokalligi
esas almig bu teorilerden en cok bilineni ise siiphesiz ki 6zel rolativite teorisi (ORT)
olup konuya dair en yogun elegtirilere maruz kalmigtir (burada alsinda kuantum alan
teorisi de lokalligi esas alan yapiya sahip oldugundan benzer muameleye ugramistir
ama tezin geneli itibariyle ORT {izerinden gidilmis olmas1 nedeniyle sonu¢ kisminda
da aymni se¢gimle devam etmek daha dogru olacaktir).

Lokal olmayishgm ORT iizerinde neden oldugu bu yogun elestirinin sebebini anla-
mak i¢in uzay-zaman yapisina dair getirdigi aciklamalara bakmak ve bu agiklamay1
kendisiyle ayni hedefi amag edinmis diger teorilerle karsilagtirmak yararli olacaktir.
Bu teorileri esas aldiklar ilkelere gore simiflandiracak olursak ii¢ temel yorum altinda
toplandiklarii gorebiliriz:

Einstein Yorumu

e Klasik 3+1 boyutlu uzay-zaman yapisini temel alir.
e Eylemsiz referans cerceveleri birbirine denktir.
e Uzunluklarin kisalmasi ve zamanin genlesmesini destekler.

e Ozel Rélativite Teorisi (ORT).
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Minkowski Yorumu

e 4 boyutlu uzay-zaman yapisini temel alir (3 boyutlu parcaciklarin 4 boyutlu
uzay zamanda hareket ettigini kabul eder).

e Diger yorumlarin aksine zaman boyutunu tek yonlii kabul etmeyip konum
boyutlar1 gibi ¢ift yonlii olarak ele aldigindan gegmis, su an ve gelecek gibi
zaman konseptlerini i¢inde barindirmaz.

e Uzunlarin kisalmasi ve zamanin geniglemesini tamamen referans cergevesinden
kaynakli bir sonu¢ oldugunu kabul eder.

e Meydana gelen tiim sistemlerin kendi gercekliginde, kendi zamaninda gergek-
lestigini savunur.

e Minkowski Uzay-Zaman Teorileri.

Lorentz Yorumu

e Klasik 3+1 boyutlu uzay-zaman yapisini temel alir.

e Tek referans gergevesi (the one inertial frame) veya segilmis referans cergevesi
tizerinden sistemlerin agiklanabilecegini savunur (ether diigiincesine benzer
ama burada savunulan diigiince (hareketsiz ether) diigiincesi iizerinden geligti-
rilmistir).

e Uzunluklarin kisalmasi ve zamanin genlegmesi desteklemekle birlikte bunlarin
nedensel aciklamasini da sunar.

e Mutlak uzay ve zamanin varligini savunur.

e Nedensel etkilegimleri (lokal olmayan etkilegimler) ve gegici sistemleri (kuan-
tum teorisi iginde kargilagilan gegis durumlar1 gibi) destekler.

e Lorentz Ether Teorisi (LET).

Bu ¢ yorum arasindan Minskowski Yorumu lokallik ve lokal olmayiglik arasinda
dogasi itibariyle tatmin edici bir ayrim yapamadigi i¢in tezin amacina dair kul-
lanilabilir yahut onemli bir agilim vermekten uzaktir. Bu nedenle diger iki yorumun
lokal olmayan etkilegimlere (nedensel etkilegimler = lokal olmayan etkilesimler) dair
getirdigi agiklamalar: ele alarak konuya devam etmek daha dogru olacaktir.

5.2.1 Einstein Yorumu ve Lokal Olmayan Etkilesimler

Galileo’nun uzay-yapsini esas alan Einstein yorumu ve onun teorisi ORT tek (mutlak)
referans gergevesi fikrinin boyle bir durum varolsa dahi dogas: itibariyle gereksiz
(superfluous) oldugunu ve gozlemlenemeyecegi elestirisini getirir. Bununla birlikte
151k hizini hem st limit hem de biitiin referans ¢erceveleri i¢in bir Lorentz degismezi
oldugunu kabul eder.

ORT’nin sundugu bu uzay-zaman yapisin iistteki sekilde gérmek miimkiindiir. Teo-
rinin sundugu bu yap icerisinde lokal olmayan etkilegimleri (esasen es-zamanli et-
kilegimler olmalar1 nedeniyle) ise hiperyiizeyler araciligi ile her bir referans gergevesi
i¢in o referans sisteminin sartlarina ozel olacak sekilde tasarlanabilir.
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Sekil 5.2: Einstein Yorumunda Hiperyiizeyler
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Sekil 5.3: Farkli Referans Cergevelerindeki Ayn1 Hiperytizey

Sekilde gosterildigi gibi eg-zamanli bir etkilesimin x — t referans gergevesine gore
gosterimi hy hiperyiizeyi ile gosterilirken, x’ — ¢’ referans cergevesindeki kargiligi ise
hy' hiperyiizeyidir.

ORT’ne gore es-zamanh etkilegimler sekillerden de acikca anlagilabilecegi gibi refe-
rans cercevesine bagh olarak farkhliklar gostermektedir. Bir bagka deyisle bir refe-
rans ¢ercevesinde gozlemlenen es-zamanl bir etkilesim baz alinan diger bir referans
cercevesine gore bu ozelligini koruyamamaktadir. Bu sebeple ORT fizerinden tasar-
lanmig bir uzay-zaman yapisi i¢in eg-zamanlilik sadece bir tane referans cercevesi
i¢in varoldugundan farkli referans gergevelerinde tiim anlamini yitiren bir konsept-
ten oteye gidememektedir.
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5.2.2 Lorentz Yorumu ve Lokal Olmayishk

Klasik bakig agisini (tek referans gergevesi) ya da literatiirdeki ismiyle Newton bakisg
acisini esas alan Lorentz yorumu ve onun teorisi olan LET seleflerine ek olarak hare-
ketli ether yerine hareketsiz etheri koyarak ORT’nin ortaya koydugu 1sik hizinin re-
ferans cerceveler igin bir tist limit ve Lorent degismezi oldugu fikrini paylagmaktadir.
Bu nedenle hem ORT hem de LET Michelson-Morley deneyi gibi 151k hizinin karak-
teristigini ortaya cikarmay1 amaclamis deneylerin verdigi sonuglar1 kosulsuz olarak
destelemektedirler. Ancak bu mutabakat eg-zamanl etkilesimleri konu alan deneyler
i¢in varhigim siirdiiremez. Bunun siiphesiz en 6nemli sebebi ise referans gergeveler
hakkinda farkh diigtincelere sahip olmalaridir.

151k 151k

hy

A

H\F

Y

Sekil 5.4: Lorentz Yorumunda Hiperytizeyler

Clinkii tstteki sekilde de acikga goriilebilecegi gibi x—t tek(mutlak) referans ¢ergeve-
sine gore hy; hiperyiizeyi ile gosterilen es-zamanh bir etkilesim ORT’nin aksine
secilmig bir referans ¢ergevesinde ortaya koyulduktan sonra diger referans cerceveleri-
ne gore ele alindig1 vakit degisime ugrayarak tim anlamini yitiren bir konsept
olmayip aksine 151k hizinin sahip oldugu karakteristik gibi bir Lorentz degigmezi
(4. boliimde ele alinan ¢oklu-zaman dontigiimleri altinda degigime ugramayan ku-
antum mekaniksel formalizminde de oldugu gibi) oldugu kabul edilmektedir. Bir
bagka deyisle es-zamanl etkilesimler ve onun kuantum teorisindeki karsiligi olan
lokal olmayan etkilesimler LET'ne gore tek(mutlak) referans gergevesinde zaman
doniigtimleri (goklu-zaman doniigiimleri) altinda bir Lorentz degismezi oldugundan
bu durum diger tiim referans ¢erceveleri i¢in de aynen gecerlidir. Ciinkii tanimi iti-
bariyle tek(mutlak) referans gercevesi diger referans gerceveleri tizerinde kargilikl
olmayan bir etkiye sahip oldugundan bu referans gercevesi altinda degismez oldugu
kabul edilen herhangi bir konsept de ayni ozelligi gostermek zorundadir.

Bu baglamda 4. boliimiin ¢oklu-zaman dontigsiimleri baghiginda konuya dair verilen
2. alintida 1. alintinin bir sonucu olarak ortaya konulan lokal olmayighgmn belirli
bir referans ¢ercevesine ihtiya¢ duymadigi dogru olmakla birlikte ozellikle LET nin
bakig agis1 iizerinden sonug¢ boliimiinde aciklandigi gibi eksik bir ¢gikarimdir.
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Ozetle, lokal olmayislik genel yorumun bakig acisi ile ele alinacak olunursa es-zaman-
lilik konusunda getirdigi sorunlar itibariyle ORT yerine kaginilmaz olarak LET’ni
kullanmak zordundandir. Ciinkii varilan sonug itibariyle sadece iki segenekle duru-
mun acgiklanmasi miimkiindiir, bu segenekler ise:

e Kuantum mekaniksel formalizme dayanan operatorler sistem iizerinde anlik
bir degisime neden olmamaktadir.

e Lokal olmayishk tek(mutlak) referans gergevesi igerisinde bir Lorentz degigsmezi
olmasi sebebiyle tiim referans gergeveleri i¢in de bu ozelligini ortaya koymak-
tadir.

Bu iki secenekten ilki, acik¢a kuantum teorisinin en temel ilkelerinden biri olan be-
lirsizlik ilkesini ihlal edeceginden (tez boyunca bu durum detaylica anlatildi) kabul
edilebilirlikten fazlasiyla uzaktir. Ikinci secenek ise bariz bir sekilde ORT’nin kuan-
tum teorisinin ortaya koydugu lokal olmayighga tatmin edici vir cevap verememesi
nedeniyle yukarida da belirtildigi tizere LET veya benzeri teorinin gerekli oldugunu
belirtmektedir.

Lokal olmayishgin LET veya benzeri bir teoriyi gerekli kilmasi sadece genel yoruma
has bir gereksinim degildir, zira Bohm mekanigi zaten dayandigi temeller nedeniyle
tek(mutlak) referans gergevesini kabul ettigi ve bununla birlikte dogal olarak mutlak
zamani da i¢inde barindirdigi tezin 4. boliimiinde ¢oklu-zaman dontisiimleri baghgi
altinda verilen basit bir 6rnekle gosterilmistir.

Varilan bu sonuclar itibariyle acikca gortildiigii tizere kuantum teorisinin en temel
yorumlarindan iki tanesi olan genel yorum ve Bohm mekanigine gore Einstein yo-
rumunu esas alan ORT’nin, konuya dair bircok deneyin (CHSH ve Aspect gibi)
verdigi sonuglar 151g1inda ve matematiksel boyutta Bell esitsizliginin de gosterdigi
gibi, lokal olmayighgr aciklamakta yetersiz kaldigi agiktir. Bu nedenle tezin o6zellikle
sonug bolimiinde gosterildigi gibi rolativistik boyutlardaki kuantum sistemlerinin
ele alindigr durumlarda LET’nin sundugu bakig acisini kabul etmek gerekir. Bu ne-
denle LET nin sundugu bir uzay-zaman diigtincesini baz alan ve tiim i¢ mekaniklerin
de hesaba katilidigi bir yapi gelistirmek yazarin bu tezden sonraki esas amaci ola-
caktir.
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6 EKLER

6.1 Rehber Denklemin Cikarilisi

(6.4) denkleminin elde edilisi;

de Broglie bagmtis1 p = hk, diizlem dalga W(x,t) = Ae’** %) yardimiyla ve ek
olarak * = x; € q olmak tizere; Diizlem dalganin a’e gore birinci dereceden tiirevini
alalm;

d¥(x,t) VU (x,t)

— A(ik)eike—wt) il — 6.1
dx (ik)e ! U(x,t) (6.1)
sonucunu elde ederiz. Bu sonucu de Broglie bagintisinda yerine koyarsak;
VVU(x,t)
= hS—-=—+ 2
P=1SG0n (6.2)

elde etmig oluruz (3 sembolii burada sadece imajiner kismin ele alindiginm goster-
mektedir). p = hk = mwv olmak tizere rehber denklemi;

VU (x,t)

h
== _ gl 6.3
Y dt m> U(x,t) (63)
seklinde elde edilmig olur.
Tek kuantum sistemi i¢in genel gosterimi;
. dq(t) h_VV
_ - IS (qg.t 6.4
1 dt m> W (a.1) (64)

N tane tek kuantum sisteminden olusan topluluk kuantum sistemindeki j. parcagik
icin genel gosterim;

. dgi(t) h__V;¥
g; = # = E% ‘i} (qla q2, "'qNat) <65)
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6.2 Siireklilik Denkleminin Cikarilisi

Kolaylik olmasi adina bir boyutta hareket tek kuantum sistemini ele alalim ve bu
sistemi de W(x,t) dalga fonksiyonu ile gosterelim. Bu sistem igin j olasilik akisim
tanimlayip stireklilik denklemini yazmak istersek, sistemin dalga denklemi;

L O0V(x,t)  —h?0?V(w,t)
ih 5 a0 + V(z)¥(x,1) (6.6)

olmak tizere, (6.6) ifadesinin sol tarafindaki dalga fonksiyonunun eslenigi ile garpariz.
Bunu yapmadaki ama¢ & konumu ve ¢ zamanina ait olasilik yogunlugu iizerinden
zamana bagl degisimi elde etmektir. Bu iglemin ardindan (6.6) esitliginin sol tarafi
su hali alir;

OUw) (0w o0
ih 5 = ih | ¥ By + v By (6.7)
v B 0hw A
T L A Vet A AV PR AcA L A S N ()
R amgmr T = e T VY (68)

olmak tizere;

(6.9)

o) 8 ih (\P*a\y a\y*)

ot ox2m \ ox oz

denklemini elde ederiz. (6.9) denkleminin sag tarafi —j = - (\I/*g—i' - \P%) negatif
olasilik akisinin z’e gore tirevidir. Olasilik akisinin kaynaklardaki bir bagka goste-
rimi ise j = %S(‘I’*V\P) versiyonudur ve rehber denklemde de bu ifade kullanihr.
Esitligin sol tarafi ise bildigimiz gibi p = |¥(x,t)|? olasihk yogunlugunun zaman
gore tirevidir. Bu ifadelerin yardimiyla (6.9)’yi yeniden yazarsak;

9p

j = 1
o, tVi=0 (6.10)

stireklilik denkleminin bir boyuttaki gésterimini elde etmis oluruz.
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6.3 Metrik, Oz Uzaklik, Oz Zaman, 4’lii Vektor

4 boyutlu uzay-zaman i¢in Minskowski metrigi;

10 0 0

0 -1 0 0
g:

0 0 -1 0

0 0 0 -1

olmak ftizere, bileselenlerini yazarsak;

T = 33 guats’ = guata’ (6.11)
Ho 0

900’2’ + gniztat + gopr?r? + ggsria® (6.12)
= (292 + (212 + ()2 + (2%)? (6.13)
(6.14)

seklinde gosterilebilir. Ayrica gg_y = I oldugundan g, = g"” olacaktir. Minkowski
metrigi i¢in 6z uzunluk ve 6z zaman ifadesi ise ds* = g, dztdz” = Adr* ve v =

/1 —v*/e2 yardimiyla hareketsiz durum igin;

dt 1
dr = — = A7 =—

v g

ds = cdr = As = C/dT (6.15)
/ it (6.16)

olarak yazilir. 4’1 vektor A;

v =B 00

— 0 0
A Wy

0 0 10

0 0 01

¥ = 0,1,2,3 referans cercevesinin koordinatlari, 5 = v/c ve ona gore v hiziyla
hareket eden sistemin koordinatlar1 olmak iizere;

(@) = > A*a” (6.17)
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seklinde ifade edilebilir ve Einstein toplama kurali yardimiyla 2% = A#, 2" seklinde
yazabilir. Bununla birlikte A§ = A =+, A =AY = —y8, A3 = A3 =1 ve gerisi 0

olmak tizere;

B’ =ct = () =~(2" - Bah)
t=1r = (2') =72’ - Ba2")
33'2 =y = (1'2)/ — .1'2
=z = (%) =2"

olarak yazilir. Ornek olarak a* ve a, 4’1t vektorleri;

a = g"a,
a, = gua’
ata, = (a°)*—(a.a)=a,a"

seklinde ifade edilebilir. Ayrica a® = (a°)? — a.a olmak iizere;

a>>0 = a"; "zamansal”
a> <0 = a"; "uzaysal”
a> =0 = a"; Mistksal”

ise 4’1 vektoriin gosterilen durumlara denk oldugu kabul edilir.

6.3.1 Lorentz Degismezleri

6.18 yardimiyla ds? ve ds?*’yi yeniden yazarsak;

ds® = 900d$0d330 + 911d271d$1 + gggdZEQdZUQ + g33d$3d233
ds? = goodxoldxol + gudxlldxl/ + gggdeIdx2/ + gggdx3ldx3/

(6.22)
(6.23)
(6.24)

(6.25)
(6.26)
(6.27)

(6.28)
(6.29)

(6.28) ve (6.29) ifadelerinde (da®)? — (dz')? = (dz®)” — (dz')? | (dx?)? = (da?)” ve

(d?)2 = (da?)’* degerleri birine esit oldugundan,

ds? = ds’

(6.30)

Yani ds? bir Lorentz degismezi oldugundan 6z uzunluk da bir Lorentz degismezidir.
Ayni stireci 6z zaman i¢in tek konum boyutuna sahip duruma uygularsak (6.16)

yardimiyla;
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dt = fy(dt’ . C%d:d) — dr=dt — %dx’ (6.31)

at' = (dt - Sdv) — A =dt — o (6.32)
C C

ifadelerine ulagihir, buna ek olarak dz’ = v(dx + vdt) olmak iizere;

_ Y)Y _dt
dr = (dt + Sdo ) — 15 (do +vdt) = . (6.34)
v YU dt
ar' = (at - gdx’> +5 (a2’ + var) = S (6.35)

sonug olarak dr = d7’ oldugundan 6z zaman da bir Lorentz degismezidir.

6.4 Klein-Gordon Denkleminin Cikarilisi

Rolativistik hizlarla hareket eden kiitleli bir parcacik i¢in, mg: parcacigin kiitlesi, c:
151k hizi, p: momentum olmak iizere toplam eneji denklemi;

E? = p?c® + my*c? (6.36)
seklinde ifade edilir. Toplam enerji denklemini E = ih% ve p = —ih% operatorlerini
kullanarak yeniden yazarsak;

AN 4822 2 4 ) O 2 P 4 2 4
(zha) = (—zh%) ¢ +mo°c = —h Fohe —h 552¢ +mo°ct  (6.37)
sadelegtirmelerle diizenleyelim;
mo2ct B 022 0? mo2ct 0 1 02

T o o w3 aom (6.38)

ifadesini elde ederiz. Esitlige dalga fonksiyonunu ekleyip denklemi genellegtirirsek;
mo2ct 1 0w

_ 2
U=V S (6.39)

denklemine ulagiriz. Bu denklemi kiitlesiz bir parcacik i¢in ¢ = 1 kabul ederek yeni-
den yazarsak;
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oy
VAU~ s =0 (6.40)

Klein Gordon denklemini elde etmis oluruz. Kiitleli bir parcacik i¢in bu denklemin
gosterimi ise h = ¢ = 1 olmak tizere;

2

E* —p* —m? —o=>-%+v2xp m? =0 (6.41)

bu denklemin Minkowski uzayindaki gosterimi ise = 0,1, 2, 3 olmak iizere;

—0"9, ¥ —m*V¥ =0 (6.42)

seklinde ifade edilebilir.

6.5 Rolativistik Durumlar igin Olasilik Akisi

4-boyutlu uzay-zamanda pargaciklarin Pauli spin matrisleri (¢ = 1,2, 3);

1 0 0 o
7 = = g
0 -1 —o, 0

olmak tizere h = ¢ = 1 kabul ederek Dirac denklemini yazarsak;

.50 . 50
iy’ alf + iy 8¢ + ”28_;5 + Wga—f —my =0 (6.43)

esitligini elde ederiz. Denklemin hermitsel eglenigi ise;

T
iy° (f;f + 1y 8¢ + iy (‘;Z} + 2735) m¥| =0 (6.44)

seklinde elde edilir. (6.44) ifadesinin her iki tarafim 7° matrisiyle carpar ve

oY oYt

0¥t _ OY o
P o= (6.46)
P = =0 (6.47)
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esitliklerinin de yardimiyla diizenleyerek yazarsak;

t St } 9
—Z%V 7 - aiv v - Zg—yv 7 - Zaiv 7P —mapty” (6.48)

ifadesine ulagiriz, esitligi ufak bir sadelestirme ¢ = ¥7° yardimiyla yeniden ya-
zalim;

awo 000, DY

ifadesini yani Dirac denkleminin hermitsel eglenigi olan;

P(id" +m) =0 (6.50)

(6.50) esitligine ulagmig oluruz. Dirac denklemi iizerinden olasilik akisini diger is-
miyle dirac aksi (dirac current) yazmak igin Dirac denkleminin her iki tarafim
soldan v ile carparsak;

B0y —m)p = 0 (6.51)
elde ederiz. Bundan sonra Dirac denkleminin esgleniginin her tarafin1 ¢, ile sagdan
carparsak;

»(iv,0" + m)p =0 (6.52)

her iki egitligin toplami da 0 oldugundan ve m’e bagl ifadeler yok oldugundan;

Au(y') = 0 (6.53)

sonucunu elde etmis oluruz. Dirac akisini, olasilik yogunlugu ve olasilik akisi iizerin-
den gosterimi ise:

i* = (p.J) (6.54)

j* = tpy"p olmak fizere (6.53) ifadesi korunum denklemi olarak dirac aksimin 4-
boyutlu uzay-zamanda icin diverjansinin 0 a esit yani 9d,j* = 0 oldugunu goster-
mektedir. Ayrica burada olasilik akisi p = %) = 1T70~4%) = T ve olasilik akisi
ise j = 1%y seklinde yazlabilir.
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6.6 Determinizm ve Indeterminizm

Karl Popper’in The Open Universe [8] kitabinin girig boliimiinde determinizmi:

7...eger doganwn tim kanunlary ile birlikte gecmis olaylarin yeterli kesinlikteki bir
betimlemesine sahipsek, dunyamin yapist mimkin tim olaylar: itibariyle rasyonel
olarak ongorilebilir.”!

seklinde tanimlamaktadir. Popper’in determinizm tanimi kitabin ek bolimiinde de
anlatildig tizere aslinda Laplace'in gelistirdigi klasik determinizmin:

7. bir zaman araliginda evrendeki bitin parcaciklarin kitleleri, konumlar, ve hizlar:
kesin olarak bilinirse; ge¢miste gerceklesmis olan ve gelecekte ise gerceklesecek olan
biitiin olaylar, Newton mekaniginin yardimuyla, prensipte hesaplanabilirler.”?

genellestirilmis bir versiyonudur. Laplace’in klasik determinizmi tizerinden kuantum
teorisi i¢in Popper’in tammmini yeniden ele alacak olursak (kitaptaki boliimiin tam
bir ¢evirisi olmadig1 belirtmek gerekir):

”...eger sistemin dalga fonksiyonunun zamana gore evrimini betimleyen denklemle-
riyle birlikte baslangic kosullarimin yeterli kesinlikteki betimlemesine sahipsek, sis-
tem ve i¢inde bulundugu ¢evre mumkin tum durumlar: ile beraber, rasyonel olarak,
ongorilebilir.”3

seklinde melez bir tanima ulagmis oluruz. Bu melezlik ise Laplace’in tiim evreni baz
alan klasik determinizminin, kuantum teorisinde sistemin kismen evrenden soyutla-
narak etkilesim icinde bulundugu c¢evresinin esas alinmasi ile birlikte tanimin diger
ozelliklerini aynen kabul etmesinden kaynaklanir.

Tanimda bahsi gegen ongoriilebilirligin, sistemin miimkiin olan sadece bir durumunu
dahi kargilayamamasi halinde ise determinizm diisiincesi yetersiz kalarak yerini inde-
terminizme birakacaktir. Bunun en bariz ornegi ise kuantum teorisinin genel olarak,
determinizm iizerine kurulu olan klasik mekanigin cesitli fenomenler ve deneylerde
ortaya ¢ikan sonuclar1 agiklamada yetersiz kalmasindan kaynakl olarak, indetermi-
nizmi esas almig yorumlarindan yana bir tutum izlemis olmasidir. Ancak bu tu-
tum teoriye dair gelistirilen yorumlarda cesitli zorluklara neden olmakla birlikte,
girig boliimiinde kisaca agiklandigi gibi, ortak sonuclar1 ongoren genel yorum ve
pilot-dalga teorisi (ayrica Bohm mekanigi) gibi taban tabana zit yorumlarim ortaya
¢ikmasina engel olamamigtir.

Bu zithgin ilk ornegi ise, Schrodinger dalga denkleminin her iki yorumun da te-
melinde ayni sekilde yer almasina karsin, Born'un parcacigin olasiliksal yapisini
aciklayan konseptinin yorumlara gore, dayandiklar: diigiinceler itibariyle, farkli an-
lamlara sahip olmasidir. Oyle ki, genel yorum bu olasiliksal yapinin parcacigin

L7 . the structure of the world is such that any event can be rationally predicted, with any desired
degree of presicion, if we are given a suffiently precise description of past events, together with all
the law of nature.” [3]

27_.given the exact masses, positions, and velocities of all material particles in the universe at
some moment of time; then we can in principle calculate, with the help of Newtonian mechanics ,
all that has ever happened in the past and all that will ever happen in the future.”[8]

37 Assume we are given the exact masses, positions, and velocities of all material particles in
the universe at some moment of time; the we can in principle calculate, with the help of Newtoian
mechanics, all that has ever happened in the past and all that will ever happen in the future.”[S]
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dogasindan kaynakli olup kaginilmaz olarak indeterminizm tizerinden hareket edil-
mesi gerektigini savunurken, pilot-dalga teorisi (Bohm mekanigi) bu yapinin 6lgenden
kaynaklandigini ve sonuca gore siirece katilip determinizmin, eger 6lgiimden kaynakli
ortaya ¢ikan tiim etkenler ongoriilebilirse, yeterli olacagini savunmaktadir. Buna ek
olarak her iki yorumun da pargacigin olasiliksal yapisini kendilerince getirdikleri
kosullar dahilinde desteklediginin yam sira Schrodinger dalga denklemini temel al-
malar1 nedeniyle de bir noktaya kadar determinizm diigtincesinin benimsedikleri not
etmek dogru olacaktir.

Determinizm ve indeterminizmi temel alan kuantum teorisi yorumlarini, gene te-
oride 6nemli yeri olan, bir 6rnek tizerinden agiklamak istersek, Schrodinger’in kedisi
diigiince deneyi bunun icin uygun adaylardan birisi olarak one ¢ikmaktadir. Deney,
kisaca, aciklanacak olunursa; belirli bir siire zarfinda bozunma ya da bozunmama
ihtimali olan mikro boyuttaki bir radyoaktif madde, bu maddenin anlik olarak du-
rumunu kontrol eden bir Geiger sayaci, sayaca diizenekle bagh bir cekic, ¢ekicin ha-
reketi sonucunda kirilacak kap, kabin i¢cinde odaya yayilmaya miisait zehirli gaz ve
son olarak da bu bilegenlerle birlikte ayni odaya hapsedilmis olan zavalli bir kediden
meydana gelmektedir. Radyoaktif maddenin durumuna bagl olarak gergeklesecek
(ya da gergeklesmeyecek) siireg ise genel yoruma gore stokastik bir yapiyla ifade edi-
lebileceginden deneyin bilegenlerinin durumu iizerinden tasvirini veren dalga fonksi-
yonu:

1 1
v = EwbozunmaqbkirilmaXolu + Eqﬁbazunmamagbsaglam)(diri (655)

seklinde yazilabilir. Bu ifade ile odada hapsolmus kedinin %50 olasilikla yasamina
devam ederken, %50 olasilik 6lii oldugu varsayilmakta yani diger bir deyisle kedi-
nin, genel yoruma gore, deney boyunca olii ve diri oldugu durumlarin siiperposizyo-
nunda oldugu agiklanmaktadir. Ancak genel yorumun mikro boyuttaki sistemleri i¢in
gergeklegen siiregleri agiklamak i¢in kullandigr bu konsept (stiperpozisyon) makro
boyuttaki bir sistem, kedi, i¢in kullanilamaz. Zira ontolojik olarak, yani var olan
gozlenen gergeklik icin, makro boyuttaki sistemlerin agiklanmasinda yeterli oldugu
bircok defa kanitlanmig olan determinizme dayali klasik mekanige gore kedinin ayni
anda hem 6lii hem de diri olmast miimkiin olmadigindan sadece bu durumlardan
birinde bulunmasi gerekmektedir.

Schrodinger ozetle, genel yorumun, tek sistemin tasviri de dahil olmak tizere, sistem-
lerin tasviri icin dalga fonksiyonunun kesinlikle yeterli oldugu varsayiminin makro
boyutta neden olabilecegi muhtemel bir paradoksa, gelistirdigi diistince deneyiyle
dikkat ¢ekmek istemektedir. Buna ek olarak getirdigi elestiri tizerinden genel yoru-
mun aksine dalga fonksiyonunun sistemin dogasinin tam bir tasvirini vermekten zi-
yade bizim sistemi aciklamak i¢in kullandigimiz bir arag olarak tanimlamaktadir.

Pilot-dalga teorisi ve (veya) Bohm mekanigi agisindan deneyi ele alacak olursak; de-
neyin baslangi¢ kogullari, burada bahsi gegen radyoaktif maddenin baslangic kosulla-
ridir, bilinmesi dahilinde genel yorumun ortaya koydugu indeterministik yapiya da-
yali olarak ele alinan siire¢ yerini miimkiin durumlarin zamana gore evrimini agikca
ifade eden deterministik yapidaki dinamik denklemlerine birakacaktir. Baglangig
kosullarinin bilinmemesi durumunda ise kuantum denkligi ile ifade edildigi iizere
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genel yorumda agiklanan siire¢ aynen gegerli olacaktir. Deneyle ilgili olarak daha
detayl bir aciklama ile birlikte Schrédinger ve Einstein’in konuya dair fikirlerinin
de yer aldigi Travis Norsen’in ”Foundations of Quantum Mechanics”[36] kitabina
bakilabilir.
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