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ENHANCING MACHINE LEARNING ALGORITHMS IN 

HEALTHCARE WITH ELECTRONIC STETHOSCOPE 

ABSTRACT 

In this study, our aim is to classify respiratory sounds and diseases via audio and text 

data recorded by an electronic stethoscope using convolutional neural networks 

(CNNs), support vector machines (SVMs), k-nearest neigbor (k-NN) and Gaussian 

Bayes (GB) algorithms on a dataset that contains 17,930 lung sounds that were 

recorded from 1630 subjects. 

For classifying respiratory sounds, we employed; SVM, k-NN and GB with mel 

frequency cepstral coefficient (MFCC) features and CNN with 28x28 and 600x600 

spectrogram images. We prepared 4 datasets to classify respiratory audio into: (1) 

healthy versus pathological; (2) rale, rhonchus, and normal sound; (3) singular 

respiratory sound type; and (4) audio type with all sound types classification. 

Accuracy results in percent were; (1) CNN 86 and 95, SVM 86, k-NN 85, GB 58, (2) 

CNN 80 and 93, SVM 80, k-NN 79, GB 42, (3) CNN 76 and 85, SVM 75, k-NN 76, 

GB 22 and (4) CNN 62 and 77, SVM 62, k-NN 61, GB 15 respectively. 

For classifying respiratory diseases, SVM, k-NN and GB algorithms were run on 6 

datasets to classify patients into; (1) ill or healthy with text data, (2) ill or healthy 

with audio MFCC features, (3) ill or healthy with the text data and audio MFCC 

features, (4) 12 diseases with text data, (5) for 12 disease with audio MFCC features, 

(6) for 12 disease with the text data and audio MFCC features. Accuracy results in 

percent for SVM were 75, 88, 64, 73, 63, 70; for k-NN 95, 92, 92, 67, 64, 66; for GB 

98, 91, 97, 58, 48, 58 respectively. 

To compare the electronic and traditional stethoscope, 3 chest physicians assessed 

100 audio clips. We observed; good level consistency between physicians 2 and 3, 

average level consistency between physicians 1, 3 and 1, 2 via kappa statistic 

method. 

Keywords: Convlutional neural netwoks, support verctor machines, lung diseases, 

lung sounds, electronic stethoscope 
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TIPTA ELEKTRONİK STETOSKOP KULLANARAK MAKİNE 

ÖĞRENMESİ ALGORİTMALARI GELİŞTİRİLMESİ 

ÖZ 

Bu çalışmada, 1.630 denekten elektronik stetoskop ile kaydedilen 17.930 ses ve 

metin verisinden oluşan bir veri kümesinde, konvolüsyonel sinir ağları (CNN), 

destek vektör makineleri (SVM), k en yakın komşuluk (k-NN) ve Gaussian Bayes 

(GB) algoritmaları kullanılarak, solunum seslerinin ve akciğer hastalıklarının 

sınıflandırılması amaçlanmıştır. 

Solunum seslerini sınıflandırmak için; Mel frekanslı kepstral katsayısı (MFCC) 

özellikleri ile SVM, k-NN, GB  ve ayrıca 28x28 ve 600x600 spektrogram görüntüleri 

ile CNN kullandık. Solunum seslerini sınıflandırmak için 4 veri kümesi hazırladık: 

(1) sağlıklı ve patolojik ses; (2) ral, ronküs ve normal ses; (3) tekil solunum sesi tipi; 

ve (4) tüm ses türlerini içeren sınıflandırma. Kesinlik sonuçları yüzde olarak 

sırasıyla; (1) CNN 86 ve 95, SVM 86, k-NN 85, GB 58, (2) CNN 80 ve 93, SVM 80, 

k-NN 79, GB 42, (3) CNN 76 ve 85, SVM 75, k-NN 76, GB 22, (4) CNN 62 ve 77, 

SVM 62, k-NN 61, GB 15 olarak bulundu.  

Hastaları hastalıklarına göre sınıflandırmak için 6 veri kümesinde SVM, k-NN ve 

GB algoritmaları çalıştırıldı; (1) metin verisine göre hasta veya sağlıklı, (2) ses 

verisindeki MFCC özelliklerine göre hasta veya sağlıklı, (3) ses verisindeki MFCC 

özellikleri ve metin verileri ile hasta veya sağlıklı, (4) metin verilerine göre 12 

hastalık, (5) ses verisindeki MFCC özelliklerine göre 12 hastalık, (6) ses verisindeki 

MFCC özellikleri ve metin verileri ile 12 hastalık. Kesinlik sonuçları yüzde olarak 

sırasıyla SVM için 75, 88, 64, 73, 63, 70; k-NN için 95, 92, 92, 67, 64, 66; GB için 

98, 91, 97, 58, 48, 58 olarak bulundu. 

Geleneksel ve elektronik stetoskobu karşılaştırmak için 3 uzman doktor, 100 sesi 

değerlendirdi. Kappa istatistik yöntemi ile 2. ile 3. doktor arasında iyi düzeyde, 1. ile 

3. ve 1. ile 2. doktor arasında ise ortalama düzeyde tutarlılık gözlemlendi. 

Anahtar Sözcükler: Konvolüsyonel sinir ağları, destek vektör makineleri, akciğer 

hastalıkları, akciğer sesleri, elektronik stetoskop 
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CHAPTER 1 

INTRODUCTION 

1.1 Literature Summary 

Pulmonary illness is one of the most encountered diseases all over the world [1]. 

Tens of millions of people suffer from lung disease in the U.S. Infections, smoking, 

contaminants and hereditary qualities are in charge of most lung illnesses [2]. 

Pneumonia, chronic obstructive pulmonary, asthma, tuberculosis, lung malignancy 

infections are the most vital chest ailments [3]. In Europe, chronic obstructive 

pulmonary disease (COPD) and asthma have been estimated to affect between 10 

and 25% of the adult population [4,5]. Pulmonary infections such as acute bronchitis 

and pneumonia are common, and interstitial lung disease is increasing in incidence 

[4]. 

A few methods have been executed for perceiving lung disorders [6]. The diagnostic 

worth of any clinical test or examination depends upon its capacity to recognize 

plainly, precisely, and in a repetitive way between the normal and abnormal [6]. 

Separation between different sorts of abnormalities is an extra significant vantage 

[6]. The standard methodology for evaluating patients with respiratory system 

symptoms is medical history and physical examination [6]. The stethoscope has been 

used as a basic diagnostic tool among physicians and has been a successful device 

for diagnosing lung problems and abnormalities [7,8]. Auscultation is a procedure for 

hearing internal voices in the human body using a stethoscope [7]. Additionally, 

different investigations have demonstrated that the analytic precision and estimation 

of the stethoscope are arguable [6,9]. 

Auscultation contributes much to the physical examination [4,9,10]. But auscultation 

has numerous restrictions [4,10]. It is process that relies upon the physician's own 

listening ability, knowledge and capacity to separate between various sound 

examples [4,10]. Customary auscultation does not answer the necessities for a 

diagnostic test because of the impediments of human ear [11-13]. The ears are 
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sensitive to deterministic sounds in the time or frequency domains, but are 

substantially less accurate in identifying, analyzing, and classifying the noise [4,12]. 

Another reason for human deficiency in the auscultatory analysis of lung sounds is 

their low signal-to-noise ratio [4,12]. Thoracic lung sounds have relatively low 

amplitude compared with background noise of heart and muscle sounds [4,12]. 

Auscultation contributes much to the physical examination [6,9], but auscultation has 

numerous restrictions [4,9].  

It is difficult to deliver quantitative estimations or make a persistent record of an 

examination in recorded condition [4,14,15]. Observing or connection of lung sounds 

in long periods of time with other physiologic signs is likewise troublesome [4,14, 

15]. In addition, the stethoscope has a periodicity reaction that reduces periodicity 

parts of the respiratory sound which is about 120 Hz higher [4,14,15]. Also human 

ear is not exceptionally susceptible to low-level recurrence band that remaining parts 

[4,14,15]. Auscultation process mainly relies on the physician. Thus, a professionally 

well-trained physician is required to recognize lung abnormalities and disorders 

using this process. The possibility of untrained physicians incorrectly recognizing 

abnormalities, which can be due to not calibrating the instrument and/or due to noisy 

environment, is very high using this method and has thus led to the development 

computer-assisted analysis systems of lung sounds [16,17]. 

Computer-assisted analysis of lung sounds, serves as a reliable tool for the diagnoses 

of lung abnormalities and disorders since early 1980s [18]. Several techniques have 

been implemented for recognizing lung disorders and abnormalities [18]. 

The utilization of computerized methods in analysis of lung sounds is an important 

advance in enabling to go beyond the stethoscope [16,19,20]. 

However, according to our literature survey, lung sound analysis continues to attract 

researchers because past researchers focused on identifying lung sounds and very 

few researchers concentrated on developing lung disorder diagnostic tools. 

Therefore, this research area appears incomplete and has attracted many researchers 
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in recent years, which has led to the implementation of machine learning algorithms 

for the diagnosis of lung sound [21]. 

Machine learning has ended up being a powerful technique as of late [21-23]. 

Machine learning algorithms have been effectively utilized as a part of an extensive 

number of utilizations [21]. Machine learning algorithms possess Artificial 

Intelligence (AI) that learns from past experiences, which allow the tools to function 

more accurately)  [17]. Many researchers suggest different techniques to analyze 

lung sounds as shown in Table 1.1. A number of methods, such as multi-layer 

perceptron (MLP), k-nearest neighbor (k-NN), hidden Markov model (HMM), 

Gaussian mixture model (GMM), Fuzzy and genetic algorithm (GA) are extensively 

utilized in computer-assisted analysis of lung sounds. The use of support vector 

machines (SVMs) is very limited in the literature [21].  

Murphy et al. in 1977 executed an extrinsic sound investigation through the time 

extended waveform examination (TEWA) [24,25,26]. In TEWA, they showed that 

the crackles were a shorter and more complicated wave form when compared to the 

sinusoidal sound [24-26]. Afterward, Hoevers and Loudon portrayed crackles by 

time-domain parameters, for example, the underlying diversion width (IDW), the two 

cycle span (2CD) and the largest initial deflection (LDW) [24-26]. 

Investigations of Sestini et al. demonstrate that a relationship between acoustical 

signal and its image is gainful to the comprehension for understudies in medical field 

[27,28]. 

Forkheim et al. utilized neural networks (NNs) to process lung sounds and recognize 

wheezes is exhibited [29]. Every data portion was ordered physically as either 

including a wheeze or not including a wheeze [29]. A Fast Fourier Transform (FFT) 

was computed and the Fourier transform (FT) range was computed [29]. 
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Table 1.1 Machine learning in computerized respiratory sound analysis systems [8]. 

Author Subjects Classified 

Items 

Material Feature 

Extraction 

Method 

Classification 

Method 

Accuracy 

Forkheim 
1995 [29] 

Not 
specified 

Wheeze and 
normal 

Eight channel 
microphone 

Raw Signal Data, 
FFT 

MLP The training sets 1 
and 2 were 93% and 

96% 

Kahya 
1997[30] 

69n Normal or 
abnormal 

Electret 
microphone 

AR Model k-NN 69.59% 

Rietveld 

1999 [31] 

60n Normal and 

Asthma 

Electret 

microphone 

FT MLP 43%  

Oud 2000 
[32] 

10n Asthmatic 
patients 

Electret 
microphone 

Spectral Analysis k-NN 60% to 90% 

Waitman 

2000 [33] 

17p, 17c Normal or 

abnormal 

Microphone FT MLP 73%  

Bahoura 
2003 [34] 

24n Wheeze Electret 
microphone 

MFCC, FFT, 
LPC, WPD, SBC 

VQ 75.80% and 77.50% 

Baydar 

2003 [35] 

20n Normal or 

abnormal 

Electret 

microphone 

Periodogram, 

Welch, Yule-
Walker, Burg 

Nearest mean 

classifier 

72% in expiration 

and 69% in 
inspiration 

Kandaswa

my 2004 

[36] 

Not 

specified 

Lung sounds Electret 

microphone 

WT, STFT MLP 94.02% 

Folland 

2004 [37] 

Not 

specified 

Lung sounds Electret 

microphone 

Spectral 

Computation 

Parametric Model, 
GenerationLinear 

Normalization 

MLP, RBFN, 

CPNN ANN 

97.8% 

Güler2005 

[10] 

129n Normal, 

wheeze and 
crackles 

Electret 

microphone 

Welch MLP, GANN ANN81–91%, 

GANN 83–93% 

Martinez-

Hernandez 

2005 [38]  

19n Normal or 

abnormal 

Electret 

microphone 

Multivariate AR 

Model 

MLP 87.68% 

Kahya2006

[39] 

20p, 20c Rale Air-coupled 

electrets 

microphone 

WT 

 

k-NN 46% 

Lu.2008 

[40] 

Not 

specified 

Fine and 

coarse 

crackles 

Electret 

microphone 

GMM GMM 

VQ 

95.1% 

Alsmadi 

2008 [41] 

42n Lung sounds Microphone AR Model k-NN and 

minimum 

distance 
classifier 

96% 

Riella2009 

[42] 

Not 

specified 

Wheeze Electret 

microphone 

FFT, STFT MLP 92.86% 

Riella2010 
[43] 

Not 
specified 

Lung sounds Electret 
microphone 

DWT RBFNN 92.36% 

Matsunaga 

2010[44] 

114n Normal or 

abnormal 

Electronic 

stethoscope 

Raw Data HMM 84.2% 

Charleston
-Villalobos 

2011 [45] 

27n Normal or 
abnormal 

Electret 
microphone 

AR Model MLP 75% and 93% 

p: Patient, c: Control, s: Sound, n: Subject, ANN: Artificial Neural Network, AR: Autoregressive, CHF: Congestive Heart 

Failure, COPD: Chronic obstructive pulmonary disease, CPNN: Constructive Probabilistic Neural Network, DWT: Discreate 

Wavelet Transform, FFT: Fast Fourier Transform, FT: Fourier Transform, GANN: Genetic Algorithm-Neural Network; 

GMM: Gaussian Mixture Model, HMM: Hidden Markov Model, k-NN: k-nearest neighbor, LFCC: Linear Frequency 

Cepstral Coefficient,LPC: Linear Predictive Coding, MFCC: Mel Frequency Cepstral Coefficient, MLP: Multi-layer 

Perceptron, RBFNN: Radial Basis Function Neural Network, SBC: Subband based Cepstral, STFT: Short-time Fourier 

Transform, SVM: Support Vector Machine,  VQ: Vector Quantization, WPD: Wavelet Packet Decomposition, WT: Wavelet 

Transform 
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Table 1.1 (continue) Machine learning in computerized respiratory sound analysis systems 

Author Subjects Classified 

Items 

Material Feature 

Extraction 

Method 

Classification 

Method 

Accuracy 

Yamashita 

2011 [46] 

168n Normal or 

emphysema 

Electret 

microphone 

Segmentation HMM 87.4% and 88.7% 

Jin 

2011[47] 

21n Normal or 

abnormal 

Electret 

microphone 

Temporal-Spectral 

Dominace 
Spectrogram 

k-NN 92.4% 

Serbes 

2011[48] 

26n Crackles Electret 

microphone 

WT, DWT SVM 97.20% 

Flietstra 
2011 [49] 

257n Pneumonia 
and CHF 

Multichannel 
lung sound 

analyzer STG 

16 

Manual Crackle 
Analysis 

SVM Pneumonia 86% and 
CHF 82% 

Hashemi 

2011 [50] 

140p, 

140s 

Wheeze Electronic 

stethoscope 

WT MLP %89.28 

Aras2015 

[51] 
 

27 

pathologi
cal, 21 

normal s 

Rale, 

rhoncus, 
normal 

Electronic 

stethoscope 

MFCC 

LFCC 

k-NN The datasets 1 and 2 

were96% and 100% 

Chen2015 
[52] 

20p Rale, 
rhoncus, 

wheeze, 

normal 

Digital 
stethoscope 

MFCC k-NN 93.2% 

p: Patient, c: Control, s: Sound, n: Subject, ANN: Artificial Neural Network, AR: Autoregressive, CHF: Congestive Heart 

Failure, COPD: Chronic obstructive pulmonary disease, CPNN: Constructive Probabilistic Neural Network, DWT: Discreate 

Wavelet Transform, FFT: Fast Fourier Transform, FT: Fourier Transform, GANN: Genetic Algorithm-Neural Network; 

GMM: Gaussian Mixture Model, HMM: Hidden Markov Model, k-NN: k-nearest neighbor, LFCC: Linear Frequency 

Cepstral Coefficient,LPC: Linear Predictive Coding, MFCC: Mel Frequency Cepstral Coefficient, MLP: Multi-layer 

Perceptron, RBFNN: Radial Basis Function Neural Network, SBC: Subband based Cepstral, STFT: Short-time Fourier 

Transform, SVM: Support Vector Machine,  VQ: Vector Quantization, WPD: Wavelet Packet Decomposition, WT: Wavelet 

Transform 

 

In the literature, lung sound classification was made for a maximum of 6 classes [8]. 

Kandaswamy et al. [36] implemented a system to classify the lung sounds to one of 

the six categories: normal, wheeze, crackle, squawk, stridor, or rhonchus. Forkheim 

et al. [29], investigated to detect only wheezes in isolated lung sound segments [8]. 

Bahoura et al. [34], Riella et al. [42] and Hashemi et al. [50] classified sounds as 

whether containing wheezes or normal respiratory sounds [8]. Lu et al. [40], 

classified fine crackles and coarse crackles [8]. Kahya et al. [39], Flietstra et al. [49] 

and Serbes et al. [48] classified the presence or absence of a crackle [8]. These 

studies are very narrow in scope, as they have limited number of classes. Their 

results are focused on only a few sound types [8]. 

Rietveld et al. [31] selected clean audio samples, and Baydar et al. [35] recorded 

their audio clips in a quiet room [8]. To explore the value of artificial neural 

networks (ANNs), the limits of NNs and human inspectors to categorize respiratory 

sounds were looked at in the investigation of Rietveld [31]. A feedforward network 
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based on supervised learning was utilized on spectrogram images created by Fourier 

transform [31]. 

In investigation of Kahya et al., lung sounds recorded from patients and healthy 

people were identified as restrictive and obstructive respiratory tract infected and 

healthy people [30]. Highlight parameters were gotten from autoregressive (AR) 

models connected to covering sections of respiratory sounds [30]. Crackle 

parameters acquired from Prony model were additionally consolidated into the 

feature space for classification improvement [30]. Two distinctive multi-stage 

classifiers were created [30]. 

While Oud et al. [32] analyzed adventitious sounds of asthmatic patients, Waitman et 

al. classified [33] the breath sounds in the intensive care environment as normal or 

abnormal [33]. 

In the investigation of Bahoura et al., another approach in light of cepstral analysis is 

suggested to classify lung sounds [34]. This approach is tried and contrasted with 

other sort of feature extraction like the wavelet transform and the autoregressive 

representation [34]. The audio signal is partitioned into portions, portrayed by a 

diminished number of cepstral coefficients [34]. Then these fragments are named in 

the case of including wheezes or normal breath sounds, by utilizing the Vector 

Quantization (VQ) technique [34]. 

In the investigation of Baydar et al., the use of signal coherence technique for 

parametric portrayal and automatic breath sounds’ grouping is examined [35]. The 

different range estimation techniques, for example, Yule-Walker (YW), Welch's, 

periodogram and the Burg's strategies were utilized with the goal that both non-

parametric and parametric strategies were thought about [35]. Prior to the count of 

the power range, DC end from the digitized signal was done [35]. The capabilities 

were then characterized by utilizing closest mean classifier with leave-one-out 

method [35]. 

Folland et al. evaluated the execution of the moderately new constructive 

probabilistic neural network (CPNN) against the more typical classifiers, to be radial 
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basis function network (RBFN) and specific the multilayer perceptron (MLP), in 

classifying an expansive scope of tracheal-bronchial breath sounds [37]. 

Güler et al. exhibited an investigation for GANNs approach expected to help in lung 

sound characterization [10]. 

Martinez-Hernandez et al. proposed multichannel obtaining of respiratory sounds 

with a receiver exhibit, include extraction by a multivariate AR (MAR) demonstrate, 

the ability to reduce multiple dimensions of the feature vectors (FV) by SVD and 

PCA and, their arrangement by a managed neural NN [38]. 

In the investigation of Kahya et al., feature sets are utilized as a part of conjunction 

with k-NN and artificial neural network (ANN) classifiers to address the arrangement 

issue of lung sound signals [39]. 

Attempts to utilize computerized recordings of lung sounds as an aid for diagnosis 

and education have been previously described, with various complexities of systems 

[6]. 

Murphy et al. in 2000 assembled a framework for automatically giving an exact 

conclusion in view of an investigation of respiratory sounds recorded [8,53]. The 

sound is taken with the help of various receivers placed on the chest [8,53]. 

Framework likewise has a signal processing circuit to change analog data into digital 

data [8,53]. This information is then recorded, sorted out and showed on a PC screen 

utilizing an application program [8,53]. The gathered information is then physically 

broken down and analysed [8,53]. However this innovation is not utilizing a 

computerized investigation system to dissect the information they gathered [8,53]. In 

2004 they developed a system to collect data and provide automated identification of 

wheezes, rhonchi, fine crackles, coarse crackles, and squeaks, in accordance with 

published definitions [54]. To record tracheal sounds of the patients, they used a 

multichannel lung sound analyzer (model STG-1602), in which 14 receivers are 

placed into a soft foam base [54,55]. The data collected was analyzed using time-

expanded waveform analysis of each channel [54]. 
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Hossain et al. think about the heart-noise lessening procedure utilizing wavelet 

transform which disintegrate frequency into various parts that is connected to various 

channels [24,26,56]. 

Şen et al. has built up a framework that discovers and procedures breathing sounds 

[57]. The respiratory sounds are recorded by means of fourteen amplifiers appended 

on the chest divider, with the concurrent estimation of the air flow for 

synchronization [57]. Fourteen channels are opened up, band-pass filtered and 

digitized to be prepared on PC, while flow signal is just low-pass separated before 

digitization [57]. 

Lu et al. built up an incorporated robotized framework for crackles acknowledgment 

[40]. This framework contains three serial modules with following capacities: (1) 

division of crackles from vesicular sounds utilizing a wavelet packet filter (WPST– 

NST); (2) location of crackles by fractal dimension (FD); (3) characterization of 

crackles in view of GMM [40]. 

Sello et al. investigated the respiratory sound difference amongst healthy and ill 

persons [58]. Consequently here they utilized an appropriate receiver coupled to the 

skin by a shut chamber, like a stethoscope bell, with chose size and shape keeping in 

mind the end goal to catch the general frequnecy scope of interest [58]. At that point 

they played out the wavelet analysis and the related factual calculation [58]. 

Rayes suggests the time-frequency model Hilbert-Huang spectrum (HHS) as a 

suitable examination apparatus for coarse and fine crackles [24,26,59]. 

Alsmadi et al. utilized a digital signal processor to plan a device fit for getting, 

parameterizing and characterizing respiratory sounds into two classes in order to 

assess them without bias in real time [41]. 

Riella et al. built up a method for automatic wheezing recogniton in digitally 

recorded lung sounds in 2009. This strategy depends on the extraction and preparing 

of spectral data from the respiratory cycle and the utilization of these informations 

for user feedback and automatic recognition [42]. They also built up a method for 

unusual lung sounds classification utilizing discrete wavelet transform (DWT) and a 
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classifier situated in a radial basic function (RBF) NN in 2010 [43]. The proposed 

algorithm arranged unusual sounds into normal, wheeze, rhonchi, squeak, fine 

crackles, coarse crackles and stridor [43]. 

Ayman et al. built a system to classify cough and airflow sounds whether the patient 

is sick or not [60]. To collect the sounds a microphone, a pneumotachograph and a 

differential pressure transducer were used [60]. A product virtual instrument was 

planned utilizing Lab-VIEW to catch the sound weight and flow signals created by a 

coughing person to a microphone [60]. 

Matsunaga et al. suggested a new classification methodology for recognizing normal 

breathing and abnormal breathing sounds in view of a maximum likelihood approach 

utilizing HMMs [44,61]. 

Charleston-Villalobos et al. have assessed distinctive parameterization strategies for 

multichannel lung sounds procured all in all back thoracic surface for two class 

characterizations; normal breath sounds against abnormal breath sounds [45]. A feed 

forward MLP utilizing the backpropagation algorithm and the Levenberg– Marquardt 

adjustment rule was actualized with two hidden node layers and a solitary yield hub 

[45]. 

Yamashita et al. proposed an order methodology for recognizing a healthful person 

and a patient suffering from pneumonic emphysema on the premise of respiratory 

sounds [46]. The classification accuracies for the proposed method were found to be 

87.4% and 88.7% utilizing the deterministic rule and the segment bigram rule, 

respectively [46]. 

Jin et al. proposed another signal recognizable proof and extraction strategy for 

different adventitious sounds in light of instantaneous frequency analysis [47]. 

Serbes et al. proposed a novel strategy for crackle recognition [48]. In this strategy, 

different capabilities are removed utilizing time-frequency and time-scale analysis 

[48]. The removed capabilities are input into SVMs both exclusively and as a group 

of systems [48]. 
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Flietstra et al. was to decide if the crackles in patients with IPF (interstitial 

pulmonary fibrosis) contrast from those in patients with CHF (congestive heart 

failure) and PN (pneumonia) [49]. Crackle features were investigated utilizing 

machine learning strategies including NNs and SVMs [49].  

Jamar et al. designed electronic stethoscope consisting of a main receiver box, with 

both speakers and a headphone jack for auscultating, along with two wireless 

microphones (MEMS microphones) that attach to the patient and detect the heart and 

lung sounds. The PurePath kit was chosen to implement the wireless capability of the 

prototype [62].   

Hashemi et al. used Gauss Mixed Model (GMM) and MFCC for wheeze and normal 

sounds classification [50].  

Morillo et al. aim to analyze respiratory sounds during COPD exacerbations [63]. 

The audio was registered via an electret receiver [63]. The sensor was placed on the 

trachea on the sternum and used by the patients themselves. [63]. Both clinical 

history and sound documents were doled out to a classified electronic patient record 

[63]. Factual examination was performed utilizing SPSS statistical analysis software 

[63]. What's more, PCA and bunching were likewise connected, and Matlab was 

utilized for signal processing [63]. 

Falk et al. outline a modulation filter to enhance the division of heart and lung 

sounds from breath sound chronicles recordings [24,64,65]. 

Le Belvedere et al. utilize adaptive wavelets for respiratory sounds examination and 

effectively recognize pathological changes of the lung [24,26,65]. 

Wang et al. think about the connection between the lung multi-source vibration and 

the delay time [24,26,65]. They utilized cepstrum analyzes [24,65]. 

In the study of Aras et al., lung sounds recorded by electronic auscultation, were 

classified as healthy and pathological [51]. Linear predictive coding coefficients 

(LPCCs), mel frequency cepstrum coefficients (MFCCs) mean and standard 

deviation were used as features [51]. Records are consists of two data sets containing 
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different respiratory cycle. k-NN classification algorithm used and the performance 

obtained were discussed in the conclusion to the case of using different data sets and 

different attributes [51]. 

Chen et al. has built up a computerized stethoscope to enable doctors to overcome 

these issues when diagnosing anomalous respiratory sounds [52]. In this 

computerized framework, MFCCs were utilized to generate the features of 

respiratory sounds, and after that the K-means algorithm was utilized for feature 

clustering, to decrease the measure of information for calculation [52]. k-NN 

technique was utilized to classify the respiratory sounds [52]. 

The classification accuracy reported by Kandaswamy et al., was 100% for training 

and 94.02% for testing using ANN in classification of normal, wheeze, crackle, 

squeak, stridor, and rhonchus respiratory sounds [36]. This shows the effectiveness 

of ANN in classifying the lung sounds [66]. The ANN can adjust well with complex 

non-linear information and classify it precisely and adequately [66]. 

The work of Alsmadi and Kahya has reported a classification accuracy of 96% in 

realtime using k-NN classifier [39,41]. Their developed system can recognize normal 

and abnormal lung sounds and they trained the model with a large dataset comprising 

of 42 subjects [39,41].  

There have been a few examinations detailed concentrating on chest disease 

diagnosis issue utilizing ANN structures concerning other clinical analysis issues [3]. 

These examinations have connected diverse neural networks structures to the 

different lung diseases diagnosis issue utilizing their different dataset [3], as can be 

found in Table 1.2. 

Ashizawa et al. utilized the MLNN with one hidden layer and they utilized Back-

propagation (BP) training algorithm for diagnosis of COPD [3,67]. They utilized 

twenty six features for the conclusion. The authors announced roughly 90% 

diagnosis accuracy [3,67]. 

El-Solh et al. utilized a generalized regression neural network (GRNN) utilizing 

clinical and radiographic data to anticipate active pulmonary tuberculosis [68,69]. 
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The information patterns were framed by 21 distinct parameters which were 

separated into three groups: statistic factors, established indications, and radiographic 

discoveries [68,69]. The yield of the GRNN gave a gauge of the probability of active 

pulmonary tuberculosis [68,69]. The authors used a 10-fold cross-validation strategy 

to prepare the NNs. The authors announced roughly 92.3% diagnosis accuracy 

[68,69]. 

Table 1.2 Machine learning in computerized lung diseases analysis systems [8] 

Author Subjects Classified 

Items 

Number of 

Features 

Feature Extraction 

Method 

Classification 

Method 

Accuracy 

Kahya 
1997[30] 

51p 18n COPD, 
restrictive lung 

disease,normal 

14 (audio) AR Model k-NN 69.59% 

Ashizawa 

1999 [67] 

110s ILD  

 

26 (text) Manual selection MLNN 90% 

El-Solh 

1999 [68] 

682p TB 21 (text) 

 

Manual selection GRNN 92.30% 

Santos 

2004 [70] 

136p SNPT 26 (text) Manual selection MLP 77.0% 

Heckerling 

2004 [71] 

1160s Pneumonia 35 (text) Manual selection MLP 82.8% 

Barua 2004 

[72] 
131s Pulmonary 

diseases 
12 (text) IOS MLP 61.53% 

Barua 2005 

[73] 

361s Asthma 12 (text) IOS MLP 95.01% 

Er 2008 

[69] 
100n  
50p 

TB 38 (text) Manual selection MLNN, GRNN 95.08% 

Er 2008 

[74] 

100n 

 55p 

COPD 38 (text) Manual selection MLNN 96.08% 

Er 2009 

[75] 
100n  
101p 

Pneumonia 
COPD 

38 (text) Manual selection MLNN, PNN, 
LVQ, AIS 

94% 

Er 2010 [3] 100n 

257p 

TB, COPD, 

Pneumonia, 

asthma, lung 
CA 

38 (text) Manual selection MLNN, PNN, 

LVQ, GRNN, 

RBF 

TB vs others 90% 

COPD vs others 

88% 
Pneumonia vs 

others 91.67% 

Asthma vs others 
90.91% 

Lung CA vs 

others 93.75% 
Normal vs others 

99% 

Yamashita 
2011 [46] 

101p 
39n 

Normal or 
emphysema 

Not 
specified 

Segmentation HMM 87.4% and 88.7% 

Amaral 

2012 [76] 

25p  

25n 

COPD 7 (text) Manuel selection k-NN, SVM, 

MLP 

95% 

p: Patient, c: Control, s: Subject, n: Normal, AIS: Artificial immune system, ANN: Artificial neural network, AR: 

Autoregressive, CA: Cancer, COPD: Chronic obstructive pulmonary disease, GRNN: Generalized regression neural network, 

HMM: Hidden Markov model,  ILD: Interstitial lung disease, IOS: Impulse oscillometry, k-NN: k-nearest neighbor, MLNN: 

Multilayer neural network (MLNN), MLP: Multi-layer perceptron, PNN: Probabilistic neural network, RBF: Radial basis 

function, SVM: Support vector machine,  LVQ: Learning vector quantization, TB: Tuberculosis 

Heckerling et al. utilized the MLNN with one and two hidden layers and they utilized 

BP with momentum as the training algorithm for anticipating community-acquired 

pneumonia among patients with respiratory grievances [71,75]. They performed GAs 

to look for ideal hidden layer structures, availability, and training parameters for the 
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NN [75]. The authors revealed a ROC precision proportion of 82.8% for the 

pneumonia disease determination [71,75]. 

Santos, et al. [69], utilized an expectation display for determination of smear 

negative pulmonary tuberculosis (SNPT) [69]. They utilized indications and physical 

signs for building the NN modeling [69]. They detailed around 77% diagnosis 

precision. They utilized a MLNN structure with one hidden layer [69]. 

In the study by Barua et al. in 2004 [72], an ANN was utilized to perceive and 

classify the sicknesses of the airways. The authors utilized IOS estimations and a 

feedforward ANN that was trained by the BP algorithm [76]. In 2005 they [73,76], 

developed a classifier in light of ANN was fit for recognizing relatively constricted 

and nonconstricted airway conditions in asthmatic kids [76]. The 361 data set 

contained two unique classes [73]. 

Er and Temurtaş utilized a multilayer neural network (MLNN) for determination of 

COPD [3,74]. They utilized thirty eight features for the diagnosis and revealed 

roughly 96% diagnosis precision for MLNN with LM algorithm and two hidden 

layer [3,74]. In 2008, they [69] utilized MLNN for tuberculosis diagnosis. For this 

reason, two diverse MLNN structures were utilized [69]. A general regression neural 

network (GRNN) was additionally applied to acknowledge tuberculosis diagnosis for 

the comparison. Levenberg-Marquardt algorithms were utilized for the training of the 

MLNN [69]. In 2009, they utilized MLNN, PNN and LVQ NN for diagnosis of 

COPD and pneumonia illnesses [3,75]. They utilized thirty eight features for the 

diagnosis and reported around 93.92% diagnosis precision for PNN as the best 

outcome [3]. In 2010, they applied a relative chest ailments diagnosis by utilizing 

MLNN, PNN, LVQ, and GRNN [3]. The chest ailments dataset were set up by 

utilizing patient epicrisis records in the database of the chest diseases hospital [3]. 

All specimens had thirty eight features [3]. They also utilized MLNNs and GRNNs 

for classification of tuberculosis [3,77]. They utilized thirty eight features for the 

classification and found around 93.3% analysis accuracy for GRNN and 95% 

diagnosis precision for MLNN with LM algorithm and two hidden layer [3,77]. 



14 

 

 
 

Hanif et al. utilized three diverse ANNs to characterize distinctive seriousness of 

asthma and the plausible precautions to accomplish it [3,78]. These NNs were 

connected to BPNN (MLNN), Elman BPNN and RBFNN [3,78]. The accuracy of the 

prepared designs was tried by entering novel series of data to a graphical user 

interface (GUI). They acquired best accuracy result (90%) utilizing the RBFNN 

[3,78]. 

Prasadl et al. designed the expert system for diagnosis of asthma [79]. 

Amaral et al. built up a clinical decision support system in light of machine learning 

algorithms to help the diagnosis of COPD utilizing forced oscillation measurements 

[76]. The performances of classification algorithms in light of Linear Bayes Normal 

Classifier, ANN, k-NN, SVM and decision trees were compared to find the best 

classifier [76]. The conclusion of this investigation show that the suggested 

categorizers may add to simple the diagnosis of COPD by utilizing forced oscillation 

measurements [76]. 

Kononenko et al., compared two diverse ways to deal with machine learning in 

medicinal practices: the system for inductive learning of decision trees and the naive 

Bayesian classifier [80]. 

Medicine has framed a rich proving ground for machine learning experiments before, 

enabling researchers to create intricate and powerful learning systems [79,81]. While 

there has been much viable utilization of expert systems in hospital environments, 

currently, machine learning systems does not appear to be utilized as a routine part of 

the diagnosis process [79,81]. Machine learning systems can be utilized to build up 

the databases utilized by expert systems [79,81]. Given an arrangement of clinical 

events as samples, a machine learning system can create a precise depiction of 

properties unambiguously portray the status [79,81]. This learning can be 

communicated as basic rules [79,81]. There are a wide range of sorts of clinical 

assignment to which expert systems can be connected [79,82]: 
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 Diagnostic help: If the case of a patient is complicated, uncommon or the 

individual performing the analysis is just untrained, an expert system can 

come to up with probable findings in light of patient information [79,82]. 

 Therapy evaluating and designing: Systems can either search for 

irregularities, errors and exclusions in a current treatment design, or can be 

utilized to detail a treatment in view of a patient's particular condition and 

acknowledged treatment rules [79,82]. 

 Image recognition and interpretation: Many medical images would now be 

able to be automatically interpreted, from plain X-rays through to more 

complex images like angiograms, CT and MRI scans. This is of incentive in 

mass-screenings, for example, when the system can flag possibly anomalous 

images for definite human consideration [79,81]. 

ANN structures for classification systems in medicinal diagnosis are expanding 

gradually [3]. The MLNN, PNN, LVQ NN, GRNN, and RBFNN structures have 

been effectively utilized as a part of replacing conventional pattern recognition 

techniques for the disease diagnosis systems [3]. 

The utilization of computer innovation has given new perception into acoustic 

components and new estimations of clinical significance on lung sounds [16,19]. The 

utilization of digital signal processing techniques to extract information on average 

sounds were significant advances that have propelled the utility of lung sounds past 

the stethoscope [16,19]. In the previous decade, different advances, for example, 

expert systems were utilized to endeavor to take care of this issue [8]. However for 

critical systems the error in the decision was too high [8]. The most recent innovation 

that is endeavoring to take care of this issue is machine learning [6,8]. 

Also, there is a multinational effort, funded by the European Commission, to 

standardize computerized respiratory sound analysis [16]. This in turn has led to the 

creation of the International Lung Sound Association (ILSA), whose activities have 

consisted of a yearly international research conference and even the maintenance of a 

website, consisting of respiratory sounds that can be downloaded at no cost [83,84]. 

This renaissance of lung auscultation was confirmed by the European Commission's 
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support of a multinational project to standardize computerized breathing sound 

analysis (CORSA project) [83,85-87]. 

Throughout the years various effective algorithms were created and now with the 

deep learning algorithms, error turned out to be exceptionally low [8]. Particularly in 

computer vision and speech recognition machine learning is coming to on human 

level of identification [6,8]. 

1.2 Aim of the Thesis 

There are a variety of problems with clinical auscultation that make it difficult to 

reliably acquire the acoustic information that is associated with lung diseases [55]. 

One major problem is substantial observer variability [55]. There has been a lot of 

enthusiasm for utilizing computer based innovation to circumvent the deficiencies of 

auscultation [55,88]. Recent technical advances have led to the development of 

computer based respiratory sound analysis which serves as a powerful tool to 

diagnose abnormalities and disorders in the lung. [55]. 

To diagnose or classify something, we need to find patterns [8]. Be that as it may, 

more often than not, it is difficult to detect these examples, particularly if the 

information we have is huge [8]. Likewise as a rule information gathered from nature 

is non-linear, so we cannot utilize traditional techniques to discover patterns or make 

scientific models [8]. 

Computerised respiratory sound analysis comprises on recording subjects' lung 

sounds with an electronic device and afterward analysing and classifying the acoustic 

signal in view of particular qualities [89,90]. Its use could potentially enhance 

patients’ diagnosis treatment and monitoring [89,90].  

This study tackles with the following questions: 

 Can lung sounds be classified using convolutional neural networks using 

spectrogram images? 
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 Can the technique of classifying lung sounds with convolutional neural 

networks yield better or equal accuracy, precision and recall results compared 

to the traditional sound classification techniques? 

 Can lung diseases be classified via lung sounds’ MFCC features and text 

patient data using and support vector machine, k-nearest neighbor and 

Gaussian Bayes algorithms? 

 Can the electronic stethoscope that was developed to collect lung sounds be 

successful in providing viable lung sound samples for the study? 

The first goal of this project is to develop a non-invasive method of classifying 

respiratory sounds using convolutional neural networks and spectrogram images of 

the respiratory audio [8]. 

Our second goal is to classify respiratory diseases using both patient information and 

respiratory sounds [8]. This data consists of audio recordings and text data which 

was collected through survey and from the physician [8]. 

To collect patient data and respiratory sounds we designed and constructed a cheap, 

mobile and easy to use electronic stethoscope with associated software system that 

can transfer respiratory sounds to a PC for recording and subsequent computer aided 

analysis and diagnosis [8]. The hardware-software system was used to collect a 

dataset of patient information and respiratory sounds to train a machine learning 

system for the automated analysis and diagnosis [8].   

We performed the following experiments on the collected data: 

 Classification of healthy versus pathologic respiratory sounds (SVM, k-NN, 

GB and CNN) [8] 

 Classification of respiratory sounds labeled with a singular type (SVM, k-

NN, GB and CNN) [8] 

 Classification of respiratory sounds labeled with only as type rale, rhonchus 

and normal (SVM, k-NN, GB and CNN) [8] 

 Classification of respiratory sounds with all labels (SVM, k-NN, GB and 

CNN) [8] 
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 Classification of lung diseases using text data (SVM, k-NN and GB) 

 Classification of lung diseases using audio data (SVM, k-NN and GB) 

 Classification of lung diseases using text and audio data (SVM, k-NN and 

GB) 

 Classification of healthy versus sick using text data (SVM, k-NN and GB) 

 Classification of healthy versus sick using audio data (SVM, k-NN and GB) 

 Classification of healthy versus sick using text and audio data (SVM, k-NN 

and GB) 

Our third goal was to compare traditional audio classification algorithms such as 

SVM, k-NN and GB with a deep learning algorithm CNN, so that we can benchmark 

how deep learning performs. 

Our final goal was to compare the difference of diagnosis between lung sounds that 

was auscultated by both by traditional stethoscope and electronic stethoscope. 

1.3 Original Contribution 

Stethoscopes currently in use are mainly mechanical, which does not allow digital 

recording of the sounds for later or remote access or for computer aided diagnosis. 

Electronic stethoscopes, on the other hand, convert the analog sound waves to digital 

signals which can be processed and recorded [91]. They are expensive and not yet in 

widespread use. Likewise, while traditional stethoscope auscultation is subjective 

and scarcely sharable, electronic stethoscopes should supply an objective and early 

diagnostic help, with a superior sensitivity and reproducibility of the outcomes 

[27,92]. Therefore, we believe electronic stethoscopes can be utilized as a diagnosis 

device for hard to diagnose lung sounds with traditional stethoscope [8]. To this end, 

we designed and constructed a cheap, mobile and easy to use electronic stethoscope 

with associated software system that can transfer respiratory sounds to a computer 

for recording, storing and subsequent computer aided analysis and diagnosis [8]. The 

hardware-software system was used to collect a dataset of patient information and 

respiratory sounds to train a machine learning system for the automated analysis and 

diagnosis [8]. 
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We developed the software/hardware system so that it can be used in a clinical 

environment. This system allows chest physicans to record patient information and 

their lung sounds so they can compare patient’s progression. Therefore, in the future 

this system can form the base of a telemedicine platform. 

According to the literature we surveyed, our database has the most number of 

patients (1,630) and most number of lung sounds (17,930). In the previous studies, 

researchers classified lung sounds at most into 6 classes; however we classified our 

database of lung sounds into 73 classes. Therefore, this study has the most 

comprehensive database of patient data and audio among the studies that were done 

before. 

Respiratory sounds are used for non-invasive diagnosis of lung diseases. 

Stethoscopes are used to auscultate to the sounds and diagnosis of different diseases 

requires expertise. There is a lot of data in lung sounds that isn't effectively acquired 

by even the best of clinicians [55,88]. As of late, much research has been completed 

on modernized strategies for computerized recording and examination of respiratory 

sounds with a view to make respiratory sounds an important wellspring of data for 

analysis [39]. A large portion of the exploration on lung sound analysis has been 

focused on looking at the sound of a particular pathological condition versus 

ordinary lung sounds [10]. In the previous studies, researchers used either text data or 

audio data in diagnosis and lung sound classification. While, we experimented on 

text and audio separately, we also experimented on audio and text data combined and 

produced consistent results. In literature, researchers used traditional machine 

learning algorithms, however we experimented with CNN deep learning algorithm 

and we benchmarked our results with a commonly used SVM algorithm and found 

consistent results. 

Finally, we compared the difference of diagnosis between lung sounds that was 

auscultated by both by traditional stethoscope and electronic stethoscope and found 

that some lung sounds which have a very low frequency and cannot be heard by 

human ear, contained diagnostic clues when it auscultated with 200 times amplified 

audio that is recorded by an electronic stethoscope. 
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In conclusion, we believe our method can improve the results of previous studies and 

help in medical research [8]. 
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CHAPTER 2 

LUNG DISEASE AND LUNG SOUNDS 

2.1 Lung Diseases 

The lack of proper medical attention for patients in developing nations has fatal 

consequences [2]. Lung diseases are some of the most common medical conditions in 

the world [2]. Tens of millions of people suffer from lung disease in the U.S [2].  

Smoking, infections, and genetics are responsible for most lung diseases [2]. World 

Health Organization reported that 4 million people died in 2005 due to chronic 

respiratory diseases [2,93]. In particular, acute respiratory diseases are the main 

source of mortality in children under five years old in the world [94-96]. 

Distribution of causes of death at national level in 2015 according to Turkish 

Statistical Institute Death Predictors Statistics: 40.3% circulatory system diseases, 

20% malign and benign neoplasms, 11.1% lung diseases, 5% endocrine system 

diseases, 4.9% nervous system diseases, 4.5% injury and poisoning, 14.2% others 

[97] Lung illnesses are: Chronic obstructive pulmonary disease (COPD), asthma, 

bronchitis, pneumonia, pulmonary edema, emphysema, interstitial lung disease 

(ILD), pulmonary embolism (PE), pulmonary arterial hypertension, pleural effusion, 

cystic fibrosis, tuberculosis, lung cancer etc. 

 Asthma is a chronic disease [98]. It is frequently connected with extra mucus 

production [73,98]. As a result, this disease causes the lining of the airways to 

end up inflamed and swollen [98]. So airways constriction results in episodes 

of asthma [73]. The patient becomes more difficult to breathe [3,73]. In this 

case, wheezing, cough, tight chest, shortness of breath and airway obstruction 

can be seen [3,73]. Asthma can be hard to analyze, in light of the fact that the 

symptoms are some of the time like different conditions, including lung 

infection, allergic rhinitis, and even cardiac problems [73]. Asthma influences 

3% to 5% of grown-ups and 7% to 10% of children [73]. Early diagnosis and 



22 

 

 
 

appropriate treatment will facilitate the patient's life struggle with this 

disorder [73]. 

 Chronic obstructive pulmonary disease is a major worldwide health burden 

with increasing morbidity, mortality [75]. The disease is characterized by 

progressive airflow obstruction that is not completely reversible [3,74,99]. It 

is sometimes partially reversible with the administration of a bronchodilator 

[99,100]. COPD is usually associated with tobacco smoking or prolonged 

exposure to other noxious particles and gasses [3,74]. There is heterogeneity 

in disease activity and in the nature of symptomatic impairment experienced 

by patients [99]. The typical symptoms are cough, excess sputum production, 

and dyspnea [99]. There may likewise be wheeze [74,75,99]. The airflow 

obstruction is persistent [74,75,99]. As per the World Health Organization 

information, consistently rough 2.5 million people die due to COPD [75]. 

According to the data of the Turkish Thoracic Society COPD Working 

Group; in our society, COPD is one out of every 5 people over 40 years old. 

It is estimated that approximately around 2.5-3 million COPD patients are in 

our nation [74,101]. 

 Pneumonia is an inflammation of the lungs most usually caused by a 

microorganism [3,75,98]. Pneumonia can likewise be caused by inhaling 

foreign substances [3,75,98]. Air sacs of the lungs fill with mucous, pus and 

different fluids and can't work appropriately [75]. This implies oxygen can't 

rearch the blood and the cells of the body successfully [75,98]. This disease 

for the most part begins when you inhale the germs into your lungs [75]. 

Symptoms include; fever, fast breathing and feeling short of breath, cough, 

chest pain, fast heartbeat, fatigue, diarrhea, nausea and vomiting [75]. 

Pneumonia is the main source of infectious-disease related death [55]. It is a 

main source of mortality in people 60 years of age in the United States [55]. 

As per the World Health Organization information, every year consistently 

rough 2.4 million people die because of pneumonia [3]. According to the 

statistical reports of the Ministry of Health in 2005 90,000 patients have 

pneumonia and every year 2,500 persons die because of pneumonia in our 

nation [75].  



23 

 

 
 

 Bronchitis is inflammation of the bronchi in the lungs [98]. Symptoms 

include coughing up mucus, wheezing, shortness of breath, and chest 

discomfort [98]. Bronchitis is divided into two types: acute and chronic [98]. 

In more than 90% of cases the cause is a viral infection [102]. These viruses 

may be spread through the air when people cough or by direct contact [102]. 

Risk factors include exposure to tobacco smoke, dust, and other air pollution 

[98]. A small number of cases are due to high levels of air pollution or 

bacteria such as Mycoplasma pneumoniae or Bordetella pertussis [102]. 

Chronic bronchitis, a more serious condition, is a constant irritation or 

inflammation of the lining of the bronchial tubes, often due to smoking [103]. 

Acute bronchitis is one of the most common diseases [102]. About 5% of 

adults are affected and about 6% of children have at least one episode a year 

[102]. 

 Emphysema is a chronic obstructive pulmonary disease [98,104]. It is a 

destructive disease of the lung in which the alveoli that promote oxygen 

exchange between the air and the bloodstream are destroyed [98]. Smoking is 

the primary cause of emphysema, which makes it a preventable illness [98]. 

The primary symptom of emphysema is shortness of breath [102]. It is a 

progressive complaint by affected individuals, worsening over time [102]. 

Early in the disease, shortness of breath may occur with exercise and activity 

but symptoms gradually worsen and may occur at rest [102]. 

 Pulmonary edema is liquid amassing in the tissue and air spaces of the lungs 

[98,105]. It leads to impaired gas exchange and may cause respiratory failure 

[98]. Pulmonary edema can develop in two ways, cardiogenic pulmonary 

edema or noncardiogenic pulmonary edema. [98,105,106]. It is a cardinal 

feature of congestive heart failure [98]. The most common symptom of 

pulmonary edema is difficulty breathing, but may include other symptoms 

such as coughing up blood, excessive sweating, anxiety, and pale skin [106]. 

The development of pulmonary edema may be associated with symptoms and 

signs of fluid overload; other signs include end-inspiratory crackles on 

auscultation and the presence of a third heart sound [106]. 
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 Interstitial lung disease (ILD) is a group of lung diseases affecting the 

interstitium [98]. It may occur when an injury to the lungs triggers an 

abnormal healing response [107]. Ordinarily, the body generates just the right 

amount of tissue to repair damage [107]. But in interstitial lung disease, the 

repair process goes awry and the tissue around the air sacs becomes scarred 

and thickened [98]. This makes it more difficult for oxygen to pass into the 

bloodstream [107]. In 2013 interstitial lung disease affected 595,000 people 

globally. This resulted in 471,000 deaths [107]. 

 Pulmonary embolism is the blockage of an artery in the lungs by a substance 

from the bloodstream of other parts of the body [98,108]. Symptoms may 

include shortness of breath, chest pain particularly upon breathing in, and 

coughing up blood [98]. Symptoms of a blood clot in the leg may also be 

present such as a red, warm, swollen, and painful leg [98,109]. Signs include 

low blood oxygen levels, rapid breathing, rapid heart rate, and sometimes a 

mild fever [109]. Severe cases can lead to passing out, abnormally low blood 

pressure, and sudden death [109]. Pulmonary emboli affect about 430,000 

people each year in Europe [109]. In the United States between 300,000 and 

600,000 cases occur each year, which results in between 50,000 and 200,000 

deaths [109]. 

 Pulmonary arterial hypertension is an increase of blood pressure in the 

pulmonary artery, pulmonary vein, or pulmonary capillaries [98]. Other 

symptoms of the disease include dizziness, fainting or syncope, shortness of 

breath, leg swelling, chest pain, decreased exercise tolerance, fatigue, 

palpitations, poor appetite, swelling (legs/ankles) and cyanosis [98,109,110]. 

 Pleural effusion is excess fluid that accumulates in the pleural cavity, the 

fluid-filled space that surrounds the lungs [98]. This excess can impair 

breathing by limiting the expansion of the lungs [111]. 

 Cystic fibrosis is a genetic disorder that affects mostly the lungs, but also the 

pancreas, liver, kidneys, and intestine [98]. Long-term issues include 

difficulty breathing and coughing up mucus as a result of frequent lung 

infections [98]. Other signs and symptoms may include sinus infections, poor 
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growth, fatty stool, clubbing of the fingers and toes, and infertility in males 

[112]. Different people may have different degrees of symptoms [112]. 

 Tuberculosis is a potentially serious infectious disease [69]. In most cases, the 

disease is caused by microorganisms called Mycobacterium tuberculosis [69]. 

Tuberculosis for the most part influences the lungs, yet can likewise influence 

different parts of the body [69]. The disease spreads through droplets 

scattered from contagious humans [69]. Some symptoms of the disease: 

weight loss, chronic cough, night sweats, intermittent fever and coughing 

blood [69,78]. In 2006, 9.2 million new cases of tuberculosis and 1.7 million 

deaths were reported worldwide [69,78]. As per reports of the Ministry of 

Health in 2006, roughly 23,875 persons have tuberculosis and each year 

3,448 persons die as a result of tuberculosis in our nation [69,78]. 

 Lung cancer is an uncontrolled cell development in tissues of the lung [98, 

113]. Lung cancer is the most lethal type of cancer among the cancer types all 

over the world [98]. Lung tumor causes around 1.3 million deaths worldwide 

every year [114]. 

Turkey at the national level, in the distribution of the first 10 diseases causing the 

death (UHY-ME Study, 2003, Turkey) [2]: Ischemic heart disease 21.7%, 

cerebrovascular diseases 15.0%, chronic obstructive pulmonary disease (COPD) 

5.8%, perinatal causes 5.8%, lower respiratory tract infections 4.2% and others 

47.5% [2] (Figure 2.1). 

The lungs can be influenced by various infections (eg COPD, pneumonia, bronchitis, 

emphysema and lung cancer) [115]. The changes in lung structure that happen in 

ailment influence the amplitude and timing of sound transmission [16,116]. 
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Figure 2.1 The distribution of the some diseases causing the death in Turkey at thenational level 

(UHY-ME Study, 2003, Turkey [2])           

2.2 Structure and Function of the Lungs 

The respiratory system is one of the most complex organ systems in the mammalian 

body [98]. The lungs are the primary organs of respiration in humans [98]. Humans 

have two lungs, a right lung and a left lung [115]. They are situated within the 

thoracic cavity of the chest [98]. The right lung is bigger than the left lung, as the left 

lung shares space in the chest with the heart [115]. The lungs are part of the lower 

respiratory tract that begins at the trachea and branches into the bronchi and 

bronchioles and which receive air breathed in via the conducting zone [115]. These 

divide until air reaches microscopic alveoli, which is where the process of gas 

exchange takes place (Figure 2.2) [115]. 
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Figure2.2 The lungs, the trachea, bronchi, bronchioles and alveoli [116] 

Their function in the respiratory system is to extract oxygen from the atmosphere and 

transfer it into the bloodstream, and to release carbon dioxide from the bloodstream 

into the atmosphere, in a process of gas exchange [98]. Respiration is driven by 

different muscular systems [115]. The diaphragm is a muscle below the lungs 

separating it from the rest of the organs below [98]. When the diaphragm contracts, 

the lungs expand and air is inhaled in a process called inspiration [98]. Conversely, 

expiration occurs when the diaphragm relaxes, air leaves the lungs, and the lungs 

return to their elaxed position [98]. Breathing, which in organisms with lungs is 

called ventilation and includes inhalation and exhalation, is a part of physiologic 

respiration [115]. 

Inspiration is the active part of the breathing process [117]. Fresh air on inspiration 

flows through the branching airways into the alveoli until the alveolar pressure is 

equal to the pressure on the airway opening [117]. Expiration is a passive event due 

to elastic recoil of the lungs [117]. However, when a great deal of air has to be 

removed quickly, as in exercise, or when the airways narrow excessively during 

expiration, as in asthma, the internal intercostal muscles and the anterior abdominal 

http://www.google.com.tr/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwirqMrbi9LJAhUF0RQKHbsaATsQjRwIBw&url=http://lungpictures.org/p/33/lung-anatomy/picture-33&psig=AFQjCNFrx7f1PjCINufdnXLM2EmyRexHtw&ust=1449863959335341
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muscles contract and accelerate expiration by raising pleural pressure [117]. The 

processes of inspiration and expiration repeat throughout the breathing cycle. 

Respiration rate is defined as the number of breath cycles per minute (cpm), where a 

single cycle includes inspiration followed by expiration [117]. The respiratory rate 

ranges for normal healthy individuals are 12 to 20 cpm [117]. However, these values 

are rough estimates because there is no specific agreement in the literature on the 

acceptable ranges for respiratory rate among healthy people [117]. 

Pulmonary diseases result in changes in the lung structure; this in turn affects the 

amplitude and timing of the sounds heard over the chest wall [118]. 

2.3 Lung Sounds 

Lung sounds, also called respiratory sounds or breath sounds (Figure 2.3), can be 

auscultated across the anterior and posterior chest walls with a stethoscope [119] 

Laennec enhanced their audibility with the stethoscope [119,120]. Normal lung 

sounds happen throughout the chest area [10,121]. Lung sounds are created by the 

flow of air as it goes with the branching system of bronchi and bronchioles [10]. 

 

Figure 2.3 Relationship between the terms breath sounds, adventitious sounds, lung sounds and 

respiratory sounds [122] 

Respiratory sounds serve as important indicators of respiratory related diseases [92]. 

Difference between normal lung sounds and anomalous sounds is critical for a 
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precise medicinal conclusion [27,92]. Respiratory sounds incorporate important data 

about the physiology and pathology of the lungs [27,92]. In this way, the spectral 

density and amplitude of sounds can indicate the state of the lungs parenchyma, the 

dimension of the airways and their pathological modification [27,92]. Respiratory 

sounds may vary significantly from one individual to the next or to the same person 

over time [32,123]. 

The spectral attributes of respiratory sounds indicate varieties as indicated by the 

state and pathology of the lung [39]. Because of changes in the transmission 

characteristics of the lungs, the spectra of pathological sounds usually contain higher 

frequency components [39]. 

Respiratory sound has three characters; frequency, intensity, and timbre.  These help 

us to separate two comparative sounds [124]. Single-tone sound vibrations have two 

main identifiers, frequency and amplitude [125]. We perceive frequency as pitch and 

amplitude as loudness [125]. Frequency measures the quantity of the sound waves or 

vibrations every second [124]. It is estimated in hertz (Hz) [124]. In general, lung 

sounds occur at low frequencies from 100 Hz to 1200 Hz. [124]. Frequency relies 

upon the quantity of wavelengths every second [124]. Pitch relies upon the frequency 

and is inside 5 Hz of the frequency typically [124]. The human ear can comprehend 

sound waves over a variety of frequencies, extending from 20 to 20,000 Hz [124]. 

Amplitude is identified with the energy of sound waves and is estimated by the 

height of sound waves from the mean position [124]. Sound estimated at 10 dB has 

an expansion in sound intensity of 10 times [124]. The most important feature that 

distinguishes two sounds of the same pitch and loudness is the timbre [124,125]. In a 

mixed sound, for example, the breath sounds, it is the availability of concurrent 

higher frequencies, specifically music, which give the sounds their particular 

character [125]. While we are auscultating to a mixed sound, we ordinarily hear the 

most minimal note [125]. The power of the lower note is enhanced as the amplitude 

of the sound arises [125]. For this reason, lower frequencies may mask higher 

frequency components [125].   

The origins of lung sounds are not yet completely clear [126]. If there is no airflow, 

the lung cannot produce sounds [26,127]. Minimum of a flow is required [128]. It is 
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accepted that the breath sound is incited by turbulence of air at the level of lobar or 

segmental bronchi [128,129]. Frequency band contains also components of 

respiratory muscles and heart [128]. Inspiration phase is louder and has much higher 

frequency components than expiration phase [128]. 

Respiratory sounds are all sounds related to respiration including breath sounds, 

adventitious sounds, cough sounds, snoring sounds, sneezing sounds, and sounds 

from the respiratory muscles [122,130]. Voiced sounds during breathing are not 

included in respiratory sounds [122,130]. 

The names of lung sounds were derived from the originals given by Rene Laennec 

and translated into English by Forbes [16,131]. Lung sounds are divided into 5 

groups (Table2.1); (1) normal respiratory sounds, (2) abnormal respiratory sounds, 

(3) adventitious sounds, (4) speech voices, (5) pleural friction rub [98]. 

Table 2.1 Lung sounds are divided into 5 groups 

LUNG SOUNDS 

Normal Respiratory 

Sounds 

Normal Respiratory Sounds 

(Vesicular Sounds) 
 

Tracheal breath sound  

Bronchovesicular breath sound  

Abnormal Respiratory 

Sounds 

Bronchial sound  

Absent or decreased sounds  

Aggravation of normal breath 

sounds 
 

Adventitious sounds 

Rhonchus  

Crackle (Rale) 
Coarse crackle 

Fine crackle 

Wheeze  

Squeak  

Stridor  

Cough sound  

Snoring sound  

Speech voices 

Whispered pectoriloquy  

Bronchophony  

Egophony  

Pleural friction rub 
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1-Normal Respiratory Sounds: 

a) Normal respiratory sounds (vesicular sounds): It is soft, low pitched, and 

rustling in quality [124]. The inspiratory phase lasts longer than the 

expiratory phase [124]. The inspiratory-expiratory ratio (I: E) during 

respiration is approximately 2: 1 [124]. The intensity of expiration is less 

than the intensity of inspiration [124]. Expiration is lower pitch than 

inspiration [124]. There is no cessation between inspiration and expiration 

during tidal breathing [124]. On the chest wall, the breathing sound is 

characterized by a low noise during inspiration, but is hardly audible 

during expiration [27,124]. On trachea, normal respiratory sound is 

characterized by a broader spectrum of noise. This sound can be heard 

both in the inspiratory and expiratory phases [27,92,124]. Sounds heard in 

the chest wall vary depending on the conductance and filtering effect of 

the lung tissue and the characteristics of the chest wall [125]. The 

parenchyma of the lung and the chest wall behave like a low frequency 

filter [125]. Thus, since the parenchyma reduces the higher frequencies, 

the sounds coming from the proximal airways are greatly weakened and 

they are composed of low frequencies [125]. The low frequency spectrum 

of breath sounds is further enhanced by frequencies below 300 Hz 

[124,132]. Because of these factors, the normal breath sounds recorded by 

the chest wall receivers are between 37.5 and 1000 Hz (Figure 2.4) and the 

fundamental energy is below 100 Hz [124,132]. Sound intensity drops 

forcefully in the vicinity of 100 and 200 Hz leaving little energy above 400 

Hz [124,132]. Be that as it may, with sensitive transducers sound can even 

now be distinguished up to 1,000 Hz [124,132]. Most vesicular breath 

sounds are found at 37.5-1.000 Hz [16,125]. Their main energy is below 

100 Hz [16,125]. The intensity of sound is continuously diminished 

between 100– 200 Hz with just little energy between 400– 1,000 Hz [125]. 

Higher frequency sounds do not disseminate [125]. The presence of high 

frequency but low amplitude sounds is important for the detection of 

underlying pathology [125]. The filtering of high frequencies is reduced in 

areas of consolidation of lung parenchyma [16,125]. This leads to an 
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increase in high-frequency energy [16,125]. In addition, a decrease in low 

frequency sounds is seen [16,125]. This results in less masking of high 

frequency sounds [16,125]. Frequencies range from 240–1,000 Hz [125]. 

Added sounds can be continuous and melodic or discontinuous, explosive 

and non-musical [125,132]. They also contain strong peaks of energy 

[125,132]. The main energy of some common sounds is: wheezes (>400 

Hz), rhonchi (<200 Hz), and crackles (750–1200 Hz) [125,132]. 

 

Vesicular sound has higher diagnostic value than tracheal sound, since this 

part of the lung is affected by serious lung diseases [128]. 

 

Figure 2.4 Equal loudness curves and frequency of respiratory sounds [132] 

b) Tracheal breath sound: Tracheal breath sound is not or filtered in very 

small amounts [124]. It is hard, noisy, and high pitched sound heard over 

the trachea [124]. Frequency of tracheal breath sound shifts from 100 to 

1500 Hz [124]. It shows a sharp decline over a cut-off frequency of about 

800 Hz [124]. Difference of the power of inspiration and expiration varies 
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greatly among the subjects [128]. Tracheal sound has a direct connection 

to the flow of air [128].   

c) Bronchovesicular breath sound: It is a mixture of bronchial and vesicular 

sounds [133]. The inspiratory and expiratory phase times are the same 

[124]. The intensity and pitch of this sound are moderate [124]. It is 

normally heard over 1st and 2nd intercostal spaces anteriorly and between 

scapulae posteriorly [124]. In other locations, the hearing of these sounds 

is considered pathological [124]. 

2- Abnormal Respiratory Sounds: 

a) Bronchial sound: The most widely recognized unusual breath sound heard 

at the chest wall is bronchial breathing [125,132]. Bronchial breathing 

contains considerably higher frequency segments than normal breath 

sounds [125,132]. It is loud, hollow, and high pitch [124,133]. The 

inspiratory phase is shorter than the expiratory phase (I:E changing from 

3:1 to 1:2) [124]. There is a significant pause between inspiration and 

expiration phases [124]. The reason is that there is no alveolar phase [124]. 

The acoustic transmission qualities of the respiratory system in health and 

disease are complicated [132]. Bronchial sound is typical for many 

diseases (for example: Atelectasis) [128]. 

b) Absent or decreased sounds [98]: Absent or decreased sounds can mean 

[124,134]; 

 Air or fluid in or around the lungs (such as pneumonia, heart failure, 

and pleural effusion) [124,134], 

 Increased thickness of the chest wall [124,134], 

 Over-inflation of a part of the lungs (emphysema can cause this) 

[124,134], 

 Reduced airflow to part of the lungs [124,134]. 

c) Aggravation of normal breath sounds: An increase in severity of the 

normal breath sounds is observed during exercise, fever, anemia, 

metabolic acidosis, or in the presence of one lung [98]. When a piece of 
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the lungs are harmed, other parts are working more; the next zone may 

create overstated vesicular breath sounds [124]. 

3- Adventitious Sounds: There are a few kinds of unusual breath sounds 

[98,130]. Adventitious sounds relate to additional respiratory sounds 

superimposed on normal breath sounds [27,92,135]. The availability of such 

sounds usually demonstrates pulmonary disorders [27,92]. Many diseases can 

be classified by these adventitious sounds. The challenge in detecting 

abnormal lung sounds is that they do not occur in isolation. Often, respiratory 

diseases will involve multiple types of these abnormal lung sounds. Breath 

sounds contain a generally extensive variety of frequencies, are devoid of 

peaks, and are not melodic [132]. Adventitious sounds have powerful energy 

peaks [132]. These sounds may be in the form of continuous melodic sounds 

with frequencies between 100 Hz and 1000 Hz and and discontinuous 

explosive non-melodic sounds [132]. The most common sounds are [132]: 

a) Rhonchus: Rhonchus is similar to wheeze, but dominant frequency is about 

200 Hz or less [128]. They happen when air is blocked or air flow 

becomes rough through the large airways [92,130]. Rhonchus is heard in 

airway diseases such as asthma and COPD [27,133]. 

b) Crackles (Rales): These adventitious sounds, which are usually seen in the 

inspiratory phase, are explosive and discontinuous [27,133]. The 

specificity of the waveform, their duration and location in the respiratory 

cycle is characteristic [27,92]. Crackles can be found in many diseases (for 

example; heart congestion failure, pneumonia, bronchiectasis, pulmonary 

fibrosis, chronic diffuse parenchymal lung disease) [92,124]. They are an 

early sign for respiratory diseases, since fine crackles are originated in 

small air paths [128]. A crackle can be defined as fine (short duration) or 

coarse (long duration) [27,92,135]: 

 Coarse crackles are of less intensity and of longer duration than fine 

crackles. 

 Fine crackles instead are present in higher frequencies. Pitch range is 

from 10 to 2,000 Hz and duration < 20 ms. 
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c) Wheeze: This sound presents a musical character [27,133]. Acoustically, 

it is characterized by periodic waveforms with a dominant frequency 

usually over 100 Hz and with duration of ≥100 ms; hence, the sound must 

include at least 10 successive vibrations [92]. It is heard at expiration 

[128]. If the wheeze contains essentially a single frequency, the wheeze is 

called monophonic. If it contains several frequencies, it is termed a 

polyphonic wheeze. Wheezing and other abnormal sounds can sometimes 

be heard without a stethoscope [92]. Wheezes are usually associated with 

airways obstruction due to various causes. Wheeze can be found at many 

diseases (for example; congestive heart failure, asthma, pneumonia, 

chronic bronchities, emphysema, brochiectasis) [128]. 

d) Squeak: It is a short wheeze. It can be continuous or discontinuous [133]. 

With relatively short inspiratory adventitious sound having a musical 

characteristic, occasionally found in patients with interstitial lung 

disorders [92]. Acoustically, its waveform may resemble that of short 

wheezes, but they are often preceded by a crackle [92]. The duration of 

squeaks may vary between 50 and 400 ms [92]. The basic mechanisms of 

their origin probably differ from those of wheezes in obstructive lung 

diseases [92]. Squeak can be found for example in pneumonia [128]. 

e) Stridor: It is loud wheeze and high pitched [133]. It is a very low-

frequency wheeze originating in the larynx or trachea. It appears most 

frequently during inspiration. It can be audible at the mouth, at the trachea 

and over the chest wall [92]. Usually stridor can be found for example in 

upper airway obstruction [128], in whooping cough, and in laryngeal or 

tracheal stenosis [92]. 

f) Cough sound: Transient sound induced by the cough reflex with 

frequency content between 50 and 3,000 Hz. The characteristics of cough 

sounds are different in several pulmonary diseases [92]. Cough sounds 

containing wheezes are typical in asthma [92]. 

g) Snoring sound: it is a respiratory low-frequency noisy sound with 

periodic components (fundamental frequency 30–250 Hz) detected 

usually during sleep induced by abnormal vibrations in the walls of the 
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oropharynx [92]. It is typical inspiratory sound but a small expiratory 

component can appear especially in patients with obstructive sleep apnea 

[92]. 

4- Speech Voices: They are produced by the larynx [124]. There are three types 

of transmitted voice sounds: bronchophony, whispered pectoriloquy, 

egophony [124]. 

5- Pleural friction rub: If there is infection between two membranes that 

surround the lungs and chest wall, a sound similar to leather rubbing can be 

heard. Crackling sounds can be heard while the patient is inhaling and 

exhaling. If the patient holds his or her breath pleural rub becomes inaudible 

[92,124]. 

Lung sound signal has an assortment of superimposed segments [24,26]. Distinctive 

creations have their own specific time cycles [24,26]. In the meantime, normal and 

abnormal lung sounds demonstrate suitable changes in frequency range, time-domain 

waveform, the signal cycle, and the delay time [24,26]. The quantity of numerous 

sound sources and the time delay contain rich case data, and mirror the physical 

attributes of lung diseases [24,26]. 

2.4 Lung Tests 

Lung tests [98]: 

• Pulmonary function tests (PFTs): A series of tests to evaluate how well the 

lungs work. Lung capacity, the ability to exhale forcefully, and the ability to 

transfer air between the lungs and blood are usually tested [117]. Pulmonary 

function tests are very useful tests to diagnose several lung diseases [117]. 

The simplest but one of the most informative tests of lung function is a forced 

expiration [117]. Forced expiratory volume (FEV) is the volume of gas 

exhaled in one second by a forced expiration following a full inspiration 

(FEV1) [117,136]. The total volume of the gas exhaled after a full inspiration 

represents the vital capacity [117]. However, this value could be slightly 

smaller than the vital capacity measured with slow (normal speed) expiration 
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[117]. Therefore, this value is called forced vital capacity (FVC) [117]. The 

normal ratio of the FEV1 is 80 % of FVC [117]. 

• Spirometry: Part of PFTs measures how fast and how much air you can breathe 

out [98].  

• Chest X-ray: An X-ray is the most common first test for lung problems [98]. It 

can identify air or fluid in the chest, fluid in the lung, pneumonia, masses, 

foreign bodies, and other problems [98].  

• Computed tomography (CT scan): A CT scan utilizes X-rays and a computer to 

make detailed pictures of the lungs and nearby structures [98].  

• Sputum culture: Culturing mucus coughed up from the lungs can sometimes 

identify the organism responsible for a pneumonia or bronchitis [98].  

• Sputum cytology: Viewing sputum under a microscope for abnormal cells can 

help diagnose lung cancer and other conditions [98].  

• Lung biopsy: A small piece of tissue is taken from the lungs, either through 

bronchoscopy or surgery [98]. Examining the biopsied tissue under a 

microscope can help diagnose lung conditions [99].  

• Flexible bronchoscopy: An endoscope (flexible tube with a lighted camera on 

its end) is passed through the nose or mouth into the airways (bronchi) [98]. 

A physician can take biopsies or samples for culture during bronchoscopy 

[98].  

• Rigid bronchoscopy: A rigid metal tube is introduced through the mouth into 

the lungs' airways [98]. Rigid bronchoscopy is often more effective than 

flexible bronchoscopy, but it requires general (total) anesthesia [98].  

• Magnetic resonance imaging (MRI scan): An MRI scanner uses radio waves in 

a magnetic field to create high-resolution images of structures inside the chest 

[98]. 
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CHAPTER 3 

STETHOSCOPE 

3.1 The History of the Stethoscope 

Medical history and a detailed physical examination, including the sequence of 

inspection, palpation, percussion, and auscultation ought to be viewed as a 

fundamental piece of clinical examination [124]. The act of analyzing the body 

sounds produced by the mechanical vibrations of the organs is called auscultation 

[137,138]. The auscultation is one of the cheapest, noninvasive, safe, and easily 

applicable diagnostic methods for the diagnosis of pulmonary diseases [119,124]. 

Auscultation may be performed directly with the unaided ear, but most commonly a 

stethoscope is used to determine the frequency, intensity, duration, and quality of the 

sounds [119]. 

The stethoscope may be the one instrument common to all physicians [139]. The 

word stethoscope originates from the Greek words stethos, which means chest, and 

skopein, which means to explore [139,140]. Today, the stethoscope is a nearly 

universal symbol of medicine and health care [141]. The stethoscope is a safe, 

helpful, noninvasive, cheap device [141]. Sound abnormities demonstrate certain 

pathological conditions of airways or lungs [141]. Hearing of respiratory sounds at 

high frequency and intensity abnormally on the chest wall may show the presence of 

disorders [141]. 

In the early 19th century, auscultating to the chest sounds and heartbeat by pressing 

the ear to the chest wall was the ancient practice of direct or immediate auscultation 

[125,139]. Immediate auscultation was known to Hippocrates and practiced in 

ancient Greece, but was hardly an ideal way to examine patients because some 

patients did not bath, others were infested with vermin and modesty was an issue, 

especially with female patients [139]. 
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3.1.1 Monaural Stethoscope 

Rene Theophile Hyacinthe Laennec was a French physician who, in 1816, invented 

the stethoscope [139,142]. He rolled a piece of paper tightly [143]. He could clearly 

hear the heartbeat by placing one end of this roll on patient's chest and the other end 

on his ear [139]. Laennec discovered that heart sounds could be heard more clearly 

and loudly using mediate auscultation rather than immediate auscultation [139]. 

Laennec spent the next 3 years testing various types of materials to make tubes, 

perfecting his design and auscultating to the chest findings of patients with 

pneumonia [139]. He decided upon a hollow tube of wood, 3.5 cm in diameter and 

25 cm long, which was the forerunner of the modern stethoscope [139] (Figure 3.1). 

 

Figure 3.1 Laennec’s stethoscope: (1) instrument assembled, (2) and (3) two portions of the 

instrument in longitudinal section, (4) detachable chest piece, (5) ear piece unscrewed, (6) transverse 

section [139] 

Laennec’s wooden tube was the first true stethoscope [139]. Wooden stethoscopes 

were used till the second half of the 19th century [143,144]. Then rubber tubing was 
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developed and used [143,144]. Flexible monaural stethoscopes were introduced 

around 1832 [143]. These were tubes of coiled spring covered with woven silk, 

usually 14 to 18 inches long, with a chest piece at one end and usually a very short, 

straight earpiece at the other [143] (Figure 3.2). Flexible stethoscopes are often 

confused withconversation tubes, which looked the same, but were much longer than 

stethoscopes [139]. 

 

 

Figure 3.2 Flexible monaural stethoscopes [143] 

3.1.2 Binaural Stethoscope 

George Philip Cammann (1852) produced the first recognized usable binaural 

stethoscope. Cammann's model was made with ivory earpieces connected to metal 

tubes of German silver that were held together by a simple hinge joint, and tension 

was applied by way of an elastic band [145]. Attached to these were two tubes 

covered by wound silk [145]. These converged into a hollow ball designed to 

amplify the sound, and attached to the ball was a conical shaped, bell chest piece 

(Figure 3.3) [142,145]. 

 

http://www.antiquemed.com/monoauralstethimg/piorry_flexible_together-1.jpg
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Figure 3.3 Cammann stethoscope [145] 

The design of stethoscopes changed little over the next 40 years or so, apart from the 

development of a differential stethoscope having two separate chest pieces, with 

tubing connected to each ear [125]. In the 1940’s, Dr. Sprague, working with 

Maurice Rappaport, scientifically investigated the physical principles of stethoscopy, 

upon which much current knowledge is founded [125]. In 1961, David Littmann 

designed a streamlined, lightweight stethoscope, with a single tube binaural, which 

was available in both stainless steel and light alloy [125]. 

 

Figure 3.4 Littmann Stethoscope [146] 

Since the introduction of the stethoscope in 1816, several modifications (Table 3.1) 

have been introduced, such as the binaural, the diaphragm, and the combined bell 

and diaphragm [139,147]. Further developments include teaching, electronic and 

differential (2 chest pieces) stethoscopes [139,147]. Present day stethoscopes have 
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been created with changes to weight and appearance however utilizing similar 

standards described by Rappaport, Sprague and Groom [125]. 

Table 3.1 The evolution of the stethoscope 

THE EVOLUTION OF THE STETHOSCOPE 

….-1816  The only method of auscultating to heart sounds was simply to 

press an ear to the patient’s chest 

Monaural Stethoscopes 

1816 Laennec Roll paper, then a wooden tube (Figure 3.1) [139] 

1821 McGrigor The chest plug made entirely of wood and the ear plate made of 

horn [143] 

1828 Piorry A bell in funnel form, lighter handle, and very thin earpiece [148] 

1832  Flexible monaural stethoscopes (Figure 3.2) [143] 

1839 Hope Made of cherry wood and ivory [149] 

1843  Williams The first binaural stethoscope with earpieces made of lead pipe 

[150] 

Binaural Stethoscopes 

1851  Marsh The membrane of the chest piece of the stethoscope had a flexible 

structure [151] 

1852  Cammann Flexible tubing (Figure 3.3) [125]  

1894  Bianchi First rigid diaphragm [152] 

1925  Bowles and 

Sprague 

Bell and rigid diaphragm combined. 

1945–

1946 

Rappaport, 

Sprague and 

Groom 

Work for the ideal properties of the stethoscope. [125] 

1956-.... Various (for 

example, Leatham, 

etc) 

The weight and appearance of the stethoscope has been improved 

[125]  

1961 Littmann Streamlined, lightweight stethoscope, with a single tube binaural, 

which was available in both stainless steel and light alloy (Figure 

3.4) [146] 

Electronic Stethoscopes 

1961 Amplivox Microphone and amplifier technology did not match the 

physicians’ needs. 

1991 Clive Smith  Thinklabs Digital Stethoscope (Figure 3.5) [153]  

1999 Littmann 3M Littmann Electronic Stethoscope: Noise dampening method 

in the environment, amplified friction noise reduction features, 

Bluetooth technology  (Figure 3.6) [154] 

 

3.1.3 Electronic Stethoscope 

In 1961 an electronic stethoscope was developed by a company named Amplivox, 

taking advantage of the smaller vacuum tube technology then available [155]. This 

was intended purely as a teaching device, given its considerable weight and size 

[155]. Again, microphone and amplifier technology, did not match the physicians’ 
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needs, and this proved to be a rudimentary device soon abandoned in favor of 

traditional stethoscopes [155]. 

Thinklabs Digital Stethoscope was founded in 1991 by Clive Smith [153] (Figure 

3.5). In the mid 90's, stethoscope acoustics had essentially not improved since 

Laennec built the first stethoscope in 1816 [153]. Physicians confirmed that even 

top-of-the-line traditional stethoscopes did a poor job of amplifying heart and lung 

sounds [153]. Thus began Smith's obsession to re-invent the stethoscope [153]. All 

the benefits of advanced electronic techonology would then accrue and the authentic 

sound of the stethoscope would be preserved. Physicians would not require any ear 

retraining [153]. A completely new transducer was needed [153]. 

 

Figure 3.5 Thinklabs Digital Stethoscope [153] 

Littmann Electronic Stethoscope (Figure 3.6) (1999) combines Ambient Noise 

Reduction method and amplified friction noise reduction features [154,156]. The 3M 

Littmann Electronic models are specially designed to detect hard to hear heart and 

lung sounds [154]. 

 

Figure 3.6 3M Littmann Electronic Stethoscope [154] 
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3.2 Properties of Stethoscopes  

A stethoscope is composed of 3 parts (Figure 3.7): 

1) Headset 

Eartips 

Eartube 

2) Tubing 

3) Chestpiece 

Bell 

Stem 

Diaphragm 

 

Figure 3.7 Parts of stethoscope 

The most important parts to know are the diaphragm, which is larger, flatter side of 

the chest piece, and the bell, which has the smaller, concave piece with a hole in it 

[139,157]. The diaphragm is a sealed membrane that vibrates, much like your own 

eardrum [157].  When it does, it moves the column of air inside the stethoscope tube 

up and down, which in turn moves air in and out of your ear canal, and voila, you 

hear sound [157].  Since the surface area of the diaphragm is much greater than that 

of the column of air that it moves in the tube, the air in the tube must travel more 

than the diaphragm, causing a magnification of the pressure waves that leave the ear 

tip [157].  In your ear, larger pressure waves make louder sounds [125]. This is how 

stethoscopes amplify sounds [125]. 

http://i2.wp.com/www.mypatraining.com/wp-content/uploads/2010/12/scope_anatomy1.gif
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The stethoscope bell may be utilized to distinguish respiratory sounds [125]. The 

diaphragm may also be utilized to define and easily situate both normal and 

abnormal respiratory sounds. [125].  

The bell of a stethoscope is best used for auscultating to low-pitched sounds [141]. 

However, if the underlying skin is pressed too hard, the advantage of bell will be lost 

because the skin will become stretched too much [141]. The utilization of the 

stethoscope diaphragm for pulmonary auscultation is ideal because it enhances high 

frequency conduction [135]. The auscultation should be done over the bare skin, not 

over clothes, as there may be rubbing noises [141]. 

Laennec later published the first seminal work on the use of auscultating to body 

sounds, De L’auscultation Mediate [139]. Laennec is viewed as the father of clinical 

auscultation and composed the first depictions of bronchiectasis and cirrhosis and 

furthermore classified respiratory conditions from the sounds he heard with his 

innovation [139]. Laennec perfected the art of physical examination of the chest and 

introduced many clinical terms still used today [139]. 

Assessing lung sounds: You need to start above the clavicle, since lung tissue 

extends that high [141]. Always auscultate to left and right sides at the same level 

before moving down to the next level this way you get a side-by-side comparison, 

and any differences will be more apparent [141]. 

3.3 Acoustics of the Stethoscope 

Using the stethoscope has some disadvantages: It is a subjective method which 

depends on physician’s experience, ability, and auditory perception [50,158]. It lacks 

a method of recording, has insufficient sensitivity and offers no quantitative 

description [50]. Moreover, the stethoscope decreases frequency components of 

respiratory sound signal above 120 Hz [36, 50]. However, the human ear is not much 

delicate to the lower frequency band [36,48,50]. Abella et al. compared six different 

stethoscopes. They found that the sounds between 37.5-112.5 Hz were generally 

amplified by the stethoscope bells by about 5-10 dB and decreased by the 

stethoscope diaphragms [132]. All in all bells consistently outperformed diaphragms 



46 

 

 
 

by expanding the amplitude of sounds, creating amplification of up to dB in the 

range 37.5– 112.5 Hz, however the conclusion is that stethoscope diaphragms were 

reliably better at decreasing the amplitude, specifically the amplitude of the lower 

frequencies [14,132].  

Despite the high cost of many modern stethoscopes, these instruments remain simply 

conduits for sound conduction between the body surface and the ears [16]. They are 

less than ideal acoustic instruments because they do not supply a frequency-

independent, uncolored transmission of sounds [16,159]. Amplification tends to 

occur below 112 Hz and attenuation at higher frequencies [16]. This feature is 

inherent in the design of the stethoscope that often places convenience and clinical 

utility ahead of acoustic fidelity [16]. Amplification at low frequencies is appreciated 

by cardiologists since heart sounds are in this frequency range, which is poorly 

perceived by the human ear [16]. Auscultation of the lung, however, could benefit 

from a more faithful representation of sounds than present stethoscopes provide [16]. 

There are many factors that affect the auscultation [16]. There is relatively little 

bilateral asymmetry of sound amplitude and that asymmetry indicates disease [16]. 

Sounds on the chest surface are primarily filtered versions of those detected over the 

trachea or neck [16]. Considerably more information of clinical utility can be 

gathered from respiratory sounds [16]. 

The sound perception of the human ear is complex [132]. We can concentrate on 

specific frequencies [132]. Concurrent higher frequencies and harmonics perceived 

at the ear give distinctive characters of sounds [132]. High frequency components of 

a complex sound are generally masked by low frequency components [132]. This 

masking is progressive and occurs when the amplitude is rising [132]. Depending on 

the age, progressive hearing loss is called Presbycusis [132]. But this situation may 

not be the disadvantage of the elderly physicians as it usually affects frequencies 

above 3,000 Hz, well above the frequency of sound that must be heard by a 

stethoscope [132].   

Limits of human audition: Works were undertaken to measure the ability of the 

human ear to determine the crackles of the oscultation signal [27,92]. For this 

purpose, techniques involving simulated cracks overlapping with real breath sounds 
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were used [27,92]. The most important detection errors were shown to be caused by 

the following factors [27,92,164]: 

 Intensity of the respiratory signal: deep breaths mask more crackles than 

superficial breaths [126,160], 

 Type of crackles: fine crackles are easily recognizable in so far as their 

waveform differs more from the waveform of classical lung sounds 

[192,160], 

 Amplitude of crackles  

The sound repertoire of the lung may indeed be limited when heard through a 

stethoscope, but it clearly exhibits a much wider range of information content when 

digitally analyzed [57]. Computer analysis is now reaching beyond the capabilities of 

the human ear to resolve changes in respiratory sounds [57] (Table 3.2). 

Table 3.2 Advantages and limitations of auscultation by stethoscope [141] 

Advantages and limitations of auscultation by stethoscope 

Advantages Limitations 

Effective Information obtained is subjective 

Non invasive Information is dependant on the expertise of the examiner 

Inexpensive Auditory capability is also a factor 

 There is not a permanent objective record 

 Non continuous 

Oscultation is often performed in an environment where noise can not be avoided. 

[161]. Limitations of acoustic auscultation are weak signal transmission due to  

noise, resonance, and further weakening of high frequency sounds [161]. These 

limitations are the most critical factors to take notice in pulmonary auscultation, as 

respiratory sounds are usually in the higher frequency spectrum, which ranges from 

50 Hz to 2,500 Hz [161]. Conversely, electronic auscultation has the benefit of signal 

amplification and ambient noise lessening [161]. This results in an increase in the 

signal-to-noise ratio regardless of the sensitivity of the ear to various acoustic 

frequencies [161]. 
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Auscultation technique: 

1. It is important that the auscultation is done in a place without noise. 

Auscultation ought to be performed in a quiet place. Patients should 

preferentially be in a sitting position. When patients are in a lying position, 

turn them on the other side to examine their back [124]. 

2. Auscultation should never be done through the clothing [124, 141]. 

3. Patients are asked to breathe deeply while their mouths are open [124]. 

4. Since lung tissue is high, it is necessary to start over the clavicle [124]. 

5. Always auscultate to left and right sides at the same level before moving 

down to the next level [141]. 

3.4 Capture Techniques for Electronic Stethoscopes 

The use of the stethoscope is strictly based on the physician's experience. [162]. For 

this reason it is considered to be subjective [162]. Recently, it has led to studies that 

can do lung sounds on a more objective basis [162]. The assessment of pulmonary 

sounds, because of their short duration, are hard to recognize [162]. Because the 

human ear can not recognize events that occur in the milliseconds [162].  

There are problems that limit the wider use of lung sounds. One of the problems is 

the technical hardship of catching sound from the surface of the body [4, 58]. None 

of the sensors are thought to be ideal [4]. It is only in recent years that the responses 

of microphones when attached to the chest in various ways have been extensively 

analysed [4]. 

It is an important point to capture of the sound before the analysis phase [27,92]. The 

chest behaves as a reduction and low-pass filter. For this reason, placing the 

microphone is important [27,92]. Kraman et al. studied the effects of different 

microphones [163]. They deduce that the optimal electret microphone coupler 

chamber for lung sound obtaining ought to be conical shaped, between 10 and 15 

mm in diameter [163]. 
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Different techniques and devices have been defined to capture sound [27,92]: 

 Utilizing a unique microphone: This method is widely utilized [27,164]. 

Electret microphone is often used as a sensor [27]. The sampling frequency 

utilized is the same as the one utilized for telephony codecs (8 kHz) [27], an 

analogue/digital conversion with a 16 bits resolution [164]. Others use an 

accelerometer whose performance is less than an electret microphone, but 

less sensitive to background noise [27,92]. 

 Use of a few microphones and three dimensional representations [27,92]: 

This technique is a dynamic method that allows structural and functional 

features for the diagnosis, making it possible to determine the origin of the 

sounds [27,92]. 

 Emission of a sound and analysis of its propagation [27,92]; This method 

processed the signal propagation characteristics through the respiratory tract 

and chest using a loudspeaker inserted into the mouth of the patient [27,92]. 

The analysed parameters are energy ratios, signal time delays, and dominant 

frequency [92]. 

 Measurement in closed loop controlled ventilation [27,92]. 

In our study, we focused on the utilization of a unique microphone [8]. 

3.5 Factors Affecting the Sound Acquisition Using Electronic 

Stethoscopes 

The acoustical properties of stethoscopes used today vary widely [165,166]. At each 

stethoscope, resonances/antiresonances are seen [165,166]. This is due to differences 

in the choice of sensor and mechanical design [165,166]. When the stethoscopes are 

tested, no flat frequency response is seen [165,166]. This response is more suitable 

for calculating the acoustic signal [165,166]. None of them has an impedance that 

closely matches the skin structure [165,166]. There is no standard used to measure 

and compare the acoustic properties of electronic stethoscopes [165,166] 

Traditionally, a stethoscope is used to acquire audio data from lungs. However, 

traditional stethoscopes have no ability to record audio into a device because they are 
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designed to relay analog audio data to human ear. To record audio an electronic 

stethoscope must be used. 

An electronic stethoscope consists of a traditional stethoscope chest piece connected 

to a condenser microphone with an elastic tube, which the microphone is connected 

to either directly into a device or an electronic circuit that filters and amplifies the 

audio data and then connects to the device so it can be stored to any device that has 

recording capabilities. 

However to use recorded data, audio must be of high quality. We observed that the 

sound quality recorded during our research depends on various causes: 

1) Environmental noise 

The environment of the recording is very important. It directly affects the 

recording quality by adding substantial noise to the recording. Environmental 

noise can be everything in the recording room such as computer fans or 

people speaking or sounds that come from outside such as vehicle engines or 

alarms. 

2) Frictional noise 

The noise that is caused by human skin rubbing to the diaphragm or the 

handle of the stethoscope is called friction noise. Frictional noise also occurs 

when the tube that connects the chest piece to the microphone rubs to human 

skin. The reason for this is all materials, regardless of how smooth they are, 

generate this frictional noise when placed on human skin. The user of the 

electronic stethoscope may also cause this noise while holding the chest 

piece. 

3) Electronic noise 

Electronic noise is caused by the electronic components that are connected to 

the microphone. Especially if the electronic stethoscope is using a high 

powered internal power source or connected directly to electricity, this noise 
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can decrease the quality of the recording. Also, microphones by default also 

include electronic noise from their internal circuits while recording. 

4) The material of the connector tube 

The sound generated by the diaphragm travels through a tube to reach the 

microphone. Material selection when it comes to building this tube is very 

important because; it affects how much environmental and friction noise is 

relayed into the tube and it affects the amount of audio data lost while sound 

travels in this tube. 

5) Quality of the microphone 

Microphones have various properties which directly affects quality while 

especially recording body sounds.  

First of all, the frequency range of the microphone determines what minimum 

and maximum frequencies can be recorded. Since body sounds are usually in 

low frequencies, if a microphone with a higher range is used while recording, 

not all audio frequencies can be stored leading to data loss. 

Secondly, there are two main types of microphones; omnidirectional and 

directional. Omnidirectional microphones capture audio from all directions 

equally. However directional microphones capture audio usually from one 

direction best, and dampen the other directions. In electronic stethoscopes, 

omnidirectional microphones lead to poor quality recordings because they 

capture more environmental and frictional noise than directional 

microphones. So, usually directional microphones are used in electronic 

stethoscopes. 

6) Quality of the recording device 

Recording device can be anything from a computer, mobile device or 

specialized recording equipment. One thing they have in common is the 

audio card or audio circuits that the electronic stethoscope is connected.  
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Various devices have a wide range of audio cards that are installed on them. 

They have different properties, hence a huge number of different recording 

qualities when used with an electronic stethoscope. If we compare devices 

with default audio hardware; recording quality on default on-board audio 

cards on desktop computers are usually the best, closely followed by laptop 

computers. Mobile devices however, are not built to handle such low 

frequency audio data and perform worse than computers. 

The best option for audio recording is to use an external audio card that are 

used to record music professionally. These devices are more expensive than 

the on-board audio cards, however they can be connected to most of the 

devices and can be used to record directly into the device. This also insures 

the level of recording quality stay the same on every device. 
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CHAPTER 4 

CURRENT ANALYSIS METHODS OF RESPIRATORY 

SOUNDS 

Respiratory sound analysis methods can be grouped into three groups. The three 

groups are briefly described below [167]. 

4.1 Statistical Methods 

The first category is the use of statistical analysis methods to classify the respiratory 

sounds. Statistical analysis is used to process data sets to determine how usual an 

event occurs based on its historical data [168].  

The methods used in this category are; higher order crossing discrimination analysis, 

analysis of variance (ANOVA), Fisher discriminant analysis, lacunarity‑based 

analysis, and linear discriminant analysis [169]. 

4.2 Visualization Analysis 

The second category is to use visualizations of respiratory sounds and find the 

similarities or differences between them to classify and diagnose sound abnormalities 

[92]. These abnormalities are identified by the intensity of the signal visualizations 

[92]. This analysis results from the experience of the physician who is conducting the 

analysis [41]. Therefore, it requires the physicians to be well trained in their field 

[92]. However, this method suffers from the human error as the analysis and the end 

diagnosis is decided by a physician. 

The circled area in Figure 4.1 shows the intensity changes which indicate the 

abnormalities in the respiratory system [169]. 
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Figure 4.1 Example of spectrogram [169] 

 Spectrogram is the representation of how frequency changes over time. The 

colors represent the intensity of the signal (Figure 4.2) [92]. 

 
 

Figure 4.2 Spectrogram of a wheeze [92] 
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 Waveform represents how the amplitude of the signal changes over time. 

Below is a respiratory sound that was taken from a sick person (Figure 4.3) 

[92]. 

 

 

Figure 4.3 Example of waveform [92] 

 Phonopneumogram is the overlapped plot of the waveforms of the respiratory 

sound and the airflow sound when a person is breathing (Figure 4.4) [92]. 

 

 

Figure 4.4 Example of phonopneumogram [92] 
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4.3 Computerised Audio Recognition Methods  

The third category is the use of computers to analyze various properties of the sound 

to reach a conclusion. 

Expert systems are the most commonly used way to analyse data and produce 

conclusions based on the input, knowledge-base of the system and the rules that help 

it reach a conclusion. Their knowledge-base is generated by an expert in the specific 

field that the system is used. Expert systems are usually very narrow in scope 

because they are programmed to perform a very specific analysis with a very specific 

knowledge-base and rule set [79]. 

The newest addition to the computerized analysis systems is machine learning 

systems. The most significant feature of machine learning systems is their capability 

to learn and produce a generalized conclusion. They are being used in almost every 

field in the past decade and their use have improved those fields a lot [170]. Machine 

learning techniques such as artificial neural network (ANN), Gaussian mixture model 

(GMM), hidden Markov model (HMM), k-nearest neighbor (k-NN), and fuzzy 

analysis were extensively used in computer based respiratory sound analysis by 

previous researchers [169,171,172].  

Each respiratory sound has different properties and technology has made it simple 

now to improve the classification of lung disorders. The lung disorders have their 

corresponding respiratory sounds and corresponding dominant frequency range, 

using which the disorder can be identified employing signal processing techniques. 

Machine learning can be used further to classify the lung disorders more accurately.  

The main advantage of computer‑based respiratory sound analysis is that it is 

non‑invasive and since extensive manual analysis by experts is not needed, less 

expensive, compared to other methods [169]. 

Before analyzing signals with a computerized audio recognition method, first, analog 

audio is converted into digital, and then using signal processing feature extraction is 

performed. Finally, these features are used in training the classifiers. 
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CHAPTER 5 

FEATURE EXTRACTION METHODS 

Feature extaction is the process to identify distinguishing properties of a signal, 

therefore it has a major role in classifying audio signals. The audio features are 

selected as follows [21,173,174]: 

 Time domain 

 Frequency domain 

 Time-frequency domain 

It is possible to consider frequently utilized feature extraction methods in classifying 

audio as follows [21, 175]: 

 Autoregressive (AR) model 

 Mel-frequency cepstral coefficients (MFCC) 

 Energy 

 Entropy 

 Spectral features 

 Wavelet 

In the following subsections, all the feature extraction methods available in the field, 

are listed and explained in detail [176]. 

5.1 Raw Signal Data 

Raw signal data means that the original signal is used without altered or processed by 

any means. When working with raw signal, the amplitude change over time data 

(which is the waveform plot) is extracted and used in analysis [177]. 

Advantages: 

 Data is not modified in any way. 

 Data loss is minimal. 
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Disadvantages: 

 Raw signal data only provides the change of amplitude over time. 

5.2 Autoregressive Models 

Autoregressive model is a random process that describes a time-varying process. Its 

output variable is linearly dependent on its previous values, which makes it a 

stochastic difference equation [30]. 

5.3 Fourier Transform (FT) 

The FT decomposes a signal into the frequencies that it contains therefore it 

generates the frequency domain model of the input signal [174]. The result contains 

the synthesis of contributions of various frequencies in the signal. We can also use 

the result to get the original signal back. This process is called inverse Fourier 

transform [178]. 

There are 2 different types of Fourier transform. These are: 

5.3.1 Fast Fourier Transform (FFT) 

FFT is a computer algorithm for rapidly calculating the frequency spectrum of a 

signal. A FFT algorithm calculates the discrete Fourier transform (DFT) of a 

sequence, or its inverse [179,180]. 

5.3.2 Short Time Fourier Transform (STFT) 

STFT is a Fourier-related transform. STFT has been used to detect the sinusoidal 

frequency and phase content of a local part of a signal as the time changes [180-182]. 

5.4 Spectral Analysis 

Spectral analysis is utilized to find the distribution of power over frequency (spectral 

content) of a time series from a finite set of measurements [32]. There are two 

methods to spectral analysis [183,184]. In the first method, the applied signal is 

performed to a bandpass filter with a narrow bandwidth so that the spectral content at 
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the inlet of the filter is swept along the frequency band [183,184]. The second 

method is to propose a model for the data [183,184]. This allows parameterization of 

the spectrum [183,184]. Thus, the problem of spectral estimation is reduced to 

estimate the parameters of the assumed model [183,184]. 

5.5 Finite Impulse Response (FIR) Filtering 

An FIR filter takes an input signal x[n], modifies it by the application of a 

mathematical rule, and produces an output signal y[n] [118]. This rule is a difference 

equation, and it tells us how to compute each sample of the output signal y[n] as a 

weighted sum of samples of the input signal x[n] [118].  

5.6 Mel Frequency Cepstral Coefficients (MFCC) Features 

Frequently used feature extraction method in automatic speech recognition (ASR) is 

MFCC [185,186]. MFCC mimics the logarithmic perception of loudness and pitch of 

human auditory system [190,191]. In audio processing, the MFC is a demonstration 

of the short-term power spectrum of a sound [185,186]. The MFC is based on a 

linear cosine transform of a log power spectrum on a nonlinear mel scale of 

frequency [185,186]. MFCCs are coefficients [185,186]. They jointly create an MFC 

[185,186]. They are obtained from a type of cepstral representation of the audio clip 

[34,185,186]. The fact that the frequency bands are equally spaced in the MFC is the 

most important difference between the cepstrum and the mel-frequency cepstrum 

[186]. This approximately indicates that the response of the human auditory system 

is more intimately than the linearly-spaced frequency bands utilized in the normal 

cepstrum [34,185,187].    

Advantages: 

 Provides better representation of compressed audio. 

5.7 Linear Predictive Coding (LPC) Features 

LPC is a method for signal source modelling in speech signal processing [188-190]. 

It has wide an application area. LPC analysis is usually most appropriate for 
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modeling vowels which are periodic, except nasalized vowels. LPC is attributed on 

the source-filter model of speech signal [188-190]. 

Advantages: 

 It is useful for encoding speech at a low bit rate [189,190]. 

 It makes extremely correct prediction of speech parameters [189,190]. 

5.8 Wavelet Packet Decomposition (WPD) 

WPD is a wavelet transform. The discrete-time signal is passed through more filters 

than the discrete wavelet transform [192,193]. It incorporates numerous bases. 

Different basis will cause in different classification performance. It covers the 

shortage of fixed time–frequency decomposition in the discrete wavelet transform 

[192,194,195]. 

5.9 Subband Based Cepstral (SBC) 

SBC coefficients were derived with the application of discrete cosine transformation 

on the subband energies [196]. 

5.10 Periodogram 

In signal processing, a periodogram is a prediction of the spectral density of a signal. 

Periodograms are used to identify the dominant periods of a time series [197]. The 

periodogram is a component of more sophisticated methods [197]. It is the most 

common tool for examining the amplitude vs frequency characteristics of FIR filters 

and window functions [187]. 

5.11 Welch Method 

Welch's method is asymptotically a method to spectral density prediction [198]. The 

method is an improvement on Bartlett's method [198]. The method depends on the 

idea of utilizing the periodogram spectrum estimates that are generated as a result of 

converting a signal from time domain to the frequency domain [198]. It lessens noise 
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in the estimated power spectrum in return for diminishing the frequency resolution 

[198,199]. 

Advantages: 

 Provides noise reduction [198]. 

5.12 Yule-Walker Methods 

Yule-Walker Method (or autocorrelation method) block estimates the power spectral 

density of the input [200,201]. To accomplish this, the Yule-Walker autoregressive 

(AR) method is used [200,201]. This method applies window to data [200,202]. It 

minimizes the forward prediction error in the least squares sense [200,202].  

5.13 Burg Methods 

Burg Method block estimates the power spectral density of the input frame 

[203,204]. To accomplish this, the Burg method is used [203,204]. This method 

complies with an autoregressive (AR) model to the signal [202,203,205]. It does not 

perform window to data [203,204]. It diminishes the forward and backward 

prediction errors in the least squares sense, with the AR coefficients restricted to 

compensate the Levinson-Durbin recursion [202,203,205]. Burg method abstains 

calculating the autocorrelation function, and instead directly guesses the reflection 

coefficients [203,204]. 

5.14 Gaussian Mixture Model (GMM) 

A GMM is a probabilistic model [206,207]. It assumes all the data points are 

produced from a mixture of a finite number of Gaussian distributions with unknown 

parameters [206,207]. Mixture models can be defined as generalizing k-means 

clustering toinclude information about the covariance structure of the data as well as 

the centers of the latent Gaussians [206,208]. They are used intensively for density 

estimation [206,207]. 

 



62 

 

 
 

5.15 Wavelet Transform (WT) 

WT is an appropriate technique for getting the time-frequency distribution of signals 

[36,209]. WTs are based on small wavelets with limited duration [210]. It is in fact 

an infinite set of various transforms [210]. 

The basic idea behind WTs is that the transformation should only let changes in time 

extension; however it should not shape it [210,211]. It selects the appropriate basic 

functions that allow it and is influenced by it [210,211]. WT computes the inner 

products of a signal with a family of wavelets [210]. 

The mathematical function utilized to divide a given function or continuous-time 

signal into parts of different scales is called wavelet [210,212]. Generally, a 

frequency range can be assigned to each scale part [210,212]. Then each scale part 

can be studied [210,212]. A wavelet transform is the presentation of a function by 

wavelets [210,212].The wavelets are scaled and translated copies of a finite-length or 

fast-decaying oscillating waveform [210,212]. 

Advantages: 

 Provides good quality image compression [210]. 

The wavelet transform is categorized into continuous wavelet transform and discrete 

wavelet transforms 210,213]. 

a. Continuous wavelet transforms (CWTs): CWT is utilized to divide a 

continuous-time function into wavelets [214,215]. Compared to the Fourier 

transform, CWT has the capability to generate a time-frequency presentation 

of a signal providing very good time and frequency localization [215,216]. 

The CWT is a convolution of the input data sequence with a set of functions 

produced by the mother wavelet [216,217]. This convolution can be 

calculated by utilizing a fast Fourier transform algorithm [217,218]. 

Advantages: 

o Resistant to the noise in the signal [214]. 
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o Very efficient in determining the dampening ratio of an osscilating 

signal [214]. 

b. Discrete wavelet transforms (DWTs): DWT is an implementation of the 

wavelet transform that is a discrete sampling of wavelets [219,220]. Similarly 

as with other wavelet transforms, the most important advantage over Fourier 

transforms is temporal resolution: they capture both frequency and position 

information [219,220]. The DWT is not time-invariant yet extremely 

sensitive to the alignment of the signal in time [218,221]. The reason for this 

is the rate changing operators in the filter bank [218,221]. Mallat and Zhong 

suggested a new algorithm for wavelet representation of an unchanging signal 

in time shifts for each point in time [218,221]. 

5.16 RMS-SNR Envelope Calculation 

Noise of a signal is evaluated by the root-mean-squared (RMS) value of the 

fluctuations over time [222]. The signal-to-noise ratio (SNR) is denoted as the 

average over time of the peak signal divided by the RMS noise of the peak signal 

over the same time [222]. To get a precise outcome for the SNR it is generally 

required to measure over 25 -50 time samples of the spectrum [222]. 

5.17 Katz Fractal Dimension (KFD) Calculation 

KFD calculation is derived from the waveform and is a bit slow [223,224]. This 

computation eliminates the binary sequence creation phase [223,224]. 

5.18 Time Expanded Waveform Analysis 

Time-expanded wave-form analysis gives reproducible visual displays [25]. This 

allows different properties of sounds to be documented and increase diagnostic utility 

of sounds [25]. 

5.19 Spectrogram 

A visual representation of the sound or other signal frequency spectrum is called 

spectrogram [225,226]. Other nomenclatures for spectrograms are spectral waterfalls, 
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voiceprints, or voicegrams [225,226].  Frequently utilized areas of spectrograms are 

to detect spoken words, phonetically, and to analyze the various calls of animals 

[225,226]. 

5.20 Vibration Response Imaging (VRI) 

VRI records the intensity and distribution of respiratory sounds during the respiration 

cycle [227,228]. VRI, a novelty computer based technology takes the concept of the 

stethoscope to a more progressive level [227]. The technology is based on the 

physiologic vibration generated during the breathing process when flow of air 

distributing through the bronchial tree creates vibration of the bronchial tree walls 

and the lung parenchyma itself [227]. The VRI technology represents changes as a 

grey scale-based dynamic image [227]. The darker the higher the vibration intensity 

and the lighter the lower the vibration intensity is [227]. The foremost information 

that the VRI provides on vibration energy, is how lung sounds behave and function 

during inspiration and expiration [227].  

5.21 Linear System Analysis 

Linear system analysis is the study of equilibrium and change in dynamical systems, 

that contain variables which may change with time [229]. These variables include 

system inputs, outputs, as well as variables describing internal states of the system 

[229]. To perform the analysis, relationships between these variables are described 

by a set of equations known as the model [229]. For linear system analysis to be 

applicable, the model must possess the linearity property [229].  

5.22 Dynamic Time Warping (DTW) 

DTW is one of well-known algorithms for find an optimal alignment between two 

temporal sequences, which may vary in speed [230,231]. Initially, DTW has been 

utilized to analyze different speech patterns in automatic speech recognition 

[230,231]. 
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5.23 Segmentation 

Audio segmentation is the procedure of dividing a digital audio into multiple 

segments [232,233]. The goal of segmentation is to simplify and/or change the 

representation of audio into something that is more meaningful and easier to analyze 

[232,233]. 

5.24 Multi-scale Principal Component Analysis (MSPCA) 

Principal component analysis (PCA) is an essential tool in investigating data 

[234,235]. PCA prompts to a solution which supports the structures with large 

variances [234,235]. It looks for the subspaces that maximize the sum of squared 

pairwise distances between data projections [234,235]. PCA is a linear technique 

which transforms data to a new coordinate system using linear orthogonal 

transformation such that the new coordinates are ordered by variance [236,237]. The 

coordinate with highest variance is the first principal component; the second 

principal component is the coordinate with the second highest variance and so on 

[236]. 
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CHAPTER 6 

CLASSIFICATION METHODS 

ANN, k-NN, GMM, HMM, Fuzzy and GA classification methods are generally 

utilized in computerized lung sound analysis [21]. The use of support vector 

machines (SVMs) was found to be very limited in the literature [21]. The most 

commonly used machine learning methods used for lung sound analysis are ANN 

and k-NN [21]. 

Different types of classification methods in this area will be summarized under two 

headings as shown below. 

6.1 Artificial Neural Network (ANN) 

Artificial neural networks (ANNs) are deliberately established computing systems 

that allow the use of neural organizational principles inspired by biological neural 

networks to perform certain tasks such as clustering, classification, pattern 

recognition ets [92,238,239]. Especially, ANN mimics electrical activity in nervous 

system [92,240,241]. In ANN, knowledge is deployed between neurons and 

connections [36,92,240]. The neurons are generally composed in a layer or vector 

[241]. The output of a layer is the input to the next layers [241]. Each connection 

between artificial neurons can transmit a signal from one to another [241]. The nodes 

can take input data and perform simple operations on the data [241]. The result of 

these operations is passed to other neurons [241]. The output at each node is called 

its activation or node value [241]. Each link is associated with weight [241]. All of 

the weight-adjusted input values are then summed with a processing element 

utilizing a function that converts a vector to scalar such as summation, average, 

maximum input or mode value to generate a single input value in the neurode [241]. 

After the input value is computed, the processing element then utilizes a transfer 

function to generate its output [241]. The transfer function transforms the neurode’s 

input value [241]. This transformation includes sigmoid, hyperbolictangent, or other 

nonlinear function [241]. This procedure iterates itself between layers of processing 
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elements until the final output value or vector of values, is generated by the neural 

network [241].  

Although there are single-layer networks, most of the applications are networks with 

three normal layers [241]. These layers are input, hidden, and output [241]. In real-

time applications, data source of the input neuron layer is generated by either input 

files or directly from electronic sensors [241]. The output layer conveys the 

information either to the outside, other processing or other apparatus [241]. The 

hidden layer is between input and output layers [241]. It may consist of several 

layers. [241]. These inner layers form neurons that are connected to each other by a 

variable power connection [241]. While some neurons perform addition on its inputs, 

others perform subtraction [241]. There are also feedback connections [241]. In the 

feedback, the output of the corresponding layer is sent to the previous layer [241]. 

One gives rise to the next neuron to be added, whilst the other causes it to be 

removed [241].  

ANNs are capable of learning, which takes place by altering weight values [241]. 

Weighted data signals entering a neuron form the electrical stimulation of a nerve 

cell [241]. The neural network learns by adjusting its weights and bias iteratively to 

yield desired output [241]. For learning to take place, the neural network is trained 

first [241]. The training is performed using defined set of rules also known as the 

learning algorithm. [241]. ANNs are used for complicated pattern recognition and 

classification [36]. 

The multilayer feed forward neural networks have the following characteristics [242-

244]: 

 It is a mathematical model inspired by the nervous system [243,244]. 

 It is formed from multitude tightly connected processing elements [243,244]. 

 Depending on its local knowledge, a processing element may answer 

dynamically to the input stimulus [243,245]. 

 It can learn, recall, and generalize from training data by assigning or 

adjusting link weights [242,245]. 

 Its connections hold the knowledge [242,245]. 
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 The power of calculation is based on its collective behavior [244,245]. 

Multi layered feed forward neural networks are widely utilized in many areas 

because of these features [242,245]. 

ANNs are commonly utilized in medicine for modelling, diagnostic classification, 

and data analysis [36]. The backpropagation (BP) algorithm is the most frequently 

utilized training algorithm in classification problems [36].  

Neural networks may be categorized as shown below [241]: 

 Binary-valued input 

o Supervised learning 

o Unsupervised learning 

 Continuous-valued input 

o Supervised learning 

o Unsupervised learning 

Supervised learning algorithms utilize the distinction between the wanted and true 

output to regulate the suitable weights for the ANN [241]. In supervised learning, all 

data is labeled and algorithms learn how to guess the output from input data [241]. 

Some supervised learning algorithms are notified whether the output is compatible 

with the input and that the weights are adjusted to obtain correct results [241].  

Unsupervised learning algorithms only take input stimuli [241]. In unsupervised 

learning, all data is unlabeled and the algorithms learn to estimate it from input data 

[241]. The network does not need any data related to output accuracy [241]. 

The developer must make many decisions to design an ANN [241]. For example, 

input values, training and test data set dimensions, learning algorithm, network 

architecture or topology, and transformation function [241]. Many of these decisions 

are interdependent [241]. For instance, the type of input value will be determined by 

the ANN architecture and learning algorithm [241]. For this reason, it is imperative 

to identify and apply a methodology when designing ANNs [241]. It is possible to 

list these steps as shown below [241]: 
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 Define data to utilize. 

 Define input variables.  

 Divide data into training and test sets. 

 Determine the network architecture. 

 Choose a learning algorithm. 

  Convert variables to network inputs. 

 Perform the training by repeating until the ANN error falls below the 

acceptable value. 

 Perform the testing on the holdout sample to verify the ANN generalization. 

If values for design factors are chosen improperly, poorly performing ANN 

applications may emerge [241]. 

It is possible to count medical, engineering, business, and scientific problems within 

the areas of ANN practice [241]. There are studies that report that ANN performance 

is better than traditional statistical methods and other standard machine learning 

methods [241,246]. 

The different ANN types are described below. 

6.1.1 k-Nearest Neighbor Algorithm (k-NN) 

One of the most frequently used prospective statistical classification algorithms is k-

NN [92,247]. It is a method utilized to classify objects based on the nearest training 

instances in the property area [92,247]. The k-NN method gathers all events and 

classifies new events on the basis of similarity [926,248]. 

The basic idea of the k-NN method is to appoint new unclassified samples to the 

class to which most of the closest neighbors belong [92,249]. This algorithm has 

been shown to be more efficacious in decreasing false classification errors in the case 

of numerous examples are found in the training data set [92,249]. One of the most 

important advantages of this method is that it may readily cope situations when there 

are three or more class sizes [92,249,250]. 
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It is expressed as having a lazy learning algorithm because all the calculations are 

delayed until the classification [92,247]. No learning is done throughout the training 

stage [92,247]. But a training data set is needed [92,247]. The class is used to create 

an instance of the search field with known instances [92,247]. All the training data is 

required throughout the testing stage [247,250]. 

The steps of the k-NN algorithm are the training and classification phases [92,248]. 

In a multidimensional feature area of the training phase, vectors with a class label in 

each are samples of training [92,251]. The class labels and feature vectors of the 

training samples are kept at this phase [92,251]. In all the classification techniques 

based on k-NN, the classification correctness to a great extent relies upon the value 

of K and the kind of range measurements utilized for calculating closest range [252, 

253]. K can be said to be a user-defined constancy in the classification phase [251]. 

Among the K training samples nearest this query point, the most repeated label is 

identified and classified as the test point [251]. Briefly, the library of reference 

vectors is compared either to the query point or to an input feature vector [251]. The 

query point is then labeled with the closest class of library feature vector [251]. The 

method to classify query points by distance from points in a training set is a simple 

but effective method to classify new points [250,251]. 

When an unknown class is evaluated, the algorithm computes its K nearest neighbors 

and the class is assigned between these neighbors [248]. The k-NN algorithm's 

testing phase is costly in both time and memory, but the training phase is very fast 

[248,250]. 

Advantages [254]: 

 Computationally simple. 

 Provides good results for small sized datasets. 

Disadvantages [254]: 

 Does not provide good results for larger sized datasets. 

 Causes difficulty where the sample sets overlap in the dataset. 



71 

 

 
 

 If a class is appointed an input vector, then there is no sign of strength of 

being a member of that class [255]. 

6.1.2 Quadratic Classifier 

Quadratic classifier, one of the methods used for machine learning and statistical 

classification, is a general version of linear classifiers [256,257]. This method is 

utilized to divide the measurements of two or more object classes or events by a quad 

surface [256,257].  

With statistical classification, a set (called the training set) of observation vectors of 

an object or event is considered [257]. Defining what the best class should be for a 

given new observation vector is the biggest problem with this method [257]. It is 

expected that the accurate solution for a quadratic classifier in the measurements 

should be quadratic [256,257]. 

Advantages [256] 

 Parameters of each class are estimated independently using the samples of 

one class only. 

6.1.3 Multi Layer Perceptron (MLP) 

MLP can be said to be an artificial neural network model that is feed-forward 

[258,259]. It matches the input data sets to the appropriate output data set [258,259]. 

The MLP includes multiple of node layers in a graph oriented that each layer is 

completely attached to the next layer [258,259]. Nodes outside the input nodes are 

neurons with a non-linear activation function [258,259]. MLP uses a supervised 

learning technique to train the network [258,259]. This technique is called 

backpropagation [258,259]. MLP is an improved version of the standard linear 

perceptron [258,259]. It can discriminate linearly non-separable data [258,259]. 
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Advantages:  

 MLPs are universal function approximators. This makes it possible to obtain 

approximate solutions or classifications for complicated problems using 

MLPs [258,261]. 

6.1.4 Genetic Algorithm-Neural Network (GANN) 

Hybrid systems have been created by combining neural networks with genetic 

algorithms (GANN) [262]. GANNs have strong problem solving abilities in 

classification and estimation problems [262]. With the aid of parameters, the success 

of training in neural networks is determined. The parameters must be adjusted before 

the training starts. GA is utilized to determine the appropriate parameters [262]. 

When an array of chromosomes is given, an optimal ANN classifier is searched by 

the GA [262]. The determination of the appropriate chromosome selection and the 

combination of the most appropriate classification of each choice is the most 

important goal of GA [262]. The target of the process is to provide an optimal 

selection of chromosomes, rather than an optimal classification [262]. 

Advantages:  

 The process is the coevolution of both GA and ANN to find the optimum 

result [262]. 

Disadvantages:  

 GA can, if properly configured, fulfill targets of a GANN algorithm without 

the addition of an ANN [262]. 

6.1.5 Nearest Mean Classifier (NMC) 

NMC is based on pattern creation process and identification process [263,264]. 

Identification process uses training set and identification set [263,264]. The NMC 

just holds the mean of each class, i.e., one prototype for every class [263,265]. It 

classifies unseen items with the label of the nearest class prototype [263,265]. The 
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NMC can be used in biomedical applications or in relatively high dimensional 

feature spaces or small sample sizes [263,266]. 

6.1.6 Probabilistic Neural Network (PNN) 

PNN formation ensures a resolution to pattern classification problems [3].  The 

classification approach utilized by PNN is Bayesian classifiers [3]. The creation of a 

series of multivariate probability densities originating from the training vectors in the 

network constitutes the working principle of PNN [3,37]. The PNN utilizes a 

supervised training set [3,267]. The first layer provides the input patterns to the 

network [37]. These input vectors are disseminated to the pattern layer [37]. Here a 

new neuron is formed [37]. Calculation of the distances between the input vector and 

the training input vectors is provided by the first layer [37]. Next, a vector is 

generated that determines how far the input is to a training input [37]. In the second 

layer, the density of each model unit of the class is calculated [37]. The third layer, 

known as the total layer, then provides estimates of the probability density [37]. The 

fourth layer performs Bayes decision rules in calculating the output classification 

[37]. The feature space symbolizes the available training data. Gaussian functions in 

feature space are generated by PNN [37]. The Gaussian mixture model in PNN is 

used to calculate posterior probabilities [37]. The use of PNN has been reported to be 

appropriate for disease diagnostic systems [3]. 

6.1.7 Constructive Probabilistic Neural Network (CPNN) 

CPNN is architecturally similar to the PNN [37]. It utilizes the dynamic decay 

adjustment (DDA) algorithm [37]. CPNN uses the Gaussian mixture model to 

calculate probabilities such as PNN [37]. But there are some differences [37]. This 

difference is due to the fact that the algorithm used to adjust the densities evaluates 

avaible Gaussian mixtures to determine whether additional neurons are needed [37]. 

CPNN has three main advantages over PNN [37]: 

First; it has CPNN clustering capability. So, good event detection performance can 

be achieved with a small network size [37]. 
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Secondly; every Gaussian component in the CPNN has its own softening parameter, 

which can be get by the DDA algorithm with a few epochs of training [37]. 

Thirdly; the size of the network is kept in check since it has the property of pruning 

old Gaussian components [37]. 

6.1.8 Radial Basis Function Neural Network (RBFNN) 

RBFN consists of a hidden layer of radial kernels and the output layer of linear 

neurons [37]. Although the architecture of RBFNs and MLPs is similar, the input-

output mapping and training algorithms differ [37]. Every hidden neuron in an RBFN 

is adjusted to communicate to a regional area of feature space with the aid of a 

radially symmetric Gaussian function [37]. The Gaussian component densities used 

with the Gaussian Mixed Model (GMM) are produced by radial basis functions [37]. 

RBFNN consists of an input layer, a hidden layer and an output layer [37]. In the 

input layer there is a neuron for every predicted variable [37]. The whole input vector 

is demonstrated to every of the RBF neurons [37]. These neurons in the hidden layer 

include Gaussian transfer functions [37]. The output layer consists of one node per 

category or data class [37]. The training of RBFNs is done with the aid of a hybrid 

algorithm [37]. Here, unsupervised learning is used in the hidden layer whereas 

supervised learning is used in the output layer [37]. First, the radial basis centers and 

spreads are selected by means of the orthogonal least squares algorithm, which forms 

the suitable number of hidden neurons [37]. The output is then trained [37]. The 

radial basis activations are utilized as regressors to predict the class target outputs 

[37]. The spreading constant value must be appointed with the aid of the training 

algorithm [37]. With the aid of the radial basis functions, the duration of training is 

drastically decreased and related analyzes become easier [3]. RBFNNs can be used in 

multi-class and high-dimensional classification problems [3].  

6.1.9 Incremental Supervised Neural Network (ISNN) 

ISSN consists of two layers [268]. Node count is defined by the learning algorithm 

[5]. The ISSN assigns the number of nodes with an index counter [5]. Each new node 

causes the index counter to increase by one [5]. Node count is checked by the 
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histogram generated during the training phase [5]. The values of the nodes near the 

bounds of the classes in the utilization counters are lower than the internal nodes [5]. 

For this reason, these nodes are disconnected from the ISNN [5]. The user specifies 

the threshold value [5]. 

ISNN algorithm makes sure that there is always only a single node that is active [5]. 

Different information is expressed in each output node [5]. The nodes are labeled on 

the output layer [5]. ISNN is based on supervised learning and has a gradual structure 

[5]. With the help of the feature vectors in the training set, the nodes in the input 

layer are repeatedly generated [5]. Each vector has its own class label [5]. The 

learning algorithm finds the minimum distance by calculating the Euclidean 

distances between the input layer nodes and the input feature vector [5]. The the 

winner-node and the classes of the input vector are checked [5]. 

6.1.10 Hidden Markov Model (HMM) 

HMM is a probabilistic sequence model [44,269]. The system is supposed to be a 

Markov process with not observed states [44,269]. Among the machine learning 

models, HMM is the most commonly used method of speech and language 

processing [44,269]. In simpler Markov models, state transition probabilities are only 

parameters and can be seen directly by the observer [44,269]. In HMM, only the 

output is visible, but the state is not directly visible [44,269]. There are probability 

distributions for each case on the possible output specifiers [44,269]. For this reason, 

the sequence of specifiers created by an HMM offers some knowledge about the state 

sequence [44,269]. Hidden word expresses the sequence of state that the model 

passes, not the parameters [269]. Although the parameters are known, the model is 

called the HMM [44,270]. 

HMMs are particularly recognized for their practice in temporal pattern recognition 

(for example handwriting, gesture recognition, speech) [271,272]. HMMs can be 

implemented in many areas, which are to bring back a data sequence that is not 

directly observable [271,273]. 
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It can be assumed that HMM is a generalization of a mixture model [270,271]. The 

secret variables controlling the mixture elements for each observation are associated 

with an independent Markov process [270,271]. 

6.1.11 Support Vector Machine (SVM) 

SVM is a supervised machine learning model and is often utilized [21]. Related 

learning algorithms analyze data utilized for classification and regression analysis 

[274,275]. However, it is mostly utilized in classification problems [274,275]. If a 

training sets, every labeled as one or the other in two categories, is considered, the 

support vector machine training algorithm generates a pattern that appoints the new 

arriving instances to one or the other of the categories [274,275]. This is not based on 

probability and is a binary linear classifier [274,275]. In the SVM model, samples are 

shown as points in space [274,275]. These points are shown in separate categories 

divided by a plain gap as wide as possible [274,275]. Then, new samples are placed 

in the same space and expected to enter a categorization according to which side of 

the gap is appropriate [48,274,275]. 

SVMs can also effectively make nonlinear classification [274,275]. They can make 

this classification by utilizing the kernel trick [274,275]. So they map their inputs to 

high-dimensional feature spaces [274,275]. If the data can not be labeled, an 

unsupervised learning application is needed which naturally accumulates the data to 

the groups as supervised learning is not possible and then works to pair new data to 

these groups [274,275]. Industrial practices use a clustering algorithm called the 

support vector clustering, which makes amelioration to the SVM when either no data 

is marked or only some data is labeled as a preprocessing for a classification passing 

[274-276]. 

Advantages:  

 SVMs obtain considerably higher search accuracy than traditional query 

improvement schemes [49,277]. 
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6.1.12 Deep Learning 

Deep learning is a new field of machine learning [278,279]. It was conceptualized on 

learning data models [278,279]. Its algorithms try to model high-level abstractions 

[278,279]. This is done using complicated structures or otherwise model 

architectures consisting of multiple nonlinear transformations [278,279]. Deep 

learning models can reach high levels of correctness [279]. Occasionally, situations 

that exceed human performance can be seen [279]. 

Deep learning takes into account computer models [280]. These models contain 

multiple layers of processing to learn models of data and are trained utilizing a large 

set of labeled data and neural network architectures with multiple layers [280]. These 

methods have strikingly developed the advanced technology in speech recognition, 

visual object recognition, object perception and many other fields such as drug 

discovery and genomics [280]. Deep learning detects complex patterns in great data 

sets by utilizing the backpropagation algorithm [280]. The backpropagation 

algorithm is used to specify how the interior parameters utilized to calculate the 

presentation of each layer from the presentation in the previous layer should be 

modified [280]. Deep convolutional nets are more useful in video, image, speech, 

and sound processing areas. Recurrent nets provide improvements in consecutive 

data like text and speech [280]. 

In a simple case, there might be two sets of neurons: ones that receive an input signal 

and ones that send an output signal [278,279]. When the input layer receives an input 

it passes on a modified version of the input to the next layer [278,279]. A deep 

network has many layers between input and output [278,279,281].  Thus, the 

algorithm is allowed to utilize multiple process layers consisting of multiple linear 

and non-linear transformations [278,279,281]. 

An image-like observation can be presented in many ways. For instance; a vector of 

intensity values per pixel, or areas of specific shape and various other features 

[8,282,283. Some models facilitate to learn tasks (e.g. face recognition or facial 

expression recognition) from samples [8,282,283]. 



78 

 

 
 

The purpose of the workings in this field is; to outperform models, to compose 

models to learn wide-ranging unlabeled data [8,284]. Neurological progresses have 

developmental effects on these representations [8,279,285]. Some representations are 

established upon hermeneutics of data processing and transmission models in a 

nervous system [8,279,285]. Neural encodings attempting to define the relationship 

between electrical activity of neurons in the brain and neuronal responses can be an 

example [8,279,285]. 

With the appropriate transformational composition it becomes possible to learn 

highly complicated functions [280]. Higher layers of representation reinforce the 

directions of the imput which is important for differentiation and also suppress 

unrelated modifications [280]. For instance, features learned in the first impression 

layer in an image that comes in a number of pixel value formats often present the 

existence or nonexistence of edges and positions in the image in some directions 

[280]. The second layer typically defines patterns [280]. It does this by detecting 

special edits of the edges, without without considering, minor changes in edge 

locations [280]. The third layer can collect patterns into bigger combinations that 

match components of familiar objects [280]. Following, layers would define objects 

as combinations of these components [280]. 

Deep learning has made great strides in solving resistant problems that the artificial 

intelligence society is challenging [280]. It was seen to be very successful in 

discovering complex texture in high-dimensional data [280]. For this reason, it can 

be used in many fields such as science, business and government [280]. Additionally 

its great success in image recognition and speech recognition, in many areas it has 

proven to be superior to other machine learning techniques [280]. These areas are; to 

anticipate the efficiency of potential drug molecules, to reconstruct brain circuits by 

analyzing particle accelerator data and to anticipate the influences of gene mutations 

in non-coding DNA on gene expression [280]. Deep learning has constructed highly 

encouraging results for diverse tasks [280]. Among these tasks, it is possible to count 

deep language learning, especially in natural language understanding, subject 

classification, emotional analysis, question answering and language translation [280]. 

Deep learning is expected to achieve far more success soon, because of the fact that 
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it requires little manual intervention and can easily benefit from increases in the 

quantity of current calculations and data [280]. Today's learning algorithms and 

architectures contribute to accelerating the progression of deep neural networks 

[280]. 

There are various deep learning architectures such as deep neural networks, deep 

belief networks, convolutional deep neural networks and recurrent neural networks 

[278,286,287]. They have been used in areas such as computer vision, automatic 

speech recognition, natural language processing, voice recognition and 

bioinformatics, and it has been observed that these tasks achieve extremely good 

results [278,286,287]. 

Advantages 

 Replaces handmade features with efficient algorithms for feature learning and 

hierarchical feature extraction [288,289]. 

 The layers of the features are created not by engineers but by learning from 

the data utilizing the procedure that is the learning target [280]. 

Disadvantages 

 Needs large amounts of data to produce good results [280]. 

Types of deep learning architectures: 

 Deep Neural Network (DNN) 

 Deep Belief Network (DBN) 

 Convolutional Neural Network (CNN) 

 Convolutional Deep Belief Network (CDBN) 

 Deep Boltzmann Machine (DBM) 

 Restricted Boltzmann Machine (RBM) 

 Stacked (Denoising) Auto-Encoders 

 Deep Stacking Network (DSN) 

 Tensor Deep Stacking Network (T-DSN) 

 Spike-and-Slab RBM (ssRBM) 
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 Compound Hierarchical-Deep Models 

 Deep Coding Network (DPCN) 

 Multilayer Kernel Machine(MKM) 

 Deep Q-Networks (DQN) 

 Memory networks 

6.1.12.1 Deep Neural Network (DNN) 

Deep neural network is a multilayered network. There are many hidden layers that 

show complexity at a certain level [290-292]. The weights of the hidden layers are 

completely dependent and are frequently initiated by pre-training, utilizing a stacked 

restricted Boltzmann machine or deep Boltzmann machine [290-292]. Deep neural 

networks utilize advanced mathematical modeling to process data in complicated 

ways [290- 292]. 

6.1.12.2 Deep Belief Network (DBN) 

Deep belief nets are probabilistic generative models created of multiple layers of 

stochastic, hidden variables [278,290,292]. Between the top two layers have 

nondirectional and symmetric links [278,290,292]. The following layers receive links 

from top to bottom [278,290,292]. When data are given as data to train the next 

layer, deep belief networks are learned from one layer at once, treating the values of 

hidden variables in a layer [278,290,292]. 

6.1.12.3 Convolutional Neural Network (CNN) 

The CNN architecture is an all-round, but simple paradigm [8,293]. It can be 

performed to a wide range of perceptual duties [8,293]. Convolutional Networks 

architecture contains trainable stages [8,293]. 

ConvNets are used to compute data that get in the shape of multi-arrays [8,280]. 

ConvNets is based on four basic ideas. These are local connections, shared weights, 

pooling and the utilization of many layers [8,280]. ConvNet's architecture has a 

gradual structure [8,280]. It consists of two layers: convolutional layers and pooling 

layers [8,280]. The convolutional layer is created by feature maps [8,280]. Every unit 
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is linked to a local patch on the feature maps in the previous layer with a weight 

sequence [8,280]. Then the outcome of this local weighted sum is transferred to a 

nonlinearity like a ReLU [280,294]. When all units in the feature map utilize the 

same filter bank, diverse feature maps in the layer utilize distinct filter banks 

[280,295]. This architecture has two reasons [280,295]. Primarily, in a series of data, 

as in images, local value groups are frequently correlated at a very high rate and 

create different local patterns that are readily identifiable [280,295]. Secondly, the 

local properties of input data do not change according to location [280,295]. That is 

to say, if a pattern can show up in one section of the data, it can show up anywhere, 

therefore units at distinct places having the same weights and defining the same 

pattern in distinct sections of the dataset [280,295]. From a mathematical aspect, the 

filtering operation made by a feature map is a discrete convolution [280,295]. 

Pooling layer combines same properties into one in the manner of semantic, while 

the convolutional layer plays a role in uncovering the local conjunctions of the 

features on the previous layer [280,295]. Since the relative positions of features 

forming a pattern can change slightly, it is possible to reliably perceive the pattern by 

making each feature position coarser [280,295]. A typical pooling unit calculates a 

local unit area as a maximum in the feature map [280,295]. Areas changed by more 

columns and rows inputs contiguous pooling units [280]. Thus, it decreases the size 

of the presentation and composing invariant to small slips and distortions [280]. 

These layers are then followed by more convolutional, pooling and finally fully 

connected layers [280]. 

The CNN is very effective and widely used in computer vision and image 

recognition [8,290]. While the CNN precedence is used in image analysis, it has also 

been used effectively for speech recognition by making changes based on specific 

features of speech [8,290]. 

6.1.12.4 Convolutional Deep Belief Network (CDBN) 

The utilization of convolutional deep belief networks has provided new success in 

deep learning [287,290]. The training of CDBN is similar to that of deep belief 

networks [287,290]. For this reason, while using the 2D structure of images such as 
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CNNs, they use pre-training similar to deep belief networks [287,290]. They have a 

structure that can be utilized in a large number of image and signal processing duties 

[287,290]. 

6.1.12.5 Deep Boltzmann Machine (DBM) 

A special type of Boltzmann machine (BM), deep Boltzmann machines, consist of 

many hidden variable layers with no connection between variables on the same layer 

[290,292]. It is a network that makes stochastic decisions about whether 

symmetrically linked units are open or closed [290,292]. Working with general BMs 

whose learning algorithm is very simple is very complicated, and calculating is very 

slow in learning [290,292]. In DBM, each layer has complex, high-order correlations 

between the actions of hidden features in the lower layer [290,292]. DBMs have the 

potency to learn increasingly complicated internal models to solve object and speech 

recognition problems [290,292]. Further, by utilizing unlabeled sensory inputs, 

advanced models can be created [290,296]. Limited labeled data can then be utilized 

to make small adjustments to the model for a particular task [290,296]. 

6.1.12.6 Restricted Boltzmann Machine (RBM) 

RBM is known as a private kind of Markov random field [290,292,297,298]. It is 

organized into two layers; stochastic hidden units and stochastic visible units 

[290,292,298]. The visible units corresponding to the observation components form 

the first layer [290,292,298]. The hidden units, which can also be expressed as 

nonlinear feature detectors, show model dependencies between the observation 

components [290,292,298]. RBMs are also referred to as bidirectional graphs 

[290,292]. These are graphs showing that all visible units are linked to all hidden 

units and that there are no visible-visible or hidden-hidden links [290,292]. 

6.1.12.7 Stacked (Denoising) Auto-Encoder 

Denoising autoencoders are the stochastic type of the basic autoencoder 

[290,292,297]. First, denoising autodetectors randomly distort inputs [290,292,297]. 

This can be done by randomly selecting a portion of inputs and making it to zero 

[290,292,297]. Then the autoencoder needs to be rebuilt [290,292,297]. The hidden 
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encoding nodes are then designed utilizing factors like the distance between the 

original inputs and rebuilt inputs to reconstitute the original, uncorrupted input data 

[290,292,297]. The following nodes of the denoising autoencoder are utilized as 

input for uncorrupted encoded presentations [290,292,297]. 

6.1.12.8 Deep Stacking Network (DSN) 

The basic idea of deep stacking network conseption concerns the notion of stacking 

[278,292]. First, simple modules of functions or classifiers are created and then 

connected together to learn complicated functions or classifiers [278,292]. 

Connection operations were generated in various forms in the past, typically making 

use of supervised information in the simple modules [278,292]. New features of the 

stacker classifier at the higher level of the stacker architecture include from 

aggregation of a lower modular classifier and the raw input features [278,292]. The 

basic component utilized for stacking was a conditional random field [278,292,299]. 

In addition, DSN architecture has been further developed for natural language and 

speech recognition applications [278,292,299]. 

6.1.12.9 Tensor Deep Stacking Network (T-DSN) 

The T-DSN is formed of multiple stack blocks enclosing bilinear mapping to the 

output layer from two hidden layers where a weight tensor is used [278,292]. T-DSN 

is the tensorized type of the DSN architecture [278,292]. It has the same scalability 

as DSN in terms of parallelizability in learning, but T-DSN advances and expands 

the DSN architecture [290,292]. The mechanism of T-DSN is based on the 

philosophy of stacked generalization [290,292]. The architecture of the T-DSN is 

similar to the architecture of the DSN in terms of the manner in which the stacking 

process is applied [290,292]. That is, modules of the T-DSN are stacking up in a 

similar way to form a deep architecture [290]. The differences of T-DSN and DSN 

lie mainly in how each module is constructed [290]. 

6.1.12.10 Spike-and-Slab RBM (ssRBM) 

The need for deep learning with real valued inputs motivates the spike and slab 

RBM, which models continuous-valued inputs with strictly binary latent variables 
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[300]. Similar to basic RBMs and its variants, a spike and slab RBM is a bipartite 

graph, while like GRBMs, the visible units (input) are real valued [300]. The 

difference is in the hidden layer [300,301]. Every unit of the hidden layer consists of 

a spike and a slab variant [300,301]. The slab is intensity over continuous field, while 

the spike is a separate probability mass at zero [300,302]. 

6.1.12.11 Compound Hierarchical-Deep Models 

Compound hierarchical deep models compose deep networks with non-parametric 

Bayesian models [290]. This provides a better representation, allowing faster 

learning and more accurate classification with high-dimensional data [290]. 

However, these architectures are poor at learning novel classes with few examples 

[290]. 

6.1.12.12 Deep Coding Network (DPCN) 

Deep coding network is a predictive coding scheme where top-down information is 

used to empirically adjust the priors needed for a bottomup inference procedure by 

means of a deep locally connected generative model [290]. This works by extracting 

sparse features from time-varying observations using a linear dynamical model 

[290]. Then, a pooling strategy is used to learn invariant feature representations 

[290]. These units compose to form a deep architecture, and are trained by greedy 

layer-wise unsupervised learning [290]. The layers constitute a kind of Markov chain 

such that the states at any layer only depend on the preceding and succeeding layers 

[290]. DPCNs can be extended to form a convolutional network [290]. 

6.1.12.13 Multi Layer Kernel Machine (MKM) 

The multi layer kernel machine method was suggested to learn highly nonlinear 

functions with the iterative application of weakly nonlinear kernel methods [297]. 

6.1.12.14 Deep Q-Network (DQN) 

A deep Q-network is a type of deep learning model developed at Google DeepMind 

which combines a deep convolutional neural network with Q-learning, a form of 
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reinforcement learning [303]. Unlike earlier reinforcement learning agents, DQNs 

can learn directly from highdimensional sensory inputs [303]. 

6.1.12.15 Memory Network 

Memory networks are another extension to neural networks incorporating long-term 

memory, which was developed by the Facebook research team [290]. The long-term 

memory can be read and written to, with the goal of using it for prediction [290]. 

These models have been applied in the context of question answering where the 

memory effectively acts as a database, and the output is a textual response [290]. 

6.2 Others 

6.2.1 Continuous Wavelet Transform (CWT) 

The CWT is utilized to split (partition, split, divvy) a continuous-time signal into 

wavelets [215,218]. The CWT calculates the interior products of a continuous signal 

with a series of continuous wavelets [215,218]. In contrast to the Fourier transform, 

CWT can produce a time-frequency presentation of a signal with extremely good 

time and frequency localization [215,218]. CWT is the convolution of the input data 

array consisting of a series of functions created via the mother wavelet [217,218]. A 

fast Fourier transform algorithm can be used to calculate this convolution [217,218]. 

The use of CWT can be very effective in defining the reducing rate of the release 

signals [214,216,218]. 

6.2.2 Time Expanded Waveform Analysis 

Time expanded waveform analysis allows the documenting of different features of 

sounds [25]. It also provides visual images with the possibility of repetition 

increasing the usefulness of the sounds for diagnosis [25]. 

6.2.3 Vector Quantization (VQ) 

VQ is a technique used to quantize signal vectors [304]. With this technique, 

probability density functions can be modeled [304]. This is done by distributing the 

prototype vectors [304]. The principle on which VQ is based is the block coding rule 
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[305,306]. VQ is also expressed as a lossy data compression method [305,306]. It 

was formerly utilized for data compression [307]. The compression process is two 

steps [307]. These steps are codebook training and codevector matching [307]. In the 

first step, similar vectors at the time of training are grouped into clusters [307]. Then 

a codevector is appointed to every cluster [307]. In the second step, every input 

vector is pressed by displacing it with the closest codevector referred to by a cluster 

series [307]. Then the index of the suitable codevector in the codebook is transfered 

to the decoder [307]. This is utilized it to get the same codevector from an identic 

codebook by the decoder [307]. This is the reconstituted replica of the suitable input 

vector [307].  

VQ separates a group of points by the number of the nearest point [307]. Every 

group is shown by its centroid point [307]. VQ is the procedure for mapping vectors 

from a big area to a limited number of zones in that area [40,209,308]. 

The intensity pairing feature of VQ is very strong in finding the density of big and 

high-dimensioned data [40,309]. For this reason, VQ is considered to be appropriate 

for lossy data compression [40,310]. It can also be used for lossy data correction and 

density estimation [40,310]. VQ is greatly utilized in signal and image processing 

[311,312]. 

VQ is associated with the competitive learning model [311,312]. For this reason, it is 

intimately associated to the self-organized map model and to sparse coding models 

used in deep learning algorithms such as autoencoder [311,312].  

6.2.4 Gaussian Mixture Model (GMM) 

The GMM is a probabilistic model [206,313]. It is supposed that all data points are 

produced from a combination of a few Gaussian distributions with unknown 

parameters [206,313]. It can be considered that the mixture models are a 

universalization of the k-means cluster, which contains data about the covariance 

structure of the data and hidden Gaussian centers [206,313]. 
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6.2.5 Linear System Analysis 

Linear system analysis is concerned with the study of equilibrium and change in 

dynamical systems, that is, in systems that contain variables that may change with 

time [229]. These variables include system inputs, outputs, as well as variables 

describing internal states of the system [229]. To perform the analysis, relationships 

between these variables are described by a set of equations known as the model 

[229]. For linear system analysis to be applicable, the model must possess the 

linearity property: it must be a linear model [229].  

6.2.6 Fuzzy Logic 

The idea underlying the fuzzy system theory is to approach system behavior where 

no analytic functions or digital correlations occur [314,315]. For this reason, fuzzy 

systems can be called complex systems with high potential to understand systems 

without analytical formulations [314,315]. Complicated systems may be related to 

human conditions [314,315]. For example; it is possible to count biological and 

medical systems, or social, economic, or political systems that can not be analytically 

controlled by large input and output sequences [314,315]. Fuzzy system theory can 

be useful to evaluate more traditional, less complicated systems [314,315]. These 

systems are thought to be very useful in two cases [316]: where there are extremely 

complicated systems where actions are not comprehended well, and where a rough, 

but rapid resolution is required [314,317]. A fuzzy system tries to comprehend a 

system without any models, and it performs so with indefinite, fuzzy or incomplete 

or completely deficient information [314,317]. 

Fuzzy systems are strong [314,318]. The system has both uncertainties in inputs and 

output [314,318]. These uncertainties have been used to formulate the system 

structure based on a set of assumptions needed to form a mathematical form 

[314,318]. The ambiguities of both the input and output of the system are utilized in 

the formulation of the system organization, which is attributed on a series of 

assumptions necessary to form a mathematical form [314,318]. Realistically, fuzzy 

systems can be defined as shallow models [315,319]. Since the fuzzy system output 

is a consensus of all the inputs and all the rules, fuzzy logic systems can be well 
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behaved when input values are not available or are not trustworthy [319]. Weightings 

can be optionally added to each rule in the rulebase and weightings can be used to 

regulate the degree to which a rule affects the output values [319]. These rule 

weightings can be based upon the priority, reliability or consistency of each rule 

[319]. These rule weightings may be static or can be changed dynamically, even 

based upon the output from other rules [319]. 
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CHAPTER 7 

MATERIALS AND METHODS 

7.1 Building the Electronic Stethoscope 

Before we started working, we decided that a device could be used to record lung 

sounds was necessary. Therefore, we examined all possible electronic stethoscopes 

that are commercially available [8]. There were two models that are being utilized in 

medicine; Littman 2100 Electronic Stethoscope and Thinklabs One Electronic 

Stethoscope [8]. These devices receive the audio from the head of the stethoscope 

through a microphone and a set of electronic circuits [8]. This digital signal can be 

transferred to the computer via a 3.5 mm microphone jack, which is widely available 

on computers and mobile devices [8]. 

Because of its proprietary software, the platforms on which the Littman 2100 

electronic stethoscope software can operate are limited [8]. On the contrary, 

Thinklabs One electronic stethoscope can transmit an audio signal to any device 

utilizing any software [8,320]. 

However at the time we were researching, these devices’ prices range from 396–500 

dollars. Therefore, after analyzing the specifications of these stethoscopes, we 

determined to create our own custom electronic stethoscope [8]. 

The invention “Stethoscope having microphone therein” by Dieken et al. provides a 

stethoscope having a chest piece where the transducer resides within the acoustic 

pathway in the chest piece [321]. We used this invention’s chest piece design in the 

device we built. Chestpiece was taken as secondhand. We improved on it by adding 

an option to connect the stethoscope to another device by an audio cable. 

First prototype was a large device with audio out for headphones and a microphone 

input for the stethoscope with microphone. However this device was recording too 

much environmental noise that suppressed the respiratory sounds. Also it was too big 

to carry around in a hospital environment. So we decided not to use it. 
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Second prototype was a smaller version of the first one. This one had two inputs; one 

for stethoscope microphone signal and one for recording. It also had the audio output 

for headphones. The device was recording stereo audio, one channel for respiratory 

sounds and the other channel for environmental noise. The idea behind the device 

was to record both audio and extract the noise from the respiratory signal. However, 

we found out that the noise in the respiratory signal was not equivalent to the noise 

signal coming from the second channel, hence when it is extracted, there was a hug 

data loss on the respiratory audio signal because of the low frequency nature of the 

respiratory audio signal. So we decided not to use the second one either. 

Also we found out that the environmental noise contains electronic noise from the 

components of the device, so the more complex it gets we get more electronic noise 

in the final signal. 

For the final device, we decided to go back to the original simplest idea; a 

microphone strapped inside the head of the stethoscope with a 3.5mm microphone 

jack. In our electronic stethoscope design, we only used the chestpiece of an existing 

3M
TM

 Littmann® Classic II S.E. stethoscope. To ensure minimizing the 

environmental and friction noise, we needed to use material that has noise 

suppression properties. We found out that silicone is such a material [322]. 

Therefore, we used a 10cm silicone tube as the body of our stethoscope. For the 

microphone, we used a directional microphone connected to a 3V zener diode at one 

end of the silicone tube. We enclosed the other end with silicone sealant along with 

the microphone’s cable. We connected these cables to a standart 3.5mm audio jack 

(Figure 7.1). Finally we fixed the silicone tube’s microphone end to the chestpiece of 

a stethoscope with silicone sealant (Figure 7.2). To make a recording with our 

design; we simply need to connect the 3.5mm audio jack into the microphone input 

of a computer. In this study we used a Lenovo Thinkpad E550 laptop with a Dolby 

Digital audio card. 
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Figure 7.1 Technical drawing of electronic stethoscope (1: Stethoscope bell, 12: Stethoscope metal 

connection tube, 13: Silicone holder of stethoscope bell, 2: Silicone pipe, 21: Silicone material, 3: 

Unidirectional condenser microphone capsule, 31: 3V zener diode, 32: Shielded cable, 4: 3.5mm 

stereo audio jack) 

 

Figure 7.2 Image of the final prototype electronic stethoscope 

Since we were removing the signal enhancing hardware, a good, small and a 

directional microphone was necessary to receive high quality signal [8]. 

Nevertheless, the sound was still noisy due to the following reasons [8]: 
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 Hospitals are naturally noisy due to reasons such as the conversation of 

people in the vicinity, phone bells, noise of used devices, ambulances and 

police sirens [8]. 

 When the stethoscope diaphragm touches skin and body hairs during the 

auscultation, scratching noise may occur [8]. 

It is not easy to solve the first problem, because it can be said that it is impossible to 

make patients' rooms sound-proof [8]. Also, since we wanted to collect and test real 

(unclean) data we kept the rooms as quiet as we possibly can without any special 

equipment or changes in the room. 

It is possible to solve the second problem by lubricating the area that the stethoscope 

diaphragm contacts before the auscultation [8]. We have also noticed that during 

preliminary work we do, this method also improves ability to receive of low 

frequency audio by the microphone [8]. 

The chracteristics of this stethoscope: 

 Ability to minimize noise 

 Sensitive 

 Cheap 

 Basic design 

 Mobile and light weight 

 Easy to use 

The final design was approved by three professional physicians individually after 

auscultating to lung sound recordings captured with the stethoscope prototype. 

The components in this stethoscope prototype are intended to be sufficiently modular 

such that the parts can be substituted for materials that are locally available in the 

deployment sites, making construction and maintenance simple and rapid. Another 

advantage of having the device easily disassembled is that it can be cleaned to 

prevent spread of disease from one patient to another. Wiping the plastic diaphragm 

and rubber rim of the device with rubbing alcohol can be done in between patients, 
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as physicians normally practice for cleaning their traditional stethoscope chest 

pieces. 

As a result, the second-hand chest piece and the other materials cost us 100 TL to 

build this device. 

7.2  Software for Data Acquisition 

We required a computer program to record audio and save patient data [8]. For this 

reason, we developed a .NET Windows Presentation Foundation (WPF) application, 

using C# programming language in Visual Studio 2015 that constitutes patient 

records and utilizes open source audio library NAudio to record, play and modify 

audio [8]. This application also allows the amplification of the recordings 200 times 

for better hearing [8]. It has 8 main sections: 

1) Patient information: First name, last name, age, gender, smoking habits, sport 

habits [8] (Figure 7.3). 

2) Preliminary questions: Shortness of breath, cough, color of mucus, coughing 

of blood, chest pains (Figure 7.4). 

3) Symptoms: High fever, weight loss, swelling in legs, night sweating, 

palpitation (Figure 7.5). 

4) Audio recording: Audio recordings from 11 areas of patient’s chest [8] 

(Figure 7.6). 

5) Lung function test results: Forced vital capacity (FVC), forced expiratory 

volume in 1st second (FEV1), FEV1 / FVC (Figure 7.7). 

6) Blood test results: White blood cell count, C-reactive protein count and 

neutrophils count (Figure 7.8). 

7) X-ray results: X-ray comments from 6 regions of lungs (Figure 7.9). 

8) Final Diagnosis (Figure 7.10). 
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Figure 7.3 Patient information 

 

 

Figure 7.4 Preliminary questions 
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Figure 7.5 Symptoms 

 

Figure 7.6 Audio recorder interface 
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Figure 7.7 Lung function test results 

 

Figure 7.8 Blood test results 
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Figure 7.9 X-ray results 

 

Figure 7.10 Final diagnosis 
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As a result, we designed and constructed an electronic stethoscope with associated 

software system that can transfer respiratory sounds to a PC for recording and 

subsequent computer aided analysis and diagnosis [8]. 

Our overall system can be seen in Figure 7.11. 

 

Figure 7.11 Workflow schema 

7.3 Data Acquisition 

The application and the hardware are tested together by recording respiratory audio 

and showing the results to chest physicians [8]. After we received positive feedback 

from all the physicians, we concluded that we could move forward to data 

acquisition [8]. 

In the end, three hospitals accepted that we could do our research in their respiratory 

diseases department [BC]:   

 Ankara University, Chest Diseases Hospital 

 Yıldırım Beyazıt Education and Research Hospital 

 Yıldırım Beyazıt University Chest Diseases Clinic 
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To start the data acquisition we needed a laptop with a good audio card [8]. So we 

did a research and found out that Lenovo ThinkPad E550 Laptop has the best audio 

card for our purposes [8]. So we purchased that computer [8]. We also purchased two 

Seagate Expansion 1TB external hard drives for backup storage [8]. Once we are set 

with equipment we started the data acquisition [8].  

The voluntary declaration form was read to the patient and signed with approval for 

participation in the study [8] (Appendix A). 

We also prepared questionnaires including patient information, preliminary 

questions, symptoms, lung function test results, blood test results, x-ray results and 

final diagnosis (Table 7.1). After the procedures were completed, the questionnaires 

were filled in by the physician (Appendix B, Appendix C).  

Table 7.1 Disease frequencies in dataset 

Disease Name ICD-10 Frequency 

Normal  805 

COPD J44.9 211 

Pneumonia J18.9 134 

Asthma J45.9 75 

Bronchiectasis J47.0 30 

IPF J84.9 40 

PTE I26.9 43 

COPD + Bronchiectasis J44.9+ J47.0 28 

COPD + Pneumonia J44.9+ J18.9 85 

Lung Cancer D44.3 42 

COPD + Emphysema J44.9+J43.9 14 

Pleural Effusion J90 34 

Pneumonia + PTE J18.9+ I26.9 9 

COPD + PTE J44.9+ I26.9 8 

Bronchitis J41.0 53 

Pneumonia + Lung Cancer J18.9+44.3 19 

Total  1630 

COPD: Chronic Obstructive Pulmonary Disease 

ICD-10: International classification of diseases [2] 

IPF: Intesitial Pulmonary Failure 

PTE: Pulmonary Thromboembolism 
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Table 7.2 Lung sound frequencies 

SOUND N SOUND N 

Normal 8937 Decreased + LED + Rales 190 

Rales 3766 LED + Rales + Rhonchus 183 

Decreased 646 Decreased + Rales + Rhonchus 83 

Rhonchus 540 Decreased + LED + Rhonchus 69 

LED 303 Aggravation + LED + Rhonchus 61 

Aggravation 261 Aggravation + Rales + Rhonchus 55 

Squeak 39 Aggravation + LED + Rales 53 

Bronchial 7 Aggravation + Decreased + Rales 10 

Absent 6 Aggravation + Decreased + LED 5 

Frotman 2 Normal + Rales + Rhonchus 5 

Wheeze 1 Absent + Rales + Rhonchus 4 

Decreased + Rales 598 Aggravation + Decreased + Rhonchus 4 

Rales + Rhonchus 583 Aggravation + LED + Squeak 3 

LED + Rales 321 LED + Rhonchus + Wheeze 3 

Aggravation + Rales 242 Aggravation + Rales + Squeak 2 

Decreased + LED 204 Aggravation + Rhonchus + Squeak 2 

Led + Rhonchus 196 LED + Rales + Squeak 2 

Decreased + Rhonchus 134 LED + Rhonchus + Squeak 2 

Aggravation + Rhonchus 120 Rales + Rhonchus + Squeak 2 

Aggravation + LED 44 Rales + Rhonchus + Wheeze 2 

Rales + Squeak 19 Aggravation + Bronchial + LED 1 

Normal + Rales 15 Aggravation + Bronchial + Rhonchus 1 

Normal + Rhonchus 12 Decreased + Normal + Rales 1 

LED + Squeak 11 Decreased + Rales + Squeak 1 

Absent + Rales 10 LED + Rales + Wheeze 1 

Rhonchus + Wheeze 9 Decreased + LED + Rales + Rhonchus 42 

Aggravation + Decreased 7 Aggravation + Decreased + Led + Rales 10 

Bronchial + Rales 5 LED + Rales + Rhonchus + Wheeze 2 

Rhonchus + Squeak 5 Aggravation + LED + Rales + Squeak 4 

Absent + Frotman 4 Aggravation + LED + Rales + Rhonchus 43 

Aggravation + Frotman 4 LED + Rales + Rhonchus + Squeak 1 

Decreased + Squeak 4 Aggravation + Decreased + Rales + Rhonchus 4 

Aggravation + Squeak 3 Aggravation + Rales + Rhonchus + Squeak 1 

LED + Wheeze 3 Decreased + LED + Rales + Squeak 5 

Absent + Rhonchus 2 Aggravation + Decreased + LED + Rhonchus 5 

Bronchial + Decreased 2 Aggravation + Decreased + LED + Rales + Rhonchus 1 

Decreased + Normal 2   

 

Waveform and spectrogram images of various lung sounds types can be seen through 

Figure 7.12 to Figure 7.22. 
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Figure 7.12 Absent waveform and spectrogram image 

 

 

Figure 7.13 Aggrevation waveform and spectrogram image 

 

 

Figure 7.14 Bronchial waveform and spectrogram image 
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Figure 7.15 Decreased waveform and spectrogram image 

 

 

Figure 7.16 Frotman waveform and spectrogram image 

 

 

Figure 7.17 Long expirium duration waveform and spectrogram image 
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Figure 7.18 Normal waveform and spectrogram image 

 

 

Figure 7.19 Rale waveform and spectrogram image 

 

 

Figure 7.20 Rhonchus waveform and spectrogram image 
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Figure 7.21 Squeak waveform and spectrogram image 

 

 

Figure 7.22 Wheeze waveform and spectrogram image 

In this study, we recorded audio data from 1,630 subjects (825 sick and 805 healthy 

subjects) (Table 7.1 and 7.2) and 11 positions from each patient’s chest, totaling to 

17,930 audio clips [8] between 01.01.2016 – 23.09.2016 from Ankara University 

Chest Diseases Hospital, Yıldırım Beyazıt University Chest Diseases Clinic, 

Yıldırım Beyazıt Education and Research Hospital Chest Diseases Clinic. Each 

subject was allocated a unique numeric identification number and no personally 

identifiable information was recorded to maintain the subjects’ anonymity. Healty 

subjects were volunteers from hospital staff, graduate students in hospitals, family 

members and friends. 

In order to demonstrate the feasibility of capturing lung sounds audio data was 

collected with device from 10 test subjects to a laptop. Based on experience from 
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chest physicians the optimal eleven locations on the chest for lung sound recording 

were selected, as depicted in Figure 7.23. In order to determine the length of each 

lung sound recording, physicians manually counted the number of breath cycles 

completed by the test subject in the 5, 10, 15, 20 seconds of the recording. Finally, it 

was decided that a 10 second data record from each location was sufficient because it 

was 3-4 cycles. 

The recording locations selected for auscultating to lung sounds were Figure 7.23:  

 On posterior chest: the upper left, upper right, center left, center right, lower 

left, and lower right.  

 On anterior chest: the upper left, upper right, center left, center right, and 

lower right. 

 

Figure 7.23 11 areas that the lung sound data was recorded 

During auscultation, physicians start above the clavicle, since lung tissue extends that 

high. They auscultate in five areas on the chest, and six paired areas on the back 

(Figure 7.23). They always auscultate to left and right sides at the same level before 

moving down to the next level – this way they get a side-by-side comparison, and 

any differences will be more apparent. Thus, we also needed to follow the same 

pattern when auscultating with our electronic stethoscope. After physicians were 

done with the examination of the patient, we also recorded from the same spots that 
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the physician auscultated from and input the lung sound classification physicians told 

us about each lung area such as rhoncus, rales etc (Appendix C). 

The lung sounds recording protocol was as follows: 

1) The subject was seated in a chair.  

2) They were asked to relax for three minutes while this procedure was 

explained to them. 

3) The subject was also asked not to talk or change posture.  

4) The subject was asked to lift their shirt. The stethoscope device was first 

placed on the subject’s back at position 1. The diaphragm of the device 

wereheld against the patient’s back with direct skin contact and slight 

pressure. The stethoscope was not placed directly on the scapula because the 

bone mass would muffle the lung sounds. However, if no other locations 

offered audible lung sounds, a partial section of the stethoscope diaphragm 

could be placed over areas with bone.  

5) The subject was instructed to breath deeper than normal.  

6) Lung sounds were recorded for 10 seconds on the computer and associated 

with the correct audio file.  

7) Steps were repeated for each position. 

We recorded lung sounds in hospital environments without special sound isolation. 

But to reduce the noise as much as possible, we recorded these sounds inside patient 

rooms and/or examination rooms. 

Our patient demographic information can be seen in Table 7.3. 

Table 7.3 Patient demographic information 

PATIENT INFORMATION 

Number of males 710 

Number of females 920 

Average age 43 

Maximum age 92 

Minimum age 18 
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This study was approved by the local Human Experiments Ethical Committee of 

Turgut Özal University (29.12.2015 – 0123456/0023). 

7.4 Experiments 

7.4.1 Experiment 1 

In this experiment, 17,930 lung sounds have been recorded from 825 sick and 805 

healthy (total 1,630) subjects. Each sound clip was 10 seconds long and included 

three to four respiration cycles.  

A total of 6 chest physicians contributed to our study, 3 from Ankara University 

Chest Diseases Hospital, 2 from Yıldırım Beyazıt University Chest Diseases Clinic 

and 1 from Yıldırım Beyazıt Education and Research Hospital Chest Diseases Clinic. 

We used our electronic stethoscope to digitally record and analyze lung sounds [8]. 

For the traditional stethoscope in our experiment, we used a 3M
TM

 Littmann® 

Classic II S.E. stethoscope. 

We started on experimenting with the data we collected. We aimed to build neural 

networks for the following experiments. For audio classification, we need to extract 

key features and run them over a network. However, how features extracted is a very 

important question. 

There are two ways to extract features: 

 Spectrogram Method 

 MFCC Method 

A spectrogram is a visual representation of the spectrum of frequencies in a sound or 

other signal as they vary with time or some other variable [8] (Figure 7.24). 

Therefore, spectrograms are a very common visualization method for audio. The idea 

behind the spectrogram method is that since convolutional neural networks (CNN) 

work best on images, we take the audio signal and turn it into an image so we can use 

it in the CNN. 
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Figure 7.24 Example of respiratory sound spectrogram 

In this experiment we used two feature extraction methods [8]; Mel frequency 

cepstral coefficient (MFCC) feature extraction and spectrogram generation using 

short-time Fourier transform (STFT) [8]. MFCC features are widely used in audio 

detection systems and the experiments we ran using the MFCC features enabled us to 

find a base value for accuracy, precision, recall, sensitivity and specificity [8] (Figure 

7.25, 7.26). Spectrogram images are also used in audio detection [8]. However, they 

were never tested in respiratory audio with CNNs [8]. We wanted to see if we can 

match or exceed the audio detection accuracies with MFCC features [8]. 

 

Figure 7.25 MFCC classification 
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Figure 7.26 MFCC steps [323] 

MFCC datasets were built using SciPy library [8]. We used support vector machine 

(SVM), k-nearest neighbor (k-NN) and Gaussian Bayes (GB) to process these 

datasets [8] (Figure 7.27, 7.28). Spectrogram dataset was built using a combination 

of open source graph generation library Pylab and various open source image 

processing libraries [8]. We generated 28x28 and 600x600 grayscale images to fit 

them into the memory for CNN to process [8]. 
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Figure 7.27 SVM steps  

 

 

Figure 7.28 Classification principle of SVM [324] 

We built 16 datasets, 4 for SVMs, 4 for k-NNs, 4 for GBs and 4 for CNNs: 

 4 datasets for prediction of respiratory sounds whether it is a normal 

respiratory sound or a pathological one. (17,930 audio clips, 2 classes) [8] 

 4 datasets for classification of respiratory sounds labeled with a singular type: 

Normal, rhonchus, squeak, stridor, wheeze, rales, bronchovesicular, frotman, 

bronchial, absent, decreased, aggravation, long expirium duration (LED). 

(14,453 audio clips, 13 classes) [8] 
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 4 datasets for classification of respiratory sounds labeled with only as type 

rale, rhonchus and normal. (15,328 audio clips, 3 classes) [8] 

 4 datasets for classification of respiratory sounds with all labels including 

ones with multiple labels. (17,930 audio clips, 73 classes) [8] 

In the CNN experiments, we used Theano and Keras frameworks. We resized the 

spectrograms to 28x28 and 600x600 images and input them into a CNN that has 2 

convolutional, 2 max-pooling, a hidden and an output layer that is shown in Figure 

7.29, 7.30, 7.31, and 7.32. We used categorical crossentropy as the loss function, 

optimizer as AdaDelta and weight initializer as glorot uniform. 

 

 

Figure 7.29 CNN structure for classifying pathologic and normal sound types [8] 

 

 

Figure 7.30 CNN structure for classifying all singular sound types [8] 
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Figure 7.31 CNN structure for classifying rale, rhonchus and normal sounds [8] 

 

 

Figure 7.32 CNN structure for classifying all lung sounds [8] 

 

 

Figure 7.33 Experiment overview 
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In SVM experiments we used: 

 Non-linear SVM with C as 1, gamma as 0.01 in classification of healthy 

versus pathologic respiratory sounds. 

 Non-linear SVM with C as 1, gamma as 0.1 in classification of respiratory 

sounds labeled with a singular type. 

 Non-linear SVM with C as 1, gamma as 0.01 in classification of respiratory 

sounds labeled with only as type rale, rhonchus and normal. 

 Non-linear SVM with C as 1, gamma as 0.01 in classification of respiratory 

sounds with all labels. 

In k-NN experiments we used: 

 Weights as uniform, algorithm as auto, leaf size as 30, p as 1 and number of 

neighbors as 2 in classification of healthy versus pathologic respiratory 

sounds. 

 Weights as distance, algorithm as KDTree, leaf size as 10, p as 1, and number 

of neighbors as 6 in classification of respiratory sounds labeled with a 

singular type. 

 Weights as distance, algorithm as auto, leaf size as 30, p as 2, and number of 

neighbors as 6 in classification of respiratory sounds labeled with only as 

type rale, rhonchus and normal. 

 Weights as distance, algorithm as auto, leaf size as 30, p as 2 and number of 

neighbors as 4 in classification of respiratory sounds with all labels. 

In GB experiments we didn’t use any prior probabilities. 

As can be seen from Figure 7.33, we divided the dataset into two parts; training and 

test. Then extracted either MFCC features or generated spectrogram images of 

sounds. Finally we used SVM, k-NN, GB and CNN algorithms to classify the sounds 

and display the end result. 
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7.4.2 Experiment 2 

In this experiment, 17,930 lung sounds have been recorded from 825 sick and 805 

healthy (total 1,630) subjects. Each sound clip was 10 seconds long and included 

three to four respiration cycles.  

A total of 6 chest physicians contributed to our study, 3 from Ankara University 

Chest Diseases Hospital, 2 from Yıldırım Beyazıt University Chest Diseases Clinic 

and 1 from Yıldırım Beyazıt Education and Research Hospital Chest Diseases Clinic. 

We used our electronic stethoscope to digitally record and analyze lung sounds [8]. 

For the traditional stethoscope in our experiment, we used a 3M
TM

 Littmann® 

Classic II S.E. stethoscope. 

In this experiment, apart from the manually selected features (age, gender, smoking 

habits, sport habits, shortness of breath, cough, color of mucus, coughing of blood, 

chest pains, high fever, weight loss, swelling in legs, night sweating, palpitation, 

FVC, FEV1, FEV1/FVC, white blood cell count, C-reactive protein count, 

neutrophils count and X-ray results from 6 regions of lungs), we used mel frequency 

cepstral coefficient (MFCC) feature extraction method [8] (Figure 7.25, 7.26). 

MFCC datasets were built using SciPy library [8]. We used support vector machine 

(SVM) (Figure 7.27, 7.28), k-nearest neighbor (k-NN) and Gaussian Bayes (GB) to 

process these datasets [8]. 

We built 18 datasets with 1,630 subjects: 

 3 datasets for prediction of whether the subject is ill or healthy with our 

manually selected text features 

 3 datasets for prediction of whether the subject is ill or healthy with MFCC 

features extracted from combined audio data from each subject’s 11 locations 

on their chest 

 3 datasets for prediction of whether the subject is ill or healthy with 

combining our manually selected text features with MFCC features extracted 

from combined audio data from each subject’s 11 locations on their chest 
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 3 datasets for 12 class diagnosis classification with our manually selected text 

features 

 3 datasets for 12 class diagnosis classification with MFCC features extracted 

from combined audio data from each subject’s 11 locations on their chest 

 3 datasets for 12 class diagnosis classification with combining our manually 

selected text features with MFCC features extracted from combined audio 

data from each subject’s 11 locations on their chest. 

In SVM experiments we used: 

 Linear SVM with C as 0.1 in 12 class classification of lung diseases using 

text data. 

 Linear SVM with C as 0.0001 in 12 class classification of lung diseases using 

audio data. 

 Linear SVM with C as 0.001 in 12 class classification of lung diseases using 

text and audio data. 

 Non-linear SVM with C as 0.1 and gamma as 0.01 in classification of healthy 

versus sick using text data. 

 Non-linear SVM with C as 0.1, gamma as 0.001 in classification of healthy 

versus sick using audio data. 

 Non-linear SVM with C as 0.1, gamma as 0.001 in classification of healthy 

versus sick using text and audio data. 

In k-NN experiments we used: 

 Weights as distance, algorithm as brute, leaf size as 30, p as 1 and number of 

neighbors as 9 in 12 class classification of lung diseases using text data. 

 Weights as distance, algorithm as auto, leaf size as 30, p as 1 and number of 

neighbors as 9 in 12 class classification of lung diseases using audio data. 

 Weights as distance, algorithm as auto, leaf size as 30, p as 1 and number of 

neighbors as 5 in 12 class classification of lung diseases using text and audio 

data. 
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 Weights as uniform, algorithm as auto, leaf size as 30, p as 1 and number of 

neighbors as 2 in classification of healthy versus sick using text data. 

 Weights as uniform, algorithm as brute, leaf size as 30, p as 1 and number of 

neighbors as 2 in classification of healthy versus sick using audio data. 

 Weights as uniform, algorithm as auto, leaf size as 30, p as 1 and number of 

neighbors as 2 in classification of healthy versus sick using text and audio 

data. 

In GB experiments we didn’t use any prior probabilities. 

As can be seen from Figure 7.33, we divided the dataset into two parts; training and 

test. Then we extracted the MFCC features from the audio in both training and the 

test dataset audio. Finally we used SVM, k-NN and GB to classify the sounds and 

display the end result. 

7.4.3 Experiment 3 

We observed that some audio called normal and decreased after auscultation with 

traditional stethoscope were perceived as different pathological sounds when the 

same sound was listened from electronic stethoscope records. And this difference, 

would lead to a different diagnosis by the physician. 

In this experiment, our aim was to compare the difference of diagnosis between lung 

sounds that was auscultated by both by traditional stethoscope and electronic 

stethoscope. 

To this end, we used our electronic stethoscope to store lung sounds digiatally, 

analyze them and compare them. For the traditional stethoscope in our experiment, 

we used a 3M
TM

 Littmann® Classic II S.E. stethoscope. 

In this experiment, 17,930 lung sounds have been recorded from 825 sick and 805 

healthy subjects from Ankara University Chest Diseases Hospital, Yıldırım Beyazıt 

University Chest Diseases Clinic, Yıldırım Beyazıt Education and Research Hospital 

Chest Diseases Clinic. Each sound clip was 10 seconds long. 
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While these recordings were previously diagnosed as decreased and normal lung 

sounds, after listening the recording that was done by our electronic stethoscope, in 

some cases, physicians came conclusion to different diagnosis than their previous 

one. 

After this realization, we went over all 17,930 recordings and found that pathologic 

sounds could not be heard in 1,477 recordings (8.24% of total recordings) because 

physicians could not hear them using the traditional stethoscope. We selected 100 

random recordings from these 1,477 recordings. 3 chest physicians that contributed 

to our research auscultated and re-diagnosed these sounds without knowing their 

previous diagnosis. They were asked to write their diagnosis to a table that was 

provided for statistic analysis. 
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CHAPTER 8 

RESULTS 

8.1 Results 

8.1.1 Results of the First Experiment 

For this experiment, we built 8 datasets, 4 for SVMs and 4 for CNNs. Using the 

information in Figure 8.1 we generated the results shown in Table 8.1. 

 

 

Figure 8.1 Terminology and derivations from a 2x2 confusion matrix [325]
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Table 8.1 Experiment results 

 Training 

Accuracy 

Test 

Accuracy 

Training 

Precision 

Test 

Precision 

Training 

Recall 

Test 

Recall 

Training 

Sensitivity 

Test 

Sensitivity 

Training 

Specificity 

Test 

Specificity 

Classification of healthy versus pathologic respiratory sounds 

CNN 

(600x600 

Spectrogram) 

98% 95% 98% 95% 98% 95% 98% 98% 98% 95% 

CNN 

(28x28 Spectrogram) 
87% 86% 90% 86% 89% 86% 89% 86% 95% 86% 

SVM (MFCC) 91% 86% 94% 89% 87% 87% 87% 87% 87% 82% 

k-NN (MFCC) 91% 85% 99% 90% 83% 83% 83% 83% 83% 79% 

GB (MFCC) 59% 58% 82% 81% 23% 23% 23% 23% 23% 21% 

Classification of respiratory sounds labeled with a singular type 

CNN 

(600x600 

Spectrogram) 

95% 85% 98% 88% 95% 85% 94% 85% NA NA 

CNN 

(28x28 Spectrogram) 
90% 76% 94% 79% 86% 74% 86% 74% NA NA 

SVM (MFCC) 99% 75% 99% 75% 99% 99% 99% 99% NA NA 

k-NN (MFCC) 99% 76% 99% 76% 99% 99% 99% 99% NA NA 

GB (MFCC) 23% 22% 23% 22% 23% 23% 23% 23% NA NA 

CNN: Convolutional Neural Network, MFCC: Mel Frequency Cepstral Coefficient, NA: Not available, SVM: Support Vector Machine, k-NN: k-Nearest 

Neighbor, GB: Gaussian Bayes 
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Table 8.1 (continue) Experiment results 

 Training 

Accuracy 

Test 

Accuracy 

Training 

Precision 

Test 

Precision 

Training 

Recall 

Test 

Recall 

Training 

Sensitivity 

Test 

Sensitivity 

Training 

Specificity 

Test 

Specificity 

Classification of respiratory sounds labeled with only as type rale, rhonchus and normal 

CNN 

(600x600 

Spectrogram) 

95% 93% 94% 88% 93% 88% 97% 91% NA NA 

CNN 

(28x28 Spectrogram) 
87% 80% 88% 79% 85% 79% 85% 79% NA NA 

SVM (MFCC) 89% 80% 89% 80% 89% 89% 89% 89% NA NA 

k-NN (MFCC) 99% 79% 99% 79% 99% 99% 99% 99% NA NA 

GB (MFCC) 42% 42% 42% 42% 42% 42% 42% 42% NA NA 

Classification of respiratory sounds with all labels 

CNN 

(600x600 

Spectrogram) 

82% 77% 90% 80% 75% 66% 75% 66% NA NA 

CNN 

(28x28 Spectrogram) 
74% 62% 80% 73% 66% 56% 66% 56% NA NA 

SVM (MFCC) 78% 62% 78% 62% 78% 78% 78% 78% NA NA 

k-NN (MFCC) 99% 61% 99% 61% 99% 99% 99% 99% NA NA 

GB (MFCC) 18% 15% 18% 15% 18% 18% 18% 18% NA NA 

CNN: Convolutional Neural Network, MFCC: Mel Frequency Cepstral Coefficient, NA: Not available, SVM: Support Vector Machine, k-NN: k-Nearest 

Neighbor, GB: Gaussian Bayes 
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8.1.2 Resultss of the Second Experiment 

For this experiment, we built 6 datasets with 1,630 subjects. Using the information in Figure 8.1 we generated the results shown in Table 

8.2. In calculation of the results we used binary in “classification of healthy versus sick using text data”, “classification of healthy versus 

sick using audio data”, “classification of healthy versus sick using text and audio data” and micro in “12 class classification of lung 

diseases using text data”, “12 class classification of lung diseases using audio data”, “12 class classification of lung diseases using text and 

audio data” as average functions. 

Table 8.2 Experiment results 

 Training 

Accuracy 

Test 

Accuracy 

Training 

Precision 

Test 

Precision 

Training 

Recall 

Test 

Recall 

Training 

Sensitivity 

Test 

Sensitivity 

Training 

Specificity 

Test 

Specificity 

12 class classification 

of lung diseases using 

text data (SVM) 

91% 73% 91% 73% 91% 91% 91% 91% NA NA 

12 class classification 

of lung diseases using 

text data (k-NN) 

100% 67% 100% 67% 100% 100% 100% 100% NA NA 

12 class classification 

of lung diseases using 

text data (GB) 

64% 58% 64% 58% 64% 64% 64% 64% NA NA 

12 class classification 

of lung diseases using 

audio data (SVM) 

96% 63% 96% 63% 96% 96% 96% 96% NA NA 

12 class classification 

of lung diseases using 

audio data (k-NN) 

99% 64% 99% 64% 99% 99% 99% 99% NA NA 

12 class classification 

of lung diseases using 

audio data (GB) 

55% 48% 53% 48% 53% 53% 53% 53% NA NA 
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Table 8.2 (continue) Experiment results 

 Training 

Accuracy 

Test 

Accuracy 

Training 

Precision 

Test 

Precision 

Training 

Recall 

Test 

Recall 

Training 

Sensitivity 

Test 

Sensitivity 

Training 

Specificity 

Test 

Specificity 

12 class classification 

of lung diseases using 

text and audio data 

(SVM) 

99% 70% 99% 70% 99% 99% 99% 99% NA NA 

12 class classification 

of lung diseases using 

text and audio data 

(k-NN) 

100% 66% 100% 66% 100% 100% 100% 100% NA NA 

12 class classification 

of lung diseases using 

text and audio data 

(GB) 

69% 58% 69% 58% 69% 69% 69% 69% NA NA 

Classification of 

healthy versus sick 

using text data 

(SVM) 

78% 75% 100% 100% 55% 55% 55% 55% 55% 52% 

Classification of 

healthy versus sick 

using text data (k-

NN) 

99% 95% 100% 94% 98% 98% 98% 98% 98% 96% 

Classification of 

healthy versus sick 

using text data (GB) 
98% 98% 97% 98% 99% 99% 99% 99% 99% 98% 

Classification of 

healthy versus sick 

using audio data 

(SVM) 

87% 88% 85% 89% 88% 88% 88% 88% 88% 88% 
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Table 8.2 (continue) Experiment results 

 Training 

Accuracy 

Test 

Accuracy 

Training 

Precision 

Test 

Precision 

Training 

Recall 

Test 

Recall 

Training 

Sensitivity 

Test 

Sensitivity 

Training 

Specificity 

Test 

Specificity 

Classification of 

healthy versus sick 

using audio data (k-

NN) 

96% 92% 94% 94% 92% 94% 92% 92% 92% 88% 

Classification of 

healthy versus sick 

using audio data 

(GB) 

92% 91% 98% 98% 85% 85% 85% 85% 85% 85% 

Classification of 

healthy versus sick 

using text and audio 

data (SVM) 

72% 64% 100% 100% 43% 43% 43% 43% 43% 30% 

Classification of 

healthy versus sick 

using text and audio 

data (k-NN) 

98% 92% 100% 90% 96% 96% 96% 96% 96% 95% 

Classification of 

healthy versus sick 

using text and audio 

data (GB) 

97% 97% 98% 97% 95% 95% 95% 95% 95% 97% 
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8.1.3 Results of the Third Experiment 

In our study, we observed that some audio called normal and decreased after 

auscultation with traditional stethoscope were perceived as different pathological 

sounds when the same sound was listened from electronic stethoscope records. This 

showed when recorded with an electronic stethoscope, the lung sounds that were 

difficult to perceive and diagnose by a traditional stethoscope such as decreased lung 

sounds, were heard comfortably and diagnosed easily. 

We selected 100 random recordings from 1,477 recordings (8.24% of total 

recordings) could not be heard easily using the traditional stethoscope. Three chest 

physicians that contributed to our research auscultated and re-diagnosed these sounds 

without knowing their previous diagnosis. They were asked to write their diagnosis 

to a table that was provided. First diagnosis and re-diagnosed results using the 

records of the electronic stethoscope are given in Table 8.3. 
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Table 8.3 First diagnois and re-diagnosed results 

Audio 

No 

First diagnosis 1
st
Chest 

physician 

2
nd

Chest 

physician 

3
rd

Chest 

physician 

1 Normal Rhonchus Rhonchus Rhonchus 

2 Normal Rhonchus Rhonchus Rhonchus 

3 Normal Rhonchus Rhonchus Rhonchus 

4 Normal Rhonchus Rhonchus Rales 

5 Normal Normal Normal Rhonchus 

6 Normal Normal Rales Normal 

7 Normal Rhonchus Rhonchus Rhonchus 

8 Normal Normal Rhonchus Rhonchus 

9 Normal Rhonchus Rhonchus Rhonchus 

10 Normal Rhonchus Rhonchus Rhonchus 

11 Normal Normal Rales Rhonchus 

12 Normal Rhonchus Rhonchus Rhonchus 

13 Decreased Rhonchus Rhonchus Rhonchus 

14 Decreased Rhonchus Rhonchus Rhonchus 

15 Decreased Rhonchus Rhonchus Rhonchus 

16 Normal Rales Rales Normal 

17 Normal Rales Rales Normal 

18 Normal Rhonchus Rhonchus Rhonchus 

19 Normal Rhonchus Rales Rhonchus 

20 Normal Rales Rales Rales 

21 Normal Rales Rales Rales 

22 Normal Rales Rales Rales 

23 Normal Rhonchus Rhonchus Rhonchus 

24 Normal Rhonchus Rhonchus Rhonchus 

25 Decreased Rales Normal Rales 

26 Decreased Rales Rales Rales 

27 Normal Rales Normal Normal 

28 Normal Rales Normal Normal 

29 Normal Rales Rhonchus Normal 

30 Normal Rales Rales Rales 

31 Normal Normal Rhonchus Normal 

32 Normal Rales Rales Rales 

33 Normal Normal Normal Normal 

34 Decreased Rales Normal Normal 

35 Decreased Rales Normal Normal 

36 Decreased Rales Rales Rales 

37 Decreased Rales Normal Rhonchus 

38 Decreased Rhonchus Rhonchus Rhonchus 

39 Decreased Rales Rales Rales 

40 Decreased Rales Rhonchus Rhonchus 

41 Decreased Normal Normal Normal 

42 Normal Rhonchus Rhonchus Rales 

43 Normal Rales Rales Rales 

44 Normal Rhonchus Rhonchus Rhonchus 

45 Normal Rhonchus Rales Normal 
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Table 8.3 (continued) First diagnois and re-diagnosed results 

Audio 

No 

First diagnosis 1
st
Chest 

physician 

2
nd

Chest 

physician 

3
rd

Chest 

physician 

46 Normal Rales Normal Normal 

47 Decreased Rales Rales Rales 

48 Decreased Rales Rales Rales 

49 Decreased Rales Rales Rales 

50 Decreased Rales Rales Rales 

51 Decreased Normal Normal Normal 

52 Decreased Normal Normal Rales 

53 Decreased Normal Normal Normal 

54 Decreased Normal Rales Normal 

55 Decreased Rales Rales Rales 

56 Normal Normal Rales Rales 

57 Normal Rales Rales Rales 

58 Normal Rhonchus Rhonchus Rhonchus 

59 Decreased Rales Rales Rales 

60 Normal Rhonchus Rhonchus Rhonchus 

61 Normal Rhonchus Rhonchus Rhonchus 

62 Normal Rhonchus Normal Rhonchus 

63 Decreased Rhonchus Rhonchus Rhonchus 

64 Normal Rhonchus Normal Rhonchus 

65 Normal Rhonchus Rhonchus Rhonchus 

66 Normal Rhonchus Rhonchus Rhonchus 

67 Normal Rhonchus Normal Rales 

68 Decreased Rales Rales Rales 

69 Normal Rales Rales Rales 

70 Normal Rales Rales Rales 

71 Normal Rhonchus Rhonchus Rhonchus 

72 Normal Rales Rales Rales 

73 Decreased Rales Rhonchus Normal 

74 Decreased Rales Normal Normal 

75 Normal Rales Rhonchus Rhonchus 

76 Decreased Rhonchus Rales Rales 

77 Normal Rales Rales Rales 

78 Normal Rales Normal Normal 

79 Normal Rales Rales Rales 

80 Normal Rales Normal Rales 

81 Normal Normal Rales Normal 

82 Normal Rales Normal Normal 

83 Normal Rales Normal Rales 

84 Normal Rales Rales Rales 

85 Normal Rales Rales Normal 

86 Normal Normal Rales Normal 

87 Normal Normal Rales Normal 

88 Normal Normal Normal Normal 

89 Decreased Rales Rales Rales 

90 Decreased Normal Normal Normal 
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Table 8.3 (continued) First diagnois and re-diagnosed results 

Audio 

No 

First diagnosis 1
st
Chest 

physician 

2
nd

Chest 

physician 

3
rd

Chest 

physician 

91 Normal Rhonchus Rhonchus Rhonchus 

92 Normal Rhonchus Rhonchus Rhonchus 

93 Normal Rhonchus Rhonchus Rhonchus 

94 Normal Rales Rales Rales 

95 Normal Rales Rhonchus Rhonchus 

96 Normal Rales Rhonchus Rhonchus 

97 Normal Rales Rhonchus Rhonchus 

98 Decreased Rhonchus Rhonchus Rhonchus 

99 Decreased Rales Rales Rales 

100 Decreased Rales Normal Rales 

In conclusion, we determined that: 

 Only at 2 recordings (audio number 33 and 88) previously diagnosed as 

normal, all three chest physicians re-diagnosed these sounds as normal again. 

 At other recordings, after listening the recording from the electronic 

stethoscope recording, they reached different conclusions, other than their 

previous diagnosis. The important thing here is that even the recordings that 

they diagnosed as decreased lung sounds, which are very hard to hear by 

traditional stethoscope, they reached to more distinguishing diagnosis with 

the recordings of the electronic stethoscope. 

Three physicians participating in the study accepted the presence of other pathologic 

sounds except two audio clips out of randomly selected 100 audio (including normal 

or decreased). Since physicians could interpret the same sounds differently 

depending on their training and experience, the diagnosis had to be assessed with a 

statistical method. We interviewed two experts on statistics and reached the 

following conclusions: 

 We decided that it would be appropriate to calculate the Kappa coefficient 

because we wanted to test the compatibility of the 3 different evaluators with 

each other over the nominal data. 

 In our study, we decided that it would be better to use 2-way kappa instead of 

3-way kappa for our database. 
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Since we used 2-way kappa, we prepared 3 tables for each comparison (physician 1 

versus physician 2, physician 1 versus physician 3 and physician 2 versus physician 

3):  

 The first table; descriptive values (Table 8.4, Table 8.7, Table 8.10). 

 The second table; probability values (Table 8.5, Table 8.8, Table 8.11). 

 The third table; the symmetric measures. This is the table where Kappa is 

located. (Table8.6, Table 8.9, Table 8.12). 

The kappa value in the third table and the significancy values in the last column of 

the table are important. The output of these values of 0.0 indicates that it is 

significant to study. 

The following results were obtained (Table 8.4-Table 8.12):  
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Table 8.4 Case Processing Summary (1
st 

and
 
2

nd
Physician) 

 

Cases 

Valid Missing Total 

N Percent N Percent N Percent 

1
st
Physician * 

2
nd

Physician 
100 100.0% 0 0.0% 100 100.0% 

 

 

Table 8.5 FirstPhysician * SecondPhysician Crosstabulation 

 

2
nd

Physician 

Total 1 2 3 

1
st
Physician 1 Count 8 7 2 17 

% within 1
st
Physician 47.1% 41.2% 11.8% 100.0% 

% within 2
nd

Physician 33.3% 17.9% 5.4% 17.0% 

2 Count 13 29 7 49 

% within 1
st
Physician 26.5% 59.2% 14.3% 100.0% 

% within 2
nd

Physician 54.2% 74.4% 18.9% 49.0% 

3 Count 3 3 28 34 

% within 1
st
Physician 8.8% 8.8% 82.4% 100.0% 

% within 2
nd

Physician 12.5% 7.7% 75.7% 34.0% 

Total Count 24 39 37 100 

% within 1
st
Physician 24.0% 39.0% 37.0% 100.0% 

% within 2
nd

Physician 100.0% 100.0% 100.0% 100.0% 

 

 

Table 8.6 Symmetric Measures (1
st 

and
 
2

nd
Physician) 

 Value 

Asymp. Std. 

Error
a
 Approx. T

b
 Approx. Sig. 

Measure of Agreement Kappa .455 .071 6.357 .000 

N of Valid Cases 100    

a. Not assuming the null hypothesis. 

b. Using the asymptotic standard error assuming the null hypothesis. 
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Table 8.7 Case Processing Summary (1
st 

and
 
3

rd
Physician) 

 

Cases 

Valid Missing Total 

N Percent N Percent N Percent 

1
st
Physician * 

3
rd

Physician 
100 100.0% 0 0.0% 100 100.0% 

 

 

Table 8.8 FirstPhysician * ThirdPhysician Crosstabulation 

 

3
rd

Physician 

Total 1 2 3 

1
st
Physician 1 Count 12 2 3 17 

% within 1
st
Physician 70.6% 11.8% 17.6% 100.0% 

% within 3
rd

Physician 46.2% 5.6% 7.9% 17.0% 

2 Count 13 30 6 49 

% within 1
st
Physician 26.5% 61.2% 12.2% 100.0% 

% within 3
rd

Physician 50.0% 83.3% 15.8% 49.0% 

3 Count 1 4 29 34 

% within 1
st
Physician 2.9% 11.8% 85.3% 100.0% 

% within 3
rd

Physician 3.8% 11.1% 76.3% 34.0% 

Total Count 26 36 38 100 

% within 1
st
Physician 26.0% 36.0% 38.0% 100.0% 

% within 3
rd

Physician 100.0% 100.0% 100.0% 100.0% 

 

 

Table 8.9 Symmetric Measures (1
st 

and
 
3

rd
Physician) 

 Value 

Asymp. Std. 

Error
a
 Approx. T

b
 Approx. Sig. 

Measure of Agreement Kappa .554 .068 7.857 .000 

N of Valid Cases 100    

a. Not assuming the null hypothesis. 

b. Using the asymptotic standard error assuming the null hypothesis. 
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Table 8.10 Case Processing Summary (2
nd 

and
 
3

rd
Physician) 

 

Cases 

Valid Missing Total 

N Percent N Percent N Percent 

2
nd

Physician * 

3
rd

Physician 
100 100.0% 0 0.0% 100 100.0% 

 

 

Table 8.11 SecondPhysician * ThirdPhysician Crosstabulation 

 

3
rd

Physician 

Total 1 2 3 

2
nd

Physician 1 Count 14 6 4 24 

% within 2
nd

Physician 58.3% 25.0% 16.7% 100.0% 

% within 3
rd

Physician 53.8% 16.7% 10.5% 24.0% 

2 Count 9 28 2 39 

% within 2
nd

Physician 23.1% 71.8% 5.1% 100.0% 

% within 3
rd

Physician 34.6% 77.8% 5.3% 39.0% 

3 Count 3 2 32 37 

% within 2
nd

Physician 8.1% 5.4% 86.5% 100.0% 

% within 3
rd

Physician 11.5% 5.6% 84.2% 37.0% 

Total Count 26 36 38 100 

% within 2
nd

Physician 26.0% 36.0% 38.0% 100.0% 

% within 3
rd

Physician 100.0% 100.0% 100.0% 100.0% 

 

 

Table 8.12 Symmetric Measures (2
nd 

and
 
3

rd
Physician) 

 Value 

Asymp. Std. 

Error
a
 Approx. T

b
 Approx. Sig. 

Measure of Agreement Kappa .604 .065 8.468 .000 

N of Valid Cases 100    

a. Not assuming the null hypothesis. 

b. Using the asymptotic standard error assuming the null hypothesis. 
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CHAPTER 9 

CONCLUSIONS AND DISCUSSION  

9.1 Conclusions 

Before we started the project we aimed to tackle the question of whether lung sounds 

can be classified using convolutional neural networks using spectrogram images and 

if this technique can yield better or equal accuracy, precision and recall results 

compared to the traditional sound classification techniques. 

As a result of our first experiment we found that lung sounds can be classified using 

convolutional neural networks on par with the state of the art classification 

techniques such as SVM, k-NN and GB. 

We also wondered if lung diseases be classified via lung sounds’ MFCC features and 

text patient data using and support vector machine, k-nearest neighbor and Gaussian 

Bayes algorithms. 

As a result of our second experiment, we found that using text and audio data, it is 

possible to classify lung diseases using SVM, k-NN and GB algorithms. 

Finally, we aimed to find out if the electronic stethoscope that was developed to 

collect lung sounds is successful in providing viable lung sound samples for the 

study. 

For the electronic stethoscope we reached the following design goals that we set: 

 Must be mobile and small, preferably pocket sized 

 Must have a directional microphone 

 Must be able to record low frequency audio 

 Must be able to reduce noise as much as possible 

 Must have low or no power consumption 

 Must be able to connect to any device via an audio jack 
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 Must be able to record using any software on any OS on any device 

Also it was successful in generating a viable dataset for the study. 

9.1.1 Conclusions of the First Experiment 

In classification of healthy versus pathologic respiratory sounds experiment, we 

found that the test set accuracy of SVM and CNN with 28x28 spectrogram images 

are the same [8]. SVM exceeded CNN in precision, recall and sensitivity however 

CNN yielded better results in specificity. 

In classification of respiratory sounds labeled with singular type experiment, CNN 

had a better result in accuracy and precision however it SVM yielded better results in 

recall, sensitivity [8]. 

In classification of respiratory sounds labeled only as type rale, rhonchus and normal 

experiment, accuracy was the same in SVM and CNN however SVM yielded better 

results in precision, recall and sensitivity [8]. 

In classification of respiratory sounds with all labels experiment, CNN and SVM 

accuracy was the same [8]. While CNN yielded better result in precision, SVM had 

better results in recall and sensitivity. 

However when it comes to CNN with 600x600 images it exceeds SVM in every 

experiment and every metric. 

Overall best results were obtained in experiments; healty versus sick classification 

and classification of rales, rhonchus and normal lung sounds. The reason for this is, 

that the frequency of those classes in our dataset. They have the most number of 

instances in our datasets. If we had a more diverse dataset and more data, we would 

get better results on the other experiments as well. 

9.1.2 Conclusions of the Second Experiment 

In these experiments, for the number of patients we had (1,630 subjects), it was 

observed that the best results were found in healthy versus sick classification. The 
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reason for that is our dataset does not have equal number of samples for each disease. 

Some classes are represented by just a few samples. Therefore, the classification 

accuracy drops as we have more classes. Also, the total number of samples affects 

the classification results. We have enough samples to classify 2 classes but for more 

accurate classification of more classes we need more samples. 

In 12 class classification of lung diseases, the most accurate algorithm was SVM 

with text data. In classifying via audio data, k-NN was the most accurate. Using both 

audio and text data, SVM was the most accurate. 

However when we classify healthy versus sick via text, audio and combined data, 

GB was always the most accurate with very high accuracy, closely followed by k-

NN. 

We can infer from here that when we have large number of features but limited 

amount of samples, SVM and k-NN are best in classifying the dataset in more than 

two classes. However GB is best when it comes to classifying into two classes. 

Also, we can see from the results that when it comes to disease diagnosis, text and 

combined data produces better results than just audio data. This is also primarily true 

for deciding if the patient is healthy or sick. However, in deciding if the patient is 

healthy or sick, pure audio data can also be used as we found it to be highly accurate 

as well. 

9.1.3 Conclusions of the Third Experiment 

Kappa values were interpreted using the Table 9.1 below as proposed by Landis and 

Koch [326,327]. 
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Table 9.1 Kappa values suggested by Landis and Koch 

x value Comment 

< 0 No Consistency 

0.01 – 0.20 Negligable Consistency 

0.21 – 0.40 Weak Consistency 

0.41 – 0.60 Average Consistency 

0.61 – 0.80 Good Consistency 

0.81 – 1.00 Strong Consistency 

 

According to Landis and Koch: 

 The kappa value between physican 1 and 2 was 0.455. This shows that there 

is average consistency between their diagnoses of the respiratory sounds and 

this consistency level is statistically significant (p<0.05, p=0.00). 

 The kappa value between physican 1 and 3 was 0.554. This shows that there 

is average consistency between their diagnoses of the respiratory sounds and 

this consistency level is statistically significant (p<0.05, p=0.00). 

 The kappa value between physican 2 and 3 was 0.604. This shows that there 

is good consistency between their diagnoses of the respiratory sounds and this 

consistency level is statistically significant (p<0.05, p=0.00). 
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We also ran a convolutional neural network to determine the accuracy of this 100 

audio clips and the result was 79% accuracy, %80 sensitivity, %80 recall, %80 

precision and %80 specificity. 

9.2 Discussion 

9.2.1 Classification of Lung Sounds 

Developing a computer‑based respiratory sound analysis system that can diagnose 

the lung disorders is an area of concern since there are a very few systems developed 

in the past. At present, it is difficult to compare various methods reported in the 

literature because of the difference in data acquisition methods or methodology. 

Factors that influence the results include position of the sensor. To position the 

sensor, it requires professionally trained physicians. 

Another important issue is that very few systems have used experimental data from 

hospitals and many systems have used data from lung sound CDs used for training 

the physicians. The data from lung sound CDs used by the previous researchers are 

not suitable for machine learning because of insufficient data [169]. 

Numerous studies have demonstrated the benefits of computerized lung sound 

analysis [8,16,49,328]. On the other hand, few studies have been reported on the 

medical benefit of the computerized analysis of the classification of pulmonary 

sounds obtained by auscultation in pulmonary diseases [8] (Table 1.1).  

It is observed that the data sets used by previous studies are very limited [8]. For 

example, in the studies in Table 1.1, a maximum of 2,127 voice samples were 

studied from a maximum of 34 subjects [8,33]. In the studies in Table 1.1, it can be 

seen that the results are very high when the audio data are very different, and when 

the audio data are similar, the results are very low [8]. These systems can be a major 

problem when used to make a critical decision, such as the diagnosis of the disease 

[8]. In our study, we collected 11 audio data from each of the 1,630 healthy and sick 

subjects totaling to 17,930 audio clips [8]. Because of the larger size of our dataset 

we managed to get consistent results in all our experiments [8]. 
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Previous studies have shown that the audio clip size changes between 8 and 16 

seconds [8]. Similarly, as a result of our work to determine the duration of the audio 

clips, we decided to record the audio clips for 10 seconds with the recommendation 

of our chest physicians [8]. 

In previous studies in this area, we have found that the devices and software 

packages on the market are being used. But as a result of our research, we formed 

our own custom hardware and software utilizing open source libraries to meet all our 

needs [8]. 

In other research, no explanation was given about the audio formats used [8]. Some 

audio formats may compromise quality over reduced disk space. This can lead to 

some problems [8]. For this reason, we utilized the lossless WAV format to avoid 

any data loss [8].  

Rietveld et al. [31] they determined the audio samples they used in their study by 

choosing the cleanest ones from the audio they recorded [8]. In the study of Baydar 

et al. [35] audio clips were recorded in a completely silent room so that the audio 

samples were clean [8]. Though, if the system is trained cleanly, it can not be 

expected to routinely use it in a real environment where it is not possible to remove 

the system from the noise like noises in a hospital [8]. Even in the most silent 

hospital rooms there is noise that can affect the sound recording [8]. For this reason, 

we tried to isolate as much of our electronic stethoscope as possible from the sound, 

and we carefully identified which microphone to use [8]. At the end of the study, 

external noise was detected in very few of the audio data gathered from the natural 

surroundings [8]. 

As shown below, in previous studies, we have identified a classification analysis of 

maximal 6 types of lung sounds [8]. For example, Kandaswamy et al. [36] performed 

a study to classify lung sounds into one of six categories: normal, wheeze, crackle, 

squeak, stridor or rhonchus [8]. Forkheim et al. [29] distinguished lung sounds into 

isolated segments and then carried out studies to identify only wheezing in these 

segments [8]. Bahoura et al. [34], Riella et al. [42] and Hashemi et al. [50] classified 

the audio they gathered into two categories as wheezes or normal breathing sounds 
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[8]. Lu et al. [329] classified crackles as fine and and coarse [8]. Kahya et al. [30,39], 

Flietstra et al. [49] and Serbes et al. [48] classified crackles as either present or 

absent [8]. It has been found that the scope of these studies is very narrow due to the 

low amount of audio data and the focus on only a few audio types [8]. In our work 

we made 8 different experiments with 2, 3, 13 and 73 classes and tested our 

algorithm, diversifying our results highly [8].  

Previous studies, so far, have not used CNNs for classification [8]. In our work, we 

used this new classification algorithm called CNN on the audio. We have observed 

that this algorithm we choose works very well and generates coherent results [8]. 

Since it is difficult to create a database of lung sounds, most researchers have 

preferred to use ready-made databases. For example, Lu et al. [329] obtained their 

test dataset from RALE and ASTRA databases [8]. Riella et al. [42] utilized 

electronically acquired lung sounds from distinct online data stores on the Internet 

[8]. It should be considered that the use of such ready-made data can cause major 

problems as recording hardware and software may differ for each audio clip [8]. In 

this case, the audio quality will cause classification problems because it can not be 

coherent in all training and test examples [8]. Our work was done using a single 

computer that meets all the recording conditions we wanted and the computer 

program we created to record audio and patient data [8]. 

Studies in the literature [5,29,30,39] have compared some algorithms. However, a 

widely accepted method of audio classification has not been used to compare their 

neural networks [8]. In our work, we utilized the classification results of SVMs that 

utilize the MFCC features to compare our CNN algorithm [8]. 

In the studies that were made so far, outcomes were not intended toward a practical 

system [8]. We improved our device and software to match the workflow of the 

hospital environment in our work [8]. We plan to apply this workflow to the 

telemedicine system, which we think will improve in the future. Thus, we think that 

physicians will be able to share patient audio data for remote auscultating and 

consultation [8]. 
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Our electronic stethoscope however, helped physicians to diagnose these hard to 

diagnose lung sounds further and attain high quality medical results regardless of 

patient status. 

9.2.2 Classification of Lung Diseases 

It is a difficult job to diagnose only with auscultation. In addition, medical personnel 

need specialized training for diagnosing lung sounds properly [5,330]. For this 

reason, it is important to support physicians in decision-making by analyzing 

respiratory sounds with an algorithm [5,330]. 

Investigations that demonstrate the utility of performing a computerized analysis of 

lung diseases have been present in literature [8,16,49,328]. However, as shown in 

Table 1.2, there are few studies in the literature that utilize artificial neural network 

structures focusing on the diagnosis of chest diseases [3]. In these studies, using 

different neural network structures for the diagnosis of different lung disorders, 

achieved high classification accuracy utilizing assorted data sets [3]. However, since 

different sets of data are used in these studies, it is impossible to directly compare the 

results [3]. A larger data set is required to train the model with supervised learning 

[169,331]. 

Investigations in the literature have a very limited set of data, which is also shown in 

Table 1.2 [3,8,30,46,67,69,70,72-76,332]. Thus, their results are either very low 

when there is features similar or very high when there are a very different set of 

features [8]. Since these systems deal with a critical decision such as the diagnosis of 

the disease, it is clear that a possible faulty diagnosis in health would lead to 

irreversible vital consequences [8]. Therefore, this risk is the most important problem 

[8]. To avoid this problem, the data set, such as El-Solh et al. [68] and Heckerling et 

al. [71], must be large [8]. For this purpose, we collected 11 audio data from each of 

1,630 healthy and patient subjects, resulting in a total of 17,930 audio clips [8]. Since 

our data set is quite large, we were able to achieve coherent outcomes in all our 

experiments [8]. 
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In the previous studies, they did diagnosis classification with 2 classes, and one study 

with 3 classes [75]. Also, most studies, classified subjects as healthy and ill while 

some of them classified a subject group with two different illnesses. The problem 

with using low number of classes is that it does not really measure the performance 

and effectiveness of a given machine learning algorithm. In our study we classified 

1,630 patients into 16 disease classes as can be seen from Table 7.1. However since 

we didn't have equal number of classes for each disease, our result was lower than 

expected. If we had equal number of subjects per class and more data, our accuracy 

of 73% can be improved. 

In literature, diagnosis classification was made either by manually selected text data 

[3,67-71,74-76,332] or audio data [30]. In our study we ran our experiments using 

text, audio and text and audio combined. This provided an insight into which features 

are more important and if results could be improved with text and audio data 

combined. 

In previous studies, they used traditional machine learning algorithms such as MLP, 

MLNN, k-NN, PNN with only text data or audio data. However, in our study, instead 

of traditional algoritms we used text data and MFCC features of audio data in SVM 

algorithm for classification. 

9.2.3 Comparison of Electronic and Traditional Stethoscope 

It has been reported that 30% of people around the world have abnormal lung sounds 

like crackles, rhonchi, and wheezes [52]. Lung sound auscultation provides useful 

information for diagnosing abnormalities and disorders in the respiratory system 

[170]. Traditional acoustic stethoscope is still generally accepted to be the most 

popular device that physicians use to diagnose abnormal lung sounds [52]. Lung 

auscultation depends on the physician's experience, ability and audio perception [16, 

158]. Physicians need a long-term practice and experience to use respiratory signals 

to diagnose them through a traditional acoustic stethoscope [333]. Physicians' 

perceptions and experiences to obtain quality medical results may not always be 

sufficient [334,335]. It has been documented that the auscultation skills of primary 

care physicians are weak [333,336,337]. One drawback of the lung sound 
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auscultation technique is that it has a high possibility of false diagnosis [16]. In short, 

conditions such as environmental noise and subjective diagnostic experience of the 

physician can lead to some undesirable faults in the auscultation [52]. In addition, the 

lung sounds can not be recorded or stored for follow-up or monitoring via traditional 

stethoscopes [52]. 

In addition, the human aural system does not fully meet the requirements of 

traditional auscultation diagnostic testing performed with a stethoscope due to its 

restrictions [12,13]. The ears are sensitive to deterministic audio in the time or 

frequency domains, but are substantially less accurate in identifying, analyzing, and 

classifying the noise [12]. Another reason for human deficiency in the auscultator 

analysis of lung sounds is their low signal-to-noise ratio [12]. Thoracic lung sounds 

have relatively low amplitude compared with background noise of heart and muscle 

sounds [12]. A physician examining a patient with a stethoscope can perceive lung 

sounds only at isolated locations and at separate time intervals, so evaluation of 

breath sound distribution relies on the physician’s memory and auscultation expertise 

[6]. In addition, some abnormal lung sounds may be missed even by a chest-

auscultation expert in a conventional clinical setting [6]. Because of the lack of 

objectivity, and the qualitative nature of lung sounds, many physicians no longer rely 

only on auscultation as a diagnostic tool [6,12]. 

With the application of computer technology, new information has been obtained 

that has clinical importance on acoustic mechanisms and lung sounds [19,164]. The 

utilization of digital signal processing methods to gather data on average sounds 

were important footsteps that have improved the benefit of lung sounds besides the 

stethoscope [19,164]. 

In the literature, there were very small amount of research done on the subject of 

comparing electronic stethoscopes and traditional ones. 

According to Clement Hoffmann et al., the use of an electronic stethoscope 

(Littmann 3200) may provide better pulmonary auscultation quality than two 

traditional stethoscopes (Holtex Ideal and Littmann Cardiology III) [338]. This 

prospective, double-blind, randomized research was evaluated using a numerical 
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rating scale [338]. Rating scale values for Littmann Cardiology III, Holtex Ideal and 

electronic stethoscope were 7.4 ± 1.8, 4.6 ± 1.8 and 8.2 ± 1.6 respectively (P < 

0.0001) for pulmonary auscultation  [338].  

Studies of recent date have shown that diastolic heart sounds obtained with an 

electronic stethoscope include markers of coronary artery disease (CAD) [339]. 

Mesquita et al. proved that using a digital stethoscope is a positive influence in 

increasing the adequacy of cardiac auditory recognition during cardiology training 

[340]. 

In a study of compared digital and standard stethoscopes on children,Kevat et al.  

found moderate concordance in detecting wheezing and 100% concordance in 

detecting crackle [341]. In addition, they have shown that digital stethoscope is more 

sensitive than the clinician in wheezing detection [341]. When using a standard 

stethoscope, it has been shown to be a poor fit in the detection of pathological breath 

sounds [341]. 

The environment noise during air transportation is very high [342]. The use of a 

traditional stethoscope (Littman cardiology III) and an amplified stethoscope 

(Littman 3100) during air transportation by Jean P. Tourtier et al. was evaluated in 

terms of heart and breath sounds in 32 cases [342]. This prospective, double-blind, 

randomized research was evaluated using a numerical rating scale and t test [342]. 

Rating scale values for the traditional and amplified stethoscope were 5.8 ± 1.5 and 

6.4 ± 1.9 (P = .018) for heart auscultation and 3.3 ± 2.4 and 3.7 ± 2.9 (P = .15) for 

lung sounds respectively [342]. As a result, although the heart sounds can be heard 

more strongly with the amplified stethoscope, no significant difference can be 

detected regarding the breath sounds [342]. But the number of subjects that examined 

it was very small [342]. 

In the study of James H. Philip et al., twenty-one anesthesiologists reported that 

electronic stethoscopes judged better than conventional stethoscopes in the majority 

of the categories surveyed [343]. 
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In a study by Szilvási, V. et al, thirty-three Beagles type dogs compared auscultations 

with traditional and electronic stethoscopes. As a result, electronic stethoscop in 

cardiac murmurs, particularly on the right hemithorax, proved to be better [344]. 

However, electronic stethoscope is susceptible to electronic and environmental noise 

as well as to rubbing noise during use [345]. The characteristics of lower frequency 

bands have been shown to be more resistant to noise than the characteristics of 

higher frequency bands [339]. There are considerable differences between an 

electronic stethoscopic sound and a traditional stethoscope sound [345]. These 

disadvantages can be minimized if the device is used carefully and with training 

[339]. 

Electronic stethoscopes also help elderly physicans and physicians with hearing 

impairment, because their sound output can be increased so that they can hear it 

better. 

Our system consists only of a portable computer, simple electronic hardware, and the 

software. It can record, save, and replay lung sounds and analyze them in time and 

frequency domains. It can serve as a simple and beneficial appliance to measure and 

analyze lung sound. 

The main features of this system are: 

 The measurement is noninvasive, 

 Low capital cost, 

 No mechanical parts are involved, so no maintenance required, 

 Flexibility, 

 Usability in all kinds of hospital conditions, 

 This system is modularized in software and hardware and is therefore capable 

of being upgraded. 
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If we compare our device with the other commercial electronic stethoscopes, our 

most important advantages are: 

 Low cost (100 TL) 

 Does not need a battery to operate 

 Light weight and mobile 

 Can be connected to any device such as desktop computers, laptops or any 

mobile device 

 Can be used with any recording software on any platform 

In our study, we observed that some audio called normal and decreased after 

auscultation with traditional stethoscope were perceived as different pathological 

sounds when the same sound was listened from electronic stethoscope records. This 

showed that when recorded with an electronic stethoscope, some of the pathological 

sounds of the human ear that were difficult to perceive with conventional 

stethoscopes could be comfortably heard. Three physicians participating in the study 

accept the presence of other pathologic sounds except two audio clips out of 

randomly selected 100 audio (including normal or decreased). The results obtained 

by physicians were assessed with kappa statistic method via SPSS to determine the 

diagnosis consistency because the same sounds could be subjectively assessed 

differently according to their training and experience. We observed; good level 

consistency (0.604, p<0.05, p=0.00) between physicians 2 and 3, average level 

consistency (0.554, p<0.05, p=0.00) between physicians 1 and 3 and average level 

consistency (0.455, p<0.05, p=0.00) between physicians 1 and 2. 

This result shows us that if a traditional stethoscope is used in auscultation, lung 

sounds cannot be diagnosed as easily compared to the outputs of an electronic 

stethoscope. Therefore, there is chance that there can be an error in the diagnosis. As 

a result we believe that if electronic stethoscopes are used in auscultation, physicians 

would diagnose lung sounds more precisely reducing misdiagnosis. 
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CHAPTER 10 

FUTURE WORK   

10.1 Future Work 

Medical imaging methods such as magnetic resonance (MR), computed tomography 

(CT), ultrasound imaging (US), etc. need much more complex and costly equipment 

and specialized personnel; in short, they are much more costly and operationally 

complicated [346]. While these methods are only available in well-regulated health 

institutions, it is not possible to use it in rural small health centers and often in 

primary health care facilities because of cost and operational complexity [346]. In 

these small-scale healthcare facilities, auscultation continues to be used as a primary 

tool at the first examination of patients [346]. Due to the above reasons, it would be 

very helpful to provide suitable decision support systems that support physicians in 

identifying lung sounds and diseases, particularly in remote rural areas and primary 

healthcare [346]. Such decision support systems can be used as diagnostic or 

educational tools for young and inexperienced physicians working in remote and 

small health centers [346]. 

For computer-supported auscultation, besides software, only an electronic 

stethoscope and a personal computer are required [346]. The use of electronic 

stethoscope combined with a recording software: 

 Digitizes and stores lung sounds on digital mediums. 

 Incorporates lung sounds into electronic health records. 

 Transmits to distant systems using internet or wireless technology.  

 Makes a presentation on a screen in both time and frequency domain. 

 Works to eliminate noise and other unwanted components. 

Even the best-performing systems are thought to perform slightly lower in terms of 

confidence and accuracy than medical experts in the field at present [346]. 

Nevertheless, it is accepted that these systems are very convenient for physicians to 
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generate second opinions [346]. In any case, our system can be designed to be used 

only as an aid to the diagnosis, not to take the place of physicians. 

The diagnostic value of any clinical test or examination depends upon its ability to 

distinguish clearly, accurately, and in a repetitive manner between the normal and 

abnormal. 

Because auscultation is a subjective and variable method that depends on experiential 

and auditory training, it has visible disadvantages in interpreting diagnostic data 

[347]. If the audio signal digitization and processing methods are used, it is 

considered that the diagnostic value will be better [347]. So, new diagnostic tools are 

being developed that objectively monitor, store and assist physicians in practice the 

features of pathology [347]. If our recording software can be integrated into the 

hospital information system: 

 The patient's own physician may be able to compare the patient's previous 

audio with the current situation. 

 Where the patient's former physician is not available, the patient's new 

physician may be able to compare the audio data of the patient with the 

current situation. 

Despite their diagnostic importance in the assessment of respiratory sounds, it is 

difficult to perceive some short duration sounds such as crackles [162]. Because the 

human ear cannot distinguish between milli-second events [162]. In addition, the 

localized crackles can not considerably be shown in the whole spectrum of 

respiratory sounds [162]. Our study aims to assist physicians in the detection, 

recording, storage and classification of respiratory sounds which are difficult to 

identify with traditional stethoscopes but are significant in the diagnosis of different 

lung disorders. 

The diffusion of computers in medical settings over the recent years has provided a 

valuable tool for the study of the acoustic characteristics of lung sounds [28]. The 

advantage of the use of computers as supporting devices for learning has been 
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successfully experimented with in several medical disciplines, but only recently has 

it been applied to respiratory sounds [28]. 

One drawback of the lung sound auscultation technique is that it has a high 

possibility of false diagnosis [173]. It requires a professionally well-trained physician 

to recognize the abnormalities exactly [173]. Lung auscultation is a subjective 

method, which depends on the experience, ability, and auditory perception of the 

physician [158,169]. Recently, studies have been undertaken to increase the 

diagnostic value of auscultation by creating a more objective base for getting 

parametric presentations of lung sounds [30]. To overcome this drawback, 

researchers started to develop computer based lung sound analysis systems [169]. At 

the beginning of the 1980s, computer-based lung sound analysis began to show up in 

the literature [169,348]. The recent advancement in the field of signal processing is 

yet to be applied to determine the abnormalities and disorder using computer based 

lung sound auscultation [169]. 

The only dependable and quantitative procedure for the evaluation of respiratory 

sound is using digital recording and its subsequent analysis [36,338]. While the 

emergence of electronic stethoscopes presents new opportunities, new types of 

electronic stethoscopes combined with additional diagnostic algorithms can change 

the clinical potential of the stethoscope. The most important factors that play a role in 

the development of electronic stethoscopes are market price, mobility, and ease of 

utilization. The difficulty of auscultation in patients, such as patients with decreased 

respiratory sound is a well-known fact [338]. Such patients are the group of patients 

who will benefit most with this method. It is also thought to be useful for physicians 

and students who experience organic hearing loss by applying a volume regulator to 

the electronic stethoscope. 

Understanding the mechanisms of the formation of respiratory sounds is currently 

incomplete [349]. Recording and analysis of respiratory sounds lets to develop an 

objective relation between abnormal respiratory sounds and pathology [349]. 

Therefore, we believe, our electronic stethoscope can be used as a diagnostic tool 

when there is difficulty in discrimination of lung sounds with traditional stethoscope. 



148 

 

 
 

Additionally, mechanical improvements can be made to the stethoscope attachment 

to optimize sound quality and amplification. 

It is thought that this study can be developed as a reliable and suitable method with 

telemedicine consultations in terms of evaluating the lung sounds remotely. The 

impact of the Internet on future developments in respiratory sounds analysis should 

not be underestimated. It is a vehicle for the exchange of software, databases and 

sound and video files. It is also a platform for remote monitoring and a powerful 

educational tool. Remote monitoring in medicine is an active and expanding field. 

Simple sound acquisition equipment and a means of transmitting data via fixed or 

mobile telephone, possibly via the Internet, has many possible uses in this area. An 

exciting prospect for the future would be the routine availability of a miniaturized 

portable apparatus with the ability to capture both sound and airflow, implement 

simple and clinically useful analysis packages and, when necessary, communicate 

data via mobile telephony to a specialist centre in a local hospital. This could be 

mass-produced as a multipurpose computerized stethoscope and may replace the 

current acoustic stethoscope as a basic tool for future physicians. 

Through the new technologies aimed at combining smaller electronic parts, analysis 

programs, ability to store data and processing power with a stethoscope, physicians 

can be provided much more beneficial data than the simple mechanical stethoscope 

available. 

Although such a system developed in many directions may reduce the role of the 

clinician, it is not possible to operate the system dependably if the physician can not 

obtain trustworthy data from the patient with a good medical history and careful 

physical examination. 

The purpose of the computer system is to help the physician to increase his or her 

abilities and judgment, where their analysis is relatively weak, such as analysis of 

large quantities of data. 

The sound repertoire of the lung may indeed be limited when heard through a 

stethoscope, but it clearly exhibits a much wider range of information content when 
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digitally analyzed. Computer analysis is now reaching beyond the capabilities of the 

human ear, e.g., to resolve changes in respiratory sounds during narrowing of the 

intrathoracic- or extrathoracic airways. With the disappearance of auscultation as the 

standard to judge the clinical significance of acoustical findings, it becomes even 

more important to integrate lung sound analysis and traditional measurements of 

respiratory mechanics. Thus, one should not expect that computer based lung sound 

analyzers will replace the stethoscope-bearing clinician anytime soon, but they will 

expand the noninvasive diagnostic capabilities in respiratory medicine. 

The physician usually utilizes a stethoscope to hear the audio from the body cavities. 

Sometimes the physician also utilizes a stethoscope to compare the pretreatment state 

of the patient whose clinical status has been determined with the post-treatment 

status. Sometimes the physician's results after auscultation may be in conflict with 

the patient's clinical condition, which may be difficult to interpret. In such cases, the 

physician can ignore the findings from the device. But sometimes, the findings of the 

physician may be inadequate and the new findings obtained as a result of the search 

for additional findings will guide to a correct diagnosis. In these types of scenarios, 

our device and software can be useful to the physican. But this system does not aim 

to take the place of a physician. Also, the physician does not need programming 

expertise when using this system. 

The literature review found 36 articles shown in Table 1.1 and Table 1.2 that met the 

requirements for this review process. The research on respiratory sound analysis was 

divided into three categories and briefly explained. The recommendations for 

developing a computer based respiratory sound analysis system were presented. The 

future research should be focused on developing such systems with improved signal 

processing and artificial intelligence techniques in real time and also to 

commercialize it. 

These decision support systems can also be utilized for educational purposes in 

medical faculties [346]. The present study can enhance the understanding and 

learning of medical students approaching the study of lung sounds for the first time. 

Sestini et al. [28] indicated that the exposure of inexperienced medical students to a 

multimedia presentation of acoustic and graphic characteristics of lung sounds 
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signifiantly boosts their learning process compared to students receiving only 

conventional teaching. They suggested that the combination of acoustical, graphical 

and analytical representation of sounds provides a homogeneous set of information 

that is more easily fixed in memory and may match different learning styles. Their 

data confirm previous studies indicating that practising with a multimedia computer 

program does improve the proficiency of medical students in the recognition of 

recorded lung sounds [28]. The advantage of our approach is that it does not require 

previous computer experience by part of the students, or additional learning of 

program instructions and commands. 

While electronic stethoscopes have advantages such as portability, low cost and user 

convenience, detection algorithms limit the usefulness of the method because it can 

be susceptible to environmental noise and physiological noise. If respiratory audio is 

gathered by an electronic stethoscope in a hospital environment, noise contamination 

is an expected question (trouble) in these records. 

The use of hybrid models would also improve the classification. These artificial 

intelligence techniques may give improved results compared to previous methods 

and it is recommended to apply such algorithms in future researches. 

The research on computer based respiratory sound analysis has come a long way, but 

the interest in commercialization is very low. The future research should be focused 

on developing such systems with improved signal processing and artificial 

intelligence techniques in real time and also to commercialize it [350]. 

Future researchers should concentrate on the development of computer based lung 

sound analysis using more advanced machine learning algorithms and also using 

hybrid machine learning techniques to improve the accuracy and intend to 

commercialize it as a product. 

Computers greatly improve the efficiency of data collection and management [55]. 

The automated data are archived and easily retrievable, even years later, thus 

avoiding memory problems, potential difficulties with transcribing the data, and 

potential problems in deciphering handwriting [55]. 
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Another reason for interest in lung sounds, as compared to the radiograph, is that the 

sounds provide more regional information [55]. The chest radiograph is a summation 

shadowgram [55]. Areas at the lung bases, particularly behind the heart, are not well 

visualized. It may be particularly applicable with children or pregnant patients, with 

whom radiography may have safety issues [55]. 

Since clinicians already obtain a qualitative assessment by using a stethoscope, the 

measurement of respiratory condition via transmitted sounds analysis would provide 

quantitative support for diagnosis and treatment. Breath sound analysis' advantage is 

that it can provide evidence on the status of the patient's lung on a continual basis. 

With additional parameters describing the patient's condition, neural networks may 

be an appropriate method for classification [33]. 

As a result, it is inevitable that there is a requirement for advanced computer-based 

diagnostic systems that reduce medical malpractice and adverse outcomes, improve 

patient security and prevent loss of lives. For this reason, the developments in 

machine learning techniques are now expected to be applied also to the field of 

medicine. 

Thus, new tools for evaluating high-dimensional and complicated data sets can be 

supplied to physicians with machine learning. 

In recent years and machine learning algorithms have been implemented with great 

success in many applications. Thus, it has been demonstrated that machine learning 

is an efficient technique. The development of computerized lung sound analysis has 

attracted many researchers in recent years, which has led to the implementation of 

machine learning algorithms for the diagnosis of lung sound. 
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Appendix A - The Voluntary Declaration Form 

 

 

GÖNÜLLÜ BEYAN FORMU   

 

 

 

Akciğer hastalığı olan hastalarımızın akciğer seslerini analiz ederek hastalığın 

tanısının koyulmasını amaçlayan çalışmada gönüllü olarak yer alıyorum. Akciğer 

seslerimin bu projedeki çalışmalarda kullanılmasını kabul ediyorum. 

 

 

 

Ad: 

 

Soyad : 

 

 

Telefon no: 

 

 

İmza:          Tarih: 
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Appendix B - Questionnaire 

 

ANKET 
 

Araştırma projesi:    Tıpta Elektronik Stetoskop Kullanarak Makine Öğrenmesi   

                                        Algoritmalari Geliştirilmesi 

Sorumlu Araştırmacı:  Murat Aykanat 

Danışman:  Dr. Öğr. Üyesi Özkan Kılıç 

 

Katılımcı ile ilgili bilgiler (kimlik bilgileri gizli tutulacaktır): 

Adı Soyadı:............................................................................. 

Cinsiyet:  Erkek   Kadın 
Yaş:................. 

 

Hastanın sigara kullanma alışkanlıkları 

 İçiyor 

 İçmiyor 

 Eskiden içiyordu 

 Pasif içici 

Hastanın spor alışkanlıkları 

 Düzenli 

 Sık sık 

 Bazen 

 Hiç 

Nefes darlığı var mı? 

 Evet 

 Hayır 

Öksürük var mı? 

 Evet 

 Hayır 

Balgam var mı? Varsa rengi nedir? 

 Evet (Rengi: …………………….. ) 

 Hayır 

Kan tükürme var mı? 

 Evet 

 Hayır 
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Göğüs ağrıları var mı? 

 Evet 

 Hayır 

Yüksek ateş var mı? 

 Evet 

 Hayır 

Kilo kaybı var mı? 

 Evet 

 Hayır 

Bacaklarda şişme var mı? 

 Evet 

 Hayır 

Gece terlemesi var mı? 

 Evet 

 Hayır 

Çarpıntı var mı? 

 Evet 

 Hayır 

 

Tanı ve Düşünceler: 

 

 

 

 

 

 

 

Doktorun 

Kurum: ……………………………….. 

Adı ve Soyadı:…………………………. 

Tarih:…………………………… 

İmza:…………………………….. 
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Appendix C - Lung Function Test Results, Audio 

Recording, X-ray Results, Blood Test Results Form 

HASTA: ………………………………………………….. 

                    AKCİĞER FONKSİYON TESTLERİ                                                                                      

                            FVC     ………………….. lt         ..………………..% 

                            FEV1   ………………….. lt         ..………………..% 

                            FEV1/FVC  ..………………..% 

 

     AKCİĞER SESLERİ                           AKCİĞER GRAFİSİ 

 

ÖN ARKA 

Sağ Sol Sol Sağ 

    

 

X 

  

 

 

                                          KAN TESTLERİ 

 

 

 

 

 

 

SAĞ SOL 

  

  

  

CRP  

Lökosit  

Nötrofil  
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WORK EXPERIENCE 

July 2016 - Present: CyanGate, Ankara [Role: Senior Software Developer/ 

OpenText Media Management Consultant].  

During my time in CyanGate, I have provided consultancy and developed tools/web 

services/customizations for OpenText Media Management Systems for companies 

such as Kraft Heinz, Kohler, Vistaprint, Genentech, Columbia Sportswear, United 

Services Automobile Association and Magna International. In CyanGate, my 

responsibilities are: 

 Installing OpenText Media Management systems and customizations. 

 Configuring OpenText Media Mangement systems. 

 Customizing OpenText Media Mangement UI. 

 Customizing OpenText Media Management back-end systems. 

 Developing tools for OpenText Media Management. 

 Developing integrations between OTMM and various other products. 

 Conducting technical interviews 

May 2012 – May 2016: Aykanat Yazılım, ANKARA [Role: Owner/Software 

Developer]. 

Aykanat Yazılım was my private company; I mainly worked on new products, 

product R&D, and maintenance of current products and services. 

Technologies: IIS, ASP.NET, ASP.NET MVC, WPF, C#, HTML5, CSS3, Wix 

Toolset  

Responsibilities / Accomplishments: 

 PAEON – A Decision Support System for Diagnosing and Treating 

Poisoning 

 PAEON Veteriner – A Decision Support System for Diagnosing and Treating 

Animal Diseases 

 Aykanat Yazılım Content Management System 
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 Aykanat Yazılım Standard Installer 

 Aykanat Yazılım Invoice Tool 

 Project PAEON was funded by the Ministry of Science and Technology. 

Customers were very satisfied by the Turkish localization, functionality and 

the price of this application compared to its competitors. PAEON was also in 

the top 10 selected entries to compete in Istanbul in Intel Challenge Turkey 

2013. 

Mar 2005 – May 2010: Proses Teknik A. Ş., ANKARA [Role: Technical Support].  

While I was an electronic engineering student in Başkent University, I worked part-

time in Proses Teknik A.Ş. I worked on various technical support jobs such as re-

installing OS, changing various computer parts and writing basic programs to help 

the company. 

Mar 2003 – Mar 2005: Savaş Muhasebe Bürosu, ANKARA [Role: Technical 

Support].  

While I was an electronic engineering student in Başkent University, I worked part-

time in Savaş Muhasebe. I worked on various technical support jobs such as re-

installing OS, changing various computer parts and writing basic programs to help 

the company. 

July 2008 – Aug 2008: T.Ş.F.A.Ş. Elektromekanik Aygıtlar Fabrikası (EMAF), 

ANKARA [Role: Intern Engineer].  

During my internship, I worked in the technical support department on cleaning and 

building basic electronic components. 

Jan 2006 – Feb 2006: Gate Elektronik A.Ş., ANKARA [Role: Intern Engineer].  

During my internship I worked in general technical support department and satellite 

technical support department. I worked on cleaning and maintaining various 

electronic components. 
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LANGUAGE SKILLS 

Turkish: Native Proficiency 

English: Bilingual Proficiency [KPDS: 94 (A), TOEFL IBT: 104/120] 

German: Beginner 

TECHNICAL EXPERTISE 

Programming/Markup/Stylesheet Languages: C#, C++, CSS3, HTML5, Java, 

JavaScript, Python, SQL, XML 

Technologies: WPF, ASP.NET, ASP.NET MVC, Web Services, REST, Machine 

Learning, Artificial Intelligence, Spring Framework 

IDEs: Visual Studio (2010, 2012, 2013, 2015, 2017), Eclipse, IntelliJ IDEA, 

PyCharm, Visual Studio Code 

CMs: Jira, Trello 

Version Control: GitHub, SVN, Bitbucket 

Database Servers: Microsoft SQL Server, PostgreSQL Server, Microsoft SQL 

Server Management Studio, pgAdmin III 

Web / Application Servers: Apache Tomcat, Wildfly, JBoss, IIS 

Game Engines: Unity3D, Unreal Engine 4 

Artificial Intelligence/Machine Learning Frameworks: Theano, Tensorflow, 

Keras 

Graphics Tools: Photoshop CS5, Bitmap2Material, Substance Designer, Substance 

Painter, Maya 2013, Filter Forge, ShaderForge 

Web Design Tools: Dreamweaver CS6 
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Miscellaneous Tools: Resharper (Visual Studio plugin), MATLAB, Maven, 

Microsoft Ofice (Excell, Word, Access, PowerPoint), OpenText Mediamanager 

(10.5, 16, 16.2, 16.3), Putty, Wix Toolset, WinSCP 

OS: Windows (3.1, 95, 98, 2000, XP, Vista, 7, 8, 10), MS-DOS, Linux (Mint, 

Ubuntu, CentOS) 

ACHIEVEMENTS 

 Best Paper Award – 2016 International Conference on Advanced Technology 

and Sciences     (Rome, Italy) 

 Intel Challenge 2013 - Turkey Finalist (PAEON
TM

)  

 Ministry of Science, Industry and Technology - Technoprenurship capital 

support (2012) for PAEON
TM

 

PROJECTS 

Toybox [March 2018 – Present] [Open Source] 

Technologies: Java, HTML5, CSS, JavaScript, Spring Boot, Spring Cloud, 

Microservices 

Toybox is an open source online file storage service that can be deployed on any 

platform including private home servers. 

Wix XML Generator [October 2017 – Present] [Open Source] 

Technologies: C#, XML, Wix Toolset 

Wix Toolset provides a way to harvest files with heat.exe, and you can exclude files 

and folders with xlst transforms. However, in my opinion, that approach is not very 

developer friendly. 

Wix XML Generator aims ease this process by automating the process generating the 

file and directory structure. It is a command line tool for generating XML portion of 

file, directory and component structure of the Product.wxs file. To control which 
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files are going to be in the setup file, it uses a .wixignore file similar to GitHub's 

.gitignore file, to ignore files and folders. 

CyanGate [July 2016 – Present] 

Technologies: OpenText Media Manager 10.5/16/16.2/16.3, Windows Server 2012, 

CentOS, Microsoft SQL Server, PostgreSQL Server, Wildfly, Java, HTML5, 

JavaScript, CSS3 

Responsibilities / Accomplishments: 

 CyanGate Asset Migrator Tool upgrade from 10.5 to 16.0 and performance 

upgrades 

 CyanGate Asset Migrator Tool upgrade from 16.0 to 16.2 for Jboss/Wildfly. 

 CyanGate Google Vision Plugin for OTMM 

 CyanGate Fadel Rights Cloud Connector for OTMM v2.0.0 

 CyanGate Automatic Link Generator Customization for OTMM 

 CyanGate Salesforce / OTMM Integration proof of concept 

Project Markdown [June 2016 – Present] [Open Source] 

Technologies: C#, WPF, MVVM, HMTL5, CSS3, JavaScript, Chromium Embedded, 

Markdown, Wix Toolset 

Project Markdown is an open source offline markdown editor. 

Key features include: 

 Create, print and export markdown documents. 

 Export as PDF, HTML and raw markdown. 

 Syntax highlighting to help users write markdown easier. 

 Multi document editing via tabs. 

 Split text and HTML views to see the result of the markdown that is written 

immediately. 
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Columbia Sportswear [February 2017 – May 2018] 

Technologies: OpenText Media Manager 10.5, JBoss, Windows Server 2012, Java 

Responsibilities / Accomplishments: 

 Asset Interceptor Update 

 Asset Versioning Agent Update 

 Hot Folder Customization Update 

 Metadata Update Tool Update. 

 Nightly Sync Customization Update 

 Deployment of updates into development, quality assurance and production 

environments. 

 Restoration of quality assurance and production environments. 

Merck & Co [October 2017 – May 2018] 

Technologies: OpenText Media Manager 16.2, Wildfly, Azure, MS SQL Server, 

Windows Server 2012, Photoshop CC 2018, Java, JavaScript, HTML5, CSS3, Spring 

Batch, Imagemagick 

Responsibilities / Accomplishments: 

 Validation and deployment of customizations and metadata into development, 

quality assurance and production environments. 

 Deployment and troubleshooting of Asset Migration Tool 

 Customizing the OTMM UI for Merck branding. 

 Workflows Menu Customization 

 Quick Links Menu Customization 

 Landing Page Customization 

 Export Rights Disclaimer Customization 

 Tabular Fields as Two Panel Widget Customization 

 Tabular Fields as Checkbox Widget Customization 

 Export Validation and Watermarking Customization 
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 Rights Management Customization 

 Retrieving Embedded Image Metadata Customization 

 Azure Web Hook Service for Asset Ingest Customization 

Toyota Material Handling [May 2018] 

Technologies: OpenText Media Manager 16.3, HTML5, CSS, JavaScript, ThreeJS 

Responsibilities / Accomplishments: 

 3D Preview Tool proof of concept 

Vistaprint (Cimpress) [November 2016 – May 2018] 

Technologies: OpenText Media Manager 16, PostgreSQL Server, CentOS, Windows 

Server 2012, Wildfly, Java, JavaScript, HTML5, CSS3, SQL, REST, Imagemagick 

Responsibilities / Accomplishments: 

 Validation and deployment of customizations and metadata into development, 

quality assurance and production environments. 

 Development of Gifsicle Integration 

 Development of Spawn Creative Review Customization 

 Development of Catch “Review Approved” Event Listener Customization 

 Development of Review Assets Button Customization 

 Development of FPO Download Customization 

 Development of Language Visual Cue Customization 

 Development of Expand Search Suggestion Customization 

 Development of Check-out and Download Customization 

 Development of Automatic MFT File Transfer Customization 

 Development of Upload to Shot Folder Customization 

 Migration of customizations to from 16.0 to 16.3 environment 
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Roche [April 2018] 

Technologies: OpenText Media Manager 16.3, Centos 7, Wildfly, PostgreSQL 

Server, Java, HTML5, JavaScript, CSS, SQL 

Responsibilities / Accomplishments: 

 Customizing the OTMM UI for Roche branding 

 Work Order Folder Button Customization proof of concept 

 Website Generator Customization proof of concept 

Georgia Pacific [May 2017 – March 2018] 

Technologies: OpenText Media Manager 16.2, PostgreSQL Server, CentOS, 

Wildfly, Java, JavaScript, HTML5, CSS3, SQL, Servlet Filters, Imagemagick 

Responsibilities / Accomplishments: 

 Validation and deployment of customizations and metadata into development, 

quality assurance and production environments. 

 Upgrade and deployment of Asset Migrator Tool v16.2 

 Development of Override HTTP Methods Customization 

 Development of Duplicate Asset Checker Customization 

 Automated Security Policy Customization Upgrade 

National Geographic Society [March 2018] 

Technologies: OpenText Media Manager 16.3, Salesforce, Windows Server 2012, 

TomEE, Java, servlets 

Responsibilities/Achievements 

 Salesforce / OTMM Integration proof of concept 

Monster Energy [June 2017 – February 2018] 

Technologies: OpenText Media Manager 16/16.3, JavaScript 
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Responsibilities / Accomplishments: 

 Upgraded Download Transform customization reflecting the new changes in 

16.0.3. 

 Deployment of Geolocation customization. 

 Upgraded Download Modal customization reflecting the new changes in 

16.3. 

Central Arizona Project [September 2017 – January 2018] 

Technologies: OpenText Media Manager 16.2/16.3, SQL, Wildfly, Oracle Server, 

Apache Tomcat, SSL, SSO 

Responsibilities / Accomplishments: 

 Consulted an engineer on the CAP side to configure existing OpenText 

Analytics components for a new OTDS installation without re-installation. 

 Consulted an engineer on the CAP side to configure existing MFT component 

for a new OTDS installation without re-installation. 

 Consulted an engineer on the CAP side to configure active directory sync for 

OTMM without re-installation. 

 Consulted an engineer on the CAP side to configure SSO for OTMM. 

 Consulted an engineer on the CAP side in asset migration using Asset 

Migration Tool for OTMM 16.2. 

 Consulted an engineer on the CAP side in deployment of metadata and 

security configurations. 

 Consulted an engineer on the CAP side to upgrade OTMM from 16.2 to 16.3. 

 Consulted an engineer on the CAP side to upgrade MFT from 16.2 to 16.3. 

 Consulted an engineer on the CAP side to upgrade Analytics from 16.2 to 

16.3. 

 Provided delta queries for security and metadata configurations. 
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Genentech [February 2017 – November 2017] 

Technologies: OpenText Media Manager 16, PostgreSQL Server, CentOS, Java, 

SQL, Excelnologies: OpenText Media Manager 16, PostgreSQL Server, CentOS, 

Java, SQL, Excel 

Responsibilities / Accomplishments: 

 Validation and deployment of customizations and metadata into development, 

quality assurance and production environments. 

 Development of Brand/Department Onboarding Tool 

 Development of Folio Project Number Customization 

 Genentech won the "Life Sciences Innovation Award" with our OTMM 

implementations in Enterprise World 2017 in Toronto, Canada. 

BISK Education [October 2017] 

Technologies: OpenText Media Manager 16.2, Wildfly, Java, SQL 

Responsibilities / Accomplishments: 

 OTMM / Kaltura Integration proof of concept 

Magna International [April 2017 – October 2017] 

Technologies: OpenText Media Manager 16,  Java, Wildfly 

 Deployment and troubleshooting of Asset Migrator Tool 

 Troubleshooting SOLR localization issues 

Kraft Heinz Company [August 2016 – August 2017] 

Technologies: OpenText Media Manager 10.5, OpenText Media Manager 16, 

PostgreSQL Server, Microsoft SQL Server CentOS, Windows Server 2012, Wildfly, 

Java, REST, Apache POI, Apache Velocity, Apache Camelnologies: OpenText 

Media Manager 10.5, OpenText Media Manager 16, PostgreSQL Server, Microsoft 
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SQL Server CentOS, Windows Server 2012, Wildfly, Java, REST, Apache Camel, 

Apache Velocity 

Responsibilities / Accomplishments: 

 PIM Integration 

 RISE Integration 

 Bulk Ingest Tool for OTMM v16 

 Bulk Ingest Tool for OTMM v10.15 

 Customization code upgrades from version 10.5 to 16 for OTMM 

 Deployment of customizations to development, quality assurance and 

production environments. 

 Support and maintenance for customizations. 

Kamehameha Schools [May 2017 – July 2017] 

Technologies: OpenText Media Manager 16.2, MS SQL Server, Windows Server 

2012, Java, Wildfly, SQL 

Responsibilities / Accomplishments: 

 Validation and deployment of customizations and metadata into quality 

assurance and production environments. 

 Metadata and Security customization & configuration 

 Asset Migration Tool deployment and troubleshooting 

United Services Automobile Association (USAA) [October 2016 – June 2017] 

Technologies: OpenText Media Manager 16, Microsoft SQL Server, Windows 

Server 2012, Wildfly, Tomcat, IIS, SSL, SQLhnologies: OpenText Media Manager 

16, Microsoft SQL Server, Windows Server 2012, Wildfly, Tomcat, IIS, SSL, SQL 

Responsibilities / Accomplishments: 

 Consulted an engineer in OpenText Media Manager 16 installation on test 

and production environments. 
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 Consulted an engineer in OpenText Secure MFT installation and SSL 

Configuration on test and production environments. 

 Consulted an engineer in OpenText Analytics Installation on test and 

production environments. 

 Consulted an engineer in OpenText Creative Review Installation on test and 

production environments. 

 Consulted an engineer in metadata and security configuration deployment on 

test and production environments. 

 Consulted an engineer in CyanGate Asset Migrator deployment on test and 

production environments. 

 Consulted an engineer in CyanGate FADEL Arc Connector deployment on 

test and production environments. 

 Provided delta queries to update metadata and security configurations. 

Kohler Company [October 2016 – November 2016] 

Technologies: OpenText Media Manager 10.5, Microsoft SQL Server, Windows 

Server 2012, JBoss, Java, JavaScript, HTML5, CSS3 

Responsibilities / Accomplishments: 

 Update and deployment of PDF Contact Sheet Upgrade on development and 

production environments. 
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