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ABSTRACT

AN ALGORITHMIC FAULT-TOLERANT CONTROL ARCHITECTURE
WITHOUT ACTUATOR REDUNDANCY

Marangoz, Alp
Ph.D., Department of Aerospace Engineering
Supervisor : Assist. Prof. Dr. Ali Tiirker Kutay

September 2018, 160 pages

In this thesis work, a novel algorithmic fault tolerant control system architecture against
actuator failures is developed. The method is based on injection of perturbations on the
controlled states that are connected to healthy actuators, in order to compensate for the
failed components and maintain overall stabilization of the system. An adaptive state
estimator structure is used for detection of faults and fault mitigation perturbations are
generated from a singularly perturbed dynamic system, which is a part of the control
architecture. The proposed method is an algorithmic fault tolerant control architecture
in a sense that the fault tolerance and reliability is achieved algorithmically and without

using any redundant physical components.

For the theoretical analysis of the developed control system, the problem is formulated
as a nonlinear control problem for interconnected systems and a theorem is structured
that includes the assumptions, conditions and stability properties of the proposed
architecture. Resultant algorithm can be applied to wide variety of problems including
multi-input-multi-output unstable nonlinear systems, provided that the system under

consideration is Lipschitz continuous and certain bound conditions are satisfied.



Design methodology is explained through theoretical analyses and analytically tractable
numerical examples. Applications on more complex systems and limitations of the
proposed fault tolerant control system architecture are demonstrated on joint failures
of robotic manipulators and propeller loss of quadrotors cases through theoretical

analyses and simulation results.

Keywords: Fault tolerant control, Nonlinear control, Adaptive control, Control of

interconnected systems, Singular perturbation theory
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0z

YEDEK TAHRIK UNSURU KULLANILMAYAN BIR ALGORITMA
TABANLI HATA TOLERANSLI KONTROL MIMARISI

Marangoz, Alp
Doktora, Havacilik ve Uzay Miihendisligi Boliimii
Tez Yoneticisi : Dr. Ogr. Uyesi Ali Tiirker Kutay

Eyliil 2018 , 160 sayfa

Bu tez calismasi kapsaminda, tahrik elemanlarinda gerceklesen hatalarin kotarilmasina
yonelik yeni bir algoritma tabanli hata toleransli kontrol mimarisi gelistirilmistir.
Gelistirilen metod, saglikli tahrik elemananlarina bagh durumlara, hatali elemanlarin
hareketlerini telafi etmek ve sistemin genel kararliliginin siirdiiriilebilmesi amaciyla,
pretiirbasyonlar eklenmesine dayanmaktadir. Hata tespiti uyarlamali durum kestiriciler
ile gerceklestirilirken hata kotarma amach olusturulan pertiirbasyonlar ise kontrol
sisteminin bir parcas1 olan tekil bir dinamik sistem tarafindan iiretilmektedir. Onerilen
yontemde hata kotarma amaciyla herhangi bir fiziksel yedekleme ihtiyaci duyulmamasi
nedeniyle, gelistirilen hata toleransli kontrol mimarisi “algoritma tabanli” olarak

nitelendirilmisgtir.

Gelistirilen mimarinin analizi i¢in kontrol mimarisi, birbirine bagh dogrusal olmayan
sistemler i¢in bir kontrol problemi olarak ele alinmis ve onerilen kontrol mimarisi ile
ilgili varsayimlari, kosullari ve kararlilik 6zelliklerini iceren bir teorem olusturulmusgtur.
Olusturulan yontem, uygulanan sistemin Lipschitz siirekli olmas1 ve bazi sinirlari

saglamasi kosulu ile, dogrusal olmayan, ¢ok girdi-¢iktili ve kararsiz sistemler de dahil

vii



olmak iizere bircok probleme uygulanabilmektedir.

Onerilen mimari icin tasarim yontemi, teorik analizler ve analitik olarak izelenebi-
lecek sayisal orneklerle aciklanmigtir. Daha karmasik sistemlerdeki uygulamalari ve
yontemin kisitlamalari ise robotik manipiilatdrlerdeki eklem hatalarindan kurtulma
ve dort pervaneli hava araclarindaki pervane kayiplarindan kurtulma problemlerinde,

teorik analizler ve sistem benzetim sonuclari ile beraber sunulmustur.

Anahtar Kelimeler: Hata toleransli kontrol, Dogrusal olmayan sistemlerin kontrolii,

Uyarlamali kontrol, Birbirine bagl sistemlerin kontrolii, Tekil pertiirbasyon teorisi
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CHAPTER 1

INTRODUCTION

1.1 Motivation and problem definition

Any practical implementation of a control system requires some form of fault tol-
erance. Even robustness of control algorithms to variations in system parameters
can be regarded as a fault tolerance measure, while for complex and safety critical
systems a more systematic approach is required. Especially safety critical systems
such as manned air vehicles and space launch systems can contain complex control
architectures with various hardware and software redundancies in order to achieve
certain level of reliability. But generally, there are two steps to be taken in order to
make a system fault-tolerant: The existence of faults has to be detected and identified
and the controller has to be adapted to the faulty situation so that the overall system
continues to satisfy its goal [1]. This can be achieved through presence of redundant
sensors and/or actuators. This redundancy can either be physical, i.e., using more
than one sensor and/or actuator per channel, or analytical. Analytical redundancies
occur in the form of relations (or constraints) between states that are imposed by the
system dynamics [2]. For example, jet engine under the wing of a transport aircraft
both produces thrust and also pitching moment. Therefore limited control can be
achieved in pitch channel with adjusting the thrust of an aircraft. Obviously, such kind

of analytical redundancies are highly system specific.

Sensor costs are decreasing [3] and therefore for many systems, it is possible to use
redundant sensors and increase the reliability in a cost-effective manner. However
actuator redundancy is still costly, since actuators are in general more expensive and

their presence have direct impact on physical design of systems. Therefore, a fault



tolerant control system architecture, which does not require any actuator redundancy
is very valuable. Furthermore, interest in low cost, small sized autonomous robotic
systems are increasing. They are now used in more critical roles in operation with
more complex and expensive payloads. Increasing reliability of these systems through
usage of FTC architectures, without using redundant components is a critical part of

development of low cost, safety critical autonomous systems.

The aim of this thesis work is development of such kind of an FTC architecture,
i.e., an FTC algorithm that exploits the dynamics of the system in order to achieve
fault tolerance and reliability algorithmically, without using any redundant physical

components.

The main idea for the developed FTC algorithm is to generate perturbations on the
trajectories of the states that are connected to the healthy actuators that would com-
pensate for the loss of the faulty actuators and stabilize the overall dynamics of the
system. Proposed architecture is applicable to many system forms, including systems
with unstable internal dynamics and fault detection is an integral part of the control

system through adaptive components.

The idea of stabilizing perturbations can be formulated by the following Multi-Input-
Multi-Output (MIMO) system:

&= f(x,u) with, z,uecR"

Consider the case where m number of actuators are faulty. Then the states of the
system can be grouped into two as z; € R™ and 2, € R(™ ™) such that states that
are included in x; are linked to the faulty actuators and the x5 states are linked to the
healthy actuators. With zero action on the faulty actuators, overall system dynamics

can be cast into a cascaded form,

1 = fi(xy, 22) (1.1a)
To = fo(x1, 29, ug) (1.1b)

The proposed method can be regarded as introduction of a perturbation on the trajectory

of x4, so that the x; dynamics is also stable and stays in a bounded vicinity of origin.
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In this thesis, a systematic methodology is developed for design of such a control

system and a new fault tolerant control system architecture is proposed.

1.2 Control of interconnected systems

The dynamic system (1.1) covers a wide class of problems and it is often denoted as
a “Cascade”, “Interconnected” or “Underactuated” system. It falls under the interest
of sub-fields of control theory. For example, theoretical studies for the robust control
of systems driven by external noise is based on the system representation where
fi(z1, x2) is independent of xo, i.e., fi(x1,22) = fi(z1). Similarly, adaptive control
structures usually increases the order of the system with an additional dynamics for
the calculation of the adaptive control inputs. Overall system driven by an adaptive
controller can also be written in this form , where x, represents the adaptive controller’s

output and us as the nominal controller’s input.

The difficulty in finding general solutions for such systems comes from the result that
even if both 77 = fi(x1,0) and @5 = f5(0, o, u) are globally asymptotically stable,
the resulted interconnected system (1.1) might not be globally asymptotically stable.
One way to guarantee overall stability is if both systems (1.1a) and (1.1b) are also

input-to-state stable [4] (x5 is regarded as an input for f; in this manner).

The overall system dynamics is closely related to the stability of the first system (1.1a),
when input is zero, i.e., stability properties of the system @; = fi(x1,0). This is
referred to as the “The zero dynamics” of the system (1.1). Systems whose zero
dynamics is stable is called “minimum phase system” and it is called “non-minimum

phase” if it is unstable.

It is known that output regulation with smooth feedback laws is possible for weakly
minimum phase systems, provided that system has a relative degree one ! [5]. Existence
of a controller for the “minimum phase systems” with affine-in-control controlled
system (1.1b) are studied by Marconi, Praly and Isidori. They have shown that it is

possible to find a smooth controller that would solve the output regulation problem,

! Relative degree is defined as the number of times that the Lie derivative of the output function can be taken
before the control input appears. For output function of identity, relative degree is always one.



provided that a feedback law exists that would keep the zero dynamics of the problem
bounded and they have provided a method for construction of such kind of a controller

in their subsequent work [6, 7].

For the “non-minimum phase systems”, the unstability of the zero dynamics poses
a problem and general methods for control system design is limited in the literature:
Nazrulla and Khalil provided a method for systems in normal form. They used a
sliding mode control on the estimate of the internal dynamics in order to achieve
stabilization [8]. Chiang and Isidori on the other hand developed a regulator design
technique which relies on a “post-processing” internal model and high-gain based
stabilizers for single input multiple output systems [9]. Affine-in-control property, i.e.,

when f5(z1, 2, u) = f5(x1,22) - u, is important for the above mentioned results.

While above mentioned research concentrates on finding analytically exact methods for
general class of systems, more pragmatic approaches are also available. Well known
backstepping techniques involve systematically finding controllers for each state [10,
11]. Similar ideas are also available in the literature such as up/down augmentation
[12] or dynamic surface control [13]. However, these analyses require specific forms

for the dynamics such as, pure feedback or strict feedback form [14].

Another well known technique is the sliding mode controllers, where a stable manifold
for the internal dynamic @ = f;(x1, x2) is found and switching based discontinuous
control laws are employed in order to stabilize the overall system over this manifold
[15]. Although some methods exists in order to smooth the control action, resultant

control actions are nevertheless involve high frequency chattering.

When considering the internal dynamics (1.1a), the x5 states can be regarded as a
control input to the x; states. But for a general coupled nonlinear system, x5 is not
linearly related to the x; dynamics. Finding smooth feedback laws for non-affine,
non-minimum phase systems, where the control signal is not linear is still a challenge,
even for the case where the number of inputs is equal to the number of states. They
are not directly applicable to systems in the form of (1.1), but following results
can be mentioned for completeness of the literature review. Narang-Siddarth and
Valasek achieved stabilization of open-loop unstable non-affine-in-control system

with constructing the control input from superposition of a feedback function that



renders the nonlinear system passive and an output feedback law that is used for
stabilization [16]. Ho and Hedrick provided a systematic method to construct output
vectors that transform the non-minimum phase output to a minimum phase one through
linearization of the error dynamics for single input single output (SISO) non-minimum
phase systems [17]. Some other selected techniques found in the literaturecan be
summarized as, rewriting the nonlinear system in the state dependent coefficient
form and solving the state dependent Riccati equation in each time step in order to
calculate control inputs [18], approximating the non-affine-in-control function using
neural networks [19-21] or fuzzy functions [22] and using adaptive update law for

stabilization of the system.

Nonlinear control is a rich and very active research area. However, as shown in
previous paragraphs, a general methodology that can be applied to all classes of
problems are not available. Therefore, although proposed fault mitigation method can
be cast into a control problem for interconnected systems, a novel control method that

can be applied to wide range of problems is very valuable in this line of research.

Development of such a method, that can be applied to wide range of problems provided
that certain conditions are satisfied, constitutes the thesis work. The perturbation sig-
nals are generated by a singular dynamic system in the proposed architecture (Figure
1.6). With this control structure, overall closed loop dynamics can be formulated as a
singular perturbation problem and results of the Tikhonov’s theorem can be used to
analyze the behaviour of the system. Highlights of this FTC architecture -including
assumptions, limitations and advantages-, scope of the thesis work and original contri-
butions are summarized in Section 1.5, while formal and detailed analysis is provided
in Chapter 2, together with a main theorem that covers the assumptions, limitations

and results of the proposed method.

In order to compare the proposed method with the existing control structures in the
literature, similar adaptive control architectures and control algorithms that rely on

singular perturbation techniques is reviewed in Section 1.4,

5



But before these discussions, a brief overview of fault tolerant control systems is given

in next section, in order to introduce key concepts and nomenclature.

1.3 Fault tolerant control systems

Faults can occur within an operational life time of any system. Some faults critically
damages the functionality of the system and therefore halts the operation of it, while
others might just degrade some of the functionality and the system continues to operate
with a reduced performance. Extends of the systems capability to continue operation

under the affect of a fault is called Fault Tolerance [1].

Developments in fault tolerance control system analyses dates back to start of early
implementation of control systems and it is also called “Execution Monitoring” in
process control literature [23]. It is a research field on its own and there are many
books [24, 25] and survey papers on the subject [26-29]. The aim in this section is to
highlight briefly the key concepts of the problem. For this purpose, factors affecting

the nominal operation of a control system is shown in Figure 1.1.

Fe External causes (enviromental)
Internal causes

F;

N
Noise
F Fault
r 4+ e u y + Ay Output
——()——> Controller Plant > >

v l
6 + A8 x+Ax

Internal Process Parameters  Internal state variables

h 4

Figure 1.1: Factors affecting the nominal operation of a control system [25]

A control system is designed based on a modeled plant behaviour with certain pa-
rameter sets. The aim of the controller is regulate the outputs of the system, while
controlling internal states of the plant. Of course, parameters and behaviour of the plant
can deviate from the design conditions. Robustness analyses are used for maintaining

the system states and outputs within operational limits, even under the presence of

6



noise.

Such kind of deviations are rather continuous and do not introduce additional dynamics
to the system. On the other hand, much more severe cases can be encountered in the
form of faults. Control systems which are capable of tolerating potential faults in order
to improve the reliability and availability while providing a desirable performance are

called Fault Tolerant Control Systems (FTCS) [30].

Fault tolerant control techniques are usually system specific. In fact, one of the first
steps of systems design includes a Failure Modes, Effects and Criticality Analysis
(FMECA). In this part of the system design process, subsystems and system as a
whole are investigated for failure possibilities and consequences of these failures on
the operation of the system and safety of individuals. Design decisions are made based

on these findings [1].

Results of such analyses are also used for development of fault tolerant control algo-
rithms, which monitors the system operations in real time, determines if the system
is functioning normally and executes predetermined actions if it is not, before failure
becomes catastrophic. These functions are called “Fault Detection”, “Fault Diagnosis”

and “Fault Mitigation”. These terms are explained below [1, 24, 25].

Fault Detection is the capability of the system for discriminating the presence of a
fault from deviations from nominal operating conditions. Simplest form of fault
detection algorithms is using output limits that causes system to stop when a

certain threshold is crossed.

Fault Diagnosis is related to determination of the size and type or nature of the
fault (Fault Identification), as well as the faulty component (Fault Isolation).
This requires more information to be deduced from measurements and correct
identification of the fault is critical for selecting the right response to the fault.
For example in the case of robot arms, typical faults are locked joints or free
swinging joints. With the knowledge of the specific faulty joint and the nature
of the fault, it is possible to lock the motor brakes at the faulty joint (of course,

if a lock mechanism is present) and find feasible trajectories for the end effector.

Effect of the fault on the system dynamics is dependent on the structure of the
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system and therefore fault diagnosis algorithms are highly system specific and
usually requires a model for the fault, such as fault as an additive disturbance
or a multiplicative parameter. Nevertheless, typical fault diagnosis algorithm
structures that are related to the thesis work encountered in the literature are

grouped and summarized below:

e State observers: Luenberger type state observers can be used for continuous
estimation of the internal states of the system. Residuals of these observers
bears information related to modeling error and external disturbances and
therefore, they can be used for detection and identification of faults. Fault
signals within the system can be constructed using basis functions, such as
neural networks and this signal can be used for detection and identification of

the fault.

e Nonlinear observers: System specific nonlinear observers can also be de-
signed and used for fault estimation. While state observers require full state
measurements for the estimation of the fault, nonlinear estimators can be

designed specifically for reduced number of observations [31, 32].

e Multiple model extended Kalman filters / Filter banks: Kalman filters are
extensively used in different applications for estimation purposes. For fault
diagnosis, parallel running Kalman filter banks with different system models
that correspond to specific fault model of the system, can be used. FTC
algorithm can compare the outputs of these filters and find the best model that

matches the observed outputs [2, 33].

e Stochastic models: Faults can be regarded as discrete changes in the state
of the system. By assigning probabilistic measures, behaviour of the system
can be modeled as Markov processes, with each state as a probable fault
mode. Stochastic approach to the system dynamics is required for such fault

diagnosis schemes [34].

Fault Mitigation or Recovery is the controllers actions for the system to continue
its operation, with full or partial functionality. Fault mitigation is the key
ingredient of an FTC scheme, since it is the whole purpose of designing an

FTC structure. Typically two kinds of actions are done. If the fault changes the



system parameters, parameters of the control algorithms are adjusted accordingly.
Adaptive control systems inherently poses such kind of tuning capability but their
operations might be unreliable [35]. Therefore, gain scheduling type controllers
are also used. The other action in the event of a fault is reconfiguration of the
system using healthy components. If it is a sensor fault, measurements of the
faulty sensor are not used. Instead, operations are continued either using the
measurements of a backup sensor, or the lacking information is completed using
different sensor data. For example, pitch angle of an aircraft can be estimated
using angle of attack sensors and GPS’s velocity measurements, instead of a
gyro. Such kind of relations are called analytical redundancies [2] and they can
also be used for actuator failures. Although typical fault mitigation approach to
actuator failures is to use redundant actuators and reconfigure the allocation of
control signals to actuators [36] , many systems pose analytical redundancies in
actuators. For example, position of the end point of a multiple link robot arm
can be adjusted with more than one combination of the link angles. A feasible
link angle combination can be found that both satisfies the constraints coming

from the faulty link and the desired position of the end effector [37].

Fault tolerant control systems employ above mentioned functions on the control system
in order to make the system robust to failures of components. Fault tolerant control
is a mature field with different methodologies and many applications. Redundancy
is widely used in employing of fault tolerant control systems but algorithmic fault
tolerance measures that does not require physical redundancies is also sought, which

is the central theme of this thesis work.

1.4 Related control system design techniques

The proposed method includes injection of high frequency perturbations on the tra-
jectory of the actuated state and analyzing the stability of the control system using
singular perturbation theory. Of course there are other techniques in the literature
that uses superposition of control signals or singular perturbation theory as control
method. Most of these developments are scattered in the literature and there is no

single reference that overviews all of them. Therefore this section is dedicated to
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review of such related techniques.

1.4.1 Control system design methods based on compensation

A recurring idea in control system design techniques is generation of an auxiliary
signal and superposing it to the output of a nominal controller. The auxiliary signal is
usually used for online compensation of effects that had not been taken into account
during the design of the nominal controller. Typical application of this idea is adaptive
controllers but even Stability Augmentation Systems (SAS) of aircraft can be regarded

in this way.

In fly-by-wire aircraft, flight control systems adds high frequency control signals
generated by SAS to the low frequency commanding signals of the pilot, in order
to maintain stability of the aircraft while tracking the commands of the pilot. Such
kind of command superposition is possible for linear systems, since linear systems
response to the superposition of two signals are itself superposition of the response of
the system to the two input signals separately. Feedback signals also should be filtered
for the frequency range of interest and fed to the relevant part of the controller, for the

overall system to function properly.

For nonlinear systems, superposition of inputs in order to achieve an equivalent
combined response is not possible. But many nonlinear control structures, especially

adaptive controllers, use a similar structure to attain the control goal.
Consider the following MIMO dynamic system:

t=A-z+ B-(u+ f(x))
where f(x) represents the nonlinearity of the system.

In adaptive controllers, control signal is written as superposition of two signals:
U = U, + Uqq. The idea is to find control signal u,, that would cancel out the
nonlinearity f(x) so that resulting system becomes linear and the nominal control
signal u,, can be used for adjustment of this system. It is easier to prove that adaptive
controllers converge to the desired negating signal 1,5 = — f (x) asymptotically; but

the real problem is, it is not always possible to do it with bounded control signals and
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with bounded error band. Bursting of control signals and temporal instabilities can be

observed in many applications [35].

There exists novel adaptive control architectures that claims free of these problems.
In £, adaptive control architecture, Hovakimyan and Cao proposes to use projection
based bounding functions on the estimation of the nonlinearity ( f (x)) and low pass
filters to filter the high frequency part of the control system [38]. This makes £,
norms of the control signals bounded, which can be used in the design of the controller.
Although some critics exists [39, 40], £, adaptive control provides metrics that can be

used for stability and transient performance prediction. Typical £, adaptive control

architecture is shown in Figure 1.2.

[ 1T L
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Constant Feedback
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r Uad u | x(t) = Ax() + b(u(t) + 07x(¢ X,
B ARA S O
_ -1 System
9 cTA b
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State Predictor

8(t) = TProj(6 (1), —%T (t)Pbx(t))

Adaptation Law

7(t) =07 (t)x(t)

Figure 1.2: Typical £, adaptive control architecture [38]

Another approach is called Concurrent Learning adaptive control [41], whose imple-
mentation structure is shown in Figure 1.3. Estimation of nonlinearity (f(x)) will be
explained in Chapter 2, in detail; but it can be stated briefly that, this calculation is
based on an error minimization algorithm that uses the instantaneous value of the error
signal. In concurrent learning, historical stack of error signals are recorded and used
for the estimation of the nonlinearity. Another idea for using recorded data is using

orthogonal basis functions to approximate the nonlinearity and least square for the

estimation of the coefficients of the basis functions [42].

It is known that performance of controllers can be improved by modifying the reference
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Figure 1.3: Typical Adaptive Model Inversion (AMI) - Concurrent Learning adaptive

control architecture [41]

input of control systems, especially for enforcement of control constraints [43]. A
regulator signal, so called the “Command Governor” signal is superposed on the
reference input for this purpose. A command governor structure on an adaptive control
architecture is also proposed by Yucelen and Johnson [44, 45]. The regulator signal is
generated by an external linear system driven by the error between a reference model
and actual output of the system. With this structure, controller becomes linear and
therefore it is possible to define performance metrics together with signal bounds.

Command governor modification is shown in Figure 1.4.

Adaptive control is not the only method that decomposes the control inputs and
calculates them from different control objectives. It is known that high frequency
oscillations can be used for trajectory tracking of underactuated robotic systems, if
the system is in specific normal form and internal states are stable [47, 48]. Similarly,
Schenato used high frequency oscillatory control signals superposed on the control
input to control the flight of a robot insect [49]. Systems that don’t have internal
dynamics, i.e.,f(z) = 0in & = f(x) + g(z) - u, are called driftless systems. For
such systems, averaging theory [4] provides relations between the response of the
system to oscillatory inputs and the mean of the input signal. Using this relations,
Schenato developed a feedback control design method which generates oscillatory
control signals that can stabilize an unstable system, similar to the example provided

in the introductory part.
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Figure 1.4: Typical Command Governor adaptive control architecture [46]

Control system design is a very rich and dynamic field and it is not possible to
summarize, even briefly, all of the different techniques and applications within the
content of a thesis. Those that are mentioned are the ones that have been found
most relevant. Another aspect of the proposed FTC structure is usage of the singular

perturbation theory, which will be reviewed in the next section.

1.4.2 Singular perturbation theory based control methods

Perturbation Theory deals with equations that have a small parameter -a perturbation- in
their forms. Dependence of the solutions of algebraic, ordinary and partial differential
equations on this small parameter can be analyzed using perturbation theory. In some
cases, presence or absence of the perturbations changes the order of the equation, like
if the coefficient of the highest derivative term in an ordinary differential equation
is a small parameter. Such kind of problems are called singular perturbations and
mathematical techniques that deal with such kind of systems are grouped as Singular

Perturbation Theory.
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Singular perturbation theory have many application areas. For control systems, these
applications are mainly related to modeling of the plant that will be controlled. Using
singular perturbation theories tools, one can simplify the problem and analyze the
dynamics of the system at different time scales. Therefore singular perturbation theory
can be used for include robustness analysis, time scale separation and system reduction

[50].

Singular perturbation theory is used in this thesis work for analyzing the effects of high
frequency perturbations on the system dynamics. Such a usage of singular perturbation
theory, directly within the control law, is less common than the typical applications
mentioned above. One of them is the Adaptive Dynamic Inversion (ADI) control
system architecture developed by Hovakimyan, Lavretsky and Sasane [51, 52]. This
technique relies on Tikhonov’s theorem on singular perturbations [4]. It is one of the
central theorems of the singular perturbations theory and also it is the starting point of
the algorithmic fault mitigation approach developed in this thesis work. Therefore it
will be discussed in Chapter 2 in detail, but general outline of the theory can be given

by considering the following system of equations:

i = f(t,z,u,e) (1.2)
e-u = g(t,x,u,e€) (1.3)

Now for € — 0, (1.3) becomes g(¢, xz,u,0) = 0. Let u = h(¢, ) be a solution to this

equation. Then the dynamic system (1.2) and (1.3) can be reduced to

= f(t,x,h(t,x),0) (1.4)
dy
i g(t,z,y + h(t,x),0) (1.5)

where 7 = t/e.

The first equation (1.4) is called the “Reduced System” and the second equation (1.5)
is called the “Boundary Layer System”. This reduction is valid provided that the
system is comprised of continuous functions, reduced system has a unique solution

and the origin of the boundary layer system is exponentially stable.

The idea of the ADI technique is that if the perturbed dynamics (1.3) is taken as the

control input, then Tikhonov theorem provides a basis for reduced system (1.4) to
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become the inversion of the original system. Let f,.,,,(¢, z, ) be the reference model
that we want our system to follow, with r being the reference input. By choosing
the right hand side of the perturbed dynamics as g(¢, z,u) = f(t,x,u) — frm(t, x,7),
results of Tikhonov’s theorem states that control input » would lead the system into
the state © where f(t,x,u) = f.m(t,z, ), i.e.,practically control input would invert

the system.

In order to satisfy the requirements on the stability of the reduced and boundary layer

system, following form of equations is used .

T = f(t7$au)
€-u = —329”(%) ’ [f<t7$7u) - (Arm “Trm + Brm ) 7’)] (16)

where reference model dynamics is ., = Ay - Ty + By - 7 and —sign(%) ensures

that the boundary layer system is stable. A critical assumption for the controller is that

% is sufficiently bounded away from zero for all (¢, ¢e) € [0, 00).

Continuing work by Lavretsky and Hovakimyan extends the formulation to compensate
for uncertainties through online estimation of the nonlinearity with a neural network
structure [52]. For this purpose, a state estimator and adaptive update law is added to

the control structure.

For the control of the system in the form of £ = A - x + B - f(¢, z, u), nonlinearity
f(t, z,u) can be represented by linear combination of basis functions. Radial basis
function (RBF) based neural networks are typically used for such purposes. Let ®(z, u)
be n dimensional basis function and W (¢) be the vector of n weighting coefficients,
then the approximation of f(t,z, u) can be written as f (¢, z,u) = W(t)T - ®(&, u).
This approximate form is used in the right hand side of (1.6). Adaptive update law
used for updating of weighting coefficients is given in (1.7), where I' is the adaptation
gain, e, = & — x is the estimation error and P solves the algebraic Lyapunov equation
AT . P+ P- A, = —Q for arbitrary Q = QT > 0 and A, is the stable state estimation
error dynamics. In order to bound the weighting coefficients, projection operator is

applied on the adaptive update law. Together with the state estimator (1.8) and control
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law (1.9), final form of the control system can be achieved (Figure 1.5).
W(t) =T - Proj (W(t), —P(F,u) e P B> (1.7)
it)=A-z+B- (W(t)T-cp(:e,u) +As-es> (1.8)

€ U= _SZgn(%) ) [W(t)T ' (b(i?u) - (Ar‘m * Tpm T Brm : T) + As ' es] (19)
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State Predictor
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Figure 1.5: Adaptive Dynamic Inversion (ADI) based control system architecture

For a further improvement, integrals of the RBFs, together with RBFs as basis functions
can be used which assures that assumption on monotonic property with respect to

control input of the unknown system dynamics is satisfied [53].

However, further analysis of Teo and How revealed that ADI controller is equivalent
to a linear proportional-integral model reference controller if the sign of the control
effectiveness is known [54]. This can be seen (roughly) by considering the integral of

the control law in (1.6) and using the relations & = f(¢,x,u) and &, = Ay * Ton +

By, -1
t t t
/e-u-dt—/f(t,x,u)-dt—/ (Apm * Ty + B - 1) - dt
0 0 0

t ¢
—>e-u(t):/ a’c-dt—/ 113
0 0

(z(t) — )

—u(t) ~

A | =

Therefore, this form of ADI is equivalent to calculation of the difference between a

reference model x,.,,, and the measured state = and multiplying with a large gain 1/e.
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However this equivalence holds only for the time response when applied to the exact
system and robustness properties of ADI and PI realization are not equivalent. In
fact proportional-integral realization performs better when accurate knowledge of the
nonlinear system dynamics is not available [55], while ADI realization is more robust

to time delays [56].

Although further research on ADI is not pursued, there exists few works in the literature
that use a similar idea. For example, higher order derivatives of the control signal and

the state feedback signal can be used for generation of the control signal [57]:

6q~u(Q)+dq_1~eq_1~u(q_1)+...+d1-e-u+dg~u:k’o-(frm—x("))

where superscript (n) represents the n-th time derivative.

In another application, control law is written as a singularly perturbed system not
for the inversion of the whole system, but just for the inversion of the non-affine
control function [58]. For the system in the form of & = f(x) + g(z, u), control law
written in the form of € - & = — (g(z, u) — v) would lead to the converged system of

= f(x)+v.

Singular perturbation theory provides a method for generation of fast control signals
and time scale separation for the control system analysis and this feature is exploited
in the above mentioned methods. In this thesis work, a similar idea is constructed for
the development of an algorithmic fault mitigation approach, but instead of generat-
ing control signals, singular perturbation theory is used for generation of reference

trajectories.

1.5 Proposed method, scope and limitations

Recovery from actuator failures, without using redundant actuators is aimed for
the thesis work. For this purpose, an algorithmic fault tolerant control architecture
is developed. This architecture is basically an adaptive controller that generates
perturbations on the trajectories of the states that are connected to healthy actuators,
that would stabilize or guide the motion of the states that are connected to faulty

actuators. Fault detection and isolation is achieved through state estimator as part
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of the algorithm. Overall system can be implemented within a Health Monitoring
framework, i.e.,as an external outer control system that checks the operation of the
control system and warns and/or executes predetermined functions if a fault is detected.
General overview of the system is shown in Figure 1.6. Here, u; represents the faulty
actuator and perturbations on the reference trajectory of the actuated states (1) are used
for stabilization of the whole system. It should be remarked that states (z1, z2) and
control signals (u1, u2) shown can be multidimensional, although they are grouped into
two as those that are connected to healthy actuators (x5) and those that are connected

to faulty actuators ().

Fault Tolerant Controller
_______________________________________ ,

1
‘ State Estimation and Fault Detection }-—;—
l 1

HO =2 (@ FiGan +0) — falurdl + 41 |]

Perturbation Generation

[ ] "]
ot ry=r+r Uz

4’U‘" Uy = g(xzrriz) }—‘ 3.51 = f;l(xlleb\% (xl,x2)~

Xy = fa(xq,x2,u
x, Controller 2 = 2000, X213 |
\5‘

Faulty|Actuator

Figure 1.6: Architecture of the developed fault tolerant control system. Within the
shown configuration, perturbations on the reference trajectory of the actuated states

(z2) are used for stabilization of the whole system

As the details will be explained in Chapter 2, the problem is formulated such that the
stabilizing perturbations are generated from an external dynamic system and overall

closed loop system can be written as a singular perturbation problem:

jfl :f1<x1>x2)
3‘72 :fQ(ZEl,IQ,U)
€7 =a-[filry,r+12) = fr(w1,72)] + Ay

where f,.1(z1, x2) is the reference model for the z; dynamics and 7 is the reference

signal for x5. A, is a Hurwitz matrix , € is a small parameter and o = +1 will be
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chosen appropriately for stable » dynamics. Choice of ¢, f,; and A, are part of the

fault tolerant control system design process.

The proposed control law can be regarded as introduction of an additional state as a
secondary command on the trajectory of z. This secondary command is generated
by a singular dynamic system, whose structure is determined in order to render the x;
dynamics into a desired form. With this control structure, overall closed loop dynamics
can be formulated as a singular perturbation problem and results of the Tikhonov’s

theorem (Theorem 2.3.1) can be used to analyze the behaviour of the system.

As will be shown in Chapter 2, proposed control structure can be applied to wide
class of problems, including systems with unstable internal dynamics, i.e., 1 =
f1 is unstable, provided that the systems under consideration satisfy the following

assumptions:

Assumptions

Proposed method is suitable for continuous systems, including the closed loop con-
troller for x5 dynamics. Therefore, discontinuous control laws, such as Sliding-Mode-

Controllers or switching control are not allowed in the original system.

The structure of the system should permit that the perturbations on the directly con-
trolled states (x5) affect the z; dynamics. This condition can be formulated with the

following controllability assumptions:

e The homogeneous system &1 = fi(x1, x2), with x5 as the control input, is small-

time locally controllable from ;o = 0 Vo, € R™ : 25 C L
e The homogeneous system &o = fo(x1, 22, u) is small-time locally controllable from

Too = 0Vx; € R™=m) . 2 C Q.

In order to prove that the perturbation signal r is bounded, a certain condition on
i1 = fi(x1, z2) dynamics is required, which can be formulated as an assumption on

the existence of a the following bound:

1/1(0, 22) [ < 72 [l
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Details of this condition is discussed in Chapter 2. Note that this condition does not
restrict that &1 = f;(z1,0) should be stable. In fact the system can be unstable even

with respect to x5, but the growth should be linearly bounded.

e Initial conditions of the system should be bounded.

Limitations

Proposed method is applicable to wide class of problems, provided that the above
mentioned assumptions are satisfied. The limitations on the results that can be achieved

can be summarized as follows.

e Proposed methodology guarantees the stability of the uncontrolled dynamics (x1)
such that it is ultimately bounded. It does not guarantee convergence and proposed
methodology does not provide a mechanism for command tracking of the unactuated

states.

e Although it is proved that the trajectory perturbations are bounded, provided that the
above mentioned assumptions are valid, their bound, which also depends on initial
conditions and value of €, might exceed actuator or system limits. But it should
be noted that the results provided in Chapter 3 and 4 are achieved using system

simulations that takes into account these effects as well.

e Transient response of the system have not been taken into account in the analyses, for
its mathematical treatment in general nonlinear systems is difficult, it is left outside
of the scope of the thesis work. Since the method is developed as a fault tolerance

measure, for the case under study, stability is more important than performance.

Advantages

With these assumptions and limitations, advantages of the proposed method can be

summarized as follows.

e Proposed FTC architecture does not require any actuator redundancy.
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It can be used in systems where number of actuators are less then number of states,

i.e., underactuated systems.
It can also used in systems which have unstable internal dynamics.

It can be implemented as an outer loop to an existing control system and it can function

without using switching laws.

Fault detection is an integral part of the FTC system.

Original Contributions

A novel algorithmic fault tolerant control architecture is developed within this thesis

work. Original contributions can be summarized as follows.

Developed FTC is in fact an adaptive controller and therefore it can be used directly
as a control algorithm for control of nonaffine in control, cascade (or interconnected)
systems that have unstable internal dynamics. Within the limitations explained in

Chapter 2, this capability is unique to the proposed architecture.

Due to coupling of system dynamics, estimation of disturbance signal is difficult
in robotic systems. Within the content of the thesis work, a state transformation is
proposed for robotic systems, which decouples and enables correct construction of the

external disturbance signal.

Fault tolerant controller for quadrotors that deal with propeller loss is very limited in
the literature. Proposed solution is a valuable contribution that it can be implemented

together with an existing controller and without requiring any linearization.

1.6 Summary of the thesis

Development of a new fault tolerance control architecture and laying out the design
methodology constitutes the thesis work. In order to explain the details of the proposed

method, the rest of the thesis is organized as follows:
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Chapter 2. Theoretical foundations of the proposed algorithmic fault tolerant control
architecture is laid down in Chapter 2. For this purpose, it is shown that how
fault tolerant control problem can be cast into a control problem for nonlinear in-
terconnected systems. Details of the proposed control architecture are explained

with stability proofs. Applications on model problems are also provided.

Chapter 3. Robotic systems can be cast into a standard second order Lagrangian form,
independent of the dimension of the system and most of the robotic control
systems use this form as the model of the plant dynamics. FTC algorithm is
derived for this general form and applied to a vertical two-link and a horizontal
three-link robot arm problems in Chapter 3, in order to demonstrate the feasibility
of proposed FTC architecture on robotic systems. A suitable transformation of

states for fault detection in robotic systems is also presented.

Chapter 4. Attitude control is an essential part of any flight control system. Quadrotor
is chosen as an application platform and developed FTC algorithm implemented

for complete loss of a propeller case.

Chapter 5. Finally, remarks on the proposed algorithmic fault tolerant control archi-
tecture, further research directions and possible applications are given in Chapter

5.

1.7 a Note on notation

The focus of this thesis is Multi-Input-Multi-Output systems and therefore formula-
tions are applicable to multidimensional systems. No additional symbol is used in
order to indicate multidimensionality and unless otherwise specified, all variables
are vector variables. As usual, multiplication of variables is implied with consequent
placement, without any operator in between. In order to improve the readability of
some formulations, “-” sign is also used as indication of multiplication operation. For

equations involving matrix terms, all multiplications are matrix multiplication.

For vector product (or cross product) between vectors, “x” sign is used. In some

formulations, “x” operator is used in front of vectors to indicate the skew-symmetric
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form of vector. It is defined for u € R? as,

0 —Uus U2
(ux) = | uy 0 —u
—U2 (51 0
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CHAPTER 2

THEORETICAL DEVELOPMENT OF THE FAULT TOLERANT
CONTROL STRUCTURE

Main output of this thesis work is a novel control structure that can be used as an
algorithmic fault tolerance measure. Therefore a controlcentric theoretical analysis is
required in order to determine the design parameters and range of applicability of the

proposed structure.

For this purpose, first, how the proposed method can be formulated as a control
problem for interconnected or cascade systems is explained in Section 2.2. Then
in Section 2.3, some stability related definitions, theorems and results that will be
used in the analysis is reviewed. After that, the main theorem that covers the extend,

assumptions and results of the proposed method is given in Section 2.4.

Fault detection is an integral part of the proposed method and its structure is explained
in Section 2.6. In order to demonstrate the performance of the control system, analyt-
ically tractable prototype problems are discussed in Section 2.5 and finally, general

overview of the method is summarized in Section 2.7.

2.1 Introduction

Fault tolerant control problem can be analyzed using a general form of a nonlinear
Multi-Input-Multi-Output (MIMO) dynamic system (2.1) with x € R", v € R™ and
y € R".
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T = f($) +g(x,u)

Y= h(xv u)

2.1)

Generally, three types of faults can be considered for a development of an FTCS:

e Many systems are designed for finite number of operation points and control param-
eters are tuned for the specified conditions. Presence of a fault might lead to sudden
change of parameters or introduction of unmodeled dynamics such as appearance of

vibration. This kind of faults are related to unknown changes in f(z) and g(z, u).

e Control systems use sensors in order to gather information about the states of the
system. Faults in the sensor measurements are possible which would lead to faulty
readings or no measurements at all. This can be analyzed through analysis of the

measurement function A(x) and output vector y.

e Actuators are the mechanism that control systems use in order to manipulate the
plant and unlike sensors, whose dynamics can be safely ignored in most applications,
they an integral part of the system. Actuator faults may lead to partial or complete
loss of control capability and in terms of control synthesis, a major change in g(x, u)

dynamics occurs.

In order to evaluate the effects of failures and develop control algorithms for coping

with them, different tools from the control system theory can be used.

Change in the dynamics of the system is rather a robust control problem. Various
analysis and design techniques exist in the literature to make the control system cope
with such variations and adaptive control is one of them. With implementing adaptive
components in the FTC structure, proposed control system exhibits a fault tolerance

character in this manner.

If » > nin (2.1), then there are more measurements than required and this can be used
for finding and replacing a faulty sensor. In typical applications, Kalman filters are
employed to find an optimal estimate of the measurement and bounds on probable
value of the signal or multiple measurements are voted for their validity. Such kind

of algorithms can be implemented without effecting the rest of the control system.
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Another approach is using physical constraints of the system. In many cases, physics
of the problem pose restrictions on the states. For example, no-slip condition on a
rolling wheel imposes a constraint between the angular velocity of the wheel and the
speed of the vehicle it carries. These are called “Holonomic constraints” and they are
very common in robotic systems. Such constraints can be used as rules for checking
the validity of the sensor measurements. Since these constraints are system specific,

resulted FTC algorithm against sensor faults is also system specific.

Since most of the fault tolerance measures against sensor faults are either too system
specific or can be developed outside of the control system, such measures are not
addressed in this thesis work. But the developed FTC architecture does not inhibit

implementation of such measures.

Main aim of the developed FTC algorithm is to propose a systematic design methodol-
ogy to deal with actuator faults with the reduced capability of the control system with

wide applicability. The proposed solution to the problem is:

e Fault diagnosis through estimation of the time dependent fault signal

e Zeroing the control input of the faulty actuator as the first fault mitigation act.

e Generating perturbations on the healthy actuators for overall stabilization and com-

mand following of the damaged system.

In order to analyze the proposed implementation of the above fault mitigation algo-
rithm, it will be explained in Section 2.2 that such kind of a fault mitigation algorithm
would result in a coupled system where number of actuating signals are less than
number of states (assuming no overactuation in the original system), which are also
commonly called as cascade systems or interconnected systems. As explained in Sec-
tion 1.2, existing control system architectures for such kind of systems have a limited
range of applicability. Therefore a novel control system architecture is developed. This

control system architecture is analyzed in subsequent sections.
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2.2 Fault Mitigation as a Control Problem

In order to pose the algorithmic fault mitigation policy as a control problem, let the
number of faulty actuators be m. For the case where number of states is equal
to or more than the number of actuators (n > m), the states x € R™ and control
input u € R™ of (2.1) can be split into two as (z1,x2) and (u1,us) where z; €
R=(m=ms) 2y € R™™f u; € R™ uy € R™ ™. The aim of this grouping is to
separate the faulty actuators and write down the dynamics of the healthy actuators as a
fully actuated system. However for a coupled nonlinear system, splitting the states is
rather arbitrary. When the mechanics of the problem is such that an actuator is directly
related to a state, as in the case of the robot arm problem, it is logical to choose x;
that are directly linked to u; but in general, any m; number of states can be chosen as
the internal dynamics. Since this choice may effect the performance of the controller,

alternatives should be evaluated during the control system design process.

With this note, (2.1) can be rewritten as,

i1 = fi(z1, 22,41 + d) 2.2)

Ty = fo(21, T2, us)

The fault signal is modeled as an additive signal to u; and it is denoted as d. The
nature of the fault determines the fault signal d. For example if the actuator becomes
ineffective, then the fault signal can be written as d(t) = —u;(¢). Or if there is an
unexpected lag in the actuator, fault signal can be modeled as d(t) = —u(t) +u(t+7),
with 7 denoting the time lag. In any case, fault signal is a function of control input,
i.e., d = f(uq(t)). With this approach, fault diagnosis algorithm becomes estimation
problem for the signal d(¢) and the fault mitigation problem becomes control under

the effect of an external disturbance.

In order to cope with the faulty situation, first fault mitigation act is nullifying the
effect of the fault. This can be done with cutting of the power of the actuator or locking
the actuators. Either of the actions result in ©; = d = 0. Although actuator lock in a
nonzero position might result in a residual control force, which can be regarded as an
uncertain time independent constant disturbance. Such effects can be handled through

adaptive parts of the FTC algorithm.
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Figure 2.1: Block diagram of the overall control system

After the first fault mitigation act, (2.2) can be written as,

&1 = fi(z1, 22) (2.3a)
Ty = fo(x1, T2, Us) (2.3b)

With this form, proposed fault mitigation algorithm can be analyzed as a control

problem of general interconnected or cascade systems.

The proposed control law can be regarded as introduction of an additional state as a
secondary command on the trajectory of z5. This secondary command is generated
by a singular dynamic system, whose structure is determined in order to render the x;
dynamics into a desired form. With this control structure, overall closed loop dynamics
can be formulated as a singular perturbation problem and results of the Tikhonov’s
theorem can be used to analyze the behaviour of the system. Block diagram of the

proposed control system architecture is shown in Figure 2.1.

The idea of the developed control architecture is to construct a trajectory for z, as
xo(t) = ro(t) + r(t) such that r(t) stabilizes the x; dynamics. This perturbation on
the trajectory of x5 is generated by a singular dynamic system, whose structure is
determined in order to render the x; dynamics into a desired form. With this structure,

overall closed loop dynamics can be formulated as a singular perturbation problem.

Tikhonov’s theorem on singular perturbations of dynamic systems is the main tool
for the proposed method. Therefore before the presentation of the proposed control

architecture and the design method, Tikhonov’s theorem and some definitions and
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results from the analysis of time-varying and perturbed systems, that will be used in

the proof of the main theorem are explained in the next section.

2.3 Mathematical Preliminaries

The mathematical foundation of the proposed method relies mainly on Singular Pertur-
bation Theory. Basic definitions and main theorems from the literature are reviewed in
this section. First, the main theorem of the Singular Perturbation Theory, also known
as the “Tikhonov’s Theorem” is explained. Then some definitions and results from
the stability analysis of nonlinear time-varying systems are given in the subsequent

sections.

2.3.1 Tikhonov’s Theorem

Singular perturbation problem can be stated by considering the following system of

equations, where € is a small parameter [4]:

T = f(t,x,z,¢€), x(to) = £(€)
e-2=g(t,x, z,¢), z(to) = n(e)

(2.4)

Theorem 2.3.1 (Tikhonov’s Theorem). Consider the singular perturbation problem
(2.4) and let z = h(t, x) be an isolated root of the equation ¢(t,x, z,0) = 0. Assume

that the following conditions are satisfied for all

[t,x,z—h(t,x), €] € [0,t1] x B, x B, x [0, &

e The functions f, g and their first derivatives with respect to (z, z, €), the function
h(t,x) and the Jacobian Oq(t,x, z,0)/0z and their first partial derivatives with
respect to their arguments are continuous. The initial data &(€) and n/(e) are smooth

functions of e.

o The reduced problem & = f(t,z, h(t,x),0), with x(ty) = £(0) has a unique solution
Z(t), defined on [to, t1], and ||Z(t)|| < 1 < rforallt € [ty, t1].

e The origin of the boundary layer model g—f = g(t,x,y + h(t,z),0) is exponentially

stable, uniformly in (t, x).
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Then there exists positive constants p and €* such that for all ||n(0) — h(ty, £(0))]| < p
and 0 < € < €*, the singular perturbation problem (2.4) has a unique solution
x(t,€), z(t,€) ont € [ty, t1]. With y(T) being the solution of the boundary layer model,
following relations hold uniformly for t € [ty,t;]:

w(t,€) — i(t) = O(e)
z(t,€) — h(t, 2(t)) — g(t/e) = O(e)

Tikhonov’s theorem is quite general and applicable also to multidimensional systems.
As explained in Section 1.4, it has many applications from system reduction to control
system design. Slightly different versions are also available in the literature. Although
the stated result is the same, some versions assume asymptotic stability of the reduced
problem and the boundary layer model [50, 59], instead of exponential stability.
However, it is known that systems where origin is asymptotically, but not exponentially,
stable is not robust to smooth perturbations with arbitrary small linear growth bounds
[60]. Exponential stability condition assures a robust solution and therefore it is

retained in the development of the proposed method.

2.3.2 Definitions related to stability of time-varying systems

Following definitions and lemma will be used for proving the stability of the proposed
structure. Presented versions are taken from the book “Nonlinear Control” authored

by Hassan K. Khalil [61].

Definition 2.3.1. Consider the following n-dimensional system
T = f(t,x), x(ty) =0

in which ¢y > 0, f is piecewise continuous in ¢ and locally Lipschitz in = for all £ > 0

and x € D, where D C R" is domain that contains origin.

The solutions of this system is uniformly bounded if there exists ¢ > 0, independent
of ty, and for every a € (0, ¢), there is 8 > 0, dependent on a but independent of ¢,
such that

lz(to)ll < @ = [lz()]| < 5,¥t = o
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Definition 2.3.2. Class X and KL functions:

e A scalar continuous function a(r), defined for r € [0, a), belongs to class K if it is
strictly increasing and «(0) = 0. It belongs to class K, if it is defined for all 7 > 0

and o(r) — oo as r — 0.

e A scalar continuous function 3(r, s), defined for r € [0, a) and s € [0, 00), belongs
to class ICL if, for each fixed s, the mapping 3(r, s) belongs to class K with respect
to r and, for each fixed r, the mapping 3(r, s) is decreasing with respect s and

B(r,s) — 0as s — oo.

Definition 2.3.3. The system & = f(z, u) is input-to-state stable if there exist a class
KCL function [ and a class K function ~y such that for any ¢, > 0, any initial state z(t,),

and any bounded input u(t), the solution z(t) exists for all ¢ > ¢, and satisfies

oo < max {5 (lattol ¢ =t  sup Ju(r)l) } v 2t

to<7t<t

Input-to-state stability of # = f(z, u) implies the following properties:

For any bounded input u(t), the state x(t) is bounded;

x(t) is ultimately bounded by v (sup,,<,<; [u(7)|) ;

e if u(t) converges to zero as t — oo, so does z(t);

The origin of the unforced system & = f(x,0) is globally asymptotically stable.

Following lemma (Lemma 4.5, p.108 [61]) gives a sufficient condition for input-to-

state stability.

Lemma 2.3.2. Suppose f(x,u) is continuously differentiable and globally Lipschitz
in (z,u). If & = f(x,0) has a globally exponentially stable equilibrium point at the

origin, then the system © = f(x,u) is input-to-state stable.

Proof. This lemma is a consequence of converse Lyapunov theorem, that states the
existence of a Lyapunov function for exponentially stable systems and its proof can be

found in the original sources [4, 61]. O
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2.3.3 Stability of time-varying and perturbed systems

Definition 2.3.4 (Exponential stability). Let f(x) be a locally Lipschitz function
defined over a domain D C R", which contains the origin and f(0) = 0. The
equilibrium point z = 0 of & = f(x) is exponentially stable if there exists positive

constants ¢, k and A such that,
lz ()] < k(o) || e ), vt > 0

for all ||z(0)|| < c. It is globally exponentially stable if the inequality is satisfied for

every initial state z(0).

This condition actually states that, a trajectory started within a certain region of
the phase space is contained within an exponentially decreasing function. Proof
of exponential stability is achieved by finding appropriate Lyapunov functions for
the system under consideration. Of course, linear stable time invariant systems are
exponentially stable with A corresponding to eigenvalues. But for nonlinear systems,
there is no general methodology. Some useful results are presented by Khalil and the

following results are based on his lecture notes [60].

Following theorem poses a sufficient condition for exponential stability of the origin

for a dynamic system.

Theorem 2.3.3. Let the origin © = 0 be an equilibrium point of © = f(t,z) and
D C R"™ be a domain containing x = 0. Suppose f(t, ) is piecewise continuous in
t and locally Lipschitz in x for allt > 0 and © € D. Let V (t,x) be a continuously

differentiable function such that

ky l2]|® < V(tx) < ke flz*

v v a
a2 < _
5t g (ba) < —ksal

forallt > 0 and x € D, where ky, ko, k3 and a are positive constants. Then, the origin
is exponentially stable. If the assumptions hold globally, the origin will be globally

exponentially stable.

If the dynamic system is time-invariant, then the corresponding Lyapunov function

V (t, z) would be independent of ¢.
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A possible approach to the analysis of a time dependent nonlinear system is, treating it
the time dependent terms as a perturbation to an exponentially stable, time-invariant
nominal system. Following corollaries summarizes the results that can be achieved

from such an approach.

Corollary 2.3.1. Consider the perturbed system

x':f(a:)—i—g(t,x), g<t’0):0

where & = f(x) is an exponentially stable system and in accordance with Theorem
2.3.3, let the corresponding Lyapunov function V (x) has the following bounds:
2 2
cr |zl < Vi(x) < ex ||
)%
%f(x) < —cs |z

W < ey lle]
ox || — g

The origin of the perturbed system is exponentially stable if

C3
lg(t, z)|| < ~vllz|, 0§7<a

Proof. Use the Lyapunov function of the original system V'(x) as a Lyapunov function

for the perturbed system:

V(t,r) = 2 1) + gt )
:V@@g%&@ﬂ”%ﬁ@@

2
< —csllzll” + callzl lg(t, 2]

if ||g(t, x)|| < 7|z, then the last inequality can be written as,
‘ 2 2 2
V(t,z) < —csllz|” + cay |2l = — (e — yea) ]

cs3/cy > 7, together with ||g(t,z)|| < ~|/z| condition guarantees that V' (t,z) < 0,

which indicates the exponential stability of the perturbed system. [
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Corollary 2.3.2. For the system in Corollary 2.3.1, if the original system is linear
stable system, i.e., f(x) = Ax where A is Hurwitz, that satisfies the Lyapunov equation
PA + ATP + Q = 0 with P for an arbitrary QQ = QT > 0, then the origin of the

perturbed system is exponentially stable if

t < 0<
lott. )l < vlall, 0<y < s

Proof. Considering V (x) = 2T Pz as the Lyapunov function for the dynamic system
# = Axz. P is asolution to the Lyapunov equation PA+ ATP = —Q with Q = Q7 >

0. Then it can be written that,

V(e) = —2"Qx < =Amin(Q) |l

Ain(P) |2]* < V(&) < Anaa(P) |12

oV (z) IV (z)
o o PTE R = T | =l P POl = 21P) e
N HW“) ] < Daa(P) 2]

Therefore, c3 = A\pin (@) and ¢y = 2,4, (P). Hence,

TS oh e (P)

is a sufficient condition for exponential stability of the perturbed system. U

Remark 2.3.1. Since Lyapunov equation can be solved for any QQ = QT > 0 (Theorem

2.3.5), it is better to choose () such that the ratio Q\L”((QP)) is maximized. It can be

shown that this ratio is maximized for () being the identity matrix [4].

2.3.4 Existence of solutions

For a general nonlinear dynamic system & = f(x,t), Cauchy existence theorem states
that continuity of f(z, t) is sufficient for local existence of a solution, however for the

uniqueness of the solution, f(¢,z) should also satisfy Lipschitz condition:

Theorem 2.3.4. [f the function f(z,t) is continuous in t, and if there exists a strictly

constant L such that

1f (2, 8) = f (a1, DI < L[z — 21| (2.5)

35



for all x1 and x5 in a finite neighborhood of the origin and all t in the interval
[to, to + T'| (with T being a strictly positive constant), then & = f(x,t) has a unique

solution x(t) for sufficiently small initial states and in a sufficiently short time interval.

Condition (2.5) is called the Lipschitz condition and it is sufficient for uniqueness of
the solution. Continuous functions with bounded first derivatives (within the domain
of interest) satisfy Lipschitz condition. It should be noted that Lipschitz condition is
a rather conservative condition and for most physical problems, smoothness of f is

enough for the existence and uniqueness of the solution of the dynamic system [15].

Lyapunov equation, which can be written as PA + AT P = —(Q, is widely used in
control system design methods and the following theorem (Theorem 3.7, p.72 [61])

provides the existence of the solution of Lyapunov’s equation.

Theorem 2.3.5. A matrix A is Hurwitz if and only if for every positive definite sym-
metric matrix () there exists a positive definite symmetric matrix P that satisfies the
Lyapunov equation PA+ AT P = —(Q. Moreover, if A is Hurwitz, then P is the unique

solution.

Remark 2.3.2. Theorem 2.3.5 is biconditional. Therefore, negative definiteness of A

(“Hurwitz Matrix”) implies the existence of the solution of the Lyapunov equation.

2.4 Proposed Control Architecture

Mathematical foundations of the proposed method can be laid down with considering

the following dynamic system,

T = fi(x1, 22) (2.6a)

2ot .
To = f2($1,9€2,u2) (2.6b)

where z; € R", o € R™, u € R™.
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Following theorem provides the necessary conditions for achieving the stability of
xy around origin, while z5 can be maintained within a bounded vicinity of a time

dependent reference trajectory r»(t) € R™ using the proposed method.

Theorem 2.4.1. The interconnected system Yy can be stabilized around the trajectory
xo(t) = ra(t) + Br such that there exists ¢ > 0, independent of to, and for every
a € (0,c), there is 3 > 0, dependent on a but independent of t,, such that,

z1(to)[] < a— |lzi(t)| < B,V <ty

and ||z2(t) — ro(t)|| < Pa, where r € R™ is the output of a singularly perturbed
system,

e 7 =a-[filxi,r2 + Br) — fu(z,m)] + Ar (2.7)

with € as a small parameter and o = £1. f.1(x1, z2) is a stable reference model with
origin as a stable equilibrium point and A, is a Hurwitz matrix, B is a constant matrix

with dimensions B € R"*™, provided that the following assumptions hold,

Al The functions f and f are at least locally Lipschitz functions with continuous and

bounded derivatives and f(0,0) = 0.

A2 The homogeneous system (2.6a), with x5 as the control input, is small-time locally

controllable from x,y = 0, Vxy € R™ : 29 C (L

A3 The homogeneous system (2.6b) is small-time locally controllable from x5y = 0,
Vr; € R" : 21 C Q and there exists a smooth feedback control system that provides
control inputs u = u(xy,x2) such that error between the reference command xo,

and x4 converges to zero:
tlg& “2= tlgglo |2 — @acf| =0
A4 Internal dynamics fy(z1,x2) has the following bound:
/100, z2)[| < 72 [|2]l
and the perturbed system satisfies the following conditions,

C1 A, satisfies the following bound,

of
3x2

1

B - -
2 maz(P)

[z1(),r2]

<M and 7 <

where P is the solution to the Lyapunov equation for A,: PA, + ATP + 1 = 0.
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C2 A, satisfies the following bound,

1

1510, z2)| < v2llzall - and 7 < 2\ maz(P)

where P is the solution to the Lyapunov equation for A,: PA, + ATP + 1 =0,

Proof. The theorem will be proved by first showing that the system of equations (2.6)
and (2.7) is a singular perturbation problem and the conditions of the Tikhonov’s
theorem will be verified. The boundedness of z; will be shown using the results of
the Tikhonov’s theorem and boundedness of r(t) will be proved by showing that r(¢)

dynamics is input-to-state stable, under the provided assumptions.

1. The system of equations (2.6) and (2.7) can be formulated as a singular perturba-
tion problem by observing that for z., = r5 + Br, existence of a stable control
system (Assumption A3) guarantees that the error signal ey = x5 — (19 + Br)
is uniformly bounded such that ||ex(¢)|| < c. The error dynamics é; can be

considered as a stable dynamic system g5 as,
€y = ga (71, €2, 1)

With this representation, e; can be used as the state variable, instead of x5. This

change of variables leads to the following system.

i1 = fi(z1,ea+ 12+ 7) (2.8a)
éy = g2 (71, €2, 1) (2.8b)
e-7=oa-[filry,ea+re+ Br) — fr(xy,re)] + Apr (2.8¢)

For € is a small parameter, interconnected system (2.8) can be regarded as a
singular perturbation problem. Reduced problem of the singular perturbation
problem (2.8) is obtained with setting € to zero. Since neither x; dynamics,
nor e, dynamics involve e term explicitly, reduced problem is equivalent to the
original uncontrolled system >:g:

i1 = fi(z1,ea + 12 + Br) (2.9)

€y = g2 (71, €2, 1)
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The boundary layer model of the singular perturbation problem (2.8) can be
obtained with replacing r with y + h(z) in e equation:

dy
dr

where h(x1) is a solution of the equation a-[f1 (z1, 7o + Bh(x1)) — fr1(x1,79)]+
Ayh(xy) =0and 7 = t/e.

= a - [fi(z1,72 4+ By + Bh(z1)) — fr(z1,m2)] + A(y + h(z1)) (2.10)

Before using the results of the Tikhonov’s theorem, its assumptions should be

verified.

. First assumption of the Tikhonov’s theorem (A7 of Theorem 2.3.1) is related to
smoothness of the dynamic system and it is satisfied for smooth fi, fs, g2, fr1

functions. This assumption is also retained in this work (Assumptions A/ and

A3).

. Second assumption of the Tikhonov’s theorem (A2 of Theorem 2.3.1) is related

to the uniqueness of the solution of the reduced problem (2.9).

Since it is assumed that both f; and g, are continuous and bounded (Assumptions
Al and A3), existence and uniqueness of the solution of this system van be

guaranteed using the Cauchy existence theorem (Theorem 2.3.4).

. Third assumption of the Tikhonov’s theorem (A3 of Theorem 2.3.1) requires
that origin is an exponentially stable equilibrium point of the boundary layer

model (2.10).

Derivation of global exponential stability conditions using Definition 2.3.4 and
Theorem 2.3.3 is difficulty and highly system specific. Therefore, conditions of

local exponential stability will be sought, using Taylor series expansion of f;.
Since boundary layer equation represents the deviation dynamics from the
solution of the reduced problem, it is reasonable to expand f; around this
solution

fi(wy,z9) = fi(wi(t), Za(t)) + 2 [22(t) — Z2(2)]
[x1(2),Z2()]

For z5(t) = r5, boundary layer equation (2.10) can be rewritten as;
df1

fi(xy,m2) + 8_902

dy
dr

a .

(By -+ Bh(l‘l)) — frl(xly 7”2)
[z1(£),72] (2.11)

+ Ay + Ah(1))
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By definition, h(z) is an equilibrium solution of the perturbation equation

er = 0 and hence,

Bh([[’l) — fﬂ (ZEl, TQ)

[z1(),r2]

+ Ay + Aph(z) =0

Removing the corresponding terms from the (2.11) results in,

d 0
W (44490 y 2.12)
dT 81‘2 [ml(t),TQ}B
Boundary layer model (2.12) is in the form of a perturbed linear time varying
system. For o - g—g o1 (] B <0, boundary layer equation is always exponen-
x1(t),r2

tially stable. But if this is not the case, results of the Corollary 2.3.2 can be used

for derivation of sufficient conditions of exponential stability.

Existence of a bound on the derivative of f; is assured in Assumption A/ and
therefore exponentially stability of the boundary layer model (2.12) can be
guaranteed if,

oh
31’2

B
2 maz(P)

[z1(),r2]

<m and 7 <

where P is the solution to the Lyapunov equation for A,: PA, + ATP +Q = 0,
Q = QT > 0 and existence of a stable matrix A, with the desired bound can be
verified using Theorem 2.3.5 and Remark 2.3.2. Using identity matrix as () (see

Remark 2.3.1) results in the condition given in C/ of Theorem 2.4.1.

. With all assumptions of the Tikhonov’s theorem, Theorem 2.3.1 is satisfied, its

results can be used to show that for x = (x1, e3) in (2.6),

where Z(t) is the solution of the reduced problem (2.9).

The order of magnitude notation can be replaced with an inequality,
x(t) — z(t) = Ole) — lx(t) —z(t)| < K - €

such that there exists a positive number K for all ¢ € [to, ¢1].

For € = 0, the perturbed system (2.7) has the solution,

f1($1,$2) = frl(Ih?”Q)
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and therefore Z(t) = (z1(t), e2(t)) is the solution of the dynamic system,

T = fr1(Z1,72)

€2 = g2 (71, €2, 1)

Since f, is a stable reference model for x; dynamics, it is bounded. Let this
norm be ||Z1(¢)|| < B. Also, since z error dynamics e, is stable, an upper
bound can be found such that ||&;|| < .. For z(t) = (Z1(t), e2(t)), it can be
concluded that,

Iz < B+ Be

Then the existence of an upper bound on ||z (t)|| can be shown using several

triangular inequalities for norms:

iz @O = Iz (O] < faa (8) = 21.(2)]
21(t) —n ()] < K-e = [[lea@)]] = [z (O] < K - €

Since,
les (@)} < 72 (@) + K - €
Hence, ||z:(t)]| < B+ 8.+ K - ¢

This completes the proof of the main result that,
21 ()| < @ = flza(B)]] < B,V <t

with # = 3 + B. + K - €. This relation on state bounds is shown schematically
in Figure 2.2.

. The final thing that should be considered is the ultimate boundedness of the
perturbation signal 7(¢). This can be proved if it can be shown that r(¢) dynamics
(2.7) is input-to-state stable (Definition 2.3.3). Lemma 2.3.2 can be used for this
purpose, where it is stated that exponential stability of © = f(x,0) is sufficient

for input-to-state stability of © = f(z,0).

x1 and 5 can be regarded as external inputs in (2.7). For xy(t), 72(t) = 0, this

equation can be written as,

e-r=a-[f1(0,7) = f1(0,0)] + A,r
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x1(t) <B =B+ Pe+Ke
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Figure 2.2: Schematic view of the bound on the states x;.

Since f,1(0,0) = 0 (Assumption A7), resultant system can be written as,

e-r=afi(0,r)+ Ar (2.13)

€ 1s a positive constant and therefore it does not effect the stability condition.
Since A, is Hurwitz and a design parameter, Corollary 2.3.1 can be used.
Since a = £1 and || f1(0,r)|| < 72 ||7]| (Assumption A4), (2.13) is exponentially
stable provided that A, satisfies the bound:

1

IOy Irlland 9 < 5=y

where P is the solution to the Lyapunov equation for A,: PA, + ATP + 1 = 0.
This is the condition given in C2 of Theorem 2.4.1.

With this condition, input-to-state stability of r(¢) dynamics can be guaranteed

and, as stated in Definition 2.3.3, upper bound on 7(¢) can be written as,

r(t) <7 ( sup ([l (7) + HTz(T)H))

to<t<t

This completes the proof.
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Remark 2.4.1. Tikhonov’s theorem provides a result where convergence on the solution
of the reduced problem is achieved in order of magnitude basis. Since K < oo, if
e — 0 then K - ¢ — 0 and theoretically the system would converge to the reduced
problem solution. However, depending on the value of ¢ and initial conditions, /K can
be large and this might result in larger x; and r values, which might exceed the system

limits in practice.

Remark 2.4.2. Conditions for exponential stability of the origin of the boundary layer
equation (2.12) is provided only for the linearized form of it. Validity of this lin-
earization also depends on initial conditions and deviations from the desired behaviour,

which is characterized by the reduced problem.

Remark 2.4.3. Tikhonov’s theorem provides a limiting behaviour. Transient dynamics
such as peak response or convergence time of the overall system is affected by the
choice of €, f,; and x5 controller, through e; dynamics. These aspects of the control
system are more problem specific and therefore this aspect of the problem is discussed

at example applications.

Remark 2.4.4. A,, f1(r) and e are design parameters that should be adjusted within
the design process. System specific conditions C/ and C2 provides bounds on A,.
Existence of such an A, that satisfies any desired bound is guaranteed with Theorem

2.3.5 and Remark 2.3.2

Remark 2.4.5. Constant matrix B € R™*" is used to project the calculated perturbation
r € R"™ to z, trajectory which is R™. For m = n, identity matrix is a natural choice but
for the cases where m # n, this matrix determines how the calculated perturbations
are distributed to the directly controlled states. This usage is explained though an

example in Section 2.5.2.

Remark 2.4.6. The theorem is developed for systems where origin is an equilibrium
point of the internal dynamics, i.e., f1(0,0), f.1(0,0) = 0. However, it is actually
merely a convenience and the proofs are still valid for any other equilibrium point as
well, since a shift in variables would result in a state variable set where origin is an
equilibrium. Such kind of situations occurs in for example partial failure cases, where
a residual control force still remains. This is automatically handled by the algorithm
by shifting the equilibrium point where the net resultant force becomes zero. Such a

case is discussed in Chapter 4.
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However for some systems, it is not possible to nullify such an effect through a shift in
the state variables. For example consider the system = sin x 4 2, which does not
have any equilibrium point.

Remark 2.4.77. A state estimator based disturbance estimator is developed in Section
2.6. Apart from fault detection purposes, calculated disturbance vector d can be used

within the perturbation calculation as well:
e-r=a-|fi(zy,re+7)+d— frlz1,m)| + A

With such an adaptive term, developed structure can be made robust to modeling

CITOrS.

Theorem 2.4.1 includes the conditions and results of the proposed fault tolerant control
method. Fault detection and adaptive compensation part will be explained in Section
2.6 and after that, overall design methodology for the proposed architecture will be
explained in Section 2.7. But before that, capabilities of the proposed control system

will be demonstrated through numerical examples.

2.5 Numerical examples

In order to explain the methodology more thoroughly and show how the mathematical
relations given in Theorem 2.4.1 can be applied, analytically tractable prototype prob-
lems are presented in this section. Numerical examples are chosen in order to reflect
important characteristics of the nonlinear control structure that will be used as the fault
mitigation algorithm. Fault detection is not addressed in this section, since its imple-
mentation is straightforward and system specific remarks are given in corresponding

chapters, where application on more complex problems are demonstrated.

2.5.1 Example 1

Consider the following dynamical system:
. 2, .3
T =x]+x
P (2.14)

i’gzu
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Typical approach for designing a control system for nonlinear systems is linearization.
For z = T + 2/, this results in,
d |7} 27, 37| |} 0

_ — u+ u
dt |z, 0 0 @ 1

As can be directly seen from the system matrix, the linearized system is uncontrollable

around the origin, i.e., (Z1,Z2) = (0, 0). Therefore it is not possible to design a linear

controller that would stabilize the system around the origin.

Furthermore, the zero dynamics of the system (&1 = f1(x1,0)) is unstable. A possible
approach would be finding a sliding surface with 23 + 23 — A,,,,;z1 = 0, that can be
used with a Sliding Mode Controller or finding a suitable control Lyapunov function.
But it is not straightforward to find a smooth nonlinear controller. Proposed method

would provide an alternative.

For the stabilization of z; around the origin and command tracking of x5 (), consider
the following closed loop system.
T
iTQZK'(TQ—F’I“—J?g) (215)
e =a- (2] + (re+7)° = Apum] + Ay

With comparison to (2.6), fi(x1,22) = 23 + 23 and fo(xy, 19, u) = u. B is taken as 1.

Assumptions A/ - A3 of Theorem 2.4.1 are straightforward to verify. For Assumption

A4, linear growth bound on f(0, z3) = 3 should be found:

1£200, 22)| = ||23 - 22| < |2 |12

Although lim,, ,,, 22 = oo, a subset of R can be chosen for the calculation of an
upper bound. For example, for |z3| < 6, 72 in CI of Theorem 2.4.1 can be found as
72 = 62. Such kind of a bound can always be found for functions that satisfy Lipschitz

condition.

With reference to (2.12), boundary layer equation can be written as,

dy _

o= [Ar + a3ra(t)*] y (2.16)
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Choosing o = —1 is advantageous, since r»(t)? term is always positive. Therefore
system is stable for any value of A,. Assume that the domain of interest is z, xy €

0, 1)- Then [|£1(0, 2)]| < 72 [Jas]| with 72 = L.

Control system (2.15) is implemented with o = —1, K = —10 and A,,,; = —2. A, is
taken as A, = 0.

Stabilization around the origin is demonstrated for the case with initial condition

of (z1,25) = (1,1). Response of the system is shown in Figure 2.4. System is

brought in to the close vicinity of zero but not exactly zero. Since linearized system is

uncontrollable at exactly x5 = 0, any trajectory that misses the origin leaves a residue

that results in a very slowly decaying oscillation. Further more, if the trajectory crosses
3/2

the equilibrium line x; = —x2/ , stops at this point. The value of A, determines this

trajectory and this behaviour is shown in Figure 2.3.

Ak

Figure 2.3: Phase space trajectories of the example problem (2.15) with initial condi-

tion (z1,x9) = (1, 1) for different A, values.

Sinusoidal trajectory tracking can also be achieved with the same controller parameters.
Response of the system is shown in Figure 2.5. Generated perturbation on the nominal

trajectory of the system is also shown on Figure 2.6.
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Figure 2.4: Stabilization around the origin for the Example Problem 1 (2.15) with
initial condition (z1,x2) = (1, 1). System parameters are: A, = 0, A,,,; = —2 and
K =-10.

time [s]

Figure 2.5: Trajectory tracking performance for the Example Problem 1 (2.15) with
initial condition (z1,25) = (1,1) and reference input of ry
parameters are: A, =0, A,,,1 = —2 and K = —10.

sin(2nt). System
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Figure 2.6: Trajectory tracking performance for the Example Problem 1 (2.15) with
initial condition (z1,z2) = (1, 1) and reference input of o = sin(2nt) - Reference
input and generated perturbation. System parameters are: A, = 0, A,,,; = —2 and
K = -10.

2.5.2 Example 2

Attitude control in three dimensions is integral part of any aerospace vehicle’s flight
control system. A typical fault tolerant control problem in this direction is discussed
in Chapter 4. Basic model of this problem that does not include details of the flight

dynamics, which is more suitable for theoretical discussions, is analyzed in this section.

Consider the angular momentum equation,

Iw=—-wxIw+ M

where w € R? is the angular velocity vector, I is the inertial moment tensor and

M € R is the control torque vector.

It is known that angular momentum equation can be stabilized around the origin with a
T

smooth feedback law, even for M = [0 M, MQ] case [62]. In order to demonstrate

the capability of the proposed control architecture, consider the stabilization of the

angular momentum of the system around origin, using only a single torque along the

48



axis parallel to ws.

For diagonal /, above equation can be written as,

g1 = aq2q3
G2 = bq1q3 (2.17)
g3 = cqiqa +u

T
where w = [ql o qg] va=(L—1)/I1,b= (I + I;)/Io,c = (I, — I) /I and
u = Ms3/I5. Assume that [; < Iy < I3 sothata,c < 0andb > 0.

T
With comparison to (2.3), states can be grouped as z; = [Ch q2} and zo = g3 with,
fi(zy,22) = qs3 fo(z1, 22, u) = cqrqa +u

There are 2 states to be additionally stabilized, but there is only one channel that the
perturbation signal can be superposed. One alternative that can be applied in this
case is generating two dimensional perturbation signal (r € R?) and applying the
summation of the signals as the stabilizing perturbation: » — Br with B = [1 1] .

The closed loop system can be written as,

g1 = aqa2qs3
G2 = bg1q3
g3 = cq1q2 +u
(2.18)

u=—cq1qa + K - (ro + Br — q3)

. 0 a a1 q1
€& =« (ro + Br) — Apm + A, r

b 0 q2 q2

Linearization term —cq;g» is added to the control input, in order to linearize ¢s dy-
namics. Since a and b have opposite signs, choice of o does not matter. « = 1 can be

chosen for simplicity.
For the determination of A,, consider the Condition C/ of Theorem 2.4.1 for the bound
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on the Jacobian of fi:

24

9hp_ aqs [1 1}: aqs ags
61'2

bq1 b1 by

The upper bound on H g—QB H can be calculated with using determinant as the norm:

i

Therefore any positive number 7; can be used as the upper bound.

—B
6172

i

The Condition C2 of Theorem 2.4.1 can be formulated similarly,

[1/1(0, z2)[| = 0
Therefore, any stable A, is sufficient for exponential stability of the boundary layer
equation.

For the convergence behaviour of the system, consider the solution of the perturbation

equation e = 0:

0 a q1 q1

(ro + Br) — Apm +Anr=20
b 0] g )
or with rearrangement of the terms,
0 a 0 a
T2 — Arml N —+ @ B + Ar r = O
b 0 q2 b 0 q2

Using B = [1 1], solution of the above equation can be written as,

1 0 a Q1
r*(t) = T — A
) b1 + agz + A, | b 0 1) 0

0 a
In order to achieve bounded ||7(¢)||, A = | 2 - Arml) [ql QQ] should be a

b 0
Hurwitz matrix. But then any (g1, ¢2) pair with A(A)1q; + A(A)2qo is a solution to the

equation 7*(¢) = 0. The situation is depicted in Figure 2.7. In this figure, closed loop
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response of the system with initial condition (¢1, ¢2,¢3) = (0.1,0.1,0.1) is shown.

Following set of parameters is used in the simulation:

a=-1 b=1 c=-1
K=-2 A =-5 a=1

—-10 0
Arml =
0 -10
Since the reference model A,,,; is diagonal with a single eigenvalue of A\ , = —10,

system converges to the equilibrium point of (¢}, ¢, ¢5) = (—0.1,0.1,0).

Converge point of the system can be adjusted using non-diagonal reference models.

One such configuration is the following parameter set:

a=—-1 b=1 c=-1
K=-2 A =-5 a=1

—20 10

With this reference model, ¢; dynamics is adjusted so that it is faster than the ¢
dynamics. Therefore ¢; converges to zero, together with ¢z, while g, converges to a

constant value. The response of the system is shown in Figure 2.8.

Considering the system (2.17), any two states approaching zero makes the third
dynamics zero. Therefore, nonzero state stuck at its final position, when other two
states converge to origin. But this example demonstrates that it is possible to bound

the attitude rates of the system, even with using a single actuator.

2.6 Adaptive state estimator as a fault diagnosis algorithm

Fault detection and identification is another critical element of a Fault Tolerant Control
structure. As explained in Chapter 1, fault detection algorithm can be designed
separately. It is even possible to design different algorithms for first detection and then

for identification of a fault. But since the developed control structure involves a system
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Figure 2.8: Stabilization around the origin for the Example Problem 2 with a non-

diagonal reference model - System parameters are: a = —1,b = 1,c = -1, K =
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model, adaptive parts can be added that can be used for fault detection and (in some

cases) identification purposes.

State observers are typically used in control systems in order to estimate the states of
a system using the discrepancy between the measured outputs and the outputs of the
system model. While the original structure is developed by Luenberger [63] for linear
systems (hence the name Luenberger Type Observer), Ciccarella, Mora and Germani

extended it to nonlinear cases [64].

Consider a general nonlinear dynamic system with z(t) € R™:

State observer structure can be written for this system as [64],

(1) = f(2(1)) + g(@(t)u+ Q@) K [y(t) — h((1))]

where )(z) is the observability matrix associated with the pair (f(z), h(z)):

h(z)

L:h(x

Q) = d%; f‘( )
L} h(z)

with L’J} denoting nth order Lie derivative. For the linear case, i.e.,h(x) = Cz, this is
equivalent to the well-known observability matrix. For simplicity, it can be assumed
that the system is fully observable and states are directly measured. So that h(x)

becomes the identity matrix.

In robust control of nonlinear systems, disturbances are usually regarded as time
dependent signals generated from an autonomous system, i.e..d(t) = S(d). State

estimator structure can be used to estimate this disturbance using [65]:



Then using prototype functions as disturbances, such as ramps, steps, sines etc.,
nonlinear disturbance observers can be designed [66]. But this form is not suitable
for fault detection purposes and the approach taken by Lavretsky and Hovkimyan for
the adaptive control part of the ADI controller will be followed [52]. In this approach,
time dependent disturbance signal is constructed using state dependent basis functions

with time dependent coefficients:

d(t) = W(t)" (x(t))

Where W (t) is an n;, dimensional coefficient vector and ®(x(t)) is the set of basis
functions with n; elements. Typically, Radial Basis Function (RBF) based neural net-
work structures can be used as the basis set but actually, any integrable set of functions

can be used for -at least local- approximation of the function under consideration [67].

With this structure, disturbance observer based fault detection algorithm can be formu-

lated as follow:

&= f(x)+ g(z) (u(t) +d(t))
2(t) = f(@(t) + gla(t)ult) + d(t) + Ases(t)
W (t) = TProj (W(t), —@(x(t))esTPsB) (2.19)

with P, as the solution to the Lyapunov’s equation AT P, + P,A, + Q = 0 for an
arbitrary Q = QT > 0. A, is the constant gain matrix that is used for the design of
the disturbance estimator. B is used in order to map the disturbance signal to the

corresponding state.

I" is the adaptation constant for the estimation of the time dependent coefficients of the
basis functions. Projection operator Proj is common in adaptive control structures. It
is used in order to constrain the error driven W (¢) estimates so that they don’t exceed

specified bounds. Its formulation is given below [38, 68].
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y if £(6) <0,
Proj (6. y) = { if f()>0and VfTy<o0, (2.20)

y— rer ek ) f(0) if £(0) > 0and  VfTy > 0.

with
(g +1)-6070 — 62

max
2
€o - ema:c

f(0) =

V is the gradient operator and (-, -) represents the inner product. 6,,,, is the norm
bound imposed on the vector 6, and €y > 0 is the projection tolerance, typically a

small number such as 0.01 is taken.

Following remarks can be made for the usage of (2.19) for fault detection (and identifi-

cation) purposes:

e There are very mild requirements on the system for Luenberger-like state observers
to be stable and converge to the true state. Basically, it is enough for the states to be

finite and input to be bounded [64].

e Fault detection algorithm is based on online calculation of the disturbance vector
d(t) and comparing with the applied control input u(t). It is assumed that correlation
between them indicates the presence of a fault. Since the main fault mitigation act

is stopping the control inputs u(t), this would also cease the disturbance signal.

e Disturbances other than faults would also lead to nonzero disturbance signals 02(75),
such as modeling errors or noise. These disturbance can also be compensated using

adaptive parts in the fault mitigation formulation, such as:
€E-r=a- f1($1,7"2 + 7’) + CZ(t) — frl(l’lﬂ“g)] + ATT

e RBF based neural networks are a good choice of basis functions for approximating
signals with unknown structure. However for fault detection purposes, problem
specific different sets might be better. One such example is provided in Chapter 3

for robotic manipulator equations.

e Projection operator Proj (0, y) requires some conservative bounds on the time depen-
dent coefficients. These bounds are system specific and they should be determined

for the specific problem under consideration.
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2.7 Overview of the proposed method

Theoretical analysis of the fault tolerant control structure is presented in this chapter,
together with applications on analytically tractable example problems. These examples
demonstrate that proposed control methodology generates smooth feedback control
signals even for non-minimum phase problems. With accompanying adaptive compo-
nents, proposed approach can be extended to more complex problems. These cases
will be investigated in the following chapters. But it should be reminded that nonlinear
systems are very diverse and system specific design steps can be taken in order to

apply the presented FTC algorithm.

With this considerations, overall structure of the developed algorithmic FTC is shown

in Figure 2.9 and design steps for the presented FTC structure are summarized below.

1. With appropriate FMECA analysis, determine the interconnected system form

for each failure mode:

i1 = f1(x1, 22,41 + d)

Ty = fo(1, 22, u)

where x; corresponds to states linked to faulty actuators u; and x5 corresponds
to states linked to healthy actuators u. Depending on the system under consider-

ation, there might be more than one valid representation of the system.

2. It should be checked that system dynamics and nominal controllers are suf-
ficiently smooth functions of state and time and interconnected systems are

controllable (Assumptions A/ - A3 of Theorem 2.4.1).

3. It should be verified that || f;(0,x2(t),0)| is bounded within the domain of
interest. This domain should include the possible initial conditions for the fault
tolerant control system. However, it should be noted that this bounded region

might be exceeded during the transient response of the fault tolerant controller.

4. Construct the state estimator as given in (2.19) with appropriate gains A, I' and

basis function set ®(z1, x2).
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. Evaluate the the solution of the perturbation equation,
e = a- [fi(x,m+7) = fr(z1,7m2)] + Ay

and consider possible time dependent solutions 7*(¢). Most of the time, finding
exact form of 7*(¢) is not necessary but it gives insight about the response of the

closed loop system in time domain.

. Calculate the system bound 71,

on

B
81’2

[z1(2),m2]

<m

. Calculate the second system bound 7s,
11100, z2)[| < 72 [|z2]]

. Find A, that solves the Lyapunov equation PA, + AT P + Q = 0 with Q as the

identity matrix with appropriate dimensions such that

1

2)\ma:p(P) > max (717 72)
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Figure 2.9: Structure of the developed algorithmic fault tolerant control system
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CHAPTER 3

FAULT TOLERANT CONTROL OF ROBOTIC MANIPULATORS

Open-chain robotic manipulators have a very diverse and wide range of application.
Many industrial robots and humanoid robotic parts fall in this category. Therefore,
design and control of this configuration robotic manipulators are center of focus since
the first days of robotic research. Such configurations are constructed by connecting
lower level joints in series with rigid links. Typically, these lower level joints are either
prismatic joints that have a translational degree of freedom, or a revolute joint that
have a rotational degree of freedom. With connecting one end of the chain to a static
base, the motion of the other end of the manipulator, which is called “The effector
end”, can be adjusted through torques and forces applied from the joints. The set of
end-effector positions and orientations that can be reached with some combination of
joint angles and/or positions are called the Manipulator Workspace. General overview

of a robotic manipulator is shown in Figure 3.1

Industrial robotic manipulators are widely implemented especially manufacturing
industry. Therefore a very rich line of study exists for fault detection and identification

in robotic manipulators.

Basic elements of robotic manipulators are electrical and/or hydraulic actuators with
sensors for the observation of the motion of the links. For robots working in controlled
environments, like robot arms used in manufacturing processes, fault detection can
be done by monitoring of external signals such as, drawn electric current, hydraulic
pressure or even external video camera images. However, for robots working in
unknown or changing environment, such signals may not be available or it may
not be possible to discriminate faults from changing plant parameters. In order to

overcome this difficulty, various techniques are developed for fault detection and
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Figure 3.1: General schematic view of an open-chain robotic manipulator

identification in robotic manipulators. Early research on FDI are mostly based on
analytical redundancies [69, 70], i.e., using analytical relations between simultaneous
sensor measurements in order to compare available sensor outputs and identification

of faults from generated residual signals.

The main actuator failure mode that have been studied in the literature are related
to loss of torque/force on the joints, which is called “Free swing actuator fault”,
uncontrolled torque/force again on the joints or locking of the joint. Free swing and
uncontrolled torque failures can be modeled as an additive disturbance on the joint

torques/forces as [32, 71],

Tis for free swing actuator fault
Fy =14 7, —~-t, forramp actuator fault (3.1

T; — Tmaz, fOr saturated actuator fault
where 7; is the torque/force on the i joint.

With this model, fault identification for actuator faults can be cast as an estimation
problem for the external disturbance. Regression functions based on joint and veloci-
ties are used by Dixon et al. [71] for estimation of the fault signal. Neural networks
are also widely used as functional approximator for the fault signal [72-75], due to

their well known universal approximator property but alternatively Artificial Immune
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System is used by Thumati et al. [76] and Multiple-Adaptive Neuro Fuzzy Inference
System (M-ANFIS) is used by Yiiksel and Sezgin [77]. Nonlinear observer structures
developed specifically for robotic manipulators [32, 78] and sliding mode observers

[79-82] are also available.

More recent results that are related to the present work can be summarized as follows.
A terminal Sliding Mode Observer (TSMO)-based actuator fault reconstruction law
is developed by Xiao and Yin [83]. As a more general approach to the problem, Mo-
hammadi, Marquez and Tavakoli formulated a general nonlinear disturbance observer
structure for Euler-Lagrange systems [84]. As an alternative structure, Oh and Chung
formulated a disturbance observer structure using generalized position and generalized
momentum as the state variables [85] so that disturbance signals are decoupled and a
more general formulation for closed loop compensation of disturbances on rigid and

flexible joint robots is developed in a later work by Kim, Park and Chung [86].

Locked joint failures put additionally, a zero velocity constraint on the states. There-
fore, torque disturbance estimation schemes mentioned above, together with velocity
measurements can be used for identification of locked joint failures. Apart from that
Chang et al. posed the problem of identification of the locked joint as and optimization
problem using velocity discrepancy of the end effector and used differential evolution
algorithm to solve the problem [87]. Other relevant work on locked joint failures are
concentrated on finding reachable subspace of the task space in the presence of locked
joints [37, 88, 89] or motion planing issues on finding trajectories that are robust to

joint failures [90-92].

In this part of the thesis, developed algorithmic fault tolerant control structure will
be applied to the robotic manipulator case. The highlights of the structure, with

advantages to the existing techniques is follows:

e A state estimator based disturbance estimator is designed. A transformation on
system states is proposed, which permits decoupling of the fault signal. With this
state estimator formulation, it is possible to detect and identify the actuator faults

simultaneously.

e Fault mitigation algorithm is implemented as a perturbation generator on the actuated
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joints, in order to compensate for the motion of the faulty joints. When the internal
dynamics related to the faulty states are unstable, this is a very difficult task and only
configuration specific solutions exists. Developed technique provides a systematic

way to design a controller even for such systems.

This chapter is organized as follows. The mathematical model of robotic manipulators
are explained in Section 3.1, together with the baseline control algorithm for the
normally operating system. Proposed fault detection and identification methodology is
introduced in Section 3.2, while fault mitigation approach is explained in Section 3.3.
Overall fault tolerant control architecture is explained and simulation results for the

selected cases are presented in Section 3.5. The final remarks are drawn in Section 3.6.

3.1 Problem definition

3.1.1 Governing Equations

Newton-Euler equations are typically used for modeling of dynamic systems. But for
robotic manipulators, usage of Lagrange’s equation is more convenient [93]. In this
formulation, equations of motion for an m dimensional mechanical system can be

derived from the Lagrange’s equation,

4oL oL .
dtdg O0q

i=1.n (3.2)

q € R" is called the “Generalized coordinates” and T, is the net external force acting
on the i™ generalized coordinate. Lagrangian function is L(q,q) = T'(q,q) — V(q),

where 7' is the kinetic energy of the system and V' is the potential energy of the system.

For robotic manipulators, calculation of the Lagrangian is straightforward and can be

found in many text books on the subject [93, 94]:

) 1 ..
L(q,q) = §HijQin - V(g

where, ¢ is the vector of generalized coordinates (Angle for links with rotational
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joints and displacement for prismatic joints). In this formulation, Einstein summation

convention is used, i.e., summation is implied for repeated indices.

H;;(q) is the inertia tensor of the manipulator and the Coriolis matrix C;;(g, ¢) of the

manipulator can be formulated as,

1 )
— (Hijp + Hir; — Hiji) Gn (3.3)

Again repeated indices imply summation over the index and derivative with respect to

[ 12

an index is shown with comma “,”.

With grouping the gravitational and other external forces on the joints terms under the
vector (& and using 7 as the vector of generalized forces (Torque for links with revolute
joints and force for prismatic joints), governing equations for robotic manipulators can

be written as,

H(q)-4+C(q,4)-¢+G(q,4) =7 (3.4)

Sometimes, more compact form of (3.4) is more suitable for manipulation of equations.

For this purpose, terms can be grouped into form of ¢(q, ¢) = C(q,q) - ¢ + G(q, q).

Lagrange’s equation for robotic manipulators (3.4) have some properties that are

important for control applications:

e H(q) is symmetric and positive definite

° (H — 26’) € R™ ™ is a skew-symmetric matrix.

Second property is often referred to as the “passivity property” since it implies that in
the absence of friction, the net energy of the system is conserved. These properties

permit development of generalized control laws for robotic manipulators [93].
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3.1.2 Control of robotic manipulators
3.1.2.1 Computed torque technique
Although (3.4) is a coupled nonlinear dynamic system, positive definiteness of the

inertia matrix A permits development of rather simple control laws.

Consider a time dependent reference trajectory (qq, 44, da). For e = q — qq, control law

in the form of,

7= H(q) (4a — Kvé — Kpe) + C(q,¢)q + G(q,q) (3.5)

would lead to an error dynamics of,

H(q) (6 + K,é+ K,e) =0

Since H 1is positive definite, unique solution of the above equation is ¢+ K,é+Kpe = 0.
Therefore tracking performance can be adjusted with specified error dynamics, with
suitable choice of feedback gain matrices /, and K. Control law (3.5) is called the

computed torque technique and it is a form of feedback linearization.

Skew-symmetric form of (H — 2C’> permits construction of Lyapunov functions for
other linear feedback laws [93]. One such configuration is the so called “Augmented
PD Control” law. In this feedback control system, control force to be applied is

calculated using the following formula.

7= H(q)4a+ C(q,0)da + G(q,q) — Kvé — Kpe (3.6)

3.1.2.2 Partial-feedback linearization

Feedback linearization technique for control of nonlinear systems is based on the idea
that if the control input is transformed into a form that cancels out the nonlinearity, then
resulting system becomes linear. For example, for control affine systems, i.e., when

the control input is linear, such as in the form of x = f(z) + g(z) - u, transformation
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u = g(x)~! (v — f(x)) would lead to the linear system i = v. Of course in order to

do this transformation, existence of g(az:)_1 should be guaranteed.

Computed torque technique uses the same idea, if the control law (3.5) is considered
with the transformation v = Hv + C'¢ 4+ G. The resulted system is § = v. Interesting
thing about robotic manipulators is that feedback linearization is possible, even when
only some of the joints are actuated. In robotic research, this is usually denoted as
“underactuated”. This configuration is important, since it is also analogous to the

condition for which some of the actuators are failed.

In order to analyze this form of the system, joints can be divided into two as actuated
and unactuated. Let ¢; € R"™™ be the set of the states of the unactuated joints and

g2 € R™ be the set of the states of the actuated joints.

Using the parameter ¢(q,q) = C(q,q) - ¢ + G(q, ), system dynamics (3.4) can be

regrouped as,

H11(q) - ¢v + Hi2(q) - Ga + ¢1(q, ¢) =0

Hy(q) - 41 + Has(q) - Go + ¢2(q,4) =7

(3.7

In this formulation, subscripts denotes the appropriate submatrices in accordance
with the grouping of the states and with suitable dimensions: Hy; € R(—m)x(n=m)_

ng c R(nfm)xm, H21 c Rmx(nfm)’ H22 c Rmxm’ ¢1 c Rnfm’ ¢2 c R™,

Since H is a positive definite and symmetric matrix, any principal submatrices are
also positive definite. Therefore H;; and H;5 submatrice are also positive definite and
this can be used for feedback linearization of the dynamics related to either unactuated
states (g1 ) or actuated states (go). This manipulation is called the “Partial Feedback

Linearization” and can be formulated as follows [95].

In order to get the partial feedback linearized form for the actuated states, which
is called “Collocated linearization”, ¢; expression in second part of (3.7) can be
cancelled out with multiplying the first equation with Hy; H;;' and subtracting it from
the first equation. Also with using the transformation 7 = (H22 — HyH 1_11H 12) v —

Ho H ﬂlgbl + ¢o, partial linearized form can be achieved:

65



G = — Hyy' - (Hiv + ¢1) (3.8)

G =V

Feedback linearization in the unactuated states, which is called “Non-collocated lin-
earization”, can be achieved similarly. Transformation 7 = (Hzl — HyH ng 11) v —

HoyHLy + ¢ leads to partial linearized form:

g1 =v

Go = — Hi5 - (Hiv + ¢1)

(3.9)

with superscript + denoting Moore-Penrose pseudoinverse of a matrix, i.e., AT =
(ATA)_1 AT, In order Moore-Penrose pseudoinverse to be defined, m > (n —
m). This condition is called “Strongly Inertially Coupling” [95]. Therefore “Non-
collocated linearization” is possible for only strongly inertially coupled systems, i.e.,
when the active degrees of freedom (actuated states) is equal to or greater than passive

degrees of freedom (unactuated states).

Once the partial-linearized form of the equations are formed, trajectory tracking can

be achieved using a PD control law in the form of,

v=—K,e— Ky

where e = ¢y — @94 for “collocated linearization” and e = ¢; — ¢14 for “non-collocated

linearization”.

3.2 Fault diagnosis algorithm for robotic manipulators

3.2.1 Formulation

Consider the system dynamics, where failure is modeled as an additive signal,

H-i+C G+G+F=r (3.10)
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A state estimator for the torque disturbance F' can be designed from first order form of

the dynamic system (3.10).

Typical approach in such situations is using the following set of variables:
1 =0 T2 = G2 T3 =q T4 = G2

With this set of variables, (3.10) can be written in first order as given in (3.11).

o I 0 0 0
i = x4 T T (3.11)
0 —H!.C —H'.G —Hl'.F H'. 1

where 0 and I are zero and identity matrices with appropriate dimensions, respectively.

The problem with the formulation (3.11) is that, additive fault is multiplied with the
inverse of the inertia tensor. This transformation diffuses the fault signal F; to other
channels as well, which makes the correct identification of the fault signal very difficult.

Therefore an alternative formulation is developed within the scope of the thesis.

In order to isolate the fault signal F', following set of variables can be used:

T1 r q1 X3 _H. g1

4] q2 T4 o

With this formulation, time derivatives of state variables can be formulated as,

T 1,2 = T23
_ (3.12)
i34=H-¢+H-§
In order to use the system dynamics of the robotic manipulators with (3.12), consider

the following modification of the original equation (3.10):

H-j+Hi+(C—-H) - ¢+G+F=r1 (3.13)

With definition of a modified version of the Coriolis Matrix ¢! = C' — H , structure of
the equations can be preserved. Furthermore since H depends only on ¢, H can be
written in index notation as, Hij = H;j. - ¢r. Comparing this with the definition of

Coriolis matrix Cj; in (3.3), modified version can be formulated as,

. 1 .
Cii(a,4) = 5 (=Hijp + Hixj — Hiji) G (3.14)

2
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and the first order form of the robotic manipulator equations for the state variables

(3.12) can be written as,

Ti12 = T23

$374:—O/'Q—G—F+T

, 0 H! 0 0 0
i = x+ + + (3.15)
0 —-C'-H! -G —-F T
This equation is the disturbance decoupled form of the Lagrange’s equation and it is

more suitable for observer design, since the fault signal appears without any mapping.

Luenberger type observer can be implemented, as described in Section 2.6, using the

dynamics given in (3.15) as,

. o H o 0 0
T = ST+ + | + + Ay - ey (3.16)
0 —C'-H! -G —F T

with observer error e, = Z — x and gain matrix A,. For the estimation of fault,

. AT
D = [0 F} can be approximated with projection on a basis ¢y (%) as
N
Dim Y Wi - 1i(#) (3.17)
j=1

where N is the number of basis functions and subscript ¢ indicate the element of the

vector. The weights of the basis functions can be updated with the error dynamics as,

s

W =T - Proj (W, () el - Ps> (3.18)

with P, = P, > 0 solves the Lyapunov equation AT - P, + P, - A, = —Q for arbitrary
@ > 0. Proj is the projection operator, commonly used in adaptive controllers in order

to bound the estimated gains. The formulation of the operator is given in Section 2.6

as (2.20).

The advantage of the proposed state observer structure (3.16) with respect to (3.11)
is that fault term appears as D = F, instead of D = H~'F and therefore nonzero
fault value in a specific channel (F}) is not mapped to the other channel through H !,

Furthermore, since it is in first order form, estimated fault vector F' also involves
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disturbance in velocity channel and therefore zero velocity can also be detected. This
information can be used for identification of locked-joint failures, together with free
swing, ramp and saturated actuated faults. Of course seeking exact matching of
estimated disturbance vector D with fault model (3.1) is not feasible but it provides a

framework for identification of faults.

Performance of the fault diagnosis algorithm depends on correct construction of
the fault signal. Selection of basis functions to be used in (3.17) is critical for the
performance of the estimator. Comparison of different basis functions is discussed and

a suitable set is proposed in next section.

3.2.2 Selection of Basis Functions

Projecting an unknown function on a basis and online calculation of the weights is
very common in adaptive control techniques. Although the formulation (3.18) is valid
for any set of the basis functions, particular choice determines the number of gains that
will be defined and the class of functions that can be represented. For example set of
polynomials with degree up to n is typically used for data fitting purposes. But, fitting
to higher degree of polynomials requires exponentially increasing number of samples
and therefore solutions are usually highly oscillatory. This is usually denoted as “the
curse of dimensionality”. Or similar to the Fast Fourier Transform of time dependent
signals, Fourier series can be used as the basis set. But again, in order to represent a

non-periodic signal accurately, a very high number of basis functions are required.

Gaussian Radial Basis Functions (RBF) are highly popular in adaptive control [67]. In

this set, each basis function is formulated as a Gaussian function,

2
Bi(z) = exp 1T =&l (3.19)

2
0;

¢ and o can be chosen appropriate to the problem for each basis function, i.e., depend-

ing on the domain of the unknown function that will be represented.

The problem with RBF networks is that they are not an orthogonal set. It is known
that convergence properties of orthogonal sets are better. One such alternative is using

Chebyshev polynomials as the basis set [42, 96]. Chebyshev polynomial of order n
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can be generated recursively as!,
To(z) = 22T, 1(x) — Th—o(x) (3.20)

with Ty(z) = land Ty (x) = x .

RBFs and Chebyshev polynomials are general sets that can be used in any problem.
But any compact set of functions can be used for functional approximation [67] and
there might be better sets for representation of the fault signal in the state estimator

(3.15).

Considering the fault model (3.1), function that will be represented through basis
functions is actually a function of the applied torque F; = f(u;). Furthermore,
since the applied torque is function of the system matrices H, C' and G through the
computed torque control law (3.5) or augmented PD (3.6), it is logical use basis
functions composed of the terms also found in these matrices. For example, for the
two-link vertical robot arm case that will be discussed in Section 3.5, system matrices
involve terms in the form of sin(qy ), sin(q; + ¢2),sin(q1 + ¢2)go, ¢3 etc. Therefore,
following set of basis functions can also be used for a better signal construction

performance for the two-link case (see Figure 3.5 for the definition of ¢; and ¢»).

=1 g = cosq Y3 = cos (q1 + q2)
Yy =sin(q) ¢ ¥s =sin(qg) g s =sin(g)d} (3.2

W7 = sin (q2) G5

3.2.3 Performance comparison

In other to evaluate the performance of RBF, Chebyshev polynomial based and custom
set of basis functions, numerical simulation is conducted for the two link robot arm

case.

Three alternative set of basis functions are used for the construction of the fault signal
F.

! To be more specific, this set is called the “Chebyshev polynomial of the first kind”. This form is implied
when referred to Chebyshev polynomials.
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3.2.3.1 Radial Basis Functions (RBF) Neural Network

Fault signal is constructed using an RBF network with o;_4 = /3/2 as,

2

) = o0 [2 (- )"+ (0~ + (i~ €+ (- )]

The vector of center points & = (£}, 62, €3, £1) is generated from the combinations of
the following set:

¢ =1{-2,02}

€= (-2.0)

& ={-2,0,2}

¢t =1{-2,0,2}

which makes the total set of basis functions 81.

3.2.3.2 Chebyshev Polynomial based Orthogonal Set of Basis Functions

First three Chebyshev polynomials of the first kind are used for each state as,

Th=q T3 = qo Ts =q T7 = g0
Ty =2¢ —1 Ty =2¢5 — 1 Ts =247 — 1 Ty =245 — 1

which makes the total set of basis functions 9.

3.2.3.3 Custom Basis Set

System matrices involve terms in the form of sin(q; ), sin(q; + ¢2), sin(q1 + ¢2)¢2, G5

etc. Therefore, following set of basis functions can also be used for a better signal
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construction performance for the two-link case:

Yr=1 Py = cosq s = cos (q1 + ¢2)

Yy = sin (¢2) ¢ Y5 = sin (¢2) ¢o V6 = sin (¢2) 47

Y7 = sin (q2) 43

which makes the total set of basis functions 7.

Numerical simulation is conducted for free swing type fault. System model is inte-
grated with maximum 1 ms time step in continuous time, while state estimator is run

with 10 ms time step in discrete time.

The system is started at position (¢;, g2) = (90°, 0) and sinusoidal reference commands
are applied to the system such that (r1,7) = (90° + 20° sin 27t /4, —20° sin 27t /4).
Torque loss on joint 2 case is simulated. Fault occurs at time ¢ = 5s. The results are

shown in Figure 3.2.

Disturbance vector is estimated using three sets of basis functions. For the custom
basis set, Chebyshev polynomials and RBF basis sets, adaptive gains are chosen as
I' = 10000, 1000 and 100000 respectively. Projection operator is used with bound
Whouna = [—1000,1000] and €4 = 0.01. Initial condition for the adaptive gains are

taken as zero.

Fault on the second link can be observed from the disturbance torque on the second
link (Figure 3.2.d). With the decoupled form of the estimator, only the fourth element
is correlated with the applied torque, although some residual disturbances are present

on the other elements of the disturbance vector D.

Following comments can be made on the results.

e Best performance for disturbance signal construction is achieved using Chebyshev

polynomial basis set.

e For a similar convergence time, adaptive gains used for custom basis set is 10 times,

RBF basis set 1s 100 times larger than the gain used for Chebyshev polynomial set.

e On the other hand, Chebyshev polynomial basis set has a longer initial convergence

time (Approximately 1 second) and a low frequency residual signal exists on the
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Figure 3.2: Estimated disturbance vector with different basis function sets for two-link

vertical robot arm problem. Loss of torque occurs on the second joint at ¢ = 5.

estimated disturbance, even during healthy operation of the manipulator.

e It seems that overall performance of the Chebyshev polynomial set is better. Fault
signal can be constructed with lower adaptation gain and with fewer number of basis
functions, but there is a catch. As the number of basis functions increases, order
of the polynomial increases. This causes instabilities on the gain estimation and
therefore adaptive gain should be lowered to compensate for that. As usual, higher
performance comes with reduced robustness and therefore adaptive gain and order

of the polynomial should be chosen with these considerations.

e Custom basis set is also a good alternative. Similar performance to Chebyshev
polynomial basis set can be achieved without robustness problems. The situation is
shown in Figure 3.3. While increasing order of the Chebyshev polynomial increases
the convergence speed, stability is degraded. On the other hand, custom basis set
produces smooth solutions even with very high adaptation rates. Of course using

high adaptation rates has its own problems when noise is present.
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Figure 3.3: Comparison of disturbance estimation performances for the basis sets with

Chebyshev polynomials up to order 3, up to order 4 and the custom basis set.

3.3 Design of the fault mitigation algorithm

Fault mitigation algorithm for robotic manipulators can be developed with considering
the faulty links as passive links. After the detection of the fault at specific joints,
powers of the faulty actuators can be cut so that the faulty link becomes unactuated.
Then the stability of these passive links can be maintained with the developed control

structure.

As in the case of partial feedback linearization, for a manipulator with n number of
links with m of them have healthy actuators, system states can be grouped into two as

q1 € R"™ and ¢, € R™ with the dynamics given in (3.7).

Consider the case where a PD controller is used for each link in the nominal controller
of the manipulator. Once the faulty actuators are inactivated, the resultant system can
be analyzed using the collocated partially-linearized form of the robotic equations.

This equation is repeated below for convenience.

G =—Hy' - (Hipv + ¢1)

(3.8)
G2 =v
with v = —K, (42 — ¢2a) — K, (g2 — q2a). Since (qaq, ¢oq) defines the reference
dynamics for ¢, it is equivalent to v = — K¢ — Kpe.
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Comparing with the general form of the cascade system &1 = fi(xy, z5) with z; =

(¢1,¢1), x1 dynamics can be written as,

g1 _ 0 1 Q1 n 0
g1 0 —Hﬂlcn G —Hﬂl (G1 + Ci24o)
- (3.22)
4 0 O e
K, K,| |é

This is a second order system and therefore it has the dimension 2 (n —m). In
order compensate for them, (n — m) number of healthy actuators can be chosen and
perturbations dynamics can also be written as a second order system. Therefore with

comparison to (2.6) in Section 2.4, this relation can be written as,

i 0 1 @ 0
. . =« -1 5 + -1 .
r 0 —HpCu| |¢ —Hiy (Gi + Chag2) (42,42)=
\ B (g2a+7,G24+7)
0 1 0
Armor Armae | |G1 Brma1 r
) i (3.23)

Where » € R"™™ is the perturbation on the joint positions and 7 € R™~"™ is on the joint
velocities. The fault mitigation algorithm moves the system to a position where the
dynamics of the passive links can also be stabilized. Therefore the reference velocity

of the healthy actuators ¢y4 can be taken as 0.

The reference model for the ¢; dynamics is written as,

0 1 7 0
. + ™
Armar Armaz | | Q1 Brmar
with r as the final position of the faulty joints, i.e., ¢;. For a single faulty joint, A,,,

and B,,,, can be written as a second order system as,

0 1
Arm = Brm =

—w? —2fw, w?

The analysis of the perturbation system (3.23) can be done from two aspects. Firstly,
the time dependent solution of (7, 7) for e = 0 will be checked. Then the conditions

for the exponential stability of the boundary layer model will be analyzed.
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3.3.1 Solution of the perturbed system

For € = 0, (3.23) can be written as a system of algebraic equations:

0 1 ¢ N 0
0 —HCul |a —H' (G + Char)

(g2,42)=(g24-+7,7)
0 1 oAl 0 r* 0

Armor Armzo q1 Bima1 r 0

where r* and 7* are the roots of the set of equations.

The upper part of the equation is satisfied for all (A,;; + r* + A,127* = 0). In order

to enforce a solution where 7* = 0, A, should be chosen such that A,;; = 0 and

Ar12 7& 0.

The lower part of the system of equations can be written as,

e { (—Hy,'Cigy — Hyy' Gy + Chot) ‘( — Arma1qi — Apma2Gr — Brm217"1}

q2d+7‘77'n)

+ A0 + Apgor™ =0

Again consider the static solution where 77* = 0. Coriolis terms C'; and C}, are zero.
Furthermore, terms related to the reference model is zero with ¢; = r;. Therefore the

remaining terms are,

—ozHﬂlGl + AT217"* =0

(G, is the gravitational moments on the first link. If the resting position of the first

link r; is chosen such that G| = 0, then the trajectory perturbation converges

q1="1
to r* = 0. For example, for the vertical two-link robotic manipulator, which will be
analyzed in Section 3.5, upward (or downward) position of the manipulator with two

links stretched on a straight line is such a configuration.

To sum up, the analysis of the reduced problem reveals that the shaping matrix A,
should be chosen such that upper-left principal element is zero and the resting position
of the unactuated links (71) should be chosen such that the gravitational moments on

this link is zero.
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3.3.2 Analysis of the boundary layer problem

Robotic manipulator equations are highly coupled and in general and in order to
analyze the stability of the boundary layer equations, they should be linearized. As
derived in Section 2.4 in Chapter 2, linearized form of the boundary layer equation
can be written as,

dy _

— | A,
dr +

] )
[z1(¢),m2]

For the general robotic manipulator problem, this is a matrix equation the linearization

a —
33@2

should be done over the vector x5 = (g2, ¢2). The derivation is rather lengthy and

therefore it is provided in Appendix B. The resultant Jacobian of f is,

0 0
(Hi 2 1 Gy — 0 )

11 3a}

of
81’2

(3.24)

z2=(r2,0)
q2=72

With this expression, boundary layer equation for robotic manipulators can be written,

dy 0 0

=|A +a . . 3.25
dr <Hﬂ1 S H L G — H*@) Y 522

11 9go

q2=r2

79 = 0 so that C';; = C5 = 0 is also used in finding the above result.

Boundary layer equation (3.25) of the perturbation problem (3.22) and (3.23) highly
depends on the specific problem and they should be analyzed separately. But following
comments can be made regarding the assumptions and conditions of the main theorem

on the fault mitigation control structure Theorem 2.4.1.

e Robotic manipulators usually have continuous parameter sets. Therefore assumption
on Lipschitz continuity of the functions, Assumption A/ of Theorem 2.4.1 are valid

for most of the problems.

e Assumption A2 of Theorem 2.4.1 is related to the controllability of x; dynamics
with 5 regarded as control input. This property is system and configuration specific

and therefore it is should be verified on specific application.
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Assumption A3 of Theorem 2.4.1 is related to the controllability of x5 dynamics.
This assumption is valid for robotic manipulators, since this part of the system is

fully actuated.

Assumption A4 of Theorem 2.4.1 is related to the bound on || f;(0, x2)||. For x;

dynamics given in (3.22), f1(0, z5) can be written as,

0

fl(()?xQ) =
—Hﬂl (G1 + Ci242)

(q1,41)=(0,0)

This equation should be checked for the bound.

Condition C! of Theorem 2.4.1 is related to the bound on H 3—2 . This Jacobian is

given in (3.24).

For robotic manipulators without external force, such as horizontally positioned
planar manipulators, G; = 0 and hence the boundary layer equation becomes
y' = A,y. The results is consistent with the fact that such configurations are

neutrally stable.

Determinant of the Jacobian matrix g—g is zero. This poses a problem on the

calculation of the norms. Usage of Frobenius norm is more appropriate in these

situations. Frobenius norm can be calculated with the following formulation:

[All = Vitr (AAT)

3.4 Fault tolerant control architecture for robotic manipulators

With the theoretical analysis presented in previous sections, application of proposed

fault mitigation algorithm on robotic manipulator systems can be formulated as,

e Detection of the fault joints

e Cutting off power of the fault joints, so that they become unactuated, free-swing

passive links

e Move the active links to a suitable position, where the dynamics of the passive links

can also be stabilized
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e Stabilize the overall system at this final position

This implementation of the above strategy is shown in Figure 3.4. Applications on

selected problems are given in next section.

[Q1] fri=4Arm [gi] + Brmn
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Figure 3.4: Fault tolerant control architecture for robotic manipulators
Design steps for this system can be summarized as follows:

e For each possible fault condition, group the states that are linked to the faulty

actuators as ¢; and the healthy ones as ¢5.

e Construct the collocated partially linearized form of the governing equations as,
1 = — Hyj' - (Higv + ¢1)

Go =V

with auxiliary control input v is calculated as,
v=—-K,e— Kpe
and the control torque vector 7 is calculated as,
T = (H22 — H21H1_11H12) v— Hy Hi'¢1 + ¢2
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Formulate the Luenberger type state estimator,

. 0 H! . 0 0
T = T+ + |+ + A e
0o —C'-H! e -F T
where, }
T _ q1 €3 _ . G
To q2 Ty Q2

and the observer error is e, = & — x. The observer gain matrix A, can be chosen as

a Hurwitz matrix.

Choose appropriate set of basis functions W;_y(x) for the construction of the fault

signal as
N
=3 Wi v;(#)
j=1
Weights can be estimated using the differential equation,
W =T - Proj <W (@) el - P8>
with P, = P, > 0 solves the Lyapunov equation AL P, + P,A, = —Q for Q = I.

Once a fault is detected, corresponding faulty link is passivized so that the partial-
linearized form of the dynamics is valid. The perturbation signal on the actuated

links can be calculated as,

‘ — 4o i H'G
T 0 —H_ ] —H
wEnp A T )=o)
r
Arm q'l + Brmrl + A'r .
q1 r

r1 and r, are the resting position of the links. If possible, they should be chosen

such that the gravitational effects becomes zero, i.e., G1(r1,72) = 0.

A, should be chosen such that upper-left principal element is zero.

For the stability of the boundary layer equation (Conditions C/ and C2 of Theorem

2.4.1), evaluate the following terms:

on
81'2

- —18Hy,
z2=(72,0) <H11 dq2

0
H'G — H;f%)
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0

f1(0>332) =
—Hﬂl (G1 + C1262)

(q1,41)=(0,0)

Choose A, such that, A, solves the Lyapunov equation PA, + AT P + @ = 0 with

( as the identity matrix with appropriate dimensions that satisfies,

0
a—fl <7 | /100, 22) || < 72 |22l
T2 IQZ('I‘Q,O) F
L max(91,7)
max\v1, V2
2[| P p

Frobenius norm should be used in the calculations, which can be formulated as,

[Allp = Vtr (AAT)

3.5 Application on selected problems

Two problems are chosen in order to demonstrate the applications of the proposed
fault mitigation strategy. The first problem is the vertical planar two-link robotic
manipulator problem, which is extensively studied in the literature, especially within
the first years of the robot control research [97]. This is a basic configuration yet poses
important characteristics of manipulator dynamics with external gravitational forces.
The second configuration is the horizontally placed three-link planar manipulator. This
is also an elementary configuration and it is called SCARA manipulator. Application

on higher dimensional cases are demonstrated with this configuration.

Design steps and theoretical analyses are provided in the following paragraphs, together

with simulation results.

3.5.1 Vertical two-link robot arm

Two-link robot arm is a simple configuration; two rotary actuators manipulate the
motion of two rigid arms (Figure 3.5). Furthermore, many interesting robotic systems
can be formulated analogues to the two-link robot arm problem such as model for

legged motion, human posture while standing, cart-pole system (segway) [95]. In
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another interesting application, a bird perched on a branch is modeled as a two-link
pendulum and its control algorithm is developed using £, adaptive control technique
[98]. Therefore it is an elementary configuration that is suitable as a prototype problem
for development of robotic control algorithms (e.g.,following is a small set of articles

that are published within the last five years: [99-104]).

F 3

71

Figure 3.5: Vertical two-link robot manipulator system

Locked joint failures basically converts the system to a single link with different inertial
properties and it is not very interesting from theoretical point of view. Therefore free-

swing type faults are addressed in this section.

Free-swing type fault occurs when an actuator loses power and the associated link
becomes a passive one and overall system becomes an underactuated system. For
the two-link vertical arm problem, faulty link is unstable for the inverted position
(180° > ¢; > 0° as shown in Figure 3.5). Even though the position of the healthy link
can be adjusted for a suitable position, still the unactuated link would move under the
effect of gravity. Therefore, stabilizing the motion of the two links using only a single
actuator is a very interesting problem and it is widely studied in the literature. Such
cases are often denoted as gymnast robots, whose name derived from the resemblance
of the motion of the robot to the movements of a gymnast. For the two-link case, when

the actuation is from the shoulder, the system is called “Pendubot” and it is “Acrobot”
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when the actuation is from elbow.

Most studied problem in the underactuated two-link robot manipulator control is
moving the system from downward stable position to upward unstable position and
maintaining the posture in this position. In one of the first works on the subject,
Spong used energy pump-up strategy through swinging of the actuated arm in Acrobot
problem and LQR based linear controller in order to stabilize the system around
the upward unstable equilibrium point [97]. The most comprehensive result for this
problem is achieved by Lai ef al. , where two Lyapunov functions are used for
the inversion of an acrobot and drive to the system in the vicinity of the inverted
straight position [105]. Stabilization around the upward position is still achieved using

linearized controllers.

3.5.1.1 Problem formulation

Lagrangian form for the robotic manipulators is valid for this problem. It is repeated

below for convenience.

H(q)-4+C(q,4)-¢+G(q,q) =7 (3.4)

For the vertical two-link manipulator case, elements of the system matrices H, C, G

and 7 are given below with the parameter definitions shown in Figure 3.5 [15].

Hi = Li+L+m -2

+my - (lf 412,421y -l - cos (q2))
His = Hy=1I+my- I:l32 + 1y 1o - cos (QQ)}
Hy = L+my- 12
G = (my-la+mg-ly)-g-cos(q)

+my g g cos (g1 + g2)
Gy = my-leo-g-cos(q+q)

T = [n m
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Also

—hgz —h(q + ) o —3hg>  —h (¢ +2¢2)
haq 0 h (g1 + d2) 0

C =

with

h = mglllcg sin q2

where subscripts on H, C' and G denotes the submatrices and m, I, [, [, denotes mass
and inertia of the link, link length and length of the center of gravity from the pivot

point, respectively.

3.5.1.2 Design of the fault detection algorithm

Fault detection algorithm is based on a state estimator formulation. As explained in
Section 3.2, the states used in the estimator are redefined in order to avoid coupling of

the fault signal:

1 0 O 0 101
01 0 0 q2
e = _
0 0 Hi Hip q1
_0 0 Hy H 22 | _42_
The state estimator can be formulated as,
. 0 H! . 0 0
T = ST+ + . + Agey (3.26)
0 —-C'H! -G+ —W ()T (z)

with the adaptation law,

W =T - Proj <W (@) el PS>

s

where P, = P, > 0 solves the Lyapunov equation AT P, + P,A, = —Q for Q = I.

First four Chebyshev polynomials of first kind are used as the basis set:

Yo =1

Y1 =aq V4= qo Yr=q1 Y10 = (2
ve=207 =1 Ws=2¢;—-1 Ws=24-1 u=2¢%-1
Vs =4q7 —3q1 e =4q5 —3q2 Vo =4¢; — 3¢ Y12 = 4G5 — 34e

(3.27)
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3.5.1.3 Design of the fault mitigation algorithm

Design of the fault mitigation algorithm involves determination of the parameters
involved in the perturbation equation (3.23). For the case under study, the system
have 2 degrees of freedom. Therefore submatrices in the formulations become scalar
quantities. [A,,, B,,] becomes a second order system and therefore it can be written

as,

0 1
Arm = Brm =

—w? 2w, w?

n

so that the reference reference ¢; dynamics becomes,

W2y + 26wy +q1 =11

The fault mitigation algorithm is designed for the inverted position of the system and
the fault mitigation algorithm will drive the system to the upward vertical position.
Therefore, the reference commands are (r1,72) = (90°,0). In accordance with the

formulations given in Section 3.5.1.1, C';; = 0 in this position.

With this results, perturbation dynamics (3.23) can be written for the vertical two-link

robot arm problem as,

r 0 1| |¢ 0
€ =« +
T 0 0 q1 —Hl_llGl
L qa=r
0 1 q 0 r
- ' + T + AT
_wTQL _2£wn Q1 WVQL r
| r1=90°

Selection of o depends on the ease of stabilization of the perturbation dynamics. Since
Hj, is positive, choice of o among +1 depends on the sign of G'1(q1, g2 = ), which

can be formulated as,

Gi(qr.q2=71) = (my-leg +ma-11)gcos (q1) +ma -l - g-cos(q+7)

For the operating condition around ¢; = 90°, G| does not have a definite sign. It can
be positive or negative. Therefore there is no preferred sign for a. @ = 1 can be taken

for convenience.
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Determination of A, is related to the Conditions CI and C2 of Theorem 2.4.1 with,

oh
(9x2

0 0
22— (ra.0) (Hl_ll 6;;;1 Hl_llGl . H_l%) 0

H9e =,

0

fl (07 x2) =
—Hﬁl (G1 + C24o)

(q1,41)=(0,0)
Expressions for the specific terms of this equation, for the two-link problem can be

written as,

= —2m2l1l02 sin q2 =0
0o g2=0 ( )|q2_0
0G4 ) .
— = —maleagsin (g1 + ¢2)|,,—9 = —Malegsing
GQQ q2=0
Gil o = (Ml +maly + malea) gcos qu
G1|q1:0 = _m2l029 sin 42
Ciz2l,, =0 = —ma2lile2 sin gago
With these expressions, g—g a0 can be written as,
z2=(r2,0
0fi B 0 0
02| 4,—(r0) | —maleogsing 0
0
= 8—f1 = |malcagsin q1| < maleag
1) _
x2=(r2,0)

The || f1(0, z2)|| term can be evaluated as,

F1(0, ) = ’

—H ' (—maleagsin ga — malyleg sin q263)

= || f1(0,22)|| = |Hii'maleasings (g + 13) |

Since —1 < sin gy, cos gz, < 1, Hy;' is bounded by,

1
H' < <1
11_[1+Ig+m1'lgl+m2'(l%+132—2'l1‘102)_

and || f1(0, x2)]| is bounded by,

maleo
[1+12+m1 -l§1+m2-(l%—l—lé—Q-ll-lcg)

[1/1(0, 22| < (9 + 1)
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With these expressions and with the discussions provided in Section 3.3, selection

criteria for A, can be summarized as,

e A, should be in the form of,

e A, should be a Hurwitz matrix. Its characteristic polynomial is A\ — b\ — ac and it

can be shown using Routh-Hurwitz criteria that; a,b < 0 and ¢ > 0.

e Choose A, such that, A, solves the Lyapunov equation PA, + AT P + Q = 0 with

(@ as the identity matrix with appropriate dimensions that satisfies,

0
a—fl <y A0,2)] < e sl
X2 z2=(r2,0) || p
> AW
“Tan - - Max(vY1, )2
2117,

3.5.1.4 Simulation results
Free-swing fault on first joint (Loss of torque) case is studied as an example problem.
In conjunction with Figure 3.5, numerical values used in the simulations are provided

in Table 3.1,

Table 3.1: Simulated two-link robot arm’s parameters

I lea my I

Im 0.5m 1kg 0.0833kgm?

Iy leo my Iy

Im 0.5m 1kg 0.0833kgm?

With this numerical values, v, = msl.0g = 4.905 and

110, 22) ]| < [0.75 (g + 63|

For ¢ > g, it can be written that,
/100, 22) || <0.75 (9 + ¢3) | < d5
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Therefore there is no ultimate bound 75 Vs € [0, 00). But by choosing a suitable
bounded domain in R, ~, can be determined as 7, = sup ¢2(¢). Of course this limit
should be checked through simulations. For the case under study, sup ¢»(¢) = 50 is a

suitable limit.
With these values, criteria for A, can be calculated as,
max (1, 7v2) = 50, = 0.02 > || P -

0 c
In order to find the appropriate A, = , solution of the Lyapunov equation is
a b

checked for different values of a, b, ¢ parameters. Contour plot of || P||. for ¢ = 10 is

shown in Figure 3.6.

-10 ——
T o2

/
' 3
o4 —  — " 00
-20 0 0-05 / 2
— 00
_30 B — 003 / _ |
00 &

_40 - s M . 2 /1
- S
o o [ &
QS

50 F - Q@ -

o 1/l
/ /
/

| : /
N /[ ]¢

-100 -90 -80 -70 -60 -50 -40 -30 -20 -10

Figure 3.6: Contour plot of || P||. for different values of @ and b, where P is the
solution to the Lyapunov equation PA, + AT P + Q = 0 with Q as the identity matrix

0
and A, in the form of A, = ¢ with ¢ = 10.
a b

Computed torque based control law is used as the nominal controller with feedback

88



gain matrices K, and K, as,

3947.8 0 % 125.6637 0
0 3947.8 ’ 0 125.6637

For fault detection algorithm; first four Chebyshev polynomials of first kind, as given
in (3.27), are used as the basis set for the construction of the disturbance signal. State

estimator is constructed with,

=30 0 0 0
0 =30 0 0 001 0
P,
0 0 =50 0 0 0.01

and I'yy = 1000, ¢¢ = 0.01. Disturbance threshold of 10 Nm is used for fault

detection.

For the fault mitigation algorithm, following system is used as the reference model,

which corresponds to a second order system with £ = 0.7 and w,, = 10 Hz.

0 1 0
Arm = Brm =
—3947.84 —87.97 3947.84

Parameters of the nonlinear controller are as follows,

0 10
A, = a=1 =05
—40 —40

Partial feedback linearized control law is used for application of the control signals.
Following control gains are used, which corresponds to an error dynamics with ¢ = 1.4
and w,, = 5 Hz.

K, =87.97 Ky = 986.96

Simulation is conducted for a hypothetical case where two-link arm is started at the
position (q1, g2) = (90°,0°) and links are moved to the position (g1, ¢2) = (80°,20°)
using a nominal controller. Fault occurs at ¢ = 1sec.. Simulation results are shown
in Figure 3.7, Figure 3.8, Figure 3.9 and Figure 3.10 for the link positions, angular

velocities, perturbation signal and the torque output of the controller respectively.
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Figure 3.7: Link position for the two-link robot arm problem simulation
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Figure 3.8: Link angular velocities for the two-link robot arm problem simulation

Fault detection algorithm detects the fault at ¢ = 1.08sec. and FTC drives the system
to the upward position (¢, ¢2) = (90°, —15°). Although system starts to converge to
the position (¢, g2) = (90°, —16.5°), g2 dynamics diverges, although ¢; maintains its

state a little bit longer.
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Figure 3.9: Perturbation on the second links position (), for the compensation of fault

on the first joint
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Figure 3.10: Applied torques for the two-link robot arm problem simulation

Although this result seems surprising, the situation is clearer when the free-body

diagram of the system is considered (Figure 3.11).

When the system is at the upward position, i.e., ¢y = 90°, moment caused by the
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Figure 3.11: Moments on the links of the vertical two-link robot arm for the upward

position

weight of the second link around joint 1 is the same as the moment around joint 2.
Therefore, when the applied torque on joint 2 (73) counters this moment, net moment
around joint 1 also becomes zero. This situation is independent of the second links
position (g2). This creates infinite number of equilibrium points that corresponds to
different (gq, 72, ) duplets that satisfy the condition 75 = maql.o sin ¢o. Solution of the

perturbation problem moves along these equilibrium points and finally diverge.

A favourable behaviour for the system would be moving to the other direction on the
phase space towards the finally resting point of (q1, ¢2) = (90°,0°), unfortunately this

is not the case with the current formulation.

A possible solution to this problem is usage of adaptive terms to compensate for this
behaviour. As shown in Chapter 2, control system formulation is suitable for such kind

of modifications. For this purpose, a reference model for the system is constructed as,

0 1 0 0
0 0
—w? 2w, 0 0
App = Brm = W?L 0
0 0 0 1
0 w?
0 0 —w? 2w,



such that the ideal dynamics of the system becomes,

Q1ref Qiref

.. . ,
?17"6]” _ Arm Qiref + Brm 1
Q2ref Q2ref T2
_eref_ _q2ref_

As in the MRAC formulation and similar to the state estimator formulation, the error

vector, ) ) o
Qiref q1
q17"ef q1

e = —
Q2ref q2
_QQTef_ _q2_

is used for calculation of weights on an appropriate basis using the update law

W =T - Proj (W, —(q1, q2) - €T P)
Then the adaptive compensation term can be calculated as,

N
D, = Zsz i, 42)

J=1

and the perturbation dynamics can be written as,

r 0 1 1oal 0
el | = . T .
(g2,42)=(r2+r,0)
q1
- Arm . + Brmrl + D + Ar .
q1 T

The result achieved with this control system is shown in Figure 3.12. Although
the adaptive term considerable improves the system response and drives the states
to the desired (g1, ¢2) = (90°,0°) position, controller cannot maintain this position.
Deviation of first link (q;) from the ideal upward position again causes divergence of

the overall system.

As a final remark, upward position is an ill conditioned situation and it should be men-
tioned that existing controllers in the literature also switches to linearized controllers

at this part of the state-space.
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Figure 3.12: Link position for the two-link robot arm problem simulation

3.5.2 Horizontal three-link robot arm

Horizontal three-link open-chain manipulator (Figure 3.13) is the base of many indus-
trial robots. With addition of a vertical moving end effector, the configuration is called
SCARA (Selective Compliance Assembly Robot Arm) manipulator. It is developed in
1978 by Professor Hiroshi Makino at Yamanashi University. It has a high dexterity in

the horizontal plane, which makes it suitable for manufacturing purposes.

Since this configuration has degree of freedom only in the horizontal plane, its dy-
namics does not involve destabilizing gravitational external moments. Developed
fault tolerant control structure is applied to this configuration, in order to demonstrate
the applications on systems with higher dimensions. Similar to the two-link case,

free-swing type faults will be addressed.

3.5.2.1 Problem formulation

Again the system dynamics is governed by the Lagrangian form for the robotic

manipulators. It is repeated below for convenience.

H(q)-4+C(q,4)-¢+G(q,q) =7 (3.4)
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Figure 3.13: Vertical two-link robot manipulator system

Generalized position vector ¢ = (g1, g2, q3) has three elements, corresponding to
rotation angles as shown in 3.13. The system matrices H, C, G and 7 can be written

as [93],

a+ B +2vcosqy B+ ycosqgy O

H(q) = B 4y cos qs B o

1) 1) 1)

—ysingage —ysings (41 +¢) 0

C(g,q) = | ysinggs 0 0
0 0 0

7 8in g2 —ysingsq; 0O

C'(¢q,4) = |vysing, (G1 + ¢2) 0 0

0 0 0

T
7_:|:7'1 To Tg}

Since the base is assumed rigid, external gravitational moments are zero and therefore

G=0.
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Parameters «, 3, and ¢ are defined in terms of system parameters as,

o = ]1 + mllzl + mzl% + mgl%
B = I+ I 4+ myl?, + msl3
v = malilea + malily

(5:[3

System parameters are shown in Figure 3.13.

3.5.2.2 Design of the fault detection algorithm

State estimator can be formulated similar to the two-link case. Again C” term is used

in order to decouple the fault signal, with the following set of states: :

100 0 0 0] al
01 0 O 0 0 q2
y 001 0 0 0 q3
- 0 0 0 Hiy Hi Hi| |¢u
0 0 0 Hy Hxp Hxs| |¢
0 0 0 Hs Hsp Hss| |gs]

Same general formulation (3.16) for state estimator of robotic manipulators is still

valid:

0o H! ) 0

0
/ 1 Tt T 1 T + Ases
0 —C'H G| W)

&>
Il

with the adaptation law,

W =T - Proj (W, (@) el - P,)

where P; = P, > 0 solves the Lyapunov equation ASTPS + P, A, =—QforQ =1.

As in the two-link problem case (3.27), first four Chebyshev polynomials of first kind
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can be used as the basis set, but now for 3 different link positions:

Yo =1

U1 =q Y7 = qo Y13 = g3

Yo =2¢; — 1 Ys=2q5 —1 Yy =2q —1

by =4g8 —3q1 by = 4¢3 — 3q2 15 = 4¢5 — 3qs (3.28)
Y= q1 Y10 = G2 Y16 = g3

s =247 —1 Y =241 Pir=2¢;—1
Yo =447 — 361 1o =443 — 3¢a Y1s = 443 — 343

3.5.2.3 Design of the fault mitigation algorithm

Gravitational effects are not present in horizontal manipulator cases. Therefore such

systems are marginally stable and this eases the design process for A,

Since G = 0, oh term given in (3.24) becomes (. For 5,
Oz2 582:(7‘2,0)

can be evaluated as,

f1(0, z9)|| term

0
f1<07‘r2> = 1 .
—H11 C12Qz

(q1,41)=(0,0)
3.5.2.4 Simulation results

Free-swing fault on third joint (Loss of torque) case is studied as an example problem.
In conjunction with Figure 3.13, numerical values used in the simulations are provided

in Table 3.2,

At first sight, it might be wrongly assumed that since the system is marginally stable,
the system might inherently tolerate an actuator fault. However, due to highly coupled
nature of the system, fault in a single actuator affects all of the states. The situation is
shown in Figure 3.14, where a free-swing fault on third link is introduced at t = 5,
while the joints were following sinusoidal trajectories. Without any fault mitigation

act, the system behaves erratically, as can be seen from the response of the system.

Fault mitigation strategy is chosen as introduction of perturbations on the second
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Table 3.2: Simulated three-link robot arm’s parameters

Iy lea my Iy

Im 0.5m 1kg 0.0833kgm?

ly le2 my Iy

Im 05m 1kg 0.0833kgm?

ls les mg I3

Im 05m 1kg 0.0833kgm?

120 -

100 - < . " - =

Link positions [deg]

_60 Il Il Il Il Il Il Il Il Il
time [s]
Figure 3.14: Link positions after the occurrence of a fault for the three-link robot arm

problem simulation without any fault mitigation act

link, for the compensation of the fault on the third link. Therefore, the state matrices
are adjusted so that the unactuated state is 1 = [¢;] and the actuated states are

xs = [q1, g2)- The system matrices can be restructured as follows:

Hs3 Hsz Hs G Css U311 Cso G 0
Hys Hy Hpp Go| + |Ciz Ci Cho G| = |7 (3.29)
H23 Hy  Hy (']'3 023 Cz1 022 (i3 T2

The structure of the nominal controller and the state estimator are the same as the ones
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used in two-link problem. Feedback gain matrices K, and K, are chosen such that the

second order error dynamics has w,, = 2Hz and £ = 0.7.
1579 0 0
1759 0 0

K,=| 0 1579 0 K, =
0 17.59 00 0 17.59
0 0 1579

State estimator is constructed with,

-30 0 0 0 0 0
0 =30 O 0 0 0
0.010 0 0
0 —-30 0 0 0
0 0 =50 O 0
0 0 0.01
0 0
0

0
0

0 0 0 =50
_O .

First four Chebyshev polynomials of first kind are used as the basis set, as given in

(3.28). Adaptive gain is I'yy = 1000, €4 is chosen as 0.01.

For the fault mitigation algorithm, fault mitigation position is chosen as (g1, q3) =
(0°, —45°) and the following system is used as the reference model, which corresponds

to a second order system with { = 0.7 and w,, = 2 Hz.

0 1 0
Arm = Brm -
—157.9 —17.59 157.1

A, should be chosen in compliance with Conditions C/ and C2 of Theorem 2.4.1.
of1

As shown in previous section, || 7:-

= 0. For || f1(0, z2)||, state definitions

z2=(72,0)
x1 = [q1] and x5 = [q1, go] With the structure in (3.29) can be used, which results in,

1100, 22) || = ‘HB—SSI [C51Cs] QQ‘(q3143):(070)‘

Since C3; and C'35 are both zero, for the horizontal three-link problem where the third

actuator is faulty, || f1(0, z2)]| is zero. Therefore there is no restriction on A, and any

Hurwitz matrix is sufficient for guaranteeing the stability of the system

A, is chosen in compliance with the specified form. Following matrix with the
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eigenvalues of [—1.3820, —3.618] are chosen:

0 1
-5 -5

Partial feedback linearized control law is used for application of the control signals.
Following control gains are used, which corresponds to an error dynamics with ¢ = 0.7
and w,, = 1 Hz.

K, = 8.7965 Ky =39.4784

Simulation is conducted for a hypothetical case where three-link arm is started at the
position (g1, g2, g3) = (90°,0°,0°) and sinusoidal reference trajectories with frequency

of 0.25 Hz are commanded to the system:

r1 = 90° + 20° sin 27t /4
ro = —20° sin 27t /4
ry = 45°sin 27t /4

Fault occurs at ¢ = 5sec.. Simulation results are shown in Figure 3.15, Figure 3.16
and Figure 3.17 for the link positions, perturbation signal and the torque output of the

controller respectively.

As required by the fault mitigation policy, an offset occurs on the position of the
second link (g2), in order to drive the system to the planned fault mitigation position
of (q1,q3) = (0°,—45°). A slight steady-state error of 3° occurs for the third link

position.

3.6 Summary

In this chapter, application of the proposed algorithmic fault tolerant control structure
on robotic manipulators is explained. Theoretical analyses of the Lagrangian form of
the governing equations are developed and design steps are explained. Appropriate

formulations for the signal and matrix bounds and design criteria are derived.
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Figure 3.15: Link position for the three-link robot arm problem simulation
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Figure 3.16: Perturbation on the second links position (r), for the compensation of

fault on the third joint

Developed design methodology is applied on two benchmark problems; vertical
oriented two-link robotic manipulator and horizontally located three-link robotic
manipulator. As usual in nonlinear control systems, some problems are more suitable

than the others. Bu the simulation results indicate that proposed strategy can be applied
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Figure 3.17: Applied torques for the three-link robot arm problem simulation

to robotic manipulator control systems and it has a potential as an alternative to existing

control systems especially for underactuated systems.
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CHAPTER 4

FAULT TOLERANT CONTROL OF QUADROTORS

Proliferation of low cost unmanned multirotor platforms lead developers to find
increasingly new applications for such systems. This puts these platforms into roles

that involve flight in challenging environments with complex and expensive payloads.

In order to cope with this usage, multirotor control research also diversified. One typi-
cal research area is in development of nonlinear controllers and trajectory generation
algorithms for rapid maneuvering, typically for juggling and indoor flight applications,
while another is development of control algorithms for systems with additional degrees
of freedom such as vehicles with manipulator arms or other actuator mechanisms.
Contrary to that, another interesting topic is maintaining stable flight with reduced
number of rotors, for fault tolerance purposes or for novel vehicle design applications

[106].

Such kind of a configuration is studied and impressively demonstrated in a TED talk
by Mueller and D’ Andrea [107]. They had shown that it is possible to align a typical
quadrotor configuration around a desired vector in inertial coordinate frame using
two propellers only. They found analytical periodic solutions of the dynamic system
with reduced number of propellers, if the system is represented with so called the
“reduced attitude”, where the unit vector along the vertical axis of the quadrotor is used
to represent the attitude. They have developed a control system based on linearization
of this dynamics and applied it to single, two and tri-propeller cases [106]. Similar
results are also achieved by Freddi, Lanzon and Longhi using two-stage feedback
linearized controller for position and attitude [108, 109]. Other approaches for flight
control with faulty propellers is finding suitable trajectories for following using three

propellers [110] or using bounding functions on position commands to guarantee
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trajectory tracking [111].

Apart from above mentioned work, fault tolerant control research in multirotor plat-
forms is mostly confined to compensation for partial thrust loss in propellers or
rearrangement of the propeller thrusts in order to recover from loss of a propeller

within overactuated systems such as hexacopters or octocopters [112, 113].

Attitude control is an essential part of any aerospace vehicle and therefore quadrotor
attitude control problem is selected as an example application for the developed fault

control strategy but the presented approach can be applied to other systems as well.

The proposed FTC structure against actuator faults for the quadrotor problem is based
on maintaining the stability of the system through introduction of perturbations su-
perposed on the main rotation rates of the actuated rotors. In this chapter, such an
implementation will be explained. As explained in Section 1.3, complete imple-
mentation of a fault tolerant control system requires thorough analysis of various
probable failure modes and testing of the control system for each failure type. With
considerations on the length of the manuscript and in order to convey the essentials of
the proposed methodology, only complete loss of single and two propellers will be

discussed. But of analysis may be extended to include other types of failure.

This chapter is organized as follows. After introduction of the quadrotor control prob-
lem in Section 4.1, the fault diagnosis algorithm is derived in Section 4.3. Dynamics
of the attitude control with reduced number of propellers are discussed in Section 4.4.
After that, fault mitigation methodology is explained in Section 4.5. Performance of
the control system is demonstrated using simulation results in Section 4.6, through

simulation results on the selected cases. Final comments are given in Section 4.7.

4.1 Quadrotor control problem

Like many moving vehicles, quadrotor is an underactuated system [95]. Control in
6 dimensions with 12 states (position, velocity, attitude angles and angular rates) is
achieved with manipulation of 4 propeller rotation rates. This is not as restrictive as it

sounds, since unactuated internal states are stable, with obvious exception of altitude.
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Nonlinear controllers with trajectory generation algorithms are required for rapid ma-
neuvering but for near hover flight conditions, which is enough for many applications,
position tracking is possible even with simple PD type controllers. This is usually
achieved through employing a slow outer control loop for position tracking and an
inner stabilization loop for control of the 3 angular rates (p, ¢, ) and the total thrust of

the propellers [114]. This structure is shown in Figure 4.1.

Trajectory
Planner

C Position Attitude Motor
~ Controller Controller Controller

Inertial Measurement
Unit

GPS

Figure 4.1: Elements of a typical quadrotor control system

Three control signals for stabilization of the three angular directions, together with the
condition that their summation is equal to the specified thrust, four propellers can be
fully mapped. However, once a propeller is lost, it is not possible to satisfy all four
conditions. With the total thrust constraint, two propeller are remained for attitude
control. However, Byrnes and Isidori have shonw that it is not possible to stabilize the

full state of a spacecraft with two actuators [115].

In order to find a suitable sub-space of the attitude dynamics, a common approach in
the literature is giving up on control of the yaw channel, so that the vehicle can freely
rotate around its vertical axis [116]. With the control of pitch and roll, it is possible to
direct the vertical axis of the vehicle at a certain orientation. This pointing direction
is called the “Reduced attitue” and this vector can be controlled using three or less
propellers. Therefore control with less than four propellers becomes a problem of
finding stable sub-manifolds of the reduced attitude dynamics and existing work on

the subject mainly focuses on this aspect of the problem.
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Reduced attitude dynamics is also used in the developed control structure. But before
the explanation of the proposed methodology, first the equations of motion and general

attitude stabilization problem are discussed in the following sections.

4.1.1 Equations of motion

Equation of motion of a rigid body in 6 dimensions can be written using Newton’s 2"
law of motion for the translational movement and Euler’s equation for the rigid body

rotations as:

m-T =F

I- 0P =—wWBxI - WP+ M

where F' is the vector of external forces and M is the vector of external moments on
the system, with respect to an inertial reference frame. w? is the angular velocity of
the body, in body coordinate frame and 7 is the acceleration in the inertial reference
frame. This set of equations is universal and valid for any rigid body (With obvious
limitations related to classical mechanics). Mathematical modeling comes into play
for representation of external forces and moments specific to the system under study.
For multirotor systems, it is common to assume that generated rotor force and torque

are proportional to the square of the propeller speed as [114],

2 2
fi=Kfw; T =K fi = Kr - Kf - W,

where £ is the force constant and « is the torque constant of the propeller.

Modelling of other secondary affects such as blade flapping or rotational drag of
propellers varies slightly in the literature. Modeling approach of Mueller and D’ Andrea
[106] are followed in this work and equations of motion for quadrotors are presented

in (4.1), with axis definitions shown in Figure 4.2.
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ILoop=—(IL-1IL) q-r+kp- 1 (w; —wj)

_[,Zqzwz_dexp HWBH

I5g=(I%—1%) pr+rp-l-(w?—u?)

+15p > Wi — Kgee g |7 (4.1)

T 2_ 2., 2 2
I, -1 =ky kg (W] — wy + w3 — wj)
= iz -7 [

-1
m'aB:nf-(wf—l—wg—i-wg—i-wZ)—Rg “m-g

where superscript B indicates body coordinate frames with w? = (p,q,r), while
w; represent the rotation rate of the propeller i. RE is the directional cosine matrix
from body frame to inertial frame. [ is the distance between the rotor axis and the
center of the quadrotor. Inertial moment tensor /7 is the total moment of inertia of
the quadrotor, while I is the moment of inertia of a single propeller. Quadrotor is
assumed symmetric so that [,,, = I,,. k4 terms represent the rotational drag of the

propellers and again due to symmetry, Ky, = Kdz.-

AZLY

xp ¢

Figure 4.2: Axis and direction definitions for the quadrotor problem.
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4.1.2 Attitude stabilization

System of equations (4.1) is a high fidelity model of a quadrotor system. It is suitable
for nonlinear simulations but a simpler model is more appropriate for development of

control algorithms.

Secondary effects in (4.1) can be neglected for I” < I and HwB H < w?. Also, yaw

damping moment can be assumed as linearly dependent with the yaw rate r so that

B
I

Kdzz T - Hw ~ ~yr. With these simplifications, system dynamics given in (4.2) can

be used for control system design purposes.

Iy-p=— (I —1I3,) q-7+1-(fa— fa)
I q=(IL— 1) - p-r+1-(fs = fi)
L5 7 =yr+ k- (fi = fot fs = fa)
m-a® =(fi+ fot fi+ f1)—RE m-g

or
p_¥.q.r+l_B.<f2_f4)
q_—fﬁ 'p'T+E'(f3—f1) 4.2)
. Kr
7’:—77’+[—B'(f1—f2+f3—f4)

a” :%(f1+f2+f3+f4)—Rg_l'g

These set of equations are still highly nonlinear, but they are tractable and different
control systems can be designed with. But another difficulty in attitude stabilization
is the definition of angular errors in three dimensions [117] that can be used in the

formulation of the control law.

For small angular errors, error vector defined from Euler angles can be used such as
T
er = [A¢ A# Av| . However for large angular errors, a more complex definition

is required. This can be achieved with the following error vector definition [114].

epx =1/2- (R§~R§ - RgT-Rd>
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where R is the instantaneous directional cosine matrix from body frame to inertial
frame and R, is the desired attitudes directional cosine matrix. “x’” operator denotes

the skew-symmetric form of a vector. It is defined for any vector v € R3 as,

0 —7V3 (%)
(vX)=1ws 0 —u
—V2 (%1 0

T
It should be noted that this expression is equivalent to er = |A¢p Af Aq)p| for

small angles.

Once error vector ey is calculated, control signal can be generated using a PD con-

troller,
Ur = —kR-eR—kw-ew (43)

where derivative term is calculated e, = w,; — w®.

Once control signal ur € R3 is calculated, together with an acceleration constraint
> fi = Fy, four signals can be mapped to four propellers f;. Fy is the desired total

force magnitude that can be calculated from the required acceleration.

This transformation can be found from (4.2) as a matrix equality:

[ £, 11 1 1| [A]
UR1 . 0 l 0 -1 f2
UR2 —1 0 l 0 f3
_URS _K/T —Ks Rr _K:T_ _f4_
or with taking the inverse of the transformation matrix,
fi 1o -2 LI][FR
f2 1 1 2 0 - i UR1
AL 0 2 L g
a 1 =2 0 —-| |urs

However, once a propeller is failed, this mapping can not be done. Reduced attitude is
a useful representation of the attitude for such kind of cases [116, 117]. It is defined as

the pointing direction of the attitude (positive 2 axis in Figure 4.2) in inertial coordinate
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system. Therefore it can be formulated as,

0
I'=RE |0
1

Since the cross product defines a vector perpendicular to the input vectors with mag-
nitude of sine of the angle between them, error vector for reduced attitude can be
calculated as,

eRr = I' x Fd
where, I'; € R? is the desired reduced attitude.

Proportional-Derivative control structure given in (4.3) can still be used with reduced
attitude [117]. Although the calculated control input is still up € R?, yaw channel
control input (I'3) becomes zero and calculated control signal is independent of the

yaw angle.

This error formulation is mainly used in control system design methods available in
the literature. But for the proposed methodology, a little bit more detail about the

reduced attitude dynamics should be discussed.

4.2 Reduced attitude dynamics

Reduced attitude can be interpreted as the pointing direction of a system. For quadro-
tors, it is taken as the vertical direction (2 in Figure 4.2) that is parallel to the rotor
axes but it can be taken as any vector. For example, pointing direction of an antenna

on a satellite can also be manipulated using reduced attitude.

With this definition, reduced attitude can be represented as a unit vector on a sphere
[116]. Consider two such vectors (p, q), one representing the vehicles attitude and the
other one is the desired reduced attitude. Both of these vectors can be represented as
points on the same sphere (Same coordinate system) with appropriate metrics. The

situation is shown in Figure 4.3.
Distance between two vectors can be taken as the angle between them on the plane
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Figure 4.3: Reduced attitude and related parameters.

formed with these vectors. This can be formulated as,

dist(p,q) = § = arccos ({p, q))

where (-, -) is the scalar or dot product and for vector in R**!, it can be calculated as

(u,v) = ulw.
Geodesic direction in p towards g can be formulated as,

Yi=wers(pxq)xXp (4.4)
where versor operator vers basically normalizes the input vector as vers (z) = x/ ||x||.

With these definitions, time rate of change of distance can be formulated as [116]:

do
7= ) (4.5)

Now consider the reduced attitude of the system as p and let the desired reduced

attitude vector ¢ be the positive z axis in inertial frame:

0 0
1 1
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Since unit vector in zdirection is constant, time rate of change of p can be derived as,

0 0
p=RE|o| =RE|wP x |0
1 1

where RE = RE (wPx) relation from attitude kinematics is used. For w? =
T

[wl Wo wg} , p can be formulated as,

w2
- _ pE
p=Rp |—w

0

1T
Similarly, Y;jl can be calculated for ¢ = [0 0 1| using4.4as,

—pPip3

p2 pl 1/p%+p§

E— —DP2p3

Y= —F—— || X |p2| = 2B5
\V/P1+ D3 0 VPitPs

ps Vi + 3

T
where p = [pl D2 p3]

(4.6)

4.7)

Time rate of change of distance between the reduced attitude of the system and the

vertical axis can be formulated using (4.6) and (4.7) with (4.8):

—p1p3

o | Ve
— = —(p. Y9 = — RE o —p2p3
dt <p7 p > < B Wi > \/m

V1LV

Definition of inner product can be used for further simplification since:

(u,v) = u'v — (Au,v) = u’ ATv

and
—PpP1pP3

E —p2p3

B |—W1] >
\/P3+p3

5T
= | —W Ry
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Let vector p’ be,
—pi1p3

/

Y41 \/ Pi+p3
T

r | _ pE —p2p3
oh| = BET| e
2 \/P3+p3

/

2 2

P3 \VP1 + D3

With this definition, time derivative of distance can be calculated

do

% = Wlplz - sz/1 (4.8)

As expected, rate of change of distance is independent of the yaw rate (w3). This

relation will be used in construction of the control system in Section 4.5.

Reduced attitude stabilization

A Proportional plus derivative control law for reduced attitude control is derived
by Bullo, Murray and Sarti for a general attitude control problem [116], using the
parameters defined in this section. It is more general than the control laws presented

in previous section and therefore it is worth mentioning:

Consider the current reduced attitude vector p, and the desired reduced attitude vector
q. Given positive control gain k, and positive definite matrix K, following control
torque renders the equilibrium point (p = ¢, w; = 0, wy = 0) stable from any initial
condition, provided that p, is not the antipodal vector of ¢, i.e.,py # —q.

) _<}/;)%7p2> N Kd w1 (49)

T = kydist(po, q
<Y;;%7p1> )

T T
where p; = RE [1 0 0} and p, = RE [0 1 O} .

The stability is guaranteed for all £k, and angular velocity vector w such that,

(w, [w)

k, >
P7or? _ dist (po, q)2

These relations are derived for spacecraft attitude control problem and any disturbance
torque such as aerodynamics or rotors are disregarded. But in quadrotor problem, such

affects are stabilizing and therefore their presence does not pose any problem.
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4.3 Fault diagnosis algorithm for quadrotors

Formulation of the fault diagnosis algorithm, using state estimator structure is straight-
forward. Disturbances on each of the four propellers can be estimated in conjunction
with (4.2), using the measurements of states (p, ¢, 7, a®). However, since thrust of
the propellers are always positive, loss of each propeller has a unique disturbance
character. For example, for the configuration shown in Figure 4.2, loss of thrust in
second propeller causes a negative net moment around X axis. Or, if first and third
propellers are lost simultaneously, negative net moment occurs around Z axis. Using

this relation, fault can be diagnosed using only angular rate measurements.

State estimator can be formulated as follows,

p 0 —ar 0| |p 7 (fa = fa)
(j =lar 0 0 ql + %T-(fs—fl) + D + Age, (4.10)
i 0 0 —y]|r] [F-(h-ftfi—f)

where D € R3*1 is the disturbance vector and
T T
([zz - [:r:ac)

a =
T
[:L‘a:

~

T T
Error vector is e, = [A q f} — [p q r} and A; is a Hurwitz gain matrix for the

estimator.

The disturbance vector can be approximated with projection on a basis ¥,y (%) as
R N
Di~ Y Wi 1y(#) (4.11)
j=1

where N is the number of basis functions and subscript ¢ indicate the element of the
vector. Similar to robotic manipulator problem (Section 3.2), Chebyshev polynomials

can be used as the basis set.

The weights of the basis functions can be updated with the error dynamics as,
S

W =T - Proj (W —() - el - Ps) 4.12)

with P; = P, > 0 solves the Lyapunov equation AST - P+ P, - Ay = —(Q for arbitrary

@ > 0. Proj is the projection operator, commonly used in adaptive controllers in order
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to bound the estimated gains. The formulation of the operator is given in Section 2.6

as (2.20).

With the estimated disturbance vector, faulty propeller can be identified as explained
above. Determination of the faulty propeller derived from the sign of the elements of
the disturbance vector is summarized in Table 4.1. With this parameter set, auxiliary
parameter a can be calculated as:

(1L - 17,

a= —‘m) = 0.9259

T
Ixm

Table 4.1: Fault diagnosis from the disturbance vector

Sign of the Elements
Fault Case D, Dy Ds
No Fault 0 0 0
Propeller 4 is failed + 0 0
Propeller 2 is failed — 0 0
Propeller 1 is failed 0 + 0
Propeller 3 is failed 0 — 0
Propeller 2 and 4 are simultaneously failed 0 0 +
Propeller 1 and 3 are simultaneously failed 0 0 —
Propeller 1 and 4 are simultaneously failed + + 0
Propeller 2 and 3 are simultaneously failed — — 0

4.4 Attitude Control with reduced number of propellers

Before the derivation of the FTC algorithm, it is instructive to discuss the dynamics of

the system with reduced number of propellers.

Since all rotors are located on the x — y plane, numbering of the rotors can be changed
with rotation of the axis. Therefore loss of the fourth propeller case in Figure 4.2 will

be discussed without losing any generality, while other three propellers produce thrust.
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Equation of motion of this system is repeated below for convenience.

p = —aqr + cfy
g=apr+c(fs— fr) (4.13)
r=—yr+b(fi — fo+ f3)

where a, b, c,y > 0.

Thrust of the second propeller (f2) is always positive and it creates a positive signed
disturbance on the roll channel (p). If the pitch and yaw rates are zero, then it is
impossible to stabilize the p dynamics with a nonzero f3. But for nonzero ¢ - r term,
stabilization of roll dynamics might be possible. For example it is possible to find
an equilibrium solution for motion with constant ¢ where f3 = f; and fo = f1 + f3
so that » ~ constant (for v ~ 0). Actually, this kind of solutions are proposed by

Mueller and D’ Andrea for the quadrotor motion with three propellers [107].

Now as an alternative, consider again the motion under constant yaw rate (r = 7 > 0).

If ¢ involves a perturbation, p dynamics can be written as:

p=—ar(qg+q)+cfy
g=ar+c(fs— f1)

If the magnitude of the perturbation is adjusted so that —r¢’ + cf; = 0, p dynamics

would be stabilized. Proposed FTC algorithm can generate such kind of signals.

If another propeller is lost, there are two possibilities. If the second propeller is lost, it
is not possible to achieve a zero yaw rate, sine f; + f3 is always positive. Yaw rate
would settle at a constant rate of © = % (f1 + f3) and p dynamics become unactuated.
Mueller and D’ Andrea had shown that it is possible to “point” the z axis of the system
under this condition, using the reduced attitude dynamics. Proposed FTC algorithm
can generate a perturbation signal on g to achieve the same goal, with the advantage of

not requiring the reformulation of the original control system.

The other possibility is losing the third propeller. The total thrust of first and second
propellers should counter the weight of the system. Suppose that same thrust is applied
on both first and second propeller and control inputs are applied as deviations from

the second propeller so that f; = fy and fo = fy + u with fy > 0. Then the attitude
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dynamics can be written as,
p=—arq+d

g=arp—d+u
b

r=—9r—-u
c
with disturbance signal d > 0. In this situation, yaw rate is not automatically induced

but control inputs u(t) creates both pitch rate and yaw rate commands. Equilibrium is

possible for only nonzero (p, ¢, r) attitude rates.

From the system dynamics point of view, flight with a single propeller is not much
a different condition than flight with two co-rotating propellers. Again a yaw rate
is created and again a positive moment around x or y axis is created, depending on
the remaining propeller. Therefore, the solution would be very similar to the two

co-rotating propellers case.

Although it is possible to guess the existence of a solution, from the discussions related
to physics of the problem, it is another thing to find a control system that implements
such results !. In the next section, formulation of the controller, based on the proposed
FTC algorithm, is presented. Simulation results for the above discussed cases are

provided in the subsequent sections.

4.5 Fault tolerant controller for quadrotors

Loss of propeller causes the disappearance of the force and moments created by the
faulty propeller. This kind of fault is in compliance with the developed fault mitigation
strategy of zeroing the effect of the faulty actuator and introduction of perturbations
on the healthy ones in order to stabilize the overall system. Once a propeller is lost,
FTC should start injecting the state perturbations on the controller, without taking any

other action.

As shown in Figure 4.1, a typical flight control system includes outer trajectory planing
and position control loops. The output of these loops is basically three Euler angles for

the desired angular position of the vehicle relative to earth and required acceleration.

! To be honest, I personally wouldn’t deduct the existence of such solutions, if they had not been shown by
Mueller and D’ Andrea [106, 107]
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These guidance commands are fed to the control system that generate thrust commands
(in fact, rotor revolution rates) in compliance with attitude dynamics given in (4.2).
Fault tolerant control algorithm is developed to introduce fault mitigation perturbations
on the attitude rates. Therefore calculated perturbations are added to the attitude rate
commands within the attitude controller part of the control system. The overall flight

control system architecture with the proposed fault tolerant control elements is shown

in Figure 4.4.
Fault Tolerant Controller
_______________________________________ Fault Fault
Detection Mitigation
Trajectory
Planner
Rate Perturbations

(: Position Attitude é Attitude Motor
Controller Command Stabilization Controller

Attitude Controller

Inertial Measurement
Unit

GPS

Figure 4.4: Quadrotor flight control system architecture, including the FTC algorithm

As explained in Section 4.4, loss of a single propeller results in an asymmetric moment
around the axis of the healthy propellers and system inevitably gains a yaw rate.
Actually, spinning systems gain gyroscopic stability and therefore admission of high
yaw rates is not as bad it sounds. In fact, if the thrust of two healthy propellers are
enough to maintain the desired motion, than it would be a good idea to stop the
propeller that is opposite to the failed propeller so that the disturbance moment would
disappear and the configuration falls back to the two propeller case. Therefore for the
design consideration of the FTC algorithm, single and double propeller cases are the

same problem with different third propeller thrust values.

Assume that 4™ propeller is lost and let f ;. be the constant thrust that will be applied

from the second propeller. Disturbance moment can be written as d = cfs . > 0 and
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the resulting attitude dynamics is,

p=—aqr+d
¢ =apr+c(fs— fi) (4.14)
r=—yr+b(fi+ fs— fore)

where a, b, ¢, v are positive constants that depends on system parameters as,

K [
b= —= c=—
1T Ir
For fi, f3 > 0, it is not possible to achieve zero yaw rate. However, since yaw
dynamics is first order, with u, = (f; + f3 — fo s1c) as input, its time dependent

response for constant u,. and with 7(¢y) = 0 can be written as,

r(t) = %ur (1 — e_t%>

Therefore, for constant u,., maximum yaw rate that the yaw dynamics can attain is,

(fi + f3 = fa ) (4.15)

b
Tmaz = —
v
f2, 1t is a constant thrust that will be applied after the detection of the fault. If the
motor control inputs are calculated such that f; + f3 = constant, than v, = constant
and it would be guaranteed that the yaw rate is always bounded with this predetermined
value. In practice, maximum motor rates are limited and therefore it is possible to
calculate a maximum attainable value for yaw rate. However, there is an additional

consideration that should be given to the calculation of motor force commands.

The control input on the pitch channel (¢) is u = ¢ (f3 — f1) and this signal is calcu-
lated by the proposed fault tolerant control system. For each calculated value of u and
for constant predetermined value of w,., force commands on the propellers f; and f3
can be calculated with following constraints:

u

fl_f?):__

C

J1+ f3= fopte + ur

It is possible to find f; and f; that satisfies the above relations, but unfortunately for

quadrotors, there is an additional constraint that f;, f3 > 0. Since the lowest value of
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f3 is zero, the first equation provides a limit on u such that,
max |u| < ¢fmax (4.16)

where the propeller force limit be denoted as f,,,..

On the other hand, choosing u, such that,

Uy S fma:v - f2,ftc

guarantees that second equation is satisfied even for f; or f3 = 0. Using this relation

in (4.15) results in a limit for maximum yaw rate as,

b
‘T(t)| S ; (fma:): - f2,ftc) (417)

In application, this limits should be calculated and the overall design of the control
system should be consistent with respect to the actuator limit (4.16) and the corre-
sponding bound on r, given in (4.17), which will be used for determination of A, in

the proposed control system.

With this considerations, pitch and roll channels (p, ¢) can be treated separately using
reduced attitude representation and yaw rate (r) can be considered as an external
bounded signal. The main fault mitigation act is pointing the thrust axis against the
gravity, so that the system maintains a stable reduced altitude. This can be formulated
as the desired reduced attitude vector of [() 0 1] T. The dynamics of the distance
between the current reduced attitude and the desired reduced attitude is given in Section

4.2.

With this respect, considering the controller design strategy that had been explained in
Chapter 2, roll rate (p) and the reduced attitude distance from the z axis can be treated
as the uncontrolled states z; and pitch rate (¢) becomes the controlled state x,. With

this definitions, interconnected system dynamics can be written as,

B 0 phl| |0 —
iy = | _ %) i Py Ty +
W1 0 0] |wt —aws d (4.18)

x'gzwg:aw;;-wl—l—u
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T
In order to avoid confusion, w? = [wl Wo w3] naming is preferred for the angular

rates, instead of the (p, ¢, ). Definitions of J, p| and p), are provided in Section 4.2.

Control inputs u(t) are generated with creating an offset on the nominal propeller

forces as,

u=c(fs— fi)

4.5.1 Perturbation relation

Perturbations on the controlled pitch channel (w-) can be calculated from the main

FTC relation:
er = - [fi(x1,re + 1) — fri(xy, By - 12)| + Apr

However, uncontrolled dynamics are in z; € R?, while the controlled dynamics is in
x9 € R, Therefore it is not possible to directly map the calculated perturbations to the
pitch rate perturbations. This can be achieved using a control matrix 5, for application
of the perturbations.
Let ¢’ be the applied perturbation on x5. Then,

¢ = Br

with B, € R?>*! results in the desired formulation.

Hence the perturbation equation for the attitude control problem can be formulated as,
er =a - [fi(xy, By (ra + 1)) — fra(z1, Brra)| + Apr

q/ :Brr

With the system model given in (4.18), it can be written that,
0 p: o —p 0 o
& = - P | T Bt || = A 4 A
0 Of [wr —aws d w1 (4.19)
q/ :Brr
B, determines how the perturbations would affect the system. Main aim of the FTC

controller is to make 6 — 0. Therefore,

B, = [1 0]
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would give priority to this channel.

As usual, A, is the desired behaviour of the uncontrolled system

4.5.2 Stability of the boundary layer equation

The conditions for the stability of the boundary layer equation is analyzed through
function f(x1, z5) of the cascade dynamic system structure (2.3) given in Section 2.2.
This function can be identified from (4.18) as,

0 ph —ph

fi(zr,z2) = r1 + To +
0 0 —aws d

The conditions C/ and C2 of Theorem 2.4.1, which is given in Section 2.4 can be

evaluated as,

-
fl (07 $2) - T +
—aws d
on| |-
0% |pye(r0) | —awy

The presence of a nonzero d term violates the f1(0,0) = 0 assumption, given as
Assumption A/ of Theorem 2.4.1. But as stated in Remark 2.4.6, this results in a shift
in equilibrium point of ;. As will be demonstrated in numerical simulations (Section
4.6), a nonzero d term causes a constant roll angular rate p and tilts the pointing angle

of the quadrotor (Body z axis).

The presence of d does not change the stability properties of the system y = f1(0, y)

and since it is in the form of,

y: f1<07y> :Ay

the bound on || f1(0, z2)|| can be calculated as,

fl(O,xz)H IR P | e A (4.20)

—aws —aws
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Therefore v, in Condition C2 of Theorem 2.4.1 can be identified as 5. Actually, this is

ofr

o and therefore the Conditions C/ and C2 of Theorem

also equal to the

z2=(r2,0)
2.4.1 can be simultaneously satisfied with,

M=7= || ! 4.21)
—Q

w3

The Frobenius norm is more appropriate for calculation of this norm:
T
24

— 0
Pl tr oh = /P2 + (aws)?
_aw3 8332 (7‘2,0) 61’2 CEz:(’I’Q,O)

Since p] is an element of a unit vector, it is bounded by 1. Also a < 1 for a general

Tro=

quadrotor configuration. Therefore following inequality holds:

H — <1+ <1462

aws

A, can be chosen for the maximum attainable yaw rate ws 4, using (4.17), such that
A, that solves the Lyapunov equation PA, + AT P + @ = 0 with () as the identity

matrix with appropriate dimensions and m > v = Yo.

Maximum eigenvalue of A, for different maximum yaw rates are calculated and the

results are shown in Figure 4.5.

With this result, following comments can be made regarding the assumptions and

conditions of the main theorem on the fault mitigation control structure Theorem 2.4.1.

e The quadrotor dynamics have a continuous parameter sets. Therefore assumption

on Lipschitz continuity of the functions, Assumption A/ of Theorem 2.4.1 are valid.

e Assumption A2 of Theorem 2.4.1 is related to the controllability of x; dynamics

with z; regarded as control input. This dynamics, @1 = f;(z1, x2), is in the form of,

and this structure is always controllable for nonzero a, b and c.
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Figure 4.5: Maximum eigenvalue of A, for different yaw rates.

e Assumption A3 of Theorem 2.4.1 is related to the controllability of x5 dynamics. x5

dynamics is a SISO system and it is controllable.

e Assumption A4 of Theorem 2.4.1 is related to the bound on || f1(0, z2)||. As shown
in (4.20), this bound exists.

e As given in (4.21), the Conditions C/ and C2 of Theorem 2.4.1 can be satisfied with

=Y = \/ 1 +w?2;,maw

the same bound value,

4.5.3 Time dependent behaviour of the perturbation dynamics

Although norm constraints derived in the previous section can be used for selection of
A,., investigation of the time dependent behaviour of the perturbation equation reveals

additional design considerations.

Consider the perturbation equation (4.19). With o = +1, B, = [1 0} and for
diagonal A,.,,, with eigenvalues \,,,; and \.,,» and similarly a diagonal A, with A,

and ),», it can be reformulated as,
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— A ! ) -+ X1 O 0
e = P | TR r+ (4.22)
d

0 —Arm2 w1 —aws Ar2

Equation (4.22) involves different dynamics working against each other. A stable
reference model requires that A,,,1 2 < 0 which leads to positive definiteness for
the first term of the perturbation dynamics. Effect of nonzero (4(t),w;(t)) would

be amplification of the signal. On the other hand, (§(t),w;(t)) itself would decay

in accordance with A,,,, due to reduced dynamics. By making |A\.| < |\, the
dynamics of the perturbation can be adjusted so that perturbations do not respond to
rapid changes in the uncontrolled states. This both smooths the response of the system

and also decreases the convergence time.

Desired behaviour of the system, characterized by A,.,, is also bounded by the actuator
bandwidth. With also the lower bound on ||A,|| for stability of the boundary layer

equation, overall system should have a structure such that |\.| < |Amn| < [Aactuator|-

T
The other term is the constant (or slowly varying) disturbance vector [0 d} . The
effect of constant disturbances is shifting of the origin of the system. Since the

disturbance is in w; channel, it affect the perturbation on channel this channel only.

The presence of disturbance vector d have other affects on the dynamics of the system
and the equilibrium point of the overall system. These effects are discussed within the

presentation of the numerical results in Section 4.6.

4.5.4 Overview of the design process

With the results of the analyses presented in this section, overall design process for the

fault tolerant control of quadrotors is summarized below.

e Construct the fault detection part of the controller, using the techniques presented in

Section 4.3.

e Renumber the rotor and adjust the x — y coordinate system so that the faulty rotor

becomes 4" propeller, in compliance with Figure 4.2.
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Determine the constant forces fo . and u, = fiqz — fo, 11 that will be applied

during the execution of the fault mitigation algorithm.

Determine the maximum attainable yaw rate using (4.17) and choose A, according

to Figure 4.5.
Choose the reference model dynamics A,.,, such that eigenvalues of A,,, satisfy,
‘)\Tl < |>‘7”m‘ < ’/\actuator’

where A, and A\,.uqt0r represent the eigenvalues of A, and actuator dynamics

respectively. 2-5 factor is suitable for selection of eigenvalues.

Calculate the pitch rate disturbances (¢’) according to

0 ) — 0 )

E’f" = - p2 -+ pl [1 0:| T+ — Arm + Arr
0 0] |wy —aws d w1

-

where ¢ is the angle between the current reduced attitude and the up direction, w is

the roll rate and wj is the yaw rate.

Distance 0 and reduced attitude parameters can be calculated with

0 ’ —pi1p3
b1 Y4 A /p% +p§

_ pE | pET —p2p3
pb2| = g 0 %) _RB \/ﬁ
p1TP3

/
b3 ! Ps VP + P

Apply the calculated pitch rate perturbation (¢') through the attitude rate controller
of the system. Since only pitch channel will be controlled, a feedback linearized
controller for pitch channel can be used for this purpose.
u=— awws + Aws + (¢ + q.)
M. =I,,-u=1-(fs = f)
where ¢, is the output of the nominal controller. In accordance with (4.16), maximum

input that can be applied is limited with,

max |u| < ¢fimaz

The overall fault tolerant control system architecture is summarized in Figure 4.6.

Numerical examples are presented in the next section.
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Figure 4.6: Fault tolerant control architecture for quadrotors

4.6 Attitude stabilization examples with reduced number of propellers

Mueller and D’ Andrea provided system properties of the vehicles they have been
working on. Numerical simulations are conducted with the quadrotor configuration
whose parameters are taken from their work [106]. These parameters are shown in

Table 4.2. With this set of parameters, auxiliary parameter a can be calculated as,

(IT—I)

4.6.1 Attitude Controller

Faulty conditions result in flight under high attitude angles and angular rates. Therefore
a proportional plus derivative reduced attitude controller presented in Section 4.2 is

chosen as in attitude controller. It’s structure is repeated below for convenience.

—(Ya, w
T = kydist(po, q) Wyt pe) — K| (4.9)
<Y;9%7p1> )
The lower limit on &, for stability is,
I
k_p > <w7 w>

— dist (p07 Q)z
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Table 4.2: Simulated system parameters

Property Value

T _ T _ -3 2
I, =1, =27 x 107" kgm
IT =5.2 x 1072 kgm?

Moment of Inertia Tensor:

Moment of Inertia of a Propeller: 17 = 1.5 x 107> kgm?

Mass: m = 0.5 kg

Rotor distance [=0.17Tm

Propeller force coefficient kp=6.41 x 107% Ns?rad 2
Propeller torque coefficient Ky = 1.72 x 1072 Nms?rad 2
Propeller force limit fmaz = 9.5N

Motor time constant oy = 15ms

Kdzw = Kayy = 0.7 X 107° Nms?rad?

Rotational drag coefficients
Kds, = 1.4 x 10~ Nms®rad?

For the system parameters given in Table 4.2, with the maximum angular error of 7 /2
rad and the maximum angular rate of 3 rad s, this limit can be calculated as 0.0129.

Following controller gain set is used in the simulations.

0.02 0
k, =005  Kg=
0 0.02

For the feedback linearized part of the pitch rate controller, A, is chosen as —20.

4.6.2 Fault Tolerant Controller Parameters
Actuators are modeled as first order systems with time constant of 0.015 ms. On the
other hand, for maximum yaw rate of 3 rad s~! results in minimum A, of 4.5.

As explained in the previous section, reference model A,,, and the perturbation control

matrix A, should be chosen with an appropriate margin between them. Following set
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is used in simulations.

Small parameter € is chosen as € = 0.1 and the sign parameter « is chosen as o = 1.

Fault detection algorithm is constructed with the disturbance vector estimation us-
ing first three Chebyshev polynomials as the basis set. Weights are estimated with
adaptation gain of I' = 10000 and the following parameter set.

=50 0 0 0.01 0 0
As=1 0 =50 0 Ps=10 001 0
0 0 =50 0 0 0.01

4.6.3 Simulation Results

Simulations are conducted for the failure of the 4" propeller at the 5 s of the flight.
The plant is modeled as a continuous time system, while the flight control algorithm is

run with discrete time step of 10 ms

The system is started at the level position (¢, 0, 1) = (0,0,0) and trim is maintained
at attitude (¢, 6,¢) = (15,10, 0).

The fault is injected with loss of thrust of the 4" propeller. The rotation rate of the
opposing propeller (2" propeller) is set to the predetermined value, immediately
after the detection of the fault and fault tolerant controller is activated. Calculated
disturbance vectors are shown in Figure 4.7, where it can be seen that it took about 4 s

for initial convergence of the gains.

The moment of an unbalanced rotor is very high. Therefore faulty condition can be
identified rather rapidly . It takes 30 ms for the FDI algorithm to detect the fault (Figure
4.8). After that, it takes approximately 70 ms for the 2™ propeller to slow down to the

desired level. This situation is shown in Figure 4.9, for the case where f5 . = 0.2 N.

In order to demonstrate the effect of the thrust level on the opposing propeller, simula-
tions are conducted for f; ¢ values of 0, 0.1 and 0.2 N, where 0 N corresponds to the

flight with two propellers case.
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Figure 4.7: Calculated disturbance vector for the quadrotor problem
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Figure 4.8: Elements of the disturbance vector during the occurrence of the fault

In order to the evaluate the performance of the control system, angle between the
positive z axis of the propeller (Figure 4.2) and the local level plane is compared in
4.10. The two-propeller case converges to the up position with a small offset of few
degrees. The effect of second propeller can be seen with the increasing values of
f2,fte. This thrust tilts the equilibrium attitude of the rotation vector with a magnitude
proportional to the applied thrust. In compliance with the theoretical discussions, pitch
rate perturbations converge to zero for f5 . = 0 but presence of a disturbance moment

(d) shifts the equilibrium point of the perturbation (Figure 4.12).

While the pitch angle remains mainly constant, it rotates around the local vertical axis
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Figure 4.9: Applied forces on the propellers, during the occurrence of the fault

on the x — y plane. This angle is shown in Figure 4.11. The resultant motion is similar
to a spinning top and it can be visualized as a free spinning top with rotation axis is

tilted.
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Figure 4.10: Angle between the positive z axis of the propeller and the local level

plane

For completeness; Euler angles, attitude angular rates and applied forces on the

propellers for f5 s = 0 and f s+ = 0.2 cases are shown in Figures 4.13, 4.14, 4.15.
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Figure 4.11: Yaw angle of the attitude vector on the = — y local level plane

4.7 Summary

In this chapter, application of the proposed fault tolerant control structure on the
quadrotor attitude control problem is explained. The discussion is limited to the
loss of single propeller case, since it involves all the essentials of the proposed FTC
implementation. Loss of two co-rotating propeller case is also included within the
proposed structure. Similar analysis can be conducted for loss of two anti-rotating

propellers or flight with single propeller cases but they are omitted for brevity.

Attitude control of a spinning body is a complicated problem. But the simulation
results indicate that proposed controller structure is can be effectively used in such
systems. The proposed methodology can also be extended to other systems which uses

different mechanisms for control, as well.
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Figure 4.12: Pitch rate perturbations
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Figure 4.14: Angular rates of the quadrotor for different applied f5 ;. values
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CHAPTER 5

CONCLUSION

The starting point of this thesis work was the observation that in some nonlinear
systems, it is possible to find special control laws that would stabilize an unstable
internal state without directly controlling it. However, such solutions are highly system
specific and therefore the aim of this research was to find a systematic way to construct
control systems that would achieve this for a large class of systems, so that it can be

used as an algorithmic fault tolerance measure.

This is achieved with a novel adaptive control structure that generates perturbations on
the reference signal of the directly actuated states, in order to stabilize the unactuated
internal states of the system. Theoretical development of this control architecture
is presented in Chapter 2, together with a theorem that includes the assumptions,
conditions and results of the proposed method and the original contributions of the
thesis work is explained in Chapter 1 Section 1.5. As a concluding remark, main

achievements and possible extensions can be summarized as follows.

The proposed control system architecture includes an external dynamic system formu-
lation, which generates perturbations on the main trajectory of the controlled states that
stabilizes the internal dynamics (uncontrolled states) of the system. This is especially
useful if the internal dynamics of the system is unstable, i.e., non-minimum phase.
As explained in Section 1.2 through a literature review on the subject, this is a very
important property and the developed method can be systematically applied to different
problems. However, following comments can be made for application of the proposed

control system and possible research directions.

The perturbation generator is formulated as a singularly perturbed dynamic system
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and results of the Tikhonov’s theorem (Theorem 2.3.1) is used. The main statement
of the Tikhonov’s theorem is an asymptotic order of magnitude comparison on the
convergence of the singularly perturbed system to the solution of the unperturbed one.
Using this result, it is proved that the uncontrolled states are bounded. However, it is
not possible to calculate the exact value of this bound, only it is known that it exists and
as the perturbation parameter goes to zero (¢ — 0), this bound converges the bound of
the reference model. Therefore, in practical applications, maximum attainable values

should be checked through simulations.

The design methodology is mainly derived from the stability analysis of the resultant
boundary layer equation. This analysis is conducted through stability analysis of the
linearized system. Therefore validity of this assumption should be checked, especially
for large perturbation values. On the other hand, the theories on stability of perturbed
systems is highly used for the development of the method. This provided -probably
conservative- bounds on the attainable control systems. It may also be possible to find
more suitable perturbation generators to construct exponentially stable boundary layer

equations for a more specific system form.

Although the developed line of analysis provides the conditions for asymptotic con-
vergence of the cascade system to a reference model, it does not provide information
on the rate of converge. This is an important question and unfortunately, it is beyond
my mathematical background to develop necessary theoretical work to answer that

question.

Apart from above mentioned possible further theoretical research directions, following

comments can be made for practical applications.

Lagrangian form of equation of motion is widely used especially in robotic control
problems. Application on such class of systems are shown in Chapter 3. Although
numerical applications are provided for limited number of cases, the results and

methodology are applicable to all Lagrangian systems.

Underactuated robotics is a very important class of robotic systems, where motion of
a robot is achieved with less number of actuators than the degrees of freedom of the

system. This is also related to achieve robot motion similar to humans and animals
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(Locomotion). Perturbation generation mechanism developed in this thesis can also be
seen as a tool for achieving such kind of motion. Application in this direction would

be an important improvement over present, more system specific, solutions.

Attitude stabilization with reduced number of actuators is another interesting problem
that have been addressed. This problem is addressed with quadrotor example in
Chapter 4. The proposed method not only provides a fault tolerance measure for
multirotor UAVs, but also gives way to novel vehicle configurations. A possible
extension to this work would be control of insect-like vehicles with high frequency

flapping motion modeled as a perturbation signal.

As a final remark, it should be noted that coupled nonlinear systems may have more
than one possible state representations. For example in underactuated robotics, the
equations of motion can be written equivalently in collocated or non-collocated forms
(see Section 3.1.2.2 in Chapter 3). Particle choice may result in different formulation
of perturbation dynamics and therefore it may be possible to achieve better results for

the example applications, than the ones presented in this thesis.
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APPENDIX A

MATRIX DIFFERENTIATION RULES

Matrix differentiation is used for derivation of some of the formulations. These

differentiation rules are summarized in this appendix.

Matrix differentiation formulations can be found in many references, therefore proofs
are omitted. Particular source for the preparation of this list is from the lecture slides

of Leow Wee Kheng [118].

e Let o be a scalar and A(«) € R™ ™. Derivative of A with respect to « is defined as,

[dAn  dA . dAim
da da da
dA21 oo o e _dAQm
dA . da da
dov . .
| da da

e Let o be a scalar and A(a) € R™ ™. Derivative of A~' with respect to « can be

calculated as,
dA~! dA
— _Afl_Afl
da do

e Let o be a scalar and A(a) € R™™ and B(a) € R™*!. Derivative of AB with

respect to o can be calculated as,

d(AB) dA dB
o " aalt

e Let x be a column vector with appropriate dimension and C' € R™*" is independent

of . Then,

d(Cz) _ o d (27C)

=07
dx dz
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Let x € R” be a column vector with appropriate dimension and A € R"*" is
independent of x. Then,
d (xTAx) T
— L =T (A+ AT
T ( )
Let z € R" and u € R™ be column vectors. Derivative of u with respect to x is

defined as,

dug  dun |, dur
dzxq dxo dxnp
duz ., dup
d_u . dxy dxn
dx
L dxq dxp

Let x € R™ is a column vector and D € R"™*" is a matrix with elements depend on

x. Derivative of C'z with respect to = can be calculated as,

d(Dx) dD .. dD dD

Proof. This differentiation rule is not explicitly covered in the literature. Therefore

the derivation is provided below.

Let v = Dx. Then in indicial notation,
U; = Dijxj

With the definition of the derivative of a vector to another vector given in the

previous bullet,

de  dx i oo dx;
Also,

. = Dji v + Dy j
J

Since zj, ; = 0, it can be written that,

v, Dy jry + Dij

First term can be formed with concatenation of the product of x with derivative of

the matrix D with respect to every element of z, i.e.,,

o4 —|ap 4D, . 4D
DZk’Jxk |:dx1$ da:gx d:vnx
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APPENDIX B

LINEARIZATION OF ROBOTIC MANIPULATOR EQUATIONS

Analysis of the boundary layer model for the robotic manipulator equations are given
in Chapter 3 Section 3.3. However, derivation of the equations involve lengthy matrix

manipulations and therefore they are provided in this appendix.

Collocated linearized form of the robotic manipulator equations, together with a

Proportional-Derivative control law, can be written as

G1 = — Hy' - [Hiz (= K,é — Kye) + Ciigy + Cradge + G
q.g = — Kve — er

with e = g5 — 5.

In order to clarify the mathematical manipulations, following new variable set is
defined:!
1 ¢ 3 )
a? ¢ a3 42
Comparing with the general form of the equations (2.6) in Chapter 2, where z; =
fi(z1,79 + 7 + €2). 1 dynamics can be written as,
i 0 1 71 0

ol ~1 2 + -1 2 (B.1)

For an open-chain robotic manipulator with m number of passive and n number of

active links, z; € R?>™ and z, € R?".

1 The usage of superscript might lead to confusion with power operator on the variables, therefore it should be
reminded that no such mathematical operations are involved within this part of the derivations. The only exception
is the superscript —1, which is used for inversion operation.
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In order to analyze the boundary layer equation, linearization of the system dynamics
(B.1) with respect to the x5 is required. Since z- is a vector quantity,this process in-
volves matrix differentiation. Matrix differentiation rules that are used in the derivation
of the results is summarized in Appendix A. The results presented in this section are

applicable to any Lagrangian system with the property,

e Inertial tensor is only function of the generalized position, and not velocity, i.e.,H =
H(q).

e Coriolis tensor is zero for zero velocity, i.e.,C'(¢,¢ = 0) = 0

System dynamics given in (B.1), with short hand form z; = f; can be separated into

two as @1 = f{ and #? = f2. Then the matrix derivative g% can be written as,
off  off
oh _ |aa a| _ |0 O
Ory |0 off ory  orf
Oz} 023 ozl 02
With this form of equations, f7 can be written as,
ff=-Hj'Cpx? — H'Gy — H Cip1) (B.2)

Each of the three terms of (B.2) are column vectors with dimension m. Derivatives of

these terms to n dimensional column vectors 3 and x3 are derived below.

® (Hl_llcllﬂf%) :

8 H_ICHI'Z aH_l _ 6011
( 181:17% ) = 8;%1 Cnai +H111_8x§ i
4, O0Hyy _,0CH
= (_Hnla—x%HnlCll*‘ lllﬁ—xé ﬁ
0 (Hy'Chya}) OH , 00, ,0C
3 - 013 Cuzi + Hyy' 013 = Hy 013 1
=0, since H is independent of ¢
) (Hl_llG1)I
0 (Hi'Gy)  oH! G, OHy, G,
— G —1_ — _H—I_H—IG —1_
oz} ox3 1 oz Uoopl M Bl oz}
ord ' 0x3
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° (Hﬂlclgl'g) .

O (H1Cpx? OH! oC
Uy 112302) = 111 012+H1_11—112 ;
Oy O0xs O0xs
OH oC
= —Hy! —8;11 H{'Croxd + H! —8;12 a2
2 2
0 H71012.T2 _ 8(6’ %2) _ oC
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With these expressions, matrix derivative of f; can be evaluated with,
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Linearization around ¢, = 0

Fault tolerant control of robotic manipulators involve linearization around the point
(g2, G2) = (12,0). Since C(q,¢ = 0) = 0, Jacobians given in (B.3) and (B.4) can be
simplified C' = 0. Furthermore, if damping in the joints are neglected, (G; becomes

independent of joint velocities, i.e.,G; = G1(q) and hence it can be written that
0G, _
%31 =0.

With these assumptions, equations (B.3) and (B.4) can be written as,
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