DESIGN OF A SOFTWARE PLATFORM
FOR
THE QUALITY CONTROL OF MAIN BLOOD PRODUCTS

by

Sitki AKYON

M.D., Istanbul University, Medical Faculty of Cerrahpasa, 1995

Submitted to the Institute of Biomedical Engineering
In partial fulfillment of the requirements
For the degree of
Master of Science
in

Biomedical Science

Bogazigi University

September 2007

i

DESIGN OF A SOFTWARE PLATFORM
FOR
THE QUALITY CONTROL OF MAIN BLOOD PRODUCTS

APPROVED BY :

Prof. Dr. Yekta ULGEN

(Thesis Advisor)

Prof. Dr. Ahmet ADEMOGLU

Assoc. Prof. Dr. Albert GUVENIS ..., L0 L AT ...

DATE OF APPROVAL : 21.09.2007

11

ACKNOWLEDGMENTS

I would like to thank my supervisor Prof. Dr. Yekta ULGEN, for giving me the
opportunity to work on this research topic, which was an exciting and challenging
experience for me, in all aspects, his motivating approach and giving best examples of

applications of engineering theory, in practice.

I would like to thank Prof. Dr. Ahmet ADEMOGLU, for being a member of my
thesis committee. I would like to thank Assoc. Prof. Dr. Albert GUVENIS for being a

member of my thesis committee.

This study is a part of quality control procedures and applications of Blood Banks
of Tiirk Kizilay1. I am grateful to the Quality Management Department of Tiirk Kizilay:.

It was a pleasure to share the knowledge; I would like to thank valuable research

assistants and the staff of Biomedical Engineering Institute for their support.

I’d like to thank to Giizeyya YILDIRIM, and Artug BAYRAKTAROGLU for their
efforts on Word Processing and dactylography. I thank Ugur BOSTANCI, my dear friend,
for all the support he has given to me on answering all my questions in Computer Science.

This study is dedicated to him.

v

ABSTRACT

DESIGN OF A SOFTWARE PLATFORM FOR
THE QUALITY CONTROL OF MAIN BLOOD PRODUCTS

In modern blood banking services, blood banks and transfusion services, follow a
standard operation procedure during preparation and the quality control of blood
components. The Quality Management involves identification and selection of prospective
blood donors, adequate collection of blood, preparation of blood components, quality
laboratory testing and ensuring the safest and most appropriate use of blood/blood
components: the objective is to ensure availability of high quality blood components for
transfusion. A management model and a managing software is developed for the quality
control procedures of main blood products: erythrocyte suspensions, thrombocyte
suspensions, and fresh frozen plasma with reference to the Guide by European Council.
The user can access detailed data for each of the prepared blood component; to prepare
annual summations, and to manage QC processes effectively. It reduces the risk of
producing defective components, by giving alarms to the QC Specialist. Unified Modeling
Language is used as the Object-Oriented Modeling Design Platform and the software is
developed on Eclips SDK, on a Java platform. Since data size is limited a simple memory-

save function is used to a Java HashMap.

Keywords: Quality Control of Blood Components, Software for Quality Control
Managing, UML Design of Quality Control of Blood Components

OZET

TEMEL KAN URUNLERININ KALITE KONTROLU ICIN
BiR YAZILIM PLATFORMU TASARIMI

Modern kan bankaciliginda, kan merkezleri ve transfiizyon servisleri, kan
komponentlerinin hazirlanmasi sirasinda ve kalite kontroliinde ortak ve standart bir yol
izlerler. Kalite Yonetimi, uygun dondrlerin tanimlanip seg¢ilmesini, yeterli kanin
alimmasini, kan komponentlerinin iiretilmesini, kalite laboratuarinda yapilan testleri ve en
giivenli ve en uygun kan ve kan {iriinlerinin kullanilmasinin garantilenmesini igerir: amag,
yiiksek kaliteli kan tiriinlerinin temininin saglanmasidir. Avrupa Konseyi Rehberi referans
alinarak, ek soliisyonlu eritrosit siispansiyonu, trombosit siispansiyonu ve taze donmus
plazmanin kalite kontrol prosediirleri i¢in bir yonetim modeli ve bir yonetim yazilimi
gelistirilmigtir. Kullanic1, yillik toplamlar hazirlamak ve kalite kontrol siireglerini
yonetmek icin, iiretilmis her ayri kan komponenti hakkinda detayli bilgiye ulasabilir.
Kalite kontrol uzmanina alarm vererek, hatali komponent tliretimi riskini azaltacaktir. Obje
Temelli Modelleme i¢in, Birlesik Modelleme Dili dizayn platformu kullanilmis ve yazilim,
Java platformunda, Eclips SDK {izerinde gelistirilmistir. Veri miktar1 kiigiik oldugu igin bir

Java HashMap iizerine basit hafiza kayd: kullanilmistir.

Anahtar Sozciikler: Kan Uriinlerinin Kalite Kontrolii, Kalite Kontrol Takip Yazilimi, Kan

Kalite Kontrolit UML tasarimi

TABLE OF CONTENTS

ACKNOWLEDGMENTS .
ABSTRACT .

OZET .

TABLE OF CONTENTS
LIST OF FIGURES .

LIST OF TABLES .

LIST OF ABBREVIATIONS .

1.

INTRODUCTION
1.1. Objective .
BLOOD BANK METHODOLOGY
2.1. Blood Components .
2.2. Blood Tests .
2.3. Labeling of the Blood Components during Production
QUALITY CONTROL OF BLOOD PRODUCTS .
3.1. The Quality Control System .
3.1.1. Documentation .
3.1.2. Records .
3.2. The Definition of “Quality” in QC of Blood Component
3.3. The Main Quality Control Process .
3.3.1. Storage of Blood Components during QC Process .
3.3.2. Main QC Report Prints .

3.4. QC Process of Erythrocyte Suspension in Additive Solution .

3.5. QC Process of Thrombocyte Suspension .

3.6. QC Process of Fresh Frozen Plasma Suspension .

3.7. Defects in Quality .

MODELING THE SYSTEM.

4.1. Waterfall Model of development .

4.2. Modeling
4.2.1. Object Oriented Programming (OOP) . . .
4.2.2. Unified Modeling Language (UML) . . .

vi

11

v

vi
X
X1

xii

O o0 o0 3 N W

10
10
12
15
16
16
17
18
18
21
21
23
23
25

4.3. Development Platform of the Software: Java .
4.3.1. Eclipse SDK On Java .
4.3.2. Window Builder On Eclipse .
SOFTWARE FOR QC MANAGEMENT.
5.1. General Information on the Software .
5.2. General Design of Model .
5.2. Design of the Classes .
5.3.1. The Class: Form Container .
5.3.2. The Class: Form .
5.3.3. The Class: Sample .
5.3.4. The Class: Parameter .
THE USE AND GUI DESIGN OF THE SOFTWARE .
6.1. General Menu of the Software .
6.1.1 Setup Menu .
6.2. Form and Sample Data Entry of the Software .
6.2.1. Erythrocyte Suspension Short Cut Button .
6.2.2. Fresh Frozen Plasma Short Cut Button .
6.2.3. Thrombocyte Suspension. Short Cut Button .

6.2.4. An Example of a data entry procedure of TS Samples .

6.3. General Form and Sample Access of the Software .
6.3.1. Direct Form Access Button .
6.3.2. Direct Sample Access Button .
6.4. Printing Reports .
6.4.1. Monthly Report .
6.4.2. Request Form .
6.4.3. Annual Summations .
DISCUSSION AND CONCLUSION .
7.1. The Necessity And Benefits Of QC of Blood Products .
7.2. Future Work On Development Of Software

APPENDIX A. QUALITY REQUIREMENTS . .

A.1. Quality requirements of Whole Blood .
A.2. Quality requirements of ES-AD .
A.3. Quality requirements of TS

vil

26
26
27
28
28
30
31
31
33
36
37
39
41
41
42
42
43
43
44
47
47
49
50
51
51
51
52
52
53
56
56
57
58

A4,
APPENDIX
B.1.
B.2.
B.3.
APPENDIX
APPENDIX
APPENDIX
E.1.
E.2.
E.3.
E.4.

APPENDIX

APPENDIX

APPENDIX
H.1.
H.2.
H.3.
HA4.
H.5.

Quality requirements of FFP .

B. QC PROCESSES .

QC Process of ES-AD component .

QC Process of TS component .

QC Process of FFP component

C. MENU TREE OF THE SOFTWARE .

D. DEFAULT VALUES OF THE SOFTWARE .
E. QC REPORT SAMPLES

Monthly ES-AD QC report .

Monthly TS QC report

Monthly FFP QC report .

Annual QC results summation report form .

E.4.1. Annual QC results summation report, TS sample
F. COMPONENT REQUEST FORM SAMPLE .
G. SAMPLE BARCODE READINGS .

H. SOFTWARE SOURCE CODE

Source code of Domain .

Source code of Data Source .

Source code of Constants .

Source code of UI .

Test Source Codes .

REFERENCES .

viil

59
60
60
63
66
68
70
71
71
72
73
74
75
76
77
78
78

103

104

105

113

124

Figure
Figure
Figure

Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure

Figure

2.1
2.2
3.1
3.2

4.1
5.1
5.2
53
5.4
6.1
6.2
6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

6.12

6.13
6.14

LIST OF FIGURES

Derivatives of whole blood, and blood components

A sample of blood component label

Main QC process of blood components

Usage and expiry Period of TS and ES preparations, in different
conditions: low quality (1), good stored, but not quality controlled
(2) and good stored, and quality controlled(3)

Waterfall Development for QC software

Objects, Constants, and Ul of software

Basic UML Diagram of the Domain of QC managing software
Hashmap of FormContainer

GetNeededSampleCount method of the “FormContainer”

Main GUI Design of QC management software

The Menu Bar of the software

Sample Data Input SubWindow, (or Tab), of the ES-AD Data Entry
Window

Sample Data Input SubWindow, (or Tab), of the FFP Data Entry
Window

Sample Data Input SubWindow, (or Tab), of the TS Data Entry
Window

Number of Samples input Tab, of the TS Data Entry Window

Other Tests Approval SubWindow, of the TS Data Entry Window
QC Report General View SubWindow, of the TS Data Entry
Window

QC Report Error Sources Input SubWindow of the TS Data Entry
Window

QC Form Administrative Approval SubWindow of the TS Data Entry
Window

ShortCut Buttons of the Software

The Direct Form Access Window for ES

QC Status Window

Alarm and Alarm Definitions Windows

X

13

19
21
29
30
32
33
40
41

42

43

44
44
45
45

46

46
47
47
48
49

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure

6.15 The Direct Sample Access Window for Barcode Input

6.16 Print Report Tab of the TS Data Entry Window

B.1
B.2
B.3
E.l
E.2
E3
E.4
E.5
F.1

Diagram of QC Process of ES-AD Component
Diagram of QC Process of TS Component
Diagram of QC Process of FFP Component
Monthly ES in AD QC Report

Monthly TS QC Report

Monthly FFP QC Report

Annual QC Results Summation Report Form
Annual QC Results Summation Report, TS Sample

Component Request Form Sample

50
50
60
63
66
71
72
73
74
75
76

Table

Table

Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table

Table

Table

2.1

2.2

5.1
5.2
53
54
5.5
A.l
A2
A3
A4
C.1
D.1

D.2

G.1

LIST OF TABLES

The Size, and density of the surrounding fluid of principal blood
constituents

Summary of the tests done in different laboratories, and Storage Dept
of Blood Bank; and their relationship with QC Laboratory

Field and Method Summary of Class “FormContainer”

Method Summary of Class “Form”

Field Summary of Class “Form”

Field and Method Summary of Class “Sample”

Method Summary of Class “Parameter”

Table of Quality Requirements of Whole Blood

Table of Quality Requirements of ES-AD

Table of Quality Requirements of TS

Table of Quality Requirements of FFP

The Menu Tree of the software

Default unit list of different parameters used in the GUI of the
software, next to the test results.

Default values of parameters of QC requirements and scientific
values recorded in the software.

Sample barcode readings from Blood Labels of Tiirk Kizilay1.

x1

32
34
35
37
38
56
57
58
59
68

70

70
77

QC
Htc

Hb
PRP
CPD
ES
ES-AD
TS
FFP
AS
HIV
HBsAg
HCV
CMV
HTLV
HLA
HPA
QA
SOPs
QMS
QCP
GMP
CPDA-1
010y
UML
GUI
Ul

xii

LIST OF ABBREVIATIONS

Quality Control

Haematocrit

Haemoglobin

Platelet Rich Plasma
Citrate-phosphate-dextrose
Erythrocyte Suspension
Erythrocyte Suspension in Additive Solution
Thrombocyte Suspension

Fresh Frozen Plasma

Additive Solution

Human Immunodeficiency Virus
Hepatitis B surface Antigen
Hepatitis C Virus
CytoMegaloVirus

Human T-cell lymphotropic virus
Human Leucocyte Antigen
Human Platelet Antigen

Quality Assurance

Standard Operating Procedures
Quality Management System
Quality Control Procedures
Good Manufacturing Practice
Citrate-phosphate-dextrose-adenine
Object Oriented Programming
Unified Modeling Language
Graphics User Interface

User Interface

1. INTRODUCTION

A Quality System should ensure that no part of the transfusion chain is lacking in
quality. Therefore, it seems to be scientifically justified that, in the Quality System
perspective, all of the activities that have to be included in the Quality System must be

based on validated and applicable methods [1].

It is also essential that the core elements of a common Quality System are selected
so as to be applicable throughout the World, and especially for Turkey, throughout the
European Community. This will facilitate benchmarking and other types of quality

comparisons [2].

1.1. Objective

The main purpose in this project is to create a software model and develop an
application and managing software for the quality control procedures of main blood
products, such as erythrocyte suspensions, thrombocyte suspensions, and fresh frozen

plasma.

The QC Management Software consists in applying the Guide to the Preparation,
Use and Quality Assurance of Blood Products book by the European Council.

2. BLOOD BANK METHODOLOGY

Blood components are biological products derived from human blood and plasma.
Having special features arising from the biological nature of the source material and, as
such, the safety and efficacy of these products relies on the control of the source material at

all stages of the manufacturing processes, storage, transport and issue [3].

On selecting individuals for blood and blood component donation, a blood bank
must determine the health of the person in order to safeguard both their health and the
health of the recipient. All donors should undergo a screening process to assess their

suitability.

In the donor screening, a donor’s appearance, medical history, general health,

relevant lifestyle, and simple laboratory tests are used.

Hemoglobin or haematocrit levels should be determined by laboratory examinations
in donor screening each time the donor attends to donate with an application form.
Minimum values before donation for female donors is 125 g/l or 7.8 mmol/l (min. Het =

0.38); and male donors is 135 g/l or 8.4 mmol/l (min. Hct = 0.4) [1].

After the screening tests are passed at the time of the blood donation, the blood
container as well as the tubes of the samples collected for testing must be labelled for
unique identification of the blood donation. A phlebotomy site is prepared for successful
venopuncture. The quantity of blood donation in a standard donation is 450 ml + %10

exclusive of anticoagulants [1].

The possibility of errors in labeling the blood containers and the blood samples can
be minimized with good organization. Whole blood is collected into a three-part-bag
containing an anticoagulant solution. The solution contains citrate (as anticoagulant) and

cell nutrients such as glucose and adenine.

One of the vacutainer tubes is used for grouping (immunohematological tests), in
Grouping Laboratory; the other test tube is used for other screening tests (Microbiological

Tests), in Screening Laboratory. And collected blood is taken to Processing Laboratory.

2.1. Blood components

Although, whole blood can still be used in certain limited circumstances, the thrust
of modern blood transfusion therapy is to use the specific component that is clinically

indicated for the patient.

The components are those therapeutic constituents of blood that can be prepared by

centrifugation, filtration and freezing; using blood bank methodology.

The first centrifugation steps will remove, more than half of these nutrients from the
residual red cells, during this; the surrounding fluid is only a mixture of plasma and

anticoagulant solution [1].

Leucocytes and Erythrocytes now can sediment more rapidly than platelets as they

both have a bigger volume than platelets [4].

Table 2.1
The size, and density of the surrounding fluid of principal blood constituents [4].
Constituent Mean Density (g/ml) Mean Volume 107 litre
Plasma 1.026
Thrombocytes 1.058 9
Monocytes 1.062 470
Lymphocytes 1.070 230
Neutrophils 1.082 450
Erythrocytes 1.100 87

In the second phase of the Centrifugation, most of the leucocytes and red cells
therefore settle in the lower half of the bag, and the upper half contains platelet rich plasma
(PRP).

Thrombocyte suspension (recovered) is the prepared from platelet-rich plasma.
Platelets in PRP are sedimented by hard spin centrifugation; the supernatant platelet-poor
plasma is removed leaving 50-70 ml of it with the platelets; finally the platelets are allowed to

disaggregate and are then resuspended [3].

After the careful removing of the bag system from the centrifuge; the primary bag is
placed into a plasma extraction system and the layers are transferred, one by one, into
satellite bags within the closed system. Whole blood may be filtered for leucocyte depletion
prior to high speed centrifugation. This procedure enables a separation into almost cell-free

plasma and leucocyte and thrombocyte-depleted erythrocytes.

Erythrocyte Suspension In Additive Solution (ES-AD) is the component derived from
whole blood by centrifugation and removal of plasma with subsequent addition to the red

cells of an appropriate nutrient solution (CPD containing mannitol) [3].

Fresh frozen plasma (from whole blood) prepared either by a single high g
centrifugation or two consecutive centrifugation steps (obtention of PRP by a low g

centrifugation and plasma extraction after a high g centrifugation of the PRP)

Leucocyte depletion process needs careful validation. An appropriate method
should be used for leucocyte counting after leucocyte depletion. The validation should be
carried out by the blood establishment using the manufacturer’s instructions against the
requirements for leucocyte depletion and other quality aspects of the components including

plasma for fractionation [3].

The isolation of some plasma proteins, most importantly Factor VIII, fibronectin
and fibrinogen, can be achieved by making use of their reduced solubility at low
temperature. In practice, this is done by, freezing the units of plasma, thawing and

centrifugation at low temperature; this is called Cryoprecipitation. Freezing is a critical step

in the conservation of plasma Factor VIII. During freezing, pure ice is formed and the plasma

solutes are concentrated in the remaining water [5].

Whole blood is the source material for blood component preparation. Figure below, is
showing the derivation of blood components; from whole blood, with the steps of First
Centrifugation, Second Phase of Centrifugation, Extraction, and Freezing. The
Components, having QC mark are the components, mostly prepared in number, in blood

banks of Turkey: ES-AD(#1), TS(#3), and FFP(#5).

Q'

ERYTHROCYTE SUSP
PRODUCT # 1

THROMBOCYTE SUSP
PRODUCT # 3

CRYOPRECIP]TATE
i PRODUCT # 7

THROMBOCYTE-RICH PLASMA

PRODUCT # 2 FRESH
FROZEN PLASMA

PRODUCT #5

WHOLE BLOOD
PRODUCT # 0

!llF

FRESH PLASMA

PRODUCT # 4 -, LIQUID PLASMA

PRODUCT # 8

PLASMA FRACTINATION PRODUCTS
PRODUCTS # 6

Figure 2.1 Derivatives of Wholeblood and Blood Components. Redrawn From [1].

The elimination of the supernatant of a given blood component is called volume
reduction. Plasma depletion is the elimination of the major part of plasma with a
procedure ensuring that the initial plasma protein concentration is reduced below a

specified threshold, eg .5g/L

2.2.

Blood Tests

Table 2.2. is the summary of the tests done in the laboratories and Storage

Department of Blood Bank; and relationships with the QC Laboratory. These tests will be

taken as “tests done outside the QC Laboratory during preparation” as described in the

third chapter of Thesis.

Table 2.2

Summary of the tests performed in different laboratories and Storage Department of Blood Bank, and their
relationships with QC Laboratory. Table is created by the thesis writer.

Laboratory Definition Tests Future Relation with
QC Lab; on QC of
Components :
Hematological Donor First Haemoglobin; haematocrit;
Routine Screening Tests Blood Count; No
Laboratory
Grouping Immunohaematol ABO, RhD Grouping, Yes:
Laboratory ogical Tests, (Forward and Reverse); ABO, RhD Grouping,
Grouping Direct Coombs; Indirec (Forward and Reverse);
Coombs; Anticore
Definition; Phenotyping
Screening Microbiological |anti-HIV 1&2, HbsAg, anti- Yes:
Laboratory Tests Hbc(when required), anti- | anti-HIV 1&2, HbsAg,
HCV, Syphilis(when anti-Hbc; anti-HCV,
required), anti-CMV(when Syphilis, anti-CMV,
required), anti-HTLV anti-HTLV I&I1, anti-
[&II(when required), anti- CMV test
CMV test(when required)
Processing | Inspection during | Volume Measurements; Yes:
Laboratory Processing Leakage in the Extractor; | volume Measurements;
Visual and Color Changes; Leakage in the
Extractor; Visual and
Color Change;
HLA HLA Tests HLA, HPA Yes:
Laboratory HLA, HPA
Outside Tests not done in Factor VIlIc Yes:
Laboratory |the Labs of Blood Factor VIIIc
Bank
Storage Dept - Storage Yes:

Refrigerator Records;
Storage Processes;
Storage Effectiveness

2.3. Labeling of the Blood Components during Production

The label on the component ready for distribution should contain eye readable
information necessary for safe transfusion, i.e. the unique identity number (preferably
consisting of a code for the responsible blood collection organization, the year of donation
and a serial number), the ABO and RhD blood group, the name of the blood component and
essential information about the properties and handling of the blood component, the expiry

date [3].

2

[l |I\||! JIMEL - TNRRA

T001305 018999 % [L]

KAN MERKEZ| 3
— D
3 ISTANBUL TURKIYE) D

4~ 05 kas 2005 00:47 |
“Sanes (ENE
I 1RAY 053540947 ;
05 Ara 2005 09:47
IMI I
SAG-M
49993999999999099
?Oé)é“ée sa Igyﬁrﬂ?n Anti :g\s/gg)(f;";.ml.\s/ (1)/2(.

| 8
7

Figure 2.2 A Sample Blood Component Label Sticker of Tiirk Kizilay1.

This Sticker Label sample, on figure 3.1.on the component has following information:
unique identity number (1) and the barcode serial of this number, ABO and RhD blood group
(2) and barcode serial of the grouping, the name of the responsible blood collection
organization (3), date of donation (4), the name of the blood component (5) and barcode serial
of the type, expiry date (6) and barcode serial of the expiry date, storage conditions (7), screen

test results information (8) necessary for safe transfusion, and barcode serial of the test results.

The labeling of blood components should comply with the relevant national
legislation and international agreements, allowing full traceability of the blood component.
This labeling gives traceability to the component itself in the storage department and to the

QC test results of Blood Component, by the QC Specialist, and other QC personnel [6].

3. QUALITY CONTROL OF BLOOD PRODUCTS

To maintain public and professional confidence in the safety and efficacy of blood and
its products, special care must be paid to all aspects of the quality of the blood components

produced [3].

In blood banking and transfusion services, Quality Management involves
identification and selection of prospective blood donors, adequate collection of blood,
preparation of blood components, quality laboratory testing and ensuring the safest and most

appropriate use of blood/blood components.

Quality management may consist of: Quality in procurement (donor, material,
reagent); Quality in preparation (efficient and effective blood component preparation);
Quality in design and development (improved techniques and procedures); Quality in
supply (transportation and service). The Quality management system includes: Quality
planning, quality assurance and quality control. And quality assurance (QA) deals with the
maintenance of a system to ensure that the performance in a laboratory is of the required

quality.

Each blood bank must have written Standard Operating Procedures (SOPs) for each
procedure for preventing the errors [7], which may arise from verbal communication. These
should provide a complete set of instructions to perform a certain task. They should also
specify the way one should perform the assay in the laboratory within its constraints and

limitations. The manufacturer’s instructions should also be incorporated in the SOP [8].

3.1. The Quality Control System

Within any blood establishment there should be an independent unit with the
responsibility of fulfilling Quality Assurance and Quality Control functions.

The quality of the blood components produced depends on the requirements or
standards for the product, and the quality management systems (QMS), which enable the
product to meet these requirements with confidence [3]. The application of the QMS to the

Blood Components is named as Quality Control.

Requirements of a QC System, in the production of blood components, consists of a
Quality Management System; QC Personnel (QC Specialists, Laboratory Personnel etc.) and
QC organization, the premises of equipment and materials, an easy accessible documentation;
known processes of collection, testing and blood processing, quality control proficiency
testing, known processes of investigation of errors and accidents, known processes of
validation of all processes, the retention of samples and disposal of rejected products, and
known processes of self-assessment, internal audit and external audit. All the QC Processes
must be complete, and up-to-date according to the New Edition Guides of QC [7]. QC
personnel must be individuals functioning independent from other laboratories, and QC
Laboratory Areas should be separate from the component preparation areas, and other

laboratory areas.

3.1.1. Documentation

Detailed specification lists for the purchase of reagents and other materials used in the
QC Laboratories, are required, and only materials from qualified suppliers that meet the
documented requirements should be used. Manufacturers should provide a certificate of
compliance for every material (blood collection systems, filters and test reagents).
Documentation ensures that work is standardized and that there is traceability in all steps in

the manufacture of blood components.

Only appropriate and authorized persons should approve documents. Documents
should not be hand-written except for those parts where data have to be entered. Any
alterations made on a hand-written record must be dated and signed. Documents relating to
the selection of donors and the preparation of blood components must be retained according
to local regulations in Turkey [9]. Data can also be stored in 'non-written' form, for instance
on computer software etc. But the legal regulations must be taken into consideration. Users

should only have access to those categories of data for which they are authorized.

10

3.1.2. Records

Records of the QC results are very important. A distinction should be made between
records of results; which may require prompt or almost immediate correction, and records of
results which can only be evaluated statistically or by summing up over a certain period [3]. It
is essential that the recording system ensures a continuity of documentation of all procedures

performed, from the blood donor to the recipient.

In addition to QC Test Results, performed in the QC Laboratories; QC Specialist
should have the records of following, for future diagnostics of quality failure: Rejection or
deferral of blood donors (numbers, reasons), donor reactions (numbers, sex, age, reaction
category), unsatisfactory donations (numbers, category), positive tests for infectious markers
(numbers, specific, false), discarded units of blood and blood components (numbers,
categories, reasons), outdating of units of blood and blood components (for each category,
the outdating as a percentage of the number of usable units), transfusion complications
(numbers, category) including transfusion transmitted infection, external complaints

(number, origin, category), clerical errors (numbers, category).

The supervisor must sign records of quality control procedures; and records of QC
Procedures should also be kept for a period according to our national requirements. It is

considered that the retention period should be at least five years [3, 9].

3.2. The Definition of the Quality in QC of Blood Components

The Quality of the Blood Component is the degree to which it fulfills the Standard
Minimum Requirements until its expiry date. The Blood Component (the Product) is
effective and reliable until its expiry date if the standard Production Process is validated
and laboratory testings are performed and inspection results are normal. Otherwise, this
group of Blood Components, in the same lot and storage depot, are not reliable and they

cannot be used safely until its expiry date [10].

11

The QC Process takes place in the QC Laboratory. Mainly, QC Laboratory testing
Equipment is used. And, it is done by the QC Specialists. The aim in the preparation of
blood components is to produce "pure" components, but a very high degree of purity can

be difficult and expensive to obtain and might not even be necessary in all instances [3].

But, it is necessary to declare the quality and to be able to make different types of
preparations in order to give the clinicians a reasonable choice for patients with different
transfusion demands. The purpose of product control is to help the blood bank maintain a
high and consistent quality of the prepared product. In this way, the clinical outcome will
improve, confidence in component therapy will increase, and the introduction of an adequate

component therapy program will be facilitated.

In QC application, the critical control point is the question: “Does this component
(product) meet the minimum criteria of quality requirement until its expiry date?” The
evaluation criteria for this consists firstly of retrospective procedure controls during the
Production Period with such questions as: “During preparation, are all the standard
procedures performed?”, “During preparation, are all the standard laboratory tests
performed?”, “Are the results of standard laboratory tests according to indicated standard
values?”, and “Do the storage conditions comply with the quality criteria?”. And secondly,
evaluation consists of the condition of the produced component found in the storage
department at that instant with such questions: “ Does the component meet the criteria of
quality requirement on the day of sampling?”, “Does the component meet the criteria of

quality requirement until the expiry date?”.

The sample size of the QC is 1 of every 100 produced components in a month with
a minimum of 4 components [3]. For example, if there are 100 components/per month,
then the number of samples is 4; if there are 500 components/per month, then the number
of samples is 5; if there are 501 components/per month, then the number of samples is 6.
And, sampling frequency is usually once a week, according to the number of produced

components.

12

The first one of every produced 100 components is selected as a sample. For
example, if there are 501 components/per month; then the 1%, 101%, 201%, 301%, 401*, and

501*" of the components are taken as samples [11].

The test and inspection validations during the production are made and controlled
by the personnel of Procedure Laboratory. And, laboratory tests are made by the QC

specialist.

Finally, this QC procedure shows the working effectiveness of the Process
Laboratory Personnel and if the production meets the GMP standard. It shows us if the
storage is good. QC procedure shows if the product (component) is good and can be stored

until its expiry date; and the product shows same good quality until expiry date.

3.3. The Main Quality Control Process

This flow chart, drawn by the author, as being an application of the Quality
Requirements of Basic Blood Components, stated in the Guide to the Preparation, Use, and
Quality Assurance of Blood Components Book by European Council, is a recommendation
and a correction of the applications of the QC system of some blood banks in Turkey. It is
prepared by the theoretical analysis of the requirements and the inspection of the applications

done.

Process is started by the calculation of the number of samples required for QC,
according to the number of produced components of same kind, and according to the
minimum QC sample requirement of that component. This calculation is stated in the QC

requirements of each product, in Appendix sections.

Then QC Specialist collects the required number of samples of indicated type, from

the Storage Department, with a request form.

The “collection of other information on QC” is the procedures (in Figure 3.1), which

have been done outside the QC Laboratory, during the preparation of the component. The

13

laboratory units, and the tests they perform during the preparation procedures of blood

products, are given on Table 2.2. on the second chapter of thesis [3, 12, 13].

The Main Quality Control Process of the Blood Components is shown in the figure

below :

Main Quality Control Process of Blood Components

“

Calculation Of The Number of Samples Required

Collection of The Required Samples from Storage Dept.

EEEEEE

Collection of other needed Information of QC from Laboratory Units
Collecting the Test Results of Component, done in:
Receiving Laboratory
Grouping Laboratory
Screening Lab.

Processing Laboratory
HLA Laboratory
QC Laboratory
Laboratories outside the Blood Bank, if needed

QC Process |. In QC Laboratory

1. Data Inputs of Unit Number, Blood Collection Date, Expiry Date,
and Unit Type (only validation), of each Sample

2. Input Test Results of Sample

Repeat the procedure for each one of the Samples

h V. 4
Storage of the QC Samples, if needed,
until Expiry date,
in suitable storage conditions,
in the same conditions, and in the same place with other same kind Components

LT
4

Figure 3.1 The Main Quality Control Process of Blood Components.

14

I

QC Process Il. In QC Laboratory

1. Access the Sample from QC Mark on the Sample,
and from data (Unit Number and Unit Type)

2. Input Test Results of Sample

Repeat the procedure for each one of the Samples

Disposal (Extermination) of Used Samples

nuaun

>
w@g
From Related Laboratory Units
From Equipment, and Testing Material
From Personnel

11

QC Reportin
To Administrator

To Related Laboratory Units

End of QC Process

Figure 3.1 The Main Quality Control Process of Blood Components.

For the storage of the QC samples until expiration date in optimal storage conditions,
in the same conditions, and in the same place along with the other components of same kind,
the QC specialist sends the samples to the storage dept, to be stored there, until the second QC

testing, those usually are performed on expiry date.

If a second QC process is needed in QC Laboratory, procedure starts after accessing
the same QC Samples, from a “QC” mark on those samples, and collection of the samples
from storage department by QC specialist. This time, QC specialist, will only match the unit
numbers of the samples of the same kind; and will input the secondary test results of those

samples; and repeat the procedure for each one of the Samples.

If needed, for the disposal of the samples with a suitable method with the other
components of same kind on the expiration date, the QC specialist sends the samples to the

storage department. And QC specialist gets information on this disposal, with a report.

15

Then, QC specialist searches for the error sources; in case of the QC defects. He gets
information on the wrong procedures of related laboratory units, on equipment, on testing

reagents, and investigates personnel mistakes.

At the end, QC specialist gives reports and shares the findings with QMS
administrator, prints reports, if needed legally, sends information to related laboratory units to

warn them about the errors, and records the data to use later, for statistical annual reports.

And the developed QC management software, which is the main project of this thesis,
controls each one of the steps explained above and saves the records of QC data on every

step.

The whole blood, collected from the donor, is a source material for blood component
preparation [5]. Much of the quality control tests necessary to ensure the safety and efficacy
of whole blood are performed at the time of the blood collection. In addition to the measures
carried out at the time of collection, as stated in the second chapter of this thesis, the
parameters listed in the quality control requirements of whole blood, which is given in
Appendix A.1. must also be checked. And the minimum QC requirements of the separate
blood components, derived from whole blood, will have their own requirements for their

specific test results; with the additions of quality control requirements of whole blood.

The detailed flow charts of the QC processes of each one of the blood components
(ES-AS, TS and FFP) which are drawn by the author as being an application of the Quality
Requirements, are given in Appendix B.1, B.2 and B.3.

3.3.1. Storage of Blood Components during QC Process

Storage conditions for blood components must be designed to preserve optimal
viability and function during the QC storage period according to their Storage requirements,

those can be found in QC Guides.

In the main storage dept. of Blood Banks; in the Refrigerators, separate spaces

should be reserved for the units kept separately awaiting completion of QC testing. The

16

space for each of these components should be clearly indicated. The temperature within the

unit should be recorded continuously. QC Samples must be easy to find, without touching.

3.3.2. Main QC Report Prints

A QC report must consist records of laboratory test results of QC samples, approvals
of the tests, main information and explanation on the causes of QC defects, QC requirements
and sampling frequency of that component (Units / Month). And as well, it must have the
name of the blood bank, date and period it is belonging to and the name of the QC specialist,

and administrators.

In addition to the monthly report, an annual report must consist the sums of numbers
of passed and failed test results of QC samples, the percentage of quality defects in total

number of samples, between the specified dates.

3.4 The Quality Control Process of Erythrocyte Suspension In Additive

Solution

The number of samples for the QC of ES-AD component is 4 units/month according
to its minimum QC requirements. The QC Requirements table can be found in Appendix A.2

and the QC process of ES-AD in detail is shown in Appendix B.1.

The process is started by the QC Specialist collecting the required 4 samples of ES-
AD, from the Storage Department with a request form.

In the First QC Process taking place in the QC Laboratory, the QC Specialist will
input the First Day Haematocrit and Hemoglobin test Results of the Sample that must be
taken at the beginning of the storage period.

For a period of time of 42 days from the storage of the QC Samples until the
expiration date under optimal conditions, along with other ES-AS Components, the second

QC Process starts. This time, the QC Specialist will input the 42" Day Haematocrit level, the

17

4o Day Hemoglobin level, and the 4o Day Hemolysis test Results of the Sample that must
be taken at the Expiry period of ES-AS.

The Monthly Report of ES-AS must have the following parameter names, parameter
gc requirements, and test results of each of the samples for that parameter in addition to the
report content stated in the Main Quality Control Reporting Subject of this thesis according to
the QC Requirements: Haematocrit ratio on 1% day, Haemoglobin level on 1% day,
Haematocrit ratio on 42" day, Haemoglobin level on 42™ day and Hemolysis ratio on 42™
day of storage. The examples of the QC Monthly Report, prepared by the author, are given in
the Appendix E.1.

3.5 The Quality Control Process of Thrombocyte Suspension

(Recovered)

The minimum QC requirements of TS are given in Appendix A.3. The number of
samples for the QC of TS Component is 1% of all produced units per month, with a minimum

sample number of 10 according to these requirements.

For this component, the process is started by the QC Specialist, collecting the data of
the number of the produced components on that month, and calculating the number of the

required TS samples, according to the sampling frequency indicated in the QC guides.

In the first QC Process, QC specialist will input the Thrombocyte Count, and Residual
Leucocyte Counts. And as a secondary QC process after the storage of the QC Samples until
their expiration date, on the 4t day only pH value is measured, and recorded. The platelets
should be stored in agitators which should enable satisfactory mixing in the bag as well as gas
exchange through the wall of the bag; avoid folding of the bags; have a set speed to avoid

foaming [1] during storage.

The complete QC Process of TS is given in Appendix B.2.

18

In addition to the standard report content, Thrombocyte Count on the 1* day, Residual
Leucocyte Count on the 1% day, and pH Value on the 4™ day of storage are found on the
reports. The examples of the QC Report, prepared by the author, are given in Appendix E.2.

3.6. The Quality Control Process of Fresh Frozen Plasma Suspension

According to the QC requirements of FFP Component, which are given in
Appendix A.4, the number of samples is 1% of all produced units / month, with a
minimum sampling of 4. So for the starting of the process, by the QC Specialist, the

number of the produced components on that month must be known.

The Complete QC Process of FFP is as shown on the diagram in Appendix B.3. For
this component, there is no secondary QC Process. And Factor VIII measurements are

performed outside the QC laboratory.

In addition to the standard report content, Residual Erythrocyte Count on the 1% day,
Residual Leucocyte Count on the 1% day and Residual Thrombocyte Count on the 1* day of
storage must be found on the reports. The examples of the QC Report, prepared by the author,
are given in Appendix E.3.

3.7. Defects in Quality

Main Sources of Quality Defects are standard routine laboratories, blood processing
laboratories, storage department, computers and electromechanical devices, and personnel

(human error).

Component bag problems, centrifuge equipment, and problems of extractor usage
during preparation can be the main quality defect causes [1] arising from production. The
causes of quality defect, arising from the physical condition of the component, are its

storage and transportation conditions. And lastly tests having results that do not pass the

19

quality criteria, can arise from the testing equipment, such as laboratory blood count

equipments or others.

In case of the presence of quality defects, the components that have not yet been
released for distribution must be kept in quarantine and should not be released. Quarantine
continues until all the required secondary quality controls and laboratory tests have been
completed, laboratory results meet the established requirements, and decisions are made

for the usage or disposal of the components.
The Storage problems are almost always ended by disposal of the Components.
However, if the laboratory values are below the requirement but are in the

scientifical range, the blood can be used, if needed greatly, but the expiry period is much

less than normal as is shown in the figure below:

7th day 25t day 42 day

\1. Low Quality Thrombocytes can be ssld

%
2. Throbocytes are Safe I
\-

)

~
3. When Thrombocytes meet QC Requirement

\- I |

1. Low Qu;fity Erythrocytes can be sold
N

~
2. Erythrocytes are Safe
— g
I 3. When Erythrocytes meet QC Requirement

Figure 3.2 Usage and Expiry Period of TS, and ES Preparations, in different Conditions: 1.Low Quality, 2.Good Stored
but not Quality Controlled, and 3.Good Stored, and Quality Controlled

For example, if Erythrocyte Preparations are not well-preserved; ATP and 2,3 DPG
levels of the cells are decreased, and Potassium level is increased [14, 15]; A pyruvate +
Inosine + Phosphate + Adenine containing solution is given to Component; and this

preparation can be used for transfusion, in a period of 24 hours [1].

20

Or for example, If we have no fresh blood (less than 5 days), for new borns, with
IgA deficiency who have histories of allergic transfusion reactions, transfusions can be

done with washed erythrocyte cells, in a period of 6 hours [1].

On these kinds of transfusions, clinical users should be informed of the properties
of all components. These transfusions, which are not done with reliable blood components,
are not recommended in Turkey; because of lack of Haemovigilance (Tracebility of the
Blood, until transfusion). So, in order to institute an adequate scheme of component

therapy, all products must be carefully defined and minimum requirements set.

The duty of the Quality Control Specialist is giving the QC Report of the month;
not to recommend disposition of the Components. As the reports are sent to related

departments of the Blood Bank, the investigative and corrective process begins.

If, the number of the disposed components are more than 1 % of all prepared

components of the same kind; a three-month-retrospective investigation also begins [1].

All complaints, production records from donation, reasons of disposition,
transfusion reactions and other information, about defective blood components must be
documented, carefully investigated, and should be dealt with as quickly as possible;
Written effective procedures must exist for recalling defective blood components or blood
components suspected of being defective. These written procedures must encompass any
look back procedures, which may be necessary. The procedures should be communicated

to the facilities, where the blood components are used [3].

Preventive and corrective actions should also be documented and assessed for
effectiveness after an appropriate period. And needed education must be given to the

Personnel.

21

4. MODELING THE SYSTEM

The blood bank or transfusion services should have a computer software to manage

their QC processes: validation, data inputting and report printing, later risk analysis [16].

This Software is a database, archiving records of QC, a text editor for printing and
designing reports, a mathematical data analyzer for statistical analyzing. It has functions to
collect data from barcode readers or via RS232 serial port, and functions to share data via
internet or internal network. So, the development method of the software; the modeling type
of the system, the platform to develop the software and the testing procedures included in the

software code are selected according to these functions [17].

4.1. The Waterfall Method of Development

The Waterfall development Method is used in this project. This is the advised model
of development for the blood QC Software [1] by most of the authorities. The waterfall model
takes its name, from the fact that it views software developments as a set of phases that a

development team goes down in a cascading fashion, like water going down a waterfall.

QC Requirements ,7

Design

Implementation

Verification

Maintenance

Figure 4.1 Waterfall Development for QC Software

In the waterfall model, modeling starts at the first phase, and move on to the next one

as soon as the current phase is complete. The number of phases in this QC waterfall is five.

22

Firstly, for the establishing of the QC requirements, QC guides are found, read,
inspections in the blood banks, verbal communication with the QC specialists are performed,
and the analysis of the procedures are done. The conflicts and the solutions are established,
between QC requirements, and processes in practice. The detailed process charts are drawn,

which some of them are given in this thesis.

In design phase, based on the QC requirement documents, produced in the preceding
phase, creation of design documents, which will act as the blueprints for the application, are
built. Since, if the requirements documents specify what the application will do, “the design
documents” specify how the application will do it. This was the most important modeling

phase, in this project.

On the implementation phase, development of software application using the design

documents has been done.

Verification is done with test procedures inside the code, and main application is tested

to make sure that it meets the requirements and is free of errors.

Maintenance of the QC Software is not done. This software must be used in a blood
bank, for a pilot application. During that time, it may be modified or updated to meet new
QC requirement needs. And the errors, which are not detected during the verification phase

can be corrected.

The use of the QC software in a blood bank is critical. It must be fully validated to
ensure that, it meets the predetermined specifications for its functions, to preserve correct data
integrity. And to ensure its use to be properly integrated into that centre's operating

procedures.

23

4.2. Modeling

In this QC software development, modeling is used to provide structure for problem
solving, to experiment to explore multiple solutions, furish abstractions to manage

complexity, reduce development time, and manage the risk of mistakes.

Modeling behavior has the advantages to let domain experts specify outward view
(what) so that developers can construct inside view (how); and let developers approach an

element and understand it; it has basis for testing [18].

4.2.1. Object Oriented Programming (OOP)

Object Oriented Programming (OOP) is a programming language model organized
around "objects" rather than "actions", and “data” rather than “logic”. So, in OOP, the

programming challenge is how to define the data; not how write the logic.

Object-oriented programming takes the view that what we really care about are the
objects we want to manipulate rather than the logic required to manipulate them. It’s just
the opposite of the procedural languages, that is a flowchart, a logical procedure, that takes

input data, processes it, and produces output data.

The first step in OOP Model of this QC Software was to identify all the objects that
we want to manipulate and how they relate to each other, an exercise often known as data
modeling. After the identification of an object, one can generalize it as a class of objects,

and define the kind of data it contains and any logic sequences that can manipulate it.

Each distinct logic sequence is known as a method. A real instance of a class is
called an "object" or, an "instance of a class." The object or class instance is what we run
in our computers. Its methods provide computer instructions and the class object
characteristics provide relevant data. We can communicate with objects - and they

communicate with each other - with well-defined interfaces called messages [19].

24

The concepts and rules used in object-oriented programming provide important
benefits. The concept of a data “class” makes it possible to define subclasses of data
objects that share some or all of the main class characteristics. Called inheritance, this
property of OOP forces a more thorough data analysis, reduces development time, and

ensures more accurate coding.

Since a class defines only the data it needs to be concerned with, when an instance
of that class (an object) is run, the code will not be able to accidentally access other
program data. This characteristic of data hiding provides greater system security and

avoids unintended data corruption.

The definition of a class is reusable not only by the program, for which it is initially
created, but also by other object-oriented programs (and, for this reason, can be more
easily distributed for use in blood QC management software) [20]. The concept of data
classes allows a programmer to create any new data type that is not already defined in the

language itself.

An object has a public interface that other objects can use to communicate with it.
But the object can maintain private information and methods that can be changed at any

time without affecting the other objects that depend on it.

An object's behavior is expressed through its methods, so (aside from direct variable
access) message passing supports all possible interactions between objects. Objects don't
need to be in the same process or even on the same machine to send and receive messages

back and forth to each other.

The main objects and their relations and communications, which are created in this

software are explained 5™ chapter of this thesis.

25

4.2.2. Unified Modeling Language (UML)

Unified Modeling Language (UML) is an effective type of modeling complex
software systems that specifies the functional requirements of system in an object-oriented
manner, and structural modeling specifies a skeleton that can be refined and extended with

additional structure and behavior [18].

During UML modeling, developer identifies “the actors” that interact with the
element; organizes actors by identifying general and more specialized roles; and for each
actor, considers the primary ways it interacts with the element; considers exceptional ways
of interaction; and organizes these behaviors as use cases. Every behavior is one usecase

[18].

In a usecase diagram, “Actor” is an actor, who or what uses the system,
representing a role, and communicates with the system by sending and receiving messages.

Actors are in control and initiate actions.

Actors can be ranked, Primary and secondary actors [18]. And the flow of messages
between actors and the use case depends on conditions and exceptions. We must describe
which entities are modified and used; when is the usecase considered to be finished and
what kind of value is delivered to the actor [18]. A well-structured usecase shows “the
single identifiable behaviour” of the system, “common behaviours” by using inclusions,

“the variants” by using extension [19].

For the OOP-UML modeling the system context, the following steps are applied to
QC Processes: Identification of the actors that surround the system; which groups require
help from the system; which groups are needed to execute the system; which groups
interact with external hardware; which groups perform secondary functions for
administration and maintenance (1); organization the actors (generalization relationships)
when needed stereotype actors (2); and putting them in a use case and connect to use case

[18].

26

For the model of the QC management software, UML modeling analysis, made by

Product Demo of Borland Together Software, which is a visual modeling platform, is used.

4.3. The Development Platform of the Software: Java

As the software platform, Java is selected. Since, java programs are compiled into
machine-independent bytecodes, they run consistently on any Java platform; and we can

avoid platform dependencies [21].

Java is the most popular object-oriented language, with great modularity. The
source code for an object can be written and maintained independently of the source code

for other objects. Also, an object can be easily passed around in the system.

In java, created Classes have reusability; in the Subclasses specialized behaviors
from the basis of common elements provided by the superclass if found. Through the use

of this “inheritance”, a developer can reuse the code in the superclass many times.

A developer can implement superclasses called “abstract classes” that define
"generic" behaviors. The abstract superclass defines and may partially implement the

behavior but much of the class is undefined and unimplemented.

4.3.1. Eclipse SDK On Java

Eclipse is a component-based platform used as a workbench on java, and Eclipse-
based applications are highly modular. The one, which is used for this project is “Eclipse
SDK”. It consists of a mixture of plug-ins, itself which together make it what it is; other
Eclipse-based applications may share some of those plug-ins, but usually bring along their

own set of plug-ins that differentiate them [21].

Elements of Eclipse Workbench consist of the main application menu bar, toolbar,

an editor area (into which editors may be opened), and several views for some functional

27

area or user activity, such as Java development, resource management, and so on,

depending on what the application provides.

4.3.2. Window Builder On Eclipse

Trial version of WindowBuilderPro software is used to design the user friendly

GUI of the QC management software. It is a Plug-in of Eclipse SDK which is working on

Java.

28

5. SOFTWARE FOR QC MANAGEMENT

After the selection of modeling and development platforms and their plug-ins,
management model is designed and the managing application software is developed for the
QC procedures of main blood products: Erythrocyte Suspensions, Thrombocyte

Suspensions, and Fresh Frozen Plasma.

The software is helpful to input, store, and report the quality control data, on each
step of the QC Process, which are given in Appendix B.1., B.2. and B.3. User can access
and edit the test results of each blood components samples of different kind, even if the

data of that sample is limited with its unit number. Barcode readers can be used for this

purpose.

Alarm function avoids QC Specialist to forget QC tasks; and this reduces the risk of

producing defective components.

5.1. General information on the software

By our source code, with the “methods” of the object “Form” and use of the
methods of other objects, it is possible to talk about the creation of a folder of a “concept
product”, of a specified product group, and of a selected number of samples, which has a

specific number of “Parameters”. User can designate values to those parameters.

The implementation of a “component sample” is characterized by product type,
product name, number of quality control forms per unit of time, quality control frequency,
number of samples, blood product expiry period, and the parameters which has the
integers: Scientific Minimum Value, Scientific Maximum Value, Quality Minimum Value,

Quality Maximum Value, Acceptable Qualifying Percentage and Sample Testing Period.

Software has main Constants as shown in the figure 5.1.

29

%’ Class Diagram kankalite

package: com.ptah.kankalite

1 1
domain constants

Q Parameter %2 ParameterType

Q FormContainer %% FormState

Q, T3Farm Q Farmiames

Q Sample £ FormType

Q ESFarm

Q Form

Q, Skorage

Q FarmFactary

‘g IForm

I

ui

L MainGLT

Ld QcMain
Q, FormListComposite

Figure 5.1 Objects, Constants, and UI of Software.

The software is based on a database of “monthly quality control reports”, but not on
a database of “quality control samples”. The name “form” is used as: “a blank data sheet,

containing information about QC samples, test results and explanations on the causes of

QC defects of that month”.

So “a form”, is a monthly report when it is displayed on the screen or printed. And
again “a form” is an annual report, when the data designated on its parameter integers are

summed. For printing function, a simple plug-in of Java Eclipse SDK is used.

Software checks the date and the related forms which has TR or SR status (to give

alarm) at the beginning of that session, and checks the default values.

The Source code of the Software is added to Appendix H. And the software written
on a CD is added to Thesis as an Appendix.

5.2. General Design of the Model

30

For better understanding of the computing mechanism of this QC software, firstly

the model of the domain code (com.ptah.kankalite.domain) must be analyzed .

“The domain” is the skeleton which is very well defined and refined. Until the end

of the modeling process, implementations of the “objects” in the software are postponed to

make the blueprints of those objects defined and flawless.

¥ Class Diagram domain

package: com.ptah.kankalite.domain

sinkterfaces

Q.IForm

<]__

N geilame

Figure 5.2 The basic UML diagram of the Domain of QC Management Software

Saraizabia q Storage Seralzabia Saraizabie
q Form Q FormContainer Q Parameter
& fil=Mame
& expiryPeriod # directory o serialversionlID & serialversionlID
& valid # periodicSampleCount # values
#resuts & initizlize o Formlist
& parameterTypes screates % isvalid
% Starage % setizeneratedProduct Count acreates
acreates % shore % getiGeneratedProduckCount € Parameter
& Form * |oad % gethleededsampleCount % gatvalues
% chacktiake % generateForm % addvalue
% checiRasults % getFarms % getialue
% getResult % getForm % setialue
% updateAninitialsample % getForms ToBeCompletedForvear
4 createSamples % createFarmsForyear ¥=vald
__| % setSamplePraductionCiate
% getSampleExpiryDate ¥=usersampleCount
% addParameterType
% checkSpecificParameter
: increaseFalCountFarPar ameter
getFailedSampleCount o
% setFailedSampleCount q FormFactory Seitaizatie
& is¥alid LG sample
” % createForm
=totalFailsdSampleCountFar ThisFarm # serialversionlID
tate
e «rreates
& sample
¥PE % getParameter
eriod % sctParameter
aarﬁ.liles % getParameterTypes
¥ mberOf SamplesToBeTested : ;ﬂg"d
w_ .
‘5'2 id
= parameters
i bloodMa
i walid
Sariafzabie Seriatizabie g=epiryPeriod
2= expiryDake
Q ESForm Q TSForm i_li EroductionDate
& serialVersionlID & serialversionlID
& minHb W alue & mintolumey alue
& minHtcOYalue & maxReslocyalue
maxHcGvalue # minkoTQvalue
masHmlzvalue # masPhovale
minPhialue
«“creates
& ESForm acreates
% checkstate % TSForm
% calculateHemaoliz % checkstate
% checkResults % checkResults

31

5.3. Design of the Classes

Mainly, UML design of the domain gives us four classes and seven objects, which

are the instantiations of them.

The Major Classes are “FormContainer”, “Form”, “Sample” and “Parameter”.

Mainly, FormContainer contain Forms. A Form uses samples to contain
parameters. Every object “knows” only the function of itself, but not the functions of other

objects, depending on the OOP basics.

5.3.1.The Class: FormContainer

The Class “FormContainer” is the main starter of the software. FormContainer is the
object, which contains all of the separate Monthly Report Forms. We need two parameters

to access the form: FormType and the FormDate.

The number of the qc samples of one month can be a lot; but, in every month of the
year, there is only one Form. FormContainer can be expressed mathematically as having
12 x 3 = 36 Form objects (12 of each type of ES, TS, FFP). It has the hashmap of Forms
and is just like a big document folder with 36 files in it and has no information written

inside about the files themselves.

The Object “FormContainer” has a field named FormList. It is a hashmap containing
another hashmap, which is a matrix having an index and data. On the first hashmap, we use
formType as an index and the hashmap gives us another hashmap containing the forms of
that type. And we give the formDate as the index of a new hashmap and the hashmap gives

us the form data that we want as can be seen on Figure 5.3. below.

32

FormContainer TS Forms 03/2007 TS Form
ES 012007
TS TS Forms 022007
FFP 032007
Form
... others 042007
/\ 052007
062007
072007
... others
Parameter 1 I Parameter 2
Form Type | Form Date |

Figure 5.3 Hashmap of FormContainer

FormContainer has its own methods shown on table 5.1.

Table 5.1
Field and method summary of class FormContainer

Field Summary

int|userSampleCount

private Map<FormType,Map<String,Form>:> |formList

private Map<FormType,Map<5String,Integer=> |periodicsampleCount

private final static long|serial¥ersionUID

private int|userSampleCount

Method Summary

public void|createFormsForYear (FormType type, String year)

public Form|generateForm (FormType formType, String period)

public Form|getForm iFormType formType, String date)

public Map |getForms (FormType formType)

public Map|getFormsToBeCompletedForYear (FormType type)

public int|getGeneratedProductCount (FormType formType, String date)

public int|getNeededSampleCount (FormType formType, String date)

public void|setGeneratedProductCount (FormType formType, String date, Integer count)

public void|setUserSampleCount (Integer userSampleCount)

FormContainer uses a static factory class: FormFactory. FormFactory, with the
parameters formType and formPeriod, creates new objects of Form. But the only

instantiation of FormContainer is formContainer hashmap.

The integer we obtain from getNeededSampleCount method is number of needed

QC samples. It is calculated with algorithms that are written on the QC Processes of the

33

blood component. For Example, for the ES Form, the default of this integer number is 4 in

case the number of produced ES Components is less than 400 in the blood bank.

Parameter 1 : Form Type =N getNeededSampleCount method Number of
has Calculating algorithms for the the :,\/ Needed
Parameter 2 : Form Date number of samples, for the selected form QC
— of selected form type. Samples

Figure 5.4 GetNeededSampleCount method of the FormContainer

The method “setGeneratedProductCount” sets a number for a form of chosen type.

The method GenerateForm, generates a particular form for a specific month. The
input parameters are formType and date (string). With these parameters, it gives a form
object. The number of the samples, is the number of needed QC samples for that month
and for that type of component. By using the GUI of the software, we input the data of the

samples (test results etc.) afterwards.

GetForm method of FormContainer can get the form in the container having the

same type and date given to the method as indices of the interlinked hashmaps.

CreateFormsForYear method takes formType and year and creates 12 forms for the
year. Parameter “Year” always has 4 digits; this method adds 2 extra digits before this 4

digits to represent each month.

5.3.2. The Class: Form

The object Form is the most valuable object of the list attribute of formContainer.
And it is also the most valuable object other than the object “formContainer”. In object
Form, there are some attributes like the form type, form date, and the samples contained in

the form. Class Form has the information of formType of itself (component type).

34

This object controls its own “state”. There are three states of form object: “Sample

2% ¢

absent”, “awaiting test results”, and “done”.

The properties of the class Form are inherited to its extents: TS, ES, and FFP
Objects, which have some of the properties of same kind with some differences between,
like parameters, number of samples per month, etc. (Extents are not the exact
instantiations).

Table 5.2
Method summary of the class “Form”

Method Summary

public void|addParameterType (ParameterType type)

public abstract void|checkResults i)

protected void|checkSpecificParameteriParameterType type, Integer min, Integer max, Float minQvalue,
public abstract void|checkState ()

public void|createSamples ()
public Date|getDate ()

public int|getFailedSampleCount)
public long|aetld::

public String |getName ¢

public int|getNumberDfSamplesToBeTested ()

public String|getPeriod ()
public int|getResult{ParameterType type)
public Date|getSampleExpiryDate (Integer i)
public Map|getSamples)
public FormState |getState ()
public int|getTotalFailedSampleCountForThisForm ()
public FormType |aetTypei)

private void|increaseFailCountForParameter (ParameterType type, Parameter pararmetsr)

public boolean |is¥alidi)

public void|setDate (Date date)

public void|setFailedSampleCountInteger failedSampleCount)

public void|setNumberofSamplesToBeTested (Integer numberofSamplesToBeTested)

public void|setPeriod i String period)

public void|setSampleProductionDate (Integer i, Date date)

public void|setState (FormState state)

public void|setType (FormType type)
public void|updateAnInitialSample i}

At the time of creation of the object form, the default value of its state is “sample
absent”, because no one of the test results of QC samples has been input. If the test results
of QC samples are entered, but there are still some more absent test results left (to be input
at the end of storage period of the component), the state of the form changes to “test
awaiting state” from “sample absent”. If even one of the sample data inputs are not written

on the form, the state continues to be “sample absent”.

35

At the end of storage period of the blood component, when the data of new test
results are input, the state changes to “done” from “test awaiting”. If the form has a form
state of “done”, this form will be saved to the main database of formContainer. And, the
only reason for a form to appear on the QC status window of the GUI of the software,
(which is on the left side of the main GUI), is having a form state of “sample absent” or
“test awaiting”. The forms, which have states of “done” are not shown on the listbox on the

QC status window of the GUI.

If the storage period of samples on a form are close or have already passed, on the

alarm listbox of the QC status window of the GUI, a date and an alarm code “TR” appears

(test result input is requested).

Table 5.3
Field summary of the class “Form”

Field Summary

FormType

type

String

period

Map<Integer,Samples

samples

long

id

Date

date

Formstate

state

int

totalFailedSampleCountForThisForm

int

number0fSamplesToBeTested

String

name

private Date

date

protected int

expiryPeriod

protected long

id

protected String

name

private int

number0OfSamplesToBeTested

List<=ParameterTypes

parameterTypes

private String

period

protected Map<ParameterType,lntegers

results

private Map<Integer,Sample=

samples

private FormState

state

protected int

totalFailedSampleCountForThisForm

private FormType

type

private boolean

valid

When the new forms of the year are created, the forms belonging to the months that
must have samples and test results, have an alarm code of “SR” (Sample inputs are

requested). The forms belonging to the months after the present day of the usage of the

36

software have no SR or TR alarm codes. During that session of usage of the software, a
new form created, has always a code of “NF” (new form created). And, if the state of the
form changes to “done” in that session, this form changes to a QC status code of “C”

(completed).

In the object Form, there is a parameter named “numberOfSamplesToBeTested”.

This parameter is set by the object formContainer.

The object Form has three different types of lists: two of them are hashmaps and the
third is a plain list. The plain list parameter is called “property types”. The values of this
parameter are the types of object parameters, that are called “parameter types” such as

haematocrit, hemolysis, haemoglobin, pH value, platelet count, etc.

The class Form has the Hashmap of samples which has the results of QC tests. It
has a method of calculation of the number of Samples, according to the Produced
Component type; and the number of production, and it has the list of parameters, to set to

the object “Sample”.

It has a method of sample creation, a method for asking for a specific parameter;
and has some methods of differentiating the “passed” and “failed” QC samples according

to the QC test results, and a method of giving information, when asked.

Every extended form object, (for example ES), has the information on how to

control the minimum and the maximum values of parametric results of tests.

5.3.3. The Class : Sample

The class “sample” has the ability to contain the secondary test results of the QC
parameters to be checked at the end of the storage period, as well as the QC parameters to
be checked at the beginning of the process, such as haematocrit value. This is done with a

hashmap having a name “parameters”. So, in summary, FormContainer is the object

37

containing forms; forms contain samples; samples contain parameters; and parameters

contain minimum and maximum values of the parameters of QC testing.

Table 5.4
Method and field summary of the class “Sample”

Field Summary

Map«<FParameterType,Parameter=

parameters

int

id

boolean

walid

int

expiryPeriod

int

bloodMao

Date

productionDate

Date

expiryDate

private int

bloodio

private Date

expiryDate

private int

expiryPeriod

private int

id

private Map<ParameterType,Parameters

parameters

private Date

productionDate

private final static long

serial¥ersionUID

private boolean

walid

Method Summary

public void

add (ParameterType type, Integer index, Float value)

public int

getBloodNo ()

public Date

getExpiryDate ()

public int

getExpiryPeriod)

public int

getld:;

public Parameter

getParameter (ParameterType type)

public Map

getParameters:)

The object Sample, has a Unit Number, an Expiry Date, an Expiry period, a

Production Date; and has a hashmap of Parameters. The object Sample” has no information

on these parameters, just contains them. This condition gives us the ability to create a

sample with any number of any parameters. Object can call Parameter “set”, and “get”

methods and can check expiry date and unit number of a sample.

5.3.4. The Class: Parameter

The Instantiation (implementation of a blueprint of an object) of this class has an

hashmap, a multi dimensional matrix, which gives it the chance to store any number of

parameter checks of any parameter. For example ES Hematocrit level is controlled two

times, firstly on the 1%, and secondly on the 4™ day of sampling. This object could even

38

create a parameter check of hematocrit 12 different times during its storage period, instead
of 2. This is an important feature to be flexible in future developments [21] of the QC
management software.

This class has methods for controlling the validity of the results, and has methods
of giving any value that has been set to a parameter (test results) to the user, who uses GUI
of the software. And the user can set any value to a parameter from GUI (inputting of the

test results).

Table 5.5
Method Summary of The class “Parameter”

Method Summary

public void|add (ParameterType type, Integerindex, Float values

public int|getBloodNo

public Date |getExpiryDate ()

public int|getExpiryPeriodi;

public int|getId:;

public Parameter|getParameter (FarameterType type)

public Map|getParameters)

public Set|getParameterTypes |}

public Date |getProductionDate i}

public boolean |is¥alid

public void|setBloodNo ¢ Integer bloodMoy

public void |setExpiryDate (Date expiryDate;

public void|setExpiryPeriod (Integer expiryPeriod)

public void|setld iInteger id;

public void|setParameter(ParameterType type, Parameter parameter)

public void|setParameters (Map parameters)

public void|setProductionDate (Date productionDate

public void|set¥alid (Boalean valid;

39

6. THE USE AND GUI DESIGN OF THE SOFTWARE

The QC management software has functions of creating monthly sample record
forms of ES-AD, TS, and FFP components, inputting or editing the data of the samples and

test results of first and second QC processes to the forms.

It has GUI designs to find the forms related with the specific samples which stored
until their expiry date and to print reports, including the approvals of QC Processes

performed outside the QC Laboratory.

All of the elements of menu and the windows on the GUI are designed to make the
management of the monthly “forms” which contain samples easy and practical. There are
menu objects, and shortcut buttons for direct access to Monthly Component Databases,

Samples, and Reports.

Almost all of the default values are written on a text file which is used during the
starting of the software. So the most of the default parameters are only changed by only
firmware update in this version of the software. But the design of the model, allows us to

make connections with the GUI setup menu to access the defaults.

On the GUI, there are two bars of buttons: the “Menu Bar”, and the “ShortCut
Buttons Bar”, and two main windows: the “QC Status Window” (consisting of three sub
windows: “QC Form List”, “QC Alarm List”, and “Alarm Definitions”), and the
“Component Form Entry”, window (consisting of three sub windows: “Sample Data

Input”, “QC Form General Data Input”, and “QC Form Report General View”).

Main GUI design of the QC Management Software is shown on Figure 6.1.

BOUN EloodOCH V2.1B

|File Edit

Input

Report:

Statistics Setlp Help

About

11.07.2007, Gargamba, GAPA, ISTANBUL, KK.Uzm. AR,

J ODE & | & B | Erythrocyte Sspl Platelet Gsp | Frozen Plasma || Shan | Completel Repurtl Arinual | Requestl Otter | ‘ @ .

QC STATUS ERYTHROCYTE SUSPENSION IN ADDITIVE SOLUTION 08 2006
QC FORM LIST X| | SAMPLE # 03 DATA INPUT

Erythrocyte Ssp

. 2006-04
2006-06
2006-07
2006-08

- 2006-09 SR

Platelet Ssp
- 2006-02
- 2006-09
- 2006-11
- 2007-03 G

Fresh Frozen Plasma
- 2007-02 G

2007-06 SR

2007-07 iF

NF Mew Form Created

REMAINING # 01 X

Manual Input

Sampling Date |

Today, 11.07.2007, Cargamba v |

Barcode Input

Unit Number |

Product Type

| Unit Number

ES f

Blood Collection Date |

Expiry Date

Taday, 11.07.2007, Cargamba v |

=| Product Type

+ 42 Days f

~| Expiry Date

Hematocrit %, 1st Day | %
Hemaoglobin, 1 st Day I o dunit

Add Comment T

Hematocrit %, 42nd Day I %
Hermoglobin, 42nd Day I o Junit
Hamolysis, 42nd Day I kS

|

This sample has been stared in suitable conditions IAccepted 'I

‘44 Previous” Mext l>l>|| Apply

0OC FORM GENERAL DATA INPUT

_Hlemoqlobin
a4

X
Annual Forms ﬂ
S006- £5 Possible Error Sources in Quality Failure —
2007- ES Blood Count Equipment | =1 = | Extractor Usage
2007- FFP)
Storage & Transportation | ;l | ;I Component Bag
Centrifuge Equipment | =1 =] Units to be Informed
| =
[~ Add General Explanatian
Quality Control Specialist | LI
Labaratary Administratar | |
Blood Bank Manager | LI ‘ Save I Cancel | Apply | ﬂ
0C FORM REPORT GENERAL WIEW X
Kontrol . - - - -
.mzl ETrr YT . Unite-l Unite-ll Unite-lll Unite-lvV |=
e : Parametreleri
$R 30.09.2005-23:59
$R 30.06.2007-23:59
Kan no 6969 9692 6981
Kan alim tarihi 18.08.2006 18.08.2006 | 20.08.2006
0OC STATUS DEFINT X)
TR Test Requested Hematokrit
JR Sample Requested
¢ Completed

Figure 6.1 Main Gui design of the QC Management Software.

41

6.1. General Menu of the Software

General menu access on the software is done with menu tree, on the Menu Bar of
the software GUI. Menu bar is shown on the figure 6.2. The Menu tree and its functions

are given on Appendix C.

File Edit Report Statiskics Setup Help Abouk

Figure 6.2 The Menu Bar.

Some of the buttons gives a “N/A” when pressed, as it is shown in the menu tree in
Appendix C. These are the buttons with the functions, which has been modeled to be added

to domain code of the software, but have no place in the GUI design of this version.

6.1.1. Set Up Menu

On the setup menu, there are different kinds of user setups. Default values of
minimum-maximum scientific and quality requirement values of parameters of testing
results are among them. The software allows the data entry of each parameter, between
these scientific minimum and maximum values. The criteria, for a parameter tested to be
marked as “quality passed” is the QC requirement of that parameter. For this, the value
must be between Quality Min, and Quality Max values on the default list [1, 14]. Default
unit list, and defaults table of scientific and QC min-max values used in this software are

given in Appendix D.

Some of the main functions is put on the setup menu to avoid the unauthorized
personnel to make changes in the database. Creation of the set of forms of the Year is a
typical example of this. This procedure is performed once a year to create blank forms of a

selected year, or the year of that QC session.

42

6.2. Form and Sample Data Entry of the Software

Data entries to the forms and samples are done with the menu tree, or the ShortCut
Buttons of ES, TS, and FFP. Each of them, when clicked, opens its own window on the
data entry side (right side) of the GUI. Each of the “component form entry” window, has

its own parameters result entry boxes, on their “Sample Data Input” subwindow.
During the data entry, which is performed from the “Sample Data Input” sub

window, the results and unit numbers can be seen real-time on “QC Form Report General

View” sub window.

6.2.1. ES-AD ShortCut Button
This button opens the “sample data input” subwindow (Figure 6.3), or tab of the
“ES component form entry” window and lets the user to input data of samples of ES (to the

last ES form he has been in).

To change the ES form, user must use the “direct form access” button, or the “QC

Form list”.
SAMPLE # 03 DATA INPUT REMAINING # 01 =
Manual Input Barcode Input
Sampling Date | Today, 11.07.2007, Carsamba = |
Unit Mumber | [| | unit Mumber
Product Type ES | ;l Product Type
Blood Collection Date | Today, 11.07 2007, Cargamba ;l
Expiry Date + 42 Days | ~| Ewpiry Date

Hematocrit %, 1st Day I oy
Hemoglobin, 1 st Day I gr f unit

Hematocrit %, 42nd Day I %
Hemoglobin, 42nd Day I gr funit
Hemolysis, 42nd Day | o, |<1<1 Previous| | Mext bb | | Apply |

Add Carmrent [

| [

This sample has been stored in suitsble conditions IAccepted 'I

Figure 6.3 Sample Data Input sub window, of the ES Data Entry Window.

43
6.2.2. FFP ShortCut Button
This button opens the “sample data input” subwindow (Figure 6.4), or tab of the

“FFP component form entry” window and lets the user to input data of samples of FFP (to

the last FFP form he has been in).

To change the FFP form, user must use the “direct form access” button, or the “QC

Form list”.
FRESH FROZEN PLASMA 08 20006

SAMPLE # 03 DATA INPUT REMAINING # 01 X

Manual Input Barcode Input
Sampling Date | Today, 11.07.2007, Cargamba = |
Unit Murmber | [| | unit Nurmber
Product Type FFP | ;l Product Type
Blood Collection Date | Today, 11.07 2007, Carsamba LI
Expiry Date + 365 Days | x| Expiry Date
Residual Erythrocytes I X 1091|I L Add Comment [~

—

This sarmple has been stored in suitsble conditions IAccepted "I

Residual Leukocytes I X 1Dgf L

Residual Throbmocytes | ¥ 107L |‘1<1 Previousl | mext b | Apply |

Figure 6.4 Sample Data Input sub window, of the FFP Data Entry Window.

6.2.3. TS ShortCut Button

This button opens the “sample data input” subwindow (Figure 6.5), or tab of the

“TS component form entry” window and lets the user to input data of samples of TS (to the

last TS form he has been in).

To change the TS form, user must use the “direct form access” button, or the “QC

Form list”.

44

THROMBOCYTE SUSPENSION 08 2006
SAMPLE # 09 DATA INPUT

REMAINING # 01 X

Manual Input Barcode Input
Sampling Date | Today, 11.07.2007, Carsamba = |
Unit Mumber | [| | unit Mumber
Product Type 18 | x| Product Type
Blood Collection Date | Today, 11.07 2007, Cargatiba ;l
Expiry Date + 4 days | ~| Ewpiry Date
Throbmocytes I % 10/ Unit Add Comment [~
Residual Leukocytes I X 109[Unit;
¥ This sample has been stored in suitable conditions IAccepted vl
PH, 4th day | l4aPrevious | | next op|| apply |

Figure 6.5 Sample Data Input sub window, of the TS Data Entry Window.

6.2.4. An example of a data entry procedure of TS samples

Before the data entry of the samples, the user must input the number of the
produced components, on that month for the calculation of the number of samples to be
used in QC Process of that component (TS). QC specialist enters the value, via the tab of
“Number of Samples” of TS Component Form, seen on the Figure 6.6. The Number of

samples can be limited by the user, to a limited value, instead of 1% of produced

components.

NumberOFSamplesl Cther QC Tests | Sample Input || Storage Conditions || Errar Sources || Approval-Save | Reports

The number of produced components I:l

QC Frequency

%1 of number of products; with a minimunn of 10 units

The number of samples must be I:l [Tok
Lirnit the number of samples I:l ok

Figure 6.6 Number of samples input tab, of the TS Data Entry Window.

45

Then with the “Next Button”, “Other QC Tests” tab comes (Figure 6.7.). This is the
tab of the GUI, for the approvals of QC tests, which are performed outside the QC
Laboratory, during preparation phase of that component. As well, with the “Storage
Conditions tab”, approval of “suitable storage” by the QC Specialist is done. For these
approvals, QC specialist uses the records of process laboratory and other laboratories, and

refrigerator degree measurement records of storage department. The name of QC Specialist

can be selected from a combo-box of GUI easily.

Are ABC, RAD, groupping of all units done? | Mo

=
4

Are screening tests of all units done?

-
Are ABC, RhD, Groupping of All Units Done? w
Are ABC, RhD, Groupping of All Units Done? Lv

Qi Specialisk

I ’ ’ ’
[w] (=] (=]

Presvious

Figure 6.7 Other QC Tests Approval sub window, of the TS Data Entry Window.

With the “Sample Data Input” subwindow of the “TS Form Entry” window, QC
specialist enters the test results of selected samples, one by one. The Entries are shown on

the “QC Form General View” subwindow, shown below Figure 6.8.:

OC FORM REPORT GENERAL YIEW X
Thrombocy | Residual pH Value i‘
Count Leucocytes Day
Day 1st Day 1st 4t
Component Unit Nr. . B|||O[[:))dt Egptlry Qualty Qualty Qually ggmrptintss on thle ac | ac
SllbIEEKS B >60x10° | <02x10° | 64-74 o SEljls Code | Spel
[Unit IUnit
1
2
3
4
d L]

Figure 6.8 QC Form Report General View sub window, of the TS Data Entry Window.

46

After that, error sources, in Quality defects tab (or window) comes (Figure 6.9.),

and then Administrative Approvals (Figure 6.10.), and Save Functions take place.

| Mumber Of Samples || Other QiC Tesks || Sample Input || Storage Conditions | {| Approval-Save || Reports

Blood Count Equipment |

Skarage-Transpartation |

Centrifuge Equipment |

Component Bag |

Inits to be informed |

|
|
|
Extractar Usage | |
|
|
|

Cuality Control Spec. | w

Figure 6.9 QC Form Error Sources Input sub window, of the TS Component Data Entry Window.

Quality Contral Specialist | LI
Labaratory Administratar | =]
Blood Bank Manager | ;l Save I Cancel | Apply | LI

Figure 6.10 QC Form Administrative Approval sub window, of the TS Data Entry Window.

With these procedures, the entry phase of a QC process is completed. If another
session of entry is needed, QC specialist can access the form, via form date of the QC form
or using the unit number of the sample, to be tested on the second QC Process. After

finding the specific form, specialist can edit or finish the inputting phase.

After this procedure, the form status, becomes “C”, on QC Status window. And,

next day, the date of that form will disappear from that window.

47

6.3. General Form and Sample Access of the Software

The Access to the Forms and Samples saved in the hashmap of FormContainer, can
be done with the menu tree, or ShortCut Buttons. Short Cut Buttons are shown on the

Figure 6.11:

| Erythrocyte SspI Platelet Ssp Frozen Plasma || Cirect Form Access | Direct Sample Access” Shom I Completel Reportl Annual | Requestl Cther |

Figure 6.11 ShortCut Buttons

6.3.1. Direct Form Access Button

Direct Form Access Button has two functions. One of them is finding the form
from “form type” & “form date”; and other function is finding the form from the QC alarm
list. This Function is used for finding the QC Forms of a selected year and month. When
pressed, a window appears with the input areas of form type form date. By entering the
data, the form of selected component type comes as the editing window, to allow the data

entry or to edit the sample results.

The Direct Form Access window is shown on Figure 6.12. below:

ERYTHROCYTE SUSPENSION IN ADDITIVE SOLUTION 08 2006

Direct Form Access

Product Type: ES ~

pat=[112005 =]

|<1<1 Previousl | Mext b I | Apply

Figure 6.12 The Direct Form Access Window for ES

48

New Created forms of that year appear on the QC Form list subwindow of the QC
Status window. To Access a form by using the QC Form List, is limited with the forms of
the year, and is limited with the forms, which does not have adequate number of samples
or which does not have adequate number of QC test results of these samples. By pressing

the form of selected date, user can go to a specific form.

The forms have QC status types, as it was stated in the modeling explanations, like
TR (test required), SR (sample required), NF (new created form), and C (completed-
approved form). The status code is written next to the form date on the QC Status window.
And the definitions are given in another window. These QC Status are put on the QC
Form List, to indicate the forms, which need QC sample data or QC test results. QC Status

Window, and its sub windows are shown as Figure 6.13. below:

QC STATUS

OC FORM LIST x|

Erythrocyte Ssp
L. 2006-04

in

Platelet Ssp
- 2005-02
- 2006-09
- 2006-11
b 2007-03 €

Fresh Frozen Plasma
- 2007-03 G
- 2007-06 3R
o 2007-07 (I

Figure 6.13 QC Status Window and and its sub windows.

With the alarm function, not the form type or form date, but the “sample data

inputting date” or “test result inputting date” and hour is given to QC Specialist.

49

If the software session is on the same day of the sample data or test input date just
after the starting of the software, the alarm window (in red) appears. The Alarm window

can appear 0 to 6 days before the event according to the user setup. Default value is 1 day.

OC ALARM LIST

Th21.09.2006-10:11

$R 30.09.2006-23:59 | [[QC STATUS DEFINT X
SR 30.06.2007-23:59 | | 1n Tt Requested

SR Sarmple Reguested
S Completed
NIF tew Form Created

Figure 6.14 Alarm and Definition Windows

6.3.2. Direct Sample Access Button

Direct Sample Access Button has two functions. One of them is to find the form,
which is the related with a specific Sample, from its “unit number” and “component type”;

and the other function is find that from of that specific sample from a selection list.

When the Direct Sample access button is clicked, a window appears with the entry
areas of component type and unit number. By entering these data, the form, which contains
that sample comes as window, allowing the QC specialist to enter or edit data, or test result

of that sample, and of other samples on that form.

This Function helps QC specialist to access the records of the component samples,
which are taken from storage department for the second part of QC Process. The Direct

access can be done, by using simple barcode entries (the component type and unit number).

The barcode reading results table of label samples of different components used in
blood banks in Turkey, is given in Appendix G. In the development and GUI design
phases, these readings were used in the standardization of the component and date

recognition.

The Direct Form Access Window is shown below Figure 6.15.

50

ERYTHROCYTE SUSPENSION IN ADDITIVE SOLUTION 08 2006

=

Direct Sample Access

Manual Input Barcode Input
Sampling Date | Today, 11.07 2007, Cargamba x|
Unit Hurnber | 015899] | | -t00130501589923| unit Number
Praduct Type ES | -6e0440000 ~| Praduct Type
Blood Collection Date | 08112005, 09:47 =]
Expiry Date 20122005, 09:47

|<1<] Previuusll Mext D[>|| Apply

Figure 6.15 The Direct Sample Access Window for Barcode Input.

6.4. Printing Reports

User can print monthly reports, monthly component request forms and annual
summations. Email and Share Buttons, which are put on the menu, are for future

improvement of the software.

[Mcnnthl\,f Repart] [Reguest Form J

[show J[Edt |

[e-mail J [Share J

Figure 6.16 Report tab of the TS Component Data Entry Window.

51

6.4.1. Monthly Report

A “Report” is a collection and an interpretation of data and approvals of QC. As
mentioned before, a report has: general information on the Report, the QC requirements,
QC sampling frequencies, test results of samples, approvals, explanations on the error

sources. The report samples are given in Appendix E.1, E.2 and E.3.

6.4.2. Request Form

Request Form can be printed automatically from the “Report Tab” of the
“Component Form Entry” Window. It has the list of the transportation dates of the
components, from storage department to QC laboratories, and vice versa. All of these
transportations must have an administrative approval and the initials of that administrator.

The request form sample is given in Appendix F.

6.4.3. Annual Summations

The user selects two dates (limited with 12 months) to prepare an annual sum table

of the QC results. The Annual Report Samples are put on Appendix E.4, and E.4.1.

52

7. DISCUSSION AND CONCLUSION

The Management Software of QC of blood products offers laboratories “robotic-
like” accuracy with a human touch. With these, QC Laboratories and preparation processes

can be automated to improve accuracy and reliability [22].

The quality assurance program should use the electronic data processing systems that
affect product quality by affecting the QC Process by accelerating the improvement of the

laboratory's performance and services.

According to the experience that this project gave, it is obvious that, development of a
software, can be done with the collaboration of the QC Specialist and the developer under the

supervision of an expert in Biomedical Science possessing an analytical mind.

And future projects in this area in Biomedical Science should be done on the
analysis of QC processes taking place in the Blood Banks and QC Requirements in
preparation of Components to make changes in the applications and to develop safer QC
processes, the validation of the QC software of the same kind in Blood Banks and QC
Laboratories to develop safer and more reliable software and analysis of the requirements
of the country for a hemovigilance system for the traceability of the blood components and

for adding a QC approval system into it [10].

7.1. The Necessity and Benefits of QC of Blood Products

It is inevitable, even in the best blood banks and in the best of laboratories, that

some materials will fail some of the tests and a strict protocol should be drawn up showing

action to be taken in such an eventuality.

All staff in the blood bank service should be trained to accept quality control as a

welcome and necessary part of everyday work. It is useful to cultivate a positive attitude

53

towards the detection and correction of errors though the emphasis is on the prevention of

problems and the production of blood components [3].

In addition, some research has shown that computerized software automation of
blood banks and their QC procedures reduce the cost of Components, the time period of
preparation, the wastage percent of blood products [1], the error rates in the procedures of
preparation and QC of the preparations [23], and, as stated before, by reducing the risk
associated with producing defective components and ensuring a greater productivity
through reduced manufacturing downtime, QC Procedures improve the productive life of

expensive equipment of Blood Banks.

In Turkey, the data of error rates was unavailable. And, the show of improved QC
performance and low error incidence rates would require a very large prospective study [5,

23].

Haemovigilance networks should embody operational linkages between hospitals,
and blood banks. There is a need to coordinate efforts at QC Laboratory, Hospital, Blood
Bank and National Authority levels, and to develop effective collaboration with experts,
developers, and institutions working for QA of Components and Blood Safety at different

levels.

7.2. Future work on development of QC managing software

This project is limited by the QC of components ES-AD, TS, and the FFP. And, it is
useful, practical, and adequate for the Blood Banks of Turkey for the usage of the software
to be started immediately. In a blood bank which has different QC automations, (e.g. like
ones in Europe) the software modules of QC of ABO Grouping, QC of FactorVIlIc tests,
QC of test kits (reagents), and QC approvals of refrigerator temperature stability, which are

done several times a day should also be developed.

In future projects, the development of the software can be done as explained below:

54

Software development can be done to manage not only QC of Components ES-AD,
TS, and the FFP, but also all kinds of blood components, including validations of the QC
laboratory itself: ABO Grouping, TestKits, Storage, Equipment. The modeling of the

software allows us to do so and adds different kinds of Component Forms and Parameters.

It is not advisable to link the data of the QC results with the data of main managing
system of the blood bank directly because of the possibility of unauthorized data entry and
problems during development and validation of the software [5]. But, the QC Software can
use an internal network to go a specific data storage area to get specific information or a
text file without interrupting the main system and without interference regarding the blood
components, test results, etc. So, the QC Specialist will be able to trace the component

from a donation to a recipient.

The results and “done” approvals of laboratory procedures that take place outside
the QC Laboratory can also be transferred automatically to the QC Managing Software via
the internal network of the blood bank. This will save time, decrease the number of
bureaucratic procedures, and allow the QC Specialist to follow the procedures in real time.
This module can also exercise administrative control over the QC procedures. This way,
the records of QC procedures can be signed by the supervisor [11] and this can allow the

printing of documents or reports according to the laws of Tiirkiye.

The computer of the QC Lab can communicate with the Blood Counting Equipment
and other test Equipment via the RS232 serial port with one of the protocols of: ASTM (E
1381), HL7, ASC X12, UN/EDIFACT, which are usually used in laboratory equipment
[1]. Even if the protocol is not apparent, the transferred data can be copied to a text file and
the QC Managing software picks up the information from this text file. For this procedure,
Windows Software of Hiperterminal.exe or the Activex Communication Tools of Visual

Languages can be used [1]. This way, the automation of the QC System will be complete.

The QC Software can allow us to create a datasharing link via the Internet between
the centre and its branches. The results are collated and accuracy scores can be determined;
the results can be communicated to all participating laboratories (in coded or uncoded form

according to local agreements) in order to enable each laboratory to compare its own

55

quality standard [2] with that of a large number of other laboratories including the
reference centre selected by the Blood Bank Administration. With this software module,

international performance testing and statistical evaluations can also be done.

APPENDIX A. QUALITY REQUIREMENTS

A.1 Quality Requirements of Whole Blood

Table A.1

Table of Quality Requirements of Whole Blood [3].

56

Parameter to be checked

Quality requirement

Frequency of

Control

control executed by
1 ABO,Rh D Grouping All units grouping lab
2 anti-HIV 1&2 Negative by approved All units screening lab
screening test
3 HBsAg Negative by approved All units screening lab
screening test
4 anti-HBc¢ Negative by approved All units screening lab
. screening test
(when required)
5 anti-HCV Negative by approved All units screening lab
screening test
6 | Syphilis (when required) | Negative by screening test All units screening lab
7 anti-CMV Negative by screening test | As required | screening lab
(when required)
8 | anti-HTLV I&II (when | Negative by screening test All units screening lab
required)
9 Volume 450 ml £+ 10% volume 1% of all units | processing
excluding anticoagulant | with a min. of lab
4 units/month
10 Haemoglobin Minimum 45 g/unit 4 units per QC lab
month
11 | Haemolysis at the end of <0.8% of red cell mass 4 units per QC lab[21]
storage month

A.2 Quality Requirements of ES-AS

Table A.2

Table of Quality Requirements of ES-AS [3].

57

Parameter to be Quality requirement Frequency of Control
checked control executed by
1 ABO,Rh D Grouping All units grouping lab
2 anti-HIV 1&2 Negative by approved screening test | All units screening lab
3 HBsAg Negative by approved screening test | All units screening lab
4 anti-HBc Negative by approved screening test | All units screening lab
(when required)
5 anti-HCV Negative by approved screening test | All units screening lab
6 Syphilis (when Negative by screening test All units screening lab
required)
7 Anti-CMV Negative by screening test Asrequired | screening lab
(when required)
8 | anti-HTLV I&II (when Negative by screening test All units screening lab
required)
9 Volume to be defined for the system used 1% of all Processing lab
units
10 Hct 0.50-0.70 4 units per QC lab
month
11 Haemoglobin minimum 45 g/unit 4 units per QC lab
month
12 | Haemolysis at the end <0.8% of red cell mass 4 units per QC lab[21]
of storage month

A.3 Quality Requirements of TS

Table A.3

Table of Quality Requirements of TS [3].

58

Parameter to be checked

Quality requirement

Frequency of control

Control

(specification) executed by
1 ABO,Rh D Grouping All units grouping lab
2 anti-HIV 1&2 Negative by approved All units screening lab
screening test
3 HBsAg Negative by approved All units screening lab
screening test
4 anti-HBc Negative by approved All units screening lab
(when required) screening test
5 anti-HCV Negative by approved All units screening lab
screening test
6 Syphilis (when required) Negative by screening test All units screening lab
7 anti-CMV Negative by screening test As required screening lab
(when required)
8 | anti-HTLV I&II (when required) | Negative by screening test All units screening lab
9 HLA or HPA Typing as required HLA lab
(when required)
10 Volume > 40 ml all units Processing lab
11 Platelet Count” > 60 x 10°/single unit 1% of all units with a QC lab
equivalent minimum of 10 units per
month
12a Residual leucocytes* QC lab
Before leucocyte depletion <0.2 x 10%/single unit 1% of all units with a
a. prepared from PRP equivalent minimum of 10 units per
. . th
b. prepared from buffy-coat | <0.05x 10”/single unit o
equivalent
12b Residual leucocytes™ <0.2 x 10%single unit 1% of all units with a QC lab
After leucocytes depletion equivalent minimum of 10 units per
month
13 | pH measured™ (+22 °C) at the 6.4t074 1% of all units with a QC lab
end of the recommended shelf minimum of 4 units per
life month
* These requirements shall be deemed to have been met if 75% of the units tested fall within the values
indicated.
** These requirements shall be deemed to have been met if 90% of the units tested fall within the values
indicated.

*** Measurement of the pH in a closed system is preferable to prevent CO2 escape. Measurements may be
made at another temperature and converted by calculation for reporting pH at +22 °C.

A.4 Quality Requirements of FFP

Table A.4

Table of Quality Requirements of FFP [3].

59

Parameter to be Quality requirement Frequency of control Control
checked (specification) executed by
1 ABO,Rh D Grouping All units grouping lab
2 anti-HIV 1&2 Negative by approved screening All units screening lab
test
3 HBsAg Negative by approved screening All units screening lab
test
4 anti-HBc Negative by approved screening All units screening lab
(when required) test
5 anti-HCV Negative by approved screening All units screening lab
test
6 Syphilis (when Negative by screening test All units screening lab
required)
7 anti-HTLV I&II (when Negative by screening test All units screening lab
required)
8 Volume stated volume + 10% all units processing lab
9 Factor VIIIc >70 IU per 100 ml every two months. QC lab
a) pool of 6 units of mixed
blood groups during first
month of storage.
b) pool of 6 units of mixed
blood groups during last
month of storage.
10 Factor VIIIc Average (after freezing and Every 3 month QC lab
thawing): > 70 % of the value of | [(units in the first month of
the freshly collected plasma unit storage**.
11 Residual cells* red cells: < 6.0 x 109/1 1% of all units with a QC lab
leucocytes: < 0.1 x 109/1 minimum of 4 units/month
platelets: <50 x 109/1
12 Leakage no leakage at any part of all units processing and
container e.g. visual inspection receiving
after pressure in a plasma laboratory
extractor, before freezing and
after thawing
13 Visual changes no abnormal colour or visible all units "
clots
* Cell counting performed before freezing. Low levels can be achieved if specific cellular depletions

are included in the protocol.
*k

The exact number of units to be tested could be determined by statistical process control

APPENDIX B. QC PROCESSES

B.1 QC Process of ES-AD Component

Start

b

The Number of
required Samples of
ES-ASis 4.

To Storage Dept

1|

Collection of
The Needed
Samples

Request form,
for collecting the Needed Samples;
from Storage Dept. of Blood Bank

From Storage Dept

e

Samples of ES-AS

EEEEEE

|

Collection of
Needed Information of
QcC,
from other
Laboratory Units

From Grouping Laboratory

.............

»,

Are
ABO, RhD Grouping
of All Units done?
YES

From Screening Laboratory

Are
anti-HIV 1&2, HbsAg, anti-Hbc(when
required), anti-HCV, Syphilis(when
required), anti-CMV(when required),
anti-HTLV 1&II(when required)
of All Units;
and anti-CMV test when required
done?
YES

From Processing Laboratory

o

Are
\/olume measurements
of At least 1% of all Units done?
YES

Figure B.1 Diagram of QC Process of ES-AD Component

60

Manual Input

igh

Data Inputs
of Unit Number, Blood Collection

Manual Input

QC Laboratory

QC Process |.

Test Results of Sample
Haematocrit %,

Date, Expiry Date, and Unit Type = — — M _ Hemoglobin gr.
(only validation), -—- |/ Repeat the procedure
of each ES-AD Sample for each one of the
Samples
i alls
Barcode Input Direct RS 232 Input
NI from Test Equipment
Storage Dept Storage Dept
Storage of the QC Samples u
Are All of the QC samples,
Stored until expiry date,
. in suitable storage conditions,
Storage Rl and in the same conditions,
until Expiry date, and in the same place
in suitable storage conditions, with other ES-AS Components?
and in the same conditions,
and in the same place ‘ YES
with other ES-AS Components
Manual Input Manual Input
1L QC Laboratory | |
Access Sample QC Process II. Test Results of Sample

from QC Mark on the Sample,
and from data
(Unit Number and Unit Type)

Barcode Input

N

Repeat the procedure _

for each one of the
Samples

Haematocrit on Expiry date,
Hemoglobin on Expiry date,
Hemolysis on Expiry date.

Direct RS 232 Input
from Test Equipment

Figure B.1 Diagram of QC Process of ES-AD Component

61

Storage Dept

Samples of ES-AS,
on their Expiry date.

EEEEEE

to Administration

Monthly QC Report

------------- In case of Failure of QC

to Administration

Annual QC Report, if needed

End of QC Process

62

Storage Dept

Are the ES-AS samples,
used for QC Process Exterminated
with a suitable method?

YES

Related Laboratory Units

Error Source Investigation Results

Each of Related Laboratory Unit

Error Correction Request Report

Definition of Arrows

@ Flowing Direction of Process
- QC Sample Transferred
‘ Test Results Transferred

~ Data Input of Sample

s Information Transferred

Report Sent or Printed

Figure B.1 Diagram of QC Process of ES-AD Component

B.2 QC Process of TS Component

Manual Input

The Number of TS Components
Produced in this Month

0
.............

..............

| |

Direct Input from
the Main Software
for Blood Products

From HLA Laboratory

Are
HLA and HPA tests eereenenacts
when required of All Units done?
YES

..............

Start

AL

Calculation Of
The Number of

63

To Storage Dept

Samples Required

Request form,
for collecting the Required Samples;
from Storage Dept. of Blood Bank

L

Collection of
The Required
Samples

__/—_

From Storage Dept

L

Collection of
Needed Information of
QC,
from other
Laboratory Units

Samples of TS

EEEEEE

From Grouping Laboratory

Are
ABO, RhD Grouping
of All Units done?
YES

From Screening Laboratory

Are
anti-HIV 1&2, HbsAg, anti-Hbc(when
required), anti-HCV, Syphilis(when
required), anti-CMV(when required),
anti-HTLV I&ll(when required)
of All Units;
and anti-CMV test when required
done?

YES

From Processing Laboratory

.............

Are
Volume measurements
of all Units done?

YES

Figure B.2 Diagram of QC Process of TS Component

Manual Input

g

Data Inputs
of Unit Number, Blood Collection
Date, Expiry Date, and Unit Type
(only validation),
of each TS Sample

Barcode Input

(T

Storage Dept

QC Laboratory

QC Process |.

Manual Input

g

Test Results of Sample
Thrombocyte Count,

_ Residual Leucocyte Count.
Repeat the procedure

Storage of the QC Samples

EEEEES

until Expiry date,
in suitable storage conditions,
and in the same conditions,
and in the same place
with other TS Components

—— =M
——— I/
for each one of the
Samples
Storage R

o

Manual Input
J L
Access Sample
from QC Mark on the Sample, = = = }
and from data ===

(Unit Number and Unit Type)

Barcode Input

QT

QC Laboratory

QC Process Il

Repeat the procedure
for each one of the
Samples

o,

alls

Direct RS 232 Input
from Test Equipment

Storage Dept

Are All of the QC samples,
Stored until Expiry Date,
in suitable storage conditions,
and in the same conditions,
and in the same place
with other TS Components?

YES

Manual Input

Test Results of Sample
PH value on Expiry date.

Figure B.2 Diagram of QC Process of TS Component

64

65

Storage Dept Storage Dept
Samples of TS, Extermination I'_ Are the TS samples,
on their Expiry date. of Used s 4 used for QC Process Exterminated
Samples b with a suitable method?
YES

to Administration Related Laboratory Units

In case of Failure of QC
Error Source Investigation Results

Monthly QC Report
QC Reporting

to Administration Each of Related Laboratory Unit

Annual QC Report, if needed <:oco:c:c::cp0 L » Error Correction Request Report

End of QC Process

Definition of Arrows

@ Flowing Direction of Process
- QC Sample Transferred
- Test Results Transferred

I ~ Data Input of Sample

~+ Information Transferred

Report Sent or Printed

Figure B.2 Diagram of QC Process of TS Component

B.3 QC Process of FFP Component

Manual Ingut

-

The Number of FFP Components
Produced in this Month

.............

]
..............

| |
Direct Input from
the Main Software
for Blood Products

From Processing and Receiving Laboratory

Start

AL

Calculation Of
The Number of
Samples Required

66

To Storage Dept

]!

Collection of
The Required
Samples

Request form,
for collecting the Required Samples;
from Storage Dept. of Blood Bank

From Storage Dept

Is

the extractor of all Units made?
YES

Inspection of Leakage, esp. while in ===

Are
FactorVIllic tests with pool of 6 units
of mixed blood groups during first,
and another for last month of
storage;
And
FactorVllic tests with 10 separate
units in the first month of storage;
done?
YES

..............

From Processing and Receiving Laboratory

Is
Inspection of Visual Changes?
of all Units made?
YES

4L

Collection of
Needed Information of
QC,
from other
Laboratory Units

Samples of FFP

EEEEEE

From Grouping Laboratory

Are
ABO, RhD Grouping
of All Units done?
YES

From Screening Laboratory

Are
anti-HIV 1&2, HbsAg, anti-Hbc(when
required), anti-HCV, Syphilis(when
required), anti-CMV(when required),
anti-HTLV I&l(when required)
of All Units;
and anti-CMV test when required
done?
YES

From Processing Laboratory

Are
Volume measurements
of all Units done?
YES

\'4

Figure B.3 Diagram of QC Process of FFP Component

Manual Input

J L

Data Inputs
of Unit Number, Blood Collection
Date, Expiry Date, and Unit Type
(only validation),
of each FFP Sample

Barcode Input

NN

QC Laboratory
QC Process
Repeat the procedure

for each one of the
Samples

Manual Input

Test Results of Sample
Residual Erythrocyte Count,
Residual Leucocyte Count,

_ Residual Thrombocyte Count.

alls

Direct RS 232 Input
from Test Equipment

Storage Dept

Storage Dept

Samples of FFP,

snnEEE

Extermination
of Used
Samples

Are the FFP samples,

b used for QC Process Exterminated

* with a suitable method?
YES

to Administration

Monthly QC Report

to Administration

Annual QC Report, if needed

QC Reporting

Related Laboratory Units

In case of Failure of QC
gt Error Source Investigation Results

Each of Related Laboratory Unit

———\{ Error Correction Request Report

End of QC Process

Definition of Arrows

Flowing Direction of Process

QC Sample Transferred

Test Results Transferred

=>
—
—_

===t Data Input of Sample

-———
o,

Information Transferred

Report Sent or Printed

Figure B.3 Diagram of QC Process of FFP Component

67

68

APPENDIX C. THE MENU TREE OF THE SOFTWARE

Table C.1

Menu tree of the Software.

* Default Values . ** Some of the buttons which are modeled to be added to domain code of the software,
have no place in the GUI design of this version. They are given as “N/A” in the menu tree list below.

Tree Function (Function is stated at the left column; unless
explained)
File
Open Opens a database file of another source
Save Saves the database file to another source
Save& Exit
Find Form Shortcut to Direct Form Access
Find Sample Shortcut to Direct Sample Access
Print Report Prints Selected Monthly Report

Print Annual Report

Prints Selected Annual Report

Print Request Form

Prints Selected Request Form

Edit

Undo

Redo

Cut

Copy

Paste

Select All

Input

Form

ES

Shortcut to ES Sample Input

TS

Shortcut to TS Sample Input

FFP

Shortcut to FFP Sample Input

Other N/A**

Sample

Shortcut to Direct Sample Access

Summation Formula N/A**

N/A**

Statistical Formula N/A**

N/A**

Report

Monthly
ES Shortcut to ES Report Output Menu
TS Shortcut to TS Report Output Menu
FFP Shortcut to FFP Report Output Menu

Other N/A***

Annual Summation

Shortcut to Annual Summation Menu

Annual Statistics N/A**

N/ *%

Request Form

69

ES Shortcut to ES Request Form Output Menu
TS Shortcut to TS Request Form Output Menu
FFP Shortcut to FFP Request Form Output Menu
Statistics N/A*
N/A**
SetUp
Create Forms of the Year Creates New Forms of the Year
Language N/A** N/A*
QC Setup
QC Frequency N/A*
QC Criteria
QC Min-Max Scientific Values
QC Used Parameter Units N/A*™
Error Sources N/A** N/A**
Reports Setup
Monthly Report
Show QC Requirements* Puts QC Requirements area to the report
Show QC Frequency* Puts QC Frequency area to the report
Show QC Samples* Puts QC Sample Results area to the report
Show QC Error Sources* Puts QC Error Investigations area to the report
Show QC Explanations* Puts QC Explanation area to the report
Show QC Approvals* Puts QC Approval area to the report
Annual Summation Report N/A*
Statistical Report N/A**
E-Mail Setup N/A*
Barcode Deffaults
Manual * Selects Manual Side of the Input Screens

Barcode Reader

Selects Barcode Side of the Input Screens

Administratives List

Add Name
Delete Name

Password N/A** N/A*
Add Password

Change Password N/A*

Return to Deffaut Values

Help

User Manual

Help Index

On Restrictions of B Version

Explanations on the B Version

About

Copyright

Register N/A™

N/A**

APPENDIX D. DEFAULT VALUES OF THE SOFTWARE

Table D.1

Default unit list of different parameters used in the GUI of the software, next to the test results.

Unit String

1 %

2 gr/unit

3 10°/L

4 10°/unit

5 Ph

6 (Blank)
Table D.2

Default values of parameters of QC requirements and scientific values recorded in the software.

> £ = = 3 @

g f [} = [= [g O E’ % E

|l o | 25| L5 25| =3 = £ € g

£ E8| =8 =Ew| s S = 8§ 3

_ = s> s> [> © > S 2 g

Definition of the Parameters to be Checked o 5 = S & <

(7]

Erythrocyte Suspension Haematocrit % 1st Day 1 0 30 90 50 70 % 100
Erythrocyte Suspension Haemoglobin 1st Day 2 0 10 120 45 100 gr/unit 100
Erythrocyte Suspension Haematocrit % 42 Day 3 42 30 100 55 80 % 100
Erythrocyte Suspension Haemoglobin 42 Day 4 42 10 120 45 100 grfunit 100
Erythrocyte Suspension Haemolysis % 42m Day 5 42 0 40 0 0.8 % 100
Fresh Frozen Plasma Residual Erythrocyte, 1st Day 6 0 0 30 0 6.0 109/L 100
Fresh Frozen Plasma Residual Leucocytes 7 0 0 30 0 0.1 109/L 100
Fresh Frozen Plasma Residual Thrombocyte 8 0 0 250 0 50 109L 100
Thrombocyte Suspension Residual Leucocytes 9 0 0 30 0 0.2 10%/unit 100
Thrombocyte Suspension Thrombocyte 10 0 30 200 60 130 10%/unit 75
Thrombocyte Suspension Ph Degree, 4t Day 1 4 4 10 6.4 74 PH 100

70

71

APPENDIX E. QC REPORT SAMPLES

E.1 Monthly ES in AD QC Report

MONTHLY QUALITY CONTROL REPORT

Reporting Module
BLOOD BANK : QC Frequency 4 Units / Month
ISTANBUL Total Number of Components Produced in this Month :
Nr. of Samples according to 1 % of Total Nr. of Comp. Produced in this Month :
MONTH : Instead of 1% of Total Nr. of Comp., The number of Samples is limited to 4
The number of Samples of this Month is : 4
ABO and RhD Grouping of All Units are done. YES
COMPONENT : Al of the Screening tests required are done. YES
ERYTHROCYTE SUSP. IN ADD. SOL. Volume measurements of at least 1% of all Units are done ~ YES
Volume measurements of all Units are done -
DATE : HLA and HPA tests when required of All Units are done.

Inspection of Visual Changes and Leakage in the Extractor of all Units is made.
Factor Vllic tests with pooled or separate units are done by qc. -
All of these Samples have been stored, under suitable conditions. ~ YES
And with the same conditions, as the other same type Comp; before and during testing. ~ YES
All of these samples, have been exterminated with a suitable method. ~ YES

QC Laboratory Test Results

Htc % Hb Htc % Hb Hemolysis
Day 1¢t Day 1¢t Day 427 Day 420 Day 42
. Quality Quality Qualty Quality Quality
Component Unit Nr. CS Il.og(ejate Eggtl;y 50-70% | >45gr/unt | 50-70% | >45gr/unit Bieo mEnt ggrr;rpﬁgssc;r%gz C?)dce SC;%I
1
2
3
4
5
6
7
8
9
10
1
12
Possible Error Sources
Laboratory Blood Count Equipment :
Transportation & Storage Conditions :
Centrifuge Equipment :
Extractor Usage :
Component Bag :
Laboratory Units to be Informed :
Other Explanations :
Quality Control Specialist Laboratory Administrator Blood Bank Manager
Name
Signature

Figure E.1 Monthly ES in AD QC Report

E.2 Monthly TS QC Report

MONTHLY QUALITY CONTROL REPORT

72

4€>BOUNBIoodaCM V2.1B

Reporting Module

BLOOD BANK : QC Frequency % 1 of all units with a Minimum of 10 Units / Month
ISTANBUL Total Number of Components Produced in this Month :
Nr. of Samples according to 1 % of Total Nr. of Comp. Produced in this Month :
MONTH : Instead of 1% of Total Nr. of Comp., The number of Samples is limited to
The number of Samples of this Month is 10
ABO and RhD Grouping of All Units are done. ~ YES
COMPONENT : All of the Screening tests required are done. YES
THROMBOCYTE SUSP Volume measurements of at least 1% of all Units are done -
Volume measurements of all Units are done YES
DATE : HLA and HPA tests when required of All Units are done. ~ YES
Inspection of Visual Changes and Leakage in the Extractor of all Units is made. -
Factor Vllic tests with pooled or separate units are done by qc. -
All of these Samples have been stored, under suitable conditions. YES
And with the same conditions, as the other same type Comp; before and during testing. ~ YES
All of these samples, have been exterminated with a suitable method. YES
QC Laboratory Test Results
Thrombocy | Residual pH Value
Count Leucocytes Day
Day 1st Day 1st 4tn
. Blood Expiry Qualt Qualt Qualit Comments on the
Component Unit Nr. y y y QC | QC
Coll. Date Date b A (bl T QC of the Sample Code | Spcl
MUnit JUnit
1
2
3
4
5
6
7
8
9
10
1
12
Possible Error Sources
Laboratory Blood Count Equipment :
Transportation & Storage Conditions :
Centrifuge Equipment :
Extractor Usage :
Component Bag :
Laboratory Units to be Informed :
Other Explanations :
Quality Control Specialist Laboratory Administrator Blood Bank Manager

Name

Signature

Figure E.2 Monthly TS QC Report

E.3 Monthly FFP QC Report

MONTHLY QUALITY CONTROL REPORT

73

©>BOUNBIoodQCM V2.1B

Reporting Module

BLOOD BANK : QC Frequency % 1 of all units with a Minimum of 4 Units / Month
ISTANBUL Total Number of Components Produced in this Month :
Nr. of Samples according to 1 % of Total Nr. of Comp. Produced in this Month :
MONTH : Instead of 1% of Total Nr. of Comp., The number of Samples is limited to
The number of Samples of this Month is : 4
ABO and RhD Grouping of All Units are done. ~ YES
COMPONENT : All of the Screening tests required are done. YES
FRESH FROZEN PLASMA Volume measurements of at least 1% of all Units are done -
Volume measurements of all Units are done ~ YES
DATE : HLA and HPA tests when required of All Units are done. -
Inspection of Visual Changes and Leakage in the Extractor of all Units is made. ~ YES
Factor Vlllc tests with pooled or separate units are done by qc. ~ YES
All of these Samples have been stored, under suitable conditions. ~ YES
And with the same conditions, as the other same type Comp; before and during testing. ~ YES
All of these samples, have been exterminated with a suitable method. -
QC Laboratory Test Results
Residual Residual Residual
Erythrocyt | Leucocytes | Thromboc
Day 1¢t Day 1st Day 1¢
. Blood Expiry Qually Quality Quaily Comments on the ac | ac
Component Unit Nr.
Coll. Date Date Bt ISt QC of the Sample Code | Spel
1
2
3
4
5
6
7
8
9
10
1
12

Possible Error Sources

Laboratory Blood Count Equipment :
Transportation & Storage Conditions :
Centrifuge Equipment :

Extractor Usage :

Component Bag :

Laboratory Units to be Informed :

Other Explanations :

Quality Control Specialist

Name

Signature

Laboratory Administrator

Figure E.3 Monthly FFP QC Report

Blood Bank Manager

E.4 Annual QC Results Summation Report Form

ANNUAL QUALITY CONTROL SUMMATION REPORT © BOUNBIoodaCH V215
Reporting Module
BLOOD BANK : QC Frequency % 1 of all units with a Minimum of 10 Units / Month
ISTANBUL Total Number of Components Produced in this Year :
The number of Samples of this Year: 120
YEAR: The number of Unqualified Samples of this Year :
ABO and RhD Grouping of All Units are done. ~ YES
COMPONENT : All of the Screening tests required are done. YES
THROMBOCYTE SUSP Volume measurements of at least 1% of all Units are done -
Volume measurements of all Units are done ~ YES

DATE : HLA and HPA tests when required of All Units are done. ~ YES
Inspection of Visual Changes and Leakage in the Extractor of all Units is made. -

Factor Vllic tests with pooled or separate units are done by qc. -

All of these Samples have been stored, under suitable conditions. YES

And with the same conditions, as the other same type Comp; before and during testing. ~ YES

All of these samples, have been exterminated with a suitable method. ~ YES

Quality Control Annual Summation and Percentage Table of Thrombocyte Suspension Component
according to QC Laboratory Test Results of the Year

MONTHS

%
JAN FEB MAR APR MAY JUN JuL AGU SEP ocT Nov DEC z INCIDENCE

Number of the Samples

Nr. of Unqualifed Samples

Percentage Of Unqualifed Samples

@ Number
) E‘ «| of Unqualified Results
255
s § 3| Percentage of Unqualified
& = Results, to the Number of
= Test Results of that Month
) Number
5 S & ofUnqualfied Results
[} =] O
E a § Percentage of Unqualified
& ® 3 Results, to the Number of

Test Results of that Month

Number
of Unqualified Results

Percentage of Unqualified
Results, to the Number of
Test Results of that Month

Parameter
Ph Degree

QC Status Code ac |ac |ac |ac |ac |ac |ac |ac ac | ac | ac | ac QC OK.
OK. |OK |OK |OK |OK |[OK |OK |[OK | OK | OK | OK | OK.

Explanations Required:

Quality Control Specialist Laboratory Administrator Blood Bank Manager
Name

Signature

Figure E.4 Annual QC Results Summation Report Form

E.4.1 Annual QC Results Summation Report, TS Sample

ANNUAL QUALITY CONTROL SUMMATION REPORT CBOBNE < iy 21
Reporting Module

BLOOD BANK : QC Frequency % 1 of all units with a Minimum of 10 Units / Month
ISTANBUL Total Number of Components Produced in this Year: 1240

The number of Samples of this Year: 155

YEAR: The number of Unqualified Samples of this Year : 15
ABO and RhD Grouping of All Units are done. ~ YES

COMPONENT : All of the Screening tests required are done. YES
THROMBOCYTE SUSP Volume measurements of at least 1% of all Units are done -

Volume measurements of all Units are done ~ YES

DATE : HLA and HPA tests when required of All Units are done. YES
Inspection of Visual Changes and Leakage in the Extractor of all Units is made. -

Factor Vllic tests with pooled or separate units are done by qc. -

All of these Samples have been stored, under suitable conditions. ~ YES

And with the same conditions, as the other same type Comp; before and during testing. ~ YES

All of these samples, have been exterminated with a suitable method. YES

Quality Control Annual Summation and Percentage Table of Thrombocyte Suspension Component
according to QC Laboratory Test Results of the Year

MONTHS

%
JAN FEB MAR | APR MAY JUN JuL AGU SEP ocT NOV DEC z INCIDENCE

Number of the Samples 10 10 10 20 20 20 10 10 15 10 10 10 155

Nr. of Unqualifed Samples 1 0 0 1 4 3 3 0 0 1 1 1 15

Percentage Of Unqualifed Samples | %10 %0 %0 %5 %20 %15 %30 %0 %0 %10 %10 %10 - 9.68

Number 1 0 0 1 0 0 3 0 0 0 0 0 2
of Unqualified Results

Percentage of Unqualified

Results, to the Numberof | o9 | 90 | %0 | %5 | %0 | %0 | %30 | %0 | %0 | %0 | %0 | %0 3.23
Test Results of that Month

Parameter
Thrombocyte
Count

Number 1 0 0 1 4 3 0 0 0 1 1 2 13
of Unqualified Results

Percentage of Unqualified

Results, to the Numberof | o0 | 90 | %0 | %5 | %20 | %15 | %0 | %0 | %0 | %10 | %10 | %20 8.39
Test Results of that Month

Parameter
Residual
Leucocvtes

Number 0 0 0 0 0 0 0 0 0 0 0 0 0
of Unqualified Results

Percentage of Unqualified

Results, to the Numberof | o0 | 90 | %0 | %0 | %0 | %0 | %0 | %0 | %0 | %0 | %0 | %0 0.00
Test Results of that Month

Parameter
Ph Degree

QC Status Code ac [ac |ac |a |ac |ac |@c<|ac | e | ac | ac | ac QC OK.
OK |OK |OK |OK |[OK |OK |75y |OK | OK | ok | oK | oK

Explanations Required:

Quality Control Specialist Laboratory Administrator Blood Bank Manager
Name
Signature

Figure E.5 Annual QC Results Summation Report, TS Sample

76

APPENDIX F. COMPONENT REQUEST FORM SAMPLE

QUALITY CONTROL

SAMPLE COMPONENT REQUEST FORM Reporting Module
BLOOD BANK : COMPONENT :

ISTANBUL
MONTH : DATE :

For the Monthly Quality Control Processes, that will take place in QC Lab;
The Blood Components written below requested, from the Storage Dept of Blood Bank.
The Components are transported to related Unit of Blood Bank, on dates indicated.

Unit Numbers and Transportation Data of the Components are as follows :

1st Transportation 2nd Transportation 3 Transportation 4t Transportation
From Storage to QC Lab || From QC Lab to Storage || From Storage to QC Lab | From QC Lab to Storage

Nr.

Comp. Type
Comp. Unit Nr.
Blood Coll.Date
Exp. Date

Date

Storage Speclt

QC Specialist

Date

Storage Speclt

QC Specialist

Date

Storage Speclt

QC Specialist

Date

Storage Speclt

QC Specialist
Exterminate
Other

O|N|O| OB |W[N—

©

—
o

—_
N

—_
N

—_
w

N
~

—_
o

—_
(o))

—_
~~

—_
[oo)

—_
«©

N
o

Explanations If Required :

Quality Control Specialist Storage Department Administrator Blood Bank Manager
Name

Signature
Figure F.1 Component Request Form Sample

77

APPENDIX G. SAMPLE BARCODE READINGS

Table G.1
Sample barcode readings from Blood Labels of Tiirk Kizilay1. (Data acquisition by a barcode reader from

eight samples of blood component labels. Localizations of the barcodes on the label, which are shown in

numbers in the list, defined on the label sample below.)

L
|

SR

W-DVS
usonu3

-

HONOA NTIONQD

L¥'60 G002 88X mo/ﬂ
_uLm [Q666810 $0€L00L
TRRIEN O A
\
[A }
660666666666666660 | 0£80¥GES00d/ | 0€:80 ‘G002ZL0Z 0£:80 5002} 180 0000¥1080- S3 | 0029%- +Y £¢9¢8G10S0€100%- | 928G
660666666666666660 | ££11¥GES00d/ | €111 ‘G002ZLO0Z £¢:11 ‘50021180 0000¥080- S3 | 00€L% +4 €¢C16G10S0€100- | 216G
660666666666666660 | L760YSES00Y/ | L¥:60 ‘G002ZL0Z 1160 5002} 180 0000080- S3 | 000¢% -d £¢668G10S0€100- | 663G}
660666666666666660 | £1£291£5003/ | €1'€Z ‘S002LLT) €162 '5002}120 000¥¢8¢e0- SL | 00S6% -0 e¢yL/G10S0EL00F | ¥L.G)
660666666666666660 | 009L£0€900%/ | 00:9} ‘90020L0S 00:9} ‘5002010¢ 000104080 | d44 | 008¢%- | -9V | €2638¢10G0SL00k- | 638€)
660666666666666660 | 15210665009/ | 162} ‘G002ZL9L 167} 60021110 0000080- S3 | 0019%" +0 £¢G¢6G10S0€100 | G265
660666666666666660 | 63629165009/ | 6G:€Z ‘G002LLT) 6562 ‘5002} 120 000¥¢8¢e0- SL | 0090%- v €¢9./G1080€100% | 924G
660666666666666660 | 922219003/ | 92:22 ‘90021120 92:2¢ 5002} 120 000104080~ | d44 | 00¥8% | +8VY | €2¢¢/.GL0S0EL00) | ¢L.6)
passed ajeq Andx3 awi| awi] pue ‘ajeq adf] adf] | dnoig | dnoig |Jaquinp jusuodwos| IN
:S)|nsay Js9] Jo apoaieg | Jo apoaleg pue ‘ayeq Audx3 uo1323||09 poolg Juauodwos |jusuo | poojg o | pooig Jo apoaleg Jusuo
joapoaleg |dwos | apoaieg dwo?
8 9 G l }

78

APPENDIX H. SOFTWARE SOURCE CODE

H.1 Source Code of Domain

FormContainer
package com.ptah.kankalite.domain;

import java.io.Serializable;
import java.util.HashMap;
import java.util.Map;

import java.util.TreeMap;

import com.ptah.kankalite.constants.FormState;
import com.ptah.kankalite.constants.FormType;

public class FormContainer implements Serializable {
// TODO : Bilimsel min, bilimsel max degerlerini kontrol et

* Her formdaki sample sayisini kullanici tarafindan forse etmek
igin 0 dan farkli bir dedger verilir.

private int userSampleCount = 0;
private static final Tong serialversionUID = 5718965482615025476L;

// String - 022007, 112007, etc

// Integer - 3,5,6, etc

// Verilen periyotta her formdan kac tane alinmasi gerektigini tutar

private Map<FormType, Map<String, Integer>> periodicSampleCount =
new TreeMap<FormType, Map<String, Integer>>(Q);

/ *
* FormContainer'daki formlarin Tistesi formList objesinde
tutulur (Belirli bir formType'a ait Map'ler seklinde)
* Bu Map'lerin key'i donem bilgisini gosteren String, data'si
ise formun kendisidir.

private Map<FormType, Map<String, Form>> formList = new
TreeMap<FormType, Map<String, Form>>();

/ *
o * Belirli bir form tipi icin verilen doneme ait lrin sayisi set
edilir. Bu method cagrildiginda ilgili doéneme]
* ait yeni bir form objesi yaratir ve formList'e ekler.

public void setGeneratedProductCount(FormType formType, String date,
int count) {
Map<String, Integer> periodicSpecificFormvalues;
periodicSpecificFormvalues = periodicSampleCount.get(formType);
if (periodicSpecificFormvalues == null) {
periodicSpecificFormvalues = new HashMap<String, Integer>(Q);

periodicSpecificFormvalues.put(date, count);
periodicSampTleCount.put(formType, periodicSpecificFormvalues);
Form form = generateForm(formType, date);

Map<String, Form> formswithSameType = formList.get(formType);

KA
=

Eder boyle bir Map heniliz yaratilmadiysa, simdi yaratilmali
e

if (formswithSameType == null) {
formswithSameType = new HashMap<String, Form>(Q);

79

formswithSameType.put(date, form);
formList.put(formType, formswithSameType) ;

* Belirli bir sure icersindeki (022007, etc) Ulretilmis olan
urdn say1s1

/
public int getGeneratedProductCount(FormType formType, String date)

int result = O;
Map<String, Integer> Tist = periodicSampleCount.get(formType);
if (list = null) {
try {
result = list.get(date);
} catch (NullpPointerException e) {
result = -1;

}
} else {
result = -1;

return result;

}

public int getNeededSampleCount(FormType formType, String date) {
if (usersampleCount > 0) {
return userSampleCount;

int numberofsamplesToBeTested = -1;
int count = getGeneratedProductCount(formType, date);
if (formType == FormType.ES) {
if (count < 401) {
numberofsamplesToBeTested
} else {
numberofSamplesToBeTested

4;

Math.round((float) (count + 49) /

100); !
} else if (formType == FormType.TS) {
£ //numberofsamplesToBeTested = Math.round((float) count *
0.01F);
; numberofSamplesToBeTested = Math.round((float) (count + 49) /
100);
if (numberofsamplesToBeTested < 10) {
) numberofSamplesToBeTested = 10;
} else if (formType == FormType.TDP) {
if (count < 401) {
numberofSamplesToBeTested = 4;
} else {
; numberofSamplesToBeTested = Math.round((float) (count + 49) /
100);
return numberofsamplesToBeTested;
/ %

* Verilmis olan ay icin form lireteci (0 periyot dicin lretilmis
urinlerin sayisina_bakarak kac sample alinmasi
* gerektigini de bildirir.

public Form generateForm(FormType formType, String period) {
int numberofSamplesToBeTested = getNeededSampleCount(formType,
period);

Map<String, Form> formForSpecificPeriod = new HashMap<String,
Form>();

80

Form form = FormFactory.createForm(formType, period);
form.setNumberofsamplesToBeTested(numberofsamplesToBeTested) ;
formForsSpecificPeriod.put(period, form);

form.createSamples();
return form;

}

public Map<String, Form> getForms(FormType formType) {
return formList.get(formType);

/ %*
* Spesifik bir formu getirir - Basitlik olsun diye konuldu

public Form getForm(FormType formType, String date) {
Form forms = formList.get(formType).get(date);
return forms;

public void setUserSampleCount(int userSampleCount) {
this.userSampleCount = userSampleCount;

public Map<String, Form> getFormsToBeCompletedForYear(FormType type)

Map<String, Form> forms = new TreeMap<String, Form>();
Map<String, Form> currentForms = formList.get(type);
for (String form : currentForms.keySet()) {
FormState state = currentForms.get(form).getState();
if ((state == FormState.SAMPLE_ABSENT) || (state ==
FormState.TESTS_WAITING)) {
forms.put(form, currentForms.get(form));

return forms;

public void createFormsForYear(FormType type, String year) {
Map<String, Form> currentForms = formList.get(type);
if (currentForms == null) {
currentForms = new TreeMap<String, Form>();

}
for (int i =1; i <= 12; i++) {
String index = "" + i + year;
// Basinda 0 olmayan String'lerin basina 0 koyuyoruz
if (index.length() == 5) {
index = "0" + 1index;

if (currentForms.get(index) == null) {
Form form = generateForm(type, index);
currentForms.put(index, form);

formList.put(type, currentForms);

}

public Map<FormType, Map<string, Form>> getFormList() {
return formList;

public void setFormList(Map<FormType, Map<String, Form>> formList) {
this.formList = formList;

public Sample getSpecificSample(FormType formType, int bloodNo) {
Sample result=null;
Map<String, Form> forms=getForms(formType);

}

FormF
packag
import

public
//

tarafi

{

Form
packag

import
import
import
import
import
import
import
import

import
import

import
import
import

public
pr
pr

for (String period:forms.keyset()) {
Form tempForm=getForm(formType, period);
Map<Integer, Sample> samples = tempForm.getSamples();
for (Sample sample:samples.values()) {
if (sample.getBloodNo()==bTloodNo) {
result=sample;

}
}

return null;

actory
e com.ptah.kankalite.domain;
com.ptah.kankalite.constants.FormType;

class FormFactory {

Factory method olarak kullaniTiyor - Sadece FormContainer

ndan kullanildigindan emin olmak Tazim

81

protected static Form createForm(FormType formType, String period)

Form form=null;
if (formType == FormType.ES) {
form = new ESForm(period);

3
if (formType == FormType.TS) {
form = new TSForm(period);

3
if (formType == FormType.TDP) {
form = new TDPForm(period);

return form;

e com.ptah.kankalite.domain;

java.io.Serializable;
java.util.ArrayList;
java.util.cCalendar;
java.util.Date;
java.util.HashMmap;
java.util.List;
java.util.Map;
java.util.TreeMap;

org.eclipse.swt.widgets.Button;
org.eclipse.swt.widgets.Group;

com.ptah.kankalite.constants.FormState;
com.ptah.kankalite.constants.FormType;
com.ptah.kankalite.constants.ParameterType;

abstract class Form implements IForm, Serializable {
otected long id;
otected FormType type;

82

protected Date date;

protected String name;

protected int expiryPeriod;

protected int numberofSamplesToBeTested;
protected FormState state;

protected int totalFailedSampleCountForThisForm;
protected boolean valid;

protected String period;

protected String condition;

protected int TeastSampleCount;

private boolean sampleCountCheck;

private boolean storageBeforeQcCcCheck;
private boolean storageburingQCCheck;
private boolean storageExterminationCheck;
private String qcSpecialist;

private boolean screeningCheck;

private boolean groupingCheck;

private String esComponentBag;

private String esuUnitsToBeInformed;
private String esExtractorusage;
private String esCentrifuge;

private String esStorage;

private String esBloodCountEquipment;
//transient Button sampleUpdateButton;
private int noofProducedComponents;

protected Map<ParameterType, Integer> results = new
TreeMap<ParameterType, Integer>();

private Map<Integer, Sample> samples = new TreeMap<Integer,
Sample>(Q);

List<ParameterType> parameterTypes = new ArrayList<ParameterType>();
pubTic Form() {

state = FormState.SAMPLE_ABSENT;

totalFailedSampleCountForThisForm = 0;
public abstract void checkstate();
public abstract void checkResults();
pubTic abstract void showParametereEntries(Group parameterentry);
public abstract void extractParametersFromGUI(Sample currentSample);
public abstract void updateGUIFromParameters(Sample currentSample);

public int getResult(ParameterType type) {
return results.get(type);

oo
w

/ *
checkstate() burada cagiriliyor - Bitin validity
checking']eri checkstate icersinde yapiliyor.

public FormState getState() {
checkstate();
return state;

public void setState(FormState state) {
this.state = state;

public FormType getType() {
return type;

pubTic void setType(FormType type) {
this.type = type;

public String getName() {
return name;

pubTlic Tong getid() {
return id;

public void setNumberofSamplesToBeTested(int
numberofSamplesToBeTested) {
this.numberofsampTlesToBeTested = numberofSamplesToBeTested;
// createSamples();

pubTlic int getNumberofsamplesToBeTested() {
return numberofsamplesToBeTested;

public Map<Integer, Sample> getSamples() {
return samples;

public void updateAnInitialsample() {
}
/ %

burasi

oo
w

Generic sample parametrelerini set etmek icin en uygun yer

public void createsamples() {
createSamples(0);

pubTic void createSamples(int startPoint) {
for (int i = startPoint; i < numberofSamplesToBeTested; i++) {
Sample sample = new Sample(i);
Map<ParameterType, Parameter> sampleParam = new
HashMap<ParameterType, Parameter>();
for (ParameterType type : parameterTypes) {
sampleParam.put(type, new Parameter(0, -1.0f));

sample.setParameters(sampleParam);

// sample.setProductionbDate(new
Date(System.currentTimeMillis()));

samples.put(sample.getid(), sample);

sample.setExpiryPeriod(expiryPeriod);

/ %

e
=

i. o6rnegin production date'ini set eder

pubTic void setSampleProductionDate(int i, Date date) {
SampTle aSample = samples.get(i);
aSample.setProductionDate(date);
Calendar calendar = Calendar.getInstance();
calendar.setTime(date);
calendar.add(Calendar.DAY_OF_MONTH, this.expiryPeriod);
aSample.setExpiryDate(calendar.getTime());

}

public Date getSampleExpirybate(int i) {
return samples.get(i).getExpirybDate();

pubTic void addParameterType(ParameterType type) {
parameterTypes.add(type);

public Date getbDate() {
return date;

public void setDate(Date date) {
this.date = date;

/ *
* Verilen parametrenin min ve max degerlerinin kalite
degerlerinin arasinda olmas1 durumu kontrol eder.
* Degerlendirmeye girmesi istenmeyen degerler NaN olarak
verilir. minSuccessRate ise Orneklerin % kacinin
gecerli olmasinin yeterli olacagini belirtir. Sonucu
"results" isimli hashMap'de saklar.

protected void checkSpecificParameter(ParameterType type, int min,
int max, float minQvalue, float maxQvalue,

float minSuccessRate) {

results.put(type, 0);

int actualSampleCount = getSamples().keySet().size();

int failedSampleCountForSpecificType = 0;

for (Sample sample : getSamples(). va1ues()) {
Parameter parameter = sample.getParameter(type);
parameter.setvalid(true);
// sample.setvalid(true);
boolean sampleFailed = false;

// 11k alinan ornekten son alinan 6rnege kadar iterate edelim
for (int i = min; i <= max; i++) {

boolean smaller = (minQvalue != Float.NaN &&
parameter.getvalue(i) < minQvalue);

boolean greater = (maxQvalue != Float.NaN &&
parameter.getvalue(i) > maxQvalue);

if (smaller || greater) {

) sampleFailed = true;

3

// Bu parametre fail etti ise

if (sampleFailed) {
parameter.setvalid(false);
sample.setvalid(false);
increaseFailCountForParameter(type, parameter);
failedSsampleCountForsSpecificType++;
totalFailedSampleCountForThisForm++;

}

float actualFailureRate = 0;
try {
actualFailureRate = 100 * failedSampleCountForSpecificType /
actualSampleCount;
% catch (Exception e) {

float maxFailureRate = 100 - minSuccessRate;
if (actualFailureRate > maxFailureRate) {
this.valid = false;
// totalFailedSampleCountForThisForm++;

84

} else {
this.valid = true;

}

private void increaseFailCountForParameter(ParameterType type,
Parameter parameter) {
int val = results.get(type);
results.put(type, val + 1);

public int getFaijledsampleCount() {
return totalFailedSampTleCountForThisForm;

pubTic void setFailedSampleCount(int failedSampleCount) {
this.totalFailedsampleCountForThisForm = failedSampleCount;

public int getTotalFailedsampleCountForThisForm() {
return totalFailedSampTleCountForThisForm;

public boolean isvalid() {
return valid;

public void setPeriod(String period) {
this.period = period;

public string getPeriod() {
return period;

public string getCondition() {
return condition;

public int getLeastSampleCount() {
return leastSampleCount;

public String getQcSpecialist() {
return qcSpecialist;

public void setQcSpecialist(String qcSpecialist) {
this.qcSpecialist = qcSpecialist;

pubTic booTean isSampleCountCheck() {
return sampleCountCheck;

pubTic void setSampleCountCheck(boolean sampleCountCheck) {
this.sampleCountCheck = sampleCountCheck;

public boolean isStorageBeforeQCCheck() {
return storageBeforeQCCheck;

public void setStorageBeforeQCCheck(boolean storageBeforeQCCheck) {
this.storageBeforeQCCheck = storageBeforeQCCheck;

public boolean isStorageburingQCCheck() {

85

86

return storageburingQCCheck;

public void setStorageburingQCCheck(booTlean storageburingQCCheck) {
this.storageburingQCCheck = storageDuringQCcCheck;

public boolean isStorageExterminationCheck() {
return storageExterminationCheck;

public void setStorageExterminationCheck(boolean
storageExterminationCheck) {))
this.storageExterminationCheck = storageExterminationCheck;

public boolean 1isGroupingCheck() {
return groupingCheck;

public void setGroupingCheck(boolean groupingCheck) {
this.groupingCheck = groupingCheck;

public boolean isScreeningCheck() {
return screeningCheck;

public void setScreeningCheck(boolean screeningCheck) {
this.screeningCheck = screeningCheck;

public String getEsBloodCountEquipment() {
return esBloodCountEquipment;

public void setEsBloodCountEquipment(String esBloodCountEquipment) {
this.esBloodCountEquipment = esBloodCountEquipment;

public string getEsCentrifuge() {
return esCentrifuge;

public void setEsCentrifuge(String esCentrifuge) {
this.esCentrifuge = esCentrifuge;

public String getEsComponentBag() {
return esComponentBag;

public void setEsComponentBag(String esComponentBag) {
this.esComponentBag = esComponentBag;

public String getEsExtractoruUsage() {
return esextractoruUsage;

public void setEsExtractorUsage(String esExtractoruUsage) {
this.esExtractorUsage = esExtractorUsage;

public String getEsStorage() {
return esStorage;

public void setEsStorage(String esStorage) {
this.esStorage = esStorage;

public string getEsunitsToBeInformed() {
return esunitsToBeInformed;

public void setEsunitsToBeInformed(String esunitsToBeInformed) {
this.esUnitsToBeInformed = esUnitsToBeInformed;

public int getNoOfProducedComponents() {
return noOfProducedComponents;

public void setNoOfProducedComponents(int noOfProducedComponents)
this.noofProducedComponents = noOfProducedComponents;

public Button getSampleUpdateButton() {
return null;//this.sampleUpdateButton;

/*public void __createUpdateButton(Group group) {
if (this.sampleUpdateButton!=null) {
this.sampleUpdateButton.dispose();
System.out.println("Disposed");

this.sampleUpdateButton = new Button(group, SWT.NONE);
%* /

Iform
package com.ptah.kankalite.domain;
import java.util.List;

public interface IForm {
public String getName();
pubTlic void checkState();
public String getCondition();
public int getLeastSampleCount();
public List<String> getSampleParameterNames();
public List<Float> getSampleParametervalues(int key);

Parameter
package com.ptah.kankalite.domain;

import java.io.Serializable;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;

import java.util.Set;

import com.ptah.kankalite.constants.ParameterType;

public clas
priva

88

s Parameter implements Serializable {
te static final long serialversionUID = -6311775687328445799L;

private Map<Integer, Float> values;
private boolean valid;

pubTi

pubTi

}
pub1i

}
pub1i

}
pub1i

}

c boolean isvalid() {
return valid;

c void setvalid(boolean valid) {
this.valid = valid;

c Parameter(int index, float value){
this.values=new HashMap<Integer, Float>();
this.values.put(index,value);
this.valid=true;

C List<Float> getvalues(ParameterType type) {
Set<Integer> keys=values.keySet(Q);
List<Float> result=new ArrayList<Float>(Q);
for (Integer key:keys) {

) result.add(values.get(key));

return result;

c void addvalue(int index, float value) {
values.put(index, value);

public float getvalue(int i) {

float result=-1;
try {
result=values.get(i);
} catch (Exception e) {
) result=-1;

return result;

public void setvalue(int i, float value) {

}

}
}
Sample

package com.

import java.

import java

import java.
import java.
import java.
import java.

import com.

public clas
private

this.values.put(i, value);

ptah.kankalite.domain;

jo.Serializable;
.util.calendar;
util.Date;
util.Hashmap;
util.map;
util.sSet;

ptah.kankalite.constants.ParameterType;

s Sample implements Serializable {
static final Tong serialversionUID = 3779132908709268582L;

* Id parametresi, her formdaki indeks numarasidir

89

:‘c/

private int id;

private int bloodNo;

private Date productionDate;

private Date expiryDate;

private int expiryPeriod;

private boolean valid;

private Map<ParameterType, Parameter> parameters = new
HashMap<ParameterType, Parameter>();

* pefault olarak productionDate set edilsin, expirybDate hesaplansin

7»/
public Sample(int id) {

this.id = id;
this.valid = true;

public Parameter getParameter(ParameterType type) {
return parameters.get(type);

pubTic void setParameter(ParameterType type, Parameter parameter) {
parameters.put(type, parameter);

public Map<ParameterType, Parameter> getParameters() {
return parameters;

pubTic void setParameters(Map<ParameterType, Parameter> parameters)

this.parameters = parameters;

public Set<ParameterType> getParameterTypes() {
return parameters.keySet();

pubTic int getid() {
return id;

pubTic void setid(int id) {

this.id = id;

public Date getExpirybDate() {
return expiryDate;

pubTic void setExpiryDate(Date expirybDate) {
this.expirybate = expiryDate;
Calendar calendar = Calendar.getInstance();
calendar.setTime(expiryDate);
calendar.add(Calendar.DAY_OF_MONTH, (-1) * this.expiryPeriod);
this.productionbate = calendar.getTime();

}

public Date getProductionbate() {
return productionbDate;

pubTic void setProductionDate(Date productionbate) {
this.productionbate = productionDate;
if (productionbDate != null)
Calendar calendar = Calendar.getInstance();
calendar.setTime(productionbDate);

90

calendar.add(Calendar.DAY_OF_MONTH, this.expiryPeriod);
this.expiryDate = calendar.getTime(Q);

}

}

public int getExpiryPeriod() {
return expiryPeriod;

pubTic void setExpiryPeriod(int expiryPeriod) {
this.expiryPeriod = expiryPeriod;

public int getBloodNo() {
return bloodNo;

public void setBloodNo(int bloodNo) {
) this.bToodNo = bloodNo;

/ *
_ . _*_type : Parametre tipi index : Parametrenin kaginci degeri (O,
1 - initial, expiring) value : Parametrenin
* degeri

public void add(ParameterType type, int index, float value) {
Parameter parameter = null;
try {
parameter = parameters.get(type);
} catch (NullPointerException e)
System.out.println("!!! - No parameter found with type : " +
type);}

parameter.setvalue(index, value);

public boolean isvalid() {
return valid;

public void setvalid(boolean valid) {
this.valid = valid;

Storage
package com.ptah.kankalite.domain;

import java.io.File;

import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;

public class Storage {_)
private static String fileName = "ptah.store";
private static String directory = "/tmp";

private void initialize() {
File file;
file = new File(directory);
file.mkdirQ;

91

}

public Storage() {
initialize(Q);

pub1ic{void store(Object object) {

try
String target = directory + "/" + fileName;
FileoutputStream fo = new FileOutputStream(target);
ObjectoutputStream so = new ObjectoutputStream(fo);
so.writeobject(object);
so.flush(Q;

} catch (Exception e) {

System.err.println("Exception while storing snapshot");
e.printStackTrace();

}

}

public Object Toad() throws Exception {
Object object = null;
String target = directory + "/" + fileName;
FileInputStream fo = new FileInputStream(target);
ObjectInputStream so = new ObjectInputStream(fo);

object = (Object) so.readobject();
return object;

QCUtil
package com.ptah.kankalite.domain;

import org.eclipse.swt.widgets.Table;
import org.eclipse.swt.widgets.TableItem;

public class Qcutil {

public static void updateSamplesTable(Table table, Form form) {
TableItem item = new TableItem(table, 0);
string[] tablevalues;
tablevalues = new String[form.getSampleParameterNames().size() +

2];
// once header'i olusturalim
int i = 0;
tablevalues[i++] = "uUnit #";

for (string name : form.getSampleParameterNames()) {
tablevalues[i++] = name;

}
item.setText(tablevalues);

// sonra data'lari set edelim
for (int sampleNo = 0; sampleNo < form.getSamples().size();
sampleNo++) {
item = new TableItem(table, 0);
1] tablevalues = new String[form.getSampleParameterNames().size()
+ ’

i=0;

tablevalues[i++] = "" + sampleNo;

for (Float value : form.getSampleParametervalues(sampleNo)) {
tablevalues[i++] = "" + value;

item.setText(tablevalues);

Qtree
package com.ptah.kankalite.domain;

import java.util.ArrayList;
import java.util.List;

import org.eclipse.swt.SWT;

import org.eclipse.swt.events.SelectionAdapter;
import org.eclipse.swt.events.SelectionEvent;
import org.eclipse.swt.widgets.Composite;
import org.eclipse.swt.widgets.Tree;

import org.eclipse.swt.widgets.TreeItem;

public class QTree {

private Tree tree;
List<TreeItem> mainItems;
Form selectedForm;

pubTic QTree(Composite parent, int style) {
tree = new Tree(parent, style);
tree.setBounds(5,40,205,250);
tree.addSelectionListener(new SelectionAdapter() {
public void widgetSelected(SelectionEvent e) {
TreeItem tempItem=tree.getSelection()[0];
selectedForm = (Form)tempItem.getData();

b;

mainitems = new ArrayList<TreeItem>();

pubTic void setSelection(TreeItem item) {
tree.setSelection(item);

public Tree getTree() {
return tree;

public void setTree(Tree tree) {
this.tree = tree;

public void additem(String itemstr) {
additem(itemstr, null);
tree.redraw();

public void additem(String itemstr, Form form) {
TreeItem item = null;
if (form == null) {
item = new TreeItem(tree, SWT.BORDER);
} else {
TreeItem tempItem = tree.getItem(form.getType().ordinal());
item = new TreeItem(tempItem, SWT.BORDER);

item.setText(itemStr);
item.setbata(form);

pu

public void setSelectedForm(Form form) {

blic Form getSelectedForm() {
return selectedForm;

this.selectedForm=form;

ESForm

packag

import
import
import
import

import
import
import
import

import
import
import
import

public

pr
pr
pr
pr
pr

tr
tr
tr
tr
tr

pu

}

e com.ptah.kankalite.domain;

java.io.Serializable;
java.util.ArrayList;
java.util.Collection;
java.util.List;

org.eclipse.swt.SWT;
org.eclipse.swt.widgets.Group;
org.eclipse.swt.widgets.Label;
org.eclipse.swt.widgets.Text;

com.ptah.kankalite.constants.FormNames;
com.ptah.kankalite.constants.FormState;
com.ptah.kankalite.constants.FormType;

com.ptah.kankalite.constants.ParameterType;

class ESForm extends Form implements Serializable {

ivate static final Tong serialversionUID

ivate float minHbQvalue;

ivate float minHtcQvalue;
ivate float maxHtcQvalue;
ivate float maxHmlzQvalue;

ansient Text hmlz42ndDay;
ansient Text hb42ndbDay;
ansient Text htc42ndDay;
ansient Text hblstDay;
ansient Text htclstDay;

blic ESForm(String period) {
super();

minHbQvalue = 45f;
minHtcQvalue 50f;
maxHtcQvalue = 70°f;
maxHmlzQvalue = 2.8f;
expiryPeriod = 42;
TeastSampleCount = 4;

= 3719530664889402371L;

93

condition = "%1 of number of products; with a minimum of 4 units";

nhame = FormNames.ES;
setPeriod(period);
setType(FormType.ES);
setState(FormState.SAMPLE_ABSENT) ;
id = System.currentTimeMillis();

addparameterType(ParameterType.Htc);
addparameterType(ParameterType.Hb);
addparameterType(ParameterType.Hmlz);

public List<string> getsampleParameterNames() {

List<String> result = new ArrayList<String>(Q);
result.add("Htc 1st Day");

result.add("Hb 1st Day");

result.add("Htc 42nd Day");

result.add("Hb 42nd Day");

result.add("Hmlz 42nd Day");

return result;

}

pubTic void showParameterentries(Group parameterentry) {
//Composite parent=parametertEntry.getParent();
//parameterEntry=new Group(parent, SWT.NONE);
parametereEntry.setBounds(170, 175, 390, 75);

Label htclstbayLabel = new Label(parameterentry, SWT.NONE) ;
htclstDayLabel.setATignment (SWT.RIGHT);
htclstbDaylLabel.setText("Htc 1st day (%) :");
htclstbayLabel.setBounds(23, 10, 85, 13);

Label hblstbayLabel = new Label(parameterEntry, SWT.NONE);
hblstbayLabel.setAlignment (SWT.RIGHT) ;

// toolkit.adapt(hblstbayLabel, true, true);
hblstDayLabel.setText("Hb 1lst day (g/unit) :");
hblstbayLabel.setBounds(3, 30, 105, 13);

Label htc42ndbayLabel = new Label(parameterEntry, SWT.NONE) ;
htc42ndDayLabel.setATignment (SWT.RIGHT);

// toolkit.adapt(htc42ndbayLabel, true, true);
htc42ndbayLabel.setText("Htc 42nd day (%) :");
htc42ndbayLabel.setBounds (170, 10, 105, 13);

htclstbay = new Text(parameterEntry, SWT.BORDER);
// toolkit.adapt(Chtclstbay, true, true);
htclstbay.setBounds(115, 10, 50, 15);

hblstbay = new Text(parameterEntry, SWT.BORDER);
hblstbay.setBounds (115, 30, 50, 15);
// toolkit.adapt(hblstbay, true, true);

htc42ndbDay = new Text(parameterEntry, SWT.BORDER);
htc42ndbay.setBounds (280, 10, 50, 15);
// toolkit.adapt(htc42ndDay, true, true);

Label htc42ndbayLabel_1 = new Label(parameterEntry, SWT.NONE);
htc42ndDayLabel_1.setAlignment (SWT.RIGHT);
htc42ndbayLabel_1.setBounds(170, 30, 105, 13);

// toolkit.adapt(htc42ndbDayLabel_1, true, true);
htc42ndDayLabel_1.setText("Hb 42nd day (%) :");

Label htc42ndbayLabel_2 = new Label(parameterEntry, SWT.NONE);
htc42ndDayLabel_2.setAlignment (SWT.RIGHT);
htc42ndbayLabel_2.setBounds(170, 50, 105, 13);

// toolkit.adapt(htc42ndbDayLabel_2, true, true);
htc42ndDayLabel_2.setText("Hmlz 42nd day (%) :'");

hb42ndbay = new Text(parameterEntry, SWT.BORDER);
hb42ndDay.setBounds (280, 30, 50, 15);

hmlz42ndbDay = new Text(parameterEntry, SWT.BORDER);
hmlz42ndDay.setEnabled(false);
hm1z42ndDay.setEditable(false);
hm1z42ndDay.setBounds (280, 50, 50, 15);

/*createUpdateButton(parameterentry);
sampleUpdateButton.setText("Update");
sampleUpdateButton.setBounds(335, 10, 50, 60);*/

94

95

@override
pubTic voig updateGUIFromParameters(Sample currentSample) {
try
hblstbay.setText("");
Parameter hb = currentSample.getParameter(ParameterType.Hb);
hblstbay.setText("" + hb.getvalue(0));
hb42ndbay.setText("" + hb.getvalue(l));
Parameter htc =
currentSample.getParameter(ParameterType.Htc);
htclstDay.setText("" + htc.getvalue(0));
htc42ndDay.setText("" + htc.getvalue(l));
// Hemoliz parametresini hesaplatmak icin checkstate()
methodu cagiriliyor.
checkstate();
Parameter hmlz =
currentSample.getParameter(ParameterType.Hmlz);
hmlz42ndDay.setText("" + hmlz.getvalue(l));
% catch (Exception e) {

}

@override

pub1ic{void extractParametersFromGUI(Sample currentSample) {

try
float hblst = Float.parseFloat(hblstDay.getText());
float hb42nd = Float.parseFloat(hb42ndDay.getText());
float htclst = Float.parseFloat(htclstbay.getText());
float htc42nd = Float.parseFloat(htc42ndDay.getText());
Parameter hb = new Parameter(0, hblst);
hb.setvalue(1l, hb42nd);
currentSample.setParameter(ParameterType.Hb, hb);
Parameter htc = new Parameter(0, htclst);
htc.setvalue(1l, htc42nd);
currentSample.setParameter(ParameterType.Htc, htc);
} catch (Exception ex) {

System.out.println("Some parameter values are invalid");

}

public List<Float> getSampleParametervalues(int key) {

List<Float> result = new ArrayList<Float>();

result.add(getSamples().get(key) .getParameters().get(ParameterType.
Htc) .getvalue(0));

result.add(getSamples() .get(key) .getParameters().get(ParameterType.
Hb) .getvalue(0));

result.add(getsamples() .get(key).getParameters().get(ParameterType.
Htc) .getvalue(1));

result.add(getSamples() .get(key) .getParameters().get(ParameterType.
Hb) .getvalue(1));

result.add(getSamples().get(key) .getParameters().get(ParameterType.
Hm1Zz) .getvalue(l));

return result;

@override
pubTic void checkstate() {
FormState state = FormState.SAMPLE_ABSENT;
boolean expiringSamplesArevalid = true;
boolean initialSamplesArevalid = true;
Collection<Sample> samples = getSamples().values(Q);

for (Sample sample : samples) {
boolean isInitialParametervalid = false;
boolean isExpiryParametervalid = false;
Parameter htc = sample.getParameter(ParameterType.Htc);
Parameter hb = sample.getParameter(ParameterType.Hb);

96

Parameter hmlz = sample.getParameter(ParameterType.Hmlz);
calculate(sample);

boolean bloodvalid = (sample.getBloodNo() > 0);

boolean productionbDatevalid = (sample.getProductionbate() !=

null);
boolean expirybatevalid = (sample.getExpirybate() != null);
boolean htcInitialvalid = ((htc.getvalue(0) != -1f));
boolean hbiInitialvalid = ((hb.getvalue(0) != -1f));
boolean htcexpiryvalid = ((htc.getvalue(l) != -1f));
boolean hbExpiryvalid = ((hb.getvalue(l) != -1f));
boolean hmlzvalid = ((hmlz.getvalue(l) != -1f));

isInitialParametervalid = bloodvalid & & htcInitialvalid &&
hbInitialvalid & & productionbDatevalid;

isExpiryParametervalid = bloodvalid && htcExpiryvalid &&
hbExpiryvalid && expirybatevalid & & hmlzvalid;

expiringSamplesArevalid = (expiringSamplesArevalid &&
isExpiryParametervalid);

initialsamplesArevalid = (initialSamplesArevalid &&
isInitialParametervalid);

boolean sampleCountvalid = samples.size() >=
getNumberofsamplesToBeTested();

if (initialsamplesArevalid && sampleCountvalid) {
state = FormState.TESTS_WAITING;

boolean othercConditions = (isGroupingCheck() && sampleCountvalid &&
isScreeningCheck()
&& isStorageBeforeQCCheck() && isStorageburingQCcheck()
&& isStorageExterminationCheck() &&
IgetQcSpecialist().equals(""));

if (expiringSamplesArevalid && initialSamplesArevalid &&
otherConditions && sampleCountvalid) {
state = FormState.DONE;

super.setState(state);

// TODO : Hemoliz hesaplamasini 6gren!!!
private void calculate(Sample sample) {
Parameter htc = sample.getParameter(ParameterType.Htc);
Parameter hb = sample.getParameter(ParameterType.Hb);
float value = 0f;
try {
value = htc.getvalue(l) / hb.getvalue(l);
} catch (NullPointerexception npe) {

value = -1f;
) sample.add(ParameterType.Hmlz, 1, value);
@override

pubTic void checkResults() {
for (Sample sample : getSamples().values()) {
calcuTlate(sample);

o
£

* Hb, Htc ve Hmlz parametreleri ic¢in kontroller yapiliyor
Sonuclar Forms->results map'inin icinde boolean

g

* olarak tutuluyor.

Float.
maxHtc

maxHm1

97

checkspecificParameter(ParameterType.Hb, 0, 1, minHbQvalue,

NaN, 100);

checkspecificParameter(ParameterType.Htc, 0, 1, minHtcQvalue,

Qvalue, 100);

checkSpecificParameter(ParameterType.Hmlz, 1, 1, Float.NaN,

zQvalue, 100);

TSForm

packag

import
import
import
import

import
import
import
import

import
import
import
import

public

pr
pr
pr
pr
pr
pr

tr
tr
tr
tr

pu

e com.ptah.kankalite.domain;

java.io.Serializable;
java.util.ArrayList;
java.util.Collection;
java.util.List;

org.eclipse.swt.SWT;

org.eclipse.swt.widgets.Group;

org.eclipse.swt.widgets.Label
org.eclipse.swt.widgets.Text;

com.ptah.kankalite.constants.
com.ptah.kankalite.constants.
com.ptah.kankalite.constants.
com.ptah.kankalite.constants.

FormNames;
FormState;
FormType;
ParameterType;

class TSForm extends Form implements Serializable {

ivate static final Tong serialversionUID = 118686217882937243L;

ivate float minvolumeQvalue;
ivate float maxResLeukQvalue;
ivate float minNoTQvalue;
ivate float maxPhQvalue;
ivate float minPhQvalue;

ansient Text volumeText;
ansient Text resLeukText;
ansient Text pHText;
ansient Text noTText;

blic TSForm(String period) {
super();

minPhQvalue 6.4f;
maxPhQvalue 7.4fF;
minNoTQvalue = 60f;
maxResLeukQvalue = 0.2f;
minvolumeQvalue = 40.0f;
minNoTQvalue = 60.0f;
expiryPeriod = 4;
TeastSampleCount = 10;

condition = "%1 of number of products; with a minimum of 10 units";

name = FormNames.TS;
setType(FormType.TS);
setPeriod(period);

setState(FormState.SAMPLE_ABSENT) ;

id = System.currentTimeMillis();
addParameterType(ParameterType.Vol);
addParameterType(ParameterType.ResLeuk);
addparameterType(ParameterType.NoT) ;
addparameterType(ParameterType.Ph);

98

}

@override
pubTic void checkstate() {
FormState state = FormState.SAMPLE_ABSENT;
boolean expiringSamplesArevalid = true;
boolean initialSamplesArevalid = true;
Collection<Sample> samples = getSamples().values(Q);

for (Sample sample : samples) {
boolean isInitialParametervalid = false;
boolean isExpiryParametervalid = false;
Parameter vol = sample.getParameter(ParameterType.Vol);
Parameter resLeuk = sample.getParameter(ParameterType.ResLeuk) ;
Parameter not = sample.getParameter(ParameterType.NoT);
Parameter ph = sample.getParameter(ParameterType.Ph);
boolean bloodvalid = (sample.getBloodNo() > 0);
boolean productionbatevalid = (sample.getProductionbate() !=

null);
boolean expirybDatevalid = (sample.getExpirybate() != null);
boolean volInitialvalid = ((vol.getvalue(0) != -1f));
boolean resLeukInitialvalid = ((resLeuk.getvalue(0) != -1f));
boolean notInitialvalid = ((not.getvalue(0) != -1f));
boolean pheExpiryvalid = ((ph.getvalue(l) != -1f));

isInitialParametervalid = bloodvalid & & volInitialvalid &&
resLeukInitialvalid & & notInitialvalid
&& productionDatevalid && expirybatevalid;
isExpiryParametervalid = bloodvalid && phExpiryvalid;

expiringSamplesArevalid = (expiringSamplesArevalid &&
isExpiryParametervalid);

initialsamplesArevalid = (initialSamplesArevalid &&
isInitialParametervalid);

boolean sampleCountvalid = samples.size() >=
getNumberofSamplesToBeTested();

if (samplecCountvalid && initialsamplesArevalid) {
state = FormState.TESTS_WAITING;

boolean otherConditions = (isGroupingCheck() && sampleCountvalid &&
isScreeningCheck ()
&& isStorageBeforeQCCheck() && isStorageburingQCCheck()
&& isStorageExterminationCheck() &&
lgetQcSpecialist().equals(""));

if (expiringsamplesArevalid & state == FormState.TESTS_WAITING &&
otherconditions && sampleCountvalid) {
state = FormState.DONE;

super.setState(state);

@override
pubTic void checkResults() {
checkSpecificParameter(ParameterType.vol, 0, 1, minvolumeQvalue,
Float.NaN, 100);
checkspecificParameter(ParameterType.ResLeuk, 0, 1, Float.NaN,
maxResLeukQvalue, 100);
checksSpecificParameter(ParameterType.NoT, 0, 1, minNoTQvalue,
Float.NaN, 75);
checkspecificParameter(ParameterType.Ph, 1, 1, minPhQvalue,
maxP?Qva1ue, 100);

99

public List<String> getSampleParameterNames() {
List<String> result = new ArrayList<String>(Q);
result.add("volume @lst Day");
result.add("ResLeukocyte @lst Day'");
result.add("Number of platelets @lst Day");
result.add("pH @4th pay");
return result;

}

public List<Float> getSampleParametervalues(int key) {

List<Float> result = new ArrayList<Float>();

result.add(getsamples() .get(key).getParameters().get(ParameterType.
vol) .getvalue(0));

result.add(getSamples() .get(key) .getParameters().get(ParameterType.
ResLeuk) .getvalue(0));

result.add(getSamples() .get(key) .getParameters().get(ParameterType.
NoT) .getvalue(0));

result.add(getsamples() .get(key) .getParameters().get(ParameterType.
Ph) .getvalue(1l));

return result;

@override
public void showParameterentries(Group parameterentry) {
parametereEntry.setBounds(170, 175, 390, 75);

Label volumeLabel = new Label(parameterEntry, SWT.NONE);
volumeLabel.setAlignment (SWT.RIGHT);
volumeLabel.setText("volume (mL) :');
volumeLabel.setBounds(33, 10, 85, 13);

Label resLeukLabel = new Label(parameterEntry, SWT.NONE);
resLeukLabel.setATignment (SWT.RIGHT);
resLeukLabel.setText("Residual Leukocyte :");
resLeukLabel.setBounds(3, 30, 115, 13);

Label pHLabel = new Label(parameterEntry, SWT.NONE);
pHLabel . setA11gnment(SWT RIﬁHT),

pHLabel.setText("pH value :");
pHLabel.setBounds(13, 50, 105, 13);

Label noTLabel = new Label(parameterEntry, SWT.NONE);
noTLabel.setATignment (SWT.LEFT);

noTLabel.setText("# of plateletes :");
noTLabel.setBounds (190, 10, 80, 13);

volumeText = new Text(parameterEntry, SWT.BORDER);
volumeText.setBounds (125, 10, 50, 15);

resLeukText = new Text(parameterEntry, SWT.BORDER);
resLeukText.setBounds (125, 30, 50, 15);

pHText = new Text(parameterEntry, SWT.BORDER);
pHText.setBounds (125, 50, 50, 15);

noTText = new Text(parameterEntry, SWT.BORDER);
noTText.setBounds(275, 10, 50, 15);

/*createUpdateButton(parameterEntry);
sampleUpdateButton.setText("Update");
! sampleuUpdateButton.setBounds (335, 10, 50, 60);*/

@override
pub11c{vo1d extractParametersFromGUI(Sample currentSample) {
try
float volumeF = Float.parseFloat(volumeText.getText());
float resLeukF = Float.parseFloat(resLeukText.getText());

100

float pHF = Float.parseFloat(pHText.getText());
float noTF = Float.parseFloat(noTText.getText());

Parameter volume = new Parameter(0, volumeF);
currentSample.setParameter(ParameterType.Vol, volume);

Parameter resLeuk = new Parameter(0, resLeukF);
currentSample.setParameter(ParameterType.ResLeuk, resLeuk);

Parameter pH = new Parameter(l, pHF);
currentSample.setParameter(ParameterType.Ph, pH);

Parameter noT= new Parameter (0, noTF);
currentSample.setParameter (ParameterType.NoT, nhoT);

} catch (Exception ex) {
System.out.println("Some parameter values are invalid - ep");

}

@override
pub1ic{void updateGUIFromParameters(Sample currentSample) {
try
Parameter volume =
currentSample.getParameter(ParameterType.Vol);
volumeText.setText("" + volume.getvalue(0));
Parameter resLeuk =
currentSample.getParameter(ParameterType.ResLeuk) ;
resLeukText.setText("" + resLeuk.getvalue(0));
Parameter pH = currentSample.getParameter(ParameterType.Ph);
pHText.setText("" + pH.getvalue(l));
Parameter noT =
currentSample.getParameter(ParameterType.NoT);
noTText.setText("" + noT.getvalue(0));
checkstate();
% catch (Exception e) {

TDPForm

package com.ptah.kankalite.domain;

import java.io.Serializable;
import java.util.ArrayList;
import java.util.Collection;
import java.util.List;

import org.eclipse.swt.SWT;

import org.eclipse.swt.widgets.Group;
import org.eclipse.swt.widgets.Label;
import org.eclipse.swt.widgets.Text;

import com.ptah.kankalite.constants.FormNames;
import com.ptah.kankalite.constants.FormState;
import com.ptah.kankalite.constants.FormType;
import com.ptah.kankalite.constants.ParameterType;

public class TDPForm extends Form implements Serializable {
private static final long serialversionUID = 118686217882937243L;

private float maxLeuQvalue;
private float maxErythQvalue;

101

private float maxPlateletQvalue;

transient Text resErytText;
transient Text resLeukText;
transient Text resPlatText;

public TDPForm(String period) {
super();
maxLeuQvalue = 0.1f;
maxErythQvalue = 6.0f;
maxPlateletQvalue = 50.0f;
expiryPeriod = 4;
TeastSampleCount = 4;
condition = "%1 of number of products; with a minimum of 10 units";
name = FormNames.TDP;
setType(FormType.TDP);
setPeriod(period);
setState(FormState.SAMPLE_ABSENT) ;
id = Ssystem.currentTimeMillis();
addParameterType(ParameterType.ResLeuk) ;
addParameterType(ParameterType.ResEryt);
! addParameterType(ParameterType.ResPlat);

@override

pubTic void checkstate() {
FormState state = FormState.SAMPLE_ABSENT;
boolean initialSamplesArevalid = true;
Collection<Sample> samples = getSamples().values(Q);

for (Sample sample : samples) {

boolean isInitialParametervalid = false;

Parameter leukocyte =
sample.getParameter(ParameterType.ResLeuk) ;

Parameter erythrocyte =
sample.getParameter(ParameterType.ResEryt);

Parameter platelet =
sample.getParameter(ParameterType.ResPlat);

boolean bloodvalid = (sample.getBloodNo() > 0);
boolean productionbDatevalid = (sample.getProductionbDate() !=

null);
boolean expirybDatevalid = (sample.getExpirybate() != null);
boolean leukInitialvalid = ((leukocyte.getvalue(0) != -1f));
boolean erythInitialvalid = ((erythrocyte.getvalue(0) != -1f));
boolean platInitialvalid = ((platelet.getvalue(0) != -1f));

isInitialParametervalid = bloodvalid && platInitialvalid &&
erythInitialvalid & & leukInitialvalid
&& productionbDatevalid && expirybatevalid;

initialsamplesArevalid = (initialSamplesArevalid &&
isInitialParametervalid);

boolean sampleCountvalid=samples.size() >=
getNumberofsamplesToBeTested();

if (sampleCountvalid) {
state = FormState.TESTS_WAITING;

boolean othercConditions=(isGroupingCheck() && isSampleCountCheck()
&& isScreeningCheck()
&& isSstorageBeforeQCCheck() && isStorageburingQCcCheck() &&
isStorageExterminationCheck());

102

if (state == FormState.TESTS_WAITING && otherConditions &&
sampleCountvalid) {
state = FormState.DONE;

super.setState(state);

@override
public void checkResults() {
checkspecificParameter(ParameterType.ResEryt, 0, 1, Float.NaN,
maxErythQvalue, 100);
checkspecificParameter(ParameterType.ResLeuk, 0, 1, Float.NaN,
maxLeuQvalue, 100);
checkSpecificParameter(ParameterType.ResPlat, 0, 1, Float.NaN,
maxPlateletQvalue, 100);

public List<String> getSampleParameterNames() {
List<String> result = new ArrayList<String>(Q);
result.add("ResErythrocyte @lst Day");
result.add("ResLeuk @lst Day");
result.add("ResPlatelet @lst Day");
return result;

}

public List<Float> getSampleParametervalues(int key) {

List<Float> result = new ArrayList<Float>();

result.add(getSamples() .get(key) .getParameters().get(ParameterType.
ResEryt) .getvalue(0));

result.add(getSamples() .get(key) .getParameters().get(ParameterType.
ResLeuk) .getvalue(0));

result.add(getSamples().get(key) .getParameters().get(ParameterType.
ResPlat) .getvalue(0));

return result;

@override

pub11c{vo1d extractParametersFromGUI(Sample currentSample) {
try

float resErytF

float resLeukF

float resPlatF

Float.parseFloat(resErytText.getText());
Float.parseFloat(resLeukText.getText());
Float.parseFloat(resPlatText.getText());

Parameter reseryt = new Parameter(0, reserytF);
currentSample.setParameter(ParameterType.ResEryt, reseryt);

Parameter resLeuk = new Parameter(0, resLeukF);
currentSample.setParameter(ParameterType.ResLeuk, resLeuk);

Parameter resPlat = new Parameter(0, resPlatF);
currentSample.setParameter(ParameterType.ResPlat, resPlat);

} catch (Exception_ex) { _ _
System.out.println("Some parameter values are invalid - ep");

}

@override
public void showParameterentries(Group parameterentry) {
parametereEntry.setBounds(170, 175, 390, 75);

Label resErytLabel = new Label(parameterentry, SWT.NONE);
reserytLabel.setATignment (SWT.RIGHT);
reserytlLabel.setText("Residual Erythrocyte :");
reserytLabel.setBounds(33, 10, 85, 13);

Label resLeukLabel = new Label(parametereEntry, SWT.NONE);

103

resLeukLabel.setATignment (SWT.RIGHT);
resLeukLabel.setText("Residual Leukocyte :");
resLeukLabel.setBounds(3, 30, 115, 13);

Label resPlatLabel = new Label(parameterEntry, SWT.NONE);
resPlatLabel.setATignment (SWT.RIGHT);
resPlatLabel.setText("Residual Platelet :');
resPlatLabel.setBounds(13, 50, 105, 13);

reserytText = new Text(parameterEntry, SWT.BORDER);
resLeukText.setBounds (125, 10, 50, 15);

resLeukText = new Text(parameterEntry, SWT.BORDER);
reserytText.setBounds(125, 30, 50, 15);

resPlatText = new Text(parameterEntry, SWT.BORDER);
! resPlatText.setBounds(125, 50, 50, 15);

@override
pub1ic{void updateGUIFromParameters(Sample currentSample) {
try
Parameter reseryt =
currentSample.getParameter(ParameterType.ResEryt);
reserytText.setText("" + resEryt.getvalue(0));
Parameter resLeuk =
currentSample.getParameter(ParameterType.ResLeuk);
resLeukText.setText("" + resLeuk.getvalue(0));
Parameter resPlat =
currentSample.getParameter(ParameterType.ResPlat);
resPlatText.setText("" + resPlat.getvalue(0));
checkstate(Q);
% catch (Exception e) {

H.2 Source Code of Data Source

FormDataSource
package com.ptah.kankalite.constants;
import java.io.Serializable;

pubTlic enum FormType implements Serializable {
ES,TS,TDP;

public static FormType convertFromString(String formTypeString) {
FormType result=null;
if (formTypeString.equals(FormNames.ES)) {
result=ES;

if (formTypeString.equals(FormNames.TS)) {
result=TS;

}
if (formTypeString.equals(FormNames.TDP)) {
result=TDP;

}

return result;

H.3 Source Code of Constants

FormType

package com.ptah.kankalite.constants;

import java.io.Serializable;

public enum FormType implements Serializable {

ES,TS,TDP;

104

public static FormType convertFromString(String formTypeString) {
FormType result=null;
if (formTypeString.equals(FormNames.ES)) {

result=ES;

}
if (formTypeString.equals(FormNames.TS)) {

}
if (formTypeString.equals(FormNames.TDP)) {

result=TS;
result=TDP;
return result;
3
3
FormNames

package com.ptah.kankalite.constants;

public class FormNames {
public static final
pubTlic static final
public static final
public static final
pubTlic static final
public static final

FormState

String
String
String
String
String
String

Long_ES="Erythrocyte Suspension";
Long_TS="Platelet Suspension";
Long_TDP="Fresh Frozen Plasma";
ES="ES";

TS="PS";

TDP="FFP";

package com.ptah.kankalite.constants;

import java.io.Serializable;

“ Durum degerleri

105

* 0 : BUtln ornekler uygun, o6rnek sayisi tamam, yapilmasi gereken bitin
testler yapilmis

* -1 : Henuz bos

* -2 : Ornek girilmis, ancak ornek sayisi tamam degil

* -3 : Ornek sayisi tamam, ancak bekleyen testler var

pubTlic enum FormState implements Serializable {
SAMPLE_ABSENT , TESTS_WAITING,DONE;

Parameter Type
package com.ptah.kankalite.constants;
import java.io.Serializable;

public enum ParameterType implements Serializable {
Htc,Hb,Hmlz,vol,ResLeuk,NoT,Ph,ResPlat,ResEryt;
}

H.4 Source Code of Ul

QCMain
package com.ptah.kankalite.ui;

import java.text.DateFormat;
import java.util.ArrayList;
import java.util.Calendar;
import java.util.Collection;
import java.util.Date;

import java.util.HashMmap;

import java.util.Map;

import java.util.ResourceBundle;

import net.sf.jasperreports.engine.JRDataSource;

import net.sf.jasperreports.engine.JRException;

import net.sf.jasperreports.engine.JasperCompileManager;

import net.sf.jasperreports.engine.JasperExportManager;

import net.sf.jasperreports.engine.JasperFillManager;

import net.sf.jasperreports.engine.JasperPrint;

import net.sf.jasperreports.engine.JasperReport;

import net.sf.jasperreports.engine.data.JRMapCollectionDataSource;

import org.eclipse.swt.SWT;

import org.eclipse.swt.events.FocusAdapter;
import org.eclipse.swt.events.FocusEvent;
import org.eclipse.swt.events.PaintEvent;
import org.eclipse.swt.events.PaintListener;
import org.eclipse.swt.events.SelectionAdapter;
import org.eclipse.swt.events.SelectionEvent;
import org.eclipse.swt.widgets.Button;

import org.eclipse.swt.widgets.Combo;

import org.eclipse.swt.widgets.Composite;
import org.eclipse.swt.widgets.Control;
import org.eclipse.swt.widgets.Display;

import
import
import
import
import
import
import
import
import
import
import
import
import
import

import
import
import
import
import
import
import
import
import
import
import
import

public

106

org.eclipse.swt.widgets.Group;
org.eclipse.swt.widgets.Label;
org.eclipse.swt.widgets.List;
org.eclipse.swt.widgets.Menu;
org.eclipse.swt.widgets.MenuItem;
org.eclipse.swt.widgets.MessageBox;
org.eclipse.swt.widgets.Shell;
org.eclipse.swt.widgets.TabFolder;
org.eclipse.swt.widgets.TabItem;
org.eclipse.swt.widgets.Table;
org.eclipse.swt.widgets.TableColumn;
org.eclipse.swt.widgets.Text;
org.eclipse.swt.widgets.ToolBar;
org.eclipse.swt.widgets.ToolItem;

com.ibm.icu.util.StringTokenizer;
com.ptah.kankalite.constants.FormNames;
com.ptah.kankalite.constants.FormState;
com.ptah.kankalite.constants.FormType;
com.ptah.kankalite.domain.Form;
com.ptah.kankalite.domain.FormContainer;
com.ptah.kankalite.domain.QCutiT;
com.ptah.kankalite.domain.QTree;
com.ptah.kankalite.domain.Sample;
com.ptah.kankalite.domain.Storage;
com.swtdesigner.SWTResourceManager;

com. tiff.common.ui.datepicker.DatePickercombo;

class Qcmain {

private Group parametereEntry;
private Label samplesList;

private Label separator;

private Label productTypeLabelName;
private Label barcodeInputLabel;
private Label manualInputLabel;
private Label expiryDateLabelName;
private Label samplingDateLabel;
private Table samplesTable;

private List sampleList;

private DatePickerCombo expirybDatelLabel;
private Text productTypeLabel;
private Label bceLabel_6;

private Combo qcSpecialistCombo;
private Label gcSpecialistLabel_1;
private Text bceText_5;

private Label bceLabel_5;

private Text bceText_4;

private Label bceLabel_4;

private Text bceText_3;

private Label bceLabel_3;

private Text bceText_2;

private Label bceLabel_2;

private Text bceText_1;

private Label bceLabel_1;

private Text bceText;

private Label bceLabel;

private Combo exterminationOKCombo;
private Combo conditionsOKDuringTestingCombo;
private Combo conditionsOKBeforeTestingCombo;
private Button nextButton;

private Button previousButton;
private Button saveButtonl;

private Button cancelButtonl;
private Button nextButton_4;
private Button previousButton_4;
private Button nextButton_3;
private Button previousButton_3;

private Button nextButton_2;

private Button previousButton_2;
private Combo groupingok;

private Combo screeningok;

private Text qcFrequency;

private Button tabl_next;

private Text TimitNoOofSampleCount;
private Text leastSampleCount;

private Text noOfProducedComponents;
private Text expiryDateBarcodeText;
private DatePickerCombo bloodCollectionDateText;
private Text productTypeBarcodeText;
private DatePickerCombo samplingDateText;
private Text unitNumberBarcodeText;
private Label bloodCollectionbDatelLabel;
private Text unitNumberText;

private Label unitNumberLabel;

private Group noSamplesGroup;

private List TogList;

protected sShell shell, childshell;
Combo formTypeIncChild;

Text periodTextInChild, bToodNoIncChild;
Button sampleUpdateButton;

Group sampleInputGroup;

TabItem sampleInputTabItem;

Storage storage;

FormContainer formContainer;
FormListComposite formListComposite;
QTree formListTree;

Form currentForm;

Sample currentSample;

TabFolder tabFolder;

Button noOfSampleOkBox;

java.util.List<String> specialists = new ArrayList<String>(Q);

Button childGoButton;
/ f %

* Launch the application
* @param args

pub1ic{static void main(string[] args) {
try
QCMain window = new QCMain();
window.open();
} catch (Exception e) {
e.printStackTrace();

* Open the window

/
public void open() {

final Display display = Display.getbDefault();

createContents();

ToadorcreateForms();

shell.open();

shell.layout();

while (!shell.isbisposed()) {

if (!display.readAndDispatch())
display.sleep(Q);

}
}

// TODO Onay veren kisi isimlerini setting'den girilebilir yap

protected void loadorCreateForms() {

107

108

try {
formContainer = (FormContainer) storage.load();

} catch (Exception e) {
System.out.print(e.getMessage());
System.out.println('\r\nCreating a new data store");
formContainer = new FormContainer();

formContainer.createFormsForyear(FormType.ES, "2007");
formConta1ner.createFormsForYear(FormType.TS, "2007");
formContainer.createFormsForYear(FormType.TDP, "2007");

if (formListTree != null) {
Map<String, Form> formEntries;

formEntries = formContainer.getForms(FormType.ES);

if (formEntries != null)
for (String formName : formEntries.keySet()) {
formListTree.addItem(formName,

formEntries.get(formName));

}

formentries = formContainer.getForms(FormType.TS);
if (formeEntries != null) {
for (String formName : formentries.keySet()) {
formListTree.addItem(formName,

formeEntries.get(formName));

3
formEntries = formContainer.getForms (FormType.TDP);
if (formEntries != null)

for (String formName : formeEntries.keySet()) {
formListTree.addItem(formName,
formEntries.fet(formName));

3
updateQCList();

* Create contents of the window

protected void createContents() {
storage = new Storage();
shell = new Shell(Q);
shell.setSize(934, 662);
shell.setText("BOUN BloodQCM v1.0");

try {
ResourceBundle bundle = ResourceBundle.getBundle("ptahbc");
String specialistString = bundle.getString("specialists");
StringTokenizer tokenizer = new
StringTokenizer(specialistString, ",");
while (tokenizer.hasMoreTokens()) {
String temp = tokenizer.nextToken();
temp = temp.trim();
specialists.add(temp);

} catch (Exception e) {
System.out.println(' "check ptahbc.properties filel!!!l " +

e.getMessage());
System.exit(-1);

109

// TODO sample'in biitin field'Tarini doldur, ve sample'in save
edildiginden emin ol.
// samples group'undaki her buton bunu cagirmali
formListComposite = new FormListComposite(shell, SWT.NONE);
formListComposite.getAlarmList().setSize(210, 110);
formListComposite.getAlarmList().setLocation(10, 345);
formListComposite.setvisible(true);
formListComposite.setBounds(10, 36, 230, 459);

formListTree = formListComposite.getTree();
if (formListTree == null) {])
formListTree = new QTree(formListComposite, SWT.BORDER);

/ Y
£

* FormListTree selectionAdapter
formListTree.getTree().addSelectionListener(new SelectionAdapter()

public void widgetSelected(SelectionEvent e) {
page2Unbind(Q);
formselection();

b;

formListTree.addItem("Eryhtrocyte Ssp");
formListTree.addItem("Platelet Ssp");
formListTree.addItem("Fresh Frozen Plasma Ssp");

tabFolder = new TabFolder(shell, SWT.NONE);
tabFolder.setEnabled(false);

tabFolder.setBounds (250, 36, 661, 311);
tabFolder.setLayout(null);

final TabItem numberofsamplesTabItem = new TabItem(tabFolder,
SWT.NONE) ;
numberofsamplesTabItem.setText("Number Of Samples");

nosamplesGroup = new Group(tabFolder, SWT.NONE);

noSamplesGroup.addPaintListener(new PaintListener() {
public void paintControl(PaintEvent e) {
if (currentForm != null) {
// String TeastSampleCountStr=TeastSampleCount.getText();
gcFrequency.setText(currentForm.getCondition());
int t =
formContainer.getNeededSsampleCount(currentForm.getType(),
currentForm.getPeriod());
currentForm.setNumberofsamplesToBeTested(t);
TeastSampleCount.setText("" +
currentForm.getNumberofSsamplesToBeTested());

}
s

numberofsamplesTabItem.setControl(noSamplesGroup);

final Label Tabel_1 = new Label(noSamplesGroup, SWT.NONE);
Tabel_1.setATignment (SWT.RIGHT);

Tabel_1.setBounds(66, 68, 181, 13);

Tabel_1.setText("The number of produced components");

noofProducedComponents = new Text(noSamplesGroup, SWT.BORDER);
noofProducedComponents.addFocusListener(new FocusAdapter() {
public void focusLost(FocusEvent e) {
try {

110

int producedComponentCount =
Integer.parseInt(noofProducedComponents.getText());

formContainer.setGeneratedProductCount(currentForm.getType(),
currentForm.getPeriod(),
producedComponentCount) ;

leastSampleCount.setText(""+currentForm.getNumberofsamplesToBeTested());
int t =
formContainer.getNeededSampleCount(currentForm.getType(),
currentForm.getPeriod());
int oldSampleCount =
currentForm.getNumberofsamplesToBeTested();
currentForm.setNumberofsamplesToBeTested(t);
currentForm.createSamples(oldSampleCount);
TeastSampleCount.setText("" +
currentForm.getNumberofSamplesToBeTested());
// currentForm.setNumberofSamplesToBeTested();

System.out.println("Current forms' sample count is :

+
Integer.parseInt(noOfProducedComponents.getText()));
} catch (Exception exc) {
System.out.println("'No form selected");
// Do nothing

3
_ ks
noéfProducedComponents.setBounds(253, 65, 36, 19);

final Label qcFrequencyLabel = new Label(noSamplesGroup, SWT.NONE);
gcFrequencylLabel.setAlignment (SWT.RIGHT);
gcFrequencylLabel.setBounds(66, 97, 181, 25);
gcFrequencylLabel.setText("QC Frequency");

final Label theNumberofLabel = new Label(noSamplesGroup, SWT.NONE);
theNumberofLabel.setAlignment (SWT.RIGHT) ;
theNumberofLabel.setBounds(72, 128, 174, 13);
theNumberofLabel.setText("The number of samples must be ");

TeastSampleCount = new Text(noSamplesGroup, SWT.BORDER);
TeastSampleCount.addFocusListener(new FocusAdapter() {
public void focusGained(FocusEvent e) {
try {
int number =
Integer.parseInt(leastSampleCount.getText());

} catch (Exception ex) {
/ Do nothing

D;
TeastSampleCount.setEditable(false);

TeastSampleCount.setBounds(252, 127, 36, 19);

noofsampleokBox = new Button(noSamplesGroup, SWT.CHECK);
noofsampleokBox.setBounds (296, 129, 35, 16);
noofsampleokBox.setText("0K");

final Label TimitTheNumberLabel = new Label(noSamplesGroup,
SWT.NONE) ;

TimitTheNumberLabel.setvisible(false);

TimitTheNumberLabel.setAlignment (SWT.RIGHT);

TimitTheNumberLabel.setBounds(66, 162, 181, 25);

TimitTheNumberLabel.setText("Limit the number of samples");

TimitNoofSampleCount = new Text(noSamplesGroup, SWT.BORDER);
TimitNoofSampleCount.setVvisible(false);
TimitNoofSampleCount.setBounds(253, 159, 36, 19);

111

final Button okButton_1l = new Button(noSamplesGroup, SWT.CHECK);
okButton_1.setvisible(false);

okButton_1.setBounds (295, 160, 36, 16);
okButton_1.setText("oK");

tabl_next = new Button(noSamplesGroup, SWT.NONE);

// tabl_next.addSelectionListener(new StoreCurrentPageHandler());
tabl_next.addSelectionListener(new PagelNextTabHandler());
tabl_next.setBounds(385, 258, 50, 23);

tabl_next.setText("Next");

gqcFrequency = new Text(noSamplesGroup, SWT.BORDER);
) chrequency.setText("%l of number of products; with a minimum of 10
units");
gcFrequency.setEditable(false);
gcFrequency.setBounds (253, 94, 281, 22);

* tabl_next.addSelectionListener(new SelectionAdapter() { public
void widgetSelected(SelectionEvent e) { try {
0y 1 * int t = Integer.parseInt(leastSampleCount.getText()); if (t !=

* formContainer.setGeneratedProductCount(currentForm.getType(),
currentForm.getPeriod(), t);

* System.out.printin("Current form's count = " + t); int
sampleCount = currentForm.getSamples().size(Q);

* currentForm.createSamples(sampleCount); } } catch (Exception ex)
{ ex.printStackTrace(); }

* populateSampleGUIParameters(); updateSampleGUI();

updateGUIFromParameters(currentfForm.getType());
* updateQCList(); } }); -——---------------—-

o
£

final TabItem otherQcTestsTabItem = new TabItem(tabFolder,
SWT.NONE) ;

FomListComposite
package com.ptah.kankalite.ui;

import org.eclipse.swt.SWT;

import org.eclipse.swt.events.SelectionAdapter;
import org.eclipse.swt.events.SelectionEvent;
import org.eclipse.swt.layout.FormAttachment;
import org.eclipse.swt.layout.FormData;

import org.eclipse.swt.widgets.Composite;
import org.eclipse.swt.widgets.Label;

import org.eclipse.swt.widgets.List;

import com.ptah.kankalite.domain.Form;
import com.ptah.kankalite.domain.QTree;
import com.swtdesigner.SwWTResourceManager;

public class FormListComposite extends Composite {

//private StyledText styledText;
private List alarmList;
private QTree tree;
//private TreeItem[] item=new TreeItem[3];
Eorm selectedForm;
* Create the composite
* @param parent
* @param style

112

% /
pubTic FormListComposite(Composite parent, int style) {
super(parent, style);

alarmList = new List(this, SWT.BORDER|SWT.V_SCROLL|SWT.H_SCROLL);
alarmList.setBounds(5, 350, 200, 100);

final Label gcAlarmListLabel = new Label(this, SWT.NONE);

gcAlarmListLabel.setBounds(15, 320, 200, 25);

gcAlarmListLabel.setFont(SWTResourceManager.getFont("", 14,
SWT.BOLD));

gcAlarmListLabel.setAlignment (SWT.CENTER);

gqcAlarmListLabel.setText("QC Alarm List");

final Label formListLabel = new Label(this, SWT.NONE);

formListLabel.setBounds(15, 10, 200, 25);

formListLabel.setFont(SWTResourceManager.getFont("", 14,
SWT.BOLD));

formListLabel.setATlignment(SWT.CENTER);

formListLabel.setText("QC Form List");

tree = new QTree(this, SWT.BORDER);
final FormbData fd_tree = new FormbData();
fd_tree.left = new FormAttachment(0, 20);
fd_tree.right = new FormAttachment(0, 210);
fd_tree.bottom = new FormAttachment(0, 275);
fd_tree.top = new FormAttachment(0, 25);
tree.getTree().setLayoutbata(fd_tree);
/* tree.getTree().addSelectionListener(new SelectionAdapter() {
public void widgetSelected(SelectionEvent e) {
selectedForm = tree.?et5e1ectedForm();
if (selectedForm!=null) {

}
P;*/
}

@override
public void dispose() {
super.dispose();

@override
protected void checkSubclass() {
// Disable the check that prevents subclassing of SWT components

public QTree getTree() {
return tree;

public void setTree(QTree tree) {
this.tree = tree;

public Form getSelectedForm() {
return selectedForm;

public void setSelectedForm(Form selectedForm) {
this.selectedForm = selectedForm;

public List ?etA1qrmList() {
return alarmList;

113

public void setAlarmList(List alarmList) {
alarmList = alarmList;

H.5 Test Source Codes of Domain

FormContainerTester
package com.ptah.kankalite.domain;

import java.util.Calendar;
import java.util.Map;

import junit.framework.TestCase;

import com.ptah.kankalite.constants.FormState;
import com.ptah.kankalite.constants.FormType;
import com.ptah.kankalite.constants.ParameterType;

public class ForngntainerTester extends TestCase {

String year = ;
Calendar calendar = cCalendar.getInstance();

public void setUp() {
year = "" + calendar.get(Calendar.YEAR);

public void testCreateformContainer() {]
FormContainer formContainer = new FormContainer();
assertNotNull(formContainer);

public void testFormGeneration() {

FormContainer formContainer = new FormContainer();

// 1I1gili doénemlerde lretilen lrin sayilari set ediliyor

formContainer.setGeneratedProductCount(FormType.ES, "012007", 100);

formContainer.setGeneratedProductCount(FormType.ES, "022007", 130);

formContainer.setGeneratedProductCount(FormType.ES, "022007", 150);

// En son yazilan deger gecerli

formContainer.setGeneratedProductCount(FormType.ES, "032007", 60);
022001n§ actual = formContainer.getGeneratedProductCount(FormType.ES,
n 7|| :

asserteEquals (150, actual);

actual = formContainer.getGeneratedProductCount(FormType.ES,
"012007");

asserteEquals (100, actual);

actual = formContainer.getGeneratedProductCount(FormType.ES,
"052009");

assertEquals(-1, actual);

actual = formContainer.getGeneratedProductCount(FormType.TS,
"012007");

asserteEquals(-1, actual);

public void testStorage() {
Storage storage = new Storage();)
FormContainer formContainer = new FormContainer();

formContainer.
100);

formContainer.

formContainer.

formContainer.

Form esForm=formContainer.getForm(FormType.ES,

Map<Integer,

setGeneratedProductCount(FormType.ES,

setGeneratedProductCount(FormType.ES,
setGeneratedProductCount(FormType.ES,
setGeneratedProductCount(FormType. TS,

Sample sample=samples.get(0);
sample.add(ParameterType.Hb, 0, 1.1f);
sample.add(ParameterType.Hb, 1, 1.3f);

samples.put(l,

sample);

storage.store(formContainer);

FormContainer newFormContainer

try {
newFormcCont

} catch (Except
newFormcont

ainer
ion e) {
ainer

3
assertEquals (200,

newFormContainer.getGeneratedProductCount(FormType.ES,

assertEquals(15,

newFormContainer.getGeneratedProductCount(FormType.TS,

esForm=formContainer.getForm(FormType.ES,
samples= esForm.

asserteEquals(1l.

%etSamp1es();
1f,

"022007",
"032007",
"022007",
"022007");

Sample> samples= esForm.getSamples();

new FormContainer();

(FormContainer) storage.load(Q);

new FormContainer();

"022007"));
"022007"));
"022007") ;

samples.get(0) .getParameter(ParameterType.Hb) .getvalue(0));

samples.put(1,

pubTic void testS
FormContainer
formContainer.
formContainer.
formContainer.
formContainer.
formContainer.
formContainer.
formContainer.
formContainer.
formContainer.
formContainer.
int countForFeb =
"022007");
assertEquals(4,

int countForl00 =

"032007");

assertEquals (10,
int countFor680 =

"042007");

assertEquals (10,
int countFor630 =

"052007");
assertEquals (10,
int countFor600 =

"062007");

assertEquals(10,
int countFor60l =

"072007");

assertEquals (10,
int countFor400 =

"082007");

assertEquals (10,
int countFor40l =

"092007");

sample);

ampleCount() {

formContainer.

countForFeb) ;

countForl00);

countFor680) ;

countFor630);

formContainer.

countFor600) ;

countFor601) ;

countFor400) ;

formContainer.

formContainer.

formContainer.

formContainer.

formContainer.

formContainer.

formContainer = new FormContainer();
setGeneratedProductCount(FormType.
setGeneratedProductCount(FormType.
setGeneratedProductCount(FormType.
setGeneratedProductCount(FormType.
setGeneratedProductCount(FormType.
setGeneratedProductCount(FormType.
setGeneratedProductCount(FormType.
setGeneratedProductCount(FormType.
setGeneratedProductCount(FormType.
setGeneratedProductCount(FormType.

ES, "012007",
ES, "022007",
ES, "032007",
TS, "032007",
TS, "042007",
TS, "052007",
TS, "062007",
TS, "072007",
TS, "082007",
TS, "092007",

getNeededSamp1eCount(FormType

getNeededSampleCount(FormType.
getNeededSsampleCount(FormType.
getNeededSampleCount(FormType.
getNeededSampleCount(FormType.
getNeededSampleCount(FormType.
getNeededSsampleCount(FormType.

getNeededSampleCount(FormType.

114

"01122007",

200);
300);
15);

120);
130);
80);
100);
680);
630);
600) ;
601);
400);
401);
ES,

asserteEquals(l

0, countFor401);

public void testSampleCountwithuserForcedvalue() {

FormContainer
int uservalue
formContainer.
formContainer.
formContainer.
formContainer.
formContainer.
formContainer.
formContainer.
formContainer.
formContainer.
formContainer.
formContainer.
int countForFe

"022007");

assertequals(u
int countForlO

"032007");

assertequals(u
int countFor68

"042007");

assertequals(u
int countFor63

"052007");

assertequals(u
int countFor60

"062007");

assertequals(u
int countFor60

"072007");

assertequals(u
int countFor40

"082007");

assertequals(u
int countFor40

"092007");

asserteEquals(u

formContainer = new FormContainer();
=3;

setUserSampleCount(uservalue);
setGeneratedProductCount(FormType.ES,
setGeneratedProductCount(FormType.ES,
setGeneratedProductCount(FormType.ES,
setGeneratedProductCount(FormType.TS,
setGeneratedProductCount(FormType.TS,
setGeneratedProductCount(FormType.TS,
setGeneratedProductCount (FormType.TS,
setGeneratedProductCount(FormType.TS,
setGeneratedProductCount (FormType.TS,
setGeneratedProductCount(FormType.TS,

servalue, countForFeb);

115

"012007", 120);
"022007", 130);
"032007", 80);
"032007", 100);
"042007", 680);
"052007", 630);
"062007", 600);
"072007", 601);
"082007", 400);
"092007", 401);
b = formContainer. getNeededSamp]eCount(FormType ES,

0 = formContainer. getNeededsampleCount(FormType.TS,

servalue, countForl00);

0 = formContainer.getNeededSampleCount(FormType.TS,

servalue, countFor680);

0 = formContainer.getNeededSampleCount(FormType.TS,

servalue, countFor630);

0 = formContainer. getNeededsampleCount(FormType.TS,

servalue, countFor600);

1 = formContainer.getNeededSampleCount(FormType.TS,

servalue, countFor601);

0 = formContainer.getNeededSampleCount(FormType.TS,

servalue, countFor400);

1 = formContainer. getNeededsampleCount(FormType.TS,

servalue, countFor401);

public void testAreGeneratedrormsDifferent() {

}

FormContainer

String periodl
String period2
String period3

formContainer = new FormContainer();
"012007";
"022007";
"042007";

formContainer.setGeneratedProductCount(FormType.ES, periodl, 120);

formContainer.setGeneratedProductCount(FormType.ES, period2,

130);

formContainer.setGeneratedProductCount(FormType.TS, period3, 280);
rm> forms = formContainer.getForms(FormType.ES);

Map<String, Fo
Form forml = f
Form form2 = f
assertNotSame(

orms.get(periodl);
orms.get(period2);
forml.getid(), form2.getid());

public void testGeneratedfFormsCount() {

120);
130);
80);

180);

FormContajner
formContainer.

formContainer.
formContainer.
formContainer.

Map<String, Fo

formContainer = new FormContainer();

setGeneratedProductCount(FormType.ES,
setGeneratedProductCount(FormType.ES,
setGeneratedProductCount(FormType.ES,

setGeneratedProductCount(FormType.TS,

"o1
"oa"
"oz
"0z

+

+

+

year,
year,
year,

year,

rm> forms = formContainer.getForms(FormType.ES);

116

assertEquals(3, forms.size());

/ %

* Ccontainer'in formList objesini populate eder

pubTic void testFormCreatorForThisYear() {
FormContainer container = new FormContainer();
container.createFormsForyYear (FormType.ES, year);
asserteEquals(12, container.getForms(FormType.ES).size());

/ %

* Icinde bulunulan yila ait form Tistesini doner

pubTic void testFormsForCurrentyYear() {

FormContainer container = new FormContainer();

container.createFormsForyYear (FormType.ES, year);

Map<String, Form> forms =
container.getFormsToBeCompletedForyear(FormType.ES);

assertequals(12, forms.size());

container. createFormsForYear(FormType.ES, "2005");

asserteEquals (24,
container.getFormsToBeCompletedForYear(FormType.ES).size());

* Icinde bulunulan yila ait daha o6nceden kismen doldurulmus
formList'i
* doldurur ve eksik olanlari doner

*

pubTic void testFormsForCurrentYearwithPartlypPopulated() {
FormContainer container = new FormContainer();
container.createFormsForyYear(FormType.ES, year);
// createFormsForThisyear metodu glivenTi mi? Iki defa calisinca
// birseyleri bozmasin
container. createFormsForYear(FormType ES, year);
Map<Str1n? Form> forms = container. getForms(FormType ES);
// Bir yil dicin 12 tane form dénmesini bekliyoruz.
assertEquals(12, forms.size());

forms.remove("01" + year);

assertEquals(11l, forms.size());

Map<String, Form> formsTBC =
container.getFormsToBeCompletedForYear(FormType.ES);

assertEquals(11l, formsTBC.size());

assertEquals(11l, forms.size());

public void testDifferentFormsexist() {

FormContainer container = new FormContainer();

container.createFormsForyYear(FormType.ES, year);

container.createFormsForyear(FormType.TS, year);

Map<String, Form> tSForms = container.getForms(FormType.TS);

Map<String, Form> eSForms = container.getForms(FormType.ES);

asserteEquals(12, tSForms.size());

assertEquals(FormType.TS, ((Form)
(tsForms.values().toArray()[0])).getType());

asserteEquals(FormType.ES, ((Form)
(eSFﬁrms.va1ues().toArray()[O])).getType());

public void testTSFormsStatesChangingwithSamples() {
FormContainer container = new FormContainer();
Form tsForm;
container. createFormsForYear(FormType TS, year);
container. setGeneratedProductCount(FormType TS, "02" + year, 150);

117

Map<String, Form> forms =
container.getFormsToBeCompletedForYear(FormType.TS);

tsForm = forms.get("02" + year);

tsForm.setScreeningCheck(true);

tsForm.setGroupingCheck(true);

tsForm.setStorageBeforeQCCheck(true);

tsForm.setStorageburingQCCheck(true);

tsForm.setStorageExterminationCheck(true);

tsForm.setQcSpecialist("AAA");

Map<Integer, Sample> samples = tsForm.getSamples();

assertNotSame(samp1es get(0), samples.get(1));

int sampleSize = samples.size();

asserteEquals (10, samples.size());

asserteEquals(4, samples.get(0).getExpiryPeriod());

assertEquals(FormState.SAMPLE_ABSENT, tsForm.getState());

for (int i = 0; i < sampleSize; i++) {
samples.get(i).setBloodNo(1001 + i);
samples.get(i).setProductionDate(calendar.getTime());
samples.get(i).add(ParameterType.vol, 0, 100f + i);
samples.get(i).add(ParameterType.vol, 1, 41f + 1i);
samp]es.get(i).add(ParameterType.ResLeuk, 0, 11f + 1);
asserteEquals(FormState.SAMPLE_ABSENT, tsForm.getState());
samples.get(i).add(ParameterType.NoT, 0, 22f + 1i);

3
assertEquals(FormState.TESTS_WAITING, tsForm.getState());

for (int i = 0; i < sampleSize; i++) {
asserteEquals(FormState.TESTS_WAITING, tsForm.getState());
samples.get(i).add(ParameterType.Ph, 1, 7f + 1);

assertEquals(FormState.DONE, tsForm.getState());

tsForm.checkResults();

asserteEquals(0, tsForm.getResult(ParameterType.Vvol));
3

public void testTSFormsStatesChangingwithSampleswithInvalidvalues()

FormContainer container = new FormContainer();

Form tsForm;

container.createFormsForyYear(FormType.TS, year);

container.setGeneratedProductCount(FormType.TS, "02" + year, 150);

Map<String, Form> forms =

container.getFormsToBeCompletedForYear(FormType.TS);

tsForm = forms.get("02" + year);

Map<Integer, Sample> samples = tsForm.getSamples();

assertNotSame(samp1es get(0), samples.get(1));

int sampleSize = samples.size();

asserteEquals (10, samples.size());

asserteEquals(4, samples.get(0).getExpiryPeriod());

assertEquals(FormState.SAMPLE_ABSENT, tsForm.getState());

for (int i = 0; i < sampleSize; i++) {
samples.get(i).setBloodNo(1001 + i);
samples.get(i).setProductionDate(calendar.getTime());
samples.get(i).add(ParameterType.vol, 0, 100f + i);
samples.get(i).add(ParameterType.vol, 1, 41f + 1i);
samp]es.get(i).add(ParameterType.ResLeuk, 0, 11f + 1);
asserteEquals(FormState.SAMPLE_ABSENT, tsForm.getState());
samples.get(i).add(ParameterType.NoT, 0, 22f + i);

b
assertEquals(FormState.TESTS_WAITING, tsForm.getState());
for (int i = 0; i < sampleSize; i++) {

asserteEquals(FormState.TESTS_WAITING, tsForm.getState());
samples.get(i).add(ParameterType.Ph, 1, 10f + 1i);

assertEquals(FormState.TESTS_WAITING, tsForm.getState());

118

tsForm.checkResults();
asserteEquals(0, tsForm.getResult(ParameterType.Vvol));

FormTester
package com.ptah.kankalite.domain;

import java.util.Calendar;
import java.util.Date;
import java.util.List;
import java.util.Map;

import junit.framework.TestCase;

import com.ptah.kankalite.constants.FormState;
import com.ptah.kankalite.constants.FormType;
import com.ptah.kankalite.constants.ParameterType;

public class FormTester extends TestCase {
String year = "";
Calendar calendar = Calendar.getInstance();

public void setup() {
year = "" + calendar.get(Calendar.YEAR);

pubTic void testCreateESForm() {
FormContainer container = new FormContainer();
Form esForm = container.generateForm(FormType.ES, "022007");
assertNotNull(esForm);
Map<Integer, Sample> samples = esForm.getSamples();
asserteEquals(4, samples.size());
Sample samplel = samples.get(0);
Sample sample?2 samples.get(1l);
Sample sample3 samples.get(2);
Sample sample4 samples.get(3);
assertEquals(0, samplel.getBloodNo());
asserteEquals(0, sample2.getBloodNo());
asserteEquals(3, sample3.getParameterTypes().size());
assertEquals(42, sampled.getExpiryPeriod());
assertEquals(FormState.SAMPLE_ABSENT, esForm.getState());

}

pubTic void testGeneratedIids() {
FormContainer container = new FormContainer();
Form esForm = container.generateForm(FormType.ES, "022007");
Form tsForm = container.generateForm(FormType.TS, "022007");
Tong esId = esForm.getId();
Tong tsId = tsForm.getId();
assertNotSame(esIid, tsid);

}

pubTic void testSampleCountCalculation() {
FormContainer container = new FormContainer();
String date = "022007";
container.setGeneratedProductCount(FormType.ES, date, 150);
Form esForm = container.getForm(FormType.ES, date);
asserteEquals(4, esForm.getNumberofSamplesToBeTested());
esForm.setNumberofsamplesToBeTested(100);
assertEquals (100, esForm.getNumberofsamplesToBeTested());

}
/:':

119

* FormContainer yaratilir Container'in setGeneratedProductCount

method'u cagrilarak ilgili tipte, belirlenen

* zamanda ka% adet (rin Uretildigi set edilir. Container'in
a

getForm methodu cagrilarak ilgili tipte, belirlenen

* zaman icin container tarafindan lretilen form objesi alinir.

Bu form objesinin icersinde

* setGeneratedProductCount method'unda set edilen lirin sayisina

gore belirlenen sayida Sample objesi olmasi

* bekTenir.

pubTic void testSampleCount() {
FormContainer container = new FormContainer();
String date = "022007";
container.setGeneratedProductCount(FormType.ES, date, 150);
Form esForm = container.getForm(FormType.ES, date);

int i = 1000;
for (Sample sample : esForm.getSamples().values()) {
sample.setId(i++);

sample.setProductionDate(new Date(System.currentTimeMillis()));

for (Sample sample : esForm.getSamples().values()) {
) assertNotSame(-1, sample.getid());
h
public void testTSFormsampleCount() {)
FormContainer container = new FormContainer();
container.createFormsForyear(FormType.TS, year);
container.setGeneratedProductCount(FormType.ES, "02" + year,
asserteEquals (10, container.getNeededSampleCount(FormType.TS,
year));
container.setGeneratedProductCount(FormType.TS, "03" + year,
asserteEquals (10, container.getNeededSampleCount(FormType.TS,
year));
container.setGeneratedProductCount(FormType.TS, "04" + year,
asserteEquals(1ll, container.getNeededSampleCount(FormType.TS,
year));
container.setGeneratedProductCount(FormType.TS, "05" + year,
assertEquals(12, container.getNeededSampleCount(FormType.TS,
year%);

public void testESFormsStatesChangingwithSamples() {
FormContainer container = new FormContainer();
Form esForm;
container.createFormsForyear(FormType.ES, year);

150);
ll02|| +

900) ;
Il03ll +

1040) ;
Il04ll +

1150);
Il05|| +

container.setGeneratedProductCount(FormType.ES, "02" + year, 150);
asserteEquals(4, container.getNeededSampleCount(FormType.ES, "02" +

year));
Map<String, Form> forms =
container.getFormsToBeCompletedForYear(FormType.ES);
esForm = forms.get("02" + year);
Map<Integer, Sample> samples = esForm.getSamples();
assertNotSame(samples.get(0), samples.get(1l));
asserteEquals(4, samples.size());
esForm.setScreeningCheck(true);
esForm.setGroupingCheck(true);
esForm.setStorageBeforeQCCheck(true);
esForm.setStorageburingQCCheck(true);
esForm.setStorageExterminationCheck(true);
esForm.setQcSpecialist("AAA");
// Baslangicta state, SAMPLE_ABSENT olmali
assertEquals(FormState.SAMPLE_ABSENT, esForm.getState());

120

] // Bltln parametreler -1 olacak ve toplam 12 parametre olacak (4
sample,
// 3 parametre, 2 deger(initial - expired))
int counter = 0;
for (Sample sample : samples.values()) {
assertEquals(42, sample.getExpiryPeriod());
for (ParameterType type : sample.getParameterTypes()) {
Parameter parameter = sample.getParameter(type);
List<Float> values = parameter.getvalues(type);
for (int loopvar = 0; loopvar < values.size(); loopvar++) {

try {
float val = values.get(loopvar);
if (val == -1.0f) {
asserteEquals(-1f, val);
counter++;

3
} catch (Exception e) {
System.out.println(loopvar);

}
}

asserteEquals(12, counter);

samples.get(0).setBloodNo(18047);
samples.get(0).setProductionDate(calendar.getTime());
samples.get(0).add(ParameterType.Htc, 0, 59.4f);
samples.get(0).add(ParameterType.Hb, 0, 76.0f);
assertEquals(FormState. SAMPLE_ABSENT esForm. getState());

) // Alinmis olan initialSamples esForm'daki Tisteyle ayni yeri
isaret
// ediyor mu? - esForm'u update etmeye gerek olmamali!
Sample actualSample = esForm.getSamples() .get(0);
asserteEquals (18047, actualSample.getBloodNo());
assertEquals(59.4f,
actualsample.getParameter(ParameterType.Htc) .getvalue(0));

// Simdi de bitin sample'lari update edelim
samples.get(1l).add(ParameterType.Htc, 0, 56.7f);
samples.get(1l).add(ParameterType.Hb, 0, 70.8f);
samples.get(2).add(ParameterType.Htc, 0, 53.8f);
samples.get(2).add(ParameterType.Hb, 0, 83.8f);
samples.get(3).add(ParameterType.Htc, 0, 60.8f);
samples.get(3).add(ParameterType.Hb, 0, 79f);

Parameter parameterl =
esForm.getSamples() .get(0) .getParameter(ParameterType.Htc);

Parameter parameter2 =
esForm.getSamples() .get(l) .getParameter(ParameterType.Htc);

assertNotSame(esForm.getSamples() .get(0),
esForm.getSamples() .get(1));
assertNotSame(parameterl, parameter2);
assertNotSame(samples.get(0), samples.get(1));
assertNotSame(samples.get(0) .getParameter(ParameterType.Hb) .getvalu
e(0), samples.get(l).getParameter(
ParameterType.Hb).getvalue(0));
asserteEquals(56.7f,
samples.get(l) .getParameter(ParameterType.Htc) .getvalue(0));
assertEquals(83.8f,
samples.get(2) .getParameter(ParameterType.Hb) .getvalue(0));

samples.get(1l).setBloodNo(17750);
Sample actualSample2 = esForm.?etSamp1es().get(l);
assertEquals (17750, actualSample2.getBloodNo());

samples.get(1l).setProductionDate(calendar.getTime());

gelmis

121

samples.get(2).setBloodNo(16665);
samples.get(2).setProductionDate(calendar.getTime());
assertEquals(FormState.SAMPLE_ABSENT, esForm.getState());
samples.get(3).setBloodNo(17126);
samples.get(3).setProductionDate(calendar.getTime());

// Bltln sample'Tlar update edildigine gore TESTS_WAITING state'e

// olmamiz Tazim
assertEquals(FormState.TESTS_WAITING, esForm.getState());

samples.get(0).add(ParameterType.Htc, 1, 70.8f);
samples.get(1l).add(ParameterType.Htc, 1, 75.4f);
samples.get(2).add(ParameterType.Htc, 1, 58.1f);
assertEquals(FormState.TESTS_WAITING, esForm.getState());
samples.get(0).add(ParameterType.Hb, 1, 63.7f);
assertEquals(FormState.TESTS WAITING, esForm getState()),
samples.get(l).add(ParameterType.Hb, 1, 65.
samples.get(2).add(ParameterType.Hb, 1, 45. 3f),
assertEquals(FormState.TESTS WAITING, esForm. %etState()),
samples.get(3).add(ParameterType.Htc, 1, 61.8
assertEqua1s(FormState.TESTS_WAITING, esForm getState()),
samples.get(3).add(ParameterType.Hb, 1, 55.6f);
assertEquals(FormState.DONE, esForm.getState());

// Simdi de parametre degerlerini test edelim - iki 6rnekte

hematokrit sinirlarin disinda bulunuyordu

esForm.checkResults();

asserteEquals(0, esForm.getResult(ParameterType.Hb));
assertEquals(2, esForm.getResult(ParameterType.Htc));
assertEquals(0, esForm.getResult(ParameterType.Hmlz));
assertEquals(2, esForm.getTotalFailedSampleCountForThisForm());

3
}
SampleTester
package com.ptah.kankalite.domain;
import java.util.Calendar;
import java.util.Map;
import junit.framework.TestCase;
import com.ptah.kankalite.constants.FormType;
import com.ptah.kankalite.constants.ParameterType;
public class SampleTester extends TestCase {

public void testSampleParameters() {
FormContainer container=new FormContainer();
String date="022007";
container.setGeneratedProductCount(FormType.ES, date, 150);
Form esForm=container.getForm(FormType.ES, date);
Map<Integer, Sample> initialSamples=esForm.getSamples();

e

* 11k 6rnegi alip parametrelerini kontrol ediyoruz

Sample sample=initialsamples.get(0);
asserteEquals(3,sample.getParameterTypes().size());

assertTrue(sample.getParameterTypes().contains(ParameterType.Hb));

assertTrue(sample.getParameterTypes().contains(ParameterType.Htc));

122

assertEquals(-
1.0f,s?mp1e.getParameters().get(ParameterType.Htc).getva1ue(0));

pubTic void testESFormSamples() {
FormContainer container=new FormContainer();
String date="022007";
container.setGeneratedProductCount(FormType.ES, date, 150);
Form esForm=container.getForm(FormType.ES, date);
Map<Integer,Sample> samples=esForm.getSamples();
assertEquals(4,samples.size());
// ES Formunda dort o6rnek var, biz ilkini aliyoruz
?amp]e sample=samples.get(0);

* initialsample'da Hb bulunacak ancak Hmlz bulunmayacak

*

assertTrue(sample.getParameterTypes().contains(ParameterType.Hb));
assertTrue(sample.getParameterTypes().contains(ParameterType.Htc));

assertTrue(sample.getParameterTypes().contains(ParameterType.Hmlz))

}

public void testESFormInitialExpiringParameterTransfer() {
FormContainer container=new FormContainer();
String date="022007";
container.setGeneratedProductCount(FormType.ES, date, 150);
Form esForm=container.getForm(FormType.ES, date);

Calendar calendar=Calendar.getInstance();
calendar.set(2007,2,20);
esForm.setSampleProductionDate(0,calendar.getTime());
/* Herhangi bir sample'in production date'i set edilirse
* buna karsilik dusen sample'in (initial - expiring)
* expiry date'i kendiliginden set edilmeli.
calendar.add(Calendar.DAY_OF_MONTH, 42);

asserteEquals(calendar.getTime(),esForm.getSampleExpirybate(0));

DateTester

package com.ptah.kankalite.domain;
import java.text.DateFormat;
import java.text.ParseException;
import java.util.Date;

import junit.framework.TestCase;

public class DateTester extends TestCase {)
public void testCreateDate() throws ParseException {

String datestr="6/6/07";
DateFormat formatter=DateFormat.getDateInstance(DateFormat.SHORT);
Date actualDate=formatter.parse(datestr);

123

String actualbateStr=formatter.format(actualDate);

/*Calendar calendar=Calendar.getInstance();
calendar.set(2007,6,6);

Date expectedDate=calendar.getTime();*/
assertEquals(datestr,actualbDatestr);

10.

11.

12.

13.

14.
15.
16.

17.
18.

19.

20.

124

REFERENCES

Akdeniz Universitesi, “Kan Bankaciligi ve Transfiizyon Tibbinda Standartlar ve Kalite
Kursu Notlar1”, Antalya, 2002.

European Commission, Health & Consumer Protection Directorate General, “Opinion On
Quality and Safety of Blood ”, Decleration, Brusseles, 2000.

European Council, “Guide to the preparation, Use and quality Assurance of Blood
Components, 11" edition”, European Council of Publishing, France, 2005.

Australian Society of Blood Transfusions, “Clinical Practice Guidelines on the Appropriate
Use of Red Blood Cells”, Sydney, 2000.

Akdeniz Universitesi, “Ulusal Kan Merkezleri ve Transfiizyon Tibb1 Kursu (VII) Notlar1”,
Antalya, 2002.

WHO, “AM Quality System for Blood Safety” Key Element and Requirements Notes,
Switzerland, 2003, Available at: www.who.int/bct.

SANAS, South African National Accreditation System, “Accreditation of Blood Transfusion
Services”, Brochure, Zambia, Available at: www.sanac.co.za .

Kumari, S., “Quality Management in Blood Transfusion Service”, World Health
Organization, BTS, South Asia, 1998.

T.C. Saglik Bakanligi, “Organ Ve Doku Alinmasi, Saklanmasi ve Nakli” Yonetmeligi ve
ilgili Kanunlar, Ankara, 2004.

Bayik, M., “Giivenli Kan”, Kan Merkezleri ve Transfiizyonlar1 Dernegi, Damla, Vol. 59,
pp.10-12, istanbul, 2003.

Akdeniz Universitesi, “Ulusal Kan Merkezleri ve Transfiizyon Kursu V. Notlar1 - Kan
Merkezlerinde Kayit.”, Ankara, 2001.

Food and drug Administration, “Guidelines For Quality Assurance in Blood Establishments”,
Standart: 91N-450, USA, 1995.

European Parliament, “Quality and Safety Standards for Human Blood and Blood
Components”, Decleration, Brusseles, 2000.

Guyton, C., “Human Physiology”, Student Edition, USA, 1991.
Stryer, A., “Stryer’s Biochemistry”, Hamburg, 1998.

AABB, American Association for Blood Banks, “Standarts for Blood Banks, and
Transfusion Services, XX.Edition”, A4BB Press, USA, 2000.

Schneider, D.E., “Computer Programming Concepts and Visual Basic”, Germany, 1999.

Kobryn, C., “Introduction to UML: Structural and Use Case Modeling”, Object Modeling
with OMG UML Tutorial Series, USA, 2006.

Wuyts, R., “Use Case Diagrams”, ULB — Analse et Methodologie Informatiques,
V0l1.2005/2006, pp.506, Belgium, 2006.

Winnemiller, E., “Java Programming, Database How-To”, Objective Series, N.Y., 1999,

21.

22.

23.

24.

25.

26.
27.

28.

29.
30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

125

Nehrer, P., “Java Development with Eclips Tool”, 2005, Available at:
www.developer.com/java/data/article.php/3528616 , pp.1-12.

SGS: Cortex Quality Software, “Hemotrack Blood Bank Management System for Hospitals”,
Data Sheet & Brochure, Belgium, Available at: www.sgscortex.com.

Tiirkiye 2inci Bilisim Surasi, e-Saglik Calisma Grubu, “e-Saglik Taslak Raporu”, Ankara
2004.

Akdeniz Universitesi, “Ulusal Kan Merkezleri ve Transfiizyon Tibb1 Kursu II. Notlar1 - Kan
Merkezleri arasinda Iletisim”, Ankara, 2001.

Learoyd, P., “Good manifacturing practice for blood components, A Brief Guide”, National
Blood Service, Council of Europe Publishing, 1999.

Holzner, S., “Visual Basic 6, Black Book Press, N.Y., 1998.

Min, L.S., Choi, M.R., Kim, S.Y., Jung E.Y., Hwang, J.H., Lee, S., “Institution based Quality
Assessment of Blood Transfusion in South Korea”, ISQua, 2004.

Unitech, “Barkod Okuyucular i¢in Programlama Manueli ve Teknik Referans Manueli”,
South Korea, 2006.

Igrapx, “Flowcharter Programming Manual”, Corel Corporation, Germany, 2004.

Ergen, E., Dalkili¢, M., Akaoglu, S., “Kan Komponentleri”, Eskisehir Kizilay Kan Merkezi,
Kan, Vol.1, pp.7-29, Eskisehir, 2002.

Acar, N., Kocak, N., “Transfiizyon Pratigi”’, Eskisehir Kizilay Kan Merkezi, Kan, Vol.l,
pp-30-40, Eskisehir, 2002.

Uniform Code Council (UCC) & Health Industry Business Communications Council
(HIBCC), “Eurocode-IBLS Uluslararas1 Kan ve Kan Uriinleri Barkod Etiketleme
Standartlar1”, European Directive 2002/98/EC, 2002.

Wright, C., “Visual C++ for Dummies - Quick Reference”, For Dummies Series, USA,
2001.

Franklin, .M., “Quality Improvement Program: Safe and Effective Transfusion in Scottish
Hospitals — The Role of the Transfusion Nurse Specialist (SAET Study)”, NHS-Scotland,
Edinburgh, 2004.

European Commision, Health & Consumer Protection Diroctorate General, “Blood
Regulatory Comitee — Summary Report” Decleration, Luxembourg, 2005.

Duman, C., Erden, B.F., “Birinci Basamak Saglik Hizmetlerine Yonelik Biyokimyasal
Laboratuvar verilerinin Kisa Yorumu”, Sted, Vol 13, Issue.7, pp 256-262, Kocaeli, 2004.

Brunner, D., “PIC/S Gmp Guide For Blood Establishments”, Pharmaceutical Inspection
Convention, Geneva, 2004.

European Commission, Health & Consumer Protection Directorate General, “High Quality
and Safety Standards for Human Blood and Blood Components”, Declaration, Amsterdam,
2000.

SANAS, South African National Accreditation System, “Application Form and Criterias for
Accreditation of Blood Transfusion Service Laboratories”, Form, Zambia, Available at:
WWW.Sanac.co.za.

40.
41.

42.

43
44,

45.

46.

47.
48.

49.

126

Erbas, O., “Hastane Kan Merkezleri Calisma Yontemleri”, Istanbul, 1999.

World Health Organization, “Quality Management Project For Blood Transfusion Services”,
Infosheet, Geneva, Switzerland, Available at: www.who.int/bct.

Clayberg, E., Rubel, D., “Java GUI Development for Swing, SWT, RCP and GWT:
WindowBuilder Pro”, Instantiations, USA, 2007.

Gray, E., “Gray’s Anatomy”, USA, 1930.

Schots, J., Cassiman, 1., Tielemans, L., “Quality Assurance of Transfusion Practices in
Belgium Hospitals”, Schots, Brussels, 2002.

Dhringra, N., Lloyd, S.E., Fordham, J., Noryati, A.A., “Challenges in Global Blood Safety”,
World Hospitals, and Health Services, Vol.40, pp 45-49, WHO.

Kritchevsky, S., Simmons, B., “Continuous Quality Improvement: Concepts and
Applications for Physician Care”, JAMA, Vol. 266, pp.1817-1823, 1991.

Luciano, M., “Human Physiology and Anatomy”, MacGrawHill, USA, 1991.

T.C. Saghk Bakanhigi, Bilgi Islem Daire Baskanhigi, “Tiirkiye Saghk Bilgi Sistemi Eylem
Plan1”, Rapor, Ankara, 2004.

World Health Organization, “Basic Operational Framework for Blood Transfusion Safety”,
Review, 2007, Available at: www.who.int/bct .

