

DESIGN OF A SOFTWARE PLATFORM

FOR

THE QUALITY CONTROL OF MAIN BLOOD PRODUCTS

by

Sıtkı AKYON

M.D., Istanbul University, Medical Faculty of Cerrahpaşa, 1995

Submitted to the Institute of Biomedical Engineering

In partial fulfillment of the requirements

For the degree of

Master of Science

in

Biomedical Science

Boğaziçi University

September 2007

ii

DESIGN OF A SOFTWARE PLATFORM

FOR

THE QUALITY CONTROL OF MAIN BLOOD PRODUCTS

APPROVED BY :

Prof. Dr. Yekta ÜLGEN ...

(Thesis Advisor)

Prof. Dr. Ahmet ADEMOĞLU

Assoc. Prof. Dr. Albert GÜVENİŞ

DATE OF APPROVAL : 21 . 09 . 2007

iii

ACKNOWLEDGMENTS

I would like to thank my supervisor Prof. Dr. Yekta ÜLGEN, for giving me the

opportunity to work on this research topic, which was an exciting and challenging

experience for me, in all aspects, his motivating approach and giving best examples of

applications of engineering theory, in practice.

I would like to thank Prof. Dr. Ahmet ADEMOĞLU, for being a member of my

thesis committee. I would like to thank Assoc. Prof. Dr. Albert GÜVENİŞ for being a

member of my thesis committee.

This study is a part of quality control procedures and applications of Blood Banks

of Türk Kızılayı. I am grateful to the Quality Management Department of Türk Kızılayı.

It was a pleasure to share the knowledge; I would like to thank valuable research

assistants and the staff of Biomedical Engineering Institute for their support.

I’d like to thank to Güzeyya YILDIRIM, and Artuğ BAYRAKTAROĞLU for their

efforts on Word Processing and dactylography. I thank Uğur BOSTANCI, my dear friend,

for all the support he has given to me on answering all my questions in Computer Science.

This study is dedicated to him.

iv

ABSTRACT

DESIGN OF A SOFTWARE PLATFORM FOR
THE QUALITY CONTROL OF MAIN BLOOD PRODUCTS

In modern blood banking services, blood banks and transfusion services, follow a

standard operation procedure during preparation and the quality control of blood

components. The Quality Management involves identification and selection of prospective

blood donors, adequate collection of blood, preparation of blood components, quality

laboratory testing and ensuring the safest and most appropriate use of blood/blood

components: the objective is to ensure availability of high quality blood components for

transfusion. A management model and a managing software is developed for the quality

control procedures of main blood products: erythrocyte suspensions, thrombocyte

suspensions, and fresh frozen plasma with reference to the Guide by European Council.

The user can access detailed data for each of the prepared blood component; to prepare

annual summations, and to manage QC processes effectively. It reduces the risk of

producing defective components, by giving alarms to the QC Specialist. Unified Modeling

Language is used as the Object-Oriented Modeling Design Platform and the software is

developed on Eclips SDK, on a Java platform. Since data size is limited a simple memory-

save function is used to a Java HashMap.

Keywords: Quality Control of Blood Components, Software for Quality Control

Managing, UML Design of Quality Control of Blood Components

v

ÖZET

TEMEL KAN ÜRÜNLERİNİN KALİTE KONTROLÜ İÇİN
BİR YAZILIM PLATFORMU TASARIMI

Modern kan bankacılığında, kan merkezleri ve transfüzyon servisleri, kan

komponentlerinin hazırlanması sırasında ve kalite kontrolünde ortak ve standart bir yol

izlerler. Kalite Yönetimi, uygun donörlerin tanımlanıp seçilmesini, yeterli kanın

alınmasını, kan komponentlerinin üretilmesini, kalite laboratuarında yapılan testleri ve en

güvenli ve en uygun kan ve kan ürünlerinin kullanılmasının garantilenmesini içerir: amaç,

yüksek kaliteli kan ürünlerinin temininin sağlanmasıdır. Avrupa Konseyi Rehberi referans

alınarak, ek solüsyonlu eritrosit süspansiyonu, trombosit süspansiyonu ve taze donmuş

plazmanın kalite kontrol prosedürleri için bir yönetim modeli ve bir yönetim yazılımı

geliştirilmiştir. Kullanıcı, yıllık toplamlar hazırlamak ve kalite kontrol süreçlerini

yönetmek için, üretilmiş her ayrı kan komponenti hakkında detaylı bilgiye ulaşabilir.

Kalite kontrol uzmanına alarm vererek, hatalı komponent üretimi riskini azaltacaktır. Obje

Temelli Modelleme için, Birleşik Modelleme Dili dizayn platformu kullanılmış ve yazılım,

Java platformunda, Eclips SDK üzerinde geliştirilmiştir. Veri miktarı küçük olduğu için bir

Java HashMap üzerine basit hafıza kaydı kullanılmıştır.

Anahtar Sözcükler: Kan Ürünlerinin Kalite Kontrolü, Kalite Kontrol Takip Yazılımı, Kan

Kalite Kontrolü UML tasarımı

vi

TABLE OF CONTENTS

ACKNOWLEDGMENTS . iii

ABSTRACT . iv

ÖZET . v

TABLE OF CONTENTS . vi

LIST OF FIGURES . ix

LIST OF TABLES . xi

LIST OF ABBREVIATIONS . . xii

1. INTRODUCTION . 1

 1.1. Objective . 1

2. BLOOD BANK METHODOLOGY 2

 2.1. Blood Components . 3

 2.2. Blood Tests . 6

 2.3. Labeling of the Blood Components during Production 7

3. QUALITY CONTROL OF BLOOD PRODUCTS 8

 3.1. The Quality Control System 8

 3.1.1. Documentation 9

 3.1.2. Records . . 10

 3.2. The Definition of “Quality” in QC of Blood Component 10

 3.3. The Main Quality Control Process 12

 3.3.1. Storage of Blood Components during QC Process 15

 3.3.2. Main QC Report Prints 16

 3.4. QC Process of Erythrocyte Suspension in Additive Solution 16

 3.5. QC Process of Thrombocyte Suspension 17

 3.6. QC Process of Fresh Frozen Plasma Suspension 18

 3.7. Defects in Quality . 18

4. MODELING THE SYSTEM. 21

 4.1. Waterfall Model of development 21

 4.2. Modeling . 23

 4.2.1. Object Oriented Programming (OOP) 23

 4.2.2. Unified Modeling Language (UML) 25

vii

 4.3. Development Platform of the Software: Java 26

 4.3.1. Eclipse SDK On Java 26

 4.3.2. Window Builder On Eclipse 27

5. SOFTWARE FOR QC MANAGEMENT. 28

 5.1. General Information on the Software 28

 5.2. General Design of Model 30

 5.2. Design of the Classes 31

 5.3.1. The Class: Form Container 31

 5.3.2. The Class: Form 33

 5.3.3. The Class: Sample 36

 5.3.4. The Class: Parameter 37

6. THE USE AND GUI DESIGN OF THE SOFTWARE 39

 6.1. General Menu of the Software 41

 6.1.1 Setup Menu . 41

 6.2. Form and Sample Data Entry of the Software 42

 6.2.1. Erythrocyte Suspension Short Cut Button 42

 6.2.2. Fresh Frozen Plasma Short Cut Button 43

 6.2.3. Thrombocyte Suspension. Short Cut Button 43

 6.2.4. An Example of a data entry procedure of TS Samples . . . 44

 6.3. General Form and Sample Access of the Software 47

 6.3.1. Direct Form Access Button 47

 6.3.2. Direct Sample Access Button 49

 6.4. Printing Reports . 50

 6.4.1. Monthly Report 51

 6.4.2. Request Form 51

 6.4.3. Annual Summations 51

7. DISCUSSION AND CONCLUSION 52

 7.1. The Necessity And Benefits Of QC of Blood Products 52

 7.2. Future Work On Development Of Software 53

APPENDIX A. QUALITY REQUIREMENTS 56

 A.1. Quality requirements of Whole Blood 56

 A.2. Quality requirements of ES-AD 57

 A.3. Quality requirements of TS 58

viii

 A.4. Quality requirements of FFP 59

APPENDIX B. QC PROCESSES 60

 B.1. QC Process of ES-AD component 60

 B.2. QC Process of TS component 63

 B.3. QC Process of FFP component 66

APPENDIX C. MENU TREE OF THE SOFTWARE 68

APPENDIX D. DEFAULT VALUES OF THE SOFTWARE 70

APPENDIX E. QC REPORT SAMPLES 71

 E.1. Monthly ES-AD QC report 71

 E.2. Monthly TS QC report 72

 E.3. Monthly FFP QC report 73

 E.4. Annual QC results summation report form 74

 E.4.1. Annual QC results summation report, TS sample 75

APPENDIX F. COMPONENT REQUEST FORM SAMPLE 76

APPENDIX G. SAMPLE BARCODE READINGS 77

APPENDIX H. SOFTWARE SOURCE CODE 78

 H.1. Source code of Domain 78

 H.2. Source code of Data Source 103

 H.3. Source code of Constants 104

 H.4. Source code of UI . 105

 H.5. Test Source Codes . 113

REFERENCES . 124

ix

LIST OF FIGURES

Figure 2.1 Derivatives of whole blood, and blood components 5

Figure 2.2 A sample of blood component label 7

Figure 3.1 Main QC process of blood components 13

Figure 3.2 Usage and expiry Period of TS and ES preparations, in different

conditions: low quality (1), good stored, but not quality controlled

(2) and good stored, and quality controlled(3) 19

Figure 4.1 Waterfall Development for QC software 21

Figure 5.1 Objects, Constants, and UI of software 29

Figure 5.2 Basic UML Diagram of the Domain of QC managing software 30

Figure 5.3 Hashmap of FormContainer 32

Figure 5.4 GetNeededSampleCount method of the “FormContainer” 33

Figure 6.1 Main GUI Design of QC management software 40

Figure 6.2 The Menu Bar of the software 41

Figure 6.3 Sample Data Input SubWindow, (or Tab), of the ES-AD Data Entry

Window

42

Figure 6.4 Sample Data Input SubWindow, (or Tab), of the FFP Data Entry

Window

43

Figure 6.5 Sample Data Input SubWindow, (or Tab), of the TS Data Entry

Window

44

Figure 6.6 Number of Samples input Tab, of the TS Data Entry Window 44

Figure 6.7 Other Tests Approval SubWindow, of the TS Data Entry Window 45

Figure 6.8 QC Report General View SubWindow, of the TS Data Entry

Window

45

Figure 6.9 QC Report Error Sources Input SubWindow of the TS Data Entry

Window

46

Figure 6.10 QC Form Administrative Approval SubWindow of the TS Data Entry

Window

46

Figure 6.11 ShortCut Buttons of the Software 47

Figure 6.12 The Direct Form Access Window for ES 47

Figure 6.13 QC Status Window 48

Figure 6.14 Alarm and Alarm Definitions Windows 49

x

Figure 6.15 The Direct Sample Access Window for Barcode Input 50

Figure 6.16 Print Report Tab of the TS Data Entry Window 50

Figure B.1 Diagram of QC Process of ES-AD Component 60

Figure B.2 Diagram of QC Process of TS Component 63

Figure B.3 Diagram of QC Process of FFP Component 66

Figure E.1 Monthly ES in AD QC Report 71

Figure E.2 Monthly TS QC Report 72

Figure E.3 Monthly FFP QC Report 73

Figure E.4 Annual QC Results Summation Report Form 74

Figure E.5 Annual QC Results Summation Report, TS Sample 75

Figure F.1 Component Request Form Sample 76

xi

LIST OF TABLES

Table 2.1 The Size, and density of the surrounding fluid of principal blood

constituents

3

Table 2.2 Summary of the tests done in different laboratories, and Storage Dept

of Blood Bank; and their relationship with QC Laboratory

6

Table 5.1 Field and Method Summary of Class “FormContainer” 32

Table 5.2 Method Summary of Class “Form” 34

Table 5.3 Field Summary of Class “Form” 35

Table 5.4 Field and Method Summary of Class “Sample” 37

Table 5.5 Method Summary of Class “Parameter” 38

Table A.1 Table of Quality Requirements of Whole Blood 56

Table A.2 Table of Quality Requirements of ES-AD 57

Table A.3 Table of Quality Requirements of TS 58

Table A.4 Table of Quality Requirements of FFP 59

Table C.1 The Menu Tree of the software 68

Table D.1 Default unit list of different parameters used in the GUI of the

software, next to the test results.

70

Table D.2 Default values of parameters of QC requirements and scientific

values recorded in the software.

70

Table G.1 Sample barcode readings from Blood Labels of Türk Kızılayı. 77

xii

LIST OF ABBREVIATIONS

QC Quality Control

Htc Haematocrit

Hb Haemoglobin

PRP Platelet Rich Plasma

CPD Citrate-phosphate-dextrose

ES Erythrocyte Suspension

ES-AD Erythrocyte Suspension in Additive Solution

TS Thrombocyte Suspension

FFP Fresh Frozen Plasma

AS Additive Solution

HIV Human Immunodeficiency Virus

HBsAg Hepatitis B surface Antigen

HCV Hepatitis C Virus

CMV CytoMegaloVirus

HTLV Human T-cell lymphotropic virus

HLA Human Leucocyte Antigen

HPA Human Platelet Antigen

QA Quality Assurance

SOPs Standard Operating Procedures

QMS Quality Management System

QCP Quality Control Procedures

GMP Good Manufacturing Practice

CPDA-1 Citrate-phosphate-dextrose-adenine

OOP Object Oriented Programming

UML Unified Modeling Language

GUI Graphics User Interface

UI User Interface

1

1. INTRODUCTION

A Quality System should ensure that no part of the transfusion chain is lacking in

quality. Therefore, it seems to be scientifically justified that, in the Quality System

perspective, all of the activities that have to be included in the Quality System must be

based on validated and applicable methods [1].

It is also essential that the core elements of a common Quality System are selected

so as to be applicable throughout the World, and especially for Turkey, throughout the

European Community. This will facilitate benchmarking and other types of quality

comparisons [2].

1.1. Objective

The main purpose in this project is to create a software model and develop an

application and managing software for the quality control procedures of main blood

products, such as erythrocyte suspensions, thrombocyte suspensions, and fresh frozen

plasma.

The QC Management Software consists in applying the Guide to the Preparation,

Use and Quality Assurance of Blood Products book by the European Council.

2

2. BLOOD BANK METHODOLOGY

Blood components are biological products derived from human blood and plasma.

Having special features arising from the biological nature of the source material and, as

such, the safety and efficacy of these products relies on the control of the source material at

all stages of the manufacturing processes, storage, transport and issue [3].

On selecting individuals for blood and blood component donation, a blood bank

must determine the health of the person in order to safeguard both their health and the

health of the recipient. All donors should undergo a screening process to assess their

suitability.

In the donor screening, a donor’s appearance, medical history, general health,

relevant lifestyle, and simple laboratory tests are used.

Hemoglobin or haematocrit levels should be determined by laboratory examinations

in donor screening each time the donor attends to donate with an application form.

Minimum values before donation for female donors is 125 g/l or 7.8 mmol/l (min. Hct =

0.38); and male donors is 135 g/l or 8.4 mmol/l (min. Hct = 0.4) [1].

After the screening tests are passed at the time of the blood donation, the blood

container as well as the tubes of the samples collected for testing must be labelled for

unique identification of the blood donation. A phlebotomy site is prepared for successful

venopuncture. The quantity of blood donation in a standard donation is 450 ml ± %10

exclusive of anticoagulants [1].

The possibility of errors in labeling the blood containers and the blood samples can

be minimized with good organization. Whole blood is collected into a three-part-bag

containing an anticoagulant solution. The solution contains citrate (as anticoagulant) and

cell nutrients such as glucose and adenine.

3

One of the vacutainer tubes is used for grouping (immunohematological tests), in

Grouping Laboratory; the other test tube is used for other screening tests (Microbiological

Tests), in Screening Laboratory. And collected blood is taken to Processing Laboratory.

2.1. Blood components

Although, whole blood can still be used in certain limited circumstances, the thrust

of modern blood transfusion therapy is to use the specific component that is clinically

indicated for the patient.

The components are those therapeutic constituents of blood that can be prepared by

centrifugation, filtration and freezing; using blood bank methodology.

The first centrifugation steps will remove, more than half of these nutrients from the

residual red cells, during this; the surrounding fluid is only a mixture of plasma and

anticoagulant solution [1].

Leucocytes and Erythrocytes now can sediment more rapidly than platelets as they

both have a bigger volume than platelets [4].

Table 2.1
The size, and density of the surrounding fluid of principal blood constituents [4].

Constituent Mean Density (g/ml) Mean Volume 10-15 litre

Plasma 1.026

Thrombocytes 1.058 9

Monocytes 1.062 470

Lymphocytes 1.070 230

Neutrophils 1.082 450

Erythrocytes 1.100 87

4

In the second phase of the Centrifugation, most of the leucocytes and red cells

therefore settle in the lower half of the bag, and the upper half contains platelet rich plasma

(PRP).

 Thrombocyte suspension (recovered) is the prepared from platelet-rich plasma.

Platelets in PRP are sedimented by hard spin centrifugation; the supernatant platelet-poor

plasma is removed leaving 50-70 ml of it with the platelets; finally the platelets are allowed to

disaggregate and are then resuspended [3].

After the careful removing of the bag system from the centrifuge; the primary bag is

placed into a plasma extraction system and the layers are transferred, one by one, into

satellite bags within the closed system. Whole blood may be filtered for leucocyte depletion

prior to high speed centrifugation. This procedure enables a separation into almost cell-free

plasma and leucocyte and thrombocyte-depleted erythrocytes.

 Erythrocyte Suspension In Additive Solution (ES-AD) is the component derived from

whole blood by centrifugation and removal of plasma with subsequent addition to the red

cells of an appropriate nutrient solution (CPD containing mannitol) [3].

Fresh frozen plasma (from whole blood) prepared either by a single high g

centrifugation or two consecutive centrifugation steps (obtention of PRP by a low g

centrifugation and plasma extraction after a high g centrifugation of the PRP)

Leucocyte depletion process needs careful validation. An appropriate method

should be used for leucocyte counting after leucocyte depletion. The validation should be

carried out by the blood establishment using the manufacturer’s instructions against the

requirements for leucocyte depletion and other quality aspects of the components including

plasma for fractionation [3].

The isolation of some plasma proteins, most importantly Factor VIII, fibronectin

and fibrinogen, can be achieved by making use of their reduced solubility at low

temperature. In practice, this is done by, freezing the units of plasma, thawing and

centrifugation at low temperature; this is called Cryoprecipitation. Freezing is a critical step

5

in the conservation of plasma Factor VIII. During freezing, pure ice is formed and the plasma

solutes are concentrated in the remaining water [5].

Whole blood is the source material for blood component preparation. Figure below, is

showing the derivation of blood components; from whole blood, with the steps of First

Centrifugation, Second Phase of Centrifugation, Extraction, and Freezing. The

Components, having QC mark are the components, mostly prepared in number, in blood

banks of Turkey: ES-AD(#1), TS(#3), and FFP(#5).

Figure 2.1 Derivatives of Wholeblood and Blood Components. Redrawn From [1].

The elimination of the supernatant of a given blood component is called volume

reduction. Plasma depletion is the elimination of the major part of plasma with a

procedure ensuring that the initial plasma protein concentration is reduced below a

specified threshold, eg .5g/L

6

2.2. Blood Tests

Table 2.2. is the summary of the tests done in the laboratories and Storage

Department of Blood Bank; and relationships with the QC Laboratory. These tests will be

taken as “tests done outside the QC Laboratory during preparation” as described in the

third chapter of Thesis.

Table 2.2
Summary of the tests performed in different laboratories and Storage Department of Blood Bank, and their
relationships with QC Laboratory. Table is created by the thesis writer.

Laboratory Definition Tests Future Relation with
QC Lab; on QC of

Components :

Hematological
Routine

Laboratory

Donor First
Screening Tests

Haemoglobin; haematocrit;
Blood Count;

No

Grouping
Laboratory

Immunohaematol
ogical Tests,

Grouping

ABO, RhD Grouping,
(Forward and Reverse);
Direct Coombs; Indirec

Coombs; Anticore
Definition; Phenotyping

Yes:
ABO, RhD Grouping,

(Forward and Reverse);

Screening
Laboratory

Microbiological
Tests

anti-HIV 1&2, HbsAg, anti-
Hbc(when required), anti-

HCV, Syphilis(when
required), anti-CMV(when

required), anti-HTLV
I&II(when required), anti-
CMV test(when required)

Yes:
anti-HIV 1&2, HbsAg,
anti-Hbc; anti-HCV,
Syphilis, anti-CMV,

anti-HTLV I&II, anti-
CMV test

Processing
Laboratory

Inspection during
Processing

Volume Measurements;
Leakage in the Extractor;

Visual and Color Changes;

Yes:
Volume Measurements;

Leakage in the
Extractor; Visual and

Color Change;

HLA
Laboratory

HLA Tests HLA, HPA Yes:
HLA, HPA

Outside
Laboratory

Tests not done in
the Labs of Blood

Bank

Factor VIIIc Yes:
Factor VIIIc

Storage Dept - Storage Yes:

Refrigerator Records;
Storage Processes;

Storage Effectiveness

7

2.3. Labeling of the Blood Components during Production

The label on the component ready for distribution should contain eye readable

information necessary for safe transfusion, i.e. the unique identity number (preferably

consisting of a code for the responsible blood collection organization, the year of donation

and a serial number), the ABO and RhD blood group, the name of the blood component and

essential information about the properties and handling of the blood component, the expiry

date [3].

Figure 2.2 A Sample Blood Component Label Sticker of Türk Kızılayı.

This Sticker Label sample, on figure 3.1.on the component has following information:

unique identity number (1) and the barcode serial of this number, ABO and RhD blood group

(2) and barcode serial of the grouping, the name of the responsible blood collection

organization (3), date of donation (4), the name of the blood component (5) and barcode serial

of the type, expiry date (6) and barcode serial of the expiry date, storage conditions (7), screen

test results information (8) necessary for safe transfusion, and barcode serial of the test results.

The labeling of blood components should comply with the relevant national

legislation and international agreements, allowing full traceability of the blood component.

This labeling gives traceability to the component itself in the storage department and to the

QC test results of Blood Component, by the QC Specialist, and other QC personnel [6].

8

3. QUALITY CONTROL OF BLOOD PRODUCTS

To maintain public and professional confidence in the safety and efficacy of blood and

its products, special care must be paid to all aspects of the quality of the blood components

produced [3].

In blood banking and transfusion services, Quality Management involves

identification and selection of prospective blood donors, adequate collection of blood,

preparation of blood components, quality laboratory testing and ensuring the safest and most

appropriate use of blood/blood components.

Quality management may consist of: Quality in procurement (donor, material,

reagent); Quality in preparation (efficient and effective blood component preparation);

Quality in design and development (improved techniques and procedures); Quality in

supply (transportation and service). The Quality management system includes: Quality

planning, quality assurance and quality control. And quality assurance (QA) deals with the

maintenance of a system to ensure that the performance in a laboratory is of the required

quality.

Each blood bank must have written Standard Operating Procedures (SOPs) for each

procedure for preventing the errors [7], which may arise from verbal communication. These

should provide a complete set of instructions to perform a certain task. They should also

specify the way one should perform the assay in the laboratory within its constraints and

limitations. The manufacturer’s instructions should also be incorporated in the SOP [8].

3.1. The Quality Control System

Within any blood establishment there should be an independent unit with the

responsibility of fulfilling Quality Assurance and Quality Control functions.

9

The quality of the blood components produced depends on the requirements or

standards for the product, and the quality management systems (QMS), which enable the

product to meet these requirements with confidence [3]. The application of the QMS to the

Blood Components is named as Quality Control.

Requirements of a QC System, in the production of blood components, consists of a

Quality Management System; QC Personnel (QC Specialists, Laboratory Personnel etc.) and

QC organization, the premises of equipment and materials, an easy accessible documentation;

known processes of collection, testing and blood processing, quality control proficiency

testing, known processes of investigation of errors and accidents, known processes of

validation of all processes, the retention of samples and disposal of rejected products, and

known processes of self-assessment, internal audit and external audit. All the QC Processes

must be complete, and up-to-date according to the New Edition Guides of QC [7]. QC

personnel must be individuals functioning independent from other laboratories, and QC

Laboratory Areas should be separate from the component preparation areas, and other

laboratory areas.

3.1.1. Documentation

 Detailed specification lists for the purchase of reagents and other materials used in the

QC Laboratories, are required, and only materials from qualified suppliers that meet the

documented requirements should be used. Manufacturers should provide a certificate of

compliance for every material (blood collection systems, filters and test reagents).

Documentation ensures that work is standardized and that there is traceability in all steps in

the manufacture of blood components.

Only appropriate and authorized persons should approve documents. Documents

should not be hand-written except for those parts where data have to be entered. Any

alterations made on a hand-written record must be dated and signed. Documents relating to

the selection of donors and the preparation of blood components must be retained according

to local regulations in Turkey [9]. Data can also be stored in 'non-written' form, for instance

on computer software etc. But the legal regulations must be taken into consideration. Users

should only have access to those categories of data for which they are authorized.

10

3.1.2. Records

Records of the QC results are very important. A distinction should be made between

records of results; which may require prompt or almost immediate correction, and records of

results which can only be evaluated statistically or by summing up over a certain period [3]. It

is essential that the recording system ensures a continuity of documentation of all procedures

performed, from the blood donor to the recipient.

In addition to QC Test Results, performed in the QC Laboratories; QC Specialist

should have the records of following, for future diagnostics of quality failure: Rejection or

deferral of blood donors (numbers, reasons), donor reactions (numbers, sex, age, reaction

category), unsatisfactory donations (numbers, category), positive tests for infectious markers

(numbers, specific, false), discarded units of blood and blood components (numbers,

categories, reasons), outdating of units of blood and blood components (for each category,

the outdating as a percentage of the number of usable units), transfusion complications

(numbers, category) including transfusion transmitted infection, external complaints

(number, origin, category), clerical errors (numbers, category).

The supervisor must sign records of quality control procedures; and records of QC

Procedures should also be kept for a period according to our national requirements. It is

considered that the retention period should be at least five years [3, 9].

3.2. The Definition of the Quality in QC of Blood Components

 The Quality of the Blood Component is the degree to which it fulfills the Standard

Minimum Requirements until its expiry date. The Blood Component (the Product) is

effective and reliable until its expiry date if the standard Production Process is validated

and laboratory testings are performed and inspection results are normal. Otherwise, this

group of Blood Components, in the same lot and storage depot, are not reliable and they

cannot be used safely until its expiry date [10].

11

 The QC Process takes place in the QC Laboratory. Mainly, QC Laboratory testing

Equipment is used. And, it is done by the QC Specialists. The aim in the preparation of

blood components is to produce "pure" components, but a very high degree of purity can

be difficult and expensive to obtain and might not even be necessary in all instances [3].

 But, it is necessary to declare the quality and to be able to make different types of

preparations in order to give the clinicians a reasonable choice for patients with different

transfusion demands. The purpose of product control is to help the blood bank maintain a

high and consistent quality of the prepared product. In this way, the clinical outcome will

improve, confidence in component therapy will increase, and the introduction of an adequate

component therapy program will be facilitated.

 In QC application, the critical control point is the question: “Does this component

(product) meet the minimum criteria of quality requirement until its expiry date?” The

evaluation criteria for this consists firstly of retrospective procedure controls during the

Production Period with such questions as: “During preparation, are all the standard

procedures performed?”, “During preparation, are all the standard laboratory tests

performed?”, “Are the results of standard laboratory tests according to indicated standard

values?”, and “Do the storage conditions comply with the quality criteria?”. And secondly,

evaluation consists of the condition of the produced component found in the storage

department at that instant with such questions: “ Does the component meet the criteria of

quality requirement on the day of sampling?”, “Does the component meet the criteria of

quality requirement until the expiry date?”.

 The sample size of the QC is 1 of every 100 produced components in a month with

a minimum of 4 components [3]. For example, if there are 100 components/per month,

then the number of samples is 4; if there are 500 components/per month, then the number

of samples is 5; if there are 501 components/per month, then the number of samples is 6.

And, sampling frequency is usually once a week, according to the number of produced

components.

12

 The first one of every produced 100 components is selected as a sample. For

example, if there are 501 components/per month; then the 1st, 101st, 201st, 301st, 401st, and

501st of the components are taken as samples [11].

 The test and inspection validations during the production are made and controlled

by the personnel of Procedure Laboratory. And, laboratory tests are made by the QC

specialist.

 Finally, this QC procedure shows the working effectiveness of the Process

Laboratory Personnel and if the production meets the GMP standard. It shows us if the

storage is good. QC procedure shows if the product (component) is good and can be stored

until its expiry date; and the product shows same good quality until expiry date.

3.3. The Main Quality Control Process

 This flow chart, drawn by the author, as being an application of the Quality

Requirements of Basic Blood Components, stated in the Guide to the Preparation, Use, and

Quality Assurance of Blood Components Book by European Council, is a recommendation

and a correction of the applications of the QC system of some blood banks in Turkey. It is

prepared by the theoretical analysis of the requirements and the inspection of the applications

done.

 Process is started by the calculation of the number of samples required for QC,

according to the number of produced components of same kind, and according to the

minimum QC sample requirement of that component. This calculation is stated in the QC

requirements of each product, in Appendix sections.

 Then QC Specialist collects the required number of samples of indicated type, from

the Storage Department, with a request form.

 The “collection of other information on QC” is the procedures (in Figure 3.1), which

have been done outside the QC Laboratory, during the preparation of the component. The

13

laboratory units, and the tests they perform during the preparation procedures of blood

products, are given on Table 2.2. on the second chapter of thesis [3, 12, 13].

 The Main Quality Control Process of the Blood Components is shown in the figure

below :

Figure 3.1 The Main Quality Control Process of Blood Components.

14

Figure 3.1 The Main Quality Control Process of Blood Components.

 For the storage of the QC samples until expiration date in optimal storage conditions,

in the same conditions, and in the same place along with the other components of same kind,

the QC specialist sends the samples to the storage dept, to be stored there, until the second QC

testing, those usually are performed on expiry date.

 If a second QC process is needed in QC Laboratory, procedure starts after accessing

the same QC Samples, from a “QC” mark on those samples, and collection of the samples

from storage department by QC specialist. This time, QC specialist, will only match the unit

numbers of the samples of the same kind; and will input the secondary test results of those

samples; and repeat the procedure for each one of the Samples.

 If needed, for the disposal of the samples with a suitable method with the other

components of same kind on the expiration date, the QC specialist sends the samples to the

storage department. And QC specialist gets information on this disposal, with a report.

15

 Then, QC specialist searches for the error sources; in case of the QC defects. He gets

information on the wrong procedures of related laboratory units, on equipment, on testing

reagents, and investigates personnel mistakes.

 At the end, QC specialist gives reports and shares the findings with QMS

administrator, prints reports, if needed legally, sends information to related laboratory units to

warn them about the errors, and records the data to use later, for statistical annual reports.

 And the developed QC management software, which is the main project of this thesis,

controls each one of the steps explained above and saves the records of QC data on every

step.

 The whole blood, collected from the donor, is a source material for blood component

preparation [5]. Much of the quality control tests necessary to ensure the safety and efficacy

of whole blood are performed at the time of the blood collection. In addition to the measures

carried out at the time of collection, as stated in the second chapter of this thesis, the

parameters listed in the quality control requirements of whole blood, which is given in

Appendix A.1. must also be checked. And the minimum QC requirements of the separate

blood components, derived from whole blood, will have their own requirements for their

specific test results; with the additions of quality control requirements of whole blood.

 The detailed flow charts of the QC processes of each one of the blood components

(ES-AS, TS and FFP) which are drawn by the author as being an application of the Quality

Requirements, are given in Appendix B.1, B.2 and B.3.

3.3.1. Storage of Blood Components during QC Process

 Storage conditions for blood components must be designed to preserve optimal

viability and function during the QC storage period according to their Storage requirements,

those can be found in QC Guides.

 In the main storage dept. of Blood Banks; in the Refrigerators, separate spaces

should be reserved for the units kept separately awaiting completion of QC testing. The

16

space for each of these components should be clearly indicated. The temperature within the

unit should be recorded continuously. QC Samples must be easy to find, without touching.

3.3.2. Main QC Report Prints

 A QC report must consist records of laboratory test results of QC samples, approvals

of the tests, main information and explanation on the causes of QC defects, QC requirements

and sampling frequency of that component (Units / Month). And as well, it must have the

name of the blood bank, date and period it is belonging to and the name of the QC specialist,

and administrators.

 In addition to the monthly report, an annual report must consist the sums of numbers

of passed and failed test results of QC samples, the percentage of quality defects in total

number of samples, between the specified dates.

3.4 The Quality Control Process of Erythrocyte Suspension In Additive

Solution

 The number of samples for the QC of ES-AD component is 4 units/month according

to its minimum QC requirements. The QC Requirements table can be found in Appendix A.2

and the QC process of ES-AD in detail is shown in Appendix B.1.

 The process is started by the QC Specialist collecting the required 4 samples of ES-

AD, from the Storage Department with a request form.

 In the First QC Process taking place in the QC Laboratory, the QC Specialist will

input the First Day Haematocrit and Hemoglobin test Results of the Sample that must be

taken at the beginning of the storage period.

 For a period of time of 42 days from the storage of the QC Samples until the

expiration date under optimal conditions, along with other ES-AS Components, the second

QC Process starts. This time, the QC Specialist will input the 42nd Day Haematocrit level, the

17

42nd Day Hemoglobin level, and the 42nd Day Hemolysis test Results of the Sample that must

be taken at the Expiry period of ES-AS.

 The Monthly Report of ES-AS must have the following parameter names, parameter

qc requirements, and test results of each of the samples for that parameter in addition to the

report content stated in the Main Quality Control Reporting Subject of this thesis according to

the QC Requirements: Haematocrit ratio on 1st day, Haemoglobin level on 1st day,

Haematocrit ratio on 42nd day, Haemoglobin level on 42nd day and Hemolysis ratio on 42nd

day of storage. The examples of the QC Monthly Report, prepared by the author, are given in

the Appendix E.1.

3.5 The Quality Control Process of Thrombocyte Suspension

(Recovered)

The minimum QC requirements of TS are given in Appendix A.3. The number of

samples for the QC of TS Component is 1% of all produced units per month, with a minimum

sample number of 10 according to these requirements.

 For this component, the process is started by the QC Specialist, collecting the data of

the number of the produced components on that month, and calculating the number of the

required TS samples, according to the sampling frequency indicated in the QC guides.

 In the first QC Process, QC specialist will input the Thrombocyte Count, and Residual

Leucocyte Counts. And as a secondary QC process after the storage of the QC Samples until

their expiration date, on the 4th day only pH value is measured, and recorded. The platelets

should be stored in agitators which should enable satisfactory mixing in the bag as well as gas

exchange through the wall of the bag; avoid folding of the bags; have a set speed to avoid

foaming [1] during storage.

The complete QC Process of TS is given in Appendix B.2.

18

 In addition to the standard report content, Thrombocyte Count on the 1st day, Residual

Leucocyte Count on the 1st day, and pH Value on the 4th day of storage are found on the

reports. The examples of the QC Report, prepared by the author, are given in Appendix E.2.

3.6. The Quality Control Process of Fresh Frozen Plasma Suspension

According to the QC requirements of FFP Component, which are given in

Appendix A.4, the number of samples is 1% of all produced units / month, with a

minimum sampling of 4. So for the starting of the process, by the QC Specialist, the

number of the produced components on that month must be known.

The Complete QC Process of FFP is as shown on the diagram in Appendix B.3. For

this component, there is no secondary QC Process. And Factor VIII measurements are

performed outside the QC laboratory.

 In addition to the standard report content, Residual Erythrocyte Count on the 1st day,

Residual Leucocyte Count on the 1st day and Residual Thrombocyte Count on the 1st day of

storage must be found on the reports. The examples of the QC Report, prepared by the author,

are given in Appendix E.3.

3.7. Defects in Quality

Main Sources of Quality Defects are standard routine laboratories, blood processing

laboratories, storage department, computers and electromechanical devices, and personnel

(human error).

 Component bag problems, centrifuge equipment, and problems of extractor usage

during preparation can be the main quality defect causes [1] arising from production. The

causes of quality defect, arising from the physical condition of the component, are its

storage and transportation conditions. And lastly tests having results that do not pass the

19

quality criteria, can arise from the testing equipment, such as laboratory blood count

equipments or others.

 In case of the presence of quality defects, the components that have not yet been

released for distribution must be kept in quarantine and should not be released. Quarantine

continues until all the required secondary quality controls and laboratory tests have been

completed, laboratory results meet the established requirements, and decisions are made

for the usage or disposal of the components.

 The Storage problems are almost always ended by disposal of the Components.

 However, if the laboratory values are below the requirement but are in the

scientifical range, the blood can be used, if needed greatly, but the expiry period is much

less than normal as is shown in the figure below:

0thday 1st day 5th day 7th day 25th day 42nd day

1. Low Quality Thrombocytes can be sold

 2. Throbocytes are Safe

3. When Thrombocytes meet QC Requirement

1. Low Quality Erythrocytes can be sold

 2. Erythrocytes are Safe

 3. When Erythrocytes meet QC Requirement

Figure 3.2 Usage and Expiry Period of TS, and ES Preparations, in different Conditions: 1.Low Quality, 2.Good Stored

but not Quality Controlled, and 3.Good Stored, and Quality Controlled

 For example, if Erythrocyte Preparations are not well-preserved; ATP and 2,3 DPG

levels of the cells are decreased, and Potassium level is increased [14, 15]; A pyruvate +

Inosine + Phosphate + Adenine containing solution is given to Component; and this

preparation can be used for transfusion, in a period of 24 hours [1].

20

 Or for example, If we have no fresh blood (less than 5 days), for new borns, with

IgA deficiency who have histories of allergic transfusion reactions, transfusions can be

done with washed erythrocyte cells, in a period of 6 hours [1].

 On these kinds of transfusions, clinical users should be informed of the properties

of all components. These transfusions, which are not done with reliable blood components,

are not recommended in Turkey; because of lack of Haemovigilance (Tracebility of the

Blood, until transfusion). So, in order to institute an adequate scheme of component

therapy, all products must be carefully defined and minimum requirements set.

 The duty of the Quality Control Specialist is giving the QC Report of the month;

not to recommend disposition of the Components. As the reports are sent to related

departments of the Blood Bank, the investigative and corrective process begins.

 If, the number of the disposed components are more than 1 % of all prepared

components of the same kind; a three-month-retrospective investigation also begins [1].

 All complaints, production records from donation, reasons of disposition,

transfusion reactions and other information, about defective blood components must be

documented, carefully investigated, and should be dealt with as quickly as possible;

Written effective procedures must exist for recalling defective blood components or blood

components suspected of being defective. These written procedures must encompass any

look back procedures, which may be necessary. The procedures should be communicated

to the facilities, where the blood components are used [3].

Preventive and corrective actions should also be documented and assessed for

effectiveness after an appropriate period. And needed education must be given to the

Personnel.

21

4. MODELING THE SYSTEM

The blood bank or transfusion services should have a computer software to manage

their QC processes: validation, data inputting and report printing, later risk analysis [16].

This Software is a database, archiving records of QC, a text editor for printing and

designing reports, a mathematical data analyzer for statistical analyzing. It has functions to

collect data from barcode readers or via RS232 serial port, and functions to share data via

internet or internal network. So, the development method of the software; the modeling type

of the system, the platform to develop the software and the testing procedures included in the

software code are selected according to these functions [17].

4.1. The Waterfall Method of Development

The Waterfall development Method is used in this project. This is the advised model

of development for the blood QC Software [1] by most of the authorities. The waterfall model

takes its name, from the fact that it views software developments as a set of phases that a

development team goes down in a cascading fashion, like water going down a waterfall.

Figure 4.1 Waterfall Development for QC Software

In the waterfall model, modeling starts at the first phase, and move on to the next one

as soon as the current phase is complete. The number of phases in this QC waterfall is five.

22

Firstly, for the establishing of the QC requirements, QC guides are found, read,

inspections in the blood banks, verbal communication with the QC specialists are performed,

and the analysis of the procedures are done. The conflicts and the solutions are established,

between QC requirements, and processes in practice. The detailed process charts are drawn,

which some of them are given in this thesis.

In design phase, based on the QC requirement documents, produced in the preceding

phase, creation of design documents, which will act as the blueprints for the application, are

built. Since, if the requirements documents specify what the application will do, “the design

documents” specify how the application will do it. This was the most important modeling

phase, in this project.

On the implementation phase, development of software application using the design

documents has been done.

Verification is done with test procedures inside the code, and main application is tested

to make sure that it meets the requirements and is free of errors.

Maintenance of the QC Software is not done. This software must be used in a blood

bank, for a pilot application. During that time, it may be modified or updated to meet new

QC requirement needs. And the errors, which are not detected during the verification phase

can be corrected.

 The use of the QC software in a blood bank is critical. It must be fully validated to

ensure that, it meets the predetermined specifications for its functions, to preserve correct data

integrity. And to ensure its use to be properly integrated into that centre's operating

procedures.

23

4.2. Modeling

In this QC software development, modeling is used to provide structure for problem

solving, to experiment to explore multiple solutions, furish abstractions to manage

complexity, reduce development time, and manage the risk of mistakes.

Modeling behavior has the advantages to let domain experts specify outward view

(what) so that developers can construct inside view (how); and let developers approach an

element and understand it; it has basis for testing [18].

4.2.1. Object Oriented Programming (OOP)

Object Oriented Programming (OOP) is a programming language model organized

around "objects" rather than "actions", and “data” rather than “logic”. So, in OOP, the

programming challenge is how to define the data; not how write the logic.

Object-oriented programming takes the view that what we really care about are the

objects we want to manipulate rather than the logic required to manipulate them. It’s just

the opposite of the procedural languages, that is a flowchart, a logical procedure, that takes

input data, processes it, and produces output data.

The first step in OOP Model of this QC Software was to identify all the objects that

we want to manipulate and how they relate to each other, an exercise often known as data

modeling. After the identification of an object, one can generalize it as a class of objects,

and define the kind of data it contains and any logic sequences that can manipulate it.

Each distinct logic sequence is known as a method. A real instance of a class is

called an "object" or, an "instance of a class." The object or class instance is what we run

in our computers. Its methods provide computer instructions and the class object

characteristics provide relevant data. We can communicate with objects - and they

communicate with each other - with well-defined interfaces called messages [19].

24

The concepts and rules used in object-oriented programming provide important

benefits. The concept of a data “class” makes it possible to define subclasses of data

objects that share some or all of the main class characteristics. Called inheritance, this

property of OOP forces a more thorough data analysis, reduces development time, and

ensures more accurate coding.

Since a class defines only the data it needs to be concerned with, when an instance

of that class (an object) is run, the code will not be able to accidentally access other

program data. This characteristic of data hiding provides greater system security and

avoids unintended data corruption.

The definition of a class is reusable not only by the program, for which it is initially

created, but also by other object-oriented programs (and, for this reason, can be more

easily distributed for use in blood QC management software) [20]. The concept of data

classes allows a programmer to create any new data type that is not already defined in the

language itself.

An object has a public interface that other objects can use to communicate with it.

But the object can maintain private information and methods that can be changed at any

time without affecting the other objects that depend on it.

An object's behavior is expressed through its methods, so (aside from direct variable

access) message passing supports all possible interactions between objects. Objects don't

need to be in the same process or even on the same machine to send and receive messages

back and forth to each other.

The main objects and their relations and communications, which are created in this

software are explained 5th chapter of this thesis.

25

4.2.2. Unified Modeling Language (UML)

Unified Modeling Language (UML) is an effective type of modeling complex

software systems that specifies the functional requirements of system in an object-oriented

manner, and structural modeling specifies a skeleton that can be refined and extended with

additional structure and behavior [18].

During UML modeling, developer identifies “the actors” that interact with the

element; organizes actors by identifying general and more specialized roles; and for each

actor, considers the primary ways it interacts with the element; considers exceptional ways

of interaction; and organizes these behaviors as use cases. Every behavior is one usecase

[18].

In a usecase diagram, “Actor” is an actor, who or what uses the system,

representing a role, and communicates with the system by sending and receiving messages.

Actors are in control and initiate actions.

Actors can be ranked, Primary and secondary actors [18]. And the flow of messages

between actors and the use case depends on conditions and exceptions. We must describe

which entities are modified and used; when is the usecase considered to be finished and

what kind of value is delivered to the actor [18]. A well-structured usecase shows “the

single identifiable behaviour” of the system, “common behaviours” by using inclusions,

“the variants” by using extension [19].

For the OOP-UML modeling the system context, the following steps are applied to

QC Processes: Identification of the actors that surround the system; which groups require

help from the system; which groups are needed to execute the system; which groups

interact with external hardware; which groups perform secondary functions for

administration and maintenance (1); organization the actors (generalization relationships)

when needed stereotype actors (2); and putting them in a use case and connect to use case

[18].

26

For the model of the QC management software, UML modeling analysis, made by

Product Demo of Borland Together Software, which is a visual modeling platform, is used.

4.3. The Development Platform of the Software: Java

As the software platform, Java is selected. Since, java programs are compiled into

machine-independent bytecodes, they run consistently on any Java platform; and we can

avoid platform dependencies [21].

Java is the most popular object-oriented language, with great modularity. The

source code for an object can be written and maintained independently of the source code

for other objects. Also, an object can be easily passed around in the system.

In java, created Classes have reusability; in the Subclasses specialized behaviors

from the basis of common elements provided by the superclass if found. Through the use

of this “inheritance”, a developer can reuse the code in the superclass many times.

A developer can implement superclasses called “abstract classes” that define

"generic" behaviors. The abstract superclass defines and may partially implement the

behavior but much of the class is undefined and unimplemented.

4.3.1. Eclipse SDK On Java

Eclipse is a component-based platform used as a workbench on java, and Eclipse-

based applications are highly modular. The one, which is used for this project is “Eclipse

SDK”. It consists of a mixture of plug-ins, itself which together make it what it is; other

Eclipse-based applications may share some of those plug-ins, but usually bring along their

own set of plug-ins that differentiate them [21].

Elements of Eclipse Workbench consist of the main application menu bar, toolbar,

an editor area (into which editors may be opened), and several views for some functional

27

area or user activity, such as Java development, resource management, and so on,

depending on what the application provides.

4.3.2. Window Builder On Eclipse

Trial version of WindowBuilderPro software is used to design the user friendly

GUI of the QC management software. It is a Plug-in of Eclipse SDK which is working on

Java.

28

5. SOFTWARE FOR QC MANAGEMENT

After the selection of modeling and development platforms and their plug-ins,

management model is designed and the managing application software is developed for the

QC procedures of main blood products: Erythrocyte Suspensions, Thrombocyte

Suspensions, and Fresh Frozen Plasma.

The software is helpful to input, store, and report the quality control data, on each

step of the QC Process, which are given in Appendix B.1., B.2. and B.3. User can access

and edit the test results of each blood components samples of different kind, even if the

data of that sample is limited with its unit number. Barcode readers can be used for this

purpose.

Alarm function avoids QC Specialist to forget QC tasks; and this reduces the risk of

producing defective components.

5.1. General information on the software

By our source code, with the “methods” of the object “Form” and use of the

methods of other objects, it is possible to talk about the creation of a folder of a “concept

product”, of a specified product group, and of a selected number of samples, which has a

specific number of “Parameters”. User can designate values to those parameters.

The implementation of a “component sample” is characterized by product type,

product name, number of quality control forms per unit of time, quality control frequency,

number of samples, blood product expiry period, and the parameters which has the

integers: Scientific Minimum Value, Scientific Maximum Value, Quality Minimum Value,

Quality Maximum Value, Acceptable Qualifying Percentage and Sample Testing Period.

Software has main Constants as shown in the figure 5.1.

29

Figure 5.1 Objects, Constants, and UI of Software.

The software is based on a database of “monthly quality control reports”, but not on

a database of “quality control samples”. The name “form” is used as: “a blank data sheet,

containing information about QC samples, test results and explanations on the causes of

QC defects of that month”.

So “a form”, is a monthly report when it is displayed on the screen or printed. And

again “a form” is an annual report, when the data designated on its parameter integers are

summed. For printing function, a simple plug-in of Java Eclipse SDK is used.

Software checks the date and the related forms which has TR or SR status (to give

alarm) at the beginning of that session, and checks the default values.

The Source code of the Software is added to Appendix H. And the software written

on a CD is added to Thesis as an Appendix.

30

5.2. General Design of the Model

For better understanding of the computing mechanism of this QC software, firstly

the model of the domain code (com.ptah.kankalite.domain) must be analyzed .

“The domain” is the skeleton which is very well defined and refined. Until the end

of the modeling process, implementations of the “objects” in the software are postponed to

make the blueprints of those objects defined and flawless.

Figure 5.2 The basic UML diagram of the Domain of QC Management Software

31

5.3. Design of the Classes

Mainly, UML design of the domain gives us four classes and seven objects, which

are the instantiations of them.

The Major Classes are “FormContainer”, “Form”, “Sample” and “Parameter”.

Mainly, FormContainer contain Forms. A Form uses samples to contain

parameters. Every object “knows” only the function of itself, but not the functions of other

objects, depending on the OOP basics.

5.3.1.The Class: FormContainer

The Class “FormContainer” is the main starter of the software. FormContainer is the

object, which contains all of the separate Monthly Report Forms. We need two parameters

to access the form: FormType and the FormDate.

The number of the qc samples of one month can be a lot; but, in every month of the

year, there is only one Form. FormContainer can be expressed mathematically as having

12 x 3 = 36 Form objects (12 of each type of ES, TS, FFP). It has the hashmap of Forms

and is just like a big document folder with 36 files in it and has no information written

inside about the files themselves.

The Object “FormContainer” has a field named FormList. It is a hashmap containing

another hashmap, which is a matrix having an index and data. On the first hashmap, we use

formType as an index and the hashmap gives us another hashmap containing the forms of

that type. And we give the formDate as the index of a new hashmap and the hashmap gives

us the form data that we want as can be seen on Figure 5.3. below.

32

FormContainer TS Forms 03/2007 TS Form

ES 012007
TS TS Forms 022007

FFP 032007
... others 042007

 052007
 062007
 072007

Form

 ... others

 Parameter 1
Form Type

Parameter 2
Form Date

Figure 5.3 Hashmap of FormContainer

FormContainer has its own methods shown on table 5.1.

Table 5.1
Field and method summary of class FormContainer

FormContainer uses a static factory class: FormFactory. FormFactory, with the

parameters formType and formPeriod, creates new objects of Form. But the only

instantiation of FormContainer is formContainer hashmap.

The integer we obtain from getNeededSampleCount method is number of needed

QC samples. It is calculated with algorithms that are written on the QC Processes of the

33

blood component. For Example, for the ES Form, the default of this integer number is 4 in

case the number of produced ES Components is less than 400 in the blood bank.

Parameter 1 : Form Type

Parameter 2 : Form Date

getNeededSampleCount method

has Calculating algorithms for the the
number of samples, for the selected form

of selected form type.

Number of
Needed

QC
Samples

Figure 5.4 GetNeededSampleCount method of the FormContainer

The method “setGeneratedProductCount” sets a number for a form of chosen type.

The method GenerateForm, generates a particular form for a specific month. The

input parameters are formType and date (string). With these parameters, it gives a form

object. The number of the samples, is the number of needed QC samples for that month

and for that type of component. By using the GUI of the software, we input the data of the

samples (test results etc.) afterwards.

GetForm method of FormContainer can get the form in the container having the

same type and date given to the method as indices of the interlinked hashmaps.

CreateFormsForYear method takes formType and year and creates 12 forms for the

year. Parameter “Year” always has 4 digits; this method adds 2 extra digits before this 4

digits to represent each month.

5.3.2. The Class: Form

The object Form is the most valuable object of the list attribute of formContainer.

And it is also the most valuable object other than the object “formContainer”. In object

Form, there are some attributes like the form type, form date, and the samples contained in

the form. Class Form has the information of formType of itself (component type).

34

This object controls its own “state”. There are three states of form object: “Sample

absent”, “awaiting test results”, and “done”.

The properties of the class Form are inherited to its extents: TS, ES, and FFP

Objects, which have some of the properties of same kind with some differences between,

like parameters, number of samples per month, etc. (Extents are not the exact

instantiations).

Table 5.2
Method summary of the class “Form”

At the time of creation of the object form, the default value of its state is “sample

absent”, because no one of the test results of QC samples has been input. If the test results

of QC samples are entered, but there are still some more absent test results left (to be input

at the end of storage period of the component), the state of the form changes to “test

awaiting state” from “sample absent”. If even one of the sample data inputs are not written

on the form, the state continues to be “sample absent”.

35

At the end of storage period of the blood component, when the data of new test

results are input, the state changes to “done” from “test awaiting”. If the form has a form

state of “done”, this form will be saved to the main database of formContainer. And, the

only reason for a form to appear on the QC status window of the GUI of the software,

(which is on the left side of the main GUI), is having a form state of “sample absent” or

“test awaiting”. The forms, which have states of “done” are not shown on the listbox on the

QC status window of the GUI.

If the storage period of samples on a form are close or have already passed, on the

alarm listbox of the QC status window of the GUI, a date and an alarm code “TR” appears

(test result input is requested).

Table 5.3

Field summary of the class “Form”

When the new forms of the year are created, the forms belonging to the months that

must have samples and test results, have an alarm code of “SR” (Sample inputs are

requested). The forms belonging to the months after the present day of the usage of the

36

software have no SR or TR alarm codes. During that session of usage of the software, a

new form created, has always a code of “NF” (new form created). And, if the state of the

form changes to “done” in that session, this form changes to a QC status code of “C”

(completed).

In the object Form, there is a parameter named “numberOfSamplesToBeTested”.

This parameter is set by the object formContainer.

The object Form has three different types of lists: two of them are hashmaps and the

third is a plain list. The plain list parameter is called “property types”. The values of this

parameter are the types of object parameters, that are called “parameter types” such as

haematocrit, hemolysis, haemoglobin, pH value, platelet count, etc.

The class Form has the Hashmap of samples which has the results of QC tests. It

has a method of calculation of the number of Samples, according to the Produced

Component type; and the number of production, and it has the list of parameters, to set to

the object “Sample”.

It has a method of sample creation, a method for asking for a specific parameter;

and has some methods of differentiating the “passed” and “failed” QC samples according

to the QC test results, and a method of giving information, when asked.

Every extended form object, (for example ES), has the information on how to

control the minimum and the maximum values of parametric results of tests.

5.3.3. The Class : Sample

The class “sample” has the ability to contain the secondary test results of the QC

parameters to be checked at the end of the storage period, as well as the QC parameters to

be checked at the beginning of the process, such as haematocrit value. This is done with a

hashmap having a name “parameters”. So, in summary, FormContainer is the object

37

containing forms; forms contain samples; samples contain parameters; and parameters

contain minimum and maximum values of the parameters of QC testing.

Table 5.4
Method and field summary of the class “Sample”

The object Sample, has a Unit Number, an Expiry Date, an Expiry period, a

Production Date; and has a hashmap of Parameters. The object Sample” has no information

on these parameters, just contains them. This condition gives us the ability to create a

sample with any number of any parameters. Object can call Parameter “set”, and “get”

methods and can check expiry date and unit number of a sample.

5.3.4. The Class: Parameter

The Instantiation (implementation of a blueprint of an object) of this class has an

hashmap, a multi dimensional matrix, which gives it the chance to store any number of

parameter checks of any parameter. For example ES Hematocrit level is controlled two

times, firstly on the 1st, and secondly on the 42nd day of sampling. This object could even

38

create a parameter check of hematocrit 12 different times during its storage period, instead

of 2. This is an important feature to be flexible in future developments [21] of the QC

management software.

This class has methods for controlling the validity of the results, and has methods

of giving any value that has been set to a parameter (test results) to the user, who uses GUI

of the software. And the user can set any value to a parameter from GUI (inputting of the

test results).
Table 5.5

Method Summary of The class “Parameter”

39

6. THE USE AND GUI DESIGN OF THE SOFTWARE

The QC management software has functions of creating monthly sample record

forms of ES-AD, TS, and FFP components, inputting or editing the data of the samples and

test results of first and second QC processes to the forms.

It has GUI designs to find the forms related with the specific samples which stored

until their expiry date and to print reports, including the approvals of QC Processes

performed outside the QC Laboratory.

All of the elements of menu and the windows on the GUI are designed to make the

management of the monthly “forms” which contain samples easy and practical. There are

menu objects, and shortcut buttons for direct access to Monthly Component Databases,

Samples, and Reports.

Almost all of the default values are written on a text file which is used during the

starting of the software. So the most of the default parameters are only changed by only

firmware update in this version of the software. But the design of the model, allows us to

make connections with the GUI setup menu to access the defaults.

On the GUI, there are two bars of buttons: the “Menu Bar”, and the “ShortCut

Buttons Bar”, and two main windows: the “QC Status Window” (consisting of three sub

windows: “QC Form List”, “QC Alarm List”, and “Alarm Definitions”), and the

“Component Form Entry”, window (consisting of three sub windows: “Sample Data

Input”, “QC Form General Data Input”, and “QC Form Report General View”).

Main GUI design of the QC Management Software is shown on Figure 6.1.

40

Figure 6.1 Main Gui design of the QC Management Software.

41

6.1. General Menu of the Software

General menu access on the software is done with menu tree, on the Menu Bar of

the software GUI. Menu bar is shown on the figure 6.2. The Menu tree and its functions

are given on Appendix C.

Figure 6.2 The Menu Bar.

Some of the buttons gives a “N/A” when pressed, as it is shown in the menu tree in

Appendix C. These are the buttons with the functions, which has been modeled to be added

to domain code of the software, but have no place in the GUI design of this version.

6.1.1. Set Up Menu

On the setup menu, there are different kinds of user setups. Default values of

minimum-maximum scientific and quality requirement values of parameters of testing

results are among them. The software allows the data entry of each parameter, between

these scientific minimum and maximum values. The criteria, for a parameter tested to be

marked as “quality passed” is the QC requirement of that parameter. For this, the value

must be between Quality Min, and Quality Max values on the default list [1, 14]. Default

unit list, and defaults table of scientific and QC min-max values used in this software are

given in Appendix D.

Some of the main functions is put on the setup menu to avoid the unauthorized

personnel to make changes in the database. Creation of the set of forms of the Year is a

typical example of this. This procedure is performed once a year to create blank forms of a

selected year, or the year of that QC session.

42

6.2. Form and Sample Data Entry of the Software

Data entries to the forms and samples are done with the menu tree, or the ShortCut

Buttons of ES, TS, and FFP. Each of them, when clicked, opens its own window on the

data entry side (right side) of the GUI. Each of the “component form entry” window, has

its own parameters result entry boxes, on their “Sample Data Input” subwindow.

During the data entry, which is performed from the “Sample Data Input” sub

window, the results and unit numbers can be seen real-time on “QC Form Report General

View” sub window.

6.2.1. ES-AD ShortCut Button

This button opens the “sample data input” subwindow (Figure 6.3), or tab of the

“ES component form entry” window and lets the user to input data of samples of ES (to the

last ES form he has been in).

To change the ES form, user must use the “direct form access” button, or the “QC

Form list”.

Figure 6.3 Sample Data Input sub window, of the ES Data Entry Window.

43

6.2.2. FFP ShortCut Button

This button opens the “sample data input” subwindow (Figure 6.4), or tab of the

“FFP component form entry” window and lets the user to input data of samples of FFP (to

the last FFP form he has been in).

To change the FFP form, user must use the “direct form access” button, or the “QC

Form list”.

Figure 6.4 Sample Data Input sub window, of the FFP Data Entry Window.

6.2.3. TS ShortCut Button

This button opens the “sample data input” subwindow (Figure 6.5), or tab of the

“TS component form entry” window and lets the user to input data of samples of TS (to the

last TS form he has been in).

To change the TS form, user must use the “direct form access” button, or the “QC

Form list”.

44

Figure 6.5 Sample Data Input sub window, of the TS Data Entry Window.

6.2.4. An example of a data entry procedure of TS samples

Before the data entry of the samples, the user must input the number of the

produced components, on that month for the calculation of the number of samples to be

used in QC Process of that component (TS). QC specialist enters the value, via the tab of

“Number of Samples” of TS Component Form, seen on the Figure 6.6. The Number of

samples can be limited by the user, to a limited value, instead of 1% of produced

components.

Figure 6.6 Number of samples input tab, of the TS Data Entry Window.

45

Then with the “Next Button”, “Other QC Tests” tab comes (Figure 6.7.). This is the

tab of the GUI, for the approvals of QC tests, which are performed outside the QC

Laboratory, during preparation phase of that component. As well, with the “Storage

Conditions tab”, approval of “suitable storage” by the QC Specialist is done. For these

approvals, QC specialist uses the records of process laboratory and other laboratories, and

refrigerator degree measurement records of storage department. The name of QC Specialist

can be selected from a combo-box of GUI easily.

Figure 6.7 Other QC Tests Approval sub window, of the TS Data Entry Window.

With the “Sample Data Input” subwindow of the “TS Form Entry” window, QC

specialist enters the test results of selected samples, one by one. The Entries are shown on

the “QC Form General View” subwindow, shown below Figure 6.8.:

Figure 6.8 QC Form Report General View sub window, of the TS Data Entry Window.

46

After that, error sources, in Quality defects tab (or window) comes (Figure 6.9.),

and then Administrative Approvals (Figure 6.10.), and Save Functions take place.

Figure 6.9 QC Form Error Sources Input sub window, of the TS Component Data Entry Window.

Figure 6.10 QC Form Administrative Approval sub window, of the TS Data Entry Window.

With these procedures, the entry phase of a QC process is completed. If another

session of entry is needed, QC specialist can access the form, via form date of the QC form

or using the unit number of the sample, to be tested on the second QC Process. After

finding the specific form, specialist can edit or finish the inputting phase.

After this procedure, the form status, becomes “C”, on QC Status window. And,

next day, the date of that form will disappear from that window.

47

6.3. General Form and Sample Access of the Software

The Access to the Forms and Samples saved in the hashmap of FormContainer, can

be done with the menu tree, or ShortCut Buttons. Short Cut Buttons are shown on the

Figure 6.11:

Figure 6.11 ShortCut Buttons

6.3.1. Direct Form Access Button

Direct Form Access Button has two functions. One of them is finding the form

from “form type” & “form date”; and other function is finding the form from the QC alarm

list. This Function is used for finding the QC Forms of a selected year and month. When

pressed, a window appears with the input areas of form type form date. By entering the

data, the form of selected component type comes as the editing window, to allow the data

entry or to edit the sample results.

The Direct Form Access window is shown on Figure 6.12. below:

Figure 6.12 The Direct Form Access Window for ES

48

New Created forms of that year appear on the QC Form list subwindow of the QC

Status window. To Access a form by using the QC Form List, is limited with the forms of

the year, and is limited with the forms, which does not have adequate number of samples

or which does not have adequate number of QC test results of these samples. By pressing

the form of selected date, user can go to a specific form.

The forms have QC status types, as it was stated in the modeling explanations, like

TR (test required), SR (sample required), NF (new created form), and C (completed-

approved form). The status code is written next to the form date on the QC Status window.

And the definitions are given in another window. These QC Status are put on the QC

Form List, to indicate the forms, which need QC sample data or QC test results. QC Status

Window, and its sub windows are shown as Figure 6.13. below:

Figure 6.13 QC Status Window and and its sub windows.

With the alarm function, not the form type or form date, but the “sample data

inputting date” or “test result inputting date” and hour is given to QC Specialist.

49

If the software session is on the same day of the sample data or test input date just

after the starting of the software, the alarm window (in red) appears. The Alarm window

can appear 0 to 6 days before the event according to the user setup. Default value is 1 day.

Figure 6.14 Alarm and Definition Windows

6.3.2. Direct Sample Access Button

Direct Sample Access Button has two functions. One of them is to find the form,

which is the related with a specific Sample, from its “unit number” and “component type”;

and the other function is find that from of that specific sample from a selection list.

When the Direct Sample access button is clicked, a window appears with the entry

areas of component type and unit number. By entering these data, the form, which contains

that sample comes as window, allowing the QC specialist to enter or edit data, or test result

of that sample, and of other samples on that form.

This Function helps QC specialist to access the records of the component samples,

which are taken from storage department for the second part of QC Process. The Direct

access can be done, by using simple barcode entries (the component type and unit number).

The barcode reading results table of label samples of different components used in

blood banks in Turkey, is given in Appendix G. In the development and GUI design

phases, these readings were used in the standardization of the component and date

recognition.

The Direct Form Access Window is shown below Figure 6.15.

50

Figure 6.15 The Direct Sample Access Window for Barcode Input.

6.4. Printing Reports

User can print monthly reports, monthly component request forms and annual

summations. Email and Share Buttons, which are put on the menu, are for future

improvement of the software.

Figure 6.16 Report tab of the TS Component Data Entry Window.

51

6.4.1. Monthly Report

A “Report” is a collection and an interpretation of data and approvals of QC. As

mentioned before, a report has: general information on the Report, the QC requirements,

QC sampling frequencies, test results of samples, approvals, explanations on the error

sources. The report samples are given in Appendix E.1, E.2 and E.3.

6.4.2. Request Form

Request Form can be printed automatically from the “Report Tab” of the

“Component Form Entry” Window. It has the list of the transportation dates of the

components, from storage department to QC laboratories, and vice versa. All of these

transportations must have an administrative approval and the initials of that administrator.

The request form sample is given in Appendix F.

6.4.3. Annual Summations

The user selects two dates (limited with 12 months) to prepare an annual sum table

of the QC results. The Annual Report Samples are put on Appendix E.4, and E.4.1.

52

7. DISCUSSION AND CONCLUSION

The Management Software of QC of blood products offers laboratories “robotic-

like” accuracy with a human touch. With these, QC Laboratories and preparation processes

can be automated to improve accuracy and reliability [22].

The quality assurance program should use the electronic data processing systems that

affect product quality by affecting the QC Process by accelerating the improvement of the

laboratory's performance and services.

According to the experience that this project gave, it is obvious that, development of a

software, can be done with the collaboration of the QC Specialist and the developer under the

supervision of an expert in Biomedical Science possessing an analytical mind.

And future projects in this area in Biomedical Science should be done on the

analysis of QC processes taking place in the Blood Banks and QC Requirements in

preparation of Components to make changes in the applications and to develop safer QC

processes, the validation of the QC software of the same kind in Blood Banks and QC

Laboratories to develop safer and more reliable software and analysis of the requirements

of the country for a hemovigilance system for the traceability of the blood components and

for adding a QC approval system into it [10].

7.1. The Necessity and Benefits of QC of Blood Products

 It is inevitable, even in the best blood banks and in the best of laboratories, that

some materials will fail some of the tests and a strict protocol should be drawn up showing

action to be taken in such an eventuality.

 All staff in the blood bank service should be trained to accept quality control as a

welcome and necessary part of everyday work. It is useful to cultivate a positive attitude

53

towards the detection and correction of errors though the emphasis is on the prevention of

problems and the production of blood components [3].

In addition, some research has shown that computerized software automation of

blood banks and their QC procedures reduce the cost of Components, the time period of

preparation, the wastage percent of blood products [1], the error rates in the procedures of

preparation and QC of the preparations [23], and, as stated before, by reducing the risk

associated with producing defective components and ensuring a greater productivity

through reduced manufacturing downtime, QC Procedures improve the productive life of

expensive equipment of Blood Banks.

In Turkey, the data of error rates was unavailable. And, the show of improved QC

performance and low error incidence rates would require a very large prospective study [5,

23].

Haemovigilance networks should embody operational linkages between hospitals,

and blood banks. There is a need to coordinate efforts at QC Laboratory, Hospital, Blood

Bank and National Authority levels, and to develop effective collaboration with experts,

developers, and institutions working for QA of Components and Blood Safety at different

levels.

7.2. Future work on development of QC managing software

This project is limited by the QC of components ES-AD, TS, and the FFP. And, it is

useful, practical, and adequate for the Blood Banks of Turkey for the usage of the software

to be started immediately. In a blood bank which has different QC automations, (e.g. like

ones in Europe) the software modules of QC of ABO Grouping, QC of FactorVIIIc tests,

QC of test kits (reagents), and QC approvals of refrigerator temperature stability, which are

done several times a day should also be developed.

In future projects, the development of the software can be done as explained below:

54

Software development can be done to manage not only QC of Components ES-AD,

TS, and the FFP, but also all kinds of blood components, including validations of the QC

laboratory itself: ABO Grouping, TestKits, Storage, Equipment. The modeling of the

software allows us to do so and adds different kinds of Component Forms and Parameters.

 It is not advisable to link the data of the QC results with the data of main managing

system of the blood bank directly because of the possibility of unauthorized data entry and

problems during development and validation of the software [5]. But, the QC Software can

use an internal network to go a specific data storage area to get specific information or a

text file without interrupting the main system and without interference regarding the blood

components, test results, etc. So, the QC Specialist will be able to trace the component

from a donation to a recipient.

The results and “done” approvals of laboratory procedures that take place outside

the QC Laboratory can also be transferred automatically to the QC Managing Software via

the internal network of the blood bank. This will save time, decrease the number of

bureaucratic procedures, and allow the QC Specialist to follow the procedures in real time.

This module can also exercise administrative control over the QC procedures. This way,

the records of QC procedures can be signed by the supervisor [11] and this can allow the

printing of documents or reports according to the laws of Türkiye.

The computer of the QC Lab can communicate with the Blood Counting Equipment

and other test Equipment via the RS232 serial port with one of the protocols of: ASTM (E

1381), HL7, ASC X12, UN/EDIFACT, which are usually used in laboratory equipment

[1]. Even if the protocol is not apparent, the transferred data can be copied to a text file and

the QC Managing software picks up the information from this text file. For this procedure,

Windows Software of Hiperterminal.exe or the Activex Communication Tools of Visual

Languages can be used [1]. This way, the automation of the QC System will be complete.

The QC Software can allow us to create a datasharing link via the Internet between

the centre and its branches. The results are collated and accuracy scores can be determined;

the results can be communicated to all participating laboratories (in coded or uncoded form

according to local agreements) in order to enable each laboratory to compare its own

55

quality standard [2] with that of a large number of other laboratories including the

reference centre selected by the Blood Bank Administration. With this software module,

international performance testing and statistical evaluations can also be done.

56

APPENDIX A. QUALITY REQUIREMENTS

A.1 Quality Requirements of Whole Blood

Table A.1

Table of Quality Requirements of Whole Blood [3].

 Parameter to be checked Quality requirement Frequency of
control

Control
executed by

1 ABO, Rh D Grouping All units grouping lab

2 anti-HIV 1&2 Negative by approved
screening test

All units screening lab

3 HBsAg Negative by approved
screening test

All units screening lab

4 anti-HBc

(when required)

Negative by approved
screening test

All units screening lab

5 anti-HCV Negative by approved
screening test

All units screening lab

6 Syphilis (when required) Negative by screening test All units screening lab

7 anti-CMV

(when required)

Negative by screening test As required screening lab

8 anti-HTLV I&II (when
required)

Negative by screening test All units screening lab

9 Volume 450 ml ± 10% volume
excluding anticoagulant

1% of all units
with a min. of
4 units/month

processing
lab

10 Haemoglobin Minimum 45 g/unit 4 units per
month

QC lab

11 Haemolysis at the end of
storage

<0.8% of red cell mass 4 units per
month

QC lab[21]

57

A.2 Quality Requirements of ES-AS

Table A.2
Table of Quality Requirements of ES-AS [3].

 Parameter to be
checked

Quality requirement Frequency of
control

Control
executed by

1 ABO, Rh D Grouping All units grouping lab

2 anti-HIV 1&2 Negative by approved screening test All units screening lab

3 HBsAg Negative by approved screening test All units screening lab

4 anti-HBc

(when required)

Negative by approved screening test All units screening lab

5 anti-HCV Negative by approved screening test All units screening lab

6 Syphilis (when
required)

Negative by screening test All units screening lab

7 Anti-CMV

(when required)

Negative by screening test As required screening lab

8 anti-HTLV I&II (when
required)

Negative by screening test All units screening lab

9 Volume to be defined for the system used 1% of all
units

Processing lab

10 Hct 0.50 - 0.70 4 units per
month

QC lab

11 Haemoglobin minimum 45 g/unit 4 units per
month

QC lab

12 Haemolysis at the end
of storage

<0.8% of red cell mass 4 units per
month

QC lab[21]

58

A.3 Quality Requirements of TS

Table A.3
Table of Quality Requirements of TS [3].

 Parameter to be checked Quality requirement
(specification)

Frequency of control Control
executed by

1 ABO, Rh D Grouping All units grouping lab

2 anti-HIV 1&2 Negative by approved
screening test

All units screening lab

3 HBsAg Negative by approved
screening test

All units screening lab

4 anti-HBc
(when required)

Negative by approved
screening test

All units screening lab

5 anti-HCV Negative by approved
screening test

All units screening lab

6 Syphilis (when required) Negative by screening test All units screening lab

7 anti-CMV
(when required)

Negative by screening test As required screening lab

8 anti-HTLV I&II (when required) Negative by screening test All units screening lab

9 HLA or HPA
(when required)

Typing as required HLA lab

10 Volume > 40 ml all units Processing lab

11 Platelet Count* > 60 × 109/single unit
equivalent

1% of all units with a
minimum of 10 units per

month

QC lab

12a Residual leucocytes∗
Before leucocyte depletion
a. prepared from PRP

b. prepared from buffy-coat

< 0.2 × 109/single unit

equivalent
< 0.05 × 109/single unit

equivalent

1% of all units with a

minimum of 10 units per
month

QC lab

12b Residual leucocytes∗∗
After leucocytes depletion

< 0.2 × 106/single unit
equivalent

1% of all units with a
minimum of 10 units per

month

QC lab

13 pH measured∗∗∗ (+22 °C) at the
end of the recommended shelf

life

6.4 to 7.4 1% of all units with a
minimum of 4 units per

month

QC lab

* These requirements shall be deemed to have been met if 75% of the units tested fall within the values
indicated.
** These requirements shall be deemed to have been met if 90% of the units tested fall within the values
indicated.
*** Measurement of the pH in a closed system is preferable to prevent CO2 escape. Measurements may be
made at another temperature and converted by calculation for reporting pH at +22 °C.

59

A.4 Quality Requirements of FFP

Table A.4
Table of Quality Requirements of FFP [3].

 Parameter to be
checked

Quality requirement
(specification)

Frequency of control Control
executed by

1 ABO, Rh D Grouping All units grouping lab

2 anti-HIV 1&2 Negative by approved screening
test

All units screening lab

3 HBsAg Negative by approved screening
test

All units screening lab

4 anti-HBc
(when required)

Negative by approved screening
test

All units screening lab

5 anti-HCV Negative by approved screening
test

All units screening lab

6 Syphilis (when
required)

Negative by screening test All units screening lab

7 anti-HTLV I&II (when
required)

Negative by screening test All units screening lab

8 Volume stated volume ± 10% all units processing lab

9 Factor VIIIc ≥ 70 IU per 100 ml every two months.
a) pool of 6 units of mixed

blood groups during first
month of storage.

b) pool of 6 units of mixed
blood groups during last

month of storage.

QC lab

10 Factor VIIIc Average (after freezing and
thawing): ≥ 70 % of the value of
the freshly collected plasma unit

Every 3 month
10 units in the first month of

storage**.

QC lab

11 Residual cells∗ red cells: < 6.0 × 109/l
leucocytes: < 0.1 × 109/l

platelets: < 50 × 109/l

1% of all units with a
minimum of 4 units/month

QC lab

12 Leakage no leakage at any part of
container e.g. visual inspection

after pressure in a plasma
extractor, before freezing and

after thawing

all units processing and
receiving
laboratory

13 Visual changes no abnormal colour or visible
clots

all units "

* Cell counting performed before freezing. Low levels can be achieved if specific cellular depletions
are included in the protocol.
** The exact number of units to be tested could be determined by statistical process control

60

APPENDIX B. QC PROCESSES

B.1 QC Process of ES-AD Component

Figure B.1 Diagram of QC Process of ES-AD Component

61

Figure B.1 Diagram of QC Process of ES-AD Component

62

Figure B.1 Diagram of QC Process of ES-AD Component

63

B.2 QC Process of TS Component

Figure B.2 Diagram of QC Process of TS Component

64

Figure B.2 Diagram of QC Process of TS Component

65

Figure B.2 Diagram of QC Process of TS Component

66

B.3 QC Process of FFP Component

 Figure B.3 Diagram of QC Process of FFP Component
.

67

Figure B.3 Diagram of QC Process of FFP Component

68

APPENDIX C. THE MENU TREE OF THE SOFTWARE

Table C.1
Menu tree of the Software.

* Default Values . ** Some of the buttons which are modeled to be added to domain code of the software,
have no place in the GUI design of this version. They are given as “N/A” in the menu tree list below.

Tree Function (Function is stated at the left column; unless

explained)
File

 Open Opens a database file of another source
 Save Saves the database file to another source
 Save& Exit
 Find Form Shortcut to Direct Form Access
 Find Sample Shortcut to Direct Sample Access
 Print Report Prints Selected Monthly Report
 Print Annual Report Prints Selected Annual Report
 Print Request Form Prints Selected Request Form
Edit

 Undo
 Redo
 Cut
 Copy
 Paste
 Select All
Input

 Form
 ES Shortcut to ES Sample Input
 TS Shortcut to TS Sample Input
 FFP Shortcut to FFP Sample Input
 Other N/A**
 Sample Shortcut to Direct Sample Access
 Summation Formula N/A** N/A**
 Statistical Formula N/A** N/A**
Report

 Monthly
 ES Shortcut to ES Report Output Menu
 TS Shortcut to TS Report Output Menu
 FFP Shortcut to FFP Report Output Menu
 Other N/A***
 Annual Summation Shortcut to Annual Summation Menu
 Annual Statistics N/A** N/A**
 Request Form

69

 ES Shortcut to ES Request Form Output Menu
 TS Shortcut to TS Request Form Output Menu
 FFP Shortcut to FFP Request Form Output Menu
Statistics N/A**

N/A**

SetUp

 Create Forms of the Year Creates New Forms of the Year
 Language N/A** N/A**
 QC Setup
 QC Frequency N/A**
 QC Criteria
 QC Min-Max Scientific Values
 QC Used Parameter Units N/A**
 Error Sources N/A** N/A**
 Reports Setup
 Monthly Report
 Show QC Requirements* Puts QC Requirements area to the report
 Show QC Frequency* Puts QC Frequency area to the report
 Show QC Samples* Puts QC Sample Results area to the report
 Show QC Error Sources* Puts QC Error Investigations area to the report
 Show QC Explanations* Puts QC Explanation area to the report
 Show QC Approvals* Puts QC Approval area to the report
 Annual Summation Report N/A**
 Statistical Report N/A**
 E-Mail Setup N/A**
 Barcode Deffaults
 Manual * Selects Manual Side of the Input Screens
 Barcode Reader Selects Barcode Side of the Input Screens
 Administratives List
 Add Name
 Delete Name
 Password N/A** N/A**
 Add Password
 Change Password N/A**
 Return to Deffaut Values
Help

 User Manual
 Help Index
 On Restrictions of B Version Explanations on the B Version
About

 Copyright
 Register N/A** N/A**

70

APPENDIX D. DEFAULT VALUES OF THE SOFTWARE

Table D.1
Default unit list of different parameters used in the GUI of the software, next to the test results.

Unit String
1 %
2 gr/unit
3 109/L
4 109/unit
5 Ph
6 (Blank)

Table D.2
Default values of parameters of QC requirements and scientific values recorded in the software.

Definition of the Parameters to be Checked

Te
st

in
g

Da
y

Sc
ien

tif
ic

Mi
n

Va
lu

e

Sc
ien

tif
ic

Ma
x

Va
lu

e

Qu
ali

ty
 M

in

Va
lu

e

Qu
ali

ty
 M

ax

Va
lu

e
Un

it

Qu
ali

fiy
in

g
Pe

rc
an

ta
ge

re

qu
ire

d

Erythrocyte Suspension Haematocrit % 1st Day 1 0 30 90 50 70 % 100

Erythrocyte Suspension Haemoglobin 1st Day 2 0 10 120 45 100 gr/unit 100

Erythrocyte Suspension Haematocrit % 42nd Day 3 42 30 100 55 80 % 100

Erythrocyte Suspension Haemoglobin 42nd Day 4 42 10 120 45 100 gr/unit 100

Erythrocyte Suspension Haemolysis % 42nd Day 5 42 0 40 0 0.8 % 100

Fresh Frozen Plasma Residual Erythrocyte, 1st Day 6 0 0 30 0 6.0 109/L 100

Fresh Frozen Plasma Residual Leucocytes 7 0 0 30 0 0.1 109/L 100

Fresh Frozen Plasma Residual Thrombocyte 8 0 0 250 0 50 109/L 100

Thrombocyte Suspension Residual Leucocytes 9 0 0 30 0 0.2 109/unit 100

Thrombocyte Suspension Thrombocyte 10 0 30 200 60 130 109/unit 75

Thrombocyte Suspension Ph Degree, 4th Day 11 4 4 10 6.4 7.4 PH 100

71

APPENDIX E. QC REPORT SAMPLES

E.1 Monthly ES in AD QC Report

Figure E.1 Monthly ES in AD QC Report

72

E.2 Monthly TS QC Report

Figure E.2 Monthly TS QC Report

73

E.3 Monthly FFP QC Report

Figure E.3 Monthly FFP QC Report

74

E.4 Annual QC Results Summation Report Form

Figure E.4 Annual QC Results Summation Report Form

75

E.4.1 Annual QC Results Summation Report, TS Sample

Figure E.5 Annual QC Results Summation Report, TS Sample

76

APPENDIX F. COMPONENT REQUEST FORM SAMPLE

Figure F.1 Component Request Form Sample

77

APPENDIX G. SAMPLE BARCODE READINGS

Table G.1
Sample barcode readings from Blood Labels of Türk Kızılayı. (Data acquisition by a barcode reader from
eight samples of blood component labels. Localizations of the barcodes on the label, which are shown in
numbers in the list, defined on the label sample below.)

78

APPENDIX H. SOFTWARE SOURCE CODE

H.1 Source Code of Domain

FormContainer

package com.ptah.kankalite.domain;

import java.io.Serializable;
import java.util.HashMap;
import java.util.Map;
import java.util.TreeMap;

import com.ptah.kankalite.constants.FormState;
import com.ptah.kankalite.constants.FormType;

public class FormContainer implements Serializable {

 // TODO : Bilimsel min, bilimsel max değerlerini kontrol et
 /*
 * Her formdaki sample sayısını kullanıcı tarafından forse etmek
için 0'dan farklı bir değer verilir.
 */
 private int userSampleCount = 0;
 private static final long serialVersionUID = 5718965482615025476L;

 // String - 022007, 112007, etc
 // Integer - 3,5,6, etc
 // Verilen periyotta her formdan kac tane alinmasi gerektigini tutar
 private Map<FormType, Map<String, Integer>> periodicSampleCount =
new TreeMap<FormType, Map<String, Integer>>();

 /*
 * FormContainer'daki formların listesi formList objesinde
tutulur (Belirli bir formType'a ait Map'ler şeklinde)
 * Bu Map'lerin key'i dönem bilgisini gösteren String, data'sı
ise formun kendisidir.
 */
 private Map<FormType, Map<String, Form>> formList = new
TreeMap<FormType, Map<String, Form>>();

 /*
 * Belirli bir form tipi için verilen döneme ait ürün sayısı set
edilir. Bu method çağrıldığında ilgili döneme
 * ait yeni bir form objesi yaratır ve formList'e ekler.
 */
 public void setGeneratedProductCount(FormType formType, String date,
int count) {
 Map<String, Integer> periodicSpecificFormValues;
 periodicSpecificFormValues = periodicSampleCount.get(formType);
 if (periodicSpecificFormValues == null) {
 periodicSpecificFormValues = new HashMap<String, Integer>();
 }
 periodicSpecificFormValues.put(date, count);
 periodicSampleCount.put(formType, periodicSpecificFormValues);
 Form form = generateForm(formType, date);
 Map<String, Form> formsWithSameType = formList.get(formType);
 /*
 * Eğer böyle bir Map henüz yaratılmadıysa, şimdi yaratılmalı
 */
 if (formsWithSameType == null) {
 formsWithSameType = new HashMap<String, Form>();

79

 }
 formsWithSameType.put(date, form);
 formList.put(formType, formsWithSameType);
 }

 /*
 * Belirli bir sure icersindeki (022007, etc) üretilmiş olan
ürün sayısı
 */
 public int getGeneratedProductCount(FormType formType, String date)
{
 int result = 0;
 Map<String, Integer> list = periodicSampleCount.get(formType);
 if (list != null) {
 try {
 result = list.get(date);
 } catch (NullPointerException e) {
 result = -1;
 }
 } else {
 result = -1;
 }
 return result;
 }

 public int getNeededSampleCount(FormType formType, String date) {
 if (userSampleCount > 0) {
 return userSampleCount;
 }
 int numberOfSamplesToBeTested = -1;
 int count = getGeneratedProductCount(formType, date);
 if (formType == FormType.ES) {
 if (count < 401) {
 numberOfSamplesToBeTested = 4;
 } else {
 numberOfSamplesToBeTested = Math.round((float) (count + 49) /
100);
 }
 } else if (formType == FormType.TS) {
 //numberOfSamplesToBeTested = Math.round((float) count *
0.01f);
 numberOfSamplesToBeTested = Math.round((float) (count + 49) /
100);
 if (numberOfSamplesToBeTested < 10) {
 numberOfSamplesToBeTested = 10;
 }
 } else if (formType == FormType.TDP) {
 if (count < 401) {
 numberOfSamplesToBeTested = 4;
 } else {
 numberOfSamplesToBeTested = Math.round((float) (count + 49) /
100);
 }
 }
 return numberOfSamplesToBeTested;
 }

 /*
 * Verilmiş olan ay için form üreteci (O periyot için üretilmiş
ürünlerin sayısına bakarak kaç sample alınması
 * gerektiğini de bildirir.
 */
 public Form generateForm(FormType formType, String period) {
 int numberOfSamplesToBeTested = getNeededSampleCount(formType,
period);

 Map<String, Form> formForSpecificPeriod = new HashMap<String,
Form>();

80

 Form form = FormFactory.createForm(formType, period);
 form.setNumberOfSamplesToBeTested(numberOfSamplesToBeTested);
 formForSpecificPeriod.put(period, form);

 form.createSamples();
 return form;
 }

 public Map<String, Form> getForms(FormType formType) {
 return formList.get(formType);
 }

 /*
 * Spesifik bir formu getirir - Basitlik olsun diye konuldu
 */
 public Form getForm(FormType formType, String date) {
 Form forms = formList.get(formType).get(date);
 return forms;
 }

 public void setUserSampleCount(int userSampleCount) {
 this.userSampleCount = userSampleCount;
 }

 public Map<String, Form> getFormsToBeCompletedForYear(FormType type)
{
 Map<String, Form> forms = new TreeMap<String, Form>();
 Map<String, Form> currentForms = formList.get(type);
 for (String form : currentForms.keySet()) {
 FormState state = currentForms.get(form).getState();
 if ((state == FormState.SAMPLE_ABSENT) || (state ==
FormState.TESTS_WAITING)) {
 forms.put(form, currentForms.get(form));
 }
 }
 return forms;
 }

 public void createFormsForYear(FormType type, String year) {
 Map<String, Form> currentForms = formList.get(type);
 if (currentForms == null) {
 currentForms = new TreeMap<String, Form>();
 }
 for (int i = 1; i <= 12; i++) {
 String index = "" + i + year;
 // Başında 0 olmayan String'lerin başına 0 koyuyoruz
 if (index.length() == 5) {
 index = "0" + index;
 }
 if (currentForms.get(index) == null) {
 Form form = generateForm(type, index);
 currentForms.put(index, form);
 }
 }
 formList.put(type, currentForms);
 }

 public Map<FormType, Map<String, Form>> getFormList() {
 return formList;
 }

 public void setFormList(Map<FormType, Map<String, Form>> formList) {
 this.formList = formList;
 }

 public Sample getSpecificSample(FormType formType, int bloodNo) {
 Sample result=null;
 Map<String, Form> forms=getForms(formType);

81

 for (String period:forms.keySet()) {
 Form tempForm=getForm(formType, period);
 Map<Integer, Sample> samples = tempForm.getSamples();
 for (Sample sample:samples.values()) {
 if (sample.getBloodNo()==bloodNo) {
 result=sample;
 }
 }
 }
 return null;
 }
}

FormFactory

package com.ptah.kankalite.domain;

import com.ptah.kankalite.constants.FormType;

public class FormFactory {
// Factory method olarak kullanılıyor - Sadece FormContainer
tarafindan kullanildigindan emin olmak lazim
 protected static Form createForm(FormType formType, String period)
{
 Form form=null;
 if (formType == FormType.ES) {
 form = new ESForm(period);
 }
 if (formType == FormType.TS) {
 form = new TSForm(period);
 }
 if (formType == FormType.TDP) {
 form = new TDPForm(period);
 }
 return form;
 }
}

Form

package com.ptah.kankalite.domain;

import java.io.Serializable;
import java.util.ArrayList;
import java.util.Calendar;
import java.util.Date;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.TreeMap;

import org.eclipse.swt.widgets.Button;
import org.eclipse.swt.widgets.Group;

import com.ptah.kankalite.constants.FormState;
import com.ptah.kankalite.constants.FormType;
import com.ptah.kankalite.constants.ParameterType;

public abstract class Form implements IForm, Serializable {
 protected long id;
 protected FormType type;

82

 protected Date date;
 protected String name;
 protected int expiryPeriod;
 protected int numberOfSamplesToBeTested;
 protected FormState state;
 protected int totalFailedSampleCountForThisForm;
 protected boolean valid;
 protected String period;
 protected String condition;
 protected int leastSampleCount;

 private boolean sampleCountCheck;
 private boolean storageBeforeQCCheck;
 private boolean storageDuringQCCheck;
 private boolean storageExterminationCheck;
 private String qcSpecialist;
 private boolean screeningCheck;
 private boolean groupingCheck;

 private String esComponentBag;
 private String esUnitsToBeInformed;
 private String esExtractorUsage;
 private String esCentrifuge;
 private String esStorage;
 private String esBloodCountEquipment;
 //transient Button sampleUpdateButton;
 private int noOfProducedComponents;

 protected Map<ParameterType, Integer> results = new
TreeMap<ParameterType, Integer>();

 private Map<Integer, Sample> samples = new TreeMap<Integer,
Sample>();

 List<ParameterType> parameterTypes = new ArrayList<ParameterType>();

 public Form() {
 state = FormState.SAMPLE_ABSENT;
 totalFailedSampleCountForThisForm = 0;
 }

 public abstract void checkState();

 public abstract void checkResults();

 public abstract void showParameterEntries(Group parameterEntry);

 public abstract void extractParametersFromGUI(Sample currentSample);

 public abstract void updateGUIFromParameters(Sample currentSample);

 public int getResult(ParameterType type) {
 return results.get(type);
 }

 /*
 * checkState() burada çağırılıyor - Bütün validity
checking'leri checkState içersinde yapılıyor.
 */
 public FormState getState() {
 checkState();
 return state;
 }

 public void setState(FormState state) {
 this.state = state;
 }

83

 public FormType getType() {
 return type;
 }

 public void setType(FormType type) {
 this.type = type;
 }

 public String getName() {
 return name;
 }

 public long getId() {
 return id;
 }

 public void setNumberOfSamplesToBeTested(int
numberOfSamplesToBeTested) {
 this.numberOfSamplesToBeTested = numberOfSamplesToBeTested;
 // createSamples();
 }

 public int getNumberOfSamplesToBeTested() {
 return numberOfSamplesToBeTested;
 }

 public Map<Integer, Sample> getSamples() {
 return samples;
 }

 public void updateAnInitialSample() {

 }

 /*
 * Generic sample parametrelerini set etmek icin en uygun yer
burasi
 */
 public void createSamples() {
 createSamples(0);
 }

 public void createSamples(int startPoint) {
 for (int i = startPoint; i < numberOfSamplesToBeTested; i++) {
 Sample sample = new Sample(i);
 Map<ParameterType, Parameter> sampleParam = new
HashMap<ParameterType, Parameter>();
 for (ParameterType type : parameterTypes) {
 sampleParam.put(type, new Parameter(0, -1.0f));
 }
 sample.setParameters(sampleParam);
 // sample.setProductionDate(new
Date(System.currentTimeMillis()));
 samples.put(sample.getId(), sample);
 sample.setExpiryPeriod(expiryPeriod);
 }
 }

 /*
 * i. örneğin production date'ini set eder
 */
 public void setSampleProductionDate(int i, Date date) {
 Sample aSample = samples.get(i);
 aSample.setProductionDate(date);
 Calendar calendar = Calendar.getInstance();
 calendar.setTime(date);
 calendar.add(Calendar.DAY_OF_MONTH, this.expiryPeriod);
 aSample.setExpiryDate(calendar.getTime());

84

 }

 public Date getSampleExpiryDate(int i) {
 return samples.get(i).getExpiryDate();
 }

 public void addParameterType(ParameterType type) {
 parameterTypes.add(type);
 }

 public Date getDate() {
 return date;
 }

 public void setDate(Date date) {
 this.date = date;
 }

 /*
 * Verilen parametrenin min ve max değerlerinin kalite
değerlerinin arasında olması durumu kontrol eder.
 * Değerlendirmeye girmesi istenmeyen değerler NaN olarak
verilir. minSuccessRate ise örneklerin % kaçının
 * geçerli olmasının yeterli olacağını belirtir. Sonucu
"results" isimli hashMap'de saklar.
 */
 protected void checkSpecificParameter(ParameterType type, int min,
int max, float minQValue, float maxQValue,
 float minSuccessRate) {
 results.put(type, 0);
 int actualSampleCount = getSamples().keySet().size();
 int failedSampleCountForSpecificType = 0;
 for (Sample sample : getSamples().values()) {
 Parameter parameter = sample.getParameter(type);
 parameter.setValid(true);
 // sample.setValid(true);
 boolean sampleFailed = false;

 // İlk alınan örnekten son alınan örneğe kadar iterate edelim
 for (int i = min; i <= max; i++) {
 boolean smaller = (minQValue != Float.NaN &&
parameter.getValue(i) < minQValue);
 boolean greater = (maxQValue != Float.NaN &&
parameter.getValue(i) > maxQValue);
 if (smaller || greater) {
 sampleFailed = true;
 }
 }

 // Bu parametre fail etti ise :
 if (sampleFailed) {
 parameter.setValid(false);
 sample.setValid(false);
 increaseFailCountForParameter(type, parameter);
 failedSampleCountForSpecificType++;
 totalFailedSampleCountForThisForm++;
 }
 }
 float actualFailureRate = 0;
 try {
 actualFailureRate = 100 * failedSampleCountForSpecificType /
actualSampleCount;
 } catch (Exception e) {
 }
 float maxFailureRate = 100 - minSuccessRate;
 if (actualFailureRate > maxFailureRate) {
 this.valid = false;
 // totalFailedSampleCountForThisForm++;

85

 } else {
 this.valid = true;
 }
 }

 private void increaseFailCountForParameter(ParameterType type,
Parameter parameter) {
 int val = results.get(type);
 results.put(type, val + 1);
 }

 public int getFailedSampleCount() {
 return totalFailedSampleCountForThisForm;
 }

 public void setFailedSampleCount(int failedSampleCount) {
 this.totalFailedSampleCountForThisForm = failedSampleCount;
 }

 public int getTotalFailedSampleCountForThisForm() {
 return totalFailedSampleCountForThisForm;
 }

 public boolean isValid() {
 return valid;
 }

 public void setPeriod(String period) {
 this.period = period;
 }

 public String getPeriod() {
 return period;
 }

 public String getCondition() {
 return condition;
 }

 public int getLeastSampleCount() {
 return leastSampleCount;
 }

 public String getQcSpecialist() {
 return qcSpecialist;
 }

 public void setQcSpecialist(String qcSpecialist) {
 this.qcSpecialist = qcSpecialist;
 }

 public boolean isSampleCountCheck() {
 return sampleCountCheck;
 }

 public void setSampleCountCheck(boolean sampleCountCheck) {
 this.sampleCountCheck = sampleCountCheck;
 }

 public boolean isStorageBeforeQCCheck() {
 return storageBeforeQCCheck;
 }

 public void setStorageBeforeQCCheck(boolean storageBeforeQCCheck) {
 this.storageBeforeQCCheck = storageBeforeQCCheck;
 }

 public boolean isStorageDuringQCCheck() {

86

 return storageDuringQCCheck;
 }

 public void setStorageDuringQCCheck(boolean storageDuringQCCheck) {
 this.storageDuringQCCheck = storageDuringQCCheck;
 }

 public boolean isStorageExterminationCheck() {
 return storageExterminationCheck;
 }

 public void setStorageExterminationCheck(boolean
storageExterminationCheck) {
 this.storageExterminationCheck = storageExterminationCheck;
 }

 public boolean isGroupingCheck() {
 return groupingCheck;
 }

 public void setGroupingCheck(boolean groupingCheck) {
 this.groupingCheck = groupingCheck;
 }

 public boolean isScreeningCheck() {
 return screeningCheck;
 }

 public void setScreeningCheck(boolean screeningCheck) {
 this.screeningCheck = screeningCheck;
 }

 public String getEsBloodCountEquipment() {
 return esBloodCountEquipment;
 }

 public void setEsBloodCountEquipment(String esBloodCountEquipment) {
 this.esBloodCountEquipment = esBloodCountEquipment;
 }

 public String getEsCentrifuge() {
 return esCentrifuge;
 }

 public void setEsCentrifuge(String esCentrifuge) {
 this.esCentrifuge = esCentrifuge;
 }

 public String getEsComponentBag() {
 return esComponentBag;
 }

 public void setEsComponentBag(String esComponentBag) {
 this.esComponentBag = esComponentBag;
 }

 public String getEsExtractorUsage() {
 return esExtractorUsage;
 }

 public void setEsExtractorUsage(String esExtractorUsage) {
 this.esExtractorUsage = esExtractorUsage;
 }

 public String getEsStorage() {
 return esStorage;
 }

87

 public void setEsStorage(String esStorage) {
 this.esStorage = esStorage;
 }

 public String getEsUnitsToBeInformed() {
 return esUnitsToBeInformed;
 }

 public void setEsUnitsToBeInformed(String esUnitsToBeInformed) {
 this.esUnitsToBeInformed = esUnitsToBeInformed;
 }

 public int getNoOfProducedComponents() {
 return noOfProducedComponents;
 }

 public void setNoOfProducedComponents(int noOfProducedComponents) {
 this.noOfProducedComponents = noOfProducedComponents;
 }

 public Button getSampleUpdateButton() {
 return null;//this.sampleUpdateButton;
 }

 /*public void __createUpdateButton(Group group) {
 if (this.sampleUpdateButton!=null) {
 this.sampleUpdateButton.dispose();
 System.out.println("Disposed");
 }
 this.sampleUpdateButton = new Button(group, SWT.NONE);
 }*/

}

Iform

package com.ptah.kankalite.domain;

import java.util.List;

public interface IForm {
 public String getName();
 public void checkState();
 public String getCondition();
 public int getLeastSampleCount();
 public List<String> getSampleParameterNames();
 public List<Float> getSampleParameterValues(int key);
}

Parameter

package com.ptah.kankalite.domain;

import java.io.Serializable;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Set;

import com.ptah.kankalite.constants.ParameterType;

88

public class Parameter implements Serializable {
 private static final long serialVersionUID = -6311775687328445799L;
 private Map<Integer, Float> values;
 private boolean valid;

 public boolean isValid() {
 return valid;
 }

 public void setValid(boolean valid) {
 this.valid = valid;
 }

 public Parameter(int index, float value){
 this.values=new HashMap<Integer, Float>();
 this.values.put(index,value);
 this.valid=true;
 }

 public List<Float> getValues(ParameterType type) {
 Set<Integer> keys=values.keySet();
 List<Float> result=new ArrayList<Float>();
 for (Integer key:keys) {
 result.add(values.get(key));
 }
 return result;
 }

 public void addValue(int index, float value) {
 values.put(index, value);
 }

 public float getValue(int i) {
 float result=-1;
 try {
 result=values.get(i);
 } catch (Exception e) {
 result=-1;
 }
 return result;
 }

 public void setValue(int i, float value) {
 this.values.put(i, value);
 }
}

Sample

package com.ptah.kankalite.domain;

import java.io.Serializable;
import java.util.Calendar;
import java.util.Date;
import java.util.HashMap;
import java.util.Map;
import java.util.Set;

import com.ptah.kankalite.constants.ParameterType;

public class Sample implements Serializable {
 private static final long serialVersionUID = 3779132908709268582L;
 /*
 * Id parametresi, her formdaki indeks numarasidir

89

 */
 private int id;
 private int bloodNo;
 private Date productionDate;
 private Date expiryDate;
 private int expiryPeriod;
 private boolean valid;
 private Map<ParameterType, Parameter> parameters = new
HashMap<ParameterType, Parameter>();

 /*
 * Default olarak productionDate set edilsin, expiryDate hesaplansin
 */
 public Sample(int id) {
 this.id = id;
 this.valid = true;
 }

 public Parameter getParameter(ParameterType type) {
 return parameters.get(type);
 }

 public void setParameter(ParameterType type, Parameter parameter) {
 parameters.put(type, parameter);
 }

 public Map<ParameterType, Parameter> getParameters() {
 return parameters;
 }

 public void setParameters(Map<ParameterType, Parameter> parameters)
{
 this.parameters = parameters;
 }

 public Set<ParameterType> getParameterTypes() {
 return parameters.keySet();
 }

 public int getId() {
 return id;
 }

 public void setId(int id) {
 this.id = id;
 }

 public Date getExpiryDate() {
 return expiryDate;
 }

 public void setExpiryDate(Date expiryDate) {
 this.expiryDate = expiryDate;
 Calendar calendar = Calendar.getInstance();
 calendar.setTime(expiryDate);
 calendar.add(Calendar.DAY_OF_MONTH, (-1) * this.expiryPeriod);
 this.productionDate = calendar.getTime();
 }

 public Date getProductionDate() {
 return productionDate;
 }

 public void setProductionDate(Date productionDate) {
 this.productionDate = productionDate;
 if (productionDate != null) {
 Calendar calendar = Calendar.getInstance();
 calendar.setTime(productionDate);

90

 calendar.add(Calendar.DAY_OF_MONTH, this.expiryPeriod);
 this.expiryDate = calendar.getTime();
 }
 }

 public int getExpiryPeriod() {
 return expiryPeriod;
 }

 public void setExpiryPeriod(int expiryPeriod) {
 this.expiryPeriod = expiryPeriod;
 }

 public int getBloodNo() {
 return bloodNo;
 }

 public void setBloodNo(int bloodNo) {
 this.bloodNo = bloodNo;
 }

 /*
 * type : Parametre tipi index : Parametrenin kaçıncı değeri (0,
1 - initial, expiring) value : Parametrenin
 * değeri
 */
 public void add(ParameterType type, int index, float value) {
 Parameter parameter = null;
 try {
 parameter = parameters.get(type);
 } catch (NullPointerException e) {
 System.out.println("!!! - No parameter found with type : " +
type);
 }
 parameter.setValue(index, value);
 }

 public boolean isValid() {
 return valid;
 }

 public void setValid(boolean valid) {
 this.valid = valid;
 }

}

Storage

package com.ptah.kankalite.domain;

import java.io.File;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;

public class Storage {
 private static String fileName = "ptah.store";
 private static String directory = "/tmp";

 private void initialize() {
 File file;
 file = new File(directory);
 file.mkdir();

91

 }

 public Storage() {
 initialize();
 }

 public void store(Object object) {
 try {
 String target = directory + "/" + fileName;
 FileOutputStream fo = new FileOutputStream(target);
 ObjectOutputStream so = new ObjectOutputStream(fo);
 so.writeObject(object);
 so.flush();
 } catch (Exception e) {
 System.err.println("Exception while storing snapshot");
 e.printStackTrace();
 }
 }

 public Object load() throws Exception {
 Object object = null;
 String target = directory + "/" + fileName;
 FileInputStream fo = new FileInputStream(target);
 ObjectInputStream so = new ObjectInputStream(fo);
 object = (Object) so.readObject();
 return object;
 }

}

QCUtil

package com.ptah.kankalite.domain;

import org.eclipse.swt.widgets.Table;
import org.eclipse.swt.widgets.TableItem;

public class QCUtil {

 public static void updateSamplesTable(Table table, Form form) {
 TableItem item = new TableItem(table, 0);
 String[] tableValues;
 tableValues = new String[form.getSampleParameterNames().size() +
2];
 // Once header'i olusturalim
 int i = 0;
 tableValues[i++] = "Unit #";
 for (String name : form.getSampleParameterNames()) {
 tableValues[i++] = name;
 }
 item.setText(tableValues);

 // Sonra data'lari set edelim
 for (int sampleNo = 0; sampleNo < form.getSamples().size();
sampleNo++) {
 item = new TableItem(table, 0);
 tableValues = new String[form.getSampleParameterNames().size()
+ 1];
 i = 0;
 tableValues[i++] = "" + sampleNo;
 for (Float value : form.getSampleParameterValues(sampleNo)) {
 tableValues[i++] = "" + value;
 }
 item.setText(tableValues);

92

 }
 }

}

Qtree

package com.ptah.kankalite.domain;

import java.util.ArrayList;
import java.util.List;

import org.eclipse.swt.SWT;
import org.eclipse.swt.events.SelectionAdapter;
import org.eclipse.swt.events.SelectionEvent;
import org.eclipse.swt.widgets.Composite;
import org.eclipse.swt.widgets.Tree;
import org.eclipse.swt.widgets.TreeItem;

public class QTree {

 private Tree tree;
 List<TreeItem> mainItems;
 Form selectedForm;

 public QTree(Composite parent, int style) {
 tree = new Tree(parent, style);
 tree.setBounds(5,40,205,250);
 tree.addSelectionListener(new SelectionAdapter() {
 public void widgetSelected(SelectionEvent e) {
 TreeItem tempItem=tree.getSelection()[0];
 selectedForm = (Form)tempItem.getData();
 }
 });
 mainItems = new ArrayList<TreeItem>();
 }

 public void setSelection(TreeItem item) {
 tree.setSelection(item);
 }

 public Tree getTree() {
 return tree;
 }

 public void setTree(Tree tree) {
 this.tree = tree;
 }

 public void addItem(String itemStr) {
 addItem(itemStr, null);
 tree.redraw();
 }

 public void addItem(String itemStr, Form form) {
 TreeItem item = null;
 if (form == null) {
 item = new TreeItem(tree, SWT.BORDER);
 } else {
 TreeItem tempItem = tree.getItem(form.getType().ordinal());
 item = new TreeItem(tempItem, SWT.BORDER);
 }
 item.setText(itemStr);
 item.setData(form);
 }

93

 public Form getSelectedForm() {
 return selectedForm;
 }

 public void setSelectedForm(Form form) {
 this.selectedForm=form;
 }

}

ESForm

package com.ptah.kankalite.domain;

import java.io.Serializable;
import java.util.ArrayList;
import java.util.Collection;
import java.util.List;

import org.eclipse.swt.SWT;
import org.eclipse.swt.widgets.Group;
import org.eclipse.swt.widgets.Label;
import org.eclipse.swt.widgets.Text;

import com.ptah.kankalite.constants.FormNames;
import com.ptah.kankalite.constants.FormState;
import com.ptah.kankalite.constants.FormType;
import com.ptah.kankalite.constants.ParameterType;

public class ESForm extends Form implements Serializable {

 private static final long serialVersionUID = 3719530664889402371L;
 private float minHbQValue;
 private float minHtcQValue;
 private float maxHtcQValue;
 private float maxHmlzQValue;

 transient Text hmlz42ndDay;
 transient Text hb42ndDay;
 transient Text htc42ndDay;
 transient Text hb1stDay;
 transient Text htc1stDay;

 public ESForm(String period) {
 super();
 minHbQValue = 45f;
 minHtcQValue = 50f;
 maxHtcQValue = 70f;
 maxHmlzQValue = 2.8f;
 expiryPeriod = 42;
 leastSampleCount = 4;
 condition = "%1 of number of products; with a minimum of 4 units";
 name = FormNames.ES;
 setPeriod(period);
 setType(FormType.ES);
 setState(FormState.SAMPLE_ABSENT);
 id = System.currentTimeMillis();

 addParameterType(ParameterType.Htc);
 addParameterType(ParameterType.Hb);
 addParameterType(ParameterType.Hmlz);
 }

 public List<String> getSampleParameterNames() {

94

 List<String> result = new ArrayList<String>();
 result.add("Htc 1st Day");
 result.add("Hb 1st Day");
 result.add("Htc 42nd Day");
 result.add("Hb 42nd Day");
 result.add("Hmlz 42nd Day");
 return result;
 }

 public void showParameterEntries(Group parameterEntry) {
 //Composite parent=parameterEntry.getParent();
 //parameterEntry=new Group(parent, SWT.NONE);
 parameterEntry.setBounds(170, 175, 390, 75);

 Label htc1stDayLabel = new Label(parameterEntry, SWT.NONE);
 htc1stDayLabel.setAlignment(SWT.RIGHT);
 htc1stDayLabel.setText("Htc 1st day (%) :");
 htc1stDayLabel.setBounds(23, 10, 85, 13);

 Label hb1stDayLabel = new Label(parameterEntry, SWT.NONE);
 hb1stDayLabel.setAlignment(SWT.RIGHT);
 // toolkit.adapt(hb1stDayLabel, true, true);
 hb1stDayLabel.setText("Hb 1st day (g/unit) :");
 hb1stDayLabel.setBounds(3, 30, 105, 13);

 Label htc42ndDayLabel = new Label(parameterEntry, SWT.NONE);
 htc42ndDayLabel.setAlignment(SWT.RIGHT);
 // toolkit.adapt(htc42ndDayLabel, true, true);
 htc42ndDayLabel.setText("Htc 42nd day (%) :");
 htc42ndDayLabel.setBounds(170, 10, 105, 13);

 htc1stDay = new Text(parameterEntry, SWT.BORDER);
 // toolkit.adapt(htc1stDay, true, true);
 htc1stDay.setBounds(115, 10, 50, 15);

 hb1stDay = new Text(parameterEntry, SWT.BORDER);
 hb1stDay.setBounds(115, 30, 50, 15);
 // toolkit.adapt(hb1stDay, true, true);

 htc42ndDay = new Text(parameterEntry, SWT.BORDER);
 htc42ndDay.setBounds(280, 10, 50, 15);
 // toolkit.adapt(htc42ndDay, true, true);

 Label htc42ndDayLabel_1 = new Label(parameterEntry, SWT.NONE);
 htc42ndDayLabel_1.setAlignment(SWT.RIGHT);
 htc42ndDayLabel_1.setBounds(170, 30, 105, 13);
 // toolkit.adapt(htc42ndDayLabel_1, true, true);
 htc42ndDayLabel_1.setText("Hb 42nd day (%) :");

 Label htc42ndDayLabel_2 = new Label(parameterEntry, SWT.NONE);
 htc42ndDayLabel_2.setAlignment(SWT.RIGHT);
 htc42ndDayLabel_2.setBounds(170, 50, 105, 13);
 // toolkit.adapt(htc42ndDayLabel_2, true, true);
 htc42ndDayLabel_2.setText("Hmlz 42nd day (%) :");

 hb42ndDay = new Text(parameterEntry, SWT.BORDER);
 hb42ndDay.setBounds(280, 30, 50, 15);

 hmlz42ndDay = new Text(parameterEntry, SWT.BORDER);
 hmlz42ndDay.setEnabled(false);
 hmlz42ndDay.setEditable(false);
 hmlz42ndDay.setBounds(280, 50, 50, 15);

 /*createUpdateButton(parameterEntry);
 sampleUpdateButton.setText("Update");
 sampleUpdateButton.setBounds(335, 10, 50, 60);*/
 }

95

 @Override
 public void updateGUIFromParameters(Sample currentSample) {
 try {
 hb1stDay.setText("");
 Parameter hb = currentSample.getParameter(ParameterType.Hb);
 hb1stDay.setText("" + hb.getValue(0));
 hb42ndDay.setText("" + hb.getValue(1));
 Parameter htc =
currentSample.getParameter(ParameterType.Htc);
 htc1stDay.setText("" + htc.getValue(0));
 htc42ndDay.setText("" + htc.getValue(1));
 // Hemoliz parametresini hesaplatmak icin checkState()
methodu cagiriliyor.
 checkState();
 Parameter hmlz =
currentSample.getParameter(ParameterType.Hmlz);
 hmlz42ndDay.setText("" + hmlz.getValue(1));
 } catch (Exception e) {
 }
 }

 @Override
 public void extractParametersFromGUI(Sample currentSample) {
 try {
 float hb1st = Float.parseFloat(hb1stDay.getText());
 float hb42nd = Float.parseFloat(hb42ndDay.getText());
 float htc1st = Float.parseFloat(htc1stDay.getText());
 float htc42nd = Float.parseFloat(htc42ndDay.getText());

 Parameter hb = new Parameter(0, hb1st);
 hb.setValue(1, hb42nd);
 currentSample.setParameter(ParameterType.Hb, hb);

 Parameter htc = new Parameter(0, htc1st);
 htc.setValue(1, htc42nd);
 currentSample.setParameter(ParameterType.Htc, htc);
 } catch (Exception ex) {
 System.out.println("Some parameter values are invalid");
 }
 }

 public List<Float> getSampleParameterValues(int key) {
 List<Float> result = new ArrayList<Float>();
 result.add(getSamples().get(key).getParameters().get(ParameterType.
Htc).getValue(0));
 result.add(getSamples().get(key).getParameters().get(ParameterType.
Hb).getValue(0));
 result.add(getSamples().get(key).getParameters().get(ParameterType.
Htc).getValue(1));
 result.add(getSamples().get(key).getParameters().get(ParameterType.
Hb).getValue(1));
 result.add(getSamples().get(key).getParameters().get(ParameterType.
Hmlz).getValue(1));
 return result;
 }

 @Override
 public void checkState() {
 FormState state = FormState.SAMPLE_ABSENT;
 boolean expiringSamplesAreValid = true;
 boolean initialSamplesAreValid = true;
 Collection<Sample> samples = getSamples().values();

 for (Sample sample : samples) {
 boolean isInitialParameterValid = false;
 boolean isExpiryParameterValid = false;
 Parameter htc = sample.getParameter(ParameterType.Htc);
 Parameter hb = sample.getParameter(ParameterType.Hb);

96

 Parameter hmlz = sample.getParameter(ParameterType.Hmlz);
 calculate(sample);
 boolean bloodValid = (sample.getBloodNo() > 0);
 boolean productionDateValid = (sample.getProductionDate() !=
null);
 boolean expiryDateValid = (sample.getExpiryDate() != null);
 boolean htcInitialValid = ((htc.getValue(0) != -1f));
 boolean hbInitialValid = ((hb.getValue(0) != -1f));
 boolean htcExpiryValid = ((htc.getValue(1) != -1f));
 boolean hbExpiryValid = ((hb.getValue(1) != -1f));
 boolean hmlzValid = ((hmlz.getValue(1) != -1f));

 isInitialParameterValid = bloodValid && htcInitialValid &&
hbInitialValid && productionDateValid;
 isExpiryParameterValid = bloodValid && htcExpiryValid &&
hbExpiryValid && expiryDateValid && hmlzValid;

 expiringSamplesAreValid = (expiringSamplesAreValid &&
isExpiryParameterValid);
 initialSamplesAreValid = (initialSamplesAreValid &&
isInitialParameterValid);
 }

 boolean sampleCountValid = samples.size() >=
getNumberOfSamplesToBeTested();

 if (initialSamplesAreValid && sampleCountValid) {
 state = FormState.TESTS_WAITING;
 }

 boolean otherConditions = (isGroupingCheck() && sampleCountValid &&
isScreeningCheck()
 && isStorageBeforeQCCheck() && isStorageDuringQCCheck()
 && isStorageExterminationCheck() &&
!getQcSpecialist().equals(""));

 if (expiringSamplesAreValid && initialSamplesAreValid &&
otherConditions && sampleCountValid) {
 state = FormState.DONE;
 }
 super.setState(state);
 }

 // TODO : Hemoliz hesaplamasını öğren!!!
 private void calculate(Sample sample) {
 Parameter htc = sample.getParameter(ParameterType.Htc);
 Parameter hb = sample.getParameter(ParameterType.Hb);
 float value = 0f;
 try {
 value = htc.getValue(1) / hb.getValue(1);
 } catch (NullPointerException npe) {
 value = -1f;
 }
 sample.add(ParameterType.Hmlz, 1, value);
 }

 @Override
 public void checkResults() {
 for (Sample sample : getSamples().values()) {
 calculate(sample);
 }

 /*
 * Hb, Htc ve Hmlz parametreleri için kontroller yapılıyor
Sonuçlar Forms->results map'inin içinde boolean
 * olarak tutuluyor.
 */

97

 checkSpecificParameter(ParameterType.Hb, 0, 1, minHbQValue,
Float.NaN, 100);
 checkSpecificParameter(ParameterType.Htc, 0, 1, minHtcQValue,
maxHtcQValue, 100);
 checkSpecificParameter(ParameterType.Hmlz, 1, 1, Float.NaN,
maxHmlzQValue, 100);
 }

}

TSForm

package com.ptah.kankalite.domain;

import java.io.Serializable;
import java.util.ArrayList;
import java.util.Collection;
import java.util.List;

import org.eclipse.swt.SWT;
import org.eclipse.swt.widgets.Group;
import org.eclipse.swt.widgets.Label;
import org.eclipse.swt.widgets.Text;

import com.ptah.kankalite.constants.FormNames;
import com.ptah.kankalite.constants.FormState;
import com.ptah.kankalite.constants.FormType;
import com.ptah.kankalite.constants.ParameterType;

public class TSForm extends Form implements Serializable {

 private static final long serialVersionUID = 118686217882937243L;
 private float minVolumeQValue;
 private float maxResLeukQValue;
 private float minNoTQValue;
 private float maxPhQValue;
 private float minPhQValue;

 transient Text volumeText;
 transient Text resLeukText;
 transient Text pHText;
 transient Text noTText;

 public TSForm(String period) {
 super();
 minPhQValue = 6.4f;
 maxPhQValue = 7.4f;
 minNoTQValue = 60f;
 maxResLeukQValue = 0.2f;
 minVolumeQValue = 40.0f;
 minNoTQValue = 60.0f;
 expiryPeriod = 4;
 leastSampleCount = 10;
 condition = "%1 of number of products; with a minimum of 10 units";
 name = FormNames.TS;
 setType(FormType.TS);
 setPeriod(period);
 setState(FormState.SAMPLE_ABSENT);
 id = System.currentTimeMillis();
 addParameterType(ParameterType.Vol);
 addParameterType(ParameterType.ResLeuk);
 addParameterType(ParameterType.NoT);
 addParameterType(ParameterType.Ph);

98

 }

 @Override
 public void checkState() {
 FormState state = FormState.SAMPLE_ABSENT;
 boolean expiringSamplesAreValid = true;
 boolean initialSamplesAreValid = true;
 Collection<Sample> samples = getSamples().values();

 for (Sample sample : samples) {
 boolean isInitialParameterValid = false;
 boolean isExpiryParameterValid = false;
 Parameter vol = sample.getParameter(ParameterType.Vol);
 Parameter resLeuk = sample.getParameter(ParameterType.ResLeuk);
 Parameter not = sample.getParameter(ParameterType.NoT);
 Parameter ph = sample.getParameter(ParameterType.Ph);
 boolean bloodValid = (sample.getBloodNo() > 0);
 boolean productionDateValid = (sample.getProductionDate() !=
null);
 boolean expiryDateValid = (sample.getExpiryDate() != null);
 boolean volInitialValid = ((vol.getValue(0) != -1f));
 boolean resLeukInitialValid = ((resLeuk.getValue(0) != -1f));
 boolean notInitialValid = ((not.getValue(0) != -1f));
 boolean phExpiryValid = ((ph.getValue(1) != -1f));

 isInitialParameterValid = bloodValid && volInitialValid &&
resLeukInitialValid && notInitialValid
 && productionDateValid && expiryDateValid;
 isExpiryParameterValid = bloodValid && phExpiryValid;

 expiringSamplesAreValid = (expiringSamplesAreValid &&
isExpiryParameterValid);
 initialSamplesAreValid = (initialSamplesAreValid &&
isInitialParameterValid);
 }

 boolean sampleCountValid = samples.size() >=
getNumberOfSamplesToBeTested();

 if (sampleCountValid && initialSamplesAreValid) {
 state = FormState.TESTS_WAITING;
 }

 boolean otherConditions = (isGroupingCheck() && sampleCountValid &&
isScreeningCheck()
 && isStorageBeforeQCCheck() && isStorageDuringQCCheck()
 && isStorageExterminationCheck() &&
!getQcSpecialist().equals(""));

 if (expiringSamplesAreValid && state == FormState.TESTS_WAITING &&
otherConditions && sampleCountValid) {
 state = FormState.DONE;
 }
 super.setState(state);
 }

 @Override
 public void checkResults() {
 checkSpecificParameter(ParameterType.Vol, 0, 1, minVolumeQValue,
Float.NaN, 100);
 checkSpecificParameter(ParameterType.ResLeuk, 0, 1, Float.NaN,
maxResLeukQValue, 100);
 checkSpecificParameter(ParameterType.NoT, 0, 1, minNoTQValue,
Float.NaN, 75);
 checkSpecificParameter(ParameterType.Ph, 1, 1, minPhQValue,
maxPhQValue, 100);
 }

99

 public List<String> getSampleParameterNames() {
 List<String> result = new ArrayList<String>();
 result.add("Volume @1st Day");
 result.add("ResLeukocyte @1st Day");
 result.add("Number of platelets @1st Day");
 result.add("pH @4th Day");
 return result;
 }

 public List<Float> getSampleParameterValues(int key) {
 List<Float> result = new ArrayList<Float>();
 result.add(getSamples().get(key).getParameters().get(ParameterType.
Vol).getValue(0));
 result.add(getSamples().get(key).getParameters().get(ParameterType.
ResLeuk).getValue(0));
 result.add(getSamples().get(key).getParameters().get(ParameterType.
NoT).getValue(0));
 result.add(getSamples().get(key).getParameters().get(ParameterType.
Ph).getValue(1));
 return result;
 }

 @Override
 public void showParameterEntries(Group parameterEntry) {
 parameterEntry.setBounds(170, 175, 390, 75);

 Label volumeLabel = new Label(parameterEntry, SWT.NONE);
 volumeLabel.setAlignment(SWT.RIGHT);
 volumeLabel.setText("Volume (mL) :");
 volumeLabel.setBounds(33, 10, 85, 13);

 Label resLeukLabel = new Label(parameterEntry, SWT.NONE);
 resLeukLabel.setAlignment(SWT.RIGHT);
 resLeukLabel.setText("Residual Leukocyte :");
 resLeukLabel.setBounds(3, 30, 115, 13);

 Label pHLabel = new Label(parameterEntry, SWT.NONE);
 pHLabel.setAlignment(SWT.RIGHT);
 pHLabel.setText("pH value :");
 pHLabel.setBounds(13, 50, 105, 13);

 Label noTLabel = new Label(parameterEntry, SWT.NONE);
 noTLabel.setAlignment(SWT.LEFT);
 noTLabel.setText("# of plateletes :");
 noTLabel.setBounds(190, 10, 80, 13);

 volumeText = new Text(parameterEntry, SWT.BORDER);
 volumeText.setBounds(125, 10, 50, 15);

 resLeukText = new Text(parameterEntry, SWT.BORDER);
 resLeukText.setBounds(125, 30, 50, 15);

 pHText = new Text(parameterEntry, SWT.BORDER);
 pHText.setBounds(125, 50, 50, 15);

 noTText = new Text(parameterEntry, SWT.BORDER);
 noTText.setBounds(275, 10, 50, 15);

 /*createUpdateButton(parameterEntry);
 sampleUpdateButton.setText("Update");
 sampleUpdateButton.setBounds(335, 10, 50, 60);*/
 }

 @Override
 public void extractParametersFromGUI(Sample currentSample) {
 try {
 float volumeF = Float.parseFloat(volumeText.getText());
 float resLeukF = Float.parseFloat(resLeukText.getText());

100

 float pHF = Float.parseFloat(pHText.getText());
 float noTF = Float.parseFloat(noTText.getText());

 Parameter volume = new Parameter(0, volumeF);
 currentSample.setParameter(ParameterType.Vol, volume);

 Parameter resLeuk = new Parameter(0, resLeukF);
 currentSample.setParameter(ParameterType.ResLeuk, resLeuk);

 Parameter pH = new Parameter(1, pHF);
 currentSample.setParameter(ParameterType.Ph, pH);

 Parameter noT= new Parameter(0, noTF);
 currentSample.setParameter(ParameterType.NoT, noT);
 } catch (Exception ex) {
 System.out.println("Some parameter values are invalid - ep");
 }
 }

 @Override
 public void updateGUIFromParameters(Sample currentSample) {
 try {
 Parameter volume =
currentSample.getParameter(ParameterType.Vol);
 volumeText.setText("" + volume.getValue(0));
 Parameter resLeuk =
currentSample.getParameter(ParameterType.ResLeuk);
 resLeukText.setText("" + resLeuk.getValue(0));
 Parameter pH = currentSample.getParameter(ParameterType.Ph);
 pHText.setText("" + pH.getValue(1));
 Parameter noT =
currentSample.getParameter(ParameterType.NoT);
 noTText.setText("" + noT.getValue(0));
 checkState();
 } catch (Exception e) {
 }
 }

}

TDPForm

package com.ptah.kankalite.domain;

import java.io.Serializable;
import java.util.ArrayList;
import java.util.Collection;
import java.util.List;

import org.eclipse.swt.SWT;
import org.eclipse.swt.widgets.Group;
import org.eclipse.swt.widgets.Label;
import org.eclipse.swt.widgets.Text;

import com.ptah.kankalite.constants.FormNames;
import com.ptah.kankalite.constants.FormState;
import com.ptah.kankalite.constants.FormType;
import com.ptah.kankalite.constants.ParameterType;

public class TDPForm extends Form implements Serializable {

 private static final long serialVersionUID = 118686217882937243L;
 private float maxLeuQValue;
 private float maxErythQValue;

101

 private float maxPlateletQValue;

 transient Text resErytText;
 transient Text resLeukText;
 transient Text resPlatText;

 public TDPForm(String period) {
 super();
 maxLeuQValue = 0.1f;
 maxErythQValue = 6.0f;
 maxPlateletQValue = 50.0f;
 expiryPeriod = 4;
 leastSampleCount = 4;
 condition = "%1 of number of products; with a minimum of 10 units";
 name = FormNames.TDP;
 setType(FormType.TDP);
 setPeriod(period);
 setState(FormState.SAMPLE_ABSENT);
 id = System.currentTimeMillis();
 addParameterType(ParameterType.ResLeuk);
 addParameterType(ParameterType.ResEryt);
 addParameterType(ParameterType.ResPlat);
 }

 @Override
 public void checkState() {
 FormState state = FormState.SAMPLE_ABSENT;
 boolean initialSamplesAreValid = true;
 Collection<Sample> samples = getSamples().values();

 for (Sample sample : samples) {
 boolean isInitialParameterValid = false;
 Parameter leukocyte =
sample.getParameter(ParameterType.ResLeuk);
 Parameter erythrocyte =
sample.getParameter(ParameterType.ResEryt);
 Parameter platelet =
sample.getParameter(ParameterType.ResPlat);

 boolean bloodValid = (sample.getBloodNo() > 0);
 boolean productionDateValid = (sample.getProductionDate() !=
null);
 boolean expiryDateValid = (sample.getExpiryDate() != null);

 boolean leukInitialValid = ((leukocyte.getValue(0) != -1f));
 boolean erythInitialValid = ((erythrocyte.getValue(0) != -1f));
 boolean platInitialValid = ((platelet.getValue(0) != -1f));

 isInitialParameterValid = bloodValid && platInitialValid &&
erythInitialValid && leukInitialValid
 && productionDateValid && expiryDateValid;

 initialSamplesAreValid = (initialSamplesAreValid &&
isInitialParameterValid);
 }

 boolean sampleCountValid=samples.size() >=
getNumberOfSamplesToBeTested();

 if (sampleCountValid) {
 state = FormState.TESTS_WAITING;
 }

 boolean otherConditions=(isGroupingCheck() && isSampleCountCheck()
&& isScreeningCheck()
 && isStorageBeforeQCCheck() && isStorageDuringQCCheck() &&
isStorageExterminationCheck());

102

 if (state == FormState.TESTS_WAITING && otherConditions &&
sampleCountValid) {
 state = FormState.DONE;
 }
 super.setState(state);
 }

 @Override
 public void checkResults() {
 checkSpecificParameter(ParameterType.ResEryt, 0, 1, Float.NaN,
maxErythQValue, 100);
 checkSpecificParameter(ParameterType.ResLeuk, 0, 1, Float.NaN,
maxLeuQValue, 100);
 checkSpecificParameter(ParameterType.ResPlat, 0, 1, Float.NaN,
maxPlateletQValue, 100);
 }

 public List<String> getSampleParameterNames() {
 List<String> result = new ArrayList<String>();
 result.add("ResErythrocyte @1st Day");
 result.add("ResLeuk @1st Day");
 result.add("ResPlatelet @1st Day");
 return result;
 }

 public List<Float> getSampleParameterValues(int key) {
 List<Float> result = new ArrayList<Float>();
 result.add(getSamples().get(key).getParameters().get(ParameterType.
ResEryt).getValue(0));
 result.add(getSamples().get(key).getParameters().get(ParameterType.
ResLeuk).getValue(0));
 result.add(getSamples().get(key).getParameters().get(ParameterType.
ResPlat).getValue(0));
 return result;
 }

 @Override
 public void extractParametersFromGUI(Sample currentSample) {
 try {
 float resErytF = Float.parseFloat(resErytText.getText());
 float resLeukF = Float.parseFloat(resLeukText.getText());
 float resPlatF = Float.parseFloat(resPlatText.getText());

 Parameter resEryt = new Parameter(0, resErytF);
 currentSample.setParameter(ParameterType.ResEryt, resEryt);

 Parameter resLeuk = new Parameter(0, resLeukF);
 currentSample.setParameter(ParameterType.ResLeuk, resLeuk);

 Parameter resPlat = new Parameter(0, resPlatF);
 currentSample.setParameter(ParameterType.ResPlat, resPlat);

 } catch (Exception ex) {
 System.out.println("Some parameter values are invalid - ep");
 }

 }

 @Override
 public void showParameterEntries(Group parameterEntry) {
 parameterEntry.setBounds(170, 175, 390, 75);

 Label resErytLabel = new Label(parameterEntry, SWT.NONE);
 resErytLabel.setAlignment(SWT.RIGHT);
 resErytLabel.setText("Residual Erythrocyte :");
 resErytLabel.setBounds(33, 10, 85, 13);

 Label resLeukLabel = new Label(parameterEntry, SWT.NONE);

103

 resLeukLabel.setAlignment(SWT.RIGHT);
 resLeukLabel.setText("Residual Leukocyte :");
 resLeukLabel.setBounds(3, 30, 115, 13);

 Label resPlatLabel = new Label(parameterEntry, SWT.NONE);
 resPlatLabel.setAlignment(SWT.RIGHT);
 resPlatLabel.setText("Residual Platelet :");
 resPlatLabel.setBounds(13, 50, 105, 13);

 resErytText = new Text(parameterEntry, SWT.BORDER);
 resLeukText.setBounds(125, 10, 50, 15);

 resLeukText = new Text(parameterEntry, SWT.BORDER);
 resErytText.setBounds(125, 30, 50, 15);

 resPlatText = new Text(parameterEntry, SWT.BORDER);
 resPlatText.setBounds(125, 50, 50, 15);
 }

 @Override
 public void updateGUIFromParameters(Sample currentSample) {
 try {
 Parameter resEryt =
currentSample.getParameter(ParameterType.ResEryt);
 resErytText.setText("" + resEryt.getValue(0));
 Parameter resLeuk =
currentSample.getParameter(ParameterType.ResLeuk);
 resLeukText.setText("" + resLeuk.getValue(0));
 Parameter resPlat =
currentSample.getParameter(ParameterType.ResPlat);
 resPlatText.setText("" + resPlat.getValue(0));
 checkState();
 } catch (Exception e) {
 }

 }
}

H.2 Source Code of Data Source

FormDataSource

package com.ptah.kankalite.constants;

import java.io.Serializable;

public enum FormType implements Serializable {
 ES,TS,TDP;

 public static FormType convertFromString(String formTypeString) {
 FormType result=null;
 if (formTypeString.equals(FormNames.ES)) {
 result=ES;
 }
 if (formTypeString.equals(FormNames.TS)) {
 result=TS;
 }
 if (formTypeString.equals(FormNames.TDP)) {
 result=TDP;

104

 }
 return result;
 }
}

H.3 Source Code of Constants

FormType

package com.ptah.kankalite.constants;

import java.io.Serializable;

public enum FormType implements Serializable {
 ES,TS,TDP;

 public static FormType convertFromString(String formTypeString) {
 FormType result=null;
 if (formTypeString.equals(FormNames.ES)) {
 result=ES;
 }
 if (formTypeString.equals(FormNames.TS)) {
 result=TS;
 }
 if (formTypeString.equals(FormNames.TDP)) {
 result=TDP;
 }
 return result;
 }
}

FormNames

package com.ptah.kankalite.constants;

public class FormNames {
 public static final String Long_ES="Erythrocyte Suspension";
 public static final String Long_TS="Platelet Suspension";
 public static final String Long_TDP="Fresh Frozen Plasma";
 public static final String ES="ES";
 public static final String TS="PS";
 public static final String TDP="FFP";
}

FormState

package com.ptah.kankalite.constants;

import java.io.Serializable;
/*
 * Durum degerleri :

105

 * 0 : Bütün örnekler uygun, örnek sayısı tamam, yapılması gereken bütün
testler yapılmış
 * -1 : Henuz bos
 * -2 : Örnek girilmiş, ancak örnek sayısı tamam değil
 * -3 : Örnek sayısı tamam, ancak bekleyen testler var
 */
public enum FormState implements Serializable {
 SAMPLE_ABSENT,TESTS_WAITING,DONE;
}

Parameter Type

package com.ptah.kankalite.constants;

import java.io.Serializable;

public enum ParameterType implements Serializable {
 Htc,Hb,Hmlz,Vol,ResLeuk,NoT,Ph,ResPlat,ResEryt;
}

H.4 Source Code of UI

QCMain

package com.ptah.kankalite.ui;

import java.text.DateFormat;
import java.util.ArrayList;
import java.util.Calendar;
import java.util.Collection;
import java.util.Date;
import java.util.HashMap;
import java.util.Map;
import java.util.ResourceBundle;

import net.sf.jasperreports.engine.JRDataSource;
import net.sf.jasperreports.engine.JRException;
import net.sf.jasperreports.engine.JasperCompileManager;
import net.sf.jasperreports.engine.JasperExportManager;
import net.sf.jasperreports.engine.JasperFillManager;
import net.sf.jasperreports.engine.JasperPrint;
import net.sf.jasperreports.engine.JasperReport;
import net.sf.jasperreports.engine.data.JRMapCollectionDataSource;

import org.eclipse.swt.SWT;
import org.eclipse.swt.events.FocusAdapter;
import org.eclipse.swt.events.FocusEvent;
import org.eclipse.swt.events.PaintEvent;
import org.eclipse.swt.events.PaintListener;
import org.eclipse.swt.events.SelectionAdapter;
import org.eclipse.swt.events.SelectionEvent;
import org.eclipse.swt.widgets.Button;
import org.eclipse.swt.widgets.Combo;
import org.eclipse.swt.widgets.Composite;
import org.eclipse.swt.widgets.Control;
import org.eclipse.swt.widgets.Display;

106

import org.eclipse.swt.widgets.Group;
import org.eclipse.swt.widgets.Label;
import org.eclipse.swt.widgets.List;
import org.eclipse.swt.widgets.Menu;
import org.eclipse.swt.widgets.MenuItem;
import org.eclipse.swt.widgets.MessageBox;
import org.eclipse.swt.widgets.Shell;
import org.eclipse.swt.widgets.TabFolder;
import org.eclipse.swt.widgets.TabItem;
import org.eclipse.swt.widgets.Table;
import org.eclipse.swt.widgets.TableColumn;
import org.eclipse.swt.widgets.Text;
import org.eclipse.swt.widgets.ToolBar;
import org.eclipse.swt.widgets.ToolItem;

import com.ibm.icu.util.StringTokenizer;
import com.ptah.kankalite.constants.FormNames;
import com.ptah.kankalite.constants.FormState;
import com.ptah.kankalite.constants.FormType;
import com.ptah.kankalite.domain.Form;
import com.ptah.kankalite.domain.FormContainer;
import com.ptah.kankalite.domain.QCUtil;
import com.ptah.kankalite.domain.QTree;
import com.ptah.kankalite.domain.Sample;
import com.ptah.kankalite.domain.Storage;
import com.swtdesigner.SWTResourceManager;
import com.tiff.common.ui.datepicker.DatePickerCombo;

public class QCMain {

 private Group parameterEntry;
 private Label samplesList;
 private Label separator;
 private Label productTypeLabelName;
 private Label barcodeInputLabel;
 private Label manualInputLabel;
 private Label expiryDateLabelName;
 private Label samplingDateLabel;
 private Table samplesTable;
 private List sampleList;
 private DatePickerCombo expiryDateLabel;
 private Text productTypeLabel;
 private Label bceLabel_6;
 private Combo qcSpecialistCombo;
 private Label qcSpecialistLabel_1;
 private Text bceText_5;
 private Label bceLabel_5;
 private Text bceText_4;
 private Label bceLabel_4;
 private Text bceText_3;
 private Label bceLabel_3;
 private Text bceText_2;
 private Label bceLabel_2;
 private Text bceText_1;
 private Label bceLabel_1;
 private Text bceText;
 private Label bceLabel;
 private Combo exterminationOKCombo;
 private Combo conditionsOKDuringTestingCombo;
 private Combo conditionsOKBeforeTestingCombo;
 private Button nextButton;
 private Button previousButton;
 private Button saveButton1;
 private Button cancelButton1;
 private Button nextButton_4;
 private Button previousButton_4;
 private Button nextButton_3;
 private Button previousButton_3;

107

 private Button nextButton_2;
 private Button previousButton_2;
 private Combo groupingOk;
 private Combo screeningOk;
 private Text qcFrequency;
 private Button tab1_next;
 private Text limitNoOfSampleCount;
 private Text leastSampleCount;
 private Text noOfProducedComponents;
 private Text expiryDateBarcodeText;
 private DatePickerCombo bloodCollectionDateText;
 private Text productTypeBarcodeText;
 private DatePickerCombo samplingDateText;
 private Text unitNumberBarcodeText;
 private Label bloodCollectionDateLabel;
 private Text unitNumberText;
 private Label unitNumberLabel;
 private Group noSamplesGroup;
 private List logList;
 protected Shell shell, childShell;
 Combo formTypeInChild;
 Text periodTextInChild, bloodNoInChild;
 Button sampleUpdateButton;
 Group sampleInputGroup;
 TabItem sampleInputTabItem;
 Storage storage;
 FormContainer formContainer;
 FormListComposite formListComposite;
 QTree formListTree;
 Form currentForm;
 Sample currentSample;
 TabFolder tabFolder;
 Button noOfSampleOkBox;
 java.util.List<String> specialists = new ArrayList<String>();
 Button childGoButton;

 /**
 * Launch the application
 *
 * @param args
 */
 public static void main(String[] args) {
 try {
 QCMain window = new QCMain();
 window.open();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

 /**
 * Open the window
 */
 public void open() {
 final Display display = Display.getDefault();
 createContents();
 loadOrCreateForms();
 shell.open();
 shell.layout();
 while (!shell.isDisposed()) {
 if (!display.readAndDispatch())
 display.sleep();
 }
 }

 // TODO Onay veren kisi isimlerini setting'den girilebilir yap

 protected void loadOrCreateForms() {

108

 try {
 formContainer = (FormContainer) storage.load();
 } catch (Exception e) {
 System.out.print(e.getMessage());
 System.out.println("\r\nCreating a new data store");
 formContainer = new FormContainer();
 }

 formContainer.createFormsForYear(FormType.ES, "2007");
 formContainer.createFormsForYear(FormType.TS, "2007");
 formContainer.createFormsForYear(FormType.TDP, "2007");

 if (formListTree != null) {
 Map<String, Form> formEntries;

 formEntries = formContainer.getForms(FormType.ES);
 if (formEntries != null) {
 for (String formName : formEntries.keySet()) {
 formListTree.addItem(formName,
formEntries.get(formName));
 }
 }

 formEntries = formContainer.getForms(FormType.TS);
 if (formEntries != null) {
 for (String formName : formEntries.keySet()) {
 formListTree.addItem(formName,
formEntries.get(formName));
 }
 }

 formEntries = formContainer.getForms(FormType.TDP);
 if (formEntries != null) {
 for (String formName : formEntries.keySet()) {
 formListTree.addItem(formName,
formEntries.get(formName));
 }
 }
 }
 updateQCList();
 }

 /**
 * Create contents of the window
 */
 protected void createContents() {
 storage = new Storage();
 shell = new Shell();
 shell.setSize(934, 662);
 shell.setText("BOUN BloodQCM v1.0");

 try {
 ResourceBundle bundle = ResourceBundle.getBundle("ptahbc");
 String specialistString = bundle.getString("specialists");
 StringTokenizer tokenizer = new
StringTokenizer(specialistString, ",");
 while (tokenizer.hasMoreTokens()) {
 String temp = tokenizer.nextToken();
 temp = temp.trim();
 specialists.add(temp);
 }
 } catch (Exception e) {
 System.out.println("Check ptahbc.properties file!!! " +
e.getMessage());
 System.exit(-1);
 }

109

 // TODO sample'in bütün field'larını doldur, ve sample'ın save
edildiğinden emin ol.
 // samples group'undaki her buton bunu çağırmalı
 formListComposite = new FormListComposite(shell, SWT.NONE);
 formListComposite.getAlarmList().setSize(210, 110);
 formListComposite.getAlarmList().setLocation(10, 345);
 formListComposite.setVisible(true);
 formListComposite.setBounds(10, 36, 230, 459);

 formListTree = formListComposite.getTree();
 if (formListTree == null) {
 formListTree = new QTree(formListComposite, SWT.BORDER);
 }

 /*
 * FormListTree selectionAdapter
 */
 formListTree.getTree().addSelectionListener(new SelectionAdapter()
{
 public void widgetSelected(SelectionEvent e) {
 page2Unbind();
 formSelection();
 }
 });

 formListTree.addItem("Eryhtrocyte Ssp");
 formListTree.addItem("Platelet Ssp");
 formListTree.addItem("Fresh Frozen Plasma Ssp");

 tabFolder = new TabFolder(shell, SWT.NONE);
 tabFolder.setEnabled(false);

 tabFolder.setBounds(250, 36, 661, 311);
 tabFolder.setLayout(null);

 final TabItem numberOfSamplesTabItem = new TabItem(tabFolder,
SWT.NONE);
 numberOfSamplesTabItem.setText("Number Of Samples");

 noSamplesGroup = new Group(tabFolder, SWT.NONE);

 noSamplesGroup.addPaintListener(new PaintListener() {
 public void paintControl(PaintEvent e) {
 if (currentForm != null) {
 // String leastSampleCountStr=leastSampleCount.getText();
 qcFrequency.setText(currentForm.getCondition());
 int t =
formContainer.getNeededSampleCount(currentForm.getType(),
currentForm.getPeriod());
 currentForm.setNumberOfSamplesToBeTested(t);
 leastSampleCount.setText("" +
currentForm.getNumberOfSamplesToBeTested());
 }
 }
 });

 numberOfSamplesTabItem.setControl(noSamplesGroup);

 final Label label_1 = new Label(noSamplesGroup, SWT.NONE);
 label_1.setAlignment(SWT.RIGHT);
 label_1.setBounds(66, 68, 181, 13);
 label_1.setText("The number of produced components");

 noOfProducedComponents = new Text(noSamplesGroup, SWT.BORDER);
 noOfProducedComponents.addFocusListener(new FocusAdapter() {
 public void focusLost(FocusEvent e) {
 try {

110

 int producedComponentCount =
Integer.parseInt(noOfProducedComponents.getText());

formContainer.setGeneratedProductCount(currentForm.getType(),
currentForm.getPeriod(),
 producedComponentCount);
 //
leastSampleCount.setText(""+currentForm.getNumberOfSamplesToBeTested());
 int t =
formContainer.getNeededSampleCount(currentForm.getType(),
currentForm.getPeriod());
 int oldSampleCount =
currentForm.getNumberOfSamplesToBeTested();
 currentForm.setNumberOfSamplesToBeTested(t);
 currentForm.createSamples(oldSampleCount);
 leastSampleCount.setText("" +
currentForm.getNumberOfSamplesToBeTested());
 // currentForm.setNumberOfSamplesToBeTested();
 System.out.println("Current forms' sample count is : "
 +
Integer.parseInt(noOfProducedComponents.getText()));
 } catch (Exception exc) {
 System.out.println("No form selected");
 // Do nothing
 }
 }
 });
 noOfProducedComponents.setBounds(253, 65, 36, 19);

 final Label qcFrequencyLabel = new Label(noSamplesGroup, SWT.NONE);
 qcFrequencyLabel.setAlignment(SWT.RIGHT);
 qcFrequencyLabel.setBounds(66, 97, 181, 25);
 qcFrequencyLabel.setText("QC Frequency");

 final Label theNumberOfLabel = new Label(noSamplesGroup, SWT.NONE);
 theNumberOfLabel.setAlignment(SWT.RIGHT);
 theNumberOfLabel.setBounds(72, 128, 174, 13);
 theNumberOfLabel.setText("The number of samples must be ");

 leastSampleCount = new Text(noSamplesGroup, SWT.BORDER);
 leastSampleCount.addFocusListener(new FocusAdapter() {
 public void focusGained(FocusEvent e) {
 try {
 int number =
Integer.parseInt(leastSampleCount.getText());

 } catch (Exception ex) {
 // Do nothing
 }
 }
 });
 leastSampleCount.setEditable(false);
 leastSampleCount.setBounds(252, 127, 36, 19);

 noOfSampleOkBox = new Button(noSamplesGroup, SWT.CHECK);
 noOfSampleOkBox.setBounds(296, 129, 35, 16);
 noOfSampleOkBox.setText("OK");

 final Label limitTheNumberLabel = new Label(noSamplesGroup,
SWT.NONE);
 limitTheNumberLabel.setVisible(false);
 limitTheNumberLabel.setAlignment(SWT.RIGHT);
 limitTheNumberLabel.setBounds(66, 162, 181, 25);
 limitTheNumberLabel.setText("Limit the number of samples");

 limitNoOfSampleCount = new Text(noSamplesGroup, SWT.BORDER);
 limitNoOfSampleCount.setVisible(false);
 limitNoOfSampleCount.setBounds(253, 159, 36, 19);

111

 final Button okButton_1 = new Button(noSamplesGroup, SWT.CHECK);
 okButton_1.setVisible(false);
 okButton_1.setBounds(295, 160, 36, 16);
 okButton_1.setText("OK");

 tab1_next = new Button(noSamplesGroup, SWT.NONE);
 // tab1_next.addSelectionListener(new StoreCurrentPageHandler());
 tab1_next.addSelectionListener(new Page1NextTabHandler());
 tab1_next.setBounds(385, 258, 50, 23);
 tab1_next.setText("Next");

 qcFrequency = new Text(noSamplesGroup, SWT.BORDER);
 qcFrequency.setText("%1 of number of products; with a minimum of 10
units");
 qcFrequency.setEditable(false);
 qcFrequency.setBounds(253, 94, 281, 22);

 /*
 * tab1_next.addSelectionListener(new SelectionAdapter() { public
void widgetSelected(SelectionEvent e) { try {
 * int t = Integer.parseInt(leastSampleCount.getText()); if (t !=
0) {
 * formContainer.setGeneratedProductCount(currentForm.getType(),
currentForm.getPeriod(), t);
 * System.out.println("Current form's count = " + t); int
sampleCount = currentForm.getSamples().size();
 * currentForm.createSamples(sampleCount); } } catch (Exception ex)
{ ex.printStackTrace(); }
 * populateSampleGUIParameters(); updateSampleGUI();
updateGUIFromParameters(currentForm.getType());
 * updateQCList(); } }); --------------------
 */

 final TabItem otherQcTestsTabItem = new TabItem(tabFolder,
SWT.NONE);

FomListComposite

package com.ptah.kankalite.ui;

import org.eclipse.swt.SWT;
import org.eclipse.swt.events.SelectionAdapter;
import org.eclipse.swt.events.SelectionEvent;
import org.eclipse.swt.layout.FormAttachment;
import org.eclipse.swt.layout.FormData;
import org.eclipse.swt.widgets.Composite;
import org.eclipse.swt.widgets.Label;
import org.eclipse.swt.widgets.List;

import com.ptah.kankalite.domain.Form;
import com.ptah.kankalite.domain.QTree;
import com.swtdesigner.SWTResourceManager;

public class FormListComposite extends Composite {

 //private StyledText styledText;
 private List alarmList;
 private QTree tree;
 //private TreeItem[] item=new TreeItem[3];
 Form selectedForm;
 /**
 * Create the composite
 * @param parent
 * @param style

112

 */
 public FormListComposite(Composite parent, int style) {
 super(parent, style);

 alarmList = new List(this, SWT.BORDER|SWT.V_SCROLL|SWT.H_SCROLL);
 alarmList.setBounds(5, 350, 200, 100);

 final Label qcAlarmListLabel = new Label(this, SWT.NONE);
 qcAlarmListLabel.setBounds(15, 320, 200, 25);
 qcAlarmListLabel.setFont(SWTResourceManager.getFont("", 14,
SWT.BOLD));
 qcAlarmListLabel.setAlignment(SWT.CENTER);
 qcAlarmListLabel.setText("QC Alarm List");

 final Label formListLabel = new Label(this, SWT.NONE);
 formListLabel.setBounds(15, 10, 200, 25);
 formListLabel.setFont(SWTResourceManager.getFont("", 14,
SWT.BOLD));
 formListLabel.setAlignment(SWT.CENTER);
 formListLabel.setText("QC Form List");

 tree = new QTree(this, SWT.BORDER);
 final FormData fd_tree = new FormData();
 fd_tree.left = new FormAttachment(0, 20);
 fd_tree.right = new FormAttachment(0, 210);
 fd_tree.bottom = new FormAttachment(0, 275);
 fd_tree.top = new FormAttachment(0, 25);
 tree.getTree().setLayoutData(fd_tree);
/* tree.getTree().addSelectionListener(new SelectionAdapter() {
 public void widgetSelected(SelectionEvent e) {
 selectedForm = tree.getSelectedForm();
 if (selectedForm!=null) {
 }
 }
 });*/
 }

 @Override
 public void dispose() {
 super.dispose();
 }

 @Override
 protected void checkSubclass() {
 // Disable the check that prevents subclassing of SWT components
 }

 public QTree getTree() {
 return tree;
 }

 public void setTree(QTree tree) {
 this.tree = tree;
 }

 public Form getSelectedForm() {
 return selectedForm;
 }

 public void setSelectedForm(Form selectedForm) {
 this.selectedForm = selectedForm;
 }

 public List getAlarmList() {
 return alarmList;
 }

113

 public void setAlarmList(List alarmList) {
 alarmList = alarmList;
 }

}

H.5 Test Source Codes of Domain

FormContainerTester

package com.ptah.kankalite.domain;

import java.util.Calendar;
import java.util.Map;

import junit.framework.TestCase;

import com.ptah.kankalite.constants.FormState;
import com.ptah.kankalite.constants.FormType;
import com.ptah.kankalite.constants.ParameterType;

public class FormContainerTester extends TestCase {
 String year = "";
 Calendar calendar = Calendar.getInstance();

 public void setUp() {
 year = "" + calendar.get(Calendar.YEAR);
 }

 public void testCreateformContainer() {
 FormContainer formContainer = new FormContainer();
 assertNotNull(formContainer);
 }

 public void testFormGeneration() {
 FormContainer formContainer = new FormContainer();
 // İlgili dönemlerde üretilen ürün sayıları set ediliyor
 formContainer.setGeneratedProductCount(FormType.ES, "012007", 100);
 formContainer.setGeneratedProductCount(FormType.ES, "022007", 130);
 formContainer.setGeneratedProductCount(FormType.ES, "022007", 150);
 // En son yazilan deger gecerli
 formContainer.setGeneratedProductCount(FormType.ES, "032007", 60);
 int actual = formContainer.getGeneratedProductCount(FormType.ES,
"022007");
 assertEquals(150, actual);
 actual = formContainer.getGeneratedProductCount(FormType.ES,
"012007");
 assertEquals(100, actual);
 actual = formContainer.getGeneratedProductCount(FormType.ES,
"052009");
 assertEquals(-1, actual);
 actual = formContainer.getGeneratedProductCount(FormType.TS,
"012007");
 assertEquals(-1, actual);
 }

 public void testStorage() {
 Storage storage = new Storage();
 FormContainer formContainer = new FormContainer();

114

 formContainer.setGeneratedProductCount(FormType.ES, "01122007",
100);
 formContainer.setGeneratedProductCount(FormType.ES, "022007", 200);
 formContainer.setGeneratedProductCount(FormType.ES, "032007", 300);
 formContainer.setGeneratedProductCount(FormType.TS, "022007", 15);
 Form esForm=formContainer.getForm(FormType.ES, "022007");

 Map<Integer, Sample> samples= esForm.getSamples();
 Sample sample=samples.get(0);
 sample.add(ParameterType.Hb, 0, 1.1f);
 sample.add(ParameterType.Hb, 1, 1.3f);
 samples.put(1, sample);
 storage.store(formContainer);

 FormContainer newFormContainer = new FormContainer();
 try {
 newFormContainer = (FormContainer) storage.load();
 } catch (Exception e) {
 newFormContainer = new FormContainer();

 }
 assertEquals(200,
newFormContainer.getGeneratedProductCount(FormType.ES, "022007"));
 assertEquals(15,
newFormContainer.getGeneratedProductCount(FormType.TS, "022007"));

 esForm=formContainer.getForm(FormType.ES, "022007");
 samples= esForm.getSamples();
 assertEquals(1.1f,
samples.get(0).getParameter(ParameterType.Hb).getValue(0));
 samples.put(1, sample);
 }

 public void testSampleCount() {
 FormContainer formContainer = new FormContainer();
 formContainer.setGeneratedProductCount(FormType.ES, "012007", 120);
 formContainer.setGeneratedProductCount(FormType.ES, "022007", 130);
 formContainer.setGeneratedProductCount(FormType.ES, "032007", 80);
 formContainer.setGeneratedProductCount(FormType.TS, "032007", 100);
 formContainer.setGeneratedProductCount(FormType.TS, "042007", 680);
 formContainer.setGeneratedProductCount(FormType.TS, "052007", 630);
 formContainer.setGeneratedProductCount(FormType.TS, "062007", 600);
 formContainer.setGeneratedProductCount(FormType.TS, "072007", 601);
 formContainer.setGeneratedProductCount(FormType.TS, "082007", 400);
 formContainer.setGeneratedProductCount(FormType.TS, "092007", 401);
 int countForFeb = formContainer.getNeededSampleCount(FormType.ES,
"022007");
 assertEquals(4, countForFeb);
 int countFor100 = formContainer.getNeededSampleCount(FormType.TS,
"032007");
 assertEquals(10, countFor100);
 int countFor680 = formContainer.getNeededSampleCount(FormType.TS,
"042007");
 assertEquals(10, countFor680);
 int countFor630 = formContainer.getNeededSampleCount(FormType.TS,
"052007");
 assertEquals(10, countFor630);
 int countFor600 = formContainer.getNeededSampleCount(FormType.TS,
"062007");
 assertEquals(10, countFor600);
 int countFor601 = formContainer.getNeededSampleCount(FormType.TS,
"072007");
 assertEquals(10, countFor601);
 int countFor400 = formContainer.getNeededSampleCount(FormType.TS,
"082007");
 assertEquals(10, countFor400);
 int countFor401 = formContainer.getNeededSampleCount(FormType.TS,
"092007");

115

 assertEquals(10, countFor401);
 }

 public void testSampleCountWithUserForcedValue() {
 FormContainer formContainer = new FormContainer();
 int userValue = 3;
 formContainer.setUserSampleCount(userValue);
 formContainer.setGeneratedProductCount(FormType.ES, "012007", 120);
 formContainer.setGeneratedProductCount(FormType.ES, "022007", 130);
 formContainer.setGeneratedProductCount(FormType.ES, "032007", 80);
 formContainer.setGeneratedProductCount(FormType.TS, "032007", 100);
 formContainer.setGeneratedProductCount(FormType.TS, "042007", 680);
 formContainer.setGeneratedProductCount(FormType.TS, "052007", 630);
 formContainer.setGeneratedProductCount(FormType.TS, "062007", 600);
 formContainer.setGeneratedProductCount(FormType.TS, "072007", 601);
 formContainer.setGeneratedProductCount(FormType.TS, "082007", 400);
 formContainer.setGeneratedProductCount(FormType.TS, "092007", 401);
 int countForFeb = formContainer.getNeededSampleCount(FormType.ES,
"022007");
 assertEquals(userValue, countForFeb);
 int countFor100 = formContainer.getNeededSampleCount(FormType.TS,
"032007");
 assertEquals(userValue, countFor100);
 int countFor680 = formContainer.getNeededSampleCount(FormType.TS,
"042007");
 assertEquals(userValue, countFor680);
 int countFor630 = formContainer.getNeededSampleCount(FormType.TS,
"052007");
 assertEquals(userValue, countFor630);
 int countFor600 = formContainer.getNeededSampleCount(FormType.TS,
"062007");
 assertEquals(userValue, countFor600);
 int countFor601 = formContainer.getNeededSampleCount(FormType.TS,
"072007");
 assertEquals(userValue, countFor601);
 int countFor400 = formContainer.getNeededSampleCount(FormType.TS,
"082007");
 assertEquals(userValue, countFor400);
 int countFor401 = formContainer.getNeededSampleCount(FormType.TS,
"092007");
 assertEquals(userValue, countFor401);
 }

 public void testAreGeneratedFormsDifferent() {
 FormContainer formContainer = new FormContainer();
 String period1 = "012007";
 String period2 = "022007";
 String period3 = "042007";
 formContainer.setGeneratedProductCount(FormType.ES, period1, 120);
 formContainer.setGeneratedProductCount(FormType.ES, period2, 130);
 formContainer.setGeneratedProductCount(FormType.TS, period3, 280);
 Map<String, Form> forms = formContainer.getForms(FormType.ES);
 Form form1 = forms.get(period1);
 Form form2 = forms.get(period2);
 assertNotSame(form1.getId(), form2.getId());
 }

 public void testGeneratedFormsCount() {
 FormContainer formContainer = new FormContainer();
 formContainer.setGeneratedProductCount(FormType.ES, "01" + year,
120);
 formContainer.setGeneratedProductCount(FormType.ES, "02" + year,
130);
 formContainer.setGeneratedProductCount(FormType.ES, "03" + year,
80);
 formContainer.setGeneratedProductCount(FormType.TS, "03" + year,
180);
 Map<String, Form> forms = formContainer.getForms(FormType.ES);

116

 assertEquals(3, forms.size());
 }

 /*
 * Container'in formList objesini populate eder
 */
 public void testFormCreatorForThisYear() {
 FormContainer container = new FormContainer();
 container.createFormsForYear(FormType.ES, year);
 assertEquals(12, container.getForms(FormType.ES).size());
 }

 /*
 * İçinde bulunulan yıla ait form listesini döner
 */
 public void testFormsForCurrentYear() {
 FormContainer container = new FormContainer();
 container.createFormsForYear(FormType.ES, year);
 Map<String, Form> forms =
container.getFormsToBeCompletedForYear(FormType.ES);
 assertEquals(12, forms.size());
 container.createFormsForYear(FormType.ES, "2005");
 assertEquals(24,
container.getFormsToBeCompletedForYear(FormType.ES).size());
 }

 /*
 * İçinde bulunulan yıla ait daha önceden kısmen doldurulmuş
formList'i
 * doldurur ve eksik olanları döner
 */
 public void testFormsForCurrentYearWithPartlyPopulated() {
 FormContainer container = new FormContainer();
 container.createFormsForYear(FormType.ES, year);
 // createFormsForThisYear metodu güvenli mi? İki defa çalışınca
 // birşeyleri bozmasın
 container.createFormsForYear(FormType.ES, year);
 Map<String, Form> forms = container.getForms(FormType.ES);
 // Bir yıl için 12 tane form dönmesini bekliyoruz.
 assertEquals(12, forms.size());

 forms.remove("01" + year);
 assertEquals(11, forms.size());
 Map<String, Form> formsTBC =
container.getFormsToBeCompletedForYear(FormType.ES);
 assertEquals(11, formsTBC.size());
 assertEquals(11, forms.size());
 }

 public void testDifferentFormsExist() {
 FormContainer container = new FormContainer();
 container.createFormsForYear(FormType.ES, year);
 container.createFormsForYear(FormType.TS, year);
 Map<String, Form> tSForms = container.getForms(FormType.TS);
 Map<String, Form> eSForms = container.getForms(FormType.ES);
 assertEquals(12, tSForms.size());
 assertEquals(FormType.TS, ((Form)
(tSForms.values().toArray()[0])).getType());
 assertEquals(FormType.ES, ((Form)
(eSForms.values().toArray()[0])).getType());
 }

 public void testTSFormsStatesChangingWithSamples() {
 FormContainer container = new FormContainer();
 Form tsForm;
 container.createFormsForYear(FormType.TS, year);
 container.setGeneratedProductCount(FormType.TS, "02" + year, 150);

117

 Map<String, Form> forms =
container.getFormsToBeCompletedForYear(FormType.TS);
 tsForm = forms.get("02" + year);
 tsForm.setScreeningCheck(true);
 tsForm.setGroupingCheck(true);
 tsForm.setStorageBeforeQCCheck(true);
 tsForm.setStorageDuringQCCheck(true);
 tsForm.setStorageExterminationCheck(true);
 tsForm.setQcSpecialist("AAA");
 Map<Integer, Sample> samples = tsForm.getSamples();
 assertNotSame(samples.get(0), samples.get(1));
 int sampleSize = samples.size();
 assertEquals(10, samples.size());
 assertEquals(4, samples.get(0).getExpiryPeriod());
 assertEquals(FormState.SAMPLE_ABSENT, tsForm.getState());
 for (int i = 0; i < sampleSize; i++) {
 samples.get(i).setBloodNo(1001 + i);
 samples.get(i).setProductionDate(calendar.getTime());
 samples.get(i).add(ParameterType.Vol, 0, 100f + i);
 samples.get(i).add(ParameterType.Vol, 1, 41f + i);
 samples.get(i).add(ParameterType.ResLeuk, 0, 11f + i);
 assertEquals(FormState.SAMPLE_ABSENT, tsForm.getState());
 samples.get(i).add(ParameterType.NoT, 0, 22f + i);
 }
 assertEquals(FormState.TESTS_WAITING, tsForm.getState());

 for (int i = 0; i < sampleSize; i++) {
 assertEquals(FormState.TESTS_WAITING, tsForm.getState());
 samples.get(i).add(ParameterType.Ph, 1, 7f + i);
 }

 assertEquals(FormState.DONE, tsForm.getState());
 tsForm.checkResults();
 assertEquals(0, tsForm.getResult(ParameterType.Vol));
 }

 public void testTSFormsStatesChangingWithSamplesWithInvalidValues()
{
 FormContainer container = new FormContainer();
 Form tsForm;
 container.createFormsForYear(FormType.TS, year);
 container.setGeneratedProductCount(FormType.TS, "02" + year, 150);
 Map<String, Form> forms =
container.getFormsToBeCompletedForYear(FormType.TS);
 tsForm = forms.get("02" + year);
 Map<Integer, Sample> samples = tsForm.getSamples();
 assertNotSame(samples.get(0), samples.get(1));
 int sampleSize = samples.size();
 assertEquals(10, samples.size());
 assertEquals(4, samples.get(0).getExpiryPeriod());
 assertEquals(FormState.SAMPLE_ABSENT, tsForm.getState());
 for (int i = 0; i < sampleSize; i++) {
 samples.get(i).setBloodNo(1001 + i);
 samples.get(i).setProductionDate(calendar.getTime());
 samples.get(i).add(ParameterType.Vol, 0, 100f + i);
 samples.get(i).add(ParameterType.Vol, 1, 41f + i);
 samples.get(i).add(ParameterType.ResLeuk, 0, 11f + i);
 assertEquals(FormState.SAMPLE_ABSENT, tsForm.getState());
 samples.get(i).add(ParameterType.NoT, 0, 22f + i);
 }
 assertEquals(FormState.TESTS_WAITING, tsForm.getState());

 for (int i = 0; i < sampleSize; i++) {
 assertEquals(FormState.TESTS_WAITING, tsForm.getState());
 samples.get(i).add(ParameterType.Ph, 1, 10f + i);
 }

 assertEquals(FormState.TESTS_WAITING, tsForm.getState());

118

 tsForm.checkResults();
 assertEquals(0, tsForm.getResult(ParameterType.Vol));
 }

}

FormTester

package com.ptah.kankalite.domain;

import java.util.Calendar;
import java.util.Date;
import java.util.List;
import java.util.Map;

import junit.framework.TestCase;

import com.ptah.kankalite.constants.FormState;
import com.ptah.kankalite.constants.FormType;
import com.ptah.kankalite.constants.ParameterType;

public class FormTester extends TestCase {

 String year = "";
 Calendar calendar = Calendar.getInstance();

 public void setUp() {
 year = "" + calendar.get(Calendar.YEAR);
 }

 public void testCreateESForm() {
 FormContainer container = new FormContainer();
 Form esForm = container.generateForm(FormType.ES, "022007");
 assertNotNull(esForm);
 Map<Integer, Sample> samples = esForm.getSamples();
 assertEquals(4, samples.size());
 Sample sample1 = samples.get(0);
 Sample sample2 = samples.get(1);
 Sample sample3 = samples.get(2);
 Sample sample4 = samples.get(3);
 assertEquals(0, sample1.getBloodNo());
 assertEquals(0, sample2.getBloodNo());
 assertEquals(3, sample3.getParameterTypes().size());
 assertEquals(42, sample4.getExpiryPeriod());
 assertEquals(FormState.SAMPLE_ABSENT, esForm.getState());

 }

 public void testGeneratedIds() {
 FormContainer container = new FormContainer();
 Form esForm = container.generateForm(FormType.ES, "022007");
 Form tsForm = container.generateForm(FormType.TS, "022007");
 long esId = esForm.getId();
 long tsId = tsForm.getId();
 assertNotSame(esId, tsId);
 }

 public void testSampleCountCalculation() {
 FormContainer container = new FormContainer();
 String date = "022007";
 container.setGeneratedProductCount(FormType.ES, date, 150);
 Form esForm = container.getForm(FormType.ES, date);
 assertEquals(4, esForm.getNumberOfSamplesToBeTested());
 esForm.setNumberOfSamplesToBeTested(100);
 assertEquals(100, esForm.getNumberOfSamplesToBeTested());

119

 }

 /*
 * FormContainer yaratılır Container'ın setGeneratedProductCount
method'u çağrılarak ilgili tipte, belirlenen
 * zamanda kaç adet ürün üretildiği set edilir. Container'ın
getForm methodu çağrılarak ilgili tipte, belirlenen
 * zaman için container tarafından üretilen form objesi alınır.
Bu form objesinin içersinde
 * setGeneratedProductCount method'unda set edilen ürün sayısına
göre belirlenen sayıda Sample objesi olması
 * beklenir.
 */
 public void testSampleCount() {
 FormContainer container = new FormContainer();
 String date = "022007";
 container.setGeneratedProductCount(FormType.ES, date, 150);
 Form esForm = container.getForm(FormType.ES, date);

 int i = 1000;
 for (Sample sample : esForm.getSamples().values()) {
 sample.setId(i++);
 sample.setProductionDate(new Date(System.currentTimeMillis()));
 }
 for (Sample sample : esForm.getSamples().values()) {
 assertNotSame(-1, sample.getId());
 }
 }

 public void testTSFormSampleCount() {
 FormContainer container = new FormContainer();
 container.createFormsForYear(FormType.TS, year);
 container.setGeneratedProductCount(FormType.ES, "02" + year, 150);
 assertEquals(10, container.getNeededSampleCount(FormType.TS, "02" +
year));
 container.setGeneratedProductCount(FormType.TS, "03" + year, 900);
 assertEquals(10, container.getNeededSampleCount(FormType.TS, "03" +
year));
 container.setGeneratedProductCount(FormType.TS, "04" + year, 1040);
 assertEquals(11, container.getNeededSampleCount(FormType.TS, "04" +
year));
 container.setGeneratedProductCount(FormType.TS, "05" + year, 1150);
 assertEquals(12, container.getNeededSampleCount(FormType.TS, "05" +
year));
 }

 public void testESFormsStatesChangingWithSamples() {
 FormContainer container = new FormContainer();
 Form esForm;
 container.createFormsForYear(FormType.ES, year);
 container.setGeneratedProductCount(FormType.ES, "02" + year, 150);
 assertEquals(4, container.getNeededSampleCount(FormType.ES, "02" +
year));
 Map<String, Form> forms =
container.getFormsToBeCompletedForYear(FormType.ES);
 esForm = forms.get("02" + year);
 Map<Integer, Sample> samples = esForm.getSamples();
 assertNotSame(samples.get(0), samples.get(1));
 assertEquals(4, samples.size());
 esForm.setScreeningCheck(true);
 esForm.setGroupingCheck(true);
 esForm.setStorageBeforeQCCheck(true);
 esForm.setStorageDuringQCCheck(true);
 esForm.setStorageExterminationCheck(true);
 esForm.setQcSpecialist("AAA");
 // Başlangıçta state, SAMPLE_ABSENT olmalı
 assertEquals(FormState.SAMPLE_ABSENT, esForm.getState());

120

 // Bütün parametreler -1 olacak ve toplam 12 parametre olacak (4
sample,
 // 3 parametre, 2 değer(initial - expired))
 int counter = 0;
 for (Sample sample : samples.values()) {
 assertEquals(42, sample.getExpiryPeriod());
 for (ParameterType type : sample.getParameterTypes()) {
 Parameter parameter = sample.getParameter(type);
 List<Float> values = parameter.getValues(type);
 for (int loopVar = 0; loopVar < values.size(); loopVar++) {
 try {
 float val = values.get(loopVar);
 if (val == -1.0f) {
 assertEquals(-1f, val);
 counter++;
 }
 } catch (Exception e) {
 System.out.println(loopVar);
 }
 }
 }
 }
 assertEquals(12, counter);

 samples.get(0).setBloodNo(18047);
 samples.get(0).setProductionDate(calendar.getTime());
 samples.get(0).add(ParameterType.Htc, 0, 59.4f);
 samples.get(0).add(ParameterType.Hb, 0, 76.0f);
 assertEquals(FormState.SAMPLE_ABSENT, esForm.getState());

 // Alınmış olan initialSamples esForm'daki listeyle aynı yeri
işaret
 // ediyor mu? - esForm'u update etmeye gerek olmamalı!
 Sample actualSample = esForm.getSamples().get(0);
 assertEquals(18047, actualSample.getBloodNo());
 assertEquals(59.4f,
actualSample.getParameter(ParameterType.Htc).getValue(0));

 // Şimdi de bütün sample'ları update edelim
 samples.get(1).add(ParameterType.Htc, 0, 56.7f);
 samples.get(1).add(ParameterType.Hb, 0, 70.8f);
 samples.get(2).add(ParameterType.Htc, 0, 53.8f);
 samples.get(2).add(ParameterType.Hb, 0, 83.8f);
 samples.get(3).add(ParameterType.Htc, 0, 60.8f);
 samples.get(3).add(ParameterType.Hb, 0, 79f);

 Parameter parameter1 =
esForm.getSamples().get(0).getParameter(ParameterType.Htc);
 Parameter parameter2 =
esForm.getSamples().get(1).getParameter(ParameterType.Htc);

 assertNotSame(esForm.getSamples().get(0),
esForm.getSamples().get(1));
 assertNotSame(parameter1, parameter2);
 assertNotSame(samples.get(0), samples.get(1));
 assertNotSame(samples.get(0).getParameter(ParameterType.Hb).getValu
e(0), samples.get(1).getParameter(
 ParameterType.Hb).getValue(0));
 assertEquals(56.7f,
samples.get(1).getParameter(ParameterType.Htc).getValue(0));
 assertEquals(83.8f,
samples.get(2).getParameter(ParameterType.Hb).getValue(0));

 samples.get(1).setBloodNo(17750);
 Sample actualSample2 = esForm.getSamples().get(1);
 assertEquals(17750, actualSample2.getBloodNo());

 samples.get(1).setProductionDate(calendar.getTime());

121

 samples.get(2).setBloodNo(16665);
 samples.get(2).setProductionDate(calendar.getTime());
 assertEquals(FormState.SAMPLE_ABSENT, esForm.getState());
 samples.get(3).setBloodNo(17126);
 samples.get(3).setProductionDate(calendar.getTime());
 // Bütün sample'lar update edildiğine göre TESTS_WAITING state'e
gelmiş
 // olmamız lazım
 assertEquals(FormState.TESTS_WAITING, esForm.getState());

 samples.get(0).add(ParameterType.Htc, 1, 70.8f);
 samples.get(1).add(ParameterType.Htc, 1, 75.4f);
 samples.get(2).add(ParameterType.Htc, 1, 58.1f);
 assertEquals(FormState.TESTS_WAITING, esForm.getState());
 samples.get(0).add(ParameterType.Hb, 1, 63.7f);
 assertEquals(FormState.TESTS_WAITING, esForm.getState());
 samples.get(1).add(ParameterType.Hb, 1, 65.1f);
 samples.get(2).add(ParameterType.Hb, 1, 45.3f);
 assertEquals(FormState.TESTS_WAITING, esForm.getState());
 samples.get(3).add(ParameterType.Htc, 1, 61.8f);
 assertEquals(FormState.TESTS_WAITING, esForm.getState());
 samples.get(3).add(ParameterType.Hb, 1, 55.6f);
 assertEquals(FormState.DONE, esForm.getState());

 // Şimdi de parametre değerlerini test edelim - İki örnekte
hematokrit sınırların dışında bulunuyordu
 esForm.checkResults();
 assertEquals(0, esForm.getResult(ParameterType.Hb));
 assertEquals(2, esForm.getResult(ParameterType.Htc));
 assertEquals(0, esForm.getResult(ParameterType.Hmlz));
 assertEquals(2, esForm.getTotalFailedSampleCountForThisForm());
 }

}

SampleTester

package com.ptah.kankalite.domain;

import java.util.Calendar;
import java.util.Map;

import junit.framework.TestCase;

import com.ptah.kankalite.constants.FormType;
import com.ptah.kankalite.constants.ParameterType;

public class SampleTester extends TestCase {

 public void testSampleParameters() {
 FormContainer container=new FormContainer();
 String date="022007";
 container.setGeneratedProductCount(FormType.ES, date, 150);
 Form esForm=container.getForm(FormType.ES, date);
 Map<Integer, Sample> initialSamples=esForm.getSamples();
 /*
 * İlk örneği alıp parametrelerini kontrol ediyoruz
 */
 Sample sample=initialSamples.get(0);
 assertEquals(3,sample.getParameterTypes().size());

 assertTrue(sample.getParameterTypes().contains(ParameterType.Hb));

 assertTrue(sample.getParameterTypes().contains(ParameterType.Htc));

122

 assertEquals(-
1.0f,sample.getParameters().get(ParameterType.Htc).getValue(0));
 }

 public void testESFormSamples() {
 FormContainer container=new FormContainer();
 String date="022007";
 container.setGeneratedProductCount(FormType.ES, date, 150);
 Form esForm=container.getForm(FormType.ES, date);
 Map<Integer,Sample> samples=esForm.getSamples();
 assertEquals(4,samples.size());
 // ES Formunda dört örnek var, biz ilkini alıyoruz
 Sample sample=samples.get(0);
 /*
 * initialSample'da Hb bulunacak ancak Hmlz bulunmayacak
 */

 assertTrue(sample.getParameterTypes().contains(ParameterType.Hb));

 assertTrue(sample.getParameterTypes().contains(ParameterType.Htc));

 assertTrue(sample.getParameterTypes().contains(ParameterType.Hmlz))
;

 }

 public void testESFormInitialExpiringParameterTransfer() {
 FormContainer container=new FormContainer();
 String date="022007";
 container.setGeneratedProductCount(FormType.ES, date, 150);
 Form esForm=container.getForm(FormType.ES, date);

 Calendar calendar=Calendar.getInstance();
 calendar.set(2007,2,20);

 esForm.setSampleProductionDate(0,calendar.getTime());
 /* Herhangi bir sample'in production date'i set edilirse
 * buna karsilik dusen sample'in (initial - expiring)
 * expiry date'i kendiliginden set edilmeli.
 */

 calendar.add(Calendar.DAY_OF_MONTH, 42);

 assertEquals(calendar.getTime(),esForm.getSampleExpiryDate(0));
 }
}

DateTester

package com.ptah.kankalite.domain;

import java.text.DateFormat;
import java.text.ParseException;
import java.util.Date;

import junit.framework.TestCase;

public class DateTester extends TestCase {
 public void testCreateDate() throws ParseException {

 String dateStr="6/6/07";
 DateFormat formatter=DateFormat.getDateInstance(DateFormat.SHORT);
 Date actualDate=formatter.parse(dateStr);

123

 String actualDateStr=formatter.format(actualDate);

 /*Calendar calendar=Calendar.getInstance();
 calendar.set(2007,6,6);
 Date expectedDate=calendar.getTime();*/
 assertEquals(dateStr,actualDateStr);
 }
}

124

REFERENCES

1. Akdeniz Üniversitesi, “Kan Bankacılığı ve Transfüzyon Tıbbında Standartlar ve Kalite

Kursu Notları”, Antalya, 2002.

2. European Commission, Health & Consumer Protection Directorate General, “Opinion On
Quality and Safety of Blood”, Decleration, Brusseles, 2000.

3. European Council, “Guide to the preparation, Use and quality Assurance of Blood
Components, 11th edition”, European Council of Publishing, France, 2005.

4. Australian Society of Blood Transfusions, “Clinical Practice Guidelines on the Appropriate
Use of Red Blood Cells”, Sydney, 2000.

5. Akdeniz Üniversitesi, “Ulusal Kan Merkezleri ve Transfüzyon Tıbbı Kursu (VII) Notları”,
Antalya, 2002.

6. WHO, “AM Quality System for Blood Safety” Key Element and Requirements Notes,
Switzerland, 2003, Available at: www.who.int/bct.

7. SANAS, South African National Accreditation System, “Accreditation of Blood Transfusion
Services”, Brochure, Zambia, Available at: www.sanac.co.za .

8. Kumari, S., “Quality Management in Blood Transfusion Service”, World Health
Organization, BTS, South Asia, 1998.

9. T.C. Sağlık Bakanlığı, “Organ Ve Doku Alınması, Saklanması ve Nakli” Yönetmeliği ve
ilgili Kanunlar, Ankara, 2004.

10. Bayık, M., “Güvenli Kan”, Kan Merkezleri ve Transfüzyonları Derneği, Damla, Vol. 59,
pp.10-12, İstanbul, 2003.

11. Akdeniz Üniversitesi, “Ulusal Kan Merkezleri ve Transfüzyon Kursu V. Notları - Kan
Merkezlerinde Kayıt.”, Ankara, 2001.

12. Food and drug Administration, “Guidelines For Quality Assurance in Blood Establishments”,
Standart: 91N-450, USA, 1995.

13. European Parliament, “Quality and Safety Standards for Human Blood and Blood
Components”, Decleration, Brusseles, 2000.

14. Guyton, C., “Human Physiology”, Student Edition, USA, 1991.

15. Stryer, A., “Stryer’s Biochemistry”, Hamburg, 1998.

16. AABB, American Association for Blood Banks, “Standarts for Blood Banks, and
Transfusion Services, XX.Edition”, AABB Press, USA, 2000.

17. Schneider, D.E., “Computer Programming Concepts and Visual Basic”, Germany, 1999.

18. Kobryn, C., “Introduction to UML: Structural and Use Case Modeling”, Object Modeling
with OMG UML Tutorial Series, USA, 2006.

19. Wuyts, R., “Use Case Diagrams”, ULB – Analse et Methodologie Informatiques,
Vol.2005/2006, pp.506, Belgium, 2006.

20. Winnemiller, E., “Java Programming, Database How-To”, Objective Series, N.Y., 1999.

125

21. Nehrer, P., “Java Development with Eclips Tool”, 2005, Available at:
www.developer.com/java/data/article.php/3528616 , pp.1-12.

22. SGS: Cortex Quality Software, “Hemotrack Blood Bank Management System for Hospitals”,
Data Sheet & Brochure, Belgium, Available at: www.sgscortex.com.

23. Türkiye 2inci Bilişim Şurası, e-Sağlık Çalışma Grubu, “e-Sağlık Taslak Raporu”, Ankara
2004.

24. Akdeniz Üniversitesi, “Ulusal Kan Merkezleri ve Transfüzyon Tıbbı Kursu II. Notları - Kan
Merkezleri arasında İletişim”, Ankara, 2001.

25. Learoyd, P., “Good manifacturing practice for blood components, A Brief Guide”, National
Blood Service, Council of Europe Publishing, 1999.

26. Holzner, S., “Visual Basic 6”, Black Book Press, N.Y., 1998.

27. Min, I.S., Choi, M.R., Kim, S.Y., Jung E.Y., Hwang, J.H., Lee, S., “Institution based Quality
Assessment of Blood Transfusion in South Korea”, ISQua, 2004.

28. Unitech, “Barkod Okuyucular için Programlama Manueli ve Teknik Referans Manueli”,
South Korea, 2006.

29. İgrapx, “Flowcharter Programming Manual”, Corel Corporation, Germany, 2004.

30. Ergen, E., Dalkılıç, M., Akaoğlu, S., “Kan Komponentleri”, Eskişehir Kızılay Kan Merkezi,
Kan, Vol.1, pp.7-29, Eskişehir, 2002.

31. Acar, N., Koçak, N., “Transfüzyon Pratiği”, Eskişehir Kızılay Kan Merkezi, Kan, Vol.1,
pp.30-40, Eskişehir, 2002.

32. Uniform Code Council (UCC) & Health Industry Business Communications Council
(HIBCC), “Eurocode-IBLS Uluslararası Kan ve Kan Ürünleri Barkod Etiketleme
Standartları”, European Directive 2002/98/EC, 2002.

33. Wright, C., “Visual C++ for Dummies - Quick Reference”, For Dummies Series, USA,
2001.

34. Franklin, I.M., “Quality Improvement Program: Safe and Effective Transfusion in Scottish
Hospitals – The Role of the Transfusion Nurse Specialist (SAET Study)”, NHS-Scotland,
Edinburgh, 2004.

35. European Commision, Health & Consumer Protection Diroctorate General, “Blood
Regulatory Comitee – Summary Report” Decleration, Luxembourg, 2005.

36. Duman, C., Erden, B.F., “Birinci Basamak Sağlık Hizmetlerine Yönelik Biyokimyasal
Laboratuvar verilerinin Kısa Yorumu”, Sted, Vol 13, Issue.7, pp 256-262, Kocaeli, 2004.

37. Brunner, D., “PIC/S Gmp Guide For Blood Establishments”, Pharmaceutical Inspection
Convention, Geneva, 2004.

38. European Commission, Health & Consumer Protection Directorate General, “High Quality
and Safety Standards for Human Blood and Blood Components”, Declaration, Amsterdam,
2000.

39. SANAS, South African National Accreditation System, “Application Form and Criterias for
Accreditation of Blood Transfusion Service Laboratories”, Form, Zambia, Available at:
www.sanac.co.za.

126

40. Erbaş, O., “Hastane Kan Merkezleri Çalışma Yöntemleri”, İstanbul, 1999.

41. World Health Organization, “Quality Management Project For Blood Transfusion Services”,
Infosheet, Geneva, Switzerland, Available at: www.who.int/bct.

42. Clayberg, E., Rubel, D., “Java GUI Development for Swing, SWT, RCP and GWT:
WindowBuilder Pro”, Instantiations, USA, 2007.

43. Gray, E., “Gray’s Anatomy”, USA, 1930.

44. Schots, J., Cassiman, I., Tielemans, L., “Quality Assurance of Transfusion Practices in
Belgium Hospitals”, Schots, Brussels, 2002.

45. Dhringra, N., Lloyd, S.E., Fordham, J., Noryati, A.A., “Challenges in Global Blood Safety”,
World Hospitals, and Health Services, Vol.40, pp 45-49, WHO.

46. Kritchevsky, S., Simmons, B., “Continuous Quality Improvement: Concepts and
Applications for Physician Care”, JAMA, Vol. 266, pp.1817-1823, 1991.

47. Luciano, M., “Human Physiology and Anatomy”, MacGrawHill, USA, 1991.

48. T.C. Sağlık Bakanlığı, Bilgi İşlem Daire Başkanlığı, “Türkiye Sağlık Bilgi Sistemi Eylem
Planı”, Rapor, Ankara, 2004.

49. World Health Organization, “Basic Operational Framework for Blood Transfusion Safety”,
Review, 2007, Available at: www.who.int/bct .

