COMMITMENT-BASED ANALYSIS OF ORGANIZATIONS: DEALING WITH
INCONSISTENCIES

by
Shameem Shah Nawaz

B.S., Management Information Systems, Bogazi¢i University, 2003

Submitted to the Institute for Graduate Studies in
Science and Engineering in partial fulfillment of
the requirements for the degree of

Master of Science

Graduate Program in Computer Engineering
Bogazi¢i University

2007

COMMITMENT-BASED ANALYSIS OF ORGANIZATIONS: DEALING WITH
INCONSISTENCIES

APPROVED BY:

Assist. Prof. Pmar Yolum
(Thesis Supervisor)

Prof. Yaman Barlas

Prof. A. C. Cem Say

DATE OF APPROVAL: 18.12.2006

1

11

ACKNOWLEDGEMENTS

It is my great pleasure and honor to express my heartfelt gratitude to those who

have made this thesis possible.

First of all, I would like to thank my thesis supervisor, Dr. Pmar Yolum, for
believing in me and for her support all along the way. The motivation, advice, guid-
ance and enlightenment she has provided is priceless. Without her resourceful and
enthusiastic assistance, I would not have been able to finish this thesis. It is truly a

wonderful experience to have known and worked with a person of her caliber.

I would like to especially thank Prof. Dr. A C Cem Say and Prof. Dr. Yaman

Barlas for kindly agreeing to be my committee members.

I would like to take this opportunity to state that I am ever grateful to Dr. C
Say, Dr. F Giirgen and his wife Dr. N Giirgen, Dr. B Badur, A Salah, M Goénen and
late Dr. T Ulus (may his soul always rest in peace) for their help during my masters

study.

I am eternally indebted to my parents and my brother for their unqualified love
and support throughout my life. T am grateful to Nuray Kara for her understanding,
endless patience, moral-boosting support and encouragements during the thesis-writing
period. Finally, I would like to express my sincere gratitude to those all who have
taught me something and anything at all throughout my life, formally or informally.

This thesis is dedicated to all of them.

This research has been partially supported by Bogazici University Research Fund
under grant BAPO6A103 and The Scientific and Technological Research Council of
Turkey by a CAREER Award under grant 105E073.

v

ABSTRACT

COMMITMENT-BASED ANALYSIS OF
ORGANIZATIONS: DEALING WITH INCONSISTENCIES

Multiagent organizations are composed of interacting agents. These agents are
usually assigned with roles and have clearly defined tasks so that organizational goals
are effectively materialized. Formal specifications of multiagent organizations allow
organization designers to analyze existing organizations and reason about possible
changes in the organizations. Systematic analysis of organizations can help identify po-
tential errors in the organization early on. In this thesis we study a commitment-based
approach for specifying organizations and then detecting and resolving inconsistencies
and conflicts in the specifications. Additionally, we have developed a software tool to
help organization designers with creation and manipulation of organizational specifi-
cations. The tool can check the workings of an organization for inconsistencies and
signal the possibility or the certainty of a conflict during execution and can provide a
set of suggestions for resolving conflicts. Furthermore, the tool can semi-automate the
task of combining two organizational work-flows, by aggregating related properties of
the organizations; and can present a higher level view of organizations. We illustrate

these properties using a case study that deals with two organizations.

OZET

ORGUTLERIN TAAHHUT TABANLI ANALIZI:
TUTARSIZLIKLARLA BASA CIKMAK ICIN BIR
YONTEM

Coketmenli orgiitler birbirleriyle iletisim halindeki etmenlerden olusur. Belirli
rolleri ve gorevleri olan bu etmenlerin amaci1 Orgiitiin hedeflerini etkin bir gekilde
gerceklegtirmektir. Orgﬁtlerin bicimsel betimi, orgiit tasarimcisinin var olan orgiitleri
incelemesini ve orgiitlerde olasi bir degisiklik hakkinda fikir tiretmesini saglar. Orgiitleri
diizenli bir bicimde analiz etmek o orgiitlerle ilgili olugabilecek hatalar1 erkenden teshis
etmeye yardimc1 olur. Bu tez, orgiitleri taahhiitlere dayali bir yaklagimla temsil etm-
eye ve olusabilecek hatalar1 ve celigkileri ortaya ¢ikartip ¢ozmeye yarayacak metodlar
gelistirmektedir. Buna ek olarak, tasarimcilarin orgiitleri kolay tasarlamasini ya da
gereken degisiklikleri yapmasini saglayan bir yazilim geligtirilmistir. Bu yazilim bir
orgiitiin igleyiginin tutarsizliklar1 kontrol ederek olusabilecek hatalar1 isaret edebilir
ve o hatalarin diizeltilmesini saglayan oneriler sunabilir. Ayrica, birden fazla érgiitiin
birarada ¢aligmasi i¢in o orgiitlerin benzer niteliklerini bir araya getirip, orgiitlerle ilgili
iist seviyeli bir gortiniimii kismen otomatik bir sekilde ortaya cikarabilir. Bu ozellikler,

iki orgiitten olusan bir vaka aragirmasiyla gosterilmistir.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS iii
ABSTRACT iv
OZET . . o v
LIST OF FIGURES o viii
LIST OF TABLES e ix
LIST OF SYMBOLS/ABBREVIATIONS xi
1. INTRODUCTION 1
2. TECHNICAL BACKGROUND 5
2.1. Commitment and Operations)
2.2. Proposition 6
2.3. Defining Work-flows of Organizations by Using Commitments 7
2.4. Predicate Logic/Calculus oo Lo 8
2.5. Existing Algorithms to Detect Conflicts 9

3. ADDITION OF TIME 15
3.1. Time Point 15
3.2. Time Interval 16
3.3. Transition Point o Lo 16
3.4. Time Quantifier 17
3.5. Binding Commitments with Time 17
3.6. Conflicts in Time-bound Commitments 19

4. CONFLICT DETECTION 21
4.1. Conflict Detection 21
4.2. Conflict Scenarioso 23
4.2.1. Non-overlapping Time Intervals 23

4.2.2. Identical Time Intervals 24

4.2.3. Containing Time Intervals 25

4.2.4. Intersecting Time Intervals 26

5. RESOLVING CONFLICTS 28

5.1. Ways of Resolving Conflicts and Anomalies in the Graph 29

vii

5.2. An Example Scenario of Conflict Resolution 32

6. OPERATIONS ON ORGANIZATIONS 35
6.1. Upper Level Aggregation of Commitments 35
6.1.1. Aggregation on Time 35

6.1.2. Grouping Agents 36

6.1.3. Conceptually Upper Level Commitments 38

6.1.4. Aggregation on Transitivity of Commitments 38

6.1.5. Aggregation on Transitivity on Fixed Time 39

6.2. Combining Organizational Work-flows 40

7. SOFTWARE ARCHITECTURE 43
7.1. Protocol Specification in XML 43
7.2. Design of the Tool 45
7.3. Packages Designed in Java 0000 46

8. A CASE STUDY 48
9. DISCUSSION 55
9.1. Literature Survey 58
9.2. Future Directions Lo 62
APPENDIX A: COMMITMENT PROTOCOL OF OrgL 64
APPENDIX B: COMMITMENT PROTOCOL OF OrgS 74
APPENDIX C: AFTER COMBINING OrgL AND OrgS 7

REFERENCES o e 88

viil

LIST OF FIGURES

Figure 3.1. After(ts) mapped to FromTo(ta,t.). t. is the ending of time. . . 18

Figure 3.2. Until(t3) mapped to FromTo(ty, t3). t, is the beginning of time. . 18

Figure 4.1. ;] and C5 will not be in conflict as their respective time bounds

FromTo(ty,ty) and FromTo(ts,ty) do not overlap. 23
Figure 4.2. €} and Cy will be in conflict in the time interval [t; —ts]. 24
Figure 4.3. C; and Cy will be in conflict in the time interval [ty —¢3]. 25
Figure 4.4. C; and Cy will be in conflict in the time interval [t, —¢3]. 26
Figure 6.1. (7, Cs, and C5 aggregated to ULC based on time. 36
Figure 6.2. (1, Cs, and (5 aggregated to ULC' based on agents. 37

Figure 6.3. (7, (5, and C5 aggregated to ULC' based on transitivity of com-

mitments. L 39

Table 2.1.

Table 2.2.

Table 2.3.

Table 2.4.

Table 4.1.

Table 4.2.

Table 4.3.

Table 4.4.

Table 6.1.

Table 6.2.

Table 6.3.

Table 6.4.

LIST OF TABLES

Algorithm for building commitment graph.

Algorithm for coloring graph.

Algorithm for visiting nodes.

Algorithm for checking consistency.

Algorithm for detecting CPT.

Conflict type based on C; and Cy’s time quantifier in the time in-

terval [ty —ta].

Conflict type based on C; and Cy’s time quantifier in the time in-

terval [tz — tg]

Conflict type based on C; and Cy’s time quantifier in the time in-

terval [tz — tg]

Commitment protocols Aand B.

Commitment protocols A and B combined together.

Commitment Cgs added to commitment protocol B.

Commitment protocols A and B combined together.

X

24

25

26

Table 6.5.

Commitment C'43 added to commitment protocol A which is in
conflict with commitment C'gy. Hence, these two commitment pro-

tocols cannot be combined.

X1

LIST OF SYMBOLS/ABBREVIATIONS

C; 7th Commitment

D Discharge Node in the Commitment Graph

E Existential Time Quantifier

RC Release or C'lancel Node in the Commitment Graph
ty Start Point of Time

te End Point of Time

t; ith Time Point between t;, and t.

U Universal Time Quantifier

ULC; 1th Upper Level Commitment

CPp Conflicting Commitment Pair

CPT Conflicting Commitment Pair Given Time Bounds
MAS Multiagent Systems

TBC Time Bound Commitment

TI Time Interval

TP Transition Point

ULC Upper Level Commitment

XML eXtensible Markup Language

1. INTRODUCTION

Multiagent organizations consist of interacting agents that fulfill a set of tasks by
carrying out processes. According to Russell and Norvig [1], an agent is anything that
can perceive its environment through its sensors and then act upon that environment
through actuators. Examples of agents include humans, robots, or software agents. An
agent is a rational agent if it can reason about possible actions and select the one that

optimizes an appropriate performance measure.

Agents are seldom stand-alone systems. In many situations they coexist and
interact with other agents, for instance, soccer playing robots or software agents on the
Internet. Such a system, consisting of interacting agents, is called a multiagent system
(MAS). Recent trends in MAS are toward the explicit design and use of organizations,
which allows agents to work together within well defined roles to achieve individual and
system level goals [2]. A multiagent organization is composed of agents and defines
and assigns roles to agents in order to accomplish its goals. In this sense, a multiagent
organization can resemble or mimic, at least theoretically, the work-flows of any real
life organizations where roles and tasks are explicitly defined among members of an

organization.

In multiagent organizations, it is important to specify and monitor interactions
within the organization correctly, since erroneous specifications of interactions can lead
to catastrophic consequences. Entire system can loose its functionality by faulty or
incomplete interactions. So it is important that design flaws are detected and eventually
corrected in time while designing any protocol that will be used in the organization [3].
For example, if carefully designed, problems in the flow of information in the process
can be detected before the organization starts working. Importantly, the specification
of organizations should be modular and flexible so that changes in an organization can
be addressed immediately by making few changes. For example, if two organizational
work-flows need to be combined, their specifications should be (semi-)automatically

composed, rather than being created from scratch.

Protocols specify which interactions are permitted among communicating au-
tonomous agents by necessarily constraining their behavior. Interactions among agents
must be modeled in such a way that the following key aspects; autonomy, heterogene-
ity, opportunities and exceptions; are taken care of in order to respect the open and
dynamic nature of interactions [4]. Autonomy refers to agents’ ability in deciding who
they want to interact with, what task they want to perform and how they want to
perform. Autonomy is important for creating an effective open environment. All of
the agents in a system may not be similar as they would be designed and developed
by different designers adhering to diverse design principles. Protocols must facilitate
meaningful and productive interactions among heterogeneous agents. Protocols should
be designed in such a way that enables agents to take advantage of any opportunities
that may exist in a work-flow to improve or simplify their actions. Finally, protocols
should allow agents to modify their behavior to handle an exception that may occur
in the system so that the ultimate goal of the organization can be achieved. Due im-
portance should be given to these four aspects while designing multiagent protocols as
they regulate interactions among agents such that the functionalities of a multiagent

organization are effectively realized.

To realize successful, flexible organizations, it is necessary to enable agents to
communicate with each other correctly and flexibly. This means that agents should
be accommodated with meaningful constructs to interact with. In recent years, com-
mitments have been used as a useful abstraction to represent the interactions between
agents in a multiagent system. Successful and meaningful interactions among agents
can be based on reciprocal commitments. Commitments refer to the obligations of one
agent to another and can be manipulated easily [4]. The specification of interactions
in terms of commitments allows agents to reason about their actions, which enables

them to deal with unexpected situations that may arise at run time [5].

Like other protocols the commitment protocols must be unambiguous. Given
that the agents in a MAS are autonomous, heterogeneous and distributed; we need to
deal with possible conflicts and inconsistencies. The precise sequence of events cannot

always be predicted as the number of possible orderings of events can be overwhelming.

Any attempt to analyze the commitment protocols by simple manual case analysis

would be naive. Hence an automated approach is required.

Inspired by previous work on commitments and multiagent organizations, we pro-
pose to represent the interactions in multiagent organizations as commitments, where
agents interact and change the environment by making and updating their commit-
ments as appropriate [6]. Using a formal description of commitments and incorporat-
ing these properties in a validation software tool will enable organization developers
to design organizations that are logical and consistent in accordance with the system
requirements [5]. Accordingly, we develop an approach that enables an organization
designer to develop an organization specification, check it for conflicts, generate differ-
ent views of the organization and possibly combine the work-flow of an organization

with that of a second organization. We implement these steps in a software tool.

To our best of knowledge, any such automated tool is yet to be developed. Al-
though Fornara and Colombetti developed a method for agent communication by us-
ing standardized meanings of messages and update rules within an object-oriented
paradigm, they do not provide design requirements on correctness or consistency [7].
Similarly, a framework, developed by Artikis et al. to specify and animate computa-
tional societies, does not provide any design rules to establish the correctness of the

executed societies [8].

The developed software tool should be able to check the validity, correctness and
consistency of a commitment protocol where a commitment can be either fulfilled or vi-
olated or canceled. Apart from these, like any other protocols, detecting and resolving
or preventing possible conflicts and inconsistencies is an important issue for commit-
ment protocols. Resolving or negotiating possible conflicts is facilitated by the software

tool in a manner such that the overall soundness of protocol is not compromised.

A commitment protocol may convey a lot more insight about a multiagent orga-
nization than is usually present in individual commitments that form a commitment

protocol. A commitment protocol may give us valuable information about the agents

that are part of the multiagent organization, the roles that each agent plays in an
organization, (hierarchical) relationships among these agents, business processes or
work-flows that take place in the organization, the requirements for fulfilling a task,
and so on. While analyzing and manipulating a commitment protocol, we should not
only be able to extract these information but also use them effectively and flexibly for

developing efficient multiagent organizations.

Contributions: This thesis studies an approach to aid organization developers to
design appropriate multiagent organizations. In this respect, we make the following

contributions:

As interactions among agents are modeled in terms of commitments, there remains
some scope for conflicts among commitments in a commitment protocol. We

devise a way to detect possible conflicts before the protocol is put to execution.

We propose some strategies to resolve conflicts so that the protocol designer can

design consistent and conflict-free protocols.

We present a higher level view of organizations which helps us in expressing organi-

zations concisely without concerning about low level details.

We devise a way to combine multiple work-flows in different organizations that can

reflect real life scenarios when two organizational work-flows need to combine.

We implement our theoretical contributions in a software tool.

Thesis Organization: The rest of the thesis is organized as follows. Chapter 2
provides a discussion about commitments, operations on commitments and existing
algorithms for detecting inconsistency and conflicts among commitments. Chapter
3 discusses how the notion of time can be associated with commitments. Chapter 4
explains conflict detection among commitments. Chapter 5 provides a discussion about
resolving conflicts. Chapter 6 provides a higher level abstraction of commitments.
Chapter 7 discusses the architecture of the software tool we have developed. Chapter
8 provides a case study where conflicts among commitments as well as unrealistic
commitments exist. Finally, Chapter 9 discusses some related works in this field and

gives pointers for future directions.

2. TECHNICAL BACKGROUND

In this chapter, we explain commitments and operations on commitments in de-
tails. Commitments are at the focal point of our thesis. Or to put it in a different way,
our work is built on commitments among agents. Agent interaction can be formally
specified in terms of commitments. Using a set of commitments, known as commit-
ment protocol, we can express the work-flow of multiagent organizations consistently
and correctly. While constructing a commitment protocol, we show how to check for
protocol validity and consistency during compile time so that the organization works

without any glitch during run time.

We begin by defining commitment and proposition.

2.1. Commitment and Operations

A commitment [9], also known as base level commitment, is an obligation or a

promise that can be expressed as a predicate as follows:

Commitmentq(debtor, creditor, proposition) .

where debtor is an agent that makes the commitment to an agent called creditor to
satisfy the proposition. An example commitment would be C;(z,y, p) where x promises

y to bring about p.

Every commitment has a unique identifier, called Commitment ID. This unique
ID helps to distinguish a particular commitment from other commitments that have
the same debtor, the same creditor and the same proposition. If agent x promises
to agent y to Pay USD 100 twice, then a single payment of USD 100 would not be

sufficient.

A number of operations can be applied on commitments [10]. These are:

Create operation creates or instantiates a new commitments. A commitment can only
be created by its debtor. An agent, z who owes money to another agent, y can
create the following commitment: C;(z,y, repay), where x promises y to repay
the money owed.

Cancel operation removes a commitment. A commitment can only be canceled by its
debtor. Normally, an alternative commitment is created in compensation when
an existing commitment is canceled. In the previous commitment, only agent x
can cancel commitment C;.

Release operation releases the debtor of a commitment. Only the creditor of a com-
mitment can release its debtor, and in doing so, eliminates the commitment. The
creditor, y of commitment C; can release agent = from its obligation.

Assign operation transfers a commitment to a new creditor. A commitment can be
assigned to a new creditor by its current creditor. The creditor or agent y in
commitment C; can assign the commitment to a new creditor, say agent z and
the modified commitment will look like the following: C;(z, z, repay).

Delegate operation transfers a commitment to a new debtor. A commitment can
be delegated to a new debtor by its current debtor. The debtor or agent x in
commitment C; can delegate the commitment to a new debtor, say agent v and
the modified commitment will look like the following: C;(u,y, repay).

Discharge operation satisfies a commitment. A commitment is discharged when its
debtor brings about the proposition of the commitment or in other words fulfills

the commitment.

2.2. Proposition

A proposition is the content of an assertion. It is a statement that is either true
or false but not both. The statement “The door is closed” is a proposition. If the door
in question is actually closed then the above mentioned statement will bear the truth

value true; otherwise the truth value of this statement will be false.

In our work we distinguish all propositions into two broad categories: cumulative
or repetitive. A cumulative proposition can be added with another proposition of same
type to form an aggregated proposition. For instance, two cumulative propositions
of “USD 100 paid” actually means “USD 200 paid”. On the contrary, a repetitive
proposition when added with another proposition of same type does not have any real
effect. For instance, two propositions of “The door is closed” when combined together

will still state the same proposition, “The door is closed” .

2.3. Defining Work-flows of Organizations by Using Commitments

An organization is a formal group of people with one or more shared goals. An
organization can be process-related, functional or institutional. With the spectacular
advancement in information technologies, today we have many virtual organizations

(one being Wiki), some of which are based on or inspired by real life organizations.

In a virtual World (such as Second Life — one of many virtual worlds that have
been inspired by the science fiction novel Snow Crash by Neal Stephenson) “organi-
zation” is understood as planned, coordinated and purposeful action of human beings
and computer Als in order to construct and/or compile a common intangible product
or service to its community. Just as “an organization in sociology” this action is usually

framed by formal membership and form (institutional rules).

Multiagent organizations are made up of agents arranged in organizational hierar-
chy who continuously interact with each other to bring about a necessary or predefined
task. These basic interactions, defined by institutional rules, can be expressed in terms
of commitments. A commitment protocol can be devised by enlisting a set of related
commitments. This set of commitments, organized in a commitment protocol depicts
the work-flow of an organization. We can use this commitment protocol to check

whether consistent and meaningful interactions are performed among agents.

We will elaborate how the interactions among agents in an organization can be

expressed by using commitments in later chapters. For the time being, let us describe

a very simplistic organization in terms of commitments. This organization produces
and sells toys. An agent, producer produces the toys while another agent, seller sells
these toys. Finally, a third agent, head is the head of this organization. The producer
commits to the head to produce toys. The formal commitment (with an arbitrary
commitment ID; Cy) for this would be C}(producer, head, produce). In the same way
the seller’s commitment about selling toys would be Cy(seller, head, sell). With these

two commitments we have expressed the work-flow of this organization.

The current process of expressing interactions in terms commitments lacks the
vital aspect of time. These commitments do not convey any information about the time
period in which these commitments are expected to be valid. A major part of our work
has been introducing the notion of time with commitments so that an organization

work-flow is expressed more realistically.

2.4. Predicate Logic/Calculus

A predicate is a feature of language which can be used to assign attribute (prop-
erty) to an individual thing (object). In other words, predicates are used to describe

certain properties or relationships between individuals or objects [11].

Predicates are sometimes known as propositional functions. A predicate may be
thought of as a kind of function that applies to individuals and yields a preposition.
In predicate calculus, each predicate is given a name, which is followed by the list of
arguments. The list of arguments is enclosed in parentheses. The number of elements

in the predicate argument list is called the arity of the predicate.

For example, if we say “This book is red”, then we have assigned the attribute

redness (color being red) to this book. The phrase “is_red” is a predicate:

is_red (this book)

Here we have used predicate “is_red” to specify that this book is red. The arity

of is_red(this book) is one.

Predicate calculus uses quantifiers to specify if a statement is always true, if it
is sometimes true or if it is never true. Apart from containing terms, predicates and
quantifiers, predicate calculus contains all the components of propositional calculus,

including propositional variables and constants.

A classic example of what can be done with the predicate logic is the inference

from the premises:

e All men are mortal.

e Socrates is a man.

to the conclusion

e Socrates is mortal.

Predicate calculus allows us to precisely specify and work on commitments.

2.5. Existing Algorithms to Detect Conflicts

A pair of commitments can be in conflict based on their proposition.

Conflicting Commitment Pair (CP) is a pair of commitments that contains con-
flicting propositions when debtors and creditors are identical. Commitments C(z,y, p)
and Cy(x,y, —p) form a CP if operations on C; and Cy includes only Discharge but not
Release and Cancel. As, x cannot fulfill both p and —p, this pair of commitments is
said to be in conflict. As an example, let me commit to my school to “pay my tuition
fees”. At the same time if I commit to my school not to “pay my tuition fees”, my
commitments to my school will be in conflict as only one of the two commitments can

be brought about.

10

If T pay my tuition fees then there will be no way for me to discharge my second

commitment or vice-versa. Hence these two commitments are in conflict.

The software tool that we have designed to detect conflict would be fed with a
description of a protocol that is to be verified. Initially, a commitment graph, G, with
a set of nodes (base level commitments) V' and a set of edges (operations on these
base level commitments) E, where G = (V, E) is created [5]. A directed edge from
node u to node v refers to an operation on the commitment at node u which yields
node v. Example operations on commitments are: Assign, Delegate, Discharge, Cancel,

Release, etc.

Two special nodes are added to the commitment graph initially: node D for
Discharge operation and node RC for Release and Cancel operations. The algorithm

for building the commitment graph [5] is given in Table 2.1.

Iteratively, a new node is added to the commitment graph for each commitment
over the set of all commitments that can be created by the protocols. It is assumed
that the graph contains a standard adjacency graph that is used to determine if a
node has a neighbor. If a commitment node has at least one outgoing edge, then the

commitment is said to have a neighbor.

Next, a search like mechanism is used to check if all of the commitments in the
commitment graph can either be resolved or at least transferred to another node which
can be resolved. A node is said to be resolvable if 1) it has at least an edge to either of
the nodes RC and D; or 2) it has an edge to another node which is itself resolvable. If
a commitment contains Discharge operation then the node corresponding to this com-
mitment in the graph will have an edge to node D. Similarly, if a commitment contains
either Release or Cancel operations then the node corresponding to this commitment
in the graph will have an edge to node RC'. The algorithm, given in Table 2.2, tries to

visit all the commitments in the commitment graph.

Table 2.1. Algorithm for building commitment graph.

Algorithm 1 Build-commitment-graph
Parameters: CS (Set of base-level commitments),

O (Set of operations on base-level commitments)

1: Create a node RC
2: Create a node D
3: possible-commitments = C'S
4: while (possible-commitments != nil) do
% Remove a commitment c
6: Add a new node c to V'
7 for i = 1 to |O(c)| do
8: if (O(c)[i] == delegate) then
9: Add a new node c.delegate to V
10: Add (e, c.delegate) to E
11: Add c.delegate to possible-commitments
12: else if (O(c)[i] == assign) then
13: Add a new node c.assign to V'
14: Add (¢, c.assign) to E
15: Add c.assign to possible-commitments
16: else if (O(c)[i] == release) || (O(c)[i] == cancel) then
17: Add (¢,c.RC) to E
18: else if (O(c)[i] == discharge) then
19: Add (¢, D) to E
20: end if
21: end for
22: end while

12

Table 2.2. Algorithm for coloring graph.

Algorithm 2 Color-graph
Parameter: G (Commitment Graph)

1: wvisited = nil

2: whiteList = nil

3: blackList = nil

4: fori=1to |V]do

5: if (V(i) ¢ visited) then
6 visit(V(i))

7 end if

8

end for

Algorithm 2 takes a commitment graph as its input and visits every node in order
to color each node with the help of Algorithm 3. In Algorithm 3, a node is marked with
color white if the node is resolvable; otherwise it is marked with color black. Algorithm

3 is given in Table 2.3.

Algorithms 2 and 3 together computes a set of unresolvable commitments. The
protocol designer can modify the protocol until the blackList computed by this algo-
rithm is empty. The protocol consistency can also be checked by comparing all the
commitments against each other to see if they have conflicting propositions. Algorithm

4 that checks protocol consistency is given in Table 2.4.

This algorithm detects inconsistencies among commitments that are not time
bound. Let Ci(z,y,p) and Cy(z,y,—p) be a pair of commitments with conflicting
proposition. Algorithm 4 first checks if either of the commitments have an edge to
node rc. If none of these commitments has an edge to node rc, then it violates the
theorem [5] that states that in an effectively progressive commitment protocol, for a
pair of commitments with conflicting proposition, if either Cancel or Release operation
can be performed on either of the commitment, then the commitment protocol is

consistent.

Table 2.3. Algorithm for visiting nodes.

Algorithm 3 visit

Parameter: u (node)

g Gy

Add u to visited
if (u.adjacentTo(D OR RC')) then
Add u to whiteList
else if (u.hasNeighbors()) then
while (u ¢ whiteList) AND (3 E(u,v) : v ¢ visited) do
if (v ¢ visited) then
visit(v)
end if
if (v € whiteList) then
Add u to whiteList
else
Add u to blackList
end if
end while
else
Add u to blackList
end if

13

14

Table 2.4. Algorithm for checking consistency.

Algorithm 4 Check-consistency
Parameter: G (Commitment Graph)

1: inconsistentList = nil

2: fori=1to|V|—1do

3 for j =i+ 1to |V] do

4 Determine if V(i) and V(j) are conflicting

5: if conflicting(V (i) and V(j)) then

6 if NOT(3 E(V (i), RC)) AND NOT(3 E(V(5), RC)) then
7 Add V(i) and V (j) to inconsistentList

8

9

end if
end if
10: end for
11: end for

Given a set of commitments that can be created in an organization, these existing
algorithms check whether it is possible to end up with a pair of conflicting commitments,
such that neither of the commitments can be canceled or released. This will create a
conflict since then both commitments will need to be discharged, yielding contradictory
information (i.e., p and —p). While this is useful, these algorithms do not consider time

bounds on commitments.

So far we have dealt with commitments that are not bound with time. In the next
chapter we introduce the notion of time and bind commitments with time intervals.
When commitments are bound with time, current algorithms that we have described
so far need to be modified so that we can deal with time bound commitments. We

discuss this in detail in the subsequent chapters.

15

3. ADDITION OF TIME

Commitments are generally considered without any notion of time frame. But a
commitment should not vanish instantly. Nor should it persist for ever. Commitments
used without any realistic time frame cannot capture real life subtleties. Hence it is
only logical to introduce the notion of time with commitments. A commitment should

be clearly bound by a time frame (i.e. an interval) in which a commitment exists.

We follow a similar, but simpler time model of [12]. Our time model is based on a
collection of discrete time points that are linearly ordered. This approach enables us to
deal with realistic scenarios when we try to specify organizational interactions of agents
in terms of commitments. It also helps us in dealing with avoiding subtle ambiguities

that can arise in real life situations and resolving conflicts among commitments.

In this chapter, we discuss how we can use the notion of time with commitments.
A time bound commitment exists only in the specified time interval which is delimited
by two time points. Following subsections discuss these time-related concepts and how

we can bind commitments with a specific time interval.

3.1. Time Point

A time point is a specific and discrete moment in time. An action, such as
creating a commitment or an event, such as fulfillment of a commitment can occur at a
particular time point. For example, we can say that a commitment is created at ¢, and

this commitment is delegated at ¢, where ¢, and ¢, denote two distinct time points.

There are two special predefined time points in our model: one is t; (i.e., beginning
of time in the linear ordering of time points) and the other is t. (i.e., ending of time).
Each time point defined in the commitment protocol must be a time point that is later

than t;, but earlier than ¢..

16

Time points are linearly ordered and a binary predicate “earlier(t,,t,)” denotes

that time point ¢, comes earlier than time point ¢, in the linear ordering.

3.2. Time Interval

A time interval is a time frame bounded by two time points. For example, from
ty to t, denotes a linear time interval bounded by ¢, and ¢,; both inclusive. So, a time
interval is delimited by two time points ¢, and ¢, where the time interval starts at ¢,

and ends at ¢,. For any such interval, ¢, <t,.

In our model, a commitment can be valid only at a particular time point or it

can be valid for a period of time as specified by a time interval.

3.3. Transition Point

A transition point [13] is a hypothetical time point which helps us specify a time
point when a proposition reverses. It is a time point, ¢, at which a proposition, p
ceases to exist and another proposition (generally, the opposite of p) becomes valid,
but these two propositions are not valid at the same time. Time point, ¢, can be
extended as having a time point, ¢, that immediately precedes t,, and another time
point t; that immediately follows t,. So, if proposition p reverses at transition point ¢,,
it is considered that p ceases to be valid at ¢, and —p (opposite/negation of p) starts
to be valid at t;;. In this way a conflict less transition can be realized for a proposition.
As an example, an agent commits to keep the door shut until ¢, but recommits to keep

the door open from ¢, onward.

This (transition point) is different from the following scenario where both p and
—p are valid at the same time point, ¢,. If p is keeping the door shut and —p is keeping
the door open, then we come to a point where we cannot know for sure whether the
door will be open or closed at the time point ¢,. In such a case, a conflict in propositions

is a possibility.

17

3.4. Time Quantifier

A time interval can be quantified as either universal or existential. If the time
interval of a commitment is universal then the proposition of that commitment has to
hold at every instant in the whole interval. But, if the time interval of a commitment
is existential then the proposition has to hold at least once in one particular time point

during that time interval.

If a commitment of keeping the door open is quantified with universal quantifier,
the door has to remain open for the entire time interval. On the other hand, if the
same commitment were quantified with existential quantifier, keeping the door open

for a fraction of the entire time interval would have sufficed.

3.5. Binding Commitments with Time

A commitment can be bound by two time points that form a time interval.
“FromTo(t,,t,)” is a binary predicate that defines a time interval that is bound by
from time point ¢, to time point ¢, given that ¢, does not come earlier than ¢, in the

linear ordering of time points. Both ¢, and ¢, are included in the time bound.

Other time bounds can be originated from this basic “FromTo(t,,t,)” time
bound that have analogies in nature (i.e., natural languages). In the following deriva-
tions, ; is the beginning and ¢, is the ending of time while ¢, and ¢, are two arbitrary

time points such that ¢, <¢,.

1. At(t,) = FromTo(t,,t,) This states that a proposition holds instantaneously
only at the time point ¢,.

2. After(t,) = Since(t,) = FromTo(t,,t.) This, as depicted in Figure 3.1, states
that a proposition holds from ¢, until the end time ¢..

3. Until(t,) = Before(t,) = By(t,) = FromTo(ty,t,) This, as depicted in Figure

3.2, states that a proposition holds until ¢, from the beginning of time ¢,.

18

After |:—>
FromTo []

yAl | | | | |/
/1 | | | L4

tr to t1 ta ts tg te

Figure 3.1. After(ty) mapped to FromTo(ty, t.). t. is the ending of time.

—3] Until

c |
[ol FromTo
Y| | | | | /
Al |))) |4

tyr to t1 ta ts tg te

Figure 3.2. Until(t3) mapped to FromTo(ty,t3). t, is the beginning of time.

Every time interval, except At(t,), has a time quantifier, either wuniversal or
existential, associated with it. At(t,) is essentially erxistential. As all time bounds
can be mapped to FromTo(t,,t,), we only focus on this time bound as we look for
conflicting scenarios between two time bounds. A tag, [t,,t,] replaces the predicate
FromTo(t,,t,) which indicates a time interval bound by start time, ¢, and end time,

t, for the sake of concise and formal specification of a time bound commitments.

A time bound commitment (TBC), can now be stated as

Commitmentq(debtor, creditor, proposition) [time bound] Quanti fier.

Time quantifier universal is denoted with the letter U while existential is with
E. 1In order to elaborate time bound commitments, let us give some examples of

commitments that include both types of proposition.

Ci(z,y,p) [1:00pm—1:10pm] E — x commits p to y anytime between 1:00pm and
1:10pm. This is an existential commitment. If p is turning the light on, then p is a
repetitive proposition, as once the light is turned on, committing to turn the light on

again has no effect.

But if p is paying 100 USD, then p can be cumulative as committing p again can

mean committing to pay another 100 USD.

19

Cy(z,y,q) [4:00pm—>5:00pm]| U — x commits ¢ to y for the time duration between
4:00pm and 5:00pm. This is a universal commitment. If ¢ is playing tennis, x commits
to play tennis in the specified time duration. The proposition here is repetitive as

committing another ¢ for the same time duration does not have any real meaning.

But on the other hand, if q is teaching mathematics to a student, another ¢ might
mean teaching mathematics to a group of two students in the same time interval. In

this sense the proposition is cumulative.

Binding a commitment with a time period specifies an interval in which the
commitment is expected to remain valid. As such, any operation that can be applied
on a time bound commitment is bounded by a time interval based on the time interval

of the commitment.

Create a commitment has to be created any time before its specified time interval.

Release the debtor of a commitment can be released from its obligation by the creditor
before the time interval of the commitment expires.

Cancel the debtor can cancel a commitment before it becomes valid.

Discharge a commitment can only be discharged in the specified time period that
temporally binds the commitment.

Delegate a commitment can only be delegated before the start of its time interval.

Assign a commitment can only be assigned before the start of its time interval.

3.6. Conflicts in Time-bound Commitments

In the previous chapter we have defined a pair of conflicting commitments or CP.
Now, as we have associated time with base-level commitments, we can define conflicting

commitment pair that are time bound.

Conflicting Commitment Pair given Time Bounds (CPT) is a pair of commit-
ments that contains conflicting propositions in overlapping time interval when debtors

and creditors are identical. As commitments are bound by time points or time intervals,

20

a CP can be resolved if they are valid at different time points or in non-overlapping
time intervals. For instance, if commitment Ci(x,y,p) is bound at time point ¢;, and
commitment Cy(z,y, —p) is bound at time point t5, where ¢; and ¢y are two different
time points, this pair of commitments is resolvable although the commitments contain
conflicting proposition. But this pair of commitments will still be conflicting if they

are valid at the same time point or if their time intervals overlap.

As an example, let us consider previous chapter’s example again but this time
binding those commitments with time intervals. The first commitment was I commit-
ting to my school to “pay my tuition fees”. Let us associate time with this commitment
by stating that I commit to my school to “pay my tuition fees” in the second week
of September. Binding second commitment with time as well, and the time interval
being the first week of September, the time bound commitment is now I committing to
my school not to “pay my tuition fees” in the first week of September. Since the time
intervals of these two commitments are not overlapping, these two commitments are
not conflicting any longer. Both commitments can now be fulfilled in their respective

time periods.

But if the time interval of the second commitment were the second week of
September, they would still be conflicting given time bounds as to commit two contra-
dictory propositions in the same time interval. So fulfilling one of these two commit-

ment will make it impossible to fulfill the other one in the specified time period.

As we are now capable of specifying commitments with time bounds, in the next
chapter we will discuss how to detect inconsistencies and conflicts among commitments
that are time bound. We will see how conflicts among commitments are dependent on

time bounds.

21

4. CONFLICT DETECTION

In the previous chapter we have defined a pair of conflicting commitments given

time bounds.

In the existing algorithms that detect conflicts among commitments, time bounds
on commitments are not considered. When time bounds are introduced on commit-
ments, a pair of conflicting commitments can be rendered not conflicting, if and only
if, the conflicting propositions are valid at different time points or in different time

intervals.

4.1. Conflict Detection

An extension of the current algorithms would be to take a CP and check if they
still remain conflicting given time bounds. In doing so, time bounds associated with
the commitments of a CP are compared to check if there is any overlapping section of
time between these time bounds. CPs can be rendered not conflicting only when the

intersection of their time bounds is nil. Otherwise, they continue to remain conflicting

and form CPT.

An additional algorithm, Algorithm 5, is developed which is used to determine
which CP is also a CPT by iterating over the set of all CPs and comparing the time
intervals of commitments in each CP. The time intervals of a pair of commitments that
form a CP are compared to check if they overlap. If they overlap, it would mean that

a pair of commitments with conflicting propositions need to be valid at the same time.

The set of CPTs is intuitively a subset of CPs. A CP that is not in the set
of CPTs can be rendered as not conflicting given time bounds. A pair of commit-
ments containing conflicting propositions can be valid if their time intervals are not

overlapping. Algorithm 5 is as follows:

22

Table 4.1. Algorithm for detecting CPT.

Algorithm 5 Detect-CPT
Parameter: SCP (Set of CPs)

con flictGivenT'imeList = nil
noCon flictGivenTimelList = nil
for i =1 to |[SCP| do

Compare time intervals of SCP(7)

Add SCP(i) to conflictGivenTimeList
else
Add SCP(i) to noCon flictGivenTimeList
end if
10: end for

1
2
3
4
5% if (time intervals overlapping) then
6
7
8
9

If a base level commitment is in conflict, any commitment derived from this
commitment (by using either delegate or assign operation) will also be in conflict. The

following two base level commitments are in conflict due to conflicting propositions:

Ca(?/axaQ) [tu - tv] U

Coly,z,—q) [t, —t,| U

Now if y in commitment Cj decides to delegate to z, the derived commitment
Ce(z,x,7q) [tu—t,] U will inherit the conflict with C,. In general, conflicts can also arise

when debtors or creditors differ but the commitments contain conflicting propositions.

As an example let us consider the following scenario. Commitment C, is where
y commits to “keep the main door open” for x during the time interval from 8:00am
to 8:30am and Commitment C}, is where y commits not to “keep the main door open”
(or in other words, “keep the main door closed”) for x during the time interval from
8:00am to 8:30am. These two commitments are clearly in conflict during the specified

time interval.

23

Now y decides to delegate its second commitment C, of “not keeping the main door
open” to z, and creating a new commitment in the process. The derived commitment
C. will be in conflict with commitment C, as if either of these commitment is fulfilled,
the other one will not be fulfilled. There is no way of “keeping the door both open and
closed” at the same time. As a result, these two commitments C, and C. will be in

conflict although their debtors are not the same.

Conflicts among commitments can arise in different scenarios when their time

bounds and time quantifiers differ.
4.2. Conflict Scenarios

Since all other time bounds can be mapped to FromTo(t,,t,) it is sufficient
to show conflicts and no-conflicts between two FromTo(t,,t,) time intervals. Let
Ci(z,y,p) and Cy(x,y,—p) be a pair of commitments with conflicting proposition,

hence a CP. These commitments are bound by FromTo(t,,t,) time intervals.
Let tg, t1, to, t3, and t4 be five different time points and ¢; < t;. iff i < k.

4.2.1. Non-overlapping Time Intervals

Let, Cy be bound by FromTo(t,ts) and Cy be bound by FromTo(ts,ts). Since
the time intervals are not overlapping (See Figure 4.1) there is no conflict given time

bounds.

to t to ts ta

Figure 4.1. C; and C5 will not be in conflict as their respective time bounds

FromTo(ty,ty) and FromTo(ts,ts) do not overlap.

The possibility of a conflict given time bound arises when time intervals associated

with a CP are overlapping. A conflict can be further classified as either possible or

24

certain depending on the time quantifiers of the time intervals of a CP. While a certain
conflict is bound to happen if no corrective measures are taken, a possible conflict may

be avoided if the commitments of a CP are discharged at different times.

In the following sub-sections, we identify some of the key conflicts that can arise

and mark whether the conflict is possible or certain.
4.2.2. lIdentical Time Intervals

Let, both C} and Cy be bound by FromTo(t,ts) as shown in Figure 4.2. If
both the interval of C; and Cy are existential, there is a possibility of a conflict if the
two commitments are discharged at the same time. For all other three variations, it
is certain to have a conflict since at least one of the commitments is bound with a
universal time bound. That is, if C is bound with a universal quantifier, then p has
to hold at all times between t; and t,. At the same time, for Cy to be discharged, —p

should hold at at least one point between ¢; and t5, which raises a conflict.

3

to t to ts ta

Figure 4.2. C} and Cy will be in conflict in the time interval [t; — t5].

Table 4.2. Conflict type based on C; and C5’s time quantifier in the time interval

[t1 — ta].
C7’s Quant. | (3y’s Quant. | Conflict
Universal Universal Certain
Universal Existential Certain
Existential Universal Certain
Existential Existential Possible

As an example of certain conflict between two commitments having the same time

interval when one is universally quantified but the other is existentially quantified, let

25

us consider the following situation: a professor is scheduled to give a lecture on Mondays
between 2 pm and 3 pm (Commitment 1, universal). If the same professor plans to
see the department head at any time during this period (Commitment 2, existential),

there will certainly be a conflict.

4.2.3. Containing Time Intervals

Let Cy be bound by FromTo(ti,ts) and Cy be bound by FromTo(ts,t3), so
that the first interval contains the second interval as shown in Figure 4.3. Conflict
will now occur only in the time interval FromTo(ts,t3). If the time quantifier of the
commitment with the larger time interval (Cj, in this case) is universal, the conflict is
a certainty. On the other hand, if its time quantifier is existential, the possibility of a
conflict remains, although it is no longer certain. Please note that the time quantifier

of the other commitment does not have any effect on determining the conflict type.

c 3

= 1 L=l

4

Figure 4.3. C} and Cy will be in conflict in the time interval [ty — t3].

Table 4.3. Conflict type based on C} and C5’s time quantifier in the time interval

[ty — t3].
C1’s Quant. | (5’s Quant. | Conflict
Universal Universal Certain
Universal Existential Certain
Existential Universal Possible
Existential Existential Possible

Let us now shrink the time interval of Commitment 2 such that the time bound
of the modified commitment is from 2:30 pm to 2:40 pm. Although we change the time
bound, it still is a subset of the original time bound of Commitment 2. Hence, the

certainty of a conflict between Commitment 1 and Commitment 2 still remains.

26

4.2.4. Intersecting Time Intervals

Let Cy be bound by FromTo(ty,t3) and Cy be bound by FromTo(ts,ts) such
that the two intervals are intersecting as shown in Figure 4.4. Conflict can occur at
the time interval FromTo(ts,t3). When both of the commitments’ time quantifier is
universal, it is certain that a conflict will occur in the intersecting time interval. For

other combinations of time quantifiers, conflict is a possibility.

T o

Figure 4.4. C} and Cy will be in conflict in the time interval [ty — t3].

Table 4.4. Conflict type based on C} and C5’s time quantifier in the time interval

[ty — t3].
C1’s Quant. | (5’s Quant. | Conflict
Universal Universal Certain
Universal Existential Possible
Existential Universal Possible
Existential Existential Possible

Let us now consider the situation when the professor plans to attend a conference
on a Monday afternoon for the entire afternoon (Commitment 3, universal). This
situation will also lead to a certain conflict with Commitment 1 as she will not be able
to bring about both of her commitments. Let us now modify Commitment 2 such that
instead of attending the conference she promises to see the department head at some
time during the entire afternoon (Commitment 4, existential). In this situation given
that she is scheduled to teach between 2 pm and 3 pm (Commitment 1, universal), we
cannot tell for sure that there will be a conflict. All we can say is that there will be
a conflict if she tries to see the department head during the lecture hour, but she can
conveniently execute Commitment 4 either before the class hour or after the class hour
in that afternoon. So the possibility of a conflict depends on the time when she brings

about Commitment 4.

27

Now we know, how and in which circumstances conflicts can occur among com-
mitments. We also know the conflict type of a possible conflict. In the following chapter

we try to find ways on how to resolve conflicts among commitments.

28

5. RESOLVING CONFLICTS

In Chapter 4, we have seen how a pair of commitments can be in conflict with each
other given time bounds. While designing a commitment protocol for an organization,
a protocol designer would naturally want to have a protocol that is free from conflicts
among commitments. The main objective is to have a multiagent organization that
operates smoothly during run time by following a conflict-free commitment protocol.
To this end, it is of vital importance to detect beforehand and then resolve conflicts
during compile time so that the multiagent organization works as intended during run

time without any glitch.

In this chapter we look into ways of resolving conflicts that may arise during

compile time. But let us first elaborate a few key terms here.

Organization State: This refers to the propositions and commitments that

hold at a particular time point for an organization.

Equivalent Commitments: This refers to a set of commitments that are not
identical but have the same effect on the events. The following commitment
Cwm(y, x, Open Door) [t, —t,] E'— where y commits to open the door to x
is equivalent to commitment
Cy(z,z, Open Door) [t, —t,] E — where z commits to open the door to x

as both agents y and z commit to open the door (identical proposition) for agent x.

This can be specified as, C,, ~ C,. Realizing only one of the commitments has

the effect of realizing all the other equivalent commitments.

Types of Proposition: As stated earlier, we divide all propositions into two

broad categories:

29

1. Repetitive: Let us consider commitments C,,, and C,,, stated earlier while defining
equivalent commitments, where both agents y and z promise agent = to open the
door. Since opening the door only once by either of the agents would suffice for
x to be able to pass through, both agents y and z need not fulfill their individual
commitments independently given that at least one agent fulfills its commitment.
In this respect, the proposition in these two commitments is repetitive. As soon
as one of the commitments is fulfilled, the organization state changes to a new
state. But fulfilling the remaining commitment does not cause the organization
state to change.

Formally, Let S; and Sy be two organization states such that the organization
moves from Sy to S when proposition p is applied. If the organization stays in
Sy for all other consecutive applications of p, then p is a repetitive proposition.

2. Cumulative: Let us now consider the following two commitments,

Ce(y,z, Pay USD 100) [by tomorrow| E — where y commits to pay USD 100 to
x and

Ct(z,x, Pay USD 100) [by tomorrow] E — where z commits to pay USD 100 to
x.

Unlike in the case of repetitive propositions, fulfilling only one of the two com-
mitments does not mean that the other commitment need not be fulfilled. Agent
z is supposed to receive a combined payment of USD 200 from agents y and z
each paying USD 100 individually. Therefore, the proposition used in the two
commitments is cumulative.

Formally, a proposition p is a cumulative proposition if it always causes the
organization move from current organization state to another state whenever p is

applied.

5.1. Ways of Resolving Conflicts and Anomalies in the Graph

As the commitment protocol developer’s primary goal is to compile a set of con-
sistent and conflict-free commitments, the need for dealing with anomalies in the com-
mitment graph and conflicts in commitments, and resolving them is of paramount

importance.

30

Anomaly in the commitment graph mainly arises when some nodes are marked
black. A node is marked black if the commitment corresponding to this node cannot
be resolved. A commitment cannot be resolved if 1) it does not contain at least one
of the following operations in its operation set: Discharge, Release, and Cancel; or 2)
this commitment’s debtor cannot be delegated to a new debtor by Delegate operation

nor can it be assigned to a new creditor by Assign operation.

Consequently, a black node does not have an edge to either RC or D node in the
commitment graph. Nor does it have an edge to another resolvable node in the graph.
In order to make this node resolvable, we can add either Release or C'ancel operation to
the operation set of the commitment that corresponds to this node in order to connect
this node with RC'. Similarly, we can add Discharge operation so that this node is
connected to the D node in the graph. Similarly, if possible, we can add Assign or

Delegate operations such that this node is connected with another resolvable node.

As a black node indicates the presence of an unresolvable commitment in the
commitment graph, the commitment protocol designer can make sure that all the com-
mitments in the commitment protocol are resolvable by doing necessary modifications

on unresolvable commitments.

A commitment protocol free of any unresolvable commitments can still contain
conflicting commitments. There are several ways of resolving conflicts among commit-

ments. They are as follows:

Discarding a Commitment Getting rid of a commitment that is in a CPT is the
easiest strategy of dealing with conflicts. As one of the commitments in a CPT
is discarded, the other commitment automatically becomes conflict-free. But
discarding a commitment may always not be desirable as it might prevent us from
representing an organization in a correct way. So rather than simply discarding a
commitment in a CPT, we can try to modify the commitment so that the conflict

is resolved.

31

Modifying a Commitment We know that for a possible conflict to arise the debtors
and creditors of a pair of commitments have to be the same. If possible, we can
form a substitute commitment for a commitment that may cause a conflict by
changing either the debtor or the creditor. Modifying a commitment in this way
may constitute a fundamental change in the organization such that an agent’s
task is either assigned or delegated to another agent. Sometimes, it may be
the case that an agent’s task cannot be reassigned, making modification of a
commitment impossible. In these circumstances we can try, if possible, shifting
the time bounds of the commitments in a CPT.

Shifting Time Bounds One way of shifting time bounds of the commitments that
are in conflict is to divide the conflicting time interval into two equal time intervals
and assigning one interval exclusively to one commitment and the other time
interval exclusively to the other commitment. As a result, the conflicting time
interval becomes nil which in turn makes the CPT not conflicting. If a fair
distribution of conflicting time interval is not possible, an unequal distribution
can be done. This can be achieved by introducing constraints between the pair of
commitments such that one of the commitments becomes valid and discharged.
As soon as this commitment is discharged, this commitment ceases to be valid
while the other commitment becomes valid.

Another way of shifting time bounds is to keep one commitment’s time bound
unchanged while shifting the other commitment’s time time bound away from

the conflicting time interval until the conflicting time interval disappears.

A commitment’s proposition may be constrained on a different proposition such
that in order to discharge this commitment the other proposition has to be fulfilled
earlier or simultaneously. In other words, although a commitment may not be in
a conflict with other commitments, the commitment itself may not be realistically
discharged. For instance, a commitment of producing a particular product can only
be successfully discharged if there are commitments for suppling the necessary raw

materials.

32

In addition, duplicate commitments, if any, in the commitment protocol are de-
tected and discarded until no duplicate commitment remains in the protocol. By
duplicate commitments, we mean identical commitments as opposed to equivalent com-

mitments.

5.2. An Example Scenario of Conflict Resolution

Following is a scenario where there seems to be a probable conflict between two
commitments made by agent y to agent x. In this scenario, agent x commits to agent
y to pass through a door within a specified time period while agent y promises to
open a door for agent x to pass through and then close the door once agent x has
passed through. Agent x cannot specify an exact time point for passing through the
door but it can specify a period of time within which it can pass through the door.
Due to this, agent y cannot specify beforehand when exactly to open the door and
when exactly to close the door. All it can do is specify a period of time — the same
period of time within which z is to pass through, for both of its commitments. These
two commitments contain contradictory propositions (opening versus closing the door)
within the same period of time. Hence a possibility of conflict arises between opening

and closing the door regardless of x’s action.

We first enlist the propositions, agents and commitments used in the scenario

that we have described above.

Propositions:

p: Passing through the door.
q: Opening the door.
—q: Closing the door.

For these propositions (and commitments that contain these propositions), we do
not make any assumption regarding the state of the door (whether it is already open

or closed).

33

Agents: x and y.

Commitments:

Ci(z,y,p) [1: 00pm—1: 10pm| E — x commits to pass through the door anytime
between 1:00pm and 1:10pm.

Cy(y,x,q) [12 : 59pm — 1 : 09pm] E — y commits to z to open the door between
1:00pm and 1:10pm.

C3(y,x,—q) [1: 00pm — 1 : 11pm] E — y commits to x to close the door between
1:00pm and 1:10pm.

Commitments made by agent y, namely C5 and C3 possess the possibility of
conflict (opening/closing the door at the same time instant) during the overlapping

time period between 1:00pm and 1:10pm.

There are two alternative ways to resolve this conflict. First alternative is to
rearrange and decrease the respective time bounds of commitments C5 and C3 so that
they do not overlap. For instance, if we make a fair distribution of time between Cj

and (3, the revised commitments, Cy and C5, respectively become as follows:
Cu(y,x,q) [12 : 59pm — 1:04pm] E
Cs(y,x,—q) [1:05pm — 1 : 11pm]| FE
Although it might be logical to divide time bounds between conflicting commit-
ments in many other scenarios, dividing time period causes commitment C to be

modified accordingly as agent x now needs to pass through the door before 1:05pm.

The better alternative is to create a variable transition time point, ¢,. This is the

moment when agent = actually passes through the door. Using this transition point

34

we can now rearrange commitments Cy and Cj in such a way that revised Cy (or Cp)

remains valid until ¢, and revised C3 (or C7) becomes valid only after ¢, as follows:

Co(y, 2, q) [12:59pm — t,] E

Cr(y,x,~q) [ty —1: 11pm] E

Here, some sort of constraints (or precedence rules) based on the temporal order-
ing of events may be introduced. For instance, it can be specified that Cs < C; (i.e. Cq
must be realized in order for C'; to be valid and for Cg to cease to be valid, C'; must be
realized). Accordingly, if an event, e (for instance, the act of opening the door) needs
to happen before a particular commitment (committing to close the door) can become

valid, it can be specified as follows: e < C%.

So, in resolving conflicts, any such constraints, if given can be used to resolve

conflicts. Otherwise; the first alternative can be used.

Furthermore, although commitment Cy is neither in conflict with Cy nor with
(3, the door has to be opened by y (assuming that the door usually remains closed
and only y can open the door) so that x can pass through. The proposition of C4
is constrained on the proposition of Cy. If (5 did not exist, C; would have been an
unrealistic commitment as x would not be able to pass through the door if y did not

commit to open the door.

35

6. OPERATIONS ON ORGANIZATIONS

One of the main objective of this thesis is to use commitments in order to rep-
resent the interactions among agents in a multiagent organization. To this end, we
have developed necessary concepts in the previous chapters so that interactions among
agents are realistically represented as TBC. Now we shift our focus on what can be
done with these representations. We first explain an upper level abstraction of com-
mitments and then we show how multiple multiagent organizational work-flows can be

combined together.

6.1. Upper Level Aggregation of Commitments

In a commitment protocol some commitments may be very similar to each other.
A set of commitments describe almost same interactions among agents. The difference
among them is minor; such as different debtors making same commitment to one
creditor or one debtor making a particular commitment multiple times spanning many

different time periods.

Commitments can be combined together into an aggregate commitment or to
create upper level commitments (ULC) based on some logical similarities among base
level commitments. Creating ULCs are important as they provide us upper level views
of an organization. For example, each department in a university can be working
independently, but periodically we might need to view the activities of the university
as a whole rather than individual departments. This requires the commitments of each

part to be aggregated to yield a bigger picture of an organization. aggregation.
6.1.1. Aggregation on Time
If debtor, creditor and proposition are identical, then commitments having con-

secutive (contiguous) time bounds with universal time quantifier can be aggregated on

time bounds to create an upper level commitment.

36

Let Cy(z,y,p) [t1 —t2) U, Co(z,y,p) [ta—t3] U and Cs(z,y, p) [t3 —t4] U be three
base level commitments having identical debtor, creditor and proposition. t; < ty <
ts < t4 are linearly related time points. Since their time quantifiers are the same (all
universal in this case), these three commitments can be combined together on time

bounds, as depicted in Figure 6.1, to create an upper level commitment, ULC(z,y, p)

[tl — t4] U.

Figure 6.1. C7, Cs, and (5 aggregated to ULC' based on time.

An example of this type of aggregation would be the commitments of a visiting
professor who commits to a university to teach. The professor commits to teach during
the fall semester. She makes another commitment to teach during the spring semester
as well. Aggregating on time as we know that combining these two semesters would
give us an academic year, the professor commits to the university to teach for a full

academic year.

Unlike base level commitments with universal time quantifier, base level com-
mitments with ezistential time quantifier cannot be aggregated in this manner as the

proposition needs to hold more than once in different time intervals.

Similarly a group of commitments with a mixture of both universal and ezistential

time quantifiers cannot be aggregated.
6.1.2. Grouping Agents
When debtors in commitments are different but all other components of com-

mitments are same, we can group together the debtors to an upper level collection of

debtors. All of the commitments should be quantified with the same time quantifier.

37

For example, if we have three commitments: Ci(z1,y,p) [t1 —t2] E, Cao(xe,y,p) [t1 —to]
E and Cs(z3,y,p) [t1 — t2] E and if we know that X = {x1, z9, 23} then we can substi-
tute these three base level commitments by an upper level commitment, ULC(X, y, p)

[t1 — t2] E as shown in Figure 6.2. The important point here is that every member of

Figure 6.2. C, 5y, and (3 aggregated to ULC based on agents.

the group needs to make the same commitment. If one does not make the commitment
that all other group members make, we cannot create the upper level commitment on

behalf of the entire group.

The problem here is about knowing group hierarchies and group compositions
beforehand. The relation X = {xy, x5, x3} needs to be clearly stated (or known) before
we try to formulate the upper level commitment that combines agents — debtors and

creditors alike.

When every student in a class individually commits to their professor that they
would study hard in order to get good grades, we can say that the whole class (collection

of students) is committed to study hard.

Likewise, when a debtor commits same proposition to a group of creditors, these
creditors can be combined as a group quite the same way we have combined the group

of debtors as in the previous example.

A student makes individual commitments to every course instructors that he
would study hard so that he can get good grades in the courses he has taken in a
particular semester. The aggregation of his commitments would be him committing to

a group of course instructors that he would study hard for that semester.

38

6.1.3. Conceptually Upper Level Commitments

A group of commitments may be conceptually related. Let us consider the follow-
ing scenario where a professor plans to offer a semester-long course. This is an upper

level commitment as it contains many lower (or base) level commitments:

(1) the professor commits to the department to prepare the course schedule at the
beginning of a semester,

(2) she commits to the students taking this course to hold weekly lectures, and finally,
(3) she commits to the students to evaluate their performance at the end of the semester

in due time.

Now let us view it bottom-up. When we are given these three (numbered 1,
2, and 3) base level commitments, we should be able to formulate the corresponding
upper level commitment that the professor commits to offer a course if we agree that
committing these commitments individually sum up to committing to offer a course
for a semester. Here, we assume that the concept of offering a course consists of
several sub-concepts, such as in our case preparing course, giving weekly lectures and

evaluating students’ performance.

6.1.4. Aggregation on Transitivity of Commitments

A set of transitive base level commitments may form an upper level commitment.

Let us consider the following three base level commitments:

Ci(z,u,p) [t1 —to] E,
Co(u,y,p) [t — t3] E, and
Cs(y, z,p) [ts — ta] E.

These three commitments contain an inherent transitive relation. First, x promises
p to u, then u promises p to y who in turn promises p to z. The only constraint here

is that for u to make commitment Cy, C; has to be already fulfilled, and so on.

39

From these three base level commitments we can formulate the upper level com-

mitment, ULC(x, z,p) [t; — t4] E as shown in Figure 6.3.

X t; O X
cl :
u t2
c2 :D ulc
y ts
cx
VA ta 3 z

Figure 6.3. C1, Cy, and C5 aggregated to ULC based on transitivity of commitments.

6.1.5. Aggregation on Transitivity on Fixed Time

This type of aggregation is similar to aggregation on transitivity of commitments
except that all of the commitments that forms this aggregation have same time intervals
with same time quantifiers. To clarify further, we use the previous set of commitments

but this time these commitments are bound with identical time intervals.

Ci(z,u,p) [t1 — ta] E,
Co(u,y,p) [t1 — to] E, and
03(?/7271)) [tl - tQ] E.

Since these commitments contain a transitive relation, a ULC is created as follows,
ULC(z,z,p) [t1 — t2] E, which summarizes the three base level commitments into one

ULC such that now agent x commits p to agent z.

This aggregation type can be used in the following scenario: one worker commits
to his foreman to produce a certain amount of goods by a particular time, the foreman
in turn commits to his boss that a certain amount of goods will indeed be produced
in the specified time. The ULC that summarizes these two commitments would be as
follows: the worker commits to the boss to produce a certain amount of goods in the

specified time.

40

Aggregation, by definition, causes low level (in our case base level) information
loss. Although the upper level commitment has the equivalent effect /results of the base
level commitments that constitute the upper level commitment at the cost of loosing
some details in lower level commitments, the upper level commitment is in no way
identical to the summation of the individual base level commitments. So, the result
is only equivalent but not identical. While creating an upper level commitment, we
may loose some of the details of the base level commitments that forms this upper
level commitment. In case of transitive relations, for instance, by simply looking at
the upper level commitment we may not be aware of the agents who were involved
in the intermediate commitments. The organization should decide whether the lost
information resulting from aggregation is important and whether to proceed with the

aggregation.

The previous example is a logical one when we think the proposition p, as “paying
USD 100”. In the base level, x commits to pay to u, v in turn commits to pay to y, and
finally y commits to pay to z. All of these transactions can be aggregated as simply
x commits to pay to z, as there are inherent transitive relations among the base level
commitments. But if we only look at the aggregated commitment, we may not know
that apart from agents x and z, two other agents, u and y, are also involved in the

process.

6.2. Combining Organizational Work-flows

As we may recall from earlier, a commitment protocol enlists the rules of inter-
actions among agents in a multiagent organization. As such, an organization can be
expressed by a commitment protocol. Two (or more) organizational work-flows may be
combined, by combining their respective commitment protocols together, given that
the agents — both debtors and creditors, propositions, and time bounds used in the

specifications of these commitment protocols are logically related entities.

It is important to note that the uniqueness of entities is respected while combin-

ing. For example, if an agent, x, is used in commitments of the commitment protocols

41

to be combined, x should refer to the same agent over all commitment protocols. Like-
wise, propositions in commitments; and time points used to bind commitments are

global. Moreover, all time points are linearly related.

Let A and B be two commitment protocols. Commitments of these two protocols
are given in Table 6.1 along with their time bounds.

Table 6.1. Commitment protocols A and B.

Protocol A Protocol B
Ca1(Producer, GM, Produce) [Q1] U | Cpi(Producer, GM, Produce) [Q1] U
Caz(Seller, GM, Sell) [Q2] U Cpa(Developer, GM, Develop) [Q1] U

In order to combine these two commitment protocols, we, first need to check if
there is any conflicting commitments given time bounds. In this case, there is none.
So, we can proceed with the task of combining these two commitment protocols. Next,
we check for duplicate commitments among the commitment protocols. Duplicates
are discarded if there is any. Here we can see that commitments C4; and Cp; are
duplicates. Only one will suffice in the resulting combined commitment protocol. We
can discard either of them but not both and it is not really important which one we
discard. The resulting combined commitment protocol is given in Table 6.2.

Table 6.2. Commitment protocols A and B combined together.

Combined Protocol
Ci1(Producer, GM, Produce) [Q1] U
Cy(Seller, GM, Sell) [Q2] U
Cs(Developer, GM, Develop) [Q1] U

Now, let us add an additional commitment, Cps(Producer, GM, Not Produce)

[Q2] U, to commitment protocol B (See Table 6.3).

Although the proposition in commitments Cyo and Cgs are inverse (negation) of
each other, these two commitments do not conflict given their time bounds. So, we can
proceed with the task of combining as well as the previous case and get the following

combined commitment protocol as given in Table 6.4.

42

Table 6.3. Commitment C'g3 added to commitment protocol B.

Protocol A

Protocol B

Ca1(Producer, GM, Produce) [Q1] U
Caz(Seller, GM, Sell) [Q2] U

Cps(Producer, GM, Not Produce) [Q2] U

Cp1(Producer, GM, Produce) [Q1] U
Cpa(Developer, GM, Develop) [Q1] U

Table 6.4.

Commitment protocols A and B combined together.

Combined Protocol

Ci(Producer, GM, Produce) [Q1] U
Cy(Seller,GM, Sell) [Q2] U
Cs(Developer, GM, Develop) [Q1] U
Cy(Producer, GM, Not Produce) [Q2] U

Let us now add another commitment, C43(Developer, GM, NotDevelop) [Q1] U,

to commitment protocol A as given in Table 6.5.

Table 6.5. Commitment C'43 added to commitment protocol A which is in conflict

with commitment Cgs. Hence, these two commitment protocols cannot be combined.

Protocol A

Protocol B

Ca1(Producer, GM, Produce) [Q1] U
Caz(Seller, GM, Sell) [Q2] U
Cas(Developer, GM, Not Develop) [Q1] U

Cp1(Producer, GM, Produce) [Q1] U
Cpa(Developer, GM, Develop) [Q1] U
Cps(Producer, GM, Not Produce) [Q2] U

In this case, commitments C'43 and C'gs contains conflicting proposition and their

time intervals are overlapping. Hence, these commitments are in conflict given their

respective time bounds. Until and unless this conflict is resolved, we cannot combine

these two commitments protocol.

This concludes all the concepts and techniques we have developed in order to

represent the interactions in terms of commitments among agents in multiagent or-

ganization. These concepts are integrated in a software tool that helps commitment

protocol designers to design and generate commitment protocols.

In the following

chapter we discuss the architecture of the tool in detail.

43

7. SOFTWARE ARCHITECTURE

The topics regarding commitments, commitment graph, time bounds of commit-
ments, conflicts among commitments and their resolution, upper level aggregation of
commitments, and combining commitment protocols that we have discussed so far in
the previous chapters are implemented in a software tool. The tool is called “Protocol
Validator”. This tool helps us design consistent and conflict free commitment proto-
cols, analyze the work-flow of a multiagent organization in terms of commitments, and
create upper level abstraction of base level commitments in an interactive way. We

have chosen to specify commitment protocols in XML format.

7.1. Protocol Specification in XML

The XML commitment specification file, first, contains the time points that are
used in the protocol. The order of the time points are important as the linear ordering

of time points is derived from the order they are in the protocol specification file.

Once the time points are specified, the protocol specification file contains the
set of commitments. These commitments are generally time bound commitments as
their validity is limited by specific time periods. A commitment element in the XML
commitment protocol file contains the following information regarding a commitment:
commitment’s unique ID, debtor of the commitment, creditor of the commitment,
proposition of the commitment, time interval of the commitment which is bounded by
two time points, time quantifier of the time interval, and finally, the set of operations

that this commitment can perform.

If we would like to put constraints between commitments or on propositions we
have to specify those constraints in the XML commitment protocol file after enlist-
ing all the commitments. Constraint between a pair of commitments specify if one
commitment of the pair has to be valid before the other or they have to be valid at

the same time. On the other hand, constraints on propositions specify what other

44

proposition has to hold for this proposition to hold at a particular time. Time points,

commitments, and constraints appear in the commitment specification file as follows:

<protocol>
<timePoints>
<timePoint>tb</timePoint>
<timePoint>t0</timePoint>
<timePoint>te</timePoint>
</timePoints>
<commitments>
<commitment>
<commitmentId>C1</commitmentId>
<debtor>x</debtor>
<creditor>y</creditor>
<proposition>p</proposition>
<time>
<from>t1</from>
<to>t2</to>
<quantifier>Existential</quantifier>
</time>
<operation>Cancel</operation>
<operation>Release</operation>
</commitment>
</commitments>
<constraints>
<constraint left="C1" right="C2" relation="before"/>
</constraints>
<cnstsOnProp>
<cnstOnProp prop="q" requires="p" relation="parallel"/>
</cnsts0OnProp>

</protocol>

45

7.2. Design of the Tool

The software tool “Protocol Validator”, developed in Java, first reads protocol
specification from an XML file which contains the time points in linear order and
the commitments along with their time bounds. The protocol file may also contain
constraints, if any, between commitments or on propositions. The constraints can

assist us in resolving some of the conflicts or in labeling a conflict as unrealistic.

After reading the specification file, Protocol Validator generates a commitment
graph from the commitments. The commitment graph is necessary in order to detect
the commitments that cannot be resolved. Protocol Validator marks an unresolvable
node as black which can be made white with the help of Protocol Validator by creating
a link with this node to node RC.

Once the commitment graph is created, Protocol Validator proceeds to detect
conflicting commitments if any. Conflicts are displayed and options are provided on
how a particular conflict can be resolved. The user can use a suitable option to re-
solve a conflict. If a commitment is modified, the protocol designer can re-create the
commitment graph to check whether a modification in a commitment creates a new
conflict. This process advances iteratively until the protocol designer gets a consis-
tent and conflict-free commitment protocol that adequately reflects the work-flow of

an organization.

Protocol Validator also creates upper level commitments from the existing base
level commitments and displays them. If a protocol is modified by Protocol Validator,
the modified protocol can be saved in XML format for later use. Using Protocol
Validator, two or more commitments can be combined together and the unified protocol

can be saved as well.

46

7.3. Packages Designed in Java

The packages, designed to develop Protocol Validator are described below:

edu.boun.cmpe.cmt.time This package contains TimePoint class and TimeQuan-
tifier interface. TimePoint class defines a time point. TimeQuantifier interface
defines two time quantifiers: one is universal and the other is existential. Time-
PointList class is a collection that contains all the time points in linearly increas-
ing order. Timelnterval class defines a time interval between two TimePoints
and is associated with a TimeQuantifier.

edu.boun.cmpe.cmt.operation This package contains Operation class and Opera-
tionType interface. OperationType interface defines the operations that can be
used on commitments. Operation class defines an operation.

edu.boun.cmpe.cmt.commitment The core class in this package is the Commit-
ment class from which several other classes are derived. Commitment class de-
fines a base level commitment. TimeBoundCommitment class is derived from this
class which defines a commitment with an associated Timelnterval. ConflictType
interface defines the type of conflict between commitments given time bound.
ConflictingCommitments class contains a pair of conflicting commitments. Con-
flictingCommatmentsGiven TimeBound is derived from this class which contains a
pair of conflicting commitments, the time interval in which they conflict and the
conflict type. Finally, DuplicateCommitments class contains a pair of duplicate
commitments.

edu.boun.cmpe.cmt.commitment.ulc This package contains UpperLevel Commit-
ment class and CommitmentAggregation interface. UpperLevelCommitment class
contains an upper level commitment generated from a set of base level commit-
ments. CommitmentAggregation interface defines the types of aggregation.

edu.boun.cmpe.cmt.graph This package contains Node class that defines a node
created from a commitment, DirectedEdge class that defines a directed edge be-
tween nodes, NodeColor interface that defines node colors, and Graph class that
contains functions to create a commitment graph. Graph class also contains the

functions that detects conflicts and duplicates among commitments.

47

edu.boun.cmpe.cmt.constraint There are two classes in this package: Constraint
class defines a constraint between a pair of commitments while ConstraintOn-

Proposition class defines a constraint on a proposition.

In this chapter, we have discussed the software tool that we have developed in
order to implement the concepts regarding commitment and time we have explained
earlier. In doing so, we have shown that these concepts can be implemented and
in the next chapter we describe a case study involving protocol specifications of two

organizations that are combined in Protocol Validator.

48

8. A CASE STUDY

In this chapter, a detailed analysis of how an organization can be stated in terms of
commitments is given. We envision a hypothetical business organization that produces
and sells toys. Let us call this organization OrgL. Later we will analyze how this
organization can be combined with a similar but smaller organization, called OrgS.
OrgS also produces toys but they do not sell directly to the market. OrgS merely acts

like a subcontractor and works for other larger organizations.

At the top of the organizational hierarchy of organization OrgL is the General
Manager (GMorqr,) who delegates his duties through various department heads (D Hs)
of the organization. For simplicity, we will include a subset of the departments, which
are Production (Pr), Internal Sales (Is), External Sales (Es) and Inventory (In).
The Pr department of OrgL and the DH of this department will denoted as Proygr
and DHg,Tg 1, respectively. An employee (E) working in the Production department

will be denoted as EPT%SI

o1, Where id is used to distinguish several employees. The

commitments that we are going to specify here will be for a specific year which is

divided into Quarters, denoted as (Q;) where i is a quarter number.
Let us assume that there are two employees in Pro,,; who commit to their

DH{! ;. to produce toys (Produce) for the first three quarters. The commitments of

these employees are formally specified below.

C%TQL (EPT(l)rgL, DHgfgL, Produce) [@Q1] U — Employee One of the Production depart-

ment commits to the department head to produce toys in the first quarter.
Similarly for the other two quarters, the commitments are:
C%rgL (EPrérgL, DHg]fgL, Produce) [Qs] U

C’grgL (EPrérgL, DHg,TgL, Produce) [Qs] U

49

For the second employee in the production department (EP?%WL), the corre-

sponding three commitments for four quarters are:

C’érgL (EP?%TQL, DHE" ., Produce) [Q,] U

rgl>

CgrgL (EPr%rgL, DHg,’fgL, Produce) [Qs] U

C’grgL (EP?%TQL, DHg:gL, Produce) [Qs] U
Please note that neither of these two employees makes any commitment to pro-

duce toys for the fourth quarter.

Internal Sales department has one employee (EIsp,,;) for the domestic market
who commits to the respective department head (DHS;, ;) to sell toys (Sell) in each

quarter. The corresponding four commitments for four quarters are:
CgrgL (E[810r9L7 DHéigL’ Sell) [Ql] U
CgrgL (EISlOrgL7 DHéigL? Sell) [QQ] U

Corgr, (Elsp,yr, DHE, ., Sell) [Qs] U

rgL
Cé?“gL (E[‘SlOrgL7 DHéigL’ Sell) [Q4] U

And, the only employee (EEslorg ;) in the external sales department commits to
the respective department head (DHE},;) to sell toys (Sell) in the overseas market in

each quarter. The corresponding four commitments for four quarters are:
C%ITQL (EES%)rgL7 DHgigLv Sell) [Ql] U

Cé%“gL (EESlorgL7 DHEﬁgL? Sell) [QQ] U

20

13
CYO

rglL

(EESlOrgL7 DHEﬁgL? Sell) [Q3] U
C%%‘gL (EESlOrgL7 DHgﬁgLv Sell) [Q4] U

The employee in Inventory (EIng,,;) commits to the Inventory Department Head
(DHE}, L) to take inventory (T'ake Inventory or T1T in short) once in every quarter who
in turn commits the same thing to the General Manager (GMp,41,). The corresponding
commitments are:

15
CYO

rgL (E[nlOrgL7 DHé?"gL? T[) [Ql] E

16
Co

rgL

(EInggr, DHGgr, TT) Q2] B

17
CYO

rgL (E[nlOrgL7 DHé?gL? T[) [Q3] E

18
Co

rgL

(EInggr, DHGpgr, TT) [Qa] B

19
CYO

rgL (DHé?“gL7 GMOTgL7 TI) [Ql] E

20
Co

rgL

(DHg?"gLa GMO?"QLv TI) [QQ] E
CglrgL (DHéﬁgL7 GMOT!]L7 TI) [Q3] E
C%QrgL (DHg;gL7 GMO?"QL7 TI) [Q4] E

And finally, a contradictory commitment from the employee in the external sales
department (EEsp,,;) where it makes a commitment not to sell (Not Sell) the toys
for the whole year! The idea here is to show how a conflict can be managed in Protocol

Validator. This commitment is specified below:

Cg,,gL (EESlorgL7 DHg;?gL, Not Sell) [Y] U, where Y = Q1 + Q2 + Q3 + Q4

o1

When we feed Protocol Validator with this commitment protocol, conflicts among

commitments are detected in line with our expectations. The commitment CgrgL

is
in conflict with the commitments Cf,.,;, Ci.yr, Chiypy and Ch,p because EEsp,
is now making a commitment of not selling which contradicts with all of its earlier

commitments of selling in the same time period.

The best way to deal with this conflict is to discard commitment C’grg 1, as not
only does it cause a total of four conflicts but also a commitment of not selling is not
simply required. Similarly, we can shift the time bound of commitment C’grg ;, such

that the new time bound does not overlap with the year in question.

After discarding the contradictory commitment and processing the protocol again,
we see that although there is no conflict in the protocol, some of the commitments are
not realistic. C%%g ;, and C%‘ig 1, cannot be fulfilled as it violates the constraint which
says that in order to Sell toys, there must be some commitment to Produce them
in the same time interval. Currently there is no commitment to Produce toys in the
fourth quarter. Therefore, any commitment to Sell toys in the fourth quarter would

be unrealistic.

Analyzing remaining commitments further, we obtain a set of Upper Level Com-
mitments (ULC). The first three ULCs are constructed by aggregation on debtors. The
first ULC states that employees EPT(I)WL and EP?%TQ ; together will produce toys in
the first quarter which is equivalent to stating that the production department, Pr
(comprising of two employees) now commits to DHSIQL to Produce toys for the first

quarter. The ULC is,

ULCH, o1, (EPrb, g +EPT3, ., DHGY L, Produce) [Q1] U {Ch, 1, Cb,or} — aggregation

on debtor of base level commitments, C},,, and C,., ;.
Similarly, the other two ULCs by aggregating debtors are:

ULC%rgL (EprérgL + EPTQOTgL? DHS?%L? PTOduce) [Q2] U {CgrgL7CgrgL}

o2

ULCgrgL (EprérgL + EPTQOTgL’ Dngngv P’T’OdUCtﬁ) [Q3] U {CgrgL7CgrgL}

Then two ULCs by aggregating time (adding first three quarters) for these two
employees separately in the Production department are obtained. Each employee com-

mits to Produce for a period of first three quarters.
ULCérgL (EprérgLv DHgfgLv Produce) [Ql + QQ + Q3] U {C%rgL7 C%rgL? CgrgL}
ULCgrgL (EPT%TQL7 DH(];:gLv PTOduce) [Ql + QQ + Q3] U {CérgL7 C?)rgL? CgrgL}

The Internal Sales employee (ET Slorg 1) is now expected to sell toys for the whole

year.

ULCgrgL (EllergL7 DHéSrgL7 Sell) [Ql + Q2 + Q3 + Q4] U {CgrgL7 C%rgL? COTgL? OrgL}

Similarly, for the External Sales employee (EES%)WL) we obtain another ULC.

ULCgrgL (EESlOrgL7 DHgﬁgL7 S@ll) [Q1+Q2+Q3+Q4] U { OrgL7 COTgL? COTgL? OrgL}

The Inventory employee (EIng,,;) commits to take inventory (7'1) once in each

quarter. So does the Inventory Department Head (DHJ, ;).
ULCgrgL (E[nlOrgL7 DHé?"gL? T[) [Ql + QQ + Q3 + Q4] E { OrgL7 COTgL? COTgL? OrgL}

ULC%T‘QL (DHOrgL’ GMO?"QL’ TI) [Ql + QQ + Q3 + Q4] E { OrgL’ C107’gL’ COrgL’ OrgL}

And finally, four ULCs are created on transitivity of commitments. As the em-
ployee in the Inventory department (ET nIOrg ;) commits to T'ake Inventory to the de-
partment head (DHOr) who in turn commits the same thing to the General Manager

(GMoryr,) for each quarter. These ULCs are:

ULCOrgL (EInIOrgL7 GMO?"QL7 TI) [Ql] E {C(l)g;’gL’ OrgL}

23

ULCOrgL (E[nlOrgL7 GMOT!]L7 TI) [Q2] E {Cgi"glﬂ OrgL}
ULCOrgL (EInOrgL7 GMO?"QL7 TI) [Q3] E {COrgln OrgL}
ULCOrgL (E[nOrgL7 GMOT!]L7 TI) [Q4] E {COrgL7 OrgL}

Each of these ULCs now states that the employee in the Inventory department
(EIng,,;) commits to the General Manager (GMo,yr) to Take Inventory in each

quarter.

Cooperating with Another Organization: Since OrgL will not be producing any
toys in the fourth quarter, OrgL wants to cooperate with OrgsS so that its selling of
toys is not disrupted for the fourth quarter. OrgS only produces toys but do not have
the capability to sell them directly in the market. This makes sense for OrgS too as
its products will be sold by OrgL. They plan to cooperate from the beginning of third

quarter.

This smaller organization has a General Manager (GMo,,s), a Production de-

partment head (DHA,) and two employees (EPr},,q) and (EPrg,).

After the organizations are combined, these employees will be under the super-
vision of OrgL’s Production department head (DHSIQL). The employees commit to
their new department head to produce toys for the last two quarters of the year. The
corresponding commitments are given below.

COrgS (EPTOTQS, DHOTQL, Produce) [Qs] U
C%rgs (EPT})WS, DHgfgL, Produce) [Q4] U

COrgS (EP’/%TQS, DHg;"gL, Produce) [Q3] U

Cérgs (EPT?)rgS7 DH(?TZ]L? PTOdUC@) [Q4] U

o4

Two sets of ULCs can be obtained from these four commitments. The first set of
ULCs are based on aggregation of debtors where both employees as a group commits

to Produce to DH/ ; in each of the last two quarters.
ULCérgS (EprbrgS + EPTZOrgS? DnggLv PTOduce) [Q3] U {Cérgsv CgrgS}
ULC%rgS (EPTéTgS + EPTQOTgS? DHgﬁgLv PT‘OdUCG) [Q4] U {C%rgSv CérgS}

The second set of ULCs are based on time aggregation where each employee

commits to Produce for two quarters combined.
ULC%TQS (Eprérgs7 DHS?Z)L? PT‘OdUCG) [Q3 + Q4] U {C%rgs7 C%rgs}
ULC}, s (EPrd,,s, DHST 1, Produce) [Qs + Q4] U {C3,,5, CH,ys}

When we combine these two organizations, the first thing we expect to see and
we do see that the unrealistic commitments in OrgL becomes realistic as substitute
productions capability is added for fourth quarter. Therefore, the employees in the

sales departments can now continue selling toys for the fourth quarter.

As these two organizations are combined together, we obtain a slightly different
set of ULCs acknowledging the fact that two sets of commitments are now used together
to obtain these ULCs. This time the commitments of the employees of OrgS are also

taken into account.

The commitment protocols specifying the work-flows of organizations OrgL and
OrgS in XML format are given in APPENDIX A and APPENDIX B, respectively. In
APPENDIX C, included is the combined commitment protocol.

25

9. DISCUSSION

In this thesis, we have developed a commitment-based approach for representing
inter-agent communications in a multiagent organization. In this approach, a set of
commitments forms a commitment protocol which is used to represent the work-flow

of a multiagent organization.

Our work builds on some previous work on this field, notably [5, 10], where the
concept of commitments and operations on commitments are presented in detail. In [5],
a set of algorithms is presented that helps us detect conflicts among commitments and
check for consistency and correctness in the commitment protocol. These algorithms
first create a commitment graph and then detects unresolvable commitments in the
commitment protocol. However, the commitments used in these algorithms do not

accommodate the notion of time.

For a commitment protocol to represent the work-flow of multiagent organizations
in a realistic way, the concept of time needs to be associated with commitments. This
implies that commitments should be bound by a finite period of time. In our work, we
have developed the idea of time bound commitments where commitments remain valid
for a specified finite period of time. In doing so, we have introduced a number of key
concepts related to the notion of time. In our model, time is represented as a collection
of linearly ordered discrete time points. Two time points form a time interval, and we
use this time interval to indicate the period of time in which a commitment is expected
to be valid. Time intervals are quantified by one of the two time quantifiers — universal
quantifier requires that the proposition of a commitment holds along the entire time
interval whereas existential quantifier requires the proposition to hold at least once

during the entire time interval.

We also introduce the transition point that facilitates conflict-free reversal of a
proposition at a particular time point. We redefine the term conflict among com-

mitments as the association of time with commitments may render some previously

o6

detected conflicts (without taking into account the notion of time) no longer in con-

flict.

Once commitments are bounded with time intervals, we modify the existing al-
gorithms and develop a new algorithm to deal with the notion of time while detecting
conflicts among commitments. When a pair of time bound commitments does not
have an overlapping time interval, there is no scope for conflict. Therefore, the set of
conflicts among time bound commitments is intuitively a subset of the set of conflicts

among commitments when time periods are not considered.

We have discussed all of the main conflict scenarios that may arise among com-
mitments in a commitment protocol representing the work-flow of a multiagent orga-
nization. These scenarios primarily differ on the basis of the overlapping section of
two time intervals. These are identical, containing, and intersecting time intervals. In
some instances a conflict between a pair of commitments is simply a possibility while
in other instances a conflict is certain to occur. Time quantifiers of the commitments
in a conflict are used to judge whether a conflict is a mere possibility or the conflict is

a certainty.

In our work, we have formulated a number of strategies to deal with conflicts
among time bound commitments and ways to resolve them, if possible. The simplest
way is to get rid of a commitment that causes conflict. But this approach might prevent
us from representing a multiagent organization in a realistic manner. Hence, instead
of discarding a commitment altogether from a commitment protocol, we may use two
other strategies for resolving conflicts — modifying the composition of a commitment
or shifting time intervals of commitments. We can also use constraints between com-
mitments such that two conflicting commitments do not have to be valid during the
same time period by stating that for a commitment to be valid the other commitment

must be fulfilled and hence cease to exist.

Although a commitment may not be in conflict, it, nonetheless, may be unrealistic

if it depends on other commitment to be fulfilled before this commitment can be fulfilled

57

and the other commitment on which this commitment depends on is not fulfilled or

does not exist at all.

We have also discussed how we can create an upper level abstraction of commit-
ments by grouping related commitments so that we have a concise view of the work-flow
of a multiagent organization. Upper level commitments reflect the inherent logical sim-
ilarities among lower level commitments. Upper level abstraction of commitments can
be created by aggregating time intervals of similar commitments, by grouping agents
who make same propositions, by grouping commitments that are part of a larger con-
ceptual commitment, and by capturing the inherent transitive relation of a number of

commitments.

When we create an upper level abstraction of commitments we might loose some
base level details as aggregation, by definition, may cause some low level information
loss. It is up to the commitment protocol designer whether to proceed with the ab-

straction in the face of information loss.

We have shown a way to merge multiple work-flows of multiagent organizations
by integrating their individual commitment protocols. This reflects real-life situations

when two organizations merge with each other.

To supplement out theoretical work, we have developed a software tool in Java
that can help a commitment protocol designer to design a sound and consistent com-
mitment protocol. Commitment protocols, specified in XML format, are fed to this
tool and the tool detects inconsistencies and conflicts among commitments, if any. The
commitment protocol developer can deal with these inconsistencies and conflicts in an
interactive way with the tool and this process iterates until the protocol designer gets
a set of consistent and conflict-free commitments that satisfactorily meets the design
requirements. The tool also creates and displays the upper level commitments from

the existing base level commitments.

o8

9.1. Literature Survey

In [10], Singh presents a rich definition of social commitments that motivates
an architecture for multiagent systems. He calls this spheres of commitment. He
identifies key operations on commitments and multiagent systems. Multiagent systems,
viewed as spheres of commitment, provide the context for the different operations on
commitments. He synthesizes ideas from multiagent systems, especially that of social
context, with the ideas of ethics and legal reasoning by capturing normative concepts

such as obligations, taboos, conventions, and pledges as different kind of commitments.

In [5], Yolum develops and formalizes design requirements for developing correct
and consistent commitment protocols. She establishes and applies correctness prop-
erties on commitment protocols, and designs a number of algorithms that checks for
correctness and consistency in commitment protocols. A correct commitment proto-
col defines the necessary interactions among agents to lead a multiagent system to its
desired state. Our thesis primarily builds on the concepts and algorithms presented

here.

Although the algorithms described here for checking consistency and correctness
of commitment protocols, do not take the notion of time into account, we in our work

incorporate the concept of time in order to realistically specify commitments.

Fornara and Colombetti [7] develop a method for agent communication based on
the social notion of commitments where commitments are defined operationally within
an object-oriented paradigm. They formalize operational specification of commitment
class as an abstract data type and they use commitment objects (an instance of com-
mitment class) to define the meaning of speech acts. In this way they can verify the

soundness of conversational protocols.

Their approach in defining a standard agent communication language (ACL) is
based on speech act theory [14] which views language use as a form of action, making

it possible to treat communicative acts and other types of actions in a uniform way.

29

Speech act theory appears so suitable to describe communicative interactions among
artificial agents that almost all existing proposals for ACLs are based on it. Further-
more, as it provides an adequate approach to human communication, speech act theory

allows the successful mixed interactions among human beings and software agents.

In their work, the characteristics, structures and the evolution of commitments
through time are analyzed. They discuss further on the concepts of social commit-
ment, conditional commitment, precommitment, and temporal proposition. Although
they define commitment-based semantics for inter-agent communication, they do not
elaborate on any possible inconsistency that may arise in the protocol and how to re-
solve this inconsistency. Nor do they use any time frame for commitments that would

indicate how long a commitment should continue to persist.

Artikis et al. [8] develop a framework to specify, animate, and reason about open
computational societies. They provide a formal framework for executable specifications
of open computational societies. A computational society is open if it has following
properties: 1) the behavior of the members and their interactions cannot be predicted
in advance, 2) the internal architecture of the agents is not publicly known, and 3) the

member of the society do not necessarily have common goals, desires or intentions.

They also identify a number of concepts that characterize an open agent society.
A society is characterized by a set of agents, a set of constraints on the society (such
as norms), a set of roles that members can play, the state of the members and the
environment in which they act, a communication language, relationship between the
members, and the structure of the society. Among these concepts, they focus more
on social constraints, social roles, and social states. They make use of event calculus
in their approach of identifying the concepts of computational societies, such as social
roles and social states. But they do not provide any design rules to establish the

correctness of the executed societies.

Chopra and Singh [15] formulate a method to generate new protocols from ex-

isting protocols by applying transformers on existing protocols. The main idea here is

60

that as an existing protocol may not exactly fit all the possible different circumstances
that may arise in different contexts, the existing protocol needs to be transformed to
handle different contexts (i.e., circumstances). In this sense a protocol is said to be

contextualized to ensure correct interactions that might depend upon context.

Developing protocols from scratch for each of the possible contexts is an enormous,
difficult, tiresome and error prone task. Instead, transformers can be used on existing
protocols when and where applicable in order to considerably reduce and simplify the
work load on part of the protocol designer. They specify protocols and transformers
formally and declaratively where each transformer may be designed for a particular

aspect of context.

They use a purchase protocol as an example and show how different variations
of the purchase act can be handled when the protocol is transformed in different ways
by composing its specification with different transformer specifications. They specify
one transformer that accommodates reminders; another that accommodates returns
and refunds. One of the problems that may arise is that transforming protocols in
this way may result in conflict between the original protocol and its transformer. In
addition there is no guarantee that the resulting protocol will always allow meaningful

transactions.

Mallya, Yolum, and Singh [12] develop a representation for temporal content of
commitments in order to capture implicit temporal references and avoid ambiguities.
They propose a temporal framework along with temporal qualification on commit-
ments. They also provide the grammar — expressed in Backus-Naur Form, and se-
mantics for the formal language to describe their scheme. Furthermore, they focus
on commitment life cycle (from creation to breach or from creation to satisfaction)
and resolving temporal commitments. A commitment is resolvable if its satisfaction or
breach can be determined at some point. They develop methods to detect resolvabil-
ity of temporally quantified propositions. They introduce time intervals and temporal
anaphora to deal with time periods which is usual in real-life business deals. However,

they do not consider finding conflicts between commitments as we have done here.

61

In [6], Singh discusses how commitments relate to various aspects of agents and
what roles they play in multiagent systems. His approach relies on social concepts to
formalize commitments. He presents the unifying principles behind commitment for
single-agent and multiagent systems that are based on database-specific ramifications
through a synthesis of databases and distributed computing. This synthesis involves a
generalization of sphere of control which seeks to characterize activities more generally
than database transactions as the limitations of traditional transactions are not suitable

for open environments.

In his work, Singh primarily focuses on 1) commitment and spheres of control
in databases, 2) commitment in multiagent systems and its connection with group
structures, and 3) formalization of commitments that explicitly considers context. He
discusses social actions in order to elaborate operations on commitments and logical

form of commitments.

Dignum, Vézquez-Salceda, and Dignum [16] propose a framework, called OMNI
(Organizational Model for Normative Institutions), for modeling different multiagent
organizations — ranging from closed systems to open, flexible environments. OMNI
allows a balance between the global organizational requirements and the autonomy of
individual agents by integrating norms and contextual meanings of interactions among
agents in one framework. Both the norms that regulate interaction between agents
and the contextual meaning of these interactions are important aspects for specifying

organizational structure.

OMNT is composed of three dimensions: Normative, Organizational and Onto-
logical that characterize the environment and the framework is organized into three
levels of abstraction: Abstract, Concrete and Implementation Level. It provides a
formal logical semantics for all of its dimensions in order to ensure consistency. The
modular structure of OMNI facilitates the adaptation of the framework to different
types of domains. In those domains, with none or small normative components, de-
sign is guided by the Organizational dimension, while in highly regulated domains the

Normative dimension is more important and thus affects the design. Our work differs

62

from OMNI as we use commitmnet-based approach where as ONMI is based on social

and normative concepts such as organization structures, norms and domain language.

Alberti et al. [17] develop a formalism to specify constraints on agent interac-
tion and a tool that is able to observe and check for agent compliance to interaction
protocols. The tool is developed in Java and Prolog that utilizes logic programming
technology. Their work is devoted to testing the compliance of agents to social rules,
without having any knowledge on the internals of the agents. They provide a language,
based on logics, to define the interaction protocols, and a proof-procedure, based on
abduction, to check the compliance. Our work is different from this one in the sense
that our main concern is to generate consistent and correct commitment protocol for a
multiagent organization whereas this work is mainly concerned with the protocol run

and compliance issue.

9.2. Future Directions

In our work, we have focused on introducing time and generating correct commit-
ment protocol specification during compile time. A logical extension of our work would
be to verify commitment protocols during run time. The protocol representation should
allow the detection of non-compliant agents. By keeping track of the commitments that
are created and resolved in the system, any violations of the protocol together with the

violating agent can be detected.

Organization state transition can be incorporated into the system along with the
time line such that when a commitment is discharged or canceled, among others, the
organization state should change to another state from current state. By observing
state transitions, a commitment’s life cycle can be tracked to see if it is being fulfilled
or violated. At the same time as agents fulfill or violate their commitments, complaint
and non-compliant agents can be detected. At the end of the protocol run, the designer

then can check whether the commitment protocol works as intended.

63

Currently, we are not equipped to process quantifiable information in commit-
ments in general, and in propositions in particular. Two propositions of producing 100
items should amount to a single proposition of producing 200 items. On the contrary,
two propositions of turning on a particular light should amount to a single proposition

of turning on a particular light once.

The software tool provides suggestions, in a very naive and wholesale way, on
how a conflict can be resolved. Contemporary Al techniques can be used to prioritize
conflict resolution strategies, for instance, finding a non-conflicting time interval for a

conflicting commitment.

These are some interesting directions that we differ to future work.

APPENDIX A: COMMITMENT PROTOCOL OF OrgL

<?xml version=’1.0’ encoding=’utf-8’7>

<protocol>

<timePoints>
<timePoint>tb</timePoint>
<timePoint>Q1_B</timePoint>
<timePoint>Q1_E</timePoint>
<timePoint>Q1_2</timePoint>
<timePoint>Q2_B</timePoint>
<timePoint>Q2_E</timePoint>
<timePoint>Q2_3</timePoint>
<timePoint>Q3_B</timePoint>
<timePoint>Q3_E</timePoint>
<timePoint>Q3_4</timePoint>
<timePoint>Q4_B</timePoint>
<timePoint>Q4_E</timePoint>
<timePoint>te</timePoint>

</timePoints>

<l--

Orgl: Large Organization

GML: General Manager of OrgL
Departments Department Head
Pr: Production DPrL

Is: Internal Sales DIsL

Es: External Sales DEsL

In: Inventory DInL
Propositions

Produce: Produce Toys of Type A

Employees

EPrL1, EPrL2
EIsL1, EIsL2
EEsL1, EEsL2
EInL1l, EInL2

64

Sell: Sell Toys of Type A
TI: Take Inventory

-=>

<commitments>
<commitment>
<commitmentId>CL1</commitmentId>
<debtor>EPrL1</debtor>
<creditor>DPrL</creditor>
<proposition>Produce</proposition>
<time>
<from>Q1_B</from>
<to>Q1_2</to>
<quantifier>Universal</quantifier>
</time>
<operation>Discharge</operation>
</commitment>
<commitment>
<commitmentId>CL2</commitmentId>
<debtor>EPrL1</debtor>
<creditor>DPrL</creditor>
<proposition>Produce</proposition>
<time>
<from>Q1_2</from>
<to>Q2_3</to>
<quantifier>Universal</quantifier>
</time>
<operation>Discharge</operation>
</commitment>
<commitment>
<commitmentId>CL3</commitmentId>

<debtor>EPrL1</debtor>

65

<creditor>DPrL</creditor>
<proposition>Produce</proposition>
<time>
<from>Q2_3</from>
<to>Q3_4</to>
<quantifier>Universal</quantifier>
</time>
<operation>Discharge</operation>
</commitment>
<commitment>
<commitmentId>CL4</commitmentId>
<debtor>EPrL2</debtor>
<creditor>DPrL</creditor>
<proposition>Produce</proposition>
<time>
<from>Q1_B</from>
<to>Q1_2</to>
<quantifier>Universal</quantifier>
</time>
<operation>Discharge</operation>
</commitment>
<commitment>
<commitmentId>CL5</commitmentId>
<debtor>EPrL2</debtor>
<creditor>DPrL</creditor>
<proposition>Produce</proposition>
<time>
<from>Q1_2</from>
<to>Q2_3</to>
<quantifier>Universal</quantifier>
</time>

<operation>Discharge</operation>

66

</commitment>
<commitment>
<commitmentId>CL6</commitmentId>
<debtor>EPrL2</debtor>
<creditor>DPrL</creditor>
<proposition>Produce</proposition>
<time>
<from>Q2_3</from>
<to>Q3_4</to>
<quantifier>Universal</quantifier>
</time>
<operation>Discharge</operation>
</commitment>
<commitment>
<commitmentId>CL7</commitmentId>
<debtor>EIsL1</debtor>
<creditor>DIsL</creditor>
<proposition>Sell</proposition>
<time>
<from>Q1_B</from>
<to>Q1_2</to>
<quantifier>Universal</quantifier>
</time>
<operation>Discharge</operation>
</commitment>
<commitment>
<commitmentId>CL8</commitmentId>
<debtor>EIsL1</debtor>
<creditor>DIsL</creditor>
<proposition>Sell</proposition>
<time>

<from>Q1_2</from>

67

<to>Q2_3</to>
<quantifier>Universal</quantifier>
</time>
<operation>Discharge</operation>
</commitment>
<commitment>
<commitmentId>CLI9</commitmentId>
<debtor>EIsL1</debtor>
<creditor>DIsL</creditor>
<proposition>Sell</proposition>
<time>
<from>Q2_3</from>
<to>Q3_4</to>
<quantifier>Universal</quantifier>
</time>
<operation>Discharge</operation>
</commitment>
<commitment>
<commitmentId>CL10</commitmentId>
<debtor>EIsL1</debtor>
<creditor>DIsL</creditor>
<proposition>Sell</proposition>
<time>
<from>Q3_4</from>
<to>Q4_E</to>
<quantifier>Universal</quantifier>
</time>
<operation>Discharge</operation>
</commitment>
<commitment>
<commitmentId>CL11</commitmentId>

<debtor>EEsL1</debtor>

68

<creditor>DEsL</creditor>
<proposition>Sell</proposition>
<time>
<from>Q1_B</from>
<to>Q1_2</to>
<quantifier>Universal</quantifier>
</time>
<operation>Discharge</operation>
</commitment>
<commitment>
<commitmentId>CL12</commitmentId>
<debtor>EEsL1</debtor>
<creditor>DEsL</creditor>
<proposition>Sell</proposition>
<time>
<from>Q1_2</from>
<to>Q2_3</to>
<quantifier>Universal</quantifier>
</time>
<operation>Discharge</operation>
</commitment>
<commitment>
<commitmentId>CL13</commitmentId>
<debtor>EEsL1</debtor>
<creditor>DEsL</creditor>
<proposition>Sell</proposition>
<time>
<from>Q2_3</from>
<to>Q3_4</to>
<quantifier>Universal</quantifier>
</time>

<operation>Discharge</operation>

69

</commitment>
<commitment>
<commitmentId>CL14</commitmentId>
<debtor>EEsL1</debtor>
<creditor>DEsL</creditor>
<proposition>Sell</proposition>
<time>
<from>Q3_4</from>
<to>Q4_E</to>
<quantifier>Universal</quantifier>
</time>
<operation>Discharge</operation>
</commitment>
<commitment>
<commitmentId>CLC</commitmentId>
<debtor>EEsL1</debtor>
<creditor>DEsL</creditor>
<proposition>-Sell</proposition>
<time>
<from>Q1_B</from>
<to>Q4_E</to>
<quantifier>Universal</quantifier>
</time>
<operation>Discharge</operation>
</commitment>
<commitment>
<commitmentId>CL15</commitmentId>
<debtor>EInL1</debtor>
<creditor>DInL</creditor>
<proposition>TI</proposition>
<time>

<from>Q1_B</from>

70

<to>Q1_2</to>
<quantifier>Existential</quantifier>
</time>
<operation>Discharge</operation>
</commitment>
<commitment>
<commitmentId>CL16</commitmentId>
<debtor>EInL1</debtor>
<creditor>DInL</creditor>
<proposition>TI</proposition>
<time>
<from>Q1_2</from>
<to>Q2_3</to>
<quantifier>Existential</quantifier>
</time>
<operation>Discharge</operation>
</commitment>
<commitment>
<commitmentId>CL17</commitmentId>
<debtor>EInL1</debtor>
<creditor>DInL</creditor>
<proposition>TI</proposition>
<time>
<from>Q2_3</from>
<to>Q3_4</to>
<quantifier>Existential</quantifier>
</time>
<operation>Discharge</operation>
</commitment>
<commitment>
<commitmentId>CL18</commitmentId>

<debtor>EInL1</debtor>

71

<creditor>DInL</creditor>
<proposition>TI</proposition>
<time>
<from>Q3_4</from>
<to>Q4_E</to>
<quantifier>Existential</quantifier>
</time>
<operation>Discharge</operation>
</commitment>
<commitment>
<commitmentId>CL19</commitmentId>
<debtor>DInL</debtor>
<creditor>GML</creditor>
<proposition>TI</proposition>
<time>
<from>Q1_B</from>
<to>Q1_2</to>
<quantifier>Existential</quantifier>
</time>
<operation>Discharge</operation>
</commitment>
<commitment>
<commitmentId>CL20</commitmentId>
<debtor>DInL</debtor>
<creditor>GML</creditor>
<proposition>TI</proposition>
<time>
<from>Q1_2</from>
<to>Q2_3</to>
<quantifier>Existential</quantifier>
</time>

<operation>Discharge</operation>

72

73

</commitment>
<commitment>
<commitmentId>CL21</commitmentId>
<debtor>DInL</debtor>
<creditor>GML</creditor>
<proposition>TI</proposition>
<time>
<from>Q2_3</from>
<to>Q3_4</to>
<quantifier>Existential</quantifier>
</time>
<operation>Discharge</operation>
</commitment>
<commitment>
<commitmentId>CL22</commitmentId>
<debtor>DInL</debtor>
<creditor>GML</creditor>
<proposition>TI</proposition>
<time>
<from>Q3_4</from>
<to>Q4_E</to>
<quantifier>Existential</quantifier>
</time>
<operation>Discharge</operation>
</commitment>

</commitments>
<constraintsOnProposition>
<constOnProp prop="Sell" req="Produce" relation="para'"></constOnProp>

</constraintsOnProposition>

</protocol>

APPENDIX B: COMMITMENT PROTOCOL OF OrgS

<?xml version=’1.0’ encoding=’utf-8’7>

<protocol>

<timePoints>
<timePoint>tb</timePoint>
<timePoint>Q1_B</timePoint>
<timePoint>Q1_E</timePoint>
<timePoint>Q1_2</timePoint>
<timePoint>Q2_B</timePoint>
<timePoint>Q2_E</timePoint>
<timePoint>Q2_3</timePoint>
<timePoint>Q3_B</timePoint>
<timePoint>Q3_E</timePoint>
<timePoint>Q3_4</timePoint>
<timePoint>Q4_B</timePoint>
<timePoint>Q4_E</timePoint>
<timePoint>te</timePoint>

</timePoints>

<l--
OrgS: Small Organization

GML: General Manager of OrgS

Departments Department Head Employees
Pr: Production DPrS EPrS1, EPrS2
Propositions

Produce: Produce Toys of Type A

-=>

<commitments>

<commitment>
<commitmentId>CS1</commitmentId>
<debtor>EPrSi</debtor>
<creditor>DPrL</creditor>
<proposition>Produce</proposition>
<time>
<from>Q2_3</from>
<to>Q3_4</to>
<quantifier>Universal</quantifier>
</time>
<operation>Discharge</operation>
</commitment>
<commitment>
<commitmentId>CS2</commitmentId>
<debtor>EPrSi1</debtor>
<creditor>DPrL</creditor>
<proposition>Produce</proposition>
<time>
<from>Q3_4</from>
<to>Q4_E</to>
<quantifier>Universal</quantifier>
</time>
<operation>Discharge</operation>
</commitment>
<commitment>
<commitmentId>CS3</commitmentId>
<debtor>EPrS2</debtor>
<creditor>DPrL</creditor>
<proposition>Produce</proposition>
<time>
<from>Q2_3</from>

<to>Q3_4</to>

75

<quantifier>Universal</quantifier>
</time>
<operation>Discharge</operation>
</commitment>
<commitment>
<commitmentId>CS4</commitmentId>
<debtor>EPrS2</debtor>
<creditor>DPrL</creditor>
<proposition>Produce</proposition>
<time>
<from>Q3_4</from>
<to>Q4_E</to>
<quantifier>Universal</quantifier>
</time>
<operation>Discharge</operation>
</commitment>

</commitments>

</protocol>

76

APPENDIX C: AFTER COMBINING OrgL AND OrgS

<?xml version=’1.0’ encoding=’utf-8’7>

<!I-- Created by Commitment Protocol Validator -->

<protocol>

<timePoints>
<timePoint>tb</timePoint>
<timePoint>Q1_B</timePoint>
<timePoint>Q1_E</timePoint>
<timePoint>Q1_2</timePoint>
<timePoint>Q2_B</timePoint>
<timePoint>Q2_E</timePoint>
<timePoint>Q2_3</timePoint>
<timePoint>Q3_B</timePoint>
<timePoint>Q3_E</timePoint>
<timePoint>Q3_4</timePoint>
<timePoint>Q4_B</timePoint>
<timePoint>Q4_E</timePoint>
<timePoint>te</timePoint>

</timePoints>

<commitments>
<commitment>
<commitmentId>CL1</commitmentId>
<debtor>EPrL1</debtor>
<creditor>DPrL</creditor>
<proposition>Produce</proposition>
<time>
<from>Q1_B</from>
<to>Q1_2</to>

<quantifier>Universal</quantifier>

</time>
<operation>Discharge</operation>
</commitment>
<commitment>
<commitmentId>CL2</commitmentId>
<debtor>EPrL1</debtor>
<creditor>DPrL</creditor>
<proposition>Produce</proposition>
<time>
<from>Q1_2</from>
<to>Q2_3</to>
<quantifier>Universal</quantifier>
</time>
<operation>Discharge</operation>
</commitment>
<commitment>
<commitmentId>CL3</commitmentId>
<debtor>EPrL1</debtor>
<creditor>DPrL</creditor>
<proposition>Produce</proposition>
<time>
<from>Q2_3</from>
<to>Q3_4</to>
<quantifier>Universal</quantifier>
</time>
<operation>Discharge</operation>
</commitment>
<commitment>
<commitmentId>CL4</commitmentId>
<debtor>EPrL2</debtor>
<creditor>DPrL</creditor>

<proposition>Produce</proposition>

78

<time>
<from>Q1_B</from>
<to>Q1_2</to>
<quantifier>Universal</quantifier>
</time>
<operation>Discharge</operation>
</commitment>
<commitment>
<commitmentId>CL5</commitmentId>
<debtor>EPrL2</debtor>
<creditor>DPrL</creditor>
<proposition>Produce</proposition>
<time>
<from>Q1_2</from>
<to>Q2_3</to>
<quantifier>Universal</quantifier>
</time>
<operation>Discharge</operation>
</commitment>
<commitment>
<commitmentId>CL6</commitmentId>
<debtor>EPrL2</debtor>
<creditor>DPrL</creditor>
<proposition>Produce</proposition>
<time>
<from>Q2_3</from>
<to>Q3_4</to>
<quantifier>Universal</quantifier>
</time>
<operation>Discharge</operation>
</commitment>

<commitment>

79

<commitmentId>CL7</commitmentId>
<debtor>EIsL1</debtor>
<creditor>DIsL</creditor>
<proposition>Sell</proposition>
<time>
<from>Q1_B</from>
<to>Q1_2</to>
<quantifier>Universal</quantifier>
</time>
<operation>Discharge</operation>
</commitment>
<commitment>
<commitmentId>CL8</commitmentId>
<debtor>EIsL1</debtor>
<creditor>DIsL</creditor>
<proposition>Sell</proposition>
<time>
<from>Q1_2</from>
<to>Q2_3</to>
<quantifier>Universal</quantifier>
</time>
<operation>Discharge</operation>
</commitment>
<commitment>
<commitmentId>CL9</commitmentId>
<debtor>EIsL1</debtor>
<creditor>DIsL</creditor>
<proposition>Sell</proposition>
<time>
<from>Q2_3</from>
<to>Q3_4</to>

<quantifier>Universal</quantifier>

80

</time>
<operation>Discharge</operation>
</commitment>
<commitment>
<commitmentId>CL10</commitmentId>
<debtor>EIsL1</debtor>
<creditor>DIsL</creditor>
<proposition>Sell</proposition>
<time>
<from>Q3_4</from>
<to>Q4_E</to>
<quantifier>Universal</quantifier>
</time>
<operation>Discharge</operation>
</commitment>
<commitment>
<commitmentId>CL11</commitmentId>
<debtor>EEsL1</debtor>
<creditor>DEsL</creditor>
<proposition>Sell</proposition>
<time>
<from>Q1_B</from>
<to>Q1_2</to>
<quantifier>Universal</quantifier>
</time>
<operation>Discharge</operation>
</commitment>
<commitment>
<commitmentId>CL12</commitmentId>
<debtor>EEsL1</debtor>
<creditor>DEsL</creditor>

<proposition>Sell</proposition>

81

<time>
<from>Q1_2</from>
<to>Q2_3</to>
<quantifier>Universal</quantifier>
</time>
<operation>Discharge</operation>
</commitment>
<commitment>
<commitmentId>CL13</commitmentId>
<debtor>EEsL1</debtor>
<creditor>DEsL</creditor>
<proposition>Sell</proposition>
<time>
<from>Q2_3</from>
<to>Q3_4</to>
<quantifier>Universal</quantifier>
</time>
<operation>Discharge</operation>
</commitment>
<commitment>
<commitmentId>CL14</commitmentId>
<debtor>EEsL1</debtor>
<creditor>DEsL</creditor>
<proposition>Sell</proposition>
<time>
<from>Q3_4</from>
<to>Q4_E</to>
<quantifier>Universal</quantifier>
</time>
<operation>Discharge</operation>
</commitment>

<commitment>

82

<commitmentId>CL15</commitmentId>
<debtor>EInL1</debtor>
<creditor>DInL</creditor>
<proposition>TI</proposition>
<time>
<from>Q1_B</from>
<to>Q1_2</to>
<quantifier>Existential</quantifier>
</time>
<operation>Discharge</operation>
</commitment>
<commitment>
<commitmentId>CL16</commitmentId>
<debtor>EInL1</debtor>
<creditor>DInL</creditor>
<proposition>TI</proposition>
<time>
<from>Q1_2</from>
<to>Q2_3</to>
<quantifier>Existential</quantifier>
</time>
<operation>Discharge</operation>
</commitment>
<commitment>
<commitmentId>CL17</commitmentId>
<debtor>EInL1</debtor>
<creditor>DInL</creditor>
<proposition>TI</proposition>
<time>
<from>Q2_3</from>
<to>Q3_4</to>

<quantifier>Existential</quantifier>

83

</time>
<operation>Discharge</operation>
</commitment>
<commitment>
<commitmentId>CL18</commitmentId>
<debtor>EInL1</debtor>
<creditor>DInL</creditor>
<proposition>TI</proposition>
<time>
<from>Q3_4</from>
<to>Q4_E</to>
<quantifier>Existential</quantifier>
</time>
<operation>Discharge</operation>
</commitment>
<commitment>
<commitmentId>CL19</commitmentId>
<debtor>DInL</debtor>
<creditor>GML</creditor>
<proposition>TI</proposition>
<time>
<from>Q1_B</from>
<to>Q1_2</to>
<quantifier>Existential</quantifier>
</time>
<operation>Discharge</operation>
</commitment>
<commitment>
<commitmentId>CL20</commitmentId>
<debtor>DInL</debtor>
<creditor>GML</creditor>

<proposition>TI</proposition>

84

<time>
<from>Q1_2</from>
<to>Q2_3</to>
<quantifier>Existential</quantifier>
</time>
<operation>Discharge</operation>
</commitment>
<commitment>
<commitmentId>CL21</commitmentId>
<debtor>DInlL</debtor>
<creditor>GML</creditor>
<proposition>TI</proposition>
<time>
<from>Q2_3</from>
<to>Q3_4</to>
<quantifier>Existential</quantifier>
</time>
<operation>Discharge</operation>
</commitment>
<commitment>
<commitmentId>CL22</commitmentId>
<debtor>DInL</debtor>
<creditor>GML</creditor>
<proposition>TI</proposition>
<time>
<from>Q3_4</from>
<to>Q4_E</to>
<quantifier>Existential</quantifier>
</time>
<operation>Discharge</operation>
</commitment>

<commitment>

85

<commitmentId>CS1</commitmentId>
<debtor>EPrSi1</debtor>
<creditor>DPrL</creditor>
<proposition>Produce</proposition>
<time>
<from>Q2_3</from>
<to>Q3_4</to>
<quantifier>Universal</quantifier>
</time>
<operation>Discharge</operation>
</commitment>
<commitment>
<commitmentId>CS2</commitmentId>
<debtor>EPrSi</debtor>
<creditor>DPrL</creditor>
<proposition>Produce</proposition>
<time>
<from>Q3_4</from>
<to>Q4_E</to>
<quantifier>Universal</quantifier>
</time>
<operation>Discharge</operation>
</commitment>
<commitment>
<commitmentId>CS3</commitmentId>
<debtor>EPrS2</debtor>
<creditor>DPrL</creditor>
<proposition>Produce</proposition>
<time>
<from>Q2_3</from>
<to>Q3_4</to>

<quantifier>Universal</quantifier>

86

87

</time>
<operation>Discharge</operation>
</commitment>
<commitment>
<commitmentId>CS4</commitmentId>
<debtor>EPrS2</debtor>
<creditor>DPrL</creditor>
<proposition>Produce</proposition>
<time>
<from>Q3_4</from>
<to>Q4_E</to>
<quantifier>Universal</quantifier>
</time>
<operation>Discharge</operation>
</commitment>

</commitments>
<constraintsOnProposition>
<constOnProp prop="Sell" req="Produce" relation="para'"></constOnProp>

</constraintsOnProposition>

</protocol>

88

REFERENCES

. Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.
Prentice-Hall, Englewood Cliffs, NJ, 2nd edition, 2003.

. Scott A. DeLoach. Multiagent systems engineering of organization-based multia-
gent systems. In SELMAS ’05: Proceedings of the fourth international workshop
on Software engineering for large-scale multi-agent systems, pages 1-7, New York,

NY, USA, 2005. ACM Press.

. Gerard J. Holzmann. Design and Validation of Computer Protocols. Prentice Hall

International, Inc., AT&T Bell Laboratories, Murray Hill, NJ, USA, 1991.

. Pmar Yolum and Munindar P. Singh. Reasoning about commitments in the event
calculus: An approach for specifying and executing protocols. Annals of Mathe-

matics and Artificial Intelligence, 42(1-3):227-253, 2004.

. Pmar Yolum. Towards design tools for protocol development. In Proceedings of
the 4th International Joint Conference on Autonomous Agents and MultiAgent

Systems (AAMAS), pages 99-105. ACM Press, July 2005.

. Munindar P. Singh. Multiagent systems as spheres of commitment. In International
Conference on Multiagent Systems (ICMAS) Workshop on Norms, Obligations,
and Conventions, pages 312-326, 1996.

. N. Fornara and M. Colombetti. Operational specification of a commitment-based
agent communication language. In Proceedings of the First International Joint
Conference on Autonomous Agents and Multiagent Systems (AAMAS-2002), Part
11, pages 535-542, 2002.

. A. Artikis, J. Pitt, and M. Sergot. Animated specifications of computational so-

cieties. In C. Castelfranchi and L. Johnson, editors, Proceedings of Conference on

10.

11.

12.

13.

14.

15.

16.

89

Autonomous Agents and Multi-Agent Systems (AAMAS), pages 1053-1062, 2002.

C. Castelfranchi. Commitments: From individual intentions to groups and orga-
nizations. In Proceedings of the Int. Conf. on Multi-Agent Systems (ICMAS95),
pages 41-48, 1995.

Munindar P. Singh. An ontology for commitments in multiagent systems. Artif.

Intell. Law, 7(1):97-113, 1999.

Winfried Karl Grassmann and Jean-Paul Tremblay. Logic and discrete mathemat-
1cs: a computer science perspective. Prentice Hall Press, Upper Saddle River, NJ,

USA, 1996.

Ashok U. Mallya, Pinar Yolum, and Munindar P. Singh. Resolving commitments
among autonomous agents. In Marc-Philippe Huget and Frank Dignum, editors,
Proceedings of the AAMAS Workshop on Agent Communication Languages and
Conversation Policies, LNAI 2922, pages 166—182. Springer Verlag, 2003.

J. F. Allen and H. A. Kautz. A model of naive temporal reasoning. In J. R. Hobbs
and R. C. Moore, editors, Formal Theories of the Commonsense World, pages

251-268. Ablex, Norwood, NJ, 1985.

John Langshaw Austin. How to Do Things with Words. Oxford University Press,
London, UK, 1962.

Amit K. Chopra and Munindar P. Singh. Contextualizing commitment protocol. In
AAMAS °06: Proceedings of the fifth international joint conference on Autonomous
agents and multiagent systems, pages 1345-1352, New York, NY, USA, 2006. ACM

Press.

Virginia Dignum, Javier Vazquez-Salceda, and Frank Dignum. Omni: Introduc-
ing social structure, norms and ontologies into agent organizations. In AAMAS

Workshop on Programming Multiagent Systems, pages 181-198, 2004.

90

17. Marco Alberti, Federico Chesani, Marco Gavanelli, Evelina Lamma, Paola Mello,
and Paolo Torroni. Compliance verification of agent interaction: a logic-based

software tool. Number DEIS-LIA-04-003, 2005. LIA Series no. 71.

