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ABSTRACT

COLLISION OF GRAVITATIONAL WAVES:
AXISYMMETRIC PP WAVES

Onuk, Ahmet Emre

M.S., Department of Physics
Supervisor : Prof. Dr. Atalay Karasu

August 2007, 36 pages
The collision of impulsive gravitational waves, electromagnetic plane waves with
collinear polarization and, especially, plane fronted parallel waves (pp waves) are con-

sidered. The solution of axisymmetric pp waves is reviewed and the structures of the

resulting space-times are investigated with the help of curvature invariants.

Keywords: Colliding Plane Waves, Khan-Penrose Solution, Bell-Szekeres Solution, PP

Waves
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KUTLECEKIMSEL DALGALARIN CARPISMASI:
EKSEN SIMETRIK PP DALGALAR

Onuk, Ahmet Emre

Yiiksek Lisans, Fizik Boliimii

Tez Yoneticisi : Prof. Dr. Atalay Karasu

Agustos 2007, 36 sayfa

Itkisel kiitle cekimsel dalgalarm, es-cizgisel kutuplamma sahip elektromanyetik
diizlem dalgalarin ve 6zellikle diizlem yiizlii paralel dalgalarin (pp dalgalarin) garpigmas: ele
alindi. Eksen simetrik pp dalga icin olan ¢oziim elde edildi ve meydana cikan uzay-

zamanlarin yapilar: egrilik degismezleri ile arastirildi.

Anahtar Kelimeler: Carpigan Diizlem Dalgalar, Khan-Penrose Coziimii, Bell-Szekeres

(ozlimii, PP Dalgalar
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Figure 2.1 Polarization of a plane gravitational wave is shown. In the first
column +-polarization, in the second column Xx-polarization, in the third
and fourth columns right and left polarizations, where they can be linearly
represented by +-polarization and x-polarization, are illustrated. . . . . .

Figure 2.2 One of the non-plane polarizations can be in a spherical form.

Figure 3.1 Although this picture represents impulsive gravitational waves, the
plane waves can be represented in a similar way. Space-time can be divided
into four regions. The spacelike coordinates are omitted and only null
coordinates are used. Because of the division into four regions, approaching
waves carry information about the initial data. . . . . ... ... ... ..

Figure 3.2 The singularity structure of the Khan-Penrose solution. The inte-
riors of regions I, II, III are flat. However, there is a discontinuity at the
boundaries. Unlike these three regions, the fourth region is curved.
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CHAPTER 1

INTRODUCTION

In spite of the fact that gravitational waves have not been detected yet, one of the
striking predictions of General Relativity is the existence of gravitational waves which
can be theoretically derived by using a linearization technique. Even though this tech-
nique plays an unavoidable role in obtaining them, the amazing subject is essentially
the interaction of these waves which is described by nonlinear field equations. Be-
cause of the nonlinearity, the collision of gravitational waves is one of the challenging
subjects in this topic. In 1965 Penrose took the first step in his work which describes
the astigmatic properties of gravitational waves and embedded the hypersurfaces in
a two-dimensional section [1]. The pioneering studies of the collision problem were
done in 1971 by Khan and Penrose [2], whose paper describes the collision of impul-
sive gravitational plane waves, and in 1970 by Szekeres [3], whose article describes
the collision of gravitational plane waves. Later Bell and Szekeres [4] gave the first
solution to the collision of electromagnetic waves. The other milestone in this research
area that gives the solution of non-collinear gravitational wave collision was done by
Nutku and Halilsoy [5]. After the Bell-Szekeres solution, there exist some studies
which concern the collision between different types of waves, mainly gravitational and
electromagnetic [6], neutrino [7] and null fields [8], [9]. Except for the Bell-Szekeres
solution these suffer from curvature singularities which are unavoidable for the non-
flat space-times in the future of the collision region. Giirses et.al. [10], [11], [12] have
some studies which are about the same problems in the high dimensional space-times
related with the string theory. In 2004 Chen et.al. [13] succeeded to give a formal
solution to the collision of plane waves in string theory.

In this sense, plane wave symmetries are also useful for more generalized theories

which deal with dilatons [14] and solitons [15]. Even though it is not mentioned as



much as the plane waves, there is an upper class of them which are plane fronted and
parallel, namely, pp waves. These types of waves were first suggested by Brinkmann
[27]. However, pp waves remained uninvestigated until the work of Ehlers and Kundt
[26]. Nowadays pp waves are widely used in string theory as well as in gravitational
wave interaction in general relativity; for a concrete example, axisymmetric pp waves
have a usage in the Aichelburg-Sexl ultraboost [17]. If one makes a generalization on
the collision of plane waves, one needs to use symmetry groups as Giirses and Kalkanli
did [16] or pp waves. Since Khan-Penrose solution is a special case of the Szekeres
solution, a possible pp wave type solution must include the Szekeres solution, Nutku-
Halil solution,etc...

In 1998 Ivanov succeeded to find a solution for the collision of axisymmetric pp
waves [18] after some auxiliary steps [20], [21]. Actually this solution is forced to give
some similarities with the Babala’s solution which describes the collision of a gravita-
tional impulsive wave and a thin plane shell of null dust [19]. Because this similarity
gives us a hope in the way of finding a pp wave solution to the collision problem.

According to our motivation, reviewing the Ivanov’s work [18] would be helpful
for the studies about the collision of gravitational waves in the future. Because this
work is an important step to solve a realistic waves which are not planar. Moreover,
one can generalize the collision problems by using pp wave metrics.

In Chapter 2, the well known properties of gravitational plane waves are briefly
reviewed.

In Chapter 3, first the collision problem is represented and then the most im-
portant two solutions, Khan-Penrose and Bell-Szekeres, in the collision problem are
introduced.

In Chapter 4, first the main properties of PP waves are presented and then Ivanov’s

solution is eventually discussed.



CHAPTER 2

PLANE GRAVITATIONAL WAVES

The main purpose of this chapter is to review how gravitational waves can be inter-
preted theoretically. This is possible by solving the Einstein’s field equations. The
non-linearity structure is the main drawback in generating a wave equation. The lin-
earization can be done in the weak energy limit by some perturbation techniques. In
this subject, our the only guide is the similarities between electromagnetic theory and
general relativity rather than the experimental results. Coordinate transformations
are also helpful, as well as fixing or choosing gauges like Lorenz gauge. The possible
solutions for the field equations must have some generalized properties that electro-
magnetic waves have. The polarization state of a wave and spin is some of those.

These properties can be used in classifying the waves.

2.1 Linearized Field Equations

The metric of a space-time with a gravitational wave can be thought as a small per-

turbation about a flat space-time metric (i.e. the Minkowski metric 7, );

Guv = Nuv + h/u/a |hl,”/| <1 (2.1)

where hy,, is the metric perturbation. Like h;2u/ terms and higher order terms can be
neglected. In order to find the linearized field equations, let’s begin by finding the
inverse metric;

Juag™ =0, = ¢"" =n" —ht". (2.2)

Then the Christoffel symbols are

1 17
Fgﬁ = 59“ (gua,ﬁ + 9vB,a — gaﬁ,u)

Q

1 A
i(hl a8 T h* By — hozﬁ, M) (2'3)



where the indices are raised and lowered by 7,,, and the indices after the comma
indicate partial differentiation with respect to those indices. The Ricci tensor can be

computed by contracting the Riemann tensor

Ry =R oy =T 0 — T, + Fgarﬁy - rgurﬁa. (2.4)

pou,v

Cancelling the higher order terms, it becomes

RMV = qu,a - an,u (25)
after using (2.3), we have
1
R, = 5(ho‘ pva + 1Y e — Ohpy — how), (2.6)

where h = h® , = no‘ﬁhaﬁ, Ohpy = hpvo ¢ O = 079, is the flat space d’Alembertian

operator. The Ricci scalar is
R=R",=0" ,,—0h. (2.7)
As a result, the linearized Einstein tensor can be computed easily

1
G/u/ = R/,Ll/ - §guuR
1
~ i(ha pva +h e = Ohyy — oy — nlwhaﬂ ap — Nuwh). (2.8)
In the weak gravitational field approximation, Riemann and Weyl tensors can also be
computed in a similar way. However, let’s stop linearization here for a while and define

Weyl tensor which is frequently used in the collision problem and in the classification

of gravitational waves. Weyl tensor is the trace free part of Riemann tensor, i.e.

The Weyl tensor can be generated by subtracting the trace parts from the original

Riemann tensor. So in an n dimensional space-time this trace-free tensor looks like

2 2
Cpo,uzz = Rpg/u/ - m(gp[uRu]a - ga[uRu]p) + mgp[ugu]aR' (210)

Here the brackets denotes antisymmetricity. The Weyl tensor has the same mathe-

matical properties as the Riemann tensor, which are

Coowr = Cloau) (2.11)
Coopr = Chupor (2.12)
Coo) = 0. (2.13)



The Weyl tensor can give a relationship between two distinct looking spacetimes.
If two space-times g,,, and g,, are said to be conformally related,then they must

satisfy

guli = QQg,LLI/a (214)

where Q(z) is a non-zero differentiable arbitrary function. In fact conformal map-
ping which describes a function conserving angles between lines is actually defined in

complex analysis. The conformally related metrics have the same Weyl tensor that is

ch.,=Ct . (2.15)

opv ouv

If @ = 1, then the metrics are called conformally invariant. As it can be seen, the Weyl
tensors are conformally invariant objects which are frequently used in the collision
problems to seek the conformal relations with the Minkowski metric (i.e. conformally
flatness). This implies that in a conformally flat metric, Weyl tensor vanishes which is
often used in the subsequent chapters. The symmetries of the Weyl tensor can also be
used when classifying the space-times. One of them is the Petrov classification. Briefly
in the Petrov classification one should investigate the multiplicity of the principle null

directions (k*) which satisfy

Kk, =0 (2.16)
by using the equations in the below.
ki Crpaup ko KM =0 (2.17)
Corpfpkolk k" =0 (2.18)
Crupkokt =0 (2.19)
Crorukt =0 (2.20)

2.2 Gauge Transformations

In electromagnetic theory, wave solutions can be found by using gauge transformation

of the vector potential. In our case, let’s begin with the coordinate transformation

ot — 2 = 2? + et (z), (2.21)



where ¢ is a small dimensionless parameter and £ is an arbitrary vector field. Then

our metric would be transformed according to

ox'® 9z’

The gauge transformation of the metric perturbation can be easily found as
hl“‘ - h:“,(.’I)) = hul/(x) - 2£(u,u)7 (223)

where §(,, ) = %(gu,,, + &) Similarly, it can be shown that the Riemann tensor, the
Ricci tensor and the Ricei scalar are invariant under this transformation.

Define

1
wuu = hul/ - inpuh; (224)
which transforms like
w.UJV - w:w = wul/ - E,u,l/ - fl/,u - nw,Df, (2.25)

then plug h,, into Ricci tensor, Ricci scalar and Einstein tensor which are given by

(2.6), (2.7) and (2.8), respectively. Then they become

Ruy = %(wa nvo + wa v,puo Dh,uu)v
R = ¢ 5100, (2.26)
G,uu = %(wa o T P v,po D¢uu - T]wﬂpaﬁ ,aﬁ)~

Assume that we are working in the harmonic coordinate system which has the property
gy, =0. (2.27)
When metric is linearized, this gives
W, — =h, =0. (2.28)
By using (2.24), (2.28) can be written shortly
Py =0. (2.29)

This condition is called the Lorentz gauge, which is the analogue to the one in the

electromagnetic theory. Then from (2.25), this condition becomes

Déu = w,u v, = 0. (230)



The Einstein tensor reduces to

1
Guu = _§|:’1/)u1/- (231)
So in the vacuum we have
U = 0, (2.32)
and also
Ly = 0. (2.33)

Eventually, combining (2.24) and (2.32), one gets
Ohyu = 0. (2.34)

This is the equation that must be solved to get wave solutions.

2.3 Linearized Plane Gravitational Waves

One can achieve to get the wave equation by using gauge transformations as we did in
the previous section. But we must solve (2.34) in order to get a generic gravitational
metric. Fortunately, we are familiar to this problem from the electromagnetic theory.
Suppose that

how = Ayete (2.35)

satisfies (2.34), where A, is called the polarization tensor and k is the wave vector
whose components are constant for plane waves. If one inserts (2.35) into (2.34), then
one gets

Kk = 0. (2.36)

which shows that wave is propagating at the speed of light. If (2.35) is put into (2.28),
then one finds

1
kA = ShAb (2.37)

This shows that A, is symmetric. This reduces the linearly independent components

from ten to six. Similarly (2.30) can be solved as
€, = B (2.38)

where {, and B, are constant coefficients. Then ¢, can be chosen such that we can
write A, such as

A, = Au + kB, + kB (2.39)

7



This reduces the number of linearly independent components from six to two, since
B,, has four components. For example, assume that our wave propagates in the z-axis,
ie.

E=k=0, k=t=k (2.40)
By using (2.37)

Arp+Ape = A3+ A3 =0,

A+ A = (A + Ago + Ass — Ago), (2.41)
Ao +Ag = —5(A11 + Aoz + Ass — Ano).
Then
Apy = —Ap, (2.42)
Apy = —Ap, (2.43)
An = —%(Aoo + A1), (2.44)
Ay = —Ass. (2.45)

By, stated in (2.39) can be arranged such that Aj,, = 0 except for Agz, Aaz, Az2, Ass;

that is i .
0 0 0 0
0 0 0 0
A,ul/ = (246)
0 0 Ay Ay

2.4 Polarization States

The metric we found in the previous section can be written without cross terms in the

form

ds® = dt? — dz? — [1 — hao(t — 2)|dy? — [1 + hoo(t — 2)]da? (2.47)

which is called hoo-wave because metric does not have any perturbation term other
than hgs. Assume that, we have a group of test particles around a circle in (z,y)-
plane. When hos > 0 , test particles begin to squeeze in y-coordinate and to stretch
in xz-coordinate. The circle is deformed to be an ellipse in shape. If hoo < 0, then the
test particles would act vice versa. Because of this transverse characteristic, this state

of wave is known as “+ polarization”. At first, we have assumed that hss = 0, now
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Figure 2.1: Polarization of a plane gravitational wave is shown. In the first column
+-polarization, in the second column x-polarization, in the third and fourth columns
right and left polarizations, where they can be linearly represented by -+-polarization
and X-polarization, are illustrated.

further assuming hog # 0 and hoy = 0, the metric becomes
ds* = dt* — dz? — dy? + 2ho3(t — 2)dydx — dz°. (2.48)

After making a transformation of the

/

gy = ;5<y+x>, 2o = j§<y+m>, (2.49)

which means a rotation through 45° in the (y, z)-plane. The line element turns to be

a familiar form
ds® = dt? — dz? — [1 — hos(t — 2)|dy? — [1 + has(t — 2)]da?. (2.50)

This is called hag-wave. Since we have rotated + polarization, now we have a x po-
larization. Both + and X polarizations are linear polarizations. In general, if we have
neither hoo = 0 nor hgg = 0, then this wave would be a combination of +-polarization
and x-polarization (see Figure 2.1). Although here polarization is found by using
matrix identities, these results can also be achieved by geodesic deviation.

The classical radiation field of a spin-S particle is always invariant under a rota-
tion of % about its propagation direction. As a result, we can immediately draw the
conclusion that the graviton, the messenger particle of gravitational field, is a spin-2
particle [25].

It can be asked whether waves can have polarization states different than plane po-

larizations. In this sense the Petrov classification is more helpful when plane symmetry



ek

Figure 2.2: One of the non-plane polarizations can be in a spherical form.

does not exist. For example in type-N fields has a characteristic like + polarization
and type-III is the same as x polarization. But type-D field, which is another type
of Petrov classification, defines a new polarization state that does not exist in plane
polarization. In a type-D field test particles move in a spherical and an ellipsoidal

form (see Figure 2.2).

2.5 Exact Plane Gravitational Waves

hoo-wave metric can be written in the following form
ds® = 2dudv — f*(u)dz? — g*(u)dy? (2.51)

where f2(u) = 1 — haa(u), g?(u) = 1+ haa(u). The plane wave metric admits a
five-parameter group of symmetries and there is a two-parameter Abelian subgroup
of symmetries acting like planar translations in the spacelike 2-surfaces. Here our
main purpose is to see whether vacuum field solutions are satisfied or not. In order to
see them once again, it is needed to find non-vanishing Christoffel symbols, Riemann

tensor, Ricci tensor and Ricci scalar which are

Iy =ff, Tiz=g9, F(2)2:f77 ngz%S

Ro202 = ff', Roz03 = 94’ (2.52)

respectively. Here, prime denotes partial derivative with respective to u. Hence, it

can be easily seen that the only field equation is

" 1
.9
9

7 = 0. (2.53)

10



The solution of this implies that in this metric we have two travelling waves moving
in opposite directions. This type of metric is called Rosen form which shows that it is
possible to interpret the space-time as the collision of two gravitational waves. Surely,
the collision of gravitational waves are the exact solutions of Einstein field equations.
Instead of seeing this property in field equations, there is another possibility that it can

be seen in the metric from the beginning. After using the coordinate transformations
it=u, UV=v+ %y%ff’ + %ngg’, Y=Ffy,  X=gu (2.54)

the Rosen type line element becomes
ds® = dudv + h(a)(Y? — X*)du? — dX? — dY*> (2.55)

which is called Brinkmann form. In this type, the amplitude of gravitational wave
can be also observed. Although the nonlinearity of Einstein field equations doesn’t al-
low any superposition principle in general relativity, these solutions revealed a limited
superposition principle in that two plane waves moving in the same direction can be
superposed simply by adding their corresponding h functions. Here, it is worth not-
ing that scattering angle is not important while considering collision of gravitational
waves, since one can always find a class of observers who consider the collision to be
head on. Hence, it is sufficient to work in a coordinate system in which the waves

appear to collide head on.

2.6 The Class of Plane Waves

In the previous section, the Brinkmann form metric was obtained. The term h(a)(X2—

Y2) can be generalized to H(u, X,Y)
ds® = 2dudv + H(u, X,Y)du® — dX? — dY?. (2.56)

This general type of waves are known as pp waves and they will be discussed in Chapter
3 in detail. Plane waves, the special case of pp waves, can be defined with the line

element in the form
ds® = 2dudv + (h11 X% + 2h12 XY + hgoY?)du? — dX? — dY? (2.57)

where h;; are functions of @ only. Observe that plane wave metric has the function
H(u, X,Y) quadratic with X and Y coordinate. This line element describes a gravi-

tational wave in a vacuum space-time if hogs = —hq;. In addition, if A9 is proportional

11



to h11 then the gravitational wave will have constant linear polarization such as
H = h(a)(cos a(X? — Y?) 4+ 2sinaXY) (2.58)
If one wants to align the polarization with the x-axis, then one should set a = 0. So
the metric becomes
ds* = 2dudv + (h11(X?% — Y?))da? — dX? — dY? (2.59)

which is already obtained in the previous section as Brinkmann form. Similarly, pure

electromagnetic waves can be also defined in the same manner
ds? = 2dudv + (h11(X? 4+ Y?))du* — dX? — dY?>. (2.60)

There is another type of metric which is called Szekeres line element and it is

widely used in the collision of gravitational waves.
ds®> = 2¢ " Mdudv — e7Y (e" cosh Wda? — 2sinh Wdzdy 4 e cosh Wdy?)  (2.61)

where U, V, M, W are functions of u only. W describes the alignment of the linear
polarization. Szekeres showed that Rosen type metric can be transformed into a form
given in (2.61).

Aligned polarized gravitational waves can be further classified by using the known
simple functions in order to investigate the properties more easily. For example,
impulsive gravitational plane waves have h(u) = d(u). The geometry of the space-
time where gravitational wave passes through is changed in a moment and returns back
to its old flat geometry. Although impulse function is an idealized function, it must
have some finite thickness in real life. Because of this reason, impulsive gravitational
waves are sometimes called sandwich waves.

Another example can be step waves which has h(u) = 6(u). Then for gravitational

waves the metric would be
ds* = 2dudv + a®0(a)(X? — Y?)du® — dX? — dY? (2.62)
where a is the amplitude of the wave. For electromagnetic waves it is
ds® = 2dudv + a®0(u)(X? 4+ Y?)du® — dX? — dY™. (2.63)
In the Rosen form they are
ds* = 2dudv + cos*audz® — cosh®au dy?, (2.64)

ds®* = 2dudv + cos*au (dx* + dy?), (2.65)

12



respectively.
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CHAPTER 3

COLLIDING PLANE GRAVITATIONAL WAVES

The non-linearity of Einstein’s field equations is the messenger of new features of
gravitational waves. One of these is that waves do not possibly superpose. While
further investigating this, we can use the simple wave structures and the collision of
known waves (i.e. electromagnetic waves).

Firstly, the concrete framework is given in order to seek general solutions. One of
the exact solutions are investigated by using this framework and the other solution is

investigated without it in order to show how hard it is to deal with the field equations.

3.1 Collision of Plane Waves

The main reason of using the Rosen coordinates is to represent the collision prob-
lem schematically. After disregarding the spacelike coordinates which are x and y
coordinates, two gravitational wave can be represented as in the Figure (3.1). Beside,
omitting the spacelike coordinates provides a visualization on the collision subject. For
instance, according to timelike observers, they see a collision as a head-on collision.
We can understand and visualize what that observer sees in this sense.

Before the collision, the space-time is flat (i.e. Minkowski metric describes the
region I (u < 0, v < 0)). The region II (v > 0, v < 0) and region III (u < 0, v > 0)
represent the approaching gravitational waves. Those are flat except at the bound-
aries where Lichnerowicz conditions or O’Brien-Synge conditions must be satisfied.
According to the Lichnerowicz conditions, metric function g,, must have continuous
derivatives up to first order across the boundary but higher order derivatives need not
to be continuous. Weaker than the Lichnerowicz conditions O’Brien-Synge conditions
tell that the null hypersurface with 2% = constant and ggo = 0 must have the compo-

nents g, g9 9ij,05 gz‘ogim (i,7j=1,2,3) continuous across the null boundary. Here the

14



Figure 3.1: Although this picture represents impulsive gravitational waves, the plane
waves can be represented in a similar way. Space-time can be divided into four regions.
The spacelike coordinates are omitted and only null coordinates are used. Because of
the division into four regions, approaching waves carry information about the initial
data.

main assumption is that in interaction region IV (u > 0, v > 0) the metric is a function
of null boundaries (i.e. w and v) and does not vary with spacelike components. The
reason of making such an assumption is to use the characteristic initial value problem
which tells that if the main equations hold everywhere especially on a hypersurface,
then the contracted Bianchi identities ensure that conditions hold everywhere [23].
Characteristic here means a special attribute specifies the null hypersurfaces are in-
terested. This technique guarantees that the solution is unique if the initial conditions
are well set. There is no need to solve the field equations for the regions other than
region IV. So if one wants to obtain the solution for the collision problem, the first
job must be to seek a solution to the Rosen type metric which can be written in the

form

ds? = 2¢"Mdudv — g;;dx’da? (3.1)

where M = M(u,v); gij = gij(u,v); i,j = 2,3. Briefly one should find a way to
describe the function g;;. As one can expect, the solution sought is given in (2.61).

That the Rosen type metric has two null coordinates mentioned before is the starting
point of this investigation. Because of having null coordinates, it is appropriate to
pass to the null tetrad formalism which has a wide range of usage in general relativity,
especially in gravitational radiation and black holes. In null tetrad formalism, the

main idea is to write a metric by suitable vector fields whose length is zero (i.e. null
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vectors)

"1, = ntn, = mtm, = m'm, =0, (3.2)

where m is the complex conjugate of m. These null vectors have normalization con-
ditions which are

Fn, =1, mtm, = —1. (3.3)
After this definition, one can write a metric as
G = luny + Lyny, — mymy, — myimy,. (3.4)
Then according to (3.1), let the null vector fields be
Al,=w, and Bn,=wv, (3.5)

where A = A(u,v) and B = B(u,v) are integrating factors. The other complex null

vectors can be defined as
mt = D?(u,v)d5 + D?(u,v)dk. (3.6)
After using the field equations in Newman-Penrose formalism, one can find that
M =1n(AB). (3.7)

Then if commutation relations, scale invariance and the uniqueness theorem of ordi-

nary differential equations are used, the metric becomes

ds? = 2¢"Mdudv — (D;D; + D;D;)da"da’ (3.8)
where
1 u- |14
D? = \/ie[j;/(cosh(z)—i—z’sinh(z/)) (3.9)
1 uv+v w w
D} = inh(—) + i cosh(— 1
\/ie 2 (51n(2)+zcos(2)) (3.10)
and U = —In(detg;;), W is a function of u and v and defines a spatial rotation,
V =V(u,v).

Initial conditions of the Szekeres metric are
U=V=M=W=0 in region I; (3.11)
1
V=V(u,0), M = M(u,0), W=W(u,0), U=—In(f(u)+ 5) in region II; (3.12)
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1
V=V(0,v), M=M(0,v), W=W(0,v), U= —1In(g(v) + 5) in region III, (3.13)

where according to one of the field equations e~V = f(u) + g(v).

These are the techniques used in the collision problem while seeking an exact

solution. Now we can give some of them.

3.2 Colliding Impulsive Plane Gravitational Waves

As mentioned in the previous chapter an impulsive gravitational plane wave

ds® = 2dudv + §(a)(X?* — Y?)du® — dX? — dY?

can be transformed into Rosen form as

ds® = 2L(u)dudv — F?(u)dz® — G*(u)dy?

by changing the coordinates as

|

Il
kS

Sl

1 1
= v+ ) FF + 02°GG, Y =Gy, X =Fz

where L =1, F =1+ uf(u), G =1 — ub(u).

(3.14)

(3.15)

(3.16)

It is possible to think that if a travelling wave is described by the functions of u

in that direction, then another travelling wave can be described by the functions of

another orthogonal direction v in a perpendicular direction [2]. Since perpendicularity

is relative, such a reference frame can always be found in which the observer thinks the

interaction is a head on collision. Here the problem is to find a solution of the Einstein

equations for the region after the collision. Because of nonlinearity, the resulting waves

are not simply sums or products of the instant waves. It may be useful to start with

the generalized Rosen form in order to find the explicit solution of Einstein’s vacuum

equations representing a collision between two impulsive gravitational waves

ds® = 2L(u,v)dudv — Fu,v)dz? — G¥u,v)dy>.

17
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The non-vanishing components of the Ricci tensor, Ricci scalar and Einstein tensor

are
[(QFULquFuu) I (2GuLquGuu)]
Ry = L 7 ¢ , (3.18)
Fuv Guv LuLU - LLuv
Ryn = - ja — I + 2( 72 ) , (319)
[(2FULFLFM) + (QGULFLGM)]
= L & 2
Rll L 9 (3 O)
F(GyF, + F,Gy + 2GFy,)
= 21
R L2 ; (3:21)
G(GyF,+ F,G, +2FGy,)
R33 = 2 , (3.22)
R o _(2(—FGLULU+L2(GvFu+FvGu+2GFuU+2FGW)+FGLLUU)) (3.23)
N FGL3 T
[(zFuLu—LFuu) 4 (2GuLu—LGuu)]
_ F G .24
GO() L 9 (3 )
GvFu+FvGu+GFuv+FGuv
Gor = , (3.25)
G
(QFULv_LFvv) (2GULU—LGUU)
Gn = | £ —Z ¢ ] ; (3.26)
2F?L2Gyy + 2F?G(LLyy — Ly Ly)
G = 3.27
22 GL4 ) ( )
2G?L2F,, +2G?F(L Ly, — L,Ly)
Gsz = A . (3.28)

From now on we won’t use the comma indicating partial differentiation. Using (3.21),

(3.22) and (3.25) the relationship between the functions F' and G can be found
GF,y = FGy,. (3.29)

If (3.19) is used for investigating the effect of the function L to the functions F' and

G, then
uv F’U/U —
GG =T L (3.30)

On the other hand, (3.25) implies that

(GF)y = 0. (3.31)

This equation is particularly important because the structure of the solution is de-

scribed here. The solution of (3.31) is
GF =c¢1 + Cth(u) + 03h2(v), (3.32)

where c¢1, ¢, c3 are real constants but for the sake of simplicity they can be taken as

c1 = co = c3 = 1, and because of the symmetry of the metric the algebraic type of the
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functions hy and hg must be the same. Once again using (3.25) with the help of Rao
and R33, some series of equations can be found
(GUF)H = _(GuF)v (3.33)
(FvG)u = _(FuG)v- (3'34)

Then putting (3.32) into (3.34), the relationship between F and H can be obtained

in a different manner
(InH)y + (0 H)y = (In F)y + (In F),, (3.35)
where H = 1+ h(u)+h(v). If the solution in (3.31) is put into (3.30), then it becomes
—2(InF)yy = In H)y(In F)y + (In H),, (In F),. (3.36)

After using these last two equations and assuming H is the simplest function that
satisfies them, it can be obtained that

(1 —u?0(u) — ’020(1)))'

F=
G

(3.37)

Let’s write this solution again into the metric and solve the Einstein and Ricci tensors

once again. Then the resulting components of the tensors are

4L 2 2 1 2L 2LL
ROO:GOOZQt G2+G*((—1+4v?)L+ut*Ly)

t2G2L ’
2 Gu LvLu_LLu
}%01:%_2 G2u+ L2 ,
t*LG2+G?((—14+u?) L+vtL,
Ry =G =2 (t(szL ) ),
Raa — Ry — 91 GuGutGuGy +0Gy—1*Guv) (3.38)
33 — 1122 — GAL )
2 .4 4
2uGy+vGy—t2Glyy )+ (2=t fu ot Lluv) )
G22 = G3L ’
uv Gy Gy LyLy—LLyy
L 2A2Gu Gt G(uGy 110Gy —12Gyy)) 2GR 2Cufe) g2 (tulullun)
Gs3 = T - I + - :

Although they seem very complicated, there are only 4 linearly independent equations

exist which are

t2G,G uG vG t2G
L Zuy | v 4 Gu_TMZO’

G2 [€]
2uv o GyGay LyLy—LLyy _
tT 2 G2 + 12 - 07 (3 39)
Gz 1-v® | uly _
G2 t4 t2L T
G2 1.2 Ly,
- a ter =0

where t = v/1 — u? — v2. First two equations imply with the help of (3.22) that

G2

w _ Guly (3.40)
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This equation can be simply integrated if it is separated like

V1—102 —uv
(]n Gl)u == 7T and (hl Gl)v == 7@’ (341)
or
_ )
(I Go)u = ———  and (InGy)y = — V2" (3.42)

V1 —u?t? t2

Since these equations are particular solutions, it can be written in the form InG =

In G1 In G5. Thus, the solution is

o (\/1—U2+U> <\/1—u2+v>' (3.43)

V1i—v?—u V1i—u?—w

After plugging this solution to the metric, the resulting Ricci and Einstein tensors are

2 /1 —a12+/1—12)2
Rop = Gop = —2u™® +2121,1u2u)t4L1 L t%*’b
—1+v24+u2(1-202)—uvv1—uZyV1—0v2

For = 2 v\/liu(Q\/liU)Q(fiuQ—:Q)? = = (nL)u,

. _ 20(u(2vV1—uZ—2v2V1—uZ4+uvV/1—02)L Ly
Ry = G = JO=0L 5
G £2( 2(—1+v2+u2\;11:zv22\)/—11ix/2;—u2\/ 1-v2) —(In L)) (3.44)

2= (mwxmwﬁ ’

\/17u2+'u u+\/17v2
2 2 2
t2(2(—1+v +u\;11:1112\)/—11j1;\/2;—u2\/ 1-v2) —(In L) yv)
Vi—u240 (ut+V1—0v2) I
\/1*11,271) (\/17v27u)

Gz =

Finally using Rgp and Ry1, the function L can be computed as

(1 o u2 o v2)3/2

SRV e Y wear T ONSTG wr N ol (3.45)
Thus, the metric is
ds* = 2 (1—w - UZ)% dudv
V1—u2V1 =02 (uv + V1 —u2V1 —v?)
T B e A Bl et A BT B (3.46)

(14 uv1—v2+0vV1—u?)
(14 uv1 =02 + vv1 — u2)
(1 —uv1 —v2 —vV/1 —u?)

dy?).

If it is assumed to be v = 0 for v < 0 and v = 0 for u < 0, then the metric
would describe the region below u? + v> = 1,u = 1,0 = 1. There are two types
of singularity in this space-time. One of them is a curvature singularity at which
curvature scalar invariants blow up at u? + v? = 1 (see Figure 3.2). This singularity

is due to the focusing effect of waves. The other one is a coordinate singularity which
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curvature singularity

fold fold

singularity singularity

Figure 3.2: The singularity structure of the Khan-Penrose solution. The interiors of
regions I, II, IIT are flat. However, there is a discontinuity at the boundaries. Unlike
these three regions, the fourth region is curved.

can be removed by some appropriate coordinate transformations. It can be concluded
that after collision plane waves would focus on each other and give up their properties.
So it can be understood that the space-time is not flat anymore and the Weyl tensor
is not equal to zero in anywhere of interaction region.

One can be anxious about the behaviour of a light ray, which has a null geodesic,
near the boundaries for example at v = —1. So it can be thought that this particle
can escape from the singularity but this is not the case. Because when this particle
propagates through v = —1 hypersurface, after a time it would come across with the
curvature singularity before it reaches the caustic two-surfaces (i.e. fold singularity)
particle trajectory by focusing on curvature singularity. Any particle can never reach
fold singularity. So one can make an inference that the curvature singularity is not
avoidable.

Now one can ask why the general framework of the previous section is not used in
this section. However, the Szekeres solution also includes the one that Khan-Penrose
did or in other words Khan-Penrose solution is a special form of Szekeres solution[3].
Thus, one can alternatively solve the collision problem of impulsive gravitational waves

by using the techniques discussed in the previous section.
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3.3 Colliding Plane Electromagnetic Waves

As mentioned in the previous chapter an electromagnetic step plane wave has the

metric of the form

ds® = 2dudv + a®0(a)(X? + Y?)du® — dX* — dY? (3.47)
which can be transformed to
2dudv + cos’au (dz? + dy?), v<0, u>0
ds* = (3.48)
2dudv + cos?bv (dz? + dy?), u<0, v>0
by using the coordinate transformation
X=ax+by, Y =ex+cy,
Y Y (3.49)

]|

=0+ 3(ad' +ee')z® + (ba’ + ab/ + ed + ce’)xy + (b0 + cc')y>.

Alternatively, the linearly polarized waves can be described by the Szekeres line ele-

ment. As we found previously, the interaction region can be represented as

ds* = 2 Mdudv — e Y (eVdaz? + e7Vdy?) (3.50)

where U, V, M are functions of v and v.
The space-time we are searching is not vacuum anymore. So it has a non-vanishing

energy momentum tensor

[ FouFos 0O 0 0 ]
T — 942 0  Fi,Fip 0 0
7T 0 0 FooFopg — Lgeo FogFoP 0
0 0 0 FyaFsp — 1933FapF’ |
[ cUtva2 g 0 0 |
_ 1 0 UtV A2 0 0 (351)
Am 0 0 A4, 0 |
0 0 0 A4, |

where A is the vector potential used in the electromagnetic theory and F),, is the
electromagnetic field tensor.

The non-vanishing components of the Ricci tensor, the Ricci scalar and the Einstein
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tensor are, respectively,

Roo = Upy+ MU, — %(Uﬁ + V2, (3.52)
Ror = Usot M~ 5(U; + VuVa), (3.53)
Ry = Uy + MU, — %(UE +V2) (3.54)
Royy = MU0, — Vi — UU, + %(quv + U, Va)], (3.55)
Ry = MU Uyt Vi — UL, — L(UVe + Ui (3.56)
R = eM(2M,, +4Uy, + 3U,U, — Vi, V), (3.57)
Goo = Uuu+ MU, — %(Ui + VD), (3.58)
Gor = U,Uy — Uy, (3.59)
Gi = Ut MU, — (U2 + V) (3.60)
Gy = eV V(U — Vi — Myp + @, + Vu)2(Uu ha %))7 (3.61)
%3:eUVE%ﬁW@—MWMm_%y%4m) (3.62)

Differentiating (3.58) and using (3.61) or (3.62) with the help of (3.53), it can be found

that
Wy — UV — UV, = 4TV A, A, (3.63)
ViAy +ViAy = —2A. (3.64)
From (3.59)
U = —log[f(u) + g(v)] (3.65)

Using (3.48) as initial values of boundary conditions

—2logcosau, v<0
U — (3.66)

—2logcosby, u<0.

It is necessary to put some constant in order not to get zero at the boundaries:

;

17 U§07 USO
1
5+ fu), uw>0, v<0
el=q (3.67)
3 +9(), v>0, u<0
fu)+g(), uw>0, v>0.
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According to the assumption previously made, we can find f and g as

1
flu) = 5 sin®au, (3.68)
1
gv) = 5 sin®bu. (3.69)
So U becomes
U = —logcos(au + bv) — log cos(au — bv). (3.70)

After getting U, V' can be guessed similarly using (3.63), (3.64) and then it is easy to

obtain the vector potential A:

= logcos(au + bv) — log cos(au — bv), (3.71)

= sin(au — bv). (3.72)

Now the only unknown function is M. After plugging U into the (3.58), M becomes

fuu fu (f + g) 2 U+V 42
M, = ——/—+ — V4 +4e Azl 3.73
Fo o e 2f ] (3.73)

Juo o (f+9) 0 U+V 42
M, = —*—+ — V, +4e Azl 3.74
g 2(f+9) 29, | ] (38.74)

The first two terms can be reduced as

e M = fugo e s (3.75)

Vitg
where S is a function satisfying the third term of (3.73) and (3.74). Then (3.73) and

(3.74) become (after a transformation v — f and v — g)

Sp=—(f+g)[V} +4eVTV A}, (3.76)

Sg=—(f + gV + 4"V A2 (3.77)

Submitting the U, V and A into (3.76) and (3.77), then integrating S can be found

as

§ = 5l-log(f +9) +log(5 + f) +1og(5 +9) +log( — 1) +log(5 — )] + ¢, (378)

where c is an integration constant. Now it’s time to get M from (3.75)

e M= cfuge = 4abc. (3.79)

Vi-ri-e

The integration constant can be chosen as

c=—. (3.80)



This means that

M =0. (3.81)
Finally the metric in the interaction region is
ds* = 2dudv — cos¥au — bv)dz? — cosau + bv)dy>. (3.82)

After obtaining the metric in the interaction region, the geometry of that region can
be further investigated. The non-vanishing components of the Riemann tensor and

the Weyl tensor are

1
Rozy = eV A; - §€_U+V(Vuu — UuVa), (3.83)
Ropiz = €V A A,, (3.84)
1
R0303 = Ai - §€_U_V(Vuu - UuVu)7 (385)
1
Rigip = e*VAZ - §€_U+V(Vw - U,Vy), (3.86)
1
Rigis = A} = eV (Vo = UnV), (3.87)
Roz13 = —AuAy; (3.88)
1
Co202 = —§€_U+V(Vuu — Uy Va), (3.89)
1
Cozos = 5e‘U V' (Vi — UdVa), (3.90)
1
Ci212 = —567U+V(Vw - UyVo), (3.91)
1
Cigiz = ¢ 7" (Voy = UVa). (3.92)

If Weyl tensor is calculated using the equations (3.71) and (3.70), then the solutions in
the interior of the interaction region gives a zero valued Weyl tensor which implies that
interaction region is conformally flat. But at the boundaries of the interaction region,
where v = 0 or v = 0 (i.e. null boundaries), the solution is impulsive which means that
colliding step wave like electromagnetic waves create impulsive gravitational waves.
The reason of this creation is that gravitational waves disturb the Weyl tensor in the
same way in a flat region. In addition to this unexpected result, there is no curvature
singularity in the interaction region different than the Khan-Penrose solution. This
can be seen by looking at the scalar invariants. One of the scalar invariants used for
determining the structure of space-time is the Riemann scalar invariant R*% R,ap

which is constant for the solution at hand. This information leads us to look at the
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other scalar invariants, but one of the singularities can be easily seen as u = 7/2a and
v = 7/2b. This type of singularity can be removed by the coordinate transformations

which are given by

4 = cos(au + bv) cosh(cy), (3.93)
0 = cos(au + bv)sinh(cy), (3.94)
& = cos(au — bv) cos(cz), (3.95)
g = cos(au — bv)sin(cz), (3.96)

where ¢ = v/2ab [4]. There can be some other singularities which can appear in
the Weyl tensor. These can also be removed with another appropriate coordinate

transformations.
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CHAPTER 4

PP WAVES

In this chapter, first the derivation of pp waves and their unique properties are dis-

cussed. Then the only solution of collision of pp waves are given.

4.1 The Class of PP Waves

In the first chapter the derivation of generic gravitational plane waves, whose line

element can be thought as a perturbation of flat Minkowski metric, were given as

Guv = Nuv + h,uu- (41)

After getting the Einstein field equations, the wave equation is found. Then using the
propagation property of plane waves and light-cone coordinates the metric is found to
be

ds* = 2dUdV + (6;5 + hi;(U))dx'dx?. (4.2)

If one forgets that the perturbation is small, then the equation (4.2) is simply
ds* = 2dUdV + g;;(U)dx'da?. (4.3)
Here, it is worth noting that there is a Killing vector which is
§=0b. (4.4)

Let & be a null vector field that satisfies

V£ =0 (4.5)

or equivalently,
Vubo + Vi =0, (4.6)
Vs — Vi, = 0. (4.7)
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So it can be found that

§,u = Guv (4.8)

where the null property implies that

fv = Guv = 0. (49)

The Killing equation states that the line element is independent of v, whereas (4.7)
implies
fu = Gop = 8;¢U' (4.10)

Then the metric can be written as [28]
ds? = 2dudv + P(u, z)du® + 2Rq(u, 2¢)dzdu 4 Sap(u, z°)dzdz®. (4.11)
The special case of this metric is having Sgp(u, 2¢) = 04 which is
ds* = 2dudv + P(u, z%)du® + 2R, (u, z°)dxdu. (4.12)

This type of metric describes plane fronted waves with parallel rays or shortly pp
waves. Here plane fronted means that the wave is non-twisting and non-expanding.
Parallelism is satisfied with the parallel null vector. If bivectors exist in a normal
hyperbolic V}, the metric can be written in the metric form ofBrinkmann’s definition
of pp waves [26]

ds* = 2dudv + H(u, z,y)du? + dz? + dy>. (4.13)

The only surviving Ricci tensor component is
1
Ry = _i(HM + Hyy). (4.14)

The Ricci scalar is therefore equal to zero and the linearly independent non-vanishing

Weyl tensor components are

1
Cizan = §ny (4.15)

1
Cizz1 = §(Hxx + Hyy). (4.16)
Brinkmann also proved [27] an interesting property that vacuum fields (i.e. pp waves)
can be mapped conformally on each other. This raises to another surprising property

of the pp waves; namely, having the superposition principle although Einstein field

equations are non-linear. They can propagate through each other without any effect.
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They also pass through a flat space-time without giving any change [29]. Non-flat
spaces can also be interpreted as the pp waves if they admit a constant bivector [26].
Another conclusion that can be derived is that pp waves can not be pictured like
the plane waves. Because the pp wave metric has a component which includes the
spacelike coordinates. Recall that the figures in the previous chapters are obtained by
suppressing the spacelike coordinates.

The plane waves which are discussed in chapter 1 are so defined that they are
homogeneous pp waves: the amplitude is constant everywhere on the wave. A general
plane wave metric is a very special subclass of pp waves which has R, (u, 2) = 0 and

P(u,z°) quadratic in z¢. Then we can write P as
P = Pyaa®. (4.17)
As a result pp wave metric becomes like this

ds® = 2dudv + 2Px%zbdu® — da?. (4.18)

4.2 Colliding Axisymmetric PP Waves
The metric of plane-fronted waves with parallel rays (i.e.pp waves) can be written in
cylindrical coordinates

ds® = 2dudv + 2Hdu? — dP* — P?d®?, (4.19)

where H = H(u, P, ®) [20]. Here our first aim is to get a metric without non-diagonal

terms. In order to do that, the following equations must be satisfied:

v=v+01(u,r,p), for guw = 1, (4.20)
P, =, =0, for g, = 0, (4.21)
PP, + P*®,9, =0, for g., = 0, (4.22)
v, = P, Py, for gur = 0, (4.23)
v, = P29, P, for gu, = O. (4.24)

First integrating (4.23) and then differentiating it with respect to ¢ in order to obtain
a similar left hand side with 4.24) and compare them. In this way, it can be found
that PQCDuCI)@ = 0 since P, = 0. The simplest assumption we can make about ® is

that ®, = 0 and ®, = constant. This leads to
D = . (4.25)
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Lastly to obtain g, = 0, the equation that must be satisfied is
2H = —20y, + P2

This means

H = H(u, P).

Using (4.26) and (4.27),
Py, =—Hp

can be easily found. So the metric becomes
ds? = 2dudv — Q?*dr?® — P2dy*.

The non-vanishing components of the Ricci and the Einstein tensor are

ROO — _Quu Puu

o
Ro1 = —QQ“” — Lo
Ry = *Qéj” — By
Rz = — 5 (Pur — QZQPT%
Rip = —5(Py — QbPT),

R22 — (PTQ’I‘+Q2(QUPU+Q}LDZLJ)+2Q2PQU’U_QP’V"I‘)

9

Rs3 = P(2P,, + Qvﬂngupv) + Portr PPM-)7

Q3 Q2
Goo = —Qéu — L
Goi = PTQT+Q(—PTT+Q(QU§$QILPU+QPW+QWP))’
G = —% Pjé“,
Gog = Qe Qbur
Gop = QUPTP—QQPW,
G = —2Q33P“”,
Gz = QPQQ?“”

These equations can be written shortly [18]

PQuy + QPuy =0,
PQuy + QPuu =0,
QPyr + QuP, =0,
QPyr + QuPr =0,

qu:Puvzoa
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(4.29)
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(4.31)



QQ(QUPU + Qupv) - QPrr + Q’I‘PT‘ =0. (437)

When P, = @, = 0, these equations are equivalent to the ones for the plane wave

equations. If they are not equal to zero, (4.35) and (4.36) help to find @
Q= H(r)P, (4.38)

where H(r) is an arbitrary function. This function can be found using initial condi-
tions. If Minkowski space-time is considered, it can be found that H(r) = 1, which
gives

Q=" (4.39)

With plugging (4.39) into (4.32) and (4.33), one gets

If the metric is equal to the Szekeres metric, this equation can also be written in the
form
-U
(e7),, =0 (4.41)

Uu+v -U+V

where P=e¢" 2 and Q =e~ z . If (4.39) is put into (4.37), then

(P,P,), = 0. (4.42)

There are two cases to consider in (4.40): One is to assume P, = P,, = 0. Then the
solution is

P =by(r) — b1(r)u — ba(r)v. (4.43)

The other one is to take P, # 0 and P,, # 0. Then it reduces to

Puu
=0 4.44
(va)r ’ ( )

or

(PyuPyv)r = 0. (4.45)

These pair of equations can be written alternatively as

Py Py =0, (4.46)

PPy = 0. (4.47)

The only possibility is Py, = Py = 0. This implies P, = @ = 0 from (4.39). This is

a solution for the hypersurface of this space-time.
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Here Ivanov mentions that there is another possibility that P,, = 0 and P,, = 0,
but this contradicts with the assumption given before (4.44) and (4.45), thus it can be
neither P,, = 0 nor P,, = 0. Another objection can be about the amplitudes of the

waves which are found by (4.46) and (4.47). The result implies that if one wave comes

from null direction w with amplitude b;(r), then the other wave has 51%7“) = ba(r),
where a is an arbitrary constant.
The metric in the equation (4.29) represents the interaction region which can be

also generalized to the regions where, the instant waves present.
ds* = 2du;dv; + 2H;(P)6(u;)du? — P2dr? — P2dy?. (4.48)

where u; = u, ug = v, v1 = v+ 91(u, P), 02 = u+ 02(v, P), (H;(1))r = bi(r).

P=r—bub(u) — %vﬁ(v) (4.49)
Q=1-bub(u)+ %09(1)) (4.50)

Actually this solution is similar to Babala’s solution [19]. However, there is a problem

on the boundary such as

P #0 and Py, #0. (4.51)

As mentioned in (4.41), this metric is also a solution to the Szekeres metric in

cylindrical coordinates when M = 0,
ds* = 2dudv — eV (eVdr? + e Vdp?). (4.52)

So the boundary conditions are expected to be satisfied by this solution.
It is time to look at the geometry of the interaction region by examining the

Riemann and the Weyl tensors and one scalar invariant:

Ro202 = QQuu,
Roz03 = PPy, (4.53)
Ri912 = QQuy,
Ri313 = PPy,
Co202 = 2Q(Quu — “5),
o~ PP~ 55 -
Cra12 = 3Q(Quo — Q?’”)»
Cis13 = 5 P(Pyy — P%"”),

w
[\
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First of all if P = 0, then this is an unavoidable singularity in other words it is the

— P2 —
I=Rjy0p =875

(4.55)

curvature singularity. If P # 0, then all the components of the Riemann tensor are
zero except at the boundaries. So the components of Weyl tensor and scalar invariant
are. This fact implies that the space-time is conformally flat except the boundaries.
Moreover, the Weyl tensor supports that the approaching waves are impulsive since

it is not equal to zero.
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CHAPTER 5

CONCLUSION

In this work, collision of impulsive gravitational waves and collision of step electro-
magnetic waves are examined. Although the impulsive gravitational wave solution
does not exlicitly exist, i believe that i did solve it as Khan-Penrose did by using only
field equations. The structures of both impulsive gravitational wave collision and step
electromagnetic wave collision are studied. Even though the former has a non-flat in-
teraction region, the latter has a flat interaction region. Another interesting property
of collision of electromagnetic waves is that they produce gravitational waves at the
boundaries after the collision.

In this thesis, the collision of diagonalized axisymmetric pp waves, which are gen-
eralized plane waves, are reviewed. In this solution even though the collision doesn’t
take place between two equivalent gravitational waves, they are found to have impul-
sive characteristics. It is shown that the resulting region is conformally flat but does
no longer have the pp wave space-time feature anymore. This is a surprising result
since one expects them to pass through without seeing each other. It is also men-
tioned that there are some curvature singularities across on the boundaries similar to
the Bell-Szekeres solution. However, the boundaries are problematic because of not
being satisfied by the field equations. In spite of having drawbacks, it can be expected
from this solution to cover some of the other plane wave solutions.

We need to study more on this subject in order to clarify the problematic parts.
However, before that, more work and knowledge are strongly needed in order to cover
the pp waves rather than using plane wave solutions or symmetries. Because Szekeres
framework is valid only for the plane waves. One should generalize this framework
further for pp waves. Another problematic part is the visualization of collision of pp

waves in four dimensional space-time.
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