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Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Sinan Bilikmen

Head of Department, Physics

Prof. Dr. Atalay Karasu

Supervisor, Physics Dpt., METU

Examining Committee Members

Assoc. Prof. Dr. Bayram Tekin

Physics Dpt., METU

Prof. Dr. Atalay Karasu

Physics Dpt., METU

Prof. Dr. Ayşe Karasu
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ABSTRACT

COLLISION OF GRAVITATIONAL WAVES:

AXISYMMETRIC PP WAVES

Onuk, Ahmet Emre

M.S., Department of Physics

Supervisor : Prof. Dr. Atalay Karasu

August 2007, 36 pages

The collision of impulsive gravitational waves, electromagnetic plane waves with

collinear polarization and, especially, plane fronted parallel waves (pp waves) are con-

sidered. The solution of axisymmetric pp waves is reviewed and the structures of the

resulting space-times are investigated with the help of curvature invariants.

Keywords: Colliding Plane Waves, Khan-Penrose Solution, Bell-Szekeres Solution, PP

Waves
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ÖZ

KÜTLEÇEKİMSEL DALGALARIN ÇARPIŞMASI:

EKSEN SİMETRİK PP DALGALAR

Onuk, Ahmet Emre

Yüksek Lisans, Fizik Bölümü

Tez Yöneticisi : Prof. Dr. Atalay Karasu

Ağustos 2007, 36 sayfa

İtkisel kütle çekimsel dalgaların, eş-çizgisel kutuplanıma sahip elektromanyetik

düzlem dalgaların ve özellikle düzlem yüzlü paralel dalgaların (pp dalgaların) çarpışması ele

alındı. Eksen simetrik pp dalga için olan çözüm elde edildi ve meydana çıkan uzay-

zamanların yapıları eğrilik değişmezleri ile araştırıldı.

Anahtar Kelimeler: Çarpışan Düzlem Dalgalar, Khan-Penrose Çözümü, Bell-Szekeres

Çözümü, PP Dalgalar
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CHAPTER 1

INTRODUCTION

In spite of the fact that gravitational waves have not been detected yet, one of the

striking predictions of General Relativity is the existence of gravitational waves which

can be theoretically derived by using a linearization technique. Even though this tech-

nique plays an unavoidable role in obtaining them, the amazing subject is essentially

the interaction of these waves which is described by nonlinear field equations. Be-

cause of the nonlinearity, the collision of gravitational waves is one of the challenging

subjects in this topic. In 1965 Penrose took the first step in his work which describes

the astigmatic properties of gravitational waves and embedded the hypersurfaces in

a two-dimensional section [1]. The pioneering studies of the collision problem were

done in 1971 by Khan and Penrose [2], whose paper describes the collision of impul-

sive gravitational plane waves, and in 1970 by Szekeres [3], whose article describes

the collision of gravitational plane waves. Later Bell and Szekeres [4] gave the first

solution to the collision of electromagnetic waves. The other milestone in this research

area that gives the solution of non-collinear gravitational wave collision was done by

Nutku and Halilsoy [5]. After the Bell-Szekeres solution, there exist some studies

which concern the collision between different types of waves, mainly gravitational and

electromagnetic [6], neutrino [7] and null fields [8], [9]. Except for the Bell-Szekeres

solution these suffer from curvature singularities which are unavoidable for the non-

flat space-times in the future of the collision region. Gürses et.al. [10], [11], [12] have

some studies which are about the same problems in the high dimensional space-times

related with the string theory. In 2004 Chen et.al. [13] succeeded to give a formal

solution to the collision of plane waves in string theory.

In this sense, plane wave symmetries are also useful for more generalized theories

which deal with dilatons [14] and solitons [15]. Even though it is not mentioned as
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much as the plane waves, there is an upper class of them which are plane fronted and

parallel, namely, pp waves. These types of waves were first suggested by Brinkmann

[27]. However, pp waves remained uninvestigated until the work of Ehlers and Kundt

[26]. Nowadays pp waves are widely used in string theory as well as in gravitational

wave interaction in general relativity; for a concrete example, axisymmetric pp waves

have a usage in the Aichelburg-Sexl ultraboost [17]. If one makes a generalization on

the collision of plane waves, one needs to use symmetry groups as Gürses and Kalkanli

did [16] or pp waves. Since Khan-Penrose solution is a special case of the Szekeres

solution, a possible pp wave type solution must include the Szekeres solution, Nutku-

Halil solution,etc...

In 1998 Ivanov succeeded to find a solution for the collision of axisymmetric pp

waves [18] after some auxiliary steps [20], [21]. Actually this solution is forced to give

some similarities with the Babala’s solution which describes the collision of a gravita-

tional impulsive wave and a thin plane shell of null dust [19]. Because this similarity

gives us a hope in the way of finding a pp wave solution to the collision problem.

According to our motivation, reviewing the Ivanov’s work [18] would be helpful

for the studies about the collision of gravitational waves in the future. Because this

work is an important step to solve a realistic waves which are not planar. Moreover,

one can generalize the collision problems by using pp wave metrics.

In Chapter 2, the well known properties of gravitational plane waves are briefly

reviewed.

In Chapter 3, first the collision problem is represented and then the most im-

portant two solutions, Khan-Penrose and Bell-Szekeres, in the collision problem are

introduced.

In Chapter 4, first the main properties of PP waves are presented and then Ivanov’s

solution is eventually discussed.
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CHAPTER 2

PLANE GRAVITATIONAL WAVES

The main purpose of this chapter is to review how gravitational waves can be inter-

preted theoretically. This is possible by solving the Einstein’s field equations. The

non-linearity structure is the main drawback in generating a wave equation. The lin-

earization can be done in the weak energy limit by some perturbation techniques. In

this subject, our the only guide is the similarities between electromagnetic theory and

general relativity rather than the experimental results. Coordinate transformations

are also helpful, as well as fixing or choosing gauges like Lorenz gauge. The possible

solutions for the field equations must have some generalized properties that electro-

magnetic waves have. The polarization state of a wave and spin is some of those.

These properties can be used in classifying the waves.

2.1 Linearized Field Equations

The metric of a space-time with a gravitational wave can be thought as a small per-

turbation about a flat space-time metric (i.e. the Minkowski metric ηµν);

gµν = ηµν + hµν , |hµν | � 1 (2.1)

where hµν is the metric perturbation. Like h2
µν terms and higher order terms can be

neglected. In order to find the linearized field equations, let’s begin by finding the

inverse metric;

gµαg
αν = δν

µ ⇒ gµν ≈ ηµν − hµν . (2.2)

Then the Christoffel symbols are

Γµ
αβ =

1
2
gµν(gνα,β + gνβ,α − gαβ,ν)

≈ 1
2
(hµ

α,β + hµ
β,α − hαβ,

µ) (2.3)
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where the indices are raised and lowered by ηµν , and the indices after the comma

indicate partial differentiation with respect to those indices. The Ricci tensor can be

computed by contracting the Riemann tensor

Rµν = Rα
µαν = Γα

µν,α − Γα
µα,ν + Γα

βαΓβ
µν − Γα

βνΓ
β
µα. (2.4)

Cancelling the higher order terms, it becomes

Rµν = Γα
µν,α − Γα

µα,ν (2.5)

after using (2.3), we have

Rµν =
1
2
(hα

µ,να + hα
ν,µα −�hµν − h,µν), (2.6)

where h ≡ hα
α = ηαβhαβ , �hµν = hµν,α

α. � = ∂µ∂µ is the flat space d’Alembertian

operator. The Ricci scalar is

R = Rµ
µ = hαµ

,µα −�h. (2.7)

As a result, the linearized Einstein tensor can be computed easily

Gµν = Rµν −
1
2
gµνR

≈ 1
2
(hα

µ,να + hα
ν,µα −�hµν − h,µν − ηµνh

αβ
,αβ − ηµν�h). (2.8)

In the weak gravitational field approximation, Riemann and Weyl tensors can also be

computed in a similar way. However, let’s stop linearization here for a while and define

Weyl tensor which is frequently used in the collision problem and in the classification

of gravitational waves. Weyl tensor is the trace free part of Riemann tensor, i.e.

Ca
bad = 0. (2.9)

The Weyl tensor can be generated by subtracting the trace parts from the original

Riemann tensor. So in an n dimensional space-time this trace-free tensor looks like

Cρσµν = Rρσµν −
2

n− 2
(gρ[µRν]σ − gσ[µRν]ρ) +

2
(n− 1)(n− 2)

gρ[µgν]σR. (2.10)

Here the brackets denotes antisymmetricity. The Weyl tensor has the same mathe-

matical properties as the Riemann tensor, which are

Cρσµν = C[ρσ][µν] (2.11)

Cρσµν = Cµνρσ (2.12)

Cρ[σµν] = 0. (2.13)
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The Weyl tensor can give a relationship between two distinct looking spacetimes.

If two space-times gµν and gµν are said to be conformally related,then they must

satisfy

gµν = Ω2gµν , (2.14)

where Ω(x) is a non-zero differentiable arbitrary function. In fact conformal map-

ping which describes a function conserving angles between lines is actually defined in

complex analysis. The conformally related metrics have the same Weyl tensor that is

C
ρ
σµν = Cρ

σµν . (2.15)

If Ω = 1, then the metrics are called conformally invariant. As it can be seen, the Weyl

tensors are conformally invariant objects which are frequently used in the collision

problems to seek the conformal relations with the Minkowski metric (i.e. conformally

flatness). This implies that in a conformally flat metric, Weyl tensor vanishes which is

often used in the subsequent chapters. The symmetries of the Weyl tensor can also be

used when classifying the space-times. One of them is the Petrov classification. Briefly

in the Petrov classification one should investigate the multiplicity of the principle null

directions (kµ) which satisfy

kµkµ = 0 (2.16)

by using the equations in the below.

k[ρCκ]λµ[νkσ]k
λkµ = 0 (2.17)

Cκλµ[νkσ]k
λkµ = 0 (2.18)

Cκλµ[νkσ]k
µ = 0 (2.19)

Cκλµνk
µ = 0 (2.20)

2.2 Gauge Transformations

In electromagnetic theory, wave solutions can be found by using gauge transformation

of the vector potential. In our case, let’s begin with the coordinate transformation

xµ → x′µ = xµ + εξµ(x), (2.21)
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where ε is a small dimensionless parameter and ξµ is an arbitrary vector field. Then

our metric would be transformed according to

gµν(x) =
∂x′α

∂xµ

∂x′β

∂xν
g′αβ(x). (2.22)

The gauge transformation of the metric perturbation can be easily found as

hµν → h′µν(x) = hµν(x)− 2ξ(µ,ν), (2.23)

where ξ(µ,ν) = 1
2(ξµ,ν + ξν,µ). Similarly, it can be shown that the Riemann tensor, the

Ricci tensor and the Ricci scalar are invariant under this transformation.

Define

ψµν ≡ hµν −
1
2
ηµνh, (2.24)

which transforms like

ψµν → ψ′µν = ψµν − ξµ,ν − ξν,µ − ηµν�ξ, (2.25)

then plug hµν into Ricci tensor, Ricci scalar and Einstein tensor which are given by

(2.6), (2.7) and (2.8), respectively. Then they become

Rµν = 1
2(ψα

µ,να + ψα
ν,µα −�hµν),

R = ψαβ
,αβ − 1

2�h,

Gµν = 1
2(ψα

µ,να + ψα
ν,µα −�ψµν − ηµνψ

αβ
,αβ).

(2.26)

Assume that we are working in the harmonic coordinate system which has the property

gµνΓα
µν = 0. (2.27)

When metric is linearized, this gives

hµ
ν,µ −

1
2
h,ν = 0. (2.28)

By using (2.24), (2.28) can be written shortly

ψµ
ν,µ = 0. (2.29)

This condition is called the Lorentz gauge, which is the analogue to the one in the

electromagnetic theory. Then from (2.25), this condition becomes

�ξν = ψµ
ν,µ = 0. (2.30)
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The Einstein tensor reduces to

Gµν = −1
2
�ψµν . (2.31)

So in the vacuum we have

�ψµν = 0, (2.32)

and also

�ψ = 0. (2.33)

Eventually, combining (2.24) and (2.32), one gets

�hµν = 0. (2.34)

This is the equation that must be solved to get wave solutions.

2.3 Linearized Plane Gravitational Waves

One can achieve to get the wave equation by using gauge transformations as we did in

the previous section. But we must solve (2.34) in order to get a generic gravitational

metric. Fortunately, we are familiar to this problem from the electromagnetic theory.

Suppose that

hµν = Aµνe
ikαzα

(2.35)

satisfies (2.34), where Aµν is called the polarization tensor and k is the wave vector

whose components are constant for plane waves. If one inserts (2.35) into (2.34), then

one gets

kµk
µ = 0. (2.36)

which shows that wave is propagating at the speed of light. If (2.35) is put into (2.28),

then one finds

kµA
µ

ν =
1
2
kνA

µ
µ. (2.37)

This shows that Aµν is symmetric. This reduces the linearly independent components

from ten to six. Similarly (2.30) can be solved as

ξµ = Bµe
ikλxλ

, (2.38)

where ξµ and Bµ are constant coefficients. Then ξµ can be chosen such that we can

write Aµν such as

A′
µν = Aµν + kµBν + kνBµ. (2.39)
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This reduces the number of linearly independent components from six to two, since

Bµ has four components. For example, assume that our wave propagates in the z-axis,

i.e.

k2 = k3 ≡ 0, k1 = k0 ≡ k. (2.40)

By using (2.37)

A12 +A02 = A13 +A03 = 0,

A11 +A01 = 1
2(A11 +A22 +A33 −A00),

A01 +A00 = −1
2(A11 +A22 +A33 −A00).

(2.41)

Then

A03 = −A13, (2.42)

A02 = −A12, (2.43)

A01 = −1
2
(A00 +A11), (2.44)

A22 = −A33. (2.45)

Bµ stated in (2.39) can be arranged such that A′
µν = 0 except for A22, A23, A32, A33;

that is

Aµν =


0 0 0 0

0 0 0 0

0 0 A22 A23

0 0 A23 −A22

 . (2.46)

2.4 Polarization States

The metric we found in the previous section can be written without cross terms in the

form

ds2 = dt2 − dz2 − [1− h22(t− z)]dy2 − [1 + h22(t− z)]dx2 (2.47)

which is called h22-wave because metric does not have any perturbation term other

than h22. Assume that, we have a group of test particles around a circle in (x, y)-

plane. When h22 > 0 , test particles begin to squeeze in y-coordinate and to stretch

in x-coordinate. The circle is deformed to be an ellipse in shape. If h22 < 0, then the

test particles would act vice versa. Because of this transverse characteristic, this state

of wave is known as “+ polarization”. At first, we have assumed that h23 = 0, now

8



Figure 2.1: Polarization of a plane gravitational wave is shown. In the first column
+-polarization, in the second column ×-polarization, in the third and fourth columns
right and left polarizations, where they can be linearly represented by +-polarization
and ×-polarization, are illustrated.

further assuming h23 6= 0 and h22 = 0, the metric becomes

ds2 = dt2 − dz2 − dy2 + 2h23(t− z)dydx− dx2. (2.48)

After making a transformation of the

y → y′ =
1√
2
(y + x), z → z′ =

1√
2
(−y + x), (2.49)

which means a rotation through 45◦ in the (y, z)-plane. The line element turns to be

a familiar form

ds2 = dt2 − dz2 − [1− h23(t− z)]dy2 − [1 + h23(t− z)]dx2. (2.50)

This is called h23-wave. Since we have rotated + polarization, now we have a × po-

larization. Both + and × polarizations are linear polarizations. In general, if we have

neither h22 = 0 nor h23 = 0, then this wave would be a combination of +-polarization

and ×-polarization (see Figure 2.1). Although here polarization is found by using

matrix identities, these results can also be achieved by geodesic deviation.

The classical radiation field of a spin-S particle is always invariant under a rota-

tion of 360◦

S about its propagation direction. As a result, we can immediately draw the

conclusion that the graviton, the messenger particle of gravitational field, is a spin-2

particle [25].

It can be asked whether waves can have polarization states different than plane po-

larizations. In this sense the Petrov classification is more helpful when plane symmetry

9



Figure 2.2: One of the non-plane polarizations can be in a spherical form.

does not exist. For example in type-N fields has a characteristic like + polarization

and type-III is the same as × polarization. But type-D field, which is another type

of Petrov classification, defines a new polarization state that does not exist in plane

polarization. In a type-D field test particles move in a spherical and an ellipsoidal

form (see Figure 2.2).

2.5 Exact Plane Gravitational Waves

h22-wave metric can be written in the following form

ds2 = 2dudv − f2(u)dx2 − g2(u)dy2 (2.51)

where f2(u) = 1 − h22(u), g2(u) = 1 + h22(u). The plane wave metric admits a

five-parameter group of symmetries and there is a two-parameter Abelian subgroup

of symmetries acting like planar translations in the spacelike 2-surfaces. Here our

main purpose is to see whether vacuum field solutions are satisfied or not. In order to

see them once again, it is needed to find non-vanishing Christoffel symbols, Riemann

tensor, Ricci tensor and Ricci scalar which are

Γ1
22 = ff ′, Γ1

33 = gg′, Γ2
02 = f ′

f , Γ3
03 = g′

g ;

R0202 = ff ′, R0303 = gg′;

R00 = −f ′′

f −
g′′

g ;

R = 0,

(2.52)

respectively. Here, prime denotes partial derivative with respective to u. Hence, it

can be easily seen that the only field equation is

f ′′

f
+
g′′

g
= 0. (2.53)
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The solution of this implies that in this metric we have two travelling waves moving

in opposite directions. This type of metric is called Rosen form which shows that it is

possible to interpret the space-time as the collision of two gravitational waves. Surely,

the collision of gravitational waves are the exact solutions of Einstein field equations.

Instead of seeing this property in field equations, there is another possibility that it can

be seen in the metric from the beginning. After using the coordinate transformations

ū = u, v̄ = v +
1
2
y2ff ′ +

1
2
x2gg′, Y = fy, X = gx; (2.54)

the Rosen type line element becomes

ds2 = dūdv̄ + h(ū)(Y 2 −X2)dū2 − dX2 − dY 2 (2.55)

which is called Brinkmann form. In this type, the amplitude of gravitational wave

can be also observed. Although the nonlinearity of Einstein field equations doesn’t al-

low any superposition principle in general relativity, these solutions revealed a limited

superposition principle in that two plane waves moving in the same direction can be

superposed simply by adding their corresponding h functions. Here, it is worth not-

ing that scattering angle is not important while considering collision of gravitational

waves, since one can always find a class of observers who consider the collision to be

head on. Hence, it is sufficient to work in a coordinate system in which the waves

appear to collide head on.

2.6 The Class of Plane Waves

In the previous section, the Brinkmann form metric was obtained. The term h(ū)(X2−

Y 2) can be generalized to H(ū, X, Y )

ds2 = 2dūdv̄ +H(ū, X, Y )dū2 − dX2 − dY 2. (2.56)

This general type of waves are known as pp waves and they will be discussed in Chapter

3 in detail. Plane waves, the special case of pp waves, can be defined with the line

element in the form

ds2 = 2dūdv̄ + (h11X
2 + 2h12XY + h22Y

2)dū2 − dX2 − dY 2 (2.57)

where hij are functions of ū only. Observe that plane wave metric has the function

H(ū, X, Y ) quadratic with X and Y coordinate. This line element describes a gravi-

tational wave in a vacuum space-time if h22 = −h11. In addition, if h12 is proportional

11



to h11 then the gravitational wave will have constant linear polarization such as

H = h(ū)(cosα(X2 − Y 2) + 2 sinαXY ) (2.58)

If one wants to align the polarization with the x-axis, then one should set α = 0. So

the metric becomes

ds2 = 2dūdv̄ + (h11(X2 − Y 2))dū2 − dX2 − dY 2 (2.59)

which is already obtained in the previous section as Brinkmann form. Similarly, pure

electromagnetic waves can be also defined in the same manner

ds2 = 2dūdv̄ + (h11(X2 + Y 2))dū2 − dX2 − dY 2. (2.60)

There is another type of metric which is called Szekeres line element and it is

widely used in the collision of gravitational waves.

ds2 = 2e−Mdudv − e−U (eV coshWdx2 − 2 sinhWdxdy + e−V coshWdy2) (2.61)

where U , V , M , W are functions of u only. W describes the alignment of the linear

polarization. Szekeres showed that Rosen type metric can be transformed into a form

given in (2.61).

Aligned polarized gravitational waves can be further classified by using the known

simple functions in order to investigate the properties more easily. For example,

impulsive gravitational plane waves have h(u) ≡ δ(u). The geometry of the space-

time where gravitational wave passes through is changed in a moment and returns back

to its old flat geometry. Although impulse function is an idealized function, it must

have some finite thickness in real life. Because of this reason, impulsive gravitational

waves are sometimes called sandwich waves.

Another example can be step waves which has h(u) ≡ θ(u). Then for gravitational

waves the metric would be

ds2 = 2dūdv̄ + a2θ(ū)(X2 − Y 2)dū2 − dX2 − dY 2 (2.62)

where a is the amplitude of the wave. For electromagnetic waves it is

ds2 = 2dūdv̄ + a2θ(ū)(X2 + Y 2)dū2 − dX2 − dY 2. (2.63)

In the Rosen form they are

ds2 = 2dudv + cos2au dx2 − cosh2au dy2, (2.64)

ds2 = 2dudv + cos2au (dx2 + dy2), (2.65)
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respectively.
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CHAPTER 3

COLLIDING PLANE GRAVITATIONAL WAVES

The non-linearity of Einstein’s field equations is the messenger of new features of

gravitational waves. One of these is that waves do not possibly superpose. While

further investigating this, we can use the simple wave structures and the collision of

known waves (i.e. electromagnetic waves).

Firstly, the concrete framework is given in order to seek general solutions. One of

the exact solutions are investigated by using this framework and the other solution is

investigated without it in order to show how hard it is to deal with the field equations.

3.1 Collision of Plane Waves

The main reason of using the Rosen coordinates is to represent the collision prob-

lem schematically. After disregarding the spacelike coordinates which are x and y

coordinates, two gravitational wave can be represented as in the Figure (3.1). Beside,

omitting the spacelike coordinates provides a visualization on the collision subject. For

instance, according to timelike observers, they see a collision as a head-on collision.

We can understand and visualize what that observer sees in this sense.

Before the collision, the space-time is flat (i.e. Minkowski metric describes the

region I (u < 0, v < 0)). The region II (u > 0, v < 0) and region III (u < 0, v > 0)

represent the approaching gravitational waves. Those are flat except at the bound-

aries where Lichnerowicz conditions or O’Brien-Synge conditions must be satisfied.

According to the Lichnerowicz conditions, metric function gµν must have continuous

derivatives up to first order across the boundary but higher order derivatives need not

to be continuous. Weaker than the Lichnerowicz conditions O’Brien-Synge conditions

tell that the null hypersurface with x0 = constant and g00 = 0 must have the compo-

nents gµν , gijgij,0, gi0gij,0 (i, j=1,2,3) continuous across the null boundary. Here the

14



Figure 3.1: Although this picture represents impulsive gravitational waves, the plane
waves can be represented in a similar way. Space-time can be divided into four regions.
The spacelike coordinates are omitted and only null coordinates are used. Because of
the division into four regions, approaching waves carry information about the initial
data.

main assumption is that in interaction region IV (u > 0, v > 0) the metric is a function

of null boundaries (i.e. u and v) and does not vary with spacelike components. The

reason of making such an assumption is to use the characteristic initial value problem

which tells that if the main equations hold everywhere especially on a hypersurface,

then the contracted Bianchi identities ensure that conditions hold everywhere [23].

Characteristic here means a special attribute specifies the null hypersurfaces are in-

terested. This technique guarantees that the solution is unique if the initial conditions

are well set. There is no need to solve the field equations for the regions other than

region IV. So if one wants to obtain the solution for the collision problem, the first

job must be to seek a solution to the Rosen type metric which can be written in the

form

ds2 = 2e−Mdudv − gijdx
idxj (3.1)

where M = M(u, v); gij = gij(u, v); i, j = 2, 3. Briefly one should find a way to

describe the function gij . As one can expect, the solution sought is given in (2.61).

That the Rosen type metric has two null coordinates mentioned before is the starting

point of this investigation. Because of having null coordinates, it is appropriate to

pass to the null tetrad formalism which has a wide range of usage in general relativity,

especially in gravitational radiation and black holes. In null tetrad formalism, the

main idea is to write a metric by suitable vector fields whose length is zero (i.e. null

15



vectors)

lµlµ = nµnµ = mµmµ = m̄µm̄µ = 0, (3.2)

where m̄ is the complex conjugate of m. These null vectors have normalization con-

ditions which are

lµnµ = 1, mµm̄µ = −1. (3.3)

After this definition, one can write a metric as

gµν = lµnν + lνnµ −mµm̄ν −mνm̄µ. (3.4)

Then according to (3.1), let the null vector fields be

Alµ = u,µ and Bnµ = v,µ (3.5)

where A = A(u, v) and B = B(u, v) are integrating factors. The other complex null

vectors can be defined as

mµ = D2(u, v)δµ
2 +D3(u, v)δµ

3 . (3.6)

After using the field equations in Newman-Penrose formalism, one can find that

M = ln(AB). (3.7)

Then if commutation relations, scale invariance and the uniqueness theorem of ordi-

nary differential equations are used, the metric becomes

ds2 = 2e−Mdudv − (DiD̄j + D̄iDj)dxidxj (3.8)

where

D2 =
1√
2
e

U−V
2 (cosh(

W

2
) + i sinh(

W

2
)) (3.9)

D3 =
1√
2
e

U+V
2 (sinh(

W

2
) + i cosh(

W

2
)) (3.10)

and U = − ln(det gij), W is a function of u and v and defines a spatial rotation,

V = V (u, v).

Initial conditions of the Szekeres metric are

U = V = M = W = 0 in region I; (3.11)

V = V (u, 0), M = M(u, 0), W = W (u, 0), U = − ln(f(u) +
1
2
) in region II; (3.12)
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V = V (0, v), M = M(0, v), W = W (0, v), U = − ln(g(v) +
1
2
) in region III, (3.13)

where according to one of the field equations e−U = f(u) + g(v).

These are the techniques used in the collision problem while seeking an exact

solution. Now we can give some of them.

3.2 Colliding Impulsive Plane Gravitational Waves

As mentioned in the previous chapter an impulsive gravitational plane wave

ds2 = 2dūdv̄ + δ(ū)(X2 − Y 2)du2 − dX2 − dY 2 (3.14)

can be transformed into Rosen form as

ds2 = 2L(u)dudv − F 2(u)dx2 −G2(u)dy2 (3.15)

by changing the coordinates as

ū = u, v̄ = v +
1
2
y2FF ′ +

1
2
z2GG′, Y = Gy, X = Fx; (3.16)

where L = 1, F = 1 + uθ(u), G = 1− uθ(u).

It is possible to think that if a travelling wave is described by the functions of u

in that direction, then another travelling wave can be described by the functions of

another orthogonal direction v in a perpendicular direction [2]. Since perpendicularity

is relative, such a reference frame can always be found in which the observer thinks the

interaction is a head on collision. Here the problem is to find a solution of the Einstein

equations for the region after the collision. Because of nonlinearity, the resulting waves

are not simply sums or products of the instant waves. It may be useful to start with

the generalized Rosen form in order to find the explicit solution of Einstein’s vacuum

equations representing a collision between two impulsive gravitational waves

ds2 = 2L(u, v)dudv − F 2(u, v)dx2 −G2(u, v)dy2. (3.17)
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The non-vanishing components of the Ricci tensor, Ricci scalar and Einstein tensor

are

R00 =
[ (2FuLu−LFuu)

F + (2GuLu−LGuu)
G ]

L
, (3.18)

R01 = −Fuv

F
− Guv

G
+ 2

(LuLv − LLuv)
L2

, (3.19)

R11 =
[ (2FvLv−LFvv)

F + (2GvLv−LGvv)
G ]

L
, (3.20)

R22 =
F (GvFu + FvGu + 2GFuv)

GL2
, (3.21)

R33 =
G(GvFu + FvGu + 2FGuv)

FL2
, (3.22)

R = −(2(−FGLvLu+L2(GvFu+FvGu+2GFuv+2FGuv)+FGLLuv))
FGL3

, (3.23)

G00 =
[ (2FuLu−LFuu)

F + (2GuLu−LGuu)
G ]

L
, (3.24)

G01 =
GvFu + FvGu +GFuv + FGuv

FG
, (3.25)

G11 =
[ (2FvLv−LFvv)

F + (2GvLv−LGvv)
G ]

L
, (3.26)

G22 =
2F 2L2Guv + 2F 2G(LLuv − LuLv)

GL4
, (3.27)

G33 =
2G2L2Fuv + 2G2F (LLuv − LuLv)

FL4
. (3.28)

From now on we won’t use the comma indicating partial differentiation. Using (3.21),

(3.22) and (3.25) the relationship between the functions F and G can be found

GFuv = FGuv. (3.29)

If (3.19) is used for investigating the effect of the function L to the functions F and

G, then
Guv

G
=
Fuv

F
= (lnL−1)uv. (3.30)

On the other hand, (3.25) implies that

(GF )uv = 0. (3.31)

This equation is particularly important because the structure of the solution is de-

scribed here. The solution of (3.31) is

GF = c1 + c2h1(u) + c3h2(v), (3.32)

where c1, c2, c3 are real constants but for the sake of simplicity they can be taken as

c1 = c2 = c3 = 1, and because of the symmetry of the metric the algebraic type of the
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functions h1 and h2 must be the same. Once again using (3.25) with the help of R22

and R33, some series of equations can be found

(GvF )u = −(GuF )v (3.33)

(FvG)u = −(FuG)v. (3.34)

Then putting (3.32) into (3.34), the relationship between F and H can be obtained

in a different manner

(lnH)u + (lnH)v = (lnF )u + (lnF )v, (3.35)

where H = 1+h(u)+h(v). If the solution in (3.31) is put into (3.30), then it becomes

−2(lnF )uv = (lnH)v(lnF )u + (lnH)u(lnF )v. (3.36)

After using these last two equations and assuming H is the simplest function that

satisfies them, it can be obtained that

F =
(1− u2θ(u)− v2θ(v))

G
. (3.37)

Let’s write this solution again into the metric and solve the Einstein and Ricci tensors

once again. Then the resulting components of the tensors are

R00 = G00 = 2 t4LG2
u+G2((−1+v2)L+ut2Lu)

t2G2L
,

R01 = 2uv
t4
− 2GvGu

G2 + LvLu−LLuv
L2 ,

R11 = G11 = 2 t4LG2
v+G2((−1+u2)L+vtLv)

t2G2L
,

R33 = R22 = 2 t2GuGv+G(uGv+vGu−t2Guv)
G4L

,

G22 =
2(uGv+vGu−t2Guv)+(

G(−2uvL2−t4LuLv+t4LLuv)

−t2L2 )

G3L
,

G33 = 2(t2GuGv+G(uGv+vGu−t2Guv))
L −

t2G2( 2uv
t4

− 2GuGv
G2 )

L +
t2G2(LuLv−LLuv

L2 )

L .

(3.38)

Although they seem very complicated, there are only 4 linearly independent equations

exist which are
t2GuGv

G2 + uGv
G + vGu

G − t2Guv
G = 0,

2uv
t4
− 2GvGu

G2 + LvLu−LLuv
L2 = 0,

G2
u

G2 − 1−v2

t4
+ uLu

t2L
= 0,

G2
v

G2 − 1−u2

t4
+ vLv

t2L
= 0,

(3.39)

where t =
√

1− u2 − v2. First two equations imply with the help of (3.22) that

uv

t4
=
GuGv

G2
. (3.40)
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This equation can be simply integrated if it is separated like

(lnG1)u = −
√

1− v2

t2
and (lnG1)v = − −uv√

1− v2t2
, (3.41)

or

(lnG2)u = − −uv√
1− u2t2

and (lnG2)v = −
√

1− u2

t2
. (3.42)

Since these equations are particular solutions, it can be written in the form lnG =

lnG1 lnG2. Thus, the solution is

G =

√√√√(√1− v2 + u√
1− v2 − u

)(√
1− u2 + v√
1− u2 − v

)
. (3.43)

After plugging this solution to the metric, the resulting Ricci and Einstein tensors are

R00 = G00 = −2uuv2+2v
√

1−u2
√

1−v2)L
(1−u2)t4L

+ Lu
t2L
,

R01 = 2−1+v2+u2(1−2v2)−uv
√

1−u2
√

1−v2
√

1−u2
√

1−v2(1−u2−v2)2
− (lnL)uv,

R11 = G11 = 2v(u(2
√

1−u2−2v2
√

1−u2+uv
√

1−v2)L√
(1−v2)3t4L

− Lv
t2L
,

G22 =
t2(

2(−1+v2+u2(1−2v2)−uv
√

1−u2
√

1−v2)√
1−u2

√
1−v2t4

−(ln L)uv)(√
1−u2−v√
1−u2+v

)(√
1−v2−u

u+
√

1−v2

)
L

,

G33 =
t2(

2(−1+v2+u2(1−2v2)−uv
√

1−u2
√

1−v2)√
1−u2

√
1−v2t4

−(ln L)uv)(√
1−u2+v√
1−u2−v

)(
(u+

√
1−v2)

(
√

1−v2−u)

)
L

.

(3.44)

Finally using R00 and R11, the function L can be computed as

L =
(1− u2 − v2)3/2

√
1− u2

√
1− v2(uv +

√
1− u2

√
1− v2)

. (3.45)

Thus, the metric is

ds2 = 2
(1− u2 − v2)

3
2

√
1− u2

√
1− v2(uv +

√
1− u2

√
1− v2)

dudv

−(1− u2 − v2)(
(1− u

√
1− v2 − v

√
1− u2)

(1 + u
√

1− v2 + v
√

1− u2)
dx2 (3.46)

+
(1 + u

√
1− v2 + v

√
1− u2)

(1− u
√

1− v2 − v
√

1− u2)
dy2).

If it is assumed to be u = 0 for v < 0 and v = 0 for u < 0, then the metric

would describe the region below u2 + v2 = 1, u = 1, v = 1. There are two types

of singularity in this space-time. One of them is a curvature singularity at which

curvature scalar invariants blow up at u2 + v2 = 1 (see Figure 3.2). This singularity

is due to the focusing effect of waves. The other one is a coordinate singularity which
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Figure 3.2: The singularity structure of the Khan-Penrose solution. The interiors of
regions I, II, III are flat. However, there is a discontinuity at the boundaries. Unlike
these three regions, the fourth region is curved.

can be removed by some appropriate coordinate transformations. It can be concluded

that after collision plane waves would focus on each other and give up their properties.

So it can be understood that the space-time is not flat anymore and the Weyl tensor

is not equal to zero in anywhere of interaction region.

One can be anxious about the behaviour of a light ray, which has a null geodesic,

near the boundaries for example at v = −1. So it can be thought that this particle

can escape from the singularity but this is not the case. Because when this particle

propagates through v = −1 hypersurface, after a time it would come across with the

curvature singularity before it reaches the caustic two-surfaces (i.e. fold singularity)

particle trajectory by focusing on curvature singularity. Any particle can never reach

fold singularity. So one can make an inference that the curvature singularity is not

avoidable.

Now one can ask why the general framework of the previous section is not used in

this section. However, the Szekeres solution also includes the one that Khan-Penrose

did or in other words Khan-Penrose solution is a special form of Szekeres solution[3].

Thus, one can alternatively solve the collision problem of impulsive gravitational waves

by using the techniques discussed in the previous section.
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3.3 Colliding Plane Electromagnetic Waves

As mentioned in the previous chapter an electromagnetic step plane wave has the

metric of the form

ds2 = 2dūdv̄ + a2θ(ū)(X2 + Y 2)dū2 − dX2 − dY 2 (3.47)

which can be transformed to

ds2 =


2dudv + cos2au (dx2 + dy2), v<0, u≥0

2dudv + cos2bv (dx2 + dy2), u<0, v≥0
(3.48)

by using the coordinate transformation

X = ax+ by, Y = ex+ cy,

v̄ = v + 1
2(aa′ + ee′)x2 + 1

2(ba′ + ab′ + ec′ + ce′)xy + 1
2(bb′ + cc′)y2.

(3.49)

Alternatively, the linearly polarized waves can be described by the Szekeres line ele-

ment. As we found previously, the interaction region can be represented as

ds2 = 2e−Mdudv − e−U (eV dx2 + e−V dy2) (3.50)

where U , V , M are functions of u and v.

The space-time we are searching is not vacuum anymore. So it has a non-vanishing

energy momentum tensor

Tµν =
gγα

4π


F0αF0β 0 0 0

0 F1αF1β 0 0

0 0 F2αF2β − 1
4g22FαβF

αβ 0

0 0 0 F3αF3β − 1
4g33FαβF

αβ



=
1
4π


eU+VA2

u 0 0 0

0 eU+VA2
v 0 0

0 0 −AuAv 0

0 0 0 AuAv

 , (3.51)

where A is the vector potential used in the electromagnetic theory and Fµν is the

electromagnetic field tensor.

The non-vanishing components of the Ricci tensor, the Ricci scalar and the Einstein
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tensor are, respectively,

R00 = Uuu +MuUu −
1
2
(U2

u + V 2
u ), (3.52)

R01 = Uuv +Muv −
1
2
(UuUv + VuVv), (3.53)

R11 = Uvv +MvUv −
1
2
(U2

v + V 2
v , ) (3.54)

R22 = eM−U+V [Uuv − Vuv − UuUv +
1
2
(UuVv + UvVu)], (3.55)

R33 = eM−U−V [Uuv + Vuv − UuUv −
1
2
(UuVv + UvVu)], (3.56)

R = eM (2Muv + 4Uuv + 3UuUv − VuVv), (3.57)

G00 = Uuu +MuUu −
1
2
(U2

u + V 2
u ), (3.58)

G01 = UuUv − Uuv, (3.59)

G11 = Uvv +MvUv −
1
2
(U2

v + V 2
v ), (3.60)

G22 = e−U−V (−Uuv − Vuv −Muv +
(Uv + Vu)(Uu + Vv)

2
), (3.61)

G33 = e−U−V (−Uuv + Vuv −Muv +
(Uv − Vv)(Uu − Vu)

2
). (3.62)

Differentiating (3.58) and using (3.61) or (3.62) with the help of (3.53), it can be found

that

2Vuv − UuVv − UvVu = 4eU+VAuAv, (3.63)

VuAv + VvAu = −2Auv. (3.64)

From (3.59)

U = − log[f(u) + g(v)] (3.65)

Using (3.48) as initial values of boundary conditions

U =


−2 log cosau, v<0

−2 log cosbv, u<0.
(3.66)

It is necessary to put some constant in order not to get zero at the boundaries:

e−U =



1, u ≤ 0, v ≤ 0

1
2 + f(u), u ≥0, v ≤ 0

1
2 + g(v), v ≥ 0, u ≤ 0

f(u) + g(v), u ≥ 0, v ≥ 0.

(3.67)
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According to the assumption previously made, we can find f and g as

f(u) =
1
2
− sin2au, (3.68)

g(v) =
1
2
− sin2bv. (3.69)

So U becomes

U = − log cos(au+ bv)− log cos(au− bv). (3.70)

After getting U , V can be guessed similarly using (3.63), (3.64) and then it is easy to

obtain the vector potential A:

V = log cos(au+ bv)− log cos(au− bv), (3.71)

A = sin(au− bv). (3.72)

Now the only unknown function is M . After plugging U into the (3.58), M becomes

Mu = −fuu

fu
+

fu

2(f + g)
− (f + g)

2fu
[V 2

u + 4eU+VA2
u], (3.73)

Mv = −gvv

gv
+

gv

2(f + g)
− (f + g)

2gv
[V 2

v + 4eU+VA2
v]. (3.74)

The first two terms can be reduced as

e−M =
fugv√
f + g

e−S , (3.75)

where S is a function satisfying the third term of (3.73) and (3.74). Then (3.73) and

(3.74) become (after a transformation u→ f and v → g)

Sf = −(f + g)[V 2
f + 4eU+VA2

f ], (3.76)

Sg = −(f + g)[V 2
g + 4eU+VA2

g]. (3.77)

Submitting the U , V and A into (3.76) and (3.77), then integrating S can be found

as

S =
1
2
[−log(f + g) + log(

1
2

+ f) + log(
1
2

+ g) + log(
1
2
− f) + log(

1
2
− g)] + c, (3.78)

where c is an integration constant. Now it’s time to get M from (3.75)

e−M =
cfugv√

1
4 − f2

√
1
4 − g2

= 4abc. (3.79)

The integration constant can be chosen as

c =
1

4ab
. (3.80)
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This means that

M = 0. (3.81)

Finally the metric in the interaction region is

ds2 = 2dudv − cos2(au− bv)dx2 − cos2(au+ bv)dy2. (3.82)

After obtaining the metric in the interaction region, the geometry of that region can

be further investigated. The non-vanishing components of the Riemann tensor and

the Weyl tensor are

R0202 = e2VA2
u −

1
2
e−U+V (Vuu − UuVu), (3.83)

R0212 = e2VAuAv, (3.84)

R0303 = A2
u −

1
2
e−U−V (Vuu − UuVu), (3.85)

R1212 = e2VA2
v −

1
2
e−U+V (Vvv − UvVv), (3.86)

R1313 = A2
v −

1
2
e−U−V (Vvv − UvVv), (3.87)

R0313 = −AuAv; (3.88)

C0202 = −1
2
e−U+V (Vuu − UuVu), (3.89)

C0303 =
1
2
e−U−V (Vuu − UuVu), (3.90)

C1212 = −1
2
e−U+V (Vvv − UvVv), (3.91)

C1313 =
1
2
e−U−V (Vvv − UvVv). (3.92)

If Weyl tensor is calculated using the equations (3.71) and (3.70), then the solutions in

the interior of the interaction region gives a zero valued Weyl tensor which implies that

interaction region is conformally flat. But at the boundaries of the interaction region,

where u = 0 or v = 0 (i.e. null boundaries), the solution is impulsive which means that

colliding step wave like electromagnetic waves create impulsive gravitational waves.

The reason of this creation is that gravitational waves disturb the Weyl tensor in the

same way in a flat region. In addition to this unexpected result, there is no curvature

singularity in the interaction region different than the Khan-Penrose solution. This

can be seen by looking at the scalar invariants. One of the scalar invariants used for

determining the structure of space-time is the Riemann scalar invariant RµναβRµναβ

which is constant for the solution at hand. This information leads us to look at the
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other scalar invariants, but one of the singularities can be easily seen as u = π/2a and

v = π/2b. This type of singularity can be removed by the coordinate transformations

which are given by

ú = cos(au+ bv) cosh(cy), (3.93)

v́ = cos(au+ bv) sinh(cy), (3.94)

x́ = cos(au− bv) cos(cx), (3.95)

ý = cos(au− bv) sin(cx), (3.96)

where c =
√

2ab [4]. There can be some other singularities which can appear in

the Weyl tensor. These can also be removed with another appropriate coordinate

transformations.
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CHAPTER 4

PP WAVES

In this chapter, first the derivation of pp waves and their unique properties are dis-

cussed. Then the only solution of collision of pp waves are given.

4.1 The Class of PP Waves

In the first chapter the derivation of generic gravitational plane waves, whose line

element can be thought as a perturbation of flat Minkowski metric, were given as

gµν = ηµν + hµν . (4.1)

After getting the Einstein field equations, the wave equation is found. Then using the

propagation property of plane waves and light-cone coordinates the metric is found to

be

ds2 = 2dUdV + (δij + hij(U))dxidxj . (4.2)

If one forgets that the perturbation is small, then the equation (4.2) is simply

ds2 = 2dUdV + gij(U)dxidxj . (4.3)

Here, it is worth noting that there is a Killing vector which is

ξ = ∂v. (4.4)

Let ξ be a null vector field that satisfies

∇µξ
ν = 0 (4.5)

or equivalently,

∇µξν +∇νξµ = 0, (4.6)

∇µξν −∇νξµ = 0. (4.7)
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So it can be found that

ξµ = gµν (4.8)

where the null property implies that

ξv = gvv = 0. (4.9)

The Killing equation states that the line element is independent of v, whereas (4.7)

implies

ξµ = gvµ = ∂µu. (4.10)

Then the metric can be written as [28]

ds2 = 2dudv + P (u, xc)du2 + 2Ra(u, xc)dxadu+ Sab(u, xc)dxadxb. (4.11)

The special case of this metric is having Sab(u, xc) = δab which is

ds2 = 2dudv + P (u, xc)du2 + 2Ra(u, xc)dxadu. (4.12)

This type of metric describes plane fronted waves with parallel rays or shortly pp

waves. Here plane fronted means that the wave is non-twisting and non-expanding.

Parallelism is satisfied with the parallel null vector. If bivectors exist in a normal

hyperbolic V4, the metric can be written in the metric form ofBrinkmann’s definition

of pp waves [26]

ds2 = 2dudv +H(u, x, y)du2 + dx2 + dy2. (4.13)

The only surviving Ricci tensor component is

R11 = −1
2
(Hxx +Hyy). (4.14)

The Ricci scalar is therefore equal to zero and the linearly independent non-vanishing

Weyl tensor components are

C1341 =
1
2
Hxy (4.15)

C1331 =
1
2
(Hxx +Hyy). (4.16)

Brinkmann also proved [27] an interesting property that vacuum fields (i.e. pp waves)

can be mapped conformally on each other. This raises to another surprising property

of the pp waves; namely, having the superposition principle although Einstein field

equations are non-linear. They can propagate through each other without any effect.
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They also pass through a flat space-time without giving any change [29]. Non-flat

spaces can also be interpreted as the pp waves if they admit a constant bivector [26].

Another conclusion that can be derived is that pp waves can not be pictured like

the plane waves. Because the pp wave metric has a component which includes the

spacelike coordinates. Recall that the figures in the previous chapters are obtained by

suppressing the spacelike coordinates.

The plane waves which are discussed in chapter 1 are so defined that they are

homogeneous pp waves: the amplitude is constant everywhere on the wave. A general

plane wave metric is a very special subclass of pp waves which has Ra(u, xb) = 0 and

P (u, xc) quadratic in xc. Then we can write P as

P = Pabx
axb. (4.17)

As a result pp wave metric becomes like this

ds2 = 2dudv + 2Pabx
axbdu2 − dx2. (4.18)

4.2 Colliding Axisymmetric PP Waves

The metric of plane-fronted waves with parallel rays (i.e.pp waves) can be written in

cylindrical coordinates

ds2 = 2dudv̄ + 2Hdu2 − dP 2 − P 2dΦ2, (4.19)

where H = H(u, P,Φ) [20]. Here our first aim is to get a metric without non-diagonal

terms. In order to do that, the following equations must be satisfied:

v̄ = v + v̄1(u, r, ϕ), for guv = 1, (4.20)

Pv = Φv = 0, for gvv = 0, (4.21)

PrPϕ + P 2ΦrΦϕ = 0, for grϕ = 0, (4.22)

v̄1r = PuPr, for gur = 0, (4.23)

v̄1ϕ = P 2ΦuΦϕ, for guϕ = 0. (4.24)

First integrating (4.23) and then differentiating it with respect to ϕ in order to obtain

a similar left hand side with 4.24) and compare them. In this way, it can be found

that P 2ΦuΦϕ = 0 since Pϕ = 0. The simplest assumption we can make about Φ is

that Φu = 0 and Φϕ = constant. This leads to

Φ = ϕ. (4.25)
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Lastly to obtain guu = 0, the equation that must be satisfied is

2H = −2v̄1u + P 2
u . (4.26)

This means

H = H(u, P ). (4.27)

Using (4.26) and (4.27),

Puu = −HP (4.28)

can be easily found. So the metric becomes

ds2 = 2dudv −Q2dr2 − P 2dϕ2. (4.29)

The non-vanishing components of the Ricci and the Einstein tensor are

R00 = −Quu

Q − Puu
P ,

R01 = −Quv

Q − Puv
P ,

R11 = −Qvv

Q − Pvv
P ,

R02 = − 1
P (Pur − QuPr

Q ),

R12 = − 1
P (Pvr − QvPr

Q ),

R22 = (PrQr+Q2(QvPu+QuPv)+2Q2PQuv−QPrr)
PQ ,

R33 = P (2Puv + QvPu+QuPv

Q ) + PQrPr

Q3 − PPrr
Q2 ),

(4.30)

G00 = −Quu

Q − Puu
P ,

G01 = PrQr+Q(−Prr+Q(QvPu+QuPv+QPuv+QuvP ))
PQ3 ,

G11 = −Qvv

Q − Pvv
P ,

G20 = QuPr−QPur

PQ ,

G21 = QvPr−QPvr

PQ ,

G22 = −2Q2Puv

P ,

G33 = −2P 2Quv

Q .

(4.31)

These equations can be written shortly [18]

PQuu +QPuu = 0, (4.32)

PQuu +QPuu = 0, (4.33)

QPur +QuPr = 0, (4.34)

QPvr +QvPr = 0, (4.35)

Quv = Puv = 0, (4.36)
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Q2(QvPu +QuPv)−QPrr +QrPr = 0. (4.37)

When Pr = Qr = 0, these equations are equivalent to the ones for the plane wave

equations. If they are not equal to zero, (4.35) and (4.36) help to find Q

Q = H(r)Pr (4.38)

where H(r) is an arbitrary function. This function can be found using initial condi-

tions. If Minkowski space-time is considered, it can be found that H(r) = 1, which

gives

Q = Pr. (4.39)

With plugging (4.39) into (4.32) and (4.33), one gets

(PuuP )r = (PvvP )r = 0. (4.40)

If the metric is equal to the Szekeres metric, this equation can also be written in the

form (
e−U

)
uv

= 0. (4.41)

where P = e−
U+V

2 and Q = e
−U+V

2 . If (4.39) is put into (4.37), then

(PuPv)r = 0. (4.42)

There are two cases to consider in (4.40): One is to assume Puu = Pvv = 0. Then the

solution is

P = b0(r)− b1(r)u− b2(r)v. (4.43)

The other one is to take Puu 6= 0 and Pvv 6= 0. Then it reduces to(
Puu

Pvv

)
r

= 0, (4.44)

or

(PuuPvv)r = 0. (4.45)

These pair of equations can be written alternatively as

PuurPvv = 0, (4.46)

PuuPvvr = 0. (4.47)

The only possibility is Puur = Pvvr = 0. This implies Pr = Q = 0 from (4.39). This is

a solution for the hypersurface of this space-time.
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Here Ivanov mentions that there is another possibility that Pvv = 0 and Puu = 0,

but this contradicts with the assumption given before (4.44) and (4.45), thus it can be

neither Puu = 0 nor Pvv = 0. Another objection can be about the amplitudes of the

waves which are found by (4.46) and (4.47). The result implies that if one wave comes

from null direction u with amplitude b1(r), then the other wave has a
b1(r) = b2(r),

where a is an arbitrary constant.

The metric in the equation (4.29) represents the interaction region which can be

also generalized to the regions where, the instant waves present.

ds2 = 2duidv̄i + 2Hi(P )δ(ui)du2
i − P 2

r dr
2 − P 2dϕ2. (4.48)

where u1 = u, u2 = v, v̄1 = v + v́1(u, P ), v̄2 = u+ v́2(v, P ), (Hi(r))r = bi(r).

P = r − buθ(u)− a

b
vθ(v) (4.49)

Q = 1− bruθ(u) +
abr
b2
vθ(v) (4.50)

Actually this solution is similar to Babala’s solution [19]. However, there is a problem

on the boundary such as

Puu 6= 0 and Pvv 6= 0. (4.51)

As mentioned in (4.41), this metric is also a solution to the Szekeres metric in

cylindrical coordinates when M = 0,

ds2 = 2dudv − e−U (eV dr2 + e−V dϕ2). (4.52)

So the boundary conditions are expected to be satisfied by this solution.

It is time to look at the geometry of the interaction region by examining the

Riemann and the Weyl tensors and one scalar invariant:

R0202 = QQuu,

R0303 = PPuu,

R1212 = QQvv,

R1313 = PPvv,

(4.53)

C0202 = 1
2Q(Quu − QPuu

P ),

C0303 = 1
2P (Puu − PQuu

Q ),

C1212 = 1
2Q(Qvv − QPvv

P ),

C1313 = 1
2P (Pvv − PQvv

Q ),

(4.54)
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I = R2
µναβ = 8

PuuPvv

P 2
+ 8

QuuQvv

Q2
. (4.55)

First of all if P = 0, then this is an unavoidable singularity in other words it is the

curvature singularity. If P 6= 0, then all the components of the Riemann tensor are

zero except at the boundaries. So the components of Weyl tensor and scalar invariant

are. This fact implies that the space-time is conformally flat except the boundaries.

Moreover, the Weyl tensor supports that the approaching waves are impulsive since

it is not equal to zero.
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CHAPTER 5

CONCLUSION

In this work, collision of impulsive gravitational waves and collision of step electro-

magnetic waves are examined. Although the impulsive gravitational wave solution

does not exlicitly exist, i believe that i did solve it as Khan-Penrose did by using only

field equations. The structures of both impulsive gravitational wave collision and step

electromagnetic wave collision are studied. Even though the former has a non-flat in-

teraction region, the latter has a flat interaction region. Another interesting property

of collision of electromagnetic waves is that they produce gravitational waves at the

boundaries after the collision.

In this thesis, the collision of diagonalized axisymmetric pp waves, which are gen-

eralized plane waves, are reviewed. In this solution even though the collision doesn’t

take place between two equivalent gravitational waves, they are found to have impul-

sive characteristics. It is shown that the resulting region is conformally flat but does

no longer have the pp wave space-time feature anymore. This is a surprising result

since one expects them to pass through without seeing each other. It is also men-

tioned that there are some curvature singularities across on the boundaries similar to

the Bell-Szekeres solution. However, the boundaries are problematic because of not

being satisfied by the field equations. In spite of having drawbacks, it can be expected

from this solution to cover some of the other plane wave solutions.

We need to study more on this subject in order to clarify the problematic parts.

However, before that, more work and knowledge are strongly needed in order to cover

the pp waves rather than using plane wave solutions or symmetries. Because Szekeres

framework is valid only for the plane waves. One should generalize this framework

further for pp waves. Another problematic part is the visualization of collision of pp

waves in four dimensional space-time.
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