
T.C.

FIRAT ÜNİVERSİTESİ 

FEN BİLİMLERİ ENSTİTÜSÜ 

SAYISAL VERİ VE GÖĞÜS RÖNTGEN GÖRÜNTÜLERİNDEN 
DERİN ÖĞRENME YAKLAŞIMLARI İLE PNÖMONİ TESPİTİ

Zehra KADİROĞLU 

Doktora Tezi 

ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ ANABİLİM DALI 

Elektrik Elektronik Mühendisliği Teknolojileri Programı 

 Elektrik Tesisleri  Bilim Dalı 

ŞUBAT 2024 



T.C. 

FIRAT ÜNİVERSİTESİ 

FEN BİLİMLERİ ENSTİTÜSÜ 
 

Elektrik Elektronik Mühendisliği Anabilim Dalı 
Elektrik Elektronik Mühendisliği Teknolojileri Programı 

 

Doktora Tezi 
 

 

 

 

 

 

 

SAYISAL VERİ VE GÖĞÜS RÖNTGEN GÖRÜNTÜLERİNDEN DERİN 

ÖĞRENME YAKLAŞIMLARI İLE PNÖMONİ TESPİTİ  
 

 

 

 

 

 

Tez Yazarı 

Zehra KADİROĞLU 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Danışman 

Prof. Dr. Hanifi GÜLDEMİR 

 

 

İkinci Danışman 

 Prof. Dr. Abdurrahman ŞENYİĞİT 

 

 

 

ŞUBAT 2024 

ELAZIĞ 



T.C. 

FIRAT ÜNİVERSİTESİ 

FEN BİLİMLERİ ENSTİTÜSÜ 
 

Elektrik Elektronik Mühendisliği Anabilim Dalı 
Elektrik Elektronik Mühendisliği Teknolojileri Programı 

 

Doktora Tezi 
 

Başlığı: Sayısal Veri ve Göğüs Röntgen Görüntülerinden Derin Öğrenme 

Yaklaşımları ile Pnömoni Tespiti  

Yazarı: Zehra KADİROĞLU 

İlk Teslim Tarihi: 28.12.2023 

Savunma Tarihi: 09.02.2024 

 

 

TEZ ONAYI 
 

Fırat Üniversitesi Fen Bilimleri Enstitüsü tez yazım kurallarına göre hazırlanan bu tez 

aşağıda imzaları bulunan jüri üyeleri tarafından değerlendirilmiş ve akademik 

dinleyicilere açık yapılan savunma sonucunda OYBİRLİĞİ ile kabul edilmiştir. 

 
İmza 

Danışman: Prof. Dr. Hanifi GÜLDEMİR Onayladım 

 Fırat Üniversitesi, Teknoloji Fakültesi  

 

 

Başkan:  Prof. Dr. Abdulkadir ŞENGÜR Onayladım 

 Fırat Üniversitesi, Teknoloji Fakültesi  

 

 

Üye:   Doç. Dr. Yaman AKBULUT Onayladım 

  Fırat Üniversitesi, Teknoloji Fakültesi 

 

 

Üye:   Doç. Dr. Muzaffer ASLAN Onayladım 

  Bingöl Üniversitesi, Mühendislik-Mimarlık Fakültesi 

 

 

Üye:   Doç. Dr. Ömer Faruk ALÇİN Onayladım 

  İnönü Üniversitesi, Mühendislik Fakültesi  

 

 

 

Bu tez, Enstitü Yönetim Kurulunun  ......./......../20.......  tarihli toplantısında tescillenmiştir. 

İmza 

Prof. Dr. Burhan ERGEN 
Enstitü Müdürü 



BEYAN 

Fırat Üniversitesi Fen Bilimleri Enstitüsü tez yazım kurallarına uygun olarak hazırladığım “Sayısal 

Veri ve Göğüs Röntgen Görüntülerinden Derin Öğrenme Yaklaşımları ile Pnömoni Tespiti ” Başlıklı Doktora 

Tezimin içindeki bütün bilgilerin doğru olduğunu, bilgilerin üretilmesi ve sunulmasında bilimsel etik 

kurallarına uygun davrandığımı, kullandığım bütün kaynakları atıf yaparak belirttiğimi, maddi ve manevi 

desteği olan tüm kurum/kuruluş ve kişileri belirttiğimi, burada sunduğum veri ve bilgileri unvan almak 

amacıyla daha önce hiçbir şekilde kullanmadığımı beyan ederim. 

09.02.2024 

 

Zehra KADİROĞLU 



iv 

ÖNSÖZ 

 

Kliniklerde doktorlar pnömoniye ilişkin teşhisi, hastanın semptomlarına, fizik muayeneye, 

laboratuvar testleri, görüntü verileri (bilgisayarlı tomografi, göğüs röntgeni, MRI) vb. dahil olmak üzere 

çeşitli hastane verilerine dayanarak yapmaktadır. Hastaların semptomları, belirtileri, görüntü verileri (röntgen 

veya bilgisayarlı tomografi bulguları) ve biyosinyaller (kalp atış hızı, vücut sıcaklığı vb.) gibi çok sayıda 

yapılandırılmamış verinin eklenmesi daha iyi ve doğru tahmin modelleriyle sonuçlanabilir. Ancak bu 

yapılandırılmamış verileri kullanmak zordur ve bu verileri işlemek için çok fazla insan gücü ve bilgi işlem 

gücü gerekir. Derin öğrenme tabanlı yaklaşımlar, hızlı ve doğru tanı sağlayarak, ekipman ve uzman talebini 

azaltarak, doktorlara ikinci bir görüş sağlayarak sınırlı tıbbi kaynaklara ve personele sahip gelişmekte olan 

ülkelerde bu problemlerin çözümünde fayda sağlamaktadır. Bu tez çalışmasında pnömoninin çok yönlü 

teşhisini iyileştirmek için derin öğrenme tabanlı yaklaşımlar kullanılmıştır. 
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Pnömoni, dünya çapında tüm yaş gruplarında yüksek morbidite ve mortaliteye sahip akciğer 

enfeksiyonudur. Pnömoniye bağlı ölümleri azaltmak ve iyileşme oranlarını artırmak için hastalığın erken 

evrelerde etkili bir şekilde tespit edilmesi çok önemlidir. Pnömoniyi tanımlamak için fizik muayene, 

laboratuvar testleri, klinik semptomlar ve çeşitli tıbbi görüntüleme yöntemleri gibi teknikler kullanılmaktadır. 

Diğer akciğer hastalıklarının pnömoniye benzer semptomlar göstermesi ve görüntüleme bulgularının spesifik 

olmaması nedeniyle pnömoni tanısının belirlenmesi zaman alıcı ve hataya açıktır. Hastalıkların erken 

teşhisinde uzmanlara yardımcı olmak için derin öğrenme tabanlı yöntemlerin benimsenmesi, pnömoni teşhisi 

de dahil tıbbi uygulamalarda doğru ve verimli tanı yöntemi olarak etkili sonuçlar elde etmektedir. Bu tez 

çalışmasının amacı derin öğrenme metotları kullanılarak sayısal veriler ve göğüs röntgen (CXR) 

görüntülerinden pnömoni hastalığını teşhis etmektir. 2000 kişiye ait (1000 pnömoni,1000 sağlıklı) 

demografik özellikler, semptomlar ve laboratuvar test sonuç bilgilerinden oluşturulan sayısal tıbbi veri 

kümesine makine öğrenimi ve derin öğrenme algoritmaları uygulanmıştır. Aynı kişilere ait CXR görüntüleri 

de derin öğrenme tabanlı yöntemlerle sınıflandırılmıştır. Sayısal verilerin ve CXR görüntülerinin 

sınıflandırma sonuçları karşılaştırılmıştır. Çalışmanın verileri Dicle Üniversitesi Tıp Fakültesi Göğüs 

Hastalıkları ve Tüberküloz kliniği ile yoğun bakım ünitesi ve göğüs polikliniğine başvuran hastaların 

dosyalarının retrospektif olarak taranmasıyla oluşturulmuştur. Bu çalışmanın amaçlarından biri de pahalı 

ekipman ve yüksek eğitimli klinisyen eksikliğinin olduğu yerlerde uzmanlara yardımcı olacak derin öğrenme 

tabanlı bilgisayar destekli otomatik tespit sistemiyle pnömoninin çok yönlü teşhisini geliştirmek ve 

iyileştirmektir. Bu tez çalışması kapsamında elde edilen sonuçlar diğer çalışmalarla karşılaştırıldığında 

önerilen yöntemlerin mevcut literatüre katkısı olduğu ve iyi performans gösterdiği tespit edilmiştir. 

 

Anahtar Kelimeler: Derin Öğrenme, Pnömoni Tespiti, Göğüs Röntgen Görüntüleme, Sayısal Veriler  
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Pneumonia is a lung infection with high morbidity and mortality in all age groups worldwide. 

Effective detection of the disease in the early stages is crucial to reduce pneumonia-related deaths and 

increase cure rates. Techniques such as physical examination, laboratory tests, clinical symptoms and various 

medical imaging methods are used to identify pneumonia. Because other lung diseases present similar 

symptoms to pneumonia and imaging findings are non-specific, the diagnosis of pneumonia is time-

consuming and error-prone. The adoption of deep learning-based methods to assist experts in the early 

diagnosis of diseases is achieving effective results as an accurate and efficient diagnostic method in medical 

applications, including pneumonia diagnosis. The aim of this thesis is to diagnose pneumonia from numerical 

data and chest X-ray (CXR) images using deep learning methods. Machine learning and deep learning 

algorithms were applied to a numerical medical dataset of 2000 individuals (1000 pneumonia, 1000 healthy) 

with demographic characteristics, symptoms and laboratory test results. CXR images of the same individuals 

were also classified using deep learning-based methods. The classification results of the numerical data and 

CXR images were compared. The data of the study were collected by retrospectively reviewing the files of 

patients admitted to the Chest Diseases and Tuberculosis clinic, intensive care unit and chest outpatient clinic 

of Dicle University Faculty of Medicine. One of the aims of this study is to develop and improve the 

multidimensional diagnosis of pneumonia with a deep learning-based computer-aided automated detection 

system that will help experts where there is a lack of expensive equipment and highly trained clinicians. 

When the results obtained in this thesis are compared with other studies, it is found that the proposed methods 

contribute to the existing literature and perform well. 
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1. GİRİŞ 

Pnömoni, akciğerlerdeki küçük hava keseleri olan alveolleri de etkileyen, sol akciğer, sağ 

akciğer veya her iki akciğerde meydana gelen akciğer parankiminin iltihaplanmasıdır [1]. Pnömoni, 

akut hastalıklar kategorisi altında yer alan bir alt solunum yolu enfeksiyonudur ve dünya çapında 

çocuklarda görülen en büyük bulaşıcı hastalık ve ölüm nedenidir [2]. 2019 yılında 5 yaşın altında 

740.180 çocuğun ölümüne neden olarak beş yaşın altındaki tüm çocuk ölümlerinin %14’ünü 

oluşturan Pnömoni, 1 ile 5 yaş arasındaki çocuk ölümlerinin ise %22’sini oluşturmaktadır [3]. 

Pnömoni prevalansı yaşla birlikte artmakta ve 65 yaş üstü kişiler için risk oluşturmaktadır [4]. 

Göğüs ağrısı, nefes alma güçlüğü, ateş, kuru ve bazen balgamlı öksürük pnömoninin sık görülen 

semptomlarıdır ve bunların şiddeti hastalığın seyrine bağlı olarak değişebilir. Pnömoni ’ye virüsler, 

bakteriler, mantarlar, immünolojik bozukluklar ve hatta kimyasallar neden olabilir [4]. Klinikte 

bakteriyel pnömoni, mikoplazma pnömonisi, fungal pnömoni ve influenza gibi virüslere bağlı 

olarak viral pnömoni görülmektedir [5]. Pnömoni, özellikle yüksek düzeyde hava ve ortam 

kirliliğinin, aşırı kalabalığın, sağlıksız yaşam koşullarının yanı sıra tıbbi kaynak ve personel 

eksikliğinin yaygın olduğu gelişmekte olan veya az gelişmiş ülkelerde birçok kişiyi etkilemektedir 

[6]. Dolayısıyla gelişmekte olan veya az gelişmiş ülkelerde pnömoniyi doğru ve hızlı bir şekilde 

teşhis etmek son derece hayatidir. 

Pnömoninin erken bir aşamada ve doğru bir şekilde teşhis edilmesi, küratif tedavi sağlamak, 

etkili hasta bakımı ve hayatta kalma oranlarını artırmak için çok önemlidir [7]. Bununla beraber 

pnömoninin erken teşhis ve tedavisi bu ülkeler için zaman ve finans açısından tasarruf sağlayabilir. 

Pnömoniyi teşhis etmek için kliniklerde çeşitli tıbbi görüntüleme yöntemleri ve teşhis araçları 

kullanılmaktadır. Risk altındaki hastaları belirlemek, hastalığın önemini ve pnömoni prognozunu 

belirlemek ve ayrıca uygun antibiyotik kullanımına karar vermek için kapsamlı bir fiziksel 

muayene, klinik semptomlar, laboratuvar bulguları ve çeşitli tıbbi görüntüleme yöntemleri bir 

bütün olarak incelenmektedir [8]. 

Görüntüleme, pnömonili hastaların saptanmasında ve yönetiminde çok önemli bir rol oynar. 

Pnömoniyi teşhis etmek için kullanılan tıbbi görüntüleme yöntemleri, göğüs röntgen görüntüleme 

(CXR), bilgisayarlı tomografi (BT), manyetik rezonans görüntüleme (MRG) ve ultrasondur. Düşük 

maliyeti, daha hızlı görüntüleme süresi, erişim kolaylığı ve invazif olmayan bir yaklaşım olması 

nedeniyle, CXR dünya çapında pnömoniyi tespit etmek için kullanılan en yaygın tıbbi görüntüleme 

tekniğidir [9]. CXR enfeksiyonun şiddeti hakkında önemli miktarda bilgi içerir, ancak son derece 

deneyimli radyologlar için bile benzer lezyonları ayırt etmek veya çok belirsiz nodülleri saptamak 

ve doğru yorumlamak zor olabilir [10]. Buna ek olarak, röntgen bulguları hastalığın erken 

evrelerinde her zaman mevcut olmayabilir, bu da geç tanıya neden olur; göğüs röntgenlerinin 

yorumlanması zorlaşır [11]. CXR görüntülerinin düşük çözünürlüğü, hastalık belirtileri arasındaki 
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benzerlikler ve bir CXR görüntüsünü incelerken deneyim ve odaklanma eksikliği, yaşamı tehdit 

etme potansiyeline sahip teşhis hatalarına yol açabileceğinden yorumlamayı radyologlar için zorlu 

bir görev haline getirmektedir [12]. Bu nedenle, CXR pnömoninin teşhis ve tespiti konusunda 

zaman alıcıdır ve doğruluğu kafa karıştırıcı olabildiğinden tanı ve tedavi süreci gecikebilir. Bununla 

birlikte düşük gelirli ülkelerde ve hastalık yükünün en yüksek olduğu bölgelerde ileri radyografi 

teknikleri genellikle mevcut değildir [13]. Benzer şekilde, tüm şüpheli pnömoni vakalarına CXR 

yapmak da zordur. Kaynaklara erişimin sınırlı olduğu az gelişmiş ülkelerdeki klinisyenler 

çoğunlukla klinik belirti, semptom ve basit laboratuvar testlerinin kullanımı gibi invaziv olmayan 

ölçümlere dayalı olarak pnömoni teşhisi yapmaktadır [14]. Bu bağlamda hem CXR’lerden hem de 

laboratuvar testleri, klinik belirti ve semptomlardan pnömoninin çok yönlü teşhisinin doğruluğunu 

ve hızını artırabilecek otomatik pnömoni tanı ve tespit yöntemlerinin geliştirilmesine ihtiyaç 

duyulmaktadır. Pnömoninin otomatik tespiti, uzman radyologlara ve klinisyenlere yardımcı 

olacaktır ve uygun tıbbi olanaklara sahip olmayan gelişmekte olan ülkeler için avantajlı olacaktır 

[15]. 

Bilgisayar destekli tanı sistemleri, hekimlerin gözlemsel hatalarını ve dolayısıyla yanlış 

negatif oranlarını azaltmak ve tanı performansını artırmak için tasarlanmış bir teknolojidir. Bu 

sistemler hastalıkların teşhisini ve tahmin görevlerini küçük hata paylarıyla daha kolay hale 

getirmektedir [16]. Derin öğrenme (DÖ), günümüzde tıp endüstrisinde kilit bir rol oynayacak kadar 

ilerleme kaydetmiştir. DÖ, beyin-bilgisayar arayüzü, bilgisayar destekli teşhis, sağlıkla ilgili 

elektronik verilerin analizi, tedavi planlaması ve ilaç alımı, ortam tanıma ve tıbbi görüntülerdeki 

tümör ve lezyonların tespiti gibi çeşitli uygulamalara uygulanmaktadır [17]. DÖ algoritmaları, 

CXR dahil olmak üzere çeşitli görüntüleme muayenelerinin yorumlanmasını hızlandırmak, 

otomatikleştirmek ve iyileştirmek için bir çözüm olarak önerilmiştir. DÖ tabanlı bilgisayar destekli 

tespit ve teşhis sistemleri ile hekimler tanılarını daha hızlı ve doğru bir şekilde koyabilirler. DÖ 

algoritmaları, yoğun klinik uygulamalarda eğitimli bir radyoloğun bulunmadığı veya aşırı 

yüklendiği acil durumlarda görüntü yorumlamasını hızlandırabilir. Ayrıca, radyologların 

doğruluğunu artırmak için ikinci bir okuyucu olarak da kullanılabilir [18]. DÖ, insanların nasıl 

öğrendiğini ve düşündüğünü taklit ederek bilgisayarların ham verilerden ilgili bilgileri otomatik 

olarak çıkarmasına, analiz etmesine ve yorumlamasına olanak tanıyan daha gelişmiş bir yaklaşım 

sunan bir makine öğrenimi dalıdır. DÖ, otonom özellik mühendisliği süreçlerine dayanan bir dizi 

nöral veri odaklı yaklaşımdır; doğruluğu ve performansı, özellikleri girdilerden otomatik olarak 

öğrenmesinden kaynaklanmaktadır [19]. Evrişimsel sinir ağları (ESA), tekrarlayan sinir ağları, 

derin inanç ağları, grafik sinir ağları ve üretken rakip ağlar gibi birkaç tür derin öğrenme mimarisi 

vardır. Ham veriden başlayarak modelin her katmanı, bir önceki katmandan öğrenerek daha yüksek 

boyutlu analizler gerçekleştirir ve bu da tanısal performansı artırmaktadır. Derin öğrenme 

algoritmalarının çalışma prensibi sayesinde pnömoni teşhisinin etkinliği ve doğruluğu büyük 
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ölçüde iyileştirilmiştir [20,21]. Literatürde hem CXR görüntüleri hem de laboratuvar testleri, klinik 

bulgu ve semptomlar gibi sayısal parametreler kullanılarak yapılan pnömoni tespit çalışmaları 

bulunmaktadır. Bu tez çalışması kapsamında derin öğrenme tabanlı bilgisayar destekli tespit ve 

teşhis sistemlerinin kullanımının pnömonin çok yönlü teşhisinde etkisi ve başarısı araştırılmıştır. 

Literatürde yer alan çalışmalar sınıflandırma performansına, sınıf sayısına, kullanılan veri setine, 

ön işleme aşamasına ve kullanılan derin öğrenme algoritmasının yapısına göre gözden geçirilmiştir. 

Bu amaçla ilk olarak CXR görüntülerinden pnömoni tespit çalışmaları incelenmiştir. 

Ayan çalışmasında, Kaggle veri tabanındaki CXR görüntülerini [22], sınıflandırmak için 

ince ayarlı bir Xception modeli eğitmiştir. Ardından, ince ayarlı Xception modelini, çeşitli makine 

öğrenimi algoritmaları için bir özellik çıkarıcı olarak kullanmıştır. İnce ayarlı Xception modelinin 

evrişim katmanları tarafından çıkarılan özellikler destek vektör makinesi (DVM), k en yakın komşu 

(KNN), lojistik regresyon (LR), naive bayes (NB) ve karar ağaçları (KA) kullanılarak eğitilmiştir. 

Test sonuçlarına göre ince ayarlı Xception modeli %89,74 doğrulukla diğer sınıflandırıcılara göre 

daha iyi sınıflandırma sonuçları elde etmiştir. Makine öğrenimi sınıflandırıcıları arasında en iyi 

puanı %89,58 doğrulukla DVM algoritması almıştır [23].  

Demir ve ark., CXR görüntüleri [22] aracılığıyla çocuklarda pnömoninin erken ve doğru 

teşhisinde uzmanlara yardımcı olabilecek ve sağlıklı ve hasta bireyleri sınıflandırabilecek transfer 

öğrenme tabanlı ESA yaklaşımı önermiştir. Çalışma sonucunda AlexNet mimarisi katmanlarına ek 

katmanlar eklenerek özgün bir ESA mimarisi önerilmiş ve %96,31 test doğruluğu elde edilmiştir 

[24].  

Bakır ve arkadaşları, CXR veri setini [22] kullanarak çoklu ve ikili sınıflandırma 

görevlerinde çeşitli derin öğrenme teknikleri benimsemiştir. Öznitelik çıkarıcı olarak ResNet, 

İnception ve MobileNet gibi ESA mimarileri benimsenmiş ve yapay sinir ağları (YSA) algoritması 

sınıflandırma için kullanılmıştır. Çalışma sonucunda, önerilen ResNet öznitelik çıkarma aşamasına 

sahip YSA modeli, CXR veri seti [22] üzerinde çok sınıflı sınıflandırma (bakteriyel pnömoni, viral 

pnömoni ve sağlıklı) yapıldığında en yüksek sınıflandırma doğruluk oranını %81,67 olarak 

vermiştir. Öte yandan, önerilen MobileNet öznitelik çıkarma aşamasına sahip YSA modeli, CXR 

görüntü veri seti üzerinde ikili bir sınıflandırma yapıldığında %95,67 ile en yüksek doğruluk oranını 

vermiştir [25]. 

Ouleddroun ve ark., pnömoniyi saptamak ve radyologlara karar verme süreçlerinde yardımcı 

olmak için yeni bir yöntem önermiştir. İlk olarak, göğüs röntgeni görüntüleri için histogram 

eşitleme (HE) ve Kontrast Sınırlı Uyarlanabilir Histogram Eşitleme (CLAHE) hesaplanmıştır. 

Ardından, çıkarılan görüntüler, [22] veri kümesi üzerinde eğitilmiş iki ESA akışından oluşan bir 

modele beslenmiştir. Son olarak, çıkarılan derin özelliklere dayalı algılama sürecini 

gerçekleştirmek için birkaç makine öğrenme sınıflandırıcısı (DAA (Doğrusal ayırma analizi), 
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DVM, KNN) kullanılmıştır. Önerilen sistem (ESA-KNN), [22] veri setinde doğruluk açısından 

%97,86’ya ulaşmıştır [26]. 

Aljawarneh ve ekibi çalışmalarında, geliştirilmiş bir ESA modeli, ResNet, VGG19 ve ince 

ayarlı ResNet modellerini geniş bir XRI veri seti ile kullanarak çok sayıda pnömoni saptama 

modelini değerlendirmiştir. Geliştirilmiş ESA modeli, ilk dördü 3 × 3 filtre boyutuna sahip olan 

yedi katmana sahiptir. Çalışma için veri seti Kaggle’dan temin edilmiştir [22]. Deneysel bulgulara 

göre ResNet50 modeli en düşük doğruluğu yani %82,80’i gösterirken, geliştirilmiş ESA modeli 

%92,40 ile en yüksek doğruluğu göstermiştir [27]. 

Kanawade ve ark., tarafından pnömoni tespitinde kullanılmak üzere VGG16, VGG19, 

DenseNet121, DenseNet201, DenseNet169, InceptionResNet, MobileNet, MobileNetV2 ve 

Xception gibi önceden eğitilmiş ESA modellerinin çeşitli varyantları test edilmiştir. Sonuçlara göre 

Xception, VGG16 ve DenseNet201 diğer modellerden daha iyi performans göstermiştir. VGG16, 

Xception ve Densenet201 birleştirildikten sonra sistemin genel doğruluğu %94,39’dur [28]. 

Iparraguirre-Villanueva ve arkadaşları, akciğer röntgeni görüntülerinden pnömoniyi 

saptamak için dört ESA modeli sunmaktadır. ESA’lar, X-ışını görüntülerini birkaç evrişimli 

katman kullanarak normal ve pnömoni olmak üzere iki türe ayırmak üzere eğitilmiştir. Çalışmada 

VGG16, VGG19, ResNet50 ve InceptionV3 kullanılmıştır. Sonuçlar, Inceptionv3 modelinin 

%72,90 doğruluk, %93,70 duyarlılık ve %82,00 F1-Skor ile en iyi performansı elde ettiğini 

göstermiştir [29]. 

Derin öğrenme teknikleri ve ESA’lar, görüntü sınıflandırma ve tıbbi görüntü işleme 

alanlarında üstün başarılar sağlamıştır. Bununla birlikte, ESA’ların bazı dezavantajları vardır. Daha 

yüksek hesaplama maliyetleri, kaybolan veya patlayan gradyan sorunları, aşırı uyum, daha fazla 

hiper parametre sayısı vb. bu dezavantajlardan bazılarıdır. Bir ESA, maksimum havuzlama gibi bir 

işlem nedeniyle önemli ölçüde yavaştır. Ayrıca sinir ağını işlemek ve eğitmek büyük bir veri 

kümesi gerektirir [30,31]. 2020 yılında Dosovitskiy ve arkadaşları, daha düşük hesaplama maliyeti 

ile ESA ile karşılaştırılabilir veya daha iyi sınıflandırma performansı elde eden Görüntü 

Dönüştürücü (Vision Transformer / ViT) modelini önermiş ve ViT büyük ölçekli bilgisayarlı görme 

veri kümeleri için ESA yerine tercih edilmeye başlanmıştır. Bilgisayarla görmede, ViT evrişimsel 

bloklar olmadan saf bir dönüştürücü modeli uygular. ESA’da her bir evrişim katmanı, neyin ön 

plan neyin arka plan olduğuna bakmaksızın tüm görüntüyü işler. Öz dikkat tabanlı dönüştürücü 

mimarisi, ViT ’in yalnızca görüntünün ana kısmına odaklanarak ve görüntünün geri kalan gereksiz 

kısmını göz ardı ederek yalnızca anlam özelliklerini öğrenmesini sağlar [32,33]. Dikkat tabanlı 

dönüştürücü mimarileri kullanılarak yapılan pnömoni tespit çalışmaları literatürde yer almaktadır. 

Singh ve ark., CXR görüntülerini kullanarak pnömoni hastalığının tahmin etmek için derin 

sinir ağını (DNN), bir dikkat mekanizması ile birleştirmiştir. Dikkat farkındalığı olan özellikler 

üretmek için önerilen ağ, DNN mimarisinde kanal ve uzamsal dikkat modüllerinin 
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birleştirilmesiyle oluşturulmuştur. Ayrıca deneysel çalışmalarda transfer öğrenme ile önceden 

eğitilmiş sınıflandırıcılar kullanarak veri kümesi üzerindeki sınıflandırma performansını 

gözlemlemişlerdir. İki ESA mimarisi ile deneyler yapılmıştır, bunlardan ilki temel ESA, diğeri ise 

Resnet50’dir. Daha sonra dikkat modülünü bu mimariye entegre etmiş ve performans 

metriklerindeki iyileşmeyi gözlemlemişlerdir. Dikkat mekanizması tabanlı ResNet50 ağını CXR 

veri seti [22] ile test etmişlerdir. Önerilen ağ, %95,47’lik bir sınıflandırma doğruluğu ve %92,00’lik 

bir F1 skor puanı elde etmiştir [30]. 

Tyagi ve ark., pnömoninin erken saptanması için bir dikkat tabanlı dönüştürücü modeli 

önermiştir. Çalışmada ESA, VGG16 ve ViT olmak üzere üç model kullanılmıştır. Ek olarak, 

modellerini geliştirmek için halka açık bir CXR veri seti üzerinde çalışmışlardır [22]. Deneysel 

çalışmalarda kullanılan ViT yöntemi pnömoni tanımlamasında %96,45 doğruluk performansı 

göstermiştir [31]. 

Mabrouk ve ark., CXR görüntülerinden bilgisayar destekli pnömoni teşhisi için topluluk 

öğrenme modeli önermişlerdir. Önerilen model, üç iyi bilinen ESA modelini, yani DenseNet169, 

MobileNetV2 ve ViT’i içermektedir. Bu modeller, ince ayar kullanılarak CXR veri kümesi [22] 

üzerinde eğitilmiştir. Önerilen topluluk öğrenme modeli, %93,91 doğruluk ve %93,43 F1 skor 

puanı elde ederek diğer son teknoloji yöntemlerden daha iyi performans göstermiştir [34]. 

Ukwuoma ve ark., pnömoniyi teşhis etmek için hibrit bir derin öğrenme çerçevesi 

tasarlamıştır. Tasarlanan hibrit çerçeve hem evrişimli ağlar hem de dönüştürücü kodlayıcısı 

mekanizmaları birleştirilerek geliştirilmiştir. Yöntem, ikili ve çoklu sınıflandırma görevleri için 

Mendeley [22] ve göğüs röntgeni [35] veri setleri kullanılarak eğitilmiş ve değerlendirilmiştir. 

Hibrit çerçeveleri, sınıflandırma görevleri için %95,00’in üzerinde doğruluk ve F1 skor değerleri 

üretmiştir [36]. 

Cha ve ark., CXR görüntülerinde etkili pnömoni tespiti için dikkat mekanizmasına dayalı bir 

transfer öğrenme çerçevesi geliştirmiştir. İlk olarak, bir özellik çıkarıcı olarak, önceden eğitilmiş 

üç modelden, yani ResNet152, DenseNet121 ve ResNet18’den özellikler toplanmıştır. Daha sonra 

özellik seçme işlemi olarak dikkat mekanizması uygulanmıştır. Önerilen yaklaşım, %96,63 

doğruluk, %97,30 F1 skor değeri, %96,23 kesinlik ve %98,46 duyarlılık elde etmiştir [37]. 

Jiang ve arkadaşları, CXR görüntülerinden otomatik pnömoni teşhisi için çok seviyeli yama 

birleştirme görüntü dönüştürücüsünü (MP-ViT) önermiştir. Deneylerini kamuya açık bir veri 

kümesi [22] üzerinde gerçekleştirmişlerdir. Önerdikleri model %91,00 doğruluk, %92,00 kesinlik, 

%89,00 duyarlılık ve %90,00 F1-skoru elde etmiştir [38]. 

Ma ve arkadaşları CXR görüntülerinde pnömoni tanıma modeli olarak Swin 

dönüştürücüsünü kullanmış ve bunları CXR görüntülerinin özelliklerine göre optimize etmiştir. İki 

farklı veri kümesi [22, 35] üzerinde yapılan karşılaştırmalı deneylerden sonra, deneysel sonuçlar 
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modelin doğruluğunun sırasıyla %76,30’den %87,30’e ve %92,80’den %97,20’ye yükseldiğini 

göstermiştir [39]. 

Belirti, semptom gibi klinik parametreler ve biyobelirteçler gibi klinik laboratuvar 

parametreleri, pnömoni hastalarının yönetiminde başarı oranlarını artırmak için yararlı araçlardır. 

Hastalık şiddetini değerlendirmek ve tanı sürecini basitleştirmek için biyobelirteçlere ihtiyaç 

duyulmaktadır. Normal veya patojenik bir biyolojik sürecin ya da bir maruziyete veya müdahaleye 

verilen yanıtın göstergesi olan ölçülebilir bir özellik olarak tanımlanan biyobelirteçler, solunum 

tıbbında hastalık temelli değil hasta temelli bir terapötik yaklaşımın geliştirilmesinde kilit bir rol 

kazanmıştır [40]. Biyobelirteçlerin değerlendirilecek hastalık veya olay için yüksek özgüllüğe sahip 

olmaları, ölçülmelerinin kolay ve ucuz olması, iyi bir ayırt etme kapasitesi göstermeleri ve şu anda 

geleneksel klinik uygulamada kullanılan göstergelerden daha uygun maliyetli olmaları gerekir 

[40,41]. Biyobelirteçlerin klinik uygulamalarda kullanılması yalnızca doğru teşhisi 

kolaylaştırmakla kalmayacak, aynı zamanda aşırı antibiyotik kullanımının azaltılmasına da 

yardımcı olacaktır [42]. Tam kan sayımı, lökosit, nötrofil, trombosit, lenfosit, Nötrofil Lenfosit 

Oranı (NLO) ve Trombosit Lenfosit Oranı (TLO) düzeyleri kan içeriği hakkında bilgi sağlayan 

kolay, ucuz, rutin bir inceleme teknikleridir [43]. Pnömoni hastalığının tanısı karaciğer tarafından 

üretilen bir akut faz proteini olan C-reaktif protein (CRP) gibi biyokimyasal parametrelerle 

desteklenir. CRP, birçok enfeksiyonda, otoimmün hastalıkta yükselen pozitif bir akut faz 

reaktanıdır. Albümin ise çeşitli hastalıklarda inflamasyonun şiddeti ile ters korelasyon gösteren 

negatif bir akut faz reaktanıdır [44]. Yeni bir parametre olarak CRP Albümin Oran’ının (CAO), 

belirli klinik durumların genel prognozunu tahmin etmede tek başına albümin ve CRP’den daha 

doğru olduğu gösterilmiştir [44]. Literatürdeki çalışmalarda, CRP, albümin veya CAO’nun 

enflamatuvar için yararlı bir prognostik faktör olarak kullanılabileceğini ve özellikle CAO’nun, 

enflamatuvar yanıtın güçlü bir göstergesi olabileceği gösterilmektedir [45, 46]. Nötrofil, lenfosit ve 

trombosit düzeylerinin sistemik inflamasyon ve enfeksiyonda önemli rol oynadığı bildirilmiştir 

[47]. NLO ve TLO gibi yeni inflamatuar biyobelirteçlerin pnömonili hastalarda anlamlı olarak 

artmış olması pnömoni varlığı için öngörücü olarak kullanılabileceğini göstermektedir [48, 49]. 

Sonuç olarak son yıllarda yapılan çalışmalarda rutin laboratuvar ve/veya klinik verilere dayalı erken 

teşhis yöntemleri, tıbbi görüntüleme tekniklerine göre daha hızlı, kullanımı kolay, ulaşılabilir ve 

daha ucuz alternatifler olması nedeniyle tercih edilmektedir [50]. Teşhis doğruluğunu artırmak ve 

pnömonide çeşitli tedavi stratejileri geliştirmek için kullanılmaya başlanan makine öğrenmesi ve 

derin öğrenme tabanlı tahmin modelleri bu sorunlara çözüm sağlama potansiyeline sahip olup tıpta 

oldukça iyi ilerlemeler ve büyük faydalar sağlamıştır [51]. Literatürde çeşitli makine öğrenmesi ve 

derin öğrenme algoritmaları kullanılarak pnömoni hastalığına ait laboratuvar parametreleri ve 

klinik bulguların sınıflandırma çalışmaları yer almaktadır [52]. 
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Effah ve ark., pnömoniyi laboratuvar parametrelerine ve fiziksel özelliklere dayalı olarak 

tahmin etmek için her biri 45 özelliğe sahip 535 farklı hasta üzerinde sekiz makine öğrenimi modeli 

kullanmışlardır. Çalışmada Rastgele Orman (RO) (doğruluk = %92,00, kesinlik = %91,30, 

duyarlılık = %96,00, f1-Skor = %93,60) ve XGBoost (doğruluk = %90,80, kesinlik = %92,60, 

duyarlılık = %92,30, f1-skor = %92,40) modelleri orijinal veri setinde en yüksek performansı elde 

etmiştir [51].  

Zhang ve ark., klinik, biyokimyasal ve göğüs bilgisayarlı tomografi özelliklerine dayalı bir 

veri kümesi oluşturarak, grip virüsü kaynaklı pnömoniyi bakteriyel pnömoniden ayırmada makine 

öğrenimi tekniklerinin kapasitesini keşfetmeye odaklanmıştır. Gauss mutasyon mekanizmasına ve 

benzetilmiş tavlama yöntemine dayanan geliştirilmiş bir Harris Şahini optimizasyonu (GSHHO) 

önerilmiş ve ardından bir makine öğrenme modeli olan GSHHO-FKNN oluşturmak için 

GSHHO’yu Fuzzy k-en yakın komşu (FKNN) ile birleştirmişlerdir. Önerdikleri model ortalama 

%90,00 doğruluk, %82,64 duyarlılık, % 93,00 kesinlik ve %94,67 özgünlük puanları elde etmiştir 

[52].  

Stokes ve ark., orta gelirli bir ülkedeki 4344 hastadan (1500 bronşit, 2844 pnömoni) elde 

edilen denek popülasyon özellikleri, semptomlar ve laboratuvar test sonuçları hakkında bilgi içeren 

bir veri kümesine makine öğrenimi algoritmaları uygulamışlardır. Uygulanan makine öğrenmesi 

algoritmaları LR, KA ve DVM’dir. Karar ağacı %84,00 doğruluk, %87,00 F1 skor, %80,00 

duyarlılık ve %73,00 kesinlik ile diğer modellerden daha iyi performans göstermiştir [53].  

Bu çalışmada, pnömoninin çok yönlü tespiti için sayısal tıbbi veriler ve göğüs röntgen 

görüntüleri derin öğrenme yaklaşımları kullanılarak sınıflandırılmıştır. Dicle Üniversitesi Tıp 

Fakültesi Göğüs Hastalıkları ve Tüberküloz kliniği ile yoğun bakım ünitesine 2001 Ocak- 2021 

Ocak ayları arasında pnömoni tanısıyla yatırılan hastalar ve herhangi bir solunum şikâyetiyle göğüs 

hastalıkları polikliniğine başvurup CXR çekilen ve normal olan hastaların dosyalarının retrospektif 

olarak taranmasıyla veri kümeleri oluşturulmuştur. Çalışmaya CXR’de pnömoni tanısı alan 1000 

pnömoni hastası ve CXR’si normal olan 1000 sağlıklı birey olmak üzere toplam 2000 kişi dâhil 

edilmiştir. 2000 kişiye ait (1000 pnömoni,1000 sağlıklı) demografik özellikler, semptomlar ve 

laboratuvar test sonuç bilgilerinden oluşturulan sayısal tıbbi veri kümesine makine öğrenimi ve 

derin öğrenme algoritmaları uygulanmıştır. Aynı kişilere ait CXR görüntüleri de derin öğrenme 

tabanlı hibrit yöntemlerle sınıflandırılmıştır. Sayısal tıbbi veri kümesi için yaş, cinsiyet, dispne, 

öksürük, yan ağrısı, nötrofil, lenfosit, trombosit, lökosit, CRP ve albümin gibi demografik, klinik 

ve laboratuvar bulguları seçilerek bu verilerin pnömoni hastalarının ve sağlıklı bireylerin ayırıcı 

tanısında etkisi ve rolü incelenmiştir. 2000 kişiye ait 15 özellikli bir sayısal veri seti 

oluşturulmuştur. Sayısal tıbbi veri kümesinin sınıflandırma aşamasında kullanılan sınıflandırıcılar 

KNN, DVM, RO, Otomatik Kodlayıcı ve Uzun Kısa Süreli Bellek (UKSB)’dan oluşturulmuştur. 

Oluşturulan sayısal parametre veri setinden pnömoni tespiti için de bir ESA modeli geliştirilmiş ve 
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uçtan uca eğitilmiştir. Oluşturulan sayısal parametre veri setinin sınıflandırılmasında en yüksek 

doğruluk %96,25 olarak elde edilmiştir. CXR görüntülerinin sınıflandırılması iki aşamada 

gerçekleştirilmiştir. İlk aşamada pnömoni ve sağlıklı CXR görüntülerini sınıflandırmak için derin 

öğrenmeye dayalı yaklaşımlar kullanılmıştır. Bu yaklaşımlar, derin öznitelik çıkarımı, önceden 

eğitilmiş ESA’ların ince ayarı ve geliştirilmiş bir ESA modelinin uçtan uca eğitimidir. Derin 

öznitelik çıkarımı ve transfer öğrenme için önceden eğitilmiş AlexNet, VGg16, GG19, ShuffleNet, 

NasNetMobile, MobileNetV2, DarkNet53, SqueezeNet, ResNet50 ve DenseNet201 modelleri 

kullanılmıştır. AlexNet’in fc6; VGG16 ve VGG19’un fc7; ResNet50 ve DenseNet201’in fc1000; 

DarkNet53’ün conv53; NasNetMobile’in predictions; MobileNetV2’nin Logits; ShuffleNet’in 

node_202 ve SqueezeNet’in pool10 katmanlarından öznitelikler çıkarılıp sınıflandırma 

algoritmalarına verilmiştir. Çıkarılan derin öznitelikleri sınıflandırmak için kullanılan algoritmalar 

KNN, DVM ve RO algoritmasıdır. Uçtan uca öğrenme yöntemi için 21 katmanlı yeni bir ESA 

mimarisi önerilmiş ve test edilmiştir. İnce ayarlı AlexNet modelinin başarısı, elde edilen tüm 

sonuçlar arasında en yüksek olan %98,50 doğruluk puanı üretmiştir. Geliştirilen 21 katmanlı ESA 

modelinin uçtan uca eğitimi %96,75 sonuç vermiştir. İkinci aşamada tez çalışması kapsamında 

önerilen ESA modelinin performansı yakın zamanda geliştirilen dönüştürücü tabanlı mimarilerle 

karşılaştırılmıştır. Bu dönüştürücü mimariler ViT, kapılı çok katmanlı algılayıcı (gMLP), MLP-

mixer ve FNet’tir. ViT, FNet, MLP-mixer ve gMLP modellerinin sınıflandırma performans 

doğrulukları sırasıyla %96,43, %96,43, %95,41 ve %94,39’dur. Bu tez çalışması kapsamında 

gerçekleştirilen pnömoni tespit yöntemlerinin literatüre katkısını incelemek amacıyla mevcut veri 

setleri ile önerilen yöntemler test edilmiş ve yapılan çalışmalar ile sınıflandırma performansları 

karşılaştırılmıştır. 

Bu tez çalışmasının katkıları şunlardır: 

1- Pnömoninin otomatik tespiti için 1000’i pnömoni 1000’i sağlıklı bireylere ait olmak 

üzere toplam 2000 yeni CXR görüntüsü ve aynı kişilere ait demografik veri, klinik bulgu 

ve laboratuvar parametreleri toplanmış ve CXR görüntülerinden ve sayısal tıbbi 

verilerden 2 yeni veri seti oluşturulmuştur. 

2- CXR görüntülerinden pnömoni tespiti için yeni bir 21 katmanlı ESA modeli önerilmiştir. 

3- Pnömoni tespitinde derin öğrenme yöntemlerinin ve derin öğrenme modellerinin 

performansları karşılaştırılmıştır ve analiz edilmiştir. 

4- Veri seti hem k kat çapraz doğrulama hem de ayırarak çapraz doğrulama yöntemleriyle 

ayrılarak önerilen yöntemlerin geçerliliği test edilmiştir. 

5- Yeni ESA modeli, sağlıklı bireylerden zatürreyi doğru bir şekilde tespit etmede özel ve 

kamu veri tabanları için yüksek doğruluk oranları sağlamıştır.  

6- Ayrıca önerilen model, pnömoni tespiti için yakın zamanda geliştirilen dönüştürücü 

tabanlı modellerden daha yüksek sınıflandırma performansı sağlamıştır.  
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7- İlgi alanlarını göstererek klinisyenlerde güven oluşturmak amacıyla sağlıklı ve zatürre 

sınıfları için tipik ısı haritaları gösterilmiştir.  

8- Pnömoninin ayırıcı tanısında sayısal tıbbi verilerin etkisi ve rolü incelenmiştir. 

9- Sayısal verilerden derin öğrenme yaklaşımıyla pnömoni tespiti için yeni bir ESA 

mimarisi geliştirilmiştir. 

10- Yaygın teşhis yöntemi olan CXR’lere alternatif olarak daha düşük maliyetli, yüksek 

doğruluklu bir karar destek sistemi geliştirilmiştir.  

11- Önerilen yaklaşımların mevcut modellerle karşılaştırmalı analizleri yapılmıştır. 

 

Bu tez çalışması giriş, makine öğrenmesi, derin öğrenme, materyal ve metot, bulgular ve 

tartışma, sonuçlar ve öneriler olmak üzere altı bölümden oluşmaktadır. İlk bölüm olan Giriş 

bölümünde, pnömoninin tanımı yapılmış olup dünya çapında mevcut durumu ile ilgili istatistikler 

verilmiştir. Yaygın olarak kullanılan pnömoni tespit yöntemlerinden bahsedilmiştir. Bu tezin 

konusu olan derin öğrenme ve tekniklerinin pnömoni tespitindeki önemi vurgulanmıştır. Son 

yıllarda derin öğrenme algoritmaları kullanılarak yapılan pnömoni tespiti çalışmalarına ayrıntılı bir 

şekilde yer verilmiş olup yöntemin üstünlüklerinden bahsedilmiştir. Ayrıca bu tez çalışmanın 

amacı, önemi ve tezin organizasyonundan bahsedilmiştir. 

Bölüm 2’de makine öğrenmesinin teorik tanımı yapılmış ve algoritmalarından detaylı 

bahsedilmiştir. Bu tez kapsamında kullanılan makine öğrenmesi algoritmaları detaylı açıklanmıştır. 

Bölüm 3’de derin öğrenme, kullanıldığı alanlar, bu tez kapsamında kullanılan derin öğrenme 

yöntemleri, derin öğrenme modelleri ve derin öğrenme katmanları ayrıntılı bir şekilde anlatılmıştır.  

Dördüncü bölüm olan Materyal ve Metot bölümünde bu tez için oluşturulan sayısal tıbbi veri 

kümesi ve göğüs röntgen görüntüleri veri kümesi açıklanmıştır. Pnömoni tespiti için literatürde 

mevcut kullanılan veri kümesinden bahsedilmiştir. Bu tez kapsamında geliştirilen pnömoni tespit 

modelinin yapısı, hiper parametreleri ayrıntılı olarak açıklanarak detaylandırılmıştır. Önerilen 

modelleri değerlendirme/doğrulama yöntemleri ve elde edilen sınıflandırma performanslarını 

değerlendirmek için kullanılan değerlendirme metrikleri detaylı açıklanmıştır. Ayrıca bu bölümün 

sonunda sayısal tıbbi verilerin istatistiksel analizinde kullanılan yöntemlere de değinilmiştir.  

Beşinci bölüm olan Bulgular ve Tartışma bölümünde tez kapsamında yapılan deneysel 

çalışmalar tablolar halinde verilerek elde edilen sonuçlar ayrıntılı bir şekilde açıklanmıştır. Bununla 

birlikte tez kapsamında elde edilen sonuçlar literatürdeki diğer benzer çalışmalarla karşılaştırılarak 

önerilen yöntemlerin üstünlüğü tartışılmış ve literatüre katkısı incelenmiştir. 

Altıncı ve son bölüm olan Sonuç bölümünde tez kapsamında yapılan işlemlerin kısa bir 

özeti anlatıldıktan sonra tez çalışmasının önerdiği modellerin sonuçları bulunmaktadır. 

 

 

 



2. MAKİNE ÖĞRENMESİ 

Makine öğrenimi, bilgisayarların veri biçimindeki örneklerden öğrenmesine ve verilere 

dayalı tahminler veya kararlar almasına olanak tanıyan algoritmaların ve modellerin 

geliştirilmesine odaklanan bir teknolojidir [54]. Programlamaya yönelik geleneksel yaklaşımlar, 

bir sorunun adım adım nasıl çözüleceğini belirleyen sabit kodlanmış kurallara dayanır. Buna 

karşılık, makine öğrenimi sistemlerine bir görev ve bu görevin nasıl gerçekleştirilebileceğine veya 

kalıpların saptanabileceğine dair kullanılmak üzere büyük miktarda örnek veri verilir. Sistem daha 

sonra istenen çıktıya en iyi nasıl ulaşılacağını öğrenir [55]. Makine öğrenimi, bir veri kümesini en 

iyi şekilde temsil eden algoritmalar geliştirerek yapay zekânın öğrenme yönüne odaklanan bir 

alandır [56]. Artan veri kullanılabilirliği, makine öğrenimi sistemlerinin geniş bir örnek havuzu 

üzerinde eğitilmesine olanak tanırken, bilgisayarların artan bilgi işleme gücü bu sistemlerin analitik 

yeteneklerini desteklemektedir [57]. Makine öğrenimi günümüzde farklı sektör ve uygulamalarda 

uygulanmaktadır ve kullanımı giderek artmaktadır. Görüntülerdeki nesneleri tanımlama, 

konuşmayı metne dönüştürme, haber öğelerini, gönderileri veya ürünleri kullanıcıların ilgi 

alanlarıyla eşleştirme ve ilgili arama sonuçlarını seçme makine öğrenimi uygulamalarından 

bazılarıdır [58].  

Makine Öğrenimi, veriden bir model oluşturmak (veya öğrenmek) için kullanılan bir 

tekniktir. Burada veri; belgeler, sesler, görüntüler vb. gibi bilgiler anlamına gelir. Model, Makine 

Öğreniminin nihai ürünüdür. Makine öğreniminin modelleme sürecinde kullandığı verilere eğitim 

verileri denir. Makine öğrenimi süreci eğitim verilerinden modeli bulduktan sonra, model gerçek 

alan verilerine uygulanır. Bu süreç Şekil 2.1’de gösterilmektedir. Şeklin dikey akışı öğrenme 

sürecini gösterir ve eğitilen model, çıktı olarak adlandırılan yatay akış olarak tanımlanır [59]. 
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Eğitim verisi

Makine Öğrenmesi

ÇıktıGirdi verisi Model

 

Şekil 2.1. Alan verilerine dayalı bir modelin uygulanması [59] 

Makine öğrenimi algoritmaları öğrenme türüne göre iki kategoriye ayrılmaktadır. Bunlar 

gelecekteki çıktıları tahmin edebilmesi için etiketlenmiş girdi ve çıktı verileri üzerinde bir model 

eğiten denetimli öğrenme ve girdi verilerinde gizli kalıpları veya içsel yapıları bulan denetimsiz 

öğrenmedir.  

Denetimli öğrenme, makine öğrenimi sistemini eğitmek için örnek etiketli veriler sağlanarak 

bu temelde çıktının tahmin edildiği bir makine öğrenimi yöntemidir [60]. Sistem, veri kümelerini 

anlamak ve her bir veri hakkında bilgi edinmek için etiketli verileri kullanarak bir model oluşturur, 

eğitim ve işleme tamamlandıktan sonra, tam çıktıyı tahmin edip etmediğini kontrol etmek için bir 

örnek veri sağlanarak model test edilir. Denetimli öğrenmenin amacı, girdi verilerini çıktı 

verileriyle eşleştirmektir [61]. Bir tweet veya ürün incelemesi gibi bir metnin sınıf etiketini veya 

duyarlılığını tahmin etmek, yani metin sınıflandırması, denetimli öğrenmeye bir örnektir. Denetimli 

öğrenme algoritmaları sınıflandırma ve regresyon algoritmaları olarak kategorize edilmektedir. 

Sınıflandırma teknikleri, bir e-postanın gerçek mi yoksa istenmeyen posta mı olduğu veya bir 

tümörün kanserli mi yoksa iyi huylu mu olduğu gibi ayrık yanıtları tahmin eder. Sınıflandırma 

modelleri, verileri kategorilere ayırmak için bir eğitim veri kümesindeki önceden tanımlanmış 

sınıfları kullanır. Yaygın uygulamalar arasında tıbbi görüntüleme, konuşma tanıma ve kredi 

puanlama yer alır. Regresyon yönteminde, veriler analiz edilerek değişkenler arasındaki ilişki elde 

edilir ve bu daha sonra gelecekteki eğilimi tahmin etmek için kullanılır. Regresyon teknikleri pilin 

şarj durumu, şebekedeki elektrik yükü veya finansal varlıkların fiyatları gibi ölçülmesi zor fiziksel 

niceliklere sahip sürekli yanıtları tahmin eder. Tipik uygulamalar arasında sanal algılama, elektrik 

yükü tahmini ve algoritmik ticaret yer alır [62].  
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Denetimsiz öğrenme, denetimden yoksun bir öğrenme tekniğini ifade eder. Burada makine, 

etiketlenmemiş bir veri seti kullanılarak eğitilir ve herhangi bir denetim olmaksızın çıktıyı tahmin 

etmesi sağlanır. Denetimsiz bir öğrenme algoritması, sıralanmamış veri kümesini girdinin 

benzerliklerine, farklılıklarına ve örüntülerine göre gruplandırmayı amaçlar [63]. En yaygın 

denetimsiz öğrenme görevleri, kümeleme, yoğunluk tahmini, özellik öğrenme, boyutluluk azaltma, 

birliktelik kurallarını bulma, anormallik tespitidir [60]. Kümeleme tekniği, adından da anlaşılacağı 

gibi, bir veri kümesindeki örnekleri, özelliklerinin belirli kombinasyonlarına göre ayrı kümeler 

halinde gruplandırır. Müşterileri satın aldıkları ürünlere göre gruplamak kümeleme uygulamasına 

bir örnektir. Birliktelik kuralı algoritmaları, büyük bir veri kümesinin değişkenleri arasındaki tipik 

ilişkileri tanımlamayı ifade eder. Çeşitli veri öğelerinin bağımlılığını belirler ve birleşmiş 

değişkenleri haritalar. Tipik uygulamalar arasında web kullanım madenciliği ve pazar veri analizi 

yer alır [58]. 

Bu çalışmada pnömoni tespiti için denetimli öğrenme algoritmalarından olan DVM, KNN 

ve RO algoritmaları kullanılmıştır. Kullanılan sınıflandırma algoritmalarının teorik altyapıları ve 

çalışma prensipleri sırasıyla verilmiştir. 

2.1. K En Yakın Komşu (KNN) 

K en yakın komşu algoritması (KNN), denetimli makine öğrenmesi algoritmaları içerisinde 

en basit ve en yaygın kullanılan sınıflandırma algoritmalarından biridir. KNN algoritması, çok 

sınıflı etiket sınıflandırma problemine uygundur ve iyi bir genelleme yeteneğine sahiptir [64]. 

KNN, sınıflandırılmamış örneğin en yakın komşularını bulmaya ve benzerliği yüksek sınıflara göre 

tahminler yapmaya dayalı bir sınıflandırma yöntemidir. En yakın komşuları bulmak için veri setini 

tek tek taramak algoritmanın performansını düşürdüğü için tembel öğrenme yöntemi veya vaka 

(case) tabanlı öğrenme yöntemi olarak adlandırılır [65]. Bu dezavantaj nedeniyle, KNN 

algoritması, özellikle büyük hacimli verilerde yavaş çalışma süresine sahiptir.  

KNN, örneklem mesafesinin hesaplanmasına dayalı bir öğrenme algoritmasıdır, algoritma 

yeni bir veri örneğiyle her karşılaştığında, yeni verideki tüm örnekler üzerinden mesafe hesaplanır 

ve en kısa mesafeye sahip nokta en yakın komşu olarak adlandırılır. Bu hesaplamadan sonra, 

önceden bilinen veri örneklerinden k adet en yakın komşu bulunup yeni örnekteki eğitim 

verilerindeki örneklerle karşılaştırılarak ve aralarındaki benzerliklere bakılarak sınıf etiketleri 

seçilir [66]. 

Algoritma basit ve uygulaması kolaydır. Bir model oluşturmaya, birkaç parametreyi 

ayarlamaya veya ek varsayımlar yapmaya gerek yoktur. KNN hiper parametre olarak diğer makine 

öğrenimi algoritmalarına kıyasla yalnızca bir k değeri ve bir mesafe metriği gerektirir. Yeni eğitim 

örnekleri eklendikçe, tüm eğitim verileri belleğe kaydedildiğinden, algoritma herhangi bir yeni 

veriyi hesaba katacak şekilde ayarlanır. Algoritma çok yönlüdür. Sınıflandırma, regresyon ve 
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arama için kullanılabilir [65]. KNN mesafe hesaplamasında hiyerarşik kümeleme yöntemlerinde 

genel olarak kullanılan Öklid, manhattan ve minkowski uzaklık ölçümleri ile işlem yapılmaktadır. 

Uzaklık formülleri aşağıdaki Denklem 2.1, Denklem 2.2 ve Denklem 2.3’e göre hesaplanır [65]. 

Şekil 2.2’de KNN algoritmasının çalışma prensibine örnek verilmiştir. Yeni gelen örnek ile 

etiketlenmiş örnek gruplar arasındaki mesafe ve en yakın komşuluklar hesaplanarak yeni gelen 

örneğe sınıf etiketi atanarak sınıflandırma gerçekleştirilmiş olur [67]. 

 

Öklid uzaklığı:√∑ (𝒳𝑖 − 𝒴𝑖)2𝑛
𝑖=1         (2.1) 

Manhattan uzaklığı:∑ |𝑛
𝑖=1 (𝒳𝑖 − 𝒴𝑖)|       (2.2) 

Minkowski uzaklığı:(∑ |𝒳𝑖 − 𝒴𝑖|
𝑝)𝑛

𝑖=1
1/𝑝

       (2.3) 

 

X2

X1
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K-NN

Yeni veri örneği 

X1

Kategori  B

Kategori  A

Yeni veri örneği 

A kategorisine 

atanmıştır. 

X2

 

Şekil 2.2. KNN çalışma yapısı [67] 

 

2.2. Destek Vektör Makineleri (DVM) 

Destek vektör makinesi (DVM), denetimli sınıflandırma ve denetimsiz veri kümeleme veya 

regresyon uygulamaları için kullanılabilen önemli bir makine öğrenimi algoritmasıdır [68]. DVM 

sınıflandırıcısının arkasındaki fikir, farklı sınıflara ait veri noktalarını bölen 𝑁 boyutlu bir uzayda 

en uygun hiper düzlemi (çizgi/alan sınırlayıcı) bulmaktır. Ancak, bu hiper bölme iki sınıf arasında 

maksimum marjı sağlayan hiper düzlem dikkate alınarak yapıldığından, marja göre seçilir. Bu 

marjlar, destek vektörleri olarak bilinen veri noktaları kullanılarak hesaplanır. Destek vektörleri, 

hiper düzleme daha yakın olan ve hiper düzlemin konumunu ve yönünü etkileyen veri noktalarıdır. 

Bu destek vektörlerini kullanarak, sınıflandırıcının marjı maksimize edilir [69]. 

DVM kolayca uygulanabilir ve mevcut veri örneğinin sınırlamaları dahilinde yüksek boyutlu 

problemlerin çözümünde kullanılan uygun yöntemlerden biridir. Temel olarak DVM, doğrusal 

ayrılabilir veriler için iyi çalışır, ancak doğrusal olarak ayrılamayan veriler için de DVM’lerin 
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çekirdek fonksiyonları kullanılarak ayarlanması gerekir. Çekirdekler, ayrılamayan eğitim verilerini 

farklı sınıfların ayrılabilir verilerine dönüştüren matematiksel fonksiyonlardır. Doğrusal olmayan 

problemleri çözmek için DVM Gauss, Sigmoid ve Polinom gibi doğrusal olmayan çekirdek 

fonksiyonlarını kullanır. Veri analizinde DVM uygularken uygun çekirdek ve parametrelerin 

seçilmesi iki önemli faktördür [70,71]. Hiper düzlemde her nokta Denklem 2.4’de olduğu gibi 

gösterilmektedir. 𝑊; ağırlık vektörü, 𝑥; giriş vektörü, 𝑏; bir sapmadır. İki doğru denkleminin 

gösterimi Denklem 2.5’de gösterilmiştir [69]. Şekil 2.3’de DVM’nin temel çalışma yapısı 

gösterilmiştir. 

𝑤𝑥 + 𝑏 = 0         (2.4) 

𝑦𝑖 = {
−1, 𝑤𝑥 + 𝑏 ≤ −1
+1, 𝑤𝑥 + 𝑏 ≥ +1

        (2.5) 

 

X2

X1

Negatif hiperdüzlem 
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Pozitif hiperdüzlem 

Destek vektörler

Maksimum marjin 

 

Şekil 2.3. DVM hiper düzlem yapısı [72] 

 

2.3. Rastgele Orman Algoritması (RO) 

Rastgele orman sınıflandırıcı, basitliği ve kullanılabilirliği nedeniyle hem sınıflandırma hem 

de regresyon için en yaygın kullanılan makine öğrenimi algoritmalarından biridir. Çok sayıda karar 

ağacı oluşturularak rastgele orman sınıflandırıcısı güçlendirilmiştir. Birden fazla karar ağacından 

oluştuğu için bir düğümü kaldırmak, ağaç rastgele seçildiği için çıktıyı çok fazla etkilemez. Temel 

fikri, zayıf öğrenen gruplarının bir araya gelerek daha güçlü bir öğrenen oluşturması olan karar 

ağaçları, bir kökle başlar, dallarını büyütmeye devam eder ve sonunda yapraklar adı verilen uç 

düğüme ulaşır. Ağaca aktarılan dallar, özellikler veya bu özelliklere dayalı olarak işlenmiş 
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bilgilerdir. Ağaçlar daha sonra bir sınıf sonucu tahmin eder ve ağaçlar arasındaki çoğunluk oyu, 

modelin nihai sınıf tahmini olarak kullanılır. Diğer algoritmalarla karşılaştırıldığında Rastgele 

Orman Sınıflandırıcıları, aşırı öğrenme riskinin daha düşük olması nedeniyle nispeten yüksek 

doğrulukla büyük bir veri tabanı üzerinde verimli bir şekilde çalışır [73,74].  

Bu sınıflandırıcının iyi performansının temel sebebi, ormandaki ağaçların birbiriyle nispeten 

bağlantısız olması ve bir bütün olarak verdikleri kararın, her birinin ayrı ayrı verdiği kararlardan 

daha iyi olmasını sağlamasıdır. Rastgele orman, kalabalığın bilgeliği adı verilen basit ve güçlü bir 

temel kavram kullanır. Ağaçlar arasındaki düşük korelasyon, modelin başarısı için çok önemlidir. 

Bu öncül altında, birkaç ağacın tahmin sonuçları doğru olmasa bile, diğer ağaçların çoğunun tahmin 

sonuçları doğru olduğu sürece, bu ağaçlar bir grup olarak sonunda doğru tahmin sonuçlarını 

alabilir. Başka bir deyişle, rastgele orman modeli iyi performans gösterir çünkü bir bütün olarak 

işleyen nispeten bağlantısız çok sayıda model, herhangi bir bileşen modelden daha iyi performans 

gösterir [74,75]. 

Sınıflandırma problemleri için Rastgele Orman kullanılırken genellikle Gini indeksinden 

yararlanılır. Bu formül, bir düğümdeki her dalın Gini’sini belirlemek için sınıfı ve olasılığı kullanır 

ve dallardan hangisinin oluşma olasılığının daha yüksek olduğunu belirler. Denklem 2.6’da yer 

alan Gini indeks formülünde 𝒫𝑖, veri setinde gözlemlenen sınıfın göreli sıklığını temsil eder ve 𝑛, 

sınıf sayısını temsil eder [74]. Şekil 2.4’de rastgele orman sınıflandırıcının nasıl çalıştığını ve tüm 

karar ağaçlarından son bir sınıf çıkardığını gösterilmiştir. 

 

𝐺𝑖𝑛𝑖(𝑡𝑣𝑠) = 1 − ∑ (𝒫𝑖)2𝑛
𝑖=1        (2.6) 
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Çoğunluk oylaması / 
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Nihai Sonuç

Karar Ağacı - 1 Karar Ağacı - 2 

 

Şekil 2.4. Rastgele orman ağaçlarının gösterimi [76] 



3. DERİN ÖĞRENME 

Derin öğrenme ham girdi verilerine karşı daha yüksek seviyeli özellikleri çıkarmak için 

birden çok katmanın kullanımına dayanan bir tür makine öğrenmesi algoritmasıdır [77]. Derin 

öğrenme algoritmaları, YSA olarak adlandırılan katmanlı bir algoritma mimarisi kullanır. YSA’da 

tek bir algılayıcının (perceptron) yapısı, insan beynindeki nöron yapısına benzer şekilde 

tasarlanmıştır. YSA kendi kendine öğrenme ve karar verme yeteneğine sahiptir [78]. Derin 

öğrenme ağları bir girdi katmanı, bir çıktı katmanı ve her biri birbirine bağlı ağırlıklı düğümler 

veya nöronlar içeren bir veya daha fazla gizli katmandan oluşur. Derin terimi, bir sinir ağındaki 

gizli katmanların sayısını ifade eder. Geleneksel bir sinir ağında gizli katman sayısı iki ile üç iken, 

derin öğrenmede bir sinir ağında gizli katman sayısı ikiden daha fazladır. Bu miktar, derin 

öğrenmenin kapsamlı verileri eğitme yeteneğine sahip olduğunu gösterir [79]. Derin öğrenme 

algoritması, verileri birkaç katmandan geçirir; her katman, özellikleri aşamalı olarak çıkarma 

yeteneğine sahiptir ve onu bir sonraki katmana aktarır. Ardışık her katman, bir önceki katmanın 

çıktısını girdi olarak kullanır. İlk katmanlar, düşük seviyeli özellikleri çıkarır ve sonraki katmanlar, 

hiyerarşik bir temsil oluşturmak için özellikleri birleştirir [80].  

Derin öğrenme, makine öğrenimi teorisinin temsili öğrenim (veya özellik öğrenimi) dalına 

dayanır. Bir gözlem (örneğin bir görüntü), piksel başına yoğunluk değerlerinin bir vektörü olarak 

veya daha soyut bir şekilde bir dizi kenar, belirli bir şekle sahip bölgeler vb. gibi birçok şekilde 

temsil edilebilir. Derin öğrenmenin sağladığı yararlardan biri, denetimsiz veya yarı denetimli 

özellik öğrenimi ve hiyerarşik özellik çıkarımı için manuel çıkarılan özellikleri verimli 

algoritmalarla değiştirmektir [81]. Bu açıdan derin öğrenme, yapılandırılmamış verilerle uğraşırken 

çok sayıda özelliği işleme yeteneği sayesinde mevcut makine öğrenimi tekniklerinden daha iyi 

performans göstermektedir [82]. Makine öğrenimi algoritmasında problem çözme, problemi farklı 

parçalara ayırmayı, bunları tek tek çözmeyi ve sonucu elde etmek için birleştirmeyi gerektirir. Buna 

karşılık derin öğrenme, sorunu uçtan uca çözer [58]. Şekil 3.1’de derin öğrenme kavramı ve makine 

öğrenimi ile ilişkisi gösterilmiştir. Derin sinir ağı, Makine Öğreniminin nihai ürünü (final product) 

yerine geçer ve öğrenme kuralı, eğitim verilerinden modeli (derin sinir ağı) üreten algoritma haline 

gelir. Derin sinir ağının önemi, bilginin hiyerarşik olarak işlenmesi için karmaşık doğrusal olmayan 

modele ve sistematik yaklaşıma kapı açmış olmasında yatmaktadır [59]. 
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Eğitim verisi

Öğrenme Kuralı

Derin Sinir Ağı ÇıktıGirdi verisi

 

Şekil 3.1. Derin Öğrenme kavramı ve onun Makine Öğrenimi ile ilişkisi [59] 

 

Derin sinir ağlarını uygulayan derin öğrenme teknikleri, yüksek performanslı bilgi işlem 

sağlayan donanımın artmasının yanı sıra veri miktarının artması ile son yıllarda popüler hale 

gelmiştir. Sağlık alanında tıbbi görüntü analizi, otonom araçlar, bankacılık, doğal dil işleme, e-

ticaret uygulamaları için tavsiye sistemi, kişisel asistan olarak otomatik konuşma tanıma, ses ve 

video yakalamayı geliştirme dahil olmak üzere birçok alanda derin öğrenme teknikleri 

kullanılmaktadır [83]. 

Derin öğrenme yöntemleri, uçtan uca özelliklerin otomatik olarak çıkarılmasını ve 

sınıflandırılmasını sağlar. Son on yılda, bir tür derin sinir ağı olan ESA, örüntü tanıma ile ilgili 

farklı görevlerde çığır açan sonuçlar elde etmiştir. İnsan görsel korteksinden esinlenen ESA’lar, 

görüntü tanıma problemlerinde çeşitli sınıfları ayırt eder [84,85]. Bununla birlikte, ESA büyük 

miktarda eğitim verisi gerektirir. ESA kullanarak tıbbi görüntü analizi genellikle ESA’yı sıfırdan 

eğiterek, yeniden eğitmeden önceden eğitilmiş bir ağ kullanarak veya önceden eğitilmiş bir ağı bir 

hedef veri kümesinde ayarlayarak gerçekleştirilir [86]. Bu zorluğun üstesinden gelmek için 

ImageNet [87] gibi çok sayıda görüntü üzerinde eğitilmiş ESA modellerinden bilgi aktaran bir 

transfer öğrenme yaklaşımı geliştirilmiştir. Bu yaklaşımda modelin ilk katmanları kilitlenir veya 

ayarlanır, son katmanlar ise hedef veri kümesi üzerinde eğitilir. Kaynak ve hedef veri kümeleri 

farklılık gösterse de model, herhangi bir görüntüyü değerlendirirken genellikle aynı olan düşük 

seviyeli özellikleri çıkarır, böylece modeli eğitmek ve ek özellikler çıkarmak için büyük veri 

kümesi gereksinimini ortadan kaldırır. Bu teknik, eğitim süresini ve maliyetini azaltır [88]. Transfer 

öğreniminde iki yaklaşım kullanılır. Birincisi, aktarılan modelin çıktı katmanını yeni veri setinin 

sınıf sayısına göre özelleştirmek ve ardından ince ayar yapmaktır. Diğer yaklaşım, aktarılan modeli 

doğrudan bir özellik çıkarıcı olarak kullanır [89]. 
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3.1. Özellik Çıkarımı 

Özellik çıkarımı, verilerin karmaşıklığını azaltmak, algoritmaların çalışmasını öğrenmek ve 

kalıpları daha görünür hale getirmek için alan bilgisini özellik çıkarıcıların oluşturulmasına dahil 

etme sürecidir. Bu süreç zaman alıcıdır, uzmanlık açısından zor ve pahalıdır. Uygulanan 

özelliklerin çoğunun bir uzman tarafından tanımlanması ve ardından makine öğrenimindeki etki 

alanı ve veri türüne göre manuel kodlanması gerekir. Özellikler piksel değerleri, şekil, doku, konum 

ve yön olabilir. Makine öğrenimi algoritmasının çoğunun performansı, özelliklerin ne kadar doğru 

tanımlanıp çıkarıldığına bağlıdır. Derin öğrenme algoritmaları, verilerden yüksek seviyeli 

özellikler çıkarır. Bu, geleneksel makine öğrenimine göre büyük avantaj sağlayan derin 

öğrenmenin ana özelliğidir. Sonuç olarak derin öğrenme, her problem için yeni özellik çıkarıcı 

geliştirme görevini azaltır [58]. 

Derin özellik çıkarma, ImageNet [87] gibi büyük bir veri kümesinde önceden eğitilmiş bir 

ESA’dan elde edilen özelliklerin çıkarılmasına dayanır. Özellikler, evrişimli katmanlar kullanılarak 

çıkarılır ve bir özellik vektörü elde edilir. Veriler daha sonra, yeni bir görev için makine öğrenimi 

sınıflandırıcılarından (DVM, KNN, vb.) biri ile veya tamamen bağlantılı katmanlardan oluşan 

sınıflandırıcıya (softmax) iletilir. Tüm modeli yeniden eğitmek yerine yalnızca yeni sınıflandırıcı 

eğitilir [90]. Bu yaklaşımın temel avantajı, önceden eğitilmiş modeli her eğitim periyodunda bir 

kez çalıştırmak yerine yeni veriler üzerinde yalnızca bir kez çalıştırmaktır, bu nedenle çok daha 

hızlıdır. Şekil 3.2’de derin bir sinir ağının giriş katmanına gelen görüntüye ait öznitelikleri düşük 

seviyeden yüksek seviyeye çıkararak görüntü tanımasına bir örnek verilmiştir. 
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Şekil 3.2. Derin sinir ağlarının aşamalı öznitelik çıkarımı [91]  
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Yukarıda verilen örnekte, girdi katmanına görüntülerin ham verileri verilir. Daha sonra, ilk 

gizli katman yerel kontrast modellerini belirleyecek, yani renkler, parlaklık vb. temelinde ayrım 

yapacaktır. Ardından 2. gizli katman yüz özelliğini belirleyecek, yani gözlere, buruna ve dudaklara 

vb. sabitlenecektir. Ve sonra, bu yüz özelliklerini doğru yüz şablonuna sabitleyecektir. Dolayısıyla, 

3. gizli katmanda, yukarıdaki şekilde de görülebileceği gibi, doğru yüzü belirleyecek ve ardından 

çıktı katmanına gönderilecektir.  

3.2. Transfer Öğrenimi 

Transfer öğrenimi, öğrenmenin bir modelden diğerine aktarılmasıdır. Transfer öğrenimi ile 

kapsamlı bir veri kümesi üzerinde eğitilmiş bir modelden öğrenmeyi alıp başka bir veri kümesine 

tam olarak uyarlamak mümkündür. Bu yaklaşım, modeli daha hızlı eğitmede etkilidir ve aynı 

zamanda hesaplama açısından daha ucuzdur. Transfer öğrenimi, bir modelin büyük bir veri 

kümesinden bilgi edinmesini sağlarken aynı zamanda daha az etiketli gözlem içeren daha küçük 

bir veri kümesindeki performansını artırır. Derin öğrenme modellerinin son birkaç katmanı, veri 

kümesine özgü bilgiler içerir; bu nedenle, onları başka bir veri kümesinde yeniden eğitmek, modeli 

yeni verilerle uyumlu hale getirir [92]. 

Sınıflandırma için kullanılabilecek hâlihazırda eğitilmiş çok sayıda transfer öğrenme modeli 

bulunmaktadır. Önceden eğitilmiş bir model, başka birinin benzer nitelikteki bir sorunu ele almak 

için geliştirdiği bir modeldir. Sınıflandırma sorunları için, onları eğitmek üzere çok büyük veri seti 

kullanılır. Benzer bir sorunu ele almak için sıfırdan bir model oluşturmak yerine, başka bir sorun 

üzerinde eğitilen model bir başlangıç noktası olarak kullanılabilir [93]. Hedef etki alanından veri 

kullanılabilirliğine bağlı olarak, tüm katmanlar yeniden eğitilebilir veya yalnızca son (tamamen 

bağlı) katman yeniden eğitilebilir. Bu yaklaşım, sinir ağlarının nispeten daha küçük veri kümeleri 

kullanılarak yeni görevler için eğitilmesine izin verir, çünkü yararlı düşük seviyeli özellikler 

kaynak etki alanı verilerinden öğrenilir [94]. 

Herhangi bir derin öğrenme modelinin performansı mevcut eğitim verilerine dayanır. Daha 

büyük veri kümeleri daha iyi öğrenme ve daha iyi performans sağlar. Ancak, gizlilik endişeleri 

nedeniyle sağlık uygulamalarında büyük eğitim verilerinin kullanılabilirliği her zaman mümkün 

değildir. Bu yetersiz veri sorununu çözmek için transfer öğrenme yöntemi uygulanmaktadır. 

Transfer öğrenme, daha büyük bir veri kümesi üzerinde zaten eğitilmiş olan ve daha sonra yeni 

hedef görev için değiştirilen ağırlıkları kullanır [92,95]. 
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Şekil 3.3. Pnömoni sınıflandırılmasına ait transfer öğrenme yöntemi gösterimi [95] 

 

Şekil 3.3’de pnömonili CXR’leri sağlıklı CXR’lerden ayırt ederken transfer öğrenme 

yönteminin uygulanmasına örnek gösterilmiştir. ImageNet veri tabanında önceden eğitilen ESA 

modellerinin son 3 katmanı yani sınıflandırmaya ait etiketlerin bulunduğu katmanların 

değiştirilmesiyle ESA yeni veri kümesine uyum sağlayarak başarılı bir sınıflandırma performansı 

göstermektedir. 

3.3. Uçtan Uca Öğrenme 

Uçtan uca derin öğrenme, herhangi bir manuel özellik çıkarımı olmaksızın doğrudan ham 

girdi verilerinin girdi olarak kullanılarak karmaşık görevler için tek bir sinir ağının eğitildiği bir 

makine öğrenimi tekniği olarak tanımlanmaktadır. Büyük ölçekli veri kümelerinin oluşturulması 

sayesinde, uçtan uca derin öğrenme konuşma tanıma, makine çevirisi, yüz algılama vb. gibi çeşitli 

alanlarda devrim yaratmıştır. Geleneksel makine öğreniminde, eğitim veri hattı en az 2 aşamadan 

oluşur: İlk aşamanın amacı, ham girdi verileri göz önüne alındığında ayırt edici özellikler 

üretmektir. Bu, her görev için en alakalı özellikleri belirlemek üzere alana özgü bilgi kullanılarak 

yapılır. Bir sonraki aşama, çıkarılan özellikleri alır ve bazı geleneksel makine öğrenimi 

algoritmalarını kullanarak tahminleri oluşturur. Başarılı olmasına rağmen, bu prosedür çok zaman 

alıcıdır ve alana özgü çok fazla bilgi gerektirir. Mevcut veri kümelerinin boyutundaki son artış, 

manuel çıkarılan özellikleri manuel olarak çıkarmadan girdi çıktı eşlemesini doğrudan verilerden 

öğrenmeyi amaçlayan uçtan uca derin öğrenmenin yükselişini sağlamıştır. Yani, uçtan uca öğrenme 

ile derin öğrenme algoritmaları girdi verilerini alır ve bunlar (genellikle büyük) bir sinir ağından 

geçirilir. Ardından, ağ girdi verilerini işler ve daha sonra tahminler oluşturmak için kullanılan ilgili 

özellikleri otomatik olarak çıkarır. Tüm prosedür, manuel mühendisliğe ihtiyaç duyulmadan 
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gerçekleştirilir ve gereken zaman ve çaba miktarını azaltır. Bu tekniğin başarısı, eğitim sırasında 

kullanılan muazzam miktarda veride ve sinir ağlarının sadece çok sayıda veri üzerinde eğitim 

yaparak yüksek seviyeli özellikleri öğrenme yeteneğinde yatmaktadır [96,97]. Şekil 3.4’de 

geleneksel makine öğrenimi ile derin öğrenme teknikleri arasındaki girdi çıktı ilişkisi 

karşılaştırılmıştır. 
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Şekil 3.4. Manuel özellik çıkarma ile karşılaştırıldığında uçtan uca öğrenme kavramının gösterimi [98] 

 

Hem derin öğrenme hem de geleneksel makine öğrenimi, Şekil 3.4’de gösterildiği gibi girdi 

ve çıktı arasındaki karmaşık ilişkiyi modellemek için veriye dayalı yapay zekâ teknikleridir. 

Yüksek hiyerarşik yapıya ek olarak, derin öğrenme ayrıca özellik öğrenme, model oluşturma ve 

model eğitimi açısından geleneksel makine öğrenimine göre ayırt edici niteliklere sahiptir. Şekil 

3.4’de gösterildiği gibi, uçtan uca derin öğrenme yaklaşımı, manuel özellik seçimi ihtiyacını 

ortadan kaldırır. Derin öğrenme, farklı çekirdekler seçerek veya uçtan uca optimizasyon yoluyla 

parametreleri ayarlayarak özellik öğrenmeyi ve model oluşturmayı tek bir modelde birleştirir. 

Geleneksel makine öğrenimi ise özellik çıkarma ve model oluşturma işlemlerini ayrı bir şekilde 

gerçekleştirir ve her modül adım adım oluşturulur [99]. 

3.4. Evrişimsel Sinir Ağları (ESA) 

Evrişimsel Sinir Ağı ya da kısaca ESA, kenarlar, doku, renk ve şekiller gibi görüntülerdeki 

örüntüleri tanımlamak için öğrenilebilir filtreler veya çekirdekler kullanan bir derin öğrenme 

algoritmasıdır [28]. Derin bir sinir ağı, paralel olarak çalışan ve biyolojik sinir sistemlerinden 

esinlenen basit öğeler kullanarak birden fazla doğrusal olmayan işlem katmanını birleştirir. 

ESA’nın çıkış katmanı genellikle çok sınıflı sınıflandırma sinir ağını kullanır. ESA, özellik 

çıkarıcıyı manuel olarak tasarlamak yerine eğitim sürecine dahil eder. ESA’nın özellik çıkarıcısı, 

ağırlıkları eğitim süreci ile belirlenen özel tür sinir ağlarından oluşmaktadır. ESA’nın manuel 
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özellik çıkarma tasarımını otomatikleştirilmiş sürece dönüştürmesi, birincil özelliği ve avantajıdır. 

Şekil 3.5’de ESA’nın tipik mimarisi yer almaktadır. Bir ESA, bu grafik gösterime benzer bir 

mimari etrafında inşa edilmiştir [59]. 

 

EVRİŞİM + 

RELU

MAKSİMUM 

HAVUZLAMA

MAKSİMUM 

HAVUZLAMA
EVRİŞİM + 

RELU

GİRDİ

TAM BAĞLI 

KATMANLAR

ÇIKTI

SINIFLANDIRMAÖZELLİK ÖĞRENME

 

Şekil 3.5. ESA’nın tipik mimarisi [100] 

 

Şekil 3.5’den de görüleceği üzere bir ESA, özellik çıkarma ağı ve sınıflandırma ağının seri 

bağlantısından oluşur. Giriş görüntüsü özellik çıkarma ağına girer. Çıkarılan özellik sinyalleri 

sınıflandırma sinir ağına girer. Sınıflandırma sinir ağı daha sonra görüntünün özelliklerine göre 

çalışır ve çıktıyı üretir. Özellik çıkarma sinir ağı, evrişim katmanı, aktivasyon fonksiyonu ve 

havuzlama katmanı çiftlerinden oluşur. Evrişim katmanı, evrişim işlemini kullanarak görüntüyü 

dönüştürür. Bir dijital filtre koleksiyonu olarak düşünülebilir. Havuzlama katmanı komşu pikselleri 

tek bir pikselde birleştirir. Bu nedenle, havuzlama katmanı görüntünün boyutunu ve ağın öğrenmesi 

gereken parametre sayısını azaltır. Bu işlemler onlarca veya yüzlerce katman üzerinde tekrarlanır 

ve her katman farklı özellikleri tespit etmeyi öğrenir. Özellik tespitinden sonra, ESA mimarisi 

sınıflandırmaya geçer. Sondan bir önceki katman, K’nın ağın tahmin edebileceği sınıf sayısı olduğu 

K boyutlu bir vektör çıkaran tam bağlı bir katmandır. Bu vektör, sınıflandırılan herhangi bir 

görüntünün her bir sınıfı için olasılıkları içerir. ESA mimarisinin son katmanı, sınıflandırma 

çıktısını sağlamak için bir softmax işlevi kullanır [100,101]. 

 

ESA Katmanları 

 
Bu kısımda genel bir ESA mimarisini oluşturan katmanlardan sırasıyla bahsedilmiştir. 

Ayrıca bu tez çalışması kapsamında geliştirilen pnömoni tespit modelinde kullanılan toplu 

normalizasyon katmanından da bahsedilmiştir. 
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3.4.1. Giriş Katmanı  

Giriş katmanı ESA’nın ilk katmanını oluşturur. Giriş katmanında, giriş verileri ağa ham 

olarak verilir. Girdi bir görüntü ise eğer görüntüleri her bir elemanın bir pikselin renk 

yoğunluğunun değeri olduğu tensörler (çok boyutlu matrisler) olarak temsil eder [100]. Kullanılan 

bir ağda giriş katmanındaki görüntünün boyutu önemlidir. Büyük girdi boyutları çok fazla bellek 

kullanımına neden olur ve parametre sayısını artırır, bu da ağı yavaşlatabilir, ancak daha fazla 

öznitelik çıkarılabileceği için daha iyi sonuçlar verebilir. Ayrıca küçük girdi boyutları ile parametre 

sayısı azalacağından ağ daha hızlı sonuç verebilir ancak öznitelik çıkarımı daha az olduğu için ağın 

performansı düşebilir [102]. 

3.4.2. Evrişim Katmanı 

Evrişim katmanları, evrişimsel sinir ağı yapısının ana yapı taşlarıdır. Evrişim katmanı özellik 

çıkarma katmanı olarak da bilinir çünkü ağa verilen görüntünün özellikleri bu katmanda çıkarılır. 

Evrişim katmanında çeşitli filtreler (kernel) kullanılarak görüntünün özellik haritası oluşturulur 

[103]. Kullanılan filtreler 2×2, 3×3, 5×5 gibi farklı boyutlarda olabilmektedir. Bu filtreler ile 

görüntüye evrişim işlemi uygulanır. Evrişim, bir matrisin (filtre) diğerinin (görüntü) üzerinde 

kaydırıldığı ve üst üste gelen değerleri arasında eleman bazında çarpımların gerçekleştirildiği, 

ardından tüm çarpımların toplandığı (üst üste binen her konumda, bir sonrakine geçmeden önce) 

ve bir çıktı elde edildiği doğrusal bir işlemdir [100]. ESA’ların eğitimi sırasında eğitim setindeki 

her öğrenme iterasyonu ile filtrelerin katsayıları değişerek ağın özniteliklerinin belirlenmesinde 

verinin hangi bölgelerinin önemli olduğu belirlenir [102]. Giriş verilerindeki özellikler, bir modelin 

bir göreve göre öğrenmesini ve genelleştirmesini sağlayan anlamlı bilgiler içeren köşeler, lekeler, 

kenarlar, eğriler, şekiller, dokular, yoğunluk örüntüleri, küresel bağlamdaki soyut ve karmaşık 

ayrıntılar vb. anlamına gelir [100]. Şekil 3.6’da girdi dizisine evrişim işlemi uygulandıktan sonra 

elde edilen özellik haritasının bir gösterimi bulunmaktadır. 
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Şekil 3.6. Evrişimli işleminin bir gösterimi [100]  

 

Her filtre tarafından üretilen evrişimsel çıktılar (bir sapma değeri eklenmiş) sonraki 

katmanlara aktarılmak üzere bir matriste eşlenir. Bu matrise özellik haritası denir. Çünkü bir filtre 

tarafından çıkarılan özellikleri saklar. Her filtre kendi özellik haritasını üretir, bu nedenle bir 

katman tarafından üretilen tek kanallı özellik haritalarının sayısı, içinde bulunan filtrelerin sayısına 

eşittir. Bir özellik haritası, nöronların çıkışlarını (filtreler yerine) gösteren aktivasyon fonksiyonları 

uygulandıktan sonra alındığında aktivasyon haritası olarak adlandırılabilir [100]. 

3.4.3. Toplu Normalizasyon Katmanı 

Bir toplu normalizasyon katmanı (Batch Normalization / BN), her kanal için bağımsız olarak 

tüm gözlemler genelinde mini bir veri grubunu normalleştirir. BN, derin öğrenme sinir ağındaki bir 

katmanın girdilerini otomatik olarak standartlaştırmak için tasarlanmış bir tekniktir. BN bir kez 

uygulandığında, bir sinir ağının eğitim sürecini önemli ölçüde hızlandırma etkisine sahiptir ve bazı 

durumlarda modelin performansını artırır. Teknik olarak, katman girdileri standartlaştırılacak 

şekilde dönüştürecektir, yani sıfır ortalamaya ve bir standart sapmaya sahip olacaklardır, eğitim 

sırasında katman her girdi değişkeni için istatistikleri takip edecek ve bunları verileri 

standartlaştırmak için kullanacaktır. BN, bir modelin çoğu noktasında ve çoğu derin öğrenme sinir 

ağı türünde kullanılabilir. Yazarlar çalışmalarında [104] toplu normalleştirme katmanlarının 

eklenmesinin 14 kat daha az eğitim adımına ihtiyaç duyan ancak yine de aynı doğruluğu sağlayan 

bir ağ oluşturduğunu göstermiştir. Evrişimsel sinir ağının eğitimini hızlandırmak ve ağın başlatılma 
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performansını iyileştirmek için evrişim katmanları ile ReLU katmanları gibi doğrusal olmayan 

katmanlar arasında toplu normalleştirme katmanları kullanılabilir. [104,105]. 

3.4.4. Etkinleştirme (Aktivasyon) katmanı 

Aktivasyon katmanları, evrişimsel sinir ağlarının bir diğer önemli yapı taşıdır. Aktivasyon 

katmanları sinir ağlarına doğrusal olmayan bir özellik kazandırmak için kullanılır. Aktivasyon 

katmanı, evrişim katmanından sonra gelir. Genellikle doğrusal olmayan bu katman üretilen çıktıyı 

ayarlamak ve sınırlamak için kullanılır [106]. Bu katmanın kullanım amacı evrişim katmanından 

sonra oluşan doğrusal ağdaki negatif değerleri sıfıra indirerek ağı doğrusal olmayan bir forma 

sokmak ve ağın daha hızlı öğrenmesini sağlamaktır. Aktivasyon fonksiyonu olarak da adlandırılır. 

Tanh, sigmoid, ELU gibi birçok farklı aktivasyon fonksiyonu vardır ancak ESA bağlamında en 

yaygın kullanılan fonksiyon Doğrultulmuş Doğrusal Birim (Rectified Linear Unit / ReLU)’dir. 

ReLU’nun matematiksel yorumu 𝑓(𝑥) = 𝑚𝑎𝑥 (0, 𝑥) şeklindedir. Girdinin tüm değerlerini pozitif 

sayılara dönüştürür. Ana avantajlarından biri, giriş negatif olduğunda sıfır çıkışa sahip olması ve 

giriş pozitif olduğunda girişle aynı değere sahip olmasıdır. Dolayısıyla aktivasyon fonksiyonlarının 

gradyanları her zaman ya 1 ya da 0'dır ve bu da daha derin sinir ağlarında kaybolan gradyan [107] 

sorunundan kaçınmaya yardımcı olur. Kaybolan gradyan sorunu, aktivasyon fonksiyonunun 

gradyanı sinir ağlarının kaldırabileceğinden daha küçük hale geldiğinde ortaya çıkar. ReLU’da 

fonksiyonun gradyanı ya sıfır olacaktır (girdi sıfırdan küçük olduğunda) ya da yeterince büyük bir 

değer olacaktır (girdi sıfırdan büyük olduğunda). Böylece ReLU, aktivasyon fonksiyonlarının 

neden olduğu kaybolan gradyan sorunundan kaçınmaya yardımcı olur [108]. Düşük hesaplama 

yükü, ReLU’nun diğerlerine göre bir diğer avantajıdır [109]. Girdi değerlerine ReLU aktivasyon 

fonksiyonunun uygulanması Denklem 3.1’e göre hesaplanır [102]. 

 

𝑓(𝑥) = {
0 𝑒ğ𝑒𝑟 𝑥 < 0
𝑥 𝑒ğ𝑒𝑟 𝑥 ≥ 0

}        (3.1) 
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Şekil 3.7. Aktivasyon fonksiyonu olarak ReLU kullanımına bir örnek [100]  

 

Şekil 3.7’de girdi dizisinin evrişim katmanından geçip bir öznitelik haritası oluştuktan sonra 

aktivasyon fonksiyonu olarak ReLU kullanımına bir örnek verilmiştir. Özellik haritasındaki 

düğümler, aktivasyon fonksiyonundan geçirilir. Pozitif değerler aynı değerle çıkarken, negatif 

değerler bir eşikte karşılandığını ve 0 değer olarak çıkar. Böylelikle doğrultulmuş bir öznitelik 

haritası elde edilir. 

3.4.5. Havuzlama Katmanı 

Havuzlama işlemi veya havuzlama katmanı genellikle ESA’larda parametre sayısını ve 

hesaplama yükünü azaltmak için kullanılır. Derinliği etkilemeden bir sonraki evrişim katmanı için 

girdi boyutunu azaltır. Yani havuzlama sonrasında giriş verisinin yükseklik ve genişlik değerleri 

azalırken derinlik yani kanal sayısı değişmez. Havuzlama katmanları, giriş dizilerinin aşağı 

örneklemesi için kullanılır. Giriş matrisini alt matrislere bölerek ve her bir alt matrisi temsil edecek 

bir değer seçerek aşağı örnekleme gerçekleştirir. Genel olarak iki farklı havuzlama katmanından 

bahsedilebilir [102]. Bunlar maksimum havuzlama ve ortalama havuzlama katmanlarıdır. 

Maksimum havuzlamada alt matrisi temsil etmek için alt matristeki maksimum değer alınırken, 

ortalama havuzlamada alt matrisin ortalaması alınır. Scherer ve diğerleri [110]’da maksimum 

havuzlamanın nesne sınıflandırma görevlerinde ortalama havuzlamadan daha etkili olduğunu 

göstermiştir. 
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Şekil 3.8. Maksimum havuzlamaya örnek bir gösterim [100]  

 

Şekil 3.8’de 2 boyutunda ve 2 adımlı bir maksimum havuzlama örneği yer almaktadır. 

Maksimum havuzlama kullanan bir ESA, özelliklerin uzamsal düzenini koruyarak boyutları 

azaltılmış özellik haritalarıyla sonuçlanacaktır. Bu şekilde, 2 boyutunda ve 2 adımlı bir havuzlama 

çekirdeği, orijinal boyutların yarısı kadar küçültülmüş bir özellik haritası elde eder. 

3.4.6. Tam Bağlantılı Katman 

Bir ESA’da birbirini izleyen evrişim, ReLU ve havuzlama katmanlarından sonra tam 

bağlantı katmanı gelir. Evrişim ve havuzlama katmanlarından gelen çıktı, girdi görüntüsünü 

sınıflandırmak veya segmentasyon gibi diğer görevleri gerçekleştirmek için standart bir sinir ağı 

mimarisi kullanan bir veya daha fazla tamamen bağlı katmandan (yoğun katmanlar olarak da 

bilinir) geçirilir. Tam bağlantı katmanı için özellik haritası 1 boyutlu bir özellik vektörüne 

dönüştürülür, buna düzleştirme denir [111]. Bu katman, bir önceki katmanın tüm alanlarına bağlı 

olduğu için tam bağlantı katmanı olarak adlandırılır. Tam bağlantı katmanı, görüntüleri farklı 

kategorilerde sınıflandırmak için kullanılır. Bir ESA’daki evrişimli ve havuzlama katmanlarının 

çıktısı, giriş görüntüsünün önemli özelliklerini temsil eden bir dizi üst düzey özelliktir. Tamamen 

bağlantılı katmanların rolü, girdi görüntüsünün sınıfı veya etiketi hakkında bir tahmin yapmak için 

bu öğrenilmiş özellikleri kullanmaktır. Tam bağlantı katmanları yüksek seviyeli (karmaşık) 

özellikleri yakalama ve öğrenme ve bunları bir şekilde anlamlı sonuçlara dönüştürme yeteneğine 

sahiptir. Yoğun bağlantılar nedeniyle çok sayıda parametreye ve yüksek hesaplama yüküne 

sahiptirler. Bir ağda tam bağlantı katmanı yoksa karmaşık özellikleri işleme yeteneğinden yoksun 

olacak ve genel performansı önemli ölçüde düşürecektir [100]. 
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GİRDİ 

SOFTMAX

TAM BAĞLANTILI KATMANLAR

SINIF 1 

SINIF 2 

SINIF 3 

SINIFLANDIRMA  

Şekil 3.9. Tam bağlantılı katman [112] 

 

Şekil 3.9’da gösterildiği gibi komşu katmanlar arasındaki nöronlar tamamen bağlıdır. 

3.4.7. DropOut Katmanı  

DropOut, derin sinir ağları için en popüler düzenli hale getirme tekniğidir. Genellikle, tüm 

özellikler tam bağlantı katmanına bağlandığında, eğitim veri setinde aşırı öğrenmeye neden olabilir. 

Aşırı öğrenme, belirli bir model eğitim verileri üzerinde çok iyi çalıştığında ortaya çıkar ve yeni bir 

veri üzerinde kullanıldığında modelin performansında olumsuz bir etkiye neden olur. Bu sorunun 

üstesinden gelmek için, eğitim süreci sırasında birkaç nöronun sinir ağından çıkarıldığı ve modelin 

boyutunun küçültüldüğü bir bırakma katmanı kullanılır. Eğitim süresi boyunca, her iterasyonda, bir 

nöron geçici olarak bırakılır veya p olasılığı ile devre dışı bırakılır. Bu, bu nöronun tüm giriş ve 

çıkışlarının mevcut iterasyonda devre dışı bırakılacağı anlamına gelir. Devre dışı bırakılan nöronlar 

her eğitim adımında p olasılığı ile yeniden örneklenir, böylece bir adımda devre dışı bırakılan bir 

nöron bir sonraki adımda aktif olabilir. Bırakma oranı 0,3’ü geçtiğinde, düğümlerin %30’u sinir 

ağından rastgele çıkarılır. Bırakma, ağı daha basit hale getirerek aşırı öğrenmeyi önlediği için bir 

derin öğrenme modelinin performansını artırır. Eğitim sırasında nöronları sinir ağlarından düşürür 

[113]. Ağın daha iyi performans göstermesinin nedeni, devre dışı bırakmanın ağın az sayıda nörona 

çok fazla bağımlı olmasını engellemesi ve her nöronu bağımsız olarak çalışmaya zorlamasıdır. 

Şekil 3.10’da nöronlara DropOut uygulandığı ve uygulanmadığı zamanki durumları 

gösterilmektedir. 
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DropOut uygulanmadığında DropOut uygulandığında

 

Şekil 3.10. Dropout’a örnek [114] 

3.4.8. Sınıflandırma Katmanı  

ESA’nın önemli bir bileşenidir ve işlevi, ağ tarafından çıkarılan ve öğrenilen özelliklere 

dayanarak kararlar vermektir. Çıkış katmanının tüm nöronları önceki tam bağlantı katmanıyla 

tamamen bağlantılıdır. ESA’nın çıkış katmanındaki nöron sayısı, sınıflandırma görevleri için sınıf 

sayısına ve regresyon görevleri için regresyon çıktılarının sayısına eşittir. Her bir nöron her bir 

sınıfa karşılık gelir ve bir nöron tarafından gösterilen en yüksek aktivasyon, ağ tarafından yapılan 

ilgili sınıfın tahminini gösterir [100]. Genel olarak, Softmax Aktivasyon Fonksiyonu çıkış 

katmanında kullanılır, çünkü görüntü sınıflandırması yapılacak tüm sınıflar için olasılık dağılımı 

verir. En yüksek olasılığa sahip olan sınıf, modelin tahmini olarak seçilir. Softmax işlevi, rastgele 

gerçek değerli puanlardan oluşan bir vektörü alır ve bunu sıfır ile bir arasında toplamı 1 olan 

değerlerden oluşan bir vektöre sıkıştırır [106]. 

3.5. Kullanılan Derin Öğrenme Algoritmaları 

Bu tez çalışması kapsamında pnömoni tespiti için kullanılan derin öğrenme yaklaşımları için 

seçilen derin öğrenme mimarileri bu kısımda detaylı olarak anlatılmıştır. 

3.5.1. AlexNet 

Alex Krizhevesky ve ark., LeNet’e kıyasla daha derin ve daha geniş bir ESA modeli 

önerdiler ve 2012’de ImageNet Büyük Ölçekli Görsel Tanıma Mücadelesi (ILSVRC) olarak 

adlandırılan görsel nesne tanıma yarışmasını kazandılar. Görüntü giriş katmanı 227×227×3 görüntü 

boyutu gerektiren ağ, 8 katman derinliğinde toplamda 25 katmandan oluşmaktadır. AlexNet, beş 

evrişim katmanı, 4096 çıktılı iki tam bağlı katman ve görüntüleri 1000 nesne kategorisinde 

sınıflandırabilen Softmax çıkış katmanından oluşmaktadır. Her bir evrişim katmanından sonra, 

AlexNet ağ boyutunu azaltmak için maksimum havuzlamaya sahiptir. Doğrusal olmayan özellikleri 
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dahil etmek için, aktivasyon fonksiyonu olarak LeNet’teki tanh fonksiyonunun yerini ReLU 

almıştır. ReLU fonksiyonunun eğitim sürecini hızlandırmak, iterasyon sayısını azaltmak ve aşırı 

uyumu etkili bir şekilde önlemek gibi birçok avantajı vardır. AlexNet’te bırakma katmanı, modelin 

eğitim sürecini yani aşırı uyum derecesini azaltmak için kullanılır, nöronlar belirli bir olasılıkla 

durdurulur, böylece yerel düğümlere olan bağımlılık azalır ve modelin genelleme yeteneği 

iyileştirilir [84]. Şekil 3.11’de AlexNet ’in temsili bir gösterimi yer almaktadır. 
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Şekil 3.11. AlexNet [115] 

3.5.2. SqueezeNet 

SqueezeNet, 18 katman derinliğindedir ve 68 katmanlıdır. Ağ mimarisi bağımsız bir evrişim 

katmanı (conv1) ile başlar, ardından 8 ateşleme modülü (fire2-9) takip eder ve son bir evrişim 

katmanı (conv10) ile biter. Bir ateşleme modülü, 1×1 ve 3×3 evrişim filtrelerinin bir karışımına 

sahip bir genişletme katmanına beslenen (yalnızca 1×1 filtreleri olan) bir sıkıştırılmış evrişim 

katmanından oluşur. Ateşleme modülü başına filtre sayısı, ağın başından sonuna kadar kademeli 

olarak artırılır. SqueezeNet, conv1, fire4, fire8 ve conv10’dan sonra 2’lik bir adımla maksimum 

havuzlama gerçekleştirir. Kısaca 2 evrişimsel katmana, 8 ateşleme modülüne ve 4 havuzlama 

katmanına sahiptir. 227×227×3 boyutunda bir giriş görüntüsü alır. SqeezeNet mimarisi, parametre 

sayısını azaltmak ve yüksek doğruluk elde etmek için çeşitli iyileştirmelere sahiptir [116]. 

SqueezeNet mimarisi, verimlilik (daha az parametreye ve daha küçük model boyutuna sahip olmak) 

ile ilgili temel kaygılarla bilgisayarlı görme görevleri için önerilen derin bir ESA’dır [117].  
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Şekil 3.12. SqueezeNet’de kullanılan ateşleme modülü [117] 

 

SqueezeNet mimarisinin temel yapı taşı Şekil 3.12’de gösterilen ateşleme modülüdür. Modül 

bir sıkıştırma aşaması ve bir genişletme aşaması içerir. Sıkıştırma aşaması, bir dizi 1×1 filtre ve 

ardından bir ReLU aktivasyonu uygular. Öğrenilen sıkıştırma filtrelerinin sayısı her zaman giriş 

hacminin boyutundan daha küçüktür. Sonuç olarak, sıkıştırma aşaması bir boyutsallık azaltma 

işlemi olarak düşünülebilir ve aynı zamanda giriş kanalları arasındaki piksel korelasyonlarını 

yakalar. Sıkıştırma aşamasının çıktısı, 1×1 ve 3×3 konvolüsyonların bir kombinasyonunun 

öğrenildiği genişletme aşamasına beslenir. Daha büyük 3×3 filtreler pikseller arasındaki uzamsal 

korelasyonları yakalamak için kullanılır. Genişletme aşamasının çıktıları kanal boyutu boyunca 

birleştirilir ve ardından bir ReLU aktivasyonu ile değerlendirilir. Orijinal makale, genişletme 

aşamasında n, 1×1; ve n, 3×3 filtre kullanılmasını önermiştir; burada n, sıkma aşamasında 

kullanılan filtre sayısından 4 kat daha büyüktür. Tüm SqueezeNet mimarisi, geleneksel evrişim 

katmanları, maksimum havuzlama, ateşleme modülleri ve sonunda bir ortalama havuzlama katmanı 

istiflenerek oluşturulmuştur. Modelde tam bağlantılı katman bulunmamaktadır [117,118]. 

SqueezeNet mimarisi Şekil 3.13’de yer almaktadır. 

 

Şekil 3.13. SqueezeNet mimarisi [118]  
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3.5.3. VGG16 ve VGG19 

Simonyan ve Zisserman tarafından önerilen VGG (Visual Geometry Group), bir ESA 

mimarisidir ve 2014 yılında ILSVRC yarışmasını kazanmak için kullanılmıştır. VGG16, ImageNet 

veri setinde %92,7 ile ilk 5 test doğruluğuna ulaşmıştır. Toplamda ağ 16 katman derinliğindedir. 

VGG16’da, daha önceki modellerde kullanılan büyük çekirdek boyutlu filtrelerin yerine birbiri 

ardına çoklu 3×3 çekirdek boyutlu filtreler kullanılmıştır. Birden fazla çekirdek katmanı, sinir 

ağının derinliğinin artmasına neden olur. Bu, sinir ağının daha karmaşık özellikleri ve kalıpları 

anlamasını ve tanımasını sağlar. Bu mimarinin en önemli özelliği, çok sayıda hiper parametreye 

sahip olmak yerine, evrişim katmanlarında basit 3×3 boyutundaki çekirdeklere ve maksimum 

havuz katmanlarında 2×2 boyutuna sahip olmalarıdır. VGG19, kısaca 19 katmandan (16 evrişim 

katmanı, 3 tam bağlantılı katman, 5 maksimum havuzlama katmanı ve 1 softmax katmanı) oluşan 

VGG modelinin bir çeşididir ve esas olarak görüntü sınıflandırması için kullanılan bir ESA’dır. 

Temel mimarisi VGG16’nınkine benzemektedir. Bu ağlara girdi olarak sabit boyutta (224×224) 

RGB görüntü verilmiştir, bu da giriş matrisin (224×224×3) şeklinde olduğu anlamına gelmektedir 

[119]. Şekil 3.14’de VGG16 mimarisi yer alırken Şekil 3.15’de VGG19 mimarisi yer almaktadır. 
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Şekil 3.14. VGG16 [115] 
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Şekil 3.15. Vgg19 [115] 

3.5.4. ResNet50 

ResNet, Residual Network (Artık Ağ) anlamına gelmektedir. He ve ark., tarafından 'Görüntü 

Tanıma için Derin Artık Öğrenme' adlı makalesinde tanıtılan model, ImageNet veri setinde %3,57 

ilk 5 hatası elde etmiş ve 2015’de ILSVRC yarışmasını kazanmıştır [120]. Ağın evrişimli 

katmanları 3×3 filtrelere sahiptir ve alt örnekleme doğrudan 2 adımlı evrişimli katmanlar tarafından 

yapılır. Ağın son katmanı, sırasıyla ReLU ve softmax aktivasyon fonksiyonlarını kullanan 256 ve 
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iki kanallı tam bağlantılı bir katmandır. Bu mimari, derin öğrenme eğitimindeki ikilemleri ortadan 

kaldırmak için oluşturulmuştur, çünkü derin öğrenme eğitimi genel olarak oldukça fazla zaman alır 

ve belirli sayıda katmanla sınırlıdır. ResNet, hata yüzdesini en aza indirirken daha fazla sinir 

katmanına sahip derin sinir ağlarının verimliliğini artırır. Başka bir deyişle, atlama bağlantıları 

önceki katmanlardan gelen çıktıları yığılmış katmanların çıktılarına ekleyerek daha önce mümkün 

olandan çok daha derin ağların eğitilmesini mümkün kılar. Ayrıca, ağları eğitme yeteneği daha 

iyidir. ResNet’de, derin sinir ağlarında meydana gelen azalan doğruluk ve kaybolan gradyan 

sorunlarını düzeltmek için kısayol bağlantıları kullanılır. Bu bağlantılar, ağın eğitim için alakasız 

olduğunu düşündüğü katmanları atlamasına izin verir. Bu, eğitim hatasını azaltır ve ağın diğer 

ağlara kıyasla daha hızlı yakınsamasına yardımcı olur. ResNet’in ResNet50, ResNet18, ResNet34, 

ResNetV2 vb. gibi birden çok çeşidi vardır. ResNet50, 50 kat derinliğindedir ve artık öğrenme 

çerçevesine sahiptir. 48 evrişimsel katmana, maksimum havuzlama katmanına, ortalama 

havuzlama katmanına ve tam bağlantılı katmana sahiptir. 224×224 şeklinde girdi alır [121]. 

ResNet, eğitim aşamasında kaybı azaltmaya, bilgi kazanımını korumaya ve performansı artırmaya 

yardımcı olan katmanlar arasında artık bağlantıları tanıtmıştır. Bir katmandaki artık bağlantı, bir 

katmanın çıktısının, girdisi artı girdisinin bir evrişimi olduğu anlamına gelir. ResNet makalesi, 

Atlama Bağlantılarını kullanma yaklaşımını popüler hale getirmiştir [120]. Şekil 3.16’da ResNet 

mimarilerinin yapı taşı olan atlama bağlantıları yer almaktadır. 

 

Ağırlık Katmanı

Ağırlık Katmanı

+ 

x

Ƒ(x) 

Ƒ(x) + x

ReLu

ReLu

Özdeş x

 

Şekil 3.16. Artık öğrenme: bir yapı taşı [120] 

 

Matematiksel olarak, 𝑦 = 𝑥 + 𝐹(𝑥) anlamına gelir; burada y katmanın nihai çıktısıdır. Mimari 

açıdan ağdaki herhangi bir katman modelin performansına zarar verirse, atlama bağlantılarının 

varlığı nedeniyle atlanır. Bu tür bir atlama bağlantısının dahil edilmesinin faydası 

düzenlileştirmenin mimari performansını düşüren herhangi bir katmanı atlayacak olmasıdır. Sonuç 

olarak, kaybolan veya genişleyen gradyanlarla ilgili sorunlarla karşılaşmadan derin bir sinir ağını 

eğitmek mümkündür [121]. Şekil 3.17’de ResNet50 mimarisinin yapısı yer almaktadır. 
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Şekil 3.17. ResNet50 mimarisi [122] 

 

3.5.5. DenseNet201 

DenseNet201, 201 katman derinliğinde olan ve 224×224 görüntü giriş boyutunu kabul eden 

bir ESA’dır [123]. DenseNet, gradyan akışını optimize ederek ResNet mimarisi üzerinde 

geliştirilmiştir. DenseNet201 modeli parametre sayısını azaltmak ve katmanlar arasında daha 

verimli ve daha kısa bağlantılara sahip olmak üzere tasarlanmıştır. DenseNet, geleneksel ESA’lara 

göre daha az parametre ile ağın bilgi akışını ve gradyanını iyileştirebilmektedir. DenseNet 

yapısındaki her katman orijinal sinyal ve kayıp fonksiyonuna bağlanarak ağın eğitilmesini 

kolaylaştırır. Ayrıca, veri kümelerinin organizasyonunu etkileyen yoğun bağlantılara sahiptir. 

DenseNet201, katman girdilerindeki çeşitliliği artıran ve performansı iyileştiren farklı katmanlar 

tarafından özelliğin yeniden kullanılması olasılığı nedeniyle eğitilmesi kolay, parametrik olarak 

yüksek verimli modeller sağlayan yoğunlaştırılmış bir ağdan oluşur [124]. DenseNet201, ImageNet 

ve CIFAR-100 gibi önceden eğitilmiş çeşitli ağırlıklara sahip veri kümelerinde dikkate değer bir 

performans göstermiştir. DenseNet201 modelinde bağlanabilirliği artırmak için önceki tüm 

katmanlar sonraki tüm katmanlara ileri beslemeli bir şekilde bağlanır. DenseNet mimarilerinde 

önceki katmanlardan gelen özellik haritalarının mevcut katmandaki özellik haritasıyla 

birleştirilmesi, özellik temsilini geliştirir. Ayrıca evrişim katmanlarında daha az bağlantı yer 

aldığından, eğitilebilir parametrelerin sayısı azalır ve bu nedenle model hesaplama açısından 

verimlidir. DenseNet mimari modelleri üç geçiş katmanı ve dört yoğun blok içerir. Yoğun bloklar 

1×1 ve 3×3 matris boyutlarında evrişim çekirdeklerine sahiptir. DenseNet içindeki yoğun 

bloklardaki evrişim çekirdekleri altı, on iki, yirmi dört ve altı kez tekrar eder. Bu mimari modelde 

yoğun katmanlar arasında bir geçiş katmanı bulunmaktadır. Yoğun bir bloktaki özellikleri çıkaran 

her bir evrişim katmanı, başka bir özellik çıkarıcı evrişim katmanına ileri beslemeli olarak bağlıdır. 

DenseNet mimarisindeki geçiş katmanı, 1×1 çekirdek boyutuna sahip evrişim, toplu normalizasyon 

ve havuzlama katmanlarından oluşur. Havuzlama katmanı 2×2 adımlıdır [125,126]. Şekil 3.18’de 

DenseNet201 mimarisinin basit bir gösterimi yer almaktadır. 
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Şekil 3.18. DenseNet201 basit gösterimi [127] 

 

3.5.6. MobileNetV2 

MobileNetV2, MobileNet mimarisine doğrusal dargeçit ve ters çevrilmiş artık modülleri 

(inverted residual with linear bottleneck modules) eklenerek mimarinin doğruluğunu önemli ölçüde 

artıran geliştirilmiş bir versiyonudur [128]. 53 katman derinliğindedir ve girdi katmanı 224×224 

boyutunda bir görüntü ile beslenmektedir. ImageNet sınıflandırma, COCO nesne algılama ve VOC 

görüntü segmentasyonu kullanılarak başarımı değerlendirilen modelde daha az bellek kullanımı 

için bir evrişim modülü eklenmiştir. MobileNet tasarımı derinlemesine ayrılabilir evrişim 

katmanlarına dayanır ve iki bileşenden oluşur: (a) Derinlemesine evrişim; her giriş kanalına tek bir 

filtre uygulanır; (b) Noktasal evrişim; 1×1 evrişim, derinlemesine evrişimin sonuçlarını toplar 

[129]. Derinlemesine evrişim, giriş görüntüsünü ve filtreyi farklı kanallara ayırır ve ardından her 

giriş kanalını karşılık gelen filtre kanalıyla sarar. Filtrelenmiş çıkış kanalı üretildikten sonra, bu 

çıkış kanalları tekrar istiflenir. Ayrılabilir derinlikli evrişimde, kümelenmiş çıkış kanalları daha 

sonra kümelenmiş çıkış kanallarını bir kanalda birleştirmek için noktasal evrişim olarak 

adlandırılan 1×1’lik bir evrişim kullanılarak filtrelenir. Derinlemesine evrişim, hesaplama süresini 

ve model boyutunu azaltmak için kullanılır. Derinlik ve noktasal evrişimi ayrı katmanlar olarak 

sayan MobileNetV1, 7×7×1280 piksel boyutunda çıktı üreten 28 evrişim katmanına sahiptir. 

MobileNetV2, 32 filtreli ilk evrişim katmanından sonra 19 ters artık dargeçit katmanı ekler ve 

ardından 7×7×1280 piksel boyutunda çıktı üreten noktasal bir evrişim ile sona erer. Artık blok, 

bilgileri ağın daha derin katmanına iletmek amacıyla bir atlamalı bağlantı ile bir evrişimli bloğun 

başlangıcını ve sonunu birbirine bağlar [128]. Şekil 3.19’da MobileNetV2 mimarisi yer almaktadır. 
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Şekil 3.19. MobileNetV2 ağının mimarisi [130] 

 

3.5.7. ShuffleNet 

 ShuffleNet, 2018’de Zhang ve ark., tarafından önerilen, esas olarak kısıtlı hesaplama gücüne 

sahip mobil cihazlar için tasarlanmış, hesaplama açısından çok verimli bir ESA mimarisidir 

[131,132]. Mimari, doğruluğu korurken hesaplama maliyetini ve karmaşıklığını önemli ölçüde 

azaltmak için iki önemli işlem sunar. İlk işlem, 1×1 evrişimlerin hesaplama karmaşıklığını 

azaltabilen noktasal grup evrişimleridir. İkinci işlem, özellik kanalları arasında bilgi akışına 

yardımcı olan kanalların karıştırılmasından oluşur. Kanal karıştırmanın amacı, özellik ağırlıklarının 

kanalların birleşimi olacak şekilde kanallardan özellikleri karıştırmak ve çaprazlamaktır. Bu işlem, 

evrişimsel katmanlarda bulunan çoklu öznitelik ağırlıkları nedeniyle ESA mimarisinde üstün bir 

yapıya yol açar. Ayrıca, kanal karıştırma katmanları, daha güçlü bir ESA modeli elde etmek için 

grup evrişim katmanlarıyla birleştirilir [132]. Genel ShuffleNet ağı, diğer geleneksel evrişim ve 

havuzlama katmanlarıyla birlikte üç farklı aşamada gruplandırılmış bu birimlerin bir yığınından 

oluşur. Şekil 3.20’de ShuffleNet birimleri yer almaktadır. 
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Şekil 3.20. ShuffleNet Birimleri [132] 

 

 Şekil 3.20(a), derinlemesine evrişimli (3×3 DWConv) bir dargeçit birimidir [133,120,129]. 

Şekil 3.20(b), noktasal grup evrişimli (GConv) ve kanal karıştırmalı bir ShuffleNet birimidir. İkinci 

noktasal grup evrişiminin amacı, kanal boyutunu kestirme yolla eşleşecek şekilde geri kazanmaktır. 

Şekil 3.20(c), 2 adımlı bir ShuffleNet birimidir. Kanal karıştırma ile noktasal grup evrişimi 

sayesinde ShuffleNet birimindeki tüm bileşenler verimli bir şekilde hesaplanabilir. 

3.5.8. NasNetMobile 

Google Brain ekibi 2016 yılında sinir ağı yapılandırmaları alanında arama yapmak için 

NASNet mimarisini geliştirmiştir [134]. Nöral mimari arama (NAS), YSA alanındaki en yeni DÖ 

tekniğidir. Bu mimarinin ilk fikri, küçük veri kümelerinde en iyi evrişimsel mimariyi bulmak için 

bir arama yöntemi olarak NAS çerçevesinin kullanılmasından kaynaklanmaktadır. Daha sonra 

NASNet arama uzayı adı verilen yeni bir arama uzayı tasarımının katkısıyla mimari daha büyük bir 

veri kümesine aktarılmıştır. NASNet arama uzayında en iyi mimari bulunmuş ve bu mimariye 

NASNet adı verilmiştir. NAS, ESA’ları farklı boyutlar için optimize etmek için CIFAR10 ve 

ImageNet gibi standart veri kümeleriyle birlikte kullanılmıştır. İndirgenmiş sürüme NasNetMobile 

adı verilir. NASNet mimarisinde Normal Hücreler ve Azaltma Hücreleri olarak adlandırılan iki 

evrişimsel hücre bulunmaktadır. Normal Hücre, tam boyutlara sahip bir özellik haritası döndürmek 

için işlev görürken; Azaltma Hücresi, özellik haritasının yüksekliğinin ve genişliğinin iki kat 

azaltıldığı bir özellik haritası üretmek için işlev görür. Mimari genel olarak ilk 3×3 evrişim 

katmanından ve ardından bir dizi azaltma hücresi ve dört normal hücreden oluşan üç kez tekrar 

eden bir diziden oluşur. Normal ve azaltma hücreleri hem önceki hücreden gelen girdiyi hem de 
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önceki hücreyi besler, artık bir ağ oluşturur. Normal hücrede bulunan tek evrişim katmanları, üç 

adet 3×3 ve iki adet 5×5 derinlikte ayrılabilir evrişim katmanlarıdır. Azaltma hücresi bir adet 3×3, 

iki adet 5×5 ve iki adet 7×7 derinlikte ayrılabilir evrişim içerir. Katmanların geri kalanı ya ortalama 

ya da maksimum havuzlama katmanlarıdır [134,135]. 

3.5.9. Darknet53 

Darknet53, eğitim görüntülerinin özelliklerini çıkarmak için kullanılan hedef tespit ağı 

YOLOv3’ün temel özellik çıkarma ağıdır. Darknet53 temel olarak 1×1 ve 3×3 boyutlarında, toplam 

53 katmanlı (son tam bağlı katman dahil ancak artık katman hariç) bir dizi evrişim katmanından 

oluşur. Her bir evrişim katmanını bir BN katmanı ve LeakyReLU katmanı takip etmektedir. 

Darknet53’e bir dizi artık ağ modülü, yani ResNet’den türetilen artık katman eklenmiştir. Artık 

katmanın eklenmesinin amacı, ağdaki gradyan kaybolması veya gradyan patlaması sorunlarını 

çözmektir, böylece gradyanın yayılmasını daha kolay kontrol edebilir ve ağ eğitimi 

gerçekleştirilebilir. Darknet53’de, çok sayıda 1×1 evrişim çekirdeği kullanılmasına ve maksimum 

havuzlama yerine adım boyutu 2 olan 3×3 evrişim çekirdeği kullanılmasına rağmen, parametre 

sayısı çok azaltılmıştır. Bu ağ için görüntünün giriş boyutu 256×256’dır. Evrişim katmanı, BN 

katmanı ve LeakyRelu katmanı birlikte mimarinin en küçük bileşenini oluştururlar [136,137]. 
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3.5.10. Uzun Kısa Süreli Bellek (UKSB) 

Hochreiter ve Schmidhuber (1997) tarafından tanıtılan Uzun Kısa Süreli Bellek (UKSB), uzun 

süreli bağlılıkları öğrenebilen ve bağımlılık sorunundan kaçınmak için tasarlanmış ağlardır. Bu 

ağlar özgün bir kapı yapısı kullanılarak inşa edilmiştir. Şekil 3.21’de bir UKSB’nin temel 

bileşenleri gösterilmektedir. Unut kapısı, Güncelleme/Giriş kapısı ve Çıkış kapısı bir UKSB 

biriminin işlevini yerine getirmek ve bilgi akışını kontrol etmek için birlikte çalışır. UKSB ağlarının 

çalışma prensibi; kapı olarak adlandırılan yapılarda hangi bilgilerin atılıp hangilerinin hafızada 

tutulacağına karar vermektir.  
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Şekil 3.21. UKSB biriminin temel yapısı [138] 

 

UKSB’nin ilk adımında unut kapısı (𝑓𝑡), önceki gizli durumdaki bilgiler (ℎ𝑡 − 1) ve mevcut 

girişten gelen bilgilerden (𝑥𝑡) hangilerinin atılıp atılmayacağı, hangilerinin hafızada tutulacağı 

kararını sigmoid aktivasyon fonksiyonu 𝜎(·) kullanarak verir. Denklem 3.2’de bu sürecin 

matematiksel ifadesi yer almaktadır. Burada 𝑊𝑓 ve 𝑏𝑓 eğitimden sonra belirlenecek parametrelerdir. 

ℎ𝑡−1, 𝑡 − 1 zaman tekrarındaki gizli durumdur. 𝑥𝑡, 𝑡. zaman tekrarındaki girdi vektörüdür. 𝑓𝑡 

sigmoid fonksiyonunun çıktısıdır [138]. Fonksiyonun girişleri bir önceki UKSB biriminden gelen 

gizli durum ve giriş vektörüdür. Fonksiyonların çıkışları, bir önceki UKSB biriminden hücre 

durumundaki her bir sayıya karşılık gelen 0 ile 1 arasında değişen değerlerdir. Değerler, bir önceki 

hücre durumu 𝑐𝑡 − 1 'deki her bir sayının unutma derecesini temsil etmektedir. 1, “bunu geçir” i, 0 

ise “geçmesine izin verme” i temsil eder.  

 

𝑓𝑡 = 𝜎(𝑊𝑓,𝑥 ∗ 𝑋𝑡 + 𝑊𝑓,ℎ ∗ ℎ𝑡−1 + 𝑏𝑓)        (3.2) 
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UKSB’nin bir sonraki adımı, yeni bilginin hangi kısmının mevcut hücre durumunda 

saklanacağına karar vermektir. Bu işlem Güncelleme/Giriş (𝑖𝑡) kapılarında gerçekleştirilir ve iki 

aşamadan oluşmaktadır. İlk olarak, t-1 anındaki gizli durum ve t anındaki girdi, bir sigmoid 

fonksiyonuna girişler olarak verilir (çıkış 1'e ne kadar yakınsa, bilgi o kadar önemlidir). Ayrıca, 

ağın ayarını iyileştirmek için -1 ile 1 arasındaki değerleri sıkıştırmak için gizli durumu ve girdiyi 

bir 𝑡𝑎𝑛 ℎ işlevinden geçirir. Sigmoid çıktısı, 𝑡𝑎𝑛 ℎ çıktısından hangi bilgilerin korunmasının önemli 

olduğuna karar verir. Daha sonra, bir 𝑡𝑎𝑛 ℎ katmanı, duruma eklenebilecek yeni aday değerlerin Ć𝑡 

vektörünü oluşturur. Denklem 3.3 ve 3.4’de güncelleme/girdi kapısı (𝑖𝑡) ve yeni aday değerlerin 

matematiksel ifadesi yer almaktadır. Denklem 3.3, Denklem 3.2’e benzer bir sigmoid fonksiyondur. 

Bu fonksiyon, giriş vektöründeki her bir sayının güncelleme derecesine karar vermek için kullanılır. 

Denklem 3.4 yeni hücre durumu Ć𝑡 çıktısı veren bir 𝑡𝑎𝑛 ℎ katmanıdır. 

 

𝑖𝑡 = 𝜎(𝑊𝑖,𝑥 ∗ 𝑋𝑡 + 𝑊𝑖,ℎ ∗ ℎ𝑡−1 + 𝑏𝑖)       (3.3) 

Ĉ𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐,𝑥 ∗ 𝑋𝑡 + 𝑊𝑐,ℎ ∗ ℎ𝑡−1 + 𝑏𝑐)      (3.4) 

 

Giriş kapısının etkinleştirilmesinden sonra sıradaki adım, eski hücre durumu 𝐶𝑡−1’i yeni 

hücre durumu 𝐶𝑡’e güncellemektir. Unut kapısının çıkışı olan 𝑓𝑡 önceki zaman adımının hücre 

durumu 𝐶𝑡−1 ile çarpılır. Sonra bu çarpıma Girdi kapısının çıkışları olan 𝑖𝑡 ve Ć𝑡 çarpımı eklenir. 

Çıktı, her bir durum değerini ne kadar güncellemeye karar verdiğimize göre ölçeklenen yeni aday 

değerlerdir. Denklem 3.5’de yeni hücre durumu 𝐶𝑡’nin matematiksel ifadesi yer almaktadır. 

 

𝐶𝑡 = 𝐶𝑡−1 ∗ 𝑓𝑡 + 𝑖𝑡 ∗ Ĉ𝑡         (3.5) 

 

Son adım, önceki girişler hakkında bilgi içeren ve bir sonraki gizli durumun değerine karar 

veren çıkış kapısından (𝑜𝑡) hücre çıktısına (ℎ𝑡) karar vermektir. İlk olarak, önceki gizli durum ve 

girdi toplanır ve bir sigmoid fonksiyonuna aktarılır. Daha sonra yeni hücre durumu 𝑡𝑎𝑛 ℎ 

fonksiyonuna geçer. Sonunda, gizli durumun hangi bilgileri içermesi gerektiğine karar vermek için 

sigmoid çıktısıyla 𝑡𝑎𝑛 ℎ çıktısı çarpılır. Çıktı, yeni gizli durumdur. Yeni hücre durumu ve yeni gizli 

durum daha sonra bir sonraki zaman adımına taşınır. Bu işlemin matematiksel ifadesi Denklem 3.6 

ve Denklem 3.7’da yer almaktadır. Bu denklemlerdeki 𝑊 ağırlık vektör matrisini ve 𝑏 sapma 

vektörünü ifade etmektedir [139-142]. 

 

𝑜𝑡 = 𝜎(𝑊𝑜,𝑥 ∗ 𝑋𝑡 + 𝑊𝑜,ℎ ∗ ℎ𝑡−1 + 𝑏𝑜)       (3.6) 

ℎ = 𝑜𝑡 ∗ tanh (𝐶𝑡)         (3.7) 
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3.5.11. Otomatik Kodlayıcı  

Otomatik kodlayıcılar, veri sıkıştırma, görüntü renklendirme ve görüntüden gürültüyü 

arındırma problemlerinde yaygın olarak kullanılmaktadır [143]. Veri sıkıştırmanın amacı, 

boyutsallığı azaltarak giriş verisinin daha küçük bir gösterimini elde etmektir. Otomatik kodlayıcı 

modelinin mimarisi, boyut azaltma tekniklerini kullanarak giriş verilerine benzer verilerin 

öğrenilmesine olanak sağlamaktadır. 

Bir otomatik kodlayıcı oluştururken 3 bileşene ihtiyaç vardır. Bunlar; kodlayıcı, kod çözücü 

ve girdinin sıkıştırılmış düşük boyutlu gösterimini gerçekleştirecek bir koddur. Otomatik kodlayıcı 

mimarisinin en temel halinde 3 katman bulunmaktadır. Bu 3 katman sinir ağı temelindeki giriş, 

gizli ve çıkış katmanlarıdır. Giriş ve çıkış katmanlarındaki nöron sayısı eşittir, sebebi ise otomatik 

kodlayıcıdaki temel çalışma prensibinin veriyi yeniden inşa etmesidir. Giriş ve gizli katman 

arasında kodlayıcı varken gizli katman ile çıkış katmanı arasında kod çözücü vardır. Kodlayıcı 

yapısı ile otomatik kodlayıcı ağı, gelen çok boyutlu verileri sıkıştırarak daha az boyutlu verilere 

düşürmeyi amaçlar. Kod çözücü ise kodlayıcının aksine gelen sıkıştırılmış veriyi yeniden inşa 

etmektedir. Kodlama aşamasında, kodlayıcı girişi (𝑥 = [𝑥(1) , 𝑥(2), …  𝑥(𝑚) ]
𝑇

𝜖𝑅𝑚), 𝑓 fonksiyonu 

aracılığıyla gizli katmana (ℎ = [ℎ(1) , ℎ(2), … ℎ(𝑑ℎ) ]
𝑇

𝜖𝑅𝑑ℎ) eşler. Bu işlemin matematiksel ifadesi 

Denklem 3.8’de yer almaktadır. 

 

ℎ = 𝑓(𝑥) = 𝜎𝑓(𝑊𝑥 + 𝑏)        (3.8) 

 

Burada 𝑊, giriş katmanı ile gizli katmanı bağlamak için kullanılan bir 𝑑ℎ × 𝑚 ağırlık 

matrisidir; 𝑏𝜖𝑅𝑑ℎ sapma vektörüdür; 𝜎𝑓, sigmoid, tanh, relu, vb. olabilen aktivasyon 

fonksiyonudur. Kod çözücü aşamasında otomatik kodlayıcı, gizli katman özelliklerini (ℎ) 𝑓˜ 

fonksiyonuyla çıktı katmanına  (𝑥˜𝜖𝑅𝑚) eşler. Bu işlemin matematiksel ifadesi Denklem 3.9’de 

yer almaktadır. 

 

𝑥˜ = 𝑓˜(ℎ) =  𝜎 𝑓̃(𝑊˜ℎ + b˜)        (3.9) 

 

Burada 𝑊˜, bir 𝑑ℎ × 𝑚 ağırlık matrisidir; b˜𝜖𝑅𝑚 çıktı katmanındaki sapma vektörüdür;  𝜎 𝑓̃, 

çıktı katmanındaki aktivasyon fonksiyonudur. Otomatik kodlayıcının amacı, yeniden 

yapılandırılmış verileri (𝑥˜𝜖𝑅𝑚) öğrenerek girdi verilerine mümkün olduğunca benzer hale 

getirmektir. Bu nedenle, otomatik kodlayıcının kayıp fonksiyonu, eğitim verilerinin ortalama 

karesel hatası (MSE) olarak ifade edilebilir. 𝑁, eğitim örneklerinin sayısıdır; 𝑥𝑖, 𝑖′inci eğitim 

örneğidir. Otomatik kodlayıcının kayıp fonksiyonu Denklem 3.10’da gösterildiği gibi hesaplanır 

[143,144]. Şekil 3.22’de otomatik kodlayıcıya ait şematik bir diyagram gösterilmektedir [144]. 

𝐾(𝑊, 𝑏, 𝑊˜, b˜ ) =  
1

2𝑁
∑ ‖𝑥𝑖˜−𝑥𝑖‖2𝑁

𝑖=1        (3.10) 
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Şekil 3.22. Otomatik kodlayıcının şematik diyagramı [144] 

 

Otomatik kodlayıcı, yüksek boyutlu bir girdiyi gizli bir düşük boyutlu koda (kodlayıcı) 

dönüştüren ve ardından bu gizli kodla (kod çözücü) girdinin yeniden yapılandırılmasını 

gerçekleştiren bir darboğaz mimarisidir [144]. 

ESA, ağdaki düşük evrişim katmanlarından derin evrişim katmanlarına kadar etkili bir 

şekilde öznitelikler çıkardığı için görüntü sınıflandırma ve bilgisayarla görme problemlerinde en 

gelişmiş mimari olarak kabul edilir [145]. Ancak daha sonraki çalışmalarda, araştırmacılar, 

bilgisayarla görme uygulamaları için derin öğrenme modellerinde evrişim fonksiyonları olmadan 

başarılı tanıma ve performans iyileştirmesi aradılar [146]. Dikkat mekanizması tabanlı mimariler 

olan ve doğal dil işlemede (NLP) yaygın olarak kullanılan dönüştürücü modelleri bu sorunu 

çözmek için uyarlanmış ve dikkat çekici sonuçlar elde edilmiştir [147,32]. Dönüştürücü 

mimarisinin görüntü modeli olan Görüntü Dönüştürücü (ViT), bir girdi görüntüsünü sabit boyutlu 

bir görüntü yamaları dizisi olarak temsil eder ve NLP uygulamalarında kullanılan kelime gömme 

dizisine benzer şekilde görüntü sınıfı etiketlerini tahmin eder [33]. 

Dönüştürücüler, Vaswani ve arkadaşları tarafından "Attention Is All You Need" adlı 

makalede tanıtılan bir tür derin öğrenme modelidir. Dönüştürücülerdeki temel yenilik, modelin 

girdi verilerinin farklı kısımlarına farklı şekilde odaklanmasını sağlayan dikkat mekanizmasıdır 

[32]. Dönüştürücü ağları, girdi olarak bir kelime dizisini alır ve daha sonra sınıflandırma, çeviri 
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veya diğer NLP görevleri için kullanır. Kodlayıcı-kod çözücü mimarisinden oluşan dönüştürücü 

ağları, tekrarlamaya dayanmadan giriş ve çıkış dizileri arasındaki bağımlılıkları öğrenen, kelime 

konumlarını ve aynı cümle içindeki kelimeler arasındaki ilişkiyi dikkate alan bir mekanizma 

üzerine kuruludur. Bu, dönüştürücü uygulamalarının kolayca paralelleştirilmesine ve hesaplama 

açısından verimli olmasına olanak tanır. Dönüştürücülerin kullandığı matematiksel hesaplamalar 

paralel işlemeye elverişlidir ve böylece bu modeller hızlı çalışabilirler. Bu modeller, ağa giren ve 

çıkan veri öğelerini etiketlemek için konumsal kodlayıcıları kullanır. Dikkat birimleri bu etiketleri 

takip ederek her bir öğenin diğerleriyle nasıl ilişkili olduğuna dair bir tür cebirsel harita hesaplar 

[32]. Bir dönüştürücü modeli, bu cümledeki kelimeler gibi sıralı verilerdeki ilişkileri izleyerek 

bağlamı ve dolayısıyla anlamı öğrenen ileri beslemeli bir sinir ağıdır. Bir dizideki birbirini etkileyen 

ve birbirinden uzak veri öğelerinin bile ince bağlantılarını tespit etmek için, dikkat ve öz dikkat adı 

verilen ve hala gelişmekte olan bir dizi matematiksel teknik uygular. 

3.5.12. Görüntü Dönüştürücü (Vision Transformer / ViT) 

Görüntü Dönüştürücü (ViT) [33], NLP uygulamalarında başarılı bir şekilde gerçekleştirilmiş 

olan dikkat mekanizması tabanlı dönüştürücü modellerin bilgisayar görüşüne uyarlanmış halidir. 

Bir görüntüyü sınıflandırırken ViT onu, NLP dönüştürücüsü tarafından oluşturulan bir kelime 

gömme dizisine benzer şekilde bir yama dizisi olarak ele alır. ViT modelinin çalışma prensibi 

aşağıdaki adımlardan oluşmaktadır. ViT, bir giriş görüntüsünü yama dizilerine veya görsel 

belirteçlere böler. Her 2D görüntü yaması düzleştirilir. Ardından, düzleştirilmiş yamalar, yama 

gömme olarak adlandırılan bir işlemle doğrusal olarak gömülür. Her görüntü yamasına öğrenilebilir 

konum yerleştirmeleri eklenir. Gömülü bir görüntü yaması, yeni görüntünün sınıfını tahmin etmek 

için ekstra öğrenilebilir sınıf belirteçleriyle birleştirilir. Son olarak, elde edilen dizi dönüştürücü 

kodlayıcı bloğuna verilir. Standart dönüştürücü girdi olarak 1D belirteç gömme dizilerini alırken, 

ViT’de 2D görüntüleri işlemek için 𝑥 ∈ ℝ𝐻×𝑊×𝐶 girdi görüntüsü; 𝑥𝑝 ∈ ℝ𝑁×(𝑃2.𝐶) düzleştirilmiş 

2D yamalar dizisi olarak yeniden şekillendirilmiştir. Burada (𝐻, 𝑊) orijinal görüntünün 

çözünürlüğüdür, yani yükseklik ile genişlik değerleridir, 𝐶 kanal sayısıdır, (𝑃, 𝑃) her görüntü 

yamasının çözünürlüğüdür, 𝑁 = 𝐻𝑊/𝑃2 yama sayısıdır. Aşağıdaki denklemlerde görüntü 

dönüştürücüsünün görüntüleri işleyişi matematiksel olarak açıklanmıştır. Denklem 3.11’de 

yamaların düzleştirilip, eğitilebilir doğrusal bir izdüşümle D boyutuna eşlenmesi yer almaktadır. 

Düzleştirilmiş yamaların (𝑥𝑝) toplam boyutu 𝑁 × (𝑃2. 𝐶) ‘dir. Denklem 3.12 ve 3.13’de 

dönüştürücü kodlayıcı katmanının (𝐿) MLP (çok katmanlı algılayıcı) ve MSA (çok başlı öz-dikkat) 

blokları yer almaktadır. ℓ.’inci katmanın çıktıları denklemlerdeki gibi hesaplanır. Denklem 3.14’de 

kodlayıcının çıkışının (𝑧𝐿
0) görüntü gösterimi 𝑦 ile ifade edilmektedir [33]. Şekil 3.23’de pnömoni 

tespiti için ViT modelinin gösterimi yer almaktadır. 
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𝑧0 = [𝑥𝑐𝑙𝑎𝑠𝑠; 𝑥𝑝
1Ε; 𝑥𝑝

2Ε; … ; 𝑥𝑝
𝑁Ε ] + Ε𝑝𝑜𝑠,  Εϵℝ(𝑃2.𝐶)×𝐷 , Ε𝑝𝑜𝑠ϵℝ(𝑁+1)×𝐷 (3.11) 

𝑧ℓ
′ = 𝑀𝑆𝐴(𝐿𝑁(𝑧ℓ−1)) + 𝑧ℓ−1,   ℓ = 1 … 𝐿   (3.12) 

𝑧ℓ = 𝑀𝐿𝑃(𝐿𝑁(𝑧ℓ
′)) + 𝑧ℓ

′ ,   ℓ = 1 … 𝐿   (3.13) 

𝑦 = 𝐿𝑁(𝑧𝐿
0)         (3.14) 

 

Dönüştürücü Kodlayıcısı

Gömülü yamalar

Normalizasyon

MLP

Çok-Başlı

Dikkat

Normalizasyon

Lx

Dönüştürücü Kodlayıcısı

Düzleştirilmiş Yamaların Doğrusal Gösterimi

Sınıf

(pnömoni / sağlıklı)
MLP

Yama + 

Konum 

Yerleştirmeleri

    

Girdi 

görüntüsü

Görüntü 

yamaları

*Sınıf 

yerleştirmeleri

    

25610 * 2 3 255

 

Şekil 3.23. Pnömoni tespiti için ViT modelinin gösterimi 

 

3.5.13. MLP-mixer 

MLP-mixer, yalnızca MLP’e dayanan ve iki tür MLP katmanı içeren bir mimaridir. 

Bunlardan biri, konum başına özellikleri karıştıran görüntü yamalarına bağımsız olarak uygulanır. 

Diğeri, uzamsal bilgileri karıştıran yamalar boyunca (kanallar boyunca) uygulanır. Mixer, 

"yamalar×kanallar" tablosu olarak şekillendirilmiş doğrusal olarak yansıtılmış görüntü yamaları 

(belirteçler) dizisini girdi olarak kabul eder ve bu boyutluluğu korur. Geliştirilen MLP-mixer’in 

temel mimarisi Şekil 3.24’de verilmiştir. Görüldüğü gibi, giriş renkli görüntüsünün boyutu 

512×512'dir ve yama çıkartmak için 32×32 boyutunda örtüşmeyen bir pencere kullanılmaktadır. 

Sonuçta yamalar çıkarılır, her yama başlangıçta düzleştirilir ve her düzleştirilmiş yamadaki örnek 

sayısını azaltmak için doğrusal bir izdüşüm katmanı kullanılır. Doğrusal izdüşüm katmanı Denklem 

3.15’de formüle edilmiştir. 

 

𝑦 = 𝑥ω𝑇 + 𝑏         (3.15) 
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Burada 𝑥 giriş vektörüdür 𝜔 ve 𝑏 sırasıyla ağırlık vektörü ve sapma değeridir. Düzleştirilmiş 

bir yamanın uzunluğu 3072'dir; doğrusal izdüşümden sonra, her bir yama vektörünün uzunluğu 

2048 olur. Benzer şekilde, doğrusal izdüşüm katmanından sonra, tüm yamalar için 256×1024 

boyutunda bir yama gömme matrisi elde edilir. Daha sonra, bir giriş görüntüsünün 256×1024 

şeklindeki bu yama yerleştirmesi, sınıflandırma için MLP bloğuna beslenmeden önce mixer 

katmanlarından geçer [148]. 
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Şekil 3.24. MLP-mixer mimarisinin gösterimi 

 

3.5.14. FNet 

Lee-Thorp ve arkadaşları tarafından tanıtılan modelde, belirteç karıştırma mekanizması 

olarak Fourier dönüşümü kullanılmıştır [149]. Bu model ile Fourier dönüşümleri dahil olmak üzere 

basit doğrusal dönüşümlerin metin verilerindeki çeşitli ilişkileri modellemede yetkin olduğu 

gösterilmiştir. Yalnızca iki öz-dikkat alt katmanı içeren FNet hibrit modellerinin diğer dönüştürücü 

modellerine göre avantajı, daha uzun giriş uzunluklarında daha hızlı çalışması ve daha iyi 

performans göstermesidir. Ayrıca bu model, dikkat mekanizmasının artan doğruluğu etkilediğini, 

ancak her katmanda kullanılmasının gerekli olmadığını göstermiştir. FNet dikkat gerektirmeyen bir 

dönüştürücü mimarisidir (dönüştürücü benzeri mimari), her katman bir Fourier karıştırma alt 

katmanından ve ardından bir ileri besleme alt katmanından oluşur. Denklem 3.16’da gösterildiği 

gibi, FNet’in temelinde dikkat alt katmanı 2D DFT uygulayan Fourier alt katmanıyla 

değiştirilmiştir. Burada ℱ𝑠𝑒𝑞 dizi uzunluğu, ℱℎ gizli boyuttur. Bu çalışma için geliştirilen FNet 

mimarisi Şekil 3.25’de verilmiştir.  

 

𝑦 = ℜ(ℱ𝑠𝑒𝑞(ℱℎ(𝑥)))         (3.16) 
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Şekil 3.25. Pnömoni tespiti için önerilen FNet mimarisinin gösterimi 

 

3.5.15. gMLP 

Liu ve arkadaşları tarafından önerilen gMLP, dikkat mekanizmasız MLP tabanlı 

dönüştürücü modelidir. Mimari, kapı (geçit) eklenmiş bir MLP olduğu için bu şekilde 

adlandırılmıştır. Dönüştürücü mimarilerindeki dikkat mekanizmasının gerekliliğini araştırmak için 

temel MLP katmanları geçitleme ile birleştirilerek tasarlanmıştır. GMLP’deki yenilik, dizi öğeleri 

arasındaki uzamsal etkileşimleri öğrenen dikkat mekanizmalarına alternatif olarak Uzamsal 

Geçitleme Birimi (Spatial Gating Unit /(SGU)) kullanılmasıdır. SGU öğe konumları için kodlama 

gerektirmez çünkü bu tür bilgiler uzamsal etkileşimleri yakalayan katman 𝑠(⋅)’de tutulur. gMLP, 

diğer dönüştürücü modellerine göre daha az eğitilebilir parametreye sahiptir. gMLP ağı, L adet aynı 

boyutta ve yapıda blok yığınından oluşur. Belirteç dizisinin uzunluğu n ve belirtecin boyutu d olan 

𝑋 ∈ ℝ𝑛×𝑑 başlangıç matrisi girdisi aşağıdaki formüllerle temsil edilir. Her vektör (gömme) belirli 

bir kelimenin temsilidir. Burada 𝜎, GeLU gibi bir aktivasyon fonksiyonudur, U ve V kanal boyutu 

boyunca doğrusal projeksiyonları tanımlayan matrisler, 𝑠(⋅) uzamsal etkileşimleri yakalayan 

katmandır. Y bloğun çıktısıdır [150]. Önerilen gMLP mimarisinin gösterimi Şekil 3.26’de 

verilmiştir. Denklem 3.17, Denklem 3.18 ve Denklem 3.19’da ağda gerçekleşen süreçlerin 

matematiksel ifadeleri yer almaktadır. 

 

Ζ = 𝜎(𝑋𝑈)         (3.17) 

Ž = 𝑠(Ζ)         (3.18) 

𝑌 = Ž𝑉          (3.19) 
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Görüntü gömmeleri

gMLP

Uzamsal 

gösterim

Normalizasyon

ayır

.

Uzamsal 

Geçitleme Birimi

Kanal gösterimi

Normalizasyon

Lx

Aktivasyon

Kanal gösterimi

 

Şekil 3.26. gMLP mimarisinin gösterimi 

 

 



4. MATERYAL VE METOT 

Bu bölümde tez çalışması kapsamında oluşturulan CXR ve sayısal tıbbi parametre veri 

setleri, literatürde CXR görüntülerinden pnömoni tespiti için en yaygın kullanılan CXR veri seti 

[22], pnömoni tespiti için geliştirilen 21 katmanlı yeni ESA modeli ve hiper parametreleri, önerilen 

modelleri değerlendirmek için kullanılan çapraz doğrulama yöntemleri, performans metrikleri ve 

sayısal parametrelerin istatistiksel analizinde kullanılan istatistik testleri hakkında detaylı bilgi 

verilmiştir. 

4.1. Özel Veri Tabanı 

Bu çalışma Dicle Üniversitesi Tıp Fakültesi Göğüs Hastalıkları ve Tüberküloz kliniği ile 

yoğun bakım ünitesine 2001 Ocak- 2021 Ocak ayları arasında pnömoni tanısıyla yatırılan hastalar 

ve herhangi bir solunum şikâyetiyle göğüs hastalıkları polikliniğine başvurup CXR çekilen ve 

normal olan hastaların dosyalarının retrospektif olarak taranmasıyla gerçekleştirilmiştir. Çalışmaya 

CXR’de pnömoni tanısı alan 1000 pnömoni hastası ve CXR’si normal olan 1000 sağlıklı birey 

olmak üzere toplam 2000 kişi dâhil edilmiştir. Önerilen yöntemin etkinliğini ve performansını 

karşılaştırmak için aynı kişilere ait hem CXR görüntüleri hem de sayısal tıbbi verileri kullanılmıştır. 

Tüm görüntüler farklı boyutlarda ve RGB’dir. Şekil 4.1, özel veri tabanından elde edilen pnömoni 

ve sağlıklı CXR görüntülerini göstermektedir. 

 

Pnömoni

Sağlıklı

 

Şekil 4.1. Oluşturulan veri setine ait pnömoni ve sağlıklı CXR görüntüleri 
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Çalışmaya CXR’si çekilen 1000 pnömoni hastası ve 1000 sağlıklı bireyin hastalığın ayırıcı 

tanısında etkisi olan sayısal tıbbi verileri de dahil edilmiştir. Sayısal tıbbi veriler hasta dosyasından 

elde edilmiştir ve sayısal verilere dayalı bir veri seti oluşturulmuştur. Demografik veriler olarak, 

yaş ve cinsiyet seçilmiştir. Hastalık şikâyeti olarak, yan ağrısı, nefes darlığı ile öksürük verileri 

seçilmiştir. Laboratuvar parametreleri olarak; lökosit sayısı (WBC, 10𝑒3µL), nötrofil sayısı (NEU, 

10𝑒3µL), lenfosit sayısı (LYM, 10𝑒3µL), trombosit sayısı (PLT, 10𝑒3µL), C-reaktif protein (CRP 

(𝑚𝑔 ∕ 𝑑𝐿)) ve Albümin (𝑚𝑔 ∕ 𝑑𝐿) çalışılmıştır. Bu laboratuvar verilerinden hareketle pnömoni ve 

sağlıklı hastaların ayırıcı tanısında NLO, TLO ve CAO verileri kullanılmıştır. Tablo 4.1’de 

oluşturulan sayısal parametre veri seti öznitelikleri yer almaktadır. Pnömoni hastaları ve sağlıklı 

bireylere ait CXR görüntüleri ve aynı kişilere ait sayısal tıbbi veriler PACS (Görüntü Saklama ve 

İletişim Sistemleri) ve HBYS (Hastane Bilgi Yönetim Sistemi) veri tabanlarından sağlanmıştır. Bu 

çalışma, Dicle Üniversitesi Tıp Fakültesi Girişimsel Olmayan Klinik Araştırmalar Etik Kurulu 

onayı ile yapılmıştır. (Tarih: 13.10.2021 ve Karar No. 421). 

 

Tablo 4.1. Oluşturulan sayısal parametre veri seti öznitelikleri 

Öznitelik Sayısı Öznitelik 

1 Hasta/Sağlıklı Yaş 

2 Cinsiyet 

3 Öksürük 

4 Dispne (nefes darlığı) 

5 Yan ağrısı 

6 CRP (𝑚𝑔 ∕ 𝑑𝐿) 

7 Albümin (𝑔 ∕ 𝑑𝐿) 

8 WBC 10𝑒3µL 

9 LYM 10𝑒3µL 

10 NEU 10𝑒3µL 

11 PLT 10𝑒3µL 

12 CAO 

13 NLO 

14 TLO 

15 Sınıf (0/1) 

 

 

 

  



50 

4.2. Genel Veri Tabanı  

Tez çalışması kapsamında geliştirilen pnömoni tespit ağının etkinliğini test etmek amacıyla 

pnömoni tespitinde literatürde en çok kullanılan CXR görüntü veri setleri ile deneysel çalışmalar 

gerçekleştirilmiştir [22,35]. Sınıf dengesizliği problemlerini önlemek için veri setlerindeki her iki 

sınıftan eşit sayıda CXR görüntüsü rastgele seçilmiş ve kullanılmıştır. Bu çalışmada 1750 adedi 

sağlıklı sınıftan ve diğer 1750 örneği pnömoni sınıfından olmak üzere 3500 görüntü kullanılmıştır. 

Şekil 4.2’de ikili sınıflandırma görevlerinde literatürde en yaygın kullanılan Kaggle CXR veri 

setine ait sağlıklı ve pnömoni CXR görüntü örnekleri yer almaktadır. 

 

Pnömoni

Sağlıklı

 
Şekil 4.2. Halka açık CXR veri setine ait sağlıklı ve pnömoni CXR görüntüleri [22] 

 

4.3. Geliştirilen Pnömoni Tespit Modeli  

Geliştirilen ESA modeli Şekil 4.3’de gösterildiği gibi 21 katmandan oluşmaktadır. Yeni ESA 

mimarisi, bir giriş katmanı ile başlayıp, toplu normalleştirme ve daha sonra her bir evrişim 

katmanını takip eden ReLU katmanı ile devam etmektedir. Havuzlama işlemlerinden havuzlama 

katmanlarında ‘max’ operatör fonksiyonu kullanılmıştır. 21 katmanlı ESA mimarisinin evrişim1, 

evrişim2, evrişim3, evrişim4 ve evrişim5 olmak üzere beş evrişim katmanı bulunmaktadır. Ayrıca 

sırasıyla ReLu1 ve ReLu2 katmanlarından sonra gelen havuzlama1 ve havuzlama 2 olmak üzere 

iki havuz katmanı vardır. Sınıflandırma amacıyla tam bağlantılı katman, softmax katmanı ve 

sınıflandırma katmanı da kullanılmıştır. Evrişim1, evrişim2 ve evrişim3 katmanları, 3 × 3 piksel 

boyutunda 64, 32, 16, 8 ve 4 filtre içermektedir. Katmanların, aktivasyonların ve öğrenilebilir 

ağırlıkların açıklamalarını kapsayan yeni ESA mimarisinin detayları Şekil 4.3 ve Tablo 4.2’de 

sunulmuştur. 
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CXR 

Görüntüleri

Çıktı Sağlıklı

PnömoniEvrişim Tam BağlıRelu Softmax Havuzlama
Toplu 

Normalizasyon
 

Şekil 4.3. Pnömoni tespitinde önerilen yeni 21 katmanlı ESA modeli  

Tablo 4.2. Geliştirilen model için kullanılan hiper parametreler 

Katmanlar Aktivasyonlar Öğrenilebilir Ağırlıklar 

Görüntü girişi 224×224×3 - 

Evrişim Katmanı 224×224×64 Ağırlıklar 3×3×3×64 

Sapma 1×1×64 

Toplu Normalizasyon 224×224×64 Offset 1×1×64 

Scale 1×1×64 

ReLu 224×224×64 - 

Maksimum Havuzlama 112×112×64 - 

Evrişim Katmanı 112×112×32 Ağırlıklar 3×3×3×64 

Sapma 1×1×64 

Toplu Normalizasyon 112×112×32 Offset 1×1×32 

Scale 1×1×32 

ReLu 112×112×32 - 

Maksimum Havuzlama 56×56×32 - 

Evrişim Katmanı 56×56×16 Ağırlıklar 3×3×3×64 

Sapma 1×1×64 

Toplu Normalizasyon 56×56×16 Offset 1×1×16 

Scale 1×1×16 

ReLu 56×56×16 - 

Evrişim Katmanı 56×56×8 Ağırlıklar 3×3×3×64 

Sapma 1×1×64 

Toplu Normalizasyon 56×56×8 Offset 1×1×8 

Scale 1×1×8 

ReLu 56×56×8 - 

Evrişim Katmanı 56×56×4 Ağırlıklar 3×3×3×64 

Sapma 1×1×64 

Toplu Normalizasyon 56×56×4 Offset 1×1×4 

Scale 1×1×4 

ReLu 56×56×4 - 

Tam Bağlı Katman 1×1×2 Ağırlıklar 2×12544 

Sapma 2×1 

Softmax 1×1×2 - 

Sınıflandırma Çıkışı - - 
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4.4. Model Değerlendirme/Doğrulama Yöntemleri 

Çapraz doğrulama, bir makine öğrenimi algoritmasının eğitilmediği yeni veri kümeleri 

üzerinde tahminlerde bulunma performansını değerlendirmek için kullanılan bir model 

değerlendirme tekniğidir. Bu, belirlenen veri kümesini bölümlere ayırarak, algoritmayı eğitmek 

için bir alt küme ve test için kalan verileri kullanarak yapılır. Her çapraz doğrulama turu, orijinal 

veri setinin rastgele bir şekilde bir eğitim setine ve bir test setine bölünmesini içerir. Eğitim seti 

daha sonra denetimli bir öğrenme algoritmasını eğitmek için kullanılır ve test seti de algoritmanın 

performansını değerlendirmek için kullanılır. Bu işlem birkaç kez tekrarlanır ve ortalama çapraz 

doğrulama hatası bir performans göstergesi olarak kullanılır. Çapraz doğrulama, model için en iyi 

algoritmayı bulmak amacıyla verileri farklı şekilde bölen çeşitli teknikler sunar [151,152]. 

4.4.1. K-Katlı Çapraz Doğrulama (K-Fold Cross Validation) 

Çapraz doğrulama veya 'k-kat çapraz doğrulama' yönteminde tüm veri kümesi eşit 

büyüklükte k parçaya bölünür ve her bölüme bir kat adı verilir. K 3,4,5 vb. herhangi bir tam sayı 

olabilen k parça olduğu için k-katlı olarak bilinir. Gruplardan biri test seti olarak, diğer k-1 grup ise 

eğitim seti olarak kullanılır. Model eğitim seti üzerinde eğitilir ve test seti üzerinde değerlendirilir. 

Daha sonra bu işlem, her bir grup test kümesi olarak kullanılana kadar k kez tekrarlanır. Şekil 4.4’de 

5 katlı çapraz doğrulamayı ve dolayısıyla 5 iterasyonu göstermektedir. Her iterasyonda, bir kat test 

seti/doğrulama seti ve diğer k-1 setleri (4 set) eğitim setidir [153]. 

 

 

Şekil 4.4. 5 katlı çapraz doğrulama örneği [154] 

4.4.2. Ayırarak çapraz doğrulama (Hold-out Cross Validation) 

Ayırma, veri setinin bir eğitim ve test setine ayrılmasıdır. Tüm veri kümesinin rastgele bir 

şekilde bir eğitim kümesi ve bir test kümesi olarak bölümlenmesini sağlar. Eğitim seti, modelin 

üzerinde eğitildiği settir ve test seti, modelin görünmeyen veriler üzerinde ne kadar iyi performans 
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gösterdiğini görmek için kullanılır. Veri kümesi yalnızca iki sete bölündüğünden, model eğitim 

kümesi üzerinde yalnızca bir kez oluşturulur ve daha hızlı yürütülür. Şekil 4.5’de veri kümesi bir 

eğitim kümesi ve bir test kümesi olarak ikiye ayrılmıştır. Model eğitim kümesi üzerinde eğitilir ve 

test veri kümesi üzerinde test edilir [153]. 

Veri seti

Eğitim Veri seti Test Veri seti

Eğitim

Eğitim Modeli Test Modeli

Test

 

Şekil 4.5. Hold out çapraz doğrulama örneği [154] 

K katlı çapraz doğrulama daha çok tercih edilen yöntemdir çünkü modele birden fazla 

eğitim-test ayrımı üzerinde eğitim alma/test etme fırsatı verir. Bu, modelin görünmeyen veriler 

üzerinde ne kadar iyi performans göstereceğine dair daha iyi bir gösterge sağlar. Öte yandan hold 

out, yalnızca bir eğitim-test bölünmesine bağlıdır. Bu da hold-out yönteminin sınıflandırma 

performansının, verilerin eğitme ve test kümelerine nasıl bölündüğüne bağlı hale getirir. Bununla 

birlikte k katlı çapraz doğrulamada birden fazla eğitim-test bölmesi kullandığından, hold-out 

yöntemine göre daha fazla hesaplama gücü ve zaman gerektirir [153]. 

4.5. Değerlendirme Metrikleri 

Eğitimden sonra oluşturulan modelin kalitesini değerlendirmek, performansını anlamak için 

çok önemlidir. Modelin performansını değerlendirmek için doğruluk, kesinlik, duyarlılık ve F1 

skor gibi metrikler kullanılabilir. Bunlar, oluşturulan model tarafından verilen tahmine ve temel 

gerçek olarak hizmet eden etiketli verilere dayanan gerçek negatifler, gerçek pozitifler, yanlış 

negatifler ve yanlış pozitifler gibi parametreler aracılığıyla elde edilir. Gerçek Pozitif (TP), pozitif 

sınıfın doğru sınıflandırmasıdır, örneğin, pnömoni içeren bir görüntünün model tarafından pnömoni 

olarak sınıflandırılmasıdır. Gerçek Negatif (TN), negatif sınıfın doğru sınıflandırmasıdır, örneğin 

pnömoni içermeyen görüntünün yani sağlıklı görüntünün model tarafından pnömoni içermediği ve 

sağlıklı sınıfına ait olduğunun tespit edilmesidir. Yanlış Pozitif (FP), pozitiflerin yanlış tahminidir, 

örneğin pnömoni içeren bir görüntünün model tarafından yanlış etiketlenmesidir yani görüntünün 
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sağlıklı olarak sınıflandırılmasıdır. Yanlış Negatif (FN), negatiflerin yanlış tahmin edilmesidir, 

örneğin sağlıklı bir görüntünün model tarafından yanlış etiketlenmesidir yani görüntünün pnömoni 

olarak sınıflandırılmasıdır. Karışıklık matrisleri, tahmin edilen ve gerçek değerlerden elde edilen 

sonuçları bir tablo şeklinde temsil ederek modelin performansını görselleştirmenin bir yoludur 

[155-157]. Şekil 4.6’da modellerin performansını değerlendirmek için kullanılan karışıklık 

matrisinin bir gösterimi yer almaktadır. 

Gerçek Pozitif (TP)

Yanlış Pozitif (FP)

Yanlış Negatif (FN)

Gerçek Negatif (TN)
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e
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Tahmin etiketi

Var Yok

V
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Y
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Şekil 4.6. Modelin performansının görselleştirilmesini kolaylaştıran bir karışıklık matrisi [157] 

4.5.1. Kesinlik 

Tahmin edilenlerden doğru gerçek pozitifleri kontrol ederek modelin ne kadar hassas çalıştığını 

kontrol eder. Kesinlik/pozitif öngörülen değer; Denklem 4.1’de gösterildiği gibi, doğru tespit edilen 

pozitif vakaların beklenen tüm pozitif vakalara oranıdır. 

 

 𝐾𝑒𝑠𝑖𝑛𝑙𝑖𝑘 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
         (4.1) 

4.5.2. Duyarlılık 

Modelin kaç tane gerçek (actual) TP yakaladığını hesaplar ve bunları pozitif olarak etiketler. 

Duyarlılık/hassasiyet/gerçek pozitif oranı; Denklem 4.2’de gösterildiği gibi, tüm gerçek pozitif 

vakalara kıyasla pozitif vaka olarak doğru şekilde tanımlanan örneklerdir. 
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𝐷𝑢𝑦𝑎𝑟𝑙𝚤𝑙𝚤𝑘 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
         (4.2) 

4.5.3. Doğruluk 

Denklem 4.3’de yer aldığı üzere doğruluk, verilen toplam veri örneği sayısı üzerinden doğru olarak 

tanımlanan veri örneği sayısını ifade eder. 

 

𝐷𝑜ğ𝑟𝑢𝑙𝑢𝑘 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
        (4.3) 

4.5.4. F1 skor 

Karşılaşılabilecek her durumu hesaba katmak için duyarlılık ve kesinliğin harmonik ortalaması 

olarak alınır ve yöntemin genel doğruluğunu gösterir. 

 

𝐹1 𝑠𝑘𝑜𝑟 =
2×𝑇𝑃

2×𝑇𝑃+𝐹𝑃+𝐹𝑁
         (4.4) 

4.6. İstatistiksel Yöntemler  

 Araştırma verilerinin istatistiksel değerlendirmesinde IBM SPSS İstatistik 26 programı 

kullanılmıştır. Verilerin değerlendirilmesinde nicel değişkenler ortalama ± standart sapma (SD) ile 

nitel değişkenler sayı ve yüzde (%) ile sunulmuştur. Nitel değişkenlerin karşılaştırılmasında Ki-

kare (χ2) testi kullanılmıştır. Nicel değişkenlerin normal dağılıma uygunluğu Kolmogorov-Smirnov 

testi ile değerlendirilmiştir. Grupların karşılaştırılmasında Mann-Whitney U testi kullanılmıştır. 

Hipotezler çift yönlü alınarak, p≤0.05 ise istatistiksel olarak anlamlı sonuç kabul edilmiştir.  

Mann-Whitney U testi, normal dağılıma sahip olmayan sıralı veriler veya sürekli veriler 

üzerinde iki bağımsız grup arasındaki farklılıkları test etmek için kullanılan parametrik olmayan 

testlerdendir [158]. Ki-kare anlamlılık testi, kategorik ve nitel değişkenler arasındaki ilişkinin 

istatistiksel olarak anlamlı olup olmadığını belirlemek için kullanılan parametrik olmayan bir testtir 

[159]. Kolmogorov-Smirnov testi, örneklem büyüklüğüne bakılmaksızın normal dağılıma sahip 

olup olmadığını ve istatistiksel analizde anlamlı sonuçlar elde etmek için kullanılır [160]. 

 

 

 



5. BULGULAR VE TARTIŞMA 

Bu tez çalışması kapsamında seçilen tüm ağların derin öğrenme yöntemlerindeki 

başarımlarını değerlendirmek için kapsamlı deneyler gerçekleştirilmiştir. Bu bölümde CXR 

görüntülerinden ve sayısal tıbbi parametrelerden derin öğrenme yaklaşımları ile pnömoni tespitine 

ait deneysel çalışmaların sonuçları detaylı bir şekilde yer almaktadır. İlk önce CXR görüntülerinden 

elde edilen bulgular tablo şeklinde verilmiştir. Literatürde benzer çalışmaların sonuçları tez 

kapsamında kullanılan yöntemlerle karşılaştırılmıştır. Daha sonra sayısal parametre veri setinden 

elde edilen bulgular ve literatür karşılaştırması yer almaktadır.  

CXR görüntülerinden derin öğrenme algoritmalarını ve yöntemlerini kullanarak pnömoni 

tespitinde iki farklı çalışma yapılmıştır. İlk çalışmada pnömoni ve sağlıklı CXR görüntülerini 

sınıflandırmak için derin öğrenmeye dayalı yaklaşımlar kullanılmıştır. Bu yaklaşımlar, derin 

öznitelik çıkarımı, transfer öğrenme ve tez çalışması kapsamında geliştirilmiş bir ESA modelinin 

uçtan uca eğitimidir. Derin öznitelik çıkarımı ve transfer öğrenme için 10 farklı önceden eğitilmiş 

ESA modelleri kullanılmıştır. Bu çalışmada kullanılan önceden eğitilmiş ESA modelleri AlexNet, 

VGG16, VGG19, ResNet50, DenseNet201, DarkNet53, ShuffleNet, SqueezeNet, MobileNetV2 ve 

NasNetMobile’dir. İkinci çalışmada geliştirilen yeni ESA modeli kullanılarak elde edilen sonuçlar 

dönüştürücü tabanlı mimariler ile karşılaştırılmıştır. Bu dönüştürücü mimarileri, ViT, gMLP, MLP-

mixer ve FNet’tir. Önerilen yöntemlerin etkinliğini değerlendirmek için doğruluk, kesinlik, 

duyarlılık ve F1-ölçümü gibi performans ölçütleri kullanılmıştır. 

5.1. Göğüs röntgen görüntülerinde pnömoni tespiti için derin öğrenme modellerinin 

incelenmesi  

Yapılan çalışmada önceden eğitilmiş AlexNet, VGG16, VGG19, ResNet50, DenseNet201, 

DarkNet53, ShuffleNet, SqueezeNet, MobileNetV2 ve NasNetMobile modelleri ile derin öznitelik 

çıkarımı ve transfer öğrenme çalışmaları gerçekleştirilmiştir. AlexNet’in fc6; VGG16 ve 

VGG19’un fc7; ResNet50 ve DenseNet201’in fc1000; DarkNet53’ün conv53; NasNetMobile’in 

predictions; MobileNetV2’nin Logits; ShuffleNet’in node_202 ve SqueezeNet’in pool10 

katmanlarından öznitelikler çıkarılıp sınıflandırıcıya verilmiştir. Çıkarılan özellikler daha sonra 

RO, DVM ve KNN dahil olmak üzere çeşitli makine öğrenimi algoritmalarına girildikleri bir 

sonraki adımda kullanılmıştır. Deneysel çalışmalarda kullanılan DVM hiper parametreleri; 

çekirdek fonksiyonu ‘linear’ olarak belirlenmiştir. KNN hiper parametrelerinde komşu sayısı ‘10’ 

olarak belirlenmiştir. Uzaklık ölçü birimi ‘minkowski’ olarak seçilmiştir. RO hiper 

parametrelerinde eğitim metodu ‘bag’, toplulukta kullanılacak ağaç sayısı 50 seçilmiştir. Uçtan uca 

öğrenme için ise 21 katmanlı model oluşturularak sıfırdan eğitilmiştir. 21 katmanlı yeni ESA hiper 
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parametreleri; 'trainingOptions', 'InitialLearnRate', 'MaxEpochs' ve 'MiniBatchSize' sırasıyla 

‘SGDM’,0.0001, 8 ve 10’dur. 

Çalışmanın ön işleme aşaması olarak; kullanılan farklı algoritmaların görüntü girişleri farklı 

olduğu için CXR görüntüleri yeniden boyutlandırılmıştır. Hem derin öznitelik çıkarma hem de ince 

ayar prosedürlerinde önceden eğitilmiş ESA modellerini eşit şartlar altında karşılaştırmak için tüm 

modeller minimum girdi boyutlarını karşılayacak ortak boyut olan 256×256 yeniden 

boyutlandırılmıştır. Giriş CXR görüntüleri, tez çalışması kapsamında geliştirilen ESA modeli için 

224 × 224 piksel olarak yeniden boyutlandırılmıştır. Deneysel çalışmalarda veri seti hem belirli 

oranlarda eğitim ve test veri setlerine ayrılmıştır, hem de k-katlı çapraz geçerlilik testi 

uygulanmıştır. Böylece veri seti %80 eğitim ve %20 test olarak ayrılmıştır. Ayrıca k-katlı çapraz 

geçerlilik testi için k değeri 5 seçilmiştir. Toplanan CXR görüntülerinden pnömoni tespiti için 

önerilen yöntemin akış diyagramı Şekil 5.1’de yer almaktadır. 

 
Pnömoni Sağlıklı

Derin Öznitelik Çıkarımı Transfer Öğrenme Uçtan Uca Öğrenme

SağlıklıPnömoni

 

Şekil 5.1. CXR görüntüleri ile pnömoni tespiti için önerilen yöntemin akış diyagramı [161]  
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 İlk deneyler derin öznitelik çıkarımı ve makine öğrenmesi sınıflandırıcıları ile 

gerçekleştirilmiştir. Önceden eğitilmiş 10 adet ESA modelinin ilk derin öznitelik çıkarımından elde 

edilen sonuçlar sırasıyla Tablo 5.1, Tablo 5.2 ve Tablo 5.3’de sunulmuştur. Tablolarda her bir 

modelin en yüksek performans metrik puanları koyu ile gösterilmiştir. Tablo 5.1, derin 

özniteliklerin DVM ile sınıflandırılmasından elde edilen sonuçları gösterirken; Tablo 5.2, aynı 

özniteliklerin KNN sınıflandırıcısından üretilen doğruluk puanlarını göstermektedir. Tablo 5.3, 

derin özniteliklerin RO ile sınıflandırılmasından elde edilen sınıflandırma performans metriklerini 

göstermektedir. 

 

Tablo 5.1. Pnömoni/Sağlıklı sınıflandırmasında önceden eğitilmiş ESA modellerinin DVM başarıları 

 

Önceden eğitilmiş ESA modellerine ait derin öznitelik çıkarımı deneysel çalışmalarının 

sonuçları Tablo 5.1’de yer almaktadır. Bu çalışma yürütülürken veri setinin %80’i eğitim için 

kullanılmış, önceden eğitilmiş modeller veri setinin %20’si ile test edilmiştir. Tablo 5.1’deki 

satırlar model türünü, sütunlar ise elde edilen sınıflandırma performansı parametrelerini 

göstermektedir. Tablo 5.1’den, SqueezeNet modelinin %97,25 ortalama doğruluk puanı ile en 

yüksek ortalama doğruluk puanını ürettiği, AlexNet, ShuffleNet, VGG16, ResNet50, MobilenetV2, 

VGG19 ve NasNetMobile modellerinin ise sırasıyla %97,00, %96,75, %96,50, %96,50, %96,00, 

%96,00 ve %95,75 ortalama doğruluk puanı ürettiği görülebilir. DenseNet201 modeli %95,00 

ortalama doğruluk puanı üretirken, DarkNet53 modeli %93,50 ile en düşük doğruluk puanları 

üretmiştir. SqueezeNet, ResNet50 ve ShuffleNet %96,00 ile aynı kesinlik puanını elde ederken 

NasNetMobile %93,00 ile en düşük kesinlik başarımı göstermiştir. AlexNet, VGG16, 

MobileNetV2 ve DarkNet53 %95,50 kesinlik başarımı üretirken; VGG19 %95,00 ve DenseNet201 

%94,00 kesinlik performansı göstermiştir. SqueezeNet, AlexNet ve NasNetMobile sırasıyla 

%98,46, %98,45 ve %98,41 ile en yüksek duyarlılık puanları elde ederken, DenseNet201 %95,92 

ile en düşük duyarlılık başarımı göstermiştir. VGG16 ve DarkNet53 modelleri %97,45; ResNet50 

%96,97; VGG19 %96,94 ve MobileNetV2 %96,46 duyarlılık performansı göstermiştir. 

Derin Öznitelikler + DVM 

(%80 Eğitim %20 Test) 

Doğruluk (%) Kesinlik (%) Duyarlılık (%) F1 skor (%) 

AlexNet (fc6) 97,00 95,50 98,45 96,95 

SqueezeNet(pool10) 97,25 96,00 98,46 97,22 

ResNet50(fc1000) 96,50 96,00 96,97 96,48 

ShuffleNet(node202) 96,75 96,00 97,46 96,73 

NasNetMobile(predictions) 95,75 93,00 98,41 95,63 

MobileNetV2(Logits) 96,00 95,50 96,46 95,98 

VGG16 (fc7) 96,50 95,50 97,45 96,46 

VGG19 (fc7) 96,00 95,00 96,94 95,96 

DenseNet201(fc1000) 95,00 94,00 95,92 94,95 

DarkNet53(conv53) 93,50 95,50 97,45 96,46 
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SqueezeNet, AlexNet, ShuffleNet ve ResNet50 sırasıyla %97,22, %96,95, %96,73, %96,48 F1 skor 

puanı üretirken, DenseNet201 %94,95 ile en düşük F1 skor puanı elde etmiştir. VGG16 ve 

DarkNet53 %96,46; VGG19 %95,96 F1 skoru elde etmiştir.  

Tablo 5.2, her bir model için elde edilen sınıflandırmanın değerlendirme metriklerini 

vermektedir. Önceden eğitilmiş ESA modellerinden çıkarılan derin öznitelikler KNN algoritması 

ile sınıflandırılmıştır. Bu çalışma ile hibrit modellerin başarımları da sınıflandırma performansı 

açısından karşılaştırılmaktadır. 

 

Tablo 5.2. Pnömoni/Sağlıklı sınıflandırmasında önceden eğitilmiş ESA modellerinin KNN başarıları 

 

Tablo 5.2’deki sonuçlar göz önüne alındığında AlexNet’in fc6 katmanından çıkarılan 

özniteliklerin sınıflandırmada %96,00 doğruluk puanı ile en yüksek ortalama doğruluk puanını 

ürettiği, ResNet50’nin fc1000 katmanı kullanılarak çıkarılan özniteliklerin sınıflandırmada ikinci 

en iyi puan olarak %94,00 doğruluk puanı ürettiği görülebilir. ShuffleNet modeli %93,75 ortalama 

doğruluk puanı üretirken, NasNetMobile modeli %87,50 ile en düşük doğruluk oranına sahiptir. 

ShuffleNet %93,75, DenseNet201 %93,25, MobileNetV2 %93,00, DarkNet53 %92,75, VGG19 

%92,00 ve VGG16 %91,50 doğruluk performansı göstermiştir. Darknet53 %95,00 ile en yüksek 

kesinlik puanı elde ederken; ResNet50 %94,00, AlexNet %92,50 ve VGG16 %91,00 kesinlik puanı 

elde etmiştir. SqueezeNet %82,50 ve NasNetMobile %84,00 ile en düşük kesinlik başarımı 

göstermiştir. ShuffleNet ve VGG19 % 89,50, DenseNet201 %89,00, MobileNetV2 %87,50 

kesinlik elde etmiştir. AlexNet %99,46 ile en yüksek duyarlılık elde ederken; MobileNetV2 %98,31 

ile en yüksek ikinci duyarlılık değeri elde etmiştir. ShuffleNet %97,81, Densenet201 %97,27, 

SqueezeNet %95,93, VGG19%94,21 ve ResNet50 %94,00 duyarlılık puanı elde etmiştir. %89,89 

ile NasNetMobile en düşük duyarlılık puanı üretmiştir. AlexNet ve ResNet50 sırasıyla %95,85 ve 

%94,00 ile en yüksek F1 skor puanları elde ederken; NasNetMobile %87,11 ile en düşük F1 skor 

puanı elde etmiştir. ShuffleNet %93,47, DenseNet201 %92,95, Darknet53 %92,91 ve 

MobileNetV2 %92,59 F1 skor performansı göstermiştir. 

Derin Öznitelikler + KNN 

(%80 Eğitim %20 Test) 

Doğruluk (%) Kesinlik (%) Duyarlılık (%) F1 skor (%) 

AlexNet 96,00 92,50 99,46 95,85 

SqueezeNet 89,50 82,50 95,93 88,71 

ResNet50 94,00 94,00 94,00 94,00 

ShuffleNet 93,75 89,50 97,81 93,47 

NasNetMobile 87,50 84,50 89,89 87,11 

MobileNetV2 93,00 87,50 98,31 92,59 

VGG16 91,50 91,00 91,92 91,46 

VGG19 92,00 89,50 94,21 91,79 

DenseNet201 93,25 89,00 97,27 92,95 

DarkNet53 92,75 95,00 90,91 92,91 
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Tablo 5.3. Pnömoni/Sağlıklı sınıflandırmasında önceden eğitilmiş ESA modellerinin RO başarıları 

 

Önceden eğitilmiş ESA modellerinden çıkarılan derin özniteliklerin RO sınıflandırma 

performansları Tablo 5.3’de yer almaktadır. AlexNet’in fc6 katmanından çıkarılan özniteliklerin 

sınıflandırmada %95,75 doğruluk puanı ile en yüksek ortalama doğruluk puanını ürettiği, 

ShuffleNet’in node202 katmanı kullanılarak çıkarılan özniteliklerin sınıflandırmada ikinci en iyi 

puan olarak %95,25 doğruluk puanı ürettiği görülebilir. MobileNetV2 modeli %94,00 ortalama 

doğruluk puanı üretirken, NasNetMobile modeli %90,75 ile en düşük doğruluk oranına sahiptir. 

ResNet50, DarkNet53, DenseNet201, VGG16 ve VGG19 modellerinin doğruluk oranları sırasıyla 

%93,50, %93,25, %92,75, %92,50 ve %92,25’dir. SqueezeNet modeli %91,50 doğruluğa 

ulaşmıştır. AlexNet %96,00 ile en yüksek kesinlik puanı elde ederken; MobileNetV2 %95,00, 

ShuffleNet %94,50 ve DenseNet201 %93,50 kesinlik puanı elde etmiştir. VGG modelleri %92,00 

kesinlik başarımı gösterirken; SqueezeNet %90,50 ile NasNetMobile %90,00 ile en düşük kesinlik 

başarımları göstermiştir. ShuffleNet %95,94 ile en yüksek duyarlılık elde ederken; AlexNet 

%95,52 ile en yüksek ikinci duyarlılık değeri elde etmiştir. %91,37 ile NasNetMobile en düşük 

duyarlılık puanı üretmiştir. AlexNet ve ShuffleNet sırasıyla %95,76 ve %95,21 ile en yüksek F1 

skor puanları elde ederken; NasNetMobile %90,68 ile en düşük F1 skor puanı elde etmiştir. 

MobileNetv2 %94,06 ile ortalama bir F1 skor başarımı gösterirken; ResNet50 %93,47, DarkNet53 

%93,23, DenseNet201 %92,80, VGG16 %92,46 ve VGG19 %92,23 F1 skor performansı 

üretmiştir.  

 

 

  

Derin Öznitelikler + RO 

(%80 Eğitim %20 Test) 

Doğruluk (%) Kesinlik (%) Duyarlılık (%) F1 skor (%) 

AlexNet 95,75 96,00 95,52 95,76 

SqueezeNet 91,50 90,50 92,35 91,41 

ResNet50 93,50 93,00 93,94 93,47 

ShuffleNet 95,25 94,50 95,94 95,21 

NasNetMobile 90,75 90,00 91,37 90,68 

MobileNetV2 94,00 95,00 93,14 94,06 

VGG16 92,50 92,00 92,93 92,46 

VGG19 92,25 92,00 92,46 92,23 

DenseNet201 92,75 93,50 92,12 92,80 

DarkNet53 93,25 93,00 93,47 93,23 
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Tablo 5.4. Pnömoni/Sağlıklı sınıflandırmasında önceden eğitilmiş ESA modellerinin DVM başarıları 

 

İkinci derin öznitelik çıkarma deneylerinde veri seti 5 kat çapraz doğrulama kullanılarak 

ayrılmıştır. Tablo 5.4’de önceden eğitilmiş ESA modellerinin DVM sınıflandırma başarımları yer 

almaktadır. Görüldüğü gibi, neredeyse tüm ağlar tüm ölçütlerde %95,00’in üzerinde bir puanla 

tatmin edici sonuçlar elde edebilmektedir, bu da derin öznitelik çıkarımı yönteminin pnömoni 

tespitinde etkili bir yaklaşım olduğunu göstermektedir. Dahası, tüm modeller yüksek kesinlik 

puanları elde etmektedir, bu da her sınıf için genellikle düşük sayıda yanlış pozitif olduğunu, yani 

pnömoni sınıfının tahmin sırasında karıştırılmama eğiliminde olduğunu göstermektedir. ShuffleNet 

%98,00 doğruluk puanı ile en yüksek doğruluğa ulaşırken; AlexNet %97,75, SqueezeNet %97,50, 

DenseNet201 %97,25 doğruluk elde etmiştir. VGG16 ve DarkNet53 %96,00 ile en düşük doğruluk 

puanı üretmiştir. VGG19 %97,00, ResNet50 ve MobileNetV2 %96,75 doğruluk başarımı elde 

etmiştir. SqueezeNet %98,50 ile en yüksek kesinlik puanı elde ederken; DarkNet53 ve 

NasNetMobile %95,00 ile diğer modellere göre daha düşük kesinlik puanı elde etmiştir. VGG19 

%97,50; AlexNet ve ShuffleNet %97,00; ResNet50, MobilenetV2 ve DenseNet201 %96,50 

kesinlik performansı sergilemiştir. ShuffleNet %98,98 ve AlexNet %98,48 ile en yüksek duyarlılık 

puanlarını üretirken; VGG16 %96,00 ile en düşük duyarlılık başarımı göstermiştir. DenseNet201 

%97,97; NasNetMobile %97,44; MobileNetV2 ve ResNet50 %96,98 duyarlılık başarımı 

göstermiştir. ShuffleNet, AlexNet ve SqueezeNet sırasıyla %97,98, %97,73, %97,52 ile ortalama 

en yüksek F1 skor puanı elde etmiştir. DarkNet53 en düşük F1 skor puanını %95,98 ile göstermiştir. 

DenseNet201 %97,23; VGG19 %97,01; MobileNetV2 ve ResNet50 %96,74 F1 ölçüm sonucu elde 

etmiştir.  

 

  

Derin Öznitelikler + DVM 

(5 kat çapraz doğrulama) 

Doğruluk (%) Kesinlik (%) Duyarlılık (%) F1 skor (%) 

AlexNet 97,75 97,00 98,48 97,73 

SqueezeNet 97,50 98,50 96,57 97,52 

ResNet50 96,75 96,50 96,98 96,74 

ShuffleNet 98,00 97,00 98,98 97,98 

NasNetMobile 96,25 95,00 97,44 96,20 

MobileNetV2 96,75 96,50 96,98 96,74 

VGG16 96,00 96,00 96,00 96,00 

VGG19 97,00 97,50 96,53 97,01 

DenseNet201 97,25 96,50 97,97 97,23 

DarkNet53 96,00 95,00 96,46 95,98 
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Tablo 5.5. Pnömoni/Sağlıklı sınıflandırmasında önceden eğitilmiş ESA modellerinin KNN başarıları 

 

Tablo 5.5’de önceden eğitilmiş ESA modellerinin KNN sınıflandırma başarımları yer 

almaktadır. AlexNet %96,25 doğruluk puanı ile en yüksek doğruluğa ulaşırken; ShuffleNet 

%95,75, VGG16 %93,50, DenseNet201 ve ResNet50 %93,25 doğruluk elde etmiştir. 

NasNetMobile %90,00 ile en düşük doğruluk puanı üretmiştir. SqueezeNet %91,50 ve DarkNet53 

%91,75 sınıflandırma doğruluğu üretmiştir. ResNet50 %95,00 ile en yüksek kesinlik puanı elde 

ederken; SqueezeNet ve NasNetMobile %88,00 ile diğer modellere göre daha düşük kesinlik puanı 

elde etmiştir. AlexNet ve ShuffleNet %94,50; DarkNet53 %94,00; VGG16 %93,00; VGG19 

%91,00 ortalama kesinlik performansı göstermiştir. DenseNet201 %89,00 ve MobileNetV2 

%89,50 ile düşük kesinlik başarımı gösteren modellerdendir. AlexNet %97,93 ve DenseNet201 

%97,27 ile en yüksek duyarlılık puanlarını üretirken; DarkNet53 %89,95 ile en düşük duyarlılık 

başarımı göstermiştir. ShuffleNet %96,92 ve MobileNetv2 %95,21 ile ortalama yükseklikte bir 

duyarlılık başarımı elde etmiştir. ResNet50 %91,79 ile NasNetMobile %91,67 düşük duyarlılık 

puanı üreten mimarilerdendir. AlexNet ve ShuffleNet sırasıyla %96,18, %95,70 ile ortalama en 

yüksek F1 skor puanı elde etmiştir. NasNetMobile en düşük F1 skor puanını %89,80 ile 

göstermiştir. VGG16 %93,47; ResNet50 %93,37; DenseNet201 %92,95; VGG19 %92,39; 

MobileNetV2 %92,27 F1 skor puanı elde etmiştir. 

 

 

  

Derin Öznitelikler+KNN 

(5 kat çapraz doğrulama) 

Doğruluk (%) Kesinlik (%) Duyarlılık (%) F1 skor (%) 

AlexNet 96,25 94,50 97,93 96,18 

SqueezeNet 91,50 88,00 94,62 91,19 

ResNet50 93,25 95,00 91,79 93,37 

ShuffleNet 95,75 94,50 96,92 95,70 

NasNetMobile 90,00 88,00 91,67 89,80 

MobileNetV2 92,50 89,50 95,21 92,27 

VGG16 93,50 93,00 93,94 93,47 

VGG19 92,50 91,00 93,81 92,39 

DenseNet201 93,25 89,00 97,27 92,95 

DarkNet53 91,75 94,00 89,95 91,93 
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Tablo 5.6. Pnömoni/Sağlıklı sınıflandırmasında önceden eğitilmiş ESA modellerinin RO başarıları 

 

Veri setinin 5 kat çapraz doğrulamayla ayrıldığı son derin öznitelik çıkarımı deneysel 

çalışması Tablo 5.6’da sunulmuştur. Tablodan görüleceği üzere, tüm ağlar tüm ölçütlerde 

%90,00’in üzerinde sınıflandırma performans sonuçları elde etmiştir, bu da RO algoritmasının 

CXR görüntülerine ait derin öznitelikleri yüksek bir oranla tanıyabildiğini göstermektedir. Önceden 

eğitilmiş ESA modellerinden çıkarılan özniteliklerin RO sınıflandırma performansları açısından 

ShuffleNet %97,00 ile en yüksek doğruluğu elde etmiştir. AlexNet %96,75, DenseNet201 %95,25 

ve ResNet50 %95,00 ortalama doğruluk puanları üretmiştir. DarkNet53 %90,50 ile en düşük 

doğruluk puanına sahiptir. VGG16 %93,50; VGG19 %93,25; SqueezeNet ve MobileNetV2 

%93,00 sınıflandırma doğruluğu elde etmiştir. Kesinlik başarımları açısından AlexNet %97,50 ile 

en yüksek; ShuffleNet %97,00 ile en yüksek ikinci puanı üretmiştir. DarkNet53 %90,00 ve 

NasNetMobile %91,00 ile en düşük kesinlik puanı elde etmiştir. DenseNet201 %95,00; 

SqueezeNet ve Resnet50 %94,00; VGG19 %93,50; VGG16 ve MobileNetV2 %93,00 kesinlik 

puanına ulaşmıştır. Önceden eğitilmiş ESA modelleri duyarlılık açısından karşılaştırıldığında 

DarkNet53 %90,91 ile en düşük; ShuffleNet %97,00 ile en yüksek puanları elde etmiştir. AlexNet 

%96,06; DenseNet201 %95,48; ResNet50 %95,92; VGG16 %93,94; VGG19 %93,03 başarım 

sergilemişlerdir. F1 skor açısından da DarkNet53 %90,45 ile en düşük; ShuffleNet %97,00 ile en 

yüksek puanları üretmiştir. AlexNet %96,77; DenseNet201 %95,24; ResNet50 %94,95; VGG16 

%93,47 ve VGG19 % 93,27 F1 skor puanına ulaşmıştır. 

İki derin öznitelik çıkarımı deneylerinin sonuçları karşılaştırıldığında; 5 katlı çapraz 

doğrulama kullanılarak ayrılan veri seti ile yapılan test sonuçlarının daha yüksek doğruluk 

puanlarına ulaştığı görülmektedir. K-katlı çapraz doğrulama kullanılırken, verilerin tüm bölümleri 

test verilerinin bir parçası olarak kullanılabilir. Bu şekilde, veri kümesindeki tüm veriler hem eğitim 

hem de test için kullanılabilir ve modelin performansının daha iyi değerlendirilmesini sağlar 

[152,161]. 

  

Derin Öznitelikler+RO 

(5 kat çapraz doğrulama) 

Doğruluk (%) Kesinlik (%) Duyarlılık (%) F1 skor (%) 

AlexNet 96,75 97,50 96,06 96,77 

SqueezeNet 93,00 94,00 92,16 93,07 

ResNet50 95,00 94,00 95,92 94,95 

ShuffleNet 97,00 97,00 97,00 97,00 

NasNetMobile 91,25 91,00 91,46 91,23 

MobileNetV2 93,00 93,00 93,00 93,00 

VGG16 93,50 93,00 93,94 93,47 

VGG19 93,25 93,50 93,03 93,27 

DenseNet201 95,25 95,00 95,48 95,24 

DarkNet53 90,50 90,00 90,91 90,45 
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Çapraz doğrulama kullanarak daha fazla metrik elde edinilebilir ve hem algoritma hem de 

veriler hakkında önemli sonuçlar çıkarılabilmektedir. Seçilen algoritmanın veya verilerin (veya her 

ikisinin) tutarlı olup olmadığı, algoritmanın problemi iyi öğrenip öğrenemediği veya verilerin 

karmaşık olup olmadığı gibi bilgiler sınıflandırma performans metriklerinden anlaşılabilmektedir. 

İlk deneysel çalışmalar değerlendirildiğinde önceden eğitilmiş ESA modellerinden çıkarılan 

derin özniteliklerin makine öğrenmesi algoritmalarıyla sınıflandırılmasında DVM algoritması hem 

k kat çapraz doğrulama hem de ayırarak çapraz doğrulama yöntemlerinde her değerlendirme 

metriğinde ortalama %90,00’nın üzerinde sınıflandırma performansı sergilemiştir. Böyle bir sonuç, 

DVM algoritmasının diğer makine öğrenmesi algoritmalarına kıyasla pnömoniden etkilenenleri 

sağlıklı bireylerden daha doğru bir şekilde ayırt edebildiğini göstermektedir. Sonuç olarak, önerilen 

derin öğrenme çerçeveleri, pnömoni vakalarının yüksek doğrulukta sınıflandırılmasını ve teşhisini 

sağlamak için çıkarılan özelliklerden ve makine öğrenimi algoritmalarından başarıyla 

yararlanmaktadır. 

 

Tablo 5.7. Pnömoni/Sağlıklı sınıflandırmasında ESA modellerinin transfer öğrenme başarıları 

 

Tablo 5.7’de önceden eğitilmiş modellerin ince ayarının doğruluk sonuçları gösterilmiştir. 

Veri seti %80 eğitim ve %20 test olarak ayrılmıştır. Sınıflandırma doğruluğu, kesinlik ve F1 puanı 

gibi performans ölçütlerinin sonuçları, AlexNet modelinin diğer mimarilerden daha iyi bir 

performans elde ettiğini göstermektedir. En yüksek doğruluk puanı %98,50 ile AlexNet modeli 

tarafından üretilirken; ikinci en iyi doğruluk puanı %98,00 ile NasNetMobile modelinden elde 

edilmiştir. MobileNetV2, VGG16, ResNet50 ve ShuffleNet modelleri sırasıyla %97,75, %97,50, 

%97,25 ve %97,00 doğruluk puanları elde edilmiştir. SqueezeNet %95,00 ve VGG19 %95,75 ile 

düşük doğruluk başarımı gösteren mimarilerdendir. Densenet201 %94.75 ile en düşük doğruluk 

puanı elde etmiştir. Kesinlik puanları açısından karşılaştırıldığında sonuçlar %89,50 ile %99,50 

arasında değişmektedir. VGG19 %99,50 ile en yüksek; DenseNet201 %89,50 ile en düşük kesinlik 

puanlarını üretmiştir. ResNet50 ve DarkNet53 %94,50 ile ortalama kesinlik değeri elde etmiştir. 

Transfer Öğrenme 

(%80 Eğitim %20 Test) 

Doğruluk (%) Kesinlik (%) Duyarlılık (%) F1 skor (%) 

AlexNet 98,50 97,00 100,00 98,48 

SqueezeNet 95,00 91,50 98,39 94,82 

ResNet50 97,25 94,50 100,00 97,17 

ShuffleNet 97,00 98,50 95,63 97,04 

NasNetMobile 98,00 98,00 98,00 98,00 

MobileNetV2 97,75 96,00 99,48 97,71 

VGG16 97,50 98,50 96,57 97,52 

VGG19 95,75 99,50 92,56 95,90 

DenseNet201 94,75 89,50 100,00 94,46 

DarkNet53 96,50 94,50 98,44 96,43 
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ShuffleNet ve VGG16 %98,50; NasNetMobile %98,00; AlexNet %97,00 ve MobileNetV2 %96,00 

kesinlik skoru üretmiştir. AlexNet, ResNet50 ve DenseNet201 %100,00 duyarlılık değeri 

üretmiştir. %99,48 ile en yüksek ikinci duyarlılık değerinin MobileNetV2 üretmiştir. VGG19 

%92,56; ShuffleNet %95,63 ile diğer modellere göre daha düşük duyarlılık elde etmiştir. 

DarkNet53 %98,44; SqueezeNet %98,39 ve NasNetMobile %98,00 duyarlılık değeri elde etmiştir. 

F1 skor değerleri %94,46 ile %98,48 arasında değişmektedir. Alexnet %98,48 ile en yüksek F1 

skor puanı elde ederken; ResNet50 %97,17; ShuffleNet %97,04 puan elde etmiştir. VGG16, 

NasNetMobile, MobileNetV2 modelleri sırasıyla %98,00, %97,71, %97,52 elde etmiştir. 

DenseNet201’in ürettiği %94,46 ve SqueezeNet’in ürettiği %94,82 düşük F1 skor değerlerindendir. 

 

Tablo 5.8. Pnömoni/Sağlıklı sınıflandırmasında ESA modellerinin transfer öğrenme başarıları 

 

Tablo 5.8’de önerilen ESA modellerinin transfer öğrenme yöntemine ait 5 katlı çapraz 

doğrulama test sonuçları yer almaktadır. Modeller doğruluk değerleri açısından karşılaştırıldığında; 

VGG16 %98,25 ile en yüksek puana ulaşırken, DenseNet201 %98,10, Resnet50 ve DarkNet53 

%98,00 başarım göstermiştir. ShuffleNet %97,75, MobileNetV2 %97,15, NasNetMobile %97,10 

doğruluk değeri üretmiştir. SqueezeNet %92,00 ile en düşük transfer öğrenme doğruluğunu 

göstermiştir. VGG19 ve NasNetMobile %99,50 ile en yüksek kesinlik değeri elde etmiştir. VGG16 

%99,00; DenseNet201 ve MobileNetV2 %98,50; ResNet50 %98,00 kesinlik puanına erişmiştir. 

SqueezeNet %89,00 ve AlexNet %90,60 ile düşük kesinlik performansı gösteren modellerdir. 

DarkNet53 %98,10, ResNet50 %98,00 ile en yüksek duyarlılık değerlerini üretmiştir. 

NasNetMobile %94,94 ile en düşük duyarlılık performansı göstermiştir. DenseNet201, ShuffleNet, 

VGG16 ve AlexNet mimarilerinin duyarlılık puanları sırasıyla %97,72, %97,70, %97,54 ve 

%97,21’dir. VGG16’nin F1 skor değeri %98,26’dır, %91,80 ile en düşük F1 skor performansı 

%91,80 ile SqueezeNet’e aittir. DenseNet201, ResNet50, DarkNet53 ve ShuffleNet için F1 skor 

değerleri sırasıyla %98,11, %98,00, %97,95 ve %97,75’dir.  

  

Transfer Öğrenme 

(5 kat çapraz doğrulama) 

Doğruluk (%) Kesinlik (%) Duyarlılık (%) F1 skor (%) 

AlexNet 94,00 90,60 97,21 93,79 

SqueezeNet 92,00 89,00 94,78 91,80 

ResNet50 98,00 98,00 98,00 98,00 

ShuffleNet 97,75 97,80 97,70 97,75 

NasNetMobile 97,10 99,50 94,94 97,17 

MobileNetV2 97,15 98,50 95,91 97,19 

VGG16 98,25 99,00 97,54 98,26 

VGG19 97,00 99,50 94,76 97,08 

DenseNet201 98,10 98,50 97,72 98,11 

DarkNet53 98,00 97,80 98,10 97,95 
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Veri setinin %80 eğitim, %20 test olarak ayrıldığı derin öğrenme deneylerinden elde edilen 

sonuçlar karşılaştırıldığında ince ayarlı AlexNet modeli %98,50 ile derin öznitelik çıkarımı ve 

uçtan uca öğrenme sonuçlarından daha iyi sonuç elde ettiği açıkça görülmektedir. Veri setinin 5 kat 

çapraz doğrulama ile ayrıldığı derin öğrenme deneylerinden elde edilen sonuçlar 

karşılaştırıldığında ince ayarlı VGG16 modeli %98,25 ile derin öznitelik çıkarımı ve uçtan uca 

öğrenme sonuçlarından daha iyi sonuç elde ettiği açıkça görülmektedir. Bu sonuç, transfer 

öğrenmenin etkinliğini vurgulamakta ve pnömoninin erken teşhisi için önceden var olan modellerin 

becerisi sayesinde pratik bir strateji olabileceğini göstermektedir. 

 

Tablo 5.9. Geliştirilen ESA modelinin uçtan uca eğitimi ile elde edilen sınıflandırma performansı 

 

Tablo 5.10. Uçtan uca eğitilmiş ESA modelinin çapraz doğrulama performansları  

Tablo 5.9 ve Tablo 5.10’da geliştirilen ESA modelinin uçtan uca eğitiminden k kat çapraz 

doğrulama ve ayırarak çapraz doğrulama ile elde edilen sınıflandırma performansları gösterilmiştir. 

Tablo 5.9’de 21 katmanlı ESA %96,75 doğruluk değeri elde etmiştir. Ayırarak doğrulama ile yeni 

ESA modelinin kesinliği %96,50, duyarlılığı %97,00 ve F1 skor ölçütü %96,75’dir. Tablo 5.10’da 

görüleceği üzere k kat çapraz doğrulama ile yeni ESA modelinin doğruluğu %95,75, kesinliği 

%93,50, duyarlılığı %97,91 ve F1 skor ölçütü %95,65’dir. 

Tablo 5.11. Önerilen modelin CXR görüntü veri setindeki performans metrikleri 

Çalışmanın son aşamasında tez çalışması kapsamında geliştirilen ESA modelinin etkinliğini 

test etmek için CXR veri setleri kullanılmıştır [22,35]. Bu çalışma için önerilen 21 katmanlı yeni 

modelin Pnömoni CXR veri setindeki performans değerlendirmeleri Tablo 5.11’de yer almaktadır. 

Tablo 5.11’de 21 katmanlı yeni ESA modelinin CXR veri setindeki doğruluk performansı 

%94,50’dir. 

ESA 

(%80eğitim %20test) 

Doğruluk (%) Kesinlik (%) Duyarlılık (%) F1 skor (%) 

21 katman 96,75 96,50 97,00 96,75 

ESA 

(5 kat çapraz doğrulama) 

Doğruluk (%) Kesinlik (%) Duyarlılık (%) F1 skor (%) 

21 katman 95,75 93,50 97,91 95,65 

ESA 

(5 kat çapraz doğrulama) 

Doğruluk (%) Kesinlik (%) Duyarlılık (%) F1 skor (%) 

21 katman 94,50 90,50 98,37 94,27 
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Tez çalışması kapsamında gerçekleştirilen derin öğrenme yaklaşımlarından elde edilen 

sonuçlar arasında Tablo 5.12’de verildiği gibi bir karşılaştırma daha yapılmıştır. Karşılaştırmalar, 

her bir derin öğrenme yaklaşımından elde edilen en yüksek doğruluk puanına göre temsil edilmiştir. 

Tablo 5.12’de görüldüğü gibi, ince ayarlı AlexNet modeli %98,50 doğruluk ile en yüksek doğruluk 

skorunu gerçekleştirmiştir. Derin öznitelik çıkarma ve transfer öğrenme yöntemleri önceden 

eğitilmiş derin ESA modelleri kullanıldığından, uçtan uca eğitime göre daha yüksek doğruluk 

puanları üretmiştir. 

Tablo 5.12. Uygulanan yöntemlerin performans karşılaştırması  

Yöntem Doğruluk 

ShuffleNet+ DVM (k fold) %98,00 

İnce ayarlı AlexNet (hold out) %98,50 

Uçtan uca eğitilmiş ESA (hold out) %96,75 

 

Tablo 5.13. Önerilen yöntemin literatürdeki çalışmalarla performans karşılaştırması 

 
 

  

Yazarlar Önerilen yöntem Karşılaştırılan teknikler Veri seti Performans metrikleri 

(%) 

Ayan vd. [23] Çeşitli makine 

öğrenimi 

algoritmaları 

Klasik makine öğrenimi 

algoritmaları 

İnce ayarlı Xception 

[22] Kesinlik:85,95 

Duyarlılık:89,74 

F1 skor:89,72 

Doğruluk:89,74 

Demir vd. [24] Transfer öğrenme 

tabanlı ESA 

AlexNet [22] Kesinlik:98,21 

Duyarlılık:95,99 

F1 skor:97,08 

Doğruluk:96,31 

Bakır vd. [25] Derin öğrenme 

teknikleri 

YSA 

ResNet-YSA 

İnception-YSA 

MobileNet-YSA 

[22] Kesinlik:94,50 

Duyarlılık:95,50 

F1 skor:95,00 

Doğruluk:95,67 

Ouleddroun vd. 

[26] 

Derin öznitelikler ESA-DAA 

ESA-DVM 

ESA-KNN 

[22] Kesinlik:97,05 

Duyarlılık:95,20 

F1 skor:96,12 

Doğruluk:97,86 

Aljawarneh vd. 

[27] 

Geliştirilmiş ESA 

Modeli 

Geliştirilmiş ESA 

ResNet 

İnce ayarlı ResNet 

VGG19 

[22] Kesinlik:90,0 

Duyarlılık:96,0 

F1 skor:92,90 

Doğruluk:92,40 

Kanawade vd. 

[28] 

Derin öğrenme 

yaklaşımı 

Xception  

VGG16  

DenseNet201 

Hibrit yaklaşım 

[22] 

 

Kesinlik:94,63 

Duyarlılık:93,37 

F1 skor:93,93 

Doğruluk:94,39 

Iparraguirre-

Villanueva vd. 

[29] 

Transfer öğrenme 

tabanlı ESA 

VGG16  

VGG19 

ResNet50  

InceptionV3 

[22] Kesinlik:- 

Duyarlılık:93,7 

F1 skor:82,0 

Doğruluk:72,9 

(Bu tez çalışması 

kapsamında 

yayınlanmıştır) 

[161] 

Derin öğrenme 

teknikleri 

VGG16, VGG19, 

ResNet50, DenseNet201, 

AlexNet, NasNetMobile, 

MobileNetV2, 

DarkNet53, SqueezeNet, 

ShuffleNet, 21 katmanlı 

ESA 

 

Özel veri 

seti 
İnce ayarlı AlexNet  

Kesinlik:97,00 

Duyarlılık:100,00 

F1 skor:98,48 

Doğruluk:98,50 
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Bu çalışmanın temel amacı, ESA tabanlı derin öğrenme yaklaşımlarının pnömoni teşhisi için 

oldukça etkili olduğunu göstermektir. Önceki çalışmalara benzer şekilde, bizim çalışmamız da 

derin öğrenmeye dayanmaktadır. Ancak metodolojik katkısı nedeniyle farklılık göstermektedir. 

Daha önce derin öğrenme kullanılarak yapılan farklı yöntemler öneren çalışmalar Tablo 5.13’de ilk 

çalışmada kullanılan yöntemlerle doğrulukları açısından karşılaştırılmıştır. Önerilen yöntemlerden 

olan ince ayarlı önceden eğitilmiş AlexNet ağının oluşturulan CXR veri kümesinin %80 eğitim 

%20 test ayrımındaki sınıflandırma performans metrikleri kesinlik haricinde diğer çalışmalardan 

daha iyi performans göstermiştir. İnce ayarlı AlexNet modelinin sınıflandırma metrikleri doğruluk, 

kesinlik, duyarlılık ve F1 skor açısından sırasıyla %98,50, %97,00, %100,00, %98,48’dir. [24]’de 

araştırmacılar CXR görüntülerinde pnömoni tespiti için transfer öğrenme yöntemini uygularken, 

[26]’da ise yazarlar CXR görüntülerinden çıkardıkları derin öznitelikleri sınıflandırmak için DAA, 

DVM ve KNN gibi çeşitli sınıflandırıcılar kullanmışlardır. [24] ve [26] kesinlik metrikleri sırasıyla 

%98,21 ve %97,05’dir. Buna göre, önerilen yöntemin doğruluk açısından önceki çalışmalarla 

karşılaştırılabilir olduğu görülmektedir. Tablo 5.13’de de görüleceği üzere bugüne kadar pnömoni 

tespitinde ESA mimarisini içeren birçok çalışma yapılmıştır. Bu mimarilerin en büyük avantajı 

uçtan uca öğrenme yapısı içermeleri, yani elle hazırlanmış bir özellik çıkarma adımının 

olmamasıdır. Transfer öğrenme yöntemi, büyük ölçekli veri kümelerinden öğrenilen önceden 

eğitilmiş modellerden elde edilen bilgilerden yararlanabildiği, performansı artırdığı, minimum 

eğitim sağladığı ve küçük veri kümelerinin dezavantajının üstesinden gelebildiği için pnömoni 

tespiti de dahil tıbbi görüntü sınıflandırması için uygun bir teknik olduğunu kanıtlamıştır. Tez 

çalışması kapsamında uygulanan her bir derin öğrenme yöntemi içinde en yüksek doğruluk 

performansı gösteren yaklaşımın karşılaştırmasının grafiksel analizi Şekil 5.2’de yer almaktadır. 

 

 

Şekil 5.2. Uygulanan yöntemlerin en yüksek doğruluk puanı açısından karşılaştırılmasının grafiksel analizi 

  

98,00%

98,50%

96,75%

95,50%96,00%96,50%97,00%97,50%98,00%98,50%99,00%

ShuffleNet+ DVM (k fold)

İnce ayarlı AlexNet (hold out)

Uçtan uca eğitilmiş ESA (hold out)

Doğruluk

Doğruluk
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5.2. Göğüs röntgen görüntülerinde pnömoni tespiti için transformer modellerinin 

incelenmesi ve ESA mimarisi ile karşılaştırılması 

CXR görüntülerinden pnömoni tespiti için gerçekleştirilen ikinci deneysel çalışmalarda tez 

çalışması kapsamında geliştirilen 21 katmanlı ESA modeli ile çeşitli dönüştürücü tabanlı 

yaklaşımların sınıflandırma performansları karşılaştırılmıştır. CXR görüntüleri kullanarak 

pnömoni tespiti için kullanılan dört görüntü dönüştürücü mimarileri, ViT, FNet, gMLP ve MLP-

mixer’dir. Çalışmanın ön işleme aşamasında veri setindeki CXR görüntüleri farklı boyutlarda 

olduğu için dönüştürücü tabanlı modellerin minimum giriş boyutlarını karşılayacak şekilde 

512×512 olarak yeniden boyutlandırılmıştır. Daha sonra her görüntü 32×32 piksel boyutunda 

toplam 256 parçaya bölünmüştür. Bahsedilen yöntemlerin eğitiminde ADAM optimizasyonu 

dikkate alınmıştır. Ayrıca, veri setini eğitim ve test verilerine bölmek için ayırma çapraz 

doğrulaması kullanılmıştır; burada bölme oranı eğitim için %90 ve test için %10’dir. CXR 

görüntüleri ayrıca 21 katmanlı ESA modeli için 224×224 olarak yeniden boyutlandırılmıştır. 

Geliştirilen 21 katmanlı ESA modeli için öğrenme oranı 0.0001, yığın boyutu 10 ve devir sayısı 

8’dir. Geliştirilen 21 katmanlı ESA yönteminin eğitiminde momentumlu stokastik gradyan iniş 

(SGDM) optimizasyon algoritması dikkate alınmıştır. Şekil 5.3’de pnömoni tespiti için önerilen 

yöntemin akış diyagramı yer almaktadır. 

 

CXR VERİ SETİ ÖN İŞLEME ÖNERİLEN 

YÖNTEMLER

PERFORMANS 

DEĞERLENDİRME

DOĞRULUK

DUYARLILIK

KESİNLİK

F1 SKOR

SINIFLANDIRMA

YENİDEN 

BOYUTLANDIRMA

 VİT

FNET

GMLP

MLP-MİXER

21 KATMANLI 

ESA

PNÖMONİ

SAĞLIKLI

 
Şekil 5.3. Pnömoni ve sağlıklı CXR görüntülerinin dönüştürücü tabanlı modeller ve 21 katmanlı ESA ile 

sınıflandırılması  
 

Dönüştürücü tabanlı modellerin parametreleri, her kod çalıştırılırken buluşsal olarak 

atanmıştır. ViT modeli için öğrenme oranı 0.001, ağırlık azalması 0.0001 ve yığın boyutu, eğitim 

tur sayısı, yansıtma boyutu, başlık sayısı ve dönüştürücü katman sayısı sırasıyla 64, 400, 64, 4 ve 

8’dir. FNet, MLP-mixer ve gMLP modelleri için ağırlık azalması 0,0001 olarak ayarlanmıştır, yığın 

boyutu, eğitim tur sayısı, gömme boyutu, MLP- mixer katman sayısı ve bırakma oranı sırasıyla 64, 

400, 256, 4 ve 0,2 olarak ayarlanmıştır. Öğrenme oranı, MLP mixer için 0,005, FNet için 0,001 ve 

gMLP için 0,003 olarak ayarlanmıştır.  
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Tablo 5.14. Kullanılan modeller için elde edilen sınıflandırma performanslarının özeti 

Model F1 skor (%) Duyarlılık (%) Kesinlik (%) Doğruluk (%) 

ViT 96,52 95,10 97,98 96,43 

FNet 96,52 95,10 97,98 96,43 

MLP-mixer 95,57 95,10 96,04 95,41 

gMLP 94,42 91,18 97,89 94,39 

21 katmanlı ESA 96,62 93,46 100,00 96,50 

 

Tablo 5.14’de, her bir yöntem için elde edilen sınıflandırmanın değerlendirme ölçütlerini 

vermektedir. Tablo 5.14’deki satırlar modelin türünü, sütunlar ise elde edilen sınıflandırma 

performans parametrelerini göstermektedir. Tablo 5.14'te görüldüğü gibi, ViT ve FNet modelleri 

aynı doğruluk, kesinlik, duyarlılık ve F1 puanları değerleri üretmiştir. Üretilen değerlendirme 

puanları doğruluk, kesinlik, duyarlılık ve F1 puanları için sırasıyla %96,43, %97,98, %95,10 ve 

%96,52’dir. Ayrıca, MLP-mixer sırasıyla %95,41 doğruluk puanı, %96,04 kesinlik değeri, %95,10 

duyarlılık değeri ve %95,57 F1 puanı kaydetmiştir. Son olarak gMLP yaklaşımı ile %94,39 

doğruluk puanı, %97,89 kesinlik, %91,18 duyarlılık ve %94,42 F1-skor değerleri elde edilmiştir. 

Hesaplanan değerlendirme metrikleri incelendiğinde, önerilen dönüştürücü tabanlı yaklaşımlar 

arasında ViT ve FNet başarılarının en yüksek olduğu görülmüştür. MLP-mixer modeli, en iyi ikinci 

değerlendirme puanlarını (F1 puanı, duyarlılık ve doğruluk) üretmiştir. gMLP, hesaplanan 

kesinliğin %97,89 olduğu en iyi ikinci kesinlik skorunu elde etmiştir. gMLP kesinlik metriği 

dışındaki diğer performans metriklerinde en düşük başarımı sergilemiştir. Bununla birlikte, 

önerilen ESA modeli, tüm dönüştürücü tabanlı modellerden daha iyi performans göstermiş ve tez 

çalışması kapsamında oluşturulan veri setinde ayırma çapraz doğrulama yöntemiyle %96,50 

doğruluk, %100,00 kesinlik, %93,46 duyarlılık ve %96,62 F1 puanları kaydetmiştir. 
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Şekil 5.4. 21 katmanlı geliştirilen ESA modeli kullanılarak elde edilen karışıklık matrisi 

 

Geliştirilen ESA modeli tarafından elde edilen karışıklık matrisi Şekil 5.4’de 

gösterilmektedir. Karışıklık matrisinin satırları gerçek sınıfların örnek sayısını gösterirken, sütunlar 

tahmin edilen sınıfların örnek sayısını göstermektedir. Şekil 5.4’den de görülebileceği gibi, sağlıklı 

sınıf %100 doğru sınıflandırılmış ve 7 pnömoni örneği yanlış sınıflandırılmıştır. 21 katmanlı ESA 

modeli kullanılarak elde edilen performansın özeti Tablo 5.15’de yer almaktadır. Tablo 5.15’de 

belirtildiği gibi, geliştirilen 21 katmanlı ESA modeli, özel veri tabanı için hold-out doğrulama 

stratejisi ile %96,50 doğruluk puanı, %100,00 kesinlik, %93,46 duyarlılık ve %96,62 F1 puanı 

değerleri üretmiştir. Buna ek olarak, 21 katmanlı ESA modeli, on kat çapraz doğrulama stratejisi 

ile özel bir veri tabanı kullanarak sırasıyla %93,33, %92,15, %91,00 ve %92,25 kesinlik, F1 puanı, 

duyarlılık ve doğruluk değerleri vermiştir. 

 

Tablo 5.15. Özel veri tabanı için ESA modeli kullanılarak elde edilen performansın özeti 

Model Veri Bölme Doğruluk  Kesinlik  Duyarlılık  F1 skor  

21 katmanlı 

ESA 

%90 eğitim 

%10 test 

96,50 100,00 93,46 96,62 

21 katmanlı 

ESA 

10 kat çapraz 

doğrulama 

92,25 93,33 91,00 92,15 
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Şekil 5.5, 21 katmanlı ESA için Grad-CAM yöntemi kullanılarak sağlıklı ve pnömoni 

sınıfları için elde edilen ısı haritalarını göstermektedir. Grad-CAM tekniği, Zhou ve diğerleri 

tarafından geliştirilen ve yalnızca tam bağlantılı katmanları olmayan ESA modelleri için uygun 

olan orijinal Sınıf Aktivasyon Haritalama (CAM) tekniğinin geliştirilmiş bir versiyonudur [162]. 

Grad-CAM, girdi değerlerinin model sınıflandırmasını nasıl etkilediğini anlamak için gerekli olan 

her model katmanının görüntülenmesini ve her özellik haritası katmanının incelenmesini sağlar 

[163]. Grad-CAM, bir görüntünün belirli bir tahminde bulunmada en önemli olan bölgelerini 

vurgulayarak ESA modellerinin karar verme sürecine ilişkin önemli bilgiler sağlayabilir [164]. 
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Şekil 5.5. 21 katmanlı ESA modeli için Grad-CAM tekniği kullanılarak sağlıklı ve pnömoni sınıfları için 

elde edilen ısı haritaları 

 

Şekil 5.5’de görüldüğü gibi, birinci sıradaki resimler pnömonili bireylere ait CXR 

görüntüleri, ikinci sıradaki resimler ise sağlıklı deneklerin CXR görüntüleridir. Şekil 5.5’de 

gösterildiği gibi, pnömoni tespiti için 21 katmanlı ESA modeli pnömoni sınıfında, çoğunlukla sol 

akciğer blobunu dikkate almıştır ve sağlıklı sınıfında akciğer bloblarına odaklanmamıştır. Bu 

teknik, klinisyenler için giriş görüntüsünün sorunlu bölgesini belirlemeye yardımcı olur ve sağlıklı 

bireyler ile pnömoniden etkilenenleri ayırt etmede kolaylık sağlar. 
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Tablo 5.16. CXR görüntüleri üzerinde 21 katmanlı model kullanılarak elde edilen performans matrislerinin 

özeti 

 

On kat çapraz doğrulama stratejisiyle CXR görüntüleri üzerinde 21 katmanlı model 

kullanılarak elde edilen performans değerlendirmesi Tablo 5.16’da verilmiştir [22,35]. %94,46 

kesinlik değeri, %94,29 doğruluk, %94,27 F1 puanı ve %94,10 duyarlılık oranları elde edilmiştir.  

 

 

Şekil 5.6. CXR görüntülerinden pnömoni tespiti için önerilen yöntemin performans değerlendirme 

sonuçlarının grafiksel analizi 

 

Tablo 5.14’deki performans metriklerini daha net yorumlayabilmek için Şekil 5.6’daki grafik 

Tablo 5.14’deki değerlerden oluşturulmuştur. Şekil 5.6’da CXR görüntülerinden pnömoni tespiti 

için önerilen ikinci çalışmanın performans değerlendirme sonuçlarının grafiksel analizi yer 

almaktadır. Bu çalışma, CXR görüntülerinden pnömoniyi tespit etmek amacıyla yeni bir 21 

katmanlı ESA modeli önermiş ve performansını çeşitli dönüştürücü tabanlı yaklaşımlarla 

karşılaştırmıştır. Şekil 5.6’da görüldüğü gibi, önerilen model doğruluk ve F1 skor açısından ViT 

ve FNet’e yakın bir performans göstermiştir. Bu çalışmada, yeni model özel ve genel veri tabanları 

kullanılarak geliştirilmiştir. Elde edilen sonuçlar, önerilen ESA tabanlı modelin, bu çalışma için 

toplanan CXR veri kümesini kullanarak pnömoniyi tespit etmede etkili ve doğru olduğunu 

göstermiştir. Tablo 5.15 ve tablo 5.16’da gösterildiği gibi, geliştirilen modelin sınıflandırma 

doğruluğu, pnömoni tespitinde özel ve genel veri tabanları için sırasıyla %96,50 ve %94,29’dur. 
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Performans Değerlendirme Sonuçları
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(10 kat çapraz doğrulama) 

Doğruluk (%) Kesinlik (%) Duyarlılık (%) F1 skor (%) 

21 katman 94,29 94,46 94,10 94,27 
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Tablo 5.17. Pnömoni tespiti için önerilen yaklaşımın CXR görüntüleri kullanılarak geliştirilen en son 

tekniklerle karşılaştırılması  

Yazarlar Önerilen 

yöntem 

Karşılaştırılan 

teknikler 

Veri seti Performans metrikleri 

(%) 

Singh vd. [30] Derin Dikkat 

Ağı 

ResNet, 

Dikkat tabanlı ResNet 

 

[22] Kesinlik:- 

Duyarlılık:- 

F1 skor:92,0 

Doğruluk:95,47 

Tyagi vd. [31] ViT ve diğer 

tekniklerle 

karşılaştırılması 

ESA, 

VGG16, 

ViT 

[22] Kesinlik:- 

Duyarlılık:- 

F1 skor:- 

Doğruluk:96,45 

Mabrouk vd. 

[34] 

Derin ESA 

Topluluğu 

DenseNet169, 

MobileNetV2,  

ViT 

[22] Kesinlik:93,96 

Duyarlılık:92,99 

F1 skor:93,43 

Doğruluk:93,91 

Ukwuoma vd. 

[36] 

Hibrit Topluluk 

Dönüştürücü 

Kodlayıcısı 

Hibrit A 

(DenseNet201, 

VGG16, GoogleNet) 

Hibrit B(DenseNet201, 

InceptionResNetV2,  

Xception) 

Kermany 

[22] 

Chest X-

ray [35] 

Kesinlik:99,21 

Duyarlılık: 99,21 

F1 skor: 99,21 

Doğruluk: 99,21 

Cha vd. [37] Dikkat Tabanlı 

Transfer 

Öğrenme 

Çerçevesi 

ResNet152 

ResNet18 

DenseNet 

[22] Kesinlik:96,23 

Duyarlılık:98,46 

F1 skor:97,3 

Doğruluk:96,63 

Jiang vd. [38] Çok Anlamlı 

Seviye Yama 

Birleştirme 

Görüntü 

Dönüştürücüsü 

Temel (ResNet50), 

ViT, 

ViT + yama birleştirme 

[22] Kesinlik:91,82 

Duyarlılık:89,36 

F1 skor:90,34 

Doğruluk:91,19 

Ma vd. [39] Dönüştürücü 

temel ağı 

Swin dönüştürücü [22] 

[35] 

Kesinlik: - 

Duyarlılık: - 

F1 skor: - 

Doğruluk:97,2 

Bu çalışma Derin öğrenme 

teknikleri 

21 katmanlı ESA 

ViT 

gMLP 

FNet 

MLP-mixer 

Özel veri 

seti 
21 katmanlı ESA 

Doğruluk:96,50 

Kesinlik: 100,00 

Duyarlılık: 93,46 

F1 skor:96,62 

Bu çalışma Derin öğrenme 

teknikleri 

21 katmanlı ESA 

 

Kamu veri 

setleri 

[22,35] 

Doğruluk:94,29 

Kesinlik: 94,46 

Duyarlılık: 94,10 

F1 skor:94,27 

 

 

Tablo 5.17, kamuya açık CXR veri kümelerini kullanarak pnömoniyi tespit etmek için 

yayınlanan önceki çalışmaları listelemektedir. Çalışmaların çoğunun pnömoni tespiti için farklı 

ESA teknikleri ve dönüştürücü tabanlı topluluk ESA çerçeveleri kullandığı belirtilebilir. Pnömoni 

tespiti için 5856 CXR görüntüsü içeren bir veri kümesi [22] literatürde ikili sınıflandırma 

görevlerinde yaygın olarak kullanılmıştır. Veri tabanında üç klasör bulunmaktadır: eğitim, test ve 
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doğrulama. Üç klasörün her biri normal ve pnömoni alt klasörlerini içerir. Veri kümesi, 3875'i 

eğitim, 390'ı test ve 8'i doğrulama için olmak üzere 4273 pnömoni görüntüsünden oluşmaktadır. 

Buna ek olarak, veri kümesi toplam 1583 sağlıklı görüntü içermektedir. Tablo 5.17’de görüldüğü 

gibi, ikili sınıflandırmada en iyi doğruluk puanı %99,21 ile Ukwuoma ve arkadaşları [36] tarafından 

hibrit dönüştürücü kodlayıcı tabanlı bir derin öğrenme modeli kullanılarak elde edilmiştir. 

[39]’deki yazarlar Swin dönüştürücü modeli kullanarak %97,20 doğruluk puanı elde ederken, 

Tyagi ve diğerleri [31] aynı CXR veri tabanı üzerinde ViT ile diğer ESA’ların performansını 

karşılaştırdığı çalışmasında %96,45 doğruluk elde etmiştir. Çalışmamız, CXR görüntülerini doğru 

bir şekilde kullanarak pnömoni tespiti için özel ve genel veri tabanlarını kullanan ilk çalışmadır. 

Bu çalışmadaki veri sayısının azlığı ve deneysel çalışmalar sırasında dönüştürücü tabanlı 

modellerin temel mimari olarak kullanıldığı göz önünde bulunduğunda performanslarının nispeten 

düşük olması makul kabul edilmektedir. 
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5.3. Sayısal Verilerden Derin Öğrenme Yaklaşımları ile Pnömoni Tespiti 

Retrospektif olarak yürütülen bu çalışmada Dicle Üniversitesi Tıp Fakültesi Göğüs 

Hastalıkları ve Tüberküloz kliniği ile yoğun bakım ünitesine 2001 Ocak- 2021 Ocak ayları arasında 

başvuran hastaların verileri HBYS veri tabanından sağlanmıştır. Sayısal tıbbi veriler hasta 

dosyasından elde edilmiştir ve sayısal verilere dayalı bir veri seti oluşturulmuştur. Demografik 

veriler olarak, yaş ve cinsiyet seçilmiştir. Hastalık şikâyeti olarak, yan ağrısı, nefes darlığı ile 

öksürük verileri seçilmiştir. Laboratuvar parametreleri olarak temel biyokimyasal parametrelerden 

CRP (𝑚𝑔 ∕ 𝑑𝐿) ve Albümin (𝑔 ∕ 𝑑𝐿) çalışılmıştır. Tam kan sayımı parametrelerinden lökosit 

sayısı (WBC, 10𝑒3µL), nötrofil sayısı (NEU, 10𝑒3µL), lenfosit sayısı (LYM, 10𝑒3µL), trombosit 

sayısı (PLT, 10𝑒3µL), çalışılmıştır. Bu laboratuvar verilerinden hareketle pnömoni ve sağlıklı 

hastaların ayırıcı tanısında NLO, TLO ve CAO verileri kullanılmıştır. Sınıflandırma aşamasında 

kullanılan sınıflandırıcılar KNN, DVM, RO, otomatik kodlayıcı ağı, UKSB ve uçtan uca eğitilmiş 

yeni bir ESA’dan oluşturulmuştur. Verilerin %80’i eğitim, %20’si test için kullanılmıştır. 

Modellerin performansları doğruluk, duyarlılık, kesinlik ve F1 skor sınıflandırma metrikleri ile 

değerlendirilmiştir. Pnömoni hastası ve sağlıklı bireylerin demografik, klinik ve laboratuvar 

bulgularının dağılımı Tablo 5.18’da verilmiştir. Sayısal veriler ile pnömoni tespiti için önerilen 

yöntemin akış diyagramı Şekil 5.7’de gösterilmektedir. 

 

Pnömoni 

hastaları ve 

sağlıklı bireyler 

(2000 kişi)

15 öznitelik(Demografik 

özellik, klinik semptom 

ve laboratuvar bulguları)

Pnömoni

Uzun Kısa Süreli Bellek 

Rastgele Orman 

Algoritması

K En Yakın Komşu

Destek Vektör 

Makineleri

Otomatik Kodlayıcı

ESA

Sağlıklı

 

Şekil 5.7. Sayısal veriler ile pnömoni tespiti için önerilen yöntemin akış diyagramı 
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Tablo 5.18. Pnömoni hastası ve sağlıklı bireylerin demografik, klinik ve laboratuvar bulguları 

Parametreler Hasta (N=1000) 

Mean±SD % 

Sağlıklı 

(N=1000) 

Mean±SD % 

Normal 

değer 

P 

CRP 5,73±7,27 0,31±0,48 0-0,5 𝑚𝑔 ∕

𝑑𝐿 

< 0,001 

Albümin 3,04±0,67 4,31±0,40 3,5-5,2 𝑔 ∕

𝑑𝐿 

< 0,001 

WBC (Lökosit) 9,45±4,75 7,88±2,02 3,7-10,1 

10𝑒3µL 

< 0,001 

NEU (Nötrofil) 6,38±4,37 4,58±1,73 1,63-6,96 

10𝑒3µL 

< 0,001 

PLT (Trombosit) 304,32±130,89 261,42±68,53 155-366 

10𝑒3µL 

< 0,001 

LYM (Lenfosit) 1,98±1,32 2,42±0,68 1,09-2,99 

10𝑒3µL 

< 0,001 

CAO 2,26±3,14 0,07±0,13  < 0,001 

NLO 4,64±5,23 2,05±1,13  < 0,001 

TLO 220,72±263,29 115,83±42,15  < 0,001 

Yaş 56,53±19,75 34,77±10,71  0,014 

Cinsiyet 

 

Kadın 440 (%44) 237(%23,7)  0,002 

Erkek 560 (%56) 763(%76,3)  

Dispne 917(%91,7) 206(%20,6)  < 0,001 

Öksürük 662(%66,2) 145(%14,5)  < 0,001 

Yan ağrısı 666(%66,6) 29(%2,9)  < 0,001 

 

Çalışma (hasta) ve kontrol (sağlıklı) gruplarının demografik, klinik ve laboratuvar 

bulgularının hastalık durumuna göre dağılımı Tablo 5.18’de verilmiştir. Pnömoni hastası ve sağlıklı 

bireyler için ortalama, standart sapma ve aralık belirtilmiştir. Çalışmaya PA AC grafisinde pnömoni 

tanısı alan n:1000 çalışma grubu ve PA AC grafisi normal olan n:1000 kontrol grubu olmak üzere 

toplam 2000 kişi dahil edilmiştir. Dicle Üniversitesi Tıp Fakültesi Göğüs Hastalıkları ve 

Tüberküloz kliniği ile yoğun bakım ünitesine 2001 Ocak- 2021 Ocak tarihleri arasında başvuran, 

tez çalışması kapsamında dahil edilme ve hariç tutulma kriterlerini karşılayan toplam 2000 kişinin 

HBYS kayıtları, arşivleri ve dosya kayıtları geriye dönük olarak incelenmiştir. Sayısal tıbbi 

verilerden pnömoni tespiti ile ilgili istatistiksel analize öncelikle toplanan verilerin normal 

dağılımına bakılarak başlanmıştır. Verilerin normal dağılıp dağılmadığını test etmek için 

Kolmogorov-Smirnov ve Shapiro-Wilk testleri uygulanmıştır. Sig. değeri 0.05 den küçük olduğu 

için veriler normal dağılım göstermediği kabul edilip veriler üzerinde nonparametrik testlerin 

uygulanmasına karar verilmiştir. Hasta özelliklerinin belirlenmesinde tanımlayıcı istatistiklerden 
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(ortalama, standart sapma), hasta gruplarının karşılaştırılmasında ise ki-kare ve Mann-Whitney U 

testlerinden yararlanılmıştır. 

Bildirilen p değeri, pnömoni ve sağlıklı gruplarındaki nicel değişkenler arasındaki varyasyon 

için Mann-Whitney U testinin, nitel değişkenler için ki-kare testinin sonucuna karşılık gelir. 

Genellikle kategorik değişkenler olarak adlandırılan nitel değişkenler, farklı gruplar halinde 

kategorize edilebilen özellikleri barındırır. Ölçülebilir bir miktarı belirtmekten ziyade farklı 

kategorileri veya sınıfları temsil etmektedirler. Nitel veriler genellikle sayısal değildir ve bir veri 

kümesi veya denek grubunun doğasında bulunan nitelikleri veya özellikleri ifade eder [165]. Bu 

çalışmadaki nitel değişkenler cinsiyet, dispne, yan ağrısı, öksürük verileridir. Niceliksel 

değişkenler, sayısal bir değeri temsil eden, ölçülebilen veya sayılabilen miktarda özellikleri olan 

verilerdir [165]. Yaş verileri ve tez çalışması kapsamında toplanan biyobelirteçler nicel 

değişkenlerdir. Tablo 5.18’deki sonuçlar incelendiğinde seçilen sayısal parametreler açısından 

gruplar arasında istatistiksel olarak anlamlı fark saptanmıştır (p≤0,05). Oluşturulan veri setindeki 

biyobelirteçlere ait sonuçlar incelendiğinde CRP değerinin çalışma grubu için normal değer 

aralığından çok yüksek olduğu görülmektedir. CRP’nin yüksekliği vücutta pnömoniye ait 

inflamasyon ve enfeksiyon olabileceğini göstermekle birlikte spesifik bir belirteç değildir. Aynı 

şekilde Albümin değeri çalışma grubu için normal değer aralığından daha düşük çıkmıştır. Çalışma 

grubunda kontrol grubuna kıyasla CRP’nin yüksek ve Albümin ’in düşük çıkması literatürdeki 

çalışmalarla uyumludur ve istatistiksel olarak anlamlı farklılık bulunmaktadır [44-46,166]. Akut 

enfeksiyon sırasında azalan albümin düzeyleri de doğrudan altta yatan iltihaplanma sürecinden 

kaynaklanmaktadır ve bir dereceye kadar enfeksiyon/iltihap şiddetinin bir örneğini sağlayabilir. 

Akut inflamasyon sırasındaki bu özelliği nedeniyle albüminden sıklıkla negatif bir akut faz proteini 

olarak bahsedilir. Aynı zamanda, pnömoni dahil olmak üzere çeşitli akut enfeksiyon türlerinde 

tanınan ve geniş çapta incelenen pozitif bir akut faz proteini olarak CRP düzeyi de yükselir [166]. 

WBC, nötrofil, trombosit, lenfosit gibi kan parametreleri sistemik inflamasyon ve enfeksiyon 

hakkında bilgi sağlayan biyobelirteçler olarak çeşitli hastalıklarda kullanılmaktadırlar. Son 

zamanlarda, NLO ve TLO gibi çeşitli indeksler pnömoninin teşhisi ve şiddetinin 

değerlendirilmesinde benzer faydalar sağlamaktadır. NLO, daha şiddetli hastalık ile daha hafif 

hastalığı ayırt etmede yardımcıdır. NLO ucuz, basit, hızlı yanıt veren, yüksek duyarlılık ve düşük 

özgüllük ile stres ve inflamasyonun kolay erişilebilir bir parametresidir [47-49,167]. Bu çalışmada 

da literatürdeki çalışmalarla uyumlu olarak bu parametrelerde çalışma grubunda kontrol grubuna 

kıyasla istatistiksel olarak anlamlı fark bulunmuştur. 

 İkinci olarak aynı hastaların demografik özellik, klinik semptomlar ve laboratuvar bulguları 

analiz edilerek bu sayısal tıbbi veriler ile oluşturulan veri seti üzerinde makine öğrenmesi ve derin 

öğrenme yöntemleriyle sınıflandırma işlemi yapılmıştır. Sınıflandırma aşaması DVM, KNN, RO, 

Otomatik Kodlayıcı ve UKSB algoritmaları ile tamamlanmıştır. Ayrıca sayısal verileri 
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sınıflandırmak için de yeni bir ESA modeli uçtan uca eğitilmiştir. Sayısal özellikler veri 

kümesindeki yeni ESA mimarisi oluşturulurken özellik giriş katmanına sahip bir ağ tanımlanmış 

ve özelliklerin sayısı belirtilmiştir. Ayrıca, Z-skor normalizasyonu kullanılarak verileri 

normalleştirmek için giriş katmanı yapılandırılmıştır. Daha sonra, çıktı boyutu 50 olan tamamen 

bağlı bir katmanı ve ardından bir toplu normalleştirme katmanı ve bir ReLU katmanı eklenmiştir. 

Sınıflandırma için, sınıf sayısına karşılık gelen çıktı boyutuna sahip bir tam bağlantılı katman ve 

ardından bir softmax katmanı ve bir sınıflandırma katmanı eklenmiştir. Ağın eğitiminde ADAM 

optimizasyon algoritması seçilmiştir. Yığın boyutu 16, öğrenme oranı 0,01 ve devir sayısı 30’dur. 

Deneysel çalışmalarda kullanılan DVM hiper parametreleri; çekirdek fonksiyonu ‘linear’ olarak 

belirlenmiştir. KNN hiper parametrelerinde komşu sayısı ‘10’ olarak belirlenmiştir. Uzaklık ölçü 

birimi ‘euclidean’ olarak seçilmiştir. RO hiper parametrelerinde eğitim metodu ‘bag’, toplulukta 

kullanılacak ağaç sayısı 30 seçilmiştir. Tablo 5.19’da modellerin sınıflandırma performans 

sonuçları yer almaktadır. 

 

Tablo 5.19. Modellere ait sınıflandırma performans sonuçları 

Model Doğruluk Kesinlik Duyarlılık F1 skor 

DVM 96,25 94,50 97,86 96,15 

KNN 94,75 91,50 97,86 94,57 

RO 96,25 95,00 97,43 96,20 

Otomatik Kodlayıcı 96,25 97,57 95,27 96,40 

UKSB 95,25 90,50 100,0 95,01 

ESA 96,00 98,00 94,23 96,08 

 

 Tablo 5.19’da 80-20% eğitim ve test oranları için DVM, KNN, RO, Otomatik Kodlayıcı, 

UKSB modellerinin ve uçtan uca eğitilmiş yeni ESA mimarisinin performansını değerlendirmek 

amacıyla karışıklık matrisi sonuçları verilmektedir. Performans ölçüm sonuçları, bu karışıklık 

matrislerindeki TP, TN, FP ve FN değerleri kullanılarak hesaplanmaktadır. Gösterildiği gibi 

neredeyse tüm ağlar, tüm ölçümlerde %90’nın üzerinde bir puanla tatmin edici sonuçlar elde 

edebiliyor; bu da sayısal parametreleri sınıflandırmak için seçilen mimarilerin yeni hastalıkların 

erken taranması için önemli bir araç olabileceğini gösteriyor. Üstelik tüm modeller yüksek kesinlik 

puanlarına ulaşıyor; bu da her sınıf için genellikle düşük sayıda yanlış pozitif bulunduğunu, yani 

pnömoni kaynaklarının tahminler sırasında karıştırılmadığını gösteriyor. Sınıflandırma 

algoritmalarına ait performans sonuçları incelendiğinde DVM, RO ve Otomatik Kodlayıcı %96,25 

ile en yüksek doğruluk puanı üretirken; KNN %94,75 ile en düşük doğruluk puanı üretmiştir. Yeni 

ESA modeli %96,00 ve UKSB %95,25 doğruluk puanına ulaşmıştır. Kesinlik puanları 

karşılaştırıldığında %98,00 ile ESA en yüksek kesinlik değerine ulaşmıştır. Otomatik Kodlayıcı 

%97,57 en iyi ikinci kesinlik değerini üretmiştir. UKSB %90,50 ile en düşük kesinlik performansı 

göstermiştir. RO, DVM ve KNN algoritmalarının kesinlik değerleri sırasıyla %95,00, %94,50 ve 
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%91,50’dir. Duyarlılık performansları karşılaştırıldığında UKSB %100 ile en yüksek puanı 

üretirken, DVM ve KNN %97,86 duyarlılık göstermiştir. ESA %94,23 ile en düşük duyarlılığa 

sahiptir. Otomatik Kodlayıcı %95,27 duyarlılık performansı gösterirken; RO %97,43 puanı elde 

etmiştir. F1 skor açısından Otomatik Kodlayıcı %96,40 ile en yüksek performansı elde ederken; 

RO, DVM, UKSB ve KNN sırasıyla %96,20, %96,15, %95,01 ve %94,57 puanlarına ulaşmıştır. 

ESA %96,08 F1 skor performansı sağlamıştır. Şekil 5.8’de sayısal parametreler ile pnömoni tespiti 

için önerilen yöntemin performans metriklerinin grafiksel analizi yer almaktadır. Şekil 5.8’deki 

grafik, seçilen algoritmaların performans sonuçlarını daha iyi incelemek amacıyla Tablo 5.19’daki 

veriler kullanılarak oluşturulmuştur. 

 

 

Şekil 5.8. Sayısal veriler ile pnömoni tespiti için önerilen yöntemin performans metriklerinin grafiksel 

analizi 

 

Literatürdeki güncel çalışmalarda makine öğrenmesi ve derin öğrenme algoritmaları 

kullanılarak CXR görüntülerinden pnömoni tespiti mevcuttur [23-36]. Ancak aynı hastalarda 

laboratuvar verileri analiz edilmemiş ve iki veri türünden elde edilen tanılar karşılaştırılmamıştır. 

Tablo 5.18’de oluşturulan sayısal parametre veri setinin istatistiksel analizinin sonuçları yer 

alırken; Tablo 5.19’da makine öğrenmesi ve derin öğrenme algoritmalarıyla sınıflandırma sonuçları 

yer almaktadır. Sonuçlar karşılaştırıldığında önerilen yöntemin daha düşük maliyetle ve daha kısa 

sürede doğru sonuçlar elde ettiği ve CXR görüntüleme için alternatif, tamamlayıcı bir test olduğu 

sonucuna varılmıştır. Tablo 5.20’de literatürdeki mevcut laboratuvar ve klinik bulgular kullanılarak 

yapılan pnömoni tespit çalışmaları yer almaktadır. Tablo 5.20’de önerilen yaklaşımın mevcut 

metodolojilerle karşılaştırılması yer almaktadır. 

 

  

84

86

88

90

92

94

96

98

100

102

DVM KNN RO AE UKSB ESA

Performans Değerlendirme Sonuçları

Doğruluk Kesinlik Duyarlılık F1 skor



81 

Tablo 5.20. Önerilen yaklaşımın mevcut metodolojilerle karşılaştırılması 

Yazarlar Seçilen 

öznitelikler 

Karşılaştırılan 

teknikler 

Performans değerlendirmeleri (%) 

Effaf vd. 

[51] 

Laboratuvar 

bulguları 

LR, NB, 

DVM, ADT, 

KNN, RO, 

XGBoost, YSA 

Kesinlik: 91,30 

Duyarlılık: 96,00 

F1 skor: 93,60 

Doğruluk: 92,00 

Zhang vd. 

[52] 

Biyokimyasal 

ve klinik 

bulgular 

GSHHO-FKNN Doğruluk: 90,00 

Duyarlılık: 82,64 

Kesinlik: 93,00 

 

Strokes vd. 

[53] 

Denek 

popülasyon 

özellikleri, 

semptomlar ve 

laboratuvar 

bulguları 

KA, DVM, LR Doğruluk: 84,00 

Duyarlılık: 80,00 

Kesinlik: 73,00 

F1 skor: 87,00 

 

Önerilen 

Metot 

Demografik 

özellik, klinik 

semptom ve 

laboratuvar 

bulguları 

DVM, RO, KNN, 

Otomatik Kodlayıcı, 

UKSB, ESA 

Doğruluk: 96,25 

Duyarlılık: 95,27 

Kesinlik: 97,57 

F1 skor: 96,40 

 

 

Düşük gelirli ortamlar gibi hastalık yükünün en yüksek olduğu bölgelerde radyografi 

genellikle mevcut değildir. Sonuç olarak, kliniklerde pnömoni dahil olmak üzere alt solunum yolu 

hastalıklarının tanı ve takibinde tam kan sayımı, temel biyokimyasal parametreler ve çeşitli 

enfeksiyon parametreleri kullanılmaktadır. Tanısal doğruluğu artırmak ve pnömoniye yönelik 

çeşitli tedavi stratejilerini geliştirmek için, invaziv olmayan ölçümlere dayalı bilgisayar tabanlı 

otomatik tespit modelleri önerilmiştir. Yapılan çalışmalarda hastalığın tanısı, şiddeti, yoğun bakım 

ihtiyacı gibi durumların değerlendirilmesinde temel biyokimya ve tam kan sayımı dahil çeşitli 

inflamasyon belirteçleri kullanılmıştır [51-53]. Enfeksiyon, enflamasyon ve travmaya yanıt olarak 

konakçıda meydana gelen spesifik olmayan dönem akut faz olarak bilinir. Günlük pratikte, akut faz 

yanıtları bakteriyel ve viral enfeksiyonların ayırt edilmesinde yaygın olarak kullanılmaktadır. 

Klinik uygulamalarda en sık kullanılan akut faz yanıtları lökosit sayısı (WBC), mutlak nötrofil 

sayısı ve CRP’dir [168]. Bu çalışmada da literatürdeki çalışmalara uyumlu olarak WBC, Nötrofil, 

Lenfosit, Trombosit, CRP, Albümin belirteçleri çalışılmıştır.  

Effaf ve ark. her biri 45 özelliğe sahip 535 farklı hasta üzerinde pnömoniyi öngörmedeki 

etkinliğini değerlendirmek için 8 makine öğrenmesi modelini (LR, NB, DVM, AdaBoost KA, 
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KNN, RO, YSA ve XGBoost) karşılaştırmışlardır [51]. Bu 45 özellik içeresinde hastalara ait 

demografik bilgileri (yaş, cinsiyet ve komorbiditeler dahil), fiziksel parametreleri (taşikardi, trakeal 

sekresyon, plevral efüzyon, ortalama arteriyel basınç, kalp atım hızları, solunum hızları ve sistolik 

kan basıncı) ve hematolojik parametreleri (serum sodyum, serum potasyum, serum kreatin, 

hematokrit, WBC, trombosit, toplam bilirubin, hemoglobin CRP) yer almaktadır. RO ve XGBoost 

sırasıyla %92,00 ve %90,80 ile en yüksek doğruluk performansı gösteren ağlardır. 

Zhang ve ark. 100 hastaya ait cinsiyet, yaş, hasta bölümünde yattığı gün sayısı ve 

hastalıkların prognozu, pıhtılaşma ve böbrek fonksiyon testi, WBC, PLT, Albümin g/L, CRP, 

mg/L) dahil olmak üzere inflamatuar kan testi parametrelerini toplamışlardır [52]. 

Strokes ve ark. 4500 hastaya ait çeşitli klinik bilgileri toplamışlardır. Toplanan bilgiler 

arasında solunum yolu hastalıklarına özgü bir dizi semptom, laboratuvar test sonuçları ve hava 

kirliliğine maruz kalma veya yetersiz beslenme gibi çeşitli nüfus tanımlayıcı özellikleri yer almıştır. 

Laboratuvar test sonuçları arasında CRP (mg/ml), Lökositler, Nötrofiller, Lenfositler gibi 

biyobelirteçler yer almaktadır. Belirti ve semptomlar arasında öksürük, dispne, ateş, plevral ağrı, 

kas ağrısı, terleme, baş ağrısı gibi çeşitli ikili (evet ya da hayır şeklinde) özellikler yer akmaktadır. 

LR, DVM, KA arasında KA %84,00 en yüksek doğruluğa ulaşmıştır [53]. 

Bu çalışmada olduğu gibi literatür çalışmalarında da sayısal tıbbi verilerinden pnömoni 

tespiti yapılırken kullanılacak öznitelikler belirlenerek özel veri setleri oluşturulmuştur. Bu 

çalışmanın sonuçlarını diğer çalışmalarla karşılaştırdığımızda, bu çalışmayla elde edilen sonuçların 

mevcut diğer çalışmalarla karşılaştırılabilir olduğunu ve daha iyi performans gösterdiği tespit 

edilmiştir. Birçok çalışmada pnömonili hastalarına ait laboratuvar parametreleri araştırılmıştır. 

Ancak bu çalışmalar çoğunlukla pnömoninin prognozu ve şiddeti ile ilgilidir. Bu çalışmada, 

laboratuvar parametrelerinden pnömoni tespitine daha kısa sürede, daha ucuz ve daha doğru 

sonuçlar ile olanak sağlayacak bilgisayar destekli bir tanı sisteminin geliştirilmesi amaçlanmıştır. 

 



6. SONUÇLAR 

Pnömoni, bakteri, virüs ve mantar enfeksiyonlarının neden olduğu akciğer dokusunun 

iltihaplanmasıdır. Pnömoninin varlığının ve etkeninin tespit edilmesi, tedavi sürecini hızlandırmak 

ve hastanın hayatta kalma oranını artırmak için çok önemlidir. Pnömoninin doğru biyomedikal 

teşhisi, çeşitli teşhis araçlarının kullanılmasını ve çeşitli klinik özelliklerin değerlendirilmesini 

gerektirmektedir. Klinik semptomlar, kapsamlı bir fiziksel muayene ve göğüs röntgeni gibi 

görüntüleme çalışmaları uzun zamandır pnömoni teşhisinde aşamalı olarak kullanılmaktadır. 

Ancak bu teknikler genellikle özneldir ve güvenilir sonuçlar vermeleri garanti değildir. Bilgisayar 

destekli teşhisteki ilerlemeyle birlikte teşhis doğruluğunda bir artış eğilimi görülebilir. Son yıllarda, 

derin öğrenme teknikleri kullanılarak sayısal tıbbi veriler ve görüntü verilerinin analizi artan bir 

popülerlik alanı haline gelmiştir. Derin öğrenme metodolojileri, pnömoni hastalığının türünü 

tanımlamak ve tanımak için kullanılırken, otomatik algılama, zamanı azaltmaya ve doğruluğu 

artırmaya yardımcı olur. 

Bu tez çalışmasının amacı; derin öğrenme teknikleri kullanılarak pnömoni hastalığına ait 

hem sayısal veri hem de göğüs röntgen görüntülerinden hastalık ile ilgili özellikleri etkili bir şekilde 

çıkarıp hastalığın tespiti için otomatik pnömoni tespit sisteminin geliştirilmesi, sağlık hizmetlerinin 

kalitesinin daha düşük maliyetlerle ve daha hızlı yanıtla iyileştirilmesidir. Bu amaçla Dicle 

Üniversitesi Tıp Fakültesi Göğüs Hastalıkları ve Tüberküloz kliniği, yoğun bakım ünitesi ve göğüs 

polikliniğinden elde edilen pnömoni ve sağlıklı CXR görüntüleri ile aynı kişilere ait demografik 

özellik, klinik semptom ve laboratuvar bulgularından oluşan sayısal tıbbi verilerden 2 yeni veri 

kümesi oluşturulmuştur. 2000 denek üzerinde yapılan çalışmada, 1000 denek Poster Anterior (PA) 

akciğer grafisinde pnömoni tanısı almış, 1000 denek ise normal PA akciğer grafisine sahiptir. 

Sayısal tıbbi veriler hasta dosyasından elde edilmiştir. Demografik veriler olarak, yaş ve cinsiyet 

seçilmiştir. Hastalık şikâyeti olarak, yan ağrısı, nefes darlığı ile öksürük verileri seçilmiştir. 

Laboratuvar parametreleri olarak; lökosit sayısı (WBC, 10𝑒3µL), nötrofil sayısı (NEU, 10𝑒3µL), 

lenfosit sayısı (LYM, 10𝑒3µL), trombosit sayısı (PLT, 10𝑒3µL), CRP (𝑚𝑔 ∕ 𝑑𝐿) ve Albümin (𝑚𝑔 ∕

𝑑𝐿) çalışılmıştır. Bu laboratuvar verilerinden hareketle pnömoni ve sağlıklı hastaların ayırıcı 

tanısında NLO, TLO ve CAO verileri kullanılmıştır. Sayısal tıbbi verilerin sınıflandırma 

aşamasında KNN, DVM, RO, otomatik kodlayıcı ve UKSB algoritmaları kullanılmıştır. Ayrıca 

sayısal parametre veri setinden pnömoni tespiti için yeni bir ESA modeli uçtan uca eğitilmiştir. 

Verilerin %80’i eğitim, %20’si test için kullanılmıştır. Sayısal tıbbi verilerin sınıflandırılmasında 

en yüksek doğruluk %96,25 olarak elde edilmiştir. Önerilen ESA modeli %96,00 doğruluk başarımı 

göstermiştir. 
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Aynı kişilere ait CXR görüntüleri de derin öğrenme tabanlı hibrit yaklaşımlarla 

sınıflandırılmıştır. CXR görüntülerinin sınıflandırılmasında iki farklı çalışma yapılmıştır. İlk 

çalışmada sınıflandırma aşamasında derin öğrenme tabanlı yaklaşımlar kullanılmıştır. CXR 

görüntülerinin sınıflandırılmasında kullanılan derin öğrenme yöntemleri, derin öznitelik çıkarımı, 

transfer öğrenme ve uçtan uca öğrenmedir. Derin öznitelik çıkarımı ile transfer öğrenme yöntemleri 

için önceden eğitilmiş 10 farklı ESA ağı kullanılmıştır. Uçtan uca öğrenme yöntemi için 21 

katmanlı yeni bir ESA mimarisi önerilmiştir. Önerilen yöntemlerin performansını değerlendirmek 

amacıyla doğruluk, kesinlik, duyarlılık ve F1 skor metrikleri kullanılmıştır. CXR görüntüleri 

sınıflandırılırken veri seti hem k kat çapraz doğrulama hem de ayırarak çapraz doğrulama 

yöntemleri ile test edilmiştir. Verilerin %80’i eğitim, %20’si test için kullanılmıştır. Çapraz 

doğrulama için k değeri 5 seçilmiştir. Çalışmanın ön işleme aşaması olarak; kullanılan farklı 

algoritmaların görüntü girişleri farklı olduğu için CXR görüntüleri yeniden boyutlandırılmıştır. 

Önceden eğitilmiş ESA modellerini eşit şartlar altında karşılaştırmak için tüm modeller minimum 

girdi boyutlarını karşılayacak ortak boyut olan 256×256 yeniden boyutlandırılmıştır. Çıkarılan 

derin öznitelikler DVM, KNN ve RO algoritmaları ile sınıflandırılmışlardır. CXR görüntülerinin 

sınıflandırılmasında derin öğrenme yaklaşımlarının performans karşılaştırmaları sırasıyla şöyledir. 

Derin öznitelik çıkarımında 5 kat çapraz doğrulamalı ShuffleNet+DVM hibrit yaklaşımı %98,00 

doğrulukla en yüksek performansı göstermiştir. Hold out yöntemiyle ayrılan veri setinde ince ayarlı 

AlexNet %98,50 ile en yüksek transfer öğrenme başarımı elde etmiştir. Hold out yöntemiyle ayrılan 

veri setinde 21 katmanlı ESA modeli %96,75 sınıflandırma performansı sağlamıştır. Önerilen 21 

katmanlı ESA modelinin literatürde mevcut Kaggle veri setindeki başarımı %94,50’dur. 

CXR görüntülerinin sınıflandırılmasında yapılan ikinci çalışmada tez çalışması kapsamında 

önerilen 21 katmanlı ESA modeli ile yakın zamanda geliştirilen dönüştürücü tabanlı modellerin 

sınıflandırma performansı karşılaştırılmıştır. Karşılaştırma için kullanılan ağlar ViT, gMLP, FNet 

ve MLP-mixer modelleridir. Verilerin %90’i eğitim, %10’si test için kullanılmıştır. Çalışmanın ön 

işleme aşamasında, veri kümesindeki CXR görüntüleri farklı boyutlarda olduğundan, dönüştürücü 

tabanlı modellerin minimum giriş boyutlarını karşılamak için 512×512 olarak yeniden 

boyutlandırılmıştır. Daha sonra her görüntü 32×32 piksel boyutunda toplam 256 yamaya 

bölünmüştür. CXR görüntüleri ayrıca 21 katmanlı ESA modeli için 224×224 olarak yeniden 

boyutlandırılmıştır. ViT, FNet, MLP-mixer ve gMLP modellerinin sınıflandırma performans 

doğrulukları sırasıyla %96,43, %96,43, %95,41 ve %94,39’dur. Geliştirilen 21 katmanlı yeni 

model, sağlıklı bireylerden pnömoniyi doğru bir şekilde tespit etmede özel ve genel veri tabanları 

için sırasıyla %96,50 ve %94,29 doğruluk sağlamıştır. Önerilen model, pnömoni tespiti için yakın 

zamanda geliştirilen dönüştürücü tabanlı modellerden daha yüksek sınıflandırma performansı 

sağlamıştır. 
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Sayısal verilerin ve CXR görüntülerinin sınıflandırma sonuçları karşılaştırıldığında her iki 

yöntemle pnömoni tespiti yüksek doğruluk ile sonuçlanmaktadır. Bu tez çalışması kapsamında 

önerilen yöntemler, pnömoni tanısı için bir karar destek sistemi olarak kullanılabilir ve farklı bir 

bakış açısıyla alternatif bir çözüm olarak klinisyenlere yardımcı olabilir. Bu bulgular, gelişmiş 

ekipman ve yüksek eğitimli uzmanların az olduğu düşük gelirli ve kaynak sınırlı ülkelerde 

pnömoninin otomatik tespit edilmesine, doktorların hastaları için daha etkili bir tedavi planı 

geliştirmesine, aşırı antibiyotik kullanımının azaltılmasına ve iyileşme oranlarının artmasına 

yardımcı olacaktır. 

Literatür çalışmaları incelendiğinde pnömoni tespitinin mevcut dezavantajlarından biri, 

yüksek açıklamalı veri setlerine ve hastanın tıbbi geçmişine sahip olmamasıdır. Bu tez çalışması 

kapsamında hem pnömonili hastalara hem de sağlıklı bireylere ait CXR görüntüleri toplanmış ve 

derin öğrenme yaklaşımları ile pnömoni tespit edilmeye çalışılmıştır. Aynı kişilere ait sayısal tıbbi 

veriler de toplanarak kapsamlı bir veri seti oluşturmak amaçlanmıştır ve sayısal tıbbi verilerin derin 

öğrenme algoritmaları ile pnömoni tespitindeki yüksek doğruluk oranları ve kayda değer sonuçlar 

elde ettiği gösterilmiştir. 

 

 

 

 



ÖNERİLER 

Çalışmanın sınırlılığı, bu çalışma için yalnızca iki veri kümesi kullanmış olmamızdır. Göğüs 

röntgen görüntüleri hasta bireylere ve sağlıklı kişilere aittir. Bu çalışmada pnömoninin erken, hafif 

ve şiddetli gibi farklı aşamalarına ve/veya bakteri ve virüs gibi farklı türlerine ait alt bir 

sınıflandırma yapılmamıştır. Literatürdeki veri kümelerine kıyasla daha küçük boyutludur ve 

sınıflandırma performansı açısından tek yönlüdür. Farklı pnömoni aşamalarına ve türlerine ait 

göğüs röntgeni görüntüleri eklenerek veri kümesi boyutu ve kapsamı genişletilebilir. Aynı zamanda 

diğer alt solunum yolu enfeksiyonları de eklenerek CXR görüntülerinin kalitesi bilgisayar destekli 

sistemlerle iyileştirilebilir. Daha fazla veri eklenerek ve renk, doku ve şekil gibi düşük seviyeli 

öznitelikleri çıkarmak için gelişmiş yöntemler kullanılarak performans daha da artırılabilir. Düşük 

seviyeli öznitelikler ile derin özniteliklerin sınıflandırma performansları ayrı ayrı ve/veya bir 

füzyon modeli oluşturularak karşılaştırılabilir. Bu çalışmanın kısıtlılıklarından biri de retrospektif 

bir çalışma olmasıdır. Gerçek zamanlı takip değerleri yerine pnömoni tespiti için öncül 

parametreler kullanılmıştır. Bu çalışmada CXR görüntülerini işlerken ön işleme olarak sadece 

yeniden boyutlandırma işlemli yapılmıştır. Literatürdeki çalışmalarda histogram eşitleme, gürültü 

giderme veya görüntü kümesinin boyutunu artırma gibi işlemler de yapılmıştır. Bu ve bunun gibi 

farklı ön işlemler denenerek derin öğrenme modellerinin sınıflandırma performansı artırılabilir. 

Ayrıca, önerilen derin ESA modellerinin performansı daha fazla sayıda katman ve parametre ile 

geliştirilebilir. Bu, klinisyenlerin göğüs röntgeni görüntülerinden akciğer hastalıklarını hastalığın 

daha erken bir aşamasında daha düşük prevalansla tanımasına olanak sağlayacaktır. 
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