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Pnémoni, diinya capmnda tiim yas gruplarinda yiiksek morbidite ve mortaliteye sahip akciger
enfeksiyonudur. Pnémoniye bagli 6liimleri azaltmak ve iyilesme oranlarini artirmak i¢in hastaligin erken
evrelerde etkili bir sekilde tespit edilmesi ¢ok Onemlidir. Pnémoniyi tanimlamak i¢in fizik muayene,
laboratuvar testleri, klinik semptomlar ve gesitli tibbi goriintiileme yontemleri gibi teknikler kullanilmaktadir.
Diger akciger hastaliklarinin pndmoniye benzer semptomlar gostermesi ve goriintiileme bulgularinin spesifik
olmamasi nedeniyle pnémoni tanisinin belirlenmesi zaman alici ve hataya agiktir. Hastaliklarin erken
teshisinde uzmanlara yardimei olmak i¢in derin 6grenme tabanli yontemlerin benimsenmesi, pndmoni teshisi
de dahil tibbi uygulamalarda dogru ve verimli tan1 yontemi olarak etkili sonuglar elde etmektedir. Bu tez
galismasinin amaci derin 6grenme metotlar1 kullanilarak sayisal veriler ve gogiis rontgen (CXR)
goriintillerinden pnémoni hastaligin1 teshis etmektir. 2000 kisiye ait (1000 pnémoni,1000 saglikli)
demografik o6zellikler, semptomlar ve laboratuvar test sonu¢ bilgilerinden olusturulan sayisal tibbi veri
kiimesine makine 6grenimi ve derin 6grenme algoritmalart uygulanmustir. Ayni kisilere ait CXR gorintiileri
de derin Ogrenme tabanli yontemlerle siniflandirilmistir. Sayisal verilerin ve CXR goriintiilerinin
simiflandirma sonuglar1 karsilastirnlmistir. Calismanin verileri Dicle Universitesi Tip Fakiiltesi Gogiis
Hastaliklar1 ve Tiiberkiiloz klinigi ile yogun bakim fiinitesi ve gogiis poliklinigine bagvuran hastalarin
dosyalarmin retrospektif olarak taranmasiyla olusturulmustur. Bu ¢alismanin amaglarindan biri de pahali
ekipman ve yiiksek egitimli klinisyen eksikliginin oldugu yerlerde uzmanlara yardimc1 olacak derin 6grenme
tabanli bilgisayar destekli otomatik tespit sistemiyle pndémoninin ¢ok yonlil teshisini gelistirmek ve
iyilestirmektir. Bu tez c¢aligmasi kapsaminda elde edilen sonuglar diger ¢aligmalarla karsilastirildiginda

onerilen yontemlerin mevcut literatiire katkisi oldugu ve iyi performans gosterdigi tespit edilmistir.

Anahtar Kelimeler: Derin Ogrenme, Pndmoni Tespiti, Gogiis Rontgen Goriintiileme, Sayisal Veriler

vii



ABSTRACT

Pneumonia Detection with Deep Learning Approaches from Numerical Data
and Chest X-Ray Images
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Pneumonia is a lung infection with high morbidity and mortality in all age groups worldwide.
Effective detection of the disease in the early stages is crucial to reduce pneumonia-related deaths and
increase cure rates. Techniques such as physical examination, laboratory tests, clinical symptoms and various
medical imaging methods are used to identify pneumonia. Because other lung diseases present similar
symptoms to pneumonia and imaging findings are non-specific, the diagnosis of pneumonia is time-
consuming and error-prone. The adoption of deep learning-based methods to assist experts in the early
diagnosis of diseases is achieving effective results as an accurate and efficient diagnostic method in medical
applications, including pneumonia diagnosis. The aim of this thesis is to diagnose pneumonia from numerical
data and chest X-ray (CXR) images using deep learning methods. Machine learning and deep learning
algorithms were applied to a numerical medical dataset of 2000 individuals (1000 pneumonia, 1000 healthy)
with demographic characteristics, symptoms and laboratory test results. CXR images of the same individuals
were also classified using deep learning-based methods. The classification results of the numerical data and
CXR images were compared. The data of the study were collected by retrospectively reviewing the files of
patients admitted to the Chest Diseases and Tuberculosis clinic, intensive care unit and chest outpatient clinic
of Dicle University Faculty of Medicine. One of the aims of this study is to develop and improve the
multidimensional diagnosis of pneumonia with a deep learning-based computer-aided automated detection
system that will help experts where there is a lack of expensive equipment and highly trained clinicians.
When the results obtained in this thesis are compared with other studies, it is found that the proposed methods
contribute to the existing literature and perform well.

Keywords: Deep Learning, Pneumonia Detection, Chest X-ray Imaging, Numerical Data
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1. GIRiS

Pnomoni, akcigerlerdeki kiigiik hava keseleri olan alveolleri de etkileyen, sol akciger, sag
akciger veya her iki akcigerde meydana gelen akciger parankiminin iltihaplanmasidir [1]. Pnémoni,
akut hastaliklar kategorisi altinda yer alan bir alt solunum yolu enfeksiyonudur ve diinya ¢apinda
cocuklarda goriilen en biiyiik bulasici hastalik ve 6liim nedenidir [2]. 2019 yilinda 5 yasin altinda
740.180 ¢ocugun Oliimiine neden olarak bes yasin altindaki tiim ¢ocuk Oliimlerinin %14 {inii
olusturan Pnémoni, 1 ile 5 yas arasindaki ¢ocuk oliimlerinin ise %22’sini olusturmaktadir [3].
Pnomoni prevalansi yagla birlikte artmakta ve 65 yas iistii kisiler i¢in risk olusturmaktadir [4].
Gogiis agrisi, nefes alma glgliigii, ates, Kuru ve bazen balgamli 6ksiiritk pndmoninin sik gériilen
semptomlaridir ve bunlarin siddeti hastaligin seyrine bagl olarak degisebilir. Pnomoni ’ye viriisler,
bakteriler, mantarlar, immiinolojik bozukluklar ve hatta kimyasallar neden olabilir [4]. Klinikte
bakteriyel pndmoni, mikoplazma pndmonisi, fungal pnémoni ve influenza gibi viriislere bagh
olarak viral pnomoni goriilmektedir [5]. Pnomoni, 6zellikle yiiksek diizeyde hava ve ortam
kirliliginin, asir1 kalabaligin, sagliksiz yasam kosullarinin yani sira tibbi kaynak ve personel
eksikliginin yaygin oldugu gelismekte olan veya az gelismis iilkelerde bircok kisiyi etkilemektedir
[6]. Dolayisiyla gelismekte olan veya az gelismis tilkelerde pnémoniyi dogru ve hizli bir sekilde
teshis etmek son derece hayatidir.

Pnémoninin erken bir agamada ve dogru bir sekilde teshis edilmesi, kiiratif tedavi saglamak,
etkili hasta bakimi ve hayatta kalma oranlarin1 artirmak igin ¢ok énemlidir [7]. Bununla beraber
pndmoninin erken teshis ve tedavisi bu iilkeler i¢in zaman ve finans agisindan tasarruf saglayabilir.
Pnémoniyi teshis etmek icin kliniklerde cesitli tibbi goriintiileme yontemleri ve teshis araglart
kullanilmaktadir. Risk altindaki hastalar1 belirlemek, hastaligin 6nemini ve pndmoni prognozunu
belirlemek ve ayrica uygun antibiyotik kullanimina karar vermek igin kapsamli bir fiziksel
muayene, klinik semptomlar, laboratuvar bulgular1 ve gesitli tibbi goériintilleme yontemleri bir
biitiin olarak incelenmektedir [8].

Goriintiileme, pndmonili hastalarin saptanmasinda ve yonetiminde ¢ok 6nemli bir rol oynar.
Pnémoniyi teshis etmek igin kullanilan tibbi goriintiileme yontemleri, gégiis rontgen goriintiilleme
(CXR), bilgisayarli tomografi (BT), manyetik rezonans goriintiileme (MRG) ve ultrasondur. Diisiik
maliyeti, daha hizli goriintiileme siiresi, erisim kolaylig1 ve invazif olmayan bir yaklagim olmasi
nedeniyle, CXR diinya ¢apinda pndmoniyi tespit etmek i¢in kullanilan en yaygin tibbi goriintiilleme
teknigidir [9]. CXR enfeksiyonun siddeti hakkinda 6nemli miktarda bilgi igerir, ancak son derece
deneyimli radyologlar i¢in bile benzer lezyonlar ayirt etmek veya ¢ok belirsiz nodiilleri saptamak
ve dogru yorumlamak zor olabilir [10]. Buna ek olarak, rontgen bulgular hastaligin erken
evrelerinde her zaman mevcut olmayabilir, bu da ge¢ taniya neden olur; gdgiis rontgenlerinin

yorumlanmasi zorlagir [11]. CXR goriintiilerinin diisiik ¢6ziiniirliigii, hastalik belirtileri arasindaki



benzerlikler ve bir CXR gériintiisiinii incelerken deneyim ve odaklanma eksikligi, yasami tehdit
etme potansiyeline sahip teshis hatalarina yol acabileceginden yorumlamay1 radyologlar i¢in zorlu
bir gorev haline getirmektedir [12]. Bu nedenle, CXR pnémoninin teshis ve tespiti konusunda
zaman alicidir ve dogrulugu kafa karistiric olabildiginden tan1 ve tedavi siireci gecikebilir. Bununla
birlikte diisiik gelirli tilkelerde ve hastalik yiikiiniin en yiiksek oldugu bolgelerde ileri radyografi
teknikleri genellikle mevcut degildir [13]. Benzer sekilde, tiim siipheli pndmoni vakalarina CXR
yapmak da zordur. Kaynaklara erisimin sinirli oldugu az gelismis iilkelerdeki klinisyenler
cogunlukla klinik belirti, semptom ve basit laboratuvar testlerinin kullanim1 gibi invaziv olmayan
olgtimlere dayali olarak pnomoni teshisi yapmaktadir [14]. Bu baglamda hem CXR’lerden hem de
laboratuvar testleri, klinik belirti ve semptomlardan pnémoninin ¢ok y6nlii teshisinin dogrulugunu
ve hizimi artirabilecek otomatik pnomoni tan1 ve tespit yontemlerinin gelistirilmesine ihtiyag
duyulmaktadir. Pnémoninin otomatik tespiti, uzman radyologlara ve klinisyenlere yardimci
olacaktir ve uygun tibbi olanaklara sahip olmayan gelismekte olan iilkeler icin avantajli olacaktir
[15].

Bilgisayar destekli tani sistemleri, hekimlerin gozlemsel hatalarini1 ve dolayisiyla yanlis
negatif oranlarin1 azaltmak ve tan1 performansini artirmak i¢in tasarlanmis bir teknolojidir. Bu
sistemler hastaliklarin teshisini ve tahmin gorevlerini kiigiik hata paylariyla daha kolay hale
getirmektedir [16]. Derin 6grenme (DO), giiniimiizde tip endiistrisinde kilit bir rol oynayacak kadar
ilerleme kaydetmistir. DO, beyin-bilgisayar arayiizii, bilgisayar destekli teshis, saglikla ilgili
elektronik verilerin analizi, tedavi planlamasi ve ilag alimi, ortam tanima ve tibbi goriintiilerdeki
tiimor ve lezyonlarin tespiti gibi gesitli uygulamalara uygulanmaktadir [17]. DO algoritmalari,
CXR dahil olmak ftizere ¢esitli goriintileme muayenelerinin yorumlanmasini hizlandirmak,
otomatiklestirmek ve iyilestirmek i¢in bir ¢dziim olarak énerilmistir. DO tabanli bilgisayar destekli
tespit ve teshis sistemleri ile hekimler tanilarmi daha hizli ve dogru bir sekilde koyabilirler. DO
algoritmalari, yogun klinik uygulamalarda egitimli bir radyologun bulunmadigi veya asiri
yliklendigi acil durumlarda goriintli yorumlamasini hizlandirabilir. Ayrica, radyologlarin
dogrulugunu artirmak igin ikinci bir okuyucu olarak da kullanilabilir [18]. DO, insanlarin nasil
ogrendigini ve diigtindiigiini taklit ederek bilgisayarlarin ham verilerden ilgili bilgileri otomatik
olarak ¢ikarmasina, analiz etmesine ve yorumlamasina olanak taniyan daha gelismis bir yaklagim
sunan bir makine 6grenimi dahidir. DO, otonom &zellik miihendisligi siireglerine dayanan bir dizi
noral veri odakli yaklagimdir; dogrulugu ve performansi, 6zellikleri girdilerden otomatik olarak
ogrenmesinden kaynaklanmaktadir [19]. Evrisimsel sinir aglar1 (ESA), tekrarlayan sinir aglari,
derin inang aglar1, grafik sinir aglar1 ve iiretken rakip aglar gibi birkag tiir derin 6grenme mimarisi
vardir. Ham veriden baglayarak modelin her katmani, bir 6nceki katmandan 6grenerek daha yiiksek
boyutlu analizler gergeklestirir ve bu da tamisal performansi artirmaktadir. Derin &grenme

algoritmalarinin ¢aligma prensibi sayesinde pnomoni teshisinin etkinligi ve dogrulugu biyiik



ol¢iide iyilestirilmistir [20,21]. Literatiirde hem CXR goriintiileri hem de laboratuvar testleri, klinik
bulgu ve semptomlar gibi sayisal parametreler kullanilarak yapilan pnomoni tespit ¢aligsmalar
bulunmaktadir. Bu tez ¢alismasi kapsaminda derin 6grenme tabanli bilgisayar destekli tespit ve
teshis sistemlerinin kullaniminin pnémonin ¢ok yonlii teshisinde etkisi ve basarisi arastirilmistir.
Literatiirde yer alan ¢aligmalar siniflandirma performansina, sinif sayisina, kullanilan veri setine,
on isleme asamasina ve kullanilan derin 6grenme algoritmasinin yapisina gore gézden gegirilmistir.
Bu amagla ilk olarak CXR goriintiilerinden pnémoni tespit ¢aligmalari incelenmistir.

Ayan caligmasinda, Kaggle veri tabanindaki CXR goriintiilerini [22], siniflandirmak igin
ince ayarl1 bir Xception modeli egitmistir. Ardindan, ince ayarli Xception modelini, ¢esitli makine
ogrenimi algoritmalari icin bir 6zellik ¢ikarici olarak kullanmustir. Ince ayarli Xception modelinin
evrisim katmanlari tarafindan ¢ikarilan 6zellikler destek vektor makinesi (DVM), k en yakin komsu
(KNN), lojistik regresyon (LR), naive bayes (NB) ve karar agaglar1 (KA) kullanilarak egitilmistir.
Test sonuglaria gore ince ayarli Xception modeli %89,74 dogrulukla diger simiflandiricilara gore
daha iyi siniflandirma sonuglar1 elde etmistir. Makine 6grenimi siniflandiricilar arasinda en iyi
puani %89,58 dogrulukla DVM algoritmasi almistir [23].

Demir ve ark., CXR goriintiileri [22] araciligiyla ¢ocuklarda pndmoninin erken ve dogru
teshisinde uzmanlara yardimci olabilecek ve saglikli ve hasta bireyleri siniflandirabilecek transfer
O0grenme tabanli ESA yaklasimi 6nermistir. Calisma sonucunda AlexNet mimarisi katmanlarina ek
katmanlar eklenerek 6zgiin bir ESA mimarisi onerilmis ve %96,31 test dogrulugu elde edilmistir
[24].

Bakir ve arkadaslari, CXR veri setini [22] kullanarak c¢oklu ve ikili siniflandirma
gorevlerinde cesitli derin 6grenme teknikleri benimsemistir. Oznitelik cikaric1 olarak ResNet,
Inception ve MobileNet gibi ESA mimarileri benimsenmis ve yapay sinir aglar1 (YSA) algoritmas1
siniflandirma i¢in kullanilmistir. Calisma sonucunda, 6nerilen ResNet 6znitelik ¢ikarma agsamasina
sahip YSA modeli, CXR veri seti [22] iizerinde ¢ok sinifli siiflandirma (bakteriyel pnémoni, viral
pnomoni ve saglikli) yapildiginda en yiiksek siniflandirma dogruluk oranimi %81,67 olarak
vermistir. Ote yandan, onerilen MobileNet 6znitelik ¢ikarma asamasina sahip YSA modeli, CXR
gOriintii veri seti lizerinde ikili bir siniflandirma yapildiginda %95,67 ile en yiiksek dogruluk oranini
vermistir [25].

Ouleddroun ve ark., pndmoniyi saptamak ve radyologlara karar verme siireglerinde yardime1
olmak igin yeni bir yontem onermistir. Ilk olarak, gdgiis rontgeni goriintiileri icin histogram
esitleme (HE) ve Kontrast Sinirli Uyarlanabilir Histogram Esitleme (CLAHE) hesaplanmustir.
Ardindan, ¢ikarilan goriintiiler, [22] veri kiimesi {izerinde egitilmis iki ESA akigindan olusan bir
modele beslenmistir. Son olarak, ¢ikarilan derin Ozelliklere dayali algilama siirecini

gergeklestirmek igin birka¢ makine 6grenme siniflandiricisi (DAA (Dogrusal ayirma analizi),



DVM, KNN) kullanilmustir. Onerilen sistem (ESA-KNN), [22] veri setinde dogruluk agisindan
%97,86’ya ulagmugtir [26].

Aljawarneh ve ekibi ¢aligmalarinda, gelistirilmis bir ESA modeli, ResNet, VGG19 ve ince
ayarli ResNet modellerini genis bir XRI veri seti ile kullanarak ¢ok sayida pnomoni saptama
modelini degerlendirmistir. Gelistirilmis ESA modeli, ilk dordii 3 x 3 filtre boyutuna sahip olan
yedi katmana sahiptir. Caligma igin veri seti Kaggle’dan temin edilmistir [22]. Deneysel bulgulara
gore ResNet50 modeli en diisiik dogrulugu yani %82,80’1 gdsterirken, gelistirilmis ESA modeli
%92,40 ile en yiiksek dogrulugu gostermistir [27].

Kanawade ve ark., tarafindan pndmoni tespitinde kullanilmak iizere VGG16, VGGI19,
DenseNet121, DenseNet201, DenseNet169, InceptionResNet, MobileNet, MobileNetV2 ve
Xception gibi 6nceden egitilmis ESA modellerinin ¢esitli varyantlar test edilmistir. Sonuglara gore
Xception, VGG16 ve DenseNet201 diger modellerden daha iyi performans gostermistir. VGG16,
Xception ve Densenet201 birlestirildikten sonra sistemin genel dogrulugu %94,39’dur [28].

Iparraguirre-Villanueva ve arkadaslari, akciger rontgeni goriintillerinden pnomoniyi
saptamak i¢in dort ESA modeli sunmaktadir. ESA’lar, X-1s1n1 goriintiilerini birkac evrisimli
katman kullanarak normal ve pndmoni olmak tizere iki tiire ayirmak tizere egitilmistir. Caligmada
VGG16, VGG19, ResNet50 ve InceptionV3 kullanilmistir. Sonuglar, Inceptionv3d modelinin
%72,90 dogruluk, %93,70 duyarlilik ve %82,00 F1-Skor ile en iyi performansi elde ettigini
gOstermistir [29].

Derin 6grenme teknikleri ve ESA’lar, goriintii siniflandirma ve tibbi goriintii isleme
alanlarinda Gstiin basarilar saglamistir. Bununla birlikte, ESA’larin baz1 dezavantajlar1 vardir. Daha
yiiksek hesaplama maliyetleri, kaybolan veya patlayan gradyan sorunlari, asirt uyum, daha fazla
hiper parametre sayisi vb. bu dezavantajlardan bazilaridir. Bir ESA, maksimum havuzlama gibi bir
islem nedeniyle 6nemli dl¢lide yavastir. Ayrica sinir agini islemek ve egitmek biiyiik bir veri
kiimesi gerektirir [30,31]. 2020 yilinda Dosovitskiy ve arkadaslari, daha diisiik hesaplama maliyeti
ile ESA ile karsilastirilabilir veya daha iyi smiflandirma performansi elde eden Goriintii
Doniistiiriicii (Vision Transformer / ViT) modelini 6nermis ve ViT bilyiik 6l¢ekli bilgisayarl gérme
veri kiimeleri i¢in ESA yerine tercih edilmeye baslanmistir. Bilgisayarla gérmede, ViT evrisimsel
bloklar olmadan saf bir doniistiiriicii modeli uygular. ESA’da her bir evrisim katmani, neyin 6n
plan neyin arka plan olduguna bakmaksizin tiim gériintiiyii isler. Oz dikkat tabanl doniistiiriicii
mimarisi, ViT ’in yalnizca goriintiiniin ana kismina odaklanarak ve goriintiiniin geri kalan gereksiz
kismim goz ardi ederek yalnizca anlam ozelliklerini 6grenmesini saglar [32,33]. Dikkat tabanh
donistiirticii mimarileri Kullanilarak yapilan pndmoni tespit ¢caligmalari literatiirde yer almaktadir.

Singh ve ark., CXR goriintiilerini kullanarak pndmoni hastaliginin tahmin etmek igin derin
sinir agim1 (DNN), bir dikkat mekanizmasi ile birlestirmistir. Dikkat farkindaligi olan 6zellikler

iretmek igin Onerilen ag, DNN mimarisinde kanal ve uzamsal dikkat modiillerinin



birlestirilmesiyle olusturulmustur. Ayrica deneysel ¢aligmalarda transfer 6grenme ile onceden
egitilmis smiflandiricilar kullanarak veri kiimesi {izerindeki simiflandirma performansini
gozlemlemislerdir. ki ESA mimarisi ile deneyler yapilmustir, bunlardan ilki temel ESA, digeri ise
Resnet50’dir. Daha sonra dikkat modiiliinii bu mimariye entegre etmis ve performans
metriklerindeki iyilesmeyi gozlemlemislerdir. Dikkat mekanizmasi tabanli ResNet50 agim1 CXR
veri seti [22] ile test etmislerdir. Onerilen a8, %95,47°lik bir siniflandirma dogrulugu ve %92,00°lik
bir F1 skor puani elde etmistir [30].

Tyagi ve ark., pndmoninin erken saptanmasi ic¢in bir dikkat tabanli doniistiiriici modeli
onermistir. Calismada ESA, VGG16 ve ViT olmak iizere {ic model kullanmilmistir. Ek olarak,
modellerini gelistirmek i¢in halka agik bir CXR veri seti lizerinde ¢alismiglardir [22]. Deneysel
caligmalarda kullanilan ViT yontemi pndmoni tanimlamasinda %96,45 dogruluk performansi
gostermistir [31].

Mabrouk ve ark., CXR goriintiilerinden bilgisayar destekli pnomoni teshisi igin topluluk
ogrenme modeli dnermislerdir. Onerilen model, ii¢ iyi bilinen ESA modelini, yani DenseNet169,
MobileNetV2 ve ViT’i igermektedir. Bu modeller, ince ayar kullanilarak CXR veri kiimesi [22]
iizerinde egitilmistir. Onerilen topluluk 8grenme modeli, %93.91 dogruluk ve %93,43 F1 skor
puani elde ederek diger son teknoloji yontemlerden daha iyi performans gostermistir [34].

Ukwuoma ve ark., pnomoniyi teshis etmek icin hibrit bir derin 6grenme cergevesi
tasarlamigtir. Tasarlanan hibrit ¢erceve hem evrisimli aglar hem de dondstiriicii kodlayicist
mekanizmalar1 birlestirilerek gelistirilmistir. Yontem, ikili ve ¢oklu siniflandirma goérevleri igin
Mendeley [22] ve gogiis rontgeni [35] veri setleri kullanilarak egitilmis ve degerlendirilmistir.
Hibrit ¢ergeveleri, siniflandirma gorevleri igin %95,00’in iizerinde dogruluk ve F1 skor degerleri
tiretmistir [36].

Cha ve ark., CXR goriintiilerinde etkili pnémoni tespiti i¢in dikkat mekanizmasina dayali bir
transfer 6grenme cergevesi gelistirmistir. 11k olarak, bir dzellik ¢ikarici olarak, énceden egitilmis
iic modelden, yani ResNet152, DenseNet121 ve ResNet18’den 6zellikler toplanmistir. Daha sonra
ozellik segme islemi olarak dikkat mekanizmasi uygulanmustir. Onerilen yaklasim, %96,63
dogruluk, %97,30 F1 skor degeri, %96,23 kesinlik ve %98,46 duyarlilik elde etmistir [37].

Jiang ve arkadaglari, CXR goriintiilerinden otomatik pndmoni teshisi i¢in ¢ok seviyeli yama
birlestirme goriintii donistiiriiclisiinii (MP-ViT) 6nermistir. Deneylerini kamuya agik bir veri
kiimesi [22] iizerinde gerceklestirmislerdir. Onerdikleri model %91,00 dogruluk, %92,00 kesinlik,
%89,00 duyarlilik ve %90,00 F1-skoru elde etmistir [38].

Ma ve arkadaglan CXR goriintillerinde pndmoni tanmima modeli olarak Swin
doniistiiriiciisiinii kullanmis ve bunlar1 CXR gbriintiilerinin zelliklerine gore optimize etmistir. Iki

farkli veri kiimesi [22, 35] iizerinde yapilan karsilastirmali deneylerden sonra, deneysel sonuglar



modelin dogrulugunun sirasiyla %76,30°den %87,30’e ve %92,80°den %97,20’ye yiikseldigini
gostermistir [39].

Belirti, semptom gibi klinik parametreler ve biyobelirtegler gibi klinik laboratuvar
parametreleri, pnomoni hastalarinin yonetiminde basari oranlarini artirmak i¢in yararl araglardir.
Hastalik siddetini degerlendirmek ve tani siirecini basitlestirmek icin biyobelirteglere ihtiyag
duyulmaktadir. Normal veya patojenik bir biyolojik siirecin ya da bir maruziyete veya miidahaleye
verilen yanitin gostergesi olan dlgiilebilir bir 6zellik olarak tanimlanan biyobelirtecler, solunum
tibbinda hastalik temelli degil hasta temelli bir terapotik yaklasimin gelistirilmesinde kilit bir rol
kazanmustir [40]. Biyobelirteglerin degerlendirilecek hastalik veya olay i¢in yiiksek 6zgiilliige sahip
olmalari, 6l¢iilmelerinin kolay ve ucuz olmasi, iyi bir ayirt etme kapasitesi gostermeleri ve su anda
geleneksel klinik uygulamada kullanilan gostergelerden daha uygun maliyetli olmalar1 gerekir
[40,41]. Biyobelirteglerin  klinik uygulamalarda kullanilmas: yalmizca dogru teshisi
kolaylastirmakla kalmayacak, ayni zamanda asir1 antibiyotik kullanimmin azaltilmasina da
yardimci olacaktir [42]. Tam kan sayimi, 16kosit, ndtrofil, trombosit, lenfosit, Notrofil Lenfosit
Orant (NLO) ve Trombosit Lenfosit Oran1 (TLO) diizeyleri kan icerigi hakkinda bilgi saglayan
kolay, ucuz, rutin bir inceleme teknikleridir [43]. Pnémoni hastaliginin tanisi karaciger tarafindan
tiretilen bir akut faz proteini olan C-reaktif protein (CRP) gibi biyokimyasal parametrelerle
desteklenir. CRP, bir¢ok enfeksiyonda, otoimmiin hastalikta yiikselen pozitif bir akut faz
reaktanidir. Albiimin ise gesitli hastaliklarda inflamasyonun siddeti ile ters korelasyon gdsteren
negatif bir akut faz reaktanidir [44]. Yeni bir parametre olarak CRP Albiimin Oran’min (CAO),
belirli klinik durumlarin genel prognozunu tahmin etmede tek bagina albiimin ve CRP’den daha
dogru oldugu gosterilmistir [44]. Literatiirdeki c¢alismalarda, CRP, alblimin veya CAO’nun
enflamatuvar i¢in yararl bir prognostik faktoér olarak kullanilabilecegini ve 6zellikle CAO’nun,
enflamatuvar yanitin giiclii bir gostergesi olabilecegi gosterilmektedir [45, 46]. Notrofil, lenfosit ve
trombosit diizeylerinin sistemik inflamasyon ve enfeksiyonda 6nemli rol oynadigi bildirilmistir
[47]. NLO ve TLO gibi yeni inflamatuar biyobelirte¢lerin pnomonili hastalarda anlamli olarak
artmis olmasi pnomoni varlig i¢in 6ngoriicii olarak kullanilabilecegini gostermektedir [48, 49].
Sonug olarak son yillarda yapilan ¢aligsmalarda rutin laboratuvar ve/veya klinik verilere dayali erken
teshis yontemleri, tibbi goriintiileme tekniklerine gore daha hizli, kullanimi kolay, ulasilabilir ve
daha ucuz alternatifler olmasi nedeniyle tercih edilmektedir [50]. Teshis dogrulugunu artirmak ve
pnomonide ¢esitli tedavi stratejileri gelistirmek i¢in kullanilmaya baslanan makine 6grenmesi ve
derin 6grenme tabanli tahmin modelleri bu sorunlara ¢6ziim saglama potansiyeline sahip olup tipta
oldukga iyi ilerlemeler ve biiyiik faydalar saglamistir [51]. Literatiirde ¢esitli makine 6grenmesi ve
derin O6grenme algoritmalar1 kullanilarak pndmoni hastalifina ait laboratuvar parametreleri ve

klinik bulgularin siniflandirma galismalar1 yer almaktadir [52].



Effah ve ark., pnomoniyi laboratuvar parametrelerine ve fiziksel 6zelliklere dayali olarak
tahmin etmek icin her biri 45 6zellige sahip 535 farkli hasta iizerinde sekiz makine 6grenimi modeli
kullanmiglardir. Calismada Rastgele Orman (RO) (dogruluk = 9%92,00, kesinlik = 9%91,30,
duyarlilik = %96,00, f1-Skor = %93,60) ve XGBoost (dogruluk = %90,80, kesinlik = %92,60,
duyarlilik = %92,30, f1-skor = %92,40) modelleri orijinal veri setinde en yiiksek performansi elde
etmistir [51].

Zhang ve ark., klinik, biyokimyasal ve gogiis bilgisayarli tomografi 6zelliklerine dayali bir
veri kiimesi olusturarak, grip viriisii kaynakli pndmoniyi bakteriyel pndmoniden ayirmada makine
ogrenimi tekniklerinin kapasitesini kesfetmeye odaklanmistir. Gauss mutasyon mekanizmasina ve
benzetilmis tavlama yontemine dayanan gelistirilmis bir Harris Sahini optimizasyonu (GSHHO)
Onerilmis ve ardindan bir makine O6grenme modeli olan GSHHO-FKNN olusturmak igin
GSHHO’yu Fuzzy k-en yakin komsu (FKNN) ile birlestirmislerdir. Onerdikleri model ortalama
%90,00 dogruluk, 9%82,64 duyarlilik, % 93,00 kesinlik ve %94,67 6zgiinliik puanlar1 elde etmistir
[52].

Stokes ve ark., orta gelirli bir tilkedeki 4344 hastadan (1500 bronsit, 2844 pndmoni) elde
edilen denek popiilasyon 6zellikleri, semptomlar ve laboratuvar test sonuglar1 hakkinda bilgi igeren
bir veri kiimesine makine dgrenimi algoritmalar1 uygulamiglardir. Uygulanan makine 6grenmesi
algoritmalar1 LR, KA ve DVM’dir. Karar agact %84,00 dogruluk, %87,00 F1 skor, %80,00
duyarlilik ve %73,00 kesinlik ile diger modellerden daha iyi performans gostermistir [53].

Bu calismada, pndmoninin ¢ok yonlii tespiti i¢in sayisal tibbi veriler ve gogiis rontgen
goriintiileri derin dgrenme yaklasimlarr kullanilarak simiflandirilmistir. Dicle Universitesi Tip
Fakiiltesi Gogiis Hastaliklar1 ve Tiberkiiloz klinigi ile yogun bakim iinitesine 2001 Ocak- 2021
Ocak aylar1 arasinda pnémoni tanisiyla yatirilan hastalar ve herhangi bir solunum sikayetiyle gogiis
hastaliklar1 poliklinigine bagvurup CXR ¢ekilen ve normal olan hastalarin dosyalarinin retrospektif
olarak taranmasiyla veri kiimeleri olusturulmustur. Calismaya CXR’de pnémoni tanisi alan 1000
pndmoni hastast ve CXR’si normal olan 1000 saglikli birey olmak {izere toplam 2000 kisi dahil
edilmistir. 2000 kisiye ait (1000 pnémoni, 1000 saglikli) demografik 6zellikler, semptomlar ve
laboratuvar test sonug bilgilerinden olusturulan sayisal tibbi veri kiimesine makine 6grenimi ve
derin 6grenme algoritmalart uygulanmistir. Ayni kisilere ait CXR goriintiileri de derin 6grenme
tabanli hibrit yontemlerle siniflandirilmistir. Sayisal tibbi veri kiimesi igin yas, cinsiyet, dispne,
oksiiriik, yan agrisi, notrofil, lenfosit, trombosit, 16kosit, CRP ve albiimin gibi demografik, klinik
ve laboratuvar bulgulan segilerek bu verilerin pndmoni hastalarinin ve saglikli bireylerin ayirici
tanisinda etkisi ve rolii incelenmistir. 2000 kisiye ait 15 Ozellikli bir sayisal veri seti
olusturulmustur. Sayisal tibbi veri kiimesinin siniflandirma asamasinda kullanilan siniflandiricilar
KNN, DVM, RO, Otomatik Kodlayici ve Uzun Kisa Siireli Bellek (UKSB)’dan olusturulmustur.

Olusturulan sayisal parametre veri setinden pnémoni tespiti i¢in de bir ESA modeli gelistirilmis ve



uctan uca egitilmistir. Olusturulan sayisal parametre veri setinin siniflandirilmasinda en yiiksek
dogruluk %96,25 olarak elde edilmistir. CXR goriintiilerinin smiflandirilmas: iki asamada
gerceklestirilmistir. ik asamada pnémoni ve saglikli CXR goriintiilerini siniflandirmak i¢in derin
o0grenmeye dayali yaklasimlar kullanilmistir. Bu yaklagimlar, derin 6znitelik ¢ikarimi, 6nceden
egitilmis ESA’larin ince ayar1 ve gelistirilmis bir ESA modelinin ugtan uca egitimidir. Derin
Oznitelik ¢ikarim ve transfer 6grenme i¢in 6nceden egitilmis AlexNet, VGgl16, GG19, ShuffleNet,
NasNetMobile, MobileNetV2, DarkNet53, SqueezeNet, ResNet50 ve DenseNet201 modelleri
kullanilmistir. AlexNet’in fc6; VGG16 ve VGG19’un fc7; ResNet50 ve DenseNet201’in fc1000;
DarkNet53’iin conv53; NasNetMobile’in predictions; MobileNetV2’nin Logits; ShuffleNet’in
node 202 ve SqueezeNet’in pooll0 katmanlarindan Oznitelikler ¢ikarilip smiflandirma
algoritmalarina verilmistir. Cikarilan derin 6znitelikleri siniflandirmak i¢in kullanilan algoritmalar
KNN, DVM ve RO algoritmasidir. Ugtan uca 6grenme yontemi icin 21 katmanli yeni bir ESA
mimarisi 6nerilmis ve test edilmistir. Ince ayarli AlexNet modelinin basarisi, elde edilen tiim
sonuglar arasinda en yiiksek olan %98,50 dogruluk puani iiretmistir. Gelistirilen 21 katmanli ESA
modelinin ugtan uca egitimi %96,75 sonug vermistir. Ikinci asamada tez ¢aligmasi kapsaminda
onerilen ESA modelinin performansi yakin zamanda gelistirilen doniistiiriicii tabanli mimarilerle
karsilagtirilmigtir. Bu dontstiiriicii mimariler ViT, kapili ¢ok katmanli algilayict (gMLP), MLP-
mixer ve FNet’tir. ViT, FNet, MLP-mixer ve gMLP modellerinin siniflandirma performans
dogruluklari sirasiyla %96,43, %96,43, %95,41 ve %94,39’dur. Bu tez calismasi kapsaminda
gergeklestirilen pnomoni tespit yontemlerinin literatiire katkisini incelemek amaciyla mevcut veri
setleri ile 6nerilen yontemler test edilmis ve yapilan ¢alismalar ile siniflandirma performanslari
karsilagtirilmigtir,

Bu tez ¢alismasinin katkilari sunlardir:

1- Pnomoninin otomatik tespiti i¢in 1000’ pnémoni 1000’1 saglikli bireylere ait olmak
tizere toplam 2000 yeni CXR goriintiisii ve ayni kisilere ait demografik veri, klinik bulgu
ve laboratuvar parametreleri toplanmis ve CXR goriintiilerinden ve sayisal tibbi
verilerden 2 yeni veri seti olugturulmustur.

2- CXR goriintiilerinden pnémoni tespiti i¢in yeni bir 21 katmanli ESA modeli 6nerilmistir.

3- Pnomoni tespitinde derin 6grenme yontemlerinin ve derin 6grenme modellerinin
performanslar karsilagtirilmistir ve analiz edilmistir.

4- Veri seti hem k kat ¢apraz dogrulama hem de ayirarak ¢apraz dogrulama yontemleriyle
ayrilarak onerilen yontemlerin gecerliligi test edilmistir.

5- Yeni ESA modeli, saglikli bireylerden zatiirreyi dogru bir sekilde tespit etmede dzel ve
kamu veri tabanlar1 i¢in yliksek dogruluk oranlar1 saglamstir.

6- Ayrica Onerilen model, pndmoni tespiti i¢in yakin zamanda gelistirilen doniistiiriicti

tabanli modellerden daha yiiksek siniflandirma performansi saglamistir.



7- 1lgi alanlarmm gostererek klinisyenlerde giiven olusturmak amaciyla saglikli ve zatiirre
smiflari i¢in tipik 1s1 haritalar1 gosterilmistir.

8- Pndmoninin ayirici tanisinda sayisal tibbi verilerin etkisi ve rolii incelenmistir.

9- Sayisal verilerden derin 6grenme yaklagimiyla pndmoni tespiti i¢in yeni bir ESA
mimarisi gelistirilmistir.

10- Yaygin teshis yontemi olan CXR’lere alternatif olarak daha diisiik maliyetli, yiiksek
dogruluklu bir karar destek sistemi gelistirilmistir.

11- Onerilen yaklagimlarin mevcut modellerle karsilastirmali analizleri yapilmistir.

Bu tez ¢alismasi giris, makine 6grenmesi, derin 6grenme, materyal ve metot, bulgular ve
tartisma, sonuglar ve oneriler olmak iizere alti boliimden olusmaktadir. Ik béliim olan Giris
boliimiinde, pndmoninin tanimi yapilmis olup diinya ¢apinda mevcut durumu ile ilgili istatistikler
verilmigtir. Yaygin olarak kullanilan pndmoni tespit yontemlerinden bahsedilmistir. Bu tezin
konusu olan derin 6grenme ve tekniklerinin pnémoni tespitindeki 6nemi vurgulanmistir. Son
yillarda derin 6grenme algoritmalari kullanilarak yapilan pnémoni tespiti ¢calismalarina ayrintili bir
sekilde yer verilmis olup yontemin {iistiinliiklerinden bahsedilmistir. Ayrica bu tez ¢alismanin
amaci, 6nemi ve tezin organizasyonundan bahsedilmistir.

Bolim 2’de makine 6grenmesinin teorik tanimi yapilmis ve algoritmalarindan detayli
bahsedilmistir. Bu tez kapsaminda kullanilan makine 6grenmesi algoritmalar1 detayli agiklanmustir.
Boliim 3’de derin 6grenme, kullanildigi alanlar, bu tez kapsaminda kullanilan derin dgrenme
yontemleri, derin 6grenme modelleri ve derin 6grenme katmanlari ayrintili bir sekilde anlatilmistir.

Dordiincii boliim olan Materyal ve Metot bolimiinde bu tez i¢in olusturulan sayisal tibbi veri
kiimesi ve gogiis rontgen goriintiileri veri kiimesi agiklanmigstir. Pndémoni tespiti igin literatiirde
mevcut kullanilan veri kiimesinden bahsedilmistir. Bu tez kapsaminda gelistirilen pnémoni tespit
modelinin yapis1, hiper parametreleri ayrintili olarak agiklanarak detaylandirilmistir. Onerilen
modelleri degerlendirme/dogrulama yontemleri ve elde edilen siniflandirma performanslarini
degerlendirmek icin kullanilan degerlendirme metrikleri detayli agiklanmistir. Ayrica bu bdliimiin
sonunda sayisal tibbi verilerin istatistiksel analizinde kullanilan yontemlere de deginilmistir.

Besinci boliim olan Bulgular ve Tartisma boliimiinde tez kapsaminda yapilan deneysel
caligmalar tablolar halinde verilerek elde edilen sonuglar ayrintili bir sekilde agiklanmigtir. Bununla
birlikte tez kapsaminda elde edilen sonuglar literatiirdeki diger benzer ¢alismalarla karsilagtirilarak
Onerilen yontemlerin listiinligii tartisilmig ve literatiire katkisi incelenmistir.

Altinci ve son boliim olan Sonug boliimiinde tez kapsaminda yapilan islemlerin kisa bir

Ozeti anlatildiktan sonra tez ¢alismasinin 6nerdigi modellerin sonuglar1 bulunmaktadir.



2.  MAKINE OGRENMESI

Makine 6grenimi, bilgisayarlarin veri bigimindeki orneklerden 6grenmesine ve verilere
dayali tahminler veya kararlar almasina olanak taniyan algoritmalarin ve modellerin
gelistirilmesine odaklanan bir teknolojidir [54]. Programlamaya yonelik geleneksel yaklagimlar,
bir sorunun adim adim nasil ¢oziilecegini belirleyen sabit kodlanmig kurallara dayanir. Buna
karsilik, makine 6grenimi sistemlerine bir gérev ve bu gorevin nasil gerceklestirilebilecegine veya
kaliplarin saptanabilecegine dair kullanilmak {izere biiyiik miktarda 6rnek veri verilir. Sistem daha
sonra istenen ¢iktiya en iyi nasil ulagilacagini 6grenir [55]. Makine 6grenimi, bir veri kiimesini en
iyi sekilde temsil eden algoritmalar gelistirerek yapay zekanin 6grenme yoniine odaklanan bir
alandir [56]. Artan veri kullanilabilirligi, makine 6grenimi sistemlerinin genis bir 6rnek havuzu
tizerinde egitilmesine olanak tanirken, bilgisayarlarin artan bilgi isleme giicli bu sistemlerin analitik
yeteneklerini desteklemektedir [57]. Makine 6grenimi giiniimiizde farkli sektor ve uygulamalarda
uygulanmaktadir ve kullanimi giderek artmaktadir. Goriintiilerdeki nesneleri tanimlama,
konusmay1 metne doniistirme, haber Ogelerini, gonderileri veya triinleri kullanicilarin ilgi
alanlariyla eslestirme ve ilgili arama sonuglarini segme makine Ogrenimi uygulamalarindan
bazilaridir [58].

Makine Ogrenimi, veriden bir model olusturmak (veya dgrenmek) icin kullamlan bir
tekniktir. Burada veri; belgeler, sesler, gortintiiler vb. gibi bilgiler anlamina gelir. Model, Makine
Ogreniminin nihai iiriiniidiir. Makine égreniminin modelleme siirecinde kullandig1 verilere egitim
verileri denir. Makine 6grenimi siireci egitim verilerinden modeli bulduktan sonra, model gergek
alan verilerine uygulanir. Bu siire¢ Sekil 2.1’de gosterilmektedir. Seklin dikey akisi 6grenme

stirecini gosterir ve egitilen model, ¢ikt1 olarak adlandirilan yatay akis olarak tanimlanir [59].



Egitim verisi

Makine Ogrenmesi

Girdi verisi - Model - Cikt

Sekil 2.1. Alan verilerine dayali bir modelin uygulanmasi [59]

Makine 6grenimi algoritmalar1 6grenme tiiriine gore iki kategoriye ayrilmaktadir. Bunlar
gelecekteki giktilar: tahmin edebilmesi igin etiketlenmis girdi ve ¢ikt1 verileri {izerinde bir model
egiten denetimli 6grenme ve girdi verilerinde gizli kaliplar1 veya igsel yapilar1 bulan denetimsiz
ogrenmedir.

Denetimli 6grenme, makine 6grenimi sistemini egitmek i¢in 6rnek etiketli veriler saglanarak
bu temelde ¢iktinin tahmin edildigi bir makine 6grenimi yontemidir [60]. Sistem, veri kiimelerini
anlamak ve her bir veri hakkinda bilgi edinmek igin etiketli verileri kullanarak bir model olusturur,
egitim ve isleme tamamlandiktan sonra, tam ¢iktiyr tahmin edip etmedigini kontrol etmek i¢in bir
ornek veri saglanarak model test edilir. Denetimli 6grenmenin amaci, girdi verilerini ¢ikti
verileriyle eslestirmektir [61]. Bir tweet veya {iriin incelemesi gibi bir metnin sinif etiketini veya
duyarliligini tahmin etmek, yani metin siniflandirmasi, denetimli 6grenmeye bir 6rnektir. Denetimli
O0grenme algoritmalar1 siniflandirma ve regresyon algoritmalar1 olarak kategorize edilmektedir.
Simiflandirma teknikleri, bir e-postanin gergek mi yoksa istenmeyen posta m1 oldugu veya bir
timoriin kanserli mi yoksa iyi huylu mu oldugu gibi ayrik yanitlar1 tahmin eder. Siniflandirma
modelleri, verileri kategorilere ayirmak i¢in bir egitim veri kiimesindeki 6nceden tanimlanmisg
smiflar1 kullanir. Yaygin uygulamalar arasinda tibbi goriintiileme, konugma tanima ve kredi
puanlama yer alir. Regresyon yonteminde, veriler analiz edilerek degiskenler arasindaki iliski elde
edilir ve bu daha sonra gelecekteki egilimi tahmin etmek i¢in kullanilir. Regresyon teknikleri pilin
sarj durumu, sebekedeki elektrik yiikii veya finansal varliklarin fiyatlar1 gibi 6lglilmesi zor fiziksel
niceliklere sahip siirekli yanitlar1 tahmin eder. Tipik uygulamalar arasinda sanal algilama, elektrik

yiikil tahmini ve algoritmik ticaret yer alir [62].
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Denetimsiz 6grenme, denetimden yoksun bir 6grenme teknigini ifade eder. Burada makine,
etiketlenmemis bir veri seti kullanilarak egitilir ve herhangi bir denetim olmaksizin ¢iktiy1 tahmin
etmesi saglanir. Denetimsiz bir 0grenme algoritmasi, siralanmamis veri kiimesini girdinin
benzerliklerine, farkliliklarina ve Oriintiilerine gore gruplandirmayr amaglar [63]. En yaygin
denetimsiz 6grenme gorevleri, kiimeleme, yogunluk tahmini, 6zellik 6grenme, boyutluluk azaltma,
birliktelik kurallarim1 bulma, anormallik tespitidir [60]. Kiimeleme teknigi, adindan da anlagilacagi
gibi, bir veri kiimesindeki 6rnekleri, dzelliklerinin belirli kombinasyonlarina gére ayr1 kiimeler
halinde gruplandirir. Miisterileri satin aldiklari {irtinlere gore gruplamak kiimeleme uygulamasina
bir drnektir. Birliktelik kurali algoritmalari, biiyiik bir veri kiimesinin degiskenleri arasindaki tipik
iligkileri tanimlamay1 ifade eder. Cesitli veri 6gelerinin bagimliligini belirler ve birlesmis
degiskenleri haritalar. Tipik uygulamalar arasinda web kullanim madenciligi ve pazar veri analizi
yer alir [58].

Bu ¢alismada pnoémoni tespiti i¢in denetimli 6grenme algoritmalarindan olan DVM, KNN
ve RO algoritmalar: kullanilmistir. Kullanilan siniflandirma algoritmalarinin teorik altyapilar1 ve

calisma prensipleri sirasiyla verilmistir.

2.1. K En Yakin Komsu (KNN)

K en yakin komsu algoritmasi (KNN), denetimli makine 6grenmesi algoritmalari igerisinde
en basit ve en yaygin kullanilan simiflandirma algoritmalarindan biridir. KNN algoritmasi, ¢ok
siifli etiket smiflandirma problemine uygundur ve iyi bir genelleme yetenegine sahiptir [64].
KNN, siniflandirilmamis 6rnegin en yakin komsularini bulmaya ve benzerligi yiiksek siniflara gore
tahminler yapmaya dayali bir siniflandirma yontemidir. En yakin komsular1 bulmak i¢in veri setini
tek tek taramak algoritmanin performansini diisiirdigii i¢in tembel 6grenme yontemi veya vaka
(case) tabanli 0grenme yontemi olarak adlandirilir [65]. Bu dezavantaj nedeniyle, KNN
algoritmasi, 6zellikle biiylik hacimli verilerde yavas calisma siiresine sahiptir.

KNN, orneklem mesafesinin hesaplanmasina dayali bir 6grenme algoritmasidir, algoritma
yeni bir veri 6rnegiyle her karsilastiginda, yeni verideki tiim 6rnekler tizerinden mesafe hesaplanir
ve en kisa mesafeye sahip nokta en yakin komsu olarak adlandirilir. Bu hesaplamadan sonra,
onceden bilinen veri orneklerinden k adet en yakin komsu bulunup yeni ornekteki egitim
verilerindeki Orneklerle karsilastirilarak ve aralarindaki benzerliklere bakilarak simif etiketleri
secilir [66].

Algoritma basit ve uygulamasi kolaydir. Bir model olusturmaya, birkag parametreyi
ayarlamaya veya ek varsayimlar yapmaya gerek yoktur. KNN hiper parametre olarak diger makine
Ogrenimi algoritmalarina kiyasla yalmzca bir k degeri ve bir mesafe metrigi gerektirir. Yeni egitim
ornekleri eklendikge, tiim egitim verileri bellege kaydedildiginden, algoritma herhangi bir yeni

veriyi hesaba katacak sekilde ayarlanir. Algoritma ¢ok yonliidiir. Siniflandirma, regresyon ve
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arama i¢in kullanilabilir [65]. KNN mesafe hesaplamasinda hiyerarsik kiimeleme yontemlerinde
genel olarak kullanilan Oklid, manhattan ve minkowski uzaklik dl¢iimleri ile islem yapilmaktadir.
Uzaklik formiilleri asagidaki Denklem 2.1, Denklem 2.2 ve Denklem 2.3’¢ g6re hesaplanir [65].
Sekil 2.2’de KNN algoritmasinin ¢aligma prensibine ornek verilmistir. Yeni gelen 6rnek ile
etiketlenmis 6rnek gruplar arasindaki mesafe ve en yakin komsuluklar hesaplanarak yeni gelen

ornege siif etiketi atanarak siniflandirma gergeklestirilmis olur [67].

Oklid uzakhig: /Y™, (X — Y;)? (2.1)

Manhattan uzakligi: ) | (X; — Y))| (2.2)
Minkowski uzakhg: (X%, |1 — Y;|P)P (2.3)
X Kategori B X5 Kategori B
A A

A\ \Yeni veri 6megi

Yeni veri 6regi A kategorisine
atanmistir.

Kategori A > X, Kategori A

> X

Sekil 2.2. KNN ¢alisma yapist [67]

2.2. Destek Vektor Makineleri (DVM)

Destek vektor makinesi (DVM), denetimli siniflandirma ve denetimsiz veri kiimeleme veya
regresyon uygulamalari i¢in kullanilabilen 6nemli bir makine 6grenimi algoritmasidir [68]. DVM
smiflandiricisinin arkasindaki fikir, farkli siniflara ait veri noktalarin1 bélen N boyutlu bir uzayda
en uygun hiper diizlemi (¢izgi/alan sinirlayici) bulmaktir. Ancak, bu hiper bélme iki smif arasinda
maksimum marj1 saglayan hiper diizlem dikkate alinarak yapildigindan, marja gore secilir. Bu
marjlar, destek vektorleri olarak bilinen veri noktalar1 kullanilarak hesaplanir. Destek vektorleri,
hiper diizleme daha yakin olan ve hiper diizlemin konumunu ve yoniinii etkileyen veri noktalaridir.
Bu destek vektorlerini kullanarak, siniflandiricinin marji1 maksimize edilir [69].

DVM kolayca uygulanabilir ve mevcut veri 6rneginin sinirlamalar1 dahilinde yiiksek boyutlu
problemlerin ¢6ziimiinde kullanilan uygun yontemlerden biridir. Temel olarak DVM, dogrusal

ayrilabilir veriler icin iyi ¢aligir, ancak dogrusal olarak ayrilamayan veriler i¢in de DVM’lerin
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cekirdek fonksiyonlar1 kullanilarak ayarlanmasi gerekir. Cekirdekler, ayrilamayan egitim verilerini
farkli siniflarin ayrilabilir verilerine doniistiiren matematiksel fonksiyonlardir. Dogrusal olmayan
problemleri ¢dzmek i¢in DVM Gauss, Sigmoid ve Polinom gibi dogrusal olmayan ¢ekirdek
fonksiyonlarim1 kullanir. Veri analizinde DVM uygularken uygun ¢ekirdek ve parametrelerin
secilmesi iki onemli faktordiir [70,71]. Hiper diizlemde her nokta Denklem 2.4’de oldugu gibi
gosterilmektedir. W; agirlik vektorii, x; giris vektdrii, b; bir sapmadir. Iki dogru denkleminin
gosterimi Denklem 2.5°de gésterilmistir [69]. Sekil 2.3°de DVM’nin temel ¢alisma yapist
gosterilmistir.

wx+b=0 (2.4)

-1, wx+b< -1
yi={ v 2.5)

+1, wx+b > +1

Maksimum marjin

X2 X Pozitif hiperdiizlem

Maksimum
marjin
hiperdiizlem

Negatif hiperdiizlem

Sekil 2.3. DVM hiper diizlem yapisi [72]

2.3. Rastgele Orman Algoritmasi (RO)

Rastgele orman siiflandirici, basitligi ve kullanilabilirligi nedeniyle hem siiflandirma hem
de regresyon i¢in en yaygin kullanilan makine 6grenimi algoritmalarindan biridir. Cok sayida karar
agaci olusturularak rastgele orman smiflandiricisi gliglendirilmistir. Birden fazla karar agacindan
olustugu i¢in bir digiimii kaldirmak, agag rastgele se¢ildigi igin ¢iktiy1 ¢ok fazla etkilemez. Temel
fikri, zay1f 6grenen gruplarinin bir araya gelerek daha gii¢lii bir 6grenen olusturmasi olan karar
agaclari, bir kokle baslar, dallarin1 biiyiitmeye devam eder ve sonunda yapraklar adi verilen ug

diigiime ulasir. Agaca aktarilan dallar, 6zellikler veya bu ozelliklere dayali olarak islenmis
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bilgilerdir. Agaglar daha sonra bir sinif sonucu tahmin eder ve agaglar arasindaki ¢ogunluk oyu,
modelin nihai sinif tahmini olarak kullanilir. Diger algoritmalarla karsilastirildiginda Rastgele
Orman Siniflandiricilar, agir1 6grenme riskinin daha diisiik olmasi nedeniyle nispeten yiiksek
dogrulukla biiyiik bir veri tabani tizerinde verimli bir sekilde ¢aligir [73,74].

Bu siniflandiricinin iyi performansinin temel sebebi, ormandaki agaglarin birbiriyle nispeten
baglantisiz olmasi ve bir biitiin olarak verdikleri kararin, her birinin ayr ayr verdigi kararlardan
daha iyi olmasini saglamasidir. Rastgele orman, kalabaligin bilgeligi ad1 verilen basit ve giiglii bir
temel kavram kullanir. Agaclar arasindaki diisiik korelasyon, modelin basarisi i¢in ¢ok 6nemlidir.
Bu 6nciil altinda, birka¢ agacin tahmin sonuglart dogru olmasa bile, diger agaclarin cogunun tahmin
sonuclart dogru oldugu siirece, bu agaclar bir grup olarak sonunda dogru tahmin sonuglarini
alabilir. Baska bir deyisle, rastgele orman modeli iyi performans gosterir ¢iinkii bir biitlin olarak
isleyen nispeten baglantisiz ¢ok sayida model, herhangi bir bilesen modelden daha iyi performans
gosterir [74,75].

Siniflandirma problemleri igin Rastgele Orman kullanilirken genellikle Gini indeksinden
yararlanilir. Bu formiil, bir diigiimdeki her dalin Gini’sini belirlemek i¢in sinifi ve olasilig1 kullanir
ve dallardan hangisinin olusma olasiliginin daha yiiksek oldugunu belirler. Denklem 2.6’da yer
alan Gini indeks formiiliinde P;, veri setinde gézlemlenen smifin goreli sikligini temsil eder ve n,
sinif sayisini temsil eder [74]. Sekil 2.4°de rastgele orman siniflandiricinin nasil ¢alistigini ve tiim

karar agaclarindan son bir sinif ¢ikardigini gosterilmistir.

Gini(tvs) =1 — YL, (P)? (2.6)

Veri seti

|
~ LN P

/ \ / VAN “/ \ /\ /\

\ | \ |
\ » J " A 4 N2 N N4

B Karar Agac1 1 Karar Agac1 2 Karar Agacilr- N -
Sonug - 1 Sonug - 2 Sonulq -N
Cogunlukioylamam /
| Ortalama
NihailSOHuc;

Sekil 2.4. Rastgele orman agaglarinin gosterimi [76]
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3. DERIN OGRENME

Derin 6grenme ham girdi verilerine karg1 daha yiiksek seviyeli 6zellikleri ¢ikarmak i¢in
birden ¢ok katmanin kullanimina dayanan bir tiir makine 6grenmesi algoritmasidir [77]. Derin
ogrenme algoritmalari, YSA olarak adlandirilan katmanli bir algoritma mimarisi kullanir. YSA’da
tek bir algilayicinin (perceptron) yapisi, insan beynindeki néron yapisina benzer sekilde
tasarlanmistir. YSA kendi kendine 6grenme ve karar verme yetenegine sahiptir [78]. Derin
O0grenme aglar1 bir girdi katmani, bir ¢ikti katmani ve her biri birbirine bagl agirlikh diigiimler
veya noronlar i¢eren bir veya daha fazla gizli katmandan olusur. Derin terimi, bir sinir agindaki
gizli katmanlarin sayisini ifade eder. Geleneksel bir sinir aginda gizli katman sayist iki ile ti¢ iken,
derin 6grenmede bir sinir aginda gizli katman sayisi ikiden daha fazladir. Bu miktar, derin
O0grenmenin kapsamli verileri egitme yetenegine sahip oldugunu gosterir [79]. Derin 6grenme
algoritmasi, verileri birka¢ katmandan gegirir; her katman, o6zellikleri asamali olarak ¢ikarma
yetenegine sahiptir ve onu bir sonraki katmana aktarir. Ardisik her katman, bir 6nceki katmanin
¢iktisini girdi olarak kullanir. i1k katmanlar, diisiik seviyeli 6zellikleri ¢ikarir ve sonraki katmanlar,
hiyerarsik bir temsil olugturmak i¢in 6zellikleri birlestirir [80].

Derin 6grenme, makine 6grenimi teorisinin temsili 6grenim (veya 6zellik 6grenimi) dalina
dayanir. Bir gézlem (6rnegin bir goriintii), piksel basina yogunluk degerlerinin bir vektorii olarak
veya daha soyut bir sekilde bir dizi kenar, belirli bir sekle sahip bolgeler vb. gibi bir¢ok sekilde
temsil edilebilir. Derin 6grenmenin sagladigi yararlardan biri, denetimsiz veya yar1 denetimli
Ozellik o6grenimi ve hiyerarsik oOzellik ¢ikarimi igin manuel c¢ikarilan ozellikleri verimli
algoritmalarla degistirmektir [81]. Bu agidan derin 6grenme, yapilandirilmamis verilerle ugrasirken
cok sayida ozelligi isleme yetenegi sayesinde mevcut makine 6grenimi tekniklerinden daha iyi
performans gostermektedir [82]. Makine 6grenimi algoritmasinda problem ¢6zme, problemi farkli
pargalara ayirmayi, bunlari tek tek ¢6zmeyi ve sonucu elde etmek i¢in birlestirmeyi gerektirir. Buna
karsilik derin 6grenme, sorunu ugtan uca ¢ozer [58]. Sekil 3.1°de derin 6grenme kavrami ve makine
ogrenimi ile iliskisi gosterilmistir. Derin sinir ag1, Makine Ogreniminin nihai iiriinii (final product)
yerine gecer ve 6grenme kurali, egitim verilerinden modeli (derin sinir ag1) iireten algoritma haline
gelir. Derin sinir aginin 6nemi, bilginin hiyerarsik olarak islenmesi i¢in karmagik dogrusal olmayan

modele ve sistematik yaklasima kap1 agmis olmasinda yatmaktadir [59].



Egitim verisi

Ogrenme Kurali

Girdi verisi - Derin Sinir Ag1 - Ciktr

Sekil 3.1. Derin Ogrenme kavrami ve onun Makine Ogrenimi ile iliskisi [59]

Derin sinir aglarin1 uygulayan derin 6grenme teknikleri, yiiksek performansl bilgi islem
saglayan donanimin artmasinin yani sira veri miktarinin artmasi ile son yillarda popiiler hale
gelmistir. Saglik alaninda tibbi goriintii analizi, otonom araglar, bankacilik, dogal dil isleme, e-
ticaret uygulamalari i¢in tavsiye sistemi, kigisel asistan olarak otomatik konusma tanima, ses ve
video yakalamayi gelistirme dahil olmak {izere bircok alanda derin 6grenme teknikleri
kullanilmaktadir [83].

Derin 6grenme yontemleri, uctan uca Ozelliklerin otomatik olarak c¢ikarilmasini ve
smiflandirilmasint saglar. Son on yilda, bir tiir derin sinir ag1 olan ESA, orilintii tanima ile ilgili
farkli gérevlerde ¢igir agan sonuglar elde etmistir. Insan gorsel korteksinden esinlenen ESA’lar,
gorlintii tanima problemlerinde gesitli siniflar1 ayirt eder [84,85]. Bununla birlikte, ESA biiylik
miktarda egitim verisi gerektirir. ESA kullanarak tibbi goriintli analizi genellikle ESA’y1 sifirdan
egiterek, yeniden egitmeden onceden egitilmis bir ag kullanarak veya 6nceden egitilmis bir ag1 bir
hedef veri kiimesinde ayarlayarak gergeklestirilir [86]. Bu zorlugun iistesinden gelmek igin
ImageNet [87] gibi ¢ok sayida goriintii tizerinde egitilmis ESA modellerinden bilgi aktaran bir
transfer 6grenme yaklagimi gelistirilmistir. Bu yaklasimda modelin ilk katmanlari kilitlenir veya
ayarlanir, son katmanlar ise hedef veri kiimesi iizerinde egitilir. Kaynak ve hedef veri kiimeleri
farklilik gosterse de model, herhangi bir goriintiiyli degerlendirirken genellikle ayn1 olan diisiik
seviyeli Ozellikleri ¢ikarir, bdylece modeli egitmek ve ek oOzellikler ¢ikarmak icin biiyilik veri
kiimesi gereksinimini ortadan kaldirir. Bu teknik, egitim siiresini ve maliyetini azaltir [88]. Transfer
Ogreniminde iki yaklasim kullanilir. Birincisi, aktarilan modelin ¢ikt1 katmanini yeni veri setinin
smif sayisina gore 6zellestirmek ve ardindan ince ayar yapmaktir. Diger yaklasim, aktarilan modeli

dogrudan bir 6zellik ¢ikarici olarak kullanir [89].
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3.1. Ozellik Cikarim

Ozellik ¢ikarimu, verilerin karmasikligini azaltmak, algoritmalarin ¢alismasini 6grenmek ve
kaliplar1 daha goriiniir hale getirmek i¢in alan bilgisini 6zellik ¢ikaricilarin olusturulmasina dahil
etme siirecidir. Bu silire¢ zaman alicidir, uzmanlik acisindan zor ve pahalidir. Uygulanan
ozelliklerin ¢ogunun bir uzman tarafindan tanimlanmasi ve ardindan makine 6grenimindeki etki
alam ve veri tiiriine gére manuel kodlanmasi gerekir. Ozellikler piksel degerleri, sekil, doku, konum
ve yon olabilir. Makine 6grenimi algoritmasinin ¢cogunun performansi, 6zelliklerin ne kadar dogru
tanimlanip cikarildigina baghidir. Derin 6grenme algoritmalari, verilerden yiiksek seviyeli
ozellikler cikarir. Bu, geleneksel makine Ogrenimine gore bilylik avantaj saglayan derin
O0grenmenin ana Ozelligidir. Sonug¢ olarak derin 6grenme, her problem igin yeni 6zellik ¢ikarict
gelistirme gorevini azaltir [58].

Derin 6zellik ¢ikarma, ImageNet [87] gibi biiyiik bir veri kiimesinde dnceden egitilmis bir
ESA’dan elde edilen dzelliklerin ¢ikarilmasina dayanir. Ozellikler, evrisimli katmanlar kullanilarak
cikarilir ve bir dzellik vektorii elde edilir. Veriler daha sonra, yeni bir gérev i¢in makine 6grenimi
siniflandiricilarindan (DVM, KNN, vb.) biri ile veya tamamen baglantili katmanlardan olusan
siiflandiriciya (softmax) iletilir. Tiim modeli yeniden egitmek yerine yalnizca yeni siniflandiric
egitilir [90]. Bu yaklagimin temel avantaji, 6nceden egitilmis modeli her egitim periyodunda bir
kez calistirmak yerine yeni veriler iizerinde yalnizca bir kez ¢aligtirmaktir, bu nedenle ¢ok daha
hizhidir. Sekil 3.2°de derin bir sinir aginin giris katmanina gelen goriintiiye ait 6znitelikleri diisiik

seviyeden yiiksek seviyeye cikararak goriintii tanimasina bir 6rnek verilmistir.

Derin Sinir Ag1

p—
D—
p—
o

Cikis Katmani
Girig Katmani

=

Sekil 3.2. Derin sinir aglarinin agamali 6znitelik ¢ikarimi [91]

Kenarlar Kenarlarin Nesne
(Kenarlarin Birlesimi Modelleri
E;fz?;;i ) (Yuz Kisimlarmin ~ (Yiizlerin Tespit

Tespit Edilmesi) Edilmesi)
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Yukarida verilen 6rnekte, girdi katmanina goriintiilerin ham verileri verilir. Daha sonra, ilk
gizli katman yerel kontrast modellerini belirleyecek, yani renkler, parlaklik vb. temelinde ayrim
yapacaktir. Ardindan 2. gizli katman yiiz 6zelligini belirleyecek, yani gozlere, buruna ve dudaklara
vb. sabitlenecektir. Ve sonra, bu yiiz 6zelliklerini dogru yiiz sablonuna sabitleyecektir. Dolayisiyla,
3. gizli katmanda, yukaridaki sekilde de goriilebilecegi gibi, dogru yiizii belirleyecek ve ardindan

cikt1 katmanina gonderilecektir.

3.2. Transfer Ogrenimi

Transfer 6grenimi, 6grenmenin bir modelden digerine aktarilmasidir. Transfer 6grenimi ile
kapsamli bir veri kiimesi lizerinde egitilmis bir modelden 6grenmeyi alip bagka bir veri kiimesine
tam olarak uyarlamak miimkiindiir. Bu yaklasim, modeli daha hizli egitmede etkilidir ve ayni
zamanda hesaplama acisindan daha ucuzdur. Transfer 6grenimi, bir modelin biiyiik bir veri
kiimesinden bilgi edinmesini saglarken ayni zamanda daha az etiketli gézlem i¢eren daha kiigiik
bir veri kiimesindeki performansini artirir. Derin 6grenme modellerinin son birkag katmani, veri
kiimesine 6zgii bilgiler i¢erir; bu nedenle, onlar1 baska bir veri kiimesinde yeniden egitmek, modeli
yeni verilerle uyumlu hale getirir [92].

Siniflandirma i¢in kullanilabilecek halihazirda egitilmis ¢ok sayida transfer 6grenme modeli
bulunmaktadir. Onceden egitilmis bir model, baska birinin benzer nitelikteki bir sorunu ele almak
icin gelistirdigi bir modeldir. Siniflandirma sorunlari igin, onlar egitmek iizere ¢ok biiyiik veri seti
kullanilir. Benzer bir sorunu ele almak i¢in sifirdan bir model olusturmak yerine, baska bir sorun
iizerinde egitilen model bir baslangi¢ noktasi olarak kullanilabilir [93]. Hedef etki alanindan veri
kullanilabilirligine bagli olarak, tiim katmanlar yeniden egitilebilir veya yalnizca son (tamamen
bagli) katman yeniden egitilebilir. Bu yaklasim, sinir aglarinin nispeten daha kiigiik veri kiimeleri
kullanilarak yeni gorevler icin egitilmesine izin verir, ¢linkii yararli diisiikk seviyeli o6zellikler
kaynak etki alan1 verilerinden 6grenilir [94].

Herhangi bir derin 6grenme modelinin performansi mevcut egitim verilerine dayanir. Daha
biiyiik veri kiimeleri daha iyi 6grenme ve daha iyi performans saglar. Ancak, gizlilik endiseleri
nedeniyle saglik uygulamalarinda biiyiik egitim verilerinin kullanilabilirligi her zaman miimkiin
degildir. Bu yetersiz veri sorununu ¢dzmek ig¢in transfer 6grenme yontemi uygulanmaktadir.
Transfer 6grenme, daha biiylik bir veri kiimesi lizerinde zaten egitilmis olan ve daha sonra yeni

hedef gorev i¢in degistirilen agirliklar1 kullanir [92,95].
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Sekil 3.3. Pnémoni siniflandirilmasina ait transfer 6grenme yontemi gosterimi [95]

Sekil 3.3’de pnomonili CXR’leri saglikli CXR’lerden ayirt ederken transfer 6grenme
yonteminin uygulanmasina o6rnek gdsterilmistir. ImageNet veri tabaninda 6nceden egitilen ESA
modellerinin son 3 katmani yani siniflandirmaya ait etiketlerin bulundugu katmanlarin
degistirilmesiyle ESA yeni veri kiimesine uyum saglayarak basaril1 bir siniflandirma performansi

gostermektedir.

3.3. Uctan Uca Ogrenme

Ucgtan uca derin 6grenme, herhangi bir manuel 6zellik ¢ikarimi olmaksizin dogrudan ham
girdi verilerinin girdi olarak kullanilarak karmasik gorevler i¢in tek bir sinir aginin egitildigi bir
makine 0grenimi teknigi olarak tanimlanmaktadir. Biiylik 6lgekli veri kiimelerinin olusturulmasi
sayesinde, uctan uca derin 6grenme konugma tanima, makine ¢evirisi, yiiz algilama vb. gibi cesitli
alanlarda devrim yaratmistir. Geleneksel makine 6greniminde, egitim veri hatt1 en az 2 asamadan
olusur: Ik asamanin amaci, ham girdi verileri géz oniine alindiginda ayirt edici 6zellikler
iretmektir. Bu, her gorev icin en alakali 6zellikleri belirlemek {izere alana 6zgii bilgi kullanilarak
yapilir. Bir sonraki asama, c¢ikarilan Ozellikleri alir ve bazi geleneksel makine Ogrenimi
algoritmalarini kullanarak tahminleri olusturur. Basarili olmasina ragmen, bu prosediir ¢ok zaman
alicidir ve alana 6zgii ¢ok fazla bilgi gerektirir. Mevcut veri kiimelerinin boyutundaki son artis,
manuel ¢ikarilan 6zellikleri manuel olarak ¢ikarmadan girdi ¢ikti eslemesini dogrudan verilerden
ogrenmeyi amaglayan ugtan uca derin 6grenmenin yiikselisini saglamistir. Yani, ugtan uca 6grenme
ile derin 6grenme algoritmalar1 girdi verilerini alir ve bunlar (genellikle biiyiik) bir sinir agindan
gecirilir. Ardindan, ag girdi verilerini isler ve daha sonra tahminler olusturmak i¢in kullanilan ilgili

Ozellikleri otomatik olarak c¢ikarir. Tim prosediir, manuel miihendislige ihtiya¢ duyulmadan
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gergeklestirilir ve gereken zaman ve ¢aba miktarini azaltir. Bu teknigin basarisi, egitim sirasinda
kullanilan muazzam miktarda veride ve sinir aglarinin sadece ¢ok sayida veri iizerinde egitim
yaparak yiiksek seviyeli Ozellikleri 6grenme yeteneginde yatmaktadir [96,97]. Sekil 3.4’de

geleneksel makine Ogrenimi ile derin 6grenme teknikleri arasindaki girdi ¢ikti iligkisi

kargilagtirilmigtir,
Geleneksel Yaklagim
L] A
Ham girdi — q-_£ — = b DO —— Cikt
Manuel dzellik ¢ikarimi Ogrenme
Uctan Uca Ogrenme
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Otomatik 6zellik ¢ikarimi ve 6grenme
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Sekil 3.4. Manuel 6zellik ¢ikarma ile karsilastirildiginda ugtan uca 6grenme kavraminin gésterimi [98]

Hem derin 6grenme hem de geleneksel makine 6grenimi, Sekil 3.4’de gosterildigi gibi girdi
ve c¢ikt1 arasindaki karmasik iliskiyi modellemek icin veriye dayali yapay zeka teknikleridir.
Yiiksek hiyerarsik yapiya ek olarak, derin 6grenme ayrica 6zellik 6grenme, model olusturma ve
model egitimi acgisindan geleneksel makine 6grenimine gore ayirt edici niteliklere sahiptir. Sekil
3.4°de gosterildigi gibi, uctan uca derin dgrenme yaklagimi, manuel 6zellik se¢imi ihtiyacini
ortadan kaldirir. Derin 6grenme, farkli ¢ekirdekler secerek veya ugtan uca optimizasyon yoluyla
parametreleri ayarlayarak 6zellik 6grenmeyi ve model olusturmayi tek bir modelde birlestirir.
Geleneksel makine 6grenimi ise 6zellik ¢ikarma ve model olusturma islemlerini ayri bir sekilde

gergeklestirir ve her modiil adim adim olusturulur [99].

3.4. Evrisimsel Sinir Aglar1 (ESA)

Evrisimsel Sinir Ag1 ya da kisaca ESA, kenarlar, doku, renk ve sekiller gibi goriintiilerdeki
ortintiileri tanimlamak i¢in Ogrenilebilir filtreler veya cekirdekler kullanan bir derin 6grenme
algoritmasidir [28]. Derin bir sinir ag1, paralel olarak ¢alisan ve biyolojik sinir sistemlerinden
esinlenen basit O0geler kullanarak birden fazla dogrusal olmayan islem katmanini birlestirir.
ESA’nin ¢ikis katmani genellikle ¢ok sinifli siniflandirma sinir agini kullanir. ESA, 6zellik
¢ikariciyr manuel olarak tasarlamak yerine egitim siirecine dahil eder. ESA’nin 6zellik ¢ikaricisi,

agirhiklar1 egitim siireci ile belirlenen ozel tiir sinir aglarindan olugsmaktadir. ESA’nin manuel
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0zellik ¢ikarma tasarimini otomatiklestirilmis siirece doniistiirmesi, birincil 6zelligi ve avantajidir.
Sekil 3.5’de ESA’nin tipik mimarisi yer almaktadir. Bir ESA, bu grafik gésterime benzer bir

mimari etrafinda inga edilmistir [59].
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Sekil 3.5. ESA’nin tipik mimarisi [100]

Sekil 3.5’den de goriilecegi lizere bir ESA, 6zellik ¢ikarma ag1 ve siniflandirma aginin seri
baglantisindan olusur. Giris goriintiisii 6zellik ¢ikarma agina girer. Cikarilan 6zellik sinyalleri
siiflandirma sinir agina girer. Siniflandirma sinir ag1 daha sonra goriintiiniin 6zelliklerine gore
calisir ve ¢iktiyr iiretir. Ozellik ¢ikarma sinir ag1, evrisim katmani, aktivasyon fonksiyonu ve
havuzlama katmani giftlerinden olusur. Evrisim katmani, evrigim islemini kullanarak goriintiiyii
donistiiriir. Bir dijital filtre koleksiyonu olarak diisiintilebilir. Havuzlama katmani komsu pikselleri
tek bir pikselde birlestirir. Bu nedenle, havuzlama katmani goriintiiniin boyutunu ve agin 6grenmesi
gereken parametre sayisini azaltir. Bu islemler onlarca veya yiizlerce katman iizerinde tekrarlanir
ve her katman farkli 6zellikleri tespit etmeyi dgrenir. Ozellik tespitinden sonra, ESA mimarisi
siniflandirmaya geger. Sondan bir dnceki katman, K’ nin agin tahmin edebilecegi sinif sayisi oldugu
K boyutlu bir vektdr ¢ikaran tam bagl bir katmandir. Bu vektor, siniflandirilan herhangi bir
gorlintliniin her bir smifi i¢in olasiliklar1 igerir. ESA mimarisinin son katmani, siniflandirma

ciktisini saglamak i¢in bir softmax islevi kullanir [100,101].

ESA Katmanlari

Bu kisimda genel bir ESA mimarisini olusturan katmanlardan sirasiyla bahsedilmistir.
Ayrica bu tez c¢alismasi kapsaminda gelistirilen pnomoni tespit modelinde kullanilan toplu

normalizasyon katmanindan da bahsedilmistir.
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3.4.1. Giris Katmam

Giris katmani ESA’nin ilk katmanini olusturur. Giris katmaninda, giris verileri aga ham
olarak verilir. Girdi bir goriintii ise eger gorintiileri her bir elemanin bir pikselin renk
yogunlugunun degeri oldugu tensorler (¢ok boyutlu matrisler) olarak temsil eder [100]. Kullanilan
bir agda giris katmanindaki gériintiiniin boyutu énemlidir. Biiyiik girdi boyutlar1 ¢cok fazla bellek
kullanimina neden olur ve parametre sayisini artirir, bu da ag1 yavaslatabilir, ancak daha fazla
Oznitelik ¢ikarilabilecegi i¢in daha iyi sonuglar verebilir. Ayrica kii¢iik girdi boyutlari ile parametre
sayisi azalacagindan ag daha hizli sonug verebilir ancak 6znitelik ¢ikarimi daha az oldugu i¢in agin

performansi diisebilir [102].

3.4.2. Evrisim Katmam

Evrigsim katmanlari, evrisimsel Sinir ag1 yapisinin ana yapi taslaridir. Evrisim katmani 6zellik
cikarma katmani olarak da bilinir ¢linkil aga verilen gorlintiiniin 6zellikleri bu katmanda ¢ikarilir.
Evrigim katmaninda cesitli filtreler (kernel) kullanilarak goriintiiniin 6zellik haritast olusturulur
[103]. Kullanilan filtreler 2x2, 3x3, 5x5 gibi farkli boyutlarda olabilmektedir. Bu filtreler ile
goriintiiye evrisim islemi uygulanir. Evrisim, bir matrisin (filtre) digerinin (goriintii) tizerinde
kaydirildig1 ve iist tiste gelen degerleri arasinda eleman bazinda ¢arpimlarin gerceklestirildigi,
ardindan tiim ¢arpimlarin toplandig1 (iist iiste binen her konumda, bir sonrakine gegmeden 6nce)
ve bir ¢ikt1 elde edildigi dogrusal bir islemdir [100]. ESA’larin egitimi sirasinda egitim setindeki
her 6grenme iterasyonu ile filtrelerin katsayilar1 degiserek agin 6zniteliklerinin belirlenmesinde
verinin hangi bolgelerinin 6nemli oldugu belirlenir [102]. Girig verilerindeki 6zellikler, bir modelin
bir goreve gore 6grenmesini ve genellestirmesini saglayan anlamli bilgiler iceren koseler, lekeler,
kenarlar, egriler, sekiller, dokular, yogunluk oriintiileri, kiiresel baglamdaki soyut ve karmasik
ayrintilar vb. anlamina gelir [100]. Sekil 3.6’da girdi dizisine evrigim islemi uygulandiktan sonra

elde edilen 6zellik haritasinin bir gosterimi bulunmaktadir.
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Sekil 3.6. Evrigimli isleminin bir gosterimi [100]

Her filtre tarafindan {iretilen evrisimsel ¢iktilar (bir sapma degeri eklenmis) sonraki
katmanlara aktarilmak tizere bir matriste eslenir. Bu matrise 6zellik haritasi denir. Ciinki bir filtre
tarafindan cikarilan oOzellikleri saklar. Her filtre kendi 6zellik haritasini {iretir, bu nedenle bir
katman tarafindan iiretilen tek kanall1 6zellik haritalariin sayisi, i¢inde bulunan filtrelerin sayisina
esittir. Bir 6zellik haritasi, ndronlarin ¢ikiglarini (filtreler yerine) gosteren aktivasyon fonksiyonlar

uygulandiktan sonra alindiginda aktivasyon haritasi olarak adlandirilabilir [100].

3.4.3. Toplu Normalizasyon Katman

Bir toplu normalizasyon katmani (Batch Normalization / BN), her kanal i¢in bagimsiz olarak
tiim gozlemler genelinde mini bir veri grubunu normallestirir. BN, derin 6grenme sinir agindaki bir
katmanin girdilerini otomatik olarak standartlagtirmak i¢in tasarlanmis bir tekniktir. BN bir kez
uygulandiginda, bir sinir aginin egitim siirecini 6nemli 6l¢iide hizlandirma etkisine sahiptir ve bazi
durumlarda modelin performansini artirir. Teknik olarak, katman girdileri standartlastirilacak
sekilde doniistiirecektir, yani sifir ortalamaya ve bir standart sapmaya sahip olacaklardir, egitim
sirasinda  katman her girdi degiskeni igin istatistikleri takip edecek ve bunlar1 verileri
standartlagtirmak icin kullanacaktir. BN, bir modelin ¢ogu noktasinda ve cogu derin 6grenme sinir
ag1 tiriinde kullanilabilir. Yazarlar c¢alismalarinda [104] toplu normallestirme katmanlarinin
eklenmesinin 14 kat daha az egitim adimina ihtiya¢ duyan ancak yine de ayni1 dogrulugu saglayan

bir ag olusturdugunu gostermistir. Evrigsimsel sinir aginin egitimini hizlandirmak ve agin baglatilma
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performansini iyilestirmek i¢in evrisim katmanlari ile ReLU katmanlar1 gibi dogrusal olmayan

katmanlar arasinda toplu normallestirme katmanlart kullanilabilir. [104,105].

3.4.4. Etkinlestirme (Aktivasyon) katmam

Aktivasyon katmanlari, evrisimsel sinir aglarin bir diger 6nemli yap1 tagidir. Aktivasyon
katmanlar sinir aglarina dogrusal olmayan bir 6zellik kazandirmak i¢in kullanilir. Aktivasyon
katmani, evrisim katmanindan sonra gelir. Genellikle dogrusal olmayan bu katman iiretilen ¢iktiy1
ayarlamak ve sinirlamak i¢in kullanilir [106]. Bu katmanin kullanim amaci evrisim katmanindan
sonra olugsan dogrusal agdaki negatif degerleri sifira indirerek ag1r dogrusal olmayan bir forma
sokmak ve agin daha hizli 6§renmesini saglamaktir. Aktivasyon fonksiyonu olarak da adlandirilir.
Tanh, sigmoid, ELU gibi bir¢ok farkli aktivasyon fonksiyonu vardir ancak ESA baglaminda en
yaygin kullanilan fonksiyon Dogrultulmus Dogrusal Birim (Rectified Linear Unit / ReLU)’dir.
ReLU’nun matematiksel yorumu f(x) = max (0, x) seklindedir. Girdinin tiim degerlerini pozitif
sayilara doniistiiriir. Ana avantajlarindan biri, giris negatif oldugunda sifir ¢ikisa sahip olmasi ve
giris pozitif oldugunda girisle ayn1 degere sahip olmasidir. Dolayistyla aktivasyon fonksiyonlarimin
gradyanlar1 her zaman ya 1 ya da 0'dir ve bu da daha derin sinir aglarinda kaybolan gradyan [107]
sorunundan kac¢inmaya yardimci olur. Kaybolan gradyan sorunu, aktivasyon fonksiyonunun
gradyani sinir aglarinin kaldirabileceginden daha kiiciik hale geldiginde ortaya ¢ikar. ReLU’da
fonksiyonun gradyani ya sifir olacaktir (girdi sifirdan kiiciik oldugunda) ya da yeterince biiyiik bir
deger olacaktir (girdi sifirdan biiyiik oldugunda). Boylece ReLU, aktivasyon fonksiyonlarinin
neden oldugu kaybolan gradyan sorunundan kaginmaya yardimci olur [108]. Diisiik hesaplama
yiikii, ReLU’nun digerlerine gore bir diger avantajidir [109]. Girdi degerlerine ReL U aktivasyon
fonksiyonunun uygulanmasi Denklem 3.1’e gore hesaplanir [102].

0egerx < 0} (3.1)

xegerx =0

fe ={
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Sekil 3.7. Aktivasyon fonksiyonu olarak ReLU kullanimina bir 6rnek [100]

Sekil 3.7°de girdi dizisinin evrisim katmanindan gecip bir 6znitelik haritasi olustuktan sonra
aktivasyon fonksiyonu olarak ReLU kullanimimna bir drnek verilmistir. Ozellik haritasindaki
diigiimler, aktivasyon fonksiyonundan gegirilir. Pozitif degerler ayn1 degerle c¢ikarken, negatif
degerler bir esikte karsilandigini ve 0 deger olarak ¢ikar. Boylelikle dogrultulmus bir 6znitelik

haritasi elde edilir.

3.45. Havuzlama Katmam

Havuzlama islemi veya havuzlama katmani genellikle ESA’larda parametre sayisim ve
hesaplama yiikiinii azaltmak i¢in kullanilir. Derinligi etkilemeden bir sonraki evrisim katmani igin
girdi boyutunu azaltir. Yani havuzlama sonrasinda giris verisinin yiikseklik ve genislik degerleri
azalirken derinlik yani kanal sayisi degismez. Havuzlama katmanlari, giris dizilerinin asagi
orneklemesi igin kullanilir. Girig matrisini alt matrislere bolerek ve her bir alt matrisi temsil edecek
bir deger segerek asag1 6rnekleme gerceklestirir. Genel olarak iki farkli havuzlama katmanindan
bahsedilebilir [102]. Bunlar maksimum havuzlama ve ortalama havuzlama katmanlaridir.
Maksimum havuzlamada alt matrisi temsil etmek i¢in alt matristeki maksimum deger alinirken,
ortalama havuzlamada alt matrisin ortalamasi1 alinir. Scherer ve digerleri [110]’da maksimum
havuzlamanin nesne smiflandirma gorevlerinde ortalama havuzlamadan daha etkili oldugunu

gOstermistir.
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Sekil 3.8. Maksimum havuzlamaya 6rnek bir gosterim [100]

Sekil 3.8’de 2 boyutunda ve 2 adimli bir maksimum havuzlama 6rnegi yer almaktadir.
Maksimum havuzlama kullanan bir ESA, o6zelliklerin uzamsal diizenini koruyarak boyutlart
azaltilmig 6zellik haritalariyla sonuglanacaktir. Bu sekilde, 2 boyutunda ve 2 adimli bir havuzlama

cekirdegi, orijinal boyutlarin yarisi kadar kiigiiltiilmiis bir 6zellik haritasi elde eder.

3.4.6. Tam Baglantih Katman

Bir ESA’da birbirini izleyen evrisim, ReLU ve havuzlama katmanlarindan sonra tam
baglant1 katmani gelir. Evrisim ve havuzlama katmanlarindan gelen ¢ikti, girdi goriintiisiini
siniflandirmak veya segmentasyon gibi diger gorevleri gerceklestirmek igin standart bir sinir ag1
mimarisi kullanan bir veya daha fazla tamamen bagh katmandan (yogun katmanlar olarak da
bilinir) gecirilir. Tam baglanti katmani igin 6zellik haritasi 1 boyutlu bir 6zellik vektoriine
dontstiirtlir, buna diizlestirme denir [111]. Bu katman, bir 6nceki katmanin tiim alanlarina bagli
oldugu i¢in tam baglanti katmani olarak adlandirilir. Tam baglant1 katmani, goriintiileri farkli
kategorilerde siniflandirmak i¢in kullanilir. Bir ESA’daki evrigimli ve havuzlama katmanlarinin
¢iktisi, giris gorlintiisiiniin 6nemli 6zelliklerini temsil eden bir dizi iist diizey 6zelliktir. Tamamen
baglantili katmanlarin rolii, girdi goriintlistiniin sinifi veya etiketi hakkinda bir tahmin yapmak igin
bu o6grenilmis oOzellikleri kullanmaktir. Tam baglanti katmanlar yiiksek seviyeli (karmasik)
Ozellikleri yakalama ve 6grenme ve bunlar1 bir sekilde anlamli sonuglara doniistiirme yetenegine
sahiptir. Yogun baglantilar nedeniyle ¢ok sayida parametreye ve yliksek hesaplama yiikiine
sahiptirler. Bir agda tam baglanti katman1 yoksa karmasik 6zellikleri isleme yeteneginden yoksun

olacak ve genel performansi 6nemli 6l¢iide disiirecektir [100].
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TAM BAGLANTILI KATMANLAR

SINIF 1
SINIF 2
SINIF 3

SOFTMAX

GiRDi

SINIFLANDIRMA
Sekil 3.9. Tam baglantili katman [112]

Sekil 3.9°da gosterildigi gibi komsu katmanlar arasindaki néronlar tamamen baglidir.

3.4.7. DropOut Katmani

DropOut, derin sinir aglari i¢in en popiiler diizenli hale getirme teknigidir. Genellikle, tiim
ozellikler tam baglant1 katmanina baglandiginda, egitim veri setinde asir1 6grenmeye neden olabilir.
Asir 6grenme, belirli bir model egitim verileri lizerinde ¢ok iyi ¢alistiginda ortaya ¢ikar ve yeni bir
veri lizerinde kullanildiginda modelin performansinda olumsuz bir etkiye neden olur. Bu sorunun
iistesinden gelmek i¢in, egitim siireci sirasinda birkag¢ néronun sinir agindan ¢ikarildigi ve modelin
boyutunun kii¢iiltiildiigii bir birakma katmani kullanilir. Egitim siiresi boyunca, her iterasyonda, bir
ndron gecici olarak birakilir veya p olasiligi ile devre dis1 birakilir. Bu, bu néronun tiim giris ve
¢ikislarinin mevcut iterasyonda devre disi1 birakilacagi anlamina gelir. Devre dis1 birakilan néronlar
her egitim adiminda p olasiligi ile yeniden 6rneklenir, bdylece bir adimda devre dis1 birakilan bir
noéron bir sonraki adimda aktif olabilir. Birakma orani 0,31 gectiginde, diigiimlerin %30’u sinir
agindan rastgele c¢ikarilir. Birakma, ag1 daha basit hale getirerek asir1 6grenmeyi 6nledigi igin bir
derin 6grenme modelinin performansini artirir. Egitim sirasinda noronlari sinir aglarindan diistiriir
[113]. Agin daha iyi performans gostermesinin nedeni, devre dist birakmanin agin az sayida nérona
cok fazla bagimli olmasini engellemesi ve her néronu bagimsiz olarak ¢aligmaya zorlamasidir.
Sekil 3.10’da noronlara DropOut uygulandigi ve uygulanmadigi zamanki durumlarn

gosterilmektedir.
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Sekil 3.10. Dropout’a 6rnek [114]

3.4.8. Smiflandirma Katmani

ESA’nin 6nemli bir bilesenidir ve islevi, ag tarafindan ¢ikarilan ve &grenilen zelliklere
dayanarak kararlar vermektir. Cikis katmaninin tiim ndronlart dnceki tam baglanti katmaniyla
tamamen baglantilidir. ESA’nin ¢ikis katmanindaki néron sayisi, siniflandirma gorevleri i¢in sinif
sayisina ve regresyon gorevleri i¢in regresyon ¢iktilarinin sayisina esittir. Her bir ndron her bir
sinifa karsilik gelir ve bir ndron tarafindan gosterilen en yiiksek aktivasyon, ag tarafindan yapilan
ilgili smifin tahminini gosterir [100]. Genel olarak, Softmax Aktivasyon Fonksiyonu ¢ikis
katmaninda kullanilir, ¢iinkii goriintii siniflandirmasi yapilacak tiim siniflar i¢in olasilik dagilimi
verir. En yiiksek olasiliga sahip olan siif, modelin tahmini olarak se¢ilir. Softmax islevi, rastgele
gercek degerli puanlardan olusan bir vektorii alir ve bunu sifir ile bir arasinda toplami 1 olan

degerlerden olusan bir vektore sikistirir [106].

3.5. Kullanilan Derin Ogrenme Algoritmalar

Bu tez ¢alismasi kapsaminda pnémoni tespiti i¢in kullanilan derin 6grenme yaklagimlari igin

se¢ilen derin 6grenme mimarileri bu kisimda detayli olarak anlatilmistir.

3.5.1. AlexNet

Alex Krizhevesky ve ark., LeNet’e kiyasla daha derin ve daha genis bir ESA modeli
onerdiler ve 2012°de ImageNet Biiyiikk Olcekli Gérsel Tanima Miicadelesi (ILSVRC) olarak
adlandirilan gorsel nesne tanima yarigsmasini kazandilar. Goriintii giris katmani 227x227x3 gorinti
boyutu gerektiren ag, 8 katman derinliginde toplamda 25 katmandan olusmaktadir. AlexNet, bes
evrisim katmani, 4096 ¢iktili iki tam bagl katman ve goriintiileri 1000 nesne kategorisinde
smiflandirabilen Softmax ¢ikis katmanindan olusmaktadir. Her bir evrisim katmanindan sonra,

AlexNet ag boyutunu azaltmak i¢in maksimum havuzlamaya sahiptir. Dogrusal olmayan 6zellikleri
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dahil etmek icin, aktivasyon fonksiyonu olarak LeNet’teki tanh fonksiyonunun yerini ReLU
almistir. ReLU fonksiyonunun egitim siirecini hizlandirmak, iterasyon sayisini azaltmak ve asir
uyumu etkili bir sekilde dnlemek gibi bir¢cok avantaj1 vardir. AlexNet’te birakma katmani, modelin
egitim siirecini yani agiri uyum derecesini azaltmak i¢in kullanilir, néronlar belirli bir olasilikla
durdurulur, bdylece yerel diiglimlere olan bagimlilik azalir ve modelin genelleme yetenegi

iyilestirilir [84]. Sekil 3.11°de AlexNet ’in temsili bir gosterimi yer almaktadir.
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Sekil 3.11. AlexNet [115]

3.5.2. SqueezeNet

SqueezeNet, 18 katman derinligindedir ve 68 katmanlidir. A§ mimarisi bagimsiz bir evrisim
katmani (convl) ile baslar, ardindan 8 atesleme modiilii (fire2-9) takip eder ve son bir evrisim
katmani (conv10) ile biter. Bir atesleme modiilii, 1x1 ve 3x3 evrisim filtrelerinin bir karigimina
sahip bir genisletme katmanina beslenen (yalnizca 1x1 filtreleri olan) bir sikistirilmis evrigim
katmanindan olusur. Atesleme modiilii basina filtre sayisi, agin bagindan sonuna kadar kademeli
olarak artirilir. SqueezeNet, convl, fire4, fire8 ve conv10’dan sonra 2’lik bir adimla maksimum
havuzlama gergeklestirir. Kisaca 2 evrisimsel katmana, 8 atesleme modiiliine ve 4 havuzlama
katmanina sahiptir. 227x227x3 boyutunda bir giris goriintiisii alir. SqeezeNet mimarisi, parametre
sayisini azaltmak ve yiiksek dogruluk elde etmek igin gesitli iyilestirmelere sahiptir [116].
SqueezeNet mimarisi, verimlilik (daha az parametreye ve daha kii¢iik model boyutuna sahip olmak)

ile ilgili temel kaygilarla bilgisayarli gérme gorevleri igin 6nerilen derin bir ESA’dir [117].
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Sekil 3.12. SqueezeNet’de kullanilan atesleme modiilii [117]

SqueezeNet mimarisinin temel yapi tasi Sekil 3.12°de gosterilen atesleme modiiliidiir. Modiil
bir sikistirma agsamasi ve bir genisletme agamasi igerir. Sikistirma agamasi, bir dizi 1x1 filtre ve
ardindan bir ReLU aktivasyonu uygular. Ogrenilen sikistirma filtrelerinin sayis1 her zaman giris
hacminin boyutundan daha kiigiiktiir. Sonug¢ olarak, sikistirma asamasi bir boyutsallik azaltma
islemi olarak diisiiniilebilir ve aymi zamanda giris kanallar1 arasindaki piksel korelasyonlarim
yakalar. Sikigtirma agamasmin ¢iktisi, 1x1 ve 3x3 konvoliisyonlarin bir kombinasyonunun
Ogrenildigi genisletme asamasina beslenir. Daha biiylik 3x3 filtreler pikseller arasindaki uzamsal
korelasyonlar1 yakalamak i¢in kullamlir. Genisletme asamasinin ¢iktilar1 kanal boyutu boyunca
birlestirilir ve ardindan bir ReLU aktivasyonu ile degerlendirilir. Orijinal makale, genisletme
asamasinda n, 1x1; ve n, 3x3 filtre kullanilmasini Onermistir; burada n, stkma asamasinda
kullanilan filtre sayisindan 4 kat daha biiytliktiir. Tlim SqueezeNet mimarisi, geleneksel evrigim
katmanlari, maksimum havuzlama, atesleme modiilleri ve sonunda bir ortalama havuzlama katmani
istiflenerek olusturulmustur. Modelde tam baglantili katman bulunmamaktadir [117,118].

SqueezeNet mimarisi Sekil 3.13’de yer almaktadir.

Softmax

Maksimum
Havuzlama / 2
Evrisim 10
Ortalama Havuzlama

Sekil 3.13. SqueezeNet mimarisi [118]
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3.5.3. VGG16 ve VGG19

Simonyan ve Zisserman tarafindan onerilen VGG (Visual Geometry Group), bir ESA
mimarisidir ve 2014 yilinda ILSVRC yarismasini kazanmak i¢in kullanilmistir. VGG16, ImageNet
veri setinde %92,7 ile ilk 5 test dogruluguna ulagmustir. Toplamda ag 16 katman derinligindedir.
VGG16’da, daha 6nceki modellerde kullanilan biiylik ¢ekirdek boyutlu filtrelerin yerine birbiri
ardia ¢oklu 3x3 ¢ekirdek boyutlu filtreler kullanilmigtir. Birden fazla ¢ekirdek katmani, sinir
aginin derinliginin artmasina neden olur. Bu, sinir aginin daha karmasik 6zellikleri ve kaliplart
anlamasini ve tanimasini saglar. Bu mimarinin en 6nemli 6zelligi, ¢ok sayida hiper parametreye
sahip olmak yerine, evrisim katmanlarinda basit 3x3 boyutundaki ¢ekirdeklere ve maksimum
havuz katmanlarinda 2x2 boyutuna sahip olmalaridir. VGG19, kisaca 19 katmandan (16 evrigim
katmani, 3 tam baglantili katman, 5 maksimum havuzlama katmani ve 1 softmax katmani) olusan
VGG modelinin bir ¢esididir ve esas olarak goriintli siniflandirmasi i¢in kullanilan bir ESA’dir.
Temel mimarisi VGG16’ninkine benzemektedir. Bu aglara girdi olarak sabit boyutta (224x224)
RGB goriintii verilmistir, bu da giris matrisin (224x224x3) seklinde oldugu anlamina gelmektedir
[119]. Sekil 3.14’de VGG16 mimarisi yer alirken Sekil 3.15’de VGG19 mimarisi yer almaktadir.

v ey N ey © | ©o o | <<

|| (| o | o NN S| S

oo wL || wow | — | —

slsls|E|22 21Elelglg|Elg|2|E|2|2|E|E &

é oo || cll-=2-3](. -2 o | -=| = -= S || o= | = @ [ = | = I N
ElslglIlI=]z)| =z~ 2sl2fels|-&llwlElE12
= AREHEEHBEBHEHEHEHEEHEHEEEEEE
8888%@@@%000%0@%0@%00
T|lo|o|o|T|ow|o|mw|T|o|o|T|o|m|T| P

x | x| x x || x| x x | x x | x X x

™| m ™| m ™| m ™| m O™
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3.5.4. ResNet50

ResNet, Residual Network (Artik Ag) anlamina gelmektedir. He ve ark., tarafindan 'Goriinti
Tanima i¢in Derin Artik Ogrenme' adli makalesinde tanitilan model, ImageNet veri setinde %3,57
ilk 5 hatas1 elde etmis ve 2015°de ILSVRC yarismasini kazanmustir [120]. Agmn evrisimli
katmanlar1 3x3 filtrelere sahiptir ve alt drnekleme dogrudan 2 adimli evrigimli katmanlar tarafindan

yapilir. Agin son katmani, sirastyla ReLU ve softmax aktivasyon fonksiyonlarini kullanan 256 ve
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iki kanalli tam baglantili bir katmandir. Bu mimari, derin 6grenme egitimindeki ikilemleri ortadan
kaldirmak i¢in olusturulmustur, ¢iinkii derin 6grenme egitimi genel olarak olduke¢a fazla zaman alir
ve belirli sayida katmanla simirhidir. ResNet, hata yilizdesini en aza indirirken daha fazla sinir
katmanina sahip derin sinir aglarmimn verimliligini artirir. Bagka bir deyisle, atlama baglantilart
onceki katmanlardan gelen ¢iktilar y1g1lmis katmanlarin ¢iktilarina ekleyerek daha 6nce miimkiin
olandan ¢ok daha derin aglarin egitilmesini miimkiin kilar. Ayrica, aglar1 egitme yetenegi daha
iyidir. ResNet’de, derin sinir aglarinda meydana gelen azalan dogruluk ve kaybolan gradyan
sorunlarini diizeltmek icin kisayol baglantilar1 kullanilir. Bu baglantilar, agin egitim icin alakasiz
oldugunu diisiindiigii katmanlar1 atlamasina izin verir. Bu, egitim hatasin1 azaltir ve agin diger
aglara kiyasla daha hizli yakinsamasina yardimer olur. ResNet’in ResNet50, ResNet18, ResNet34,
ResNetV2 vb. gibi birden ¢ok cesidi vardir. ResNet50, 50 kat derinligindedir ve artik 6grenme
cergevesine sahiptir. 48 evrisimsel katmana, maksimum havuzlama katmanina, ortalama
havuzlama katmanmna ve tam baglantili katmana sahiptir. 224x224 seklinde girdi alir [121].
ResNet, egitim asamasinda kaybi1 azaltmaya, bilgi kazanimini korumaya ve performansi artirmaya
yardimei olan katmanlar arasinda artik baglantilart tanitmistir. Bir katmandaki artik baglanti, bir
katmanin ¢iktisinin, girdisi art1 girdisinin bir evrisimi oldugu anlamina gelir. ResNet makalesi,
Atlama Baglantilarin1 kullanma yaklasimini popiiler hale getirmistir [120]. Sekil 3.16’da ResNet

mimarilerinin yap1 tasi olan atlama baglantilar1 yer almaktadir.

A 4

Agirlik Katmani

F) l ReLu Ozdes x
Agirlik Katmam

F(x) +x ReLu
Sekil 3.16. Artik 6grenme: bir yapi tag1 [120]

Matematiksel olarak, y = x + F(x) anlamina gelir; burada y katmanin nihai ¢iktisidir. Mimari
acidan agdaki herhangi bir katman modelin performansina zarar verirse, atlama baglantilarinin
varligi nedeniyle atlamr. Bu tiir bir atlama baglantisinin dahil edilmesinin faydasi
diizenlilestirmenin mimari performansini diisiiren herhangi bir katmani atlayacak olmasidir. Sonug
olarak, kaybolan veya genisleyen gradyanlarla ilgili sorunlarla karsilagmadan derin bir sinir agim

egitmek miimkiindiir [121]. Sekil 3.17°de ResNet50 mimarisinin yapisi yer almaktadir.
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Sekil 3.17. ResNet50 mimarisi [122]

3.5.5. DenseNet201

DenseNet201, 201 katman derinliginde olan ve 224x224 gériintii giris boyutunu kabul eden
bir ESA’dir [123]. DenseNet, gradyan akigini optimize ederck ResNet mimarisi iizerinde
gelistirilmistir. DenseNet201 modeli parametre sayisini azaltmak ve katmanlar arasinda daha
verimli ve daha kisa baglantilara sahip olmak {izere tasarlanmistir. DenseNet, geleneksel ESA’lara
gore daha az parametre ile agin bilgi akisim1 ve gradyanim iyilestirebilmektedir. DenseNet
yapisindaki her katman orijinal sinyal ve kayip fonksiyonuna baglanarak agin egitilmesini
kolaylastirir. Ayrica, veri kiimelerinin organizasyonunu etkileyen yogun baglantilara sahiptir.
DenseNet201, katman girdilerindeki cesitliligi artiran ve performansi iyilestiren farkli katmanlar
tarafindan 6zelligin yeniden kullanilmasi olasiligi nedeniyle egitilmesi kolay, parametrik olarak
yiiksek verimli modeller saglayan yogunlastirilmig bir agdan olusur [124]. DenseNet201, ImageNet
ve CIFAR-100 gibi 6nceden egitilmis cesitli agirliklara sahip veri kiimelerinde dikkate deger bir
performans gostermistir. DenseNet201 modelinde baglanabilirligi artirmak igin onceki tiim
katmanlar sonraki tiim katmanlara ileri beslemeli bir sekilde baglanir. DenseNet mimarilerinde
onceki katmanlardan gelen Ozellik haritalarinin mevcut katmandaki o6zellik haritasiyla
birlestirilmesi, 6zellik temsilini gelistirir. Ayrica evrisim katmanlarinda daha az baglant1 yer
aldigindan, egitilebilir parametrelerin sayis1 azalir ve bu nedenle model hesaplama agisindan
verimlidir. DenseNet mimari modelleri li¢ ge¢is katman1 ve dort yogun blok igerir. Yogun bloklar
1x1 ve 3x3 matris boyutlarinda evrisim ¢ekirdeklerine sahiptir. DenseNet i¢indeki yogun
bloklardaki evrigim ¢ekirdekleri alti, on iki, yirmi dort ve alt1 kez tekrar eder. Bu mimari modelde
yogun katmanlar arasinda bir ge¢is katmani1 bulunmaktadir. Yogun bir bloktaki 6zellikleri ¢ikaran
her bir evrisim katmani, baska bir 6zellik ¢ikaric1 evrisim katmanina ileri beslemeli olarak baglhdir.
DenseNet mimarisindeki gecis katmani, 1x1 ¢ekirdek boyutuna sahip evrigim, toplu normalizasyon
ve havuzlama katmanlarindan olusur. Havuzlama katmani 2x2 adimlidir [125,126]. Sekil 3.18’de

DenseNet201 mimarisinin basit bir gosterimi yer almaktadir.
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Sekil 3.18. DenseNet201 basit gosterimi [127]

3.5.6. MobileNetV2

MobileNetV2, MobileNet mimarisine dogrusal dargegit ve ters ¢evrilmis artik modiilleri
(inverted residual with linear bottleneck modules) eklenerek mimarinin dogrulugunu 6nemli 6l¢iide
artiran gelistirilmis bir versiyonudur [128]. 53 katman derinligindedir ve girdi katman1 224x224
boyutunda bir goriintii ile beslenmektedir. ImageNet siniflandirma, COCO nesne algilama ve VOC
gOrilintli segmentasyonu kullanilarak basarimi degerlendirilen modelde daha az bellek kullanimi
icin bir evrisim modiilii eklenmistir. MobileNet tasarimi derinlemesine ayrilabilir evrigim
katmanlarina dayanir ve iki bilesenden olusur: (a) Derinlemesine evrisim; her giris kanalina tek bir
filtre uygulanir; (b) Noktasal evrigim; 1x1 evrigsim, derinlemesine evrisimin sonuglarini toplar
[129]. Derinlemesine evrisim, giris gorintiistinii ve filtreyi farkli kanallara ayirir ve ardindan her
girig kanalin1 karsilik gelen filtre kanaliyla sarar. Filtrelenmis ¢ikis kanali tiretildikten sonra, bu
cikis kanallar1 tekrar istiflenir. Ayrilabilir derinlikli evrisimde, kiimelenmis ¢ikis kanallari daha
sonra kiimelenmis c¢ikis kanallarimi bir kanalda birlestirmek igin noktasal evrisim olarak
adlandirilan 1x1°lik bir evrisim kullanilarak filtrelenir. Derinlemesine evrisim, hesaplama siiresini
ve model boyutunu azaltmak i¢in kullanilir. Derinlik ve noktasal evrisimi ayr1 katmanlar olarak
sayan MobileNetV1, 7x7x1280 piksel boyutunda cikt1 {ireten 28 evrisim katmanina sahiptir.
MobileNetV2, 32 filtreli ilk evrisim katmanindan sonra 19 ters artik dargecit katmani ekler ve
ardindan 7x7x1280 piksel boyutunda ¢ikt1 iireten noktasal bir evrisim ile sona erer. Artik blok,
bilgileri agin daha derin katmanina iletmek amaciyla bir atlamali baglanti ile bir evrisimli blogun

baslangicini ve sonunu birbirine baglar [128]. Sekil 3.19°da MobileNetV2 mimarisi yer almaktadir.
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Sekil 3.19. MobileNetV2 agimin mimarisi [130]

3.5.7. ShuffleNet

ShuffleNet, 2018’de Zhang ve ark., tarafindan Onerilen, esas olarak kisitli hesaplama giiciine
sahip mobil cihazlar i¢in tasarlanmig, hesaplama agisindan ¢ok verimli bir ESA mimarisidir
[131,132]. Mimari, dogrulugu korurken hesaplama maliyetini ve karmasikligin1 énemli dlgiide
azaltmak icin iki &nemli islem sunar. ilk islem, 1x1 evrisimlerin hesaplama karmasikligini
azaltabilen noktasal grup evrisimleridir. ikinci islem, 6zellik kanallar1 arasinda bilgi akisina
yardimc1 olan kanallarin karistirilmasindan olusur. Kanal karigtirmanin amaci, 6zellik agirliklarinin
kanallarin birlesimi olacak sekilde kanallardan 6zellikleri karistirmak ve ¢aprazlamaktir. Bu islem,
evrisimsel katmanlarda bulunan ¢oklu 6znitelik agirliklar1 nedeniyle ESA mimarisinde {istiin bir
yapiya yol agar. Ayrica, kanal karistirma katmanlari, daha giiclii bir ESA modeli elde etmek icin
grup evrisim katmanlariyla birlestirilir [132]. Genel ShuffleNet agi, diger geleneksel evrisim ve
havuzlama katmanlariyla birlikte ti¢ farkli agamada gruplandirilmis bu birimlerin bir yiginindan

olusur. Sekil 3.20°de ShuffleNet birimleri yer almaktadir.
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Sekil 3.20. ShuffleNet Birimleri [132]

Sekil 3.20(a), derinlemesine evrisimli (3x3 DWConv) bir dargegit birimidir [133,120,129].
Sekil 3.20(b), noktasal grup evrisimli (GConv) ve kanal karistirmal1 bir ShuffleNet birimidir. Ikinci
noktasal grup evrisiminin amact, kanal boyutunu kestirme yolla eslesecek sekilde geri kazanmaktir.
Sekil 3.20(c), 2 adimli bir ShuffleNet birimidir. Kanal karigtirma ile noktasal grup evrisimi

sayesinde ShuffleNet birimindeki tiim bilesenler verimli bir sekilde hesaplanabilir.

3.5.8. NasNetMobile

Google Brain ekibi 2016 yilinda sinir ag1 yapilandirmalar1 alaninda arama yapmak i¢in
NASNet mimarisini gelistirmistir [134]. Néral mimari arama (NAS), YSA alanindaki en yeni DO
teknigidir. Bu mimarinin ilk fikri, kii¢iik veri kiimelerinde en iyi evrisimsel mimariyi bulmak igin
bir arama yontemi olarak NAS c¢ergevesinin kullanilmasindan kaynaklanmaktadir. Daha sonra
NASNet arama uzay1 ad1 verilen yeni bir arama uzay1 tasariminin katkistyla mimari daha biiyiik bir
veri kiimesine aktarilmistir. NASNet arama uzayinda en iyi mimari bulunmus ve bu mimariye
NASNet adi verilmistir. NAS, ESA’lan farkli boyutlar i¢in optimize etmek i¢in CIFAR10 ve
ImageNet gibi standart veri kiimeleriyle birlikte kullanilmigtir. Indirgenmis siiriime NasNetMobile
ad1 verilir. NASNet mimarisinde Normal Hiicreler ve Azaltma Hiicreleri olarak adlandirilan iki
evrisimsel hiicre bulunmaktadir. Normal Hiicre, tam boyutlara sahip bir 6zellik haritas1 dondiirmek
icin islev goriirken; Azaltma Hiicresi, 6zellik haritasinin yiiksekliginin ve genisliginin iki kat
azaltildig1 bir 6zellik haritas1 iretmek i¢in iglev goriir. Mimari genel olarak ilk 3x3 evrisim
katmanindan ve ardindan bir dizi azaltma hiicresi ve dort normal hiicreden olusan ii¢ kez tekrar

eden bir diziden olugur. Normal ve azaltma hiicreleri hem onceki hiicreden gelen girdiyi hem de
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Onceki hiicreyi besler, artik bir ag olusturur. Normal hiicrede bulunan tek evrisim katmanlari, {i¢
adet 3x3 ve iki adet 5x5 derinlikte ayrilabilir evrisim katmanlaridir. Azaltma hiicresi bir adet 3x3,
iki adet 5x5 ve iki adet 7x7 derinlikte ayrilabilir evrigim igerir. Katmanlarin geri kalani ya ortalama

ya da maksimum havuzlama katmanlaridir [134,135].

3.5.9. Darknet53

Darknet53, egitim goriintiilerinin 6zelliklerini ¢ikarmak i¢in kullanilan hedef tespit agi
YOLOvV3’iin temel 6zellik ¢ikarma agidir. Darknet53 temel olarak 1x1 ve 3x3 boyutlarinda, toplam
53 katmanli (son tam bagl katman dahil ancak artik katman harig) bir dizi evrigim katmanindan
olusur. Her bir evrisim katmanini bir BN katmani ve LeakyReLU katmani takip etmektedir.
Darknet53’e bir dizi artik ag modiilii, yani ResNet’den tiiretilen artik katman eklenmistir. Artik
katmanin eklenmesinin amaci, agdaki gradyan kaybolmasi veya gradyan patlamasi sorunlarini
¢ozmektir, bdylece gradyanin yayilmasini daha kolay kontrol edebilir ve ag egitimi
gerceklestirilebilir. Darknet53°de, ¢ok sayida 1x1 evrisim ¢ekirdegi kullanilmasina ve maksimum
havuzlama yerine adim boyutu 2 olan 3x3 evrisim ¢ekirdegi kullanilmasina ragmen, parametre
sayist ¢ok azaltilmistir. Bu ag icin goriintiiniin giris boyutu 256x256°dir. Evrisim katmani, BN

katmani ve LeakyRelu katmani birlikte mimarinin en kiigiik bilesenini olustururlar [136,137].
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3.5.10. Uzun Kisa Siireli Bellek (UKSB)

Hochreiter ve Schmidhuber (1997) tarafindan tanitilan Uzun Kisa Siireli Bellek (UKSB), uzun
siireli bagliliklar1 6grenebilen ve bagimlilik sorunundan kaginmak i¢in tasarlanmis aglardir. Bu
aglar 6zgilin bir kap1 yapist kullanilarak insa edilmistir. Sekil 3.21°de bir UKSB’nin temel
bilesenleri gosterilmektedir. Unut kapisi, Giincelleme/Giris kapisi ve Cikis kapist bir UKSB
biriminin iglevini yerine getirmek ve bilgi akigini kontrol etmek i¢in birlikte ¢alisir. UKSB aglarinin
calisma prensibi; kap1 olarak adlandirilan yapilarda hangi bilgilerin atilip hangilerinin hafizada

tutulacagina karar vermektir.
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Sekil 3.21. UKSB biriminin temel yapis1 [138]

UKSB’nin ilk adiminda unut kapisi (f;), dnceki gizli durumdaki bilgiler (h; _ 1) ve mevcut
giristen gelen bilgilerden (x;) hangilerinin atilip atilmayacagi, hangilerinin hafizada tutulacagi
kararim1 sigmoid aktivasyon fonksiyonu o () kullanarak verir. Denklem 3.2’de bu siirecin
matematiksel ifadesi yer almaktadir. Burada Wy ve by egitimden sonra belirlenecek parametrelerdir.
hi_1, t —1 zaman tekrarindaki gizli durumdur. x;, t. zaman tekrarindaki girdi vektoriidiir. f;
sigmoid fonksiyonunun ¢iktisidir [138]. Fonksiyonun girisleri bir 6nceki UKSB biriminden gelen
gizli durum ve giris vektoriidiir. Fonksiyonlarin ¢ikiglari, bir dnceki UKSB biriminden hiicre
durumundaki her bir sayiya karsilik gelen 0 ile 1 arasinda degisen degerlerdir. Degerler, bir 6nceki
hiicre durumu c¢; _ 4 'deki her bir sayinin unutma derecesini temsil etmektedir. 1, “bunu gegir” i, 0

ise “gecmesine izin verme” i temsil eder.

ft = O’(Wf’x *Xt + Wf’h * ht—l + bf) (32)



UKSB’nin bir sonraki adimi, yeni bilginin hangi kisminin mevcut hiicre durumunda
saklanacagina karar vermektir. Bu islem Giincelleme/Giris (i) kapilarinda gerceklestirilir ve iki
asamadan olusmaktadir. Ilk olarak, ¢-/ anindaki gizli durum ve ¢ amindaki girdi, bir sigmoid
fonksiyonuna girisler olarak verilir (¢ikis 1'e ne kadar yakinsa, bilgi o kadar 6nemlidir). Ayrica,
agin ayarini iyilestirmek i¢in -1 ile 1 arasindaki degerleri sikistirmak igin gizli durumu ve girdiyi
bir tan h islevinden gecirir. Sigmoid ¢iktisi, tan h ¢iktisindan hangi bilgilerin korunmasinin énemli
olduguna karar verir. Daha sonra, bir tan h katmani, duruma eklenebilecek yeni aday degerlerin C,
vektoriinii olugturur. Denklem 3.3 ve 3.4’de gilincelleme/girdi kapis1 (i;) ve yeni aday degerlerin
matematiksel ifadesi yer almaktadir. Denklem 3.3, Denklem 3.2’e benzer bir sigmoid fonksiyondur.
Bu fonksiyon, giris vektdriindeki her bir saymin giincelleme derecesine karar vermek i¢in kullanilir.

Denklem 3.4 yeni hiicre durumu C, ¢iktis1 veren bir tan h katmanidir.

ip = 0(Wix *xX¢ + Wip * he_q + b;) (3.3)
Ci = tanh(W, , * X; + W p, x hy_y + b,) (3.4

Giris kapisinin etkinlestirilmesinden sonra siradaki adim, eski hiicre durumu C;_4’i yeni
hiicre durumu C;’e giincellemektir. Unut kapisinin ¢ikist olan f; 6nceki zaman adimimin hiicre
durumu C,_; ile garpilir. Sonra bu ¢arpima Girdi kapisinin ¢ikislari olan i, ve C, carpimu eklenir.
Cikt1, her bir durum degerini ne kadar giincellemeye karar verdigimize gore 6l¢eklenen yeni aday

degerlerdir. Denklem 3.5’de yeni hiicre durumu C; nin matematiksel ifadesi yer almaktadir.
Ce=Cooq * fr +ir + G (3.5)

Son adim, dnceki girisler hakkinda bilgi iceren ve bir sonraki gizli durumun degerine karar
veren cikis kapisindan (o;) hiicre ¢iktisina (h,) karar vermektir. Ilk olarak, 6nceki gizli durum ve
girdi toplanir ve bir sigmoid fonksiyonuna aktarilir. Daha sonra yeni hiicre durumu tanh
fonksiyonuna geger. Sonunda, gizli durumun hangi bilgileri igermesi gerektigine karar vermek i¢in
sigmoid c¢iktisiyla tan h ¢iktist ¢arpilir. Cikt1, yeni gizli durumdur. Yeni hiicre durumu ve yeni gizli
durum daha sonra bir sonraki zaman adimina taginir. Bu islemin matematiksel ifadesi Denklem 3.6
ve Denklem 3.7°da yer almaktadir. Bu denklemlerdeki W agirlik vektdr matrisini ve b sapma
vektoriinii ifade etmektedir [139-142].

0 = U(M/(),x *Xe + Won*heoq + bo) (3.6)
h = o; * tanh(C}) 3.7
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3.5.11. Otomatik Kodlayici

Otomatik kodlayicilar, veri sikistirma, goriintii renklendirme ve goriintiiden giiriiltiiyii
arindirma problemlerinde yaygin olarak kullanilmaktadir [143]. Veri sikistirmanin amaci,
boyutsallig1 azaltarak giris verisinin daha kii¢iik bir gdsterimini elde etmektir. Otomatik kodlayici
modelinin mimarisi, boyut azaltma tekniklerini kullanarak giris verilerine benzer verilerin
Ogrenilmesine olanak saglamaktadir.

Bir otomatik kodlayici olustururken 3 bilesene ihtiyag vardir. Bunlar; kodlayici, kod ¢oziicii
ve girdinin sikigtirilmig diisiik boyutlu gosterimini gergeklestirecek bir koddur. Otomatik kodlayici
mimarisinin en temel halinde 3 katman bulunmaktadir. Bu 3 katman sinir ag1 temelindeki giris,
gizli ve ¢ikis katmanlaridir. Giris ve ¢ikis katmanlarindaki ndron sayisi esittir, sebebi ise otomatik
kodlayicidaki temel galisma prensibinin veriyi yeniden insa etmesidir. Giris ve gizli katman
arasinda kodlayici varken gizli katman ile ¢ikis katmani arasinda kod ¢oziicii vardir. Kodlayici
yapisi ile otomatik kodlayici agi, gelen ¢ok boyutlu verileri sikigtirarak daha az boyutlu verilere

diistirmeyi amagclar. Kod ¢oziicii ise kodlayicinin aksine gelen sikistirilmis veriyi yeniden inga
etmektedir. Kodlama asamasinda, kodlayici girisi (x = [x(l), X(2)s -+ X(m) ]TeRm), f fonksiyonu

araciligiyla gizli katmana (h = [h(l)' h2), - heay) ]TeRdh) esler. Bu islemin matematiksel ifadesi

Denklem 3.8°de yer almaktadir.
h=f(x) = op(Wg +b) (338)

Burada W, giris katmani ile gizli katmani baglamak icin kullanilan bir dj X m agirlik
matrisidir; beR% sapma vektoridiir; or, sigmoid, tanh, relu, vb. olabilen aktivasyon
fonksiyonudur. Kod ¢6ziicii asamasinda otomatik kodlayici, gizli katman ozelliklerini (h) f~
fonksiyonuyla ¢ikti katmanina (x"éR™) esler. Bu islemin matematiksel ifadesi Denklem 3.9°de

yer almaktadir.
x'=f(h)= Wy, +b) 3.9

Burada W~, bir dj, X m agirhik matrisidir; b"e R™ ¢ikt1 katmanindaki sapma vektoridiir; a’y,
¢ikti  katmanindaki aktivasyon fonksiyonudur. Otomatik kodlayicinin amaci, yeniden
yapilandirilmig verileri (x"éR™) o6grenerek girdi verilerine miimkiin oldugunca benzer hale
getirmektir. Bu nedenle, otomatik kodlayicinin kayip fonksiyonu, egitim verilerinin ortalama
karesel hatasi (MSE) olarak ifade edilebilir. N, egitim orneklerinin sayisidir; x;, i'inci egitim
ornegidir. Otomatik kodlayicinin kayip fonksiyonu Denklem 3.10°da gosterildigi gibi hesaplanir
[143,144]. Sekil 3.22°de otomatik kodlayiciya ait sematik bir diyagram gosterilmektedir [144].

~ 1~ 1 ~
KW,b,Ww"b") = T, lla x| (3.10)
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Sekil 3.22. Otomatik kodlayicinin sematik diyagrami [ 144]

Otomatik kodlayici, yiiksek boyutlu bir girdiyi gizli bir diisiik boyutlu koda (kodlayici)
doniistiiren ve ardindan bu gizli kodla (kod c¢oziicli) girdinin yeniden yapilandirilmasini
gerceklestiren bir darbogaz mimarisidir [144].

ESA, agdaki diisiik evrisim katmanlarindan derin evrisim katmanlara kadar etkili bir
sekilde Oznitelikler ¢ikardigi igin goriintii siniflandirma ve bilgisayarla gérme problemlerinde en
gelismis mimari olarak kabul edilir [145]. Ancak daha sonraki caligmalarda, arastirmacilar,
bilgisayarla gorme uygulamalari i¢in derin 6grenme modellerinde evrisim fonksiyonlari olmadan
basarili tanima ve performans iyilestirmesi aradilar [146]. Dikkat mekanizmasi tabanli mimariler
olan ve dogal dil islemede (NLP) yaygin olarak kullanilan donistiiriici modelleri bu sorunu
¢ozmek i¢in uyarlanmis ve dikkat c¢ekici sonuglar elde edilmistir [147,32]. Dondstiiriicii
mimarisinin goriintli modeli olan Goriintli Doniistiirticii (ViT), bir girdi goriintiisiinii sabit boyutlu
bir goriintii yamalar dizisi olarak temsil eder ve NLP uygulamalarinda kullanilan kelime gémme
dizisine benzer sekilde goriintii sinifi etiketlerini tahmin eder [33].

Doniistiirticiiler, Vaswani ve arkadaslari tarafindan "Attention Is All You Need" adh
makalede tanitilan bir tiir derin 6grenme modelidir. Doniistiiriiciilerdeki temel yenilik, modelin
girdi verilerinin farkli kistmlarma farkli sekilde odaklanmasini saglayan dikkat mekanizmasidir

[32]. Doniistiiriicti aglari, girdi olarak bir kelime dizisini alir ve daha sonra siniflandirma, geviri
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veya diger NLP gorevleri icin kullanir. Kodlayici-kod ¢oziicii mimarisinden olusan doniistiiriicti
aglari, tekrarlamaya dayanmadan giris ve ¢ikis dizileri arasindaki bagimliliklar1 6grenen, kelime
konumlarint ve aymi ciimle i¢indeki kelimeler arasindaki iligkiyi dikkate alan bir mekanizma
tizerine kuruludur. Bu, doniistliricii uygulamalarinin kolayca paralellestirilmesine ve hesaplama
acisindan verimli olmasina olanak tanir. Doniistiiriiciilerin kullandigi matematiksel hesaplamalar
paralel islemeye elverislidir ve boylece bu modeller hizli ¢alisabilirler. Bu modeller, aga giren ve
cikan veri 6gelerini etiketlemek i¢in konumsal kodlayicilar kullanir. Dikkat birimleri bu etiketleri
takip ederek her bir 6genin digerleriyle nasil iliskili olduguna dair bir tiir cebirsel harita hesaplar
[32]. Bir doniistiiriicii modeli, bu ctimledeki kelimeler gibi sirali verilerdeki iliskileri izleyerek
baglami ve dolayistyla anlami 6grenen ileri beslemeli bir sinir agidir. Bir dizideki birbirini etkileyen
ve birbirinden uzak veri dgelerinin bile ince baglantilarini tespit etmek i¢in, dikkat ve 6z dikkat adi

verilen ve hala gelismekte olan bir dizi matematiksel teknik uygular.

3.5.12. Goriintii Doniistiiriicii (Vision Transformer / ViT)

Goriintti Dondstiriict (ViT) [33], NLP uygulamalarinda basarili bir sekilde gergeklestirilmis
olan dikkat mekanizmasi tabanli doniistiiriicii modellerin bilgisayar goriisiine uyarlanmig halidir.
Bir goriintiiyli siniflandirirken ViT onu, NLP doniistiiriiciisii tarafindan olusturulan bir kelime
gomme dizisine benzer sekilde bir yama dizisi olarak ele alir. ViT modelinin ¢alisma prensibi
asagidaki adimlardan olusmaktadir. ViT, bir giris goriintiisiinii yama dizilerine veya gorsel
belirteclere boler. Her 2D goriintii yamasi diizlestirilir. Ardindan, diizlestirilmis yamalar, yama
gomme olarak adlandirilan bir islemle dogrusal olarak gomiiliir. Her goriintii yamasina dgrenilebilir
konum yerlestirmeleri eklenir. Gomiilii bir goriintii yamasi, yeni goriintiiniin sinifin1 tahmin etmek
icin ekstra 6grenilebilir sinif belirtegleriyle birlestirilir. Son olarak, elde edilen dizi donistiiriicii
kodlayici bloguna verilir. Standart doniistiiriicii girdi olarak 1D belirte¢ gdmme dizilerini alirken,
ViT’de 2D goriintiileri islemek igin x € R¥*W*C girdi goriintiisii; x, € RY x(P*.0) diizlestirilmis
2D yamalar dizisi olarak yeniden sekillendirilmistir. Burada (H,W) orijinal gorintiiniin
¢ozinirligidir, yani yiikseklik ile genislik degerleridir, C kanal sayisidir, (P,P) her goriintii
yamasmin ¢oziiniirliigiidir, N = HW/P? yama sayisidir. Asagidaki denklemlerde goriintii
donistiiriiclisiniin  goriintiileri isleyisi matematiksel olarak agiklanmistir. Denklem 3.11°de
yamalarin diizlestirilip, egitilebilir dogrusal bir izdiisiimle D boyutuna eslenmesi yer almaktadir.
Diizlestirilmis yamalarin (x,) toplam boyutu N x (P%2.C) ‘dir. Denklem 3.12 ve 3.13’de
dondstiirticti kodlayict katmaninin (L) MLP (¢ok katmanl algilayici) ve MSA (¢ok basl 6z-dikkat)
bloklar1 yer almaktadir. €.’ inci katmanin ¢iktilar1 denklemlerdeki gibi hesaplanir. Denklem 3.14’de
kodlayicinin ¢ikisinin (z?) goriintii gosterimi y ile ifade edilmektedir [33]. Sekil 3.23’de pnémoni

tespiti i¢in ViT modelinin gosterimi yer almaktadir.
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20 = [Xctass; XpE; X2E; s XVE | + Epos, EeR®*OXD E eRV+DXD (311

zp = MSA(LN(zp-1)) + 24, £=1..L (3.12)
zp = MLP(LN(zp)) + z,, £=1..L (3.13)
y = LN(z0) (314)
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Sekil 3.23. Pndmoni tespiti i¢in ViT modelinin gdsterimi

3.5.13. MLP-mixer

MLP-mixer, yalnizca MLP’e dayanan ve iki tiir MLP katmani igeren bir mimaridir.
Bunlardan biri, konum bagina 6zellikleri karistiran goriintii yamalarina bagimsiz olarak uygulanir.
Digeri, uzamsal bilgileri karistiran yamalar boyunca (kanallar boyunca) uygulanir. Mixer,
"yamalarxkanallar" tablosu olarak sekillendirilmis dogrusal olarak yansitilmig goriintii yamalar1
(belirtecler) dizisini girdi olarak kabul eder ve bu boyutlulugu korur. Gelistirilen MLP-mixer’in
temel mimarisi Sekil 3.24’de verilmistir. Goriildiigli gibi, giris renkli gérintiisiiniin boyutu
512x512'dir ve yama ¢ikartmak i¢in 32x32 boyutunda Ortiismeyen bir pencere kullanilmaktadir.
Sonugta yamalar ¢ikarilir, her yama baslangigta diizlestirilir ve her diizlestirilmis yamadaki 6rnek
say1sini azaltmak i¢in dogrusal bir izdiisiim katmani kullanilir. Dogrusal izdiisiim katmani1 Denklem

3.15’de formiile edilmistir.

y=xwl +b (3.15)
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Burada x giris vektoridiir w ve b sirasiyla agirlik vektorii ve sapma degeridir. Diizlestirilmis
bir yamanin uzunlugu 3072'dir; dogrusal izdiisiimden sonra, her bir yama vektoriiniin uzunlugu
2048 olur. Benzer sekilde, dogrusal izdiisiim katmanindan sonra, tiim yamalar i¢in 256x1024
boyutunda bir yama gémme matrisi elde edilir. Daha sonra, bir giris goriintiisiiniin 256x1024
seklindeki bu yama yerlestirmesi, siiflandirma icin MLP bloguna beslenmeden 6nce mixer

katmanlarindan geger [148].

Yama gommeleri

Yamalar
I MLP blogu/
stniflandirict blogu
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Sekil 3.24. MLP-mixer mimarisinin gosterimi

3.5.14. FNet

Lee-Thorp ve arkadaslari tarafindan tanitilan modelde, belirte¢ karistirma mekanizmasi
olarak Fourier doniistimii kullanilmistir [149]. Bu model ile Fourier doniisiimleri dahil olmak {izere
basit dogrusal doniisiimlerin metin verilerindeki ¢esitli iliskileri modellemede yetkin oldugu
gosterilmistir. Yalnizca iki 6z-dikkat alt katmani iceren FNet hibrit modellerinin diger doniistiiriicti
modellerine gére avantaji, daha uzun giris uzunluklarinda daha hizli c¢alismasi ve daha iyi
performans gostermesidir. Ayrica bu model, dikkat mekanizmasinin artan dogrulugu etkiledigini,
ancak her katmanda kullanilmasinin gerekli olmadigin1 gostermistir. FNet dikkat gerektirmeyen bir
doniistirtictt mimarisidir (doniistiiriicii benzeri mimari), her katman bir Fourier karistirma alt
katmanindan ve ardindan bir ileri besleme alt katmanindan olusur. Denklem 3.16°da gosterildigi
gibi, FNet’in temelinde dikkat alt katmani 2D DFT uygulayan Fourier alt katmaniyla
degistirilmistir. Burada F,, dizi uzunlugu, F, gizli boyuttur. Bu ¢aligma igin gelistirilen FNet

mimarisi Sekil 3.25’de verilmistir.

Y = R(Fseq(Fr(x))) (3.16)
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Sekil 3.25. Pndmoni tespiti i¢in 6nerilen FNet mimarisinin gosterimi

3.5.15. gMLP

Liu ve arkadaglar1 tarafindan onerilen gMLP, dikkat mekanizmasiz MLP tabanh
dontstirtict  modelidir. Mimari, kapt (geg¢it) eklenmis bir MLP oldugu igin bu sekilde
adlandirilmigtir. Doniistliriicti mimarilerindeki dikkat mekanizmasinin gerekliligini aragtirmak i¢in
temel MLP katmanlar1 gegitleme ile birlestirilerek tasarlanmigtir. GMLP’deki yenilik, dizi 6geleri
arasindaki uzamsal etkilesimleri 6grenen dikkat mekanizmalarina alternatif olarak Uzamsal
Gegitleme Birimi (Spatial Gating Unit /(SGU)) kullanilmasidir. SGU 6ge konumlari igin kodlama
gerektirmez ¢iinkii bu tiir bilgiler uzamsal etkilesimleri yakalayan katman s(-)’de tutulur. gMLP,
diger doniistiiriicii modellerine gore daha az egitilebilir parametreye sahiptir. gMLP ag1, L adet ayn1
boyutta ve yapida blok yiginindan olusur. Belirteg dizisinin uzunlugu n ve belirtecin boyutu d olan
X € R™4 baslangi¢ matrisi girdisi asagidaki formiillerle temsil edilir. Her vektor (gomme) belirli
bir kelimenin temsilidir. Burada o, GeLU gibi bir aktivasyon fonksiyonudur, U ve V kanal boyutu
boyunca dogrusal projeksiyonlar1 tanimlayan matrisler, s(-) uzamsal etkilesimleri yakalayan
katmandir. Y blogun ciktisidir [150]. Onerilen gMLP mimarisinin gdsterimi Sekil 3.26’de
verilmistir. Denklem 3.17, Denklem 3.18 ve Denklem 3.19°da agda gerceklesen siireglerin

matematiksel ifadeleri yer almaktadir.

Z = o(XU) (3.17)
7 =s(2) (3.18)
Y =17V (3.19)
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4. MATERYAL VE METOT

Bu bolimde tez ¢alismasi kapsaminda olusturulan CXR ve sayisal tibbi parametre veri
setleri, literatiirde CXR goriintiilerinden pnomoni tespiti i¢in en yaygin kullanilan CXR veri seti
[22], pnomoni tespiti i¢in gelistirilen 21 katmanli yeni ESA modeli ve hiper parametreleri, 6nerilen
modelleri degerlendirmek i¢in kullanilan gapraz dogrulama yontemleri, performans metrikleri ve
sayisal parametrelerin istatistiksel analizinde kullanilan istatistik testleri hakkinda detayli bilgi

verilmisgtir.

4.1. Ozel Veri Tabam

Bu calisma Dicle Universitesi Tip Fakiiltesi Gogiis Hastaliklar1 ve Tiiberkiiloz klinigi ile
yogun bakim iinitesine 2001 Ocak- 2021 Ocak aylar1 arasinda pnémoni tanisiyla yatirilan hastalar
ve herhangi bir solunum sikéyetiyle gogiis hastaliklar1 poliklinigine bagvurup CXR ¢ekilen ve
normal olan hastalarin dosyalarinin retrospektif olarak taranmasiyla gergeklestirilmistir. Caligmaya
CXR’de pndmoni tanis1 alan 1000 pndmoni hastast ve CXR’si normal olan 1000 saglikli birey
olmak iizere toplam 2000 kisi dahil edilmistir. Onerilen yontemin etkinligini ve performansini
kargilagtirmak icin ayni kisilere ait hem CXR goriintiileri hem de sayisal tibbi verileri kullanilmigtir.
Tiim gorintiiler farkli boyutlarda ve RGB’dir. Sekil 4.1, dzel veri tabanindan elde edilen pnémoni

ve saglikli CXR goriintiilerini gostermektedir.

_— -

&

2y

Pnomoni

Saglikli

Sekil 4.1. Olusturulan veri setine ait pndmoni ve saglikli CXR goriintiileri



Calismaya CXR’si ¢ekilen 1000 pnomoni hastast ve 1000 saglikli bireyin hastaligin ayirici
tanisinda etkisi olan sayisal tibbi verileri de dahil edilmistir. Sayisal tibbi veriler hasta dosyasindan
elde edilmistir ve sayisal verilere dayali bir veri seti olusturulmustur. Demografik veriler olarak,
yas ve cinsiyet secilmistir. Hastalik sikayeti olarak, yan agrisi, nefes darligi ile oksiiriik verileri
secilmistir. Laboratuvar parametreleri olarak; 16kosit sayist (WBC, 10e3uL), nétrofil sayis1 (NEU,
10e3uL), lenfosit sayis1 (LYM, 10e3uL), trombosit sayist (PLT, 10e3uL), C-reaktif protein (CRP
(mg / dL)) ve Albiimin (mg / dL) ¢alisilmistir. Bu laboratuvar verilerinden hareketle pndmoni ve
sagliklt hastalarin ayirict tanisinda NLO, TLO ve CAO verileri kullanilmistir. Tablo 4.1°de
olusturulan sayisal parametre veri seti 0znitelikleri yer almaktadir. Pndmoni hastalar1 ve saglikli
bireylere ait CXR goriintiileri ve ayni kisilere ait sayisal tibbi veriler PACS (Goriintii Saklama ve
Iletisim Sistemleri) ve HBYS (Hastane Bilgi Yonetim Sistemi) veri tabanlarindan saglanmistir. Bu
calisma, Dicle Universitesi Tip Fakiiltesi Girisimsel Olmayan Klinik Arastirmalar Etik Kurulu

onay1 ile yapilmustir. (Tarih: 13.10.2021 ve Karar No. 421).

Tablo 4.1. Olusturulan sayisal parametre veri seti 6znitelikleri

Oznitelik Sayis1  Oznitelik

1 Hasta/Saglikli Yas
2 Cinsiyet

3 Oksiiriik

4 Dispne (nefes darligr)
5 Yan agrist

6 CRP (mg / dL)

7 Albiimin (g / dL)
8 WBC 10e3uL

9 LYM 10e3uL

10 NEU 10e3uL

11 PLT 10e3uL

12 CAO

13 NLO

14 TLO

15 Swnif (0/1)

49



4.2. Genel Veri Tabam

Tez calismas1 kapsaminda gelistirilen pnomoni tespit aginin etkinligini test etmek amaciyla
pndmoni tespitinde literatiirde en ¢ok kullanilan CXR goriintii veri setleri ile deneysel ¢alismalar
gerceklestirilmistir [22,35]. Sinif dengesizligi problemlerini dnlemek i¢in veri setlerindeki her iki
siniftan esit sayida CXR goriintiisii rastgele sec¢ilmis ve kullanilmistir. Bu ¢alismada 1750 adedi
saglikli siniftan ve diger 1750 6rnegi pndmoni sinifindan olmak iizere 3500 goriintii kullanilmistir.
Sekil 4.2°de ikili siniflandirma gorevlerinde literatiirde en yaygin kullanilan Kaggle CXR veri

setine ait saglikli ve pnomoni CXR goriintii 6rnekleri yer almaktadir.

Saglikli

Sekil 4.2. Halka agik CXR veri setine ait saglikli ve pndmoni CXR goriintiileri [22]

4.3. Gelistirilen Pnomoni Tespit Modeli

Gelistirilen ESA modeli Sekil 4.3’de gosterildigi gibi 21 katmandan olugsmaktadir. Yeni ESA
mimarisi, bir giris katmani ile baslayip, toplu normallestirme ve daha sonra her bir evrisim
katmanini takip eden ReLU katmani ile devam etmektedir. Havuzlama iglemlerinden havuzlama
katmanlarinda ‘max’ operator fonksiyonu kullanilmistir. 21 katmanli ESA mimarisinin evrigiml,
evrisim2, evrisim3, evrisim4 ve evrisim5 olmak iizere bes evrisim katmani bulunmaktadir. Ayrica
sirastyla ReLul ve ReLu2 katmanlarindan sonra gelen havuzlamal ve havuzlama 2 olmak iizere
iki havuz katman vardir. Smiflandirma amaciyla tam baglantili katman, softmax katmani ve
siniflandirma katmani da kullanilmistir. Evrigim1, evrisim2 ve evrisim3 katmanlari, 3 X 3 piksel
boyutunda 64, 32, 16, 8 ve 4 filtre igermektedir. Katmanlarin, aktivasyonlarin ve 6grenilebilir
agirliklarin agiklamalarini kapsayan yeni ESA mimarisinin detaylart Sekil 4.3 ve Tablo 4.2°de

sunulmustur.
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Sekil 4.3. Pnomoni tespitinde onerilen yeni 21 katmanli ESA modeli

Tablo 4.2. Gelistirilen model i¢in kullanilan hiper parametreler

o Lo

B\

Saglikli

-

Pnémoni

Katmanlar

Aktivasyonlar

Ogrenilebilir Agirhklar

Gorilinti girisi 224x224x3 <

Evrisim Katmani 224x224x64 Agirliklar 3x3x3x64
Sapma 1x1x64

Toplu Normalizasyon 224x224x64 Offset 1x1x64
Scale 1x1x64

RelLu 224x224x64 -

Maksimum Havuzlama 112x112%64 -

Evrisim Katmani 112x112x32 Agirliklar 3x3x3x64
Sapma 1x1x64

Toplu Normalizasyon 112x112x32 Offset 1x1x32
Scale 1x1x32

RelLu 112x112x32 -

Maksimum Havuzlama 56x56x32 -

Evrisim Katmani 56x56x16 Agirliklar 3x3x3x64
Sapma 1x1x64

Toplu Normalizasyon 56x56x16 Offset 1x1x16
Scale 1x1x16

ReLu 56x56%16 -

Evrisim Katmani 56x56x8 Agirliklar 3x3x3x64
Sapma 1x1x64

Toplu Normalizasyon 56x56%8 Offset 1x1x8
Scale 1x1x8

ReLu 56x56x%8 -

Evrigsim Katmani 56x56x4 Agirliklar 3x3x3x64
Sapma 1x1x64

Toplu Normalizasyon 56x56x4 Offset 1x1x4
Scale 1x1x4

ReLu 56x56%4 -

Tam Bagli Katman 1x1x2 Agirliklar 2x12544
Sapma 2x1

Softmax Ix1x2 -

Siniflandirma Cikigt - -
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4.4, Model Degerlendirme/Dogrulama Yontemleri

Capraz dogrulama, bir makine O6grenimi algoritmasinin egitilmedigi yeni veri kiimeleri
iizerinde tahminlerde bulunma performansini degerlendirmek icin kullanilan bir model
degerlendirme teknigidir. Bu, belirlenen veri kiimesini boliimlere ayirarak, algoritmay1 egitmek
icin bir alt kiime ve test i¢in kalan verileri kullanarak yapilir. Her ¢apraz dogrulama turu, orijinal
veri setinin rastgele bir sekilde bir egitim setine ve bir test setine boliinmesini igerir. Egitim seti
daha sonra denetimli bir 6grenme algoritmasini egitmek i¢in kullanilir ve test seti de algoritmanin
performansint degerlendirmek i¢in kullanilir. Bu islem birkag kez tekrarlanir ve ortalama capraz
dogrulama hatasi bir performans gostergesi olarak kullanilir. Capraz dogrulama, model i¢in en iyi

algoritmay1 bulmak amaciyla verileri farkli sekilde bélen ¢esitli teknikler sunar [151,152].

4.4.1. K-Kath Capraz Dogrulama (K-Fold Cross Validation)

Capraz dogrulama veya 'k-kat c¢apraz dogrulama' yonteminde tiim veri kiimesi esit
biiyiikliikte k parcaya boliiniir ve her boliime bir kat ad1 verilir. K 3,4,5 vb. herhangi bir tam say1
olabilen k parca oldugu igin k-katli olarak bilinir. Gruplardan biri test seti olarak, diger k-1 grup ise
egitim seti olarak kullanilir. Model egitim seti iizerinde egitilir ve test seti iizerinde degerlendirilir.
Daha sonra bu iglem, her bir grup test kiimesi olarak kullanilana kadar k kez tekrarlanir. Sekil 4.4°de
5 katli ¢apraz dogrulamayi ve dolayisiyla 5 iterasyonu gostermektedir. Her iterasyonda, bir kat test
seti/dogrulama seti ve diger k-1 setleri (4 set) egitim setidir [153].

| Kat1 ‘ | Kat 2 || Kat 3 ‘ ‘ Kad | | Kat 5 |
| Test ‘ | Egitim || Egitim ‘ | Egitim ‘ | Egitim | Tekrar 1
Egitim ‘ Test ‘ | Egitim Egitim | Egitim | Tekrar 2
| Egitim | ‘ Egitim | | Test ‘ ‘ Egitim | | Egitim | Tekrar 3
Test
| Egitm || Egiim || Esim || Tet || Esitm | Tekrars
‘ Egitin | ‘ Egitin ” Egitin | ‘ Egitin | | Test | Tekrar §

Sekil 4.4. 5 katli ¢apraz dogrulama 6rnegi [154]

4.4.2. Ayirarak capraz dogrulama (Hold-out Cross Validation)

Ayirma, veri setinin bir egitim Ve test setine ayrilmasidir. Tiim veri kiimesinin rastgele bir
sekilde bir egitim kiimesi ve bir test kiimesi olarak boliimlenmesini saglar. Egitim seti, modelin

iizerinde egitildigi settir ve test seti, modelin goriinmeyen veriler {izerinde ne kadar iyi performans
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gosterdigini gormek igin kullanilir. Veri kiimesi yalnizca iki sete boliindiigiinden, model egitim
kiimesi tlizerinde yalnizca bir kez olusturulur ve daha hizli yiritilir. Sekil 4.5°de veri kiimesi bir
egitim kiimesi ve bir test kiimesi olarak ikiye ayrilmistir. Model egitim kiimesi iizerinde egitilir ve

test veri kiimesi tizerinde test edilir [153].

Veri seti

Egitim Veri seti Test Veri seti

A A

Egitim Test
Egitim Modeli Test Modeli

Sekil 4.5. Hold out ¢apraz dogrulama 6rnegi [154]

K kath ¢apraz dogrulama daha ¢ok tercih edilen yontemdir ¢iinkii modele birden fazla
egitim-test ayrimi {izerinde egitim alma/test etme firsat1 verir. Bu, modelin goriinmeyen veriler
lizerinde ne kadar iyi performans gosterecegine dair daha iyi bir gosterge saglar. Ote yandan hold
out, yalnizca bir egitim-test bolinmesine baglidir. Bu da hold-out yonteminin siniflandirma
performansinin, verilerin egitme ve test kiimelerine nasil boliindiigline bagli hale getirir. Bununla
birlikte k katli ¢apraz dogrulamada birden fazla egitim-test bolmesi kullandigindan, hold-out

yontemine gore daha fazla hesaplama giicii ve zaman gerektirir [153].

4.5. Degerlendirme Metrikleri

Egitimden sonra olusturulan modelin kalitesini degerlendirmek, performansini anlamak igin
cok Onemlidir. Modelin performansini degerlendirmek i¢in dogruluk, kesinlik, duyarlilik ve F1
skor gibi metrikler kullanilabilir. Bunlar, olusturulan model tarafindan verilen tahmine ve temel
gercek olarak hizmet eden etiketli verilere dayanan gercek negatifler, gercek pozitifler, yanlis
negatifler ve yanlis pozitifler gibi parametreler araciligryla elde edilir. Gergek Pozitif (TP), pozitif
simifin dogru siiflandirmasidir, 6rnegin, pnémoni igeren bir goriintiiniin model tarafindan pndmoni
olarak simiflandirilmasidir. Gergek Negatif (TN), negatif sinifin dogru siniflandirmasidir, érnegin
pnomoni igermeyen goriintlinlin yani saglikli gorlintiiniin model tarafindan pndmoni igermedigi ve
saglikli sinifina ait oldugunun tespit edilmesidir. Yanls Pozitif (FP), pozitiflerin yanls tahminidir,

Ornegin pnémoni igeren bir goriintliniin model tarafindan yanlis etiketlenmesidir yani goriintiiniin
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saglikli olarak siniflandirilmasidir. Yanlis Negatif (FN), negatiflerin yanlis tahmin edilmesidir,
ornegin saglikli bir goriintiiniin model tarafindan yanlis etiketlenmesidir yani goriintiiniin pnémoni
olarak siniflandirilmasidir. Karisiklik matrisleri, tahmin edilen ve ger¢cek degerlerden elde edilen
sonuglar1 bir tablo seklinde temsil ederek modelin performansini gorsellestirmenin bir yoludur
[155-157]. Sekil 4.6’da modellerin performansini degerlendirmek i¢in kullanilan karigiklik

matrisinin bir gosterimi yer almaktadir.

Tahmin etiketi

Var Yok
s Gergek Pozitif (TP) Yanlig Negatif
>
2
°
i)
8.
B
@)
3 Yanlig Pozitif (FP) Gergek Negatif (TN
>_

Sekil 4.6. Modelin performansinin gérsellestirilmesini kolaylastiran bir karigiklik matrisi [157]

45.1. Kesinlik

Tahmin edilenlerden dogru gergek pozitifleri kontrol ederek modelin ne kadar hassas calistigini
kontrol eder. Kesinlik/pozitif 6ngoriilen deger; Denklem 4.1°de gosterildigi gibi, dogru tespit edilen
pozitif vakalarin beklenen tiim pozitif vakalara oranidir.

TP
TP+FP

Kesinlik =

(4.1)

45.2. Duyarhhk

Modelin kag¢ tane gercek (actual) TP yakaladigimi hesaplar ve bunlar1 pozitif olarak etiketler.
Duyarlhlik/hassasiyet/gercek pozitif orani; Denklem 4.2°de gosterildigi gibi, tiim gergek pozitif

vakalara kiyasla pozitif vaka olarak dogru sekilde tanimlanan 6rneklerdir.
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TP
TP+FN

Duyarlilik = (4.2)

45.3. Dogruluk

Denklem 4.3°de yer aldigi lizere dogruluk, verilen toplam veri 6rnegi sayisi tizerinden dogru olarak

tanimlanan veri 6rnegi sayisini ifade eder.

TP+TN

Dogruluk = ————
TP+TN+FP+FN

(4.3)

454, F1skor

Karsilasilabilecek her durumu hesaba katmak i¢in duyarlilik ve kesinligin harmonik ortalamasi

olarak alinir ve yontemin genel dogrulugunu gosterir.

2XTP

Fl1skor = ——
2XTP+FP+FN

(4.4)

4.6. Istatistiksel Yontemler

Arastirma verilerinin istatistiksel degerlendirmesinde IBM SPSS Istatistik 26 programi
kullanilmigtir. Verilerin degerlendirilmesinde nicel degiskenler ortalama + standart sapma (SD) ile
nitel degiskenler say1 ve yiizde (%) ile sunulmustur. Nitel degiskenlerin karsilagtirilmasinda Ki-
kare (y%) testi kullanilmistir. Nicel degiskenlerin normal dagilima uygunlugu Kolmogorov-Smirnov
testi ile degerlendirilmistir. Gruplarin karsilagtirilmasinda Mann-Whitney U testi kullanilmistir.
Hipotezler ¢ift yonlii alinarak, p<0.05 ise istatistiksel olarak anlamli sonug¢ kabul edilmistir.

Mann-Whitney U testi, normal dagilima sahip olmayan sirali veriler veya stirekli veriler
iizerinde iki bagimsiz grup arasindaki farkliliklar test etmek icin kullanilan parametrik olmayan
testlerdendir [158]. Ki-kare anlamlilik testi, kategorik ve nitel degiskenler arasindaki iliskinin
istatistiksel olarak anlamli olup olmadigini belirlemek i¢in kullanilan parametrik olmayan bir testtir
[159]. Kolmogorov-Smirnov testi, rneklem biiyiikliigiine bakilmaksizin normal dagilima sahip

olup olmadigini ve istatistiksel analizde anlamli sonuglar elde etmek i¢in kullanilir [160].
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5. BULGULAR VE TARTISMA

Bu tez calismast kapsaminda secilen tiim aglarin derin 6grenme yoOntemlerindeki
basarimlarin1 degerlendirmek i¢in kapsamli deneyler gergeklestirilmistir. Bu bdliimde CXR
gorilintiilerinden ve sayisal tibbi parametrelerden derin 6grenme yaklagimlari ile pndémoni tespitine
ait deneysel calismalarin sonuglari detayli bir sekilde yer almaktadir. Ik énce CXR goriintiilerinden
elde edilen bulgular tablo seklinde verilmistir. Literatiirde benzer calismalarin sonuglari tez
kapsaminda kullanilan yontemlerle karsilastirilmistir. Daha sonra sayisal parametre veri setinden
elde edilen bulgular ve literatiir karsilastirmasi yer almaktadir.

CXR goriintiilerinden derin 6grenme algoritmalarini ve yontemlerini kullanarak pnémoni
tespitinde iki farkli ¢alisma yapilmistir. Ik ¢alismada pnémoni ve saglikli CXR gériintiilerini
simiflandirmak igin derin dgrenmeye dayali yaklagimlar kullanilmistir. Bu yaklagimlar, derin
Oznitelik ¢ikarimi, transfer 6grenme Ve tez ¢alismasi kapsaminda gelistirilmis bir ESA modelinin
uctan uca egitimidir. Derin 6znitelik ¢ikarimi ve transfer 6grenme igin 10 farkli 6nceden egitilmis
ESA modelleri kullanilmistir. Bu ¢alismada kullanilan 6nceden egitilmis ESA modelleri AlexNet,
VGG16, VGG19, ResNet50, DenseNet201, DarkNet53, ShuffleNet, SqueezeNet, MobileNetV2 ve
NasNetMobile’dir. Tkinci ¢aligmada gelistirilen yeni ESA modeli kullamlarak elde edilen sonuglar
doniistiiriicti tabanli mimariler ile karsilastirilmistir. Bu doniistiirtiicii mimarileri, ViT, gMLP, MLP-
mixer ve FNet’tir. Onerilen yontemlerin etkinligini degerlendirmek igin dogruluk, kesinlik,

duyarlilik ve F1-6l¢iimii gibi performans olgiitleri kullanilmisgtir.

5.1. Gogiis rontgen goriintiilerinde pnomoni tespiti icin derin 6grenme modellerinin

incelenmesi

Yapilan ¢alismada 6nceden egitilmis AlexNet, VGG16, VGG19, ResNet50, DenseNet201,
DarkNet53, ShuffleNet, SqueezeNet, MobileNetV2 ve NasNetMobile modelleri ile derin 6znitelik
¢ikarimi ve transfer Ogrenme calismalart gerceklestirilmistir. AlexNet’in fc6; VGG16 ve
VGG19’un fc7; ResNet50 ve DenseNet201’in fc1000; DarkNet53’iin conv53; NasNetMobile’in
predictions; MobileNetV2’nin Logits; ShuffleNet’in node 202 ve SqueezeNet’in pooll0
katmanlarindan 6znitelikler ¢ikarilip siniflandiriciya verilmistir. Cikarilan 6zellikler daha sonra
RO, DVM ve KNN dahil olmak {izere cesitli makine 6grenimi algoritmalarina girildikleri bir
sonraki adimda kullanilmistir. Deneysel c¢aligmalarda kullanilan DVM hiper parametreleri;
cekirdek fonksiyonu ‘linear’ olarak belirlenmistir. KNN hiper parametrelerinde komsu sayist ‘10
olarak belirlenmistir. Uzaklik 0&lgli  birimi  ‘minkowski’ olarak secilmistir. RO hiper
parametrelerinde egitim metodu ‘bag’, toplulukta kullanilacak agag sayis1 50 secilmistir. Ugtan uca

ogrenme i¢in ise 21 katmanlt model olusturularak sifirdan egitilmistir. 21 katmanli yeni ESA hiper



parametreleri; ‘trainingOptions’, 'InitialLearnRate', 'MaxEpochs' ve 'MiniBatchSize' sirasiyla
‘SGDM’,0.0001, 8 ve 10’dur.

Caligmanin 6n isleme agsamasi olarak; kullanilan farkli algoritmalarin goriintii girigleri farkli
oldugu i¢in CXR goriintiileri yeniden boyutlandirilmistir. Hem derin 6znitelik ¢ikarma hem de ince
ayar prosediirlerinde 6nceden egitilmis ESA modellerini esit sartlar altinda karsilastirmak igin tiim
modeller minimum girdi boyutlarii karsilayacak ortak boyut olan 256%x256 yeniden
boyutlandirilmigtir. Giris CXR goriintiileri, tez ¢alismasi kapsaminda gelistirilen ESA modeli igin
224 x 224 piksel olarak yeniden boyutlandirilmistir. Deneysel ¢aligmalarda veri seti hem belirli
oranlarda egitim ve test veri setlerine ayrilmistir, hem de k-katli capraz gegerlilik testi
uygulanmistir. Boylece veri seti %80 egitim ve %20 test olarak ayrilmistir. Ayrica k-katli ¢apraz
gegcerlilik testi igin k degeri 5 segilmistir. Toplanan CXR goriintiilerinden pndmoni tespiti i¢in

Onerilen yontemin akis diyagramu Sekil 5.1°de yer almaktadir.

Pnomoni Saglikli

b 4

Derin Oznitelik Cikarmi | | Transfer Ogrenme | | Ugtan Uca Ogrenme

| Pnémoni | Saglikli |

Sekil 5.1. CXR goriintiileri ile pndmoni tespiti i¢in 6nerilen yontemin akis diyagrami [161]
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Ilk deneyler derin o6znitelik ¢ikarrmi ve makine Ogrenmesi smiflandiricilar ile
gerceklestirilmistir. Onceden egitilmis 10 adet ESA modelinin ilk derin 6znitelik ¢ikarimindan elde
edilen sonuglar sirasiyla Tablo 5.1, Tablo 5.2 ve Tablo 5.3’de sunulmustur. Tablolarda her bir
modelin en yiiksek performans metrik puanlari koyu ile gosterilmistir. Tablo 5.1, derin
Ozniteliklerin DVM ile siniflandirilmasindan elde edilen sonuglari gosterirken; Tablo 5.2, aym
Ozniteliklerin KNN smiflandiricisindan iretilen dogruluk puanlarimi gostermektedir. Tablo 5.3,
derin 6zniteliklerin RO ile siniflandirilmasindan elde edilen siniflandirma performans metriklerini

gostermektedir.

Tablo 5.1. Pnémoni/Saglikli siniflandirmasinda dnceden egitilmis ESA modellerinin DVM basarilar

Derin Oznitelikler + DVM  Dogruluk (%)  Kesinlik (%)  Duyarhlik (%) F1 skor (%)
(%80 Egitim %20 Test)

AlexNet (fc6) 97,00 95,50 98,45 96,95
SqueezeNet(pool10) 97,25 96,00 98,46 97,22
ResNet50(fc1000) 96,50 96,00 96,97 96,48
ShuffleNet(node202) 96,75 96,00 97,46 96,73
NasNetMobile(predictions) 95,75 93,00 98,41 95,63
MobileNetV2(Logits) 96,00 95,50 96,46 95,98
VGG16 (fc7) 96,50 95,50 97,45 96,46
VGG19 (fc7) 96,00 95,00 96,94 95,96
DenseNet201(fc1000) 95,00 94,00 95,92 94,95
DarkNet53(conv53) 93,50 95,50 97,45 96,46

Onceden egitilmis ESA modellerine ait derin &znitelik ¢ikarimi deneysel ¢alismalarinin
sonuclar1 Tablo 5.1°de yer almaktadir. Bu calisma yiiriitiiliirken veri setinin %80’1 egitim i¢in
kullanilmig, dnceden egitilmis modeller veri setinin %20’si ile test edilmistir. Tablo 5.1°deki
satirlar model tilirlinii, siitunlar ise elde edilen siiflandirma performansi parametrelerini
gostermektedir. Tablo 5.1°den, SqueezeNet modelinin %97,25 ortalama dogruluk puani ile en
yiiksek ortalama dogruluk puanini iirettigi, AlexNet, ShuffleNet, VGG16, ResNet50, MobilenetV2,
VGG19 ve NasNetMobile modellerinin ise sirasiyla %97,00, %96,75, %96,50, %96,50, %96,00,
996,00 ve %95,75 ortalama dogruluk puani iirettigi goriilebilir. DenseNet201 modeli %95,00
ortalama dogruluk puani iiretirken, DarkNet53 modeli %93,50 ile en diisiik dogruluk puanlari
iretmistir. SqueezeNet, ResNet50 ve ShuffleNet %96,00 ile ayni kesinlik puanimi elde ederken
NasNetMobile %93,00 ile en diisiik kesinlik basarimi gostermistir. AlexNet, VGG16,
MobileNetV2 ve DarkNet53 %95,50 kesinlik basarimu tiretirken; VGG19 %95,00 ve DenseNet201
%94,00 kesinlik performansi gostermistir. SqueezeNet, AlexNet ve NasNetMobile sirasiyla
%98,46, %98,45 ve %98,41 ile en yiiksek duyarlilik puanlari elde ederken, DenseNet201 %95,92
ile en disiik duyarlilik basarimi gostermistir. VGG16 ve DarkNet53 modelleri %97,45; ResNet50
%96,97; VGG19 %96,94 ve MobileNetV2 %96,46 duyarlilik performansi gostermistir.
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SqueezeNet, AlexNet, ShuffleNet ve ResNet50 sirastyla %97,22, %96,95, %96,73, %96,48 F1 skor
puani iretirken, DenseNet201 %94,95 ile en diisiik F1 skor puami elde etmistir. VGG16 ve
DarkNet53 %96,46; VGG19 %95,96 F1 skoru elde etmistir.

Tablo 5.2, her bir model icin elde edilen simiflandirmanin degerlendirme metriklerini
vermektedir. Onceden egitilmis ESA modellerinden ¢ikarilan derin dznitelikler KNN algoritmasi
ile siniflandirilmigtir. Bu ¢aligma ile hibrit modellerin basarimlari da siniflandirma performansi

acisindan karsilastiriimaktadir.

Tablo 5.2. Pnomoni/Saglikli siniflandirmasinda 6nceden egitilmis ESA modellerinin KNN basarilari

Derin Oznitelikler + KNN Dogruluk (%)  Kesinlik (%) Duyarlilik (%) F1 skor (%)
(%80 Egitim %20 Test)

AlexNet 96,00 92,50 99,46 95,85
SqueezeNet 89,50 82,50 95,93 88,71
ResNet50 94,00 94,00 94,00 94,00
ShuffleNet 93,75 89,50 97,81 93,47
NasNetMobile 87,50 84,50 89,89 87,11
MobileNetV2 93,00 87,50 98,31 92,59
VGG16 91,50 91,00 91,92 91,46
VGG19 92,00 89,50 94,21 91,79
DenseNet201 93,25 89,00 97,27 92,95
DarkNet53 92,75 95,00 90,91 92,91

Tablo 5.2°deki sonuglar g6z Oniine alindiginda AlexNet’in fc6 katmanindan gikarilan
Ozniteliklerin smiflandirmada %96,00 dogruluk puani ile en yiiksek ortalama dogruluk puanim
iirettigi, ResNet50’nin fc1000 katmani kullanilarak ¢ikarilan 6zniteliklerin siniflandirmada ikinci
en iyi puan olarak %94,00 dogruluk puan iirettigi goriilebilir. ShuffleNet modeli %93,75 ortalama
dogruluk puani iiretirken, NasNetMobile modeli %87,50 ile en diisiik dogruluk oranina sahiptir.
ShuffleNet %93,75, DenseNet201 %93,25, MobileNetV2 %93,00, DarkNet53 %92,75, VGG19
%92,00 ve VGG16 %91,50 dogruluk performansi gdostermistir. Darknet53 %95,00 ile en yiiksek
kesinlik puani elde ederken; ResNet50 %94,00, AlexNet %92,50 ve VGG16 %91,00 kesinlik puani
elde etmistir. SqueezeNet %82,50 ve NasNetMobile %84,00 ile en disiik kesinlik basarimi
gostermigtir. ShuffleNet ve VGG19 % 89,50, DenseNet201 %89,00, MobileNetV2 %87,50
kesinlik elde etmistir. AlexNet %99,46 ile en yiiksek duyarlilik elde ederken; MobileNetV2 %98,31
ile en yiiksek ikinci duyarlilik degeri elde etmistir. ShuffleNet %97,81, Densenet201 %97,27,
SqueezeNet %95,93, VGG19%94,21 ve ResNet50 %94,00 duyarlilik puani elde etmistir. %89,89
ile NasNetMobile en diisiik duyarlilik puani tiretmistir. AlexNet ve ResNet50 sirasiyla %95,85 ve
%94,00 ile en yliksek F1 skor puanlari elde ederken; NasNetMobile %87,11 ile en diisiik F1 skor
puani elde etmistir. ShuffleNet %93,47, DenseNet201 9%92,95, Darknet53 %92,91 ve
MobileNetV2 %92,59 F1 skor performansi gostermistir.
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Tablo 5.3. Pnémoni/Saglikli siniflandirmasinda dnceden egitilmis ESA modellerinin RO basarilari

Derin Oznitelikler + RO Dogruluk (%)  Kesinlik (%) Duyarlilik (%) F1 skor (%)
(%80 Egitim %20 Test)

AlexNet 95,75 96,00 95,52 95,76
SqueezeNet 91,50 90,50 92,35 91,41
ResNet50 93,50 93,00 93,94 93,47
ShuffleNet 95,25 94,50 95,94 95,21
NasNetMobile 90,75 90,00 91,37 90,68
MobileNetV2 94,00 95,00 93,14 94,06
VGG16 92,50 92,00 92,93 92,46
VGG19 92,25 92,00 92,46 92,23
DenseNet201 92,75 93,50 92,12 92,80
DarkNet53 93,25 93,00 93,47 93,23

Onceden egitilmis ESA modellerinden ¢ikarilan derin &zniteliklerin RO smiflandirma
performanslar1 Tablo 5.3’de yer almaktadir. AlexNet’in fc6 katmanindan ¢ikarilan 6zniteliklerin
smiflandirmada 995,75 dogruluk puam ile en yiiksek ortalama dogruluk puanim iirettigi,
ShuffleNet’in node202 katmani kullanilarak ¢ikarilan 6zniteliklerin siniflandirmada ikinci en iyi
puan olarak %95,25 dogruluk puam irettigi goriilebilir. MobileNetV2 modeli %94,00 ortalama
dogruluk puamn iiretirken, NasNetMobile modeli %90,75 ile en diisiik dogruluk oranina sahiptir.
ResNet50, DarkNet53, DenseNet201, VGG16 ve VGG19 modellerinin dogruluk oranlari sirasiyla
%93,50, %93,25, %92,75, %92,50 ve %92,25°dir. SqueezeNet modeli %91,50 dogruluga
ulasmigtir. AlexNet %96,00 ile en yiiksek kesinlik puani elde ederken; MobileNetV2 %95,00,
ShuffleNet %94,50 ve DenseNet201 %93,50 kesinlik puani elde etmistir. VGG modelleri %92,00
kesinlik basarimu gosterirken; SqueezeNet %90,50 ile NasNetMobile %90,00 ile en diisiik kesinlik
basarimlart gostermistir. ShuffleNet %95,94 ile en yiiksek duyarlilik elde ederken; AlexNet
%95,52 ile en yiiksek ikinci duyarlilik degeri elde etmistir. %91,37 ile NasNetMobile en diisiik
duyarlilik puani iiretmistir. AlexNet ve ShuffleNet sirasiyla %95,76 ve %95,21 ile en yiiksek F1
skor puanlar1 elde ederken; NasNetMobile %90,68 ile en diisiik F1 skor puani elde etmistir.
MobileNetv2 %94,06 ile ortalama bir F1 skor bagarimi gosterirken; ResNet50 %693,47, DarkNet53
%93,23, DenseNet201 %92,80, VGG16 %92,46 ve VGGI19 %9223 F1 skor performansi

liretmistir.
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Tablo 5.4. Pnémoni/Saglikli siniflandirmasinda 6nceden egitilmis ESA modellerinin DVM bagsarilar

Derin Oznitelikler + DVM Dogruluk (%)  Kesinlik (%) Duyarlilik (%) F1 skor (%)
(5 kat capraz dogrulama)

AlexNet 97,75 97,00 98,48 97,73
SqueezeNet 97,50 98,50 96,57 97,52
ResNet50 96,75 96,50 96,98 96,74
ShuffleNet 98,00 97,00 98,98 97,98
NasNetMobile 96,25 95,00 97,44 96,20
MobileNetV2 96,75 96,50 96,98 96,74
VGG16 96,00 96,00 96,00 96,00
VGG19 97,00 97,50 96,53 97,01
DenseNet201 97,25 96,50 97,97 97,23
DarkNet53 96,00 95,00 96,46 95,98

Ikinci derin 6znitelik ¢ikarma deneylerinde veri seti 5 kat ¢apraz dogrulama kullanilarak
ayrilmistir. Tablo 5.4’de 6nceden egitilmis ESA modellerinin DVM siniflandirma basarimlart yer
almaktadir. Goriildiigii gibi, neredeyse tiim aglar tiim Olgiitlerde %95,00’in {izerinde bir puanla
tatmin edici sonuglar elde edebilmektedir, bu da derin Gznitelik ¢ikarimi yonteminin pndmoni
tespitinde etkili bir yaklasim oldugunu géstermektedir. Dahasi, tim modeller yiiksek kesinlik
puanlarn elde etmektedir, bu da her sinif igin genellikle diisiik sayida yanlis pozitif oldugunu, yani
pnoémoni siifinin tahmin sirasinda karigtiritlmama egiliminde oldugunu gostermektedir. ShuffleNet
%98,00 dogruluk puani ile en yliksek dogruluga ulasirken; AlexNet %97,75, SqueezeNet %97,50,
DenseNet201 %97,25 dogruluk elde etmistir. VGG16 ve DarkNet53 %96,00 ile en diisiik dogruluk
puan tUretmistir. VGG19 %97,00, ResNet50 ve MobileNetV2 %96,75 dogruluk basarimi elde
etmistir. SqueezeNet %98,50 ile en yiiksek kesinlik puami elde ederken; DarkNet53 ve
NasNetMobile %95,00 ile diger modellere gore daha diisiik kesinlik puani elde etmistir. VGG19
%97,50; AlexNet ve ShuffleNet %97,00; ResNet50, MobilenetV2 ve DenseNet201 %96,50
kesinlik performansi sergilemistir. ShuffleNet %98,98 ve AlexNet %98,48 ile en yiiksek duyarlilik
puanlarini iiretirken; VGG16 %96,00 ile en diisiik duyarlilik basarimi gostermistir. DenseNet201
%97,97; NasNetMobile %97,44; MobileNetV2 ve ResNet50 %96,98 duyarlilik basarimi
gostermistir. ShuffleNet, AlexNet ve SqueezeNet sirasiyla %97,98, %97,73, %97,52 ile ortalama
en yliksek F1 skor puani elde etmistir. DarkNet53 en diisiik F1 skor puanini %95,98 ile gdstermistir.
DenseNet201 %97,23; VGG19 %97,01; MobileNetV2 ve ResNet50 %96,74 F1 6l¢iim sonucu elde

etmigtir.
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Tablo 5.5. Pnémoni/Saglikli simiflandirmasinda dnceden egitilmis ESA modellerinin KNN basarilari

Derin Oznitelikler+KNN  Dogruluk (%)  Kesinlik (%)  Duyarlilik (%) F1 skor (%)
(5 kat capraz dogrulama)

AlexNet 96,25 94,50 97,93 96,18
SqueezeNet 91,50 88,00 94,62 91,19
ResNet50 93,25 95,00 91,79 93,37
ShuffleNet 95,75 94,50 96,92 95,70
NasNetMobile 90,00 88,00 91,67 89,80
MobileNetV2 92,50 89,50 95,21 92,27
VGG16 93,50 93,00 93,94 93,47
VGG19 92,50 91,00 93,81 92,39
DenseNet201 93,25 89,00 97,27 92,95
DarkNet53 91,75 94,00 89,95 91,93

Tablo 5.5’de 6nceden egitilmis ESA modellerinin KNN smiflandirma bagarimlari yer
almaktadir. AlexNet %96,25 dogruluk puani ile en yiiksek dogruluga ulagirken; ShuffleNet
%95,75, VGG16 %93,50, DenseNet201 ve ResNet50 %93,25 dogruluk elde etmistir.
NasNetMobile %90,00 ile en diisiik dogruluk puani {iretmistir. SqueezeNet %91,50 ve DarkNet53
%91,75 smiflandirma dogrulugu iiretmistir. ResNet50 %95,00 ile en yiiksek kesinlik puani elde
ederken; SqueezeNet ve NasNetMobile %88,00 ile diger modellere gore daha diisiik kesinlik puant
elde etmistir. AlexNet ve ShuffleNet %94,50; DarkNet53 %94,00; VGG16 %93,00; VGG19
%91,00 ortalama kesinlik performans: gostermistir. DenseNet201 9%89,00 ve MobileNetV2
%89,50 ile diisiik kesinlik basarimi gosteren modellerdendir. AlexNet %97,93 ve DenseNet201
%97,27 ile en yliksek duyarlilik puanlarini iiretirken; DarkNet53 %89,95 ile en diisiik duyarlilik
basarimi gostermistir. ShuffleNet %96,92 ve MobileNetv2 %95,21 ile ortalama yiikseklikte bir
duyarlilik basarimi elde etmigtir. ResNet50 %91,79 ile NasNetMobile %91,67 diisiik duyarlilik
puani tireten mimarilerdendir. AlexNet ve ShuffleNet sirasiyla %96,18, %95,70 ile ortalama en
yiiksek F1 skor puami elde etmistir. NasNetMobile en diisiik F1 skor puanini %89,80 ile
gostermigtir. VGG16 %93,47; ResNet50 %93,37; DenseNet201 %92,95; VGG19 %92,39;
MobileNetV2 %92,27 F1 skor puani elde etmistir.
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Tablo 5.6. Pnémoni/Saglikli siniflandirmasinda dnceden egitilmis ESA modellerinin RO basarilari

Derin Oznitelikler+RO Dogruluk (%)  Kesinlik (%) Duyarlilik (%) F1 skor (%)
(5 kat capraz dogrulama)

AlexNet 96,75 97,50 96,06 96,77
SqueezeNet 93,00 94,00 92,16 93,07
ResNet50 95,00 94,00 95,92 94,95
ShuffleNet 97,00 97,00 97,00 97,00
NasNetMobile 91,25 91,00 91,46 91,23
MobileNetV2 93,00 93,00 93,00 93,00
VGG16 93,50 93,00 93,94 93,47
VGG19 93,25 93,50 93,03 93,27
DenseNet201 95,25 95,00 95,48 95,24
DarkNet53 90,50 90,00 90,91 90,45

Veri setinin 5 kat ¢apraz dogrulamayla ayrildigi son derin 6znitelik ¢ikarimi deneysel
caligmast Tablo 5.6’da sunulmustur. Tablodan goriilecegi lizere, tiim aglar tim Olgiitlerde
%90,00’in tizerinde siniflandirma performans sonuglar1 elde etmistir, bu da RO algoritmasinin
CXR goriintiilerine ait derin znitelikleri yiiksek bir oranla taniyabildigini géstermektedir. Onceden
egitilmis ESA modellerinden ¢ikarilan 6zniteliklerin RO siniflandirma performanslari agisindan
ShuffleNet %97,00 ile en yiiksek dogrulugu elde etmistir. AlexNet %96,75, DenseNet201 %95,25
ve ResNet50 %95,00 ortalama dogruluk puanlari tretmistir. DarkNet53 %90,50 ile en diisiik
dogruluk puanina sahiptir. VGG16 %93,50; VGG19 %93,25; SqueezeNet ve MobileNetV?2
%93,00 siniflandirma dogrulugu elde etmistir. Kesinlik basarimlari agisindan AlexNet %97,50 ile
en yiiksek; ShuffleNet %97,00 ile en yiiksek ikinci puani Uretmistir. DarkNet53 %90,00 ve
NasNetMobile %91,00 ile en diisiik kesinlik puani elde etmistir. DenseNet201 9%95,00;
SqueezeNet ve Resnet50 %94,00; VGG19 %93,50; VGG16 ve MobileNetV2 %93,00 kesinlik
puanma ulasmistir. Onceden egitilmis ESA modelleri duyarlilik acisindan karsilastirildiginda
DarkNet53 %90,91 ile en diisiik; ShuffleNet %97,00 ile en yiiksek puanlari elde etmistir. AlexNet
%96,06; DenseNet201 %95,48; ResNet50 %95,92; VGG16 %93,94; VGG19 %93,03 basarim
sergilemislerdir. F1 skor acisindan da DarkNet53 990,45 ile en diisiik; ShuffleNet %97,00 ile en
yiiksek puanlari tiretmistir. AlexNet %96,77; DenseNet201 %95,24; ResNet50 %94,95; VGG16
%93,47 ve VGG19 % 93,27 F1 skor puanina ulagsmistir.

Iki derin oznitelik c¢ikarimi deneylerinin sonuglar1 karsilastirildiginda; 5 katli capraz
dogrulama kullanilarak ayrilan veri seti ile yapilan test sonuglarinin daha yiiksek dogruluk
puanlarina ulagtig1 goriillmektedir. K-katli ¢apraz dogrulama kullanilirken, verilerin tiim boliimleri
test verilerinin bir pargasi olarak kullanilabilir. Bu sekilde, veri kiimesindeki tiim veriler hem egitim
hem de test i¢in kullanilabilir ve modelin performansinin daha iyi degerlendirilmesini saglar
[152,161].

63



Capraz dogrulama kullanarak daha fazla metrik elde edinilebilir ve hem algoritma hem de
veriler hakkinda 6nemli sonuglar ¢ikarilabilmektedir. Secilen algoritmanin veya verilerin (veya her
ikisinin) tutarlt olup olmadigi, algoritmanin problemi iyi 6grenip 6grenemedigi veya verilerin

karmasik olup olmadigi gibi bilgiler siniflandirma performans metriklerinden anlagilabilmektedir.

Ik deneysel calismalar degerlendirildiginde 6nceden egitilmis ESA modellerinden ¢ikarilan
derin 6zniteliklerin makine 6grenmesi algoritmalariyla siniflandirilmasinda DVM algoritmast hem
k kat capraz dogrulama hem de ayirarak ¢apraz dogrulama yontemlerinde her degerlendirme
metriginde ortalama %90,00’nin tizerinde siniflandirma performansi sergilemistir. Boyle bir sonug,
DVM algoritmasinin diger makine 6grenmesi algoritmalarina kiyasla pndmoniden etkilenenleri
saglikl1 bireylerden daha dogru bir sekilde ayirt edebildigini gostermektedir. Sonug olarak, 6nerilen
derin 6grenme gergeveleri, pnémoni vakalarinin yiiksek dogrulukta siniflandirilmasini ve teshisini
saglamak ic¢in c¢ikarilan oOzelliklerden ve makine Ogrenimi algoritmalarindan basariyla

yararlanmaktadir.

Tablo 5.7. Pnémoni/Saglikli siiflandirmasinda ESA modellerinin transfer 6grenme basarilari

Transfer Ogrenme Dogruluk (%) Kesinlik (%) Duyarlilik (%) F1 skor (%)
(%80 Egitim %20 Test)

AlexNet 98,50 97,00 100,00 98,48
SqueezeNet 95,00 91,50 98,39 94,82
ResNet50 97,25 94,50 100,00 97,17
ShuffleNet 97,00 98,50 95,63 97,04
NasNetMobile 98,00 98,00 98,00 98,00
MobileNetV2 97,75 96,00 99,48 97,71
VGG16 97,50 98,50 96,57 97,52
VGG19 95,75 99,50 92,56 95,90
DenseNet201 94,75 89,50 100,00 94,46
DarkNet53 96,50 94,50 98,44 96,43

Tablo 5.7°de 6nceden egitilmis modellerin ince ayarinin dogruluk sonuglar1 gosterilmistir.
Veri seti %80 egitim ve %20 test olarak ayrilmistir. Siniflandirma dogrulugu, kesinlik ve F1 puani
gibi performans Olgiitlerinin sonuglari, AlexNet modelinin diger mimarilerden daha iyi bir
performans elde ettigini gostermektedir. En yiiksek dogruluk puani %98,50 ile AlexNet modeli
tarafindan tretilirken; ikinci en iyi dogruluk puani %98,00 ile NasNetMobile modelinden elde
edilmistir. MobileNetV2, VGG16, ResNet50 ve ShuffleNet modelleri sirasiyla %97,75, %97,50,
997,25 ve %97,00 dogruluk puanlari elde edilmistir. SqueezeNet %95,00 ve VGG19 %95,75 ile
diisiik dogruluk basarimi gosteren mimarilerdendir. Densenet201 %94.75 ile en diisiik dogruluk
puani elde etmistir. Kesinlik puanlari agisindan karsilastirildiginda sonuglar %89,50 ile %99,50
arasinda degismektedir. VGG19 %99,50 ile en yiiksek; DenseNet201 %89,50 ile en diisiik kesinlik
puanlarini iiretmistir. ResNet50 ve DarkNet53 %94,50 ile ortalama kesinlik degeri elde etmistir.
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ShuffleNet ve VGG16 %98,50; NasNetMobile %98,00; AlexNet %97,00 ve MobileNetV2 %96,00
kesinlik skoru tretmistir. AlexNet, ResNet50 ve DenseNet201 %100,00 duyarlilik degeri
tiretmistir. %99,48 ile en yiiksek ikinci duyarlilik degerinin MobileNetV2 iiretmistir. VGG19
%92,56; ShuffleNet %95,63 ile diger modellere gore daha diisikk duyarhlik elde etmistir.
DarkNet53 %98,44; SqueezeNet %98,39 ve NasNetMobile %98,00 duyarlilik degeri elde etmistir.
F1 skor degerleri %94,46 ile %98,48 arasinda degismektedir. Alexnet %98,48 ile en yiiksek F1
skor puani elde ederken; ResNet50 %97,17; ShuffleNet %97,04 puan elde etmistir. VGG16,
NasNetMobile, MobileNetV2 modelleri sirastyla %98,00, %97,71, %97,52 elde etmistir.
DenseNet201’in lirettigi %94,46 ve SqueezeNet’in tirettigi %94,82 diisiik F1 skor degerlerindendir.

Tablo 5.8. Pnémoni/Saglikli siiflandirmasinda ESA modellerinin transfer 6grenme basarilari

Transfer Ogrenme Dogruluk (%) Kesinlik (%) Duyarlilik (%) F1 skor (%)
(5 kat capraz dogrulama)

AlexNet 94,00 90,60 97,21 93,79
SqueezeNet 92,00 89,00 94,78 91,80
ResNet50 98,00 98,00 98,00 98,00
ShuffleNet 97,75 97,80 97,70 97,75
NasNetMobile 97,10 99,50 94,94 97,17
MobileNetV2 97,15 98,50 95,91 97,19
VGG16 98,25 99,00 97,54 98,26
VGG19 97,00 99,50 94,76 97,08
DenseNet201 98,10 98,50 97,72 98,11
DarkNet53 98,00 97,80 98,10 97,95

Tablo 5.8’de onerilen ESA modellerinin transfer 6grenme yontemine ait 5 kath capraz
dogrulama test sonuglari yer almaktadir. Modeller dogruluk degerleri agisindan karsilastirildiginda;
VGG16 %98,25 ile en yiiksek puana ulasirken, DenseNet201 %98,10, Resnet50 ve DarkNet53
%98,00 basarim gostermistir. ShuffleNet %97,75, MobileNetV2 %97,15, NasNetMobile %97,10
dogruluk degeri ilretmistir. SqueezeNet %92,00 ile en diisiik transfer 6grenme dogrulugunu
gostermistir. VGG19 ve NasNetMobile 999,50 ile en yiiksek kesinlik degeri elde etmistir. VGG16
%99,00; DenseNet201 ve MobileNetV2 %98,50; ResNet50 %98,00 kesinlik puanina erigmistir.
SqueezeNet %89,00 ve AlexNet %90,60 ile diisiik kesinlik performansi gésteren modellerdir.
DarkNet53 998,10, ResNet50 %98,00 ile en yiiksek duyarlilik degerlerini tretmistir.
NasNetMobile %94,94 ile en diisiik duyarlilik performansi gostermistir. DenseNet201, ShuffleNet,
VGGI16 ve AlexNet mimarilerinin duyarhilik puanlart sirasiyla %97,72, %97,70, %97,54 ve
%97,21°dir. VGG16’nin F1 skor degeri %98,26’dir, %91,80 ile en diisiik F1 skor performansi
%91,80 ile SqueezeNet’e aittir. DenseNet201, ResNet50, DarkNet53 ve ShuffleNet i¢in F1 skor
degerleri sirastyla %98,11, %98,00, %97,95 ve %97,75"dir.
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Veri setinin %80 egitim, %20 test olarak ayrildig1 derin 6grenme deneylerinden elde edilen
sonuglar karsilastirildiginda ince ayarli AlexNet modeli %98,50 ile derin 6znitelik ¢ikarimi ve
uctan uca 6grenme sonuglarindan daha iyi sonug elde ettigi agik¢a goriilmektedir. Veri setinin 5 kat
capraz dogrulama ile ayrildigt derin Ogrenme deneylerinden elde edilen sonuglar
karsilastirildiginda ince ayarlh VGG16 modeli %98,25 ile derin 6znitelik ¢ikarimi ve ugtan uca
O0grenme sonuglarindan daha iyi sonug elde ettigi agikca goriilmektedir. Bu sonug, transfer
Ogrenmenin etkinligini vurgulamakta ve pndmoninin erken teshisi i¢in 6nceden var olan modellerin

becerisi sayesinde pratik bir strateji olabilecegini gdstermektedir.

Tablo 5.9. Gelistirilen ESA modelinin ugtan uca egitimi ile elde edilen siniflandirma performansi

ESA Dogruluk (%) Kesinlik (%) Duyarlilik (%) F1 skor (%)
(%80egitim %20test)
21 katman 96,75 96,50 97,00 96,75

Tablo 5.10. Ugtan uca egitilmis ESA modelinin ¢apraz dogrulama performanslari

ESA Dogruluk (%)  Kesinlik (%) Duyarlilik (%) F1 skor (%)
(5 kat ¢apraz dogrulama)
21 katman 95,75 93,50 97,91 95,65

Tablo 5.9 ve Tablo 5.10’da gelistirilen ESA modelinin ugtan uca egitiminden k kat ¢apraz
dogrulama ve ayirarak ¢capraz dogrulama ile elde edilen siniflandirma performanslari gosterilmistir.
Tablo 5.9°de 21 katmanli ESA %96,75 dogruluk degeri elde etmistir. Ayirarak dogrulama ile yeni
ESA modelinin kesinligi %96,50, duyarliligi %97,00 ve F1 skor 6lgiitii %96,75°dir. Tablo 5.10°da
goriilecegi tlizere K kat ¢apraz dogrulama ile yeni ESA modelinin dogrulugu %95,75, kesinligi

%93,50, duyarlilig1 %97,91 ve F1 skor 6l¢iiti %95,65°dir.

Tablo 5.11. Onerilen modelin CXR gbriintii veri setindeki performans metrikleri

ESA Dogruluk (%) Kesinlik (%) Duyarlilik (%) F1 skor (%)
(5 kat capraz dogrulama)
21 katman 94,50 90,50 98,37 94,27

Caligmanin son asamasinda tez ¢alismasi kapsaminda gelistirilen ESA modelinin etkinligini
test etmek icin CXR veri setleri kullanilmigtir [22,35]. Bu ¢aligsma i¢in Onerilen 21 katmanli yeni
modelin Pndmoni CXR veri setindeki performans degerlendirmeleri Tablo 5.11°de yer almaktadir.
Tablo 5.11’de 21 katmanli yeni ESA modelinin CXR veri setindeki dogruluk performansi
%94,50°dir.
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Tez caligmas1 kapsaminda gergeklestirilen derin dgrenme yaklagimlarindan elde edilen
sonuglar arasinda Tablo 5.12°de verildigi gibi bir karsilastirma daha yapilmstir. Karsilagtirmalar,
her bir derin 6grenme yaklagimindan elde edilen en yiiksek dogruluk puanina gore temsil edilmistir.
Tablo 5.12°de goriildiigii gibi, ince ayarli AlexNet modeli %98,50 dogruluk ile en yiiksek dogruluk
skorunu gergeklestirmistir. Derin Oznitelik ¢ikarma ve transfer 6grenme yontemleri onceden
egitilmis derin ESA modelleri kullanildigindan, ugtan uca egitime gore daha yiiksek dogruluk

puanlari iiretmistir.

Tablo 5.12. Uygulanan yontemlerin performans karsilastirmasi

Yontem Dogruluk
ShuffleNet+ DVM (k fold) %98,00
Ince ayarli AlexNet (hold out) %98,50
Ucgtan uca egitilmis ESA (hold out) %96,75

Tablo 5.13. Onerilen yontemin literatiirdeki calismalarla performans karsilastirmasi

Yazarlar Onerilen yontem | Karsilastirilan teknikler Veri seti Performans metrikleri
(%)
Ayan vd. [23] Cesitli makine Klasik makine 6grenimi [22] Kesinlik:85,95
Ogrenimi algoritmalari Duyarlilik:89,74
algoritmalari Ince ayarhi Xception F1 skor:89,72
Dogruluk:89,74
Demir vd. [24] Transfer 6grenme AlexNet [22] Kesinlik:98,21
tabanli ESA Duyarlilik:95,99
F1 skor:97,08
Dogruluk:96,31
Bakir vd. [25] Derin 6grenme YSA [22] Kesinlik:94,50
teknikleri ResNet-YSA Duyarlilik:95,50
Inception-YSA F1 skor:95,00
MobileNet-YSA Dogruluk:95,67
Ouleddroun vd. Derin 6znitelikler ESA-DAA [22] Kesinlik:97,05
[26] ESA-DVM Duyarlilik:95,20
ESA-KNN F1 skor:96,12
Dogruluk:97,86
Aljawarneh vd. Gelistirilmis ESA Gelistirilmis ESA [22] Kesinlik:90,0
[27] Modeli ResNet Duyarlilik:96,0
Ince ayarli ResNet F1 skor:92,90
VGG19 Dogruluk:92,40
Kanawade vd. Derin 6grenme Xception [22] Kesinlik:94,63
[28] yaklasimi VGG16 Duyarlilik:93,37
DenseNet201 F1 skor:93,93
Hibrit yaklagim Dogruluk:94,39
Iparraguirre- Transfer 6grenme VGG16 [22] Kesinlik:-
Villanueva  vd. tabanli ESA VGG19 Duyarlilik:93,7
[29] ResNet50 F1 skor:82,0
InceptionV3 Dogruluk:72,9
(Bu tez caligmasi | Derin grenme VGG16, VGG19, Ozel veri | ince ayarh AlexNet
kapsaminda teknikleri ResNet50, DenseNet201, seti Kesinlik:97,00
yayinlanmuistir) AlexNet, NasNetMobile, Duyarlilik:100,00
[161] MobileNetV2, F1 skor:98,48
DarkNet53, SqueezeNet, Dogruluk:98,50
ShuffleNet, 21 katmanli
ESA
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Bu ¢alismanin temel amaci, ESA tabanli derin 6grenme yaklagimlarinin pndmoni teshisi igin
oldukgca etkili oldugunu gostermektir. Onceki caligmalara benzer sekilde, bizim ¢alismamiz da
derin 6grenmeye dayanmaktadir. Ancak metodolojik katkisi nedeniyle farklilik gdstermektedir.
Daha 6nce derin 6grenme kullanilarak yapilan farkli yontemler 6neren ¢alismalar Tablo 5.13°de ilk
calismada kullanilan yéntemlerle dogruluklar: acisindan karsilastirilmstir. Onerilen yontemlerden
olan ince ayarli 6nceden egitilmis AlexNet aginin olusturulan CXR veri kiimesinin %80 egitim
%20 test ayrimindaki siniflandirma performans metrikleri kesinlik haricinde diger ¢aligmalardan
daha iyi performans gdstermistir. Ince ayarli AlexNet modelinin siniflandirma metrikleri dogruluk,
kesinlik, duyarlilik ve F1 skor agisindan sirasiyla %98,50, %97,00, %100,00, %98,48°dir. [24]’de
arastirmacilar CXR goriintiilerinde pnémoni tespiti i¢in transfer 6grenme yontemini uygularken,
[26]°da ise yazarlar CXR goriintiilerinden ¢ikardiklar1 derin 6znitelikleri siniflandirmak igin DAA,
DVM ve KNN gibi ¢esitli siniflandiricilar kullanmiglardir. [24] ve [26] kesinlik metrikleri sirasiyla
%98,21 ve %97,05°dir. Buna gore, Onerilen yontemin dogruluk agisindan Onceki ¢aligmalarla
karsilastirilabilir oldugu goriilmektedir. Tablo 5.13’de de goriilecegi iizere bugiine kadar pndmoni
tespitinde ESA mimarisini i¢eren birgok ¢alisma yapilmistir. Bu mimarilerin en bilyiik avantaji
uctan uca Ogrenme yapist icermeleri, yani elle hazirlanmis bir 6zellik ¢ikarma adiminin
olmamasidir. Transfer 6grenme yontemi, biiyiik 6lgekli veri kiimelerinden &grenilen 6nceden
egitilmis modellerden elde edilen bilgilerden yararlanabildigi, performansi artirdigi, minimum
egitim sagladig1 ve kiiclik veri kiimelerinin dezavantajinin iistesinden gelebildigi i¢in pnémoni
tespiti de dahil tibbi goriintii siniflandirmasi i¢in uygun bir teknik oldugunu kanitlamigtir. Tez
caligmast kapsaminda uygulanan her bir derin 6grenme yontemi ig¢inde en yiiksek dogruluk

performansi gosteren yaklasimin karsilagtirmasinin grafiksel analizi Sekil 5.2°de yer almaktadir.

Dogruluk

Ugtan uca egitilmis ESA (hold out) _ 96,75%
shuffleNet+ ovM (k fold) ||| T oo

95,50%96,00%96,50%97,00%97,50%98,00%98,50%99,00%

B Dogruluk

Sekil 5.2. Uygulanan yontemlerin en yiiksek dogruluk puani agisindan karsilastirilmasinin grafiksel analizi
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5.2. Gogiis rontgen goriintiilerinde pnomoni tespiti icin transformer modellerinin

incelenmesi ve ESA mimarisi ile karsilastirilmasi

CXR goriintiilerinden pnémoni tespiti i¢in gergeklestirilen ikinci deneysel ¢aligsmalarda tez
caligmast kapsaminda gelistirilen 21 katmanli ESA modeli ile c¢esitli donistiiriicii tabanl
yaklagimlarin siiflandirma performanslart karsilagtirilmistir,. CXR goriintiileri  kullanarak
pnémoni tespiti i¢in kullanilan dort goriintii doniistiiriicti mimarileri, ViT, FNet, gMLP ve MLP-
mixer’dir. Caligmanin 6n isleme asamasinda veri setindeki CXR goriintiileri farkli boyutlarda
oldugu icin doniistiiriicii tabanli modellerin minimum giris boyutlarii karsilayacak sekilde
512x512 olarak yeniden boyutlandirilmigtir. Daha sonra her goriintii 32x32 piksel boyutunda
toplam 256 parcaya boliinmistiir. Bahsedilen yontemlerin egitiminde ADAM optimizasyonu
dikkate alinmistir. Ayrica, veri setini egitim ve test verilerine bolmek i¢in ayirma capraz
dogrulamasi kullanilmigtir; burada bolme orani egitim i¢in %90 ve test i¢cin %10’dir. CXR
gorilintiileri ayrica 21 katmanlt ESA modeli igin 224x224 olarak yeniden boyutlandirilmistir.
Gelistirilen 21 katmanli ESA modeli igin 6grenme orani 0.0001, yi1gin boyutu 10 ve devir sayisi
8’dir. Gelistirilen 21 katmanli ESA ydnteminin egitiminde momentumlu stokastik gradyan inis
(SGDM) optimizasyon algoritmasi dikkate alinmistir. Sekil 5.3’de pnomoni tespiti i¢in Gnerilen

yontemin akis diyagrami yer almaktadir.

Fr——— pad—" —. 4. Pr— . —. B — . — . —.
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr PNOMONI
S | pOGRULUK | | — |
I 2 * I i I [ I = t‘
i | I.l « | | DUYARLILIK | | 1 |
___ ' YENIDEN . N . -~
- = 7 I |BOYUTLANDIRMAI KESINLIK | | & 3 |
Nivh | R ) = AR L I
I I . mskorR | . T N )
L. —. . - L._._. ., L. —. . — L .saGLikir
QR BN i ONERILEN PERFORMANS SINIFLANDIRMA
CXR VERI SETI ON ISLEME (ONERILEN RNt

Sekil 5.3. Pnomoni ve saglikli CXR goriintiilerinin doniistiiriicii tabanli modeller ve 21 katmanli ESA ile
smiflandirilmasi

Doniistiirticii tabanli modellerin parametreleri, her kod calistirilirken bulussal olarak
atanmigtir. ViT modeli i¢in 6grenme oran1 0.001, agirlik azalmasi 0.0001 ve y1gin boyutu, egitim
tur sayisi, yansitma boyutu, baslik sayis1 ve doniistiiriicii katman sayisi sirasiyla 64, 400, 64, 4 ve
8’dir. FNet, MLP-mixer ve gMLP modelleri i¢in agirlik azalmasi 0,0001 olarak ayarlanmistir, y1gin
boyutu, egitim tur sayisi, gdmme boyutu, MLP- mixer katman say1si ve birakma orani sirasiyla 64,
400, 256, 4 ve 0,2 olarak ayarlanmistir. Ogrenme orani, MLP mixer i¢in 0,005, FNet icin 0,001 ve
gMLP i¢in 0,003 olarak ayarlanmigtir.
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Tablo 5.14. Kullanilan modeller i¢in elde edilen siniflandirma performanslarinin 6zeti

Model F1 skor (%) Duyarlilik (%) Kesinlik (%) Dogruluk (%)
ViT 96,52 95,10 97,98 96,43
FNet 96,52 95,10 97,98 96,43
MLP-mixer 95,57 95,10 96,04 95,41
gMLP 94,42 91,18 97,89 94,39
21 katmanli ESA 96,62 93,46 100,00 96,50

Tablo 5.14°de, her bir yontem igin elde edilen siniflandirmanin degerlendirme olgiitlerini
vermektedir. Tablo 5.14’deki satirlar modelin tiiriinii, stitunlar ise elde edilen siniflandirma
performans parametrelerini gostermektedir. Tablo 5.14'te goruldiigii gibi, ViT ve FNet modelleri
ayn1 dogruluk, kesinlik, duyarlilik ve F1 puanlar1 degerleri iiretmistir. Uretilen degerlendirme
puanlar1 dogruluk, kesinlik, duyarlilik ve F1 puanlari i¢in sirasiyla %96,43, %97,98, %95,10 ve
%96,52’dir. Ayrica, MLP-mixer sirasiyla %95,41 dogruluk puani, %96,04 kesinlik degeri, %95,10
duyarlilik degeri ve %95,57 F1 puami kaydetmistir. Son olarak gMLP yaklagimi ile %94,39
dogruluk puani, %97,89 kesinlik, %91,18 duyarlilik ve %94,42 Fl-skor degerleri elde edilmistir.
Hesaplanan degerlendirme metrikleri incelendiginde, Onerilen doniistiiriici tabanli yaklagimlar
arasinda ViT ve FNet basarilarinin en yiiksek oldugu goriilmiistiir. MLP-mixer modeli, en iyi ikinci
degerlendirme puanlarmi (F1 puani, duyarlilik ve dogruluk) iretmistir. gMLP, hesaplanan
kesinligin %97,89 oldugu en iyi ikinci kesinlik skorunu elde etmistir. gMLP kesinlik metrigi
disindaki diger performans metriklerinde en diisiik basarimi sergilemistir. Bununla birlikte,
onerilen ESA modeli, tiim doniistiiriicti tabanlt modellerden daha iyi performans gostermis ve tez
caligmas1 kapsaminda olusturulan veri setinde ayirma capraz dogrulama yontemiyle %96,50

dogruluk, %100,00 kesinlik, %93,46 duyarlilik ve %96,62 F1 puanlar1 kaydetmistir.
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Gergek sinif

100

Tahmini smif

93

0;Saglikl
1;Pnomoni

Sekil 5.4. 21 katmanl gelistirilen ESA modeli kullanilarak elde edilen karigiklik matrisi

Gelistirilen ESA modeli

tahmin edilen siniflarin 6rnek sayisini gostermektedir. Sekil 5.4’den de goriilebilecegi gibi, saglikli
smif %100 dogru smiflandirilmis ve 7 pndmoni 6rnegi yanlis siniflandirilmistir. 21 katmanli ESA
modeli kullanilarak elde edilen performansin 6zeti Tablo 5.15’de yer almaktadir. Tablo 5.15de
belirtildigi gibi, gelistirilen 21 katmanli ESA modeli, 6zel veri tabani i¢in hold-out dogrulama
stratejisi ile %96,50 dogruluk puani, %100,00 kesinlik, %93,46 duyarlilik ve %96,62 F1 puani
degerleri iiretmistir. Buna ek olarak, 21 katmanli ESA modeli, on kat ¢apraz dogrulama stratejisi

ile 6zel bir veri taban1 kullanarak sirastyla %93,33, %92,15, %91,00 ve %92,25 kesinlik, F1 puani,

tarafindan elde edilen karisiklik matrisi

duyarlilik ve dogruluk degerleri vermistir.

Sekil

Tablo 5.15. Ozel veri tabani igin ESA modeli kullanilarak elde edilen performansin dzeti

Model Veri Bolme Dogruluk Kesinlik Duyarhlik F1 skor
21 katmanli %90 egitim 96,50 100,00 93,46 96,62
ESA %10 test
21 katmanli 10 kat ¢apraz 92,25 93,33 91,00 92,15
ESA dogrulama
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5.4°de

gosterilmektedir. Karisiklik matrisinin satirlar1 gergek siniflarin 6rnek sayisini gosterirken, siitunlar




Sekil 5.5, 21 katmanli ESA igin Grad-CAM yontemi kullanilarak saglikli ve pndémoni
smiflart igin elde edilen 1s1 haritalarin1 géstermektedir. Grad-CAM teknigi, Zhou ve digerleri
tarafindan gelistirilen ve yalnizca tam baglantili katmanlar1 olmayan ESA modelleri i¢in uygun
olan orijinal Sif Aktivasyon Haritalama (CAM) tekniginin gelistirilmis bir versiyonudur [162].
Grad-CAM, girdi degerlerinin model siniflandirmasini nasil etkiledigini anlamak igin gerekli olan
her model katmaninin goriintiilenmesini ve her 6zellik haritas1 katmaninin incelenmesini saglar
[163]. Grad-CAM, bir gorintiiniin belirli bir tahminde bulunmada en 6nemli olan boélgelerini

vurgulayarak ESA modellerinin karar verme siirecine iliskin dnemli bilgiler saglayabilir [164].

Pnémoni

Saglikli

Sekil 5.5. 21 katmanli ESA modeli i¢in Grad-CAM teknigi kullanilarak saglikli ve pndmoni siniflari igin
elde edilen 1s1 haritalar

Sekil 5.5°de goriildiigii gibi, birinci siradaki resimler pndomonili bireylere ait CXR
goriintiileri, ikinci siradaki resimler ise saglikli deneklerin CXR goriintiileridir. Sekil 5.5’de
gosterildigi gibi, pnémoni tespiti i¢in 21 katmanli ESA modeli pnémoni sinifinda, ¢ogunlukla sol
akciger blobunu dikkate almistir ve saglikli sinifinda akciger bloblarina odaklanmamigtir. Bu
teknik, Klinisyenler i¢in giris goriintiisiiniin sorunlu bolgesini belirlemeye yardimei olur ve saglikli

bireyler ile pnomoniden etkilenenleri ayirt etmede kolaylik saglar.
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Tablo 5.16. CXR goriintiileri {izerinde 21 katmanli model kullanilarak elde edilen performans matrislerinin

ozeti
ESA Dogruluk (%) Kesinlik (%) Duyarlilik (%) F1 skor (%)
(10 kat ¢apraz dogrulama)
21 katman 94,29 94,46 94,10 94,27

On kat capraz dogrulama stratejisiyle CXR goriintiileri {izerinde 21 katmanli model
kullanilarak elde edilen performans degerlendirmesi Tablo 5.16’da verilmistir [22,35]. %94,46
kesinlik degeri, %94,29 dogruluk, %94,27 F1 puani ve %94,10 duyarlilik oranlar elde edilmistir.

Performans Degerlendirme Sonuglar
102
100
98
9

86 |I‘ |I‘ |I| II‘ |I‘

FNet MLP-mixer gMLP 21 katmanl ESA

0o LW O O
o O N B O

M F1skor (%) ™ Duyarlihk (%) ™ Kesinlik (%) Dogruluk (%)

Sekil 5.6. CXR goriintiilerinden pndmoni tespiti i¢in dnerilen yontemin performans degerlendirme
sonuglarimin grafiksel analizi

Tablo 5.14’deki performans metriklerini daha net yorumlayabilmek i¢in Sekil 5.6”daki grafik
Tablo 5.14°deki degerlerden olusturulmustur. Sekil 5.6’da CXR goriintiilerinden pnomoni tespiti
igin Onerilen ikinci ¢aligmanin performans degerlendirme sonuglarinin grafiksel analizi yer
almaktadir. Bu calisma, CXR goriintlilerinden pnomoniyi tespit etmek amaciyla yeni bir 21
katmanli ESA modeli Onermis ve performansini cesitli doniistiiriicii tabanli yaklagimlarla
karsilagtirmistir. Sekil 5.6°da goriildiigii gibi, 6nerilen model dogruluk ve F1 skor agisindan ViT
ve FNet’e yakin bir performans gostermistir. Bu ¢alismada, yeni model 6zel ve genel veri tabanlari
kullanilarak gelistirilmistir. Elde edilen sonuclar, 6nerilen ESA tabanli modelin, bu ¢alisma i¢in
toplanan CXR veri kiimesini kullanarak pndomoniyi tespit etmede etkili ve dogru oldugunu
gostermistir. Tablo 5.15 ve tablo 5.16’da gosterildigi gibi, gelistirilen modelin siniflandirma

dogrulugu, pnomoni tespitinde 6zel ve genel veri tabanlari igin sirasiyla %96,50 ve %94,29°dur.
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Tablo 5.17. Pndmoni tespiti i¢in 6nerilen yaklagimin CXR goriintiileri kullanilarak gelistirilen en son
tekniklerle kargilagtiritlmasi

Yazarlar Onerilen Karsilastirilan Veri seti Performans metrikleri
yontem teknikler (%)
Singh vd. [30] Derin Dikkat ResNet, [22] Kesinlik:-
A1 Dikkat tabanli ResNet Duyarlilik:-
F1 skor:92,0
Dogruluk:95,47
Tyagi vd. [31] ViT ve diger ESA, [22] Kesinlik:-
tekniklerle VGG16, Duyarlilik:-
karsilagtirilmasi ViT F1 skor:-
Dogruluk:96,45
Mabrouk vd. Derin ESA DenseNet169, [22] Kesinlik:93,96
[34] Toplulugu MobileNetV2, Duyarlilik:92,99
ViT F1 skor:93,43
Dogruluk:93,91
Ukwuoma vd. Hibrit Topluluk Hibrit A Kermany | Kesinlik:99,21
[36] Dontistiiriicii (DenseNet201, [22] Duyarlilik: 99,21
Kodlayicisi VGG16, GoogleNet) Chest X- | F1 skor: 99,21
Hibrit B(DenseNet201, ray [35] Dogruluk: 99,21
InceptionResNetV2,
Xception)
Cha vd. [37] Dikkat Tabanli ResNet152 [22] Kesinlik:96,23
Transfer ResNet18 Duyarlilik:98,46
Ogrenme DenseNet F1 skor:97,3
Cercevesi Dogruluk:96,63
Jiang vd. [38] Cok Anlamlt Temel (ResNet50), [22] Kesinlik:91,82
Seviye Yama VIiT, Duyarlilik:89,36
Birlestirme ViT + yama birlestirme F1 skor:90,34
Gorlintii Dogruluk:91,19
Dontistiiriiciisi
Ma vd. [39] Dontistiiriicii Swin dontstiirtici [22] Kesinlik: -
temel ag1 [35] Duyarlilik: -
F1 skor: -
Dogruluk:97,2
Bu ¢alisma Derin 6grenme 21 katmanli ESA Ozel veri | 21 katmanh ESA
teknikleri ViT seti Dogruluk:96,50
gMLP Kesinlik: 100,00
FNet Duyarlilik: 93,46
MLP-mixer F1 skor:96,62
Bu ¢alisma Derin  6grenme 21 katmanli ESA Kamu veri | Dogruluk:94,29
teknikleri setleri Kesinlik: 94,46
[22,35] Duyarlilik: 94,10
F1 skor:94,27

Tablo 5.17, kamuya agik CXR veri kiimelerini kullanarak pnémoniyi tespit etmek i¢in

yaymlanan onceki ¢aligmalar1 listelemektedir. Caligmalarin ¢ogunun pnémoni tespiti i¢in farkl

ESA teknikleri ve doniistiiriicii tabanli topluluk ESA ¢ergeveleri kullandigi belirtilebilir. Pnémoni

tespiti igin 5856 CXR goriintiisii igeren bir veri kiimesi [22] literatiirde ikili siniflandirma

gorevlerinde yaygin olarak kullanilmistir. Veri tabaninda ii¢ klasér bulunmaktadir: egitim, test ve
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dogrulama. Ug klasoriin her biri normal ve pndmoni alt klasorlerini igerir. Veri kiimesi, 3875
egitim, 3901 test ve 8'i dogrulama i¢in olmak tizere 4273 pndmoni goriintiisiinden olugmaktadir.
Buna ek olarak, veri kiimesi toplam 1583 saglikli goriintii igermektedir. Tablo 5.17’de goriildiigi
gibi, ikili siniflandirmada en iyi dogruluk puani %99,21 ile Ukwuoma ve arkadaglar1 [36] tarafindan
hibrit doniistiiriicii kodlayic1 tabanli bir derin 6grenme modeli kullanilarak elde edilmistir.
[39]’deki yazarlar Swin doniistiiriicii modeli kullanarak %97,20 dogruluk puani elde ederken,
Tyagi ve digerleri [31] ayn1t CXR veri tabani {izerinde ViT ile diger ESA’larin performansini
karsilastirdig1 calismasinda 996,45 dogruluk elde etmistir. Calismamiz, CXR goriintiilerini dogru
bir sekilde kullanarak pndmoni tespiti i¢in 6zel ve genel veri tabanlarini kullanan ilk ¢calismadir.
Bu calismadaki veri sayisinin azlii ve deneysel calismalar sirasinda doniistiiriicii tabanl
modellerin temel mimari olarak kullanildig1 géz 6niinde bulundugunda performanslarinin nispeten

diisiik olmas1 makul kabul edilmektedir.
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5.3. Sayisal Verilerden Derin Ogrenme Yaklasimlari ile Pnomoni Tespiti

Retrospektif olarak yiiriitilen bu calismada Dicle Universitesi Tip Fakiiltesi Gogiis
Hastaliklar1 ve Tiiberkiiloz klinigi ile yogun bakim {initesine 2001 Ocak- 2021 Ocak aylar1 arasinda
bagvuran hastalarin verileri HBYS veri tabanindan saglanmistir. Sayisal tibbi veriler hasta
dosyasindan elde edilmistir ve sayisal verilere dayali bir veri seti olusturulmustur. Demografik
veriler olarak, yas ve cinsiyet secilmistir. Hastalik sikayeti olarak, yan agrisi, nefes darligi ile
oksiirtik verileri segilmistir. Laboratuvar parametreleri olarak temel biyokimyasal parametrelerden
CRP (mg / dL) ve Albiimin (g / dL) ¢alisilmistir. Tam kan sayimi parametrelerinden 16kosit
sayis1 (WBC, 10e3uL), nétrofil sayis1 (NEU, 10e3puL), lenfosit sayis1 (LYM, 10e3puL), trombosit
sayist (PLT, 10e3pL), calisilmistir. Bu laboratuvar verilerinden hareketle pnémoni ve saglikli
hastalarin ayirici tanisinda NLO, TLO ve CAO verileri kullanilmigtir. Siniflandirma agamasinda
kullanilan siniflandiricilar KNN, DVM, RO, otomatik kodlayict agi, UKSB ve ugctan uca egitilmis
yeni bir ESA’dan olusturulmustur. Verilerin %80’i egitim, %20’si test i¢in kullanilmustir.
Modellerin performanslari dogruluk, duyarlilik, kesinlik ve F1 skor siniflandirma metrikleri ile
degerlendirilmistir. Pnomoni hastas1 ve saglikli bireylerin demografik, klinik ve laboratuvar
bulgulariin dagilimi Tablo 5.18’da verilmistir. Sayisal veriler ile pnémoni tespiti igin onerilen

yontemin akig diyagrami Sekil 5.7’ de gosterilmektedir.

Destek Vektor
Makineleri
| |
s - | |
i ® I I K En Yakin Komsu  f——!
: |
! I I Pnémoni
, i | |
i ! | Rastgele Orman |
| N EEEEENEN
i (4 @ = | Algoritmast |
i | > » | } >
i = '
| . ! ———| Uzun Kisa Siireli Bellek |—>|
: |
| .
i | 15 6znitelik(Demografik : : Saglhikli
i | ozellik, klinik semptom |
L | ve laboratuvar bulgulari) I—» Otomatik Kodlayict —>:
Pnémoni | I
hastalar1 ve I I
sagliklt bireyler RN ESA .
(2000 kisi)

Sekil 5.7. Sayisal veriler ile pndmoni tespiti i¢in Onerilen yontemin akis diyagram
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Tablo 5.18. Pnémoni hastasi ve saglikli bireylerin demografik, klinik ve laboratuvar bulgular

Parametreler Hasta (N=1000) Saghkh Normal P
Mean+SD % (N=1000) deger
Mean+SD %
CRP 5,73+£7,27 0,31+0,48 0-05mg / <0,001
dL
Alblimin 3,04+0,67 4,31+£0,40 35-52g/ <0,001
dL

WBC (Lokosit) 9,45+4,75 7,88+2,02 3,7-10,1 <0,001
10e3uL

NEU (Nétrofil) 6,38+4,37 4,58+1,73 1,63-6,96 <0,001
10e3uL

PLT (Trombosit) 304,32+130,89 261,42+68,53 155-366 < 0,001
10e3uL

LYM (Lenfosit) 1,98+1,32 2,42+0,68 1,09-2,99 < 0,001
10e3uL

CAO 2,26£3,14 0,07+0,13 < 0,001

NLO 4,64+5,23 2,05+1,13 < 0,001

TLO 220,72+263,29 115,83+42,15 < 0,001

Yas 56,53+19,75 34,77+10,71 0,014

Cinsiyet Kadin 440 (%44) 237(%23,7) 0,002

Erkek 560 (%56) 763(%76,3)

Dispne 917(%91,7) 206(%20,6) < 0,001

Oksiiriik 662(%66,2) 145(%14,5) < 0,001

Yan agrisi 666(%066,6) 29(%2,9) < 0,001

Calisma (hasta) ve kontrol (saglikli) gruplarinin demografik, klinik ve laboratuvar
bulgularinin hastalik durumuna gore dagilimi Tablo 5.18de verilmistir. Pnémoni hastas1 ve saglikli
bireyler i¢in ortalama, standart sapma ve aralik belirtilmigtir. Calismaya PA AC grafisinde pndmoni
tanist alan n:1000 ¢aligma grubu ve PA AC grafisi normal olan n:1000 kontrol grubu olmak iizere
toplam 2000 kisi dahil edilmistir. Dicle Universitesi Tip Fakiiltesi Gogiis Hastaliklar1 ve
Tiiberkiiloz klinigi ile yogun bakim iinitesine 2001 Ocak- 2021 Ocak tarihleri arasinda bagvuran,
tez calismasi kapsaminda dahil edilme ve hari¢ tutulma kriterlerini karsilayan toplam 2000 kisinin
HBYS kayitlari, arsivleri ve dosya kayitlar1 geriye doniik olarak incelenmistir. Sayisal tibbi
verilerden pnomoni tespiti ile ilgili istatistiksel analize oncelikle toplanan verilerin normal
dagilimma bakilarak baglanmistir. Verilerin normal dagilip dagilmadigini test etmek icin
Kolmogorov-Smirnov ve Shapiro-Wilk testleri uygulanmistir. Sig. degeri 0.05 den kiigiik oldugu
icin veriler normal dagilim gostermedigi kabul edilip veriler iizerinde nonparametrik testlerin

uygulanmasina karar verilmistir. Hasta 6zelliklerinin belirlenmesinde tanimlayici istatistiklerden
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(ortalama, standart sapma), hasta gruplarinin karsilasgtirilmasinda ise ki-kare ve Mann-Whitney U
testlerinden yararlanilmistir.

Bildirilen p degeri, pndmoni ve saglikli gruplarindaki nicel degiskenler arasindaki varyasyon
icin Mann-Whitney U testinin, nitel degiskenler i¢in ki-kare testinin sonucuna karsilik gelir.
Genellikle kategorik degiskenler olarak adlandirilan nitel degiskenler, farkli gruplar halinde
kategorize edilebilen 6zellikleri barindirir. Olgiilebilir bir miktar1 belirtmekten ziyade farkli
kategorileri veya siniflar1 temsil etmektedirler. Nitel veriler genellikle sayisal degildir ve bir veri
kiimesi veya denek grubunun dogasinda bulunan nitelikleri veya ozellikleri ifade eder [165]. Bu
calismadaki nitel degiskenler cinsiyet, dispne, yan agrisi, Okstirik verileridir. Niceliksel
degiskenler, sayisal bir degeri temsil eden, 6lgiilebilen veya sayilabilen miktarda 6zellikleri olan
verilerdir [165]. Yas verileri ve tez calismasi kapsaminda toplanan biyobelirtegler nicel
degiskenlerdir. Tablo 5.18’deki sonuglar incelendiginde segilen sayisal parametreler agisindan
gruplar arasinda istatistiksel olarak anlamli fark saptanmistir (p<0,05). Olusturulan veri setindeki
biyobelirteclere ait sonuglar incelendiginde CRP degerinin ¢alisma grubu i¢in normal deger
araligindan ¢ok yiiksek oldugu goriilmektedir. CRP’nin yiiksekligi viicutta pndmoniye ait
inflamasyon ve enfeksiyon olabilecegini gostermekle birlikte spesifik bir belirte¢ degildir. Ayni
sekilde Albiimin degeri ¢aligsma grubu i¢in normal deger araligindan daha diisiik gikmigtir. Caligma
grubunda kontrol grubuna kiyasla CRP’nin yiiksek ve Albiimin ’in diisiik ¢ikmasi literatiirdeki
caligmalarla uyumludur ve istatistiksel olarak anlamli farklilik bulunmaktadir [44-46,166]. Akut
enfeksiyon sirasinda azalan albiimin diizeyleri de dogrudan altta yatan iltihaplanma siirecinden
kaynaklanmaktadir ve bir dereceye kadar enfeksiyon/iltihap siddetinin bir 6rnegini saglayabilir.
Akut inflamasyon sirasindaki bu 6zelligi nedeniyle albiiminden siklikla negatif bir akut faz proteini
olarak bahsedilir. Ayn1 zamanda, pnomoni dahil olmak tizere gesitli akut enfeksiyon tiirlerinde
taninan ve genis ¢apta incelenen pozitif bir akut faz proteini olarak CRP diizeyi de yiikselir [166].

WBC, nétrofil, trombosit, lenfosit gibi kan parametreleri sistemik inflamasyon ve enfeksiyon
hakkinda bilgi saglayan biyobelirtegler olarak cesitli hastaliklarda kullanilmaktadirlar. Son
zamanlarda, NLO ve TLO gibi c¢esitli indeksler pnomoninin teshisi ve siddetinin
degerlendirilmesinde benzer faydalar saglamaktadir. NLO, daha siddetli hastalik ile daha hafif
hastalig1 ayirt etmede yardimcidir. NLO ucuz, basit, hizli yanit veren, yiliksek duyarhilik ve diisiik
ozgiilliik ile stres ve inflamasyonun kolay erisilebilir bir parametresidir [47-49,167]. Bu ¢alismada
da literatiirdeki ¢alismalarla uyumlu olarak bu parametrelerde ¢alisma grubunda kontrol grubuna
kiyasla istatistiksel olarak anlaml fark bulunmustur.

Ikinci olarak ayn1 hastalarin demografik 6zellik, klinik semptomlar ve laboratuvar bulgular
analiz edilerek bu sayisal tibbi veriler ile olusturulan veri seti izerinde makine 6grenmesi ve derin
ogrenme yontemleriyle siniflandirma islemi yapilmistir. Siniflandirma asamast DVM, KNN, RO,

Otomatik Kodlayici ve UKSB algoritmalar1 ile tamamlanmistir. Ayrica sayisal verileri
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siniflandirmak i¢in de yeni bir ESA modeli ugtan uca egitilmistir. Sayisal Ozellikler veri
kiimesindeki yeni ESA mimarisi olusturulurken 6zellik giris katmanina sahip bir ag tanimlanmus
ve Ozelliklerin sayist belirtilmistir. Ayrica, Z-skor normalizasyonu kullanilarak verileri
normallestirmek icin girig katmani yapilandirilmigtir. Daha sonra, ¢ikti boyutu 50 olan tamamen
bagl bir katmani ve ardindan bir toplu normallestirme katmani ve bir ReLU katmani eklenmistir.
Siniflandirma igin, sinif sayisina karsilik gelen ¢ikti boyutuna sahip bir tam baglantili katman ve
ardindan bir softmax katmani ve bir smiflandirma katmanm eklenmistir. Agin egitiminde ADAM
optimizasyon algoritmasi se¢ilmistir. Y1gin boyutu 16, 6grenme orani 0,01 ve devir sayist 30’dur.
Deneysel ¢aligmalarda kullanilan DVM hiper parametreleri; ¢ekirdek fonksiyonu ‘linear’ olarak
belirlenmistir. KNN hiper parametrelerinde komsu sayis1 ‘10° olarak belirlenmistir. Uzaklik 6l¢ii
birimi ‘euclidean’ olarak segilmistir. RO hiper parametrelerinde egitim metodu ‘bag’, toplulukta
kullanilacak aga¢ sayist 30 segilmistir. Tablo 5.19°da modellerin siniflandirma performans

sonuclar1 yer almaktadir.

Tablo 5.19. Modellere ait siniflandirma performans sonuglari

Model Dogruluk Kesinlik Duyarlilik F1 skor
DVM 96,25 94,50 97,86 96,15
KNN 94,75 91,50 97,86 94,57
RO 96,25 95,00 97,43 96,20
Otomatik Kodlayici 96,25 97,57 95,27 96,40
UKSB 95,25 90,50 100,0 95,01
ESA 96,00 98,00 94,23 96,08

Tablo 5.19°da 80-20% egitim ve test oranlar i¢in DVM, KNN, RO, Otomatik Kodlayici,
UKSB modellerinin ve uctan uca egitilmis yeni ESA mimarisinin performansini degerlendirmek
amaciyla karigiklik matrisi sonuglari verilmektedir. Performans olgiim sonuglari, bu karisiklik
matrislerindeki TP, TN, FP ve FN degerleri kullanilarak hesaplanmaktadir. Gosterildigi gibi
neredeyse tiim aglar, tiim Ol¢limlerde %90°nin iizerinde bir puanla tatmin edici sonuglar elde
edebiliyor; bu da sayisal parametreleri siniflandirmak igin segilen mimarilerin yeni hastaliklarin
erken taranmast i¢in dnemli bir arag olabilecegini gosteriyor. Ustelik tiim modeller yiiksek kesinlik
puanlarina ulasiyor; bu da her sinif igin genellikle diisiik sayida yanlis pozitif bulundugunu, yani
pnomoni kaynaklarinin tahminler sirasinda karigtirllmadigini  gosteriyor.  Siniflandirma
algoritmalarina ait performans sonuglari incelendiginde DVM, RO ve Otomatik Kodlayict %96,25
ile en yiiksek dogruluk puani tiretirken; KNN %94,75 ile en diisiik dogruluk puani iiretmistir. Yeni
ESA modeli %96,00 ve UKSB %95,25 dogruluk puanina ulasmistir. Kesinlik puanlar
kargilagtirildiginda %98,00 ile ESA en yiiksek kesinlik degerine ulagmistir. Otomatik Kodlayict
%97,57 en iyi ikinci kesinlik degerini iiretmistir. UKSB %90,50 ile en diisiik kesinlik performansi
gostermistir. RO, DVM ve KNN algoritmalarinin kesinlik degerleri sirasiyla %95,00, %94,50 ve
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%91,50°dir. Duyarlilik performanslar karsilagtirildiginda UKSB %100 ile en yiiksek puani
iiretirken, DVM ve KNN %97,86 duyarlilik gostermistir. ESA %94,23 ile en diisiik duyarliliga
sahiptir. Otomatik Kodlayic1 %95,27 duyarlilik performansi gosterirken; RO %97,43 puani elde
etmistir. F1 skor agisindan Otomatik Kodlayici %96,40 ile en yiiksek performansi elde ederken;
RO, DVM, UKSB ve KNN sirasiyla %96,20, %96,15, %95,01 ve %94,57 puanlarina ulagmstir.
ESA %96,08 F1 skor performansi saglamistir. Sekil 5.8”de sayisal parametreler ile pndmoni tespiti
icin Onerilen yontemin performans metriklerinin grafiksel analizi yer almaktadir. Sekil 5.8’deki
grafik, segilen algoritmalarin performans sonuglarini daha iyi incelemek amaciyla Tablo 5.19’daki

veriler kullanilarak olusturulmustur.

Performans Degerlendirme Sonucglari

102
100
98

9
9
9
9
8
8
84
DVM KNN RO AE

UKSB ESA

a 00 O N & O

®m Dogruluk mKesinlik ®Duyarlilk = F1 skor

Sekil 5.8. Sayisal veriler ile pndmoni tespiti i¢in 6nerilen yontemin performans metriklerinin grafiksel
analizi

Literatiirdeki giincel ¢aligmalarda makine Ogrenmesi ve derin Ogrenme algoritmalar
kullanilarak CXR goriintiilerinden pndmoni tespiti mevcuttur [23-36]. Ancak ayni hastalarda
laboratuvar verileri analiz edilmemis ve iki veri tiiriinden elde edilen tanilar karsilagtirilmamustir.
Tablo 5.18’de olusturulan sayisal parametre veri setinin istatistiksel analizinin sonuglar1 yer
alirken; Tablo 5.19’da makine 6grenmesi ve derin 6grenme algoritmalariyla siniflandirma sonuglari
yer almaktadir. Sonuglar karsilastirildiginda 6nerilen yontemin daha diisiik maliyetle ve daha kisa
stirede dogru sonuglar elde ettigi ve CXR goriintiileme i¢in alternatif, tamamlayici bir test oldugu
sonucuna varilmistir. Tablo 5.20°de literatiirdeki mevcut laboratuvar ve klinik bulgular kullanilarak
yapilan pnomoni tespit ¢aligmalari yer almaktadir. Tablo 5.20°de 6nerilen yaklagimin mevcut

metodolojilerle karsilastirilmas1 yer almaktadir.
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Tablo 5.20. Onerilen yaklasimin mevcut metodolojilerle karsilastiriimast

Yazarlar Secilen Karsilastirllan Performans degerlendirmeleri (%)
oznitelikler teknikler
Effaf vd. Laboratuvar LR, NB, Kesinlik: 91,30
[51] bulgulari DVM, ADT, Duyarlilik: 96,00
KNN, RO, F1 skor: 93,60
XGBoost, YSA Dogruluk: 92,00
Zhang vd. Biyokimyasal GSHHO-FKNN Dogruluk: 90,00
[52] ve klinik Duyarlilik: 82,64
bulgular Kesinlik: 93,00
Strokes vd. Denek KA, DVM, LR Dogruluk: 84,00
[53] popiilasyon Duyarlilik: 80,00
ozellikleri, Kesinlik: 73,00
semptomlar ve F1 skor: 87,00
laboratuvar
bulgulari
Onerilen Demografik DVM, RO, KNN, Dogruluk: 96,25
Metot ozellik, klinik Otomatik Kodlayici, Duyarlilik: 95,27
semptom ve UKSB, ESA Kesinlik: 97,57
laboratuvar F1 skor: 96,40
bulgulari

Diusiik gelirli ortamlar gibi hastalik yiikiiniin en yiiksek oldugu bolgelerde radyografi
genellikle mevcut degildir. Sonug olarak, kliniklerde pndmoni dahil olmak iizere alt solunum yolu
hastaliklariin tam1 ve takibinde tam kan sayimi, temel biyokimyasal parametreler ve gesitli
enfeksiyon parametreleri kullanilmaktadir. Tanisal dogrulugu artirmak ve pnomoniye yonelik
cesitli tedavi stratejilerini gelistirmek i¢in, invaziv olmayan Olc¢limlere dayali bilgisayar tabanl
otomatik tespit modelleri onerilmistir. Yapilan ¢caligmalarda hastaligin tanisi, siddeti, yogun bakim
ihtiyaci gibi durumlarin degerlendirilmesinde temel biyokimya ve tam kan sayimm dahil ¢esitli
inflamasyon belirtegleri kullanilmistir [51-53]. Enfeksiyon, enflamasyon ve travmaya yanit olarak
konak¢ida meydana gelen spesifik olmayan donem akut faz olarak bilinir. Glinliik pratikte, akut faz
yanitlar1 bakteriyel ve viral enfeksiyonlarm ayirt edilmesinde yaygin olarak kullanilmaktadir.
Klinik uygulamalarda en sik kullanilan akut faz yanitlar1 16kosit sayis1 (WBC), mutlak nétrofil
sayisi ve CRP’dir [168]. Bu c¢aligmada da literatiirdeki ¢alismalara uyumlu olarak WBC, Nétrofil,
Lenfosit, Trombosit, CRP, Albiimin belirtecleri ¢alisilmustir.

Effaf ve ark. her biri 45 6zellige sahip 535 farkli hasta iizerinde pnomoniyi 6ngdrmedeki
etkinligini degerlendirmek i¢in 8 makine 6grenmesi modelini (LR, NB, DVM, AdaBoost KA,
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KNN, RO, YSA ve XGBoost) karsilastirmislardir [51]. Bu 45 6zellik igeresinde hastalara ait
demografik bilgileri (yas, cinsiyet ve komorbiditeler dahil), fiziksel parametreleri (tasikardi, trakeal
sekresyon, plevral efiizyon, ortalama arteriyel basing, kalp atim hizlari, solunum hizlar1 ve sistolik
kan basinci) ve hematolojik parametreleri (serum sodyum, serum potasyum, serum kreatin,
hematokrit, WBC, trombosit, toplam bilirubin, hemoglobin CRP) yer almaktadir. RO ve XGBoost
sirastyla %92,00 ve %90,80 ile en yiiksek dogruluk performansi gosteren aglardir.

Zhang ve ark. 100 hastaya ait cinsiyet, yas, hasta boliimiinde yattigi giin sayisi ve
hastaliklarin prognozu, pihtilasma ve bobrek fonksiyon testi, WBC, PLT, Albiimin g/L, CRP,
mg/L) dahil olmak tizere inflamatuar kan testi parametrelerini toplamislardir [52].

Strokes ve ark. 4500 hastaya ait gesitli klinik bilgileri toplamislardir. Toplanan bilgiler
arasinda solunum yolu hastaliklarina 6zgii bir dizi semptom, laboratuvar test sonuclar1 ve hava
kirliligine maruz kalma veya yetersiz beslenme gibi ¢esitli niifus tanimlayici 6zellikleri yer almistir.
Laboratuvar test sonuglart arasinda CRP (mg/ml), Lokositler, Notrofiller, Lenfositler gibi
biyobelirtegler yer almaktadir. Belirti ve semptomlar arasinda oksiiriik, dispne, ates, plevral agr1,
kas agrisi, terleme, bas agris1 gibi ¢esitli ikili (evet ya da hayir seklinde) 6zellikler yer akmaktadir.
LR, DVM, KA arasinda KA %384,00 en yiiksek dogruluga ulasmustir [53].

Bu calismada oldugu gibi literatiir ¢aligmalarinda da sayisal tibbi verilerinden pnémoni
tespiti yapilirken kullanilacak oOznitelikler belirlenerek 6zel veri setleri olusturulmustur. Bu
caligmanin sonuclarini diger caligmalarla karsilastirdigimizda, bu ¢calismayla elde edilen sonuglarin
mevcut diger ¢aligmalarla karsilastirilabilir oldugunu ve daha iyi performans gosterdigi tespit
edilmistir. Bir¢ok calismada pnomonili hastalarina ait laboratuvar parametreleri arastirilmistir.
Ancak bu g¢aligmalar ¢ogunlukla pndmoninin prognozu ve siddeti ile ilgilidir. Bu ¢alismada,
laboratuvar parametrelerinden pnémoni tespitine daha kisa siirede, daha ucuz ve daha dogru

sonuglar ile olanak saglayacak bilgisayar destekli bir tan1 sisteminin gelistirilmesi amaglanmustir.
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6. SONUCLAR

Pnémoni, bakteri, viriis ve mantar enfeksiyonlarimin neden oldugu akciger dokusunun
iltihaplanmasidir. Pnémoninin varliginin ve etkeninin tespit edilmesi, tedavi siirecini hizlandirmak
ve hastanin hayatta kalma oranini artirmak i¢in ¢ok 6nemlidir. Pndmoninin dogru biyomedikal
teshisi, cesitli teshis araclarinin kullanilmasini ve gesitli klinik 6zelliklerin degerlendirilmesini
gerektirmektedir. Klinik semptomlar, kapsamli bir fiziksel muayene ve gogiis rontgeni gibi
gorlintiileme ¢aligmalart uzun zamandir pndmoni teshisinde asamali olarak kullanilmaktadir.
Ancak bu teknikler genellikle 6zneldir ve glivenilir sonuglar vermeleri garanti degildir. Bilgisayar
destekli teshisteki ilerlemeyle birlikte teshis dogrulugunda bir artis egilimi goriilebilir. Son yillarda,
derin 6grenme teknikleri kullanilarak sayisal tibbi veriler ve goriintii verilerinin analizi artan bir
popiilerlik alan1 haline gelmistir. Derin 6grenme metodolojileri, pndmoni hastaliginin tiirtini
tanimlamak ve tanimak i¢in kullanilirken, otomatik algilama, zamani1 azaltmaya ve dogrulugu

artirmaya yardimci olur.

Bu tez calismasinin amaci; derin 6grenme teknikleri kullanilarak pnémoni hastaligina ait
hem sayisal veri hem de gogiis rontgen goriintiilerinden hastalik ile ilgili 6zellikleri etkili bir sekilde
cikarip hastaligin tespiti icin otomatik pndmoni tespit sisteminin gelistirilmesi, saglik hizmetlerinin
kalitesinin daha diisiik maliyetlerle ve daha hizli yanitla iyilestirilmesidir. Bu amacla Dicle
Universitesi Tip Fakiiltesi Gogiis Hastaliklar1 ve Tiiberkiiloz klinigi, yogun bakim {initesi ve gdgiis
polikliniginden elde edilen pndmoni ve saglikli CXR goriintiileri ile ayn kisilere ait demografik
ozellik, klinik semptom ve laboratuvar bulgularindan olusan sayisal tibbi verilerden 2 yeni veri
kiimesi olusturulmustur. 2000 denek lizerinde yapilan ¢aligmada, 1000 denek Poster Anterior (PA)
akciger grafisinde pndmoni tanis1 almig, 1000 denek ise normal PA akciger grafisine sahiptir.
Sayisal tibbi veriler hasta dosyasindan elde edilmistir. Demografik veriler olarak, yas ve cinsiyet
secilmistir. Hastalik sikayeti olarak, yan agrisi, nefes darligi ile Oksiiriik verileri segilmistir.
Laboratuvar parametreleri olarak; 16kosit sayist (WBC, 10e3uL), nétrofil sayis1 (NEU, 10e3uL),
lenfosit say1s1 (LYM, 10e3uL), trombosit sayis1 (PLT, 10e3uL), CRP (mg / dL) ve Albiimin (mg /
dL) calisilmistir. Bu laboratuvar verilerinden hareketle pndmoni ve saglikli hastalarin ayirict
tanisinda NLO, TLO ve CAO verileri kullanilmistir. Sayisal tibbi verilerin siniflandirma
asamasinda KNN, DVM, RO, otomatik kodlayict ve UKSB algoritmalar1 kullanilmistir. Ayrica
sayisal parametre veri setinden pnémoni tespiti i¢in yeni bir ESA modeli ugtan uca egitilmistir.
Verilerin %801 egitim, %20’si test i¢in kullanilmigtir. Sayisal tibbi verilerin siniflandirilmasinda
en yiiksek dogruluk %96,25 olarak elde edilmistir. Onerilen ESA modeli %96,00 dogruluk basarimi

gostermistir.



Aym Kkisilere ait CXR goriintiileri de derin 6grenme tabanli hibrit yaklasimlarla
siniflandirilmistir. CXR goriintiilerinin siniflandiriimasinda iki farkli galisma yapilmustir. ilk
calismada siniflandirma asamasinda derin 6grenme tabanli yaklasimlar kullanilmistir. CXR
goriintiilerinin siniflandirilmasinda kullanilan derin 6grenme yontemleri, derin 6znitelik ¢ikarima,
transfer 6grenme ve ugtan uca 6grenmedir. Derin 6znitelik ¢ikarimi ile transfer 6grenme yontemleri
icin onceden egitilmis 10 farkli ESA ag1 kullanilmigtir. Ugtan uca 6grenme yontemi igin 21
katmanl1 yeni bir ESA mimarisi énerilmistir. Onerilen yontemlerin performansini degerlendirmek
amactyla dogruluk, kesinlik, duyarlilik ve F1 skor metrikleri kullanilmistir. CXR goriintiileri
siniflandirilirken veri seti hem k kat c¢apraz dogrulama hem de ayirarak capraz dogrulama
yontemleri ile test edilmistir. Verilerin %80°1 egitim, %20’si test i¢in kullanilmistir. Capraz
dogrulama icin k degeri 5 secilmistir. Calismanin 6n isleme asamasi olarak; kullanilan farkli
algoritmalarin goriintii girisleri farkli oldugu icin CXR goriintiileri yeniden boyutlandirilmistir.
Onceden egitilmis ESA modellerini esit sartlar altinda karsilastirmak icin tiim modeller minimum
girdi boyutlarin1 karsilayacak ortak boyut olan 256x256 yeniden boyutlandirilmistir. Cikarilan
derin 6znitelikler DVM, KNN ve RO algoritmalari ile siniflandirilmiglardir. CXR goriintiilerinin
siniflandirilmasinda derin 6grenme yaklasimlarinin performans karsilastirmalar: sirasiyla soyledir.
Derin 6znitelik ¢ikariminda 5 kat ¢apraz dogrulamali ShuffleNet+DVM hibrit yaklagimi %98,00
dogrulukla en yiiksek performansi gdstermistir. Hold out yontemiyle ayrilan veri setinde ince ayarl
AlexNet %98,50 ile en yiiksek transfer 6grenme basarimi elde etmistir. Hold out yontemiyle ayrilan
veri setinde 21 katmanli ESA modeli %96,75 smiflandirma performansi saglamistir. Onerilen 21

katmanli ESA modelinin literatiirde mevcut Kaggle veri setindeki basarimi %94,50’dur.

CXR goriintiilerinin siniflandirilmasinda yapilan ikinci ¢alismada tez ¢alismasi kapsaminda
onerilen 21 katmanli ESA modeli ile yakin zamanda gelistirilen doniistiiriicii tabanli modellerin
siniflandirma performansi karsilagtiritlmistir. Karsilastirma i¢in kullanilan aglar ViT, gMLP, FNet
ve MLP-mixer modelleridir. Verilerin %901 egitim, %10’si test i¢in kullanilmistir. Calismanin 6n
isleme asamasinda, veri kiimesindeki CXR goriintiileri farkl1 boyutlarda oldugundan, donistiiriicii
tabanli modellerin minimum giris boyutlarin1 karsilamak i¢in 512x512 olarak yeniden
boyutlandirilmigtir. Daha sonra her goriintii 32x32 piksel boyutunda toplam 256 yamaya
bolinmiistiir. CXR gorintiileri ayrica 21 katmanli ESA modeli igin 224x224 olarak yeniden
boyutlandirtlmistir. ViT, FNet, MLP-mixer ve gMLP modellerinin siiflandirma performans
dogruluklar1 sirasiyla %96,43, %96,43, %95,41 ve %94,39’dur. Gelistirilen 21 katmanli yeni
model, saglikli bireylerden pnémoniyi dogru bir sekilde tespit etmede 6zel ve genel veri tabanlari
icin sirastyla %96,50 ve %94,29 dogruluk saglamistir. Onerilen model, pnémoni tespiti icin yakin
zamanda gelistirilen doniistiiriicii tabanli modellerden daha yiiksek siniflandirma performansi

saglamustir.
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Sayisal verilerin ve CXR goriintiilerinin siniflandirma sonuglari karsilastirildiginda her iki
yontemle pndmoni tespiti yiiksek dogruluk ile sonuc¢lanmaktadir. Bu tez ¢alismasi kapsaminda
Onerilen yontemler, pndmoni tanisi igin bir karar destek sistemi olarak kullanilabilir ve farkli bir
bakis agisiyla alternatif bir ¢dzliim olarak klinisyenlere yardimer olabilir. Bu bulgular, gelismis
ekipman ve yiiksek egitimli uzmanlarin az oldugu diisiik gelirli ve kaynak smirh iilkelerde
pnomoninin otomatik tespit edilmesine, doktorlarin hastalar1 i¢in daha etkili bir tedavi plam
gelistirmesine, asiri antibiyotik kullaniminin azaltilmasina ve iyilesme oranlarinin artmasina

yardimci olacaktir.

Literatiir ¢alismalar1 incelendiginde pnomoni tespitinin mevcut dezavantajlarindan biri,
yiiksek aciklamali veri setlerine ve hastanin tibbi gegmisine sahip olmamasidir. Bu tez ¢alismasi
kapsaminda hem pnomonili hastalara hem de saglikli bireylere ait CXR goriintiileri toplanmig ve
derin 6grenme yaklasimlari ile pndmoni tespit edilmeye ¢aligilmistir. Ayni kisilere ait sayisal tibbi
veriler de toplanarak kapsamli bir veri seti olusturmak amaglanmistir ve sayisal tibbi verilerin derin
O0grenme algoritmalari ile pnomoni tespitindeki yiiksek dogruluk oranlar1 ve kayda deger sonuglar

elde ettigi gosterilmistir.
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ONERILER

Calismanin siirliligi, bu ¢alisma i¢in yalnizea iki veri kiimesi kullanmis olmamizdir. Goglis
rontgen goriintiileri hasta bireylere ve saglikli kisilere aittir. Bu ¢alismada pndmoninin erken, hafif
ve siddetli gibi farkli asamalarina ve/veya bakteri ve viriis gibi farkli tiirlerine ait alt bir
siniflandirma yapilmamustir. Literatiirdeki veri kiimelerine kiyasla daha kiiciik boyutludur ve
simiflandirma performansi agisindan tek yonliidiir. Farkli pnémoni asamalarina ve tiirlerine ait
g0giis rontgeni goriintiileri eklenerek veri kiimesi boyutu ve kapsami genisletilebilir. Ayni zamanda
diger alt solunum yolu enfeksiyonlari de eklenerek CXR goriintiilerinin kalitesi bilgisayar destekli
sistemlerle iyilestirilebilir. Daha fazla veri eklenerek ve renk, doku ve sekil gibi diisiik seviyeli
Oznitelikleri ¢ikarmak i¢in geligsmis yontemler kullanilarak performans daha da artirilabilir. Diistik
seviyeli Oznitelikler ile derin Ozniteliklerin siniflandirma performanslari ayri ayr1 ve/veya bir
flizyon modeli olusturularak karsilastirilabilir. Bu ¢alismanin kisitliliklarindan biri de retrospektif
bir ¢alisma olmasidir. Ger¢ek zamanli takip degerleri yerine pndmoni tespiti i¢in Onciil
parametreler kullanilmigtir. Bu ¢alismada CXR goriintiilerini islerken 6n isleme olarak sadece
yeniden boyutlandirma islemli yapilmistir. Literatiirdeki ¢alismalarda histogram esitleme, giiriiltii
giderme veya goriintii kiimesinin boyutunu artirma gibi islemler de yapilmistir. Bu ve bunun gibi
farkli 6n islemler denenerek derin 6grenme modellerinin siniflandirma performansi artirilabilir.
Ayrica, onerilen derin ESA modellerinin performans: daha fazla sayida katman ve parametre ile
gelistirilebilir. Bu, klinisyenlerin gogiis rontgeni goriintiilerinden akciger hastaliklarini hastaligin

daha erken bir asamasinda daha diislik prevalansla tanimasina olanak saglayacaktir.
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