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Yiiksek Lisans Tezi

ADI DIFERANSIYEL DENKLEMLER VE RIEMANN YAPISI
T.U. Fen Bilimleri Enstitiisii

Matematik Anabilim Dali

OZET

Bu tez calismasinda birinci ve ikinci mertebeden adi differansiyel denklemle-
rin tanimladigr manifoldlarin egrilik ozellikleri Riemann geometrisi anlaminda ince-
lenmis ve adi diferansiyel denklemlerin esdegerlik problemi denklemlerin tanimladig:
Riemann manifoldlar iizerinde denklemleri temsil eden escatilarin O(n,R)-degerli es-
degerlik problemi olarak ele alinmistir. Bu amagla birinci ve ikinci mertebeden adi di-
feransiyel denklemler sirasiyla J'(R,R) ve J*(R,R) jet uzaylari i¢inde birer manifold
olarak ele alinarak denklemleri temsil eden dis diferansiyel sistemlerin elemanlar1 ile
bu manifoldlar {izerinde Riemann metrikleri tanimlanmistir. Sonrasinda V Levi-Civita
baglantisinin baglanti formu 6 ingaa edilerek bazi1 6zel denklem siniflarinin sabit egrilikli
manifoldlar tanimladig:1 gosterilmistir. Bu anlamda bir nokta doniisiimii altinda esdeger
olduklarinin bilinen tiim birinci mertebeden adi diferansiyel denklemler ve ikinci mer-
tebeden lineer adi diferansiyel denklemler egrilik 6zellikleri itibariyle birbirinden ayirt
edilebilir duruma gelmistir. Buradan hareketle birinci ve ikinci mertebeden adi diferan-
siyel denklemlerin esdegerlik problemi, Riemann metrigini ve kontakt ideali koruyan bir
difeomeorfizma sinif1 altindaki esdegerlik problemi olarak tanimlanip problemin ¢6ziimii
ortaya konulmustur. Buna gore birinci ve ikinci mertebeden adi diferansiyel denklemle-

rin ancak (z,y) — (x + o,y + yo(x)) formunda bir difeomorfizm sinifi altinda esdeger

olabilmektedir.
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Anahtar Kelimeler : Adi diferansiyel denklemler, jet uzayi, Riemann manifoldu, bag-

lant1 formu, egrilik 2-formu, Riemann egrilik tensorii, sabit eg-
rilikli uzaylar, metrik egdegerlik problemi.
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ABSTRACT

The aim of this thesis is to examine the curvature properties of manifolds, defined
by first and second order ordinary differential equations, in terms of Riemannian geometry
and the equivalent problem of differential equations, defined on Riemannian manifolds,
is treated as the O(n, R)-valued equivalence problem formed by canonical contact forms
representing equations and their equivalence classes constructed with the independence
condition.For this purpose, first and second-order ordinary differential equations are res-
pectively considered as manifolds within the jet spaces J* (R, R) ve J?(R, R) . Riemannian
metrics have been defined along with elements of exterior differential systems representing
the equations within these manifolds.Subsequently, by constructing the connection form
0 of the V Levi-Civita connection, it has been demonstrated that certain specific classes
of equations define constant curvature manifolds.In this context, all known first-order or-
dinary differential equations and second-order linear ordinary differential equations have
become distinguishable from each other in terms of their curvature properties under a po-
int transformation, even though they are equivalent.From this standpoint, the equivalence
problem of first and second-order ordinary differential equations has been defined as an
equivalence problem under a class of diffeomorphisms that preserve the Riemann metric
and the contact ideal, and the solution to this problem has been presented.Accordingly,
first and second-order ordinary differential equations can only be equivalent under a
diffeomorphism class of the form (x,y) — (z + co,y + yo(x))
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BOLUM 1

GIRIS

Geometrik olarak, bir adi diferansiyel denklem (ADD) uygun bir jet uzay1 i¢inde bir
manifold olarak degerlendirilebilir (Arnold, 2012; Bocharov vd., 1999; Kushner, Lycha-
gin & Rubtsov, 2007; Saunders, 1989; Vassiliou & Lisle, 2000). Tabi oldugu doniistimler
ile birlikte denklemin formu bu manifold iizerinde bir geometrik yap1 tanimlar. Genel
itibariyle, ADDlerin geometrik olarak ele alinmasi, verilen iki diferansiyel denklemi bir-
birine doniistiirecek yani denklemlerin belirledigi geometrik yapilart birbirine tasiyacak
bir kismi tiirevli diferansiyel denklem sisteminin ¢6ziimii olarak ortaya ¢ikan bir difeomor-
fizma siifinin olup olmadigina karar verme problemidir. Bagka bir ifadeyle, bir geometrik
nesnenin tasidigi geometrik invaryantlarin belirlenmesi olarak degerlendirilir (Gardner,
1989; Olver, 1995). E. Cartan, geometrik nesnelerin birinci mertebeden kismi tiirevli
diferansiyel denklem sistemleri ile tanimlanan bir pseudogrup altindaki invaryantlarini
bulmanin bir prosediiriinii formiile ve tarif etmistir (E. Cartan, 1908). Kabaca konugmak
gerekirse, (birinci mertebeden) bir geometrik nesne, onu temsil eden bir escati ve bu
escatinin tabi oldugu doniistimler olarak degerlendirilebilir. Bilindigi kadariyla ADDlerin
esdegerlik problemi konusundaki ilk sistematik ¢aligsmalar S. Lie ve M.A. Tresse tarafin-
dan yapilmistir (Lie, 1888; Tresse, 1900; Tresse, 1896). Daha sonra E. Cartan, Tresse’nin
buldugu invaryantlarin, Cartan normal projectif baglanti olarak adlandirilan bir baglanti
formunun egrilik 2-formunun bilesenleri olarak yazilabilecegini ve bu baglantinin je-
odezik egrilerinin s6z konusu ADDnin ¢6ziim egrilerine karsilik geldigini gostermistir
(E. Cartan, 1924). ikinci mertebeden bir ADD bir 2-boyutlu sprayin projektif esdegerlik
sinifini belirler ve bu spray icin Douglas tensoriiniin tiim bilegenleri Tresse’nin invaryant-
larindan bir tanesinin katlar1 olarak ortaya ¢ikar. Bu invaryantin sifira esit olmas1 durumda
Berwald invaryati Tresse’nin ikinci invaryantina indirgenir ve soz konusu ikinci merte-

beden ADD bir afin spraye projektif olarak esdegerdir (Crampin, 2004). Bununla birlikte



eger ikinci mertebeden bir ADDnin ¢oziim egrileri bir Levi-Civita baglantisinin geodezik
egrileri ise bu durumda da Tresse’nin ilk invaryanti sifira esit olacaktir (Bryant, Dunajski
& Eastwood, 2009).

Cartan’in gelistirdigi yontem giiniimiizde GG-degerli esdegerlik metodu olarak ad-
landirilir. Burada G, genel lineer grup G L(n, R)’nin bir altgrubudur ve bu grup iki ADDyi
temsil eden escatilarin bir difeomorfizma sinif1 altinda birbirine doniisebilmesi icin s6z
konusu difeomorfizma sinifinin Jacobian matrislerinin icinde bulunmak zorunda oldugu
gruptur. Belirli invaryant operasyonlarla G grubu, asikar gruba indirgenebiliyorsa o zaman
invaryant escat1 elde edilmis olur ve problem, ¢6ziimiinii bildigimiz, escatilarin esdegerlik
problemine déniistiiriilmiis olur. Ornegin, Riemann metriklerinin esdegerlik problemi,
metrikleri kosegen hale getiren escatilarin O(n,R)-degerli esdegerlik problemi olarak
tanimlanir. Bir ADDyi temsil eden escatinin tabi oldugu doniisiimler, kimi durumlarda
uygunsuz ya da iligkisiz olarak nitelenebilse dahi, GL(n,R)’nin herhangi bir altgrubu

olan GG-degerli esdegerlik problemi olarak tanimlanabilir.

Bu baglamda, bu tez calismasi, ADDlerin esdegerlik problemini, denklemleri
temsil eden esgatilarin O(n, R)-degerli esdegerlik problemi olarak ele almaktadir. Bunun
temel sebebi birinci mertebeden herhangi iki ADDnin yerel olarak esdeger olmasidir
(Arnold, 1992; Olver, 1995). Bir diger ifade ile bir denklemi digerine tasiyacak bir ye-
rel difeomorfizma vardir. Bu ayn1 zamanda ikinci mertebeden lineer ADDlIer ic¢in de
gecerlidir. Yani herhangi iki lineer ADDyi birbirine tagiyacak bir nokta doniislimii var-
dir (Grissom, Thompson & Wilkens, 1989; Kamran, Lamb & Shadwick, 1985; Olver,
1995). Ozetle, bahsi gecen diferansiyel denklemleri difeomorfizma smifini daraltmadan
ayirt etmek miimkiin degildir. Esdegerligin tanimlandig1 difeomorfizma sinifi bir Riemann
metrigi ve bu metrigi koruyan difeomorfizmlerin sinifina daraltilirsa, tizerindeki Riemann
yapisi vasitastyla soz konusu diferansiyel denklemleri temsil eden manifoldlar egrilikleri
itibariyle ayirt edilebilir. Ornegin, birinci mertebeden bir lineer ADDnin tanimladig1 yii-
zey sabit egrilikli bir yiizey olabilir (Ok Bayrakdar & Bayrakdar, 2018). Bununla birlikte
iki harmonik salinic1 denklemi yalnizca agisal frekanslarina bakilarak ayirt edilebilir (Ok
Bayrakdar & Bayrakdar, 2019).

Bu itibarla bu tez ¢alismasinda birinci ve ikinci mertebeden ADDlerin jet uzay
formulasyonu verildikten sonra denklemlere karsilik gelen manifoldlar iizerinde tanim-
lanan bir Riemann metrigine gore bir ortonormal cati alanina dual olan es¢ati alaninin
tanimladig1 Riemann baglantisina gore s6z konusu denklemlerin egrilik 6zellikleri in-
celenmistir. Buradan hareketle birinci mertebeden ADDlerin sabit egrilikli olabilecegi
goriilmiistiir. Bununla birlikte bazi1 ikinci mertebeden ADD siniflarinin diiz ve sabit pozi-

tif egrilikli olabilecegi gosterilmistir. Sonrasinda birinci ve ikinci mertebeden ADDlerin



metrik esdegerlik problemi tanimlanarak bu problemin bir ¢6ziimii verilmistir.

Bu tez calismasi alti boliimden olugsmaktadir.Birinci boliim girig kisminda bu tez
calismasinin amacindan bahsedilmistir. ikinci béliimde tezde gecen kavramlara altyap:
olusturmas1 amacaiyla bazi temel 6n bilgiler verilmistir. Ugiincii boliimde ADDlerin jet
uzay formiilasyonu verilmistir. Drdiincii boliimde birinci ve ikinci mertebeden ADDlerin
tanimladig1 manifoldlarin egrilik 6zellikleri incelenmistir. Besinci boliimde ADDlerin
metrik esdegerlik problemi ele alinmistir. Altinc1 boliimde ise tezden elde edilen sonuglarin

bir 6zeti verilmistir.



BOLUM 2

ON BILGILER

2.1 C* manifoldlar

Tamim 2.1. £ negatif olmayan bir tamsay1 ve U C R" bir acik kiime olsun. 7 < k olmak
tizere bir f : U — R fonksiyonunun p € U noktasinda j. mertebeden tiim
f

Oz - - - O 1)

kismi tiirevleri var ve siirekli ise o zaman f fonksiyonu p noktasinda C* smifindandir
denir. Eger bu kosul her £ > 0 icin dogruysa o zaman f fonksiyonu p noktasinda C>
sinifindandir denir (Tu, 2011).

Tamim 2.2. Vektor-deZerli bir f : U — R™; f = (f',..., f™) fonksiyonunun bilesen-
lerinin tamami bir p € U noktasinda C* sinifindan ise f fonksiyonu p noktasinda C'*°
swnifindandir denir. Eger bu kosul her p € U i¢in dogruysa o zaman f fonksiyonu U
tizerinde C* sinifindandir denir (Tu, 2011).

Tanmm 2.3. M bir topolojik uzay olsun. Eger asagidaki kosul saglaniyorsa o zaman M

verel olarak (n-boyutlu) Euclidyendir denir:

M’nin her p noktasi bir U acik komsuluguna sahiptir 6yle ki U’dan R™’nin bir agik
altkiimesine giden bir ¢ homeomorfizmasi vardir. Buradaki (U, ¢ : U — R") ikilisine bir
yama, U’ya bir koordinat komsulugu ya da koordinat acik kiimesi ve ¢’ye de U lizerinde
bir koordinat sistemi denir. Eger ¢(p) = 0 ise o zaman (U, ¢), p € U merkezlidir denir
(Tu, 2011).

Tamm 2.4. Hausdorff, ikinci sayilabilir ve yerel olarak Euclidyen olan bir topolojik uzaya
bir topolojik manifold denir. Eger bir topolojik manifold yerel olarak n-boyutlu Euclidyen

ise o zaman n-boyutludur denir (Tu, 2011).



Tamm 2.5. (U,¢ : U — R") ve (V,¢ : V — R") bir topolojik manifoldun iki yamasi

olsun. Eger
pop L ip(UNV) = p(UNV) ve hodpt:d(UNV)—=(UNV) (22)

C*° smifindan ise o zaman s6z konusu yamalar C*°-uyumludur denir.

o™t ve o p~! doniigiimlerine (U, ¢ : U — R™) ve (V1 : V — R™) yamalari
arasindaki gecis fonksiyonlari denir. Eger UNV = () ise 0 zaman iki yama otomatik olarak
C*°-uyumludur (Tu, 2011).
Tanim 2.6. M bir yerel olarak Euclidyen uzay olsun. Her bir elemani bir digeri ile C'*°-
uyumlu olan bir 4 = {(U,, ¢, )} yama ailesi Myi ortiiyorsa yani M = U U, ise 0 zaman
ya M iizerinde bir C* atlas ya da kisaca atlas denir (Tu, 2011). :

Tamm 2.7. Eger bir (V) yamast bir {(U,, ¢,)} atlasindaki her (U,, ¢,) yamast ile
uyumlu ise o zaman (V, ¢) yamasi {(U,, ¢, )} atlasi ile uyumludur denir (Tu, 2011).

Lemma 2.1. {(U,, ¢,)}, bir yerel olarak Euclidyen uzay tizerinde bir atlas olsun. Eger
(V ) ve (W, o) yamalarimin her ikisi de {(U,, ¢o)} atlast ile uyumlu ise o zaman bu
yamalar birbiri ile uyumludur (Tu, 2011).

Tamim 2.8. Bir yerel olarak Euclidyen uzay lizerindeki bir 9 atlas1 daha biiyiik bir atlas
tarafindan icerilmiyorsa 9t atlasina maksimaldir denir. Bir diger ifadeyle, & atlast 9t
atlasini igeren bir diger atlas ise o zaman 91 atlas1 maksimaldir ancak ve ancak {4 = 9
(Tu, 2011).

Tammm 2.9. Uzerindeki bir maksimal atlas ile birlikte bir M topoplojik manifolduna bir
diizgiin ya da C'*° manifold denir. Buradaki maksimal atlasa M iizerinde bir diferansiyel-
lenebilir yapt denir (Tu, 2011).

Onerme 2.1. Bir yerel olarak Euclidyen uzay iizerindeki herhangi bir 4 = {(Uy, ¢o)}
atlasini igeren tek bir maksimal atlas vardir (Tu, 2011).

Ozetle bir M topolojik uzayinin bir C* manifold oldugunu gostermek icin asagi-
dakileri kontrol etmek yeterlidir:

1. M bir Hausdorff ve ikinci sayilabilir uzaydir.

2. M’nin (maksimal olmasi gerekmeyen) bir C'* atlas1 vardir (Tu, 2011).

Aciklama 2.1. Su andan itibaren bir C*° manifold yerine kimi zaman yalnizca manifold
denilecek ve bu ikisi ayn1 anlamda kullanilacaktir. Eger (U, ¢ : U — R") bir M manifol-

dunun bir yamast ise o zaman ¢ doniisiimiiniin bilesenleri olan z* : U — R fonksiyonlar
=710 (2.3)

5



ile belirlenir. Burada 7!, 72, ..., 7™, R" iizerindeki standart koordinatlardir. Bu durumda
¢ = (z',...,2") ve (U,¢) = (U,z',...,2") yazilir. Dolayisiyla p € U ise o zaman
(z'(p),...,z"(p)), R™de bir noktadir. z', ..., =™ fonksiyonlarina koordinatlar ya da U
tizerinde yerel koordinatlar ad1 verilir. M i¢inde bir p noktasini iceren bir (U, ¢) yamasi
denildiginde M iizerindeki diferansiyellenebilir yap1 icindeki p € U olacak sekilde (U, ¢)

yamasi kastedilecektir.

Ornek 2.1. (Euclid uzayr) R” Euclid uzayi tek bir (R”, 7', ..., r") koordinat yamasi ile
birlikte bir manifolddur. (Tu, 2011).

Ornek 2.2. (Manifoldun acik altkiimesi). Bir A/ manifoldunun herhangi bir V acik alt-
kiimesi de ayni zamanda bir manifolddur. Eger {(U.,, ¢,)}, M icin bir atlas ise o zaman
{Ua NV, ¢ulu.av} ailesi de V igin bir atlas olusturur. Burada ¢, |y, v : Uy UV — R”
®o nin U, NV altkiimesine kisitlanigin1 gosterir (Tu, 2011).

Ornek 2.3. (Bir diizgiin fonksiyonun grafigi) A, R™ nin bir altkiimesi olmak iizere bir

f + A — R™ fonksiyonunun grafigi

L(f) =A{(z, f(x)) € AxR™} (2.4)
sekilde tanimlanir. Eger U, R™’nin agik bir altkiimesi ve f : U — R™ C'* sinifindan ise
0 zaman

o:T(f) = U, (x, f(x)) = x (2.5)
ve
(Lf):U=T(f),  we(z f(2)) (2.6)

doniisiimleri siireklidir ve birbirlerinin tersidir. Dolayisiyla bu doniistimler homeomorfiz-
malardir. C*° smifindan bir f : U — R™ fonksiyonunun grafigi I'( f), tek bir (I'(f), ¢)

yamasi igeren bir atlasa sahiptir ve dolayisiyla bir C*° manifolddur (Tu, 2011).

Ornek 2.4. (Genel lineer gruplar) Herhangi iki pozitif m ve n tamsayisi igin tim m x n
tipindeki matrislerin vektor uzayr R™*" ile gosterilsin. R™*" uzay1 R™" uzayina izomorf

oldugundan bu uzaya R"”*"’nin topolojisi aktarilabilir.
GL(n,R) := {A € R™" | det(A) # 0} = det” (R — {0}) (2.7)
seklinde tanimli gruba Genel lineer grup adi verilir. Determinant fonksiyonu
det : R™" — R (2.8)

stirekli oldugundan GL(n,R), R™*" ~ R"*’nin bir acik altkiimesidir ve dolayisiyla bir
manifolddur(Tu, 2011).



Ornek 2.5. (Carpim manifoldu) Eger (U,, ¢o) ve (V;, ;) sirastyla m ve n-boyutlu M ve

N manifoldlar1 i¢in C'*° atlaslar ise o zaman
{(Ua X Vi oo X 0 : Uy X V; = R™ x R")} (2.9)

kolleksiyonu da (lizerindeki ¢arpim topolojisine gore) M x N kartezyen ¢carpimi lizerinde
bir C'* atlas olusturur. M x N, (m + n)-boyutlu bir C* manifolddur. Burada (¢, X

Vi) (p,q) = (¢a(p), ¥i(q)) seklinde tanimlidir (Tu, 2011).

2.2 C*° smifindan doniisiimler. Difeomorfizmalar

Tamm 2.10. M, n-boyutlu bir diizgiin manifold ve f, M iizerinde tanimli reel degerli
bir fonksiyon yani f : M — R olsun. Eger bir p € M i¢in foo¢™! : ¢(U) — R
fonksiyonu ¢(p) noktasinda C'* siifindan olacak sekilde p noktasini iceren M iginde bir
(U, ¢) yamasi var ise o zaman f fonksiyonu p noktasinda C* sinifindandir denir. Eger
f fonksiyonu M ’nin her noktasinda C'*° siifindan ise o zaman f’ye M iizerinde C>
sintfindandir denir (Tu, 2011).

Aciklama 2.2. Bir f fonksiyonunun diizgiinliigii tamimi (U, ¢) yamasindan bagimsizdir;
eger f o o1, ¢(p) noktasinda C* simifindan ve (V. )), p € M noktasim iceren bir diger
yama ise o zaman ¢ (U N V') tizerinde

fou™ =(fog ) o(poy™) (2.10)
fonksiyonu (p) noktasinda C*° sinifindandir (Tu, 2011).

Bir diizgiin M manifoldu iizerinde C'*° sinifindan olan tiim fonksiyonlarin kiimesi

C>(M) ile gosterilir. Herhangi p € M ve herhangi a € R i¢in

p) +9(p)

(p)
) (p)g(p) (2.11)
(af)(p) =af(p)

operasyonlart ile birlikte C*° (/) kiimesi R iizerinde bir cebir olusturur.

Tamm 2.11. N ve M sirasiyla n ve m boyutlu manifoldlar olsun. Eger asagidaki kosul
saglantyorsa o zaman siirekli bir F' : N — M doniisiimiine bir p € N noktasinda C*

sinifindandir denir:
YoFog™':¢(F(V)NU) CR" - R" (2.12)

doniisiimii ¢(p) noktasinda C'*° simifindan olacak sekilde M ’nin F'(p) noktasini iceren

bir (V1)) yamast ve N’nin p noktasini i¢eren bir (U, ¢) yamasi vardir. Eger F' : N —
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M doniigiimii her p € N noktasinda C'*° sinifindan ise o zaman F' doniisiimiine C'*°
sinifindandir denir (Tu, 2011).

Asagidaki onerme C*° sinifindan olma taniminin (V%) ve (U, ¢) yamalarinin

seciminden bagimsiz oldugunu soyler.

Onerme2.2. F : N — M déniigiimiip € N noktasinda C*™ simifindan olsun. Eger (U, ¢),
N icinde p noktasini iceren herhangi bir yama ve (V, 1)), M icinde F(p) noktasini iceren

herhangi bir yama ise o zaman 1 o F o ¢~ déniisiimii ¢(p) noktasinda C*> sinifindandir
(Tu, 2011).

Asagidaki 6nerme iki manifold arasindaki bir doniisiimiin C'*° sinifindan olmasinin

bilesenlerle belirlenebilecegini soyler.

Onerme 2.3. F : N — M doniisiimii sirastyla n ve m boyutlu N ve M manifoldlar:

arasinda siirekli bir doniigiim olsun. O zaman asagidakiler esdegerdir:
(i) F : N — M doniisiimii C* sinifindandur.

(i) M manifoldu bir atlasa sahiptir oyleki bu atlastaki her (V,¢) =
(V.y',...,y™) yamast icin F’nin (V,v) yamasina gore bilesenleri olan y' o F :
F~YV) = R fonksiyonlarimn tamami C* sumifindandur.

(iii) M iizerindeki her (V1)) = (V,y*, ..., y™) yamasticin F’nin (V1)) yamasina
gore bilegenleri olan y' o F : F~1(V) — R fonksiyonlarin tamami C* sunifindandur.
(Tu, 2011).

Tanim 2.12. (Difeomorfizma) F' : N — M doniisiimii C'*° sinifindan bir doniisiim olsun.
Eger F, 1-1, 6rten ve F’nin tersi /'~ doniisiimii de C'™° sinifindan ise o zaman F’ye bir
difeomorfizma denir (Tu, 2011).

Onerme 2.4. Eger (U, ¢), n-boyutlu bir M manifoldu iizerinde bir yama ise o zaman
¢ U — ¢(U) koordinat sistemi bir difeomorfizmadur (Tu, 2011).

2.3 Lie Gruplan
Tanim 2.13. G, grup yapisina sahip bir C'*° manifold olmak iizere
w:GxG—G (2.13)

carpma doniistimii
LG =G, r) =27t (2.14)

ters doniislimiiniin her ikisi de C'*° sinifindan ise o zaman G’ye bir Lie grubu denir (Tu,
2011).



Ornek 2.6. R” Euclid uzay1 toplama iglemi altinda bir Lie grubudur.

Ornek 2.7. Sifirdan farkli olan karmasgik sayilarin kiimesi C*, ¢arpma islemi altinda bir

Lie grubudur.
Ornek 2.8. C*’deki S! birim ¢cemberi carpma islemi altinda bir Lie grubudur.

Ornek 2.9. (G1, 1) ve (G1, jiy) Lie gruplarmin kartezyen carpimi Gy x G karsilikli

bilesenlerin carpimiyla tanimlanan ¢arpma islemine gore bir Lie grubudur.

Ornek 2.10. (Genel lineer grup) Ornek (2.4)’e gore

GL(TZ,R) = {A = [Cbij] e R™"

detA # 0} (2.15)

genel lineer grubunun bir manifolddur. A, B € GL(n,R) olmak iizere A ve B matrisin-

lerinin ¢arpiminin (4, j)-elamani
(AB)ij = > auby; (2.16)
k=1
A ve B’nin koordinatlarina gore bir polinom fonksiyonu oldugundan
p: GL(n,R) x GL(n,R) — GL(n,R) (2.17)

carpim fonksiyonu C* sinifindandir. A € GL(n, R) olmak iizere A~! matrisinin (4, j)-
elemani
AN = ——(=1)"adj(A); 2.1
(A7)y detA( )"adj(A);; (2.18)
a;; koordinatlarinin bir C* fonksiyonu oldugundan ¢ : GL(n,R) — GL(n,R) ters donii-
simii de C* smifindandir. O halde GL(n, R) bir Lie grubudur.

2.4 Kismi Tiirevler

Tamim 2.14. M, n-boyutlu bir manifold, (U, ¢) = (U, x!,..., 2")biryamave f : U — R,
C* sinifindan bir fonksiyon olsun. f’nin bir p € U noktasinda z’ koordinatina gore
Jf /0x" kismi tiirevi

0
ox'

of dfoo™") ) )
f=aW) == ) =53 ¢(p)(f 09~ (2.19)

p

sekilde tamimlanir (Tu, 2011).

p = ¢ ' (¢(p)) oldugundan yukaridaki esitlik

aa:f (67 (@) = Wa) (6(p)) (2.20)




seklinde yazilirsa ¢(U) iizerinde
of 1 O(fo™)
, = " 2.21
ozt ¢ ort 221)
fonksiyonu elde edilir. (0f/0z") o ¢!, ¢(U) iizerinde C*° smifindan olduundan
(0f /0x") fonksiyonu da U iizerinde C*° simifindandir. Tanim geregi, herhangi p € U

i¢in
oz’ . O’ oo™ Ir'ogpoop™!) o o
oldugundan
ozt ;
p = 5]- (2.23)
elde edilir. Burada
. 1, 1=
5;. AR (2.24)
0, 1#]

seklinde tanimli Kronecker delta fonksiyonudur.
2.5 Tanjant uzay. Bir doniisiimiin diferansiyeli

U, bir p € M noktasinin bir agik komusulugu ve f : U — R, C* sinifindan bir

fonksiyon olmak tizere tiim ( f, U) ikililerinin kiimesi goz Oniine alinsin. Eger

fiw = 9w (2.25)

olacak sekilde p noktasini igeren bir W C U NV acgik kiimesi varsa o zaman f ve
g fonksiyonlari esdegerdir denir ve (f,U) ~ (g,V') yazilir. Bu esdegerlik bagintisinin
(f,U) ikilisini iceren [f] esdegerlik sinifina f’nin p € M noktasindaki tohumu (germ)
denir. C3°(M ) kiimesi M iizerinde C* fonksiyonlarin p € M noktasindaki tohumlarinin
kiimesini gostersin. Agagidaki toplama ve carpma operasyonlarina gére C°(M ) bir halka
teskil eder: Her [f], [g] € C;°(M)

1+l = Uw + 9wl (2.26)
gl = fwawl:
Her [f] € C;°(M) ve her a € R igin
alf] = [afi,] (2.27)

seklinde tanimh skaler ile ¢arpma operasyonu ile C°(M) halkasi R iizerinde bir cebir

olusturur (Ozan, 2016; Tu, 2011). Tanim geregi bir tohumun bir noktadaki degeri iyi
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tanimlidir, yani esdegerlik sinifindan secilen bir temsilciden bagimsizdir: p € M ve
[f] € C3°(M) olmak iizere

[f1(p) = f(p) (2.28)
ile belirlenir.

Tamim 2.15. M bir diizgiin manifold ve p € M olsun.

D([f1g]) = (DUDg(p) + f(p) D] (2.29)

ozelligini saglayan bir D : C7°(M) — R lineer déniisiimiine p noktasinda bir derivasyon
denir (Tu, 2011).

Tamm 2.16. (Tanjant vektor) Bir p € M noktasindaki bir derivasyona p noktasinda bir
tanjant vektor denir (Tu, 2011).

Bir p € M noktasindaki bir tanjant vektor v, ile gosterilir. p noktasindaki tim

tanjant vektorlerin kiimesi 7, M her v, w, € T, M ve her a € R igin

(vp +wp)[f] = vp[f] + wplf]
(avp)[f] = avp|f]

seklinde tanimli toplama islemi ve skaler ile carpma operasyonuna gore bir vektor uzay1

(2.30)

olugturur. 7, M uzayina p noktasindaki ranjant uzay denir.

0 0 _of
00| 1= 30| 1= i ?) 23D
p p
tanimlanirsa o zaman (2.19) denkleminden
0 0 1
0| (9 =57 ((fo)es7)
P o(p)
0 _ _
=7 ((Feogoo™)
o(p) (2.32)
0 1 0 1
=157 (oo )|al)+ /)55 (9067
" o) " o)
_9f 99
elde edilir. Buradan 9/9z"|,’nin (2.29) derivasyon 6zelligini sagladigi goriiliir. O halde
heri=1,2,...,nig¢in
0
I ) cT,M (2.33)

oldugu sonucu ortaya cikar.
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Tanim 2.17. (Bir doniisiimiin diferansiyeli) M ve N birer manifold ve F': N — M, C™

sinifindan bir doniisiim olsun. X, € T, N ve [f] € CF,) M olmak iizere

F(Xp)l[f] = Xp[f o Fl€R (2.34)
seklinde taniml £ : T,N — Tp(, M lineer doniislimiine F''nin p noktasindaki diferan-
siyeli denir (Tu, 2011).

Aciklama 2.3. Kimi zaman F"nin p noktasindaki diferansiyeli dF' ile gosterilir. Tanimin
p noktasina bagimlilig1 a¢ik¢a vurgulanmak istenildiginde (dF'), ya da F. , gosterimleri

kullanilir.

Teorem 2.1. FF: N — M ve G : M — P doniisiimleri C* sinifindan ve p € N ise o

zaman
(G e} F)*J; = G*,F(p) e} F*7p (2.35)

esitligi dogrudur.

Sonu¢ 2.1. Eger F' : N — M doniisiimii bir difeomorfizma ve p € N ise o zaman

F, : T,N — Tp)M lineer doniigiimii bir lineer izomorfizmadur.

Aciklama 2.4. (U, ¢) bir M manifoldunda bir p noktasini igeren bir yama olsun. Onerme
2.4 ve Sonug 2.1’e gore
¢s : T,M — Ty(p)R" (2.36)

diferansiyeli bir vektor uzay1 izomorfizmasidir ve dim 7, M = dim M = n.

Onerme 2.5. M bir manifold ve (U, ¢) = (U, x', ..., x™) bir p noktasini i¢eren bir yama
olsun. O zaman asagidaki dogrudur (Tu, 2011):

0 0
« , = — 2.37
¢ ox? or? 2.37)
p é(p)
Onerme 2.6. Eger (U, ¢) = (U, x',... a") p noktasini iceren bir yama ise o zaman
0 0
— ., = 2.38
8$1 Y 7axn ( )
P p
tanjant vektorleri T}, M igin bir taban (baz) olusturur (Tu, 2011).
Sonu¢ 2.2. Bir v, € T,M tanjant vektorii
v, = Z vt 0 (2.39)
P —~ Oz :
p

seklinde tek tiirlii yazilir.
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Buradan hareketle bir (U, 2!, ..., 2™) yamasi lizerinde

ulfl =22 w;?ji@) (2.40)

i

yazilabilir.

Tamim 2.18. A/ bir manifold olsun. 7,, M 'nin dual uzayina yani
ToM = {w, : T,M — R | w, lineer} (2.41)
vektor uzayina M nin p noktasindaki kotanjant uzay: denir (Tu, 2011).

Onerme 2.7. M bir manifold ve (U, z',...,x") bir yama olsun. x' koordinatlarinin p

noktasindaki diferansiyelleri olan (dz*),’ler

(dz"),(0/027|,) = & (2.42)
esitliklerini saglarlar (Tu, 2011).
Sonug 2.3.

{(dz")p, ..., (dz"),} (2.43)

kiimesi Ty M icin bir tabandur. Bu tabana (2.38) tabanimin dual tabani denir.

Onerme 2.8. N ve M birer manifold, F : N — M, C* sinfindan bir doniisiim olmak
sizere (U, zt, ..., 2") ve (V,y', ... y™) srastyla p € N ve F(p) € M noktalarini iceren
N ve M i¢inde koordinat yamalari olsunlar. O zaman F : T,N — Ty, M diferansiye-
linin swrasiyla T,N ve T, M tanjant uzaylarimn {0/0x7],} ve {8/ oy’ F(p)} bazlarina

gore matris temsili

OF!
oxJ
Jacobian matrisidir. Burada F' = y* o F, F doniigiimiiniin i. bilesenidir (Tu, 2011).

(p)] (2.44)

Tanim 2.19. C*° smifindan bir F' : N — M doniisiimiiniin rank1 Fy : T,N — Tpe, M

diferansiyelinin ranki olarak tanimlanir ve tk F'(p) ile gosterilir (Tu, 2011).

Actklama 2.5. Tanim 2.17’ya gore bir F' doniisiimiin diferansiyeli koordinat yamalarindan
bagimsiz oldugu icin ‘
oF"
oxI

kF(p) = 1k [ (p)] (2.45)

seklinde tanimlanabilir.
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2.6 Altmanifoldlar

Tanim 2.20. N, n-boyutlu bir manifold ve .S, N’nin bir altkiimesi olsun. Eger agagidaki
kosul saglaniyorsa o zaman S’ye N manifoldunun k-boyutlu bir regiiler altmanifoldu

denir.

Her p € S i¢in, p noktasinin N’nin bir maksimal atlasi icinde kalan bir
(U,¢) = (U,x', 22, ..., 2") koordinat komgulugu vardir dyle ki U N S, n — k koor-
dinat fonksiyonunun sifira esit olmasi ile tanimlanir. Yeniden numaralandirma ile n — k

k+1

koordinat fonksiyonlarinin %", ... 2™ oldugunu varsayilabilir (Tu, 2011).

Bu tanimi saglayan N icindeki bir (U, ¢) yamasina, S’ye gore adapte edilmig bir

yama denir. U N S iizerinde,
¢= (24 ...,2%0,...,0) (2.46)
olarak ifade edilir.

6s:UNS — RE

doniisiimii ¢’ nin ilk & bileseninin U N S lizerine kisitlanist olsun yani ¢g = (2!, ..., 2%)

olsun. Bu durumda (U U S, ¢g), lizerindeki altuzay topolojisine gore S i¢in bir yama olur.

Tanim 2.21. Eger S, n-boyutlu bir N manifoldunun bir k- boyutlu regiiler altmanifoldu

ise 0 zaman n — k sayisina S’nin N i¢indeki esboyutu denir (Tu, 2011).

Aciklama 2.6. N’nin bir regiiler altmanifoldu tizerindeki topoloji, altuzay topolojisi olmak

durumundadir.

Tamm 2.22. N ve M birer manifold olmak iizere bir F' : N — M doniislimii verilsin.
Bir c € M i¢in N’nin
F7'({c}) ={p e N | F(p) = c} (2.47)

seklinde taniml altkiimesine F' dOniisiimiiniin bir seviye kiimesi denir. Buradaki c € M

degerine F'~*({c}) seviye kiimesinin seviyesi ad1 verilir (Tu, 2011).

Tamm 2.23. Eger /' : N — R™ ise o zaman
Z(F) = F({0}) (2.48)

sekilde tamimli seviye kiimesine F"nin sifir kiimesi denir (Tu, 2011).

Tamm 2.24. Eger bir ¢ € M noktasi1 bir /' : N — M doniisiimiiniin goriintii kiimesinde
degilse ya da her p € F~'({c}) i¢in F,), : T,N — Tr,M diferansiyeli orten ise o
zaman c’ye F' doniisiimiiniin bir regiiler degeri denir. c regiiler degerinin ters goriintiisii

F~1({c}) seviye kiimesine regiiler seviye kiimesi denir (Tu, 2011).
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Teorem 2.2. g : N — R, N manifoldu iizerinde C'*° siifindan bir fonksiyon olsun. O
zaman bogtan farkli bir S = g~!({c}) regiiler seviye kiimesi N nin esboyutu 1 olan bir
regiiler altmanifoldudur (Tu, 2011).

Aciklama 2.7. Kimi zaman bir F' : N — M doniisiimii verildiginde bir p € M icin

F~1({p}) ters goriintii kiimesini gosterirken basitlik agisindan '~ (p) yazilir.
2.7 Vektor Demetleri

Tanim 2.25. F ve M, C'*° sinifindan manifoldlar olmak iizere asagidaki 6zellikleri sagla-
yan C'*° sinifindan orten bir 7 : £ — M doniisiimiine M {izerinde bir reel vektor demeti

denir ve ¢ = (E, 7, M) ile gosterilir:
(i) Her bir p € M i¢in 7~ '(p) kiimesi n-boyutlu bir reel vektor uzayinin yapisina sahiptir.

(ii) Yerel asikarlik: Her bir p € M igin bir U ag¢ik komsulugu ve bir ¢y : 7= 1(U) = U x R"

difeomorfizmasi vardir dyle ki her bir ¢ € U igin ¢y nun 71 (¢) kiimesine kisitlanigt

pu T (@) = {g} xR" (2:49)
bir lineer izomorfizmadir (Morita, 2001).

Bir ¢ = (E,m, M) demetinde, E toplam uzay, m projeksiyon ve M baz uzayt
olarak adlandirilir. Ayrica 7 *(p) kiimesine p iizerindeki lif denir ve genellikle E, ile
gosterilir. Bazen bir ¢ vektor demeti, 7 : ' — M ya da sadece E ile gosterilebilir. M nin
(bir acik kiime olmak zorunda olmayan) bir /V alt manifoldu icin yerel asikarlik kosulunu
saglayan bir oy : 7 1(N) = N x R" difeomorfizmasina N iizerinde bir asikarlastirma

denir.

Tanmim 2.26. Verilen bir 7 : E — M vektor demeti i¢in 7 o s = id; seklinde tanimli C*°
siifindan bir s : M — E doniislimiine bir kesit denir. Bagka bir iafade ile bir s kesiti her
bir p noktasinda C*° simifindan olacak sekilde p noktasina s(p) € E, noktasini karsilik
getiren bir doniisiimdiir. Her p € M i¢in s(p) = 0 € E,, oluyorsa o zaman s kesitine sifir
kesit denir. Her p € M igin s(p) # 0 kosulunu saglayan s kesitine sifir olmayan kesit adi
verilir (Morita, 2001).

Tamim 2.27. Bir U agik altkiimesi lizerinde bir ¢ : 771 (U) = U x R™ agikarlagtirmasi
belirlemek demek her p € U icin s1(p),...,s,(p) vektorlerinin E,’nin bir tabanim
olusturdugu U iizerinde s; : U — F kesitleri secmek demektir. Bu 6zellegi saglayan s;

kesitlerinin kiimesine U lizerinde bir ¢ati alani denir (Morita, 2001).

E vektor demetinin tiim kesitlerinin kiimesi I'(F) ile gosterilir. T'(E'), asagidaki

tanimlanan toplama islemi ve skaler ile carpma operasyonlariyla birlikte bir vektor uzay1
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olusturur: Her s, s’ € T'(E) ve a € R igin

(s+s)(p) =s(p)+s(p)
(as)(p) = as(p).

(2.50)

seTl(F)ve feC®M)igin

(fs)(p) = f(p)s(p) (2.51)
operasyonu ile birlikte I'( £'), C°°( M) halkasi iizerinde bir modiil olusturur (Morita, 2001).

Ornek 2.11. M bir C* manifold olmak iizere £ = M x R*, 7 : E — M;n(p,v) = p

seklinde tanimli vektor demetine ¢arpim demeti denir.

Ornek 2.12. (Bir manifolfun teget demeti) M bir C°° manifold olsun. M nin tiim nokta-

larmdaki tiim tanjant uzaylarinin kiimesi

™ = \J T,M (2.52)

peEM

bir C'*° manifolddur (Morita, 2001). v € T}, M olmak iizere
m:TM — M; 7(v)=p, 7 '(p)=T,M (2.53)

seklinde taniml1 projeksiyon ile birlikte 7'M bir vektor demetidir. Bu vektor demetine M

manifoldunun tanjant demeti ya da teget demeti ad1 verilir (Morita, 2001).

Tamm 2.28. 7 : T'M — M tanjant demetinin bir X kesitine M {izerinde bir vektor alan:
denir ve 7'M’ nin tiim kesitlerinin kiimesi X(M ) = ['(T'M) ile gosterilir (Morita, 2001).

(U,z',...,2"), M manifoldu iizerinde bir yama olmak iizere bir X € X(M)

vektor alaninin z* koordinatlarindaki ifadesi

)
X=3x o (2.54)

ile verilir. Burada X? : U — R fonksiyonlar1 C'*° sinifindandir (Morita, 2001; Tu, 2011).
(2.54) vektor alaninin bir p € M noktasindaki degeri

0
Xp=X(p) =2 X'(P)7 5 (2.55)
i Ty
tanjant vektoriidiir. Eger X € X(M) ve f € C°°(M) ise o zaman
(fX)(p) = f(p)X(p) (2.56)
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seklinde tanimli f X vektor alan1 da C*° sinifindandir yani f X, X(M )’ nin bir elemanidir

ve yerel koordinatlarda
0
X = X'— 2.57
X =SNG @57)
ile verilir.

Tamim 2.29. X € X(M) ve f € C*°(M) olsun. Her p € M igin

(X[fD(p) = X(p)[f] = Xp[/] (2.58)
seklinde tanimli C'*° sinifindan X | f] fonksiyonuna f’nin X e gore Lie tiirevi denir ve X f
ile gosterilir (Tu, 2011).

Ornek 2.13. (Bir manifolfun kotanjant demeti) M bir C'**° manifold olsun. M nin tiim

noktalarindaki tiim kotanjant uzaylarinin kiimesi

M= J T;M (2.59)

peEM

bir C'*° manifolddur (Morita, 2001; Tu, 2011). o € Tz’f M olmak iizere
m:T*"M — M; w(a) =p, 7 '(p) =T;M (2.60)
seklinde taniml1 projeksiyon ile birlikte 7™M bir vektor demetidir. Bu vektor demetine

M manifoldunun kotanjant demeti ad1 verilir(Morita, 2001; Tu, 2011).

Tanmm 2.30. 7 : 7% M — M kotanjant demetinin bir w kesitine M iizerinde bir diferan-
siyel 1-form ya da kisaca I-form denir ve T M nin tiim kesitlerinin kiimesi I'(7* M) ile
gosterilir. (Morita, 2001).

(U,x',... z"), M manifoldu iizerinde bir yama olmak iizere bir w € T'(T*M)

1-formunun z* koordinatlarindaki ifadesi

w = Z a;dx’ (2.61)

ile verilir. Burada a; : U — R fonksiyonlar1 C'* sinifindandir (Morita, 2001; Tu, 2011).
(2.72) 1-formunun bir p € M noktasindaki degeri

w, = w(p) = Z a'(p)(dz"), (2.62)

kotanjant vektoriidiir.
Tanmm 2.31. w € T(T*M) ve X € X(M) olmak tizere w 1-formunun X vektor alanina
etkisi

w(X)(p) = wy (Xp) (2.63)



seklinde tanimlidir (Tu, 2011).

Aciklama 2.8. (U, z',... ™), M manifoldu iizerinde bir yama, w = 3, a;dz’ ve X =

S X0, olmak iizere (2.63) tamimu yerel olarak
w(X) =Y a; X’ (2.64)
ile verilir.

Tanmm 2.32. f € C*°(M) olmak iizere herhangi p € M ve X, € T,,M igin

(df)po = Xp[f] (2.65)

seklinde tanimli 1-forma f’nin diferansiyeli denir.

(U, ', ..., 2"), M manifoldu iizerinde bir yama olmak iizere
of
(df)pOuilp = Ouilp[f] = Ouilpf = O (p) (2.60)

oldugundan f’nin diferansiyeli * koordinatlarinda
of |
df =) —da' 2.67
ile verilir.

Tanmm 2.33. {X;,..., X,,} kiimesi bir M manifoldunun bir U agik altkiimesi iizerinde

bir ¢atr alan1 olsun. U iizerinde

w'(X;) =6, (2.68)
esitligini saglayan w' € T(T*M), i = 1,2,...,n 1-formlarinin kiimesine U iizerinde
{X1,..., X, } cat1 alanina dual olan eg¢ari alam denir.

Tamm 2.34. V, n boyutlu bir reel vektor uzayi, VE =V xV x - x V, V’nin kendi-

k defa
siyle k defa kartezyen carpimi olmak iizere asagidaki kosulu saglayan bir L : V¥ — R

fonksiyonuna V' iizerinde bir k-lineer form ya da k-tensor denir (Tu, 2011): L fonksiyonu

k argiimaninin her birine gore lineerdir, yani her her a,b € R ve v, w € V icin
L(...,av+bw,...)=al(...,v,...) +bL(...,w,...) (2.69)
esitligi vardir.

Actklama 2.9. Lineer doniisiimler gibi k-lineer formlar da tamamiyla taban vektorleri

tizerindeki etkileriyle belirlenirler.
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Tamm 2.35. Eger L : V¥ — R k-lineer formu her o € S}, icin

L (0a(1), -+ V)) = (520 0) Ly, .., v1) (2.70)

esitligini sapliyorsa o zaman L’ye alterne k-lineer form ya da alterne k-tensor denir (Tu,

2011). Burada Si, {1, 2, ..., k} kiimesinin tim permiitasyonlarinin grubudur.

Tamim 2.36. ) bir C*° manifold ve p € M olmak iizere 7),M lizerindeki tiim alterne

k-tensorlerin vektor uzay1 /\k(T;M ) ile gosterilsin.
k k
ATM = |J NT:M) 2.71)
peEM

olmak iizere her o € \*(T, o M) igin 7 : ANFT*M — M;n(a) = p seklinde tanimli pro-
jeksiyon ile birlikte A* 7% M bir vektor demetidir. Bu vektor demetine kotanjant demetin
k. dis kuvveti denir (Tu, 2011).

Tanim 2.37. A\* T* M vektor demetinin bir kesitine M iizerinde bir diferansiyel k-form ya
da kisaca bir k-form denir. A* T* M vektdr demetinin tiim kesitlerinin kiimesi Q¢(M) =
T' (A" T*M) ile gosterilir (Tu, 2011).

(U, 2, ...,2"), M manifoldu iizerinde bir yama olmak iizere bir w € QF(M)

k-formunun x* koordinatlarindaki ifadesi

w = Z ardz! = Z ail,,.ikdx“ Adx? A - A dzt (2.72)
7

1 < <ig

ile verilir. Burada a; = a;, 4, : U — R fonksiyonlar1 C* smifindandir (Tu, 2011).

1 <4y <19 <--- <1 <nolmak lizere
I = (iy,i9,...,1k) (2.73)
notasyonunaa (artan) ¢oklu-indis notasyonu denir. Coklu-indis notasyonu ile
dz’ = dz"™ Ada® A A da™ (2.74)

yazilir. Ornegin 3-boyutlu bir M manifoldu iizerinde bir w 2-formu z, 7, z yerel koordi-
natlarinda
w = appdx A\ dy + aizdr N\ dz 4 aszdy N dz (2.75)

ile verilir.

Tammm 2.38. o', ..., o* € QY (M) ve X;,..., X} € X(M) olmak iizere
o' A AR (Xy, LX) = det (af(X)) (2.76)
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seklinde tanimli o' A --- A of k-formuna o', ..., a* 1-formlarinin dis carpimi denir
(Clelland, 2017).

Buradan hareketle

. , . 1, 4 =1, i = jo, ..., 0 = jp ise
Azt Adz® A- - Nda (D, .., 0,3 = P R e EIRRE 5 29y
0, aksi durumda

oldugu goriiliir. Ayricaw = 3" a;dz’ ve n = 3 b;dx’ olmak iizere w ve i) 1-formlarinin dis
carpimi
wAn = (a;bj — a;b;)dx’ A dx’ (2.78)
i<j
ile verilir. Buradan hareketle
wANn=—-nAw (2.79)

ve
wAw=0 (2.80)
oldugu gortiiliir.

Actklama 2.10. Eger iki diferansiyel form herhangi bir p € M noktasinin bir komsulu-

gunda ayni ise o zaman tiim )/ manifoldu {izerinde aynidir. Dolayisiyla bir &-formun dig

tiirevinin tanimui bir (U, 2!, ..., x™) yamasi lizerinde verilebilir.
Tamm 2.39. Bir M manifoldu iizerindeki w k-formu bir (U, 2!, ... 2™) yamast iizerinde
w = Z ail._,ikdx“ Adx? A - A dzt (2.81)
i1 < <dp,

ile verilsin.
dw = Z da;, i, A Az ANdx? A - A dzt (2.82)

11 < <ig

seklinde tanimli (k + 1)-forma w’nin dug tiirevi denir (Morita, 2001).
2.8 Riemann manifoldu

Tammm 2.40. A bir C°° manifold olsun. M’deki her p noktasina 7,M lizerinde bir
gp = (-, +)p i¢ carptmunt Karsilik getiren C*° smifindan g : p — g, doniisiimiine M
lizerinde bir Riemann metrigi denir. Burada g doniisiimiiniin C'**° sinifindan olmasindan
kasit herhangi X, Y € X(M) i¢in

pEM = gy(Xp,Yy) = (Xp, Yp)p €R (2.83)

fonksiyonunun C* smifindan olmasidir. Bir ¢ Riemann metrigi ile donatilmig bir M

manifolduna bir Riemann manifoldu denir (Burns & Gidea, 2005).

20



Actklama 2.11. Uzerindeki g Riemann metrigi ile birlikte bir M/ Riemann manifoldu

(M, g) ile gosterilir.

(U,z',...,2"), (M, g) iizerinde bir yama olmak iizere U iizerinde
0 0
9i5(p) = gp (W O ) (pel) (2.84)
p p

seklinde tamimli g;; fonksiyonlart ile birlikte g’nin z* koordinatlarindaki ifadesi
9=>_ gydz' @ da’! (2.85)
1,J
ile verilir. Burada g;; = g¢;; fonksiyonlar1 U iizerinde C*° sinifindandir ve her X,Y ¢
X(M) igin
(do’ @ da?) (X,Y) = da'(X)da’ (V) (2.86)

sekilde tanimli carpima dz’ ve da’ 1-formlarinin tensér carpum denir. X, Y € X(M),
X=YX0,veY =Y,

g(X, Y)(p) = gp(Xp? Y;?) (2.87)
tanlmlanlrsa O zaman
g(X, Y) = Z ginin (2.88)
4,J

elde edilir. Genel olarak w' ve w? 1-formlarmin tensor carpimi her X, Y € X(M) i¢in
(@ @w?) (X,Y) = ' (X)w(Y) (2.89)
seklinde tanimlidir.

Tanmmm 2.41. (M, g) bir Riemann manifoldu ve U C M bir agik kiime olsun. e; €

X(M), i=1,2,...,n vektor alanlarindan olusan U iizerindeki ¢at1 alani i¢in
g(ei, €j) = 5ij (290)
oluyorsa o zaman bu ¢at1 alanina U {izerinde bir ortonormal ¢cati alani denir ve (eq, . . ., e,)

ile gosterilir.

2.9 Bir vektor demeti iizerinde baglanti formu

Tammm 2.42. 7 : £ — M, M iizerinde bir vektor demeti olsun. Asagidaki ozellikleri
saglayan
V:X(M)xT(E)—T(F)
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cift-lineer doniistimiine 7 : £/ — M vektor demeti tizerinde bir baglanti denir (Morita,
2001): Herhangi f € C>(M), X € X(M),s € T(FE) i¢in

(1)
Vixs = fVys. 2.91)

(i1)
VX(fS) = fVxs+ (Xf)S (2.92)

V x s degerine s kesitinin X vektor alanina gore kovaryant tiirevi denir.

Eger E = T M ise o zaman I'(T'M ) = X(M) olur. Bu durumda
YV X(M) x X(M) — X(M) (2.93)
baglantisina M iizerinde bir afin baglant: denir (Tu, 2017).

Onerme 2.9. M bir Riemann manifoldu ve U bir koordinat komsulugu olsun. e =
(€1,...,¢en), U iizerinde bir ortonormal ¢ati alami ve w = (w',... w")!, e can ala-
nina dual olan es¢ati alani olsun. O zaman U iizerinde asagidaki ozellikleri saglayan tek

tiirlii belirli § = (0}) I-formlart vardir (Morita, 2001):
(i)
0i = —¢/, (2.94)
(i1)
dw’ =Y 0 N (2.95)
J

Agiklama 2.12. § = (0?) matrisine U iizerinde gl(n, R)-degerli 1-form ad1 verilir. (2.9)
onermesinde 6 = (9;) matrisi anti-simetrik oldugundan (2.9) 6nermesindeki # matrisi
s0(n, R)-degerli bir 1-form olacaktir. Burada so(n, R), O(n) ortogonal grubun Lie cebi-

ridir.
Tanim 2.43. 0 = (¢?), (2.9) 6nermesindeki so(n, R)-degerli 1-form olsun. Bu durumda

Vej=> 0 @e (2.96)

seklinde tanimli 7'M tlzerindeki V baglantisina (s6z konusu metrikle uyumlu) Levi-
Civita baglantisi ya da Riemann baglantist denir. § = (6%) 1-formuna da U iizerinde
V’nin baglanti formu ad1 verilir (Morita, 2001).
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(2.95) yap1 denklemlerinin dis tiirevi alinirsa
0= (0 +> 6 A OF) Ao (2.97)
k

elde edilir. Buradan
QL =dbi+> 0, N0, Q= —Qf (2.98)
k

yazilir. 2 = (Q;) matrisine V baglantisinin egrilik 2-formu ad1 verilir. Q; 2-formlart

Q=3 Rw AW (2.99)

k<l
seklinde ifade edilirse o zaman buradaki R;kl fonksiyonlar1 Boliim 4.2.1°de tanimlanan
Riemannian egrilik tensorii’niin e = (ey,...,e,) ortonormal cati alanina gore bilesen-
leridir. Eger M lizerinde R;kl fonksiyonlar1 idantik olarak sifirsa yani R;kl = 0ise o
zaman M manifolduna diiz uzay denir. 2-boyutlu bir Riemann manifoldu iizerinde egrilik

2-formunun tek bir bagimsiz bileseni vardir:
Q; = Ryw' Aw? (2.100)

Bu durumda R}, fonksiyonuna (M, g) Riemann manifoldunun Gauss egriligi’de denir,
bkz. (Boothby, 1986).
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BOLUM 3

JET UZAYLARI

3.1 ADDlerin Jet Uzay Formiilasyonu: &

Bu boliimdeki amag bir diferansiyel denklemin jet demet formiilasyonunu vermek-
tir. Bu fomulasyon diferansiyel denklemlerin koordinat sisteminden bagimsiz olarak ele
aliabilmesini saglamasinin yani sira geometrik olarak bir diferansiyel denklemin uygun
bir jet uzayi icerisinde bir manifold olarak diisiiniilmesine imkan saglamaktadir. Bir diiz-
lem egrisinin k-grafigi bu manifold {izerinde yer alir. Eger jet demet icerisindeki kanonik
kontakt formlar s6z konusu diizlem egrisinin k-grafigi iizerinde sifir oluyorsa o zaman bu
egri denklemin ¢oziimiidiir denir. Diferansiyel denklemlerin jet demet formulasyonu ve
kontakt yapilar hakkindaki bilgiler asagidaki kaynaklardan derlenmistir. (Bocharov vd.,
1999; Ivey & Landsberg, 2003; Kushner vd., 2007; Saunders, 1989; Vassiliou & Lisle,
2000).

Tanim 3.1.
Top=id 3.1

olacak sekilde yerel olarak tanimli C'*° sinifindan bir
p:R—-R xR 3.2)

fonksiyonuna 7 : R X R — R; 7(x,y) = x asikar demetinin bir (diizgiin) yerel kesiti
denir. Burada = ve y sirastyla R X R carpimindaki birinci ve ikinci faktorler icin yerel

koordinatlardir.
Tanim geregi 7’ nun bir p yerel kesiti, yerel olarak tanimli C'**° sinifindan bir
y:R—=>R; y=y(x) (3.3)

24



fonksiyonunun grafigi yani
{(z,y(z)) : xe R} CR xR (3.4

olarak diisiiniilebilir. Grafigi ile fonksiyonun kendisi 6zdes kilinarak y = p(z) yazilabilir.

Tamim 3.2. p; ve py, 7'nun iki yerel kesiti olsun. Bir 2y € R noktasinda
dp dpo dkm dkﬂz
pi(0) = pa(w0), = (20) = =(20), -, - (20) = 5 (0) (3.5)

oluyorsa o zaman p; ve po yerel kesitleri k. mertebeden esdegerdir denir.

Bir diger ifadeyle, eger 7’ nun iki yerel kesitinin x, noktasinda k. mertebeye kadar
tiim Taylor katsayilar1 ayn1 ise bu kesitler xy noktasinda k. mertebeden esdegerdir. k.

mertebeden esdeger olma bir esdegerlik bagintisidir.

Tanim 3.3. 7’nun bir p yerel kesitini iceren [p| esdegerlik sinifina p’nun xo noktasindaki
k-jeti denir ve
(o] = 75,0

ile gosterilir.

I C R bir agik aralik olmak iizere z(, I lizerinde degistikce 7’nun tiim yerel
kesitlerinin k-jetlerinin kiimesi bir diizgiin manifold teskil ve bu manifiold (k4 2)-boyutlu
Euclid uzayidir. Bu uzaya, yerel olarak tanimli R — R doniisiimlerinin k-jetlerinin demeti

ya da k-jet uzay: denir ve J*(R, R) ya da kisaca J* ile gosterilir. J* uzayindaki bir j§0 p

noktasinin koordinatlari, 7 = 1,2, ... k olmak iizere,
o\ o\ ik N djp
2(JzP) = 20 YlaoP) = p(20), P'(Jep) = 35 (0) (3.6)

seklinde tammlanr. (x,y, p, . .., p¥) koordinat sistemine .J* iizerinde standart koordinat
sistemi denir. k. mertebeden

d*y ,

ZJ _ (k—1)

dxk_f(x7y7y7"'7y ) (37)

formundaki bir ADD g6z 6niine alinsin. (3.7) denklemi J* iizerinde

"= flz,y,ph . P (3.8)

olarak verilir. Buradaki f : J*! — R fonksiyonu aksi belirtilmedikge C*° sinifindan

kabul edilecektir. J* iizerinde

F(z,y,p',....,p") =p" — f(z,y,p", ..., 0" ") (3.9)
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tanimlanirsa o zaman herhangi x = jg’jo p € J¥igin

tkF(x) =k [2(x) Z(x) - Ahx) 1] =1 (3.10)

oldugundan Teorem 2.2’e gore k. mertebeden bir ADD
& = F'({0}) = {ikpe b : w1, F(jlp) =0} 3.11)
J* ni bir regiiler altmanifoldu olacaktir.

Tanim 3.4. Yerel olarak

-k k
Jp R —=J
. L, (3.12)
= (§7p)(x) = Jop

seklinde taniml1 doniisiime 7’ nun bir p yerel kesitinin k-grafigi denir.

Bu tanima gore 7 nun bir yerel kesitinin k-grafigi J* iizerinde bir egri tanimlar ve

bir y = p(x) kesitinin k-grafigi

x> jip = (2,y(2), ¥ (@),....y¥ () (3.13)
egrisidir.
Tanim 3.5. Eger bir (z,y(x)) egrisinin k-grafigi (3.13), & manifoldunun tizerinde kali-

yorsa o zaman bu egriye (3.7) denkleminin bir ¢oziimiidiir denir.

Genel olarak &, tizerinde bir egri bir (-, y () ) egrisinin k-grafigi olmak durumunda
degildir. Simdi bir v : I C R — &, C J* egrisi goz oniine alinsin. Standart koordinat

sisteminde ~y egrisi
VT (x, y(x),p'(z),..., f (x, y(x),p'(z),. .. ,pk_l(x)» (3.14)
ile verilir. v egrisinin goriintiisii S ile gosterilsin ve J* iizerinde
W=dyt —pide  j=1,2,....k (3.15)

seklinde tanimli 1-formlar g6z Oniine alinsm. Burada p° = y seklinde tanimlidir. Bu

formlarin S iizerine kisitlanisi

. dpi—1 .
7ls = (%) - o)) (3.16)
x
ile belirlenir. 5 = 1,2, ..., k olmak iizere
W|s =0 (3.17)
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olmasi i¢in gerek ve yeter kosul

dp’ 1

m3@ﬂ—ﬁ@):0 (3.18)

olmasidir. Bu durumda (3.14) egrisi bir (z, y(x)) egrisinin k-grafigi olacaktir. Daha formel
ifade etmek icin ¢ : & — J* dogal icerme fonksiyonu goz oniine alinsin. O zaman
v:I CR — & egrisinin goriintiisii S’nin (3.7) denkleminin bir ¢oziimiinii tanimlamasi
icin gerek ve yeter kogul

(Loy) n’ =0 (3.19)

olmasidir. Bir bagka ifade ile verilen bir ADD’nin ¢oziimleriyle (3.19) Pfaffian sisteminin

coziimleri bire bir eslenmektedir. Bu durumda (3.7) denkleminin bir yerel ¢oziimii,
pr:J* = RXR; pr(y) = (z,y(z)) (3.20)

ile belirlenir.

Tamm 3.6. p° = y olmak iizere J* iizerinde tamml (3.15) diferansiyel 1-formlarma
kanonik kontakt formlar denir. C*(.J*) halkas1 lizerinde (3.15) tarafindan iiretilen modiile

J* lizerindeki kontakt sistem denir ve QF (R, R) ya da kisaca QF ile gosterilir.
3.2 Birinci mertebeden ADDler: &;

Yerel olarak R x R iizerinde verilen

dy
F f(x,y) (3.21)

formundaki birinci mertebeden bir ADD .J! uzayinda bir yiizey tammlar:

& ={(z,y,p) € J" : p— flz,y) =0}. (3.22)

&1 denklemi yerel olarak
(z,y) = (z,y,p = f(z,y)) (3.23)

grafigi ile verilir.

&, lzerindeki bir v egrisinin (3.21) denkleminin bir ¢6zlimiinii tanimlamas icin

gerek ve yeter kosul J! iizerindeki
n=dy —pdx (3.24)

kanonik kontakt formun
nls =10 (3.25)

Pfaffian denklemini saglamasidir. Burada S, « egrisinin goriintiisiinii gdstermektedir.
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3.3 ikinci mertebeden ADDler: &,

Yerel olarak J' (R, R) iizerinde verilen

d*y ,
d7x2 =f (%ya y) (3.26)

formundaki bir ADD J?(R, R) uzayinda 3-boyutlu bir manifold tanimlar:

& ={(z,y,p,q) € J* : q— f(z,y,p) = 0}. (3.27)

&, denklemi yerel olarak

(z,y,p) = (x,y,p,q = [(z,y,p)) (3.28)
grafigi ile verilir.

&, tizerindeki bir v egrisinin (3.26) denkleminin bir ¢6ziimiinii tanimlamas: icin

gerek ve yeter kosul J? lizerindeki
771 =dy — pdx 772 =dp — qdz (3.29)
kanonik kontakt formlarinin

1
~0
772’8 (3.30)
n |s =0

Pfaffian denklem sistemini saglamasidir. Burada S, ~y egrisinin goriintiisiinii gostermek-
tedir.

28



BOLUM 4

ADDlerin EGRILIK OZELLIKLERI

4.1 & uizerinde Riemann yapisi

&1 yiizeyinin lizerinde taniml

w'=dz, w?=dy— fdz 4.1)
1-formlart yerel olarak
0 0 0
_ . 4.2
e1 ax+fay’ 2= 5, (4.2)

vektor alanlartyla tanimlanan ¢ati alanina dual olan escati alan1 tanimlar:
w'(e;j) = 6. (4.3)

&, lizerinde
g =w' @w +w QW (4.4)

Riemannian metrigi ile birlikte (€, g1 ) bir Riemann manifoldu olur ve (4.2) vektor alanlart

&1 lizerinde bir ortonormal cati alan1 belirler:
g1(ei, ;) = 0;j. 4.5)
Burada ® sembolii tensor ¢carpimini gostermektedir. «v, 8 1-formlarinin tensor ¢arpimi
(@@ B)(X,Y)=a(X)B(Y), XY cx(&) (4.6)
seklinde tanimlidir. (x, y) yerel koordinatlarinda (4.4) Riemann metrigi

g =1+ Adr®dr — f(de ®dy + dy @ dz) + dy ® dy 4.7)
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halini alir. V, g ile uyumlu metrik baglanti ise o zaman

dw'! = 0

dw? = fycul/\(,u2

yapi denklemlerinden V baglantisinin so(2, R)-degerli

o ( 0 —fu 4.8)
fyw? 0
baglant1 formu ile
dw! = -0l AwW? 4.9)
dw? = —0FAw!, 0} =—07=—fuw? '

yazilir. V baglantisinin Gauss egriligi

do? = —Kw' Aw?, (4.10)
ile belirlenir. Burada K fonksiyonu

K =—~(fo+ ff,)y @.11)

seklinde tanimhidir (Ok Bayrakdar & Bayrakdar, 2018).

Tanmm 4.1. X € X(&;) olsun. Eger
VX =0 (4.12)

ise o zaman X vektor alaninin bir integral egrisi &; lizerinde bir jeodezik egridir denir.

i,7 = 1,2 i¢in V., e; kovaryant tiirevleri hesaplanirsa

Velel = 0
Ve = 0
“ (4.13)
vezel = fy€2
Vezeg = —fyel.

elde edilir. (3.21) denkleminin bir ¢6ziim egrisinin 1-grafigi, e; vektor alaninin bir integral

egrisi oldugundan asagidaki dogrudur (Ok Bayrakdar & Bayrakdar, 2018):

Onerme 4.1. Birinci mertebeden bir ADD’in bir ¢6ziim egrisinin 1-grafigi (&, g, ) iize-

rinde bir jeodezik egridir.
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4.1.1 Sabit Egrilikli Uzaylar

Sabit egrilik uzaylar, izometri gruplarinin maksimum boyutlu oldugu Riemann
manifoldlaridir. Bu durumda Riemann metrigini tanimlayan escati alan1 ranki sifir olan
bir escat1 alanidir. Bagka bir deyisle, bahsi gecen esc¢ati alaninin yap1 denklemleri belirli 3-
boyutlu Lie gruplarinin Maurer-Cartan denklemlerini ifade eder, yani s6z konusu Riemann

manifoldu yerel olarak bir Lie grubudur (Olver, 1995):

do' = —03AW?
do? = - AwW!
dg; = Kuw'Aw?

yap1 denklemleri goz Oniine alinsin.

K = 0ise o zaman

do' = -0} AW
do? = - AW’
dd; = 0

denklemleri SE(2) Euclidyen grubun Maurer-Cartan denklemlerine kargilik gelir.

K = —1 ise o zaman
do' = —0; Aw?
do?® = -2 AwW!
dg; = —w'Aw?

denklemleri SL(2, R) 6zel lineer grubun Maurer-Cartan denklemlerine karsilik gelir.

K =1 1ise 0 zaman

do' = —0; Aw?
do®* = -0 AwW!
dg; = w'AwW?

denklemleri SO(3, R) 6zel ortogonal grubun Maurer-Cartan denklemlerine karsilik gelir.
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Bu 6zel durumlar asagidaki Burger denklemleriyle elde edilir:

=
Il

et [l = () (K =0)
fot [y = y+C(@) (&K

Lot [fy = —y + ((z) (K

I

|
—_
~—

(4.14)

1)

Buradaki kismi tiirevli diferansiyel denklemlerin karakteristik egrileri, sirasiyla Z(z, y) =
((z), E(x,y) =y + ((x) ve E(x,y) = —y + ((z) olmak iizere
dy du

denklem sistemi ile belirlenir. Bu denklemlerin ¢oziimleri, karakteristikler yontemiyle her
bir denklemin ilk integrallerinin (¢6zlim egrisi boyunca tiirevi sifir olan fonksiyonlarin)
kapali fonksiyonlar1 olarak elde edilebilse de, bazi lineer diferansiyel denklemler sabit
egrilikli Riemann manifoldlar1 tanimlarlar (Ok Bayrakdar & Bayrakdar, 2018):

Lemma 4.1.

d

y _
L+ playy = qla) @.16)

denklemine kargilik gelen Riemann manifoldunun Gauss egriliginin sifir (X = 0) olmasi

icin gerek ve yeter kosul p’nin

d
d—p = p? (4.17)
xr

d
denkleminin bir ¢6ziimii olmasidir. Ayrica, d—p = p* ve q(x) fonksiyonu (4.16) denklemi-
x

nin bir integrasyon ¢arpant ise o zaman f

fot 11y =0
Burger denklemini saglar.

Lemma 4.2. (4.16) denklemine karsilik gelen Riemann manifoldunun Gauss egriliginin

K = F1 olmasi i¢in gerek ve yeter kosul

dp

=p*+1 (4.18)
dz

olmasidir.
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4.2 &, iizerinde Riemann yapisi
&, lizerinde yerel olarak taniml

W= dx
w” = dy — pdz
wP = dp— fdz
1-formlari
0 0 0 0

0
= — _ —_ = — = — 4.1

vektor alanlariyla belirlenen (eq, 5, e3) cati alanina dual olan esgati alanidir. &, tizerinde
go=) w e, (4.20)

Riemann metrigi tanimlanirsa o zaman & bir Riemann manifoldu olur ve (€y¢2) ile
gosterilir. Bu durumda (eq, e9, e3) ¢ati alan1 & lizerinde bir ortonormal ¢at1 alani tanimlar.

(x,y, p) yerel koordinatlarinda (4.20) Riemann metrigi

g2 = (1+p*+ fA)dr ® dz — p(dz ® dy + dy ® dz)

@.21)
— f(dz®@dp+dp®dzr) + dy ® dy + dp ® dp.
ile verilir. (w!, w? w?) escatr alaninin yap1 denklemleri
dw' = 0
dw? = w'AW? (4.22)
do® = fw' AW+ fw' AW?

olarak elde edilir. (€, go) Riemann manifoldu lizerinde V baglantisinin so(3, R)-degerli
baglanti1 formunu bulmak icin
aANw +BAW=0
—a AW+ yAW? =W AP (4.23)
—BAW =y AW = fu AW+ fw Aw?

denklem sistemi Cartan’in Lemmas1 kullanilarak ¢oziiltirse

0 —a —p
0= a 0 —v (4.24)
gy 0
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matrisi elde edilir. Burada o, 5 and ~y sirastyla

1

§(fy+ )
B = ;( fy + D’ + fow? (4.25)
7= _;(fy - 1)

seklinde tanimli 1-formlardir (Bayrakdar & Ergin, 2018; Ok Bayrakdar & Bayrakdar,
2019). 0 baglant1 formunun egrilik 2-formu

1
Q= ——
2 2

1

2

Q;

1
Q2 = ——

\)

1

3 1 )
(2]‘5 + fy — ) wh A w? — ifyyw2 A w?

2

((fo + ffo)y + fufo + Dfyy) 0t A WP
; ((fo + [ o)y + fylp + ) 0! Aw? — ; Fpw? A w? (4.26)
; (f - §f?42 + 2 + 2pfyp + 2(fz + ffp)p) w! A w?

1 1 /1
fywl/\wQ—ifypwl/\w?’+§ (2(fy+1)2)w2/\w3

olarak elde edilir. Buna gore R; 1> Riemann egrilik tensoriiniin bagimsiz bilesenleri

1 _
R323__

2
R323 -

~Afeea)

((f:c + ffo)y + fufo +01yy)

3 (4.27)
5 (fy fy2+2+2pfyp+2(fm+ffp)p>

1
Z(fy+1)2

ile belirlenir. Bir noktada, teget demetin (eq, e3), (e1, €3), (€2, €3) ortonormal vektor alan

ciftleriyle belirlenen 2-boyutlu altuzaylarinin kesitsel egrilikleri sirasiyla R3,,, R3,5 ve

R2,, ile belirlenir. Riemann egrilik tensdriiniin tiim bilesenlerinin sifira egit olmas igin

gerek ve yeter kosulu bulmak i¢in R3,, R} ;5 ve R, kesitsel egriliklerinin sifira esit

olmast i¢in gerek ve yeter kosulu belirlemek yeterlidir. R}, = R}, = R2,, = 0 ancak ve
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ancak
3 1
§fy2 + fy - 5 =0
1 3
fy—§f§+§+2pfyp+2(fw+ffp>pzo (4.28)
(fy + 1)2 =0.

Buradaki son denklemden
fy=-1 4.29)

elde edilir. f, = —1 i¢gin (4.28) sistemindeki ilk denklem idantik olarak saglanir. Buradan
f=—-y+A(z,p), AeC>®&) (4.30)

elde edilir. Bu durumda
R%u - R%zz = R§23 3 Rgzs =0 (4.31)

elde edilir. Riemann egrilik tensoriiniin geriye kalan bilesenlerinin sifira esit olmasi i¢in

gerek ve yeter kosul A, (4.30) fonksiyonunda yerine yazilirsa
A, =0 (4.32)

yani
A(z,p) = A(x) (4.33)

olmasidir. Sonug olarak asagidaki teorem kanitlanmis olur.

Teorem 4.1.
diy +y—Ax)=0 (4.34)
dx2 4 - ’

SJormundaki bir ADD icin Riemann egrilik tensoriiniin tiim bilesenleri sifira esittir yani

(&2, g2) manifoldu bir diiz uzaydir.
4.2.1 Sabit pozitif egrilikli uzaylar

Tanm 4.2. V bir 7 : E — M vektor demeti iizerinde bir baglanti olsun. Bir {X,Y'}
vektor alani ¢iftine
R(X,Y) = VxVy — VyVx — Vixy, (4.35)

operatoriinii karsilik getiren doniisiime V baglantisinin egriligi denir (Morita, 2001).
s € T'(F) olmak iizere
R(X, Y)(S) = VXVYS — VYVXS - V[X7y}8 (436)
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ile verilir. Baglantinin tamini geregi R(X,Y)(s)’de 7 : £ — M vektor demetinin bir
kesitidir, yani R(X,Y)(s) € I'(E). Buna gore V baglantisinin egriligi
R:X(M)xX(M)xT'(F) = T'(E
(M) x (M) X T(E) - T(E) )
(X,Y,s) = R(X,Y)(s)

doniigiimii tanimlar. (M, g) bir Riemann manifoldu ve £ = T'M ise o zaman XY, 7 €

X(M) olmak iizere V Riemann baglantisinin egriligi
R(X,Y)Z =VxVyZ =VyVxZ -V xyZ (4.38)
ile verilir.
9g(R(X,Y)Z,W) (4.39)

seklinde tanimli tensore Riemann egrilik tensorii adi verilir. (Boothby, 1986). e =

(e1,...,e,) ortonormal ¢at1 alani olmak iizere Riemann egrilik tensoriiniin bilesenleri’
R(ej,er)er =D R} e (4.40)

ile belirlenir.

Tanm 4.3. (M, g) bir Riemann manifoldu ve o C T, M bir p € M noktasinda 2-boyutlu
bir altuzay olsun. o ’nin herhangi bir {u, v} tabani i¢in
g(R(u,v)u,v)
g(“? ll)g(V, V) - (g(ll, V))2

(4.41)
seklinde tanimli K (o) reel sayisina o’ nin p noktasindaki kesitsel egriligi denir. Kesitsel
egrilik {u, v} tabaninin se¢ciminden bagimsizdir (Do Carmo, 1992).

Agiklama 4.1. o’nin bir {uy, uy} ortonormal tabani se¢ilirse o zaman
K(O’) = g(R(ul, l12)1117 llg) (442)

ile hesaplanr.

Tamm 4.4. )M bir Riemannian manifoldu olmak iizere tiim kesitsel egrilikler tiim nok-
talarda aym sabit degere esitse o zaman s6z konusu manifolda sabit egrilikli uzay denir
(Boothby, 1986).

Bir diger ifade ile 0 C 7,M diizleminin K (o) kesitsel egriligi tim p € M
noktalar1 ve tiim o diizlemleri i¢in aym K, = K (o) sabit deferine esitse o zaman M

Riemann manifolduna bir sabit egrilikli uzay denir.

1Bu tez ¢aligmasinda uygunluk agisindan Rji & verine R; o Kullanilmugtir.
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Bir Riemann manifoldunun bir sabit egrilikli uzay olup olmadigina karar vermek

icin Riemann egrilik tensoOriinii bir ortonormal cat1 alaninda belirlemek yeterlidir, bkz.
Sonug 3.5, sayfa 96 (Do Carmo, 1992). Yani,denklemi tanimlayan manifold her &, C 1), M

icin K, = K (&;) olmasi i¢in gerek ve yeter kosul her ¢ # j igin
Rijij = —Rijj = K,

ve diger tiim durumlarda
Riju =0

olmasidir. Bir ortonormal cati alanina gore

zykzl Z(sz ]kl ikl

seklinde tanimlidir.

1
R%u — 2<f+fy_)
1 1 3
R33 = 2 (fy P §fy V4 2P + 2o ffp)p)
1
R§23 = Z(fy + 1)2’
esitliklerinden
1
R%l? - R 313 — R323 - Z

olmasi i¢in gerek ve yeter kosulun

fy=0 ve (fot[fp)p=—

denklemlerinin saglanmasi oldugu goriiliir. Buradaki ikinci denklemden
fot+ ffp=—p+C(x), C e C™(&)
elde edilir ve sonug olarak asagidaki kanitlanmais olur:

Teorem 4.2. )
d
&y B(a) — Clx) =0

dz?

denklemine karsilik gelen (€, g) Riemann manifoldu iizerinde

Rém = RélS = Rgzs = 1/4
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(4.48)

(4.49)
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olmas i¢in gerek ve yeter kosul B’ nin

dB

T =0+ B (4.52)

denkleminin bir ¢6ziimii olmasidir. Bu durumda, Riemann egrilik tensoriiniin diger tiim

bilesenleri sifira esit ve dolayisiyla (&5, g) sabit pozitif egrilikli bir uzaydir.
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BOLUM 5

ADDlerin METRIK ESDEGERLIGI

Bu boliimdeki ama¢ ADDlerin tanimlandigi Riemann metriklerinin esdegerlik
problemini ele almaktir. S6z konusu problem 6nce birinci mertebeden ADDler icin ta-
nimlanarak problemin ¢oziimii elde edilecektir. Buradaki yaklasim oldugu gibi ikinci

mertebenden ADDlerin esdegerlik problemine adapte edilecektir.
5.1 Birinci Mertebeden ADDlerin Metrik Esdegerligi

Sirastyla R?’nin U ve U agik kiimeleri iizerinde verilen iki

dy
i f(z,y) (5.1)
dy L Ee
ADDnin bir
®:U = U; (z,y) = (¢(x,9), ¢(z,y)) (5.3)

yerel difeomorfizma sinif1 (koordinat doniisiimleri) altindaki esdegerligini incelemek i¢in

U ve U iizerinde

wl =dzx

5.4)
w? =dy — fdx
ol =dz

(5.5

w? =dy— fdz
I-formlar1 goz Oniine alinsin. Ele alinan problemi ifade eden asagidaki tanimi vermek

yerinde olacaktir.
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Tamm 5.1. Eger
d*0? = \w? (5.6)

ve
Yo @ = ww (5.7)

olacak sekilde bir (5.3) difeomorfizma sinifi varsa o zaman (5.1) ve (5.2) denklemleri

metrik olarak esdegerdir denir.

Sadelik acisindan geri-¢cekme (pullback) notasyonu bir kenara birakilip
W' = alw' + ahw? (5.8)

yerine
&' = alw' + ahw? (5.9)

yazilsin. Burada a] € C>(U). O zaman agik olarak

‘Dl - (¢x + f¢y)w1 + ¢yw2

., _ : _ , (5.10)
@ = (Yo + [y — (F 0 @)(0u + f0,)) ' + (¥, — (f 0 ®)¢,)w
elde edilir. ) & et fiy
foézﬁzm (5.11)
déniisiim kural kullanilarak
0! = (0 + foy)w' + py? 512

w? = (¥ — (fo q’)¢y>w2

bulunur. w? = 0 iken @? = 0 olacagindan bir (5.3) difeomorfizmas1 ¢dziim egrilerini
cOziim egrilerine tasiyacaktir. Bir diger ifade ile tanimda verilen (5.6) kosulu saglanacaktir.
(5.12) 1-formlan

ot +?+ i =w @ + W ®w? (5.13)

kosulunda yerine yazilirsa o zaman
((bx + f ¢y)2 =1

Gy(dr + foy) =0 (5.14)
(¢y - (fo ¢)¢y)2 = 1.

elde edilir. ilk iki denklemden ¢, = 0 ve (¢,)?> = 1 bulunur. Bu denklemler integre
edilirse
o(z,y) = o+ co co €R (5.15)

40



bulunur. Bu esitlik iiclincti denklemde yerine yazilirsa

U(z,y) = £y + yo(2) yo € C(U) (5.16)

bulunur. Ancak (5.3) difeomorfizma sinifinin Jacobian matrislerinin GL(2, R) grubunun

bir altgrubunu olusturmasi i¢in

gb(a?,y) =T+ Co

(5.17)
U(x,y) =y + yol(x)

esitlikleri saglanmak zorundadir. Sonug olarak asagidaki teorem kanitlanmig oldu.

Teorem 5.1. (5.1) ve (5.2) denklemlerinin bir (5.3) difeomorfizma sinifi altinda metrik ola-
rak esdeger olabilmesi icin gerek ve yeter kosul diffeomorfizma sinifinin (5.17) formunda

olmasidrr.

5.2 Ikinci Mertebeden ADDlerin Metrik Esdegerligi

Birinci mertebeden ADDlerin esdegerlik probleminde ortaya ¢ikan difeomorfizma

siif1 lifleri koruyan diffeomorfizmalardan yani

@ (2, y) = (0(2),9(2,y)) (5.18)

formundaki difeomorfizmalardan olustugu i¢in ikinci mertebeden ADDlerin metrik eg-
degerlik problemi de (5.18) difeomorfizma simifi igin ele alinacakur. (5.18), J'(R,R)
lizerinde

' JY(R,R) = JYR,R); (z,9,p) — (Z,7,D) (5.19)

bir diffeomorfizma sinift tanimlar. Burada

T = p(x)
y=(x,y) (5.20)
_ et hyp
p = —
G
seklinde tanimhidur. (x, y, p) ve (Z,y, p) koordinatlarinda
y' = f(z,9,9) (5:21)
v = f@,9.9) (5.22)
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denklemlerini temsil eden

w!' =dx
w? =dy— pdax (5.23)
wP =dp— fdx

ve
w' =dz
02 =dy— pdz (5.24)
W =dp— fdz

dig diferansiyel sistemleri goz 6niine alinsin.

Tamm 5.2. Eger
0 = aw?, eV = Buw? + (5.25)

Ve
Yo' ee v =Y v ew (5.26)

olacak sekilde bir (5.18) difeomorfizma sinifi varsa o zaman (5.21) ve (5.22) denklemleri

metrik olarak esdegerdir denir.

(5.24) 1-formlarinin ®! ile geri ¢ekilmesi, yine geri-cekme notasyonu ihmal edi-

lerek,
O = (Y + iy — (D0 @)y + Py’ (5.27)
& = (Pa+ PPy + Dy — (f 0 @) 0)w" + py® + Py’
seklinde yazilir.
_ dy _ s + 3y
b= —=——" 5.28
pod == 5 (5.28)
v dp dpd
7 D p dx _ _ _
o= — = —— = 2
fo@ == = = (Bt oyt [Pp) /0 (5.29)
oldugundan (5.27) su hale gelir:
o' = ppw'
0 = Py’ (5.30)
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Burada

5, = Yy + PPy

Yy
& (5.31)
Yy
pp - 9257
seklinde tanimlidir.
a= ¢
b= 1, (5.32)
I
C= ——==
o
tanimlanirsa o zaman
o' = aw?
02 = bw? (5.33)

@® = cw® + (b/a)w?.

elde edeilir. (5.33) denklem sisteminden, lifleri koruyan diffeomorfizmalarin w? ve w? ile
uretilen kontakt ideali korudugu yani (5.25) kosulunun saglandig: goriiliir. Bir diger ifade
ile

w=0ve w=0= @*=0ve & =0. (5.34)

(5.33) 1-formlar (5.26) kosulunda yani
R+ +P} =w @uw +w @w + W ®w?

esitliginde yerine yazilirsa o zaman

a’> =1

V+?=1
b .
%:0 (5.35)
b2
Z -1
a2

elde edilir. Buradan su soylenir: (5.25) ve (5.26) kosullarinin saglanmasi icin gerek ve
yeter kosul (5.35) sisteminin saglanmasidir. Buradan

a==+1, b==41, ¢=0 (5.36)

oldugu goriiliir. Birinci mertebeden ADDlerin esdegerlik probleminde ortaya konuldugu
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gibi (5.19) difeomorfizma sinifinin Jacobian matrislerinin kiimesinin G L(3, R) grubunun

bir altgrubu olmasi i¢in
a=1 b=1, ¢=0 (5.37)

olmak zorundadir. (5.32) sisteminden

o(z) =2+ ¢
V(r,y) =y + yo(x)

(5.38)

elde edilir.

Teorem 5.2. (5.21) ve (5.22) denklemlerinin bir (5.18) difeomorfizma sinifi altinda met-
rik olarak esdeger olabilmesi icin gerek ve yeter kosul diffeomorfizma sinifimin (5.38)

SJormunda olmasidur.
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BOLUM 6

SONUCLAR

k. mertebeden bir ADD J*(R, R) uzayinda
& ={j5peJt : el F(j%p) =0} (6.1)
seklinde bir manifold tanimlar.
W =dp ' —plde  j=1,2,...,k (6.2)

olmak tizere

k
ge=dz@dz+> 7 @y (6.3)

i=1
Riemann metrigi ile birlikte bu manifold bir Riemann manifoldu olur. Bu tez ¢alismasi
kapsaminda birinci ve ikinci mertebeden ADDlerin Riemann geometrisi ele alinmugtir.

Birinci mertebeden

dy

formundaki bir ADDnin Gauss egriligi

K = _(fx+ffy)y (6.5)
ile verilir ve

fot ffy=((2)
Jot+ ffy= Y+ () (6.6)
fot [fy=—y+((2)
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icin s0z konusu manifoldun Gauss egriligi sirasiyla K = 0, K = 1 ve K = —1 degerlerine
esittir (Ok Bayrakdar & Bayrakdar, 2018).

d2

Y Ly Az)=0 6.7)

dz?

formundaki ikinci mertebeden bir ADDnin tanimladigi Riemann manifoldu iizerindeki
egrilik 2-formun tiim bilesenleri sifira esittir ve dolayisiyla s6z konusu manifold bir diiz
uzaydir. )

j;é — tan :sz — B(x)=0 (6.8)
formundaki ikinci mertebeden bir ADDnin tanimladigi Riemann manifoldu sabit pozitif
egrilikli bir uzaydir. Birinci ve ikinci mertebeden ADDlerin esdegerlik problemi, Riemann
metrigini ve kontakt ideali koruyan bir difeomeorfizma sinif1 altindaki esdegerlik problemi

olarak tanimlanlandiginda s6z konusu ADDler ancak

(z,y) = (z+ co,y + yo(x)) (6.9)

formunda bir difeomorfizm sinifi altinda esdeger olabilmektedir.
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