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Yüksek Lisans Tezi
ADİ DİFERANSİYEL DENKLEMLER VE RIEMANN YAPISI
T.Ü. Fen Bilimleri Enstitüsü
Matematik Anabilim Dalı

ÖZET

Bu tez çalışmasında birinci ve ikinci mertebeden adi differansiyel denklemle-
rin tanımladığı manifoldların eğrilik özellikleri Riemann geometrisi anlamında ince-
lenmiş ve adi diferansiyel denklemlerin eşdeğerlik problemi denklemlerin tanımladığı
Riemann manifoldları üzerinde denklemleri temsil eden eşçatıların O(n,R)-değerli eş-
değerlik problemi olarak ele alınmıştır. Bu amaçla birinci ve ikinci mertebeden adi di-
feransiyel denklemler sırasıyla J1(R,R) ve J2(R,R) jet uzayları içinde birer manifold
olarak ele alınarak denklemleri temsil eden dış diferansiyel sistemlerin elemanları ile
bu manifoldlar üzerinde Riemann metrikleri tanımlanmıştır. Sonrasında ∇ Levi-Civita
bağlantısının bağlantı formu θ inşaa edilerek bazı özel denklem sınıflarının sabit eğrilikli
manifoldlar tanımladığı gösterilmiştir. Bu anlamda bir nokta dönüşümü altında eşdeğer
olduklarının bilinen tüm birinci mertebeden adi diferansiyel denklemler ve ikinci mer-
tebeden lineer adi diferansiyel denklemler eğrilik özellikleri itibariyle birbirinden ayırt
edilebilir duruma gelmiştir. Buradan hareketle birinci ve ikinci mertebeden adi diferan-
siyel denklemlerin eşdeğerlik problemi, Riemann metriğini ve kontakt ideali koruyan bir
difeomeorfizma sınıfı altındaki eşdeğerlik problemi olarak tanımlanıp problemin çözümü
ortaya konulmuştur. Buna göre birinci ve ikinci mertebeden adi diferansiyel denklemle-
rin ancak (x, y) 7→ (x+ c0, y + y0(x)) formunda bir difeomorfizm sınıfı altında eşdeğer
olabilmektedir.

Yıl : 2024

Sayfa Sayısı : 58

Anahtar Kelimeler : Adi diferansiyel denklemler, jet uzayı, Riemann manifoldu, bağ-
lantı formu, eğrilik 2-formu, Riemann eğrilik tensörü, sabit eğ-
rilikli uzaylar, metrik eşdeğerlik problemi.
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ABSTRACT

The aim of this thesis is to examine the curvature properties of manifolds, defined
by first and second order ordinary differential equations, in terms of Riemannian geometry
and the equivalent problem of differential equations, defined on Riemannian manifolds,
is treated as the O(n,R)-valued equivalence problem formed by canonical contact forms
representing equations and their equivalence classes constructed with the independence
condition.For this purpose, first and second-order ordinary differential equations are res-
pectively considered as manifolds within the jet spaces J1(R,R) ve J2(R,R) . Riemannian
metrics have been defined along with elements of exterior differential systems representing
the equations within these manifolds.Subsequently, by constructing the connection form
θ of the ∇ Levi-Civita connection, it has been demonstrated that certain specific classes
of equations define constant curvature manifolds.In this context, all known first-order or-
dinary differential equations and second-order linear ordinary differential equations have
become distinguishable from each other in terms of their curvature properties under a po-
int transformation, even though they are equivalent.From this standpoint, the equivalence
problem of first and second-order ordinary differential equations has been defined as an
equivalence problem under a class of diffeomorphisms that preserve the Riemann metric
and the contact ideal, and the solution to this problem has been presented.Accordingly,
first and second-order ordinary differential equations can only be equivalent under a
diffeomorphism class of the form (x, y) 7→ (x+ c0, y + y0(x))
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BÖLÜM 1

GİRİŞ

Geometrik olarak, bir adi diferansiyel denklem (ADD) uygun bir jet uzayı içinde bir
manifold olarak değerlendirilebilir (Arnold, 2012; Bocharov vd., 1999; Kushner, Lycha-
gin & Rubtsov, 2007; Saunders, 1989; Vassiliou & Lisle, 2000). Tabi olduğu dönüşümler
ile birlikte denklemin formu bu manifold üzerinde bir geometrik yapı tanımlar. Genel
itibariyle, ADDlerin geometrik olarak ele alınması, verilen iki diferansiyel denklemi bir-
birine dönüştürecek yani denklemlerin belirlediği geometrik yapıları birbirine taşıyacak
bir kısmi türevli diferansiyel denklem sisteminin çözümü olarak ortaya çıkan bir difeomor-
fizma sınıfının olup olmadığına karar verme problemidir. Başka bir ifadeyle, bir geometrik
nesnenin taşıdığı geometrik invaryantların belirlenmesi olarak değerlendirilir (Gardner,
1989; Olver, 1995). E. Cartan, geometrik nesnelerin birinci mertebeden kısmi türevli
diferansiyel denklem sistemleri ile tanımlanan bir pseudogrup altındaki invaryantlarını
bulmanın bir prosedürünü formüle ve tarif etmiştir (E. Cartan, 1908). Kabaca konuşmak
gerekirse, (birinci mertebeden) bir geometrik nesne, onu temsil eden bir eşçatı ve bu
eşçatının tabi olduğu dönüşümler olarak değerlendirilebilir. Bilindiği kadarıyla ADDlerin
eşdeğerlik problemi konusundaki ilk sistematik çalışmalar S. Lie ve M.A. Tresse tarafın-
dan yapılmıştır (Lie, 1888; Tresse, 1900; Tresse, 1896). Daha sonra E. Cartan, Tresse’nin
bulduğu invaryantların, Cartan normal projectif bağlantı olarak adlandırılan bir bağlantı
formunun eğrilik 2-formunun bileşenleri olarak yazılabileceğini ve bu bağlantının je-
odezik eğrilerinin söz konusu ADDnin çözüm eğrilerine karşılık geldiğini göstermiştir
(É. Cartan, 1924). İkinci mertebeden bir ADD bir 2-boyutlu sprayin projektif eşdeğerlik
sınıfını belirler ve bu spray için Douglas tensörünün tüm bileşenleri Tresse’nin invaryant-
larından bir tanesinin katları olarak ortaya çıkar. Bu invaryantın sıfıra eşit olması durumda
Berwald invaryatı Tresse’nin ikinci invaryantına indirgenir ve söz konusu ikinci merte-
beden ADD bir afin spraye projektif olarak eşdeğerdir (Crampin, 2004). Bununla birlikte
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eğer ikinci mertebeden bir ADDnin çözüm eğrileri bir Levi-Civita bağlantısının geodezik
eğrileri ise bu durumda da Tresse’nin ilk invaryantı sıfıra eşit olacaktır (Bryant, Dunajski
& Eastwood, 2009).

Cartan’ın geliştirdiği yöntem günümüzde G-değerli eşdeğerlik metodu olarak ad-
landırılır. BuradaG, genel lineer grupGL(n,R)’nin bir altgrubudur ve bu grup iki ADDyi
temsil eden eşçatıların bir difeomorfizma sınıfı altında birbirine dönüşebilmesi için söz
konusu difeomorfizma sınıfının Jacobian matrislerinin içinde bulunmak zorunda olduğu
gruptur. Belirli invaryant operasyonlarlaG grubu, aşikar gruba indirgenebiliyorsa o zaman
invaryant eşçatı elde edilmiş olur ve problem, çözümünü bildiğimiz, eşçatıların eşdeğerlik
problemine dönüştürülmüş olur. Örneğin, Riemann metriklerinin eşdeğerlik problemi,
metrikleri köşegen hale getiren eşçatıların O(n,R)-değerli eşdeğerlik problemi olarak
tanımlanır. Bir ADDyi temsil eden eşçatının tabi olduğu dönüşümler, kimi durumlarda
uygunsuz ya da ilişkisiz olarak nitelenebilse dahi, GL(n,R)’nin herhangi bir altgrubu
olan G-değerli eşdeğerlik problemi olarak tanımlanabilir.

Bu bağlamda, bu tez çalışması, ADDlerin eşdeğerlik problemini, denklemleri
temsil eden eşçatıların O(n,R)-değerli eşdeğerlik problemi olarak ele almaktadır. Bunun
temel sebebi birinci mertebeden herhangi iki ADDnin yerel olarak eşdeğer olmasıdır
(Arnold, 1992; Olver, 1995). Bir diğer ifade ile bir denklemi diğerine taşıyacak bir ye-
rel difeomorfizma vardır. Bu aynı zamanda ikinci mertebeden lineer ADDler için de
geçerlidir. Yani herhangi iki lineer ADDyi birbirine taşıyacak bir nokta dönüşümü var-
dır (Grissom, Thompson & Wilkens, 1989; Kamran, Lamb & Shadwick, 1985; Olver,
1995). Özetle, bahsi geçen diferansiyel denklemleri difeomorfizma sınıfını daraltmadan
ayırt etmek mümkün değildir. Eşdeğerliğin tanımlandığı difeomorfizma sınıfı bir Riemann
metriği ve bu metriği koruyan difeomorfizmlerin sınıfına daraltılırsa, üzerindeki Riemann
yapısı vasıtasıyla söz konusu diferansiyel denklemleri temsil eden manifoldlar eğrilikleri
itibariyle ayırt edilebilir. Örneğin, birinci mertebeden bir lineer ADDnin tanımladığı yü-
zey sabit eğrilikli bir yüzey olabilir (Ok Bayrakdar & Bayrakdar, 2018). Bununla birlikte
iki harmonik salınıcı denklemi yalnızca açısal frekanslarına bakılarak ayırt edilebilir (Ok
Bayrakdar & Bayrakdar, 2019).

Bu itibarla bu tez çalışmasında birinci ve ikinci mertebeden ADDlerin jet uzay
formulasyonu verildikten sonra denklemlere karşılık gelen manifoldlar üzerinde tanım-
lanan bir Riemann metriğine göre bir ortonormal çatı alanına dual olan eşçatı alanının
tanımladığı Riemann bağlantısına göre söz konusu denklemlerin eğrilik özellikleri in-
celenmiştir. Buradan hareketle birinci mertebeden ADDlerin sabit eğrilikli olabileceği
görülmüştür. Bununla birlikte bazı ikinci mertebeden ADD sınıflarının düz ve sabit pozi-
tif eğrilikli olabileceği gösterilmiştir. Sonrasında birinci ve ikinci mertebeden ADDlerin
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metrik eşdeğerlik problemi tanımlanarak bu problemin bir çözümü verilmiştir.

Bu tez çalışması altı bölümden oluşmaktadır.Birinci bölüm giriş kısmında bu tez
çalışmasının amacından bahsedilmiştir. İkinci bölümde tezde geçen kavramlara altyapı
oluşturması amacaıyla bazı temel ön bilgiler verilmiştir. Üçüncü bölümde ADDlerin jet
uzay formülasyonu verilmiştir. Dördüncü bölümde birinci ve ikinci mertebeden ADDlerin
tanımladığı manifoldların eğrilik özellikleri incelenmiştir. Beşinci bölümde ADDlerin
metrik eşdeğerlik problemi ele alınmıştır. Altıncı bölümde ise tezden elde edilen sonuçların
bir özeti verilmiştir.
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BÖLÜM 2

ÖN BİLGİLER

2.1 C∞ manifoldlar

Tanım 2.1. k negatif olmayan bir tamsayı ve U ⊂ Rn bir açık küme olsun. j ≤ k olmak
üzere bir f : U → R fonksiyonunun p ∈ U noktasında j. mertebeden tüm

∂jf

∂xi1 · · · ∂xij
(2.1)

kısmi türevleri var ve sürekli ise o zaman f fonksiyonu p noktasında Ck sınıfındandır
denir. Eğer bu koşul her k ≥ 0 için doğruysa o zaman f fonksiyonu p noktasında C∞

sınıfındandır denir (Tu, 2011).

Tanım 2.2. Vektör-değerli bir f : U → Rm; f = (f 1, . . . , fm) fonksiyonunun bileşen-
lerinin tamamı bir p ∈ U noktasında C∞ sınıfından ise f fonksiyonu p noktasında C∞

sınıfındandır denir. Eğer bu koşul her p ∈ U için doğruysa o zaman f fonksiyonu U

üzerinde C∞ sınıfındandır denir (Tu, 2011).

Tanım 2.3. M bir topolojik uzay olsun. Eğer aşağıdaki koşul sağlanıyorsa o zaman M
yerel olarak (n-boyutlu) Euclidyendir denir:

M ’nin her p noktası birU açık komşuluğuna sahiptir öyle kiU ’danRn’nin bir açık
altkümesine giden bir ϕ homeomorfizması vardır. Buradaki (U, ϕ : U → Rn) ikilisine bir
yama, U ’ya bir koordinat komşuluğu ya da koordinat açık kümesi ve ϕ’ye de U üzerinde
bir koordinat sistemi denir. Eğer ϕ(p) = 0 ise o zaman (U, ϕ), p ∈ U merkezlidir denir
(Tu, 2011).

Tanım 2.4. Hausdorff, ikinci sayılabilir ve yerel olarak Euclidyen olan bir topolojik uzaya
bir topolojik manifold denir. Eğer bir topolojik manifold yerel olarak n-boyutlu Euclidyen
ise o zaman n-boyutludur denir (Tu, 2011).
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Tanım 2.5. (U, ϕ : U → Rn) ve (V, ψ : V → Rn) bir topolojik manifoldun iki yaması
olsun. Eğer

ϕ ◦ ψ−1 : ψ(U ∩ V ) → ϕ(U ∩ V ) ve ψ ◦ ϕ−1 : ϕ(U ∩ V ) → ψ(U ∩ V ) (2.2)

C∞ sınıfından ise o zaman söz konusu yamalar C∞-uyumludur denir.

ϕ ◦ψ−1 ve ψ ◦ ϕ−1 dönüşümlerine (U, ϕ : U → Rn) ve (V, ψ : V → Rn) yamaları
arasındaki geçiş fonksiyonları denir. EğerU∩V = ∅ ise o zaman iki yama otomatik olarak
C∞-uyumludur (Tu, 2011).

Tanım 2.6. M bir yerel olarak Euclidyen uzay olsun. Her bir elemanı bir diğeri ile C∞-
uyumlu olan bir U = {(Uα, ϕα)} yama ailesiM ’yi örtüyorsa yaniM =

⋃
α

Uα ise o zaman

U’ya M üzerinde bir C∞ atlas ya da kısaca atlas denir (Tu, 2011).

Tanım 2.7. Eğer bir (V, ψ) yaması bir {(Uα, ϕα)} atlasındaki her (Uα, ϕα) yaması ile
uyumlu ise o zaman (V, ψ) yaması {(Uα, ϕα)} atlası ile uyumludur denir (Tu, 2011).

Lemma 2.1. {(Uα, ϕα)}, bir yerel olarak Euclidyen uzay üzerinde bir atlas olsun. Eğer
(V, ψ) ve (W,σ) yamalarının her ikisi de {(Uα, ϕα)} atlası ile uyumlu ise o zaman bu
yamalar birbiri ile uyumludur (Tu, 2011).

Tanım 2.8. Bir yerel olarak Euclidyen uzay üzerindeki bir M atlası daha büyük bir atlas
tarafından içerilmiyorsa M atlasına maksimaldir denir. Bir diğer ifadeyle, U atlası M

atlasını içeren bir diğer atlas ise o zaman M atlası maksimaldir ancak ve ancak U = M

(Tu, 2011).

Tanım 2.9. Üzerindeki bir maksimal atlas ile birlikte bir M topoplojik manifolduna bir
düzgün ya da C∞ manifold denir. Buradaki maksimal atlasa M üzerinde bir diferansiyel-
lenebilir yapı denir (Tu, 2011).

Önerme 2.1. Bir yerel olarak Euclidyen uzay üzerindeki herhangi bir U = {(Uα, ϕα)}
atlasını içeren tek bir maksimal atlas vardır (Tu, 2011).

Özetle bir M topolojik uzayının bir C∞ manifold olduğunu göstermek için aşağı-
dakileri kontrol etmek yeterlidir:

1. M bir Hausdorff ve ikinci sayılabilir uzaydır.

2. M ’nin (maksimal olması gerekmeyen) bir C∞ atlası vardır (Tu, 2011).

Açıklama 2.1. Şu andan itibaren bir C∞ manifold yerine kimi zaman yalnızca manifold
denilecek ve bu ikisi aynı anlamda kullanılacaktır. Eğer (U, ϕ : U → Rn) bir M manifol-
dunun bir yaması ise o zaman ϕ dönüşümünün bileşenleri olan xi : U → R fonksiyonları

xi = ri ◦ ϕ (2.3)
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ile belirlenir. Burada r1, r2, . . . , rn, Rn üzerindeki standart koordinatlardır. Bu durumda
ϕ = (x1, . . . , xn) ve (U, ϕ) = (U, x1, . . . , xn) yazılır. Dolayısıyla p ∈ U ise o zaman
(x1(p), . . . , xn(p)), Rn’de bir noktadır. x1, . . . , xn fonksiyonlarına koordinatlar ya da U
üzerinde yerel koordinatlar adı verilir. M içinde bir p noktasını içeren bir (U, ϕ) yaması
denildiğindeM üzerindeki diferansiyellenebilir yapı içindeki p ∈ U olacak şekilde (U, ϕ)
yaması kastedilecektir.

Örnek 2.1. (Euclid uzayı) Rn Euclid uzayı tek bir (Rn, r1, . . . , rn) koordinat yaması ile
birlikte bir manifolddur. (Tu, 2011).

Örnek 2.2. (Manifoldun açık altkümesi). Bir M manifoldunun herhangi bir V açık alt-
kümesi de aynı zamanda bir manifolddur. Eğer {(Uα, ϕα)}, M için bir atlas ise o zaman
{Uα ∩ V, ϕα|Uα∩V } ailesi de V için bir atlas oluşturur. Burada ϕα|Uα∩V : Uα ∪ V → Rn

ϕα’nın Uα ∩ V altkümesine kısıtlanışını gösterir (Tu, 2011).

Örnek 2.3. (Bir düzgün fonksiyonun grafiği) A, Rn’nin bir altkümesi olmak üzere bir
f : A → Rm fonksiyonunun grafiği

Γ (f) = {(x, f(x)) ∈ A× Rm} (2.4)

şekilde tanımlanır. Eğer U , Rn’nin açık bir altkümesi ve f : U → Rn C∞ sınıfından ise
o zaman

ϕ : Γ (f) → U, (x, f(x)) 7→ x (2.5)

ve
(1, f) : U → Γ (f), x 7→ (x, f(x)) (2.6)

dönüşümleri süreklidir ve birbirlerinin tersidir. Dolayısıyla bu dönüşümler homeomorfiz-
malardır. C∞ sınıfından bir f : U → Rm fonksiyonunun grafiği Γ (f), tek bir (Γ (f), ϕ)
yaması içeren bir atlasa sahiptir ve dolayısıyla bir C∞ manifolddur (Tu, 2011).

Örnek 2.4. (Genel lineer gruplar) Herhangi iki pozitif m ve n tamsayısı için tüm m× n

tipindeki matrislerin vektör uzayı Rm×n ile gösterilsin. Rm×n uzayı Rmn uzayına izomorf
olduğundan bu uzaya Rmn’nin topolojisi aktarılabilir.

GL(n,R) := {A ∈ Rn×n | det(A) ̸= 0} = det−1(R− {0}) (2.7)

şeklinde tanımlı gruba Genel lineer grup adı verilir. Determinant fonksiyonu

det : Rn×n → R (2.8)

sürekli olduğundan GL(n,R), Rn×n ≃ Rn2’nin bir açık altkümesidir ve dolayısıyla bir
manifolddur(Tu, 2011).
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Örnek 2.5. (Çarpım manifoldu) Eğer (Uα, ϕα) ve (Vi, ψi) sırasıyla m ve n-boyutlu M ve
N manifoldları için C∞ atlaslar ise o zaman

{(Uα × Vi, ϕα × ψi : Uα × Vi → Rm × Rn)} (2.9)

kolleksiyonu da (üzerindeki çarpım topolojisine göre)M×N kartezyen çarpımı üzerinde
bir C∞ atlas oluşturur. M × N , (m + n)-boyutlu bir C∞ manifolddur. Burada (ϕα ×
ψi)(p, q) = (ϕα(p), ψi(q)) şeklinde tanımlıdır (Tu, 2011).

2.2 C∞ sınıfından dönüşümler. Difeomorfizmalar

Tanım 2.10. M , n-boyutlu bir düzgün manifold ve f , M üzerinde tanımlı reel değerli
bir fonksiyon yani f : M → R olsun. Eğer bir p ∈ M için f ◦ ϕ−1 : ϕ(U) → R
fonksiyonu ϕ(p) noktasında C∞ sınıfından olacak şekilde p noktasını içerenM içinde bir
(U, ϕ) yaması var ise o zaman f fonksiyonu p noktasında C∞ sınıfındandır denir. Eğer
f fonksiyonu M ’nin her noktasında C∞ sınıfından ise o zaman f ’ye M üzerinde C∞

sınıfındandır denir (Tu, 2011).

Açıklama 2.2. Bir f fonksiyonunun düzgünlüğü tanımı (U, ϕ) yamasından bağımsızdır;
eğer f ◦ ϕ−1, ϕ(p) noktasında C∞ sınıfından ve (V, ψ), p ∈ M noktasını içeren bir diğer
yama ise o zaman ψ(U ∩ V ) üzerinde

f ◦ ψ−1 = (f ◦ ϕ−1) ◦ (ϕ ◦ ψ−1) (2.10)

fonksiyonu ψ(p) noktasında C∞ sınıfındandır (Tu, 2011).

Bir düzgünM manifoldu üzerinde C∞ sınıfından olan tüm fonksiyonların kümesi
C∞(M) ile gösterilir. Herhangi p ∈ M ve herhangi a ∈ R için

(f + g)(p) = f(p) + g(p)

(fg)(p) = f(p)g(p)

(af)(p) = af(p)

(2.11)

operasyonları ile birlikte C∞(M) kümesi R üzerinde bir cebir oluşturur.

Tanım 2.11. N ve M sırasıyla n ve m boyutlu manifoldlar olsun. Eğer aşağıdaki koşul
sağlanıyorsa o zaman sürekli bir F : N → M dönüşümüne bir p ∈ N noktasında C∞

sınıfındandır denir:

ψ ◦ F ◦ ϕ−1 : ϕ
(
F−1(V ) ∩ U

)
⊂ Rn → Rm (2.12)

dönüşümü ϕ(p) noktasında C∞ sınıfından olacak şekilde M ’nin F (p) noktasını içeren
bir (V, ψ) yaması ve N ’nin p noktasını içeren bir (U, ϕ) yaması vardır. Eğer F : N →
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M dönüşümü her p ∈ N noktasında C∞ sınıfından ise o zaman F dönüşümüne C∞

sınıfındandır denir (Tu, 2011).

Aşağıdaki önerme C∞ sınıfından olma tanımının (V, ψ) ve (U, ϕ) yamalarının
seçiminden bağımsız olduğunu söyler.

Önerme 2.2. F : N → M dönüşümü p ∈ N noktasındaC∞ sınıfından olsun. Eğer (U, ϕ),
N içinde p noktasını içeren herhangi bir yama ve (V, ψ), M içinde F (p) noktasını içeren
herhangi bir yama ise o zaman ψ ◦F ◦ ϕ−1 dönüşümü ϕ(p) noktasında C∞ sınıfındandır
(Tu, 2011).

Aşağıdaki önerme iki manifold arasındaki bir dönüşümünC∞ sınıfından olmasının
bileşenlerle belirlenebileceğini söyler.

Önerme 2.3. F : N → M dönüşümü sırasıyla n ve m boyutlu N ve M manifoldları
arasında sürekli bir dönüşüm olsun. O zaman aşağıdakiler eşdeğerdir:

(i) F : N → M dönüşümü C∞ sınıfındandır.

(ii) M manifoldu bir atlasa sahiptir öyleki bu atlastaki her (V, ψ) =
(V, y1, . . . , ym) yaması için F ’nin (V, ψ) yamasına göre bileşenleri olan yi ◦ F :
F−1(V ) → R fonksiyonlarının tamamı C∞ sınıfındandır.

(iii)M üzerindeki her (V, ψ) = (V, y1, . . . , ym) yaması içinF ’nin (V, ψ) yamasına
göre bileşenleri olan yi ◦ F : F−1(V ) → R fonksiyonlarının tamamı C∞ sınıfındandır.
(Tu, 2011).

Tanım 2.12. (Difeomorfizma) F : N → M dönüşümüC∞ sınıfından bir dönüşüm olsun.
Eğer F , 1-1, örten ve F ’nin tersi F−1 dönüşümü de C∞ sınıfından ise o zaman F ’ye bir
difeomorfizma denir (Tu, 2011).

Önerme 2.4. Eğer (U, ϕ), n-boyutlu bir M manifoldu üzerinde bir yama ise o zaman
ϕ : U → ϕ(U) koordinat sistemi bir difeomorfizmadır (Tu, 2011).

2.3 Lie Grupları

Tanım 2.13. G, grup yapısına sahip bir C∞ manifold olmak üzere

µ : G×G → G (2.13)

çarpma dönüşümü
ι : G → G, ι(x) = x−1 (2.14)

ters dönüşümünün her ikisi de C∞ sınıfından ise o zaman G’ye bir Lie grubu denir (Tu,
2011).
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Örnek 2.6. Rn Euclid uzayı toplama işlemi altında bir Lie grubudur.

Örnek 2.7. Sıfırdan farklı olan karmaşık sayıların kümesi C×, çarpma işlemi altında bir
Lie grubudur.

Örnek 2.8. C×’deki S1 birim çemberi çarpma işlemi altında bir Lie grubudur.

Örnek 2.9. (G1, µ1) ve (G1, µ2) Lie gruplarının kartezyen çarpımı G1 × G2 karşılıklı
bileşenlerin çarpımıyla tanımlanan çarpma işlemine göre bir Lie grubudur.

Örnek 2.10. (Genel lineer grup) Örnek (2.4)’e göre

GL(n,R) =
{
A = [aij] ∈ Rn×n

∣∣∣ detA ̸= 0
}

(2.15)

genel lineer grubunun bir manifolddur. A,B ∈ GL(n,R) olmak üzere A ve B matrisin-
lerinin çarpımının (i, j)-elamanı

(AB)ij =
n∑

k=1
aikbkj (2.16)

A ve B’nin koordinatlarına göre bir polinom fonksiyonu olduğundan

µ : GL(n,R) × GL(n,R) → GL(n,R) (2.17)

çarpım fonksiyonu C∞ sınıfındandır. A ∈ GL(n,R) olmak üzere A−1 matrisinin (i, j)-
elemanı

(A−1)ij = 1
detA

(−1)i+jadj(A)ji (2.18)

aij koordinatlarının bir C∞ fonksiyonu olduğundan ι : GL(n,R) → GL(n,R) ters dönü-
şümü de C∞ sınıfındandır. O halde GL(n,R) bir Lie grubudur.

2.4 Kısmi Türevler

Tanım 2.14. M ,n-boyutlu bir manifold, (U, ϕ) = (U, x1, . . . , xn) bir yama ve f : U → R,
C∞ sınıfından bir fonksiyon olsun. f ’nin bir p ∈ U noktasında xi koordinatına göre
∂f/∂xi kısmi türevi

∂

∂xi

∣∣∣∣∣
p

f = ∂f

∂xi
(p) = ∂(f ◦ ϕ−1)

∂ri
(ϕ(p)) = ∂

∂ri

∣∣∣∣∣
ϕ(p)

(f ◦ ϕ−1) (2.19)

şekilde tanımlanır (Tu, 2011).

p = ϕ−1 (ϕ(p)) olduğundan yukarıdaki eşitlik

∂f

∂xi

(
ϕ−1 (ϕ(p))

)
= ∂(f ◦ ϕ−1)

∂ri
(ϕ(p)) (2.20)
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şeklinde yazılırsa ϕ(U) üzerinde

∂f

∂xi
◦ ϕ−1 = ∂(f ◦ ϕ−1)

∂ri
(2.21)

fonksiyonu elde edilir. (∂f/∂xi) ◦ ϕ−1, ϕ(U) üzerinde C∞ sınıfından olduğundan
(∂f/∂xi) fonksiyonu da U üzerinde C∞ sınıfındandır. Tanım gereği, herhangi p ∈ U

için

∂xi

∂xj
(p) = ∂(xi ◦ ϕ−1)

∂rj
(ϕ(p)) ∂(ri ◦ ϕ ◦ ϕ−1)

∂rj
(ϕ(p)) = ∂ri

∂rj
(ϕ(p)) = δi

j (2.22)

olduğundan
∂xi

∂xj
= δi

j (2.23)

elde edilir. Burada

δi
j =

1, i = j

0, i ̸= j
(2.24)

şeklinde tanımlı Kronecker delta fonksiyonudur.

2.5 Tanjant uzay. Bir dönüşümün diferansiyeli

U , bir p ∈ M noktasının bir açık komuşuluğu ve f : U → R, C∞ sınıfından bir
fonksiyon olmak üzere tüm (f, U) ikililerinin kümesi göz önüne alınsın. Eğer

f|W = g|W (2.25)

olacak şekilde p noktasını içeren bir W ⊂ U ∩ V açık kümesi varsa o zaman f ve
g fonksiyonları eşdeğerdir denir ve (f, U) ∼ (g, V ) yazılır. Bu eşdeğerlik bağıntısının
(f, U) ikilisini içeren [f ] eşdeğerlik sınıfına f ’nin p ∈ M noktasındaki tohumu (germ)
denir. C∞

p (M) kümesi M üzerinde C∞ fonksiyonların p ∈ M noktasındaki tohumlarının
kümesini göstersin. Aşağıdaki toplama ve çarpma operasyonlarına göreC∞

p (M) bir halka
teşkil eder: Her [f ], [g] ∈ C∞

p (M)[f ] + [g] = [f|W + g|W ]

[f ][g] = [f|W g|W ].
(2.26)

Her [f ] ∈ C∞
p (M) ve her a ∈ R için

a[f ] = [af|W ] (2.27)

şeklinde tanımlı skaler ile çarpma operasyonu ile C∞
p (M) halkası R üzerinde bir cebir

oluşturur (Ozan, 2016; Tu, 2011). Tanım gereği bir tohumun bir noktadaki değeri iyi
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tanımlıdır, yani eşdeğerlik sınıfından seçilen bir temsilciden bağımsızdır: p ∈ M ve
[f ] ∈ C∞

p (M) olmak üzere
[f ](p) = f(p) (2.28)

ile belirlenir.

Tanım 2.15. M bir düzgün manifold ve p ∈ M olsun.

D([f ][g]) = (D[f ])g(p) + f(p)D[g] (2.29)

özelliğini sağlayan bir D : C∞
p (M) → R lineer dönüşümüne p noktasında bir derivasyon

denir (Tu, 2011).

Tanım 2.16. (Tanjant vektör) Bir p ∈ M noktasındaki bir derivasyona p noktasında bir
tanjant vektör denir (Tu, 2011).

Bir p ∈ M noktasındaki bir tanjant vektör vp ile gösterilir. p noktasındaki tüm
tanjant vektörlerin kümesi TpM her vp, wp ∈ TpM ve her a ∈ R için(vp + wp)[f ] = vp[f ] + wp[f ]

(avp)[f ] = avp[f ]
(2.30)

şeklinde tanımlı toplama işlemi ve skaler ile çarpma operasyonuna göre bir vektör uzayı
oluşturur. TpM uzayına p noktasındaki tanjant uzay denir.

∂

∂xi

∣∣∣∣∣
p

[f ] = ∂

∂xi

∣∣∣∣∣
p

f = ∂f

∂xi
(p) (2.31)

tanımlanırsa o zaman (2.19) denkleminden

∂

∂xi

∣∣∣∣∣
p

(fg) = ∂

∂ri

∣∣∣∣∣
ϕ(p)

(
(fg) ◦ ϕ−1

)

= ∂

∂ri

∣∣∣∣∣
ϕ(p)

(
(f ◦ ϕ−1)(g ◦ ϕ−1)

)

=
 ∂

∂ri

∣∣∣∣∣
ϕ(p)

(f ◦ ϕ−1)
 g(p) + f(p) ∂

∂ri

∣∣∣∣∣
ϕ(p)

(g ◦ ϕ−1)

= ∂f

∂xi
(p)g(p) + f(p) ∂g

∂xi
(p)

(2.32)

elde edilir. Buradan ∂/∂xi|p’nin (2.29) derivasyon özelliğini sağladığı görülür. O halde
her i = 1, 2, . . . , n için

∂

∂xi

∣∣∣∣∣
p

∈ TpM (2.33)

olduğu sonucu ortaya çıkar.
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Tanım 2.17. (Bir dönüşümün diferansiyeli) M ve N birer manifold ve F : N → M , C∞

sınıfından bir dönüşüm olsun. Xp ∈ TpN ve [f ] ∈ C∞
F (p)M olmak üzere

F∗(Xp)[f ] = Xp[f ◦ F ] ∈ R (2.34)

şeklinde tanımlı F∗ : TpN → TF (p)M lineer dönüşümüne F ’nin p noktasındaki diferan-
siyeli denir (Tu, 2011).

Açıklama 2.3. Kimi zaman F ’nin p noktasındaki diferansiyeli dF ile gösterilir. Tanımın
p noktasına bağımlılığı açıkça vurgulanmak istenildiğinde (dF )p ya da F∗,p gösterimleri
kullanılır.

Teorem 2.1. F : N → M ve G : M → P dönüşümleri C∞ sınıfından ve p ∈ N ise o
zaman

(G ◦ F )∗,p = G∗,F (p) ◦ F∗,p (2.35)

eşitliği doğrudur.

Sonuç 2.1. Eğer F : N → M dönüşümü bir difeomorfizma ve p ∈ N ise o zaman
F∗ : TpN → TF (p)M lineer dönüşümü bir lineer izomorfizmadır.

Açıklama 2.4. (U, ϕ) bir M manifoldunda bir p noktasını içeren bir yama olsun. Önerme
2.4 ve Sonuç 2.1’e göre

ϕ∗ : TpM → Tϕ(p)Rn (2.36)

diferansiyeli bir vektör uzayı izomorfizmasıdır ve dimTpM = dimM = n.

Önerme 2.5. M bir manifold ve (U, ϕ) = (U, x1, . . . , xn) bir p noktasını içeren bir yama
olsun. O zaman aşağıdaki doğrudur (Tu, 2011):

ϕ∗

 ∂

∂xi

∣∣∣∣∣∣
p

 = ∂

∂ri

∣∣∣∣∣∣
ϕ(p)

. (2.37)

Önerme 2.6. Eğer (U, ϕ) = (U, x1, . . . , xn) p noktasını içeren bir yama ise o zaman

∂

∂x1

∣∣∣∣∣∣
p

, . . . ,
∂

∂xn

∣∣∣∣∣∣
p

(2.38)

tanjant vektörleri TpM için bir taban (baz) oluşturur (Tu, 2011).

Sonuç 2.2. Bir vp ∈ TpM tanjant vektörü

vp =
∑

i

vi ∂

∂xi

∣∣∣∣∣∣
p

(2.39)

şeklinde tek türlü yazılır.

12



Buradan hareketle bir (U, x1, . . . , xn) yaması üzerinde

vp[f ] =
∑

i

vi ∂f

∂xi
(p) (2.40)

yazılabilir.

Tanım 2.18. M bir manifold olsun. TpM ’nin dual uzayına yani

T ∗
pM = {ωp : TpM → R | ωp lineer} (2.41)

vektör uzayına M ’nin p noktasındaki kotanjant uzayı denir (Tu, 2011).

Önerme 2.7. M bir manifold ve (U, x1, . . . , xn) bir yama olsun. xi koordinatlarının p
noktasındaki diferansiyelleri olan (dxi)p’ler

(dxi)p(∂/∂xj|p) = δi
j (2.42)

eşitliklerini sağlarlar (Tu, 2011).

Sonuç 2.3. {
(dx1)p, . . . , (dxn)p

}
(2.43)

kümesi T ∗
pM için bir tabandır. Bu tabana (2.38) tabanının dual tabanı denir.

Önerme 2.8. N ve M birer manifold, F : N → M , C∞ sınıfından bir dönüşüm olmak
üzere (U, x1, . . . , xn) ve (V, y1, . . . , ym) sırasıyla p ∈ N ve F (p) ∈ M noktalarını içeren
N ve M içinde koordinat yamaları olsunlar. O zaman F∗ : TpN → TF (p)M diferansiye-
linin sırasıyla TpN ve TF (p)M tanjant uzaylarının {∂/∂xj|p} ve

{
∂/∂yi|F (p)

}
bazlarına

göre matris temsili [
∂F i

∂xj
(p)
]

(2.44)

Jacobian matrisidir. Burada F i = yi ◦ F , F dönüşümünün i. bileşenidir (Tu, 2011).

Tanım 2.19. C∞ sınıfından bir F : N → M dönüşümünün rankı F∗ : TpN → TF (p)M

diferansiyelinin rankı olarak tanımlanır ve rkF (p) ile gösterilir (Tu, 2011).

Açıklama 2.5. Tanım 2.17’ya göre bir F dönüşümün diferansiyeli koordinat yamalarından
bağımsız olduğu için

rkF (p) = rk
[
∂F i

∂xj
(p)
]

(2.45)

şeklinde tanımlanabilir.
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2.6 Altmanifoldlar

Tanım 2.20. N , n-boyutlu bir manifold ve S, N ’nin bir altkümesi olsun. Eğer aşağıdaki
koşul sağlanıyorsa o zaman S’ye N manifoldunun k-boyutlu bir regüler altmanifoldu
denir.

Her p ∈ S için, p noktasının N ’nin bir maksimal atlası içinde kalan bir
(U, ϕ) = (U, x1, x2, . . . , xn) koordinat komşuluğu vardır öyle ki U ∩ S, n − k koor-
dinat fonksiyonunun sıfıra eşit olması ile tanımlanır. Yeniden numaralandırma ile n − k

koordinat fonksiyonlarının xk+1, . . . , xn olduğunu varsayılabilir (Tu, 2011).

Bu tanımı sağlayan N içindeki bir (U, ϕ) yamasına, S’ye göre adapte edilmiş bir
yama denir. U ∩ S üzerinde,

ϕ = (x1, . . . , xk, 0, . . . , 0) (2.46)

olarak ifade edilir.
ϕS : U ∩ S → Rk

dönüşümü ϕ’nin ilk k bileşeninin U ∩ S üzerine kısıtlanışı olsun yani ϕS = (x1, . . . , xk)
olsun. Bu durumda (U ∪S, ϕS), üzerindeki altuzay topolojisine göre S için bir yama olur.

Tanım 2.21. Eğer S, n-boyutlu bir N manifoldunun bir k- boyutlu regüler altmanifoldu
ise o zaman n− k sayısına S’nin N içindeki eşboyutu denir (Tu, 2011).

Açıklama 2.6. N ’nin bir regüler altmanifoldu üzerindeki topoloji, altuzay topolojisi olmak
durumundadır.

Tanım 2.22. N ve M birer manifold olmak üzere bir F : N → M dönüşümü verilsin.
Bir c ∈ M için N ’nin

F−1({c}) = {p ∈ N | F (p) = c} (2.47)

şeklinde tanımlı altkümesine F dönüşümünün bir seviye kümesi denir. Buradaki c ∈ M

değerine F−1({c}) seviye kümesinin seviyesi adı verilir (Tu, 2011).

Tanım 2.23. Eğer F : N → Rm ise o zaman

Z(F ) = F−1({0}) (2.48)

şekilde tanımlı seviye kümesine F ’nin sıfır kümesi denir (Tu, 2011).

Tanım 2.24. Eğer bir c ∈ M noktası bir F : N → M dönüşümünün görüntü kümesinde
değilse ya da her p ∈ F−1({c}) için F∗,p : TpN → TF (p)M diferansiyeli örten ise o
zaman c’ye F dönüşümünün bir regüler değeri denir. c regüler değerinin ters görüntüsü
F−1({c}) seviye kümesine regüler seviye kümesi denir (Tu, 2011).
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Teorem 2.2. g : N → R, N manifoldu üzerinde C∞ sınıfından bir fonksiyon olsun. O
zaman boştan farklı bir S = g−1({c}) regüler seviye kümesi N ’nin eşboyutu 1 olan bir
regüler altmanifoldudur (Tu, 2011).

Açıklama 2.7. Kimi zaman bir F : N → M dönüşümü verildiğinde bir p ∈ M için
F−1({p}) ters görüntü kümesini gösterirken basitlik açısından F−1(p) yazılır.

2.7 Vektör Demetleri

Tanım 2.25. E veM ,C∞ sınıfından manifoldlar olmak üzere aşağıdaki özellikleri sağla-
yan C∞ sınıfından örten bir π : E → M dönüşümüne M üzerinde bir reel vektör demeti
denir ve ξ = (E, π,M) ile gösterilir:

(i) Her bir p ∈ M için π−1(p) kümesi n-boyutlu bir reel vektör uzayının yapısına sahiptir.

(ii) Yerel aşikarlık: Her bir p ∈ M için birU açık komşuluğu ve birφU : π−1(U) ∼= U×Rn

difeomorfizması vardır öyle ki her bir q ∈ U için φU ’nun π−1(q) kümesine kısıtlanışı

φU : π−1(q) → {q} × Rn (2.49)

bir lineer izomorfizmadır (Morita, 2001).

Bir ξ = (E, π,M) demetinde, E toplam uzay, π projeksiyon ve M baz uzayı
olarak adlandırılır. Ayrıca π−1(p) kümesine p üzerindeki lif denir ve genellikle Ep ile
gösterilir. Bazen bir ξ vektör demeti, π : E → M ya da sadece E ile gösterilebilir.M ’nin
(bir açık küme olmak zorunda olmayan) bir N alt manifoldu için yerel aşikarlık koşulunu
sağlayan bir φN : π−1(N) ∼= N × Rn difeomorfizmasına N üzerinde bir aşikarlaştırma
denir.

Tanım 2.26. Verilen bir π : E → M vektör demeti için π ◦ s = idM şeklinde tanımlı C∞

sınıfından bir s : M → E dönüşümüne bir kesit denir. Başka bir iafade ile bir s kesiti her
bir p noktasında C∞ sınıfından olacak şekilde p noktasına s(p) ∈ Ep noktasını karşılık
getiren bir dönüşümdür. Her p ∈ M için s(p) = 0 ∈ Ep oluyorsa o zaman s kesitine sıfır
kesit denir. Her p ∈ M için s(p) ̸= 0 koşulunu sağlayan s kesitine sıfır olmayan kesit adı
verilir (Morita, 2001).

Tanım 2.27. Bir U açık altkümesi üzerinde bir φ : π−1(U) ∼= U × Rn aşikarlaştırması
belirlemek demek her p ∈ U için s1(p), . . . , sn(p) vektörlerinin Ep’nin bir tabanını
oluşturduğu U üzerinde si : U → E kesitleri seçmek demektir. Bu özelleği sağlayan si

kesitlerinin kümesine U üzerinde bir çatı alanı denir (Morita, 2001).

E vektör demetinin tüm kesitlerinin kümesi Γ (E) ile gösterilir. Γ (E), aşağıdaki
tanımlanan toplama işlemi ve skaler ile çarpma operasyonlarıyla birlikte bir vektör uzayı
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oluşturur: Her s, s′ ∈ Γ (E) ve a ∈ R için(s+ s′)(p) = s(p) + s′(p)

(as)(p) = as(p).
(2.50)

s ∈ Γ (E) ve f ∈ C∞(M) için

(fs)(p) = f(p)s(p) (2.51)

operasyonu ile birlikte Γ (E),C∞(M) halkası üzerinde bir modül oluşturur (Morita, 2001).

Örnek 2.11. M bir C∞ manifold olmak üzere E = M × Rn, π : E → M ; π(p, v) = p

şeklinde tanımlı vektör demetine çarpım demeti denir.

Örnek 2.12. (Bir manifolfun teğet demeti) M bir C∞ manifold olsun. M ’nin tüm nokta-
larındaki tüm tanjant uzaylarının kümesi

TM =
⋃

p∈M

TpM (2.52)

bir C∞ manifolddur (Morita, 2001). v ∈ TpM olmak üzere

π : TM → M ; π(v) = p, π−1(p) = TpM (2.53)

şeklinde tanımlı projeksiyon ile birlikte TM bir vektör demetidir. Bu vektör demetine M
manifoldunun tanjant demeti ya da teğet demeti adı verilir (Morita, 2001).

Tanım 2.28. π : TM → M tanjant demetinin bir X kesitine M üzerinde bir vektör alanı
denir ve TM ’nin tüm kesitlerinin kümesi X(M) = Γ (TM) ile gösterilir (Morita, 2001).

(U, x1, . . . , xn), M manifoldu üzerinde bir yama olmak üzere bir X ∈ X(M)
vektör alanının xi koordinatlarındaki ifadesi

X =
∑

i

X i ∂

∂xi
(2.54)

ile verilir. Burada X i : U → R fonksiyonları C∞ sınıfındandır (Morita, 2001; Tu, 2011).
(2.54) vektör alanının bir p ∈ M noktasındaki değeri

Xp = X(p) =
∑

i

X i(p) ∂

∂xi

∣∣∣∣∣
p

(2.55)

tanjant vektörüdür. Eğer X ∈ X(M) ve f ∈ C∞(M) ise o zaman

(fX)(p) = f(p)X(p) (2.56)
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şeklinde tanımlı fX vektör alanı da C∞ sınıfındandır yani fX , X(M)’nin bir elemanıdır
ve yerel koordinatlarda

fX =
∑

i

fX i ∂

∂xi
(2.57)

ile verilir.

Tanım 2.29. X ∈ X(M) ve f ∈ C∞(M) olsun. Her p ∈ M için

(X[f ])(p) = X(p)[f ] = Xp[f ] (2.58)

şeklinde tanımlıC∞ sınıfındanX[f ] fonksiyonuna f ’ninX’e göre Lie türevi denir veXf
ile gösterilir (Tu, 2011).

Örnek 2.13. (Bir manifolfun kotanjant demeti) M bir C∞ manifold olsun. M ’nin tüm
noktalarındaki tüm kotanjant uzaylarının kümesi

T ∗M =
⋃

p∈M

T ∗
pM (2.59)

bir C∞ manifolddur (Morita, 2001; Tu, 2011). α ∈ T ∗
pM olmak üzere

π : T ∗M → M ; π(α) = p, π−1(p) = T ∗
pM (2.60)

şeklinde tanımlı projeksiyon ile birlikte T ∗M bir vektör demetidir. Bu vektör demetine
M manifoldunun kotanjant demeti adı verilir(Morita, 2001; Tu, 2011).

Tanım 2.30. π : T ∗M → M kotanjant demetinin bir ω kesitine M üzerinde bir diferan-
siyel 1-form ya da kısaca 1-form denir ve T ∗M ’nin tüm kesitlerinin kümesi Γ (T ∗M) ile
gösterilir. (Morita, 2001).

(U, x1, . . . , xn), M manifoldu üzerinde bir yama olmak üzere bir ω ∈ Γ (T ∗M)
1-formunun xi koordinatlarındaki ifadesi

ω =
∑

i

aidxi (2.61)

ile verilir. Burada ai : U → R fonksiyonları C∞ sınıfındandır (Morita, 2001; Tu, 2011).
(2.72) 1-formunun bir p ∈ M noktasındaki değeri

ωp = ω(p) =
∑

i

ai(p)(dxi)p (2.62)

kotanjant vektörüdür.

Tanım 2.31. ω ∈ Γ (T ∗M) ve X ∈ X(M) olmak üzere ω 1-formunun X vektör alanına
etkisi

ω(X)(p) = ωp (Xp) (2.63)
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şeklinde tanımlıdır (Tu, 2011).

Açıklama 2.8. (U, x1, . . . , xn), M manifoldu üzerinde bir yama, ω = ∑
i aidx

i ve X =∑
i X

i∂xi olmak üzere (2.63) tanımı yerel olarak

ω(X) =
∑

aiX
i (2.64)

ile verilir.

Tanım 2.32. f ∈ C∞(M) olmak üzere herhangi p ∈ M ve Xp ∈ TpM için

(df)pXp = Xp[f ] (2.65)

şeklinde tanımlı 1-forma f ’nin diferansiyeli denir.

(U, x1, . . . , xn), M manifoldu üzerinde bir yama olmak üzere

(df)p∂xi |p = ∂xi |p[f ] = ∂xi |pf = ∂f

∂xi
(p) (2.66)

olduğundan f ’nin diferansiyeli xi koordinatlarında

df =
∑

i

∂f

∂xi
dxi (2.67)

ile verilir.

Tanım 2.33. {X1, . . . , Xn} kümesi bir M manifoldunun bir U açık altkümesi üzerinde
bir çatı alanı olsun. U üzerinde

ωi(Xj) = δi
j (2.68)

eşitliğini sağlayan ωi ∈ Γ (T ∗M), i = 1, 2, . . . , n 1-formlarının kümesine U üzerinde
{X1, . . . , Xn} çatı alanına dual olan eşçatı alanı denir.

Tanım 2.34. V , n boyutlu bir reel vektör uzayı, V k = V × V × · · · × V︸ ︷︷ ︸
k defa

, V ’nin kendi-

siyle k defa kartezyen çarpımı olmak üzere aşağıdaki koşulu sağlayan bir L : V k → R
fonksiyonuna V üzerinde bir k-lineer form ya da k-tensör denir (Tu, 2011): L fonksiyonu
k argümanının her birine göre lineerdir, yani her her a, b ∈ R ve v, w ∈ V için

L(. . . , av + bw, . . .) = aL(. . . , v, . . .) + bL(. . . , w, . . .) (2.69)

eşitliği vardır.

Açıklama 2.9. Lineer dönüşümler gibi k-lineer formlar da tamamıyla taban vektörleri
üzerindeki etkileriyle belirlenirler.
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Tanım 2.35. Eğer L : V k → R k-lineer formu her σ ∈ Sk için

L
(
vσ(1), . . . , vσ(k)

)
= (sgn σ)L(v1, . . . , vk) (2.70)

eşitliğini saplıyorsa o zaman L’ye alterne k-lineer form ya da alterne k-tensör denir (Tu,
2011). Burada Sk, {1, 2, . . . , k} kümesinin tüm permütasyonlarının grubudur.

Tanım 2.36. M bir C∞ manifold ve p ∈ M olmak üzere TpM üzerindeki tüm alterne
k-tensörlerin vektör uzayı ∧k(T ∗

pM) ile gösterilsin.

k∧
T ∗M =

⋃
p∈M

k∧
(T ∗

pM) (2.71)

olmak üzere her α ∈ ∧k(T ∗
pM) için π : ∧k T ∗M → M ; π(α) = p şeklinde tanımlı pro-

jeksiyon ile birlikte ∧k T ∗M bir vektör demetidir. Bu vektör demetine kotanjant demetin
k. dış kuvveti denir (Tu, 2011).

Tanım 2.37. ∧k T ∗M vektör demetinin bir kesitineM üzerinde bir diferansiyel k-form ya
da kısaca bir k-form denir. ∧k T ∗M vektör demetinin tüm kesitlerinin kümesi Ωk(M) =
Γ (∧k T ∗M) ile gösterilir (Tu, 2011).

(U, x1, . . . , xn), M manifoldu üzerinde bir yama olmak üzere bir ω ∈ Ωk(M)
k-formunun xi koordinatlarındaki ifadesi

ω =
∑

I

aIdx
I =

∑
i1<···<ik

ai1...ik
dxi1 ∧ dxi2 ∧ · · · ∧ dxik (2.72)

ile verilir. Burada aI = ai1...ik
: U → R fonksiyonları C∞ sınıfındandır (Tu, 2011).

1 ≤ i1 < i2 < · · · < ik ≤ n olmak üzere

I = (i1, i2, . . . , ik) (2.73)

notasyonunaa (artan) çoklu-indis notasyonu denir. Çoklu-indis notasyonu ile

dxI = dxi1 ∧ dxi2 ∧ · · · ∧ dxik (2.74)

yazılır. Örneğin 3-boyutlu bir M manifoldu üzerinde bir ω 2-formu x, y, z yerel koordi-
natlarında

ω = a12dx ∧ dy + a13dx ∧ dz + a23dy ∧ dz (2.75)

ile verilir.

Tanım 2.38. α1, . . . , αk ∈ Ω1(M) ve X1, . . . , Xk ∈ X(M) olmak üzere

α1 ∧ · · · ∧ αk(X1, . . . , Xk) = det
(
αi(Xj)

)
(2.76)
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şeklinde tanımlı α1 ∧ · · · ∧ αk k-formuna α1, . . . , αk 1-formlarının dış çarpımı denir
(Clelland, 2017).

Buradan hareketle

dxi1 ∧dxi2 ∧· · ·∧dxik(∂xj1 , . . . , ∂xjk ) =

1, i1 = j1, i2 = j2, . . . , ik = jk ise

0, aksi durumda
(2.77)

olduğu görülür. Ayrıca ω = ∑
aidxi ve η = ∑

bidxi olmak üzere ω ve η 1-formlarının dış
çarpımı

ω ∧ η =
∑
i<j

(aibj − ajbi)dxi ∧ dxj (2.78)

ile verilir. Buradan hareketle
ω ∧ η = −η ∧ ω (2.79)

ve
ω ∧ ω = 0 (2.80)

olduğu görülür.

Açıklama 2.10. Eğer iki diferansiyel form herhangi bir p ∈ M noktasının bir komşulu-
ğunda aynı ise o zaman tüm M manifoldu üzerinde aynıdır. Dolayısıyla bir k-formun dış
türevinin tanımı bir (U, x1, . . . , xn) yaması üzerinde verilebilir.

Tanım 2.39. Bir M manifoldu üzerindeki ω k-formu bir (U, x1, . . . , xn) yaması üzerinde

ω =
∑

i1<···<ik

ai1...ik
dxi1 ∧ dxi2 ∧ · · · ∧ dxik (2.81)

ile verilsin.
dω =

∑
i1<···<ik

dai1...ik
∧ dxi1 ∧ dxi2 ∧ · · · ∧ dxik (2.82)

şeklinde tanımlı (k + 1)-forma ω’nın dış türevi denir (Morita, 2001).

2.8 Riemann manifoldu

Tanım 2.40. M bir C∞ manifold olsun. M ’deki her p noktasına TpM üzerinde bir
gp = ⟨·, ·⟩p iç çarpımını karşılık getiren C∞ sınıfından g : p 7→ gp dönüşümüne M
üzerinde bir Riemann metriği denir. Burada g dönüşümünün C∞ sınıfından olmasından
kasıt herhangi X, Y ∈ X(M) için

p ∈ M → gp(Xp, Yp) = ⟨Xp, Yp⟩p ∈ R (2.83)

fonksiyonunun C∞ sınıfından olmasıdır. Bir g Riemann metriği ile donatılmış bir M
manifolduna bir Riemann manifoldu denir (Burns & Gidea, 2005).
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Açıklama 2.11. Üzerindeki g Riemann metriği ile birlikte bir M Riemann manifoldu
(M, g) ile gösterilir.

(U, x1, . . . , xn), (M, g) üzerinde bir yama olmak üzere U üzerinde

gij(p) = gp

 ∂

∂xi

∣∣∣∣∣
p

,
∂

∂xj

∣∣∣∣∣
p

 (p ∈ U) (2.84)

şeklinde tanımlı gij fonksiyonları ile birlikte g’nin xi koordinatlarındaki ifadesi

g =
∑
i,j

gijdxi ⊗ dxj (2.85)

ile verilir. Burada gij = gji fonksiyonları U üzerinde C∞ sınıfındandır ve her X, Y ∈
X(M) için (

dxi ⊗ dxj
)

(X, Y ) = dxi(X)dxj(Y ) (2.86)

şekilde tanımlı çarpıma dxi ve dxj 1-formlarının tensör çarpımı denir. X, Y ∈ X(M),
X = ∑

X i∂xi ve Y = ∑
Y i∂xi

g(X, Y )(p) = gp(Xp, Yp) (2.87)

tanımlanırsa o zaman
g(X, Y ) =

∑
i,j

gijX
iY j (2.88)

elde edilir. Genel olarak ω1 ve ω2 1-formlarının tensör çarpımı her X, Y ∈ X(M) için(
ω1 ⊗ ω2

)
(X, Y ) = ω1(X)ω2(Y ) (2.89)

şeklinde tanımlıdır.

Tanım 2.41. (M, g) bir Riemann manifoldu ve U ⊂ M bir açık küme olsun. ei ∈
X(M), i = 1, 2, . . . , n vektör alanlarından oluşan U üzerindeki çatı alanı için

g(ei, ej) = δij (2.90)

oluyorsa o zaman bu çatı alanınaU üzerinde bir ortonormal çatı alanı denir ve (e1, . . . , en)
ile gösterilir.

2.9 Bir vektör demeti üzerinde bağlantı formu

Tanım 2.42. π : E → M , M üzerinde bir vektör demeti olsun. Aşağıdaki özellikleri
sağlayan

∇ : X(M) × Γ (E) → Γ (E)
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çift-lineer dönüşümüne π : E → M vektör demeti üzerinde bir bağlantı denir (Morita,
2001): Herhangi f ∈ C∞(M), X ∈ X(M), s ∈ Γ (E) için

(i)
∇fXs = f∇Xs. (2.91)

(ii)
∇X(fs) = f∇Xs+ (Xf)s. (2.92)

∇Xs değerine s kesitinin X vektör alanına göre kovaryant türevi denir.

Eğer E = TM ise o zaman Γ (TM) = X(M) olur. Bu durumda

∇ : X(M) × X(M) → X(M) (2.93)

bağlantısına M üzerinde bir afin bağlantı denir (Tu, 2017).

Önerme 2.9. M bir Riemann manifoldu ve U bir koordinat komşuluğu olsun. e =
(e1, . . . , en), U üzerinde bir ortonormal çatı alanı ve ω = (ω1, . . . , ωn)t, e çatı ala-
nına dual olan eşçatı alanı olsun. O zaman U üzerinde aşağıdaki özellikleri sağlayan tek
türlü belirli θ = (θi

j) 1-formları vardır (Morita, 2001):

(i)
θi

j = −θj
i , (2.94)

(ii)
dωi =

∑
j

θi
j ∧ ωj. (2.95)

Açıklama 2.12. θ = (θi
j) matrisine U üzerinde gl(n,R)-değerli 1-form adı verilir. (2.9)

önermesinde θ = (θi
j) matrisi anti-simetrik olduğundan (2.9) önermesindeki θ matrisi

so(n,R)-değerli bir 1-form olacaktır. Burada so(n,R), O(n) ortogonal grubun Lie cebi-
ridir.

Tanım 2.43. θ = (θi
j), (2.9) önermesindeki so(n,R)-değerli 1-form olsun. Bu durumda

∇ej =
∑

i

θi
j ⊗ ei (2.96)

şeklinde tanımlı TM üzerindeki ∇ bağlantısına (söz konusu metrikle uyumlu) Levi-
Civita bağlantısı ya da Riemann bağlantısı denir. θ = (θi

j) 1-formuna da U üzerinde
∇’nın bağlantı formu adı verilir (Morita, 2001).
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(2.95) yapı denklemlerinin dış türevi alınırsa

0 = (dθi
j +

∑
k

θi
k ∧ θk

j ) ∧ ωj (2.97)

elde edilir. Buradan
Ωi

j = dθi
j +

∑
k

θi
k ∧ θk

j , Ω
i
j = −Ωj

i (2.98)

yazılır. Ω = (Ωi
j) matrisine ∇ bağlantısının eğrilik 2-formu adı verilir. Ωi

j 2-formları

Ωi
j =

∑
k<l

Ri
jklω

k ∧ ωl (2.99)

şeklinde ifade edilirse o zaman buradaki Ri
jkl fonksiyonları Bölüm 4.2.1’de tanımlanan

Riemannian eğrilik tensörü’nün e = (e1, . . . , en) ortonormal çatı alanına göre bileşen-
leridir. Eğer M üzerinde Ri

jkl fonksiyonları idantik olarak sıfırsa yani Ri
jkl ≡ 0 ise o

zaman M manifolduna düz uzay denir. 2-boyutlu bir Riemann manifoldu üzerinde eğrilik
2-formunun tek bir bağımsız bileşeni vardır:

Ω1
2 = R1

212ω
1 ∧ ω2. (2.100)

Bu durumda R1
212 fonksiyonuna (M, g) Riemann manifoldunun Gauss eğriliği’de denir,

bkz. (Boothby, 1986).
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BÖLÜM 3

JET UZAYLARI

3.1 ADDlerin Jet Uzay Formülasyonu: Ek

Bu bölümdeki amaç bir diferansiyel denklemin jet demet formülasyonunu vermek-
tir. Bu fomulasyon diferansiyel denklemlerin koordinat sisteminden bağımsız olarak ele
alınabilmesini sağlamasının yanı sıra geometrik olarak bir diferansiyel denklemin uygun
bir jet uzayı içerisinde bir manifold olarak düşünülmesine imkan sağlamaktadır. Bir düz-
lem eğrisinin k-grafiği bu manifold üzerinde yer alır. Eğer jet demet içerisindeki kanonik
kontakt formlar söz konusu düzlem eğrisinin k-grafiği üzerinde sıfır oluyorsa o zaman bu
eğri denklemin çözümüdür denir. Diferansiyel denklemlerin jet demet formulasyonu ve
kontakt yapılar hakkındaki bilgiler aşağıdaki kaynaklardan derlenmiştir. (Bocharov vd.,
1999; Ivey & Landsberg, 2003; Kushner vd., 2007; Saunders, 1989; Vassiliou & Lisle,
2000).

Tanım 3.1.
τ ◦ ρ = id (3.1)

olacak şekilde yerel olarak tanımlı C∞ sınıfından bir

ρ : R→ R× R (3.2)

fonksiyonuna τ : R × R → R; τ(x, y) = x aşikar demetinin bir (düzgün) yerel kesiti
denir. Burada x ve y sırasıyla R × R çarpımındaki birinci ve ikinci faktörler için yerel
koordinatlardır.

Tanım gereği τ ’nun bir ρ yerel kesiti, yerel olarak tanımlı C∞ sınıfından bir

y : R→ R; y = y(x) (3.3)
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fonksiyonunun grafiği yani

{(x, y(x)) : x ∈ R} ⊂ R× R (3.4)

olarak düşünülebilir. Grafiği ile fonksiyonun kendisi özdeş kılınarak y = ρ(x) yazılabilir.

Tanım 3.2. ρ1 ve ρ2, τ ’nun iki yerel kesiti olsun. Bir x0 ∈ R noktasında

ρ1(x0) = ρ2(x0),
dρ1

dx
(x0) = dρ2

dx
(x0), . . . ,

dkρ1

dxk
(x0) = dkρ2

dxk
(x0) (3.5)

oluyorsa o zaman ρ1 ve ρ2 yerel kesitleri k. mertebeden eşdeğerdir denir.

Bir diğer ifadeyle, eğer τ ’nun iki yerel kesitinin x0 noktasında k. mertebeye kadar
tüm Taylor katsayıları aynı ise bu kesitler x0 noktasında k. mertebeden eşdeğerdir. k.
mertebeden eşdeğer olma bir eşdeğerlik bağıntısıdır.

Tanım 3.3. τ ’nun bir ρ yerel kesitini içeren [ρ] eşdeğerlik sınıfına ρ’nun x0 noktasındaki
k-jeti denir ve

[ρ] = jk
x0ρ

ile gösterilir.

I ⊂ R bir açık aralık olmak üzere x0, I üzerinde değiştikçe τ ’nun tüm yerel
kesitlerinin k-jetlerinin kümesi bir düzgün manifold teşkil ve bu manifiold (k+2)-boyutlu
Euclid uzayıdır. Bu uzaya, yerel olarak tanımlıR→ R dönüşümlerinin k-jetlerinin demeti
ya da k-jet uzayı denir ve Jk(R,R) ya da kısaca Jk ile gösterilir. Jk uzayındaki bir jk

x0ρ

noktasının koordinatları, j = 1, 2, . . . , k olmak üzere,

x(jk
x0ρ) = x0, y(jk

x0ρ) = ρ(x0), pj(jk
x0ρ) = djρ

dxj
(x0) (3.6)

şeklinde tanımlanır. (x, y, p1, . . . , pk) koordinat sistemine Jk üzerinde standart koordinat
sistemi denir. k. mertebeden

dky

dxk
= f(x, y, y′, . . . , y(k−1)) (3.7)

formundaki bir ADD göz önüne alınsın. (3.7) denklemi Jk üzerinde

pk = f(x, y, p1, . . . , pk−1) (3.8)

olarak verilir. Buradaki f : Jk−1 → R fonksiyonu aksi belirtilmedikçe C∞ sınıfından
kabul edilecektir. Jk üzerinde

F (x, y, p1, . . . , pk) = pk − f(x, y, p1, . . . , pk−1) (3.9)
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tanımlanırsa o zaman herhangi x = jk
x0ρ ∈ Jk için

rkF (x) = rk
[

∂f
∂x

(x) ∂f
∂y

(x) · · · ∂f
∂pk−1 (x) 1

]
= 1 (3.10)

olduğundan Teorem 2.2’e göre k. mertebeden bir ADD

Ek = F−1({0}) =
{
jk

x0ρ ∈ Jk : x0 ∈ I, F (jk
x0ρ) = 0

}
(3.11)

Jk’nın bir regüler altmanifoldu olacaktır.

Tanım 3.4. Yerel olarak

jkρ : R→ Jk

x 7→ (jkρ)(x) = jk
xρ

(3.12)

şeklinde tanımlı dönüşüme τ ’nun bir ρ yerel kesitinin k-grafiği denir.

Bu tanıma göre τ ’nun bir yerel kesitinin k-grafiği Jk üzerinde bir eğri tanımlar ve
bir y = ρ(x) kesitinin k-grafiği

x 7→ jk
xρ =

(
x, y(x), y′(x), . . . , y(k)(x)

)
(3.13)

eğrisidir.

Tanım 3.5. Eğer bir (x, y(x)) eğrisinin k-grafiği (3.13), Ek manifoldunun üzerinde kalı-
yorsa o zaman bu eğriye (3.7) denkleminin bir çözümüdür denir.

Genel olarak Ek üzerinde bir eğri bir (x, y(x)) eğrisinin k-grafiği olmak durumunda
değildir. Şimdi bir γ : I ⊂ R → Ek ⊂ Jk eğrisi göz önüne alınsın. Standart koordinat
sisteminde γ eğrisi

γ : x 7→
(
x, y(x), p1(x), . . . , f

(
x, y(x), p1(x), . . . , pk−1(x)

))
(3.14)

ile verilir. γ eğrisinin görüntüsü S ile gösterilsin ve Jk üzerinde

ηj = dpj−1 − pjdx j = 1, 2, . . . , k (3.15)

şeklinde tanımlı 1-formlar göz önüne alınsın. Burada p0 = y şeklinde tanımlıdır. Bu
formların S üzerine kısıtlanışı

ηj|S =
(

dpj−1

dx
(x) − pj(x)

)
dx (3.16)

ile belirlenir. j = 1, 2, . . . , k olmak üzere

ηj|S = 0 (3.17)
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olması için gerek ve yeter koşul

dpj−1

dx
(x) − pj(x) = 0 (3.18)

olmasıdır. Bu durumda (3.14) eğrisi bir (x, y(x)) eğrisinin k-grafiği olacaktır. Daha formel
ifade etmek için ι : Ek → Jk doğal içerme fonksiyonu göz önüne alınsın. O zaman
γ : I ⊂ R→ Ek eğrisinin görüntüsü S’nin (3.7) denkleminin bir çözümünü tanımlaması
için gerek ve yeter koşul

(ι ◦ γ)∗ηj = 0 (3.19)

olmasıdır. Bir başka ifade ile verilen bir ADD’nin çözümleriyle (3.19) Pfaffian sisteminin
çözümleri bire bir eşlenmektedir. Bu durumda (3.7) denkleminin bir yerel çözümü,

pr : Jk → R× R; pr(γ) = (x, y(x)) (3.20)

ile belirlenir.

Tanım 3.6. p0 = y olmak üzere Jk üzerinde tanımlı (3.15) diferansiyel 1-formlarına
kanonik kontakt formlar denir.C∞(Jk) halkası üzerinde (3.15) tarafından üretilen modüle
Jk üzerindeki kontakt sistem denir ve Ωk(R,R) ya da kısaca Ωk ile gösterilir.

3.2 Birinci mertebeden ADDler: E1

Yerel olarak R× R üzerinde verilen

dy
dx

= f(x, y) (3.21)

formundaki birinci mertebeden bir ADD J1 uzayında bir yüzey tanımlar:

E1 = {(x, y, p) ∈ J1 : p− f(x, y) = 0}. (3.22)

E1 denklemi yerel olarak
(x, y) 7→ (x, y, p = f(x, y)) (3.23)

grafiği ile verilir.

E1 üzerindeki bir γ eğrisinin (3.21) denkleminin bir çözümünü tanımlaması için
gerek ve yeter koşul J1 üzerindeki

η = dy − pdx (3.24)

kanonik kontakt formun
η|S = 0 (3.25)

Pfaffian denklemini sağlamasıdır. Burada S, γ eğrisinin görüntüsünü göstermektedir.
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3.3 İkinci mertebeden ADDler: E2

Yerel olarak J1(R,R) üzerinde verilen

d2y

dx2 = f (x, y, y′) (3.26)

formundaki bir ADD J2(R,R) uzayında 3-boyutlu bir manifold tanımlar:

E2 = {(x, y, p, q) ∈ J2 : q − f(x, y, p) = 0}. (3.27)

E2 denklemi yerel olarak

(x, y, p) 7→ (x, y, p, q = f(x, y, p)) (3.28)

grafiği ile verilir.

E2 üzerindeki bir γ eğrisinin (3.26) denkleminin bir çözümünü tanımlaması için
gerek ve yeter koşul J2 üzerindeki

η1 = dy − pdx η2 = dp− qdx (3.29)

kanonik kontakt formlarının

η1|S = 0

η2|S = 0
(3.30)

Pfaffian denklem sistemini sağlamasıdır. Burada S, γ eğrisinin görüntüsünü göstermek-
tedir.
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BÖLÜM 4

ADDlerin EĞRİLİK ÖZELLİKLERİ

4.1 E1 üzerinde Riemann yapısı

E1 yüzeyinin üzerinde tanımlı

ω1 = dx, ω2 = dy − fdx (4.1)

1-formları yerel olarak
e1 = ∂

∂x
+ f

∂

∂y
, e2 = ∂

∂y
(4.2)

vektör alanlarıyla tanımlanan çatı alanına dual olan eşçatı alanı tanımlar:

ωi(ej) = δi
j. (4.3)

E1 üzerinde
g1 = ω1 ⊗ ω1 + ω2 ⊗ ω2 (4.4)

Riemannian metriği ile birlikte (E1, g1) bir Riemann manifoldu olur ve (4.2) vektör alanları
E1 üzerinde bir ortonormal çatı alanı belirler:

g1(ei, ej) = δij. (4.5)

Burada ⊗ sembolü tensör çarpımını göstermektedir. α, β 1-formlarının tensör çarpımı

(α⊗ β)(X, Y ) = α(X)β(Y ), X, Y ∈ X(E1) (4.6)

şeklinde tanımlıdır. (x, y) yerel koordinatlarında (4.4) Riemann metriği

g1 = (1 + f 2)dx⊗ dx− f(dx⊗ dy + dy ⊗ dx) + dy ⊗ dy (4.7)
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halini alır. ∇, g ile uyumlu metrik bağlantı ise o zaman

dω1 = 0

dω2 = fyω
1 ∧ ω2

yapı denklemlerinden ∇ bağlantısının so(2,R)-değerli

θ =
 0 −fyω

2

fyω
2 0

 (4.8)

bağlantı formu ile

dω1 = −θ1
2 ∧ ω2

dω2 = −θ2
1 ∧ ω1, θ1

2 = −θ2
1 = −fyω

2.
(4.9)

yazılır. ∇ bağlantısının Gauss eğriliği

dθ2
1 = −Kω1 ∧ ω2, (4.10)

ile belirlenir. Burada K fonksiyonu

K = −(fx + ffy)y (4.11)

şeklinde tanımlıdır (Ok Bayrakdar & Bayrakdar, 2018).

Tanım 4.1. X ∈ X(E1) olsun. Eğer

∇XX = 0 (4.12)

ise o zaman X vektör alanının bir integral eğrisi E1 üzerinde bir jeodezik eğridir denir.

i, j = 1, 2 için ∇ei
ej kovaryant türevleri hesaplanırsa

∇e1e1 = 0
∇e1e2 = 0
∇e2e1 = fye2

∇e2e2 = −fye1.

(4.13)

elde edilir. (3.21) denkleminin bir çözüm eğrisinin 1-grafiği, e1 vektör alanının bir integral
eğrisi olduğundan aşağıdaki doğrudur (Ok Bayrakdar & Bayrakdar, 2018):

Önerme 4.1. Birinci mertebeden bir ADD’in bir çözüm eğrisinin 1-grafiği (E1, g1) üze-
rinde bir jeodezik eğridir.
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4.1.1 Sabit Eğrilikli Uzaylar

Sabit eğrilik uzaylar, izometri gruplarının maksimum boyutlu olduğu Riemann
manifoldlarıdır. Bu durumda Riemann metriğini tanımlayan eşçatı alanı rankı sıfır olan
bir eşçatı alanıdır. Başka bir deyişle, bahsi geçen eşçatı alanının yapı denklemleri belirli 3-
boyutlu Lie gruplarının Maurer-Cartan denklemlerini ifade eder, yani söz konusu Riemann
manifoldu yerel olarak bir Lie grubudur (Olver, 1995):

dω1 = −θ1
2 ∧ ω2

dω2 = −θ2
1 ∧ ω1

dθ1
2 = Kω1 ∧ ω2

yapı denklemleri göz önüne alınsın.

K = 0 ise o zaman

dω1 = −θ1
2 ∧ ω2

dω2 = −θ2
1 ∧ ω1

dθ1
2 = 0

denklemleri SE(2) Euclidyen grubun Maurer-Cartan denklemlerine karşılık gelir.

K = −1 ise o zaman

dω1 = −θ1
2 ∧ ω2

dω2 = −θ2
1 ∧ ω1

dθ1
2 = −ω1 ∧ ω2

denklemleri SL(2,R) özel lineer grubun Maurer-Cartan denklemlerine karşılık gelir.

K = 1 ise o zaman

dω1 = −θ1
2 ∧ ω2

dω2 = −θ2
1 ∧ ω1

dθ1
2 = ω1 ∧ ω2

denklemleri SO(3,R) özel ortogonal grubun Maurer-Cartan denklemlerine karşılık gelir.
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Bu özel durumlar aşağıdaki Burger denklemleriyle elde edilir:

fx + ffy = ζ(x) (K = 0)

fx + ffy = y + ζ(x) (K = −1) (4.14)

fx + ffy = −y + ζ(x) (K = 1)

Buradaki kısmi türevli diferansiyel denklemlerin karakteristik eğrileri, sırasıyla Ξ(x, y) =
ζ(x), Ξ(x, y) = y + ζ(x) ve Ξ(x, y) = −y + ζ(x) olmak üzere

dy
dx

= f(x, y) du
dx

= Ξ(x, y), (4.15)

denklem sistemi ile belirlenir. Bu denklemlerin çözümleri, karakteristikler yöntemiyle her
bir denklemin ilk integrallerinin (çözüm eğrisi boyunca türevi sıfır olan fonksiyonların)
kapalı fonksiyonları olarak elde edilebilse de, bazı lineer diferansiyel denklemler sabit
eğrilikli Riemann manifoldları tanımlarlar (Ok Bayrakdar & Bayrakdar, 2018):

Lemma 4.1.
dy
dx

+ p(x)y = q(x) (4.16)

denklemine karşılık gelen Riemann manifoldunun Gauss eğriliğinin sıfır (K = 0) olması
için gerek ve yeter koşul p’nin

dp
dx

= p2 (4.17)

denkleminin bir çözümü olmasıdır. Ayrıca,
dp
dx

= p2 ve q(x) fonksiyonu (4.16) denklemi-
nin bir integrasyon çarpanı ise o zaman f

fx + ffy = 0

Burger denklemini sağlar.

Lemma 4.2. (4.16) denklemine karşılık gelen Riemann manifoldunun Gauss eğriliğinin
K = ∓1 olması için gerek ve yeter koşul

dp
dx

= p2 ± 1 (4.18)

olmasıdır.
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4.2 E2 üzerinde Riemann yapısı

E2 üzerinde yerel olarak tanımlı

ω1 = dx

ω2 = dy − pdx

ω3 = dp− fdx

1-formları
e1 = ∂

∂x
+ p

∂

∂y
+ f

∂

∂p
, e2 = ∂

∂y
, e3 = ∂

∂p
, (4.19)

vektör alanlarıyla belirlenen (e1, e2, e3) çatı alanına dual olan eşçatı alanıdır. E2 üzerinde

g2 =
∑

i

ωi ⊗ ωi, (4.20)

Riemann metriği tanımlanırsa o zaman E2 bir Riemann manifoldu olur ve (E2g2) ile
gösterilir. Bu durumda (e1, e2, e3) çatı alanı E2 üzerinde bir ortonormal çatı alanı tanımlar.
(x, y, p) yerel koordinatlarında (4.20) Riemann metriği

g2 = (1 + p2 + f 2)dx⊗ dx− p(dx⊗ dy + dy ⊗ dx)

− f(dx⊗ dp+ dp⊗ dx) + dy ⊗ dy + dp⊗ dp.
(4.21)

ile verilir. (ω1, ω2, ω3) eşçatı alanının yapı denklemleri

dω1 = 0

dω2 = ω1 ∧ ω3 (4.22)

dω3 = fyω
1 ∧ ω2 + fpω

1 ∧ ω3

olarak elde edilir. (E2, g2) Riemann manifoldu üzerinde ∇ bağlantısının so(3,R)-değerli
bağlantı formunu bulmak için

α ∧ ω2 + β ∧ ω3 = 0

−α ∧ ω1 + γ ∧ ω3 = ω1 ∧ ω3

−β ∧ ω1 − γ ∧ ω2 = fyω
1 ∧ ω2 + fpω

1 ∧ ω3

(4.23)

denklem sistemi Cartan’ın Lemması kullanılarak çözülürse

θ =


0 −α −β
α 0 −γ
β γ 0

 (4.24)
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matrisi elde edilir. Burada α, β and γ sırasıyla

α = 1
2(fy + 1)ω3

β = 1
2(fy + 1)ω2 + fpω

3

γ = −1
2(fy − 1)ω1

(4.25)

şeklinde tanımlı 1-formlardır (Bayrakdar & Ergin, 2018; Ok Bayrakdar & Bayrakdar,
2019). θ bağlantı formunun eğrilik 2-formu

Ω1
2 = −1

2

(3
2f

2
y + fy − 1

2

)
ω1 ∧ ω2 − 1

2fyyω
2 ∧ ω3

− 1
2 ((fx + ffp)y + fyfp + pfyy)ω1 ∧ ω3

Ω1
3 = −1

2 ((fx + ffp)y + fyfp + pfyy)ω1 ∧ ω2 − 1
2fypω

2 ∧ ω3

− 1
2

(
fy − 1

2f
2
y + 3

2 + 2pfyp + 2(fx + ffp)p

)
ω1 ∧ ω3

Ω2
3 = −1

2fyyω
1 ∧ ω2 − 1

2fypω
1 ∧ ω3 + 1

2

(1
2(fy + 1)2

)
ω2 ∧ ω3

(4.26)

olarak elde edilir. Buna göre Ri
jkl, Riemann eğrilik tensörünün bağımsız bileşenleri

R1
212 = −1

2

(3
2f

2
y + fy − 1

2

)
R1

213 = −1
2 ((fx + ffp)y + fyfp + pfyy)

R1
223 = −1

2fyy

R1
313 = −1

2

(
fy − 1

2f
2
y + 3

2 + 2pfyp + 2(fx + ffp)p

)
R1

323 = −1
2fyp

R2
323 = 1

4(fy + 1)2

(4.27)

ile belirlenir. Bir noktada, teğet demetin (e1, e2), (e1, e3), (e2, e3) ortonormal vektör alan
çiftleriyle belirlenen 2-boyutlu altuzaylarının kesitsel eğrilikleri sırasıyla R1

212, R1
313 ve

R2
323 ile belirlenir. Riemann eğrilik tensörünün tüm bileşenlerinin sıfıra eşit olması için

gerek ve yeter koşulu bulmak için R1
212, R1

313 ve R2
323 kesitsel eğriliklerinin sıfıra eşit

olması için gerek ve yeter koşulu belirlemek yeterlidir. R1
212 = R1

313 = R2
323 = 0 ancak ve
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ancak

3
2f

2
y + fy − 1

2 = 0

fy − 1
2f

2
y + 3

2 + 2pfyp + 2(fx + ffp)p = 0

(fy + 1)2 = 0.

(4.28)

Buradaki son denklemden
fy = −1 (4.29)

elde edilir. fy = −1 için (4.28) sistemindeki ilk denklem idantik olarak sağlanır. Buradan

f = −y + A(x, p), A ∈ C∞(E2) (4.30)

elde edilir. Bu durumda

R1
212 = R1

223 = R1
323 = R2

323 = 0 (4.31)

elde edilir. Riemann eğrilik tensörünün geriye kalan bileşenlerinin sıfıra eşit olması için
gerek ve yeter koşul A, (4.30) fonksiyonunda yerine yazılırsa

Ap = 0 (4.32)

yani
A(x, p) = A(x) (4.33)

olmasıdır. Sonuç olarak aşağıdaki teorem kanıtlanmış olur.

Teorem 4.1.
d2y

dx2 + y − A(x) = 0 (4.34)

formundaki bir ADD için Riemann eğrilik tensörünün tüm bileşenleri sıfıra eşittir yani
(E2, g2) manifoldu bir düz uzaydır.

4.2.1 Sabit pozitif eğrilikli uzaylar

Tanım 4.2. ∇ bir π : E → M vektör demeti üzerinde bir bağlantı olsun. Bir {X, Y }
vektör alanı çiftine

R(X, Y ) = ∇X∇Y − ∇Y ∇X − ∇[X,Y ] (4.35)

operatörünü karşılık getiren dönüşüme ∇ bağlantısının eğriliği denir (Morita, 2001).

s ∈ Γ (E) olmak üzere

R(X, Y )(s) = ∇X∇Y s− ∇Y ∇Xs− ∇[X,Y ]s (4.36)
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ile verilir. Bağlantının tamını gereği R(X, Y )(s)’de π : E → M vektör demetinin bir
kesitidir, yani R(X, Y )(s) ∈ Γ (E). Buna göre ∇ bağlantısının eğriliği

R : X(M) × X(M) × Γ (E) → Γ (E)

(X, Y, s) 7→ R(X, Y )(s)
(4.37)

dönüşümü tanımlar. (M, g) bir Riemann manifoldu ve E = TM ise o zaman X, Y, Z ∈
X(M) olmak üzere ∇ Riemann bağlantısının eğriliği

R(X, Y )Z = ∇X∇YZ − ∇Y ∇XZ − ∇[X,Y ]Z (4.38)

ile verilir.
g(R(X, Y )Z,W ) (4.39)

şeklinde tanımlı tensöre Riemann eğrilik tensörü adı verilir. (Boothby, 1986). e =
(e1, . . . , en) ortonormal çatı alanı olmak üzere Riemann eğrilik tensörünün bileşenleri1

R(ej, ek)el =
∑

i

R i
j klei (4.40)

ile belirlenir.

Tanım 4.3. (M, g) bir Riemann manifoldu ve σ ⊂ TpM bir p ∈ M noktasında 2-boyutlu
bir altuzay olsun. σ’nın herhangi bir {u, v} tabanı için

K(σ) = K(u, v) = g(R(u, v)u, v)
g(u,u)g(v, v) − (g(u, v))2 (4.41)

şeklinde tanımlı K(σ) reel sayısına σ’nın p noktasındaki kesitsel eğriliği denir. Kesitsel
eğrilik {u, v} tabanının seçiminden bağımsızdır (Do Carmo, 1992).

Açıklama 4.1. σ’nın bir {u1,u2} ortonormal tabanı seçilirse o zaman

K(σ) = g(R(u1,u2)u1,u2) (4.42)

ile hesaplanır.

Tanım 4.4. M bir Riemannian manifoldu olmak üzere tüm kesitsel eğrilikler tüm nok-
talarda aynı sabit değere eşitse o zaman söz konusu manifolda sabit eğrilikli uzay denir
(Boothby, 1986).

Bir diğer ifade ile σ ⊂ TpM düzleminin K(σ) kesitsel eğriliği tüm p ∈ M

noktaları ve tüm σ düzlemleri için aynı Ko = K(σ) sabit değerine eşitse o zaman M
Riemann manifolduna bir sabit eğrilikli uzay denir.

1Bu tez çalışmasında uygunluk açısından R i
j kl verine Ri

jkl kullanılmıştır.
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Bir Riemann manifoldunun bir sabit eğrilikli uzay olup olmadığına karar vermek
için Riemann eğrilik tensörünü bir ortonormal çatı alanında belirlemek yeterlidir, bkz.
Sonuç 3.5, sayfa 96 (Do Carmo, 1992). Yani,denklemi tanımlayan manifold her E2 ⊂ TpM

için Ko = K(E2) olması için gerek ve yeter koşul her i ̸= j için

Rijij = −Rijji = Ko (4.43)

ve diğer tüm durumlarda
Rijkl = 0 (4.44)

olmasıdır. Bir ortonormal çatı alanına göre

Rijkl =
∑
m

δmiR
m
jkl = Ri

jkl (4.45)

şeklinde tanımlıdır.

R1
212 = −1

2

(3
2f

2
y + fy − 1

2

)
R1

313 = −1
2

(
fy − 1

2f
2
y + 3

2 + 2pfyp + 2(fx + ffp)p

)
(4.46)

R2
323 = 1

4(fy + 1)2,

eşitliklerinden
R1

212 = R1
313 = R2

323 = 1
4 (4.47)

olması için gerek ve yeter koşulun

fy = 0 ve (fx + ffp)p = −1 (4.48)

denklemlerinin sağlanması olduğu görülür. Buradaki ikinci denklemden

fx + ffp = −p+ C(x), C ∈ C∞(E2) (4.49)

elde edilir ve sonuç olarak aşağıdaki kanıtlanmış olur:

Teorem 4.2.
d2y

dx2 −B(x)dy
dx

− C(x) = 0 (4.50)

denklemine karşılık gelen (E2, g) Riemann manifoldu üzerinde

R1
212 = R1

313 = R2
323 = 1/4 (4.51)
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olması için gerek ve yeter koşul B’nin

dB
dx

= −(1 +B2) (4.52)

denkleminin bir çözümü olmasıdır. Bu durumda, Riemann eğrilik tensörünün diğer tüm
bileşenleri sıfıra eşit ve dolayısıyla (E2, g) sabit pozitif eğrilikli bir uzaydır.
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BÖLÜM 5

ADDlerin METRİK EŞDEĞERLİĞİ

Bu bölümdeki amaç ADDlerin tanımlandığı Riemann metriklerinin eşdeğerlik
problemini ele almaktır. Söz konusu problem önce birinci mertebeden ADDler için ta-
nımlanarak problemin çözümü elde edilecektir. Buradaki yaklaşım olduğu gibi ikinci
mertebenden ADDlerin eşdeğerlik problemine adapte edilecektir.

5.1 Birinci Mertebeden ADDlerin Metrik Eşdeğerliği

Sırasıyla R2’nin U ve U açık kümeleri üzerinde verilen iki

dy
dx

= f(x, y) (5.1)

dȳ
dx̄

= f̄(x̄, ȳ) (5.2)

ADDnin bir
Φ : U → U ; (x, y) 7→ (ϕ(x, y), ψ(x, y)) (5.3)

yerel difeomorfizma sınıfı (koordinat dönüşümleri) altındaki eşdeğerliğini incelemek için
U ve U üzerinde ω

1 = dx

ω2 = dy − fdx
(5.4)

ω̄
1 = dx̄

ω̄2 = dȳ − f̄dx̄
(5.5)

1-formları göz önüne alınsın. Ele alınan problemi ifade eden aşağıdaki tanımı vermek
yerinde olacaktır.
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Tanım 5.1. Eğer
Φ∗ω̄2 = λω2 (5.6)

ve ∑
i

Φ∗ω̄i ⊗ Φ∗ω̄i =
∑

i

ωi ⊗ ωi (5.7)

olacak şekilde bir (5.3) difeomorfizma sınıfı varsa o zaman (5.1) ve (5.2) denklemleri
metrik olarak eşdeğerdir denir.

Sadelik açısından geri-çekme (pullback) notasyonu bir kenara bırakılıp

Φ∗ω̄i = ai
1ω

1 + ai
2ω

2 (5.8)

yerine
ω̄i = ai

1ω
1 + ai

2ω
2 (5.9)

yazılsın. Burada aj
i ∈ C∞(U). O zaman açık olarak

ω̄1 = (ϕx + fϕy)ω1 + ϕyω
2

ω̄2 =
(
ψx + fψy − (f̄ ◦ Φ)(ϕx + fϕy)

)
ω1 + (ψy − (f̄ ◦ Φ)ϕy)ω2

(5.10)

elde edilir.
f̄ ◦ Φ = dȳ

dx̄
= ψx + fψy

ϕx + fϕy

(5.11)

dönüşüm kuralı kullanılarak

ω̄1 = (ϕx + fϕy)ω1 + ϕyω
2

ω̄2 = (ψy − (f̄ ◦ Φ)ϕy)ω2
(5.12)

bulunur. ω2 = 0 iken ω̄2 = 0 olacağından bir (5.3) difeomorfizması çözüm eğrilerini
çözüm eğrilerine taşıyacaktır. Bir diğer ifade ile tanımda verilen (5.6) koşulu sağlanacaktır.
(5.12) 1-formları

ω̄1 ⊗ ω̄1 + ω̄2 + ω̄2 = ω1 ⊗ ω1 + ω2 ⊗ ω2 (5.13)

koşulunda yerine yazılırsa o zaman

(ϕx + fϕy)2 = 1

ϕy(ϕx + fϕy) = 0

(ψy − (f̄ ◦ Φ)ϕy)2 = 1.

(5.14)

elde edilir. İlk iki denklemden ϕy = 0 ve (ϕx)2 = 1 bulunur. Bu denklemler integre
edilirse

ϕ(x, y) = ±x+ c0 c0 ∈ R (5.15)
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bulunur. Bu eşitlik üçüncü denklemde yerine yazılırsa

ψ(x, y) = ±y + y0(x) y0 ∈ C∞(U) (5.16)

bulunur. Ancak (5.3) difeomorfizma sınıfının Jacobian matrislerinin GL(2,R) grubunun
bir altgrubunu oluşturması için

ϕ(x, y) = x+ c0

ψ(x, y) = y + y0(x)
(5.17)

eşitlikleri sağlanmak zorundadır. Sonuç olarak aşağıdaki teorem kanıtlanmış oldu.

Teorem 5.1. (5.1) ve (5.2) denklemlerinin bir (5.3) difeomorfizma sınıfı altında metrik ola-
rak eşdeğer olabilmesi için gerek ve yeter koşul diffeomorfizma sınıfının (5.17) formunda
olmasıdır.

5.2 İkinci Mertebeden ADDlerin Metrik Eşdeğerliği

Birinci mertebeden ADDlerin eşdeğerlik probleminde ortaya çıkan difeomorfizma
sınıfı lifleri koruyan diffeomorfizmalardan yani

Φ : (x, y) 7→ (ϕ(x), ψ(x, y)) (5.18)

formundaki difeomorfizmalardan oluştuğu için ikinci mertebeden ADDlerin metrik eş-
değerlik problemi de (5.18) difeomorfizma sınıfı için ele alınacaktır. (5.18), J1(R,R)
üzerinde

Φ1 : J1(R,R) → J1(R,R); (x, y, p) 7→ (x̄, ȳ, p̄) (5.19)

bir diffeomorfizma sınıfı tanımlar. Burada

x̄ = ϕ(x)

ȳ = ψ(x, y)

p̄ = ψx + ψyp

ϕx

(5.20)

şeklinde tanımlıdır. (x, y, p) ve (x̄, ȳ, p̄) koordinatlarında

y′′ = f(x, y, y′) (5.21)

ȳ′′ = f̄(x̄, ȳ, ȳ′) (5.22)
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denklemlerini temsil eden 
ω1 = dx

ω2 = dy − pdx

ω3 = dp− fdx

(5.23)

ve 
ω̄1 = dx̄

ω̄2 = dȳ − p̄dx̄

ω̄3 = dp̄− f̄dx̄

(5.24)

dış diferansiyel sistemleri göz önüne alınsın.

Tanım 5.2. Eğer
Φ1∗

ω̄2 = αω2, Φ1∗
ω̄3 = βω2 + γω3 (5.25)

ve ∑
i

Φ1∗
ω̄i ⊗ Φ1∗

ω̄i =
∑

i

ωi ⊗ ωi (5.26)

olacak şekilde bir (5.18) difeomorfizma sınıfı varsa o zaman (5.21) ve (5.22) denklemleri
metrik olarak eşdeğerdir denir.

(5.24) 1-formlarının Φ1 ile geri çekilmesi, yine geri-çekme notasyonu ihmal edi-
lerek,

ω̄1 = ϕxω
1

ω̄2 = (ψx + pψy − (p̄ ◦ Φ1)ϕx)ω1 + ψyω
2

ω̄3 = (p̄x + pp̄y + fp̄p − (f̄ ◦ Φ1)ϕx)ω1 + p̄yω
2 + p̄pω

3

(5.27)

şeklinde yazılır.
p̄ ◦ Φ = dȳ

dx̄
= ψx + pψy

ϕx

(5.28)

ve
f̄ ◦ Φ1 = dp̄

dx̄
= dp̄

dx
dx
dx̄

= (p̄x + pp̄y + fp̄p) /ϕx (5.29)

olduğundan (5.27) şu hale gelir:

ω̄1 = ϕxω
1

ω̄2 = ψyω
2

ω̄3 = p̄yω
2 + p̄pω

3.

(5.30)
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Burada

p̄y = ψxy + pψyy

ϕx

p̄p = ψy

ϕx

(5.31)

şeklinde tanımlıdır.

a = ϕx

b = ψy

c = ψxy + pψyy

ϕx

(5.32)

tanımlanırsa o zaman

ω̄1 = aω1

ω̄2 = bω2

ω̄3 = cω2 + (b/a)ω3.

(5.33)

elde edeilir. (5.33) denklem sisteminden, lifleri koruyan diffeomorfizmaların ω2 ve ω3 ile
üretilen kontakt ideali koruduğu yani (5.25) koşulunun sağlandığı görülür. Bir diğer ifade
ile

ω2 = 0 ve ω3 = 0 =⇒ ω̄2 = 0 ve ω̄3 = 0. (5.34)

(5.33) 1-formları (5.26) koşulunda yani

ω̄1 ⊗ ω̄1 + ω̄2 ⊗ ω̄2 + ω̄3 ⊗ ω̄3 = ω1 ⊗ ω1 + ω2 ⊗ ω2 + ω3 ⊗ ω3

eşitliğinde yerine yazılırsa o zaman

a2 = 1

b2 + c2 = 1
cb

a
= 0

b2

a2 = 1

(5.35)

elde edilir. Buradan şu söylenir: (5.25) ve (5.26) koşullarının sağlanması için gerek ve
yeter koşul (5.35) sisteminin sağlanmasıdır. Buradan

a = ±1, b = ±1, c = 0 (5.36)

olduğu görülür. Birinci mertebeden ADDlerin eşdeğerlik probleminde ortaya konulduğu
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gibi (5.19) difeomorfizma sınıfının Jacobian matrislerinin kümesininGL(3,R) grubunun
bir altgrubu olması için

a = 1, b = 1, c = 0 (5.37)

olmak zorundadır. (5.32) sisteminden

ϕ(x) = x+ c0

ψ(x, y) = y + y0(x)
(5.38)

elde edilir.

Teorem 5.2. (5.21) ve (5.22) denklemlerinin bir (5.18) difeomorfizma sınıfı altında met-
rik olarak eşdeğer olabilmesi için gerek ve yeter koşul diffeomorfizma sınıfının (5.38)
formunda olmasıdır.
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BÖLÜM 6

SONUÇLAR

k. mertebeden bir ADD Jk(R,R) uzayında

Ek =
{
jk

x0ρ ∈ Jk : x0 ∈ I, F (jk
x0ρ) = 0

}
(6.1)

şeklinde bir manifold tanımlar.

ηj = dpj−1 − pjdx j = 1, 2, . . . , k (6.2)

olmak üzere

gk = dx⊗ dx+
k∑

i=1
ηj ⊗ ηj (6.3)

Riemann metriği ile birlikte bu manifold bir Riemann manifoldu olur. Bu tez çalışması
kapsamında birinci ve ikinci mertebeden ADDlerin Riemann geometrisi ele alınmıştır.
Birinci mertebeden

dy
dx

= f(x, y) (6.4)

formundaki bir ADDnin Gauss eğriliği

K = −(fx + ffy)y (6.5)

ile verilir ve

fx + ffy = ζ(x)

fx + ffy = y + ζ(x)

fx + ffy = −y + ζ(x)

(6.6)
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için söz konusu manifoldun Gauss eğriliği sırasıylaK = 0,K = 1 veK = −1 değerlerine
eşittir (Ok Bayrakdar & Bayrakdar, 2018).

d2y

dx2 + y − A(x) = 0 (6.7)

formundaki ikinci mertebeden bir ADDnin tanımladığı Riemann manifoldu üzerindeki
eğrilik 2-formun tüm bileşenleri sıfıra eşittir ve dolayısıyla söz konusu manifold bir düz
uzaydır.

d2y

dx2 − tan xdy
dx

−B(x) = 0 (6.8)

formundaki ikinci mertebeden bir ADDnin tanımladığı Riemann manifoldu sabit pozitif
eğrilikli bir uzaydır. Birinci ve ikinci mertebeden ADDlerin eşdeğerlik problemi, Riemann
metriğini ve kontakt ideali koruyan bir difeomeorfizma sınıfı altındaki eşdeğerlik problemi
olarak tanımlanlandığında söz konusu ADDler ancak

(x, y) 7→ (x+ c0, y + y0(x)) (6.9)

formunda bir difeomorfizm sınıfı altında eşdeğer olabilmektedir.
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