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ABSTRACT

One of the most major concern, in the last decades is to minimize the deteriorating effect
of the ecological system resulting from uncontrolled industrialization process and
urbanization. This issue is essential in preserving and improving the quality of life for the

next generations.

Scientists have developed mathematical and statistical tools in order to cope with the

detection of pollution and remediation of polluted areas.

This thesis involves the performance evaluation of the conventional techniques, which are
utilized in locating the contaminated zones by testing them on sites with different
characteristics. These techniques are as follows;

o Kriging

o  Minimum Curvature

o Radial Basis Function

o Shepard’s Method

o Triangulation

A further contribution of this work is development of a novel site assessment technique,
which is based on fuzzy evaluation zones. Numerical experiments are conducted to

demonstrate and compare efficiency of these techniques.
In the last phase of the experiments Kriging, Minimum Curvature, Radial Basis and

Shepard’s method are tested according to their robustness to the experimental and

evaluation errors.
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OZET

Son on yil igerisinde énemi giin gectikce artan konulardan bir tanesi de plansiz ve
kontrolsiiz gehirlesme ve sanayilesmenin neticesinde bozulmakta olan ekolojik sistemin
zararlarini en aza indirgemek olmustur. Bu konu; gelecek nesillerin yasam standardlarinin

korunmasi ve geligtirilmesinin ayrilmaz bir pargasidir.

Bilim adamlari kirlenmig bolgelerin tesbiti ve tekrar kullamima agilmasi igin gesitli
matematiksel ve istatistiksel araglar ve methodlar gelistirmislerdir.

Bu tez galigmasi kirlenmis bdlgelerin tesbitinde kullanilan geleneksel methodlarin,
degisik zelliklerdeki test bolgeleri tizerindeki performans analizlerini igermektedir. Tez
caligmasinda karsilastirilan methodlar asagidaki gibidir;

o Kriging

o  Minimum Curvature

o Radial Basis Fonksiyonu

o Shepard’s Metodu

o Triangulation

Bu galismada ayrica, bulanik mantik kullanan yeni bir bolgesel degerlendirme metodu
anlatilmus ve diger metodlarla birlikte test edilmistir.

Son etapta Kriging, Minimum Curvature, Radial Basis and Shepard’s metodlarinin
hatalara karg1 duyarliliklan test edilmis ve sonuglar degerlendirilmigtir.

XV



1. INTRODUCTION

After the years of rapid and unplanned urbanization and industrialization within the cities
nowadays the regional economy has been making the transition from heavy manufacturing
to more service-oriented sectors as a result of changing markets, international competition
and advances in production technologies. Many communities have experienced plant
downsizing and shutdowns as a result; leaving behind thousands of underused or

abandoned, and often contaminated, industrial sites, commonly known as "brownfields."

Land contamination is more likely to take place in metal mines, iron and steel works,
foundries, electroplating, anodising, and galvanizing works, engineering works such as
ship building and breaking sites, scrap yards; gas works, power stations, chemical works,
refineries, tar distilleries, waste disposal sites (contamination by asbestos). Obviously,
areas, which host diverse industries, are susceptible for land contamination. Hazardous
land contaminants such as arsenic, cadmium, chromium, lead, mercury and selenium
(which may also appear in sewage sludge) jeopardize agricultural land, domestic gardens,
allotments, parks, playing fields and open space. Sulphates, chloride, tarry substances,
phenols and mineral oils contaminate housing developments, commercial and industrial

buildings (Alloway, 1995).

The decades of hazardous wastes of 1980’s are considered to start with the incidents in
Lekkerkirk near Rotterdam, Netherlands and in Love Canal, USA in 1979 and 1980,
respectively (Alloway, 1995). The environmental problems in both of these incidents were
principally originated from the dirty legacy of past industries once situated on these lands.
The huge volume of efforts needed and very high costs incurred for the remediation of
these sites drew the attention to adverse environmental impacts of past anthropological
activities on the environment. Since 1986 (the year that the International Standardization
Organization established a technical committee to consider the standardization of soil
quality) the issue of contaminated land has been drawing more and more attention from all
concerned parties: from land owners to environmental professionals, from authorities to

lawmakers. As of today, contaminated land problems and related investigation and




remediation projects constitute a large portion of consulting services provided by

environmental professionals in Europe and in the U.S.

The conventional tools to detect the location of contaminated zones are usually selected
from geostatistical techniques (Zirschky and Harris, 1986) originally devised for detecting
natural resources (Isaaks and Srivastava, 1989) or geographical topology (Oliver and
Webster, 1990, Rosenbaum and Soderstrom, 1996). In general terms, geostatistical
techniques deduce attribute levels of unsampled locations from sample information
according to the relative spatial topology of samples and the interpolated locations. This
deduction is carried out by utilizing statistical relationships based on distance. A common

nomenclature for these approaches is * special interpolation methods (SIM)”.

However, in the context of land contamination, the assumptions which SIM are based on,
are difficult to validate in practice. Hence, there is a need for establishing the performance
of SIM in this field. The aim of this thesis is to conduct a numerical survey to evaluate and
compare the functionality of SIM in brownfields investigations. A new approach, which is
independent of the statistical assumptions (Ripley, 1981, Cressie, 1993), underlying some
SIM, is also developed here. This approaches partions the site under investigation
systematically in to smaller sections leading to a dynamic group assessment of sample

information. This approach is denoted as Fuzzy Areal Site Assessment (FASA) technique.

As suggested by its name this approach involves a fuzzy measure in evaluating the

potential of a given zone to contain contaminated spots.

In order to evaluate the performance of SIM and FASA, a test bed of hypothetical
contaminated sites are generated randomly according to predefined characteristics.
Performance is measured by two quantifiable criteria. These criteria are developed here
and indicate the precision of areal identification in terms of true and false positives namely,
correctly identified contaminated areas and misidentified areas. Furthermore, since all data
collection and analysis processes inevitably contain errors, the performance of SIM is also

assessed in the presence of noise.



However the numerical experiments concerning noise are conducted by using
mathematical functions rather than randomly generated hypothetical sites. This is because
the former site evaluation method does not provide the precise comparison of the
contaminated zone. However in the case of noisy data the affect of noise on the
interpolated values at every location is of primary importance. Mathematical functions

naturally provide such a continuous test bed.

Finally, apart from investigating several site characterization techniques, some sampling
patterns acquired from the literature as well as the ones developed here are assessed during

numerical experiments.

The site characterization phase is the most crucial procedure prior to the remediation of an
area due to very high remediation costs involving the removal of contaminated land and its
replacement with clean re-fills. The experiments conducted in this thesis thus present an

important contribution to this area of research.



2 AREAL CONTAMINATION AND REMEDIATION

2.1 BRrownfields

After the years of rapid, unplanned urbanization and industrialization, the regional
economy of nowadays has been making the transition from heavy manufacturing to more
service-oriented sectors due to changing markets, international competition and advances
in production technologies. The consequences of this urbanization trend include traffic
congestion; air, water and noise pollution; contaminated soils; higher housing costs;
disinvestment in older communities and related social disruption; loss of wildlife habitat,
agricultural lands and other open spaces; and heightened infrastructure investment
requirements. Therefore many communities have experienced plant downsizing and
shutdowns leaving behind thousands of underused or abandoned, and often contaminated,

industrial sites or commonly known as "brownfields."

The U.S. Environmental Protection Agency (EPA) has defined brownfields as abandoned,
idled, or under-used industrial and commercial facilities where expansion or
redevelopment is complicated by real or perceived environmental contamination. Preparing
brownfields for productive reuse requires the integration of many elements; financial
issues, community involvement, liability considerations, environmental assessment and
cleanup. The assessment and cleanup of a site must be carried out in a way that integrates
all those factors into the overall redevelopment process. In addition, the cleanup strategy
will vary from site to site. At some sites, cleanup will be completed before the property is
transferred to new owners. At other sites, cleanup may take place simultaneously with
construction and redevelopment activities. Regardless of when and how cleanup is
accomplished, the challenge to any Brownfields program is to cleanup sites quickly and

redevelop the land in ways that benefit communities and local economies.

In developed countries, innovative technologies are being used in many cleanup programs
to assess contamination and treat a variety of hazardous substances and petroleum products

that have been released into the environment.
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Land contamination is more likely to take place in metal mines, iron and steel works,
foundries, electroplating, anodising, and galvanizing works, engineering works such as
ship building and breaking sites, scrap yards; gas works, power stations, chemical works,
refineries, tar distilleries, waste disposal sites (contamination by asbestos). Obviously,
areas which host diverse industries are susceptible for land contamination. Hazardous land
contaminants such as arsenic, cadmium, chromium, lead, mercury and selenium (which
may also appear in sewage sludge) jeopardize agricultural land, domestic gardens,
allotments, parks, playing fields and open space. Sulphates, chloride, tarry substances,
phenols and mineral oils contaminate housing developments, commercial and industrial
buildings. (Alloway, 1995)

In brownfields, particularly ones that are located in central urban areas, redevelopment is
sometimes not possible for a variety of reasons, including high cleanup costs, unclear
cleanup standards, which encourage development to migrate to outlying areas or

undeveloped "greenfields."
2.2 Site Assessmemnt

The purpose of this step is to determine the likelihood of contamination at a particular site
by collecting and reviewing applicable information about a site. This “environmental
audit” is an initial investigation that usually is limited to a search of historical records. The
data to be collected also include information about past and current environmental
conditions and historical uses of the site. During the site assessment phase, it is important
to consider the activities and requirements described in the subsequent chapters and
determine how they can be combined with or initiated during the site assessment. The
collection of data during this initial step of the cleanup process is extremely important for
use in identifying and evaluating the applicability of site assessment and cleanup
technologies, as well as in determining whether the property can be cleaned to the level
necessary for its intended reuse. It also is essential to assess and address the needs and
concerns of the community (for example, the development of social and economic profiles

and the identification of acceptable environmental risk).



To ensure that sufficient data are collected, the potential applicability of innovative
technologies to the site also should be considered. Since much of the work at this stage
involves a search of hard and soft copies of records, applicable technology options may be

somewhat limited.

Factors that should be considered during this phase include:

1. What is known about the site? What records exist that indicate potential contamination

and past use of the property? Have other environmental actions occurred (such as notices

of violation)? Has an environmental audit been conducted? What level of site assessment is
needed to identify the types and extent or the absence of contamination?

2. Is the site located in an area targeted for redevelopment?

3. Are there governmental or private requirements for site assessment? Is there a
voluntary cleanup program (VCP)? (U.S. Environmental Protection Agency, Road Map
to Understanding Innovative Technology Options for brownfields Investigation and
Cleanup, 1997)

2.3 Site Imvestigation (Identify the Source, Nature, and Extent of Contamination):

This phase focuses on identifying, locating, and characterizing the nature and extent of
contamination at a site. It is essential that an appropriately detailed study of the site be
performed to identify the cause, nature, and extent of contamination and the possible
threats to the environment or to any people living or working nearby. For brownfields, the
results of such a study can be used in determining goals for cleanup, quantifying risks,
determining acceptable and unacceptable risks, and developing cleanup plans that do not

cause unnecessary delays in the remediation and reuse of property.

A site investigation is based on the results of the site assessment, which is discussed in the
preceding section. The site investigation phase may include the analysis of samples of soil
and soil gas, groundwater, surface water, and sediment. According to the risk factors
identified in the historical survey, the number of samples collected for various
contaminants are determined considering the possible interactive effects of contaminants.
Next, the pattern of the sampling strategy is decided on. The criterion for the selection of

the sampling pattern is particularly obtaining a uniform cover of the site with minimum



risk of missing contaminated zones. Once the samples are collected, laboratory analysis
follows. Considering possible sampling and analysis errors, the distribution of
contaminants is attempted to be identified so that the site can be remediated. The main
concern of this thesis is to determine the effects of different spatial interpolation methods
on the identification of the contaminant dispersion map considering different sampling

strategies.

The migration pathways of contaminants also are examined during the later phase, and a
baseline risk assessment may be needed to calculate risk to human health and the
environment. (U.S. Environmental Protection Agency, Road Map to Understanding
Innovative Technology Options for brownfields Investigation and Cleanup, 1997)

2.4 Brownfields Remediatiom

New life is what land recycling offers these debilitated and seemingly undesirable places.
With infrastructure already in place, or access to a nearby workforce, brownfields provide

an opportunity for more efficient and more sustainable development.

However because of the position and location of these brownfields they cannot be easily
extracted from the future planning of the city. In the near future these areas should be
considered as the potential areas for the new city regions or in other words “the city of
tomorrow”. (U.S. Environmental Protection Agency, Road Map to Understanding
Innovative Technology Options for brownfields Investigation and Cleanup, 1997)

The purpose of screening various technologies is to evaluate those technologies for their
capability to meet specific cleanup and redevelopment objectives. For brownfields, it is
also important to consider budget requirements and to maintain a work schedule so that the

project remains profitable.



2.5 DBrownfields Remediation Methods ¢
2.5.1 Bioventing

Bioventing is a promising new technology that stimulates the natural in situ biodegradation
of any aerobically degradable compounds in soil by providing oxygen to existing soil
microorganisms. The technology is as follows oxygen is delivered to contaminated
unsaturated soils by forced air movement (either extraction or injection of air) to increase
oxygen concentrations and stimulate biodegradation. In contrast to soil vapor vacuum
extraction, bioventing uses low airflow rates to provide only enough oxygen to sustain
microbial activity. Oxygen is most commonly supplied through direct air injection into
residual contamination in soil. In addition to degradation of adsorbed fuel residuals,

volatile compounds are biodegraded as vapor move slowly through biologically active soil.
2.5.2 Enhanced bioremediation

In this remediation technique the activity of naturally occurring microbes is stimulated by
circulating water-based solutions through contaminated soils to enhance in situ biological
degradation of organic contaminants or immobilization of inorganic contaminants.

Nutrients, oxygen, or other amendments may be used to enhance bioremediation and

contaminants desorption from subsurface materials. There are two types of bioremediation

according to the oxygen dependency of the method.

o Aerobic: In the presence of sufficient oxygen (aerobic conditions), and other nutrient
elements, microorganisms will ultimately convert many organic contaminants to
carbon dioxide, water, and microbial cell mass.

o Anaerobic: In the absence of oxygen (anaerobic conditions), the organic contaminants
will be ultimately metabolised to methane, limited amounts of carbon dioxide, and

trace amounts of hydrogen gas.
2.5.3 Land treatment

In land treatment contaminated surface soil is treated in place by tilling to achieve aeration,
and if necessary, by addition of amendments. Periodically tilling, to acrate the waste,
enhances the biological activity. Land Treatment is a full-scale bioremediation technology



in which contaminated soils, sediments, or sludges are turned over (i.e., tilled) and allowed
to interact with the soil and climate at the site. The waste, soil, climate, and biological
activity interact dynamically as a system to degrade, transform, and immobilise waste

constitutes. Wastes are periodically tilled to acrate the waste.
2.5.4 Natural attenuation in soils

Natural processes - such as dilution, dispersion, volatilization, biodegradation, adsorption,
and chemical reactions with soil materials - are allowed to reduce contaminant
concentrations to acceptable levels. Surface and subsurface soils have different
characteristics in natural attenuation. Mobile contaminants in subsurface soils diffuse into
soil vapor and aqueous phase and thus are relatively easily subject to natural subsurface
processes that can attenuate these contaminants. Most high molecular weight (persistent)
organic and many inorganic contaminants will be immobilised in the subsurface soil
matrix. These persistent organic contaminants often are difficult to degrade and the
inorganic metals are conserved. Without probable exposure routes, however, they do not
represent significant risk unless unlikely events such as fresh solvent releases, chemical or
biochemical transformation or physical disturbances that increase their mobility or open
exposure routes. Thus natural attenuation in subsurface soils may be considered on a site-

specific-basis as a possible remedy.
2.5.5 Phytoremediation

Phytoremediation is a process that uses plants to remove, transfer, stabilise, and destroy
contaminants in soil and sediment. Contaminants may be either organic or inorganic. The
mechanisms of phytoremediation include enhanced rhizosphere biodegradation, phyto-
extraction (also called phyto-accumulation), phyto-degradation, and phyto-stabilization.

2.5.6 Electrokinetic separation

The Electrokinetic Remediation (ER) process removes metals and organic contaminants
from low permeability soil, mud, sludge, and marine dredging. ER uses electrochemical

and electrokinetic processes to desorb, and then remove, metals and polar organics. This in
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situ soil processing technology is primarily a separation and removal technique for

extracting contaminants from soils.

The principle of electrokinetic remediation relies upon application of a low-intensity direct
current through the soil between ceramic electrodes that are divided into a cathode array
and an anode array. This mobilizes charged species, causing ions and water to move
toward the electrodes. Metal ions, ammonium ions, and positively charged organic
compounds move toward the cathode. Anions such as chloride, cyanide, fluoride, nitrate,
and negatively charged organic compounds move toward the anode. The current creates an
acid front at the anode and a base front at the cathode. This generation of acidic condition
in situ may help to mobilize sorbed metal contaminants for transport to the collection

system at the cathode.
2.5.7 Fracturing

Cracks are developed by fracturing beneath the surface in low permeability and over-
consolidated sediments to open new passageways that increase the effectiveness of many

in situ processes and enhance extraction efficiencies.

Fracturing is an enhancement technology designed to increase the efficiency of other in
situ technologies in difficult soil conditions. The fracturing extends and enlarges existing
fissures and introduces new fractures, primarily in the horizontal direction. When
fracturing has been completed, the formation is then subjected to vapor extraction, either
by applying a vacuum to all wells or by extracting from selected wells, while other wells
are capped or used for passive air inlet or forced air injection. Technologies commonly
used in soil fracturing include pneumatic fracturing (PF), blast-enhanced fracturing and

Lasagna process.

Blast-enhanced Fracturing: Blast-enhanced fracturing is a process used at sites with
fractured bedrock formations. The increased well yields, hydraulic conductivity values,
and capture zones occur as a result of the highly fractured area created by detonation of

explosives in boreholes.
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Lasagna Process: Lasagna is an integrated, in situ remedial technology, which combines
electroosmosis with treatment zones that are installed directly in the contaminated soil. In
Lasagna process, hydraulic fracturing is used to create sorption/degradation zones

horizontally in the subsurface soil.

Pneumatic Fracturing (PF): In the PF process, fracture wells are drilled in the contaminated
vadose zone and left open (uncased) for most of their depth. A packer system is used to
isolate small (0.6-meter or 2-foot) intervals so that short bursts (~20 seconds) of
compressed air (less than 10,300 mmHg or 200 pounds per square inch) can be injected
into the interval to fracture the formation. The process is repeated for each interval within

the contaminated depth.
2.5.8 Soil flushing

Water or water containing an additive to enhance contaminant solubility, is applied to the
soil or injected into the ground water to raise the water table into the contaminated soil
zone. Contaminants are leached into the ground water, which is then extracted and treated.

In situ soil flushing is the extraction of contaminants from the soil with water or other
suitable aqueous solutions. Soil flushing is accomplished by passing the extraction fluid
through in-place soils using an injection or infiltration process. Extraction fluids must be

recovered from the underlying aquifer and, when possible, they are recycled.
2.5.9 Soil vapor extraction

Vacuum is applied through extraction wells to create a pressure/concentration gradient that
induces gas-phase volatiles to be removed from soil through extraction wells. This
technology also is known as in situ soil venting, in situ volatilization, enhanced

volatilization, or soil vacuum extraction.

Soil vapor extraction (SVE) is an in situ unsaturated (vadose) zone soil remediation
technology in which a vacuum is applied to the soil to induce the controlled flow of air and
remove volatile and some semivolatile contaminants from the soil. The gas leaving the soil
may be treated to recover or destroy the contaminants, depending on local and state air
discharge regulations. Vertical extraction vents are typically used at depths of 1.5 meters (5
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feet) or greater and have been successfully applied as deep as 91 meters (300 feet).
Horizontal extraction vents (installed in trenches or horizontal borings) can be used as

warranted by contaminant zone geometry, drill rig access, or other site-specific factors.
2.5.10 In situ solidification/ stabilization

Contaminants are physically bound or enclosed within a stabilized mass (solidification), or
chemical reactions are induced between the stabilizing agent and contaminants to reduce
their mobility (stabilization). Solidification/stabilization (S/S) reduces the mobility of
hazardous substances and contaminants in the environment through both physical and
chemical means. Unlike other remedial technologies, S/S seeks to trap or immobilize
contaminants within their "host” medium (i.e., the soil, sand, and/or building materials that
coniain them), instead of removing them through chemical or physical treatment.
Leachability testing is typically performed to measure the immobilization of contaminants.
S/S techniques can be used alone or combined with other treatment and disposal methods
to yield a product or material suitable for land disposal or, in other cases, that can be
applied to beneficial use. These techniques have been used as both final and interim

remedial measures.
2.5.11 Thermally enhanced soil vapor extraction

Steam/hot air injection or electrical resistance/electromagnetic/fiber optic/radio frequency
heating is used to increase the volatilization rate of semi-volatiles and facilitate extraction.
Thermally enhanced SVE is a full-scale technology that uses electrical
resistance/electromagnetic/fiber optic/radio frequency heating or hot-air/steam injection to

increase the volatilization rate of semi-volatiles and facilitate extraction.
2.5.12 Biopiles

Excavated soils are mixed with soil amendments and placed in aboveground enclosures. It
is an aerated static pile composting process in which compost is formed into piles and

acrated with blowers or vacuum pumps.
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Biopile treatment is a full-scale technology in which excavated soils are mixed with soil
amendments and placed on a treatment area that includes leachate collection systems and
some form of aeration. It is used to reduce concentrations of petroleum constituents in
excavated soils through the use of biodegradation. Moisture, heat, nutrients, oxygen, and
pH can be controlled to enhance biodegradation.

2.5.13 Composting

Contaminated soil is excavated and mixed with bulking agents and organic amendments
such as wood chips, hay, manure, and vegetative (e.g., potato) wastes. Proper amendment
selection ensure adequate porosity amd provides a balance of carbon and nitrogen to

promote thermophilic, microbial activity.

Composting is a controlled biological process by which organic contaminants are
converted by microorganisms (under aerobic and amaerobic conditions) to innocuous,
stabilized by products. Typically, thermophilic conditions (54 to 65°C) must be maintained
to properly compost soil contaminated with hazardous organic contaminants. The
increased temperatures result from heat produced by microorganisms during the
degradation of the organic material in the waste. In most cases, this is achieved by the use
of indigenous microorganisms. Soils are excavated and mixed with bulking agents and
organic amendments, such as wood chips, animal, and vegetative wastes, to enhance the
porosity of the mixture to be decomposed. Maximum degradation efficiency is achieved
through maintaining oxygenation (e.g., daily windrow turning), irrigation as necessary, and

closely monitoring moisture content, and temperature.
2.5.14 Fungal biodegradation

Fungal biodegradation refers to the degradation of a wide variety of organopollutants by
using their lignin-degrading or wood-rotting enzyme system. White rot fungas has been
tested under two different treatment configurations: in situ and bioreactor.
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2.5.15 Landfarming

Contaminated soil, sediment, or sludge is excavated, applied into lined beds, and
periodically turned over or tilled to aerate the waste. Landfarming is a full-scale
bioremediation technology, which usually incorporates liners and other methods to control
leaching of contaminants, which requires excavation and placement of contaminated soils,
sediments, or sludges. Contaminated media is applied into lined beds and periodically

turned over or tilled to aerate the waste.

2.5.16 Slurry Phase Biological Treatment

An aqueous slurry is created by combining soil, sediment, or sludge with water and other
additives. The slurry is mixed to keep solids suspended and microorganisms in contact
with the soil contaminants. Upon completion of the process, the slurry is dewatered and the
treated soil is disposed of.

Slurry phase biological treatment involves the controlled treatment of excavated soil in a
bioreactor. The excavated soil is first processed to physically separate stones and rubble.
The soil is then mixed with water to a predetermined concentration dependent upon the
concentration of the contaminants, the rate of biodegradation, and the physical nature of
the soils. Some processes pre-wash the soil to concentrate the contaminants. Clean sand
may then be discharged, leaving only contaminated fines and washwater to biotreat.

Typically, a slurry contains from 10 to 30% solids by weight.

The solids are maintained in suspension in a reactor vessel and mixed with nutrients and
oxygen. If necessary, an acid or alkali may be added to control pH. Microorganisms also
may be added if a suitable population is not present. When biodegradation is complete, the
soil slurry is dewatered. Dewatering devices that may be used include clarifiers, pressure

filters, vacuum filters, sand drying beds, or centrifuges.
2.5.17 Chemical extraction

Waste contaminated soil and extractant are mixed in an extractor, dissolving the

contaminants. The extracted solution is then placed in a separator, where the contaminants
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and extractant are separated for treatment and further use. Chemical extraction does not
destroy wastes but is a means of separating hazardous contaminants from soils, sludges,
and sediments, thereby reducing the volume of the hazardous waste that must be treated.
The technology uses an Extracting chemical and differs from soil washing, which
generally uses water or water with wash-improving additives. Commercial-scale units are
in operation. They vary in regard to the Chemical employed, type of equipment used, and

mode of operation.

Physical separation steps are often used before chemical extraction to grade the soil into
coarse and fine fractions, with the assumption that the fines contain most of the
contamination. Physical separation can also enhance the kinetics of extraction by
separating out particulate heavy metals, if these are present in the soil.

2.5.18 Chemical Reduction/Oxidation

Reduction/oxidation chemically converts hazardous contaminants to non-hazardous or less
toxic compounds that are more stable, less mobile, and/or inert. The oxidizing agents most
commonly used are ozone, hydrogen peroxide, hypochlorites, chlorine, and chilorine

dioxide.

Reduction/oxidation (Redox) reactions chemically convert hazardous contaminants to
nonhazardous or less toxic compounds that are more stable, less mobile, and/or inert.
Redox reactions involve the transfer of electrons from one compound to another.
Specifically, one reactant is oxidized (loses electrons) and one is reduced (gains electrons).
The oxidizing agents most commonly used for treatment of hazardous contaminants are
ozone, hydrogen peroxide, hypochlorites, chlorine, and chlorine dioxide. Chemical redox
is a full-scale, well-established technology used for disinfection of drinking water and
wastewater, and it is a common freatment for cyanide wastes. Enhanced systems are now
being used more frequently to treat contaminants in soils. Chemical reduction/oxidation is

a short- to medium-term technology.
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2.5.19 Dehalogenation

Reagents are added to soils contaminated with halogenated organics. The dehalogenation
process is achieved by either the replacement of the halogen molecules or the

decomposition and partial volatilization of the contaminants.

Contaminated soil is screened, processed with a crusher and pug mill, and mixed with
reagents. The mixture is heated in a reactor. The dehalogenation process is achieved by
either the replacement of the halogen molecules or the decomposition and partial

volatilization of the contaminants.
2.5.20 Separation

Separation techniques concentrate contaminated solids through physical and chemical
means. These processes seek to detach contaminants from their medium (i.e., the soil,

sand, and/or binding material that contains them).

Ex situ separation can be performed by many processes. Gravity separation and
sieving/physical separation are two well-developed processes that have long been primary
methods for treating municipal wastewaters. Magnetic separation, on the other hand, is a

much newer separation process that is still being tested.
2.5.21 Soil Washing

Contaminants sorbed onto fine soil particles are separated from bulk soil in an aqueous-
based system on the basis of particle size. The wash water may be augmented with a basic
leaching agent, surfactant, pH adjustment, or chelating agent to help remove organics and

heavy metals.

Soil washing is a water-based process for scrubbing soils ex situ to remove contaminants.

The process removes contaminants from soils in one of two ways:
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2.5.22 Soil Vapor Extraction (Ex Situ)

A vacuum is applied to a network of aboveground piping to encourage volatilization of

organics from the excavated media. The process includes a system for handling off-gases.

Ex situ soil vapor extraction (SVE) is a full-scale technology in which soil is excavated
and placed over a network of aboveground piping to which a vacuum is applied to
encourage volatilization of organics. Soil piles are generally covered with a geomembrane
to prevent volatile emissions and to prevent the soil from becoming saturated by
precipitation. The process includes a system for handling off-gases. Advantages over its in
situ counterpart include that the excavation process forms an increased number of
passageways, shallow ground water no longer limits the process, leachate collection is
possible, and treatment is more uniform and easily monitored. The major disadvantage

over in situ SVE is the increased excavation costs.
2.5.23 Solar Detoxification

Solar detoxification is a process that destroys contaminants by photochemical and thermal
reactions using the ultraviolet energy in sunlight. In this process, vacuum extraction is
used to remove contaminants from soils. After condenzation, contaminants are mixed with
a semiconductor catalyst such (e.g., titanium dioxide), and fed through a reactor which is
illuminated by sumnlight. Ultraviolet light activates the catalyst, which results in the
formation of reactive chemicals known as "radicals". These radicals are powerful oxidizers
that break down the contaminants into non-toxic by-products such as carbon dioxide and

water.

A big advantage of solar detoxification over conventional treatment processes such as
those using granular activated carbon or air stripping is that it completely destroys the toxic
compounds in the water instead of simply removing or displacing them. The solar process

also has no atmospheric emissions.
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2.5.24 Solidification/ Stabilization (Ex Situ)

Contaminants are physically bound or enclosed within a stabilized mass (solidification), or
chemical reactions are induced between the stabilizing agent and contaminants to reduce

their mobility (stabilization).

There are many innovations in the stabilization and solidification technology. Most of the
innovations are modifications of proven processes and are directed to encapsulation or
immobilizing the harmful constituents and involve processing of the waste or contaminated
soil. Nine distinct innovative processes or groups of processes include: (1) bituminization,
(2) emulsified asphalt, (3) modified sulfur cement, (4) polyethylene extrusion, (5)
pozzolan/Portland cement, (6) radioactive waste solidification, (7) sludge stabilization, (8)
soluble phosphates, and (9) vitrification/molten glass.

2.5.25 Hot Gas Decontamination

The process involves raising the temperature of the contaminated equipment or material for
a specified period of time. The gas effluent from the material is treated in an afterburner

system to destroy all volatilized contaminants.

The process involves raising the temperature of the contaminated equipment or material to
260 °C (500 °F) for a specified period of time. The gas effluent from the material is treated
in an afterburner system to destroy all volatilized contaminants. The method eliminates a
waste that currently is stockpiled and requires disposal as a hazardous material. This

method will permit reuse or disposal of scrap as nonhazardous material.

Hot gas decontamination can also be used for decontamination of explosives-contaminated
masonry or metallic structures. The method involves sealing and insulating the structures,
heating with hot gas stream to 260 °C (500 °F) for a prescribed period of time, volatilizing
the explosive contaminants, and destroying them in an afterburner. Operating conditions

are site-specific. Contaminants are completely destroyed.
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2.5.26 Thermal Desorption

Wastes are heated to volatilize water and organic contaminants. A carrier gas or vacuum
system transports volatilized water and organics to the gas treatment system. Thermal
desorption is a physical separation process and is not designed to destroy organics. Wastes
are heated to volatilize water and organic contaminants. A carrier gas or vacuum system
transports volatilized water and organics to the gas treatment system. The bed temperatures
and residence times designed into these systems will volatilize selected contaminants but

will typically not oxidize them.

2.5.27 Landfill Cap

Landfill caps are used for contaminant source control. Landfill caps can be used to:

Caps can minimize exposure on the surface of the waste facility.

Prevent vertical infiltration of water into wastes that would create contaminated leachate.
Contain waste while treatment is being applied.

Control gas emissions from underlying waste.

Create a land surface that can support vegetation and/or be used for other purposes.
Landfill Capping is the most common form of remediation because it is generally less
expensive than other technologies and effectively manages the human and ecological risks

associated with a remediation site.

2.6 Contaminamts Found At Typical Brownfields

The following table identifies several activities that may have caused contamination at
brownfields. The table summarizes contaminants that are related to such activities and
identifies sources for the contaminants; however, it is not an exhaustive list of
contaminants that can be found at a Brownfields. Identifying contaminants that may be
present should be determined on a site-by-site basis. Such a determination should be
conducted thoroughly and carefully. (U.S. Environmental Protection Agency, Road Map to
Understanding Innovative Technology Options for brownfields Investigation and Cleanup,
1997)
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Table 2.1 Various contaminants found at brownfields

Agriculture

Volatile organic compounds (VOC); arsenic, copper,
carbon tetrachloride, ethylene dibromide, and methylene
herbicides;  grain

chloride;  pesticides;insecticides;

fumigants

Automotive refinishing and repair

Some metals and metal dust; various organic compounds;

solvents;paint and paint sludges; scrap metal; waste oils

Battery recycling and disposal

Lead; cadmium; acids

Chloro-alkali manufacturing

Chlorine compounds; mercury

Coal gasification

Polynuclear aromatic hydrocarbons (PAH)

Cosmetics manufacturing

Heavy metals; dusts; solvents; acids

Dry cleaning activities

VOCs such as chloroform and tetrachloroethane; various

solvents;spot removers; fluorocarbon 113

Electroplating operations Various metals such as cadmium, chromium, cyanide,
copper, and nickel
Glass manufacturing Arsenic; lead

Herbicide manufacturing and use

Dioxin; metals; herbicides

Hospitals Formaldehyde; radionuclides; photographic chemicals;
solvents; mercury; ethylene oxide; chemotherapy
chemicals

Incinerators Dioxin; various municipal and industrial waste

Landfills :municipal and industrial

Metals; VOCs; polychlorinated biphenyl (PCB); ammonia;
methane; household products and cleaners; pesticides;

various wastes

Leather manufacturing

Toluene; benzene

Machine shops/metal fabrication

Metals; VOCs; dioxin; beryllium; degreasing agents;

solvents; waste oils

Marine maintenance industry

Solvents; paints; cyanide; acids; VOC emissions; heavy

metal sludges;Degreasers

Munitions manufacturing

Lead; explosives; copper; antimony

Paint/ink manufacturing

Metals (such as chromium, cadmium, lead, and zinc);
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VOCs;chloroform; ethyl benzene; solvents; paints; inks

Pesticide manufacturing

VOCs; arsenic; copper; pesticides; insecticides; herbicides;
fungicides;xylene; chlorinated organic compounds;

solvents

Petroleum refining and reuse

Petroleum hydrocarbons; benzene, toluene, ethylbenzene,

xylene (BTEX); fuels; oil and grease

Pharmaceutical manufacturing

Lead; various organic chemicals; organic solvents

Photographic manufacturing and

Silver  bromide; methylene chloride;  solvents;

uses photographic products

Plastics manufacturing Polymers; phthalates; cadmium; solvents; resins; chemical
additives; VOCs

Printing industry Silver; solvents; acids; waste oils; inks and dyes;
photographic chemicals

Railroad yards Petroleum hydrocarbons; VOCs; BTEX; solvents; fuels;
oil and grease;lead; PCBs

Research and educational | Inorganic acids; organic solvents; metals and metal dust;

institutions photographic waste; waste oil; paint; heavy metals;

pesticides

Scrap metal operations

Various metals (such as lead and nickel); PCBs; dioxin;

transformers

Smelter operations

Metals (such as lead, copper, and arsenic)

Semiconductor manufacturing

Metals; VOCs; carbon tetrachloride; degreasing agents;

solvents

Wood pulp and paper | Chlorinated organic compounds; dioxin; furans;
manufacturing chloroform; resin acids
Wood preserving Creosote; pentachiorophenol (PCP); arsenic; chromium;

copper; PCB; PAHs; beryllium; dioxin; wood

preservatives
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3 SPATIAL INTERPOLATION METHODS (SIM) USED IN IDENTIFYING
CONTAMINATED ZONES

The environmental remediation arena is inherently an interdisciplinary, multi-faceted field
with many scientific disciplines cooperation to develop solutions to hazardous waste
remediation problems. While solving these problems physical and financial constraints

limits the methodology.

It can be clearly seen from the previous chapter that the remediation techniques mostly
depend on the type and the level of contamination. Without knowing the level and point by
point estimation of the contaminated area, it is very hard to define the process conditions
and methodology for the remediation techniques. Such as required time for remediation,
concentration of the solutions, type of the organics and chemicals used for remediation and
their dosages. These points are very important for the success and the efficiency of the
remediation process. In order to obtain the contamination map of the area some

interpolation and estimation techniques used.

Interpolation techniques especially geostatistics are used for mapping hazardous, toxic, and
radioactive waste (HTRW) sites. (U.S. Army Corps of Engineers, HTRW Report, 1997).
One very fundamental aspect of perhaps all HTRW site investigations that deal with
environmental contamination is the need to characterise the extent and spatial distribution
of contamination. Such a characterization typically would include the determination of
spatial trends and variability using a variety of statistical or analytical tools. A principal
difficulty in doing this is the fact that measurements may be few, or may be sparsely
scattered over large regions. Thus it is required to make predictions (or estimates) at

locations where measurements of contaminant concentration are not available.

HTRW site investigations involve complex administrative, scientific, and engineering
functions and are truly interdisciplinary. Scientists and engineers, for instance, may be
confronted with administrative findings or directives, associated with fiscal, managerial, or

regulatory input, that may either guide or constrain their work. Frequently, a HTRW site
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investigation will benefit from input from earth-science disciplines such as geology,
hydrogeology, and chemistry, among others. Some HTRW site investigations are large
enough to use several individuals from each field associated with implementing or

operating of these disciplines, as well as many others disciplines.

Interpolation techniques are utilised in identifying contaminated zones in potentially
contaminated sites (Zirschky and Harris, 1986), in image re-construction or visualization
(eg. medical imaging, Carr, 1996, Rohling et al. 1998), remotely sensed satellite imagery
(eg. Fogel, 1997), identification of mining resources (eg. Isaaks and Srivastava, 1989) and
topographical mapping (Oliver and Webster, 1990, Rosenbaum and Soderstrom, 1996) or
Digital Elevation Modelling (DEM) (USGS, 1987, Hutchinson, 1997). Based on the
specific area in which they are used, these methods are called "geostatistical tools", "GIS
methods”, or "DEM". The most general term for these methods is "Spatial Interpolation
Methods (SIM)" and their major assumption is that spatially closer locations are more

likely to have similar observation values than those, which are far apart.

SIM are the procedures for estimating the value of characteristics at unsampled locations
and are used to provide contours. SIM are used to provide contours for displaying data
graphically (DEM); to estimate some property of the surface at a given location (mining);
to visualise surfaces of human organs in clinical investigation; and, to aid the spatial
decision making process in detecting hot-spots (environmental assessment) (U.S. Army
Corps of Engineers, HTRW Report, 1997, U.K. DoE Contaminated Land Research Report
No. 4, 1994).

SIM are conventional techniques used in the above-mentioned contexts, and they usually
construct surfaces from point observations. Yet, there are uncertainties about these re-
constructed surfaces due to the fact that they assume that value of a data point is valid for
the whole area covered by the grid in which it lies. Among other problems implied by SIM
are:

1. Different interpolation algorithms yield different contours from the same data

2. Depending on the algorithm used to contour data, the raw data are not necessarily

honoured
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3. Small areas with high contamination levels are difficult to model using these
algorithms due to the smoothing effect.

A further handicap in representing surfaces is the existence of noise in the observed values.
For example, sampling errors resulting from the sampling methodology and laboratory
analysis errors may exist (Ramsey et al, 1995). Consequently, the performance of SIM

should not only be investigated on data without noise.
3.1 A Methodology flor STM

Spatial interpolation methods are used to estimate the contamination data at unsampled site
locations. Spatial interpolation can also be used when preparing irregularly scattered data
to construct a contour map or a contour surface, which is a two-dimensional representation
of a three dimensional surface. The spatial interpolation methods differ in their
assumptions. They may have a local or global perspective, or be of a deterministic or

stochastic nature. SIM may be classified under five different categories (Waters, 1998).

3.1.1 Point versus areal interpolation methods

In a point interpolation method, unobserved locations are interpolated using observed
locations of the area whereas in an areal interpolation method, values of data for a target
zone are determined using another set of data on a given source zone. In point interpolation
unobserved points are located as within a grid. The interpolated values on the grid are used
for drawing contours by connecting adjacent grid points with an interpolated straight line.
Hence, the width of the interpolated grid affects the performance of the interpolation
algorithm.

3.1.2 Global versus local interpolation methods

Estimation over a large area within which we have many samples is global estimation. In
local estimation, we are considering a smaller area, one in which there are few samples; in

such situations we often use nearby samples located outside the are being estimated.
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A global interpolator uses all data in the whole site and hence, the data collected from the
whole region affects a single interpolated point. On the other hand, local interpolators
consider a neighbourhood around the interpolated point while calculating the interpolated
value. Consequently, a global interpolator can be localised by adjusting some parameters

such as the number of data included in the calculations, the radius, etc.

In practical situations there is usually a large target area over which samples are collected.
Hence a single global estimate rarely satisfies the goals of a study and we usually also
require a complete set of local estimates. For example in a pollution study, an estimate of
the overall concentration does not give us the information we need to decide which specific

locations have unacceptably high concentration.

Global estimation is fairly straightforward if the samples are located on irregular grid or
are located randomly. Global estimation methods should therefore account for the

possibility of clustering.

Local estimates need to account for the distance from the point(s) we are estimating to the
individual sample locations. Some samples will be much closer than others will and the
values at these closer locations should be given more weight than the values that are
further away. Local estimates like the global ones are often affected by clustered sampling
similar to the global ones. A group of closely spaced samples with similar values contains
redundant information. Qur local estimate would likely improve if we could locate samples
uniformly over the small area we are interested in. The weights assigned by local
estimation methods should account both for their from distance to the samples and also for
the possible redundancy between samples.

To summarize;

Local estimation

o estimates a value using the values of cells in the neighbourhood

e needs to know the extent of the neighbourhood

o usually uses the distance weighted mean value of surrounding values

Global approximation

o uses all values in the grid
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o mathematically intensive but very accurate

o fits a surface passing through all points
3.1.3 Exact versus approximate interpolation methods

An exact interpolator generates a surface, which passes through all observations (with

known values), whereas approximate interpolators do not necessarily do so. The

implication is that an exact interpolator assumes the value of the observation value even

when an unobserved location on the generated grid falls upon the observed location. Thus,

the unobserved location is not interpolated, but assumes the value of the real data.

Approximate interpolators should be used when the data involves uncertainty (sampling

errors including wrong method of sample collection, erroneous recording and/or analysis

errors) and it is desired that the interpolator smooths out the sampling errors since

interpolated values override observed values.

To summarize;

Exact interpolators

o honours the data points upon which the interpolation is based.

o the surface passes through all points whose values are known

o honouring data points is seen as an important feature in many applications eg. the oil
industry

Approximate interpolators

o used when there is some uncertainty about the given surface values this utilises the
belief that in many data sets there are global trends, which vary slowly, overlain by
local fluctuations, which vary rapidly and produce uncertainty (error) in the recorded
values

o the effect of smoothing will therefore be to reduce the effects of error on the resulting
surface

3.1.4 Stochastic versus deterministic interpolation methods.

In a probabilistic model, the available sample data are viewed as the result of random
process. The processes that actually do create an ore deposit, a petroleum reservoir or a

hazardous waste site are certainly complicated, and our understanding of them may be so
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poor that their complexity appears as random behaviour to us, but it does not mean that

they are random,; it simply means that we are ignorant.

Unfortunately, our ignorance does not excuse us from the difficult task of making
predictions about how apparently random phenomena behave where we have not sampled
them. Though earth science data are not, in fact, the result of random processes, this
conceptualization does not turn out to be a useful one for the problem of estimation.
Though the word random often connotes “unpredictable”, it turns out that viewing our data
as the outcome of random process does not help us with the problem of predicting
unknown values. Not only does it give us estimation procedures that, in practice, have
sometimes proved to be very good; it also gives us ability to gauge the accuracy of our

estimates and to assign confidence intervals to them.

Stochastic interpolators assume that there is an underlying random process explaining the
distribution of concentration values from which the collected data result. For instance,
Kriging is a stochastic interpolator, which assumes stationarity of mean and variance.
Often, stochastic assumptions do not hold for the underlying process. Deterministic
interpolators do not use probability theory. An example is the inverse distance method,
which, while interpolating an unobserved location, calculates the weight of each
observation simply using its distance from the unobserved location. However deterministic
modelling is possible only if the context of the data values is well understood. The data
values, by themselves, do not reveal what should be the appropriate model. Stochastic
methods incorporate the concept of randomness and stochastic interpolators include trend
surface analysis procedures such as trend surface analysis allow the statistical significance

of the surface and uncertainty of the predicted values to be calculated
3.1.5 Gradual versus abrupt interpolators

Gradual interpolators generate a smooth surface on a continuum with slow changes.
However, one may convert a gradual interpolator into an abrupt one by reducing the
number of neighbouring observations while interpolating a grid point. Then, the

interpolated values reflect sudden changes in nearby observations.
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Typical examples of gradual interpolators are the distance weighted and moving average

and gradual interpolators. Gradual interpolators usually produces an interpolated surface

with gradual changes however, if the number of points used in the moving average is

reduced to a small number, or even one, there would be abrupt changes in the surface.

Then it may be necessary to include barriers in the interpolation process such as

o Semipermeable barriers (e.g. weather fronts will produce quickly changing but
continuous values)

o Impermeable barriers (e.g. geologic faults will produce abrupt changes)

3.2 Conventional SIM

In this thesis the effectiveness of five popular SIM (Radial Basis Functions (RBF),
Kriging, Minimum Curvature (MNC), Shepard's Inverse Distance Method , Triangulation )

are tested for their performance on mapping the contaminant dispersion over the site.

3.2.1 Kriging

Kriging is an interpolation method commonly used in various fields, such as mining,
geographical mapping, and environmental assessment of sites which is originated by Krige
(1951) and developed by Matheron (1971). The idea is to consider all observations as a
realization of a random spatial process. Following paragraph explains the rationality
behind the well known geostatistical method, Kriging.

For introductory purposes kriging can be defined as a technique for determining the
optimal weighting of measurements at sampled locations for obtaining predictions, or
estimates, at unsampled locations. Kriging is well suited for making point and block
estimates. However, much of the advantage of using geostatistical procedures, such as
kriging, lies not just in the point and block estimates they provide, but in the information
they provide concerning uncertainty associated with these estimates. The uncertainty
information is usually quantified as either the standard deviation (or variance) associated

with kriging estimates and is referred to as kriging standard deviation (or kriging variance).
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Kriging is a technique for determining in an optimal manner the weighting of
measurements at sampled locations for obtaining predictions at unsampled locations. These
optimal weights depend on spatial trends and correlations that may be present. And kriging
is a stochastic interpolation method. (U.S. Army Corps of Engineers, HTRW Report,
1997).

A spatial process can be viewed as having a large-scale or regional component and a
smaller scale or local component; both of these components need to be accounted for when
modelling spatial process. The large-scale component is referred to as the mean field and is
most often modelled by a spatial trend, which may or may not be constant over the region.
The smaller scale component is a random fluctuation, which is mathematically combined
with the trend to make up the sample at a point. The random component is usually assumed
to be zero on the average but can be either positive or negative in individual samples. The
separation of the trend from the random components is problem which is scale-dependent
and requires some judgment to determine. There can be several solutions to the problem of
“separating the trend” and random components that may useful for various geostatistical

purposes when using a single set of data.

In stochastic methods, it is assumed that the measurements, actual or not, constitute a
single realization of a random (or stochastic) process. One advantage of assuming the
existence of such a random process is that measures of uncertainty, such as the variance
used in kriging, can be defined. These measures of uncertainty permit objective assessment
of the performance of a spatial prediction technique on the basis of how small such
measures are. Once a measure of uncertainty has been selected, the weights to be used in
spatial prediction may be determined so as to explicitly minimize the measure of
uncertainty. In short, the use of stochastic techniques provides the investigator with a way
of objectively quantifying errors and determining weights. In practice, spatial predictions
obtained using kriging are almost always accompanied by a measure of the associated

erTor.
3.2.1.1 Variograms

A central idea in geostatistics is the use of spatial correlation to improve spatial
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predictions, or interpolations. The variogram is the principal tool used to characterise the
degree of spatial correlation present in the data and is fundamental to kriging. (U.S. Army
Corps of Engineers, HTRW Report, 1997).

A measure of the similarity between data (the co-variance between the two data) for
distance h apart is obtained. This is repeated for all samples that are h distance apart and
the average squared difference obtained. This similarity measure is called gamma(h), g(h)
or h-scatterplots. These are plotted on a x-y plot with the x- axis being the distance h, and
g(h) on the y- axis.

An h-scatterplots shows all possible pairs of data values whose locations are separated by a
certain distance in a particular direction. On most of the scatterplots, the x-axis is labelled
v(t) and the y-axis is labelled v(t+h). The x-coordinate of a point corresponds to the v value
at a particular location and the y-coordinate to the v value a distance and direction h away.
(Isaaks and Srivastava, 1989)

BB R AR SR SRS R A

R ARAR AR B SR R_Sk_F

rsko s kR R SR R
R kAR A SR k& & b
R R AR R sk sk
T R A A Ak kA
kb R AR SRR A R

sk kR sk ARk sk _sP

Figure 3.1 Examples of how data can be paired to obtain an h-scatterplot

The shape of the cloud of points on an h-scatterplots tells us how continuos the data values
area over a certain distance in a particular direction. If the data values at locations
separated by h are very similar then the pairs will plot close to the line x=y, a 45-degree
line passing through the origin. As the data values become less similar, the cloud of points
on the h-scatterplots becomes fatter and more diffuse.( Figure 3.2)
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The correlation coefficient, p, is the statistic that is most commonly used to summarise the

linear relationship between two variables. It is calculated from;

23 5= m ) —m,)
p = i=1

(3.1)

c.0,

where n is the number of data; x1,...,Xn are the data values, myx is their mean, and ox is their
standard deviation for the first variable, y1,...,yn are the data values, my is their mean, and

oy is their standard deviation for the second variable.
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Figure 3.2 h-scatterplots for four separation distances.
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As the cloud of points in the h-scatterplots spread out, we expect the correlation
coefficient, p, to be close to zero. The relationship between the correlation coefficient of an
h-scatterplots and h is called the correlation function or correlogram. The correlation

coefficient depends on which being a vector, has both magnitude and direction.

An alternative index for spatial continuity is the covariance. Covariance is the numerator of
the correlation. The relationship between the covariance of an h-scatterplots and h is called

the covariance function.

Another plausible index for the spread out of the cloud is the moment of inertia (moi)

about the line x=y, which can be calculated from the following;

1§

moi = —Z(xi -) (3.2)
2n3

Unlike the other two indices of spatial continuity, the moment of inertia increases as the

cloud spread outs. The relationship between the moment of inertia of an h-scatterplots and

h is traditionally called the semivariogram or simply the variogram.

Although the h-scatterplots contain much more information than any of the three summary
statistics, it is quite common to bypass the actual h-scatterplots and go directly to either
p(), C(h), y(h) to describe spatial continuity. It is convenient, therefore, to have the
formulas for these functions expressed directly in terms of the data values rather than in

terms of x and y coordinates of an h-scatterplots.
Then the covariance function, C(h), can be calculated from the following equation;

1
Chy=—— Vv, —m_,m, )
N(h) (i Yhe y=h ! i (3.3)

The data values are vi,...,vn; the summation is over only the N(h) pairs of data whose
locations are separated by h.

m-h is the mean of all the data values whose locations are —h away from some other data
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location:

1
m_, = Wﬂ%é"i (3.4

m.y is the mean of all the data values whose locations are +h away from some other data

location:

1

m+ = —_— vz' (3 '5 )
"N

The values of my and m.;, are generally not equal in practice. The correlation function,

p(h), is the covariance function standardised by the appropriate standard deviations:

ch)

2O +n

p(h)= (3.6)

G4 is the standard deviation of all the data values whose locations are —h away from some

other data location:
o’ RN . 3.7
RO =S

G is the standard deviation of all the data values whose locations are +h away from some

other data location:

1
o2 =—— > vV —-m’ (3.8)
YUNMmy g

Like the means, the standard deviations are usually not equal in practice. The variogram,

v(h), is the half average squared difference between the paired data values:
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_ 3.9
r(h) 2N(h)(,,%(h (3.9)

The values p(h), C(h) and y(h) are unaffected if we switch all of the i and j subscripts in

the preceding equations. Then the above equation becomes

=—-—-— 3.10
7= wm el 6.10)

So over all (j,i) pairs that are separated by h, we could sum over all (i,j) pairs that are
separated by —h. As a result we can obtain

y(h)=y(-h) (3.11)

This result entails that the variogram calculated for any particular direction will be
identical to the variogram calculated in the opposite direction. The correlation and the
covariance function share this property. (U.S. Army Corps of Engineers, HTRW Report,
1997)

Variograms are obtained from the data for different directions. Typically, these are N-S, E-
W, NE-SW and NW-SE. Windows, or allowable deviations from these directions are often
used if the data is not on a regular grid. Note that no matter what direction, a window of +-
90° will incorporate all the data. The directional convention used in geostatistics is E-W is
0°, N-S is 90°, NE-SW is 45° and NW-SE is —45°. The window is set at the direction plus
or minus the deviation angle. (Isaaks and Srivastava, 1989)

There are two cases for the distribution of the data points. The first is they are located on a
regular grid. In this case g(h) may be calculated using an arithmetic average of the
distances. If the data is not located on a regular grid, then a modified version of the
equation needs to be used to use a weighted average rather than the arithmetic average.

This is called the moment centre.
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Two other measures are obtainable. The first is the average distance of all the pairs of data
points whose distance fell within a given class interval. This is calculated from the
cumulative distance divided by the number of samples. The second is a measure of drift, or
the general increase or decrease in grade with distance. This is calculated from the

cumulative assay difference divided by the number of samples.

If the variogram rises, and then levels off or stabilises around some value, or in other
words if the variogram reaches either reaches or becomes asymptotic to a constant value as
h increases to a value and that is said to have reached a sill. This is theoretically the sample

variance.

The distance at which the rising variogram reaches the sill or the variogram remains at or
close to the sill is called the range. The range is the distance at which the covariance
becomes zero, so it marks the limit of the zone of influence of a single sample. Beyond the

range samples are no longer correlated and are independent.

If the sample interval is greater than the range, then the semi-variance is equal to the
variance for all h. There will be no rising part to the variogram so the plot will show a
scatter about the variance. If this is the case then it is safe to use conventional statistics for

estimation.

If the variogram rises without levelling off, then no sill is present. This may indicate drift if
the variance is crossed, or one of the models which do not possess a sill (de Wijsian,
power, linear). The models without a sill result from a RF with unlimited capacity for

dispersion.

The intercept of the variogram on the gamma axis is the semi-variance when h=0. If the
intercept is greater than zero then a random or unstructured component of variation at h=0
is present. This is called the nugget effect and is represented by C,. Ideally, the nugget
effect should be zero as two samples from the same point should have the same value. A
non zero value could indicate errors in sampling or it represents the sill of a very small

scale structured component whose range is much less than the sample interval.
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Typically, four variograms with different orientations are constructed. These orientations
are usually N/S, E/W, NW/SE and NE/SW. If the variograms are the same, then the
distribution of values is said to be isotropic. If they are not the same then distribution is
said to be anisotropic. If anisotropy is present, and is reflected by the same sill but
different ranges of the same model, then the anisotropy is called geometric anisotropy.
This anisotropy can be removed by a distance transformation of the coordinates. If the
variograms show different models or different sills then zonal anisotropy does exist.

Removal of zonal anisotropy is complex and not discussed here.

Relative variograms are sometimes useful in correcting for zonal anisotropy. They
normalise the variogram by dividing g(h) by either the mean square or the variance of the
sequence used to compute the variogram. This makes the variograms more directly

comparable.

Logarithmic variograms computes a variogram of the logs of the assays. This
transformation reduces the effect of erratic highs in the data and smooths the variogram. In

many cases the overall shape is little different from untransformed variograms.

Indicator variograms are a special case of variograms. The indicator is a binomial variable,
which takes a value of 0 or 1. The 0's may represent barren holes or values below cut off,
and the 1's represent holes above cut off. The resulting variogram of these 0's and 1's is the
indicator variogram. These may show features that are not apparent on the assay variogram
such as clustering of high-grade zones. (U.S. Army Corps of Engineers, HTRW Report,
1997)

A simple monotic function is usually selected to approximate the variogram. Four such

functions are often used in practice are:
3.2.1.1.1 The exponential variogram

The exponential model is also linear at the origin, but reaches the sill asymptotically, well

beyond the value of the true range, ie it approaches the sill gradually without ever reaching
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it.

Parameters: sill, s>0; nugget, 0<g<s; range, r>0)

y(h) = {g *s —g)[l"c"p(‘3%)ll; i(:)} (.12)

b

3.2.1.1.2 The spherical variogram

The spherical model is linear at the origin indicating good continuity.

Parameters: sill, s>0; nugget, 0<g<s; range, 1>0)

'S, h>r W
h AN (3.13)
V(h)=wg+(s-—g) 1.5;—0.5(;‘) ,0<hSr¥
\09 h=0

3.2.1.1.3 The gaussian variogram

The Gaussian model is parabolic at the origin (indicating perfect continuity) and reaching
the sill asymptotically

Parameters: sill, s>0; nugget, 0<g<s; range, r>0)

g+(s—g)[1—exp(—3%)z],h>0 (3.14)

09 h = 0
3.2.1.1.4 Power Model variogram

y(h)=

Power 0<w<2, positive slope b, and the distance h may be anisotropic in 2D or 3D

y(h)=bh" (3.15)
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3.2.1.1.5 The linear variogram

Parameters: nugget, g>0; slope, b>0)

g-+bh,h >0} (3.16)

r(h) ={09 50

3.2.1.1.6 Hole Effect Variogram

The model defined by a length r to the first peak (size of the underlying cyclic features)

and positive variance contribution value ¢

y(h) = c[]l - cos(ﬁ ﬂ’ﬂ (3.17)
r
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Figure 3.3 Theoretical Variograms

3.2.1.1.7 Regionalized Random Variable

Given a regionalized random variable Z(x) with a known theoretical variogram, the

question is: how can the value of Z (x) be predicted at an arbitrary location, based on
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measurements taken at other locations. Suppose that Z is measured at n specified locations:
Z (x1), ..., Z (x). For example, Z could correspond to lead contamination level and the
locations might correspond to » points over an old refinery location. Let a new location be
given by xp =(ug ,vo ) and denote the i" measurement be denoted by x; =(u; ,v; ). Suppose
that, based on prior knowledge of the geology, there are no prevailing trends in lead
contamination, so the mean of Z(x) is assumed to be constant over the entire region:

1 (xX) = u (constant)

Suppose the investigator wants to predict the value of Z(xo) by using a linear predictor,

Z’(x), which is defined as a weighted linear combination of the measured data

Z'0r) =3 wZ(x) (3.18)

i=1

where w is the weight assigned to Z(x;). To determine specific values for the weights, some
criteria need to be specified for Z(xo) to be a good predictor of Z’(x¢). The first criterion is

that Z’(xo) be an unbiased predictor of Z(xo), which is expressed as
E[Z'(x,) - Z(x,)] =0 (3.19)

An unbiased predictor will neither consistently overpredict nor underpredict Z(xo) because
the statistical expectation of the prediction errors is zero. The second criterion for a good

predictor is that it has small prediction variance, defined by
Var[ Z*(xo)-Z(x0)] =E[((Z’(x0)-Z(X0))’] (3.20)

The smaller the prediction variance, the closer Z’(xo) will be ( on average) to the true value
Z(Xo). The geostatistical method of kriging deals with the Best Linear Unbiased Predictor
or Estimator of Z(xo) with the smallest possible prediction variance. (B.L.U.E.)

The form of the best linear unbiased predictor will depend on the mean of Z(x). For
example, if Z(x) has a constant mean and a pure nugget variogram [y(h)=s for all h>0], the

best linear unbiased predictor of Z(xo) will simply be the average of measured data
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z 3.21
Z(x) =3 2(x) G20

Because the variogram is the same for all h>0 and there is no trend in the data, there is no
trend in the data, there is no reason to favour any of the measurements over any of the

other measurements. Therefore the weights are all the same.
3.2.1.2 Simple Kriging

Simple Kriging (SK), deals with best linear unbiased prediction in the case when the mean
of Z(x) is fixed and known. Simple kriging is not widely used because in most application,
the mean is not known and has to be estimated. The basic generalised linear regression

algorithm and corresponding estimator for Simple kriging is;

$ 3.22
[Zs ()= m@)]|= 3 A2 (x) ~m(x)] e

where Z(x) is the RV model at the location x, the x;’s are the n data locations,
m(x)=E[z(x)] is the location dependent expected value of RV Z(x), and Zsk(x) is the linear
regression estimator. Also called the “simple kriging” (SK) estimator.

The SK algorithm requires prior knowledge of the (n+1) means m(x;), m(x;),i=1,...,n, and
the (n+1) by (n+1) covariance matrix [C(x;,X;), 1,j=0,1,..,n] with x¢=x. In most practical
situations, inference of these means and covariance values requires a prior hypothesis

(rather a decision) of stationarily of random function Z(x).

If the random function Z(x) is stationary with constant mean m, and covariance function
C(h)=C(x,x+h), the SK estimator reduces to its stationary version:

Lo (%)= iﬂ’i (®Z(x;)+ (1 - i/li (x)J -m (3.23)

i=1

With the traditional stationary SK system:
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i/li(x)C(xj -x)=C(x—-x,),i=1,...,n (3.24)

Stationary SK does not adapt to local trends since it assumes the mean value m is constant
and known through the area. In some situations secondary information allows a prior
determination of the locally varying means m(x), the SK estimator can be used with the
system assuming a stationary residual covariance. In the above formula, the covariance
values C(h) cannot be replaced by semivariogram values y(h)=C(0)-C(h) unless ZAi(x)=,
which is the ordinary kriging constraint.

3.2.1.3 Ordinary Kriging

Ordinary Kriging (OK) filters the mean from the SK estimator by requiring that the kriging
weights sum to one. This result in the following ordinary kriging estimator:

Zox ()= 4" (DZ(x) (3.25)
i=1
And the stationary OK system:
ZA?K () Clx; —x,) + p(x) = C(x —x,),i =1,...., (3.26)

j=l

Where the ?\,jOK(x) are the OK weights and p(x) is the Lagrange parameter associated with

the constraint
Z A5 () =1 (3.27)
J=

It can be clearly seen that SK weights are different from the OK weights. Moreover it can
be shown that ordinary kriging amounts to re-estimating at each new location x, the mean
m as used in the SK expression. Since ordinary kriging is most often applied within
moving search neighbourhoods. Thus the OK estimator is, in fact, a simple kriging type

where the constant mean value is replaced by the location-dependent estimate m(x):
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Z o (%) =i/1,.°" (0Z(x,) (3.28)
By substituting
Zox (@) =A™ (Z(x)+ [1 -3 (x)J -m(x) (3.29)

Where A°F are the OK weights given by the system

i/l?’( (x)-C(x; —x)+ p(x) = C(x - x,),i =1,....,m (3.30)

Jj=l

and A;3F is the SK weights given by the system

> AEC(x, —x)=C(x—x,),i=1,..,n (3.31)
j=1

Hence ordinary kriging as applied within moving data neighbourhoods is already a
nonstationary algorithm, in the sense that it corresponds to a nonstationary RF model with
varying mean but stationary covariance. This ability to rescale locally the RF model Z(x)

to a different mean value m(x) explains the extreme robustness of the OK algorithm.
3.2.1.4 Universal Kriging

Universal Kriging is an extension of ordinary kriging that, due to the fact that
environmental data often contain drift, can be important in HTRW site investigations.
Universal kriging addresses the case of a non-constant mean p (x). Generally, the mean is

assumed to have a functional dependence on spatial location of the form

Where the fi(u,v)'s are known deterministic functions of x=(u,v) (that is, these functions
serve as independent variables) and the B;’s are regression coefficients to be estimated

from the data.

The form assumed for the mean is also generally used in standard linear regression

analysis. In regression, ordinary least squares is generally used to solve for the coefficients;
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when this done, it is assumed that the residuals are independent and identically distributed.
Universal kriging is an extension of an ordinary least square regression that allows for
spatially correlated results. Assuming that Z(x) is a regionalized random variable with a
mean and residual correlation function gives the best linear unbiased predictor by solving

n+p equations called the universal kriging equations :

n 1 P .
> wp, +;;sz fi(x)=posi=l.,n (3:32)
j=1 =1

> filx) = i)k =1,..,m (3.33)
j=

Where in contrast to the ordinary kriging equations, there are now p coefficients Aj,...,Ap
resulting from unbiased condition on the predictor. The first term in the mean will usually
be a constant, or intercept, for which fi(x)=1. Therefore, the universal kriging model

includes ordinary kriging as a special case. The universal kriging variance is given by

a,f(m=s[1—iwipio]—im(xo) (3.34)

i=1

These equations can be easily solved to obtain universal kriging predictors and kriging
variances for any desired location. The estimated trend surface does not actually need to be
computed to obtain the universal kriging predictor. If a particular application needs an
estimate of the trend surface, then generalised least squares regression can be used to

estimate the coefficients (B;’s) in the regression equation.

3.2.1.5 Block Kriging

Up to this point, the problem of predicting the value of a regionalized random variable at a
given location in the region over which the variable is defined has been considered.
Implicit in this analysis is the assumption that the support of the variable being predicted is

defined in exactly the same way as the variables that make up the measurements. However,



there may be applications where it is necessary to estimate the average of Z over an
estimation block of much larger area than is represented by an individual sample. For
example, an estimate of the average concentration of a contaminant over entire aquifer
based point measurements at various locations might be needed. In other applications, an
estimate of average concentration of soil contaminant in daily excavation volumes that are
much larger than volume of an individual sample may be needed. Let Zg be the average

value of Z(x) over a particular block B,

Zy= liz’ (%0:) (3.35)
" iq

where xg;, I=1,...,m, denotes m predictions locations in block B. The object is to predict
this average rather than the regionalized variable at a single location. In many applications,
the location xo; might correspond to nodes of a regular grid or finite element nodes in a
groundwater model. Results of the block kriging are dependent on m and on the placement
of the prediction locations. Selecting a large number of locations in block B, where each

location has approximately the same representative area, is the best approach.

The objective of block kriging is to obtain the best linear unbiased predictor of Z and a Zp
and an estimate of the block kriging variance based on the measurements. The model for
Z(x) can be the constani-mean model assumed for ordinary kriging or the more general
linear regression model assumed for universal kriging. In either case, the predicted value of
Zg coincides with the average of predicted values of the individual measurements in the

block; that is;

2% =13 2'0xy) (3.36)
m

i=1

In this equation, the individual predicted values are obtained from either the ordinary or

universal kriging equations.
3.2.2 Radial Basis Functions

Radial functions constitute the basis for a nonlinear transformation of a given input vector,
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x;eR? Here, x; are the observed locations within the site. Their observed values are denoted
by f{x;). These functions are characterised by the fact that the relation between the value to
be interpolated decreases monotonically with the distance from a central point (an

observed data point).

The principle of a radial basis function derives from the theory of functional
approximation. We consider a real valued function f, such that f: R>R. Given the distinct
set of points {xieRd: i=1,2,...,n} and their functional values { f(x;) : i=1,2,...,n }, the
unknown function f is to be approximated by another real valued function s : R%>R. The

radial basis function approximations are of the form

x(x) = izi@qx-xi])+ Pn(®) xeR, A eR (3.37)

where pr, is a polynomial of a low degree m, ¢(): R" — R is a function of the Euclidean
distance between each sample data x;, and the given location x to be interpolated. Thus, the
radial basis function s is a linear combination of translates of radially symmetric functions
and a low degree polynomial. The coefficients A; are also unknown and have to be
computed. If the space of all the polynomials of degree at most m in d variables is denoted
by n°n, then the coefficients A; of the approximation s() and the coefficients of the
polynomial pn(x) are determined by requiring that s() satisfy the following interpolation
conditions,

s(xj)= f(x;), for alli=1,2, ...,n, and the side conditions,

Zﬂiq(xi) =0forallge xS (3.38)

where g(x;) denotes a multivariate polynomial of degree m. These side conditions enforce

that the data span the space RY, in order to constrain the polynomial pr(x).

Usually a function ¢() which has its maximum at a distance of zero is used. The popular
choices of ¢() employed are linear, Gaussian, multiquadratic, and thin-plate splines
functions (Powel 1992). (See Figure 3.4-3.7)
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Figure 3.6 Gaussian ¢(r)=exp(ax2) RBF Function
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Figure 3.7 Multiquadratic (|)(Jir)=(r2+c2)°'5 RBF Function
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The choice of ¢() is determined by the dimension of the problem d, the interpolation
conditions and the desired properties of the interpolant. Table 1 specifies conditions for
various radial basis interpolants. In our context, we have d=2, and the non-colinearity
condition of the samples is not satisfied and we therefore select the multiquadratic function

in the assessment of hypothetical sites.

Table 3.1. Conditions imposed on data for various radial basis interpolants.

¢ Spatial Dimension d | Polynomial degree m | Restriction on data
Linear Any 1 Data not coplanar
Thin-plate 2 1 Data not colinear
Gaussian Any - None
Multiquadratic Any - None

3.2.3 Minimum Curvature

Briggs (1974) has first proposed the minimum curvature method for automatic contouring
of geophysical data. Wherever values of a function are available at discrete points only,
additional information is required for determining the entire function. In case of a time
series, eg. limitation of bandwidth constitutes the additional information. In case of a
surface sampled at randomly scattered points the additional information “total curvature of

surface to be minimum” has proven successful.

Grid interpolation algorithms derived from the minimum total curvature assumption work
well where the average spacing of sample points is not too large as compared to the grid
constant. However, within large voids between sample points they suffer from poor
convergence. In a given grid point, local curvature is calculated using grid values “remote”
grid points. In some cases additional information is available on the surface to be
interpolated, most notably the main direction of geologic features. Such information may

be taken into account in the curvature minimization process.

Briggs (1974) pointed out the optimum properties of the spline fit can be obtained by

solving the differential equation equivalent to third order spline:



48

2 2 2 2
BOEx

Where u is the interpolating function.

Here, a two dimensional cubic spline is employed to fit the data by solving the
corresponding difference equations with the objective of keeping the total squared
curvature minimum. The interpolated surface generated by minimum curvature is
analogous to a thin linearly elastic plate passing through each of the data values with a
minimum amount of bending. Minimum curvature generates the smoothest possible
surface while attempting to honour the data as close as possible, but it is not an exact

interpolator.

The function u(x,y) minimizes the total squared curvature;

) = M(azu azj (3.40)

And this equation obeys Equation (3.39), and conversely, if a function u obeys Equation

(3.39) it minimizes C(u). By expressing the discrete total squared curvature as,

L (.,  +u,_, . +u, . +u, . ) (341)
C(u) = Zz( i+1,j i~1,j - i,j+1 :,1—1)
i=1 j=1

Where h is the grid spacing in both the x and y directions and uy; is the interpolated value
at grid point (i,j), we obtain the following system of linear equations from the necessary

conditions to minimize C;

‘U, U, U,

Uy gt U+ 20Uy 0+, g Uy YU ) (3.42)
i1y T U0+ 200, =0i=1,..,1,j=1,..,J

l+2 o

+8(u,

i,j+2

i+ j
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For observation points coinciding with grid point. For observation points not on a grid
point, an approximate expression for azu/6x2+62u/8y2 at given point (Xo,Yo) is obtained by

expanding u in Taylor series around (Xo,yo) and using the Equation (3.41)

Another system of equation is then obtained from the necessary conditions to minimize C.
Solving the above mentioned linear systems of equations leads to the interpolated values

Bij» i=1,...,][, j=l,,.,,J

The resulting equations determine a set of relations between neighbouring locations and

they are solved to identify the coefficients of the cubic polynomial. If one of the

im(x)qi (%) (3.43)

g)==5—"

> wi(x)

i=1

vertices does not coincide with an observation, then additional difference equations are

used for the missing vertex.
3.2.4 Shepard’s Inverse Distance Method

Inverse distance weighting is the simplest interpolation method. A neighbourhood about
the interpolated point is identified and a weighted average is taken of the observation
values within this neighbourhood. The weights are a decreasing function of distance. The
user has control over the mathematical form of the weighting function, and the size of the

neighbourhood (expressed as a radius or a number of points).
3.2.4.1 Weighting function
The simplest weighting function is inverse power:

1 THa .
w(d) = — L i, ) (3.44)
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With p>0. The value of p is specified by the user. The most common choice is p= 2. For
p=1, the interpolated function is "cone-like" in the vicinity of the data points, where it is

not differentiable.

The original “Shepard's method” presented in Shepard,(1968) is a variation on inverse
power, with two different weighting functions using two separate neighbourhoods. The
default weighting function for Shepard's method is an exponent of 2 in the inmer
neighbourhood and an exponent of 4 in the outer neighbourhood. The form of the outer
function is modified to preserve continuity at the boundary of the two neighbourhoods.
This method has been modified by Franke and Nielson (1980) and Renka(1988). The
modified version also uses an inverse distance weighted least squares approach. Given
potential function f with values fi at the sampling points xi, where the q; are bivariate

quadratic functions which locally approximate f at the sampling points
q,(x) = J, (3.45)

in a weighted least squares sense. The relative weighted are defined by the inverse distance

functions

(@, =d)Y 1% 4 ifd <d, 3.46
w,.—[ T )for d, d,.)—{o ifded,.} (3.46)

wl

where di denotes the Euclidean distance between x and xi and dw is a radius of influence
around the point x. The data point fi only influences interpolated values at points within
this radius. It can be shown that, for all i and j, the weights

. (3.47)
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(3.48)
i W, (x) =1 (3.49)
And
LIV I (3.50)
ox, 2 (x5) 6x2W,- (x;)=0

for all i and j. Also these weights, and hence also interpolant g, have continuous first

partial derivatives. The interpolatory of g follows directly from equations 3.45-3.48
g(xj)=Zwv(xj)qi(xj)=qj(xj)=.fj 3.51)
i=1

From equations 3.47 to 3.50

(3.52)

0 0
. J=—ag. (X,
., g;(x;) ax,, q;(x;)

Thus, g maintains the local shape properties if the nodal functions q. If f is quadratic then
qi(x) is f(x) for all i and from equation 3.48 g(x)=f(x). Thus g is also quadratic. We define
the nodal function g; as;

2 2
qj‘(x) = c'j,l (x, —xl,j) +C'j,2 (% _xl,j)(‘xz _x2,j)+cvj,3 (x, _x2,j) +cvj,4 (% _xl,j)+c'j,5 (x, _x2,j)

(3.53)

Where the coefficients minimize

> wi e, (=% ) et €5 (3, — 3, )+ S+ 1) (3.54)
i=1
i=j

For
wi(x)= [(d;;:'i)}
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(3.55)

where d, is again a radius of influence about the node x;. An implementation of method is
given Renka(1988).

3.2.4.2 Neighbourhood size

The neighbourhood size determines how many points are included in the inverse distance
weighting. The neighbourhood size can be specified in terms of its radius (in km), the
number of points, or a combination of the two. If a radius is specified, the user also can
specify an override in terms of a minimum and/or maximum number of points. Invoking
the override option will expand or contract the circle as needed. If the user specifies the
number of points, an override of a minimum and/or maximum radius can be included. It
also is possible to specify an average radius based upon a specified number of points.
Again, there is an override to expand or contract the neighbourhood to include a minimum
and/or maximum number of points. In Shepard's method, there are two neighbourhoods;

the inner neighbourhood is taken to be one-third the radius of the outer radius.

3.2.4.3 Anisotropy correction

In many instances, the observation points are not uniformly spaced about the interpolation
points, with several in a particular direction and fewer in others. This situation produces a
spatial bias of the estimate, as the clustered points carry an artificially large weight. The
anisotropy corrector permits the weighted average to downweight clustered points that are
providing redundant information. The user selects this option by setting the anisotropy
factor to a positive value. A value of 1 produces its full effects, while a value of 0 produces

no correction.

This correction factor is defined by computing the angle between every pair of observation

points in the neighbourhood, relative to the observation point.
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3.2.5 Triangulation

Triangulation play an important role in computer aided geometric design, finite element
methods, numerical analysis, geology, meteorology, approximation theory and elsewhere.
Triangulation is often used to obtain a partioned domain on which various functions are

built, to be used to approximate or model surfaces.

Triangulation is a way of obtaining 3 dimensional interpolation of a surface, given the
scattered data points V={v;} where vi=(X; , i), and heights {z;} for i=1,...,n. To find such
an interpolant we partion the surface into triangles and by some method construct a
piecewise function fj(v) on each triangle T; which interpolates the surface values on the
vertices v; =(X; , yi) for i=1,...,n. Then we set f(v)=f;(v) for ve T;. On each intersection of
the triangles we want a certain C" continuity to obtain the smooth surface f, i.e. f might be a

polynomial or a spline.

In order to understand the theory of triangulation it is necessary to give the following

definitions.

e Convex Set: A set is convex if, given two points in the set, the straight-line segment
joining the two points is also contained in the set.

e Convex Hull: The convex hull of a set is the smallest convex set containing it, namely
the intersection of all convex sets containing it.

e A Triangle T: A triangle T is the convex hull of any three noncollinear points from the
set V.

e A Triangulation A of V : A set A={T},...,Tn}of triangles T; is called a triangulation of
V provided that

1. The points in v are vertices in A.

2. Any pair of triangles T; and T; intersects at most at one common vertex or along a
common edge.

3. The union of the triangles is a connected set in R?, which means there is always a T" of
edges connecting any two vertices in the triangulation. The union of the triangles is

equal to Q, and it is the convex hull of V.
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A is called the triangulation of the domain Q=UNj=1 T;, which implies that € containsv no
holes. The convex hull Q of the vertices in V, is formally described by the convex

combinations

Q= {w,. = z":l,.v,. suchthat A, 20, ili = l} (3.56)

i=1 i=l

Figure 3.8 An example of a triangulation of points in R%

There is no standard way of determining a triangulation. Given the set of points V,
different approaches can be used depending on their application and how restrictive we

want the definition to be.
3.2.5.1 Construction of a Triangulation

The construction of a triangulation depends on the given data and their application. For

example, the data can be given as

1. Only a set of the vertices V
2. The set of vertices V and some edges to be included in the triangulation.

3. The boundary edges and an estimate on the number of inner vertices required.
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Figure 3.9 Two possible triangulations

In first case there is no information about the configuration of A. The natural thing to do
will be to let A be the convex hull of V. In the second case we will typically be given all
the boundary edges and a selection of inner edges. This often happens in the approximation
of scattered data. The last case often appears in finite element methods where the problem
of constructing A is referred to as grid generation because we are free to select the number
and position of the vertices. This means we do not necessarily include all data points. We
also often want to use different sizes of triangles in different parts of the domain, which

will result in a gridded mesh.

3.2.5.2 Criteria for optimality

An important problem in triangulation is to generate the optimal triangles by maximizing
the smallest angle in the triangulation.

The max-min angle criterion: Associated with a triangulation. A there is a number 0(A)
which denotes the smallest angle between the edges in A. A triangulation A* is said to be
optimal with respect to the max-min angle criterion provided that o(A*)20(A) for all

possible triangulations A of Q using the same vertices.
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For this criterion, there may be more than one optimal triangulation. For example, for the
two quadrilaterals shown in Figure 3.10, the two competing triangulations are equally
good, yielding the neutral case. If the four vertices of a quadrilateral do not lie on a circle,

then one of the triangulations is better than the other triangulations.

Figure 3.10: The two possible triangulations

Triangulations of four points where the common edge have been swapped. As the four
points are on the same circumcircle, the triangulations are equally good and the optimal

triangulation is not unique.

The classical error bounds for the error in approximating a smooth function over a triangle

by a polynomial depend explicitly on the size of the smallest angle in the triangle.

The min-max angle criterion: Associated with a triangulation A there is number B(A)
which denotes the largest angle between two edges in A. A triangulation A* is said to be
optimal with respect to the min-max angle criterion provided that B(A*)<B(A) for all
possible triangulations A of Q using the same vertices.

That is, we want to minimize the largest angle in the triangulation.

The max-min and the min-max criteria will often result in the same triangulation of a
quadrilateral, but not always. Some other possibilities of triangulating a quadrilateral

include:
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1. The max-min radius criterion: Choose the triangulation, which maximizes the minimum
radius of the circumcircles in the two triangles.

2. The min-max radius criterion: Choose the triangulation, which minimizes the maximum
radius of the circumcircles in the two triangles.

3. The max-min area criterion: Choose the triangulation, which maximizes the minimum
area of the two triangles, that is, the smallest of the areas of the two triangles.

4. The max-min height criterion: Choose the triangulation, which maximizes the minimum
height of the two triangles.

All of the criteria discussed above are different from each other, but may lead to the same

triangulation of four points in special cases.

3.2.5.3 Optimal triangulations of general point sets

The fact that for a given polygonal domain has many triangulation possibilities suggests
that we might look for a best triangulation. In this section optimal triangulation criteria will
be defined for a general point set in the plane. First we need the concept of local

optimality:

Locally optimal triangulations: A triangulation is called locally optimal with respect to
some criterion provided that every convex quadrilateral (consisting of two triangles sharing

an interior edge) is optimal with respect to that criterion.

Theorem 1: Given any set of vertices V, there always exists at least one (globally optimal
triangulation. Moreover, every optimal triangulation is locally optimal.

The converse of the second half of the theorem, namely that locally optimal triangulations
are globally optimal, is only proved for the max-min angle criterion. It is impossible to
design an algorithm for finding a best triangulation for the other criteria. Indeed, for these
criteria, we can't even decide whether a given locally optimal triangulation is globally

optimal or not without checking all possible triangulations.



58

Figure 3.11 Two min-max angle locally optimal triangulators

3.2.5.4 Delaunay triangulation

Given a set of points V={v;, i=1,2,..,n}; voronoi tesselation is a collection of "tiles" §; that
cover the plane. The ith tile consists of the set of all points that are closer to the point v;
than to any other point vj, . We see that every vertex v; has a counterpart S; for i = 1,..., n.
The interiors of the S;'s are pairwise disjoint, and their union covers all of R2. In this sense
the set = = {S;}"=1 forms a tiling or tessellation of the plane. The Voronoi tessellation is
also referred to as a Dirichlet or Thiessen tessellation. Formally, we can describe a Voronoi

diagram as in this definition

Siz{xe R*: ”x-vi||_<_||x-vj", j=le,n, j¢i} (3.57)

Voronoi diagram: Given a set V of vertices, and verenoi tiles S; are given by for every

i=l,. .., n. The union of all tiles is called a Voronoi diagram.

Delaunay triangulations arise as the duals of Voronoi tessellations of point sets in R? and

they are, by definition, triangulations of convex domains in the plane.

Delaunay triangulation :If the set of tiles £=U"=1{S1,...,Sa} denotes a Voronoi diagram of

the set V, then [v;,v;] is an edge in the Delaunay triangulation if and only if S; N S; 23,
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that is, if the corresponding tiles {S;, S;} of the vertices {v;,v;} share a common vertex or a

common edge. See Figure 3.12 for a geometrical interpretation.

There are several ways of constructing a Delaunay triangulation. For example, a max-min
angle optimal triangulation is a Delaunay Triangulation. However, for a geometrical

interpretation, the following theorem might be more useful,

Figure 3.12 Delaunay triangulation and Voronoi tessellation of a point set V

Considerable effort has gone into the design of algorithms for the construction of a
Delaunay triangulation. There are essentially three approaches:

1. Swapping edges: Construct some initial triangulation. Then iteratively go through the
list of conves quadrilaterals and make swaps where necessary to assure local optimality.

2. Adding points: Start with one triangle and add one point at a time, making sure that at
each steps the current triangulation is optimal.

3. Divide and conquer: Recursively divide the data up into pieces, find locally optimal
triangulations for each piece, then merge the resulting triangulations.

Consider Figure 3.13 for an example;
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Figure 3.13 A Delaunay triangulation vs. a non-Delaunay triangulation

As a conclusion we can say that a good algorithm will always end in a globally optimal
triangulation, that is, a Delaunay triangulation. For local changes we should always apply
the max-min angle criterion which is the only proved local method that ensures a globally

optimal triangulation.

The following is an example of showing how three nearest data can be weighted by
triangular areas to point estimate. The data are located at the corners of the triangle. The
data value at I is weighted by the triangle area Aok, at J by area Ao, and K by Aoy, And

the corresponding values for these locations are z;,z;,zx and z,.

_ Ao + Aoy + Aoy 2 (3.58)

Z
° AIJK

K

Figure 3.14 A typical representation of triangulation algorithm
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4 AFUZZY AREAL SITE ASSESSMENT APPROACH

The fuzzy areal site assessment approach (FASA) is based on the Fuzzy Adaptive
Partitioning Algorithm originally developed for identifying the global optimum solution in
highly multi-modal mathematical functions (Demirhan et al. 1998, Ozdamar and Demirhan
1998). FASA iteratively partitions the site into non-overlapping regular sub-regions (c(),

and evaluate their potentials, (rj(t)), to contain hot-spots via the set of samples (Aj(t)) of

size n collected from each sub-region. Here, ¢ indicates the partitioning iteration. The sub-

region with the highest contamination potential (ag(®), is selected to be re-partitioned into &
subregions (a(t+1), i=1...k) from which new samples are collected (the sampling is now

more intensive in these regions because their areas are reduced). New samples are also
collected from the existing unpartitioned subregions. The unpartitioned subregions and the

re-partitioned daughter subregions make up the set of existing subregions at iteration t,
C(®).

4.1 The Partitioning Algorithm

After a sample of size n is collected within the site according to any given sampling
pattern, FASA is applied to indicate boundaries of the sub-areas in the site, which are most
likely to contain contaminated spots. This is achieved by partitioning the site into smaller
and smaller sub-regions where the set of observations falling within these small areas
indicate "as a group” the possibility of areal contamination. Obviously, the re-partitioning
should be stopped whenever a sub-region is under a given tolerance area size or when very
few data remain in the area. The stopping criteria are tied to user-defined parameters. At
the extreme case, the user may end up with single observation areas, but the latter is not
desirable due to the fact that using a potential estimator, who is an averaging fuzzy

measure, carries out the assessment of each sub-region.

The eventually reached smaller areas whose boundaries are indicated by FASA are either

reclaimed or re-investigated with new samples. Since FASA does not generate interpolated
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isolines, it does not claim any concentration levels for these indicated areas, but calls for

re-investigation.

Initially, FASA divides the site to be investigated (denoted as ag(0)) into k non-
overlapping sub-regions. In the notation aj(t), i is the partition index and t is the iteration
index. The index t is initially set to zero. In the next iteration (t=1), and, in each subsequent
iteration t, FASA identifies the sub-region, ag(t), among existing sub-regions, which has
the highest potential of containing contaminated areas and re-partitions ag(t) into k non-

overlapping smaller sub-regions, o;(t+1), i=1..k, where U

aj(t+1) = ag(t), and oyt+l) M oy(t+l)= 2. (@.1)

The potential rj(t) of a sub-region a;(t) to contain hot-spots is calculated by using the
observation values of the sample set A;(t) falling within o). While selecting og(t), all

existing sub-regions including the ones which have not been partitioned in the previous
iteration, t-1, are considered. Thus, all the accumulated sub-regions up to and including

iteration t make up the set of existing sub-regions denoted by C (t).

This areal partitioning scheme leads to a natural dynamic grouping of observations into
specific sets (lying within given corresponding sub-regions) which reflect contamination
levels as a group. The finally indicated sub-regions are prone to further investigation where
a more intensified re-sampling should be carried out in order to refine areal boundaries for

remediation.

In order to reduce SCRAP, sub-regions whose potential values do not hold any
implications of contamination are discarded. At each iteration, there are three ways to
dispose of sub-regions: i) the sub-region may not contain the threshold number of samples,

tresamp, defined by the user, i.e., the number of samples n;(f) falling within the area, is

below tresamp, and therefore, its boundaries are stored for further investigation later on,

i.e. o;(t) is added to the set of stored areas, ST; ii) the area of the sub-region may be smaller
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than a tolerance value, areatol, specified by the user; i.e., size(o(t))<areatol; in this case the

sub-region is also stored in the set ST, because the area is so small that either the site
investigator is ready to remediate the area even if it is not really contaminated or the
investigator will investigate it further in the second phase; iii) the potential to contain hot-
spots is so low, (rj(t )<p* rmax(t )), that it will no longer be considered as a potentially

contaminated area, so this area is chopped off. Here, rma(t ) is the maximum rj(t ) over all

existing sub-regions, and p* is a user-specified constant between 0 and 1.

Thus, if FASA is used in a multi-phase site investigation, once the first analysis ends with
no sub-regions to assess (either they have been put aside for further investigation, or, they
have been discarded), the investigator may use FASA once more after collecting new
samples from each of the sub-regions stored in the set ST in the previous phase. The

number of new samples n'; collected from each stored sub-region depends on its size as

well as the pre-specified number of samples to be collected in this phase.

The pseudocode of FASA is given briefly in Figure 4.1. Finally, we re-emphasize that
unlike the previously mentioned interpolation methods, FASA has no claim on the
concentration value surface within the sub-regions indicated. FASA simply cautions the
site investigators about the areas indicated by the boundaries and reports their potential to

contain hot-spots on a [0-1] scale.

4.2 The Fuzzy Potential Estimator

In order to discuss the nature of the fuzzy potential estimator, ri(t), first we should analyze
how we normalize the contamination level indicated by each observation through a

membership function.

Membership function. A membership function, p;, maps the concentration value f(x;) to
the unit interval. Here, x; is the jth observation in Aj(t). Membership values represent the
scaled position of f(x;) against the maximum concentration f* obtained within the initial

set of samples Ag(0). p;; indicates the grade that observation x;; belongs to the set of points
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lying in the hot-spot areas. Therefore, p; is zero if f(x;) is below the remediation trigger

level of the contaminant.

The membership function used here is the gaussian membership function (GMF) (Ross,
1995) which results in an exponential bias for observation values near £*. GMF is given

below.
pi(t)=exp( -[ f*-f(xy)]/0%) 4.2)

where o? is the variance of all observation values. In Figure 4.2, we provide membership
values for a data set consisting of (21.5, 29.1, 33.9,34.8, 42.3) where *=42.3 and the

variance of the data values in the set is 58.92.

Pseudocode of FASA
Step 0. Initialization: Identify the initial site o,y. Set ag(0)=0q, C(0)={a,}, and ST=J, t=1.
Step 1. Partitioning: Partition the subregion ag(t-1) into k subregions to form the set C.
Let C(t) = [C(t-I\ag(t-D]u C.
Step 2. Evidence collection: Identify the samples falling into o;(t) to form Aj(t) € Ag(0) from each
sub-region
a;(® € C(t). (Ag(0) consists of the » samples collected initially. )
Step 3. Evaluation: Compute from each A(t), the potential rj(t) of sub-region ai(t) to contain hot-

spots.Calculate rp(t).
Step 4. Storage & Disposal: For all aj(t) € C(t), check:

i If size(oi(f))<areatol , then ST = ST +a;(t), and C(t)= C(t)- o;(D).
il If ny(t) <tresamp, then then ST = ST +o(t), and C(t)= C(t)- aj(t).
i, If it )<p™ tmax(®), C(t)= C(1)- cti(t).

Step 5. Selection: If C(£)20, og(t) = (D) : rj(t)=Tmex(t). Set t=t+1 and go to step 1.

Else, if single-phase investigation, then stop.
Else, if multi-phase investigation, then go to Step 6.
Step 6. Set t=1. C(1) <= ST. ST=(. Collect a set Aj(1) of n; new observations form each a;(1) € C(1).
Ag(1)=u Aj(1) Go to Step 3.
i

Figure 4.1. Pseudocode of FASA
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Figure 4.2 Representation GMF for a given set of data

The assessment of each sub-region o;(t) is achieved through a fuzzy potential estimator
ri(t) which is based on the membership values of samples lying in that particular region.
The concentration values (observed and unobserved) within a given area constitute a fuzzy
set, since it is not possible to know exactly the concentration level of each and every areal
unit within the sub-region. Similarly, the boundaries of the hot-spot areas are also fuzzy,
because not all concentration values can be identified within a hot-spot and one may not

know where the area ceases to be a hot-spot. Hence, the hot-spot areas represent fuzzy sets.

The fuzzy potential estimator used in this study is derived from an entropy measure
described in Pal and Bezdek (1994). An entropy measure is a function of membership
values and it reflects the average ambiguity in a given fuzzy set. In the entropy measure,
the uncertainties related to both the set itself and to its complement are included. Thus, in
our context, an entropy measure is factored into two parts: The part reflecting the presence
of hot spots in an area (the boundaries of the hot spots are fuzzy and therefore, ambiguity is
involved on the issue of whether the location of an observed value within a sub-region is a
member of the hot-spot area) and the part reflecting its absence. A fuzzy set’s uncertainty
level is minimum when the membership values (the components of the entropy measure)
approach either to zero or to one. The uncertainty level reaches the maximum when the
membership values approach the value of 0.5. Here, we omit the part of the entropy
measure which reflects the uncertainty related to the complement of the set, because we are

only interested in the presence of high contaminant concentrations rather than low levels.
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The multiplicative potential estimator which ranges between [0-1] is given below.
n(t)
n(t) = 1-[ 2 py(®) (1-p50 ) 1/ ni(t) (4.3)

=1

As observed in the mathematical expression for r;(t), the effect of an observation on
ri(t) is weighted by 1/ni(t). Hence, since the number of observations lying in sub-regions of
different sizes vary, the weight of the same observation becomes adaptive and dependent
on the specific group of observations of which it becomes a member. For instance, an
observation's weight is usually lower in a parent sub-region as compared to its child within
which it currently lies. The reason is that, in general (if uniform sampling is used), there
are more samples in the parent sub-region than in the child. Hence, samples in areas which
are potentially more contaminated than others (re-partitioned sub-regions) are assigned
higher weights while the samples in the remaining unpartitioned sub-regions preserve their
previous weights. Thus, the adaptive area-partitioning scheme of FASA results in an

adaptive observation-weighting scheme.
4.3 An Example [llustrating the Mechanics of FASA

The following example demonstrates how FASA identifies hot spots. Figure 4.3
illustrates a hypothetical contaminant distribution over a site whose boundaries are given
as (1,5)x(2,6). Three hot spots exist in the site and they are indicated by lighter tones. The
threshold isocline for intolerable contamination level is the second inner isoline. In Table
2, the partitioning iterations of FASA and the resulting partitioned zones are indicated with
their respective potential values. Note that if a tie between the width and length of a sub-
arca exists, then the sub-area is partitioned by randomly selecting the x- or y- dimension.
Here, p* is equal to 0.75 and many partitions are discarded according to p*. The parameter

areatol is assumed to be 10% of the site area. The partitions which are stored due to the

areatol criterion are also indicated in Table 2.
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1 2 3 4 5

Figure 4.3 An exemplary contaminated site
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Table 4.1. The iterations of FASA.

Partitioning Iteration (t)

Partition Index (i) Partition Bounds (x) x (y) ri(t) Decision on Partitions
0 1 (1,3) % (2.6) 0.91 Preserved
2 (3,5)x (2,6) 0.96 Selected
1 i 1,3)x (2,6) 0.91 Preserved
2 (3,5)x (4,6) 0.97 Selected
(3,5) x (2,4) 0.93 Prosorced
2 1 (1,3)x(2,6) 0.91 Preserved
2 (3:4) x (4,6) 0.45 Discarded
3 (4,5) x (4,6) 0.98 Selected
4 > 'y ..
(3,5)x (2,4) 0..93 Proserved
3 1 1,3) % (2,6) 0.91 Preserved
2 4,5)x (5,6) 0.99 Stored (areatol criterion)
3 4,5)x(4,5) 0.33 Discarded
4 (3,5 x(2,4) 0.93 Selected
4 1 (1,3)x (2,6) 0.91 Preserved
2 (3,5)x (3,4) 0.20 Discarded
(3,5)x(2,3) 0.95 Selected
3 T 13 x 2.6 0.91 Selected
2 B34 x(2,3) 0.72
Discarded
3 4,5)x (2,3) 0.98 o
Stored (areatol criterion)
6 1 (1,3)x (4,6) 0.64 Discarded
2 )X (24 0.87
(13)x 24 Selected
7 1 HxGCH 094 | Selected
2 1L,3)x (2, 0.4
(1.3)x 2.3) 7 Discarded
8 1 (1,2)x 34) 099 | Stored (areatol
2 2,3)x (3,4 0.97 L
criterion)
Stored (areatol criterion)
J RO,
POzt
BIAN gy, P Ly
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5 PERFORMANCE EVALUATION OF SIM AND FASA

5.1 Sampling Patterns Used in the Experiments

In the first part of the experiments three different sampling patterns are used. The first one
which was stated by Ferguson (1992) is the Herringbone pattern, the other two patterns are
more basic patterns and widely used in geostatistics and known as regular grid, and
stratified random sampling. These three patterns are selected due to the suggestions made
on various sampling strategies mentioned in the report by the Department of the
Environment (U.K. DoE Contaminated Land Research Report No. 4, 1994) which is a
brief guide for contaminated land research basics, methodologies and concept. It is shown
that in order to have a certain probability for at least one sample point to hit the hot-spot
(contaminated part of the area), the investigators should collect a given number of samples
from the potential contaminated area. It is claimed that environmental sampling strategies

should satisfy the following conditions.

1. It should be stratified: ( that is, the area to be sampled should be partitioned into regular
sub-areas;

2. Each sub-area should carry only one sampling point;

3. It should be systematic;

4. Sampling points should not be aligned.

The Herringbone pattern, which is generated by offsetting points by one quarter of a umnit
grid by starting from the left-bottom of the area, satisfies all four conditions stated above.
A family of Herringbone designs can be generated by offsetting points by other fractions.
However, according to UK. DoE Contaminated Land Research Report No. 4, 1994,
computer experiments showed that the one-quarter unit offset provides the most efficient
search pattern. This type of herringbone pattern can be generated by four square grids each
of the same orientation and spacing. Thus it is almost as easy to set out on site as a single

square grid.

The regular grid pattern, which is generated by dividing the area into equal sub regions and

put the sample locations to the comers of these areas, satisfies all conditions except the
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fourth one. The disadvantage of the regular grid is its much reduced ability to detect

elongate hot-spots whose long axis is parallel to the grid axis.

Stratified random pattern, which is generated by using a pure random number generator for
both x and y coordinates in each strata of the sample location pattern satisfying all
conditions except the third one. The weakness of the stratified random sampling pattern is

tendency for irregular sampling.

In Figure 5.1 the three sampling patterns are depicted. The source codes for these sampling

patterns are in Appendix D.

The performance of sampling strategies are evaluated by their frequency of hitting a point
in the contaminated area. Namely, if 100 partially contaminated sites are investigated, a
pattern, which most frequently results in at least one sample hit a hot spot, is considered to
be the most efficient. The results provided by Ferguson (1992) indicate that the
Herringbone pattern is the most efficient one among the strategies investigated within an
experiment where various geometric shapes (square, elliptical, circular, rectangular with

several aspect ratios) representing hot-spots are considered.

. . . » . . . ) - -
. . * - « . * . .

‘ Regﬁlar Grid | 'Strati'ﬁed Rando;n
Figure 5.1 Three sampling patterns

Hémgbone

5.2 Design of Hypothetical Test Sites

In order to test the SIM and FASA, 360 hypothetical sites have been generated by the

computer according to an experimental design considering the fallowing factors:
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o The Percentage of Contaminated Area (area covered by hot-spots) over the area of the
site (factor PCA). Factor PCA has two levels: the contaminated area constitutes 5% and
1% of total site area,

o The Number of Hot-Spots per Site (NHS). Factor NHS also assumes two levels of
contamination: a single hot-spot and three non-overlapping hot-spots exist.

o The Sampling Pattern (SAMP). As described in the previous section SAMP has three
types: Herringbone (Ferguson, 1992), regular grid, and stratified random sampling.

These three major factors are the most significant part of the evaluation procedure. By
using the above mentioned factors and the formula given below 360 site is synthetically

generated;
3 (SAMP) x 2 (PCA) x 2 (NHS) x 30 (Replicates) =360 Hypothetical Sites 5.1

In Table 5.1 and 5.2 the number of times that at least one sample falls on a hot-spot among
1000 hypothetical sites (indicated by # of Success) and the average number of samples
falling within a hot-spot (indicated by Ave. # of Samples) are reported for different sample
sizes, for two PCA and three NHS levels, and three different sampling patterns. The area of
each site is 10,000 squared meters. In Table 5.3, we observe that the regular grid and the
Herringbone patterns provide the best results. When PCA. equals 5%, a sample size of 100
provides satisfactory results regardless of NHS. Similarly, a sample size of 200 seems to

work well when PCA is 1%.

The synthetic hot-spot generation scheme within a site generated as follows. First, it is
randomly decided on how many (between 5 and 10) equivalent square grids, gc, each hot-

spot area will lie. Then, each edge of the site is divided into G equivalent intervals where,

G = edge length / [site area* PCA / (gc * NHS)]*? (5.2)
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Table 5.1 Performance of sampling patterns on 1000 hypothetical sites for PCA=1%

PCA=1%] I |
NHS=1 Sample Size=S0 Sample Size=100 Sample Size=200 |
#Suecess |Ave. # of Samples |#Success |Ave. # of Samples |#Success |Ave. # of Samples|
Herring Bome 488 1.06 798 1.28 974 2.01
Stratified Sam.) 420 1.12 738 1.36 939 2.11
| Grid 504 1.10 813 1.27 982 2.08
NHS=2
Sample Size=S0 Sample Size=100 Sample Size=200 ‘
#Success |Ave. # of Samples |#Success |Ave. # of Samples |#Suceess {Ave. # of Samples|
Herring Bone 441 1.16 796 2.06 961 2.17
Stratified Sam.] 418 1.19 671 1.46 916 2.15
| Grid 472 1.17 779 2.09 965 2.20
NHS=4
Sample Size=50 Sample Size=100 Sample Size=200 ‘
#Suceess | Ave. # of Samples | #Success ; Ave. # of Samples | #Success ,Ave. # of Smm];_nﬂesq
Herring Bone 443 1.24 719 1.71 914 2.19
Stratified Sam.| 399 1.21 676 1.53 893 2.17
Grid 484 1.27 779 2.20 933 2.25

Table 5.2 Performance of sampling patterns on 1000 hypothetical sites for PCA=5%

PCA=5% Ii il
NHS=1 Sample Size=25 Sample Size=100

#Success_|Ave. # of Samples #Success |Ave. # of Samples
Herring Bone 902 1.75 1000 4.75
Stratified Sam.] 827 1.55 1000 5.08
Grid 918 2.36 1000 4.95
NHS=2

Sample Size=50 Sample Size=100

#Success |Ave, # of Samples |#Success |Ave. # of Samples
Herring Bone 989 2.52 1000 4.83
Stratified Sam.] 955 2.60 998 4.95
Grid 984 2.53 1000 4.88
NHS=4

Sample Size=S0 Sample Size=100

#Success | Ave. # of Samples | #Success | Ave. # of Samples
Herring Bone 973 2.66 1000 6.37
Stratified Sam.| 948 2.62 998 5.05
Grid 975 2.79 1000 8.06

Next, one starting grid is randomly selected from G’ grids for the constructing of the hot-
spot area. One can continue to construct the hot spot with eight possible neighbour grids, 4

on each side of the starting grid and 4 on its vertices. The neighbour is randomly selected.
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This neighbour selection process goes on until the number of selected grids becomes gc
and one hot-spot area is completely constructed. The procedure goes on to construct the
various levels of hot-spots with the condition that none of the grids belonging to a given

hot-spot has a common edge or vertex within the existing hot-spots.

As an example, by using the following numbers PCA=1%, NHS=2 and gc as 8, in
Equation 5.2; G is found as; G= 100/[(10000*0.01/16)] ®°= 40 and a total of 40x40=1600
grids will cover the site, each with an area 6.25 square meters and edge of 2.5 meters.
When 200 samples are taken according to the regular grid pattern, the distance between a
pair of observations in the x- and in the y-directions becomes 7.07 meters which is much
wider than an edge of a grid. In order to create a realistic pollution distribution, each grid
among the gc grids of a hot-spot is randomly assigned one of the two following
concentration ranges: moderately coniaminated range [150-600), and highly contaminated
range [600-1000]. The reason behind this is the desire to construct a hot-spot area
consisting of a non-homogeneous contamination pattern. Clean areas are assigned a
concentration range of [0-150). These ranges are selected from the critical concentration
levels of a heavy metal (Pb) reported to be found in contaminated and non-contaminated
areas (Alloway, 1995).

The observations whose locations are determined by a sampling pattern are assigned
random concentration levels in the ranges specified by their locations, €.g., a sample falling

into a clean area is assigned a random value uniformly distributed in the range [0-150).
5.3 Performance Criteria in Environmental Site Characterization

The relevant performance criteria in environmental site characterization is to determine the
contaminated regions in the site as precisely as possible (e.g., identify the areas which
contain high contamination levels completely) and to carry out this task so that it results in
minimum possible remediation costs. The latter implies that contaminated areas need to be
identified without leading to over-estimated zones. Obviously, these two objectives are
conflicting. The best way to make sure all contaminated zones are remediated, is to
remediate the whole site. However, such a policy results in the highest remediation costs of

transporting tons of soil (some of which are already clean and this operation is partially
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futile) and replacing them by clean re-fills. Yet, the inability to cover the contaminated
zones completely leads to high health hazards. Consequently, the ultimate goal of site
characterization is expressed in the following statement. "Maximize the percentage of
correctly recognized contaminated areas with minimum areal cover”. In other words, we
wish to identify 100% of the contaminated zones while having 0% of clean area mis-
identified as contaminated (false positives). From now on, we call false positives "SCRAP"
and calculate it by dividing the sum of mis-identified areas by the area of the whole site.
The percentage of areas (with respect to all contaminated area) recognized correctly as
contaminated is called "COVER".

54 [FASA and SIM Implemented on a Hypothetical Site

A hypothetical site is depicted in Figure 5.2 with Herringbone sampling pattern where
slightly lighter colour tone indicates moderate contamination and darker tone indicates
high contamination. PCA is 5% in this site. It is observed that 5 samples fall within the
hot-spot. In Figure 5.3 to 5.12, the areas indicated as contaminated by various SIM and
FASA are shown. The COVER and SCRAP percentages of different methods are provided
in Table 5.3 Furthermore, since SIM provide isolines with given concentrations, we also
provide the percentages of moderately and highly contaminated areas identified correctly
by SIM. (In Figure 5.2 two isolines with values of "greater than 150" and "greater than
600" are indicated. The smaller circled isoline represents high contamination.) No such
information is made available by FASA, since the method has no claim on the specific
concentrations within the interior of the areas it has identified and it simply claims that
these areas are prone to contain contamination levels above the threshold value. Note that
the COVER percentage is calculated without regard to isolines, i.e., the intersection of the
areas identified as contaminated (independent of moderate or high) by a SIM with the
actual hot-spot is reported as COVER. In fact, SIM often incorrectly label a highly

contaminated area as moderately contaminated, but rarely vice versa.

Various interpolation basis functions and different variogram models which are given in
Chapter 3.2, are tested and their performance is indicated in Table 5.3 the purpose here is
to provide a visual insight for each method’s performance. For instance, kriging with

gaussian variogram model (Figure 5.8) claims small contaminated areas all over the site
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whereas other variogram models result in very small SCRAP percentages. The
performance of kriging as compared with FASA is partly due to the well-known effect of
hot-spots situated in the comers of a given site. Also kriging tends to smooth sharp data

points and therefore, the outer boundary of the hot-spot is indicated as relatively clean.

Prior to discussing the performance of the remaining SIM in Table 5.3, let us be recall that
all gridding/interpolation methods have some common problems such as sensitivity to grid
size, partial ignorance of observations, and sensitivity to minor changes in the data which
usually result in major changes in the outcome (Wingle 1992). Furthermore, using gridded
data, it is not possible to represent sharp singularities due to the smoothing effect. This
aspect, common to the interpolation methods discussed here, is intuitively contradictory in
the context of detecting hot-spots where we need to identify singularities. Due to this
reason, in Table 5.3, the percentages of correctly identified moderately contaminated areas
are much higher as compared to the percentages of correctly identified highly
contaminated areas. Thus, when the site investigator uses interpolation methods, he/she

faces a high risk of overlooking the most essentially polluted zones.

The minimum curvature method (Figure 5.9) usually generates SCRAP near the corners of
the site, because the interpolated locations are not completely surrounded by observations.

(This is the usual trend of this method in other hypothetical sites t0o.)

On the other hand, Shepard’s method (Figure 5.12) splits the main body of the hot-spot
into more than one part and indicates clean areas in-between. This is due to the inward
thrust of the hot-spot near the upper part which results in a singular square grid and more
clean observations around that grid affect the interpolated values. The problem with
misidentified contaminated areas dispersed over the corners of the site remains to be valid
for this method too. In other hypothetical sites, we observe that even though peaks are
away from the comers, due to the lack of surrounding data, they affect the interpolation

near the corners. Again, these visual characteristics belong not only to this example, but to

all other hypothetical sites used in the experiment.
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In triangulation (Figure 5.4), the border of the indicated contaminated area resembles a

mosaic consisting of triangles of various sizes and therefore, the borders are quite sharp

(piecewise linear).

Table 5.3 Results of various SIM and FASA on a synthetic site.

Identified Area % Identified Area % | COVER |SCRAP

METHOD (moderately contaminated) | (highly contaminated) % %
FASA - - 9538 | 7.70
Triangulation 87.47 10.61 79.38 | 2.62
Kriging-Linear 88.84 6.08 79.69 | 2.52
Kriging Spherical 85.91 6.76 7799 | 2.44
Kriging-Quadratic 85.16 4.38 77.16 | 2.28
Kriging-Gaussian 80.91 18.07 74.92 | 14.77
Minimum curvature 87.29 8.68 7876 | 4.91
RBF-Thin Plate 82.55 14.60 7776 | 6.29
RBF-Multiquadratic 83.55 12.20 77.02 | 2.99
Shepard's Method 70.83 1422 5795 | 5.66

As observed in Figure 5.3, in FASA, the site area is divided into four parts in the first two

iterations and three of the partitions are immediately discarded by the p* criterion (0.85 of

the maximum potential value.) (In Figure 5.3, partitions without samples represent

discarded ones.) Next, the remaining partition in the upper right corner is divided into four

parts in the next two iterations, one of which is totally discarded. The remaining

undiscarded areas almost totally cover the hot-spot. The superfluous large SCRAP to the

left of the cover is due to a single high concentration observation value falling on the

boundary of the scrapped part. Notice that the high SCRAP area resulting from FASA is

also due to the rectangular block-partitioning scheme implemented on a hot-spot with

irregular shape.
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Figure 5.2 A hypothetical site with Herringbone sampling pattern
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Figure 5.3 FASA

Figure 5.4 Triangulation
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Figure 5.5 Spherical Kriging

Figure 5.6 Linear Kriging
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Figure 5.7 Quadratic
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Figure 5.8 Gaussian Kriging
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Figure 5.11 RBF- Multiquadratic

Figure 5.12 Shepards Method
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55 Results

The results obtained on 360 synthetic sites by five SIM and FASA are provided in Tables
5.4-5.15. The sample size is 100 when PCA is 5% and 200 when PCA is 1% independent
of the number of hot-spots, NHS. The results for each method are indicated for two
percentages of hot-spot areas (with respect to whole site area) (PCA=1% and 5%), two
NHS values and three sampling patterns. Performance is indicated by COVER (ratio of
correctly identified hot-spot area to total hot-spot area) and SCRAP (ratio of clean area
indicated as contaminated by the method to whole site area). Average, standard deviation
and minimum levels of COVER and SCRAP are provided in Tables 5.4-5.15. Tables 5.4-
5.9 provide the results for sites with a single hot-spot and Tables 5.10-5.15 provide the
ones for the sites with three hot-spots. It is observed that the performance of all methods
significantly deteriorate when NHS=3 irrespective of PCA level. On the other hand, when
NHS=1, there is no statistically significant difference between performances at PCA levels
of 1% and 5%, except for FASA. However, when NHS=3, performances of all methods
deteriorate significantly as PCA decreases to 1%.

SIM are applied using the corresponding modules in the commercially available software
Surfer (Golden Software). In all methods, no anisotropy is incorporated. RBF results are
obtained using multi-quadratic basis function and all data are used in interpolation. Kriging
is carried out with linear, quadratic gaussian and spherical variogram models, but only
linear results are reported due to the fact that the three models do not lead to statistically
significant results. There is no nugget effect and no drift. All data are honoured. Thus,
kriging is used as an exact interpolator. On the other hand, in minimum curvature, all data
may not be honoured. The maximum iteration number for grid node correction is set to
10000. In Shepard’s methods the exponent p is set to 2 and the smoothing parameter is set
to zero so that high observation values are honoured appropriately. All data are used in the

interpolation.

FASA is coded by L. Ozdamar and M. Demirhan using Borland C++ 5.01. Program
implemented with the following parameters: the number of child areas, k, emanating from

a parent is 2; the partitioning is carried out by dividing the longest edge of the parent

region; the tolerance level, areatol, for discarding and storing a region for further
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investigation is set to the given PCA Ievel. In actual applications areatol may be as large as
the expected percentage of contaminated area; tresamp is set to 3; the parameter p* for

discarding regions without further investigation because of low potential values is 0.85.

As observed in Tables 5.4-5.15, the Herringbone and the Grid sampling patterns seem to
work best with regard to COVER whereas Stratified Random Sampling is relatively more
inferior specially when NHS is 3.

Two-tailed paired t-tests are applied to detect differences among pairs of means (with
respect to COVER criterion, and for the total number of 360 hypothetical sites, see Table
5.16. The values in Table 5.9 show that FASA is superior to all SIM and there exist no
statistically significant differences in the performances of kriging, Minimum Curvature,
RBF and Triangulation. Shepard’s method is significantly inferior to all other methods.

With respect to the criterion of SCRAP, (detailed tables are omitted here), the performance
of RBF, kriging and Shepard’s method are not statistically different. However, minimum
curvature has statistically significantly higher SCRAP. Furthermore, triangulation’s
performance is totally disappointing with regard to SCRAP possibly due to the reason
mentioned previously, it provides a very coarse cover of the site with too large triangles.
As mentioned previously, FASA’s performance is compatible with that of minimum
curvature when PCA=1%, but significantly higher when PCA is 5%. The parameter
areatol, which is automatically set to 5%, seems to be too high and leaves superfluous
SCRAP. Naturally, in all methods SCRAP increases significantly when PCA=5%.
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Table 5.4 Linear kriging results.
[ PCA | %1 , %5
l Herring Bome [|[COVER % SCRAP % [|COVER % SCRAP %
AVG 75.42 1.36 86.08 3.61
STD 26.51 0.75 12.84 1.60
MIN 0.24 0.00 60.57 0.84
Grid |‘
AVG 75.36 1.28 87.03 3.80
STD 24.80 0.54 13.27 1.59
MIN 0.26 0.00 52.76 0.79
Stratified Random
AVG 71.55 1.45 89.01 4.25
STD 29.83 0.93 7.14 1.73
MIN 0.24 0.06 71.46 1.33
Table 5.5 RBF- Multiquadratic results.
PCA %1 %5
Herring Bone |[COVER % SCRAP % [COVER % SCRAP %
~ AVG ~75.03 1.57 83.74 3.62
STD 25.03 0.63 13.29 1.48
MIN 0.24 0.27 57.38 1.15
Grid !
AVG 7445 1.36 85.95 3.68
STD 24.38 0.52 13.45 1.54
MIN 1.36 0.02 53.27 1.18
Stratified Random
AVG 69.50 2.22 86.45 4.61
STD 29.00 0.83 7.83 1.75
MIN 0.24 1.04 68.70 2.15
Table 5.6 Minimum curvature results.
[ PCA | %1 J %5
Herring Bone |[COVER % SCRAP % |[COVER % SCRAP % '
AVYG 75.22 2.94 83.36 4.95
STD 24.36 0.71 13.45 1.64
MIN 6.05 1.61 57.74 2.11
Grid
AYG 74.17 2.84 84.69 5.21
STD 24.06 072 || 13.59 1.72
MIN 1.17 1.46 | 51.61 243
Stratified Random b '
AVG 70.07 3.10 ‘ 86.19 6.11
STD 27.39 1.03 7.53 1.94
MIN 0.24 1.43 69.89 2.88
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Table 5.7 Shepard's results.
[ PCA %1 I %5
[ Herring Bone |[COVER % SCRAP % [COVER % SCRAP %
~ AVG 62.68 0.75 73.87 2.25
STD 26.87 0.51 17.62 1.53
MIN 0.24 0.00 40.12 0.12
Grid bl
AYVG 63.88 0.77 75.13 3.15
STD 28.30 0.51 19.54 1.77
MIN 0.26 0.00 25.85 0.42
Stratified Ramdom
AVG 60.88 0.79 78.93 428
STD 30.34 0.69 16.76 2.25
MIN 0.24 0.00 42,23 0.35
Table 5.8 Triangulation results.
[ PCA ; %1 I %S5
[ Herring Bome ({COVER % SCRAP % I[COVER % SCRAP %
AVYG 74.29 12.62 84.30 21.52
ST 25.85 0.75 11.92 1.63
MIN 0.24 11.43 54.71 18.06
Grid
AVG 72.57 15.67 86.14 24.42
STD 24.80 0.50 12.87 1.93
MIN 0.26 14.72 50.76 20.77
Stratified Random
AVG 68.84 10.44 86.06 15.15
ST 28.44 0.92 9.21 2.48
MIN 0.24 8.88 66.74 10.93
Table 5.9 FASA results.
[ PCA I %1 %5
[ Herring Bone [C@‘VIER % SCRAP % |[COVER % SCRAP %
AVG 84.83 2.93 94,76 14.63
STD 14.44 1.22 8.97 6.00
MIN 48.97 0.77 62.11 7.50
| Grid |
AVG 81.77 2.46 97.74 16.36
ST 17.77 1.46 6.57 5.90
MIN 29.60 0.59 70.82 2.70
[Stratified Random
AYG 71.10 1.69 89.91 9.25
STD 25.62 0.76 12.30 4.50
MIN 13.74 0.67 50.37 1.87
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Table 5.10 Linear kriging results.

[ PCA ‘ %1 | %5 ]
rHerrimg Bone ([COVER % SCRAP% |(COVER % SCRAP %
AVG 49.34 1.72 74.33 6.41
STD 28.72 1.11 15.50 2.44
MIN 0.23 0.00 44.47 2.13
| Grid
AVG 51.61 1.75 73.09 5.66
STD 26.44 1.14 14.98 2.00
MIN 0.23 0.00 32.47 2.27
Stratified Random /
AYVG ‘ 41.69 1.81 65.49 6.35
STD 25.62 1.21 18.84 1.72
MIN 0.24 0.00 17.71 3.46
Table 5.11 RBF- Multiquadratic results
PCA %1 %S
[ Herring Bone [[COVER % SCRAP % |COVER % SCRAP %
AVG 50.36 1.90 7425 6.15
STD 28.82 1.01 14.77 2.19
MIN 0.23 0.04 43.88 2.04
Grid |
AVYG 52.60 1.96| 72.87 5.45
ST 25.92 1.12} 14.63 1.78
MIN | 0.23 0.29 31.98 2.68
[Stratified Random I
AVG 43.81 2.59 64.71 6.75
STD 25.21 1.13 18.07 1.89
MIN 1.47 0.33} 16.91 3.51
Table 5.12 Minimum curvature results
PCA %] %5 |
Herring Bone [COVER % SCRAP % ||[COVER % SCRAP % |
AVG 51.22 3.23 73.76 735
STD 29.35 1.13 14.19 2.21
MIN 0.23 1.52 43.50 3.29
Grid
AVG 52.87 " 3.51 72.43 6.88
STD 26.05 1.11 14.63 1.95
MIN 0.23 1.67 31.09 4,08
Stratified Random
AYG 44.50 3.47 65.40 7.86
STD 24.69 1.36 18.88 1.96
MIN 0.24 1.09 17.64 4.15
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Table 5.13 Shepard's results.

[ PCA %1 j %5 ]

[ Herring Bone |COVER % SCRAP % |[COVER % SCRAF % |
AVG 39.30 0.76 T 61.69 4.60
STD 23.92 0.59 16.83 3.45
MIN 0.23 0.00 26.21 1.14
Grid
AVG 41.15 0.81 58.70 3.71
STD 23.18 0.89 15.58 1.97
MIN 0.23 0.00 29.60 0.84

[Stratified Random
AVG 34.82 0.98 53.76 4.48
STD 2424 0.87 15.22 1.91
MIN 0.24 0.00 16.34 1.87

Table 5.14 Triangulation results.
[ PCA %1 %5
Herring Bone |COVER % SCRAP % |COVER % SCRAP %

AVG 49.94 12.75 75.87 ~23.00
STD 27.57 0.86 13.71 2.21
MIN 0.24 11.49 43.82 18.23

i Grid
AVG 54.28 16.18 72.70 25.81
STD 23.46 0.86 12.78 2.26
MIN 0.23 14.85 40.96 21.69

Stratified Random '
AVG 43.45 10.73 64.58 17.60
STD 22.45 1.24 17.58 2.40
MIN 6.17 8.24 21.39 11.24

Table 5.15 FASA results.
Herring Bone J[COVER % SCRAP % JCOVER % SCRAP %

AVG [ 55.09 3.73 86.20 21.93
STD 24.49 2.24 14.54 7.66
MIN 3.77 1.05 4127 9.16
Grid
AVG 50.99 3.63 88.90 2.59
STD 23.06 1.74 14.15 12.91
MIN 8.20 1.22 43.16 9.16

|Stratified Random
AVG 41.60 2.65 67.14 15.80
STD 25.10 1.45 19.33 5.16
MIN 5.13 1.23 29.08 4.61
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Table 5.16 Overall results of methods for NHS=1

WCA 1% I 5%
avg 73,15 2,96 84,75 5,42
std | 25,27 0,82 11,52 1,77
ILimear KTiging
avg 74,11 1,37 87,37 3,89
std 27,04 0,74 11,08 1,64
ITianguation ‘
avg 71,90 12,91 85,50 20,36
std | 26,36 0,72 11,34 2,01
]' RBF-Mutiquadric
avg 72,99 1,72 85,38 3,97
std 26,14 0,66 11,52 1,59
Sheparda's
avg 62,48 0,77 75,98 3,23
std 28,50 0,57 17,97 1,85
IFASA L |
avg I 79,23 2,36 94,14 13,41
std 19,28 1,15 9,28 5,47
Table 5.17 Overall results of methods for NHS=3
PCA % 5%
mﬁﬁcﬁ COVER % | SCRAF % | COVER % | SCRAPF % |
avg I 49,53 340 70,53 736
std 26,69 1,20 15,90 2,04
T Linear KIigmg | |
avg 47,55 1,76 70,97 6,14
std 26,93 1,15 16,44 2,05
| ﬂmngmm—|
avg 49,22 13,22 71,05 22,14
std 24,49 0,99 14,69 2,29
- quAdTIC
avg 48,92 2,15 70,61 6,12
std 26,65 1,08 15,82 1,95
| Skepard's
avg 38,42 0,85 58,05 4,26
std 23,78 0,78 15,87 2,44
[ FASA [ ]
avg 49,23 3,34 80,75 13,44
std 24,22 1,81 16,01 8,58
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Table 5.18 Overall results of sampling patterns for NHS=1

PCA % 5%
HerringBone COVER % | SCRAP % | COVER % | SCRAP % |
avg 74,69 3,69 84,73 8,43
std 23,84 0,76 13,01 2,31
Grid
avg 73,39 4,06 86,53 9,44
std 24,02 0,71 13,21 241
Stratified Randon
avg 68,66 3,28 86,09 7,28
std 28,44 0,86 10,13 2,44

Table 5.19 Overall results of sampling patterns for NHS=3

PCK % 5% |
[ HerringBone | COVER % | SCRAP% | COVEK 7% | SCRAF % |
avg 49,55 4,01 74,17 11,57
std 27,14 1,16 14,92 3,36
[ Grid '
avg 49,31 4,64 72,03 8,35
std 24,69 1,14 14,46 3,81
[Stratiiied Random ' '
avg 41,65 3,70 63,51 9,81
std 24,55 1,21 17,99 2,51

Table 5.20 Paired t-test statistics for 360 sites (*: significant at 5% level)

FASA Kriging MINC RBF Shepard's | Triangulation
FASA 9.057* 4,083* 5.201* 15.201* 5.283*
Kriging 1.5261 1.5647 33.026* 1.7580
MINC 1.837 18.279* 1.614
RBF 20.258* 0.180
Shepard’s -19.418*

Two-tailed t-test is applied. Positive t-test values indicate that the method in row i is

superior to the one in column j in cell i,j and negative values indicate the converse.
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6 PERFORMANCE EVALUATION of SPATIAL INTERPOLATION METHQODS in
the PRESENCE OF NOISE

A handicap in site characterization is the existence of noise in the observed values. For
example, sampling errors (often, duplicate samples taken from same location result in
different observation values) resulting from the sampling methodology dominate
laboratory analysis errors. Consequently, a realistic performance investigation method
should involve data with noise. Therefore, we carry out experiments where data are
distorted by additive white noise as is the case in many applications. We demonstrate the
effectiveness of SIM considered here, that is Multi-quadratic Radial Basis Function,
Kriging, Minimum Curvature, and Shepard’s Inverse Distance method, by using noisy
data. We omit Surfer’s Triangulation method due to extremely bad results obtained in
preliminary testing.

Here, in order to conduct more refined experiments, we utilize mathematical functions to
represent sites. The reason is that in the previous test sites, we only measured the COVER
and SCRAP in areal terms, we did not measure how imprecise were the contours of the
interpolated surfaces. In the previous design group this precision could not be measured,
since we did not know the contaminat concentration at every point within the site. In the
case of noisy data, we are interested in the amount of errors generated by the re-
construction of the site surface. Consequently, we evaluate performance according to the
absolute error between the true value of a given mathematical function and its
corresponding interpolated value. Again, due to the fact that FASA is not an interpolator, it

is omitted from the second set of experiments.

6.1 The Test Functioms

8 test functions are devised to illustrate various possible characteristics of hypothetical
surface patterns on which the performance of SIM are to be evaluated. Initially, SIM are
utilized to approximate the behaviours of the original forms of the functions based a given
number of sample data. (Here, 196 samples are collected.) Then, the surface of each

function is distorted with additive Gaussian noise (noise is generated in proportion to the
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standard deviation of function values pertaining to 196 data) and the performances of SIM

are re-evaluated.

The three dimensional images of the test functions are provided in Appendix A. The first
test function represents a plateau type of surface where sharp rises occur near the comers.
The second, third and the fourth test functions are generated according to the scheme
described in Stuckmann (1988). The third function represents very sharp stepwise changes
of attribute level whereas the fourth one involves stepwise changes of smaller magnitudes,
thus presenting a smoother surface. The second one (No. 2a) is again a discontinuous
function where changes are relatively smoother except at one corner of the site.
Furthermore, when the steps of the second function are removed, a very slightly undulating
function (No. 2b) results. The fifth test function is a symmetric function with very frequent
changes in attribute levels achieved over small distances. The sixth function has a trend in
attribute level and a relatively lower number of extremities. On the opposite hand, the

seventh one has many extremities in between which there lie plateaus and valleys.
6.2 The Sampling Patterns

Since in the previous experiments, we observe that the Herringbone and grid patterns are
most successful, we implement these two sampling patterns in the case of noisy data.
Furthermore, we develop and introduce two additional sampling patterns: namely the linear

and circular sampling patterns . In Figure 6.1, the four sampling patterns are depicted.

The linear sampling pattern is generated by placing observations on k parallel equidistant

lines drawn across the surface. These lines divide the surface into equidistant cross-

sections and each makes an angle of 450 with the x-axis. The first line contains a single
observation while the second one contains two observations. In this manner, the number of
observations on each line becomes equivalent to its index until k/2 lines are drawn. Then,
the number of observations in each succeeding line decreases by one. Hence, given a fixed

number of observations, n, the number of equidistant lines to be drawn in parallel can be

calculated easily.
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Figure 6.1 Sampling patterns used for noisy situation

Linear

the surface. Similar to the linear pattern, one more observation is added to each additional

positions, the first observation on each circle is offset by a given degree from the last
observation placed on the previous circle. The degree of offsetting is computed by dividing

In the circular sampling pattern, the first observation is placed at the geometric center of
circle drawn around the center of the surface. However, in order to eliminate aligned

3600 by the number of circles to be drawn.
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6.3 An Example Demonstrating the Distortion Caused by Additive White Noise

Test function #1 is used to demonstrate the distortion of the surface's shape caused by
white noise. In Figure B.1 the contours of the function are depicted. In Figures B.2 — B.S5,
the surfaces interpolated by kriging using the four sampling methods are given. The last
four contours (Figures B.6 — B.9) belong to the corresponding four sampling methods’
interpolated surfaces when noise is added to the data. Table 6.1 provides the average and
standard deviation of the absolute errors (absolute value of the functional value minus the
interpolated value) obtained by the four sampling patterns using the Kriging interpolation
method (50x50 grid). Although the regular grid pattern provides the minimum average
absolute value, its performance in the presence of noise is intolerable (see Figure B.3 and
Figure B.7). When the data are noise-free, 81% of the interpolation errors are within 1% of
the function’s range over the defined domain. On the other hand, when noise is added, only
20% of the errors fall within this range.

Table 6.1. Performance of four sampling patterns using Kriging interpolation method.

Kriging Noise-Free Additive Gaussian Noise

Pattern HerrB | Grid | Linear | Circular | HerrB | Grid Linear | Circular
Avg. Error 7.63 6.61 | 11.52 | 19.38 63.00 47.40 55.69 53.80
Std. Dev. 11.23 1 9.10 |23.64 |47.73 41.52 35.83 37.58 65.36

6.4 Numerical Experfments with SIM

The test functions given in Appendix A, provide our medium of experimentation.
Observations are made on the surface domains given for each function according to each of
the four sampling patterns described above. Interpolation is then applied to each function
in both cases where the original and the distorted observation values (196 data for each
function domain) are utilized as functional information. The range of the noise added to
each observation value is between *2 standard deviations around the mean. In Tables 6.2-

6.10 each function's interpolation error results are provided under four interpolation

methods and four sampling patterns. In tables 6.11-6.12 the average of all methods is given

B TV L
AP
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in order to make a the method base performance evaluation. The performance of each SIM
is measured in terms of both absolute error and percentage error. However, percentage
error details are not given here due to space restrictions. The first two rows in each Table
indicate average and standard deviation of the absolute difference of interpolated values
from the original function values. (The number of interpolated points is equal to 2500
resulting from a 50x50 grid.) The numbers indicated under the column “method average”
provide the average results obtained by each method over the four sampling patterns. The
rows starting with “Sample average” indicate the average results of each sampling pattern
over four SIM. The third row under the “Sample average” provides the range of the
function values (over the 2500 interpolated locations) so that the reader can compare

average absolute errors against this range.

Inspecting the performance of the four SIM without including Gaussian noise in the data,
Shepard’s method is the worst performing one except for the fifth function.

The performance of Minimum Curvature is considerably superior to that of Shepard’s.
However, it is the third SIM in terms of performance. The performance of RBF is
consistently the best or second best. At times Kriging is slightly superior to RBF.
However, when RBF is superior to Kriging, there is considerably difference between the
performance of the two methods. RBF performs specifically well in smooth functions
where abrupt changes do not take place (e.g., functions #1, #3, #6). On the other hand,
when noise is included in the data Kriging’s performance is superior to that of RBF. Thus,
Kriging turns out to be more robust against noise.

Considering the differences of sampling patterns (again excluding noise from data), the
circular sampling pattern is the worst performing one due to the fact that it does not cover
the site uniformly. The grid and linear patterns behave in a similar manner. The Herring
Bone pattern follows closely the latter two patterns. Consequently, in the noise-free case,
patterns generating a uniform cover of the domain work better.

In the case where noise is included, the regular grid is again the best performing sampling
pattern and the linear pattern is a close follower of the regular grid. The Herring Bone and

circular patterns share the worst performing position. Consequently, the regular grid seems

to be the most robust sampling pattern against white noise.
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Table 6.2 Performance evaluations for Kriging without Noise

Without Gaussian Noise

Herringlbone Regular Grid Linear Clrcular
Kriging Method Avg
avg 7,63 6,61 11,852 19,38 11,29
std 11,23 9,10 23,64 47,73 22,93
range 1839,24 | 1532,81 | 1632,81 | 2149,45 1763,58
min -1839,35 | -1632,87 | -1532,87 | -2149,47 | -1763,64
max 0,14 0,06 0,06 0,02 0,06
%1 84,00 81,24 80,76 83,24 82,31
%5 99,92 100,00 96,32 95,04 97,82
%10 100,00 100,00 99,72 98,72 99,61
%20 100,00 100,00 100,00 99,80 99,95
Table 6.3 Performance evaluations for Kriging with Noise
With Gaussian Noise
Herringbone | Regular Grid Linear Clrcular

Kriging Method Avg
avg 63,00 47,40 55,69 53,80 54,97
std 41,52 35,83 37,568 65,36 45,07
range 1839,24 | 1532,81 | 1632,81 | 2149,48 1763,58
miim -1839,35 | -1632,87 | -1532,87 | -2149,47 | -1763,64
max 0,11 0,06 0,06 0,02 0,06
%1 15,24 20,80 14,76 27 44, 19,56
%5 76,04 80,64 73,32 91,88 80,47
%10 99,24 99,28 98,84 97,80 98,79
%20 100,00 100,00 100,00 99,48 89,87

Table 6.4 Performance evaluations for Minimum Curvature without Noise

Without Gaussian Noise

[ Herringbone | Regular Grid Linear Circular

Minimum curvature Method Avg|
avg 12,66 10,51 11,68 24,91 14,94
std 13,83 10,67 16,87 56,25 24,33
range 1839,24 | 1532,81 | 15632,81 | 2149,45 1763,58
mnin -1839,35 | -1532,87 | -1532,87 | -2149,47 | -1763,64
max 0,11 0,06 0,06 0,02 0,06
%1 72,12 73,80 77,00 79,56 75,62
%5 100,00 100,00 98,36 93,32 97,92
%10 100,00 100,00 100,00 97,60 99,40
%20 100,00 100,00 100,00 89,84 99,86
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Table 6.5 Performance evaluations for Minimum Curvature with Noise

With Gaussian Noise

" Herringbone | Regular Grid Linear Circular
Minimum curvature Method Avg
avg 71,30 52,56 63,08 59,19 61,53
sid 49,23 38,97 48,49 61,05 49,44
range 1839,24 | 1532,81 | 1532,81 | 2149,45 1763,58
min -1839,35 | -1532,87 | -1532,87 | -2149,47 | -1763,64
max 0,11 0,06 0,08 0,02 0,06
%1 14,80 18,76 14,32 24,64 18,13
%5 69,36 75,28 67,28 87,64 74,89
%10 97,64 98,56 85,64 97,44 97,32
%20 100,00 100,00 89,80 99,68 99,87
Table 6.6 Performance evaluations for Radial Basis without Noise

Without Gaussian Noise

Herringbone | Regular Grid Lingar Cilrcular
Radial Basis Method Avg
avg 5,28 4,92 9,41 14,85 8,54
std 9,36 8,56 20,26 41,02 19,80
range 1839,24 | 1532,81 | 1532,81 | 2149,45 1763,58
min -1839,35 | -1532,87 | -1532,87 | -2149,47 | -1763,64
max 0,44 0,06 0,06 0,02 0,06
%1 90,32 86,00 88,04 85,28 86,66
%5 99,92 100,00 97,44 96,56 98,48
%10 100,00 100,00 99,80 99,12 89,73
%20 100,00 100,00 100,00 99,92 9,98

Table 6.7 Performance evaluations for Radial Basis with Noise
With Gaussian Noise

Herringbone | Regular Grid Linear Clrcular
Radial Basis Method Avg
avg 68,23 52,06 58,48 55,20 58,49
std 47,18 38,85 41,71 61,02 47,19
range 1839,24 | 1532,81 | 1632,81 | 2149,45 1763,58
min -1839,35 | -1532,87 | -1532,87 | -2149,47 | -1763,64
max 0,11 0,06 0,06 0,02 0,06
%1 15,52 18,36 14,88 26,04 18,70
%5 70,68 76,48 71,00 £0,60 77,19
%10 98,20 98,44 97,44 98,16 98,06
%20 100,00 100,00 100,00 99,48 99,87
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Table 6.8 Performance evaluations for Shepard’s without Noise

Without Gaussian Noise

H@r&’ﬁn@b@nl egular Grij Linear | Gircular
Shepards Method Avg
avg 116,03 110,56 100,99 143,51 147,77
std 68,80 63,92 71,54 134,16 84,61
range 1839,24 | 15632,81 | 1532,81 | 2149,45 1763,58
min -1839,35 | -1532,87 | -1632,87 | -2149,47 | -1763,64
max 0,11 0,06 0,06 0,02 0,06
%1 8,08 6,56 6,84 7,92 7,35
%S 38,56 32,92 40,40 45,04 39,23
%10 82,24, 72,92 83,00 85,40 80,89
%20 99,88 100,00 98,40 95,76 98,51

Table 6.9 Performance evaluations for Shepard’s with Noise

With Gaussian Noise

Herringbon| egular Grff Linear | Circular
Shepards Method Avg
avg 161,39 149,12 138,07 166,12 150,93 B
std 76,70 74,34, 69,75 155,40 94,08
range 1839,24 | 1532,81 | 1632,81 | 2149,45 1763,58
min -1839,35 | -1532,87 | -1832,87 | -2149,47 | -1763,64
max 0,11 0,06 0,06 0,02 0,06
%1 3,12 3,80 4,28 5,84 4,26
%5 20,68 21,08 20,76 33,96 24,12
%10 59,64 56,00 61,16 79,32 64,03
%20 99,88 99,08 98,52 95,48 98,24

Table 6.10 Performance evaluations for sampling methods without Noise

Without Gaussian Noise
Herringbone ‘ Regular Grid Linear Circular Method Avg
Sample Avg 35,40 «33.15% JPEEKE] 50,66 38,14
Sample Std 25,73 23,06 33,08 69,79 37,92
range 1839,24 | 1532,81 | 1632,81 | 2149,45 1763,58
min -1839,35 | -1832,87 | -1532,87 | -2149,47 | -1763,64
max 0,11 0,06 0,06 0,02 0,06
%1 63,63 61,90 62,41 64,00 62,99
%5 84,60 83,23 83,13 82,49 83,36
%10 95,56 93,23 95,63 98,21 94,91
%20 99,97 100,00 99,60 98,83 99,60
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Table 6.11 Performance evaluations for sampling methods with Noise

With Caussian Noise
Herringbone | Regular Grid | Linear Circular Method Avg)
Sample Avg 90,98 | 2 78,08 83,58 81,48
Sample Std 53,66 49,38 88,71 58,94
range 1839,24 | 15632,81 | 1632,81 | 2149,45 1763,58
min -1839,35 | -1532,87 | -1532,87 | -2149,47 | -1763,64
max 0,11 0,06 0,06 0,06
%1 12,47 15,43 12,08 15,16
%5 59,19 63,37 58,09 64,17
%10 88,68 88,07 88,27 89,68
%20 99,97 99,77 99,58 99,46

Table 6.12 Average performance comparisons of all methods

without error
— RAging VING REF Shepards |
Method Avg | Methed Avg | Method Avg | Methed Avg
11,29 14,92 8,54 17,07
Std 22,93 2433 19,80 84, ET
Tol 82,31 75,62 86,66 7,35
%D 97,82 97,92 98,48 39,23
L‘Zm@ 99,67 99,40 99,73 80,89
Y620 99,95 99,96 ~ 99,98 98,51
with error

— Rriging WINT REF Shepards |
Bz 54,97 61,53 58,49
%ﬁ@ﬁ 45,07 49,47 Z7Y 92,05~
Tl 19,56 18,13 18,70 476
ToD SUAT 14,89 77,19 28, T2
ToT0 98,79 97,32 98,06 64,03
Te20 99,87 99,87 99,87 8,24
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CONCLUSION

The issue of preserving the environment in its natural form becomes more and more crucial
in developing countries as well as the developed ones since the industrialization process
gains speed. Joint projects are being taken up in developed countries involving related
units in the public administration, scientists, and industrial partners so as to support the
environmental protection legislation with scientific standards. These projects concentrated
on the following topics:

o development of decision support systems for the characterization of potentially
contaminated brownfields and the reduction of their remediation costs (e.g., use of
Geographical Information Systems (GIS), for spatial data management and planning,

o use of geostatistical techniques for the determination of contaminant distribution and
behaviour in soil and groundwater),

o state risk assessment procedures and models for analysing the relative contribution of
multi-source contaminants to human exposures,

o determination of the health risks from contaminated soil in urban environments over
time and space,

o rehabilitation of contaminated sites, sediments and groundwater bodies to prevent
water pollution, monitoring and assessment of water/land quality, early warning and

communication systems in support of pollution prevention.

Brownfields remediation is also important in the preservation of groundwater resources
and air quality as well as the development and re-use of underground construction works
and other earthworks. Furthermore, the inevitable requirement that housing settlements,
green parks and agricultural land need to be situated on clean soil whose contaminants are
well below tolerance levels, re-emphasize the crucial issue of land protection and

remediation.

The investigation of a potentially contaminated site involves the following phases:

Selection of the sampling strategy (spatial distribution of samples); Collection of samples;
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Laboratory analysis, Evaluation of data and Assessment of the site’s contamination levels.

The phases where the major decisions are made are the first and last phases.

In the last phase of site investigation, the usual techniques to identify the distribution of the
contaminant over the site are Spatial Interpolation Methods (SIM). These methods are
usually interpolation- or regression-based approaches which use sampled observations to
predict the contamination levels at unsampled locations (spatial interpolation). Originally,
most of these approaches come from mineral resource estimation in mining, and are
classified as geostatistical methods. The rationale behind spatial interpolation is the
observation that points close together in space are more likely to have similar values than

points far apart.

In this thesis, the most widely used SIM and an alternative areal site assessment method
(FASA) compared on hypothetical contaminated sites. FASA is based on a fuzzy
evaluation of partitioned zones within a given site. The numerical survey is conducted on
360 hypothetical sites and linear ordinary kriging, radial basis functions, minimum
curvature method, Shepard’s method, triangulation and FASA are tested. In the
experiments, the effects of factors, such as the number of hot-spots in a site and the
percentage of the contaminated zones within the site, are demonstrated. A visual insight on
all of the above mentioned methods by demonstrating their performance on an exemplary

site is also provided.

Furthermore, as most of the investigations are conducted using data with uncontrollable
noise, we extend our experiments to the case of assessing the performance of SIM in the
presence of noise data. It is important to investigate the robustness of these techniques
against noise. The experiments conducted here also evaluate two novel sampling patterns
introduced here. These experiments are realized on a test bed of 8 mathematical functions
and it is observed that the simplest sampling pattern, namely, the regular grid, is the most

robust sampling pattern. Furthermore, among the four spatial interpolation techniques

tested here, kriging is the most robust one against noise.
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A further project as a consequence of this thesis may the evaluation of the SIM and FASA
on real world instead of the computer based test functions and environments. After the
field experiments and evaluation of the results with the ones in this thesis, a roadmap for

the land contamination detection problem may be prepared.
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APPENDIX A : TEST FUNCTIONS
Figure A.1 Function #1

fy) = +y-1)-P+y=1)+(x+y*-7)-(x+y*-T)

Figure A.2 Function #2

sina,

a, =int(x—1.87) +int(y—9.3) f(x,y)=int(75.95+0.5)-
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Figure A.3 Function #3

a, =(x—1.87)+(y—9.3)

Fxn,y)=(75.95+0.5). 504

Figure A.4 Function #4

a, =int(x—6.5) +int(y—9.8)

f(x,y)=int(13.02+0.5)-

sina,
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Figure A.5 Function #5

sina,

a =int(x-2.4)+int(y—4.92)  f(x,y)=int(45.43+0.5)-

Figure A.6 Function #6

£y =l + y5°5 | +sins0- (2 + y*)°' | [sin(50- (x* + y*)* ]
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Figure A.7 Function #7

fx,y)= +sin(3-(2x+y-5)- (x> - y)

(x+2y-7)*
1

Figure A.8 Function #8

f(x,y)=sin(0.1-(x+ y)* +1.5)-int(0.5x - cos(y))
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APPENDIX B: INTERPOLATION RESULTS FOR CHAPTER 6
Figure B.1 Original Function

XY, Z X, Y,Z

X,Y,Z XY.Z
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Figure B.3 (Kriging) Grid sampling pattern /Noise-Free

X,Y,Z X,Y,Z

Figure B.4 (Kriging) Linear sampling pattern /Noise-Free
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Figure B.5 (Kriging) Circular sampling pattern /Noise-Free

X,Y,Z

Figure B.6 (Kriging) Herring Bone sampling pattern /With noise

XY.Z XYZ
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Figure B.7 (Kriging) Grid sampling pattern /With noise

e

X Y,Z XY,z

Figure B.8 (Kriging) Linear sampling pattern /With noise

X, Y.Z
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Figure B.9 (Kriging) Circular sampling pattern /With noise

XY.Z
XY, Z



116

APPENDIX C: SOURCE CODES FOR PERFORMANCE EVAULATIONS

During the performance evaulation steps Microsoft Visual Basic 5.0 Enterprise edition was
used. The reason to choose Visual Basic among the other programming languages is its
ability to perform image comparison operations. In the first part of the evaluation tests; the
images of the original contamination area and the interpolated area are compared pixel by
pixel in order to give the SCRAP and COVER ratios.

According to the concentration ranges: blue color is used for moderately contaminated
range [150-600), and red color is used for highly contaminated range [600-1000]. By using

these colors following items is obtained for performance evaluations

Table D.1 Performance evaluation items for computer program

Bb Correctly interpolated

Br Originally moderately contaminated but interpolated as highly contaminated
Bw Originally moderately contaminated but interpolated as clean

Rb Originally highly contaminated but interpolated as moderately contaminated
Rr Correctly interpolated

Rw Originally highly contaminated but interpolated as clean

Wb Originally clean but interpolated as moderately contaminated

Wr Originally clean but interpolated as highly contaminated

Ww Correctly interpolated

For the second part of the experiments the above items are not used since in these

experiments more precise evaluation method is used.
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C.1 Key Map Generation And Evaluation

Rem key map generation
Dim xupper(50), xlower(50), yupper(50), ylower(50), clevel(50) as double
Dim xlowerv, xupperv, ylowerv, yupperv as integer 'define the variables
Keyfile = "c:\Thesis\1.dat" ' define target file name.
Open keyfile for input as 1
Input #1, nofarea
Fori=1 to nofarea

input #1, xlower(i), xupper(i), ylower(i), yupper(i), clevel(i)

xlowerv = int(3.83 * xlower(i))

xupperv = int(3.83 * xupper(i))

ylowerv = 384 - int(3.83 * ylower(i))

yupperv = 384 - int(3.83 * yupper(i))

for xi = xlowerv to xupperv

for yi = yupperv to ylowerv
if clevel(i) = 1 then frm360run.pickey.pset (xi, yi), 16711680
if clevel(i) = 2 then frim360run.pickey.pset (xi, yi), 255
next yi

next xi
Next i
Close 1
End sub

Rem performance evaluations

Dim xupper(50), xlower(50), yupper(50), ylower(50), clevel(50) as double

Dim xlowerv, xupperv, ylowerv, yupperv as integer 'define the variables
Open "d:\master\output.txt" for output as 2 'output file

Print #2, "d", "c", "bb", "br", "bw", "tb", "rr", "rw", "wb", "wr", "ww"
Ford=1to08

Forc=1to 120
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Mainfile = "d:\master\outwmf” + "\" + mid(str(d), 2, 1) + "\" + mid(str(c), 2, 3) + ".wmf"
Keyfile = "d:\master\location" + "\" + mid(str(c), 2, 3) + ".dat"
Input #1, nofarea
For i =1 to nofarea
input #1, xlower(i), xupper(i), ylower(i), yupper(i), clevel(i)
xlowerv = int(3.83 * xlower(i))
xupperv = int(3.83 * xupper(i))
ylowerv = 384 - int(3.83 * ylower(i))
yupperv = 384 - int(3.83 * yupper(i))
for xi = xlowerv to xupperv
for yi = yupperv to ylowerv
if clevel(i) = 1 then frm360run.pickey.pset (xi, yi), 16711680
if clevel(i) = 2 then frm360run.pickey.pset (xi, yi), 255
next yi
next xi
Next i
Close 1
Set fim360run.picmain = loadpicture(mainfile)
Bb=1
Br=1
Bw=1
Rb=1
Rr=1
Rw=1
Wb=1
Wr=1
Ww=1
Rem comparison
Fori=1to 383
forj=11to0 383
if frm360run.picmain.point(i, j) = frm360run.pickey.point(i, j) then
if frm360run.picmain.point(i, j) =255 thenmr=1r + 1
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if frm360run.picmain.point(i, j) = 16711680 then bb =bb + 1
if frm360run.picmain.point(i, j) = 16777215 then ww = ww + 1
end if
if firm360run.picmain.point(i, j) = 16777215 then
if frm360run.pickey.point(i, j) = 16711680 then wb =wb + 1
if frm360run.pickey.point(i, j) = 255 then wr=wr + 1
end if
if frm360run.picmain.point(i, j) = 16711680 then
if frm360run.pickey.point(i, j) = 16777215 then bw =bw + 1
if fim360run.pickey.point(i, j) =255 thenbr =br+ 1
end if
if frm360run.picmain.point(i, j) = 255 then
if fim360run.pickey.point(i, j) = 16777215 thenrw =1w + 1
if fim360run.pickey.point(i, j) = 16711680 then br =br + 1
end if
next j
Next i
Print #2, d, ¢, bb, br, bw, b, rr, rw, wb, wr, ww
Frm360run.pickey.cls
Next ¢
Nextd
Close 2
End
End sub

C.2 Herringbone Sample Pattern Code

Rem herringbone pattern
Dim xlower, xupper, ylower, yupper, j as double
Dim xint, yint as double '

Dim nsmp as integer

Rem open output file




120

Open “c:\Thesis\1.txt” for output as 1
Rem open setup file for the function
Open “c:\Thesis\config.txt” for input as 2
Rem upper and lower bounds
Input #2, xlower, xupper, ylower, yupper
Nsmp = 200 ‘number of sample
J = int(sqr(nsmp))
Xint = (xupper — xlower) / j ¢ x interval
Yint = (yupper — ylower) / j ¢ y interval
Say =0
Fork=0toj—1
forg=0toj—1
Gd =gmod 2
Kd =%k mod 2
If gd = 0 and kd = 0 then
x =xint * 0.5 + g * xint + xlower
y =yint * 0.5 + k * yint + ylower
End if
If gd = 0 and kd <> 0 then
x =xint * .75 + g * xint + xlower
y=yint * 0.5 + k * yint + ylower
End if
If gd <> 0 and kd = 0 then
x = xint * 0.5 + g * xint + xlower
y=vyint * 0.75 + k * yint + ylower
End if
If gd <> 0 and kd <> 0 then
x =xint * 0.75 + g * xint + xlower
y=vyint * 0.75 + k * yint + ylower
End if
F = fx(x, y) ‘get the function value
Print #1, %, y,
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Say =say + 1
Next g

Next k

Rem print #1, say
Close 1

Close 2

End sub

C.3 Regular Grid Sample Pattern Code

Rem regular grid
Dim xlower, xupper, ylower, yupper, j as single
Dim xint, yint, X, y as single
Dim nsmp as integer
Open "c:\Thesis\2.txt" for output as 1
Open "c:\Thesis\config.txt" for input as 2
Input #2, xlower, xupper, ylower, yupper
Nsmp = 200 'number of sample
J = int(sgr(nsmp))
Xint = (xupper - xlower) / j ' x interval
Yint = (yupper - ylower) /j ' y interval
Say=0
Fork=0toj-1

forg=0toj-1

x = xint * (0.5 + g) + xlower

y =yint * (0.5 + k) + ylower

£=fx(x, )
Print #1, x,y, f
Say =say + 1
Next g
Next k
Close 1
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Close 2
End sub

C4 Linear Sample Pattern Code

Rem linear
Dim xlower, xupper, ylower, yupper, j as double
Dim xint, yint as double
Dim x, y, deltaxy, intv as double
Dim nsmp as integer
Open "c:\Thesis\3.txt" for output as 1
Open "c:\Thesis\config.txt" for input as 2
Input #2, xlower, xupper, ylower, yupper
Say=0
Nsmp = 100 'number of sample
J = int(sgr(nsmp))
Intv = (xupper - xlower) / j 'length of the interval
Fork=110]
fora=1tok
deltaxy =k * intv / (k + 1)
x = a * deltaxy + xlower
y=(k - a + 1) * deltaxy + ylower
f=&(x,y)
print #1, x, y, £
say =say + 1
next a
Next k
Fork=1toj-1 Zg. y%w%;
fora=1tok %MSYQN & Ly
deltaxy = k * intv / (k + 1) Riciz,
X = xupper - a * deltaxy
y = yupper - (k - a+ 1) * deltaxy
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print #1, x, y
say =say + 1
nexta
Next k
Close 1
Close 2
End sub

C.5 Circular Sample Pattern Code

Rem curcular

Dim xlower, xupper, ylower, yupper, j as double
Dim xint, yint as double

Dim x, y, deltaxy, intv as double

Dim nsmp as integer

Open "c:\Thesis\4.txt" for output as 1

Open "c:\Thesis\config.txt" for input as 2

Input #2, xlower, xupper, ylower, yupper

Say =0
Nsmp = 100 'number of sample
Neyc =9

RlIx = (xupper - xlower) / 2 ' radius of the mr

Rly = (yupper - ylower) / 2 ' radius of the mr

For cycle =1 to ncyc

Rkx =rlx / ncyc * cycle

Rky =rlx / ncyc * cycle

Fork=1tocycle * 2

Startangle = (360 / ncyc) * (cycle - 1)

Q = (startangle + (k - 1) * 360 / (cycle * 2)) * 3.14 / 180
x = xlower + rlx + rkx * cos(q)
y = ylower + rly + rky * sin{(q)

say = say + 1
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f=fx(x, y)
Print #1, x,y, f
Next k
Next cycle
T = (rlx * sqr(2) - rlx) / sqr(2)
Fork=1to2
Rem bottom-left
X =rnd * t + xlower
Y =rnd * t + ylower
F=f&(xy)
Print #1,x, v, f
Rem top-left
X =mmd * t + xlower
Y = yupper - md * t
F = fx(x, y)
Print #1, x, vy, f
Rem top-rigth
X = xupper - rnd * t
Y = yupper - rnd * t
F=&(x, y)
Print #1, %, y, f
Rem bottom-rigth
X = xupper - md * t
Y =rnd * t + ylower
F=&(1Yy)
Print #1,x, vy, f
Next k
Rem print #1, say
Close 1
Close 2
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C.6 Gaussian Error Generator Code

Dim x(1000), y(1000), £x(1000), fxe(1000) as double
Fork=1to4
Erperc = 0.05
Minfx = 100000
Maxfx =0
I=1
A ="¢c\Thesis\" & k & ".txt"
B ="c:\Thesis\" & k + 4 & ".txt"
Open a for input as 1
Open b for output as 2
Fori=11to 196
Input #1, x(1), y(@@), (1)
Next i
N=i-1
Fori=1 to n ' n is the number of data points
if £x(i) > maxfx then maxfx = fx(i)
if fx(i) < minfx then minfx = £x(i)
Next i
Range = maxfx - minfx
Fori=1ton
sum = 0
form=1to011
sum = sum + rnd
next m
fxe(i) = £x(i) + (sum - 6) * range * erperc
print #2, x(1), y(1), fxe(1)
next i
Close 1
Close 2
Next k

e i




