
ANDROID AUTHORSHIP ATTRIBUTION USING
SOURCE CODE-BASED FEATURES

KAYNAK KODU TABANLI ÖZELLİKLER
KULLANILARAK ANDROID YAZARLIK

İLIŞKİLENDİRMESİ

EMRE AYDOĞAN

PROF. DR. SEVIL ŞEN

Supervisor

Submitted to

Graduate School of Science and Engineering of Hacettepe University

as a Partial Fulfillment to the Requirements

for the Award of the Degree of Doctor of Philosophy

in Computer Engineering

January 2024



ABSTRACT

ANDROID AUTHORSHIP ATTRIBUTION USING SOURCE
CODE-BASED FEATURES

Emre Aydoğan

Doctor of Philosophy , Computer Engineering
Supervisor: Prof. Dr. Sevil ŞEN

January 2024, 154 pages

With the widespread use of mobile devices, Android has become the most popular

operating system, and new applications are uploaded to the Android market every

day. However, the simplicity of modifying and repackaging Android binaries enables

other developers to easily alter and mimic Android applications, subsequently releasing

them on third-party Android markets. Determining the original developers of Android

applications is a challenging problem known as authorship attribution. This study

explored the distinctive features of Android applications to identify their authors.

Software developers generally leave a footprint that describes their writing styles on

their applications. This footprint, which can be extracted from either the source

code or binary code, can help identify the authors of software applications. Due to

the impracticality of accessing the source code for applications found in real-world

scenarios, particularly in the case of malware, researchers concentrate their efforts on

analyzing the binaries of these applications. Therefore, this study proposes an approach

that identifies Android developers by deriving a wide range of features from different

parts of Android applications, such as smali files, libraries, manifest files, and metadata

information. Moreover, other features such as configuration, dex code, resource-based,

i



and string-related features are inherited from other studies in Android authorship

attribution and fused with the proposed feature set. The proposed approach was

evaluated on benign and malware datasets and compared with those of other studies.

The results show that the proposed features increased the accuracy by showing 82.5%

and 95.6% in the market and malware datasets, respectively. The results demonstrate

the positive effect of the proposed features on Android authorship attribution.

Keywords: Authorship Attribution, Mobile Malware, Source Code-Based, Android,

Obfuscation, Metadata

ii



ÖZET

KAYNAK KODU TABANLI ÖZELLİKLER
KULLANILARAK ANDROID YAZARLIK

İLIŞKİLENDİRMESİ

Emre Aydoğan

Doktora, Bilgisayar Mühendisliği
Danışman: Prof. Dr. Sevil ŞEN

Ocak 2024, 154 sayfa

Mobil cihazların yaygınlaşmasıyla birlikte Android, en popüler işletim sistemlerinden

biri haline gelmiştir. Her gün Android platformuna yeni uygulamalar eklenmektedir.

Ancak, Android uygulamalarının ikili dosyalarını kolayca değiştirip yeniden

paketleyebilme imkanı nedeniyle, bu uygulamalar diğer geliştiriciler tarafından rahatça

modifiye edilebilir ve taklit edilebilir hale gelmiştir. Bu durum, uygulamaların

orijinal geliştiricilerini belirlemeyi, başka bir deyişle yazarlık ilişkilendirmesini oldukça

zor bir sorun haline getirmiştir. Bu çalışma, Android uygulamalarının özgün

karakteristik özelliklerini tespit etmeyi amaçlamaktadır. Geliştiriciler, genellikle

uygulamalarında kod yazım stillerini tanımlayan izler bırakırlar. Bu izler, kaynak kodu

veya ikili kod üzerinden tespit edilebilir. Bu durum, uygulamalarının gelitiricilerinin

belirlenmesinde önemli bir yardımcı olabilir. Kaynak kodunun elde edilmesi, özellikle

kötü amaçlı yazılımlar söz konusu olduğunda, her zaman mümkün olmayabilir.

Bu yüzden araştırmacılar, uygulamaların ikili dosyaları üzerine odaklanmayı tercih

etmişlerdir. Bu çalışma, Android uygulamalarının çeşitli bölümlerinden - örneğin

smali dosyalar, kütüphaneler, manifest dosyaları ve meta veri bilgileri - geniş bir

iii



öznitelik yelpazesi çıkarmayı ve bu öznitelikler üzerinden Android geliştiricilerini

tanımlamayı önermektedir. Diğer Android yazarlık ilişkilendirmesi çalışmalarından

alınan yapılandırma, dex kodu, kaynak tabanlı ve dizgi ile ilgili öznitelikler de

bu çalışmada önerilen öznitelik setine entegre edilmiştir. Önerilen yaklaşım zararlı

olmayan ve kötü amaçlı veri kümeleri üzerinde test edilmiş ve diğer çalışmalarla

karşılaştırılmıştır. Elde edilen sonuçlar, önerilen özniteliklerin doğruluk oranını

artırdığını göstermiş; market ve kötü amaçlı yazılım veri kümelerinde sırasıyla

%82,5 ve %95,6 oranında doğruluk sağlanmıştır. Bu sonuçlar, Android yazarlık

ilişkilendirmesinde önerilen özniteliklerin olumlu etkisini ortaya koymaktadır.

Keywords: Yazarlık İlişkilendirmesi, Mobil Zararlı Yazılımlar, Kaynak Kod,

Android, Karıştırma, Üstveri

iv



ACKNOWLEDGEMENTS

First and foremost, I would like to thank my supervisor, Prof. Dr. Sevil ŞEN, for her

valuable advice, guidance, and encouragement. She patiently supported me with her

knowledge and experiences throughout the preparation of this thesis and my doctorate

education.

Besides, I would like to thank my thesis committee members, Prof. Dr. Ali Gökhan

YAVUZ, Asst. Dr. Burcu CAN for their valuable advice and guidance through my

thesis, and Prof. Dr. İlyas ÇİÇEKLİ and Asst. Dr. Engin DEMİR for reviewing this

thesis and giving their insightful comments.

I wish to show my gratitude to the current and former administrative board as well

as the academic personnel at the Department of Computer Engineering at Antalya

Akdeniz University for letting me study at Hacettepe University.

I would like to thank my friends Dr. Selim YILMAZ, Dr. Levent KARACAN, Dr.

Çağdaş BAŞ, Dr. Aysun KOÇAK, Dr. Cemil ZALLUHOĞLU, all the members

of Wireless Networks and Intelligent Secure Systems Laboratory (WISE Lab.) of

Hacettepe University, and all the academic personnel and research assistants I worked

with at the Department of Computer Engineering at Hacettepe University.

I would like to thank my teammates at Karel, where I work, for supporting me.

I wish to express my huge gratitude to my mother and my father for their self-devotion,

love, and giving me opportunities that have made me who I am and to my brother for

their love and support that I have felt throughout my life.

I would like to pay my special regards to my beloved wife, Derya, for continually

encouraging me during my Ph.D. and for her support that I feel every time I need it

during my academic life.

v



GENİŞLETİLMİŞ ÖZET

GİRİŞ

Yazarlık ilişkilendirmesi (Yİ), bir bilgisayar programının geliştiricisini belirlemeyi

amaçlar. Temelde yazılım hırsızlığını tespit etmek ve telif hakları sorunlarını çözmek

için kullanılsa da, dijital adli tıp ve kötü amaçlı yazılım analizi gibi alanlarda

da kullanılır. Yazılım geliştiriciler, genellikle uygulamalarına, kodlama stillerini

tanımlayan izler bırakır. Bu nedenle, aynı geliştirici tarafından geliştirilen uygulamalar

arasında güçlü bir korelasyon vardır [1]. Literatürde, bu izler ilk kez uygulama

geliştiricilerini belirlemek için kullanılmıştır. Orijinal yazılımların modifikasyonları

olan yazılım varyantlarının ortaya çıkışıyla, araştırmacılar otomatik olarak yazılım

hırsızlığını ve telif hakkı sorunlarını belirleme konusuna odaklanmışlardır.

Yazarlık ilişkilendirmesinin önemli uygulamalarından biri, kötü amaçlı yazılım

geliştiricilerini belirlemektir. Bu durum, yeni kötü amaçlı yazılım sayısında ve

mevcut kötü amaçlı yazılımların yeni varyasyonlarında gözlemlenen önemli artıştan

kaynaklanmaktadır [2]. Yİ, yeni kötü amaçlı yazılımların geliştiricilerini belirlemek

için kullanılabilir. Geliştiricileri izleyerek kötü amaçlı yazılımların evrim sürecini

gözlemlemeye yardımcı olabilir. Aynı şekilde, bilinen saldırganlar tarafından geliştirilen

yeni programların kontrol edilmesi için de kullanılabilir. Yİ üzerine çok sayıda çalışma

olmasına rağmen, özellikle Android kötü amaçlı yazılımları üzerindeki araştırmalar

araştırmacılar tarafından yeterince derinlemesine incelenmemiştir [3–5].

Yazarlık ilişkilendirilmesinde kaynak kod ve ikili kod tabanlı olmak üzere iki

ana yaklaşım bulunmaktadır. Başlangıçta araştırmacılar, bilinmeyen geliştiricileri

belirlemek için yazılımların kaynak koduna odaklanmışlardır [6–10]. Bunun önemli

sebebi kaynak koddan çıkarılan bazı belirgin özelliklerin, derleme tamamlandığında

kaybolmasıdır. Kullandıkları teknikler, satır uzunluğu, ortalama prosedür uzunluğu,

metod sayısı, isimlendirme kuralları, yorumlar, programlama düzeni özellikleri (boşluk,

girintileme vb.), değişken isimleri, kontrol akış yapıları ve geliştirme ortamı (bilgisayar

vi



platformu, programlama dili, derleyici) gibi birçok farklı özelliği içerir. Ancak,

özellikle kötü amaçlı olanlar olmak üzere, yazılımların kaynak kodlarını bulmanın

zorlukları vardır. Bu gibi durumlarda, bir uygulamanın geliştiricisini belirlemek için

kullanılabilecek tek kaynak, uygulamanın ikili kodudur. Literatürde, yazılımların

ikili kodu üzerinde çalışan araştırmacılar bulunmaktadır [1, 11, 12]. Ancak, ikili

koda dayalı geliştiricileri belirlemek, kaynak koda dayalı geliştiricileri belirlemekten

çok daha zordur. Derleme süreci sırasında, derleyiciler optimizasyon teknikleri

aracılığıyla ikili kodun yapısını değiştirebilir ve bu da Yİ’yi etkileyebilir. Örneğin, Yİ

açısından değerli bazı özellikleri, dilbilgisi ve biçimlendirme gibi, kaldırabilirler. Ayrıca,

farklı derleyicilerin kullanımı nedeniyle, çoğu akademik çalışma belirli derleyicilere

ve derleme ayarlarına bağlıdır [13]. Tüm bu zorluklara rağmen, kaynak kodunun

bulunamaması nedeniyle kötü amaçlı yazılımların yazarlık ilişkilendirilmesi için ikili

koda güvenilmek zorunda kalınmıştır. Üstelik, yazarlık ilişkilendirilmesinde kullanılan

popüler tekniklerin, makine öğrenimi ve derin öğrenme gibi, performansı büyük

ölçüde eğitim verisinin boyutuna bağlıdır. Uygulamaların ikilileri kolayca elde

edilebildiğinden, ikili kod Yİ araştırılması gereken bir alan olarak değerlidir.

Bu tezin amacı, özellikle kötü amaçlı yazılımlar olmak üzere, belirli bir grup içerisindeki

uygulamaların geliştiricilerini tanımlamaktır. Bu, bazı geliştiricilerin başkalarına

ait uygulamaları kendi uygulamalarıymış gibi uygulama marketlerine yüklemeleri

durumunda kritik önem taşır. Geliştiriciler, başkalarının çalışmalarını geri derleme

yapıp değiştirerek bu durumu gerçekleştirirler. Bu süreç, kötü amaçlı yazılım alanında

yaygın bir pratik olan yeniden paketleme olarak bilinir. Bu sebeplerle, bu çalışmada

önerilen yöntem, belirli bir yazar tarafından yazılmış gibi görünen fakat aslında

yazılmamış uygulamaların tespit edilmesine odaklanmıştır. Ek olarak, önerilen yöntem,

ticari amaçlarla geliştirilen ancak daha sonra başka bir geliştirici tarafından yeniden

paketlenip farklı bir isim altında piyasaya sürülen uygulamaların orijinal geliştiricisinin

tespiti sağlayarak telif hakkı sorunlarını önleyebilir. Ayrıca, bu aynı süreç öğrenci

ödevlerine de uygulanabilir ve öğrencilerin geliştirme sırasında kodu başka bir yerden

alıp almadıklarını belirlemede yardımcı olur. Sonuç olarak, bu araştırma sadece yazılım

vii



geliştirmede önemli bir zorluğu ele almakla kalmaz, aynı zamanda akademik dürüstlüğü

koruma konusunda da yenilikçi bir yaklaşım sunar.

Kötü amaçlı yazılım geliştiricileriyle ilgili senaryo özellikle önemlidir. Bu geliştiriciler

sıklıkla, uygulamalarının erken sürümlerini farklı takma adlar altında çeşitli

platformlara, alternatif marketlere ve çevrimiçi analiz araçlarına yükleyerek dolaylı

geri bildirim alırlar. Aldıkları bu geri bildirimleri kullanarak, antivirüs sistemlerini

atlatma stratejileri geliştirirler. Bu çalışmada önerilen yöntem, bu kurnaz taktiği

adresler ve herhangi bir ortama yüklenen bir uygulamanın analiz edilmesine olanak

tanır. Önemli bir şekilde, önerilen yöntem, bir uygulama başlangıçta geleneksel tespit

sistemleri tarafından kötü amaçlı olarak algılanmasa bile, onun bilinen bir kötü amaçlı

yazılım geliştiricisine ait olduğunu belirleyebilir. Bu sayede, söz konusu uygulamalar

potansiyel bir kötü amaçlı uygulama olarak işaretlenebilir. Bu proaktif yaklaşım, kötü

amaçlı yazılım analistleri ve antivirüs sistemleri için önemli bir avantaj sağlar.

Ayrıca, önerilen yöntem kötü amaçlı yazılım araştırmaları için önemli bir avantaj

sağlar. Farklı zamanlarda piyasaya sürülen aynı kötü amaçlı yazılımın sürümlerini

kümeleyebilme yeteneği, kötü amaçlı yazılımların evrimini kapsamlı bir şekilde anlamak

için kritik öneme sahiptir. Bu bilgiler, özellikle Android kötü amaçlı yazılım geliştirme

evrimi alanında son derece yararlıdır.

Bu çalışma, Android uygulamalarının Yazarlık İlişkilendirmesi için ayırt edici

özniteliklerini incelemektedir. Araştırma kapsamı, uygulamaların smali dosyaları,

kütüphaneleri ve izinleri gibi bileşenlerinden ve alternatif marketlerdeki metadata

bilgilerinden toplanan yeni öznitelikleri içermektedir. Bu yeni toplanan öznitelikler,

daha önceki çalışmalarda kullanılan özniteliklerle [14–16] birlikte, kapsamlı bir analize

tabi tutulmaktadır.

Bu araştırmada özellikle, farklı öznitelik gruplarının Yİ üzerindeki etkisini

incelenmektedir. Mevcut literatürde önerilen özelliklerin farklı veri setleri kullanılarak

analiz edilmiş olması göz önünde bulundurularak, adil bir karşılaştırma sağlamak

amacıyla ortak bir deneysel çerçeve oluşturulmuştur. Kullanılan Veri seti, çeşitli

viii



Android marketlerden ve çalışmalardan zararsız, kötü amaçlı ve karıştırılmış

uygulamaları içermekte olup, Bölüm 5.2.’de detaylandırılmıştır.

Çalışmaya dahil edilen öznitelikler, önceki araştırmalardan çıkarılmış [14–16],

yapılandırma, DEX (Dalvik Executable) kodu, kaynak ve dizgi tabanlı öğeleri

kapsamaktadır. Her öznitelik kategorisi, APK dosyalarının belirli bileşenlerinden

çıkarılmıştır:

• Yapılandırma Öznitelikleri: Bunlar APK dosyalarının manifest dosyasından

elde edilmektedir. Manifest dosyası, uygulamanın kurulumu ve izinleri hakkında

bilgiler sağlayarak, yapılandırma verileri için zengin bir kaynak oluşturur.

• DEX Kod Öznitelikleri: dex dosyasından doğrudan çıkarılan bu öznitelikler,

uygulamanın yapısal öğelerine, örneğin metodlara, sınıflara ve alan yapılarına

odaklanır. dex dosyası, uygulamanın kaynak kodunun derlenmiş versiyonudur.

• Kaynak Öznitelikleri: Bu öznitelikler, geri derleme yapılan APK dosyalarının

“res” dizininden toplanır. Resimler ve yerleşim dosyaları gibi kaynakları içeren

“res” dizini, uygulamanın görsel ve yapısal yönleri hakkında bilgiler sağlar.

• Dizgi Tabanlı Öznitelikler: Burada, hem strings.xml dosyasındaki hem de

dex dosyasındaki dizgiler kullanılır. Bu dizgilere n-gram analizi uygulanarak,

uygulamanın kodlama stili ve içeriğine özgü desenleri ve dizgileri ortaya

çıkarılabilir.

KATKI

Bu araştırmada, Android Yİ için yenilikçi ve etkili bir yaklaşım önerilmektedir. Bu

tezin ana katkıları aşağıdaki şekilde özetlenebilir:

• Kaynak kodu Yİ’den miras alınan öznitelikler smali dosyalarından elde

edilmiştir. Bu öznitelikler bu çalışmada Android Yİ için ilk kez kullanılmıştır.

ix



Sonuçlar, kaynak kodu bazlı özniteliklerin uygulamaları ilgili geliştiricilerine

ilişkilendirmede doğruluğu artırdığını göstermiştir.

• Bu çalışmada, daha önceki araştırmalarda dizgi öznitelikleri olarak kullanılan

TPL ve izin öznitelikleri, ikili öznitelikler olarak kullanılmıştır.

• Geleneksel uygulama dağıtım mekanizmalarının tersine, Android uygulamaları

mobil marketler aracılığıyla merkezi bir şekilde dağıtılır. Bu durum,

uygulamanın kendisinin yanı sıra, uygulama açıklamaları ve kullanıcı yorumları

gibi Android uygulamaları hakkında zengin metadata elde edilmesini sağlar.

Bu çalışmada, Android Yİ üzerinde metinsel metadatanın etkisi incelenmiştir.

Özellikle, metadata özniteliklerinin, bu çalışmada kullanılan kaynak kodu

bazlı özniteliklerle birleştirildiğinde, Yİ alanında olumlu bir etkisi olduğu

gözlemlenmiştir. Bu çalışma, Android Yİ alanında metadata açıklamalarını

kullanan ilk çalışmalardan biridir.

• Bu çalışmada önerilen yaklaşımın performansı kapsamlı bir şekilde analiz

edilmiştir. Android Yİ üzerinde her öznitelik setinin etkisini analiz etmenin

yanı sıra, literatürde önerilen çalışmalar karşılaştırılmıştır. Deneysel sonuçlar,

bu çalışmada önerilen özniteliklerin yazarlık ilişkilendirmede olumlu etkisini

göstermektedir.

• Bu çalışmada ayrıca, Yİ perspektifinden hem versiyon uygulamalar hem de

karıştırılmış uygulamalar detaylı bir şekilde ele alınmıştır. Bu çalışma, versiyon

uygulamalarının analizine odaklanan ilk çalışmadır.

• Zararsız, kötü amaçlı, versiyon ve karıştırılmış gibi farklı karakteristiklere sahip

çeşitli uygulamalar toplanmıştır. Veri seti, beş farklı alternatif Android marketten

toplanan ve her biri 10’dan fazla uygulamaya katkıda bulunmuş 488 benzersiz

geliştiriciden olan 10,385 zararsız Android uygulamasından oluşmaktadır. Ayrıca,

çeşitli kaynaklardan elde edilen 153 geliştiriciden 3,000’den fazla kötü amaçlı

uygulamayı içermektedir. “Obfuscapk” aracı kullanılarak yaklaşık 6,000

x



karıştırılmış uygulama ve zararsız veri setinden elde edilen 1,000’den fazla

versiyon uygulama içermektedir.

• Bu çalışma sonucu oluşan kodlar aşağıdaki adreste paylaşılmıştır:

https://github.com/emreaydogan/SourceCodeBasedAAA

İLGİLİ ÇALIŞMALAR

Son yıllarda, mobil cihazlar kullanımları, popülerlikleri ve satış açısından masaüstü

cihazları geride bırakmıştır. Bu çalışma Android ortamında zararlı ve zararsız

uygulamaların yazarlarını bulmayı amaçladığı için, Android Yazarlık İlişkilendirmesi

üzerine yapılan ilgili çalışmalar incelenmiştir. Ayrıca, yeni önerilen smali dosyalarından

çıkarılan kaynak kodu tabanlı, metadata ve üçüncü parti kütüphane (TPL) öznitelik

setleri, aşağıda verilen çalışmalarda kullanılan özellik setleriyle karşılaştırılmıştır.

APK dosyalarının dizgi analizine dayalı bir çalışma, Kalgutkar vd. tarafından

önerilmiştir [14]. Bu çalışmada üç tür dizgi kullanılmıştır: dex dosyasındaki

dizgi tanımlayıcı listesi, dex dosyasında sunulan tüm dizgi bileşenleri ve strings.xml

dosyasından çıkarılan dizgiler. Daha sonra, bu dizgi listeleri üzerinde n-gram analizi

uygulanarak, bir geliştiriciyi temsil eden öznitelik vektörü oluşturulmuştur. Son olarak,

geliştiriciler Destek Vektör Makineleri (SVM) kullanılarak sınıflandırılmıştır. Önerilen

yaklaşım, zararsız, kötü amaçlı ve karıştırılmış uygulamaları içeren farklı veri setlerinde

değerlendirilmiştir ve sırasıyla %98, %96 ve %71 doğruluk oranları elde edilmiştir.

Gonzalez vd. [15] tarafından, dex dosyasından alınan bayt kodları smali temsiline

dönüştürerek dizi ile ilgili, dizi ile ilgisiz ve n-gram özelliklerine dayanan bir yöntem

önerilmiştir. Bu yöntem, profil oluşturma ve artımlı analiz olmak üzere iki aşamadan

oluşmaktadır. İlk aşamada, yazar profilleri Rastgele Orman algoritması kullanılarak

oluşturulmuştur. İkinci aşamada, yeni uygulamalar mevcut profillerle ilişkilendirilerek

ve henüz mevcut yazarlara ilişkilendirilmemiş uygulamalar için yeni olası profiller

bulunarak artımlı analiz uygulanmıştır. 33 yazar ve 1428 uygulama içeren bir veri

xi

https://github.com/emreaydogan/SourceCodeBasedAAA


setinde %97,5 doğruluk oranı elde edilmiştir. Ayrıca, çeşitli kaynaklardan toplanan

131.000’den fazla uygulamaya ilgili yöntem uygulanmıştır.

Guoai vd. [16] tarafından önerilen yeni bir yaklaşım olan AppAuth, etiket isimleri,

ikonlar, benzer paket isimleri ve dosya boyutları gibi ortak özniteliklere sahip bir

grup yeniden paketlenmiş Android uygulamasının orijinal yazarını tespit etmektedir.

APK dosyalarından çeşitli kodlama stili ile ilgili öznitelikler çıkarılmıştır: i) dex

dosyasından ikili öznitelikler; ii) geri derleme yapılan dosyalardan kaynak öznitelikleri;

ve iii) manifest dosyasından alınan yapılandırma öznitelikleri. 75 klon çiftinin

69 orijinal yazarı (%92) başarıyla tanımlanmıştır. Ayrıca, bağımsız geliştiricileri

ve geliştirme takımlarını kullanarak tahmin performansı değerlendirilmiştir. Bu

çalışmanın ana dezavantajı, karşılaştırdıkları uygulamaların orijinal bir uygulamanın

yeniden paketlenmiş halleri olması durumunda, orijinal yazar yerine sahte bir yazar

bulmalarıdır.

Wang vd. [17] üç tür dizgi ile ilgili özellik çıkarmıştır: DEX tabanlı, manifest tabanlı

ve lib tabanlı özellikler. dex dosyalarından, tanımlayıcı isimler, talimat dizileri ve

Android API’lerinin kullanımı toplanmıştır. Etkinliklerin, sağlayıcıların, hizmetlerin ve

yayın alıcılarının isimleri çıkarılmış ve manifest dosyasından öznitelikler kullanılmıştır.

Son olarak, uygulamalarda kullanılan TPL’lerin isimleri elde edilmiştir. Öznitelikleri

geliştiricilerin profil vektörlerine dönüştürmek için CountVectorizer, TFIDFVectorizer

ve word2vec modelleri kullanılmıştır. En iyi sonucu word2vec modeli vermiş ve

sonraki deneylerde kullanılmıştır. Daha sonra, bu vektörlere üç makine öğrenimi

modeli (Doğrusal SVM, Rastgele Orman ve Lojistik Regresyon) uygulanmış ve zararsız,

kötü amaçlı ve karıştırılmış uygulamalar içeren farklı veri setlerinde geliştiricileri

sınıflandırmak için kullanılmıştır. Sonuçlar, önerilen yaklaşımın tüm set için ortalama

%92,5 doğruluk elde ettiğini göstermiştir. Ayrıca, 2,900 uygulamada AppAuth’tan

daha üstün performans göstererek, yazarlık tanımlamayı %3,4 oranında iyileştirmiştir.

Daha önceki çalışmalardan farklı olarak, bu çalışmada önerilen yaklaşım uygulamaların

market sayfalarından metadata bilgilerini içermektedir. Ayrıca, adil bir karşılaştırma

xii



sağlamak için ortak bir veri seti kullanarak, literatürdeki Android Yİ alanındaki

tüm özellik setleri karşılaştırılmıştır. Veri seti, diğer çalışmalarda kullanılanlardan

daha büyüktür ve hem zararsız hem de kötü amaçlı uygulamaların kapsamlı bir

karışımını içermektedir. Bu çalışma ve yukarıda bahsedilen çalışmalar Tablo 2.1’de

karşılaştırılmıştır.

ANDROID

Android, Linux çekirdeği tabanlı en yaygın kullanılan mobil işletim sistemidir (OS)

ve Ekim 2023 itibarıyla dünya çapında %70.76 kullanım oranıyla mobil endüstrinin

temel taşlarından biridir [18]. Geliştiricilerin uygulamalarını kolayca dağıtabilmeleri

için resmi bir market olan Google Play [19] sitesine sahiptir. Ayrıca, geliştiricilerin

uygulamalarını Aptoide [20] ve Apkmirror [21] gibi alternatif Android marketlere

yüklemelerine de olanak tanır. Bu nedenle, Android uygulamaları, APK dosyaları,

bu tür marketlerden kolayca toplanabilir. Android uygulamaları, Java veya Kotlin

programlama dilleri kullanılarak geliştirilir. Daha sonra, Java sanal makinesi için bir

baytkoda derlenirler. Son olarak, bu Java baytkodları, Dalvik baytkodlarına çevrilir

ve dex dosyalarında saklanır. Dalvik baytkodların okunması veya değiştirilmesi zor

olduğundan, genellikle class dosyalarının içine bakmak için smali ara dili kullanılır.

smali, Dalvik baytkodunun okunabilir temsilidir. smali dosyaları aynı zamanda

doğrudan APK dosyalarından da çıkarılabilir.

Bir Android uygulaması dex dosyaları, manifest dosyası, kaynak dosyaları ve dizgi

dosyaları gibi çeşitli öğelerden oluşur. Bu dosyaların tümü, uygulama hakkında bilgi

toplamak için kullanılabilir. Örneğin, manifest dosyası uygulamalarda kullanılan servis,

aktivite ve izinlerin sayısı gibi bilgileri içerirken, kaynak dizinlerinde uygulamalarda

kullanılan resimler, kütüphaneler ve XML dosyaları bulunabilir. Dizgi kaynakları,

uygulamalar için metin dizgileri sağlar [22]. Üç tür dizgi vardır: Dizgi, Dizgi Dizisi

ve Miktar Dizgileri. Tüm dizgiler, stil işaretleme ve biçimlendirme argümanlarını

uygulama kapasitesine sahiptir. dex dosyası, Java/Kotlin sınıf dosyalarını içerir.

Sınıf dosyalarını dex dosyalarının ara temsilleri olan smali dosyalarına dönüştürmek

xiii



mümkündür. Derleme işlemi gerçekleştirildiğinde bir kaynak kodunun bazı dilbilgisi ve

biçimlendirme özellikleri kaybolmasına rağmen, Dalvik tabanlı çalıştırılabilir dosyalar,

smali dosyalarında bazı içgörülü bilgiler içerir. Şekil 3.1, örnek bir Java/C++ uyumlu

kod parçasını, ona karşılık gelen smali ve assembly kodlarını sırasıyla göstermektedir.

smali kodu, değişken isimleri ve metod imzaları gibi bilgileri korurken, assembly kodu,

derleme sürecinden sonra bu tür bilgileri kaybeder. Bu nedenle, kaynak kodu Yİ ile

ilgili bazı öznitelikler smali dosyalarından elde edilebilir.

Android uygulamaları, bu çalışmada kullanılan farklı öznitelik setlerine karşılık gelen

çeşitli bileşenlere ayrılmıştır.

• Yapılandırma: Android uygulamaları, aktiviteler, servisler, yayın alıcılar ve

içerik sağlayıcılar olmak üzere dört ana unsurdan oluşurlar. Her bileşenin kendi

amacı ve yaşam döngüsü vardır ve bu döngü bileşenlerin nasıl oluşturulup yok

edileceğini tanımlar. Aktiviteler, kullanıcıların uygulamalarla nasıl etkileşimde

bulunduklarını tanımlar. Kullanıcıların sistem kaynaklarını kullanmalarına

olanak tanıyan kullanıcı arayüzlerini tanımlamak için kullanılırlar. Android’deki

her tekil uygulama ekranı aktivitelere denk gelir. Bazı aktiviteler, diğer

aktiviteleri tetikleyebilir. Servisler, arka planda uzun süreli işlemler gerçekleştirir

ve bir kullanıcı arayüzü içermezler. Yayın alıcılar, bir uygulamanın bir sistem

veya bir uygulama olayına bağlanmasını sağlarlar. Android işletim sistemi,

bir olay tetiklendiğinde bağlı uygulamayı bilgilendirir. İçerik sağlayıcılar,

uygulama veritabanlarındaki verilere erişimde kullanılır. Bir uygulama, kendi

veritabanını diğer uygulamalarla paylaşmak için içerik sağlayıcıları kullanabilir.

Böylece, tek bir içerik parçası birden fazla uygulama arasında dağıtılabilir.

Tüm bileşenler, Android manifest dosyasında beyan edilir. Geliştiriciler,

uygulamalarını geliştirirken aynı Android manifest dosyasını yeniden kullanma

eğilimindedir. Bu nedenle, manifest dosyasındaki bilgiler, örneğin bileşenlerin

sayısı, geliştiricileri birbirinden ayırt etmekte yardımcı olabilir.

xiv



• Kaynak Dosyaları: Android uygulamaları, res dizininde saklanan resimler,

sesler, ikonlar ve yerel kütüphaneler gibi kaynak dosyaları içerebilir. Dosyalar, dil

desteği sağlama ve kullanıcı arayüzü için resimler sunma gibi çeşitli nedenlerle

kullanılabilir. res dizinindeki bazı dosyalar, dinamik kütüphaneler, veritabanı

dosyaları ve yük dosyaları gibi, çalışma zamanında erişilebilir. Geliştiriciler,

bu dosyalara bazı özel ve kritik bilgileri yerleştirir. Bu nedenle, bu dizinlerin

özelliklerini analiz etmek önemlidir.

• DEX Kodu: dex dosyası, Şekil 3.2’de gösterildiği gibi, uygulamaların yapısı

hakkında bilgi içerir. AppAuth [16], dex dosyalarındaki veri bölümünü temel

olarak analiz eder ve metodlar, sınıflar ve alan yapılarına, ayrıca notasyon,

arayüz, hata ayıklama bilgileri vb. üzerine odaklanır. Uygulama boyutları önemli

ölçüde değişebileceğinden, bu özelliklerin sayısal değerleri yerine oran değerlerini

kullanır.

• Dizgi: strings.xml dosyasındaki dizgiler, uygulama dizgi öznitelikleri olarak

satır satır çıkarılır. Bu dizgiler, uygulamaların kaynak koduna veya diğer

kaynak dosyalarına referanslar içerir. Bunlar, uygulamanın adı gibi kullanıcılara

gösterilen statik dizgilerdir. dex dosyası, dizgi id listesi, tip id listesi ve

metod id listesi gibi farklı bölümlerden oluşur. Dizgi id listesi esas olarak

bir uygulamanın kaynak kodunda kullanılan dizgileri içerir. Ancak, kötü

amaçlı yazılım geliştiricileri, kötücül kodlarını çalışma zamanında çalıştırmak ve

analizden kaçınmak için dizgi ID listesine yerleştirir. Bir dex dosyasının dizgi id

listesi bölümündeki dizgiler, DEX dizgi öznitelikleri olarak çıkarılır.

• Kaynak Kodu: smali dosyaları, sınıf dosyalarındaki Java baytkodlarından

üretilen Dalvik-byte/smali kodlarını içerir. Yüksek seviyeli bir dilden

üretilirler ve smali için Android Runtime (ART) aracılığıyla makine koduna

dönüştürülürler. İşletim sistemi, bu makine kodlarını çalıştırarak uygulamaları

çalıştırır. Şekil 3.1’de, find_maximum adında bir Java fonksiyonuna karşılık gelen

smali ve assembly kodları gösterilmiştir. Şekil 3.1’de görüldüğü gibi, orijinal

xv



kaynak kodlarındaki fonksiyon parametrelerinin ve global ve yerel değişkenlerin

isimleri assembly dosyalarında korunmaz, ancak smali dosyalarında korunur.

Örneğin, n, max, index yerel değişkenleri ve a, n fonksiyon parametreleri şekilde

verilen smali kodunda korunmuştur. Geliştiricilerin, değişken isimlerinde $

karakteri veya rakamlar gibi tanımlayıcılarda aynı formatı kullanma eğiliminde

oldukları gösterilmiştir. Bu nedenle, bu tür isimlerin geri derleme yapılmış kodda

korunması, geliştiricileri tanımlamada yardımcı olabilir.

• İzin: Mobil cihazlar cihazın sistem kaynaklarını kullanmak için izinlere ihtiyaç

duyar. Uygulamalar, yalnızca manifest dosyasında tanımlanan izinler aracılığıyla

kamera ve GPS gibi cihaz kaynaklarına erişebilir ve bunları kullanabilir. Normal

izinler otomatik olarak verilirken, tehlikeli izinler kullanıcı onayı gerektirir.

Çoğu uygulama, kullandıklarından daha fazla izin ister. İstenen izinler ile

çalışma zamanında kullanılan izinler arasındaki farkı değerlendiren bir çalışmaya

göre, uygulamalar ortalama olarak ihtiyaç duyduklarından %30 daha fazla izin

kullanırlar[23]. Bir geliştirici farklı kategorilere ait uygulamalar geliştirmiş olsa

da, kolaylığı nedeniyle bu uygulamalarda aynı manifest dosyasını kullanabilir.

Ayrıca, aynı yazar tarafından geliştirilen uygulamalarda aynı TPL’yi kullandıkları

için, bu kütüphanelerin gerektirdiği aynı izinleri kullanmaları gerekir.

• Kütüphane: Geliştiriciler, bazı işlevlerini uygulamalarında sağlamak için

sıfırdan geliştirme yapmak yerine TPL (Üçüncü Parti Kütüphaneler) kullanmayı

tercih ederler. Çoğu uygulamanın 20’den fazla TPL kullandığı gösterilmiştir [24]

ve uygulama kodunun büyük bir kısmı bu tür kütüphanelere aittir [25, 26].

Geliştiriciler, aynı işlevselliği sağlamak için genellikle tanıdık oldukları aynı

kütüphaneyi kullanma eğilimindedir.

• Metadata: Android uygulamalarının merkezi mobil marketler aracılığıyla

dağıtımı, geleneksel uygulama dağıtım yöntemlerinden farklıdır. Bu marketler,

uygulama açıklaması, uygulama derecelendirmesi ve kullanıcı incelemeleri gibi,

xvi



uygulama hakkında bilgi içeren, metadata olarak bilinen bilgileri uygulamanın

kendisiyle birlikte içerirler.

YAZARLIK İLİŞKİLENDİRMESİ

Yazarlık ilişkilendirmesi, bir metin veya yazılımın orijinal yaratıcısını belirlemeyi

amaçlar. Literatürde [27, 28], yazılımda yazarlık ilişkilendirmesi süreci, Şekil 4.1’de

gösterildiği gibi dört adımlık bir yaklaşımı takip eder. Yazarlık ilişkilendirmesi

süreci, hem ikili hem de kaynak kodu kullanır. Kodun özellikleri, sözcüksel,

sözdizimsel, anlamsal, davranışsal ve uygulamaya özgü öznitelikler de dahil olmak

üzere, analiz için koddan çıkarılır. Daha sonra kodun çeşitli temsilleri kullanılır, bunlar

arasında andaçlar, dizgiler, n-gramlar, deyimler, çizgeler ve ağaçlar bulunur. Yazarlık

modelleri, profil tabanlı, örnek tabanlı veya hibrit olarak kategorize edilebilir. Bu

modeller, benzerlik tabanlı, vektör uzayı, olasılıksal ve meta-öğrenme yöntemleri gibi

metodolojilerle desteklenir. Bu sürecin sonucu olarak, yazarlık ilişkilendirmesi, intihal

tespiti ve yazar niyetlerinin belirlenmesi gibi sonuçlar elde edilir.

Kalgutkar vd. [27] ile Gonzalez [28], yazarlık ilişkilendirmesi sürecinde kullanılan

öznitelikleri ayrıntılı bir şekilde açıklamışlardır. Bu öznitelikler, sözcüksel, sözdizimsel,

anlamsal, davranışsal ve uygulamaya özgü olmak üzere çeşitli kategorilere ayrılır. Her

bir özellik tipinin avantajları ve dezavantajları, kodun analizi ve yazarın belirlenmesi

sürecinde önemli faktörler olarak öne çıkar.

Sözcüksel özellikler, kodun temel andaç ve dizgilerinden türetilir ve programlama

dilinden bağımsızdır, ancak kod biçimlendiricileri tarafından kolayca değiştirilebilirler.

Sözdizimsel özellikler, kodun yapısını ve bir yazarın problem çözme yaklaşımını yansıtır,

ancak dil bağımlılıkları ve özellik seçimi zorluklarıyla karşı karşıyadırlar. Anlamsal

özellikler, kodun mantığını odak alır ve kod dönüşümüne karşı dirençlidirler, ancak

karmaşık çıkarım süreçleri gerektirebilirler. Davranışsal özellikler, yazılımın sistem

çağrıları ve ağ bağlantıları gibi işlevlerini inceler, güçlü analiz potansiyeline sahiptir

fakat yanlış pozitif ve negatif sonuçlara yol açabilir. Uygulamaya özgü özellikler,

xvii



kaynak koduna erişim gerektirmeyen, ancak kod karıştırmaya karşı savunmasız olan

ek bilgileri kullanır.

Yİ’de kullanılan temsil yöntemleri arasında andaçlar, dizgiler, n-gramlar, ifadeler

(idioms), çizgeler, ağaçlar ve gömüler bulunur. Andaçlar ve dizgiler kodun en

küçük anlamlı parçalarını ve belirli metin dizgilerini temsil eder. N-gramlar, kodun

yapısal özelliklerini yakalar. İfadeler, dil özgü özelliklerdir ve karıştırmaya karşı

dirençlidir. Çizgeler ve ağaçlar, kodun yapısını ve sözdizimsel hiyerarşisini temsil eder,

semantik anlamlar türetmeye yardımcı olur. Gömüler, tek bir temsilin yetersiz kaldığı

durumlarda farklı temsillerin kombinasyonunu kullanır.

Yİ süreci, çok sınıflı, tek etiketli bir kategorizasyon görevi olarak tanımlanır. Bu

süreçte, profil tabanlı ve örnek tabanlı modeller arasında bir seçim yapılır. Profil tabanlı

model, bir yazarın tüm çalışmalarını kapsayan benzersiz bir stil atfederken, örnek

tabanlı model her bir uygulamayı ayrı bir varlık olarak değerlendirir. Bu modellerin

seçimi, benzerlik tabanlı, vektör uzayı, olasılıksal yöntemler ve makine öğrenimi gibi

çeşitli karşılaştırma metodolojileriyle desteklenir. Bu metodolojiler, bilinmeyen bir

kod örneğinin yazarını belirlemede kritik rol oynar. Makine öğrenimi teknolojilerinin

gelişimi, Yİ alanında daha doğru ve hızlı sonuçlar elde edilmesini sağlar.

ÖNERİLEN YÖNTEM

Şekil 5.1, önerilen modelin mimarisinin şematik temsilini gösterir. Geri derleme yapılan

APK dosyaları, öznitelik çıkarımı için giriş noktası olarak hizmet eder ve sonuç olarak,

sınıflandırma için tasarlanmış sabit boyutlu öznitelik vektörleri oluşturulur.

APK dosyalarına ilk olarak apktool [29] kullanılarak geri derleme yapılmış ve

smali dosyaları elde edilmiştir. Daha sonra, uygulamaların Dizgi, AppAuth

ve SPL öznitelikleri bu dosyalardan ve APK dosyalarından toplanmış ve her

uygulama için sabit boyutlu bir öznitelik vektörleri sınıflandırıcılara giriş olarak

verilmiştir. scikit-learn kütüphanesindeki SimpleImputer [30], öznitelik vektörlerindeki

eksik değerleri doldurmak için kullanılmıştır. Bu imputasyon işleminden sonra,

xviii



bu öznitelikler, scikit-learn kütüphanesindeki StandardScaler [31] kullanılarak

ortalamadan çıkarılarak birim varyansa ölçeklenmiştir.

Sınıflandırma algoritmaları yürütülmeden önce iki aşamalı boyut indirgeme

kullanılmıştır. İlk olarak, veri setinden sıfır varyanslı öznitelikler elenmiştir. Daha

sonra, tek değişkenli istatistiksel testlere dayanarak en iyi özellikleri seçen tek değişkenli

öznitelik seçimi uygulanmıştır. scikit-learn kütüphanesi [32] kullanılarak beş farklı

sınıflandırma algoritması uygulanmıştır. Daha sonra, katmanlı onlu çapraz doğrulama

kullanılmıştır. Katmanlı onlu çapraz doğrulama, orijinal dağılımdaki pozitif ve negatif

örneklerin oranının tüm iterasyonlarda korunduğundan emin olduğu için, özellikle veri

setinin dengesiz olduğu durumlarda yararlıdır [33]. Yöntem beş kez çalıştırılmış ve bu

beş çalışmanın ortalaması sonuçlarda sunulmuştur.

Sınıflandırma algoritmaları, Android uygulama alanı içinde yazarlığı tahmin etmek için

uygulanmıştır. Bu çalışmada incelenen sınıflandırma algoritmaları Rastgele Orman,

K-En Yakın Komşular, SVM, Gaussian Naive Bayes ve LightGBM algoritmalarıdır.

Mümkün olan en iyi model performansına ulaşmak için, GridSearchCV tekniği

kullanılmıştır. GridSearchCV, scikit-learn kütüphanesi tarafından sağlanan, belirli

bir parametre ızgarası üzerinde tükenmiş bir arama yaparak verilen bir tahminci

için en iyi mümkün hiperparametre kombinasyonunu belirlemeye olanak tanıyan

bir yöntemdir. Her makine öğrenmesi algoritması için başlangıç parametreleri

ve değerleri Tablo 5.7’de verilmiştir. GridSearchCV ’yi katmanlı onlu çapraz

doğrulama tekniğiyle birleştirerek, seçilen hiperparametrelerin veri setinin farklı alt

kümelerinde iyi performans gösterdiğinden emin olunmuştur. Bu yaklaşım, makine

öğrenimi modellerinin genelleştirilmesini iyileştirmektedir. GridSearchCV ’nin çapraz

doğrulama bağlamında kullanılması, modellerin ince ayar yapılmasına ve tahmin

güçlerini artırılmasına yardımcı olduğu için araştırma bu çalışma metodolojisinin

ayrılmaz bir parçasıdır.

xix



VERİ SETİ

Bu çalışmada, market ve kötü amaçlı yazılımlar olmak üzere iki farklı veri seti

oluşturulmuştur. Market veri setini oluşturmak için, çeşitli alternatif marketlerden

zararsız uygulamalar toplamak üzere Scrapy kütüphanesi [34] kullanılarak bir ağ

kazıma uygulaması hazırlanmıştır. Ayrıca, bu veri setine diğer çalışmalardan [14, 15,

35, 36] uygulamalar dahil edilmiştir.

Zararsız veri seti, Ocak 2020 ve Ağustos 2020 arasında Apkpure [37], Apkmirror [21],

Onemobile [38] ve Aptoide [20] gibi farklı alternatif Android marketlerden toplanan

uygulamaları içermektedir. Ancak, güncel uygulamaların eski versiyonlarının

mevcudiyeti nedeniyle 2020 yılından çok daha erken yazılmış uygulamaları da

içermektedir. Zararsız veri setlerinin yıllara göre dağılımı Tablo 5.1’de sunulmuştur.

Başlangıçta, 200.000 uygulama indirilmiştir. Sonrasında, daha önceki çalışmalar en az

on uygulama içeren geliştiricileri kullandığı [14, 16] için, ondan az uygulamaya sahip

geliştiriciler elenmiştir. Bunun sebebi, geliştiriciler arasında ayrım yapabilen iyi bir

model oluşturmak için her geliştirici için yeterli uygulamaya sahip olmak gerekliliğinden

doğmaktadır.

Kötü amaçlı yazılım veri seti, Ransomware, Adware ve SMS [39] gibi kötü amaçlı

yazılım ailelerine ait uygulamaları ve güvenlikle ilgili çalışmalarda tanıtılan ve

kullanılan Rmvdroid [40], Drebin [35], Genome [15] ve Koodous [14] gibi veri setlerinden

uygulamaları içerir.

Her uygulama, bir Android cihazına yüklenmiş bir geliştirici sertifikası ile

imzalanmalıdır. Bu nedenle, aynı imzayı paylaşan uygulamalar aynı geliştiriciye

atanır ve her uygulama ilgili imzaya göre gruplandırılır. Bu çalışamda imzalar, APK

dosyalarından print-apk-signature aracı [41] kullanılarak çıkarılmıştır.

DENEY SONUÇLARI

Bu çalışmada Android uygulamalarında Yazarlık İlişkilendirmesine dair aşağıdaki

araştırma sorularına (AS) cevap bulmaya çalışılmıştır:

xx



• AS1 - Sınıflandırma algoritmalarının Yİ problemi çözümünde

performansları nasıl?

Deneylerde Rastgele Orman, K-En Yakın Komşular, Destek Vektör Makineleri,

Gaussian Naive Bayes ve LightGBM algoritmaları kullanılmıştır. Bu denetimli

makine öğrenimi teknikleri, literatürde kod Yazarlık İlişkilendirme için kullanılan

popüler yöntemler arasındadır [27]. Market ve kötü amaçlı yazılım veri

setlerinde bu algoritmaların hiperparametrelerini ayarlamak için scikit-learn’deki

GridSearchCV fonksiyonu kullanılmıştır. GridSearchCV, bir tahminci için

belirtilen parametre değerlerinin tükenmiş bir aramasını gerçekleştirir. Bu

deneyde, AppAuth [16] ve Dizgi Analizi [14]’de kullanılan öznitelikler dahil

olmak üzere tüm öznitelik setleri kullanılmıştır. Bazı uygulamaların açıklamaları

olmadığı için yalnızca metadata öznitelikleri hariç tutulmuştur. Algoritmalar

hem zararsız hem de kötü amaçlı yazılım veri setleri kullanılarak çalıştırılmıştır.

Performans metrikleri olarak doğruluk ve F1 skoru kullanılmıştır. Bunun

nedeni, etkili bir modelin hem yüksek hassasiyet hem de yüksek duyarlılık

göstermesi gerekliliğidir. Ek olarak, her bir algoritmanın sınıflandırma süresi

de değerlendirilmiştir.

Karşılaştırma sonuçları Tablo 6.1’de gösterilmiştir. Yüksek doğruluk ve

F1 skorlarının yanı sıra, Rastgele Orman (RF) algoritmasının sınıflandırma

süresi diğer algoritmalara göre daha makul olduğundan, sonraki deneylerde

RF algoritması kullanılmıştır. Ayrıca, RF’nin varsayılan parametreleri,

optimal parametreleriyle elde edilen sonuçlara çok benzer bir performans

üretmiştir. LightGBM, RF’den daha iyi performans göstermesine rağmen,

sınıflandırma süresi yüksektir. Üstelik, sonuçlar farklı parametreler için oldukça

değişkendir. Ancak, yüksek doğruluğu nedeniyle, LightGBM’in kullanımı

gelecekte araştırılmaya değerdir.

• AS2 - N-gram öznitelikleri için ideal set büyüklüğü nedir?

[14]’de önerildiği gibi, bu deneyde 3-gramlar kullanılmıştır. İlgili çalışmada,

sistemin, n-gram boyutunun 1’den 3’e artırılmasıyla daha iyi performans

xxi



gösterdiği gözlemlemişlerdir. Ayrıca, n-gram boyutunun daha da artırılmasıyla

sistem performansının düştüğünü belirlemişlerdir. Bu deneyde, optimal n değerini

belirlemek için ön analiz yapılmıştır. Yaklaşım [14]’dekiyle karşılaştırıldığı

için, n-gramlar için aynı n değerinin kullanılmasına karar verilmiştir. Yüksek

sayıda uygulama içeren veri setleri için deneylerde kullanılan n-gramların

sayısını sınırlamak ve bellek tüketimini azaltmak için bir HashingVectorizer

kullanılmıştır.

3-gramların sayısının sınıflandırma doğruluğu ve eğitim süresi üzerindeki etkileri

sırasıyla Şekil 6.1a ve 6.1b’de gösterilmiştir. Şekilde açıkça görüldüğü

üzere, sınıflandırmada 10.000’den fazla 3-gram kullanıldığında eğitim süresi

artmaktadır. Ancak, bu, doğruluk açısından önemli bir iyileşme sonucu

doğurmamaktadır. Dikkate değer bir durum ise, boyutu ve büyük miktarda

3-gram üretmesi nedeniyle, market veri seti en fazla 50.000 3-gram ile

çalıştırılabilmiştir.

• AS3 - TPL (Üçüncü Parti Kütüphanelerin) kullanımı, Yİ problemi

çözümüne iyileştirmeler getiriyor mu?

Yİ üzerinde TPL’nin etkisini göstermek için iki ayar kullanılmıştır. İlk

ayarda, kaynak kod tabanlı öznitelikler yalnızca geliştiriciler tarafından yazılan

özel(custom) kodlardan çıkarılmıştır. İkinci ayarda ise, öznitelikler yine aynı

uygulamalardan çıkarılmış, ancak bu sefer TPL’ler dahil edilmiştir (tüm kodlar).

Tablo 6.2’de gösterildiği gibi, kaynak kod tabanlı öznitelikleri çıkarırken TPL’nin

dahil edilmesi çok daha iyi bir performans sağlamıştır (özel src vs. tüm src).

Daha sonra, özel kod Tablo 5.6’de sunulan diğer özniteliklerle zenginleştirilmiş ve

Tablo 6.2’deki tüm kod ile karşılaştırılmıştır. Sonuçlar açıkça göstermektedir ki,

TPL’den kaynak kod tabanlı öznitelikler çıkarmak yerine, TPL’nin kendi başına

öznitelik olarak varlığı Yİ için yeterlidir ve TPL kodunun dahil edilmesinden

çok daha iyi sonuçlar üretir. Bu nedenle, sonraki deneylerde, kaynak kod

tabanlı öznitelikler yalnızca özel koddan çıkarılmış ve TPL öznitelikleriyle birlikte

kullanılmıştır (özel src+lib).

xxii



• AS4 - Önerilen yaklaşım uygulamaların geliştiricisini belirlemede ne

kadar etkilidir?

Bu deneyde, Önceki Araştırma Sorularında deneysel ayarlar belirlendikten

sonra, metadata hariç yeni önerilen öznitelik setleri (src+perm+lib veya SPL),

[14, 16]’de kullanılan diğer öznitelik setleriyle karşılaştırılmıştır. Bu amaçla,

[14]’de verilen dizgi ile ilgili öznitelikleri çıkarmak için sıfırdan kod geliştirilmiştir.

AppAuth [16] yazarları, makalelerinde bahsedilen öznitelikleri çıkarmamızı

sağlayacak kaynak kodlarını paylaşmıştır. Bu sayede, AppAuth özniteliklerini

elde etmek için bu kodlar doğrudan uygulanmıştır.

Tablo 6.3’de gösterildiği gibi, yeni önerilen öznitelikler AppAuth’tan daha

iyi performans gösterirken, [14]’deki dizgi özniteliklerinde daha az doğruluk

üretmektedir. Ancak, yukarıda belirtildiği gibi, tüm 3-gram özniteliklerini

çıkarmak, sınıflandırma süresi açısından uygulanabilir olmayabilir. Bu nedenle,

burada yalnızca 10.000 3-gram kullanılmaktadır. [14]’de değerlendirme için

kullanılan ve göreceli olarak küçük bir veri seti olan Genome veri setinden ise

tüm 3-gramlar çıkarılmıştır. Genome veri setinde, önerilen öznitelikler, dizgi ile

ilgili özniteliklere göre biraz daha iyi performans göstermiştir. Tüm öznitelikler

dahil edildiğinde, market ve kötü amaçlı yazılım veri setlerinde en iyi performans

elde edilmiştir. Ayrıca, her bir öznitelik setini çıkarmak için gereken süre de

hesaplanmıştır. Tablo 6.4 göstermektedir ki, n-gram öznitelikleri, diğer öznitelik

setlerinden en az bir buçuk kat daha fazla zaman gerektirmektedir. SPL ve

AppAuth özniteliklerinin çıkarma süreleri nispeten yakındır. Bir öznitelik çıkarıcı

yalnızca bir kez gerçekleştirilse de, öznitelik çıkarma işlemi, önemli miktarda

n-gram üretildiğinde, özellikle sınırlı RAM’e sahip sistemler için, bellek ile ilgili

zorluklara yol açabilir. [42]’de vurgulandığı gibi, n-gram yaklaşımının birincil

sınırlılığı, metin/uygulama boyutu arttıkça n-gramların üssel olarak büyüme

eğilimidir. Bu karmaşıklık, sınırlı hesaplama kapasitesine sahip sistemler için

yöntemi genellikle uygulanamaz hale getirir.

xxiii



• AS5 - Uygulamaların metadata bilgisi, uygulamaların geliştiricisini

ilişkilendirmede yardımcı oluyor mu?

Burada, öncelikle optimal n değeri ve n-gram sayısının ne olması gerektiği

araştırıldı. Bu amaçla, açıklama metinlerindeki her n ardışık kelimenin n-gramları

çıkarıldı ve her adımda bir kelime sağa doğru ilerlendi. Optimal n değerini

belirlemek için, 1’den 5’e kadar farklı n-gram boyutlarında ön denemeler yapıldı.

Sonrasında, en iyi sonuçları elde etmek için gerekli olan n-gram sayısı tespit

edildi. İkinci aşamada ise, metadata özniteliklerinin diğer öznitelik setleriyle

birleştirilmesinin doğruluk üzerindeki etkisi incelendi.

Bu deneyde, market veri setinin tamamı ve kötü amaçlı yazılım veri setleri

arasından yalnızca Rmvdroid [40] kullanıldı. Bunu sebebi yalnızca bu veri

setleri uygulama açıklamalarını içermektedir. Şekil 6.5a, farklı n değerleri için

doğruluk sonuçlarını göstermektedir. n-gram sayısı 10.000 olarak belirlenmiştir.

Gözlemlenebileceği üzere, 1-gramlar diğer n-gramlardan daha iyi sonuçlar

üretmektedir. n değerini belirledikten sonra, daha sonraki deneylerde optimal

1-gram öznitelik sayısını araştırdık. Şekil 6.5b, yalnızca metadata öznitelikleri

kullanılarak elde edilen doğruluk sonuçlarını farklı sayıda 1-gramlar altında

göstermektedir. Şekil 6.5b’de gösterildiği gibi, 1-gramların sayısı sonuçlar

üzerinde önemli bir etkiye sahiptir. n-gram analizi önemli miktarda sistem

kaynağı gerektirdiğinden, 100.000 1-gramdan sonra sonuç alınamamıştır. 100.000

1-gram dahil edildiğinde, market ve kötü amaçlı yazılım veri setleri için

sırasıyla yaklaşık %84 ve %74 doğruluk elde edilmiştir. Bu, açıkça uygulama

açıklamalarının Android Yİ için faydalı olduğunu göstermektedir. Ancak, 10.000

1-gramın sonuçlarının da oldukça yeterli olduğu ve gereken zamanın 100.000

1-gramdan çok daha az olduğu görülebilir. Bu nedenle, metadata analizindeki

gelecek deneyler için 10.000 1-gram seçilmiştir.

• AS6 - Uygulamaları geliştiricilerine ilişkilendirmede en önemli

öznitelikler nelerdir?

xxiv



Sonuçlar, metadata hariç tüm öznitelikler ve Rastgele Orman algoritması

kullanılarak elde edilmiştir. Daha sonra, tüm özniteliklerin önem değerleri

scikit-learn kütüphanesinden çıkarılmış ve sırasıyla market ve kötü amaçlı yazılım

veri setleri için Şekil 6.6a ve 6.6b’de gösterilmiştir.

Sonuçlar, her iki veri setinde de kaynak kod tabanlı ve dizgi/n-gram

özniteliklerinin diğer özniteliklere göre daha büyük bir etkiye sahip olduğunu

göstermektedir. AppAuth’ta kullanılan öznitelikler (conf, dex, rsrc), özellikle

kötü amaçlı yazılım veri setinde olumlu bir etkiye sahiptir. Tablo 6.10, önem

açısından ilk 50 öznitelik arasında yer alan her veri seti için öznitelik sayısını

göstermektedir. En önemli 50 özniteliğin sıralaması Tablo 6.11’de listelenmiştir.

Bu sonuçlar ayrıca, özellikle kötü amaçlı yazılım veri setinde, kaynak kod tabanlı

özniteliklerin diğer özniteliklere kıyasla çok daha fazla etkiye sahip olduğunu,

n-gram özniteliklerinin ise market veri setinde baskın olduğunu göstermektedir.

• AS7 - Modelin performansını azaltmadan öznitelik sayısını azaltabilir

miyiz?

Tüm özniteliklerin en iyi %20, %40, %60, %80 ve %100’lük kısımları,

scikit-learn’deki f_classif() kullanılarak ANOVA F-değerleri hesaplanarak

çıkarıldı. ANOVA, öznitelik seçimi için kullanılan parametrik bir istatistiksel

hipotez testidir. İki veya daha fazla veri örneğinin ortalamaları önce hesaplanır

ve sonra bu veri örneklerinin aynı dağılımdan gelip gelmediği belirlenir.

Her öznitelik setinin performansı Şekil 6.7’de gösterilmiştir. Öznitelik vektöründe

sıfır etkiye sahip öznitelikler de bulunmaktadır. Kötü amaçlı yazılım veri setinin

(435), market veri setine (174) kıyasla daha fazla sıfır etkiye sahip özniteliğe

sahip olması nedeniyle, son yüzdelikte çok fazla iyileşme olmamıştır. Bu şekil

ayrıca, zaman ve kaynak kullanımı önemliyse, tüm özniteliklerin yerine daha az

öznitelik kullanılabileceğini (örneğin, %60) göstermektedir.

xxv



• AS8 - Geliştirici başına düşen uygulama sayısı, sınıflandırma

performansını etkiliyor mu?

Bu çalışmada kullanılan veri seti, piyasada ondan fazla uygulamaya sahip bireysel

geliştiricileri elde etmenin zor olması nedeniyle, esas olarak birden fazla geliştirici

tarafından yazılan şirket uygulamalarını içermektedir. Ayrıca, geliştiricilerin

farklı sayıda uygulamalara sahip olması nedeniyle veri seti dengesizdir. Bu

nedenle, zararsız ve kotücül veri setlerinde en az 40 uygulamaya sahip geliştiriciler

öncelikle çıkarılmış ve sırasıyla market ve kötü amaçlı yazılım veri setleri için 37

ve 19 yazar elde edilmiştir. Daha sonra geliştirici başına rastgele 10, 20, 30 ve 40

uygulama on kez seçilmiştir. Bu nedenle, her seferinde farklı uygulama grupları

seçilmiştir.

Şekil 6.8, geliştirici başına uygulama sayısı artırıldığında, Android Yİ’nin

doğruluğunun da arttığını göstermektedir. Daha az yazarı olan daha küçük bir

veri seti olduğu için, kötü amaçlı yazılım veri setindeki sonuçlar, geliştirici başına

20 uygulama ile eğitildiğinde bile çok yüksektir. Bu nedenle, kötü amaçlı yazılım

veri setinde geliştirici başına 20, 30 ve 40 uygulama kullanılarak eğitilen modeller

arasındaki farklar birbirine benzerdir.

• AS9 - Önerilen model, aynı yazar tarafından geliştirilen uygulamaların

farklı versiyonlarını başarıyla belirleyebiliyor mu?

Bu çalışmada, iki veri seti oluşturulmuştur. İlk olarak, market veri setinde

uygulamaların birden fazla versiyonu varsa, yinelenen uygulamalar elenmiş

ve yalnızca uygulamanın markette bulunan ilk versiyonu pazar veri setinde

bırakılmıştır. Bu eğitim veri setine sürüm içermeyen veri seti denilmiştir;

versiyonları ise başka bir veri setine, test seti adı verilen sete konulmuştur.

Bunun sonucunda, 42 geliştirici tarafından uygulanan 1.193 eğitim ve 1.183 test

uygulaması elde edilmiştir.. Sürüm içermeyen veri setindeki tüm geliştiricilerin,

önceki deneylerde olduğu gibi, en az on uygulaması bulunmaktadır.

xxvi



İlk olarak, sürüm içermeyen sette katmanlı onlu çapraz doğrulama uygulanarak

%80.7 doğruluk elde edilmiştir. Tablo 6.3’de gösterildiği gibi, tüm sürümler

dahil edildiğinde, doğruluk biraz daha yüksek (%82.6) olmuştur. Daha sonra,

“bir uygulamanın bir versiyonu eğitimde yer alıyorsa, bu uygulamanın yeni

versiyonları önerilen yaklaşımla tespit edilebilir mi?” sorusunu yanıtlamak

için, model sürüm içermeyen bir veri seti kullanılarak eğitim yapılmış ve

test veri setinde değerlendirilmiştir. Burada, yüksek doğruluk (%91.7) elde

edilmiştir. Uygulamaların farklı versiyonları arasındaki benzerlikler SimiDroid

[43] kullanılarak hesaplanmıştır. Ancak, eğitimdeki ilk mevcut versiyonlara

olan benzerliklerine göre uygulamaların tanımlanamayan versiyonları arasında

önemli bir korelasyon bulunamamıştır. İlk mevcut versiyona olan benzerlikler

genellikle versiyon numaralarına orantılı olarak azalsa da, test setinde istisnai

durumlar bulunmaktadır. Bir uygulamanın versiyonu ile eğitim setindeki ilk

mevcut versiyon arasındaki benzerlik düşük olsa bile, önerilen yaklaşım bu tür

versiyonların yazarlarını başarıyla tanımlayabilir. Bu sonuçlar, aynı uygulamanın

farklı versiyonları arasındaki benzerlik düşük olsa bile, geliştiricinin imzasının

korunduğunu göstermektedir.

• AS10 - Android Yİ üzerinde karıştırma tekniklerinin etkisi nedir?

Bu çalışmada, Android Yİ’nin karıştırılmış uygulamalardaki performansını

daha iyi anlamak için, market ve Genome veri setlerindeki uygulamalarda

“Obfuscapk” [44] aracı kullanılarak karıştırılmış uygulamalar elde edilmiştir.

“Obfuscapk” [44], kara kutu şeklinde çalışır, ileri düzey karştırma özelliklerini

destekler ve yeni tekniklerle kolayca genişletilebilen modüler bir mimariye

sahiptir. Karıştırma tekniklerinin uygulanması sırasında karşılaşılan bazı hatalar

nedeniyle, bu deneyde kullanılan uygulama sayısı orijinal veri setinden (≈40%)

düşüktür. Ancak, [14]’den çok daha büyük bir veri setidir (320 yazardan 6055

uygulama). Tablo 6.12’de listelenen altı farklı karıştırma tekniği kullanılmıştır.

Bu karıştırma teknikleri, şifreleme ve yeniden adlandırma olmak üzere iki

kategoriye gruplandırılabilir.

xxvii



Farklı karıştırma tekniklerinin etkileri Tablo 6.13’de gösterilmektedir. Şifreleme

karıştırma teknikleri sonuçları etkilemezken, yeni önerilen kaynak kod tabanlı

öznitelik setleri, Tablo 6.13’de gösterildiği gibi, yeniden adlandırma karıştırma

tekniklerine karşı hassastır, çünkü bunlar uygulamaların değişken, metod ve

sınıf isimlerinden çıkarılmaktadır. Dizgi öznitelikleri [14] de yeniden adlandırma

tekniklerinden etkilenmektedir, ancak bu etki yeni önerilen öznitelik setlerinden

daha azdır çünkü dizgi öznitelikleri yalnızca kaynak kodlardan çıkarılan dizgileri

değil, APK dosyalarına yerleştirilen tüm dizgileri kullanır.

• AS11 - Veri setlerinde herhangi bir klon uygulama var mı? Bunlar

Android Yİ üzerindeki performansı nasıl etkiler?

Veri setindeki uygulama klonlarını tespit etmek için Romadroid aracı [45]

kullanılmıştır. Romadroid, karşılaştırılacak iki uygulamanın her bir manifest

dosyasından bir dizgi oluşturur ve iki dizgi arasındaki benzerliği LCS algoritması

kullanarak ölçer.

Deneylerde %70 ve %90 eşik değerleri kullanılmıştır, Market, kötü amaçlı yazılım

ve Genome veri setlerindeki 488, 153 ve 39 geliştiricinin uygulamalarının benzerlik

skorları Romadroid kullanarak hesaplanmıştır. Sonuç olarak, uygulamaların ikili

karşılaştırmasıyla n∗(n−1)/2 benzerlik sonucu elde edilmiştir. Burada, n toplam

uygulama sayısını belirtir. Bazı uygulamalarda hatalarla karşılaşıldığı için, her

çift için benzerlik skorları elde edilememiştir. Birçok çalışma, tipik olarak,

uygulama çiftlerinin benzerlik skorları %70 veya %90’ı aştığında bir uygulama

çiftini uygulama klonu olarak kabul eder [43, 45, 46]. Bu çalışmadaki yaklaşımda,

başka bir uygulama ile %70’in üzerinde benzerlik gösteren tüm uygulamaları hariç

tutulmuştur.

Tablo 6.14’da gösterildiği gibi, market veri setinin %20.6’sı ve kötü amaçlı yazılım

veri setlerinin %22.3’ü %70 benzerlik oranının üzerinde benzer uygulamalara

sahipti. Kötü amaçlı yazılım ve market veri setleri için sırasıyla Tablo

6.16 ve 6.15’de klon uygulamaların sonuçlar üzerindeki etkileri verilmiştir.

Sonuçlar, özellikle market veri seti için, benzer uygulamaları çıkarmak doğruluk

xxviii



ve F1 skorlarını iyileştirdiğini göstermektedir. Farklı geliştiricilerden benzer

uygulamalar, modeli eğitim sırasında yanıltabilir, bu yüzden uygulama klonlarını

çıkarmak sonuçlar üzerinde olumlu bir etkiye sahiptir.

SONUÇ

Bu çalışma, Android Yazarlık İlişkilendirmesi için yeni öznitelikler sunmakta ve çeşitli

özniteliklerin kullanımını araştırmıştır. Ayrıca literatürdeki özniteliklerle karşılaştırma

sağlanarak zararız, kötücül, versiyon ve karışıtırılmış gibi bir çok tür uygulama türünde

sonuçlar alınmıştır. Sonuçlar yeni önerilen özniteliklerin Yİ probleminde önemli

olduğunu göstermektedir. Gelecek araştırmalar, özellikle kötü niyetli uygulamalar

üzerinde olanlar olmak üzere, klon uygulamalar için bu yaklaşımın kullanımını

incelemelidir görüşündeyiz. Ayrıca, farklı kaynaklardan gelen kötü amaçlı yazılımlar

arasındaki benzerlikleri bulmak önemlidir; böylece, kötü amaçlı yazılımların nasıl

evrileceği tahmin edilebilir ve gelecekte ortaya çıkacak kötü amaçlı yazılımlara karşı

yeni koruma teknikleri geliştirilebilir. Kötü amaçlı yazılımın yazarıyla ilgili öznitelikler,

bu hedefe ulaşmak için yararlı olabilir. Bu nedenle, piyasadaki yeni uygulamalar,

yazarlarının bakış açısından analiz edilebilir.

xxix



 



CONTENTS

Page

ABSTRACT .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

ÖZET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

GENİŞLETİLMİŞ ÖZET .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xxx

TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xxxii

FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xxxiv

ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xxxv

1. INTRODUCTION.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1. Scope Of The Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2. Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3. Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2. RELATED WORK.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1. Source Code Authorship Attribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2. Binary Code Authorship Attribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3. Android Authorship Attribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4. Malware Authorship Attribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5. Finding Similarities Between Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3. ANDROID BACKGROUND .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1. Android Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2. Android Application Signing Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3. Alternative Android Markets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4. AUTHORSHIP ATTRIBUTION.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1. Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2. Representations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3. Attribution Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.4. Attribution Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

xxx



4.5. Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.5.1. Classification Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.5.2. Cross-Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.5.3. Grid Search CV .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5. PROPOSED METHOD - ANDROID AUTHORSHIP ATTRIBUTION .. . . . . . . . 42

5.1. Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.2. Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.3. Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.3.1. Feature Set Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.4. Feature Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.5. Machine Learning (ML) Model Development and Optimization . . . . . . . . . . . . . 61

6. EXPERIMENTAL RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.1. RQ1 - Performance of classification algorithms on Android AA .. . . . . . . . . . . . 65

6.2. RQ2 - The ideal set size for n-gram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.3. RQ3 - Custom code vs. all code including TPL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.4. RQ4 - Effectiveness of the proposed approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.5. RQ5 - Metadata Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.6. RQ6 - Most Effective Features on Android AA .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.7. RQ7 - The Effect of the Number of Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.8. RQ8 - The Effect of the Number of Applications per Developer. . . . . . . . . . . . . 85

6.9. RQ9 - Effect of Application Versions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.10.RQ10 - Effect of Obfuscation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.11.RQ11 - Analysis of Clone Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7. GENERAL DISCUSSION .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.1. Usage of Native Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.2. Obfuscation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.3. Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.4. Clone/Repackaged Applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.5. Applications Developed by Multiple Authors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

8. CONCLUSION .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

xxxi



TABLES

Page

Table 2.1 Comparative metrics of Android authorship attribution studies . . . . 20

Table 5.1 Year distribution of dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Table 5.2 Dataset information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Table 5.3 Metadata analysis dataset info . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Table 5.4 Feature set descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Table 5.5 Sample 3-gram features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Table 5.6 Features proposed for Android AA in the literature . . . . . . . . . . . . . . . . . 52

Table 5.7 Hyperparameters of classification algorithms. . . . . . . . . . . . . . . . . . . . . . . . . 62

Table 6.1 Comparison of classification algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Table 6.2 Accuracy results of custom source code enriched with other

feature groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Table 6.3 Comparison with AppAuth and StringAA - Random Forest . . . . . . . . 73

Table 6.4 Feature extraction time in minutes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Table 6.5 Effect of feature sets on Android AA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Table 6.6 Avg # of Library and Permission per application . . . . . . . . . . . . . . . . . . . 75

Table 6.7 Results of t-test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Table 6.8 Accuracy results of Smali vs. Java: source code-based features . . . . 77

Table 6.9 Metadata analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Table 6.10 Distribution of Top 50 features per feature set. . . . . . . . . . . . . . . . . . . . . . . 81

Table 6.11 The most important 50 features per dataset . . . . . . . . . . . . . . . . . . . . . . . . . 82

Table 6.12 Obfuscation abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Table 6.13 Obfuscation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Table 6.14 Ratio of clone applications in the datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Table 6.15 Differences on accuracy and f1 score when clone apps are removed

from the market dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

xxxii



Table 6.16 Differences (%) on accuracy and f1 score when clone apps are

removed from the malware dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Table 7.1 Dataset information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

xxxiii



FIGURES

Page

Figure 3.1 Sample code fragments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Figure 3.2 Format of a .dex file. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Figure 4.1 The steps of Authorship Attribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Figure 5.1 Overview of Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Figure 5.2 Summary of dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Figure 5.3 APK size distribution (Market at the top, Malware at the bottom) 46

Figure 6.1 Effect of the number of 3-grams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Figure 6.2 Confusion Matrix for the 52 developers who have at least 40

applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Figure 6.3 Accuracy results used in comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Figure 6.4 Accuracy results of all features used in comparison. . . . . . . . . . . . . . . . . 76

Figure 6.5 Effect of n-grams on metadata features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Figure 6.6 Importance values of each feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Figure 6.7 Impact of different percentiles of features . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Figure 6.8 Impact of different # of applications per developer . . . . . . . . . . . . . . . . 86

xxxiv



ABBREVIATIONS

LLM : Large Language Models

TPL : Third Party Library

AST : Abstract Syntax Tree

CFG : Control Flow Graph

SVM : Support Vector Machine

TFIDF : Term Frequency Inverse Document Frequency

API : Application Programming Interface

APK : Android Package Kit

LCS : Longest Common Subsequence

COPPA : Children’s Online Privacy Protection Act

XML : Extensible Markup Language

UI : User Interface

ART : Android Runtime

GPS : Global Positioning System

ANOVA : Analysis of Variance

RAM : Random Access Memory

CPU : Central Process Unit

NDK : Native Development Kit

xxxv



1. INTRODUCTION

Mobile devices play a pivotal role in our daily lives and facilitate tasks such as

banking and communication from anytime and anywhere. These activities produce

a considerable volume of critical data. Application developers already collect and use

this data with our permission. But, can this data be collected without our consent?

This concern becomes particularly relevant considering the activities of mobile malware

writers. They can easily gather this data using malicious software they develop due to

the carelessness of mobile users and the inadequacy of anti-virus systems.

This issue of unauthorized data collection is not just theoretical. A report by Kaspersky

highlighted that Google Play, the main repository for Android applications, experienced

over 600 million malware downloads in 2023 [47]. Data from the AV-TEST Institute’s

[48], which reported the existence of roughly a billion malicious applications in the same

timeframe, further exacerbates this alarming statistic. Some developers also modify

these malicious mobile applications to produce new variants of them. According to

the same report from AV-TEST, only about 50 million of these were new, unique

malware instances, with the remainder being modifications of existing malware. A

significant 86% of Android malware utilizes the repackaging method, as stated in [49].

This method involves decompiling or reverse engineering a legitimate app, modifying

its logic, inserting malicious code, and then repackaging it. Identifying similarities in

malware from various sources is key to predicting its evolution and developing future

protection techniques. Features associated with the authors of apps can be useful in

achieving this goal.

Authorship Attribution (AA) is a process aimed at identifying the author of a computer

program. Although it is primarily used to detect software theft and solve copyright

issues, it is also used in digital forensics and malware analysis. Software developers

generally leave footprints on their applications that describe their coding style. As a

result, applications developed by the same developer exhibit strong similarities, and this

1



programmer-specific coding style is retained within the program binaries, as noted by

Rosenblum [1]. Initially, these unique footprints were leveraged to pinpoint the authors

of software applications. However, with the advent of software variants—modifications

of the original software—research focus has pivoted towards the automated detection

of software theft and copyright infringements.

One of the most promising applications of AA is in the identification of malware

authors, as there has been a significant increase in the number of new malware and

new variations in existing malware [2]. AA can pinpoint the creators of new malware,

thereby facilitating the observation of malware evolution in the wild through the

monitoring of its developers. Similarly, AA can mark new programs crafted by known

attackers, making these programs prime candidates for further analysis. While there

are numerous works on AA, its application in the realm of malware [3–5], particularly

with regard to Android, remains insufficiently investigated.

There are two main approaches to AA: source code AA and binary code AA. At first, the

researchers are focused on analyzing the source code of software to identify the author of

unknown programs [6–10]. The preference for source code AA rather than binary code

AA in the literature stems from the fact that many distinctive features in the source

code are lost following the compilation process. The techniques employed in source code

AA draw upon a diverse set of features, including but not limited to line length, average

procedure length, method counts, naming conventions, comments, programming layout

attributes (such as spacing and indentation), variable names, control flow structures,

and aspects of the development environment like the computer platform, programming

language, and compiler.

However, obtaining the source codes of applications, especially those of malicious

ones, poses significant challenges due to the difficulties in accessing the original source

code of software, particularly in the context of malware analysis. Therefore, in such

cases, an application’s binary code is the only source that can be used to identify

the application’s author [1, 11, 12]. Nevertheless, identifying authors based on the

2



binary code AA is much more challenging than identifying authors based on the source

code. The compilation phase can significantly alter the binary code’s structure through

optimization techniques, thereby affecting AA’s effectiveness. Valuable features for AA,

such as linguistic and formatting elements, may be stripped away during compilation.

Moreover, the dependency on specific compilers and their configurations further

complicates binary code AA [13].

Despite these challenges, binary code remains a critical data source for malware AA

due to the unavailability of source code. Additionally, the efficacy of popular AA

methodologies, such as machine learning and deep learning techniques, largely hinges on

the volume of training data available. Given that binaries are more readily accessible,

binary code AA presents a compelling area of research, underscoring the need to adapt

and refine AA techniques to work effectively with the binary representations of software.

Malware authors skillfully avoid detection by constantly testing their software with

various dynamic analysis tools during development. These tools provide them with

critical feedback, allowing them to adapt their software to bypass antivirus systems

undetected. These individuals often distribute their malicious applications across

both official and third-party Android markets. The fact that they distribute under

various aliases in different markets further complicates the task of tracking their digital

footprint. In such scenarios, AA helps identify the people behind these deceptive

practices, even if they use multiple identities. Authorship attribution can also help

address the challenge of detecting malware that evades static analysis by updating its

malicious code at runtime [50]. This approach allows for the identification and tracking

of malware creators based on their coding style and other unique markers, providing

an effective method for combating threats that dynamically alter their behavior.

The fact that applications are typically developed by multiple authors presents an

additional challenge. Researchers in the field of AA generally prefer to analyze

works attributed to a single author rather than multiple authors. This preference

underscores the complexity involved in determining the exact number of contributors

3



in a collaborative project. Therefore, accurately ascertaining how many authors have

developed a particular application remains an open issue in the field of AA, especially

when applied to malware analysis.

In conclusion, AA in software development is an area full of potential and challenges.

As the dependence on digital technologies increases, it has become increasingly critical

to accurately identify code authors for security, maintenance, or copyright enforcement.

The purpose of this thesis is to identify the authors of different types of applications.

This is crucial, as some developers may upload applications that are not originally

their own to application markets. By applying reverse engineering, they can access and

change the source code of applications that do not belong to them. This process, known

as repackaging, is a common practice, especially in the malware domain. Our method

enables the detection of applications that seem to be written by a specific author but

are in fact not. Consequently, our method can prevent copyright issues by identifying

the original developer of applications that were developed for commercial purposes

but then repackaged by another developer and uploaded to markets under a different

name. Additionally, our method can be applied to student assignments. It helps in

determining whether students have plagiarized code during development. Ultimately,

this research not only addresses a significant challenge in software development but

also offers a novel approach to upholding academic integrity.

The scenario involving malware developers is particularly noteworthy. They often

receive indirect feedback by uploading early versions of their applications under

different aliases to various platforms, such as alternative markets and online analysis

tools. Utilizing this feedback, they devise strategies to evade antivirus systems. The

method we propose addresses this cunning tactic. It allows for the analysis of any

application uploaded to any environment. Importantly, our method can identify an

malicious application as belonging to a known malware developer, even if it is not

initially detected as malicious by conventional detection systems. Therefore, these

4



applications can be preemptively flagged as potentially malicious. This proactive

approach offers a significant advantage to malware analysts and antivirus systems.

Additionally, this approach offers a significant advantage in malware research. It

enables the clustering of versions of the same malware uploaded to markets at different

times. This capability is crucial for a comprehensive understanding of the evolution of

malware. Such information is especially useful in the evolving field of Android malware

development.

1.1. Scope Of The Thesis

This study investigates the discriminating features of Android applications for AA.

We have expanded the scope of investigation by collecting new features from the

applications’ components, including smali files, libraries, and permissions, as well as

their metadata information available in the market. These newly gathered features,

alongside those used in prior studies [14–16], are subjected to thorough analysis.

In our research, we specifically investigate the impact of different feature groups on

AA. Considering that features proposed in the existing literature have been analyzed

using different datasets, we established a common experimental framework to ensure a

fair comparison. Our dataset, detailed in Section 5.2., encompasses benign, malicious,

and obfuscated applications from a range of Android markets and studies.

Smali, serving as an intermediate language akin to assembly, preserves many insightful

source code features such as variable and function names and code organization,

yet offers greater readability than assembly. It is possible to decompile an Android

application, called the Android Package Kit (APK ) file, into Smali language. As a

result, smali files that have a similar class and function name to Java/Kotlin files of

the original source code of the application are obtained. Additionally, if any third-party

libraries are used during development, smali files from these libraries are also generated.

After decompilation, anyone can modify smali files easily and then recompile them

into an APK file. The extraction of smali files from Android binaries opens up the

5



possibility of applying certain source code-based features, traditionally used in different

programming languages, to Android binary applications.

Developers often tend to use the same third-party libraries due to their ease of use

and familiarity. It is also shown that most applications use more than 20 third-party

libraries [24] and a large part of the application code belongs to such libraries [25, 26].

Similarly, it is shown by [23] that most applications, on average, request 30% more

permissions than they need. This is because developers use the same manifest file in

their different applications. Consequently, analyzing which third-party libraries and

permissions are utilized in an application can provide valuable insights for AA.

The features incorporated into our study, drawn from prior research [14–16], encompass

configuration, (Dalvik Executable) DEX code, resources, and string-based elements.

Each category of features is extracted from specific components of the APK files:

• Configuration Features: These are sourced from the manifest file of the APK

files. The manifest file provides a wealth of information about the application’s

setup and permissions, making it a rich source for configuration data.

• DEX Code Features: Directly extracted from the .dex file, these features focus

on the structural elements of the application, such as methods, classes, and field

structures. The .dex file is being the compiled version of the application’s source

code.

• Resource Features: These are gathered from the “res” directory of the

decompiled APK files. The “res” directory, which contains resources like images

and layout files, provides insights into the visual and structural aspects of the

application.

• String-Based Features: For this analysis, strings present in both the

strings.xml file and the .dex file are utilized. By applying n-gram analysis to

these strings, we can uncover patterns and sequences that are characteristic of

the application’s coding style and content.

6



An essential initial step in this study is to refine the dataset by removing very similar

applications. It is important to note that many original apps may share common

code segments due to the use of third-party libraries or the implementation of specific

functionalities. Thus, it is crucial to be meticulous in selecting only those apps that

are nearly identical. The main goal is to pinpoint and separate cloned applications

present in the dataset. This aspect is especially crucial for Android applications, given

that the ease of modifying these apps has resulted in an increase in cloned versions,

particularly prevalent in alternative Android markets. Researchers are delving deep

into this area not only to pinpoint the original authors of these applications, as cited

in studies like [16], but also to detect distinct function blocks within the source code.

Recently, the use of Large Language Models (LLMs) has become increasingly popular

for identifying code clones [51, 52]. These models excel at analyzing specific portions

of the source code.

We seek to find answers to the following research questions (RQs) on how our

model identifies the author of Android applications, including benign and malicious

applications:

• RQ1 - What is the performance of classification algorithms in solving the AA

problem?

• RQ2 - What is the ideal set size for n-gram features?

• RQ3 - Does the use of TPL bring improvements in solving the authorship

problem?

• RQ4 - How effective is the proposed approach in identifying the developer of

applications?

• RQ5 - Does metadata of applications help to attribute the developer of

applications?

• RQ6 - What are the most important features for attributing applications to their

developers?

7



• RQ7 - Can we reduce the number of features without decreasing the performance

of the model?

• RQ8 - Does the number of applications per developer affect classification

performance?

• RQ9 - Does the proposed model successfully identify different versions of

applications developed by the same author?

• RQ10 - What is the effect of obfuscation on Android AA?

• RQ11 - Are there any clone applications in the datasets? How do they affect the

performance on Android AA?

1.2. Contributions

In this research, we propose a novel and efficient approach for Android AA. The main

contributions of this thesis can be summarized as follows:

• New features extracted from smali files were introduced for Android AA. To the

best of our knowledge, the features inherited from the source code AA in smali

codes were first used in Android in this study. The results showed that source

code-based features increased the accuracy of attributing applications to their

corresponding authors.

• In this study, TPL and permission features, previously used as string features in

earlier research, have been utilized as binary features.

• Unlike traditional application distribution mechanisms, Android applications are

centrally distributed in mobile markets. Therefore, in addition to the application

code, we can obtain metadata about Android applications, such as application

descriptions and user reviews. Consequently, this study explored the effect of

textual metadata on Android AA. A positive effect of metadata-based features

8



was observed, especially when applied with the source code-based features

employed in this study. This is the first study to use metadata descriptions

in the realm of Android AA.

• The performance of the proposed approach was extensively analyzed. In addition

to analyzing the effect of each feature set on Android AA, the studies proposed in

the literature were compared. The experimental results show the positive effect

of the features proposed in this study on authorship attribution.

• This study also explores version and obfuscated applications from the AA

perspective, marking the first time analyses of version apps have been conducted.

• We collect a diverse range of applications with distinct characteristics, such as

benign, malicious, versioned, and obfuscated. Our dataset is comprised of 10,385

benign Android apps, sourced from 488 unique developers, each contributing more

than 10 apps, and gathered from five different markets. Additionally, it includes

over 3,000 malicious apps from 153 developers, obtained from various sources.

We also constructed approximately 6,000 obfuscated apps using the Obfuscapk

tool [44], and over 1,000 applications for version analysis, both derived from the

benign dataset.

• We shared the source code of our study with the research community at:

https://github.com/emreaydogan/SourceCodeBasedAAA

1.3. Organization

This thesis is systematically organized into eight chapters. The organization of the

thesis is as follows:

Chapter 1. introduces the research topic, outlining the scope, contributions, and

overall structure of the thesis.

Chapter 2. provides a comprehensive review of the existing literature and research

in the field of source and binary code AA, with a specific focus on its application

9

https://github.com/emreaydogan/SourceCodeBasedAAA


in malware, Android, and methods used for finding similarities between apps. This

chapter incorporates an extensive review of code clone detection studies across varied

domains, including Android and malware, thereby establishing a contextual foundation

for our research.

Chapter 3. offers an in-depth background necessary for the fundamentals of Android

architecture, the typical structure and features of Android applications, including those

used in AppAuth [16] and StringAA [14], and proposed features for analysis. This

chapter also delves into the Android app signing process and alternative Android

markets, setting the stage for understanding the ecosystem in which AA operates.

Chapter 4. details the methodologies employed for attributing authorship in both

source and binary code. It begins with a discussion on “features”, highlighting

their role in AA. This is followed by an examination of “representations”, which

focuses on the portrayal of data. The next section, “attribution models”, sheds

light on various models employed in authorship attribution. The chapter then

transitions into a detailed exploration of “machine learning”, segmented into three

areas: “classification algorithms”, “cross-validation”, and “grid search cv”. Each of

these subsections contributes to a deeper understanding of the techniques applied in

authorship attribution.

Chapter 5. introduces the methodology developed. It details the model architecture,

dataset selection and preparation, methods for finding similar apps, the process

of Android decompilation, and the intricate steps involved in feature extraction,

including descriptions, processing methods, dimension reduction techniques, and the

classification algorithms used, along with cross-validation and hyperparameter tuning

strategies.

Chapter 6. presents the findings of the research. This chapter is structured around

various research questions (RQ1 to RQ11), each addressing a specific aspect of Android

AA, such as the performance of classification algorithms, the impact of n-gram set size,

10



the analysis of custom code versus all code including TPL, and several other factors

that affect the effectiveness of the proposed approach.

Chapter 7. synthesizes the findings from the experiments and discusses them in the

context of broader implications in the field. This includes discussions on the usage of

native code, obfuscation techniques, challenges and insights gained from the dataset,

and the phenomenon of clone/repackaged applications and applications developed by

multiple authors.

Chapter 8. summarizes the key findings of the research, drawing conclusions from

the experiments and discussions in the previous chapters. This chapter also provides

recommendations for future research and the potential implications of this study in the

field of Android AA.

11



2. RELATED WORK

Authorship Attribution is related to many different areas, such as literary work analysis

[53, 54], code plagiarism detection [6], code AA [55], forensic investigation [56] and

malware analysis [2, 57, 58]. It has different objectives such as authorship identification,

clustering, evolution, profiling, and verification [27]. In the field of AA, two primary

methodologies emerge: one that leverages source code analysis and another that focuses

on binary code analysis. Although studies based on the source code of applications have

appeared in the literature before, binary AA started to emerge due to the lack of and

difficulty in gathering source codes. These studies are explained in detail in Section 2.1.

and 2.2.

Since the early 2010s, mobile devices have begun to significantly affect many aspects

of our lives, necessitating a careful examination of mobile applications. Android is

the most used operating system on mobile devices; therefore, we shifted our focus to

Android applications. We proposed new feature sets for Android AA that are based

on the source code of Smali files, TPL, and metadata information. We also compared

our feature sets with those of the literature. Studies in the field of Android AA are

detailed in Section 2.3.

Most studies have primarily focused on desktop and benign applications. However,

with the evolving landscape of cyber threats, understanding the authorship of malware

has emerged as a critical area of concern in cybersecurity. This shift is not just about

expanding the scope of AA but also about addressing unique challenges in tracing

sophisticated and often concealed malicious code origins. Therefore, we explore AA in

the context of malware to understand its specific implications and applications. Studies

about malware AA are detailed in Section 2.4..

In order to build an AA model, unique applications are needed for each author in the

dataset used. In the realm of Android, it is common for apps to be modified and

then re-uploaded to markets in repackaged and obfuscated forms. Such practices can

12



introduce “clone applications” into the dataset. Overfitting occurs when a model learns

the details and noise in the training data to such an extent that it negatively impacts

the performance of the model on new data [59]. Therefore, it is essential to identify

and eliminate these clones to ensure that the AA model remains accurate when applied

in real-world scenarios, which may present different challenges and data characteristics

compared to the controlled environment of the training phase. Studies on finding clone

applications are explained in detail.in Section 2.5.

2.1. Source Code Authorship Attribution

The source code of software can provide very useful features to identify the author of

unknown software. The unique coding style of the author is evident in the source

code. Given that software created by the same developers often exhibits shared

characteristics, certain features can be identified by examining the coding style of the

developer.

N-gram model is used by researchers for source code AA [6, 8]. Both studies employ

information retrieval approaches with n-grams. Burrows et al. [6] address the issue of

plagiarism and copyright infringement in academic and corporate settings, emphasizing

the limitations of current methods that rely solely on textual similarity comparisons

for detecting infringements. The authors propose using AA as a tool for identifying

plagiarism. By analyzing a collection of 1,640 documents from 100 authors, they

demonstrate the ability to correctly identify the author of a queried work in up to

67% of cases. Frantzeskou et. al. [8] propose a method for determining the most likely

author of a computer program from a set of predefined candidates. They aim to trace

the origins of the code used in cyberattacks. They conducted experiments using data

sets in different programming languages (Java and C++) and with varying numbers of

candidate authors (6 to 30). Their method performs well even with limited and short

programming samples available for each programmer, a scenario often encountered in

cybercrime investigations.

13



Kothari et al. [9] create a profile for each known developer by computing two types of

metrics. While the first type is style-based, such as line size, leading spaces, and tokens

(words) per line, the second type is based on patterns of character sequences. Their

aim is to determine the closest matching profile for an unidentified source code. This

paper introduces a method for identifying the authorship of source code, a tool that

is particularly useful in situations where code ownership is disputed, such as in cases

of plagiarism or intellectual property infringement. This method is also valuable for

identifying the creators of malware. The approach involves first building profiles for

a known group of authors using verified code samples. These profiles are constructed

by computing a set of specific metrics. Then, the same metrics are computed on

unidentified source code to find the closest matching profile from the known authors.

The effectiveness of this method is demonstrated through a case study involving two

different types of software: one created by open-source developers working on various

projects, and the other by students completing assignments with identical requirements.

The results of the case study are promising, showing over 70% accuracy in correctly

identifying the author when choosing the single nearest match and more than 90%

accuracy when selecting the top three closest matches.

A back propagation neural network based on particle swarm optimization is employed

using Java source codes in [60]. They extract 19 features consisting of lexical, layout,

structure, and syntax metrics. Alsulami et. al. [61] implement deep neural networks

using Long Short-Term Memory (LSTM) and Bidirectional Long Short-Term Memory

(BiLSTM) models based on Abstract Syntax Tree (AST) of source code.

Dauber et. al. [62] investigate the attribution of small and incomplete source code

fragments. They discuss the privacy implications of program AA, especially for

programmers who prefer to contribute code anonymously. Previous research in this field

has primarily focused on attributing authorship to complete files that are individually

authored, often using ideal datasets such as those from the Google Code Jam. However,

this paper expands the scope of research by exploring AA “in the wild”, specifically

looking at source code from open source version control systems.

14



Burrows et. al. [63] compare the AA techniques in terms of source code. They stated

that the comparison between these techniques is not fair since they use different test sets

and evaluation methodologies. It categorizes existing methods based on the software

features (n-grams or software metrics) and the classification technique (information

retrieval ranking and machine learning). The study aims to provide a direct comparison

of these methods by testing them on identical source code collections across different

programming languages and author types. Key findings include: ranking methods

achieving around 90% accuracy and machine classifiers about 85% for a one-in-10

classification problem; neural networks and support vector machines being the most

effective machine classifiers; potential in combining n-gram features with machine

classifiers, despite scalability challenges; and information retrieval techniques currently

surpassing machine learning methods in accuracy.

Frantzeskou et. al. [64] proposed five categories for source code AA by expanding

the taxonomy developed by Zheng et. al. [65]. The process of Authorship

Identification focuses on establishing if a specific author wrote a given piece of code.

Authorship Characterization, on the other hand, analyzes the programming style

and techniques to infer certain attributes of the programmer, such as their cultural

and educational background or language proficiency. Plagiarism Detection involves

comparing different sets of source code to identify similarities, aiming to uncover

instances of plagiarism, defined as using someone else’s work without proper credit.

Author Intent Determination is concerned with understanding whether a code-caused

malfunction was intentional or an accidental error. Lastly, Author Discrimination

assesses if various code segments were created by one or multiple authors. Those

problems can be solved by manual analysis which requires a security expert, similarity

calculation which uses numerical values, statistical analysis and machine learning

algorithms.

15



2.2. Binary Code Authorship Attribution

When the source codes of applications are unavailable, particularly in the realm of

malware, the binary codes of applications serve as a valuable alternative. While most

works use the pure binary of applications to extract features, some works, including

ours, decompile the binary of applications and then extract features.

Rosenblum et. al. [1] introduced an innovative method for representing programs and

techniques that can autonomously identify the stylistic characteristics of binary code.

They aim to find stylistic similarities between programs and identify the authors of the

programs. It is the first work to automatically determine the authors of software.

They extracted syntax- and semantic-based features such as idioms, n-grams, and

graphlets. They then rank the features to eliminate irrelevant features by computing

the mutual information between the feature and the actual author label. They applied

machine-learning techniques to these selected features. They claimed that the most

prominent features are distinctive to each author and reflect the way authors write

code.

Alrabaee et al. [12] propose a layered method, called OBA2, for binary AA. They

extract semantic-based and syntax-based features. They stated that the unique

features of each author were not connected to the author’s coding style, in contrast to

Rosenblum’s inference. They conduct an experiment based on three levels: removing

unrelated code, a syntax-based attribution layer, and a semantics-based attribution

layer. Their results are compared with Rosenblum’s work [1] and they stated that

their results produce more accurate results than Rosenblum’s work.

Caliskan et. al. [66] also proposed an approach that automatically identifies the

authorship of software binaries, but they use syntactical features located in the

source code of decompiled binary. Their approach consists of four steps: disassembly,

decompilation, dimension reduction, and classification. They extract instruction-based

features in the disassembly phase and lexical features in the decompilation phase. They

16



also obtain AST and CFG by employing fuzzy parsing. They then conduct information

gain and correlation-based feature selection to select the top features. Finally, random

forest classifiers are applied to these top features to determine authorship. They also

compared their results with Rosenblum’s work [1]. They claimed that their approach

is robust to basic obfuscation techniques.

2.3. Android Authorship Attribution

In recent years, mobile devices have overtaken desktop devices in terms of usage,

popularity, and sales. Because our study aims to find the authors of malicious and

benign applications in the Android environment, we explain related studies on Android

AA. Moreover, we compared our newly proposed feature sets based on the source code

of the smali files, metadata, and TPL with the feature sets used in the studies given

below.

A study based on string analysis of APK files was proposed by Kalgutkar et al. [14].

Three types of strings were employed: the string identifier list in the .dex file, all

string components presented in the .dex file, and strings extracted from the strings.xml

file. Subsequently, n-gram analysis was employed on these string lists to generate a

feature vector representing an author. Finally, the authors were classified using Support

Vector Machines (SVM). The proposed approach was evaluated in different datasets

that consisted of benign, malicious, and obfuscated applications, and accuracies of 98%,

96%, and 71% were obtained, respectively.

Gonzalez et al. [15] proposed an AA method based on array-related, array-unrelated,

and n-gram features by retrieving bytecodes from the .dex file and converting them into

a smali representation. Their framework consisted of two phases: profile construction

and incremental analysis. In the first phase, author profiles were constructed using

the Random Forest algorithm. In the second phase, incremental analysis is applied

to attribute new applications to existing profiles and find new possible profiles for

applications that have not yet been attributed to the existing authors. They achieved

17



97.5% accuracy in a dataset with 33 authors and 1428 applications. They also applied

their approach to more than 131,000 applications collected from various sources to find

applications belonging to author profiles in the wild.

Guoai et al. [16] proposed a new approach, AppAuth, that detects the original author of

a group of given repackaged Android applications with common properties such as label

names, icons, similar package names, and even file sizes. Several coding style-related

features were extracted from the APK files: i) binary features from the .dex file; ii)

resource features from decompiled files; and iii) configuration features obtained from

the manifest file. They successfully identified 69 original authors of 75 clone pairs (92%)

in the wild. They also analyzed the impact of TPL on the results. They stated that

removing code-level features introduced by TPL slightly increased the performance

of their framework. They also evaluated the prediction performance of independent

developers and development teams. However, their main drawback is that if the apps

they compare are repackaged implementations of an original app, they find a fake

author instead of the original author.

Wang et al. [17] extracted three types of string-related features: DEX-based,

manifest-based, and lib-based features. In the .dex files, identifier names, instruction

sequences, and the use of Android APIs are collected. They extract the names

of activities, providers, services, and broadcast receivers and use features from the

manifest file. Finally, they obtained the names of the TPL used in the applications.

They compared the CountVectorizer, TFIDFVectorizer, and word2vec models to

convert features into the author’s profile vectors. Because the word2vec model yielded

the best result, it was chosen for further evaluation. Then, three machine learning

models (i.e., Linear SVM, Random Forest, and Logistic Regression) were applied to

these vectors to classify authors on different datasets containing benign, malware, and

obfuscated applications. The results show that the proposed approach achieved 92.5%

accuracy on average for the entire set. Moreover, it outperformed AppAuth in 2,900

non-obfuscated applications, thereby improving authorship identification by 3.4%.

18



Differing from earlier studies, our approach incorporates metadata information from

the applications’ market pages. Additionally, we have compared all the feature sets in

the field of Android AA in the literature, utilizing a common dataset to ensure a fair

comparison. Our dataset is also larger than those used in other studies, encompassing

a comprehensive range of both benign and malicious applications. The comparison

between the studies mentioned above and our study is illustrated in Table 2.1.

2.4. Malware Authorship Attribution

Most studies, such as those mentioned earlier, have mainly used desktop and benign

applications. However, malware analysts are also keen to find the original author of a

malicious application.

Kalgutkar et al. [27] summarized various methods for both source and binary code AA,

mainly from the perspective of malware domains. They state that such attribution is

not just about naming the author but extends to understanding malware’s writers’

methods. Knowing who wrote a piece of malware can provide insights into the types of

tools and techniques the author typically employs, as well as how the malware is likely

to evolve.

It is mentioned that source and binary code AA face challenges due to the

complexity and volume of modern malware, making these methods time-consuming

and labor-intensive [67]. To overcome these limitations, the paper proposes a model

for malware AA that utilizes automated analysis for rapid feature extraction and

analysis. This method employs tools to analyze malware files and specific hash

values without the need for expert intervention, making it significantly faster than

traditional methods. The study conducted experiments using various machine learning

classification algorithms on six different malware author groups.

Attackers employ evasion techniques such as encryption and obfuscation to hide their

malicious intentions, which introduces new challenges to the AA problem. Only a

few studies have been published on the identification of malicious authors. Layton

19



St
ud

y
A

3I
D

E
N

T
[1

7]
St

ri
ng

A
na

ly
si

s[
14

]
A

pp
A

ut
h[

16
]

A
ut

ho
rs

hi
p

A
tt

ri
bu

ti
on

of
A

nd
ro

id
A

pp
s[

15
]

O
ur

St
ud

y

D
at

as
et

Si
ze

F-
D

ro
id

:4
16

ap
ps

14
0

de
vs

Be
ni

gn
:6

86
ap

ps
17

de
vs

M
al

wa
re

:1
4,

56
4

ap
ps

10
0

de
vs

O
bf

us
ca

te
d:

2,
90

0
ap

ps
29

de
v

Be
ni

gn
:1

,5
59

ap
ps

40
de

vs
M

al
wa

re
:2

62
ap

ps
10

de
vs

O
bf

us
ca

te
d:

96
ap

ps
9

de
vs

3,
87

1
ap

ps
27

3
de

vs
35

00
0

ap
ps

Be
ni

gn
:1

0,
38

5
ap

ps
48

8
de

vs
M

al
wa

re
:3

,2
68

ap
ps

15
3

de
vs

O
bf

us
ca

te
d:

6,
05

5
ap

ps
32

0
de

vs

M
et

ho
do

lo
gy

Pa
ck

ag
e

R
el

at
io

n
G

ra
ph

Pa
ck

ag
e

A
gg

re
ga

tio
n

Pa
ck

ag
e

C
lu

st
er

in
g

W
or

d
le

ve
ls

tr
in

g
n-

gr
am

s
C

od
in

g-
st

yl
e

fe
at

ur
e

ex
tr

ac
tio

n
Pr

ofi
le

co
ns

tr
uc

tio
n

In
cr

em
en

ta
la

na
ly

sis
Sm

al
ic

od
es

,n
-g

ra
m

,m
et

ad
at

a
co

di
ng

-s
ty

le
ba

se
d

an
al

ys
is

Sp
ec

ifi
c

Fo
cu

s
M

al
wa

re
ap

ps
Li

gh
tw

ei
gh

t,
eff

ec
tiv

e
ac

ro
ss

ap
p

ty
pe

s
C

lo
ne

d
ap

ps
A

ut
ho

r
pr

ofi
le

cr
ea

tio
n

O
pc

od
e

an
al

ys
is

O
bf

us
ca

te
d,

Ve
rs

io
n

ap
ps

M
et

ad
at

a
A

na
ly

sis

M
ac

hi
ne

Le
ar

ni
ng

T
ec

hn
iq

ue

SV
M

R
an

do
m

Fo
re

st
Lo

gi
st

ic
R

eg
re

ss
io

n
SV

M
Li

gh
tG

BM
R

an
do

m
Fo

re
st

R
an

do
m

Fo
re

st
K

-N
ea

re
st

N
ei

gh
bo

rs
SV

M
G

au
ss

ia
n

N
ai

ve
Ba

ye
s

Li
gh

tG
BM

C
on

tr
ib

ut
io

n
A

ut
ho

rs
hi

p
de

co
up

lin
g

de
x,

lib
,m

an
ife

st
fe

at
ur

es
C

om
pa

ris
on

w
ith

A
pp

A
ut

h

C
om

pa
ris

on
of

op
co

de
an

d
by

te
co

de
fe

at
ur

es
St

rin
g

co
m

po
ne

nt
an

al
ys

is

A
pp

re
pa

ck
ag

in
g

de
te

ct
io

n
de

x,
re

so
ur

ce
,c

on
fig

ur
at

io
n

fe
at

ur
es

A
tt

rib
ut

e
un

kn
ow

n
ap

ps
to

we
ll-

kn
ow

n
pr

ofi
le

s
O

pc
od

e
an

al
ys

is

C
om

pa
ris

on
of

di
ffe

re
nt

st
ud

ie
s

So
ur

ce
-c

od
e

ba
se

d
fe

at
ur

es
A

pp
D

es
cr

ip
tio

n
A

na
ly

sis

Ta
bl

e
2.

1
C

om
pa

ra
tiv

e
m

et
ric

s
of

A
nd

ro
id

au
th

or
sh

ip
at

tr
ib

ut
io

n
st

ud
ie

s

20



et al. [3] analyzed the source code of the Zeus botnet to determine the number of

authors involved in developing malware and their roles. The evolution of the Zeus

botnet over time was also analyzed in this study. Internet Relay Chat (IRC) messages

were analyzed to match them with known aliases, which are real users hiding behind

aliases [5]. The motivation for this study is that IRC messages frequently facilitate

cybercriminal activities, including the sale of stolen credit card information, botnet

access, and malware in online chat rooms.

Alrabaee et al. [2] compared existing studies based on benign binaries in the literature

[1, 11, 12] and conducted an experiment to investigate the effect of their models on

real malware. The study in [11] achieved better accuracy than the other two studies

on a benign dataset. The standard k-means clustering algorithm was used to compare

the three studies in the malware dataset. The study given in [1] performed the worst

among them, whereas other studies achieved similar results. It is stated that the

Rosenblum approach utilizes a blend of compiler and user features as its top-ranked

features, leading to an increased occurrence of false positives.

2.5. Finding Similarities Between Applications

Before conducting authorship analysis, we need to be sure that the dataset does not

include any similar, repackaged, or piggybacked apps. it is crucial to ensure the

integrity and uniqueness of the dataset to avoid skewed or inaccurate results. A

repackaged app typically involves the unauthorized modification, repackaging, and

redistribution of a legitimate application, done without the consent of the original

developer. On the other hand, a piggybacked app emerges when a malicious entity

modifies a legitimate, and often popular, mobile application by incorporating malicious

code. While the functionality of the original application is usually preserved to avoid

suspicion, added code introduces harmful or unwanted features. Like piggybacked apps,

repackaged apps are often distributed through third-party app stores or other channels

21



outside the official app stores. Users may mistakenly download these apps, thinking

they are getting the original version.

A framework called SimiDroid is introduced that identifies and explains similarities in

Android applications in [43]. SimiDroid consists of three plugins, namely MPlugin,

CPlugin and RPlugin. Each plugin is performed using different kinds of features:

method-based, component-based, and resource-based, respectively. They also pointed

out what kinds of changes have been made among app versions and among repacked

apps. They set up a scenario that composes benign apps and their piggybacked

counterparts as a pair. They managed to identify the similarity scores of 0.9996, 1,

and 0.8661 of pairs for each feature, respectively. They stated that the manipulation

of resource files was much easier than others; therefore, the detection of resource-based

approaches was a bit lower. They also compared themselves with other approaches,

AndroGuard [68] and FSquaDRA [69], and outperformed them.

RomaDroid [45] is a system that efficiently identifies cloned apps on Android markets by

analyzing the hierarchical tree structure of an app’s manifest file, implicit intents, and

component information. The system was tested using 148 original apps and their 620

obfuscated versions, created with popular obfuscators like ProGuard, Dex-Guard, and

DashO. RomaDroid showed low false negative rates and minimal processing overhead.

It leverages simple features from the AndroidManifest.xml file of each APK package,

such as the tree structure of the manifest file and the class names of components

associated with implicit intents. The Longest Common Subsequence (LCS) algorithm

is employed for high accuracy in detecting cloned apps. The system is compared

with SimiDroid, another app clone detector, which focuses on methods and component

names for similarity scoring. RomaDroid focuses on the AndroidManifest.xml file,

enabling fast generation of feature information and efficient app comparison. It does

not address the detection of illegal use of parts of an app or TPL. The technique does

not require source code, making it applicable to most apps.

22



3. ANDROID BACKGROUND

Android is the most widely used mobile operating system (OS) based on the Linux

kernel, with a usage of 70.76% in October 2023 worldwide [18] and a cornerstone in

the mobile industry. It offers an official market, Google Play [19], for developers to

easily deploy their applications. It also allows developers to upload their applications

to alternative markets such as Aptoide [20] and Apkmirror [21]. Therefore, Android

applications, namely APK files, can be easily gathered from such markets. Android

apps are developed using either Java or Kotlin programming languages. They are then

compiled into a bytecode for the Java virtual machine. Finally, these Java bytecodes

are translated into Dalvik bytecodes and stored in .dex files. The Dalvik bytecode

corresponds to hexadecimal sequences of executables for Android; hence, it is the format

that Android understands. The Dalvik bytecode is difficult to read or modify. Hence,

the smali intermediate language is generally used to look inside class files. Smali is a

human-readable representation of the Dalvik bytecode. Smali files can also be extracted

directly from the APK files.

An Android application, an APK file, consists of several elements such as .dex files,

a manifest file, resource files, and string files. All of these files can be used to

gather information regarding the application. For example, while the manifest file

contains information such as the number of services, activities, and permissions used

in applications, we can find images, libraries, and XML files and folders used in

applications in resource folders. String resources provide text strings for applications

[22]. There are three types of strings: String, String Array, and Quantity Strings

(Plurals). All strings were capable of applying styling markup and formatting

arguments. The .dex file contains Java/Kotlin class files. It is possible to convert class

files to smali files, which are intermediate representations of .dex files. Even though

some linguistic and formatting features of a source code are lost when compilation is

carried out, unlike assembly-based executables, Dalvik-based executables contain some

insightful information in the smali files. Fig. 3.1 shows a sample Java/C++ compatible

23



(a) Java (b) Decompiled Java

(c) Smali (d) Assembly

Figure 3.1 Sample code fragments

code fragment, its corresponding smali, and assembly codes, respectively. While the

smali code preserves information, such as variable names and method signatures, the

assembly code loses such information after the compilation process. Therefore, some

features related to source code AA can be obtained from smali files. Therefore, the

24



effects of such features were explored for the first time in this study.

3.1. Android Application

We have segmented Android applications into various components, each corresponding

to the different feature sets utilized in our study.

• Source Code: Smali files contain Dalvik-byte/smali codes generated from Java

bytecodes in the class files. Smali codes can be thought of as assembly codes for a

C/C++ program. They are generated from a high-level language and converted

to machine code via Android Runtime (ART) for smali. The operating system

then executes these machine codes to run the applications. In Fig. 3.1, the smali

and assembly codes corresponding to a Java function named find_maximum are

shown. As seen in the Fig. 3.1, the names of the function parameters and global

and local variables in the original source codes are not preserved in the assembly

files but in the smali files. For example, the local variables n, max, index and

function parameters a, n are preserved in the smali code given in the figure. It is

shown that developers tend to use the same format in naming identifiers, such as

using $ character or digits in variable names. Therefore, preserving such names

in decompiled code can help identify developers.

• Permission: Permissions are required to use the system resources of mobile

devices. Applications can only access and use device resources, such as cameras

and GPS, via the permissions requested in the manifest file. While normal

permissions can be granted automatically, dangerous permissions require user

approval. Most applications request more permissions than they use. According

to a study that evaluated the gap between the requested and the permission used

at runtime, applications use, on average, 30% more permissions than they need

[23]. Although a developer might develop applications belonging to different

categories, they could use the same manifest file in these applications because

of its convenience. Moreover, because they use the same TPL in applications

25



developed by the same author, they need to use the same permissions that these

libraries require.

• Library: Developers prefer to use TPL to provide some functionalities in their

applications rather than implementing them from scratch. It is shown that most

applications use more than 20 TPL [24] and a large part of the application code

belongs to such libraries [25, 26]. For the same functionality, developers tend to

use the same library that they are familiar with.

• Metadata; The distribution of Android applications through centralized mobile

markets differs from conventional methods of application distribution. In addition

to the application itself, these markets include information about the application,

such as the application description, application rating, and user reviews, known

as metadata.

• Configuration: Android applications are composed of four key elements:

activities, services, broadcast receivers, and content providers. Each component

has its own purpose and life cycle, which define how it is created and destroyed.

Activities define how users interact with applications. They are used to define user

interfaces that allow users to use the system resources. Every single application

screen refers to activities on Android. Some activities may trigger other activities.

Services perform long-term operations in the background and do not contain a

user interface. Broadcast receivers allow an application to be linked to a system

or an application event. The Android operating system notifies the connected

application when an event is triggered. Content providers are used to access

data in the application databases. An application can also use these to share

its database with other applications. Thus, a single piece of content can be

distributed across multiple applications. All the components are declared in the

Android manifest file. Developers tend to reuse the same Android manifest file

when developing their applications. Therefore, information in the manifest file,

26



such as the number of components, can help distinguish developers from each

other.

• Resource: Android applications may contain resource files such as images,

sounds, icons, and native libraries stored in the res directory. The files can

be used for various reasons, such as language support and the provision of images

for UI. Some files in the res directory, such as dynamic libraries, database files,

and payload files, can be accessed at runtime. Developers embed some specific

and critical information into these files. Therefore, it is important to analyze the

characteristics of this folder.

• DEX Code: The .dex file contains information about the structure of the

applications, as shown in Fig. 3.2. AppAuth [16] mainly analyzes the data section

in .dex files and focuses on methods, classes, and field structures, as well as

annotation, interface, debug information, etc. Because application sizes might

vary significantly, instead of obtaining the numerical values of these features,

AppAuth use ratio values, such as the ratio of the number of abstract classes to

all classes.

Figure 3.2 Format of a .dex file

27



• String: The strings in the strings.xml file are extracted line-by-line as app string

features. Strings in the strings.xml file contain references to the source code or

other resource files of the applications. These are static strings shown to users,

such as the application’s name. The .dex file consists of different parts, such

as the string id list, type id list, and method id list. The string id list mainly

contains the strings used in the source code of an application. However, malware

developers put their payloads on the string ID list to run them at runtime and

avoid analysis. Strings in the string id list part of a .dex file are extracted as

DEX string features.

3.2. Android Application Signing Process

To release an Android app to official and alternative markets, the developer must sign

the app with a certificate of its own. Therefore, most studies on Android AA in the

literature assume that if apps share the same signature, they are written by a developer

who has the signature. Applications are organized based on their signatures, with those

sharing identical signatures being classified into the same group.

The Android Application Signing Process is a critical component of Android application

development and distribution that ensures the integrity and authenticity of Android

applications. It involves creating and managing cryptographic keys that sign the

application’s code and resources, verifying its origin and verifying that it has not

been tampered with during deployment. Android’s official app store, Google Play,

encourages developers to use the Google Play App Signing service, which allows Google

to manage the app signing key on the developer’s behalf. This process not only

simplifies key management but also increases security. Google Play also makes it easier

to safely distribute app updates by ensuring that the app’s signature matches the

signature on file. Understanding and complying with the Android Application Signing

Process is crucial to maintaining users’ trust and protecting against unauthorized

changes to Android applications [70].

28



Developer certificates are necessary to establish trust between applications published

by application developers. They prevent attackers from installing malicious versions by

ensuring that an application’s digital signer is the same person who signed the signature.

Android enables data access and process sharing by allowing application packages

signed with the same certificate to run in the same process. Additionally, Android

provides signature-based permission enforcement, allowing apps to expose functionality

to another app signed with a specific certificate. Developer certificates do not need to be

issued from a widely trusted certification authority (CA), and trust between developers

and end users is established through registration. Android applications are digitally

signed with two types of signatures: those applied to the APK using the signing key,

and those applied to certificates corresponding to the APK s’ signing keys. Google has

made several requirements and recommendations for certificates, including two public

key encryption algorithms and the validity period of the public key [71].

APK files are distributed through app markets such as Google Play and alternative

app stores such as Huawei [72] or Tencent [73]. Each packet must be cryptographically

signed to ensure integrity and authenticity. Google’s signature scheme has been revised

over time, and certificates are generally self-signed. However, Android does not have

a trusted authority to verify the validity and accuracy of certificates. Since 2017, the

Google Play Store has introduced the “Play App Signing” feature to prevent signing

keys from being lost or compromised. This service further restricts the limited function

of the signing certificate as an indicator of authorship, as applications can be signed by

Google itself. In [74] stated that alternative Android markets enforce their own policies,

such as uploading a pre-signed APK to APKMonk [75], Baidu [76] or APKMirror [21].

3.3. Alternative Android Markets

Alternative Android marketplaces such as APKMirror [21] and APKPure [37] are

popular for offering a wider range of apps than the Google Play Store, including

older versions of apps not available anywhere else. They appeal to users looking

29



for specific features or applications that are not available in their region. However,

while these markets expand options, they also bring risks. Unlike the Google Play

Store, which has strict security controls, these alternative platforms may not have

the same level of scrutiny. This may raise concerns about the safety and security

of some applications. Users who trust these sites generally need to be more careful

and make sure they download safe and reliable applications. Despite these concerns,

these alternative markets remain valuable resources for those looking for unique or

hard-to-find applications.

30



4. AUTHORSHIP ATTRIBUTION

This chapter delves into the details of Authorship Attribution, a key aspect of our

research. We begin by explaining various “Features” used in authorship attribution,

discussing their relevance and how they contribute to identifying authorship patterns.

Following this, we delve into “Representations”, examining how features are represented

in the attribution process. The chapter then shifts focus to “Attribution Models”, where

we outline and analyze different models used in the field, highlighting their strengths

and limitations in the context of authorship attribution. A final portion of the chapter

is dedicated to “Machine Learning”, which is subdivided into three subsections. Firstly,

“Classification Algorithms” are discussed, providing insights into the various algorithms

employed. Next, we explore “Cross-Validation” methods, emphasizing their importance

in ensuring the robustness and generalizability of our models. Lastly, “Grid Search

CV” is examined as a method to fine-tune model parameters for optimal performance.

Throughout this chapter, we aim to provide an overview of the methodologies and

techniques applied in the domain of authorship attribution.

Authorship attribution aims to determine the original creator of a text or software.

In the literature [27, 28], the process of attributing authorship in software follows

a four-step approach, as depicted in Fig. 4.1. The process of AA utilizes both

binary and source code. The code’s characteristics, encompassing lexical, syntactic,

semantic, behavioral, and application-specific features, are extracted from the code

for analysis. Various representations of code are employed, including tokens, strings,

n-grams, idioms, graphs, and trees. Models for authorship can be categorized as

profile-based, example-based, or hybrid. These models are supported by methodologies

such as similarity-based, vector space, probabilistic, and meta-learning methods. The

final point of this process leads to outcomes like attributing authorship, detecting

plagiarism, and identifying author intentions. Each step is explained in detail below.

31



Fi
gu

re
4.

1
T

he
st

ep
s

of
A

ut
ho

rs
hi

p
A

tt
rib

ut
io

n

32



4.1. Features

Kalgutkar et al. [27] and Gonzalez [28] provide a detailed explanation of each feature,

along with their respective advantages and disadvantages, which are explained below.

Lexical features are derived from either source or binary code when this code is

processed as a basic series of tokens or characters. Lines of code, operands, variables,

spaces, and the frequency of words, tokens, characters (n-grams), and function names

can be named for lexical features. These features are independent of any specific

programming language, allowing the techniques used for their extraction to be readily

adaptable across various programming languages and environments. However, their

effectiveness is related to the quantity of training samples and the selection of the right

features. Lexical features are susceptible to modification by code formatters, which

can impact the dependability of these features. Additionally, developers of proprietary

software and malware may use methods like renaming, addition or removal of redundant

code, string obfuscation, and string encryption, all aimed at circumventing systems

designed for code attribution.

Syntactic features have a significant weight in determining the author. Features

like average function size, the use of custom macros, choices in data and control

structures, and types of statements (input, conditional, and assignment) are considered

syntactic features. These features can reflect an author’s approach to problem-solving

and contribute to creating robust author profiles. While syntactic features are more

resistant to code formatters and obfuscators than lexical features, they also face

other challenges, including language dependency and difficulty in feature selection.

Furthermore, altering the structure of the code can neutralize these features.

Semantic features focus on the logic behind the code. Their resistance to code

transformation and obfuscation techniques surpasses that of other features. Semantic

features consist of aspects like loop usage, data and control flow analysis, and the

application of specific algorithms that indicate an author’s unique style. The primary

33



objective of utilizing semantic features is to capitalize on the concept that authors

generally exhibit consistent logic in their applications. While an author’s programming

style may vary across different programming languages, the underlying problem-solving

techniques, which are a reflection of the author’s unique approach, tend to remain

relatively constant and are challenging to alter. However, these features can be

complex to extract and are vulnerable to advanced obfuscation techniques such as

code optimization, string obfuscation/encryption, data transformation.

Behavioral patterns of software, such as system calls, file accesses, mutex creation,

URL visits, dynamic value generation, and network connections, offer another way

for author identification. These features are resilient against software protection and

sophisticated code obfuscation. While revealing hidden functionalities, their reliance

on data size and vulnerability to anti-analysis techniques can lead to high rates of false

positives and negatives [27].

Application-dependent features, derived from sources like log files, property files,

manifest files, and resource files, also aid in AA. This method is cost-effective and

useful even without access to the source code. It facilitates the development of author

profiles but requires advanced tools for feature extraction and is not immune to code

obfuscation techniques [27].

4.2. Representations

It is important to transform the mentioned features into appropriate data structures so

that they can be better handled and analyzed. The following section provides details

on these data structures.

• Tokens represents the smallest meaningful pieces obtained from the source and

binary code. For example, a character, word, keyword, operator, identifier, and

basic block.

34



• Strings refers to specific text strings within the code. Lexical and syntactic

features can be combined to form strings. However, they are unable to reveal the

semantic meaning of the code.

• N-grams are sequences formed by combining n consecutive elements. This

is used to capture structural features of the code. In contrast to tokens and

strings, N-grams assist in gathering both contextual and neighboring information.

However, the optimal choice of n value depends on the dataset and features, and

there is no definitive method to determine its value. This requires extensive

research to determine the optimal value.

• Idioms, which are language-specific features, usually consist of 3-6 instructions

used in various programming languages. These idioms can be extracted from the

assembly language of binary code. Unlike string, tokens, and n-gram attributes, it

is more resistant to obfuscation techniques because it allows the use of a wildcard.

• Graphs represents the structure of the code and the relationships between

elements. Semantic meanings are derived from these features, making them

resistant to obfuscation. This involves a structure of nodes and directed

edges, where nodes represent basic blocks or functions and edges indicate the

relationships between functions, akin to a call graph or control flow graph.

• Trees are especially used for syntactic analysis; they show the hierarchical

structure of the code as a tree structure. These structures are akin to graphs,

which possess an acyclic and undirected nature. Examples of such structures

include the Abstract Syntax Tree and the Parse Tree. An AST is a tree

representation of the abstract syntactic structure of source code written in a

programming language. Parse Tree, also known as a Concrete Syntax Tree, is a

tree representation that reflects the syntax of the source code according to the

grammar of the programming language. Unlike the AST, the Parse Tree contains

every detail in the source code, including parentheses and unnecessary syntactic

elements.

35



• Embeddings are combinations of different representations when a single

representation is insufficient to capture the meaning of a program. For example,

strings, n-grams, and trees can be embedded together inside a vector.

4.3. Attribution Models

Authorship attribution typically involves a multi-class, single-label categorization task

where there is a set of training samples from a finite number of identified candidate

authors, with each class representing one such author. Two tasks can be executed: 1)

a task that new author can only be attributed to previously known authors and 2) a

task that involves identifying and classifying new authors, regardless of whether they

have been encountered before. The choice between profile-based and instance-based

attribution models hinges on whether the training samples are considered cumulatively

or individually.

In the Profile-Based model, each author is assigned a unique and distinct style of

representation that encompasses all their applications. This model does not consider

variations between different works by the same author as the style of the author is

manifested through a series of shared features.

Contrastingly, the Instance-Based model generates separate styles for each individual

app. Here, each work by the same author is considered a separate entity. This approach

allows differences between different works by the same author to be taken into account.

When determining the authorship of an unknown sample, it is compared to every

sample in the corpus.

4.4. Attribution Methods

After designing the attribution model, the subsequent phase involves choosing an

appropriate method for comparing author profiles or samples. This is essential for

determining the author of an unknown code sample. The methods of attribution can

be classified based on the approach taken for this comparison.

36



Similarity-based methods measure the pairwise similarity between the unidentified code

and all training samples or author profiles in the training set. The final decision is based

on identifying the author whose work shares the greatest similarity with the unknown

sample. These methods are applicable in both Profile-Based and Instance-Based

models.

Vector Space Methods in code authorship attribution involve representing code as

vectors in a multidimensional space. Each dimension of the vector can represent

different features of the code, such as syntax, structure, formatting, variable naming

conventions, and comments. This transformation creates a numerical representation

of the source code, which can be analyzed using various mathematical and machine

learning techniques. Machine learning algorithms, such as Support Vector Machines

(SVM), neural networks, or clustering algorithms, are then applied to these vectors for

authorship attribution. Instance-based attribution models employ these vector space

methods.

Probabilistic methods in authorship attribution calculate the likelihood that a given

sample of code was written by a specific author from a predefined set of authors. The

author who has the highest probability is considered the most likely creator of the

code. These methods assess the probability P(C|A), where C is the code and A is a

potential author. While commonly used in profile-based attribution models due to their

probabilistic approach, these techniques can also serve as a similarity measure. They

help in determining how closely an unseen code sample aligns with all the samples in

the training dataset.

4.5. Machine Learning

Machine learning attempts to determine whether the code was written by a particular

author by examining characteristics of the code, such as writing style, word usage, and

grammatical structures, using various algorithms and statistical techniques. Nowadays,

37



with the development of machine learning technologies, more accurate and faster results

can be obtained in the field of AA.

4.5.1. Classification Algorithms

In this section, we provide explanations of each machine learning algorithm that is both

frequently used in the literature and employed in our research.

• Random Forest: Random Forest is a popular and powerful classification and

regression method used in machine learning. It is an ensemble learning model

consisting of decision trees. In this method, many decision trees are trained on

random subsets, and their outputs are combined to make a more accurate and

stable prediction. It consists of an ensemble of tree predictors, where each tree

is influenced by the values of an independently sampled random vector, which

follows the same distribution across all the trees in the forest [77]. Each tree

predicts independently, and results are combined by majority vote or average. It

avoids overfitting by using random subdatasets and features. The impact of each

feature on the model’s prediction performance can be measured, which is useful

for feature selection.

• K-Nearest Neighbors: K-Nearest Neighbors (KNN) is a non-parametric

algorithm in machine learning, applicable to both classification and regression

tasks. It operates by considering the k closest training examples in the dataset,

where “k” is a small, positive integer. In the k-NN classification, it assigns a class

membership to an object based on the most frequent class among its k nearest

neighbors. Specifically, if k equals 1, the object is assigned to the class of its

single nearest neighbor.

• Support Vector Machine - SVM: Support Vector Machine (SVM) is a

powerful and flexible supervised learning model used in machine learning. It

can be used effectively in both classification and regression tasks. The main goal

38



of SVM is to find an optimal separation hyperplane (or a line in hyperspace)

to separate data points. In a binary classification task that involves two distinct

classes, the primary goal of an SVM is to establish the most effective classification

function that can accurately differentiate between the members of these two

classes as observed in the training dataset. The criterion for what constitutes

the “best” classification function in this context is often interpreted geometrically

[78, 79].

Currently, two main approaches are used for multi-class SVM. The first involves

creating and combining several binary classifiers, and the second directly

incorporates all data into a single optimization framework [80].

1. One-against-one method involves constructing k(k − 1)/2 classifiers, each

trained on data from two different classes.

2. One-against-all method builds k SVM models, corresponding to the number

of classes, where the mth SVM is trained using all examples of the mth class

with positive labels and all examples from other classes with negative labels.

• Gaussian Naive Bayes: Naive Bayes methods comprise a collection of

supervised learning algorithms that apply Bayes’ theorem under the simplifying

assumption that each pair of features is conditionally independent, given the class

variable’s value [81]. In Gaussian NB, it is presumed that the features follow a

Gaussian distribution in terms of their likelihood.

P (xi|y) = 1√
2πσ2

y

exp
−(xi − µy)2

2σ2
y

 (1)

In Eq. 1, P (xi|y) represents the probability of feature xi given the class y, under

the assumption that the values of xi are distributed according to a Gaussian

(normal) distribution.

• LightGBM: Gradient Boosting Decision Trees (GBDT), a prominent machine

learning technique, is effectively implemented in various forms including

39



LightGBM, XGBoost and pGBRT. LightGBM, a highly efficient version of

GBDT, is distinguished for its rapid training capability and high accuracy.

Introduced by Ke et al. in 2017 [82], LightGBM incorporates unique features such

as Gradient-based One-Side Sampling (GOSS) and Exclusive Feature Bundling

(EFB). GOSS optimizes the training set creation for the ensemble’s base trees,

while EFB consolidates sparse features into a single one, acting as a preprocessing

step [83].

4.5.2. Cross-Validation

Cross-Validation is used to evaluate the performance of a predictive model. It involves

splitting the dataset into subsets, fitting the model into some of these subsets, and

validating it on the rest. This process is repeated to ensure robustness in performance

estimation. The following introduces different cross-validation techniques:

• K-Fold Cross-Validation: The dataset is divided into “k” equally sized folds.

The model undergoes training and evaluation k times, with each iteration utilizing

a distinct fold for validation. The performance metrics obtained from each fold

are then averaged, providing an estimate of the model’s overall generalization

capability.

• Stratified K-Fold Cross-Validation: Similar to K-Fold but ensures that

instead of the splits being entirely random, the proportion of the target classes

in each fold is maintained to be the same as that in the entire dataset.

• Leave-One-Out Cross-Validation (LOOCV): Each observation is used as a

validation set while the rest (N-1) observations are used for training.

• Hold-out Cross-Validation: The data set is splitted into training set and test

set by some percentage.

40



Cross-Validation is a vital step in ensuring the reliability and generalizability of the

model’s performance. The choice of CV strategy should be tailored to the dataset’s

characteristics, and the model evaluation metrics should align with the specific goals

of the analysis.

4.5.3. Grid Search CV

Grid Search perform exhaustive search over specified parameter values for an estimator

[84]. Grid Search Cross-Validation involves a systematic approach to hyperparameter

tuning for machine learning models. Initially, a hyperparameter grid is defined,

consisting of a dictionary where keys represent the hyperparameters and values are

the ranges or specific settings to be tested. The next step is choosing the appropriate

machine learning model or estimator, alongside the evaluation metric to be used by

GridSearchCV for assessing model performance across different hyperparameter sets.

The process then involves GridSearchCV conducting cross-validation, where the model

is trained on various data subsets with each unique hyperparameter combination.

Finally, GridSearchCV identifies and retains the best parameters that yielded the

highest score according to the chosen metric. Upon completion of the search, it presents

the optimal hyperparameters that enhance the model’s performance [85].

41



5. PROPOSED METHOD - ANDROID

AUTHORSHIP ATTRIBUTION

The objective of this study is to introduce a comprehensive approach to AA in the

context of Android applications. This section details the methodology, encompassing

feature extraction, data processing, model architecture, and validation techniques

employed to predict authorship within the Android app domain.

The proposed method aims to predict authorship in Android applications by leveraging

an extensive array of features extracted from various components within the app’s

structure. The model integrates advanced data processing and classification techniques

along with robust validation methodologies to enhance the accuracy and reliability of

authorship predictions.

There are only a few studies [14–17] on AA for Android. AppAuth [16] extracts

distinguishing features for AA from the .dex file, manifest file, and resource files of

applications. In [14], they used all the string information placed in the string XML

files and .dex files of applications. Unlike these studies, in this study, source code-based

features extracted from smali files are used for the first time. In addition to the source

code-based features, the effects of other proposed features (usage of permissions, TPL,

and metadata-based features) is also analyzed. All of these features are given as SPL,

which stands for Source code-based features, Permissions, and TPL.

5.1. Model

Figure 5.1 shows the schematic representation of the architecture of the proposed model.

The decompiled APK files serve as the entry point for feature extraction, resulting in

the creation of fixed-size feature vectors specifically designed for classification tasks.

The APK files were first decompiled using apktool [29], and the smali files were

obtained. Subsequently, the String, AppAuth, and SPL features of the applications

42



are collected from these files and the APK files, and a fixed-size feature vector per

application is given as input to the classifiers. SimpleImputer [30] was used in the

scikit-learn library to fill in the missing values in the feature vectors. After this

imputation process, these features were standardized by removing the mean and scaling

to the unit variance using StandardScaler [31] in the scikit-learn library.

Decompilation

.smali res

manifest .dex

Feature Generation

Random Forest
Developer

Classification

St
ri
n
g

Feature Sets

AppAuth

SPL

String

K-nearest neighbors

LightGBM

SVM

GNB

Feature Extraction

Feature Processing

Classification

u
n

ivariate featu
re selectio

n

A B C D

1 2 3 4

5 6 7 8

9 10 11 12

A B C D

1 3 4

5 6 8

9 10 11

A B

1 1 4

2 3 5

3 4 6

4 3 1
ImputationVariance Threshold Standardization

Figure 5.1 Overview of Model

Two-phase dimensional reduction is used before the classification algorithms are

executed. First, the features with zero variance were eliminated from the dataset.

Then, univariate feature selection was applied, which selected the best features based

on the univariate statistical tests. Five different classification algorithms are applied

using the scikit-learn library [32]. Then, stratified 10-fold cross-validation is employed.

Because stratified 10-fold cross-validation ensures that the proportion of positive to

negative examples from the original distribution is preserved in all folds, it is especially

useful when the dataset is unbalanced [33]. Therefore, it was used five times, and the

average of these five runs is presented in the results.

43



5.2. Dataset

In this study, two different datasets were mainly constructed: market and malware

datasets, consisting of benign and malicious applications. To construct the market

dataset, a Web scraper was implemented using the Scrapy framework [34] to collect

benign applications from various alternative markets. In addition, applications from

other studies [14, 15, 35, 36] were included in this dataset.

The benign dataset contains binaries collected from different alternative Android

markets, namely Apkpure [37], Apkmirror [21], Onemobile [38] and Aptoide [20]

between January 2020 and August 2020. However, it also includes applications written

much earlier than 2020 because of the availability of early versions of contemporary

applications. The distribution of the benign datasets over the years is presented in

Table 5.1. Initially, 200,000 applications were downloaded. Then, developers with

fewer than ten applications are eliminated because earlier studies use developers with

at least ten applications [14, 16]. Moreover, we must have sufficient applications for

each developer to generate a good model that can differentiate between developers.

Table 5.1 Year distribution of dataset

Year Percentage (%)
2014 4.9
2015 5.4
2016 8.6
2017 39.7
2018 41.4

The malware dataset contains malicious binaries belonging to malware families, namely

Ransomware, Adware, and SMS [39], and some binaries from datasets introduced and

used in security-related studies, namely Rmvdroid [40], Drebin [35], Genome [15] and

Koodous [14].

The number of authors and applications collected from different repositories in the

dataset is shown in Fig. 5.2. Due to the elimination of authors with fewer than

44



ten applications, the dataset consists mainly applications that are mostly written by

multiple developers or companies. Fig. 5.3 displays a histogram representing the

distribution of APK sizes, measured in megabytes (MB), for the market and malware

datasets.

12733

 6135

 5331

 3096  2854
 2173

 1039

  185    48    29    28    12

ap
to

ide
ap

km
irr

or
on

em
ob

ile
rm

vd
ro

id
dr

eb
in

ap
kp

ur
e

m
alg

en
om

e
ko

od
ou

s
Ran

so
m

war
e

Pre
m

ium
SM

S
Adw

ar
e

SM
S

0

2000

4000

6000

8000

10000

12000

14000

N
um

be
r 

of
 A

pp
s

1156

 518

 275
 226  209

 131

  34
   5    4    2    2    2

ap
to

ide
on

em
ob

ile
ap

km
irr

or
rm

vd
ro

id
ap

kp
ur

e
dr

eb
in

m
alg

en
om

e
ko

od
ou

s
Pre

m
ium

SM
S

SM
S

Ran
so

m
war

e
Adw

ar
e

0

200

400

600

800

1000

1200

N
um

be
r 

of
 A

ut
ho

rs

Figure 5.2 Summary of dataset

Authorship attribution is primarily based on the hypothesis that matching serial

numbers in certificates are indicative of the same author, excluding cases involving

public or leaked certificates. Each application must be signed with a developer

certificate installed on an Android device. Therefore, applications that share the same

signature are assigned to the same developer, and each application is grouped according

to its related signature, as in [14]. Signatures were extracted from the APK files using

the print-apk-signature tool [41].

Some authors were eliminated in the feature extraction step because of errors. If an

application exists in more than one dataset, only one of them is randomly chosen and

kept in the dataset. If an application has several versions, they are all kept in the

dataset. As a result, the dataset given in Table 5.2 was used in all experiments other

than version analysis, in which the effect of versions on AA was analyzed, and metadata

analysis, in which features extracted from application metadata were analyzed on AA.

45



3738

2016

881
808

501
398

311 308 263 288
201

131 128 81 57 59 63 41 57 54 3 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0.
01

-5
.0

1
5.

01
-1

0.
01

10
.0

1-
15

.0
1

15
.0

1-
20

.0
1

20
.0

1-
25

.0
1

25
.0

1-
30

.0
1

30
.0

1-
35

.0
1

35
.0

1-
40

.0
1

40
.0

1-
45

.0
1

45
.0

1-
50

.0
1

50
.0

1-
55

.0
1

55
.0

1-
60

.0
1

60
.0

1-
65

.0
1

65
.0

1-
70

.0
1

70
.0

1-
75

.0
1

75
.0

1-
80

.0
1

80
.0

1-
85

.0
1

85
.0

1-
90

.0
1

90
.0

1-
95

.0
1

95
.0

1-
10

0.
01

10
0.

01
-1

05
.0

1
10

5.
01

-1
10

.0
1

11
0.

01
-1

15
.0

1
11

5.
01

-1
20

.0
1

12
0.

01
-1

25
.0

1
12

5.
01

-1
30

.0
1

13
0.

01
-1

35
.0

1
13

5.
01

-1
40

.0
1

14
0.

01
-1

45
.0

1
14

5.
01

-1
50

.0
1

15
0.

01
-1

55
.0

1
15

5.
01

-1
60

.0
1

16
0.

01
-1

65
.0

1
16

5.
01

-1
70

.0
1

17
0.

01
-1

75
.0

1
17

5.
01

-1
80

.0
1

18
0.

01
-1

85
.0

1
18

5.
01

-1
90

.0
1

Apk Size (Mb)

0

500

1000

1500

2000

2500

3000

3500

4000

N
um

be
r 

of
 A

pk
s

2723

318

133
51 26 11 1 1 3 1

0.
01

-5
.0

1

5.
01

-1
0.

01

10
.0

1-
15

.0
1

15
.0

1-
20

.0
1

20
.0

1-
25

.0
1

25
.0

1-
30

.0
1

30
.0

1-
35

.0
1

35
.0

1-
40

.0
1

40
.0

1-
45

.0
1

45
.0

1-
50

.0
1

Apk Size (Mb)

0

500

1000

1500

2000

2500

3000

N
um

be
r 

of
 A

pk
s

Figure 5.3 APK size distribution (Market at the top, Malware at the bottom)

Since not all applications have metadata information and different versions, a subset

of the dataset is used for version and metadata analysis.

46



Table 5.2 Dataset information

Dataset # of app # of author
Market 10,385 488

Malware 3,268 153
Genome 1,530 39

We employed an alternative dataset to show the effect of metadata-based features due

to challenges in acquiring applications’ descriptions. The dataset size of descriptions

can be found in Table 5.3.

Table 5.3 Metadata analysis dataset info

Dataset # of app # of author
Rmvdroid 1,216 67

Market 2,359 133

5.3. Feature Extraction

The proposed model employs feature extraction processes, starting with the

decompilation of APK files using “apktool”. This step enables the extraction of smali

files, .dex files, resource files, manifest files, XML files etc. Three primary feature

categories are extracted using all these files:

• AppAuth Features: Discriminating features for AA from the .dex file, manifest

file, and resource files of applications. AppAuth uses the configuration features

collected from the manifest file, as listed in Table 5.4. It also uses features related

to resource files, such as the number of files/folders in the res directory. The use

of the dex features is on analyzing the usage of methods, classes, fields, and

data structures in .dex files, which also encompass annotations, interfaces, and

debug information. To address the variability in data structure features caused

by developers releasing apps of different sizes, ratio values are used instead of

absolute numerical values to avoid size-related biases.

47



Table 5.4 Feature set descriptions

Category (# of features) Description

Source Code-Based (18)

# of average character per line
# of average character per local variable
# of average character per global variable
# of average character per function name
# of average character per function parameter name
Ratio of global variables to lines of code
Ratio of local variables to lines of code
# of average lines of code per function
Ratio of variables to lines of code
Ratio of if to all codes
# of average lines of code per class or interface
# of average number of functions per class or interface
Ratio of invoke to all codes
Ratio of move to all codes
Percentage of function names starting with an uppercase letter
Percentage of int function definitions to all
Percentage of void function definitions to all
Percentage of identifiers beginning with an uppercase character

DEX Code (14)

Ratio of abstract classes
Ratio of classes containing annotations
Ratio of direct methods
Ratio of virtual methods
Ratio of methods containing try and catch
Ratio of methods containing debug information
Ratio of static fields
Ratio of classes containing interfaces
Ratio of mathematical instructions to functional instructions
Ratio of aget instructions to aput instructions
Average of the length of all the arrays
Median of the length of all the arrays
Standard deviation of the length of all the arrays
Ratio of arrays with constant length

Configuration (9)

Number of activity
Number of service
Number of receiver
Number of provider
Number of intent-filters
Number of meta-data
Number of uses-permission
Number of sensitive uses-permission
Number of uses-feature

Resource (11)

Number of directories in the res directory
Number of directories whose name containing drawable in the res directory
Number of files in the directories whose name containing drawable
Number of directories whose name containing layout in the res directory
Number of files in the directories whose name containing layout
Number of directories whose name containing values in the res directory
Number of files in the directories whose name containing values
Number of files in the assets directory
Number of files in the lib directory
Number of .so files in the assets/lib directory
Number of XML files in the res directory

Permission (158) Android permissions
Library (500) A whitelist of TPL

Metadata (10,000) Application descriptions placed in Android markets

String/n-gram (10,000)
DEX - Strings present in the .dex file
Application - Strings extracted from the strings.xml file
All strings (DEX + Application)

48



• StringAA Features: Derived from the string XML and .dex files of the

applications. In [14], preliminary experiments were first conducted to determine

the optimal n value for n-gram analysis, which was selected to be 3. Therefore,

in this study, 3-grams are also used for string-based features. Following the

approach in [14], to prevent the omission of lines containing one or two words,

we prepend and append a tag to each string. This ensures that only lines

without any content are removed. As a result, line-bounded 3-grams were

obtained for each string type. Table 5.5 shows the 3-gram features for the two

different types of strings. Due to the extensive volume of 3-grams extracted from

our dataset, the HashingVectorizer technique was employed to reduce 3-gram

features. Consequently, this process allowed for the selection of the most effective

3-grams.

Table 5.5 Sample 3-gram features

Type String 3-gram

app Enable Google Play services

<LB>Enable Google
Enable Google Play
Google Play services
Play services <LB>

DEX mContainer= <LB>mContainer= <LB>

• SPL Features: Four feature groups were introduced, such as source code-based,

permissions, TPL, and metadata-based features. With the exception of those

related to TPL, these features are exclusive to the Android platform. The

extraction of source code-level features from smali files represents a novel

approach within the realm of Android AA. Permissions are pulled from the

manifest file, while TPL features are sourced from directories within the

decompiled APK file. Furthermore, metadata features are collected from the

application’s marketplace page.

In this study, smali files, which closely resemble the original source code, were

utilized to extract features based on the source code. The source code of software

49



can offer valuable attributes for determining the authorship of unidentified

software. One such attribute is the coding style of the authors. Although some

salient features, such as the usage of comments, loops, and braces in the source

code, are lost during the compilation process, as shown in [66], the coding style

still remains in the binary code. Based on this assumption, we inherit some source

code-based features listed in [63] because of the nature of the Dalvik bytecode,

which preserves some stylistic features of AA. All 18 source code-based features

used in this study are listed in Table 5.4. The features listed in [63] are generally

proposed for languages such as Java and C/C++; therefore, features compatible

with smali codes from that list are selected. In the future, more source code-based

features, such as comments, annotations, bracket positions, indentation styles,

etc., could be included using the original source code of applications.

The decompiled Java code can also be extracted from the APK files. To obtain

Java files from APK files, .dex files must first be generated from APK files, and

Java files must then be extracted from these .dex files using decompiler tools such

as JADX [86]. The same source code-based features extracted from the smali files

can be extracted from decompiled Java files. However, because the Java language

does not contain some smali-specific instructions such as move and invoke, two

features related to these instructions are not considered in Java codes. Note that

the transformation process from APK files to Java files is prone to errors, such as

the inability to convert some classes, methods, or variables correctly. Owing to

such errors encountered in the conversion, we were able to extract features from

Java codes from 80% of the samples in the market dataset. Note that only the

source code-based features extracted from the decompiled Java files are used to

show and compare the effect of the source code-based features in the decompiled

Java files and the smali files.

While AppAuth [16] used the number of permissions in the manifest file as a

single feature, in this study, the existence of each feature is considered a separate

50



feature. Therefore, 158 binary features corresponding to the 158 permissions are

added to the feature set.

TPL are also included in the feature dataset. To extract library features, a

whitelist of the library was built. First, we downloaded all library names from the

mvnrepository website [87]. Then, we try to determine which common libraries

are used in both malware and benign datasets using the downloaded library

name list. When an APK file is decompiled using apktool, all smali codes of the

libraries used in the application are placed in the src directory according to its

package name. For example, if the jsoup library is used, all smali codes related

to jsoup are placed in the src/org/jsoup directory because the jsoup package

name is “org.jsoup”. Hence, we can find the directories of libraries used by

their package names and exclude them. This enables us to only obtain custom

smali codes written by the author of the application. Some libraries can be

obfuscated; therefore, their names consist of arbitrary character sequences rather

than meaningful words. We also eliminated these libraries. Libraries used in very

few applications were also not considered in this study. For each application, the

existence of each library in the list was used as a feature. In a recently proposed

study [17], TPL were used for Android AA. However, unlike our approach, the

names of TPL were used as string features.

The application descriptions generated by the developers were analyzed for the

problem. Because it is textual information, it might help solve AA. The same

method from [14] was employed here to extract n-grams. Unlike the textual data

used for AA in the literature, the application descriptions are short texts. For

example, application descriptions are limited to 4,000 characters on Google Play.

In conclusion, the main objective of this study is to find effective features to solve

the AA problem on Android. Therefore, new features based on source code-based

AA extracted from smali files are presented. Furthermore, new features unique

to the Android system have been analyzed, such as the usage of permissions and

51



metadata-based features that have been increasingly used in Android security in recent

years [88]. It has been shown that many applications use a large number of TPL [89]

and on average, 60% of the code belongs to these libraries [25, 26]. As TPL create noise,

they are shown to affect repackage and malware detection on Android [90]. This could

also affect Android AA because source code-based features were employed in this study.

Therefore, here, the effects of extracting source code-based features only from custom

code on the Android AA are investigated. Moreover, the effects of TPL as features

are explored. The proposed features are compared with those in the literature, which

are based on binary AA [14, 16]. We did not include Gonzalez et al.’s [15] work in the

comparison because AppAuth [16] also used the same features used in that study [15].

All features considered in this study are listed in Table 5.6, and their explanations are

listed in Table 5.4. The features first explored in this study are indicated in red. In the

following sections, we first introduce the features previously identified in the literature,

followed by a presentation of the features newly proposed in this study.

Table 5.6 Features proposed for Android AA in the literature

Features Abbr. Our Study AppAuth[16] StringAA[14]
Configuration conf ✓ ✓

DEX Code-Based dex ✓ ✓

Resource rsrc ✓ ✓

String-Based str ✓ ✓

Source Code-Based src ✓

Permission perm ✓

Third-Party Library lib ✓

Metadata meta ✓

5.3.1. Feature Set Descriptions

The features covered in this study are categorized to offer a comprehensive insight

into various aspects of app development, structure, and behavior. Each feature has

been designed to capture specific elements of the code of Android applications. This

categorization not only aids in a holistic understanding of application architecture

but also plays a crucial role in tasks such as AA, security analysis, and functionality

52



assessment. The features are grouped into distinct categories, each representing a

different dimension of the application. Within each category, individual features are

explained to offer clarity on their significance and the type of information they provide.

1. Source Code-Based (18 features) Features based on source code, extracted

from decompiled Smali files. Many of these features are applicable in other

languages, such as Java, but some are specific to a particular language.

• Number of average characters per line: This measures the average number

of characters in each line of code, which can indicate coding style and

complexity.

• Number of average characters per local variable: It calculates the average

character count for local variable names, offering insights into naming

conventions.

• Number of average characters per global variable: Similar to local variables,

this assesses the average length of global variable names.

• Number of average characters per function name: This reflects the average

length of function names, which can vary significantly among different

programmers.

• Number of average characters per function parameter name: It measures the

average length of function parameter names, contributing to understanding

the coder’s naming style.

• Ratio of global variables to lines of code: This ratio provides an insight into

how frequently global variables are used relative to the overall code length.

• Ratio of local variables to lines of code: It indicates the density of local

variable usage in the code, which can vary based on coding practices.

• Number of average lines of code per function: This shows the average size

of functions.

53



• Ratio of variables to lines of code: This overall ratio gives an idea about

variable usage in relation to the total code length.

• Ratio of “if” to all codes: It measures how frequently conditional statements

are used, which can vary based on programming style and application logic.

• Number of average lines of code per class or interface: This indicates

the average size of classes or interfaces, reflecting on the complexity and

structure of the code.

• Number of average number of functions per class or interface: It provides

insights into the class/interface complexity by showing how many functions

they typically contain.

• Ratio of “invoke” to all codes: This ratio indicates the frequency of function

or method calls within the code.

• Ratio of “move” to all codes: It measures the proportion of data

movement-related operations in the code, like variable assignments and data

manipulation.

• Percentage of function names starting with an uppercase letter: This

statistic reflects on naming conventions, particularly in function naming.

• Percentage of “int” function definitions to all: It shows how often functions

return an integer value, which can indicate the nature of operations

performed.

• Percentage of “void” function definitions to all: This measures the frequency

of functions that don’t return a value, often used for their side effects or

operations.

• Percentage of identifiers beginning with an uppercase character: This is

another metric reflecting naming conventions, particularly in how identifiers

are capitalized.

2. DEX Code (14 features) These features are extracted from the .dex file itself.

54



• Ratio of abstract classes: This measures how often abstract classes are used,

indicating a certain level of code abstraction and design patterns.

• Ratio of classes containing annotations: It indicates the use of annotations

in classes, which can be significant in modern Java programming.

• Ratio of direct methods: This reflects the use of direct methods in the code,

which are methods directly invoked by the caller.

• Ratio of virtual methods: It measures the use of virtual methods, indicating

object-oriented programming practices.

• Ratio of methods containing try and catch: This shows how often exception

handling is used, which is essential for robust and error-free code.

• Ratio of methods containing debug information: It indicates the prevalence

of debugging information in methods useful for code maintenance and

troubleshooting.

• Ratio of static fields: Measures the use of static fields, which can indicate a

certain style of programming or application design.

• Ratio of classes containing interfaces: Shows how often interfaces are used,

indicative of design principles like abstraction.

• Ratio of mathematical instructions to functional instructions: This compares

the use of mathematical operations to other functional instructions, giving

insights into the nature of the application.

• Ratio of “aget” instructions to “aput” instructions: Measures the balance

between array get and array put operations, reflecting on data manipulation

patterns.

• Average length of all the arrays: Indicates the typical size of arrays used,

which can relate to the nature of data handling in the application.

• Median length of all the arrays: Provides a central tendency measure of

array sizes, complementing the average length information.

55



• Standard deviation of the length of all the arrays: Shows the variability in

array sizes, which can indicate the diversity of data structures.

• Ratio of arrays with constant length: Measures how often arrays of fixed

length are used, which can reflect on the nature of data structures and

algorithms used.

3. Configuration (9 features)Each app includes a manifest file embedded in the

APK file, providing key information such as package name, app ID, components,

requested permissions, and device compatibility. Upon decompiling the app, this

encoded manifest can be decoded into an AndroidManifest.xml file, from which

configuration features can be extracted.

• Number of activities: Counts the total activities in the application,

indicative of its complexity and user interface components.

• Number of services: Reflects the number of service components, which are

essential for background processing and operations.

• Number of receivers: Indicates the number of broadcast receivers, showing

how the app interacts with system or application events.

• Number of providers: Counts the data providers, revealing how the app

shares or manages data.

• Number of intent-filters: Shows the number of ways the application can be

triggered or communicated with, reflecting its interactivity.

• Number of meta-data: Counts metadata elements, which can provide

additional context or configuration information about the application.

• Number of uses-permission: Indicates the number of permissions the app

requests, reflecting its access requirements.

• Number of sensitive uses-permission: Specifically counts permissions that

access sensitive data or system features, important for security analysis.

56



• Number of uses-feature: Shows the number of hardware or software features

the app declares to use, providing insights into its functional scope.

4. Resource (11 features)Upon decompiling apps, three additional directories

named ‘assets’, ‘lib’, and ‘res’ are created, containing all essential resource files

such as icons, pictures, sounds, XML files, compressed files, native library files,

and language files. Resource features are extracted from these files. While

developers may change these files for apps with different functionalities, the

structure of these resources and the quantity of files can also indicate patterns in

the app development process.

• Number of directories in the “res” directory: Counts the resource directories,

giving an idea of the variety of resources used.

• Number of directories whose name contains “drawable” in the

“res” directory: Counts drawable resource directories, important for

understanding the visual elements of the app.

• Number of files in directories with “drawable”: Shows the number of

drawable files, indicating the extent of visual resources.

• Number of directories whose name contains “layout” in the “res” directory:

Counts layout directories, reflecting on the UI complexity.

• Number of files in directories with “layout”: Indicates the number of layout

files, correlating with the UI design complexity.

• Number of directories whose name contains “values” in the “res” directory:

Counts directories with value resources, like strings and dimensions.

• Number of files in directories with “values”: Shows the number of value

resource files, which are crucial for app localization and configuration.

• Number of files in the “assets” directory: Counts the files in the assets

directory, which can include various types of raw application resources.

57



• Number of files in the “lib” directory: Indicates the number of library files,

which can reveal the use of native code or TPL.

• Number of .so files in the ’assets/lib’ directory: Specifically, it counts the

shared object files, often used in apps with native code components.

• Number of “XML” files in the “res” directory: Counts the XML files in

resources, important for configuration and UI design.

5. Permission (158 features)

• Permissions in Android apps are indicators of the resources and data the

app intends to access. This can range from access to the device’s camera

and location to contacts and personal information.

The permissions an app requests can reveal a lot about the app’s intended

functionality. For example, it is logical and expected for a camera app to

request access to the device’s camera and storage permissions. However, if

the same app requests access to contacts or call logs, it may raise questions

about its functionality and the necessity of such permissions [91]. The

permission system can also be used by malicious applications by requesting

unnecessary permissions or using permissions in unintended ways.

Dangerous permissions are permissions that provide access to sensitive user

data or system features. They are more critical than regular permissions and

usually require explicit user consent at runtime, and malicious applications

often request this type of permissions.

6. Library (500 features)

• A whitelist of TPL: Identifies known TPL used in the app, which can indicate

the app’s dependencies and potential external integrations.

Third-party libraries may offer patterns or coding styles that are not

originally owned by the primary author, potentially complicating the

attribution process. They make it difficult to isolate and analyze the unique

58



coding style of the person or team responsible for underlying development.

Therefore, when attributing authorship, it is important to distinguish

between original code written by the author and sections of code coming

from these third-party libraries.

7. Metadata (10,000 n-gram features)

• Application descriptions placed in Android markets: Analyzes a vast array

of metadata descriptions provided in app stores, which can offer insights

into the app’s purpose, features, and intended audience. Metadata may also

contain security-related information, for example descriptions are expected

to contain information about dangerous permissions [92].

8. String/n-gram (10,000 features)

• DEX - Strings present in the .dex file: Examines a large set of strings within

the .dex file, providing clues about the app’s functionality and structure.

• Application - Strings extracted from the strings.xml file: It focuses on

strings defined in the application’s resource files, which are important for

understanding the UI and user-facing features.

• All strings (DEX + Application): Combines string analysis from both the

.dex file and application resources, offering a comprehensive view of the

app’s textual content.

5.4. Feature Processing

Feature Processing phase involves steps aimed at handling the extracted features for

optimal utilization in subsequent analysis.

• Feature Vector Generation: The combination of various features extracted

from different sources results in the creation of feature vectors for each individual

59



application. These vectors encapsulate a comprehensive set of attributes

that contribute to the overall characterization of the application in terms of

authorship.

• Handling Missing Values: Feature extraction may result in situations where

certain features get null or NAN (missing) values. To eliminate these features

from feature vectors, the SimpleImputer function from the scikit-learn library is

employed. This function replaces missing values across each column by using a

descriptive statistic (e.g., mean, median, or most frequent) or by using a constant

value.

• Feature Standardization: After SimpleImputer[30], the feature vectors

undergo standardization for consistency and enhanced model performance. The

StandardScaler function from the scikit-learn library is applied to standardize the

features. This standardization process involves centering the data by removing

the mean and scaling it to unit variance. This standardization step is for ensuring

that all features contribute equally to the analysis, preventing any particular

feature from dominating due to its scale or magnitude.

• Dimension Reduction: In classification tasks, it is essential to reduce

the dimensionality of the feature vectors to improve model efficiency and

performance. A two-phase dimensional reduction process is applied to the

dataset:

– Features with Zero Variance Elimination: Features with zero variance

are those that have the same value for all samples in the dataset. These

features do not provide any discriminatory information. Hence, they are

not informative for the classification task. Removing features with zero

variance is a common preprocessing step to simplify the feature set and

enhance model performance. The process of eliminating zero-variance

features typically involves calculating the variance for each feature, and if

60



the variance is zero (meaning all values are the same), the feature is removed

from the dataset.

– Univariate Feature Selection based on Statistical Tests: After

removing zero-variance features, the next phase involves selecting the

most relevant features using univariate statistical tests. Univariate feature

selection helps identify the features that have the most significant impact

on the target variable, allowing the model to focus on the most relevant

attributes and potentially improving classification accuracy. Common

statistical tests used for univariate feature selection include the chi-squared

test, ANOVA (Analysis of Variance), mutual information, and more. We

employ the ANOVA test in this study. These tests assess the relationship

between each feature and the target variable. Depending on the chosen

statistical test, a certain number of top-performing features are selected. The

number of features to retain is often determined through experimentation or

cross-validation. Univariate feature selection helps reduce the dimensionality

of the dataset by retaining only the most informative features, which can be

particularly beneficial when dealing with high-dimensional data.

By applying these two phases of dimensional reduction, the model aims to

streamline the feature set, eliminating irrelevant or redundant attributes while

retaining those that are most discriminative for AA. This can lead to improved

model performance and reduced computational complexity.

5.5. Machine Learning (ML) Model Development and

Optimization

Classification algorithms are applied to predict authorship within the Android

application domain. The following classification algorithms are explored in this study:

• Random Forest

61



• K-Nearest Neighbors

• SVM

• Gaussian Naive Bayes

• LightGBM

To ensure robust model evaluation, stratified 10-fold cross-validation is employed. This

method preserves the proportion of positive to negative examples across folds, a crucial

strategy for handling unbalanced datasets. The entire process is executed five times,

and the results are averaged to provide an evaluation.

To achieve the best possible model performance, we utilize the ‘GridSearchCV‘

technique, which stands for Grid Search Cross-Validation. ‘GridSearchCV‘ is a method

provided by the scikit-learn library in Python that allows an exhaustive search over a

specified parameter grid to determine the best possible combination of hyperparameters

for a given estimator. The initial parameters for each ML algorithm and their values

can be seen in Table 5.7

Table 5.7 Hyperparameters of classification algorithms

SVM {’C’: [0.1, 0.25, 0.5, 1, 10, 100, 1000, 10000], ’kernel’: [’linear’]}
{’C’: [0.1, 0.25, 0.5, 1, 10, 100, 1000, 10000], ’gamma’: [10, 1, 0.1, 0.01, 0.001, 0.0001], ’kernel’: [’rbf’]}

KNN

’n_neighbors’: [3, 5, 11, 19],
’weights’: [’uniform’, ’distance’],

’p’: [1, 2, 3],
’metric’: [’euclidean’, ’manhattan’, ’minkowski’],

’algorithm’: [’auto’, ’ball_tree’, ’kd_tree’, ’brute’],
’leaf_size’: [10, 20, 30, 40]

RF

’bootstrap’: [True, False],
’max_depth’: [10, 30, 50, 70, 90, None],

’max_features’: [’auto’, ’sqrt’],
’min_samples_leaf’: [1, 2, 4],

’min_samples_split’: [2, 5, 10],
’n_estimators’: [200, 600, 1000, 1400, 1800]

GaussianNB ’var_smoothing’: np.logspace(0, -9, num=100)

By combining ‘GridSearchCV‘ with Stratified K-Fold cross-validation technique, we

ensure that the selected hyperparameters are perform well across different subsets of

the dataset. This approach improves the generalization of our machine learning models.

62



Utilizing ‘GridSearchCV‘ in the context of cross-validation is an integral part of

our research methodology, as it helps in fine-tuning the models and enhancing their

predictive power.

63



6. EXPERIMENTAL RESULTS

In this study, we conducted a series of experiments to evaluate our framework and

analyze the effects of newly introduced features. The performance of the proposed

approach is also explored for different types of applications, such as malicious, benign,

and obfuscated applications. Various experiments were performed to analyze the

performance of the proposed approach. For each experiment, 10-fold cross-validation

and five epochs were employed, and an average of 50 results were obtained. All

experiments were run on a CentOS 7.7 server with 128 GB RAM and Intel(R) Xeon(R)

Gold 6138 CPU @ 2.00GHz.

We attempt find answers to the following research questions (RQs) on how our model

identifies the author of Android applications, that are either benign or malicious:

• RQ1 - What is the performance of classification algorithms in solving the AA

problem?

• RQ2 - What is the ideal set size for n-gram features?

• RQ3 - Does the use of TPL bring improvements in solving the authorship

problem?

• RQ4 - How effective is the proposed approach in identifying the developer of

applications?

• RQ5 - Does metadata of applications help to attribute the developer of

applications?

• RQ6 - What are the most important features for attributing applications to their

developers?

• RQ7 - Can we reduce the number of features without decreasing the performance

of the model?

64



• RQ8 - Does the number of applications per developer affect classification

performance?

• RQ9 - Does the proposed model successfully identify different versions of

applications developed by the same author?

• RQ10 - What is the effect of obfuscation on Android AA?

• RQ11 - Are there any clone applications in the datasets? How do they affect the

performance on Android AA?

6.1. RQ1 - Performance of classification algorithms on

Android AA

Motivation. Machine learning algorithms may exhibit different performances for

different problems. With this motivation, we aim to compare the performance of

machine learning algorithms on the problem at hand so that the algorithm that shows

the best performance can be used in subsequent experiments.

Method. Random Forest, K-Nearest Neighbors, Support Vector Machines, Gaussian

Naive Bayes, and LightGBM algorithms are used in the experiment. These algorithms

are highlighted in the literature for their effectiveness in code AA tasks [27]. To

optimize the performance of these algorithms on both the market and malware datasets,

the GridSearchCV function from the scikit-learn library is utilized. GridSearchCV

conducts a comprehensive search over specified parameter ranges to find the best

settings for the models.

In this experiment, all available feature groups are incorporated, including those

used in the AppAuth [16] and String Analysis [14], with the exception of metadata

features. The exclusion of metadata features is due to the lack of descriptions for some

applications, which leads to imbalance in the dataset.

65



The algorithms are evaluated on both benign and malware datasets, with accuracy

and F1-score chosen as the performance metrics. These metrics are selected because

an efficient model should have good precision and high recall. Additionally, the

classification time for each algorithm is measured.

Result. The comparative analysis of machine learning algorithms for AA is

summarized in Table 6.1. Among the algorithms, Random Forest (RF) emerges as a

right choice due to its high accuracy and F1-scores alongside a reasonable classification

time. This factors led to the decision to employ the RF algorithm in subsequent

experiments.

Table 6.1 Comparison of classification algorithms

Market Malware
acc f1 time(s) acc f1 time(s)

Random Forest 82.4% 80.3% 124.46 95.4% 94.5% 14.18
KNeighbors 64.8% 62.0% 76.30 82.6% 79.1% 9.40

Support Vector 51.3% 50.5% 549.83 79.7% 76.6% 26.09
Gaussian Naive Bayes 49.5% 47.6% 45.97 60.3% 59.0% 8.23

LightGBM 86.4% 85.1% 1563.35 97.5% 97.0% 370.81

In addition, it is observed that the default parameters for the RF algorithm yield

performance very close to those achieved with its optimized parameters. This suggests

that RF is a robust choice for AA, capable of delivering good performance without

extensive parameter tuning.

While LightGBM demonstrates superior accuracy compared to RF, its longer

classification times and the high variability of its results across different parameter sets

are considered drawbacks. These factors, coupled with RF’s overall solid performance,

influenced the decision to prioritize RF for further exploration. However, the high

accuracy of LightGBM indicates its potential as a valuable algorithm for AA in future

investigations.

66



6.2. RQ2 - The ideal set size for n-gram

Motivation. As the number of applications increases, the number of 3-grams requiring

processing increases correspondingly. In the market dataset, this could amount to tens

of millions of 3-grams, posing significant computational and storage issues. To mitigate

these issues and enhance the model’s performance, it is crucial to identify the maximum

number of n-grams from which meaningful results can be extracted.

By focusing on the most informative n-grams, it’s possible to reduce the feature size

without significantly compromising the model’s accuracy or its ability to generalize

from the data.

Method. As suggested in [14], 3-grams are selected for use in this study based on the

finding that system performance improved with an increase in n-gram size from 1 to

3, but deteriorated with further increases. This finding underlines the importance of

choosing an optimal n-gram size to capture sufficient contextual information.

To mitigate memory consumption associated with the potentially vast number of

n-grams, a HashingVectorizer is employed. HashingVectorizer converts a collection of

text documents into a numerical format, specifically a sparse matrix, that represents the

occurrence of tokens within those documents. In our case, the vectorization process is

applied using 3-grams as the tokens. This means that instead of considering individual

words as tokens, the process considers sequences of three consecutive words as single

tokens. This approach can capture more contextual information, potentially leading to

more nuanced representations of the text documents in the matrix.

The use of HashingVectorizer not only addresses memory constraints but also facilitates

efficient computation by reducing the dimensionality of the feature space without

significant loss of information. This strategy is particularly valuable in scenarios where

the dataset encompasses tens of millions of n-grams, as it enables the processing of

large-scale data while keeping resource usage in check.

67



Result. The relationship between the number of 3-grams utilized in classification and

its impact on both classification accuracy and training time is elucidated in Figures

6.1a and 6.1b, respectively. These figures highlight that the training time experiences a

notable increase when the classification process incorporates more than 10,000 3-grams.

However, this augmentation in the number of 3-grams does not correspondingly enhance

classification accuracy to a significant extent.

Figure 6.1 Effect of the number of 3-grams

The constraints imposed by the market dataset, notably its extensive size and the

consequent generation of a massive amount of 3-grams, limit the use of more than

50,000 3-grams in the classification process. This limitation underscores the importance

68



of optimizing the selection of 3-grams to ensure that the computational resources are

directed towards processing the most impactful features, thereby achieving an efficient

and effective classification without unnecessarily extending the training time.

6.3. RQ3 - Custom code vs. all code including TPL

Motivation. Developers often exhibit specific coding habits and preferences, such as

opting for a while loop over a for loop or favoring object-oriented modularization over

procedural programming [93]. These habits and stylistic choices are typically preserved

in the custom code that developers write, serving as distinguishing features that can

aid in AA.

The use of Third-Party Libraries (TPLs) is a common practice in application

development. While custom code reflects the developer’s unique characteristics, TPL

code can introduce noise into the AA process, potentially obscuring the fingerprint

that identifies an author’s style. Despite this, the consistent use of specific TPLs by

developers across their applications could contribute positively to AA. Developers often

exhibit loyalty to certain libraries, frequently reusing them without updating to newer

versions, even when the older versions contain known security vulnerabilities [94].

This tendency not to update TPLs can inadvertently serve as a developer’s fingerprint,

thereby assisting in AA. It’s essential to discern how much the presence of TPL code

can help or hinder the identification of the true author of a piece of software. This

involves examining whether the benefits of using TPLs as features of developer habits

outweigh the potential noise they introduce into the attribution process.

Method. To elucidate the impact of Third-Party Libraries (TPL) on Authorship

Attribution (AA), the study employs two distinct settings:

• Custom Code Only: In this setting, source code-based features are extracted

exclusively from the custom code written by the developers. This approach

69



focuses on identifying the unique coding habits and styles intrinsic to the

developer, excluding any influence from external libraries.

• Including TPL (All Codes): Contrarily, in the second setting, features are

extracted from the entire application codebase, incorporating both the custom

code and the TPL. This comprehensive approach is intended to evaluate how the

inclusion of TPL affects the AA process.

Result #1. As shown in Table 6.2, including TPL when extracting source code-based

features yields much better performance (custom src vs. all src). Then, the custom

code is enriched with other features presented in Table 5.6 and compared with all code

in Table 6.2. The results clearly show that, rather than extracting source code-based

features from TPL, the existence of TPL is sufficient for AA and produces much better

results than including TPL’s code. Therefore, in the subsequent experiments, the

source code-based features are only extracted from the custom code and are used with

the library features (custom src+lib).

Table 6.2 Accuracy results of custom source code enriched with other feature groups

Dataset Custom Custom All Custom All Src Custom SPL All Src+Perm
Src Src+Lib Src SPL +Perm +AppAuth +AppAuth

Market 42.3% 70.9% 66.8% 75.1% 71.8% 78.7% 76.1%
Malware 80.5% 87.1% 87.5% 91.5% 91.1% 93.4% 93.3%
Genome 80.7% 97.1% 95.0% 97.9% 96.4% 98.0% 97.4%

Result #2. The confusion matrix is presented in Fig. 6.2, where authors with

at least 40 applications in the market dataset are included to fit the matrix. The

figure illustrates that certain applications from developer auth9 are incorrectly matched

with those of developer auth11. Further analysis of these authors is conducted

using SimiDroid [43], which reveals the similarity between mismatched applications

of developer auth9 and all applications of developer auth11. A high similarity between

such applications is shown in the results, owing to the SmaliHook library, which is not

eliminated because it does not appear on our TPL list. Analysis of the feature vectors

for these applications through cosine similarity reveals extremely high similarities

70



au
th

1
au

th
2

au
th

3
au

th
4

au
th

5
au

th
6

au
th

7
au

th
8

au
th

9 au
th

10
au

th
11

au
th

12
au

th
13

au
th

14
au

th
15

au
th

16
au

th
17

au
th

18
au

th
19

au
th

20
au

th
21

au
th

22
au

th
23

au
th

24
au

th
25

au
th

26
au

th
27

au
th

28
au

th
29

au
th

30
au

th
31

au
th

32
au

th
33

au
th

34
au

th
35

au
th

36
au

th
37

au
th

38
au

th
39

au
th

40
au

th
41

au
th

42
au

th
43

au
th

44
au

th
45

au
th

46
au

th
47

au
th

48
au

th
49

au
th

50
au

th
51

au
th

52

au
th

1
au

th
2

au
th

3
au

th
4

au
th

5
au

th
6

au
th

7
au

th
8

au
th

9
au

th
10

au
th

11
au

th
12

au
th

13
au

th
14

au
th

15
au

th
16

au
th

17
au

th
18

au
th

19
au

th
20

au
th

21
au

th
22

au
th

23
au

th
24

au
th

25
au

th
26

au
th

27
au

th
28

au
th

29
au

th
30

au
th

31
au

th
32

au
th

33
au

th
34

au
th

35
au

th
36

au
th

37
au

th
38

au
th

39
au

th
40

au
th

41
au

th
42

au
th

43
au

th
44

au
th

45
au

th
46

au
th

47
au

th
48

au
th

49
au

th
50

au
th

51
au

th
52

42 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 48 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 52 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0

0 0 0 0 13 1 0 0 0 0 0 0 5 0 0 0 4 0 0 0 0 1 2 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0

0 0 0 0 0 25 0 0 3 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 1 0 0

0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 55 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 2 0 5 2 0 0 27 0 6 0 4 1 3 1 4 0 0 0 0 5 0 0 0 1 0 4 1 1 0 1 1 0 0 3 0 1 0 0 0 1 0 0 4 3 2 0 2 0 0 0

0 0 0 0 0 0 0 0 0 36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 3 0 1 7 0 0 26 0 0 0 0 2 0 2 1 0 0 2 1 0 0 0 1 1 0 1 2 0 0 0 1 0 3 1 0 0 2 0 0 0 0 1 1 0 0 5 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 4 0 0 0 0 0 0 0 12 0 0 0 2 0 0 0 13 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 3 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 3 0 0 0 0 0 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 39 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 28 0 0 0 1 9 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 2 1 1 0 2 2 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 45 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 18 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 2 0 0 0 0 0 0 0 2 0 0 0 5 0 0 0 0 35 0 0 0 0 0 1 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 57 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 64 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 33 2 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 8 0 0 1 1 0 0 0 0 4 0 0 0 0 0 0 1 1 0 0 0 0 0 0 29 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 44 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 47 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 2 0 0 0 1 1 0 0 1 0 0 0 1 2 0 0 0 2 0 1 0 0 0 1 0 0 1 46 0 0 0 0 0 0 0 0 1 1 1 0 1 1 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 52 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 0 2 0 0 0 0 0 0 0 2 0 1 0 2 0 0 0 2 1 0 0 0 3 1 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 53 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 54 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 54 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 47 0 0 0 0 0 0 0 0

0 2 0 0 1 0 0 0 0 0 0 0 2 0 0 0 4 0 0 0 1 1 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 52 5 5 0 0 1 0 0

0 0 0 0 5 2 0 0 2 0 0 0 1 0 0 0 2 0 0 0 2 1 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 4 0 0 1 0 0

0 0 0 0 6 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 21 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 44 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 40 0 0 0

0 0 0 0 9 0 0 0 0 0 0 0 7 0 0 0 4 0 0 0 3 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 34 0 0

0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 49 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40

66

78

77
81

73

68

68

77

84

85

79

69

88

84

01020304050607080

Fi
gu

re
6.

2
C

on
fu

sio
n

M
at

rix
fo

r
th

e
52

de
ve

lo
pe

rs
w

ho
ha

ve
at

le
as

t
40

ap
pl

ic
at

io
ns

71



(98%). The results are severely affected due to the impact of the overlooked TPLs on

the source code-based features. This finding indicates the necessity of broadening the

TPL scope within the library feature set to enhance our model’s accuracy. Beyond the

current whitelist method, future enhancements could incorporate techniques [24, 94, 95]

in the literature to identify additional libraries, including those that are obfuscated.

6.4. RQ4 - Effectiveness of the proposed approach

Motivation. The primary goal of this study is to pinpoint effective features for

Android Authorship Attribution (AA), thereby enhancing the ability to accurately

identify the authors of applications. To achieve this, the features proposed in this

study are benchmarked against other feature sets previously suggested in the literature,

specifically those detailed in [16] and [14]. This comparative analysis is designed to

assess the effectiveness of different feature sets in AA.

The effectiveness of the proposed approach in identifying authors is presented in a

comparative manner, taking into account performance metrics such as accuracy and

F1 score. This allows for a nuanced understanding of how well each feature set can

distinguish between different authors.

Method. To facilitate a fair and accurate comparison, the study involves a

re-implementation of the code necessary to extract the string-related features as

described in [14].

Additionally, the authors of AppAuth demonstrated the research community’s

cooperative nature by making their source code accessible for others to extract the

features they had identified. This generosity allows for the direct application of their

code in this study, ensuring that the AppAuth features are extracted in a manner fully

consistent with their original implementation. Such an approach not only underscores

the importance of reproducibility and transparency in research but also significantly

enhances the reliability of the comparative analysis conducted.

72



Result #1. As shown in Table 6.3, the newly proposed features perform better than

AppAuth, whereas the proposed features produce less accuracy than string analysis

[14]. However, as stated above, extracting all 3-gram features may not be applicable

from a classification time point of view. Therefore, only 10,000 3-grams are employed

here. As a relatively small dataset, all 3-grams are extracted from the Genome dataset,

which is the dataset used for evaluation in [14]. In the Genome dataset, the proposed

features show slightly better performance than string-related features. When all the

features are included, the best performance is obtained in the market and malware

datasets.

Table 6.3 Comparison with AppAuth and StringAA - Random Forest

Dataset
SPL+AppAuth+ SPL+AppAuth SPL AppAuth StringAAStringAA

acc f1 acc f1 acc f1 acc f1 acc f1
Market 82.5% 80.4% 79.0% 76.6% 75.0% 72.4% 73.9% 71.2% 81.7% 79.9%

Malware 95.6% 94.5% 93.9% 92.5% 92.1% 90.7% 90.6% 89.4% 95.1% 94.2%
Genome 97.0% 96.7% 98.2% 98.0% 98.1% 97.9% 97.0% 96.9% 96.9% 96.7%

We also calculate the time required to extract each set of features. Table 6.4 shows that

n-gram features require at least one and a half times more time than other feature sets.

The extraction times of SPL and AppAuth features are relatively close. Although a

feature extractor should be performed only once, the feature extraction process, when

generating a considerable volume of n-grams, can be notably memory-intensive. This

can result in memory-related challenges, particularly for systems with limited RAM

availability. In [42], it is highlighted that a primary limitation of the n-gram approach

is its tendency for exponential n-gram growth as the text size increases. This complexity

often renders the method unviable for systems with limited computational capabilities.

Table 6.4 Feature extraction time in minutes

SPL AppAuth StringAA (10,000)
Market 125.02 95.93 219.87

Malware 11.02 11.61 13.45
Genome 30.04 27.30 40.47

73



Result #2. The effect of each feature group on Android AA is also explored. The

results are presented in Table 6.5. In addition to the n-grams in the code, the source

code-based and resource-based features lead to the highest accuracy. Because n-grams

are extracted from strings, such as the names of variables or methods in the application

code, they can include unique identifiers that distinguish developers. However, as shown

in Table 6.4, the time required to extract and process such features is considerably

high. Moreover, such features might not be resilient to obfuscation techniques such as

renaming and encryption.

Table 6.5 Effect of feature sets on Android AA

Dataset
SPL AppAuth StringAA

src perm lib conf dex rsrc str
acc f1 acc f1 acc f1 acc f1 acc f1 acc f1 acc f1

Market 66.8% 63.5% 47.6% 42.4% 60.5% 57.6% 59.6% 55.8% 63.6% 60.0% 66.7% 63.4% 81.7% 79.7%
Malware 87.3% 85.9% 80.6% 76.5% 51.2% 46.2% 82.3% 79.3% 85.1% 82.3% 83.7% 80.7% 95.1% 94.2%
Genome 95.0% 94.7% 83.0% 80.6% 88.1% 86.8% 95.0% 94.6% 88.2% 87.7% 96.2% 95.8% 96.8% 96.4%

In general, all feature sets other than library features produce higher accuracy on the

malware dataset, which is a smaller dataset. The average number of libraries per

application varies significantly between the two datasets, as shown in Table 6.6. While

applications collected from the market include 9.37 TPL on average, this number is

only 2.72 for malware applications. This may be the result of the use of obfuscation in

malicious applications. In this study, a whitelist approach is used to extract the TPL

used in the APK package. Common libraries used in the market and malware datasets

are selected and used as features. However, because of obfuscation, the names of some

libraries are simply random words, and such libraries are eliminated in the whitelist

approach. In the future, recent studies such as LibID [95] and LibRadar [24] can be

used to find obfuscated libraries in the code. Then, the effect of the library features

can be re-evaluated on the malware dataset.

The effects of permissions on the two datasets are also significantly different. When

the average number of all 158 permissions is analyzed in both datasets, it is found

that the use of different permissions is higher in the malware dataset (all permissions:

74



Table 6.6 Avg # of Library and Permission per application

Market Malware
Library 9.37 2.72

Permissions (158) 8.05 9.99
Dangerous Permissions (26) 3 4.5

9.99, dangerous permissions: 4.5) than in the market dataset (all permissions: 8.05,

dangerous permissions: 3).

Result #3. To show the statistical significance of the improvements, each approach

(namely SPL+AppAuth+StringAA and StringAA) is run five times using 10-fold

cross-validation. Thus, 50 results are obtained for each dataset. A t-test, with an alpha

value of 0.05, is then applied, and the results are shown in Table 6.7. α value represents

the significance level, which is the probability of rejecting the null hypothesis when it is

true. Table 6.7 shows that the p-values for the market and malware datasets are lower

than α value of 0.05, which implies that the difference is statistically significant. Figure

6.3 and 6.4 below show the box plot of the accuracy results of 50 runs represented in

Table 6.7.

Table 6.7 Results of t-test

p Value
Market 3.54622E-14

Malware 0.000562331
Genome 0.09986412

75



SPL+
App

Aut
h+

Stri
ng

AA

Stri
ng

AA

0.79

0.8

0.81

0.82

0.83

0.84

0.85

Market

SPL+
App

Aut
h+

Stri
ng

AA

Stri
ng

AA

0.93

0.94

0.95

0.96

0.97

0.98
Malware

SPL+
App

Aut
h+

Stri
ng

AA

Stri
ng

AA

0.94

0.95

0.96

0.97

0.98

0.99

Genome

Figure 6.3 Accuracy results used in comparison

SPL
App

Aut
h

SPL+
App

Aut
h

SPL+
App

Aut
h+

Stri
ng

AA
Stri

ng
AA

0.72

0.74

0.76

0.78

0.8

0.82

0.84

Market

SPL
App

Aut
h

SPL+
App

Aut
h

SPL+
App

Aut
h+

Stri
ng

AA
Stri

ng
AA

0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

Malware

SPL
App

Aut
h

SPL+
App

Aut
h

SPL+
App

Aut
h+

Stri
ng

AA
Stri

ng
AA

0.94

0.95

0.96

0.97

0.98

0.99

1

Genome

Figure 6.4 Accuracy results of all features used in comparison

Result #4. To our knowledge, this is the first study to explore the use of source

code-based features on smali codes for Android AA. As shown in Table 6.5, such features

perform much better than the other features proposed in the literature, except for

n-grams. Source code-based features can also be obtained from Java files. In the

literature, it has been shown that more than 94% of Java classes can be successfully

decompiled [96]. Therefore, the same source code-based features listed in Table 5.4

76



are collected from Java files and are compared in Table 6.8. However, only 80% of the

applications are successfully decompiled. Recall that the following features specific to

smali code are not available in Java files: the ratio of invoke to all code (the ratio of the

number of invoking instructions to the number of all other instructions) and the ratio

of move to all code. The comparison results show that the source code-based features

collected from the smali files are more effective. However, it is worth mentioning that

the decompilation of APK files into Java files could be erroneous. Here, the jadx

decompiler [86] is used to convert APK files to Java files; however, we encounter some

unsuccessful decompilations.

Table 6.8 Accuracy results of Smali vs. Java: source code-based features

Dataset Smali Java
Market 66.2% 52.9%

Malware 87.0% 86.8%

6.5. RQ5 - Metadata Features

Motivation. As humans have different writing styles, text data are used largely for

AA in different domains, such as social media, e-mail, and literature [97–99]. Android

markets provide metadata such as descriptions, version numbers, and download counts.

This information can also shed light on new findings. Therefore, the effect of metadata

is investigated for the first time for Android AA in this study.

Method. First, we investigate the optimal n value and the number of n-grams. To

extract n-grams, each n consecutive word in the descriptions is extracted, each time

moving one word to the right. Preliminary experiments are carried out with different

n-gram sizes (from 1 to 5) to obtain the optimal value of n. Subsequently, the number

of n-grams required to obtain the best results is determined. Second, we combine the

metadata features with other feature sets to determine whether the metadata features

improve accuracy.

77



Result #1. The entire market dataset and only Rmvdroid [40] among the malware

datasets are used because these datasets contain application descriptions. Fig. 6.5a

shows the accuracy results for different n values. We set the number of n-grams to

10,000. It can be observed that 1-grams produce better results than the other n-grams.

After determining the value of n, we investigate the optimal number of 1-gram features

in further experiments. Fig. 6.5b shows the accuracy results obtained using only

metadata features under different numbers of 1-grams. As shown in Fig. 6.5b, the

number of 1-grams shows an important effect on the results. Because n-gram analysis

requires a significant amount of system resources, we could not obtain results after

100,000 1-grams. If 100,000 1-grams are included, accuracies of approximately 84%

and 74% are obtained for the market and malware datasets, respectively. This clearly

shows that the application descriptions are beneficial to Android AA. However, it can

be seen that the results of 10,000 1-grams are also quite sufficient, and the time required

is much less than 100,000 1-grams. Therefore, we chose 10,000 1-grams for upcoming

experiments in the metadata analysis.

Result #2. Table 6.9 shows the effects of metadata features in the market and

malware datasets, respectively. Because not all applications have descriptions, the

dataset used in this experiment is smaller than the original dataset. Application

descriptions can be written in any language. Our datasets also include different

languages in the application descriptions, such as English, Chinese, and French. It

is observed that accuracy increases significantly when we use descriptions in English

only. Therefore, descriptions other than English are eliminated from both datasets.

In the market dataset, metadata features produce approximately 6% better accuracy

when combined with the proposed SPL features, whereas an increase of approximately

3% is observed for other feature sets. In the malware dataset, metadata features

show a clear positive effect, with an increase of 3% in the proposed SPL features. In

contrast, the increase is not significant for the other feature sets.

78



Figure 6.5 Effect of n-grams on metadata features

Table 6.9 Metadata analysis

Dataset SPL SPL+Meta StringAA StringAA+Meta AppAuth AppAuth+Meta

acc f1 acc f1 acc f1 acc f1 acc f1 acc f1
Market 81.4% 78.4% 87.0% 85.0% 86.6% 84.5% 89.0% 87.0% 82.6% 80.1% 85.6% 83.3%

Malware 89.1% 87.1% 92.0% 90.3% 94.7% 93.5% 95.0% 93.8% 89.0% 86.7% 89.1% 87.0%

Dataset
SPL+AppAuth SPL+AppAuth+ SPL+AppAuth SPL+AppAuth

+StringAA StringAA+Meta +Meta
acc f1 acc f1 acc f1 acc f1

Market 86.8% 84.7% 89.0% 87.1% 84.5% 82.3% 88.4% 86.6%
Malware 94.9% 93.7% 95.4% 94.3% 91.9% 90.5% 93.6% 92.3%

79



6.6. RQ6 - Most Effective Features on Android AA

Motivation. In addition to knowing why our prediction is high or low, we also want

to know which features contribute more and which are irrelevant to improving our

prediction. Therefore, in this experiment, we investigate the features that had the

greatest influence on the results.

Method. The methodology employed in our experiment involves utilizing all available

features, with the exception of metadata, and applying the Random Forest algorithm

to achieve our results. Following the application of this algorithm, we leverage the

scikit-learn library to extract the importance values of all features. These values are

crucial in understanding the contribution of each feature to the predictive model’s

performance. The extracted feature importance values are then visually represented

in two figures: Figure 6.6a illustrates the feature importance for the market dataset,

while Figure 6.6b displays the importance for the malware dataset.

Result. The analysis reveals that source code-based features and string/n-gram

features have a bigger effect on the results for both the market dataset and the malware

dataset than other types of features. Specifically, the features utilized in the AppAuth

(conf, dex, rsrc) demonstrate a notably positive effect, particularly within the context

of the malware dataset. This distinction underscores the relevance of these features in

distinguishing malicious applications from benign ones.

In a detailed breakdown presented in Table 6.10, the distribution of features within

the top 50, ranked by importance, is showcased for each dataset. This table

effectively quantifies the contribution of different feature sets to the model’s prediction,

highlighting the prominence of certain feature types over others.

80



src perm lib conf dex rsrc ngram
0

0.5

1

1.5

2

2.5

3
10 -3

(a) Market

src perm lib conf dex rsrc ngram
0

0.5

1

1.5

2

2.5
10 -3

(b) Malware

Figure 6.6 Importance values of each feature

Table 6.10 Distribution of Top 50 features per feature set

Dataset src perm lib conf dex rsrc str
Market 8 1 2 0 0 1 38

Malware 14 1 0 2 6 0 27

Moreover, the ordering of the 50 most critical features is cataloged in Table 6.11,

providing a granular view of which specific features hold the most weight in the

81



predictive process. The findings from this table further reinforce the significant impact

of source code-based features in the malware dataset, indicating their critical role in

identifying malicious software. Conversely, the market dataset saw a predominant

influence from n-gram features, suggesting their effectiveness in applications more

typical of general market trends.

Table 6.11 The most important 50 features per dataset

Market Malware
Name Type Name Type

interstitial is already ngram avgCharPerGlobalVar src
1s kjrer ikk ngram avgLinePerClass src

lb itt lb ngram avgFuncPerClass src
saved state of ngram ratioInvokeToAllCodes src
elle sera bient ngram ratioVoidToAllFunc src

metadata tag in ngram ratioVarToAllCodes src
lb samplerate lb ngram lb getruntime lb ngram
lb cannot find ngram or zero length ngram
invalid ad size ngram lb replace lb ngram

lb rgb lb ngram ratioIfToAllCodes src
lb isinterface lb ngram avgLinePerFunc src

freeing fragment index ngram dapatkan perkhidmatan google ngram
change.component.enabled.state perm susesPermissionNum conf

container view with ngram ratioGlobalVarToAllCodes src
lb krko lb ngram usesPermissionNum conf
lb score lb ngram vtlMethodRatio dex

lb readbyte lb ngram lb plusclient must ngram
lb pair lb ngram receive.mms perm
lb aan lb ngram lb marketsearchqpnamecomgoogle lb ngram

be null instead ngram this message lb ngram
lb zzafm lb ngram lb initializing adview ngram

lb onanimationend lb ngram permissions are not ngram
lb zc lb ngram lb settextalign lb ngram

lb landroidviewsurface lb ngram antClassRatio dex
lb zzti lb ngram lb ljavalangcharsequence lb ngram

cannot call this ngram lb lapp non ngram
resDrawableFileNum rsrc statFieldRatio dex

como 1s lb ngram ratioMoveToAllCodes src
share via lb ngram ratioLocalVarToAllCodes src

avgCharPerLocalVar src lb writedouble lb ngram
com/appyet lib lb iil lb ngram
lb failure lb ngram lb row lb ngram

ratioInvokeToAllCodes src avgCharPerLocalVar src
vi cc dch ngram avgCharPerFuncName src

avgCharPerFuncName src ratioIntToAllFunc src
avgLinePerClass src lb getconfig lb ngram
key cannot be ngram lb landroidgraphicsbitmapconfig lb ngram
lb multiply lb ngram lb stopplayback lb ngram

not forward oncreate ngram dbiMethodRatio dex
ratioVarToAllCodes src lb zllil lb ngram

giving up on ngram agetRatio dex
ratioGlobalVarToAllCodes src the main ui ngram

avgCharPerGlobalVar src lb iso88591 lb ngram
com/doapps lib lb packagename lb ngram

or out of ngram lb getsnippet lb ngram
lb case_insensitive_order lb ngram lb module without ngram

at least one ngram lb zu lb ngram
lb ce lb ngram drtMethodRatio dex

lb landroidappalarmmanager lb ngram lb getlastpathsegment lb ngram
ratioMoveToAllCodes src lipsesc de pe ngram

82



By analyzing these importance values, we could make informed decisions about feature

selection, focusing on those that offer the most value to our predictive accuracy and

potentially discarding or de-emphasizing those with minimal impact. This analysis is

essential for refining the model, enhancing its efficiency, and ensuring its robustness in

accurately identifying malware and its origins.

6.7. RQ7 - The Effect of the Number of Features

Motivation. When dealing with a large dataset comprising over 10,000 different

attributes, as in the case of this study, it is not uncommon to encounter features that

may not contribute positively to the performance of a classifier. Some features might

be redundant, contain NaN (Not a Number) values, or exhibit zero variance, meaning

that they do not vary across different instances and hence provide no useful information

for classification.

The presence of such features can negatively impact the efficiency of machine learning

models. Redundant features can increase the computational complexity of model

training and prediction, while features with NaN values or zero variance can dilute

the model’s ability to learn meaningful patterns from the data.

The effect of the number of features on the classifier’s performance is explored

to understand how different feature subsets impact the model’s accuracy. This

involves experimenting with feature selection technique to identify the most informative

attributes and assess their contribution to the classification task.

Method. The selection of the best subsets of features from the entire feature set is

conducted through the computation of ANOVA F-values using the f_classif() function

in scikit-learn, a process aimed at enhancing the model’s performance by focusing

on the most informative features. ANOVA (Analysis of Variance) is a widely used

parametric statistical hypothesis test in feature selection to determine whether there are

any statistically significant differences between the means of three or more independent

(unrelated) groups.

83



To explore the impact of reducing the number of features on the performance of our

classifier, we progressively decrease the set of features under consideration. Starting

with the 100% of features based on their F-values, we gradually include less—80%,

60%, 40%, and eventually 20% of the features. This stepwise approach allows us

to closely monitor how simplifying our model by reducing its complexity affects its

accuracy. By comparing the model’s performance across these different feature subsets,

it is possible to identify the optimal balance between the number of features and the

model’s predictive capabilities.

Result. The performance of each feature group is shown in Fig. 6.7. Please note

that zero-impact features are also present. Because the malware dataset has more

zero-impact features (435) than the market dataset (174), there was not much

improvement in the last percentile. This figure also shows that if time and resources

matter, fewer features (for example, 60%) can be used as replacements for all features.

Figure 6.7 Impact of different percentiles of features

84



6.8. RQ8 - The Effect of the Number of Applications per

Developer

Motivation. Supervised machine learning requires prior information on developers

to yield accurate results. Therefore, the quantity of applications each developer has

contributed to can significantly influence our prediction model’s performance. To

illustrate this impact, we conducted an experiment demonstrating the relationship

between the number of applications per developer and the efficacy of our prediction

model.

Method. Our dataset predominantly comprises applications developed by multiple

developers, as individual developers with more than ten applications on the market

are rare. This leads to an imbalance in our dataset, with a variance in the number

of applications contributed by different developers. To mitigate this imbalance and

standardize our analysis, we initially identified developers who have contributed to at

least 40 applications across both market and malware datasets, resulting in 37 and

19 developers, respectively. For each developer, we then randomly selected subsets

of 10, 20, 30, and 40 applications, repeating this process ten times. This approach

ensures that each iteration involves different combinations of applications, allowing for

a comprehensive assessment of how the number of applications per developer influences

our analysis.

Result. Fig. 6.8 shows that when the number of applications per developer is

increased, the accuracy of Android AA is also increased. Due to being a smaller

dataset with fewer authors, the results on the malware dataset are very high, even

when trained with 20 applications per developer. Therefore, the differences among the

models trained using 20, 30, and 40 applications per developer in the malware dataset

are similar.

85



Figure 6.8 Impact of different # of applications per developer

6.9. RQ9 - Effect of Application Versions

Motivation. Developers often update their applications due to bug fixes, security

patches, adding new functionalities, and the like. Therefore, there can be multiple

versions of an application on the developer’s market page. As our market dataset also

consists of different versions of some applications, it is worth investigating whether

the versions of the applications developed by the same author can be identified by the

proposed method.

Method. Therefore, two datasets are constructed in this study. First, if applications

have more than one version in the market dataset, duplicate applications are eliminated,

and only the first available version of the application is left in the market dataset. This

training dataset is called the no-version dataset; their versions are put into another

dataset called the testing set. Therefore, 1,193 training and 1,183 testing applications

implemented by 42 developers are used. All developers in the no-version dataset have

at least ten applications, as in the previous experiments.

Result. We first obtain the result by applying 10-fold cross-validation to the

no-version set and achieved 80.7% accuracy. As shown in Table 6.3, if all versions

86



are included, the accuracy is slightly higher (82.6%). Then, to answer the question

“if a version of an application is included in the training, could new versions of this

application be detected with the proposed approach?”, the model is trained using

a no-version dataset and evaluated on the testing dataset. Here, high accuracy

(91.7%) is obtained. Similarities between the different versions of the applications are

obtained using SimiDroid [43]. However, there is no significant correlation between the

unidentified versions of applications and their similarities to the first available versions

in training. Although similarities to the first available version generally decrease

proportionally to the version numbers, there are exceptional cases in the testing set.

Although the similarity between a version of the application and the first available

version in the training set is low, the proposed approach can successfully identify

the authors of such versions. These results show that the developer’s signature is

preserved, even if the similarity between different versions of the same application is

low.

6.10. RQ10 - Effect of Obfuscation

Motivation. Because both benign and malicious applications apply obfuscation

techniques, Android AA has been evaluated in obfuscated applications in the literature

[14, 17]. In [17], obfuscated applications were obtained using ProGuard [100], which

provides simple obfuscation techniques such as method, class, and identifier renaming,

along with code shrinking and code optimization. It is shown that the authors of some

applications (7%) could not be identified when they were obfuscated. AppAuth [16] also

claims that its features are not robust against encryption and shell package obfuscation.

Kalgutkar et al. [14] analyzed obfuscated applications using three different obfuscation

tools: ProGuard, Allatori [101], and DashO [102]. They employed different types of

obfuscation techniques, such as string obfuscation, string encryption, and control flow

obfuscation to the source code of applications. However, they worked on a very small

dataset with 96 applications from nine different authors. Their results showed that the

87



accuracy results of AA in applications obfuscated by ProGuard are unexpectedly 6%

better than those of the original applications. String features are expected to be less

robust against string obfuscation and encryption techniques; however, it is shown that

there is no significant change in the results when applications are obfuscated using the

other two obfuscation tools.

Method. In this study, to better understand the performance of Android AA in

obfuscated applications, the Obfuscapk [44] tool is used in applications (smali files)

in the market and Genome datasets. Obfuscapk [44] works in a black-box fashion,

supports advanced obfuscation features, and has a modular architecture that is easily

extensible with new techniques. Note that because of some errors encountered during

the application of obfuscation techniques, the number of applications used in this

experiment is much lower than that of the original dataset (≈40%). However, it is

a much larger dataset (6055 applications from 320 authors) than [14]. The six different

obfuscation techniques listed in Table 6.12 are used. These obfuscation techniques can

be grouped into two categories: encryption and renaming.

Table 6.12 Obfuscation abbreviations

Techniques Abbrv. Description
ConstStringEncryption CSE Encrypt constant strings in code

LibEncryption LE Encrypt native libs
ResStringEncryption RSE Encrypt strings in resources (only those called inside code)

ClassRename CR Change the package name and rename classes (even in the manifest file)
MethodRename MR Rename methods

FieldRename FR Rename fields

Result. The effects of different obfuscation techniques are shown in Table 6.13.

Although encryption obfuscation techniques do not affect the results, the newly

proposed source code-based feature sets are susceptible to renaming obfuscation

techniques, as shown in Table 6.13, because they are extracted from the variable,

method, and class names of applications. String features [14] are also affected by

renaming techniques, but less than the newly proposed feature sets because string

features use all strings placed in the APK files, not only strings extracted from the

88



source codes.

Table 6.13 Obfuscation results

Dataset Technique SPL+AppAuth+StringAA SPL+AppAuth SPL AppAuth StringAA

Genome

Original 97.0% 97.9% 97.7% 97.2% 96.8%
CR+MR+FR 95.9% 97.6% 96.5% 97.0% 96.0%

CSE+LE+RSE 96.9% 98.1% 97.8% 97.3% 96.7%
(1332 applications) CSE+LE+RSE+CR+MR+FR 96.3% 97.7% 96.5% 97.4% 95.9%

Market

Original 82.8% 78.4% 75.3% 73.7% 82.3%
CR+MR+FR 81.4% 75.3% 66.2% 73.5% 80.9%

CSE+LE+RSE 82.3% 78.5% 75.2% 73.9% 81.6%
(6055 applications) CSE+LE+RSE+CR+MR+FR 81.5% 75.4% 66.4% 73.6% 80.8%

6.11. RQ11 - Analysis of Clone Applications

Motivation. To ensure data quality, we checked whether our dataset contained

application clones and identical descriptions.

Method. The Romadroid tool [45] is used to detect application clones in the dataset.

Romadroid creates a string from each manifest file of two applications to be compared

and measures the similarity between the two strings using the LCS algorithm. The

authors of Romadroid compared their tool with SimiDroid [43] and claimed that

Romadroid performed better than SimiDroid over a 60% threshold. Their results

showed that Simidroid produced a much lower recall value at their best threshold

values than did Romadroid (60.64% vs. 98.38%) in the same dataset.

We use the 70% and 90% threshold values in our experiments, so we calculate the

similarity scores of applications of 488, 153, and 39 developers in the market, malware,

and Genome datasets using Romadroid. As a result, n ∗ (n − 1)/2 similarity results are

obtained by pairwise comparison of applications. Here, n denotes the total number of

applications. Because we encounter errors in some applications, we could not obtain

similarity scores for each pair. Many studies typically consider an application pair as

an application clone if their similarity scores exceed either %70 or %90 [43, 45, 46]. In

our approach, we exclude all applications that exhibited a similarity score above %70

with another.

89



Result. As shown in Table 6.14, 20.6% of the market and 22.3% of the malware

datasets have similar applications above the 70% similarity rate. The effects of clone

apps on the results are given in Tables 6.15 and 6.16 for the market and malware

datasets, respectively. The results indicate that removing similar applications improves

the accuracy and F1 scores, especially for the market dataset. As similar applications

from different developers can mislead the model during training, removing app clones

has a positive effect on the results.

Table 6.14 Ratio of clone applications in the datasets

similarity threshold >%70 >%80 >%90
Market 20.6% 14.0% 8.5%

Malware 22.3% 13.0% 9.0%
Genome 10.6% 11.0% 0.3%

Table 6.15 Differences on accuracy and f1 score when clone apps are removed from the
market dataset

customsmali perm lib allsmali conf dex res ngram
acc -0.572 6.966 5.647 1.033 2.807 1.012 1.233 2.729
f1 -0.527 7.803 6.346 1.116 3.086 1.152 1.516 3.161

SPL + AppAuth + StringAA SPL + AppAuth SPL AppAuth StringAA
acc 2.626 2.443 3.211 1.608 2.729
f1 3.053 2.681 3.608 1.860 3.161

Table 6.16 Differences (%) on accuracy and f1 score when clone apps are removed from the
malware dataset

customsmali perm lib allsmali conf dex res ngram
acc 1.022 1.410 3.513 0.031 1.925 -0.145 1.183 0.477
f1 1.027 1.702 3.625 -0.057 1.924 -0.250 1.356 0.476

SPL + AppAuth + StringAA SPL + AppAuth SPL AppAuth StringAA
acc 0.554 0.278 0.246 0.337 0.477
f1 0.573 0.207 0.207 0.322 0.476

90



7. GENERAL DISCUSSION

In this study, we explore the use of source code-based features and compare different

feature sets in the literature on Android AA. However, this study had a few limitations,

detailed below:

7.1. Usage of Native Code

Today, developers are increasingly using native code within Android application

packages, where they co-exist and interact with DEX bytecode through the Java Native

Interface [103]. In our approach, only the non-native code parts of applications are used

to extract features, as in [16]. On the other hand, developers can use Android NDK,

which can help developers reuse code libraries to embed in Android apps; therefore,

native code written in C/C++ could carry developers’ fingerprints. Because our focus

is on the use of source code-based features for Android AA in this study, the features

that could be extracted from smali files are used. However, native codes could be

included in the Android AA in the future.

7.2. Obfuscation

As indicated in Table 6.13, the proposed source code-based features are susceptible

to renaming obfuscation techniques. Therefore, different groups of features, such as

metadata and string features, can be combined to identify authors.

A whitelist approach was adapted to find TPL used in an application. However, this

approach cannot detect obfuscated TPL. When such libraries cannot be identified

correctly, they are considered a developer’s custom code, which causes an increase in

the similarities between applications developed by different authors that use the same

libraries. Moreover, such libraries cannot be used as features to distinguish developers.

Therefore, recent studies such as LibID [95] and LibRadar [24] can be used to find

obfuscated libraries in the future.

91



7.3. Dataset

The size of the dataset is important for any machine-learning-based approach. Even

though the dataset in this study is larger and more comprehensive than those in other

studies in the literature, except [15], as shown in Table 7.1, further studies could

extend it. One limitation is finding developers with sufficient applications so that

the model can learn their styles. Another limitation is the need to find applications

with proper descriptions. In this study, we considered only applications that have

descriptions written in English. The size of the dataset can be increased by including

other languages.

Table 7.1 Dataset information

Dataset # of app # of author
Our paper 15,183 680

AppAuth [16] 3,871 273
String Analysis [14] 1,917 59

7.4. Clone/Repackaged Applications

The current study assumes that if an application is signed by a developer, it is written

by that developer. This is the same approach taken in previous studies [14, 16].

However, as shown above, there might be clone applications in the application stores;

hence, in our dataset, their existence might have affected our results. In this study, a

simple approach based on code similarity was employed to detect app clones. Many

researchers have been working on detecting app clones or repackaged applications

effectively [46]. It is stated that [46] while there is widespread recognition of the

app repackaging issue in both academic and industrial circles, there’s a notable lack of

datasets to aid research. Creating a comprehensive set of repackaging pairs that serves

as the ground truth requires significant effort. With the introduction of a new, large

dataset in [46], we expect such studies to accelerate. For these reasons, the investigation

of the effects of app clones on Android AA is left for future work.

92



7.5. Applications Developed by Multiple Authors

Kalgutkar et al. [27] highlighted that many studies operate under the assumption that

individual applications in their dataset are authored by a singular developer. This is in

contrast to real-world scenarios where software applications often involve contributions

from multiple developers. Gong et al. further expressed this point, indicating that

between 10% and 60% of source files can contain contributions from unattributed

authors, and as many as 75.4% of source files present multiple authorships [104]. For

this study, we assume that a single developer is responsible for a given application.

However, it is imperative to acknowledge that many applications, particularly expansive

commercial software, are the collective efforts of multiple developers. This multiplicity

adds layers of complexity to the issue at hand. Notably, when developers adhere to

institutionalized guidelines for software development, the overarching organization can

be treated as a singular entity or developer within the scope of this study. For instance,

even on Github, some developers specify a set of rules or guidelines that contributors

need to follow to contribute to a project; this is typically called a CONTRIBUTING

guide or CONTRIBUTING.md file. Companies can also implement regular code

review processes. This ensures that all codes are checked for quality and adherence

to standards before they are merged into the main codebase. The unified coding

standards establish a set of coding standards that all developers in the company must

follow. Therefore, if some of the codes are written by multiple developers, the total

code of the application can be seen as the work of a single developer. This ensures

consistency in the codebase, thus making it easier to read, maintain, and debug.

93



8. CONCLUSION

This study investigates the use of various features for Android AA. The proposed model

uses a feature extraction process that starts with compiling APK files using “apktool”.

This step allows the extraction of various files, including small files (which provide

Android-specific low-level, assembly-like code), .dex files, resource files, manifest files,

and XML files. Three main categories of features are extracted from these files:

SPL Features: These include source code-based, which are primarily extracted from

smali files, permissions, third-party libraries (TPL), and metadata-based features. The

study utilizes 18 source code-based features, adapting them for compatibility with smali

codes. Additionally, the model considers each Android permission in the manifest file as

a separate feature, adding 158 binary features. TPL features are included by building

a whitelist of common libraries and identifying their usage in applications. The model

also analyzes application descriptions provided by developers, using a similar method

to that used for extracting string features, recognizing that these descriptions can be

beneficial in authorship attribution (AA).

AppAuth Features[16]: They include configuration features from the manifest file,

resource features from the files/folders in the “res” directory, and dex features related

with methods, classes, fields, and data structures in .dex files.

StringAA Features[14]: These are extracted from strings contained in XML and

.dex files of applications. This study uses 3-grams for string-based features, with a tag

inserted at the beginning and end of each string to preserve all lines.

To evaluate the effectiveness of these features, experiments were conducted on datasets

containing benign, malicious, and obfuscated applications obtained from various

platforms. The dataset contains 10,385 benign Android apps from 488 unique

developers, each contributing more than 10 apps, collected from five different Android

markets. There are also over 3,000 malicious apps from 153 developers, obtained from

various sources. Additionally, approximately 6,000 obfuscated applications created

94



using the “Obfuscapk” tool and more than 1,000 applications are available for version

analysis; both subsets are derived from the benign dataset.

Authorship attributions in the literature are based on the hypothesis that applications

signed with the same private (signing) key belong to a unique developer. Keys can be

extracted from APK files using the “print-apk-signature” tool. In cases where multiple

developers have the same or similar application, only a single unique example was

selected.

The feature processing phase involves generating feature vectors for each application,

handling missing values, and standardizing features. The SimpleImputer function

from the scikit-learn library is used to replace missing values across each column.

The StandardScaler function is applied to standardize the features, allowing features

with different scales or units to be directly compared and combined in models. To

improve model efficiency and performance, a two-phase dimensional reduction process is

applied to the dataset. The first phase involves eliminating features with zero variance,

which do not provide discriminatory information and might lead to overfitting. In

the second phase, the most relevant features are selected using univariate statistical

tests (ANOVA). This helps reduce the dimensionality of the dataset by retaining only

the most informative features, which can be particularly beneficial when dealing with

high-dimensional data.

This study uses various classification algorithms to predict authorship in the Android

domain. The algorithms include Random Forest, K-Nearest Neighbors, SVM, Gaussian

Naive Bayes, and LightGBM. The GridSearchCV (Grid Search Cross-Validation)

technique is used to determine the optimal values for a given model. Models are then

evaluated using these optimal parameters through stratified 10-fold cross-validation,

which preserves positive and negative examples across folds.

This study addresses several research questions (RQs) related to Android Authorship

Attribution. Our findings can be summarized as follows:

95



• We investigate which classification algorithm is best for attributing applications

to authors. The Random Forest algorithm emerges as the most efficient in

terms of both accuracy and time. LightGBM has superior accuracy; however,

its classification time is a bit longer.

• After that, we determine both the best “n” value and the number of n-gram

features. Here, a set size of 10,000 3-grams is identified as ideal, balancing

accuracy and training time. Even though accuracy improves when we increase

the number of 3-grams, classification time exponentially increases after 10,000

3-grams.

• After compiling the APK file, the TPL codes used in the development of the APK

file are converted into small files as well as user-defined codes. As developers

tend to use the same TPL for their different applications, TPL codes may be

insightful in distinguishing authors from each other. However, if two developers

create similar applications with the same functionality, they mostly use the same

TPLs. Therefore, most of their codes are similar, making it harder to find distinct

features between them. As a result, we demonstrate the differences between when

we include TPl and when we do not include TPL. The results show that using

TPL features as a distinct feature set is more effective than getting results by

incorporating TPL into source code-based features.

• The findings indicate that the feature sets introduced in this study achieve high

levels of accuracy in Android AA, rivaling that of string-based features, which

require more computational resources. Moreover, these newly proposed features

surpass other features in the context of AA. While string features are generally

superior, practicality issues arise in large datasets. A combination of all features

is recommended if feasible.

• Application metadata, like descriptions, aids in attributing developers due to

varying writing styles. However, multiple languages in descriptions can hinder

classification. Notably, it is observed that metadata features contribute to

96



improved accuracy, particularly when combined with source code-based features.

Of particular significance, this is the first study to explore the impact of metadata

information, which describes applications, on Android AA.

• Using only 60% of the features can still yield satisfactory results, reducing

resource expenditures.

• A balanced dataset with sufficient samples per developer enhances model

performance.

• The model effectively identifies different versions of the same applications.

• All features, especially source code strings, are vulnerable to obfuscation

techniques, notably renaming.

Overall, the present work provides a rigorous analysis of Android AA and is compared

with state-of-the-art techniques. Future research should investigate the use of this

approach for clone applications, particularly those with malicious intent. It is important

to first find similarities between malicious software from different sources to predict

how malware will evolve; hence, we could develop new protection techniques against

malware that will appear in the future. The features related to the author of malware

can be useful to achieve this goal. Hence, new applications in the market can be

analyzed from their authors point of view.

97



REFERENCES

[1] Nathan Rosenblum, Xiaojin Zhu, and Barton P. Miller. Who wrote

this code? identifying the authors of program binaries. In Vijay Atluri

and Claudia Diaz, editors, Computer Security – ESORICS 2011, pages

172–189. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011. ISBN

978-3-642-23822-2.

[2] Saed Alrabaee, Paria Shirani, Mourad Debbabi, and Lingyu Wang. On the

feasibility of malware authorship attribution. In Frédéric Cuppens, Lingyu

Wang, Nora Cuppens-Boulahia, Nadia Tawbi, and Joaquin Garcia-Alfaro,

editors, Foundations and Practice of Security, pages 256–272. Springer

International Publishing, Cham, 2017. ISBN 978-3-319-51966-1.

[3] Robert Layton and Ahmad Azab. Authorship analysis of the zeus botnet

source code. In 2014 Fifth Cybercrime and Trustworthy Computing

Conference, pages 38–43. 2014. doi:10.1109/CTC.2014.14.

[4] Mamoun Alazab, Robert Layton, Roderic Broadhurst, and Brigitte

Bouhours. Malicious spam emails developments and authorship attribution.

In 2013 Fourth Cybercrime and Trustworthy Computing Workshop, pages

58–68. 2013. doi:10.1109/CTC.2013.16.

[5] Robert Layton, Stephen McCombie, and Paul Watters. Authorship

attribution of irc messages using inverse author frequency. In 2012 Third

Cybercrime and Trustworthy Computing Workshop, pages 7–13. 2012.

doi:10.1109/CTC.2012.11.

[6] Steven Burrows and Seyed MM Tahaghoghi. Source code authorship

attribution using n-grams. In Proceedings of the twelth Australasian

document computing symposium, Melbourne, Australia, RMIT University,

pages 32–39. Citeseer, 2007.

98



[7] Rong Chen, Lina Hong, Chunyan Chunyan Lü, and Wu Deng. Author

identification of software source code with program dependence graphs. In

2010 IEEE 34th Annual Computer Software and Applications Conference

Workshops, pages 281–286. 2010. doi:10.1109/COMPSACW.2010.56.

[8] Georgia Frantzeskou, Efstathios Stamatatos, Stefanos Gritzalis, and

Sokratis Katsikas. Source code author identification based on n-gram

author profiles. In Ilias Maglogiannis, Kostas Karpouzis, and Max Bramer,

editors, Artificial Intelligence Applications and Innovations, pages 508–515.

Springer US, Boston, MA, 2006. ISBN 978-0-387-34224-5.

[9] Jay Kothari, Maxim Shevertalov, Edward Stehle, and Spiros Mancoridis. A

probabilistic approach to source code authorship identification. In Fourth

International Conference on Information Technology (ITNG’07), pages

243–248. 2007. doi:10.1109/ITNG.2007.17.

[10] Ivan Krsul and Eugene H. Spafford. Authorship analysis: identifying the

author of a program. Computers & Security, 16(3):233–257, 1997. ISSN

0167-4048. doi:https://doi.org/10.1016/S0167-4048(97)00005-9.

[11] Aylin Caliskan-Islam, Richard Harang, Andrew Liu, Arvind Narayanan,

Clare Voss, Fabian Yamaguchi, and Rachel Greenstadt. De-anonymizing

programmers via code stylometry. In Proceedings of the 24th USENIX

Conference on Security Symposium, SEC’15, page 255–270. USENIX

Association, USA, 2015. ISBN 9781931971232.

[12] Saed Alrabaee, Noman Saleem, Stere Preda, Lingyu Wang, and Mourad

Debbabi. Oba2: An onion approach to binary code authorship attribution.

Digital Investigation, 11:S94–S103, 2014. ISSN 1742-2876. doi:https://doi.

org/10.1016/j.diin.2014.03.012. Proceedings of the First Annual DFRWS

Europe.

99



[13] Saed Alrabaee, Lingyu Wang, and Mourad Debbabi. Bingold: Towards

robust binary analysis by extracting the semantics of binary code as

semantic flow graphs (sfgs). Digital Investigation, 18:S11–S22, 2016. ISSN

1742-2876. doi:https://doi.org/10.1016/j.diin.2016.04.002.

[14] Vaibhavi Kalgutkar, Natalia Stakhanova, Paul Cook, and Alina

Matyukhina. Android authorship attribution through string analysis. In

Proceedings of the 13th International Conference on Availability, Reliability

and Security, ARES ’18. Association for Computing Machinery, New York,

NY, USA, 2018. ISBN 9781450364485. doi:10.1145/3230833.3230849.

[15] Hugo Gonzalez, Natalia Stakhanova, and Ali A. Ghorbani. Authorship

attribution of android apps. In Proceedings of the Eighth ACM Conference

on Data and Application Security and Privacy, CODASPY ’18, page

277–286. Association for Computing Machinery, New York, NY, USA,

2018. ISBN 9781450356329. doi:10.1145/3176258.3176322.

[16] Guoai Xu, Chengpeng Zhang, Bowen Sun, Xinyu Yang, Yanhui Guo,

Chengze Li, and Haoyu Wang. Appauth: Authorship attribution for android

app clones. IEEE Access, 7:141850–141867, 2019. doi:10.1109/ACCESS.

2019.2944684.

[17] Wei Wang, Guozhu Meng, Haoyu Wang, Kai Chen, Weimin Ge, and

Xiaohong Li. A3ident: A two-phased approach to identify the leading

authors of android apps. In 2020 IEEE International Conference on

Software Maintenance and Evolution (ICSME), pages 617–628. 2020.

doi:10.1109/ICSME46990.2020.00064.

[18] StatCounter. Mobile operating system market share worldwide.

https://gs.statcounter.com/os-market-share/mobile/worldwide,

2023. Accessed: 2023-12-12.

100

https://gs.statcounter.com/os-market-share/mobile/worldwide


[19] Google. Android apps on google play. https://play.google.com/store/

apps, 2023. Accessed: 2023-12-12.

[20] Aptoide. Aptoide - the alternative android app store. https://en.

aptoide.com, 2023. Accessed: 2023-12-12.

[21] APKMirror. Apkmirror - free apk downloads - free and safe android apk

downloads. https://www.apkmirror.com, 2023. Accessed: 2023-12-12.

[22] Android Developers. String resources | android developers. https://

developer.android.com/guide/topics/resources/string-resource,

2023. Accessed: 2023-12-12.

[23] Haoyu Wang, Yao Guo, Zihao Tang, Guangdong Bai, and Xiangqun Chen.

Reevaluating android permission gaps with static and dynamic analysis. In

2015 IEEE Global Communications Conference (GLOBECOM), pages 1–6.

2015. doi:10.1109/GLOCOM.2015.7417621.

[24] Ziang Ma, Haoyu Wang, Yao Guo, and Xiangqun Chen. Libradar:

Fast and accurate detection of third-party libraries in android apps. In

2016 IEEE/ACM 38th International Conference on Software Engineering

Companion (ICSE-C), pages 653–656. 2016.

[25] Haoyu Wang, Yao Guo, Ziang Ma, and Xiangqun Chen. Wukong: A

scalable and accurate two-phase approach to android app clone detection. In

Proceedings of the 2015 International Symposium on Software Testing and

Analysis, ISSTA 2015, page 71–82. Association for Computing Machinery,

New York, NY, USA, 2015. ISBN 9781450336208. doi:10.1145/2771783.

2771795.

[26] Haoyu Wang and Yao Guo. Understanding third-party libraries in mobile

app analysis. In 2017 IEEE/ACM 39th International Conference on

Software Engineering Companion (ICSE-C), pages 515–516. 2017. doi:10.

1109/ICSE-C.2017.161.

101

https://play.google.com/store/apps
https://play.google.com/store/apps
https://en.aptoide.com
https://en.aptoide.com
https://www.apkmirror.com
https://developer.android.com/guide/topics/resources/string-resource
https://developer.android.com/guide/topics/resources/string-resource


[27] Vaibhavi Kalgutkar, Ratinder Kaur, Hugo Gonzalez, Natalia Stakhanova,

and Alina Matyukhina. Code authorship attribution: Methods and

challenges. ACM Comput. Surv., 52(1), 2019. ISSN 0360-0300. doi:10.

1145/3292577.

[28] Hugo F. Gonzalez Robledo. An automatic authorship attribution technique

for Android applications. Ph.D. thesis, The University of New Brunswick,

2017.

[29] Connor Tumbleson. Apktool - a tool for reverse engineering android

apk files. https://ibotpeaches.github.io/Apktool/, 2023. Accessed:

2023-12-12.

[30] scikit learn. sklearn.impute.simpleimputer - scikit-learn 1.3.2

documentation. https://scikit-learn.org/stable/modules/

generated/sklearn.impute.SimpleImputer.html, 2024. Accessed:

2024.

[31] scikit learn. sklearn.preprocessing.standardscaler - scikit-learn 1.3.2

documentation. https://scikit-learn.org/stable/modules/

generated/sklearn.preprocessing.StandardScaler.html, 2024.

Accessed: 2024.

[32] scikit-learn developers. scikit-learn: machine learning in python —

scikit-learn 1.3.2 documentation. https://scikit-learn.org/stable/

index.html, 2023. Accessed: 2023-12-12.

[33] Haibo He and Yunqian Ma. Imbalanced Learning: Foundations, Algorithms,

and Applications, pages i–xi. John Wiley & Sons, Ltd, 2013. ISBN

9781118646106. doi:https://doi.org/10.1002/9781118646106.

[34] Scrapy. Scrapy | a fast and powerful scraping and web crawling framework.

https://scrapy.org, 2023. Accessed: 2023-12-12.

102

https://ibotpeaches.github.io/Apktool/
https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html
https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/index.html
https://scikit-learn.org/stable/index.html
https://scrapy.org


[35] Daniel Arp, Michael Spreitzenbarth, Malte Hübner, Hugo Gascon, and

Konrad Rieck. Drebin: Effective and explainable detection of android

malware in your pocket. In NDSS. 2014. doi:10.14722/ndss.2014.23247.

[36] PRALab. Android praguard dataset. http://pralab.diee.unica.it/en/

AndroidPRAGuardDataset, 2021. Accessed: 2021.

[37] APKPure. Download apk on android with free online apk downloader -

apkpure. https://apkpure.com, 2023. Accessed: 2023-12-12.

[38] 1Mobile-Market. 1mobile market - best google android apps market. http:

//market.1mobile.com, 2018. Accessed: 2018.

[39] Canadian Institute for Cybersecurity. Datasets | research | canadian

institute for cybersecurity | unb. https://www.unb.ca/cic/datasets/

index.html, 2023. Accessed: 2023-12-12.

[40] Haoyu Wang, Junjun Si, Hao Li, and Yao Guo. Rmvdroid: Towards a

reliable android malware dataset with app metadata. In 2019 IEEE/ACM

16th International Conference on Mining Software Repositories (MSR),

pages 404–408. 2019. doi:10.1109/MSR.2019.00067.

[41] warren-bank. Github - warren-bank/print-apk-signature: print information

about the certificate used to sign an android apk file. https://github.

com/warren-bank/print-apk-signature, 2023. Accessed: 2023-12-12.

[42] Gaurav Goel, Harsh Bhardwaj, Ishika Hooda, and Shailender Kumar.

Optimal n-gram subset extraction for accelerating evaluation using genetic

algorithm. In 2020 International Conference for Emerging Technology

(INCET), pages 1–5. 2020. doi:10.1109/INCET49848.2020.9154083.

[43] Li Li, Tegawendé F. Bissyandé, and Jacques Klein. Simidroid:

Identifying and explaining similarities in android apps. In 2017

IEEE Trustcom/BigDataSE/ICESS, pages 136–143. 2017. doi:10.1109/

Trustcom/BigDataSE/ICESS.2017.230.

103

http://pralab.diee.unica.it/en/AndroidPRAGuardDataset
http://pralab.diee.unica.it/en/AndroidPRAGuardDataset
https://apkpure.com
http://market.1mobile.com
http://market.1mobile.com
https://www.unb.ca/cic/datasets/index.html
https://www.unb.ca/cic/datasets/index.html
https://github.com/warren-bank/print-apk-signature
https://github.com/warren-bank/print-apk-signature


[44] Claudiu Georgiu. Github - claudiugeorgiu/obfuscapk: An

automatic obfuscation tool for android apps that works in a

black-box fashion, supports advanced obfuscation features and

has a modular architecture easily extensible with new techniques.

https://github.com/ClaudiuGeorgiu/Obfuscapk, 2023. Accessed:

2023-12-12.

[45] Byoungchul Kim, Kyeonghwan Lim, Seong-Je Cho, and Minkyu Park.

Romadroid: A robust and efficient technique for detecting android app

clones using a tree structure and components of each app’s manifest file.

IEEE Access, 7:72182–72196, 2019. doi:10.1109/ACCESS.2019.2920314.

[46] Li Li, Tegawendé F. Bissyandé, and Jacques Klein. Rebooting research

on detecting repackaged android apps: Literature review and benchmark.

IEEE Transactions on Software Engineering, 47(4):676–693, 2021. doi:10.

1109/TSE.2019.2901679.

[47] Kaspersky. Google play malware clocks up more than 600

million downloads in 2023. https://www.kaspersky.com/blog/

malware-in-google-play-2023/49579/, 2023. Accessed: 2023-12-12.

[48] AV-TEST. Malware statistics & trends report. https://www.av-test.

org/en/statistics/malware/, 2023. Accessed: 2023-12-12.

[49] Yajin Zhou and Xuxian Jiang. Dissecting android malware:

Characterization and evolution. In 2012 IEEE Symposium on Security and

Privacy, pages 95–109. 2012. doi:10.1109/SP.2012.16.

[50] Kursat Aktas and Sevil Sen. Updroid: Updated android malware and

its familial classification. In Nils Gruschka, editor, Secure IT Systems,

pages 352–368. Springer International Publishing, Cham, 2018. ISBN

978-3-030-03638-6.

104

https://github.com/ClaudiuGeorgiu/Obfuscapk
https://www.kaspersky.com/blog/malware-in-google-play-2023/49579/
https://www.kaspersky.com/blog/malware-in-google-play-2023/49579/
https://www.av-test.org/en/statistics/malware/
https://www.av-test.org/en/statistics/malware/


[51] Yue Wang, Weishi Wang, Shafiq Joty, and Steven C.H. Hoi. CodeT5:

Identifier-aware unified pre-trained encoder-decoder models for code

understanding and generation. In Marie-Francine Moens, Xuanjing Huang,

Lucia Specia, and Scott Wen-tau Yih, editors, Proceedings of the 2021

Conference on Empirical Methods in Natural Language Processing, pages

8696–8708. Association for Computational Linguistics, Online and Punta

Cana, Dominican Republic, 2021. doi:10.18653/v1/2021.emnlp-main.685.

[52] Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie Liu,

Long Zhou, Nan Duan, Alexey Svyatkovskiy, Shengyu Fu, Michele Tufano,

Shao Kun Deng, Colin Clement, Dawn Drain, Neel Sundaresan, Jian

Yin, Daxin Jiang, and Ming Zhou. Graphcodebert: Pre-training code

representations with data flow, 2021.

[53] Rosa María Coyotl-Morales, Luis Villaseñor-Pineda, Manuel Montes-y

Gómez, and Paolo Rosso. Authorship attribution using word sequences.

In José Francisco Martínez-Trinidad, Jesús Ariel Carrasco Ochoa, and

Josef Kittler, editors, Progress in Pattern Recognition, Image Analysis and

Applications, pages 844–853. Springer Berlin Heidelberg, Berlin, Heidelberg,

2006. ISBN 978-3-540-46557-7.

[54] Patrick Juola. Authorship attribution. Found. Trends Inf. Retr.,

1(3):233–334, 2006. ISSN 1554-0669. doi:10.1561/1500000005.

[55] Egor Bogomolov, Vladimir Kovalenko, Yurii Rebryk, Alberto Bacchelli,

and Timofey Bryksin. Authorship attribution of source code: A

language-agnostic approach and applicability in software engineering.

In Proceedings of the 29th ACM Joint Meeting on European Software

Engineering Conference and Symposium on the Foundations of Software

Engineering, ESEC/FSE 2021, page 932–944. Association for Computing

Machinery, New York, NY, USA, 2021. ISBN 9781450385626. doi:10.

1145/3468264.3468606.

105



[56] O. de Vel, A. Anderson, M. Corney, and G. Mohay. Mining e-mail content

for author identification forensics. SIGMOD Rec., 30(4):55–64, 2001. ISSN

0163-5808. doi:10.1145/604264.604272.

[57] Jason Gray, Daniele Sgandurra, and Lorenzo Cavallaro. Identifying

authorship style in malicious binaries: Techniques, challenges & datasets,

2021.

[58] Sangwoo Lee and Jungwon Cho. Malware authorship attribution model

using runtime modules based on automated analysis. International Journal

on Informatics Visualization, 6(1-2), 2022. doi:10.30630/joiv.6.1-2.941.

[59] Frank Smallenburg Emanuele Boattini, Michel Ram and Laura Filion.

Neural-network-based order parameters for classification of binary

hard-sphere crystal structures. Molecular Physics, 116(21-22):3066–3075,

2018. doi:10.1080/00268976.2018.1483537.

[60] Xinyu Yang, Guoai Xu, Qi Li, Yanhui Guo, and Miao Zhang. Authorship

attribution of source code by using back propagation neural network based

on particle swarm optimization. PLOS ONE, 12(11):1–18, 2017. doi:10.

1371/journal.pone.0187204.

[61] Bander Alsulami, Edwin Dauber, Richard Harang, Spiros Mancoridis,

and Rachel Greenstadt. Source code authorship attribution using long

short-term memory based networks. In Simon N. Foley, Dieter Gollmann,

and Einar Snekkenes, editors, Computer Security – ESORICS 2017,

pages 65–82. Springer International Publishing, Cham, 2017. ISBN

978-3-319-66402-6.

[62] E. Dauber, A. Caliskan, R. Harang, and R. Greenstadt. Poster: Git blame

who?: Stylistic authorship attribution of small, incomplete source code

fragments. In 2018 IEEE/ACM 40th International Conference on Software

106



Engineering: Companion (ICSE-Companion), pages 356–357. 2018. ISSN

2574-1934.

[63] Steven Burrows, Alexandra L. Uitdenbogerd, and Andrew Turpin.

Comparing techniques for authorship attribution of source code. Software:

Practice and Experience, 44(1):1–32, 2014. doi:https://doi.org/10.1002/

spe.2146.

[64] Georgia Frantzeskou, Stephen G. MacDonell, and Efstathios Stamatatos.

Source Code Authorship Analysis For Supporting the Cybercrime

Investigation Process, pages 470–495. IGI Global, 2010. doi:10.4018/

978-1-60566-836-9.ch020.

[65] Rong Zheng, Yi Qin, Zan Huang, and Hsinchun Chen. Authorship analysis

in cybercrime investigation. In Hsinchun Chen, Richard Miranda, Daniel D.

Zeng, Chris Demchak, Jenny Schroeder, and Therani Madhusudan,

editors, Intelligence and Security Informatics, pages 59–73. Springer Berlin

Heidelberg, Berlin, Heidelberg, 2003. ISBN 978-3-540-44853-2.

[66] Aylin Caliskan, Fabian Yamaguchi, Edwin Dauber, Richard Harang,

Konrad Rieck, Rachel Greenstadt, and Arvind Narayanan. When coding

style survives compilation: De-anonymizing programmers from executable

binaries. In Proceedings 2018 Network and Distributed System Security

Symposium, NDSS 2018. Internet Society, 2018. doi:10.14722/ndss.2018.

23304.

[67] Sangwoo Lee and Jungwon Cho. Malware authorship attribution model

using runtime modules based on automated analysis. JOIV : International

Journal on Informatics Visualization, 6:214, 2022. doi:10.30630/joiv.6.1-2.

941.

107



[68] Anthony Desnos. Android: Static analysis using similarity distance. In

2012 45th Hawaii International Conference on System Sciences, pages

5394–5403. 2012. doi:10.1109/HICSS.2012.114.

[69] Yury Zhauniarovich, Olga Gadyatskaya, Bruno Crispo, Francesco La Spina,

and Ermanno Moser. Fsquadra: Fast detection of repackaged applications.

In Vijay Atluri and Günther Pernul, editors, Data and Applications Security

and Privacy XXVIII, pages 130–145. Springer Berlin Heidelberg, Berlin,

Heidelberg, 2014. ISBN 978-3-662-43936-4.

[70] Google Play. Use play app signing. https://support.google.

com/googleplay/android-developer/answer/9842756, 2023. Accessed:

2023-12-12.

[71] Kanae Yoshida, Hironori Imai, Nana Serizawa, Tatsuya Mori, and Akira

Kanaoka. Understanding the origins of weak cryptographic algorithms used

for signing android apps. Journal of Information Processing, 27:593–602,

2019. doi:10.2197/ipsjjip.27.593.

[72] Huawei. Huawei appgallery - huawei türkiye. https://consumer.huawei.

com/tr/mobileservices/appgallery/, 2024. Accessed: 2024.

[73] Tencent. Tencent appstore. https://appstore.tencent.com/, 2024.

Accessed: 2024.

[74] Kaspar Hageman, Álvaro Feal, Julien Gamba, Aniketh Girish, Jakob

Bleier, Martina Lindorfer, Juan Tapiador, and Narseo Vallina-Rodriguez.

Mixed signals: Analyzing software attribution challenges in the android

ecosystem. IEEE Transactions on Software Engineering, 49(4):2964–2979,

2023. doi:10.1109/TSE.2023.3236582.

[75] apkmonk. Download android app apks free. https://www.apkmonk.com/,

2024. Accessed: 2024.

108

https://support.google.com/googleplay/android-developer/answer/9842756
https://support.google.com/googleplay/android-developer/answer/9842756
https://consumer.huawei.com/tr/mobileservices/appgallery/
https://consumer.huawei.com/tr/mobileservices/appgallery/
https://appstore.tencent.com/
https://www.apkmonk.com/


[76] Baidu. https://shouji.baidu.com/, 2024. Accessed: 2024.

[77] Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001. ISSN

1573-0565. doi:10.1023/A:1010933404324.

[78] Vladimir N. Vapnik. The Nature of Statistical Learning Theory. Springer

New York, NY, 1 edition, 1995. ISBN 978-1-4757-2440-0. doi:10.1007/

978-1-4757-2440-0.

[79] Xindong Wu, Vipin Kumar, J. Ross Quinlan, Joydeep Ghosh, Qiang Yang,

Hiroshi Motoda, Geoffrey J. McLachlan, Angus Ng, Bing Liu, Philip S.

Yu, Zhi-Hua Zhou, Michael Steinbach, David J. Hand, and Dan Steinberg.

Top 10 algorithms in data mining. Knowledge and Information Systems,

14(1):1–37, 2008. ISSN 0219-3116. doi:10.1007/s10115-007-0114-2.

[80] Chih-Wei Hsu and Chih-Jen Lin. A comparison of methods for multiclass

support vector machines. IEEE Transactions on Neural Networks,

13(2):415–425, 2002. doi:10.1109/72.991427.

[81] Harry Zhang. The optimality of naive bayes. In The Florida AI Research

Society, volume 2. 2004.

[82] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong

Ma, Qiwei Ye, and Tie-Yan Liu. Lightgbm: A highly efficient gradient

boosting decision tree. In Proceedings of the 31st International Conference

on Neural Information Processing Systems, NIPS’17, page 3149–3157.

Curran Associates Inc., Red Hook, NY, USA, 2017. ISBN 9781510860964.

[83] Candice Bentéjac, Anna Csörgő, and Gonzalo Martínez-Muñoz. A

comparative analysis of gradient boosting algorithms. Artificial Intelligence

Review, 54(3):1937–1967, 2021. ISSN 1573-7462. doi:10.1007/

s10462-020-09896-5.

109

https://shouji.baidu.com/


[84] scikit-learn developers. sklearn.model_selection.gridsearchcv — scikit-learn

1.3.2 documentation. https://scikit-learn.org/stable/modules/

generated/sklearn.model_selection.GridSearchCV.html, 2023.

Accessed: 2023-12-12.

[85] scikit-learn developers. 3.2. tuning the hyper-parameters of an estimator

— scikit-learn 1.3.2 documentation. https://scikit-learn.org/stable/

modules/grid_search.html, 2023. Accessed: 2023-12-12.

[86] skylot. Github - skylot/jadx: Dex to java decompiler. https://github.

com/skylot/jadx, 2023. Accessed: 2023-12-12.

[87] MVNRepository. Maven repository: Central. https://mvnrepository.

com/repos/central, 2023. Accessed: 2023-12-12.

[88] Sevil Sen and Burcu Can. Android security using nlp techniques: A review,

2021.

[89] PrivacyGrade. Privacygrade:grading the privacy of smartphone apps. http:

//privacygrade.org, 2021. Accessed: 2021.

[90] Li Li, Tegawendé F. Bissyandé, Jacques Klein, and Yves Le Traon. An

investigation into the use of common libraries in android apps. In 2016

IEEE 23rd International Conference on Software Analysis, Evolution, and

Reengineering (SANER), volume 1, pages 403–414. 2016. doi:10.1109/

SANER.2016.52.

[91] Georgia Kapitsaki and Modestos Ioannou. Examining the privacy

vulnerability level of android applications. In Proceedings of the 15th

International Conference on Web Information Systems and Technologies,

WEBIST 2019, page 34–45. SCITEPRESS - Science and Technology

Publications, Lda, Setubal, PRT, 2019. ISBN 9789897583865. doi:10.

5220/0007955100340045.

110

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
https://scikit-learn.org/stable/modules/grid_search.html
https://scikit-learn.org/stable/modules/grid_search.html
https://github.com/skylot/jadx
https://github.com/skylot/jadx
https://mvnrepository.com/repos/central
https://mvnrepository.com/repos/central
http://privacygrade.org
http://privacygrade.org


[92] Huseyin Alecakir, Burcu Can, and Sevil Sen. Attention: there is

an inconsistency between android permissions and application metadata!

International Journal of Information Security, 20(6):797–815, 2021. ISSN

1615-5270. doi:10.1007/s10207-020-00536-1.

[93] Saed Alrabaee, Paria Shirani, Lingyu Wang, Mourad Debbabi, and Aiman

Hanna. Decoupling coding habits from functionality for effective binary

authorship attribution. Journal of Computer Security, 27:1–36, 2019.

doi:10.3233/JCS-191292.

[94] Michael Backes, Sven Bugiel, and Erik Derr. Reliable third-party library

detection in android and its security applications. In Proceedings of the 2016

ACM SIGSAC Conference on Computer and Communications Security,

CCS ’16, page 356–367. Association for Computing Machinery, New York,

NY, USA, 2016. ISBN 9781450341394. doi:10.1145/2976749.2978333.

[95] Jiexin Zhang, Alastair R. Beresford, and Stephan A. Kollmann. Libid:

Reliable identification of obfuscated third-party android libraries. In

Proceedings of the 28th ACM SIGSOFT International Symposium on

Software Testing and Analysis, ISSTA 2019, page 55–65. Association for

Computing Machinery, New York, NY, USA, 2019. ISBN 9781450362245.

doi:10.1145/3293882.3330563.

[96] William Enck, Damien Octeau, Patrick McDaniel, and Swarat Chaudhuri.

A study of android application security. In Proceedings of the 20th USENIX

Conference on Security, SEC’11, page 21. USENIX Association, USA,

2011.

[97] Danah Boyd, Scott Golder, and Gilad Lotan. Tweet, tweet, retweet:

Conversational aspects of retweeting on twitter. In 2010 43rd Hawaii

International Conference on System Sciences, pages 1–10. 2010. doi:10.

1109/HICSS.2010.412.

111



[98] Na Cheng, R. Chandramouli, and K.P. Subbalakshmi. Author gender

identification from text. Digital Investigation, 8(1):78–88, 2011. ISSN

1742-2876. doi:https://doi.org/10.1016/j.diin.2011.04.002.

[99] Ying Zhao and Justin Zobel. Searching with style: Authorship attribution

in classic literature. In Proceedings of the Thirtieth Australasian Conference

on Computer Science - Volume 62, ACSC ’07, page 59–68. Australian

Computer Society, Inc., AUS, 2007. ISBN 1920682430.

[100] Android Developers. Shrink, obfuscate, and optimize your app | android

studio | android developers. https://developer.android.com/studio/

build/shrink-code, 2023. Accessed: 2023-12-12.

[101] Smardec Inc. Allatori java obfuscator - professional java obfuscation. http:

//www.allatori.com, 2023. Accessed: 2023-12-12.

[102] PreEmptive Solutions. Dasho | preemptive. https://www.preemptive.

com/products/dasho, 2023. Accessed: 2023-12-12.

[103] Jordan Samhi, Jun Gao, Nadia Daoudi, Pierre Graux, Henri Hoyez, Xiaoyu

Sun, Kevin Allix, Tegawendé F. Bissyandé, and Jacques Klein. Jucify:

A step towards android code unification for enhanced static analysis. In

Proceedings of the 44th International Conference on Software Engineering,

ICSE ’22, page 1232–1244. Association for Computing Machinery, New

York, NY, USA, 2022. ISBN 9781450392211. doi:10.1145/3510003.3512766.

[104] Siyi Gong and Hao Zhong. Code authors hidden in file revision histories:

An empirical study. In 2021 IEEE/ACM 29th International Conference

on Program Comprehension (ICPC), pages 71–82. 2021. doi:10.1109/

ICPC52881.2021.00016.

112

https://developer.android.com/studio/build/shrink-code
https://developer.android.com/studio/build/shrink-code
http://www.allatori.com
http://www.allatori.com
https://www.preemptive.com/products/dasho
https://www.preemptive.com/products/dasho

	ABSTRACT
	ÖZET
	ACKNOWLEDGEMENTS
	GENİŞLETİLMİŞ ÖZET
	CONTENTS
	TABLES
	FIGURES
	ABBREVIATIONS
	1. INTRODUCTION
	1.1. Scope Of The Thesis
	1.2. Contributions
	1.3. Organization

	2. RELATED WORK
	2.1. Source Code Authorship Attribution
	2.2. Binary Code Authorship Attribution
	2.3. Android Authorship Attribution
	2.4. Malware Authorship Attribution
	2.5. Finding Similarities Between Applications

	3. ANDROID BACKGROUND
	3.1. Android Application
	3.2. Android Application Signing Process
	3.3. Alternative Android Markets

	4. AUTHORSHIP ATTRIBUTION
	4.1. Features
	4.2. Representations
	4.3. Attribution Models
	4.4. Attribution Methods
	4.5. Machine Learning
	4.5.1. Classification Algorithms
	4.5.2. Cross-Validation
	4.5.3. Grid Search CV


	5. PROPOSED METHOD - ANDROID AUTHORSHIP ATTRIBUTION
	5.1. Model
	5.2. Dataset
	5.3. Feature Extraction
	5.3.1. Feature Set Descriptions

	5.4. Feature Processing
	5.5. Machine Learning (ML) Model Development and Optimization

	6. EXPERIMENTAL RESULTS
	6.1. RQ1 - Performance of classification algorithms on Android AA
	6.2. RQ2 - The ideal set size for n-gram
	6.3. RQ3 - Custom code vs. all code including TPL
	6.4. RQ4 - Effectiveness of the proposed approach
	6.5. RQ5 - Metadata Features
	6.6. RQ6 - Most Effective Features on Android AA
	6.7. RQ7 - The Effect of the Number of Features
	6.8. RQ8 - The Effect of the Number of Applications per Developer
	6.9. RQ9 - Effect of Application Versions
	6.10. RQ10 - Effect of Obfuscation
	6.11. RQ11 - Analysis of Clone Applications

	7. GENERAL DISCUSSION
	7.1. Usage of Native Code
	7.2. Obfuscation
	7.3. Dataset
	7.4. Clone/Repackaged Applications
	7.5. Applications Developed by Multiple Authors

	8. CONCLUSION

