ANDROID AUTHORSHIP ATTRIBUTION USING
SOURCE CODE-BASED FEATURES

KAYNAK KODU TABANLI OZELLIKLER
KULLANILARAK ANDROID YAZARLIK
ILISKILENDIRMESI

EMRE AYDOGAN

PROF. DR. SEVIL SEN

Supervisor

Submitted to
Graduate School of Science and Engineering of Hacettepe University
as a Partial Fulfillment to the Requirements
for the Award of the Degree of Doctor of Philosophy

in Computer Engineering

January 2024

ABSTRACT

ANDROID AUTHORSHIP ATTRIBUTION USING SOURCE
CODE-BASED FEATURES

Emre Aydogan

Doctor of Philosophy , Computer Engineering
Supervisor: Prof. Dr. Sevil SEN
January 2024, 154 pages

With the widespread use of mobile devices, Android has become the most popular
operating system, and new applications are uploaded to the Android market every
day. However, the simplicity of modifying and repackaging Android binaries enables
other developers to easily alter and mimic Android applications, subsequently releasing
them on third-party Android markets. Determining the original developers of Android
applications is a challenging problem known as authorship attribution. This study
explored the distinctive features of Android applications to identify their authors.
Software developers generally leave a footprint that describes their writing styles on
their applications. This footprint, which can be extracted from either the source
code or binary code, can help identify the authors of software applications. Due to
the impracticality of accessing the source code for applications found in real-world
scenarios, particularly in the case of malware, researchers concentrate their efforts on
analyzing the binaries of these applications. Therefore, this study proposes an approach
that identifies Android developers by deriving a wide range of features from different
parts of Android applications, such as smali files, libraries, manifest files, and metadata
information. Moreover, other features such as configuration, dex code, resource-based,

i

and string-related features are inherited from other studies in Android authorship
attribution and fused with the proposed feature set. The proposed approach was
evaluated on benign and malware datasets and compared with those of other studies.
The results show that the proposed features increased the accuracy by showing 82.5%
and 95.6% in the market and malware datasets, respectively. The results demonstrate

the positive effect of the proposed features on Android authorship attribution.

Keywords: Authorship Attribution, Mobile Malware, Source Code-Based, Android,
Obfuscation, Metadata

ii

OZET

KAYNAK KODU TABANLI OZELLIKLER
KULLANILARAK ANDROID YAZARLIK
ILISKILENDIRMESI

Emre Aydogan
Doktora, Bilgisayar Miihendisligi
Danisman: Prof. Dr. Sevil SEN

Ocak 2024, 154 sayfa

Mobil cihazlarin yayginlagmasiyla birlikte Android, en popiiler igletim sistemlerinden
biri haline gelmisgtir. Her giin Android platformuna yeni uygulamalar eklenmektedir.
Ancak, Android wuygulamalarmin ikili dosyalarimi kolayca degistirip yeniden
paketleyebilme imkani nedeniyle, bu uygulamalar diger gelistiriciler tarafindan rahatga
modifiye edilebilir ve taklit edilebilir hale gelmigtir. Bu durum, uygulamalarin
orijinal geligtiricilerini belirlemeyi, bagka bir deyigle yazarlik iligkilendirmesini oldukca
zor bir sorun haline getirmigtir. Bu c¢alisma, Android uygulamalarimin o6zgiin
karakteristik ozelliklerini tespit etmeyi amaglamaktadir. Gelistiriciler, genellikle
uygulamalarinda kod yazim stillerini tanmimlayan izler birakirlar. Bu izler, kaynak kodu
veya ikili kod tizerinden tespit edilebilir. Bu durum, uygulamalarinin gelitiricilerinin
belirlenmesinde 6énemli bir yardimci olabilir. Kaynak kodunun elde edilmesi, ¢zellikle
kotii amagh yazilimlar soz konusu oldugunda, her zaman miimkiin olmayabilir.
Bu yiizden aragtirmacilar, uygulamalarin ikili dosyalar1 tizerine odaklanmay1 tercih
etmiglerdir. Bu calisma, Android uygulamalarimin gesitli béliimlerinden - Ornegin
smali dosyalar, kiitiiphaneler, manifest dosyalar1 ve meta veri bilgileri - genis bir

iii

oznitelik yelpazesi ¢ikarmay1 ve bu oOznitelikler tizerinden Android gelistiricilerini
tanimlamay1 onermektedir. Diger Android yazarlik iligkilendirmesi c¢aligmalarindan
alinan yapilandirma, dex kodu, kaynak tabanli ve dizgi ile ilgili 6znitelikler de
bu calismada onerilen éznitelik setine entegre edilmistir. Onerilen yaklagim zararh
olmayan ve kot amagl veri kiimeleri iizerinde test edilmis ve diger caligmalarla
kargilagtirilmigtir. Elde edilen sonuglar, oOnerilen o6zniteliklerin dogruluk oranini
artirdigini géstermis; market ve kotii amacgh yazilim veri kiimelerinde sirasiyla
%82,5 ve %95,6 oraminda dogruluk saglanmistir. Bu sonuclar, Android yazarhk

iligkilendirmesinde onerilen 6zniteliklerin olumlu etkisini ortaya koymaktadir.

Keywords: Yazarlik Iliskilendirmesi, Mobil Zararli Yazihmlar, Kaynak Kod,

Android, Kanstirma, Ustveri

iv

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my supervisor, Prof. Dr. Sevil SEN, for her
valuable advice, guidance, and encouragement. She patiently supported me with her
knowledge and experiences throughout the preparation of this thesis and my doctorate

education.

Besides, I would like to thank my thesis committee members, Prof. Dr. Ali Gékhan
YAVUZ, Asst. Dr. Burcu CAN for their valuable advice and guidance through my
thesis, and Prof. Dr. Ilyas CICEKLI and Asst. Dr. Engin DEMIR for reviewing this

thesis and giving their insightful comments.

I wish to show my gratitude to the current and former administrative board as well
as the academic personnel at the Department of Computer Engineering at Antalya

Akdeniz University for letting me study at Hacettepe University.

I would like to thank my friends Dr. Selim YILMAZ, Dr. Levent KARACAN, Dr.
Cagdas BAS, Dr. Aysun KOCAK, Dr. Cemil ZALLUHOGLU, all the members
of Wireless Networks and Intelligent Secure Systems Laboratory (WISE Lab.) of
Hacettepe University, and all the academic personnel and research assistants I worked

with at the Department of Computer Engineering at Hacettepe University.
I would like to thank my teammates at Karel, where I work, for supporting me.

I wish to express my huge gratitude to my mother and my father for their self-devotion,
love, and giving me opportunities that have made me who I am and to my brother for

their love and support that I have felt throughout my life.

I would like to pay my special regards to my beloved wife, Derya, for continually
encouraging me during my Ph.D. and for her support that I feel every time I need it

during my academic life.

GENISLETILMIS OZET

GIRIS

Yazarlik iliskilendirmesi (YI), bir bilgisayar programinin gelistiricisini belirlemeyi
amaglar. Temelde yazilim hirsizligini tespit etmek ve telif haklari sorunlarini ¢ézmek
icin kullanilsa da, dijital adli tip ve kotii amacgh yazilim analizi gibi alanlarda
da kullamilir. Yazilim gelistiriciler, genellikle uygulamalarina, kodlama stillerini
tanimlayan izler birakir. Bu nedenle, aym gelistirici tarafindan geligtirilen uygulamalar
arasinda gugli bir korelasyon vardir [1]. Literatiirde, bu izler ilk kez uygulama
geligtiricilerini belirlemek i¢in kullanilmigtir. Orijinal yazilimlarin modifikasyonlar:
olan yazilim varyantlarimin ortaya cikisiyla, aragtirmacilar otomatik olarak yazilim

hirsizhigin ve telif hakk: sorunlarini belirleme konusuna odaklanmiglardir.

Yazarlik iligkilendirmesinin 6nemli uygulamalarindan biri, kotii amach yazilim
geligtiricilerini belirlemektir. Bu durum, yeni kotii amagh yazilim sayisinda ve
mevcut kotli amach yazilimlarin yeni varyasyonlarinda gozlemlenen onemli artigtan
kaynaklanmaktadir [2]. Y1, yeni kotii amach yazilimlarin gelistiricilerini belirlemek
icin kullanilabilir. Geligtiricileri izleyerek koétii amagh yazilimlarin evrim stirecini
gozlemlemeye yardimci olabilir. Ayni sekilde, bilinen saldirganlar tarafindan gelistirilen
yeni programlarin kontrol edilmesi icin de kullamilabilir. YT {izerine ¢ok sayida calisma,
olmasina ragmen, ozellikle Android kotii amach yazilimlari tizerindeki aragtirmalar

aragtirmacilar tarafindan yeterince derinlemesine incelenmemistir [3-5].

Yazarlk iligkilendirilmesinde kaynak kod ve ikili kod tabanli olmak tizere iki
ana yaklagim bulunmaktadir. Baglangicta aragtirmacilar, bilinmeyen gelistiricileri
belirlemek igin yazilimlarin kaynak koduna odaklanmiglardir [6-10]. Bunun énemli
sebebi kaynak koddan cikarilan bazi belirgin o6zelliklerin, derleme tamamlandiginda
kaybolmasidir. Kullandiklar1 teknikler, satir uzunlugu, ortalama prosediir uzunlugu,
metod sayisi, isimlendirme kurallar1, yorumlar, programlama diizeni 6zellikleri (bogluk,

girintileme vb.), degigken isimleri, kontrol akig yapilar1 ve geligtirme ortami (bilgisayar

vi

platformu, programlama dili, derleyici) gibi birgok farkli o6zelligi igerir. Ancak,
ozellikle kotii amacli olanlar olmak tizere, yazihmlarin kaynak kodlarmmi bulmanin
kullanilabilecek tek kaynak, uygulamanin ikili kodudur. Literatiirde, yazilimlarin
ikili kodu tizerinde caligan aragtirmacilar bulunmaktadir [1, 11, 12]. Ancak, ikili
koda dayali geligtiricileri belirlemek, kaynak koda dayali gelistiricileri belirlemekten
¢ok daha zordur. Derleme siireci sirasinda, derleyiciler optimizasyon teknikleri
aracihgiyla ikili kodun yapisim degistirebilir ve bu da Y1'yi etkileyebilir. Ornegin, Y1
acisindan degerli bazi 6zellikleri, dilbilgisi ve bigimlendirme gibi, kaldirabilirler. Ayrica,
farkli derleyicilerin kullanimi nedeniyle, ¢ogu akademik calisma belirli derleyicilere
ve derleme ayarlarma baghdir [13]. Tim bu zorluklara ragmen, kaynak kodunun
bulunamamasi nedeniyle kotii amach yazihimlarin yazarhk iligkilendirilmesi icin ikili
koda giivenilmek zorunda kalinmistir. Ustelik, yazarhk iliskilendirilmesinde kullanilan
popiiler tekniklerin, makine Ogrenimi ve derin o6grenme gibi, performansi biiyiik
Olctide egitim verisinin boyutuna baghdir. Uygulamalarin ikilileri kolayca elde

edilebildiginden, ikili kod YI arastirilmas: gereken bir alan olarak degerlidir.

Bu tezin amaci, 6zellikle kot amach yazilimlar olmak tizere, belirli bir grup igerisindeki
uygulamalarin geligtiricilerini tamimlamaktir. Bu, bazi geligtiricilerin bagkalarina
ait uygulamalar1 kendi uygulamalariymig gibi uygulama marketlerine ytiklemeleri
durumunda kritik 6énem tagir. Gelistiriciler, bagkalarimin ¢aligmalarini geri derleme
yapip degigtirerek bu durumu gerceklestirirler. Bu siireg, kotii amach yazilim alaninda
yaygin bir pratik olan yeniden paketleme olarak bilinir. Bu sebeplerle, bu ¢aligmada
onerilen yontem, belirli bir yazar tarafindan yazilmig gibi goriinen fakat aslhinda
yazilmamig uygulamalarin tespit edilmesine odaklanmigtir. Ek olarak, onerilen yontem,
ticari amaglarla gelistirilen ancak daha sonra bagka bir geligtirici tarafindan yeniden
tespiti saglayarak telif hakki sorunlarimi onleyebilir. Ayrica, bu aym siire¢ 6grenci
odevlerine de uygulanabilir ve 6grencilerin geligstirme sirasinda kodu bagka bir yerden

alip almadiklarini belirlemede yardimei olur. Sonug olarak, bu aragtirma sadece yazilim

vii

gelistirmede 6nemli bir zorlugu ele almakla kalmaz, ayn1 zamanda akademik diirtistligi

koruma konusunda da yenilik¢i bir yaklagim sunar.

Kotii amach yazilim gelistiricileriyle ilgili senaryo o6zellikle 6nemlidir. Bu gelistiriciler
siklikla, uygulamalarimin erken siirtimlerini farkli takma adlar altinda cesitli
platformlara, alternatif marketlere ve ¢evrimici analiz araglarina yiikleyerek dolayli
geri bildirim alirlar. Aldiklar1 bu geri bildirimleri kullanarak, antiviriis sistemlerini
atlatma stratejileri geligtirirler. Bu calismada onerilen yontem, bu kurnaz taktigi
adresler ve herhangi bir ortama yiiklenen bir uygulamanin analiz edilmesine olanak
tanir. Onemli bir sekilde, énerilen yontem, bir uygulama baslangicta geleneksel tespit
sistemleri tarafindan kotii amach olarak algilanmasa bile, onun bilinen bir kotii amagch
yazilim geligtiricisine ait oldugunu belirleyebilir. Bu sayede, s6z konusu uygulamalar
potansiyel bir kotii amach uygulama olarak isaretlenebilir. Bu proaktif yaklagim, kotii

amacl yazilim analistleri ve antiviriis sistemleri i¢in 6nemli bir avantaj saglar.

Ayrica, onerilen yontem koti amach yazilim arastirmalar: igin 6nemli bir avantaj
saglar. Farkli zamanlarda piyasaya siiriilen aym kotii amagh yazilimin striimlerini
kiimeleyebilme yetenegi, kotii amagh yazilimlarin evrimini kapsaml bir gekilde anlamak
icin kritik 6neme sahiptir. Bu bilgiler, 6zellikle Android kotii amagh yazilim gelistirme

evrimi alaninda son derece yararhdir.

Bu calisma, Android uygulamalarmin Yazarlik Iligkilendirmesi icin ayirt edici
ozniteliklerini incelemektedir. Aragtirma kapsami, uygulamalarin smali dosyalari,
kitiphaneleri ve izinleri gibi bilegenlerinden ve alternatif marketlerdeki metadata
bilgilerinden toplanan yeni Oznitelikleri icermektedir. Bu yeni toplanan 6znitelikler,
daha onceki calismalarda kullanilan 6zniteliklerle [14-16] birlikte, kapsaml bir analize

tabi tutulmaktadir.

Bu arastirmada Ozellikle, farkli oznitelik gruplarmm YI fizerindeki etkisini
incelenmektedir. Mevcut literatiirde Onerilen 6zelliklerin farkl veri setleri kullanilarak
analiz edilmis olmasi1 goz oniinde bulundurularak, adil bir karsilagtirma saglamak

amaciyla ortak bir deneysel gerceve olusturulmustur. Kullanilan Veri seti, cesitli

viii

Android marketlerden ve c¢aligmalardan zararsiz, kotii amach ve karigtirilmig

uygulamalar1 icermekte olup, Bolim 5.2.’de detaylandirilmigtir.

Cahgmaya dahil edilen oOznitelikler, oOnceki aragtirmalardan gkarilmig [14-16],
yapilandirma, DEX (Dalvik Executable) kodu, kaynak ve dizgi tabanlh &geleri
kapsamaktadir. Her oOznitelik kategorisi, APK dosyalarinin belirli bilegenlerinden

gikarilmigtir:

+ Yapilandirma Oznitelikleri: Bunlar APK dosyalarinin manifest dosyasindan
elde edilmektedir. Manifest dosyasi, uygulamanin kurulumu ve izinleri hakkinda

bilgiler saglayarak, yapilandirma verileri i¢in zengin bir kaynak olugturur.

« DEX Kod Oznitelikleri: dex dosyasmdan dogrudan c¢ikarilan bu éznitelikler,
uygulamanin yapisal 6gelerine, 6rnegin metodlara, simiflara ve alan yapilarina

odaklanir. dex dosyasi, uygulamanin kaynak kodunun derlenmis versiyonudur.

« Kaynak Oznitelikleri: Bu 6znitelikler, geri derleme yapilan APK dosyalarmin
“res” dizininden toplanir. Resimler ve yerlesim dosyalari gibi kaynaklar: iceren

“res” dizini, uygulamanin gorsel ve yapisal yonleri hakkinda bilgiler saglar.

+ Dizgi Tabanli Oznitelikler: Burada, hem strings.zml dosyasindaki hem de
dexr dosyasindaki dizgiler kullanilir. Bu dizgilere n-gram analizi uygulanarak,
uygulamanin kodlama stili ve igerigine 0zgii desenleri ve dizgileri ortaya

gikarilabilir.

KATKI

Bu arastirmada, Android YT icin yenilik¢i ve etkili bir yaklasim énerilmektedir. Bu

tezin ana katkilar1 asagidaki sekilde 6zetlenebilir:

o Kaynak kodu YI’den miras alman oznitelikler smali dosyalarindan elde

edilmistir. Bu 6znitelikler bu calismada Android YI icin ilk kez kullanilmigtir.

ix

Sonuclar, kaynak kodu bazli 6zniteliklerin uygulamalar: ilgili geligtiricilerine

iligkilendirmede dogrulugu artirdigini gostermistir.

Bu calismada, daha onceki arastirmalarda dizgi Oznitelikleri olarak kullanilan

TPL ve izin 6znitelikleri, ikili 6znitelikler olarak kullanilmigtir.

Geleneksel uygulama dagitim mekanizmalarinin tersine, Android uygulamalari
mobil marketler araciligiyla merkezi bir sekilde dagitilir. Bu durum,
uygulamanin kendisinin yani sira, uygulama acgiklamalar1 ve kullanici yorumlar
gibi Android uygulamalar1 hakkinda zengin metadata elde edilmesini saglar.
Bu calismada, Android Y1 iizerinde metinsel metadatanin etkisi incelenmistir.
Ozellikle, metadata ozniteliklerinin, bu cahsmada kullamlan kaynak kodu
bazl 6zniteliklerle birlestirildiginde, YI alaninda olumlu bir etkisi oldugu
gozlemlenmistir. Bu calisma, Android YI alaminda metadata aciklamalarini

kullanan ilk calismalardan biridir.

Bu c¢alismada oOnerilen yaklagimin performansi kapsamli bir gekilde analiz
edilmistir. Android YI {izerinde her éznitelik setinin etkisini analiz etmenin
yani sira, literatiirde onerilen ¢alismalar kargilagtirilmistir. Deneysel sonuclar,
bu calismada onerilen o6zniteliklerin yazarlik iligkilendirmede olumlu etkisini

gostermektedir.

Bu calismada ayrica, YI perspektifinden hem versiyon uygulamalar hem de
karigtirilmig uygulamalar detayh bir sekilde ele alinmigtir. Bu ¢aligma, versiyon

uygulamalarinin analizine odaklanan ilk ¢aligmadir.

Zararsiz, kotii amacli, versiyon ve karigtirilmig gibi farkh karakteristiklere sahip
gesitli uygulamalar toplanmigtir. Veri seti, beg farkh alternatif Android marketten
toplanan ve her biri 10’dan fazla uygulamaya katkida bulunmus 488 benzersiz
geligtiriciden olan 10,385 zararsiz Android uygulamasindan olugsmaktadir. Ayrica,
cesitli kaynaklardan elde edilen 153 gelistiriciden 3,000’den fazla kotii amach
uygulamay1 icermektedir. “Obfuscapk” araci kullanilarak yaklasik 6,000

karigtirilmig uygulama ve zararsiz veri setinden elde edilen 1,000’den fazla

versiyon uygulama icermektedir.

e Bu caligma sonucu olusan kodlar agagidaki adreste paylagilmigtir:

https://github.com/emreaydogan/SourceCodeBasedAAA

ILGILI CALISMALAR

Son yillarda, mobil cihazlar kullanimlari, popiilerlikleri ve satig acisindan masatistii
cihazlar1 geride birakmistir. Bu calisma Android ortaminda zararli ve zararsiz
uygulamalarin yazarlarimi bulmay1 amacladig: icin, Android Yazarlk Iliskilendirmesi
tizerine yapilan ilgili caligmalar incelenmigtir. Ayrica, yeni 6nerilen smali dosyalarindan
gikarilan kaynak kodu tabanli, metadata ve tiglincii parti kiittiphane (TPL) 6znitelik

setleri, agagida verilen ¢aligmalarda kullanilan 6zellik setleriyle kargilagtirilmigtir.

APK dosyalarimin dizgi analizine dayali bir cahgma, Kalgutkar vd. tarafindan
onerilmigtir [14]. Bu cahgmada t¢ tir dizgi kullamlmigtir: dexr dosyasmdaki
dizgi tamimlayic1 listesi, dex dosyasinda sunulan tiim dizgi bilegenleri ve strings.xml
dosyasindan cikarilan dizgiler. Daha sonra, bu dizgi listeleri iizerinde n-gram analizi
uygulanarak, bir gelistiriciyi temsil eden 6znitelik vektorii olusturulmustur. Son olarak,
geligtiriciler Destek Vektor Makineleri (SVM) kullanilarak smiflandirilmigtir. Onerilen
yaklagim, zararsiz, kotii amagh ve karigtirilmig uygulamalari iceren farkl veri setlerinde

degerlendirilmistir ve sirasiyla %98, %96 ve %71 dogruluk oranlar: elde edilmistir.

Gonzalez vd. [15] tarafindan, dex dosyasindan aliman bayt kodlari smali temsiline
doniigtirerek dizi ile ilgili, dizi ile ilgisiz ve n-gram ozelliklerine dayanan bir yontem
onerilmigtir. Bu yontem, profil olugturma ve artimlh analiz olmak tizere iki asamadan
olusmaktadir. Ilk asamada, yazar profilleri Rastgele Orman algoritmas: kullanilarak
olusturulmustur. Ikinci asamada, yeni uygulamalar mevcut profillerle iligkilendirilerek
ve heniiz mevcut yazarlara iligkilendirilmemis uygulamalar i¢in yeni olasi profiller

bulunarak artimh analiz uygulanmigtir. 33 yazar ve 1428 uygulama iceren bir veri

Xi

https://github.com/emreaydogan/SourceCodeBasedAAA

setinde %97,5 dogruluk oram elde edilmistir. Ayrica, cesitli kaynaklardan toplanan
131.000’den fazla uygulamaya ilgili yontem uygulanmigtir.

Guoai vd. [16] tarafindan o6nerilen yeni bir yaklasim olan AppAuth, etiket isimleri,
ikonlar, benzer paket isimleri ve dosya boyutlar1 gibi ortak ozniteliklere sahip bir
grup yeniden paketlenmis Android uygulamasimin orijinal yazarini tespit etmektedir.
APK dosyalarindan gesitli kodlama stili ile ilgili 6znitelikler ¢ikarilmigtir: i) dex
dosyasindan ikili 6znitelikler; ii) geri derleme yapilan dosyalardan kaynak éznitelikleri;
ve 1iii) manifest dosyasindan alman yapilandirma Oznitelikleri. 75 klon c¢iftinin
69 orijinal yazar1 (%92) bagariyla tammlanmigtir. Ayrica, bagimsiz gelistiricileri
ve gelistirme takimlarini kullanarak tahmin performansi degerlendirilmigtir. Bu
calismanin ana dezavantaji, karsilagtirdiklar1 uygulamalarin orijinal bir uygulamanin
yeniden paketlenmisg halleri olmasi durumunda, orijinal yazar yerine sahte bir yazar

bulmalaridir.

Wang vd. [17] ti¢ tiir dizgi ile ilgili 6zellik gikarmigtir: DEX tabanli, manifest tabanl
ve lib tabanlh ozellikler. dex dosyalarindan, tanmimlayici isimler, talimat dizileri ve
Android API'lerinin kullanimi toplanmigtir. Etkinliklerin, saglayicilarin, hizmetlerin ve
yayin alicilarinin isimleri ¢ikarilmig ve manifest dosyasindan 6znitelikler kullanilmigtir.
Son olarak, uygulamalarda kullanilan TPL’lerin isimleri elde edilmistir. Oznitelikleri
geligtiricilerin profil vektorlerine doniigtiirmek icin CountVectorizer, TFIDF Vectorizer
ve word2vec modelleri kullanilmigtir. En iyi sonucu word2vec modeli vermis ve
sonraki deneylerde kullanilmigtir. Daha sonra, bu vektorlere tic makine Ogrenimi
modeli (Dogrusal SVM, Rastgele Orman ve Lojistik Regresyon) uygulanmig ve zararsiz,
kotii amagh ve karigtirilmig uygulamalar igeren farkli veri setlerinde gelistiricileri
siniflandirmak i¢in kullanilmigtir. Sonuglar, énerilen yaklagimin tiim set i¢in ortalama
%92,5 dogruluk elde ettigini gostermigtir. Ayrica, 2,900 uygulamada AppAuth’tan

daha iistiin performans gostererek, yazarlik tanimlamayi %3,4 oraninda iyilegtirmistir.

Daha o6nceki ¢caligmalardan farkli olarak, bu ¢aligmada 6nerilen yaklagim uygulamalarin

market sayfalarindan metadata bilgilerini icermektedir. Ayrica, adil bir kargilagtirma

xii

saglamak icin ortak bir veri seti kullanarak, literatiirdeki Android YI alanindaki
tiim Ozellik setleri karsilagtirilmigtir. Veri seti, diger caligmalarda kullanilanlardan
daha biytlktir ve hem zararsiz hem de kotii amach uygulamalarin kapsamli bir
karigitmini icermektedir. Bu galisma ve yukarida bahsedilen c¢aligmalar Tablo 2.1'de

kargilagtirilmigtar.
ANDROID

Android, Linux ¢ekirdegi tabanh en yaygm kullanilan mobil igletim sistemidir (OS)
ve Ekim 2023 itibariyla diinya ¢apinda %70.76 kullamim oraniyla mobil endiistrinin
temel taglarindan biridir [18]. Geligtiricilerin uygulamalarim kolayca dagitabilmeleri
icin resmi bir market olan Google Play [19] sitesine sahiptir. Ayrica, geligtiricilerin
uygulamalarim Aptoide [20] ve Apkmirror [21] gibi alternatif Android marketlere
yiiklemelerine de olanak tanir. Bu nedenle, Android uygulamalari, APK dosyalari,
bu tiir marketlerden kolayca toplanabilir. Android uygulamalari, Java veya Kotlin
programlama dilleri kullanilarak geligtirilir. Daha sonra, Java sanal makinesi i¢in bir
baytkoda derlenirler. Son olarak, bu Java baytkodlari, Dalvik baytkodlarina cevrilir
ve der dosyalarinda saklanir. Dalvik baytkodlarin okunmasi veya degistirilmesi zor
oldugundan, genellikle class dosyalarimin i¢ine bakmak icin smali ara dili kullanilir.
smali, Dalvik baytkodunun okunabilir temsilidir. smali dosyalar1 ayni zamanda

dogrudan APK dosyalarindan da cikarilabilir.

Bir Android uygulamasi dex dosyalari, manifest dosyasi, kaynak dosyalari ve dizgi
dosyalar:1 gibi gesitli 6gelerden olugur. Bu dosyalarin tiimii, uygulama hakkinda bilgi
toplamak icin kullanilabilir. Ornegin, manifest dosyas1 uygulamalarda kullanilan servis,
aktivite ve izinlerin sayisi gibi bilgileri icerirken, kaynak dizinlerinde uygulamalarda
kullanilan resimler, kiitiiphaneler ve XML dosyalar1 bulunabilir. Dizgi kaynaklar,
uygulamalar i¢in metin dizgileri saglar [22]. Ug tiir dizgi vardir: Dizgi, Dizgi Dizisi
ve Miktar Dizgileri. Tium dizgiler, stil isaretleme ve bicimlendirme argiimanlarin
uygulama kapasitesine sahiptir. dexr dosyasi, Java/Kotlin sif dosyalarmi igerir.

Siif dosyalarini der dosyalarmin ara temsilleri olan smali dosyalarina doniigtiirmek

xiii

miimkiindiir. Derleme islemi gergeklestirildiginde bir kaynak kodunun bazi dilbilgisi ve
bi¢imlendirme 6zellikleri kaybolmasina ragmen, Dalvik tabanli ¢aligtirilabilir dosyalar,
smali dosyalarinda baz1 iggortlii bilgiler igerir. Sekil 3.1, 6rnek bir Java/C++ uyumlu
kod parcasini, ona karsilik gelen smali ve assembly kodlarini sirasiyla gostermektedir.
smali kodu, degisken isimleri ve metod imzalar1 gibi bilgileri korurken, assembly kodu,
derleme siirecinden sonra bu tiir bilgileri kaybeder. Bu nedenle, kaynak kodu YT ile

ilgili baz1 6znitelikler smali dosyalarindan elde edilebilir.

Android uygulamalari, bu calismada kullanilan farkli 6znitelik setlerine karsilik gelen

gesitli bilesenlere ayrilmigtir.

e Yapilandirma: Android uygulamalari, aktiviteler, servisler, yayin alicilar ve
igerik saglayicilar olmak tizere dort ana unsurdan olusurlar. Her bilesenin kendi
amac1 ve yasam dongiisii vardir ve bu dongii bilegenlerin nasil olusturulup yok
edilecegini tanimlar. Aktiviteler, kullanicilarin uygulamalarla nasil etkilesimde
bulunduklarini tanimlar. Kullanicilarin sistem kaynaklarini kullanmalarina
olanak taniyan kullanici araytizlerini tanimlamak icin kullanilirlar. Android’deki
her tekil uygulama ekranmi aktivitelere denk gelir. Bazi aktiviteler, diger
aktiviteleri tetikleyebilir. Servisler, arka planda uzun siireli iglemler gergeklestirir
ve bir kullanici araytizii icermezler. Yaymn alicilar, bir uygulamanin bir sistem
veya bir uygulama olayma baglanmasimi saglarlar. Android isgletim sistemi,
bir olay tetiklendiginde bagh uygulamay1 bilgilendirir. Icerik saglayicilar,
uygulama veritabanlarindaki verilere erigsimde kullanilir. Bir uygulama, kendi
veritabanini diger uygulamalarla paylagsmak icin icerik saglayicilar1 kullanabilir.
Boylece, tek bir icerik parcasi birden fazla uygulama arasinda dagitilabilir.
Tim bilegenler, Android manifest dosyasinda beyan edilir. Geligtiriciler,
uygulamalarim gelistirirken ayni Android manifest dosyasini yeniden kullanma
egilimindedir. Bu nedenle, manifest dosyasindaki bilgiler, 6rnegin bilegenlerin

sayisi, geligtiricileri birbirinden ayirt etmekte yardimer olabilir.

Xiv

« Kaynak Dosyalari: Android uygulamalari, res dizininde saklanan resimler,
sesler, ikonlar ve yerel kiitiiphaneler gibi kaynak dosyalari icerebilir. Dosyalar, dil
destegi saglama ve kullanici arayiizii i¢in resimler sunma gibi cegitli nedenlerle
kullanilabilir. res dizinindeki bazi dosyalar, dinamik kiitiiphaneler, veritabani
dosyalar1 ve yiik dosyalari gibi, caligma zamaninda erisilebilir. Geligtiriciler,
bu dosyalara bazi 6zel ve kritik bilgileri yerlegtirir. Bu nedenle, bu dizinlerin

ozelliklerini analiz etmek 6nemlidir.

« DEX Kodu: der dosyasi, Sekil 3.2’de gosterildigi gibi, uygulamalarin yapisi
hakkinda bilgi igerir. AppAuth [16], dez dosyalarindaki veri boliimiinii temel
olarak analiz eder ve metodlar, smiflar ve alan yapilarina, ayrica notasyon,
arayiiz, hata ayiklama bilgileri vb. tizerine odaklanir. Uygulama boyutlar: 6nemli
olctide degisebileceginden, bu 6zelliklerin sayisal degerleri yerine oran degerlerini

kullanir.

e Dizgi: strings.xml dosyasindaki dizgiler, uygulama dizgi Oznitelikleri olarak
satir satir cikarilir. Bu dizgiler, uygulamalarin kaynak koduna veya diger
kaynak dosyalarina referanslar icerir. Bunlar, uygulamanin adi gibi kullanicilara
gosterilen statik dizgilerdir. dexr dosyasi, dizgi id listesi, tip id listesi ve
metod id listesi gibi farkli boliimlerden olusur. Dizgi id listesi esas olarak
bir uygulamanin kaynak kodunda kullanilan dizgileri icerir. = Ancak, kotii
amacl yazilim geligtiricileri, kotiictil kodlarini ¢calisma zamaninda ¢aligtirmak ve
analizden kaginmak igin dizgi ID listesine yerlestirir. Bir dex dosyasiin dizgi id

listesi boliimiindeki dizgiler, DEX dizgi 6znitelikleri olarak cikarilir.

« Kaynak Kodu: smali dosyalari, smif dosyalarindaki Java baytkodlarindan
tretilen Dalvik-byte/smali kodlarmi igerir. Yiiksek seviyeli bir dilden
tretilirler ve smali i¢gin Android Runtime (ART) araciligiyla makine koduna
déniigtirilirler. Isletim sistemi, bu makine kodlarini cahistirarak uygulamalar
caligtirir. Sekil 3.1’de, find__maxzimum adinda bir Java fonksiyonuna kargilik gelen

smali ve assembly kodlar1 gosterilmigtir. Sekil 3.1’de goriildiigii gibi, orijinal

XV

kaynak kodlarindaki fonksiyon parametrelerinin ve global ve yerel degigkenlerin
isimleri assembly dosyalarinda korunmaz, ancak smali dosyalarinda korunur.
Ornegin, n, maz, index yerel degiskenleri ve a, n fonksiyon parametreleri sekilde
verilen smali kodunda korunmustur. Geligtiricilerin, degigken isimlerinde $
karakteri veya rakamlar gibi tanimlayicilarda ayni formati kullanma egiliminde
olduklar1 gosterilmistir. Bu nedenle, bu tiir isimlerin geri derleme yapilmig kodda

korunmasi, gelistiricileri tanimlamada yardimeci olabilir.

fzin: Mobil cihazlar cihazin sistem kaynaklarm kullanmak icin izinlere ihtiyac
duyar. Uygulamalar, yalnizca manifest dosyasinda tanimlanan izinler araciligiyla
kamera ve GPS gibi cihaz kaynaklarina erigebilir ve bunlari kullanabilir. Normal
izinler otomatik olarak verilirken, tehlikeli izinler kullanici onay1 gerektirir.
Cogu uygulama, kullandiklarindan daha fazla izin ister. Istenen izinler ile
calisma zamaninda kullanilan izinler arasindaki fark: degerlendiren bir ¢alismaya
gore, uygulamalar ortalama olarak ihtiya¢ duyduklarindan %30 daha fazla izin
kullanirlar[23]. Bir gelistirici farkh kategorilere ait uygulamalar geligtirmis olsa
da, kolayligi nedeniyle bu uygulamalarda ayni manifest dosyasini kullanabilir.
Ayrica, ayni yazar tarafindan geligtirilen uygulamalarda ayni1 TPL’yi kullandiklar:

i¢in, bu kiitiiphanelerin gerektirdigi ayni izinleri kullanmalar1 gerekir.

Kiitiiphane: Gelistiriciler, bazi iglevlerini uygulamalarinda saglamak igin
sifirdan geligtirme yapmak yerine TPL (Ugiincii Parti Kiitiiphaneler) kullanmay1
tercih ederler. Cogu uygulamanim 20’den fazla TPL kullandigi gosterilmistir [24]
ve uygulama kodunun biiyiikk bir kismi bu tur kiitiiphanelere aittir [25, 26].
Geligtiriciler, ayni iglevselligi saglamak icin genellikle tanidik olduklari ayni

kiitiiphaneyi kullanma egilimindedir.

Metadata: Android uygulamalarimin merkezi mobil marketler aracihigiyla
dagitimi, geleneksel uygulama dagitim yontemlerinden farklhidir. Bu marketler,

uygulama agiklamasi, uygulama derecelendirmesi ve kullanici incelemeleri gibi,

xvi

uygulama hakkinda bilgi iceren, metadata olarak bilinen bilgileri uygulamanin

kendisiyle birlikte igerirler.

YAZARLIK ILISKILENDIRMESI

Yazarhk iligkilendirmesi, bir metin veya yazilimin orijinal yaraticisini belirlemeyi
amagclar. Literatiirde [27, 28], yazilimda yazarlk iligkilendirmesi siireci, Sekil 4.1’de
gosterildigi gibi dort adimhik bir yaklagimi takip eder. Yazarlik iligkilendirmesi
siireci, hem ikili hem de kaynak kodu kullanir. Kodun o6zellikleri, sozciiksel,
sozdizimsel, anlamsal, davramigsal ve uygulamaya 0Ozgii 6znitelikler de dahil olmak
lizere, analiz i¢in koddan ¢ikarilir. Daha sonra kodun ¢esitli temsilleri kullanilir, bunlar
arasinda andaclar, dizgiler, n-gramlar, deyimler, ¢izgeler ve agaclar bulunur. Yazarlk
modelleri, profil tabanli, 6érnek tabanli veya hibrit olarak kategorize edilebilir. Bu
modeller, benzerlik tabanli, vektor uzayi, olasiliksal ve meta-6grenme yontemleri gibi
metodolojilerle desteklenir. Bu stirecin sonucu olarak, yazarhk iligkilendirmesi, intihal

tespiti ve yazar niyetlerinin belirlenmesi gibi sonuglar elde edilir.

Kalgutkar vd. [27] ile Gonzalez [28], yazarlik iligkilendirmesi stirecinde kullanilan
oznitelikleri ayrintili bir sekilde agiklamiglardir. Bu 6znitelikler, sozciiksel, sozdizimsel,
anlamsal, davranigsal ve uygulamaya 6zgii olmak tizere cesitli kategorilere ayrilir. Her
bir 6zellik tipinin avantajlar1 ve dezavantajlari, kodun analizi ve yazarin belirlenmesi

siirecinde 6nemli faktorler olarak one ¢ikar.

Sozciiksel ozellikler, kodun temel andag¢ ve dizgilerinden tiretilir ve programlama
dilinden bagimsizdir, ancak kod bi¢imlendiricileri tarafindan kolayca degistirilebilirler.
Sozdizimsel ozellikler, kodun yapisini ve bir yazarin problem ¢6zme yaklagimini yansitir,
ancak dil bagimhliklar1 ve 6zellik se¢imi zorluklariyla karsit kargiyadirlar. Anlamsal
ozellikler, kodun mantigin1 odak alir ve kod dontigiimiine kargi direnclidirler, ancak
karmagik ¢ikarim stiregleri gerektirebilirler. Davranigsal ozellikler, yazilimin sistem
cagrilar1 ve ag baglantilar1 gibi iglevlerini inceler, gii¢lii analiz potansiyeline sahiptir

fakat yanlis pozitif ve negatif sonuglara yol agabilir. Uygulamaya ozgi oOzellikler,

xvii

kaynak koduna erisim gerektirmeyen, ancak kod karigtirmaya karsi savunmasiz olan

ek bilgileri kullanir.

Yi'de kullanilan temsil yontemleri arasinda andaclar, dizgiler, n-gramlar, ifadeler
(idioms), cizgeler, agaglar ve gomiiler bulunur. Andaclar ve dizgiler kodun en
kiigiik anlamli parcalarini ve belirli metin dizgilerini temsil eder. N-gramlar, kodun
yapisal Ozelliklerini yakalar. Ifadeler, dil ozgii 6zelliklerdir ve karistirmaya karsi
direnclidir. Cizgeler ve agaclar, kodun yapisini ve sozdizimsel hiyerarsisini temsil eder,
semantik anlamlar tiiretmeye yardimeci olur. Gomiiler, tek bir temsilin yetersiz kaldigi

durumlarda farkl temsillerin kombinasyonunu kullanir.

Y1 siireci, cok smufli, tek etiketli bir kategorizasyon gorevi olarak tanmimlanir. Bu
siirecte, profil tabanlh ve 6rnek tabanli modeller arasinda bir se¢im yapilir. Profil tabanl
model, bir yazarin tiim caligmalarini kapsayan benzersiz bir stil atfederken, 6rnek
tabanli model her bir uygulamay1 ayr1 bir varlik olarak degerlendirir. Bu modellerin
se¢imi, benzerlik tabanl, vektor uzayi, olasiliksal yontemler ve makine 6grenimi gibi
gesitli kargilagtirma metodolojileriyle desteklenir. Bu metodolojiler, bilinmeyen bir
kod 6rneginin yazarini belirlemede kritik rol oynar. Makine 6grenimi teknolojilerinin

gelisimi, Y1 alaninda daha dogru ve hizli sonuclar elde edilmesini saglar.
ONERILEN YONTEM

Sekil 5.1, 6nerilen modelin mimarisinin gematik temsilini gosterir. Geri derleme yapilan
APK dosyalari, 6znitelik ¢ikarimi igin girig noktasi olarak hizmet eder ve sonug olarak,

siniflandirma i¢in tasarlanmis sabit boyutlu 6znitelik vektorleri olugturulur.

APK dosyalarma ilk olarak apktool [29] kullamilarak geri derleme yapilmig ve
smali dosyalar1 elde edilmistir. Daha sonra, uygulamalarin Dizgi, AppAuth
ve SPL Oznitelikleri bu dosyalardan ve APK dosyalarindan toplanmig ve her
uygulama ic¢in sabit boyutlu bir 6znitelik vektorleri simiflandiricilara giris olarak
verilmigtir. scikit-learn kittiphanesindeki SimpleImputer [30], 6znitelik vektorlerindeki

eksik degerleri doldurmak igin kullanilmigtir. Bu imputasyon igleminden sonra,

xviii

bu oznitelikler, scikit-learn kiitiphanesindeki StandardScaler [31] kullanilarak

ortalamadan c¢ikarilarak birim varyansa ol¢eklenmigtir.

Smiflandirma algoritmalar1 yiiriitiilmeden 6nce iki agamali boyut indirgeme
kullanilmistir. {lk olarak, veri setinden sifir varyansh oznitelikler elenmistir. Daha
sonra, tek degiskenli istatistiksel testlere dayanarak en iyi ozellikleri secen tek degiskenli
oznitelik se¢imi uygulanmugtir. scikit-learn kitiphanesi [32] kullamlarak beg farkl
simiflandirma algoritmasi uygulanmistir. Daha sonra, katmanh onlu ¢apraz dogrulama
kullanilmigtir. Katmanl onlu ¢apraz dogrulama, orijinal dagihimdaki pozitif ve negatif
orneklerin oraninin tiim iterasyonlarda korundugundan emin oldugu icin, ozellikle veri
setinin dengesiz oldugu durumlarda yararhidir [33]. Yontem beg kez galigtirilmig ve bu

bes caligmanin ortalamasi sonuclarda sunulmustur.

Smiflandirma algoritmalari, Android uygulama alani i¢inde yazarligi tahmin etmek igin
uygulanmigtir. Bu c¢alismada incelenen simiflandirma algoritmalar1 Rastgele Orman,

K-En Yakin Komsular, SVM, Gaussian Naive Bayes ve Light GBM algoritmalaridir.

Mimkin olan en iyi model performansina ulagsmak igin, GridSearchCV teknigi
kullanilmigtir. GridSearchC'V, scikit-learn kiitiiphanesi tarafindan saglanan, belirli
bir parametre 1zgarasi tlizerinde tiikenmis bir arama yaparak verilen bir tahminci
igin en iyi mimkiin hiperparametre kombinasyonunu belirlemeye olanak taniyan
bir yontemdir. Her makine oOgrenmesi algoritmasi igin baslangic parametreleri
ve degerleri Tablo 5.7°de verilmigtir. GridSearchCV’yi katmanli onlu capraz
dogrulama teknigiyle birlegtirerek, secilen hiperparametrelerin veri setinin farkli alt
kiimelerinde iyi performans gosterdiginden emin olunmustur. Bu yaklagim, makine
ogrenimi modellerinin genellegtirilmesini iyilestirmektedir. GridSearchC'V'nin capraz
dogrulama baglaminda kullanilmasi, modellerin ince ayar yapilmasina ve tahmin
gliclerini artirilmasina yardimci oldugu igin arastirma bu calisma metodolojisinin

ayrilmaz bir parcasidir.

Xix

VERI SETi

Bu calismada, market ve kotii amach yazihimlar olmak iizere iki farkli veri seti
olugturulmustur. Market veri setini olusturmak icin, cesitli alternatif marketlerden
zararsiz uygulamalar toplamak tizere Scrapy kiitiiphanesi [34] kullamlarak bir ag
kazima uygulamasi hazirlanmigtir. Ayrica, bu veri setine diger ¢aligmalardan [14, 15,

35, 36] uygulamalar dahil edilmigtir.

Zararsiz veri seti, Ocak 2020 ve Agustos 2020 arasinda Apkpure [37], Apkmirror [21],
Onemobile [38] ve Aptoide [20] gibi farkli alternatif Android marketlerden toplanan
uygulamalar1 igermektedir. Ancak, giincel uygulamalarin eski versiyonlarinin
mevcudiyeti nedeniyle 2020 yilindan c¢ok daha erken yazilmig uygulamalari da
icermektedir. Zararsiz veri setlerinin yillara gore dagilimi Tablo 5.1'de sunulmustur.
Baslangigta, 200.000 uygulama indirilmistir. Sonrasinda, daha énceki ¢alismalar en az
on uygulama igeren gelistiricileri kullandig1 [14, 16] i¢in, ondan az uygulamaya sahip
geligtiriciler elenmistir. Bunun sebebi, geligtiriciler arasinda ayrim yapabilen iyi bir
model olusturmak icin her gelistirici i¢in yeterli uygulamaya sahip olmak gerekliliginden

dogmaktadir.

Kotii amagh yazihm veri seti, Ransomware, Adware ve SMS [39] gibi kétii amagh
yazilim ailelerine ait uygulamalar1 ve giuivenlikle ilgili calismalarda tanitilan ve
kullanilan Rmvdroid [40], Drebin [35], Genome [15] ve Koodous [14] gibi veri setlerinden

uygulamalar: igerir.

Her uygulama, bir Android cihazina yiklenmis bir gelistirici sertifikasi ile
imzalanmalidir. Bu nedenle, ayni imzay1 paylasan uygulamalar ayni geligtiriciye
atanir ve her uygulama ilgili imzaya gore gruplandirihr. Bu c¢alisamda imzalar, APK

dosyalarindan print-apk-signature araci [41] kullanilarak ¢ikarilmigtir.
DENEY SONUCLARI

Bu calismada Android uygulamalarinda Yazarlik [ligkilendirmesine dair asagidaki

aragtirma sorularma (AS) cevap bulmaya caligilmigtir:

XX

« AS1 - Smiflandirma algoritmalarmin YI problemi ¢6ziimiinde

performanslari1 nasil?

Deneylerde Rastgele Orman, K-En Yakin Komsular, Destek Vektor Makineleri,
Gaussian Naive Bayes ve LightGBM algoritmalar1 kullanilmigtir. Bu denetimli
makine 6grenimi teknikleri, literatiirde kod Yazarlk ligkilendirme icin kullanilan
popiiler yontemler arasimndadir [27]. Market ve kot amagh yazlim veri
setlerinde bu algoritmalarin hiperparametrelerini ayarlamak igin scikit-learn’deki
GridSearchCV fonksiyonu kullanilmigtir. GridSearchCV, bir tahminci igin
belirtilen parametre degerlerinin tiikenmig bir aramasini gerceklestirir. Bu
deneyde, AppAuth [16] ve Dizgi Analizi [14]’de kullamilan 6znitelikler dahil
olmak tizere tiim Oznitelik setleri kullanilmigtir. Baz1 uygulamalarin agiklamalar:
olmadigi i¢in yalnizca metadata oznitelikleri hari¢ tutulmugtur. Algoritmalar
hem zararsiz hem de kotii amach yazilim veri setleri kullanilarak caligtirilmigtir.
Performans metrikleri olarak dogruluk ve F1 skoru kullamilmigtir. Bunun
nedeni, etkili bir modelin hem yiiksek hassasiyet hem de yiiksek duyarlilik
gostermesi gerekliligidir. Ek olarak, her bir algoritmanin simiflandirma stiresi

de degerlendirilmistir.

Kargilagtirma sonuglar1 Tablo 6.1’de gosterilmigtir. Yiiksek dogruluk ve
F1 skorlarmin yam sira, Rastgele Orman (RF) algoritmasmin smiflandirma
siiresi diger algoritmalara goére daha makul oldugundan, sonraki deneylerde
RF algoritmast kullanilmigtir. Ayrica, RF’nin varsayilan parametreleri,
optimal parametreleriyle elde edilen sonucglara c¢ok benzer bir performans
tretmigtir. LightGBM, RF’den daha iyi performans gostermesine ragmen,
simflandirma siiresi yiiksektir. Ustelik, sonuclar farkli parametreler icin oldukca
degigskendir. Ancak, yiiksek dogrulugu nedeniyle, LightGBM’in kullanimi

gelecekte aragtirilmaya degerdir.

AS2 - N-gram o6znitelikleri icin ideal set biiyiikliigii nedir?

[14]'de onerildigi gibi, bu deneyde 3-gramlar kullamlmistir. lgili caligmada,
sistemin, n-gram boyutunun 1’den 3’e artirilmasiyla daha iyi performans

xxi

gosterdigi gozlemlemislerdir. Ayrica, n-gram boyutunun daha da artirilmasiyla
sistem performansinin distiigtinii belirlemisglerdir. Bu deneyde, optimal n degerini
belirlemek igin 6n analiz yapilmigtir. Yaklagim [14]'dekiyle karsilagtirildig
icin, n-gramlar icin ayni n degerinin kullanilmasina karar verilmigtir. Yiiksek
sayida uygulama iceren veri setleri icin deneylerde kullanilan n-gramlarin
sayisini sinirlamak ve bellek tiikketimini azaltmak icin bir HashingVectorizer

kullanilmigtar.

3-gramlarin sayisinin siniflandirma dogrulugu ve egitim stiresi tizerindeki etkileri
sirasiyla Sekil 6.1a ve 6.1b’de gosterilmigtir. Sekilde acgikca gortldugii
tizere, siniflandirmada 10.000’den fazla 3-gram kullanildiginda egitim siiresi
artmaktadir. Ancak, bu, dogruluk agisindan 6nemli bir iyilesme sonucu
dogurmamaktadir. Dikkate deger bir durum ise, boyutu ve biiyiitk miktarda
3-gram tretmesi nedeniyle, market veri seti en fazla 50.000 3-gram ile

calistirilabilmigtir.

AS3 - TPL (Ugiincii Parti Kiitiiphanelerin) kullanimi, YI problemi

¢oziimiine iyilestirmeler getiriyor mu?

Y1 iizerinde TPL'nin etkisini gostermek icin iki ayar kullamlmistir. Ilk
ayarda, kaynak kod tabanli 6znitelikler yalnizca gelistiriciler tarafindan yazilan
ozel(custom) kodlardan cikarilmigtir. Tkinci ayarda ise, éznitelikler yine ayni

uygulamalardan gikarilmig, ancak bu sefer TPL’ler dahil edilmistir (tiim kodlar).

Tablo 6.2’de gosterildigi gibi, kaynak kod tabanli 6znitelikleri ¢ikarirken TPL’nin
dahil edilmesi ¢ok daha iyi bir performans saglamigtir (6zel src vs. tiim src).
Daha sonra, 6zel kod Tablo 5.6’de sunulan diger 6zniteliklerle zenginlegtirilmis ve
Tablo 6.2°deki tiim kod ile kargilagtirilmigtir. Sonuclar acikca gostermektedir ki,
TPL’den kaynak kod tabanl 6znitelikler ¢ikarmak yerine, TPL'nin kendi basgina
oznitelik olarak varhgr Y1 icin yeterlidir ve TPL kodunun dahil edilmesinden
¢ok daha iyi sonuclar tiretir. Bu nedenle, sonraki deneylerde, kaynak kod
tabanl 6znitelikler yalnizca 6zel koddan ¢ikarilmis ve TPL 6znitelikleriyle birlikte
kullamilmigtir (6zel src+lib).

xxii

kadar etkilidir?

Bu deneyde, Onceki Arastirma Sorularnda deneysel ayarlar belirlendikten
sonra, metadata hari¢ yeni 6nerilen 6znitelik setleri (src+perm+lib veya SPL),
[14, 16)’de kullanilan diger oznitelik setleriyle karsilagtirlmigtir. Bu amagla,
[14]de verilen dizgi ile ilgili 6znitelikleri gikarmak i¢in sifirdan kod geligtirilmistir.
AppAuth [16] yazarlari, makalelerinde bahsedilen oznitelikleri ¢ikarmamiz
saglayacak kaynak kodlarimi paylasmistir. Bu sayede, AppAuth 6zniteliklerini

elde etmek icin bu kodlar dogrudan uygulanmigtir.

Tablo 6.3’de gosterildigi gibi, yeni Onerilen o6znitelikler AppAuth’tan daha
iyi performans gosterirken, [14]'deki dizgi Ozniteliklerinde daha az dogruluk
iretmektedir. Ancak, yukarida belirtildigi gibi, tiim 3-gram Ozniteliklerini
gikarmak, simiflandirma stiresi agisindan uygulanabilir olmayabilir. Bu nedenle,
burada yalnizca 10.000 3-gram kullamilmaktadir. [14]’de degerlendirme igin
kullanilan ve goreceli olarak kii¢iik bir veri seti olan Genome veri setinden ise
tiim 3-gramlar gikarilmigtir. Genome veri setinde, onerilen 6znitelikler, dizgi ile
ilgili 6zniteliklere gore biraz daha iyi performans géstermigtir. Tim Oznitelikler
dahil edildiginde, market ve kotii amagh yazilim veri setlerinde en iyi performans
elde edilmistir. Ayrica, her bir 6znitelik setini ¢ikarmak igin gereken siire de
hesaplanmigtir. Tablo 6.4 gostermektedir ki, n-gram 6znitelikleri, diger 6znitelik
setlerinden en az bir buguk kat daha fazla zaman gerektirmektedir. SPL ve
AppAuth 6zniteliklerinin ¢ikarma siireleri nispeten yakindir. Bir 6znitelik ¢ikarici
yalnizca bir kez gerceklestirilse de, Oznitelik ¢ikarma iglemi, 6nemli miktarda
n-gram tretildiginde, ozellikle sinirli RAM’e sahip sistemler igin, bellek ile ilgili
zorluklara yol agabilir. [42]'de vurgulandigi gibi, n-gram yaklagiminin birincil
siirhihgl, metin/uygulama boyutu arttikca n-gramlarim iissel olarak biiyiime
egilimidir. Bu karmagiklik, sinirli hesaplama kapasitesine sahip sistemler icin

yontemi genellikle uygulanamaz hale getirir.

xxiii

iliskilendirmede yardimci oluyor mu?

Burada, oncelikle optimal n degeri ve n-gram sayisinin ne olmasi gerektigi
aragtirildi. Bu amagla, agiklama metinlerindeki her n ardigik kelimenin n-gramlari
gikarildi ve her adimda bir kelime saga dogru ilerlendi. Optimal n degerini
belirlemek i¢in, 1’den 5’e kadar farkli n-gram boyutlarinda én denemeler yapild.
Sonrasinda, en iyi sonuglari elde etmek igin gerekli olan n-gram sayisi tespit
edildi. Ikinci asamada ise, metadata Ozniteliklerinin diger 6znitelik setleriyle

birlegtirilmesinin dogruluk tizerindeki etkisi incelendi.

Bu deneyde, market veri setinin tamami ve kotii amach yazilim veri setleri
arasindan yalmizeca Rmvdroid [40] kullanildi. Bunu sebebi yalmzca bu veri
setleri uygulama agiklamalarini icermektedir. Sekil 6.5a, farkli n degerleri i¢in
dogruluk sonuglarin1 gostermektedir. n-gram sayis1 10.000 olarak belirlenmigtir.
Gozlemlenebilecegi iizere, 1l-gramlar diger n-gramlardan daha iyi sonuglar
iretmektedir. n degerini belirledikten sonra, daha sonraki deneylerde optimal
l-gram Oznitelik sayisini aragtirdik. Sekil 6.5b, yalnizca metadata oznitelikleri
kullanilarak elde edilen dogruluk sonuclarini farkli sayida 1-gramlar altinda
gostermektedir. Sekil 6.5b’de gosterildigi gibi, 1-gramlarin sayisi sonuglar
iizerinde Onemli bir etkiye sahiptir. n-gram analizi 6nemli miktarda sistem
kaynagi gerektirdiginden, 100.000 1-gramdan sonra sonug alinamamigtir. 100.000
l-gram dahil edildiginde, market ve kotii amach yazilim veri setleri icin
sirastyla yaklagik %84 ve %74 dogruluk elde edilmistir. Bu, acikca uygulama
aciklamalarmim Android YT icin faydali oldugunu gostermektedir. Ancak, 10.000
l-gramin sonuclarimin da oldukca yeterli oldugu ve gereken zamanin 100.000
l-gramdan ¢ok daha az oldugu goriilebilir. Bu nedenle, metadata analizindeki

gelecek deneyler igin 10.000 1-gram segilmistir.

AS6 - Uygulamalar: gelistiricilerine iligkilendirmede en Onemli

oznitelikler nelerdir?

XXiv

Sonuglar, metadata hari¢ tiim oOznitelikler ve Rastgele Orman algoritmasi
kullanilarak elde edilmigtir. Daha sonra, tiim Ozniteliklerin 6nem degerleri
scikit-learn kiitiiphanesinden ¢ikarilmig ve sirasiyla market ve kot amach yazilim

veri setleri i¢in Jekil 6.6a ve 6.6b’de gosterilmigtir.

Sonuglar, her iki veri setinde de kaynak kod tabanh ve dizgi/n-gram
ozniteliklerinin diger Ozniteliklere gore daha biiyiik bir etkiye sahip oldugunu
gostermektedir. AppAuth’ta kullanilan 6znitelikler (conf, dex, rsrc), ozellikle
kotii amach yazilim veri setinde olumlu bir etkiye sahiptir. Tablo 6.10, énem
acisindan ilk 50 oznitelik arasinda yer alan her veri seti icin 6znitelik sayisini
gostermektedir. En 6nemli 50 ozniteligin siralamasi Tablo 6.11°de listelenmigtir.
Bu sonuglar ayrica, 6zellikle kotii amagh yazilim veri setinde, kaynak kod tabanh
ozniteliklerin diger 6zniteliklere kiyasla ¢ok daha fazla etkiye sahip oldugunu,

n-gram Ozniteliklerinin ise market veri setinde baskin oldugunu gostermektedir.

AST - Modelin performansinmi azaltmadan 6znitelik sayisini azaltabilir
miyiz?

Tim ozniteliklerin en iyi %20, %40, %60, %80 ve %100’lik kisimlari,
scikit-learn’deki f classif() kullanilarak ANOVA F-degerleri hesaplanarak
gikarildi. ANOVA, Oznitelik se¢imi igin kullanilan parametrik bir istatistiksel
hipotez testidir. Iki veya daha fazla veri 6rneginin ortalamalar: énce hesaplanir

ve sonra bu veri orneklerinin aymi dagilimdan gelip gelmedigi belirlenir.

Her oznitelik setinin performansi Sekil 6.7’de gosterilmistir. Oznitelik vektoriinde
sifir etkiye sahip 6znitelikler de bulunmaktadir. Kétii amach yazilim veri setinin
(435), market veri setine (174) kiyasla daha fazla sifir etkiye sahip oznitelige
sahip olmasi nedeniyle, son ytzdelikte ¢ok fazla iyilesme olmamigtir. Bu sekil
ayrica, zaman ve kaynak kullanimi onemliyse, tiim 6zniteliklerin yerine daha az

oznitelik kullamlabilecegini (6rnegin, %60) gostermektedir.

XXV

e AS8 - Gelistirici basina diigsen uygulama sayisi, smiflandirma

performansini etkiliyor mu?

Bu ¢alismada kullanilan veri seti, piyasada ondan fazla uygulamaya sahip bireysel
geligtiricileri elde etmenin zor olmasi nedeniyle, esas olarak birden fazla gelistirici
tarafindan yazilan girket uygulamalarini igermektedir. Ayrica, gelistiricilerin
farkli sayida uygulamalara sahip olmasi nedeniyle veri seti dengesizdir. Bu
nedenle, zararsiz ve kotiiciil veri setlerinde en az 40 uygulamaya sahip gelistiriciler
oncelikle gikarilmig ve sirasiyla market ve kotii amagh yazilim veri setleri igin 37
ve 19 yazar elde edilmistir. Daha sonra gelistirici bagina rastgele 10, 20, 30 ve 40
uygulama on kez se¢ilmistir. Bu nedenle, her seferinde farkli uygulama gruplari

secilmigtir.

Sekil 6.8, gelistirici basmma uygulama sayisi artiildiginda, Android YI'mnin
dogrulugunun da arttigim gostermektedir. Daha az yazar1 olan daha kiigiik bir
veri seti oldugu icin, kotii amach yazilim veri setindeki sonuclar, geligtirici bagina
20 uygulama ile egitildiginde bile ¢ok yiiksektir. Bu nedenle, kotii amagh yazilim
veri setinde geligtirici bagina 20, 30 ve 40 uygulama kullanilarak egitilen modeller

arasindaki farklar birbirine benzerdir.

AS9 - Onerilen model, aym yazar tarafindan gelistirilen uygulamalarin

farkli versiyonlarimi basariyla belirleyebiliyor mu?

Bu calismada, iki veri seti olusturulmustur. Ilk olarak, market veri setinde
uygulamalarin birden fazla versiyonu varsa, yinelenen uygulamalar elenmis
ve yalnizca uygulamanin markette bulunan ilk versiyonu pazar veri setinde
birakilmigtir. Bu egitim veri setine striim igermeyen veri seti denilmigtir;
versiyonlar1 ise bagka bir veri setine, test seti adi verilen sete konulmustur.
Bunun sonucunda, 42 gelistirici tarafindan uygulanan 1.193 egitim ve 1.183 test
uygulamasi elde edilmisgtir.. Striim icermeyen veri setindeki tiim geligtiricilerin,

onceki deneylerde oldugu gibi, en az on uygulamasi bulunmaktadir.

XXVi

Ik olarak, siiriim icermeyen sette katmanl onlu capraz dogrulama uygulanarak
%80.7 dogruluk elde edilmigtir. Tablo 6.3’de gosterildigi gibi, tiim siiriimler
dahil edildiginde, dogruluk biraz daha yiiksek (%82.6) olmugtur. Daha sonra,
“bir uygulamanin bir versiyonu egitimde yer aliyorsa, bu uygulamanin yeni
versiyonlar1 Onerilen yaklagimla tespit edilebilir mi?” sorusunu yanitlamak
icin, model stiriim icermeyen bir veri seti kullamilarak egitim yapilmig ve
test veri setinde degerlendirilmistir. Burada, yiiksek dogruluk (%91.7) elde
edilmigtir. Uygulamalarin farkli versiyonlar1 arasindaki benzerlikler SimiDroid
[43] kullamlarak hesaplanmigtir. Ancak, egitimdeki ilk mevcut versiyonlara
olan benzerliklerine gore uygulamalarin tanimlanamayan versiyonlar1 arasinda
onemli bir korelasyon bulunamamistir. Ilk mevcut versiyona olan benzerlikler
genellikle versiyon numaralarina orantili olarak azalsa da, test setinde istisnai
durumlar bulunmaktadir. Bir uygulamanin versiyonu ile egitim setindeki ilk
mevcut versiyon arasindaki benzerlik diigiik olsa bile, 6nerilen yaklagim bu tiir
versiyonlarin yazarlarini bagariyla tanimlayabilir. Bu sonuglar, ayni1 uygulamanin
farkli versiyonlar1 arasindaki benzerlik diigiik olsa bile, gelistiricinin imzasinin

korundugunu gostermektedir.

AS10 - Android YT iizerinde karistirma tekniklerinin etkisi nedir?

Bu calismada, Android YI'nin karstirilmis uygulamalardaki performansini
daha iyi anlamak igin, market ve Genome veri setlerindeki uygulamalarda
“Obfuscapk” [44] araci kullamlarak karigtirilmig uygulamalar elde edilmistir.
“Obfuscapk” [44], kara kutu seklinde caligir, ileri diizey karstirma oOzelliklerini
destekler ve yeni tekniklerle kolayca genisletilebilen modiiler bir mimariye
sahiptir. Karigtirma tekniklerinin uygulanmasi sirasinda kargilagilan bazi hatalar
nedeniyle, bu deneyde kullanilan uygulama sayisi orijinal veri setinden (~40%)
digtiktiir. Ancak, [14]'den ¢ok daha biiyiik bir veri setidir (320 yazardan 6055
uygulama). Tablo 6.12°de listelenen alt1 farkli karigtirma teknigi kullanilmigtir.
Bu kargtirma teknikleri, sifreleme ve yeniden adlandirma olmak iizere iki

kategoriye gruplandirilabilir.

xxvii

Farkl karigtirma tekniklerinin etkileri Tablo 6.13’de gosterilmektedir. Sifreleme
karigtirma teknikleri sonuclar1 etkilemezken, yeni onerilen kaynak kod tabanl
oznitelik setleri, Tablo 6.13’de gosterildigi gibi, yeniden adlandirma karigtirma
tekniklerine kargi hassastir, ¢iinkii bunlar uygulamalarin degisken, metod ve
smif isimlerinden gikarilmaktadir. Dizgi 6znitelikleri [14] de yeniden adlandirma
tekniklerinden etkilenmektedir, ancak bu etki yeni 6nerilen 6znitelik setlerinden
daha azdir ¢iinkii dizgi 6znitelikleri yalnizca kaynak kodlardan ¢ikarilan dizgileri

degil, APK dosyalarina yerlestirilen tiim dizgileri kullanir.

AS11 - Veri setlerinde herhangi bir klon uygulama var mi? Bunlar

Android Y1 iizerindeki performansi nasil etkiler?

Veri setindeki uygulama klonlarimi tespit etmek i¢in Romadroid araci [45]
kullanilmigtir. Romadroid, karsilagtirilacak iki uygulamanin her bir manifest
dosyasindan bir dizgi olugturur ve iki dizgi arasindaki benzerligi LCS algoritmasi

kullanarak olger.

Deneylerde %70 ve %90 esik degerleri kullamlmigtir, Market, kotii amacl yazilim
ve Genome veri setlerindeki 488, 153 ve 39 gelistiricinin uygulamalarinin benzerlik
skorlar1 Romadroid kullanarak hesaplanmigtir. Sonug olarak, uygulamalarin ikili
kargilagtirmasiyla n* (n—1)/2 benzerlik sonucu elde edilmistir. Burada, n toplam
uygulama sayisini belirtir. Bazi uygulamalarda hatalarla karsilagildig: icin, her
¢ift icin benzerlik skorlari elde edilememistir. Birgok calisma, tipik olarak,
uygulama ¢iftlerinin benzerlik skorlar1 %70 veya %901 agtiginda bir uygulama
¢iftini uygulama klonu olarak kabul eder [43, 45, 46]. Bu galismadaki yaklagimda,
bagka bir uygulama ile %70’in tizerinde benzerlik gosteren tiim uygulamalar: harig

tutulmustur.

Tablo 6.14’da gosterildigi gibi, market veri setinin %20.6’s1 ve kot amach yazilim
veri setlerinin %22.3'i %70 benzerlik oranmimin tizerinde benzer uygulamalara
sahipti. Kotii amagh yazilim ve market veri setleri icin sirasiyla Tablo
6.16 ve 6.15'de klon uygulamalarin sonuglar tizerindeki etkileri verilmigtir.
Sonuclar, ozellikle market veri seti i¢in, benzer uygulamalar: ¢ikarmak dogruluk

XxVviii

ve F1 skorlarmi iyilestirdigini gostermektedir. Farkli geligtiricilerden benzer
uygulamalar, modeli egitim sirasinda yaniltabilir, bu ytizden uygulama klonlarini

gikarmak sonuglar iizerinde olumlu bir etkiye sahiptir.

SONUC

Bu calisma, Android Yazarlik Iliskilendirmesi icin yeni éznitelikler sunmakta ve cesitli
ozniteliklerin kullanimimi aragtirmigtir. Ayrica literatiirdeki 6zniteliklerle karsilagtirma
saglanarak zarariz, kotiiciil, versiyon ve karigitirilmig gibi bir ¢ok tiir uygulama tiirtinde
sonuclar almmistir. Sonuclar yeni Onerilen Ozniteliklerin YI probleminde 6nemli
oldugunu gostermektedir. Gelecek arastirmalar, ozellikle kot niyetli uygulamalar
tizerinde olanlar olmak ftizere, klon uygulamalar i¢in bu yaklagimin kullanimini
incelemelidir goriigiindeyiz. Ayrica, farklh kaynaklardan gelen kotii amach yazilimlar
arasindaki benzerlikleri bulmak onemlidir; bdéylece, kotii amach yazilimlarin nasil
evrilecegi tahmin edilebilir ve gelecekte ortaya ¢ikacak kotii amach yazilimlara kars
yeni koruma teknikleri gelistirilebilir. Kotii amach yazilimin yazariyla ilgili 6znitelikler,
bu hedefe ulagmak igin yararli olabilir. Bu nedenle, piyasadaki yeni uygulamalar,

yazarlarinin bakis agisindan analiz edilebilir.

XXix

CONTENTS

Page
AB S T R A C T i
O T iii
ACKNOWLEDGEMENTS ... e v
GENISLETILMIS OZET ... o vi
CON T EN TS . e XXX
A B LS Xxxii
LG U RS .. e e e e XXXIV
ABBREVIATTON S . . e e XXXV
1. INTRODUCGTION . ..ot et 1
1.1. Scope Of The Thesisoouii e)
1.2, ContribUbions 8
1.3, Organizationt 9
2. RELATED WORK ... o 12
2.1. Source Code Authorship Attribution i 13
2.2. Binary Code Authorship Attribution i 16
2.3. Android Authorship Attribution 17
2.4. Malware Authorship Attribution............ i 19
2.5. Finding Similarities Between Applications ... 21
3. ANDROID BACKGROUND ... e 23
3.1. Android Application ..o 25
3.2. Android Application Signing Process ... 28
3.3. Alternative Android Markets............ ..o 29
4. AUTHORSHIP ATTRIBUTION 31
A1, Features 33
4.2, Representations. 34
4.3. Attribution Models. 36
4.4. Attribution Methodso 36

4.5. Machine Learning o 37

4.5.1. Classification Algorithms i 38
4.5.2. Cross-Validation......... .o 40
4.5.3. Grid Search CV ... 41

5. PROPOSED METHOD - ANDROID AUTHORSHIP ATTRIBUTION 42
D.1 Model .. 42
0.2, Dataset ... 44
5.3. Feature Extraction 47
5.3.1. Feature Set Descriptions......... ... 52

0.4, Feature Processingo 59
5.5. Machine Learning (ML) Model Development and Optimization............. 61

6. EXPERIMENTAL RESULTS ..o 64
6.1. RQ1 - Performance of classification algorithms on Android AA 65
6.2. RQ2 - The ideal set size for n-gram.....................o i 67
6.3. RQ3 - Custom code vs. all code including TPL 69
6.4. RQ4 - Effectiveness of the proposed approach 72
6.5. RQH5 - Metadata Features..... ... 7
6.6. RQ6 - Most Effective Features on Android AA 80
6.7. RQ7 - The Effect of the Number of Features.................................. 83
6.8. RQ8 - The Effect of the Number of Applications per Developer............. 85
6.9. RQO - Effect of Application Versionsccooviiiiiiiiiiiieiinnaai. 86
6.10.RQ10 - Effect of Obfuscation......... ... i 87
6.11.RQ11 - Analysis of Clone Applicationscooiiiiiiiiiiii ... 89

7. GENERAL DISCUSSION ... 91
7.1. Usage of Native Codeo 91
7.2, Obfuscation o 91
7.3, Dataset . ..o 92
7.4. Clone/Repackaged Applications. ... 92
7.5. Applications Developed by Multiple Authors 93

8. CONCLUSION Lo e 94

Table 2.1
Table 5.1
Table 5.2
Table 5.3
Table 5.4
Table 5.5
Table 5.6
Table 5.7
Table 6.1
Table 6.2

Table 6.3
Table 6.4
Table 6.5
Table 6.6
Table 6.7
Table 6.8
Table 6.9
Table 6.10
Table 6.11
Table 6.12
Table 6.13
Table 6.14
Table 6.15

TABLES

Page
Comparative metrics of Android authorship attribution studies.... 20
Year distribution of dataset 44
Dataset information............. ... 47
Metadata analysis dataset info..............................l 47
Feature set descriptions ... 48
Sample 3-gram featureso 49
Features proposed for Android AA in the literature................. 52
Hyperparameters of classification algorithms......................... 62
Comparison of classification algorithms 66

Accuracy results of custom source code enriched with other

feature groupsot 70
Comparison with AppAuth and StringAA - Random Forest........ 73
Feature extraction time in minutes ... 73
Effect of feature sets on Android AAl 74
Avg # of Library and Permission per application 75
Results of t-test ... 75
Accuracy results of Smali vs. Java: source code-based features 77
Metadata analysisoouieeii 79
Distribution of Top 50 features per feature set....................... 81
The most important 50 features per dataset 82
Obfuscation abbreviations oo 88
Obfuscation resultso 89
Ratio of clone applications in the datasets 90

Differences on accuracy and f1 score when clone apps are removed

from the market dataset ... 90

xxxii

Table 6.16 Differences (%) on accuracy and fl score when clone apps are

removed from the malware dataset oo,

Table 7.1 Dataset information

Xxxiii

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure

3.1
3.2
4.1
5.1
5.2
2.3
6.1
6.2

6.3
6.4
6.5
6.6
6.7
6.8

FIGURES

Page
Sample code fragments.............. ... 24
Format of a .dex file...... ... 27
The steps of Authorship Attribution................................. 32
Overview of Model 43
Summary of dataset......... 45

APK size distribution (Market at the top, Malware at the bottom) 46
Effect of the number of 3-grams.......................... 68

Confusion Matrix for the 52 developers who have at least 40

apPlications o 71
Accuracy results used in compariSon...............coooiiiiiiiiiii. 76
Accuracy results of all features used in comparison................. 76
Effect of n-grams on metadata features.............................. 79
Importance values of each feature............................. 81
Impact of different percentiles of features 84
Impact of different # of applications per developer 86

XXXV

LLM
TPL
AST
CFG
SVM
TFIDF
API
APK
LCS
COPPA
XML
Ul

ART
GPS
ANOVA
RAM
CPU
NDK

ABBREVIATIONS

Large Language Models

Third Party Library

Abstract Syntax Tree

Control Flow Graph

Support Vector Machine

Term Frequency Inverse Document Frequency
Application Programming Interface
Android Package Kit

Longest Common Subsequence
Children’s Online Privacy Protection Act
Extensible Markup Language

User Interface

Android Runtime

Global Positioning System

Analysis of Variance

Random Access Memory

Central Process Unit

Native Development Kit

XXXV

1. INTRODUCTION

Mobile devices play a pivotal role in our daily lives and facilitate tasks such as
banking and communication from anytime and anywhere. These activities produce
a considerable volume of critical data. Application developers already collect and use
this data with our permission. But, can this data be collected without our consent?
This concern becomes particularly relevant considering the activities of mobile malware
writers. They can easily gather this data using malicious software they develop due to

the carelessness of mobile users and the inadequacy of anti-virus systems.

This issue of unauthorized data collection is not just theoretical. A report by Kaspersky
highlighted that Google Play, the main repository for Android applications, experienced
over 600 million malware downloads in 2023 [47]. Data from the AV-TEST Institute’s
[48], which reported the existence of roughly a billion malicious applications in the same
timeframe, further exacerbates this alarming statistic. Some developers also modify
these malicious mobile applications to produce new variants of them. According to
the same report from AV-TEST, only about 50 million of these were new, unique
malware instances, with the remainder being modifications of existing malware. A
significant 86% of Android malware utilizes the repackaging method, as stated in [49].
This method involves decompiling or reverse engineering a legitimate app, modifying
its logic, inserting malicious code, and then repackaging it. Identifying similarities in
malware from various sources is key to predicting its evolution and developing future
protection techniques. Features associated with the authors of apps can be useful in

achieving this goal.

Authorship Attribution (AA) is a process aimed at identifying the author of a computer
program. Although it is primarily used to detect software theft and solve copyright
issues, it is also used in digital forensics and malware analysis. Software developers
generally leave footprints on their applications that describe their coding style. As a

result, applications developed by the same developer exhibit strong similarities, and this

programmer-specific coding style is retained within the program binaries, as noted by
Rosenblum [1]. Initially, these unique footprints were leveraged to pinpoint the authors
of software applications. However, with the advent of software variants—modifications
of the original software—research focus has pivoted towards the automated detection

of software theft and copyright infringements.

One of the most promising applications of AA is in the identification of malware
authors, as there has been a significant increase in the number of new malware and
new variations in existing malware [2]. AA can pinpoint the creators of new malware,
thereby facilitating the observation of malware evolution in the wild through the
monitoring of its developers. Similarly, AA can mark new programs crafted by known
attackers, making these programs prime candidates for further analysis. While there
are numerous works on AA| its application in the realm of malware [3-5], particularly

with regard to Android, remains insufficiently investigated.

There are two main approaches to AA: source code AA and binary code AA. At first, the
researchers are focused on analyzing the source code of software to identify the author of
unknown programs [6-10]. The preference for source code AA rather than binary code
AA in the literature stems from the fact that many distinctive features in the source
code are lost following the compilation process. The techniques employed in source code
AA draw upon a diverse set of features, including but not limited to line length, average
procedure length, method counts, naming conventions, comments, programming layout
attributes (such as spacing and indentation), variable names, control flow structures,
and aspects of the development environment like the computer platform, programming

language, and compiler.

However, obtaining the source codes of applications, especially those of malicious
ones, poses significant challenges due to the difficulties in accessing the original source
code of software, particularly in the context of malware analysis. Therefore, in such
cases, an application’s binary code is the only source that can be used to identify

the application’s author [1, 11, 12]. Nevertheless, identifying authors based on the

binary code AA is much more challenging than identifying authors based on the source
code. The compilation phase can significantly alter the binary code’s structure through
optimization techniques, thereby affecting AA’s effectiveness. Valuable features for AA,
such as linguistic and formatting elements, may be stripped away during compilation.
Moreover, the dependency on specific compilers and their configurations further

complicates binary code AA [13].

Despite these challenges, binary code remains a critical data source for malware AA
due to the unavailability of source code. Additionally, the efficacy of popular AA
methodologies, such as machine learning and deep learning techniques, largely hinges on
the volume of training data available. Given that binaries are more readily accessible,
binary code AA presents a compelling area of research, underscoring the need to adapt

and refine AA techniques to work effectively with the binary representations of software.

Malware authors skillfully avoid detection by constantly testing their software with
various dynamic analysis tools during development. These tools provide them with
critical feedback, allowing them to adapt their software to bypass antivirus systems
undetected. These individuals often distribute their malicious applications across
both official and third-party Android markets. The fact that they distribute under
various aliases in different markets further complicates the task of tracking their digital
footprint. In such scenarios, AA helps identify the people behind these deceptive
practices, even if they use multiple identities. Authorship attribution can also help
address the challenge of detecting malware that evades static analysis by updating its
malicious code at runtime [50]. This approach allows for the identification and tracking
of malware creators based on their coding style and other unique markers, providing

an effective method for combating threats that dynamically alter their behavior.

The fact that applications are typically developed by multiple authors presents an
additional challenge. Researchers in the field of AA generally prefer to analyze
works attributed to a single author rather than multiple authors. This preference

underscores the complexity involved in determining the exact number of contributors

in a collaborative project. Therefore, accurately ascertaining how many authors have
developed a particular application remains an open issue in the field of AA, especially

when applied to malware analysis.

In conclusion, AA in software development is an area full of potential and challenges.
As the dependence on digital technologies increases, it has become increasingly critical

to accurately identify code authors for security, maintenance, or copyright enforcement.

The purpose of this thesis is to identify the authors of different types of applications.
This is crucial, as some developers may upload applications that are not originally
their own to application markets. By applying reverse engineering, they can access and
change the source code of applications that do not belong to them. This process, known
as repackaging, is a common practice, especially in the malware domain. Our method
enables the detection of applications that seem to be written by a specific author but
are in fact not. Consequently, our method can prevent copyright issues by identifying
the original developer of applications that were developed for commercial purposes
but then repackaged by another developer and uploaded to markets under a different
name. Additionally, our method can be applied to student assignments. It helps in
determining whether students have plagiarized code during development. Ultimately,
this research not only addresses a significant challenge in software development but

also offers a novel approach to upholding academic integrity.

The scenario involving malware developers is particularly noteworthy. They often
receive indirect feedback by uploading early versions of their applications under
different aliases to various platforms, such as alternative markets and online analysis
tools. Utilizing this feedback, they devise strategies to evade antivirus systems. The
method we propose addresses this cunning tactic. It allows for the analysis of any
application uploaded to any environment. Importantly, our method can identify an
malicious application as belonging to a known malware developer, even if it is not

initially detected as malicious by conventional detection systems. Therefore, these

applications can be preemptively flagged as potentially malicious. This proactive

approach offers a significant advantage to malware analysts and antivirus systems.

Additionally, this approach offers a significant advantage in malware research. It
enables the clustering of versions of the same malware uploaded to markets at different
times. This capability is crucial for a comprehensive understanding of the evolution of
malware. Such information is especially useful in the evolving field of Android malware

development.

1.1. Scope Of The Thesis

This study investigates the discriminating features of Android applications for AA.
We have expanded the scope of investigation by collecting new features from the
applications’ components, including smali files, libraries, and permissions, as well as
their metadata information available in the market. These newly gathered features,

alongside those used in prior studies [14-16], are subjected to thorough analysis.

In our research, we specifically investigate the impact of different feature groups on
AA. Considering that features proposed in the existing literature have been analyzed
using different datasets, we established a common experimental framework to ensure a
fair comparison. Our dataset, detailed in Section 5.2., encompasses benign, malicious,

and obfuscated applications from a range of Android markets and studies.

Smali, serving as an intermediate language akin to assembly, preserves many insightful
source code features such as variable and function names and code organization,
yet offers greater readability than assembly. It is possible to decompile an Android
application, called the Android Package Kit (APK) file, into Smali language. As a
result, smali files that have a similar class and function name to Java/Kotlin files of
the original source code of the application are obtained. Additionally, if any third-party
libraries are used during development, smali files from these libraries are also generated.
After decompilation, anyone can modify smali files easily and then recompile them
into an APK file. The extraction of smali files from Android binaries opens up the

5

possibility of applying certain source code-based features, traditionally used in different

programming languages, to Android binary applications.

Developers often tend to use the same third-party libraries due to their ease of use
and familiarity. It is also shown that most applications use more than 20 third-party
libraries [24] and a large part of the application code belongs to such libraries [25, 26].
Similarly, it is shown by [23] that most applications, on average, request 30% more
permissions than they need. This is because developers use the same manifest file in
their different applications. Consequently, analyzing which third-party libraries and

permissions are utilized in an application can provide valuable insights for AA.

The features incorporated into our study, drawn from prior research [14-16], encompass
configuration, (Dalvik Executable) DEX code, resources, and string-based elements.

Each category of features is extracted from specific components of the APK files:

o Configuration Features: These are sourced from the manifest file of the APK
files. The manifest file provides a wealth of information about the application’s

setup and permissions, making it a rich source for configuration data.

« DEX Code Features: Directly extracted from the .dex file, these features focus
on the structural elements of the application, such as methods, classes, and field
structures. The .dez file is being the compiled version of the application’s source

code.

43

o Resource Features: These are gathered from the “res” directory of the
decompiled APK files. The “res” directory, which contains resources like images
and layout files, provides insights into the visual and structural aspects of the

application.

o String-Based Features: For this analysis, strings present in both the
strings.xml file and the .dex file are utilized. By applying n-gram analysis to
these strings, we can uncover patterns and sequences that are characteristic of
the application’s coding style and content.

6

An essential initial step in this study is to refine the dataset by removing very similar
applications. It is important to note that many original apps may share common
code segments due to the use of third-party libraries or the implementation of specific
functionalities. Thus, it is crucial to be meticulous in selecting only those apps that
are nearly identical. The main goal is to pinpoint and separate cloned applications
present in the dataset. This aspect is especially crucial for Android applications, given
that the ease of modifying these apps has resulted in an increase in cloned versions,
particularly prevalent in alternative Android markets. Researchers are delving deep
into this area not only to pinpoint the original authors of these applications, as cited
in studies like [16], but also to detect distinct function blocks within the source code.
Recently, the use of Large Language Models (LLMs) has become increasingly popular
for identifying code clones [51, 52]. These models excel at analyzing specific portions

of the source code.

We seek to find answers to the following research questions (RQs) on how our
model identifies the author of Android applications, including benign and malicious

applications:
« RQ1 - What is the performance of classification algorithms in solving the AA
problem?
o RQ2 - What is the ideal set size for n-gram features?

« RQ3 - Does the use of TPL bring improvements in solving the authorship

problem?

« RQ4 - How effective is the proposed approach in identifying the developer of

applications?

e RQ5 - Does metadata of applications help to attribute the developer of

applications?

e RQ6 - What are the most important features for attributing applications to their

developers?

« RQT7 - Can we reduce the number of features without decreasing the performance

of the model?

« RQ8 - Does the number of applications per developer affect classification

performance?

« RQY9 - Does the proposed model successfully identify different versions of

applications developed by the same author?
« RQ10 - What is the effect of obfuscation on Android AA?

« RQ11 - Are there any clone applications in the datasets? How do they affect the

performance on Android AA?

1.2. Contributions

In this research, we propose a novel and efficient approach for Android AA. The main

contributions of this thesis can be summarized as follows:

o New features extracted from smali files were introduced for Android AA. To the
best of our knowledge, the features inherited from the source code AA in smali
codes were first used in Android in this study. The results showed that source
code-based features increased the accuracy of attributing applications to their

corresponding authors.

o In this study, TPL and permission features, previously used as string features in

earlier research, have been utilized as binary features.

o Unlike traditional application distribution mechanisms, Android applications are
centrally distributed in mobile markets. Therefore, in addition to the application
code, we can obtain metadata about Android applications, such as application
descriptions and user reviews. Consequently, this study explored the effect of

textual metadata on Android AA. A positive effect of metadata-based features

8

1.3.

was observed, especially when applied with the source code-based features
employed in this study. This is the first study to use metadata descriptions
in the realm of Android AA.

The performance of the proposed approach was extensively analyzed. In addition
to analyzing the effect of each feature set on Android AA, the studies proposed in
the literature were compared. The experimental results show the positive effect

of the features proposed in this study on authorship attribution.

This study also explores version and obfuscated applications from the AA

perspective, marking the first time analyses of version apps have been conducted.

We collect a diverse range of applications with distinct characteristics, such as
benign, malicious, versioned, and obfuscated. Our dataset is comprised of 10,385
benign Android apps, sourced from 488 unique developers, each contributing more
than 10 apps, and gathered from five different markets. Additionally, it includes
over 3,000 malicious apps from 153 developers, obtained from various sources.
We also constructed approximately 6,000 obfuscated apps using the Obfuscapk
tool [44], and over 1,000 applications for version analysis, both derived from the

benign dataset.

We shared the source code of our study with the research community at:

https://github.com/emreaydogan/SourceCodeBasedAAA

Organization

This thesis is systematically organized into eight chapters. The organization of the

thesis is as follows:

Chapter 1. introduces the research topic, outlining the scope, contributions, and

overall structure of the thesis.

Chapter 2. provides a comprehensive review of the existing literature and research

in the field of source and binary code AA, with a specific focus on its application

9

https://github.com/emreaydogan/SourceCodeBasedAAA

in malware, Android, and methods used for finding similarities between apps. This
chapter incorporates an extensive review of code clone detection studies across varied
domains, including Android and malware, thereby establishing a contextual foundation

for our research.

Chapter 3. offers an in-depth background necessary for the fundamentals of Android
architecture, the typical structure and features of Android applications, including those
used in AppAuth [16] and StringAA [14], and proposed features for analysis. This
chapter also delves into the Android app signing process and alternative Android

markets, setting the stage for understanding the ecosystem in which AA operates.

Chapter 4. details the methodologies employed for attributing authorship in both
source and binary code. It begins with a discussion on “features”, highlighting
their role in AA. This is followed by an examination of “representations”, which
focuses on the portrayal of data. The next section, “attribution models”, sheds
light on various models employed in authorship attribution. The chapter then
transitions into a detailed exploration of “machine learning”, segmented into three
areas: “classification algorithms”, “cross-validation”, and “grid search cv”. Each of
these subsections contributes to a deeper understanding of the techniques applied in

authorship attribution.

Chapter 5. introduces the methodology developed. It details the model architecture,
dataset selection and preparation, methods for finding similar apps, the process
of Android decompilation, and the intricate steps involved in feature extraction,
including descriptions, processing methods, dimension reduction techniques, and the
classification algorithms used, along with cross-validation and hyperparameter tuning

strategies.

Chapter 6. presents the findings of the research. This chapter is structured around
various research questions (RQ1 to RQ11), each addressing a specific aspect of Android

AA, such as the performance of classification algorithms, the impact of n-gram set size,

10

the analysis of custom code versus all code including TPL, and several other factors

that affect the effectiveness of the proposed approach.

Chapter 7. synthesizes the findings from the experiments and discusses them in the
context of broader implications in the field. This includes discussions on the usage of
native code, obfuscation techniques, challenges and insights gained from the dataset,
and the phenomenon of clone/repackaged applications and applications developed by

multiple authors.

Chapter 8. summarizes the key findings of the research, drawing conclusions from
the experiments and discussions in the previous chapters. This chapter also provides
recommendations for future research and the potential implications of this study in the

field of Android AA.

11

2. RELATED WORK

Authorship Attribution is related to many different areas, such as literary work analysis
[53, 54], code plagiarism detection [6], code AA [55], forensic investigation [56] and
malware analysis [2, 57, 58]. It has different objectives such as authorship identification,
clustering, evolution, profiling, and verification [27]. In the field of AA, two primary
methodologies emerge: one that leverages source code analysis and another that focuses
on binary code analysis. Although studies based on the source code of applications have
appeared in the literature before, binary AA started to emerge due to the lack of and
difficulty in gathering source codes. These studies are explained in detail in Section 2.1.

and 2.2.

Since the early 2010s, mobile devices have begun to significantly affect many aspects
of our lives, necessitating a careful examination of mobile applications. Android is
the most used operating system on mobile devices; therefore, we shifted our focus to
Android applications. We proposed new feature sets for Android AA that are based
on the source code of Smali files, TPL, and metadata information. We also compared
our feature sets with those of the literature. Studies in the field of Android AA are
detailed in Section 2.3.

Most studies have primarily focused on desktop and benign applications. However,
with the evolving landscape of cyber threats, understanding the authorship of malware
has emerged as a critical area of concern in cybersecurity. This shift is not just about
expanding the scope of AA but also about addressing unique challenges in tracing
sophisticated and often concealed malicious code origins. Therefore, we explore AA in
the context of malware to understand its specific implications and applications. Studies

about malware AA are detailed in Section 2.4..

In order to build an AA model, unique applications are needed for each author in the
dataset used. In the realm of Android, it is common for apps to be modified and

then re-uploaded to markets in repackaged and obfuscated forms. Such practices can

12

introduce “clone applications” into the dataset. Overfitting occurs when a model learns
the details and noise in the training data to such an extent that it negatively impacts
the performance of the model on new data [59]. Therefore, it is essential to identify
and eliminate these clones to ensure that the AA model remains accurate when applied
in real-world scenarios, which may present different challenges and data characteristics
compared to the controlled environment of the training phase. Studies on finding clone

applications are explained in detail.in Section 2.5.

2.1. Source Code Authorship Attribution

The source code of software can provide very useful features to identify the author of
unknown software. The unique coding style of the author is evident in the source
code. Given that software created by the same developers often exhibits shared
characteristics, certain features can be identified by examining the coding style of the

developer.

N-gram model is used by researchers for source code AA [6, 8]. Both studies employ
information retrieval approaches with n-grams. Burrows et al. [6] address the issue of
plagiarism and copyright infringement in academic and corporate settings, emphasizing
the limitations of current methods that rely solely on textual similarity comparisons
for detecting infringements. The authors propose using AA as a tool for identifying
plagiarism. By analyzing a collection of 1,640 documents from 100 authors, they
demonstrate the ability to correctly identify the author of a queried work in up to
67% of cases. Frantzeskou et. al. [8] propose a method for determining the most likely
author of a computer program from a set of predefined candidates. They aim to trace
the origins of the code used in cyberattacks. They conducted experiments using data
sets in different programming languages (Java and C++) and with varying numbers of
candidate authors (6 to 30). Their method performs well even with limited and short
programming samples available for each programmer, a scenario often encountered in

cybercrime investigations.

13

Kothari et al. [9] create a profile for each known developer by computing two types of
metrics. While the first type is style-based, such as line size, leading spaces, and tokens
(words) per line, the second type is based on patterns of character sequences. Their
aim is to determine the closest matching profile for an unidentified source code. This
paper introduces a method for identifying the authorship of source code, a tool that
is particularly useful in situations where code ownership is disputed, such as in cases
of plagiarism or intellectual property infringement. This method is also valuable for
identifying the creators of malware. The approach involves first building profiles for
a known group of authors using verified code samples. These profiles are constructed
by computing a set of specific metrics. Then, the same metrics are computed on
unidentified source code to find the closest matching profile from the known authors.
The effectiveness of this method is demonstrated through a case study involving two
different types of software: one created by open-source developers working on various
projects, and the other by students completing assignments with identical requirements.
The results of the case study are promising, showing over 70% accuracy in correctly
identifying the author when choosing the single nearest match and more than 90%

accuracy when selecting the top three closest matches.

A back propagation neural network based on particle swarm optimization is employed
using Java source codes in [60]. They extract 19 features consisting of lexical, layout,
structure, and syntax metrics. Alsulami et. al. [61] implement deep neural networks
using Long Short-Term Memory (LSTM) and Bidirectional Long Short-Term Memory
(BiLSTM) models based on Abstract Syntax Tree (AST) of source code.

Dauber et. al. [62] investigate the attribution of small and incomplete source code
fragments. They discuss the privacy implications of program AA, especially for
programmers who prefer to contribute code anonymously. Previous research in this field
has primarily focused on attributing authorship to complete files that are individually
authored, often using ideal datasets such as those from the Google Code Jam. However,
this paper expands the scope of research by exploring AA “in the wild”, specifically

looking at source code from open source version control systems.

14

Burrows et. al. [63] compare the AA techniques in terms of source code. They stated
that the comparison between these techniques is not fair since they use different test sets
and evaluation methodologies. It categorizes existing methods based on the software
features (n-grams or software metrics) and the classification technique (information
retrieval ranking and machine learning). The study aims to provide a direct comparison
of these methods by testing them on identical source code collections across different
programming languages and author types. Key findings include: ranking methods
achieving around 90% accuracy and machine classifiers about 85% for a one-in-10
classification problem; neural networks and support vector machines being the most
effective machine classifiers; potential in combining n-gram features with machine
classifiers, despite scalability challenges; and information retrieval techniques currently

surpassing machine learning methods in accuracy.

Frantzeskou et. al. [64] proposed five categories for source code AA by expanding
the taxonomy developed by Zheng et. al. [65]. The process of Authorship
Identification focuses on establishing if a specific author wrote a given piece of code.
Authorship Characterization, on the other hand, analyzes the programming style
and techniques to infer certain attributes of the programmer, such as their cultural
and educational background or language proficiency. Plagiarism Detection involves
comparing different sets of source code to identify similarities, aiming to uncover
instances of plagiarism, defined as using someone else’s work without proper credit.
Author Intent Determination is concerned with understanding whether a code-caused
malfunction was intentional or an accidental error. Lastly, Author Discrimination
assesses if various code segments were created by one or multiple authors. Those
problems can be solved by manual analysis which requires a security expert, similarity
calculation which uses numerical values, statistical analysis and machine learning

algorithms.

15

2.2. Binary Code Authorship Attribution

When the source codes of applications are unavailable, particularly in the realm of
malware, the binary codes of applications serve as a valuable alternative. While most
works use the pure binary of applications to extract features, some works, including

ours, decompile the binary of applications and then extract features.

Rosenblum et. al. [1] introduced an innovative method for representing programs and
techniques that can autonomously identify the stylistic characteristics of binary code.
They aim to find stylistic similarities between programs and identify the authors of the
programs. It is the first work to automatically determine the authors of software.
They extracted syntax- and semantic-based features such as idioms, n-grams, and
graphlets. They then rank the features to eliminate irrelevant features by computing
the mutual information between the feature and the actual author label. They applied
machine-learning techniques to these selected features. They claimed that the most
prominent features are distinctive to each author and reflect the way authors write

code.

Alrabaee et al. [12] propose a layered method, called OBA2, for binary AA. They
extract semantic-based and syntax-based features. They stated that the unique
features of each author were not connected to the author’s coding style, in contrast to
Rosenblum’s inference. They conduct an experiment based on three levels: removing
unrelated code, a syntax-based attribution layer, and a semantics-based attribution
layer. Their results are compared with Rosenblum’s work [1] and they stated that

their results produce more accurate results than Rosenblum’s work.

Caliskan et. al. [66] also proposed an approach that automatically identifies the
authorship of software binaries, but they use syntactical features located in the
source code of decompiled binary. Their approach consists of four steps: disassembly,
decompilation, dimension reduction, and classification. They extract instruction-based

features in the disassembly phase and lexical features in the decompilation phase. They

16

also obtain AST and CFG by employing fuzzy parsing. They then conduct information
gain and correlation-based feature selection to select the top features. Finally, random
forest classifiers are applied to these top features to determine authorship. They also
compared their results with Rosenblum’s work [1]. They claimed that their approach

is robust to basic obfuscation techniques.

2.3. Android Authorship Attribution

In recent years, mobile devices have overtaken desktop devices in terms of usage,
popularity, and sales. Because our study aims to find the authors of malicious and
benign applications in the Android environment, we explain related studies on Android
AA. Moreover, we compared our newly proposed feature sets based on the source code
of the smali files, metadata, and TPL with the feature sets used in the studies given

below.

A study based on string analysis of APK files was proposed by Kalgutkar et al. [14].
Three types of strings were employed: the string identifier list in the .dez file, all
string components presented in the .dex file, and strings extracted from the strings.xml
file. Subsequently, n-gram analysis was employed on these string lists to generate a
feature vector representing an author. Finally, the authors were classified using Support
Vector Machines (SVM). The proposed approach was evaluated in different datasets
that consisted of benign, malicious, and obfuscated applications, and accuracies of 98%,

96%, and 71% were obtained, respectively.

Gonzalez et al. [15] proposed an AA method based on array-related, array-unrelated,
and n-gram features by retrieving bytecodes from the .dex file and converting them into
a smali representation. Their framework consisted of two phases: profile construction
and incremental analysis. In the first phase, author profiles were constructed using
the Random Forest algorithm. In the second phase, incremental analysis is applied
to attribute new applications to existing profiles and find new possible profiles for

applications that have not yet been attributed to the existing authors. They achieved

17

97.5% accuracy in a dataset with 33 authors and 1428 applications. They also applied
their approach to more than 131,000 applications collected from various sources to find

applications belonging to author profiles in the wild.

Guoai et al. [16] proposed a new approach, AppAuth, that detects the original author of
a group of given repackaged Android applications with common properties such as label
names, icons, similar package names, and even file sizes. Several coding style-related
features were extracted from the APK files: i) binary features from the .dex file; ii)
resource features from decompiled files; and iii) configuration features obtained from
the manifest file. They successfully identified 69 original authors of 75 clone pairs (92%)
in the wild. They also analyzed the impact of TPL on the results. They stated that
removing code-level features introduced by TPL slightly increased the performance
of their framework. They also evaluated the prediction performance of independent
developers and development teams. However, their main drawback is that if the apps
they compare are repackaged implementations of an original app, they find a fake

author instead of the original author.

Wang et al. [17] extracted three types of string-related features: DEX-based,
manifest-based, and lib-based features. In the .dex files, identifier names, instruction
sequences, and the use of Android APIs are collected. They extract the names
of activities, providers, services, and broadcast receivers and use features from the
manifest file. Finally, they obtained the names of the TPL used in the applications.
They compared the CountVectorizer, TFIDFVectorizer, and word2vec models to
convert features into the author’s profile vectors. Because the word2vec model yielded
the best result, it was chosen for further evaluation. Then, three machine learning
models (i.e., Linear SVM, Random Forest, and Logistic Regression) were applied to
these vectors to classify authors on different datasets containing benign, malware, and
obfuscated applications. The results show that the proposed approach achieved 92.5%
accuracy on average for the entire set. Moreover, it outperformed AppAuth in 2,900

non-obfuscated applications, thereby improving authorship identification by 3.4%.

18

Differing from earlier studies, our approach incorporates metadata information from
the applications’ market pages. Additionally, we have compared all the feature sets in
the field of Android AA in the literature, utilizing a common dataset to ensure a fair
comparison. Our dataset is also larger than those used in other studies, encompassing
a comprehensive range of both benign and malicious applications. The comparison

between the studies mentioned above and our study is illustrated in Table 2.1.

2.4. Malware Authorship Attribution

Most studies, such as those mentioned earlier, have mainly used desktop and benign
applications. However, malware analysts are also keen to find the original author of a

malicious application.

Kalgutkar et al. [27] summarized various methods for both source and binary code AA,
mainly from the perspective of malware domains. They state that such attribution is
not just about naming the author but extends to understanding malware’s writers’
methods. Knowing who wrote a piece of malware can provide insights into the types of
tools and techniques the author typically employs, as well as how the malware is likely

to evolve.

It is mentioned that source and binary code AA face challenges due to the
complexity and volume of modern malware, making these methods time-consuming
and labor-intensive [67]. To overcome these limitations, the paper proposes a model
for malware AA that utilizes automated analysis for rapid feature extraction and
analysis. This method employs tools to analyze malware files and specific hash
values without the need for expert intervention, making it significantly faster than
traditional methods. The study conducted experiments using various machine learning

classification algorithms on six different malware author groups.

Attackers employ evasion techniques such as encryption and obfuscation to hide their
malicious intentions, which introduces new challenges to the AA problem. Only a
few studies have been published on the identification of malicious authors. Layton

19

seTpnjys uonnqripye diysiorine proipuy Jo sorjeur arpereduro)) 1°g 9[qelL,

stsATeuy uondrosa ddy

stsATeue opood(

Soamnjesj

sisATeue jueuodwod uliyg

ymyddy yim uostreduwo))

S9INYRAJ POSR(9POI-90IN0G so[gord umowy|-ffom UOI)RINSYUOD ‘9DINOSOT ‘XOP S9INYRAJ 9POIIAQ S9INYBAJ JSeIuRW ‘qI[“Xop uornqrIuo))
soIpnys JuaIepIp jo uostredwoy) | 03 sdde umouyun oInqulyy | woIyoejep Surdespedar ddy | pue apoodo jo uostreduio)) Surpdnoosp diysioyiny
INGDMSIT
soAeq oATRN URISSner) UOISSeI39Y D19SIS0T onbyuoay,
INAS 18910, Wwopuey INGDMSIT INAS 18910 Wwopuey

SIOQUSTON 1S0IedN -3
18010,] WOPULRY

INAS

Suruaear] auIyORIA

SISATeuy eIepRISIN
sdde uorsioA ‘pojessnjqO

stsATeue opood()
uoryea1d o[gord 1oyiny

sdde poauor)

sodAy dde
SSOIDR DATIORJJ0 ‘YN[STOMIYSIT

sdde aremyey

snooyq oyradg

SISATRUR pose(| 9[A}s-3UTPOD
R)RPRIOW ‘WRIS-U ‘SOPOD [[eg

SISATeU® [RIUDTUOIOU]
UOT}ONIISUO0D [JOI]

UOI10RIIXD
2In)eoJ 9[A)s-3UIpo))

SWRIZ-U SULI)S [9Ad] PIOA

3uregsnyy) adesped
uor)e8e133y asesped
yderr) uorye[oy aseyorJ

A3o[opoy1aN

sa9p (Oge sdde ¢g0'9 :pareasniqQ
saop ¢¢T sdde g9z ¢:oremeN
saop Q]F sdde ¢ge‘(1:ustuog

sdde 000gg

saop ¢ sdde 1)8°'¢

saop G sdde 9g:payeosniqQ)
saop ()T sdde gggz:orempey
saop (O sdde geg'1:uSIuag

A9p 6z sdde (06 'g:paressnjqQ
saop (0T sdde $9G ‘p1:0rRM RN
saop LT sdde 9g9:usruog]

sa9p Oy sdde 9ry:proiq-q

azIg josere(

Apnyg IanQ

[¢1]sddy proapuy jo
uornqry digsioyiny

[o1]ymyddy

[71|sisATeuy Surnyg

(LT INAAIEV

Apmig

20

et al. [3] analyzed the source code of the Zeus botnet to determine the number of
authors involved in developing malware and their roles. The evolution of the Zeus
botnet over time was also analyzed in this study. Internet Relay Chat (IRC) messages
were analyzed to match them with known aliases, which are real users hiding behind
aliases [5]. The motivation for this study is that IRC messages frequently facilitate
cybercriminal activities, including the sale of stolen credit card information, botnet

access, and malware in online chat rooms.

Alrabaee et al. [2] compared existing studies based on benign binaries in the literature
[1, 11, 12] and conducted an experiment to investigate the effect of their models on
real malware. The study in [11] achieved better accuracy than the other two studies
on a benign dataset. The standard k-means clustering algorithm was used to compare
the three studies in the malware dataset. The study given in [1] performed the worst
among them, whereas other studies achieved similar results. It is stated that the
Rosenblum approach utilizes a blend of compiler and user features as its top-ranked

features, leading to an increased occurrence of false positives.

2.5. Finding Similarities Between Applications

Before conducting authorship analysis, we need to be sure that the dataset does not
include any similar, repackaged, or piggybacked apps. it is crucial to ensure the
integrity and uniqueness of the dataset to avoid skewed or inaccurate results. A
repackaged app typically involves the unauthorized modification, repackaging, and
redistribution of a legitimate application, done without the consent of the original
developer. On the other hand, a piggybacked app emerges when a malicious entity
modifies a legitimate, and often popular, mobile application by incorporating malicious
code. While the functionality of the original application is usually preserved to avoid
suspicion, added code introduces harmful or unwanted features. Like piggybacked apps,

repackaged apps are often distributed through third-party app stores or other channels

21

outside the official app stores. Users may mistakenly download these apps, thinking

they are getting the original version.

A framework called SimiDroid is introduced that identifies and explains similarities in
Android applications in [43]. SimiDroid consists of three plugins, namely MPlugin,
CPlugin and RPlugin. Each plugin is performed using different kinds of features:
method-based, component-based, and resource-based, respectively. They also pointed
out what kinds of changes have been made among app versions and among repacked
apps. They set up a scenario that composes benign apps and their piggybacked
counterparts as a pair. They managed to identify the similarity scores of 0.9996, 1,
and 0.8661 of pairs for each feature, respectively. They stated that the manipulation
of resource files was much easier than others; therefore, the detection of resource-based
approaches was a bit lower. They also compared themselves with other approaches,

AndroGuard [68] and FSquaDRA [69], and outperformed them.

RomaDroid [45] is a system that efficiently identifies cloned apps on Android markets by
analyzing the hierarchical tree structure of an app’s manifest file, implicit intents, and
component information. The system was tested using 148 original apps and their 620
obfuscated versions, created with popular obfuscators like ProGuard, Dex-Guard, and
DashO. RomaDroid showed low false negative rates and minimal processing overhead.
It leverages simple features from the AndroidManifest.xml file of each APK package,
such as the tree structure of the manifest file and the class names of components
associated with implicit intents. The Longest Common Subsequence (LCS) algorithm
is employed for high accuracy in detecting cloned apps. The system is compared
with SimiDroid, another app clone detector, which focuses on methods and component
names for similarity scoring. RomaDroid focuses on the AndroidManifest.xml file,
enabling fast generation of feature information and efficient app comparison. It does
not address the detection of illegal use of parts of an app or TPL. The technique does

not require source code, making it applicable to most apps.

22

3. ANDROID BACKGROUND

Android is the most widely used mobile operating system (OS) based on the Linux
kernel, with a usage of 70.76% in October 2023 worldwide [18] and a cornerstone in
the mobile industry. It offers an official market, Google Play [19], for developers to
easily deploy their applications. It also allows developers to upload their applications
to alternative markets such as Aptoide [20] and Apkmirror [21]. Therefore, Android
applications, namely APK files, can be easily gathered from such markets. Android
apps are developed using either Java or Kotlin programming languages. They are then
compiled into a bytecode for the Java virtual machine. Finally, these Java bytecodes
are translated into Dalvik bytecodes and stored in .dex files. The Dalvik bytecode
corresponds to hexadecimal sequences of executables for Android; hence, it is the format
that Android understands. The Dalvik bytecode is difficult to read or modify. Hence,
the smali intermediate language is generally used to look inside class files. Smali is a
human-readable representation of the Dalvik bytecode. Smali files can also be extracted

directly from the APK files.

An Android application, an APK file, consists of several elements such as .dezx files,
a manifest file, resource files, and string files. All of these files can be used to
gather information regarding the application. For example, while the manifest file
contains information such as the number of services, activities, and permissions used
in applications, we can find images, libraries, and XML files and folders used in
applications in resource folders. String resources provide text strings for applications
[22]. There are three types of strings: String, String Array, and Quantity Strings
(Plurals). All strings were capable of applying styling markup and formatting
arguments. The .dex file contains Java/Kotlin class files. It is possible to convert class
files to smali files, which are intermediate representations of .dex files. Even though
some linguistic and formatting features of a source code are lost when compilation is
carried out, unlike assembly-based executables, Dalvik-based executables contain some

insightful information in the smali files. Fig. 3.1 shows a sample Java/C++ compatible

23

1] int find _maximum(int al], int n) {
2 int ¢, max, index;
3 max = al[0];
4 index = 0; I| public int find_maximum(int[] a, int n) {
5 for (¢ = 1; ¢ < n; c++) | 2 int max = a[0];
6 if (alel > max) | 3 int index = 0;
7 Sotess = @F -} for .(int c =1; ¢ < n; c++) {
5 if (alc] > max) {
8 max = alc]; 6 index = c;
9 1 7 max = alcl;
10 } 8 }
11 return index; 9 }
- 10 return index;
121 } 1]
(a) Java (b) Decompiled Java
1| .method find maximum([TI)T
2 .registers 7 1| push Srbp
3 .param pl, "a" P IT 2| mov %rsp, $rbp
4 .param p2, "n" 1 3| mov %rdi,-0x18 (3rbp)
5 .prologue 4| mov $esi,—0xlc(%rbp)
6 Mine 261 5| mow —0x18 (%rbp), $rax
7 const/4 v3, 0x0 6| mov {8rax), beax
] aget v2, pl, v3 7| mow %$eax, —0x8 (%rbp)
9 line 262 8| mowvl $0x0, —0xc (3rbp)
- 9| movl 50x1,-0x4 (%rbp)
10 -local v2, "max":I 10| jmp 0x400555 <find maximum+98>
11 const/4 vl, 0x0 11| mov —-0x4 (%rbp) , $eax
12 .line 263 12| eltg
13 .local v1l, "index":I 13| lea 0x0(,%rax,4),%rdx
14 const/4 v0, 0xl 14| mov 0x18 ($rbp), $rax
15 .local VO, LrCLES 15| add %rdx,%rax
16 tgoto 5 16| mov (%rax) , $eax
17 if-ge v0, p2, :cond_11 17 gmp =Tt (i) ,%eax .
) 18| jle 0x400551 <find_maximum+94>
]f -line 264 19| mow —0x4 ($rbp), $eax
19 aget v3, pl, v0 20| mowv %eax, —0xc (3rbp)
20 if-le v3, v2, :cond_e 21 - —0x4 (%rbp) , Seax
21 .line 265 22| eltg
22 move vl, w0 23| lea 0x0(,%rax,4),%rdx
23 .line 266 24| mov -0x18 (%rbp), $rax
24 aget v2, pl, v0 25| add %rdx, $rax
25 .line 263 26| mov (%$rax) , $eax
26 :cond_e 27| mov %eax,-0x8 (¥rbp)
27 add-int/1it8 v0, v0, 0xl 28| addl $0x1, -0x4 ($rbp)
29| mow -0x4 (%rbp), $eax
28 goto :goto_5 30| emp -Oxlc(3rbp), $eax
29 -line 269 31 91 0x400517 <find_maximum+36>
30 :cond_11 32| mow —0xc ($rbp), $eax
31 return vl 33| pop $rbp
32| .end method 34| retq
(c) Smali (d) Assembly

Figure 3.1 Sample code fragments

code fragment, its corresponding smali, and assembly codes, respectively. While the
smali code preserves information, such as variable names and method signatures, the
assembly code loses such information after the compilation process. Therefore, some

features related to source code AA can be obtained from smali files. Therefore, the

24

effects of such features were explored for the first time in this study.

3.1. Android Application

We have segmented Android applications into various components, each corresponding

to the different feature sets utilized in our study.

» Source Code: Smali files contain Dalvik-byte/smali codes generated from Java
bytecodes in the class files. Smali codes can be thought of as assembly codes for a
C/C++ program. They are generated from a high-level language and converted
to machine code via Android Runtime (ART) for smali. The operating system
then executes these machine codes to run the applications. In Fig. 3.1, the smali
and assembly codes corresponding to a Java function named find__mazimum are
shown. As seen in the Fig. 3.1, the names of the function parameters and global
and local variables in the original source codes are not preserved in the assembly
files but in the smali files. For example, the local variables n, max, indexr and
function parameters a, n are preserved in the smali code given in the figure. It is
shown that developers tend to use the same format in naming identifiers, such as
using $ character or digits in variable names. Therefore, preserving such names

in decompiled code can help identify developers.

o Permission: Permissions are required to use the system resources of mobile
devices. Applications can only access and use device resources, such as cameras
and GPS, via the permissions requested in the manifest file. While normal
permissions can be granted automatically, dangerous permissions require user
approval. Most applications request more permissions than they use. According
to a study that evaluated the gap between the requested and the permission used
at runtime, applications use, on average, 30% more permissions than they need
[23]. Although a developer might develop applications belonging to different
categories, they could use the same manifest file in these applications because
of its convenience. Moreover, because they use the same TPL in applications

25

developed by the same author, they need to use the same permissions that these

libraries require.

Library: Developers prefer to use TPL to provide some functionalities in their
applications rather than implementing them from scratch. It is shown that most
applications use more than 20 TPL [24] and a large part of the application code
belongs to such libraries [25, 26]. For the same functionality, developers tend to

use the same library that they are familiar with.

Metadata; The distribution of Android applications through centralized mobile
markets differs from conventional methods of application distribution. In addition
to the application itself, these markets include information about the application,
such as the application description, application rating, and user reviews, known

as metadata.

Configuration: Android applications are composed of four key elements:
activities, services, broadcast receivers, and content providers. Each component
has its own purpose and life cycle, which define how it is created and destroyed.
Activities define how users interact with applications. They are used to define user
interfaces that allow users to use the system resources. Every single application
screen refers to activities on Android. Some activities may trigger other activities.
Services perform long-term operations in the background and do not contain a
user interface. Broadcast receivers allow an application to be linked to a system
or an application event. The Android operating system notifies the connected
application when an event is triggered. Content providers are used to access
data in the application databases. An application can also use these to share
its database with other applications. Thus, a single piece of content can be
distributed across multiple applications. All the components are declared in the
Android manifest file. Developers tend to reuse the same Android manifest file

when developing their applications. Therefore, information in the manifest file,

26

such as the number of components, can help distinguish developers from each

other.

Resource: Android applications may contain resource files such as images,
sounds, icons, and native libraries stored in the res directory. The files can
be used for various reasons, such as language support and the provision of images
for UI. Some files in the res directory, such as dynamic libraries, database files,
and payload files, can be accessed at runtime. Developers embed some specific
and critical information into these files. Therefore, it is important to analyze the

characteristics of this folder.

DEX Code: The .dex file contains information about the structure of the
applications, as shown in Fig. 3.2. AppAuth [16] mainly analyzes the data section
in .dex files and focuses on methods, classes, and field structures, as well as
annotation, interface, debug information, etc. Because application sizes might
vary significantly, instead of obtaining the numerical values of these features,
AppAuth use ratio values, such as the ratio of the number of abstract classes to

all classes.

[Dex Header]

String ID list

Type ID list

Method prototype ID list
Field ID list

Method ID list

Class definitions list

Data Section
Annotation items
Code items
Annotation directory
interfaces
Parameters
Strings
Debug items
Annotation sets
Static values
Class data

Linked files

Figure 3.2 Format of a .dex file

27

o String: The strings in the strings.xml file are extracted line-by-line as app string
features. Strings in the strings.xml file contain references to the source code or
other resource files of the applications. These are static strings shown to users,
such as the application’s name. The .dex file consists of different parts, such
as the string id list, type id list, and method id list. The string id list mainly
contains the strings used in the source code of an application. However, malware
developers put their payloads on the string ID list to run them at runtime and
avoid analysis. Strings in the string id list part of a .dex file are extracted as

DEX string features.

3.2. Android Application Signing Process

To release an Android app to official and alternative markets, the developer must sign
the app with a certificate of its own. Therefore, most studies on Android AA in the
literature assume that if apps share the same signature, they are written by a developer
who has the signature. Applications are organized based on their signatures, with those

sharing identical signatures being classified into the same group.

The Android Application Signing Process is a critical component of Android application
development and distribution that ensures the integrity and authenticity of Android
applications. It involves creating and managing cryptographic keys that sign the
application’s code and resources, verifying its origin and verifying that it has not
been tampered with during deployment. Android’s official app store, Google Play,
encourages developers to use the Google Play App Signing service, which allows Google
to manage the app signing key on the developer’s behalf. This process not only
simplifies key management but also increases security. Google Play also makes it easier
to safely distribute app updates by ensuring that the app’s signature matches the
signature on file. Understanding and complying with the Android Application Signing
Process is crucial to maintaining users’ trust and protecting against unauthorized

changes to Android applications [70].

28

Developer certificates are necessary to establish trust between applications published
by application developers. They prevent attackers from installing malicious versions by
ensuring that an application’s digital signer is the same person who signed the signature.
Android enables data access and process sharing by allowing application packages
signed with the same certificate to run in the same process. Additionally, Android
provides signature-based permission enforcement, allowing apps to expose functionality
to another app signed with a specific certificate. Developer certificates do not need to be
issued from a widely trusted certification authority (CA), and trust between developers
and end users is established through registration. Android applications are digitally
signed with two types of signatures: those applied to the APK using the signing key,
and those applied to certificates corresponding to the A PKs’ signing keys. Google has
made several requirements and recommendations for certificates, including two public

key encryption algorithms and the validity period of the public key [71].

APK files are distributed through app markets such as Google Play and alternative
app stores such as Huawei [72] or Tencent [73]. Each packet must be cryptographically
signed to ensure integrity and authenticity. Google’s signature scheme has been revised
over time, and certificates are generally self-signed. However, Android does not have
a trusted authority to verify the validity and accuracy of certificates. Since 2017, the
Google Play Store has introduced the “Play App Signing” feature to prevent signing
keys from being lost or compromised. This service further restricts the limited function
of the signing certificate as an indicator of authorship, as applications can be signed by
Google itself. In [74] stated that alternative Android markets enforce their own policies,

such as uploading a pre-signed APK to APKMonk [75], Baidu [76] or APKMirror [21].

3.3. Alternative Android Markets

Alternative Android marketplaces such as APKMirror [21] and APKPure [37] are
popular for offering a wider range of apps than the Google Play Store, including

older versions of apps not available anywhere else. They appeal to users looking

29

for specific features or applications that are not available in their region. However,
while these markets expand options, they also bring risks. Unlike the Google Play
Store, which has strict security controls, these alternative platforms may not have
the same level of scrutiny. This may raise concerns about the safety and security
of some applications. Users who trust these sites generally need to be more careful
and make sure they download safe and reliable applications. Despite these concerns,
these alternative markets remain valuable resources for those looking for unique or

hard-to-find applications.

30

4. AUTHORSHIP ATTRIBUTION

This chapter delves into the details of Authorship Attribution, a key aspect of our
research. We begin by explaining various “Features” used in authorship attribution,
discussing their relevance and how they contribute to identifying authorship patterns.
Following this, we delve into “Representations”, examining how features are represented
in the attribution process. The chapter then shifts focus to “Attribution Models”, where
we outline and analyze different models used in the field, highlighting their strengths
and limitations in the context of authorship attribution. A final portion of the chapter
is dedicated to “Machine Learning”, which is subdivided into three subsections. Firstly,
“Classification Algorithms” are discussed, providing insights into the various algorithms
employed. Next, we explore “Cross-Validation” methods, emphasizing their importance
in ensuring the robustness and generalizability of our models. Lastly, “Grid Search
CV?” is examined as a method to fine-tune model parameters for optimal performance.
Throughout this chapter, we aim to provide an overview of the methodologies and

techniques applied in the domain of authorship attribution.

Authorship attribution aims to determine the original creator of a text or software.
In the literature [27, 28], the process of attributing authorship in software follows
a four-step approach, as depicted in Fig. 4.1. The process of AA utilizes both
binary and source code. The code’s characteristics, encompassing lexical, syntactic,
semantic, behavioral, and application-specific features, are extracted from the code
for analysis. Various representations of code are employed, including tokens, strings,
n-grams, idioms, graphs, and trees. Models for authorship can be categorized as
profile-based, example-based, or hybrid. These models are supported by methodologies
such as similarity-based, vector space, probabilistic, and meta-learning methods. The
final point of this process leads to outcomes like attributing authorship, detecting

plagiarism, and identifying author intentions. Each step is explained in detail below.

31

S

uoneuIwISIq e
uoleuiwialag
LUl .

O)

Sujuiea e} .
onsl|iqeqodd .
20eds JOJO3A .

wslielde|d o
[ULeTRI=TITRIVET o] N
ndinQ

-/

paseq

SR

PUGAH
paseq aduelsu| .

Apepuis .
SPOYIs NI
uonnquIy

—

uonnqryy drgsioyiny jo sdoys oy, 1§ o3I

)

paseq a|yodd
[9POAI uonNqLUNY

./

S99I] .
sydesn .
swolp| .

swei3-N o
suls .
SUDOL .

uonejuasaiday

-/

O)

juepuadsqg
uolneolddy .
|eJnoineyag

O)

9p0) 22IN0S .

J1JUBWSS

2130eJUAS .
|eaIXe] .
sainleaq

—

apo) Aleulg .
nduj

—

32

4.1. Features

Kalgutkar et al. [27] and Gonzalez [28] provide a detailed explanation of each feature,

along with their respective advantages and disadvantages, which are explained below.

Lexical features are derived from either source or binary code when this code is
processed as a basic series of tokens or characters. Lines of code, operands, variables,
spaces, and the frequency of words, tokens, characters (n-grams), and function names
can be named for lexical features. These features are independent of any specific
programming language, allowing the techniques used for their extraction to be readily
adaptable across various programming languages and environments. However, their
effectiveness is related to the quantity of training samples and the selection of the right
features. Lexical features are susceptible to modification by code formatters, which
can impact the dependability of these features. Additionally, developers of proprietary
software and malware may use methods like renaming, addition or removal of redundant
code, string obfuscation, and string encryption, all aimed at circumventing systems

designed for code attribution.

Syntactic features have a significant weight in determining the author. Features
like average function size, the use of custom macros, choices in data and control
structures, and types of statements (input, conditional, and assignment) are considered
syntactic features. These features can reflect an author’s approach to problem-solving
and contribute to creating robust author profiles. While syntactic features are more
resistant to code formatters and obfuscators than lexical features, they also face
other challenges, including language dependency and difficulty in feature selection.

Furthermore, altering the structure of the code can neutralize these features.

Semantic features focus on the logic behind the code. Their resistance to code
transformation and obfuscation techniques surpasses that of other features. Semantic
features consist of aspects like loop usage, data and control flow analysis, and the

application of specific algorithms that indicate an author’s unique style. The primary

33

objective of utilizing semantic features is to capitalize on the concept that authors
generally exhibit consistent logic in their applications. While an author’s programming
style may vary across different programming languages, the underlying problem-solving
techniques, which are a reflection of the author’s unique approach, tend to remain
relatively constant and are challenging to alter. However, these features can be
complex to extract and are vulnerable to advanced obfuscation techniques such as

code optimization, string obfuscation/encryption, data transformation.

Behavioral patterns of software, such as system calls, file accesses, mutex creation,
URL visits, dynamic value generation, and network connections, offer another way
for author identification. These features are resilient against software protection and
sophisticated code obfuscation. While revealing hidden functionalities, their reliance
on data size and vulnerability to anti-analysis techniques can lead to high rates of false

positives and negatives [27].

Application-dependent, features, derived from sources like log files, property files,
manifest files, and resource files, also aid in AA. This method is cost-effective and
useful even without access to the source code. It facilitates the development of author
profiles but requires advanced tools for feature extraction and is not immune to code

obfuscation techniques [27].

4.2. Representations

It is important to transform the mentioned features into appropriate data structures so
that they can be better handled and analyzed. The following section provides details

on these data structures.

« Tokens represents the smallest meaningful pieces obtained from the source and

binary code. For example, a character, word, keyword, operator, identifier, and

basic block.

34

o Strings refers to specific text strings within the code. Lexical and syntactic
features can be combined to form strings. However, they are unable to reveal the

semantic meaning of the code.

o N-grams are sequences formed by combining n consecutive elements. This
is used to capture structural features of the code. In contrast to tokens and
strings, N-grams assist in gathering both contextual and neighboring information.
However, the optimal choice of n value depends on the dataset and features, and
there is no definitive method to determine its value. This requires extensive

research to determine the optimal value.

o Idioms, which are language-specific features, usually consist of 3-6 instructions
used in various programming languages. These idioms can be extracted from the
assembly language of binary code. Unlike string, tokens, and n-gram attributes, it

is more resistant to obfuscation techniques because it allows the use of a wildcard.

o Graphs represents the structure of the code and the relationships between
elements. Semantic meanings are derived from these features, making them
resistant to obfuscation. This involves a structure of nodes and directed
edges, where nodes represent basic blocks or functions and edges indicate the

relationships between functions, akin to a call graph or control flow graph.

o Trees are especially used for syntactic analysis; they show the hierarchical
structure of the code as a tree structure. These structures are akin to graphs,
which possess an acyclic and undirected nature. Examples of such structures
include the Abstract Syntax Tree and the Parse Tree. An AST is a tree
representation of the abstract syntactic structure of source code written in a
programming language. Parse Tree, also known as a Concrete Syntax Tree, is a
tree representation that reflects the syntax of the source code according to the
grammar of the programming language. Unlike the AST, the Parse Tree contains
every detail in the source code, including parentheses and unnecessary syntactic

elements.

35

« Embeddings are combinations of different representations when a single
representation is insufficient to capture the meaning of a program. For example,

strings, n-grams, and trees can be embedded together inside a vector.

4.3. Attribution Models

Authorship attribution typically involves a multi-class, single-label categorization task
where there is a set of training samples from a finite number of identified candidate
authors, with each class representing one such author. Two tasks can be executed: 1)
a task that new author can only be attributed to previously known authors and 2) a
task that involves identifying and classifying new authors, regardless of whether they
have been encountered before. The choice between profile-based and instance-based
attribution models hinges on whether the training samples are considered cumulatively

or individually.

In the Profile-Based model, each author is assigned a unique and distinct style of
representation that encompasses all their applications. This model does not consider
variations between different works by the same author as the style of the author is

manifested through a series of shared features.

Contrastingly, the Instance-Based model generates separate styles for each individual
app. Here, each work by the same author is considered a separate entity. This approach
allows differences between different works by the same author to be taken into account.
When determining the authorship of an unknown sample, it is compared to every

sample in the corpus.

4.4. Attribution Methods

After designing the attribution model, the subsequent phase involves choosing an
appropriate method for comparing author profiles or samples. This is essential for
determining the author of an unknown code sample. The methods of attribution can
be classified based on the approach taken for this comparison.

36

Similarity-based methods measure the pairwise similarity between the unidentified code
and all training samples or author profiles in the training set. The final decision is based
on identifying the author whose work shares the greatest similarity with the unknown
sample. These methods are applicable in both Profile-Based and Instance-Based

models.

Vector Space Methods in code authorship attribution involve representing code as
vectors in a multidimensional space. Each dimension of the vector can represent
different features of the code, such as syntax, structure, formatting, variable naming
conventions, and comments. This transformation creates a numerical representation
of the source code, which can be analyzed using various mathematical and machine
learning techniques. Machine learning algorithms, such as Support Vector Machines
(SVM), neural networks, or clustering algorithms, are then applied to these vectors for
authorship attribution. Instance-based attribution models employ these vector space

methods.

Probabilistic methods in authorship attribution calculate the likelihood that a given
sample of code was written by a specific author from a predefined set of authors. The
author who has the highest probability is considered the most likely creator of the
code. These methods assess the probability P(C|A), where C is the code and A is a
potential author. While commonly used in profile-based attribution models due to their
probabilistic approach, these techniques can also serve as a similarity measure. They
help in determining how closely an unseen code sample aligns with all the samples in

the training dataset.

4.5. Machine Learning

Machine learning attempts to determine whether the code was written by a particular
author by examining characteristics of the code, such as writing style, word usage, and

grammatical structures, using various algorithms and statistical techniques. Nowadays,

37

with the development of machine learning technologies, more accurate and faster results

can be obtained in the field of AA.

4.5.1. Classification Algorithms

In this section, we provide explanations of each machine learning algorithm that is both

frequently used in the literature and employed in our research.

« Random Forest: Random Forest is a popular and powerful classification and
regression method used in machine learning. It is an ensemble learning model
consisting of decision trees. In this method, many decision trees are trained on
random subsets, and their outputs are combined to make a more accurate and
stable prediction. It consists of an ensemble of tree predictors, where each tree
is influenced by the values of an independently sampled random vector, which
follows the same distribution across all the trees in the forest [77]. Each tree
predicts independently, and results are combined by majority vote or average. It
avoids overfitting by using random subdatasets and features. The impact of each
feature on the model’s prediction performance can be measured, which is useful

for feature selection.

o K-Nearest Neighbors: K-Nearest Neighbors (KNN) is a non-parametric
algorithm in machine learning, applicable to both classification and regression
tasks. It operates by considering the k closest training examples in the dataset,
where “k” is a small, positive integer. In the k-NN classification, it assigns a class
membership to an object based on the most frequent class among its k nearest
neighbors. Specifically, if k equals 1, the object is assigned to the class of its

single nearest neighbor.

o Support Vector Machine - SVM: Support Vector Machine (SVM) is a
powerful and flexible supervised learning model used in machine learning. It
can be used effectively in both classification and regression tasks. The main goal

38

of SVM is to find an optimal separation hyperplane (or a line in hyperspace)
to separate data points. In a binary classification task that involves two distinct
classes, the primary goal of an SVM is to establish the most effective classification
function that can accurately differentiate between the members of these two
classes as observed in the training dataset. The criterion for what constitutes

the “best” classification function in this context is often interpreted geometrically

78, 79].

Currently, two main approaches are used for multi-class SVM. The first involves
creating and combining several binary classifiers, and the second directly

incorporates all data into a single optimization framework [80].

1. One-against-one method involves constructing k(k — 1)/2 classifiers, each

trained on data from two different classes.

2. One-against-all method builds £ SVM models, corresponding to the number
of classes, where the mth SVM is trained using all examples of the mth class

with positive labels and all examples from other classes with negative labels.

Gaussian Naive Bayes: Naive Bayes methods comprise a collection of
supervised learning algorithms that apply Bayes’ theorem under the simplifying
assumption that each pair of features is conditionally independent, given the class
variable’s value [81]. In Gaussian NB, it is presumed that the features follow a

Gaussian distribution in terms of their likelihood.

1 (% — py)°
P(zily) = WGXP (‘M) (1)

In Eq. 1, P(z;|y) represents the probability of feature x; given the class y, under

the assumption that the values of z; are distributed according to a Gaussian

(normal) distribution.

Light GBM: Gradient Boosting Decision Trees (GBDT), a prominent machine
learning technique, is effectively implemented in various forms including

39

Light GBM, XGBoost and pGBRT. LightGBM, a highly efficient version of
GBDT, is distinguished for its rapid training capability and high accuracy.
Introduced by Ke et al. in 2017 [82], Light GBM incorporates unique features such
as Gradient-based One-Side Sampling (GOSS) and Exclusive Feature Bundling
(EFB). GOSS optimizes the training set creation for the ensemble’s base trees,

while EFB consolidates sparse features into a single one, acting as a preprocessing

step [83].

4.5.2. Cross-Validation

Cross-Validation is used to evaluate the performance of a predictive model. It involves
splitting the dataset into subsets, fitting the model into some of these subsets, and
validating it on the rest. This process is repeated to ensure robustness in performance

estimation. The following introduces different cross-validation techniques:

o K-Fold Cross-Validation: The dataset is divided into “k” equally sized folds.
The model undergoes training and evaluation k times, with each iteration utilizing
a distinct fold for validation. The performance metrics obtained from each fold
are then averaged, providing an estimate of the model’s overall generalization

capability.

o Stratified K-Fold Cross-Validation: Similar to K-Fold but ensures that
instead of the splits being entirely random, the proportion of the target classes

in each fold is maintained to be the same as that in the entire dataset.

« Leave-One-Out Cross-Validation (LOOCYV): Each observation is used as a

validation set while the rest (N-1) observations are used for training.

o Hold-out Cross-Validation: The data set is splitted into training set and test

set by some percentage.

40

Cross-Validation is a vital step in ensuring the reliability and generalizability of the
model’s performance. The choice of CV strategy should be tailored to the dataset’s
characteristics, and the model evaluation metrics should align with the specific goals

of the analysis.

4.5.3. Grid Search CV

Grid Search perform exhaustive search over specified parameter values for an estimator
[84]. Grid Search Cross-Validation involves a systematic approach to hyperparameter
tuning for machine learning models. Initially, a hyperparameter grid is defined,
consisting of a dictionary where keys represent the hyperparameters and values are
the ranges or specific settings to be tested. The next step is choosing the appropriate
machine learning model or estimator, alongside the evaluation metric to be used by
GridSearchCV for assessing model performance across different hyperparameter sets.
The process then involves GridSearchCV conducting cross-validation, where the model
is trained on various data subsets with each unique hyperparameter combination.
Finally, GridSearchCV identifies and retains the best parameters that yielded the
highest score according to the chosen metric. Upon completion of the search, it presents

the optimal hyperparameters that enhance the model’s performance [85].

41

5. PROPOSED METHOD - ANDROID
AUTHORSHIP ATTRIBUTION

The objective of this study is to introduce a comprehensive approach to AA in the
context of Android applications. This section details the methodology, encompassing
feature extraction, data processing, model architecture, and validation techniques

employed to predict authorship within the Android app domain.

The proposed method aims to predict authorship in Android applications by leveraging
an extensive array of features extracted from various components within the app’s
structure. The model integrates advanced data processing and classification techniques
along with robust validation methodologies to enhance the accuracy and reliability of

authorship predictions.

There are only a few studies [14-17] on AA for Android. AppAuth [16] extracts
distinguishing features for AA from the .dez file, manifest file, and resource files of
applications. In [14], they used all the string information placed in the string XML
files and .dex files of applications. Unlike these studies, in this study, source code-based
features extracted from smali files are used for the first time. In addition to the source
code-based features, the effects of other proposed features (usage of permissions, TPL,
and metadata-based features) is also analyzed. All of these features are given as SPL,

which stands for Source code-based features, Permissions, and TPL.

5.1. Model

Figure 5.1 shows the schematic representation of the architecture of the proposed model.
The decompiled APK files serve as the entry point for feature extraction, resulting in

the creation of fixed-size feature vectors specifically designed for classification tasks.

The APK files were first decompiled using apktool [29], and the smali files were
obtained. Subsequently, the String, AppAuth, and SPL features of the applications

42

are collected from these files and the APK files, and a fixed-size feature vector per
application is given as input to the classifiers. Simplelmputer [30] was used in the
scikit-learn library to fill in the missing values in the feature vectors. After this
imputation process, these features were standardized by removing the mean and scaling

to the unit variance using StandardScaler [31] in the scikit-learn library.

Feature Extraction

Feature Sets

AppAuth String

AlB|C]|D AlB|c|o
T 1]2]3]a 1 S
AL s|e|7]8 C:' s | 6 8
c 4 6
H 3 1 9 ||| 9 | 10| 11
iy Standardization Imputation
o
3
a - po -
g Classification
5 hb
3 K-nearest neighbors
: - o Developer
2 . . L
g A/ Ya at f gy
S T =
RE.

LightGBM

(z) y
-
@
SVM

Figure 5.1 Overview of Model

Two-phase dimensional reduction is used before the classification algorithms are
executed. First, the features with zero variance were eliminated from the dataset.
Then, univariate feature selection was applied, which selected the best features based
on the univariate statistical tests. Five different classification algorithms are applied
using the scikit-learn library [32]. Then, stratified 10-fold cross-validation is employed.
Because stratified 10-fold cross-validation ensures that the proportion of positive to
negative examples from the original distribution is preserved in all folds, it is especially
useful when the dataset is unbalanced [33]. Therefore, it was used five times, and the

average of these five runs is presented in the results.

43

5.2. Dataset

In this study, two different datasets were mainly constructed: market and malware
datasets, consisting of benign and malicious applications. To construct the market
dataset, a Web scraper was implemented using the Scrapy framework [34] to collect
benign applications from various alternative markets. In addition, applications from

other studies [14, 15, 35, 36] were included in this dataset.

The benign dataset contains binaries collected from different alternative Android
markets, namely Apkpure [37], Apkmirror [21], Onemobile [38] and Aptoide [20]
between January 2020 and August 2020. However, it also includes applications written
much earlier than 2020 because of the availability of early versions of contemporary
applications. The distribution of the benign datasets over the years is presented in
Table 5.1. Initially, 200,000 applications were downloaded. Then, developers with
fewer than ten applications are eliminated because earlier studies use developers with
at least ten applications [14, 16]. Moreover, we must have sufficient applications for

each developer to generate a good model that can differentiate between developers.

Table 5.1 Year distribution of dataset

Year Percentage (%)

2014 4.9
2015 5.4
2016 8.6
2017 39.7
2018 414

The malware dataset contains malicious binaries belonging to malware families, namely
Ransomware, Adware, and SMS [39], and some binaries from datasets introduced and
used in security-related studies, namely Rmvdroid [40], Drebin [35], Genome [15] and
Koodous [14].

The number of authors and applications collected from different repositories in the

dataset is shown in Fig. 5.2. Due to the elimination of authors with fewer than

44

Number of Apps

ten applications, the dataset consists mainly applications that are mostly written by
multiple developers or companies. Fig. 5.3 displays a histogram representing the
distribution of APK sizes, measured in megabytes (MB), for the market and malware

datasets.

14000 [—— — — — — — —— — — 1200

12000 | 1000 |

10000 -
800 -
8000
600 -
6000 -

Number of Authors

400
4000 -

2000 200 -

Figure 5.2 Summary of dataset

Authorship attribution is primarily based on the hypothesis that matching serial
numbers in certificates are indicative of the same author, excluding cases involving
public or leaked certificates. Each application must be signed with a developer
certificate installed on an Android device. Therefore, applications that share the same
signature are assigned to the same developer, and each application is grouped according
to its related signature, as in [14]. Signatures were extracted from the APK files using

the print-apk-signature tool [41].

Some authors were eliminated in the feature extraction step because of errors. If an
application exists in more than one dataset, only one of them is randomly chosen and
kept in the dataset. If an application has several versions, they are all kept in the
dataset. As a result, the dataset given in Table 5.2 was used in all experiments other
than version analysis, in which the effect of versions on AA was analyzed, and metadata

analysis, in which features extracted from application metadata were analyzed on AA.

45

-t T0'06T-T0'S8T
o T0'S8T-T008T
o~ TO08T-TOSLT
o TO'GLT-TOOLT
ot TO0LT-TO'SIT
oF T0'S9T-T009T
o TO'09T-TO'SST
- TO'SST-T0'0ST
- TO0ST-TO'SKT
- TOSPT-TO0VT
- TOOYT-TOSET
- TO'GET-TO'0ET
- TO0ET-T0'SET
- T0'SZT-T0'02T
- TO0ZT-TOSTT
- TO'STT-TOOTT
- TOOTT-TO'SOT _
- T0'50T-T0'00T 2
- 10°001-10'S6
- 10'56-10°06

°
°
°
°
°
°
°
~
°
-
®

3
3
~
5
¥|- T006-10°'S8
3
3
2
3
~
5
o
3

o

g

B

o

]

T0'0S-10°SY

TO'SP-10°0v

TO'0-T0°SE

T0°GE-T0°0€

TO'0€-T0°'SC

T0'S¢-10°0¢

Apk Size (
Apk Size (Mb)

— T0°98-10°08
— T008-T0'SL
— T10'G.-T0°0L
T0'0L-T0'S9
T0'G9-T0°09
T0'09-T0'SS
T0'SS-T0'0S
TO'0S-TO'SV
T0'Gy-10°01
TO'0V-10°SE
T0'SE-TO0E
T0'0€-T0'SC
T0'S¢-T0°0C
T0'0¢-T0°ST
TO'ST-TO0T
TO'0T-10°S
T0'S-10°0

T0'0¢-T0°ST

TO'ST-T0'0T

TO'0T-10°S

2723

T10'G-T0°0

3738

1

|

|

|

I
o
o
o

1000 —----
500 -

1 1 1

| | |

| | |

| | |

I I I
o o o
o o o
Yol o 0
N N

2500 —|----

N - -
sydy Jo JlaquinN sydy Jo Jaquin

=4

46

Figure 5.3 APK size distribution (Market at the top, Malware at the bottom)
Since not all applications have metadata information and different versions, a subset

of the dataset is used for version and metadata analysis.

Table 5.2 Dataset information

Dataset # of app # of author

Market 10,385 488
Malware 3,268 153
Genome 1,530 39

We employed an alternative dataset to show the effect of metadata-based features due
to challenges in acquiring applications’ descriptions. The dataset size of descriptions

can be found in Table 5.3.

Table 5.3 Metadata analysis dataset info

Dataset # of app # of author

Rmvdroid 1,216 67
Market 2,359 133

5.3. Feature Extraction

The proposed model employs feature extraction processes, starting with the
decompilation of APK files using “apktool”. This step enables the extraction of smali
files, .dex files, resource files, manifest files, XML files etc. Three primary feature

categories are extracted using all these files:

o AppAuth Features: Discriminating features for AA from the .dex file, manifest
file, and resource files of applications. AppAuth uses the configuration features
collected from the manifest file, as listed in Table 5.4. It also uses features related
to resource files, such as the number of files/folders in the res directory. The use
of the dex features is on analyzing the usage of methods, classes, fields, and
data structures in .dex files, which also encompass annotations, interfaces, and
debug information. To address the variability in data structure features caused
by developers releasing apps of different sizes, ratio values are used instead of

absolute numerical values to avoid size-related biases.

47

Table 5.4 Feature set descriptions

Category (# of features) Description

of average character per line

of average character per local variable

of average character per global variable

of average character per function name

of average character per function parameter name

Ratio of global variables to lines of code

Ratio of local variables to lines of code

of average lines of code per function

Ratio of variables to lines of code

Source Code-Based (18) Ratio of if to all codes

of average lines of code per class or interface

of average number of functions per class or interface

Ratio of invoke to all codes

Ratio of move to all codes

Percentage of function names starting with an uppercase letter

Percentage of int function definitions to all

Percentage of void function definitions to all

Percentage of identifiers beginning with an uppercase character

Ratio of abstract classes

Ratio of classes containing annotations

Ratio of direct methods

Ratio of virtual methods

Ratio of methods containing try and catch

Ratio of methods containing debug information

Ratio of static fields

DEX Code (28 Ratio of classes containing interfaces

Ratio of mathematical instructions to functional instructions

Ratio of aget instructions to aput instructions

Average of the length of all the arrays

Median of the length of all the arrays

Standard deviation of the length of all the arrays

Ratio of arrays with constant length

Number of activity

Number of service

Number of receiver

Number of provider

Configuration (9) Number of intent-filters

Number of meta-data

Number of uses-permission

Number of sensitive uses-permission

Number of uses-feature

Number of directories in the res directory

Number of directories whose name containing drawable in the res directory

Number of files in the directories whose name containing drawable

Number of directories whose name containing layout in the res directory

Number of files in the directories whose name containing layout

Resource (11) Number of directories whose name containing values in the res directory

Number of files in the directories whose name containing values

Number of files in the assets directory

Number of files in the lib directory

Number of .so files in the assets/lib directory

Number of XML files in the res directory

Permission (158) Android permissions

Library (500) A whitelist of TPL

Metadata (10,000) Application descriptions placed in Android markets

DEX - Strings present in the .dez file

String/n-gram (10,000) Application - Strings extracted from the strings.xml file

All strings (DEX + Application)

48

o StringAA Features: Derived from the string XML and .dex files of the
applications. In [14], preliminary experiments were first conducted to determine
the optimal n value for n-gram analysis, which was selected to be 3. Therefore,
in this study, 3-grams are also used for string-based features. Following the
approach in [14], to prevent the omission of lines containing one or two words,
we prepend and append a tag to each string. This ensures that only lines
without any content are removed. As a result, line-bounded 3-grams were
obtained for each string type. Table 5.5 shows the 3-gram features for the two
different types of strings. Due to the extensive volume of 3-grams extracted from
our dataset, the HashingVectorizer technique was employed to reduce 3-gram
features. Consequently, this process allowed for the selection of the most effective

3-grams.

Table 5.5 Sample 3-gram features

Type String 3-gram

<LB>Enable Google
Enable Google Play
Google Play services
Play services <LB>

app Enable Google Play services

DEX mContainer= <LB>mContainer= <LB>

e SPL Features: Four feature groups were introduced, such as source code-based,
permissions, TPL, and metadata-based features. With the exception of those
related to TPL, these features are exclusive to the Android platform. The
extraction of source code-level features from smali files represents a novel
approach within the realm of Android AA. Permissions are pulled from the
manifest file, while TPL features are sourced from directories within the
decompiled APK file. Furthermore, metadata features are collected from the

application’s marketplace page.

In this study, smali files, which closely resemble the original source code, were

utilized to extract features based on the source code. The source code of software

49

can offer valuable attributes for determining the authorship of unidentified
software. One such attribute is the coding style of the authors. Although some
salient features, such as the usage of comments, loops, and braces in the source
code, are lost during the compilation process, as shown in [66], the coding style
still remains in the binary code. Based on this assumption, we inherit some source
code-based features listed in [63] because of the nature of the Dalvik bytecode,
which preserves some stylistic features of AA. All 18 source code-based features
used in this study are listed in Table 5.4. The features listed in [63] are generally
proposed for languages such as Java and C/C++; therefore, features compatible
with smali codes from that list are selected. In the future, more source code-based
features, such as comments, annotations, bracket positions, indentation styles,

etc., could be included using the original source code of applications.

The decompiled Java code can also be extracted from the APK files. To obtain
Java files from APK files, .dex files must first be generated from APK files, and
Java files must then be extracted from these .dex files using decompiler tools such
as JADX [86]. The same source code-based features extracted from the smali files
can be extracted from decompiled Java files. However, because the Java language
does not contain some smali-specific instructions such as move and invoke, two
features related to these instructions are not considered in Java codes. Note that
the transformation process from A PK files to Java files is prone to errors, such as
the inability to convert some classes, methods, or variables correctly. Owing to
such errors encountered in the conversion, we were able to extract features from
Java codes from 80% of the samples in the market dataset. Note that only the
source code-based features extracted from the decompiled Java files are used to
show and compare the effect of the source code-based features in the decompiled

Java files and the smali files.

While AppAuth [16] used the number of permissions in the manifest file as a

single feature, in this study, the existence of each feature is considered a separate

50

feature. Therefore, 158 binary features corresponding to the 158 permissions are

added to the feature set.

TPL are also included in the feature dataset. To extract library features, a
whitelist of the library was built. First, we downloaded all library names from the
mvnrepository website [87]. Then, we try to determine which common libraries
are used in both malware and benign datasets using the downloaded library
name list. When an APK file is decompiled using apktool, all smali codes of the
libraries used in the application are placed in the src directory according to its
package name. For example, if the jsoup library is used, all smali codes related
to jsoup are placed in the src/org/jsoup directory because the jsoup package
name is “org.jsoup”. Hence, we can find the directories of libraries used by
their package names and exclude them. This enables us to only obtain custom
smali codes written by the author of the application. Some libraries can be
obfuscated; therefore, their names consist of arbitrary character sequences rather
than meaningful words. We also eliminated these libraries. Libraries used in very
few applications were also not considered in this study. For each application, the
existence of each library in the list was used as a feature. In a recently proposed
study [17], TPL were used for Android AA. However, unlike our approach, the

names of TPL were used as string features.

The application descriptions generated by the developers were analyzed for the
problem. Because it is textual information, it might help solve AA. The same
method from [14] was employed here to extract n-grams. Unlike the textual data
used for AA in the literature, the application descriptions are short texts. For

example, application descriptions are limited to 4,000 characters on Google Play.

In conclusion, the main objective of this study is to find effective features to solve

the AA problem on Android. Therefore, new features based on source code-based

AA extracted from smali files are presented. Furthermore, new features unique

to the Android system have been analyzed, such as the usage of permissions and

51

metadata-based features that have been increasingly used in Android security in recent
years [88]. It has been shown that many applications use a large number of TPL [89]
and on average, 60% of the code belongs to these libraries [25, 26]. As TPL create noise,
they are shown to affect repackage and malware detection on Android [90]. This could
also affect Android AA because source code-based features were employed in this study.
Therefore, here, the effects of extracting source code-based features only from custom
code on the Android AA are investigated. Moreover, the effects of TPL as features
are explored. The proposed features are compared with those in the literature, which
are based on binary AA [14, 16]. We did not include Gonzalez et al’s [15] work in the
comparison because AppAuth [16] also used the same features used in that study [15].
All features considered in this study are listed in Table 5.6, and their explanations are
listed in Table 5.4. The features first explored in this study are indicated in red. In the
following sections, we first introduce the features previously identified in the literature,

followed by a presentation of the features newly proposed in this study.

Table 5.6 Features proposed for Android AA in the literature

Features Abbr. Our Study AppAuth[16] StringAA[14]
Configuration conf v v
DEX Code-Based dex v v
Resource ISIC v v
String-Based str v v
Source Code-Based src v
Permission perm v
Third-Party Library lib v
Metadata meta v

5.3.1. Feature Set Descriptions

The features covered in this study are categorized to offer a comprehensive insight
into various aspects of app development, structure, and behavior. Each feature has
been designed to capture specific elements of the code of Android applications. This
categorization not only aids in a holistic understanding of application architecture

but also plays a crucial role in tasks such as AA, security analysis, and functionality

52

assessment. The features are grouped into distinct categories, each representing a
different dimension of the application. Within each category, individual features are

explained to offer clarity on their significance and the type of information they provide.

1. Source Code-Based (18 features) Features based on source code, extracted
from decompiled Smali files. Many of these features are applicable in other

languages, such as Java, but some are specific to a particular language.

o Number of average characters per line: This measures the average number
of characters in each line of code, which can indicate coding style and

complexity.

o Number of average characters per local variable: It calculates the average
character count for local variable names, offering insights into naming

conventions.

o Number of average characters per global variable: Similar to local variables,

this assesses the average length of global variable names.

o Number of average characters per function name: This reflects the average
length of function names, which can vary significantly among different

programiers.

o Number of average characters per function parameter name: It measures the
average length of function parameter names, contributing to understanding

the coder’s naming style.

« Ratio of global variables to lines of code: This ratio provides an insight into

how frequently global variables are used relative to the overall code length.

« Ratio of local variables to lines of code: It indicates the density of local

variable usage in the code, which can vary based on coding practices.

o Number of average lines of code per function: This shows the average size

of functions.

53

o Ratio of variables to lines of code: This overall ratio gives an idea about

variable usage in relation to the total code length.

« Ratio of “if” to all codes: It measures how frequently conditional statements

are used, which can vary based on programming style and application logic.

e Number of average lines of code per class or interface: This indicates
the average size of classes or interfaces, reflecting on the complexity and

structure of the code.

e Number of average number of functions per class or interface: It provides
insights into the class/interface complexity by showing how many functions

they typically contain.

« Ratio of “invoke” to all codes: This ratio indicates the frequency of function

or method calls within the code.

e Ratio of “move” to all codes: It measures the proportion of data
movement-related operations in the code, like variable assignments and data

manipulation.

o Percentage of function names starting with an uppercase letter: This

statistic reflects on naming conventions, particularly in function naming.

o Percentage of “int” function definitions to all: It shows how often functions
return an integer value, which can indicate the nature of operations

performed.

o Percentage of “void” function definitions to all: This measures the frequency
of functions that don’t return a value, often used for their side effects or

operations.

o Percentage of identifiers beginning with an uppercase character: This is
another metric reflecting naming conventions, particularly in how identifiers

are capitalized.

2. DEX Code (14 features) These features are extracted from the .dez file itself.

54

Ratio of abstract classes: This measures how often abstract classes are used,

indicating a certain level of code abstraction and design patterns.

Ratio of classes containing annotations: It indicates the use of annotations

in classes, which can be significant in modern Java programming.

Ratio of direct methods: This reflects the use of direct methods in the code,

which are methods directly invoked by the caller.

Ratio of virtual methods: It measures the use of virtual methods, indicating

object-oriented programming practices.

Ratio of methods containing try and catch: This shows how often exception

handling is used, which is essential for robust and error-free code.

Ratio of methods containing debug information: It indicates the prevalence
of debugging information in methods useful for code maintenance and

troubleshooting.

Ratio of static fields: Measures the use of static fields, which can indicate a

certain style of programming or application design.

Ratio of classes containing interfaces: Shows how often interfaces are used,

indicative of design principles like abstraction.

Ratio of mathematical instructions to functional instructions: This compares
the use of mathematical operations to other functional instructions, giving

insights into the nature of the application.

Ratio of “aget” instructions to “aput” instructions: Measures the balance
between array get and array put operations, reflecting on data manipulation

patterns.

Average length of all the arrays: Indicates the typical size of arrays used,

which can relate to the nature of data handling in the application.

Median length of all the arrays: Provides a central tendency measure of

array sizes, complementing the average length information.

55

Standard deviation of the length of all the arrays: Shows the variability in

array sizes, which can indicate the diversity of data structures.

Ratio of arrays with constant length: Measures how often arrays of fixed
length are used, which can reflect on the nature of data structures and

algorithms used.

3. Configuration (9 features)Each app includes a manifest file embedded in the

APK file, providing key information such as package name, app ID, components,

requested permissions, and device compatibility. Upon decompiling the app, this

encoded manifest can be decoded into an AndroidManifest.xml file, from which

configuration features can be extracted.

Number of activities: Counts the total activities in the application,

indicative of its complexity and user interface components.

Number of services: Reflects the number of service components, which are

essential for background processing and operations.

Number of receivers: Indicates the number of broadcast receivers, showing

how the app interacts with system or application events.

Number of providers: Counts the data providers, revealing how the app

shares or manages data.

Number of intent-filters: Shows the number of ways the application can be

triggered or communicated with, reflecting its interactivity.

Number of meta-data: Counts metadata elements, which can provide

additional context or configuration information about the application.

Number of uses-permission: Indicates the number of permissions the app

requests, reflecting its access requirements.

Number of sensitive uses-permission: Specifically counts permissions that

access sensitive data or system features, important for security analysis.

56

¢« Number of uses-feature: Shows the number of hardware or software features

the app declares to use, providing insights into its functional scope.

4. Resource (11 features)Upon decompiling apps, three additional directories
named ‘assets’, ‘lib’, and ‘res’ are created, containing all essential resource files
such as icons, pictures, sounds, XML files, compressed files, native library files,
and language files. Resource features are extracted from these files. While
developers may change these files for apps with different functionalities, the
structure of these resources and the quantity of files can also indicate patterns in

the app development process.

o Number of directories in the “res” directory: Counts the resource directories,
giving an idea of the variety of resources used.

e Number of directories whose name contains “drawable” in the
[44 2

res” directory: Counts drawable resource directories, important for

understanding the visual elements of the app.

e Number of files in directories with “drawable”: Shows the number of

drawable files, indicating the extent of visual resources.

o Number of directories whose name contains “layout” in the “res” directory:

Counts layout directories, reflecting on the Ul complexity.

e Number of files in directories with “layout”: Indicates the number of layout

files, correlating with the UI design complexity.

e Number of directories whose name contains “values” in the “res” directory:

Counts directories with value resources, like strings and dimensions.

e Number of files in directories with “values”: Shows the number of value

resource files, which are crucial for app localization and configuration.

e Number of files in the “assets” directory: Counts the files in the assets

directory, which can include various types of raw application resources.

57

e Number of files in the “lib” directory: Indicates the number of library files,

which can reveal the use of native code or TPL.

o Number of .so files in the ’assets/lib” directory: Specifically, it counts the

shared object files, often used in apps with native code components.

e Number of “XML” files in the “res” directory: Counts the XML files in

resources, important for configuration and Ul design.
5. Permission (158 features)

e Permissions in Android apps are indicators of the resources and data the
app intends to access. This can range from access to the device’s camera

and location to contacts and personal information.

The permissions an app requests can reveal a lot about the app’s intended
functionality. For example, it is logical and expected for a camera app to
request access to the device’s camera and storage permissions. However, if
the same app requests access to contacts or call logs, it may raise questions
about its functionality and the necessity of such permissions [91]. The
permission system can also be used by malicious applications by requesting

unnecessary permissions or using permissions in unintended ways.

Dangerous permissions are permissions that provide access to sensitive user
data or system features. They are more critical than regular permissions and
usually require explicit user consent at runtime, and malicious applications

often request this type of permissions.
6. Library (500 features)

o A whitelist of TPL: Identifies known TPL used in the app, which can indicate

the app’s dependencies and potential external integrations.

Third-party libraries may offer patterns or coding styles that are not
originally owned by the primary author, potentially complicating the
attribution process. They make it difficult to isolate and analyze the unique

58

coding style of the person or team responsible for underlying development.
Therefore, when attributing authorship, it is important to distinguish
between original code written by the author and sections of code coming

from these third-party libraries.
7. Metadata (10,000 n-gram features)

o Application descriptions placed in Android markets: Analyzes a vast array
of metadata descriptions provided in app stores, which can offer insights
into the app’s purpose, features, and intended audience. Metadata may also
contain security-related information, for example descriptions are expected

to contain information about dangerous permissions [92].
8. String/n-gram (10,000 features)

o DEX - Strings present in the .dez file: Examines a large set of strings within

the .dex file, providing clues about the app’s functionality and structure.

o Application - Strings extracted from the strings.xml file: It focuses on
strings defined in the application’s resource files, which are important for

understanding the Ul and user-facing features.

o All strings (DEX + Application): Combines string analysis from both the
.dex file and application resources, offering a comprehensive view of the

app’s textual content.

5.4. Feature Processing

Feature Processing phase involves steps aimed at handling the extracted features for

optimal utilization in subsequent analysis.

¢ Feature Vector Generation: The combination of various features extracted

from different sources results in the creation of feature vectors for each individual

59

application. These vectors encapsulate a comprehensive set of attributes
that contribute to the overall characterization of the application in terms of

authorship.

Handling Missing Values: Feature extraction may result in situations where
certain features get null or NAN (missing) values. To eliminate these features
from feature vectors, the SimpleImputer function from the scikit-learn library is
employed. This function replaces missing values across each column by using a
descriptive statistic (e.g., mean, median, or most frequent) or by using a constant

value.

Feature Standardization: After Simplelmputer[30], the feature vectors
undergo standardization for consistency and enhanced model performance. The
StandardScaler function from the scikit-learn library is applied to standardize the
features. This standardization process involves centering the data by removing
the mean and scaling it to unit variance. This standardization step is for ensuring
that all features contribute equally to the analysis, preventing any particular

feature from dominating due to its scale or magnitude.

Dimension Reduction: In classification tasks, it is essential to reduce
the dimensionality of the feature vectors to improve model efficiency and
performance. A two-phase dimensional reduction process is applied to the

dataset:

— Features with Zero Variance Elimination: Features with zero variance
are those that have the same value for all samples in the dataset. These
features do not provide any discriminatory information. Hence, they are
not informative for the classification task. Removing features with zero
variance is a common preprocessing step to simplify the feature set and
enhance model performance. The process of eliminating zero-variance

features typically involves calculating the variance for each feature, and if

60

the variance is zero (meaning all values are the same), the feature is removed

from the dataset.

— Univariate Feature Selection based on Statistical Tests: After
removing zero-variance features, the next phase involves selecting the
most relevant features using univariate statistical tests. Univariate feature
selection helps identify the features that have the most significant impact
on the target variable, allowing the model to focus on the most relevant
attributes and potentially improving classification accuracy. Common
statistical tests used for univariate feature selection include the chi-squared
test, ANOVA (Analysis of Variance), mutual information, and more. We
employ the ANOVA test in this study. These tests assess the relationship
between each feature and the target variable. Depending on the chosen
statistical test, a certain number of top-performing features are selected. The
number of features to retain is often determined through experimentation or
cross-validation. Univariate feature selection helps reduce the dimensionality
of the dataset by retaining only the most informative features, which can be

particularly beneficial when dealing with high-dimensional data.

By applying these two phases of dimensional reduction, the model aims to
streamline the feature set, eliminating irrelevant or redundant attributes while
retaining those that are most discriminative for AA. This can lead to improved

model performance and reduced computational complexity.

5.5. Machine Learning (ML) Model Development and

Optimization

Classification algorithms are applied to predict authorship within the Android

application domain. The following classification algorithms are explored in this study:

« Random Forest

61

o K-Nearest Neighbors
« SVM

o Gaussian Naive Bayes

LightGBM

To ensure robust model evaluation, stratified 10-fold cross-validation is employed. This
method preserves the proportion of positive to negative examples across folds, a crucial
strategy for handling unbalanced datasets. The entire process is executed five times,

and the results are averaged to provide an evaluation.

To achieve the best possible model performance, we utilize the ‘GridSearchCV*
technique, which stands for Grid Search Cross-Validation. ‘GridSearchCV* is a method
provided by the scikit-learn library in Python that allows an exhaustive search over a
specified parameter grid to determine the best possible combination of hyperparameters
for a given estimator. The initial parameters for each ML algorithm and their values

can be seen in Table 5.7

Table 5.7 Hyperparameters of classification algorithms

[C[0.1, 0.25, 0.5, 1, 10, 100, 1000, 10000], 'kernel’: [linear’]}
{7 [0.1, 0.25, 0.5, 1, 10, 100, 1000, 10000], ‘gamma’: [10, 1, 0.1, 0.01, 0.001, 0.0001], "kernel': [tbf}
'n_neighbors™: [3, 5, 11, 19],
"weights’: ["uniform’, 'distance’]
p: 1, 2, 3],
‘metric’: ['euclidean’, 'manhattan’, ‘'minkowski’],
‘algorithm’: [auto’, ball tree’, kd_tree’, brute’],
leaf size’: [10, 20, 30, 40]
"bootstrap’: [True, False],
'max_depth’: [10, 30, 50, 70, 90, None],
'max_ features’: ["auto’, ’sqrt’],
‘min_samples_leaf’: [1, 2, 4],
‘min_samples_ split’: [2, 5, 10],
'n_estimators’: [200, 600, 1000, 1400, 1800]
GaussianNB 'var__smoothing’: np.logspace(0, -9, num=100)

SVM

KNN

RF

By combining ‘GridSearchCV* with Stratified K-Fold cross-validation technique, we
ensure that the selected hyperparameters are perform well across different subsets of

the dataset. This approach improves the generalization of our machine learning models.

62

Utilizing ‘GridSearchCV*‘ in the context of cross-validation is an integral part of
our research methodology, as it helps in fine-tuning the models and enhancing their

predictive power.

63

6. EXPERIMENTAL RESULTS

In this study, we conducted a series of experiments to evaluate our framework and
analyze the effects of newly introduced features. The performance of the proposed
approach is also explored for different types of applications, such as malicious, benign,
and obfuscated applications. Various experiments were performed to analyze the
performance of the proposed approach. For each experiment, 10-fold cross-validation
and five epochs were employed, and an average of 50 results were obtained. All
experiments were run on a CentOS 7.7 server with 128 GB RAM and Intel(R) Xeon(R)
Gold 6138 CPU @ 2.00GHz.

We attempt find answers to the following research questions (RQs) on how our model
identifies the author of Android applications, that are either benign or malicious:
« RQ1 - What is the performance of classification algorithms in solving the AA
problem?

o RQ2 - What is the ideal set size for n-gram features?

e RQ3 - Does the use of TPL bring improvements in solving the authorship

problem?

« RQ4 - How effective is the proposed approach in identifying the developer of

applications?

« RQ5 - Does metadata of applications help to attribute the developer of

applications?

« RQ6 - What are the most important features for attributing applications to their

developers?

e RQ7 - Can we reduce the number of features without decreasing the performance

of the model?

64

« RQ8 - Does the number of applications per developer affect classification

performance?

« RQY9 - Does the proposed model successfully identify different wversions of

applications developed by the same author?
« RQ10 - What is the effect of obfuscation on Android AA?

o« RQ11 - Are there any clone applications in the datasets? How do they affect the

performance on Android AA?

6.1. RQ1 - Performance of classification algorithms on

Android AA

Motivation. Machine learning algorithms may exhibit different performances for
different problems. With this motivation, we aim to compare the performance of
machine learning algorithms on the problem at hand so that the algorithm that shows

the best performance can be used in subsequent experiments.

Method. Random Forest, K-Nearest Neighbors, Support Vector Machines, Gaussian
Naive Bayes, and Light GBM algorithms are used in the experiment. These algorithms
are highlighted in the literature for their effectiveness in code AA tasks [27]. To
optimize the performance of these algorithms on both the market and malware datasets,
the GridSearchCV function from the scikit-learn library is utilized. GridSearchCV
conducts a comprehensive search over specified parameter ranges to find the best

settings for the models.

In this experiment, all available feature groups are incorporated, including those
used in the AppAuth [16] and String Analysis [14], with the exception of metadata
features. The exclusion of metadata features is due to the lack of descriptions for some

applications, which leads to imbalance in the dataset.

65

The algorithms are evaluated on both benign and malware datasets, with accuracy
and Fl-score chosen as the performance metrics. These metrics are selected because
an efficient model should have good precision and high recall. Additionally, the

classification time for each algorithm is measured.

Result. The comparative analysis of machine learning algorithms for AA is
summarized in Table 6.1. Among the algorithms, Random Forest (RF) emerges as a
right choice due to its high accuracy and F'1-scores alongside a reasonable classification

time. This factors led to the decision to employ the RF algorithm in subsequent

experiments.
Table 6.1 Comparison of classification algorithms
Market Malware
acc f1 time(s) acc f1 time(s)
Random Forest 82.4% 80.3% 124.46 95.4% 94.5% 14.18
KNeighbors 64.8% 62.0% 76.30 82.6% 79.1% 9.40
Support Vector 51.3% 50.5% 549.83 79.7% 76.6% 26.09
Gaussian Naive Bayes 49.5% 47.6% 45.97 60.3% 59.0% 8.23
Light GBM 86.4% 85.1% 1563.35 97.5% 97.0% 370.81

In addition, it is observed that the default parameters for the RF algorithm yield
performance very close to those achieved with its optimized parameters. This suggests
that RF is a robust choice for AA, capable of delivering good performance without

extensive parameter tuning.

While LightGBM demonstrates superior accuracy compared to RF, its longer
classification times and the high variability of its results across different parameter sets
are considered drawbacks. These factors, coupled with RF’s overall solid performance,
influenced the decision to prioritize RF for further exploration. However, the high
accuracy of Light GBM indicates its potential as a valuable algorithm for AA in future

investigations.

66

6.2. RQ2 - The ideal set size for n-gram

Motivation. As the number of applications increases, the number of 3-grams requiring
processing increases correspondingly. In the market dataset, this could amount to tens
of millions of 3-grams, posing significant computational and storage issues. To mitigate
these issues and enhance the model’s performance, it is crucial to identify the maximum

number of n-grams from which meaningful results can be extracted.

By focusing on the most informative n-grams, it’s possible to reduce the feature size
without significantly compromising the model’s accuracy or its ability to generalize

from the data.

Method. As suggested in [14], 3-grams are selected for use in this study based on the
finding that system performance improved with an increase in n-gram size from 1 to
3, but deteriorated with further increases. This finding underlines the importance of

choosing an optimal n-gram size to capture sufficient contextual information.

To mitigate memory consumption associated with the potentially vast number of
n-grams, a HashingVectorizer is employed. HashingVectorizer converts a collection of
text documents into a numerical format, specifically a sparse matrix, that represents the
occurrence of tokens within those documents. In our case, the vectorization process is
applied using 3-grams as the tokens. This means that instead of considering individual
words as tokens, the process considers sequences of three consecutive words as single
tokens. This approach can capture more contextual information, potentially leading to

more nuanced representations of the text documents in the matrix.

The use of HashingVectorizer not only addresses memory constraints but also facilitates
efficient computation by reducing the dimensionality of the feature space without
significant loss of information. This strategy is particularly valuable in scenarios where
the dataset encompasses tens of millions of n-grams, as it enables the processing of

large-scale data while keeping resource usage in check.

67

Result. The relationship between the number of 3-grams utilized in classification and

its impact on both classification accuracy and training time is elucidated in Figures

6.1a and 6.1b, respectively. These figures highlight that the training time experiences a

notable increase when the classification process incorporates more than 10,000 3-grams.

However, this augmentation in the number of 3-grams does not correspondingly enhance

classification accuracy to a significant extent.

(a) Accuracy vs. Number of N-Grams

0.95 4

0.90

0.85 1

0.80

Accuracy

0.75 1

0.70

- -a- Market Accuracy

-
-
-

-
-
P
—_

-7 —e— Malware Accuracy

5000 10000 50000 100000

Number of N-Grams

1000

(b) Training Time vs. Number of N-Grams

25000 ~

20000

15000 4

10000 -

Time (seconds)

5000 ~

—

-

Malware Time
Market Time

5000 10000 50000 100000

Number of N-Grams

Figure 6.1 Effect of the number of 3-grams

The constraints imposed by the market dataset, notably its extensive size and the

consequent generation of a massive amount of 3-grams, limit the use of more than

50,000 3-grams in the classification process. This limitation underscores the importance

68

of optimizing the selection of 3-grams to ensure that the computational resources are
directed towards processing the most impactful features, thereby achieving an efficient

and effective classification without unnecessarily extending the training time.

6.3. RQ3 - Custom code vs. all code including TPL

Motivation. Developers often exhibit specific coding habits and preferences, such as
opting for a while loop over a for loop or favoring object-oriented modularization over
procedural programming [93]. These habits and stylistic choices are typically preserved

in the custom code that developers write, serving as distinguishing features that can

aid in AA.

The use of Third-Party Libraries (TPLs) is a common practice in application
development. While custom code reflects the developer’s unique characteristics, TPL
code can introduce noise into the AA process, potentially obscuring the fingerprint
that identifies an author’s style. Despite this, the consistent use of specific TPLs by
developers across their applications could contribute positively to AA. Developers often
exhibit loyalty to certain libraries, frequently reusing them without updating to newer

versions, even when the older versions contain known security vulnerabilities [94].

This tendency not to update TPLs can inadvertently serve as a developer’s fingerprint,
thereby assisting in AA. It’s essential to discern how much the presence of TPL code
can help or hinder the identification of the true author of a piece of software. This
involves examining whether the benefits of using TPLs as features of developer habits

outweigh the potential noise they introduce into the attribution process.

Method. To elucidate the impact of Third-Party Libraries (TPL) on Authorship
Attribution (AA), the study employs two distinct settings:

e Custom Code Only: In this setting, source code-based features are extracted

exclusively from the custom code written by the developers. This approach

69

focuses on identifying the unique coding habits and styles intrinsic to the

developer, excluding any influence from external libraries.

o Including TPL (All Codes): Contrarily, in the second setting, features are
extracted from the entire application codebase, incorporating both the custom
code and the TPL. This comprehensive approach is intended to evaluate how the

inclusion of TPL affects the AA process.

Result #1. As shown in Table 6.2, including TPL when extracting source code-based
features yields much better performance (custom src vs. all src). Then, the custom
code is enriched with other features presented in Table 5.6 and compared with all code
in Table 6.2. The results clearly show that, rather than extracting source code-based
features from TPL, the existence of TPL is sufficient for AA and produces much better
results than including TPL’s code. Therefore, in the subsequent experiments, the
source code-based features are only extracted from the custom code and are used with

the library features (custom src+lib).

Table 6.2 Accuracy results of custom source code enriched with other feature groups

Custom Custom All Custom All Sr¢ Custom SPL All Src+Perm

Dataset g GQre4Lib Src SPL +Perm -+AppAuth +AppAuth
Market 423% 70.9% 66.8% 75.1% 71.8% 78.7% 76.1%
Malware 80.5% 87.1% 87.5% 91.5% 91.1% 93.4% 93.3%
Genome 80.7% 97.1% 95.0% 97.9% 96.4% 98.0% 97.4%

Result #2. The confusion matrix is presented in Fig. 6.2, where authors with
at least 40 applications in the market dataset are included to fit the matrix. The
figure illustrates that certain applications from developer auth9 are incorrectly matched
with those of developer authll. Further analysis of these authors is conducted
using SimiDroid [43], which reveals the similarity between mismatched applications
of developer auth9 and all applications of developer auth11. A high similarity between
such applications is shown in the results, owing to the SmaliHook library, which is not
eliminated because it does not appear on our TPL list. Analysis of the feature vectors
for these applications through cosine similarity reveals extremely high similarities

70

suoryeoridde (f 9seo[9e aaey oym s1odo[eAdp gG oY) JI0J XLIJRJAl UOISIJUO)) 79 9INS3L

9%/)&
\94%6’
A,
/Oé
84%&
29//)@

<
)

=)
—

o|o|lo|o|o|o|o|o

~
<

csyine
TS4ine
osyine
[
sryine
Lyyine
opyine
Spyine
rryine

o|o|o|o|o|o|o|o|o|o

eyyine

cryine

o|o|o|o|o|o|o|o|o|o|o|o

Tyiine

oryine

o|njo|o|o|o|o|-|o|o|o|o|o|o

6eyIne

geyine

Leyine

o|o|o|o|o|o|o|o|o|o|o|o|o|o|o|o|o

oguyine

o|o|o|o|o|o|o|o|o|o|o|o|o|o|o|o|o|o

<
)

seyine

olo|o|o|o|o|o|o|o|o|o|o|o|o|o|o|o|o|o

veyine

~
<

geyine

o|o

zeyine

o|o|o|o|o|H|o|o|o|o|o|o|H|o|d|o|o|o(o|o|o|o

Teyine

o|lo|o

=
3

ogyine

o|o|o|o|o|o|o|o|o|o|o|o|o|o|o|o|o|o|w|o|o|o|o|o

6cuyine

Q
o

gzyine

«|o|o|o|o|o|o|o|o|o|o|w|o|o|o|o|o|o|o|o|o|o|o|o|o|o

Leyine

9cyine

Geyine

o|o

veyine

o|o|o|o|o|H|+|o|o|+|o|o|o||o|o|o|o|o|o|o|o|dH|o|-|o|o|o|o|o

geyine

o|o|o|o|o|o|n|o|o|o|o|o|o|o|o|o|o|o|o|o|o|o|o|o|o|-|o|o|olo|o
o|o|o|o|o|o|-|o|o|o|-|o|o|o|o|o|o|o|o|o|o|o|o|o|o|n|o|o|mio|o

n
™

ccyine

olo|o

©
b=
™
A

Teyine

o|o

[}
<

ocyine

<
-

6TYINe

8TyIne

o|o

LTyine

olo|o|o|o|o|o|o|o|o|o|o|o|o|n|o|o|o|o|n|o|o|o|o|o|o|o|o|o|o|o|o|o|o|o|o|o

[~}
™

9Tyine

o|-|o|o|o|o|o|o|o|o|o|o|o|o|o|o|o|o

o
@

STyIne

o|o|o|njo|o|o

=)
<

yTyine

olo|o|o|o|o|m|o
olo|n|o|n|H|o|o|a|H|o|o|o| |- |o||n|o|oo|dH|o|m|dH|o|o|n|o|o|o|o|dH|H|o|o(w|ojo|o

N
—

€Tyine

ctyine

o|o

e

TTyIne

o|o|o|t|-|m|d|¢|o|o|o|o|w|o|o|o|-|o|¢|-|-|o|d|-|o|o|m|o|-H|o|o|o|-|o|o|t|m|n|o(n|ojo|o

=}
©
™

oTyine

©
~
~
N

eyine

gune

o|ffjo|o @9
&2
®

.

o|o|m|o|d|o|o|o|o|o|o|o|o|o|o|o|o|o|o|o|o|o|o|v|o|+|o|o|o|o|o|o|o|o|o|o|o|o|o|o|H|o|n|-|olo

Luine

|o|o|o|o|o|o|w|o|o|o|<t|o|o|o|o|H|n|o|o|-|o|o|o|o|H|o|o|o|o|-|o|o|o|o|o|o|o|o|o|H|-|o|o|-H|o|o

el
~

quine

o|o|o|o|o|o|o|o|o|o|o|o|o|o|o|o|o|-|o|n|o|o|o|o|o|o|o|o

)
A

syine

o|-|o|o|o|d|d|o|o|o|o|o|o|o|o|o|o|o|o|+|o|-|o|o|o

o
[t}

ne

olo|o|o|o|o|o|o|o|o|o|o|o|o|o|o|o|o||o

syine

o|o|o|o|o|o|o|o|o|o|o|o|o|o|o|o|o

cyine

o|o|o|o|o|-|o|o|o||-|o|ev|o|o|o|o|o|o|o|o|o|o|o|o|-|o|o
o|o|o|o|o|o|o|o|o|o|o|o|~|o|o|o|t|o|o|o|m|o|o|o|o|o|o|-|o|o|o|o|o|o|o|o|o|o|o|o|o|o|o|o|-|o|o|o|o
o|o|o|o|o|o|o|o|o|o|-|o|+|o|o|o(o|o|o|o|o|o|o|o|o|+|o|+|o(|o(o|o
o|o|o|o|o|o|o|o|olo|F|o|o|o|o
o|o|o|o|w|n|o|o|n|o|o|o|H|o|o|o|n|o|o|o|a|H|o|o|o|o|o|n|o|o|o|o|o|o|o|o|o|o|o|o|o|o|o|o
o|n|o|o|H|o|o|olo|o|o|o|a|o|o|o|s|o|o|o|H|-|H|o|o|o|o|-|o|o|o|-|o|o|o|o|o|o|o|o|o|o|o|o|f|w|w|o|o|-|o|o
o|o

<
%

olo|o||olo|o|o|o|o|o|o|o|o|o|o|o|o|o|o|o|o|o|o|e|e|o|o|o|o|o|F|o|o|o|«|o|o|o|o|o|o|o|o|x|o|o|o|o|o|o|o
olo|o|o|o|o|o|o|H|o|o|o|H|o|o|o|o|o|o|o|o|o|o|o|o|ofFfo|o
@
I3
HOOOOOOOOOOOOOOOOOSOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
OOODOOOOOOOOOOOODDODOOOOOOHOHOOOOOOODODODOOOOOOOOOO

o|jo|o|o
o|o|-|o|o|o|o|o|-|o|-|o|o|o|o|o|o|o|o|o|-|o|o|o|o|o|o|o|o|o|o|o|o|o|-|o|o|o|o
o|-|d|o|njo|o|o|o|o|o|o|n|o|-|o|n|o|o|o|a|-|o|o|o|m|-|o|o|o|o|o|o|o|o|o|o N
o|o
o|-H|o|o|o|o|o|o|o|o|o|o|o|o
o|o|lo|o
o|-|o|o|o|o
o|o|d|o|o|o|o|o|d|H|ojo|o|o|<t|o|o|o|o|o|o|H|H|o|o|o|o|o|o
o|o|o|o|o|o|o|o|-|o|o|o|o|o|o|o|o|o|o|o|o|-|o|o|o|o|o|o
o|o|o|o|o|o|o|o|o|o|-|o|o|o|o|o|o|o|o|o|o||H|o|o|o|o
o|o|o|o|o|+|o|o|o|o|o|o|o|o|o|o|o|o|o|o|o|o|o|o|o
o|o|o|o|-|o|o|o|o|o|o|o|o|o|o|o|o|o|o|o|o|o
o|o|o|o|n|olo|o|o|o|o|o|anjo|o|o|w|o|o|o|o
o|o|o|o|-|o|o|o|o|o|o|o|v|o|o|o|o|o|o|o
o|o|o|o|o|o|o|o|o|o|o|o|o|o|o|o|o|o|

o|o|o|o|o|o|o|o|o|o|o|o|o|o|o

o|o|o|o|o|o|o|o|m|o|o|o|o|o

o|o|o|o|o|o|o|o|o|o|o|o|o

o|o|o|o|<|o|o|o|o|o|o|o

N|o|o|o|o|o|o|o|o|o|o

o|o|m|o|-(~|o|o

o|olo|o|o|o|o|o|o

o|-|n|o|w|n|o|o

o|o|o|o|o|o

o|o|o|o|o

o|o|o|o

o|o|o

o|o
@
<

o
o
<

Tyine

71

(98%). The results are severely affected due to the impact of the overlooked TPLs on
the source code-based features. This finding indicates the necessity of broadening the
TPL scope within the library feature set to enhance our model’s accuracy. Beyond the
current whitelist method, future enhancements could incorporate techniques [24, 94, 95]

in the literature to identify additional libraries, including those that are obfuscated.

6.4. RQ4 - Effectiveness of the proposed approach

Motivation. The primary goal of this study is to pinpoint effective features for
Android Authorship Attribution (AA), thereby enhancing the ability to accurately
identify the authors of applications. To achieve this, the features proposed in this
study are benchmarked against other feature sets previously suggested in the literature,
specifically those detailed in [16] and [14]. This comparative analysis is designed to

assess the effectiveness of different feature sets in AA.

The effectiveness of the proposed approach in identifying authors is presented in a
comparative manner, taking into account performance metrics such as accuracy and
F1 score. This allows for a nuanced understanding of how well each feature set can

distinguish between different authors.

Method. To facilitate a fair and accurate comparison, the study involves a

re-implementation of the code necessary to extract the string-related features as

described in [14].

Additionally, the authors of AppAuth demonstrated the research community’s
cooperative nature by making their source code accessible for others to extract the
features they had identified. This generosity allows for the direct application of their
code in this study, ensuring that the AppAuth features are extracted in a manner fully
consistent with their original implementation. Such an approach not only underscores
the importance of reproducibility and transparency in research but also significantly

enhances the reliability of the comparative analysis conducted.

72

Result #1. As shown in Table 6.3, the newly proposed features perform better than
AppAuth, whereas the proposed features produce less accuracy than string analysis
[14]. However, as stated above, extracting all 3-gram features may not be applicable
from a classification time point of view. Therefore, only 10,000 3-grams are employed
here. As a relatively small dataset, all 3-grams are extracted from the Genome dataset,
which is the dataset used for evaluation in [14]. In the Genome dataset, the proposed
features show slightly better performance than string-related features. When all the
features are included, the best performance is obtained in the market and malware

datasets.

Table 6.3 Comparison with AppAuth and StringAA - Random Forest

SPL+AppAuth+ .
Dataset StringAA SPL+AppAuth SPL AppAuth StringA A
acc f1 acc f1 acc f1 acc f1 acc f1

Market 82.5% 80.4% 79.0% 76.6% 75.0% 72.4% 73.9% 71.2% 81.7% 79.9%
Malware 95.6% 94.5% 93.9% 925% 92.1% 90.7% 90.6% 89.4% 95.1% 94.2%
Genome 97.0% 96.7% 98.2% 98.0% 98.1% 97.9% 97.0% 96.9% 96.9% 96.7%

We also calculate the time required to extract each set of features. Table 6.4 shows that
n-gram features require at least one and a half times more time than other feature sets.
The extraction times of SPL and AppAuth features are relatively close. Although a
feature extractor should be performed only once, the feature extraction process, when
generating a considerable volume of n-grams, can be notably memory-intensive. This
can result in memory-related challenges, particularly for systems with limited RAM
availability. In [42], it is highlighted that a primary limitation of the n-gram approach
is its tendency for exponential n-gram growth as the text size increases. This complexity

often renders the method unviable for systems with limited computational capabilities.

Table 6.4 Feature extraction time in minutes

SPL AppAuth StringA A (10,000)

Market 125.02 95.93 219.87
Malware 11.02 11.61 13.45
Genome 30.04 27.30 40.47

73

Result #2. The effect of each feature group on Android AA is also explored. The
results are presented in Table 6.5. In addition to the n-grams in the code, the source
code-based and resource-based features lead to the highest accuracy. Because n-grams
are extracted from strings, such as the names of variables or methods in the application
code, they can include unique identifiers that distinguish developers. However, as shown
in Table 6.4, the time required to extract and process such features is considerably
high. Moreover, such features might not be resilient to obfuscation techniques such as

renaming and encryption.

Table 6.5 Effect of feature sets on Android AA

SPL AppAuth StringA A
Dataset src perm lib conf dex rsrc str
acc f1 acc f1 acc f1 acc f1 acc f1 acc f1 acc f1

Market 66.8% 63.5% 47.6% 42.4% 60.5% 57.6% 59.6% 55.8% 63.6% 60.0% 66.7% 63.4% 81.7% 79.7%
Malware 87.3% 85.9% 80.6% 76.5% 51.2% 46.2% 82.3% 79.3% 85.1% 82.3% 83.7% 80.7% 95.1% 94.2%
Genome 95.0% 94.7% 83.0% 80.6% 88.1% 86.8% 95.0% 94.6% 88.2% 87.7% 96.2% 95.8% 96.8% 96.4%

In general, all feature sets other than library features produce higher accuracy on the
malware dataset, which is a smaller dataset. The average number of libraries per
application varies significantly between the two datasets, as shown in Table 6.6. While
applications collected from the market include 9.37 TPL on average, this number is
only 2.72 for malware applications. This may be the result of the use of obfuscation in
malicious applications. In this study, a whitelist approach is used to extract the TPL
used in the APK package. Common libraries used in the market and malware datasets
are selected and used as features. However, because of obfuscation, the names of some
libraries are simply random words, and such libraries are eliminated in the whitelist
approach. In the future, recent studies such as LibID [95] and LibRadar [24] can be
used to find obfuscated libraries in the code. Then, the effect of the library features

can be re-evaluated on the malware dataset.

The effects of permissions on the two datasets are also significantly different. When
the average number of all 158 permissions is analyzed in both datasets, it is found

that the use of different permissions is higher in the malware dataset (all permissions:

74

Table 6.6 Avg # of Library and Permission per application

Market Malware

Library 9.37 2.72
Permissions (158) 8.05 9.99
Dangerous Permissions (26) 3 4.5

9.99, dangerous permissions: 4.5) than in the market dataset (all permissions: 8.05,

dangerous permissions: 3).

Result #3. To show the statistical significance of the improvements, each approach
(namely SPL4AppAuth+StringAA and StringAA) is run five times using 10-fold
cross-validation. Thus, 50 results are obtained for each dataset. A t-test, with an alpha
value of 0.05, is then applied, and the results are shown in Table 6.7. « value represents
the significance level, which is the probability of rejecting the null hypothesis when it is
true. Table 6.7 shows that the p-values for the market and malware datasets are lower
than a value of 0.05, which implies that the difference is statistically significant. Figure
6.3 and 6.4 below show the box plot of the accuracy results of 50 runs represented in

Table 6.7.

Table 6.7 Results of t-test

p Value

Market 3.54622F-14
Malware 0.000562331
Genome 0.09986412

75

Market Malware Genome
0.85 . 0.98 ¢ - -
3 . | - 0.99 | i
084 | T 097 | ! i T |
| | | |
i i ‘ | 0.98 | ‘ ‘
0.83 ! !
1 0.96 |
0.82 0.97 |
; 0.95 |
I I
081 ! T | 0.96 | ‘ ‘
! i 0.94 | w i ! !
-+ | I I I |
0.8 | ! ! ! |
+ I
- | 0.93 i 3 0.95 t 3 i
3 L L
0.79 - ! !
. . i
‘ ‘ 0.94 | ‘ ‘
ol ol ol
& « S « &
& 23 & 2% & 2%
X% X%)<6
N N N
N 5 &
VXvQ va‘? VXVQ
& S S
Figure 6.3 Accuracy results used in comparison
Market Malware Genome
t . 098 . T
T ow] A
w . ‘ 099 1| |
osz | = =) T
- 0.95 ! ! P
o8l I _ L 0.98 |
H I 0.94 ‘ } ‘
I I
078 | : 0.93 1 H o 097 | i
i | 0.92 TS - ! !
| . | !
o6 1 T = I 096 1 Tt T T
B i 0.91 : ! ! ! i
0.74 | i T i !
. [I
| 0o 0.95 | | ol
o2t 0.89 3 3 3 3
S AN NEN SASIINSEN S MRS
eSS -\0?? TS S -\@vy TS SFS
R & ARSI ESMIR MR e
N x@ N ><6 \/x x%
& vo{‘\ f v&\“ &£ §
K K K
o il o
=3 & &

Result #4. To our knowledge, this is the first study to explore the use of source
code-based features on smali codes for Android AA. As shown in Table 6.5, such features

perform much better than the other features proposed in the literature, except for

n-grams.

literature, it has been shown that more than 94% of Java classes can be successfully

decompiled [96]. Therefore, the same source code-based features listed in Table 5.4

Figure 6.4 Accuracy results of all features used in comparison

76

Source code-based features can also be obtained from Java files.

are collected from Java files and are compared in Table 6.8. However, only 80% of the
applications are successfully decompiled. Recall that the following features specific to
smali code are not available in Java files: the ratio of invoke to all code (the ratio of the
number of invoking instructions to the number of all other instructions) and the ratio
of move to all code. The comparison results show that the source code-based features
collected from the smali files are more effective. However, it is worth mentioning that
the decompilation of APK files into Java files could be erroneous. Here, the jadx
decompiler [86] is used to convert APK files to Java files; however, we encounter some

unsuccessful decompilations.

Table 6.8 Accuracy results of Smali vs. Java: source code-based features

Dataset Smali Java

Market 66.2% 52.9%
Malware 87.0% 86.8%

6.5. RQ5 - Metadata Features

Motivation. As humans have different writing styles, text data are used largely for
AA in different domains, such as social media, e-mail, and literature [97-99]. Android
markets provide metadata such as descriptions, version numbers, and download counts.
This information can also shed light on new findings. Therefore, the effect of metadata

is investigated for the first time for Android AA in this study.

Method. First, we investigate the optimal n value and the number of n-grams. To
extract n-grams, each n consecutive word in the descriptions is extracted, each time
moving one word to the right. Preliminary experiments are carried out with different
n-gram sizes (from 1 to 5) to obtain the optimal value of n. Subsequently, the number
of n-grams required to obtain the best results is determined. Second, we combine the
metadata features with other feature sets to determine whether the metadata features

improve accuracy.

7

Result #1. The entire market dataset and only Rmvdroid [40] among the malware
datasets are used because these datasets contain application descriptions. Fig. 6.5a
shows the accuracy results for different n values. We set the number of n-grams to
10,000. It can be observed that 1-grams produce better results than the other n-grams.
After determining the value of n, we investigate the optimal number of 1-gram features
in further experiments. Fig. 6.5b shows the accuracy results obtained using only
metadata features under different numbers of 1-grams. As shown in Fig. 6.5b, the
number of 1-grams shows an important effect on the results. Because n-gram analysis
requires a significant amount of system resources, we could not obtain results after
100,000 1-grams. If 100,000 1-grams are included, accuracies of approximately 84%
and 74% are obtained for the market and malware datasets, respectively. This clearly
shows that the application descriptions are beneficial to Android AA. However, it can
be seen that the results of 10,000 1-grams are also quite sufficient, and the time required
is much less than 100,000 1-grams. Therefore, we chose 10,000 1-grams for upcoming

experiments in the metadata analysis.

Result #2. Table 6.9 shows the effects of metadata features in the market and
malware datasets, respectively. Because not all applications have descriptions, the
dataset used in this experiment is smaller than the original dataset. Application
descriptions can be written in any language. Our datasets also include different
languages in the application descriptions, such as English, Chinese, and French. It
is observed that accuracy increases significantly when we use descriptions in English
only. Therefore, descriptions other than English are eliminated from both datasets.
In the market dataset, metadata features produce approximately 6% better accuracy
when combined with the proposed SPL features, whereas an increase of approximately
3% is observed for other feature sets. In the malware dataset, metadata features
show a clear positive effect, with an increase of 3% in the proposed SPL features. In

contrast, the increase is not significant for the other feature sets.

78

(a) Accuracy vs N-gram Value

0.85 A —e— Malware
—e— Market
0.80 1
>
w
© 0.75 1
3
v
<
0.70 4
0.65 1
1 2 3 4 5
N-gram Value
(b) Accuracy vs Number of 1-grams
0.850 1 —— Malware = —~—,
—e— Market
0.825 1
0.800 1
0
© 0.775 A
_
3
g 0.750 1 —
< b ——— o
0.725 1
0.700 1
0.675 1
2 el = he)
$ $ $ N
Number of 1-arams
Figure 6.5 Effect of n-grams on metadata features
Table 6.9 Metadata analysis
Dataset SPL SPL+Meta StringA A StringA A+Meta AppAuth AppAuth+Meta
acc f1 acc f1l acc f1l acc f1 acc f1l acc f1
Market 81.4% 78.4% 87.0% 85.0% 86.6% 84.5% 89.0% 87.0% 82.6% 80.1% 85.6% 83.3%
Malware 89.1% 87.1% 92.0% 90.3% 94.7% 93.5% 95.0% 93.8% 89.0% 86.7% 89.1% 87.0%
SPL+AppAuth SPL+AppAuth+ SPL+AppAuth
Dataset +StringAA StringAA+Meta SPL+AppAuth +Meta
acc fl acc f1 acc f1 acc fi
Market 86.8% 84.7% 89.0% 87.1% 84.5% 82.3% 88.4% 86.6%
Malware 94.9% 93.7% 95.4% 94.3% 91.9% 90.5% 93.6% 92.3%

79

6.6. RQG6 - Most Effective Features on Android AA

Motivation. In addition to knowing why our prediction is high or low, we also want
to know which features contribute more and which are irrelevant to improving our
prediction. Therefore, in this experiment, we investigate the features that had the

greatest influence on the results.

Method. The methodology employed in our experiment involves utilizing all available
features, with the exception of metadata, and applying the Random Forest algorithm
to achieve our results. Following the application of this algorithm, we leverage the
scikit-learn library to extract the importance values of all features. These values are
crucial in understanding the contribution of each feature to the predictive model’s
performance. The extracted feature importance values are then visually represented
in two figures: Figure 6.6a illustrates the feature importance for the market dataset,

while Figure 6.6b displays the importance for the malware dataset.

Result. The analysis reveals that source code-based features and string/n-gram
features have a bigger effect on the results for both the market dataset and the malware
dataset than other types of features. Specifically, the features utilized in the AppAuth
(conf, dex, rsrc) demonstrate a notably positive effect, particularly within the context
of the malware dataset. This distinction underscores the relevance of these features in

distinguishing malicious applications from benign ones.

In a detailed breakdown presented in Table 6.10, the distribution of features within
the top 50, ranked by importance, is showcased for each dataset. This table
effectively quantifies the contribution of different feature sets to the model’s prediction,

highlighting the prominence of certain feature types over others.

80

I - N o
g e
C] o
Q s z
lib conf dex rsrc ngram
(a) Market
-3
T
o
2 7777777777777777777777777777
5
15 g
o S :
8
1 5
o
@) (@]
056 t-—o0-—-g-——a———-—--9--—§ —— .
@) = le) w
0 N Q Q | £
src lib conf dex rsrc ngram

(b) Malware

Figure 6.6 Importance values of each feature

Table 6.10 Distribution of Top 50 features per feature set

Dataset src perm lib conf dex rsrc str

Market 8 1 2 0 0 1 38
Malware 14 1 0 2 6 0 27

Moreover, the ordering of the 50 most critical features is cataloged in Table 6.11,

providing a granular view of which specific features hold the most weight in the

81

predictive process. The findings from this table further reinforce the significant impact
of source code-based features in the malware dataset, indicating their critical role in
identifying malicious software. Conversely, the market dataset saw a predominant
influence from n-gram features, suggesting their effectiveness in applications more

typical of general market trends.

Table 6.11 The most important 50 features per dataset

Market Malware
Name Type Name Type
interstitial is already ngram avgCharPerGlobal Var src
1s kjrer ikk ngram avgLinePerClass src
Ib itt Ib ngram avgFuncPerClass sTC
saved state of ngram ratiolnvokeToAllCodes STC
elle sera bient ngram ratioVoidToAllFunc sre
metadata tag in ngram ratioVarToAllCodes sre
Ib samplerate 1b ngram b getruntime 1b ngram
Ib cannot find ngram or zero length ngram
invalid ad size ngram Ib replace 1b ngram
b rgh b ngram ratiolfToAllCodes srC
1b isinterface 1b ngram avgLinePerFunc srC
freeing fragment index ngram dapatkan perkhidmatan google ngram
change.component.enabled.state | perm susesPermissionNum conf
container view with ngram ratioGlobalVarToAllCodes sTC
b krko 1b ngram usesPermissionNum conf
1b score 1b ngram vtlMethodRatio dex
Ib readbyte 1b ngram 1b plusclient must ngram
1b pair Ib ngram receive.mms perm
Ib aan 1b ngram | Ib marketsearchqpnamecomgoogle Ib | ngram
be null instead ngram this message Ib ngram
b zzafm 1b ngram Ib initializing adview ngram
1b onanimationend 1b ngram permissions are not ngram
b zc 1b ngram 1b settextalign 1b ngram
Ib landroidviewsurface 1b ngram antClassRatio dex
1b zzti Ib ngram 1b ljavalangcharsequence 1b ngram
cannot call this ngram 1b lapp non ngram
resDrawableFileNum ISrc statFieldRatio dex
como 1s Ib ngram ratioMoveToAllCodes src
share via 1b ngram ratioLocal VarToAllCodes src
avgCharPerLocalVar src Ib writedouble 1b ngram
com/appyet lib Ib iil Ib ngram
1b failure 1b ngram b row 1b ngram
ratioInvokeToAllCodes sTe avgCharPerLocal Var Byd
vi cc dch ngram avgCharPerFuncName sre
avgCharPerFuncName sre ratiolnt ToAllFunc sre
avgLinePerClass src Ib getconfig 1b ngram
key cannot be ngram | b landroidgraphicsbitmapconfig Ib | ngram
Ib multiply 1b ngram Ib stopplayback Ib ngram
not forward oncreate ngram dbiMethodRatio dex
ratioVarToAllCodes sre Ib zllil 1b ngram
giving up on ngram agetRatio dex
ratioGlobalVarToAllCodes sTC the main ui ngram
avgCharPerGlobalVar sre 1b is088591 1b ngram
com/doapps lib b packagename 1b ngram
or out of ngram Ib getsnippet 1b ngram
Ib case insensitive order lb ngram Ib module without ngram
at least one ngram b zu 1b ngram
b ce 1b ngram drtMethodRatio dex
b landroidappalarmmanager Ib | ngram b getlastpathsegment 1b ngram
ratioMoveToAllCodes sre lipsesc de pe ngram

82

By analyzing these importance values, we could make informed decisions about feature
selection, focusing on those that offer the most value to our predictive accuracy and
potentially discarding or de-emphasizing those with minimal impact. This analysis is
essential for refining the model, enhancing its efficiency, and ensuring its robustness in

accurately identifying malware and its origins.

6.7. RQT - The Effect of the Number of Features

Motivation. When dealing with a large dataset comprising over 10,000 different
attributes, as in the case of this study, it is not uncommon to encounter features that
may not contribute positively to the performance of a classifier. Some features might
be redundant, contain NaN (Not a Number) values, or exhibit zero variance, meaning
that they do not vary across different instances and hence provide no useful information

for classification.

The presence of such features can negatively impact the efficiency of machine learning
models. Redundant features can increase the computational complexity of model
training and prediction, while features with NaN values or zero variance can dilute

the model’s ability to learn meaningful patterns from the data.

The effect of the number of features on the classifier’s performance is explored
to understand how different feature subsets impact the model’s accuracy. This
involves experimenting with feature selection technique to identify the most informative

attributes and assess their contribution to the classification task.

Method. The selection of the best subsets of features from the entire feature set is
conducted through the computation of ANOVA F-values using the [_classif() function
in scikit-learn, a process aimed at enhancing the model’s performance by focusing
on the most informative features. ANOVA (Analysis of Variance) is a widely used
parametric statistical hypothesis test in feature selection to determine whether there are
any statistically significant differences between the means of three or more independent
(unrelated) groups.

83

To explore the impact of reducing the number of features on the performance of our
classifier, we progressively decrease the set of features under consideration. Starting
with the 100% of features based on their F-values, we gradually include less—80%,
60%, 40%, and eventually 20% of the features. This stepwise approach allows us
to closely monitor how simplifying our model by reducing its complexity affects its
accuracy. By comparing the model’s performance across these different feature subsets,
it is possible to identify the optimal balance between the number of features and the

model’s predictive capabilities.

Result. The performance of each feature group is shown in Fig. 6.7. Please note
that zero-impact features are also present. Because the malware dataset has more
zero-impact features (435) than the market dataset (174), there was not much
improvement in the last percentile. This figure also shows that if time and resources

matter, fewer features (for example, 60%) can be used as replacements for all features.

Accuracy vs Percentile

0.96 1

— | 4'____________—-—= °
0.94 +
0.92
0.90
)
© .88 1 —e— Market
3 —e— Malware
& 0.86 1
0.84
0.82 _‘*_’____ﬂ_,,_,.a—ﬂ***‘"#'“#“
0801 g9 +

20 40 60 80 100
Percentile

Figure 6.7 Impact of different percentiles of features

84

6.8. RQ8 - The Effect of the Number of Applications per

Developer

Motivation. Supervised machine learning requires prior information on developers
to yield accurate results. Therefore, the quantity of applications each developer has
contributed to can significantly influence our prediction model’s performance. To
illustrate this impact, we conducted an experiment demonstrating the relationship
between the number of applications per developer and the efficacy of our prediction

model.

Method. Our dataset predominantly comprises applications developed by multiple
developers, as individual developers with more than ten applications on the market
are rare. This leads to an imbalance in our dataset, with a variance in the number
of applications contributed by different developers. To mitigate this imbalance and
standardize our analysis, we initially identified developers who have contributed to at
least 40 applications across both market and malware datasets, resulting in 37 and
19 developers, respectively. For each developer, we then randomly selected subsets
of 10, 20, 30, and 40 applications, repeating this process ten times. This approach
ensures that each iteration involves different combinations of applications, allowing for
a comprehensive assessment of how the number of applications per developer influences

our analysis.

Result. Fig. 6.8 shows that when the number of applications per developer is
increased, the accuracy of Android AA is also increased. Due to being a smaller
dataset with fewer authors, the results on the malware dataset are very high, even
when trained with 20 applications per developer. Therefore, the differences among the
models trained using 20, 30, and 40 applications per developer in the malware dataset

are similar.

85

Accuracy vs APK Number per Author

205 /

0.90

L 3

Y
. 4

0.85 1

Accuracy

0.80

0.75 1

—e— Market
—e— Malware

0.70 -

10 20 30 40
APK Number per Author

Figure 6.8 Impact of different # of applications per developer

6.9. RQ9 - Effect of Application Versions

Motivation. Developers often update their applications due to bug fixes, security
patches, adding new functionalities, and the like. Therefore, there can be multiple
versions of an application on the developer’s market page. As our market dataset also
consists of different versions of some applications, it is worth investigating whether
the versions of the applications developed by the same author can be identified by the
proposed method.

Method. Therefore, two datasets are constructed in this study. First, if applications
have more than one version in the market dataset, duplicate applications are eliminated,
and only the first available version of the application is left in the market dataset. This
training dataset is called the no-version dataset; their versions are put into another
dataset called the testing set. Therefore, 1,193 training and 1,183 testing applications
implemented by 42 developers are used. All developers in the no-version dataset have

at least ten applications, as in the previous experiments.

Result. We first obtain the result by applying 10-fold cross-validation to the
no-version set and achieved 80.7% accuracy. As shown in Table 6.3, if all versions

86

are included, the accuracy is slightly higher (82.6%). Then, to answer the question
“if a version of an application is included in the training, could new versions of this
application be detected with the proposed approach?”, the model is trained using
a mno-version dataset and evaluated on the testing dataset. Here, high accuracy
(91.7%) is obtained. Similarities between the different versions of the applications are
obtained using SimiDroid [43]. However, there is no significant correlation between the
unidentified versions of applications and their similarities to the first available versions
in training. Although similarities to the first available version generally decrease
proportionally to the version numbers, there are exceptional cases in the testing set.
Although the similarity between a version of the application and the first available
version in the training set is low, the proposed approach can successfully identify
the authors of such versions. These results show that the developer’s signature is
preserved, even if the similarity between different versions of the same application is

low.

6.10. RQ10 - Effect of Obfuscation

Motivation. Because both benign and malicious applications apply obfuscation
techniques, Android AA has been evaluated in obfuscated applications in the literature
[14, 17]. In [17], obfuscated applications were obtained using ProGuard [100], which
provides simple obfuscation techniques such as method, class, and identifier renaming,
along with code shrinking and code optimization. It is shown that the authors of some
applications (7%) could not be identified when they were obfuscated. AppAuth [16] also
claims that its features are not robust against encryption and shell package obfuscation.
Kalgutkar et al. [14] analyzed obfuscated applications using three different obfuscation
tools: ProGuard, Allatori [101], and DashO [102]. They employed different types of
obfuscation techniques, such as string obfuscation, string encryption, and control flow
obfuscation to the source code of applications. However, they worked on a very small

dataset with 96 applications from nine different authors. Their results showed that the

87

accuracy results of AA in applications obfuscated by ProGuard are unexpectedly 6%
better than those of the original applications. String features are expected to be less
robust against string obfuscation and encryption techniques; however, it is shown that
there is no significant change in the results when applications are obfuscated using the

other two obfuscation tools.

Method. In this study, to better understand the performance of Android AA in
obfuscated applications, the Obfuscapk [44] tool is used in applications (smali files)
in the market and Genome datasets. Obfuscapk [44] works in a black-box fashion,
supports advanced obfuscation features, and has a modular architecture that is easily
extensible with new techniques. Note that because of some errors encountered during
the application of obfuscation techniques, the number of applications used in this
experiment is much lower than that of the original dataset (=40%). However, it is
a much larger dataset (6055 applications from 320 authors) than [14]. The six different
obfuscation techniques listed in Table 6.12 are used. These obfuscation techniques can

be grouped into two categories: encryption and renaming.

Table 6.12 Obfuscation abbreviations

Techniques Abbrv. Description
ConstStringEncryption CSE Encrypt constant strings in code
LibEncryption LE Encrypt native libs
ResStringEncryption RSE Encrypt strings in resources (only those called inside code)
ClassRename CR Change the package name and rename classes (even in the manifest file)
MethodRename MR Rename methods
FieldRename FR Rename fields

Result. The effects of different obfuscation techniques are shown in Table 6.13.
Although encryption obfuscation techniques do not affect the results, the newly
proposed source code-based feature sets are susceptible to renaming obfuscation
techniques, as shown in Table 6.13, because they are extracted from the variable,
method, and class names of applications. String features [14] are also affected by
renaming techniques, but less than the newly proposed feature sets because string

features use all strings placed in the APK files, not only strings extracted from the

88

source codes.

Table 6.13 Obfuscation results

Dataset Technique SPL+AppAuth+StringAA SPL+AppAuth SPL AppAuth StringAA
Original 9740%\ 97.9070 977% 9742070 9648%\
Genome CR+MR+FR 95.9% 97.6% 96.5% 97.0% 96.0%
CSE+LE+RSE 96.9% 98.1% 97.8% 97.3% 96.7%
(1332 applications) CSE+4LE+RSE+CR+MR+FR 96.3% 97.7% 96.5% 97.4% 95.9%
Original 82.8% 78.4% 75.3% 73.7% 82.3%
Market CR+MR+FR 81.4% 75.3% 66.2% 73.5% 80.9%
CSE+LE+RSE 82.3% 78.5% 75.2% 73.9% 81.6%
(6055 applications) CSE+LE+RSE+CR+MR+FR 81.5% 75.4% 66.4% 73.6% 80.8%

6.11. RQI11 - Analysis of Clone Applications

Motivation. To ensure data quality, we checked whether our dataset contained

application clones and identical descriptions.

Method. The Romadroid tool [45] is used to detect application clones in the dataset.
Romadroid creates a string from each manifest file of two applications to be compared
and measures the similarity between the two strings using the LCS algorithm. The
authors of Romadroid compared their tool with SimiDroid [43] and claimed that
Romadroid performed better than SimiDroid over a 60% threshold. Their results
showed that Simidroid produced a much lower recall value at their best threshold

values than did Romadroid (60.64% vs. 98.38%) in the same dataset.

We use the 70% and 90% threshold values in our experiments, so we calculate the
similarity scores of applications of 488, 153, and 39 developers in the market, malware,
and Genome datasets using Romadroid. As a result, n* (n —1)/2 similarity results are
obtained by pairwise comparison of applications. Here, n denotes the total number of
applications. Because we encounter errors in some applications, we could not obtain
similarity scores for each pair. Many studies typically consider an application pair as
an application clone if their similarity scores exceed either %70 or %90 [43, 45, 46]. In
our approach, we exclude all applications that exhibited a similarity score above %70

with another.

89

Result. As shown in Table 6.14, 20.6% of the market and 22.3% of the malware
datasets have similar applications above the 70% similarity rate. The effects of clone
apps on the results are given in Tables 6.15 and 6.16 for the market and malware
datasets, respectively. The results indicate that removing similar applications improves
the accuracy and F1 scores, especially for the market dataset. As similar applications
from different developers can mislead the model during training, removing app clones

has a positive effect on the results.

Table 6.14 Ratio of clone applications in the datasets

similarity threshold >%70 >%80 >%90

Market 20.6% 14.0% 8.5%
Malware 223% 13.0% 9.0%
Genome 10.6% 11.0% 0.3%

Table 6.15 Differences on accuracy and f1 score when clone apps are removed from the
market dataset

customsmali perm lib allsmali conf dex res ngram
acc -0.572 6.966 5.647 1.033 2.807 1.012 1.233 2.729
f1 -0.527 7.803 6.346 1.116 3.086 1.152 1.516 3.161
SPL + AppAuth 4+ StringAA SPL 4+ AppAuth SPL AppAuth StringAA
acc 2.626 2.443 3.211 1.608 2.729
f1 3.053 2.681 3.608 1.860 3.161

Table 6.16 Differences (%) on accuracy and f1 score when clone apps are removed from the
malware dataset

customsmali perm lib allsmali conf dex res ngram
acc 1.022 1.410 3.513 0.031 1.925 -0.145 1.183 0.477
f1 1.027 1.702 3.625 -0.057 1.924 -0.250 1.356 0.476
SPL + AppAuth 4+ StringAA SPL 4+ AppAuth SPL AppAuth StringAA
acc 0.554 0.278 0.246 0.337 0.477
f1 0.573 0.207 0.207 0.322 0.476

90

7. GENERAL DISCUSSION

In this study, we explore the use of source code-based features and compare different
feature sets in the literature on Android AA. However, this study had a few limitations,

detailed below:

7.1. Usage of Native Code

Today, developers are increasingly using native code within Android application
packages, where they co-exist and interact with DEX bytecode through the Java Native
Interface [103]. In our approach, only the non-native code parts of applications are used
to extract features, as in [16]. On the other hand, developers can use Android NDK,
which can help developers reuse code libraries to embed in Android apps; therefore,
native code written in C/C++ could carry developers’ fingerprints. Because our focus
is on the use of source code-based features for Android AA in this study, the features
that could be extracted from smali files are used. However, native codes could be

included in the Android AA in the future.

7.2. Obfuscation

As indicated in Table 6.13, the proposed source code-based features are susceptible
to renaming obfuscation techniques. Therefore, different groups of features, such as

metadata and string features, can be combined to identify authors.

A whitelist approach was adapted to find TPL used in an application. However, this
approach cannot detect obfuscated TPL. When such libraries cannot be identified
correctly, they are considered a developer’s custom code, which causes an increase in
the similarities between applications developed by different authors that use the same
libraries. Moreover, such libraries cannot be used as features to distinguish developers.
Therefore, recent studies such as LibID [95] and LibRadar [24] can be used to find
obfuscated libraries in the future.

91

7.3. Dataset

The size of the dataset is important for any machine-learning-based approach. Even
though the dataset in this study is larger and more comprehensive than those in other
studies in the literature, except [15], as shown in Table 7.1, further studies could
extend it. One limitation is finding developers with sufficient applications so that
the model can learn their styles. Another limitation is the need to find applications
with proper descriptions. In this study, we considered only applications that have
descriptions written in English. The size of the dataset can be increased by including

other languages.

Table 7.1 Dataset information

Dataset # of app # of author
Our paper 15,183 680
AppAuth [16] 3,871 273
String Analysis [14] 1,917 59

7.4. Clone/Repackaged Applications

The current study assumes that if an application is signed by a developer, it is written
by that developer. This is the same approach taken in previous studies [14, 16].
However, as shown above, there might be clone applications in the application stores;
hence, in our dataset, their existence might have affected our results. In this study, a
simple approach based on code similarity was employed to detect app clones. Many
researchers have been working on detecting app clones or repackaged applications
effectively [46]. It is stated that [46] while there is widespread recognition of the
app repackaging issue in both academic and industrial circles, there’s a notable lack of
datasets to aid research. Creating a comprehensive set of repackaging pairs that serves
as the ground truth requires significant effort. With the introduction of a new, large
dataset in [46], we expect such studies to accelerate. For these reasons, the investigation

of the effects of app clones on Android AA is left for future work.

92

7.5. Applications Developed by Multiple Authors

Kalgutkar et al. [27] highlighted that many studies operate under the assumption that
individual applications in their dataset are authored by a singular developer. This is in
contrast to real-world scenarios where software applications often involve contributions
from multiple developers. Gong et al. further expressed this point, indicating that
between 10% and 60% of source files can contain contributions from unattributed
authors, and as many as 75.4% of source files present multiple authorships [104]. For
this study, we assume that a single developer is responsible for a given application.
However, it is imperative to acknowledge that many applications, particularly expansive
commercial software, are the collective efforts of multiple developers. This multiplicity
adds layers of complexity to the issue at hand. Notably, when developers adhere to
institutionalized guidelines for software development, the overarching organization can
be treated as a singular entity or developer within the scope of this study. For instance,
even on Github, some developers specify a set of rules or guidelines that contributors
need to follow to contribute to a project; this is typically called a CONTRIBUTING
guide or CONTRIBUTING.md file. Companies can also implement regular code
review processes. This ensures that all codes are checked for quality and adherence
to standards before they are merged into the main codebase. The unified coding
standards establish a set of coding standards that all developers in the company must
follow. Therefore, if some of the codes are written by multiple developers, the total
code of the application can be seen as the work of a single developer. This ensures

consistency in the codebase, thus making it easier to read, maintain, and debug.

93

8. CONCLUSION

This study investigates the use of various features for Android AA. The proposed model
uses a feature extraction process that starts with compiling A PK files using “apktool”.
This step allows the extraction of various files, including small files (which provide
Android-specific low-level, assembly-like code), .dez files, resource files, manifest files,

and XML files. Three main categories of features are extracted from these files:

SPL Features: These include source code-based, which are primarily extracted from
smali files, permissions, third-party libraries (TPL), and metadata-based features. The
study utilizes 18 source code-based features, adapting them for compatibility with smali
codes. Additionally, the model considers each Android permission in the manifest file as
a separate feature, adding 158 binary features. TPL features are included by building
a whitelist of common libraries and identifying their usage in applications. The model
also analyzes application descriptions provided by developers, using a similar method
to that used for extracting string features, recognizing that these descriptions can be

beneficial in authorship attribution (AA).

AppAuth Features[16]: They include configuration features from the manifest file,
resource features from the files/folders in the “res” directory, and dex features related

with methods, classes, fields, and data structures in .dez files.

StringA A Features[14]: These are extracted from strings contained in XML and
.dex files of applications. This study uses 3-grams for string-based features, with a tag

inserted at the beginning and end of each string to preserve all lines.

To evaluate the effectiveness of these features, experiments were conducted on datasets
containing benign, malicious, and obfuscated applications obtained from various
platforms. The dataset contains 10,385 benign Android apps from 488 unique
developers, each contributing more than 10 apps, collected from five different Android
markets. There are also over 3,000 malicious apps from 153 developers, obtained from
various sources. Additionally, approximately 6,000 obfuscated applications created

94

using the “Obfuscapk” tool and more than 1,000 applications are available for version

analysis; both subsets are derived from the benign dataset.

Authorship attributions in the literature are based on the hypothesis that applications
signed with the same private (signing) key belong to a unique developer. Keys can be
extracted from APK files using the “print-apk-signature” tool. In cases where multiple
developers have the same or similar application, only a single unique example was

selected.

The feature processing phase involves generating feature vectors for each application,
handling missing values, and standardizing features. The Simplelmputer function
from the scikit-learn library is used to replace missing values across each column.
The StandardScaler function is applied to standardize the features, allowing features
with different scales or units to be directly compared and combined in models. To
improve model efficiency and performance, a two-phase dimensional reduction process is
applied to the dataset. The first phase involves eliminating features with zero variance,
which do not provide discriminatory information and might lead to overfitting. In
the second phase, the most relevant features are selected using univariate statistical
tests (ANOVA). This helps reduce the dimensionality of the dataset by retaining only
the most informative features, which can be particularly beneficial when dealing with

high-dimensional data.

This study uses various classification algorithms to predict authorship in the Android
domain. The algorithms include Random Forest, K-Nearest Neighbors, SVM, Gaussian
Naive Bayes, and LightGBM. The GridSearchCV (Grid Search Cross-Validation)
technique is used to determine the optimal values for a given model. Models are then
evaluated using these optimal parameters through stratified 10-fold cross-validation,

which preserves positive and negative examples across folds.

This study addresses several research questions (RQs) related to Android Authorship

Attribution. Our findings can be summarized as follows:

95

o We investigate which classification algorithm is best for attributing applications
to authors. The Random Forest algorithm emerges as the most efficient in
terms of both accuracy and time. LightGBM has superior accuracy; however,

its classification time is a bit longer.

o After that, we determine both the best “n” value and the number of n-gram
features. Here, a set size of 10,000 3-grams is identified as ideal, balancing
accuracy and training time. Even though accuracy improves when we increase
the number of 3-grams, classification time exponentially increases after 10,000

3-grams.

o After compiling the APK file, the TPL codes used in the development of the APK
file are converted into small files as well as user-defined codes. As developers
tend to use the same TPL for their different applications, TPL codes may be
insightful in distinguishing authors from each other. However, if two developers
create similar applications with the same functionality, they mostly use the same
TPLs. Therefore, most of their codes are similar, making it harder to find distinct
features between them. As a result, we demonstrate the differences between when
we include TPl and when we do not include TPL. The results show that using
TPL features as a distinct feature set is more effective than getting results by

incorporating TPL into source code-based features.

e The findings indicate that the feature sets introduced in this study achieve high
levels of accuracy in Android AA, rivaling that of string-based features, which
require more computational resources. Moreover, these newly proposed features
surpass other features in the context of AA. While string features are generally
superior, practicality issues arise in large datasets. A combination of all features

is recommended if feasible.

o Application metadata, like descriptions, aids in attributing developers due to
varying writing styles. However, multiple languages in descriptions can hinder

classification. Notably, it is observed that metadata features contribute to

96

improved accuracy, particularly when combined with source code-based features.
Of particular significance, this is the first study to explore the impact of metadata

information, which describes applications, on Android AA.

o Using only 60% of the features can still yield satisfactory results, reducing

resource expenditures.

e A balanced dataset with sufficient samples per developer enhances model

performance.
o The model effectively identifies different versions of the same applications.

o All features, especially source code strings, are vulnerable to obfuscation

techniques, notably renaming.

Overall, the present work provides a rigorous analysis of Android AA and is compared
with state-of-the-art techniques. Future research should investigate the use of this
approach for clone applications, particularly those with malicious intent. It is important
to first find similarities between malicious software from different sources to predict
how malware will evolve; hence, we could develop new protection techniques against
malware that will appear in the future. The features related to the author of malware
can be useful to achieve this goal. Hence, new applications in the market can be

analyzed from their authors point of view.

97

REFERENCES

Nathan Rosenblum, Xiaojin Zhu, and Barton P. Miller. Who wrote
this code? identifying the authors of program binaries. In Vijay Atluri
and Claudia Diaz, editors, Computer Security — ESORICS 2011, pages
172-189. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011. ISBN
978-3-642-23822-2.

Saed Alrabaee, Paria Shirani, Mourad Debbabi, and Lingyu Wang. On the
feasibility of malware authorship attribution. In Frédéric Cuppens, Lingyu
Wang, Nora Cuppens-Boulahia, Nadia Tawbi, and Joaquin Garcia-Alfaro,

editors, Foundations and Practice of Security, pages 256—272. Springer
International Publishing, Cham, 2017. ISBN 978-3-319-51966-1.

Robert Layton and Ahmad Azab. Authorship analysis of the zeus botnet
source code. In 2014 Fifth Cybercrime and Trustworthy Computing
Conference, pages 38-43. 2014. doi:10.1109/CTC.2014.14.

Mamoun Alazab, Robert Layton, Roderic Broadhurst, and Brigitte
Bouhours. Malicious spam emails developments and authorship attribution.

In 2013 Fourth Cybercrime and Trustworthy Computing Workshop, pages
58-68. 2013. doi:10.1109/CTC.2013.16.

Robert Layton, Stephen McCombie, and Paul Watters. Authorship
attribution of irc messages using inverse author frequency. In 2012 Third

Cybercrime and Trustworthy Computing Workshop, pages 7-13. 2012.
d0i:10.1109/CTC.2012.11.

Steven Burrows and Seyed MM Tahaghoghi. Source code authorship
attribution using n-grams. In Proceedings of the twelth Australasian
document computing symposium, Melbourne, Australia, RMIT University,

pages 32-39. Citeseer, 2007.

98

[10]

[11]

[12]

Rong Chen, Lina Hong, Chunyan Chunyan Lii, and Wu Deng. Author
identification of software source code with program dependence graphs. In
2010 IEEE 34th Annual Computer Software and Applications Conference
Workshops, pages 281-286. 2010. doi:10.1109/COMPSACW.2010.56.

Georgia Frantzeskou, Efstathios Stamatatos, Stefanos Gritzalis, and
Sokratis Katsikas. Source code author identification based on n-gram
author profiles. In Ilias Maglogiannis, Kostas Karpouzis, and Max Bramer,
editors, Artificial Intelligence Applications and Innovations, pages 508-515.
Springer US, Boston, MA, 2006. ISBN 978-0-387-34224-5.

Jay Kothari, Maxim Shevertalov, Edward Stehle, and Spiros Mancoridis. A
probabilistic approach to source code authorship identification. In Fourth

International Conference on Information Technology (ITNG’07), pages
243-248. 2007. doi:10.1109/ITNG.2007.17.

Ivan Krsul and Eugene H. Spafford. Authorship analysis: identifying the
author of a program. Computers € Security, 16(3):233-257, 1997. ISSN
0167-4048. doi:https://doi.org/10.1016/S0167-4048(97)00005-9.

Aylin Caliskan-Islam, Richard Harang, Andrew Liu, Arvind Narayanan,
Clare Voss, Fabian Yamaguchi, and Rachel Greenstadt. De-anonymizing
programmers via code stylometry. In Proceedings of the 24th USENIX
Conference on Security Symposium, SEC’15, page 255-270. USENIX
Association, USA, 2015. ISBN 9781931971232.

Saed Alrabaee, Noman Saleem, Stere Preda, Lingyu Wang, and Mourad
Debbabi. Oba2: An onion approach to binary code authorship attribution.
Digital Investigation, 11:594-S103, 2014. ISSN 1742-2876. doi:https://doi.
org/10.1016/j.diin.2014.03.012. Proceedings of the First Annual DFRWS
FEurope.

99

[13]

[15]

[17]

[18]

Saed Alrabaee, Lingyu Wang, and Mourad Debbabi. Bingold: Towards
robust binary analysis by extracting the semantics of binary code as
semantic flow graphs (sfgs). Digital Investigation, 18:511-S22, 2016. ISSN
1742-2876. doi:https://doi.org/10.1016/j.diin.2016.04.002.

Vaibhavi Kalgutkar, Natalia Stakhanova, Paul Cook, and Alina
Matyukhina. Android authorship attribution through string analysis. In
Proceedings of the 13th International Conference on Availability, Reliability
and Security, ARES ’18. Association for Computing Machinery, New York,
NY, USA, 2018. ISBN 9781450364485. doi:10.1145/3230833.3230849.

Hugo Gonzalez, Natalia Stakhanova, and Ali A. Ghorbani. Authorship
attribution of android apps. In Proceedings of the Eighth ACM Conference
on Data and Application Security and Privacy, CODASPY 18, page
277-286. Association for Computing Machinery, New York, NY, USA,
2018. ISBN 9781450356329. doi:10.1145/3176258.3176322.

Guoai Xu, Chengpeng Zhang, Bowen Sun, Xinyu Yang, Yanhui Guo,
Chengze Li, and Haoyu Wang. Appauth: Authorship attribution for android
app clones. IEEE Access, 7:141850-141867, 2019. doi:10.1109/ACCESS.
2019.2944684.

Wei Wang, Guozhu Meng, Haoyu Wang, Kai Chen, Weimin Ge, and
Xiaohong Li. A3ident: A two-phased approach to identify the leading
authors of android apps. In 2020 IEEE International Conference on
Software Maintenance and FEvolution (ICSME), pages 617-628. 2020.
d0i:10.1109/ICSME46990.2020.00064.

StatCounter. Mobile operating system market share worldwide.
https://gs.statcounter.com/os-market-share/mobile/worldwide,

2023. Accessed: 2023-12-12.

100

https://gs.statcounter.com/os-market-share/mobile/worldwide

[19]

[20]

21

22]

23]

[24]

[25]

[26]

Google. Android apps on google play. https://play.google.com/store/
apps, 2023. Accessed: 2023-12-12.

Aptoide. Aptoide - the alternative android app store. https://en.
aptoide.com, 2023. Accessed: 2023-12-12.

APKMirror. Apkmirror - free apk downloads - free and safe android apk
downloads. https://www.apkmirror.com, 2023. Accessed: 2023-12-12.

Android Developers. String resources | android developers. https://
developer.android.com/guide/topics/resources/string-resource,

2023. Accessed: 2023-12-12.

Haoyu Wang, Yao Guo, Zihao Tang, Guangdong Bai, and Xiangqun Chen.
Reevaluating android permission gaps with static and dynamic analysis. In
2015 IEEE Global Communications Conference (GLOBECOM), pages 1-6.
2015. doi:10.1109/GLOCOM.2015.7417621.

Ziang Ma, Haoyu Wang, Yao Guo, and Xiangqun Chen. Libradar:
Fast and accurate detection of third-party libraries in android apps. In
2016 IEEE/ACM 38th International Conference on Software Engineering
Companion (ICSE-C), pages 653-656. 2016.

Haoyu Wang, Yao Guo, Ziang Ma, and Xiangqun Chen. Wukong: A
scalable and accurate two-phase approach to android app clone detection. In
Proceedings of the 2015 International Symposium on Software Testing and
Analysis, ISSTA 2015, page 71-82. Association for Computing Machinery,
New York, NY, USA, 2015. ISBN 9781450336208. doi:10.1145/2771783.
2771795.

Haoyu Wang and Yao Guo. Understanding third-party libraries in mobile
app analysis. In 2017 IEEE/ACM 39th International Conference on
Software Engineering Companion (ICSE-C), pages 515-516. 2017. doi:10.
1109/ICSE-C.2017.161.

101

https://play.google.com/store/apps
https://play.google.com/store/apps
https://en.aptoide.com
https://en.aptoide.com
https://www.apkmirror.com
https://developer.android.com/guide/topics/resources/string-resource
https://developer.android.com/guide/topics/resources/string-resource

[27]

[28]

[29]

[30]

[31]

[34]

Vaibhavi Kalgutkar, Ratinder Kaur, Hugo Gonzalez, Natalia Stakhanova,
and Alina Matyukhina. Code authorship attribution: Methods and
challenges. ACM Comput. Surv., 52(1), 2019. ISSN 0360-0300. doi:10.
1145/3292577.

Hugo F. Gonzalez Robledo. An automatic authorship attribution technique
for Android applications. Ph.D. thesis, The University of New Brunswick,
2017.

Connor Tumbleson. Apktool - a tool for reverse engineering android
apk files. https://ibotpeaches.github.io/Apktool/, 2023. Accessed:
2023-12-12.

scikit learn. sklearn.impute.simpleimputer - scikit-learn 1.3.2
documentation. https://scikit-learn.org/stable/modules/
generated/sklearn.impute.SimpleImputer.html, 2024. Accessed:
2024.

scikit learn. sklearn.preprocessing.standardscaler - scikit-learn 1.3.2
documentation. https://scikit-learn.org/stable/modules/
generated/sklearn.preprocessing.StandardScaler.html, 2024.
Accessed: 2024.

scikit-learn developers. scikit-learn: machine learning in python —
scikit-learn 1.3.2 documentation. https://scikit-learn.org/stable/

index.html, 2023. Accessed: 2023-12-12.

Haibo He and Yunqgian Ma. Imbalanced Learning: Foundations, Algorithms,
and Applications, pages i—xi. John Wiley & Sons, Ltd, 2013. ISBN
9781118646106. doi:https://doi.org/10.1002/9781118646106.

Scrapy. Scrapy | a fast and powerful scraping and web crawling framework.

https://scrapy.org, 2023. Accessed: 2023-12-12.

102

https://ibotpeaches.github.io/Apktool/
https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html
https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/index.html
https://scikit-learn.org/stable/index.html
https://scrapy.org

[36]

[37]

[38]

[40]

[41]

[42]

[43]

Daniel Arp, Michael Spreitzenbarth, Malte Hiibner, Hugo Gascon, and
Konrad Rieck. Drebin: Effective and explainable detection of android

malware in your pocket. In NDSS. 2014. doi:10.14722/ndss.2014.23247.

PRALab. Android praguard dataset. http://pralab.diee.unica.it/en/
AndroidPRAGuardDataset, 2021. Accessed: 2021.

APKPure. Download apk on android with free online apk downloader -

apkpure. https://apkpure.com, 2023. Accessed: 2023-12-12.

1Mobile-Market. 1mobile market - best google android apps market. http:
//market . 1mobile.com, 2018. Accessed: 2018.

Canadian Institute for Cybersecurity. Datasets | research | canadian
institute for cybersecurity | unb. https://www.unb.ca/cic/datasets/

index.html, 2023. Accessed: 2023-12-12.

Haoyu Wang, Junjun Si, Hao Li, and Yao Guo. Rmvdroid: Towards a
reliable android malware dataset with app metadata. In 2019 IEEE/ACM
16th International Conference on Mining Software Repositories (MSR),
pages 404-408. 2019. doi:10.1109/MSR.2019.00067.

warren-bank. Github - warren-bank /print-apk-signature: print information
about the certificate used to sign an android apk file. https://github.
com/warren-bank/print-apk-signature, 2023. Accessed: 2023-12-12.

Gaurav Goel, Harsh Bhardwaj, Ishika Hooda, and Shailender Kumar.
Optimal n-gram subset extraction for accelerating evaluation using genetic
algorithm. In 2020 International Conference for Emerging Technology
(INCET), pages 1-5. 2020. doi:10.1109/INCET49848.2020.9154083.

Li Li, Tegawendé F. Bissyandé, and Jacques Klein. Simidroid:
Identifying and explaining similarities in android apps. In 2017
IEEE Trustcom/BigDataSE/ICESS, pages 136-143. 2017. doi:10.1109/
Trustcom/BigDataSE/ICESS.2017.230.

103

http://pralab.diee.unica.it/en/AndroidPRAGuardDataset
http://pralab.diee.unica.it/en/AndroidPRAGuardDataset
https://apkpure.com
http://market.1mobile.com
http://market.1mobile.com
https://www.unb.ca/cic/datasets/index.html
https://www.unb.ca/cic/datasets/index.html
https://github.com/warren-bank/print-apk-signature
https://github.com/warren-bank/print-apk-signature

[45]

[46]

[48]

[49]

Claudiu Georgiu. Github - claudiugeorgiu/obfuscapk: An
automatic obfuscation tool for android apps that works in a
black-box fashion, supports advanced obfuscation features and
has a modular architecture easily extensible with new techniques.
https://github.com/ClaudiuGeorgiu/Obfuscapk, 2023. Accessed:
2023-12-12.

Byoungchul Kim, Kyeonghwan Lim, Seong-Je Cho, and Minkyu Park.
Romadroid: A robust and efficient technique for detecting android app
clones using a tree structure and components of each app’s manifest file.

IEEE Access, 7:72182-72196, 2019. doi:10.1109/ACCESS.2019.2920314.

Li Li, Tegawendé F. Bissyandé, and Jacques Klein. Rebooting research
on detecting repackaged android apps: Literature review and benchmark.
IEEE Transactions on Software Engineering, 47(4):676-693, 2021. doi:10.
1109/TSE.2019.2901679.

Kaspersky. Google play malware clocks up more than 600
million downloads in 2023. https://www.kaspersky.com/blog/
malware-in-google-play-2023/49579/, 2023. Accessed: 2023-12-12.

AV-TEST. Malware statistics & trends report. https://www.av-test.
org/en/statistics/malware/, 2023. Accessed: 2023-12-12.

Yajin Zhou and Xuxian Jiang. Dissecting android malware:
Characterization and evolution. In 2012 IEEE Symposium on Security and

Privacy, pages 95-109. 2012. doi:10.1109/SP.2012.16.

Kursat Aktas and Sevil Sen. Updroid: Updated android malware and
its familial classification. In Nils Gruschka, editor, Secure IT Systems,
pages 352-368. Springer International Publishing, Cham, 2018. ISBN
978-3-030-03638-6.

104

https://github.com/ClaudiuGeorgiu/Obfuscapk
https://www.kaspersky.com/blog/malware-in-google-play-2023/49579/
https://www.kaspersky.com/blog/malware-in-google-play-2023/49579/
https://www.av-test.org/en/statistics/malware/
https://www.av-test.org/en/statistics/malware/

[51]

[52]

Yue Wang, Weishi Wang, Shafiq Joty, and Steven C.H. Hoi. CodeT5:
Identifier-aware unified pre-trained encoder-decoder models for code
understanding and generation. In Marie-Francine Moens, Xuanjing Huang,
Lucia Specia, and Scott Wen-tau Yih, editors, Proceedings of the 2021
Conference on Empirical Methods in Natural Language Processing, pages
8696—-8708. Association for Computational Linguistics, Online and Punta
Cana, Dominican Republic, 2021. doi:10.18653/v1/2021.emnlp-main.685.

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie Liu,
Long Zhou, Nan Duan, Alexey Svyatkovskiy, Shengyu Fu, Michele Tufano,
Shao Kun Deng, Colin Clement, Dawn Drain, Neel Sundaresan, Jian
Yin, Daxin Jiang, and Ming Zhou. Graphcodebert: Pre-training code
representations with data flow, 2021.

Rosa Maria Coyotl-Morales, Luis Villasenior-Pineda, Manuel Montes-y
Goémez, and Paolo Rosso. Authorship attribution using word sequences.
In José Francisco Martinez-Trinidad, Jesis Ariel Carrasco Ochoa, and
Josef Kittler, editors, Progress in Pattern Recognition, Image Analysis and
Applications, pages 844—853. Springer Berlin Heidelberg, Berlin, Heidelberg,
2006. ISBN 978-3-540-46557-7.

Patrick Juola. Authorship attribution. Found. Trends Inf. Retr.,
1(3):233-334, 2006. ISSN 1554-0669. doi:10.1561/1500000005.

Egor Bogomolov, Vladimir Kovalenko, Yurii Rebryk, Alberto Bacchelli,
and Timofey Bryksin. Authorship attribution of source code: A
language-agnostic approach and applicability in software engineering.
In Proceedings of the 29th ACM Joint Meeting on FEuropean Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, ESEC/FSE 2021, page 932-944. Association for Computing
Machinery, New York, NY, USA, 2021. ISBN 9781450385626. doi:10.
1145/3468264.3468606.

105

[58]

[59]

[60]

[62]

O. de Vel, A. Anderson, M. Corney, and G. Mohay. Mining e-mail content
for author identification forensics. SIGMOD Rec., 30(4):55-64, 2001. ISSN
0163-5808. doi:10.1145/604264.604272.

Jason Gray, Daniele Sgandurra, and Lorenzo Cavallaro. Identifying
authorship style in malicious binaries: Techniques, challenges & datasets,

2021.

Sangwoo Lee and Jungwon Cho. Malware authorship attribution model
using runtime modules based on automated analysis. International Journal

on Informatics Visualization, 6(1-2), 2022. doi:10.30630/j0iv.6.1-2.941.

Frank Smallenburg Emanuele Boattini, Michel Ram and Laura Filion.
Neural-network-based order parameters for classification of binary
hard-sphere crystal structures. Molecular Physics, 116(21-22):3066-3075,
2018. doi:10.1080,/00268976.2018.1483537.

Xinyu Yang, Guoai Xu, Qi Li, Yanhui Guo, and Miao Zhang. Authorship
attribution of source code by using back propagation neural network based
on particle swarm optimization. PLOS ONE, 12(11):1-18, 2017. doi:10.
1371 /journal.pone.0187204.

Bander Alsulami, Edwin Dauber, Richard Harang, Spiros Mancoridis,
and Rachel Greenstadt. Source code authorship attribution using long
short-term memory based networks. In Simon N. Foley, Dieter Gollmann,
and Einar Snekkenes, editors, Computer Security — ESORICS 2017,
pages 65-82. Springer International Publishing, Cham, 2017. ISBN
978-3-319-66402-6.

E. Dauber, A. Caliskan, R. Harang, and R. Greenstadt. Poster: Git blame
who?: Stylistic authorship attribution of small, incomplete source code

fragments. In 2018 IEEE/ACM 40th International Conference on Software

106

[65]

[67]

Engineering: Companion (ICSE-Companion), pages 356-357. 2018. ISSN
2574-1934.

Steven Burrows, Alexandra L. Uitdenbogerd, and Andrew Turpin.
Comparing techniques for authorship attribution of source code. Software:
Practice and Experience, 44(1):1-32, 2014. doi:https://doi.org/10.1002/
spe.2146.

Georgia Frantzeskou, Stephen G. MacDonell, and Efstathios Stamatatos.
Source Code Authorship Analysis For Supporting the Cybercrime
Investigation Process, pages 470-495. IGI Global, 2010. doi:10.4018/
978-1-60566-836-9.ch020.

Rong Zheng, Yi Qin, Zan Huang, and Hsinchun Chen. Authorship analysis
in cybercrime investigation. In Hsinchun Chen, Richard Miranda, Daniel D.
Zeng, Chris Demchak, Jenny Schroeder, and Therani Madhusudan,
editors, Intelligence and Security Informatics, pages 59-73. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2003. ISBN 978-3-540-44853-2.

Aylin Caliskan, Fabian Yamaguchi, Edwin Dauber, Richard Harang,
Konrad Rieck, Rachel Greenstadt, and Arvind Narayanan. When coding
style survives compilation: De-anonymizing programmers from executable
binaries. In Proceedings 2018 Network and Distributed System Security
Symposium, NDSS 2018. Internet Society, 2018. doi:10.14722/ndss.2018.
23304.

Sangwoo Lee and Jungwon Cho. Malware authorship attribution model
using runtime modules based on automated analysis. JOIV : International
Journal on Informatics Visualization, 6:214, 2022. doi:10.30630/joiv.6.1-2.
941.

107

[69]

[70]

[71]

[75]

Anthony Desnos. Android: Static analysis using similarity distance. In
2012 45th Hawaii International Conference on System Sciences, pages

5394-5403. 2012. doi:10.1109/HICSS.2012.114.

Yury Zhauniarovich, Olga Gadyatskaya, Bruno Crispo, Francesco La Spina,
and Ermanno Moser. Fsquadra: Fast detection of repackaged applications.
In Vijay Atluri and Giinther Pernul, editors, Data and Applications Security
and Privacy XXVIII, pages 130-145. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2014. ISBN 978-3-662-43936-4.

Google Play. Use play app signing. https://support.google.
com/googleplay/android-developer/answer/9842756, 2023. Accessed:
2023-12-12.

Kanae Yoshida, Hironori Imai, Nana Serizawa, Tatsuya Mori, and Akira
Kanaoka. Understanding the origins of weak cryptographic algorithms used
for signing android apps. Journal of Information Processing, 27:593-602,
2019. doi:10.2197/ipsjjip.27.593.

Huawei. Huawei appgallery - huawei tiirkiye. https://consumer.huawei.

com/tr/mobileservices/appgallery/, 2024. Accessed: 2024.

Tencent. Tencent appstore. https://appstore.tencent.com/, 2024.
Accessed: 2024.

Kaspar Hageman, Alvaro Feal, Julien Gamba, Aniketh Girish, Jakob
Bleier, Martina Lindorfer, Juan Tapiador, and Narseo Vallina-Rodriguez.
Mixed signals: Analyzing software attribution challenges in the android
ecosystem. [EEE Transactions on Software Engineering, 49(4):2964-2979,
2023. doi:10.1109/TSE.2023.3236582.

apkmonk. Download android app apks free. https://www.apkmonk.com/,
2024. Accessed: 2024.

108

https://support.google.com/googleplay/android-developer/answer/9842756
https://support.google.com/googleplay/android-developer/answer/9842756
https://consumer.huawei.com/tr/mobileservices/appgallery/
https://consumer.huawei.com/tr/mobileservices/appgallery/
https://appstore.tencent.com/
https://www.apkmonk.com/

[80]

[81]

[82]

[83]

Baidu. https://shouji.baidu.com/, 2024. Accessed: 2024.

Leo Breiman. Random forests. Machine Learning, 45(1):5-32, 2001. ISSN
1573-0565. doi:10.1023/A:1010933404324.

Vladimir N. Vapnik. The Nature of Statistical Learning Theory. Springer
New York, NY, 1 edition, 1995. ISBN 978-1-4757-2440-0. doi:10.1007/
978-1-4757-2440-0.

Xindong Wu, Vipin Kumar, J. Ross Quinlan, Joydeep Ghosh, Qiang Yang,
Hiroshi Motoda, Geoffrey J. McLachlan, Angus Ng, Bing Liu, Philip S.
Yu, Zhi-Hua Zhou, Michael Steinbach, David J. Hand, and Dan Steinberg.
Top 10 algorithms in data mining. Knowledge and Information Systems,

14(1):1-37, 2008. ISSN 0219-3116. doi:10.1007/s10115-007-0114-2.

Chih-Wei Hsu and Chih-Jen Lin. A comparison of methods for multiclass
support vector machines. IEEE Transactions on Neural Networks,

13(2):415-425, 2002. doi:10.1109/72.991427.

Harry Zhang. The optimality of naive bayes. In The Florida AI Research
Society, volume 2. 2004.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong
Ma, Qiwei Ye, and Tie-Yan Liu. Lightgbm: A highly efficient gradient
boosting decision tree. In Proceedings of the 31st International Conference
on Neural Information Processing Systems, NIPS’17, page 3149-3157.
Curran Associates Inc., Red Hook, NY, USA, 2017. ISBN 9781510860964.

Candice Bentéjac, Anna Csorgd, and Gonzalo Martinez-Munoz. A
comparative analysis of gradient boosting algorithms. Artificial Intelligence
Review, 54(3):1937-1967, 2021. ISSN 1573-7462. doi:10.1007/
$10462-020-09896-5.

109

https://shouji.baidu.com/

[84]

[85]

[88]

[89]

[90]

[91]

scikit-learn developers. sklearn.model selection.gridsearchcv — scikit-learn
1.3.2 documentation. https://scikit-learn.org/stable/modules/
generated/sklearn.model _selection.GridSearchCV.html, 2023.
Accessed: 2023-12-12.

scikit-learn developers. 3.2. tuning the hyper-parameters of an estimator
— scikit-learn 1.3.2 documentation. https://scikit-learn.org/stable/
modules/grid_search.html, 2023. Accessed: 2023-12-12.

skylot. Github - skylot/jadx: Dex to java decompiler. https://github.
com/skylot/jadx, 2023. Accessed: 2023-12-12.

MVNRepository. Maven repository: Central. https://mvnrepository.
com/repos/central, 2023. Accessed: 2023-12-12.

Sevil Sen and Burcu Can. Android security using nlp techniques: A review,

2021.

PrivacyGrade. Privacygrade:grading the privacy of smartphone apps. http:
//privacygrade.org, 2021. Accessed: 2021.

Li Li, Tegawendé F. Bissyandé, Jacques Klein, and Yves Le Traon. An
investigation into the use of common libraries in android apps. In 2016
IEEE 23rd International Conference on Software Analysis, Evolution, and
Reengineering (SANER), volume 1, pages 403-414. 2016. doi:10.1109/
SANER.2016.52.

Georgia Kapitsaki and Modestos loannou. Examining the privacy
vulnerability level of android applications. In Proceedings of the 15th
International Conference on Web Information Systems and Technologies,
WEBIST 2019, page 34-45. SCITEPRESS - Science and Technology
Publications, Lda, Setubal, PRT, 2019. ISBN 9789897583865. doi:10.
5220/0007955100340045.

110

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
https://scikit-learn.org/stable/modules/grid_search.html
https://scikit-learn.org/stable/modules/grid_search.html
https://github.com/skylot/jadx
https://github.com/skylot/jadx
https://mvnrepository.com/repos/central
https://mvnrepository.com/repos/central
http://privacygrade.org
http://privacygrade.org

[92]

[93]

[94]

[95]

[96]

[97]

Huseyin Alecakir, Burcu Can, and Sevil Sen. Attention: there is
an inconsistency between android permissions and application metadata!
International Journal of Information Security, 20(6):797-815, 2021. ISSN
1615-5270. doi:10.1007/s10207-020-00536-1.

Saed Alrabaee, Paria Shirani, Lingyu Wang, Mourad Debbabi, and Aiman
Hanna. Decoupling coding habits from functionality for effective binary
authorship attribution. Journal of Computer Security, 27:1-36, 2019.
d0i:10.3233/JCS-191292.

Michael Backes, Sven Bugiel, and Erik Derr. Reliable third-party library
detection in android and its security applications. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security,
CCS 16, page 356-367. Association for Computing Machinery, New York,
NY, USA, 2016. ISBN 9781450341394. doi:10.1145/2976749.2978333.

Jiexin Zhang, Alastair R. Beresford, and Stephan A. Kollmann. Libid:
Reliable identification of obfuscated third-party android libraries. In
Proceedings of the 28th ACM SIGSOFT International Symposium on
Software Testing and Analysis, ISSTA 2019, page 55-65. Association for
Computing Machinery, New York, NY, USA, 2019. ISBN 9781450362245.
doi:10.1145/3293882.3330563.

William Enck, Damien Octeau, Patrick McDaniel, and Swarat Chaudhuri.
A study of android application security. In Proceedings of the 20th USENIX
Conference on Security, SEC’11, page 21. USENIX Association, USA,
2011.

Danah Boyd, Scott Golder, and Gilad Lotan. Tweet, tweet, retweet:
Conversational aspects of retweeting on twitter. In 2010 43rd Hawaii

International Conference on System Sciences, pages 1-10. 2010. doi:10.
1109/HICSS.2010.412.

111

[99]

[100]

[101]

102]

[103]

[104]

Na Cheng, R. Chandramouli, and K.P. Subbalakshmi. Author gender
identification from text. Digital Investigation, 8(1):78-88, 2011. ISSN
1742-2876. doi:https://doi.org/10.1016/j.diin.2011.04.002.

Ying Zhao and Justin Zobel. Searching with style: Authorship attribution
in classic literature. In Proceedings of the Thirtieth Australasian Conference
on Computer Science - Volume 62, ACSC ’07, page 59-68. Australian
Computer Society, Inc., AUS, 2007. ISBN 1920682430.

Android Developers. Shrink, obfuscate, and optimize your app | android
studio | android developers. https://developer.android.com/studio/

build/shrink-code, 2023. Accessed: 2023-12-12.

Smardec Inc. Allatori java obfuscator - professional java obfuscation. http:

//www.allatori.com, 2023. Accessed: 2023-12-12.

PreEmptive Solutions. Dasho | preemptive. https://www.preemptive.

com/products/dasho, 2023. Accessed: 2023-12-12.

Jordan Samhi, Jun Gao, Nadia Daoudi, Pierre Graux, Henri Hoyez, Xiaoyu
Sun, Kevin Allix, Tegawendé F. Bissyandé, and Jacques Klein. Jucify:
A step towards android code unification for enhanced static analysis. In
Proceedings of the 44th International Conference on Software Engineering,
ICSE 22, page 1232-1244. Association for Computing Machinery, New
York, NY, USA, 2022. I[SBN 9781450392211. doi:10.1145/3510003.3512766.

Siyi Gong and Hao Zhong. Code authors hidden in file revision histories:
An empirical study. In 2021 IEEE/ACM 29th International Conference
on Program Comprehension (ICPC), pages 71-82. 2021. doi:10.1109/
ICPC52881.2021.00016.

112

https://developer.android.com/studio/build/shrink-code
https://developer.android.com/studio/build/shrink-code
http://www.allatori.com
http://www.allatori.com
https://www.preemptive.com/products/dasho
https://www.preemptive.com/products/dasho

	ABSTRACT
	ÖZET
	ACKNOWLEDGEMENTS
	GENİŞLETİLMİŞ ÖZET
	CONTENTS
	TABLES
	FIGURES
	ABBREVIATIONS
	1. INTRODUCTION
	1.1. Scope Of The Thesis
	1.2. Contributions
	1.3. Organization

	2. RELATED WORK
	2.1. Source Code Authorship Attribution
	2.2. Binary Code Authorship Attribution
	2.3. Android Authorship Attribution
	2.4. Malware Authorship Attribution
	2.5. Finding Similarities Between Applications

	3. ANDROID BACKGROUND
	3.1. Android Application
	3.2. Android Application Signing Process
	3.3. Alternative Android Markets

	4. AUTHORSHIP ATTRIBUTION
	4.1. Features
	4.2. Representations
	4.3. Attribution Models
	4.4. Attribution Methods
	4.5. Machine Learning
	4.5.1. Classification Algorithms
	4.5.2. Cross-Validation
	4.5.3. Grid Search CV

	5. PROPOSED METHOD - ANDROID AUTHORSHIP ATTRIBUTION
	5.1. Model
	5.2. Dataset
	5.3. Feature Extraction
	5.3.1. Feature Set Descriptions

	5.4. Feature Processing
	5.5. Machine Learning (ML) Model Development and Optimization

	6. EXPERIMENTAL RESULTS
	6.1. RQ1 - Performance of classification algorithms on Android AA
	6.2. RQ2 - The ideal set size for n-gram
	6.3. RQ3 - Custom code vs. all code including TPL
	6.4. RQ4 - Effectiveness of the proposed approach
	6.5. RQ5 - Metadata Features
	6.6. RQ6 - Most Effective Features on Android AA
	6.7. RQ7 - The Effect of the Number of Features
	6.8. RQ8 - The Effect of the Number of Applications per Developer
	6.9. RQ9 - Effect of Application Versions
	6.10. RQ10 - Effect of Obfuscation
	6.11. RQ11 - Analysis of Clone Applications

	7. GENERAL DISCUSSION
	7.1. Usage of Native Code
	7.2. Obfuscation
	7.3. Dataset
	7.4. Clone/Repackaged Applications
	7.5. Applications Developed by Multiple Authors

	8. CONCLUSION

