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EXTENSIONS OF Z-FUZZY NUMBERS AND NOVEL MULTI CRITERIA 

DECISION MAKING MODELS 

SUMMARY 

The ordinary fuzzy sets are based on the fact that the belonging of an element to a set 

can take values between 0 and 1, and they emerged due to the incapability of classical 

sets to describe uncertainty in human thought. After fuzzy sets were introduced to the 

literature, it began to propose more than one parameter to define uncertainty. For 

example, while ordinary fuzzy sets use only membership functions, intuitionistic and 

Pythagorean fuzzy sets use membership and non-membership functions; neutrosophic, 

picture, and spherical fuzzy sets use membership, non-membership and indeterminacy 

functions. Although all these fuzzy sets have different properties and conditions for 

defining uncertainty, they are unable to define the reliability degrees of judgments. 

Z-fuzzy numbers allow judgments to be defined not only with a restriction function 

but also with their reliability degrees. In this thesis, extensions of Z-numbers have been 

proposed to the literature by integrating fuzzy set extensions with Z-numbers. Thus, 

novel Z-numbers have been presented to the literature for defining uncertainty, and 

fuzzy sets have been given the ability to represent reliability under their own properties 

and conditions. In addition, multi-criteria decision-making (MCDM) methods have 

been expanded by using ordinary fuzzy Z-numbers and these new fuzzy Z-numbers. 

Thus, new Z-fuzzy MCDM methods have been introduced to the literature. For this 

purpose, in the first three chapters, new Z-fuzzy MCDM methods are presented such 

as Z-CODAS, Z-AHP and Z-EDAS methods. In other three chapters, decomposed 

fuzzy Z-numbers, picture fuzzy Z-numbers, and interval-valued spherical fuzzy Z-

numbers have been developed and integrated with different MCDM methods. Each 

chapter is summarized below: 

In Chapter 2, the COmbinative Distance-based ASsessment (CODAS) method, which 

is a method based on Euclidean and Taxicab distances, is expanded with Z-numbers 

and introduced to the literature. The proposed Z-CODAS method has been applied to 

the supplier selection problem. For this purpose, firstly, decision criteria are weighed 

based on Z-pairwise comparison matrices. Then, the obtained criteria weights are 

integrated into the Z-CODAS method and used to rank alternative suppliers. The 

obtained results are compared with the ordinary fuzzy simple additive weighting 

(SAW) method. 

Chapter 3 presents a multi-experts MCDM method for evaluating social sustainable 

development factors. The proposed approach integrates Z-numbers and AHP method 

and may guide many sustainable development researches. In this study, Z-numbers 

have been used for the first time to evaluate social sustainable development factors. In 

addition, the other contribution of the study is presenting the Z-AHP method with 

multi-experts which can be useful for the solution of many MCDM problems 

containing uncertainty. The proposed Z-AHP method allows pairwise evaluations to 

be represented with their reliability degrees and integrated into the calculations. 
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Chapter 4 extends the Evaluation based on Distance from Average Solution (EDAS) 

method to the Z-EDAS method. In this chapter, a decision making methodology is 

proposed by the integration of Z-AHP method and Z-EDAS method. The practicality 

of the proposed methodology is presented with an application on wind turbine 

selection problem. The comparative analysis conducted with Z-TOPSIS method 

demonstrates that the usefulness and competitiveness of the proposed methodology are 

provided. The results show that proposed methodology can both represent decision 

makers’ judgments extensively, and reveal a logical ranking results related to 

alternatives by the usage of reliability information. 

In Chapter 5, decomposed fuzzy Z-numbers, which are the integration of decomposed 

fuzzy sets (DFSs) and Z-numbers, are introduced to model functional and 

dysfunctional judgments in a reliable decision environment. Collecting judgments 

under the circumtances of Z-numbers from experts using functional and dysfunctional 

questions can provide more consistent and reliable decision environment. In this 

chapter, a new decomposed fuzzy Z-linguistic scale and defuzzification formula are 

introduced. Then, decomposed fuzzy Z-TOPSIS method is developed for the solutions 

of MCDM problems under uncertainty. An application on transfer center location 

selection for a private cargo company in Marmara Region of Turkey is presented. The 

effect of the reliability parameter on the results is analyzed. 

Chapter 6 presents a decision methodology that integrates the picture fuzzy Z-AHP 

(PF Z-AHP) method for weighting criteria and a novel PF Z-TOPSIS method for 

ranking the alternatives. Although the picture fuzzy TOPSIS methods are used to 

model decision makers’ hesitancy in their evaluations, adding reliability degrees to 

these evaluations can provide better solutions and reliable decision environments for 

real-life applications. In order to analyze the utility of the proposed PF Z-

AHP&TOPSIS methodology, it is applied for solar energy panel selection problem. 

The sensitivity and comparative analyses are also performed to analyze given 

decisions and the effects of Z-numbers on the results. 

In Chapter 7, a new interval-valued spherical fuzzy (IVSF) Z-number is developed 

combining the ability of SFSs to allow the assignment of membership degrees in a 

wider domain with the ability of Z-numbers to represent reliability. In addition, a novel 

Interval-valued Spherical Fuzzy Z-Analytic Hierarchy Process (IVSF Z-AHP) is 

proposed by integrating the IVSF Z-numbers and AHP method. Then, a new IVSF Z 

linguistic scale and a new defuzzification formula are proposed. The proposed IVSF 

Z-AHP method is applied for green supplier selection problem to show the practicality 

and applicability of the method. Comparative analysis and sensitivity analysis show 

the necessity of reliability information in decision making.  

In summary, in this thesis, new extensions of Z-numbers and new fuzzy MCDM 

methods integrated with these extensions are proposed to the literature. Then, the 

proposed method and methodologies have been applied to various decision-making 

problems to demonstrate their practicality. In order to show the importance of 

reliability information, this information has been ignored and the problems have been 

resolved with the same data and it has been investigated whether the rankings of the 

alternatives changed. The results and the analyzes provide evidence that reliability 

information has the potential to change the rankings of alternatives. Especially when 

the reliability degrees of experts’ judgments are wanted to be considered in the 

decisions, managers or practitioners can use the proposed approaches in this thesis to 

produce more reliable and meaningful solutions to their problems. In further 
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researches, many different extensions of Z-numbers can be developed and compared 

with the results of the methods proposed in this thesis. 
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Z-BULANIK SAYILARIN UZANTILARI VE YENİ ÇOK KRİTERLİ 

KARAR VERME MODELLERİ 

ÖZET 

Bulanık kümeler, klasik kümelerin insan düşüncesindeki belirsizliği tanımlamadaki 

yetersizliği nedeniyle ortaya çıkmış olup, bir elemanın bir kümeye aitliği 0 ile 1 

arasında değişen değerler alabilmesi temeline dayanır. Bulanık kümeler literatüre 

tanıtıldıktan sonra belirsizliği tanımlamada birden fazla parametreye ihtiyaç 

duyulmaya başlanmıştır. Örneğin, sıradan bulanık kümeler sadece üye olma 

fonksiyonu kullanırken sezgisel (intuitionistic) ve Pisagor bulanık kümeler üye olma 

ve olmama fonksiyonunu, nötrosofik (Neutrosophic), resim (Picture) ve küresel 

(spherical) bulanık kümeler üye olma, üye olmama ve kararsızlık/tanımsızlık 

fonksiyonlarını kullanmaktadır. Ortaya atılan tüm bu bulanık kümeler kendi içerisinde 

belirsizliği tanımlamada farklı özellik ve koşullara sahip olsa da sahip oldukları 

parametreler yargılara ilişkin güvenilirlik derecesini tanımlamaktan yoksundur.  

Z-bulanık sayılar yargıların sadece sınırlayıcı bir fonksiyonla değil aynı zamanda ona 

ilişkin güvenilirlik derecesi ile birlikte tanımlanmasına olanak sağlamaktadır. Bu 

tezde, sıradan bulanık kümelerin uzantıları Z-bulanık sayılarla entegre edilerek, 

literatüre Z-bulanık sayıların uzantıları ortaya atılmıştır. Böylece, belirsizliği 

tanımlamada hem bulanık kümelere kendi özellik ve koşulları altında güvenilirliği de 

temsil etme kabiliyeti kazandırılmış, hem de yeni Z-bulanık sayılar ortaya konmuştur. 

Buna ek olarak, birden fazla alternatif ve kriterin olması durumunda kullanılan çok 

kriterli karar verme (ÇKKV) yöntemleri, ortaya atılan yeni Z-bulanık sayılarla 

genişletilerek literatüre yeni bulanık ÇKKV yöntemleri tanıtılmıştır. Bu amaç 

doğrultusunda bu tezin kapsamını oluşturan ilk üç bölümde Z-CODAS, Z-EDAS, Z-

AHP gibi sıradan bulanık Z-sayılarla entegre edilmiş yeni bulanık ÇKKV yöntemleri 

sunulmuştur. Diğer üç bölümde ise sırasıyla ayrıştırılmış (decomposed) bulanık Z-

sayılar, resim bulanık Z-sayılar, aralık değerli küresel bulanık Z-sayılar geliştirilmiş 

ve çeşitli ÇKKV yöntemlerine entegre edilmiştir. Her bir bölümde yapılan çalışma 

aşağıda özetlenmiştir: 

Bölüm 2'de Öklid ve Taxicab uzaklıkların dayalı bir yöntem olan “Birleştirilebilir 

Uzaklık Tabanlı Değerlendirme - COmbinative Distance-based ASsessment” 

(CODAS) yöntemi sıradan bulanık Z-sayılarla genişletilerek literatüre 

kazandırılmıştır. Önerilen Z-CODAS yöntemi tedarikçi seçimi problemi için 

uygulanmıştır. Bu amaçla ilk olarak değerlendirme kriterleri Z-bulanık ikili 

karşılaştırma matrislerine dayalı olarak elde edilmiştir. Daha sonra elde edilen kriter 

ağırlıkları Z-CODAS yöntemine entegre edilerek alternatif tedarikçilerin 

sıralanmasında kullanılmıştır. Elde edilen sonuçlar, önerilen yöntemin doğrulamasını 

ve geçerliliğini analiz etmek için karşılaştırma analizinde sıradan bulanık “Basit 

Toplamsal Ağırlıklandırma –Simple Additive Weighting” (SAW) yöntemiyle 

karşılaştırılmıştır. 

Bölüm 3, sosyal sürdürülebilir kalkınma faktörlerinin değerlendirilmesi için çok 

uzmanlı ÇKKV yaklaşımı sunmaktadır. Z-sayıları ve bulanık Analitik Hiyerarşi 
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Proses’i (AHP) birleştiren önerilen model, birçok sürdürülebilir kalkınma 

araştırmasına rehberlik edebilecek sosyal sürdürülebilir kalkınma faktörlerinin 

ağırlıklandırılmasına ve derecelendirilmesine olanak sağlamaktadır. Z-sayıların sosyal 

sürdürülebilir kalkınma faktörlerinin ağırlıklandırılması kararında ilk kez 

kullanılmasının yanı sıra, çalışmanın bir diğer katkısı da birçok problem ve 

uygulamada faydalı olabilecek Z-sayılarla entegre edilen AHP yönteminin çok 

uzmanla sunulmasıdır. Z-sayılarla bütünleşik AHP yönteminin en önemli avantajı 

karar vericilerin güven derecesinin hesaplamalara dahil edilmesine olanak 

sağlamasıdır.  

Bölüm 4, bulanık dilsel ifadelerin temsil yeteneğini güçlendirmek için Z-sayıları 

kullanarak “Ortalama Çözüm Uzaklığına Dayalı Değerlendirme - Evaluation based on 

Distance from Average Solution” (EDAS) yöntemini genişletmektedir. Bu bölümde, 

bulanık ÇKKV problemlerinin çözümü için, kriter ağırlıklarının belirlenmesi için Z-

AHP yöntemi ve en iyi alternatifin seçimi için Z-EDAS yöntemi kullanılarak bir karar 

verme metodolojisi önerilmiştir. Çalışmanın asıl katkısı, yöneticilere belirsiz ve kesin 

olmayan veriler altında, bu verilerin güvenilirliğini de dikkate alan ÇKKV tabanlı bir 

karar destek aracı sunmaktır. Önerilen modelin uygulanabilirliği, en iyi rüzgar 

türbininin seçimini amaçlayan rüzgar enerjisi yatırım problemi ile gösterilmiştir. 

Önerilen metodolojinin etkinliği ve rekabetçiliği, Z-TOPSIS yöntemi ile 

karşılaştırmalı bir analiz yapılarak ortaya konmuştur. Sonuçlar, önerilen metodolojinin 

yalnızca uzmanların değerlendirme bilgilerini kapsamlı bir şekilde temsil etmekle 

kalmayıp, aynı zamanda güvenilirlik bilgilerini kullanarak rüzgâr türbini 

alternatifleriyle ilgili mantıksal ve tutarlı bir sırayı ortaya çıkardığını göstermektedir. 

Bölüm 5'te, Z-sayılar ile entegre edilen ayrıştırılmış bulanık kümeler (decomposed 

fuzzy sets) olan ayrıştırılmış bulanık Z-sayılar, güvenilir bir karar ortamında işlevsel 

ve işlevsel olmayan yargıları modellemek üzere tanıtılmaktadır. Karar vericilerden 

yargıların işlevsel ve işlevsel olmayan sorulara dayalı olarak hem bulanık kısıtlamalar 

hem de onların bulanık güvenilirlikleri ile toplanması, uygulamada daha tutarlı ve 

güvenilir yargıların elde edilmesini sağlamaktadır. Bu bölümde nihai çözüme ulaşmak 

için yeni bir ayrıştırılmış bulanık Z-dilsel ölçek ve durulaştırma formülü tanıtılmıştır. 

Daha sonra belirsizlik altında ÇKKV problemlerinin çözümünde kullanılmak üzere 

ayrıştırılmış bulanık Z-TOPSIS yöntemi geliştirilmiştir. Önerilen yöntem Türkiye'nin 

Marmara Bölgesi'ndeki özel bir kargo firmasının transfer merkezi yeri seçimi için 

uygulamıştır. Güvenilirlik parametresinin verilen kararlara etkisi analiz edilmiştir. 

Bölüm 6, ikili karşılaştırmalara dayanan resim bulanık Z-AHP (PF Z-AHP) yöntemini 

ve alternatifleri sıralamak için güvenilirlik bilgilerini içeren yeni bir PF Z-TOPSIS 

yöntemini birleştiren bir karar destek aracı sunmaktadır. TOPSIS yönteminin resim 

bulanık uzantıları, uzmanların yargılarındaki belirsizliği modellemek için kullanılsa 

da, gerçek hayattaki karar problemlerine daha iyi çözümler ve güvenilir bir karar 

ortamı sağlamak için bu yargılara güvenilirlik derecelerinin eklenmesi gerekmektedir. 

Önerilen PF Z-AHP&TOPSIS metodolojisi, metodolojinin uygulanabilirliğini ve 

üstünlüğünü analiz etmek için güneş enerjisi paneli seçim problemine uygulanmıştır. 

Duyarlılık analizi, önerilen metodolojinin sağlamlığını göstermektedir. Karşılaştırma 

analizi, Z-sayıları tarafından sunulan güvenilirlik fonksiyonlarının sonuçları 

etkileyebileceğini göstermiştir. 

Bölüm 7’de, küresel bulanık kümelerin daha geniş bir alanda üyelik dereceleri 

atanmasına izin verme yeteneğini Z-sayıların güvenilirliği temsil etme yeteneği ile 

birleştiren yeni bir aralık değerli küresel bulanık Z-sayısı geliştirilmiştir. Buna ek 
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olarak, aralık değerli küresel bulanık Z-sayılar ile AHP yönteminin entegre 

edilmesiyle yeni bir Aralık Değerli Küresel Bulanık Z-AHP (IVSF Z-AHP) yöntemi 

önerilmiştir. Ayrıca, karar vericilerin ikili karşılaştırma matrisleri için objektif ve 

tutarlı bir puanlama sağlayan yeni bir IVSF Z-dilsel ölçek ve yeni bir durulaştırma 

formülü önerilmiştir. Önerilen metodolojinin uygulanabilirliğini göstermek amacıyla 

yeşil tedarikçi seçimi problemine yönelik bir uygulama yapılmıştır. Karar vermede 

güvenilirlik bilgisinin gerekliliğini açıkça göstermek için karşılaştırmalı analiz ve 

duyarlılık analizine yer verilmiştir. Sonuçlar, önerilen yöntemin güvenilirlik ve 

tereddüt bilgisi ile en iyi alternatifi belirlemede oldukça etkili olduğunu 

göstermektedir. 

Özet olarak, bu tezde, literatüre Z-bulanık sayıların yeni uzantıları ve bu uzantılarla 

entegre yeni bulanık ÇKKV yöntemleri tanıtılmıştır. Ardından, önerilen metot ve 

metodolojiler pratikteki uygulanabilirliklerini gösterebilmek için çeşitli karar verme 

problemlerine uygulanmıştır. Güvenilirlik bilgisinin önemini kanıtlamak amacıyla bu 

bilgi ihmal edilerek aynı verilerle problemler yeniden çözülmüş ve alternatiflerin 

sıralamalarının değişip değişmediği araştırılmıştır. Elde edilen sonuçlar ve yapılan 

analizler, güvenilirlik bilgisinin alternatiflerin sıralamalarını değiştirebilme 

potansiyeline sahip olduğuna dair kanıtlar sunmaktadır. Özellikle alınacak kararlarda 

karar vericilerin yargılarına olan güvenilirlik derecesi dikkate alınmak istendiğinde 

yöneticiler veya uygulayıcılar, problemlerine daha güvenilir ve anlamlı çözümler 

üretmek için bu tezde önerilen ÇKKV yaklaşımlarını kullanabilirler. Gelecek yıllarda, 

Z-bulanık sayıların çok daha farklı uzantıları ortaya atılabilir ve bu tezde önerilen 

yöntemlerin sonuçları ile karşılaştırılabilir. 
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 INTRODUCTION 

Making decisions is a necessary part of every moment of our lives. During the 

decision-making process, we express personal ideas and comments via linguistic terms 

based on our knowledge and experiences. These linguistic terms expressing decision-

makers' opinions on a subject contain uncertainty and vagueness by nature of human 

thoughts. Expressions like "not very clear," "likely", etc. which are widely used in 

daily or business life, reveal the doubt and vagueness in human thought. Due to the 

inability of classical sets for modeling this ambiguity, Zadeh (1965) introduced fuzzy 

set theory. The fuzzy set theory provides mathematical modeling of these vague 

preferences into the solution process. 

Decisions-making is a very simple process when alternatives are evaluated under only 

one criterion. However, real-life problems may have different degrees of difficulty, 

and they require the evaluation of alternatives according to several criteria, including 

conflict and relationships among them. Thus, problems are getting complicated and 

they need to be evaluated with more comprehensive methods. Multi criteria decision-

making (MCDM) methods are commonly used in solving complex decision problems.  

To be able to better model people’s uncertain subjective evaluations, in recent years, 

MCDM methods have been expanded by several fuzzy set extensions such as type-2 

fuzzy sets, intuitionistic fuzzy sets, hesitant fuzzy sets, Pythagorean fuzzy sets, 

neutrosophic sets, etc. These fuzzy sets only represent the restriction of ambiguous 

judgments and do not consider their reliability. However, decision makers may not be 

absolutely certain about their judgments. Even a doctor's probability of making a 

correct diagnosis is not 100% (Xian et al., 2019). For example, a doctor can say “you 

likely have ulcer” to his/her patient. In order to confirm this diagnosis, tests and 

investigations can be applied in the medical area. However, in many fields that require 

decision-making, subjective evaluations cannot be verified by that way. Furthermore, 

when quantitative data are employed in decision-making, these data are treated to be 

exactly accurate since the sources' reliability level is not asked. However, it would not 

be accurate to accept the numerical data with 100% certainty due to the concept of 
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time and measurement accuracy factors, etc. In order to model the possible variations 

that may arise in numerical data, different extensions of fuzzy set theory can be used. 

However, when linguistic data is used in decision process, it would be most logical to 

explicitly ask decision-makers' reliability level of their evaluations. Consequently, 

when linguistic terms representing subjective judgments are used in decision models, 

it is clear that restrictive information needs to be integrated with reliability 

information. Z-numbers introduced by Zadeh (2011) allow these judgments to be 

represented by fuzzy restrictions and their fuzzy reliability. Thus, Z-numbers provide 

us making computations with numbers that are not absolutely (100%) reliable. In this 

thesis, new extensions of Z-numbers that integrate reliability information and different 

fuzzy sets have been introduced in order to better model humans’ complex thinking 

structures. Then, different MCDM methods have been expanded using these 

extensions to be used for the solutions of real-life problems containing imprecise and 

ambiguous judgments. 

 Purpose of Thesis 

The main objective of this thesis is to develop new extensions of Z-numbers such as 

picture fuzzy Z-numbers, interval-valued spherical fuzzy Z-numbers, decomposed 

fuzzy Z-numbers. In addition, another purpose of this thesis is to  integreate these new 

Z-numbers with MCDM methods in order to model linguistic judgments of decision 

makers in a more reliable decision environment. Thus, different MCDM methods have 

been expanded using ordinary fuzzy Z-numbers and the proposed Z-numbers. The 

proposed method and methodologies have been applied to different decision making 

problems to show their practicalities and utilities. 

 Impact 

The papers related to the purpose of the thesis have been published in various 

international journals. The articles published within the scope of this thesis are as 

follows: 

 Tüysüz, N., & Kahraman, C. (2020). CODAS method using Z-fuzzy 

numbers. Journal of Intelligent & Fuzzy Systems, 38(2), 1649-1662. 
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 Tüysüz, N., & Kahraman, C. (2020). Evaluating social sustainable 

development factors using multi-experts Z-fuzzy AHP. Journal of Intelligent 

& Fuzzy Systems, 39(5), 6181-6192. 

 Tüysüz, N., & Kahraman, C. (2023). A Novel Z-Fuzzy AHP&EDAS 
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 CODAS METHOD USING Z-FUZZY NUMBERS1 

COmbinative Distance-based ASsessment (CODAS) method was proposed by 

Ghorabaee et al. (2016) to be used for MCDM problems. According to this method, 

the best alternative is assessed by considering Euclidean and Taxicab distances from 

the negative ideal solution. If the incremental Euclidean distances between two 

alternatives are sufficiently large, a total distance is calculated taking into account the 

Taxicab distances. The best alternative is the alternative which has farthest total 

distance from the negative ideal solution.  

There are few publications on CODAS method in the literature. Fuzzy CODAS 

methods can consider linguistic evaluations by transforming them into numerical 

values. Table 2.1 lists the crisp CODAS papers published in the literature. 

 A literature review on crisp CODAS 

Year Authors Application area 

2016a 
Keshavarz Ghorabaee, Zavadskas, 

Turskis, & Antucheviciene 

Most appropriate robot 

selection 

2018a Badi, Abdulshahed, & Shetwan Supplier selection in Libia 

2018 Mathew and Sahu 
Material handling 

equipment selection 

2018b Badi, Ballem, Shetwan, 
Site selection of 

desalination plant in Libya 

Each of the MCDM methods in the literature has their own advantages and 

disadvantages. The CODAS uses the Euclidean distance as the primary measure of 

assessment while Taxicab distance is used as the secondary measure of assessment 

when Euclidean distances of two alternatives are very close to each other. The 

closeness degree between two Euclidean distances is determined by a threshold 

parameter. CODAS has been integrated with different fuzzy extensions in a few fields 

of application in recent years, as given in Table 2.2. Few publications on fuzzy 

CODAS method are summarized in Table 2.2. 

 

1 This chapter is based on the paper “Tüysüz, N., & Kahraman, C. (2020). CODAS method using Z-

fuzzy numbers. Journal of Intelligent & Fuzzy Systems, 38(2), 1649-1662.” 
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In Figure 2.1, the subject areas of the papers on CODAS method are illustrated. 

Business, management and accounting, computer science, and economics, 

econometrics and finance are the top three areas with 75% while mathematics and 

decision sciences share the second and third ranks with 16.7% and 8.3%, respectively. 

 A literature review on fuzzy CODAS 

Year Authors Extension of CODAS Application area 

2017 

Keshavarz Ghorabaee, 

Amiri, E.K., R., & 

Antucheviciene 

Fuzzy CODAS Market segment evaluation 

2018 

Panchal, Chatterjee, 

Shukla, Choudhury, & 

Tamosaitiene 

Fuzzy CODAS Maintenance decision problem 

2018 Ren IF-CODAS 

Energy storage technologies 

for promoting the development 

of renewable energy 

2018 Peng & Garg 
Interval valued fuzzy soft 

CODAS 

A case study in mine 

emergency decision making 

2018 Bolturk Pythagorean fuzzy CODAS Supplier selection  

2018 Bolturk & Kahraman 
Interval-valued intuitionistic 

fuzzy CODAS 

Wave energy facility location 

selection 

2018 
Pamučar, D., Badi, I., 

Sanja, K., Obradović, R. 

Linguistic Neutrosophic 

CODAS 

Optimal Power-Generation 

Technology Selection (PGT) 

in Libya. 

 

 Subject areas of the CODAS papers. 

As it is seen from Table 2.2, the crisp CODAS method has been extended to several 

extensions of ordinary fuzzy sets under uncertainty. One of the possible extensions is 

to extend the crisp CODAS method by using Z-fuzzy numbers under uncertainty. Z-

fuzzy numbers are defined by both a restriction function and a reliability function, each 

having its own membership function. Z-fuzzy numbers have been employed in the 

development of fuzzy extensions of several MCDM methods such as Z-fuzzy AHP 

and Z-fuzzy TOPSIS.  

0

1

2

3

Business,

Management

and

Accounting

Computer

Science

Economics,

Econometrics

and Finance

Mathematics Decision

Sciences

https://www.scopus.com/record/display.uri?eid=2-s2.0-85049867492&origin=resultslist&sort=plf-f&src=s&st1=CODAS+MCDM&st2=&sid=89fcc5a78611d7b0d826fd526654ca21&sot=b&sdt=b&sl=25&s=TITLE-ABS-KEY%28CODAS+MCDM%29&relpos=0&citeCnt=0&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-85049867492&origin=resultslist&sort=plf-f&src=s&st1=CODAS+MCDM&st2=&sid=89fcc5a78611d7b0d826fd526654ca21&sot=b&sdt=b&sl=25&s=TITLE-ABS-KEY%28CODAS+MCDM%29&relpos=0&citeCnt=0&searchTerm=
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Kang et al. (2012b) proposed a linguistic MCDM method using Z-fuzzy numbers and 

applied it for a vehicle selection problem. Azadeh et al. (2013) proposed an AHP 

method using Z-fuzzy numbers. They determined the weights of criteria to assess the 

performance of universities. Sahrom and Dom (2015) integrated AHP and DEA 

method for the risk assesment problem. AHP method is used to determine the weights 

of criteria and Z-fuzzy DEA method is used for ranking the risk priority of 20 bridge 

structures. They used Kang et al. (2012a)’s approach for converting Z-fuzzy numbers 

to classical fuzzy numbers in the Z-fuzzy DEA method. Yaakob and Gegov (2015) 

modificated TOPSIS method using Z-fuzzy numbers by expanding a fuzzy rule based 

approach in MCDM. They showed that the proposed approach is a successfully 

applicable method to express vagueness in decision making. Azadeh and Kokabi 

(2016) proposed a new DEA method using Z- fuzzy numbers for the portfolio selection 

problem. They transformed Z-fuzzy DEA method to linear possibility programming 

and obtained a crisp linear programming model using α-cut approach. Sadi-Nezhad 

and Sotoudeh-Anvari (2016) proposed a new DEA using Z-fuzzy numbers. Decision 

makers indicate the opinion with linguistic terms. They used trapezoidal and triangular 

fuzzy numbers for the first and second components of Z-fuzzy numbers, respectively. 

They indicated that the DEA with Z-fuzzy data can be effectively used for solution of 

real-world problems. Yaakob and Gegov (2016) presented a modified TOPSIS method 

using Z-fuzzy numbers which is called Z-TOPSIS. They applied Z-TOPSIS algorithm 

for stock selection problem and showed its effectiveness. Peng and Wang (2017) 

introduced hesitant uncertain linguistic Z-fuzzy numbers (HULZNs) for MCDM 

problems under uncertainty. They extended VIKOR method using HULZNs and 

applied for ERP selection problem. Khalif et al. (2017a) presented a fuzzy similarity 

based TOPSIS method using Z-fuzzy numbers and applied it for performance 

assessment problem. Khalif et al. (2017b) presented a hybrid fuzzy MCDM model 

using z-fuzzy numbers and applied it to select the most appropriate staff in recruitment. 

Wang et al. (2017) extended TODIM method with Choquet integral using Z-fuzzy 

numbers. They used it in the evaluation of medical inquiry applications. Karthika and 

Sudha (2018) applied F-AHP method using Z-fuzzy numbers for risk assessment and 

they decided the best safety measure for the disease. They used triangular fuzzy 

numbers for the components of Z-fuzzy numbers. Then they added the second 

component to first component using centroid method. Forghani et al. (2018) proposed 

a supplier selection model for pharmaceutical companies using Principal component 
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analysis (PCA), Z-TOPSIS and MILP. PCA method is used to reduce the number of 

supplier selection criteria. Importance value of each supplier is obtained using Z-

TOPSIS method. They finally used these values for the mixed integer linear 

programming model. Chatterjee and Kar (2018) proposed COPRAS method using Z-

fuzzy numbers for renewable energy selection. Aboutorab et al. (2018) improved the 

best-worst method using Z-fuzzy numbers in order to overcome the uncertain 

expressions. Peng and Wang (2018) extended Z-fuzzy MULTIMOORA method to 

handle multi criteria group decision making problems. They used it in the evaluation 

of potential areas of air pollution. Shen and Wang (2018) proposed a modified VIKOR 

method using Z-fuzzy numbers. They applied it in the selection of economic 

development plan. 

In the extensions of ordinary fuzzy sets such as type-2 fuzzy sets, hesitant fuzzy sets 

and intuitionistic fuzzy sets, decision makers try to reflect the uncertainty in their mind 

through membership functions. In type-2 fuzzy sets, three dimensional membership 

functions are used. In hesitant fuzzy sets, more than one membership degrees can be 

assigned for a certain x value. In intuitionistic fuzzy sets, decision makers’ hesitancy 

depends on the sum of membership and non-membership degrees, providing that this 

sum is equal to at most 1. 

Alternatively, Z-fuzzy numbers can take into account the uncertainty in decision 

makers’ mind through a reliability function, which express how confident they are 

about their evaluations.  Z-fuzzy numbers have been very popular after they are 

introduced by Zadeh (2011). Figure 2.2 illustrates the frequencies of Z-fuzzy number 

publications with respect to the years. There is a clear acceleration in the frequencies 

of Z-fuzzy number publications after the year 2014. 

 

 Frequencies of Z-fuzzy publications with respect to the years. 
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Figure 2.3 shows the frequencies of Z-fuzzy number publications with respect to their 

subject areas. The top three subject areas that Z-fuzzy numbers are used are computer 

science, mathematics, and engineering, respectively. 

The organization of the paper is as follows. In Section 2.1, Z-fuzzy numbers are 

explained in detail. In Section 2.2, the classical CODAS and proposed Z-fuzzy 

CODAS methods are presented. In Section 2.3, an application is presented for a 

supplier selection problem. In Section 2.4, a comparative analysis is performed with 

fuzzy simple additive weighting method. Finally, conclusions are given. 

 

 Frequencies of Z-fuzzy publications with respect to the years. 

 Z-Fuzzy Numbers 

Zadeh (2011) introduced the Z-fuzzy numbers to the literature in 2011. A Z-fuzzy 

number is an ordered pair of fuzzy numbers, Z(𝐴̃, 𝐵̃) as given in Figure 2.4. The first 

component 𝐴̃ is a restriction function whereas the second component 𝐵̃  is a measure 

of reliability for the first component. 

 

 A simple Z-fuzzy number, 𝑍(𝐴̃, 𝐵̃). 
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The concept of a Z-fuzzy number is intended to provide a basis for computation with 

ordinary fuzzy numbers which are not reliable.  

Definition 2.1. Let a fuzzy set A be defined on a universe X may be given as:A =

{〈x, μA(x)〉 |xϵX} where μA: X → [0,1] is the membership function A. The membership 

value μA(x) describes the degree of belongingness of x ∈ X in 𝐴. The Fuzzy 

Expectation of a fuzzy set is denoted as: 

𝐸𝐴(𝑥) = ∫ 𝑥𝜇𝐴(𝑥) 𝑑𝑥𝑥
                         (2.1) 

which is not the same as the meaning of the Expectation of Probability Space. It can 

be considered as the Information Strength supporting the fuzzy set 𝐴. 

Definition 2.2:  Converting Z-fuzzy number to Regular Fuzzy Number 

Consider a Z-fuzzy number 𝑍 = (𝐴,̃ 𝑅̃), which is described by Figure 2.4. The figure 

on the left is the part of restriction, and the figure on the right is the part of reliability. 

Let 𝐴̃ = {〈𝑥, 𝜇𝐴̃(𝑥)〉|𝜇(𝑥) ∈ [0,1]} and 𝑅̃ = {〈𝑥, 𝜇𝑅̃(𝑥)〉|𝜇(𝑥) ∈ [0,1]}, 𝜇𝐴̃(𝑥) is a 

trapezoidal membership function, 𝜇𝑅̃(𝑥) is a triangular membership function. 

(1) Convert the second part (reliability) into a crisp number. 

𝛼 =
∫𝑥𝜇𝑅̃(𝑥)𝑑𝑥

∫𝜇𝑅̃(𝑥)𝑑𝑥
                                     (2.2) 

where ∫  denotes an algebraic integration. 

Alternatively, the defuzzification equation (𝑎1 + 2 ∗ 𝑎2 + 2 ∗ 𝑎3 + 𝑎4)/6 for 

symmetrical trapezoidal fuzzy numbers and (𝑎1 + 2 ∗ 𝑎2 + 𝑎3)/4 for symmetrical 

triangular fuzzy numbers can be used. 

(2) Add the weight of the second part (reliability) to the first part (restriction). The 

weighted Z-fuzzy number can be denoted as 

𝑍̃𝛼 = {〈𝑥, 𝜇𝐴̃𝛼(𝑥)〉|𝜇𝐴̃𝛼(𝑥) = 𝛼𝜇𝐴̃(𝑥), 𝜇(𝑥) ∈ [0,1]}            (2.3) 

(3) Convert the Z fuzzy number (weighted restriction) to ordinary fuzzy number. 

The ordinary fuzzy set can be denoted as in Eq. (2.4) 

𝑍̃′ = {〈𝑥, 𝜇𝑍̃′(𝑥)〉|𝜇𝑍̃′(𝑥) = 𝜇𝐴̃ (
𝑥

√𝛼
) , 𝜇(𝑥) ∈ [0,1]}               (2.4) 

𝑍̃′ has the same Fuzzy Expectation with 𝑍̃𝛼, and they are equal with respect to Fuzzy 

Expectation, which can be denoted by Figure 2.5. 
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 Ordinary fuzzy number converted from Z-fuzzy number. 

(4) If the restriction function and reliability function are defined as in Figure 2.6 

(their heights may be any value between 0 and 1), the calculations are modified as 

follows:  

Let 𝐴̃𝛿 = {〈𝑥, (𝜇𝐴̃(𝑥);  𝛿)〉|𝜇(𝑥) ∈ [0,1]} and 𝑅̃𝛽 = {〈𝑥, (𝜇𝑅̃(𝑥);  𝛽)〉|𝜇(𝑥) ∈ [0,1]}, 

𝜇𝐴̃
𝛿(𝑥) is a trapezoidal membership function, 𝜇

𝑅̃
𝛽(𝑥) is a triangular membership 

function. 

 

 A simple Z̃δ,β number, 𝑍̃𝛿,𝛽 = (𝐴̃𝛿 , 𝑅̃𝛽) 

In this case, restriction and reliability functions are defined as in Eqs. (2.5-2.6), 

respectively. The reliability membership function in Eq. (2.6) is substituted into the 

defuzzification formula (Eq. (2.2)); so that, Eq. (2.7) is obtained. 

𝜇𝐴̃
𝛿(𝑥) =

{
 
 

 
 
𝑥−𝑎1

𝑎2−𝑎1
 𝛿 , 𝑖𝑓𝑎1 ≤ 𝑥 ≤ 𝑎2

𝛿,             𝑖𝑓𝑎2 ≤ 𝑥 ≤ 𝑎3
𝑎4−𝑥

𝑎4−𝑎3
 𝛿, 𝑖𝑓𝑎3 ≤ 𝑥 ≤ 𝑎4

0,               𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

               (2.5) 

√𝛼𝑎4 √𝛼𝑎3 √𝛼𝑎2 √𝛼𝑎1 

𝑍̃′ 

1 

0 

𝜇(𝑥) 

𝑥 
 

𝑏3 𝑏2 𝑏1 

𝑅̃𝛽 

β 

0 

𝜇𝑅̃(𝑥) 

𝑥 
 𝑎4 𝑎3 𝑎2 𝑎1 

𝐴̃𝛿 

δ 

0 

𝜇𝐴̃(𝑥) 

𝑥 
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𝜇
𝑅̃
𝛽(𝑥) =  

{
 

 
𝑥−𝑏1

𝑏2−𝑏1
 𝛽 , 𝑖𝑓𝑏1 ≤ 𝑥 ≤ 𝑏2 

𝑏3−𝑥

𝑏3−𝑏2
 𝛽 , 𝑖𝑓𝑏2 ≤ 𝑥 ≤ 𝑏3 

0,               𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                              (2.6) 

Thus, we have  

√𝛼 = √
∫𝑥𝝁

𝑹̃

𝜷(𝒙)𝑑𝑥

∫𝝁
𝑹̃

𝜷(𝒙)𝑑𝑥
                                    (2.7) 

Then, the weighted  𝑍̃𝛿,𝛽  number can be denoted as in Eq. (2.8). 

𝑍̃𝛿,𝛽
𝛼 = {〈𝑥, 𝜇𝐴̃𝛼

𝛿 (𝑥)〉|𝜇𝐴̃𝛼
𝛿 (𝑥) =

∫𝑥𝜇
𝑅̃

𝛽(𝑥) 𝑑𝑥

∫𝜇
𝑅̃

𝛽(𝑥) 𝑑𝑥
𝜇𝐴̃
𝛿(𝑥), 𝜇(𝑥) ∈ [0,1]}         (2.8) 

The ordinary fuzzy number converted from Z-fuzzy number can be given as in Eq. 

(2.9). 

𝑍̃𝛿,𝛽
′ = {〈𝑥, 𝜇𝑧′

𝛿 (𝑥)〉|𝜇𝑧′
𝛿 (𝑥) = 𝜇𝐴̃

𝛿 (𝑥 
∫𝜇

𝑅̃

𝛽(𝑥)𝑑𝑥

∫𝑥𝜇
𝑅̃

𝛽(𝑥)𝑑𝑥
) , 𝜇(𝑥) ∈ [0,1]}        (2.9) 

 Classical CODAS and Z-Fuzzy CODAS 

2.2.1 Classical CODAS 

Step 1. Construct the decision-making matrix (𝑋), shown as in Eq. (2.10). 

𝑋 = [𝑥𝑖𝑗]𝑛×𝑚 = 

𝑪𝟏 𝑪𝟐 𝑪𝟑 ⋯ 𝑪𝒎
𝑨𝟏 𝑥11 𝑥12 𝑥13 ⋯ 𝑥1𝑚
𝑨𝟐 𝑥21 𝑥22 𝑥23 ⋯ 𝑥2𝑚
⋮ ⋮ ⋮ ⋮ ⋱ ⋮
𝑨𝒏 𝑥𝑛1 𝑥𝑛2 𝑥𝑛3 ⋯ 𝑥𝑛𝑚

          (2.10) 

where 𝑥𝑖𝑗  (𝑥𝑖𝑗  ≥ 0) denotes the performance value of 𝑖th alternative on 𝑗th criterion  

(𝑖 ∈ {1,2, … , 𝑛} 𝑎𝑛𝑑 𝑗 ∈ {1,2, … ,𝑚}). 

Step 2. Calculate the normalized decision matrix. Performance values are calculated 

using linear normalization as in Eq. (2.11). 

𝑛𝑖𝑗 =     {

𝑥𝑖𝑗

max
𝑖

𝑥𝑖𝑗
          𝑖𝑓 𝑗 ∈  𝑁𝑏

min
𝑖
𝑥𝑖𝑗

𝑥𝑖𝑗
           𝑖𝑓 𝑗 ∈  𝑁𝑐

                       (2.11) 

where 𝑁𝑏 and 𝑁𝑐 represent the benefit and cost criteria, respectively. 
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Step 3. Calculate the weights of the criteria by using Saaty’s pairwise comparison 

matrix as in Eq. (2.12). 

𝑊 = [𝑤]𝑚×𝑚 = 

[
 
 
 
 
 
 
 
 1

w1

w2

w1

w3

w1

w4
⋯

w1

wm
w2

w1
1

w2

w3

w2

w4
⋯

w2

wm
w3

w1

w3

w2
1

w3

w3
⋯

w3

wm
w4

w1

w4

w2

w4

w3
1 ⋯

w4

wm

⋮ ⋮ ⋮ ⋮ ⋱ ⋮
wm

w1

wm

w2

wm

w3

wm

w4
⋯ 1 ]

 
 
 
 
 
 
 
 

                   (2.12) 

From Eq. (2.12), we obtain 𝑊 = (𝑤𝐶1, 𝑤𝐶2, 𝑤𝐶3, … , 𝑤𝐶𝑚). 

Step 4. Calculate the weighted normalized decision matrix as in Eq. (2.13). 

𝑟𝑖𝑗 = 𝑤𝑗𝑛𝑖𝑗                                   (2.13) 

where 𝑤𝑗 (0 < 𝑤𝑗 < 1) denotes the weight of 𝑗th criterion, and ∑ 𝑤𝑗
𝑚
𝑗=1 = 1  

Step 5. Determine the negative-ideal solution as in Eqs. (2.14) and (2.15). 

𝑛𝑠 = [𝑛𝑠𝑗]1×𝑚                                             (2.14) 

𝑛𝑠𝑗 = min
𝑖
𝑟𝑖𝑗                                             (2.15) 

Step 6. Calculate the Euclidean and Taxicab distances of alternatives from the 

negative-ideal solution, shown as in Eqs. (2.16) and (2.17). 

𝐸𝑖 = √∑ (𝑟𝑖𝑗 − 𝑛𝑠𝑗)2
𝑚
𝑗=1                                   (2.16) 

𝑇𝑖 = ∑ |𝑟𝑖𝑗 − 𝑛𝑠𝑗|
𝑚
𝑗=1                        (2.17) 

Step 7. Construct the relative assessment matrix, shown as in Eqs. (2.18) and (2.19). 

𝑅𝑎 = [ℎ𝑖𝑘]𝑛×𝑛                       (2.18) 

ℎ𝑖𝑘 = (𝐸𝑖 − 𝐸𝑘) + (𝜓(𝐸𝑖 − 𝐸𝑘) × (𝑇𝑖 − 𝑇𝑘))                  (2.19) 

where 𝑘 ∈ {1,2, … , 𝑛} and ψ denotes a threshold function to recognize the equality of 

the Euclidean distances of two alternatives and is defined as in Eq. (2.20). 

𝜓(𝑥) =   {  
1          𝑖𝑓    |𝑥| ≥ 𝜏

0          𝑖𝑓    |𝑥| < 𝜏
                                   (2.20) 

where 𝜏 is a threshold parameter set by decision-makers. It is recommended to set this 

parameter at a value between 0.01 and 0.05. If the difference between Euclidean 
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distances of two alternatives is larger than 𝜏, these two alternatives are also compared 

by Taxicab distance. In this study, we set 𝜏=0.02 in the application section. 

Step 8. Calculate the assessment score of each alternative, shown as in Eq. (2.21). 

𝐻𝑖 = ∑ ℎ𝑖𝑘
𝑛
𝑘=1                        (2.21) 

Step 9. Rank the alternatives according to assessment score (𝐻𝑖). The alternative 

which has the highest 𝐻𝑖 is the best choice among the alternatives. 

2.2.2 Z-Fuzzy CODAS 

Step 1. Construct the Z-fuzzy decision matrices as given by Eq. (2.22) and aggregate 

them using the geometric mean operation. 

𝐷̃𝑍 =

𝐶1 𝐶2 𝐶3 ⋯ 𝐶𝑚
𝐴1 𝑍11(𝐴̃, 𝐵̃) 𝑍12(𝐴̃, 𝐵̃) 𝑍13(𝐴̃, 𝐵̃) ⋯ 𝑍1𝑚(𝐴̃, 𝐵̃)

𝐴2 𝑍21(𝐴̃, 𝐵̃) 𝑍22(𝐴̃, 𝐵̃) 𝑍23(𝐴̃, 𝐵̃) ⋯ 𝑍2𝑚(𝐴̃, 𝐵̃)

⋮ ⋮ ⋮ ⋮ ⋱ ⋮
𝐴𝑛 𝑍𝑛1(𝐴̃, 𝐵̃) 𝑍𝑛2(𝐴̃, 𝐵̃) 𝑍𝑛3(𝐴̃, 𝐵̃) ⋯ 𝑍𝑛𝑚(𝐴̃, 𝐵̃)

          (2.22) 

where 𝑍11(𝐴̃, 𝐵̃)  (𝑍11(𝐴̃, 𝐵̃)  ≥ 0) denotes the Z-fuzzy performance value of 𝑖th 

alternative on 𝑗th criterion (𝑖 ∈ {1,2, … , 𝑛} 𝑎𝑛𝑑 𝑗 ∈ {1,2, … ,𝑚}). 

Tables 2.3 and 2.4 can be used for the restriction scale and reliability scale, 

respectively. 

 Restriction Scale 

Linguistic Terms Abbr. Z-fuzzy restriction function 
Very Poor VP (1/4,1/2,1/2,1;1) 

Poor P (1/2,1,1,3;1) 
Medium Poor MP (1,3,3,5;1) 

Fair F (3,5,5,7;1) 

Medium good MG (5,7,7,9;1) 

Good G (7,9,9,10;1) 

Very good VG (9,10,10,10;1) 

 Reliability Scale 

Linguistic Reliability Abbr. 
Triangular Z-fuzzy reliability 

function  

Certainly Reliable CR (1, 1, 1; 1) 

Very Strongly Reliable VSR (0.8, 0.9, 1; 1) 

Strongly Reliable SR (0.7, 0.8, 0.9; 1) 

Very Highly Reliable VHR (0.6, 0.7, 0.8; 1) 

Highly Reliable HR (0.5, 0.6, 0.7; 1) 

Fairly Reliable FR (0.4, 0.5, 0.6; 1) 

Weakly Reliable WR (0.3, 0.4, 0.5; 1) 

Very Weakly Reliable VWR (0.2, 0.3, 0.4; 1) 

Strongly Unreliable SU (0.1, 0.2, 0.3; 1) 

Absolutely Unreliable AU (0, 0.1, 0.2; 1) 
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Step 2. Convert Z-fuzzy performance values to regular fuzzy numbers 𝑍̃′ using Eq. 

(2.4). Then, Eq. (2.22) becomes Eq. (2.23): 

𝐷̃𝑍̃′ =

𝐶1 𝐶2 𝐶3 ⋯ 𝐶𝑚
𝐴1 𝑍̃11

′ 𝑍̃12
′ 𝑍̃13

′ ⋯ 𝑍̃1𝑚
′

𝐴2 𝑍̃21
′ 𝑍̃22

′ 𝑍̃23
′ ⋯ 𝑍̃2𝑚

′

⋮ ⋮ ⋮ ⋮ ⋱ ⋮
𝐴𝑛 𝑍̃𝑛1

′ 𝑍̃𝑛2
′ 𝑍̃𝑛3

′ ⋯ 𝑍̃𝑛𝑚
′

                      (2.23) 

where 𝑍̃𝑖𝑗
′ = (𝑧𝑖𝑗𝑎

′ , 𝑧𝑖𝑗𝑏
′ , 𝑧𝑖𝑗𝑐

′ , 𝑧𝑖𝑗𝑑
′ ), i=1, 2,…,n and j=1,2,.., m. 

Step 3. Calculate the normalized 𝑍′̃-fuzzy decision matrix. Performance values are 

calculated using linear normalization as in Eqs. (2.24)-(2.27). 

𝑛̃𝑖𝑗 =     

{
 

 
𝑍̃𝑖𝑗
′

 𝑧𝑖𝑗𝑑
′ ∗

          𝑖𝑓 𝑗 ∈  𝑁𝑏

𝑧𝑖𝑗𝑎−
′

𝑍̃𝑖𝑗
′            𝑖𝑓 𝑗 ∈  𝑁𝑐

                                  (2.24) 

where 

𝑛̃𝑖𝑗 =     

(
𝑧𝑖𝑗𝑎
′

 𝑧𝑖𝑗𝑑
′ ∗

,
𝑧𝑖𝑗𝑏
′ ,

 𝑧𝑖𝑗𝑑
′ ∗

,
𝑧𝑖𝑗𝑐
′

𝑧𝑖𝑗𝑑
′ ∗

,
𝑧𝑖𝑗𝑑
′

𝑧𝑖𝑗𝑑
′ ∗
)       𝑖𝑓 𝑗 ∈  𝑁𝑏

(
𝑧𝑖𝑗𝑎−
′

 𝑧𝑖𝑗𝑑
′ ,

𝑧𝑖𝑗𝑎−
′

 𝑧𝑖𝑗𝑐
′ ,

𝑧𝑖𝑗𝑎−
′

𝑧𝑖𝑗𝑏
′ ,

𝑧𝑖𝑗𝑎−
′

𝑧𝑖𝑗𝑎
′ )         𝑖𝑓 𝑗 ∈  𝑁𝑐

                      (2.25) 

 𝑧𝑖𝑗𝑑
′ ∗ = max

𝑖
 𝑧𝑖𝑗𝑑
′  𝑜𝑓 𝑍̃𝑖𝑗

′ 𝑠                    𝑗 ∈  𝑁𝑏                    (2.26) 

 𝑧𝑖𝑗𝑎−
′ = min

𝑖
 𝑧𝑖𝑗𝑎
′  𝑜𝑓 𝑍̃𝑖𝑗

′ 𝑠                      𝑗 ∈  𝑁𝑐                     (2.27) 

where 𝑁𝑏 and 𝑁𝑐 represent the sets of benefit and cost criteria, respectively. 

Step 3. Calculate the criteria weights by applying Buckley’s (1985) fuzzy pairwise 

comparison procedure as follows:  

Step 3.1. Fill in the pairwise comparison matrix for calculating the Z-fuzzy 

weights of the criteria by using the scales given in Table 2.4 and Table 2.5. 

 Linguistic scale for weighing the criteria 

Linguistic Terms Abbr. 
Restriction 

function 

Absolutely Important AI (7,9,9) 

Strongly Important SI (5,7,9) 

Highly Important HI (3,5,7) 

Weakly Important WI (1,3,5) 

Equally Important EI (1,1,1) 
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Step 3.2. Convert Z-fuzzy evaluations to ordinary fuzzy evaluations by using 

Eq. (2.4). 

Step 3.3. Calculate the geometric mean for each parameter of 𝑎̃𝑖𝑗 in the m 

dimensional pairwise comparison matrix. Thus, 𝑚 ×𝑚 matrix is converted to 

𝑚 × 1 matrix.  

Step 3.4. Sum the values of each parameter in the column to normalize the 

values in 𝑚 × 1 matrix.  

Step 3.5. Apply fuzzy division operation to get the normalized weights vector. 

Step 3.6. Defuzzify the normalized weights vector using the center of gravity 

method given by Eq. (2.2).  

Step 3.7. Normalize the weights so that their sum is equal to 1. 

Step 4. Calculate the weighted normalized decision matrix by using Eq. (2.28).  

𝑟̃𝑖𝑗 = 𝑤𝑗  𝑛̃𝑖𝑗                                   (2.28) 

where 𝑤𝑗 (0 < 𝑤𝑗 < 1) denotes the weight of 𝑗th criterion, and ∑ 𝑤𝑗
𝑚
𝑗=1 = 1.  

Step 5. Determine the negative-ideal solution as in Eqs. (2.29) and (2.30). The negative 

ideal solutions of each criterion are determined based on the defuzzification equations 

mentioned in Definition (2.3). 

𝑛𝑠̃ = [𝑛𝑠̃𝑗]1×𝑚
                        (2.29)   

𝑛𝑠̃𝑗 = min
𝑖
𝑟̃𝑖𝑗                        (2.30) 

Step 6. Calculate the Euclidean and Taxicab distances of alternatives from the 

negative-ideal solution, shown as in Eqs. (2.31) and (2.32). 

𝐸𝑖 = √∑
1

4
[(𝑟̃𝑖𝑗𝑎−𝑛𝑠̃ 𝑗𝑑)

2
+ (𝑟̃𝑖𝑗𝑏−𝑛𝑠̃ 𝑗𝑐)

2
+ (𝑟̃𝑖𝑗𝑐−𝑛𝑠̃ 𝑗𝑏)

2
+ (𝑟̃𝑖𝑗𝑑−𝑛𝑠̃ 𝑗𝑎)

2
]𝑚

𝑗=1 (2.31) 

𝑇𝑖 = ∑ {
1

4
(|𝑟̃𝑖𝑗𝑎−𝑛𝑠̃ 𝑗𝑎| + |𝑟̃𝑖𝑗𝑏−𝑛𝑠̃ 𝑗𝑏| + |𝑟̃𝑖𝑗𝑐−𝑛𝑠̃ 𝑗𝑐| + |𝑟̃𝑖𝑗𝑑−𝑛𝑠̃ 𝑗𝑑|)}

𝑚
𝑗=1          (2.32) 

Step 7. Construct the relative assessment matrix, shown as in Eqs. (2.33) and (2.34): 

𝑅𝑎 = [ℎ𝑖𝑘]𝑛×𝑛                        (2.33) 

ℎ𝑖𝑘 = (𝐸𝑖 − 𝐸𝑘) + (𝜓(𝐸𝑖 − 𝐸𝑘) × (𝑇𝑖 − 𝑇𝑘))          (2.34) 

where 𝑘 ∈ {1,2, … , 𝑛} and 𝜓 denotes a threshold function to recognize the equality of 

the Euclidean distances of two alternatives, and is defined as in Eq. (2.35): 
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𝜓(𝑥) =   {  
1          𝑖𝑓    |𝑥| ≥ 𝜏

0          𝑖𝑓    |𝑥| < 𝜏
                        (2.35) 

where 𝜏 is a threshold parameter set by decision-makers. It is recommended to set this 

parameter at a value between 0.01 and 0.05. If the difference between Euclidean 

distances of two alternatives is larger than 𝜏, these two alternatives are also compared 

by Taxicab distance. In this study, we set 𝜏=0.02 in the application section. 

Step 8. Calculate the assessment score of each alternative, shown as in Eq. (2.36): 

𝐻𝑖 = ∑ ℎ𝑖𝑘
𝑛
𝑘=1                                    (2.36) 

Step 9. Rank the alternatives according to assessment score (𝐻𝑖). The alternative 

which has the highest 𝐻𝑖 is the best choice among the alternatives. 

 Application 

Let us consider a supplier selection problem with three criteria (C1, C2 and C3) and 

three alternatives (A1, A2 and A3). Three decision makers (DMs) evaluated the 

alternatives using the criteria quality (C1), price (C2), and delivery time (C3). We now 

apply the steps of the model as described in Section 2.2.2. 

Step 1. First, we collect Z-fuzzy evaluations for alternatives from decision makers. 

Tables 2.6-2.8 present Z-fuzzy evaluation matrices for alternatives according to the 

determined criteria. 

 DM 1’s evaluations 

Criteria Alternatives Evaluations Restriction Reliability 

C1 

A1 G,SR (7, 9, 9, 10) (0.7, 0.8, 0.9) 

A2 P,WR (0.5, 1, 1, 3) (0.3, 0.4, 0.5) 

A3 MP,HR (1, 3, 3, 5) (0.5, 0.6, 0.7) 

C2 

A1 P,VHR (0.5, 1, 1, 3) (0.6, 0.7, 0.8) 

A2 VG,SU (9, 10, 10, 10) (0.1, 0.2, 0.3) 

A3 G,AR (7, 9, 9, 10) (0.8, 0.9, 1) 

C3 

A1 MP,AU (1, 3, 3, 5) (0, 0.1, 0.2) 

A2 G,FR (7, 9, 9, 10) (0.4, 0.5, 0.6) 

A3 VG,SR (9, 10, 10, 10) (0.7, 0.8, 0.9) 
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 DM 2’s evaluations 

Criteria Alternatives Evaluations Restriction Reliability 

C1 

A1 P, HR (0.5, 1, 1, 3) (0.5, 0.6, 0.7) 

A2 G, VWR (7, 9, 9, 10) (0.2, 0.3, 0.4) 

A3 G, SR (7, 9, 9, 10) (0.7, 0.8, 0.9) 

C2 

A1 MG, FR (5, 7, 7, 9) (0.4, 0.5, 0.6) 

A2 F, HR (3, 5, 5, 7) (0.5, 0.6, 0.7) 

A3 MG, AU (5, 7, 7, 9) (0, 0.1, 0.2) 

C3 

A1 P, WR (0.5, 1, 1, 3) (0.3, 0.4, 0.5) 

A2 VG, HR (9, 10, 10, 10) (0.5, 0.6, 0.7) 

A3 VP, FR (0.25, 0.5, 0.5, 1) (0.4, 0.5, 0.6) 

 DM 3’s evaluations 

Criteria Alternatives Evaluations Restriction Reliability 

C1 

A1 F, SR (3, 5, 5, 7) (0.7, 0.8, 0.9) 

A2 MP, HR (1, 3, 3, 5) (0.5, 0.6, 0.7) 

A3 MG, SR (5, 7, 7, 9) (0.7, 0.8, 0.9) 

C2 

A1 MG, HR (5, 7, 7, 9) (0.5, 0.6, 0.7) 

A2 G, WR (7, 9, 9, 10) (0.3, 0.4, 0.5) 

A3 VP, VHR (0.25, 0.5, 0.5, 1) (0.6, 0.7, 0.8) 

C3 

A1 F, HR (3, 5, 5, 7) (0.5, 0.6, 0.7) 

A2 MG, HR (5, 7, 7, 9) (0.5, 0.6, 0.7) 

A3 P, SR (0.5, 1, 1, 3) (0.7, 0.8, 0.9) 

The aggregated decision matrix is obtained as in Table 2.9 using the geometric mean 

operation. 

Step 2. We convert Z-fuzzy numbers to ordinary fuzzy numbers using Eq. (2.3). The 

obtained ordinary fuzzy numbers are shown in Table 2.10.  

 Aggregated decision matrix 

Criteria Alternatives Restriction Reliability 

C1 

A1 (2.190, 3.557, 3.557, 5.944) (0.626, 0.727, 0.828) 

A2 (1.518, 3.000, 3.000, 5.313) (0.311, 0.416, 0.519) 

A3 (3.271, 5.739, 5.739, 7.663) (0.626, 0.727, 0.828) 

C2 

A1 (2.321, 3.659, 3.659, 6.240) (0.493, 0.594, 0.695) 

A2 (5.739, 7.663, 7.663, 8.879) (0.247, 0.363, 0.472) 

A3 (2.061, 3.158, 3.158, 4.481) (0.000, 0.398, 0.543) 

C3 

A1 (1.145, 2.466, 2.466, 4.718) (0.000, 0.288, 0.412) 

A2 (6.804, 8.573, 8.573, 9.655) (0.464, 0.565, 0.665) 

A3 (1.040, 1.710, 1.710, 3.107) (0.581, 0.684, 0.786) 

 Ordinary fuzzy numbers converted from Z-fuzzy numbers 

Alter- 

natives 
C1 C2 C3 

A1 (1.867, 3.032, 3.032, 5.068) (1.789, 2.821, 2.821, 4.811) (0.615, 1.325, 1.325, 2.534) 

A2 (0.979, 1.935, 1.935, 3.427) (3.460, 4.620, 4.620, 5.353) (5.113, 6.442, 6.442, 7.255) 

A3 (2.789, 4.893, 4.893, 6.533) (1.300, 1.992, 1.992, 2.827) (0.860, 1.414, 1.414, 2.570) 
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Step 3.  We normalize ordinary fuzzy evaluation values of alternatives by using Eqs. 

(2.24)-(2.27). Thus, Table 2.11 is obtained. In this application, price (C2) and delivery 

time (C3) are cost criteria while quality (C1) is benefit criterion. However, the assigned 

scores are in terms of benefit. Hence, the normalization type of benefit criteria is 

applied to all the criteria. 

 Normalized decision matrix 

Alter 

natives 
C1 C2 C3 

A1 (0.286, 0.464, 0.464, 0.776) (0.334, 0.527, 0.527, 0.899) (0.085, 0.183, 0.183, 0.349) 

A2 (0.150, 0.296, 0.296, 0.525) (0.646, 0.863, 0.863, 1.000) (0.705, 0.888, 0.888, 1.000) 

A3 (0.427, 0.749, 0.749, 1.000) (0.243, 0.372, 0.372, 0.528) (0.119, 0.195, 0.195, 0.354) 

For weighing criteria, we apply steps 3.1-3.7. 

Step 3.1. We construct Z-fuzzy pairwise comparison matrix for the criteria. Three 

decision makers compromised on the evaluation of the criteria weights as given in 

Table 2.12. The corresponding numerical scale is used to construct numerical Z-fuzzy 

pairwise comparison matrix as given in Table 2.13. 

 Pairwise comparisons of the criteria using Z-fuzzy numbers 

  C1 C2 C3 

C1 EI, CR HI, HR WI, VSR 

C2 1/HI, HR EI, CR 1/HI, VHR 

C3 1/WI, VSR HI, VHR EI, CR 

 Z-fuzzy pairwise comparison matrix for criteria 

 C1 C2 C3 

 Restriction Reliability Restriction Reliability Restriction Reliability 

C1 (1, 1, 1) (1, 1, 1) (3, 5, 7) (0.5, 0.6, 0.7) (1, 3, 5) (0.8, 0.9, 1.0) 

C2 (0.1, 0.2, 0.3) (0.5, 0.6, 0.7) (1, 1, 1) (1, 1, 1) (0.1, 0.2, 0.3) (0.6, 0.7, 0.8) 

C3 (0.2, 0.3, 1.0) (0.8, 0.9, 1.0) (3, 5, 7) (0.6, 0.7, 0.8) (1, 1, 1) (1, 1, 1) 

Step 3.2. We convert Z-fuzzy evaluation values of criteria to ordinary fuzzy numbers 

by using Eq. (2.3). Table 2.14 shows the converted ordinary fuzzy values of criteria. 

 Ordinary fuzzy pairwise comparison matrix for criteria 

 C1 C2 C3 

C1 (1, 1, 1) (2.32, 3.87, 5.42) (0.95, 2.85, 4.74) 

C2 (0.11, 0.15, 0.26) (1, 1, 1) (0.12, 0.17, 0.28) 

C3 (0.19, 0.32, 0.95) (2.51, 4.18, 5.86) (1, 1, 1) 

Step 3.3. We calculate the geometric mean for each parameter of Z-fuzzy numbers. 

The obtained results are given in Table 2.15. 
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 Geometric mean of ordinary fuzzy pairwise comparison matrices 

Criteria Geometric means of each parameter of 𝑎𝑖𝑗 

C1 (1.301, 2.226, 2.952) 

C2 (0.236, 0.296, 0.416) 

C3 (0.781, 1.098, 1.771) 

Total (2.319, 3.619, 5.139) 

For instance, the weight of C1 is calculated as follows. 

w1 = [(1.301 5.139⁄ , 2.226 3.619⁄ , 2.952 2.319⁄ )] = [0.253, 0.615, 1.273] 

Steps 3.4-3.7. After step 3.3, we obtain m*1 fuzzy matrix. We calculate the sum of 

values and normalized according to fuzzy division rules. Then, we defuzzify the fuzzy 

numbers and normalize them to obtain the weights of criteria. The obtained values are 

given in Table 2.16.  

 Relative fuzzy weights and crisp weights of each criterion  

Criteria Fuzzy weigths Defuzzification 
Crisp 

weights 

C1 (0.253, 0.615, 1.273) 0.689 0.590 

C2 (0.046, 0.082, 0.179) 0.097 0.083 

C3 (0.152, 0.303, 0.764) 0.381 0.326 

 Total: 1.167 1.000 

Step 4 and Step 5. We calculate weighted normalized decision matrix as in Eq. (2.28) 

and determine the negative ideal solutions by applying Eqs. (2.29) and (2.30). In this 

step, the weights obtained at the end of Step 3 are used, then Table 2.17 is obtained. 

 Weighted normalized decision matrix and negative ideal solutions 

 C1 C2 C3 

A1 (0.169, 0.274, 0.274, 0.458) (0.028, 0.044, 0.044, 0.075) (0.028, 0.060, 0.060, 0.114) 

A2 (0.089, 0.175, 0.175, 0.310) (0.054, 0.072, 0.072, 0.083) (0.230, 0.290, 0.290, 0.326) 

A3 (0.252, 0.442, 0.442, 0.590) (0.020, 0.031, 0.031, 0.044) (0.039, 0.064, 0.064, 0.116) 

NIS (0.089, 0.175, 0.175, 0.310) (0.020, 0.031, 0.031, 0.044) (0.028, 0.060, 0.060, 0.114) 

Step 6. Euclidean and Taxicab distances are calculated by using Eqs. (2.31) and (2.32). 

Table 2.18 presents the calculated values. 

 Euclidean and Taxicab distances of alternatives  

 

Euclidean 

Distance 
Rank 

Taxicab 

Distance 
Rank 

A1 0.2205 3 0.2445 3 

A2 0.2801 2 0.3680 1 

A3 0.3212 1 0.3283 2 
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Step 7-Step 9. In these steps we calculate the relative assessment matrix and the 

assessment scores of alternatives by using Eqs. (2.33)-(2.36). Finally, we rank the 

alternatives. Table 2.19 presents the calculated results. 

 The relative assessment matrix and the assessment scores of alternatives 

  A1 A2 A3 Total 𝐻𝑖 Rank 

A1 0 -0.183 -0.184 -0.367 3 

A2 0.183 0 -0.001 0.181 2 

A3 0.184 0.001 0 0.186 1 

Supplier A3 is determined as the best alternative. A1 is the worst supplier among three 

alternatives. A3 is the best alternative according to Euclidean distance while A2 is the 

best alternative according to taxicab distance (see Table 2.18). CODAS method 

considers both distances to rank the alternatives. This shows the advantage of the 

CODAS method, which allows both distances to be considered. 

 Comparative Analysis Using Simple Additive Weighting 

We compared the proposed method with the fuzzy simple additive weighting (fuzzy 

SAW) method. Initial decision matrix of fuzzy SAW method is constructed by 

multiplying restriction and reliability values of DMs’ evaluations. Thus, the expected 

values of each evaluation are obtained and shown in Table 2.20.  

 Expected values of DMs’ evaluations 

Criteria Alternatives DM1 DM2 DM3 

C1 

A1 (4.9, 7.2, 7.2, 9.0) (0.3, 0.6, 0.6, 2.1) (2.1, 4.0, 4.0, 6.3) 

A2 (0.2, 0.4, 0.4, 1.5) (1.4, 2.7, 2.7, 4.0) (0.5, 1.8, 1.8, 3.5) 

A3 (0.5, 1.8, 1.8, 3.5) (4.9, 7.2, 7.2, 9.0) (3.5, 5.6, 5.6, 8.1) 

C2 

A1 (0.3, 0.7, 0.7, 2.4) (2.0, 3.5, 3.5, 5.4) (2.5, 4.2, 4.2, 6.3) 

A2 (0.9, 2.0, 2.0, 3.0) (1.5, 3.0, 3.0, 4.9) (2.1, 3.6, 3.6, 5.0) 

A3 (5.6, 8.1, 8.1, 10.0) (0.0, 0.7, 0.7, 1.8) (0.2, 0.4, 0.4, 0.8) 

C3 

A1 (0.0, 0.3, 0.3, 1.0) (0.2, 0.4, 0.4, 1.5) (1.5, 3.0, 3.0, 4.9) 

A2 (2.8, 4.5, 4.5, 6.0) (4.5, 6.0, 6.0, 7.0) (2.5, 4.2, 4.2, 6.3) 

A3 (6.3, 8.0, 8.0, 9.0) (0.1, 0.3, 0.3, 0.6) (0.4, 0.8, 0.8, 2.7) 

We calculate the average of the expected values of evaluations to aggregate DMs' 

decision. Table 2.21 shows the obtained values. 

 Average of the DMs’ evaluations 

Alternatives C1 C2 C3 

A1 (2.417, 3.933, 3.933, 5.800) (1.600, 2.800, 2.800, 4.700) (0.550, 1.233, 1.233, 2.467) 

A2 (0.683, 1.633, 1.633, 3.000) (1.500, 2.867, 2.867, 4.300) (3.267, 4.900, 4.900, 6.433) 

A3 (2.967, 4.867, 4.867, 6.867) (1.917, 3.050, 3.050, 4.200) (2.250, 3.017, 3.017, 4.100) 
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We normalize the values of Table 2.21 using Eqs. (2.24)-(2.27) and obtain the 

normalized decision matrix as given in Table 2.22. 

 Normalized decision matrix 

Alternatives C1 C2 C3 

A1 (0.352, 0.573, 0.573, 0.845) (0.340, 0.596, 0.596, 1.000) (0.085, 0.192, 0.192, 0.383) 

A2 (0.100, 0.238, 0.238, 0.437) (0.319, 0.610, 0.610, 0.915) (0.508, 0.762, 0.762, 1.000) 

A3 (0.432, 0.709, 0.709, 1.000) (0.408, 0.649, 0.649, 0.894) (0.350, 0.469, 0.469, 0.637) 

We calculate weighted normalized decision matrix by multiplying the normalized 

values with the weights of criteria and Table 2.23 is obtained. 

 Weighted normalized decision matrix 

Alternatives C1 C2 C3 

A1 (0.208, 0.338, 0.338, 0.499) (0.028, 0.050, 0.050, 0.083) (0.028, 0.063, 0.063, 0.125) 

A2 (0.059, 0.140, 0.140, 0.258) (0.027, 0.051, 0.051, 0.076) (0.166, 0.248, 0.248, 0.326) 

A3 (0.255, 0.419, 0.419, 0.590) (0.034, 0.054, 0.054, 0.074) (0.114, 0.153, 0.153, 0.208) 

 

We obtain the final score of each alternative by summing the values in each row. Then 

we defuzzify final scores to obtain crisp values as mentioned in Definition 2.2. Finally, 

we rank the alternatives according to the defuzzified values as seen in Table 2.24. 

 Final score, defuzzified score and rank of alternatives 

Alternatives Final score Defuzzified score Rank 

A1 (0.264, 0.450, 0.450, 0.707) 0.344 2 

A2 (0.251, 0.440, 0.440, 0.660) 0.335 3 

A3 (0.403, 0.626, 0.626, 0.873) 0.484 1 

Comparison of two methods is given in Table 2.25. A3 is the first ranking among the 

alternatives in both methods. The ranking of the A1 and A2 alternatives in two 

methods differs. Thus, we are more confident that A3 is the best alternative. 

 Comparison of fuzzy SAW and Z-CODAS methods 

Alternatives 
Fuzzy 

SAW 

Z-fuzzy 

CODAS  

A1 2 3 

A2 3 2 

A3 1 1 

 Conclusions 

CODAS method has been very popular after its introduction to the literature. After 

ordinary fuzzy CODAS method was developed by Ghorabaee et al. (2016), its fuzzy 

extensions such as type-2 fuzzy CODAS, intuitionistic fuzzy CODAS, hesitant fuzzy 
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CODAS, Pythagorean fuzzy CODAS, and neutrosphic CODAS have been proposed 

by several researchers. Extensions of multicriteria decision making methods by using 

Z-fuzzy numbers are relatively new when compared with these MCDM methods. 

CODAS method has been extended by using Z-fuzzy numbers and applied to a 

supplier selection problem. A comparative analysis has also been presented. The 

application and comparative analysis showed that the proposed Z-fuzzy CODAS 

method yields meaningful results. DMs could incorporate their opinions related to the 

reliability of a determined membership function. 

For further research, we suggest LR type Z-fuzzy numbers to be used in CODAS 

method for comparative analyses. Nonlinear membership functions may provide a 

more realistic approach to the method. 
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 EVALUATING SOCIAL SUSTAINABLE DEVELOPMENT FACTORS 

USING MULTI-EXPERTS Z-FUZZY AHP2 

Sustainable development is defined as «the development that meets the needs of the 

present without compromising the ability of future generations to meet their own 

needs.» (Brundtland et al., 1987). One of the most important concerns of people in our 

globalizing world is leaving a livable world for future generations. Everyone is getting 

more conscious about this issue. The importance of the issue is not only related to the 

environmental concern but also related sociological and economic development and 

the factors affecting them.  

Today, most of the people live in cities, which are centers where social, economic and 

environmental activities that people require to survive are gathered (Dempsey et al., 

2011; Phillis et al., 2017; Zinatizadeh et al., 2017). Therefore, sustainable development 

is examined in the literature from three aspects which are economic, social and 

environmental. Economic aspect of sustainable development is related to the 

protection of capital and the prevention of its deterioration (Goodland, 2002). 

Environmental aspect is to take care health of the ecosystems while meeting the needs 

of people to sustain existence (Morelli, 2011). Social sustainability is a human and 

community oriented aspect and social sustainable development corresponds to a 

concept that works to make the system sustainable in social and cultural life welfare 

such as education, health, demography etc. that are mentioned Table 3.4.  

Sustainability is an interrelated concept which means that the sustainability of cities 

directly affects the sustainability of countries, regions and the world. Therefore, it is 

important to identify the factors that affect the sustainability of cities to be able to 

better analyze the issue (Zhang et al., 2016).  

 

 

 

2 This chapter is based on the paper “Tüysüz, N., & Kahraman, C. (2020). Evaluating social sustainable 

development factors using multi-experts Z-fuzzy AHP. Journal of Intelligent & Fuzzy Systems, 39(5), 

6181-6192.” 
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Social sustainability is relatively new and thus is less researched in the literature when 

compared to the other dimensions of sustainability. Due to this reason, social 

sustainable development factors have not been addressed as much as the other ones 

(Hediger, 2000; Murphy, 2012), which is one of the main motivations of this study. 

This study considers the social sustainable development and in order to evaluate the 

sustainability of cities, countries or regions, it is necessary to identify the factors that 

affect sustainability and to evaluate them subjectively based on the ideas of experts. 

Therefore, the choice of sustainability factors is an important issue affecting the 

performance of cities' sustainability (Zhang et al., 2016). Since the evaluation of social 

sustainable development handled in this study contains many factors to be considered, 

they should be evaluated with multi-criteria decision making (MCDM) techniques. 

MCDM methods provide the necessary tools for analyzing the multi-dimensionality 

of such problems. There are many developed MCDM methods in literature and AHP 

is the most widely used one which enables to determine importance levels of factors 

based on the relative evaluations of decision-makers.  

Although the classical AHP method which was proposed by Saaty (1980) uses crisp 

numbers in expressing decision-makers' evaluations, different fuzzy versions of the 

method have also emerged to be able to better reflect uncertainty in subjective 

evaluations. In this study, the AHP method is extended by using Z-fuzzy numbers 

which include both vague evaluations of decision-makers together with their degree of 

confidence. The most important contribution of this study to the literature is the use of 

Z-fuzzy numbers integrated AHP method in evaluating the social sustainability on a 

group decision making basis, which we think that helps the better understanding and 

analyzing the issue. 

The rest of the paper is as follows. In section 3.1, literature review on fuzzy AHP that 

proposes new approaches with various fuzzy sets is given. In section 3.2, preliminaries 

of Z-fuzzy numbers are explained. In section 3.3, the algorithm of proposed method, 

multi-experts Z-Fuzzy AHP method, is given. In section 3.4, an application on 

evaluating sustainable development factors is performed to display the applicability of 

the method. In section 3.5, sensitivity analysis is applied to examine the results under 

different reliabilities of experts’ evaluations. Finally, concluding remarks are 

presented. 
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 Literature Review 

Since AHP is the most widely used multi-criteria decision making method (Tüysüz, 

2018), there have been developed many fuzzy extensions of the method. The summary 

of the important extensions of the AHP method is presented in Table 3.1. 

Table 3.1 : A literature review on fuzzy extensions of AHP. 

Year Author Extension of AHP 

1983 Laarhoven and Pedrycz Ordinary fuzzy AHP 

1985 Buckley Ordinary fuzzy AHP 

1996 Chang Ordinary fuzzy AHP 

2009 Sadiq and Tesfamariam  Intuitionistic fuzzy AHP 

2009 Abdullah et al. Intuitionistic fuzzy AHP 

2011 Wang et al. Intuitionistic fuzzy AHP 

2011 Zhang et al. Intuitionistic fuzzy AHP 

2012 Feng et al.  Intuitionistic fuzzy AHP 

2014 Kaur Intuitionistic fuzzy AHP 

2015 Dutta and Guha  Intuitionistic fuzzy AHP 

2015 Keshavarzfard and Makui  Intuitionistic fuzzy AHP 

2016 Deepika and Kannan  Intuitionistic fuzzy AHP 

2016 Tavana et al.  Intuitionistic fuzzy AHP 

2016b Abdullah and Najib  Intuitionistic fuzzy AHP 

2013 Wu et al.  Interval valued intuitionistic fuzzy AHP 

2016a Abdullah and Najib  Interval-valued intuitionistic fuzzy AHP 

2015 Onar et al.  Interval valued intuitionistic fuzzy AHP 

2015 Fahmi et al.  Interval valued intuitionistic fuzzy AHP 

2016 Kahraman et al.  Interval valued intuitionistic fuzzy AHP 

2014 Kahraman et al.  Interval valued type-2 fuzzy AHP 

2014 Zhu & Xu  Hesitant fuzzy AHP 

2015 Oztaysi et al.  Hesitant fuzzy AHP 

2017 Tüysüz and Şimşek Hesitant fuzzy linguistic term sets-based AHP 

2017 Kahraman et al.  Hesitant fuzzy linguistic AHP 

2016 Ren et al.  Group intuitionistic multiplicative AHP 

2016 Radwan et al.  Hybrid neutrosophic AHP 

2017 Abdel-Basset et al.  Neutrosophic AHP 

2018 Ilbahar et al.  Pythagorean fuzzy AHP 

2019 Karasan et al.  Pythagorean fuzzy AHP 

2013 Azadeh et al.  Z-fuzzy AHP 

2018 Kahraman and Otay Z-fuzzy AHP 

2020 
Kutlu Gundogdu and 

Kahraman  
Spherical fuzzy AHP 

Ordinary fuzzy AHP is a weighting and selection method that uses a crisp linguistic 

scale that can reflect decision-makers' uncertain judgements in their evaluations. This 

linguistic scale can be defined by using different fuzzy numbers such as triangular, 

trapezoidal numbers etc. While these fuzzy numbers include only the restrictions of 

decision makers' evaluations, Z-fuzzy numbers that are used in this study include the 

confidence level of decision makers’ evaluations. Assessments made with other fuzzy 

numbers can be considered as exactly confident evaluations made with Z-fuzzy 
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numbers. But in real life, it can be unusual to expect decision-makers to be absolutely 

sure of their assessment when making an evaluation. Since Z-fuzzy numbers contain 

all degrees of confidence, it can be said that Z-fuzzy numbers are better in expressing 

uncertainty than the other fuzzy numbers. Table 3.1 shows the historical review of 

fuzzy AHP from ordinary fuzzy AHP to the latest fuzzy extensions of AHP. 

As it can be seen from Table 3.1, Z-Fuzzy AHP, Pythagorean fuzzy AHP and Spherical 

fuzzy AHP extensions are relatively new studies. Our study proposes a new Z-Fuzzy 

extension of AHP. In coming sections, the preliminary information related to the 

methodology will be presented in detail. 

 Z-Fuzzy Numbers 

Zadeh (2011) introduced the concept of  Z-fuzzy number which can be defined as a 

sequence of fuzzy number pairs (A, B) where A is the restriction function and B is the 

second component for measuring the reliability of A. The Z-fuzzy number allows 

making calculations the numbers that are not completely reliable. It can be used to 

reflect the expression about a variable together with its precision level. In other words, 

A is the value of the variable and B is the precision or probability of that value. 

Definition 3.1. Let a Z-fuzzy number is defined as Z = (Ã, R̃) which is sequenced pair 

of fuzzy numbers. The first component Ã represent the restriction of real-valued vague 

variable X while the second component 𝑅̃ is a measure of reliability for Ã. A simple 

Z-fuzzy number can be defined as in Figure 3.1. 

 

Figure 3.1 : A simple Z-fuzzy number. 

Definition 3.2. Let a fuzzy set Ã which is defined on a universe X. Then, Ã =

{〈x, μA(x)〉 |xϵX} where μÃ: X → [0,1] is the membership function Ã describing the 

𝑎3 𝑎2 𝑎1 

𝐴̃ 

𝑍 = (𝐴̃, 𝑅̃) 
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𝜇𝐴̃(𝑥) 

𝑥 
 

𝑟3 𝑟2 𝑟1 

𝑅̃ 

1 

0 

𝜇𝑅̃(𝑥) 

𝑥 
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belongingness degree of x ∈ X in Ã. The Fuzzy Expectation of a fuzzy set is defined 

as follows (Puri and Ralescu, 1986). 

 𝐸Ã(𝑥) = ∫ 𝑥𝜇Ã(𝑥) 𝑑𝑥𝑥
               (3.1) 

which should not be considered as probabilistic expectation. Table 3.2 presents the 

linguistic scale for restriction function while Table 3.3 gives the reliability scale. 

Definition 3.3:  Converting Z-Fuzzy Number to Regular Fuzzy Number 

Consider a Z-fuzzy number 𝑍 = (𝐴,̃ 𝑅̃), which is shown as in Figure 3.1. The left side 

shows the restriction function, and the right side shows the reliability function. Let 

𝐴̃ = {〈𝑥, 𝜇𝐴̃(𝑥)〉|𝜇(𝑥) ∈ [0,1]} and 𝑅̃ = {〈𝑥, 𝜇𝑅̃(𝑥)〉|𝜇(𝑥) ∈ [0,1]}, where 𝜇𝐴̃(𝑥) and 

𝜇𝑅̃(𝑥) are triangular membership functions (Kang et al., 2012a). 

(1) Convert the second part (𝑅̃) of Z-fuzzy number into a crisp number using Eq. 

(3.2). 

𝛼 =
∫𝑥𝜇𝑅̃(𝑥) 𝑑𝑥

∫𝜇𝑅̃(𝑥) 𝑑𝑥
                                                 (3.2) 

where ∫  denotes an algebraic integration. 

(2) Add the weight of the reliability part to the restriction part and obtain the 

weighted Z-fuzzy number which can be denoted as 

𝑍̃𝛼 = {〈𝑥, 𝜇𝐴̃𝛼(𝑥)〉|𝜇𝐴̃𝛼(𝑥) = 𝛼𝜇𝐴̃(𝑥), 𝜇(𝑥) ∈ [0,1]}              (3.3) 

(3) Convert the weighted restriction part (irregular fuzzy number) to ordinary 

fuzzy number. The ordinary fuzzy set can be denoted as 𝑍̃′ =

{〈𝑥, 𝜇𝑍̃′(𝑥)〉|𝜇𝑍̃′(𝑥) = 𝜇𝐴̃ (
𝑥

√𝛼
) , 𝜇(𝑥) ∈ [0,1]}. 𝑍̃′ has the same Fuzzy Expectation 

with 𝑍̃𝛼, and they are equal with respect to Fuzzy Expectation, which can be denoted 

by Figure 3.2. 

 

Figure 3.2 : Ordinary fuzzy number converted from Z-fuzzy number. 
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 Proposed Method: Multi-Experts Z-Fuzzy AHP 

The steps of the proposed multi-experts Z-fuzzy AHP method are presented in the 

following.  

Step 1. Determine the hierarchy of the decision problem as illustrated in Figure 3.3. 

 

Figure 3.3 : Hierarchical structure. 

Step 2. Collect the linguistic assessments of each expert for pairwise comparisons 

between criteria, sub-criteria, and alternatives by using questionnaires and triangular 

Z-fuzzy restriction and reliability scales given in Tables 3.2-3.3. 

Let each expert (Ei) assign an independent evaluation for any pairwise comparison as 

follows: 

𝑍𝐸𝑖 = (𝐴̃, 𝑅̃) = ((𝑎1
𝐸𝑖 , 𝑎2

𝐸𝑖 , 𝑎3
𝐸𝑖), (𝑟1

𝐸𝑖, 𝑟2
𝐸𝑖, 𝑟3

𝐸𝑖))                      (3.4) 

Tables 3.2 and 3.3 can be used for the restriction scale and reliability scale, 

respectively. 

Table 3.2 : Z-fuzzy Restriction Scale for pairwise comparisons. 

Linguistic Scale Abbr. Restriction function 

Equally Important EI (1,1,1;1) 

Slightly Important SLI (1,1,3;1) 

Moderately Important MI (1,3,5;1) 

Strongly Important STI (3,5,7;1) 

Very Strongly Important VSTI (5,7,9;1) 

Certainly Important CI (7,9,10;1) 

Absolutely Important AI (9,10,10;1) 

GOAL 

Sub-criterion 

Criterion 3 Criterion 2 Criterion 1 

Sub-criterion Sub-criterion Sub-criterion Sub-criterion Sub-criterion 

Alternative 1 Alternative 4 Alternative 3 Alternative 2 
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Table 3.3 : Reliability Scale for Triangular Z-fuzzy numbers. 

Linguistic Scale Abbr. Reliability function 

Absolutely Reliable AR (0.8,0.9,1;1) 

Strongly Reliable SR (0.7,0.8,0.9;1) 

Very Highly Reliable VHR (0.6,0.7,0.8;1) 

Highly Reliable HR (0.5,0.6,0.7;1) 

Fairly Reliable FR (0.4,0.5,0.6;1) 

Weakly Reliable WR (0.3,0.4,0.5;1) 

Very Weakly Reliable VWR (0.2,0.3,0.4;1) 

Strongly Unreliable SU (0.1,0.2,0.3;1), 

Absolutely Unreliable AU (0,0.1,0.2;1) 

 

Step 2.1. Check the consistency of the fuzzy pairwise comparison matrix judged by 

each expert. Defuzzify fuzzy numbers in the decision matrix using Eq. (3.2) or 

alternatively, the defuzzification equation (𝑎1 + 2 ∗ 𝑎2 + 𝑎3)/4 for symmetrical 

triangular fuzzy numbers and obtain crisp decision matrix. Then apply Saaty’s (1996) 

consistency check procedure. If this matrix is consistent, then experts’ evaluations can 

be implied consistent. 

Step 3. Aggregate the restriction and reliability functions of experts’ evaluations using 

geometric mean for each hierarchy level. Assume three experts assign the following 

terms: 

𝑍𝐸1 = (𝐴̃, 𝑅̃) = ((𝑎1
𝐸1, 𝑎2

𝐸1, 𝑎3
𝐸1), (𝑟1

𝐸1, 𝑟2
𝐸1, 𝑟3

𝐸1)) 

𝑍𝐸2 = (𝐴̃, 𝑅̃) = ((𝑎1
𝐸2, 𝑎2

𝐸2, 𝑎3
𝐸2), (𝑟1

𝐸2, 𝑟2
𝐸2, 𝑟3

𝐸2)) 

𝑍𝐸3 = (𝐴̃, 𝑅̃) = ((𝑎1
𝐸3, 𝑎2

𝐸3, 𝑎3
𝐸3), (𝑟1

𝐸3, 𝑟2
𝐸3, 𝑟3

𝐸3)) 

Aggregation of these three experts’ opinions is realized by using geometric mean: 

   𝑍𝐴𝑔𝑔 = (
(√𝑎1

𝐸1 ∗ 𝑎1
𝐸2 ∗ 𝑎1

𝐸33
, √𝑎2

𝐸1 ∗ 𝑎2
𝐸2 ∗ 𝑎2

𝐸33
, √𝑎3

𝐸1 ∗ 𝑎3
𝐸2 ∗ 𝑎3

𝐸33
) ,

(√𝑟1
𝐸1 ∗ 𝑟1

𝐸2 ∗ 𝑟1
𝐸33
, √𝑟2

𝐸1 ∗ 𝑟2
𝐸2 ∗ 𝑟2

𝐸33
, √𝑟3

𝐸1 ∗ 𝑟3
𝐸2 ∗ 𝑟3

𝐸33
)
)                (3.5) 

Step 4. Convert the aggregated Z-fuzzy comparison matrix to ordinary fuzzy number 

using Definition 3.3 and Eqs. (3.6-3.7). 

𝛼𝑗 =
( √𝑟1

𝐸1∗𝑟1
𝐸2∗𝑟1

𝐸33
+2∗ √𝑟2

𝐸1∗𝑟2
𝐸2∗𝑟2

𝐸33
+ √𝑟3

𝐸1∗𝑟3
𝐸2∗𝑟3

𝐸33
)

4
                           (3.6) 

Now, Z-fuzzy number can be transformed to ordinary fuzzy number through Eq. (3.7). 

𝐴̃ = (√𝑎1
𝐸1 ∗ 𝑎1

𝐸2 ∗ 𝑎1
𝐸33
√𝛼𝑗 , √𝑎2

𝐸1 ∗ 𝑎2
𝐸2 ∗ 𝑎2

𝐸33
√𝛼𝑗 , √𝑎3

𝐸1 ∗ 𝑎3
𝐸2 ∗ 𝑎3

𝐸33
√𝛼𝑗)          (3.7) 
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Step 5. Calculate the geometric mean (GM) for each parameter of ordinary fuzzy 

comparison matrix and obtain 𝑛 × 1 matrix converted from 𝑛 × 𝑛 matrix as shown in 

Eq. (3.8). In this step, Buckley (1985)’s ordinary fuzzy AHP method is applied.  

 𝐺𝑀 =

(

 
 
 
 
 
 
 √∏ (√𝑎𝑗1

𝐸1 ∗ 𝑎𝑗1
𝐸2 ∗ 𝑎𝑗1

𝐸33

√𝛼𝑗)
𝑛
𝑗=1

𝑛

,

√∏ (√𝑎𝑗2
𝐸1 ∗ 𝑎𝑗2

𝐸2 ∗ 𝑎𝑗2
𝐸33

√𝛼𝑗)
𝑛
𝑗=1

𝑛

,

√∏ (√𝑎𝑗3
𝐸1 ∗ 𝑎𝑗3

𝐸2 ∗ 𝑎𝑗3
𝐸33

√𝛼𝑗)
𝑛
𝑗=1

𝑛

)

 
 
 
 
 
 
 

, j=1,2,…,n              (3.8) 

Step 6. Calculate the total values of each parameter in the column to normalize the 

values in 𝑛 × 1 matrix as shown in Eq (3.9). 

(

 
 
 
 ∑ (√∏ (√𝑎𝑗1

𝐸1 ∗ 𝑎𝑗1
𝐸2 ∗ 𝑎𝑗1

𝐸33

√𝛼𝑗)
𝑛
𝑗=1

𝑛

)𝑛
𝑗=1 , ∑ (√∏ (√𝑎𝑗2

𝐸1 ∗ 𝑎𝑗2
𝐸2 ∗ 𝑎𝑗2

𝐸33

√𝛼𝑗)
𝑛
𝑗=1

𝑛

)𝑛
𝑗=1 ,

∑ (√∏ (√𝑎𝑗3
𝐸1 ∗ 𝑎𝑗3

𝐸2 ∗ 𝑎𝑗3
𝐸33

√𝛼𝑗)
𝑛
𝑗=1

𝑛

)𝑛
𝑗=1

)

 
 
 
 

   

            (3.9) 

Step 7. Apply fuzzy division operation to get the normalized weights vector as shown 

in Eq (3.10). 

(

 
 
 
 
 
 

√∏ ( √𝑎𝑗1
𝐸1∗𝑎𝑗1

𝐸2∗𝑎𝑗1
𝐸33
√𝛼𝑗)

𝑛
𝑗=1

𝑛

∑ √∏ ( √𝑎𝑗3
𝐸1∗𝑎𝑗3

𝐸2∗𝑎𝑗3
𝐸33
√𝛼𝑗)

𝑛
𝑗=1

𝑛
𝑛
𝑗=1

,

√∏ ( √𝑎𝑗2
𝐸1∗𝑎𝑗2

𝐸2∗𝑎𝑗2
𝐸33
√𝛼𝑗)

𝑛
𝑗=1

𝑛

∑ √∏ ( √𝑎𝑗2
𝐸1∗𝑎𝑗2

𝐸2∗𝑎𝑗2
𝐸33
√𝛼𝑗)

𝑛
𝑗=1

𝑛
𝑛
𝑗=1

,

√∏ ( √𝑎𝑗3
𝐸1∗𝑎𝑗3

𝐸2∗𝑎𝑗3
𝐸33
√𝛼𝑗)

𝑛
𝑗=1

𝑛

∑ √∏ ( √𝑎𝑗1
𝐸1∗𝑎𝑗1

𝐸2∗𝑎𝑗1
𝐸33
√𝛼𝑗)

𝑛
𝑗=1

𝑛
𝑛
𝑗=1 )

 
 
 
 
 
 

           (3.10) 

Step 8. Defuzzify the normalized weights vector using the method given by Eq. (3.11).  

𝛼𝑗 =
(

 
 
 
 
 
 
 
 

√∏ ( √𝑎𝑗1
𝐸1∗𝑎𝑗1

𝐸2∗𝑎𝑗1
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Step 9. Normalize the weights so that their sum is equal to 1 as shown in Eq (3.12). 

Thus, the priorities of the elements in the pairwise comparison matrix are obtained. 
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           (3.12) 

Step 10. Apply Steps (3-9) for the other Z-fuzzy pairwise comparison matrices.  

Step 11. Combine all the weights vectors to determine the best alternative as in 

classical AHP. 

 Application: Evaluation of Social Sustainable Development Factors 

Since social sustainable factors affect the performance of sustainability development 

for cities, countries or regions, the choice of these factors is important issue. These 

factors were obtained to be evaluated by considering the literature. Since each factor 

is not of the same importance for social sustainable development, the importance 

weights of these factors should be calculated. For this purpose, in this study factors 

were weighted by experts. Factors and their explanations are given in Table 3.4. 

Step 1. First, the hierarchy of the decision problem is determined. In this application, 

there are 6 main social sustainable development factors which are given in Table 3.4: 

demography (F1), health (F2), security (F3), education (F4), traffic (F5), culture (F6) 

and three experts (Es) to evaluate these factors. 
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Table 3.4 : Social sustainable development factors and their explanations. 

Factors Explanations References 

Demography 

Population density, 

Population growth 

ratio, infant mortality 

ratio etc. 

Phillis et al. (2017), Zinatizadeh et al. (2017), 

Tanguay et al. (2010), Moussiopoulos et al. 

(2010), Michael et al. (2014), Mascarenhas et. 

(2015), King (2016), Gazibey et al. (2014), 

Saraç and Alptekin (2017). 

Health 

Number of doctors, 

hospital bed per capita, 

health expenditures etc. 

Phillis et al. (2017), Zinatizadeh et al. (2017), 

Zhang et al. (2016), Shen et al. (2011), 

Moussiopoulos et al. (2010), Mascarenhas et. 

(2015), King (2016), Gazibey et al. (2014), 

Saraç and Alptekin (2017). 

Security  

Crime rate, number of 

police stations per 

capita 

Phillis et al. (2017), Zinatizadeh et al. (2017), 

Tanguay et al. (2010), Shen et al. (2011), 

Michael et al. (2014), Mascarenhas et. (2015), 

Gazibey et al. (2014), Saraç and Alptekin 

(2017). 

Education 

Literacy rate, number 

of students per teacher, 

graduation rate 

Phillis et al. (2017), Zinatizadeh et al. (2017), 

Tanguay et al. (2010), Shen et al. (2011), 

Moussiopoulos et al. (2010), Braulio-Gonzalo 

et al. (2015), Mascarenhas et. (2015), King 

(2016), Gazibey et al. (2014), Saraç and 

Alptekin (2017). 

Traffic 

Number of traffic 

accident, number of 

fatal accidents 

Zinatizadeh et al. (2017), Shen et al. (2011), 

Moussiopoulos et al. (2010), Gazibey et al. 

(2014), Saraç and Alptekin (2017). 

Culture 

Number of books per 

capita, number of 

cultural centers per 

capita 

Zinatizadeh et al. (2017), Zhang et al. (2016), 

Shen et al. (2011), Mascarenhas et. (2015), 

Gazibey et al. (2014), Saraç and Alptekin 

(2017). 

Step 2. Three experts compare the 6 main factors with each other using Z-fuzzy 

evaluation scales given in Tables 3.2-3.3. Tables 3.5-3.7 show Z-fuzzy evaluation 

matrices for the determined factors.  

Step 2.1. Consistency checks were performed for three experts and consistency 

ratios were obtained as 0.089, 0.093 and 0.095 respectively. The calculations were 

continued since the assessments were consistent. 

Table 3.5 : E1’s evaluations. 

Social Sustainable  

Development Factors 
F1 F2 F3 F4 F5 F6 

F1 (EI) (1/STI, FR) (1/MI, AR) (1/VSTI, VWR) (SLI, SR) (MI, HR) 

F2 (STI, FR) (EI) (SLI, VHR) (SLI, HR) (VSTI, AR) (CI, SR) 

F3 (MI, AR) (1/SLI, VHR) (EI) (1/SLI, SR) (MI, HR) (STI, VHR) 

F4 (VSTI, VWR) (1/SLI, HR) (SLI, SR) (EI) (VSTI, FR) (CI, WR) 

F5 (1/SLI, SR) (1/VSTI, AR) (1/MI, HR) (1/VSTI, FR) (EI) (SLI, VWR) 

F6 (1/MI, HR) (1/CI, SR) (1/STI, VHR) (1/CI, WR) (1/SLI, VWR) (EI) 
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Table 3.6 : E2’s evaluations. 

Social Sustainable  

Development Factors 
F1 F2 F3 F4 F5 F6 

F1 (EI) (1/VSTI, VHR) (1/STI, AR) (1/CI, WR) (MI, FR) (SLI, WR) 

F2 (VSTI, VHR) (EI) (SLI, FR) (1/SLI, VHR) (CI, AR) (VSTI, SR) 

F3 (STI, AR) (1/SLI, FR) (EI) (1/STI, FR) (STI, WR) (STI, WR) 

F4 (CI, WR) (SLI, VHR) (STI, FR) (EI) (AI, SR) (CI, VHR) 

F5 (1/MI, FR) (1/CI, AR) (1/STI, WR) (1/AI, SR) (EI) (1/MI, HR) 

F6 (1/SLI, WR) (1/VSTI, SR) (1/STI, WR) (1/CI, VHR) (MI, HR) (EI) 

Table 3.7 : E3’s evaluations. 

Social Sustainable  

Development Factors 
F1 F2 F3 F4 F5 F6 

F1 (EI) (1/VSTI, HR) (1/CI, FR) (1/VSTI, SR) (1/MI, WR) (1/STI, VHR) 

F2 (VSTI, HR) (EI) (1/SLI, HR) (EI, WR) (STI, VHR) (STI, SR) 

F3 (CI, FR) (SLI, HR) (EI) (SLI, VHR) (STI, WR) (VSTI, HR) 

F4 (VSTI, SR) (EI, WR) (1/SLI, VHR) (EI) (MI, HR) (STI, WR) 

F5 (MI, WR) (1/STI, VHR) (1/STI, WR) (1/MI, HR) (EI) (1/SLI, SR) 

F6 (STI, VHR) (1/STI, SR) (1/VSTI, HR) (1/STI, WR) (SLI, SR) (EI) 

 

Step 3. Geometric means are calculated to aggregate the restriction and reliability 

functions of experts’ evaluations using Eq. (3.5). Aggregated Z-fuzzy decision matrix 

is shown in Table 3.8. 

Step 4. After aggregation calculation, obtained matrix is converted to ordinary fuzzy 

number using Definition 3.3. Table 3.9 shows the ordinary fuzzy decision matrix. 

Table 3.8 : Aggregated Z-fuzzy decision matrix. 

  F1 F2 F3 

F1 ((1, 1, 1), (1, 1, 1)) ((0.12, 0.16, 0.24), (0.49, 0.59, 0.7)) ((0.14, 0.19, 0.33), (0.63, 0.74, 0.84)) 

F2 ((4.22, 6.26, 8.28), (0.49, 0.59, 0.7)) ((1, 1, 1), (1, 1, 1)) ((0.69, 1, 2.08), (0.49, 0.59, 0.7)) 

F3 ((3, 5.13, 7.05), (0.63, 0.74, 0.84)) ((0.481, 1, 1.442), (0.49, 0.59, 0.6952)) ((1, 1, 1), (1, 1, 1)) 
F4 ((5.59, 7.61, 9.32), (0.35, 0.46, 0.56)) ((0.69, 1, 1.44), (0.45, 0.55, 0.65)) ((1, 1.71, 2.76), (0.55, 0.65, 0.76)) 

F5 ((0.41, 1, 1.71), (0.44, 0.54, 0.65)) ((0.12, 0.15, 0.21), (0.73, 0.83, 0.93)) ((0.16, 0.24, 0.48), (0.36, 0.46, 0.56)) 

F6 ((0.58, 1.19, 1.91), (0.45, 0.55, 0.65)) ((0.12, 0.15, 0.21), (0.7, 0.8, 0.9)) ((0.13, 0.18, 0.28), (0.45, 0.55, 0.65)) 

  F4 F5 F6 

F1 ((0.11, 0.13, 0.18), (0.35, 0.46, 0.56)) ((0.58, 1, 2.47), (0.44, 0.54, 0.65)) ((0.52, 0.84, 1.71), (0.45, 0.55, 0.65)) 

F2 ((0.69, 1, 1.44), (0.45, 0.55, 0.65)) ((4.72, 6.8, 8.57), (0.73, 0.83, 0.93)) ((4.72, 6.8, 8.57), (0.7, 0.8, 0.9)) 

F3 ((0.36, 0.58, 1), (0.55, 0.65, 0.76)) ((2.08, 4.22, 6.26), (0.36, 0.46, 0.56)) ((3.56, 5.59, 7.61), (0.45, 0.55, 0.65)) 
F4 ((1, 1, 1), (1, 1, 1)) ((3.56, 5.94, 7.66), (0.52, 0.62, 0.72)) ((5.28, 7.4, 8.88), (0.38, 0.48, 0.58)) 

F5 ((0.13, 0.17, 0.28), (0.52, 0.62, 0.72)) ((1, 1, 1), (1, 1, 1)) ((0.41, 0.69, 1.44), (0.41, 0.52, 0.63)) 

F6 ((0.11, 0.14, 0.19), (0.38, 0.48, 0.58)) ((0.69, 1.44, 2.47), (0.41, 0.52, 0.63)) ((1, 1, 1), (1, 1, 1)) 

Table 3.9 : Ordinary fuzzy decision matrix. 

  F1 F2 F3 F4 F5 F6 

F1 (1, 1, 1) (0.09, 0.12, 0.18) (0.12, 0.17, 0.29) (0.07, 0.09, 0.12) (0.43, 0.74, 1.82) (0.39, 0.63, 1.27) 
F2 (3.25, 4.82, 6.38) (1, 1, 1) (0.53, 0.77, 1.6) (0.51, 0.74, 1.07) (4.29, 6.19, 7.8) (4.22, 6.09, 7.67) 

F3 (2.58, 4.41, 6.06) (0.37, 0.77, 1.11) (1, 1, 1) (0.29, 0.47, 0.81) (1.41, 2.85, 4.23) (2.64, 4.15, 5.65) 

F4 (3.78, 5.15, 6.3) (0.51, 0.74, 1.07) (0.81, 1.38, 2.23) (1, 1, 1) (2.8, 4.69, 6.04) (3.66, 5.14, 6.16) 
F5 (0.3, 0.74, 1.26) (0.11, 0.13, 0.19) (0.11, 0.16, 0.33) (0.1, 0.13, 0.22) (1, 1, 1) (0.29, 0.5, 1.04) 

F6 (0.43, 0.88, 1.42) (0.1, 0.13, 0.19) (0.1, 0.13, 0.21) (0.08, 0.09, 0.13) (0.5, 1.04, 1.78) (1, 1, 1) 

Steps 5 and 6. Geometric means for each parameter of ordinary fuzzy decision matrix 

are calculated as in Buckley’s ordinary fuzzy AHP method and Table 3.10 is obtained. 
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The values of each column in Table 3.10 are summed to use in normalization 

procedure. 

Table 3.10 : Geometric means of the ordinary fuzzy evaluations. 

Factors Geometric means 

F1 (0.227, 0.308, 0.494) 

F2 (1.591, 2.169, 2.947) 

F3 (1.007, 1.634, 2.252) 

F4 (1.590, 2.242, 2.871) 

F5 (0.217, 0.319, 0.513) 

F6 (0.236, 0.338, 0.486) 

Total (4.868, 7.010, 9.564) 

Step 7. Fuzzy division operation is applied using Eq. (3.10) to normalize the values in 

Table 3.10 and Table 3.11 is obtained. 

Table 3.11 : Normalized values calculated from Table 3.10. 

Factors Normalized values 

F1 (0.024, 0.044, 0.102) 

F2 (0.166, 0.309, 0.605) 

F3 (0.105, 0.233, 0.463) 

F4 (0.166, 0.320, 0.590) 

F5 (0.023, 0.045, 0.105) 

F6 (0.025, 0.048, 0.100) 

Step 8. Defuzzification process is applied for the normalized values in Table 3.11 by 

using Eq. (3.11). The defuzzified values are given in Table 3.12. 

Table 3.12 : Defuzzified values calculated from Table 3.11. 

Factors Defuzzified values 

F1 0.053 

F2 0.348 

F3 0.259 

F4 0.349 

F5 0.055 

F6 0.055 

Total 1.118 

Step 9. The final crisp weights of the factors are obtained to provide that the sum of 

the weights is equal to 1.0. Table 3.13 shows the final factor weights and the ranking 

of the factors. 

Table 3.13 : Final importance weights of the factors. 

Factors Final weights Ranking 

F1 Demography 0.0476 6 

F2 Health 0.3108 2 

F3 Security 0.2312 3 

F4 Education 0.3120 1 

F5 Traffic 0.0490 5 

F6 Culture 0.0494 4 
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Thus, the most important factor is determined as education factor with a weight of 

0.3120. Health factor follows it with a weight of 0.3108.  

 Sensitivity Analysis 

Sensitivity analysis was performed in order to see how the changes in the reliability 

degree of experts affect the results. Each time in the sensitivity analysis, only one of 

the experts reliability degrees were reduced and increased while the other experts’ 

reliability degrees’ were kept constant. In addition, the reliabilities of all three experts 

were changed. Totally 8 cases were conducted and results are presented in Tables 3.14-

3.17.  

In the first case, all restriction values of the first expert were kept constant and their 

reliabilities were reduced by only one level. Assessments of other experts’ reliabilities 

were not changed. This procedure was applied to all experts’ evaluations in cases 1-3. 

Finally, the restriction values of all experts were kept constant and all of their 

reliabilities were reduced by one level in case 4. 

In the cases 5-8, instead of the reductions in the first 4 cases, a level increase was made 

based on the present case. For example, in case 7, all restriction values of the Expert 3 

were kept constant and their reliabilities were increased by only one level. 

Table 3.14 : Reliability reduction, present case and reliability increase for only 

Expert 1. 

Only Expert-1 

Factors 
Reliability Reduction (Case 1) Present Case Reliability Increase (Case 5) 

Weights Rank Weights Rank Weights Rank 

F1 0.04749 6 0.04763 6 0.04781 6 

F2 0.31223 1 0.31081 2 0.31140 2 

F3 0.23268 3 0.23116 3 0.23105 3 

F4 0.30964 2 0.31202 1 0.31364 1 

F5 0.04882 5 0.04896 5 0.04864 5 

F6 0.04914 4 0.04942 4 0.04747 4 

Table 3.15 : Reliability reduction, present case and reliability increase for only 

Expert 2. 

Only Expert-2 

Factors 
Reliability Reduction (Case 2) Present Case Reliability Increase (Case 6) 

Weights Rank Weights Rank Weights Rank 

F1 0.04747 6 0.04763 6 0.04768 6 

F2 0.31231 1 0.31081 2 0.30947 2 

F3 0.22993 3 0.23116 3 0.23175 3 

F4 0.31203 2 0.31202 1 0.31260 1 

F5 0.04897 5 0.04896 5 0.04890 5 

F6 0.04929 4 0.04942 4 0.04960 4 
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Table 3.16 : Reliability reduction, present case and reliability increase for only 

Expert 3. 

Only Expert-3 

Factors 
Reliability Reduction (Case 3) Present Case Reliability Increase (Case 7) 

Weights Rank Weights Rank Weights Rank 

F1 0.04765 6 0.04763 6 0.04761 6 

F2 0.31131 2 0.31081 2 0.31047 2 

F3 0.23097 3 0.23116 3 0.23132 3 

F4 0.31160 1 0.31202 1 0.31227 1 

F5 0.04889 5 0.04896 5 0.04900 5 

F6 0.04957 4 0.04942 4 0.04932 4 

Table 3.17 : Reliability reduction, present case and reliability increase for all 

experts. 

All Experts 

Factors 
Reliability Reduction (Case 4) Present Case Reliability Increase (Case 8) 

Weights Rank Weights Rank Weights Rank 

F1 0.04736 6 0.04763 6 0.04785 6 

F2 0.31422 1 0.31081 2 0.30972 2 

F3 0.23124 3 0.23116 3 0.23180 3 

F4 0.30926 2 0.31202 1 0.31448 1 

F5 0.04877 5 0.04896 5 0.04861 5 

F6 0.04916 4 0.04942 4 0.04754 4 

When results of the one level reduction in reliability are examined, it is seen that the 

ranking of health and education factor, which are in the first and second place, replaced 

with each other while the ranking of other factors remains the same in first 4 cases 

except case 3. This result shows that the rankings are sensitive to the degree of 

reliability of the experts' evaluations, indicating the importance of Z-fuzzy numbers. 

When results of the one level increase in reliability are examined, it is seen that the 

ranking of all factors are the same. This result shows that the further increase of the 

reliability level of the experts does not change the results.  

When the reductions, current situation and increases in reliability levels were 

examined together on the basis of experts, it was observed that increasing or decreasing 

the reliability of Expert 3 by one level does not change the results. Reduction and 

increases in the reliability level performed by only Expert 1, only Expert 2 and all 

experts cause changes in the rankings in the same way. Therefore, it can be concluded 

that the evaluations of Expert 1 and Expert 2 are more effective on the results. This 

suggests that experts may have different weights in decision-making. Therefore, future 

studies may focus on this issue. 
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 Conclusion 

Sustainable development has become one of the most important issues in globalizing 

world. How to make cities, regions and the world livable has become very important 

for people because of increasing world population, changing living conditions, 

technological and industrial developments, increasing globalization etc. The 

significant increase in the urbanization ratio caused by these developments affects the 

economic, social and environmental conditions in the cities. This conditions have 

become known worldwide and everyone is more conscious about leaving a more 

sustainable world to future generations (Zinatizadeh et al., 2017). The sustainability of 

the world is directly proportional to the sustainability of the countries, regions and 

cities. 

In the literature, most studies on this subject are covered by qualitative research and 

there are few studies in the field of social sustainable development. This study handles 

the problem quantitatively which is one of the significant contribution of the study. 

This study presents a multi-experts MCDM approach for evaluating social sustainable 

development factors. This approach integrates Z-fuzzy number and Buckley’s fuzzy 

AHP. Since the proposed model enables to weight and rank social sustainable 

development factors, the results can give guidance to many sustainable development 

researches.  

The importance of this study is the first usage of the Z-fuzzy number for the weighting 

decision of social sustainable development factors. Another contribution is proposing 

the Z-fuzzy number integrated AHP method with multi-experts which can be useful in 

many problems and applications containing uncertainty. This study is also important 

because there are very few studies on Z-fuzzy AHP method in the literature. Besides, 

the Z-fuzzy number integrated AHP method allows the experts to include the degree 

of confidence of decision makers to the calculations, while the other fuzzy AHP 

methods do not. 

The proposed approach is successfully applied for weighting social sustainable 

development factors based on the experts’ evaluations. When looked at the application 

results, education factor is the first in the ranking with the weight of 0.3120 and 

demography is the last in the ranking with the weight of 0.0476.  
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In this study, a sensitivity analysis was conducted to examine the effect of reliability 

degrees on the results. The level of reliability of the evaluations made with Z-fuzzy 

numbers has been gradually changed, and thus whether the degree of confidence of the 

experts has made changes on the results has been examined. It is concluded from the 

change in the sensitivity analyzes results that it is important not only the evaluations 

of the decision makers but also how confident they are with their evaluations. This 

result also reveals the importance of Z-fuzzy numbers. 

For further research, weights of factors obtained from this study can be used in future 

sustainability assessment studies. It can also be compared with the results obtained by 

combining Z-fuzzy numbers with other MCDM methods. In addition, this study can 

be extended with the presented approach for weighting of all sustainable development 

factors. 
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 A NOVEL Z-FUZZY AHP&EDAS METHODOLOGY AND ITS 

APPLICATION TO WIND TURBINE SELECTION3 

We face decision-making processes at every moment of our lives. In the decision-

making process, people express their knowledge and thoughts via their personal 

opinions and comments. Decision makers (DMs) often use expressions containing 

doubt and uncertainty in their judgments. Expressions such as “not very clear”, 

“likely” etc. show the uncertainty of human thought and are frequently used in daily 

or business life. Zadeh (1965) introduced fuzzy set theory in order to model this 

ambiguity and subjectivity of human judgments and to use linguistic terms in the 

decision-making process. Thus, fuzzy set theory enables DMs to incorporate their 

uncertain information in the decision model. 

DMs who have knowledge and experience are often not exactly sure of their 

assessments when they are making a decision. The probability of correct diagnosis of 

even a doctor is not one hundred percent (Xian et al., 2019). For example, one doctor 

can say “you likely have anemia”. In the medical world, tests and investigations can 

be performed to confirm this diagnosis. However, in many fields that need decision-

making, subjective judgments cannot be confirmed by that way. Moreover, when 

quantitative data are used in decision making, they are treated to be exactly accurate 

since the sources' reliability level is not questioned. However, it would not be correct 

to assume the numerical data with 100% certainty due to factors such as the concept 

of time and measurement accuracy. The possible variations that may occur in 

numerical data can be modeled with different extensions of fuzzy set theory. However, 

when qualitative data consisting of uncertain judgments is used in decision making, it 

would be most logical to explicitly ask people about their confidence level in their 

judgments.  

 

 

 

3 This chapter is based on the paper “Tüysüz, N., & Kahraman, C. (2023). A Novel Z-Fuzzy 

AHP&EDAS Methodology and Its Application to Wind Turbine Selection. Informatica, 1-34.” 
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In these cases, the reliability of the experts’ fuzzy judgments must be considered and 

incorporated to the decision model. As a result, it is clear that restrictive information 

must be integrated with reliability information when especially linguistic expressions 

which represent subjective judgments are employed in the decision model.  

After the introduction of fuzzy set theory, fuzzy versions of classical MCDM methods 

have emerged to capture the DMs’ uncertain expressions (Chatterjee et al., 2018a). 

These methods have been expanded by ordinary fuzzy sets and their several 

extensions, such as type-2 fuzzy sets, intuitionistic fuzzy sets, hesitant fuzzy sets, 

Pythagorean fuzzy sets, and neutrosophic sets, to find the best representation of human 

thinking structure. Although the extensions of fuzzy sets are highly beneficial and 

skilled to vague information, their capabilities are limited to represent the reliability of 

the assigned fuzzy data. In order to overcome this limitation and to reach more accurate 

and effective results, reliability information must be incorporated into the decision 

processes.  

Z-fuzzy numbers have been proposed by Zadeh (2011) in order to deal with the 

vagueness and impreciseness of membership functions by incorporating a reliability 

function to the evaluation system as a complementary element. This can be commented 

as a similar effort by Zadeh to his type-2 fuzzy sets for preventing the criticisms that 

membership functions themselves are not fuzzy. Thus, the requirement of reliability 

information in the decision-making can be satisfied by the use of Z-fuzzy numbers. Z-

fuzzy numbers reflect the uncertainty in DMs’ mind through a reliability function, 

which express how confident they are about their evaluations. In the doctor example, 

whereas the word “anemia” represents restrictive information, the word “likely” 

represents reliability information. 

Evaluation Based on Distance from Average Solution (EDAS) is one of the recently 

developed MCDM methods. The EDAS method has been integrated with various 

fuzzy set extensions to better define the DMs’ uncertain judgments. However, these 

versions of the EDAS method such as intuitionistic fuzzy EDAS or picture fuzzy 

EDAS do not fully include the reliability information. To the best knowledge of the 

authors, the EDAS method has not been extended with Z-fuzzy numbers by any 

researcher. In the literature, there is only one paper trying to use linguistic Z-numbers 

in EDAS method, different from our study, for quality function deployment (Mao et 

al., 2021). In this study, EDAS method is extended to Z-fuzzy EDAS method using 

ordinary Z-fuzzy numbers to strengthen the reliability degree of the given decisions. 



43 

Main objectives of the study are as follows: 

i. The first aim of the study is to extend the traditional EDAS method to Z-fuzzy 

EDAS for the solution of MCDM problems under vagueness and 

impreciseness, which takes the reliability of the experts’ data into account.  

ii. The second aim of this study is to integrate Z-fuzzy AHP method with Z-fuzzy 

EDAS method in order to use the criteria weights obtained from AHP in the Z-

fuzzy EDAS method for ranking the alternatives.  

iii. The proposed methodology is applied to a wind turbine technology selection 

problem to present its practicality and efficiency. A comparative analysis is 

performed by using the same data with the Z-fuzzy TOPSIS method. 

This study contributes to the literature in four aspects:  

i. First, a novel Z-fuzzy EDAS have been developed for the first time by 

formulating it step by step using Z-fuzzy numbers. Thus, the literature gap on 

Z-fuzzy MCDM methods will be filled.  

ii. Second, to the best of our knowledge, it has not been developed a methodology 

integrating Z-fuzzy numbers and AHP & EDAS methods.  

iii. Third, all steps of the Z-fuzzy EDAS method have been performed by Z-fuzzy 

numbers which prevents the loss of information existing in the fuzzy data.  

iv. Finally, the proposed approach has been applied to a renewable energy problem 

in the literature illustrating how to use the proposed methodology step by step.  

The rest of the paper is organized as follows. Section 4.1 presents a literature review 

on EDAS and Z-fuzzy MCDM. Section 4.2 includes the preliminaries of Z-fuzzy 

numbers. Section 4.3 presents the proposed Z-fuzzy AHP method and Section 4.4 

gives the steps of the proposed Z-fuzzy EDAS method. Section 4.5 presents the 

application on wind turbine technology selection. Section 4.6 gives a comparative 

analysis using Z-fuzzy AHP&TOPSIS methodology. The last section presents the 

conclusions and future research directions. 

 Literature review on EDAS and Z-fuzzy MCDM 

Decision making problems arise when there is a need for comparison or selection from 

a set of alternatives, taking into account impact of multiple conflicting criteria. For this 

purpose, various MCDM methods are constructed to determine the best alternative 

with respect to all relevant criteria (Chatterjee et al., 2018b). Decisions taken in daily 
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life or business life may have different degrees of difficulty due to the factors such as 

the considered criteria, the relationship between them and the number of alternatives. 

However, when DMs need to evaluate the alternatives by considering many criteria; 

many factors such as the number of criteria and alternatives, criteria weights and 

conflicts between criteria further complicate the problem and need to be evaluated with 

more comprehensive methods. Therefore, MCDM methods are used in order to get 

more accurate decisions in solving more complex decision problems.  

EDAS method has been introduced to the literature by Keshavarz Ghorabaee et al. 

(2015) as a MCDM method. It is based on the measurement of the positive and 

negative distances from the average solution rather than calculating the negative ideal 

solution (NIS) and positive ideal solution (PIS) as in TOPSIS (Technique for Order 

Preference by Similarity to an Ideal Solution) (Chatterjee and Kar, 2016) and VIKOR 

(Vise Kriterijumska Optimizacija I Kompromisno Resenje) methods. Thus, unlike the 

TOPSIS and VIKOR methods, EDAS offers a solution based on how far the 

alternatives are from the average solution instead of PIS and NIS. 

After the introduction of EDAS method to the literature, it has been used in many 

application areas such as supplier selection, project selection, personnel selection, 

material selection and drug selection. Due to the fact that fuzzy set theory in decision 

making better defines human thoughts, various fuzzy extensions of EDAS method 

have been used more frequently than classical EDAS method in the literature. Table 

4.1 presents the classical, stochastic, neutrosophic, and fuzzy EDAS papers published 

in the literature and their application areas in historical order. 

Table 4.1 shows that the classical EDAS method has been developed by many 

extensions of ordinary fuzzy sets such as type-2 fuzzy sets, intuitionistic fuzzy sets and 

hesitant fuzzy sets. However, since it was only put forward in 2015, there is still a gap 

in the literature about the method and its usage areas.  

Since the fuzzy versions of the EDAS method proposed so far do not fully reflect the 

reliability information, another possible extension of the classical EDAS method is 

realized in this study through Z-fuzzy numbers, which represent the natural language 

with better descriptive ability. Thus, apart from the fuzzy extensions in Table 4.1, the 

EDAS method has been extended with Z-fuzzy numbers, which are composed of 

trapezoidal restriction function and triangular fuzzy reliability function.  



45 

Table 4.1 : Papers in the literature on EDAS method. 

Year Authors Extension of EDAS Application area 

2015 
Keshavarz 

Ghorabaee et al. 
Crisp EDAS Inventory classification 

2016b 
Keshavarz 

Ghorabaee et al. 
Fuzzy EDAS Supplier selection 

2017 Kahraman et al. Intuitionistic EDAS Solid waste disposal site selection 

2017a 
Keshavarz 

Ghorabaee et al. 
Stochastic EDAS 

Performance evaluation of bank 

branches 

2017 Stanujkic et al. Interval grey valued EDAS Contractor selection 

2017b 
Keshavarz 

Ghorabaee et al. 
Interval type-2 fuzzy EDAS 

Supplier selection with respect to 

environmental criteria 

2017c 
Keshavarz 

Ghorabaee et al. 
Interval type-2 fuzzy EDAS Evaluation of subcontractors 

2017 Peng and Liu 
Single valued  neutrosophic 

EDAS 

Evaluation of software 

development project 

2018 Stević et al. Fuzzy EDAS Carpenter manufacturer selection 

2018 Feng et al. Hesitant fuzzy EDAS Project selection 

2018c Chatterjee et al. Crisp EDAS Material selection 

2018 
Keshavarz 

Ghorabaee et al. 
Dynamic fuzzy EDAS Evaluation of subcontractors 

2018 Karabasevic et al. Crisp EDAS Personnel Selection 

2018 Liang et al. 
Integrated EDAS-ELECTRE 

method 
Cleaner Production Evaluation 

2018 Ilieva Interval type-2 fuzzy EDAS An illustrative example 

2018 
Karaşan and 

Kahraman 

Interval-valued neutrosophic 

EDAS 

Prioritization of the united nations 

national sustainable development 

goals 

2018 Gündoğdu et al. Hesitant fuzzy EDAS Hospital selection 

2019 Karaşan et al. 
Interval-valued neutrosophic 

EDAS 

Ranking of social responsibility 

projects 

2019b Zhang et al. 
Picture 2-tuple linguistic 

EDAS 
Green supplier selection 

2019 Schitea et al. Intuitionistic EDAS 
Selection of hydrogen collection 

site 

2019 Kundakcı Crisp EDAS Steam boiler selection 

2019 Wang et al. 
2-tuple linguistic neutrosophic 

EDAS 

Safety assessment of construction 

project 

2019 Stević et al. Fuzzy EDAS Supplier selection 

2020 Yanmaz et al. 
Interval-valued Pythagorean 

Fuzzy EDAS 
Car selection 

2020 Han and Wei Neutrosophic EDAS Investment evaluation 

2020 Liang  Intuitionistic Fuzzy EDAS 
Selection of energy-saving design 

projects 

2020 He et al. 
Pythagorean  2-tuple  

linguistic sets based EDAS 
Construction project selection 

2020 Darko and Liang  q-rang orthopair fuzzy EDAS Mobile payment platform selection 

2020 Li et al. q-rung orthopair fuzzy EDAS Refrigerator selection 

2020 Mishra et al. Intuitionistic fuzzy EDAS Disposal method selection 

2020 Tolga and Basar Fuzzy EDAS Hydroponic system evaluation 

2021 Wei et al. Probabilistic EDAS Supplier selection 

2021 Chinram et al. Intuitionistic fuzzy EDAS 
Geographical site selection for 

construction 

2021 
Özçelik and 

Nalkıran 

Trapezoidal 

bipolar Fuzzy numbers based 

EDAS 

Medical device selection 
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Table 4.1 (Continued): Papers in the literature on EDAS method. 

Year Authors Extension of EDAS Application area 

2021 Jana and Pal Bipolar fuzzy EDAS Construction company selection 

2021 Mao et al. Z-fuzzy EDAS 

Ranking of engineering 

characteristics in quality function 

deployment 

2022 Mitra  Crisp EDAS Selection of cotton fabric  

2022 Batool et al. 

EDAS method under 

Pythagorean probabilistic 

hesitant fuzzy information 

Drug selection for coronavirus 

disease 

2022 Garg and Sharaf Spherical fuzzy EDAS 
Supplier selection and industrial 

robot selection 

2022 Mishra et al. Fermatean fuzzy EDAS 

Evaluation 

of sustainable third‑party reverse 

logistics providers 

2022 Naz et al. 
2-tuple linguistic T-

spherical fuzzy EDAS 

Selecting of the best COVID-19 

vaccine 

2023 Liao et al. 
Probabilistic hesitant 

fuzzy EDAS 

Evaluation of the commercial 

vehicles and green suppliers 

2022 
Demircan and 

Acarbay 

Neutrosophic fuzzy 

EDAS 
Vendor selection 

2022 Rogulj et al. Intuitionistic fuzzy EDAS Prioritization of historic bridges 

2022 Huang et al. 
2-tuple spherical 

linguistic EDAS 

Selection of the optimal 

emergency response solution 

2022 Polat and Bayhan Fuzzy EDAS Supplier selection 

2022 Su et al. 
Probabilistic uncertain 

linguistic EDAS 

Green finance evaluation of 

enterprises 

2023a Akram et al. 
Linguistic Pythagorean 

fuzzy EDAS 

Selection of waste management 

technique  

Table 4.2 : A literature review on MCDM studies using Z-fuzzy numbers. 

Year Authors 
MCDM method used 

Z-fuzzy number 
Application areas 

2012b Kang et al. A proposed approach Vehicle selection 

2013 Azadeh et al. AHP 
Weighing the performance 

evaluation factors of universities 

2014 Xiao A proposed approach Evaluation of cloths 

2015 Sahrom and Dom AHP and DEA Risk assessment 

2015 Yaakob and Gegov TOPSIS Stock selection 

2016 Azadeh and Kokabi DEA Portfoilo selection 

2016 
Sadi-Nezhad and 

Sotoudeh-Anvari 
DEA Efficiency assessment 

2016 Yaakob and Gegov TOPSIS Stock selection 

2017 Peng and Wang A proposed approach ERP selection 

2017a Khalif et al. TOPSIS Performance assessment 

2017b Khalif et al. TOPSIS Staff selection 

2017 Wang et al. TODIM 
Evaluation of medical inquiry 

applications 

2018 Karthika and Sudha AHP Risk assessment  

2018 Forghani et al. TOPSIS Supplier selection 

2018 Chatterjee and Kar COPRAS Renewable energy selection 

2018 Aboutorab et al. Best-worst method Supplier development problem 

2018 Peng and Wang MULTIMOORA 
Evaluation of potential areas of air 

pollution 

2018 Shen and Wang VIKOR 
Selection of economic development 

plan 
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Table 4.2 (continued): A literature review on MCDM studies using Z-fuzzy 

numbers. 

Year Authors 
MCDM method used 

Z-fuzzy number 
Application areas 

2018 
Akbarian Saravi et 

al. 
DEA 

Evaluation of biomass power plants 

location 

2018 Kahraman and Otay AHP Power plant location selection 

2019 Gardashova TOPSIS Vehicle selection 

2019 Wang and Mao TOPSIS Supplier selection 

2019 Xian et al. TOPSIS 
Numerical examples on investment and 

medical diagnosis 

2019 Kahraman et al. AHP Evaluation of law offices 

2019 Krohling et al. TODIM and TOPSIS Case studies from literature 

2019 Shen et al. MABAC 
Selection of economy development 

program 

2020 
Yildiz and 

Kahraman 
AHP 

Prioritization of social sustainable 

development factors 

2020 Qiao et al. PROMETHEE Travel plan selection 

2020 Das et al. VIKOR 
Prioritazing risk of hazards for crane 

operations. 

2020 Jiang et al. DEMATEL Hospital performance measurement 

2020 
Mohtashami and 

Ghiasvand 
DEA 

Evaluation of banks and financial 

institutes 

2020a Liu et al. ANP and TODIM 
Evaluation of suppliers for the nuclear 

power industry 

2020 
Tüysüz and 

Kahraman 
AHP 

Evaluation of social sustainable 

development factors 

2020 
Tüysüz and 

Kahraman 
CODAS Supplier selection 

2021 Akhavein et al. 
DEMATEL and 

VIKOR 
Evaluation of projects 

2021 Zhu and Hu DEMATEL 

Evaluation of sustainable value 

propositions for smart product‐service 

systems 

2021 Wang et al. DEMATEL 
Evaluation of human error probability 

for cargo loading operations. 

2021 Mao et al. EDAS 

Ranking of engineering 

characteristics in quality function 

deployment 

2021 Sergi and Ucal Sari AHP and WASPAS Evaluation of public services 

2021 Karaşan et al. DEMATEL Blockchain risk assessment 

2022 Peng et al. MULTIMOORA Hotel selection 

2022 İlbahar et al. 
DEMATEL and 

VIKOR 

Evaluation of hydrogen energy storage 

systems 

2022 Sari and Tüysüz AHP and TOPSIS 
Covid-19 risk assessment of 

occupations 

2022 Liu et al. ELECTRE II Selection of logistics provider 

2022 Rahmati et al. 
SWARA and 

WASPAS 
Prioritization of financial risk factors 

2023 Gai et al. MULTIMOORA Green supplier selection 

2022 RezaHoseini et al. AHP and DEA 
Performance evaluation of sustainable 

projects 

2023 Božanić et al. MABAC 
Selection of the best contingency 

strategy 
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After Z-fuzzy numbers were introduced to the literature, they have been integrated 

with several MCDM methods such as AHP (Azadeh et al., 2013; Sergi and Ucal Sari, 

2021; Tüysüz and Kahraman, 2020; Kahraman and Otay, 2018), TOPSIS (Krohling et 

al., 2019), VIKOR (Shen and Wang, 2018), and WASPAS (Sergi and Ucal Sari, 2021). 

Table 4.2 presents the Z-fuzzy number integrated MCDM methods based on their 

publication years. 

As can be seen in Table 4.2, Z-fuzzy numbers are integrated with different MCDM 

methods and found different application areas. However, there is still a significant 

literature gap regarding the combined use of Z-fuzzy numbers and MCDM methods. 

This study contributes to fill this literature gap by integrating the EDAS method with 

Z-fuzzy numbers.  

 Z-Fuzzy Numbers: Preliminaries 

DMs are often not 100% confident in their assignments for membership degrees. 

Hence, in addition to assigning a membership degree/function 𝜇𝐴̃(𝑥), it makes sense 

to also assign a reliability degree 𝜇𝐵̃(𝑥)  so that DMs can reflect their confidence to 

the membership. The corresponding pairs (𝜇𝐴̃(𝑥), 𝜇𝐵̃(𝑥)) is known as a Z-fuzzy 

number which introduced by Zadeh (2011). 

A Z-fuzzy number is an ordered pair of fuzzy numbers, 𝑍(𝐴̃, 𝐵̃) as given in Figure 4.1. 

The first component 𝐴̃ is a restriction function whereas the second component 𝐵̃ is a 

measure of reliability for the first component.  

 

Figure 4.1 : A simple Z-fuzzy number, 𝑍(𝐴̃, 𝐵̃) 

The concept of a Z-fuzzy number is intended to provide a basis for computation with 

ordinary fuzzy numbers which are not reliable.  

Definition 4.1. Let a fuzzy set 𝐴̃ be defined on a universe X may be given as: 𝐴̃ =

{〈x, μÃ(x)〉 |xϵX} where μÃ: X → [0,1] is the membership function 𝐴̃. The membership 
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value μÃ(x) describes the degree of belongingness of x ∈ X in 𝐴̃. The Fuzzy 

Expectation of a fuzzy set is given in Eq. (4.1). 

𝐸𝐴(𝑥) = ∫ 𝑥𝜇𝐴(𝑥) 𝑑𝑥
 

𝑥
              (4.1) 

which is not the Expectation of Probability Space.  

Definition 4.2:  Converting Z-fuzzy number to Regular Fuzzy Number (Kang et al., 

2012a) 

Consider a Z-fuzzy number 𝑍 = (𝐴,̃ 𝐵̃), which is described by Figure 4.1. The figure 

on the left is the part of restriction, and the figure on the right is the part of reliability. 

Let 𝐴̃ = {〈𝑥, 𝜇𝐴̃(𝑥)〉|𝜇(𝑥) ∈ [0,1]} and 𝐵̃ = {〈𝑥, 𝜇𝐵̃(𝑥)〉|𝜇(𝑥) ∈ [0,1]}, 𝜇𝐴̃(𝑥) is a 

trapezoidal membership function, 𝜇𝐵̃(𝑥) is a triangular membership function. 

(1) Convert the reliability function into a crisp number using Eq. (4.2). 

    𝛼 =
∫𝑥𝜇𝐵̃(𝑥)𝑑𝑥

∫𝜇𝐵̃(𝑥)𝑑𝑥
                          (4.2) 

where ∫  denotes an algebraic integration. 

Alternatively, the defuzzification equation (𝑎1 + 2 ∗ 𝑎2 + 2 ∗ 𝑎3 + 𝑎4)/6 for 

symmetrical trapezoidal fuzzy numbers and (𝑎1 + 2 ∗ 𝑎2 + 𝑎3)/4 for symmetrical 

triangular fuzzy numbers can be used. 

(2) Weigh the restriction function with the crisp value of the reliability function 

(𝛼). The weighted restriction number is denoted in Eq. (4.3). 

𝑍̃𝛼 = {〈𝑥, 𝜇𝐴̃𝛼(𝑥)〉|𝜇𝐴̃𝛼(𝑥) = 𝛼𝜇𝐴̃(𝑥), 𝜇(𝑥) ∈ [0,1]}                 (4.3) 

(3) Convert the weighted restriction number to ordinary fuzzy number using Eq. 

(4.4). 

𝑍̃′ = {〈𝑥, 𝜇𝑍̃′(𝑥)〉|𝜇𝑍̃′(𝑥) = 𝜇𝐴̃ (
𝑥

√𝛼
) , 𝜇(𝑥) ∈ [0,1]}                     (4.4) 

𝑍̃′ has the same Fuzzy Expectation with 𝑍̃𝛼, and they are equal with respect to Fuzzy 

Expectation, which can be denoted by Figure 4.2. 

 

Figure 4.2 : Ordinary fuzzy number converted from Z-fuzzy number. 

√𝛼𝑎4 √𝛼𝑎3 √𝛼𝑎2 √𝛼𝑎1 

𝑍̃′ 

1 

0 

𝜇(𝑥) 

𝑥 
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If the restriction function and reliability function are defined as in Figure 4.3, the 

calculations are modified as follows:  

Let 𝐴̃𝛿 = {〈𝑥, (𝜇𝐴̃(𝑥);  𝛿)〉|𝜇(𝑥) ∈ [0,1]} and 𝐵̃𝛽 = {〈𝑥, (𝜇𝐵̃(𝑥);  𝛽)〉|𝜇(𝑥) ∈ [0,1]}, 

𝜇𝐴̃
𝛿(𝑥) is a trapezoidal membership function, 𝜇

𝐵̃
𝛽(𝑥) is a triangular membership 

function. 

 

 

 

 

  

 

 

 

 

 

 

Figure 4.3 : A simple Z̃δ,β number, 𝑍̃𝛿,𝛽 = (𝐴̃𝛿 , 𝐵̃𝛽) 

In this case, restriction and reliability functions are given in Eqs. (4.5-4.6), 

respectively. The reliability membership function in Eq. (4.6) is substituted into the 

defuzzification formula (Eq. (4.2)); so that, Eq. (4.7) is obtained. 

𝜇𝐴̃
𝛿(𝑥) =

{
 
 

 
 
𝑥−𝑎1

𝑎2−𝑎1
 𝛿 , 𝑖𝑓𝑎1 ≤ 𝑥 ≤ 𝑎2

𝛿,             𝑖𝑓𝑎2 ≤ 𝑥 ≤ 𝑎3
𝑎4−𝑥

𝑎4−𝑎3
 𝛿, 𝑖𝑓𝑎3 ≤ 𝑥 ≤ 𝑎4

0,               𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

               (4.5) 

𝜇
𝐵̃
𝛽(𝑥) =  

{
 

 
𝑥−𝑏1

𝑏2−𝑏1
 𝛽 , 𝑖𝑓𝑏1 ≤ 𝑥 ≤ 𝑏2 

𝑏3−𝑥

𝑏3−𝑏2
 𝛽 , 𝑖𝑓𝑏2 ≤ 𝑥 ≤ 𝑏3 

0,               𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                 (4.6) 

Thus, we have  

√𝛼 = √
∫𝑥𝜇

𝐵̃

𝛽(𝑥) 𝑑𝑥

∫𝜇
𝐵̃

𝛽(𝑥) 𝑑𝑥
               (4.7) 

Then, the weighted  𝑍̃𝛿,𝛽  number can be denoted as in Eq.(4.8). 

𝑍̃𝛿,𝛽
𝛼 = {〈𝑥, 𝜇𝐴̃𝛼

𝛿 (𝑥)〉|𝜇𝐴̃𝛼
𝛿 (𝑥) =

∫𝑥𝜇
𝐵̃

𝛽(𝑥)𝑑𝑥

∫𝜇
𝐵̃

𝛽(𝑥)𝑑𝑥
𝜇𝐴̃
𝛿(𝑥), 𝜇(𝑥) ∈ [0,1]}             (4.8) 

𝑏3 𝑏2 𝑏1 

𝐵̃𝛽 

β 

0 

𝜇𝐵̃(𝑥) 

𝑥 
 𝑎4 𝑎3 𝑎2 𝑎1 

𝐴̃𝛿 

 

δ 

0 

𝜇𝐴̃(𝑥) 

𝑥 
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The ordinary fuzzy number converted from Z-fuzzy number can be given as in Eq. 

(4.9) 

  𝑍̃𝛿,𝛽
′ = {〈𝑥, 𝜇𝑧′

𝛿 (𝑥)〉|𝜇𝑧′
𝛿 (𝑥) = 𝜇𝐴̃

𝛿 (𝑥 
∫𝜇

𝐵̃

𝛽(𝑥)𝑑𝑥

∫𝑥𝜇
𝐵̃

𝛽(𝑥)𝑑𝑥
) , 𝜇(𝑥) ∈ [0,1]}            (4.9) 

 

 Z-Fuzzy AHP 

The AHP method is one of the most widely used MCDM methods to calculate the 

criteria weights and there are several versions of it (Chatterjee and Kar, 2017). Due to 

the nature, it is usual for DMs to have hesitation while making pairwise comparisons, 

and in these situations, it is expected that they will not be absolutely sure about their 

evaluations. These preferences can be included in the decision methods by modeling 

the DMs' thinking structure under the concept of Z-fuzzy numbers. Therefore, in this 

study, to obtain criteria weights, it is suggested to collect DMs' judgments using Z-

fuzzy numbers integrated AHP method rather than commonly used fuzzy versions of 

AHP method. 

To calculate criteria weights, the steps of the Z-fuzzy AHP method are presented in 

the following:  

Step 1. Determine the criteria set of the decision problem. Figure 4.4 can be used to 

establish the hierarchical structure of goal, main criteria and sub-criteria. Level 1 of 

the hierarchy represents a goal whereas Level 2 and Level 3 are composed of main-

criteria and sub-criteria, respectively.  

 
 

Figure 4.4 : Hierarchical structure for criteria. 

Step 2. Determine the linguistic terms and their corresponding Z-fuzzy restriction and 

reliability numbers. Collect the linguistic pairwise comparison evaluations from each 

DM for the main criteria and sub-criteria by using questionnaires. Then, Z-fuzzy 

pairwise comparison matrices are constructed based on these evaluations. Each DM 

can use Z-fuzzy linguistic scales given in Tables 4.3-4.4 for his/her assessments, 

respectively.  
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Let each decision maker (𝐷𝑀𝑘) assign an independent assessment for any pairwise 

comparison as shown in Eq. (4.10): 

𝑍𝐷𝑀𝑘 = (𝐴̃, 𝐵̃) = ((𝑎1
𝐷𝑀𝑘 , 𝑎2

𝐷𝑀𝑘, 𝑎3
𝐷𝑀𝑘), (𝑏1

𝐷𝑀𝑘, 𝑏2
𝐷𝑀𝑘, 𝑏3

𝐷𝑀𝑘))            (4.10) 

 

Table 4.3 : Triangular Restriction Scale for pairwise comparisons of criteria. 

Linguistic Terms Abbr. Restriction function 

Equally Important EI (1,1,1;1) 

Slightly Important SLI (1,1,3;1) 

Moderately Important MI (1,3,5;1) 

Strongly Important STI (3,5,7;1) 

Very Strongly Important VSTI (5,7,9;1) 

Certainly Important CI (7,9,10;1) 

Absolutely Important AI (9,10,10;1) 

Table 4.4 : Triangular Reliability Scale. 

Linguistic Terms Abbr. Reliability function 

Certainly Reliable CR (1,1,1;1) 

Very Strongly Reliable VSR (0.8,0.9,1;1) 

Strongly Reliable SR (0.7,0.8,0.9;1) 

Very Highly Reliable VHR (0.6,0.7,0.8;1) 

Highly Reliable HR (0.5,0.6,0.7;1) 

Fairly Reliable FR (0.4,0.5,0.6;1) 

Weakly Reliable WR (0.3,0.4,0.5;1) 

Very Weakly Reliable VWR (0.2,0.3,0.4;1) 

Strongly Unreliable SU (0.1,0.2,0.3;1), 

Absolutely Unreliable AU (0,0.1,0.2;1) 

Step 3. Calculate the consistency ratio (CR) of each Z-fuzzy pairwise comparison 

matrix obtained by the DMs’ assessments. Defuzzify the restriction functions of Z-

fuzzy numbers in the pairwise comparison matrix using Eq. (4.2) and obtain the crisp 

pairwise comparison matrix. Apply Saaty’s classical consistency procedure and check 

if CR is less than 0.1, which is accepted as the consistency limit in the literature (Saaty, 

1980). 

Step 4. Apply the aggregation procedure for DMs' Z-fuzzy assessments. Each element 

of restriction and reliability functions of Z-fuzzy assessments is aggregated by using 

geometric mean and one Z-fuzzy decision matrix is obtained. 

Assume three DMs assign the following terms: 

𝑍̃𝐷𝑀1 = (𝐴̃, 𝐵̃) = ((𝑎1
𝐷𝑀1, 𝑎2

𝐷𝑀1, 𝑎3
𝐷𝑀1), (𝑏1

𝐷𝑀1, 𝑏2
𝐷𝑀1, 𝑏3

𝐷𝑀1)) 

𝑍̃𝐷𝑀2 = (𝐴̃, 𝐵̃) = ((𝑎1
𝐷𝑀2, 𝑎2

𝐷𝑀2, 𝑎3
𝐷𝑀2), (𝑏1

𝐷𝑀2, 𝑏2
𝐷𝑀2, 𝑏3

𝐷𝑀2)) 

𝑍̃𝐷𝑀3 = (𝐴̃, 𝐵̃) = ((𝑎1
𝐷𝑀3, 𝑎2

𝐷𝑀3, 𝑎3
𝐷𝑀3), (𝑏1

𝐷𝑀3, 𝑏2
𝐷𝑀3, 𝑏3

𝐷𝑀3)) 
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Aggregation of these three DMs’ assessments is made by using the geometric mean 

operator given in Eqs. (4.11-4.12): 

𝑍̃𝐴𝑔𝑔 = (𝐴̃𝐴𝑔𝑔, 𝐵̃𝐴𝑔𝑔) = [

𝑐̃11 𝑐̃12 … 𝑐̃1𝑚
𝑐̃21 𝑐̃22 … 𝑐̃2𝑚
⋮ ⋮ ⋱ ⋮
𝑐̃𝑚1 𝑐̃𝑚2 … 𝑐̃𝑚𝑚

]                      (4.11) 

where 

𝑐̃𝑖𝑗 =

(

 
(√𝑎1,𝑖𝑗

𝐷𝑀1 ∗ 𝑎1,𝑖𝑗
𝐷𝑀2 ∗ 𝑎1,𝑖𝑗

𝐷𝑀33
, √𝑎2,𝑖𝑗

𝐷𝑀1 ∗ 𝑎2,𝑖𝑗
𝐷𝑀2 ∗ 𝑎2,𝑖𝑗

𝐷𝑀33
, √𝑎3,𝑖𝑗

𝐷𝑀1 ∗ 𝑎3,𝑖𝑗
𝐷𝑀2 ∗ 𝑎3,𝑖𝑗

𝐷𝑀33
) ,

(√𝑏1,𝑖𝑗
𝐷𝑀1 ∗ 𝑏1,𝑖𝑗

𝐷𝑀2 ∗ 𝑏1,𝑖𝑗
𝐷𝑀33

, √𝑏2,𝑖𝑗
𝐷𝑀1 ∗ 𝑏2,𝑖𝑗

𝐷𝑀2 ∗ 𝑏2,𝑖𝑗
𝐷𝑀33

, √𝑏3,𝑖𝑗
𝐷𝑀1 ∗ 𝑏3,𝑖𝑗

𝐷𝑀2 ∗ 𝑏3,𝑖𝑗
𝐷𝑀33

)
)

  

i=1, 2, …, m;   j=1, 2, …, m.                        (4.12) 

Step 5. Calculate the alpha (𝛼) from the reliability components of the aggregated 

pairwise comparison matrix by using Eq. (4.13). The reciprocal reliability values are 

the multiplicative inverse of the calculated 𝛼 values.  

𝛼𝑖𝑗 =

(√𝑏1,𝑖𝑗
𝐷𝑀1 ∗ 𝑏1,𝑖𝑗

𝐷𝑀2 ∗ 𝑏1,𝑖𝑗
𝐷𝑀33

+ 2 ∗ √𝑏2,𝑖𝑗
𝐷𝑀1 ∗ 𝑏2,𝑖𝑗

𝐷𝑀2 ∗ 𝑏2,𝑖𝑗
𝐷𝑀33

+ √𝑏3,𝑖𝑗
𝐷𝑀1 ∗ 𝑏3,𝑖𝑗

𝐷𝑀2 ∗ 𝑏3,𝑖𝑗
𝐷𝑀33

) 

4
 

i=1, 2, …, m;   j=1, 2, …, m.                           (4.13) 

Step 6. Convert the Z-fuzzy numbers (𝑍̃𝐴𝑔𝑔) to ordinary fuzzy numbers (𝑂̃) using the 

matrix obtained in Step 5 by using Eqs.  (4.14) and (4.15).  

𝑂̃ = [

𝑜̃11 𝑜̃12 … 𝑜̃1𝑚
𝑜̃21 𝑜̃22 … 𝑜̃2𝑚
⋮ ⋮ ⋱ ⋮

𝑜̃𝑚1 𝑜̃𝑚2 … 𝑜̃𝑚𝑚

]                      (4.14) 

where  

𝑜̃𝑖𝑗 =

(

 
√𝑎1,𝑖𝑗

𝐷𝑀1 ∗ 𝑎1,𝑖𝑗
𝐷𝑀2 ∗ 𝑎1,𝑖𝑗

𝐷𝑀33

√𝛼𝑖𝑗, √𝑎2,𝑖𝑗
𝐷𝑀1 ∗ 𝑎2,𝑖𝑗

𝐷𝑀2 ∗ 𝑎2,𝑖𝑗
𝐷𝑀33

√𝛼𝑖𝑗 ,

√𝑎3,𝑖𝑗
𝐷𝑀1 ∗ 𝑎3,𝑖𝑗

𝐷𝑀2 ∗ 𝑎3,𝑖𝑗
𝐷𝑀33

√𝛼𝑖𝑗 )

           (4.15) 

Step 7. Apply the ordinary fuzzy AHP method using Buckley's method (Buckley, 

1985). 

Step 7.1. Calculate the geometric mean vector (𝐺𝑀̃) whose elements are given 

in Eqs. (4.16-4.17). Thus, 𝑚× 1 matrix is obtained from 𝑚 ×𝑚 matrix. 
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𝐺𝑀̃ = [

𝑔̃11
𝑔̃21
⋮

𝑔̃𝑚1

]                       (4.16) 

where 

𝑔̃𝑖1 =

(

 
 
 √∏ (√𝑎1,𝑖𝑗

𝐷𝑀1 ∗ 𝑎1,𝑖𝑗
𝐷𝑀2 ∗ 𝑎1,𝑖𝑗

𝐷𝑀33

√𝛼𝑖𝑗)
𝑚
𝑗=1

𝑚

, √∏ (√𝑎2,𝑖𝑗
𝐷𝑀1 ∗ 𝑎2,𝑖𝑗

𝐷𝑀2 ∗ 𝑎2,𝑖𝑗
𝐷𝑀33

√𝛼𝑖𝑗)
𝑚
𝑗=1

𝑚

,

√∏ (√𝑎3,𝑖𝑗
𝐷𝑀1 ∗ 𝑎3,𝑖𝑗

𝐷𝑀2 ∗ 𝑎3,𝑖𝑗
𝐷𝑀33

√𝛼𝑖𝑗)
𝑚
𝑗=1

𝑚

)

 
 
 

 

i=1,2,…,m.                             (4.17) 

 Step 7.2. Sum the values in 𝐺𝑀̃ vector using Eq. (4.18). 

𝑆̃ =

(

 
 
 
 
 
 
 
 ∑ ( √∏ (√𝑎1,𝑖𝑗

𝐷𝑀1 ∗ 𝑎1,𝑖𝑗
𝐷𝑀2 ∗ 𝑎1,𝑖𝑗

𝐷𝑀33
√𝛼𝑖𝑗)

𝑚
𝑗=1

𝑚

)𝑚
𝑖=1 ,

 ∑ ( √∏ (√𝑎2,𝑖𝑗
𝐷𝑀1 ∗ 𝑎2,𝑖𝑗

𝐷𝑀2 ∗ 𝑎2,𝑖𝑗
𝐷𝑀33

√𝛼İ𝑗)
𝑚
𝑗=1

𝑚

)𝑚
𝑖=1 ,

∑ ( √∏ (√𝑎3,𝑖𝑗
𝐷𝑀1 ∗ 𝑎3,𝑖𝑗

𝐷𝑀2 ∗ 𝑎3,𝑖𝑗
𝐷𝑀33

√𝛼𝑖𝑗)
𝑚
𝑗=1

𝑚

)𝑚
𝑖=1

)

 
 
 
 
 
 
 
 

                          (4.18) 

Step 7.3. Apply fuzzy division operation to obtain relative fuzzy weights 

vector (𝑅̃) of criteria as given in Eqs. (4.19-4.20).  

𝑅̃ = [

𝑟̃11
𝑟̃21
⋮
𝑟̃𝑚1

] =

[
 
 
 
𝑔̃11 𝑆̃⁄

𝑔̃21 𝑆̃⁄
⋮

𝑔̃𝑚1 𝑆̃⁄ ]
 
 
 

                       (4.19) 

where 

𝑟̃𝑖1 =

(

 
 
 
 
 
 
 
 
 
 √∏ (√𝑎1,𝑖𝑗

𝐷𝑀1 ∗ 𝑎1,𝑖𝑗
𝐷𝑀2 ∗ 𝑎1,𝑖𝑗

𝐷𝑀33
√𝛼𝑖𝑗)

𝑚
𝑗=1

𝑚

∑ √∏ (√𝑎3,𝑖𝑗
𝐷𝑀1 ∗ 𝑎3,𝑖𝑗

𝐷𝑀2 ∗ 𝑎3,𝑖𝑗
𝐷𝑀33

√𝛼𝑖𝑗)
𝑚
𝑗=1

𝑚
𝑚
𝑖=1

,

√∏ (√𝑎2,𝑖𝑗
𝐷𝑀1 ∗ 𝑎2,𝑖𝑗

𝐷𝑀2 ∗ 𝑎2,𝑖𝑗
𝐷𝑀33

√𝛼𝑖𝑗)
𝑚
𝑗=1

𝑚

∑ √∏ (√𝑎2,𝑖𝑗
𝐷𝑀1 ∗ 𝑎2,𝑖𝑗

𝐷𝑀2 ∗ 𝑎2,𝑖𝑗
𝐷𝑀33

√𝛼𝑖𝑗)
𝑚
𝑗=1

𝑚
𝑚
𝑖=1

,

√∏ (√𝑎3,𝑖𝑗
𝐷𝑀1 ∗ 𝑎3,𝑖𝑗

𝐷𝑀2 ∗ 𝑎3,𝑖𝑗
𝐷𝑀33

√𝛼𝑖𝑗)
𝑚
𝑗=1

𝑚

∑ √∏ (√𝑎1,𝑖𝑗
𝐷𝑀1 ∗ 𝑎1,𝑖𝑗

𝐷𝑀2 ∗ 𝑎1,𝑖𝑗
𝐷𝑀33

√𝛼𝑖𝑗)
𝑚
𝑗=1

𝑚
𝑚
𝑖=1

)

 
 
 
 
 
 
 
 
 
 

 

 i=1,2,…,m.                             (4.20) 
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Step 7.4. Defuzzify the relative fuzzy weights vector (𝑅̃) using Eq. (4.21).  

𝑑𝑗

=
(

 
 
 
 
 
 
 
 
 
 √∏ (√𝑎1,𝑖𝑗

𝐷𝑀1 ∗ 𝑎1,𝑖𝑗
𝐷𝑀2 ∗ 𝑎1,𝑖𝑗

𝐷𝑀33

√𝛼𝑖𝑗)
𝑚
𝑗=1

𝑚

∑ √∏ (√𝑎3,𝑖𝑗
𝐷𝑀1 ∗ 𝑎3,𝑖𝑗

𝐷𝑀2 ∗ 𝑎3,𝑖𝑗
𝐷𝑀33

√𝛼𝑖𝑗)
𝑚
𝑗=1

𝑚
𝑚
𝑖=1

+ 2 ∗

√∏ (√𝑎2,𝑖𝑗
𝐷𝑀1 ∗ 𝑎2,𝑖𝑗

𝐷𝑀2 ∗ 𝑎2,𝑖𝑗
𝐷𝑀33

√𝛼𝑖𝑗)
𝑚
𝑗=1

𝑚

∑ √∏ (√𝑎2,𝑖𝑗
𝐷𝑀1 ∗ 𝑎2,𝑖𝑗

𝐷𝑀2 ∗ 𝑎2,𝑖𝑗
𝐷𝑀33

√𝛼𝑖𝑗)
𝑚
𝑗=1

𝑚
𝑚
𝑖=1

+

√∏ (√𝑎3,𝑖𝑗
𝐷𝑀1 ∗ 𝑎3,𝑖𝑗

𝐷𝑀2 ∗ 𝑎3,𝑖𝑗
𝐷𝑀33

√𝛼𝑖𝑗)
𝑚
𝑗=1

𝑚

∑ √∏ (√𝑎1,𝑖𝑗
𝐷𝑀1 ∗ 𝑎1,𝑖𝑗

𝐷𝑀2 ∗ 𝑎1,𝑖𝑗
𝐷𝑀33

√𝛼𝑖𝑗)
𝑚
𝑗=1

𝑚
𝑚
𝑖=1

)

 
 
 
 
 
 
 
 
 
 

4
 

j=1,2,…,m.                            (4.21) 

Step 7.5. Normalize the defuzzified weights to satisfy ∑𝑤𝑗 = 1 using Eq. 

(4.22). Thus, the weights of the criteria are obtained as crisp values. 

𝑤𝑗 =
𝑑𝑗

∑ 𝑑𝑗 
𝑚
𝑗=1

 j=1,2,…,m.                      (4.22) 

Step 8. Apply Steps (3-7) for the other Z-fuzzy pairwise comparison matrices of DMs 

for the sub-criteria under each main criterion and obtain the weight of each sub-

criterion 𝑗́ , 𝑗́ = 1,2, … , 𝑝. 

𝑤𝑗𝑗̇́ where  𝑗 = 1,2, … ,𝑚 and  𝑗́ = 1,2, … , 𝑝 for each j. 

Step 9. Combine the local sub-criteria weights (𝑤𝑗𝑗̇́) and main criteria weights (𝑤𝑗) in 

order to obtain global criteria weights (𝑤𝑗𝑗́
𝐺) as in Eq. (4.23).  

𝑤𝑗𝑗́
𝐺 = 𝑤𝑗 ∗ 𝑤𝑗𝑗̇́    

𝑗 = 1,2, … ,𝑚 and  𝑗́ = 1,2, … , 𝑝 for each j.                      (4.23) 

 Z-Fuzzy EDAS 

The first fuzzy EDAS method is introduced by Keshavarz Ghorabaee et al. (2016b) 

for the solution of MCDM problems under uncertainty. It is integrated with various 

fuzzy set extensions to model the vagueness and impreciseness. In this study, due to 

the fact that these extensions cannot completely combine the reliability information 

with the EDAS method, it is extended to Z-fuzzy EDAS method by using ordinary Z-

fuzzy numbers. This method allows to define the DMs' preferences over the 

alternatives with their degree of confidence, which creates a more comprehensive and 
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flexible decision-making environment. Z-Fuzzy EDAS method is presented as 

follows: 

Step 1. Determine the evaluation criteria 𝐶 = (𝐶1, 𝐶2, …𝐶𝑚) and alternatives 𝐴 =

(𝐴1, 𝐴2, …𝐴𝑛) for the decision problem. 

Step 2. Construct the fuzzy decision matrix (𝐷̃) using Z-fuzzy numbers, shown as in 

Eq. (4.24): 

𝐷̃ = [𝑥̃𝑖𝑗]𝑛×𝑚 = 

𝐴1
𝐴2
⋮
𝐴𝑛

[

𝑥̃11 𝑥̃12 … 𝑥̃1𝑚
𝑥̃21 𝑥̃22 … 𝑥̃2𝑚
⋮ ⋮    ⋱    ⋮  
𝑥̃𝑛1 𝑥̃𝑛2 … 𝑥̃𝑛𝑚

]                              (4.24) 

where 𝑥̃𝑖𝑗  ≥ 0 and it denotes the Z-fuzzy performance value of 𝑖th alternative on 𝑗th 

criterion (𝑖 ∈ {1,2, … , 𝑛} 𝑎𝑛𝑑 𝑗 ∈ {1,2, … ,𝑚}). 

Z-fuzzy linguistic restriction scale presented in Table 4.5 and the reliability scale in 

Table 4.4 are used for DMs’ assessments in the decision matrix. 

Table 4.5 : Z-fuzzy Restriction Scale for evaluation of alternatives. 

Linguistic Terms Abbr. Restriction function 

Very Poor VP (1/4,1/2,1/2,1;1) 

Poor P (1/2,1,1,3;1) 

Medium Poor MP (1,3,3,5;1) 

Fair F (3,5,5,7;1) 

Medium Good MG (5,7,7,9;1) 

Good G (7,9,9,10;1) 

Very Good VG (9,10,10,10;1) 

Step 3. Aggregate the Z-fuzzy evaluation matrices of all DMs. Aggregation of three 

DMs’ assessments is made by using the geometric mean given in Eqs. (4.25-4.26): 

𝑍̃
𝐷̃
𝐴𝑔𝑔

= [

𝑥̃11 𝑥̃12 … 𝑥̃1𝑚
𝑥̃21 𝑥̃22 … 𝑥̃2𝑚
⋮ ⋮    ⋱    ⋮  
𝑥̃𝑛1 𝑥̃𝑛2 … 𝑥̃𝑛𝑚

]                                    (4.25) 

where 

𝑥̃𝑖𝑗 =

(

 
(√𝑎1,𝑖𝑗

𝐷𝑀1 ∗ 𝑎1,𝑖𝑗
𝐷𝑀2 ∗ 𝑎1,𝑖𝑗

𝐷𝑀33
, √𝑎2,𝑖𝑗

𝐷𝑀1 ∗ 𝑎2,𝑖𝑗
𝐷𝑀2 ∗ 𝑎2,𝑖𝑗

𝐷𝑀33
, √𝑎3,𝑖𝑗

𝐷𝑀1 ∗ 𝑎3,𝑖𝑗
𝐷𝑀2 ∗ 𝑎3,𝑖𝑗

𝐷𝑀33
) ,

(√𝑏1,𝑖𝑗
𝐷𝑀1 ∗ 𝑏1,𝑖𝑗

𝐷𝑀2 ∗ 𝑏1,𝑖𝑗
𝐷𝑀33

, √𝑏2,𝑖𝑗
𝐷𝑀1 ∗ 𝑏2,𝑖𝑗

𝐷𝑀2 ∗ 𝑏2,𝑖𝑗
𝐷𝑀33

, √𝑏3,𝑖𝑗
𝐷𝑀1 ∗ 𝑏3,𝑖𝑗

𝐷𝑀2 ∗ 𝑏3,𝑖𝑗
𝐷𝑀33

)
)

  

i=1, 2, …, n;   j=1, 2, …, m.                                      (4.26) 

Step 4. Calculate the Z-fuzzy average values (𝐴𝑉̃) by using Eqs. (4.27-4.28). 
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𝐴𝑉̃ =  [𝐴𝑉̃𝑗]1×𝑚
= [𝐴𝑉̃1 𝐴𝑉̃2 … 𝐴𝑉̃𝑗]                        (4.27) 

𝐴𝑉̃𝑗 =
∑ 𝑋̃𝑖𝑗
𝑛
𝑖=1

𝑛
 ∀j    j=1, 2, …, m.                      (4.28) 

Step 5. Calculate the Z-fuzzy positive distance from average (𝑃𝐷𝐴̃) and Z-fuzzy 

negative distance from average (𝑁𝐷𝐴̃) for each alternative by employing Eqs. (4.29-

4.32). 

  𝑃𝐷𝐴̃ = [𝑃𝐷𝐴̃𝑖𝑗]𝑛×𝑚                                   (4.29) 

𝑁𝐷𝐴̃ = [𝑁𝐷𝐴̃𝑖𝑗]𝑛×𝑚                                  (4.30) 

{  
𝑃𝐷𝐴̃𝑖𝑗 =

max (0,(𝑥̃𝑖𝑗−𝐴𝑉̃𝑗))

𝐴𝑉̃𝑗
 

𝑁𝐷𝐴̃𝑖𝑗 =
max (0,(𝐴𝑉̃𝑗−𝑥̃𝑖𝑗))

𝐴𝑉̃𝑗

        for benefit criteria          (4.31) 

 {  
𝑃𝐷𝐴̃𝑖𝑗 =

max (0,(𝐴𝑉̃𝑗−𝑥̃𝑖𝑗))

𝐴𝑉̃𝑗
 

𝑁𝐷𝐴̃𝑖𝑗 =
max (0,(𝑥̃𝑖𝑗−𝐴𝑉̃𝑗))

𝐴𝑉̃𝑗

       for cost criteria          (4.32) 

where 𝑃𝐷𝐴̃𝑖𝑗 and 𝑁𝐷𝐴̃𝑖𝑗 represent the Z-fuzzy positive and negative distances from 

average value of 𝑖𝑡ℎ alternative according to 𝑗𝑡ℎ criterion, respectively. 

To determine max(0, (𝑥̃𝑖𝑗 − 𝐴𝑉̃𝑗)) , Z-fuzzy numbers are defuzzified as in Eqs. (4.33-

4.34) and compared with each other.  

𝑎𝑗 =
(𝑎1,𝑖𝑗+2∗𝑎2,𝑖𝑗+2∗𝑎3,𝑖𝑗+𝑎4,𝑖𝑗)

6
   ∀𝑗 for restriction function           (4.33) 

   𝑏𝑗 =
(𝑏1,𝑖𝑗+2∗𝑏2,𝑖𝑗+𝑏3,𝑖𝑗)

4
    ∀𝑗 for reliability function                    (4.34) 

After determining the max (0, (𝑥̃𝑖𝑗 − 𝐴𝑉̃𝑗)), we still continue with Z-fuzzy numbers. 

Then, max (0, (𝑥̃𝑖𝑗 − 𝐴𝑉̃𝑗)) is divided by 𝐴𝑉̃𝑗 using Z-fuzzy numbers. 

Step 6. Use the criteria weights obtained by Z-fuzzy AHP method in Section 4.3 and 

calculate the weighted summation of 𝑃𝐷𝐴̃ and 𝑁𝐷𝐴̃ shown as in Eqs. (4.35-4.36). 

𝑆𝑃̃𝑖 = ∑ 𝑤𝑗
𝑚
𝑗=1 ∗  𝑃𝐷𝐴̃𝑖𝑗                       (4.35) 

𝑆𝑁̃𝑖 = ∑ 𝑤𝑗
𝑚
𝑗=1 ∗  𝑁𝐷𝐴̃𝑖𝑗                       (4.36) 

where 𝑤𝑗 = (𝑤1, 𝑤2, … , 𝑤𝑚) and it is the weight of 𝑗𝑡ℎ criterion.  

𝑤𝑗 (0 < 𝑤𝑗  < 1) denotes the weight of 𝑗th criterion and ∑ 𝑤𝑗
𝑚
𝑗=1 = 1. 
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Step 7. Transform the obtained Z-fuzzy 𝑆𝑃̃𝑖 and 𝑆𝑁̃𝑖 values to positive values if there 

is any negative value among them for all alternatives shown as in Eqs. (4.37-4.40). 

Thus, we obtain the shifted 𝑆𝑃̃𝑖 and 𝑆𝑁̃𝑖 values,  𝑆𝑆𝑃̃𝑖 and 𝑆𝑆𝑁̃𝑖, respectively. 

For restriction function: 

𝑆𝑆𝑃̃𝑖
𝑅𝑒𝑠 = 𝑆𝑃̃𝑖

𝑅𝑒𝑠 +𝑚𝑎𝑥𝑖 |(𝑆𝑃̃𝑖𝑎1
𝑅𝑒𝑠)|, if any 𝑎1 < 0.          (4.37) 

𝑆𝑆𝑁̃𝑖
𝑅𝑒𝑠 = 𝑆𝑁̃𝑖

𝑅𝑒𝑠 +𝑚𝑎𝑥𝑖 |(𝑆𝑁̃𝑖𝑎1
𝑅𝑒𝑠)|, if any 𝑎1 < 0.          (4.38) 

For reliability function: 

𝑆𝑆𝑃̃𝑖
𝑅𝑒𝑙 = 𝑆𝑃̃𝑖

𝑅𝑒𝑙 +𝑚𝑎𝑥𝑖 |(𝑆𝑃̃𝑖𝑏1
𝑅𝑒𝑙)|, if any 𝑏1 < 0.          (4.39) 

𝑆𝑆𝑁̃𝑖
𝑅𝑒𝑙 = 𝑆𝑁̃𝑖

𝑅𝑒𝑙 +𝑚𝑎𝑥𝑖 |(𝑆𝑁̃𝑖𝑏1
𝑅𝑒𝑙)|, if any 𝑏1 < 0.         (4.40) 

Step 8. Normalize the Z-fuzzy 𝑆𝑆𝑃̃𝑖  and 𝑆𝑆𝑁̃𝑖 values by using Eqs. (4.41-4.44). 

for restriction function 

 𝑁𝑆𝑃̃𝑖𝑎
𝑅𝑒𝑠 = (

𝑆𝑆𝑃̃𝑖𝑎1
max𝑖(𝑆𝑃̃𝑖

𝑅𝑒𝑠)
,

𝑆𝑆𝑃̃𝑖𝑎2
max𝑖(𝑆𝑃̃𝑖

𝑅𝑒𝑠)
,

𝑆𝑆𝑃̃𝑖𝑎3
max𝑖(𝑆𝑃̃𝑖

𝑅𝑒𝑠)
,

𝑆𝑆𝑃̃𝑖𝑎4
max𝑖(𝑆𝑃̃𝑖

𝑅𝑒𝑠)
)         (4.41) 

and 

𝑁𝑆𝑁̃𝑖𝑎
𝑅𝑒𝑠 = (1,1,1,1) − (

𝑆𝑆𝑁̃𝑖𝑎4
max𝑖(𝑆𝑁̃𝑖

𝑅𝑒𝑠)
,

𝑆𝑆𝑁̃𝑖𝑎3
max𝑖(𝑆𝑁̃𝑖

𝑅𝑒𝑠)
,

𝑆𝑆𝑁̃𝑖𝑎2
max𝑖(𝑆𝑁̃𝑖

𝑅𝑒𝑠)
,

𝑆𝑆𝑁̃𝑖𝑎1
max𝑖(𝑆𝑁̃𝑖

𝑅𝑒𝑠)
)   (4.42) 

 

for reliability function 

𝑁𝑆𝑃̃𝑖𝑏
𝑅𝑒𝑙 = (

𝑆𝑆𝑃̃𝑖𝑏1

max𝑖(𝑆𝑃̃𝑖
𝑅𝑒𝑙)

,
𝑆𝑆𝑃̃𝑖𝑏2

max𝑖(𝑆𝑃̃𝑖
𝑅𝑒𝑙)

,
𝑆𝑆𝑃̃𝑖𝑏3

max𝑖(𝑆𝑃̃𝑖
𝑅𝑒𝑙)

)          (4.43) 

and 

𝑁𝑆𝑁̃𝑖𝑏
𝑅𝑒𝑙 = (1,1,1) − (

𝑆𝑆𝑁̃𝑖𝑏3

max𝑖(𝑆𝑁̃𝑖
𝑅𝑒𝑙)

,
𝑆𝑆𝑁̃𝑖𝑏2

max𝑖(𝑆𝑁̃𝑖
𝑅𝑒𝑙)

,
𝑆𝑆𝑁̃𝑖𝑏1

max𝑖(𝑆𝑁̃𝑖
𝑅𝑒𝑙)

)       (4.44) 

Step 9. Calculate the Z-fuzzy appraisal score (𝐴𝑆̃𝑖 = (𝐴𝑆𝑖𝑎
𝑅𝑒𝑠, 𝐴𝑆𝑖𝑏

𝑅𝑒𝑙)) of alternatives, 

as shown in Eqs. (4.45-4.46): 

𝐴𝑆𝑖𝑎
𝑅𝑒𝑠 =

1

2
(𝑁𝑆𝑃̃𝑖𝑎

𝑅𝑒𝑠 + 𝑁𝑆𝑁̃𝑖𝑎
𝑅𝑒𝑠)                                  (4.45) 

𝐴𝑆𝑖𝑏
𝑅𝑒𝑙 =

1

2
(𝑁𝑆𝑃̃𝑖𝑏

𝑅𝑒𝑙 + 𝑁𝑆𝑁̃𝑖𝑏
𝑅𝑒𝑙)                                  (4.46) 

Step 10. Convert the Z-fuzzy 𝐴𝑆̃𝑖 to ordinary fuzzy number using Definition 4.2. 
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Step 11. Transform the ordinary fuzzy 𝐴𝑆̃𝑖 to a crisp number using Eq. (4.2). 

Step 12. Rank the alternatives according to the decreasing values of crisp 𝐴𝑆𝑖. The 

alternative which has the highest 𝐴𝑆𝑖 is the best choice among the alternatives. 

Figure 4.5 shows the flowchart of the methodology which integrates Z-fuzzy AHP and 

Z-fuzzy EDAS methods. The proposed methodology aims at finding the weights of 

the criteria to be used in wind turbine selection (Z-fuzzy AHP) and also ranking the 

alternatives (Z-fuzzy EDAS) according to these criteria. 
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Figure 4.5 : Proposed Z-fuzzy AHP&EDAS methodology. 
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 Application 

Wind power is one of the fastest growing renewable energy alternatives. Due to the 

increasing energy demand, investments toward renewable energy sources are getting 

more importance day by day. Wind energy is the most widely used renewable energy 

source in Turkey (Kahraman and Kaya, 2010). According to the March 2022 TEİAŞ 

(Turkish Electricity Transmission Corporation) report, there are 355 wind power 

plants, and approximately 10861 megawatts of energy are produced from the wind in 

Turkey (TEİAŞ, 2022). In order to produce energy efficiently from the wind, the 

turbine characteristics of the power plant to be established have great importance. 

Therefore, the selection of wind turbines in a wind energy investment is extremely 

important for investors. There are many types of wind turbines according to their 

characteristics. In order to produce energy efficiently from the wind, the right wind 

turbine should be selected by the DMs according to the wind characteristics of the 

region to be established. In addition, the problem should be considered as a MCDM 

problem since many factors should be evaluated together in wind turbine selection. 

The MCDM studies of wind turbine selection in the literature are quite limited 

(Supciller and Toprak, 2020). Studies related to wind turbine selection can be found 

in Supciller and Toprak (2020) and Pang et al. (2021). 

The proposed Z-fuzzy AHP&EDAS methodology is applied for the selection of the 

best alternative among wind turbines in the Aegean region of Turkey. For this purpose, 

in Step 1, the alternatives and criteria have been determined. There are five wind 

turbine alternatives represented by A1, A2, A3, A4 and A5 and six criteria which are 

reliability (C1), technical characteristics (C2), performance (C3), cost factors (C4), 

availability (C5) and maintenance (C6) (Cevik Onar et al., 2015). In Step 2, decision 

matrices have been constructed by three DMs using the linguistic terms given in Tables 

4.4 and 4.5. Three DMs’ pairwise comparison matrices for the criteria are presented in 

Tables 4.6-4.8. 

Table 4.6 : Pairwise comparisons of the criteria by DM1. 

DM1 C1 C2 C3 C4 C5 C6 

C1 (EI, CR) (CI, VSR) (STI, HR) (SLI, VSR) (VSTI, VHR) (CI, VSR) 

C2 (1/CI, VSR) (EI, CR) (1/MI, SR) (1/VSTI, FR) (1/MI, SR) (MI, FR) 

C3 (1/STI, HR) (MI, SR) (EI, CR) (1/MI, VHR) (SLI, VSR) (STI, VHR) 
C4 (1/SLI, VSR) (VSTI, FR) (MI, VHR) (EI, CR) (STI, FR) (CI, VSR) 

C5 (1/VSTI, VHR) (MI, SR) (1/SLI, VSR) (1/STI, FR) (EI, CR) (STI, WR) 

C6 (1/CI, VSR) (1/MI, FR) (1/STI, VHR) (1/CI, VSR) (1/STI, WR) (EI, CR) 

λmax = 6.6085, Consistency index (CI) = 0.1216, Consistency ratio (CR) = 0.097 
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Table 4.7 : Pairwise comparisons of the criteria by DM2. 

DM2 C1 C2 C3 C4 C5 C6 

C1 (EI, CR) (VSTI, VHR) (MI, FR) (EI, SR) (STI, SR) (VSTI, HR) 

C2 (1/VSTI, VHR) (EI, CR) (1/STI, VHR) (1/CI, HR) (1/SLI, VSR) (SLI, VSR) 

C3 (1/MI, FR) (STI, VHR) (EI, CR) (1/STI, FR) (MI, FR) (MI, HR) 

C4 (EI, SR) (CI, HR) (STI, FR) (EI, CR) (VSTI, VHR) (CI, VHR) 

C5 (1/STI, SR) (SLI, VSR) (1/MI, FR) (1/VSTI, VHR) (EI, CR) (MI, FR) 

C6 (1/VSTI, HR) (1/SLI, VSR) (1/MI, HR) (1/CI, VHR) (1/MI, FR) (EI, CR) 

λmax = 6.5761, Consistency index (CI) = 0.1152, Consistency ratio (CR) = 0.092 

Table 4.8 : Pairwise comparisons of the criteria by DM3. 

DM3 C1 C2 C3 C4 C5 C6 

C1 (EI, CR) (AI, SR) (VSTI, VHR) (MI, WR) (VSTI, VHR) (STI, HR) 

C2 (1/AI, SR) (EI, CR) (1/SLI, SR) (1/STI, VHR) (EI, VSR) (1/SLI, SR) 

C3 (1/VSTI, VHR) (SLI, SR) (EI, CR) (1/MI, VSR) (MI, FR) (SLI, FR) 

C4 (1/MI, WR) (STI, VHR) (MI, VSR) (EI, CR) (CI, HR) (VSTI, HR) 

C5 (1/VSTI, VHR) (EI, VSR) (1/MI, FR) (1/CI, HR) (EI, CR) (1/SLI, VSR) 

C6 (1/STI, HR) (SLI, SR) (1/SLI, FR) (1/VSTI, HR) (SLI, VSR) (EI, CR) 

λmax = 6.5962, Consistency index (CI) = 0.1192, Consistency ratio (CR) = 0.095 

Applying the Z-fuzzy AHP method in Section 4.3 the criteria weights have been 

obtained as in Table 4.9. 

Table 4.9 : Criteria weights obtained by Z-fuzzy AHP method. 

Reliability 
Technical 

char. 
Performance Cost factors Availability Maintenance 

0.353 0.046 0.118 0.355 0.074 0.053 

After the DMs have compared the criteria, the evaluations of the alternatives according 

to the criteria have been collected. Tables 4.10-4.12 show the Z-fuzzy decision 

matrices including the linguistic evaluations of three DMs. 

Table 4.10 : Z-fuzzy decision matrix of DM1. 

 C1 C2 C3 C4 C5 C6 

A1 (MG, SR) (VP, HR) (VG, SR) (F, HR) (MG, FR) (P, SR) 

A2 (VG, FR) (F, VHR) (P, SU) (G, VHR) (P, WR) (VG, SR) 

A3 (MG, HR) (MG, HR) (G, HR) (VG, FR) (MP, SU) (G, HR) 

A4 (G, HR) (G, SR) (F, WR) (P, SR) (VG, HR) (F, SU) 

A5 (P, SR) (VG, HR) (VP, FR) (G, HR) (MG, HR) (VG, HR) 

Table 4.11 : Z-fuzzy decision matrix of DM2. 

 C1 C2 C3 C4 C5 C6 

A1 (F, VHR) (MP, VHR) (MG, HR) (G, SR) (MG, SR) (F, FR) 

A2 (G, SR) (G, WR) (F, VWR) (G, WR) (P, HR) (G, FR) 

A3 (MP, SU) (G, VSR) (VG, FR) (G, HR) (G, HR) (MG, SR) 

A4 (VG, FR) (VG, HR) (G, HR) (VP, HR) (VG, SU) (G, HR) 

A5 (F, HR) (G, SR) (P, HR) (MG, FR) (MG, VHR) (G, VSR) 
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Table 4.12 : Z-fuzzy decision matrix of DM3. 

 C1 C2 C3 C4 C5 C6 

A1 (MP, HR) (F, SR) (G, FR) (MG, SU) (G,SU) (MP, HR) 

A2 (MG, WR) (MG, FR) (MP, HR) (VG, FR) (VP, VHR) (VG, VHR) 

A3 (G, FR) (MG, SR) (G, SR) (G, SR) (F, SU) (F, WR) 

A4 (F, HR) (VG, FR) (MG, FR) (P, WR) (G, SR) (MG, SR) 

A5 (MP, VHR) (G, FR) (F, CR) (MG, SU) (F, HR) (G, WR) 

In Step 3, the individual evaluations of DMs are aggregated by using geometric mean 

method given by Eqs. (4.25-4.26). The obtained aggregated matrix is presented in 

Table 4.13.  

Table 4.13 : Aggregated evaluations of wind turbines. 

 Criteria Z-fuzzy aggregated evaluations 

 

A1 

Reliability ((2.47,4.72, 4.72, 6.80), (0.59, 0.70, 0.80)) 

Technical 

characteristics 
((0.91, 1.96, 1.96, 3.27), (0.59, 0.70, 0.80)) 

Performance ((6.80, 8.57, 8.57, 9.65), (0.52, 0.62, 0.72)) 

Cost factors ((4.72, 6.80, 6.80, 8.57), (0.33, 0.46, 0.57)) 

Availability ((5.59, 7.61, 7.61, 9.32), (0.30, 0.43, 0.55)) 

Maintenance ((1.14, 2.47, 2.47, 4.72), (0.52, 0.62, 0.72)) 

A2 

Reliability ((6.80, 8.57, 8.57, 9.65), (0.44, 0.54, 0.65)) 

Technical 

characteristics 
((4.72, 6.80, 6.80, 8.57), (0.42, 0.52, 0.62)) 

Performance ((1.14, 2.47, 2.47, 4.72), (0.22, 0.33, 0.44)) 

Cost factors ((7.61, 9.32, 9.32, 10.00), (0.42, 0.52, 0.62)) 

Availability ((0.40, 0.79, 0.79, 2.08), (0.45, 0.55, 0.65)) 

Maintenance ((8.28, 9.65, 9.65, 10.00), (0.55, 0.65, 0.76)) 

A3 

Reliability ((3.27, 5.74, 5.74, 7.66), (0.27, 0.39, 0.50)) 

Technical 

characteristics 
((5.59, 7.61, 7.61, 9.32), (0.63, 0.73, 0.83)) 

Performance ((7.61, 9.32, 9.32, 10.00), (0.52, 0.62, 0.72)) 

Cost factors ((7.61, 9.32, 9.32, 10.00), (0.52, 0.62, 0.72)) 

Availability ((2.76, 5.13, 5.13, 7.05), (0.17, 0.29, 0.40)) 

Maintenance ((4.72, 6.80, 6.80, 8.57), (0.47, 0.58, 0.68)) 

A4 

Reliability ((5.74, 7.66, 7.66, 8.88), (0.46, 0.56, 0.66) 

Technical 

characteristics 
((8.28, 9.65, 9.65, 10.00), (0.52, 0.62, 0.72)) 

Performance ((4.72, 6.80, 6.80, 8.57), (0.39, 0.49, 0.59)) 

Cost factors ((0.40, 0.79, 0.79, 2.08), (0.47, 0.58, 0.68)) 

Availability ((8.28, 9.65, 9.65, 10.00), (0.33, 0.46, 0.57)) 

Maintenance ((4.72, 6.80, 6.80, 8.57), (0.33, 0.46, 0.57)) 

A5 

Reliability ((1.14, 2.47, 2.47, 4.72), (0.59, 0.70, 0.80)) 

Technical 

characteristics 
((7.61, 9.32, 9.32, 10.00), (0.52, 0.62, 0.72)) 

Performance ((0.72, 1.36, 1.36, 2.76), (0.54, 0.65, 0.75)) 

Cost factors ((5.59, 7.61, 7.61, 9.32), (0.27, 0.39, 0.50)) 

Availability ((4.22, 6.26, 6.26, 8.28), (0.53, 0.63, 0.73)) 

Maintenance ((7.61, 9.32, 9.32, 10.00), (0.47, 0.58, 0.68)) 
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In Step 4, using the aggregated evaluations and Eqs. (4.27-4.28), the Z-fuzzy average 

values are calculated for both the restriction and reliability functions separately, and 

the resulting values are shown in Table 4.14.  

Table 4.14 : Z-fuzzy average values. 

Criteria Z-fuzzy average values 

Reliability ((3.88, 5.83, 5.83, 7.54), (0.47, 0.58, 0,68)) 

Technical characteristics ((5.42, 7.07, 7.07, 8.23), (0.53, 0.64, 0.74)) 

Performance ((4.2, 5.7, 5.7, 7.14), (0.44, 0.54, 0.65)) 

Cost factors ((5.19, 6.77, 6.77, 7.99), (0.4, 0.51, 0.62)) 

Availability ((4.25, 5.89, 5.89, 7.35), (0.36, 0.47, 0.58)) 

Maintenance ((5.29, 7.01, 7.01, 8.37), (0.47, 0.58, 0.68)) 

In Step 5, Z-fuzzy 𝑃𝐷𝐴̃ and 𝑁𝐷𝐴̃ values are obtained for each alternative using Eqs. 

(4.29-4.34) and they are shown in Tables 4.15-4.16, respectively.  

Table 4.15 : Z-fuzzy 𝑃𝐷𝐴̃ values. 

  Criteria Z-fuzzy 𝑃𝐷𝐴̃ values 

A1 

Reliability ((0, 0, 0, 0), (-0.127, 0.203, 0.684)) 

Technical characteristics ((0, 0, 0, 0), (-0.195, 0.092, 0.488)) 

Performance ((-0.047, 0.503, 0.503, 1.299), (-0.196, 0.145, 0.652)) 

Cost factors ((0, 0, 0, 0), (-0.279, 0.108, 0.73)) 

Availability ((-0.238, 0.292, 0.292, 1.194), (0, 0, 0)) 

Maintenance ((0.069, 0.648, 0.648, 1.365), (0, 0, 0)) 

A2 

Reliability ((-0.098, 0.47, 0.47, 1.485), (0, 0, 0)) 

Technical characteristics ((0, 0, 0, 0), (0, 0, 0)) 

Performance ((0, 0, 0, 0), (0, 0, 0)) 

Cost factors ((0, 0, 0, 0), (0, 0, 0)) 

Availability ((0, 0, 0, 0), (-0.228, 0.169, 0.836)) 

Maintenance ((0, 0, 0, 0), (0, 0, 0)) 

A3 

Reliability ((0, 0, 0, 0), (0, 0, 0)) 

Technical characteristics ((-0.321, 0.077, 0.077, 0.719), (-0.152, 0.141, 0.547)) 

Performance ((0.066, 0.634, 0.634, 1.381), (-0.196, 0.145, 0.652)) 

Cost factors ((0, 0, 0, 0), (0, 0, 0)) 

Availability ((0, 0, 0, 0), (0, 0, 0)) 

Maintenance ((-0.392, 0.029, 0.029, 0.69), (-0.311, 0.001, 0.45)) 

A4 

Reliability ((-0.239, 0.314, 0.314, 1.285), (0, 0, 0)) 

Technical characteristics ((0.005, 0.366, 0.366, 0.844), (0, 0, 0)) 

Performance ((-0.339, 0.193, 0.193, 1.041), (0, 0, 0)) 

Cost factors ((0.389, 0.883, 0.883, 1.465), (0, 0, 0)) 

Availability ((0.127, 0.639, 0.639, 1.354), (0, 0, 0)) 

Maintenance ((-0.392, 0.029, 0.029, 0.69), (-0.155, 0.207, 0.759)) 

A5 

Reliability ((0, 0, 0, 0), (-0.127, 0.203, 0.684)) 

Technical characteristics ((-0.075, 0.318, 0.318, 0.844), (0, 0, 0)) 

Performance ((0, 0, 0, 0), (-0.159, 0.191, 0.711)) 

Cost factors ((0, 0, 0, 0), (-0.162, 0.237, 0.869)) 

Availability ((-0.426, 0.062, 0.062, 0.948), (-0.085, 0.338, 1.054)) 

Maintenance ((0, 0, 0, 0), (-0.311, 0.001, 0.45)) 
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Table 4.16 : Z-fuzzy 𝑁𝐷𝐴̃ values. 

  Criteria Z-fuzzy 𝑁𝐷𝐴̃ values 

A1 

Reliability ((-0.387, 0.191, 0.191, 1.307), (-0.475, -0.203, 0.183)) 

Technical characteristics ((0.261, 0.723, 0.723, 1.351), (-0.353, -0.092, 0.269)) 

Performance ((0, 0, 0, 0), (0, 0, 0)) 

Cost factors ((-0.41, 0.005, 0.005, 0.653), (-0.472, -0.108, 0.431)) 

Availability ((0, 0, 0, 0), (0, 0, 0)) 

Maintenance ((0, 0, 0, 0), (0, 0, 0)) 

A2 

Reliability ((0, 0, 0, 0), (0, 0, 0)) 

Technical characteristics ((-0.383, 0.038, 0.038, 0.648), (-0.117, 0.185, 0.602)) 

Performance ((-0.073, 0.568, 0.568, 1.428), (0, 0.391, 0.983)) 

Cost factors ((-0.048, 0.377, 0.377, 0.928), (-0.329, 0.011, 0.549)) 

Availability ((0.295, 0.865, 0.865, 1.635), (-0.513, -0.169, 0.372)) 

Maintenance ((-0.011, 0.377, 0.377, 0.889), (-0.192, 0.133, 0.614)) 

A3 

Reliability ((-0.501, 0.016, 0.016, 1.1), (-0.042, 0.323, 0.867)) 

Technical characteristics ((0, 0, 0, 0), (0, 0, 0)) 

Performance ((0, 0, 0, 0), (0, 0, 0)) 

Cost factors ((-0.048, 0.377, 0.377, 0.928), (-0.163, 0.21, 0.803)) 

Availability ((-0.381, 0.129, 0.129, 1.079), (-0.072, 0.389, 1.15)) 

Maintenance ((0, 0, 0, 0), (0, 0, 0)) 

A4 

Reliability ((0, 0, 0, 0), (0, 0, 0)) 

Technical characteristics ((0, 0, 0, 0), (0, 0, 0)) 

Performance ((0, 0, 0, 0), (0, 0, 0)) 

Cost factors ((0, 0, 0, 0), (0, 0, 0)) 

Availability ((0, 0, 0, 0), (0, 0, 0)) 

Maintenance ((0, 0, 0, 0), (0, 0, 0)) 

A5 

Reliability ((-0.11, 0.577, 0.577, 1.647), (-0.475, -0.203, 0.183)) 

Technical characteristics ((0, 0, 0, 0), (0, 0, 0)) 

Performance ((0.202, 0.762, 0.762, 1.529), (-0.482, -0.191, 0.234)) 

Cost factors ((-0.3, 0.124, 0.124, 0.797), (-0.562, -0.237, 0.25)) 

Availability ((0, 0, 0, 0), (0, 0, 0)) 

Maintenance ((-0.091, 0.33, 0.33, 0.889), (-0.309, -0.001, 0.453)) 

In Step 6, the criteria weights obtained in Section 4.3 by using Z-fuzzy AHP method 

are employed to find 𝑆𝑃̃𝑖 and 𝑆𝑁̃𝑖 values. They are given in Tables 4.17-4.18, 

respectively.  

Table 4.17 : 𝑆𝑃̃ values for each alternative. 

 Z-fuzzy 𝑆𝑃̃ values 

A1 ((-0.02, 0.115, 0.115, 0.314), (-0.176, 0.132, 0.601)) 

A2 ((-0.035, 0.166, 0.166, 0.525), (-0.017, 0.013, 0.062)) 

A3 ((-0.028, 0.08, 0.08, 0.233), (-0.046, 0.024, 0.126)) 

A4 ((0.003, 0.513, 0.513, 1.274), (-0.008, 0.011, 0.04)) 

A5 ((-0.035, 0.019, 0.019, 0.11), (-0.144, 0.204, 0.737)) 

Table 4.18 : 𝑆𝑁̃ values for each alternative. 

  Z-fuzzy 𝑆𝑁̃ values 

A1 ((-0.27, 0.103, 0.103, 0.756), (-0.352, -0.114, 0.23)) 

A2 ((-0.022, 0.287, 0.287, 0.697), (-0.171, 0.053, 0.399)) 

A3 ((-0.222, 0.149, 0.149, 0.799), (-0.078, 0.218, 0.677)) 

A4 ((0, 0, 0, 0), (0, 0, 0)) 

A5 ((-0.127, 0.355, 0.355, 1.093), (-0.441, -0.179, 0.205)) 
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In Step 7, 𝑆𝑆𝑃̃𝑖 and 𝑆𝑆𝑁̃𝑖 values are calculated by Eqs. (4.37-4.40) and presented in 

Tables 4.19 and 4.20, respectively.  

Table 4.19 : 𝑆𝑆𝑃̃ values for each alternative. 

  Z-fuzzy 𝑆𝑆𝑃̃ values 

A1 ((0.015, 0.150, 0.150, 0.349), (0, 0.308, 0.777)) 

A2 ((0, 0.201, 0.201, 0.560), (0.159, 0.189, 0.238)) 

A3 ((0.007, 0.115, 0.115, 0.268), (0.130, 0.200, 0.302)) 

A4 ((0.038, 0.549, 0.549, 1.309), (0.168, 0.187, 0.216)) 

A5 ((0, 0.055, 0.055, 0.145), (0.032, 0.380, 0.913)) 

Table 4.20 : 𝑆𝑆𝑁̃ values for each alternative. 

  Z-fuzzy 𝑆𝑆𝑁̃ values 

A1 ((0, 0.373, 0.373, 1.027), (0.089, 0.326, 0.671)) 

A2 ((0.248, 0.557, 0.557, 0.967), (0.270, 0.494, 0.840)) 

A3 ((0.048, 0.419, 0.419, 1.069), (0.363, 0.658, 1.118)) 

A4 ((0.270, 0.270, 0.270, 0.270), (0.441, 0.441, 0.441)) 

A5 ((0.144, 0.626, 0.626, 1.363), (0, 0.262, 0.646)) 

 

In Step 8, Z-fuzzy 𝑆𝑆𝑃̃𝑖  and 𝑆𝑆𝑁̃𝑖 values are normalized for both restriction and 

reliability functions separately by using Eqs. (4.41-4.44). The obtained 𝑁𝑆𝑃̃𝑖  and 

𝑁𝑆𝑁̃𝑖 values are given in Tables 4.21-4.22, respectively. 

Table 4.21 : 𝑁𝑆𝑃̃ values for each alternative. 

  Z-fuzzy 𝑁𝑆𝑃̃ values 

A1 ((0.012, 0.115, 0.115, 0.267), (0, 0.337, 0.851)) 

A2 ((0, 0.154, 0.154, 0.428), (0.174, 0.207, 0.261)) 

A3 ((0.006, 0.088, 0.088, 0.205), (0.142, 0.219, 0.331)) 

A4 ((0.029, 0.419, 0.419, 1), (0.184, 0.205, 0.237)) 

A5 ((0, 0.042, 0.042, 0.11), (0.035, 0.416, 1)) 

Table 4.22 : 𝑁𝑆𝑁̃ values for each alternative. 

  Z-fuzzy 𝑁𝑆𝑁̃ values 

A1 ((0.247, 0.726, 0.726, 1), (0.4, 0.708, 0.921)) 

A2 ((0.291, 0.591, 0.591, 0.818), (0.249, 0.558, 0.758)) 

A3 ((0.216, 0.692, 0.692, 0.965), (0, 0.411, 0.675)) 

A4 ((0.802, 0.802, 0.802, 0.802), (0.606, 0.606, 0.606)) 

A5 ((0, 0.541, 0.541, 0.895), (0.422, 0.766, 1)) 

In Step 9, Z-fuzzy 𝐴𝑆̃𝑖 values for all alternatives are calculated by Eqs. (4.45-4.46) and 

obtained values are given in Table 4.23. 
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Table 4.23 : 𝐴𝑆̃𝑖  values for each alternative 

 Z-fuzzy 𝐴𝑆̃𝑖  values 

A1 ((0.129, 0.421, 0.421, 0.633), (0.200, 0.522, 0.886)) 

A2 ((0.145, 0.373, 0.373, 0.623), (0.211, 0.382, 0.51)) 

A3 ((0.111, 0.390, 0.390, 0.585), (0.071, 0.315, 0.503)) 

A4 ((0.415, 0.610, 0.610, 0.901), (0.395, 0.405, 0.421)) 

A5 ((0, 0.291, 0.291, 0.503), (0.229, 0.591, 1)) 

In Step 10, Z-fuzzy 𝐴𝑆̃𝑖 values are converted to ordinary fuzzy numbers using 

Definition 4.2. The obtained trapezoidal fuzzy numbers are shown in Table 4.24. 

Table 4.24 : Trapezoidal fuzzy 𝐴𝑆̃𝑖  values converted from Z-fuzzy 𝐴𝑆̃𝑖.   

 Trapezoidal fuzzy 𝐴𝑆̃𝑖  values of alternatives 

A1 (0.094, 0.307, 0.307, 0.462) 

A2 (0.089, 0.227, 0.227, 0.380) 

A3 (0.061, 0.214, 0.214, 0.321) 

A4 (0.265, 0.389, 0.389, 0.574) 

A5 (0, 0.226, 0.226, 0.39) 

 

In Step 11, trapezoidal fuzzy 𝐴𝑆̃𝑖 values are transformed to crisp numbers using Eq. 

(4.2). In Step 12, alternatives are ranked according to the decreasing values of crisp 

𝐴𝑆𝑖. Crisp 𝐴𝑆𝑖 values and ranking of the alternatives are presented in Table 4.25. A1 

which has the highest 𝐴𝑆𝑖 is the best choice among five alternatives. Based on the 

computed 𝐴𝑆𝑖 values, the ranking of the alternatives is A4>A1>A2>A5>A3. These 

results show that alternative A4 is the best choice among the wind turbine alternatives 

according to the determined criteria. 

Table 4.25 : Crisp 𝐴𝑆𝑖 values. 

Alternative Crisp 𝐴𝑆𝑖 
A1 0.2926 

A2 0.2306 

A3 0.2024 

A4 0.4044 

A5 0.2106 

  

In order to investigate the importance of reliability information, the reliability 

judgments regarding all DMs’ evaluations have been accepted as "certainly reliable" 

when applying the Z-fuzzy EDAS method without changing the criteria weights. Then, 

Z-fuzzy EDAS method has been re-applied. The obtained 𝐴𝑆𝑖 values are presented in 

the Table 4.26. 
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Table 4.26 : Crisp 𝐴𝑆𝑖 values (DMs’ reliability judgments accepted as (1,1,1)). 

Alternative Crisp 𝐴𝑆𝑖 
A1 0.2431 

A2 0.2751 

A3 0.3071 

A4 0.5332 

A5 0.2220 

According to these results, when the reliability information is neglected (accepted as 

(1,1,1) for all evaluations), the ranking of all alternatives except for the alternatives A4 

and A2 has changed. A4 alternative has been found as the best alternative again. 

Although the best alternative does not change, this difference shows that the reliability 

information should not be neglected. The fact that the ranking of the best alternative 

(A4) remains the same can be interpreted as the DMs stated their restriction judgments 

quite dominantly when comparing the alternative A4 with the other alternatives. 

Similarly, while the Z-fuzzy AHP method has been applied to find the criteria weights, 

the reliability information has been accepted as "certainly reliable", and the criteria 

weights have been recalculated. The obtained criteria weights are presented in Table 

4.27. 

Table 4.27 : Criteria weights obtained by Z-fuzzy AHP method (DMs’ reliability 

judgements accepted as (1,1,1)). 

Reliability Technical char. Performance Cost factors Availability Maintenance 

0.396 0.049 0.119 0.328 0.066 0.042 

Table 4.27 shows that the ranking of cost factor and reliability factor, which are in the 

first two rankings, have changed when compared to previous results (Table 4.9). 

Among the six criteria, only the rankings of the performance and availability factors 

have not changed. These results support the obtained result regarding the importance 

of reliability information as in the EDAS method.  

 Comparative Analysis 

To compare the results, the Z-fuzzy TOPSIS methodology proposed by Yaakob and 

Gegov (2016) is used. Z-fuzzy TOPSIS is one of the first fuzzy extensions which is 

performed by Z-fuzzy numbers in MCDM methodology. TOPSIS method was 

developed by Yoon and Hwang (1981). It is one of the most commonly used MCDM 

methodology by researchers in the literature. TOPSIS method allows to reach the 
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solution by using the distances of the alternatives from the positive and negative ideal 

solutions.  

Z-fuzzy TOPSIS methodology consists of the following steps; (i) construction of Z-

fuzzy decision matrix, (ii) conversion of Z-fuzzy numbers to ordinary fuzzy numbers, 

(iii) normalization procedure, (iv) weighting the normalized decision matrix, (v) 

calculation of distances from positive and negative ideal solutions, and (vi) calculation 

of closeness coefficients (Yaakob and Gegov, 2016). 

Table 4.28 presents the results of Z-fuzzy AHP&TOPSIS methodology and it shows 

the distances from positive and negative ideal solutions (𝑑∗ and 𝑑−), and closeness 

coefficients (CC*), respectively. Based on the computed CC* values, the ranking of 

the alternatives is obtained as A4>A1>A2>A3>A5. 

Table 4.28 : Results of Z-fuzzy TOPSIS methodology. 

 𝑑∗ 𝑑− CC* 

A1 5.5530 1.4140 0.2030 

A2 5.5551 1.3976 0.2010 

A3 5.5572 1.3945 0.2006 

A4 5.4034 1.5714 0.2253 

A5 5.6267 1.3523 0.1938 

 

According to the results obtained by the Z-fuzzy TOPSIS method, the ranking of the 

alternatives except alternatives 3 and 5 is the same as the methodology proposed in 

this study. The comparison of the rankings can be seen in Table 4.29. 

Table 4.29 : Comparison of Z-fuzzy EDAS and Z-fuzzy TOPSIS. 

Alternatives 
Ranking of Z-

fuzzy EDAS 

Ranking of Z-

fuzzy TOPSIS 

A1 2 2 

A2 3 3 

A3 5 4 

A4 1 1 

A5 4 5 

EDAS method considers the positive and negative distances from the average solution 

rather than calculating the negative and positive ideal solutions as in TOPSIS method. 

According to the results of both methods, the closeness coefficients in Z-fuzzy 

TOPSIS are composed of quite closer values whereas appraisal scores in Z-fuzzy 

EDAS indicate larger differences between alternatives. In general, it can be concluded 

that the proposed method is consistent since the rankings of two methods are quite 
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similar. The only difference is between alternatives A3 and A5. The first three best 

alternatives are the same in both methods. 

As a result of the comparative analysis, obtaining similar results with the Z-fuzzy 

TOPSIS method shows the consistency and competitiveness of the proposed method. 

 Conclusion 

Extensions of ordinary fuzzy sets are quite successful in modeling the uncertainty in 

the decision-making process. However, they do not exactly represent the reliability 

information inherent in the solutions. The reliability information of the evaluations is 

very important as it can have significant impacts on the obtained results. The Z-fuzzy 

numbers introduced by Zadeh (2011) allow the reliability of the DMs’ judgments to 

be included in the decision models. In this study, a novel Z-fuzzy EDAS method is 

introduced to the literature. Then, an integrated usage of Z-fuzzy AHP and Z-fuzzy 

EDAS method is proposed to the field for the first time to deal with uncertain 

expressions of DMs in real life decision making problems. The inclusion of the 

reliability information of the DMs in the decision model makes the decision making 

process more realistic in both daily and business decisions as in the case of renewable 

energy investment decisions. 

The importance of renewable energy sources has increased considerably with the 

concern of leaving a sustainable world to future generations in recent years. In this 

study, the selection of a suitable wind turbine problem has been handled by considering 

the multiple factors affecting the decision. Criteria weights to be used in alternative 

selection have been calculated by using Z-fuzzy AHP method which has also been 

integrated to Z-fuzzy EDAS method. Z-fuzzy numbers integrated AHP method offers 

a more realistic solution by reflecting the DMs' hesitancy in pairwise comparisons to 

the proposed Z-fuzzy AHP&EDAS methodology. After defining the criteria weights, 

three DMs have evaluated the five alternatives using Z-fuzzy EDAS method. All the 

DMs’ evaluations have been expressed by Z-fuzzy numbers in both methods, and all 

steps of the Z-fuzzy EDAS method have been performed by Z-fuzzy numbers. The 

proposed methodology allows DMs to express both restriction and reliability 

information about criteria and alternatives. In order to show the effects of reliability 

component on the decision system, the reliability information of all evaluations have 

been made "certainly reliable" and the calculations have been re-performed, then the 
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results have compared with the proposed method. It is concluded from this analysis 

that the difference in the ranking results displays the importance of consideration of 

the reliability information. Therefore, the proposed methodology offers a more reliable 

evaluation system to DMs, including their degree of confidence to their assessments.  

In order to show the robustness and stability of the proposed method, the obtained 

results have been compared with the results of the Z-Fuzzy AHP&TOPSIS 

methodology. It can be stated that the suggested methodology is an effective and useful 

method for researchers who want to decide based on distances from average solution 

rather than the distance from positive and negative ideal solutions. For further research, 

other MCDM approaches integrated with Z-fuzzy numbers can be used and compared 

with the results of this paper. 

Although there are many fuzzy versions of the AHP method in the literature, its 

integration with Z-fuzzy numbers is limited. This research gap in the literature can be 

filled with the more application of Z-fuzzy AHP method, then importance and 

advantages of Z-fuzzy numbers can be further analyzed. In addition, other fuzzy set 

extensions such as fermatean fuzzy sets or picture fuzzy sets can be used in the 

improvement of Z-fuzzy numbers. Then, in future research, it can be suggested to 

combine these extensions of Z-fuzzy numbers with different MCDM methods to 

expand the related literature. 
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 A NOVEL DECOMPOSED Z-FUZZY TOPSIS METHOD WITH 

FUNCTIONAL AND DYSFUNCTIONAL JUDGMENTS: AN APPLICATION 

TO TRANSFER CENTER LOCATION SELECTION4 

Decision making can be defined as the process of choosing the most preferable option 

among the multiple alternatives. Decision-makers or experts use multi-criteria 

decision making (MCDM) approaches to assess the overall performance of all 

alternatives with respect to the criteria set of the problem. In this process, although the 

decision makers have knowledge and experience, it is inevitable that the statements 

they give about the problem contain uncertainty and vagueness. Since classical sets 

are insufficient to capture the uncertainty in these linguistic expressions, Zadeh (1965) 

introduced the fuzzy set theory to model the impreciseness and vagueness in them (Ren 

et al., 2020; Akram et al., 2023). After the introduction of ordinary fuzzy sets, several 

extensions (see Table 5.1) have been proposed and commonly used with MCDM 

methods to both inclusively model linguistic expressions and obtain more reasonable 

solutions. These fuzzy sets have some different conditions in which the membership 

degrees of an element to a set are defined as in Table 5.1. Although the increasing 

number of parameters and difficulties of operations may cause complexity in terms of 

their applicability, they are important for finding a better representation of subjectivity 

in human thoughts. Human's complex decision-making mechanisms can be better 

represented by fuzzy set extensions that contain more parameters, each representing a 

separate dimension of human thoughts. 

However, these circumstances are not sufficient to provide general information for 

modeling natural language since they cannot present the reliability information, which 

has a significant impact on the final result in the decision-making process. 

 

 

4 This chapter is based on the paper “Tüysüz, N., & Kahraman, C. (2024). A novel decomposed Z-fuzzy 

TOPSIS method with functional and dysfunctional judgments: An application to transfer center location 

selection. Engineering Applications of Artificial Intelligence, 127, 107221.” 
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Table 5.1 : Extensions of ordinary fuzzy sets 

Fuzzy sets defined by 

Membership functions (𝝁) 
Membership (𝝁) and non-

membership (𝝑) functions 

Membership (𝝁), non-

membership (𝝑) and 

hesitancy (𝝅) functions 

Ordinary fuzzy sets (Zadeh, 1965) 

(0 ≤ 𝜇 ≤ 1) 

Intuitionistic Fuzzy Sets (Atanassov, 

1986) 

(0 ≤ 𝜇 + 𝜗 ≤ 1) 

Neutrosophic Fuzzy Sets 

(Smarandache, 1999) 

(0 ≤ 𝜇 + 𝜗 + 𝜋 ≤ 3) 

Type-2 Fuzzy Sets (Zadeh, 1975) 

(0 ≤ 𝜇 ≤ 1) 

Pythagorean Fuzzy Sets (Yager, 

2013)  

(0 ≤ 𝜇2 + 𝜗2 ≤ 1) 

Picture Fuzzy Sets (Cuong, 

2014) 

(0 ≤ 𝜇 + 𝜗 + 𝜋 ≤ 1) 
Interval valued fuzzy sets (Zadeh, 

1975; Sambuc, 1975; Jahn, 1975; 

Grattan-Guinness, 1976) 

(0 ≤ 𝜇 ≤ 1) 

Fermatean Fuzzy Sets (Senapati and 

Yager, 2019) 

(0 ≤ 𝜇3 + 𝜗3 ≤ 1) 

Spherical Fuzzy Sets 

(Kahraman and Kutlu 

Gündoğdu, 2018) 

(0 ≤ 𝜇2 + 𝜗2 + 𝜋2 ≤ 1) 

Fuzzy Multisets (Yager, 1986) 

(0 ≤ 𝜇 ≤ 1) 

q-Rung Orthopair Fuzzy Sets (Yager, 

2016) 

(0 ≤ 𝜇𝑞 + 𝜗𝑞 ≤ 1) 

t-Spherical Fuzzy Sets 

(Mahmood et al., 2019) 

(0 ≤ 𝜇𝑡 + 𝜗𝑡 + 𝜋𝑡 ≤ 1) 
Nonstationary Fuzzy Sets 

(Garibaldi and Ozen, 2007) 

(0 ≤ 𝜇 ≤ 1) 

Circular Intuitionistic Fuzzy Sets with 

a radius r (Atanassov, 2020) 

(0 ≤ 𝜇 + 𝜗 ≤ 1) 
 

Hesitant fuzzy sets (Torra, 2010) 

(0 ≤ 𝜇 ≤ 1) 

Decomposed Fuzzy Sets (Cebi et al., 

2022) 

(0 ≤ 𝜇𝒪 + 𝜗𝒪 + 𝜇𝒫 + 𝜗𝒫 ≤ 2) 

 

 

Decomposed fuzzy sets (DFSs) proposed by Cebi et al. (2022) are one of the latest 

extensions of intuitionistic fuzzy sets, and they consider functional and dysfunctional 

points of view in order to check decision makers’ consistency in their judgments, 

which are different from existing extensions of fuzzy sets. DFSs suggest to collect the 

decision makers’ judgments with both positive and negative questions rather than 

collecting them with unidirectional (only positive) questions. Functional and 

dysfunctional sets in DFSs represent these judgments through positive and negative 

questions. Thus, DFSs define decision-makers' expressions not only from positive but 

also from negative perspectives. DFSs, like other fuzzy set extensions, do not cover 

reliability information in the evaluation. For this purpose, it is aimed to integrate Z-

fuzzy numbers and DFSs in this paper. Thus, multi-criteria decision problems will be 

solved with reliable and consistent judgments. Decomposed Z-fuzzy numbers allow 

us to make evaluations through functional and dysfunctional questions and to express 

the reliability degree of evaluations in a positive and negative circumstances.  

With the introduction of Z-fuzzy numbers by Zadeh (2011), it has been possible to 

represent an object's membership to a set together with its reliability degree. DMs can 

give their opinions in a form “Z= (A, R)” where A is a restrictive membership degree 

and R is the reliability degree of A. The DMs’ reliability judgments (R) within Z-fuzzy 

numbers provide an adjunctional and complementary element to construct a systematic 

approach for decision making. Z-fuzzy numbers cover other fuzzy numbers by 
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defining fuzzy reliability in addition to fuzzy restriction, and in fact, other fuzzy 

numbers are only fuzzy restrictions assumed that they are 100% reliable. Therefore, 

Z-fuzzy numbers are more sensible and useful than existing fuzzy numbers in cases 

where the certainty of fuzzy restriction is under 100%. The Z-fuzzy numbers have been 

progressively investigated in recent years, and they are employed in many MCDM 

methods. Combining Z-fuzzy numbers with MCDM methods such as VIKOR (Shen 

and Wang, 2018; Das et al., 2020), TOPSIS (Yaakob and Gegov, 2016; Xian et al., 

2019; Rathore et al., 2021), CODAS (Tüysüz and Kahraman, 2020a) and AHP (Tüysüz 

and Kahraman, 2020b) investigates the effects of reliability information on decision 

making and reveals its advantages and necessity. In addition to these studies, new 

extensions of Z-fuzzy numbers have been introduced to the literature by integrating 

with different fuzzy set approaches such as neutrosophic Z-fuzzy numbers (Du et al., 

2021), intuitionistic fuzzy Z-numbers (Sari and Kahraman, 2020), hesitant uncertain 

linguistic Z-numbers (Peng and Wang, 2017; Ren et al., 2020; Peng et al., 2021), 

orthopair Z-fuzzy numbers (Zhao and Ye, 2021), interval type-2 Z-fuzzy numbers 

(Sari and Tüysüz, 2022) and spherical Z-fuzzy numbers (Alkan and Kahraman, 2022).  

To enhance the representation capability of human judgments in DFSs and to enable 

the consideration of reliability information in MCDM problems under uncertainty, we 

propose a new decomposed Z-fuzzy number (DF Z-number), which can produce more 

comprehensive solutions since it combines the abilities of DFSs and Z-fuzzy numbers. 

The distinguishing feature of DF Z-numbers is their broader and multidirectional 

framework, which encompasses the reliability component in addition to the 

membership and non-membership degrees of the functional and dysfunctional points 

of view. The proposed DF Z-numbers dominate the ordinary or intuitionistic fuzzy 

numbers in the literature as they cover both the thinking structure of people and the 

reliability information about judgments, including satisfaction and dissatisfaction 

degrees. 

Due to the reasons mentioned above, it can be suggested that decision-making 

approaches should incorporate the reliability information into the solution process. In 

this paper, we propose a novel decomposed Z-fuzzy TOPSIS (DF Z-TOPSIS) method 

using the developed DF Z-numbers. We also propose a DF Z-linguistic scale and a 

new defuzzification formula for DFSs to reach a crisp solution at the end. The 

proposed methodology transforms the DMs’ opinions to interpretable and 

understandable values in the light of the developed defuzzification formula. The 
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proposed DF Z-TOPSIS method has a more generalized structure than ordinary fuzzy 

TOPSIS methods in the literature as it possesses both functional and dysfunctional 

viewpoints and combines reliability information with membership and non-

membership degrees. Figure 5.1 presents the general structure of the proposed method. 

Linguistic data are represented by DFSs and Z-numbers. Thus, the fuzzified linguistic 

data become the input for the proposed DF Z-TOPSIS method. The fuzzy outputs of 

the method are defuzzified to be able to rank the considered alternatives. 

 

 

Figure 5.1 : General structure of proposed decision-making method. 

There are four different contributions making this study original.  

i. A new decomposed Z-fuzzy number is firstly proposed to the literature to 

represent the uncertain expressions more inclusively and with a 

multidirectional framework. A DF Z-number includes both the vague 

preferences and their reliability under functional and dysfunctional viewpoints.  

ii. A novel DF Z-TOPSIS method is developed to reinforce the natural language 

representation capability of fuzzy MCDM models. It can effectively reflect the 

reliability degree of expressions, and provide more credible and inclusive 

results than the ordinary or intuitionistic fuzzy TOPSIS methods. 

iii. An application for selecting the best transfer center location for a private cargo 

company is first time presented to measure the practicality, capability and 

efficiency of the proposed method.  

DF sets and 

Z-numbers 

Fuzzy output 

Fuzzy input 

Fuzzification    

Data base (Linguistic 

data)  

Defuzzification 

Decision making unit: 

DF Z-TOPSIS method 

Ranking of the 
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iv. A new DF Z-linguistic scale for the DMs’ evaluations and the new 

defuzzification formula are proposed to the literature. All evaluations in the 

problem are given by DF Z linguistic terms. 

The organization of the paper is as follows. In Section 5.1, a literature review on Z-

fuzzy TOPSIS method is presented. In Section 5.2, the preliminaries on ordinary Z-

fuzzy numbers, decomposed fuzzy sets and decomposed Z-fuzzy numbers are 

presented. In Section 5.3, the proposed DF Z-TOPSIS method is presented step by 

step. In Section 5.4, an application on transfer center location selection is given to 

show the practicality of the proposed method. Finally, the results and the conclusions 

are discussed in the last section. 

 Literature Review on Z-Fuzzy TOPSIS Method 

In order to investigate the effect of reliability information on decision methods, many 

Z-fuzzy MCDM studies have been developed in the literature. Figure 5.2 illustrates 

the Z-fuzzy MCDM methods or methodologies in the literature. 

 

Figure 5.2 : Z-fuzzy MCDM methods or methodologies in the literature. 

It can be stated that TOPSIS method is the most integrated MCDM method with Z-

fuzzy numbers among other methods. Then, the AHP method follows it. The 

Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method is 

first introduced by Yoon and Hwang (1981) for the solution of MCDM problems. It 

ranks the alternatives with respect to the distances from negative and positive ideal 

solutions. It is one of the most efficient decision making methods to solve MCDM 
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problems (Xian et al., 2019; Haktanır and Kahraman, 2022). Table 5.2 presents the Z-

fuzzy TOPSIS methods in the literature. Although there are many extensions of 

ordinary fuzzy sets in the literature, the integration of new Z-fuzzy extensions and 

TOPSIS method is limited, as it can be seen in Table 5.2.  

Table 5.2 : Literature review on Z-fuzzy TOPSIS. 

It can be deduced from Table 5.2 that ordinary Z-fuzzy numbers are the most preferred 

concept for the integration of TOPSIS method with Z-fuzzy numbers. In addition, there 

are only few methods proposed to integrate other Z-fuzzy extensions with TOPSIS 

method, which can be seen from Figure 5.3.  

 

Figure 5.3 : Z-fuzzy extensions of TOPSIS method in the literature. 

0 2 4 6 8 10 12 14

Interval-valued type-2 Z-fuzzy…

Intuitionistic Z-fuzzy TOPSIS

Ordinary Z-fuzzy TOPSIS

TOPSIS under intuitionistic Z-…

TOPSIS under Z-linguistic terms

Number

of studies

Year Authors Extension of TOPSIS Application area 

2016 Zamri et al. Ordinary Z-fuzzy TOPSIS 
Evaluation of the causes of accidents 

in the construction industry 

2016 
Yaakob and 

Gegov 

Ordinary Z-fuzzy TOPSIS 
Stock selection problem 

2017 Ku Khalif et al. Ordinary Z-fuzzy TOPSIS Staff recruitment 

2018 Forghani et al. Ordinary Z-fuzzy TOPSIS Supplier selection 

2019 Gardashova Ordinary Z-fuzzy TOPSIS Vehicle selection 

2019 Krohling et al. 
Ordinary Z-fuzzy TOPSIS Two case studies (vehicle choice and 

clothing evaluation) 

2019 
Zamri and 

Ibrahim 

Ordinary Z-fuzzy TOPSIS 
Numerical example 

2019 Xian et al. 
TOPSIS under intuitionistic Z-

linguistic terms 

Numerical examples on investment 

and medical diagnosis 

2019 Wang and Mao Ordinary Z-fuzzy TOPSIS Supplier selection 

2019 Ahmad et al. Ordinary Z-fuzzy TOPSIS Supplier selection 

2020 Peng et al. Ordinary Z-fuzzy TOPSIS Nuclear power plant location selection 

2020 Tao and Xiao 
TOPSIS under Z-linguistic 

terms 
Supplier selection 

2021 Liu et al. Ordinary Z-fuzzy TOPSIS Conceptual design evaluation 

2021 Rathore et al. Ordinary Z-fuzzy TOPSIS Ranking of renewable energy sources 

2022 
Sari and 

Tüysüz 

Interval-valued type-2 Z-fuzzy 

TOPSIS 
Risk evaluation of occupations 

2022 Cheng et al. Ordinary Z-fuzzy TOPSIS Supplier selection 

2022 
Haktanır and 

Kahraman 
Intuitionistic Z-fuzzy TOPSIS Hydrogen storage technology selection 
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This literature review shows that the TOPSIS method is a very effective method based 

on the distances to positive and negative ideal solutions and it is very easy to 

implement and integrate with other approaches. Therefore, this research has been 

conducted on the basis of the TOPSIS method as a decision making tool. 

The above literature review also shows that fuzzy extensions in the literature do not 

test the accuracy of the membership degrees to be assigned by decision makers. With 

functional and dysfunctional questions, it should be checked whether the decision 

maker can assign membership values consciously and correctly. The fuzzy set 

extension that handles this check is decomposed fuzzy sets introduced by Cebi et al 

(2022). Integrating DFSs that check consistency and Z-fuzzy numbers that measure 

the reliability of judgments will significantly increase the consistency and reliability 

of the MCDM methods. 

 Preliminaries 

In this section, we firstly summarize some basic concepts related to the ordinary Z-

fuzzy numbers and decomposed fuzzy sets. Then, we develop decomposed Z-fuzzy 

numbers in Section 5.2.3. 

5.2.1 Ordinary Z-fuzzy numbers 

Zadeh (2011) introduced the Z-fuzzy numbers to the literature as a generalization of 

other numbers. A Z-fuzzy number is an ordered pair of fuzzy numbers, 𝑍(𝐴̃, 𝑅̃) as 

given in Figure 5.4. The first component 𝐴̃ is a restriction function whereas the second 

component 𝑅̃ is a measure of reliability for the first component.  

 

Figure 5.4 : A simple Z-fuzzy number, 𝑍(𝐴̃, 𝑅̃). 

The concept of a Z-fuzzy number enables us to compute with ordinary fuzzy numbers 

together with their reliability information.  

𝑅̃ 𝐴̃ 

1 

𝜇𝑅̃(𝑥) 

0       𝑟1           𝑟2          𝑟3        x         

1 

𝜇𝐴̃(𝑥) 

0        𝑎1           𝑎2            𝑎3     𝑥 
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Definition 5.1:  Converting Z-fuzzy number to regular fuzzy number (Kang et al., 

2012a) 

Consider a Z-fuzzy number 𝑍 = (𝐴,̃ 𝑅̃), which is described by Figure 5.4. The figure 

on the left is the part of restriction, and the figure on the right is the part of reliability. 

Let 𝐴̃ = {〈𝑥, 𝜇𝐴̃(𝑥)〉|𝜇(𝑥) ∈ [0,1]} and 𝑅̃ = {〈𝑥, 𝜇𝑅̃(𝑥)〉|𝜇(𝑥) ∈ [0,1]}, 𝜇𝐴̃(𝑥) and 

𝜇𝑅̃(𝑥) are the triangular membership functions. To convert the second part (reliability) 

into a crisp number, Eq. (5.1) is used. 𝛼 is the center of gravity value of a fuzzy number. 

𝛼 =
∫𝑥𝜇𝑅̃(𝑥)𝑑𝑥

∫𝜇𝑅̃(𝑥)𝑑𝑥
                          (5.1) 

where ∫  denotes an algebraic integration. 

Figure 5.5 illustrates the weighted restriction function by the reliability function. 

 

 

Figure 5.5 : Ordinary fuzzy number (𝑍̃′) converted from Z-fuzzy number. 

5.2.2 Decomposed fuzzy sets 

In this section, we present brief definitions for some basic concepts on Decomposed 

Fuzzy Sets (DFSs), which are proposed by Cebi et al. (2022). 

Definition 5.2. Let X be a universe of discourse. A Decomposed Fuzzy Set (DFS) 𝐴̃  

on X is defined as 𝐴̃ = {⟨x, (𝒪 (μ𝐴̃
𝒪(x), ϑ𝐴̃

𝒪(x)) , 𝒫 (μ𝐴̃
𝒫(x), ϑ𝐴̃

𝒫(x)))| x ∈ X}, where the 

functions μ𝐴̃(x): X → [0,1] and ϑ𝐴̃(x): X → [0,1] denote the degrees of membership 

and non-membership of x to 𝒪 (functional set) and 𝒫 (dysfunctional set), respectively. 

DFSs satisfy the conditions 0 ≤ μ𝐴̃
𝒪(x) + ϑ𝐴̃

𝒪(x) ≤ 1, 0 ≤ μ𝐴̃
𝒫(x) + ϑ𝐴̃

𝒫(x) ≤ 1, and 

inconsistency in the judgment is  ℐ𝐴 = 1 − (μÃ
𝒪(x) + ϑ𝐴̃

𝒪(x) + μÃ
𝒫(x) + ϑA

𝒫(x)) where 

-1≤ ℐ𝐴 ≤ 1 and 0 ≤ μ𝐴̃
𝒪(x) + ϑ𝐴̃

𝒪(x) + μ𝐴̃
𝒫(x) + ϑÃ

𝒫(x) ≤ 2 (Cebi et al., 2022).  

√𝛼𝑎3 √𝛼𝑎2 √𝛼𝑎1 

𝑍̃′ 

1 

0 

𝜇(𝑥) 

𝑥 
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Definition 5.3. Decomposed fuzzy number (DFN): A DFN 𝐴̃ is defined as follows: 

i) a decomposed fuzzy subset of the real line 

ii) normal, i.e., there is any 𝑥0 ∈ R such that 𝜇𝐴̃(𝑥0)=1 (so 𝜗𝐴̃(𝑥0)=0) 

iii) a convex set for the membership function  

(𝒪 (μ𝐴̃
𝒪(𝜆𝑥1 + (1 − 𝜆)𝑥2)) , 𝒫 (μ𝐴̃

𝒫(𝜆𝑥1 + (1 − 𝜆)𝑥2))) ≥

min((𝒪 (μ𝐴̃
𝒪(x1)) , 𝒫 (μ𝐴̃

𝒫(x1))) , (𝒪 (μ𝐴̃
𝒪(x2)) , 𝒫 (μ𝐴̃

𝒫(x2)))) ∀𝑥1, 𝑥2 ∈R, 𝜆 ∈  [0,1]  

iv) a concave set for the non-membership function  

(𝒪 (ϑ𝐴̃
𝒪(𝜆𝑥1 + (1 − 𝜆)𝑥2)) , 𝒫 (ϑ𝐴̃

𝒪(𝜆𝑥1 + (1 − 𝜆)𝑥2))) ≤

max((𝒪 (ϑ𝐴̃
𝒪(x1)) , 𝒫 (ϑ𝐴̃

𝒫(x1))) , (𝒪 (ϑ𝐴̃
𝒪(x2)) , 𝒫 (ϑ𝐴̃

𝒫(x2)))) ∀𝑥1, 𝑥2 ∈ R, 𝜆 ∈  [0,1]  

For a detailed proof of the above conditions, Mitchell (2006) can be examined. 

Definition 5.4. For two DFS 𝐴̃ and 𝐵̃, some set operations are defined by Eqs. (5.2-

5.6) (Cebi et al., 2022): 

The complement c(𝐴̃) of 𝐴̃ is defined by Eq. (5.2). 

c(𝐴̃) = 𝐴̅̃ = {𝑥, 𝒫𝐴 (ϑÃ
𝒫(x), μÃ

𝒫(x)) , 𝒪𝐴 (ϑ𝐴̃
𝒪(x), μ𝐴̃

𝒪(x)) |𝑥 ∈ 𝑋}            (5.2) 

The superset, equality, union and intersection operations are given by Eqs. (5.3-5.6), 

respectively. 

𝐴̃ ⊂ 𝐵̃ = {
∀𝑥 ∈ 𝑋, μ𝐴̃

𝒪(𝑥) <  μ𝐵̃
𝒪(𝑥), ϑ𝐴̃

𝒪(𝑥) > ϑ𝐵̃
𝒪(𝑥),

 μ𝐴̃
𝒫(𝑥) <  μ𝐵̃

𝒫(𝑥), ϑ𝐴̃
𝒫(𝑥) > ϑ𝐵̃

𝒫(𝑥)
}             (5.3) 

𝐴̃ = 𝐵̃ ↔ {
∀𝑥 ∈ 𝑋, μ𝐴̃

𝒪(𝑥) = μ𝐵̃
𝒪(𝑥), ϑ𝐴̃

𝒪(𝑥) = ϑ𝐵̃
𝒪(𝑥),

 μ𝐴̃
𝒫(𝑥) =  μ𝐵̃

𝒫(𝑥), ϑ𝐴̃
𝒫(𝑥) = ϑ𝐵̃

𝒫(𝑥)
}             (5.4) 

𝐴̃ ∪ 𝐵̃ = {
∀𝑥 ∈ 𝑋,𝑚𝑎𝑥 (μ𝐴̃

𝒪(𝑥), μ𝐵̃
𝒪(𝑥)) ,𝑚𝑖𝑛 (ϑ𝐴̃

𝒪(𝑥), ϑ𝐵̃
𝒪(𝑥))

𝑚𝑖𝑛 (μ𝐴̃
𝒫(𝑥), μ𝐵̃

𝒫(𝑥)) ,𝑚𝑎𝑥 (ϑ𝐴̃
𝒫(𝑥), ϑ𝐵̃

𝒫(𝑥))
}            (5.5) 

𝐴̃ ∩ 𝐵̃ = {
∀𝑥 ∈ 𝑋,𝑚𝑖𝑛 (μ𝐴̃

𝒪(𝑥), μ𝐵̃
𝒪(𝑥)) ,𝑚𝑎𝑥 (ϑ𝐴̃

𝒪(𝑥), ϑ𝐵̃
𝒪(𝑥))

𝑚𝑎𝑥 (μ𝐴̃
𝒫(𝑥), μ𝐵̃

𝒫(𝑥)) , 𝑚𝑖𝑛 (ϑ𝐴̃
𝒫(𝑥), ϑ𝐵̃

𝒫(𝑥))
}            (5.6) 

Definition 5.5. Let 𝛼̃ = {𝒪(𝑎, 𝑏), 𝒫(𝑐, 𝑑)} is a DFN, where 𝑎 = μ𝐴̃
𝒪(x), 𝑏 =

ϑ𝐴̃
𝒪(x), 𝑐 = μ𝐴̃

𝒫(x), 𝑑 = ϑ𝐴̃
𝒫(x).  Consider two DFNs 𝛼̃1 = {𝒪(𝑎1, 𝑏1),𝒫(𝑐1, 𝑑1)} and 
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𝛼̃2 = {𝒪(𝑎2, 𝑏2), 𝒫(𝑐2, 𝑑2)}. Basic operations are given by Eqs. (5.7-5.10) (Cebi et al., 

2022): 

Addition:     

𝛼̃1⊕ 𝛼̃2 = 

{
{𝒪 (

𝑎1+𝑎2−2𝑎1𝑎2

1−𝑎1𝑎2
,

𝑏1𝑏2

𝑏1+𝑏2−𝑏1𝑏2
) , 𝒫(𝑐1𝑐2, 𝑑1 + 𝑑2 − 𝑑1𝑑2)} , 𝑎i, 𝑏𝑖 ∈ (0,1)

{𝒪(1,0), 𝒫(𝑐1𝑐2, 𝑑1 + 𝑑2 − 𝑑1𝑑2)} , 𝑎1 = 𝑎2 = 1 𝑎𝑛𝑑 𝑏1 = 𝑏2 = 0
      (5.7) 

Multiplication by a scalar 𝜆:   

𝜆 ⋅ 𝛼̃ = 

{𝒪 (
𝜆𝑎

(𝜆−1)𝑎+1
,

𝑏

𝜆−(𝜆−1)𝑏
) , 𝒫 (𝑐𝜆, (1 − (1 − 𝑑)𝜆))} for 𝜆 > 0                (5.8) 

Multiplication:     

𝛼̃1⊗ 𝛼̃2 = 

{
{𝒪(𝑎1𝑎2, 𝑏1 + 𝑏2 − 𝑏1𝑏2 ), 𝒫 (

𝑐1+𝑐2−2𝑐1𝑐2

1−𝑐1𝑐2
,

𝑑1𝑑2

𝑑1+𝑑2−𝑑1𝑑2
)} , 𝑐i, 𝑑𝑖 ∈ (0,1)

{𝒪(𝑎1𝑎2, 𝑏1 + 𝑏2 − 𝑏1𝑏2 ), 𝒫(0,1)}, 𝑐1 = 𝑐2 = 0 𝑎𝑛𝑑 𝑑1 = 𝑑2 = 1
   (5.9) 

𝜆𝑡ℎ power of 𝛼̃: 𝜆 > 0  

𝛼̃𝜆 = 

{𝒪 (𝑎𝜆, (1 − (1 − 𝑏)𝜆)) , 𝒫 (
𝑐

𝜆−(𝜆−1)𝑐
,

𝜆𝑑

(𝜆−1)𝑑+1
)} for 𝜆 > 0          (5.10) 

Definition 5.6: Let 𝛼̃1 and 𝛼̃2 are two DFNs. Then some properties are defined by 

Eqs. (5.11-5.16) (Cebi et al., 2022). 

𝛼̃1⊕ 𝛼̃2 = 𝛼̃2⊕ 𝛼̃1             (5.11) 

𝛼̃1⊗ 𝛼̃2 = 𝛼̃2⊗ 𝛼̃1             (5.12) 

𝜆(𝛼̃1⊕ 𝛼̃2) = 𝜆 ⋅ 𝛼̃1⊕𝜆 ⋅ 𝛼̃2            (5.13) 

(𝛼̃1⊗ 𝛼̃2)
𝜆 = 𝛼̃1

𝜆 ⊗ 𝛼̃2
𝜆             (5.14) 

𝜆1 ⋅ 𝛼̃ ⊕ 𝜆2 ⋅ 𝛼̃ = (𝜆1 + 𝜆2) ⋅ 𝛼̃            (5.15)  

𝛼̃𝜆1 ⊗ 𝛼̃𝜆2 = 𝛼̃𝜆1+𝜆2             (5.16) 

where 𝜆, 𝜆1, 𝜆2 ≥ 0. 
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Definition 5.7: Let 𝛼̃𝑖 = {𝒪(𝑎𝑖, 𝑏𝑖), 𝒫(𝑐𝑖, 𝑑𝑖)} be a collection of Decomposed 

Weighted Arithmetic Mean (DWAM) with respect to, 𝜆𝑖 = (𝜆1, 𝜆2. . . . . . . , 𝜆𝑛); 𝜆𝑖 ∈

[0,1],  and ∑ 𝜆𝑖 = 1𝑛
𝑖=1 , DWAM is given by Eq. (5.17) (Cebi et al., 2022). 

𝐷𝑊𝐴𝑀(𝛼̃1, 𝛼̃2…… . , 𝛼̃𝑛) = 𝜆1 ⋅ 𝛼̃1⊕𝜆2 ⋅ 𝛼̃2⊕……⊕ 𝜆𝑛 ⋅ 𝛼̃𝑛 = 

{
𝒪 (

∑ 𝜆𝑖𝑎𝑖
𝑛
𝑖=1

1+∑ (𝜆𝑖𝑎𝑖−
𝑎𝑖
𝑛
)𝑛

𝑖=1

,
∏ 𝑏𝑖
𝑛
𝑖=1

∑ 𝑏𝑖
𝑛−1𝜆𝑖(1−𝑏𝑖)+∏ 𝑏𝑖

𝑛
𝑖=1

𝑛
𝑖=1

) ,

𝒫 ((1 − ∏ (1 − 𝑐𝑖)
𝜆𝑛

𝑖=1 ),∏ 𝑑𝑖
𝜆𝑛

𝑖=1 )

}              (5.17) 

Definition 5.8. Let 𝛼̃𝑖 = {𝒪(𝑎𝑖, 𝑏𝑖),𝒫(𝑐𝑖, 𝑑𝑖)} be a collection of Decomposed 

Weighted Geometric Mean (DWGM) with respect to, 𝜆𝑖 = (𝜆1, 𝜆2. . . . . . . , 𝜆𝑛); 𝜆𝑖 ∈

[0,1] and ∑ 𝜆𝑖 = 1𝑛
𝑖=1 , DWGM is defined by Eq. (5.18) (Cebi et al., 2022). 

𝐷𝑊𝐺𝑀(𝛼̃1, 𝛼̃2…… . , 𝛼̃𝑛) = 𝛼̃1
𝜆1 ⊗ 𝛼̃2

𝜆2 ⊗……⊗ 𝛼̃𝑛
𝜆𝑛 = 

{

𝒪 (∏ 𝑎𝑖
𝜆𝑛

𝑖=1 , (1 − ∏ (1 − 𝑏𝑖)
𝜆𝑛

𝑖=1 )) ,

𝒫 (
∏ 𝑐𝑖
𝑛
𝑖=1

∑ 𝑐𝑖
𝑛−1𝜆𝑖(1−𝑐𝑖)+∏ 𝑐𝑖

𝑛
𝑖=1

𝑛
𝑖=1

,
∑ 𝜆𝑖𝑑𝑖
𝑛
𝑖=1

1+∑ (𝜆𝑖𝑑𝑖−
𝑑𝑖
𝑛
)𝑛

𝑖=1

)
}           (5.18) 

A novel defuzzification formula and a novel Euclidean distance for DFSs are proposed 

in Definitions 5.9 and 5.10, respectively. 

Definition 5.9. Let 𝐴̃ be a DFN. Its defuzzification formula 𝐷𝑒𝑓𝐴̃ is defined by Eq. 

(5.19): 

𝐷𝑒𝑓𝐴̃ = 0.5 + √
μ
𝐴̃
𝒪(x)+ϑ

𝐴̃
𝒫(x)

8
−√

ϑ
𝐴̃
𝒪(x)+μ

𝐴̃
𝒫(x)

8
           (5.19) 

Definition 5.10. Let 𝑎̃ = {𝒪 (μ𝑎̃
𝒪(𝑥), ϑ𝑎̃

𝒪(𝑥)) , 𝒫 (μ𝑎̃
𝒫(𝑥), ϑ𝑎̃

𝒫(𝑥))} and 𝑏̃ =

{𝒪 (μ𝑏̃
𝒪(x), ϑ𝑏̃

𝒪(x)) , 𝒫 (μ𝑏̃
𝒫(x), ϑ𝑏̃

𝒫(x))} be two DFNs and then Euclidean distance of 

𝑎̃ and 𝑏̃ is given by Eq. (5.20): 

𝐸𝐷𝐹(𝑎̃, 𝑏̃) =

{
  
 

  
 
𝒪(√

1

2𝑛
∑ [((μ𝑎̃

𝒪(𝑥) − μ
𝑏̃
𝒪(𝑥))

2
+ (ϑ𝑎̃

𝒪(𝑥) − ϑ𝑏̃
𝒪(𝑥))

2

)]𝑛
𝑖=1 ) ,

𝒫(√
1

2𝑛
∑ [((μ𝑎̃

𝒫(𝑥) − μ
𝑏̃
𝒫(𝑥))

2
+ (ϑ𝑎̃

𝒫(𝑥) − ϑ𝑏̃
𝒫(𝑥))

2

)]𝑛
𝑖=1 )

}
  
 

  
 

   (5.20) 
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5.2.3 Decomposed Z-fuzzy numbers 

Decomposed Z-fuzzy numbers are developed to define decomposed fuzzy restrictions 

with their decomposed fuzzy reliabilities. Collecting judgments with both their fuzzy 

restrictions and fuzzy reliabilities from decision makers based on positive (functional) 

and negative (dysfunctional) questions make them consistent and reliable judgments. 

Decomposed Z-fuzzy numbers can remove the inconsistent assignment of membership 

and non-membership degrees, which is the main motivation of this study. Although 

the computational complexity of the decomposed Z-fuzzy numbers makes the method 

difficult to extend and apply, they can reveal significant effects to find out more 

meaningful and more realistic results than ordinary fuzzy approaches. 

Decomposed Z-fuzzy number 𝑍̃𝐷𝐹(𝐴̃, 𝑅̃) is an ordered pair fuzzy number in which its 

fuzzy restriction and fuzzy reliability functions are denoted by decomposed fuzzy 

numbers. Let the decomposed fuzzy restriction function 𝐴̃ =

(𝒪 (μ𝐴̃
𝒪(x), ϑ𝐴̃

𝒪(x)) , 𝒫 (μ𝐴̃
𝒫(x), ϑ𝐴̃

𝒫(x))) and the decomposed fuzzy reliability function 

𝑅̃ = (𝒪 (μ𝑅̃
𝒪(x), ϑ𝑅̃

𝒪(x)) , 𝒫 (μ𝑅̃
𝒫(x), ϑ𝑅̃

𝒫(x))), whose membership and non-

membership degrees of 𝒪 and 𝒫 are represented by triangular fuzzy numbers. A 

general representation of decomposed Z-fuzzy number is given in Eq. (5.21). 

𝑍̃𝐷𝐹(𝐴̃, 𝑅̃) = (
(𝒪 (μ𝐴̃

𝒪(x), ϑ𝐴̃
𝒪(x)) , 𝒫 (μ𝐴̃

𝒫(x), ϑ𝐴̃
𝒫(x))) ,

(𝒪 (μ𝑅̃
𝒪(x), ϑ𝑅̃

𝒪(x)) , 𝒫 (μ𝑅̃
𝒫(x), ϑ𝑅̃

𝒫(x)))
)                    (5.21) 

where μ𝐴̃(x): X → [0,1], ϑ𝐴̃(x): X → [0,1] are the degrees of membership and non-

membership of x to 𝒪 and 𝒫 for restriction function; μ𝑅̃(x): X → [0,1], ϑ𝑅̃(x): X →

[0,1] are the degrees of membership and non-membership of x to 𝒪 and 𝒫 for 

reliability function satisfying the conditions 0 ≤ μ𝐴̃
𝒪(x) + ϑ𝐴̃

𝒪(x) ≤ 1, 0 ≤ μ𝐴̃
𝒫(x) +

ϑ𝐴̃
𝒫(x) ≤ 1,  0 ≤ μ𝑅̃

𝒪(x) + ϑ𝑅̃
𝒪(x) ≤ 1 and 0 ≤ μ𝑅̃

𝒫(x) + ϑ𝑅̃
𝒫(x) ≤ 1. Inconsistencies in 

the judgments are computed by  ℐ𝐴̃ = 1 − (μÃ
𝒪(x) + ϑÃ

𝒪(x) + μ𝐴
𝒫(x) + ϑÃ

𝒫(x))  and 

ℐ𝑅̃ = 1 − (μR̃
𝒪(x) + ϑR̃

𝒪(x) + μ𝑅
𝒫(x) + ϑR̃

𝒫(x)), where -1≤ ℐ𝐴̃ ≤ 1 and 1≤ ℐ𝑅̃ ≤ 1, 

0 ≤ μÃ
𝒪(x) + ϑÃ

𝒪(x) + μÃ
𝒫(x) + ϑÃ

𝒫(x) ≤ 2 and 0 ≤ μR̃
𝒪(x) + ϑ𝑅̃

𝒪(x) + μR̃
𝒫(x) +

ϑR̃
𝒫(x) ≤ 2.  
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A decomposed triangular Z-fuzzy number is represented in Figure 5.6.  

 

Figure 5.6 : A decomposed triangular Z-fuzzy number, 𝑍̃𝐷𝐹(𝐴̃, 𝑅̃). 

Definition 5.11:  Transformation from a decomposed Z-fuzzy number to a 

decomposed fuzzy number 

A decomposed Z-fuzzy number 𝑍̃𝐷𝐹(𝐴̃, 𝑅̃) with triangular fuzzy membership degrees 

is given by Eq. (5.22): 

𝑍̃𝐷𝐹(𝐴̃, 𝑅̃) = 

(

 
 
 
 
 (

𝒪𝐴̃ ((μ𝐴𝐿
𝒪 (𝑥), μ𝐴𝑀

𝒪 (𝑥), μ𝐴𝑈
𝒪 (𝑥)) , (ϑ𝐴𝐿

𝒪 (𝑥), ϑ𝐴𝑀
𝒪 (𝑥), ϑ𝐴𝑈

𝒪 (𝑥))) ,

 𝒫𝐴̃ ((μ𝐴𝐿
𝒫 (𝑥), μ𝐴𝑀

𝒫 (𝑥), μ𝐴𝑈
𝒫 (𝑥)) , (ϑ𝐴𝐿

𝒫 (𝑥), ϑ𝐴𝑀
𝒫 (𝑥), ϑ𝐴𝑈

𝒫 (𝑥)))
) ,

 (
𝒪𝑅̃ ((μ𝑅𝐿

𝒪 (𝑥), μ𝑅𝑀
𝒪 (𝑥), μ𝑅𝑈

𝒪 (𝑥)) , (ϑ𝑅𝐿
𝒪 (𝑥), ϑ𝑅𝑀

𝒪 (𝑥), ϑ𝑅𝑈
𝒪 (𝑥))) ,

𝒫𝑅̃  ((μ𝑅𝐿
𝒫 (𝑥), μ𝑅𝑀

𝒫 (𝑥), μ𝑅𝑈
𝒫 (𝑥)) , (ϑ𝑅𝐿

𝒫 (𝑥), ϑ𝑅𝑀
𝒫 (𝑥), ϑ𝑅𝑈

𝒫 (𝑥)))
)

)

 
 
 
 
 

        (5.22) 

where μ𝐴𝐿(𝑥), μ𝐴𝑀(𝑥), μ𝐴𝑈(𝑥), ϑ𝐴𝐿(𝑥), ϑ𝐴𝑀(𝑥), and ϑ𝐴𝑈(𝑥) of the restriction 

function; and μ𝑅𝐿(𝑥), μ𝑅𝑀(𝑥), μ𝑅𝑈(𝑥), ϑ𝑅𝐿(𝑥), ϑ𝑅𝑀(𝑥), and ϑ𝑅𝑈(𝑥) of the reliability 

function represent the lower, middle, and upper values of the judgments for 𝒪 and 𝒫, 

respectively. 

The reliability function (𝑅̃) can be transformed into a crisp number (𝛼) using Eq. 

(5.23), which is derived from Definition 5.9, and this crisp 𝛼 is used for weighing 

restriction part (𝐴̃) as in Eq. (5.24).  Alternatively, to continue operations with DF 

reliability, 𝑅̃, DF restriction function is multiplied by the square root of DF reliability 

function (𝛼̃) as in Eq. (5.25).  

𝐷𝑒𝑓𝑅̃ = 𝛼 = 

0.5 +
√μ𝑅𝐿

𝒪 (𝑥)+μ𝑅𝑈
𝒪 (𝑥)+ϑ𝑅𝐿

𝒫 (𝑥)+ϑ𝑅𝑈
𝒫 (𝑥)

4
−

√ϑ𝑅𝐿
𝒪 (𝑥)+ϑ𝑅𝑈

𝒪 (𝑥)+μ𝑅𝐿
𝒫 (𝑥)+μ𝑅𝑈

𝒫 (𝑥)

4
              (5.23) 

x 𝑎1  𝑎2  𝑎3                                          0 

1 

x 𝑟1   𝑟2   𝑟3                                          0 

1 

𝑍̃𝐷𝐹(𝐴̃, 𝑅̃) 

𝑎′1    𝑎′2   𝑎′3                                          𝑟′1    𝑟′2  𝑟′3                                           

𝜇𝒪 ϑ𝒪 𝜇𝒫 ϑ𝒫 𝜇𝒪 ϑ𝒪 𝜇𝒫 ϑ𝒫 
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𝑍̃𝐷𝐹
𝛼 = {〈𝑥, 𝜇𝐴̃𝛼(𝑥)〉|𝜇𝐴̃𝛼(𝑥) = 𝛼𝜇𝐴̃(𝑥), 𝜇(𝑥) ∈ [0,1]}           (5.24) 

𝑍̃𝐷𝐹
𝛼̃ = {〈𝑥, 𝜇𝐴̃𝛼̃(𝑥)〉|𝜇𝐴̃𝛼̃(𝑥) = 𝛼̃𝜇𝐴̃(𝑥), 𝜇(𝑥) ∈ [0,1]}           (5.25) 

The weighted restriction function is transformed to regular decomposed triangular 

fuzzy number 𝑍̃𝐷𝐹
′  which is presented in Figure 5.7 using Eq. (5.26): 

𝑍̃𝐷𝐹
′ = {〈𝑥, 𝜇𝑍̃𝐷𝐹′

(𝑥)〉 |𝜇𝑍̃𝐷𝐹′
(𝑥) = 𝜇𝐴̃ (

𝑥

√𝛼
) , 𝜇(𝑥) ∈ [0,1]}          (5.26) 

 

Figure 5.7 : Weighted decomposed triangular Z-fuzzy number. 

 Decomposed Z-Fuzzy TOPSIS 

In this section, the TOPSIS method is extended to Decomposed Z-Fuzzy TOPSIS (DF 

Z-TOPSIS) method. Figure 5.8 presents the flowchart of the proposed method. 

Step 1. Define the criteria set 𝐶 = {𝐶1, 𝐶2, 𝐶3, … , 𝐶𝑚} and alternative set 𝐴 =

{𝐴1, 𝐴2, 𝐴3, … 𝐴𝑛}. The decomposed Z-fuzzy decision matrix (𝐷̃𝐷𝑍𝐹 = (𝑑̃𝑖𝑗)𝑛×𝑚) is 

constructed as in Eq. (5.27).  

𝐷̃𝐷𝑍𝐹 =

  
𝐴1
𝐴2
⋮
𝐴𝑛

  

𝐶1    𝐶2    … 𝐶𝑚

[
 
 
 
𝑑̃11 𝑑̃12 

𝑑̃21 𝑑̃22
 
… 𝑑̃1𝑚 

… 𝑑̃2𝑚
⋮ ⋮ 
𝑑̃𝑛1 𝑑̃𝑛2

⋮  ⋮
… 𝑑̃𝑛𝑚 ]

 
 
 
            (5.27) 

where 𝑖 = 1,2,3…, n,  𝑗 = 1,2,3… ,𝑚 and; 

𝑑̃𝑖𝑗 is the DMs’ decomposed Z-fuzzy assessments and defined in Eq. (5.28). 

𝑑̃𝑖𝑗 = (𝐴̃, 𝑅̃) =

(

 
 
 
 
 (

𝒪𝐴̃ ((μ𝐴𝐿
𝒪 (𝑥), μ𝐴𝑀

𝒪 (𝑥), μ𝐴𝑈
𝒪 (𝑥)) , (ϑ𝐴𝐿

𝒪 (𝑥), ϑ𝐴𝑀
𝒪 (𝑥), ϑ𝐴𝑈

𝒪 (𝑥))) ,

𝒫𝐴̃  ((μ𝐴𝐿
𝒫 (𝑥), μ𝐴𝑀

𝒫 (𝑥), μ𝐴𝑈
𝒫 (𝑥)) , (ϑ𝐴𝐿

𝒫 (𝑥), ϑ𝐴𝑀
𝒫 (𝑥), ϑ𝐴𝑈

𝒫 (𝑥)))
) ,

(
𝒪𝑅̃ ((μ𝑅𝐿

𝒪 (𝑥), μ𝑅𝑀
𝒪 (𝑥), μ𝑅𝑈

𝒪 (𝑥)) , (ϑ𝑅𝐿
𝒪 (𝑥), ϑ𝑅𝑀

𝒪 (𝑥), ϑ𝑅𝑈
𝒪 (𝑥))) ,

𝒫𝑅̃ ((μ𝑅𝐿
𝒫 (𝑥), μ𝑅𝑀

𝒫 (𝑥), μ𝑅𝑈
𝒫 (𝑥)) , (ϑ𝑅𝐿

𝒫 (𝑥), ϑ𝑅𝑀
𝒫 (𝑥), ϑ𝑅𝑈

𝒫 (𝑥)))
)

)

 
 
 
 
 

 

         (5.28) 

𝑍̃𝐷𝐹
′  

x 
√𝛼𝑎1  √𝛼𝑎2 √𝛼𝑎3                                          

0 

1 

√𝛼𝑎′1  √𝛼𝑎′2 √𝛼𝑎′3                                          

𝜇𝒪 ϑ𝒪 𝜇𝒫 ϑ𝒫 
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Figure 5.8 : Flowchart of the proposed DF Z-TOPSIS method. 

Step 2. Collect the decision matrices from K DMs using the decomposed Z-fuzzy 

scales given in Table 5.3. For this purpose, the functional and dysfunctional questions 

are asked each DM.  

 

 

Define the criteria and alternative sets for the decision problem 

Define linguistic terms and their corresponding decomposed Z-fuzzy 

numbers 

Collect evaluations from DMs 

using the questionnaires 

Aggregate the DMs’ evaluation 

matrices and obtain 𝐷̃𝐷𝑍𝐹
𝐴𝑔𝑔

 

Transform 𝐷̃𝐷𝑍𝐹
𝐴𝑔𝑔

 matrix to 𝐷̃𝐷𝐹
𝐴𝑔𝑔

 Definition 5.11 

The proposed defuzzification formula 

The functional and dysfunctional questions 

Weigh the 𝐷̃𝐷𝐹
𝐴𝑔𝑔

 by criteria 

weights (𝑊̃) and obtain 𝐷̃𝐷𝐹𝑊
𝐴𝑔𝑔

. 

Defuzzify each 𝒪 and 𝒫 parameters of the 𝐷̃𝐷𝐹𝑊
𝐴𝑔𝑔

 

Determine the decomposed fuzzy positive and negative ideal solutions 

Calculate the closeness coefficient of the alternatives 

Rank the alternatives 

Calculate the positive and negative separation measures 



88 

Table 5.3 : Decomposed Z-fuzzy restriction and reliability scale. 

Linguistic Terms for 

Restriction 

Linguistic Terms for 

Reliability 
𝛍 𝛝 

Absolutely High (AH) Absolutely High Reliable (AHR) (0.7, 0.8, 0.9) (0, 0.05, 0.1) 

Very High (VH) Very High Reliable (VHR) (0.6, 0.7, 0.8) (0, 0.1, 0.2) 

High (H) High Reliable (HR) (0.5, 0.6, 0.7) (0.1, 0.2, 0.3) 

Medium (M) Reliable (R) (0.4, 0.5, 0.6) (0.2, 0.3, 0.4) 

Low (L) Low Reliable (LR) (0.3, 0.4, 0.5) (0.3, 0.4, 0.5) 

Very Low (VL) Very Low Reliable (VLR) (0.2, 0.3, 0.4) (0.4, 0.5, 0.6) 

Absolutely Low (AL) Absolutely Low Reliable (ALR) (0.1, 0.2, 0.3) (0.5, 0.55, 0.6) 

 

Step 3. Aggregate the K decision matrices 𝐷̃𝐷𝑍𝐹s of DMs using DWAM or DWGM 

operators given in Eqs. (5.17) and (5.18), respectively. In this study, we use DWGM 

operator and obtain the aggregated 𝐷̃𝐷𝑍𝐹  (𝐷̃𝐷𝑍𝐹
𝐴𝑔𝑔

) using Eqs. (5.29-5.30). 𝜆𝑘 =

(𝜆1, 𝜆2. . . . . . . , 𝜆𝐾); 𝜆𝑘 ∈ [0,1] and ∑ 𝜆𝑘 = 1𝐾
𝑘=1 , where 𝜆𝑘 is the weight of kth DM. 

𝐷̃𝐷𝑍𝐹
𝐴𝑔𝑔

=

[
 
 
 
 
 
𝑐̃11 𝑐̃12 … 𝑐̃1𝑚
𝑐̃21 𝑐̃22 … 𝑐̃2𝑚
⋮ ⋮ ⋱ ⋮
𝑐̃𝑖1 𝑐̃𝑖2 𝑐̃𝑖𝑗 𝑐̃𝑖𝑚
⋮ ⋮ ⋱ ⋮
𝑐̃𝑛1 𝑐̃𝑛2 … 𝑐̃𝑛𝑚]

 
 
 
 
 

            (5.29) 

where 𝑐̃𝑖𝑗 = (𝐴̃, 𝑅̃) = ((𝐴̃1
𝜆1 ⊗ 𝐴̃2

𝜆2 ⊗…⊗ 𝐴̃𝐾
𝜆𝐾), (𝑅̃1

𝜆1 ⊗ 𝑅̃2
𝜆2 ⊗…⊗ 𝑅̃𝐾

𝜆𝐾)) and  

𝐴̃

=

{
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

𝒪𝐴

(

 
 
 

(∏μ𝐴𝐿
𝒪 (𝑥𝑖𝑗)𝑘

𝜆𝑘

𝐾

𝑘=1

,∏μ𝐴𝑀
𝒪 (𝑥𝑖𝑗)𝑘

𝜆𝑘

𝐾

𝑘=1

,∏μ𝐴𝑈
𝒪 (𝑥𝑖𝑗)𝑘

𝜆𝑘

𝐾

𝑘=1

) ,

(1 −∏(1 − ϑ𝐴𝐿
𝒪 (𝑥𝑖𝑗)𝑘)

𝜆𝑘
𝐾

𝑘=1

, 1 −∏(1 − ϑ𝐴𝑀
𝒪 (𝑥𝑖𝑗)𝑘)

𝜆𝑘
𝐾

𝑘=1

, 1 −∏(1 − ϑ𝐴𝑈
𝒪 (𝑥𝑖𝑗)𝑘)

𝜆𝑘
𝐾

𝑘=1

)
)

 
 
 
,

𝒫𝐴

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(

 
 
 
 
 
 
 

∏ μ𝐴𝐿
𝒫 (𝑥𝑖𝑗)𝑘

𝐾
𝑘=1

∑ μ𝐴𝐿
𝒫 (𝑥𝑖𝑗)𝑘

𝑛−1
𝜆𝑘 (1 − μ𝐴𝐿

𝒫 (𝑥𝑖𝑗)𝑘)
𝐾
𝑘=1 +∏ μ𝐴𝐿

𝒫 (𝑥𝑖𝑗)𝑘
𝐾
𝑘=1

,

∏ μ𝐴𝑀
𝒫 (𝑥𝑖𝑗)𝑘

𝐾
𝑘=1

∑ μ𝐴𝑀
𝒫 (𝑥𝑖𝑗)𝑘

𝑛−1
𝜆𝑘 (1 − μ𝐴𝑀

𝒫 (𝑥𝑖𝑗)𝑘)
𝐾
𝑘=1 +∏ μ𝐴𝑀

𝒫 (𝑥𝑖𝑗)𝑘
𝐾
𝑘=1

,

∏ μ𝐴𝑢
𝒫 (𝑥𝑖𝑗)𝑘

𝐾
𝑘=1

∑ μ𝐴𝑈
𝒫 (𝑥𝑖𝑗)𝑘

𝑛−1
𝜆𝑘 (1 − μ𝐴𝑈

𝒫 (𝑥𝑖𝑗)𝑘)
𝐾
𝑘=1 +∏ μ𝐴𝑈

𝒫 (𝑥𝑖𝑗)𝑘
𝐾
𝑘=1 )

 
 
 
 
 
 
 

,

(

 
 
 
 
 
 

∑ 𝜆𝑘
𝐾
𝑘=1 ϑ𝐴𝐿

𝒫 (𝑥𝑖𝑗)𝑘

1 + ∑ (𝜆𝑘ϑ𝐴𝐿
𝒫 (𝑥𝑖𝑗)𝑘 −

ϑ𝐴𝐿
𝒫 (𝑥𝑖𝑗)𝑘
𝑛

)𝐾
𝑘=1

,

 
∑ 𝜆𝑘ϑ𝐴𝑀

𝒫 (𝑥𝑖𝑗)
𝐾
𝑘=1

1 + ∑ (𝜆𝑘 ϑ𝐴𝑀
𝒫 (𝑥𝑖𝑗)𝑘 −

ϑ𝐴𝑀
𝒫 (𝑥𝑖𝑗)𝑘
𝑛

)𝐾
𝑘=1

,
∑ 𝜆𝑘ϑ𝐴𝑈

𝒫 (𝑥𝑖𝑗)𝑘
𝐾
𝑘=1

1 + ∑ (𝜆𝑘ϑ𝐴𝑈
𝒫 (𝑥𝑖𝑗)𝑘 −

ϑ𝐴𝑈
𝒫 (𝑥𝑖𝑗)𝑘
𝑛

)𝐾
𝑘=1

)

 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

}
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 



89 

𝑅̃

=

{
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

𝒪𝑅̃

(

 
 
 

(∏μ𝑅𝐿
𝒪 (𝑥𝑖𝑗)𝑘

𝜆𝑘

𝐾

𝑘=1

,∏μ𝑅𝑀
𝒪 (𝑥𝑖𝑗)𝑘

𝜆𝑘

𝐾

𝑘=1

,∏μ𝑅𝑈
𝒪 (𝑥𝑖𝑗)𝑘

𝜆𝑘

𝐾

𝑘=1

) ,

(1 −∏(1 − ϑ𝑅𝐿
𝒪 (𝑥𝑖𝑗)𝑘)

𝜆𝑘
𝐾

𝑘=1

, 1 −∏(1 − ϑ𝑅𝑀
𝒪 (𝑥𝑖𝑗)𝑘)

𝜆𝑘
𝐾

𝑘=1

, 1 −∏(1 − ϑ𝑅𝑈
𝒪 (𝑥𝑖𝑗)𝑘)

𝜆𝑘
𝐾

𝑘=1

)
)

 
 
 
,

𝒫𝑅̃

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(

 
 
 
 
 
 
 

∏ μ𝑅𝐿
𝒫 (𝑥𝑖𝑗)𝑘

𝐾
𝑘=1

∑ μ𝑅𝐿
𝒫 (𝑥𝑖𝑗)𝑘

𝑛−1
𝜆𝑘 (1 − μ𝑅𝐿

𝒫 (𝑥𝑖𝑗)𝑘)
𝐾
𝑘=1 +∏ μ𝑅𝐿

𝒫 (𝑥𝑖𝑗)𝑘
𝐾
𝑘=1

,

∏ μ𝑅𝑀
𝒫 (𝑥𝑖𝑗)𝑘

𝐾
𝑘=1

∑ μ𝑅𝑀
𝒫 (𝑥𝑖𝑗)𝑘

𝑛−1
𝜆𝑘 (1 − μ𝑅𝑀

𝒫 (𝑥𝑖𝑗)𝑘)
𝐾
𝑘=1 +∏ μ𝑅𝑀

𝒫 (𝑥𝑖𝑗)𝑘
𝐾
𝑘=1

,

∏ μ𝑅𝑈
𝒫 (𝑥𝑖𝑗)𝑘

𝐾
𝑘=1

∑ μ𝑅𝑈
𝒫 (𝑥𝑖𝑗)𝑘

𝑛−1
𝜆𝑘 (1 − μ𝑅𝑈

𝒫 (𝑥𝑖𝑗)𝑘)
𝐾
𝑘=1 +∏ μ𝑅𝑈

𝒫 (𝑥𝑖𝑗)𝑘
𝐾
𝑘=1 )

 
 
 
 
 
 
 

,

(

 
 
 
 
 
 

∑ 𝜆𝑘
𝐾
𝑘=1 ϑ𝑅𝐿

𝒫 (𝑥𝑖𝑗)𝑘

1 + ∑ (𝜆𝑘ϑ𝑅𝐿
𝒫 (𝑥𝑖𝑗)𝑘 −

ϑ𝑅𝐿
𝒫 (𝑥𝑖𝑗)𝑘
𝑛

)𝐾
𝑘=1

,
∑ 𝜆𝑘ϑ𝑅𝑀

𝒫 (𝑥𝑖𝑗)
𝐾
𝑘=1

1 + ∑ (𝜆𝑘 ϑ𝑅𝑀
𝒫 (𝑥𝑖𝑗)𝑘 −

ϑ𝑅𝑀
𝒫 (𝑥𝑖𝑗)𝑘
𝑛

)𝐾
𝑘=1

,

∑ 𝜆𝑘ϑ𝑅𝑈
𝒫 (𝑥𝑖𝑗)𝑘

𝐾
𝑘=1

1 + ∑ (𝜆𝑘ϑ𝑅𝑈
𝒫 (𝑥𝑖𝑗)𝑘 −

ϑ𝑅𝑈
𝒫 (𝑥𝑖𝑗)𝑘
𝑛

)𝐾
𝑘=1

)

 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

}
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

i=1, 2, …, n.        j=1, 2, …, m.               (5.30) 

As an explanatory symbol in Eq. (5.30), μ𝐴𝐿
𝒫 (𝑥𝑖𝑗)𝑘 and μ𝑅𝐿

𝒫 (𝑥𝑖𝑗)𝑘 represents the 

pessimistic membership degree of kth DM’s assessment for alternative i with respect 

to criterion j in the restriction function and the same for the reliability function, 

respectively. The other symbols have the similar explanations. 

Step 4. Integrate the aggregated decomposed fuzzy reliability function to the 

aggregated decomposed fuzzy restriction function using Definition (5.11) and thus 

obtain 𝐷̃𝐷𝐹
𝐴𝑔𝑔

. 

Step 5. Weigh the 𝐷̃𝐷𝐹
𝐴𝑔𝑔

 by criteria weights (𝑊̃) and obtain 𝐷̃𝐷𝐹𝑊
𝐴𝑔𝑔

. 𝑊̃ =

{𝑤̃1, 𝑤̃2, 𝑤̃3, … , 𝑤̃𝑗} is the weight vector satisfying the conditions 0 ≤ 𝑤̃𝑗 ≤ 1 and  

∑ 𝑤̃𝑗
𝑚
𝑗=1 = 1.  

𝐷̃𝐷𝐹𝑊
𝐴𝑔𝑔

= 𝐷̃𝐷𝐹𝑖𝑗
𝐴𝑔𝑔

 ∗ 𝑤̃𝑗              (5.31) 

where 

𝑤̃𝑗 = 
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{
 
 

 
 

⟨x,

(

 
 
(𝒪𝑊̃ ((μ𝑊𝐿

𝒪 (𝑥𝑗), μ𝑊𝑀
𝒪 (𝑥𝑗), μ𝑊𝑈

𝒪 (𝑥𝑗)) , (ϑ𝑊𝐿
𝒪 (𝑥𝑗), ϑ𝑊𝑀

𝒪 (𝑥𝑗), ϑ𝑊𝑈
𝒪 (𝑥𝑗)))) ,

(𝒫𝑊̃ ((μ𝑊𝐿
𝒫 (𝑥𝑗), μ𝑊𝑀

𝒫 (𝑥𝑗), μ𝑊𝑈
𝒫 (𝑥𝑗)) , (ϑ𝑊𝐿

𝒫 (𝑥𝑗), ϑ𝑊𝑀
𝒫 (𝑥𝑗), ϑ𝑊𝑈

𝒫 (𝑥𝑗))))
)

 
 
|
| 𝑥𝑗 ∈ X

}
 
 

 
 

 

         (5.32) 

and 

𝐷̃𝐷𝐹𝑊
𝐴𝑔𝑔

=

{
 
 
 
 
 
 

 
 
 
 
 
 

𝒪

(

  
 

(μ𝐴𝐿
𝒪 (𝑥𝑖𝑗)μ𝑊𝐿

𝒪 (𝑥𝑗), μ𝐴𝑀
𝒪 (𝑥𝑖𝑗)μ𝑊𝑀

𝒪 (𝑥𝑗), μ𝐴𝑈
𝒪 (𝑥𝑖𝑗)μ𝑊𝑈

𝒪 (𝑥𝑗)) ,

 (

ϑ𝐴𝐿
𝒪 (𝑥𝑖𝑗) + ϑ𝑊𝐿

𝒪 (𝑥𝑗) − ϑ𝐴𝐿
𝒪 (𝑥𝑖𝑗)ϑ𝑊𝐿

𝒪 (𝑥𝑗),

 ϑ𝐴𝑀
𝒪 (𝑥𝑖𝑗) + ϑ𝑊𝑀

𝒪 (𝑥𝑗) − ϑ𝐴𝑀
𝒪 (𝑥𝑖𝑗)ϑ𝑊𝑀

𝒪 (𝑥𝑗),

  ϑ𝐴𝑈
𝒪 (𝑥𝑖𝑗) + ϑ𝑊𝑈

𝒪 (𝑥𝑗) − ϑ𝐴𝑈
𝒪 (𝑥𝑖𝑗)ϑ𝑊𝑈

𝒪 (𝑥𝑗)

)

)

  
 
,

𝒫

(

 
 
 
 
 
 

μ𝐴𝐿
𝒫 (𝑥𝑖𝑗)+μ𝑊𝐿

𝒫 (𝑥𝑗)−2μ𝐴𝐿
𝒫 (𝑥𝑖𝑗)μ𝑊𝐿

𝒫 (𝑥𝑗)

1−μ𝐴𝐿
𝒫 (𝑥𝑖𝑗)μ𝑊𝐿

𝒫 (𝑥𝑗)
,
μ𝐴𝑀
𝒫 (𝑥𝑖𝑗)+μ𝑊𝑀

𝒫 (𝑥𝑗)−2μ𝐴𝑀
𝒫 (𝑥𝑖𝑗)μ𝑊𝑀

𝒫 (𝑥𝑗)

1−μ𝐴𝑀
𝒫 (𝑥𝑖𝑗)μ𝑊𝑀

𝒫 (𝑥𝑗)
,

μ𝐴𝑈
𝒫 (𝑥𝑖𝑗)+μ𝑊𝑈

𝒫 (𝑥𝑗)−2μ𝐴𝑈
𝒫 (𝑥𝑖𝑗)μ𝑊𝑈

𝒫 (𝑥𝑗)

1−μ𝐴𝑈
𝒫 (𝑥𝑖𝑗)μ𝑊𝑈

𝒫 (𝑥𝑗)

ϑ𝐴𝐿
𝒫 (𝑥𝑖𝑗)ϑ𝑊𝐿

𝒫 (𝑥𝑗)

ϑ𝐴𝐿
𝒫 (𝑥𝑖𝑗)+ϑ𝑊𝐿

𝒫 (𝑥𝑗)−ϑ𝐴𝐿
𝒫 (𝑥𝑖𝑗)ϑ𝑊𝐿

𝒫 (𝑥𝑗)
,

ϑ𝐴𝑀
𝒫 (x)ϑ𝑊𝑀

𝒫 (𝑥𝑗)

ϑ𝐴𝑀
𝒫 (𝑥𝑖𝑗)+ϑ𝑊𝑀

𝒫 (𝑥𝑗)−ϑ𝐴𝑀
𝒫 (𝑥𝑖𝑗)ϑ𝑊𝑀

𝒫 (𝑥𝑗)
,

ϑ𝐴𝑈
𝒫 (𝑥𝑖𝑗)ϑ𝑊𝑈

𝒫 (𝑥𝑗)

ϑ𝐴𝑈
𝒫 (𝑥𝑖𝑗)+ϑ𝑊𝑈

𝒫 (𝑥𝑗)−ϑ𝐴𝑈
𝒫 (𝑥𝑖𝑗)ϑ𝑊𝑈

𝒫 (𝑥𝑗) )

 
 
 
 
 
 

}
 
 
 
 
 
 

 
 
 
 
 
 

  

                    (5.33) 

Criteria weights can be crisp or decomposed fuzzy number. If the 𝐷̃𝐷𝐹
𝐴𝑔𝑔

 is to be 

multiplied by the crisp weights, then Eq. (5.8) is used. In this step, Tüysüz and 

Kahraman (2020b)’s Z-AHP method can be used to obtain criteria weights. 

Step 6. Defuzzify each 𝒪 and 𝒫 parameters of the 𝐷̃𝐷𝐹𝑊
𝐴𝑔𝑔

 by using the defuzzification 

equation (𝑎1 + 2 ∗ 𝑎2 + 2 ∗ 𝑎3 + 𝑎4)/6 for symmetrical trapezoidal fuzzy numbers 

and (𝑎1 + 2 ∗ 𝑎2 + 𝑎3)/4 for symmetrical triangular fuzzy numbers. 𝐷𝑒𝑓(𝐷̃𝐷𝐹𝑊
𝐴𝑔𝑔

) 

matrix is obtained. 

Step 7. Determine the decomposed fuzzy positive ideal solution (𝑃𝐼𝑆𝐷𝐹) and 

decomposed fuzzy negative ideal solution (𝑁𝐼𝑆𝐷𝐹).  

In the literature, positive ideal and negative ideal solutions are determined as the 

maximum or minimum values that the alternatives have according to the criteria, or 

directly as extreme values of 0 or 1. In this study, 𝑃𝐼𝑆𝐷𝐹 and 𝑁𝐼𝑆𝐷𝐹 values are 

determined by the corresponding values of DFNs rather than accepting them as 1 or 0 

in the decomposed fuzzy form.  
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The set of criteria consists of two groups as the benefit 𝐶𝐵 and the cost 𝐶𝐶 criteria. 

According to the criteria type, 𝑃𝐼𝑆𝐷𝐹 and 𝑁𝐼𝑆𝐷𝐹 are defined by Eqs. (5.34-5.37). 

𝑃𝐼𝑆𝐷𝐹 = 𝑝𝑗 = (𝒪 (μ𝒪∗(x𝑗), ϑ
𝒪∗(x𝑗)) , 𝒫 (μ

𝒫∗(x𝑗), ϑ
𝒫∗(x𝑗)))          (5.34) 

𝑁𝐼𝑆𝐷𝐹 = 𝑛𝑗 = (𝒪 (μ𝒪−(x𝑗), ϑ
𝒪−(x𝑗)) , 𝒫 (μ

𝒫−(x𝑗), ϑ
𝒫−(x𝑗)))        (5.35) 

where 

𝑝𝑗 = {𝑚𝑎𝑥
1≤𝑖≤𝑛

((𝒪 (μ𝒪(x𝑖𝑗), ϑ
𝒪(x𝑖𝑗)) , 𝒫 (μ

𝒫(x𝑖𝑗), ϑ
𝒫(x𝑖𝑗))) |𝐶𝑗 ∈ 𝐶𝐵)}, 

{𝑚𝑖𝑛
1≤𝑖≤𝑛

((𝒪 (μ𝒪(x𝑖𝑗), ϑ
𝒪(x𝑖𝑗)) , 𝒫 (μ

𝒫(x𝑖𝑗), ϑ
𝒫(x𝑖𝑗))) |𝐶𝑗 ∈ 𝐶𝐶)}    (5.36) 

𝑛𝑗 = {𝑚𝑖𝑛
1≤𝑖≤𝑛

((𝒪 (μ𝒪(x𝑖𝑗), ϑ
𝒪(x𝑖𝑗)) , 𝒫 (μ

𝒫(x𝑖𝑗), ϑ
𝒫(x𝑖𝑗))) |𝐶𝑗 ∈ 𝐶𝐵)}, 

{𝑚𝑎𝑥
1≤𝑖≤𝑛

((𝒪 (μ𝒪(x𝑖𝑗), ϑ
𝒪(x𝑖𝑗)) , 𝒫 (μ

𝒫(x𝑖𝑗), ϑ
𝒫(x𝑖𝑗))) |𝐶𝑗 ∈ 𝐶𝐶)}    (5.37) 

To determine 𝑝𝑗   and 𝑛𝑗  for each criterion, decomposed fuzzy values of alternatives 

are defuzzified (𝐷𝑒𝑓(𝐷̃𝐷𝐹𝑊
𝐴𝑔𝑔

)) using Eq. (5.23). The max and min values of the 

𝐷𝑒𝑓(𝐷̃𝐷𝐹𝑊
𝐴𝑔𝑔

) help us to identify 𝑝𝑗  and 𝑛𝑗 . Thus, we continue with decomposed fuzzy 

values. 

Step 8. Calculate the positive and negative separation measures (𝑆∗ 𝑎𝑛𝑑 𝑆−). 

The separation measures of alternatives can be calculated by Euclidean distance, 

Hamming distance, etc. In this study, the Euclidean distance is proposed to measure 

distance between two decomposed fuzzy numbers in Definition 5.10. Eq. (5.38) and 

Eq. (5.39) can be used to determine the separation measures, 𝑆∗and 𝑆−, relating to each 

alternative from 𝑃𝐼𝑆𝐷𝐹 and 𝑁𝐼𝑆𝐷𝐹, respectively.  

𝑆𝑖
∗ =

√
  
  
  
  
  
  

1

2𝑚
∑

[
 
 
 
 
 

(

 
 
 
(μ

𝐷̃𝐷𝐹𝑊
𝐴𝑔𝑔

𝒪 (𝑥𝑖𝑗) − μ𝑃𝐼𝑆𝐷𝐹
𝒪 (𝑥𝑗))

2

+ (ϑ
𝐷̃𝐷𝐹𝑊
𝐴𝑔𝑔

𝒪 (𝑥𝑖𝑗) − ϑ𝑃𝐼𝑆𝐷𝐹
𝒪 (𝑥𝑗))

2

+(μ
𝐷̃𝐷𝐹𝑊
𝐴𝑔𝑔

𝒫 (𝑥𝑖𝑗) − μ𝑃𝐼𝑆𝐷𝐹
𝒫 (𝑥𝑗))

2

+ (ϑ
𝐷̃𝐷𝐹𝑊
𝐴𝑔𝑔

𝒫 (𝑥𝑖𝑗) − ϑ𝑃𝐼𝑆𝐷𝐹
𝒫 (𝑥𝑗))

)

 
 
 

]
 
 
 
 
 

𝑚
𝑗=1       

i=1,2,…,n                                              (5.38) 
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𝑆𝑖
− =

√
  
  
  
  
  
  

1

2𝑚
∑

[
 
 
 
 
 

(

 
 
 
(μ

𝐷̃𝐷𝐹𝑊
𝐴𝑔𝑔

𝒪 (𝑥𝑖𝑗) − μ𝑁𝐼𝑆𝐷𝐹
𝒪 (𝑥𝑗))

2

+ (ϑ
𝐷̃𝐷𝐹𝑊
𝐴𝑔𝑔

𝒪 (𝑥𝑖𝑗) − ϑ𝑁𝐼𝑆𝐷𝐹
𝒪 (𝑥𝑗))

2

+(μ
𝐷̃𝐷𝐹𝑊
𝐴𝑔𝑔

𝒫 (𝑥𝑖𝑗) − μ𝑁𝐼𝑆𝐷𝐹
𝒫 (𝑥𝑗))

2

+ (ϑ
𝐷̃𝐷𝐹𝑊
𝐴𝑔𝑔

𝒫 (𝑥𝑖𝑗) − ϑ𝑁𝐼𝑆𝐷𝐹
𝒫 (𝑥𝑗))

)

 
 
 

]
 
 
 
 
 

𝑚
𝑗=1    

i=1,2,…,n                          (5.39) 

Step 9. Calculate the closeness coefficient 𝐶𝑖
∗ of the alternatives using Eq. (5.40). 

Then, rank the alternatives according to the descending order of 𝐶𝑖
∗. 

𝐶𝑖
∗ =

𝑆𝑖
−

𝑆𝑖
−+𝑆𝑖

∗             (5.40) 

where 0 ≤ 𝐶𝑖
∗ ≤ 1. 

 Application 

In this section, the proposed methodology is applied to distribution center location 

selection problem for a cargo company in Marmara Region of Turkey. The problem 

definition is first presented and then, its solution is given step by step based on the 

proposed methodology. Finally, comparative and sensitivity analyses are performed. 

5.4.1 Problem definition 

Facility location selection can be defined as the selection of the region or piece of land 

where a facility will be established or placed. The transfer center location selection 

(TCLS) is a special case of the facility location selection problem and it is important 

for the companies to construct the logistics network structure effectively. Companies 

require to position their transfer centers in the right places in order to maintain their 

existence in the increasing competitive conditions. TCLS is strategically important as 

it is one of the long-term investments, and it is affected by many factors such as 

transportation features, workforce opportunities, installation and operating costs, and 

the proximity to customers. All these factors make difficult to choose among more 

than one transfer center and complicated to manage the logistics networks for the 

companies. A multi criteria decision making model that simultaneously meets these 

contradictory factors is necessary for the selection of suitable transfer center location. 

Therefore, in this study, we present the application of the proposed DF Z-TOPSIS 
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method, which has the ability to include DMs’ imprecise and uncertain assessments 

and their reliabilities to their assessments for transfer center location selection. 

Since the outbreak of the coronavirus pandemic, the number of products distributed by 

cargo companies has increased. Therefore, the new cargo companies have been opened 

and many private cargo companies have increased the number of their facilities in 

order to meet their increasing demand. With this increase, distribution networks have 

branched and new transfer centers have to be constructed for some new companies. 

In this study, a private cargo company which was established after the coronavirus 

pandemic wants to open a new transfer center in Marmara Region in order to increase 

their profitability and make themselves advantageous in the competitive environment. 

The management group wants to choose the best location among the five alternative 

transfer center locations determined as A1-Çorlu, A2-Silivri, A3-Sultanbeyli, A4-

Osmangazi and A5-Izmit illustrated in Figure 5.9. 

 

 

Figure 5.9 : Alternative locations for opening a new transfer center. 

5.4.2 Problem solution 

To find the best location, we first have conducted a literature review and identified 

seven criteria given in Table 5.4.   
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Table 5.4 : Criteria set of the problem. 

Criteria 

Criteria 

type: max 

(benefit) / 

min (cost) 

Explanations References 

Costs C1 min 

Land, building and 

utility costs, rent 

rates, taxes, etc. 

Nong (2022), Awasthi et al. 

(2011), Agrebi and Abed 

(2021), Keshavarz-Ghorabaee 

(2021), He et al. (2017) 

Proximity to 

transportation 

ports 

C2 max 

Closeness from 

airports, railways 

and other 

transportation ports 

Nong (2022), Awasthi et al. 

(2011), Agrebi and Abed 

(2021), Keshavarz-Ghorabaee 

(2021), He et al. (2017) 

Traffic Flow C3 min 
Average traffic 

volume 
He et al. (2017) 

Proximity to 

markets, 

suppliers and 

other services 

C4 max 

Distance from 

markets and 

suppliers 

Nong (2022), Awasthi et al. 

(2011), Agrebi and Abed 

(2021), Keshavarz-Ghorabaee 

(2021) 

Workforce 

availability 
C5 max 

Characteristics of 

local demographics 

Nong (2022), Awasthi et al. 

(2011), Keshavarz-Ghorabaee 

(2021) 

Service 

characteristics 
C6 max 

Service level, 

delivery flexibility, 

quality etc. 

Nong (2022), Awasthi et al. 

(2011), Agrebi and Abed 

(2021), Keshavarz-Ghorabaee 

(2021), He et al. (2017) 

Environmental 

conditions  
C7 max 

Ecological 

landscape, climate 

conditions 

Bennani et al. (2022), He et al. 

(2017) 

Then, in Step 2, in order to fill the decision matrix, questionnaires have been applied 

to the DMs. For instance, to evaluate the alternative A1-Çorlu according to the 

criterion C1-costs, following questions have been asked. There are four DMs in the 

evaluation group who can answer these questions by using the linguistic terms in Table 

5.3. Equal weights were given to DMs since the four DMs had similar experiences and 

similar training. The DMs are two professors from the industrial engineering 

department of a university and two professors from the logistics department of another 

university in Istanbul. When we check the consensus level of their judgments, we have 

seen that their judgments are more or less the same. 

for restriction function: 

(functional): What do you think about the maximum cost of a transfer center at Çorlu? 

DM1’s assessment is 𝒪(𝑉𝐿). 

(dysfunctional): What do you think about the minimum cost of a transfer center at 

Çorlu? 

DM1’s assessment is 𝒫(𝐻). 
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for reliability function: 

(functional): How sure are you about your assessment? 

DM1’s assessment is 𝒪(𝐻𝑅). 

(dysfunctional): How unsure are you about your assessment? 

DM1’s assessment is 𝒫(𝐿𝑅). 

Thus, the complete DF Z-number obtained from the given answers is 𝑍̃𝐷𝐹𝑆(𝐴̃, 𝑅̃) =

((𝒪(𝑉𝐿),𝒫(𝐻)), (𝒪(𝐻𝑅),𝒫(𝐿𝑅))) and can be seen in Table 5.5. 

Decision matrices of four DMs are presented in Tables 5.5-5.8. 

Table 5.5 : DM1’s decomposed Z-fuzzy evaluations. 

  C1 C2 C3 C4 C5 C6 C7 

A1 
((VL, H), 

(HR, LR)) 

((VH, L),  

(LR, VHR)) 

((L, M),  

(HR, LR)) 

((AL, H), 

(HR, LR)) 

((H, VL), 

(LR, AHR)) 

((VL, H), 

(LR, VHR)) 

((L, H),  

(R, LR)) 

A2 
((AH, L), 

(VLR, HR)) 

((VL, M), 

(AHR, LR)) 

((VH, L), 

(LR, R)) 

((L, M),  

(R, HR)) 

((VL, H), 

(VHR, LR)) 

((AH, L), 

(LR, HR)) 

((M, VH), 

(AHR, LR)) 

A3 
((M, H), 

(VHR, R)) 

((L, AL),  

(R, LR)) 

((VH, AL), 

(VHR, LR)) 

((H, VL), 

(VLR,AHR)) 

((AH, VL), 

(HR, LR)) 

((H, AL), 

(VHR, LR)) 

((H, L),  

(R, ALR)) 

A4 
((VL, H), 

(VLR,VHR)) 

((H, VL), 

(VHR,VLR)) 

((L, VH), 

(HR, ALR)) 

((M, H), 

(ALR, R)) 

((H, VL), 

(HR, LR)) 

((VH, VL), 

(HR, LR)) 

((H, VL), 

(LR, HR)) 

A5 
((L, AH),  

(LR, HR)) 

((VH, VL), 

(HR, LR)) 

((H, L), (LR, 

VHR)) 

((AH, VL), 

(HR, LR)) 

((VL, H), 

(ALR, HR)) 

((H, L), (HR, 

LR)) 

((AH, L), 

(HR, R)) 

Table 5.6 : DM2’s decomposed Z-fuzzy evaluations. 

  C1 C2 C3 C4 C5 C6 C7 

A1 
((AH, L), 

(HR, R)) 

((H, VL), 

(R, LR)) 

((VL, H), 

(R, LR)) 

((VL, AH), 

(LR, HR)) 

((VH, AL), 

(LR,AHR)) 

((H, VL), 

(LR, HR)) 

((VL,AH), 

(LR,AHR)) 

A2 
((VH, VL), 

(R, LR)) 

((L, VH), 

(AHR,LR)) 

((H, AL), 

(VHR, LR)) 

((H, L), 

(HR,ALR)) 

((L, VH), 

(R, HR)) 

((VH, L), 

(HR,ALR)) 

((L, M), 

(AHR,LR)) 

A3 
((H, VL), 

(HR, VLR)) 

((VL, M), 

(LR,VHR)) 

((VH, L), 

(HR,ALR)) 

((H, AL), 

(R, LR)) 

((VH, VL), 

(HR, LR)) 

((AH, L), 

(HR, LR)) 

((H, VL), 

(R, LR)) 

A4 
((AH, VL), 

(VLR,AHR)) 

((AH, AL), 

(VLR, HR)) 

((VH, AL), 

(LR, HR)) 

((L, AH), 

(HR, VLR)) 

((M, L), 

(LR,AHR)) 

((H, AL), 

(VLR,VHR)) 

((VH, AL), 

(HR,VLR)) 

A5 
((VL, H), 

(LR, R)) 

((H, AL), 

(HR, LR)) 

((H, AL), 

(HR, LR)) 

((M, AL), 

(VLR, HR)) 

((L, VH), 

(ALR, HR)) 

((H, VL), 

(LR, HR)) 

((VH, L), 

(LR,AHR)) 

Table 5.7 : DM3’s decomposed Z-fuzzy evaluations. 

  C1 C2 C3 C4 C5 C6 C7 

A1 
((VH, L), 

(AHR,VLR)) 

((AH, VL), 

(LR, VHR)) 

((L, VH), 

(ALR, HR)) 

((L, VH), 

(HR, LR)) 

((AH, VL), 

(VHR,LR)) 

((VH, AL), 

(VLR,HR)) 

((AL, VH), 

(AHR,LR)) 

A2 
((H, M), 

(LR, VHR)) 

((AL, VH), 

(HR, LR)) 

((AH, VL), 

(VHR,ALR)) 

((VL, AH), 

(HR, LR)) 

((H, M), 

(VLR,HR)) 

((H, VL), 

(HR, ALR)) 

((L, H), 

(LR, VHR)) 

A3 
((AL, VH), 

(VHR, LR)) 

((H, VL), 

(VHR, LR)) 

((AL, H), 

(HR, LR)) 

((H, VL), 

(LR, VHR)) 

((VL, H), 

(LR, R)) 

((L, VH), 

(LR, HR)) 

((H, VL), 

(VHR,LR)) 

A4 
((L, H), 

(LR,VHR)) 

((VH, L), 

(LR, AHR)) 

((VH, L), 

(LR, AHR)) 

((VL, H), 

(HR, LR)) 

((L, VH), 

(ALR,VHR)) 

((VH, AL), 

(VLR,HR)) 

((H, L), 

(HR, R)) 

A5 
((VL, M), 

(R, VLR)) 

((H, AL), 

(VLR, HR)) 

((H, AL), 

(HR, LR)) 

((H, VL), 

(R, VLR)) 

((AL, VH), 

(HR, VLR)) 

((AH, L), 

(LR, R)) 

((M, VL), 

(ALR,HR)) 
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Table 5.8 : DM4’s decomposed Z-fuzzy evaluations. 

  C1 C2 C3 C4 C5 C6 C7 

A1 
((L, VH), 

(VLR, HR)) 

((AH, VL), 

(HR, LR)) 

((AL, VH), 

(VHR, LR)) 

((L, VH), 

(HR,VLR)) 

((H, VL), 

(HR, LR)) 

((VH, AL), 

(LR, VHR)) 

((VL, H), 

(HR, R)) 

A2 
((H, VL), 

(HR, LR)) 

((VH, L), 

(LR, AHR)) 

((AH, AL), 

(LR, AHR)) 

((VH, L), 

(LR,AHR)) 

((L, H), 

(VLR,HR)) 

((H, L), 

(VHR, LR)) 

((AH, L), 

(VLR,HR)) 

A3 
((L, HR), 

(VHR,ALR)) 

((H, AL), 

(R, LR)) 

((VL, AH), 

(HR, LR)) 

((H, AL), 

(VHR,LR)) 

((AL, VH), 

(HR,ALR)) 

((AH, L), 

(HR, LR)) 

((H, AL), 

(HR, LR)) 

A4 
((VH, AL), 

(HR, LR)) 

((VH, L), 

(VLR,AHR)) 

((VL, H), 

(VHR,ALR)) 

((L, VH), 

(VLR,HR)) 

((H, VL), 

(LR, HR)) 

((AH, VL), 

(HR, VLR)) 

((H, L), 

(LR,VHR)) 

A5 
((VL, VH), 

(LR, VHR)) 

((L, VH), 

(HR, LR)) 

((VH, L), 

(VLR,VHR)) 

((VH, L), 

(HR,VLR)) 

((VL, H), 

(VHR,LR)) 

((VH, L), 

(AHR, LR)) 

((VL, H), 

(R, LR)) 

In Step 3, the decision matrices collected from four DMs are aggregated by DWGM 

operator using Eqs. (5.29-5.30). We assigned equal weights to the DMs based on their 

experiences in this computation. Aggregated decomposed triangular Z-fuzzy 

evaluations are presented in Table 5.9. 

A calculation example for preferences of A1 with respect to C1 is presented to make 

clear how the values are obtained for the bold numbers (((0.40, 0.51, 0.62), (0.19, 0.29, 

0.38)), ((0.37, 0.50, 0.63), (0.18, 0.28, 0.38))) in Table 5.9. 

The preferences of four DMs and their corresponding decomposed fuzzy numbers are 

given as follows: 

DM1 = ((VL, H), (HR, LR)) = ((0.2, 0.3, 0.4), (0.4, 0.5, 0.6)), ((0.5, 0.6, 0.7), (0.1, 0.2, 0.3)) 

DM2 = ((AH, L), (HR, R)) = ((0.7, 0.8, 0.9), (0, 0.05, 0.1)), ((0.3, 0.4, 0.5), (0.3, 0.4, 0.5)) 

DM3 = ((VH, L), (AHR, VLR))= ((0.6, 0.7, 0.8), (0, 0.1, 0.2)), ((0.3, 0.4, 0.5), (0.3, 0.4, 0.5)) 

DM4 = ((L, VH), (VLR, HR))= ((0.3, 0.4, 0.5), (0.3, 0.4, 0.5)), ((0.6, 0.7, 0.8), (0, 0.1, 0.2)) 

0.20
1
4 ∗ 0.70

1
4 ∗ 0.60

1
4 ∗ 0.30

1
4 = 0.40 

1 − ((1 − 0.40)
1
4) ∗ ((1 − 0.00)

1
4) ∗ ((1 − 0.00)

1
4) ∗ ((1 − 0.30)

1
4) = 0.19 

0.50 ∗ 0.30 ∗ 0.30 ∗ 0.60

(
0.53 ∗

1
4 ∗

(1 − 0.5) + 0.33 ∗
1
4 ∗

(1 − 0.3) + 0.303 ∗
1
4 ∗

(1 − 0.3)

+0.63 ∗
1
4 ∗

(1 − 0.6) + 0.5 ∗ 0.3 ∗ 0.3 ∗ 0.6
)

= 0.37 

1
4 ∗ 0.10 +

1
4 ∗ 0.30 +

1
4 ∗ 0.30 +

1
4 ∗ 0.0

1 +
1
4 ∗ 0.10 +

1
4 ∗ 0.30 +

1
4 ∗ 0.30 +

1
4 ∗ 0.0 −

0.10
4 +

0.30
4 +

0.30
4 +

0.0
4

= 0.18 
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Table 5.9 : Aggregated decomposed triangular Z-fuzzy restrictions and reliabilities. 

  C1 C2 C3 C4 

 Restriction Reliability Restriction Reliability Restriction Reliability Restriction Reliability 

A1 

(((0.4, 0.51, 0.62), 

(0.19, 0.29, 0.38)), 

((0.37, 0.5, 0.63), 

(0.18, 0.28, 0.38))) 

(((0.43, 0.54, 0.65), 

(0.17, 0.26, 0.35)), 

((0.28, 0.41, 0.54), 

(0.25, 0.35, 0.45))) 

(((0.21, 0.31, 0.42), 

(0.38, 0.47, 0.55)), 

((0.51, 0.62, 0.73), 

(0.08, 0.18, 0.28))) 

(((0.33, 0.45, 0.56), 

(0.23, 0.31, 0.39)), 

((0.31, 0.43, 0.55), 

(0.25, 0.35, 0.45))) 

(((0.21, 0.31, 0.42), 

(0.38, 0.47, 0.55)), 

((0.6, 0.7, 0.81), 

(0.03, 0.11, 0.2))) 

(((0.44, 0.54, 0.64), 

(0.15, 0.26, 0.36)), 

((0.25, 0.39, 0.51), 

(0.28, 0.38, 0.48))) 

(((0.62, 0.72, 0.82), 

(0.03, 0.1, 0.18)), 

((0.2, 0.31, 0.42), 

(0.38, 0.48, 0.58))) 

(((0.37, 0.47, 0.57), 

(0.23, 0.33, 0.43)), 

((0.38, 0.53, 0.66), 

(0.15, 0.25, 0.35))) 

A2 

(((0.57, 0.67, 0.77), 

(0.05, 0.14, 0.23)), 

((0.28, 0.41, 0.54), 

(0.25, 0.35, 0.45))) 

(((0.33, 0.44, 0.54), 

(0.26, 0.36, 0.46)), 

((0.37, 0.5, 0.63), 

(0.18, 0.28, 0.38))) 

(((0.62, 0.72, 0.82), 

(0.03, 0.1, 0.18)), 

((0.12, 0.32, 0.53), 

(0.3, 0.38, 0.45))) 

(((0.42, 0.53, 0.63), 

(0.16, 0.27, 0.37)), 

((0.17, 0.38, 0.57), 

(0.25, 0.33, 0.4))) 

(((0.37, 0.47, 0.58), 

(0.22, 0.32, 0.42)), 

((0.45, 0.59, 0.73), 

(0.13, 0.21, 0.3))) 

(((0.42, 0.52, 0.62), 

(0.18, 0.28, 0.38)), 

((0.18, 0.4, 0.6), 

(0.23, 0.3, 0.38))) 

(((0.24, 0.36, 0.47), 

(0.32, 0.41, 0.5)), 

((0.54, 0.65, 0.76), 

(0.05, 0.15, 0.25))) 

(((0.52, 0.63, 0.73), 

(0.11, 0.19, 0.27)), 

((0.32, 0.48, 0.63), 

(0.23, 0.31, 0.4))) 

A3 

(((0.28, 0.39, 0.5), 

(0.29, 0.38, 0.46)), 

((0.29, 0.45, 0.59), 

(0.2, 0.3, 0.4))) 

(((0.57, 0.67, 0.77), 

(0.03, 0.13, 0.23)), 

((0.13, 0.28, 0.41), 

(0.35, 0.44, 0.53))) 

(((0.29, 0.41, 0.53), 

(0.26, 0.35, 0.43)), 

((0.12, 0.28, 0.43), 

(0.33, 0.41, 0.5))) 

(((0.52, 0.62, 0.72), 

(0.08, 0.18, 0.28)), 

((0.16, 0.3, 0.42), 

(0.35, 0.44, 0.53))) 

(((0.5, 0.6, 0.7), 

(0.1, 0.2, 0.3)), 

((0.1, 0.25, 0.4), 

(0.35, 0.44, 0.53))) 

(((0.35, 0.45, 0.56), 

(0.24, 0.34, 0.44)), 

((0.4, 0.56, 0.71), 

(0.15, 0.24, 0.33))) 

(((0.35, 0.46, 0.56), 

(0.24, 0.34, 0.44)), 

((0.13, 0.29, 0.45), 

(0.3, 0.39, 0.48))) 

(((0.41, 0.51, 0.62), 

(0.18, 0.28, 0.38)), 

((0.31, 0.45, 0.58), 

(0.23, 0.33, 0.43))) 

A4 

(((0.4, 0.51, 0.62), 

(0.19, 0.29, 0.38)), 

((0.36, 0.51, 0.64), 

(0.15, 0.25, 0.35))) 

(((0.28, 0.38, 0.49), 

(0.31, 0.41, 0.51)), 

((0.51, 0.64, 0.77), 

(0.08, 0.16, 0.25))) 

(((0.38, 0.49, 0.6), 

(0.19, 0.3, 0.4)), 

((0.11, 0.29, 0.46), 

(0.3, 0.39, 0.48))) 

(((0.41, 0.51, 0.61), 

(0.19, 0.29, 0.39)), 

((0.08, 0.28, 0.51), 

(0.28, 0.34, 0.4))) 

(((0.29, 0.39, 0.49), 

(0.3, 0.4, 0.51)), 

((0.46, 0.6, 0.72), 

(0.13, 0.21, 0.3))) 

(((0.27, 0.38, 0.49), 

(0.3, 0.38, 0.47)), 

((0.28, 0.41, 0.54), 

(0.25, 0.35, 0.45))) 

(((0.6, 0.7, 0.8), 

(0.03, 0.11, 0.2)), 

((0.11, 0.29, 0.46), 

(0.3, 0.39, 0.48))) 

(((0.29, 0.4, 0.5), 

(0.29, 0.39, 0.5)), 

((0.42, 0.6, 0.76), 

(0.13, 0.2, 0.28))) 

A5 

(((0.22, 0.32, 0.42), 

(0.38, 0.48, 0.58)), 

((0.35, 0.52, 0.67), 

(0.18, 0.26, 0.35))) 

(((0.32, 0.42, 0.52), 

(0.28, 0.38, 0.48)), 

((0.33, 0.48, 0.62), 

(0.18, 0.28, 0.38))) 

(((0.52, 0.62, 0.72), 

(0.08, 0.18, 0.28)), 

((0.06, 0.23, 0.42), 

(0.33, 0.4, 0.48))) 

(((0.35, 0.46, 0.56), 

(0.24, 0.34, 0.44)), 

((0.38, 0.53, 0.66), 

(0.15, 0.25, 0.35))) 

(((0.54, 0.64, 0.74), 

(0.08, 0.17, 0.26)), 

((0.09, 0.26, 0.44), 

(0.33, 0.41, 0.5))) 

(((0.38, 0.48, 0.59), 

(0.21, 0.31, 0.41)), 

((0.2, 0.35, 0.48), 

(0.3, 0.4, 0.5))) 

(((0.46, 0.56, 0.67), 

(0.13, 0.23, 0.33)), 

((0.08, 0.22, 0.34), 

(0.43, 0.5, 0.58))) 

(((0.4, 0.5, 0.61), 

(0.19, 0.29, 0.39)), 

((0.31, 0.43, 0.55), 

(0.25, 0.35, 0.45))) 
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Table 5.9 (continued):  Aggregated decomposed triangular Z-fuzzy restrictions and reliabilities. 

 C5 C6 C7 

 Restriction Reliability Restriction Reliability Restriction Reliability 

A1 

(((0.57, 0.67, 0.77), 

(0.05, 0.14, 0.23)), 

((0.14, 0.26, 0.36), 

(0.43, 0.51, 0.6))) 

(((0.41, 0.51, 0.61), 

(0.19, 0.29, 0.39)), 

((0.42, 0.59, 0.75), 

(0.15, 0.23, 0.3))) 

(((0.44, 0.54, 0.65), 

(0.14, 0.25, 0.35)), 

((0.05, 0.2, 0.36), 

(0.38, 0.45, 0.53))) 

(((0.27, 0.37, 0.47), 

(0.33, 0.43, 0.53)), 

((0.55, 0.65, 0.75), 

(0.05, 0.15, 0.25))) 

(((0.19, 0.29, 0.39), 

(0.4, 0.49, 0.58)), 

((0.57, 0.68, 0.79), 

(0.05, 0.14, 0.23))) 

(((0.45, 0.56, 0.66), 

(0.16, 0.25, 0.34)), 

((0.36, 0.51, 0.66), 

(0.2, 0.29, 0.38))) 

A2 

(((0.31, 0.41, 0.51), 

(0.28, 0.38, 0.49)), 

((0.41, 0.54, 0.65), 

(0.15, 0.25, 0.35))) 

(((0.31, 0.42, 0.53), 

(0.27, 0.37, 0.47)), 

((0.42, 0.54, 0.65), 

(0.15, 0.25, 0.35))) 

(((0.57, 0.67, 0.77), 

(0.05, 0.14, 0.23)), 

((0.25, 0.39, 0.51), 

(0.28, 0.38, 0.48))) 

(((0.46, 0.56, 0.67), 

(0.13, 0.23, 0.33)), 

((0.07, 0.22, 0.38), 

(0.35, 0.43, 0.5))) 

(((0.4, 0.5, 0.61), 

(0.21, 0.3, 0.39)), 

((0.54, 0.65, 0.77), 

(0.08, 0.16, 0.25))) 

(((0.41, 0.53, 0.63), 

(0.19, 0.28, 0.37)), 

((0.37, 0.5, 0.63), 

(0.18, 0.28, 0.38))) 

A3 

(((0.3, 0.43, 0.54), 

(0.26, 0.34, 0.42)), 

((0.1, 0.25, 0.4), 

(0.35, 0.44, 0.53))) 

(((0.44, 0.54, 0.64), 

(0.15, 0.26, 0.36)), 

((0.16, 0.31, 0.44), 

(0.33, 0.41, 0.5))) 

(((0.52, 0.63, 0.73), 

(0.11, 0.19, 0.27)), 

((0.19, 0.42, 0.63), 

(0.2, 0.28, 0.35))) 

(((0.46, 0.56, 0.67), 

(0.13, 0.23, 0.33)), 

((0.31, 0.43, 0.55), 

(0.25, 0.35, 0.45))) 

(((0.5, 0.6, 0.7), 

(0.1, 0.2, 0.3)), 

((0.2, 0.35, 0.48), 

(0.3, 0.4, 0.5))) 

(((0.47, 0.57, 0.67), 

(0.13, 0.23, 0.33)), 

((0.16, 0.3, 0.42), 

(0.35, 0.44, 0.53))) 

A4 

(((0.42, 0.52, 0.62), 

(0.18, 0.28, 0.38)), 

((0.29, 0.45, 0.59), 

(0.2, 0.3, 0.4))) 

(((0.26, 0.37, 0.48), 

(0.31, 0.4, 0.49)), 

((0.48, 0.62, 0.75), 

(0.1, 0.19, 0.28))) 

(((0.6, 0.7, 0.8), 

(0.03, 0.11, 0.2)), 

((0.05, 0.22, 0.47), 

(0.35, 0.41, 0.48))) 

(((0.32, 0.42, 0.53), 

(0.27, 0.37, 0.47)), 

((0.29, 0.45, 0.59), 

(0.2, 0.3, 0.4))) 

(((0.52, 0.62, 0.72), 

(0.08, 0.18, 0.28)), 

((0.12, 0.28, 0.43), 

(0.33, 0.41, 0.5))) 

(((0.39, 0.49, 0.59), 

(0.21, 0.31, 0.41)), 

((0.33, 0.48, 0.62), 

(0.18, 0.28, 0.38))) 

A5 

(((0.19, 0.29, 0.39), 

(0.4, 0.49, 0.58)), 

((0.37, 0.53, 0.67), 

(0.13, 0.23, 0.33))) 

(((0.23, 0.36, 0.47), 

(0.31, 0.38, 0.45)), 

((0.29, 0.43, 0.56), 

(0.23, 0.33, 0.43))) 

(((0.57, 0.67, 0.77), 

(0.05, 0.14, 0.23)), 

((0.25, 0.4, 0.55), 

(0.25, 0.35, 0.45))) 

(((0.42, 0.53, 0.63), 

(0.19, 0.28, 0.37)), 

((0.34, 0.46, 0.57), 

(0.23, 0.33, 0.43))) 

(((0.43, 0.54, 0.64), 

(0.17, 0.26, 0.36)), 

((0.22, 0.33, 0.44), 

(0.35, 0.45, 0.55))) 

(((0.28, 0.39, 0.5), 

(0.29, 0.38, 0.46)), 

((0.43, 0.57, 0.7), 

(0.15, 0.24, 0.33))) 
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In Step 4, reliability components of the evaluations have been integrated to the 

restriction component using Definition 5.11. Decomposed triangular fuzzy restriction 

values integrated with their DF reliabilities are given in Table 5.10. 

In this step, to be able to continue with decomposed fuzzy reliabilities, square root of 

reliability part of the preference A1 with respect to C1 (((0.43, 0.54, 0.65), (0.17, 0.26, 

0.35)), ((0.28, 0.41, 0.54), (0.25, 0.35, 0.45))) is calculated as follows: 

0.43
1

2 = 0.66,                      

1 − (1 − 0.17)
1
2 = 0.09 

0.28/ (
1

2
− (

1

2
− 1) ∗ 0.28) = 0.43,                    

(
1
2 ∗ 0.25)

((
1
2 − 1) ∗ 0.25 + 1)

= 0.14 

Then, fuzzy restrictions are multiplied by square root of fuzzy reliabilities as follows: 

0.40 ∗ 0.66 = 0.26,            

0.19 + 0.09 − 0.19 ∗ 0.09 = 0.26 

(0.37+0.43−2∗0.37∗0.43)

(1−0.37∗0.43)
= 0.57                 

0.18 ∗ 0.14

0.18 ∗ 0.14 − 0.18 ∗ 0.14
= 0.09 

Thus, the bold values in Table 5.10 are obtained.  
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Table 5.10 : Decomposed triangular fuzzy restrictions integrated with their DF reliabilities. 

  C1 C2 C3 C4 C5 C6 C7 

A1 

(((0.26, 0.37, 0.5), 

(0.26, 0.39, 0.5)), 

((0.57, 0.71, 0.8), 

(0.09, 0.14, 0.2))) 

(((0.37, 0.49, 0.62), 

(0.14, 0.27, 0.38)), 

((0.6, 0.73, 0.82), 

(0.07, 0.12, 0.18))) 

(((0.12, 0.21, 0.31), 

(0.46, 0.56, 0.65)), 

((0.66, 0.76, 0.84), 

(0.05, 0.11, 0.16))) 

(((0.14, 0.23, 0.33), 

(0.43, 0.54, 0.64)), 

((0.68, 0.78, 0.86), 

(0.02, 0.08, 0.14))) 

(((0.36, 0.48, 0.6), 

(0.14, 0.27, 0.4)), 

((0.62, 0.76, 0.87), 

(0.07, 0.11, 0.16))) 

(((0.23, 0.33, 0.45), 

(0.3, 0.43, 0.55)), 

((0.71, 0.8, 0.87), 

(0.02, 0.07, 0.13))) 

(((0.13, 0.22, 0.32), 

(0.45, 0.56, 0.66)), 

((0.71, 0.81, 0.88), 

(0.04, 0.08, 0.13))) 

A2 

(((0.33, 0.44, 0.57), 

(0.18, 0.31, 0.43)), 

((0.61, 0.73, 0.82), 

(0.07, 0.12, 0.18))) 

(((0.18, 0.28, 0.4), 

(0.36, 0.47, 0.57)), 

((0.68, 0.79, 0.87), 

(0.04, 0.09, 0.14))) 

(((0.4, 0.52, 0.65), 

(0.11, 0.23, 0.35)), 

((0.35, 0.63, 0.79), 

(0.11, 0.15, 0.19))) 

(((0.24, 0.34, 0.46), 

(0.29, 0.42, 0.54)), 

((0.56, 0.74, 0.85), 

(0.07, 0.11, 0.15))) 

(((0.17, 0.27, 0.37), 

(0.39, 0.51, 0.63)), 

((0.68, 0.78, 0.85), 

(0.06, 0.1, 0.15))) 

(((0.39, 0.5, 0.63), 

(0.12, 0.25, 0.37)), 

((0.33, 0.54, 0.7), 

(0.14, 0.19, 0.24))) 

(((0.26, 0.36, 0.48), 

(0.29, 0.41, 0.52)), 

((0.7, 0.8, 0.87), 

(0.04, 0.09, 0.14))) 

A3 

(((0.21, 0.32, 0.44), 

(0.3, 0.42, 0.53)), 

((0.42, 0.61, 0.74), 

(0.11, 0.17, 0.23))) 

(((0.22, 0.33, 0.44), 

(0.31, 0.44, 0.56)), 

((0.51, 0.67, 0.78), 

(0.1, 0.15, 0.21))) 

(((0.21, 0.33, 0.45), 

(0.29, 0.41, 0.52)), 

((0.34, 0.55, 0.69), 

(0.15, 0.2, 0.26))) 

(((0.29, 0.4, 0.52), 

(0.21, 0.35, 0.48)), 

((0.59, 0.74, 0.85), 

(0.07, 0.11, 0.17))) 

(((0.2, 0.32, 0.43), 

(0.32, 0.43, 0.53)), 

((0.32, 0.55, 0.69), 

(0.14, 0.19, 0.26))) 

(((0.35, 0.47, 0.6), 

(0.17, 0.29, 0.4)), 

((0.53, 0.69, 0.8), 

(0.09, 0.14, 0.19))) 

(((0.34, 0.45, 0.57), 

(0.16, 0.3, 0.43)), 

((0.39, 0.58, 0.7), 

(0.14, 0.2, 0.26))) 

A4 

(((0.21, 0.32, 0.43), 

(0.33, 0.45, 0.57)), 

((0.72, 0.82, 0.9), 

(0.03, 0.07, 0.11))) 

(((0.32, 0.44, 0.57), 

(0.18, 0.31, 0.43)), 

((0.61, 0.77, 0.88), 

(0.06, 0.09, 0.14))) 

(((0.24, 0.35, 0.47), 

(0.27, 0.41, 0.53)), 

((0.23, 0.54, 0.75), 

(0.12, 0.15, 0.2))) 

(((0.15, 0.24, 0.35), 

(0.42, 0.53, 0.64)), 

((0.62, 0.74, 0.83), 

(0.07, 0.12, 0.17))) 

(((0.21, 0.32, 0.43), 

(0.32, 0.44, 0.56)), 

((0.69, 0.8, 0.88), 

(0.04, 0.08, 0.13))) 

(((0.34, 0.45, 0.58), 

(0.17, 0.3, 0.42)), 

((0.47, 0.66, 0.79), 

(0.09, 0.14, 0.2))) 

(((0.33, 0.44, 0.56), 

(0.18, 0.31, 0.44)), 

((0.53, 0.69, 0.8), 

(0.08, 0.13, 0.19))) 

A5 

(((0.13, 0.21, 0.31), 

(0.47, 0.59, 0.69)), 

((0.6, 0.75, 0.84), 

(0.07, 0.11, 0.16))) 

(((0.29, 0.4, 0.52), 

(0.22, 0.35, 0.48)), 

((0.5, 0.64, 0.75), 

(0.12, 0.18, 0.24))) 

(((0.31, 0.42, 0.54), 

(0.19, 0.33, 0.46)), 

((0.56, 0.72, 0.82), 

(0.07, 0.12, 0.17))) 

(((0.33, 0.44, 0.57), 

(0.18, 0.31, 0.43)), 

((0.38, 0.58, 0.72), 

(0.13, 0.18, 0.25))) 

(((0.09, 0.17, 0.27), 

(0.51, 0.6, 0.69)), 

((0.58, 0.72, 0.82), 

(0.07, 0.12, 0.17))) 

(((0.37, 0.49, 0.61), 

(0.14, 0.27, 0.39)), 

((0.58, 0.7, 0.79), 

(0.09, 0.14, 0.2))) 

(((0.23, 0.34, 0.46), 

(0.3, 0.42, 0.53)), 

((0.64, 0.76, 0.84), 

(0.07, 0.12, 0.17))) 
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In Step 5, aggregated decomposed triangular fuzzy restrictions are weighted by criteria 

weights. In this section, we have asked to DMs for weighing the criteria using Z-fuzzy 

AHP method given in Tüysüz and Kahraman (2020b). We have obtained the criteria 

weights as shown in Table 5.11. Then, we have multiplied the values coming from 

Step 4 with the criteria weights using scalar multiplication operation given in Eq. (5.8) 

and obtained the weighted decision matrix as given in Table 5.12. 

Table 5.11 : Criteria weights. 

Criteria Weights 

C1 Costs 0.213 

C2 Proximity to transportation ports 0.149 

C3 Traffic Flow 0.077 

C4 
Proximity to markets, suppliers and other 

services 
0.235 

C5 Workforce availability 0.109 

C6 Service characteristics 0.072 

C7 Environmental conditions 0.145 

A calculation example is presented to make clear how the bold values are obtained in 

Table 5.12. 

0.26∗0.213

(0.213−1)∗0.26+1
= 0.07,         

0.26

0.213−(0.213−1)∗0.26
=0.63 

0.570.213 = 0.89,                  1 − (1 − 0.09)0.213 = 0.02 

In step 6, we have defuzzified each 𝒪 and 𝒫 parameters obtained in Step 5. In Step 7, 

we have determined 𝑃𝐼𝑆𝐷𝐹 and 𝑁𝐼𝑆𝐷𝐹 using Eqs. (5.34-5.37). Defuzzified 

decomposed fuzzy values and 𝑃𝐼𝑆𝐷𝐹 and 𝑁𝐼𝑆𝐷𝐹 of them are shown in Table 5.13.  

A calculation example is presented to make clear how the bold values are obtained in 

Table 5.13. 

(0.07+2∗0.11+0.17)

4
= 0.12,  

(0.63+2∗0.75+0.83)

4
= 0.74   

(0.89+2∗0.93+0.95)

4
= 0.92, 

(0.02+2∗0.03+0.05)

4
= 0.03 

In order to define 𝑃𝐼𝑆𝐷𝐹 and 𝑁𝐼𝑆𝐷𝐹 values in Table 5.13, we calculate the defuzzified 

values of decomposed fuzzy numbers in Table 5.12 using Eq. (5.23). Defuzzified value 

of (((0.07, 0.11, 0.17), (0.63, 0.75, 0.83)), ((0.89, 0.93, 0.95), (0.02, 0.03, 0.05))) in 

Table 5.12 is calculated as follows: 

0.5 +
√0.07+0.17+0.02+0.05

4
 - 
√0.63+0.83+0.89+0.95

4
 = 0.18 
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Table 5.12 : Weighted decision matrix. 

  C1 C2 C3 C4 C5 C6 C7 

A1 

(((0.07, 0.11, 0.17), 

(0.63, 0.75, 0.83)), 

((0.89, 0.93, 0.95), 

(0.02, 0.03, 0.05))) 

(((0.08, 0.17, 0.26), 

(0.53, 0.71, 0.8)), 

((0.93, 0.95, 0.97), 

(0.01, 0.02, 0.03))) 

(((0.01, 0.02, 0.03), 

(0.92, 0.94, 0.96)), 

((0.97, 0.98, 0.99), 

(0, 0.01, 0.01))) 

(((0.04, 0.07, 0.11), 

(0.76, 0.83, 0.88)), 

((0.91, 0.94, 0.97), 

(0.01, 0.02, 0.03))) 

(((0.06, 0.09, 0.14), 

(0.61, 0.77, 0.86)), 

((0.95, 0.97, 0.98), 

(0.01, 0.01, 0.02))) 

(((0.02, 0.03, 0.05), 

(0.85, 0.91, 0.95)), 

((0.98, 0.98, 0.99), 

(0, 0.01, 0.01))) 

(((0.02, 0.04, 0.06), 

(0.85, 0.9, 0.93)), 

((0.95, 0.97, 0.98), 

(0.01, 0.01, 0.02))) 

A2 

(((0.09, 0.14, 0.22), 

(0.51, 0.68, 0.78)), 

((0.9, 0.94, 0.96), 

(0.02, 0.03, 0.04))) 

(((0.03, 0.08, 0.12), 

(0.79, 0.85, 0.9)), 

((0.94, 0.97, 0.98), 

(0.01, 0.01, 0.02))) 

(((0.05, 0.08, 0.13), 

(0.62, 0.8, 0.87)), 

((0.92, 0.96, 0.98), 

(0.01, 0.01, 0.02))) 

(((0.07, 0.11, 0.16), 

(0.63, 0.76, 0.84)), 

((0.87, 0.93, 0.96), 

(0.02, 0.03, 0.04))) 

(((0.02, 0.04, 0.06), 

(0.85, 0.91, 0.94)), 

((0.96, 0.97, 0.98), 

(0.01, 0.01, 0.02))) 

(((0.04, 0.07, 0.11), 

(0.65, 0.82, 0.89)), 

((0.92, 0.96, 0.97), 

(0.01, 0.01, 0.02))) 

(((0.05, 0.08, 0.12), 

(0.74, 0.82, 0.88)), 

((0.95, 0.97, 0.98), 

(0.01, 0.01, 0.02))) 

A3 

(((0.05, 0.09, 0.14), 

(0.67, 0.77, 0.84)), 

((0.83, 0.9, 0.94), 

(0.03, 0.04, 0.05))) 

(((0.04, 0.09, 0.14), 

(0.75, 0.84, 0.9)), 

((0.91, 0.94, 0.96), 

(0.02, 0.02, 0.03))) 

(((0.02, 0.04, 0.06), 

(0.84, 0.9, 0.93)), 

((0.92, 0.96, 0.97), 

(0.01, 0.02, 0.02))) 

(((0.09, 0.14, 0.2), 

(0.54, 0.7, 0.8)), 

((0.88, 0.93, 0.96), 

(0.02, 0.03, 0.04))) 

(((0.03, 0.05, 0.08), 

(0.81, 0.87, 0.91)), 

((0.88, 0.94, 0.96), 

(0.02, 0.02, 0.03))) 

(((0.04, 0.06, 0.1), 

(0.74, 0.85, 0.9)), 

((0.96, 0.97, 0.98), 

(0.01, 0.01, 0.01))) 

(((0.07, 0.11, 0.16), 

(0.57, 0.74, 0.84)), 

((0.87, 0.92, 0.95), 

(0.02, 0.03, 0.04))) 

A4 

(((0.05, 0.09, 0.14), 

(0.7, 0.8, 0.86)), 

((0.93, 0.96, 0.98), 

(0.01, 0.02, 0.03))) 

(((0.07, 0.14, 0.22), 

(0.6, 0.75, 0.84)), 

((0.93, 0.96, 0.98), 

(0.01, 0.01, 0.02))) 

(((0.02, 0.04, 0.06), 

(0.83, 0.9, 0.94)), 

((0.89, 0.95, 0.98), 

(0.01, 0.01, 0.02))) 

(((0.04, 0.07, 0.11), 

(0.75, 0.83, 0.88)), 

((0.89, 0.93, 0.96), 

(0.02, 0.03, 0.04))) 

(((0.03, 0.05, 0.08), 

(0.81, 0.88, 0.92)), 

((0.96, 0.98, 0.99), 

(0, 0.01, 0.01))) 

(((0.03, 0.06, 0.09), 

(0.73, 0.85, 0.91)), 

((0.95, 0.97, 0.98), 

(0.01, 0.01, 0.02))) 

(((0.07, 0.1, 0.15), 

(0.6, 0.76, 0.85)), 

((0.91, 0.95, 0.97), 

(0.01, 0.02, 0.03))) 

A5 

(((0.03, 0.05, 0.09), 

(0.81, 0.87, 0.91)), 

((0.9, 0.94, 0.96), 

(0.01, 0.02, 0.04))) 

(((0.06, 0.12, 0.19), 

(0.65, 0.79, 0.86)), 

((0.9, 0.94, 0.96), 

(0.02, 0.03, 0.04))) 

(((0.03, 0.05, 0.08), 

(0.76, 0.87, 0.92)), 

((0.96, 0.97, 0.99), 

(0.01, 0.01, 0.01))) 

(((0.1, 0.16, 0.24), 

(0.49, 0.66, 0.76)), 

((0.8, 0.88, 0.93), 

(0.03, 0.05, 0.07))) 

(((0.01, 0.02, 0.04), 

(0.9, 0.93, 0.95)), 

((0.94, 0.97, 0.98), 

(0.01, 0.01, 0.02))) 

(((0.04, 0.06, 0.1), 

(0.7, 0.84, 0.9)), 

((0.96, 0.98, 0.98), 

(0.01, 0.01, 0.02))) 

(((0.04, 0.07, 0.11), 

(0.75, 0.83, 0.88)), 

((0.94, 0.96, 0.98), 

(0.01, 0.02, 0.03))) 
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Table 5.13 : Defuzzified decomposed fuzzy values and their 𝑃𝐼𝑆𝐷𝐹 and 𝑁𝐼𝑆𝐷𝐹 

values. 

  

C1-Costs 

C2-Proximity 
to 

transportation 

ports 

C3-Traffic 

Flow 

C4-Proximity 
to markets, 

suppliers and 

other services 

C5-

Workforce 
availability 

C6-Service 

characteristics 

C7-
Environmen-

tal 

conditions 

A1 
((0.12, 0.74), 

(0.92, 0.03)) 

((0.17, 0.69), 

(0.95, 0.02)) 

((0.02, 0.94), 

(0.98, 0.01)) 

((0.07, 0.83), 

(0.94, 0.02)) 

((0.1, 0.75), 

(0.97, 0.01)) 

((0.04, 0.91), 

(0.98, 0.01)) 

((0.04, 0.89), 

(0.97, 0.01)) 

A2 
((0.15, 0.66), 
(0.93, 0.03)) 

((0.08, 0.85), 
(0.96, 0.01)) 

((0.08, 0.77), 
(0.96, 0.01)) 

((0.11, 0.75), 
(0.92, 0.03)) 

((0.04, 0.9), 
(0.97, 0.01)) 

((0.07, 0.80), 
(0.95, 0.01)) 

((0.08, 0.82), 
(0.97, 0.01)) 

A3 
((0.1, 0.76), 

(0.89, 0.04)) 

((0.09, 0.83), 

(0.94, 0.02)) 

((0.04, 0.89), 

(0.95, 0.02)) 

((0.14, 0.68), 

(0.93, 0.03)) 

((0.05, 0.87), 

(0.93, 0.02)) 

((0.063, 0.84), 

(0.97, 0.01)) 

((0.11, 0.72), 

(0.92, 0.03)) 

A4 
((0.09, 0.79), 

(0.96, 0.02)) 

((0.14, 0.73), 

(0.96, 0.01)) 

((0.04, 0.89), 

(0.94, 0.01)) 

((0.07, 0.82), 

(0.93, 0.03)) 

((0.05, 0.87), 

(0.97, 0.01)) 

((0.06, 0.84), 

(0.97, 0.01)) 

((0.11, 0.74), 

(0.94, 0.02)) 

A5 
((0.06, 0.86), 
(0.94, 0.02)) 

((0.12, 0.77), 
(0.93, 0.03)) 

((0.06, 0.85), 
(0.97, 0.01)) 

((0.16, 0.64), 
(0.87, 0.05)) 

((0.02, 0.93), 
(0.96, 0.01)) 

((0.07, 0.82), 
(0.97, 0.01)) 

((0.07, 0.82), 
(0.96, 0.02)) 

PIS 
((0.06, 0.86), 

(0.94, 0.03)) 

((0.17, 0.69), 

(0.95, 0.02)) 

((0.02, 0.94), 

(0.98, 0.01)) 

((0.16, 0.64), 

(0.87, 0.05)) 

((0.1, 0.75), 

(0.97, 0.01)) 

((0.07, 0.8), 

(0.95, 0.01)) 

((0.11, 0.72), 

(0.92, 0.03)) 

NIS 
((0.15, 0.66), 

(0.93, 0.03)) 

((0.08, 0.85), 

(0.96, 0.01)) 

((0.08, 0.77), 

(0.96, 0.01)) 

((0.07, 0.83), 

(0.94, 0.02)) 

((0.02, 0.93), 

(0.96, 0.01)) 

((0.04, 0.91), 

(0.98, 0.01)) 

((0.04, 0.89), 

(0.97, 0.01)) 

A1-Çorlu, A2-Silivri, A3-Sultanbeyli, A4-Osmangazi, A5-Izmit 

In Step 8, 𝑆∗ 𝑎𝑛𝑑 𝑆− have been determined by Eqs. (5.38-5.39).  

In Step 9, the 𝐶𝑖
∗ of the alternatives are calculated using Eq. (5.40). Final ranking 

results are given in Table 5.14. 

Table 5.14 : 𝑆∗, 𝑆−and 𝐶𝑖
∗values of alternatives and rankings. 

Alternatives S* S- C* Rank 

A1 Çorlu 0.093 0.089 0.488 4th 

A2 Silivri 0.111 0.048 0.303 5th 

A3 Sultanbeyli 0.070 0.088 0.557 2nd 

A4 Osmangazi 0.075 0.081 0.518 3rd 

A5 Izmit 0.071 0.097 0.579 1st 

According to the obtained results, the overall ranking is 

Izmit>Sultanbeyli>Osmangazi>Çorlu>Silivri. Since the location selection is 

strategically important for the company and the investment requires large costs and 

long term risks, the reliabilities of the assigned restriction functions should be seriously 

taken into account.  This analysis is presented in sub-section 5.4.3. We also applied 

DWAM operator to our problem and obtained a similar ranking A5>A3>A2>A1>A4 

whereas it is A5>A3>A4>A1>A2. The first two best alternatives are same. 

5.4.3 Utility of reliability component on results 

In order to assess the validity of the proposed DF Z-TOPSIS methodology and 

investigate the importance of reliability information, we apply the decomposed fuzzy 

TOPSIS (DF-TOPSIS) method to the problem presented in Section 5.4 using 
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decomposed fuzzy linguistics, from which Z-fuzzy terms are removed from DF Z 

linguistics. Steps of the decomposed fuzzy TOPSIS method are summarized below: 

Step 1. Define the criteria and alternatives for the problem. To compare the final results 

of two methods, the same problem is used. 

Step 2. Collect the decision matrices from DMs using the DF linguistic scale given in 

Table 5.15.  

Table 5.15 : DF linguistic terms 

Linguistic Terms 𝛍 𝛝 

Absolutely High (AH) 0.8 0.05 

Very High (VH) 0.7 0.1 

High (H) 0.6 0.2 

Medium (M) 0.5 0.3 

Low (L) 0.4 0.4 

Very Low (VL) 0.3 0.5 

Absolutely Low (AL) 0.2 0.55 

 

Step 3. Aggregate the DMs’ decision matrix using Eq. (5.18). 

Step 4. Weigh the aggregated decision matrix with criteria weights using Eq. (5.8). 

The same criteria weights are used to make comparison with DF-TOPSIS method. 

Step 5. Determine the 𝑃𝐼𝑆𝐷𝐹 and 𝑁𝐼𝑆𝐷𝐹 values using Eqs. (5.34-5.37). 

Step 6. 𝑆∗ 𝑎𝑛𝑑 𝑆− values are calculated using Eqs. (5.38-5.39). 

Step 7. Calculate the 𝐶𝑖
∗ values of the alternatives using Eq. (5.40) and rank the 

alternatives. 

Table 5.16 : Ranking results of DF-TOPSIS method. 

Alternatives S* S- C* Rank 

A1 Çorlu 0.162 0.195 0.546 4th 

A2 Silivri 0.232 0.069 0.229 5th 

A3 Sultanbeyli 0.136 0.186 0.578 3rd  

A4 Osmangazi 0.126 0.189 0.600 1st 

A5 Izmit 0.136 0.195 0.588 2nd 

It can be concluded from the results presented in Table 5.16 that the ranking of 

alternatives is different from the DF Z-TOPSIS methodology which considers the 

reliabilities of the judgments. The most significant difference was seen in the best 

alternative which has been selected by the proposed methodology (DF Z-TOPSIS). 

Osmangazi has become the best alternative in the approach that does not involve 

reliability information (DF-TOPSIS). Overall ranking has changed as 

Osmangazi>Izmit>Sultanbeyli>Çorlu>Silivri.  



105 

We can concluded that if the reliability information had not been used, Osmangazi 

would have been chosen as the best alternative. When the reliability information is 

considered, the ranking of the alternatives becomes 

Izmit>Sultanbeyli>Osmangazi>Çorlu>Silivri, which shows that the use of reliability 

information has a significant effect on the results. The feedback received from the 

interviews with DMs also indicated the fact that it would be more accurate to find Izmit 

as the first alternative for the transfer center location compared to Osmangazi. This 

proves that the use of reliability information has played an important role in finding a 

more accurate solution to this problem. Therefore, the proposed DF Z-TOPSIS method 

may be a useful tool in conditions requiring linguistic assessments under uncertainty. 

The application and utility analysis of reliability component shows that the proposed 

DF Z-TOPSIS method has the following advantages: 

i. Integration of decomposed fuzzy sets (DFSs) with Z-numbers dominate the 

decomposed fuzzy sets. It models the descriptive property of linguistic 

preferences by adding the confidence and unconfidence degrees of assessments 

under the functional and dysfunctional viewpoints. 

ii. Although the notational structure of DF Z-numbers may seem to be complex, 

they have succesfully been integrated by TOPSIS method. DF Z-numbers can 

reflect the whole thinking structure of decision makers by taking their 

judgments and the reliability of them with both positive and negative questions. 

Therefore, DF Z-TOPSIS methodology can create an active and operative 

decision environment to represent nature of human words. 

iii. Obtaining different results in DF Z-TOPSIS and DF-TOPSIS methods shows 

that the reliability degrees of the evaluations can affect the managerial 

decisions. Therefore, it is important to include reliability information in 

decision structures. 

iv. The proposed defuzzification formula for decomposed fuzzy sets can produce 

reasonable and objective corresponding numbers to achieve final solution. It 

also offers a simpler calculation structure than the existing score function in 

the literature. 

Even the computational complexity is not low, the reliability and consistency of the 

experts' judgments compensate it. The effectiveness of the proposed method is quite 

high when compared with its disadvantages. 
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5.4.4 Comparative analysis 

In this subsection, we compare our method DF Z-TOPSIS with crisp TOPSIS method. 

DMs’ crisp evaluations based on the crisp scala AH: 70, VH: 60, H: 50, M: 40, L: 30, 

VL: 20 and AL: 10 are aggregated by using arithmetic average. The obtained 

aggregated matrix is given in Table 5.17. 

Table 5.17 : Crisp aggregated decision matrix. 

  C1 C2 C3 C4 C5 C6 C7 

A1 45.00 62.50 22.50 22.50 57.50 47.50 20.00 

A2 57.50 30.00 62.50 40.00 32.50 57.50 42.50 

A3 32.50 37.50 37.50 50.00 40.00 55.00 50.00 

A4 45.00 60.00 42.50 30.00 42.50 60.00 52.50 

A5 22.50 47.50 52.50 55.00 20.00 57.50 47.50 

The weighted decision matrix is obtained by using the criteria weights in Table 5.11 

and given in Table 5.18. The distances of alternatives to PIS and NIS are given in 

Table 5.19. Based on the closeness to ideal solutions, C*, the ranking of the 

alternatives from the best to the worst is A5>A3>A4>A1>A2. Even we lost a lot of 

information while converting the data from fuzzy case to crisp case, the ranking is the 

same as our DF Z-TOPSIS method. This does not guarantee that the same ranking can 

be obtained in any similar conversion.  

Table 5.18 : Weighted decision matrix. 

 C1 C2 C3 C4 C5 C6 C7 

A1 9.59 9.34 1.72 5.28 6.29 3.40 2.91 

A2 12.25 4.48 4.78 9.39 3.55 4.12 6.18 

A3 6.93 5.60 2.87 11.73 4.37 3.94 7.27 

A4 9.59 8.97 3.25 7.04 4.65 4.30 7.63 

A5 4.79 7.10 4.02 12.91 2.19 4.12 6.90 

PIS 4.79 9.34 1.72 12.91 6.29 4.30 7.63 

NIS 12.25 4.48 4.78 5.28 2.19 3.40 2.91 

Table 5.19 : Distances to PIS and NIS and ranking of the alternatives. 

 S* S- C* Ranking 

A1 10.21 7.54 0.425 4 

A2 10.52 5.47 0.342 5 

A3 5.01 9.95 0.665 2 

A4 7.91 7.86 0.498 3 

A5 5.26 11.73 0.690 1 
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A sensitivity analysis can show this possibility by changing some parameters. Table 

5.20 shows the changed weights of the criteria. The new set of weights produced 

different ranking results in DF Z-TOPSIS and crisp TOPSIS methods as seen in Table 

5.21. 

Table 5.20 : Changed set of criteria weights. 

Criteria 
Present 

weights 

Changed 

weights 

C1 Costs 0.213 0.41 

C2 Proximity to transportation ports 0.149 0.05 

C3 Traffic Flow 0.077 0.18 

C4 
Proximity to markets, suppliers and other 

services 
0.235 

0.03 

C5 Workforce availability 0.109 0.21 

C6 Service characteristics 0.072 0.07 

C7 Environmental conditions 0.145 0.05 

Table 5.21 : Comparative rankings. 

Alternatives 
Ranking with 

DF Z-TOPSIS 

Ranking with 

Crisp TOPSIS 

A1 Çorlu 1 3 

A2 Silivri 5 5 

A3 Sultanbeyli 4 1 

A4 Osmangazi 2 4 

A5 Izmit 3 2 

 Conclusion 

In this paper, DFSs are processed under the concept of Z-fuzzy numbers, then a novel 

decision-making method is constructed based on the proposed DF Z-numbers. There 

are several unique contributions of this paper. First, a new DF Z linguistic scale is 

developed for the usage in DMs' judgments. Then, a method of conversion from DF 

Z-numbers to their corresponding DFNs is proposed to the literature. Next, a new 

defuzzification formula is developed to reach the final crisp values of the DFNs. 

Finally, a novel DF Z-TOPSIS decision method is developed to solve MCDM 

problems. 

DF Z-TOPSIS method was applied to the cargo transfer center selection problem to 

explore its practicality. All DMs’ evaluations are collected in the form of DF Z-

numbers. The ranking of the alternatives by the proposed method showed the usability 

and validity of the method. Then, the problem was compared with the DF-TOPSIS 

method and it was tested whether the DF Z-numbers in the proposed method make a 

significant difference on the results. Two methods gave different rankings of the cargo 
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transfer center alternatives. Its reason is that DF Z-numbers offer more informative 

and reliable decision structure with the use of reliability component. Therefore, we 

verify that it is reasonable to integrate Z-fuzzy numbers with decomposed fuzzy sets 

in order to collect accurate data by asking functional and dysfunctional questions.  

This study can guide researchers or practitioners who want to model the linguistic 

judgments of decision-makers not only from a positive point of view but also by asking 

negative questions. It fills any information gaps that may arise unilaterally by asking 

decision makers how unsure they are in their judgments, in addition to how sure they 

are in their judgments. For future research, DF Z-numbers can be extended to interval-

valued DF Z-numbers to define the fuzziness in a broader framework. Since DFSs are 

quite new in the literature, they can be integrated with other MCDM methods such as 

VIKOR or ELECTRE in future studies and applied to other types of problems such as 

supplier selection, renewable energy selection or personnel selection. DF Z-numbers 

can be also used with these methods to develop new methodologies such as DF Z-

AHP&VIKOR or DF Z-CRITIC&ELECTRE, and they can be compared with the 

results of this paper. 
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 AN INTEGRATED PICTURE FUZZY Z-AHP & TOPSIS 

METHODOLOGY: APPLICATION TO SOLAR PANEL SELECTION5 

Saaty’s (1980) analytic hierarchy process (AHP) is a powerful multi criteria decision-

making (MCDM) method and widely used since it has a simple algorithm and has an 

ability to consider both quantitative and qualitative factors (Tüysüz, 2018; Aliyev et 

al., 2020). Due to the nature of AHP method, experts need to make several pairwise 

comparisons to reach final result. It makes sense to develop an AHP method employing 

fuzzy numbers rather than precise numbers since experts naturally hesitate when doing 

pairwise comparisons. In order to enhance the pairwise comparisons' ability to 

describe uncertainty, AHP method is extended to different fuzzy AHP methods such 

as Pythagorean fuzzy AHP (Ilbahar et al., 2018), neutrosophic AHP (Radwan et al., 

2016), hesitant fuzzy AHP (Mousavi et al., 2014; Öztaysi et al., 2015), intuitionistic 

fuzzy AHP (Sadiq and Tesfamariam, 2009), picture fuzzy AHP (Gündoğdu et al., 

2021) and spherical fuzzy AHP (Kutlu Gündoğdu and Kahraman, 2020). TOPSIS 

method is another well-known MCDM method developed by Yoon and Hwang (1981) 

for complex decision making problems (Seker and Kahraman, 2022). In order to find 

better solutions for MCDM problems, several integrated fuzzy AHP and TOPSIS 

methods are developed using the extensions of fuzzy sets such as intuitionistic fuzzy 

sets (Karasan et al., 2018; Kahraman et al., 2018), neutrosophic sets (Junaid et al., 

2019), Pythagorean fuzzy sets (Yucesan and Gul, 2020; Yildiz et al., 2020; Sarkar and 

Biswas, 2021; Çalık, 2021), hesitant fuzzy sets (Kumar et al., 2020; Beskese et al., 

2020; Ayağ and Samanlioglu, 2021) and spherical fuzzy sets (Mathew et al., 2020; 

Jaller and Otay, 2020). Three dimensional (3D) fuzzy sets such as picture fuzzy sets, 

spherical fuzzy sets and neutrosophic sets have advantages in representing fuzziness 

compared to other fuzzy sets and provide more definition flexibility for membership 

parameters.  

 

5 This chapter is based on the paper “Tüysüz, N., & Kahraman, C. (2023). An Integrated Picture Fuzzy 

Z-AHP & TOPSIS Methodology: Application to Solar Panel Selection. Applied Soft Computing, 

110951.” 



110 

Picture fuzzy sets (PFSs) were introduced by Cuong (2014), which are one of the 3D 

fuzzy sets that allow us to define situations where there is more than one answer, such 

as yes, no, rejection, and refusal. PFSs have relatively easier operation rules than other 

3D fuzzy sets such as spherical fuzzy sets and t-spherical fuzzy sets (Haktanır and 

Kahraman, 2022). PFSs have a restriction function in a 1-tuple notational structure that 

the sum of membership, non-membership, and neutral membership degrees must be at 

most equal to 1. However, when dealing with real information, the fuzziness expressed 

by restriction functions is insufficient, and the reliability degree of information is very 

important (Ku Khalif et al., 2017). Z-numbers introduced by Zadeh (2011) allow the 

restriction function to be defined by its reliability degree. Z-numbers can model the 

data affected from different aspects, such as data accuracy degree, changes that may 

occur due to the concept of time, degree of reliability in subjective judgments (Tüysüz 

and Kahraman, 2023). Therefore, the concept of Z-numbers is a valuable idea for 

decision-makers to model this type of information that is not exactly reliable 

(reliability degree under 100%). A direction on when we should use the Z-numbers is 

presented in Figure 6.1. 

 

Figure 6.1 : A direction on the usage of Z-numbers 

Figure 6.1 illustrates a recommendation for experts to directly use Z-numbers for the 

representation of reliability as an addition to fuzzy restriction functions. Combining 

the advantages of PFSs and Z-numbers to handle the uncertainties in decision systems, 

an integrated AHP&TOPSIS methodology with picture fuzzy Z-information is 

proposed for the solution of complex fuzzy MCDM problems in this paper.  

Yes No 

No Yes 

Can experts' judgments be defined with 

exact numbers? 

Crisp 

numbers 

Fuzzy 

numbers 

Do experts want to use the reliability 

information of their judgments? 

Z-numbers 
Fuzzy 

numbers 
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The proposed methodology is applied to a multi-criteria solar energy panel selection 

problem involving vague and imprecise judgments of experts. Solar energy is one of 

the most important renewable energy sources, and there is considerable potential in 

Turkey. Turkey plans to convert this existing solar energy potential into electricity in 

the next years. According to Turkey's national energy plan (2022), the installed 

electricity capacity of 95.9 gigawatts (GW) in 2020 will reach 189.7 GW in 2035. 

Solar energy resources, which are 6.7 GW in installed power in 2020, will reach 52.9 

GW by 2035. It is expected that the majority of the installed power until 2035 will be 

provided by solar and wind energy. In addition, solar energy will have the largest share 

of installed power in 2035. Considering the importance of solar energy in Turkey, solar 

energy investments and the demand for solar panels may increase in the next years and 

get more attention from researchers and organizations in Turkey. In the literature, 

studies related to evaluation problems in solar energy have often been conducted in 

four different areas: solar panel supplier selection (Wang and Tsai, 2018; Cao et al., 

2019); solar plant site selection (Thongpun et al., 2017; Al Garni and Awasthi, 2017; 

Ozdemir and Sahin, 2018; Soydan, 2021; Wang et al., 2023; Almasad et al., 2023; 

Mian et al., 2023; Hassan et al., 2023; Khan et al., 2023; Hooshangi et al., 2023; 

Cattani, 2023); evaluation of solar panel selection criteria (Arman and Kundakcı, 

2023) and solar energy panel selection (Rani et al., 2020). In this study, we focus on 

panel selection for solar energy investments, which is expected to attract great interest 

in Turkey due to its potential in the future. MCDM methods have been used in solar 

panel selection, such as TOPSIS (Yu, 2013), AHP (Balo and Şağbanşua, 2016), fuzzy 

AHP and classical TOPSIS (Sasikumar and Ayyappan, 2019), Pythagorean fuzzy 

SWARA–VIKOR (Rani et al., 2020), and entrophy TOPSIS (Kaur et al., 2023).  

The main problem in the selection of solar energy panels is defining the solar panel 

selection criteria and obtaining the values of the alternatives according to the 

considered criteria in order to construct the decision matrix. Pairwise comparisons or 

evaluations are related to how much the experts are sure from their evaluations in 

addition to their knowledge and experience. Therefore, in this study, a solution 

proposal for solar panel selection is presented in a structure covering Z-numbers and 

picture fuzzy sets in an integrated manner. Thus, picture fuzzy sets reflect experts' 

preferences for the restriction function in a wider perspective while Z-numbers model 

the reliability degree of these preferences. Accordingly, we propose a novel fuzzy 
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AHP&TOPSIS methodology using PF Z-numbers to be used for the evaluation of solar 

energy panel alternatives in Turkey. The main contribution of our study is that it 

integrates Z-numbers with PFSs in the literature, creating a reliable three-dimensional 

decision environment and applies it to a real case study on solar panel selection in 

Turkey.  

The rest of this study is organized as follows: Section 6.1 includes a literature review 

on the methods of PF-AHP, Z-AHP, PF-TOPSIS and Z-TOPSIS. Section 6.2 gives the 

preliminaries of PFSs, Z-numbers, and the proposed PF Z-numbers. Section 6.3 

presents the integrated methodology including the PF Z-AHP and PF Z-TOPSIS 

methods step by step. Section 6.4 presents an application for the solar energy panel 

selection problem. Section 6.5 gives a comparative analysis with the PF-TOPSIS and 

Z-TOPSIS methods. Section 6.6 presents a sensitivity analysis. Finally, the last section 

summarizes the conclusions drawn from the study. 

 Literature Review 

The literature is searched for four methods picture fuzzy AHP (PF-AHP), Z-AHP, 

picture fuzzy TOPSIS (PF-TOPSIS) and Z-TOPSIS given in Tables 6.1, 6.2, 6.3 and 

6.4, respectively. In the literature, there are a limited number of PF-AHP methods 

given in Table 6.1. 

Table 6.1 : Literature review on PF-AHP methods. 

Year Authors Extension of PFSs Application area 

2021 Gündoğdu et al. Single-valued PFSs Public transport development problem 

2021 Mahmood et al. Interval‐valued PFSs Numerical example 

2022 Ilderomi et al. Single-valued PFSs Ranking of flooding risks 

2022 Bal and Ucal Sari Single-valued PFSs Evaluation of working areas 

2023 Meshram et al. Single-valued PFSs Prioritization of watersheds 

2023 Kaya Single-valued PFSs Supplier selection 

 

As a limitation, the AHP papers in Table 6.1 using picture fuzzy sets do not consider 

the reliability of the assigned degrees of membership, neutral membership and non-

membership. It can be drawn from Table 6.1 that more studies can be made for the 

development of AHP extensions by using triangular or trapezoidal PFSs. Our study 

both expands the literature on PF-AHP method and guides researchers 

methodologically with a new integration that includes the reliability information in 

addition to hesitancy of preferences existing in PFSs. Table 6.2 presents Z-AHP 

methods in the literature. 
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Table 6.2 : Literature review on Z-AHP methods. 

Year Authors Type of fuzzy sets 

used with Z-numbers 

Application area 

2013 Azadeh et al.  Ordinary fuzzy sets Evaluation of universities 

2017 Zhang Ordinary fuzzy sets Geological risk evaluation 

2018 Kahraman and Otay Ordinary fuzzy sets Location selection 

2018 Karthika and Sudha Ordinary fuzzy sets Risk evaluation 

2019 Kahraman et al. Ordinary fuzzy sets Performance evaluation  

2020 Rafiee et al. Ordinary fuzzy sets Location selection 

2020 
Tüysüz and 

Kahraman 
Ordinary fuzzy sets 

Prioritization of social sustainable 

development factors 

2020 Bobar et al. Ordinary fuzzy sets 
Evaluation of social media 

platforms 

2021 Liu et al. Ordinary fuzzy sets Conceptual design evaluation 

2021 Sergi and Ucal Sari Ordinary fuzzy sets 
Ranking of public services’ 

digitalizations  

2022 Alkan and Kahraman Spherical fuzzy sets Supplier selection 

2022 
Haktanır and 

Kahraman 

Intuitionistic fuzzy 

sets 
Technology selection 

2022 Sari and Tüysüz 
Interval type-2 fuzzy 

sets 
Risk evaluation 

2022 RezaHoseini et al. Ordinary fuzzy sets Performance evaluation 

2022 Qendraj et al. Ordinary fuzzy sets Evaluation of UTAUT2 model 

2023 
Tüysüz and 

Kahraman 
Ordinary fuzzy sets Wind turbine selection 

It can be concluded from Table 6.2 that there are many Z-AHP methods in the literature 

and most of these studies employ ordinary fuzzy Z-numbers. In addition, the usage of 

the fuzzy sets extensions in the Z-AHP methods has increased in recent years but not 

at a sufficient level yet. The fuzzy sets extensions such as fermatean fuzzy sets, 

neutrosophic sets and Pythagorean fuzzy sets have not yet been integrated with Z-AHP 

method. Each of these extensions handles the uncertainty using different parameters 

and different membership functions. For instance, while fermatean and Pythagorean 

fuzzy sets present two parameters for modeling uncertainty, neutrosophic sets presents 

three parameters for the same purpose.  Considering the uncertainty level that decision 

makers may have in pairwise comparisons in the AHP method, it is important to 

develop new Z-AHP methods with different fuzzy sets extensions since they may 

provide different effects on the decision process. Therefore, the proposed PF Z-AHP 

method is utilized in this study to investigate the effects of reliability information on 

weighing evaluation criteria for solar energy panel selection problem.  

Table 6.3 lists several PF-TOPSIS methods, and almost all studies use a different PFS 

such as bipolar, interval-valued and single-valued during their development. Although 

there are relatively more applications of PF-TOPSIS than PF-AHP in the literature, 

there are still opportunities to obtain extensions of the TOPSIS method with triangular 

or trapezoidal or LR-type picture fuzzy numbers. It can be also concluded from Table 
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6.3 that PF-TOPSIS method has not yet been extended with Z-numbers to PF Z-

TOPSIS method, which makes this study unique in developing a 3D PF-TOPSIS 

method with reliability parameter. 

Table 6.3 : Literature review on PF-TOPSIS methods. 

Year Authors Extension of PFSs Application area 

2019 Zeng et al. Linguistic PFSs ERP system selection 

2021a Jin et al. 
Covering-based PF rough 

sets 
Risk evaluation 

2021 Sindhu et al. Bipolar PFSs Recruitment evaluation 

2022 Dhumras and Bajaj 
Bi-parametric PFSs Selection of hydrogen fuel cell 

technology 

2022a Kahraman et al.  Interval-valued PFSs Evaluation of cloud service providers 

2022 Bobin et al. 
Interval-valued picture 

fuzzy hypersoft sets 
Employee evaluation 

2022b Kahraman et al. Interval-valued PFSs Supplier selection 

2023 Alkan and Kahraman Interval-valued PFSs Wind turbine selection 

2023 Sun et al. Single-valued PFSs Selection of product design 

Table 6.4 : Literature review on Z-TOPSIS methods. 

Year Authors Type of fuzzy sets used 

with Z-numbers 

Application area 

2015 Yaakob and Gegov Ordinary fuzzy sets  Stock selection 

2019 Xian et al. 
Intuitionistic fuzzy sets Investment decision, medical 

diagnosis 

2021 Yaakob et al. Hesitant fuzzy sets Stock selection 

2022 Sari and Tüysüz Interval type-2 fuzzy sets Risk evaluation 

2022 Haktanır and Kahraman Intuitionistic fuzzy sets Technology selection 

 

Table 6.4 presents Z-TOPSIS methods in the literature. It is clearly seen that there are 

few Z-TOPSIS methods, which presents an open research area to propose new 

extensions of Z-TOPSIS methods. For instance, there is no study using spherical fuzzy 

sets, fermatean fuzzy sets or picture fuzzy sets together with Z-numbers in extending 

TOPSIS method. Especially, 3D fuzzy sets may relatively better represent human 

judgments with respect to fuzzy sets that are using one or two parameters. Usage of 

3D fuzzy sets with Z-numbers may provide 3D reliable solutions for TOPSIS method 

to rank the alternatives according to the determined criteria.  Therefore, in this study, 

a new fuzzy TOPSIS method using reliability information is proposed by the 

integration of Z-numbers and PFSs. 

 Preliminaries 

In this section, we present some basic definitions on picture fuzzy sets (PFSs) and Z-

numbers by Section 6.2.1 and Section 6.2.2, respectively. 
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6.2.1 Picture fuzzy sets 

Definition 6.1. A PFS on a 𝐴̃𝑃 of the universe of discourse X is defined by 𝐴̃𝑃 =

{𝑥, 𝜇𝐴̃𝑃(𝑥), 𝜂𝐴̃𝑃(𝑥), 𝜈𝐴̃𝑃(𝑥) | 𝑥 ∈ 𝑋} , where 𝜇𝐴̃𝑃(𝑥): 𝑋 → [0,1] , 𝜂𝐴̃𝑃(𝑥): 𝑋 → [0,1]  

and 𝜈𝐴̃𝑃(𝑥): 𝑋 → [0,1] are the membership degree, neutral membership degree, and 

non-membership degree of 𝑥 to 𝐴̃𝑃, respectively. All parameters must satisfy the 

condition 0 ≤ 𝜇𝐴̃𝑃(𝑥) + 𝜂𝐴̃𝑃(𝑥) + 𝜈𝐴̃𝑃(𝑥) ≤ 1. Then,  1 − (𝜇𝐴̃𝑃(𝑥) + 𝜂𝐴̃𝑃(𝑥) +

 𝜈𝐴̃𝑃(𝑥)) is the refusal degree of 𝑥 in 𝑋 (Cuong, 2014; Cuong and Kreinovich, 2014).  

Definition 6.2. The addition, fuzzy multiplication, scalar multiplication and 

exponentiation operations of PFSs are presented by Eqs. (6.1-6.4) (Wei, 2017; Wei et 

al., 2018). 

𝐴̃𝑃 ⊕ 𝐵̃𝑃 = {𝜇𝐴̃𝑃 + 𝜇𝐵̃𝑃 − 𝜇𝐴̃𝑃𝜇𝐵̃𝑃 , 𝜂𝐴̃𝑃𝜂𝐵̃𝑃 , 𝜈𝐴̃𝑃  𝜈𝐵̃𝑃  }                      (6.1) 

𝐴̃𝑠 ⊗ 𝐵̃𝑠 = {𝜇𝐴̃𝑃𝜇𝐵̃𝑃 , 𝜂𝐴̃𝑃 + 𝜂𝐵̃𝑃 − 𝜂𝐴̃𝑃𝜂𝐵̃𝑃 , 𝜈𝐴̃𝑃 + 𝜈𝐵̃𝑃 − 𝜈𝐴̃𝑃  𝜈𝐵̃𝑃   }              (6.2) 

𝑘𝐴̃𝑃 = {1 − (1 − 𝜇𝐴̃𝑃)
𝑘
, 𝜂𝐴̃𝑃

𝑘 , 𝜈𝐴̃𝑃
𝑘   } ; 𝑘 > 0                        (6.3) 

𝐴̃𝑃
𝑘 = {𝜇𝐴̃𝑃

𝑘 , 1 − (1 − 𝜂𝐴̃𝑃)
𝑘
, 1 − (1 − 𝜈𝐴̃𝑃)

𝑘
} ;𝑘 > 0                        (6.4) 

Definition 6.3. Let 𝐴̃𝑃 = (𝜇𝐴̃𝑃 , 𝜂𝐴̃𝑃 , 𝜈𝐴̃𝑃)  be a picture fuzzy number (PFN). In order 

to calculate the corresponding crisp value of 𝐴̃𝑃, a modified defuzzification formula is 

presented by Eq. (6.5) (Son et al., 2017; Xu et al., 2019). 

𝐷𝑒𝑓(𝐴̃𝑃) = 𝜇𝐴̃𝑃 +
𝜂𝐴̃𝑃
2
− 𝛿 ∗ (

𝜈𝐴̃𝑃
2
)               (6.5) 

where 𝛿 is the net membership coefficient, 0 ≤ 𝛿 ≤ 1.    

Definition 6.4. 𝑤1𝐴̃𝑃1⨁ 𝑤2𝐴̃𝑃2⨁…⨁ 𝑤𝑛𝐴̃𝑃𝑛 be a collection of PFNs, where 𝑤 =

(𝑤1, 𝑤2, … , 𝑤𝑛) is the weight vector; 𝑤𝑗 ∈ [0,1]; ∑ 𝑤𝑗 = 1𝑛
𝑗=1 . Then, Picture Fuzzy 

Weighted Arithmetic Mean (𝑃𝐹𝑊𝐴𝑀) operator is defined by Eq. (6.6).  

𝑃𝐹𝑊𝐴𝑀𝑤(𝐴̃𝑃1, 𝐴̃𝑃2, … , 𝐴̃𝑃𝑛) = 𝑤1𝐴̃𝑃1⨁ 𝑤2𝐴̃𝑃2⨁…⨁𝑤𝑛𝐴̃𝑃𝑛 

= {1 − ∏ (1 − 𝜇𝐴̃𝑃)
𝑤𝑗
,𝑛

𝑗=1 ∏ (𝜂𝐴̃𝑃)
𝑤𝑗
,𝑛

𝑗=1 ∏ (𝜈𝐴̃𝑃)
𝑤𝑗𝑛

𝑗=1 }  

𝑗 = 1,2, … , 𝑛                                                                                                            (6.6) 
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Definition 6.5. 𝐴̃𝑃1
𝑤1⨂ 𝐴̃𝑃2

𝑤2⨂…⨂ 𝐴̃𝑃𝑛
𝑤𝑗

 be a collection of PFNs, where 𝑤 =

(𝑤1, 𝑤2, … , 𝑤𝑛) is the weight vector; 𝑤𝑗 ∈ [0,1]; ∑ 𝑤𝑗 = 1𝑛
𝑗=1 . Then, Picture Fuzzy 

Weighted Geometric Mean (𝑃𝐹𝑊𝐺𝑀) operator is defined by Eq. (6.7).  

𝑃𝐹𝑊𝐺𝑀𝑤(𝐴̃𝑃1, 𝐴̃𝑃2, … , 𝐴̃𝑃𝑛) = (𝐴̃𝑃1
𝑤1⨂ 𝐴̃𝑃2

𝑤2⨂…⨂ 𝐴̃𝑃𝑛
𝑤𝑗) 

= {∏ (𝜇𝐴̃𝑃)
𝑤𝑗𝑛

𝑗=1 , 1 − ∏ (1 − 𝜂𝐴̃𝑃)
𝑤𝑗
,𝑛

𝑗=1 1 − ∏ (1 − 𝜈𝐴̃𝑃)
𝑤𝑗𝑛

𝑗=1 }  

𝑗 = 1,2, … , 𝑛                                                                                                            (6.7)  

6.2.2 Z-numbers 

Z-numbers 𝑍(𝐴̃, 𝑅̃) are introduced by Zadeh (2011) for representing both fuzzy 

restriction function (𝐴̃) and the fuzzy reliability function (𝑅̃) in defining the 

membership of an element to a set. Figure 6.2 shows a simple triangular fuzzy Z-

number. 

 

Figure 6.2 : A simple triangular fuzzy Z-number 

Z-numbers allow us to create an adequate decision process when handling imprecise 

and vague information with its generalized structure (Aliev and Zeinalova, 2014). 

Detailed information on Z-numbers can be found in Tüysüz and Kahraman (2023). 

6.2.3 Picture fuzzy Z-number 

Picture fuzzy Z-number 𝑍̃𝑃𝐹(𝐴̃, 𝑅̃) is a 2-tuple fuzzy number consisting of its 

restriction and reliability functions. Let 𝐴̃ = {𝑥, 𝜇𝐴̃𝑃(𝑥), 𝜂𝐴̃𝑃(𝑥), 𝜈𝐴̃𝑃(𝑥) | 𝑥 ∈ 𝑋} is a 

picture fuzzy restriction function and 𝑅̃ = {𝑥, 𝜇𝑅̃𝑃(𝑥), 𝜂𝑅̃𝑃(𝑥), 𝜈𝑅̃𝑃(𝑥) | 𝑥 ∈ 𝑋} is a 

picture fuzzy reliability function. A picture fuzzy Z-number is given by Eq. (6.8). 

𝑍̃𝑃𝐹(𝐴̃, 𝑅̃) = ((𝜇𝐴̃𝑃(𝑥), 𝜂𝐴̃𝑃(𝑥), 𝜈𝐴̃𝑃(𝑥)) , (𝜇𝑅̃𝑃(𝑥), 𝜂𝑅̃𝑃(𝑥), 𝜈𝑅̃𝑃(𝑥)))              (6.8) 

𝑅̃ 𝐴̃ 

1 

𝜇𝑅̃(𝑥) 

0      𝑟1        𝑟2        𝑟3        𝑥         

1 

𝜇𝐴̃(𝑥) 

0        𝑎1         𝑎2       𝑎3     𝑥 
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where 𝜇𝑅̃𝑃(𝑥), 𝜂𝑅̃𝑃(𝑥), 𝜈𝑅̃𝑃(𝑥): 𝑋 → [0,1] belong to the reliability function satisfying 

that 0 ≤ 𝜇𝑅̃𝑃(𝑥) + 𝜂𝑅̃𝑃(𝑥) + 𝜈𝑅̃𝑃(𝑥) ≤ 1. 

Definition 6.6. Conversion from a PF Z-number to a PF number 

Consider a PF Z-number 𝑍̃𝑃𝐹(𝐴,̃ 𝑅̃), which integrates PF restriction and PF reliability 

functions. To obtain a PF number (𝑍̃𝑃𝐹
′ ) from PF Z-number, the following steps are 

applied. 

(i) The reliability function (𝑅̃) is converted to its corresponding crisp value (𝛼) 

using Eq. (6.9). 

𝐷𝑒𝑓𝑅̃ = 𝛼 = 0.95 − 0.5 ∗ 𝜈𝑅̃𝑃                    (6.9) 

(ii) PF restriction function is multiplied by the square root of defuzzified reliability 

function (√𝛼) as in Eq. (6.10).  

𝑍̃𝑃𝐹
′ =

{〈𝑥; 𝜇𝑍̃𝑃𝐹′
(𝑥), 𝜂𝑍̃𝑃𝐹′

(𝑥), 𝜈𝑍̃𝑃𝐹′
(𝑥)〉 | (

1 − (1 − 𝜇𝐴̃(𝑥))
√𝛼
,

𝜂𝐴̃(𝑥)
√𝛼, 𝜈𝐴̃(𝑥)

√𝛼
) ;  𝜇(𝑥), 𝜂(𝑥), 𝜈(𝑥) ∈ [0,1]}    

         (6.10) 

(iii) Alternatively, to continue operations with PF reliability, 𝑅̃, PF restriction 

function is multiplied by the square root of PF reliability function (√𝑅̃) as in Eq. 

(6.11).  

𝑍̃𝑃𝐹
′ = 

{
 
 
 
 
 

 
 
 
 
 

〈𝑥; 𝜇𝑍̃𝑃𝐹
′ (𝑥), 𝜂𝑍̃𝑃𝐹

′ (𝑥), 𝜈𝑍̃𝑃𝐹
′ (𝑥)〉

|

|

|

|

(

 
 
 
 
 
 
 
 
 

𝜇𝐴𝑃(𝑥)𝜇𝑅̃𝑃

1

2 (𝑥),

 𝜂𝐴𝑃(𝑥) + (1 − (1 − 𝜂𝑅̃𝑃(𝑥))

1

2
)

−𝜂𝐴𝑃(𝑥) (1 − (1 − 𝜂𝑅̃𝑃(𝑥))

1

2
) ,

𝜈𝐴𝑃(𝑥) + (1 − (1 − 𝜈𝑅̃𝑃(𝑥))

1

2
)

−𝜈𝐴𝑃(𝑥) (1 − (1 − 𝜈𝑅̃𝑃(𝑥))

1

2
)
)

 
 
 
 
 
 
 
 
 

;  𝜇(𝑥), 𝜂(𝑥), 𝜈(𝑥) ∈ [0,1]

}
 
 
 
 
 

 
 
 
 
 

     

(6.11) 
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 Proposed Methodology: Picture Fuzzy Z-AHP&TOPSIS 

In this section, the AHP method is extended by picture fuzzy Z-numbers for weighing 

the evaluation criteria and the TOPSIS method is extended by picture fuzzy Z-numbers 

for prioritizing the considered alternatives. The flowchart of this methodology is 

presented in Figure 6.3. Picture fuzzy Z-AHP method and Picture fuzzy Z-TOPSIS 

method are presented step by step in the following sub-sections. 

 

Figure 6.3 : Flowchart of the proposed PF Z-AHP&TOPSIS methodology. 
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6.3.1 Phase I: picture fuzzy Z-AHP method 

In this section, we present the steps of the proposed Picture Fuzzy Z-AHP (PF Z-AHP) 

method in multi-expert decision environment.  

Step 1. Determine the main-criteria (j=1,2,…,m), sub-criteria and alternative 

(i=1,2,…,n) sets of the decision problem. 

Step 2. Define PF Z restriction and reliability scales for pairwise comparisons.  

Table 6.5 : PF Z restriction and reliability scales for pairwise comparisons. 

Linguistic Terms 

for Restriction 

Linguistic Terms 

for Reliability 
(𝝁, 𝜼, 𝝂) 

Absolutely High Importance (AHI) Absolutely High Reliable (AHR) (0.80, 0.05, 0.00) 

Very High Importance (VHI) Very High Reliable (VHR) (0.70, 0.10, 0.10) 

High Importance (HI) High Reliable (HR) (0.60, 0.15, 0.20) 

Slightly High Importance (SHI) Slightly High Reliable (SHR) (0.50, 0.20, 0.30) 

Equally Importance (EI) Medium Reliable (MR) (0.40, 0.20, 0.40) 

Slightly Low Importance (SLI) Slightly Low Reliable (SLR) (0.30, 0.20, 0.50) 

Low Importance (LI) Low Reliable (LR) (0.20, 0.15, 0.60) 

Very Low Importance (VLI) Very Low Reliable (VLR) (0.10, 0.10, 0.70) 

Absolutely Low Importance (ALI) Absolutely Low Reliable (ALR) (0.00, 0.05, 0.80) 

Step 3. Collect experts’ pairwise comparisons by applying a questionnaire using 

linguistic terms given in Table 6.5. Each of the three experts (k=1,2,3) presents his/her 

own pairwise comparison matrix as in Eqs. (6.12-6.13). 

𝑍̃𝑘 = [(𝐴̃, 𝑅̃)
𝑖𝑗
]
𝑛×𝑛

 k=1,2,3.                   (6.12) 

𝑍̃𝑘 =

[
 
 
 
 
 
 
 
(𝐴̃, 𝑅̃)

11
(𝐴̃, 𝑅̃)

12
… (𝐴̃, 𝑅̃)

1𝑛

(𝐴̃, 𝑅̃)
21

(𝐴̃, 𝑅̃)
22

… (𝐴̃, 𝑅̃)
2𝑛

⋮ ⋮ ⋱ ⋮
(𝐴̃, 𝑅̃)

𝑖1
(𝐴̃, 𝑅̃)

𝑖2
(𝐴̃, 𝑅̃)

𝑖𝑗
(𝐴̃, 𝑅̃)

𝑖𝑛

⋮ ⋮ ⋱ ⋮
(𝐴̃, 𝑅̃)

𝑛1
(𝐴̃, 𝑅̃)

𝑛2
… (𝐴̃, 𝑅̃)

𝑛𝑛]
 
 
 
 
 
 
 

 

i=1,2,…,n,   j=1,2,…,n                          (6.13) 

Step 4. Check the consistency ratio (CR) for each pairwise comparison matrix based 

on Saaty’s traditional consistency calculation procedure using the corresponding crisp 

values of linguistic terms for restriction functions. Corresponding crisp values of PF 

restriction values can be calculated by Eq. (6.14). If CR>0.10, then a reevaluation of 

the pairwise comparisons is required. 

𝐷𝑒𝑓𝐴̃ = {

11 ∗ 𝜇𝐴̃𝑃 + 4 ∗ 𝜂𝐴̃𝑃 − 11 ∗  𝜈𝐴̃𝑃     ,     𝑓𝑜𝑟 AHI, VHI, HI, SHI, EI.

|
1

11∗𝜈𝐴̃𝑃
+4∗𝜂𝐴̃𝑃

−11∗𝜇𝐴̃𝑃

|                  ,   𝑓𝑜𝑟 SLI, LI, VLI, ALI.
      (6.14) 
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If the pairwise comparison matrices are consistent, they are aggregated using 𝑃𝐹𝑊𝐴𝑀 

or 𝑃𝐹𝑊𝐺𝑀 operator given by Eq. (6.15) and Eq. (6.16), respectively. 

𝑃𝐹𝑊𝐴𝑀(𝐴̃𝑖𝑗) = 

{1 − ∏ (1 − 𝜇𝐴̃𝑖𝑗)
𝑤𝑘
,𝐾

𝑘=1 ∏ (𝜂𝐴̃𝑖𝑗)
𝑤𝑘

,𝐾
𝑘=1 ∏ (𝜈𝐴̃𝑖𝑗)

𝑤𝑘𝐾
𝑘=1 }               (6.15) 

𝑃𝐹𝑊𝐺𝑀(𝐴̃𝑖𝑗) = 

{∏ (𝜇𝐴̃𝑖𝑗)
𝑤𝑘𝐾

𝑘=1 , 1 − ∏ (1 − 𝜂𝐴̃𝑖𝑗)
𝑤𝑘
,𝐾

𝑘=1 1 − ∏ (1 − 𝜈𝐴̃𝑖𝑗)
𝑤𝑘𝐾

𝑘=1 }         (6.16)  

where 𝑤𝑘 is the weight of the kth expert, and 𝑤𝑘 ∈ [0,1]; ∑ 𝑤𝑘 = 1𝐾
𝑘=1 . 

Eqs. (6.15) and (6.16) are used for both the restriction function 𝐴̃𝑖𝑗 and the reliability 

function 𝑅̃𝑖𝑗. 

Step 5. Multiply PF restriction functions with the square root of PF reliability functions 

as given in Eq. (6.11). Thus, the aggregated PF Z-matrix is converted to a PF 

aggregated matrix. 

Alternatively, the corresponding values of PF reliability functions (𝑅̃𝑖𝑗) are calculated 

by Eq. (6.9). Then, each restriction value is multiplied by square root of defuzzified 

PF reliability values (𝑑𝑒𝑓𝑅̃𝑖𝑗) using Eq. (6.17). Thus, PF Z-values are transformed to 

PF values. 

𝑍′ = [𝑐𝑖𝑗]𝑛×𝑛 

=   

[
 
 
 
 
 
 
 
 
 
 
 (𝐴̃11 × √𝑑𝑒𝑓𝑅̃11) (𝐴̃12 × √𝑑𝑒𝑓𝑅̃12) … (𝐴̃1𝑛 × √𝑑𝑒𝑓𝑅̃1𝑛)

(𝐴̃21 × √𝑑𝑒𝑓𝑅̃12) (𝐴̃22 × √𝑑𝑒𝑓𝑅̃22) … (𝐴̃2𝑛 × √𝑑𝑒𝑓𝑅̃2𝑛)

⋮ ⋮ ⋱ ⋮

(𝐴̃𝑖1 × √𝑑𝑒𝑓𝑅̃1𝑖) (𝐴̃𝑖2 × √𝑑𝑒𝑓𝑅̃2𝑖) (𝐴̃𝑖𝑗 × √𝑑𝑒𝑓𝑅̃𝑖𝑗) (𝐴̃𝑖𝑛 × √𝑑𝑒𝑓𝑅̃𝑖𝑛)

⋮ ⋮ ⋱ ⋮

(𝐴̃𝑛1 × √𝑑𝑒𝑓𝑅̃1𝑛) (𝐴̃𝑛2 × √𝑑𝑒𝑓𝑅̃2𝑛) … (𝐴̃𝑛𝑛 × √𝑑𝑒𝑓𝑅̃𝑛𝑛)
]
 
 
 
 
 
 
 
 
 
 
 

 

                             (6.17) 

Step 6. Define the PF mean (𝑃𝐹𝑀̃) vector using 𝑃𝐹𝑊𝐴𝑀 or 𝑃𝐹𝑊𝐺𝑀 operator given 

by Eqs. (6.18-6.19), respectively. Thus, [𝑐𝑖𝑗]𝑛×𝑛 matrix is transformed to [𝑚𝑖𝑗]𝑛×1 

vector given by Eq. (6.20).  
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𝑃𝐹𝑊𝐴𝑀(𝑚̃𝑖1) = 

{1 − ∏ (1 − 𝜇𝑚̃𝑖𝑗
)
𝑤𝑗
,𝑛

𝑗=1 ∏ (𝜂𝑚̃𝑖𝑗
)
𝑤𝑗
,𝑛

𝑗=1 ∏ (𝜈𝑚̃𝑖𝑗
)
𝑤𝑗𝑛

𝑗=1 }               (6.18) 

𝑃𝐹𝑊𝐺𝑀(𝑚̃𝑖1) = 

{∏ (𝜇𝑚̃𝑖𝑗
)
𝑤𝑗𝑛

𝑗=1 , 1 − ∏ (1 − 𝜂𝑚̃𝑖𝑗
)
𝑤𝑗
,𝑛

𝑗=1 1 − ∏ (1 − 𝜈𝑚̃𝑖𝑗
)
𝑤𝑗𝑛

𝑗=1 }        (6.19) 

𝑃𝐹𝑀̃ = [

𝑚̃11

𝑚̃21

⋮
𝑚̃𝑖1

]

𝑛×1

                   (6.20) 

where 𝑚̃𝑖𝑗 = (𝜇𝑚̃𝑖𝑗
, 𝜂𝑚̃𝑖𝑗

, 𝜈𝑚̃𝑖𝑗
).  

At the end of this step, we have PF criteria weights. To calculate crisp criteria weights, 

each PF values of criteria can be converted to corresponding crisp value using Eq. 

(6.14). 

6.3.2 Phase II: picture fuzzy Z-TOPSIS method 

Step 7. Construct the PF Z-decision matrix (𝐷̃𝑃𝐹𝑍 = (𝑑̃𝑖𝑗)𝑛×𝑚) including criteria set 

𝐶 = {𝐶1, 𝐶2, 𝐶3, … , 𝐶𝑚}  and alternatives set 𝐴 = {𝐴1, 𝐴2, 𝐴3, … 𝐴𝑛} as in Eq. (6.21). 

𝐷̃𝑃𝐹𝑍 =

  
𝐴1
𝐴2
⋮
𝐴𝑛

  

𝐶1    𝐶2    … 𝐶𝑚

[
 
 
 
 
𝑑̃11 𝑑̃12 

𝑑̃21 𝑑̃22
 
… 𝑑̃1𝑚 

… 𝑑̃2𝑚

⋮ ⋮ 
𝑑̃𝑛1 𝑑̃𝑛2

𝑑̃𝑖𝑗  ⋮

… 𝑑̃𝑛𝑚]
 
 
 
 
            (6.21) 

where 𝑖 = 1,2,3…, n,  𝑗 = 1,2,3… ,𝑚 and; 

𝑑̃𝑖𝑗 is the experts’ PF Z-evaluations and given by Eq. (6.22). 

𝑑̃𝑖𝑗 = (𝐴̃, 𝑅̃) = ((𝜇
𝐴̃

𝐸𝑘(𝑥𝑖𝑗), 𝜂𝐴̃
𝐸𝑘(𝑥𝑖𝑗), 𝜈𝐴̃

𝐸𝑘(𝑥𝑖𝑗)), (𝜇𝑅̃
𝐸𝑘(𝑥𝑖𝑗), 𝜂𝑅̃

𝐸𝑘(𝑥𝑖𝑗), 𝜈𝑅̃
𝐸𝑘(𝑥𝑖𝑗)))       

                      (6.22) 

Step 8. Collect the evaluations from k experts using the PF Z-scales presented in Table 

6.5. For this purpose, a questionnaire consisting of appropriate questions are applied 

to each expert.  

Step 9. Aggregate the decision matrices 𝐷̃𝑃𝐹𝑍s of k experts using PFWAM or PFWGM 

operators given in Eqs. (6.15) and (6.16), respectively. Then, aggregated 𝐷̃𝑃𝐹𝑍  (𝐷̃𝑃𝐹𝑍
𝐴𝑔𝑔

) 

is obtained using Eqs. (6.23-6.24).  
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𝐷̃𝑃𝐹𝑍
𝐴𝑔𝑔

=

[
 
 
 
 
 
𝑎̃11 𝑎̃12 … 𝑎̃1𝑚
𝑎̃21 𝑎̃22 … 𝑎̃2𝑚
⋮ ⋮ ⋱ ⋮
𝑎̃𝑖1 𝑎̃𝑖2 𝑎̃𝑖𝑗 𝑎̃𝑖𝑚
⋮ ⋮ ⋱ ⋮
𝑎̃𝑛1 𝑎̃𝑛2 … 𝑎̃𝑛𝑚]

 
 
 
 
 

            (6.23) 

    𝑎̃𝑖𝑗 = (𝐴̃, 𝑅̃) = (𝑃𝐹𝑊𝐴𝑀𝑤(𝐴̃1
𝜆1 , 𝐴̃2

𝜆2 , … , 𝐴̃𝐾
𝜆𝐾), 𝑃𝐹𝑊𝐴𝑀𝑤(𝑅̃1

𝜆1 , 𝑅̃2
𝜆2 , … , 𝑅̃𝐾

𝜆𝐾))

                         (6.24) 

where 𝜆𝑘 is the weight of expert k, 𝜆𝑘 = (𝜆1, 𝜆2. . . . . . . , 𝜆𝐾); 𝜆𝑘 ∈ [0,1] and 

∑ 𝜆𝑘 = 1𝐾
𝑘=1 .  

Step 10. Convert the aggregated PF Z-decision matrix to the aggregated PF decision 

matrix using Definition (6.6) and thus obtain 𝐷̃𝑃𝐹
𝐴𝑔𝑔

. 

Step 11. Multiply 𝐷̃𝑃𝐹
𝐴𝑔𝑔

 by PF criteria weights (𝑊̃) using Eq. (6.2). Thus, the weighted 

aggregated PF decision matrix 𝐷̃𝑃𝐹𝑊
𝐴𝑔𝑔

 is obtained using Eqs. (6.2) and (6.25).  

  𝐷̃𝑃𝐹𝑊
𝐴𝑔𝑔

= 𝐷̃𝑃𝐹𝑖𝑗
𝐴𝑔𝑔

 ∗ 𝑤̃𝑗              (6.25) 

where 𝑤̃𝑗 = {〈x; 𝜇𝐴(𝑥), 𝜂𝐴(𝑥), 𝜈𝐴(𝑥)〉|𝑥𝑗 ∈ X} and 𝑊̃ = {𝑤̃1, 𝑤̃2, 𝑤̃3, … , 𝑤̃𝑗} is the 

weight vector, 0 ≤ 𝑤̃𝑗 ≤ 1 and  ∑ 𝑤̃𝑗
𝑚
𝑗=1 = 1. 

Step 12. Calculate the corresponding values of the 𝐷̃𝐷𝐹𝑊
𝐴𝑔𝑔

 for each alternative using 

defuzzification formula given by Eq. (6.14). Thus, 𝐷𝑒𝑓(𝐷̃𝑃𝐹𝑊
𝐴𝑔𝑔

) matrix is obtained. 

Step 13. Determine the PF positive ideal solution (𝑃𝐼𝑆𝑃𝐹) and PF negative ideal 

solution (𝑁𝐼𝑆𝑃𝐹) using the defuzzified values of 𝐷̃𝑃𝐹𝑊
𝐴𝑔𝑔

 (𝐷𝑒𝑓(𝐷̃𝑃𝐹𝑊
𝐴𝑔𝑔

)) and Eqs. (6.26-

6.29). 𝑃𝐼𝑆𝑃𝐹 and 𝑁𝐼𝑆𝑃𝐹 values are determined according to the maximum and 

minimum values of the 𝐷𝑒𝑓(𝐷̃𝑃𝐹𝑊
𝐴𝑔𝑔

), respectively.  

𝑃𝐼𝑆𝑃𝐹 = 𝑝𝑗 = (𝜇𝐴̃𝑃
∗ (𝑥𝑗), 𝜂𝐴̃𝑃

∗ (𝑥𝑗), 𝜈𝐴̃𝑃
∗ (𝑥𝑗))           (6.26) 

𝑁𝐼𝑆𝑃𝐹 = 𝑛𝑗 = (𝜇𝐴̃𝑃
− (𝑥𝑗), 𝜂𝐴̃𝑃

− (𝑥𝑗), 𝜈𝐴̃𝑃
− (𝑥𝑗))           (6.27) 

where 

𝑝𝑗 = {𝑚𝑎𝑥
1≤𝑖≤𝑛

((𝜇𝐴̃𝑃(𝑥𝑖𝑗), 𝜂𝐴̃𝑃(𝑥𝑖𝑗), 𝜈𝐴̃𝑃(𝑥𝑖𝑗)) |𝐶𝑗 ∈ 𝐶𝐵)} 

{𝑚𝑖𝑛
1≤𝑖≤𝑛

((𝜇𝐴̃𝑃(𝑥𝑖𝑗), 𝜂𝐴̃𝑃(𝑥𝑖𝑗), 𝜈𝐴̃𝑃(𝑥𝑖𝑗)) |𝐶𝑗 ∈ 𝐶𝐶)}                   (6.28) 
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𝑛𝑗 = {𝑚𝑖𝑛
1≤𝑖≤𝑛

((𝜇𝐴̃𝑃(𝑥𝑖𝑗), 𝜂𝐴̃𝑃(𝑥𝑖𝑗), 𝜈𝐴̃𝑃(𝑥𝑖𝑗)) |𝐶𝑗 ∈ 𝐶𝐵)}, 

{𝑚𝑎𝑥
1≤𝑖≤𝑛

((𝜇𝐴̃𝑃(𝑥𝑖𝑗), 𝜂𝐴̃𝑃(𝑥𝑖𝑗), 𝜈𝐴̃𝑃(𝑥𝑖𝑗)) |𝐶𝑗 ∈ 𝐶𝐶)}                   (6.29) 

where 𝐶𝐵 and 𝐶𝐶 represent the benefit and cost criteria, respectively.  

Step 14. Determine the positive and negative separation measures (𝑆∗ 𝑎𝑛𝑑 𝑆−) using 

Eqs. (6.30) and (6.31), respectively.  

𝑆𝑖
∗ = 

√
  
  
  
  
  

1

2𝑚
∑

[
 
 
 
 

(

 
 

(𝜇
𝐷̃𝑃𝐹𝑊
𝐴𝑔𝑔 (𝑥𝑖𝑗) − 𝜇𝑃𝐼𝑆𝑃𝐹(𝑥𝑖𝑗))

2

+(𝜂
𝐷̃𝑃𝐹𝑊
𝐴𝑔𝑔 (𝑥𝑖𝑗) − 𝜂𝑃𝐼𝑆𝑃𝐹(𝑥𝑖𝑗))

2

+ (𝜈
𝐷̃𝑃𝐹𝑊
𝐴𝑔𝑔 (𝑥𝑖𝑗) − 𝜈𝑃𝐼𝑆𝑃𝐹(𝑥𝑖𝑗))

2

)

 
 

]
 
 
 
 𝑚

𝑗=1

 

i=1,2,…,n                  (6.30) 

𝑆𝑖
− = 

√
  
  
  
  
  

1

2𝑚
∑

[
 
 
 
 

(

 
 

(𝜇
𝐷̃𝑃𝐹𝑊
𝐴𝑔𝑔 (𝑥𝑖𝑗) − 𝜇𝑁𝐼𝑆𝑃𝐹(𝑥𝑖𝑗))

2

+(𝜂
𝐷̃𝑃𝐹𝑊
𝐴𝑔𝑔 (𝑥𝑖𝑗) − 𝜂𝑁𝐼𝑆𝑃𝐹(𝑥𝑖𝑗))

2

+ (𝜈
𝐷̃𝑃𝐹𝑊
𝐴𝑔𝑔 (𝑥𝑖𝑗) − 𝜈𝑁𝐼𝑆𝑃𝐹(𝑥𝑖𝑗))

2

)

 
 

]
 
 
 
 𝑚

𝑗=1

 

i=1,2,…,n                   (6.31) 

Step 15. Rank the alternatives according to the closeness coefficient 𝐶𝑖
∗ of each 

alternative using Eq. (6.32). The highest 𝐶𝑖
∗ is referred to the best alternative. 

𝐶𝑖
∗ =

𝑆𝑖
−

𝑆𝑖
−+𝑆𝑖

∗                        (6.32) 

where 0 ≤ 𝐶𝑖
∗ ≤ 1. 

 Application 

In this section, the proposed PF Z-AHP&TOPSIS methodology is applied for the solar 

energy panel selection problem. The objective is to reveal the practicality and 

superiority of the proposed methodology applying for solar energy investment 

decision under the Z-number based picture fuzzy information. 
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6.4.1 Problem definition 

Solar energy is an important renewable energy source, and the demand for solar energy 

investments has been increasing because of environmental awareness and government 

policies. As of January 1, 2023, Turkey has made it mandatory for buildings to use 

renewable energy at a rate of at least 5% of their primary energy needs, within the 

concept of the "Buildings Producing Their Energy by Their Own". In addition, 

buildings with a construction area of 5000 m2 or more are required to be built within 

the concept of " Buildings Producing Their Energy by Their Own". Considering that 

investments in solar energy will increase gradually owing to this policy of Turkish 

government, in this study, an application that can help companies to choose a solar 

energy panel for their energy investments is presented. For this problem, three 

academicians (E1, E2 and E3) who are experts on solar panels in Turkey are 

interviewed for the evaluation of five alternative solar panels (A1, A2, …, A5) 

considering eight evaluation criteria (C1, C2, …C8) determined by a literature review. 

The alternative solar panels are given in Figure 6.4.  

 

Figure 6.4 : Solar energy panel alternatives. 

The information regarding the alternative solar panels is as follows (Bagher et al., 

2015). 

A1-Monocrystalline silicon (mono-Si) solar panel: Monocrystalline solar panel, also 

known as single crystal panels, are made from a single crystal of pure silicon divided 

into several wafers. It is qualified to provide big energy in small space. The efficiencies 

of monocrystalline solar cells are more than 20%. Their installation possibilities with 

high initial costs are challenging and they require maintenance at regular periodic 

intervals. Monocrystalline silicon solar panels are adversely affected if the panel is 

partially shaded or covered with snow. 

A2- Cadmium-telluride (CdTe) thin film solar panel: CdTe thin film solar panels use 

cadmium telluride in a thin film designed to produce electricity from sunlight. It has 
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low installation cost among the other crystalline type panels. It typically has a short 

warranty period and its efficiency varies about 7%. Thin-film solar panels are suitable 

for locations where heavy and labor-intensive installation of crystalline silicon is not 

possible. For example, narrow spaces, areas that require flexible installation instead of 

rigid panels. 

A3-Polycrystalline silicon (poly-Si) solar panel: Since the polycrystalline silicon panel 

consists of multiple crystals instead of a single silicon crystal, such panels are called 

polycrystalline. The efficiencies of polycrystalline solar cells are between 14% and 

17%. Polycrystalline solar panels generally have lower price than monocrystalline type 

panels. 

A4-Monocrystalline PERC solar panel: PERC solar panels are an evolution of the 

traditional monocrystalline cell. This technology adds a passivation layer to the back 

surface of the cell that improves its efficiency. PERC panels have an efficiency of over 

25% and they have relatively high initial costs.   

A5-Half cut monocrystalline solar panel: The half cut monocrystalline solar panel is 

divided into two parts, with the upper and lower parts working independently of each 

other. This structure provides less internal resistance, higher energy output and less 

efficiency loss in shading. Half-cut solar panels improve the overall output of solar 

energy. If there is frequent shading in the application area of the solar panels, half-cut 

solar panels perform much better. Its efficiency reaches up to about 20%. 

 

Figure 6.5 : Solar energy panel selection criteria. 

The criteria set is determined based on the literature search and shown in Figure 6.5. 

Criteria, criteria types and their references are given in Table 6.6.  
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Table 6.6 : Criteria, criteria types and their references. 

Criteria 

Criteria 

types: max 

(benefit) / 

min (cost) 

References 

Cost C1 min 
Sasikumar and Ayyappan (2019), Balo and Şağbanşua 

(2016), Rani et al., (2020) 

Quality C2 max 
Sasikumar and Ayyappan (2019), Sasikumar and 

Venkatachalam (2019) 

Peak power rating C3 max 
Sasikumar and Ayyappan (2019), Rani et al., (2020), 

Sasikumar and Venkatachalam (2019). 

Weight C4 min 

Sasikumar and Ayyappan (2019), Balo and Şağbanşua 

(2016), Rani et al., (2020), Sasikumar and 

Venkatachalam (2019) 

Peak efficiency C5 max 

Sasikumar and Ayyappan (2019); Balo and Şağbanşua 

(2016), Rani et al., (2020), Sasikumar and 

Venkatachalam (2019) 

Service 

characteristics 
C6 max 

Sasikumar and Ayyappan (2019), Balo and Şağbanşua 

(2016), Sasikumar and Venkatachalam (2019) 

Satisfaction level C7 max 
Sasikumar and Ayyappan (2019), Balo and Şağbanşua 

(2016) 

Temperature co-

efficiency 
C8 min 

Sasikumar and Ayyappan (2019), Balo and Şağbanşua 

(2016), Sasikumar and Venkatachalam (2019) 

C1-Cost: Solar panel costs include initial setup costs, regular maintenance costs, etc. 

The cost of a solar panel is affected by some features, such as the technical and physical 

characteristics of the panel, the material quality, and the maintenance period. 

C2-Quality: The quality of the solar panel depends on the time it takes to use the 

energy it produces and the suitability of the materials used in its construction. 

C3-Peak power rating: The peak power rating of a solar panel system refers to the 

maximum amount of electricity that can be produced under standard conditions (Rani 

et al., 2020).  

C4-Weight: The weight of a solar panel is quite important when planning a solar 

energy system investment. Heavy solar panels make installation quite difficult, and the 

load that can be carried by the roof of a house, office, etc. is limited. A solar panel with 

a lower weight is better (Sasikumar and Ayyappan, 2019).  

C5-Peak efficiency: The efficiency of a solar panel is the panel’s conversion rate of 

the energy from the sun into electricity. The efficiency of solar panels is generally 

around 15-24% on average. The solar panel's high efficiency means that it produces 

more power. 

C6-Service characteristic: Service characteristics consist of warranty time, ease of 

maintenance and repair, etc. There are two different types of guarantees for solar 
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panels: the material guarantee and the performance guarantee. Solar energy systems 

require regular maintenance and repair processes. A solar panel's easy maintenance 

and repair process provides a fast and effective elimination process of possible 

malfunctions. 

C7-Satisfaction level: The satisfaction level is important for a solar energy system 

investment. It is beneficial to have an idea of whether the clients are satisfied or not 

with the related product and its customer service. 

C8-Temperature co-efficiency: Solar panels heat up because they convert some of the 

light they receive from the sun into energy and some of it into heat. The heating of 

solar panels reduces energy efficiency and causes a decrease in performance. 

Therefore, a solar panel with a low temperature coefficient is better. 

6.4.2 Problem data and solution 

In Step 1, the problem is defined with the possible alternatives and criteria as given in 

Section 6.4.1. In Steps 2-3, pairwise comparisons for weighing the criteria are 

collected from experts via questionnaires, and three experts use PF Z-restriction and 

reliability scales in Table 6.5. The obtained pairwise comparisons are presented in 

Tables 6.7-6.9. 

Table 6.7 : E1’s pairwise comparisons for criteria. 

  C1 C2 C3 C4 

C1 (EI, AHR) (SHI, HR) (SLI, VLR) (HI, VHR) 

C2 (SLI, HR) (EI, AHR) (LI, LR) (SHI, LR) 

C3 (SHI, VLR) (HI, LR) (EI, AHR) (HI, AHR) 

C4 (LI, VHR) (SLI, LR) (LI, AHR) (EI, AHR) 

C5 (SLI, SLR) (SHI, HR) (SLI, VHR) (SHI, HR) 

C6 (HI, VHR) (VHI, LR) (SHI, VHR) (HI, VLR) 

C7 (VHI, HR) (AHI, VLR) (SHI, LR) (VHI, VHR) 

C8 (VLI, HR) (SLI, VHR) (LI, LR) (SLI, LR) 

 C5 C6 C7 C8 

C1 (SHI, SLR) (LI, VHR) (VLI, HR) (VHI, HR) 

C2 (SLI, HR) (VLI, LR) (ALI, VLR) (SHI, VHR) 

C3 (SHI, VHR) (SLI, VHR) (SLI, LR) (HI, LR) 

C4 (SLI, HR) (LI, VLR) (VLI, VHR) (SHI, LR) 

C5 (EI, AHR) (VLI, HR) (LI, HR) (HI, SHR) 

C6 (VHI, HR) (EI, AHR) (SLI, LR) (VHI, HR) 

C7 (HI, HR) (SHI, LR) (EI, AHR) (AHI, VHR) 

C8 (LI, SHR) (VLI, HR) (ALI, VHR) (EI, AHR) 

CR=0.097 

 



128 

Table 6.8 : E2’s pairwise comparisons for criteria. 

 C1 C2 C3 C4 

C1 (EI, AHR) (HI, SHR) (SLI, LR) (SHI, HR) 

C2 (LI, SHR) (EI, AHR) (SLI, SHR) (SLI, MR) 

C3 (SHI, LR) (SHI, SHR) (EI, AHR) (SHI, VHR) 

C4 (SLI, HR) (SHI, MR) (SLI, VHR) (EI, AHR) 

C5 (LI, AHR) (SLI, LR) (VLI, HR) (SLI, VHR) 

C6 (VHI, HR) (HI, SHR) (SHI, VHR) (HI, VLR) 

C7 (SHI, HR) (VHI, LR) (HI, VHR) (HI, AHR) 

C8 (LI, SHR) (SLI, HR) (ALI, VHR) (SLI, HR) 

 C5 C6 C7 C8 

C1 (HI, AHR) (VLI, HR) (SLI, HR) (HI, SHR) 

C2 (SHI, LR) (LI, SHR) (VLI, LR) (SHI, HR) 

C3 (VHI, HR) (SLI, VHR) (LI, VHR) (AHI, VHR) 

C4 (SHI, VHR) (LI, VLR) (LI, AHR) (SHI, HR) 

C5 (EI, AHR) (ALI, HR) (ALI, HR) (SHI, MR) 

C6 (AHI, HR) (EI, AHR) (SHI, LR) (VHI, HR) 

C7 (AHI, HR) (SLI, LR) (EI, AHR) (AHI, VHR) 

C8 (SLI, MR) (VLI, HR) (ALI, VHR) (EI, AHR) 

CR=0.099 

Table 6.9 : E3’s pairwise comparisons for criteria. 

 C1 C2 C3 C4 

C1 (EI, AHR) (SLI, VLR) (LI, LR) (HI, VHR) 

C2 (SHI, VLR) (EI, AHR) (SHI, HR) (AHI, HR) 

C3 (HI, LR) (SLI, HR) (EI, AHR) (VHI, AHR) 

C4 (LI, VHR) (ALI, HR) (VLI, AHR) (EI, AHR) 

C5 (VLI, SHR) (ALI, HR) (ALI, HR) (SLI, LR) 

C6 (SHI, HR) (SLI, VLR) (SLI, MR) (AHI, VHR) 

C7 (SLI, HR) (LI, LR) (SLI, SLR) (SHI, HR) 

C8 (SLI, MR) (ALI, HR) (VLI, AHR) (SHI, LR) 

 C5 C6 C7 C8 

C1 (VHI, SHR) (SLI, HR) (SHI, HR) (SHI, MR) 

C2 (AHI, HR) (SHI, VLR) (HI, LR) (AHI, HR) 

C3 (AHI, HR) (SHI, MR) (SHI, SLR) (VHI, AHR) 

C4 (SHI, LR) (ALI, VHR) (SLI, HR) (SLI, LR) 

C5 (EI, AHR) (VLI, AHR) (LI, VHR) (SLI, VLR) 

C6 (VHI, AHR) (EI, AHR) (SHI, MR) (HI, HR) 

C7 (HI, VHR) (SLI, MR) (EI, AHR) (SHI, HR) 

C8 (SHI, VLR) (LI, HR) (SLI, HR) (EI, AHR) 

CR=0.095 

To compare C1 and C2, the question in the questionnaire is formed as follows: 

For restriction (𝐴̃): When considering solar energy panel selection, how important is 

the cost criterion (C1) compared to the quality criterion (C2)? 

For reliability (𝑅̃): How sure are you about your evaluation? 

Expert 3 gives his/her opinion for C1 compared to C2 as “slightly low importance” 

and “very low reliable” for restriction and reliability functions, respectively. Thus, this 

evaluation is given in the following and indicated in bold in Table 6.9. 
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𝑍̃𝑃𝐹(𝐴̃, 𝑅̃) = (𝑆𝐿𝐼, 𝑉𝐿𝑅)           

𝑍̃𝑃𝐹(𝐴̃, 𝑅̃) = ((0.30, 0.20, 0.50), (0.10, 0.10, 0.70))          

In Step 4, for all pairwise comparison matrices, PF restriction values are defuzzified 

using Eq. (6.14). Then, CR values of pairwise comparison matrices are calculated 

using defuzzified restriction values and shown in Tables 6.7-6.9. All CR values are in 

the consistency limits. Then, PF Z-pairwise comparison matrices are aggregated using 

𝑃𝐹𝑊𝐺𝑀 operator given in Eq. (6.16).  

In Step 5, the aggregated PF Z-pairwise comparison matrix obtained in Step 4 is 

converted to PF pairwise comparison matrix using Eq. (6.11). The aggregated PF 

pairwise comparison matrix is presented in Table 6.10. 

Table 6.10 : Aggregated PF pairwise comparison matrix. 

 C1 C2 C3 C4 

C1 (0.36, 0.22, 0.40) (0.25, 0.25, 0.51) (0.10, 0.24, 0.72) (0.46, 0.22, 0.29) 

C2 (0.17, 0.25, 0.61) (0.36, 0.22, 0.40) (0.19, 0.25, 0.60) (0.30, 0.23, 0.46) 

C3 (0.21, 0.24, 0.56) (0.28, 0.25, 0.49) (0.36, 0.22, 0.40) (0.52, 0.18, 0.22) 

C4 (0.19, 0.22, 0.60) (0.00, 0.23, 0.69) (0.16, 0.18, 0.62) (0.36, 0.22, 0.40) 

C5 (0.13, 0.22, 0.67) (0.00, 0.22, 0.67) (0.00, 0.18, 0.72) (0.24, 0.26, 0.55) 

C6 (0.47, 0.21, 0.27) (0.23, 0.22, 0.53) (0.32, 0.26, 0.45) (0.29, 0.16, 0.43) 

C7 (0.37, 0.23, 0.39) (0.19, 0.16, 0.57) (0.26, 0.25, 0.51) (0.50, 0.19, 0.25) 

C8 (0.13, 0.23, 0.67) (0.00, 0.21, 0.66) (0.00, 0.15, 0.76) (0.19, 0.26, 0.60) 

 C5 C6 C7 C8 

C1 (0.42, 0.22, 0.33) (0.14, 0.21, 0.64) (0.19, 0.23, 0.58) (0.42, 0.23, 0.34) 

C2 (0.32, 0.22, 0.44) (0.10, 0.22, 0.71) (0.00, 0.16, 0.78) (0.46, 0.21, 0.28) 

C3 (0.52, 0.18, 0.22) (0.27, 0.26, 0.50) (0.18, 0.25, 0.61) (0.48, 0.15, 0.24) 

C4 (0.28, 0.26, 0.49) (0.00, 0.16, 0.79) (0.15, 0.19, 0.63) (0.23, 0.26, 0.56) 

C5 (0.36, 0.22, 0.40) (0.00, 0.14, 0.76) (0.00, 0.18, 0.71) (0.23, 0.26, 0.54) 

C6 (0.59, 0.14, 0.13) (0.36, 0.22, 0.40) (0.21, 0.27, 0.58) (0.52, 0.19, 0.23) 

C7 (0.52, 0.18, 0.21) (0.18, 0.27, 0.62) (0.36, 0.22, 0.40) (0.56, 0.16, 0.17) 

C8 (0.16, 0.26, 0.63) (0.10, 0.19, 0.70) (0.00, 0.16, 0.75) (0.36, 0.22, 0.40) 

 

In Step 6, 𝑃𝐹𝑀̃ vector is calculated using 𝑃𝐹𝑊𝐺𝑀 operator given in Eq. (6.19). Thus, 

we have PF criteria weights given in Table 6.11.  

Table 6.11 : PF criteria weights. 

Criteria Weights 

C1 (0.26, 0.05, 0.27) 

C2 (0.13, 0.05, 0.34) 

C3 (0.33, 0.05, 0.20) 

C4 (0.07, 0.05, 0.38) 

C5 (0.02, 0.04, 0.42) 

C6 (0.35, 0.04, 0.17) 

C7 (0.34, 0.04, 0.19) 

C8 (0.02, 0.05, 0.44) 
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In Steps 7-8, three experts evaluate five alternatives according to eight criteria using 

Table 6.5. Thus, we have PF Z-decision matrices collected from three experts, which 

are presented in Tables 6.12-6.14. 

Table 6.12 : E1’s PF Z-decision matrix. 

  C1 C2 C3 C4 C5 C6 C7 C8 

A1 (LI, LR) (SHI, HR) (HI, SHR) (HI, VHR) (SHI, LR) (LI, SLR) (AHI, SHR) (SLI, HR) 
A2 (HI, VHR) (LI, MR) (SHI, HR) (SLI, MR) (VLI, HR) (HI, VHR) (SLI, HR) (HI, VHR) 

A3 (VLI, VLR) (VLI, HR) (HI, AHR) (VHI, HR) (LI, SLR) (VHI, VHR) (VHI, HR) (VLI, HR) 

A4 (SHI, LR) (HI, SHR) (SLI, LR) (LI, SLR) (SHI, HR) (HI, SHR) (HI, VHR) (LI, SHR) 
A5 (HI, AHR) (VHI, HR) (LI, VHR) (SLI, HR) (HI, HR) (LI, VLR) (HI, VHR) (VHI, HR) 

Table 6.13 : E2’s PF Z-decision matrix. 

  C1 C2 C3 C4 C5 C6 C7 C8 

A1 (SLI, HR) (HI, VHR) (HI, HR) (VHI, AHR) (SLI, SLR) (VLI, VHR) (VHI, SHR) (VLI, AHR) 

A2 (HI, AHR) (VLI, HR) (VHI, VHR) (LI, VLR) (LI, HR) (SHI, HR) (LI, HR) (VHI, MR) 

A3 (VHI, HR) (LI, LR) (SHI, LR) (SHI, LR) (VLI, HR) (HI, HR) (AHI, VHR) (LI, VHR) 
A4 (VLI, LR) (SHI, HR) (VLI, SLR) (SLI, LR) (HI, SHR) (VHI, AHR) (SLI, LR) (VLI, HR) 

A5 (SHI, SLR) (HI, AHR) (SLI, HR) (LI, HR) (VHI, HR) (VLI, HR) (HI, HR) (HI, MR) 

Table 6.14 : E3’s PF Z-decision matrix. 

  C1 C2 C3 C4 C5 C6 C7 C8 

A1 (SHI, VLR) (HI, HR) (SHI, LR) (HI, HR) (HI, AHR) (SLI, VHR) (SHI, HR) (LI, HR) 

A2 (VHI, HR) (SLI, VLR) (HI, VHR) (SHI, VHR) (ALI, HR) (VHI, HR) (VLI, LR) (SLI, SHR) 
A3 (HI, VHR) (SHI, LR) (SLI, LR) (HI, HR) (SLI, SHR) (HI, VHR) (LI, VHR) (SLI, LR) 

A4 (LI, LR) (VHI, HR) (LI, VHR) (VLI, LR) (VHI, VHR) (LI, LR) (VLI, HR) (ALI, HR) 

A5 (VHI, HR) (HI, SHR) (VLI, SHR) (VLI, SLR) (SHI, MR) (SLI, MR) (VHI, HR) (SHI, SHR) 

In Step 9, we aggregate three decision matrices using PFWGM operator by Eq. (6.16). 

In Step 10, the aggregated PF decision matrix is derived from the aggregated PF Z-

decision matrix utilizing Eq. (6.11). Thus, we have 𝐷̃𝑃𝐹
𝐴𝑔𝑔

 matrix shown in Table 6.15. 

Table 6.15 : Aggregated PF decision matrix 𝐷̃𝑃𝐹
𝐴𝑔𝑔

. 

 C1 C2 C3 C4 

A1 (0.15, 0.24, 0.65) (0.45, 0.22, 0.30) (0.35, 0.24, 0.40) (0.53, 0.18, 0.21) 

A2 (0.53, 0.18, 0.21) (0.10, 0.22, 0.72) (0.48, 0.20, 0.26) (0.17, 0.24, 0.62) 

A3 (0.20, 0.17, 0.54) (0.12, 0.22, 0.69) (0.25, 0.23, 0.52) (0.38, 0.22, 0.37) 

A4 (0.10, 0.22, 0.72) (0.45, 0.23, 0.30) (0.11, 0.22, 0.71) (0.09, 0.23, 0.74) 

A5 (0.43, 0.21, 0.32) (0.50, 0.19, 0.24) (0.14, 0.22, 0.65) (0.13, 0.23, 0.68) 

 C5 C6 C7 C8 

A1 (0.27, 0.24, 0.50) (0.13, 0.21, 0.66) (0.48, 0.20, 0.27) (0.15, 0.20, 0.64) 

A2 (0.00, 0.17, 0.74) (0.47, 0.21, 0.27) (0.12, 0.22, 0.69) (0.36, 0.23, 0.40) 

A3 (0.12, 0.23, 0.68) (0.52, 0.19, 0.23) (0.39, 0.16, 0.34) (0.12, 0.21, 0.68) 

A4 (0.46, 0.22, 0.29) (0.29, 0.19, 0.47) (0.17, 0.21, 0.60) (0.00, 0.18, 0.75) 

A5 (0.43, 0.23, 0.32) (0.10, 0.22, 0.72) (0.50, 0.19, 0.24) (0.42, 0.23, 0.34) 

 

In Step 11, we multiply 𝐷̃𝑃𝐹
𝐴𝑔𝑔

 with PF criteria weights given in Table 6.11 obtained by 

PF Z-AHP method. Then, we calculate the weighted aggregated PF decision matrix 

𝐷̃𝑃𝐹𝑊
𝐴𝑔𝑔

 using Eqs. (6.2) and (6.25). Table 6.16 shows the weighted aggregated PF 

decision matrix 𝐷̃𝑃𝐹𝑊
𝐴𝑔𝑔

. 
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Table 6.16 : Weighted aggregated PF decision matrix 𝐷̃𝑃𝐹𝑊
𝐴𝑔𝑔

. 

 C1 C2 C3 C4 

A1 (0.04, 0.28, 0.74) (0.06, 0.26, 0.54) (0.12, 0.28, 0.52) (0.04, 0.22, 0.51) 

A2 (0.14, 0.22, 0.42) (0.01, 0.26, 0.81) (0.16, 0.24, 0.40) (0.01, 0.28, 0.76) 

A3 (0.05, 0.21, 0.66) (0.02, 0.26, 0.79) (0.08, 0.27, 0.61) (0.03, 0.25, 0.61) 

A4 (0.03, 0.26, 0.80) (0.06, 0.26, 0.54) (0.04, 0.26, 0.76) (0.01, 0.26, 0.84) 

A5 (0.11, 0.25, 0.50) (0.06, 0.23, 0.50) (0.05, 0.26, 0.72) (0.01, 0.26, 0.80) 

𝑃𝐼𝑆𝑃𝐹 (0.03, 0.26, 0.80) (0.06, 0.23, 0.50) (0.16, 0.24, 0.40) (0.01, 0.26, 0.84) 

𝑁𝐼𝑆𝑃𝐹 (0.14, 0.22, 0.42) (0.01, 0.26, 0.81) (0.04, 0.26, 0.76) (0.04, 0.22, 0.51) 

 C5 C6 C7 C8 

A1 (0.01, 0.28, 0.71) (0.05, 0.25, 0.72) (0.16, 0.24, 0.4) (0.00, 0.24, 0.80) 

A2 (0.00, 0.21, 0.85) (0.17, 0.25, 0.4) (0.04, 0.25, 0.75) (0.01, 0.26, 0.66) 

A3 (0.00, 0.27, 0.82) (0.18, 0.22, 0.36) (0.13, 0.19, 0.46) (0.00, 0.25, 0.82) 

A4 (0.01, 0.25, 0.59) (0.1, 0.23, 0.56) (0.06, 0.25, 0.67) (0.00, 0.22, 0.86) 

A5 (0.01, 0.26, 0.61) (0.03, 0.25, 0.76) (0.17, 0.23, 0.38) (0.01, 0.27, 0.63) 

𝑃𝐼𝑆𝑃𝐹 (0.01, 0.25, 0.59) (0.18, 0.22, 0.36) (0.17, 0.23, 0.38) (0.00, 0.22, 0.86) 

𝑁𝐼𝑆𝑃𝐹 (0.00, 0.21, 0.85) (0.03, 0.25, 0.76) (0.04, 0.25, 0.75) (0.01, 0.27, 0.63) 

In Steps 12-13, firstly, we defuzzify 𝐷̃𝑃𝐹𝑊
𝐴𝑔𝑔

 matrix using Eq. (6.14). Then, we determine 

𝑃𝐼𝑆𝑃𝐹 and 𝑁𝐼𝑆𝑃𝐹 values according to defuzzified values and using Eqs. (6.26-6.29). If 

the criterion is the benefit type, its 𝑃𝐼𝑆𝑃𝐹 and 𝑁𝐼𝑆𝑃𝐹 values are the maximum and 

minimum values of the related criterion in 𝐷𝑒𝑓(𝐷̃𝑃𝐹𝑊
𝐴𝑔𝑔

) matrix, respectively. If the 

criterion is the cost type, similar rule is valid. In Table 6.16, 𝑃𝐼𝑆𝑃𝐹 and 𝑁𝐼𝑆𝑃𝐹 values 

are given. 

In Step 14, we determine 𝑆∗ and 𝑆− values for each alternative by Eqs. (6.30) and 

(6.31). In Step 15, we calculate 𝐶𝑖
∗ of alternatives by Eq. (6.32). 𝑆∗, 𝑆−and 𝐶𝑖

∗ values 

of alternatives are presented in Table 6.17. Then, we rank the alternatives according to 

𝐶𝑖
∗ values.  

Table 6.17 : 𝑆∗, 𝑆−, 𝐶𝑖
∗ values and ranking of alternatives. 

 𝑆∗ 𝑆− 𝐶𝑖
∗ Ranking 

A1 0.138 0.167 0.548 3 

A2 0.181 0.151 0.454 5 

A3 0.132 0.163 0.551 2 

A4 0.135 0.181 0.573 1 

A5 0.169 0.160 0.486 4 

According to the obtained results presented in Table 6.17, A4-Monocrystalline PERC 

solar panel is the best alternative among the five solar panels. It has the highest 𝐶𝑖
∗ 

value with the value of 0.573. The overall ranking is determined as A4-

Monocrystalline PERC>A3-Polycrystalline silicon (poly-Si)>A1-Monocrystalline 

silicon (mono-Si)>A5-Half cut monocrystalline>A2-Cadmium telluride thin film.  
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Although the proposed methodology is applied for solar energy panel selection, the 

approach allows for modifying criteria and alternative sets and gives an opportunity to 

apply for variety of different real life problems such as personnel selection, 

performance evaluation and supplier selection except solar energy panel selection. In 

such real-life problems involving subjective intense evaluation, the decision makers’ 

complex mindset can be better modeled using the combination of picture fuzzy sets 

and Z-numbers, which allow to take 3D fuzzy reliability into account with a separate 

function in addition to 3D fuzzy restriction. 

 Comparative Analysis 

In order to verify the suggested method and analyze the obtained results, the proposed 

methodology has been compared with the results of PF-TOPSIS and Z-TOPSIS 

methods. PF-TOPSIS method does not have the ability to represent the reliability 

degrees of decision makers' judgments expressed by 3D linguistic terms. Therefore, in 

the first analysis, in order to analyze the computational response generated by 

reliability function of the PF Z-numbers, the proposed methodology is compared with 

the PF-TOPSIS method by ignoring the reliability information based on the same 

criteria weights. For this purpose, the same linguistic scale and experts’ data are used 

to eliminate all data effects. The main purpose of the first analysis is to observe only 

the differences caused by the reliability component. In the second analysis, in order to 

analyze the effects of PFSs in our proposed method, the Z-AHP & Z-TOPSIS 

methodology is implemented by using ordinary fuzzy Z-numbers. The Z-AHP & Z-

TOPSIS methodology models human judgments using only ordinary triangular fuzzy 

membership functions of restriction and reliability components. This methodology 

represents the human thoughts without non-membership and neutral degrees when 

compared to our proposed PF Z-AHP&TOPSIS methodology. Thus, it was intended 

to demonstrate the differences between decision-makers' judgments represented by PF 

Z-numbers and ordinary fuzzy Z-numbers. For this purpose, criteria weights are 

calculated with the Z-AHP method developed by Tüysüz and Kahraman (2023). 

Comparison results of both PF Z-AHP & PF-TOPSIS methodology and Z-AHP & Z-

TOPSIS methodology are presented in Table 6.18.  
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Table 6.18 : Comparison of ranking results. 

Alternatives 
Proposed 

method 

PF Z-AHP  

PF-TOPSIS 

Z-AHP  

Z-TOPSIS 

A1 3 1 2 

A2 5 5 5 

A3 2 3 3 

A4 1 2 1 

A5 4 4 4 

As demonstrated in Table 6.18, although the results of the proposed method are quite 

similar to the results of the Z-AHP & Z-TOPSIS methodology, the ranking obtained 

by the PF Z-AHP & PF-TOPSIS methodology is quite different. While the alternative 

A4 has been found as the best alternative in the proposed method and in the Z-AHP & 

Z-TOPSIS methodology, it has been ranked second in the PF Z-AHP & PF-TOPSIS 

methodology, which does not include reliability information. In addition, PF-TOPSIS 

method made it possible to easily distinguish the effect of Z-numbers by obtaining the 

alternative A1 as the best choice, unlike the other two methods.  

The results of the proposed PF Z-AHP&TOPSIS methodology show that the best 

alternative has not changed when compared to the results of the Z-AHP & Z-TOPSIS 

methodology. The main difference in the results is that the overall ranking has slightly 

changed. This situation may have resulted from the experts’ preferences in this 

application, and the fact that picture fuzzy sets have the effect of repositioning for 

some alternatives proves the importance of integrating picture fuzzy sets with Z-

numbers. It can be interpreted from these comparisons that the proposed methodology 

provides a reliable decision process based on picture fuzzy information for experts. 

 Sensitivity Analysis 

In order to measure the robustness of the proposed methodology, we perform a 

sensitivity analysis based on defuzzification of reliability functions in order to observe 

the importance of reliability component in picture fuzzy Z-data. In the application 

section, all calculations in this conversion process are realized without defuzzification. 

Then, PF Z-AHP&TOPSIS methodology have been resolved based on defuzzification 

of reliability functions. The obtained alternative rankings are given in Table 6.19. 
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Table 6.19 : 𝑆∗, 𝑆−, 𝐶𝑖
∗ values and ranking of alternatives with defuzzification. 

 𝑆∗ 𝑆− 𝐶𝑖
∗ Ranking 

A1 0.159 0.217 0.577 2 

A2 0.224 0.172 0.434 5 

A3 0.163 0.191 0.539 3 

A4 0.155 0.222 0.588 1 

A5 0.204 0.200 0.496 4 

When Tables 6.17 and 6.19 are analyzed together, it can be deduced that the best 

alternative A4 and the worst alternative A2 have the same ranks among five alternative 

solar panels. Only the second and third alternatives (A1 and A3) have replaced in the 

overall ranking. This result supports the strength of the proposed method. 

Another sensitivity analysis has been performed by taking equal criteria weights. In 

this analysis, linguistic evaluations in the PF Z-AHP method have been accepted as 

“Equal Importance (EI), Medium Reliable (MR)” and the obtained PF criteria weights 

have been integrated into the PF Z-TOPSIS method. Then, the overall ranking has 

been obtained as A4>A1>A5>A3>A2. This result shows that the place of the first and 

the last alternatives in the ranking has not changed. 

The other sensitivity analysis has been conducted to investigate the effects of 

aggregation operator types on the results of the proposed methodology. In our 

application, PFWGM operator is used in aggregation of pairwise and decision matrices 

of experts for both PF Z-AHP and PF Z-TOPSIS methods. For sensitivity analysis, 

PFWAM operator has been used to aggregate pairwise comparisons of three experts 

in the PF Z-AHP method, and the new criteria weights have been obtained. Then, in 

the PF Z-TOPSIS method, the decision matrices of three experts have been aggregated 

using PFWAM operator, and the aggregated decision matrix has been weighted using 

the new criteria weights obtained in the PF Z-AHP method aggregated by PFWAM 

operator. All models of PF Z-TOPSIS method have been used and four rankings have 

been obtained. In all cases in this analysis, PF Z-values have been converted to PF 

values without defuzzification. The obtained criteria weights and ranking results based 

on the utilization of the mentioned two aggregation operators are shown in Tables 6.20 

and 6.21.  

It can be concluded from Table 6.20 that some criteria weights remain approximately 

same while some fairly change. For this reason, it can be interpreted that the 

aggregation operators have an effect on the criteria weights in the PF Z-AHP method. 
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Table 6.20 : Criteria weights based on aggregation operators. 

 PF Z-AHP method 

 
PFWGM operator (obtained 

in application section) 

PFWAM operator 

C1 (0.26, 0.05, 0.27) (0.29, 0.05, 0.24) 

C2 (0.13, 0.05, 0.34) (0.27, 0.04, 0.24) 

C3 (0.33, 0.05, 0.20) (0.36, 0.05, 0.16) 

C4 (0.07, 0.05, 0.38) (0.20, 0.04, 0.33) 

C5 (0.02, 0.04, 0.42) (0.17, 0.04, 0.36) 

C6 (0.35, 0.04, 0.17) (0.39, 0.04, 0.13) 

C7 (0.34, 0.04, 0.19) (0.38, 0.04, 0.13) 

C8 (0.02, 0.05, 0.44) (0.15, 0.04, 0.40) 

In addition, in order to understand that the effects of the changes in criteria weights 

are significant or not, it is necessary to investigate if the ranking results of the 

alternatives are affected by this change. The obtained ranking results are given in Table 

6.21 and Figure 6.6.  

Table 6.21 : 𝐶𝑖
∗values and alternative rankings based on aggregation operators. 

 PF Z-AHP: PFWGM  PF Z-AHP: PFWAM 

 PF Z-TOPSIS: 

PFWGM (obtained in 

application section) 

PF Z-TOPSIS: 

PFWAM 
 

PF Z-TOPSIS: 

PFWGM 

PF Z-TOPSIS: 

PFWAM 

 𝐶𝑖
∗ Ranking 𝐶𝑖

∗ Ranking  𝐶𝑖
∗ Ranking 𝐶𝑖

∗ Ranking 

A1 0.548 3 0.566 3 A1 0.549 2 0.566 3 

A2 0.454 5 0.412 5 A2 0.447 5 0.405 5 

A3 0.551 2 0.581 2 A3 0.538 3 0.569 2 

A4 0.573 1 0.612 1 A4 0.582 1 0.618 1 

A5 0.486 4 0.477 4 A5 0.500 4 0.491 4 

 

 

Figure 6.6 : Rankings of alternatives according to aggregation operators. 
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It can be clearly concluded from Table 6.21 that A4-Monocrystalline PERC is the best 

and A2-Cadmium telluride thin film is the worst solar panels in four cases. In addition, 

when the PFWAM operator is used in the PF Z-AHP method and the PFWGM operator 

in PF Z-TOPSIS method, minor changes have been obtained in the ranking results. 

These results demonstrate that the decision process is not sensitive enough to changes 

in the types of aggregation operators to affect the managerial decisions. In addition, 

although the use of the PFWAM operator in calculating the criteria weights has caused 

a slightly significant change in the criteria weights, it had little effect on the ranking 

results. Therefore, it can be commented that the robustness of the proposed 

methodology has been observed by sensitivity analysis.  

 Conclusions 

The proposed methodology has the advantages of decision making with hesitancy and 

refusal parameters of picture fuzzy sets and reliability consideration of linguistic 

judgments of Z-numbers. This paper presented a novel hybrid methodology built on 

AHP and TOPSIS methods based on PF Z-numbers: PF Z-AHP method for 

determining the criteria weights and PF Z-TOPSIS method for selecting the best 

alternative. The proposed methodology successfully allowed specifying not only 3D 

picture fuzzy restriction functions but also their 3D picture fuzzy reliability functions. 

The methodology produced privileged decision results, which can be beneficial for 

experts who want to model 3D preferences under the favorable circumstances of Z-

numbers. This study presented formulations to be used in converting PF numbers to 

crisp numbers and PF Z-numbers to PF numbers. The methodology also allowed to 

continue to operations with picture fuzzy sets without using any defuzzification. 

In comparative analysis, the effects of ignoring reliability information and PF 

information on the results have been investigated by applying PF-TOPSIS and Z-

TOPSIS, respectively. Ignoring the reliability information (PF-TOPSIS) significantly 

changed the results by placing the third alternative in the proposed method at the first 

rank while eliminating the PF information (Z-TOPSIS) has not changed the best and 

worst alternatives but slightly changed the overall ranking. These results summarize 

that both approaches using reliability information (PF Z-AHP&TOPSIS and Z-

AHP&TOPSIS) produced similar results. Besides, quite different results have been 



137 

obtained in the approach ignoring the reliability degrees (PF-TOPSIS). It can be 

interpreted that more trustworthy results can be obtained with the approaches 

consisting of fuzzy reliabilities in addition to fuzzy restrictions. 

A sensitivity analysis conducted on a solar energy panel selection showed the 

robustness of the given decisions by the proposed methodology. It also showed that 

the picture fuzzy aggregation operators slightly changed the criteria weights but did 

not change the managerial decisions on alternative ranking. The monocrystalline 

PERC solar panel has generally been found as the best alternative, according to the 

results of both comparison analysis and sensitivity analysis. The reliability degrees of 

experts’ 3D preferences created a substantial evaluation framework in obtaining these 

results. 

As well as the proposed methodology provides a reliable decision support tool for 

decision makers, it has a quite mathematical complexity with the combination of 

picture fuzzy sets and Z-numbers. As in most MCDM approaches extended by 

different type of fuzzy sets, problem solving may become difficult when the number 

of criteria and alternatives increases. Nevertheless, since the decision makers’ complex 

judgment system can be better represented by high level mathematical concepts, the 

mentioned disadvantages are compensated by this superiority of the proposed 

methodology.  

For further research, other fuzzy set extensions, such as Fermatean fuzzy sets, can be 

used to extend Z-numbers. Then, integrated Fermatean fuzzy Z-MCDM methods such 

as Fermatean fuzzy Z-AHP&TOPSIS or Fermatean fuzzy Z-AHP&CODAS can be 

proposed to the literature to be compared with the results of this study. Another issue 

is to make the methodology ready for use through a software. Although MS Excel 

tools are enough to make the computations, we suggest that some specialized software 

using Python, C++ or Java can also be developed to facilitate the implementation of 

the proposed methodology. 
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 INTERVAL-VALUED SPHERICAL FUZZY Z-AHP METHOD BASED 

ON RELIABILITY OF JUDGMENTS: GREEN SUPPLIER SELECTION6 

Fuzzy set theory has been widely used since Zadeh (1965) introduced it. The fuzzy 

sets have been rapidly expanded to several new extensions such as type-2 fuzzy sets 

(Tolga et al., 2020; Castillo et al., 2022; Castillo et al., 2023), hesitant fuzzy sets, 

Pythagorean fuzzy sets, intuitionistic fuzzy sets, q-rung orthopair fuzzy sets, fermatean 

fuzzy sets and spherical fuzzy sets by different researchers in recent years. In this 

research, spherical fuzzy sets (SFSs) have been preferred because of their larger 

domain area and their consideration of experts’ hesitancy as a separate parameter. 

Spherical fuzzy sets (SFSs), which have been introduced by Kahraman and Kutlu 

Gündoğdu (2018) to the literature, are one of the fuzzy sets put forward to represent 

the fuzziness with a wider domain. SFSs are proposed to the literature as an extension 

of picture fuzzy sets. SFSs have three parameters which are membership, non-

membership and hesitancy degrees whose squared sum is at most equal to 1 whereas 

their sum has to be at most 1 in picture fuzzy sets. SFSs are superior to picture fuzzy 

sets as they offer a larger domain size than picture fuzzy sets to DMs. SFSs let decision 

makers assign those degrees from one eight of unit sphere, whereas picture fuzzy sets 

let them from a triangular prism. In order to better define and model the uncertainty, 

Zadeh (2011) introduced Z-fuzzy numbers, and states that Z-fuzzy numbers are the 

generalization of all other numbers (real numbers, interval numbers, fuzzy numbers, 

and random numbers) and mentions the importance of Z-fuzzy numbers by stating that 

the numbers expressed in areas such as decision analysis and economics are actually 

Z-fuzzy numbers. DMs cannot be 100% sure of their evaluations despite their 

knowledge and experience. However, people generally express their opinions as if they 

are 100% sure of them. A questionnaire can be used to learn how confident a DM is in 

his/her judgments using such linguistic terms as "weakly confident," "moderately 

confident," or "highly confident," which can be preferred by the DM. 

 
6 This chapter is based on the paper “Tüysüz N. & Kahraman C. (2024). Interval-valued spherical fuzzy 

Z-AHP method based on reliability of judgments: green supplier selection. Journal of Multiple-Valued 

Logic & Soft Computing. (Accepted)” 
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Alkan and Kahraman (2022a) propose spherical Z-fuzzy numbers to the literature by 

integrating SFSs with Z-fuzzy numbers, which have the ability to define uncertain 

expressions in a 2-tuple form representing both restriction and reliability degrees of 

preferences. This study forces decision makers to give a single value for each 

parameter. Expressing each parameter with an exact number may cause a loss of 

information in the representation of ambiguous expressions. This may lead to 

unexpected or wrong results for real life problems, especially if it is a decision problem 

that includes subjective and imprecise judgments of decision makers (DMs). Duleba 

et al. (2021) propose an interval-valued spherical fuzzy AHP method and apply it to 

the public transportation problem. The main contribution and originality of this study 

presents a wider assignment region for parameter values together with interval-valued 

membership functions by using spherical fuzzy sets. Besides, our study combines 

interval-valued SFSs with Z-fuzzy numbers in order to consider the reliability of the 

assigned interval-valued SFSs parameters for the first time. Another originality is to 

develop an interval-valued spherical Z-fuzzy AHP method.  

With Zadeh's (2011) introduction of Z-fuzzy numbers, a research gap on their 

extensions has emerged and has started to attract the attention of researchers in recent 

years. Peng and Wang (2017) introduce hesitant uncertain linguistic Z-fuzzy numbers 

(HULZNs) for the solution of fuzzy MCDM problems. They extend VIKOR method 

using HULZNs and give an application for ERP selection problem. Xian et al. (2019) 

extend TOPSIS method using intuitionistic Z-linguistic sets and Minkowski distance. 

They present numerical examples for investment and medical diagnosis problems. Du 

et al. (2021) propose neutrosophic Z-fuzzy numbers. Ren et al. (2020) propose a 

decision-making approach that includes hesitant fuzzy linguistic information and Z-

fuzzy numbers. They apply the method to the medicine selection problem for COVID-

19 patients. Sari and Kahraman (2020) propose intuitionistic Z-fuzzy numbers to the 

literature for the first time. Zhao and Ye (2021) present the orthopair Z-fuzzy numbers 

and give some aggregation operations. Sari and Tüysüz (2022) propose a novel AHP 

& TOPSIS methodology under the information of interval type-2 Z-fuzzy numbers. 

Chen et al. (2022) introduce picture fuzzy Z-linguistic sets to create a more inclusive 

solution for decision making by adding reliability information to picture fuzzy sets. 

They improve VIKOR method using picture fuzzy Z-linguistic sets. Ashraf et al. 

(2023) extend Z-fuzzy numbers to Pythagorean fuzzy Z-numbers. They present an 

application on green supplier selection using the developed Pythagorean fuzzy Z-
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EDAS method. Tüysüz and Kahraman (2023) propose a methodology that integrates 

the AHP and EDAS methods under the properties of Z-fuzzy numbers. All these 

studies aim to model imprecise and vague expressions mathematically in the most 

inclusive way. 

“Supplier” can simply be defined as a person, company, or other entity providing 

goods or services to another person, company, or other entity. Supplier selection is a 

MCDM problem that includes selecting the right supplier among the alternatives by 

considering many criteria such as cost, quality, and delivery time related to providers. 

Green supplier selection (GSS) is a supplier selection problem that requires evaluation 

of many criteria not only related to providing minimum cost levels and high quality 

but also related to improving environmental performance, consuming fewer hazardous 

materials, less material and energy (Igarashi et al., 2013). The scarce resources in the 

world necessitate environmentally friendly practices in every field. GSS is a critical 

issue that needs to be addressed from an environmental point of view since the 

production of goods or services will continue as long as the world exists, and this is 

important for the continuity of a sustainable world. In addition, GSS is a problem that 

should be given importance by companies in order to support sustainability of the 

supply chain and to maintain their existence in competitive conditions in this sense, 

and it has a great effect on leaving a livable world to the future (Liou et al., 2021).  

One of the main objectives of this study is to integrate Z-fuzzy numbers and interval-

valued spherical fuzzy (IVSF) sets to find the best representation of uncertainty. 

Another aim of this study is to develop a novel IVSF Z-AHP method based on 

restriction and reliability of judgments for the solution of MCDM problems.  

This study is original in three ways. First, there has not been a previous study that 

integrates Z-fuzzy numbers and IVSF numbers. This literature gap is clearly seen in 

Table 7.1. Second, AHP method has been firstly developed with IVSF Z-numbers. 

Finally, our proposed approach is also used for the first time for the GSS problem. 

The organization of the remaining paper is presented as follows: Section 7.1 presents 

the literature review on fuzzy sets extensions and fuzzy GSS problems. Section 7.2 

explains the evaluation criteria set of GSS problem based on the literature review. 

Section 7.3 includes preliminaries of single-valued SFSs, interval-valued SFSs and Z-

fuzzy numbers. Section 7.4 presents the steps of the proposed IVSF Z-AHP method. 

Section 7.5 presents an application on GSS, which includes the problem definition and 
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solution, as well as comparative and sensitivity analysis. The last section gives 

conclusive remarks and further research recommendations. 

 Literature Review 

In this section, we first summarize the fuzzy sets extensions in Section 7.1.1. Then, a 

literature review of the extensions of fuzzy MCDM methods on GSS is presented in 

Section 7.1.2.  

7.1.1 Fuzzy sets extensions 

Extensions of ordinary fuzzy sets and their features are summarized in Table 7.1. We 

classify the literature review results based on the conditions of membership degrees 

and whether they are integrated with Z-fuzzy numbers. 

Table 7.1 : Fuzzy sets extensions 

Types of Fuzzy 

Extension 
Developers 

Parameters in 

Membership 

Functions 

Conditions of 

Membership Degree 

Integrated 

with Z-

fuzzy 

numbers 

by now? 

Ordinary fuzzy sets Zadeh (1965) Membership degree 
Crisp number between 0 

and 1 
Yes 

Type 2 fuzzy sets Zadeh (1975) 
3D Membership 

function 

Fuzzy membership 

degrees 
Yes 

Interval-valued 

fuzzy sets 

Sambuc, Jahn, 

Grattan Guiness, 

Zadeh (1975) 

Interval-valued 

membership degree 

Closed interval of 

membership degree 
Yes 

Intuitionistic fuzzy 

sets 
Atanassov (1986) 

Membership and non-

membership degrees 

Sum of degrees at most 

equal to 1 
Yes 

Neutrosophic sets 
Smarandache 

(1999) 

Truthiness, falsity and 

indeterminacy degrees 

Sum of degrees at most 

equal to 3 
Yes 

Intuitionistic fuzzy 

sets of second type 

(Pythagorean fuzzy 

sets) 

Atanassov (1999) 
Membership and non-

membership degrees 

Sum of squared degrees  

at most equal to 1 
Yes 

Nonstationary fuzzy 

sets 

Garibaldi and 

Ozen (2007) 
Membership degree 

Crisp number between 0 

and 1 
No 

Hesitant fuzzy sets Torra (2010) 

More than one 

possible membership 

degrees 

Crisp number between 0 

and 1 
Yes 

Pythagorean fuzzy 

sets 
Yager (2013) 

Membership and non-

membership degrees 

Squared sum of degrees at 

most equal to 1 
Yes 

Picture fuzzy sets Cuong (2014) 

Positive, negative, 

neutral and refusal 

membership degrees 

Sum of degrees at most 

equal to 1 
Yes 

q-rung orthopair 

fuzzy sets 
Yager (2016) 

Membership and non-

membership degrees 

Sum of the qth power of 

degrees at most equal to 1 
Yes 

Spherical fuzzy sets 

Kahraman and 

Kutlu Gündoğdu 

(2018) 

Membership, non-

membership and 

hesitancy degrees 

Squared sum of degrees at 

most equal to 1 
Yes* 

Fermatean fuzzy 

sets 

Senapati and 

Yager (2019) 

Membership and non-

membership degrees 

Sum of the 3rd power of 

degrees at most equal to 1 
No 

*For single valued spherical sets 
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Our literature review shows that Fermatean fuzzy sets and nonstationary fuzzy sets 

have not yet been integrated with Z-fuzzy numbers.  

7.1.2 Fuzzy green supplier selection 

The decision of GSS has attracted a lot of attention due to the concerns about leaving 

a more sustainable world to future generations in recent years. It is a complex process 

which requires the evaluation of various criteria related to suppliers’ environmental 

characteristics. The main problem for both evaluating the criteria and selecting the 

green suppliers is that DMs usually express their evaluations and judgments by using 

natural linguistic terms.  

The integration of fuzzy sets with MCDM methods has found a great place in GSS in 

recent years. The existing literature on GSS using fuzzy sets and their extensions with 

MCDM methods is quite extensive. In Table 7.2, a literature review of fuzzy 

extensions of MCDM methods on GSS between 2015 and 2023 is presented. All 

methods for GSS, such as mathematical programming, genetic algorithms, and 

MCDM methods are explained and listed in detail by Zhang et al. (2020). A detailed 

literature review of MCDM methods on GSS can be found in Schramm et al. (2020). 

Table 7.2 : A literature review of the extensions of fuzzy MCDM methods on GSS 

Year Authors Type of fuzzy sets  Selection Method 

2015 Cao et al. Intuitionistic fuzzy sets TOPSIS 

2016 Ghorabaee et al. Interval type-2 fuzzy sets WASPAS 

2016 Sang and Liu Interval type-2 fuzzy sets TODIM 

2017 Qin et al. Interval type-2 fuzzy sets TODIM 

2018 Wang and Li Q-rung orthopair fuzzy sets TODIM 

2018 Gitinavard et al. Interval-valued hesitant fuzzy sets ELECTRE 

2018 Tian et al. Intuitionistic fuzzy sets TOPSIS 

2018 Shi et al. 
Interval-valued intuitionistic fuzzy linguistic 

sets 
GRA & TOPSIS 

2019 Memari et al. Intuitionistic fuzzy sets TOPSIS 

2019a Zhang et al. Picture fuzzy sets EDAS 

2019a Wu et al. Interval-valued Pythagorean fuzzy sets DEA 

2019b Wu et al. Interval type-2 fuzzy sets VIKOR 

2019 Yu et al. Interval-valued Pythagorean fuzzy sets TOPSIS 

2019 Meksavang et al. Picture fuzzy sets VIKOR 

2019 Yucesan et al. Interval type-2 fuzzy sets TOPSIS 

2019 Mishra et al. Hesitant fuzzy sets WASPAS 

2019 Fan et al. Pythagorean fuzzy sets DEA 

2019 Liu et al. Q-rung interval-valued orthopair fuzzy sets MULTIMOORA 

2019 Liang et al. Interval-valued 2-tuple fuzzy sets TODIM 

2019 Nie et al. Interval-valued fuzzy linguistic sets TODIM 

2020 Wan et al. Hesitant fuzzy sets PROMETHEE 
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Table 7.2 (continued): A literature review of the extensions of fuzzy MCDM 

methods on GSS 

2020 Kumari and Mishra Intuitionistic fuzzy sets COPRAS 

2020 Xu et al. Single-valued complex neutrosophic sets EDAS 

2020 Rouyendegh et al. Intuitionistic fuzzy sets TOPSIS 

2020 Kilic and Yalcin Intuitionistic fuzzy sets TOPSIS 

2020 Krishankumar et al. Q-rung orthopair fuzzy sets VIKOR 

2020 Ghorabaee et al. Fermatean fuzzy sets WASPAS 

2020 Tian et al. Probabilistic hesitant fuzzy sets TODIM 

2020 Zhou and Chen Pythagorean fuzzy sets VIKOR 

2021 Zhang et al. Picture 2-tuple linguistic set CODAS 

2021 Sharaf and Khalil Spherical fuzzy sets TODIM 

2021 Pınar et al. Q-rung orthopair fuzzy sets TOPSIS 

2021 Kaur et al. Pythagorean fuzzy sets TODIM 

2021 Celik et al. Interval type-2 fuzzy sets TODIM 

2021 Çalık Pythagorean fuzzy sets TOPSIS 

2021 Lu et al. Picture fuzzy sets COPRAS 

2021 Sun and Cai Single-valued neutrosophic sets TOPSIS & GRA 

2021 Mathew et al. Interval-valued fermatean fuzzy sets MABAC 

2022 Wang et al. Probabilistic dual hesitant fuzzy sets BWM 

2022 Gai et al. Linguistic Z-fuzzy numbers MULTIMOORA 

2022 Unal and Temur Spherical fuzzy sets AHP 

2022 Ecer Interval type‑2 fuzzy sets AHP 

2022 Giri et al. Pythagorean fuzzy sets DEMATEL 

2023 
Hajiaghaei-Keshteli 

et al. 
Pythagorean fuzzy sets TOPSIS 

2023 Zeng et al. Fermatean fuzzy sets EDAS 

2023 Zhou and Chen Pythagorean fuzzy sets TOPSIS 

2023 Ashraf et al. Pythagorean fuzzy Z-numbers EDAS 

Table 7.2 shows that many extensions of fuzzy sets are used for GSS problems. In 

addition, it is concluded from Table 7.2 that the interval-valued spherical Z-fuzzy AHP 

method has not been used for GSS problems in the literature, which makes our study 

unique and important to fill the gap in this research area. 

 

Figure 7.1 : Usage percentages of the fuzzy MCDM methods in GSS. 
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Figure 7.1 shows the usage percentages of the fuzzy MCDM methods in GSS 

problems. Based on these results, TOPSIS and TODIM methods are the most used 

MCDM methods for the solution of GSS problems. As Figure 7.1 indicates, fuzzy 

extensions of AHP method have also been rarely used for the solution of GSS 

problems. Our study fills a gap in this area. 

 Evaluation Criteria of Green Suppliers 

GSS criteria vary according to which kind of supplier is selected. The criteria set 

discussed in this study include the criteria common to all GSS problems. The criteria 

and their explanations, which are presented in Table 7.3, have been determined by 

considering the literature.  

Table 7.3 : Criteria set for GSS. 

Main 

criterion 
Sub-

criterion 
Code Explanations References 

Economic 

features (C1) 

Quality C11 
Conformity of goods to quality 

standards 

Fallahpour et al., 2017; Gupta et 

al., 2019; Zhang et al., 2020; 

Rouyendegh et al., 2020; Rani et 

al., 2020; Yucesan et al., 2019 

Cost C12 
The total price of the goods to 

reflect to the buyer 

Ecer, 2020; Fallahpour et al., 2017; 

Gupta et al., 2019; Zhang et al., 

2020; Rouyendegh et al., 2020; 

Rani et al., 2020 

Delivery and 

services 
C13 

On-time delivery, ratio of 

ensuring delivery time, after 

sales service 

Fallahpour et al., 2017; Gupta et 

al., 2019; Zhang et al., 2020; 

Rouyendegh et al., 2020 

Environment

al aspects 

(C2) 

Environment

ally friendly 

manufacturin

g 

C21 

The least harm to the 

environment during the 

production such as green design 

and green packing 

Ecer, 2020; Fallahpour et al., 2017; 

Zhang et al., 2020; Rouyendegh et 

al., 2020 

Environment

al pollution 

level 
C22 

Air emission level, hazardous 

waste, greenhouse gas emission 
 

Gupta et al., 2019; Zhang et al., 

2020; Rani et al., 2020 

Green 

technology 
C23 

Usage of min energy/material, 

reuse, recycle etc. 

Ecer, 2020; Zhang et al., 2020; 

Rouyendegh et al., 2020; 

Khorasani, 2018; Phochanikorn 

and Tan, 2019 Green 

logistic 
C24 

Use of environmental friendly 

transportation 

Fallahpour et al., 2017; Zhang et 

al., 2020 

Green 

competencies 

(C3) 

Green image C31 

Supplier's reputation for green 

practices, supplier's green 

certification 

Fallahpour et al., 2017; Gupta et 

al., 2019; Zhang et al., 2020; 

Rouyendegh et al., 2020; 

Phochanikorn and Tan, 2019 

Staff training C32 
Environmental trainings for 

employees 

Ecer, 2020; Gupta et al., 2019; 

Zhang et al., 2020 

Competency 

management 
C33 

Green awareness and practices of 

management 

Ecer, 2020; Fallahpour et al., 2017; 

Zhang et al., 2020; Rouyendegh et 

al., 2020; Yucesan et al., 2019 
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 Spherical Fuzzy Sets 

7.3.1 MCDM with spherical fuzzy sets 

Spherical fuzzy sets (SFSs) are newly proposed fuzzy sets by Kahraman and Kutlu 

Gündogdu (2018) as an extension of picture fuzzy sets. SFSs include the degrees of 

membership, non-membership, and neutral membership of an object to a set. In SFSs, 

each parameter can be defined independently by the DMs between 0 and 1, provided 

that the squared sum of each parameter is at most 1, thus increasing the representation 

ability of uncertainty. 

Many MCDM methods have been extended to their fuzzy versions by using spherical 

fuzzy sets as presented in Table 7.4. Z-fuzzy numbers can be employed in the 

development of these spherical fuzzy versions since they incorporate the reliability of 

the assigned fuzzy numbers in the decision-making process. 

Table 7.4 : Spherical fuzzy sets in MCDM. 

Year Authors 
Type of 

SFSs 

Selection 

Method 
Application 

2019a 
Kutlu Gündoğdu and 

Kahraman 
SVSFSs TOPSIS Illustrative example 

2019b 
Kutlu Gundogdu and 

Kahraman 
SVSFSs WASPAS Robot selection 

2019c 
Kutlu Gundogdu and 

Kahraman 
IVSFSs TOPSIS 3D printer selection 

2019 Kutlu Gundogdu et al. SVSFSs VIKOR Selection of waste disposal site 

2019d 
Kutlu Gundogdu and 

Kahraman 
SVSFSs CODAS Illustrative example 

2019e 
Kutlu Gundogdu and 

Kahraman 
SVSFSs VIKOR Warehouse site selection 

2019 Kahraman et al. SVSFSs TOPSIS Hospital location selection 

2019f 
Kutlu Gundogdu and 

Kahraman 

SVSFSs 
AHP Industrial robot selection 

2020 
Kutlu Gundogdu and 

Kahraman 

SVSFSs 
AHP 

Selection of renewable energy 

location 

2020 Kutlu Gundogdu SVSFSs MULTIMOORA Illustrative example 

2020b Liu et al. 
Linguistic 

SFSs 

MABAC & 

TODIM 
Evaluation of shared bicycles  

2020 Mathew et al. SVSFSs TOPSIS Manufacturing system selection 

2021a Akram et al. 
Complex 

SFSs 
ELECTRE Location selection 

2021b Akram et al. 
Complex 

SFSs 
TOPSIS 

Selection of best water supply 

strategy 

2021c Akram et al. 
Complex 

SFSs 
VIKOR 

Prioritizing of the advertisement 

aims on Facebook. 

2021d Akram et al. 

Complex 

SF N-soft 

sets 

VIKOR Firm selection 

2021 Gul and Ak IVSFSs TOPSIS Evaluation of failure modes 

2021 Sharaf and Khalil SVSFSs TODIM Supplier selection 
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Table 7.4 (continued): Spherical fuzzy sets in MCDM. 

Year Authors 
Type of 

SFSs 

Selection 

Method 
Application 

2021 Duleba et al. IVSFSs AHP 
Evaluation of public transportation 

development 

2021b Jin et al. IVSFSs ORESTE 
Evaluation of key quality 

characteristics 

2022 Hamal and Senvar IVSFSs MULTIMOORA Ranking of financial ratios 

2022 
Candan and Cengiz 

Toklu 
SVSFSs GRA 

Evaluation of countries’ 

industrialization 

2022 Unal and Temur SVSFSs AHP Sustainable supplier selection 

2022 Aydoğdu and Gül IVSFSs ARAS 3D printer selection 

2022a 
Menekşe and Camgöz 

Akdağ 
SVSFSs EDAS Selection of distance education tool 

2022b 
Menekşe and Camgöz 

Akdağ 
SVSFSs ELECTRE Ranking of units audit activity 

2022 Kahraman et al. SVSFSs CRITIC 
Prioritization of supplier selection 

criteria 

2022a Alkan and Kahraman 
SF Z-

numbers 
AHP Supplier selection 

2022 Zahid et al. 
Complex 

SFSs 
ELECTRE 

Selection of cadmium removal 

techniques 

2022 Sangwan IVSFSs TOPSIS Evaluation of cloud computing services 

2022 Omerali and Kaya IVSFSs COPRAS 
Evaluation of product lifecycle 

management applications 

2022 Ghoushchi et al. SVSFSs CoCoSo 
Assessment of wind turbine failure 

modes 

2022 Erdoğan IVSFSs MAIRCA Evaluation of agriculture technologies 

2022 Monica and Sangwan IVSFSs TOPSIS Evaluation of cloud computing services 

2023a Ghoushchi et al. SVSFSs MARCOS Risk factor prioritization for roads 

2023b Ghoushchi et al.  SVSFSs CODAS Evaluation of clean energy barriers  

2023 Aydoğdu et al. 
Complex 

SFSs 
TOPSIS 

Ranking the objectives of 

advertisement on social web sites. 

2023b Akram et al. SVSFSs PROMETHEE Hospital site selection 

2023 Otay IVSFSs MULTIMOORA Evaluation of tech-center locations 

2023 Sharaf SVSFSs 
TOPSIS & 

VIKOR 

Selection of warehouse location & 

evaluation of hydrogen storage systems 

2023 Demircan IVSFSs AHP Evaluation of digital business models. 

Table 7.4 shows that spherical fuzzy sets are generally used as ordinary or interval-

valued form in the literature. AHP and TOPSIS methods are the most commonly used 

MCDM methods integrated with spherical fuzzy sets. 

7.3.2 Single-valued spherical fuzzy sets (SVSFSs) 

In the following, we give the main definitions of single-valued spherical fuzzy sets 

(Kahraman and  Kutlu Gündoǧdu, 2018):   

Definition 7.1. A single-valued spherical fuzzy set (SVSFS) of the universe 𝑋 is given 

in Eq. (7.1) (Kahraman and  Kutlu Gündoǧdu, 2018; Kutlu Gündoğdu and Kahraman, 

2019a; Mahmood et al., 2019).  
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   𝐴̃𝑠 = {𝑥, 𝜇𝐴̃𝑠(𝑥), 𝜗𝐴̃𝑠(𝑥), 𝜋𝐴̃𝑠(𝑥) | 𝑥 ∈ 𝑋}                             (7.1) 

where 𝜇𝐴̃𝑠(𝑥), 𝜗𝐴̃𝑠(𝑥), 𝜋𝐴̃𝑠(𝑥): 𝑋 → [0,1] are the degrees of membership, non-

membership, and neutral membership (indeterminacy) of 𝑥 to 𝐴̃𝑆, respectively, and 

0 ≤ 𝜇𝐴̃𝑠
2 (𝑥) + 𝜗𝐴̃𝑠

2 (𝑥) + 𝜋𝐴̃𝑠
2 (𝑥) ≤ 1                                    (7.2) 

Then, √1 − [𝜇𝐴̃𝑠
2 (𝑥) + 𝜗𝐴̃𝑠

2 (𝑥) + 𝜋𝐴̃𝑠
2 (𝑥)]  is defined as the refusal degree of 𝑥 in 𝑋. 

Definition 7.2. Let 𝐴̃𝑠 = (𝜇𝐴𝑠 , 𝜗𝐴𝑠 , 𝜋𝐴𝑠) and 𝐵̃𝑠 = (𝜇𝐵𝑠 , 𝜗𝐵𝑠 , 𝜋𝐵𝑠)  be any two SFSs. 

The basic arithmetic operations of SFSs are given in Eqs. (7.3-7.6) (Kutlu Gündoğdu 

and Kahraman, 2019a). 

𝐴̃𝑠 ⊕ 𝐵̃𝑠 = 

{√𝜇𝐴̃𝑠
2 + 𝜇𝐵̃𝑠

2 − 𝜇𝐴̃𝑠
2 𝜇𝐵̃𝑠

2    , 𝜗𝐴̃𝑠𝜗𝐵̃𝑠 , √(1 − 𝜇𝐵̃𝑠
2 )𝜋𝐴̃𝑠

2 + (1 − 𝜇𝐴̃𝑠
2 )𝜋𝐵̃𝑠

2 − 𝜋𝐴̃𝑠
2 𝜋𝐵̃𝑠

2 }    (7.3) 

𝐴̃𝑠 ⊗ 𝐵̃𝑠 = 

{𝜇𝐴̃𝑠𝜇𝐵̃𝑠 , √𝜗𝐴̃𝑠
2 + 𝜗𝐵̃𝑠

2 − 𝜗𝐴̃𝑠
2 𝜗𝐵̃𝑠

2   , √(1 − 𝜗𝐵̃𝑠
2 )𝜋𝐴̃𝑠

2 + (1 − 𝜗𝐴̃𝑠
2 )𝜋𝐵̃𝑠

2 − 𝜋𝐴̃𝑠
2 𝜋𝐵̃𝑠

2 }     (7.4) 

𝑘𝐴̃𝑠 = {√1 − (1 − 𝜇𝐴̃𝑠
2 )𝑘,  𝜗𝐴̃𝑠

𝑘 , √(1 − 𝜇𝐴̃𝑠
2 )𝑘 − (1 − 𝜇𝐴̃𝑠

2 − 𝜋𝐴̃𝑠
2 )𝑘} ; 𝑘 > 0    (7.5) 

𝐴̃𝑠
𝑘 = {𝜇𝐴̃𝑠

𝑘 , √1 − (1 − 𝜗𝐴̃𝑠
2 )𝑘 , √(1 − 𝜗𝐴̃𝑠

2 )𝑘 − (1 − 𝜗𝐴̃𝑠
2 − 𝜋𝐴̃𝑠

2 )𝑘} ;   𝑘 > 0   (7.6) 

Definition 7.3. For two SFSs 𝐴̃𝑠 = (𝜇𝐴𝑠 , 𝜗𝐴𝑠 , 𝜋𝐴𝑠) and 𝐵̃𝑠 = (𝜇𝐵𝑠 , 𝜗𝐵𝑠 , 𝜋𝐵𝑠), Eqs. (7.7-

7.12) are valid for the conditions of 𝑘, 𝑘1 and 𝑘2 ≥ 0 (Kutlu Gündoğdu and Kahraman, 

2019a): 

𝐴̃𝑠 ⊕ 𝐵̃𝑠 = 𝐵̃𝑠 ⊕ 𝐴̃𝑠                                            (7.7) 

𝐴̃𝑠 ⊗ 𝐵̃𝑠 = 𝐵̃𝑠 ⊗ 𝐴̃𝑠                                            (7.8) 

𝑘(𝐴̃𝑠⊕ 𝐵̃𝑠) = 𝑘𝐴̃𝑠 ⊕𝑘𝐵̃𝑠𝑠                                   (7.9) 

𝑘1𝐴̃𝑠 ⊕𝑘2𝐴̃𝑠 = (𝑘1 + 𝑘2)𝐴̃𝑠                                (7.10) 

(𝐴̃𝑠 ⊗ 𝐵̃𝑠)
𝑘 = 𝐴̃𝑠

𝑘 ⊗ 𝐵̃𝑠
𝑘                                      (7.11) 

𝐴̃𝑠
𝑘1 ⊗ 𝐴̃𝑠

𝑘2 = 𝐴̃𝑠
𝑘1+𝑘2                                         (7.12) 
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Definition 7.4. To compare two spherical fuzzy numbers (SFNs) 𝐴̃𝑠 =

(𝜇𝐴𝑠 , 𝜗𝐴𝑠 , 𝜋𝐴𝑠) and 𝐵̃𝑠 = (𝜇𝐵𝑠 , 𝜗𝐵𝑠 , 𝜋𝐵𝑠), score (SC) and accuracy (AC) functions are 

defined in Eqs. (7.13-7.14) (Kutlu Gündoğdu and Kahraman, 2019a): 

𝑆𝐶(𝐴̃𝑠) = (𝜇𝐴̃𝑠 − 𝜋𝐴̃𝑠)
2 − (𝜗𝐴̃𝑠 − 𝜋𝐴̃𝑠)

2                              (7.13) 

𝐴𝐶(𝐴̃𝑠) = 𝜇𝐴̃𝑠
2 + 𝜗𝐴̃𝑠

2 + 𝜋𝐴̃𝑠
2                                       (7.14) 

where 𝐴𝐶(𝐴̃𝑠) ∈ [0, 1] 

Comparison rules of SFSs are given in the following (Kahraman and Kutlu Gündoğdu, 

2018; Mahmood et al., 2019): 

If 𝑆𝐶(𝐴̃𝑠) > 𝑆𝐶(𝐵̃𝑠), then 𝐴̃𝑠 > 𝐵̃𝑠; 

If 𝑆𝐶(𝐴̃𝑠) = 𝑆𝐶(𝐵̃𝑠) and 𝐴𝐶(𝐴̃𝑠)  > 𝐴𝐶(𝐵̃𝑠), then 𝐴̃𝑠 > 𝐵̃𝑠; 

If 𝑆𝐶(𝐴̃𝑠) = 𝑆𝐶(𝐵̃𝑠), 𝐴𝐶(𝐴̃𝑠) < 𝐴𝐶(𝐵̃𝑠), then 𝐴̃𝑠 < 𝐵̃𝑠;  

If 𝑆𝐶(𝐴̃𝑠) = 𝑆𝐶(𝐵̃𝑠), 𝐴𝐶(𝐴̃𝑠) = 𝐴𝐶(𝐵̃𝑠), then 𝐴̃𝑠 = 𝐵̃𝑠. 

Definition 7.5. SF Weighted Arithmetic Mean (𝑆𝐹𝑊𝐴𝑀) with respect to, 𝑤 =

(𝑤1, 𝑤2, … , 𝑤𝑛); 𝑤𝑖 ∈ [0,1]; ∑ 𝑤𝑖 = 1𝑛
𝑖=1 , is defined in Eq. (7.15) (Kahraman and 

Kutlu Gündoğdu, 2019b).  

𝑆𝐹𝑊𝐴𝑀𝑤(𝐴̃𝑆1, 𝐴̃𝑆2, … , 𝐴̃𝑆𝑛) =

{√1 − ∏ (1 − 𝜇𝐴𝑠
2 )

𝑤𝑖𝑛
𝑖=1 , ∏ 𝜗𝐴𝑠

𝑤𝑖𝑛
𝑖=1 , √∏ (1 − 𝜇𝐴𝑠

2 )𝑤𝑖 −∏ (1 − 𝜇𝐴𝑠
2 − 𝜋𝐴𝑠

2 )𝑤𝑖𝑛
𝑖=1

𝑛
𝑖=1 }  

                                                                                                                               (7.15) 

Definition 7.6. SF Weighted Geometric Mean (𝑆𝐹𝑊𝐺𝑀) with respect to, 𝑤 =

(𝑤1, 𝑤2, … , 𝑤𝑛); 𝑤𝑖 ∈ [0,1]; ∑ 𝑤𝑖 = 1𝑛
𝑖=1 , is given in Eq. (7.16) (Kahraman and Kutlu 

Gundogdu, 2019b). 

𝑆𝐹𝑊𝐺𝑀𝑤(𝐴̃𝑆1, 𝐴̃𝑆2, … , 𝐴̃𝑆𝑛) = 𝐴̃𝑆1
𝑤𝑖 + 𝐴̃𝑆2

𝑤𝑖 +⋯+ 𝐴̃𝑆𝑛
𝑤𝑖

 

= {∏𝜇𝐴𝑠
𝑤𝑖

𝑛

𝑖=1

, √1 −∏(1 − 𝜗𝐴𝑠
2 )

𝑤𝑖

𝑛

𝑖=1

, √∏(1 − 𝜗𝐴𝑠
2 )𝑤𝑖 −∏(1 − 𝜗𝐴𝑠

2 − 𝜋𝐴𝑠
2 )𝑤𝑖

𝑛

𝑖=1

𝑛

𝑖=1

} 

                                            (7.16) 
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7.3.3 Interval-valued spherical fuzzy sets (IVSFSs) 

IVSFSs provide a representation of uncertainty by allowing the values of parameters 

to be defined as intervals. IVSFSs have been proposed by Kutlu Gündoğdu and 

Kahraman (2019c). Membership, non-membership, and hesitancy degrees in IVSFSs 

are defined as intervals instead of single values. In this section, we give some 

definitions and mathematical operations of IVSFSs. 

Definition 7.7: An IVSFS 𝐴̃𝑆 of the universe X is given by Eq. (7.17) (Kutlu Gündoğdu 

and Kahraman, 2019c).  

    𝐴̃𝑆 = {⟨𝑥, ([𝜇𝐴̃𝑠
𝐿 (𝑥), 𝜇𝐴̃𝑠

𝑈 (𝑥)], [𝜗𝐴̃𝑠
𝐿 (𝑥), 𝜗𝐴̃𝑠

𝑈 (𝑥)], [𝜋𝐴̃𝑠
𝐿 (𝑥), 𝜋𝐴̃𝑠

𝑈 (𝑥)])|𝑥 ∈ 𝑋}     (7.17) 

where 0 ≤ 𝜇𝐴̃𝑠
𝐿 (𝑥) ≤ 𝜇𝐴̃𝑠

𝑈 (𝑥) ≤ 1, 0 ≤ 𝜗𝐴̃𝑠
𝐿 (𝑥) ≤ 𝜗𝐴̃𝑠

𝑈 (𝑥) ≤ 1, 0 ≤ 𝜋𝐴̃𝑠
𝐿 (𝑥) ≤

𝜋𝐴̃𝑠
𝑈 (𝑥) ≤ 1  and 0 ≤ (𝜇𝐴̃𝑠

𝑈 (𝑥))
2

+ (𝜗𝐴̃𝑠
𝑈 (𝑥))

2

+ (𝜋𝐴̃𝑠
𝑈 (𝑥))

2

≤ 1. 

For each 𝑥 ∈ 𝑋,  𝜇𝐴̃𝑠
𝑈 (𝑥), 𝜗𝐴̃𝑠

𝑈 (𝑥) and 𝜋𝐴̃𝑠
𝑈 (𝑥) denote the upper membership degree, 

upper non-membership degree and upper hesitancy degree of 𝑥 to 𝐴̃𝑆, respectively. 

Similarly, for each 𝑥 ∈ 𝑋,  𝜇𝐴̃𝑠
𝐿 (𝑥), 𝜗𝐴̃𝑠

𝐿 (𝑥) and 𝜋𝐴̃𝑠
𝐿 (𝑥) denote the lower membership 

degree, lower non-membership degree and lower hesitancy degree of 𝑥 to 𝐴̃𝑆, 

respectively. For each 𝑥 ∈ 𝑋, if 𝜇𝐴̃𝑠
𝐿 (𝑥) = 𝜇𝐴̃𝑠

𝑈 (𝑥), 𝜗𝐴̃𝑠
𝐿 (𝑥) = 𝜗𝐴̃𝑠

𝑈 (𝑥), and 𝜋𝐴̃𝑠
𝐿 (𝑥) =

𝜋𝐴̃𝑠
𝑈 (𝑥) then, IVSFS 𝐴̃𝑆 refers to as a single-valued SFS.  

Definition 7.8: Let 𝛼̃1 = 〈[𝑎1, 𝑏1], [𝑐1, 𝑑1], [𝑒1, 𝑓1]〉 and 𝛼̃2 = 〈[𝑎2,

𝑏2], [𝑐2, 𝑑2], [𝑒2, 𝑓2]〉 be two IVSFSs. Basic arithmetic operations are given by Eqs. 

(7.18-7.21) (Kutlu Gündoğdu and Kahraman, 2019c). 

𝛼̃1⨁𝛼̃2 =

{
[√𝑎1

2 + 𝑎2
2 − 𝑎1

2𝑎2
2, √𝑏1

2 + 𝑏2
2 − 𝑏1

2𝑏2
2] , [𝑐1𝑐2, 𝑑1𝑑2],

[√(1 − 𝑎2
2)𝑒1

2 + (1 − 𝑎1
2)𝑒2

2 − 𝑒1
2𝑒2

2, √(1 − 𝑏2
2)𝑓1

2 + (1 − 𝑏1
2)𝑓2

2 − 𝑓1
2𝑓2

2 ]
}      

                   (7.18) 

𝛼̃1⊗ 𝛼̃2 = {
[𝑎1𝑎2, 𝑏1𝑏2], [√𝑐1

2 + 𝑐2
2 − 𝑐1

2𝑐2
2, √𝑑1

2 + 𝑑2
2 − 𝑑1

2𝑑2
2] ,

[1 − 𝑏1
2𝑏2

2 − (𝑑1
2 + 𝑑2

2 − 𝑑1
2𝑑2

2), 1 − 𝑎1
2𝑎2

2 − (𝑐1
2 + 𝑐2

2 − 𝑐1
2𝑐2

2) ]

} 

                                      (7.19) 

Multiplication by a scalar; 𝑘 ≥ 0; 
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𝑘 ∙ 𝛼̃1 = 

{
[√1 − (1 − 𝑎1

2)𝑘, √1 − (1 − 𝑏1
2)𝑘] , [𝑐1

𝑘, 𝑑1
𝑘],

[√(1 − 𝑎1
2)𝑘 − (1 − 𝑎1

2 − 𝑒1
2)𝑘, √(1 − 𝑏1

2)𝑘 − (1 − 𝑏1
2 − 𝑓1

2)𝑘]
}         (7.20) 

𝑘𝑡ℎ Power of 𝛼̃ ; 𝑘 ≥ 0; 

𝛼̃1
𝑘 = 

{
[𝑎1

𝑘, 𝑏1
𝑘], [√1 − (1 − 𝑐1

2)𝑘, √1 − (1 − 𝑑1
2)𝑘] ,

[√(1 − 𝑐1
2)𝑘 − (1 − 𝑐1

2 − 𝑒1
2)𝑘, √(1 − 𝑑1

2)𝑘 − (1 − 𝑑1
2 − 𝑓1

2)𝑘]
}       (7.21) 

Definition 7.9: Let 𝛼̃𝑗 = 〈[𝑎𝑗, 𝑏𝑗], [𝑐𝑗 , 𝑑𝑗], [𝑒𝑗, 𝑓𝑗]〉 be a collection of IVSFS with 

respect to 𝑤𝑗 = (𝑤1, 𝑤2, … , 𝑤𝑛); 𝑤𝑗 ∈ [0,1] and ∑ 𝑤𝑗 = 1𝑛
𝑗=1 . Interval-Valued 

Spherical Weighted Arithmetic Mean (IVSWAM) is presented in Eq. (7.22) (Kutlu 

Gündoğdu and Kahraman, 2019c). 

𝐼𝑉𝑆𝑊𝐴𝑀𝑤(𝛼̃1, 𝛼̃2, … , 𝛼̃𝑛) = 𝑤1 ∙ 𝛼̃1⊕
  𝑤2 ∙ 𝛼̃2⨁ …⨁ 𝑤𝑛 ∙ 𝛼̃𝑛 

                 =

{
 
 
 
 

 
 
 
 [√1 − ∏ (1 − 𝑎𝑗

2)
𝑤𝑗𝑛

𝑗=1 , √1 − ∏ (1 − 𝑏𝑗
2)
𝑤𝑗𝑛

𝑗=1 ] ,

[∏ 𝑐
𝑗

𝑤𝑗𝑛
𝑗=1 , ∏ 𝑑

𝑗

𝑤𝑗𝑛
𝑗=1 ] ,

[
 
 
 √∏ (1 − 𝑎𝑗

2)
𝑤𝑗
−𝑛

𝑗=1 ∏ (1 − 𝑎𝑗
2 − 𝑒𝑗

2)
𝑤𝑗𝑛

𝑗=1 ,

√∏ (1 − 𝑏𝑗
2)
𝑤𝑗
−𝑛

𝑗=1 ∏ (1 − 𝑏𝑗
2 − 𝑓𝑗

2)
𝑤𝑗𝑛

𝑗=1 ]
 
 
 

}
 
 
 
 

 
 
 
 

                    (7.22) 

Definition 7.10: Let 𝛼̃𝑗 = 〈[𝑎𝑗, 𝑏𝑗], [𝑐𝑗 , 𝑑𝑗], [𝑒𝑗, 𝑓𝑗]〉 be a collection of IVSFS with 

respect to 𝑤𝑗 = (𝑤1, 𝑤2, … , 𝑤𝑛); 𝑤𝑗 ∈ [0,1] and ∑ 𝑤𝑗 = 1𝑛
𝑗=1 . Interval-Valued 

Spherical Weighted Geometric Mean (IVSWGM) is given in Eq. (7.23) (Kutlu 

Gündoğdu and Kahraman, 2019c). 

𝐼𝑉𝑆𝑊𝐺𝑀𝑤(𝛼̃1, 𝛼̃2, … , 𝛼̃𝑛) = 𝛼1
𝑤1⨂  𝛼2

𝑤2⨂ … ⨂ 𝛼𝑛
𝑤𝑛 

                 =

{
 
 
 
 

 
 
 
 [∏ 𝑎

𝑗

𝑤𝑗𝑛
𝑗=1 , ∏ 𝑏

𝑗

𝑤𝑗𝑛
𝑗=1 ] ,

[√1 − ∏ (1 − 𝑐𝑗
2)
𝑤𝑗𝑛

𝑗=1 , √1 − ∏ (1 − 𝑑𝑗
2)
𝑤𝑗𝑛

𝑗=1 ] ,

[
 
 
 √∏ (1 − 𝑐𝑗

2)
𝑤𝑗
−𝑛

𝑗=1 ∏ (1 − 𝑐𝑗
2 − 𝑒𝑗

2)
𝑤𝑗𝑛

𝑗=1 ,

√∏ (1 − 𝑑𝑗
2)
𝑤𝑗
−𝑛

𝑗=1 ∏ (1 − 𝑑𝑗
2 − 𝑓𝑗

2)
𝑤𝑗𝑛

𝑗=1 ]
 
 
 

}
 
 
 
 

 
 
 
 

                    (7.23) 
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Definition 7.11: The score function of an IVSF number (𝛼̃ = 〈[𝑎, 𝑏], [𝑐, 𝑑], [𝑒, 𝑓]〉) is 

given in Eq. (7.24) (Kutlu Gündoğdu and Kahraman, 2019c).  

𝑆𝑐𝑜𝑟𝑒(𝛼̃) = 𝑆(𝛼̃) =
𝑎2+𝑏2−𝑐2−𝑑2−(𝑒 2⁄ )

2
−(
𝑓
2⁄ )

2

2
                      (7.24) 

where 𝑆𝑐𝑜𝑟𝑒(𝛼̃) = 𝑆(𝛼̃) ∈ [−1,+1]. Obviously, the greater the 𝑆(𝛼̃), the larger the 

𝛼. In particular, when 𝑆(𝛼̃) = 1 then 𝛼̃ = 〈[1,1], [0,0], [0,0]〉; when 𝑆(𝛼̃) = −1 then 

𝛼̃ = 〈[0,0], [1,1], [0,0]〉. 

Definition 7.12: The accuracy function of an IVSF number is given in Eq. (7.25) 

(Kutlu Gündoğdu and Kahraman, 2019c). 

  𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝛼̃) = 𝐻(𝛼̃) =
𝑎2+𝑏2+𝑐2+𝑑2+𝑒2+𝑓2

2
                      (7.25) 

where 𝐻(𝛼̃) ∈ [0,1]. 

Note that: 𝛼̃1 < 𝛼̃2 if and only if 𝑆(𝛼̃1) < 𝑆(𝛼̃2) or 𝑆(𝛼̃1) = 𝑆(𝛼̃2) and 𝐻(𝛼̃1) <

𝐻(𝛼̃2)    

Definition 7.13: Let 𝛼̃1 = 〈[𝑎1, 𝑏1], [𝑐1, 𝑑1], [𝑒1, 𝑓1]〉 and 𝛼̃2 = 〈[𝑎2,

𝑏2], [𝑐2, 𝑑2], [𝑒2, 𝑓2]〉 be two IVSF numbers, the distance between 𝛼̃1 and 𝛼̃2 is given 

in Eq. (7.26) (Peng and Yang, 2016): 

𝑑(𝛼̃1, 𝛼̃2) =
1

4
(
|𝑎1
2 − 𝑎2

2| + |𝑏1
2 − 𝑏2

2| + |𝑐1
2 − 𝑐2

2|

+|𝑑1
2 − 𝑑2

2| + |𝑒1
2 − 𝑒2

2| + |𝑓1
2 − 𝑓2

2|
)          (7.26) 

7.3.4 Z-fuzzy numbers 

A Z-fuzzy number is a 2-tuple fuzzy number, 𝑍(𝐴̃, 𝑅̃), consists of restriction function 

(𝐴̃) and the reliability function (𝑅̃) of it, as shown in Figure 7.2.  

 

Figure 7.2 : A simple Z-fuzzy number, 𝑍(𝐴̃, 𝑅̃). 

Z-fuzzy numbers allow calculations with fuzzy numbers containing reliability 

information. 
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Due to the computational complexity of Z-fuzzy numbers, the conversion of Z-fuzzy 

numbers to ordinary fuzzy numbers is commonly used. Kang et al. (2012a) propose an 

approach to convert Z-fuzzy numbers to regular fuzzy numbers as given in Definition 

(7.14): 

Definition 7.14:  Let 𝑍 = (𝐴̃, 𝑅̃) be a Z-fuzzy number as given in Figure 7.2 whose 

left side represents the trapezoidal fuzzy restriction function, and the right side 

represents the triangular fuzzy reliability function, where 𝐴̃ =

{〈𝑥, 𝜇𝐴̃(𝑥)〉|𝜇(𝑥) ∈ [0,1]} and 𝑅̃ = {〈𝑥, 𝜇𝑅̃(𝑥)〉|𝜇(𝑥) ∈ [0,1]}. 𝜇𝐴̃(𝑥) and 𝜇𝑅̃(𝑥) are 

the membership functions of restriction and reliability, respectively.   

The fuzzy reliability function is converted to its corresponding crisp number using Eq. 

(7.27): 

𝛼 =
∫𝑥𝜇𝑅̃(𝑥)𝑑𝑥

∫𝜇𝑅̃(𝑥) 𝑑𝑥
                            (7.27) 

where ∫  represents an algebraic integration. 

The corresponding crisp value of reliability function is incorporated to the restriction 

function using Eq. (7.28) and the weighted restriction number (𝑍̃𝛼) is obtained. 

𝑍̃𝛼 = {〈𝑥, 𝜇𝐴̃𝛼(𝑥)〉|𝜇𝐴̃𝛼(𝑥) = 𝛼𝜇𝐴̃(𝑥), 𝜇(𝑥) ∈ [0,1]}          (7.28) 

The weighted restriction number is converted to ordinary fuzzy number by Eq. (7.29). 

The obtained ordinary fuzzy number is given in Figure 7.3. 

𝑍̃′ = {〈𝑥, 𝜇𝑍̃′(𝑥)〉|𝜇𝑍̃′(𝑥) = 𝜇𝐴̃ (
𝑥

√𝛼
) , 𝜇(𝑥) ∈ [0,1]}          (7.29) 

 

Figure 7.3 : Ordinary fuzzy number converted from Z-fuzzy number. 

If the heights of restriction and reliability functions are any value between 0 and 1, 

then the modified calculations are given in Tüysüz and Kahraman (2023). 

√𝛼𝑎4 √𝛼𝑎3 √𝛼𝑎2 √𝛼𝑎1 

𝑍̃′ 

1 

0 

𝜇(𝑥) 

𝑥 
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 The Proposed Method: Interval-Valued Spherical Fuzzy Z-AHP 

Steps of the interval-valued spherical fuzzy Z-AHP (IVSF Z-AHP) method are 

presented in this section. The flowchart of the proposed method is given in Figure 7.4. 

 

Figure 7.4 : Flowchart of the proposed IVSF Z-AHP method. 

Way 1 Way 2 
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Step 1. The hierarchical structure consisting of goal, main-criteria (j=1,2,…,n), sub-

criteria (s=1,2,…t) and alternatives (i=1,2,…,m) related to the decision problem is 

constructed as given in Figure 7.5.  

 

Figure 7.5 : Hierarchical structure for decision problem. 

Step 2. Define the linguistic terms and their corresponding IVSF Z-numbers for both 

restriction and reliability functions that will be used in DMs’ evaluations. In this step, 

we define new IVSF Z restriction and reliability scales as in Tables 7.5 and 7.6. Then, 

collect the pairwise comparisons from k (k =1,2,…,K) DMs using these linguistic 

expressions. 

A linguistic term in Tables 7.5 and 7.6 can be represented by Eq. (7.30).  

𝑍̃𝐷𝑀𝑘 = (𝐴̃, 𝑅̃) = (
([µ𝐴,𝐿

𝐷𝑀𝑘 , µ𝐴,𝑈
𝐷𝑀𝑘], [𝜗𝐴,𝐿

𝐷𝑀𝑘 , 𝜗𝐴,𝑈
𝐷𝑀𝑘], [π𝐴,𝐿

𝐷𝑀𝑘 , π𝐴,𝑈
𝐷𝑀𝑘]),

([µ𝑅,𝐿
𝐷𝑀𝑘 , µ𝑅,𝑈

𝐷𝑀𝑘], [𝜗𝑅,𝐿
𝐷𝑀𝑘 , 𝜗𝑅,𝑈

𝐷𝑀𝑘], [π𝑅,𝐿
𝐷𝑀𝑘 , π𝑅,𝑈

𝐷𝑀𝑘])
)          (7.30) 

where µ𝐴,𝐿
𝐷𝑀𝑘 , 𝜗𝐴,𝐿

𝐷𝑀𝑘  and π𝐴,𝐿
𝐷𝑀𝑘  represent the lower membership degree, lower non-

membership degree and lower hesitancy degree of 𝑥 to 𝐴̃ for restriction function of kth 

DM, respectively. µ𝑅,𝐿
𝐷𝑀𝑘 , 𝜗𝑅,𝐿

𝐷𝑀𝑘  and π𝑅,𝐿
𝐷𝑀𝑘  represent the lower membership degree, 

lower non-membership degree and lower hesitancy degree of 𝑥 to 𝑅̃ for reliability 

function of kth DM. Other parameters represent upper bounds in both functions. 

Table 7.5 : IVSF Z restriction scale for pairwise comparisons. 

Linguistic Terms Abbr. (µ𝐿 , µ𝑈], [𝜗𝐿 , 𝜗𝑈], [π𝐿 , π𝑈]) 
Absolutely High Importance AHI ([0.80, 0.95],[0.00, 0.15],[0.00, 0.15]) 

Very High Importance VHI ([0.70, 0.85],[0.10, 0.25],[0.10, 0.25]) 

High Importance HI ([0.60, 0.75],[0.20, 0.35],[0.20, 0.35]) 

Slightly High Importance SHI ([0.50, 0.65],[0.30, 0.45],[0.30, 0.45]) 

Equally Importance EI ([0.40, 0.55],[0.40, 0.55],[0.40, 0.55]) 

Slightly Low Importance SLI ([0.30, 0.45],[0.50, 0.65],[0.30, 0.45]) 

Low Importance LI ([0.20, 0.35],[0.60, 0.75],[0.20, 0.35]) 

Very Low Importance VLI ([0.10, 0.25],[0.70, 0.85],[0.10, 0.25]) 

Absolutely Low Importance ALI ([0.00, 0.15],[0.80, 0.95],[0.00, 0.15]) 
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Table 7.6 : IVSF Z reliability scale for pairwise comparisons. 

Linguistic Terms Abbr. (µ𝐿 , µ𝑈], [𝜗𝐿 , 𝜗𝑈], [π𝐿 , π𝑈]) 
Very Strongly Reliable VSR ([0.80, 0.95],[0.00, 0.15],[0.00, 0.15]) 

Strongly Reliable SR ([0.70, 0.85],[0.10, 0.25],[0.10, 0.25]) 

Very Highly Reliable VHR ([0.60, 0.75],[0.20, 0.35],[0.20, 0.35]) 

Highly Reliable HR ([0.50, 0.65],[0.30, 0.45],[0.30, 0.45]) 

Fairly Reliable FR ([0.40, 0.55],[0.40, 0.55],[0.40, 0.55]) 

Weakly Reliable WR ([0.30, 0.45],[0.50, 0.65],[0.30, 0.45]) 

Very Weakly Reliable VWR ([0.20, 0.35],[0.60, 0.75],[0.20, 0.35]) 

Strongly Unreliable SU ([0.10, 0.25],[0.70, 0.85],[0.10, 0.25]) 

Absolutely Unreliable AU ([0.00, 0.15],[0.80, 0.95],[0.00, 0.15]) 

 

In Table 7.6, for instance, the expression "strongly reliable" means that DMs are 

strongly sure from their judgments. Similarly, the expression “weakly reliable” means 

that DMs are weakly sure from their judgments. The IVSF Z pairwise comparison 

matrix is shown in Table 7.7 for criteria. 

Table 7.7 : IVSF Z pairwise comparison matrix for criteria. 

 𝑪𝟏 … 𝑪𝒏 

𝑪𝟏 (
([µ𝐴,𝐿11

𝐷𝑀𝑘 , µ𝐴,𝑈11
𝐷𝑀𝑘 ], [𝜗𝐴,𝐿11

𝐷𝑀𝑘 , 𝜗𝐴,𝑈11
𝐷𝑀𝑘 ], [π𝐴,𝐿11

𝐷𝑀𝑘 , π𝐴,𝑈11
𝐷𝑀𝑘 ]),

([µ𝑅,𝐿11
𝐷𝑀𝑘 , µ𝑅,𝑈11

𝐷𝑀𝑘 ], [𝜗𝑅,𝐿11
𝐷𝑀𝑘 , 𝜗𝑅,𝑈11

𝐷𝑀𝑘 ], [π𝑅,𝐿11
𝐷𝑀𝑘 , π𝑅,𝑈11

𝐷𝑀𝑘 ])
) … (

([µ𝐴,𝐿1𝑛
𝐷𝑀𝑘 , µ𝐴,𝑈1𝑛

𝐷𝑀𝑘 ], [𝜗𝐴,𝐿1𝑛
𝐷𝑀𝑘 , 𝜗𝐴,𝑈1𝑛

𝐷𝑀𝑘 ], [π𝐴,𝐿1𝑛
𝐷𝑀𝑘 , π𝐴,𝑈1𝑛

𝐷𝑀𝑘 ]),

([µ𝑅,𝐿1𝑛
𝐷𝑀𝑘 , µ𝑅,𝑈1𝑛

𝐷𝑀𝑘 ], [𝜗𝑅,𝐿1𝑛
𝐷𝑀𝑘 , 𝜗𝑅,𝑈1𝑛

𝐷𝑀𝑘 ], [π𝑅,𝐿1𝑛
𝐷𝑀𝑘 , π𝑅,𝑈1𝑛

𝐷𝑀𝑘 ])
) 

⋮ ⋮ ⋱ ⋮ 

𝑪𝒏 (
([µ𝐴,𝐿𝑛1

𝐷𝑀𝑘 , µ𝐴,𝑈𝑛1
𝐷𝑀𝑘 ], [𝜗𝐴,𝐿𝑛1

𝐷𝑀𝑘 , 𝜗𝐴,𝑈𝑛1
𝐷𝑀𝑘 ], [π𝐴,𝐿𝑛1

𝐷𝑀𝑘 , π𝐴,𝑈𝑛1
𝐷𝑀𝑘 ]),

([µ𝑅,𝐿𝑛1
𝐷𝑀𝑘 , µ𝑅,𝑈𝑛1

𝐷𝑀𝑘 ], [𝜗𝑅,𝐿𝑛1
𝐷𝑀𝑘 , 𝜗𝑅,𝑈𝑛1

𝐷𝑀𝑘 ], [π𝑅,𝐿𝑛1
𝐷𝑀𝑘 , π𝑅,𝑈𝑛1

𝐷𝑀𝑘 ])
) … (

([µ𝐴,𝐿𝑛𝑛
𝐷𝑀𝑘 , µ𝐴,𝑈𝑛𝑛

𝐷𝑀𝑘 ], [𝜗𝐴,𝐿𝑛𝑛
𝐷𝑀𝑘 , 𝜗𝐴,𝑈𝑛𝑛

𝐷𝑀𝑘 ], [π𝐴,𝐿𝑛𝑛
𝐷𝑀𝑘 , π𝐴,𝑈𝑛𝑛

𝐷𝑀𝑘 ]),

([µ𝑅,𝐿𝑛𝑛
𝐷𝑀𝑘 , µ𝑅,𝑈𝑛𝑛

𝐷𝑀𝑘 ], [𝜗𝑅,𝐿𝑛𝑛
𝐷𝑀𝑘 , 𝜗𝑅,𝑈𝑛𝑛

𝐷𝑀𝑘 ], [π𝑅,𝐿𝑛𝑛
𝐷𝑀𝑘 , π𝑅,𝑈𝑛𝑛

𝐷𝑀𝑘 ])
) 

 

The IVSF Z pairwise comparison matrix for alternatives is shown in Table 7.8 with 

respect to each main criterion or each sub-criterion.  

Table 7.8 : IVSF Z pairwise comparison matrix for alternatives. 

 𝑨𝟏 … 𝑨𝒎 

𝑨𝟏 (
([µ𝐴,𝐿11

𝐷𝑀𝑘 , µ𝐴,𝑈11
𝐷𝑀𝑘 ], [𝜗𝐴,𝐿11

𝐷𝑀𝑘 , 𝜗𝐴,𝑈11
𝐷𝑀𝑘 ], [π𝐴,𝐿11

𝐷𝑀𝑘 , π𝐴,𝑈11
𝐷𝑀𝑘 ]),

([µ𝑅,𝐿11
𝐷𝑀𝑘 , µ𝑅,𝑈11

𝐷𝑀𝑘 ], [𝜗𝑅,𝐿11
𝐷𝑀𝑘 , 𝜗𝑅,𝑈11

𝐷𝑀𝑘 ], [π𝑅,𝐿11
𝐷𝑀𝑘 , π𝑅,𝑈11

𝐷𝑀𝑘 ])
) … (

([µ𝐴,𝐿1𝑚
𝐷𝑀𝑘 , µ𝐴,𝑈1𝑚

𝐷𝑀𝑘 ], [𝜗𝐴,𝐿1𝑚
𝐷𝑀𝑘 , 𝜗𝐴,𝑈1𝑚

𝐷𝑀𝑘 ], [π𝐴,𝐿1𝑚
𝐷𝑀𝑘 , π𝐴,𝑈1𝑚

𝐷𝑀𝑘 ]),

([µ𝑅,𝐿1𝑚
𝐷𝑀𝑘 , µ𝑅,𝑈1𝑚

𝐷𝑀𝑘 ], [ν𝑅,𝐿1𝑚
𝐷𝑀𝑘 , ν𝑅,𝑈1𝑚

𝐷𝑀𝑘 ], [π𝑅,𝐿1𝑚
𝐷𝑀𝑘 , π𝑅,𝑈1𝑚

𝐷𝑀𝑘 ])
) 

⋮ ⋮ ⋱ ⋮ 

𝑨𝒎 (
([µ𝐴,𝐿𝑚1

𝐷𝑀𝑘 , µ𝐴,𝑈𝑚1

𝐷𝑀𝑘 ], [𝜗𝐴,𝐿𝑚1

𝐷𝑀𝑘 , 𝜗𝐴,𝑈𝑚1

𝐷𝑀𝑘 ], [π𝐴,𝐿𝑚1

𝐷𝑀𝑘 , π𝐴,𝑈𝑚1

𝐷𝑀𝑘 ]),

([µ𝑅,𝐿𝑚1

𝐷𝑀𝑘 , µ𝑅,𝑈𝑚1

𝐷𝑀𝑘 ], [𝜗𝑅,𝐿𝑚1

𝐷𝑀𝑘 , 𝜗𝑅,𝑈𝑚1

𝐷𝑀𝑘 ], [π𝑅,𝐿𝑚1

𝐷𝑀𝑘 , π𝑅,𝑈𝑚1

𝐷𝑀𝑘 ])
) … (

([µ𝐴,𝐿𝑚𝑚

𝐷𝑀𝑘 , µ𝐴,𝑈𝑚𝑚

𝐷𝑀𝑘 ], [𝜗𝐴,𝐿𝑚𝑚

𝐷𝑀𝑘 , 𝜗𝐴,𝑈𝑚𝑚

𝐷𝑀𝑘 ], [π𝐴,𝐿𝑚𝑚

𝐷𝑀𝑘 , π𝐴,𝑈𝑚𝑚

𝐷𝑀𝑘 ]),

([µ𝑅,𝐿𝑚𝑚

𝐷𝑀𝑘 , µ𝑅,𝑈𝑚𝑚

𝐷𝑀𝑘 ], [𝜗𝑅,𝐿𝑚𝑚

𝐷𝑀𝑘 , 𝜗𝑅,𝑈𝑚𝑚

𝐷𝑀𝑘 ], [π𝑅,𝐿𝑚𝑚

𝐷𝑀𝑘 , π𝑅,𝑈𝑚𝑚

𝐷𝑀𝑘 ])
) 

 

Step 3. For each DM’s pairwise comparison matrix, the consistency ratio (CR) is 

calculated. For this purpose, we propose new defuzzification functions as given in Eqs. 

(7.31-7.32) to obtain corresponding crisp values of restriction and reliability functions 

of IVSF Z-numbers. After the DMs’ pairwise comparisons are collected, for 

consistency measurement, restriction component of each judgment is transformed to 

its crisp value, and then Saaty’s (1980) classical consistency ratio (CR) is calculated 

for each pairwise comparison matrix. If CR is smaller than 0.1, the pairwise 
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comparison matrix is accepted within the allowable consistency limits. Otherwise, 

experts should reevaluate their pairwise comparisons.  

Let an IVSF restriction number be 𝛼̃ = 〈[𝑎, 𝑏], [𝑐, 𝑑], [𝑒, 𝑓]〉. The proposed 

defuzzification formula for this restriction function is given by Eq. (7.31): 

𝐷𝑒𝑓𝐴̃ = 

{
 
 

 
 7 ∗ 𝑎2 + 5 ∗ 𝑏2 − 3 ∗ 𝑐2 − 3 ∗ 𝑑2 − (𝑒 2⁄ )

2
− (

𝑓
2⁄ )

2

,      𝑓𝑜𝑟 AHI, VHI, HI, SHI, EI.

|
1

3 ∗ 𝑎2 + 3 ∗ 𝑏2 − 7 ∗ 𝑐2 − 5 ∗ 𝑑2 − (𝑒 2⁄ )
2
− (

𝑓
2⁄ )

2|   ,      𝑓𝑜𝑟 SLI, LI, VLI, ALI.
 

         (7.31) 

Let an IVSF reliability number be 𝛼̃ = 〈[𝑎, 𝑏], [𝑐, 𝑑], [𝑒, 𝑓]〉. The proposed 

defuzzification formula for this reliability function is given by Eq. (7.32): 

𝐷𝑒𝑓𝑅̃ = 

{
  
 

  
 (7 ∗ 𝑎2 + 5 ∗ 𝑏2 − 3 ∗ 𝑐2 − 3 ∗ 𝑑2 − (𝑒 2⁄ )

2
− (

𝑓
2⁄ )

2

)

10
  ,   𝑓𝑜𝑟 VSR, SR, VHR,HR, FR.

|
1

10 ∗ (3 ∗ 𝑎2 + 3 ∗ 𝑏2 − 7 ∗ 𝑐2 − 5 ∗ 𝑑2 − (𝑒 2⁄ )
2
− (

𝑓
2
⁄ )

2

)

| , 𝑓𝑜𝑟 WR, VWR, SU, AU.

 

                     (7.32) 

 

Step 4. The IVSF Z matrices of all DMs are aggregated to obtain a single decision 

matrix for the calculation process using IVSWAM or IVSWGM operators that are 

given in Definitions 7.9 and 7.10, respectively.  

Assume three DMs assign the following IVSF Z-numbers:  

𝑍̃𝐷𝑀1 = (𝐴̃, 𝑅̃) = (
([µ𝐴,𝐿𝑖𝑗

𝐷𝑀1, µ𝐴,𝑈𝑖𝑗
𝐷𝑀1 ], [𝜗𝐴,𝐿𝑖𝑗

𝐷𝑀1, 𝜗𝐴,𝑈𝑖𝑗
𝐷𝑀1], [π𝐴,𝐿𝑖𝑗

𝐷𝑀1, π𝐴,𝑈𝑖𝑗
𝐷𝑀1 ]) ,

([µ𝑅,𝐿𝑖𝑗
𝐷𝑀1, µ𝑅,𝑈𝑖𝑗

𝐷𝑀1 ] , [𝜗𝑅,𝐿𝑖𝑗
𝐷𝑀1, 𝜗𝑅,𝑈𝑖𝑗

𝐷𝑀1], [π𝑅,𝐿𝑖𝑗
𝐷𝑀1, π𝑅,𝑈𝑖𝑗

𝐷𝑀1 ])
)        (7.33) 

𝑍̃𝐷𝑀2 = (𝐴̃, 𝑅̃) = (
([µ𝐴,𝐿𝑖𝑗

𝐷𝑀2, µ𝐴,𝑈𝑖𝑗
𝐷𝑀2 ], [𝜗𝐴,𝐿𝑖𝑗

𝐷𝑀2, 𝜗𝐴,𝑈𝑖𝑗
𝐷𝑀2], [π𝐴,𝐿𝑖𝑗

𝐷𝑀2, π𝐴,𝑈𝑖𝑗
𝐷𝑀2 ]) ,

([µ𝑅,𝐿𝑖𝑗
𝐷𝑀2, µ𝑅,𝑈𝑖𝑗

𝐷𝑀2 ] , [𝜗𝑅,𝐿𝑖𝑗
𝐷𝑀2, 𝜗𝑅,𝑈𝑖𝑗

𝐷𝑀2], [π𝑅,𝐿𝑖𝑗
𝐷𝑀2, π𝑅,𝑈𝑖𝑗

𝐷𝑀2 ])
)        (7.34) 

𝑍̃𝐷𝑀3 = (𝐴̃, 𝑅̃) = (
([µ𝐴,𝐿𝑖𝑗

𝐷𝑀3, µ𝐴,𝑈𝑖𝑗
𝐷𝑀3 ], [𝜗𝐴,𝐿𝑖𝑗

𝐷𝑀3, 𝜗𝐴,𝑈𝑖𝑗
𝐷𝑀3], [π𝐴,𝐿𝑖𝑗

𝐷𝑀3, π𝐴,𝑈𝑖𝑗
𝐷𝑀3 ]) ,

([µ𝑅,𝐿𝑖𝑗
𝐷𝑀3, µ𝑅,𝑈𝑖𝑗

𝐷𝑀3 ] , [𝜗𝑅,𝐿𝑖𝑗
𝐷𝑀3, 𝜗𝑅,𝑈𝑖𝑗

𝐷𝑀3], [π𝑅,𝐿𝑖𝑗
𝐷𝑀3, π𝑅,𝑈𝑖𝑗

𝐷𝑀3 ])
)        (7.35) 

Aggregation of these evaluations is made by using IVSWAM or IVSWGM 

aggregation operators given in Eqs. (7.22-7.23), respectively. The aggregated IVSF Z 

number based on IVSWGM operator is given in Eq. (7.36).  
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𝑐̃𝑖𝑗 = (𝐴̃, 𝑅̃) 

=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[((µ𝐴,𝐿𝑖𝑗
𝐷𝑀1)

𝑤𝑗
∗ (µ𝐴,𝐿𝑖𝑗

𝐷𝑀2)
𝑤𝑗
∗ (µ𝐴,𝐿𝑖𝑗

𝐷𝑀3)
𝑤𝑗
) , ((µ𝐴,𝑈𝑖𝑗

𝐷𝑀1 )
𝑤𝑗
∗ (µ𝐴,𝑈𝑖𝑗

𝐷𝑀2 )
𝑤𝑗
∗ (µ𝐴,𝑈𝑖𝑗

𝐷𝑀3 )
𝑤𝑗
)] ,

[
 
 
 
 
 
√(1 − (1 − (𝜗𝐴,𝐿𝑖𝑗

𝐷𝑀1)
2

)
𝑤𝑗

∗ (1 − (𝜗𝐴,𝐿𝑖𝑗
𝐷𝑀2)

2

)
𝑤𝑗

∗ (1 − (𝜗𝐴,𝐿𝑖𝑗
𝐷𝑀3)

2

)
𝑤𝑗

) ,

√(1 − (1 − (𝜗𝐴,𝑈𝑖𝑗
𝐷𝑀1)

2

)
𝑤𝑗

∗ (1 − (𝜗𝐴,𝑈𝑖𝑗
𝐷𝑀2)

2

)
𝑤𝑗

∗ (1 − (𝜗𝐴,𝑈𝑖𝑗
𝐷𝑀3)

2

)
𝑤𝑗

)
]
 
 
 
 
 

,

[
 
 
 
 
 
 
 
 
 
 
 
 

√
  
  
  
  
  
  
 

(1 − (𝜗𝐴,𝐿𝑖𝑗
𝐷𝑀1)

2

)
𝑤𝑗

∗ (1 − (𝜗𝐴,𝐿𝑖𝑗
𝐷𝑀2)

2

)
𝑤𝑗

∗ (1 − (𝜗𝐴,𝐿𝑖𝑗
𝐷𝑀3)

2

)
𝑤𝑗

−

(
(1 − (𝜗𝐴,𝐿𝑖𝑗

𝐷𝑀1)
2

− (π𝐴,𝐿𝑖𝑗
𝐷𝑀1)

2

)
𝑤𝐽

∗ (1 − (𝜗𝐴,𝐿𝑖𝑗
𝐷𝑀2)

2

− (π𝐴,𝐿𝑖𝑗
𝐷𝑀2)

2

)
𝑤𝑗

∗ (1 − (𝜗𝐴,𝐿𝑖𝑗
𝐷𝑀3)

2

− (π𝐴,𝐿𝑖𝑗
𝐷𝑀3)

2

)
𝑤𝑗

) ,

√
  
  
  
  
  
  
 

(1 − (𝜗𝐴,𝑈𝑖𝑗
𝐷𝑀1)

2

)
𝑤𝑗

∗ (1 − 𝜗𝐴,𝑈𝑖𝑗
𝐷𝑀2)

𝑤𝑗
∗ (1 − 𝜗𝐴,𝑈𝑖𝑗

𝐷𝑀3)
𝑤𝑗
−

(
(1 − (𝜗𝐴,𝑈𝑖𝑗

𝐷𝑀1)
2

− (π𝐴,𝑈𝑖𝑗
𝐷𝑀1)

2

)
𝑤𝐽

∗ (1 − (𝜗𝐴,𝑈𝑖𝑗
𝐷𝑀2)

2

− (π𝐴,𝑈𝑖𝑗
𝐷𝑀2)

2

)
𝑤𝑗

∗ (1 − (𝜗𝐴,𝑈𝑖𝑗
𝐷𝑀3)

2

− (π𝐴,𝑈𝑖𝑗
𝐷𝑀3 )

2

)
𝑤𝑗

)

]
 
 
 
 
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

,

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[((µ𝑅,𝐿𝑖𝑗
𝐷𝑀1)

𝑤𝑗
∗ (µ𝑅,𝐿𝑖𝑗

𝐷𝑀2)
𝑤𝑗
∗ (µ𝑅,𝐿𝑖𝑗

𝐷𝑀3)
𝑤𝑗
) , ((µ𝑅,𝑈𝑖𝑗

𝐷𝑀1 )
𝑤𝑗
∗ (µ𝑅,𝑈𝑖𝑗

𝐷𝑀2 )
𝑤𝑗
∗ (µ𝑅,𝑈𝑖𝑗

𝐷𝑀3 )
𝑤𝑗
)] ,

[
 
 
 
 
 
√(1 − (1 − (𝜗𝑅,𝐿𝑖𝑗

𝐷𝑀1)
2

)
𝑤𝑗

∗ (1 − (𝜗𝑅,𝐿𝑖𝑗
𝐷𝑀2)

2

)
𝑤𝑗

∗ (1 − (𝜗𝑅,𝐿𝑖𝑗
𝐷𝑀3)

2

)
𝑤𝑗

) ,

√(1 − (1 − (𝜗𝑅,𝑈𝑖𝑗
𝐷𝑀1)

2

)
𝑤𝑗

∗ (1 − (𝜗𝑅,𝑈𝑖𝑗
𝐷𝑀2)

2

)
𝑤𝑗

∗ (1 − (𝜗𝑅,𝑈𝑖𝑗
𝐷𝑀3)

2

)
𝑤𝑗

)
]
 
 
 
 
 

,

[
 
 
 
 
 
 
 
 
 
 
 
 

√
  
  
  
  
  
  
 

(1 − (𝜗𝑅,𝐿𝑖𝑗
𝐷𝑀1)

2

)
𝑤𝑗

∗ (1 − (𝜗𝑅,𝐿𝑖𝑗
𝐷𝑀2)

2

)
𝑤𝑗

∗ (1 − (𝜗𝑅,𝐿𝑖𝑗
𝐷𝑀3)

2

)
𝑤𝑗

−

(
(1 − (𝜗𝑅,𝐿𝑖𝑗

𝐷𝑀1)
2

− (π𝑅,𝐿𝑖𝑗
𝐷𝑀1)

2

)
𝑤𝐽

∗ (1 − (𝜗𝑅,𝐿𝑖𝑗
𝐷𝑀2)

2

− (π𝑅,𝐿𝑖𝑗
𝐷𝑀2)

2

)
𝑤𝑗

∗ (1 − (𝜗𝑅,𝐿𝑖𝑗
𝐷𝑀3)

2

− (π𝑅,𝐿𝑖𝑗
𝐷𝑀3)

2

)
𝑤𝑗

) ,

√
  
  
  
  
  
  
 

(1 − (𝜗𝑅,𝑈𝑖𝑗
𝐷𝑀1)

2

)
𝑤𝑗

∗ (1 − 𝜗𝑅,𝑈𝑖𝑗
𝐷𝑀2)

𝑤𝑗
∗ (1 − 𝜗𝑅,𝑈𝑖𝑗

𝐷𝑀3)
𝑤𝑗
−

(
(1 − (𝜗𝑅,𝑈𝑖𝑗

𝐷𝑀1)
2

− (π𝑅,𝑈𝑖𝑗
𝐷𝑀1 )

2

)
𝑤𝐽

∗ (1 − (𝜗𝑅,𝑈𝑖𝑗
𝐷𝑀2)

2

− (π𝑅,𝑈𝑖𝑗
𝐷𝑀2 )

2

)
𝑤𝑗

∗ (1 − (𝜗𝑅,𝑈𝑖𝑗
𝐷𝑀3)

2

− (π𝑅,𝑈𝑖𝑗
𝐷𝑀3 )

2

)
𝑤𝑗

)

]
 
 
 
 
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

i=1,2,…,n;  j=1,2,…,n                                                           (7.36) 

These aggregated values construct the matrix given in Eq. (7.37). 

𝑍̃𝐴𝑔𝑔 =

[
 
 
 
 
 
𝑐̃11 𝑐̃12 … 𝑐̃1𝑛
𝑐̃21 𝑐̃22 … 𝑐̃2𝑛
⋮ ⋮ ⋱ ⋮
𝑐̃𝑖1 𝑐̃𝑖2 𝑐̃𝑖𝑗 𝑐̃𝑖𝑛
⋮ ⋮ ⋱ ⋮
𝑐̃𝑛1 𝑐̃𝑛2 … 𝑐̃𝑛𝑛]

 
 
 
 
 

 i=1,2,…n,    j=1,2,…,n        (7.37) 
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Step 5. Defuzzify IVSF Z reliability functions in 𝑍̃𝐴𝑔𝑔 using Eq. (7.32). The reliability 

values below the diagonal of the aggregated pairwise comparison matrix are 

determined by multiplicative inverses after the reliability values above the diagonal 

are defuzzified as in Eq. (7.38). 

𝑍̃
𝑑𝑒𝑓𝑅̃
𝐴𝑔𝑔

=

[
 
 
 
 
 
 
(𝐴̃11, 𝑑𝑒𝑓𝑅̃11) (𝐴̃12, 𝑑𝑒𝑓𝑅̃12) … (𝐴̃1𝑛, 𝑑𝑒𝑓𝑅̃1𝑛)

(𝐴̃21, 1/𝑑𝑒𝑓𝑅̃12) (𝐴̃22, 𝑑𝑒𝑓𝑅̃22) … (𝐴̃2𝑛, 𝑑𝑒𝑓𝑅̃2𝑛)

⋮ ⋮ ⋱ ⋮
(𝐴̃𝑖1, 1/𝑑𝑒𝑓𝑅̃1𝑖) (𝐴̃𝑖2, 1/𝑑𝑒𝑓𝑅̃2𝑖) (𝐴̃𝑖𝑗 , 𝑑𝑒𝑓𝑅̃𝑖𝑗) (𝐴̃𝑖𝑛, 𝑑𝑒𝑓𝑅̃𝑖𝑛)

⋮ ⋮ ⋱ ⋮
(𝐴̃𝑛1, 1/𝑑𝑒𝑓𝑅̃1𝑛) (𝐴̃𝑛2, 1/𝑑𝑒𝑓𝑅̃2𝑛) … (𝐴̃𝑛𝑛, 𝑑𝑒𝑓𝑅̃𝑛𝑛)]

 
 
 
 
 
 

 

                      (7.38) 

Step 6. Calculate the restriction function integrated by the square root of defuzzified 

reliability (𝑑𝑒𝑓𝑅̃) values as in Eq. (7.39). After this step, IVSF Z matrix in Eq. (7.38) 

is transformed to ordinary IVSF matrix (𝐼𝑉𝑆ℳ̃
𝑑𝑒𝑓𝑅̃
𝐴𝑔𝑔

). 

𝐼𝑉𝑆ℳ̃𝑑𝑒𝑓𝑅̃
𝐴𝑔𝑔

=

[
 
 
 
 
 
 
 
 (𝐴̃11 ∗ √𝑑𝑒𝑓𝑅̃11) (𝐴̃12 ∗ √𝑑𝑒𝑓𝑅̃12) … (𝐴̃1𝑛 ∗ √𝑑𝑒𝑓𝑅̃1𝑛)

(𝐴̃21 ∗ √1/𝑑𝑒𝑓𝑅̃12) (𝐴̃22 ∗ √𝑑𝑒𝑓𝑅̃22) … (𝐴̃2𝑛 ∗ √𝑑𝑒𝑓𝑅̃2𝑛)

⋮ ⋮ ⋱ ⋮

(𝐴̃𝑖1 ∗ √1/𝑑𝑒𝑓𝑅̃1𝑖) (𝐴̃𝑖2 ∗ √1/𝑑𝑒𝑓𝑅̃2𝑖) (𝐴̃𝑖𝑗 ∗ √𝑑𝑒𝑓𝑅̃𝑖𝑗) (𝐴̃𝑖𝑛 ∗ √𝑑𝑒𝑓𝑅̃𝑖𝑛)

⋮ ⋮ ⋱ ⋮

(𝐴̃𝑛1 ∗ √1/𝑑𝑒𝑓𝑅̃1𝑛) (𝐴̃𝑛2 ∗ √1/𝑑𝑒𝑓𝑅̃2𝑛) … (𝐴̃𝑛𝑛 ∗ √𝑑𝑒𝑓𝑅̃𝑛𝑛)]
 
 
 
 
 
 
 
 

  

                           (7.39) 

Step 7. Calculate the interval-valued spherical mean (𝐼𝑉𝑆𝑀̃) vector using IVSWAM 

or IVSWGM operators given in Eqs. (7.41-7.42). Let (𝐴̃𝑖𝑗 ∗ √𝑑𝑒𝑓𝑅̃𝑖𝑗) be represented 

by ℎ̃𝑖𝑗 = ([µℎ̃𝑖𝑗,𝐿 , µℎ̃𝑖𝑗,𝑈] , [𝜗ℎ̃𝑖𝑗,𝐿, 𝜗ℎ̃𝑖𝑗,𝑈] , [πℎ̃𝑖𝑗,𝐿 , πℎ̃𝑖𝑗,𝑈]). Thus, IVSF local weights are 

obtained, and 𝑛 × 𝑛 matrix transforms to 𝑛 × 1 vector as in Eq. (7.40). 

                                             𝐼𝑉𝑆𝑀̃ =

[
 
 
 
ℎ̃11
ℎ̃21
⋮
ℎ̃𝑛1]

 
 
 

                        (7.40) 

where  
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𝐼𝑉𝑆𝑊𝐴𝑀(ℎ̃𝑖1) = 

(

 
 
 
 
 
 
 
 
 [√1 −∏ (1 − (µℎ̃𝑖𝑗,𝐿)

2

)
𝑤𝑗

𝑛
𝑗=1 , √1 − ∏ (1 − (µℎ̃𝑖𝑗,𝑈)

2

)
𝑤𝑗

𝑛
𝑗=1  ] ,

[∏ (𝜗ℎ̃𝑖𝑗,𝐿)
𝑤𝑗𝑛

𝑗=1 , ∏ (𝜗ℎ̃𝑖𝑗,𝑈)
𝑤𝑗𝑛

𝑗=1 ] ,

[
 
 
 
 
 
√∏ (1 − (µℎ̃𝑖𝑗,𝐿)

2

)
𝑤𝑗

−𝑛
𝑗=1 ∏ (1 − (µℎ̃𝑖𝑗,𝐿)

2

− (πℎ̃𝑖𝑗,𝐿)
2

)
𝑤𝑗

𝑛
𝑗=1 , 

√∏ (1 − (µℎ̃𝑖𝑗,𝑈)
2

)
𝑤𝑗

−𝑛
𝑗=1 ∏ (1 − (µℎ̃𝑖𝑗,𝑈)

2

− (πℎ̃𝑖𝑗,𝑈)
2

)
𝑤𝑗

𝑛
𝑗=1 ,

]
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 

        (7.41) 

𝐼𝑉𝑆𝑊𝐺𝑀(ℎ̃𝑖1) = 

(

 
 
 
 
 
 
 
 
 

[∏ (µℎ̃𝑖𝑗,𝐿)
𝑤𝑗𝑛

𝑗=1 , ∏ (µℎ̃𝑖𝑗,𝑈)
𝑤𝑗𝑛

𝑗=1 ] ,

[√1 −∏ (1 − (𝜗ℎ̃𝑖𝑗,𝐿)
2

)
𝑤𝑗

𝑛
𝑗=1 , √1 − ∏ (1 − (𝜗ℎ̃𝑖𝑗,𝑈)

2

)
𝑤𝑗

𝑛
𝑗=1  ] ,

[
 
 
 
 
 
√∏ (1 − (𝜗ℎ̃𝑖𝑗,𝐿)

2

)
𝑤𝑗

−𝑛
𝑗=1 ∏ (1 − (𝜗ℎ̃𝑖𝑗,𝐿)

2

− (πℎ̃𝑖𝑗,𝐿)
2

)
𝑤𝑗

𝑛
𝑗=1 , 

√∏ (1 − (𝜗ℎ̃𝑖𝑗,𝑈)
2

)
𝑤𝑗

−𝑛
𝑗=1 ∏ (1 − (𝜗ℎ̃𝑖𝑗,𝑈)

2

− (πℎ̃𝑖𝑗,𝑈)
2

)
𝑤𝑗

𝑛
𝑗=1 ,

]
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 

     (7.42) 

and ℎ̃𝑛1 is still an IVSF number. 

Step 8. Apply Steps (3-7) for all IVSF Z pairwise comparison matrices of DMs. This 

step includes the pairwise comparisons of the main criteria among themselves, the 

pairwise comparisons of all the sub-criteria under each related main criterion, and the 

pairwise comparisons of the alternatives according to all sub-criteria. After this step, 

we have IVSF local weights of main criteria (𝑤̃𝐶1 , 𝑤̃𝐶2 , … , 𝑤̃𝐶𝑗 , … , 𝑤̃𝐶𝑛) and sub-

criteria (𝑤̃𝐶11 , 𝑤̃𝐶12 , … , 𝑤̃𝐶𝑗𝑠 , … , 𝑤̃𝐶𝑛𝑡), s=1,2,…t, IVSF local weights of alternatives 

(𝑤̃𝐶11𝐴1 , 𝑤̃𝐶12𝐴1 , … , 𝑤̃𝐶𝑗𝑠𝐴𝑖 , … , 𝑤̃𝐶𝑛𝑡𝐴𝑚) according to sub-criteria as given in Table 7.9. 

In Table 7.9, 𝑤̃𝐴𝑖
𝐺  represents global (overall) weight of mth alternative.  
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Table 7.9 : IVSF local weights of main criteria, sub-criteria and alternatives. 

 𝑤̃𝐶1 𝑤̃𝐶2 … 𝑤̃𝐶𝑛 

 𝑤̃𝐶11 𝑤̃𝐶12 … 𝑤̃𝐶1𝑠 𝑤̃𝐶21 𝑤̃𝐶22 … 𝑤̃𝐶2𝑠 … 𝑤̃𝐶𝑛1 𝑤̃𝐶𝑛2 … 𝑤̃𝐶𝑛𝑠 

𝑤̃𝐴1
𝐺  𝑤̃𝐶11𝐴1 𝑤̃𝐶12𝐴1 … 𝑤̃𝐶1𝑠𝐴1 𝑤̃𝐶21𝐴1 𝑤̃𝐶22𝐴1 … 𝑤̃𝐶2𝑠𝐴1 … 𝑤̃𝐶𝑛1𝐴1 𝑤̃𝐶𝑛2𝐴1 … 𝑤̃𝐶𝑛𝑠𝐴1 

𝑤̃𝐴2
𝐺  𝑤̃𝐶11𝐴2 𝑤̃𝐶12𝐴2 … 𝑤̃𝐶1𝑠𝐴2 𝑤̃𝐶21𝐴2 𝑤̃𝐶22𝐴2 … 𝑤̃𝐶2𝑠𝐴2 … 𝑤̃𝐶𝑛1𝐴2 𝑤̃𝐶𝑛2𝐴2 … 𝑤̃𝐶𝑛𝑠𝐴2 

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮ 
𝑤̃𝐴𝑖
𝐺  𝑤̃𝐶11𝐴𝑖 𝑤̃𝐶12𝐴𝑖 … 𝑤̃𝐶1𝑠𝐴𝑖 𝑤̃𝐶21𝐴𝑖 𝑤̃𝐶22𝐴𝑖 … 𝑤̃𝐶2𝑠𝐴𝑖 … 𝑤̃𝐶𝑛1𝐴𝑖 𝑤̃𝐶𝑛2𝐴𝑖 … 𝑤̃𝐶𝑛𝑠𝐴𝑖 

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮ 
𝑤̃𝐴𝑚
𝐺  𝑤̃𝐶11𝐴𝑚 𝑤̃𝐶12𝐴𝑚 … 𝑤̃𝐶1𝑡𝐴𝑚 𝑤̃𝐶21𝐴𝑚 𝑤̃𝐶22𝐴𝑚 … 𝑤̃𝐶2𝑡𝐴𝑚 … 𝑤̃𝐶𝑛1𝐴𝑚 𝑤̃𝐶𝑛2𝐴𝑚 … 𝑤̃𝐶𝑛𝑡𝐴𝑚  

*t: number of sub-criteria  

In Table 7.9, all local weights are IVSF numbers. There are two possible ways to 

continue to obtain global weights. Way 1 is to continue from Step 9 to Step 11.1 with 

defuzzification process. Way 2 is to directly continue without defuzzification process 

with Step 11.2 as illustrated in Figure 7.4.  

Step 9. Defuzzify 𝐼𝑉𝑆𝑀̃ vector using Eq. (7.31) and obtain the vector of corresponding 

crisp values (𝐼𝑉𝑆𝑀̃𝑑𝑒𝑓) by Eq. (7.43). 

𝐼𝑉𝑆𝑀̃𝑑𝑒𝑓 =

[
 
 
 
 
 
 
𝑑𝑒𝑓ℎ̃11
𝑑𝑒𝑓ℎ̃21

⋮
𝑑𝑒𝑓ℎ̃𝑗1

⋮
𝑑𝑒𝑓ℎ̃𝑛1]

 
 
 
 
 
 

             (7.43) 

For example, let  ℎ̃11 = ([0.58, 0.73], [0.25, 0.42], [0.13, 0.29]) be one of the IVSF 

numbers we have obtained in Step 7. For this IVSF number;  

𝑑𝑒𝑓ℎ̃11 = 7 ∗ 0.58 + 5 ∗ 0,73 − 3 ∗ 0.25 − 3 ∗ 0.42 − (0.13 2⁄ )
2
− (0.29 2⁄ )

2
=

4.31  

is obtained.  

Step 10. Apply the normalization procedure to obtain local crisp weights by Eq. (7.44).  

𝑤𝑗 =
𝑑𝑒𝑓ℎ̃𝑗1

∑ 𝑑𝑒𝑓ℎ̃𝑗1 
𝑛
𝑗=1

 j=1,2,…,n            (7.44) 

Step 11. Combine all the obtained weights as in Eq. (7.45) if it is based on crisp local 

weights or Eq. (7.46) if it is based on fuzzy local weights. 
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Step 11.1. Eq. (7.45) can be used to obtain the overall crisp weights of alternatives 

(𝑤𝐴𝑖
𝐺 ).  

𝑤𝐴𝑖
𝐺 = 𝑤𝐶1 ∑ 𝑤𝐶1𝑠𝐴𝑖 ∗ 𝑤𝐶1𝑠

𝑡
𝑠=1 + 𝑤𝐶2 ∑ 𝑤𝐶2𝑠𝐴𝑖 ∗ 𝑤𝐶2𝑠 +

𝑡
𝑠=1

    …+𝑤𝐶𝑛 ∑ 𝑤𝐶𝑛𝑠𝐴𝑚 ∗ 𝑤𝐶𝑛𝑠
𝑡
𝑠=1   𝑖 = 1,2, … ,𝑚                                     (7.45) 

In this step, 𝑤𝐶𝑗𝑠
𝐺 = 𝑤𝐶𝑗 ∗ 𝑤𝐶𝑗𝑠 (s=1,2,…,t) can be used to obtain global crisp weights 

of criteria.  

where 𝑤𝐶𝑗 represents local crisp weight of jth main criterion and 𝑤̃𝐶𝑗𝑠 represents the 

local crisp weight of sth sub-criterion of jth main criterion. 

Step 11.2. Eq. (7.46) can be used to obtain the overall IVSF weights of alternatives 

(𝑤̃𝐴𝑖
𝐺 ).  

𝑤̃𝐴𝑖
𝐺 = 𝑤̃𝐶1 ⊗∑ 𝑤̃𝐶1𝑠𝐴𝑖 ⊗ 𝑤̃𝐶1𝑠

𝑡
𝑠=1 ⨁  𝑤̃𝐶2 ⊗∑ 𝑤̃𝐶2𝑠𝐴𝑖 ⊗

𝑡
𝑠=1

𝑤̃𝐶2𝑠⨁…⨁𝑤̃𝐶𝑛 ⊗∑ 𝑤̃𝐶𝑛𝑠𝐴𝑚 ⊗ 𝑤̃𝐶𝑛𝑠
𝑡
𝑠=1   𝑖 = 1,2, … ,𝑚                       (7.46) 

In this step, 𝑤̃𝐶𝑗𝑠
𝐺 = 𝑤̃𝐶𝑗 ⊗ 𝑤̃𝐶𝑗𝑠 (s=1,2,…,t) can be used to obtain global IVSF weights 

of criteria.  

where 𝑤̃𝐶𝑗 represents local IVSF weight of jth main criterion and 𝑤̃𝐶𝑗𝑠 represents the 

local IVSF weight of sth sub-criterion of jth main criterion. 

Step 12. Go to Step 9. 

 Application 

7.5.1 Problem definiton 

A company wants to choose a green supplier among five different alternatives. For this 

problem, in Step 1, main criteria and sub-criteria have been determined as shown in 

Section 7.2, and hierarchical structure has been constructed as given in Figure 7.6.  
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Figure 7.6 : Hierarchical structure for GSS problem. 

7.5.2 Problem data 

There are three DMs in the company, who know the characteristics of alternative firms, 

and they make necessary comparisons independently from each other. In Step 2, 

linguistic terms and corresponding IVSF Z numbers are defined in order to use them 

in pairwise comparisons. Tables 7.5 and 7.6 have been used in DMs’ pairwise 

comparisons for main criteria, sub-criteria and alternatives.  

Table 7.10 : Pairwise comparisons for main criteria. 

D
M

1
 

 Goal C1 C2 C3 

C1 (EI, VSR) (VLI, SR) (SLI, VSR) 

C2 (VHI, SR) (EI, VSR) (SHI, VHR) 

C3 (SHI, VSR) (SLI, VHR) (EI, VSR) 

CR=0.007 

D
M

2
 

  Goal C1 C2 C3 

C1 (EI, VSR) (ALI, VSR) (SLI, SR) 

C2 (AHI, VSR) (EI, VSR) (HI, HR) 

C3 (SHI, SR) (LI, HR) (EI, VSR) 

CR=0.028 

D
M

3
 

  Goal C1 C2 C3 

C1 (EI, VSR) (ALI, SR) (LI, VSR) 

C2 (AHI, SR) (EI, VSR) (SHI, VHR) 

C3 (HI, VSR) (SLI, VHR) (EI, VSR) 

CR=0.028    
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All IVSF Z-pairwise comparisons are collected from DMs using a suitable 

questionnaire. DMs’ pairwise comparison matrices are given in Tables 7.10-7.23.  

Table 7.11 : DMs’ pairwise comparisons for C11, C12 and C13 with respect to 

economic features. 

DM1’s pairwise comparisons 

C1 C11 C12 C13 

C11 (EI, VSR) (SHI, HR) (HI, SR) 

C12 (SLI, HR) (EI, VSR) (SHI, VSR) 
C13 (LI, SR) (SLI, VSR) (EI, VSR) 

CR=0.037 

DM2’s pairwise comparisons 

C1 C11 C12 C13 

C11 (EI, VSR) (HI, VHR) (AHI, VHR) 
C12 (LI, VHR) (EI, VSR) (SHI, SR) 

C13 (ALI, VHR) (SLI, SR) (EI, VSR) 

CR=0.028 

DM3’s pairwise comparisons 

C1 C11 C12 C13 

C11 (EI, VSR) (SHI, VHR) (VHI, HR) 

C12 (SLI, VHR) (EI, VSR) (HI, VHR) 

C13 (VLI, HR) (LI, VHR) (EI, VSR) 

CR=0.063 

Table 7.12 : DMs’ pairwise comparisons for C21, C22, C23 and C24 with respect to 

environmental aspects. 

D
M

1
 

 C2 C21 C22 C23 C24 

C21 (EI, VSR) (LI, VHR) (SLI, SR) (SHI, SR) 

C22 (HI, VHR) (EI, VSR) (SHI, VHR) (HI, HR) 

C23 (SHI, SR) (SLI, VHR) (EI, VSR) (VHI, VHR) 

C24 (SLI, SR) (LI, HR) (VLI, VHR) (EI, VSR) 

CR=0.090 

D
M

2
 

 C2 C21 C22 C23 C24 

C21 (EI, VSR) (LI, WR) (SHI, VHR) (HI, HR) 

C22 (HI, WR) (EI, VSR) (VHI, HR) (AHI, WR) 

C23 (SLI, VHR) (VLI, HR) (EI, VSR) (SHI, HR) 

C24 (LI, HR) (ALI, WR) (SLI, HR) (EI, VSR) 

CR=0.065 

D
M

3
 

 C2 C21 C22 C23 C24 

C21 (EI, VSR) (EI, HR) (HI, HR) (AHI, VHR) 

C22 (EI, HR) (EI, VSR) (VHI, WR) (HI, HR) 

C23 (LI, HR) (VLI, WR) (EI, VSR) (SLI, SR) 
C24 (ALI, VHR) (LI, HR) (SHI, SR) (EI, VSR) 

CR=0.098 

Table 7.13 : DMs’ pairwise comparisons for C31, C32 and C33 with respect to 

green competencies. 

DM1’s pairwise comparisons 

C3 C31 C32 C33 

C31 (EI, VSR) (SHI, SR) (SLI, HR) 
C32 (SLI, SR) (EI, VSR) (LI, VSR) 

C33 (SHI, HR) (HI, VSR) (EI, VSR) 

CR=0.037 

DM2’s pairwise comparisons 

C3 C31 C32 C33 
C31 (EI, VSR) (HI, WR) (SLI, SR) 

C32 (LI, WR) (EI, VSR) (ALI, VSR) 

C33 (SHI, SR) (AHI, VSR) (EI, VSR) 

CR=0.028 

DM3’s pairwise comparisons 

C3 C31 C32 C33 

C31 (EI, VSR) (HI, HR) (VHI, VSR) 

C32 (LI, HR) (EI, VSR) (SHI, SR) 
C33 (VLI, VSR) (SLI, SR) (EI, VSR) 

CR=0.063 
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Table 7.14 : DMs’ pairwise comparisons for alternatives with respect to C11. 

DM1’s pairwise comparisons 

C11 A1 A2 A3 A4 A5 

A1 (EI, VSR) (VLI, HR) (SLI, VHR) (SHI, VHR) (LI, HR) 

A2 (VHI, HR) (EI, VSR) (SHI, SR) (AHI, VSR) (SHI, VHR) 
A3 (SHI, VHR) (SLI, SR) (EI, VSR) (HI, VHR) (LI, HR) 

A4 (SLI, VHR) (ALI, VSR) (LI, VHR) (EI, VSR) (VLI, SR) 

A5 (HI, HR) (SLI, VHR) (HI, HR) (VHI, SR) (EI, VSR) 

CR=0.082 

DM2’s pairwise comparisons 

C11 A1 A2 A3 A4 A5 

A1 (EI, VSR) (ALI, SR) (VLI, VSR) (SLI, SR) (ALI, VSR) 

A2 (AHI, SR) (EI, VSR) (SHI, SR) (AHI, SR) (SHI, WR) 
A3 (VHI, VSR) (SLI, SR) (EI, VSR) (HI, HR) (EI, HR) 

A4 (SHI, SR) (ALI, SR) (LI, HR) (EI, VSR) (ALI, VSR) 

A5 (AHI, VSR) (SLI, WR) (EI, HR) (AHI, VSR) (EI, VSR) 

CR=0.066 

DM3’s pairwise comparisons 

C11 A1 A2 A3 A4 A5 

A1 (EI, VSR) (SLI, FR) (VLI, HR) (SHI, SR) (SLI, VHR) 

A2 (SHI, FR) (EI, VSR) (ALI, WR) (VHI, HR) (SLI, HR) 
A3 (VHI, HR) (AHI, WR) (EI, VSR) (AHI, SR) (SHI, VHR) 

A4 (SLI, SR) (VLI, HR) (ALI, SR) (EI, VSR) (VLI, SR) 

A5 (SHI, VHR) (SHI, HR) (SLI, VHR) (VHI, SR) (EI, VSR) 

CR=0.096 

Table 7.15 : DMs’ pairwise comparisons for alternatives with respect to C12. 

DM1’s pairwise comparisons 

C12 A1 A2 A3 A4 A5 

A1 (EI, VSR) (HI, SR) (VHI, VSR) (SLI, SR) (SHI, VSR) 

A2 (LI, SR) (EI, VSR) (SHI, WR) (VLI, FR) (LI, VHR) 

A3 (VLI, VSR) (SLI, WR) (EI, VSR) (VLI, VHR) (SLI, SR) 
A4 (SHI, SR) (VHI, FR) (VHI, VHR) (EI, VSR) (SHI, VSR) 

A5 (SLI, VSR) (HI, VHR) (SHI, SR) (SLI, VSR) (EI, VSR) 

CR=0.089 

DM2’s pairwise comparisons 

C12 A1 A2 A3 A4 A5 

A1 (EI, VSR) (SHI, HR) (HI, VHR) (SLI, VHR) (HI, SR) 

A2 (SLI, HR) (EI, VSR) (SLI, SR) (ALI, SR) (SHI, VHR) 

A3 (LI, VHR) (SHI, SR) (EI, VSR) (LI, FR) (SHI, FR) 
A4 (SHI, VHR) (AHI, SR) (HI, FR) (EI, VSR) (AHI, VSR) 

A5 (LI, SR) (SLI, VHR) (SLI, FR) (ALI, VSR) (EI, VSR) 

CR=0.082 

DM3’s pairwise comparisons 

C12 A1 A2 A3 A4 A5 

A1 (EI, VSR) (VHI, FR) (AHI, SR) (SLI, VSR) (SHI, WR) 

A2 (VLI, FR) (EI, VSR) (SLI, HR) (VLI, HR) (SLI, SR) 

A3 (ALI, SR) (SHI, HR) (EI, VSR) (ALI, VHR) (SLI, HR) 
A4 (SHI, VSR) (VHI, HR) (AHI, VHR) (EI, VSR) (HI, FR) 

A5 (SLI, WR) (SHI, SR) (SHI, HR) (LI, FR) (EI, VSR) 

CR=0.085 

In Step 3, for all collected matrices, consistency check procedure is performed. For 

this purpose, CR is computed for restriction function of each IVSF Z matrix using the 

corresponding crisp value which is calculated by Eq. (7.31).  

Since CR<0.10 for all matrices, we continue with Step 4. All CR values are indicated 

in bottom of the matrices. 
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Table 7.16 : DMs’ pairwise comparisons for alternatives with respect to C13. 

DM1’s pairwise comparisons 

C13 A1 A2 A3 A4 A5 

A1 (EI, VSR) (VLI, FR) (SLI, VHR) (VLI, VSR) (LI, SR) 

A2 (VHI, FR) (EI, VSR) (HI, HR) (SLI, VHR) (SHI, VHR) 
A3 (SHI, VHR) (LI, HR) (EI, VSR) (LI, FR) (SLI, HR) 

A4 (VHI, VSR) (SHI, VHR) (HI, FR) (EI, VSR) (HI, VSR) 

A5 (HI, SR) (SLI, VHR) (SHI, HR) (LI, VSR) (EI, VSR) 

CR=0.075 

DM2’s pairwise comparisons 

C13 A1 A2 A3 A4 A5 

A1 (EI, VSR) (LI, SR) (SLI, FR) (LI, SR) (SHI, VHR) 

A2 (HI, SR) (EI, VSR) (SHI, SR) (SLI, HR) (AHI, SR) 
A3 (SHI, FR) (SLI, SR) (EI, VSR) (LI, VHR) (SHI, VSR) 

A4 (HI, SR) (SHI, HR) (HI, VHR) (EI, VSR) (HI, SR) 

A5 (SLI, VHR) (ALI, SR) (SLI, VSR) (LI, SR) (EI, VSR) 

CR=0.094 

DM3’s pairwise comparisons 

C13 A1 A2 A3 A4 A5 

A1 (EI, VSR) (SHI, VHR) (LI, SR) (VLI, VSR) (SLI, VHR) 

A2 (SLI, VHR) (EI, VSR) (VLI, VSR) (ALI, SR) (VLI, VSR) 
A3 (HI, SR) (VHI, VSR) (EI, VSR) (LI, SR) (SHI, SR) 

A4 (VHI, VSR) (AHI, SR) (HI, SR) (EI, VSR) (HI, SR) 

A5 (SHI, VHR) (VHI, VSR) (SLI, SR) (LI, SR) (EI, VSR) 

CR=0.095 

Table 7.17 : DMs’ pairwise comparisons for alternatives with respect to C21. 

DM1’s pairwise comparisons 

C21 A1 A2 A3 A4 A5 

A1 (EI, VSR) (VHI, VSR) (SLI, HR) (SHI, VHR) (LI, SR) 

A2 (VLI, VSR) (EI, VSR) (VLI, SR) (SLI, SR) (ALI, VSR) 

A3 (SHI, HR) (VHI, SR) (EI, VSR) (AHI, SR) (SLI, HR) 
A4 (SLI, VHR) (SHI, SR) (ALI, SR) (EI, VSR) (ALI, SR) 

A5 (HI, SR) (AHI, VSR) (SHI, HR) (AHI, SR) (EI, VSR) 

CR=0.083 

DM2’s pairwise comparisons 

C21 A1 A2 A3 A4 A5 

A1 (EI, VSR) (HI, HR) (LI, VHR) (SHI, VHR) (SLI, VHR) 

A2 (LI, HR) (EI, VSR) (ALI, VSR) (SLI, HR) (VLI, VSR) 

A3 (HI, VHR) (AHI, VSR) (EI, VSR) (HI, VSR) (SLI, SR) 
A4 (SLI, VHR) (SHI, HR) (LI, VSR) (EI, VSR) (VLI, FR) 

A5 (SHI, VHR) (VHI, VSR) (SHI, SR) (VHI, FR) (EI, VSR) 

CR=0.092 

DM3’s pairwise comparisons 

C21 A1 A2 A3 A4 A5 

A1 (EI, VSR) (SHI, SR) (VLI, SR) (HI, VSR) (LI, SR) 

A2 (SLI, SR) (EI, VSR) (ALI, VSR) (SHI, VHR) (ALI, FR) 

A3 (VHI, SR) (AHI, VSR) (EI, VSR) (AHI, VSR) (SHI, VHR) 
A4 (LI, VSR) (SLI, VHR) (ALI, VSR) (EI, VSR) (ALI, SR) 

A5 (HI, SR) (AHI, FR) (SLI, VHR) (AHI, SR) (EI, VSR) 

CR=0.093 

Table 7.18 : DMs’ pairwise comparisons for alternatives with respect to C22. 

DM1’s pairwise comparisons 

C22 A1 A2 A3 A4 A5 

A1 (EI, VSR) (SHI, VHR) (ALI, SR) (LI, VSR) (SLI, SR) 
A2 (SLI, VHR) (EI, VSR) (ALI, VHR) (VLI, SR) (VLI, VHR) 

A3 (AHI, SR) (AHI, VHR) (EI, VSR) (SHI, VHR) (SHI, SR) 

A4 (HI, VSR) (VHI, SR) (SLI, VHR) (EI, VSR) (HI, HR) 
A5 (SHI, SR) (VHI, VHR) (SLI, SR) (LI, HR) (EI, VSR) 

CR=0.095 

DM2’s pairwise comparisons 

C22 A1 A2 A3 A4 A5 

A1 (EI, VSR) (HI, SR) (VLI, VSR) (SHI, SR) (LI, FR) 
A2 (LI, SR) (EI, VSR) (ALI, FR) (SLI, VHR) (VLI, VSR) 

A3 (VHI, VSR) (AHI, FR) (EI, VSR) (AHI, SR) (SHI, SR) 

A4 (SLI, SR) (SHI, VHR) (ALI, SR) (EI, VSR) (SLI, FR) 
A5 (HI, FR) (VHI, VSR) (SLI, SR) (SHI, FR) (EI, VSR) 

CR=0.094 
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Table 7.18 (continued) : DMs’ pairwise comparisons for alternatives with respect to 

C22. 

DM3’s pairwise comparisons 

C22 A1 A2 A3 A4 A5 

A1 (EI, VSR) (SHI, SR) (LI, SR) (SHI, SR) (SLI, VHR) 
A2 (SLI, SR) (EI, VSR) (VLI, HR) (SLI, FR) (ALI, VSR) 

A3 (HI, SR) (VHI, HR) (EI, VSR) (VHI, VSR) (SHI, VHR) 

A4 (SLI, SR) (SHI, FR) (VLI, VSR) (EI, VSR) (LI, SR) 
A5 (SHI, VHR) (AHI, VSR) (SLI, VHR) (HI, SR) (EI, VSR) 

CR=0.066 

Table 7.19 : DMs’ pairwise comparisons for alternatives with respect to C23. 

DM1’s pairwise comparisons 

C23 A1 A2 A3 A4 A5 

A1 (EI, VSR) (SLI, FR) (AHI, SR) (HI, HR) (SHI, VHR) 

A2 (SHI, FR) (EI, VSR) (VHI, VSR) (AHI, SR) (VHI, HR) 

A3 (ALI, SR) (VLI, VSR) (EI, VSR) (SLI, FR) (LI, SR) 

A4 (LI, HR) (ALI, SR) (SHI, FR) (EI, VSR) (SLI, HR) 

A5 (SLI, VHR) (VLI, HR) (HI, SR) (SHI, HR) (EI, VSR) 

CR=0.082 

DM2’s pairwise comparisons 

C23 A1 A2 A3 A4 A5 

A1 (EI, VSR) (LI, SR) (SHI, VHR) (AHI, SR) (HI, VSR) 

A2 (HI, SR) (EI, VSR) (VHI, HR) (AHI, VSR) (AHI, HR) 

A3 (SLI, VHR) (VLI, HR) (EI, VSR) (HI, HR) (SHI, VHR) 

A4 (ALI, SR) (ALI, VSR) (LI, HR) (EI, VSR) (SLI, FR) 

A5 (LI, VSR) (ALI, HR) (SLI, VHR) (SHI, FR) (EI, VSR) 

CR=0.088 

DM3’s pairwise comparisons 

C23 A1 A2 A3 A4 A5 

A1 (EI, VSR) (LI, HR) (HI, HR) (SHI, SR) (SLI, SR) 

A2 (HI, HR) (EI, VSR) (VHI, VSR) (VHI, VHR) (SHI, VHR) 

A3 (LI, HR) (VLI, VSR) (EI, VSR) (SLI, HR) (VLI, FR) 

A4 (SLI, SR) (VLI, VHR) (SHI, HR) (EI, VSR) (LI, VSR) 

A5 (SHI, SR) (SLI, VHR) (VHI, FR) (HI, VSR) (EI, VSR) 

CR=0.070 

Table 7.20 : DMs’ pairwise comparisons for alternatives with respect to C24. 

DM1’s pairwise comparisons 

C24 A1 A2 A3 A4 A5 

A1 (EI, VSR) (HI, SR) (AHI, VSR) (VHI, SR) (SHI, SR) 

A2 (LI, SR) (EI, VSR) (SHI, SR) (HI, HR) (SLI, HR) 

A3 (ALI, VSR) (SLI, SR) (EI, VSR) (SLI, HR) (LI, VSR) 

A4 (VLI, SR) (LI, HR) (SHI, HR) (EI, VSR) (LI, VWR) 

A5 (SLI, SR) (SHI, HR) (HI, VSR) (HI, VWR) (EI, VSR) 

CR=0.091 

DM2’s pairwise comparisons 

C24 A1 A2 A3 A4 A5 

A1 (EI, VSR) (VHI, VSR) (SHI, VHR) (HI, VSR) (AHI, VHR) 

A2 (VLI, VSR) (EI, VSR) (VLI, VSR) (SLI, SR) (SLI, SR) 

A3 (SLI, VHR) (VHI, VSR) (EI, VSR) (HI, SR) (SHI, VHR) 

A4 (LI, VSR) (SHI, SR) (LI, SR) (EI, VSR) (SLI, FR) 

A5 (ALI, VHR) (SHI, SR) (SLI, VHR) (SHI, FR) (EI, VSR) 

CR=0.095 

DM3’s pairwise comparisons 

C24 A1 A2 A3 A4 A5 

A1 (EI, VSR) (HI, VWR) (SHI, SR) (VHI, FR) (HI, FR) 

A2 (LI, VWR) (EI, VSR) (LI, VHR) (SHI, VSR) (SHI, VHR) 

A3 (SLI, SR) (HI, VHR) (EI, VSR) (AHI, SR) (VHI, SR) 

A4 (VLI, FR) (SLI, VSR) (ALI, SR) (EI, VSR) (SLI, VSR) 

A5 (LI, FR) (SLI, VHR) (VLI, SR) (SHI, VSR) (EI, VSR) 

CR=0.098 
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Table 7.21 : DMs’ pairwise comparisons for alternatives with respect to C31. 

DM1’s pairwise comparisons 

C31 A1 A2 A3 A4 A5 

A1 (EI, VSR) (SHI, FR) (SLI, HR) (SHI, FR) (LI, SR) 

A2 (SLI, FR) (EI, VSR) (ALI, VSR) (SLI, VWR) (ALI, VWR) 

A3 (SHI, HR) (AHI, VSR) (EI, VSR) (HI, SR) (SHI, VHR) 

A4 (SLI, FR) (SHI, VWR) (LI, SR) (EI, VSR) (ALI, SR) 

A5 (HI, SR) (AHI, VWR) (SLI, VHR) (AHI, SR) (EI, VSR) 

CR=0.097 

DM2’s pairwise comparisons 

C31 A1 A2 A3 A4 A5 

A1 (EI, VSR) (VHI, VSR) (SLI, VHR) (HI, SR) (SLI, HR) 

A2 (VLI, VSR) (EI, VSR) (VLI, SR) (SLI, HR) (VLI, VSR) 

A3 (SHI, VHR) (VHI, SR) (EI, VSR) (HI, SR) (SHI, SR) 

A4 (LI, SR) (SHI, HR) (LI, SR) (EI, VSR) (LI, VSR) 

A5 (SHI, HR) (VHI, VSR) (SLI, SR) (HI, VSR) (EI, VSR) 

CR=0.096 

DM3’s pairwise comparisons 

C31 A1 A2 A3 A4 A5 

A1 (EI, VSR) (SLI, VHR) (LI, SR) (HI, SR) (SLI, VHR) 

A2 (SHI, VHR) (EI, VSR) (SLI, HR) (HI, SR) (SLI, SR) 

A3 (HI, SR) (SHI, HR) (EI, VSR) (AHI, VSR) (SHI, VHR) 

A4 (LI, SR) (LI, SR) (ALI, VSR) (EI, VSR) (LI, SR) 

A5 (SHI, VHR) (SHI, SR) (SLI, VHR) (HI, SR) (EI, VSR) 

CR=0.078 

Table 7.22 : DMs’ pairwise comparisons for alternatives with respect to C32. 

DM1’s pairwise comparisons 

C32 A1 A2 A3 A4 A5 

A1 (EI, VSR) (HI, HR) (SHI, SR) (VHI, VSR) (HI, SR) 

A2 (LI, HR) (EI, VSR) (LI, VSR) (SHI, SR) (SLI, VHR) 

A3 (SLI, SR) (HI, VSR) (EI, VSR) (HI, HR) (SHI, HR) 

A4 (VLI, VSR) (SLI, SR) (LI, HR) (EI, VSR) (LI, VSR) 

A5 (LI, SR) (SHI, VHR) (SLI, HR) (HI, VSR) (EI, VSR) 

CR=0.082 

DM2’s pairwise comparisons 

C32 A1 A2 A3 A4 A5 

A1 (EI, VSR) (AHI, SR) (HI, HR) (SHI, FR) (SHI, VHR) 

A2 (ALI, SR) (EI, VSR) (SLI, FR) (SLI, HR) (LI, VSR) 

A3 (LI, HR) (SHI, FR) (EI, VSR) (SHI, HR) (SLI, VHR) 

A4 (SLI, FR) (SHI, HR) (SLI, HR) (EI, VSR) (SLI, HR) 

A5 (SLI, VHR) (HI, VSR) (SHI, VHR) (SHI, HR) (EI, VSR) 

CR=0.075 

DM3’s pairwise comparisons 

C32 A1 A2 A3 A4 A5 

A1 (EI, VSR) (VHI, VSR) (SHI, SR) (HI, VSR) (HI, VHR) 

A2 (VLI, VSR) (EI, VSR) (LI, VHR) (SHI, SR) (SLI, FR) 

A3 (SLI, SR) (HI, VHR) (EI, VSR) (HI, FR) (SHI, SR) 

A4 (LI, VSR) (SLI, SR) (LI, FR) (EI, VSR) (SLI, VSR) 

A5 (LI, VHR) (SHI, FR) (SLI, SR) (SHI, VSR) (EI, VSR) 

CR=0.089 
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Table 7.23 : DMs’ pairwise comparisons for alternatives with respect to C33. 

DM1’s pairwise comparisons 

C33 A1 A2 A3 A4 A5 

A1 (EI, VSR) (LI, VSR) (HI, HR) (SHI, VHR) (HI, SR) 

A2 (HI, VSR) (EI, VSR) (VHI, VSR) (HI, SR) (AHI, SR) 

A3 (LI, HR) (VLI, VSR) (EI, VSR) (SLI, HR) (SHI, VHR) 

A4 (SLI, VHR) (LI, SR) (SHI, HR) (EI, VSR) (HI, SR) 

A5 (LI, SR) (ALI, SR) (SLI, VHR) (LI, SR) (EI, VSR) 

CR=0.088 

DM2’s pairwise comparisons 

C33 A1 A2 A3 A4 A5 

A1 (EI, VSR) (SLI, HR) (HI, SR) (SHI, HR) (SHI, VHR) 

A2 (SHI, HR) (EI, VSR) (HI, HR) (VHI, VHR) (VHI, VSR) 

A3 (LI, SR) (LI, HR) (EI, VSR) (SLI, SR) (SLI, HR) 

A4 (SLI, HR) (VLI, VHR) (SHI, SR) (EI, VSR) (SHI, VHR) 

A5 (SLI, VHR) (VLI, VSR) (SHI, HR) (SLI, VHR) (EI, VSR) 

CR=0.095 

DM3’s pairwise comparisons 

C33 A1 A2 A3 A4 A5 

A1 (EI, VSR) (LI, SR) (SHI, VHR) (HI, SR) (SHI, VHR) 

A2 (HI, SR) (EI, VSR) (VHI, SR) (AHI, VSR) (HI, SR) 

A3 (SLI, VHR) (VLI, SR) (EI, VSR) (SHI, FR) (SLI, FR) 

A4 (LI, SR) (ALI, VSR) (SLI, FR) (EI, VSR) (SLI, HR) 

A5 (SLI, VHR) (LI, SR) (SHI, FR) (SHI, HR) (EI, VSR) 

CR=0.071 

7.5.3 Problem solution 

In Step 4, aggregation procedure is performed for three DMs’ independent pairwise 

comparison matrices using IVSWGM operator given in Eq. (7.23). 

In Step 5, the aggregated reliability values of IVSF Z matrix are defuzzified using Eqs. 

(7.32) and (7.38). In Step 6, the aggregated IVSF Z matrix is converted to IVSF matrix 

using Eq. (7.39). 

Table 7.24 : 𝐼𝑉𝑆𝑀̃ vectors for C1, C11, C12, C13 and for alternatives. 

 𝑤̃𝐶1= ([0, 0.33], [0.64, 0.81], [0.24, 0.34]) 

 𝑤̃𝐶11= 

([0.48, 0.62], [0.37, 

0.52], [0.28, 0.44]) 

𝑤̃𝐶12= 

([0.4, 0.56], [0.38, 0.54], 

[0.33, 0.49]) 

𝑤̃𝐶13= 

([0, 0.42], [0.51, 0.7], 

[0.29, 0.42]) 

𝑤̃𝐴1
𝐺  𝑤̃𝐶11𝐴1= 

([0, 0.33], [0.68, 0.82], 

[0.22, 0.32]) 

𝑤̃𝐶12𝐴1= 

([0.43, 0.57], [0.43, 0.57], 

[0.26, 0.42]) 

𝑤̃𝐶13𝐴1= 

([0.22, 0.36], [0.64, 0.77], 

[0.23, 0.36]) 

𝑤̃𝐴2
𝐺  𝑤̃𝐶11𝐴2= 

([0, 0.56], [0.51, 0.64], 

[0.24, 0.37]) 

𝑤̃𝐶12𝐴2= 

([0, 0.36], [0.64, 0.78], 

[0.23, 0.35]) 

𝑤̃𝐶13𝐴2= 

([0, 0.48], [0.54, 0.69], 

[0.24, 0.37]) 

𝑤̃𝐴3
𝐺  𝑤̃𝐶11𝐴3= 

([0.47, 0.62], [0.39, 

0.52], [0.28, 0.43]) 

𝑤̃𝐶12𝐴3= 

([0, 0.38], [0.62, 0.77], 

[0.24, 0.35]) 

𝑤̃𝐶13𝐴3= 

([0.36, 0.52], [0.49, 0.62], 

[0.28, 0.42]) 

𝑤̃𝐴4
𝐺  𝑤̃𝐶11𝐴4= 

([0, 0.33], [0.61, 0.8], 

[0.22, 0.33]) 

𝑤̃𝐶12𝐴4= 

([0.61, 0.75], [0.26, 0.38], 

[0.26, 0.41]) 

𝑤̃𝐶13𝐴4= 

([0.6, 0.75], [0.24, 0.37], 

[0.27, 0.41]) 

𝑤̃𝐴5
𝐺  𝑤̃𝐶11𝐴5= 

([0.57, 0.73], [0.23, 

0.36], [0.33, 0.46]) 

𝑤̃𝐶12𝐴5= 

([0, 0.54], [0.39, 0.57], 

[0.32, 0.46]) 

𝑤̃𝐶13𝐴5= 

([0, 0.51], [0.44, 0.62], 

[0.29, 0.43]) 
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In Step 7, 𝐼𝑉𝑆𝑀̃ vector is calculated by IVSWGM operator by utilizing Eqs. (7.40) 

and (7.42). 

In Step 8, we obtained 14 𝐼𝑉𝑆𝑀̃ vectors from pairwise comparisons. For these IVSF 

local weights to be understandable, Table 7.9 is divided into three parts which are 

given in Tables 7.24-7.26 with local weights under each main criterion. 

Table 7.25 : 𝐼𝑉𝑆𝑀̃ vectors for C2, C21, C22, C23, C24 and for alternatives. 

 𝑤̃𝐶2
= ([0.52, 0.67], [0.35, 0.48], [0.28, 0.44]) 

 𝑤̃𝐶21
= 

([0.26, 0.37], [0.74, 0.81], 

[0.2, 0.32]) 

𝑤̃𝐶22
= 

([0.52, 0.65], [0.41, 0.53], 

[0.27, 0.38]) 

𝑤̃𝐶23
 

([0.4, 0.59], [0.38, 0.53], 

[0.34, 0.45]) 

𝑤̃𝐶24
= 

([0, 0.44], [0.45, 0.67], 

[0.29, 0.42]) 

𝑤̃𝐴1
𝐺  𝑤̃𝐶21𝐴1= 

([0.32, 0.47], [0.53, 0.67], 

[0.25, 0.4]) 

𝑤̃𝐶22𝐴1= 

([0, 0.42], [0.58, 0.73], 

[0.25, 0.38]) 

𝑤̃𝐶23𝐴1= 

([0.39, 0.53], [0.49, 

0.62], [0.25, 0.41]) 

𝑤̃𝐶24𝐴1= 

([0.5, 0.65], [0.36, 0.51], 

[0.24, 0.4]) 

𝑤̃𝐴2
𝐺  𝑤̃𝐶21𝐴2= 

([0, 0.3], [0.67, 0.84], [0.2, 

0.3]) 

𝑤̃𝐶22𝐴2= 

([0, 0.29], [0.71, 0.85], [0.2, 

0.29]) 

𝑤̃𝐶23𝐴2= 

([0.59, 0.74], [0.27, 0.4], 

[0.24, 0.39]) 

𝑤̃𝐶24𝐴2= 

([0.29, 0.46], [0.51, 

0.66], [0.27, 0.42]) 

𝑤̃𝐴3
𝐺  𝑤̃𝐶21𝐴3= 

([0.54, 0.69], [0.34, 0.46], 

[0.26, 0.41]) 

𝑤̃𝐶22𝐴3= 

([0.59, 0.73], [0.29, 0.41], 

[0.25, 0.4]) 

𝑤̃𝐶23𝐴3= 

([0, 0.36], [0.61, 0.77], 

[0.23, 0.35]) 

𝑤̃𝐶24𝐴3= 

([0, 0.53], [0.45, 0.62], 

[0.27, 0.41]) 

𝑤̃𝐴4
𝐺  𝑤̃𝐶21𝐴4= 

([0, 0.35], [0.62, 0.8], 

[0.24, 0.33]) 

𝑤̃𝐶22𝐴4= 

([0, 0.49], [0.5, 0.66], [0.27, 

0.4]) 

𝑤̃𝐶23𝐴4= 

([0, 0.39], [0.57, 0.76], 

[0.25, 0.36]) 

𝑤̃𝐶24𝐴4= 

([0, 0.39], [0.59, 0.74], 

[0.25, 0.38]) 

𝑤̃𝐴5
𝐺  𝑤̃𝐶21𝐴5= 

([0.62, 0.76], [0.23, 0.35], 

[0.27, 0.42]) 

𝑤̃𝐶22𝐴5= 

([0.51, 0.67], [0.29, 0.43], 

[0.31, 0.46]) 

𝑤̃𝐶23𝐴5= 

([0, 0.57], [0.38, 0.56], 

[0.3, 0.44]) 

𝑤̃𝐶24𝐴5= 

([0, 0.57], [0.39, 0.57], 

[0.31, 0.43]) 

 

Table 7.26 : 𝐼𝑉𝑆𝑀̃ vectors for C3, C31, C32, C33 and for alternatives. 

 𝑤̃𝐶3=([0.42, 0.58], [0.35, 0.51], [0.34, 0.49]) 

 𝑤̃𝐶31 = 

([0.39, 0.53], [0.48, 0.61], 
[0.28, 0.44]) 

𝑤̃𝐶32= 

([0.00, 0.45], [0.50, 0.68], 
[0.30, 0.42]) 

𝑤̃𝐶33= 

([0.42, 0.59], [0.37, 0.53], 
[0.31, 0.46]) 

𝑤̃𝐴1
𝐺  𝑤̃𝐶31𝐴1= 

([0.32, 0.47], [0.54, 0.67], 
[0.26, 0.41]) 

𝑤̃𝐶32𝐴1= 

([0.50, 0.65], [0.35, 0.49], 
[0.26, 0.42]) 

𝑤̃𝐶33𝐴1= 

([0.38, 0.53], [0.47, 0.61], 
[0.27, 0.42]) 

𝑤̃𝐴2
𝐺  𝑤̃𝐶31𝐴2= 

([0, 0.33], [0.68, 0.82], 
[0.22, 0.32]) 

𝑤̃𝐶32𝐴2= 

([0.00, 0.38], [0.60, 0.75], 
[0.25, 0.38]) 

𝑤̃𝐶33𝐴2= 

([0.58, 0.73], [0.25, 0.4], 
[0.24, 0.4]) 

𝑤̃𝐴3
𝐺  𝑤̃𝐶31𝐴3= 

([0.55, 0.7], [0.29, 0.43], 
[0.28, 0.43]) 

𝑤̃𝐶32𝐴3 = 

([0.41, 0.56], [0.43, 0.57], 
[0.29, 0.44]) 

𝑤̃𝐶33𝐴3= 

([0.26, 0.41], [0.56, 0.71], 
[0.26, 0.41]) 

𝑤̃𝐴4
𝐺  𝑤̃𝐶31𝐴4= 

([0, 0.42], [0.53, 0.71], 
[0.27, 0.39]) 

𝑤̃𝐶32𝐴4= 

([0.31, 0.48], [0.46, 0.62], 
[0.31, 0.46]) 

𝑤̃𝐶33𝐴4= 

([0, 0.48], [0.47, 0.65], 
[0.29, 0.42]) 

𝑤̃𝐴5
𝐺  𝑤̃𝐶31𝐴5= 

([0.55, 0.7], [0.28, 0.41], 
[0.3, 0.45]) 

𝑤̃𝐶32𝐴5= 

([0.44, 0.61], [0.33, 0.49], 
[0.32, 0.47]) 

𝑤̃𝐶33𝐴5= 

([0, 0.49], [0.46, 0.64], [0.3, 
0.43]) 

 

We obtained the global weights of alternatives using way 1 and way 2. In way 1, we 

continue with Step 9 and defuzzify all 𝐼𝑉𝑆𝑀̃ vectors by Eq. (7.31). Then, defuzzified 

IVSM (𝐼𝑉𝑆𝑀̃𝑑𝑒𝑓) vectors are obtained. In Step 10, we calculate normalized 

defuzzified IVSM vectors and then crisp local weights. In Step 11, we obtain global 
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weights of alternatives using Eq. (7.45). Table 7.27 presents all crisp local weights and 

global weights of alternatives. 

Table 7.27 shows that A2 has the first ranking with the weight of 0.3401 and A4 has 

the last ranking with the weight of 0.0524 and overall ranking of the alternatives is 

A2>A3>A5>A1>A4.  

Table 7.27 : All crisp local weights, global weights of alternatives and their rankings 

(Way 1). 

 𝑤𝐶1
=0.035 𝑤𝐶2

=0.618 

 𝑤𝐶11
=0.584 𝑤𝐶12

=0.347 𝑤𝐶13=0.069 𝑤𝐶21
=0.034 𝑤𝐶22

=0.573 𝑤𝐶23=0.323 𝑤𝐶24
=0.071 

𝑤𝐴1
𝐺  𝑤𝐶11𝐴1=0.023 𝑤𝐶12𝐴1=0.193 𝑤𝐶13𝐴1=0.033 𝑤𝐶21𝐴1=0.033 𝑤𝐶22𝐴1=0.027 𝑤𝐶23𝐴1=0.095 𝑤𝐶24𝐴1=0.714 

𝑤𝐴2
𝐺  𝑤𝐶11𝐴2=0.048 𝑤𝐶12𝐴2=0.026 𝑤𝐶13𝐴2

=0.045 𝑤𝐶21𝐴2=0.017 𝑤𝐶22𝐴2=0.018 𝑤𝐶23𝐴2
=0.802 𝑤𝐶24𝐴2=0.085 

𝑤𝐴3
𝐺  𝑤𝐶11𝐴3=0.303 𝑤𝐶12𝐴3=0.027 𝑤𝐶13𝐴3=0.052 𝑤𝐶21𝐴3=0.374 𝑤𝐶22𝐴3=0.528 𝑤𝐶23𝐴3=0.035 𝑤𝐶24𝐴3=0.109 

𝑤𝐴4
𝐺  𝑤𝐶11𝐴4=0.026 𝑤𝐶12𝐴4=0.680 𝑤𝐶13𝐴4=0.803 𝑤𝐶21𝐴4=0.020 𝑤𝐶22𝐴4=0.038 𝑤𝐶23𝐴4=0.038 𝑤𝐶24𝐴4=0.058 

𝑤𝐴5
𝐺  𝑤𝐶11𝐴5=0.601 𝑤𝐶12𝐴5=0.074 𝑤𝐶13𝐴5=0.068 𝑤𝐶21𝐴5=0.555 𝑤𝐶22𝐴5=0.390 𝑤𝐶23𝐴5=0.029 𝑤𝐶24𝐴5=0.035 

Table 7.27 (continued): All crisp local weights, global weights of alternatives and 

their rankings (Way 1). 

 𝑤𝐶3=0.346   

 𝑤𝐶31=0.241 𝑤𝐶32=0.110 𝑤𝐶33=0.649 𝑤𝐴𝑖
𝐺  Rank 

𝑤𝐴1
𝐺  𝑤𝐶31𝐴1=0.036 𝑤𝐶32𝐴1=0.407 𝑤𝐶33𝐴1=0.104 0.1055 4 

𝑤𝐴2
𝐺  𝑤𝐶31𝐴2=0.020 𝑤𝐶32𝐴2=0.031 𝑤𝐶33𝐴2=0.736 0.3401 1 

𝑤𝐴3
𝐺  𝑤𝐶31𝐴3=0.449 𝑤𝐶32𝐴3=0.183 𝑤𝐶33𝐴3=0.043 0.2672 2 

𝑤𝐴4
𝐺  𝑤𝐶31𝐴4=0.030 𝑤𝐶32𝐴4=0.062 𝑤𝐶33𝐴4=0.057 0.0524 5 

𝑤𝐴5
𝐺  𝑤𝐶31𝐴5=0.464 𝑤𝐶32𝐴5=0.317 𝑤𝐶33𝐴5=0.060 0.2347 3 

 

Three DMs in the company define environmental aspects as the most important main 

criterion for GSS problem as given in Table 7.27. Among the sub-criteria of economic 

features, quality is the most important sub-criterion. Then, cost, delivery and services 

follow it, respectively. In environmental aspects, the most important sub-criteria are 

environmental pollution level with the weight of 0.573, then green technology with the 

weight of 0.323. Among the green competencies, competency management is found to 

be the most important sub-criterion. 

In way 2, after performing Step 8, we directly continue with Step 11.2 and obtain 

global IVSF weights of alternatives by Eq. (7.46). Then, we calculate corresponding 

crisp values using Eq. (7.31) and apply normalization to obtain global crisp weights 

and prioritization of alternatives as given in Table 7.28.  
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Table 7.28 : Global IVSF weights of alternatives, their corresponding values and 

rankings (Way 2). 

Alterna

tives 
Global IVSF weights 

Correspon

ding values 

Crisp 

weights 
Rank 

A1 𝑤𝐴1
𝐺  ([0.12, 0.45], [0.04, 0.27], [0.63, 0.86]) 0.64 0.1582 4 

A2 𝑤𝐴2
𝐺  ([0.16, 0.46], [0.05, 0.29], [0.61, 0.86]) 0.69 0.1693 3 

A3 𝑤𝐴3
𝐺  ([0.20, 0.51], [0.03, 0.23], [0.64, 0.84]) 1.14 0.2797 2 

A4 𝑤𝐴4
𝐺  ([0.00, 0.41], [0.04, 0.31], [0.58, 0.87]) 0.29 0.0725 5 

A5 𝑤𝐴5
𝐺  ([0.18, 0.54], [0.02, 0.18], [0.71, 0.83]) 1.30 0.3202 1 

 

Table 7.28 shows that A5 has the first ranking with the weight of 0.3202 and A4 has 

the last ranking with the weight of 0.0725 and overall ranking of the alternatives is 

A5>A3>A2>A1>A4.  

According to these two ways to obtain global weights of the alternatives, the rankings 

of A1, A3 and A4 are same, but others different. The main reason for this difference 

is due to a comprehensive approach provided by the fuzzy set theory.  

7.5.4 Comparative analysis 

In this section, we compare the IVSF Z-AHP method with the IVSF AHP to 

demonstrate the importance and necessity of reliability information. In this analysis, 

the same data regarding the application of the IVSF Z-AHP method are used, and only 

the reliability information is ignored. We consider way 1 in the comparison of criteria 

since we use defuzzification process in this approach. Comparisons of the results for 

criteria are presented in Table 7.29.  

Table 7.29 : Crisp local and global weights of criteria based on IVSF Z-AHP and 

IVSF AHP. 

Main-

criterion 

Weights   Local weights Global weights 

IVSF 

Z-

AHP 

IVSF 

AHP 
Sub-criterion Code 

IVSF 

Z-AHP 

IVSF 

AHP 

IVSF 

Z-

AHP 

IVSF 

AHP 

Econom

ic 

features 

0.035 0.038 

Quality     C11 0.5838 0.7479 0.0207 0.0281 

Cost   C12 0.3471 0.2065 0.0123 0.0078 

Delivery and services   C13 0.0691 0.0456 0.0024 0.0017 

Environ

mental 

aspects 

0.618 0.767 

Environmentally 

friendly manufacturing 
C21 0.0340 0.2425 0.0210 0.1861 

Environmental pollution 

level 
C22 0.5725 0.6608 0.3540 0.5070 

Green technology  C23 0.3225 0.0613 0.1994 0.0470 

Green logistic   C24 0.0710 0.0354 0.0439 0.0271 

Green 

compete

ncies 

0.346 0.195 

Green image   C31 0.2408 0.5872 0.0834 0.1146 

Staff training   C32 0.1099 0.0676 0.0380 0.0132 

Competency 

management 
C33 0.6494 0.3452 0.2249 0.0674 
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As can be seen in Table 7.29, although the order of magnitude of the main criteria 

weights is the same, significant differences in the magnitudes of weights have been 

obtained. The environmental pollution level is the most important environmental 

aspect in two methods. While competency management is the most important criterion 

among green competencies in the IVSF Z-AHP method, the green image has the 

largest weight in the IVSF AHP method. In global weights, the ranking of all sub-

criteria except delivery and services, environmental pollution level and cost has 

changed. These changes in the criteria weights are due to the ignorance of reliability 

information and show that there may be changes in the results when the reliability 

information is not used. 

Comparisons of results for alternatives are given in Tables 7.30 and 7.31 for way 1 

and way 2, respectively.  

Table 7.30 : Comparison of results (Way 1). 

 Weights Rankings 

Alternatives 
IVSF  

Z-AHP 

IVSF 

AHP 

Z-AHP IVSF  

Z-AHP 

IVSF 

AHP 

Z-AHP 

A1 0.1055 0.1003 0.1771 4 3 3 

A2 0.3401 0.0980 0.1516 1 4 4 

A3 0.2672 0.4700 0.3072 2 1 1 

A4 0.0524 0.0410 0.0886 5 5 5 

A5 0.2347 0.2907 0.2755 3 2 2 

Table 7.31 : Comparison of results (Way 2). 

 Weights Rankings 

Alternatives 
IVSF  

Z-AHP 

IVSF 

AHP 
Z-AHP 

IVSF  

Z-AHP 

IVSF 

AHP 
Z-AHP 

A1 0.1582     0.2007  0.1759 4 3 3 

A2 0.1693     0.1383  0.1446 3 4 4 

A3 0.2797     0.3307  0.3108 2 1 1 

A4 0.0725     0.0559  0.0938 5 5 5 

A5 0.3202     0.2744  0.2749 1 2 2 

 

Table 7.30 shows that only alternative A4 is in the same order in IVSF Z-AHP and 

IVSF AHP methods with the defuzzification process (way 1). Ignoring the reliability 

information while applying way 2 has replaced the rankings of A1 and A2 & A3 and 

A5. When the results of way 1 and way 2 are compared, the rankings of A1, A3 and 

A4 do not change in IVSF Z-AHP method, but A2 is the best alternative in way 1 

whereas A5 is the best one in way 2. In addition, the rankings obtained by way 1 and 
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way 2 are same when reliability information is not used (IVSF AHP method). All these 

results show that the reliability information causes changes on the results and should 

be considered in decision models. 

In order to prove that the IVSF Z numbers can represent the fuzziness better, the 

problem is also solved by the Z-AHP method. When the ordinary Z-AHP method is 

applied, the results of this method are the same as the IVSF AHP method in both way 

1 and way 2. Alternative A4 remains in the same order when Z-AHP is compared with 

the IVSF Z-AHP method, while the other alternatives have different orders. This result 

shows that neither IVSF numbers nor ordinary Z-fuzzy numbers alone have the ability 

to model the fuzziness better. The integrated IVSF Z-AHP method represents the 

impreciseness in the linguistic evaluations in a superior way.  

7.5.5 Sensitivity analysis 

In the literature, various sensitivity analysis approaches are applied for MCDM 

problems (Alkan and Kahraman, 2022b). In addition, the sensitivity analysis 

approaches to be used also depend on the characteristics of the MCDM method. In this 

study, the proposed fuzzy approach is shaped around the AHP method. Since the AHP 

method usually depends on the subjective judgments of DMs, it is most logical to 

perform the sensitivity analysis by changing the determined criteria weights. It also 

should be stated that DMs or some researchers/readers usually want to know whether 

the obtained ranking results change according to the weights of the criteria. For these 

reasons, in the sensitivity analysis of this study, the changes in the ranking results with 

respect to the criteria weights are examined in three cases by way 1, which gives us 

the opportunity to change the criteria weights. 

Total 19 scenarios are determined in case 1. The weight of environmental aspects 

(highest weighted criterion) has been reduced by 5% in each scenario (this decrease 

has been reflected as an increase in the other criteria provided that the sum of the 

criteria weights is equal to 1) and the changes in the weights of alternatives according 

to the scenarios are shown in Figure 7.7. 
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Figure 7.7 : Changes in weights of alternatives based on 19 scenarios of case 1. 

The criteria weights and ranking of alternatives obtained from case 1 are presented in 

Figure 7.8. The results for case 1 show that the decrease in the weight of environmental 

aspects from its current level does not change the place of the first and last alternatives. 

In addition, in the transition from scenario 8 to 9, the second and third alternatives are 

replaced.  

 

Figure 7.8 : Changes in criteria weights and ranking of alternatives based on 19 

scenarios of case 1. 

In case 2, the weight of green competencies has been reduced similar to case 1, and 

the changes in alternatives and criteria weights have been observed as in Figures 7.9 

and 7.10. When the obtained results for case 2 are examined, it is concluded that the 

first and second alternatives (A2 and A3, respectively) are replaced when the eleventh 

scenario is applied (the weight of the green competencies is reduced by 55%). In 
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addition, the weights of A1, A4 and A5 slightly change, but their rankings are not 

affected by case 2. 

 

Figure 7.9 : Changes in weights of alternatives based on 19 scenarios of case 2. 

 

Figure 7.10 : Changes in criteria weights and ranking of alternatives based on 19 

scenarios. 

In case 3, the weight of the economic features having the least criterion weight is 

increased by 50% each time, and the results are observed under 16 scenarios as in 

Figures 7.11 and 7.12. Since the weight of economic features is quite less than the 

others, the effect of the proportional increase will be less. For this reason, it is decided 

to increase by 50% in each scenario. 



177 

 

Figure 7.11 : Changes in weights of alternatives based on 16 scenarios of case 3. 

 

Figure 7.12 : Changes in criteria weights and ranking of alternatives based on 16 

scenarios. 

Increasing the weight of the economic features, which has the lowest weight according 

to the DMs’ evaluations, causes some changes in the results as the scenarios progress. 

For example, the rankings of A3 and A5 replace when it is passed to the 8th scenario 

(that is, when the weight of the economic features is 5 times). This result actually 

means that there is no change in the results until the criterion weight of the economic 

features is 5 times. The ranking of the alternatives is observed until the weight of 

economic features is 9 times of the beginning value. As it can be seen from Figure 

7.12, the ranking of the first alternative changes quite later. The robustness of the 

results is clearly seen considering such high changes cannot be in the criteria weights. 
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When the three cases are assessed together, the changes in the results according to the 

criteria weights indicate the robustness of the proposed fuzzy approach. Although 

some changes may cause little differences in the results, it can be interpreted that these 

differences do not impair the effectiveness and consistency of the developed method. 

 Conclusion 

Since the results obtained in MCDM problems can vary depending on the used data 

and human judgments, the main point is the presence of reliability information about 

them. The fuzzy set theory and its various versions in the literature attempt to better 

model subjective judgments. However, they cannot incorporate reliability information 

alone into solution processes. Furthermore, in order to calculate the correct numerical 

equivalents of linguistic expressions and obtain more accurate results, not only the 

judgments but also the reliability of them should be included in the decision structure 

using the broadest framework. Although the Z-fuzzy numbers introduced by Zadeh 

(2011) have been used and extended to many versions to reflect reliability information, 

the literature is not rich in terms of these studies. For these reasons, the main purpose 

of this study is to integrate the IVSFSs, which have been put forward in recent years 

and have become very popular since then, with the Z-fuzzy numbers. Another aim is 

to propose a novel IVSF Z-AHP method to deal with MCDM problems involving 

uncertain expressions. The integration of IVSF Z-numbers with the AHP method and 

their presentation with a multi-expert model can be useful for problems in uncertain 

decision environments. 

Due to the nature of speaking language, DMs use ambiguous judgments in pairwise 

comparisons, and these judgments are transformed to numerical equivalents with 

linguistic expressions defined by the help of fuzzy set theory. In this study, DMs’ 

judgments and their reliability degrees are modeled by a novel IVSF Z-AHP method. 

The introduction of IVSF Z-numbers for the first time makes this study quite 

important. In the proposed method, a new IVSF Z linguistic scale that DMs can employ 

in their evaluations has been defined. A new formula is introduced to the literature to 

calculate the defuzzified values of the IVSF Z-numbers used in this scale. The 

proposed defuzzification formula produces more logical, consistent and effective 

responses than the existing formulas in the literature. It provides more realistic and 
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quantitative data after the DMs' assessments have been processed during the 

computational stages.  

In fuzzy AHP methods, the reciprocal values should be assigned to be multiplicative 

inverse to each other. It has been successfully achieved for IVSF Z-numbers in the 

proposed AHP method. This description is important in terms of accuracy and 

consistency in calculations, getting correct results and compliance with the 

fundamentals of the AHP method.  

The proposed method has been successfully performed for a GSS problem to 

demonstrate its applicability. The main problem in the GSS is to estimate the potential 

environmental sensitivity of suppliers and to calculate their real values requiring the 

use of DMs’ subjective judgments. The GSS problem is just one of the real-life 

MCDM problems that are based on subjective judgments in the solution process. The 

proposed method is applied for evaluating the five green suppliers according to the 

determined criteria set based on the DMs’ pairwise comparisons. DMs have used IVSF 

Z restriction and reliability linguistic terms to evaluate five alternatives under three 

main and ten sub-criteria. The obtained results have been compared with the results of 

IVSF AHP and ordinary fuzzy Z-AHP methods. The findings of the proposed method 

are different according to both methods and show the importance of reliability 

information on the results. Finally, a sensitivity analysis is performed through the 

change of criteria weights under three cases consisting of different scenarios. Only in 

case 2, the first-ranked and the second-ranked alternatives have replaced. In this case, 

the sensitivity of the alternatives can be examined by changing the criteria weights. In 

case 3, it is aimed to show that rankings will naturally change in case of major changes 

in criteria weights.  

The criteria used in the AHP method are grouped under three categories consisting of 

10 sub-criteria totally. The most important main criterion that companies should pay 

attention in order to select a green supplier is environmental aspects, and they should 

focus on environmental pollution level among the sub-criteria. In addition, 

environmental friendly manufacturing and green image, which have weights greater 

than 0.10 among the 10 sub-criteria, can be interpreted as the most important sub-

criteria to be considered in managerial applications about GSS problem. To measure 

the consistency of the proposed IVSF Z-AHP method and to observe the results 
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according to the change in criteria weights, a sensitivity analysis is carried out. The 

small changes that have occurred do not require a change in managerial decisions. 

There are some limitations to the proposed method as well as advantages. One of them 

is that the cost and benefit criteria have same operations in the solution process as in 

the IVSF AHP method in the literature. The computational complexity is another 

limitation that makes the method difficult to extend. Another limitation is that only 

way 1 can be used rather than way 2 in sensitivity analysis because it allows us to 

change the criteria weights. 

For future research, IVSF Z-numbers can be used with other MCDM methods such as 

TOPSIS, VIKOR, TODIM, MACBETH (Tolga and Basar, 2022) or EDAS (Deveci et 

al., 2022) to develop new approaches such as IVSF Z-AHP&TOPSIS or IVSF Z-

AHP&VIKOR, and they can be applied to other types of problems such as location 

selection, personnel selection, or software selection. In addition, Z-fuzzy numbers can 

be modeled with recently emerged fuzzy sets such as fermatean fuzzy sets or circular 

intuitionistic fuzzy sets to see their abilities in representing fuzziness. Then, AHP 

method or other MCDM methods can be integrated with these extensions, and the 

results of this paper can be compared with them. 

 

 

 

 

 

 

 

 

 

 

 



181 

 CONCLUSIONS AND RECOMMENDATIONS 

Decision making in real-life is generally made based on the experiences and 

knowledge of experts and practitioners. Therefore, solutions of real-life problems 

involve subjective intense evaluations, which represent decision makers’ complex 

thinking structure. Although fuzzy sets are successful in reflecting these knowledge 

and experiences into the decision process, they lack the ability to represent reliability 

information. For this purpose, in this thesis, new types of Z-numbers have been 

developed by integrating fuzzy set extensions and Z-numbers. Picture fuzzy Z-

numbers, interval-valued spherical Z-numbers, decomposed fuzzy Z-numbers have 

been introduced to the literature, which is the main contribution of this thesis. In 

addition, ordinary fuzzy Z-numbers have been integrated with AHP, CODAS and 

EDAS methods to increase their representation capability of uncertain linguistic 

judgments. Then, new fuzzy MCDM method and methodologies such as interval-

valued spherical fuzzy Z-AHP, picture fuzzy Z-AHP&TOPSIS methodology, 

decomposed fuzzy Z-TOPSIS method have been developed by integrating these 

proposed Z-numbers. In order to show the practicality of them, proposed method and 

methodologies have been applied for different type of decision making problems. The 

necessity of reliability information and effects on the given decisions are demonstrated 

with sensitivity and comparative analysis. These analyzes show that Z-fuzzy numbers 

may change the results and effect the managerial decisions. Therefore, it is 

recommended that reliability information should be considered in decision making 

processes.  

Although this thesis focuses on problems such as wind turbine selection, green supplier 

selection, supplier selection, location selection, solar panel selection, etc., the proposed 

method and methodologies can be applied to many different real-life problems. Thus, 

managers or practitioners can use the proposed method and methodologies for other 

MCDM problems by adapting criteria and alternative sets.  

Although the proposed method and methodologies present reliable decision making 

tools for practitioners, they have mathematical complexities due to the fuzzy 
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operations of the Z-numbers. In addition, when the number of criteria and alternatives 

increases, the solution process becomes difficult as in most MCDM methods under 

uncertainty. It is thought that the complex evaluation systems of experts are made more 

reliable with high mathematical concepts. Therefore, the advantages of the proposed 

methods and methodologies compensate disadvantages arising from computational 

complexity. 

For further research, other fuzzy set extensions, such as decomposed fermatean fuzzy 

sets, decomposed pythagorean fuzzy sets, can be used to extend Z-numbers. Then, 

integrated fuzzy Z-MCDM methods such as decomposed fermatean fuzzy Z-

AHP&CODAS or decomposed pythagorean fuzzy Z-AHP&EDAS can be proposed to 

the literature and compared with the results of this study.  
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