KARADENIZ TEKNIK UNIVERSITESI
FEN BIiLIMLERIi ENSTITUSU

FiZiK ANABILiM DALI

Cs-134 ATOMUNUN GERCEK TESADUFi TOPLAM (KOINSIiDANS) DUZELTME
FAKTORLERININ MONTE CARLO SIMULASYON YONTEMI ILE BELIRLENMESI

DOKTORA TEZi

Duygu ALTIN ACER

MART 2024
TRABZON



KARADENIZ TEKNiK UNIiVERSITESI
FEN BILIMLERI ENSTITUSU

FiZiK ANABILIiM DALI

Cs-134 ATOMUNUN GERCEK TESADUFI TOPLAM (KOINSIDANS) DUZELTME
FAKTORLERININ MONTE CARLO SIMULASYON YONTEMI iLE BELIRLENMESI

Duygu ALTIN ACER

Karadeniz Teknik Universitesi Fen Bilimleri Enstitiisiince
"DOKTOR (FIZIK)"
Unvam Verilmesi i¢cin Kabul Edilen Tezdir.

Tezin Enstitiiye Verildigi Tarih : 22/02 /2024
Tezin Savunma Tarihi :15/03 /2024

Tez Damsmani :  Prof.Dr. Ugur CEVIK

Trabzon 2024



ONSOZ

Cs-134 radyoaktif elementinin gergek tesadiifi toplam diizeltme faktorlerinin
belirlenerek gama 1s1m1 spektroskopisinde kullanilan dedektoriin verim egrisinin dogru
sekilde elde edilmesi icin yapilan bu calisma, Karadeniz Teknik Universitesi Fen Bilimleri
Enstitiisii Fizik Anabilim Dalinda Doktora Tezi olarak hazirlandi.

Doktora tez ¢alismamda, bilgilerinden yararlandigim ve Ogrenciligimin her
asamasinda maddi ve manevi destegini esirgemeyen saygi deger danisman hocam Prof. Dr.
Ugur CEVIK e en icten tesekkiir ve saygilarimi sunarim.

Tez caligmam siiresince, Monte Carlo simiilasyon teknigi konusunda her tiirlii
yardimlarini esirgemeyen, destegini eksik etmeyen Giimiishane Universitesi Miihendislik
ve Doga Bilimleri Fakiiltesi Fizik Miihendisligi Boliimii’nde gorev yapan saym hocam
Prof. Dr. Necati CELIK ’e siikranlarim1 sunarim.

Akademik calismalarim siiresince maddi ve manevi destekleriyle siirekli beni
cesaretlendiren ve yanimda olan varlik sebebim canim Aileme; her daim yanimda olup,
destegiyle gii¢c veren degerli Esime ve biricik oglum Riizgar Aren’ime en icten saygi, sevgi

ve tesekkiirlerimi sunarim.

Duygu ALTIN ACER
Trabzon 2024



TEZ ETiK BEYANNAMESI

Doktora Tezi olarak sundugum “Cs-134 Atomunun Gergek Tesadiifi Toplam
(Koinsidans) Diizeltme Faktorlerinin Monte Carlo Simiilasyon Yontemi ile Belirlenmesi”
bashikli bu calismayr bastan sona kadar danmismanim Prof. Dr. Ugur CEVIK’ in
sorumlulugunda tamamladigimi, verileri/6rnekleri kendim topladigimi, deneyleri/analizleri
ilgili laboratuarlarda yaptigimi/yaptirdigimi, baska kaynaklardan aldigim bilgileri metinde
ve kaynakcada eksiksiz olarak gosterdigimi, galisma siirecinde bilimsel arastirma ve etik
kurallara uygun olarak davrandigimi ve aksinin ortaya ¢ikmasi durumunda her tiirlii yasal

sonucu kabul ettigimi beyan ederim. 15/03/2024

Duygu ALTIN ACER



ICINDEKILER

Sayfa No
ONSOZ oo I
TEZ ETIK BEYANNAMESI. ..., \Y
ICINDEKILER .....coviiececteetes ettt ettt sttt n st en ettt s s e e ses s \Y,
SUMMALRY IX
SEKILLER DIZINT ......coiiiiiiiiiiesicsie et X
TABLOLAR DIZINI....oiiiiiiiiiinisciisiee st XI
1. GENEL BILGILER .....covutiiiiiiistisiisee ettt 1
1.1. Hizl1 Elektronlar ve KaynaKIart...........ccooovoiiiiiiiiiii e 2
1.1.1. Beta BOZUNUMU ... 2
1.1.1.1. BT BOZUNUMIU 1ottt ittt ettt e e st e e bn e e beeennnna e 2
0 2 ¢ B = 1o 0311 4T S 4
1.1.1.3.  Elektron Yakalama ... 6
1.2. [¢ DONTSUM OlAY1.....cuieiveveiieiecieieeeee ettt 7
1.3. Agir Yiikli Pargaciklar ve KaynakIart ..........occooveiiiiinieiiicicceee e 8
1.3.1. Alfa BOZUNMAST ..t 8
1.3.2. Kendiliginden Bozunma ............cccooiiiiiiiiiiiii 9
1.4. Elektromanyetik Radyasyon ve Kaynaklart ..........cccccooiniiiiiiniiiiiie 10
1.4.1. Beta Bozunumu Sonucunda Yayinlanan Gama Ismlart ..........ccccooviieinnnee 10
1.4.2. YOK Olma RAAYASYONU.......cuoiuiiiiiiieiieieieie e 11
1.4.3. Niikleer Reaksiyonlar Sonucunda Yayinlanan Gama Ismlart ... 12
14.4. SUIEKIT X ISINIATT.c..vvvieiiiii e 13
14.5. Karakteristik X ISINIart .........ccoooiiiiiiiiiii e 13
1.45.1.  Radyoaktif Bozunum Sonucunda Uyarilma ............ccccoeiiiiiiiniiciiiiecnce 13
1.4.5.2.  Dis Kaynaklar ile Uyarilma.........ccccoeiiiiiiiiiiiiiiceeecse e 14
1.45.3.  Hizlandiricilarda Uretilen X Isinlar1 (Sinkrotron Radyasyonu) ....................... 14
1.5. Notronlar ve Kaynaklart ... 15
1.5.1. (0, N) KAYNAKIATT. ..ot 15
1.5.2. FOtONOIrONIAT ... 16
15.3. Hizlandirilmis Yiiklii Pargacik Reaksiyonlart ........ccocoeiieiiiiiiiiiiiiciceee, 16

\Y



1.6.
1.6.1.
1.7.
1.7.1.
1.7.2.
1.8.
1.8.1.
1.8.2.
1.8.3.
1.8.4.
1.9.
1.10.
1.11.
1.11.1.
1.11.2.
1.11.3.
1.11.4.
1.11.5.
1.12.
1.12.1.
1.12.2.

1.12.2.1.
1.12.2.2.
1.12.2.3.
1.12.2.4.
1.12.25.

1.13.
1.14.
1.14.1.
1.14.2.

2.1.
2.2.

Radyoaktivite ve Bozunma Yasasl........c.cceeveiviiieiiniiniisieeseeseee e 17
Radyoaktif BOZUNUM KaNUNU .........cooveiiiiiiieieie e 17
EtKileSimin DOGasT.....cciiuiiiiiiiiiiiciiiie s 20
Birimler Ve BOYULIAK ..........c.coviiiie e 20
BN I s 20
Gama Isilarinin Madde ile EtKileSmesi .........ccoveiieiiiiiiinieiiee e 23
FotoeleKtrik SOGUIA .......cooviiiiiiiiiiie e 23
COmMPLON SAGIIMAST ..vvviiuiiieiiiie ittt bee e snee e 25
Koherent SagIIma.........cccuiiiiiiiiiic e 26
CAft OIUSUMU ..ttt nee e 26
Gama Isinlarinin SOZrulmast .......cccvvviiiiiiiiiiii 27
Beta BOZUNUMU ..o, 28
Radyasyon Dedektérlerinin Genel OzelliKIeri..........co.vcuerieererceeieeeciereceennnen, 29
Basitlestirilmis Dedektor Modeli........cccoiviiiiiiiiiiieiieeese e 29
Enerji COZUNUITIZI. .....c.veeiieeiiieiie e 31
DedeKSIYON VEIMI.......ciiiiiiiiecie ettt re e 34
KA AGT it 35
(@) 111722151 T U 37
Monte Carlo YONEEIMI ......uvieiiiiiiiiieiiie et 38
Monte Carlo Yonteminin TarihGesi .....couviiiiiiiiiieiiiie e 38
Sik Kullanilan Monte Carlo Paket Programlari...........ccccooiiiiiiiiiiciiicnn 38
E G S et te et e e teeneenre s 39
PENELOPE ..ottt sttt nne et sneenne e e aneennees 39
GEANTA ettt nre s 40
IMICINIP .ttt ettt et ne e be b 41
FLUKA ettt st et ente e teeneesteesteareenreeneaneenreas 41
Monte Carlo Foton Simiilasyon AlgOritmast..........cccocvvrieerivrnnieniieneeseeenen 42
Monte Carlo YOnteminin IGerigi .........cocevrviverieireiiresiciesee e, 43
Temel Mote Carlo TIKESi.........ccoveveveveceeeieeieeececee et 43
Reddetme YONteMI ....ccovviiiiiieiiiie st 45
YAPILAN CALISMALAR ...ttt 48
(081 T 00 AN F: ' SRR 48
TANIMIAT ...ttt esn e re e 49



2.3. VBIIET ..o 50
2.4. CS-134 BOZUNUMU ... s 54
2.5. EGS4 Kodunun Olusturulmas ............ccooiiiiieiiiiiiiec e 57
3. BULGULAR VE TARTISMA ... .ooiiiiiiiiiieee et 63
3.1. Monte Carlo Dedektor Modelinin Olugturulmast...........ccovveiviiiiiiieniicennene 63
3.2. Programi CaliStIrma.........cooviiiiiiiiiii e 65
3.3. Gergek Tesadiifi Toplam Faktorlerinin Belirlenmesi.........cccooccvviiiiiiiiiiiiinnn, 65
3.4. SIMUIASYON SONUCIATT ..eeviiviiiiiiiiiiic e 66
3.5. Kodun Dogrulanmast.........c.ccveiiieiiiiiiieee e 68
3.6. DENEYSEI TEYIT ...ttt 69
4. SONUGLAR ...t n e neesnne s 71
5. ONERILER.....coetiiititiitiiieietetississi i 72
6. KAYNAKLAR ...ttt sttt e b nnee s 73
7. EKLER ottt ettt 81
OZGECMIS

VII



Doktora Tezi

OZET

Cs-134 ATOMUNUN GERCEK TESADUFi TOPLAM (KOINSIDANS) DUZELTME
FAKTORLERININ MONTE CARLO SIMULASYON YONTEMI ILE BELIRLENMESI

Duygu ALTIN ACER

Karadeniz Teknik Universitesi
Fen Bilimleri Enstitiisti
Fizik Anabilim Dali
Danigsman: Prof. Dr. Ugur CEVIK
2024,80 Sayfa,24 Sayfa Ek

Gama 151 spektroskopisi, c¢ekirdegin yapisint anlama gibi c¢aligmalardan c¢evresel
radyoaktivite ol¢timlerine ve tibbi goriintilleme gibi ¢esitli bilimsel disiplinlerde 6nemli bir rol
oynamaktadir. Ancak gama 1s1mi1 spektroskopisi yoluyla bozunma bilgilerinin dogru bir sekilde
analizi gergek tesadiifi toplama (TCS) olarak bilinen bir olay tarafindan olumsuz bir sekilde
etkilenebilmektedir. Bir veya birka¢ radyoaktif ¢ekirdekten ayri ayr1 yaymlanan iki veya daha fazla
gama 1g1in1, dedektdriin zaman ¢oziiniirliigiinden daha kisa bir zaman araliginda dedektor kristaline
carptiginda ve enerjilerini buraya depoladiklarinda normalde ayri ayr pikler goriilmesi gerekirken
tek bir pik gorilir ve bu olaya TCS denir. TCS ozellikle gama-isim1 dedektorlerinin verim
egrilerinin elde edilmesi slirecinde mutlaka dikkate alinmasi gereken bir durumdur. Verim egrisinin
dogru bir sekilde elde edilmesi i¢in TCS diizeltme faktorleri iiretilmeli ve her enerji degerine ait
verim, bu diizeltme faktorleri ile ¢arpilmalidir. Diizeltme faktorlerinin elde edilmesi igin gerek
deneysel, gerekse niimerik hesaplama yontemleri mevcuttur. Monte Carlo (MC) benzetim yontemi
bu hesaplama metodlarindan biridir. Bu ¢aligmada, Cs-134 radyoaktif ¢ekirdeginin TCS diizeltme
faktorlerinin MC benzetim yoluyla elde edilmesi i¢in bir yontem gelistirilmistir. Bu yontemde Cs-
134’1in Ba-134’e doniisiirken meydana gelen tiim bozunma olaylar1 dikkate alinarak bir dizi TCS
diizeltme faktorleri elde edilmistir. Tiim hesaplamalar EGS4 paket programima uygun modifiyeler
uygulanarak yapilmistir. Elde edilen degerler, deneysel olarak elde edilen degerlerle karsilastirilmig

ve yontemin dogrulugu teyit edilmistir.

Anahtar Kelimeler: Gergek Tesadiifi Toplam diizeltmesi, Monte Carlo, Egs4, Cs-134.
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SUMMARY

MONTE CARLO SIMULATION METHOD FOR DETERMINATION OF TRUE
COINCIDENCE SUMMING CORRECTION FACTORS FOR **'Cs ATOM

Duygu ALTIN ACER

Karadeniz Technical University
The Graduate School of Natural and Applied Sciences
Physics Graduate Program
Supervisor: Prof. Ugur CEVIK
2024,80 Pages,24 Pages Appendix

Gamma-ray spectroscopy plays a crucial role in various scientific disciplines, from
studying the structure of nuclei to environmental radioactivity measurements and medical
imaging. However, the accurate analysis of decay information through gamma-ray
spectroscopy can be adversely affected by an event known as true coincidence summing
(TCS). TCS occurs when two or more gamma rays, emitted individually from one or more
radioactive nuclei, hit the detector crystal within a time interval shorter than the detector's
time resolution, depositing their energies there. Instead of observing separate peaks for
each gamma ray, a single peak is observed, giving rise to the phenomenon of TCS. To
accurately obtain the efficiency curve, TCS correction factors must be generated, and the
efficiency for each energy value should be multiplied by these correction factors. Both
experimental and computational methods can be employed to obtain these correction
factors, with the Monte Carlo (MC) simulation method being one of the computational
approaches. In this study, a method has been developed for obtaining TCS correction

factors through MC simulation for the radioactive Cs-134 nucleus.

Key Words: True Coincidence Summing Correction, Monte Carlo, Egs4, Cs-134.
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1. GENEL BIiLGILER

Atom c¢ekirdeklerinde meydana gelen bozunmalar veya niikleer olaylar sonucunda
ortaya cikan enerjiye radyasyon denir. 1890’11 yillara kadar, radyasyon terimi sadece
elektronik dalgalar1 agiklamak igin kullaniliyordu. Ancak, XX. yiizyilin baslarinda
elektronlarin kesfiyle birlikte, X 1sinlar1 ve dogal radyoaktivite gibi tanimlar da radyasyon
kavramina dahil edildi (Akyildirim, 2011). Radyasyon, bir¢ok alt kategoriye ayrilabilmekle
beraber genel olarak dort ana grupta incelenebilmektedir.

Bu kategorilerden ilk ikisi yiiklii pargacik radyasyonu tasiyan, hizli elektronlar ile
agir yikli parcaciklardir. Elektromanyetik radyasyon ve nétronlar ise bu kategorilerden
diger ikisi olup yiiksiiz par¢acik radyasyonu tasimaktadirlar.

Niikleer siiregler sonucu yayinlanan pozitif ya da negatif beta parcaciklari hizli
elektronlara ornek verilebilir. Agir yiiklii parcaciklara ornek olarak ise alfa (3He)
pargaciklar1 ve yiiksek enerjili iyonlar 6rnek verilebilir. Bu pargaciklar, genellikle ¢esitli
niikleer reaksiyonlarda veya pargacik hizlandiricilarindaki ¢arpismalarda ortaya c¢ikarlar.

Elektromanyetik radyasyon ve notronlar, yiiksiiz parcacikli radyasyon grubunda yer
alirlar. Elektromanyetik radyasyon, atom yoriingesindeki elektronlarin diizenlenmesi
sonucu yayinlanan X 1sinlarint ve atom g¢ekirdeginden dogrudan yayilan gama 1sinlarim
igcerir. Notronlar ise yiiksiiz parcaciklar olup; termal, epitermal, yavas ve hizli nétronlar
olmak tizere dort alt gruba ayrilirlar (Krane, 2001).

Radyasyon enerjisi degeri yaklagsik olarak 10 eV ile 20 MeV arasinda
degismektedir ancak farkli enerjilerde de tiretilebilmeleri miimkiindiir. Maddede biraktigi
etkiye gore radyasyon, iyonlastirici ve iyonlastirici olmayan olmak fiizere iki grupta
incelenir. Maddeden bir elektron koparmak igin gereken en diisiik enerji seviyesinden daha
biiylik bir enerjiye sahip radyasyonlara, “iyonlastirict radyasyon” denir. Bu tiir
radyasyonlar, atom veya molekiillerde elektron kaybina neden olabilir. Iyonlagsmaya sebep
olmayan radyasyona ise “iyonlastirict olmayan radyasyon” denir. Notronlar, alfa ve beta
pargaciklari, gama ve X-1sinlar1 iyonlastiric1 radyasyon simifina girerken radyo dalgalari,
mikrodalgalar, kizilotesi, mordtesi ve goriiniir 151k ise iyonlastirici olmayan radyasyon

siifinda yer almaktadir (Giindogan, 2016).



Radyasyonu bir diger gruplandirma sekli ise, madde icinde ilerleme yetenekleri yani
giricilikleri goz Oniinde bulundurularak yapilabilir. Diisiik enerjili X 1sinlar1 ve alfa
pargaciklari, maddenin sadece ince bir kalinligina girebilme yetenegine sahiptir ve bu
nedenle yumusak radyasyonlar olarak adlandirilirlar. Ote yandan, beta parcaciklar: daha
derinlere niifuz edebilen pargaciklardir. Gama isinlarinin ve nétronlarin giricilikleri ise en

fazladir (Celik, 2017).

1.1. Hizh Elektronlar ve Kaynaklari

1.1.1. Beta Bozunumu

Radyoaktif olaylarin gézlemlenmesindeki ilk 6nemli adim, cekirdeklerin negatif
yuklii pargacik olan elektronlar1 yaymlamasidir. Ancak 1934 yilinda, Joliot-Curie
tarafindan yapilan gozlemlerle birlikte radyoaktif bozunma olayinda pozitif yiikli
elektronlarin, yani pozitronlarin yaymlandigi gozlenmistir. Bu kesfin hemen ardindan,
1936” da kozmik 1sinlarda pozitronlarin varlig1 da kesfedilmistir. Iki y1l sonra, 1938 de ise
Alvarez, ¢ekirdek tarafindan yakalanan atomun elektronundan bosalan yerin, karakteristik
X 1sinlan yayarak dolmasi olayini gézlemlemistir. Bu gozlem, elektron yakalama olay1
olarak kayitlara ge¢mistir.

Cekirdeklerin S 1s1masina karsi kararli olabilmeleri igin belli sayida proton (Z) ve
notron (N) sayisina sahip olmasi gerekir. e~ ve e™ pargaciklarina beta pargacigi denir. e*
parcacigl elektronun anti-pargacigidir (karsit parcacik). Elektron ve pozitronun kiitleleri

birbirine esit, yiikleri ise zittir.

Me-.c? =my+.c? = 0.511 MeV (1.1)

1.1.1.1. p~Bozunumu

Cekirdegin nétron sayisit olmasi gerekenden fazla ise, ndtronlardan birisi protona
dontigiir ve cekirdek kararli olmaya calisir. Beta (f7) bozunumuna yatkin olan tim
cekirdeklerin ndtron sayis1 fazladir. Beta bozunumu olayinda, ¢ekirdekteki bir ndtron
protona doniiserek cekirdegin atom numarasimi bir artirir, boylece ¢ekirdek kararli hale

gecer (Glindogan, 2016).



72X = 2V + B+ 7, (1.2)

Beta bozunumunda, nétronlar c¢ekirdege zayif bir sekilde baghdirlar. Zayif bagh

noétron kisa stire igerisinde, bir proton ve bir §~ (elektron) par¢acigina bozunarak yok olur.

n-p+p+7, (1.3)

Yoo UN+B~+o (1.4)

Bozunum sonucunda, anti-nétrinolar olusur. Anti-nétrinolarin madde ile etkilesme
olasiliklar1 ¢ok disiiktir ve dedekte edilebilmeleri icin 6zel deneysel diizenekler
gerekmektedir. Bozunum olayinda; enerji, acisal momentum ve lepton sayisi korunumunun
saglanmasi i¢in anti-notrinolarin mutlaka olusmasi gerekir.

Beta bozunumu reaksiyonunda, kiitle farkindan kaynakli enerji aciga ¢ikar ve
momentum korunumu ilkesine gore, liriinler arasinda kiitleleri ile ters orantili bir bicimde
dagilir. Ancak, {irlin ¢ekirdegin kiitlesi beta ve anti-nétrino pargaciklarindan 6nemli dlgiide
daha biiyiik oldugundan, agiga ¢ikan enerjinin yalnizca kiigiik bir kismin1 absorbe eder. Bu
nedenle, bu parcaciklar dogrudan dedekte edilemez. A¢iga ¢ikan enerjinin biiyiikk bir
kismini ise beta pargaciklart ve anti-nétrinolar alir ve bu parcgaciklar arasinda enerji farkli
oranlarda paylasilir. Sonug olarak, beta bozunumu sonucu agiga ¢ikan beta pargaciklar
stirekli bir enerji spektrumuna sahip olur.

Her beta bozunmasi, belirli bir bozunma enerjisiyle veya Q degeriyle tanimlanir.
(Sayisal olarak Q degerine esittir).

B~ 1simasinin Q degeri asagida verilmistir.

XY +B 47, +Q (1.5)
Q = mf*(gX ) c? —meH (1 4Y ) ¢* — m-c? — myc? (1.6)
m(4Xy)c? = mS* (4Xy)c? + Zm,c? (1.7)

msek(4X ) c? = m*® (4X)c? — Zm,c? (1.8)



Q= mat(éx )Cz - Zmecz - [mat (Z+€1YN)C2 - (Z + 1) mecz] - ‘rnec2 (1-9)
Qp- = m(4X )c? —m* (5,47 )c? (1.10)

Beta bozunumunda, iiriin ¢ekirdegin uyarilmis bir seviyede bulundugu durumda beta
parcacigiyla birlikte gama 1511 da yayinlanir. Bazen ise, beta bozunumu yapan ¢ekirdekler
iiriin ¢ekirdegin taban durum seviyesine dogrudan gegis yapar. Dogrudan doéniisiime
ugrayan bu ¢ekirdekler, “saf beta yayicilar1” olarak adlandirilmaktadir.

Saf beta yayici gekirdeklerden bazilar1 Tablo 1.1° de gosterilmistir (Knoll, 2010).

Tablo 1.1. Bazi saf beta yayici gekirdekler

Cekirdek Yari - Omiir  Maksimum Enerji (MeV)

’H 12,26 yil 0,0186
tc 5730 yil 0,156
32p 14,28 yil 1,71
p 24,4 giin 0,248
g 87,9 giin 0,167
%l 3,08.10° yil 0,714
*Ca 165 giin 0,252
Ni 92 yil 0,067
e 2,12.10° yil 0,292
“Pm 2,62 yil 0,224

1.1.1.2. B Bozunumu

Proton sayis1 fazla olan gekirdeklerde, pozitron (8%) bozunumu meydana gelir. Bu
bozunumda ¢ekirdekteki bir tane proton, bir ndtrona doniisiir. Bozunum sonucunda
korunum yasalarina uyacak sekilde bir nétrino agiga ¢ikarken, daha diisiik atom numarali
ve kararl bir ¢ekirdek meydana gelir (Glindogan, 2016).

X > , Y+ BT+, (1.11)

Bt Istmasmin Q degeri asagida verilmistir.



Xy - Y +BT+y+0Q (1.12)
Q = msk(4Xy ) c? — m®* (;_4Y)c? — m,+c? (1.13)
Q = m*(4Xy)c? — Zmyc? — [m™ (,_4Y)c? — (Z — 1)m,c?] — m,c? (1.14)
Qp+ = m*(2X ) ¢ = m (;_4Y)c? — 2m,c? (1.15)

Pozitronlar, elektronlardan farkli olarak pozitif yiik tasirlar, ancak harici 6zellikler
acisindan elektronlarla 6zdes olduklari i¢in elektronun anti-parcacigi olarak adlandirilirlar.

Pozitronlar, B~ pargaciklar1 gibi siirekli bir enerji spektrumuna sahiptir, ancak kisa
Omiirleri nedeniyle madde i¢inde sinirli mesafelere kadar ilerleyebilirler. Bu durum;
pozitronlarin, elektronlarin anti-pargaciklart olarak varliklarini  siirdiirmelerinden
kaynaklanir. Madde icinde elektronlarla birleserek yok olma siirecine giren pozitronlar, bu
siiregte elektron ve pozitronun birbirine zit yonlere hareket eden ve enerjisi elektronun
durgun kiitlesi (511 keV) kadar olan iki tane foton yayinlar. Yayinlanan bu fotonlar, gama
spektroskopisinde elde edilen spektrumda belirgin bir rol oynamakla beraber yok olma
radyasyonu olarak bilinirler.

Bu sekilde elde edilen yok olma fotonlarinin spektrumda gozlenen pikleri, niikleer
gecislerden kaynaklanan ayn1 enerjiye sahip gama fotonlariin piklerine kiyasla daha genis
goriiniir. Genislemenin kaynagi ise Doppler etkisidir (Gilmore, 2008; Celik, 2017).

Yok olma olayr yani pozitron-elektron etkilesimi basladiginda, parcaciklarin
tamamen durgun olmasit miimkiin degildir. Bu nedenle, pargaciklar, yok olmadan 6nce
belirli bir momentuma ve dolayisiyla da kinetik enerjiye sahip olurlar. Bu kinetik enerjinin
varligi, korunum yasalarina gore, yok olma fotonlarinin enerjilerinde bir miktar artis
olusturur. Bu artis, istatistiksel olarak belirsizlige ve yok olma fotonlariin spektrumda

olusturdugu pikte de genislemeye sebep olur (Gilmore, 2008).



1.1.1.3. Elektron Yakalama

Proton sayis1 fazla olmasina ragmen, pozitron salinimini gergeklestirebilmek igin
yeterli kiitle farkina (>1,022 MeV) sahip olmayan ¢ekirdeklerde, farkli bir bozunum olay1
ile kararlilik saglanmaya g¢alisilir. Cekirdek, disindaki yoriingelerden elektron yakalanir ve
bu olaya “Elektron Yakalama” denir ve genellikle K kabugunda daha yaygindir. Elektron
yakalama (Electron Capture, EC) olay1, atomun yoriingelerinde bir bosluga neden olur. Bu
bosluk, bir {ist yoriingeden gegen elektronlardan biri tarafindan doldurulur. Bu siireg
sirasinda karakteristik bir X 1511 yayimlanir. Yaymlanan bu karakteristik X 1ginlari, bazen
atomu terk etmeyip dis yoriingedeki elektronlarint uyarir ve “Auger” olayima sebep olurlar
(Auger, 1923; Pirovono, 2021).

Bazi cekirdeklerde, pozitron bozunumu ve elektron yakalama olay1 gibi cesitli
niikleer bozunum stiregleri ayn1 anda gergeklesebilir. Bu durum, izobarik ¢ekirdeklerdeki
kiitle farkimin degerinin 1,022 MeV’den biraz biiyiik olmasi kosuluna baghidir. ;Be
cekirdeginin %Li cekirdegine bozunumu bu duruma bir drnek teskil etmektedir (Krane,

2001).

Elektron yakalama olayinin Q degeri asagida verilmistir.

X +e -, +u,+0Q (1.16)
Q = m**(4X) c? + m,c? — m%* (,_4Y)c? (1.17)
Q = m*(4Xy)c? — Zmyc? + moc? — [m* (,_4Y)c? — (Z — 1) m,c?] (1.18)
Qpc = m(3X) ¢ —m* (;4Y)c? (1.19)

Sonug¢ olarak, BT 1simasi ve elektron yakalama olayr aym ¢ekirdegin kararl
olabilmesi i¢in, protonlarindan birinin nétrona doniistiigii iki ayr1 mekanizmadir. Bu iki
kanal ayni g¢ekirdek igin agik ve birbirleriyle yaris halindedir. Belirli ihtimallerle bazen

birisi, bazen digeri meydana gelir. Ancak genel olarak,



Qgc > Qp+ (1.20)

oldugundan, f*isimas1 ihtimal olarak daha fazladir. Mesela bazi durumlarda Qp+

negatif iken, Qg ise pozitiftir. Ayrica enerji olarak, elektron yakalama olay1 daha olasidir.

Qp- = —2Z% +4(N - Z — 1) =22 — m® (1Hy)c? + m,, ¢? — m, c? (1.21)

a
1
A3

Qpr =2(Z-D%+4(Z-N-1) “% +m (1H,)c? — m,, ¢ — m, c? (1.22)
A3

Qe =2(Z -1 L +4Z-N-1) “%’" +m% (1Hy)c? — m,, ¢ +m, c? (1.23)
A

EL
3

Burada ac ve agy, degerleri yar1 ampirik baglanma enerjisi formiiliindeki enerji

birimli katsayilar olup degerleri asagidaki gibidir.

ac = 0.72 MeV (1.24)
Asym = 23 MeV (1.25)

1.2. i¢ Déniisiim Olay1

I¢ déniisiim olaymin baslangici, beta bozunmasi sonucu olusan ¢ekirdegin, uyarilmis
bir enerji seviyesine gegisidir. Bu sekilde uyarilmis ¢ekirdek, kararli duruma gegebilmek
icin genellikle bir gama 1511 yayinlar. Gama 11 yayinlanmasinin miimkiin olmadig: bir
uyarilmis ¢ekirdek, atomik yoriingelerdeki elektronlarla elektromanyetik etkilesime girer
ve bozunur. Bu duruma “I¢ Déniisiim Olay1” ad1 verilir. Bu olayin sonucunda yayilanan

elektronun enerjisi agagidaki gibi ifade edilir:

Ee— = Euyar — Ep (1.26)



Burada; E,yq ¢ekirdegin uyarilma enerjisi ve Ej, ise elektronun baglanma
enerjisidir. I¢c doniisiim elektronlar1, herhangi bir elektronun atom yériingesinden
sokiilmesi ile iretilebilecegi icin, niikleer bozunmanin gergeklesmesiyle birlikte farkl
enerjilere sahip bir¢ok elektron ortaya c¢ikabilir. Bu durum, i¢ doniisiim elektronlarinin
enerji spektrumlarinin, beta bozunumundaki siirekli spektrumun tam aksine, kesikli yapili
bir spektrum gozlenmesine neden olur (Knoll, 2010). Bu durum, niikleer uygulamalar

acisindan fazlaca 6nem tasir.

Bazi yararli i¢ doniisiim elektron kaynaklar1 Tablo 1.2” de verilmistir (Knoll, 2010).

Tablo 1.2. I¢ doniisiim elektron kaynaklarindan bazilari

I¢ Doniisiim Elektron Enerjisi
(keV)
62
84
365
389
624
656
126
159
482
554
976
1048

Ana Cekirdek Yar1 Omiir Bozunma Tiirii

1%9¢d 453 giin Elektron Yakalama

g 115 giin Elektron Yakalama

Bcs 30.2 yil B Bozunumu

139Ce 137 giin Elektron Yakalama

207j 38 yil Elektron Yakalama

1.3. Agir Yiiklii Parcaciklar ve Kaynaklari
1.3.1. Alfa Bozunmasi
Radyoaktif bir ¢cekirdegin proton ve ndtron sayilarini ikiser tane azaltmak suretiyle
kiitle numarasinin 4 azalmasi ve sonugta da bir He ¢ekirdeginin meydana geldigi niikleer

stirectir (Akyildirim, 2005).

4X > 473V + 4He + Q (1.27)



Burada; X baslangi¢ c¢ekirdegi, Y triin ¢ekirdek ve Q ise, ana ve iiriin ¢ekirdekler
arasindaki kiitle farkindan kaynaklanan enerjidir ve alfa pargacigimi belirtir. Q enerjisi,
momentumun korunumundan dolayi, {riin ¢ekirdekler arasinda belirli oranlarda
paylastirilir. iste bu sebeple de, alfa pargaciklar1 karakteristik enerjili ve dolayisiyla da
kesikli spektruma sahiptir. A kiitle numarasi olmak {izere, alfa parcaciklar tek bir enerjili

olup bu enerji degeri asagidaki ifadeyle verilir.

E=Q(A-4)/A (1.28)

Alfa pargacik kaynaklar1 tiretimi yapilirken, ¢ok ince bir tabakayla kaplanmalidir
¢linkii bu pargaciklar, diger parcaciklara gore daha agir ve madde igindeki etkilesimleri ise
oldukga zayiftir. Bu da, ¢ok ¢abuk bir sekilde enerjilerini kaybettikleri anlamina gelir.
Tablo 1.3’ te baz1 alfa pargacik kaynaklari verilmistir.

Tablo 1.3. Alfa pargacik kaynaklarindan bazilar1 (Knoll, 2010)

Kaynak  Yari Omiir iy 1@ Pa?ﬁ;:‘\‘/‘)Enerﬁsi
#2Th 1,4.10° 4,012
v 4,5.10° 4,196
“u 7,1.10° 4,598
2y 2,4.10° 4,494
20Th 7,7.10% 4,687
#°Am 7,4.10° 5 975
“LAm 433 5,485
~Pu 88 5,499

1.3.2. Kendiliginden Bozunma

Agir gekirdekler (2°°Bi sonras1) genelde dogal olarak kararsizdirlar ve kendiliginden
bozunma egilimindedirler. Bu, tiir ¢ekirdekler genellikle niikleer fisyon veya niikleer
flizyon gibi siireclerle daha kararli hale gelmeye calisirlar.

Niikleer fisyon, nispeten biiyiik bir ¢ekirdegin pargalanmasiyla iki veya daha fazla
daha hafif c¢ekirde§e doniismesidir. Ancak, atom numarast ¢ok biliyiilk olan birkag

transuranik element haricinde, bu bozunma olay1 pek yaygin degildir. 233Cf ¢ekirdegi bu
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tiir bir bozunma i¢in en tipik ornektir. Bu ¢ekirdegin yari omrii 85 yildir. 85 yilda bir
kendinden daha hafif olan 29Xe ve 98Ru cekirdeklerine doniisiir. Bununla birlikte,
232Cf cekirdeginin bir alfa parcacig1 yayma olasiligi, kendiliginden bozunma olasiligindan
daha fazladir. Bu yilizden, bu elementin gergek yart 6mrii 2,65 yil olup, | mikrogram
(ng) 233Cf ¢ekirdegi saniyede 1,92 x 107 alfa parcacigi yayarak 6,14 x 10° defa

kendiliginden bozunmaya ugrar (Knoll, 2010; Debertin ve Helmer, 1988).

1.4. Elektromanyetik Radyasyon ve Kaynaklar:

Elektromanyetik radyasyon, elektromanyetik spektrumun tamamia yakinini

kapsamaktadir. Elektromanyetik spektrum Tablo 1.4’ te verilmistir.

Tablo 1.4. Elektromanyetik spektrum

Gama X- Isini | Morétesi | Goriinir Isik | Kizil6tesi | Mikrodalga Radyo
Isini Dalgalar
Frekans (Hz) 10%° 10* 10*° 10" 10* 10° 10
Dalgaboyu (m) 10™ 10" 10°® 0,5.10" 107 107 10°

1.4.1. Beta Bozunumu Sonucunda Yaymlanan Gama Isinlar:

Uyarilmig niikleer seviyelerin arasindaki gegisler sonucunda, gama 1sinlar
yayinlanir. Gama bozunumunda, ¢ekirdegin niikleon sayisinda ve ¢esidinde bir degisiklik
olmaz. Gama isinlari, bir atom ¢ekirdeginin uyarilmis bir enerji seviyesinden daha diisiik
bir enerji seviyesine ge¢mesi sirasinda yayilan elektromanyetik radyasyondur. Gama
1sinlari, genellikle niikleer bozunma sonucu uyarilmis seviyede kalan {iriin ¢ekirdegin
kararli hale gegmesi esnasinda yayinlanir.

Herhangi bir beta bozunumu, bir ya da bir¢ok gama 1smmin yayinlanmasinda
etkilidir. Beta 1simalarinin yar1 Oomiirleri (birkag yiiz giin veya daha uzun), uyarilmig
durumlarin yar1 omiirlerine kiyasla (pikosaniye mertebesinde) ¢ok daha biiyiiktiir. Bu
sebeple, yayinlanan gama isinlarinin yart émrii, genellikle beta bozunumu yapan ana
¢ekirdegin yar1 omri ile; enerjileri ise, tiriin ¢ekirdegin enerji seviyesi ile iliskilidir. Bu
nedenle, beta bozunumu sonucunda yayillan gama isinlarinin enerjisi, genellikle iiriin

cekirdegin enerji seviyesine baglidir.
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Sekil 1.1 de Cs-137 ¢ekirdeginin Ba-137 ¢ekirdegine bozunumu sirasinda
gerceklestirdigi  beta bozunumu ve bunun sonucunda yayilan gama 1s1n1M1

gosterilmektedir.

55 Cs-137

B~ : 0.512 MeV (%94.6)

56 Ba-137

B~ : 1.174 MeV (%5.4)

¥ : 0.6617 MeV (%85.1)

56 v Ba-137
Taban Durum

Sekil 1.1. 131Cs cekirdeginin *37Ba ¢ekirdegine bozunumu

Gama spektroskopisi deneylerinde, gama isinlarinin enerji seviyeleri arasindaki
gegislerin genellikle belirli ve kesin enerji degerlerinde olmasi beklenir. Bu durum, atomik
cekirdeklerin belirli enerji seviyelerine sahip oldugu ve belirli enerji seviyeleri arasindaki
gecislerin belirli enerji farklarina sahip oldugu ger¢eginden kaynaklanir.

Ancak, dedektor ¢oziniirliigiini etkileyen c¢esitli faktorler, gozlenen enerji
spektrumunun ideal bir pik dagilimindan uzaklasmasina neden olabilir. Bunlar arasinda,
yik tastyicilarinin olugmasi ve toplanmasindaki belirsizlikler, elektronik giirtiltii gibi
etkenler bulunmaktadir.

Bu faktorlerin etkisiyle, gama spektroskopisinde gozlenen enerji dagilimi genellikle
ideal bir dar ve lineer enerji dagilimi1 yerine, Lorentzian ve Gaussian dagiliminin bir

birlesimi seklinde olusur.

1.4.2. Yok Olma Radyasyonu

Pozitron 1s1mas1 yapan ana ¢ekirdege eslik eden bir radyasyon tiirti daha vardir. Bu

ek radyasyonun kaynagi, temel bozunma siirecinde aciga ¢ikan pozitronlardir.
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Pozitronlar, biitin kinetik enerjilerini kaybetmeden oOnce birkag milimetre yol
alabilirler. Bu siire zarfinda, pozitronlar ¢evrelerindeki atomlarla karsilagabilir ve negatif
yiiklii bir elektronla birlesebilirler. Bunun sonucunda, elektron ve pozitron kaybolur,
birbirlerine zit yonelim gosteren, her biri 0,511 MeV enerjili iki foton yayinlanir. Bu

durum asagidaki gibi gosterilir ve yok olma radyasyonu olarak adlandirilir (Krane, 2001).

e"+et -2y (1.29)

1.4.3. Niikleer Reaksiyonlar Sonucunda Yayinlanan Gama Isinlari

Beta 1simasindan sonra gerceklesen daha yiliksek enerjili gama isinlarina ihtiyag
duyuldugunda, bu 1sinlar1 tiretebilmek icin niikleer reaksiyonlar gerekli olacaktir. Boyle bir
reaksiyonda ana ¢ekirdek, reaksiyonu gergeklestirebilecek enerjili parcaciklar ile
bombardiman edilir ve reaksiyon sonucunda iki veya daha fazla iirlin ¢ekirdek meydana

gelir. Bu reaksiyonlardan bir tanesi asagidaki gibi olur (Krane, 2001; Celik, 2017).

3a + 3Be - 12¢* + In (1.30)

Bu reaksiyon sonucunda, '2C* iiriin ¢ekirdegi uyarilmis bir seviyede tutulur. Bu
seviyenin taban duruma bozunmasi sirasinda 4,44 MeV enerjili bir gama 1511 yayinlanir.
Bu uyarilmis seviyenin émrii ¢ok kisa (61 x 10™15s) oldugundan reaksiyonun sonucunda
tiretilen gama 1ginlarinin enerji dagilimi, Doppler etkisi altinda genisler. Bu durum, ¢ogu
dedektoriin kalibrasyonu igin yeterince monoenerjik olsa da, ¢dzme giicli iyi olmayan
dedektorlerin kalibrasyonunda sorun tegkil etmektedir.

Gama 15111 Uireten bir bagka niikleer reaksiyon 6rnegi de asagidaki gibidir:
sa+13C > 150" + In (1.31)
Burada ise, '§0*¢ekirdegi uyarilmistir ve yaklasik olarak ortalama omiir 2x10~12

saniyedir. Bu ortalama omiir Doppler olaymnin etkisini yok edecek kadar uzun bir siiredir.

Bu sebeple, bu enerjide (6,13 MeV) gama 1sinlart dar bir spektruma sahip olur.
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1.4.4. Siirekli X Isinlar:

Elektron, proton ve alfa parcaciklar1 gibi yiiksek enerjiye sahip parcaciklar, agir
¢ekirdeklerin Coulomb etki alanindan gegtiginde enerjilerinin bir kismini elektromanyetik
radyasyona doniistiirtirler. Bu etkilesmede parcacigin doniistiigii enerji, Bremsstrahlung
spektrumu veya siirekli spektrum olarak adlandirilir. Stirekli X 1511 spektrumlar frekans

skalas1 oldukga genis oldugundan, radyasyon dedektorleri kalibre edilirken kullanilamazlar

(Celik, 2010; Celik,2017; Tamir Darcan, 2020).

1.4.5. Karakteristik X Isinlari

Bir atomda yoriinge elektronlarmin dizilisi herhangi bir uyarilma sebebiyle
bozuldugunda, atom ¢ok kisa bir siire i¢in uyarilmis seviyede kalabilir. Ancak, dogal
olarak bu atom kendini taban durumuna getirme egilimindedir. Bu yeniden diizenlenme
genellikle nanosaniye mertebesinde bir siirede gergeklesir. Bu siiregte, son enerji seviyesi
ile ilk enerji seviyesi arasindaki fark kadar enerjiye sahip karakteristik X 1sin1 yaynlanir.
Eger bu gegici bosluk atomun K tabakasinda meydana gelirse, yaymlanan 1sin karakteristik
K X 1sm1 olarak adlandirilir. Karakteristik X isinlari elementler igin ayirt edici bir
parametredir. Bilinmeyen maddelerin elementer analizinde yaygin olarak kullanilirlar
(Debertin ve Helmer, 1988).

X 1gmlarinin tiretimi birgok fiziksel siiregle gergeklesebilmekte miimkiin olup en

temel ti¢ fiziksel siire¢ asagida verilmistir.

1.4.5.1. Radyoaktif Bozunum Sonucunda Uyarilma

Elektron yakalama olayr esnasinda, c¢ekirdek yoriinge elektronlarindan bir tanesini
(genellikle K tabakasindan) soker ve boylece atomun elektronik dizilimde gegici bir bosluk
olusur. Bu boslugun doldurulmasiyla birlikte bir karakteristik X 1sin1 yaymlanir. Bu tiir
olaylarda firiin ¢ekirdek, bir uyarilma seviyesine bozundugu i¢in karakteristik X 1sinina
ayn1 zamanda bir de gama 1511 eslik eder.

I¢ déniisiim olayinda da karakteristik X 1s1n1 iiretilebilir. Genellikle K tabakasindan
atomun i¢ yoriinge elektronlarindan biri sokiilerek orada bir bosluk olusturulur ve bunun

sonucunda da karakteristik X 1gin1 yayinlanir.
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Ic doniisiim olayr sonucunda iiretilen elektronun enerjisi yeterince biiyiikse,
dlciilebilir diizeyde Bremsstrahlung olayr gozlenebilir. Bu olay "I¢ Bremsstrahlung" olarak
bilinmektedir (Celik, 2010).

1.4.5.2. D1s Kaynaklar ile Uyarilma

Dis kaynaklar tarafindan X 1sinlariin {retilmek istendiginde, uyarict radyasyon
kaynagi olarak X 1sinlari, alfa parcaciklari, elektronlar ve diger farkli radyasyon gesitleri
kullanilabilmektedir.

Uyarici Radyasyon

Radyasyon
Kaynad

Karakteristik X - Isinlari
Sekil 1.2. Dis kaynaklarla uyarma

Dis kaynaklar ile uyarmada kaynak, hedef maddenin atomlarinin enerji
seviyelerindeki elektronlar1 uyarabilecek enerjiye sahip olmalidir. Hedef maddeyi
olusturan elementlerin atom numarasi ile yayilan X 1511 enerjileri arasinda dogru oranti

vardir.

1.4.5.3. Hizlandiricilarda Uretilen X Isinlari (Sinkrotron Radyasyonu)

Bu radyasyon, dairesel bir yoriingede elektronlarin hareket ettirilerek biikiilmeleri ile
elde edilirler. Dairesel yoriingede hareket eden elektronlar, enerjilerinin bir miktarini her
doniis esnasinda elektromanyetik radyasyona doniistiiriir ve kaybederler. Bu sekilde elde

edilen elektromanyetik radyasyonun enerjisi, birka¢ eV ile 10* eV araliginda olabilir.
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Hizlandiric1 radyasyonun siddet ve enerji gibi 0Ozelliklerinin ayarlanabilir olmasi,

laboratuvar deneylerinde kullanimini tesvik etmektedir (Celik, 2010; Celik 2017).
1.5. Notronlar ve Kaynaklari

Notronlarin yar1 Omiirleri ¢ok kisa oldugundan, dogada serbest halde bulunma
ihtimalleri de oldukga zayiftir. Kendiliginden nétron salimimi yapan bozunumlar veya
niikleer reaksiyonlar kanaliyla notronlar olusurlar. Kendiliginden bozunum olayina 6rnek
olarak daha 6nceden de 2°2Cf ¢ekirdegini verilmistir.

Niikleer reaksiyonlarda, genellikle bir hedef g¢ekirdek, alfa parcaciklari, protonlar
veya gama isinlari gibi pargaciklarla bombardiman edilerek uyarilmis seviyede tutulur. Bu
bombardiman sonucunda, hedef ¢ekirdek yiiksek enerji seviyelerine uyarilabilir.

Uyarilma enerjisi, ¢ekirdek i¢indeki niikleonlarin baglanma enerjisinden daha fazla
oldugunda, ¢ekirdek uyarilmis durumdan diismek igin bir yol arar. Bu genellikle, bir
notron yaymlanmasiyla gerceklesir. Bu ndtron yayilmasi, ¢ekirdegin daha istikrarsiz hale
gelmesine ve daha diisiik enerji seviyelerine inmesine neden olur.

Asagida, notron salinimina bir 6rnek verilmistir (Sakho, 2021).
8Br — 8Kr* + 5~ (1.32)
8Kr* —» 8Kr + n (1.33)
1.5.1. (o, n) Kaynaklar:
Cesitli radyoizotoplar alfa parcaciklar1 yayabilir. Bir hedef c¢ekirdek ile alfa yayict
izotop karistirildiginda, ndtron kaynag: elde etmek miimkiin olur. Ornegin, hedef ¢ekirdek
olarak berilyum kullanildi§inda, kararli 7Be izotopu nispeten zayif bagli bir notrona

sahiptir, bu da maksimum miktarda n6tron iiretilmesine olanak saglar (Krane, 2001).

Bu reaksiyon asagida gdsterilmistir.

3a+ 3Be » 2C + In (Q = +5,71 MeV) (1.34)
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1.5.2. Fotonétronlar

Gama 1511 yayan radyoizotoplar, uygun bir hedef ¢ekirdekte reaksiyon olusturacak
enerjiye sahip ise notron iiretebilirler. Bu yolla elde edilen ndtronlara fotonétron denir.

Fotonbtronlar, bombardiman edilen gama isinlarinin tek enerjili olmasina bagl
olarak hemen hemen tek enerjili olurlar. Ancak, nétronlar yiiksek bir gama 1511 arka plani
ile birlikte gozlenirler.

Yaklasik olarak bir milyon gama fotonunun sadece bir tanesi hedef ¢ekirdekle
etkilesip bir ndtron iiretebilmektedir. Bu sebeple, dedekte edilebilir miktarda nétron elde
edebilmek i¢in, ¢ok fazla sayida gama isin1 gerekmektedir. Ancak ¢ok sayida foton
kullanimi da spektrumdaki gama 1sin1 arka planini artirmaktadir.

Fotondtron tiretmede genellikle Be ve H gekirdekleri kullanilir (Krane, 2001; Knoll,
2010).

2Be + hu - 8Be + {n (Q = —1,666 MeV) (1.35)
H +hv > 1H + {n (Q = —2,226 MeV) (1.36)
1.5.3. Hizlandirilms Yiiklii Parcacik Reaksiyonlar:
Iki temel nétron iiretim reaksiyonu vardir. Bu reaksiyonlar asagida gdsterilmistir
(Krane, 2001).
D-D reaksiyonlari:
2H +2H - 3He + in (Q = +3,3 MeV) (1.37)
D-T reaksiyonlari:

2H+3H > iHe+ in(Q= +17,6 MeV) (1.38)

Notron tliretimi i¢in yiiksek potansiyel fark altinda hizlandirilan ddteronlara ihtiyag

duyulmaktadir.



17

1.6. Radyoaktivite ve Bozunma Yasasi

Hidrojen disindaki biitiin diger c¢ekirdekler ndtron ve protonlardan olusmaktadir.
Notronlarin protonlara orani, hafif izotoplarda bir iken; agir elementlerde bu deger
artmaktadir. Bu oranin birden biiyiilk oldugu, kararsiz ¢ekirdeklere radyoaktif ¢ekirdek
denilmektedir. Bu ¢ekirdekler, kararli halde kalmak amaciyla tasidiklar1 fazla enerjiden
pargacik ¢ikarmak ya da 1s1ma yapmak suretiyle kurtulurlar (Giindogdu, 2019). Boylece
cekirdek, bagka bir izotopa ya da ayn1 izotopun baska bir durumuna dontisecektir. Bu olaya
radyoaktivite veya radyoaktif bozunma denir. Notron ve protonlarin sayilart arasindaki

orana gore gerceklestirebilecegi bozunum tiirleri Sekil 1.3 te verilmistir.

Notron
Sayisi

| o+ -+ ¥

BHeT AR

Proton Sayisi

Sekil 1.3. Beta bozunum bélgeleri (Tamir Darcan, 2020)

Radyoaktif ¢ekirdek bozunmalari; alfa, beta ve gama bozunmalar1 seklinde olabilir.
Radyoaktivite, radyoaktif madde bitinceye kadar devam edeceginden kontrol edilemeyen

bir siire¢ olarak ifade edilir.

1.6.1. Radyoaktif Bozunum Kanunu

1896’ da radyoaktivitenin kesfiyle baslayan deneysel ¢alismalarda, saf bir radyoaktif
numunenin bozunma hizinin zamanla tstel bir sekilde degistigini gozlemlendi. Ancak,
radyoaktifligin tek tek atomlardaki degisimleri temsil ettigi ise daha sonraki zamanlarda
anlasild: (Isel, 2019).
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Bozunmanin istatistiksel yapida oldugu, yani herhangi bir atomun ne zaman
bozunacaginin 6nceden bilinemedigi ve bu hipotezin dogrudan iistel bir kanuna uydugu,
ancak iki yil sonra anlasildi. Kuantum teorisinin gelismesinden once, bu durumun kabul
edilmesi olduk¢a zordu (Krane, 2001).

Radyoaktif bir c¢ekirdekte birim zamanda meydana gelen bozunma sayisina
cekirdegin bozunma hiz1 (aktivitesi) denir. Eger bir t aninda N adet radyoaktif ¢ekirdek
varsa ve numuneye yeni ¢ekirdekler eklenmemisse, dt sonsuz kiigiik siiresi i¢inde bozunan

¢ekirdek sayis1 AN, N ile orantili olur (Krane, 2001).

__dN(v)/dt
N

A= (1.39)

Bozunmadan Kalan
f Parcacik Sayisi

Ny/2

Ng/4

P Zaman

Sekil 1.4. Radyoaktif bozunum

Bu baginti, Sekil 1.4’ te gosterildigi gibi eksponansiyel bir egri seklindedir. Bu
denklem ayni zamanda, atomun birim zamanda bozunma olasiligin1 verir. Bu ifadenin
negatif olmasi, zamanla ana ¢ekirdek miktarinin azaldigini ifade etmektedir. Bu denklemin

¢ozlimii, radyoaktif bozunma yasasini verecektir (Krane, 2001).

dN(t dN(t)
_d§> =—AN@®) > [Z==—-A[dt (1.40)

N(t) = Ny e (1.41)
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Denklemde, A sabit olup, radyoaktif ¢ekirdegin “Bozunma Sabiti” veya “Parcalanma
Sabiti” olarak adlandirilir. N(t), t siire sonunda bozunmayan ¢ekirdek sayisinin, Ng ise
baslangigtaki (t=0 anindaki) ¢ekirdek sayisini ifade etmektedir (Krane, 2001).

Bir radyoaktif maddenin baslangigtaki atom sayilarinin yariya diismesi i¢in gegen
siireye yarilanma siiresi veya yari omir denir ve t;/, ile temsil edilir. Yar1 miir, her
radyoaktif element i¢in farkli degere sahip olup, o elementin karakteristigini bildirir
(Krane, 2001).

In2

tijg = (1.42)

Bozunma yasasina gore, radyoaktif atomlarin bozunarak tamamen tiikenebilmesi i¢in
gecen siire sonlu olamaz. Bu nedenle, radyoaktif bir atomun Omriiniin sifir ile sonsuz
arasinda herhangi bir degerde olabilecegi sdylenebilir.

Radyoaktif elementler i¢in yararli bir tanim da ortalama Omiirdiir (7). Ortalama
Omiir, bir ¢ekirdegin bozununcaya kadar gecirecegi ortalama siireyi ifade etmektedir.
Omiirleri (11, T2, ..) olan radyoaktif atomlarin sayilar1 sirastyla (dN1(t), dNx(t), ...) seklinde

verilsin. Bu durumda, ortalama 6miir asagidaki gibi olur (Krane, 2001).

_ T11dN1(t)+T2dN2(t)+"' _ TdN(t)

T ANy (D+dN, D+ dN(D) (1.43)
Burada (dN — 0) i¢in,

_ [YPran(n) _ N zan(t) (1.44)

- Mane No

olur.

Radyoaktif bir maddenin birim zamanda gergeklestirdigi bozunma sayisina aktivite
denir. Aktivite birimi, klasik olarak Curie (Ci)’dir. Laboratuvar g¢alismalarinda ise
miliCurie (mCi) veya mikroCurie (uCi) gibi daha uygun birimler tercih edilmektedir. Bir
diger aktivite birimi Becquerel (Bq)’dir.

Becquerel ve Curie arasinda,

1Bq = 2,7 x 10711Ci (1.45)
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1Ci = 3,7x10° Bq (1.46)
seklinde doniistimler yapilabilir (Seyis, 2015).
Bir radyoizotopun birim kiitlesi basina aktivitesine spesifik aktivite ad1 verilir. Eger

saf bir radyoizotopun spesifik aktivitesi Ol¢iilmek istenirse asagidaki bagintidan yararlanilir
(Knoll, 2010).

Spesifik Aktivite = 2t _ _AN_ _ A4 (1.47)

Kiitle = NM/Ng M

Burada, M numunenin molekiil agirhigi, N, ise Avagadro sayisi olarak ifade
edilmektedir.

1.7. Etkilesimin Dogasi

1.7.1. Birimler ve Boyutlar

Niikleer fizik ¢alismalarinda, ~ 10715(1fm) mertebesindeki uzunluklar kullanilir.
Cekirdek boyutlart = 1,5 fm ile = 2 fm arahiginda degisir. Dolayisiyla niikleer olaylar
cok kiiclik bir uzunluk skalasinda meydana gelir. Buna karsin niikleer olaylarin meydana
geldigi zaman skalasi ¢ok genistir. Bir niikleer reaksiyonun meydana gelme siiresi yaklagik
1072% civarindadir (Celik, 2010).

Radyoaktif bozunmalar degisik zaman dilimlerinde meydana gelirler. Mesela, bir -
bozunmas1 1077 ile 1072 s araliginda meydana gelir. Ancak birgok bozunma bu siireden
daha kisa veya ¢ok daha uzun siirelerde meydana gelir. a ve  bozunmalari ise daha uzun

stirelerde meydana gelirler. Bazen dakika, bazen saat, bazen de milyonlarca yil siire
alabilirler (Celik, 2010).

1.7.2. Enerji

Radyasyon enerjisinin geleneksel birimi elektron volt (eV)’ dir. 1eV ise, bir

elektronun 1Volt’ luk potansiyel fark altinda ivmelendirildiginde kazandig: enerjiye denir.
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Sekil 1.5. Yikli levhalar arasinda elektronun hareketi

Enerji, SI birim sisteminde joule (J) ile verilir. Elektron volt ve joule arasindaki iliski

asagidaki gibidir:
leV = 1,602.1071% (1.48)
1f] =1071] =6,241.103eV (1.49)

Niikleer enerji, genellikle milyon elektron volt (MeV) cinsinden 6lgiiliir. Cekirdek
igindeki niikleer reaksiyonlar 10MeV mertebesindeki Kinetik enerji araliginda gergeklesir.
Bu enerjiler proton ve ndtronlarin durgun kiitle enerjilerinden ¢ok ¢ok kii¢lik olduklarindan
dolay1 (~1000MeV) rolativistik olmayan yaklasimlarla ele almabilirler. Ancak f
1simalarindaki elektronlar rolativistik yaklasimla ele alinmalidir (Krane, 2001).

X- 15101 veya gama-igininin enerjisi radyasyon frekansiyla iligkili olarak asagidaki

gibi verilir:

E = hv (1.50)

Burada h, Planck sabiti (6,626.1073*/].s veya 4,135.107%°eV.s) ve v ise
frekanstir.

Niikleer kiitleler, birim atomik kiitle cinsinden Sl¢iiliir. Bir atomik kiitle birimi 1u ile
gosterilir. Bir **C atomunun kiitlesi tam olarak 12u olarak kabul edilir. Dolaystyla bir
niikleonun kiitlesi yaklasik olarak 1u kadardir (Akyildirim, 2011). Niikleer reaksiyonlar ve

niikleer bozunmalarla ugrasildiginda genellikle kiitleden ziyade kiitle enerjisiyle islemler



22

yapilir. Ozel gérelilik teorisinin bir sonucu olarak kiitle ve enerji birbirinin aymisidir. Isik

hiz1 aradaki doniigiimii saglar.

E = mc? (1.51)

1uc? = 931,502 MeV (1.52)

Bu deger bir proton ve ndtronun yaklsik olarak sahip olduklari kiitle enerjisi

degeridir.

2 _ 931,502
ct =
U

(1.53)

Baska bir faydali esitlik ise hc’ nin degeridir. Bu deger ilgilenilen alana uygun

birimlerle asagida verilmistir:

h — Plack sabiti ~6,03x1073%j.s
¢ — 151k hiz1 ~3x108 m/s
olmak tizere,

Atom ve Molekiil Fizigi ¢ercevesinde;

hc = 1240 eV nm (1.54)

Niikleer Fizik ¢er¢evesinde;

hc = 1240 MeV fm (1.55)
dir. Ayrica,
h

h = pom (1.56)

olmak tizere,
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hc = 197 MeV fm (2.57)

olur.
Rolativistik enerji,

E? = p%c? + my%ct (1.58)
ile verilir. Burada, my c¢? = 0,511 MeV elektronun durgun kiitle enerjisidir.
E= K + mgyc? (1.59)
Eger, K >> myc? olursa, E =~ K olur. Buradan,
K =~ pc (1.60)
¢ikarimi yapilir (Krane, 2001).
1.8. Gama Isinlarinin Madde ile Etkilesmesi
Madde iizerine elektromanyetik dalgalar distiriildiigiinde, aralarindaki etkilesmeler
nedeniyle cesitli fiziksel olaylar meydana gelmektedir. Yiiksek enerjili gama 1sinlarinin,
madde ile etkilesimi goz Oniinde bulunduruldugunda; fotoelektrik sogurma, Compton
sacilmasi, c¢ift olusum ve koherent sacilma olaylarinin iizerinde durmak daha uygun
olacaktir. Bu etkilesimlerde; foton enerjilerinin tamami veya bir boliimii elektrona aktarilir.
Bu enerji aktarimi sonucunda foton tamamen kaybolabilecegi gibi, belli bir agiyla sagilma
da gergeklestirebilir.
1.8.1. Fotoelektrik Sogurma
Yeterli enerjiye sahip fotonlarin atomun bagli elektronlarindan biriyle etkilesmesi

sonucunda gergeklesen fotoelektrik olay sonucunda foton, tiim enerjisini elektrona

aktararak kaybolur. Atomdan kopan elektron ise, foton enerjisinin atomik yoriingeye
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baglanma enerjisi kadar eksigi ile serbest hale gecer (Einstein, 1905). Fotoelektrik olay
sonucunda serbest hale gegen elektronun enerjisi asagidaki esitlik ile ifade edilir.

E,- = hv- E, (1.61)

Burada, E,-, elektronun sahip oldugu enerji, E}, ise elektronun bulundugu yoriingeye
baglanma enerjisini ifade etmektedir.

Serbest halde veya atoma zayif bir sekilde bagli olan bir elektronun fotonla
etkilesmesi sonucunda fotoelektrik olayin gerceklesme olasiligi oldukca diisiiktiir. Ancak,
diistik enerjili gama 1sinlart icin fotoelektrik sogurma olayinin gergeklesme olasiligr daha
fazladir. Bu olasilik, fotonla etkilesime giren maddeyi olusturan elementlerin atom
numarastyla dogru orantilidir. Yani, daha yiiksek atom numarasina sahip elementler,
fotoelektrik sogurma olay: i¢in daha yiiksek bir olasiliga sahiptir. Bu nedenle, madde
icinde fotoelektrik sogurmanin gergeklesme olasiligi, etkilesime giren fotonun enerjisi ve
maddeyi olusturan elementlerin atomik yapilar1 arasindaki iliskiyle belirlenir.

Kesin olmamakla birlkte asagidaki gibi bir matematiksel baginti1 yaklasik bir ifade
ile betimlenebilir (Knoll, 2010).

T = sabit Z— (1.62)
Ey

Burada, t fotoelektrik olayin meydana gelis olasihigini ifade eden fotoelektrik tesir
kesitini; Z atom numarasini; E gelen fotonun enerjisini; m ve n gelen fotonun enerjisine
bagli olarak 3 ile 5 arasinda degerler alabilen bir parametreyi belirtmektedir.

Gama 1sinlarinin sogurulmasi ile atom numaras:t arasindaki bu iligki, gama
detektdrlerinin yiiksek atom numarali elementlerden tiretilmesini gerektirir. Yiiksek atom
numarasina sahip elementler, gama 1sinlarini1 daha etkili bir sekilde sogurarak detektorlerin
hassasiyetini artirir. Bu nedenle, gama detektdrlerinin yapiminda genellikle atom numarasi
yiiksek olan materyaller tercih edilir. Bu materyaller, gama 1sinlarmin sogurulmasi ve
algilanmasi siirecinde daha etkili olabilir, boylece detektorlerin performans: artar ve daha

hassas Ol¢timler yapilabilir.
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1.8.2. Compton Sacilmasi

Compton (1932) etkilesimi, gama 1sinlarinin atomun ¢ekirdegine zayif bir sekilde
bagli olan dis yoriinge elektronlariyla etkilestigi ve esnek ¢arpisma gerceklestirdigi bir
stiregtir. Foton enerjisinin elektronun baglanma enerjisinden biiyiik olmasi durumunda,
baglanma enerjisi ihmal edilerek, elektronun serbest kaldigi varsayilir (Compton, 1932;
Leo, 2012). Esnek ¢arpisma sirasinda, foton enerjisinin bir kismini elektrona aktarir ve
elektron, fotonla ¢arpisma sonucunda sag¢ilir. Foton ise hem enerjisini hem de yoniinii
degistirir. Bu olay, gama 1sinlarinin maddenin i¢inden gecerken meydana gelen 6nemli bir
etkilesim seklidir.

Serbest haldeki bir elektron tizerine hv enerjili, hv/c momentumlu bir foton
disiiriildiglinde, foton ¢ agis1 altinda daha diisiik frekansla sagilir ve p momentumuna
sahip elektron 0 acistyla ortamdan yayimlanir (Sekil 1.6). Fotonun sagilma agisinin 6l¢iisii,

fotonun elektrona aktardigi enerji miktar ile iligkilidir.

Serbest
Gelen foton Elektron
Q ; )—» ------------- 1 —————
__ - Jr e
f E, P Sagilan
S 'Elektron
Ee‘ -pe
Carpismadan énce Carpismadan sonra

Sekil 1.6. Compton sagilmasi

Compton olayinda enerji ve momentum korunumundan asagidaki baginti

tiretilebilir:

hv
1+h—v (1—coso)
moc2

h' = (1.63)
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Burada, myc? elektronun durgun kiitle enerjisi olup 0,511 MeV degerindedir. Kiigiik
sacilma agilar1 i¢in, enerjinin kii¢iik bir miktar1 transfer edilecektir.

Compton sagilmasi olaymin meydana gelme olasiligi, ortamdaki sagici elektronlarin
sayilariyla orantilidir ve Z ile de lineer artmaktadir. Farkli sagilma tesir kesiti degerleri igin

sacilan gama 1sinlarinin agisal dagilimi, Klein-Nishina yaklagimi ile verilir.

do _ 2 1 2 (1+cos?6 a?(1-cosB)?
ao 1o (1+a(1—cos@)) ( 2 ) (1 + (1+60526)[1+a(1—cost9)]) (1'64)
Burada,
_ hv
a= (1.65)

Ve 1y ise klasik elektron yarigapidir (Klein & Nishina, 1929).

1.8.3. Koherent Sacilma

Rayleigh sacilmasi olarak da bilinmektedir. Bu sagilmada, foton baslangigta sahip
oldugu enerjisini korumaktadir. Etkilesime giren atomlarda uyarilma veya iyonlasma
gerceklesmez. Herhangi bir aktarim da gergeklesmediginden, genellikle ihmal edilirler ya
da hi¢ bahsedilmezler. Koherent sagilmada, gelen fotonun yoni degisir. Bu sagilmanin,
diisiik enerjili fotonlarda (birkag yiiz keV) ve yiiksek Z degerli atomlarla gerceklesmesi
olasilig1 daha fazladir (Celik, 2017).

1.8.4. Cift Olusumu

Eger gama 1511 yeterli enerjiye sahipse, madde tarafindan sogurulur ve ¢ekirdegin
Coulomb alaniyla etkilesime girer. Bunun sonucunda ise foton kaybolarak bir elektron-
pozitron ¢ifti olusturur. Pozitron ve elektronun kiitlesi birbirine esit oldugu i¢in, elektron-
pozitron ¢ift olusumu icin esik enerji degeri hv ~ 2m,c? = 1,02 MeV olacaktir. Fakat
pratikte, ¢ift olusum olayr ancak bu enerjinin birkag MeV oldugu zaman

gozlenebilmektedir. Bu etkilesimde momentum korunmaktadir.
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Cift olusum olaymin gergeklesme olasilig1 K ile gosterilmekte ve atom numarasina
bagimlilig1 asagidaki esitlik ile ifade edilmektedir.
K = sabit Z* f (E, Z) (1.66)

Burada, f(E,Z) gelen fotonun enerjisine ve hedef ¢ekirdegin atom numarasina bagl

bir fonksiyondur.
1.9. Gama Isinlarinin Sogrulmasi

dx kalinliginda bir sogurucu iizerine gonderilen bir Iy gama 111 demeti, belli bir
oranda sogrulduktan sonra dedektdre ulasir ve sayilir. Bu sogrulma asagidaki baginti ile

verilir ve Lambert - Beer yasasi olarak adlandirilir (Hubbell, 1969).
dl = — uldx (1.67)
[ = Ie (1.68)

Benzer olarak gama isinlar1 i¢in bir madde ile etkilesirken, etkilesme meydana

gelmeden evvel aldiklari serbest yol da tanimlanabilir:

f;o xe M¥dx

f;o e~ MXdx

I= (1.69)

Yapilan ol¢timler, gama 1sinlar1 igin kat1 i¢inde ortalama serbest yolun birkag cm ile
birkag mm araliginda degistigini gostermistir (Bircan, 2017). Sogurma olayinda, sogurucu
malzemenin kalmligina ek olarak fiziksel yogunlugu da onemli bir parametredir. Bu
nedenle yogunluktan bagimsiz bir sogurma parametresi tanimlamak faydali olacaktir. Bu

parametreye kiitle sogurma katsayisi denir ve asagidaki gibi tanimlanir:

_(k
[ =1Ie @ (1.70)

Burada, u/p (sz/g) kiitle sogurma katsayisi, d (g/cmz) ise sogurucu malzemeye ait

yiizey yogunlugunun degeridir.
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Malzemeler genellikle 6zel kosullarda farkli elementlerin bir araya getirilmesi ile
tiretilmektedir. BOyle bir durumda malzemenin kiitle sogurma katsayisi, elementlerin

malzeme igerisindeki oranlarina da bagh olarak asagidaki esitlik ile belirlenir.

L= Swi(/p)i (L72)

Burada, w; maddeyi olusturan her bir elementin agirlik kesri, (u/p)i ise her bir

elementin kiitle sogurma katsayisidir.
1.10. Beta Bozunumu

Beta 15101 enerji spektrumu, adeta yaklasik 20 yil kadar ¢oziilemeyen bir bilmecedir.
Spektrum ifadesi ile tanimlanmak istenen durum ise sudur: Mevcut bir radyoaktiflik (
aktiflik) numunenin daha ara spesifik olarak S~ 1s1masi yayan gekirdeklerden olustugunu
varsayalim. Bu cekirdekler, yar1 Omiirleriyle iligkili olarak [~ 1simasi1 yapacak, yani
noétronlarindan biri protona doniistiirecek ve gekirdek, elektron ve v, yayinlayacaktir.

Reaksiyonun Q degeri kiitle azalmasindan dolay1 agiga ¢ikan enerjidir. Bu deger, kiz
cekirdek, e~ ve v, tarafindan belli oranlarla paylastirilir ve bu pargaciklarin kinetik
enerjisine doniiserek oOl¢iilebilir bir nicelik haline gelir. Kiz ¢ekirdege diisen pay ¢ok kiigiik
oldugundan; kiz c¢ekirdek tarafindan alinan pay giivenli bir sekilde sifir kabul edilebilir.
Dolaysiyla Q degerinin hemen hemen hepsi e™ ve 7, tarafinda belli oranlarla paylastirirlir.

Ancak 1911 yillarinda nétrino denen bir parcacik bilinmemekteydi. Kiitlesi ¢ok
kiiciik oldugundan, maddeyle ve dolayisiyla dedektoriin kendisiyle ¢ok c¢ok zayif
etkilestiginden varligiyla ilgili herhangi bir iz birakmadan dedektorden gecer. Basit olarak,
dedektor nétrinoya karsi kordiir denebilir. Dolayisiyla, dedektér numunenin 6niine (ya da
numune dedektdriin dniine) konuldugunda dedektoriin yakaladig: tek parcacik elektron ve
olctiigii sey ise elektronun kinetik enerjisi olur.

Eger B~ bozunmasinda a¢iga ¢ikan tek parcacik elektron ise; Q@ degerinin hemen
hemen tiim enerjisini (% 99.9° dan fazlasini) elektron aldigindan dedektore ulasan tim
elektronlar asagi-yukar1 ayni kinetik enerjiye ulasacak ve dedektérde gézlenmesi beklenen
grafik Sekil 1.7.a” da gosterildigi gibi olacaktir. Ancak deneysel olarak g spektrumu elde

edildiginde tamamen beklenilenin disinda bir spektrum gozlenecektir. (Sekil 1.7.b)
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Sekil 1.7. Beta spektrumu

1.11. Radyasyon Dedektorlerinin Genel Ozellikleri

1.11.1. Basitlestirilmis Dedektor Modeli

Bir dedektoriin iizerine bir foton veya foton demeti distiriildiigiinde, fotoelektrik
olay, Compton etkilesimi veya ¢ift olusumu gibi ¢esitli etkilesimler gerceklesebilir. Her bir
etkilesme, dedektérde bir cevap olusturur ve enerjinin depolanmasi saglanir.
Etkilesmelerin siiresi, gaz tabanli dedektorlerde milisaniye, kati dedektorlerde ise
pikosaniye mertebelerindedir (Debertin ve Helmer, 1988).

Bu etkilesimler sonucunda, dedektoriin aktif hacmi i¢inde elektrik sinyalleri olusur.
Bu sinyaller, dedektoriin algilama ve veri kayd:i islemlerinde kullanilan temel bilgileri
saglar. Bu sekilde, fotonlarin dedektorle etkilesime girdiginde trettigi elektriksel tepkiler
araciligiyla enerji ve diger 6zelliklerin tespit edilmesi saglanir. Bu bilgiler, ¢esitli bilimsel
ve teknolojik alanlarda, o6zellikle radyasyon dedektorlerinin tasarimi ve performansinin
degerlendirilmesinde kullanilir.

Net bir elektrik sinyalinin olusmasi, etkilesme sonucu meydana gelen yiiklerin belirli
bir alanda toplanmasina baglidir. Yiiklerin toplanmasi igin ise dedektor i¢inde bir elektrik
alani olusturulmalidir. Bu sirada gegen zaman, yilik toplama zamani olarak adlandirilir.
Yiik toplama zamani, dedektoriin gesidine bagh olarak degisiklik gosterir. Ornegin, gaz
tabanli bir iyon odasinda bu siire birkac milisaniye iken, yar1 iletken diyot dedektorlerinde
bu siire birka¢ nanosaniye diizeyindedir. Bu siire¢, dedektoriin ¢alisma prensiplerine ve
yapisal 6zelliklerine bagh olarak farklilik gosterir ve dedektorlerin performansini etkileyen

onemli bir faktordiir.
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Yik toplama zamani, ayni zamanda yiiklerin dedektdr igindeki mobilitelerini ve
elektrotlara ulasmadan once aldiklar1 yolu veren bir parametredir. Béylece dedektdriin, bir
radyasyona verdigi cevap, verilen bir ylik toplama zamani i¢in dedektérde olusturulan bir
akim seklinde olacaktir. Bu siireler hem yiik tasiyicilarinin dedektoriin aktif hacmi i¢indeki
hareketliligini hem de toplama elektrotlarina ulagmadan 6nce almalar1 gereken ortalama

mesafeyi gostermektedir (Knoll, 2010).

i(t)

te
| . d:
| fol(t)t 0

Sekil 1.8. Basit dedektor modeli (Knoll, 2010)

Akimin siiresi boyunca alinacak integral, sadece bu 6zel etkilesimle iiretilen toplam
yiik miktar1 Q’ya esit olmalidir.

Herhangi bir ger¢ek durumda, birgok radyasyon belli bir siire boyunca etkilesime
girmektedir. Isinlama hiz1 yiiksekse, dedektérde belirli bir zamanda birden fazla
etkilesimden kaynaklanan akim olusabilir. Bdyle bir durumda akimlar karisabilir.
Radyasyonun varig1 Poisson istatistikleri ile yonetilen rastgele bir olay oldugundan, ardisik

akim pulslar1 arasindaki zaman araliklarinin da rastgele dagildigi unutulmamalidir (Knoll,

2010).
m N/ N

Zaman —p

Sekil 1.9. Zaman-akim grafigi (Knoll, 2010)
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1.11.2. Enerji Coziiniirliigii

Bir¢ok radyasyon dedektoriinde amag¢ gelen radyasyonunun enerji dagiliminm
6lgmektir. Radyasyon dedektorlerinin 6nemli 6zelliklerinden biri tek enerjili bir radyasyon
kaynagina kars1 verdigi cevabin kaydedilerek incelenebilmesidir. Sekil 1.10° da iki ayri
durum igin, bir dedektoriin puls yilikseklik dagilimi verilmistir. Bu dagilim, dedektdriin
cevap fonksiyonudur (Knoll, 2010). Sekil 1.10’ da iyi ¢oziiniirliik olarak verilen birinci
egrinin ortalama bir puls yiiksekligi etrafinda keskin bir dagilim gosterirken, koti
cozlnirlik olarak verilen ikinci egri, ayn1 dagilimin daha genis, diizensiz ve kotii bir
performansin1 gostermektedir. Ikinci dagilim, dedektdriin olaylari daha az hassas bir
sekilde ayirabildigini ve daha belirsiz sonuglar verdigini gosterir. Bu nedenle, iyi

¢Oziiniirliik istenen bir 6zelliktir ¢linkii daha net ve kesin sonuglar saglar.

dN/dH

lyi ¢dzunurlik

Koti ¢ozindrlik

Ho H

Sekil 1.10. Coziintirliik egrilerine 6rnekler (Knoll, 2010)

Her iki durumda da aym sayida pulsun kaydedilmesi kosuluyla her tepe noktasinin
altindaki alanlar esittir. Her iki dagilim da aym ortalama H, degerinde merkezlense de,
diisiik ¢oziniirliikteki dagilimin genisligi ¢ok daha fazladir. Pikin genis olmasi aslinda
dedektore esit miktarda enerji kayd: olmasina ragmen dalgalanma miktarinin fazla oldugu
anlamini tasimaktadir.

Belirli bir 6l¢iimiin radyasyonun gelen enerjisindeki ince detayr ¢6zme yetenegi
cevap fonksiyonunun genisligi (Sekil 1.10) kiigiildiik¢e belirgin bir sekilde gelistirilir.

Dedektoriin enerji ¢oziintirliigii genel olarak, pik merkezi Hg’in konumunun

bolinmesi ile elde edilen yar1 maksimumdaki tam genislik, FWHM (Full Width at Half
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Maximum) olarak tanimlanir. Enerji ¢oziiniirliigii (rezoliisyon) R, boyutsuz bir kesirdir ve
yiizde olarak ifade edilir.

Dedektor ¢oziintirliigii, kullanilan dedektor tipine ve Olgililen radyasyon tiirline bagh
olarak degisebilir. Alfa spektroskopisinde kullanilan yariiletken diyot dedektorler
genellikle %1’ den daha az bir ¢oziiniirliige sahiptir. Bu, dedektoriin alfa pargaciklarinin
enerjisini ¢ok hassas bir sekilde 6lgebildigi anlamina gelir.

Ote yandan, gama 1511 spektroskopisinde kullanilan sintilasyon dedektorlerinin
¢cOziiniirligli genellikle %3 ila %10 arasinda degismektedir. Bu, dedektoriin gama
isinlariin enerjisini daha az hassas bir sekilde 6lgebildigi ve spektrumda daha genis
piklerin olabilecegi anlamina gelir. Bu nedenle, alfa spektroskopisinde kullanilan
dedektorler genellikle daha yiiksek ¢oziiniirliige sahiptir ¢iinkii alfa pargaciklart daha
biiyiik enerji kayiplarina neden olurken, gama 1sinlar1 daha az enerji kaybeder.

Bir dedektorde enerji ¢oziiniirliigliniin iyi olmasi, dedektor enerjileri birbirine yakin
olan iki radyasyon arasindaki farki iyi ayirt edecegini gostermektedir.

Coziniirlikte bazi dalgalanma kaynaklar1 olabilir. Bunlar, ol¢limler sirasinda
dedektdriin calisma 6zelliklerinin kaymasi ile yiik toplama kayiplari, elektronik giiriiltiiden
kaynaklanan enerjide dalgalanmalar ve Olglilen sinyalin ayri yapisindan kaynaklanan
istatistiksel giiriiltiidiir.

Bir radyasyon dedektor etkilesmesi siireci sonunda, N tane yiik tasiyicisinin
iiretildigini varsayarsak, standart sapmanin N olmasi beklenir. Sinyaldeki dalgalanmanin
tek sebebinin o genislik parametresinden kaynaklandigi varsayilirsa, cevap fonksiyonu bir

Gauss dagilimi seklinde olur ve asagidaki gibi ifade edilir.

A H—Hy?
G(H) = —=exp(— >

= —0) (1.72)

Burada, H, ve A sirasiyla merkez ve alani ifade eder. Herhangi bir Gauss egrisinin

FWHM’ siise FWHM = 2,350 ile verilir.
Bir¢ok dedektoriin cevap fonksiyonu yaklasik lineer olup, H, ile N arasinda

Hy = KN (1.73)
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iligkisi vardir. Burada, K bir orantililik sabitidir.

Puls yiikseklik spektrumundaki pikin standart sapmasi,

o =KVJN (1.74)

ile verilir. Ayrica pulsun FWHM’ si 2,35KV/N’ dir. Bu durumda, ¢oziiniirliigiin limit

degeri asagidaki ifadeyle verilir:

R = FWHM _ 2,35KVN _ 235 (1.75)

Hy KN VN

R degerinin N’ ye bagli olmasindan dolay;; N’ nin olduk¢a biiyiik olmasi
¢oziiniirliigiin diizelmesi seklinde yorumlanmalidir. Ideal bir dedektér, her bir olay icin
olabildigince fazla sayida yiik tasiyicisina sahip olacak sekilde tasarlanmalidir. Bu durum
dedektdriin her bir olayr miimkiin olan en iyi sekilde 6l¢ebilecegi anlamina gelir.

Eger enerji dagilimina katkida bulunan diger parametreleri de goz Oniinde
bulundurursak FWHM agagidaki gibi yazilabilir.

Denklem 1.72 ile verilen Gauss fonksiyonu, genel enerji ¢oziintirliigiine bir¢ok farkli
faktoriin katkida bulunabilecegi dedektor sistemlerinin cevap fonksiyonunu temsil etmek
icin yaygin olarak kullanilan bir aragtir. Dedektor sistemlerinin cevap fonksiyonu
genellikle bircok farkli etkenin katkisiyla sekillenir. Elektronik giirtiltii, dedektor
malzemesinin homojenligi, dedektoriin geometrisi ve ¢esitli enerji kayb1 mekanizmalari
gibi faktorler, genel enerji ¢ozlniirliigiini etkileyen unsurlar arasindadir. Bu durumda
toplam FWHM, her bir ayr1 dalgalanma kaynagi icin FWHM degerlerinin kare toplami

olacaktir.
(FWHM)Eoplam = (FWHM)izstatistiksel + (FWHM)éurultu + (FWHM)guruklenme + "'(1-76)

Sagdaki her terim, diger tiim dalgalanma kaynaklar1 sifir olmasi durumunda

gozlenecek olan FWHM?” nin Kkaresidir (Knoll, 2010).
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1.11.3. Dedeksiyon Verimi

Tim radyasyon dedektdrleri, aktif hacim i¢inde etkilesime giren her bir radyasyon
miktar1 i¢in bir ¢ikis pulsu iretir. Alfa veya beta pargaciklart gibi birincil yiikli
radyasyonun etkilesimi genellikle dedektoriin aktif hacmine girdikten hemen sonra
gerceklesir. Parcacik, menzilinin bir kismin1 tamamladiktan sonra, yolu boyunca yeterli
miktarda iyon ¢ifti olusturarak kaydedilebilecek kadar biiylik bir sinyal iiretecektir. Bu
durumda, dedektoriin aktif hacmi igine giren her alfa veya beta pargacigini dedektoriin
tespit edebilecegi konuma getirmek genellikle kolaydir. Bu kosullar altinda, dedektoriin
%100 sayma verimliligine sahip oldugu ifade edilir.

Diger yandan, gama 1sinlar1 veya nétronlar gibi yiiksiiz radyasyonlar, dedektorde
tespit edilebilir bir sinyal olusturmadan 6nce onemli bir etkilesime girmelidir. Bu tiir
radyasyonlar, etkilesimler arasinda uzun mesafeler kat edebileceginden, dedektorler
genellikle %100’ den daha diisiik bir verimlilige sahiptir. Sonug¢ olarak, dedektor
verimliligini kesin bir sekilde belirlemek i¢in, dedektérde meydana gelen nétron veya
foton sayisin1 dedektor verimliligiyle iliskilendirmek gereklidir.

Sayim verimini, “mutlak verim” ve “gercek verim” olmak iizere iki genel baslikta

incelenir (Knoll, 2010).

kaydedilen puls sayist

Emutlak = kaynak tarafindan sogrulan radyasyon kuantalarinin sayist (1'77)
Sger(;ek - dedektore gefeiyf:;;l:;izlliz;lizzarmm sayist (1'78)

Bu iki verim izotropik kaynaklar i¢in asagidaki gibi iliskilendirilebilir.
Egercek = Smutlak'% (1.79)

Burada (2, ger¢ek kaynak konumundan goriilen kat1 agidir. Dedektorlerde genellikle
gercek verim ile ilgilenilir. Bu verim dedektoriin yapildigi malzemeye, radyasyon
enerjisine ve dedektoriin gelen radyasyon tarafindaki kalinligina baghdir. Mutlak verimde

ise geometrik faktorler de etkili olmaktadir.
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Dedektor verimini, toplam verim ile pik verimi olmak iizere iki baglikta tanimlamak
miimkiindiir. Toplam verim, etkilesimin tim spektrumunun kaydedildigi varsayimina
dayanir, burada enerjinin ne kadar kii¢iik olduguna bakilmaz. Fakat, bir pulsun
kaydedilebilmesi igin enerjisinin bir esik degerin iizerinde olmas1 gerekmektedir. Iste,
yalnizca esik degerin listiindeki degerlerin kaydedildigi durum ise pik verimi olarak

adlandirilir. Toplam verim ve pik verimi arasinda asagidaki iliski vardir:

r=—pk_ (1.80)

Etoplam

Sadece pik verimlerinin kullanilmasi deneysel bakis agisindan dolay: siklikla tercih
edilir, ¢iinkii tam enerjili olaylarin sayisi, cevredeki nesnelerden sacilma veya sahte giirtiltii
gibi bazi1 rahatsiz edici etkilere duyarli degildir. Bu nedenle, toplam verim degerleri
degisken kosullardan etkilenebilirken, pik verimi igin degerler derlenebilir ve evrensel

olarak ¢ok ¢esitli laboratuvar kosullarina uygulanabilir (Knoll, 2010).
1.11.4. Kat1 Ac1

Gergek pik verimine sahip (£g¢rce) bir dedektoriin tam enerji piki altinda N tane

olay kaydedildigini varsayalim. Basit olmasi1 i¢in, kaynagin izotropik olarak radyasyon
yaydigini ve kaynak ile dedektor arasinda sogurma olmadigini varsayalim. Belli bir sayim

islemi sonunda kaynaktan yayilan radyasyonu S ile ifade edecek olursak,

4T

S=N 1.81
Egercek? ( )

gibi yazilabilir. Burada Q kat1 a¢1 olup asagidaki ifade ile verilir (Knoll, 2010).
Q:Lf?M (1.82)

Burada; r, kaynak ile dA yiizey elemani arasindaki mesafeyi, a ise yiizey elemaninin
normaliyle kaynak yonii arasindaki aciy1 gostermektedir. Sekil 1.11” deki bir nokta kaynak
icin kat1 ag1 degeri asagidaki gibi belirlenir.
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0 = 2n(7=)
A
S /
o {l

- ﬂ' g
Sekil 1.11. Dedektor kaynak geometrisi (Knoll, 2010)

Burada d, kaynak-dedektor mesafesi; a ise dedektoriin yarigapidir.

d >> a i¢in,
_ A mr?
NM=EZ=a
seklinde yazilabilir.

Kaynak

Dedektdor

Sekil 1.12. Genisletilmis kaynak (Knoll, 2010)

(1.83)

(1.84)

Eger kaynak Sekil 1.12° deki gibi s yaricapinda olursa kati ag1 asagidaki gibi yazilir.

0= 4%[000 eXp(—dk)];{(Sk)]l(ak) dk

(1.85)

Burada, J; ve J, Bessel fonksiyonlarini gostermektedir. Bu integralin analitik bir

¢oziimil olmay1p niimerik yontemlerle ¢6ziim Onerilebilir. Asagida yararl bir yaklagim ile

¢Ozlim Onerilmistir.
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1 3

0=2m[1—-——7-32F 4 42[F1] - a3[F2]] (1.86)
a+pz  Ba+pz

_5_ B 35 _p?
Fl= 16 (1+p)7/2 64 (1+p)%/2 (1.87)

_ 3 _ B 315 p? 1115 B3
T 128 (1+B)%/2 256 (1+ﬁ’)% + 1024 (1+)13/2 (1.88)
Burada,
s
— (_\2
a= Q)
(1.89)
B =)
d

ile ifade edilmektedir (Knoll, 2010; Celik 2010).

1.11.5. Olii Zaman

Dedektor sistemlerinde, iki ayr1 olayn iki farkli puls halinde kaydedilebilmesi igin
bu olaylar arasinda ge¢mesi gereken minimum siire vardir. Bu siireye, 6lii zaman denir.
Radyoaktif bozunmanin tesadiifi yapisi sebebiyle, ¢ok kisa zaman araliklarinda ardigik
olarak meydana gelen iki olaydan biri kaydedilmeden hemen once kaybolma riski vardir.
Ozellikle yiiksek sayim oranlarinda, bu 6lii zamanin etkisi onemli hale gelebilir. Bu
durumda, 6lii zamanin hesaplamalarda g6z 6niinde bulundurulmasi gerekmektedir.

Yiiksek sayim hizlarinda, kaydedilmemis olaylarin orani artabilir ve bu da dogru
sonuglar elde etmeyi zorlastirabilir. Bu nedenle, 6lii zamanla ilgili diizeltme faktorlerinin
hesaplamalarda dikkate alinmasi Onemlidir. Bu faktorler, dedektér sistemlerinin

performansini degerlendirirken ve verilerin dogru bir sekilde analiz edilmesinde kullanilir.
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1.12. Monte Carlo Yontemi

1.12.1. Monte Carlo Yonteminin Tarihcesi

Monte Carlo (MC) yontemine yapilan ilk referans otomatik hesaplama makinelerinin
kesfinden once gergeklesmistir. Bu galisma, ¢izgili bir kagit lizerine atilan ignenin olasilik
durumlarini degerlendirebilmek i¢in MC’ ye benzer bir yontem 6nerilmesi seklindedir (De
Buffon, 1777). Daha sonraki yillarda ise, m sayisinin degerini belirlemek i¢in boyle bir
sistematigin kullanilabilecegi fikri ortaya atilmistir (Laplace, 1886).

Termoniikleer silahlarin ilk gelisimi sirasinda, von Neumann ve Ulam modern Monte
Carlo donemini baglatarak bu yontemin gelisimine ve dijital bilgisayarlarda kullanilmasina
onciiliik ettiler. “Monte Carlo” terimi ilk kez bu baglamda kullanilarak yontemin adi ve
kapsami belirlendi (Bielajew, 2001).

Enrico Fermi, 1947 yilinda Los Alamos’ ta ¢alisirken, ndtron fisyon hesaplamalari
yapabilen mekanik bir cihaz icat etmis ve bu hesaplamalarda Monte Carlo yontemini
kullanmistir (Andreo, 1991).

Sonraki yillarda, bir¢ok farkli merkez tarafindan bilgisayar tabanli Monte Carlo
kodlar1 gelistirilmistir. Bu kodlar arasinda MCNP, Fluka, Geant gibi popiiler ornekler

bulunmaktadir.

1.12.2. Sik Kullanilan Monte Carlo Paket Programlari

Monte Carlo kodlari, modellenen bir geometrideki radyasyonun davranisini ve
etkilesim parametrelerini MC teknigini kullanarak hesaplatmak amaciyla gelistirilmigtir.
Radyasyonun etkilesim siireci, problem uzayi boyunca izledigi yolda kayit altina alinir ve
bu etkilesimler ilgili kodun kullandig: dile uygun olarak girdi dosyalarina kaydedilir.

Yaygin olarak kullanilan bazi Monte Carlo Paket Programlari Tablo 1.5° te

verilmistir.
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Tablo 1.5. Baz1 Monte Carlo paket programlari

KOD PLATFORM WEB SITESI
http: .slac.stanford.ed list.html
EGS 4 VAX, DOS (PC), UNIX p://www.slac.stanford.edu/egs/egslist.htm
http://www.slac.stanford.edu/egs/
) http://www.nea.fr/listsmh/penelope/maillist.html
PENELOPE PC Windows
http://www.nea.fr/abs/html/nea-1525.html
UNIX, PC LINUX, PC .
GESPECOR Windows www.matec-online.de
http://www.asd.web.cern.ch/wwwasd/geant/
GEANT 4 UNIX, Pg? LINUX, PC
Windows http://geant4.web.cern.ch/geant4/
UNIX, PC LINUX, PC )
MCNP5 Windows http://laws.lanl.gov/x5/MCNP/forum.html
FLUKA PC LINUX, PC Windows http://www.fluka.org/fluka.php
1.12.2.1. EGS

Electron Gamma Shower (EGS) sistemi, radyasyon fizigi ve tibbi fizik gibi cesitli
alanlarda yaygin olarak kullanilan bir Monte Carlo kodudur. Bu sistem, enerjisi birkag keV
ile 10 GeV arasinda degisen elektron ve fotonlarin maddenin igindeki gecislerini
modellemek amaciyla tasarlanmigtir. Fakat, bu sistemi kullanmak i¢in Fortran, C ve C++
derleyicilerine ihtiyag vardir. EGS sistemi, ozellikle elektron tasima modellemesinde
kullanildigindan, hesaplama siiresini kisaltmak icin kapsamli bir sekilde optimize
edilmistir (Yegin, 2003).

Bu optimizasyonlar, modelin dogrulugunu korurken hesaplama siliresini minimize
etmeyi hedefler. Bu sayede, daha karmasik simiilasyonlar bile verimli bir sekilde
gerceklestirilebilir ve analizler daha hizli bir sekilde tamamlanabilir. EGS sistemi,
radyasyon etkilerini ve madde igindeki elektron-foton etkilesimlerini anlamak i¢in énemli

bir aractir ve bilimsel arastirmalarda genis bir kullanim alanina sahiptir.

1.12.2.2. PENELOPE

PENELOPE adi, “PENetration and Energy LOss of Pozitrons and Elektrons”
ifadesinin kisaltmasidir. Bu hesaplama kodu, birkag keV’ den 1 GeV’ e kadar olan
enerjilere sahip elektron-foton ¢iftlerinin karmasik geometriler ve cesitli materyaller
icindeki davraniglarini modellemek i¢in kullanilir. Baglangigta elektron ve pozitronlarla

ilgiliyken, daha sonra foton simiilasyonu da eklenmistir. Foton etkilesimlerinde geleneksel


http://www.slac.stanford.edu/egs/egslist.html
http://www.slac.stanford.edu/egs/
http://www.nea.fr/listsmh/penelope/maillist.html
http://www.nea.fr/abs/html/nea-1525.html
http://www.matec-online.de/
http://www.asd.web.cern.ch/wwwasd/geant/
http://wwwasd.web.cern.ch/wwwasd/geant/
http://laws.lanl.gov/x5/MCNP/forum.html
http://www.fluka.org/fluka.php
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bir yontem kullanilirken, elektron ve pozitronlarin hareketini modellemek igin farkli bir
yontem benimsenmistir. Bu program, Fortran 77 derleyicisini gerektirir (Sempau vd.,
2003).

Elektron ve fotonlarin madde ile etkilesimlerini modellerken, PENELOPE, genis bir
enerji araliginda dogru sonucglar saglayarak bilimsel arastirmalarda ve endiistriyel

uygulamalarda yaygin olarak kullanilmaktadir.

1.12.2.3. GEANTA4

GEANT4, “Geometry and Tracking” (Geometri ve Izleme) kelimelerinin bas
harflerinden tiiretilmis bir isme sahiptir. Bu kod, yiiksek enerji fizigi, uzay bilimi, tibbi
fizik ve radyasyondan korunma gibi bir¢cok farkli uygulama alaninda kullanilmaktadir.
Izleme (tracking), geometri, fizik modelleri ve detektore ulasan pargaciklarin sayilmasi
gibi g¢esitli fonksiyonlar1 igerir. GEANT4, genis bir enerji araliginda cesitli
elektromanyetik, hadronik ve optik siirecler i¢in ¢alisma imkani sunar ve kapsamli detektor
ve fizik modelleme yeteneklerine sahiptir.

GEANT4, genis bir enerji araliginda ¢alisma imkani sunar. 250 eV’ den baglayip
TeV mertebesine kadar olan enerjileri kapsar. Ayrica, 54 farkli elektromanyetik, hadronik
ve optik siire¢ i¢in modellenebilme 6zelligine sahiptir. Bu o6zellik, cesitli fiziksel
etkilesimleri detayli bir sekilde simiile etme imkani saglar. GEANT4, C++ programlama
dili ile yazilmistir ve rekonstriiksiyon ve analiz bilesenlerini igerir. Ozel amaglar igin
gelistirilmis varyasyonlari da mevcuttur; bunlar arasinda Gamos ve Gate gibi ornekler
bulunmaktadir. Bu ¢esitlilik, farkli bilimsel ve teknik uygulamalarda esnek bir kullanim
sunar.

Yazilimin tasariminda, “run” ve “event” adi verilen iki temel kategoriden olusur. Bu
kategoriler, birincil pargaciklarin iiretimi, izlenmesi ve etkilesimleriyle ilgilidir. “Run”
kategorisi, bir simiilasyon c¢alismasinin genel kosullarini belirler ve birbiri ardina
gerceklesen olaylari kontrol eder. “Event” kategorisi, her bir olayin ayrintilarin1 yonetir ve
pargaciklarin hareketini, etkilesimlerini ve detektore ulasmalarini takip eder. Bu iki temel
kategoriye ek olan ve “tracking” adi verilen baska bir kategori daha bulunur. Bu kategori,
pargaciklarin izlenmesi ve dagilimiyla ilgilenir. Parcaciklarin hareketini belirleyen fizik
kurallar1 bu kategori boyunca etkindir. Par¢aciklarin davranisini belirleyen fizik modiilleri,

parcacik bozunum fizigi, elektromanyetik fizik ve hadron fizigi gibi ii¢ ana gruptan olusur.
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Bu modiiller, parcaciklarin cesitli etkilesimlerini ve davranislarini modellemek igin
kullanilir ve simiilasyon sonuglarinin dogrulugunu saglar (Agostinelli vd, 2003).
Bilimsel arastirmalarda ve deneylerde yaygin olarak kullanilan gii¢lii bir simiilasyon

aracidir.

1.12.2.4. MCNP

MCNP, 1970'lerde ABD'nin Los Alamos Ulusal Laboratuvari tarafindan gelistirilen
bir kod sistemidir. Adinm1 “Monte Carlo N Particles” kelimelerinin bas harflerinden
almaktadir. Notron, proton, elektron gibi cesitli pargaciklarin etkilesimlerini igeren ve
ozellikle niikleer siire¢lerin simiilasyonlarinda tercih edilen bir kod sistemidir.

Ug boyutlu geometrilerin tamimlanabildigi ve kaynaklarm olusturulabildigi ve
radyasyon etkilesimlerinin modellenebildigi bir program ¢esididir. Baslangi¢ konumlari
gibi niceliklere, ¢esitli olasilik dagilimlarina dayanan degerler atayarak ve sonucta
herhangi bir bolgedeki parcacik akisi, sogrulan doz gibi niceliklerin ortalama degerlerini
hesaplar.

Bu program, Fortran, C ve C++ derleyicileri gibi belirli sistem gereksinimlerine
ihtiya¢ duyar. MCNP, niikleer miihendislik, radyasyon dozimetrisi ve diger niikleer
alanlarda yaygin olarak kullanilan gilivenilir bir simiilasyon aracidir (Dupree ve Stanley,
2012).

1.12.2.5. FLUKA

Adini, 1970 yilindaki bir termodinamik c¢alismanin “FLUktuirende KAskade”
ifadesinden almaktadir. FORTRAN altyapis1 gerektiren bu program, birkag keV ile kozmik
151n enerjisi araliginda degisen enerjilere sahip elektron ve proton hizlandirici sistemlerinin
zirhlanmasi, pargaciklarin gecisi ve madde ile etkilesimlerini modellemek amaciyla
kullanilan bir Monte Carlo kodudur.

FORTRAN altyapisi ile ¢alisan bu program, birkag keV’ den kozmik 1sin enerjisi
araligina kadar degisen enerjilere sahip proton ve elektron hizlandirict sistemlerinin
zirhlanmasi, parcaciklarin gegisi ve madde ile etkilesimlerini simiile etmek i¢in kullanilan
bir Monte Carlo kodudur. FLUKA, 6zellikle hadron etkilesimlerini dogru bir sekilde ve en

Iyi temsil edebilme oOzelligiyle taninmakta ve birgok farkli uygulama alaninda yaygin
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olarak kullanilmaktadir. Ozellikle niikleer ve pargacik fizigi, radyasyon dozimetrisi, tibbi
fizik ve uzay aragtirmalar1 gibi alanlarda FLUKA’ nin giivenilirligi ve esnekligi 6n plana
¢ikar. (Battistoni vd., 2015)

1.13. Monte Carlo Foton Simiilasyon Algoritmasi

MC simiilasyonu yapilmadan Once simiilasyon i¢in bir algoritma olusturulmasi

gerekmektedir. Sekil 1.13° te Monte Carlo simiilasyon algoritmasi verilmistir.

Fotonun baslangic parametrelerini kiime |,
uzerine ekle.

l E

Enerji, yon, pozisyon, gibi ézellikleri al. _H Kiime bos
r Y | - mu‘)
r
Y P
Enerji < Cut off ? E y | rogrami
sonlandr.
"H 7'y
Bir sonraki etkilesim mesafesini hesapla. Degisik
ortamlar) dikkate al.
h 4
Foton inceleme alanim terk etti mi? E >
H

Hangi etkilesim olduguna karar
ver.
- Fotoelektrik
- Compton
- Cift olusumu
- Rayleigh

'

Geri kalan parcaciklarin enerji ve yonlerini (surviving
particles) belirle ve diger islemler icin kiimenin iistiine
ekle.

Sekil 1.13. Monte Carlo simiilasyon algoritmasi (Celik, 2010)
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1.14. Monte Carlo Yénteminin Icerigi

Monte Carlo yontemi, sistemleri modellemek i¢in basit olarak nesnelerin birbiriyle
veya cevreyle etkilesimlerine dayanan sayisal bir sorun ¢6ziim teknigidir. Bu yontem,
rastgele Ornekleme ve olasilik teorisi prensiplerine dayanarak sistemin davranigini
modellemek igin istatistiksel bir analiz yontemi kullanir. Boylece, karmasik sistemlerin
davraniglarin1 anlamak ve 6ngorii olusturmak miimkiin olur.

Sistemlerin temel dinamiklerinin dogrudan simiile edilmesiyle modelleme yapilir.
Coziimiin belirleyicisi, mikroskobik etkilesimlerin veya iligkilerin sonuca ne kadar
yakinlagildigiyla belirlenmekte olup; uygulama mekanigi tekrarlanan durum veya
hesaplamayi igermektedir (Bielajew, 2001).

Kisacast bu yontem, istatistiksel tekniklere dayanarak bir olayr veya deneyi
bilgisayar ortaminda olusturma imkani sunar. Yapilan bir 6l¢iim ya da deneyde ulasilan
sonuglar, rastgele sayilar kiimesini olusturur (Cengiz, 1991).

Gilintimiizde Monte Carlo hesaplamalarinda kullanilan rastgele sayilar, “rastgele say1
cekirdegi” olarak adlandirilan baslangi¢ sayisindan baglayarak belirli bir fonksiyon
kullanilarak ardisik olarak {retilir. Bu seri halindeki rastgele sayilar birbirinden
bagimsizdir ve belirli bir diizen veya dogal bir yapiya sahip degildirler. Bu tiir rastgele say1
ireteclerine “sdzde rastgele sayr iretegleri” denir. Bu yontem, istatistiksel analiz ve
rastgele ornekleme prensiplerine dayanarak Monte Carlo simiilasyonlarinda kullanilan
rastgele sayilarin saglanmasini saglar (Mascagni, 2000; Yegin, 2003).

Rastgele sayilar kiimesinde, herhangi bir saymin gelme olasilig1 digerleriyle esit ya
da farkli olabilir. Eger her saymin gelme olasiligi ayni ise, bu kiime “diizgiin dagiliml
sayilar kiimesi” olarak adlandirilir. Diizgiin dagiliml rastgele sayilar, O ile 1 arasinda
degerler alan ve herhangi bir araliktaki degerlerin olasilik dagilimini taklit etmek igin
kullanilabilir. Bu sayilar, belirli bir aralikta degerler alabilen ve ele alinan olayin olasilik

dagilimina sahip rastgele degerlerin iiretilmesinde kullanilir (Cengiz, 1991).
1.14.1. Temel Mote Carlo Ilkesi
Belli bir 6l¢iim ya da yapilacak deney bir olay olarak tanimlandiginda; herhangi bir

olayin belirli olasiliklarla ortaya ¢ikan birbirinden farkli sonuglari olacaktir. Bu sonuglarin

hepsi de ayr1 birer olay seklinde degerlendirilmektedir. Madde ile fotonun etkilesmesi
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olaymnin, Compton olayi, fotoelektrik olay ya da ¢ift olusumu gibi sonuglari olabilir. Bu
sonuglarin hepsi ayn1 zamanda birer olaydir.

n adet sonucu bulunan, ve bu sonuglarin meydana gelme olasiliklar1 Py, Py, ... Py ile
verilen bir olay tasarlandiginda; rastgele sayilar kullanilarak olay taklit edilecektir.

& 0 ile 1 araliginda degerler alabilen diizgiin dagilimli gelisigiizel sayilari ifade
etmektedir. Rastgele say1 ekseni, Sekil 1.13’de goriildiigii gibi n adet bolgeye ayrilmistir.

1. sonug 2. sonug n. sonug
bolgesi bolgesi bolgesi
I I I I I
I I I I I
0 Pl P1+P2 P1+P2+..+Pn_1 1

Sekil 1.14. Olasilik Bolgeleri

Ayrilan her bolge adi gecen sonug bolgesinin olasiligini betimler. Gelisigiizel
sayilarin P; olasilikla belirlenen kadarini 1. sonug, P, olasilikla belirlenen kadarimi 2.
sonug, ... Pn olasilikla belirlenen kadarin1 da n. sonug¢ olacaktir. Bdylece, tiiretilen bir

tesadiifi sayinin igine diistiigii bolge o sonucu meydana getirecektir. Ozetle,

0<€<P; ise 1. sonug

P1< E<P1+P; ise 2. sonug

P1+Po+...Pra< &<I ise n. sonug

meydana gelir.

m < x < n araliginda, herhangi bir x sonucunun ortaya ¢ikma olasiligi, f(x) siklik

fonksiyonu ile belirlenen bir olay i¢in, sonucun x ile x+dx araliginda gelme olasiligt,

__fx
p(x)dx = T rooa (1.91)

Seklinde olur. Burada P(x) fonksiyonu, olasilik yogunluk fonksiyonu olarak

adlandirilir. Toplam olasilik yogunluk fonksiyonu ya da olasilik dagilim fonksiyonu,

P(x) = f;p(x’)dx’ (1.92)
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seklinde tanimlanir. m < x < n araliginda, her x degerine karsilik P(x) fonksiyonu
0-1 araliginda tesadiifi degerler alir. P(x) degerinin gergeklesme sayisi yani siklik

fonksiyonu diizgiin bir dagilim géstermektedir (Cashwell ve Everet 1959).
Bu durumda P (x) ile & birbirine esitlenmelidir. Boylece,

_ f;if(x’)dx’

§= Jo fG)dx

(1.93)

ifadesine ulasilir. Bu durum, “Temel Monte Carlo Ilkesi” olarak bilinmektedir.

Denklem (1.93) ifadesi tersine gevrilerek & degerlerine bagl olarak x degerleri,

x =P7L(%) (1.94)

elde edilir. Ulasilan her bir & ifadesine karsilik gelen x degerleri Denklem (1.94)
ifadesi ile hesaplanir. 0-1 aras1 diizglin dagilimhi € degerleri kullanilarak, m-n araliginda

f(x) dagilimli x degerleri elde edilir (Cengiz, 1991).
1.14.2. Reddetme Yontemi

Reddetme yontemi, bir dagilimin 6rneklenmesi i¢in kullanilan bir Monte Carlo
yontemidir. Eger bir dagilimin integrali analitik olarak alimamiyorsa veya bu integralin
tersine ¢oziimii miimkiin degilse, temel Monte Carlo ilkesi dogrudan uygulanamaz. Bu
durumda, reddetme yontemi kullanilir.

Reddetme yontemiyle belirli bir aralikta f(x) siklik fonksiyonu ile belirlenen bir olay1

ornekleme siirecinde, sabit bir dagilimi olan k(x) kullanilir.
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Sekil 1.14°te f(x) ve k(x) = sabit dagilimlar gosterilmektedir.

S|k||kA

ry k(x)=sabit

N k(x)

— f(x)

f(x)

xV

Sekil 1.15. Reddetme yontemi

k(x) = sabit dagilimma Temel Monte Carlo Ilkesi’ ni uygulayabiliriz. Sekil 1.15’ te
goriildiigii gibi tiiretilen bir € ile k(x) dagiliminin 6rneklenmesinden elde edilen bir X
degerinin siklig1 k(x) = sabit’ tir. Bu sikligin f(x) olma olasilig1 f(x)/k(x)’tir. Diizgiin
dagilimli olarak tiiretilen x degerlerinin f(x)/k(X) olasiligiyla belirlenen miktari f(x)
dagilimhidir. Boylece f(x) dagilimi Sekil 1.15° te goriilen k(x) = sabit dagiliminin
orneklenmesiyle elde edilen diizgiin dagilimh x degerlerinden, f(x) ile x ekseni arasinda
kalanlar1 kabul edilip, digerleri reddedilerek orneklenir.

Temel Monte Carlo ilkesi kullanilarak k(x) = sabit dagilimindan &rnekleme
yapilabilir. Sekil 1.15” te gorildigi gibi, k(x) = sabit dagilimindan tiiretilen bir § ile
orneklenen x degerinin siklig1 k(x) = sabit olacaktir. Bu durumda, f(x) dagiliminin
k(x) = sabit dagilimmdan Ornekleme yapildiginda elde edilen diizgiin dagilimh x
degerlerinin f(x)/k(x) olasilig1 ile belirlenen miktar1 f(x) dagilimina uygundur.

Bu yontemde, k(x) = sabit dagilimindan 6rneklenen x degerleri dagiliminin altinda
ve x ekseni arasinda kalanlar kabul edilir, digerleri ise reddedilir. Bu sekilde, f(x) dagilinu
saglanmis olur.

Yontemin verimi,

Jon () dx

= (1.95)

seklinde tanimlanir.
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Verimliligi artirmak ve gereksiz hesaplamalardan kaginmak icin siklik fonksiyonu
f(x) maksimum degerine boliinerek g(x) = f(x)/f (x)max fonksiyonu elde edilir. Bu
yeni fonksiyon g(x), orijinal fonksiyonun en yiiksek degerine gore normallestirilmis bir
versiyonudur.

Daha sonra, bu g(x)dagilmimi o6rten bir k(x) dagilimi segilir. Bu segimde,
k(x) dagilimi, 6rnegin k(x) = 1 gibi, dagilimini tam olarak kapsayacak bir form alir. Bu,
rastgele sayilar iretirken, istenen g(x) dagilmmin altinda ve tizerinde kalan degerlerin
kabul edilip edilmeyecegini belirlememize yardimci olur. Bu yontem, hesaplama zamanini
minimuma indirmek ve verimliligi artirmak i¢in kullanilir. k(x) = 1 dagilimina Temel

Monte Carlo Ilkesi uygulanirsa,

x=m+ (n—m)g (1.96)

ifadesi elde edilir. Bir ¢ dretilerek yukaridaki denklemden bir X degeri bulunur.
Bulunan bu x degerinin sikligr f(x) olma olasihigi g(x)/k(x) = g(x)’dir. Ikinci bir &

tiiretilerek,

§<g(x) (1.97)

sartina bakilir. Elde edilen x, belirli bir kosulu saglayip saglamadigina bakilarak
kabul edilir veya reddedilir. Kosul saglaniyorsa, bu deger kabul edilir ve istenen dagilima
uygun bir x degeri elde edilmis olur. Ancak, kosul saglanmiyorsa, bu deger reddedilir ve
baska bir x degeri iiretilir. Bu islem tekrarlanarak istenen dagilima uygun x degerleri elde
edilir. Bu yontem, rastgele sayi liretimi sirasinda belirli bir dagilima ulasmay1 hedefleyen

Monte Carlo simiilasyonlarinda sik¢a kullanilan bir tekniktir (Cengiz, 1991).



2. YAPILAN CALISMALAR

2.1. Calisma Alam

Bir radyoaktif ¢ekirdegin ayni bozunumundan iki veya daha fazla foton kademeli
olarak yayildiginda ve gama 1sim1 detektoriiniin zaman ¢oziimleme siiresi iginde birden
fazlas1 es zamanli olarak tespit edildiginde gercek tesadiif toplami (True Coincidence
Summing, TCS) meydana gelir. TCS, spektrumdaki tam enerji tepe noktalarinin net tepe
alanlarimi degistirir ve herhangi bir diizeltme yapilmazsa ¢ekirdegin aktivitesi hatali olarak
tespit edilir. TCS, sayim oranindan bagimsizdir, ancak belirli bir niikleer bozunumun
ozelliklerinin yani sira tepe ve toplam verime de giiclii bir sekilde baglidir.

Gama 1ginlart spektrometresinde, tesadiifi toplam diizeltmeleri genellikle dogru
verimlilik kalibrasyonlarinin belirlenmesi igin gereklidir ve orneklemden giivenilir
kantitatif analiz sonuglar1 elde etmek i¢in Ol¢limler Ozellikle kaynak-dedektor
geometrilerini igerecek sekilde degerlendirilir (Debertin ve Helmer, 1988).

Tesadiifi toplam1 diizeltmelerini yapabilmek icin Fizik Teknik Enstitiisii’'nde
KORSUM (Debertin ve Schotzig, 1979) ve Henri Becquerel Ulusal Laboratuvari’nda
CORCO (Morel, vd., 1983) gibi bazi kodlar gelistirildi. Bu oncii ¢aligmalar1 daha yeni
gelismeler izledi. Tesadiifi toplam diizeltmeleri, Monte Carlo simiilasyonu kullanilarak
belirlendi (Decombaz, vd., 1992). Daha sonra, sayr verimliligi icin Monte Carlo
simiilasyonu ve sayisal hesaplama karigimi beraberinde diizeltme faktorleri belirlenmistir
(Sima ve Arnold, 2000; Haase, vd., 1993). Ayrica, farkli pratik yaklasimlar Solc ve
arkadaslari tarafindan farkli pratik yaklagimlar gelistirilmistir (Solc, vd., 2015)

Bu ¢alismada amag, Cs-134 radyoaktif ¢ekirdeginin Ba-134 kararli ¢ekirdegine
dontistirken meydana gelen bir dizi radyoaktif siire¢ icinde TCS durumlarini inceleyerek,
diizeltme faktorlerini Monte Carlo simiilasyon yontemi ile belirlemektir.

Gama 1511 spektroskopisinde, verilen bir gama 1511 dedektoriinlin verim egrisini
dogru bir sekilde olusturmak icin, TCS diizeltme faktorlerine ihtiya¢ duyulur. Yapilan
caligmalar gostermistir ki (Aggarwal, 2011), TCS diizeltme faktorleri o6zellikle yakin
numune-dedektér geometrilerinde olduk¢a 6nemlidir ve aktivite Ol¢iimlerini énemli bir

diizeyde etkiler (Debertin ve Helmer, 1988).
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2.2. Tanimlar

Bir radyoaktif ¢ekirdegin bozunma siirecinde, zaman icinde ardisik olarak birgok
olay meydana gelir. Cogu zaman, beta bozunmasi, alfa bozunmasi veya elektron
yakalanmasi gibi bir ilk niikleer bozunma olayini, kiz ¢ekirdekteki yeni diizenleme takip
eder. Bu yeni diizenleme, kiz ¢ekirdegin kararli bir ¢ekirdege ulasilincaya kadar gergek
gama 1s1n1 bozunumu veya i¢ doniisiim ile bir veya daha fazla ge¢is yoluyla elde edilir.

Bir niikleer bozunma olayinda, baslangi¢ seviyesinden (i), son seviyeye (s) dogrudan

gecis olasiligr asagidaki sekilde ifade edilebilir:

Tiss
Pos = s 2.1)

Zk Tisk

Burada, P, baslangi¢ seviyesinden son seviyeye dogrudan gegis olasiligidir ve
T;_ ise bu gegisin yogunlugudur. Burada k, i’ den daha diisiik bir s enerji seviyesini temsil
eder (Jutier, vd., 2007).

Niikleer gecisin yogunlugu, ii¢ duruma karsilik gelen ii¢ terimin toplamudir. ilk
durum y-151n1 bozunumu icin gecerlidir. Ikinci durum, i¢ doniisiimden kaynaklanan X 1s1n1
bozunumuna karsilik gelir ve t¢lincii durum ise higbir foton yayinlanmadigi zaman
gecerlidir.

Dogrudan geg¢is olasilig1 su sekilde yazilabilir:

P = Pils +Px +Po (2.2)

1-s [And)

Yukaridaki ifadede gegen ti¢ olasilik terimleri sirasiyla sunlardir: y-1s1n1 bozunumu
kaynakli terim, i¢ doniisiim katsayilarindan kaynaklanan terim ve floresans veriminden
kaynaklanan terimlerdir.

Cs-134 bozunmasi, ilk olarak B~ ile basladigindan, her enerji seviyesi i¢in bir gecis
tanimlanmali ve gegis olasiligi, ilk bozunma eyleminde hedeflenen bu enerji seviyesine 5~
bozunumunun gergek olasiligina ayarlanmalidir. Bu durumunda, ilk bozunma reaksiyonu

sirasinda tespit edilebilir hi¢bir parcacik bozunumunun meydana gelmedigi dikkate
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alimmalidir. Bu gegis yalnizca tespit edilemeyen bozunum yolu olarak kabul edilir. Sonug
olarak, bu gegisler i¢in y bozunumu ve X 1s1n1 yayinlanma olasiliklar sifirdir.
En yiliksek enerji seviyesinden taban durum seviyesine gecisler meydana gelirse

olasilik su sekilde ifade edilir:

an—>m0 = g:l Pn—»n—p Pn_ptii_>m0 (2.3)

Burada n, taban durum seviyesi i¢in 0’ dan baglayarak artan sirada tam sayilarla
numaralandirilan enerji seviyelerinin sayisidir.  B,_,,_p, N seviyesinden n-p seviyesine

dogrudan gecis olasiligidir ve Pn_ptijmo ise, ¢ekirdegin n-p seviyesinden taban durum
seviyesine olasi tim yollardan gitme olasiligidir (Jutier, vd., 2007).

2.3. Veriler

Cs-134’ iin yar1 6mrii 2,0652 yildir. Hem dogrudan bir fisyon iiriinii olarak hem de
yaygin bir fisyon iirlinii olan radyoaktif olmayan Cs-133” den nétron yakalama yoluyla
iretilir. Bir termal reaktorde, diisiik bir fisyon iirlinii verimine sahiptir.

Cs-134, %99,9997 oraninda B~ bozunmasi yoluyla bes uyarilmis seviyeye ve Ba-
134’ iin temel durumuna bozunur. Cs-134’ iin bozunma semas1 Sekil 2.1’ de verilmistir

(Celik, vd., 2015).
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Sekil 2.1. B34Cs’nin bozunma semast

Sekil 2.1° de '*Cs, B~ bozunumuyla birlikte bes uyarilmis duruma ve ardindan

1%Ba> nin kararhh durumuna bozunur. Beta

gerceklesen gama bozunumlariyla da
bozunumlari, bozunma olasiliklariyla birlikte by, by, bs, bs Ve bs ile bu bozunumlarini takip
eden gama bozunumlari ise g1, 2, g3, 9, Us, U6, 97, Js, Jo, J10 V€ Q11 ile gosterilmektedir.
Tablo 2.1 de ®**Cs’ e ait gama gegisleri ve i¢ donilisiim verileri verilmis olup, bu
veriler daha sonraki hesaplamalarda kullanilmak iizere (Tablo 2.2) Nucleide 2000

yazilimindan alinmistir (Nucleide 2000).



Tablo 2.1. Cs-134’¢ ait bozunma verileri
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Gama Gegisleri

Eneriji (keV)

Gama Yogunlugu (%)

Elektron Doniisiim Katsayilari

a; akg ap
gl 604,69 98,210 5,90E-03 4,94E-03 7,20E-04
g2 1167,92 1,794 1,31E-03 1,12E-03 1,40E-04
g3 563,23 8,440 7,30E-03 6,10E-03 9,00E-04
gl 795,84 85,78 3,00E-03 2,58E-03 3,50E-04
g5 1.038,55 0,993 1,80E-03 1,57E-03 2,10E-04
g6 475,34 1,520 1,14E-02 9,50E-03 1,46E-03
g7 242,80 0,023 8,70E-05 7,22E-05 1,20E-05
g8 1365,16 3,018 9,60E-04 8,20E-04 1,00E-05
g9 801,93 8,730 3,00E-03 2,54E-03 3,40E-04
gl0 569,32 15,540 9,60E-03 8,20E-03 1,04E-03
gll 326,50 0,015 3,67E-05 3,10E-05 4,70E-06

Tablo 2.1’ de gama i1sinlarinin enerjilerine karsilik gelen elektron doniistim

katsayilar1 ve gama gecis olasiliklar1 verilmistir. Burada ok ve oy katsayilart atomun K ve L

yoriingelerindeki elektronlarin yaymlanma olasiliklarini ifade eder. o; ise, toplam doniisiim

katsayisidir.

Tablo 2.1’ de verilen doniisiim katsayilari ve gama yogunlugu degerleri kullanilarak

gecis olasiliklart hesaplanmis ve bu hesaplarin sonuglari ile Tablo 2.2 verilmistir.

Tablo 2.2. Gama Gegis Olasiliklar

Gama Gegisleri

Enerji (keV)

Gama Gegis Olasiliklar

Pg Pce Pdiger
gl 604,69 0,99413 3,56E-06 5,86E-03
g2 1167,92 0,99869 1,57E-07 1,31E-03
g3 563,23 0,99275 5,49E-06 7,24E-03
gl 795,84 0,99701 9,03E-07 2,99E-03
g5 1.038,56 0,99820 3,30E-07 1,80E-03
g6 475,34 0,98873 1,39E-05 1,13E-02
g7 242,80 0,99991 8,66E-10 8,70E-05
g8 1365,16 0,99904 8,20E-09 9,59E-04
g9 801,93 0,99701 8,64E-0,7 2,99E-03

gl0 569,32 0,99049 8,53E-06 9,50E-03
gll 326,50 0,99996 1,46E-10 3,67E-05
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Tablo 2.2’ de, y (gama) gecis olasiligi (F;) verilmis olup bu deger su sekilde formiile

edilmektedir:

B, =P, +P, (2.4)

Burada, P, ve P, sirasiyla y yaymlanma ve elektron yakalama olasiliklaridir.

ay , K kabugundaki elektronun i¢ doniisiim katsayis1 olup asagidaki gibi tanimlanir:

PCE
a =% (2.5)

Burada, P, ve B, swrasiyla K kabugundaki elektronun ve y-151n1 yaymlanma

olasiliklaridir. Benzer sekilde L kabugundaki elektron yaymlanma katsayis1 da asagidaki

gibi tanimlanir:

PCe
a; = aLl + aLz + aL3 (27)

Toplam dontisiim katsayisi ise tiim kabuklarda gerceklesen durumlara bagh olarak,

a; =aK+aL+-~-=% (2.8)
Y

formiilii ile verilmektedir.
P.., ilgili gecis i¢in toplam doniisiim elektron yayinlanma olasiligidir. Yukarida
verilen denklem (2.4)-(2.8) dizisi kullanilarak asagidaki ifadeler yazilabilir:
ae

P,=-2p (2.9)

- 1+a¢ g




14 1+a;
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(2.10)

Tablo 2.1 ve Tablo 2.2 verileri birlestirilerek, yapilan hesaplamalar tek tabloda

diizenlenmis ve Tablo 2.3 olusturulmustur.

Tablo 2.3. Gama gegisleri, i¢ doniisiim verileri ve gegis olasiliklari

.. Gama Elektron Doniisiim Katsayilari Gama Gegis Olasiliklari
Ga_ma . Enerji Yogunlugu
Gegisleri (keV) (%) > .

o8 ok oy, g Pce Pdiger
gl 604,69 98,210 5,90E-03  4,94E-03  7,20E-04 0,99413  3,56E-06  5,86E-03
g2 1167,92 1,794 1,31E-03  1,12E-03  1,40E-04 0,99869  1,57E-07 1,31E-03
g3 563,23 8,440 7,30E-03  6,10E-03  9,00E-04 0,99275 5,49E-06  7,24E-03
gl 795,84 85,78 3,00E-03  2,58E-03 3,50E-04 0,99701  9,03E-07  2,99E-03
g5 1.038,55 0,993 1,80E-03  1,57E-03  2,10E-04 0,99820  3,30E-07 1,80E-03
g6 475,34 1,520 1,14E-02  9,50E-03  1,46E-03 0,98873  1,39E-05 1,13E-02
g7 242,80 0,023 8,70E-05  7,22E-05 1,20E-05 0,99991  8,66E-10  8,70E-05
g8 1365,16 3,018 9,60E-04  8,20E-04  1,00E-05 0,99904  8,20E-09  9,59E-04
g9 801,93 8,730 3,00E-03  2,54E-03  3,40E-04 0,99701 8,64E-0,7  2,99E-03
gl0 569,32 15,540 9,60E-03  8,20E-03  1,04E-03 0,99049  8,53E-06  9,50E-03
gll 326,50 0,015 3,67E-05  3,10E-05 4,70E-06 0,99996  1,46E-10  3,67E-05

2.4. Cs-134 Bozunumu

Cs-134 icin gecis yollari, olast tiim durumlar dikkate alinarak, en yliksek enerji
seviyesinden (b1, E = 1969,85 kel/) baslanarak belirlenmistir ve Sekil 2.1° de
gosterilmistir. Sekil 2.1° de gosterilen muhtemel tiim gegis yollar tek tek belirlenmistir. Bu
olayda Ba-134’{in uyarilma durumlarinda birine bozunan Cs-134 ¢ekirdeginin tim gegis
yollar1 Tablo 2.4’ te verilmistir.

Ornegin, ***Cs B~ bozunumu ile en yiiksek enerji seviyesi olan ***Ba (1969,85
keV)’a bozunur ve bu durumda daha baska bir ge¢is miimkiin degildir. Bu olasilik, Tablo
2.4’ te by olarak verilmistir.

Cs-134’ nin, 1643,26 keV enerji seviyesine kadar bozunmasi igin ise iki olasilik
vardir: Bunlardan birincisi, f~ bozunumu (b;) ve ikincisi ise = bozunumu (b;) ile
ardindan gergeklesen gama bozunumu (g;1) dur. Bu iki olasilik Tablo 2.4’ te b, ve big1;

olarak gosterilmektedir.
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Benzer sekilde, '**Cs’ nin 1400,54 keV seviyesine bozunurken dért olasiligi
mevcuttur. Bunlardan ilki, B~ bozunumu (bs); ikincisi, = bozunumu (b;) ile ardindan
gergeklesen iki tane gama bozunumu (gi1 Ve g7); tglinciisi, £~ bozunumu (b;) ile ardindan
gerceklesen gama bozunumu (gio) ve dordiinciisii de, B~ bozunumu (by) ile ardindan
gerceklesen gama bozunumu (g7) olacaktir. Bu dort olasilik Tablo 2.4” te bz, b191197, b1910
ve b,g; olarak gosterilmektedir.

1167,92 keV seviyesine ait gegisler bs, b10110s 0109 Ve b20s, olmak tiizere dort
olasiliga sahiptir.

604,69 keV seviyesine ait gegisler on bir olasiliga sahip olup Tablo 2.4’ te; bs,
010119794, 010119693, D191105, D191004, D19003, D108, D20704, D206ds, b20s, D394 Ve bsg3 seklinde
verilmektedir.

Ba-134 taban durum seviyesine (0 keV) ait gecislerin ise on alt1 olasilig1 mevcut olup
Tablo 2.4’ te belirtilmistir. Bu olasiliklar; 01011979401, 01911060301, 010110692, b19110501,
b10109401, b1099301, P199T2, 10801, P2070401, D206Y301, P206T2, b20501, D3gag1, bagsgs, bag2 ve
bsg: seklindedir.



Tablo 2.4. Olasi gegis yollar1 ve bunlarin olasiliklart

Beta

Uyarilmis Durum Enerjisi

Gama (keV) Bozunma Yolu Olasilik (%)
1 1969,26 bl 27,2
2 1643,26 b2 2,5
11 blgll 0,014500532
3 1400,54 b3 70,2
7 blglilg7 0,000132647
10 blgl0 15,689184
7 b2g7 0,022869354
4 1167,92 b4 0,04
6 blgligb 0,008865408
9 b1g9 8,75619
6 b2g6 1,528462592
5 604,69 b5 0,008
4 blgllg7g4 0,00013284
3 blgllgbg3 0,007293766
5 blgligs 0,005736705
4 blgl0g4d 15,71203948
3 b1g9g3 7,203909644
8 b1g8 3,02089728
4 b2g7g4 0,022902669
3 b2g6g3 1,257499712
5 b2g5 0,989050695
4 b3g4 70,0226501
3 b4g3 0,032908878
1 0 blgllg7gdgl 0,000133146
1 blgl1gbg3gl 0,00731055
2 blgllgbg2 0,001541138
1 blglig5gi 0,005749905
1 b1gl0g4dgl 15,74819443
1 b1g9g3g1 7,220486549
2 b1g9g2 1,52215181
1 b1g8gl 3,027848662
1 b2g7g4gl 0,02295537
1 b2gbg3gl 1,260393343
2 b2gbg2 0,265703702
1 b2g5g1 0,991326598
1 b3gdgl 70,46403744
1 b4g3gl 0,032984604
2 b4g2 0,006953489
1

b5g1

0,008018409
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Eger [~ bozunumlarinin ardindan gama bozunumlar1 geliyorsa, gecis olasiligi
Denklem 2.1” de gosterildigi gibi hesaplanir.

Ornegin bigegs’ nin gecis olasilig P,,/(Py, + Py g,)’ dir. Burada P, Tablo 2.3° ten

3,
alinmistir. Ayn1 yontem tiim olas1 yollara uygulanarak Tablo 2.4 teki on alt1 gecisin de
olasilig1 hesaplanmis ve tablo neticelendirilmistir.

llgilenilen gegisler, 1%*Ba taban durumuna ulasan gecislerdir. Bu gecislerin gegis

olasiliklar1 ise adimlariyla birlikte Tablo 2.5’ te verilmektedir.

Tablo 2.5. ***Ba taban durumuna olas1 gegisler ve gegis olasiliklari

Bozunma Yolu Adimlar Olasilik (%) Dal
blgllg7gigl 1 11 7 4 1 0,000133146 1
b1glig6g3gl 1 11 6 3 0,00731055 2
blgllgbg2 1 11 6 2 0,001541138 3
blglig5gl 1 11 5 1 0,005749905 4
blgl0g4dgl 1 10 4 1 15,74819443 5
b1g9g3gl 1 9 3 1 7,220486549 6
b1g9g2 1 9 2 1,52215181 7
b1g8gl 1 8 1 3,027848662 8
b2g7g4gl 2 7 4 1 0,02295537 9
b2gbg3gl 2 6 3 1 1,260393343 10
b2gbg2 2 6 2 0,265703702 11
b2g5g1 2 5 1 0,991326598 12
b3g4gl 3 4 1 70,46403744 13
b4g3gl 4 3 1 0,032984604 14
b4g2 4 2 0,006953489 15
b5gl 5 1 0,008018409 16

2.5. EGS4 Kodunun Olusturulmasi

Tablo 2.5° te verilen dal sayis1 ve bunlara karsilik gelen gegis olasiliklari, EGS4

kodunda agagidaki sekilde yazilmaktadir:

BRANCH(1)=0,00013146;
BRANCH(2)=0,00731055;
BRANCH(3)=0,001541138;
BRANCH(4)=0,005749905;
BRANCH(5)=15,74819443;
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BRANCH(6)=7,220486549;
BRANCH(7)=1,52215181;
BRANCH(8)=3,027848662;
BRANCH(9)=0,02295537;
BRANCH(10)=1,260393343;
BRANCH(11)=0,265703702;
BRANCH(12)=0,991326598;
BRANCH(13)=70,46403744;
BRANCH(14)=0,032984604;
BRANCH(15)=0,006953489;
BRANCH(16)=0,008018409;
BRANCH(17)= -1.0;

Kodun igerisinde gama gegislerinin tiim olasi yollar1 tanimlanmistir. Tablo 2.5’ te
gosterildigi gibi 16 dal bulunmaktadir. (Toplam olasilik degerinin 1 olmas1 sebebiyle koda
BRANCH(17)= -1.0 ifadesi eklenmistir.) Bu dallarin farkli adimlar1 vardir ve bunlarin

asagidaki gibi uygulanmasi ve koda tanitilmasi gerekmektedir.

NBRGAM(L,1)= 1;
NBRGAM(1,2)= 11;
NBRGAM(L,3)= 7;
NBRGAM(L,4)= 4;
NBRGAM(L,5)= 1;
NBRGAM(2,1)= 1;
NBRGAM(2,2)= 11;
NBRGAM(2,3)= 6;
NBRGAM(2,4)= 3;
NBRGAM(2,5)= 1;
NBRGAM(3,1)= 1;
NBRGAM(3,2)= 11;
NBRGAM|(3,3)= 5;
NBRGAM(3,4)= 1;
NBRGAM(4,1)= 1;



NBRGAM(4,2)= 11;
NBRGAM(4,3)= 6;
NBRGAM(4,4)= 2;
NBRGAM(5,1)= 1;
NBRGAM(5,2)= 10;
NBRGAM(5,3)= 4;
NBRGAM(5,4)= 1;
NBRGAM(6,1)= 1;
NBRGAM(6,2)= 9;
NBRGAM(6,3)= 3;
NBRGAM(6,4)= 1;
NBRGAM(7,1)= 1;
NBRGAM(7,2)= 9;
NBRGAM(7,3)= 2;
NBRGAM(8,1)= 1;
NBRGAM(8,2)= 8;
NBRGAM(8,3)= 1;
NBRGAM(9,1)= 2;
NBRGAM(9,2)= 7;
NBRGAM(9,3)= 4;
NBRGAM(9,4)= 1;
NBRGAM(10,1)= 2;
NBRGAM(10,2)= 6;
NBRGAM(10,3)= 3;
NBRGAM(10,3)= 1;
NBRGAM(11,1)= 2;
NBRGAM(11,2)= 6;
NBRGAM(11,3)= 2;
NBRGAM(12,1)= 2;
NBRGAM(12,2)= 5:
NBRGAM(12,3)= 1;
NBRGAM(13,1)= 3;
NBRGAM(13,2)= 4;

59
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NBRGAM(13,3)= 1;
NBRGAM(14,1)= 4;
NBRGAM(14,2)= 3;
NBRGAM(14,3)= 1;
NBRGAM(15,1)= 4;
NBRGAM(15,2)= 2;
NBRGAM(16,1)= 5;
NBRGAM(16,2)= 1;

y-1511 yaymlanmasinin ve i¢ donlisiimden kaynaklanan y-1s1n1 yayimlanmasinin gecis

olasiliklar1 Tablo 2.1’ den yararlanilarak asagidaki gibi belirlenir:

GAMMA( 1, 1)=0.99413;
GAMMA( 1, 2 )=3.56E-06;
GAMMA( 1, 3 )=5.86E-03;
GAMMA( 2, 1)=0.99869;
GAMMA( 2, 2 )=1.57E-07;
GAMMA( 2, 3)=1.31E-03;
GAMMA( 3, 1)=0.99275;
GAMMA( 3 , 2 )=5.49E-06;
GAMMA( 3, 3)=7.24E-03;
GAMMA( 4 , 1)=0.99701;
GAMMA( 4 , 2 )=9.03E-07;
GAMMA( 4, 3)=2.99E-03;
GAMMA( 5 , 1)=0.99820;
GAMMA( 5, 2 )=3.3E-07;
GAMMA( 5, 3 )=1.80E-03;
GAMMA( 6 , 1)=0.98873;
GAMMA( 6 , 2 )=1.39E-05;
GAMMA( 6 , 3)=1.13E-02;
GAMMA( 7, 1)=0.99991;
GAMMA( 7 , 2 )=8.66E-10;
GAMMA( 7 , 3 )=8.70E-05;
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GAMMA( 8 , 1)=0.99904:
GAMMA( 8 , 2 )=8.2E-09;
GAMMA( 8 , 3 )=5.59E-04;
GAMMA( 9, 1)=0.99701;
GAMMA( 9, 2 )=8.64E-07;
GAMMA( 9 , 3 )=2.99E-03;
GAMMA( 10, 1 )=0.99049;
GAMMA( 10, 2 )=8.53E-06;
GAMMA( 10, 3 )=9.50E-03;
GAMMA( 11, 1 )=0.99996;
GAMMA( 11 , 2 )=1.46E-10;
GAMMA( 11, 3 )=3.67E-05;

Bu tanmimlamada da, ilk olasilik uyarilmig Ba-134 seviyelerinden birine beta
bozunumunu takiben gama-isin1 yayinlanma olasiligidir. Bu GAMMA(1,1)= 0,994134606
ile gosterilmektedir; ikinci olasilik K kabugundan elektron doniisiimiinii takip eden bir
gama yaymlanmasidir ve bu GAMMA(1,2)=0,035568 ile gosterilmektedir. Son olarak
tiglincii olasilik ise L ve M kabuklarindaki elektron dontigiimlerini takip eden bir gama
yayinlanmasidir ve bu da GAMMA(1,3)=0,0000366985 ile gosterilmektedir.

Bu bozunma olayinda, sadece gama-isin1 yaymlanmasi degil, ayni zamanda atom
icinde meydana gelen X-isin1 yayinlanmalari ile olugsan gama yaymlanmalari da dikkate
alinmalidir. Tim gama enerjileri de Mega Elektron Volt (MeV) cinsinden koda

tanitilmalidir. K X-151m1 enerjileri ve yogunluklar1 da asagidaki gibi koda tanitilmistir.

EGAMMA( 1 )= 0.60469 ;
EGAMMA( 2 )= 1.16792;
EGAMMA( 3 )= 0.56323 ;
EGAMMA( 4 )= 0.79584 ;
EGAMMA( 5 )= 1.038555 ;
EGAMMA( 6 )= 0.47534 ;
EGAMMA( 7 )=0.2428 ;
EGAMMA( 8 )= 1.36516 ;
EGAMMA( 9 )= 0.80193 ;
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EGAMMA( 10 )= 0.56932 ;
EGAMMA( 11 )= 0.32659;

Kodun son bdliimiinde ise Tablo 2.6’ da verilen a ve § bozunum degerleri asagidaki

gibi eklenmistir.

Tablo 2.6. a ve B bozunumu verileri

Eneriji (keV) 1(%)
XR Kal 32,194 0,434
XR Ka2 31,817 0,238
XR KB1 36,378 0,0803
XR KB2 37,255 0,0254
XR KB3 36,304 0,0416

EKA1=0.032194;
EKA2=0.031817;
EKB1=0.036378;
EKB2=0.037255;
EKB3=0.036304,
XIKA1=0.434,
XIKA2=0.238;
XIKB1=0.0803;
XIKB2=0.0254;
XIKB3=0.0416;
AEK=1.0-XIKA1-XIKA2-XIKB1-XIKB2-XIKB3;

Tiim bu girdilerden sonra kod tamamlanmis ve sonuclarin elde edilmesi i¢in

bilgisayar ortaminda hesaplamalarin gergeklestirilmesi asamasina gecilmistir.



3. BULGULAR VE TARTISMA

3.1. Monte Carlo Dedektor Modelinin Olusturulmasi

Tiim simiilasyonlar, EGS4 (Electron Gamma Shower) sisteminde gerceklestirilmigtir
(Nelson ve Hirayama, 1985). Simiilasyonlara baslamadan oOnce, hesaplama geometrisi
olusturulmalidir. Oncelikle ise bir dedektdr modeli ve gama 1sinlarmin yayinlanacagi nokta
kaynak tanitilarak baslanmalidir. Bu islem bir excel dosyast ile gergeklestirilmistir. Sekil
3.1’ de goriildiigli gibi bir excel sayfast 324 bolgeye ayrilmig olup, her bir hiicre geometri
icindeki bir bolgeyi temsil eder. Bu bolge farkli bir malzeme ve bu malzemenin geometrik
boyutlarin1 gosterir. Sekil 3.1’ de goriildiigii gibi z-ekseni etrafinda 360 derece
dondiiriildigiinde  bir  silindirik  geometri elde edilir.  Genellikle gama-1sm1
spektroskopisinde deneysel diizenek silindirik geometriye sahip oldugu i¢in bu geometrik

sekil tercih edilmistir.

P1L P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18
FARK 5 5 0 x 01 04 000301 1 02 009 01 3 01614 03 5 5
TOPLAM |FARK

14,185 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324]| R16
9,185 5 R15
6,185 3 269 270 271 272 R14
4,185 2 250 251 252 253 R13
408 01 231 232 233 234 R12
368 04 212 213 214 215 R11
3,605 0,08 193 194 195 196 R10
3,206 0,399 174 175 176 177 R9
3,205 1E-03 155 156 157 158 R8
3,135 0,07 136 137 138139 R7
3 0,135 117 118 119 120 R6

2 1 98 99 100 101 R5
0,9 11 79 80 81 82 R4
0,515 0,385 60 61 62 63 R3
0,51497 3E-05 41 42 43 44 R2
0,0001 0,515 23 R1

1E-04

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Kaynak
Ge Olii Taba

Sekil 3.1. Monte Carlo simiilasyonunda kullanilan dedektér modeli
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Aliiminyum pencere ile kristal olii tabaka arasindaki boslugun vakumlanmasi
gerekmektedir. Kristalin  ve 06lii tabakanin malzemesinin germanyum oldugu
varsayilmaktadir.

Belirtilen z ekseni gevresinde silindirik simetrinin bulundugu eksendir. R, Ro,...
ifadeleriyle verilen R’ ler, yaricap degerlerini géstermekte olup 16 tanedir. Benzer sekilde;
P1, Po,... degerleri de her bir bolgenin uzunlugunu gosteren diizlemleri temsil etmekte olup
18 tanedir. Daha 6nceden de ifade edildigi gibi olusturulan simiilasyon modeli, z ekseni
etrafinda 360° dondiiriildiigiinde i¢ ice gecmis silindirik kabuklar elde edilir.

Simiilasyonda kullanilan dedektér modeli parametreleri, Karadeniz Teknik
Universitesi Fizik Boliimii’nde bulunan ORTEC yapimi1 %55 relatif verime sahip HPGe

dedektoriine aittir. Bu detektore ait parametreler Tablo 3.1° de verilmistir.

Tablo 3.1. Deneysel 6lgiimlerde ve Monte Carlo simiilasyonunda kullanilan
dedektore ait parametreler

Dedektor Tipi p-tipi Ge

Kristal Capi 62,7 mm
Krismld,\;l; :;EEKapaga 4 mm
Giris Penceresi 1 mm

Pencere Tipi Al

Kristal Uzunlugu 43,6 mm

Delik Cap1 10,3 mm

Delik Derinligi 30,7 mm

Ge OnK 3::11];lgllbaka 0,03 mm
Bagil Verim %55

Baslangigta olusturulan tiim fotonlar ve ikincil pargaciklar, dikkate alinan fiziksel
stirecler sonucunda bolgelerdeki yollar1 boyunca takip edilir. Her pargacigin olusumundan
enerjisinin tamamen tiikenmesine kadar olan ge¢misi, ilgilenilen bolgede, Ge kristalinde

depolanir. Boylelikle veriler elde edilmistir.
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3.2. Program Calistirma

Gergek tesadiifi toplam diizeltme faktorlerini hesaplamak i¢in daha oOnce ifade
edildigi gibi Karadeniz Teknik Universitesi Fizik Boliimii’® nde bulunan ORTEC marka
germanyum dedektor kullanilmigtir. Nokta kaynaktan yayimlanan fotonlar bir rastgele say1
tireteci araciligiyla {iretilir. Literatiirde oldukca fazla sayida rastgele sayr iiretegleri
mevcuttur (CERN, 2021). Bu ¢alismamizda, RANLUX rastgele say1 iireteci, nispeten daha
iyi ve uzun periyodlu dagilim gosterdiginden (Gasparro vd, 2008) EGS4 (Nelson ve
Hirayama, 1985)’ iin PRESTA koduyla birlikte kullanilmistir.

EGS4 (Nelson ve Hirayama; 1985) ile calistirilan model igin verim degerleri, her biri
0,3 keV genislige sahip 10.010 enerji kutusuna bdliinmiistiir. Bu say1r boélmeleri,
hesaplamalardaki yuvarlama hatalarin1 kontrol etmek amaciyla kullanilan en yiiksek
enerjinin lizerinde birkag bolmeye sahip olacak sekilde se¢ilmistir.

Simiilasyonlar, deneysel verilerde meydana gelen piklere katkida bulunan kozmik
1sinlar1 veya radyoaktivitenin arka plan kaynaklarini hesaba katmaz. Ayrica elektronik
giiriiltiiden kaynaklanan genisleme ve iyon ¢ifti liretimi istatistiklerine yer verilmemistir.

Simiilasyon i¢in modelde verilen enerjiler, bir kutu (bin) nun hemen sonunda yer
alan bir enerjinin olmasint 6nlemek amaciyla her zaman degerinin 10 eV altinda bir
tamsay1 olacak sekilde se¢ilmistir; ¢linkii bu, thmal edilemeyecek sayida olaya yol agan

yuvarlama hatalarina neden olabilir.
3.3. Gergek Tesadiifi Toplam Faktorlerinin Belirlenmesi

Tesadiifi ve tesadiifi olmayan sonuglar elde etmek igin hazirlanan kod, her bir enerji
degeri icin iki kez galistirildi. Burada &, ifadesi, enerjinin hicbir tesadiif etkinin dikkate
alinmadig1 verim degerini, €., ise tesadif toplama etkisinin dikkate alindigi verim degerini
ifade etmektedir. Bu iki ifadenin oranlanmasiyla ise diizeltme faktorii elde edilir.

TCS diizeltme faktorleri (CF) asagidaki formiille belirlenmistir:

CF = fmocs (3.1)

Ecs
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Verim ile ilgili hatalar, istatistiksel hatalar ve programin kullandig: tesir kesitlerinden
kaynaklanan hatalardir. En nihayetinde, rastgele sayi iireteci tarafindan iiretilen her bir
foton, gittigi yol tizerinden bir¢ok etkilesim yapar. Bu etkilesimler fotoelektrik sogurma,
Compton sacilmasi, Rayleigh sacilmasi ve ¢ift olusum olaylaridir. Uretilen fotonun bu
etkilesimlerden hangisini yapacagi, isimleri sayilan etkilesim tesir kesitleri ile belirlenir.
Bu tesir kesitleri ise belli bir hata oranina sahiptir. Bu ¢alismada, tiim foton enerjileri igin
istatistiksel hatanin %1’ den az olmasi i¢in yeterli sayida foton secilmistir. Burada, 10’
birincil fotonun tiretilmesi yeterli olmustur. Literatiirde elde edilen veriler, tesir kesitlerinin
sahip oldugu hatanin yaklasik %2 civarinda oldugunu gostermektedir (Nelson, 2000). Bu
nedenle hesaplanan verim degerlerindeki toplam hatanin yaklasik %3 civarinda oldugu

beklenebilir.

3.4. Simiilasyon Sonuglari

TCS diizeltme faktorleri, tek bir enerji ve nokta kaynak-dedektor mesafesi i¢in degil,
Tablo 3.2°de gorildiigii gibi bircok enerji ve nokta kaynak-dedektér mesafesi i¢in

hesaplanmustir.

Tablo 3.2. Farkli enerji ve dedektor-kaynak mesafeleri igin diizeltme faktorleri

Diizeltme Faktorii

Eneriji (keV)
Omm 20mm 40mm 60mm 80 mm 100 mm 200 mm 300 mm

604,69 1,409 1,143 1,062 1,040 1,028 1,028 1,023 1,020
1167,92 0,758 0,774 0,860 0,895 0,933 0,940 0,977 0,997
563,23 1,745 1,217 1,105 1,092 1,081 1,020 1,016 0,988
795,84 1,418 1,137 1,057 1,043 1,032 1,014 0,991 0,991
1.038,56 1,226 1,124 1,123 1,117 1,117 1,095 1,094 1,067
475,34 1,580 1,127 1,108 1,106 1,105 1,087 1,084 1,020
1365,16 0,668 0,793 0,818 0,819 0,907 0,918 0,979 1,053
801,93 1,709 1,198 1,121 1,090 0,998 0,997 0,999 1,010
569,32 1,753 1,210 1,075 1,049 1,029 1,019 1,014 1,000

Farkli enerji ve farkli kaynak-dedektor mesafeleri i¢in ayri ayri hesaplanmis
diizeltme faktorleri Tablo 3.2° de verilmistir. Ik durumda nokta kaynak dogrudan dedektor
penceresi iizerine konulmus, diger durumlarda ise sistematik olarak kaynak-dedektor

mesafesi arttirllmis ve hesaplamalar tekrarlanmistir. Diizeltme faktorleri; u¢ kapaktan 0
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mm mesafe i¢in 0,668 ila 1,753 arasinda degerler alirken; u¢ kapaktan 300 mm mesafe i¢in
ise, 0,991’ den 1,067° ye kadar degismektedir. Diger kaynak-dedektor mesafeleri igin
hesaplanan diizeltme faktorlerinin degerleri ise Tablo 3.2° de verilmistir.

Kaynak-dedektor mesafesinin artmasiyla diizeltme faktorlerinin bire yaklastigi
goriilmektedir. Bu davranig, yayilan fotonlarin agisal korelasyonu ile agiklanabilmekte ve

bu durum Sekil 3.2” de agikga goriilmektedir.

Enerji (keV)

2,00 - m 604.69
e 1167.92
A 563.23
175 & v 795.84
= | ¢ 103856
o < 4 475.34
= 190 4 » 1365.16
§ | o ¢ 801.93
Sz, * 569.32
Q
5 B EEE «
© 1,00 - '8 R s
3 got?
-
075e &
| »
0,50 - T T T T T T T T T T T T T 1
0 50 100 150 200 250 300 350

Kaynak-Dedektér Mesafesi (mm)
Sekil 3.2. Kaynak-dedektor mesafesine gore diizeltme faktorlerinin degisimi

Bir nokta kaynak dedektore yakin yerlestirildiginde, dedektoriin olusturdugu kati aci
biiyiliktiir (verimler yiiksektir) ve acisal korelasyonun verimlilikler iizerinde kiiciik
diizeltmelere neden oldugu diisiiniilebilir. Dolayistyla TCS diizeltmeleri de yiiksektir. Buna
karsilik, bir nokta kaynagi dedektdrden uzaga yerlestirildiginde verim degerleri kiigiiktiir
ve TCS diizeltmeleri de ayni1 sekilde kiiciik olur.

Sekil 3.2, agikca gostermektedir ki, birden fazla enerjide foton yayan bir radyoaktif
kaynak ile belli bir dedektdriin verim egrisi olusturulacaksa, nokta kaynak miimkiin oldugu
kadar dedektor penceresinden uzaga konmalidir. Bu durumda TCS diizeltme faktorleri

onemsizlesir ve daha dogru bir verim egrisi elde edilebilir. Eger deney geometrisi uzak
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nokta kaynak-dedektor geometrisine izin vermiyorsa, o halde mutlaka TCS diizeltme
faktorleri hesaplanmali ve ilgili enerjiye ait verim degeri ile ¢arpilmak sureti ile diizeltilmis

verim degeri elde edilmelidir.
3.5. Kodun Dogrulanmasi

Kodu dogrulayarak, TCS diizeltme faktorlerini elde etmek amaciyla; Lerate ve
arkadaslar1 (1997) tarafindan olusturulan ampirik bir yontem secilmistir. Yontem su
sekilde 6zetlenebilir:

Bu yontemde, E; enerjisinin toplam diizeltmesi su sekilde ifade edilebilir:

ki = e F (B (32

Burada Njhigbir toplama diizeltmesinin gerekli olmadig: bir referans geometrisi igin
tam enerji pikinin sayim oranidir (sayim sayisi/toplam sayma zamani). Bu geometri, nokta
kaynagin dedektorden uzaga yerlestirilmesiyle elde edilir. (Bu c¢alismada, dedektor
penceresinden 100 mm uzaga konulmustur). N6lgiim geometrisinin tam enerji pikinin

sayim oranidir. f(E;) ise, toplam verimler arasindaki oran olarak yazilabilen ve enerjiye

bagli bir fonksiyondur.
_ em(Ep)
fEE) =2 Gy (3.3)

f (E;) fonksiyonu, toplam diizeltme problemi olmaksizin belirlenmelidir. Bu
fonksiyonun deneysel olarak belirlenmesi, tek enerjili nokta benzeri kaynaklarin
hazirlanmasini gerektirdiginden zor ve zaman alicidir. Bunun yerine bu fonksiyon 400,
500, 600, 800, 1000 ve 1500 keV enerjilerini kullanarak Monte Carlo simiilasyonuyla

belirlenmistir.

Bu enerji degerleri tesadiifi toplama problemini onleyecek ve s6z konusu enerji
araligin1 kapsayacak sekilde secilmistir. Hesaplanan f(E;) fonksiyonu, interpolasyon

denklemi ve korelasyon katsayisiyla birlikte Sekil 3.3’ te gosterilmektedir.
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3,575 -

y=6.72 x*-2.39 x 10™* x+3.63
" R*=0.088
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Sekil 3.3. Monte Carlo simiilasyonu ile elde edilen f(E) fonksiyonu

Iyi bir toplam verim hesab1 igin dedektdriin parametrelerinin (6lii tabaka kalinligs,
aktif hacim vb.) ¢ok iyi belirlenmesi gerektigi dikkate alinmistir. Dedektdriin yarigap1 10
mm degistirildiginde, 600 keV i¢in toplam verim degeri %43 degismektedir. Ancak
denklemde pay ve payda aym sekilde degistigi i¢in f(E) fonksiyonu sadece %2 oraninda
degismistir. Bu da gama 1511 spektrometresinde kademeli olarak gama yayan birgok
radyoaktif ¢ekirdek i¢in TCS diizeltme faktorlerini elde etmek i¢in kullanilabilir bir durum
oldugunu gosterir.

Dedektor modeli olusturulurken, iiretici tarafindan tablo haline getirilen dedektor
parametreleri (aktif hacim, 6lii katman kalinligi vb.) kullanilmistir. Hesaplama sonuglarinin
tiretici firma tarafindan verilen parametrelerin gergek parametrelerle birebir ayni olmasa

dahi f(E) fonksiyonunun hala gegerli oldugu sonucu ¢ikarilabilir.

3.6. Deneysel Teyit

Denklem 3.3’ teki sayim oranlarin1 deneysel olarak elde etmek i¢in 10,06 pCi
noktasal Cs-134 radyoaktif kaynagi kullanilmistir. Kullanilan dedektor parametreleri Tablo
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3.1’ de verilen ve Karadeniz Teknik Universitesi Fizik Boliimii laboratuvarinda bulunan
bir HPGe detektoridiir. Radyoaktif noktasal kaynak, dedektor penceresinden 40 mm ve
300 mm uzaga yerlestirilmistir. Baglangi¢ ve sinir mesafeleri sirasiyla dlgiim ve referans
mesafeleridir. Ol¢iim siiresi, Cs-134’ nin yaydig1 tiim gama 1simalari igin iyi bir istatistik
elde etmek amaciyla yeterince yiiksek segilmistir (%1’ den az hata, 18000 s). Sekil 3.3’ te
gosterilen interpolasyon fonksiyonu kullanilarak Cs-134’ {in her bir enerji degeri igin f(E)
fonksiyonu elde edilerek, ardindan Denklem 3.2 ile diizeltme faktorleri belirlenmistir.
Mevcut kod ve ampirik yontemle elde edilen diizeltme faktorleri Tablo 3.3° te

verilmektedir.

Tablo 3.3. 40 mm Kaynak-dedektor mesafesinde Monte Carlo yontemiyle ve
deneysel metodla belirlenen diizeltme faktorleri ve bagil fark

Duzeltme Faktori

Enerji (keV) Bagil Fark (%)

CpMC CFAmpirik
475,34 1,178 1,205 -2,25
563,23 1,155 1,127 2,46
569,32 1,103 1,089 1,32
604,69 1,104 1,113 -0,79
795,84 1,102 1,084 1,63
801,93 1,13 1,114 1,42
1038,56 0,985 0,998 -1,28
1167,92 0,945 0,930 1,63
1365,16 0,820 0,834 -1,67

Deneysel teyit verilerinden de goriildiigli lizere, Monte Carlo yontemi ve ampirik
yontem arasinda iyi bir uyum elde edilmistir. Goreceli farkliliklar, Sekil 3.3 te gosterildigi

gibi enerjinin bir fonksiyonu olarak ¢izilmistir ve yaklasik £%2 fark elde edilmistir.



4. SONUCLAR

Bu galisma, yapilan hesaplamalarin dogru oldugunu ve gama 1sin1 spektrometresinde
kademeli olarak birgok gama yayan radyoaktif ¢ekirdek i¢in TCS diizeltme faktorlerinin

elde edilmesinde kullanilabilecegini gostermektedir.



5. ONERILER

TCS diizeltme faktorleri gama 1511 spektroskopisinde kullanilan dedektoriin verim
egrisinin dogru bir sekilde elde edilmesinde olduk¢a dnemli bir yere sahiptir. Mevcut tezde
EGS4 Monte Carlo paket programi Cs-134 radyoaktif kaynagi i¢in TCS diizeltme
faktorleri hesaplanmistir. Bu tezde kullandigimiz yontemin dogrulugu, literatiirde mevcut
ampirik bir baska yontemle karsilastirilarak teyit edilmistir. Bu c¢alismadaki yontem
kullanilarak daha karmasik bozunma semasina sahip radyoaktif cekirdekler i¢cin TCS
diizeltme faktorleri belirlenebilir.

Tezde ele alinan konu, TCS diizeltme faktorlerinin gama 1511 spektroskopisinde
kullanilan dedektdriin verim egrisinin dogru bir sekilde belirlenmesindeki kritik rolii
vurgulamaktadir. Ozellikle, Cs-134 radyoaktif kaynag: i¢in EGS4 Monte Carlo paket
programi kullanilarak TCS diizeltme faktorleri hesaplanmistir. Bu tezde benimsenen
yontemin dogrulugu, literatiirde mevcut olan ampirik bir baska yontemle karsilastirilarak
saglam bir sekilde teyit edilmistir. Bu calismada kullanilan yontem, daha karmasik
bozunma semalarina sahip radyoaktif cekirdekler i¢in de TCS diizeltme faktorlerini
belirleme potansiyeline sahiptir. Bu ¢alisma, gama 1511 spektroskopisi alanindaki 6nemli

bir niceligi anlama ve karakterize etme acgisindan dnemli bir katki sunmaktadir.
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7. EKLER
Ek-1 Kullanilan Monte Carlo Kodu

"WVERSION FROM SLAC"

%L

%E

IINDENT M 4; "INDENT MORTRAN LISTING BY 4 PER NESTING LEVEL"
IINDENT F 2; "INDENT FORTRAN OUTPUT BY 2 PER NESTING LEVEL"

Nk kkhkAAAAAAAAAAAhkhkAhhkhhhkhkhhhhhkhhhkhkhhkhhhhhhhkdhhhrhkhhhhhhkhhhhhihhiikhiikiiixn
" CYLINDER Sources for 60 %, coaxial, HADES, Teflon-container "

" Model adaptation from PNJ 12.11.99 "

" multiple energies in one run from MK 5.2.99 "

" For SLAC-265: Example of calculating a detector response function ™

"D.W.O.R. Feb 1985 "

" flourescence and Rayleigh scattering negligible "

" 1000000 runs per energy "

" variable: sample heigth
" material of the sample "

Nkkkhkhkhhrhkhkhkhkhkhkrkirrrhhhdhkhrrrhirhrhhkhhhirrririrhhhhhirriririrhhhhiirrriitithhiiixn

REPLACE {$SMXREG} WITH {324} "only 4 geometric regions (default 2000)"
REPLACE {$MXSTACK} WITH {100}"less than 15 particles on stack at once "
REPLACE {$EBIN} WITH {10010} "user parameter -# bins in energy spectrum"

" USING RANLUX "

:COMIN/RANDOM/;
REPLACE {$DEFAULT-LL} WITH {1}

"DEFINE A COMMON FOR SCORING IN AUSGAB"
REPLACE {;COMIN/SCORE/;} WITH {;COMMON/SCORE/EHIST,EBIN($EBIN);}

;COMIN/CYLDTA,BOUNDS,MEDIA,MISC,PLADTA,SCORE,UPHIOT, THRESH/; "
" THE ABOVE EXPANDS INTO A SERIES OF COMMON STATEMENTS "

" BOUNDS CONTAINS ECUT AND PCUT

" PLADTA PASSES COORDINATE AND NORMAL VECTOR DATA OF EACH
" PLANE INTO HOWFAR AND THE AUXILIARY GEOMETRY
SUBPROGRAMS. ™

" PLADTA IS DEFINED IN THE EGS4 MACROS AND CONTAINS: "

" PCOORD(I,J): I-TH COORDINATE OF A POINT ON PLANEJ "

" PNORM(1,J): I-TH COORDINATE OF A UNIT VECTOR NORMAL "
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" TO PLANEJ "

" MEDIA CONTAINS THE ARRAY MEDIA "
" MISC CONTAINS MED "

" THRESH CONTAINS AE AND AP "

"DEFINE A COMMON FOR SCORING IN AUSGAB"
REPLACE {;COMIN/SCORE/;} WITH {;COMMON/SCORE/EHIST,EBIN($EBIN);}

COMMON/PASSIT/IRDISC($MXREG),NR,NZ;

;COMIN/EDGE/;

" REPLACE {;COMIN/EDGE/;} WITH { "
;COMMON/EDGE/IEDGFL($MXREG),$LGN(EKALPH,EKBETA,BKR1,BKR2($MX
MED));} "

REAL CYRAD($MXCYLYS);

REAL VOL($MXREG);

REAL XENER(30); "Gamma energies"

REAL BRANCH(40); "BRANCH PROBABILITIES pnj Saturday, 24 July 2004"
INTEGER NBRGAM(40, 10); "BRANCH SEQUENCE"

REAL GAMMA(30,5), EGAMMA(30), EPOS(30); "GAMMA and POSITRON DATA"
"DEFINE ARRAYS TO HOLD DATA FOR COINCIDENCE SUMMING DATA"

$TYPE LINE (48);

$TYPE MEDARL(24) /$STEFLON',18*'/;

$S 1S A MORTRAN MACRO TO EXPAND STRINGS"
" $TYPE IS INTEGER (F4) OR CHARACTER*4(F77)"
$TYPE MEDAR2(24) I$S'AL'22* 1

$S 1S A MORTRAN MACRO TO EXPAND STRINGS"
" $TYPE IS INTEGER (F4) OR CHARACTER*4(F77)"
$TYPE MEDAR3(24) /$SGE'22* 1

$S 1S A MORTRAN MACRO TO EXPAND STRINGS"
" $TYPE IS INTEGER (F4) OR CHARACTER*4(F77)"
$TYPE MEDAR4(24) I$SPB,22*" '

$S 1S A MORTRAN MACRO TO EXPAND STRINGS"
" $TYPE IS INTEGER (F4) OR CHARACTER*4(F77)"

NMED=4, "NUMBER OF MEDIA"

"Coincidence summing data ~ Cs-134 Duygu Altin tarafindan modifiye edildi"
"from excel decay scheme Cs-134 Table 4. Branch strenght"

BRANCH(1)=0.000133;
BRANCH(2)=0.007311;
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BRANCH(3)=0.001541;
BRANCH(4)=0.00575;
BRANCH(5)=15.74819;
BRANCH(6)=7.220487;
BRANCH(7)=1.522152;
BRANCH(8)=3.027849;
BRANCH(9)=0.022955;
BRANCH(10)=1.260393;
BRANCH(11)=0.265704;
BRANCH(12)=0.991327;
BRANCH(13)=70.46404;
BRANCH(14)=0.032985;
BRANCH(15)=0.006953;
BRANCH(16)=0.008018;
BRANCH(17)=-1.0;

"NBRGRAM(n branch, n steps)=n gamma (or n EC, n beta for first step) corresponging to
the n step data taken from Table 4"

NBRGAM(1,1)=1;
NBRGAM(1,2)=11;
NBRGAM(1,3)=7;
NBRGAM(1,4)=4;
NBRGAM(1,5)=1;
NBRGAM(2,1)=1;
NBRGAM(2,2)=11;
NBRGAM)(2,3)=6;
NBRGAM(2,4)=3;
NBRGAM(2,5)=1;
NBRGAM(3,1)=1;
NBRGAM|(3,2)=11;
NBRGAM(3,3)=5;
NBRGAM(3,4)=1;
NBRGAM(4,1)=1;
NBRGAM(4,2)=11;
NBRGAM(4,3)=6;
NBRGAM(4,4)=2;
NBRGAM(5,1)=1;
NBRGAM(5,2)=10;
NBRGAM(5,3)=4;
NBRGAM(5,4)=1;
NBRGAM(6,1)=1;
NBRGAM)(6,2)=9;
NBRGAM(6,3)=3;
NBRGAM(6,4)=1;
NBRGAM(7,1)=1;
NBRGAM|(7,2)=9;
NBRGAM(7,3)=2;
NBRGAM(8,1)=1;
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NBRGAM(8,2)=8;

NBRGAM(8,3)=1;

NBRGAM(9,1)=2;

NBRGAM(9,2)=7;

NBRGAM(9,3)=4;

NBRGAM(9,4)=1;

NBRGAM(10,1)=2;
NBRGAM(10,2)=6;
NBRGAM(10,3)=3;
NBRGAM(10,4)=1;
NBRGAM(11,1)=2;
NBRGAM(11,2)=6;
NBRGAM(11,3)=2;
NBRGAM(12,1)=2;
NBRGAM(12,2)=5;
NBRGAM(12,3)=1;
NBRGAM(13,1)=3;
NBRGAM(13,2)=4;
NBRGAM(13,3)=1;
NBRGAM(14,1)=4;
NBRGAM(14,2)=3;
NBRGAM(14,3)=1;
NBRGAM(15,1)=4;
NBRGAM(15,2)=2;
NBRGAM(16,1)=5;
NBRGAM(16,2)=1;

"GAMMA MATRIX CONTAINS GAMMAS INTENSITIES, "
"K SHELL IC PROBABILITIES AND NO RADIATION PROBABILITIES"

"GAMMA(n gamma,1:Prob gamma; 2:prob K; 3:prob other)=prpbability VALUE (see
table 1)"

GAMMA(1,1)=0.994134606;
GAMMA(1,2)=3.5568E-06;
GAMMA(1,3)=0.0058618374;
GAMMA(2,1)=0.998691714;
GAMMA(2,2)=1.568E-07;
GAMMA(2,3)=0.0013081293;
GAMMA(3,1)=0.992752904;
GAMMA(3,2)=0.00000549;
GAMMA(3,3)=0.0072416062;
GAMMA(4,1)=0.997008973;
GAMMA (4,2)=0.000000903;
GAMMA(4,3)=0.0029901239;
GAMMA(5,1)=0.998203234;
GAMMA(5,2)=3.297E-07;
GAMMA(5,3)=0.0017964361;
GAMMA(6,1)=0.988728495;
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GAMMA(6,2)=0.00001387;
GAMMA(6,3)=0.0112576348;
GAMMA(7,1)=0.999913008:;
GAMMA(7,2)=8.664E-10;
GAMMA(7,3)=0.0000869916;
GAMMA(8,1)=0.999040921;
GAMMA(8,2)=8.2E-09;
GAMMA(8,3)=0.0009590711;
GAMMA(9,1)=0.997008973;
GAMMA(9,2)=8.636E-07;
GAMMA(9,3)=0.0029901633;
GAMMA(10,1)=0.990491284;
GAMMA(10,2)=0.000008528;
GAMMA(10,3)=0.0095001883;
GAMMA(11,1)=0.999963301;
GAMMA(11,2)=1.457E-10;
GAMMA(11,3)=0.0000366985;

"GAMMA ENERGIES mh 9/3.2001"
"Gamma energies in MeV"

EGAMMA(1)=0.60469;
EGAMMA(2)=1.16792;
EGAMMA(3)=0.56323;
EGAMMA(4)=0.79584;
EGAMMA (5)=1.038555;
EGAMMA(6)=0.47534;
EGAMMA(7)=0.2428;
EGAMMA(8)=1.36516;
EGAMMA(9)=0.80193;
EGAMMA(10)=0.56932;
EGAMMA(11)=0.3265;

"K X-ray ENERGY AND INTENSITIES mh 9/3.2001"
"from www.nndc.bnl.gov chart of nucleides, decay radiation"
"energies in MeV)

EKA1=0.032194;
EKA2=0.031817;
EKB1=0.036378;
EKB2=0.037255;
EKB3=0.036304;
XIKA1=0.434,

XIKA2=0.238;
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XIKB1=0.0808;
XIKB2=0.0254;
XIKB3=0.0416;
AEK=1.0-XIKA1-XIKA2-XIKB1-XIKB2-XIKB3;

DO 1=1,24 [MEDIA(I,1)=MEDAR1(l);]
DO 1=1,24 [MEDIA(I,2)=MEDAR2(1);]
DO 1=1,24 [MEDIA(I,3)=MEDAR3(l);]
DO 1=1,24 [MEDIA(I,4)=MEDARA4(1);]

IPLAN=19; "INPUT THE NUMBER OF PLANES DEFINING THE REGIONS"
IRADII=16; "INPUT THE NUMBER OF RADII THAT DEFINE THE"

" CYLINDRICAL REGIONS---NOTE: THE FINAL CYLINDER IS"

" RADIALLY INFINITE"

NZ=IPLAN; "NO. OF SLABS"
NR=IRADII+1; "NO. OF CYLINDER SHELLS"
NREG=NZ*NR+1; "NUMBER OF REGIONS DEFINED"

DO I1=1,NREG,1 [ECUT(1)=0.521; PCUT(1)=0.001; IRAYLR(1)=0; IEDGFL(1)=0;]
" Electron Cutoff set 0.010 MeV"

" Photon Cutoff set 0.001 MeV"

Turn off Rayleigh scattering”

Turn off K-shell Fluorescence"

"SET MEDIUM INDEX FOR EACH REGION"

MEDTEFLON=1,
MEDAL=2;
MEDGE=3;
MEDPB=4;

DO I=1,NREG,1 [MED(I)=0;] "SET ALL REGIONS TO VACUUM FIRST"
"NOW CHANGE SOME OF THESE TO REFLECT THE TARGET AND THE PLUG "
"MATERIAL "

"NOW DO THE various media"
MED(4)=MEDTEFLON;

DO 1=6,215,19 [MED(I)= MEDAL;];
DO 1=234,245,1 [MED(l)= MEDAL];

DO 1=8,179,19 [MED(I)= MEDAL];
DO 1=198,207,1 [MED(I)= MEDAL;];
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DO 1=55,188,19 [MED(I)= MEDAL;];

DO 1=9,142,19 [MED(I)= MEDGE;];

DO 1=10,143,19 [MED(I)= MEDGE];
DO I=11,144,19 [MED(I)= MEDGE;];
DO I=12,145,19 [MED(I)= MEDGE;];
DO 1=13,146,19 [MED(I)= MEDGE;];
DO 1=52,147,19 [MED(I)= MEDGE;];
DO 1=53,148,19 [MED(I)= MEDGE;];

DO [=2,268,19 [MED(l)= MEDPB;];
DO 1=287,304,1 [MED(I)= MEDPB;];
DO 1=19,285,19 [MED(I)= MEDPB;];

"set regional flags for Rayleigh scattering to IRAYLR(X)=1 if requested"
"florescence is ignored "

;OUTPUT,;(1START ES'/I' CALL HATCH TO GET CROSS-SECTION DATAY);
CALL HATCH; "PICK UP CROSS SECTION DATA FOR NAI"
"DATA FILE MUST BE ASSIGNED TO UNIT 12"

‘OUTPUT AE(1)-0.511, AP(1);

( KNOCK-ON ELECTRONS CAN BE CREATED AND ANY ELECTRON
FOLLOWED DOWN TO'

/T40,F8.3, MeV KINETIC ENERGY"

' BREM PHOTONS CAN BE CREATED AND ANY PHOTON FOLLOWED DOWN
TO!,

/T40,F8.3,' MeV '); "NOTE, AE VALUES CAN OVER-RIDE ECUT VALUES"

"DEFINE THE COORDINATES AND THE NORMAL VECTORS FOR THE TWO
PLANES. "

"INFORMATION REQUIRED BY HOWFAR (AND AUXILIARY GEOMETRY
SUBPROGRAMS) ™

"AND PASSED THROUGH COMMON/PLADTA/ "

"FIRST SET THE DEFAULT DISCARD AND SPLITTING FOR ALL REGIONS"

DO IRL=1,$MXREG,1 [IRDISC(IRL)=0;] "SET ALL REGIONS TO NO-DISCARD
FIRST"
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"NOW INDICATE WHICH REGIONS ARE DISCARD-REGIONS"
IRDISC(1)=1;

DO IRL=20,324,19 [IRDISC(IRL)=1;];

DO IRL=306,323,1 [IRDISC(IRL)=L];

DO J=1,IPLAN [

PCOORD(1,J)=0.0; PCOORD(2,J)=0.0;
PNORM(1,J)=0.0; PNORM(2,)=0.0; PNORM(3,J)=1.0;
]

"SILINDIRIK KABUKLARIN GENISLIKLERINI CM CINSINDEN YAZ"

P1=5.0;
P2=5.0;
P3=1E-06;
P4=0.0001;
P5=0.1;
P6=0.4;
P7=0.003;
P8=0.07;
P9=1.0;
P10=0.2;
P11=0.09;
P12=0.07;
P13=3.0;
P14=0.07;
P15=6.14;
P16=0.3;
P17=5.0;
P18=5.0;

R1=0.0001;
R2=0.51497;
R3=0.515;
R4=0.9;
R5=2.0;
R6=3.0;
R7=3.135;
R8=3.205;
R9=3.206;
R10=3.605;
R11=3.685;
R12=4.085;
R13=4.185;
R14=6.185;
R15=9.185;
R16=14.185;
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PCOORD(3,1)=0.0;
PCOORD(3,2)=PCOORD(3,1)+P1;
PCOORD(3,3)=PCOORD(3,2)+P2;
PCOORD(3,4)=PCOORD(3,3)+P3;
PCOORD(3,5)=PCOORD(3,4)+P4;
PCOORD(3,6)=PCOORD(3,5)+P5;
PCOORD(3,7)=PCOORD(3,6)+PS6;
PCOORD(3,8)=PCOORD(3,7)+P7;
PCOORD(3,9)=PCOORD(3,8)+P8;
PCOORD(3,10)=PCOORD(3,9)+P9;
PCOORD(3,11)=PCOORD(3,10)+P10;
PCOORD(3,12)=PCOORD(3,11)+P11;
PCOORD(3,13)=PCOORD(3,12)+P12;
PCOORD(3,14)=PCOORD(3,13)+P13;
PCOORD(3,15)=PCOORD(3,14)+P14:
PCOORD(3,16)=PCOORD(3,15)+P15;
PCOORD(3,17)=PCOORD(3,16)+P16;
PCOORD(3,18)=PCOORD(3,17)+P17;
PCOORD(3,19)=PCOORD(3,18)+P18:

"GIVE THE CYLINDER RADII (IN CM)"

CYRAD(1)=R1;
CYRAD(2)=R2;
CYRAD(3)=R3;
CYRAD(4)=R4;
CYRAD(5)=R5;
CYRAD(6)=R6;
CYRAD(7)=R7;
CYRAD(8)=RS;
CYRAD(9)=R9;
CYRAD(10)=R10;
CYRAD(11)=R11;
CYRAD(12)=R12;
CYRAD(13)=R13;
CYRAD(14)=R14;
CYRAD(15)=R15;
CYRAD(16)=R16;

OUTPUT,; ('1CYLINDER RADII:"/);

DO 1=1,IRADII ["SEE DATA INITIALIZATION FOR CYRAD-VALUES"
CYRAD2(I)=CYRAD(I)*CYRAD(I);
OUTPUT I,CYRAD(I); ( CYRAD(,12,)=",G15.7);

]

OUTPUT,; ('IPCOORD AND PNORM VALUES FOR EACH J-PLANE (1=1,3):"//);
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DO J=1,IPLAN [
OUTPUT J,(PCOORD(I,J),1=1,3),(PNORM(1,J),1=1,3);
(15,6G15.7):]

"CALCULATE VOLUMES OF EACH REGION AND OUTPUT THEM."
" NOTE: VOL=-1.0 INDICATES INFINITE VOLUME."

OUTPUT:; ('1VOLUME (CM**3) OF EACH REGION:',//);

DO IRL=1,NREG ['START OF VOLUME CALCULATION"
IF(IRDISC(IRL).EQ.1) [VOL(IRL)=-1.0; GO TO :ENDVOL;;]
JR1=(IRL-2)/NZ;

JR=JR1+1; "CYLINDER INDEX (1 THRU IRADII)"
JZ=IRL-1-JR1*NZ; "LOWER PLANE INDEX (2 THRU NZ-1)"

BIGH=PCOORD(3,JZ+1)-PCOORD(3,J2);

IFUR.EQ.1) [CYRLO2=0.0; "INNER CYLINDER"]

ELSE [CYRLO2=CYRAD2(JR-1); "CYLINDRICAL SHELL"]
VOL(IRL)=PI*(CYRAD2(JR)-CYRLO2)*BIGH;

:ENDVOL.:

OUTPUT IRL,MED(IRL),VOL(IRL),IRDISC(IRL);

(' IRL=",13,5X,'MED="13,5X,'VOL=",G15.5,5X,'IRDISC=',12);
"END OF VOLUME CALCULATION"]

DO I=1,$EBIN [ EBIN(I) = 0.0;] "ZERO SCORING ARRAY BEFORE STARTING"
BWIDTH = 0.0003; "ENERGY SPECTRUM WILL HAVE 0.3 KEV WIDTH"

"STEP 6 DETERMINATION-OF-INCIDENT-PARTICLE-PARAMETERS "

"DEFINE INITIAL VARIABLES FOR EIN MEV PHOTONS GENERATED IN THE
SOURCE"

NCASE=1000000;

IQIN=0; "INCIDENT CHARGE - PHOTONS"
$RANDOMSET XX1,
WTIN=1.0; "WEIGHT=1 SINCE NO VARIANCE REDUCTION USED"

"In Step 6 after definition of number of histories"

"modified from here pnj 1.8.2000 AND MH 7.2.01 and MH 9/3/2001"
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IBRANCH=1;
WHILE(BRANCH(IBRANCH)> 0.0) [

NCASEB = IFIX(BRANCH(IBRANCH)*FLOAT(NCASE)/100.0); "INITIATE
BRANCH NCASE TIMES "

OUTPUT IBRANCH, NCASEB;

(/" New Cascade Branch in Eu-152 EC decay: NCASE for branch’, 14,' ="18);

IING=0; 1INX=0;

DO I=1,NCASEB [EHIST =0.0; "ZERO ENERGY DEPOSITED IN THIS HISTORY

"INITIALIZE BRANCH"
IGAMMA=2; "IGAMMA-=L1 is the beta branch for expansion"
"GENERATE POSITION for whole decay to occur"

XIN=0.0; "DUE TO SYMMETRY IGNORE THIS DEGREE OF FREEDOM"
$RANDOMSET XX1;
YIN=0.0;
IF XX1.NE.0.0 [YIN= RI*SQRT(XX1):]
IRIN=4; "START IN THE SOURCE REGION FIRST GUESS"

$RANDOMSET XX1;
ZIN=PCOORD(3,3)+P3*XX1;

WHILE (NBRGAM(IBRANCH, IGAMMA) >0) [
EIN= EGAMMA(NBRGAM(IBRANCH, IGAMMA));

IF(1.LEQ.NCASEB) OUTPUT EGAMMA(NBRGAM(IBRANCH, IGAMMA));
( EGAMMA in this branch =",F8.5);

$RANDOMSET XX1;
G3PROB=GAMMA(NBRGAM(IBRANCH, IGAMMA),3);
IF(XX1.GE.G3PROB) [

"GAMMA OR K lonisation GENERATED"
XX1=XX1-G3PROB;
G2PROB=GAMMA(NBRGAM(IBRANCH, IGAMMA),2);
IF(XX1.GE.G2PROB) [

"GAMMA GENERATED"

NEWDIR=0;

LOOP [
$RANDOMSET XX1;
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$RANDOMSET XX2;
$RANDOMSET XX3;
XX1=2.0*XX1-1.0; "NEW DIRECTION"
XX2=2.0*XX2-1.0;
XX3=2.0*XX3-1.0;
XX12=XXI*XX1;XX22=XX2*XX2; X X32=XX3*XX3; XX42=XX12+XX22+XX32;
"OUTPUT XX1,XX2,XX3,XX4; (G15.6,X,G15.6,X,G15.6,X,G15.6);"
IF XX42<1.0 [NEWDIR=1;XX4=SQRT(XX42);]
] WHILE NEWDIR=0;

UIN=XX1/XX4;
VIN=XX2/XX4,
WIN=XX3/XX4,

CALL SHOWER(IQIN,EIN,XIN,YIN,ZIN,UIN,VIN,WIN,IRIN,WTIN);

[ING=IING+1;]
ELSE [

"K IONISATION "
IF(XXL1.LT.(1.0-AEK)*G2PROB) [

IF(XX1.LT.(G2PROB*XIKAL)) [EIN=EKAL;]
ELSE [XX1=XX1-G2PROB*XIKAL; IF(XX1.LT.(G2PROB*XIKA?2)) [EIN=EKA2;]
ELSE [XX1=XX1-G2PROB*XIKA2; IF(XX1.LT.(G2PROB*XIKB1)) [EIN=EKB1;]
ELSE [XX1=XX1-G2PROB*XIKB1; IF(XX1.LT.(G2PROB*XIKB2)) [EIN=EKB2;]
ELSE [XX1=XX1-G2PROB*XIKB2; IF(XX1.LT.(G2PROB*XIKB3))
[EIN=EKB3;]
ELSE [OUTPUT,; ('Bad KX allocation"); EIN=EKAZL;];]:1:1:1;

NEWDIR=0;

LOOP [
$RANDOMSET XX1;
$RANDOMSET XX2;
$RANDOMSET XX3;
XX1=2.0%XX1-1.0; "NEW DIRECTION"
XX2=2.0%XX2-1.0;
XX3=2.0¥XX3-1.0;
XX12=XXI*XX1;XX22=XX2*XX2; X X32=X X3*XX3; X X42=XX12+XX22+XX32;
"OUTPUT XX1,XX2,XX3,XX4; (G15.6,X,G15.6,X,G15.6,X,G15.6);"
IF XX42<1.0 [NEWDIR=1;XX4=SQRT(XX42):]

] WHILE NEWDIR=0;

UIN=XX1/XX4;
VIN=XX2/XX4,
WIN=XX3/XX4;

CALL SHOWER(IQIN,EIN,XIN,YIN,ZIN,UIN,VIN,WIN,IRIN,WTIN);];
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HINX=1INX+1;];

I
IGAMMA=IGAMMA+1;]; "END OF NBRGAM LOOP  pnj 1.8.2000"

"INCREMENT BIN CORRESPONDING TO ENERGY DEPOSITED IN
HISTORY "

IBIN= MINO (IFIX(EHIST/BWIDTH + 0.999),$EBIN):;

IF(IBIN.NE.O) [EBIN(IBIN)=EBIN(IBIN)+1;];

]; "END OF NCASEB LOOP"

OUTPUT IING, IINX;
(' Gammas and X-rays in this branch =",110, 110); " pnj 1.8.2000"

;IBRANCH=IBRANCH+1;]; "END OF BRANCH"

"PICK UP MAXIMUM BIN FOR NORMALIZATION "
BINMAX=0.0; DO J=1,$EBIN [BINMAX=MAX(BINMAX,EBIN(J)):]
OUTPUT EIN;

(ORESPONSE FUNCTIONY' FOR ISOTROPIC',F8.2,' MeV EMITTED),
"PHOTONS ON A',F8.3,' cm RADIUS CYLINDRICAL Ge DETECTOR/
T6,ENERGY COUNTS/INCIDENT PHOTON');

DO J=1,48 [LINE(J)="";] "BLANK ENTIRE OUTPUT ARRAY"

DO J=1,$EBIN [ICOL=IFIX(EBIN(J)/BINMAX*48.0+0.999);
IF(ICOL.EQ.0) ICOL=1;

LINE(ICOL)="*; "LOAD OUTPUT ARRAY AT DESIRED LOCATION"
OUTPUT BWIDTH*J,EBIN(J)/FLOAT(NCASE),LINE;
(F10.3,F12.6,48A1); LINE(ICOL)="";"REBLANK"]

STOP:END:;

%E

THIS

Nkkkhkhkhhhhkhkhkhkhkhiirhrrhkhkhkhkhihrrhhhkhkhkhkhhirrhhhhkhkhhhirrhhhhkhhhiirrihihkhiiiixn

SUBROUTINE AUSGAB(IARG);

" In this AUSGAB routine, we score the energy deposited
" in the detector region, regions 7,15,16,23,24 , but not the "
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" source regions 2,10 or cryostat regions 4,12,20 or deadlayer 6,14,22"

For IARG=0, an electron or photon step is about to occur and we
score the energy deposited, if any. Note that only electrons "
deposit energy during a step, which only happens in some regions "
so we must check "

For IARG=1,2 and 4,particles have been discarded for falling below "
various energy cutoffs and all their energy is deposited locally "

(in fact EDEP = particles kinetic energy). "
" For IARG=3, the particle is "

in a discard region, so we do not score its energy

EHIST keeps track of the total energy deposited during each
history. In the main routine it is zeroed at the start of each "
history and binned at the end of each history. "

Nkkkhkhkhhrhhkhkhkhkhkhrhrrhhkhhkhrrrhirhhkhkhhkhirrriridhhhhhirrriridhhhhiirhiithhhiiiixn

;COMIN/EPCONT,SCORE/; "WE USE EDEP FROM EPCONT AND EHIST FROM
SCORE "
COMIN/STACK/,

IRL=IR(NP);

" IQLL=IQ(NP); ELL=E(NP); XLL=X(NP); YLL=Y(NP); ZLL=Z(NP); "
" ULL=U(NP); VLL=V(NP); WLL=W(NP); "

" OUTPUT IARG, IRL; (0 AUSGAB - IARG, IRL', I5,2X,15); "

" OUTPUT IQLL,ELL,XLL,YLL,ZLL,ULL,VLL,WLL;"

" (0QE XY ZUV W 1X,12,7(F7.4,1X)); "

IF(IARG.LE.2 .OR. IARG.EQ.4) [ "NOT A DISCARD REGION"

IF(IRL.GE.10.AND.IRL.LE.12) [EHIST=EHIST + EDEP;];
IF(IRL.GE.29.AND.IRL.LE.31) [EHIST=EHIST + EDEP;];
IF(IRL.GE.48.AND.IRL.LE.50) [EHIST=EHIST + EDEP;];
IF(IRL.GE.67.AND.IRL.LE.71) [EHIST=EHIST + EDEP;];
IF(IRL.GE.86.AND.IRL.LE.90) [EHIST=EHIST + EDEP;];
IF(IRL.GE.105.AND.IRL.LE.109) [EHIST=EHIST + EDEP;];
IF(IRL.GE.124.AND.IRL.LE.128) [EHIST=EHIST + EDEP;];

]
" OUTPUT EHIST, EDEP; ('0 REGION 7 EHIST, EDEP ', F8.4, 2X, F8.4); "

RETURN;END;"END OF AUSGAB"

Nhkkkhkhkhhhhkhkhkhkhkkhhiihrrhhkhkkhkhihrrhhhhkhkhhhiirhhhhhkhhhirrrihhkhkhhhiirriitiixitixn

" STANFORD LINEAR ACCELERATOR CENTER"
SUBROUTINE HOWFAR,;
" EGS4 SUBPROGRAM - 29 NOV 1985/1700"

Nkkkhkhkhhhkhkhkhkhkhkhkkrirhrrhkhkhkhhihrrrrhhkhkhhhiirhhhhkhkhhhirrriirhkhhhiiirrritiixitixn

;COMIN/CYLDTA,DEBUG,EPCONT,PLADTA,STACK,USER/;
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COMMON/PASSIT/IRDISC($MXREG),NR,NZ;

IRL=IR(NP); "SET LOCAL VARIABLE"
IF(IRDISC(IRL).EQ.1) [IDISC=1; "DISCARD REGIONS"]

ELSE ["GEOMETRY CHECKING REGIONS"

JR1=(IRL-2)/NZ;
JR=JR1+1; "CYLINDER INDEX NUMBER"
JZ=IRL-1-JR1*NZ; "SLAB INDEX NUMBER"

"CHECK THE PLANES FIRST"

IF(JZ.EQ.1) [IRBACK=1;] ELSE [IRBACK=IRL-1]]
$PLAN2P(JZ+1,IRL+1,1,JZ,IRBACK,-1):

"NOW CHECK THE CYLINDERS LAST"

IF(JR.EQ.1) ["INNER CONE/CYLINDER"
$CYLNDR(L,1,IHIT, TVAL);
IF(IHIT.EQ.1) [SCHGTR(TVAL,IRL+NZ);]
"END OF INNER CONE/CYLINDER LOOP"]

ELSE ["CYLINDERICAL SHELL"
$CYLNDR(JIRL,0,IHIT, TVAL);
IF(IHIT.EQ.1) [SCHGTR(TVAL,IRL-NZ);]
ELSEIF(JR.NE.NR) [

$CYLNDR(JIR,L,IHIT, TVAL);
IF(IHIT.EQ.1) [SCHGTR(TVAL,IRL+NZ);]

"END OF CYLINDRICAL SHELL LOOP"]
"END OF GEOMETRY CHECKING REGIONS LOOP"]

RETURN,;

END; "END OF SUBROUTINE HOWFAR"
%E
kkkkhkkkhkhkkihkhkhhkkhhkhkkihkhhkhkhhkhkhhkkihkhkhhkhkhhkkihkhkhhkkhkhhkkihkhkhhkhhhkihkhkhhkhhhkkihkhiikiiixn

" STANFORD LINEAR ACCELERATOR CENTER"

SUBROUTINE PLAN2P(NPL1,NRG1,ISD1,NPL2,NRG2,ISD2);

" VERSION 4.XX -- 8 JUN 1985/1845"
kkkkhkkkhkkhkkikhkhkhhkkikhkhkkikhkhhkhkhhkhkkhhkkikhkhkkhhkhkkhhkkikhkhkhkhkhhkkihkhkhhkhhhkkihkhkhhkkhhhkkihkhhikiiin

" AUXILIARY (GEOMETRY) SUBPROGRAM FOR USE WITH EGS4 CODE
SYSTEM "

whenever a particle is in a region bounded by two planes that *
" ARE parallel. Both subroutines PLANE1 and CHGTR are called "
" by PLANZ2P (the second PLANEL call is not made if the first "
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plane is not hit, or if the trajectory is parallel).
" NPL1 =ID number assigned to plane called first (input)
" NRG1 =ID number assigned to region particle trajectory "
will lead into "
" ISD1 = 1 normal points towards current region (input) "
= -1 normal points away from current region (input) *
" NPL2 =Same (but for plane called second) "
NRG2 = Same (but for plane called second) "
" ISD2 = Same (but for plane called second) "

" NOTE: A macro-version of this subroutine is also defined in the "
" EGS4 Code System (see file EGS4AMAC). "

;COMIN/DEBUG/; "SEE MACRO DEFINITION IN EGS4MAC "

CALL PLANE1(NPLZ,ISDL,IHIT, TVAL);
IF(IHIT.EQ.1) ["HITS FIRST PLANE"
CALL CHGTR(TVAL,NRG1); "CHANGE REGION IF NECESSARY"]
ELSEIF(IHIT.EQ.0) ["HEADING AWAY FROM FIRST PLANE, MAY HIT SECOND"
CALL PLANE1(NPL2,ISD2,IHIT, TVAL);
IF(IHIT.EEQ.1) [CALL CHGTR(TVALNRG2): "CHANGE REGION IF
NECESSARY"]]
ELSEIF(IHIT.NE.2) [OUTPUT NPLL,NRG1,NPL2,NRG2,IHIT;
(' STOPPED IN SUBROUTINE PLAN2P WITH NPL1,NRG1,NPL2,NRG2=",
416,/ AND WITH IHIT='16): STOP;]
"ELSE PARTICLE TRAVELING PARALLEL TO PLANES IN ORIGINAL REGION"

RETURN;

"END OF SUBROUTINE PLAN2P" END;

%E

kkkkhkkkhkhkkihkhkhhkkhhkhkkihkhhkhkhhkhkhhkkihkhkhhkhkhhkkihkhkhhkkhkhhkkihkhkhhkhhhkihkhkhhkhhhkkihkhiikiiixn

" STANFORD LINEAR ACCELERATOR CENTER"

SUBROUTINE PLANEL1(NPLAN,ISIDE,IHIT, TVAL);

" VERSION 4.XX -- 8 JUN 1985/1845"
Nkkkkhkkkhkkhkkikhkhkhhkkhhkhkkihkhhkhkhhkkhkkhhkkihkhkhhkkhkkhkhkkikhkhkhhkkhkhhkkihkhkhhkhhhkihkhkhhkkhhhkkihkhhikiiixn

" AUXILIARY (GEOMETRY) SUBPROGRAM FOR USE WITH EGS4 CODE
SYSTEM "

" DESCRIPTION - A plane is defined relative to a coordinate system

" by means of a point on its surface (PCOORD-array) and a unit "

" vector normal to its surface (PNORM-array). Both PCOORD and "

" PNORM are defined in COMMON/PLADTA/ by means of a macro in the
" EGS4 Code System (see file EGS4AMAC). The user must assign "

" appropriate values to PCOORD and PNORM in the User Code. "

" PLANEL1 is called whenever the user wants to determine: "

a) whether or not the straight trajectory of a particle at "

" (X,Y,Z) traveling with direction cosines (U,V,W) inter- ™



97

sects a plane, and (if it does)
" b) what is the trajectory distance. "

" NPLAN = ID number assigned to plane (input) "
ISIDE = 1 normal points towards current region (input)

" = -1 normal points away from current region (input) "
IHIT = 1 trajectory will strike plane (output) "
" 2 trajectory parallel to plane (output) "

0 trajectory moving away from plane (output)

" TVAL =distance to plane (when IHIT=1) (output) "

" NOTE: A macro-version of this subroutine is also defined in the "
" EGS4 Code System (see file EGS4AMAC). "

;COMIN/DEBUG,PLADTA,STACK/; "SEE MACRO DEFINITION IN EGS4MAC "

UDOTA=PNORM(L,NPLAN)*U(NP)+PNORM(2,NPLAN)*V(NP)+PNORM(3,NPLAN)

*W(NP);

UDOTAP=UDOTA*ISIDE;

IF(UDOTA.EQ.0.0) [IHIT=2; "TRAVELING PARALLEL TO PLANE"]

ELSEIF(UDOTAP.LT.0.0) [IHIT=0;"TRAVELING AWAY FROM PLANE"]

ELSE[

IHIT=1; "TRAVELING TOWARDS PLANE---DETERMINE DISTANCE"

TNUM=PNORM(1,NPLAN)*(PCOORD(1,NPLAN)-X(NP))
+PNORM(2,NPLAN)*(PCOORD(2,NPLAN)-Y (NP))
+PNORM(3,NPLAN)*(PCOORD(3,NPLAN)-Z(NP));
TVAL=TNUM/UDOTA]

RETURN,;

"END OF SUBROUTINE PLANE1" END;
%E
kkkkhkkkhkhkkihkhkhkhkkhhkhkkihkhhkhkhhkkhkkhhkkihkhkhhkhkkhhkkikhkhkhhkkhkhhkkihkhkhhkkhhhkihkkhkhhkkihkhihkkhhikiixin

" STANFORD LINEAR ACCELERATOR CENTER"

SUBROUTINE CHGTR(TVALP,IRNEWP);

" VERSION 4.XX -- 8 JUN 1985/1845"
Nkkkkhkkkhkkhkkikhkhkhhkkhhkhkkihkhhkhkhhkkhkkhhkkihkhkhhkkhkkhkhkkikhkhkhhkkhkhhkkihkhkhhkhhhkihkhkhhkkhhhkkihkhhikiiixn

" AUXILIARY (GEOMETRY) SUBPROGRAM FOR USE WITH EGS4 CODE
SYSTEM "

" DESCRIPTION - The purpose of CHGTR is to change USTEP to TVALP "
" and IRNEW to IRNEWP if and when USTEP is larger than TVALP. "
" (Both USTEP and IRNEW are available in COMMON/EPCONTY/). "

TVALP = Straight trajectory distance to a boundary surface
" IRNEWP = New region that particle may possibly go into "

" NOTE: A macro-version of this subroutine is also defined in the "
" EGS4 Code System (see file EGSAMAC). "
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;COMIN/DEBUG,EPCONT/; "SEE MACRO DEFINITION IN EGS4MAC

IF(TVALP.LE.USTEP) [USTEP=TVALP; IRNEW=IRNEWP;]
RETURN,;

"END OF SUBROUTINE CHGTR" END:
%Q1
%E
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1. Introduction

In gamma-ray spectrometry, coincidence summing corrections
are generally required to determine accurate efficiency calibrations
and to get reliable quantitative analysis results from sample
measurements especially in close sample-detector geometries
(Debertin and Helmer, 1988). Some specific codes were developed
for coincidence summing corrections such as KORSUM at the
Physikalisch-Technische Bundesanstalt (Debertin and Schotzig,
1979) and CORCO at the Laboratoire National Henri Becquerel
(Morel et al., 1983). These pioneering works were followed by new
developments: Monte Carlo simulation was used by Decombaz
(Decombaz et al., 1992) for coincidence summing correction. Later
the correction factors were determined with a mixture of Monte
Carlo simulation for computing efficiencies and numerical

* Corresponding author. Fax: +90 4562337427.
E-mail address: necati.celik@gumushane.edu.tr (N. Celik).

http://dx.doi.org/10.1016/j.radphyschem.2015.07.002
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computation of the corrective factors (Sima and Arnold, 2000;
Haase et al, 1993). Furthermore, different practical approaches
were developed by a number of authors such as Solc et al. (in
press), Xie et al. (2014), Sahiner and Meric (2014), Tomatchino and
Rizzo (2011), Jutier et al. (2007) and Vidmar and Korun (2006).

In the current work a code which is written in Mortran was
developed for the purpose of determination of True Coincidence
Summing (TCS) correction factors for '**Cs. Although the code
gives the results only for >%Cs, the technique introduced can be
used to determine TCS correction factor for any gamma-ray
emitting radionuclides in cascade.

2. Definitions

In the decay process of a radionuclide, several events take place
sequentially in time. Most of the time, a first nuclear decay event
such as beta decay, alpha decay or electron capture is followed by
rearrangement in the daughter nucleus. This rearrangement is
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obtained through one or more transitions with actual gamma-ray
emission or internal conversion until the nuclear ground state of
the daughter nucleus is reached.

The direct transition probability from initial level (i) to final
level (f) can be expressed as follows:

Ty
Yk Tiok M

where P;_y is the direct transition probability from initial level
to final level and Ty is the intensity of that transition. Here k
represents an energy level lower than i. The intensity of a nuclear
transition is the sum of three terms corresponding to three paths.
The first path applies to y-ray emission, the second path corres-
ponds to X-ray emission from internal conversion, and the third
case is relevant when no photon is emitted. The y-ray emission
from pair production is not considered here. The direct transition
probability can then be written as

Pig=

P,»%f=P,-1f+Pi§f+Pigf @)

These three terms are: y-ray emission, the internal conversion
coefficients and the fluorescence yields. As >*Cs disintegration
starts with B~ emission one transition must be defined for each
energy level and the transition probability must be set to the ac-
tual probability of f~ decay to this energy level targeted in the
initial disintegration act. In this decay mode, it must be considered
that no detectable particle emission happens during the initial
decay reaction. This transition is considered as undetectable
emission path only. As a result the probabilities of y-emission and
X-ray emission are zero for these transitions.

If transitions occur from the highest energy level to the ground
level, the probability is expressed as:

n
Pna—>”0 = Z Pn_,n_an_pa_l!O
p=1

3)

Here n is the number of energy levels numbered by integers in
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the increased order starting at O for the ground level, B, is the

probability of direct transition from level n to level n-p and Pn_pa_y0

is the probability for the nuclide to go from level n-p to ground
level by all possible paths. A more detail of the definitions can be
found in Jutier (Jutier et al., 2007).

3. The CS-134 decay scheme

134Cs has a half-life of 2.0652 years. It is produced both directly
as a fission product and via neutron capture from nonradioactive
133Cs, which is a common fission product. In a thermal reactor, it
has a low fission product yield. **Cs disintegrates 99.9997% via
disintegration to five excited levels and to the ground state of >*Ba.
The decay scheme of '%Cs is presented in Fig. 1. In Fig. 1, **Cs
disintegrates to five excited states with their energies and a stable
state of **Ba by 3~ emission. Beta emissions are denoted by by, by,
..., bs together with their emission probabilities. Gamma emis-
sions following beta emissions are denoted by g1, g2,..., 812

4. Input data of an EGS4 code.

The vy transition probability (Py) is given:

Py =P + Fe )

Here, P, and P are y and conversion electron emission prob-
abilities, respectively.

Internal conversion coefficient of the electron in the K shell is
defined as in the following:

6))

where Pey and P, are the K conversion electron emission and y-
ray emission probabilities, respectively. The following quantities

bl 1969.85keV
\2.5 g11
b2 1643.26keV
10 7
\70.2 lg €
b3 1400.54keV
\0.04 s 86
b4 1167.92keV
0.008 g8 \LgS g4 g3
b5 604.69keV
g2 |gl
0 Stable

Ba-134

Fig. 1. Decay scheme of >4Cs.
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Table 1
Gamma transitions and internal conversion data taken from Nucleide 2000.

Gamma emissions Energy (keV) Gamma intensity (%)

Electron conversion coefficients

Gamma transition probabilities

ar ag ar Pg Peex Pother
g 604.69 98.21 5.90E—03 4.94E—-03 7.20E—04 0.99413 3.56E—06 5.86E—03
2 1167.92 1.794 1.31E-03 112E-03 1.40E — 04 0. 99,869 1.57E—07 1.31E-03
g3 563.23 8.44 7.30E—03 6.10E—03 9.00E—04 0. 99,275 5.49E—06 7.24E—03
g4 795.84 85.78 3.00E—03 2.58E—03 3.50E—04 0. 99,701 9.03E—07 2.99E—-03
g5 1038.555 0.993 1.80E—03 1.57E—03 2.10E—-04 0. 99,820 3.3E-07 1.80E—03
g6 475.34 1.52 114E—-02 9.50E—03 1.46E—03 0. 98,873 1.39E-05 113E-02
2 242.8 0.023 8.70E—05 7.22E—05 1.20E—05 0. 99,991 8.66E—10 8.70E—05
28 1365.16 3.018 9.60E—04 8.20E—04 1.00E—05 0. 99,904 8.2E—09 9.59E—04
g9 801.93 8.73 3.00E—03 2.54E—03 3.40E— 04 0. 99,701 8.64E—07 2.99E-03
210 569.32 15.54 9.60E—03 8.20E—03 1.04E—03 0. 99,049 8.53E—06 9.50E—03
g 326.5 0.0145 3.67E—05 3.10E—05 4.70E—06 0. 99,996 1.46E-10 3.67E—05
are similarly defined: Table 2
P Possible transition paths and their probabilities.
cer .
aL = 2 with ai = a1y + a, + ais 6) Beta (b) Gamma (g) Excited state energy Decay path Probability (%)
i’ (keV)
The total conversion coefficient is
1 1969.26 by 272
P, 2 1643.26 b2 2.5
ar=ag+aL+ = 7 1 bigll 0.014500532
¢ @ 3 1400.54 by 702
. . . - 7 bigngs 0.000132647
Pce is the thal conversion electron emission proba.blllty for the 10 bigio 15.689184
related transition. Based on Eqs. (4)- (7) the following formulas 7 bag7 0.022869354
can be written: 4 1167.92 by 0.04
6 bigigs 0.008865408
P % p op_ Py 9 bigo 8.75619
Tl Y T 1+a ®) 6 b,gs 1.528462592
5 604.69 bs 0.008
Using the data from Nucleide 2000 software (Nucleide 2000) ‘31 E1g“g7g4 8-88%3526
. 18118683 .
and the formulas given above, Table 1 was created. 5 brgiige 0.005736705
4 big1084 15.71203948
3 b1gog3 7.203909644
5. Determination of transition paths 8 bigs 3.02089728
4 b2gsg, 0.022902669
. . . . 3 b,g6g3 1257499712
Transition paths were determined starting from the highest 5 bogs 0.989050695
energy level (b;, E= 1969.85 keV). All the possible paths were 4 bsgs 70.30226501
determined and taken into account. First, '*Cs decays by [~ 3 bags 0.032908878
emission to the highest energy level (1969.85 keV) of *Ba and no } 0 E‘g“g7g4g‘ 8'882;?3;;16
other transitions are possible for this case, this is shown by b; in 18n8eBsE1
e ol o > 2 bigngsga  0.001541138
Table 2. There are two possibilities for °“Cs to disintegrate to the 1 bigngsg:  0.005749905
energy level of 163.26 keV: by a f~ emission (by) or by b; emission 1 bigiogag:1  15.74819443
followed by a gamma emission (go). These two possibilities are 1 Digogsgi 7220486549
. . o 2 bigoga 152215181
shown as b, and b;gg in Table 2. Similarly there are four possibi- 1 brgag 3027848662
lities for 3Cs to disintegrate to >*Ba energy level of 1400 keV 1 bogygag 002205537
which are bs, bage, b1gogs and b;g10 as shown in Table 2. The same 1 bygsg3g 1.260393343
procedure was applied to other energy levels and all possible de- 2 bgsga 0.265703702
cay paths were determined and their emission probabilities were ! b2858: 0.991326598
1 b3g4g1 70.46403744
calculatefi: o o 1 bagsg: 0.032984604
Transition probabilities of 3~ emissions are taken from Table 1. 2 bag> 0.006953489
If B~ emissions are followed by gamma emission/s the transition 1 bsg1 0.008018409

probability is calculated as indicated by Eq. (1). For example, the
transition probability of bigegs is Pes/(Po2+Poige). Here, Pyg are
taken from Table 2. The same procedure was applied to all possible
paths and Table 2 are created.

The transitions we are interested in are the ones that end up to
the ground state of ®*Ba. The transition probabilities of these
transitions together with the steps are presented in Table 3.

6. Building up an EGS4 code

Number of branches and corresponding transition probabilities
presented in Table 3 are implemented in EGS4 code as in the

following: There a total of 16 branches however we only give some
examples in order to save the space.

BRANCH(1)=0.000133;
BRANCH(2)=0.007311;
BRANCH(3)=0.001541;
BRANCH(17)= — 1.0.

All the possible paths of gamma transitions were introduced in
the code. There are 22 branches as shown in Table 3. These
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Table 3
Steps and transition probabilities of possible gamma transitions that end up to the
ground state of >*Ba.

Transition paths Steps Probability (%) Branch
b1g11878481 1 11 7 4 1 0.000133146 1
b1g11868381 1 11 6 3 1 0.00731055 2
big118581 1 11 5 1 0.001541138 3
b1g118682 1 1 6 2 0.005749905 4
b1g108481 1 10 4 1 15.74819443 5
b18og381 1 9 3 1 7.220486549 6
b1gog2 1 9 2 1.52215181 7
b1gsg1 1 8 1 3.027848662 8
bog7848: 2 7 4 1 0.02295537 9
b2g6g381 2 6 3 1 1.260393343 10
b,g6g2 2 6 2 0.265703702 1
bagsg1 2 5 1 0.991326598 12
bsgag: 3 4 1 70.46403744 13
bagsg1 4 3 1 0.032984604 14
bag, 4 2 0.006953489 15
bsg: 5 1 0.008018409 16

branches have different steps and these should be implemented
like some examples given in the following:

NBRGAM(1,1)=1;
NBRGAM(1,2)=11;
NBRGAM(1,3)="7;
NBRGAM(16,2)=1.

The transition probabilities of y-ray emission and X-ray emis-
sion from internal conversion are determined like some examples
given as follows (see Table 1):

GAMMA(1,1)=0.994134606;
GAMMA(1,2)=35568E — 06;
GAMMA(1,3)=0.0058618374;
GAMMA(11,3)=0.0000366985.

The first probability is y-ray emission probability following a
beta emission to one of the excited levels of >*Ba, this is shown by
GAMMA(1,1)= 0.994046; the second probability is a gamma
emission following by K shell electron conversion and this is
shown by GAMMA(1,2)=0.001768 and finally the third probability
is a gamma emission following by L and M shell electron conver-
sions and this is shown by GAMMA(1,3)= 0.0058618374.

All gamma energies are also implemented in MeV as follows.
Again only some examples are given. K X-ray energies and their
intensities are also implemented in the code.

EGAMMA(1)=0.60469;
EGAMMA(2)=1.16792;

(
(
EGAMMA(3)=0.56323;
EGAMMA(11)=0.3265.

7. Program run
To determine the full energy peak efficiencies for the purpose

Table 4

of TCS, a detector model has to be constructed, the parameters of
which are taken from the manufacturer’s data sheet (see Table 4).
Simplified drawing of the models used for Monte Carlo simula-
tions are shown in Fig. 2. The Z-axis indicated is the axis around
which there is a cylindrical symmetry. The model consists of 324
ring-shaped regions. All the photons created initially and the
secondary particles are tracked along their paths in the regions as
a result of physical processes taken into account. Each particle
history, from its generation to full dissipation of its energy is
stored in the region of interest, in our case in Ge crystal. The
drawings show the crystal, the crystal dead layer, the detector
window and lead shield surrounding the detector. The space be-
tween the window and the crystal dead layer was supposed to be
vacuumed. The material of the crystal and the dead layer is as-
sumed to be germanium.

RANLUX random number generator was used with PRESTA
version of EGS4 (Nelson and Hirayama, 1985) code as it was shown
to produce relatively better distribution and longer period (Gas-
parro et al., 2008).

For the model executed with EGS4 (Nelson and Hirayama,
1985), the efficiency was divided into 10.010 energy bins, each one
having a width of 0.3 keV. This number bins was chosen in order
to have a few bins above the highest energy used in order to check
for rounding errors in the calculations.

The simulations do not take into account cosmic rays or back-
ground sources of radioactivity which contribute to peaks that
occur in experimental data. In addition, the broadening due to
electronic noise and the statistics of ion-pair production is not
included.

Energies given in the model for simulation were chosen to be
always 10 eV below an integer value in order to avoid having an
energy lying just at the end of a bin as this gives rounding errors
leading to a non-negligible number of event scored in the fol-
lowing channel.

8. Determination of TRUE coincidence summing factors

TCS correction factors were determined by the following for-
mula:

CF = €nocs
Ecs 9

The code was run twice for each energy value to obtain results
with and without coincidence. Where, &, is the efficiency of the
corresponding energy with no coincidence effect taken into ac-
count and &g is the efficiency with coincidence summing effect
taken into account.

The uncertainties associated with efficiencies are statistical
uncertainties and the uncertainties of the cross-sections used by
the program. We chose a sufficient number of photons so that
statistical uncertainty is less than 1% for all the photon energies. It
was sufficient to generate of the order of 107 primary photons. The
uncertainty associated to the approximations made in the cross-
section data is generally accepted to be around 2%. Therefore the
total uncertainty in our calculated gamma detection efficiency
values is expected to be around 3%.

TCS correction factors were calculated based on the simulation

Detector used for experimental measurements and its parameters used for Monte Carlo simulations.

Type Crystal Diameter Crystal to endcap
distance

Entrance window Crystal length Hole diameter Hole depth Ge front dead-layer

Relative efficiency
thickness

p 62.7 mm 4 mm Al (1 mm) 43,6 mm

10.3 mm 30.7 mm 0.03 mm 55%
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Table 5
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Aluminum|

Fig. 2. Detector model used in Monte Carlo simulation.

Aluminum

Calculated correction factors for different energies and different source-detector distances.

Energy (keV) CF
0 mm 20 mm 40 mm 60 mm 80 mm 100 mm 200 mm 300 mm

604.69 1.409 1143 1.062 1.040 1.028 1.028 1.023 1.020
1167.92 0.758 0.774 0.860 0.895 0.933 0.940 0.977 0.997
563.23 1.745 1.217 1.105 1.092 1.081 1.020 1.016 0.988
795.84 1.418 1137 1.057 1.043 1.032 1.014 0.991 0.991
1038.56 1.226 1124 1123 1117 1117 1.095 1.094 1.067
475.34 1.580 1127 1.108 1.106 1.105 1.087 1.084 1.020
1365.16 0.668 0.793 0.818 0.819 0.907 0.918 0.979 1.053
801.93 1.709 1.198 1121 1.090 0.998 0.997 0.999 1.010
569.32 1.753 1.210 1.075 1.049 1.029 1.019 1.014 1.000

for a point source. The results are presented in Table 5. The cor-
rection factors were calculated for different source-detector dis-
tances: ranging from O (directly on endcap) to 300 mm. The cor-
rection factors vary from 0.668 to 1.758 for 0 mm from the endcap;
from 0.991 to 1.067 for 300 mm from the endcap and different
values in between for other source-detector distances. It is seen
from Table 5 that correction factors approach unity with increas-
ing source—detector distance. This behavior is clearly seen in Fig. 3
which can be explained by the angular correlation of photons
emitted. When a point source is placed close to the detector, the
solid angle subtended by the detector is large (efficiencies are
high) and the angular correlation can be considered to induce
small corrections on efficiencies. Therefore the TCS corrections are
also high. In contrast, when a point source is placed far from the
detector, the efficiencies are small and so are the TCS corrections.

Energy (keV)

2,00 - = 604.69
e 1167.92
A 563.23

175 4 % v 795.84
n ¢ 103856
o “ <« 47534
5 %0 > 1365.16
o u
8 ] ¢ 801.93
[ * 569.32
< 12544 o
= k3 3 %
5] <4 L g
%1,00- ! LR | ] ‘
o I

> >
0o75]e &
1>
0,50 - T T T T T T T T T T T T T 1
0 50 100 150 200 250 300 350

Source-detector distance (mm)

Fig. 3. Change of correction factors with source-detector distance.

9. Verification of the code

In order to validate the code, we have chosen an empirical
method which was introduced by Lerate et al. (1997) in order to
obtain TCS correction factors. The method is summarized below:

In this method the summing correction for energy E; can be
expressed as

NE
ki N,'Mf (E» (10)
where NF is the count rate of the full energy peak for a re-
ference geometry in which no summing correction is needed. This
geometry is obtained by putting the point source far away from
the detector (in our case it is put at 300 mm away from the de-
tector endcap), NV is the count rate of the full energy peak of the

measurement geometry. f(E;) is an energy dependent function
that can be written as a ratio of between total efficiencies.

E) = em(E)
fE) er(Ep)

amn

The function f(E;) has to be determined without summing
correction problem. Experimental determination of this function is
tedious and time consuming as it requires preparing mono-en-
ergetic point-like sources. Instead, we determined this function by
Monte Carlo simulation using the energies 400, 500, 600, 800,
1000 and 1500 keV. These energy values are chosen as to avoid
coincidence summing problem and to cover the energy range
under consideration. The calculated function f(E;) is shown in
Fig. 4 with the interpolation equation and correlation coefficient. It
should be taken into account that for a good total efficiency cal-
culation, the parameters of the detector (dead layer thickness,
active volume, etc.) should be very well determined. We changed
the radius of the detector by 10 mm, as a result the total efficiency
for 600 keV changed by 43%. However, the function f(E) changed
by only 2% as numerator and denominator changes in the same
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3,575 -
2550 - y=6.72 x*-2.39 x 10" x+3.63
| R%*=0.988
3,525
3,500
m ]
= 3,475
3,450
3,425
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400 600 800 1000 1200 1400 1600 1800
Energy (keV)
Fig. 4. The function f(E) obtained by Monte Carlo simulation.
Table 6

Correction factors obtained by Monte Carlo (CFMC) calculation and the empirical
method (CFE™) for 40 mm source-detector distance.

Energy (keV) CFMC CFExP Relative diff. (%)
475.34 1.108 1.105 —-2.25

563.23 1.105 1127 2.46

569.32 1.075 1.089 132

604.69 1.062 1113 -0.79

795.84 1.057 1.084 1.63

801.93 1121 1114 142

1038.555 1123 1.098 —1.28

1167.92 0.860 0.910 1.63

1365.16 0.818 0.905 —-1.67

way in Eq. (11) so that errors are compensated. We used the de-
tector parameters (active volume, dead layer thickness, etc.) ta-
bulated by the manufacturer. As a result of our calculations, we can
conclude that even the parameters given by the manufacturer are
not the exact parameters as the real ones, the function f (E) is still
valid.

The count rates in Eq. (10) were determined experimentally by
using 10.06 pCi point “Cs radioactive source. The radioactive
point source was placed at 40 mm and 300 mm away from the
detector endcap. The former and the letter distances are measur-
ing and reference distances, respectively. The measuring time was
chosen high enough in order to reach a good statistics for all the
gamma lines emitted by *4Cs (less than 1% uncertainty, 18,000 s).
The function f(E) for each energy values of *4Cs was obtained
using the interpolation function shown in Fig. 4, and then the
correction factors were determined by Eq. (10).

Correction factors obtained with the current code and the
empirical method are presented in Table 6. As seen, a good
agreement was obtained with an average around + 2% relative
difference. The results indicate that the calculations are correct

and can be used to obtain TCS correction factors for many gamma
emitting radionuclides in cascade in gamma-ray spectrometry.
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