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SUPPORT VECTOR REGRESSION BASED CONTROLLER DESIGN
METHODS FOR NONLINEAR SYSTEMS

SUMMARY

Conventional nonadaptive controllers may be convenient enough for most industrial
processes in the case that the system does not include highly nonlinear and time
varying dynamics. Depending on the developments in technology and increasing
requirements of the people, systems are transforming into more and more complex
structures. Nonadaptive controllers cannot counteract the tracking error in case the
behaviour of the system changes perceptibly owing to internal or external factors
during the course of operation and the control performance degrades. For this purpose,
different controllers for different scenario conditions and operating points may be
designed to resume successful control in industry. Controller design depending on
different performance criteria is a momentous task since effective design of controllers
can significantly reduce the costs in industry. However, that chore can also be
automatically executed by an adaptive controller. Therefore, controllers that are
able to adapt themselves according to varying system dynamics must be developed
using optimization theory based solutions to enhance the success of the controllers in
industry.

Adaptive controllers can generally be classified as model based adaptive controllers
and model free adaptive controllers. Model based adaptive controllers utilize the
system model to approximate the behaviour of the system dynamics whereas in model
free adaptive controllers the adjustment mechanism does not need the model of the
system. The performances of model based adaptive controllers are directly influenced
by the accuracy of the system model.

Machine learning algorithms have frequently been utilized to identify the dynamical
behaviour of the system precisely in order to derive effective adjustment rules for the
parameters of adaptive controllers. Support Vector Regression (SVR), proposed by
Vladimir Vapnik et al., is one of the most favorable nonlinear system identification
methods since it guarantees the global extremum of the optimization problem.

Various adaptive controllers based on SVR have been proposed for the control of
nonlinear systems in technical literature. The common property of these studies
is that SVR is typically deployed to approximate the system Jacobian which is
required to tune parameters of adaptive controllers through gradient based optimization
algorithms.

In this thesis, three novel adaptive controller architectures based on SVR have been
proposed.The basic novelty in these architectures is that SVR has been implemented
directly as a controller and a parameter estimator for a generalized controller structure.
The performance evaluations of the proposed controllers have been examined on
various nonlinear benchmark systems by simulations. In addition, stability analysis

xxiii



of the systems have been performed. The obtained results prove that the proposed
adjustment mechanisms are effective in controlling processes with nonlinear dynamics,
noise and uncertainties.
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LINEER OLMAYAN SISTEMLER ICIN DESTEK VEKTOR REGRESYON
TABANLI KONTROLOR TASARIM METODLARI

OZET

Geleneksel kontrolorler, sistemin lineer olmayan ve zamanla degisen dinamik
icermemesi durumunda, endiistriyel siireclerin cogunlugunda yeterince etkili ve
verimli olabilirler. Teknolojideki yeniliklere ve insanlarin artan gereksinimlerine
bagli olarak, sistemler cok daha karmasik yapilara doniigmiistiir. Eger kontrol iglemi
sirasinda sistemin davranisi, etkiyen i¢ ve dig dinamiklerden dolayi, ciddi derecede
degisirse, geleneksel kontrolor izleme hatasinin etkisini yok edememekte ve kontrol
performansi kotiilesmektedir. Bu nedenle, endiistride kontrol siirecinin devamliligini
saglamak ic¢in, farkli calisma noktalar1 ve ¢alisma senaryolarinin her biri i¢in farkli
kontrolorler tasarlanabilir. Endiistrideki ¢cogu kontrol siireci i¢in, farkli performans
Olciitlerine bagh olarak kontrolor tasarimi 6nemli islemsel yiik icermektedir. Bu
nedenle kontrolorlerin efektif bir bicimde tasarimi, endiistride maliyeti 6nemli l¢iide
diistirmektedir.

Lineer veya uyarlamali olmayan, sabit katsayili kontrolorler bir kez tasarlandiginda,
sadece baslangicta tasarlandigi sistemi kontrol edebilmekte ve genellikle lineer
olmayan sistemler i¢in kabul edilebilir sistem davranis1 saglayamamaktadirlar. Cevre
stirekli degisen dinamikler icerdigi i¢in, bu degisimlere ayak uydurabilecek, esnek,
uyarlamali kontrolor yapilarina ihtiyag bulunmaktadir. Sistemlerin lineer olmayan,
zamanla degisen ve/veya zaman gecikmesi iceren dinamiklerinin iistesinden gelmek
icin, geleneksel kontrolor topolojilerine adaptasyon yetenegi katilarak esneklik
kazandirilabilir. Bu baglamda, i¢/dis faktorlere bagh olarak yapisini veya davranigini
modifiye edebilen kontroldr, uyarlamali kontrolor olarak adlandirilir.

Uyarlamali kontrolorler, model bagimsiz ve model tabanli uyarlamali kontrolorler
olmak iizere iki ana baglik altinda siniflandirilabilirler. Model bagimsiz uyarlamali
kontrolde herhangi bir sistem modeli ve sistem tanilama evresi gerekmemektedir.

Model tabanli uyarlamali kontrolde ise, sistemin gelecekteki durumu Ongoriilerek
sistem modelinin tanilanmas1 gerekmektedir. Amac, sistem dinamiklerinin gelecekteki
davramiginmi dikkate alan bir uyarlama kuralina kullanarak kontrolor parametrelerini
uyarlayarak, sistemin cikis isaretini referans isaretini takip etmeye zorlamaktir.
Dolayisiyla, model tabanli uyarlamali kontrolde, sistem tanilama ve kontrolor tasarimi
bir arada yapilmalidir. Secilen kontroldr yapisina, sistem modeline ve uyarlama
kuralina bagh olarak, ¢esitli model tabanli uyarlamali kontrolor yapilar: Onerilebilir.
Sistem dinamiginin hassas bir sekilde kestirilmesi ve kontrolér parametrelerinin
uyarlanmast i¢in modelin dogrulugu ve hassasiyeti biiyiik 6nem arz etmektedir.
Model tabanli kontrolorler genellikle sistem dinamiklerinin iyi bir sekilde temsiline
dayanmaktadir. Bu amagla, giiclii modelleme kapasitelerinden dolayi, yapay sinir
aglart (YSA), uyarlamali sinirsel bulanik c¢ikarim sistemi (UBSCS) ve destek
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vektor regresyon (DVR) gibi akilli modelleme metodlari, lineer olmayan sistemlerin
dinamiklerini tanilamak icin siklikla tercih edilmektedirler.

Ik olarak Vapnik vd. tarafindan 6nerilen DVR yontemi, konveks olmayan birincil
formdaki optimizasyon problemini, konveks ikincil bir forma doniistiiriirerek global
ektremumu garanti ettigi icin, makine Ogrenmesi alaninda en etkili regresyon
tekniklerinden biridir.  YSA ve UBSCS, konveks olmayan amag¢ fonksiyonlarin
optimize ettiklerinden lokal minimuma takilma riskine sahiptirler, dolayistyla DVR
tabanli kontrolor yapilari son yillarda siklikla YSA ve UBSCS yerine kullanilmaktadir.

Teknik literatiirde, cesitli DVR tabanli uyarlamali kontrolor yapilari 6nerilmistir. Bu
yapilarinin ortak 6zelligi, DVR’nin sistem dinamigini modellemek veya tiirev tabanl
optimizasyon metodlari ile geleneksel kontroldrlerin parametrelerinin uyarlanmasi i¢in
gereken sistem Jacobian bilgisini kestirmek icin kullanilmasidir.

Bu doktora calismasinda, temel olarak DVR’nin dogrudan dogruya kontrolor veya
parametre kestirici olarak kullanildigi DVR tabanli yeni uyarlama mekanizmalarinin
tasarimi amaclanmistir. Boylece, lineer olmayan sistemlerin kontrolii icin, DVR
tabanli ii¢ tane yeni uyarlamali kontrol mekanizmasi 6nerilmistir. Onerilen yapilar
asagidaki gibi adlandirilmaktadir:

e DVR tabanli uyarlamali NARMA-L?2 kontrolor
e Uyarlamali DVR kontrolor

e DVR tabanh genellestirilmis 6z-uyarlamali regiilator

Ik 6nerilen kontroldr yapisinda, DVR nin giiclii modelleme yetenegi ve NARMA-L2
kontroloriin fonksiyonelligini birlestirilerek, lineer olmayan sistemler icin DVR
tabanli NARMA-L2 kontrolor yapist Onerilmistir. Bu yapida, sistemin Onceden
elde edilmis NARX modelinden yararlanarak NARMA-L2 alt modellerin parame-
trelerinin elde edilmesi ve bu alt modellerden NARMA-L2 kontroloriin tasarimi
amaglanmistir. Sistemin NARX modelinden NARMA modeline geg¢is i¢in doniisiim
parametreleri kullanilmigtir.  DoOniisiimii saglayan parametrelerin optimizasyonu
icin Levenberg-Marquardt optimizasyon algoritmasindan yararlanilmistir. Sistemin
K-adim sonraki davranisi ongoriilerek doniisiim parametreleri optimize edilmistir.
Kontrol sisteminin basarimi, lineer olmayan bioreaktor sistemi iizerinde deger-
lendirilmigtir.  Uyarlama mekanizmasinin dayanikliligi, sistemin ¢ikisina dlgme
giiriiltiisii eklenmesi ve sisteme parametrik belirsizlik katilmasi durumlarinda test
edilmistir.  Onerilen kontroloriin performansi, [5]’de onerilen DVR tabanli PID
kontrolor yapisinin performansiyla karsilastirilmisti.  Sonuglar, Onerilen kontrol
mekanizmasinin, lineer olmayan dinamik sistemleri kontrol etmek icin basarili bir
sekilde uygulanabilecegini gdstermektedir.

Ikinci ©nerilen kontrol yapisinda, DVR, ilk defa dogrudan dogruya kontrolor
olarak kullanilmistir. Kontolor ¢ikisi hakkinda herhangi bir 6n bilgi gerekmeksizin
kontrolor parametrelerinin uyarlanmasimi saglamak igin, referans giris isaretinin
ve sistem ¢ikisinin fonksiyonu olarak tanimlanan "kapali-cevrim marjini" kavrami
Onerilmigtir. Boylece, kontrolor blogundaki DVR’ nin parametreleri, kapali ¢evrim
izleme hatasiyla optimize edilebilmekedir. Kontrol parametrelerinin uyarlanmasinin
kontrol edilecek sistem iizerindeki etkilerinin gozlemleyebilmek igin, ikinci bir
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DVR yapist kullanilmistir. Uyarlama mekanizmasiin kararliligr ayrintili bir sekilde
incelenmigtir. DVR kontroloriin bagarimi, nominal, dlgme giiriiltiisii ve parametrik
belirsizlik durumlari i¢in lineer olmayan siirekli karistirilan reaktér (CSTR) ve lineer
olmayan bioreaktor sistemleri iizerinde, simiilasyonlarla incelenmistir. Buna ek
olarak, DVR kontroloriin ve [5]’de 6nerilen DVR tabanli PID kontroloriin performans
karsilastirmalar1 gerceklestirilmistir. Sonuglar, DVR kontroloriin, diisiik izleme hatas1
elde etmede, 6l¢me giiriiltiisii ve bozucular1 bastirmada bagarili kontrol performansina
sahip oldugunu gostermektedir.

Uciincii olarak onerilen yapida, lineer olmayan sistemler icin, DVR tabanli, uyarlan-
abilecek parametreye sahip herhangi bir kontrolore uygulanabilecek, genellestirilmis
oz-uyarlamali regiilatér yapisi tasarlanmistir.  Onerilen mekanizmanin yeniligi,
kontrolor parametrelerini kestirebilmek icin, DVR’nin ilk defa dogrudan dogruya
parametre kestirici olarak kullanilmasidir. Bu amagla, ikinci 6nerilen mekanizmadaki
"kapal1 cevrim marjini" kavrami, 6z-uyarlamali regiilatorler icin tekrar diizenlenmistir.
Uyarlama mekanizmasi, sistemin davranmisinin degisimini kestirmek i¢in kullanilan
cevrimi¢ci DVR sistem modeli, uyarlanabilir parametreler iceren bir uyarlamali
kontrolor ve ayr1 bir ¢evrim i¢i DVR ile gerceklestirilen parametre kestiriciden
olusmaktadir. Genellestirilmis uyarlamali kontrol yapisinin ve parametre kestiricinin
performans basarimi, kontrolor blogunda ayr1 ayr1 PID ve bulanik PID kontrolorler
kullanilarak, lineer olmayan bioreaktor sistemi iizerinde gerceklestirilmistir. Kon-
troloriin karalilik analizi yapilmis ve kontroloriin bagsarimi [5]’de Onerilen DVR
tabanli PID kontrolor ile karsilastinlmigtir. Kontrolorlerin dayanikliligi, sistemin
nominal kogullarda caligmasi durumunda, sistemin ¢ikisina 6lgme giiriiltiisii eklenmesi
durumunda ve parametrik belirsizlik durumlarinda incelenmigtir. ~ Simiilasyon
sonuglari, onerilen yapinin, 6lcme giiriiltiisii ve parametrik belirsizlik bastirmadaki
etkinligini gostermektedir.
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1. INTRODUCTION

Adaptation is a substantial competency of living organisms which increases the
resistance of species to adverse environmental conditions and provides them to
transfer their genetic information to future generations [6]. The species which cannot
accomplish adaptation are faced with danger of extinction. Adaptation exists almost
in every area of life from the evolution of the species to human relations. Whereas
people who are capable of adaptation to different enviroments are quickly accepted
by the society and are socially successful, the bacteria adapting to the antibiotics
acquire resistance against them. In many engineering fields, a variety of solutions
which converge to an optimal value iteratively can be computed to solve problems
by imitating the adaptation features of living organisms. In control engineering,
robust controller structures which provide persistence of control processes in spite of
changing conditions and disturbances have been proposed inspired by the adaptation
features of biological systems. Once a nonadaptive controller is designed to control
a specific system, it will provide acceptable performance only for that system for a
particular operating condition, but can not provide acceptable system behaviour in all
situations especially for nonlinear systems since the controller has rigid structure due
to its fixed controller parameters [3,7]. Therefore, the necessity for adaptive flexible
controller structures emerges as the environment generally involves continuously
changing dynamics. In order to overcome strong nonlinearities, time-delays and time
varying dynamics of systems, flexibility can be acquired to conventional controller
topologies by introducing adaptation. In this sequel, a controller which can modify its
structure or behaviour depending on internal/external factors is called as an adaptive

controller.

Adaptive controllers can be roughly classified under two main headings: model-free
adaptive controllers and model based adaptive controller. In model-free adaptive
(MFA) control, it is explicit that the adaptive control methodology does not require

any system model and system identification phase [8].
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Figure 1.1 : Block diagram of model based adaptive control systems.

In model based adaptive control, identification of system model is required in order to
interfuse adaptation ability to controller by approximating the future behaviour of the
system . Hence, the system identification and controller design are aggregated [9]. A
block diagram of a model based adaptive control system is illustrated in Figure 1.1.
As depicted in Figure 1.1, in model based adaptive control the aim is to force system
output to track reference signal by updating the controller parameters according to
an adaptation law taking into account the future response of the system dynamics.
Various model based adaptive controllers can be proposed depending on the chosen
controller, system model and adaptation law. The accuracy of the model is crucial to
accurately estimate the system behaviour and obtain proper direction vector to adjust
controller parameters. The model based adaptive controllers are generally based on
good representation of the systems dynamics. For this purpose, owing to their powerful
modeling capacity, intelligent methods such as artificial neural networks (ANN),
adaptive neuro-fuzzy inference systems (ANFIS) and support vector regression (SVR)

have frequently been preferred to identify the dynamics of nonlinear systems.

Support Vector Regression (SVR) , first asserted by Vapnik et al. [10-12], is one
of the most effective regression techniques. The main strength of SVR is that the
non-convex primal form of the optimization problem can be converted to a new dual
convex form in which global extremum is ensured. SVR based controller structures
have been preferred to ANN and ANFIS in recent years since the ANN and ANFIS

system models are only valid locally due to the their non-convex objective functions.
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Various control architectures based on SVR have been proposed in technical literature.
The common feature of these adaptive structures is that SVR is utilized to model
system dynamics or approximate system Jacobian in order to tune the parameters of

the adaptive controllers via derivative based optimization algorithms.

In this PhD thesis, it has constitutively been aimed to design an SVR based novel
adaptation mechanism where SVR is directly utilized as controller or parameter
estimator. Thus, three novel adaptive control mechanisms based on SVR have been

proposed for nonlinear systems. These are:

e Adaptive NARMA-L?2 Controller based on Support Vector Regression
e Adaptive Support Vector Regressor Controller

e Generalized Self-Tuning Regulator based on Support Vector Regression

In the first control architecture [13], the strong modelling capability of SVR and
the functionality of the NARMA-L2 controller structure are merged and a novel
online SVR based NARMA-L2 controller for nonlinear dynamical systems has been
proposed. It has been aimed to acquire the parameters of NARMA-L2 submodels
via the previously obtained NARX model of the system, and then NARMA-L2
controller is designed via the obtained NARMA-L?2 submodels. In order to accomplish
conversion from NARX model to NARMA model, conversion parameters are utilized.
The conversion parameters are optimized via Levenberg-Marquard optimization
algorithm by taking into account K- step ahead future behaviour of the system. The
performance evaluation of the control system has been performed on a nonlinear
bioreactor system. The robustness of the mechanism has been tested for measurement
noise and parametric uncertainty cases. The performance of the proposed controller is
compared with an SVM-based PID controller proposed in [5]. The results indicate that
the proposed mechanism can be succesfully employed to control nonlinear dynamical

systems.

In the second control architecture [3], SVR is directly utilized as a controller
for the first time in technical literature. In order to provide adaptation of the
controller parameters without necessarily any prior information on controller output,

"closed-loop margin” notion which is defined as the margin between reference input
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and system output has been proposed. Thus, the SVR parameters in controller block
are optimized via closed-loop tracking error. A second online SVR is employed
in order to estimate the system dynamics and observe the impacts resulting from
adaptation of the controller parameters on system behaviour to be controlled. The
closed-loop system stability analysis of the adaptation mechanism has thoroughly been
conducted. The performance evaluation of the SVR controller has been examined
by simulations performed on continuously stirred tank reactor (CSTR) and bioreactor
benchmark problems for nominal case and when measurement noise and parametric
uncertainty are added. In addition to this, the performance comparison of the
the controller has been executed with an SVM-based PID controller proposed in
[5]. The results indicate that the online SVR controller has quite succesful control
performance in attaining low tracking error, suppressing measurement noise and

parametric uncertainties.

In the third control architecture [6], a novel generalized self tuning regulator based on
online SVR which can be implemented for any controller with adjustable parameters
has been introduced for nonlinear dynamical systems. The main novelty of the
proposed mechanism is the direct utilization of the SVR as a parameter estimator
for the first time in order to approximate controller parameters. For this purpose,
the closed-loop margin notion proposed for the second control architecture has been
reconfigured for STR’s. The adaptation mechanism is composed of a forward SVR
model of the system which is employed to estimate future dynamical change in system
behaviour, an adaptive controller involving tunable parameters and a parameters
estimator block realized by separate online SVR’s to estimate each tunable controller
parameter. The performance evaluation of the proposed generalized adaptive control
architecture and parameter estimator is assessed on a bioreactor benchmark system
by employing two different controller topologies: Adaptive PID and adaptive fuzzy
PID controllers. The stability analysis of the generalized structure has been conducted
and the tracking performance of both controllers are compared with SVM-based PID
controller proposed in [5]. The robustnesses of the controllers have been examined for
the noiseless case and when measurement noise and parametric uncertainty are added.
The simulation results show the effectiveness of the proposed adjustment mechanism

on measurement noise and parametric uncertainty rejection competencies.



Three journal articles reporting the accomplishments of this thesis have been published
in journals indexed by SCI-Expanded. In chapter 2, 3 and 4, these articles are given.

Hence, the organization of the thesis is as in Figure 1.2.

[ 1. INTRODUCTION j

[ 2. NARMA-L2 CONTROLLER j

1

[ 3. SVR CONTROLLER j

Il

[ 4. SVR-BASED STR j

[ 5. CONCLUSION j

Figure 1.2 : Flow chart of the thesis.

In chapter 2, the paper titled “A Novel Adaptive NARMA-L2 Controller based on
Online Support Vector Regression for Nonlinear Systems” (explaining in detail the
first control architecture given above) which has been published online in Neural

Processing Letters is available.

In chapter 3, the paper titled “An Adaptive Support Vector Regressor Controller for
Nonlinear Systems” (explaining in detail the second control architecture summarized

above) which has been published in Soft Computing is given.

In chapter 4, the paper titled “Generalized Self-Tuning Regulator Based on Online
Support Vector Regression” (explaining in detail the third control architecture given
above) which has been published online in Neural Computing and Applications is

given.

The controller proposed in chapter 2 is structurally different from the controllers given
in chapter 3 and 4. Therefore, chapter 2 can be studied independently from chapter 3
and 4. Since the controllers in chapter 3 and 4 are based on "closed-loop margin", it
is preferred to view chapter 3 and 4 consecutively for better understanding. The thesis

ends with a brief conclusion part in chapter 5.
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2. ANOVEL ADAPTIVE NARMA-L2 CONTROLLER BASED ON ONLINE
SUPPORT VECTOR REGRESSION FOR NONLINEAR SYSTEMS !

2.1 Introduction

The way to survival for living organisms is adaptation to the physical world. Similarly,
continuation of the process in control systems depends on the adaptation skills of
the controllers to internal and external factors affecting the system. In nonlinear
systems, determination of the control input to cope with the nonlinear dynamics of
the system is a challenging task. Therefore, representation of complex systems via
simple models is crucial to design effective controllers. An ingenious model can be the
key to obtain a high performance control method. Nonlinear autoregressive moving
average (NARMA)-L2 controller, introduced by Narendra and Mukhopadhyay [14],
is one of the most effective artificial neural network (ANN) controller architectures
for nonlinear systems. The central idea of this type of controller is to extricate the
control signal from nonlinear dynamics of the system model via Taylor expansion
[15-17]. Thus, a nonlinear model is achieved with seperate control signal term which
is eluded from nonlinear inner dynamics of the system model. The controller is
simply a rearrangement of neural network system model, which is trained offline in
batch form [17, 18]. An important advantage of NARMA-L2 controller is that it does
not require the design of extra network topology or controller training as in model
reference adaptive control (MRAC). NARMA-L2 controller has been successfully
utilized to control various nonlinear systems in technical literature. Majstorovic et
al. [15] designed a NARMA-L2 controller for a two tank system which is derived via
offline NARMA model of the system. Pedro et al. showed a realistic implementation
of NARMA-L2 slip controller for an anti-lock braking system (ABS) [16]. Hagan
et al. compared the performance of various controller structures based on ANNs on

a continuously stirred tank reactor (CSTR), a single link robot arm and a magnetic

IThis chapter is based on the paper "Ucak K. and Giinel G.0O., (2016), A novel adaptive NARMA-L2
controller based on online support vector regression for nonlinear systems, Neural Processing Letters,
doi: 10.1007/s11063-016-9500-7"



levitation system [17, 19]. They have controlled a catalytic CSTR via NARMA-L2
controller. Since NARMA-L2 controller produces an oscillatory control signal,
Pukrittayakamee et al. [18] proposed to use a term which consists of scaled reference
and system output in order to alleviate oscillation and chattering in control signal.
Wahyudi et al. [20] smoothed NARMA-L2 controller to control a single link robot
arm since nonlinearities and parametric uncertainities are exceptionally apparent in a
single link manipulator. As underactuated systems are difficult to control and can be
asymptotically stabilized via continuous static feedback law, Akbarimajd and Kia [21]
utilized NARMA-L2 controller for a two-degree of freedom (DOF) underactuated
planar manipulator. Vesselenyi et al. [22] have achieved to control the position of a
pneumatic actuator via NARMA-L2 controller. The common feature of the works in
literature is utilization of offline training phase to obtain NARMA-L2 model of the
system [14-22].

The controller performance in model based adaptive methods is directly influenced
by modeling inaccuracies. Nonlinear systems can be succesfully modeled via various
intelligent modeling techniques such as ANN [23,24], adaptive neuro fuzzy inference
system (ANFIS) [23-25] and support vector regression (SVR) [26-28]. Since the
network topologies which are trained with backpropogation algorithm (ANN and
ANFIS) may get stuck at local minima resulting from their non-convex objective
function, it is likely that they obtain system model only locally. In order to reduce
modelling inaccuracies and improve controller performance, SVR based identification
and control methods have been popularly applied in recent years due to their non-linear
prediction and generalization competency. Since the objective function in SVR is
convex, the gradient effects which occur in ANN and ANFIS vanish in SVR and global
extremum is ensured. Therefore, SVR-based controller structures [5,29] have recently
been used as leading model based adaptive controllers instead of ANN based approach,

since they yield a unique solution and possess powerful generalization ability [29,30].

Various controller structures based on SVR have been proposed to control nonlinear
systems in literature. These structures can be grouped under four main headings:
adaptive PID controllers, inverse controllers, internal model controllers (IMCs) and

model predictive controllers (MPCs).



Shang et al. [31] utilized online least square SVR based on sliding window in order
to model Jacobian of the system which is required to obtain update rules for PID
parameters via gradient descent. Since the model based on sliding window forgets
the transient dynamics of the system in steady state, Zhao et al. [32] proposed to
alter the size of the sliding window to improve training performance of the model
and also the controller performance which depends on its Jacobian approximation
competency. The kernel functions used in SVR to provide nonlinearity have design
parameters which have direct efficacy on regression performance. Ucak and Oke [29]
considered to tune bandwith parameter of the kernel function simultaneuously with
PID controller parameters via gradient descent method. Yuan et al. [33] proposed
a composite controller structure which consists of feedforward and feedback parts.
The feedforward part is derived using system Jacobian which is estimated by SVR
system model. Conventional PID controller is employed as feedback controller in order
to interfuse robustness to the controller structure against disturbances and estimated
errors, and robustness of the control structure has also been examined. Iplikci [5]
offered a support vector machines (SVM)-based PID controller in which the controller
parameters are adjusted via Levenberg-Marquardt algorithm by approximating K-step
ahead system Jacobian. The controller is formed of five components: classical
incremental PID controller, e-SVR nonlinear autoregressive with exogenous inputs
(NARX) model of the system, line search block, control signal correction block and
controller parameter tuner. The Jacobian matrix utilized in parameter tuner block is
coalescence of correction block which includes K-step ahead system Jacobian and
a gradient vector which involves first order derivative of control signal with respect
to controller parameters. Control signal correction block produces a term which
is added to the computed control signal since the adjusted controller parameters
may not be adequate to compel the system output to track desired reference. The
control signal correction term is derived via Taylor approximation of the control signal
which includes correction term. Golden section method has been employed in line
search block to determine optimum learning rate for the correction term. The main
characteristics of these works is that SVR is utilized to model both the system and
the Jacobian. Unlike previously mentioned studies, Takao et al. [34] used a support
vector classifier (SVC) as a swithing structure in a decision tree framework to assign

suitable controller parameters according to the operating point of the system. The
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whole operating region is splited into small uncertainty ranges via a priori information.
Robust PID controllers for each small range are constructed. Then, a single SVC is
designed for each small uncertainty range to determine whether the current operating
conditions of the system belong to that range or not. By combining all SVCs, a main
decision tree which covers the whole operating range of the system is constituted.
Based on the final decision, the appropriate controller for the current state of the system

is deployed.

The main aim in control theory is to design a controller which identifies the inverse
dynamics of the system to be controlled as closely as possible. For this purpose, inverse
controllers which mimic inverse dynamics of the system can be designed using data
sampled approaches. The main stalemate of inverse controllers is that there may be
no unique inverse controller, moreover, there is no guarantee for the existence of the
system inverse. Liu et al. [35] employed an SVR to identify inverse dynamics of a
nonlinear system and designed an inverse controller based on this model. The control
signal error which is also the approximation error of SVR is compensated via a PID
controller. Wang et al. [36] used an online SVR to design an inverse controller for
a nonlinear system to be controlled. Yuan et al. [37] utilized two SVR structures as
the inverse controller and forward model of the system. The parameters of controller
and system model are optimized online via backpropagation algorithm. The stability
and convergence analysis of the controller and model are given in order to guarantee

convergence and fast learning.

Another model based control technique for nonlinear systems is nonlinear internal
model control (NIMC). NIMC is frequently utilized as a nonlinear control method
owing to its disturbance rejection capabilities [38] and robustness properties [39]. The
drawbacks of NIMC are that its implementation is convenient, it is restricted only for
open-loop stable systems [40] and it is based on the assumption that the system is
reversible. Since the determination of system model is the most significant stage of
the design [38], NIMC performance depends on accurate modelling. For this purpose,
powerful generalization and modeling capacities of SVR have been combined with
IMC in [38,39,41,42]. Zhao et al. [38] employed LS-SVR to avoid complex inverse
controller. Sun and Song [41] suggested an adaptive IMC for nonlinear systems

by combining LS-SVR with sequential minimal optimization (SMO) based pruning
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algorithm. Wang and Yuan [42] derived an approximate inverse control law via Taylor
expansion of NARMA model where SVR is used to approximate system Jacobian and

they also analyzed the stability of the proposed control law.

Model predictive control (MPC) can succesfully be used to handle systems with large
time delay, non-minimum phase properties or unstable dynamics. MPC provides very
robust schemes [43, 44] to control highly nonlinear dynamical systems compared to
PID controllers and can cope with structural changes [44—48]. All kinds of MPC are
based on the same tactics: using the future predictions of the system model, a set of
future control signals is obtained by solving, at each sampling instant, a finite-horizon
open-loop optimal control problem and then the first element of the control sequence
is applied to the system [43,44]. In MPC, it is aimed to update the set of control
signals so that the system will follow the reference signal closely by minimizing an
objective function which includes future approximated tracking errors and estimated
control signals. For this purpose, a direction vector should be determined to update the
control signal vector. This direction vector is commonly composed of first and second
order derivatives of system output with respect to control inputs which are estimated
via intelligent model of the system. Iplikci [43,44], Du and Wang [49] and Shin et
al. [50] deployed SVR based system models in MPC in order to overcome modelling
inaccuracies of highly non-linear systems. The performance of the MPC may devolve
if the model of the controlled system cannot be accurately computed. Iplikci [44] and
Du and Wang [49] proposed to utilize online SVR system model in MPC framework
in order to cope with modelling inaccuracies resulting from disturbances or varying
dynamics. Shin et al. [50] proposed to update the parameters of the previously offline
trained SVR model via gradient descent algorithm to prevent deterioration in SVR

system model.

In this paper, the strong modelling capability of SVR is combined with the
functionality of the NARMA-L2 controller structure to propose a novel online
SVR based NARMA-L2 controller for nonlinear single input single output (SISO)
dynamical systems. The NARMA controller in general consists of two nonlinear
submodels which are independent from current control signal applied to the system.
If ANN is used to estimate these submodels, a subnetwork should be designed for

each of them. The parameters of these subnetworks in NARMA based on ANN can
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be easily adjusted without knowing the exact outputs of the submodels since update
rules for each parameter of the subnetworks can be derived by using backpropagation
algorithm and chain rule. However, estimation techniques based on ANN have a
major drawback, they are likely to get stuck at local minima and the models attained
by ANN will be valid only locally. This is the main rationale behind our choosing
SVR to estimate NARMA-L2 submodels. The primary advantage of SVR compared
to backpropagation based identification methods is that global extremum is assured,
hence the system model prevalent in all regions is obtained precisely. Nevertheless,
if NARMA submodels are estimated by SVR instead of ANNs, there is a major
difficulty. To obtain the optimum mapping function in SVR the input-output training
pairs must be available, however outputs of NARMA submodels are not known a priori,
so estimating NARMA model with SVR is a hard task. In this paper, we overcome this
problem by deriving the NARX model of the system first, and then obtaining NARMA
submodels via NARX model of the system. Thus, it is achieved to design NARMA-L?2
controller using NARMA-L2 model of the system.

The main contribution of the paper is to convert an online SVR model of the system
to an online NARMA-L2 controller, without necessarily any prior information on
submodel outputs. The parameters which are utilized in conversion are optimized
via Levenberg-Marquardt algorithm by considering K-step ahead future behaviour of
the system. The performance of the proposed SVR controller has been evaluated
by simulations carried out on a bioreactor benchmark system. Robustness of the
proposed controller has been examined by adding measurement noise and parametric
uncertainty to the system. The performance of the controller has been compared
with an SVM-based PID controller proposed by Iplikci [5]. The results indicate that
the online SVR NARMA-L?2 controller together with online SVR model attain good

modelling and control performances.

The paper is organized as follows: Section 2.2 describes the basic principles of
NARMA-L2 model and controller. Online €-SVR is summarized in section 2.3.
In section 2.4, the proposed control architecture is explained and the optimization
problem to derive SVR submodels is given. In section 2.5, simulation results and

performance analysis of the controller are given together with an assessment of real
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time applicability. Also, the proposed method is compared with an SVM-based PID

controller. The paper ends with a brief conclusion in Section 2.6.

2.2 NARMA-L2 Model and Controller

NARMA-L2 model represents the dynamics of a nonlinear system exactly in a
neighborhood of the equilibrium state [14]. The output of the NARMA-L2 model

is as follows:
$ NARMA .y = Jn + &nitn 2.1)

where f, = F, (x,) and g, = G,(x,) are two nonlinear functions to be approximated
and X, = [Up—1 - Un—n,,Yn""" yn_ny+1]T stands for the current input feature vector of
the model where n, and n, emblematise the number of the past control inputs and
system outputs included in the feature vector, d indicates the relative degree. F; and

G, denote the submodels computed by some numerical or intelligent estimator.

r-------------‘|

| —+ 9NARMA et
F (. [
— . n() >Oi >
+

|
)
U, G,()
SN !
1
|

Figure 2.1 : NARMA model.
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The control signal u, is succesfully extricated from the nonlinearities in the model
[15,19,51]. The main superiority of this form is that it allows us to solve for the
required control input which forces the system output to track the desired reference
signal [15,51]. As can be seen from (2.1), the next control signal u, is separated
from nonlinear dynamics. Thus, the control signal forcing the system to follow the
desired behaviour can be obtained via f, and g, sub-models. In ANN based NARMA
controllers, design of controller consists of two steps. The first step is to identify the
dynamics of the system to be controlled by training F;(.) and G,(.) submodels. Second
step is to design NARMA controller and approximate u, using F;(.) and G,(.) trained
at the previous step. The structure of the NARMA-L2 model for d = 1 is illustrated in

Figure 2.1. The parameters of submodels F,(.) and G,(.) are optimized to minimize
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Figure 2.2 : NARMA controller.

the error between system and model outputs. After identifying the dynamics of the
system as in model given in Figure 2.1, NARMA-L2 controller can be designed by
substituting reference signal ( 7,11 ) in place of system output ( y,+ ) since the system
output is compelled to follow the reference signal. The control signal produced by the

NARMA-L?2 controller is obtained as follows:

rn+1A_fn (22)
8n

I

Un

where f, = F,(x,) and g, = G,(x,) are estimated outputs of submodels [19, 52, 53].
The block diagram of NARMA-L2 controller is illustrated in Figure 2.2. The
advantage of NARMA-L2 controller is that it is simple to implement and it requires
only two submodels of the system to be controlled without a separate controller
[14, 21, 52]. However, the control input computed by NARMA-L2 controllers is
typically oscillatory and this is a major drawback of this method [19]. Another
weakness is the relatively complicated structure of NARMA-L2 compared to NARX
model since two separate subblocks are used [52]. Also, if the inverse model is locally

unstable or near stability margin the design of NARMA controller is not possible [52].
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2.3 Online - Support Vector Regression

In regression, the aim is to approximate a function from a set of sample data. SVR, first
asserted by Vapnik et al. [10-12], is one of the most effective regression techniques
amongst data sampled modeling methods since it ensures global extremum. Let us

consider a training data set:
T={x,y}", x€XCR" .y, €R (2.3)

where X; is the ith input data and y; is the corresponding output value, N is the size of
the training data and » is the dimension of the input space. The regression function (¥;)
which represents the relationship among training data set in (2.3) can be characterized

via SVR model in (2.4):
yi=wd(x;)+b, i=12,--- N 2.4)

where w is the weight vector of the regressor in feature space F; ®(x;) is the image of

input data in F and b is the bias term [43].

In e-SVR, an optimal regression surface which represents the given training data
as accurately as possible is obtained. The optimal regressor is searched within a
predefined e-tube chacterized with Vapnik’s €-insensitive loss function. The primal
form of the optimization problem is described as follows [1,43]:
. Lo oy "
Jin P = [|w] +Ci_Zl(§i+€,-) 2.5)

with the following constraints constituted via Vapnik’s €-insensitive loss function

yi—wh(x;) —b<e+§

wO(x;)+b—y, <e+&" (2.6)

&5 >0,i=1,2,---N
where P indicates primal objective function, € is the upper value of tolerable error,
&’s and &*’s are the slack variables representing the deviation from € tube [1, 43].
Since the objective function in (2.5) is non-convex with respect to primal variables
(w, b, &, £*) and the training algorithm may get stuck at local minima, it is difficult to
determine the optimal regressor parameters. Therefore, a Lagrangian function which
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enables to convert the optimization problem to a new form where global minima
is guaranteed can be derived via Lagrangian multiplier method. The Lagrangian,
which is the combined version of primal objective function and its constraints, can be

comprised as follows [1,43]:

N
:—||w|rz+cZ&+é‘ )+ LB we(xi) —b—e—&)

i=1 N (27)
+;5;(wq>(x,-)+b—yi—e—§ +) (=m&i—ni &)

l:

—

by inserting non-negative Lagrange multipliers 3, B*, n and n*. First order optimality

conditions for Lagrangian (Lp) are given as

JL,
w =0— w— ,_1Bl (x;) =0 (2.8)
JdL,
b =0— Z = 2.9)
8;% =0— C—-B—1;=0, i=1,2,..N (2.10)
aL * .
aé*—0—>C B—n =0, i=1,2,..N (2.11)

Lagrangian (Lp) function has to satisfy the above optimality conditions at the solution.
If the optimality conditions in (2.8-2.11) are substituted in (2.7), dual form of the

e-SVR optimization problem which is a quadratic problem is attained as follows:

1N N
D=3 ) (Bi—B)B; 1J+82 (Bi+B7) Z BY)  (2.12)
i=1j=1 i=1
subject to
0< igca
0<hi=C (2.13)

N
Y (Bi—B)=0, i=12N

where K;; = ®(x;)T®(x;) is the kernel value which represents the similarity among
the x; and x; training samples. The optimal values of the dual variables f3;, B in
the constructed dual optimization problem formulated in (2.12-2.13) are obtained via
quadratic programming (QP) solvers. The support vectors are the training data with

Lagrange multipliers that have A; = f8; — B # 0 [5,43, 54]. Thus, regression function
16



in (2.4) can be rewritten with respect to the support vectors and the corresponding
Lagrange multipliers as in (2.14):
= Y AK(xi,X)+b, Ai=Bi— B (2.14)
iesv
The optimization problem in (2.12-2.13) is suitable for offline batch learning
algorithms. In online learning, since every new added data changes the structure of the
regression problem consistently, it is required to derive incremental tuning rules for
model parameters by ensuring the Karush-Kuhn-Tucker (KKT) conditions. For this
purpose, a new Lagrangian function which is derived from dual optimization problem

(2.12-2.13) can be formulated as

N
ZZ B] K1J+£Z Bi+ B7) Zyi(ﬁ

E ‘s (2.15)
(6[31 Si*ﬁ Zutc ﬁz +u C B Z Bl"’ﬁ

||M2

Thus, KKT optimality conditions for Lp are obtained in (2.16) via first order necessary

optimality conditions [4,55-58]:

oLp
9 Z B)Kij+€—yi— Z5+Zu,+Z—O
o :N = (2.16)
aﬁ’i Z )Kij+€+yi— Z5*+Zu —z=0
j=1 i=1 i=1

5()2 ()>0 6(*)ﬁi(*)20’”i* (C_ﬁi*):

According to KKT conditions, at most one of the f3; and B should be nonzero and both
are nonnegative [4]. KKT conditions allow the reformulation of SVM for regression by
dividing the whole training data set T into the three main subsets: Error support vectors
(E), support vectors (S) and remaining samples (R) which are classified depending on
their Lagrange and margin values in (2.17) [55].

E={i||M]=C,|n(xi)| = &}

S={i|0<|A| <C,|h(x;)| =€} (2.17)

R={i[|A]=0,[n(x)| <&}
Using the function to be approximated and the SVR, error margin can be defined as

follows:
N
h(xi) = f(xi) —yi= Y, AjKij+b—y; (2.18)
j=1
17
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Figure 2.3 : E,S and R subsets before (a) and after (b) training

Convergence conditions for online SVR algorithm are given in (2.19) depending on

KKT conditions (2.16) and error margin function (2.18)

h(xi) > e, i =—C
h(xi) =¢,-C< A <0
—e<h(xj) <gA=0 (2.19)
h(xj) = —€,0< A <C
h(xi) < —g, A =C
The geometrical interpretation of incremental learning and these three subsets are
visualized in Figure 2.3. In the incremental online SVR algorithm, when a new training
data x. is received, its corresponding A. value is initially set to zero, which is later
updated to AA. [43]. Then, the largest possible change AA. is calculated while at
the same time keeping the system at the equilibrium state with respect to the new
KKT conditions [43]. Depending on AA., the bias and the Lagrange multipliers of
the samples in support set (S) are adjusted. Detailed information related to recursive

algorithm can be achieved via [4,55,59].

2.4 NARMA Controller based on Online SVR

2.4.1 Identification of the NARMA model by SVR

The first step in the proposed control method is to obtain a NARMA model of the
system. Initially, from the available input-output data, a NARX model is easily
computed. In order to design a NARMA-L2 controller, the dynamics of the NARX
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model should be decomposed into a NARMA model. Therefore two separate SVRs
are designed as depicted in Figure 2.4. SVRnarx calculates the NARX model of the
system from the input-output dataset of the system, then SVRyarma-12 decomposes
this model to a NARMA model in order to design a convenient SVRNarMA-12

controller.

@)

T r ------------- } i
Yo —p E —» | YNARX,.,
: S\/RNARX —
=
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L | )
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'
) !
' .
) !
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\\\"l
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: SVR\ARMA-L2 |
|
T | + ] yNARMAn,,l
Yo —»| D —>: y F.() >@' >
L n + :
U, g G, (. '
L ) |
| | |
v |
|

Figure 2.4 : Decomposition of SVRyarx model (a) to SVRyarmAa-12 model (b).

We have used online SVR for modelling so that the model and the controller can be
adapted in accordance with the changing dynamics of the system. Since the parameters
of the model are updated in online manner, the regression functions of submodels
F(.) and G(.) may alter as the number of discrete time steps n proceeds, therefore
F(.) and G(.) are symbolized as F,(.) and G,(.) as given in Figure 2.4. The greatest
difficulty of SVR based modelling is the necessity of input-output data pairs. In ANN
based modeling, the weights related to F;,(.) and G,(.) subnetworks can be tuned
simply using backpropagation algorithm and chain rule, even if the output of F,(.)
and G,(.) are not known exactly. In SVR, input-output data pairs must be available
to find the optimal regression function. Since the outputs of F,(.) and G,(.) are not
known exactly, SVR submodels for F,(.) and G,(.) cannot be designed separately.

Therefore, the focus in this study is to drive model parameters of SVRyarMmA-12 from
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the previously obtained SVRyarx model of a system. To achieve this, firstly a main
SVRnarx model is designed as in Figure 2.4 (a), we call this as the "main model",
then submodels given in Figure 2.4 (b) are decomposed depending on the main model.
In SVRNARMA-12 controller, the aim is to find u,. However as can be seen in (2.2),
at time step n the model parameters of F,(.) and G,(.) are not known. Therefore, the
outputs of these submodels can be approximated depending on the model parameters
obtained at the previous step (n — 1). Hence, the output of the submodels at prediction

phase can be expressed as follows:
f n = F (Xn)

§n = Gp1(Xn)

where the subscript stands for the time index of the state vector and the superscript

(2.20)

is used to indicate whether the system model derived in time step n or n — 1 is used.

nn

More specifically, "-" in (2.20) means that the models computed in the previous time
step n — 1, are evaluated with the current state vector X,, to obtain fn_ and g, . Similarly,
"+"in f; and g indicates that the model obtained in current step (n) has been utilized

together with the current state vector x,, as follows:

Arj = Fu(Xn)
(2.21)
g;i— =Gy (Xn)
In order to compute the control signal (u,), the parameters of F,(.) and Gy(.)

submodels must be obtained. Therefore, the following decomposition step is crucial to

derive these parameters.

Modeling and decomposition step at time step n-1 : Consider the SVRyarx model
of the system depicted in Figure 2.4 (a). Regression function for this model is given
by:
N
FNaRx, = Y BiK(xi, %) + bg (2.22)
i=1

Since this model is not directly usable in feedback linerization, the main model
(SVRnaRX) should be divided to submodels as in Figure 2.4 (b). Let us assume that the

the corresponding regression function for F;,_1(x,_1) and G,—_1(x,_) are as follows:

N
S 2 F1(Xm1) = ) 0K (Xi,X,1) + by
i=1

(2.23)

N
S 1 = Guo1(Xp—1) = Y, OK(Xi,Xy_1) + by
i=1

20



Thus, output of the SVRNarRMA-12 model is obtained as:

INARMA, = Fr—1(Xn—1) + Gy—1 (Xpn—1)ttp—1

N N
=) o4K(X;,Xp_1)+b +[ 0K (X;,Xp_1) +bg |ty
i:Zl i (1 n 1) f ,:Zi i ( iy&n 1) g | Un—1 (224)

N
= Z [(xi + 9,-14,1_1]K(X,~,Xn_1) +by+bgu,_1
i=1

If SVRNaRMA-L2 and SVRnarx models are matched in (2.25) , a relation between
submodels of SVRyarMA-L2 and SVRnarx can be attained as in (2.26).

INARX, = JNARMA,

N N

(2.25)
ZﬁiK(Xi,Xn—l) +bg = Z [Oﬂi+ eiun—l}K(XiaXn—l) +byr+bgup 1

i=1 i=1

Bi = o+ Oup_
(2.26)
blg = bf —+ bgun_l

The following assumption has been proposed to utilize this relation effectively and to

approximate the parameters of the submodels by this approach.

Assumption: Let us assume that the following relations exist between submodels.

o = Wi (.)6;
(2.27)
by =(.)bg
Thus, the following equality is obtained:
i1 (Xn—1) = 11 (.)Gno1(Xa—1) + [p2(.) — 1 (1) ]bg (2.28)

As can be seen from (2.28), the derived SVRnarRMA.L2 model depends only on
Gu—1(x,—1) for the given values of p;(.) and pp(.). Using (2.26) and (2.27), the
bias and the Lagrange multipliers of the SVRNarMmA.L2 submodels F;,_1(x,_1) and

G,—1(X,—1) are obtained with respect to parameters of SVRyarx model as follows:

Bi
0j=——7——, a;=U(.)6;
pi (L) 4 up—y ¢ (2.29)
b )
B
by=————,br=U(.)b
8 ‘u2<.)+un_1 f “2() g

Thus, outputs of the internal dynamics (F,—(X,—1),Gy—1(Xy—1)) required for
controller design can be calculated using main SVRyarx model. The output of the
derived SVRnARMA-1.2 model is:
INARMA, = Fn—1(Xu—1) + Gu—1(Xp—1) -1
= [+ E (2.30)
Xp—1 = [Un—2" " Un—n,—1,Yn—1"" 'ynfny]T
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This assumption is crucial in building the relationship between NARX and NARMA
models and hence making it possible to obtain SVRNarMma-12 model from the main

SVRNARX model.

2.4.2 Controller design

Prediction step, Calculation of u, at time step n: In this section, the control
signal applied to the system is calculated via submodels F,_;(.) and G,_;(.) which
are approximated using the trained SVRyarx model at previous step (n — 1). The
corresponding output of the submodels against current state vector (x,,) are represented

as f,” and g, as given in (2.31).

Xp = [Un—1 " Un-nysYn" " Yn—n,+1]"
Jo = Fi1 (%) 2.31)
8n = Gpo1(xn)

Thus, the control signal (u,) produced by SVRNarRMmA-12 controller can be calculated

as:

2 L (2.32)
8n

by means of the submodels obtained at previous step (F,—1,G,—1). Then, u, is applied
to the system and y,,; is computed. So, input-output data pair can be arranged
for next training phase of main SVRyarx model. Accordingly, SVRyarx model of
the system can be utilized to derive a SVRnarMmA.12 controller law given in (2.32)
without explicitly knowing the outputs of the submodels F(.) and G(.) separately. The
proposed controller is illustrated in Figure 2.5 where y,, 1 is the output of the system,
r,+1 denotes reference signal and u,, is the control signal produced by the controller.
It is anticipated that the tracking performance of the control system against varying
dynamics is going to improve by using the online SVR models. The adaptive structure

of the submodels has an impact on the controller performance.

2.4.3 Adaptive predictive SVRyaARMA-12 controller

The tracking performance of the proposed controller depends on the parameters
(u1(.),u2(.)) utilized to compute the outputs of submodels. We have employed a

predictive structure which takes into account the K-step ahead future behaviour of the
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system to adjust p;(.) and pp(.) parameters effectively. The optimization technique

proposed by Iplikci for SVM-based PID controller [S] has been utilized to optimize

w1 (.) and uy(.) parameters. The objective function given in (2.33) is optimized via

Levenberg-Marquardt algorithm to tune p;(.) and us(.).

Z n+k+ A

— Uy

1

(2.33)

where €, = 1,k — Yotk The parameters can be adjusted using Levenberg-Marquardt

algorithm as follows:

where

and e = [é,1]
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illustrated in Figure 2.6.
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Figure 2.5 : SVRnarMA-12 controller based on online SVR.
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The adaptation mechanism for the controller is
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Figure 2.6 : Adaptive SVRNarMA-12 controller based on online SVR.

If the current state vector and jth support vector are ¢, =

T _ T :
[thn—1" " tn—ny,Yn " Yn-ny+1]" and Xj = [xj1 - Xju,, Xjn,+1" " Xjn,+n,] respectively,

K-step ahead future behaviour of the system can be approximated as
Itk = fu(Cnik) + &n(Crii)tn

~ [ A ~ T
cn+k: un-.-un yn—l.'.un—.—k—nuj Xn+k.-.yn+1 yn.-.yn_._k_ny] (2.36)

—_— —
k ny—k k—1 ny*‘*l*k
where
énik) = _ —dnikj
fn(CrH—k)— Z (XjK(dn+k,j)+bf— Z afexl’(?)‘f’bf
jeSvV =% (o)
J (2.37)
C —dn+k,j
gn(Ensk) = Z 0K (dnik.) +bg = Z 6jexp( 2n 2/1')+bg
jeSv jeSV (o)

dp+ i j is defined as the Euclidean distance between the state vector at time step (n +

k)th and jth support vector x; as:

ik =) (enin—%)" (€nri—%) = \/Duj o+ Dyy = VAns (238)

where

min(k,ny)
2
DUn+k = Z (u” _xj7i>
i=1

Ty

+ Z (un—O—min(k,nu)—i - X_/'7i)25(l’lu - k)
i=min(k,ny,)+1

(2.39)
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min(k—1,ny)
DY,,H( = Z ()A’rH-k—i _xj,nu—i-i)2
i=1 "
+ Z (yn+min(k—l,ny)+1—i —Xj,nu+i)25(”y +1—k)
i=min(k—1,n,)+1

and O(.) is unit step function. The system Jacobian is given as

Inik  Afu(Cnir) Odnsk n dgn(Catr) Odni,j

a 2.40
9un 8dn+k7j aun 8dn+k,j aun Uy + 8n (cn+k) ( )

where
0 fu(Crik) —1 n+k,j
Oy s ~ 262 ,zs‘.vajexp( 262 )
’ /e (2.41)
agn(cn—l—k) _ —1 Z G'exp(_dn+k’j)
ddnirj  20% 55 / 202
and
8un 8An+k 8DUM 8un aDyn+k 8un
adn_i_kJ . 1 4 1
aAn—i—k 2\/ Aptk 2dn+k,j
Ak dAuqx 1
= (2.42)

aDUn+k N aDYn+k
aDU,, min(k,ny)
e

n(k—Lmy) OFn ki .
—_mik Z 2(Pntk—i = Xjmy+i) yg:;k l5(k_’)

2.4.4 Adaptive predictive SVRyarMA-12 controller with adaptive filter

As mentioned in section 2.2, NARMA-L2 controller generally produces a control
signal with more oscillation and chattering compared to other controllers such as
MRAC, MPC etc. [19]. Since the oscillatory control input contains high frequency
components, the unmodeled high frequency dynamics of the system can be excited. In
order to reduce chattering and oscillation, the control signal can be filtered [19]. The

general form of the filter is given as:

m

(2.43)

dnu -
_ us, _ Zm:O qm,<
H(z)=-"= dy —k
where v, k € {1,---,dg4.} and g, m € {0,1,--- ,dy,} are "feed-backward" and

"feed-forward" coefficients of the filter, and d4. and d,, indicate the degree of the
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"feed-backward" (denominator) and "feed-forward" (numerator) parts of the filter

respectively. The adaptation mechanism for the controller is illustrated in Figure 2.7.
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Figure 2.7 : Adaptive SVRNarMA-12 controller based on online SVR with adaptive

filter.
The filtered control signal is computed as
dde o
uf, = — Z ViU i + Z qm,Uc, (244)
k=1 m=0

The tracking performance of the proposed controller depends on the parameters
(u;(.),j €{1,2}) used to compute output of submodels as well as the filter parameters
(gm-vi)- A predictive structure which takes into account the K-step ahead future
behaviour of system has been proposed to adjust both u;(.),j € {1,2}, w, k €
{1,---,d4.} and g, m € {0, 1,--- dy,} parameters effectively. The objective function
given in (2.33) is optimized via Levenberg-Marquardt algorithm to tune parameters.

The adjustable parameters can be adapted using Levenberg-Marquardt algorithm [56]

as follows: ~ _
U1,y M1,
w,.... M2,
90,0 490,14
. E _ 1
= +[JTT+nI] " J"e (2.45)
qdﬂunew qd"“old
v 1 new 4 1 old
—vddfnew = _vdd%[d _
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where

[ denti denii deni deny deny deny )
Iy I dqo G vy Iva,,
J= denik denik denik denik denik denik
Iy I dq0 G vy vg,,
dJ \/XAM o 0 \/IAufn 0 \/?TAufn J \/XAM o 0 \/IAufn J \/IAM‘ n
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ande= [, &1k VAAu fn]T. The Jacobian matrix J,, is derived via SVRNARMA-L2
model of the system as given in (2.40-2.42). An adaptive first order filter is adequate
to successfully filter high frequency components and expeditiously force the system
to track the reference signal for the proposed controller mechanism. Therefore, a first
order adaptive low pass filter with an adjustable parameter is deployed to filter high
frequency components of the control input as given by:

ur, q0
H = = n
(2) ueg, 1+(1—gqo,)z7!

(2.47)

where 1 —¢qo , qo are "feed-backward" and "feed-forward" coefficients of the filter
respectively. The adjustable parameters can be adapted using Levenberg-Marquardt

algorithm [56] as follows:

H Lnew fu“lold 1
Wy | = | Moy | +[JTT+1I] " JTe (2.48)
quew qoold
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2.4.5 Control procedure

The control procedure for proposed SVRnarMmA-12 controller is as follows:
Step 1: Initialize controller, filter and model parameters.
-Controller parameters: pj,j € {1,2}

-Filter parameters: g,,,m € {0,1--- ,dp} , vi,k € {1---,dg.}
-SVRNaRrx model parameters: f = b[; =0,C=1000,e =103
Step 2: Train SVRnyarx model using (us, ,,y,) data pair

-Set index to n.

-Constitute X, 1 = [Up2 " Un—p,—1Yn—1"""Yn—n,]

-Predict §,, via SVRnyarx model

-Calculate e,,, =y, — I

If ey, | > €

Train system model where e,,, = y, — ¥

else

Continue with system model parameters obtained at previous step

Step 3: Convert SVRyarx model to SVRyarMA-12 model
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-Compute parameters of F,_1 (¢&,by) and G, (0,b,) via parameters of SVRnarx
(B,bp) as in (2.29)

-Constitute X, = [ty—1*** Un—p,Yn " Yn—ny+1]

-Compute f,” and g, via F,_{(.) and G,_1(.)

Step 4: Calculate the control input produced by SVRyarmA-12 controller (u,)
-Calculate the control signal (u.,) using the predictions of the submodels and control
law in (2.32).

Step S: Filter the high frequency components of control signal (uf,)

- Compute the filtered control signal via (2.44)

Step 6: Apply the filtered control signal uy, to the system to compute y,4 1

- Training data pair of SVRyarx model for the next step is obtained (uy, , y,+1)

Step 7: Calculate the Jacobian

-Apply us, K-times to SVRyarx model in order to constitute Jacobian matrix in (2.46
or 2.49)

Step 8: Learning step for controller and filter

-Update Controller parameters (u;,j € {1,2}) and filter parameters (gn,m €
{0,1-++ .dpy} , vik € {1--- ,dy.}) using (2.45 or 2.48)

Step 9: Increment n = n+ 1 and go to step 2.

2.5 Simulation Results

2.5.1 The bioreactor system

The performance of the proposed SVRnarMA-12 controller is examined on a bioreactor
system . Bioreactor is a tank containing water and cells (e.g., yeast or bacteria ) which
consume nutrients (substrate) and produce product (both desired and undesired) and
more cells [60]. Since the uncontrolled equations of this system are highly nonlinear
and exhibit limit cycles [60], it is a very difficult system to control and it has frequently
been employed as a nonlinear benchmark problem to examine the performances of
proposed adaptive controllers [5,43,61,62]. The differential equations describing the
cell concentration [c; ()] and amount of nutrients [c,(¢)] are given as follows:

é1(0) = —er(Oule) + 1 (1)1~ x(0))e 3 2.50)
200 = S0 14 B() .
¢ (t) = —ca(t)u(t) +c1(1)(1 = ca(t))e @ e
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where c¢(t) is the controlled output of the system (y(¢) = c;(¢)), u(t) is the flow
rate as the control signal, y(¢) is nutrient inhibition parameter, (¢) is grow rate
parameter [5, 43, 60, 62]. In the simulations, the max-min limitations for the
magnitude of the control signal are given as u,;, = 0 and u,,,x = 2; and duration
of control signal is choosen as Ty, = Tnax = 0.5s. Since we have assumed that
the dynamics of the system is not known, online SVRNarx has been utilized to
identify the unknown dynamics using the input-output data pairs. Then an equivalent
SVRNaARMA-12 model is obtained via proposed method given in (2.25-2.29,2.34). Thus,
SVRNARMA-L2 submodels can be computed to design the control law given in (2.32).
The input feature vectors for SVRyarx and SVRyarma.12 models are chosen as
1

M = [up—1- Un—n,Yn" Yn—ny+1 where n, = 3 and n, = 3 indicate the number of

the past inputs and outputs, respectively.

2.5.2 SVR design parameters

Identification methods based on e-SVR possess several design parameters which have
direct influence on modeling performance. € which is the most significant parameter
in identification is the maximum permissible modeling error in training phase of
e-SVR. e-SVR cannot accurately capture the dynamics of the system when € is chosen
too large and the controller may induce unacceptable control performance. If it is
chosen too small, identification can result in too many support vectors than required
to model succesfully. Therefore €, the maximum tolerable error for system model,
must be chosen so that an acceptable control quality [5] is obtained while the number
of support vector for SVRyarx model is kept at a reasonable level. Accordingly,
maximum tolerable error is assigned as € = 1073. Also, the maximum number of the
support vector is limited to a predefined value to decrease computational load in our
simulations. As can be seen in (2.13), C is the boundary of the parameter search box in
which Lagrange multipliers are searched. Since the control algorithm gets slower as the
number of support vectors increases, C is fixed at a large value (1000) in order to reduce
the number of the the support vectors as low as possible. The mapping of the input
data to feature space and the nonlinearity in SVR are provided via kernel functions,
hence selection of kernel parameters is also crucial in regression performance. In our

—lx=yll
simulations, we utilized an exponential kernel function with K(x,y) = e 20> . The
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value of o effects the separability of the data in feature space. Since the kernel matrix
stores similarities of the input data, very small ¢ maps similar data in input space
to distant locations in feature space, the number of the support vectors for system
model increases to capture the system dynamics. On the other hand, large ¢ values
maps different data in input space to close locations in feature space and results in
loss of the nonlinearity of the kernel that leads to inaccurate identification of system
dynamics. Therefore, the similarities of the data in input space must be reflected in
the feature space as correctly as possible. We have also observed that very small o
values cause fluctuations in control signal and system output since the number of the
support vectors increases to capture the system dynamics. On the other hand, when
o is chosen too large, the nonlinearity of the kernel is withered and the control signal
is too slow, so the system cannot be forced to track reference signal accurately. In
simulations for bioreactor system SVRnarx and SVRyarMA-12 have been designed
with o = 0.75. The closed-loop performance of the system is observed for different
values of prediction horizon (K) and penalty parameter (A) using the performance

criteria in (2.51) and the optimal values are determined with the grid search algorithm.

1 o0
Jcomp = = Z [rn—i-l _yn—H]z +A[un = ”n—l]z (2.51)

n=1

0.4
0.3
comp

0.2

0.1

0.05

Figure 2.8 : Tracking performance surface with respect to penalty term (A) and
prediction horizon (K) for bioreactor.

As can be seen from Figure 2.8, as A increases, the fluctuation of control signal
is restricted, therefore, the tracking performance deteriorates. The performance is

positively affected as K increases. Thus, the values of A and K for bioreactor are
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determined as K =9, A = 0.005, Jeomp,,;,, = 0-013235 via the minimum of (2.51) given

in Figure 2.8.

2.5.3 Simulation results

The tracking performance of controller for the case when no noise is applied to the
system and all parameters are fully known is depicted in Figure 2.9. The controller

and filter parameters are illustrated in Figure 2.10.

In order to assess the performance of the controller with respect to measurement
noise, 30 dB measurement noise is added to the output of the system. The tracking
performance is illustrated in Figure 2.11. Adaptation of the controller and filter

parameters are given in Figure 2.12.

The robustness of the controller is inspected in terms of parametric uncertainty, y(¢) is
considered as the time-varying system parameter, where its nominal value is Y0, (f) =
0.48. The value of y(r) is allowed to slowly alter in neighborhood of its nominal
value as y(r) = 0.48 +0.06sin(0.0127¢). It can be interpreted from Figure 2.13 that
the controller can succesfully manage to reject the uncertainty in system parameters.
Controller and filter parameters are illustrated in Figure 2.14. The maximum number
of the support vectors are limited to 10, 25 and 35 for noiseless, noisy, and parametric

uncertainty cases, respectively.

2.5.4 Comparison of the results with SVM-based PID controller

A performance comparison of SVRnyarMA.12 controller proposed in this paper and
the SVM-based PID controller implemented by Iplikci [5] has been carried out for
cases with no noise, with measurement noise added to the system and with parametric
uncertainty. The tuning mechanism described in [5] adjusts the parameters of a
PID controller via Levenberg-Marquardt algorithm by using the approximated K-step
ahead future system behaviour. The controller consists of five components: classical
incremental PID controller, SVRyarx model of the system, line search block, control
signal correction block and controller parameter tuner. The Jacobian matrix utilized in
parameter tuner block is coalescence of correction block which includes K-step ahead
system Jacobian and a gradient vector which involves first order derivative of control

signal with respect to controller parameters. K-step ahead future Jacobian of the
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Figure 2.9 : System output (a), control signal (b), and number of support vectors (c)

with adaptive filter for the case with no noise or parametric uncertainty.
system is approximated via SVRyarx model of the system. Control signal correction
block produces a correction term for the control signal since the adjusted controller
parameters may not be adequate to force the system output to track the desired
reference. The control signal correction term is derived via Taylor approximation of
the control signal term which includes correction term. Golden section method has
been employed in line search block to determine optimum learning rate for correction
term. The simulation results for the SVRnarmA-12 controller proposed in this paper
are compared with results obtained for the structure given in [5]. Same prediction
horizon (K) and penalty term (A ) have been employed in both SVRNarMA-L2 controller
and SVM-based PID controller for comparison. The tracking performances of the
controllers for cases with no noise, with measurement noise and with parametric
uncertainty are illustrated in Figures 2.15-2.17 for bioreactor system, respectively.
Comparisons of the performance index given by (2.51) for tracking performance
of both controllers are illustrated in Figure 2.18 which shows that SVRNxarMmA-12

controller has better tracking performance than SVM-based PID controller for all
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Figure 2.10 : Adaptive controller (a,b) and filter parameters (c) for the case with no
noise or parametric uncertainty.
cases except the case with parametric uncertainty. The applicability of the proposed
controller in real time is as significant as its tracking performance. For this purpose,
computation times of each operation in the control algorithm have been registered
for each case during every sampling period and the average response times of the
operations have been listed in Table 2.1 for all conditions. In our simulations, a PC
with 2.2 GHz core i7 CPU and 8 GB RAM has been operated for the implementation
of the control algorithm without optimizing codes. As can be seen from the Table
2.1, the average response times of the controller accrete for measurement noise and
parametric uncertainty cases since the controller struggles to tolerate the uncertainty
in the system. In simulations, the sampling time is chosen as 100 ms and the total
average response times of the proposed controller are less than 50 ms as given in
Table 2.1. Consequently, it can be expressed that SVRyarmA-1L2 controller can be
deployed in real-time applications conveniently. Moreover, total response times can be

minimised and the controller can be easily employed by implementing the algorithm on
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Figure 2.11 : System output (a), control signal (b), and number of support vectors (c)
with adaptive filter for the case with measurement noise.

a lower level programming environment such as C/C++ utilizing effective hardwares

(eg. FPGA) in real time application.

Table 2.1 : Computation times(in ms).

Bioreactor
Operations Noiseless  Noisy  Uncertainty
SVRNarx Model Training 6.8487 24.42 18.8102
Conversion to SVRyarMma-12 Model 0.93768  0.95917 0.95705
K-step Jacobian 6.9377 8.8229 16.0968
Parameter Tuning (LM) 0.029813 0.031787  0.037375
Miscellaneous Tasks 2.9456 2.9348 3.0298
Total Time 17.6995 37.1686 38.9312

2.6 Conclusion

In this paper, a novel SVRnarMA.12 controller is proposed where online SVR is
used to estimate SVRnNarRMmA-12 submodels. Firstly, a SVRyarx model is constructed
to approximate the system, then the parameters of the SVRnarma.12 model are

derived via SVRyarx model of the system. Consequently, SVRnarRMA.12 controller
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Figure 2.12 : Adaptive controller (a,b) and filter parameters (c) for the case with
measurement noise.
is designed using the SVRyarMmA-12 submodels. The main contribution of the paper
is that it justifies the use of an online SVRyarx model of the system directly to
derive online SVRnarRMmA-1L2 controller as opposed to existing works in technical
literature where SVRnarx models are generally utilized for adjusting the parameters
of the traditional controllers by approximating system Jacobians. Another novelty of
this work is to use SVR to estimate system model in NARMA-L2 controller design
instead of ANN. In technical literature, NARMA-L2 controllers have previously been
designed using ANNSs to approximate system model. However, ANNs are trained with
backpropagation algorithm and have the drawback that they may get stuck at local
minima which will lead to models valid only locally. The main strength of SVR in
modelling is that it minimizes a convex goal function and achieves global minimum.
The performance of the proposed controller is evaluated by simulations done on a
bioreactor benchmark system. Additionally, the success of the controller is compared
with an SVM-based PID controller. The robustness of the controller against system
parameter uncertainty and measurement noise have also been examined. The results

indicate that the proposed controller is quite succesful in attaining low tracking error,
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Figure 2.13 : System output (a), control signal (b), uncertain system parameter (c),
and number of support vectors (d) with adaptive filter for the case with
parametric uncertainty.

suppressing measurement noise and parametric uncertainties. In future works, it is

planned to extend the derivation of SVRnarmA-12 model via SVRyarx to develop

new SVR type adaptive controller design methods.
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Figure 2.14 : Adaptive controller (a,b) and filter parameters (c) for the case with
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Figure 2.15 : Tracking performance of SVRNarmA-12 controller (a) and SVM-based
PID controller (b) for the case with no noise or parametric uncertainty.
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Figure 2.16 : Tracking performance of SVRxarmAa-12 controller (a) and SVM-based
PID controller (b) for the case with measurement noise.
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Figure 2.17 : Tracking performance of SVRnarma-12 controller (a) and SVM-based
PID controller (b) for the case with parametric uncertainty (c).
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3. AN ADAPTIVE SUPPORT VECTOR REGRESSOR CONTROLLER FOR
NONLINEAR SYSTEMS 2

3.1 Introduction

Altering a behaviour to comply with new circumstances is called "adaptation" in
everyday language [63]. Adaptive controller is a type of controller which can
modify its behaviour depending on system characteristics and external factors such
as disturbance and noise [63]. It is obvious that controllers with fixed parameters
cannot provide acceptable system behaviour in all situations [7]. Therefore, acquiring
some knowledge about how the system will respond when it is manipulated in various
ways is a vital step in controller design [52]. Since coping with strong nonlinearities
and time varying dynamics is a hard task in nonlinear systems, numerous control
techniques have been proposed to solve these problems. In order to assure good
control performance, adaptation of the controller parameters to deal with the varying
and nonlinear dynamics of the system can be necessary. To be able to adapt the
controller to the changing dynamics of the system, firstly the system dynamics must
be identified. When the dynamics of the system is known, its future behaviour can
also be predicted and the parameters of the controller can be adjusted accordingly.
Intelligent methods such as artificial neural networks (ANN), adaptive neuro-fuzzy
inference systems (ANFIS) and support vector regressors (SVR) can be used to identify
the dynamics and to obtain the future behaviour of a system. Intelligent methods can
be employed not only to model the system dynamics, but also to design a controller in

closed loop systems.

Although complicated nonlinear systems can be controlled succesfully using
intelligent methods, the performance of the controller is directly related to the
modelling performance. Since ANN and ANFIS have non-convex objective functions,

when they are used in modelling the solution may get stuck at local minima and

2This chapter is based on the paper "Ugak K. and Giinel G.0., (2016), An adaptive support vector
regressor controller for nonlinear systems, Soft Computing, Vol.: 20, Issue: 7, Page: 2531-2556"
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the obtained model of the system is valid only locally. The controller performance
in model based methods is highly influenced by modelling inaccuracies. In order
to reduce modelling inaccuracies and improve controller performance, SVR based
identification methods have popularly been applied in recent years due to their
non-linear prediction ability and generalization performance. The main strength of
SVR is that it uses a convex objective function and thus ensures the global solution.
Models based on SVR have commonly been utilized in model based controller
parameter tuning methods [5, 29], instead of ANN approach, since it yields a unique
solution [29, 30] and offers powerful generalization ability with very few training
data. In technical literature, there exist various controller structures based on SVR
modelling. These structures can be examined under four main headings: PID control,

inverse control, internal model control (IMC) and model predictive control (MPC).

Shang et al. [31] proposed to adjust the parameters of a PID controller via gradient
descent by approximating system Jacobian using online least square support vector
regression (OLSSVR) based on sliding window. The control performance depends
on the modelling performance which is directly affected by the size of the sliding
window. The main disadvantage of sliding window-based online learning is that
the intelligent model forgets the transient dynamics of the system in steady state.
Zhao et al. [32] proposed to increase or decrease the size of the sliding window to
prevent overfitting or underfitting. In the case where the modelling performance is
worse than the given performance interval, the kernel machine is not adequate to
learn the data, so the size of the sliding window should be increased. If the size of
the sliding window is larger than the optimum value the obtained model will be too
complex than required and there may be overfitting. The regression performance of
an SVR depends on the chosen kernel function which is generally parametric and the
numerical values of these parameters are important in determining the location of the
features mapped onto the feature space, however there is no theoretical method to
determine them numerically. Because of this, the selection of the kernel function
and the numerical values of its parameters are very crucial in terms of modelling
and control performance. For this purpose, Ucak and Oke [29] proposed to tune
kernel parameters simultaneuously with PID controller parameters via gradient descent

method to improve modelling and control performance of OLSSVR . Yuan et al.
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[33] introduced a composite feedforward-feedback controller where the feedforward
controller is derived based on approximation model method using SVR. NARMA
model of the system has been employed to design feedforward controller to make use
of advantages of approximate model method and conventional PID has been utilized
as feedback controller in order to assure robust tracking properties. Robustness of
the controller has also been investigated [33]. Iplikci [5] proposed an adaptive PID
controller based on e-SVR where controller parameters are updated depending on
the approximated K-step ahead future system behaviour. The controller consists of
five components, these are: classical PID controller, NARX model of the system, line
search block, control signal correction block and controller parameter tuner. €-SVR
model has been used to approximate the system Jacobian. PID parameters have been
tuned using Levenberg-Marquard algorithm. Jacobian matrix is separated into two
blocks using chain rule, one block is for control signal correction and the other is
for parameter tuning. The updated controller parameters may not be good enough
to force the system output towards the desired trajectory, therefore, control signal
correction block has been employed via Taylor approximation. Optimum step size has
been obtained via golden section method. The common feature of these works is that
SVR is utilized to identify both the dynamics of the system and the system Jacobian.
Takao et al. [34] employed SVM as a classifier in a decision tree structure to select
eligible controller parameters according to the operating point of the system. The wide
range of uncertainty is firstly divided into small ranges using a priori information, then
robust PID controllers are designed for each small range. The switching structure
including the decision information for each small uncertainty range and corresponding
robust PID controller parameters is constructed via an SVM classifier. Depending
on the previously determined scenario and system behaviour, appropriate controller

parameters for the specific operating range are loaded to the controller.

Since the aim in controller design is to realize almost the inverse dynamics of the
controlled system, inverse model of the system can be used to manipulate the system
behaviour. The main drawback using an inverse controller is that there is no guarantee
for the existence of the system inverse or alternatively multiple inverse models of the
controlled system can be obtained. Liu et al. [35] utilized the inverse model of the

system as a controller and the control signal error has been compensated using a PID
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controller. Wang et al. [36] deployed SVR to identify inverse dynamics of the system
as an adaptive inverse controller via online learning algorithm. The parameters of the
inverse controller and forward model of the system are adjusted via an adaptive law
based on backpropagation algorithm by Yuan et al. [37]. To guarantee convergence

and fast learning, adaptive learning rate and convergence theorems are developed [37].

Owing to its disturbance rejection capabilities [38] and robustness properties [39],
nonlinear internal model control (NIMC) has a significant role among nonlinear
control methods. In the implementation of nonlinear internal model control (NIMC),
the determination of a system model constitutes an important stage of the design
[38]. NIMC based on ANNSs and fuzzy inference systems (FIS) were proposed in
literature. Generally, these methods have some drawbacks in modelling: training
speed is slow, generalization is not good, prior knowledge is needed to some degree
[39]. The core idea of ANN IMC is that ANN model and ANN inverse model are
utilized as the internal model and the IMC controller, respectively [38]. Since ANNSs
utilize gradient-based training algorithms such as backpropagation and the solution of
algorithm may get stuck at local minima because of non-convex objective function,
obtaining an inverse model of the nonlinear system via ANNs is notably a difficult
task. Sun and Song [41] proposed an adaptive internal model controller (AIMC) to
control nonlinear systems by combining LSSVR with sequential minimal optimization

(SMO)-based pruning algorithm.

Model predictive control (MPC) techniques provide very robust schemes [43] to
control highly nonlinear dynamic systems with large time delays and high-order
dynamics compared to PID controllers [44-48]. All MPC techniques rely on the same
strategy: based on the future predictions of a model of the system, a set of future control
signals is obtained by solving, at each sampling instant, a finite-horizon open-loop
optimal control problem and then the first element of the control sequence is applied
to the system [43]. In order to optimize the set of the control signals depending on
the future behavior of the system, K-step ahead future system Jacobian information
is approximated via intelligent models. To reduce modelling inaccuracies of highly
non-linear systems, Iplikci [43,44], Du and Wang [49] and Shin et al. [SO0] employed
SVR based system models in MPC. Iplikci [44] utilized offline SVR to model the

dynamics of system. Shin et al. [50] proposed to tune the parameters of the previously
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offline trained SVR model via gradient descent algorithm to prevent the deterioration
in SVR system model. In order to overcome modelling inaccuracies resulting from
disturbances or varying dynamics, Iplikci [43] and Du and Wang [49] deployed online
SVR system model in MPC framework. In MPC, the aim is to adjust the set of control
signals so that the system will follow the reference signal closely. For this purpose, an
update direction for control vector should be determined. In order to obtain appropriate
direction for control vector, first and second order derivatives of system output with
respect to control inputs are estimated via SVR model depending on the optimization

algorithm.

The common feature of the works in technical literature is that SVR has mainly
been employed to approximate the system output or system Jacobian to optimize the
parameters of different controllers using gradient descent or Levenberg-Marquard type
optimization algorithms. SVMs have successfully been used to solve classification and
regression problems owing to their good generalization property and ability to find the
global minimum. However, to the best of our knowledge, they have not been used as
controllers. The main reason for this is the unavailability of the required training data,

namely the control input to be applied to the system, before the course of control.

In this paper, a novel online SVR controller is proposed to control a nonlinear
dynamical system. The main contribution of the paper is that SVR is directly utilized
as a controller for the first time, without necessarily any prior information on controller
output. SVR parameters are tuned by optimizing the margin between reference input
and system output. A second online SVR is used to estimate the model of the
system to be controlled, the estimated system output is used in tuning the controller
parameters. The performance of the proposed SVR controller has been evaluated by
simulations carried out on continuously stirred tank reactor (CSTR) and bioreactor
benchmark problems. Robustness of the proposed controller has been examined by
adding measurement noise and parametric uncertainty to the system. Stability of
the closed-loop system has also been analyzed. Additionally, the performance of
the controller has been compared with an SVM-based PID controller proposed by
Iplikci [S]. The results indicate that the online SVR controller together with online

SVR model attain good modelling and control performances.
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The paper is organized as follows: Section 3.2 describes the basic principles of online
SVR. In section 3.3, the proposed control architecture is explained, the optimization
problem to utilize SVR directly as a controller is constructed, main features of
the problem are given via explicit figures. Training of online SVR parameters
for controller design is summarized and parameter update rules are formulated.
Also, the stability analysis of the closed loop system is presented. In section 3.4,
simulation results and performance analysis of the controller are given together with
an assessment of real time applicability. Also, the proposed method is compared with

an SVM based PID controller. The paper ends with a brief conclusion in section 3.5.

3.2 Online Support Vector Regression

This section beriefly reviews online support vector regression. The basic principles of
support vector regression and online learning method are presented in section 3.2.1 to

section 3.2.4.

3.2.1 An overview of support vector regression

Given a training data set
T={xy};, %E€XCR'y€ER 3.1)

where N is the size of the training data and 7 is the dimension of the input, the data can

be represented using the regression model in (3.2).
yi=<w,®(x;) >+b, i=1.2,...N (3.2)

where ®(x;) is the image of input data in feature space and b is the bias of the regressor.

The optimization problem for regression seeks the optimal regressor within € tube by

optimizing the geometric margin and minimizing the training error. The primal form

of the optimization problem is defined as follows

N
(&i+&) (3.3)

N S
min —|w||“+C
w.,b 2 1

1

subject to
yi— <w,P(x;) >-b<e+§
<w,D(x;) >+b—y; <e+& )
£, 6 >0,i=1,2,---N
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where € is the upper value of tolerable error, £’s and £* ’s are the slack variables
representing the deviation from € tube [1, 43]. The constraints of the problem
are derived using €-insensitive loss function [1, 54, 64]. The key idea in SVMs
is to formulate a Lagrange function from the primal objective function and the
corresponding constraints, by introducing a dual set of variables [1]. By combining
the primal objective function and its constraints by introducing non-negative Lagrange
multipliers B ,f*, n and n* , Lagrangian can be derived as follows [1,43]:
1 N N
L= 5HW||2+CIZI(§,~+§,-*) — Y Bi(e+& —yit <w,®(x;) > +b)

=1 (3.5)

Ph

- iﬁf((‘*" & +yi— <w,(x;) > —b) —
i=1

(nzéz+m*§ )

Due to the fact that the Lagrangian has a saddle point with respect to the primal
and dual variables at the solution, the partial derivatives of L. with respect to primal

variables have to vanish for optimality [1]:

Erid U w—i_Zlﬁ,-<w,CI>(x,-) >=0 (3.6)
dL
5, =0— L(B—=B)=0 3.7)
i=1
ggzO—%C—ﬂ—m=Qi=leN (3.8)
;—éZOH C—p—n/=0,i=12,.N (3.9)

Utilizing optimality conditions (3.6-3.9) in (3.5), dual form of the optimization
problem is formulated in (3.10)-(3.11):
| NN N
min D = ZZ J l,+eZ (B +B) Z -B5)  (3.10)
’ 1 1j= i=1

subject to
(3.11)

where K;; = ®(x;)T®(x;). As can be seen in (3.10)-(3.11), dual form of the problem
has a convex objective function with corresponding linear constraints, so a global
solution is ensured. The optimal solution to the dual problem can be obtained by

finding Lagrange multipliers utilizing a quadratic programming solver.
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The support vectors are the training data related to nonzero Lagrange multipliers [S5,
43,54]. The solution of the regression problem in (3.2) can be approximated by the

support vectors and the corresponding Lagrange multipliers as in (3.12):

=

)/)\(X) = ll'l{(xivx)—|_bvll':Bi_ﬁi* (312)

1

i
Regression and classification problems are generally linearly inseparable in input
space. By using a kernel function, linearly inseparable problems can be mapped to
a high dimensional feature space where nonlinearly distrubuted data are sparse as well
as possibly more separable [65] and linear regression can be succesfully carried out.
The regression performance of an SVR depends on the chosen kernel function which
is generally parametric and the numerical values of these parameters are important for
distribution of the data in the feature space [65, 66]. For instance, if the bandwidth
of a Gaussian kernel is chosen to be very small, similar data in the input space are
mapped to distant locations in feature space and some data significant for the model
may be discarded. This may yield to an SVR with perfect approximation which fully
accords with the given output for each training instance, but with low generalization
capability [67]. If the bandwidth is chosen to be very large, nonlinearity of the
kernel is lost, dissimilar data in the input space can be mapped very close to each
other in the feature space, this leads to a smooth SVR with strong generalization but
with low approximation capability. Therefore, kernel parameters must be selected so
that an optimal compromise between approximation and generalization capabilities is

reached [67].

3.2.2 Basic principles of online support vector regression

In order to realize the main idea behind the online SVR, the definition of "margin"
must be grasped. For this purpose, let us define a margin function h(x;) for the ith

sample x; as:

N
h(xi) = f(xi) —yi = Z%‘Kij-l-b—yi (3.13)
j=1

According to Lagrange multipliers and KKT conditions the training samples can be
seperated into three sets [2,4] called as:

Set E:

Error Support Vectors E = {i| |A;| =C, |h(x;)| > €}
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Figure 3.1 : E, S and R subsets before (a) and after (b) training.

Set S:

Margin Support Vectors S = {i| 0 < |A4;| < C,|h(x;)| =0}

Set R:

Remaining Samples R = {i| |4;| =0, |h(x;)| < €}

When a new sample X, is added, the goal is to let X, enter one of the three sets, while
KKT conditions can still be satisfied automatically [2]. Let the Lagrange multiplier of
the new added data be A = 0, from (3.13), the margin for new added data is obtained
as:

h(xc) = f(Xe) = Ye =

N
)u,‘K(Xi,Xc)—i—b—yc (314)

i=1
Then the value of A., is gradually updated to provide all other samples satisfy KKT
conditions. Depending on the adjustment of Lagrange parameter of the new added
data, the values of the Lagrange multipliers (4;) and margin values of the previously
learned samples (i(x;)) may change. Owing to this, the sets E, S and R of the
previously learned samples may also change. Figure 3.1 illustrates how the sample

in R immigrates to the S class and new learned sample enters into R class.

3.2.3 Derivation of update rules for Lagrange multipliers

In online learning, the new added data changes the structure of the regression problem
and makes it necessary to update the parameters of the previous model by ensuring the
KKT conditions. In order to derive online learning rules, the Lagrange function of the

dual form is required. The Lagrange function for dual formulation can be written as
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follows via (3.10,3.11).

N N N N
Z Zl(ﬁi—ﬁi*)(ﬁj—ﬁf)KijﬂLSZ(ﬁHrﬁi*) - Z)’i(ﬁz
== - - (3.15)

— ) (&Bi+67B;) Z”lc Bi) +ui (C—B) ZZ (Bi+B7)

~

KKT optimality conditions are obtained in (3.16) since the first order derivatives of

Lagrange function with respect to dual variables equal to zero:

B Y (Bi—Bi)Kij+e—yi—Y &+ ui+z=0
= =1 =l

dLp ul * u * u *
B — Y (Bi—B)Kij+e+yi— Y & +) uf —z=0
i j= i=1 i=1

5% >0,u > 0,6 = 0,u? (C - M) =

(3.16)

[y

KKT condition indicates that at most one of the 3; and B should be nonzero and both
are nonnegative [4]. Using the actual output function and SVR output, the following

margin for the ith sample x; can be defined:

h(x;) = f(x;) — Z AiKij+b—y; (3.17)
j=

Thus, the following situations constructing the basics of the convergence and migration
of the data are obtained:
h(xi) > €A = —
h(xj) =¢,-C< A <0
—e<h(x)<eA=0 (3.18)
h(xi) =—€,0< A, <C
h(xi) < —€,Ai=C
If a new vector with influence A. is added without migration of vectors between sets S,

E and R, the variation in Ah(x;) and A, are derived as in (3.19) via (3.13-3.18) [4,55].

N
AR(x;) = KicAde+ Y KijAdj+ Ab (3.19)
j=1

From the dual constraints in (3.11)

N
de+ Y A;=0 (3.20)
j=1
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is obtained. If any vector related to previous or new data is an element of the subset
E or R, the corresponding value of the Lagrange multiplier (A.) equals to "0" or "C".
In particular, if support vectors must remain in S, then Ak(x;) = 0,i € S [55]. Thus, if
the term AA. in equation (3.19) and (3.20) is isolated [55], the variations of Lagrange
multipliers for the data in the support vector set can be easily computed for the obtained

AA. as follows:

N
j=1 jesv

If the indices of the samples in support vector set are defined as in
S ={51,52,53, ..., Sk } (3.22)

(3.21) can be represented in matrix form as

0 1 1 Ab 1
S I I Tl S LT O (3.23)
1 Ksksl Ksksk Alsk Kskc
that is,
Ab
AA{SI
AL = . = BAA. (3.24)
where
B 1 o 1 - 11"
g (P ——e|Fr| @ |! Ko Ko (3.25)
ﬁsk Kskc 1 Ksksl Ksksk

as given in [4]. Thus, for a given AA,, the bias and the Lagrange multipliers of the sam-
ples in the support set can be updated using (3.23-3.25). Employing (3.18-3.19,3.24),

the alternation in margin for non-support samples can be updated as follows:

Ah(xm) Kzu- 1 Klel Tt Klez
Ah(x K 1 K5, -+ K,

(: | i L y= el T T B (3.26)
Ah (XZm ) szc 1 szsl T szsl

where 71,22, ...,2, are the indices of non-support samples, ¥ are margin sensitivities

and ¥ = 0 for samples in S. The alternation of the matrix @ for learning and forgetting
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stages and detailed information related to the recursive algorithm can be attained via
[2,4,55]. The update rules given for support set samples and non-support samples
enable us to adjust all A; and h(x;) via given AA. [4]. The method for finding an

appropriate AA. is presented in the next subsection.

3.2.4 Calculation of AA,

In the incremental online SVR algorithm, when a new training data x, is received,
its corresponding A value is initially set to zero, which is later updated to AA. [43].
Then, the largest possible change AA. is calculated while at the same time keeping the
system at the equilibrium state with respect to the new KKT conditions [43]. AA. is
calculated in two steps. The first step is to determine whether the change AA. should

be positive or negative as follows [4]:

q = sign(AA.) = sign(y. — f(Xc)) = —sign(h(Xc)) (3.27)

After the sign of AA. is specified, in the second step, a bound on AA. imposed by each
sample in the training set is computed [4]. In order to calculate the largest possible AA,,
the following bookkeeping procedure which includes five possible cases is performed.

To simplify exposition, only AA. > 0 is regarded since the case A4, < 0 is similar [4].

For the new sample X, , there are two possible cases:

Case 1: The new sample X, immigrates to set S from set E, so /(x¢) changes from
h(xc) < —€ to h(x¢) = —€ and the algorithm terminates. Check the variation value
(L¢,) of new sample X,

Le, = M (3.28)

Ye

Case 2: x, immigrates to set E from set S if A, increases from A, < Cto A, = C, and
the algorithm terminates. Check the variation value (L.,) of the new sample x, from

set E:

Le, = gC— A (3.29)

For each previously learned sample x; already in set S:

Case 3: x; immigrates to set E from set S if A; changes from 0 < |4;| < C to |A;| =C.
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If A; changes from 0 < |A;| < C to |A;| = 0, x; moves to set R from set S. Check the

variation value (Lf ) of each sample x; in set S to set E or set R:

C—A

Bi

yy
Bi

—Ai (3.30)
Bi

—c-
IfgBi<0and —C< X <0, L = 5

dfgB;i>0and0 < A, < C, LY =

IfgBi>0and —C < A; <0, L =

IfgBi<0and0 < A; <C, L} =

For each previously learned sample x; already in set E:
Case 4: x; is moved from set E to set S when Ah(x;) changes from |A(x;)| > € to

|h(x;)| = €. Check the variation value (LF) of each sample x; in set E to set S:

—h(xi) — sign(q;)€
Yi
For each previously learned sample x; already in set R:

LE —

1

(3.31)

Case 5: x; is moved from set R to set S when A(x;) changes from |A(x;)| < € to

|h(x;)| = €. Check the variation value (LK) of each sample x; in set R to set S:

—h(x;) — sign(qpB;)€
Yi

The bookkeeping procedure is utilized to trace each sample in the training set

IR —

1

(3.32)

against these five cases and determine the allowed AA. for each sample according to
equation (3.24) or (3.26) [4]. AA. is calculated as the minimum absolute value among

all possible AA.. Thus increment of the current data is

Al = g min(|Le, |, |Le, |, L], [LE|, LK) (3.33)

where g = sign(—h(x¢)) and L., , L., are variations of the current sample and L5 =
[L?,i€S],LE =[LF i€ E], LR = [LR i € R] are the variations of the x; data in sets

S, E, R respectively [2].
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3.3 Adaptive Online SVR Controller based on Model Estimated by an Online
SVR

3.3.1 An overview of the proposed control architecture

The aim in adaptive control is to design a flexible controller that changes its parameters
depending on alternation of system behaviour. The proposed adaptive SVR controller

structure is depicted in Figure 3.2.

Y

> System Model

SVRcontrol\er u
- L m
- u= Z ak Kcomrol\er(rl k1 I_I c) ai bcomrol\er SySte

P

Figure 3.2 : The block diagram of the proposed control architecture.

v=

The control methodology is based on estimating the model of the system to be
controlled, predicting the system output with the obtained model, approximating
the tracking error and designing the controller using the tracking error. Since the
parameters of the controller are adjusted via approximated tracking error, system
model is utilized as part of the adjustment mechanism for SVR controller. The tuning
method of adaptive SVR controller based on estimated system model is illustrated in
Figure 3.3. There are two SVR structures in the proposed architecture: SVR ontrolier
computes the control input to be applied to the system and SVRo4e1 Obtains an

estimate of the system model. The online SVRgnirol1er cOmputes a control signal as:

Un = Z K controller (Hc‘7 Hk) + Deontroller (3.34)
k eSvcontroller

where I, is input vector, Keongrolter(;-,) 1S the kernel , oy, ITy and beongrolier are the

parameters of the controller to be tuned at time index n. SVRypde1 1S employed to
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Figure 3.3 : The adaptation mechanisms of SVR onirolter and SVRpodel-

forecast system behaviour and model output is calculated as

Fur1= Y, AjKmodel(Mc, M)+ bodel (3.35)

JESVmodel

where Kpodel 18 the kernel matrix of the system model, M, is current input, and
AiM j and Dpyodel are the parameters of the system model to be adjusted. As
shown in Figure 3.3, while SVRo4e1 parameters are adjusted via modelling error
€myy1> SVRcontroller 18 Optimized via approximated tracking error &, ;. SVRcongroller
and SVR;yo4e1 are both used online to perform learning, prediction and control
consecutively. When the parameters of SVR oneolter are optimized, in order to calculate
and observe the impact of the computed control signal(u«,) on system behaviour and
train SVR ontroller precisely, the computed control signal is applied to SVRoder at
every step of training phase of the controller to predict behaviour of the system (y,1).
Ideally, during the course of online working, it is expected that y,,; will eventually
converge to y,.1. After the training phase for SVR onroller 18 concluded, the control
signal is applied to the system. Thus, the input of system model M. and output y,,; |

can be computed for training phase of system model.

The proposed control algorithm can be summarized as follows (in the algorithm given
below u,, indicates the control signal predicted via controller parameters obtained at
the previous step and u, indicates the control signal estimated via trained controller
parameters at the current step):

Step 1: Initialize SVR ontrorler and SVR04e1 parameters.
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-SVRontrolter(controller) parameters :

0 = beontroller = 0

-SVRh0del (system model) parameters :

Aj = bmodel = 0

Step 2: Prediction step for controller ( u,, )

-Set index to n.

-Constitute feature vector for controller ( Il ). Some possible choices for controller
feature vector are given as follows :

T = [rFaony Y|

. = [P, 1,,D,)"

where P, = e, —e,,_1,l, = e,, D, = €, —2e,,_1 +e,_7 and e, = r,, — y,. A combination
of the reference signal, system output and controller output can also be used as a feature
vector:

Mo = [Py dn, Dy tu - TnenysYn e Ynenys Un—1* Un—n, )"

where n,, ny and n, indicate the number of the past behavior of the features.
-Calculate the control signal(u,, ) produced by the

SVRontroller Via controller parameters trained at the previous step (n-1) via (3.34).
Step 3: Prediction step for system model

-Constitute feature vector for system model (M,).

M. = [”;; o Un—pyyYn 'ynfny]T

-Apply u,, to SVR0de1 and calculate ¥, via (3.35)

Step 4: Learning step for controller

-Calculate ér, ., = rpi1 — Int1

If (&1, | > €closed-loop

-Train controller parameters via &, ; = rpi1 — Yut1

else

-Continue with controller parameters obtained at previous step

Note: In step 4, the closed loop margin is tried to optimized via system model. Thus,
on one hand the margin is optimized, so the tracking error is minimized, on the other
hand the optimal parameters for controller are estimated indirectly.

Step 5: Calculation of control input by trained controller (i)

-Calculate the control signal (u;f) produced by the trained SVR onrotter Via (3.34).

Step 6: Apply u, to system to calculate y, ;1.
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Step 7: Prediction step for system model

-Apply u," to model and calculate $, via (3.35).

Step 8: Learning Step for System Model

-Calculate e, = Yutr1 — Int1

If [em, | > Emodel

-Train system model where ey, ; = yut1 — Ynt1

else

-Continue with system model parameters obtained at previous step

Step 9: Increment n = n+ 1 and go to step 2.

3.3.2 Generalized closed-loop system margin

As mentioned in section 3.2, in order to obtain the optimal parameters which minimize
the estimation error for SVR,04el, the margin function in (3.13) should be minimized,
given training data pairs (M ,y,+1) as depicted in Figure 3.3. The major problem arises
when we want to use SVR as a controller since although the inputs to the SVR ontrolter
are available (Il.), the designer does not know the output of SVR onirollers Namely
the control input to be applied to the system in advance. This is the main problem
that must be solved in order to use SVR as a controller. In this section, in order to
describe training SVR ontroller With unknown outputs, we give two main definitions:
open loop and closed-loop margins which are both crucial to understand how to train

SVRcontroller .

Definition 1 (Open-loop Margin): In this paper, the term "open-loop margin" is used to
denote the regression margin related to SVRo4e1- In modelling, the aim is to minimize
the error ey, = yn+1 — $nr1 given in Figure 3.3, for the feedforward system model.
This is the error between the actual system output and the output of the "learned
model". This model is required to attain a prior knowledge about how the system

will respond to the adjusted parameters of the controller.

Definition 2 (Closed-loop Margin): The controller aims to force the controlled system
to follow the reference signal closely, so it is designed to minimize the tracking error,
which implies that the margin function of the controller depends on tracking error. The
parameters of the controller are adjusted via tracking error. Online SVR,,04e 18 utilized

to approximate system dynamics and compute the tracking error in the next step which

57



in turn is used to tune the parameters of the SVR ontrotters S VRmodel also helps to assess
whether the computed control signal can successfully attain reference tracking or not in
the training phase. Hence both SVR ,o4e1 and SVR onroller are effective in determining
the controller margin. The closed-loop performance of the system is affected by both
the modelling error and the tracking error, hence we define "closed-loop margin",
which is a function of the controller and system model margins. The designer does not
have direct control on the margin of the controller which emerges from the combined
effects of the margin of the closed-loop system and margin of the system model.
Considering SVR oniroller and SVR 041 independently, the margin of each subsystem
is illustrated in Figure 3.4. Controller margin is depicted in Figure 3.4, part (a), and
system model margin is shown in Figure 3.4, part (b) where fcontroller and fimodel denote
the regression functions of controller and system model, respectively. As can be seen
from Figure 3.4, the input of system model estimator (SVR04e1) is M and its output
is y,+1 while the input to the controller (SVR ontrolter) 1S Ile and the output is u,, . In
Figure 3.4, the axes for the input and output of SVR,o4e1 are denominated as M and
Y;ys while the axes for SVR opirolier are named as IT and U. In Figure 3.5, subgraphs
related to SVR0de1 and SVR onirolter depicted in Figure 3.4 are combined to yield a

three dimensional graph.

Closed-loop System Margin

Controller Margin SVR Controller System Model Margin

(a) 5 e | by ———TTT T T T T T T T T
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- | E 7 feonora (M) * Earaie u= Y ak (,n.)+b | E g7 Troaa(M)* £ [
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The horizontal axes, I and M stand for the input and output of SVR oprorier While
M and vertical axis Yy represent the input and output of SVR 041 Since vector M
includes u,, the horizontal regression surface representing SVRontrorier can be depicted
with axes Il and M instead of II and U. It must be noted that in the figures, for
the sake of visualisation, all inputs and outputs are assumed to be one dimensional

vectors. In real applications, the vectors will generally be multi-dimensional, resulting
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in hypersurfaces. The closed loop margin which is the combination of the controller

and system model margins is illustrated in Figure 3.5, in II, M and Y, axes.
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Figure 3.5 : Closed-loop system margin in three dimensions.

When the whole control structure is working online, the margins of the controller
and model are fused, and closed loop margin between closed loop input and output
is intuitively thought as a single margin, as depicted in Figure 3.6. In other words,
the margin function of the system model and controller are embedded in the margin
of the closed-loop system. In Figure 3.6, controller and system model margins are
combined to yield the "closed-loop margin" and this is projected onto Yjy,-IT axes. The
figure illustrates this projection before and after online training. Closed-loop margin is
represented as /iciosed-loop (IT) Which is a function of system model margin (Amodel (M)

and controller margin (hcongrolter (IT)).
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Figure 3.6 : Projected closed loop margin before (a) and after (b) training.
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As mentioned previously, the aim in closed-loop control is to track the reference signal
by minimizing the tracking error ¢, , = rp4+1 — Ys41 via control and optimization
techniques. To make the system output follow the reference signal with minimum
error, closed-loop margin must be optimized. Also, the margin of SVRyogel 1S
optimized independently from the closed loop system margin, since €yode; and
Eclosed-loop» the upper value of tolerable error for SVR;04e1 and the overall closed loop
system (SVRpodel and SVRonirorler combined), respectively are set independently by
the designer. However, the designer cannot set €onirollers the upper value of tolerable
error for SVR onirolters and therefore does not have a direct influence on the margin
of the controller, but controller margin can only be affected indirectly through the
combined actions of SVRo4e] and the controlled closed loop structure. Since the main
goal in our system is to effectively minimize the tracking error, we aim to optimize
primarily the closed loop margin. Of equivalent importance is the optimization of the
SVR0del margin, since for good closed-loop control performance we need a system
model with minimum modelling error. We can deduce that optimization of closed-loop
and SVR,0de1 margins will spontaneously lead to the optimization of SVR onroller
margin so the parameters of SVR onmoller can be obtained indirectly while we try to
minimize tracking error (or equivalently we optimize closed-loop margin). In training
phase of SVRodel, Since ey, = yni1 — Yur1 and system model is to forced to track
Yn+1, input-output data pair is (M¢,y,+1) as shown in Figure 3.3. Therefore, the input
and output axes for regression surface are named as M and Y;y;. On the other hand,
the closed-loop system is forced to track the reference input, r,41, in training phase,
so closed-loop training data pair is (Il¢,r,,+1). Based on this, the input and output axes
for closed-loop system regression surface are termed as IT and R in Figure 3.7 and axis
R is utilized in place of Yy for closed-loop system in Figures 3.7-3.9. If the system
margin on R — M plane is dislocated throughout IT — M plane, the closed-loop margin
will have a prismatical shape where the optimal controller parameters are searched as

in Figure 3.9.
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3.3.3 Online support vector regression for controller design

Consider a training data set for closed-loop system as:
T={Iri Y, IcIICR" ry €R (3.36)

where N is the size of the training data, n is the dimension of the input, II; is input
feature vector of controller and r;;; is the reference signal that system is forced to
track, the closed-loop margin function of the system for the ith sample II; can be

defined as:
hdosed-lOOp(Hi) = Yir1 —Tir1 = fmodel (M) — rit1 (3.37)
where
Yir1 = fmodel (M)
= ) AiKmodet(Mj, M;) + bmodel

j eSvmodel

Ml = [ui...ui_nu,yi...yi_ny]

U= f controller(ni) = Z O‘chontroller(nk» Hi ) + bcontroller

kESVeontroller
I = [riFicn i Yieng, Wio1 - Ui—p,]
In the learning stage of the controller, the system model is fixed and system model

parameters are known, so the closed loop margin can be rewritten as

hclosed—loop(ni) =Vi+1 —Tit1 = fclosed—loop (nz) —Trit1 = _é\er,] (3.38)

with respect to an input-output data pair of closed-loop system (Il;,r;+ ;) where
felosed-loop 18 the approximated output of the closed-loop system. Thus, using (IT;,r;4 1)
data pair and closed-loop margin in (3.38), online learning formulations for controller
can be derived. The basic idea is to change the coefficient o, corresponding to the new
sample Il; in a finite number of discrete steps until it meets the KKT conditions while
ensuring that the existing samples in T continue to satify the KKT conditions at each

step [4]. The following situations contsruct the basics of convergence and migration of
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the closed-loop data.

hclosed-loop(ni ) > 8C1086d-100p7 o = _Cclosed-loop
hclosed-loop (Hl) = &closed-loop _Cclosed-loop <o <0
— &closed-loop < hclosed—loop (Hl) < €closed-loop, &% = 0 (3.39)

hclosed—loop (Hl) = _gclosed—loopao <0 < Cclosed—loop

helosed-loop (ITi) < —Eclosed-1oops & = Celosed-loop
The optimal controller parameters, 04, bcontroller are sought within &josed-100p tube
by minimizing the tracking error using the online learning algorithm given in
section 3.2.3. Equations (3.19-3.26) can be modified for training the closed-loop
system using @, beongrollers Aclosed-loops Eclosed-loops Ii and Keonrotler in place of A, b, h,
€, x; and K. For this purpose, the training data set can be dissociated into E, S and R

subsets using (3.39) as follows:

E = {i[ |04 = Celosed-1o0p |

S = {i] 0 < || < Celosed-toop } (3.40)

R = {i| [oi| = 0}
When a new input vector (Il,) with Lagrange multiplier o is trained without migration
of vectors between sets S, E and R, the relation among (Ac) for current data, the
variation in Afijosed-100p (I1i) and o are derived as in (3.41) via (3.13-3.16,3.37- 3.39)
[4,55].

N

Ahclosed-loop (H1> = KcontrolleriCAac + Z Kcontroller,- jAOC j + Abcontroller (3-41)

j=1
o, must satify the the dual constraints in (3.11) as follows:

N
o+ Y ;=0 (3.42)

j=1

When we isolate the term Ac. in equations (3.41) and (3.42) [55], the variations of
Lagrange multipliers for the data in support vector set S can be calculated for given
Ao, as:

N

Z Kcontroller,- jAOC Jj + Abcontroller = _KcontrollericAac

j=1 (3.43)
Y  Aoj=-Ac,

j €S Vcontroller
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Defining the samples in support vector set S as in
S ={51,52,83, 0,5k} (3.44)

(3.43) can be rearranged in matrix form as

0 1 o 1 Abcontroller 1
1 I<c0ntr011ersls1 cee Kcontrollerslsk AOCSI _ chontr.ollerslc A(xc (345)
i Kcontrollersks1 te Kcontrollersksk A(.xsk Kcontrollerskc
Thus, A is adjusted for computed Ao, as
Abcontroller
Ao,
Ao = : = BAo, (3.46)
Aat,
where
B 1 0 1 a 1 -
B _ le —_® Kcontr'ollerslc 7 0 1 Kcontrollersls1 Tt Kcontrollerslsk
ﬁsk Kcontrollerskc 1 Kcontrollf:rsks1 T Kcontrollerxksk
(3.47)

Depending on Ac,. , only the margin values of the non-support samples transume and

the alternation in margin for non-support samples can be updated via (3.48)

Ahclosed—loop (Hnl )

Ahclosed loo (H )
-l00p\++n3
. = YA;LC
Ahclosed-loop (an )
(3.48)
Kcontrollernlc 1 Kcontrollernl_vl Kcontroller,,l 5
Kcontroller 1 Kcontroller Kcontroller
ny. nzsl n2S
Y= R . , . | B
Kcontrollernzc 1 Kcontrollernzsl o Kcontrollernzsl

where ny,n,...,n, are the indices of non-support samples, ¥ are margin sensitivities
and y = 0O for samples in S. The alternation of the matrix @ for learning and forgetting
stages and detailed information related to the recursive algorithm can be accessed
via [2,4,55]. Up to this point, it is assumed that Ac, is known, and update rules for the
parameters of all data except for current data are derived. As given in section 3.2.4,

the increment for current data (Aq,) is defined as the one with minimum absolute
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value among all possible Ao, as follows [4]:

A0 = g min(|Le, |, |Le,|, |L5|, |LE |, |LR]) (3.49)

where g = sign(—hciosed-loop(Ile)) = sign(e;r, ) and L., , L, are variations of the
current sample and LS = [L},i € S, LF = [LE i € E], LR = [LR,i € R] are the variations

of the I1; data in sets S, E, R, respectively [2].

3.3.4 Stability analysis of the closed-loop system

In order to analyze the stability of the closed-loop system, the regression functions of
the controller and the system model are given in matrix form. In this sequel, the control
signal produced by controller is obtained as

T

Deontroller 1
o K, T
Un = fcontroller(aa Hc) = . . =0 Kcomrouer(nc) (3.50)
Ok Ky

c

The system model which is utilized to approximate system Jacobian is given as

T

Dimodel 1
. A Kim, T
Intt = fmodel (A, Mc) = | S =A Kmosa(Me) (35D
Ak Ky,

For stability analysis the following Lyapunov function is employed

T
o etrnJrl P etrnJrl

Vien, )= —"5—— (3.52)

where P = I (identity matrix). Both the stability of the system and the convergence of

the controller are guaranteed when %_‘z/ < 0[68]. Thus,

8‘/(el‘rn+l) T

T =€, Péy, (3.53)
de;r de;y . .-
where é;, ., = eta’;“ = 3;’:‘ % . Let us consider a small deviation from the

equilibrium point, which corresponds to local stability analysis using equation (3.54).

The incremental change in the control signal is computed as

T T
Aun — [afcontro(lalf;rx(avnr:)} Aa+ [a.fcontr(éllenr(avnc) Anc (354)

C
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where Il, and f.onmoner are the input and the output of the controller respectively.

If (3.54) is substituted in (3.53), the equation (3.53) can be rewritten as

aV(efrn+1) T P aetr'ZH [afcontroller(avnc)]TAa

_elrn-'rl o
ot aeaun . (3.55)
T Tnt1 | 9 feontroller (€, T1¢)
el P | el wTLe) | AT,

with AIl; = ¢, . As can be seen in (3.55), stability depends on the increments in
Lagrange multipliers of the controller (A¢) given in (3.46). The increment for current
data is

Ao = g min(|Le, |, |Le, |, |IL5|, ILE |, |LR)) (3.56)

where g = sign(—hciosed-loop(Ile)) = sign(esr, ;) and L, , L., are variations of the
current sample and L% = [L§,i € 8] , LF = [LF,i € E] , LR = [LF,i € R] are the
variations of the I1; data in sets S, E, R, respectively [2]. As explained in section 3.2.4,
min(|Le, |, |Le, |, |L%|,|L®|,|LR|) term is a positive function of e, , & and C. Thus,

A0, can be written as:
Aa, = g min(|Lc, |, |Lc,|, |LS|, |LE|, |LR|) = sign(esr,,,) Y(ewr,,,0,C)

e Y(e 0;,C)
— M \P(elrn+1 2 al,C) — etrn+1 M
letrn+1| |etrn+1|

= nu“(etrn+1 ’ ai?c) etrn+l

(3.57)

where u (e, ,,,,C) > 0, ¥(es,,,,0;,C) > 0. The update rule for all Lagrange

multipliers in set S is
Ao = ﬁAOCC = ﬂ ‘LL(et,nH,OC,',C) etrn+1 (358)

If equation (3.58) is utilized in (3.55)

IV(e,,)

5 = e (W) e, (359)

where

aetrn T
Q= Pt | Veomgel@ o) | B (e, 0,C)

u, Ja

(3.60)

W = Pael‘rn'*'1 [afcontroller(a,nc)] r
duy, oTl,
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ae r ae r
The term 22241 can be expanded as ~rntl Pnil — _ Ol Thyg,
duy, dyni1 Oduy duy

de;, T
= PP e i,

du,, a
OVn+1 T
=—P ;:f [Kcontrollera-lc)] B ﬂ(etr,H.l 5 OC,‘,C)
n
=C (3.61)
W = Paetrn+1 [afcontroller(aanc)} T .
du, oI,
= —P ayn—H [afcontroller(a7nc):| T
PR oll,
=—Z
where % is approximated via system model (fmodel)- As a result, the following

equation must be satisfied for stability

aVierw,.,)
Tﬂ = eZ;HI (Q+W) etrnJrl S 0

= ¢y, (G+2) e, <0

1yt

(3.62)

Thus, the stability conditions for closed-loop system can be summarized as follows :

e Condition 1: If G > 0 and Z > 0, the closed-loop system is stable
e Condition 2: If G>0and Z <Oand || G ||>|| Z ||, the closed-loop system is stable

e Condition 3: fG<0andZ>O0and| Z|>| G

, the closed-loop system is stable

3.4 Simulation Results

The performance of the online SVRionioller based on system model estimated
by SVRpode1 1 assessed on third order continuously stirred tank reactor (CSTR)
and bioreactor benckmark problems. In order to establish the feature vectors
as inputs to SVRcontroller and SVRyodel, yielding the best performance, different
features have been tested. Reference signal, system output and control signal
are main features of a closed-loop system. New feature vectors to use as inputs
for SVRcontroller and SVRy0de1 can also be generated as functions of these basic
features such as tracking error, derivative of tracking error, etc. For instance, II, =

T

[Fne Fn—npsYn - Yn—nysUn—1"" “Un—p,]" can be chosen as a feature vector for controller

where n,, n, and n, indicate the number of the past features included in the vector.
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While the closed-loop system performance may not be good enough with basic features
(reference, system output, control input), utilizing tracking error or integral of tracking
error as a feature may be imperative for diminutive steady state error. That is,
the chosen states of closed-loop system as features directly affect closed-loop and
controller performances. In our work, NARX model is employed to identify the
dynamics of the systems and M, = [uy -~ ty—p,, Yn - yn,ny]T is chosen as the input
feature vector for SVRodel- The number of the past inputs (n,) and past outputs
(ny), which are the order of NARX model of system, have been selected as 2 for both
systems. Several different input feature vectors have been employed for SVR onirolter
depending on the particular conditions of the closed loop system as explained in detail

in the following subsections.

SVRcontrotler @nd SVR0de1 contain several parameters which have direct influence
on controller performance. Tolerance parameters &josed-loop and Emodel are the
most significant parameters in our control architecture based on €-SVR. If they are
chosen too large, SVR0de1 cannot learn the dynamics of the system accurately and
SVRcontroller may induce unacceptable control performance. If they are chosen too
small, the result will be an increase in the number of support vectors. Therefore,
the maximum tolerable errors for closed-loop system response and system model,
Eclosed-loop aNd Emodel Must be chosen so that an acceptable control quality [5] is
obtained while the number of support vectors for both SVR onirolter and SVR 0461 are
kept at a reasonable level. Accordingly, we have chosen &cjosed-loop = Emodel = 1073
for both systems. As the number of support vectors increases, the control algorithm
gets slower. In order to reduce the number of the support vectors as low as possible,
C is fixed at a large value (1000). Selection of kernel parameters is also crucial in
having good performance. In our simulations, we employed an exponential kernel
function with K(x,y) = e%. We have observed that very small ¢ values cause
fluctuations in control signal and system output since the number of the support vectors
for SVR ontroller and SVR0del increase to capture the system dynamics. On the other
hand, large o values give rise to loss of the nonlinearity of the kernel that leads to
inaccurate identification of system dynamics. In this case, the control signal is too slow
and the system cannot be forced to track reference signal accurately. In simulations for

continuously stirred tank reactor system (CSTR), ¢ =1 is used in both SVR onroller

68



and SVRoqe1. For bioreactor system SVR onerolier and SVRy0de1 have been designed

with o =0.75.

3.4.1 Simulation results for continuously stirred tank reactor system

Continuously stirred tank reactor system (CSTR) is a plant widely used in industry to
produce polymers, pharmaceuticals, and other various chemical products. It is a type
of chemical reactor in which isothermal, liquid-phase, successive multicomponent
chemical reactions can be carried out [69, 70] and the contents are well stirred
and uniform throughout [71]. Alternatively, it is also referred as a vat or backmix

reactor [71,72]. Consider a chemical reaction system given as

A=B—C (3.63)

where the inlet reactants (A,B) are mixed in a vessel with constant volume via an
agitator and return the product C. Two reaction sites occur in the chemical reaction
given in (3.63). First one is among A-B, and second is between B-C. The aim in this
chemical reaction system is to control the concentration of product C by altering the
molar feed rate of reactant B. The dynamics of the third order, highly non-linear, time
varying CSTR system are defined with the following set of differential equations by
Kravaris and Palanki [69] as:

%1(t) = 1 —x1(t) — Dayx1 (t) + Daxx3 (1)

%2 (t) = —x2(t) + Dayx1 (t) — Dasx3(t) — Dazdyx3 (1) + u(t) (3.64)

x3(t) = —x3(t) —|—Da3d2(t)x%(t)
where x(t), x(¢) and x3(¢) are states obtained from the concentrations of reactant A,
middle reactant B and product C , respectively, Da; = 3, Day = 0.5, Daz = 1, u(t) is
the control signal, x3(¢) is the output of the system, d;(¢) is the time-varying parameter
of the system which represents the activity of the reaction, the nominal value of which
isdy, . (t)=11[5,43,60,70]. In the simulations, magnitude of the control signal is
allowed to vary between u,,;, = 0 and u,,,, = 1; and its duration is kept constant at
Tmin = Tmax = 1 s. The sampling period is chosen as 0.1 s. Fourth order Runga Kutta

method has been used in the simulations. Since the control performance depends on the

chosen features, various input feature vectors for controller can be employed according
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to the particulars of the system, whether there is noise, disturbance, parametric

uncertainty or not, etc.

3.4.1.1 Noiseless condition

The proposed control architecture is used to control the CSTR system briefly described
above, and the tracking performance of the controller for a variable step signal, control
signal produced by controller and alternation of the controller parameters are given
in Figures 3.10-3.11. The figures depict that the system tracks the reference signals
accurately. The input feature vectors for SVR onirolier fOr noiseless condition is chosen

as I1, = [rn,yn]T.

@
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0.4
| | | |
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L L L L
0 100 200 300 400 500
Time[sec]

Figure 3.10 : System output (a), control signal (b) for variable step input.

In Figure 3.11, the first Lagrange multiplier and bias of SVR¢onolter and SVRpodel
are illustrated to exemplify the inner learning mechanism of the SVR. As can be seen
from Figure 3.11, the controller parameters and model can adapt themselves and learn
new dynamics when reference signal changes. Number of the support vectors are
also depicted in Figure 3.11 and it is observed that they do not change in certain
times when learning is not required. The tracking performance of the controller for
sinusoidal reference signal, control signal produced by controller and alternation of
controller parameters are given in Figures 3.12-3.13 using the same input features for

the controller and the system model.
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Figure 3.11 : Adaptation of SVR onrol1er parameters (left), SVRyo4e1 parameters
(right).
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Figure 3.12 : System output (a), control signal (b) for sinusoidal input.
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Figure 3.13 : Adaptation of SVR oniroller parameters (left), SVR04e1 parameters
(right).
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3.4.1.2 Measurement noise

In order to evaluate and compare the robustness of SVRconuorler With respect to
measurement noise, the measured output of system is corrupted by an additive zero

mean Gaussian noise with a signal-to-noise ratio (SNR) of 30 dB [5]. SNR is given by

=N

SNR = 10log,o(—%)dB (3.65)

,:QN| Q

where Gyz and Guz are the variances of the measured output of the underlying system
and the additive noise, respectively [5]. The input feature vectors for SVR ontrolter 18

employed as I, = [r,,y,]T .

@
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Figure 3.14 : System output (a), control signal (b) for variable step input.

Figure 3.14 shows the tracking performance and control input for SVR onoler With
Gaussian measurement noise added to the system. The tracking performance of the
closed loop system and alternation of the controller parameters in noisy case are as in

Figures 3.14-3.15.

3.4.1.3 Uncertainty in system parameters

In order to examine the robustness of the controller in terms of parameter uncertainty,

the performance of the controller is examined under a time-varying system parameter.
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Figure 3.15 : Adaptation of SVRoprorer parameters (left), SVR04e1 parameters
(right).
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Figure 3.16 : System output (a), control signal (b), time varying system parameter

(c).

In our system, d(t) is selected as the time varying parameter and is allowed to vary
slowly around its nominal value as d»(t) = 1 + 0.1sin(0.047¢). In simulations, it has
been observed that the controller is not adequate to succesfully manage to reject the

disturbance using I, = [r,,y,]7, for this purpose, new features are considered and
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input feature vector is specified as: I, = [P, - - -Pn,np,ln ooy p; Dy DypyyYn -

Yn—ny,Un—1"* “Up—n,]T where P, = e, —en_1, I, = ey, Dy = e, —2e,_1 +e,_o and
en =TI, —Yyp, and n, = 1,n; = 2,ny = 1,n, = 0,n, = 1. When the control signal in
Figure 3.10 is compared with Figure 3.16, it is observed that the controller succesfully

rejects the uncertainty in system parameter.

3.4.1.4 Closed-loop Lyapunov stability analysis

The Lyapunov stability analysis given in section 3.3.4 is performed for the proposed

control methodology, and the numerical justification is illustrated in Figure 3.17 where

% and V (¢) are depicted for the continuously stirred tank reactor system. Since it

is observed that V(¢) > 0 and % < 0 during the course of control, we can conclude

that the closed-loop system is stable for all cases.

(a) x10° with no noise (a) x10° with measurement noise added
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Figure 3.17 : V(¢) (a) and % (b) for noiseless (left), noisy (right) and with
parametric uncertainty cases (middle).

3.4.2 Simulation results for bioreactor system

The bioreactor system has frequently been used as a benchmark system in nonlinear

control theory to test the effectiveness of developed control methodologies [5, 43, 60,
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62]. A biorector is a tank containing water and cells (e.g., yeast or bacteria) which
consume nutrients (substrate) and produce product (both desired and undesired) and
more cells [60]. This system is difficult to control since the system dynamics are
highly nonlinear and exhibit limit cycles [60]. The differential equations describing
the system are as follows [5,43, 60, 62]:

e1() = —er(u(t) +e1(6)(1 - ealr))e 7 (3.66)
éx(t) = —ca(t)u(t) +ci(r)(1 - CZ(I))eLYZ(E? 1+1ﬁ—(t)ﬁ—(t22(t) |

where Y(¢) is nutrient inhibition parameter and (¢) is grow rate parameter. In the

simulations, magnitude of the control signal is allowed to vary between u,;, = 0 and
Umar = 2 ; and its duration is kept constant at Ty, = Tngr = 0.5s. In this study,
the proposed control architecture is tested by assuming that the dynamics are not
known. Online SVR04e1 has been utilized to identify the unknown dynamics using
the input-output data pairs. Since the control performance depends on the chosen
features, various input feature vectors for controller can be employed according to the
particulars of the system, whether there is noise, disturbance, parameter uncertainty or

not, etc.

3.4.2.1 Noiseless condition

The proposed control architecture is used to control the bioreactor briefly described
above, the tracking performance of the controller for noiseless condition is given
in Figure 3.18. The input feature vector for controller is designated as: II, =
[Po* PanyodnIn—ns D+ - Dinmngs Yn*** Yn—nys =1 Un—n,] " Where Py = ey — en-1,
I, = ey, Dy = e, —2e, 1 +e,-2 and e, = r, — y,, and n, = 0,n; = 2,ny = O0,n, =
0,n, = 1. The system tracks the reference signal accurately. The controller and system

model parameters are illustrated in Figure 3.19.

3.4.2.2 Measurement noise

In order to evaluate and compare the robustness of the controller with respect
to measurement noise, 30 dB measurement noise is added to the system output.
Figure 3.20 shows the tracking performance and control input computed by the
controller when Gaussian measurement noise is added to the system. The input feature

vector for SVR ontroller is chosen as: I, = [P, - - Pa—nyyIn+In—n; Dn - Dp—nyy yn "+
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Figure 3.18 : System output (a), control signal (b) for variable step input.
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Figure 3.19 : Adaptation of SVR onrorier parameters (left), SVR04e1 parameters
(right).
Yn—ny,Un—1"" 'un—nu]T where B, = e, —e,_1, I, = €4, Dy = e, — 2e,1 + €, and
en =1rn—Yyp, and n, = n; =ng = ny = n, = 1. SVR ongoller and SVRyoqe1 parameters

are depicted in Figure 3.21.

3.4.2.3 Uncertainty in system parameters

In order to examine the robustness of the proposed method with respect
to parameter uncertainty, 7Y(f) is considered as the time-varying parameter
of the system, where its nominal value is Y,m(f) = 0.48 and it is al-
lowed to vary slowly in the purlieu of its nominal value as 7y(t) = 0.48 +
0.06sin(0.0087¢). The input feature vector for SVR ongoner 1S settled as: IT, =

T —
[rn"‘rnfnrapn"‘Pnfann"'Infn”yn"‘ynfnwun—l"'unfnu] where P, = ey, — ey-1,
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I, =ey, Dy =e,—2e, 1 +e, > and e, =1, —y,, and n, = 0,n, = n; = n, =
1,n, = 2. Figure 3.22 illustrates the tracking performance of SVR gnirolter and control
signal applied to the system. When the control signal produced for nominal system
parameters in Figure 3.18 and for the time varying parameter situation in Figure 3.22
are compared, it can be observed how the control signal in Figure 3.22 tries to tolerate
the uncertainty of the time varying system parameter. Parameters of SVR onirolter and

SVRoder are depicted in Figure 3.23.

3.4.2.4 Closed-loop Lyapunov stability analysis

The Lyapunov stability analysis given in section 3.3.4 is performed for the proposed
control methodology, and the numerical justification is illustrated in Figure 3.24 where

% and V (¢) are depicted for the bioreactor system. Since it is observed that V (z) > 0
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Figure 3.22 : System output (a), control signal (b), time varying parameter (c).

and aggz) < 0 during the course of control, we can conclude that the closed-loop system

is stable for all cases.

3.4.3 Comparison of the results with adaptive PID based on SVR

The performance of the proposed controller employing SVR gnrorer for tracking
control and SVR04e] for modeling is compared with the SVM-based PID controller
implemented by Iplikci [5] for cases with no noise, with measurement noise added
to the system and with parametric uncertainty. The method described in [5] adjusts
adaptive PID controller parameters depending on the approximated K-step ahead
future system behaviour. The tuning mechanism of the controller has five components:
classical PID controller, NARX model of the system, line search block, control signal
correction block and controller parameter tuner. SVR model of the system is employed
to approximate the K-step ahead future Jacobian of the system. The parameters of the
PID are tuned via Levenberg-Marquard algorithm. Jacobian matrix is dissociated into
two blocks using chain rule. One block is utilized for control signal correction and the

other is for parameter tuning. Control signal correction block which is based on Taylor
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Figure 3.23 : Adaptation of SVR onirol1er parameters (left), SVRyo4e1 parameters
(right).
expansion of the control signal is employed in case the updated controller parameters
are not good enough to force the system output to follow the desired trajectory. Optimal
learning rate for control signal correction block is obtained in line search block via

golden section method.

The simulation results obtained by our control architecture proposed in this paper
are compared with the results attained by the SVM-based PID controller given in
[5]. The tracking performances of the controllers for cases with no noise, with
measurement noise added and with parametric uncertainty, respectively, are depicted

in Figures 3.25-3.27 for CSTR and in Figures 3.28-3.30 for bioreactor system.

It can be deduced from the figures that the proposed SVR oniroller has better tracking
performance than SVM-based PID controller. As the prediction horizon (K) of the PID
controller is incremented, the performance as well as disturbance rejection properties
improve, the best results are obtained when K=5. It is observed that SVR ontroller
reaches the same level of performance with only K=1. The main reason for this is
that SVR ontroller €nsures global minima in all steps while SVM-based PID controller
converges to local minima gradually. Comparisons of tracking performance of both
controllers are illustrated in Figure 3.31 where the following performance index is

utilized:

[es)

Jcomp = Z [rn+1 _yn+1]2 (3.67)

n=1

Figure 3.31 illustrates that SVRiongoner has better tracking performance than
SVM-based PID controller for all cases. Since the applicability of the proposed

mechanism in real time is significant, computation times of each operation in the
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control algorithm have been recorded for each case during every sampling period

and the average response times of the operations have been listed in Table 3.1 for

all conditions. As can be seen from the table, the average total response times of the

proposed controller are less than 50 ms. Since sampling time is chosen as 100 ms in our

simulations, it can be conceived that SVRonrorler can be used in real-time applications.

Moreover, total response times can be minimised by utilizing effective hardwares such

as FPGA or by optimizing codes in real time application. In our simulations, a PC with

2.2 GHz core i7 CPU and 8 GB RAM has been employed to implement the control

algorithm and codes are not optimized.

Table 3.1 : Computation times(in ms) for SVR ontrolter-

CSTR Bioreactor
Operations Noiseless Noisy Disturbance Noiseless  Noisy  Disturbance
SVRcontroller Training  6.65 14.819 16.728 13.731 37.341 25.471
SVRnodel Training 16.979 9.8048 12.265 15.033 3.3563 15.369
Other 3.187  3.0002 2.966 2.881 3.0127 3.312
Total Time 26.816 27.624  31.959 31.674 43.71 44.152
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Figure 3.25 : Tracking performance of SVR onrorter (@) and SVM-based PID
controller (b) with no noise.

3.5 Conclusion

In this paper, a novel control architecture is proposed where two online support vector
regressors are used concurrently to minimize tracking error of a system. SVRqel 18
employed to approximate the system model and predict the output, while SVR ontrolier
computes the control input based on the tracking error of the closed loop system.
SVRontroller parameters are tuned without an explicit knowledge of the control signal
applied to the system, hence in order to clarify the learning mechanism of the
controller, the notions of "open loop" and "closed-loop" margins are introduced and
explained in detail through numerous figures. The main contribution of the paper is that
it justifies the use of an online SVR directly as a controller as opposed to existing works
in technical literature where SVRs are generally utilized for modelling to approximate
system Jacobians. The performance of the proposed controller is evaluated on CSTR
and bioreactor benchmark systems. A thorough stability analysis of the closed-loop
system is also presented. Additionally, the performance of the controller is compared
with an SVM-based PID controller. The robustness of the controller against system
parameter uncertainty and measurement noise have been examined. The results
indicate that the proposed controller is quite succesful in attaining low tracking error,
suppressing measurement noise and parametric uncertainties. In future works, it is
planned to extend the closed-loop margin notion to develop new SVR type adaptive

controller design methods.
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4. GENERALIZED SELF-TUNING REGULATOR BASED ON ONLINE
SUPPORT VECTOR REGRESSION 3

4.1 Introduction

Adaptation is a vital characteristic of living organisms that helps to increase their
resistance to adverse environmental conditions. Every adaptation leads to some loss,
in the form of material, energy or information for the organism [73]. The organism can
be strengthened against adverse conditions as a result of repeated adaptation which is
an accumulation of experiences that it can evaluate to minimize the losses involved
in adaptation [73]. Thus, the organism can manage to learn how to alter its own

characteristics against contingency.

By imitating the adaptation features of biological systems, a variety of solutions can
be developed for problems in many engineering fields. Adaptation, when interpreted
in terms of control theory, helps to analyse and control systems with changing
parameters, model uncertainties or varying operating conditions. An adaptive control
system includes a feedback structure to measure the quantity of adaptation and a
mechanism, preferably incorporating some sort of intelligence, to use this quantitative
information to design a controller. By introducing adaptation to a conventional
controller, it is possible to use it to cope with strong nonlinearities, time delays and
time-varying dynamics of systems. The necessity for adaptive controllers arises since

the environment is continuously changing for many real-world systems [63].

The parameter adaptive control can be examined under three main headings in a
common framework according to Astrom [74]: gain scheduling, model reference

control, and self tuning regulators.

Gain scheduling can be reckoned as a mapping from previously defined scenarios

between system parameters or system operating conditions to controller parameters

3This chapter is based on the paper "Ucak K. and Giinel G.0., (2016), Generalized self-tuning
regulator based on online support vector regression, Neural Computing and Applications, doi:
10.1007/s00521-016-2387-4"
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[63]. In gain scheduling, the wide range of operating conditions of the system is
firstly divided into small ranges via a priori information, and robust/optimal controllers
are designed for each small range. Decision trees or lookup tables are employed so
as to model the relationship between system conditions and controller parameters.
The proper controller parameters most convenient to the situation of the system are

selected.

Model reference adaptive control (MRAC) is applied to compel the closed-loop system
to exhibit the same behaviour as a reference model. The reference model assigns the
transient and steady-state specifications of the closed loop system. The goal of MRAC
is to ensure convergence of the static and dynamic characteristics of the adjustable
system, to the characteristics of the reference model [73]. The desired closed-loop
behavior of the controlled system is specified by a model, error is computed as the
difference between the model and closed-loop outputs, and controller parameters are

obtained to minimize this error [63].

Self-tuning regulators (STR) are among the most convenient adaptive control methods
for nonlinear systems. They are able to adapt controller parameters automatically [75].
This class of regulators are generally comprised of three parts: a model estimator,
a controller and a block in which the controller parameters are determined from the
estimated model parameters [76]. The regulator has two loops called as inner and
outer loops. The inner loop is composed of the system to be controlled and an ordinary
feedback controller [74]. The outer loop comprises a recursive model estimator and a
design calculation to compute controller parameters [74]. For STR, controller design
alternatives are very rich since it is possible to utilize various types of controllers and
parameter estimators, by combining the powerful features of these components, more
flexible and robust adaptive controllers can be successfully achieved. For example, by
combining the nonlinear function approximation ability of artificial neural networks
(ANN) and robustness of PID controllers, PID type ANN controllers can be designed

to effectively control nonlinear systems [77,78].

Model structure selection and its parametrization are significiant issues for closed-loop
control performance in self-tuning regulators [73]. In model based control (MBC)
methodologies, controller performance is influenced by modeling inaccuracies.

Although ANNs and adaptive neuro-fuzzy inference systems (ANFIS) have been
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succesfully employed in the identification and control of numerous nonlinear systems
[19, 23, 25,79, 80], their functionalities are impressed by local minimas resulting
from non-convex objective functions. Since support vector machines (SVM) possess
convex objective functions, they ensure global minimum and have better generalization
capability with very few trainining data [1, 54, 81] compared to ANN and ANFIS.
Hence SVM-based identification and control techniques have recently been utilized in

adaptive control techniques instead of ANN and ANFIS [2,5,28,31].

In technical literature, there are various controller structures related to STR design
based on soft computing methods. Akhyar and Omatu [77] derived a self-tuning PID
controller using an ANN parameter estimator to control linear and nonlinear systems.
Wang et al. proposed an ANN parameter tuner to approximate the parameters of a
conventional PI controller depending on various operating conditions since unmodeled
system dynamics and disturbances hamper to determine suitable scheduling points in
gain scheduling [78]. Ponce et al. [82] designed a self-tuning control system based
on an ANN controller trained by tracking error instead of net output error to control
nonlinear systems. In this approach, it is only required to know the sign of the system
Jacobian to ensure the convergence of the weighting coefficients and the estimation of
the sign of system Jacobian is uncomplicated compared to estimating system Jacobian
[82]. Flynn et al. [83] proposed to use radial basis function neural network (RBFNN)
to approximate system Jacobian for a turbogenerator system since the convergence
for RBFNN is faster than multilayered feedforward neural networks (MLP), and RBF
networks can be trained much more rapidly and conveniently than MLPs. Abdullah
et al. [84] utilized self-tuning pole-zero placement controller for nonlinear unstable
systems based on RBFNN. The nonlinear dynamics of the system is represented with
a model including a simple linear time-varying sub-model derived via recursive least
squares algorithm and a nonlinear sub-model identified using RBFNN. Wahyudi et
al. [85] deployed an RBFNN parameter estimator trained with extended minimal
resource allocation algorithm (EMRAN) which is a sequential learning technique and
extended Kalman filter (EKF) to directly estimate the parameters of a PID controller.
Firstly, nominal values of PID parameters are obtained with a standart controller design
method, and then these parameters are tuned via RBF parameter estimator that is

sequentially trained to compensate for system parameter variations. Guo and Yang [86]
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adapted genetic algorithm (GA) to optimize the initial weights of an ANN parameter
estimator to forecast the parameters of a PID controller for a hydro-turbine governor
system. System Jacobian which is required to adjust the parameters of the ANN
parameter estimator is approximated via a second ANN. Kang et al. [87] employed
an ANN controller for speed control of a servo motor without using system model. In
order to tune controller parameters, a linear combination of the tracking error and
its derivative is deployed in place of system Jacobian. Pham and Karaboga [88]
utilized a recurrent neural network (RNN) system model trained with GA for fuzzy
STR to control linear and nonlinear systems. Initially, a RNN model of the system
is determined by offline training with a set of input—output data pairs collected from
the system. Then, the RNN model of the system is gradually improved during online

control [88].

Fuzzy systems have frequently been employed to constitute adaptive mechanisms for
controllers. Fuzzy logic based control methods can be categorized mainly into two
classes, methods in the first category employ fuzzy estimators to tune the parameters
of conventional controllers as in [89-91]. Methods in the second category use fuzzy
logic controllers with tunable parameters which are updated via self tuning algorithms
as in [92,93]. He et al. [89] reduced the three parameters of the PID controller
to a single unknown variable inspired by Ziegler-Nichols formula and considered
a fuzzy adaptation mechanism to estimate this new single parameter. Gautam and
Ha [90] proposed a fuzzy self-tuning estimator for PID parameters to control a
quadrotor. They used EKF algorithm to update the parameters of the fuzzy estimator.
Ahn et al. [91] approximated the parameters of a PID controller via three seperate
fuzzy estimators. The tunable parameters of the fuzzy estimator are adjusted by
backpropogation algorithm. Evolutionary algorithms have also been used for finding
the optimal parameters of fuzzy inference mechanisms [94,95]. Bandyopadhyay et
al. [94] deployed a fuzzy-genetic approach to tune the parameters of a self-tuning
PID controller. The adjustable parameters of the PID controller are reduced to
a single parameter using dead-beat control. The controller parameter is predicted
by a fuzzy inference mechanism and the rule base of fuzzy model is optimized
via genetic algorithm. Sharkawy [95] applied three independent fuzzy parameter

estimator mechanisms to tune the parameters of an incremental PID controller.
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Each PID parameter is tuned with a first order Takagi-Sugeno (TS) fuzzy inference
system, whose parameters are optimally determined offline using a modified genetic
algorithm (GA) [95]. Qiao and Mizumato [92] proposed a peak observer based tuning
mechanism to adjust the scaling coefficients of a fuzzy PID controller. The mechanism
updates the scaling coefficients when the system output has a peak point. Since the
coefficients are not adjusted up to another peak, the proposed tuning mechanism has
a limited field of use and is practical only for step type reference signals. In order to
overcome drawbacks of the peak observer based tuning mechanism, Woo et al. [93]
proposed to tune scaling coefficients of a fuzzy controller using a function of tracking
error during the course of control. The controller parameters are succesfully adapted
even the system has no overshoot. Bouallegue et al. [96] utilized particle swarm
optimization to adjust the parameters of a fuzzy PID controller to control an electrical
DC drive. In fuzzy logic based control methodology, fuzzy rule base generally depends
on the system to be controlled and the type of the controller to be implemented,
so fuzzy rule base is established by intuition or practical experience [91]. In order
to obtain a fuzzy system with suboptimal/optimal parameters, ANFIS based STRs
combining the learning ability of ANNs with reasoning feature of fuzzy systems have
been designed as in [97-99]. When backpropogation algorithm is used to train ANFIS
directly as a parameter estimator, the model of the controlled system is needed. Li
and Priemer [97] employed a modified random optimization method to train a neural
network based fuzzy logic parameter estimator without requiring model of the system
being controlled. Bishr et al. [98] developed an online training algorithm for ANFIS
to estimate the parameters of a self-tuning PID controller. Lu et al. [99] used a wavelet
type-2 fuzzy neural network system model for self-tuning predictive PID controllers
to control liquid-level and heating processes. The parameters of the PIDs are updated
using gradient descent method and the system Jacobians are approximated via wavelet

type-2 fuzzy neural network system model.

In this paper, a generalized self-tuning regulator based on SVR methodology is
proposed to control nonlinear dynamic systems. The main contribution of the paper is
utilizing an online SVR to approximate the optimal parameter values of a self-tuning
regulator. For this purpose, the "closed-loop margin" notion proposed in [3] has been

expanded to design STRs and online SVR update equations are derived. The proposed
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mechanism is used to optimize the parameters of two different type of controllers,
namely PID and fuzzy PID controllers. Another contribution of the paper, unlike
the existing research in literature, is using online learning method for estimating the
system model. Stability of the closed-loop system has also been analyzed. The
performance of the proposed generalized STRs has been examined on a nonlinear
bioreactor system,and the performance of the generalized STRs has been compared
with SVM-based PID controller proposed by Iplikci in [5]. The results show that the
proposed generalized STR structure and online SVR model attain good modeling and

control performances.

The organization of the paper is presented as follows: Section 4.2 describes the basic
principles of online SVR. Construction of optimization problem so as to utilize SVR
directly as an adaptive parameter estimator and the proposed STRs are explained in
detail in section 4.3. Additionally, the stability analysis of the closed-loop system is
performed. In section 4.4,the performance of the proposed mechanism is simulated
and also, the performance of the proposed method is compared with an SVM-based

PID controller. The study is briefly concluded in section 4.5.

4.2 Online support vector regression

This section beriefly reviews online support vector regression. The basic principles of
support vector regression and online learning method are presented in sections 4.2.1

and 4.2.2, respectively.

4.2.1 An overview of support vector regression
Consider the input-output training instances
T={xy} x€XCR" yeR @.1)

where N and 7 indicate the number of the training samples and the dimension of the
input samples, respectively. SVR model (4.2) can be deployed in order to capture the

connection among input-output instances in (4.1).
yi=<w,®(x;)>+b, =12, N (4.2)

where "w" represents the weights of the SVR network in feature space (F), "®(x;)" is

the projection of the input samples to feature space, "b" typifies the bias of regressor
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and < .,. > is inner product in F [43]. The essence of the optimization problem for
support vector machines (SVM) is based on finding the optimal seperator or regressor.
In classification, the seperator that maximizes the margin between two different classes
is searched. Similarly, in regression, the aim is to find the optimal regressor within a
predefined margin via €-insensitive loss function. The primal form for optimization
problem is formulated using €-insensitive loss function as:

. Lo &
Jpr= = +C +EF 4.3
Jmin e = 5wl ;(51 &) (4.3)

with the following constraints

yi— <w,®(x;) > —-b<e+§

<w,P(x;) >+b—y; <e+& (4.4)

&, >0,i=1,2,---N
where € is the upper value of tolerable error, £’s and £* ’s denote the deviation from
€ tube and called as slack variables [1,43]. The primal form has non-convex objective
function and the solution may get stuck at local minima. The dual form for the
optimization problem can be obtained using Lagrangian multiplier method. Thus, the
problem in (4.3-4.4) can be rendered to convex problem. For this purpose, a Lagrange
function is derived by introducing non-negative Lagrange multipliers 3, B*, 1 and n*
as dual variables to compound objective function in (4.3) and constraints in (4.4) as

follows :

N N
Lo = WP+ CE (G +E) — L Ble+ &yt < w,@(x) > +D)
i=1 i=1

N N 4.5)
=Y Br(e+& +yi— <w,®(x;) > —b)— Y (n:i&i+nj&)
i=1 i=1
The optimality conditions for Lagrangian in (4.5) are acquired as:
oer __, w—iﬁ~<wd>(x~)>—0 (4.6)
aw - =~ 1 9 1 - .
aLPr N *
prmm— i— . p— 4.
ap 0 LBi-A)=0 (4.7)
dL
Pr—0— C—Bi—-1,=0, i=1,2,..N (4.8)
d&;
aLPV * * .
85*:O—> C—B—n =0, i=1,2,..N 4.9)
i



(a) (b)

, f()+e

E 7t }h(x) 2
f(x)-¢ s - T(0+e
A7 ) Lh(x

. f(x)-¢

. = £ (x) |- A A, output of sur
h(x.) 7/,
[ B /..¢3 hewsample

¥.=f(x)|....r” A7 rd
ool *TITTE

> X - > X

X X

Figure 4.1 : E, S and R subsets before (a) and after (b) training [1-4].

Thus, substituting (4.6-4.9) in (4.5), dual form of the optimization problem is acquired

in (4.10)-(4.11) as a quadratic programming (QP) problem:

M=

N N N
JD:%ZZ(ﬁi—Bi*)(Bj—ﬁ;)Kij—i—S;(ﬁi—f—ﬁi*)—)’i (Bi—B7)  (4.10)

i=1j=1 1

~.

with the following constraints

0<B<C,0<p <C
4.11)

M=

(ﬁi—ﬁl.*):(), i=1,2,---N
i=1

where K;; = ®(x;)” ®(x;). Thus, the optimization problem is degraded to a problem
with single type unknown parameter (f3). Various QP algorithms can be implemented
to obtain Lagrange multipliers (f3). The solution of the regression problem in (4.2) can
be approximated as in (4.12):

$(x) =) AK(x,xi)+b, A= Bi— B} 4.12)

i€sv

where "SV" emblematizes support vectors. This method computes the solution offline,
however online learning algorithms for support vector regression can also be derived

via the objective function and the constraints given in (4.10,4.11).

4.2.2 Online e-support vector regression

Notion of "margin" is the key to fully comprehend the fundamental idea of online SVR.

Let us predefine an error margin function as:

h(xi) = f(xi) —yi =

N
)LjK,'j—f-b—yi 4.13)

j=1
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where h(x;) is the margin value, f(x;) is the output of regressor and y; is the actual
output corresponding to input x; from the data set. The training samples are separated
into error support (E), margin support (S) and remaining support (R) subsets depending
on their locations with respect to the margin function and Lagrange multipliers as
follows:

E={i| 4| =C,|h(x)| > €}

S={i|0<|A| <C,|h(x;)| =€} (4.14)

R={i[|A]=0,[n(x)| <&}
When a new sample X, is imbibed by the regressor, it is required to include the new
sample X, into one of these subsets (E,S,R) depending on the margin and Lagrange
multiplier value of the new sample. During this learning process, KKT conditions must
be satisfied automatically for all training instances [2]. Assuming that the Lagrange

multiplier of the new added data is A, = 0, from (4.13), its margin value is acquired as:

h(xe) = f(Xe) —ye = ) AK(Xj,Xc) +b—yc (4.15)

N
j=1

The Lagrange value of current data (A.) and Lagrange values of previously added
samples are gradually updated to provide all samples satisfy KKT conditions. As
a result of the adjustment process, current data moves into one of the three sets
(E,S,R) and the sets of the previously learned samples may change since Lagrange
multiplier (4;) and margin values of the previously learned samples (k(x;)) may alter
because of admittance of the new data into the regression problem. Thus, the new data
is succesfully ingested by the regressor. This situation is illustrated in Figure 4.1.
Figure 4.1 (a), (b) depicts the margin before and after training, respectively. As
seen in Figure 4.1 (a), the regressor cannot predict correctly for current data since
it actually belongs to set E but the regressor result gives it as R for initial value of
Ac. For this reason, the Lagrange multiplier of the current data has to be adjusted.
The incorporation of the newly added data changes the structure of the regression
problem. All Lagrange multipliers are adjusted to yield low prediction error and correct
classification of data. Note that Figure 4.1 shows how the sample in R immigrates to
class S and newly learned sample enters into class E. In online learning, the optimal

regression surface transumes when a new data is transcluded to training samples or a

formerly trained instance is forgotten. In order to provide optimal represention of all
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existing intances by the regressor, it is required to adjust the parameters of the previous
model by ensuring the KKT conditions for training or forgetting phases. Derivation of
online learning rules necessitates a Lagrange function which is a combination of a
dual objective function and corresponding constraints. The Lagrange function for dual

formulation can be expressed as follows via (4.10,4.11).

N N
ZZ. ) ﬁf)Kij+8;(l3i+l3i*)—;yi(l3

. (4.16)

N N
Z(5ﬁz+5*ﬁ )= Y ui(C—Bi)+ur (C—B)+z) (B
i=1 i=1

l:

KKT optimality conditions for dual Lagrangian function in (4.16) are derived in (4.17)

via dual variables:

oL, ¥
e =Y (B )Kij+€—yi—0;+ui+z=0
4 ':
- N 4.17)
aﬁg Z K1]+8+y1 61*_“1/[:(_2:0

51'(*) >0, ul(*) >0, 5i(*)ﬁi(*) =0, ul(*) (C _ ﬁi(*)) —
)

where superscript 6, represents both §; and ;. KKT condition indicates that at most
one of f; or B/ should be nonzero and both are nonnegative [4]. The margin for the ith
sample x; can be designated with (4.18):
N
h(x;) :f(xi)—yi:j_z;lle(ijer—yi (4.18)
The convergence and migration of data in learning or forgetting phases occur according
to the following conditions:
h(xi) > €, i =—C
h(xj) =¢€,-C< ;<0
—e<h(x) <eA=0 (4.19)
h(xj) =—€,0< A, <C
h(xi) < —g,A=C
The variation on margin function values of previously learned samples (Ah(x;)) are
derived as in (4.20) via (4.13-4.19) depending on Lagrange multiplier of the current
sample (AA.) and Ab [4,55].
Ah(x;) = KicAA: + i K;ijAA; + Ab (4.20)
j=1
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The new added data has to satify the dual constraints in (4.11) at every parameter

update step, so

N
Ae+ ) A;=0 (4.21)
j=1

is extracted. As given in (4.14), Lagrange multiplier values of the vectors belonging
to subsets E or R are equal to "0" or "C". The migration between subsets especially
affects the Lagrange values of vectors in S. If a sample which belongs to set S remains
in set S again, there is no change on margin values of mentioned sample, that is
Ah(x;) = 0,i € S [55]. Thus, relation between increments of current data (AA.) and

parameters of the previously obtained model can be formulated:

N
Y KijAdj+Ab = —KieAde , Y ALj=—AL (4.22)
j=1 jeSv

and in matrix form is given as

0 1 1 Ab 1
NG I el S L DV (4.23)
1 Ksk51 e Ksksk Alsk Kskc

where the indices of the samples in support vector set are defined as S =

{s1,$2,53,....,5k}. As a consequence, AA is attained as:

Ab
Al
AL = . = BAA. 4.24)
where
B 1 o 1 - 11"
B = P _ _g | Kue o | Ko o Ko (4.25)
ﬁsk Kskc 1 Ksksl Ksksk

as given in [4]. Thus, the feasible increment directions for the bias and the Lagrange
multipliers of the samples in S can be obtained for a given AA, using (4.23-4.25).
The derivation and calculation of the Lagrange multiplier of current sample (AA,)
is detailed in [3]. The variation in margin values as a result of increment AA. for

non-support samples can be calculated as follows using (4.18,4.20,4.24):

Ah(le ) KZIC 1 Klel T Klel
Ah(x K. 1 K o K

(: 22) _ YAA‘CW ,y: Z:zc + : 2:231 . 2:23/ B (4.26)
Ah(xzm) Kz, I K5 - Ky
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where z1,22, ...,z are the indices of non-support samples, ¥ are margin sensitivities
and y = 0 for samples in S. The alternation of the matrix @ for learning and forgetting
stages and detailed information related to recursive algorithm can be attained via [2—4,

55].

4.3 Contruction of Optimization Problem for Self-Tuning Regulator

4.3.1 An overview of self-tuning regulators

The main components of a self-tuning regulator (STR) are system model, parameter
estimator and controller blocks as given in Figure 4.2 where 6 and X, indicate
the controller parameters and input vector of the controller, respectively. In order
to minimize tracking error and estimate feasible controller parameters, the future
behaviour of the system is required, so system model block is essential to approximate
the dynamics of the system. Parameter estimator block computes new controller
parameters by regarding the future behaviour of the plant via the obtained system
model, and then adjusted controller parameters are implemented in the controller block
to make system track reference signal accurately. Any controller with adjustable
parameters can be utilized in the generalized controller block given in Figure 4.2.
In this work, the proposed STR structure is implemented with PID and fuzzy PID
controllers as explained in detail below. Depending on the controlled systems and
design techniques, numerous self-tuning architectures are possible in the parameter
estimation block [76]. As for the system model part, various intelligent modeling
techniques such as ANN [19,23,24], ANFIS [25,100] etc have been applied to identify
the dynamics of system. In our controller structure, SVR is employed to model the
dynamics of the controlled system since it has high generalization capacity and ensures
global minimum in training. Subsequently, another SVR is used as parameter estimator

to approximate controller parameters.

4.3.2 Generalized STR structure based on SVR

The tuning mechanism of the proposed STR architecture based on online SVR is
depicted in Figure 4.3. There are two separate SVR structures in the proposed

mechanism:  SVRggimator to calculate the controller parameters and SVRpoqel
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Figure 4.2 : Self-tuning regulator.

which predicts the future behaviour of the controlled system. Since SVR has
multi-input-single-output (MISO) structure, a seperate SVRegimator Structure is
deployed for each approximated parameter. Therefore, the number of the SVR¢gimator
structures to be used in parameter estimator block depends on the number of the
adjustable parameters in the controller. For instance, three SVR¢gtimator Structures are
employed for PID type STR to forecast K, K; and K; parameters. The controller

parameters are estimated via SVRegimator as:

Om - f estimator;, (Hmc) — Z akaestimatorm (HmC: Hmk) + bestimatarm
kESVestimat()rm (427)

me {1,2,---p}
where IT,,. indicates the current input of mth estimator, Kegimator,(-,-) is the kernel
matrix, Gk, Ik and begimaror, are the parameters of the mth parameter estimator,
festimator,, (-,-) is the regression function to be optimized in training. The controller

computes a control signal as :

Up = gcontroller([el (ch>7 Tty em(nmc>]7XC) (428)

where g.onrroiier indicates the control law computed as the output of the controller, 6,,
is the mth parameter of controller and X is the current input vector of the controller.

SVRodel 18 employed to forecast system behaviour and it calculates the model output
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Figure 4.3 : Generalized self-tuning regulator based on online SVR.

as

yn—O—l = fmodel (Mc) = Z 2'ijodel (MwMj) + bmodel (4.29)
JESVmodel

where f,0q0 and K401 are the regression function and the kernel matrix of the system
model respectively, M ;’s are support vectors, M. is current input, and A; and by,,q,; are
the parameters of the system model to be adjusted. SVRegimator and SVR04e1 are both
used online to perform learning, prediction and control consecutively. Ideally, during
the course of online working, it is expected that v, | will eventually converge to v, 1.
Therefore, when the parameters of SVR¢gimator are optimized, in order to calculate
and observe the impact of the computed control signal (u,) on system behaviour and
train SVRcgtimator precisely, u, is applied to SVR04e1 at every step of training phase
of parameter estimator to predict system behaviour (y,+1). The control signal applied
to the real system is obtained via the trained parameter estimator and the actual output
yn+1 18 determined after applying the calculated control signal to the system. Thus, the
current input of system model M. and output y, | can be computed for training phase
of SVRoqe1. The detailed algorithm for the proposed adaptive control architecture is

given in section 4.3.5.
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4.3.3 PID type STR based on SVR

PID controller still predominates in the process industries due to its robustness,
effectiveness for wide range of operating conditions and its functional simplicity [77].
It has been widely used in industry due to its simplicity, good control performance and
excellent robustness to uncertainties [101]. The classical incremental PID controller

produces a control signal as follows [5,31,73,101-103]:

Up = Up—1 +Auy,
(4.30)
Auy, = Kpn [en - en—l] +K;, [en] + Kdn [en —2ep1+ en—Z]

where K, , K;, and K, respectively indicate the parameters of proportional, integral
and derivative parts of the controller to be tuned. For the proposed mechanism given

in section 4.3.2, the incremental PID control law can be extracted as:

tn = Zeontrotter(0,Xc) = 1 + 0" X,
€n— én—1 (4.31)
= up_1 + [Kp, Ki, Ka,]| en
en—2ep—1+en—2

In an adaptive control scheme, the initially assigned values of the controller parameters
will generally not be optimal [5], hence, it is required to adjust the parameters
via optimization methods [5, 56]. The controller parameters K,, K; and K; are
calculated via online SVR parameter estimator (SVRegtimator). For this purpose,
an online SVR has been utilized for each controller parameter since SVR has
multi-input-single-output structure, so parameter estimator is composed of three
separate SVR identifiers. The PID controller parameters are estimated via SVRegimator

as:

I%pn festimatorp (Hpc)

6= Kin = festimatori (Hic)

_Kd,l f estimatory (Hdc)

—ZkeSVgs,ima,,,rp apkKestimatorp (pr Hpk) + bestimatorp
= Zkesvestimatori aikKestimator,- (Hia nik) + bestimatori
_ZkESVeS,imam, J adkKestimatord (ndw Hdk) + bestimatord

(4.32)

Since the parameters of the controller are estimated via SVR, it is named as "PID type
STR based on SVR". This structure inherits both the robustness of PID controllers and

the nonlinear generalization performance of SVR method.
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4.3.4 Fuzzy PID type STR based on SVR

In Figure 4.4, the structure of an incremental fuzzy PID controller [96] is depictured,
where e, denotes the difference between reference signal and system output and
UFLCpyp, 18 the output of fuzzy PID controller at time index n. A fuzzy PID controller
is also implemented as the generalized controller in Figure 4.3 and its parameters are

tuned using an online SVR¢gimator- Inputs of the fuzzy controller are:

€fn a Kenen
(4.33)
éfn — Kden [e'l - en—l]
The output of the controller in Figure 4.4 is computed as [92,93]:
UFLCpp, = anfFLCpD (efna efn)
AMFLCPIH = :Bl’lfFLCPD (efn7 efn)
(4.34)

UFLCp, = UFLCp, | T AUFLCp,
UFLCpip, = JFLChp(€fs €1 Fns Br) = UFLCp,, +UFLCpp,
where the scaling factors K,,, Kg.,, ¥, and B, are the controller parameters to be
optimized. ¥, and f, are the parameters for the PD and PI parts of the fuzzy PID
controller, fricp, is the fuzzy controller, er, and ér, are scaled tracking error and
derivative of tracking error, respectively. The derivative and integral parts of the fuzzy
controller can be associated depending on the requirements of the controlled system via
input-output scaling coefficients. In our simulations, triangular membership functions
with cores {—1,—04,0,0.4,1} as in [92] are chosen for both ey, and é;, as shown in
Figure 4.5 where I';, denotes the zth fired fuzzy rule. The formulation of fired fuzzy

rule is given as:

FZn :frules<efnaéfnakzlakz2> - S2+PZ_ 1 , 2 € {17273;4} (435)
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where

1 1

< 1 + e_kzlefn Pt 1 + e_kZZefn

and kj; = kip =4, koy = kyp =35, k31 = kap = 6, kg1 = kgp = 7. The fuzzy rule surface
depicted in figure 4.6 is composed of two sigmoid functions as in (4.35). Center of
gravity method has been utilized for defuzzification. Thus, the output of the fuzzy

controller can be computed as [92]

) Z?:l Wznrzn 4 4
Jricep (efn7efn) =" .~ Z wy, Iz, Z we, =1 (4.36)
Zz:1 W z=1 z=1
where
wi, = Ai(ey,)Bj(ér,)
wa, =Air1(ey,)Bj(ér,)
ws, = Ai(ey,)Bjr1(ef,)
wa, = Airi(es,)Bjr1(éy,)
and
Cit1 —€fy €fy —€i
A~en: ,A~1en =
Hen) = e Amen) = i
. éjy1—¢éy, : €fn —¢j
Bj(¢p)=-L"— B; 1ef,)=—""—"
ies) éipr—ep T ) ejt1—¢;
are membership functions values. T' = [I'y, Iy, I's, T4, | = [wij ti1j Uij1 wiv1j+1)

indicate the fired rules in rule surface since four fuzzy rule are fired at a time depending
on the defined input membership functions. The parameter estimator block tunes the
controller vector 0 that consists of the K,,, K4,,, ¥, and B,. The controller parameters

are estimated as:

i {een festimatore (Hec)
0 — I(Aden _ festimatorde (Hdec)
\Ijn f estimatory (H‘I‘c)

| Bn festimatorﬁ (Hﬁc)

4.37
ZkESVeS,imaw,e aekKestimatore I, Hek) + bestimatore ( )

Zkesv@stimatorde O‘dekKestimatorde (Hdem Hdek) + bestimatorde
ZkeSngmam,\{, O“I’kKestimator\y (H‘I—‘c; H‘Pk) + bestimamh{;

ZkeSVest,-mamrﬁ OCBkKestimatorB Hﬁcv H/}k) + bestimatorﬁ
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Thus, the control signal in (4.33,4.34) is obtained as:
UFLCpip, = gcontroller(67XC) = fFLCp]D (B,XC)

=urrcy, T (¥Yn+Bn)frrce (Ke, X1, Kae, x2) (4.38)

X _ xl _ el’l
‘< X2 N €n — €n—1

where 0 indicates the controller parameters and X, is the input of the controller.
By tuning fuzzy PID parameters using online SVRgimator, the strong characteristics
of fuzzy control technique and SVR methodology are merged to build a powerful

controller for nonlinear systems.

4.3.5 Adaptive control algorithm for the generalized STR based on SVR

Input feature vector of parameter estimator(II) should contain convenient feature
variables that can well represent the closed-loop system’s operating conditions. In the
proposed STR, mainly reference signal and system output are utilized as input features.
However, in order to enhance STR performance, the variables that are functions of
reference and system output such as tracking error, integral of tracking error, derivative
of tracking error and control signal etc. have also been employed as described in
section 4.4. The control procedure for STR with "p" adjustable controller parameters
can be summarized as follows (in the algorithm given below u,, indicates the control

signal predicted with controller parameters obtained at the previous step and u,” stands

for the control signal estimated with trained controller parameters at the current step):

Step 1: Initialization of SVR¢stimator aNd SVRh0del Parameters.
-SVRegtimator(€stimator) parameters : Ok = bestimator,, =0 m € {1,2,---p}

-SVRnodel (system model) parameters : A; = b1 = 0

Step 2: Prediction step for parameter estimator ( 6,, )

-Set time step n.

-Constitute feature vector for parameter estimator ( I, ).

Some examples for parameter estimator feature vector are given as follows:

I = [rueTnnps Yn---Yn—ny|

. =[P, 1,,D,] where P, = e, —e,_1,I, = e,, Dy = e, —2e,—1 + e, and e, = r,, — yy.
Combination of the reference signal, system output and controller output can also be
utilized in the feature vector. Il. = [P, 1, Dy, ry...1n—n,, Yne+-Yn—nys Un—1 ...p_p,] Where

ny, ny and n, represent the number of the past instances of features included in the
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feature vector.

-Calculate the approximated controller parameters 8,, by SVRegimator trained at
previous step (n— 1) via (4.27).

Step 3: Computation of control signal (#,) and prediction step for system
model(y, , ;)

-Calculate the control signal u, via (4.27-4.28).

-Constitute feature vector for system model (M,).

M. = [u, ...tn—p,,Yn---Yn—n,)

-Apply u,, t0 SVRyodel and calculate §, | by (4.29).

Step 4: Training step for parameter estimator

-Calculate &, = rp1— 3,

If [, | > €closed—1o0p

Train parameter estimator via &, | = rp+1— 9,

else

Continue with parameter estimator obtained at previous step

end

Step 5: Prediction step for trained parameter estimator ( 6,7 ) and computation
of control input by trained estimator (i)

-Calculate the controller parameters by trained SVRegimator Via (4.27).

-Calculate the control signal u, produced by the controller using the parameters
obtained by trained SVRcgimator Via (4.27-4.28).

Step 6: Application of the control signal produced by adapted controller

-Apply u;,} to system to calculate y, .

Step 7: Prediction and training step for system model(ﬁl‘f )

-Apply u," t0 SVRnodel and calculate }?;;rl via (4.29).

-Calculate eodel,,; = Yn+1— In+1

If ‘emodelnﬂ‘ > Emodel

Train system model where €04¢1,,, = Ynt+1 — In+1
else
Continue with system model parameters obtained at previous step

end
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Step 8: Incrementation of time step

-Increment n = n+ 1 and back to step 2.

4.3.6 Generalized closed-loop system margin

In the proposed generalized adaptive STR architecture, two blocks contain separate
online SVRs: In the system model block SVR;,oqe] computes an estimate of the system
model and in the parameter estimator block each tunable parameter of the controller
is estimated by a different SVR¢gimator- The training dataset for SVR0ge1 consists of
pairs (M. ,y,+1) which are available during online operation, therefore the training
process is straightforward as explained in section 4.2.2. However, the training of
SVRegtimator 18 not clear, since the input data (IT,,,.) is known, but the desired output
of the estimator, namely the controller parameters (@) to be implemented to produce
control signal are not available to the designer in advance. This situation causes a
significant dilemma to train SVR structures without the explicit information of desired
output data. However, a similar problem which hampers to utilize SVR directly as a
controller in control block was managed to overcome in [3]. For this purpose, Ucak and
Oke Giinel proposed "closed-loop system margin" notion to solve this situation. In this
section, since training SVRegimator Without a desired output dataset can be formulated
in a similar way to the problem solved in [3], we will configure the "closed-loop
margin" notion so as to train SVRegimator Without the need to know the approximated

controller parameters. Let us start by giving two main definitions.

As defined in [3], the regression margin related to SVR04e] 1S named as "open-loop
margin”. This margin is optimized by minimizing the feedforward modeling error
€model,,; = Yn+1— Yn+1, the error between the actual system output and the output of
the "learned model". High modeling precision is needed to successfully identify the
system dynamics and compute the tracking error in the next step. This information is
used to tune the parameters of SVRcgimators Which consequently compute the controller
parameters. Note that, we employ a separate SVRcgtimator fOr €ach tunable controller
parameter. Hence, the performances of SVR04e] and SVR¢gtimators are effective in the
closed-loop success. The closed-loop performance of the overall system is affected
by both the modeling error and the tracking error, so we define "closed-loop margin",

which is a function of the system model margin and parameter estimator margins,
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Figure 4.7 : Margins of SVRcgimator (2), adaptive controller (b) and SVR 041 ().

whereas it is defined as a function of controller and system model margins in [3].
In tracking control, it is aimed to pursue reference signal as close as possible by
minimizing the error e, , = rpy1 — ynt1, between reference input and closed-loop
output, so the closed-loop margin should be minimized. The optimization of the
SVRmodel margin is also important, since for good closed-loop control performance
we need a system model with minimum error.  &poger and €cjosed—100p> the upper
values of tolerable error for SVR,oqe1 and the overall closed loop system (SVRodel
and SVRcgiimatorS combined), respectively are set independently by the designer, so
the margin of SVR,oqe; 1S optimized independently from the closed loop system
margin. However, the designer cannot set €.imaror, the upper value of tolerable
error for SVR¢gimator, and therefore does not have a direct influence on the margins
of the parameter estimators, but parameter estimator margins can only be affected
indirectly through the combined actions of SVR,o4e1 and the controlled closed loop
structure. We can infer that optimization of closed-loop and SVR;,oqe; margins
will spontaneously lead to the optimization of SVR¢gtimators margins so SVRcgtimatorS
parameters can be obtained indirectly while we try to minimize tracking error (or
equivalently we optimize closed-loop margin). The margins of SVRegtimator and
SVRoder are illustrated in Figure 4.7. Parameter estimator SVR¢gimator margin is
depicted in Figure 4.7 (a), adaptive controller is given in Figure 4.7 (b) and system
model SVR04e1 margin is shown in Figure 4.7 (c) where fegimator,, and finoqer denote
the regression functions of mth parameter estimator and system model, and g.onsrolier
indicates the control law. The input of SVR,0qe1 1S M and its output is y, | while the
input to SVRegtimator 18 L, and the output is 6,,, so in Figure 4.7, the input-output axes

of SVRpodel are denominated as M and Y, while the axes for SVRegtimator are named
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Figure 4.8 : Closed-loop system margin in three dimensions.

as Il,, and 6,,. Considering the margins of SVR,oqe and the separate SVR .gimarors
for each tunable controller parameter, we can combine the independent subgraphs
to yield a multidimensional graph which depicts the closed-loop system margin. In
applications, there will generally be several tunable controller parameters and input
vectors will commonly be multi-dimensional, resulting in hypersurfaces when margins
are fused. As a representative graph in Figure 4.8, we illustrate the case where all
inputs and outputs are assumed to be one dimensional vectors and there is only a single
tunable controller parameter, resulting in a hypercube. In Figure 4.8, SVRcgimator
margin is drawn on the horizontal plane with axes Il and M while SVR;,oqe; margin
is given on the vertical plane, where axes M and Yy, represent its input and output.
Since vector M includes u, and 6,,, the horizontal regression surface representing
SVRestimator can be depicted with axes IT and M instead of Il and 6,,. During online
operation of the whole control architecture, the margins of the controller parameter
estimators and model are fused, and closed loop margin between closed loop input
and output is intuitively thought as a single margin, as depicted in Figure 4.9. Here,
controller parameter estimator and system model margins are combined resulting in the
"closed-loop margin" and this is projected onto IT— Y, axes. Figure 4.9 illustrates this
projection for a single controller parameter estimator, before and after online training.
Closed-loop margin is represented with, hclosed,loop(ﬂ), and it is a function of model
margin (4.1 (M)) and parameter estimator margin (Aegimaror(IT)). When training the
closed-loop system, we require that the closed-loop output tracks the reference input,

rny1, and the error between closed-loop output and reference input e;, | = ry1—ynt1
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Figure 4.9 : Closed loop margin before (a) and after (b) training.
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Figure 4.10 : Closed loop margin before (a) and after (b) training.
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closedrloocjn)

is minimized. Based on this, we have used data pairs (II;,r,1 ) in training. Hence,

the input and output axes for closed-loop system regression surface are termed as IT

and R in Figure 4.10 and axis R is utilized in place of Yy for closed-loop system in

Figure 4.10-4.11.

4.3.7 Online support vector regression for parameter estimator

Let the training data set used for the closed-loop system be:

T = {1}, M,cICR" ry€R

ool Gconsoted T esimard 112)))
8.
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Figure 4.11 : Closed-loop system margin in three dimensions.
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where N and n respectively indicate the number of the training samples and the
dimension of the input samples, I1,,; is input feature vector of mth parameter estimator
and r; 1 is the reference signal that system is required to track, the closed-loop margin

function of the system for the ith sample II,,; can be defined as

hclosedfloop( [Hli o Hml} ) - y\i—i—l —Fi+1 = fmodel (Mt) —Fit+1 (440)
where
Sit1 = fnodetMi) = Y. AjKpodet (M j, M;) + byoger
jESVmodel
Aj=Bj—Bjf

M; = [u;-i—p,, Yi+**Yi-n,]
up —= gcontmller( [91 (Hli) ce Gm(l'lm,)} ,XC)

6m (Hml) = festimatorm (Hmz) -3 Z akaestimatorm (Hmka Hmt) + bestimatorm

kESVestimatorm
Omic = Tk — Mt » M € {1,2,-++, p}
Iy = [ri+ Ticngs Yiv*Yienys Ui-1°* Ui-n,]
Since parameters of SVRo4e) are fixed and known in training phase of SVRegimators
and the sole unknown variables are the parameters of the SVRtimator, the closed loop

margin can be rewritten as

hclosedfloop( [Hli o 'Hmi] ) =Yit1 —riv1 = fclosedfloop( [Hli T Hmz} ) —Fi+1
(4.41)

with respect to an input-output data pair of closed-loop system (I,,;, r;+1). Thus, using
(IL,;i, ;1) data pair and closed-loop margin in (4.40,4.41), the incremental learning
algorithm for SVR¢gtimator can be obtained. When new sample II,,. is introduced, the
coefficient o, corresponding this the new sample should be changed in a finite number
of discrete steps until it meets the KKT conditions while ensuring the existing samples
in T continue to satify the KKT conditions at each step [4]. The KKT conditions
[3,4,43] that are fundamental in convergence and migration of the closed-loop data

are given as :

hclosedfloop( [Hli Tt Hmt} ) > Eclosed—loop, O = _Cclosedfloop

hclosed—loop( [Hli T Hml} ) = gclosed—loom _Cclosed—loop <o < 0

- gclosed—loop < hclosed—loop( [Hli e Hml}) < 8closed—loop7 o = 0 (442)
hcl()sedfl(mp( [Hli T Hml}) = _gcl()sedfl(mpa 0<oi< Ccl()sedflo()p

hclosedfloop( [Hli T Hmt} ) < —&closed—loop, Oi = Cclosedfloop
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The incremental algorithm for SVRcgimaor can be derived by recasting equations
(4.18-4.26) using O, bestimator,,» Nelosed—ioops Eclosed—loops mi and Kestimaror,, in place
of A, b, h, €, x; and K. Thus, optimal parameters of SVRegtimators Omk» Destimator,, are
sought within €/o5e4—100p tube by minimizing the tracking error via online learning
algorithm given in section 4.2.2. Thus, the update direction vector for Lagrange

multipliers of support set samples in mth parameter estimator A@,, is attained as:

Abestimatorm
Aoy,
Aay,, = . =B, A0y (4.43)
Ao,
where
B 1 0 1 e 1
ﬁsl I<esz‘imat0rmY ¢ 1 Kestimatorms Kestimatorm
51 151 S15%
ﬁm = . — —®m . s ®m =]
ﬁsk Kestimatormskc 1 Kestimatormsks1 L Kestimatormskjk

(4.44)

The margin values of the non-support samples for Aa,,. can be calculated as follows :

Ahclosed—loop( [lel o -Hmm} )
Ahclosedfloop( [lez e 'Hmzz} )

. — lymAA«C
Ahclosed—loop( [ler e 'Hmz,] )
- e ok (4.45)
estimatory,, . estimarormy g, estimatory, g,
B Kostimat OFimzy 1 KestimataerSI e Kes[imal()}’mzzsl B
Ym - n
Keslimalormzﬂ 1 [{estimatormzﬁY | T Keslimalormwl

where 71,22, ..., 2, are the indices of non-support samples, ¥, are margin sensitivities.

4.3.8 Stability analysis of the closed-loop system

4.3.8.1 Stability analysis for the generalized STR based on SVR

In this subsection, the Lyapunov stability analaysis of the generalized STR based on
SVR has been conducted. In order to clearly explain the stability analysis of the
closed-loop system, firstly, the regression functions of estimator and the system model

are expressed in matrix or vector form. Thus, the regression function of estimator can
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be expressed as
T

bestimatorm 1
Ol K m,,
6m (Hmc> = festimatorm (QI’H7 IImc) - m ml. - Qy{,Kestimatorm (Hmc)
Ok Kmkﬂmc
me{1,2---p}
(4.46)

Using (4.28) and (4.46), the output of the controller is defined as a function of Q, IT
and X as follows:

Up = gcontroller(ga H,X) (4.47)

The regression function of the system model (4.29) which is required to approximate

system Jacobian in stability analysis is obtained as

T
bmodel 1
. A Kim, T
Yn+1 = fmodel(a'aMc) = . . =A Kmodel(Mc> (4.48)
v Kim,
In order to derive stability conditions, the following Lyapunov function is deployed
T
e Pe
Vet ) =~ (4.49)

where P = I (identity matrix). Both the stability of the system and the convergence
of the controller are guaranteed when V. < 0 [68]. Thus, the derivative of Lyapunov

function (%—‘t/) is acquired as

aVier,.,)
n T .
Tl oI Py, (4.50)
ot
de;y de;y
where ¢, = —5+L = arl;’“ 94 Considering a small deviation from the equilibrium

point, which corresponds to local stability analysis using equation (4.51) [3, 68], the

incremental change in the control signal (4.47) is obtained as

P i

— agcon roller(g2 I X) ag(on roller(g II X agcontroller Q 1 X)

Auy = Zl |2 (DT £ 1 oo (OTLI) Ay Z Ax
m= :

4.51)
where "p" indicates the number of the controller parameters, "i" denotes the number of
the inputs for the controller and x; is the kth input of the controller. Substituting (4.51)

in (4.50), the equation (4.50) can be rearranged as

p agcon mller(gvnvx) agmn mller(ganvx)
aV(etr,hLl ) _ eT aetrn+] Zm:l |: : agm Agm + ! anm Anm
al Iyt al/ln + Z;( . [agcontrolgzr(gvnvx) Axk]
= Xg
(4.52)
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with the assumption AIL,, = ¢, ., and Ax; = ey, ,. Thus, as can be seen in (4.51-4.52),
stability depends on the increments in Lagrange multipliers of the estimator (AQ,,).
The adjustment rule for AQ,, is derived in (4.43-4.44). The Lagrange value for current

data of the mth estimator is computed as
Ay = Gy min(|L |||, |LS7|, |LEm|, |LRn]) (4.53)

where g, = g = sign(—hclosed_loop([ﬂli ~--Hm,~}) = sign(err,,,) and LY} , L are
variations of the current sample and LS = [Lf’”,i €8,], LEn = [Lf’",i €E,|, LR =
[Lf’",i € R,] are the variations of the I1,,; data in sets S,,, E,,, R, respectively. The
term min(|L}: |, L7, |LSn|,|LEn|,|LRm|) in (4.53) is a positive function of e, ,, O
and C. Therefore, Ax, can be expressed as:

Aot = g min(IL2 ], L), [ESn |, [LEn|, [R7]) = sign(er, ) P (et Ooni.C)
Wolerr,. . 0mi,C)

|elrn+1‘

_ etrn+1

e, | W(etr,,,, 0mi, C) = e,
nt1

= .um(etr,hq ) arni7c) (77

(4.54)
where ty(esr,. s Omi,C) > 0, Wri(err,, » Omi, C) > 0. Thus, using (4.43) and (4.54) the

adjustment rules for all Lagrange multipliers in set S, can be given as

AQm = Bm Al = ﬂm .um(etrnH , OCm,',C) Ctrui (455)
: : : . 83trn+1 ae”n+l ayn+l _ 9yn+1
By substituting (4.55) in (4.52) and expanding T A T o T T ow

equation (4.52) can be finalized as follows:

p 98conroller(QJLX 98controlier(QILX
aV(e;,nH) _ 72T aetrnJr] m=1 |: o oge ;(n )ﬁm “m(etrn+lvamiac)+ Boo t(gi-[,(n ) e
a[ - sl al/in + Z;{ | agCOlllfolg’i‘<Q7n7X) i| Tt
= Xk
IV (eu,.1)

dt - _ez;"n+|(Q+W+Z)etrn+l

(4.56)

where aalutl is the system Jacobian approximated via system model (f;,,o4¢7) and

Q - P 8yn+1 i |:agcnntmller(g,n.,X) ﬁ

au m um(etrnﬂvamhc)]
n

m
m=1

W p nti Z”: [agm,mgerm,ﬂ,xq (4.57)

du, = m

OVn+1 Zi )

:Z — P 8con roller(gvnvx)

d [ o }
Un =

In a nutshell, the stability conditions for closed-loop system in the sense of Lyapunov

can be attained as follows:
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e Condition 1: If V(z) > 0 and a‘gft) > 0, the stability of the closed-loop system is

ensured

e Condition 2: If Q > 0, W > 0 and Z > 0, the stability of the closed-loop system is

ensured

e Condition3: f Q>0,W >0andZ<Oand || @+ W ||>| Z ||, the stability of the

closed-loop system is ensured

e Condition4: If 0 >0,W <0andZ >0and || @+ Z ||>|| W ||, the stability of the

closed-loop system is ensured

e Condition 5: f @ >0,W <0andZ<Oand || Q ||>] W+ Z ||, the stability of the

closed-loop system is ensured

e Condition 6: If Q <0,W >0andZ>0and || W+Z ||>| Q ||, the stability of the

closed-loop system is ensured

e Condition7: IfQ<0,W >0and Z<0and || W ||>|| @+ Z ||, the stability of the

closed-loop system is ensured

e Condition 8: If Q@ <0, W <0OandZ>Oand || Z |>| Q+W

, the stability of the

closed-loop system is ensured

In order to determine, @, Z and W, it is required to compute agc""’”’é’g(ﬂ’n’x),

agconzmgﬁ(gvnax) and agC()nlrl)ller(Q7HaX) . The derivations of I8controller Q,H,X) ,

m Bxk an
agcontroller(gvn7x) and agcomroller(gvn7x)

aI1m (9/\7](

change depending on the controller to be
utilized. The derivations are given in sec 4.3.8.2 and sec 4.3.8.3 for PID type STR and
Fuzzy PID type STR, respectively.

4.3.8.2 Derivation of the sensitivity functions for PID type STR based on SVR

In this subsection, the sensitivity of the control signal with respect to Lagrange
agcontroller(gerX)
( 50 )

m

multipliers of the parameters estimator

, the sensitivity of the

control signal with respect to inputs of the parameters estimator(ag“”""‘”gﬁ(g’n’x))

and the sensitivity of the control signal with respect to inputs of the controller

( agwntmller (Q,H.,X
Bxk

)) have been derived for PID type STR based on SVR. The computation
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of Senatl DILX) 5 4 i (4.58),
agcom‘mller(ﬂanax) _ azgct)ntroller(S2vI-LX) aem afestimaz‘orm (vanmc)
an a em a f estimator, (Qma Hmc) a Qm
agcom‘roller (97 H? X) — |:afestimawrm (Qm ,Hmc) afestimatorm (Qﬂunmc) .. afestimarurm (Qm 7HmC) :|
0Q,, "

8 controller Q7H’X
8cont lal Q(m ) = Xm Kestimaror,, (Hmc)

bestimatorm d Ol d Ok

(4.58)

gcontroller(ﬂvnax)
ol

m

The sensitivity J is expressed as follows:

agcommller (Qv H> X) _ agcontmller (Qv H> X) J em afe‘vlimatorm (Qm, Hmc) aI(extimamr,,, (Hmc)
ar[m N d em afestimatorm (Qnu Hmc) aKeslimamrm (Hmc) alIm
agcantmller (97 H>X) — 0 aKestimalorm (Hmc)
oIl e JIl,

(4.59)

The sensitivity ag""””"’g;ig’n’x)

is given as follows:

agcontroller(sza H,X) _ agcontroller(sza H,X) 8xl agcontroller(gz) H7X) axZ
= — +
8xk 8)61 8xk 8x2 8xk
agcontroller(slvI-Iv)() ax3
i
0x3 oxy

(4.60)

Thus, the sensitivities for inputs can be obtained as
X1 =€p—€p—1 = X2 — €1
X2 = € =X

x3=e,—2e,_1+e,2=x1—2¢,_1+e,2=x2—e,_1+e,2

4.61)
9 2eontrotter(Q.TL X (
gcontollaex( ) 18 ):91+93:Kpn+Kdn

1

agC()nlr()ller(Qa H7X>
8x2

agcontroller(gza H,X)
8)63

=01+6+6=K, +K; +Ky,

n

4.3.8.3 Derivation of the sensitivity functions for Fuzzy PID type STR based on
SVR

The sensitivity of the control signal with respect to Lagrange multipliers of the
agcontmller(g7H:X
aQ

m

parameters estimator (

)), the sensitivity of the control signal with
98controlier(,ILX
oIl

m

)) and the sensitivity of

the control signal with respect to inputs of the controller (ag""”””lg;ig’n’x

for fuzzy PID type STR based on SVR as follows. The computation of

respect to inputs of the parameters estimator (

)) are derived
agmntroger(gIIvX)

m
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is as follows:

agcontmller(ga II,X) _ agc()ntmller(£271':[7)() aom afestimat()r,,, (Qma Hmc)
agm d em afestimator,,, (Qrm nmc) 8Qm
agCOﬂN’O”@"(Q7 H? X) _ 8gC0mr0”€r(Q7 H7X) afestima[arm (Qm’nmc) afeslimamrm (Qm-,nmc> afeslimamrm (Qm-,nmc>
agm - a em abe.\'timutarm aaml o aamk
agcontroller(gynax) _ 8gcontroller(gan7x) K.... (H )
P Qm - P em estimator, \Ymc
(4.62)
: agcontmller(ﬂ»nvx) — afFLCPID (Q’H’X) 1 1
The computation of 90, = 90, is given as

8fFLCP1D(Q7n7X) o afFLCPID(Q7H7X> afFLCPD(efn7éfn) a‘efn _ (ﬁ Ty )afFLCPD(efrﬂéfn)xl

oK.,  Ifricm(eg,.5,) dey, JK,, dey,

0 fr1Cpp (R TLX) 9 frrcyy (@.ILX) O frico(€,:€s) e (Bot W 2 ricm en-én)
9K, 9 frice(ef,,éf,) dég, OKge, " dég,
afFLCp[D(QaHaX) o afFLCp1D(Q7rI7X) o .
3B, = oF, = frice(ef,:¢,)
(4.63)
The sensitivity ag"""’"’gﬁ(g’n’x) is expressed as follows:
agcontroller(ganax) _ agcom‘roller(gz7I-LX) aem afestimatorm(QM7nmc) aKestimalurm (Hmc)
arIm B aem afestimatorm (Qrmnmc) aKestimalarm (Hmc) aI-Im
agcontroller(ﬂznyx) _ 8gcontruller(ﬂanyx) fo) aI(estimamrm (Hmc)
(4.64)
P o d QILX) . .
The sensitivity agw,,,m,ég;ig,mx gl LCPng(k ) s given as follows:

afFLCHD(Q?H?X) . afFLCPID(Q7H7X) afFLCPD(efn’éfn) aefn + a-]CFLCPD(efmé]Pn) aéfn

oxy - afFLCPD(Efn,éf”) 8ef” oxy Be’f” oxy
afFLCPID(Q7H7X) _ (ﬁn+\Pn)(afFLCPD(efn7éfn) aefn + afFLCPD'(eftﬂéfn) aéfn
dxy, dey, dxy, déy, dxy,
(4.65)
€f Cfn €fn Cfn
= K _ = K , = = 0 s — K
ox 0 Ox den > 9y, dxy den
d frrcp, (2,11, X dfricep(ef,,éf, dfrrcyp(ef,,€éf,)
0 frrce, (Q,ILX dfricey (e, €5,)
f PIS( ) — (ﬁn‘i'q‘n)( 13). S S Kde,,)
X2 efn
The term afFLCPaDe ief"’éf”) and afFLC’j;De.(:f”’éf”) is computed as:
0 frrce(efyrér) _ (Bi(és, 0o, +Bjs1 () 4,)* — (Bj(é5,)T1, +Bjr1(¢5,)T3,)°
dey, €it1— €
. kije ke o kareRaen
Ai(es)B; 2 AM® A; B:lér B
+( (efn) ](efn)) (1—|—e_kllefn)2 +( +l(€fn) ](efn)) (1—|—g_k21efn)2
2 ke R 2 kare R
+ (Ailes,)Bj+1(és,)) m%—@wﬂ(ﬁﬂ)&ﬂ@ﬂ)) (It areny2
(4.66)
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dfrrce(es,.65)  (Aies,)T3, +Airi(er,)Ta,)? — (Ai(es, )T, +Airi (ef,)2,)?

déy, éjt1—¢;

. kige k124 ;
+(Ailey,)Bj(eg,))? (T tefmnp (Ai+1(es,)Bj(ég,))?

k eik32é.fn
_ (. )\2 _R326 T
—+ (Al(efn)Bj-i-l(efn)) (1 +e—k32éﬁl)2

kzzeikzzéfn
k €7k42éfn
_ . ; 2 Ma2¢ T
+(Al+1(efn)Bj+l(€f")) (l+e—k42éfn)2

4.4 Simulation Results

The performance of the generalized STR with adaptive PID and adaptive fuzzy PID
controllers are evaluated on the bioreactor benckmark problem. Nevertheless, the
SVR based self-tuning regulator scheme proposed in this paper can be implemented
to control a diverse range of systems and to successfully solve fundamental control

problems that frequently appear in practice such as nonlinearity, instability.

4.4.1 Bioreactor system

The bioreactor system is frequently used in technical literature as a benchmark
nonlinear system so as to appraise and compare the performances of proposed control
methodologies [5,43,60,62]. A biorector is a vessel in which water, cells (e.g., yeast
or bacteria) and nutrients (substrate) to be consumed by cells are mixed. As a result of
this consuming, product (both desired and undesired) and more cells emerge [60]. This
system is difficult to control since it has highly nonlinear dynamics and exhibits limit
cycles [60]. The system dynamics can be represented via the following differential

equations:

20 14 B(r) (4.67)

where x| (#) symbolizes the cell concentration, x,(7) indicates the amount of nutrients
in tank, u(z) is the flow rate by which the bioreactor is controlled, y() is nutrient
inhibition parameter, 3(¢) is grow rate parameter [5, 43, 60-62]. In the closed-loop
system, the aim is to control the cell concentration (y(¢) = x| (¢)) by manipulating the
flow rate (u(t)). The limitations for the magnitude of the control signal are u,,;, = 0 and
Umax = 2. The continuation period of control signal is kept constant at T, = Typax =
0.5s. The bioreactor system has been simulated using the proposed STR architecture

with both PID and fuzzy PID controllers in the generalized controller block. Since
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we have assumed that the dynamics of the system is not known, online SVR has
been utilized to identify the unknown dynamics using the input-output data pairs. The
input feature vector for SVRo4e; is obtained as M¢ = [y, - - tn—p,, Yn - - yn,ny]T where
n, = ny = 2. Simulations have been performed for three separate cases. 1) Nominal
case with no measurement noise and parametric uncertainty 2) Measurement noise is
added to the controlled output of the system 3) Parametric uncertainty is introduced
to the system. For nominal and measurement noise cases the input feature vectors are
selected as I, = [r, B, wp )T ;= [rn Ly L1 I3 vy tty—1])T and Iy = [r, Dy, t1]7
for SVRegimator Of PID type STR, and Iy, = [r, B, up_1]7, Mige = [r Iy yu] 7, Ty =
[ra D)7, Mg = [ry Ly yn Un— 1]7 are employed as input feature vector for SVRgimator OF
fuzzy PID STR where P, =e¢,—e¢,—1, 1, =€,, D,y = e, —2e,—1+e,—2and e, =1, — y,.
For the case with parametric uncertainty, the input feature vectors for SVRcgtimator Of
PID type STR are utilized as IT,, = [r, B, Yotbn—1]T, X = [y I Iy T2 yn up,—1]7 and
Iy = [ry Dy yn un—1)", and Iy, = [ry Iy Ly—i Dy yp tin—1)", Myge = My =T =TI,

are deployed as input feature vector for SVR¢gimator Of fuzzy PID STR.

4.4.2 Nominal case with no noise and parametric uncertainty

The tracking performance of both controllers for the case when no noise and parametric
uncertainty is applied to the system and all parameters are fully known is given
in Figure 4.12. The system accurately tracks the reference input. The controller
parameters are depicted in Figure 4.13-4.14. Number of the support vector for both
controller and system models are illustrated in Figure 4.15. As can be seen from

Figure 4.16, the controllers track the sinusoidal reference input accurately.
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Figure 4.12 : System output (a), control signal (b) for the case with no noise and
parametric uncertainty.
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Figure 4.16 : System output (a), control signal (b) for sinusoidal input.

4.4.3 Meaurement noise

The performance of the controllers under the influence of measurement noise is
evaluated by adding a 30 dB measurement noise to the system output. The tracking

performance and control input for controller are demonstrated in Figure 4.17.
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Figure 4.17 : System output (a), control signal (b) for the case with measurement
noise (30 dB).

4.4.4 Uncertainity in system parameters

The robustness of the controllers are examined with respect to parametric uncertainty,
y(¢) is presumed as the uncertain system parameter, where its nominal value is
Ynom () = 0.48 and alters around its nominal value as y(¢) = 0.48 4 0.06sin(0.0167z).
Figure 4.18 illustrates the tracking performance of the controllers and control signal
applied to the system in this case. By comparing Figure 4.18 with the nominal case
given in Figure 4.12, it can be perceived that uncertainty caused by the time varying

parameter is tolerated.
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Figure 4.18 : System output (a), control signal (b) for the case with parametric
uncertainty (c).

4.4.5 Closed-loop Lyapunov stability analysis

The stability analysis of the proposed control methodology derived in section 4.3.8
is carried out, and the numerical verifications for both PID type STR and Fuzzy PID
type STR are depicted in Figures 4.19-4.21 for noiseless case, and when measurement
noise and parametric uncertainty are added respectively. For stability in the sense of
Lyapunov, both V (e, ,,) > 0 and M < 0 must be ensured simultaneously. As
illustrated in Figures 4.19-4.21, it has been observed that V (e;,, ,,) > 0 and M <
0 for both controller during the course of control. In a nutshell, it can be inferred that

the closed-loop systems are stable for all cases.

-4 -4
(@ . x 10 ‘ ‘PID Type STF\" @ x 10 Fu‘zzy PID Type ‘STR
5
4 J 4
Vo V(t) 3
2 1 2
1
0 0
0 100 200 300 400 500 0 00 200 700 200 =0
3
(b) x 10 (b)
0 ‘ Y . : ] 0
2 -0.05
avi
S v
-6 ot
8 -0.15
-10 02
, , , . J
0 100 200 300 400 500 0 0 200 200 200 =00
Time[sec] Time[sec]
.
Figure 4.19: V(1)
uncertainty.

120



@

V()

(b)

PID Type STR
T T

=)

Fuzzy PID Type STR

=
o L, N W A O

o

0

®

100

200

300

400 500

-0.01
LY0)
ot -0.02

T

S b & AN

-0.03F

=

. . |
0 100 200 300 400 500
Time[sec]

. . . . |
0 100 200 300 400 500
Time[sec]

Figure 4.20 : V(¢) (a) and axggr) (b) for the case with measurement noise.
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Figure 4.21 : V(¢) (a) and agf’) (b) for the case with parametric uncertainty.

4.4.6 Comparison of the results with SVM-based PID controller

In order to evaluate the performance comparisons of the controllers, SVM-based
PID controller proposed by Iplikci [5] is deployed to control bioreactor system for
cases with no noise and parametric uncertainty, with measurement noise added to
the system and with parametric uncertainty. In a nutshell, the adjustment mechanism
proposed for SVM-based PID controller optimizes the parameters of a PID controller
via Levenberg-Marquardt algorithm by utilizing K-step ahead future Jacobian of the
system behaviour. The proposed mechanism includes five components : classical PID
controller, controller parameter tuner, SVR NARX model of the system, control signal
correction block and line search block. The PID controller has three tunable parameters
(Kp, Ki, K;) adjusted via Levenberg-Marquardt algorithm in controller parameter tuner
block. SVR NARX model approximates K-step ahead Jacobians of the system in order
to constitute Jacobian matrix which is required in Levenberg-Marquardt optimization

algorithm. Since the updated controller parameters may not good enough to force the

121



system output to follow the desired trajectory in transient-state because of modeling
inaccuracies and external disturbances, a control signal correction term which is
derived via Taylor expansion of control signal is utilized in control signal correction
block [3,5]. Line search block calculates the the optimal learning rate for control signal
correction term via golden section method. The closed-loop tracking performances
of the controllers proposed in this paper are compared with the closed-loop tracking
competency of SVM-based PID controller given in [S]. When the prediction horizon
of the SVM-based PID controller is increased, it is possible to obtain better or similar
results than PID type STR and Fuzzy PID type STR. In order to compare the controller
under the same conditions and obtain meaningful results, the prediction horizon (K)
of SVM-based PID controller is set as "K = 1". The closed-loop performances of the
controllers for the case with no noise and parametric uncertainty and the case with
measurement noise are illustrated in Figure 4.22 (left and right) respectively. The
robustnesses of the controllers with respect to parametric uncertainty are evaluated in
Figure 4.23. In order to compare controller performances numerically, the following

performance index function is employed

o)

Jcomp = Z [rn—l—l _yn—i—l]z (4.68)
n=0

and the performance comparisons are depicted in Figure 4.24.
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Figure 4.22 : Comparison of controllers for the case with no noise and parametric
uncertainty (left) and for the case with measurement noise (right).
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Figure 4.23 : Comparison of controllers for the case with parametric uncertainty.
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Figure 4.24 : Performance comparison of controllers with respect to the defined
performance index (4.68).

As can be seen from Figure 4.24, PID type STR has the best performance for all cases.
The fuzz PID type STR has better performance than SVM-based PID controller for all
cases. Comparison of the PID type STR and SVM-based PID performances is more
meaningful since the adaptation performance of the STR and Levenberg Marquardt can
be comparable. Therefore, SVR based PID type STR has better tracking performances

than SVM-based PID controller for all cases. In order to exhaustively compare the
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transient state and steady state behaviour of the controllers, the accuracies of the
controllers are compared in terms of maximum and average values of steady state
errors, settling times (according to 2% error criterion) and overshoots separately for
cases with no noise, with noise and with parametric uncertainty. The results are

tabulated in Table 4.1 and 4.2 respectively. As can be seen from Figure 4.24, and

Table 4.1 : Maximum values of steady state errors (eg(%)), settling times (¢;(2%)
(sec)) and overshoots (P.O.(%)).

ew(%) 15(2%) P.O.(%)
Controllers Noiseless Noisy Uncert. Noiseless Noisy Uncert. Noiseless Noisy Uncert.
PID Type STR 0.002 2 2 195 27.5 17 1.2605 18.0158 12.9661
Fuzzy PID Type STR  0.0019 2 2 27 34 19.5  0.0016  5.1059 14.5094
SVM-based PID 0.0559 1.185 2 31 36 72.5 0 3.5891 24.5359

Table 4.2 : Average values of steady state errors (eg(%)), settling times (¢;(2%)
(sec)) and overshoots (P.O.(%)).

ess(%) 1:(2%) P.O.(%)
Controllers Noiseless  Noisy Uncert. Noiseless Noisy Uncert. Noiseless Noisy Uncert.
PID Type STR 8.4611x10~% 1.4166 1.6691 10.6 14.5 7.9 0.2530 6.7918 4.5779
Fuzzy PID Type STR 8.0872x10~* 0.9027 1.7872 15.6 172 127 53x107* 29685 6.1315
SVM-based PID 0.0363 0.5211 1.7716 253 272 2738 0 1.9421 9.0258

Table 4.1 and 4.2, the controller with the best transient and steady state behaviour
is PID type STR. The results given in Table 4.1 and 4.2 verify the results given in
Figure 4.24.

4.5 Conclusion

Support vector machines have successfully been employed to cope with various
classification and regression problems for nearly two decades. Their performance is
justified to be superior than gradient based intelligent systems like ANNs, ANFISs due
to their convex objective function and better generalization property. However, they
have not been used as controllers since information about control input to be applied
to the system, which is required for SVR training is not available beforehand. In this
paper, a novel architecture where an online SVR is used to tune the parameters of
a generalized STR which optimizes the margin between reference input and system
output has been proposed. There are two online SVR structures employed in the
control system, SVR,oqe1 calculates the model of the controlled system and predicts

its future behaviour and SVRgimator €stimates the controller parameters of the STR.
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Two different controllers have been used in the controller block: adaptive PID and
adaptive fuzzy PID. A separate SVRcgimator 1S designed for each tunable parameter in

the controllers.

The performance of the proposed generalized adaptive control architecture and
parameter estimator is evaluated for both PID and fuzzy PID controllers on a bioreactor
benchmark system. A comprehensive stability analysis of the generalized STR is
performed. Furthermore, the closed-loop tracking performances of the STRs are
compared with SVM-based PID controller proposed by Iplikci. The robustnesses of
the controllers have also been assessed for the noiseless case and when measurement
noise and parametric uncertainty are added. Simulation results indicate that the
proposed adaptation mechanism for generalized STR accomplishes successful tracking
performance as well as good noise rejection and high toleration to parametric

uncertainties.

In future works, new SVR type adjustment mechanisms can be developed by

employing closed-loop margin notion.
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S. CONCLUSIONS AND RECOMMENDATIONS

In this PhD. thesis, three novel SVR based adaptive controller structures are introduced
for nonlinear systems. In order to deploy SVR as a controller or parameter estimator,
"closed-loop margin" notion is proposed to adjust the parameters of SVR based
structures via tracking error without requiring the controller input as training data.
Thus, closed-loop margin notion paves the way for direct utilization of SVR as a

controller and parameter estimator.

In the first proposed mechanism, SVRnarma.12 controller law is designed via
SVRnarx model of the system by achieving the SVRnarmA.L2 submodels from
previously obtained SVRyarx model. For this purpose, conversion parameters
which provide correlation among SVRnarx system model and SVRNaARMA L2 System
model have been utilized. Since the convertion parameters have crucial impact on
control performance, Levenberg-Marquardt algorithm has been employed to optimize
convertion parameters by considering K-step ahead future system behaviour. Thus,
strong identification competency of SVR and the simplicity of the NARMA model are

successfully utilized in derivation of the control law.

In the second adaptive mechanism, SVR has been directly deployed as a controller.
In the overall architecture, two separate SVR’s are used: SVRcongoller 1S used as
the controller and SVRo4e1 1S utilized to observe the dynamic alterations on system
behaviour resulting from the parameter adjustment of SVRongorer- Closed-loop

margin notion has been introduced to derive adaptation rules for SVR ontrolter-

Finally, a generalized self-tuning regulator mechanism which can be realized for any
controller with adjustable parameters is introduced for nonlinear dynamical systems
by reconfiguring the closed-loop margin notion for STR’s. As in the second control
architecture, SVRode1 18 used to approximate the dynamics of the system while a

separate SVRgtimator 1S designed for each tunable parameter of the controller.
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The performance evaluations of the controllers have been performed on nonlinear
continuously stirred tank reactor (CSTR) system or/and bioreactor benchmark system
by simulation studies. The robustnesses of the controller against system parameter
uncertainty and measurement noise have been evaluated. Also, the success of
the control architectures are compared with the performance of a SVM-based PID
controller proposed in [5]. Additionally, the stability analysis of closed-loop system

for SVR  ontronler and STR based on SVRqgtimator are conducted in detail.

It is significant to note that the implementation of intelligent methods to fast
systems such as robot arm, servo systems etc is a hard task since the adjustment
mechanisms have excessive computational load. In SVR based algorithms, most of
this computational load is due to quadratic programming (QP) solver. In this thesis,
it is justified that the proposed adjustment rules can be realized in real time control of
nonlinear systems with large time constants. Yet, it is believed that the computational
loads of SVR are substantially extenuated by courtesy of mathematical developments
conducted to enhance QP solvers and developments in CPU technology. Depending
on these developments, the proposed control mechanisms can be deployed to control

nonlinear systems with small time constants also, in near future.

As future work, the closed-loop notion proposed in this thesis can be combined with
other control methodologies to lead up to the design of various other SVR-based
adaptive controllers. It is also possible to expand the proposed structures to control
MIMO (multi input-multi output) systems. Additionally, predictive adjustment
mechanisms can be interfused with SVR onioler and STR based on SVRegtimator

architectures to enhance control performance.
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