
ISTANBUL TECHNICAL UNIVERSITYF GRADUATE SCHOOL OF SCIENCE

ENGINEERING AND TECHNOLOGY

SUPPORT VECTOR REGRESSION BASED CONTROLLER DESIGN
METHODS FOR NONLINEAR SYSTEMS

Ph.D. THESIS

Kemal UÇAK

Department of Control and Automation Engineering

Control and Automation Engineering Programme

JULY 2016

ISTANBUL TECHNICAL UNIVERSITYF GRADUATE SCHOOL OF SCIENCE

ENGINEERING AND TECHNOLOGY

SUPPORT VECTOR REGRESSION BASED CONTROLLER DESIGN
METHODS FOR NONLINEAR SYSTEMS

Ph.D. THESIS

Kemal UÇAK
(504112109)

Department of Control and Automation Engineering

Control and Automation Engineering Programme

Thesis Advisor: Assist.Prof. Dr. Gülay ÖKE GÜNEL

JULY 2016

İSTANBUL TEKNİK ÜNİVERSİTESİF FEN BİLİMLERİ ENSTİTÜSÜ

LİNEER OLMAYAN SİSTEMLER İÇİN DESTEK VEKTÖR REGRESYON
TABANLI KONTROLÖR TASARIM METODLARI

DOKTORA TEZİ

Kemal UÇAK
(504112109)

Kontrol ve Otomasyon Mühendisliği Anabilim Dalı

Kontrol ve Otomasyon Mühendisliği Programı

Tez Danışmanı: Yrd. Doç. Dr. Gülay ÖKE GÜNEL

TEMMUZ 2016

Kemal UÇAK, a Ph.D. student of ITU Graduate School of Science Engineering and
Technology student ID 504112109 , successfully defended the thesis entitled “SUP-
PORT VECTOR REGRESSION BASED CONTROLLER DESIGN METHODS FOR
NONLINEAR SYSTEMS”, which he prepared after fulfilling the requirements speci-
fied in the associated legislations, before the jury whose signatures are below.

Thesis Advisor : Assist.Prof. Dr. Gülay ÖKE GÜNEL
Istanbul Technical University

Jury Members : Prof. Dr. İbrahim EKSİN
Istanbul Technical University

Prof. Dr. Müjde GÜZELKAYA
Istanbul Technical University

Assist. Prof. Dr. İlker ÜSTOĞLU
Yıldız Technical University

Assist. Prof. Dr. Dilek BİLGİN TÜKEL
Doğuş University

Date of Submission : 27 May 2016
Date of Defense : 13 July 2016

v

vi

Whoever is honored with this secret,
S/he bequeaths an immortal work to the world

Âşık Veysel Şatıroğlu
(1894 - 1973)

vii

viii

FOREWORD

I would like to thank the following people without their help and support this Ph.D.
thesis would not have been possible. Firstly, I would like to show my gratitude to my
supervisor Asst.Prof. Dr. Gülay Öke Günel for her suggestions, encouragements and
guidance in approaching the different challenges during the thesis. I would also like to
thank my thesis progress jury members Prof. Dr. İbrahim Eksin and Asst. Prof. Dr.
İlker Üstoğlu for their support, vision, and advisements which have helped to improve
the quality of this thesis.

I am grateful to all the people from Department of Control and Automation
Engineering, Istanbul Technical University, for being a family during the many years I
spent in Istanbul.

Finally, I would like to thank my parents and my friends for their constant support
during the time I studied.

July 2016 Kemal UÇAK
(Research Assistant)

ix

x

TABLE OF CONTENTS

Page

FOREWORD... ix
TABLE OF CONTENTS.. xi
ABBREVIATIONS ... xv
LIST OF TABLES ..xvii
LIST OF FIGURES .. xix
SUMMARY ...xxiii
ÖZET ... xxv
1. INTRODUCTION .. 1
2. A NOVEL ADAPTIVE NARMA-L2 CONTROLLER BASED ON ON-
LINE SUPPORT VECTOR REGRESSION FOR NONLINEAR SYSTEMS . 7

2.1 Introduction .. 7
2.2 NARMA-L2 Model and Controller .. 13
2.3 Online ε- Support Vector Regression ... 15
2.4 NARMA Controller based on Online SVR .. 18

2.4.1 Identification of the NARMA model by SVR .. 18
2.4.2 Controller design .. 22
2.4.3 Adaptive predictive SVRNARMA-L2 controller .. 22
2.4.4 Adaptive predictive SVRNARMA-L2 controller with adaptive filter......... 25
2.4.5 Control procedure... 28

2.5 Simulation Results.. 29
2.5.1 The bioreactor system... 29
2.5.2 SVR design parameters .. 30
2.5.3 Simulation results ... 32
2.5.4 Comparison of the results with SVM-based PID controller................... 32

2.6 Conclusion.. 35
3. AN ADAPTIVE SUPPORT VECTOR REGRESSOR CONTROLLER
FOR NONLINEAR SYSTEMS... 41

3.1 Introduction .. 41
3.2 Online Support Vector Regression ... 46

3.2.1 An overview of support vector regression.. 46
3.2.2 Basic principles of online support vector regression.............................. 48
3.2.3 Derivation of update rules for Lagrange multipliers 49
3.2.4 Calculation of ∆λc .. 52

3.3 Adaptive Online SVR Controller based on Model Estimated by an Online
SVR .. 54

3.3.1 An overview of the proposed control architecture 54
3.3.2 Generalized closed-loop system margin... 57

xi

3.3.3 Online support vector regression for controller design 62
3.3.4 Stability analysis of the closed-loop system... 65

3.4 Simulation Results.. 67
3.4.1 Simulation results for continuously stirred tank reactor system 69

3.4.1.1 Noiseless condition.. 70
3.4.1.2 Measurement noise .. 72
3.4.1.3 Uncertainty in system parameters.. 72
3.4.1.4 Closed-loop Lyapunov stability analysis ... 74

3.4.2 Simulation results for bioreactor system .. 74
3.4.2.1 Noiseless condition.. 75
3.4.2.2 Measurement noise .. 75
3.4.2.3 Uncertainty in system parameters.. 76
3.4.2.4 Closed-loop Lyapunov stability analysis ... 77

3.4.3 Comparison of the results with adaptive PID based on SVR 78
3.5 Conclusion.. 81

4. GENERALIZED SELF-TUNING REGULATOR BASED ON ONLINE
SUPPORT VECTOR REGRESSION... 85

4.1 Introduction .. 85
4.2 Online support vector regression.. 90

4.2.1 An overview of support vector regression.. 90
4.2.2 Online ε-support vector regression .. 92

4.3 Contruction of Optimization Problem for Self-Tuning Regulator 96
4.3.1 An overview of self-tuning regulators .. 96
4.3.2 Generalized STR structure based on SVR.. 96
4.3.3 PID type STR based on SVR.. 99
4.3.4 Fuzzy PID type STR based on SVR... 100
4.3.5 Adaptive control algorithm for the generalized STR based on SVR 103
4.3.6 Generalized closed-loop system margin... 105
4.3.7 Online support vector regression for parameter estimator 108
4.3.8 Stability analysis of the closed-loop system... 110

4.3.8.1 Stability analysis for the generalized STR based on SVR............... 110
4.3.8.2 Derivation of the sensitivity functions for PID type STR based

on SVR... 113
4.3.8.3 Derivation of the sensitivity functions for Fuzzy PID type STR

based on SVR .. 114
4.4 Simulation Results.. 116

4.4.1 Bioreactor system ... 116
4.4.2 Nominal case with no noise and parametric uncertainty........................ 117
4.4.3 Meaurement noise .. 119
4.4.4 Uncertainity in system parameters ... 119
4.4.5 Closed-loop Lyapunov stability analysis.. 120
4.4.6 Comparison of the results with SVM-based PID controller................... 121

4.5 Conclusion.. 124
Conflict of Interest .. 125

5. CONCLUSIONS AND RECOMMENDATIONS.. 127

xii

REFERENCES.. 129
CURRICULUM VITAE... 139

xiii

xiv

ABBREVIATIONS

ABS : Anti-lock Braking System
AIMC : Adaptive Internal Model Controller
ANFIS : Adaptive Neuro-Fuzzy Inference System
ANN : Artificial Neural Network
CPU : Central Processing Unit
CSTR : Continuously Stirred Tank Reactor
DC : Direct Current
DOF : Degree Of Freedom
EMRAN : Extended Minimal Resource Allocation Algorithm
EKF : Extended Kalman Filter
FIS : Fuzzy Inference System
FLC : Fuzzy Logic Control
FPGA : Field Programmable Gate Array
GA : Genetic Algorithm
IMC : Internal Model Controller
KKT : Karush Kuhn Tucker
LSSVR : Least Square Support Vector Regression
MAGLEV : Magnetic Levitation System
MBC : Model Based Control
MLP : Multi Layer Perceptron
MPC : Model Predictive Controller
MRAC : Model Reference Adaptive Control
NARMA : Nonlinear Autoregressive Moving Average
NARX : Nonlinear Autoregressive with Exogenous Inputs
NIMC : Nonlinear Internal Model Control
OLSSVR : Online Least Square Support Vector Regression
PID : Proportional Integral Derivative
QP : Quadratic Programming
RBFNN : Radial Basis Function Neural Network
RNN : Recurrent Neural Network
SISO : Single Input Single Output
SMO : Sequential Minimal Optimization
STR : Self Tuning Regulator
SV : Support Vector
SVC : Support Vector Classifier
SVM : Support Vector Machines
SVR : Support Vector Regression
SVRcontroller : Support Vector Regressor Controller
SVRestimator : Support Vector Regressor Estimator
SVRNARMA-L2: NARMA-L2 Support Vector Regression Model
SVRNARX : NARX Support Vector Regression Model
SVRmodel : Support Vector Regressor Model
TS : Takagi Sugeno

xv

xvi

LIST OF TABLES

Page

Table 2.1 : Computation times(in ms)... 35
Table 3.1 : Computation times(in ms) for SVRcontroller... 80
Table 4.1 : Maximum values of steady state errors (ess(%)), settling times

(ts(2%) (sec)) and overshoots (P.O.(%)). ... 124
Table 4.2 : Average values of steady state errors (ess(%)), settling times

(ts(2%) (sec)) and overshoots (P.O.(%)). ... 124

xvii

xviii

LIST OF FIGURES

Page

Figure 1.1 : Block diagram of model based adaptive control systems.................. 2
Figure 1.2 : Flow chart of the thesis.. 5
Figure 2.1 : NARMA model. .. 13
Figure 2.2 : NARMA controller. ... 14
Figure 2.3 : E,S and R subsets before (a) and after (b) training 18
Figure 2.4 : Decomposition of SVRNARX model (a) to SVRNARMA-L2 model (b). 19
Figure 2.5 : SVRNARMA-L2 controller based on online SVR. 23
Figure 2.6 : Adaptive SVRNARMA-L2 controller based on online SVR................. 24
Figure 2.7 : Adaptive SVRNARMA-L2 controller based on online SVR with

adaptive filter... 26
Figure 2.8 : Tracking performance surface with respect to penalty term (λ)

and prediction horizon (K) for bioreactor. .. 31
Figure 2.9 : System output (a), control signal (b), and number of support

vectors (c) with adaptive filter for the case with no noise or
parametric uncertainty... 33

Figure 2.10: Adaptive controller (a,b) and filter parameters (c) for the case with
no noise or parametric uncertainty. ... 34

Figure 2.11: System output (a), control signal (b), and number of support
vectors (c) with adaptive filter for the case with measurement noise. 35

Figure 2.12: Adaptive controller (a,b) and filter parameters (c) for the case with
measurement noise.. 36

Figure 2.13: System output (a), control signal (b), uncertain system parameter
(c), and number of support vectors (d) with adaptive filter for the
case with parametric uncertainty... 37

Figure 2.14: Adaptive controller (a,b) and filter parameters (c) for the case with
parametric uncertainty... 38

Figure 2.15: Tracking performance of SVRNARMA-L2 controller (a) and
SVM-based PID controller (b) for the case with no noise or
parametric uncertainty... 38

Figure 2.16: Tracking performance of SVRNARMA-L2 controller (a) and
SVM-based PID controller (b) for the case with measurement noise. 39

Figure 2.17: Tracking performance of SVRNARMA-L2 controller (a) and
SVM-based PID controller (b) for the case with parametric
uncertainty (c). .. 39

Figure 2.18: Tracking performance comparison of the controller with respect
to the defined performance index (2.51). .. 40

Figure 3.1 : E, S and R subsets before (a) and after (b) training. 49
Figure 3.2 : The block diagram of the proposed control architecture. 54

xix

Figure 3.3 : The adaptation mechanisms of SVRcontroller and SVRmodel. 55
Figure 3.4 : Margins of SVRcontroller (a) and SVRmodel (b)................................... 58
Figure 3.5 : Closed-loop system margin in three dimensions. 59
Figure 3.6 : Projected closed loop margin before (a) and after (b) training.......... 59
Figure 3.7 : Projected closed loop margin before (a) and after (b) training.......... 61
Figure 3.8 : Closed-loop system margin in three dimensions. 61
Figure 3.9 : Combined controller and system model margins in three

dimensions. ... 61
Figure 3.10: System output (a), control signal (b) for variable step input. 70
Figure 3.11: Adaptation of SVRcontroller parameters (left), SVRmodel parame-

ters (right).. 71
Figure 3.12: System output (a), control signal (b) for sinusoidal input. 71
Figure 3.13: Adaptation of SVRcontroller parameters (left), SVRmodel parame-

ters (right).. 71
Figure 3.14: System output (a), control signal (b) for variable step input. 72
Figure 3.15: Adaptation of SVRcontroller parameters (left), SVRmodel parame-

ters (right).. 73
Figure 3.16: System output (a), control signal (b), time varying system

parameter (c). .. 73
Figure 3.17: V (t) (a) and ∂V (t)

∂ t (b) for noiseless (left), noisy (right) and with
parametric uncertainty cases (middle). ... 74

Figure 3.18: System output (a), control signal (b) for variable step input. 76
Figure 3.19: Adaptation of SVRcontroller parameters (left), SVRmodel parame-

ters (right).. 76
Figure 3.20: System output (a), control signal (b) for variable step input. 77
Figure 3.21: Adaptation of SVRcontroller parameters (left), SVRmodel parame-

ters (right).. 77
Figure 3.22: System output (a), control signal (b), time varying parameter (c)..... 78
Figure 3.23: Adaptation of SVRcontroller parameters (left), SVRmodel parame-

ters (right).. 79
Figure 3.24: V (t) (a) and ∂V (t)

∂ t (b) for noiseless (left), noisy (right) and with
parametric uncertainty cases (middle). ... 80

Figure 3.25: Tracking performance of SVRcontroller (a) and SVM-based PID
controller (b) with no noise... 81

Figure 3.26: Tracking performance of SVRcontroller (a) and SVM-based PID
controller (b) with measurement noise. .. 82

Figure 3.27: Tracking performance of SVRcontroller (a) and SVM-based PID
controller (b) with parametric uncertainty (c)..................................... 82

Figure 3.28: Tracking performance of SVRcontroller (a) and SVM-based PID
controller (b) with no noise... 83

Figure 3.29: Tracking performance of SVRcontroller (a) and SVM-based PID
controller (b) with measurement noise. .. 83

Figure 3.30: Tracking performance of SVRcontroller (a) and SVM-based PID
controller (b) with parametric uncertainty (c)..................................... 84

Figure 3.31: Tracking performance comparison of the controller with respect
to the defined performance index (3.67). .. 84

xx

Figure 4.1 : E, S and R subsets before (a) and after (b) training [1–4]................. 92
Figure 4.2 : Self-tuning regulator. ... 97
Figure 4.3 : Generalized self-tuning regulator based on online SVR. 98
Figure 4.4 : Fuzzy PID controller.. 100
Figure 4.5 : The membership functions for inputs and rule base.......................... 101
Figure 4.6 : Fuzzy control surface... 101
Figure 4.7 : Margins of SVRestimator (a), adaptive controller (b) and SVRmodel

(c). ... 106
Figure 4.8 : Closed-loop system margin in three dimensions. 107
Figure 4.9 : Closed loop margin before (a) and after (b) training......................... 108
Figure 4.10: Closed loop margin before (a) and after (b) training......................... 108
Figure 4.11: Closed-loop system margin in three dimensions. 108
Figure 4.12: System output (a), control signal (b) for the case with no noise

and parametric uncertainty. ... 117
Figure 4.13: PID type STR parameters. ... 118
Figure 4.14: Fuzzy PID type STR parameters. .. 118
Figure 4.15: Number of the support vectors for controllers (a) and system

models (b). .. 118
Figure 4.16: System output (a), control signal (b) for sinusoidal input. 119
Figure 4.17: System output (a), control signal (b) for the case with

measurement noise (30 dB). ... 119
Figure 4.18: System output (a), control signal (b) for the case with parametric

uncertainty (c). .. 120
Figure 4.19: V (t) (a) and ∂V (t)

∂ t (b) for the case with no noise and parametric
uncertainty... 120

Figure 4.20: V (t) (a) and ∂V (t)
∂ t (b) for the case with measurement noise.............. 121

Figure 4.21: V (t) (a) and ∂V (t)
∂ t (b) for the case with parametric uncertainty......... 121

Figure 4.22: Comparison of controllers for the case with no noise and
parametric uncertainty (left) and for the case with measurement
noise (right). .. 122

Figure 4.23: Comparison of controllers for the case with parametric uncertainty. 123
Figure 4.24: Performance comparison of controllers with respect to the defined

performance index (4.68).. 123

xxi

xxii

SUPPORT VECTOR REGRESSION BASED CONTROLLER DESIGN
METHODS FOR NONLINEAR SYSTEMS

SUMMARY

Conventional nonadaptive controllers may be convenient enough for most industrial
processes in the case that the system does not include highly nonlinear and time
varying dynamics. Depending on the developments in technology and increasing
requirements of the people, systems are transforming into more and more complex
structures. Nonadaptive controllers cannot counteract the tracking error in case the
behaviour of the system changes perceptibly owing to internal or external factors
during the course of operation and the control performance degrades. For this purpose,
different controllers for different scenario conditions and operating points may be
designed to resume successful control in industry. Controller design depending on
different performance criteria is a momentous task since effective design of controllers
can significantly reduce the costs in industry. However, that chore can also be
automatically executed by an adaptive controller. Therefore, controllers that are
able to adapt themselves according to varying system dynamics must be developed
using optimization theory based solutions to enhance the success of the controllers in
industry.

Adaptive controllers can generally be classified as model based adaptive controllers
and model free adaptive controllers. Model based adaptive controllers utilize the
system model to approximate the behaviour of the system dynamics whereas in model
free adaptive controllers the adjustment mechanism does not need the model of the
system. The performances of model based adaptive controllers are directly influenced
by the accuracy of the system model.

Machine learning algorithms have frequently been utilized to identify the dynamical
behaviour of the system precisely in order to derive effective adjustment rules for the
parameters of adaptive controllers. Support Vector Regression (SVR), proposed by
Vladimir Vapnik et al., is one of the most favorable nonlinear system identification
methods since it guarantees the global extremum of the optimization problem.

Various adaptive controllers based on SVR have been proposed for the control of
nonlinear systems in technical literature. The common property of these studies
is that SVR is typically deployed to approximate the system Jacobian which is
required to tune parameters of adaptive controllers through gradient based optimization
algorithms.

In this thesis, three novel adaptive controller architectures based on SVR have been
proposed.The basic novelty in these architectures is that SVR has been implemented
directly as a controller and a parameter estimator for a generalized controller structure.
The performance evaluations of the proposed controllers have been examined on
various nonlinear benchmark systems by simulations. In addition, stability analysis

xxiii

of the systems have been performed. The obtained results prove that the proposed
adjustment mechanisms are effective in controlling processes with nonlinear dynamics,
noise and uncertainties.

xxiv

LİNEER OLMAYAN SİSTEMLER İÇİN DESTEK VEKTÖR REGRESYON
TABANLI KONTROLÖR TASARIM METODLARI

ÖZET

Geleneksel kontrolörler, sistemin lineer olmayan ve zamanla değişen dinamik
içermemesi durumunda, endüstriyel süreçlerin çoğunluğunda yeterince etkili ve
verimli olabilirler. Teknolojideki yeniliklere ve insanların artan gereksinimlerine
bağlı olarak, sistemler çok daha karmaşık yapılara dönüşmüştür. Eğer kontrol işlemi
sırasında sistemin davranışı, etkiyen iç ve dış dinamiklerden dolayı, ciddi derecede
değişirse, geleneksel kontrolör izleme hatasının etkisini yok edememekte ve kontrol
performansı kötüleşmektedir. Bu nedenle, endüstride kontrol sürecinin devamlılığını
sağlamak için, farklı çalışma noktaları ve çalışma senaryolarının her biri için farklı
kontrolörler tasarlanabilir. Endüstrideki çoğu kontrol süreci için, farklı performans
ölçütlerine bağlı olarak kontrolör tasarımı önemli işlemsel yük içermektedir. Bu
nedenle kontrolörlerin efektif bir biçimde tasarımı, endüstride maliyeti önemli ölçüde
düşürmektedir.

Lineer veya uyarlamalı olmayan, sabit katsayılı kontrolörler bir kez tasarlandığında,
sadece başlangıçta tasarlandığı sistemi kontrol edebilmekte ve genellikle lineer
olmayan sistemler için kabul edilebilir sistem davranışı sağlayamamaktadırlar. Çevre
sürekli değişen dinamikler içerdiği için, bu değişimlere ayak uydurabilecek, esnek,
uyarlamalı kontrolör yapılarına ihtiyaç bulunmaktadır. Sistemlerin lineer olmayan,
zamanla değişen ve/veya zaman gecikmesi içeren dinamiklerinin üstesinden gelmek
için, geleneksel kontrolör topolojilerine adaptasyon yeteneği katılarak esneklik
kazandırılabilir. Bu bağlamda, iç/dış faktörlere bağlı olarak yapısını veya davranışını
modifiye edebilen kontrolör, uyarlamalı kontrolör olarak adlandırılır.

Uyarlamalı kontrolörler, model bağımsız ve model tabanlı uyarlamalı kontrolörler
olmak üzere iki ana başlık altında sınıflandırılabilirler. Model bağımsız uyarlamalı
kontrolde herhangi bir sistem modeli ve sistem tanılama evresi gerekmemektedir.

Model tabanlı uyarlamalı kontrolde ise, sistemin gelecekteki durumu öngörülerek
sistem modelinin tanılanması gerekmektedir. Amaç, sistem dinamiklerinin gelecekteki
davranışını dikkate alan bir uyarlama kuralına kullanarak kontrolör parametrelerini
uyarlayarak, sistemin çıkış işaretini referans işaretini takip etmeye zorlamaktır.
Dolayısıyla, model tabanlı uyarlamalı kontrolde, sistem tanılama ve kontrolör tasarımı
bir arada yapılmalıdır. Seçilen kontrolör yapısına, sistem modeline ve uyarlama
kuralına bağlı olarak, çeşitli model tabanlı uyarlamalı kontrolör yapıları önerilebilir.
Sistem dinamiğinin hassas bir şekilde kestirilmesi ve kontrolör parametrelerinin
uyarlanması için modelin doğruluğu ve hassasiyeti büyük önem arz etmektedir.
Model tabanlı kontrolörler genellikle sistem dinamiklerinin iyi bir şekilde temsiline
dayanmaktadır. Bu amaçla, güçlü modelleme kapasitelerinden dolayı, yapay sinir
ağları (YSA), uyarlamalı sinirsel bulanık çıkarım sistemi (UBSÇS) ve destek

xxv

vektör regresyon (DVR) gibi akıllı modelleme metodları, lineer olmayan sistemlerin
dinamiklerini tanılamak için sıklıkla tercih edilmektedirler.

İlk olarak Vapnik vd. tarafından önerilen DVR yöntemi, konveks olmayan birincil
formdaki optimizasyon problemini, konveks ikincil bir forma dönüştürürerek global
ektremumu garanti ettiği için, makine öğrenmesi alanında en etkili regresyon
tekniklerinden biridir. YSA ve UBSÇS, konveks olmayan amaç fonksiyonlarını
optimize ettiklerinden lokal minimuma takılma riskine sahiptirler, dolayısıyla DVR
tabanlı kontrolör yapıları son yıllarda sıklıkla YSA ve UBSÇS yerine kullanılmaktadır.

Teknik literatürde, çeşitli DVR tabanlı uyarlamalı kontrolör yapıları önerilmiştir. Bu
yapılarının ortak özelliği, DVR’nin sistem dinamiğini modellemek veya türev tabanlı
optimizasyon metodları ile geleneksel kontrolörlerin parametrelerinin uyarlanması için
gereken sistem Jacobian bilgisini kestirmek için kullanılmasıdır.

Bu doktora çalışmasında, temel olarak DVR’nin doğrudan doğruya kontrolör veya
parametre kestirici olarak kullanıldığı DVR tabanlı yeni uyarlama mekanizmalarının
tasarımı amaçlanmıştır. Böylece, lineer olmayan sistemlerin kontrolü için, DVR
tabanlı üç tane yeni uyarlamalı kontrol mekanizması önerilmiştir. Önerilen yapılar
aşağıdaki gibi adlandırılmaktadır:

• DVR tabanlı uyarlamalı NARMA-L2 kontrolör

• Uyarlamalı DVR kontrolör

• DVR tabanlı genelleştirilmiş öz-uyarlamalı regülatör

İlk önerilen kontrolör yapısında, DVR’nin güçlü modelleme yeteneği ve NARMA-L2
kontrolörün fonksiyonelliğini birleştirilerek, lineer olmayan sistemler için DVR
tabanlı NARMA-L2 kontrolör yapısı önerilmiştir. Bu yapıda, sistemin önceden
elde edilmiş NARX modelinden yararlanarak NARMA-L2 alt modellerin parame-
trelerinin elde edilmesi ve bu alt modellerden NARMA-L2 kontrolörün tasarımı
amaçlanmıştır. Sistemin NARX modelinden NARMA modeline geçiş için dönüşüm
parametreleri kullanılmıştır. Dönüşümü sağlayan parametrelerin optimizasyonu
için Levenberg-Marquardt optimizasyon algoritmasından yararlanılmıştır. Sistemin
K-adım sonraki davranışı öngörülerek dönüşüm parametreleri optimize edilmiştir.
Kontrol sisteminin başarımı, lineer olmayan bioreaktör sistemi üzerinde değer-
lendirilmiştir. Uyarlama mekanizmasının dayanıklılığı, sistemin çıkışına ölçme
gürültüsü eklenmesi ve sisteme parametrik belirsizlik katılması durumlarında test
edilmiştir. Önerilen kontrolörün performansı, [5]’de önerilen DVR tabanlı PID
kontrolör yapısının performansıyla karşılaştırılmıştır. Sonuçlar, önerilen kontrol
mekanizmasının, lineer olmayan dinamik sistemleri kontrol etmek için başarılı bir
şekilde uygulanabileceğini göstermektedir.

İkinci önerilen kontrol yapısında, DVR, ilk defa doğrudan doğruya kontrolör
olarak kullanılmıştır. Kontolör çıkışı hakkında herhangi bir ön bilgi gerekmeksizin
kontrolör parametrelerinin uyarlanmasını sağlamak için, referans giriş işaretinin
ve sistem çıkışının fonksiyonu olarak tanımlanan "kapalı-çevrim marjini" kavramı
önerilmiştir. Böylece, kontrolör bloğundaki DVR’ nin parametreleri, kapalı çevrim
izleme hatasıyla optimize edilebilmekedir. Kontrol parametrelerinin uyarlanmasının
kontrol edilecek sistem üzerindeki etkilerinin gözlemleyebilmek için, ikinci bir

xxvi

DVR yapısı kullanılmıştır. Uyarlama mekanizmasının kararlılığı ayrıntılı bir şekilde
incelenmiştir. DVR kontrolörün başarımı, nominal, ölçme gürültüsü ve parametrik
belirsizlik durumları için lineer olmayan sürekli karıştırılan reaktör (CSTR) ve lineer
olmayan bioreaktör sistemleri üzerinde, simülasyonlarla incelenmiştir. Buna ek
olarak, DVR kontrolörün ve [5]’de önerilen DVR tabanlı PID kontrolörün performans
karşılaştırmaları gerçekleştirilmiştir. Sonuçlar, DVR kontrolörün, düşük izleme hatası
elde etmede, ölçme gürültüsü ve bozucuları bastırmada başarılı kontrol performansına
sahip olduğunu göstermektedir.

Üçüncü olarak önerilen yapıda, lineer olmayan sistemler için, DVR tabanlı, uyarlan-
abilecek parametreye sahip herhangi bir kontrolöre uygulanabilecek, genelleştirilmiş
öz-uyarlamalı regülatör yapısı tasarlanmıştır. Önerilen mekanizmanın yeniliği,
kontrolör parametrelerini kestirebilmek için, DVR’nin ilk defa doğrudan doğruya
parametre kestirici olarak kullanılmasıdır. Bu amaçla, ikinci önerilen mekanizmadaki
"kapalı çevrim marjini" kavramı, öz-uyarlamalı regülatörler için tekrar düzenlenmiştir.
Uyarlama mekanizması, sistemin davranışının değişimini kestirmek için kullanılan
çevrimiçi DVR sistem modeli, uyarlanabilir parametreler içeren bir uyarlamalı
kontrolör ve ayrı bir çevrim içi DVR ile gerçekleştirilen parametre kestiriciden
oluşmaktadır. Genelleştirilmiş uyarlamalı kontrol yapısının ve parametre kestiricinin
performans başarımı, kontrolör bloğunda ayrı ayrı PID ve bulanık PID kontrolörler
kullanılarak, lineer olmayan bioreaktör sistemi üzerinde gerçekleştirilmiştir. Kon-
trolörün karalılık analizi yapılmış ve kontrolörün başarımı [5]’de önerilen DVR
tabanlı PID kontrolör ile karşılaştırılmıştır. Kontrolörlerin dayanıklılığı, sistemin
nominal koşullarda çalışması durumunda, sistemin çıkışına ölçme gürültüsü eklenmesi
durumunda ve parametrik belirsizlik durumlarında incelenmiştir. Simülasyon
sonuçları, önerilen yapının, ölçme gürültüsü ve parametrik belirsizlik bastırmadaki
etkinliğini göstermektedir.

xxvii

xxviii

1. INTRODUCTION

Adaptation is a substantial competency of living organisms which increases the

resistance of species to adverse environmental conditions and provides them to

transfer their genetic information to future generations [6]. The species which cannot

accomplish adaptation are faced with danger of extinction. Adaptation exists almost

in every area of life from the evolution of the species to human relations. Whereas

people who are capable of adaptation to different enviroments are quickly accepted

by the society and are socially successful, the bacteria adapting to the antibiotics

acquire resistance against them. In many engineering fields, a variety of solutions

which converge to an optimal value iteratively can be computed to solve problems

by imitating the adaptation features of living organisms. In control engineering,

robust controller structures which provide persistence of control processes in spite of

changing conditions and disturbances have been proposed inspired by the adaptation

features of biological systems. Once a nonadaptive controller is designed to control

a specific system, it will provide acceptable performance only for that system for a

particular operating condition, but can not provide acceptable system behaviour in all

situations especially for nonlinear systems since the controller has rigid structure due

to its fixed controller parameters [3, 7]. Therefore, the necessity for adaptive flexible

controller structures emerges as the environment generally involves continuously

changing dynamics. In order to overcome strong nonlinearities, time-delays and time

varying dynamics of systems, flexibility can be acquired to conventional controller

topologies by introducing adaptation. In this sequel, a controller which can modify its

structure or behaviour depending on internal/external factors is called as an adaptive

controller.

Adaptive controllers can be roughly classified under two main headings: model-free

adaptive controllers and model based adaptive controller. In model-free adaptive

(MFA) control, it is explicit that the adaptive control methodology does not require

any system model and system identification phase [8].

1

System

Adaptation Law System Model

Setpoint

Controller
Parameters

Adjustment
Mechanism

Controller Parameters

C
ontroller Param

etersC
on

tr
ol

le
r P

ar
am

et
er

s
Controller Parameters

Controller
Control
Signal

System
Output

Figure 1.1 : Block diagram of model based adaptive control systems.

In model based adaptive control, identification of system model is required in order to

interfuse adaptation ability to controller by approximating the future behaviour of the

system . Hence, the system identification and controller design are aggregated [9]. A

block diagram of a model based adaptive control system is illustrated in Figure 1.1.

As depicted in Figure 1.1, in model based adaptive control the aim is to force system

output to track reference signal by updating the controller parameters according to

an adaptation law taking into account the future response of the system dynamics.

Various model based adaptive controllers can be proposed depending on the chosen

controller, system model and adaptation law. The accuracy of the model is crucial to

accurately estimate the system behaviour and obtain proper direction vector to adjust

controller parameters. The model based adaptive controllers are generally based on

good representation of the systems dynamics. For this purpose, owing to their powerful

modeling capacity, intelligent methods such as artificial neural networks (ANN),

adaptive neuro-fuzzy inference systems (ANFIS) and support vector regression (SVR)

have frequently been preferred to identify the dynamics of nonlinear systems.

Support Vector Regression (SVR) , first asserted by Vapnik et al. [10–12], is one

of the most effective regression techniques. The main strength of SVR is that the

non-convex primal form of the optimization problem can be converted to a new dual

convex form in which global extremum is ensured. SVR based controller structures

have been preferred to ANN and ANFIS in recent years since the ANN and ANFIS

system models are only valid locally due to the their non-convex objective functions.

2

Various control architectures based on SVR have been proposed in technical literature.

The common feature of these adaptive structures is that SVR is utilized to model

system dynamics or approximate system Jacobian in order to tune the parameters of

the adaptive controllers via derivative based optimization algorithms.

In this PhD thesis, it has constitutively been aimed to design an SVR based novel

adaptation mechanism where SVR is directly utilized as controller or parameter

estimator. Thus, three novel adaptive control mechanisms based on SVR have been

proposed for nonlinear systems. These are:

• Adaptive NARMA-L2 Controller based on Support Vector Regression

• Adaptive Support Vector Regressor Controller

• Generalized Self-Tuning Regulator based on Support Vector Regression

In the first control architecture [13], the strong modelling capability of SVR and

the functionality of the NARMA-L2 controller structure are merged and a novel

online SVR based NARMA-L2 controller for nonlinear dynamical systems has been

proposed. It has been aimed to acquire the parameters of NARMA-L2 submodels

via the previously obtained NARX model of the system, and then NARMA-L2

controller is designed via the obtained NARMA-L2 submodels. In order to accomplish

conversion from NARX model to NARMA model, conversion parameters are utilized.

The conversion parameters are optimized via Levenberg-Marquard optimization

algorithm by taking into account K- step ahead future behaviour of the system. The

performance evaluation of the control system has been performed on a nonlinear

bioreactor system. The robustness of the mechanism has been tested for measurement

noise and parametric uncertainty cases. The performance of the proposed controller is

compared with an SVM-based PID controller proposed in [5]. The results indicate that

the proposed mechanism can be succesfully employed to control nonlinear dynamical

systems.

In the second control architecture [3], SVR is directly utilized as a controller

for the first time in technical literature. In order to provide adaptation of the

controller parameters without necessarily any prior information on controller output,

"closed-loop margin” notion which is defined as the margin between reference input

3

and system output has been proposed. Thus, the SVR parameters in controller block

are optimized via closed-loop tracking error. A second online SVR is employed

in order to estimate the system dynamics and observe the impacts resulting from

adaptation of the controller parameters on system behaviour to be controlled. The

closed-loop system stability analysis of the adaptation mechanism has thoroughly been

conducted. The performance evaluation of the SVR controller has been examined

by simulations performed on continuously stirred tank reactor (CSTR) and bioreactor

benchmark problems for nominal case and when measurement noise and parametric

uncertainty are added. In addition to this, the performance comparison of the

the controller has been executed with an SVM-based PID controller proposed in

[5]. The results indicate that the online SVR controller has quite succesful control

performance in attaining low tracking error, suppressing measurement noise and

parametric uncertainties.

In the third control architecture [6], a novel generalized self tuning regulator based on

online SVR which can be implemented for any controller with adjustable parameters

has been introduced for nonlinear dynamical systems. The main novelty of the

proposed mechanism is the direct utilization of the SVR as a parameter estimator

for the first time in order to approximate controller parameters. For this purpose,

the closed-loop margin notion proposed for the second control architecture has been

reconfigured for STR’s. The adaptation mechanism is composed of a forward SVR

model of the system which is employed to estimate future dynamical change in system

behaviour, an adaptive controller involving tunable parameters and a parameters

estimator block realized by separate online SVR’s to estimate each tunable controller

parameter. The performance evaluation of the proposed generalized adaptive control

architecture and parameter estimator is assessed on a bioreactor benchmark system

by employing two different controller topologies: Adaptive PID and adaptive fuzzy

PID controllers. The stability analysis of the generalized structure has been conducted

and the tracking performance of both controllers are compared with SVM-based PID

controller proposed in [5]. The robustnesses of the controllers have been examined for

the noiseless case and when measurement noise and parametric uncertainty are added.

The simulation results show the effectiveness of the proposed adjustment mechanism

on measurement noise and parametric uncertainty rejection competencies.

4

Three journal articles reporting the accomplishments of this thesis have been published

in journals indexed by SCI-Expanded. In chapter 2, 3 and 4, these articles are given.

Hence, the organization of the thesis is as in Figure 1.2.

2. NARMA-L2 CONTROLLER

3. SVR CONTROLLER

1. INTRODUCTION

4. SVR-BASED STR

5. CONCLUSION

Controller Parameters

Controller Parameters

Figure 1.2 : Flow chart of the thesis.

In chapter 2, the paper titled “A Novel Adaptive NARMA-L2 Controller based on

Online Support Vector Regression for Nonlinear Systems” (explaining in detail the

first control architecture given above) which has been published online in Neural

Processing Letters is available.

In chapter 3, the paper titled “An Adaptive Support Vector Regressor Controller for

Nonlinear Systems” (explaining in detail the second control architecture summarized

above) which has been published in Soft Computing is given.

In chapter 4, the paper titled “Generalized Self-Tuning Regulator Based on Online

Support Vector Regression” (explaining in detail the third control architecture given

above) which has been published online in Neural Computing and Applications is

given.

The controller proposed in chapter 2 is structurally different from the controllers given

in chapter 3 and 4. Therefore, chapter 2 can be studied independently from chapter 3

and 4. Since the controllers in chapter 3 and 4 are based on "closed-loop margin", it

is preferred to view chapter 3 and 4 consecutively for better understanding. The thesis

ends with a brief conclusion part in chapter 5.

5

6

2. A NOVEL ADAPTIVE NARMA-L2 CONTROLLER BASED ON ONLINE
SUPPORT VECTOR REGRESSION FOR NONLINEAR SYSTEMS 1

2.1 Introduction

The way to survival for living organisms is adaptation to the physical world. Similarly,

continuation of the process in control systems depends on the adaptation skills of

the controllers to internal and external factors affecting the system. In nonlinear

systems, determination of the control input to cope with the nonlinear dynamics of

the system is a challenging task. Therefore, representation of complex systems via

simple models is crucial to design effective controllers. An ingenious model can be the

key to obtain a high performance control method. Nonlinear autoregressive moving

average (NARMA)-L2 controller, introduced by Narendra and Mukhopadhyay [14],

is one of the most effective artificial neural network (ANN) controller architectures

for nonlinear systems. The central idea of this type of controller is to extricate the

control signal from nonlinear dynamics of the system model via Taylor expansion

[15–17]. Thus, a nonlinear model is achieved with seperate control signal term which

is eluded from nonlinear inner dynamics of the system model. The controller is

simply a rearrangement of neural network system model, which is trained offline in

batch form [17, 18]. An important advantage of NARMA-L2 controller is that it does

not require the design of extra network topology or controller training as in model

reference adaptive control (MRAC). NARMA-L2 controller has been successfully

utilized to control various nonlinear systems in technical literature. Majstorovic et

al. [15] designed a NARMA-L2 controller for a two tank system which is derived via

offline NARMA model of the system. Pedro et al. showed a realistic implementation

of NARMA-L2 slip controller for an anti-lock braking system (ABS) [16]. Hagan

et al. compared the performance of various controller structures based on ANNs on

a continuously stirred tank reactor (CSTR), a single link robot arm and a magnetic

1This chapter is based on the paper "Uçak K. and Günel G.Ö., (2016), A novel adaptive NARMA-L2
controller based on online support vector regression for nonlinear systems, Neural Processing Letters,
doi: 10.1007/s11063-016-9500-7"

7

levitation system [17, 19]. They have controlled a catalytic CSTR via NARMA-L2

controller. Since NARMA-L2 controller produces an oscillatory control signal,

Pukrittayakamee et al. [18] proposed to use a term which consists of scaled reference

and system output in order to alleviate oscillation and chattering in control signal.

Wahyudi et al. [20] smoothed NARMA-L2 controller to control a single link robot

arm since nonlinearities and parametric uncertainities are exceptionally apparent in a

single link manipulator. As underactuated systems are difficult to control and can be

asymptotically stabilized via continuous static feedback law, Akbarimajd and Kia [21]

utilized NARMA-L2 controller for a two-degree of freedom (DOF) underactuated

planar manipulator. Vesselenyi et al. [22] have achieved to control the position of a

pneumatic actuator via NARMA-L2 controller. The common feature of the works in

literature is utilization of offline training phase to obtain NARMA-L2 model of the

system [14–22].

The controller performance in model based adaptive methods is directly influenced

by modeling inaccuracies. Nonlinear systems can be succesfully modeled via various

intelligent modeling techniques such as ANN [23, 24], adaptive neuro fuzzy inference

system (ANFIS) [23–25] and support vector regression (SVR) [26–28]. Since the

network topologies which are trained with backpropogation algorithm (ANN and

ANFIS) may get stuck at local minima resulting from their non-convex objective

function, it is likely that they obtain system model only locally. In order to reduce

modelling inaccuracies and improve controller performance, SVR based identification

and control methods have been popularly applied in recent years due to their non-linear

prediction and generalization competency. Since the objective function in SVR is

convex, the gradient effects which occur in ANN and ANFIS vanish in SVR and global

extremum is ensured. Therefore, SVR-based controller structures [5,29] have recently

been used as leading model based adaptive controllers instead of ANN based approach,

since they yield a unique solution and possess powerful generalization ability [29,30].

Various controller structures based on SVR have been proposed to control nonlinear

systems in literature. These structures can be grouped under four main headings:

adaptive PID controllers, inverse controllers, internal model controllers (IMCs) and

model predictive controllers (MPCs).

8

Shang et al. [31] utilized online least square SVR based on sliding window in order

to model Jacobian of the system which is required to obtain update rules for PID

parameters via gradient descent. Since the model based on sliding window forgets

the transient dynamics of the system in steady state, Zhao et al. [32] proposed to

alter the size of the sliding window to improve training performance of the model

and also the controller performance which depends on its Jacobian approximation

competency. The kernel functions used in SVR to provide nonlinearity have design

parameters which have direct efficacy on regression performance. Ucak and Oke [29]

considered to tune bandwith parameter of the kernel function simultaneuously with

PID controller parameters via gradient descent method. Yuan et al. [33] proposed

a composite controller structure which consists of feedforward and feedback parts.

The feedforward part is derived using system Jacobian which is estimated by SVR

system model. Conventional PID controller is employed as feedback controller in order

to interfuse robustness to the controller structure against disturbances and estimated

errors, and robustness of the control structure has also been examined. Iplikci [5]

offered a support vector machines (SVM)-based PID controller in which the controller

parameters are adjusted via Levenberg-Marquardt algorithm by approximating K-step

ahead system Jacobian. The controller is formed of five components: classical

incremental PID controller, ε-SVR nonlinear autoregressive with exogenous inputs

(NARX) model of the system, line search block, control signal correction block and

controller parameter tuner. The Jacobian matrix utilized in parameter tuner block is

coalescence of correction block which includes K-step ahead system Jacobian and

a gradient vector which involves first order derivative of control signal with respect

to controller parameters. Control signal correction block produces a term which

is added to the computed control signal since the adjusted controller parameters

may not be adequate to compel the system output to track desired reference. The

control signal correction term is derived via Taylor approximation of the control signal

which includes correction term. Golden section method has been employed in line

search block to determine optimum learning rate for the correction term. The main

characteristics of these works is that SVR is utilized to model both the system and

the Jacobian. Unlike previously mentioned studies, Takao et al. [34] used a support

vector classifier (SVC) as a swithing structure in a decision tree framework to assign

suitable controller parameters according to the operating point of the system. The

9

whole operating region is splited into small uncertainty ranges via a priori information.

Robust PID controllers for each small range are constructed. Then, a single SVC is

designed for each small uncertainty range to determine whether the current operating

conditions of the system belong to that range or not. By combining all SVCs, a main

decision tree which covers the whole operating range of the system is constituted.

Based on the final decision, the appropriate controller for the current state of the system

is deployed.

The main aim in control theory is to design a controller which identifies the inverse

dynamics of the system to be controlled as closely as possible. For this purpose, inverse

controllers which mimic inverse dynamics of the system can be designed using data

sampled approaches. The main stalemate of inverse controllers is that there may be

no unique inverse controller, moreover, there is no guarantee for the existence of the

system inverse. Liu et al. [35] employed an SVR to identify inverse dynamics of a

nonlinear system and designed an inverse controller based on this model. The control

signal error which is also the approximation error of SVR is compensated via a PID

controller. Wang et al. [36] used an online SVR to design an inverse controller for

a nonlinear system to be controlled. Yuan et al. [37] utilized two SVR structures as

the inverse controller and forward model of the system. The parameters of controller

and system model are optimized online via backpropagation algorithm. The stability

and convergence analysis of the controller and model are given in order to guarantee

convergence and fast learning.

Another model based control technique for nonlinear systems is nonlinear internal

model control (NIMC). NIMC is frequently utilized as a nonlinear control method

owing to its disturbance rejection capabilities [38] and robustness properties [39]. The

drawbacks of NIMC are that its implementation is convenient, it is restricted only for

open-loop stable systems [40] and it is based on the assumption that the system is

reversible. Since the determination of system model is the most significant stage of

the design [38], NIMC performance depends on accurate modelling. For this purpose,

powerful generalization and modeling capacities of SVR have been combined with

IMC in [38, 39, 41, 42]. Zhao et al. [38] employed LS-SVR to avoid complex inverse

controller. Sun and Song [41] suggested an adaptive IMC for nonlinear systems

by combining LS-SVR with sequential minimal optimization (SMO) based pruning

10

algorithm. Wang and Yuan [42] derived an approximate inverse control law via Taylor

expansion of NARMA model where SVR is used to approximate system Jacobian and

they also analyzed the stability of the proposed control law.

Model predictive control (MPC) can succesfully be used to handle systems with large

time delay, non-minimum phase properties or unstable dynamics. MPC provides very

robust schemes [43, 44] to control highly nonlinear dynamical systems compared to

PID controllers and can cope with structural changes [44–48]. All kinds of MPC are

based on the same tactics: using the future predictions of the system model, a set of

future control signals is obtained by solving, at each sampling instant, a finite-horizon

open-loop optimal control problem and then the first element of the control sequence

is applied to the system [43, 44]. In MPC, it is aimed to update the set of control

signals so that the system will follow the reference signal closely by minimizing an

objective function which includes future approximated tracking errors and estimated

control signals. For this purpose, a direction vector should be determined to update the

control signal vector. This direction vector is commonly composed of first and second

order derivatives of system output with respect to control inputs which are estimated

via intelligent model of the system. Iplikci [43, 44], Du and Wang [49] and Shin et

al. [50] deployed SVR based system models in MPC in order to overcome modelling

inaccuracies of highly non-linear systems. The performance of the MPC may devolve

if the model of the controlled system cannot be accurately computed. Iplikci [44] and

Du and Wang [49] proposed to utilize online SVR system model in MPC framework

in order to cope with modelling inaccuracies resulting from disturbances or varying

dynamics. Shin et al. [50] proposed to update the parameters of the previously offline

trained SVR model via gradient descent algorithm to prevent deterioration in SVR

system model.

In this paper, the strong modelling capability of SVR is combined with the

functionality of the NARMA-L2 controller structure to propose a novel online

SVR based NARMA-L2 controller for nonlinear single input single output (SISO)

dynamical systems. The NARMA controller in general consists of two nonlinear

submodels which are independent from current control signal applied to the system.

If ANN is used to estimate these submodels, a subnetwork should be designed for

each of them. The parameters of these subnetworks in NARMA based on ANN can

11

be easily adjusted without knowing the exact outputs of the submodels since update

rules for each parameter of the subnetworks can be derived by using backpropagation

algorithm and chain rule. However, estimation techniques based on ANN have a

major drawback, they are likely to get stuck at local minima and the models attained

by ANN will be valid only locally. This is the main rationale behind our choosing

SVR to estimate NARMA-L2 submodels. The primary advantage of SVR compared

to backpropagation based identification methods is that global extremum is assured,

hence the system model prevalent in all regions is obtained precisely. Nevertheless,

if NARMA submodels are estimated by SVR instead of ANNs, there is a major

difficulty. To obtain the optimum mapping function in SVR the input-output training

pairs must be available, however outputs of NARMA submodels are not known a priori,

so estimating NARMA model with SVR is a hard task. In this paper, we overcome this

problem by deriving the NARX model of the system first, and then obtaining NARMA

submodels via NARX model of the system. Thus, it is achieved to design NARMA-L2

controller using NARMA-L2 model of the system.

The main contribution of the paper is to convert an online SVR model of the system

to an online NARMA-L2 controller, without necessarily any prior information on

submodel outputs. The parameters which are utilized in conversion are optimized

via Levenberg-Marquardt algorithm by considering K-step ahead future behaviour of

the system. The performance of the proposed SVR controller has been evaluated

by simulations carried out on a bioreactor benchmark system. Robustness of the

proposed controller has been examined by adding measurement noise and parametric

uncertainty to the system. The performance of the controller has been compared

with an SVM-based PID controller proposed by Iplikci [5]. The results indicate that

the online SVR NARMA-L2 controller together with online SVR model attain good

modelling and control performances.

The paper is organized as follows: Section 2.2 describes the basic principles of

NARMA-L2 model and controller. Online ε-SVR is summarized in section 2.3.

In section 2.4, the proposed control architecture is explained and the optimization

problem to derive SVR submodels is given. In section 2.5, simulation results and

performance analysis of the controller are given together with an assessment of real

12

time applicability. Also, the proposed method is compared with an SVM-based PID

controller. The paper ends with a brief conclusion in Section 2.6.

2.2 NARMA-L2 Model and Controller

NARMA-L2 model represents the dynamics of a nonlinear system exactly in a

neighborhood of the equilibrium state [14]. The output of the NARMA-L2 model

is as follows:

ŷ NARMA n+d = f̂n + ĝnun (2.1)

where f̂n = Fn(xn) and ĝn = Gn(xn) are two nonlinear functions to be approximated

and xn = [un−1 · · ·un−nu,yn · · ·yn−ny+1]
T stands for the current input feature vector of

the model where nu and ny emblematise the number of the past control inputs and

system outputs included in the feature vector, d indicates the relative degree. Fn and

Gn denote the submodels computed by some numerical or intelligent estimator.

(.)nG ×
∑

T
D
L

T
D
L

+
+

(.)nF
 1 NARMAˆ
n

y
+

nxny

nu

adasdasdasd

adasdasdasd

ad
as

da
sd

as
d

adasd
asdasd

Figure 2.1 : NARMA model.

The control signal un is succesfully extricated from the nonlinearities in the model

[15, 19, 51]. The main superiority of this form is that it allows us to solve for the

required control input which forces the system output to track the desired reference

signal [15, 51]. As can be seen from (2.1), the next control signal un is separated

from nonlinear dynamics. Thus, the control signal forcing the system to follow the

desired behaviour can be obtained via f̂n and ĝn sub-models. In ANN based NARMA

controllers, design of controller consists of two steps. The first step is to identify the

dynamics of the system to be controlled by training Fn(.) and Gn(.) submodels. Second

step is to design NARMA controller and approximate un using Fn(.) and Gn(.) trained

at the previous step. The structure of the NARMA-L2 model for d = 1 is illustrated in

Figure 2.1. The parameters of submodels Fn(.) and Gn(.) are optimized to minimize

13

System

(.)nF (.)nG

∑

−

T
D
L

T
D
L

+

Online NARMA
Controller

nx

1nr + nu 1ny +

adasd
asdasd

ad
a

sd
as

da
sd

adasdasdasd

adasdasdasd

Figure 2.2 : NARMA controller.

the error between system and model outputs. After identifying the dynamics of the

system as in model given in Figure 2.1, NARMA-L2 controller can be designed by

substituting reference signal (rn+1) in place of system output (yn+1) since the system

output is compelled to follow the reference signal. The control signal produced by the

NARMA-L2 controller is obtained as follows:

un ∼=
rn+1− f̂n

ĝn
(2.2)

where f̂n = Fn(xn) and ĝn = Gn(xn) are estimated outputs of submodels [19, 52, 53].

The block diagram of NARMA-L2 controller is illustrated in Figure 2.2. The

advantage of NARMA-L2 controller is that it is simple to implement and it requires

only two submodels of the system to be controlled without a separate controller

[14, 21, 52]. However, the control input computed by NARMA-L2 controllers is

typically oscillatory and this is a major drawback of this method [19]. Another

weakness is the relatively complicated structure of NARMA-L2 compared to NARX

model since two separate subblocks are used [52]. Also, if the inverse model is locally

unstable or near stability margin the design of NARMA controller is not possible [52].

14

2.3 Online ε- Support Vector Regression

In regression, the aim is to approximate a function from a set of sample data. SVR, first

asserted by Vapnik et al. [10–12], is one of the most effective regression techniques

amongst data sampled modeling methods since it ensures global extremum. Let us

consider a training data set:

T = {xi,yi}N
i=1 xi ∈ X⊆ Rn,yi ∈ R (2.3)

where xi is the ith input data and yi is the corresponding output value, N is the size of

the training data and n is the dimension of the input space. The regression function (ŷi)

which represents the relationship among training data set in (2.3) can be characterized

via SVR model in (2.4):

ŷi = wΦ(xi)+b, i = 1,2, · · · ,N (2.4)

where w is the weight vector of the regressor in feature space F; Φ(xi) is the image of

input data in F and b is the bias term [43].

In ε-SVR, an optimal regression surface which represents the given training data

as accurately as possible is obtained. The optimal regressor is searched within a

predefined ε-tube chacterized with Vapnik’s ε-insensitive loss function. The primal

form of the optimization problem is described as follows [1, 43]:

min
w,b,ξ ,ξ ?

P =
1
2
‖w‖2 +C

N

∑
i=1

(ξi +ξ
?
i) (2.5)

with the following constraints constituted via Vapnik’s ε-insensitive loss function

yi−wΦ(xi)−b≤ ε +ξi

wΦ(xi)+b− yi ≤ ε +ξ
?
i

ξi,ξ
?
i ≥ 0 , i = 1,2, · · ·N

(2.6)

where P indicates primal objective function, ε is the upper value of tolerable error,

ξ ’s and ξ ?’s are the slack variables representing the deviation from ε tube [1, 43].

Since the objective function in (2.5) is non-convex with respect to primal variables

(w, b, ξ , ξ ?) and the training algorithm may get stuck at local minima, it is difficult to

determine the optimal regressor parameters. Therefore, a Lagrangian function which

15

enables to convert the optimization problem to a new form where global minima

is guaranteed can be derived via Lagrangian multiplier method. The Lagrangian,

which is the combined version of primal objective function and its constraints, can be

comprised as follows [1, 43]:

LP =
1
2
‖w‖2 +C

N

∑
i=1

(ξi +ξ
?
i)+

N

∑
i=1

βi(yi−wΦ(xi)−b− ε−ξi)

+
N

∑
i=1

β
?
i (wΦ(xi)+b− yi− ε−ξ

?
i)+

N

∑
i=1

(−ηiξi−η
?
i ξ

?
i)

(2.7)

by inserting non-negative Lagrange multipliers β , β ?, η and η?. First order optimality

conditions for Lagrangian (LP) are given as

∂Lp

∂w
= 0−→ w−

N

∑
i=1

βiΦ(xi) = 0 (2.8)

∂Lp

∂b
= 0−→

N

∑
i=1

(βi−β
?
i) = 0 (2.9)

∂Lp

∂ξi
= 0−→ C−βi−ηi = 0 , i = 1,2, ...N (2.10)

∂Lp

∂ξ ?
i
= 0−→ C−β

?
i −η

?
i = 0 , i = 1,2, ...N (2.11)

Lagrangian (LP) function has to satisfy the above optimality conditions at the solution.

If the optimality conditions in (2.8-2.11) are substituted in (2.7), dual form of the

ε-SVR optimization problem which is a quadratic problem is attained as follows:

D =
1
2

N

∑
i=1

N

∑
j=1

(βi−β
?
i)(β j−β

?
j)Ki j + ε

N

∑
i=1

(βi +β
?
i)− yi

N

∑
i=1

(βi−β
?
i) (2.12)

subject to

0≤ βi ≤C,

0≤ β
?
i ≤C,

N

∑
i=1

(βi−β
?
i) = 0 , i = 1,2, · · ·N

(2.13)

where Ki j = Φ(xi)
T Φ(x j) is the kernel value which represents the similarity among

the xi and xj training samples. The optimal values of the dual variables βi, β ?
i in

the constructed dual optimization problem formulated in (2.12-2.13) are obtained via

quadratic programming (QP) solvers. The support vectors are the training data with

Lagrange multipliers that have λi = βi−β ?
i 6= 0 [5, 43, 54]. Thus, regression function

16

in (2.4) can be rewritten with respect to the support vectors and the corresponding

Lagrange multipliers as in (2.14):

ŷ(x) = ∑
i∈SV

λiK(xi,x)+b , λi = βi−β
?
i (2.14)

The optimization problem in (2.12-2.13) is suitable for offline batch learning

algorithms. In online learning, since every new added data changes the structure of the

regression problem consistently, it is required to derive incremental tuning rules for

model parameters by ensuring the Karush-Kuhn-Tucker (KKT) conditions. For this

purpose, a new Lagrangian function which is derived from dual optimization problem

(2.12-2.13) can be formulated as

LD =
1
2

N

∑
i=1

N

∑
j=1

(βi−β
?
i)(β j−β

?
j)Ki j + ε

N

∑
i=1

(βi +β
?
i)−

N

∑
i=1

yi(βi−β
?
i)

−
N

∑
i=1

(δiβi +δ
?
i β

?
i)−

N

∑
i=1

ui(C−βi)+u?i (C−β
?
i)−

N

∑
i=1

z(βi +β
?
i)

(2.15)

Thus, KKT optimality conditions for LD are obtained in (2.16) via first order necessary

optimality conditions [4, 55–58]:

∂LD

∂βi
=

N

∑
j=1

(β j−β
?
j)Ki j + ε− yi−

N

∑
i=1

δi +
N

∑
i=1

ui + z = 0

∂LD

∂β ?
i
=−

N

∑
j=1

(β j−β
?
j)Ki j + ε + yi−

N

∑
i=1

δ
?
i +

N

∑
i=1

u?i − z = 0

(2.16)

δ
(?)
i ≥ 0,u(?)i ≥ 0,δ (?)

i β
(?)
i = 0,u(?)i (C−β

(?)
i) = 0

According to KKT conditions, at most one of the βi and β ?
i should be nonzero and both

are nonnegative [4]. KKT conditions allow the reformulation of SVM for regression by

dividing the whole training data set T into the three main subsets: Error support vectors

(E), support vectors (S) and remaining samples (R) which are classified depending on

their Lagrange and margin values in (2.17) [55].

E = {i | |λi|=C, |h(xi)| ≥ ε}

S = {i | 0 < |λi|<C, |h(xi)|= ε}

R = {i | |λi|= 0, |h(xi)| ≤ ε}

(2.17)

Using the function to be approximated and the SVR, error margin can be defined as

follows:

h(xi) = f (xi)− yi =
N

∑
j=1

λ jKi j +b− yi (2.18)

17

S

E

R

()

() ()

()

f

f h

f

ε

ε

+ 


− 

x

x x

x

S

E

S ()

() ()

()

f

f h

f

ε

ε

+ 


− 

x

x x

x

(a)
Y

(b)
Y

cx
x x

ˆ ()

()
c c

c

c

y f

h

y

=





x

x

cx

ˆ ()
() c c

c
c

y f
h

y

=



x
x

output of svr

new sample

adadad adadad

a
da

da
d

ad
ad

ad

Figure 2.3 : E,S and R subsets before (a) and after (b) training

Convergence conditions for online SVR algorithm are given in (2.19) depending on

KKT conditions (2.16) and error margin function (2.18)

h(xi)≥ ε,λi =−C

h(xi) = ε,−C < λi < 0

− ε ≤ h(xi)≤ ε,λi = 0

h(xi) =−ε,0 < λi <C

h(xi)≤−ε,λi =C

(2.19)

The geometrical interpretation of incremental learning and these three subsets are

visualized in Figure 2.3. In the incremental online SVR algorithm, when a new training

data xc is received, its corresponding λc value is initially set to zero, which is later

updated to ∆λc [43]. Then, the largest possible change ∆λc is calculated while at

the same time keeping the system at the equilibrium state with respect to the new

KKT conditions [43]. Depending on ∆λc, the bias and the Lagrange multipliers of

the samples in support set (S) are adjusted. Detailed information related to recursive

algorithm can be achieved via [4, 55, 59].

2.4 NARMA Controller based on Online SVR

2.4.1 Identification of the NARMA model by SVR

The first step in the proposed control method is to obtain a NARMA model of the

system. Initially, from the available input-output data, a NARX model is easily

computed. In order to design a NARMA-L2 controller, the dynamics of the NARX

18

model should be decomposed into a NARMA model. Therefore two separate SVRs

are designed as depicted in Figure 2.4. SVRNARX calculates the NARX model of the

system from the input-output dataset of the system, then SVRNARMA-L2 decomposes

this model to a NARMA model in order to design a convenient SVRNARMA-L2

controller.

(.)nF

(.)nG

∑
T
D
L

T
D
L

+
+

1NARMAˆ
n

y
+

ny

nu

nx

T
D
L

T
D
L

1NARXˆ
n

y
+

ny

nu

(a)

(b)

SVRNARX

SVRNARMA-L2

×

adasdasdasd

adasdasdasd

ada
sdasdasdad

as
da

sd
as

d

Figure 2.4 : Decomposition of SVRNARX model (a) to SVRNARMA-L2 model (b).

We have used online SVR for modelling so that the model and the controller can be

adapted in accordance with the changing dynamics of the system. Since the parameters

of the model are updated in online manner, the regression functions of submodels

F(.) and G(.) may alter as the number of discrete time steps n proceeds, therefore

F(.) and G(.) are symbolized as Fn(.) and Gn(.) as given in Figure 2.4. The greatest

difficulty of SVR based modelling is the necessity of input-output data pairs. In ANN

based modeling, the weights related to Fn(.) and Gn(.) subnetworks can be tuned

simply using backpropagation algorithm and chain rule, even if the output of Fn(.)

and Gn(.) are not known exactly. In SVR, input-output data pairs must be available

to find the optimal regression function. Since the outputs of Fn(.) and Gn(.) are not

known exactly, SVR submodels for Fn(.) and Gn(.) cannot be designed separately.

Therefore, the focus in this study is to drive model parameters of SVRNARMA-L2 from

19

the previously obtained SVRNARX model of a system. To achieve this, firstly a main

SVRNARX model is designed as in Figure 2.4 (a), we call this as the "main model",

then submodels given in Figure 2.4 (b) are decomposed depending on the main model.

In SVRNARMA-L2 controller, the aim is to find un. However as can be seen in (2.2),

at time step n the model parameters of Fn(.) and Gn(.) are not known. Therefore, the

outputs of these submodels can be approximated depending on the model parameters

obtained at the previous step (n−1). Hence, the output of the submodels at prediction

phase can be expressed as follows:

f̂−n ∼= Fn−1(xn)

ĝ−n ∼= Gn−1(xn)
(2.20)

where the subscript stands for the time index of the state vector and the superscript

is used to indicate whether the system model derived in time step n or n− 1 is used.

More specifically, "-" in (2.20) means that the models computed in the previous time

step n−1, are evaluated with the current state vector xn to obtain f̂−n and ĝ−n . Similarly,

"+" in f̂+n and ĝ+n indicates that the model obtained in current step (n) has been utilized

together with the current state vector xn as follows:

f̂+n ∼= Fn(xn)

ĝ+n ∼= Gn(xn)
(2.21)

In order to compute the control signal (un), the parameters of Fn(.) and Gn(.)

submodels must be obtained. Therefore, the following decomposition step is crucial to

derive these parameters.

Modeling and decomposition step at time step n-1 : Consider the SVRNARX model

of the system depicted in Figure 2.4 (a). Regression function for this model is given

by:

ŷNARXn =
N

∑
i=1

βiK(xi,xc)+bβ (2.22)

Since this model is not directly usable in feedback linerization, the main model

(SVRNARX) should be divided to submodels as in Figure 2.4 (b). Let us assume that the

the corresponding regression function for Fn−1(xn−1) and Gn−1(xn−1) are as follows:

f̂+n−1
∼= Fn−1(xn−1) =

N

∑
i=1

αiK(xi,xn−1)+b f

ĝ+n−1
∼= Gn−1(xn−1) =

N

∑
i=1

θiK(xi,xn−1)+bg

(2.23)

20

Thus, output of the SVRNARMA-L2 model is obtained as:

ŷNARMAn = Fn−1(xn−1)+Gn−1(xn−1)un−1

=
N

∑
i=1

αiK(xi,xn−1)+b f +
[N

∑
i=1

θiK(xi,xn−1)+bg

]
un−1

=
N

∑
i=1

[
αi +θiun−1

]
K(xi,xn−1)+b f +bgun−1

(2.24)

If SVRNARMA-L2 and SVRNARX models are matched in (2.25) , a relation between

submodels of SVRNARMA-L2 and SVRNARX can be attained as in (2.26).

ŷNARXn
∼= ŷNARMAn

N

∑
i=1

βiK(xi,xn−1)+bβ =
N

∑
i=1

[
αi +θiun−1

]
K(xi,xn−1)+b f +bgun−1

(2.25)

βi = αi +θiun−1

bβ = b f +bgun−1

(2.26)

The following assumption has been proposed to utilize this relation effectively and to

approximate the parameters of the submodels by this approach.

Assumption: Let us assume that the following relations exist between submodels.

αi = µ1(.)θi

b f = µ2(.)bg

(2.27)

Thus, the following equality is obtained:

Fn−1(xn−1) = µ1(.)Gn−1(xn−1)+ [µ2(.)−µ1(.)]bg (2.28)

As can be seen from (2.28), the derived SVRNARMA-L2 model depends only on

Gn−1(xn−1) for the given values of µ1(.) and µ2(.). Using (2.26) and (2.27), the

bias and the Lagrange multipliers of the SVRNARMA-L2 submodels Fn−1(xn−1) and

Gn−1(xn−1) are obtained with respect to parameters of SVRNARX model as follows:

θi =
βi

µ1(.)+un−1
, αi = µ1(.)θi

bg =
bβ

µ2(.)+un−1
, b f = µ2(.)bg

(2.29)

Thus, outputs of the internal dynamics (Fn−1(xn−1),Gn−1(xn−1)) required for

controller design can be calculated using main SVRNARX model. The output of the

derived SVRNARMA-L2 model is:

ŷNARMAn = Fn−1(xn−1)+Gn−1(xn−1)un−1

= f̂+n−1 + ĝ+n−1un−1

xn−1 = [un−2 · · ·un−nu−1,yn−1 · · ·yn−ny]
T

(2.30)

21

This assumption is crucial in building the relationship between NARX and NARMA

models and hence making it possible to obtain SVRNARMA-L2 model from the main

SVRNARX model.

2.4.2 Controller design

Prediction step, Calculation of un at time step n: In this section, the control

signal applied to the system is calculated via submodels Fn−1(.) and Gn−1(.) which

are approximated using the trained SVRNARX model at previous step (n− 1). The

corresponding output of the submodels against current state vector (xn) are represented

as f̂−n and ĝ−n as given in (2.31).

xn = [un−1 · · ·un−nu,yn · · ·yn−ny+1]
T

f̂−n ∼= Fn−1(xn)

ĝ−n ∼= Gn−1(xn)

(2.31)

Thus, the control signal (un) produced by SVRNARMA-L2 controller can be calculated

as:

un ∼=
rn+1− f̂−n

ĝ−n
(2.32)

by means of the submodels obtained at previous step (Fn−1,Gn−1). Then, un is applied

to the system and yn+1 is computed. So, input-output data pair can be arranged

for next training phase of main SVRNARX model. Accordingly, SVRNARX model of

the system can be utilized to derive a SVRNARMA-L2 controller law given in (2.32)

without explicitly knowing the outputs of the submodels F(.) and G(.) separately. The

proposed controller is illustrated in Figure 2.5 where yn+1 is the output of the system,

rn+1 denotes reference signal and un is the control signal produced by the controller.

It is anticipated that the tracking performance of the control system against varying

dynamics is going to improve by using the online SVR models. The adaptive structure

of the submodels has an impact on the controller performance.

2.4.3 Adaptive predictive SVRNARMA-L2 controller

The tracking performance of the proposed controller depends on the parameters

(µ1(.),µ2(.)) utilized to compute the outputs of submodels. We have employed a

predictive structure which takes into account the K-step ahead future behaviour of the

22

system to adjust µ1(.) and µ2(.) parameters effectively. The optimization technique

proposed by Iplikci for SVM-based PID controller [5] has been utilized to optimize

µ1(.) and µ2(.) parameters. The objective function given in (2.33) is optimized via

Levenberg-Marquardt algorithm to tune µ1(.) and µ2(.).

E(µµµ) =
1
2

K

∑
k=1

ê2
n+k +

1
2

λ [un−un−1]
2 (2.33)

where ên+k = rn+k− ŷn+k. The parameters can be adjusted using Levenberg-Marquardt

algorithm as follows: [
µ1new

µ2new

]
=

[
µ1old

µ2old

]
+
[
JJJT JJJ+ηIII

]−1 JJJT e (2.34)

where

JJJ =


∂en+1
∂ ŷn+1

∂ ŷn+1
∂ µ1

∂en+1
∂ ŷn+1

∂ ŷn+1
∂ µ2

...
...

∂en+K
∂ ŷn+K

∂ ŷn+K
∂ µ1

∂en+K
∂ ŷn+K

∂ ŷn+K
∂ µ2

∂
√

λ∆un
∂ µ1

∂
√

λ∆un
∂ µ2

=


−∂ ŷn+1

∂un

∂un
∂ µ1

−∂ ŷn+1
∂un

∂un
∂ µ2

...
...

−∂ ŷn+K
∂un

∂un
∂ µ1

−∂ ŷn+K
∂un

∂un
∂ µ2√

λ
∂un
∂ µ1

√
λ

∂un
∂ µ2



=


−∂ ŷn+1

∂un
...

−∂ ŷn+K
∂un√
λ


[

∂un
∂ µ1

∂un
∂ µ2

]
=


−∂ ŷn+1

∂un
...

−∂ ŷn+K
∂un√
λ


[

bg−gn
gn

−bg
gn

]
= JJJmJJJc

(2.35)

and e = [ên+1 · · · ên+K
√

λ∆un]
T . The adaptation mechanism for the controller is

illustrated in Figure 2.6.

System

1ny +

(.)nF (.)nG

(.)nF

(.)nG

∑

−

∑
T
D
L

T
D
L

T
D
L

T
D
L

+

+
+

nu

∑

+

−

1ˆny +

1nr +

nx

nx

NARMA-L2SVR Model

NARMA-L2SVR Controller

×

adasdasdasd

adasd
asdasdad

as
da

sd
a

sd

adasdasdasd

Figure 2.5 : SVRNARMA-L2 controller based on online SVR.

23

System
1ny +

T
D
L

T
D
L

T
D
L

T
D
L

nu

+

−

1ˆny +

1 1

1 2

ˆ ˆn ny y

µ µ
+ + ∂ ∂=  ∂ ∂ 

J

1

1 2 1(.) [(.) (.)]

n n
n

n

n n g

r f
u

g

f g bµ µ µ

+ −=

= + −

[]1 2µ µ∆ ∆

∑
1nr +

NARMA-L2SVR Model

NARMA-L2SVR Controller

adasdasdasd

adasdasd
asd

a
da

sd
as

da
sd

adasdasdasd

Figure 2.6 : Adaptive SVRNARMA-L2 controller based on online SVR.

If the current state vector and jth support vector are cccn =

[un−1 · · ·un−nu ,yn · · ·yn−ny+1]
T and xxx j = [x j1 · · ·x jnu,x jnu+1 · · ·x jnu+ny]

T respectively,

K-step ahead future behaviour of the system can be approximated as

ŷn+k = fn(ĉccn+k)+gn(ĉccn+k)un

ĉccn+k = [un · · ·un︸ ︷︷ ︸
k

un−1 · · ·un+k−nu︸ ︷︷ ︸
nu−k

ŷn+k · · · ŷn+1︸ ︷︷ ︸
k−1

yn · · ·yn+k−ny︸ ︷︷ ︸
ny+1−k

]T (2.36)

where

fn(ĉccn+k) = ∑
j∈SV

α jK(dn+k, j)+b f = ∑
j∈SV

α jexp(
−dn+k, j

2σ2)+b f

gn(ĉccn+k) = ∑
j∈SV

θ jK(dn+k, j)+bg = ∑
j∈SV

θ jexp(
−dn+k, j

2σ2)+bg

(2.37)

dn+k, j is defined as the Euclidean distance between the state vector at time step (n+

k)th and jth support vector xxx j as:

dn+k, j =
√

(cccn+k− xxx j)T (cccn+k− xxx j) =
√

DUn+k +DYn+k =
√

An+k (2.38)

where

DUn+k =
min(k,nu)

∑
i=1

(un− x j,i)
2

+
nu

∑
i=min(k,nu)+1

(un+min(k,nu)−i− x j,i)
2
δ (nu− k)

(2.39)

24

DYn+k =
min(k−1,ny)

∑
i=1

(ŷn+k−i− x j,nu+i)
2

+
ny

∑
i=min(k−1,ny)+1

(yn+min(k−1,ny)+1−i− x j,nu+i)
2
δ (ny +1− k)

and δ (.) is unit step function. The system Jacobian is given as

∂ ŷn+k

∂un
=

∂ fn(cn+k)

∂dn+k, j

∂dn+k, j

∂un
+

∂gn(cn+k)

∂dn+k, j

∂dn+k, j

∂un
un +gn(cn+k) (2.40)

where

∂ fn(cn+k)

∂dn+k, j
=
−1
2σ2 ∑

j∈SV
α jexp(

−dn+k, j

2σ2)

∂gn(cn+k)

∂dn+k, j
=
−1
2σ2 ∑

j∈SV
θ jexp(

−dn+k, j

2σ2)

(2.41)

and

∂dn+k, j

∂un
=

∂dn+k, j

∂An+k

[
∂An+k

∂DUn+k

∂DUn+k

∂un
+

∂An+k

∂DYn+k

∂DYn+k

∂un

]
∂dn+k, j

∂An+k
=

1
2
√

An+k
=

1
2dn+k, j

∂An+k

∂DUn+k

=
∂An+k

∂DYn+k

= 1

∂DUn+k

∂un
=

min(k,nu)

∑
i=1

2(un− x j,i)

∂DYn+k

∂un
=

min(k−1,ny)

∑
i=1

2(ŷn+k−i− x j,nu+i)
∂ ŷn+k−i

∂un
δ (k− i)

(2.42)

2.4.4 Adaptive predictive SVRNARMA-L2 controller with adaptive filter

As mentioned in section 2.2, NARMA-L2 controller generally produces a control

signal with more oscillation and chattering compared to other controllers such as

MRAC, MPC etc. [19]. Since the oscillatory control input contains high frequency

components, the unmodeled high frequency dynamics of the system can be excited. In

order to reduce chattering and oscillation, the control signal can be filtered [19]. The

general form of the filter is given as:

H(z) =
u fn

ucn

=
∑

dnu
m=0 qmnz−m

1+∑
dde
k=1 vknz−k

(2.43)

where vk, k ∈ {1, · · · ,dde} and qm, m ∈ {0,1, · · · ,dnu} are "feed-backward" and

"feed-forward" coefficients of the filter, and dde and dnu indicate the degree of the

25

"feed-backward" (denominator) and "feed-forward" (numerator) parts of the filter

respectively. The adaptation mechanism for the controller is illustrated in Figure 2.7.

System
1ny +

T
D
L

T
D
L

ncu

+

−

1ˆ

ˆ

n

n K

y

y

+

+

 
 
 
  

⋮

m c=J J J

1

1 2 1[]
n n n

n n
n

n

n n g

r f
u

g

f g bµ µ µ

+ −=

= + −

j m kq vµ ∆ ∆ ∆ 

∑

1nr +

T
D
L

T
D
L

nfu
0

1

1

nu

n

de

n

d
m

m
m

d
k

k
k

q z

v z

−

=

−

=

+

∑

∑

Adaptive Filter

Levenberg-Marquard

NARMA-L2SVR Controller

NARMA-L2SVR Model

adasd
asdasd

ad
as

d
as

da
sd

adasdasdasd

adasdasdasd

Figure 2.7 : Adaptive SVRNARMA-L2 controller based on online SVR with adaptive
filter.

The filtered control signal is computed as

u fn =−
dde

∑
k=1

vknu fn−k +
dnu

∑
m=0

qmnucn−m (2.44)

The tracking performance of the proposed controller depends on the parameters

(µ j(.), j ∈ {1,2}) used to compute output of submodels as well as the filter parameters

(qm,vk). A predictive structure which takes into account the K-step ahead future

behaviour of system has been proposed to adjust both µ j(.), j ∈ {1,2}, vk, k ∈

{1, · · · ,dde} and qm, m∈ {0,1, · · · ,dnu} parameters effectively. The objective function

given in (2.33) is optimized via Levenberg-Marquardt algorithm to tune parameters.

The adjustable parameters can be adapted using Levenberg-Marquardt algorithm [56]

as follows: 

µ1new

µ2new

q0new
...

qdnunew
v1new

...
vddenew


=



µ1old

µ2old

q0old
...

qdnuold
v1old

...
vddeold


+
[
JJJT JJJ+ηIII

]−1 JJJT e (2.45)

26

where

JJJ =



∂en+1
∂ µ1

∂en+1
∂ µ2

∂en+1
∂q0

· · · ∂en+1
∂qdnu

∂en+1
∂v1

· · · ∂en+1
∂vdde

...
...

...
...

∂en+K
∂ µ1

∂en+K
∂ µ2

∂en+K
∂q0

· · · ∂en+K
∂qdnu

∂en+K
∂v1

· · · ∂en+K
∂vdde

∂
√

λ∆u fn
∂ µ1

∂
√

λ∆u fn
∂ µ2

∂
√

λ∆u fn
∂q0

· · · ∂
√

λ∆u fn
∂qdnu

∂
√

λ∆u fn
∂v1

· · · ∂
√

λ∆u fn
∂vdde



=


−∂ ŷn+1

∂ µ1
−∂ ŷn+1

∂ µ2

∂ ŷn+1
∂q0

· · · ∂ ŷn+1
∂qdnu

−∂ ŷn+1
∂v1

· · · −∂ ŷn+1
∂vdde

...
...

...
...

−∂ ŷn+K
∂ µ1

−∂ ŷn+K
∂ µ2

∂ ŷn+K
∂q0

· · · ∂ ŷn+K
∂qdnu

−∂ ŷn+K
∂v1

· · · −∂ ŷn+K
∂vdde√

λ
∂∆u fn
∂ µ1

√
λ

∂∆u fn
∂ µ2

√
λunn · · ·

√
λunn−dnu

√
λu fn−1 · · ·

√
λu fn−dde


(2.46)

=


−∂ ŷn+1

∂u fn
...

−∂ ŷn+K
∂u fn√
λ


[

∂u fn
∂unn

∂unn
∂ µ1

∂u fn
∂unn

∂unn
∂ µ2

unn · · · unn−dnu
−u fn−1 · · · −u fn−dde

]

=


−∂ ŷn+1

∂u fn
...

−∂ ŷn+K
∂u fn√
λ


[
q0n

bg−gn
gn

q0n
−bg
gn

unn · · · un−dnu −u fn−1 · · · −u fn−dde

]
= JJJmJJJc

and e= [ên+1 · · · ên+K
√

λ∆u fn]
T . The Jacobian matrix JJJm is derived via SVRNARMA-L2

model of the system as given in (2.40-2.42). An adaptive first order filter is adequate

to successfully filter high frequency components and expeditiously force the system

to track the reference signal for the proposed controller mechanism. Therefore, a first

order adaptive low pass filter with an adjustable parameter is deployed to filter high

frequency components of the control input as given by:

H(z) =
u fn

ucn

=
q0n

1+(1−q0n)z−1 (2.47)

where 1− q0 , q0 are "feed-backward" and "feed-forward" coefficients of the filter

respectively. The adjustable parameters can be adapted using Levenberg-Marquardt

algorithm [56] as follows:µ1new

µ2new

q0new

=

µ1old

µ2old

q0old

+ [JJJT JJJ+ηIII
]−1 JJJT e (2.48)

27

where

JJJ =


∂en+1
∂ ŷn+1

∂ ŷn+1
µ1

∂en+1
∂ ŷn+1

∂ ŷn+1
µ2

∂en+1
∂ ŷn+1

∂ ŷn+1
∂u fn

∂u fn
∂q0

...
...

...
∂en+K
∂ ŷn+K

∂ ŷn+K
µ1

∂en+K
∂ ŷn+K

∂ ŷn+K
µ2

∂en+K
∂ ŷn+K

∂ ŷn+K
∂u fn

∂u fn
∂q0

∂
√

λ∆u fn
∂ µ1

∂
√

λ∆u fn
∂ µ2

∂
√

λ∆u fn
∂q0



=


−∂ ŷn+1

∂u fn

∂u fn
∂unn

∂unn
µ1

−∂ ŷn+1
∂u fn

∂u fn
∂unn

∂unn
µ2

−∂ ŷn+1
∂u fn

(unn−u fn−1)
...

...
...

−∂ ŷn+K
∂u fn

∂u fn
∂unn

∂unn
µ1

−∂ ŷn+K
∂u fn

∂u fn
∂unn

∂unn
µ2

−∂ ŷn+K
∂u fn

(unn−u fn−1)√
λ

∂u fn
∂unn

∂unn
µ1

√
λ

∂u fn
∂unn

∂unn
µ2

√
λ (unn−u fn−1)



(2.49)

=


−∂ ŷn+1

∂u fn
...

−∂ ŷn+K
∂u fn√
λ


[

∂u fn
∂unn

∂unn
∂ µ1

∂u fn
∂unn

∂unn
∂ µ2

(unn−u fn−1)
]

=


−∂ ŷn+1

∂u fn
...

−∂ ŷn+K
∂u fn√
λ


[
q0n

bg−gn
gn

q0n
−bg
gn

(unn−u fn−1)
]
= JJJmJJJc

2.4.5 Control procedure

The control procedure for proposed SVRNARMA-L2 controller is as follows:

Step 1: Initialize controller, filter and model parameters.

-Controller parameters: µ j, j ∈ {1,2}

-Filter parameters: qm,m ∈ {0,1 · · · ,dnu} , vk,k ∈ {1 · · · ,dde}

-SVRNARX model parameters: βββ = bβ = 0, C = 1000, ε = 10−3

Step 2: Train SVRNARX model using (u fn−1,yn) data pair

-Set index to n.

-Constitute xn−1 = [un−2 · · ·un−nu−1yn−1 · · ·yn−ny]

-Predict ŷn via SVRNARX model

-Calculate emn = yn− ŷn

If |emn|> ε

Train system model where emn = yn− ŷn

else

Continue with system model parameters obtained at previous step

Step 3: Convert SVRNARX model to SVRNARMA-L2 model

28

-Compute parameters of Fn−1 (ααα,b f) and Gn−1 (θθθ ,bg) via parameters of SVRNARX

(βββ ,bβ) as in (2.29)

-Constitute xn = [un−1 · · ·un−nuyn · · ·yn−ny+1]

-Compute f̂−n and ĝ−n via Fn−1(.) and Gn−1(.)

Step 4: Calculate the control input produced by SVRNARMA-L2 controller (ucn)

-Calculate the control signal (ucn) using the predictions of the submodels and control

law in (2.32).

Step 5: Filter the high frequency components of control signal (u fn)

- Compute the filtered control signal via (2.44)

Step 6: Apply the filtered control signal u fn to the system to compute yn+1

- Training data pair of SVRNARX model for the next step is obtained (u fn , yn+1)

Step 7: Calculate the Jacobian

-Apply u fn K-times to SVRNARX model in order to constitute Jacobian matrix in (2.46

or 2.49)

Step 8: Learning step for controller and filter

-Update Controller parameters (µ j, j ∈ {1,2}) and filter parameters (qm,m ∈

{0,1 · · · ,dnu} , vk,k ∈ {1 · · · ,dde}) using (2.45 or 2.48)

Step 9: Increment n = n+1 and go to step 2.

2.5 Simulation Results

2.5.1 The bioreactor system

The performance of the proposed SVRNARMA-L2 controller is examined on a bioreactor

system . Bioreactor is a tank containing water and cells (e.g., yeast or bacteria) which

consume nutrients (substrate) and produce product (both desired and undesired) and

more cells [60]. Since the uncontrolled equations of this system are highly nonlinear

and exhibit limit cycles [60], it is a very difficult system to control and it has frequently

been employed as a nonlinear benchmark problem to examine the performances of

proposed adaptive controllers [5, 43, 61, 62]. The differential equations describing the

cell concentration [c1(t)] and amount of nutrients [c2(t)] are given as follows:

ċ1(t) =−c1(t)u(t)+ c1(t)(1− c2(t))e
c2(t)
γ(t)

ċ2(t) =−c2(t)u(t)+ c1(t)(1− c2(t))e
c2(t)
γ(t)

1+β (t)
1+β (t)− c2(t)

(2.50)

29

where c1(t) is the controlled output of the system (y(t) = c1(t)), u(t) is the flow

rate as the control signal, γ(t) is nutrient inhibition parameter, β (t) is grow rate

parameter [5, 43, 60, 62]. In the simulations, the max-min limitations for the

magnitude of the control signal are given as umin = 0 and umax = 2; and duration

of control signal is choosen as τmin = τmax = 0.5s. Since we have assumed that

the dynamics of the system is not known, online SVRNARX has been utilized to

identify the unknown dynamics using the input-output data pairs. Then an equivalent

SVRNARMA-L2 model is obtained via proposed method given in (2.25-2.29,2.34). Thus,

SVRNARMA-L2 submodels can be computed to design the control law given in (2.32).

The input feature vectors for SVRNARX and SVRNARMA-L2 models are chosen as

Mc = [un−1 · · ·un−nuyn · · ·yn−ny+1]
T where nu = 3 and ny = 3 indicate the number of

the past inputs and outputs, respectively.

2.5.2 SVR design parameters

Identification methods based on ε-SVR possess several design parameters which have

direct influence on modeling performance. ε which is the most significant parameter

in identification is the maximum permissible modeling error in training phase of

ε-SVR. ε-SVR cannot accurately capture the dynamics of the system when ε is chosen

too large and the controller may induce unacceptable control performance. If it is

chosen too small, identification can result in too many support vectors than required

to model succesfully. Therefore ε , the maximum tolerable error for system model,

must be chosen so that an acceptable control quality [5] is obtained while the number

of support vector for SVRNARX model is kept at a reasonable level. Accordingly,

maximum tolerable error is assigned as ε = 10−3. Also, the maximum number of the

support vector is limited to a predefined value to decrease computational load in our

simulations. As can be seen in (2.13), C is the boundary of the parameter search box in

which Lagrange multipliers are searched. Since the control algorithm gets slower as the

number of support vectors increases, C is fixed at a large value (1000) in order to reduce

the number of the the support vectors as low as possible. The mapping of the input

data to feature space and the nonlinearity in SVR are provided via kernel functions,

hence selection of kernel parameters is also crucial in regression performance. In our

simulations, we utilized an exponential kernel function with K(x,y) = e
−‖x−y‖

2σ2 . The

30

value of σ effects the separability of the data in feature space. Since the kernel matrix

stores similarities of the input data, very small σ maps similar data in input space

to distant locations in feature space, the number of the support vectors for system

model increases to capture the system dynamics. On the other hand, large σ values

maps different data in input space to close locations in feature space and results in

loss of the nonlinearity of the kernel that leads to inaccurate identification of system

dynamics. Therefore, the similarities of the data in input space must be reflected in

the feature space as correctly as possible. We have also observed that very small σ

values cause fluctuations in control signal and system output since the number of the

support vectors increases to capture the system dynamics. On the other hand, when

σ is chosen too large, the nonlinearity of the kernel is withered and the control signal

is too slow, so the system cannot be forced to track reference signal accurately. In

simulations for bioreactor system SVRNARX and SVRNARMA-L2 have been designed

with σ = 0.75. The closed-loop performance of the system is observed for different

values of prediction horizon (K) and penalty parameter (λ) using the performance

criteria in (2.51) and the optimal values are determined with the grid search algorithm.

Jcomp =
1
2

∞

∑
n=1

[rn+1− yn+1]
2 +λ [un−un−1]

2 (2.51)

2
4

6
8

0.01
0.02

0.03
0.04

0.05

0.1

0.2

0.3

0.4

Kλ

Jcomp

adasdasdasd

a
dasdasdasd

ad
a

sd
as

da
sd

adasdasdasd

Figure 2.8 : Tracking performance surface with respect to penalty term (λ) and
prediction horizon (K) for bioreactor.

As can be seen from Figure 2.8, as λ increases, the fluctuation of control signal

is restricted, therefore, the tracking performance deteriorates. The performance is

positively affected as K increases. Thus, the values of λ and K for bioreactor are

31

determined as K = 9, λ = 0.005, Jcompmin = 0.013235 via the minimum of (2.51) given

in Figure 2.8.

2.5.3 Simulation results

The tracking performance of controller for the case when no noise is applied to the

system and all parameters are fully known is depicted in Figure 2.9. The controller

and filter parameters are illustrated in Figure 2.10.

In order to assess the performance of the controller with respect to measurement

noise, 30 dB measurement noise is added to the output of the system. The tracking

performance is illustrated in Figure 2.11. Adaptation of the controller and filter

parameters are given in Figure 2.12.

The robustness of the controller is inspected in terms of parametric uncertainty, γ(t) is

considered as the time-varying system parameter, where its nominal value is γnom(t) =

0.48. The value of γ(t) is allowed to slowly alter in neighborhood of its nominal

value as γ(t) = 0.48+ 0.06sin(0.012πt). It can be interpreted from Figure 2.13 that

the controller can succesfully manage to reject the uncertainty in system parameters.

Controller and filter parameters are illustrated in Figure 2.14. The maximum number

of the support vectors are limited to 10, 25 and 35 for noiseless, noisy, and parametric

uncertainty cases, respectively.

2.5.4 Comparison of the results with SVM-based PID controller

A performance comparison of SVRNARMA-L2 controller proposed in this paper and

the SVM-based PID controller implemented by Iplikci [5] has been carried out for

cases with no noise, with measurement noise added to the system and with parametric

uncertainty. The tuning mechanism described in [5] adjusts the parameters of a

PID controller via Levenberg-Marquardt algorithm by using the approximated K-step

ahead future system behaviour. The controller consists of five components: classical

incremental PID controller, SVRNARX model of the system, line search block, control

signal correction block and controller parameter tuner. The Jacobian matrix utilized in

parameter tuner block is coalescence of correction block which includes K-step ahead

system Jacobian and a gradient vector which involves first order derivative of control

signal with respect to controller parameters. K-step ahead future Jacobian of the

32

(a)

(b)

(c)

0 100 200 300 400 500

0.05

0.1

0.15

r(t)
y(t)

0 100 200 300 400 500
0.1

0.2

0.3

0.4

0.5

0.6

Time[sec]

u(t)

0 100 200 300 400 500
0

2

4

6

8

10

12

Time[sec]

#svm(t)

adasdasdasd

adasdasdasd

ad
a

sd
as

da
sd

adasda
sdasd

Figure 2.9 : System output (a), control signal (b), and number of support vectors (c)
with adaptive filter for the case with no noise or parametric uncertainty.

system is approximated via SVRNARX model of the system. Control signal correction

block produces a correction term for the control signal since the adjusted controller

parameters may not be adequate to force the system output to track the desired

reference. The control signal correction term is derived via Taylor approximation of

the control signal term which includes correction term. Golden section method has

been employed in line search block to determine optimum learning rate for correction

term. The simulation results for the SVRNARMA-L2 controller proposed in this paper

are compared with results obtained for the structure given in [5]. Same prediction

horizon (K) and penalty term (λ) have been employed in both SVRNARMA-L2 controller

and SVM-based PID controller for comparison. The tracking performances of the

controllers for cases with no noise, with measurement noise and with parametric

uncertainty are illustrated in Figures 2.15-2.17 for bioreactor system, respectively.

Comparisons of the performance index given by (2.51) for tracking performance

of both controllers are illustrated in Figure 2.18 which shows that SVRNARMA-L2

controller has better tracking performance than SVM-based PID controller for all

33

(a)

(b)

(c)

0 100 200 300 400 500
-0.08

-0.06

-0.04

-0.02

0

µ1(t)

0 100 200 300 400 500

-0.25

-0.2

-0.15

-0.1

-0.05

0

Time[sec]

µ2(t)

0 100 200 300 400 500
0

0.05

0.1

0.15

0.2

Time[sec]

q0(t)

adasdasdasd

ad
as

da
sd

as
d

adasda
sdasd

adasdasdasd

Figure 2.10 : Adaptive controller (a,b) and filter parameters (c) for the case with no
noise or parametric uncertainty.

cases except the case with parametric uncertainty. The applicability of the proposed

controller in real time is as significant as its tracking performance. For this purpose,

computation times of each operation in the control algorithm have been registered

for each case during every sampling period and the average response times of the

operations have been listed in Table 2.1 for all conditions. In our simulations, a PC

with 2.2 GHz core i7 CPU and 8 GB RAM has been operated for the implementation

of the control algorithm without optimizing codes. As can be seen from the Table

2.1, the average response times of the controller accrete for measurement noise and

parametric uncertainty cases since the controller struggles to tolerate the uncertainty

in the system. In simulations, the sampling time is chosen as 100 ms and the total

average response times of the proposed controller are less than 50 ms as given in

Table 2.1. Consequently, it can be expressed that SVRNARMA-L2 controller can be

deployed in real-time applications conveniently. Moreover, total response times can be

minimised and the controller can be easily employed by implementing the algorithm on

34

(a)

(b)

(c)

0 100 200 300 400 500

0.05

0.1

0.15

r(t)
y(t)

0 100 200 300 400 500
0.1

0.2

0.3

0.4

0.5

0.6

Time[sec]

u(t)

0 100 200 300 400 500
0

10

20

30

Time[sec]

#svm(t)

ad
as

da
sd

as
d

a
dasdasdasd

adasdasdasd

adasdasdasd

Figure 2.11 : System output (a), control signal (b), and number of support vectors (c)
with adaptive filter for the case with measurement noise.

a lower level programming environment such as C/C++ utilizing effective hardwares

(eg. FPGA) in real time application.

Table 2.1 : Computation times(in ms).

Bioreactor
Operations Noiseless Noisy Uncertainty

SVRNARX Model Training 6.8487 24.42 18.8102
Conversion to SVRNARMA-L2 Model 0.93768 0.95917 0.95705

K-step Jacobian 6.9377 8.8229 16.0968
Parameter Tuning (LM) 0.029813 0.031787 0.037375

Miscellaneous Tasks 2.9456 2.9348 3.0298
Total Time 17.6995 37.1686 38.9312

2.6 Conclusion

In this paper, a novel SVRNARMA-L2 controller is proposed where online SVR is

used to estimate SVRNARMA-L2 submodels. Firstly, a SVRNARX model is constructed

to approximate the system, then the parameters of the SVRNARMA-L2 model are

derived via SVRNARX model of the system. Consequently, SVRNARMA-L2 controller

35

(a)

(b)

(c)

0 100 200 300 400 500

-0.03

-0.02

-0.01

0

µ1(t)

0 100 200 300 400 500
-0.1

-0.08

-0.06

-0.04

-0.02

0

µ2(t)

0 100 200 300 400 500
0

0.05

0.1

0.15

Time[sec]

q0(t)

adasdasdasd

ad
asdasdasd

ad
as

d
as

da
sd

adasdasdasd

Figure 2.12 : Adaptive controller (a,b) and filter parameters (c) for the case with
measurement noise.

is designed using the SVRNARMA-L2 submodels. The main contribution of the paper

is that it justifies the use of an online SVRNARX model of the system directly to

derive online SVRNARMA-L2 controller as opposed to existing works in technical

literature where SVRNARX models are generally utilized for adjusting the parameters

of the traditional controllers by approximating system Jacobians. Another novelty of

this work is to use SVR to estimate system model in NARMA-L2 controller design

instead of ANN. In technical literature, NARMA-L2 controllers have previously been

designed using ANNs to approximate system model. However, ANNs are trained with

backpropagation algorithm and have the drawback that they may get stuck at local

minima which will lead to models valid only locally. The main strength of SVR in

modelling is that it minimizes a convex goal function and achieves global minimum.

The performance of the proposed controller is evaluated by simulations done on a

bioreactor benchmark system. Additionally, the success of the controller is compared

with an SVM-based PID controller. The robustness of the controller against system

parameter uncertainty and measurement noise have also been examined. The results

indicate that the proposed controller is quite succesful in attaining low tracking error,

36

(a)

(b)

(c)

(d)

0 100 200 300 400 500

0.05

0.1

0.15

r(t)
y(t)

0 100 200 300 400 500

0.2

0.4

0.6

0.8

Time[sec]

u(t)

0 100 200 300 400 500

0.45

0.5

0.55

γ(t)

0 100 200 300 400 500
0

10

20

30

40

Time[sec]

#svm(t)

adasdasdasd

a
da

sd
as

da
sd

adasda
sdasd

adasdasdasd

Figure 2.13 : System output (a), control signal (b), uncertain system parameter (c),
and number of support vectors (d) with adaptive filter for the case with

parametric uncertainty.

suppressing measurement noise and parametric uncertainties. In future works, it is

planned to extend the derivation of SVRNARMA-L2 model via SVRNARX to develop

new SVR type adaptive controller design methods.

37

(a)

(b)

(c)

0 100 200 300 400 500

-0.06

-0.04

-0.02

0

µ1(t)

0 100 200 300 400 500

-0.25

-0.2

-0.15

-0.1

-0.05

0

Time[sec]

µ2(t)

0 100 200 300 400 500
0

0.05

0.1

0.15

0.2

0.25

Time[sec]

q0(t)

adasdasdasd

a
dasdasdasd

ad
as

da
sd

a
sd

adasdasdasd

Figure 2.14 : Adaptive controller (a,b) and filter parameters (c) for the case with
parametric uncertainty.

(a)

(b)

0 100 200 300 400 500

0.02

0.04

0.06

0.08

0.1

SVRNARMA-L2

r(t)
y(t)

0 100 200 300 400 500

0.02

0.04

0.06

0.08

0.1

Time[sec]

SVM-based PID

r(t)
y(t)

adasdasdasd

ad
as

d
as

da
sd

adasdasdasd

adasdasdasd

Figure 2.15 : Tracking performance of SVRNARMA-L2 controller (a) and SVM-based
PID controller (b) for the case with no noise or parametric uncertainty.

38

(a)

(b)

0 100 200 300 400 500

0.02

0.04

0.06

0.08

0.1

SVRNARMA-L2

r(t)
y(t)

0 100 200 300 400 500

0.02

0.04

0.06

0.08

0.1

Time[sec]

SVM-based PID

r(t)
y(t)

ad
asdasdasd

ad
as

da
sd

as
d

adasdasdasd

adasdasdasd

Figure 2.16 : Tracking performance of SVRNARMA-L2 controller (a) and SVM-based
PID controller (b) for the case with measurement noise.

(a)

(b)

0 100 200 300 400 500

0.45

0.5

0.55

Time[sec]

γ(t)

(c)

0 100 200 300 400 500

0.02

0.04

0.06

0.08

0.1

SVRNARMA-L2

r(t)
y(t)

0 100 200 300 400 500

0.02

0.04

0.06

0.08

0.1

Time[sec]

SVM-based PID

r(t)
y(t)

adasdasdasd

a
dasdasdasd

ad
as

da
sd

as
d

adasdasdasd

Figure 2.17 : Tracking performance of SVRNARMA-L2 controller (a) and SVM-based
PID controller (b) for the case with parametric uncertainty (c).

39

Bioreactor
Noiseless

Bioreactor
Noisy

Bioreactor
Disturbance

1 2 3
0

0.005

0.01

0.015

0.02

0.025

Jcomp

SVRNARMA-L2

SVM-based PID

adasdasdasd

ad
asdasdasd

ad
as

da
sd

as
d

adasdasdasd

Figure 2.18 : Tracking performance comparison of the controller with respect to the
defined performance index (2.51).

40

3. AN ADAPTIVE SUPPORT VECTOR REGRESSOR CONTROLLER FOR
NONLINEAR SYSTEMS 2

3.1 Introduction

Altering a behaviour to comply with new circumstances is called "adaptation" in

everyday language [63]. Adaptive controller is a type of controller which can

modify its behaviour depending on system characteristics and external factors such

as disturbance and noise [63]. It is obvious that controllers with fixed parameters

cannot provide acceptable system behaviour in all situations [7]. Therefore, acquiring

some knowledge about how the system will respond when it is manipulated in various

ways is a vital step in controller design [52]. Since coping with strong nonlinearities

and time varying dynamics is a hard task in nonlinear systems, numerous control

techniques have been proposed to solve these problems. In order to assure good

control performance, adaptation of the controller parameters to deal with the varying

and nonlinear dynamics of the system can be necessary. To be able to adapt the

controller to the changing dynamics of the system, firstly the system dynamics must

be identified. When the dynamics of the system is known, its future behaviour can

also be predicted and the parameters of the controller can be adjusted accordingly.

Intelligent methods such as artificial neural networks (ANN), adaptive neuro-fuzzy

inference systems (ANFIS) and support vector regressors (SVR) can be used to identify

the dynamics and to obtain the future behaviour of a system. Intelligent methods can

be employed not only to model the system dynamics, but also to design a controller in

closed loop systems.

Although complicated nonlinear systems can be controlled succesfully using

intelligent methods, the performance of the controller is directly related to the

modelling performance. Since ANN and ANFIS have non-convex objective functions,

when they are used in modelling the solution may get stuck at local minima and

2This chapter is based on the paper "Uçak K. and Günel G.Ö., (2016), An adaptive support vector
regressor controller for nonlinear systems, Soft Computing, Vol.: 20, Issue: 7, Page: 2531-2556"

41

the obtained model of the system is valid only locally. The controller performance

in model based methods is highly influenced by modelling inaccuracies. In order

to reduce modelling inaccuracies and improve controller performance, SVR based

identification methods have popularly been applied in recent years due to their

non-linear prediction ability and generalization performance. The main strength of

SVR is that it uses a convex objective function and thus ensures the global solution.

Models based on SVR have commonly been utilized in model based controller

parameter tuning methods [5, 29], instead of ANN approach, since it yields a unique

solution [29, 30] and offers powerful generalization ability with very few training

data. In technical literature, there exist various controller structures based on SVR

modelling. These structures can be examined under four main headings: PID control,

inverse control, internal model control (IMC) and model predictive control (MPC).

Shang et al. [31] proposed to adjust the parameters of a PID controller via gradient

descent by approximating system Jacobian using online least square support vector

regression (OLSSVR) based on sliding window. The control performance depends

on the modelling performance which is directly affected by the size of the sliding

window. The main disadvantage of sliding window-based online learning is that

the intelligent model forgets the transient dynamics of the system in steady state.

Zhao et al. [32] proposed to increase or decrease the size of the sliding window to

prevent overfitting or underfitting. In the case where the modelling performance is

worse than the given performance interval, the kernel machine is not adequate to

learn the data, so the size of the sliding window should be increased. If the size of

the sliding window is larger than the optimum value the obtained model will be too

complex than required and there may be overfitting. The regression performance of

an SVR depends on the chosen kernel function which is generally parametric and the

numerical values of these parameters are important in determining the location of the

features mapped onto the feature space, however there is no theoretical method to

determine them numerically. Because of this, the selection of the kernel function

and the numerical values of its parameters are very crucial in terms of modelling

and control performance. For this purpose, Ucak and Oke [29] proposed to tune

kernel parameters simultaneuously with PID controller parameters via gradient descent

method to improve modelling and control performance of OLSSVR . Yuan et al.

42

[33] introduced a composite feedforward-feedback controller where the feedforward

controller is derived based on approximation model method using SVR. NARMA

model of the system has been employed to design feedforward controller to make use

of advantages of approximate model method and conventional PID has been utilized

as feedback controller in order to assure robust tracking properties. Robustness of

the controller has also been investigated [33]. Iplikci [5] proposed an adaptive PID

controller based on ε-SVR where controller parameters are updated depending on

the approximated K-step ahead future system behaviour. The controller consists of

five components, these are: classical PID controller, NARX model of the system, line

search block, control signal correction block and controller parameter tuner. ε-SVR

model has been used to approximate the system Jacobian. PID parameters have been

tuned using Levenberg-Marquard algorithm. Jacobian matrix is separated into two

blocks using chain rule, one block is for control signal correction and the other is

for parameter tuning. The updated controller parameters may not be good enough

to force the system output towards the desired trajectory, therefore, control signal

correction block has been employed via Taylor approximation. Optimum step size has

been obtained via golden section method. The common feature of these works is that

SVR is utilized to identify both the dynamics of the system and the system Jacobian.

Takao et al. [34] employed SVM as a classifier in a decision tree structure to select

eligible controller parameters according to the operating point of the system. The wide

range of uncertainty is firstly divided into small ranges using a priori information, then

robust PID controllers are designed for each small range. The switching structure

including the decision information for each small uncertainty range and corresponding

robust PID controller parameters is constructed via an SVM classifier. Depending

on the previously determined scenario and system behaviour, appropriate controller

parameters for the specific operating range are loaded to the controller.

Since the aim in controller design is to realize almost the inverse dynamics of the

controlled system, inverse model of the system can be used to manipulate the system

behaviour. The main drawback using an inverse controller is that there is no guarantee

for the existence of the system inverse or alternatively multiple inverse models of the

controlled system can be obtained. Liu et al. [35] utilized the inverse model of the

system as a controller and the control signal error has been compensated using a PID

43

controller. Wang et al. [36] deployed SVR to identify inverse dynamics of the system

as an adaptive inverse controller via online learning algorithm. The parameters of the

inverse controller and forward model of the system are adjusted via an adaptive law

based on backpropagation algorithm by Yuan et al. [37]. To guarantee convergence

and fast learning, adaptive learning rate and convergence theorems are developed [37].

Owing to its disturbance rejection capabilities [38] and robustness properties [39],

nonlinear internal model control (NIMC) has a significant role among nonlinear

control methods. In the implementation of nonlinear internal model control (NIMC),

the determination of a system model constitutes an important stage of the design

[38]. NIMC based on ANNs and fuzzy inference systems (FIS) were proposed in

literature. Generally, these methods have some drawbacks in modelling: training

speed is slow, generalization is not good, prior knowledge is needed to some degree

[39]. The core idea of ANN IMC is that ANN model and ANN inverse model are

utilized as the internal model and the IMC controller, respectively [38]. Since ANNs

utilize gradient-based training algorithms such as backpropagation and the solution of

algorithm may get stuck at local minima because of non-convex objective function,

obtaining an inverse model of the nonlinear system via ANNs is notably a difficult

task. Sun and Song [41] proposed an adaptive internal model controller (AIMC) to

control nonlinear systems by combining LSSVR with sequential minimal optimization

(SMO)-based pruning algorithm.

Model predictive control (MPC) techniques provide very robust schemes [43] to

control highly nonlinear dynamic systems with large time delays and high-order

dynamics compared to PID controllers [44–48]. All MPC techniques rely on the same

strategy: based on the future predictions of a model of the system, a set of future control

signals is obtained by solving, at each sampling instant, a finite-horizon open-loop

optimal control problem and then the first element of the control sequence is applied

to the system [43]. In order to optimize the set of the control signals depending on

the future behavior of the system, K-step ahead future system Jacobian information

is approximated via intelligent models. To reduce modelling inaccuracies of highly

non-linear systems, Iplikci [43, 44], Du and Wang [49] and Shin et al. [50] employed

SVR based system models in MPC. Iplikci [44] utilized offline SVR to model the

dynamics of system. Shin et al. [50] proposed to tune the parameters of the previously

44

offline trained SVR model via gradient descent algorithm to prevent the deterioration

in SVR system model. In order to overcome modelling inaccuracies resulting from

disturbances or varying dynamics, Iplikci [43] and Du and Wang [49] deployed online

SVR system model in MPC framework. In MPC, the aim is to adjust the set of control

signals so that the system will follow the reference signal closely. For this purpose, an

update direction for control vector should be determined. In order to obtain appropriate

direction for control vector, first and second order derivatives of system output with

respect to control inputs are estimated via SVR model depending on the optimization

algorithm.

The common feature of the works in technical literature is that SVR has mainly

been employed to approximate the system output or system Jacobian to optimize the

parameters of different controllers using gradient descent or Levenberg-Marquard type

optimization algorithms. SVMs have successfully been used to solve classification and

regression problems owing to their good generalization property and ability to find the

global minimum. However, to the best of our knowledge, they have not been used as

controllers. The main reason for this is the unavailability of the required training data,

namely the control input to be applied to the system, before the course of control.

In this paper, a novel online SVR controller is proposed to control a nonlinear

dynamical system. The main contribution of the paper is that SVR is directly utilized

as a controller for the first time, without necessarily any prior information on controller

output. SVR parameters are tuned by optimizing the margin between reference input

and system output. A second online SVR is used to estimate the model of the

system to be controlled, the estimated system output is used in tuning the controller

parameters. The performance of the proposed SVR controller has been evaluated by

simulations carried out on continuously stirred tank reactor (CSTR) and bioreactor

benchmark problems. Robustness of the proposed controller has been examined by

adding measurement noise and parametric uncertainty to the system. Stability of

the closed-loop system has also been analyzed. Additionally, the performance of

the controller has been compared with an SVM-based PID controller proposed by

Iplikci [5]. The results indicate that the online SVR controller together with online

SVR model attain good modelling and control performances.

45

The paper is organized as follows: Section 3.2 describes the basic principles of online

SVR. In section 3.3, the proposed control architecture is explained, the optimization

problem to utilize SVR directly as a controller is constructed, main features of

the problem are given via explicit figures. Training of online SVR parameters

for controller design is summarized and parameter update rules are formulated.

Also, the stability analysis of the closed loop system is presented. In section 3.4,

simulation results and performance analysis of the controller are given together with

an assessment of real time applicability. Also, the proposed method is compared with

an SVM based PID controller. The paper ends with a brief conclusion in section 3.5.

3.2 Online Support Vector Regression

This section beriefly reviews online support vector regression. The basic principles of

support vector regression and online learning method are presented in section 3.2.1 to

section 3.2.4.

3.2.1 An overview of support vector regression

Given a training data set

T = {xi,yi}N
i=1, xi ∈ X⊆ Rn,yi ∈ R (3.1)

where N is the size of the training data and n is the dimension of the input, the data can

be represented using the regression model in (3.2).

yi =< w,Φ(xi)>+b, i = 1,2, ...,N (3.2)

where Φ(xi) is the image of input data in feature space and b is the bias of the regressor.

The optimization problem for regression seeks the optimal regressor within ε tube by

optimizing the geometric margin and minimizing the training error. The primal form

of the optimization problem is defined as follows

min
w,b

1
2
‖w‖2 +C

N

∑
i=1

(ξi +ξ
?
i) (3.3)

subject to

yi−< w,Φ(xi)>−b≤ ε +ξi

< w,Φ(xi)>+b− yi ≤ ε +ξ
?
i

ξi,ξ
?
i ≥ 0, i = 1,2, · · ·N

(3.4)

46

where ε is the upper value of tolerable error, ξ ’s and ξ ? ’s are the slack variables

representing the deviation from ε tube [1, 43]. The constraints of the problem

are derived using ε-insensitive loss function [1, 54, 64]. The key idea in SVMs

is to formulate a Lagrange function from the primal objective function and the

corresponding constraints, by introducing a dual set of variables [1]. By combining

the primal objective function and its constraints by introducing non-negative Lagrange

multipliers β ,β ? , η and η? , Lagrangian can be derived as follows [1, 43]:

L =
1
2
‖w‖2 +C

N

∑
i=1

(ξi +ξ
?
i)−

N

∑
i=1

βi(ε +ξi− yi+< w,Φ(xi)>+b)

−
N

∑
i=1

β
?
i (ε +ξ

?
i + yi−< w,Φ(xi)>−b)−

N

∑
i=1

(ηiξi +η
?
i ξ

?
i)

(3.5)

Due to the fact that the Lagrangian has a saddle point with respect to the primal

and dual variables at the solution, the partial derivatives of L with respect to primal

variables have to vanish for optimality [1]:

∂L
∂w

= 0−→ w−
N

∑
i=1

βi < w,Φ(xi)>= 0 (3.6)

∂L
∂b

= 0−→
N

∑
i=1

(βi−β
?
i) = 0 (3.7)

∂L
∂ξi

= 0−→ C−βi−ηi = 0, i = 1,2, ...N (3.8)

∂L
∂ξ ?

i
= 0−→ C−β

?
i −η

?
i = 0, i = 1,2, ...N (3.9)

Utilizing optimality conditions (3.6-3.9) in (3.5), dual form of the optimization

problem is formulated in (3.10)-(3.11):

min
β ,β ?

D =
1
2

N

∑
i=1

N

∑
j=1

(βi−β
?
i)(β j−β

?
j)Ki j + ε

N

∑
i=1

(βi +β
?
i)− yi

N

∑
i=1

(βi−β
?
i) (3.10)

subject to

0≤ βi ≤C, 0≤ β
?
i ≤C

N

∑
i=1

(βi−β
?
i) = 0, i = 1,2, · · ·N

(3.11)

where Ki j = Φ(xi)
T Φ(xi). As can be seen in (3.10)-(3.11), dual form of the problem

has a convex objective function with corresponding linear constraints, so a global

solution is ensured. The optimal solution to the dual problem can be obtained by

finding Lagrange multipliers utilizing a quadratic programming solver.

47

The support vectors are the training data related to nonzero Lagrange multipliers [5,

43, 54]. The solution of the regression problem in (3.2) can be approximated by the

support vectors and the corresponding Lagrange multipliers as in (3.12):

ŷ(x) =
N

∑
i=1

λiK(xi,x)+b,λi = βi−β
?
i (3.12)

Regression and classification problems are generally linearly inseparable in input

space. By using a kernel function, linearly inseparable problems can be mapped to

a high dimensional feature space where nonlinearly distrubuted data are sparse as well

as possibly more separable [65] and linear regression can be succesfully carried out.

The regression performance of an SVR depends on the chosen kernel function which

is generally parametric and the numerical values of these parameters are important for

distribution of the data in the feature space [65, 66]. For instance, if the bandwidth

of a Gaussian kernel is chosen to be very small, similar data in the input space are

mapped to distant locations in feature space and some data significant for the model

may be discarded. This may yield to an SVR with perfect approximation which fully

accords with the given output for each training instance, but with low generalization

capability [67]. If the bandwidth is chosen to be very large, nonlinearity of the

kernel is lost, dissimilar data in the input space can be mapped very close to each

other in the feature space, this leads to a smooth SVR with strong generalization but

with low approximation capability. Therefore, kernel parameters must be selected so

that an optimal compromise between approximation and generalization capabilities is

reached [67].

3.2.2 Basic principles of online support vector regression

In order to realize the main idea behind the online SVR, the definition of "margin"

must be grasped. For this purpose, let us define a margin function h(xi) for the ith

sample xi as:

h(xi) = f (xi)− yi =
N

∑
j=1

λ jKi j +b− yi (3.13)

According to Lagrange multipliers and KKT conditions the training samples can be

seperated into three sets [2, 4] called as:

Set E:

Error Support Vectors E = {i| |λi|=C, |h(xi)| ≥ ε}

48

()

() ()

()

f x

f x h x

f x

ε

ε

+






−


cx
x

S

E

R

S

E

S

(a)
Y

(b)
Y

x
cx

ˆ ()

()
c c

c

c

y f x

h x

y

=










output of svr

new sample

ccc

ˆ ()
() c c

c
c

y f x
h x

y

=






()

() ()

()

f x

f x h x

f x

ε

ε

+






−


ccc

adasdasdasd

adasdasdasd

Figure 3.1 : E, S and R subsets before (a) and after (b) training.

Set S:

Margin Support Vectors S = {i| 0 < |λi|<C, |h(xi)|= 0}

Set R:

Remaining Samples R = {i| |λi|= 0, |h(xi)| ≤ ε}

When a new sample xc is added, the goal is to let xc enter one of the three sets, while

KKT conditions can still be satisfied automatically [2]. Let the Lagrange multiplier of

the new added data be λ = 0, from (3.13), the margin for new added data is obtained

as:

h(xc) = f (xc)− yc =
N

∑
i=1

λiK(xi,xc)+b− yc (3.14)

Then the value of λc, is gradually updated to provide all other samples satisfy KKT

conditions. Depending on the adjustment of Lagrange parameter of the new added

data, the values of the Lagrange multipliers (λi) and margin values of the previously

learned samples (h(xi)) may change. Owing to this, the sets E, S and R of the

previously learned samples may also change. Figure 3.1 illustrates how the sample

in R immigrates to the S class and new learned sample enters into R class.

3.2.3 Derivation of update rules for Lagrange multipliers

In online learning, the new added data changes the structure of the regression problem

and makes it necessary to update the parameters of the previous model by ensuring the

KKT conditions. In order to derive online learning rules, the Lagrange function of the

dual form is required. The Lagrange function for dual formulation can be written as

49

follows via (3.10,3.11).

LD =
1
2

N

∑
i=1

N

∑
j=1

(βi−β
?
i)(β j−β

?
j)Ki j + ε

N

∑
i=1

(βi +β
?
i)−

N

∑
i=1

yi(βi−β
?
i)

−
N

∑
i=1

(δiβi +δ
?
i β

?
i)−

N

∑
i=1

ui(C−βi)+u?i (C−β
?
i)−

N

∑
i=1

z(βi +β
?
i)

(3.15)

KKT optimality conditions are obtained in (3.16) since the first order derivatives of

Lagrange function with respect to dual variables equal to zero:

∂LD

∂βi
=

N

∑
j=1

(β j−β
?
j)Ki j + ε− yi−

N

∑
i=1

δi +
N

∑
i=1

ui + z = 0

∂LD

∂β ?
i
=−

N

∑
j=1

(β j−β
?
j)Ki j + ε + yi−

N

∑
i=1

δ
?
i +

N

∑
i=1

u?i − z = 0

(3.16)

δ
(?)
i ≥ 0,u(?)i ≥ 0,δ (?)

i β
(?)
i = 0,u(?)i (C−β

(?)
i) = 0

KKT condition indicates that at most one of the βi and β ?
i should be nonzero and both

are nonnegative [4]. Using the actual output function and SVR output, the following

margin for the ith sample xi can be defined:

h(xi) = f (xi)− yi =
N

∑
j=1

λ jKi j +b− yi (3.17)

Thus, the following situations constructing the basics of the convergence and migration

of the data are obtained:

h(xi)≥ ε,λi =−C

h(xi) = ε,−C < λi < 0

− ε ≤ h(xi)≤ ε,λi = 0

h(xi) =−ε,0 < λi <C

h(xi)≤−ε,λi =C

(3.18)

If a new vector with influence λc is added without migration of vectors between sets S,

E and R, the variation in ∆h(xi) and λc are derived as in (3.19) via (3.13-3.18) [4, 55].

∆h(xi) = Kic∆λc +
N

∑
j=1

Ki j∆λ j +∆b (3.19)

From the dual constraints in (3.11)

λc +
N

∑
j=1

λ j = 0 (3.20)

50

is obtained. If any vector related to previous or new data is an element of the subset

E or R, the corresponding value of the Lagrange multiplier (λc) equals to "0" or "C".

In particular, if support vectors must remain in S, then ∆h(xi) = 0, i ∈ S [55]. Thus, if

the term ∆λc in equation (3.19) and (3.20) is isolated [55], the variations of Lagrange

multipliers for the data in the support vector set can be easily computed for the obtained

∆λc as follows:

N

∑
j=1

Ki j∆λ j +∆b =−Kic∆λc , ∑
j∈SV

∆λ j =−∆λc (3.21)

If the indices of the samples in support vector set are defined as in

S = {s1,s2,s3,,sk} (3.22)

(3.21) can be represented in matrix form as
0 1 · · · 1
1 Ks1s1 · · · Ks1sk
...

...
1 Ksks1 · · · Ksksk




∆b
∆λs1

...
∆λsk

=−


1

Ks1c
...

Kskc

∆λc (3.23)

that is,

∆λλλ =


∆b

∆λs1
...

∆λsk

= βββ∆λc (3.24)

where

βββ =


β

βs1
...

βsk

=−ΘΘΘ


1

Ks1c
...

Kskc

 , ΘΘΘ =


0 1 · · · 1
1 Ks1s1 · · · Ks1sk
...

...
1 Ksks1 · · · Ksksk


−1

(3.25)

as given in [4]. Thus, for a given ∆λc, the bias and the Lagrange multipliers of the sam-

ples in the support set can be updated using (3.23-3.25). Employing (3.18-3.19,3.24),

the alternation in margin for non-support samples can be updated as follows:
∆h(xz1)
∆h(xz2)

...
∆h(xzm)

= γγγ∆λc , γγγ =


Kz1c

Kz2c
...

Kzmc

+


1 Kz1s1 · · · Kz1sl

1 Kz2s1 · · · Kz2sl
...

...
1 Kzms1 · · · Kzmsl

βββ (3.26)

where z1,z2, ...,zm are the indices of non-support samples, γγγ are margin sensitivities

and γγγ = 0 for samples in S. The alternation of the matrix ΘΘΘ for learning and forgetting

51

stages and detailed information related to the recursive algorithm can be attained via

[2, 4, 55]. The update rules given for support set samples and non-support samples

enable us to adjust all λi and h(xi) via given ∆λc [4]. The method for finding an

appropriate ∆λc is presented in the next subsection.

3.2.4 Calculation of ∆λc

In the incremental online SVR algorithm, when a new training data xc is received,

its corresponding λc value is initially set to zero, which is later updated to ∆λc [43].

Then, the largest possible change ∆λc is calculated while at the same time keeping the

system at the equilibrium state with respect to the new KKT conditions [43]. ∆λc is

calculated in two steps. The first step is to determine whether the change ∆λc should

be positive or negative as follows [4]:

q = sign(∆λc) = sign(yc− f (xc)) =−sign(h(xc)) (3.27)

After the sign of ∆λc is specified, in the second step, a bound on ∆λc imposed by each

sample in the training set is computed [4]. In order to calculate the largest possible ∆λc,

the following bookkeeping procedure which includes five possible cases is performed.

To simplify exposition, only ∆λc > 0 is regarded since the case ∆λc < 0 is similar [4].

For the new sample xc , there are two possible cases:

Case 1: The new sample xc immigrates to set S from set E, so h(xc) changes from

h(xc) < −ε to h(xc) = −ε and the algorithm terminates. Check the variation value

(Lc1) of new sample xc

Lc1 =
−h(xc)−qε

γc
(3.28)

Case 2: xc immigrates to set E from set S if λc increases from λc <C to λc =C , and

the algorithm terminates. Check the variation value (Lc2) of the new sample xc from

set E:

Lc2 = qC−λc (3.29)

For each previously learned sample xi already in set S:

Case 3: xi immigrates to set E from set S if λi changes from 0 < |λi|<C to |λi|=C.

52

If λi changes from 0 < |λi| < C to |λi| = 0, xi moves to set R from set S. Check the

variation value (LS
i) of each sample xi in set S to set E or set R:

-If qβi > 0 and 0 < λi <C, LS
i =

C−λi

βi

-If qβi > 0 and −C < λi < 0, LS
i =
−λi

βi

-If qβi < 0 and 0 < λi <C, LS
i =
−λi

βi

-If qβi < 0 and −C < λi < 0, LS
i =
−C−λi

βi

(3.30)

For each previously learned sample xi already in set E:

Case 4: xi is moved from set E to set S when h(xi) changes from |h(xi)| > ε to

|h(xi)|= ε . Check the variation value (LE
i) of each sample xi in set E to set S:

LE
i =
−h(xi)− sign(qβi)ε

γi
(3.31)

For each previously learned sample xi already in set R:

Case 5: xi is moved from set R to set S when h(xi) changes from |h(xi)| < ε to

|h(xi)|= ε . Check the variation value (LR
i) of each sample xi in set R to set S:

LR
i =
−h(xi)− sign(qβi)ε

γi
(3.32)

The bookkeeping procedure is utilized to trace each sample in the training set

against these five cases and determine the allowed ∆λc for each sample according to

equation (3.24) or (3.26) [4]. ∆λc is calculated as the minimum absolute value among

all possible ∆λc. Thus increment of the current data is

∆λc = q min(|Lc1|, |Lc2|, |L
S|, |LE |, |LR|) (3.33)

where q = sign(−h(xc)) and Lc1 , Lc2 are variations of the current sample and LS =

[LS
i , i ∈ S] , LE = [LE

i , i ∈ E] , LR = [LR
i , i ∈ R] are the variations of the xi data in sets

S, E, R respectively [2].

53

3.3 Adaptive Online SVR Controller based on Model Estimated by an Online

SVR

3.3.1 An overview of the proposed control architecture

The aim in adaptive control is to design a flexible controller that changes its parameters

depending on alternation of system behaviour. The proposed adaptive SVR controller

structure is depicted in Figure 3.2.

u

controller

controller controller(,)k k c
k SV

u K bα
∈

= Π Π +∑ System

System Model

yr

my

∑

−

+

t̂re

controllerSVR

adasdasdasd

adasdasdasd

ad
a

sd
as

da
sd a

dasdasdasd

Figure 3.2 : The block diagram of the proposed control architecture.

The control methodology is based on estimating the model of the system to be

controlled, predicting the system output with the obtained model, approximating

the tracking error and designing the controller using the tracking error. Since the

parameters of the controller are adjusted via approximated tracking error, system

model is utilized as part of the adjustment mechanism for SVR controller. The tuning

method of adaptive SVR controller based on estimated system model is illustrated in

Figure 3.3. There are two SVR structures in the proposed architecture: SVRcontroller

computes the control input to be applied to the system and SVRmodel obtains an

estimate of the system model. The online SVRcontroller computes a control signal as:

un = ∑
k∈SVcontroller

αkKcontroller(ΠΠΠccc,ΠΠΠkkk)+bcontroller (3.34)

where ΠΠΠccc is input vector, Kcontroller(, .,) is the kernel , αk, ΠΠΠkkk and bcontroller are the

parameters of the controller to be tuned at time index n. SVRmodel is employed to

54

cΠ

nu

cΜ
T
D
L

T
D
L

+

−
∑

T
D
L

controller

controller controller(,)k k c
k SV

u K bα
∈

= Π Π +∑

∑

T
D
L

−

+

Adaptive SVR Controller

System

model

model modelˆ (,)j j c
j SV

y K bλ
∈

= Μ Μ +∑

1ny +

1ˆny +

1nme
+

1z−

ny

1nr +

1
ˆ

ntre
+

1ˆny +

controllerSVR

modelSVR

adasdasdasd

ad
as

da
sd

a
sd

adasdasdasd
ad

asdasdasd

Figure 3.3 : The adaptation mechanisms of SVRcontroller and SVRmodel.

forecast system behaviour and model output is calculated as

ŷn+1 = ∑
j∈SVmodel

λ jKmodel(MMMccc,MMM jjj)+bmodel (3.35)

where Kmodel is the kernel matrix of the system model, MMMccc is current input, and

λ j,MMM jjj and bmodel are the parameters of the system model to be adjusted. As

shown in Figure 3.3, while SVRmodel parameters are adjusted via modelling error

emn+1 , SVRcontroller is optimized via approximated tracking error êtrn+1 . SVRcontroller

and SVRmodel are both used online to perform learning, prediction and control

consecutively. When the parameters of SVRcontroller are optimized, in order to calculate

and observe the impact of the computed control signal(un) on system behaviour and

train SVRcontroller precisely, the computed control signal is applied to SVRmodel at

every step of training phase of the controller to predict behaviour of the system (yn+1).

Ideally, during the course of online working, it is expected that ŷn+1 will eventually

converge to yn+1. After the training phase for SVRcontroller is concluded, the control

signal is applied to the system. Thus, the input of system model MMMccc and output yn+1

can be computed for training phase of system model.

The proposed control algorithm can be summarized as follows (in the algorithm given

below u−n indicates the control signal predicted via controller parameters obtained at

the previous step and u+n indicates the control signal estimated via trained controller

parameters at the current step):

Step 1: Initialize SVRcontroller and SVRmodel parameters.

55

-SVRcontroller(controller) parameters :

αk = bcontroller = 0

-SVRmodel (system model) parameters :

λ j = bmodel = 0

Step 2: Prediction step for controller (u−n)

-Set index to n.

-Constitute feature vector for controller (ΠΠΠccc). Some possible choices for controller

feature vector are given as follows :

ΠΠΠccc = [rn · · ·rn−nr ,yn · · ·yn−ny]
T

ΠΠΠccc = [Pn, In,Dn]
T

where Pn = en−en−1,In = en, Dn = en−2en−1+en−2 and en = rn−yn. A combination

of the reference signal, system output and controller output can also be used as a feature

vector:

ΠΠΠccc = [Pn, In,Dn,rn · · ·rn−nr ,yn · · ·yn−ny ,un−1 · · ·un−nu]
T

where nr, ny and nu indicate the number of the past behavior of the features.

-Calculate the control signal(u−n) produced by the

SVRcontroller via controller parameters trained at the previous step (n-1) via (3.34).

Step 3: Prediction step for system model

-Constitute feature vector for system model (MMMccc).

MMMccc = [u−n · · ·un−nu,yn · · ·yn−ny]
T

-Apply u−n to SVRmodel and calculate ŷn+1 via (3.35)

Step 4: Learning step for controller

-Calculate êtrn+1 = rn+1− ŷn+1

If |êtrn+1|> εclosed-loop

-Train controller parameters via êtrn+1 = rn+1− ŷn+1

else

-Continue with controller parameters obtained at previous step

Note: In step 4, the closed loop margin is tried to optimized via system model. Thus,

on one hand the margin is optimized, so the tracking error is minimized, on the other

hand the optimal parameters for controller are estimated indirectly.

Step 5: Calculation of control input by trained controller (u+n)

-Calculate the control signal (u+n) produced by the trained SVRcontroller via (3.34).

Step 6: Apply u+n to system to calculate yn+1.

56

Step 7: Prediction step for system model

-Apply u+n to model and calculate ŷn+1 via (3.35).

Step 8: Learning Step for System Model

-Calculate emn+1 = yn+1− ŷn+1

If |emn+1 |> εmodel

-Train system model where emn+1 = yn+1− ŷn+1

else

-Continue with system model parameters obtained at previous step

Step 9: Increment n = n+1 and go to step 2.

3.3.2 Generalized closed-loop system margin

As mentioned in section 3.2, in order to obtain the optimal parameters which minimize

the estimation error for SVRmodel, the margin function in (3.13) should be minimized,

given training data pairs (MMMccc ,yn+1) as depicted in Figure 3.3. The major problem arises

when we want to use SVR as a controller since although the inputs to the SVRcontroller

are available (ΠΠΠccc), the designer does not know the output of SVRcontroller, namely

the control input to be applied to the system in advance. This is the main problem

that must be solved in order to use SVR as a controller. In this section, in order to

describe training SVRcontroller with unknown outputs, we give two main definitions:

open loop and closed-loop margins which are both crucial to understand how to train

SVRcontroller.

Definition 1 (Open-loop Margin): In this paper, the term "open-loop margin" is used to

denote the regression margin related to SVRmodel. In modelling, the aim is to minimize

the error emn+1 = yn+1− ŷn+1 given in Figure 3.3, for the feedforward system model.

This is the error between the actual system output and the output of the "learned

model". This model is required to attain a prior knowledge about how the system

will respond to the adjusted parameters of the controller.

Definition 2 (Closed-loop Margin): The controller aims to force the controlled system

to follow the reference signal closely, so it is designed to minimize the tracking error,

which implies that the margin function of the controller depends on tracking error. The

parameters of the controller are adjusted via tracking error. Online SVRmodel is utilized

to approximate system dynamics and compute the tracking error in the next step which

57

in turn is used to tune the parameters of the SVRcontroller, SVRmodel also helps to assess

whether the computed control signal can successfully attain reference tracking or not in

the training phase. Hence both SVRmodel and SVRcontroller are effective in determining

the controller margin. The closed-loop performance of the system is affected by both

the modelling error and the tracking error, hence we define "closed-loop margin",

which is a function of the controller and system model margins. The designer does not

have direct control on the margin of the controller which emerges from the combined

effects of the margin of the closed-loop system and margin of the system model.

Considering SVRcontroller and SVRmodel independently, the margin of each subsystem

is illustrated in Figure 3.4. Controller margin is depicted in Figure 3.4, part (a), and

system model margin is shown in Figure 3.4, part (b) where fcontroller and fmodel denote

the regression functions of controller and system model, respectively. As can be seen

from Figure 3.4, the input of system model estimator (SVRmodel) is MMMccc and its output

is yn+1 while the input to the controller (SVRcontroller) is ΠΠΠccc and the output is un . In

Figure 3.4, the axes for the input and output of SVRmodel are denominated as MMM and

Ysys while the axes for SVRcontroller are named as ΠΠΠ and U . In Figure 3.5, subgraphs

related to SVRmodel and SVRcontroller depicted in Figure 3.4 are combined to yield a

three dimensional graph.

S

S

E
R

cΠ
Π

U

controller ()cf Π
cu

controller controller

controller controller

controller controller

()

() ()

()

ε

ε

Π + 
Π Π
Π − 

f

f h

f S

S
E

R

cΜ
Μ

sysY

model ()cf Μ

cy

model model

model model

model model

()

() ()

()

ε

ε

Μ + 
Μ Μ
Μ − 

f

f h

f

controller

controller

controller controller
SV

c

()

(,)

u y

n c

n k k c
k

T

n n n n n n

u f

u K b

u u y y

α
∈

− −

= Π

= Π Π +

 Μ =  

∑

⋯ ⋯

controller ()cf Π

Controller Margin SVR Controller System Model Margin

Closed-loop System Margin

cΠ model ()cf Μ

(a) (b)

adasdasdasd

ad
as

da
sd

as
d

adasdasdasd

a
dasdasdasd

Figure 3.4 : Margins of SVRcontroller (a) and SVRmodel (b).

The horizontal axes, ΠΠΠ and MMM stand for the input and output of SVRcontroller while

MMM and vertical axis Ysys represent the input and output of SVRmodel. Since vector MMM

includes un, the horizontal regression surface representing SVRcontroller can be depicted

with axes ΠΠΠ and MMM instead of ΠΠΠ and U . It must be noted that in the figures, for

the sake of visualisation, all inputs and outputs are assumed to be one dimensional

vectors. In real applications, the vectors will generally be multi-dimensional, resulting

58

in hypersurfaces. The closed loop margin which is the combination of the controller

and system model margins is illustrated in Figure 3.5, in ΠΠΠ, MMM and Ysys axes.

c∏

model modelY ()cf= Μ

Closed-loop System Margin

∏

controller controller

controller controller

controller controller

()

() ()

()

ε

ε

∏ + 
∏ ∏
∏ − 

f

f h

f

model ()Μh

model model()f εΜ +
model ()f Μ

model model()f εΜ −

∏c

Μ

controller

controller controller(,)

u y

n k k c
k SV

T

c n n n n n n

u K b

u u y y

α
∈

− −

= ∏ ∏ +

 Μ =  

∑

⋯ ⋯

cΜ

model ()cf Μ

cy

sysY

adasdasdasd

ad
as

da
sd

as
d

adasdasdasd

adasdasda
sd

Figure 3.5 : Closed-loop system margin in three dimensions.

When the whole control structure is working online, the margins of the controller

and model are fused, and closed loop margin between closed loop input and output

is intuitively thought as a single margin, as depicted in Figure 3.6. In other words,

the margin function of the system model and controller are embedded in the margin

of the closed-loop system. In Figure 3.6, controller and system model margins are

combined to yield the "closed-loop margin" and this is projected onto Ysys-ΠΠΠ axes. The

figure illustrates this projection before and after online training. Closed-loop margin is

represented as hclosed-loop(ΠΠΠ) which is a function of system model margin (hmodel(MMM))

and controller margin (hcontroller(ΠΠΠ)).

closed-loop closed-loop

closed-loop closed-loop

closed-loop closed-loop

()

() ()

()

ε

ε

∏ +


∏ ∏
∏ − 

f

f h

f

∏c

∏

closed-loop closed-loop

closed-loop closed-loop

closed-loop closed-loop

()

() ()

()

ε

ε

∏ +


∏ ∏
∏ − 

f

f h

f

S

E

R

S

E

S

(a)
sysY

(b)
sysY

∏
∏c

1

model controller

1

[()]

+

+

∏





n

c

m

n

f f

e

y 1

model controller

1

[()]
+

+

∏



n

c
m

n

f f
e

y

output of svr

new sample

adasdasdasd

adasdasdasd

adasdasdasd

a
da

sd
as

da
sd

Figure 3.6 : Projected closed loop margin before (a) and after (b) training.

59

As mentioned previously, the aim in closed-loop control is to track the reference signal

by minimizing the tracking error etrn+1 = rn+1 − yn+1 via control and optimization

techniques. To make the system output follow the reference signal with minimum

error, closed-loop margin must be optimized. Also, the margin of SVRmodel is

optimized independently from the closed loop system margin, since εmodel and

εclosed-loop, the upper value of tolerable error for SVRmodel and the overall closed loop

system (SVRmodel and SVRcontroller combined), respectively are set independently by

the designer. However, the designer cannot set εcontroller, the upper value of tolerable

error for SVRcontroller, and therefore does not have a direct influence on the margin

of the controller, but controller margin can only be affected indirectly through the

combined actions of SVRmodel and the controlled closed loop structure. Since the main

goal in our system is to effectively minimize the tracking error, we aim to optimize

primarily the closed loop margin. Of equivalent importance is the optimization of the

SVRmodel margin, since for good closed-loop control performance we need a system

model with minimum modelling error. We can deduce that optimization of closed-loop

and SVRmodel margins will spontaneously lead to the optimization of SVRcontroller

margin so the parameters of SVRcontroller can be obtained indirectly while we try to

minimize tracking error (or equivalently we optimize closed-loop margin). In training

phase of SVRmodel, since emn+1 = yn+1− ŷn+1 and system model is to forced to track

yn+1, input-output data pair is (MMMccc,yn+1) as shown in Figure 3.3. Therefore, the input

and output axes for regression surface are named as MMM and Ysys. On the other hand,

the closed-loop system is forced to track the reference input, rn+1, in training phase,

so closed-loop training data pair is (ΠΠΠccc,rn+1). Based on this, the input and output axes

for closed-loop system regression surface are termed as ΠΠΠ and R in Figure 3.7 and axis

R is utilized in place of Ysys for closed-loop system in Figures 3.7-3.9. If the system

margin on R−MMM plane is dislocated throughout ΠΠΠ−MMM plane, the closed-loop margin

will have a prismatical shape where the optimal controller parameters are searched as

in Figure 3.9.

60

closed-loop closed-loop

closed-loop closed-loop

closed-loop closed-loop

()

() ()

()

ε

ε

∏ +


∏ ∏
∏ − 

f

f h

f

∏c

∏

closed-loop closed-loop

closed-loop closed-loop

closed-loop closed-loop

()

() ()

()

ε

ε

∏ +


∏ ∏
∏ − 

f

f h

f

S

E

R

S

E

S

(a)
R

(b)
R

∏
∏c

output of closed-loop

new sample for closed-loop
1

1

1

ˆ

ˆ
n

n

tr

n

y

e

r
+

+

+





 1

1

1

ˆ
ˆ

n

n
tr

n

y
e

r+

+

+





adasdasdasd

adasdasdasd
adasdasdasd

ad
a

sd
as

da
sd

Figure 3.7 : Projected closed loop margin before (a) and after (b) training.

∏

controller controller

controller controller

controller controller

()

() ()

()

ε

ε

∏ + 
∏ ∏
∏ − 

f

f h

f

model model

model model

model model

()

() ()

()

f

f h

f

ε

ε

Μ + 
Μ Μ
Μ − 

∏c

Μ

controller

controller controller(,)

u y

n k k c
k SV

T

c n n n n n n

u K b

u u y y

α
∈

− −

= ∏ ∏ +

 Μ =  

∑

⋯ ⋯

cΜ

R

1

model controller

1

[()]

ˆ
n

c

tr

n

f f

e

r
+

+

Π





adasdasdasd

ad
as

da
sd

as
d

adasdasdasd

a
dasdasdasd

Figure 3.8 : Closed-loop system margin in three dimensions.

∏

Μ

model ()Μh

controller ()∏h

R

controller controller

controller

controller controller

()

()

()

ε

ε

∏ +
∏
∏ −

f

f

f

model model

model

model model

()

()

()

ε

ε

Μ +
Μ
Μ −

f

f

f

adasdasdasd

ad
as

da
sd

a
sd

adasdasdasd

adasdasd
asd

Figure 3.9 : Combined controller and system model margins in three dimensions.

61

3.3.3 Online support vector regression for controller design

Consider a training data set for closed-loop system as:

TTT = {ΠΠΠiii,ri+1}N
i=1 ΠΠΠiii ∈ΠΠΠ⊆ Rn,ri+1 ∈ R (3.36)

where N is the size of the training data, n is the dimension of the input, ΠΠΠiii is input

feature vector of controller and ri+1 is the reference signal that system is forced to

track, the closed-loop margin function of the system for the ith sample ΠΠΠiii can be

defined as:

hclosed-loop(ΠΠΠiii) = ŷi+1− ri+1 = fmodel(MMMiii)− ri+1 (3.37)

where

ŷi+1 = fmodel(MMMiii)

= ∑
j∈SVmodel

λ jKmodel(MMM jjj,MMMiii)+bmodel

MMMiii = [ui · · ·ui−nu,yi · · ·yi−ny]

ui = fcontroller(ΠΠΠiii) = ∑
k∈SVcontroller

αkKcontroller(ΠΠΠkkk,ΠΠΠiii)+bcontroller

ΠΠΠiii = [ri · · ·ri−nr ,yi · · ·yi−ny ,ui−1 · · ·ui−nu]

In the learning stage of the controller, the system model is fixed and system model

parameters are known, so the closed loop margin can be rewritten as

hclosed-loop(ΠΠΠiii) = ŷi+1− ri+1 = fclosed-loop(ΠΠΠiii)− ri+1 =−êtri+1 (3.38)

with respect to an input-output data pair of closed-loop system (ΠΠΠiii,ri+1) where

fclosed-loop is the approximated output of the closed-loop system. Thus, using (ΠΠΠiii,ri+1)

data pair and closed-loop margin in (3.38), online learning formulations for controller

can be derived. The basic idea is to change the coefficient αc corresponding to the new

sample ΠΠΠccc in a finite number of discrete steps until it meets the KKT conditions while

ensuring that the existing samples in TTT continue to satify the KKT conditions at each

step [4]. The following situations contsruct the basics of convergence and migration of

62

the closed-loop data.

hclosed-loop(ΠΠΠiii)≥ εclosed-loop,αi =−Cclosed-loop

hclosed-loop(ΠΠΠiii) = εclosed-loop,−Cclosed-loop < αi < 0

− εclosed-loop ≤ hclosed-loop(ΠΠΠiii)≤ εclosed-loop,αi = 0

hclosed-loop(ΠΠΠiii) =−εclosed-loop,0 < αi <Cclosed-loop

hclosed-loop(ΠΠΠiii)≤−εclosed-loop,αi =Cclosed-loop

(3.39)

The optimal controller parameters, αk, bcontroller are sought within εclosed-loop tube

by minimizing the tracking error using the online learning algorithm given in

section 3.2.3. Equations (3.19-3.26) can be modified for training the closed-loop

system using ααα , bcontroller, hclosed-loop, εclosed-loop, ΠΠΠiii and Kcontroller in place of λλλ , b, h,

ε , xxxiii and K. For this purpose, the training data set can be dissociated into EEE, SSS and RRR

subsets using (3.39) as follows:

EEE = {i| |αi|=Cclosed-loop}

SSS = {i| 0 < |αi|<Cclosed-loop}

RRR = {i| |αi|= 0}

(3.40)

When a new input vector (ΠΠΠccc) with Lagrange multiplier αc is trained without migration

of vectors between sets SSS, EEE and RRR, the relation among (∆αc) for current data, the

variation in ∆hclosed-loop(ΠΠΠiii) and αi are derived as in (3.41) via (3.13-3.16,3.37- 3.39)

[4, 55].

∆hclosed-loop(ΠΠΠiii) = Kcontrolleric∆αc +
N

∑
j=1

Kcontrolleri j∆α j +∆bcontroller (3.41)

αc must satify the the dual constraints in (3.11) as follows:

αc +
N

∑
j=1

α j = 0 (3.42)

When we isolate the term ∆αc in equations (3.41) and (3.42) [55], the variations of

Lagrange multipliers for the data in support vector set SSS can be calculated for given

∆αc as:

N

∑
j=1

Kcontrolleri j∆α j +∆bcontroller =−Kcontrolleric∆αc

∑
j∈SVcontroller

∆α j =−∆αc

(3.43)

63

Defining the samples in support vector set SSS as in

SSS = {s1,s2,s3,,sk} (3.44)

(3.43) can be rearranged in matrix form as
0 1 · · · 1
1 Kcontrollers1s1

· · · Kcontrollers1sk
...

...
1 Kcontrollersks1

· · · Kcontrollersksk




∆bcontroller
∆αs1

...
∆αsk

=−


1

Kcontrollers1c
...

Kcontrollerskc

∆αc (3.45)

Thus, ∆ααα is adjusted for computed ∆αc as

∆ααα =


∆bcontroller

∆αs1
...

∆αsk

= βββ∆αc (3.46)

where

βββ =


β

βs1
...

βsk

=−ΘΘΘ


1

Kcontrollers1c
...

Kcontrollerskc

 , ΘΘΘ =


0 1 · · · 1
1 Kcontrollers1s1

· · · Kcontrollers1sk
...

...
1 Kcontrollersks1

· · · Kcontrollersksk


−1

(3.47)

Depending on ∆αc , only the margin values of the non-support samples transume and

the alternation in margin for non-support samples can be updated via (3.48)


∆hclosed-loop(ΠΠΠn1)
∆hclosed-loop(ΠΠΠn2)

...
∆hclosed-loop(ΠΠΠnz)

= γγγ∆λc

γγγ =


Kcontrollern1c
Kcontrollern2c

...
Kcontrollernzc

+


1 Kcontrollern1s1
· · · Kcontrollern1sl

1 Kcontrollern2s1
· · · Kcontrollern2sl

...
...

1 Kcontrollernzs1
· · · Kcontrollernzsl

βββ

(3.48)

where n1,n2, ...,nz are the indices of non-support samples, γγγ are margin sensitivities

and γγγ = 0 for samples in SSS. The alternation of the matrix ΘΘΘ for learning and forgetting

stages and detailed information related to the recursive algorithm can be accessed

via [2,4,55]. Up to this point, it is assumed that ∆αc is known, and update rules for the

parameters of all data except for current data are derived. As given in section 3.2.4,

the increment for current data (∆αc) is defined as the one with minimum absolute

64

value among all possible ∆αc as follows [4]:

∆αc = q min(|Lc1|, |Lc2|, |LLL
S|, |LLLE |, |LLLR|) (3.49)

where q = sign(−hclosed-loop(ΠΠΠccc)) = sign(etrn+1) and Lc1 , Lc2 are variations of the

current sample and LLLS = [LS
i , i∈ S], LLLE = [LE

i , i∈ E], LLLR = [LR
i , i∈ R] are the variations

of the ΠΠΠiii data in sets SSS, EEE, RRR, respectively [2].

3.3.4 Stability analysis of the closed-loop system

In order to analyze the stability of the closed-loop system, the regression functions of

the controller and the system model are given in matrix form. In this sequel, the control

signal produced by controller is obtained as

un = fcontroller(ααα,ΠΠΠccc) =


bcontroller

α1
...

αk


T 

1
K1Πc

...
KkΠc

= ααα
T Kcontroller(ΠΠΠccc) (3.50)

The system model which is utilized to approximate system Jacobian is given as

ŷn+1 = fmodel(λλλ ,MMMccc) =


bmodel

λ1
...

λk


T 

1
K1Mc

...
KkMc

= λλλ
T Kmodel(MMMccc) (3.51)

For stability analysis the following Lyapunov function is employed

V (etrn+1) =
eT

trn+1
PPP etrn+1

2
(3.52)

where PPP = III (identity matrix). Both the stability of the system and the convergence of

the controller are guaranteed when ∂V
∂ t ≤ 0 [68]. Thus,

∂V (etrn+1)

∂ t
= eT

trn+1
PPP ėtrn+1 (3.53)

where ėtrn+1 =
∂etrn+1

∂ t =
∂etrn+1

∂un

∂un
∂ t . Let us consider a small deviation from the

equilibrium point, which corresponds to local stability analysis using equation (3.54).

The incremental change in the control signal is computed as

∆un =
[

∂ fcontroller(ααα,ΠΠΠccc)
∂ααα

]T
∆ααα +

[
∂ fcontroller(ααα,ΠΠΠccc)

∂ΠΠΠccc

]T
∆ΠΠΠccc (3.54)

65

where ΠΠΠccc and fcontroller are the input and the output of the controller respectively.

If (3.54) is substituted in (3.53), the equation (3.53) can be rewritten as

∂V (etrn+1)

∂ t
= eT

trn+1
PPP

∂etrn+1

∂un

[
∂ fcontroller(ααα,ΠΠΠccc)

∂ααα

]T
∆ααα

+ eT
trn+1

PPP
∂etrn+1

∂un

[
∂ fcontroller(ααα,ΠΠΠccc)

∂ΠΠΠccc

]T
∆ΠΠΠccc

(3.55)

with ∆ΠΠΠccc ∼= etrn+1 . As can be seen in (3.55), stability depends on the increments in

Lagrange multipliers of the controller (∆ααα) given in (3.46). The increment for current

data is

∆αc = q min(|Lc1|, |Lc2|, |LLL
S|, |LLLE |, |LLLR|) (3.56)

where q = sign(−hclosed-loop(ΠΠΠccc)) = sign(etrn+1) and Lc1 , Lc2 are variations of the

current sample and LLLS = [LS
i , i ∈ SSS] , LLLE = [LE

i , i ∈ EEE] , LLLR = [LR
i , i ∈ RRR] are the

variations of the ΠΠΠiii data in sets SSS, EEE, RRR, respectively [2]. As explained in section 3.2.4,

min(|Lc1|, |Lc2|, |LLLS|, |LLLE |, |LLLR|) term is a positive function of etrn+1 , ααα and C. Thus,

∆αc can be written as:

∆αc = q min(|Lc1|, |Lc2|, |LLL
S|, |LLLE |, |LLLR|) = sign(etrn+1) Ψ(etrn+1,αi,C)

=
etrn+1

|etrn+1|
Ψ(etrn+1 ,αi,C) = etrn+1

Ψ(etrn+1,αi,C)

|etrn+1|
= µ(etrn+1,αi,C) etrn+1

(3.57)

where µ(etrn+1,αi,C) ≥ 0, Ψ(etrn+1 ,αi,C) ≥ 0. The update rule for all Lagrange

multipliers in set SSS is

∆ααα = βββ∆αc = βββ µ(etrn+1 ,αi,C) etrn+1 (3.58)

If equation (3.58) is utilized in (3.55)

∂V (etrn+1)

∂ t
= eT

trn+1
(QQQ+WWW) etrn+1 (3.59)

where

QQQ = PPP
∂etrn+1

∂un

[
∂ fcontroller(ααα,ΠΠΠccc)

∂ααα

]T
βββ µ(etrn+1,αi,C)

WWW = PPP
∂etrn+1

∂un

[
∂ fcontroller(ααα,ΠΠΠccc)

∂ΠΠΠccc

]T
(3.60)

66

The term
∂etrn+1

∂un
can be expanded as

∂etrn+1
∂yn+1

∂yn+1
∂un

=−∂yn+1
∂un

. Thus,

QQQ = PPP
∂etrn+1

∂un

[
∂ fcontroller(ααα,ΠΠΠccc)

∂ααα

]T
βββ µ(etrn+1,αi,C)

=−PPP
∂yn+1

∂un

[
Kcontroller(ΠΠΠccc)

]T
βββ µ(etrn+1,αi,C)

=−GGG

WWW = PPP
∂etrn+1

∂un

[
∂ fcontroller(ααα,ΠΠΠccc)

∂ΠΠΠccc

]T

=−PPP
∂yn+1

∂un

[
∂ fcontroller(ααα,ΠΠΠccc)

∂ΠΠΠccc

]T

=−ZZZ

(3.61)

where ∂yn+1
∂un

is approximated via system model (fmodel). As a result, the following

equation must be satisfied for stability

∂V (etrn+1)

∂ t
= eT

trn+1
(QQQ+WWW) etrn+1 ≤ 0

=−eT
trn+1

(GGG+ZZZ) etrn+1 ≤ 0
(3.62)

Thus, the stability conditions for closed-loop system can be summarized as follows :

• Condition 1: If GGG≥ 0 and ZZZ ≥ 0 , the closed-loop system is stable

• Condition 2: If GGG≥ 0 and ZZZ ≤ 0 and ‖GGG ‖≥‖ ZZZ ‖, the closed-loop system is stable

• Condition 3: If GGG≤ 0 and ZZZ ≥ 0 and ‖ ZZZ ‖≥‖GGG ‖, the closed-loop system is stable

3.4 Simulation Results

The performance of the online SVRcontroller based on system model estimated

by SVRmodel is assessed on third order continuously stirred tank reactor (CSTR)

and bioreactor benckmark problems. In order to establish the feature vectors

as inputs to SVRcontroller and SVRmodel, yielding the best performance, different

features have been tested. Reference signal, system output and control signal

are main features of a closed-loop system. New feature vectors to use as inputs

for SVRcontroller and SVRmodel can also be generated as functions of these basic

features such as tracking error, derivative of tracking error, etc. For instance, ΠΠΠccc =

[rn · · ·rn−nr ,yn · · ·yn−ny ,un−1 · · ·un−nu]
T can be chosen as a feature vector for controller

where nr, nu and ny indicate the number of the past features included in the vector.

67

While the closed-loop system performance may not be good enough with basic features

(reference, system output, control input), utilizing tracking error or integral of tracking

error as a feature may be imperative for diminutive steady state error. That is,

the chosen states of closed-loop system as features directly affect closed-loop and

controller performances. In our work, NARX model is employed to identify the

dynamics of the systems and MMMccc = [un · · ·un−nu ,yn · · ·yn−ny]
T is chosen as the input

feature vector for SVRmodel. The number of the past inputs (nu) and past outputs

(ny), which are the order of NARX model of system, have been selected as 2 for both

systems. Several different input feature vectors have been employed for SVRcontroller

depending on the particular conditions of the closed loop system as explained in detail

in the following subsections.

SVRcontroller and SVRmodel contain several parameters which have direct influence

on controller performance. Tolerance parameters εclosed-loop and εmodel are the

most significant parameters in our control architecture based on ε-SVR. If they are

chosen too large, SVRmodel cannot learn the dynamics of the system accurately and

SVRcontroller may induce unacceptable control performance. If they are chosen too

small, the result will be an increase in the number of support vectors. Therefore,

the maximum tolerable errors for closed-loop system response and system model,

εclosed-loop and εmodel must be chosen so that an acceptable control quality [5] is

obtained while the number of support vectors for both SVRcontroller and SVRmodel are

kept at a reasonable level. Accordingly, we have chosen εclosed-loop = εmodel = 10−3

for both systems. As the number of support vectors increases, the control algorithm

gets slower. In order to reduce the number of the support vectors as low as possible,

C is fixed at a large value (1000). Selection of kernel parameters is also crucial in

having good performance. In our simulations, we employed an exponential kernel

function with K(x,y) = e
−‖x−y‖

2σ2 . We have observed that very small σ values cause

fluctuations in control signal and system output since the number of the support vectors

for SVRcontroller and SVRmodel increase to capture the system dynamics. On the other

hand, large σ values give rise to loss of the nonlinearity of the kernel that leads to

inaccurate identification of system dynamics. In this case, the control signal is too slow

and the system cannot be forced to track reference signal accurately. In simulations for

continuously stirred tank reactor system (CSTR), σ = 1 is used in both SVRcontroller

68

and SVRmodel. For bioreactor system SVRcontroller and SVRmodel have been designed

with σ = 0.75.

3.4.1 Simulation results for continuously stirred tank reactor system

Continuously stirred tank reactor system (CSTR) is a plant widely used in industry to

produce polymers, pharmaceuticals, and other various chemical products. It is a type

of chemical reactor in which isothermal, liquid-phase, successive multicomponent

chemical reactions can be carried out [69, 70] and the contents are well stirred

and uniform throughout [71]. Alternatively, it is also referred as a vat or backmix

reactor [71, 72]. Consider a chemical reaction system given as

A� B→C (3.63)

where the inlet reactants (A,B) are mixed in a vessel with constant volume via an

agitator and return the product C. Two reaction sites occur in the chemical reaction

given in (3.63). First one is among A-B, and second is between B-C. The aim in this

chemical reaction system is to control the concentration of product C by altering the

molar feed rate of reactant B. The dynamics of the third order, highly non-linear, time

varying CSTR system are defined with the following set of differential equations by

Kravaris and Palanki [69] as:

ẋ1(t) = 1− x1(t)−Da1x1(t)+Da2x2
2(t)

ẋ2(t) =−x2(t)+Da1x1(t)−Da2x2
2(t)−Da3d2x2

2(t)+u(t)

ẋ3(t) =−x3(t)+Da3d2(t)x2
2(t)

(3.64)

where x1(t), x2(t) and x3(t) are states obtained from the concentrations of reactant A,

middle reactant B and product C , respectively, Da1 = 3, Da2 = 0.5, Da3 = 1, u(t) is

the control signal, x3(t) is the output of the system, d2(t) is the time-varying parameter

of the system which represents the activity of the reaction, the nominal value of which

is d2nominal(t) = 1 [5, 43, 60, 70]. In the simulations, magnitude of the control signal is

allowed to vary between umin = 0 and umax = 1; and its duration is kept constant at

τmin = τmax = 1 s. The sampling period is chosen as 0.1 s. Fourth order Runga Kutta

method has been used in the simulations. Since the control performance depends on the

chosen features, various input feature vectors for controller can be employed according

69

to the particulars of the system, whether there is noise, disturbance, parametric

uncertainty or not, etc.

3.4.1.1 Noiseless condition

The proposed control architecture is used to control the CSTR system briefly described

above, and the tracking performance of the controller for a variable step signal, control

signal produced by controller and alternation of the controller parameters are given

in Figures 3.10-3.11. The figures depict that the system tracks the reference signals

accurately. The input feature vectors for SVRcontroller for noiseless condition is chosen

as ΠΠΠccc = [rn,yn]
T .

(a)

(b)

0 100 200 300 400 500

0.4

0.5

0.6

r(t)
y(t)

0 100 200 300 400 500

0.2

0.3

0.4

0.5

0.6

0.7

Time[sec]

u(t)

adasdasdasd

adasdasdasd

adasd
asdasd

ad
as

d
as

da
sd

Figure 3.10 : System output (a), control signal (b) for variable step input.

In Figure 3.11, the first Lagrange multiplier and bias of SVRcontroller and SVRmodel

are illustrated to exemplify the inner learning mechanism of the SVR. As can be seen

from Figure 3.11, the controller parameters and model can adapt themselves and learn

new dynamics when reference signal changes. Number of the support vectors are

also depicted in Figure 3.11 and it is observed that they do not change in certain

times when learning is not required. The tracking performance of the controller for

sinusoidal reference signal, control signal produced by controller and alternation of

controller parameters are given in Figures 3.12-3.13 using the same input features for

the controller and the system model.

70

(a)

(b)

(c)

(a)

(b)

(c)

0 100 200 300 400 500

0

0.1

0.2
λ1(t)

SVRmodel

0 100 200 300 400 500
0

0.2

0.4
bm(t)

0 100 200 300 400 500
0

10

20

30
#svm(t)

Time[sec]

0 100 200 300 400 500
-0.5

0

0.5

α1(t)

SVRcontroller

0 100 200 300 400 500
0

0.2

0.4
bc(t)

0 100 200 300 400 500
0

10

20

30

#svc(t)

Time[sec]

adasdasdasd

ad
as

da
sd

as
d

adasdasdasd

ad
asdasdasd

Figure 3.11 : Adaptation of SVRcontroller parameters (left), SVRmodel parameters
(right).

(a)

(b)

0 20 40 60 80 100 120
0.3

0.4

0.5

0.6

0.7

0.8

r(t)
y(t)

0 20 40 60 80 100 120
0.2

0.4

0.6

0.8

Time[sec]

u(t)

adasdasdasd

ad
as

da
sd

as
d

adasdasdasd

adasdasdasd

Figure 3.12 : System output (a), control signal (b) for sinusoidal input.

(a)

(b)

(c)

(a)

(b)

(c)

0 20 40 60 80 100 120
-0.1

0

0.1

λ1(t)

SVRmodel

0 20 40 60 80 100 120
0

0.2

0.4

0.6

bm(t)

0 20 40 60 80 100 120
0

20

40

60

#svm(t)

Time[sec]

0 20 40 60 80 100 120
-4

-2

0

α1(t)

SVRcontroller

0 20 40 60 80 100 120
0

0.2

0.4

0.6
bc(t)

0 20 40 60 80 100 120
0

20

40
#svc(t)

Time[sec]

adasdasdasd

ad
as

d
as

da
sd

adasdasdasd

ada
sdasdasd

Figure 3.13 : Adaptation of SVRcontroller parameters (left), SVRmodel parameters
(right).

71

3.4.1.2 Measurement noise

In order to evaluate and compare the robustness of SVRcontroller with respect to

measurement noise, the measured output of system is corrupted by an additive zero

mean Gaussian noise with a signal-to-noise ratio (SNR) of 30 dB [5]. SNR is given by

SNR = 10log10(
σ2

y

σ2
u
)dB (3.65)

where σ2
y and σ2

u are the variances of the measured output of the underlying system

and the additive noise, respectively [5]. The input feature vectors for SVRcontroller is

employed as ΠΠΠccc = [rn,yn]
T .

(a)

(b)

0 100 200 300 400 500

0.4

0.5

0.6

r(t)
y(t)

0 100 200 300 400 500

0.2

0.3

0.4

0.5

0.6

0.7

Time[sec]

u(t)

adasdasdasd

ad
as

da
sd

as
d

adasdasdasd

adasdasda
sd

Figure 3.14 : System output (a), control signal (b) for variable step input.

Figure 3.14 shows the tracking performance and control input for SVRcontroller with

Gaussian measurement noise added to the system. The tracking performance of the

closed loop system and alternation of the controller parameters in noisy case are as in

Figures 3.14-3.15.

3.4.1.3 Uncertainty in system parameters

In order to examine the robustness of the controller in terms of parameter uncertainty,

the performance of the controller is examined under a time-varying system parameter.

72

(a)

(b)

(c)

(a)

(b)

(c)

0 100 200 300 400 500
-0.05

0

0.05

0.1
λ1(t)

SVRmodel

0 100 200 300 400 500
0

0.2

0.4
bm(t)

0 100 200 300 400 500
0

20

40

#svm(t)

Time[sec]

0 100 200 300 400 500

-0.2

0

0.2

α1(t)

SVRcontroller

0 100 200 300 400 500
0

0.2

0.4
bc(t)

0 100 200 300 400 500
0

10

20

30
#svc(t)

Time[sec]

adasdasdasd

adasdasdasd

ad
a

sd
as

da
sd adasdasd

asd

Figure 3.15 : Adaptation of SVRcontroller parameters (left), SVRmodel parameters
(right).

(a)

(b)

(c)

0 100 200 300 400 500

0.4

0.5

0.6

r(t)
y(t)

0 100 200 300 400 500

0.3

0.4

0.5

0.6

0.7

Time[sec]

u(t)

0 100 200 300 400 500
0.9

0.95

1

1.05

1.1

Time[sec]

d2(t)

adasdasdasd

ad
as

da
sd

a
sd

adasdasdasd

adasdasda
sd

Figure 3.16 : System output (a), control signal (b), time varying system parameter
(c).

In our system, d2(t) is selected as the time varying parameter and is allowed to vary

slowly around its nominal value as d2(t) = 1+ 0.1sin(0.04πt). In simulations, it has

been observed that the controller is not adequate to succesfully manage to reject the

disturbance using ΠΠΠccc = [rn,yn]
T , for this purpose, new features are considered and

73

input feature vector is specified as: ΠΠΠccc = [Pn · · ·Pn−np, In · · · In−ni,Dn · · ·Dn−nd ,yn · · ·

yn−ny,un−1 · · ·un−nu]
T where Pn = en − en−1, In = en, Dn = en − 2en−1 + en−2 and

en = rn− yn, and np = 1,ni = 2,nd = 1,ny = 0,nu = 1. When the control signal in

Figure 3.10 is compared with Figure 3.16, it is observed that the controller succesfully

rejects the uncertainty in system parameter.

3.4.1.4 Closed-loop Lyapunov stability analysis

The Lyapunov stability analysis given in section 3.3.4 is performed for the proposed

control methodology, and the numerical justification is illustrated in Figure 3.17 where
∂V (t)

∂ t and V (t) are depicted for the continuously stirred tank reactor system. Since it

is observed that V (t)≥ 0 and ∂V (t)
∂ t ≤ 0 during the course of control, we can conclude

that the closed-loop system is stable for all cases.

(a)

(b)

()V t

()V t

t

∂
∂

0 100 200 300 400 500
0

1

2

3

4

5
x 10

-3 with no noise

0 100 200 300 400 500

-400

-300

-200

-100

0

Time[sec]

0 100 200 300 400 500
0

2

4

6

x 10
-3 with measurement noise added

0 100 200 300 400 500

-1000

-500

0

Time[sec]

(a)

(b)

()V t

()V t

t

∂
∂

0 100 200 300 400 500
0

1

2

3

4

5

x 10
-3 with parametric uncertainty(a)

(b)

()V t

()V t

t

∂
∂

0 100 200 300 400 500

-1500

-1000

-500

0

Time[sec]

adasdasdasd

ad
as

d
as

da
sd

adasdasdasd

ada
sdasdasd

Figure 3.17 : V (t) (a) and ∂V (t)
∂ t (b) for noiseless (left), noisy (right) and with

parametric uncertainty cases (middle).

3.4.2 Simulation results for bioreactor system

The bioreactor system has frequently been used as a benchmark system in nonlinear

control theory to test the effectiveness of developed control methodologies [5, 43, 60,

74

62]. A biorector is a tank containing water and cells (e.g., yeast or bacteria) which

consume nutrients (substrate) and produce product (both desired and undesired) and

more cells [60]. This system is difficult to control since the system dynamics are

highly nonlinear and exhibit limit cycles [60]. The differential equations describing

the system are as follows [5, 43, 60, 62]:

ċ1(t) =−c1(t)u(t)+ c1(t)(1− c2(t))e
c2(t)
γ(t)

ċ2(t) =−c2(t)u(t)+ c1(t)(1− c2(t))e
c2(t)
γ(t)

1+β (t)
1+β (t)− c2(t)

(3.66)

where γ(t) is nutrient inhibition parameter and β (t) is grow rate parameter. In the

simulations, magnitude of the control signal is allowed to vary between umin = 0 and

umax = 2 ; and its duration is kept constant at τmin = τmax = 0.5s. In this study,

the proposed control architecture is tested by assuming that the dynamics are not

known. Online SVRmodel has been utilized to identify the unknown dynamics using

the input-output data pairs. Since the control performance depends on the chosen

features, various input feature vectors for controller can be employed according to the

particulars of the system, whether there is noise, disturbance, parameter uncertainty or

not, etc.

3.4.2.1 Noiseless condition

The proposed control architecture is used to control the bioreactor briefly described

above, the tracking performance of the controller for noiseless condition is given

in Figure 3.18. The input feature vector for controller is designated as: ΠΠΠccc =

[Pn · · ·Pn−np, In · · · In−ni,Dn · · ·Dn−nd ,yn · · ·yn−ny ,un−1 · · ·un−nu]
T where Pn = en−en−1,

In = en, Dn = en− 2en−1 + en−2 and en = rn− yn, and np = 0,ni = 2,nd = 0,ny =

0,nu = 1. The system tracks the reference signal accurately. The controller and system

model parameters are illustrated in Figure 3.19.

3.4.2.2 Measurement noise

In order to evaluate and compare the robustness of the controller with respect

to measurement noise, 30 dB measurement noise is added to the system output.

Figure 3.20 shows the tracking performance and control input computed by the

controller when Gaussian measurement noise is added to the system. The input feature

vector for SVRcontroller is chosen as: ΠΠΠccc = [Pn · · ·Pn−np, In · · · In−ni,Dn · · ·Dn−nd ,yn · · ·

75

(a)

(b)

0 100 200 300 400 500

0.02

0.04

0.06

0.08

0.1

0.12

r(t)
y(t)

0 100 200 300 400 500

0.1

0.2

0.3

0.4

0.5

0.6

Time[sec]

u(t)

adasdasdasd

ad
as

da
sd

as
d

adasdasdasd

adasdasda
sd

Figure 3.18 : System output (a), control signal (b) for variable step input.

(a)

(b)

(c)

(a)

(b)

(c)

0 100 200 300 400 500

-2

-1

0

α1(t)

SVRcontroller

0 100 200 300 400 500
0

0.1

0.2

0.3
bc(t)

0 100 200 300 400 500
0

20

40

60
#svc(t)

Time[sec]

0 100 200 300 400 500

-0.1

-0.05

0

0.05

λ1(t)

SVRmodel

0 100 200 300 400 500

0

0.05

0.1

bm(t)

0 100 200 300 400 500
0

20

40

60

80

#svm(t)

Time[sec]

adasdasdasd
adasdasdasd

a
da

sd
as

da
sd

adasdasd
asd

Figure 3.19 : Adaptation of SVRcontroller parameters (left), SVRmodel parameters
(right).

yn−ny,un−1 · · ·un−nu]
T where Pn = en − en−1, In = en, Dn = en − 2en−1 + en−2 and

en = rn− yn, and np = ni = nd = ny = nu = 1. SVRcontroller and SVRmodel parameters

are depicted in Figure 3.21.

3.4.2.3 Uncertainty in system parameters

In order to examine the robustness of the proposed method with respect

to parameter uncertainty, γ(t) is considered as the time-varying parameter

of the system, where its nominal value is γnom(t) = 0.48 and it is al-

lowed to vary slowly in the purlieu of its nominal value as γ(t) = 0.48 +

0.06sin(0.008πt). The input feature vector for SVRcontroller is settled as: ΠΠΠccc =

[rn · · ·rn−nr ,Pn · · ·Pn−np, In · · · In−ni,yn · · ·yn−ny ,un−1 · · ·un−nu]
T where Pn = en − en−1,

76

(a)

(b)

0 100 200 300 400 500

0.02

0.04

0.06

0.08

0.1

0.12

r(t)
y(t)

0 100 200 300 400 500

0.1

0.2

0.3

0.4

0.5

0.6

Time[sec]

u(t)

adasdasdasd

adasdasdasd

ad
as

da
sd

as
d adasdasda

sd

Figure 3.20 : System output (a), control signal (b) for variable step input.

(a)

(b)

(c)

(a)

(b)

(c)

0 100 200 300 400 500

-0.3

-0.2

-0.1

0

α1(t)

SVRcontroller

0 100 200 300 400 500
0

0.1

0.2

0.3
bc(t)

0 100 200 300 400 500
0

20
40
60
80

#svc(t)

Time[sec]

0 100 200 300 400 500

-0.1

-0.05

0

0.05

λ1(t)

SVRmodel

0 100 200 300 400 500

0

0.05

0.1

bm(t)

0 100 200 300 400 500
0

10

20

30

#svm(t)

Time[sec]

adasdasdasd

adasdasdasd

ad
as

da
sd

as
d adasd

asdasd

Figure 3.21 : Adaptation of SVRcontroller parameters (left), SVRmodel parameters
(right).

In = en, Dn = en − 2en−1 + en−2 and en = rn − yn, and nr = 0,np = ni = ny =

1,nu = 2. Figure 3.22 illustrates the tracking performance of SVRcontroller and control

signal applied to the system. When the control signal produced for nominal system

parameters in Figure 3.18 and for the time varying parameter situation in Figure 3.22

are compared, it can be observed how the control signal in Figure 3.22 tries to tolerate

the uncertainty of the time varying system parameter. Parameters of SVRcontroller and

SVRmodel are depicted in Figure 3.23.

3.4.2.4 Closed-loop Lyapunov stability analysis

The Lyapunov stability analysis given in section 3.3.4 is performed for the proposed

control methodology, and the numerical justification is illustrated in Figure 3.24 where
∂V (t)

∂ t and V (t) are depicted for the bioreactor system. Since it is observed that V (t)≥ 0

77

(a)

(b)

(c)

0 100 200 300 400 500

0.05

0.1

0.15

r(t)
y(t)

0 100 200 300 400 500

0.2

0.4

0.6

Time[sec]

u(t)

0 100 200 300 400 500

0.45

0.5

0.55

Time[sec]

γ(t)

adasdasdasd

ad
a

sd
as

da
sd

adasdasdasd

adasdasda
sd

Figure 3.22 : System output (a), control signal (b), time varying parameter (c).

and ∂V (t)
∂ t ≤ 0 during the course of control, we can conclude that the closed-loop system

is stable for all cases.

3.4.3 Comparison of the results with adaptive PID based on SVR

The performance of the proposed controller employing SVRcontroller for tracking

control and SVRmodel for modeling is compared with the SVM-based PID controller

implemented by Iplikci [5] for cases with no noise, with measurement noise added

to the system and with parametric uncertainty. The method described in [5] adjusts

adaptive PID controller parameters depending on the approximated K-step ahead

future system behaviour. The tuning mechanism of the controller has five components:

classical PID controller, NARX model of the system, line search block, control signal

correction block and controller parameter tuner. SVR model of the system is employed

to approximate the K-step ahead future Jacobian of the system. The parameters of the

PID are tuned via Levenberg-Marquard algorithm. Jacobian matrix is dissociated into

two blocks using chain rule. One block is utilized for control signal correction and the

other is for parameter tuning. Control signal correction block which is based on Taylor

78

(a)

(b)

(c)

(a)

(b)

(c)

0 100 200 300 400 500

-2

-1

0

α1(t)

SVRcontroller

0 100 200 300 400 500
0

0.1

0.2

0.3
bc(t)

0 100 200 300 400 500
0

20

40#svc(t)

Time[sec]

0 100 200 300 400 500

-0.1

-0.05

0

0.05

λ1(t)

SVRmodel

0 100 200 300 400 500

0

0.05

0.1

bm(t)

0 100 200 300 400 500
0

20

40

60

#svm(t)

Time[sec]

adasdasdasd

ad
as

da
sd

as
d

adasdasdasd

adasdasda
sd

Figure 3.23 : Adaptation of SVRcontroller parameters (left), SVRmodel parameters
(right).

expansion of the control signal is employed in case the updated controller parameters

are not good enough to force the system output to follow the desired trajectory. Optimal

learning rate for control signal correction block is obtained in line search block via

golden section method.

The simulation results obtained by our control architecture proposed in this paper

are compared with the results attained by the SVM-based PID controller given in

[5]. The tracking performances of the controllers for cases with no noise, with

measurement noise added and with parametric uncertainty, respectively, are depicted

in Figures 3.25-3.27 for CSTR and in Figures 3.28-3.30 for bioreactor system.

It can be deduced from the figures that the proposed SVRcontroller has better tracking

performance than SVM-based PID controller. As the prediction horizon (K) of the PID

controller is incremented, the performance as well as disturbance rejection properties

improve, the best results are obtained when K=5. It is observed that SVRcontroller

reaches the same level of performance with only K=1. The main reason for this is

that SVRcontroller ensures global minima in all steps while SVM-based PID controller

converges to local minima gradually. Comparisons of tracking performance of both

controllers are illustrated in Figure 3.31 where the following performance index is

utilized:

Jcomp =
∞

∑
n=1

[rn+1− yn+1]
2 (3.67)

Figure 3.31 illustrates that SVRcontroller has better tracking performance than

SVM-based PID controller for all cases. Since the applicability of the proposed

mechanism in real time is significant, computation times of each operation in the

79

(a)

(b)

()V t

()V t

t

∂
∂

(a)

(b)

()V t

()V t

t

∂
∂

(a)

(b)

()V t

()V t

t

∂
∂

0 100 200 300 400 500
-6

-4

-2

0

Time[sec]

0 100 200 300 400 500
0

2

4

6

x 10
-4 with no noise

0 100 200 300 400 500
0

2

4

6

x 10
-4 with measurement noise added

0 100 200 300 400 500

-6

-4

-2

0

�

Time[sec]

0 100 200 300 400 500
0

2

4

6

x 10
-4 with parametric uncertainty

0 100 200 300 400 500

-30

-20

-10

0

Time[sec]

adasdasdasd

ad
a

sd
as

da
sd

adasdasdasd

adasdasd
asd

Figure 3.24 : V (t) (a) and ∂V (t)
∂ t (b) for noiseless (left), noisy (right) and with

parametric uncertainty cases (middle).

control algorithm have been recorded for each case during every sampling period

and the average response times of the operations have been listed in Table 3.1 for

all conditions. As can be seen from the table, the average total response times of the

proposed controller are less than 50 ms. Since sampling time is chosen as 100 ms in our

simulations, it can be conceived that SVRcontroller can be used in real-time applications.

Moreover, total response times can be minimised by utilizing effective hardwares such

as FPGA or by optimizing codes in real time application. In our simulations, a PC with

2.2 GHz core i7 CPU and 8 GB RAM has been employed to implement the control

algorithm and codes are not optimized.

Table 3.1 : Computation times(in ms) for SVRcontroller.

CSTR Bioreactor
Operations Noiseless Noisy Disturbance Noiseless Noisy Disturbance

SVRcontroller Training 6.65 14.819 16.728 13.731 37.341 25.471
SVRmodel Training 16.979 9.8048 12.265 15.033 3.3563 15.369

Other 3.187 3.0002 2.966 2.881 3.0127 3.312
Total Time 26.816 27.624 31.959 31.674 43.71 44.152

80

(a)

(b)

0 100 200 300 400 500

0.4

0.45

0.5

0.55

0.6

SVRcontroller

r(t)
y(t)

0 100 200 300 400 500
0.4

0.45

0.5

0.55

0.6

Time[sec]

SVM-based PID

r(t)
y(t)

adasdasdasd

adasdasdasd

ad
as

da
sd

as
d

a
dasdasdasd

Figure 3.25 : Tracking performance of SVRcontroller (a) and SVM-based PID
controller (b) with no noise.

3.5 Conclusion

In this paper, a novel control architecture is proposed where two online support vector

regressors are used concurrently to minimize tracking error of a system. SVRmodel is

employed to approximate the system model and predict the output, while SVRcontroller

computes the control input based on the tracking error of the closed loop system.

SVRcontroller parameters are tuned without an explicit knowledge of the control signal

applied to the system, hence in order to clarify the learning mechanism of the

controller, the notions of "open loop" and "closed-loop" margins are introduced and

explained in detail through numerous figures. The main contribution of the paper is that

it justifies the use of an online SVR directly as a controller as opposed to existing works

in technical literature where SVRs are generally utilized for modelling to approximate

system Jacobians. The performance of the proposed controller is evaluated on CSTR

and bioreactor benchmark systems. A thorough stability analysis of the closed-loop

system is also presented. Additionally, the performance of the controller is compared

with an SVM-based PID controller. The robustness of the controller against system

parameter uncertainty and measurement noise have been examined. The results

indicate that the proposed controller is quite succesful in attaining low tracking error,

suppressing measurement noise and parametric uncertainties. In future works, it is

planned to extend the closed-loop margin notion to develop new SVR type adaptive

controller design methods.

81

(a)

(b)

0 100 200 300 400 500

0.4

0.45

0.5

0.55

0.6

SVRcontroller

r(t)
y(t)

0 100 200 300 400 500

0.4

0.45

0.5

0.55

0.6

Time[sec]

SVM-based PID

r(t)
y(t)

adasdasdasd

ad
as

da
sd

as
d

adasdasd
asd

adasdasdasd

Figure 3.26 : Tracking performance of SVRcontroller (a) and SVM-based PID
controller (b) with measurement noise.

(a)

(b)

0 100 200 300 400 500
0.9

0.95

1

1.05

1.1

Time[sec]

d2(t)

(c)

0 100 200 300 400 500

0.4

0.45

0.5

0.55

0.6

SVRcontroller

r(t)
y(t)

0 100 200 300 400 500

0.4

0.45

0.5

0.55

0.6

Time[sec]

SVM-based PID

r(t)
y(t)

adasdasdasd

ad
as

da
sd

as
d

adasdasdasd

adasd
asdasd

Figure 3.27 : Tracking performance of SVRcontroller (a) and SVM-based PID
controller (b) with parametric uncertainty (c).

82

(a)

(b)

0 100 200 300 400 500

0.02

0.04

0.06

0.08

0.1

SVRcontroller

r(t)
y(t)

0 100 200 300 400 500

0.02

0.04

0.06

0.08

0.1

Time[sec]

SVM-based PID

r(t)
y(t)

adasdasdasd

adasdasdasd

a
da

sd
as

da
sd

adasdasdasd

Figure 3.28 : Tracking performance of SVRcontroller (a) and SVM-based PID
controller (b) with no noise.

(a)

(b)

0 100 200 300 400 500

0.02

0.04

0.06

0.08

0.1

SVRcontroller

r(t)
y(t)

0 100 200 300 400 500

0.02

0.04

0.06

0.08

0.1

Time[sec]

SVM-based PID

r(t)
y(t)

adasdasdasd

adasdasdasd

ad
as

d
as

da
sd

adasdasdasd

Figure 3.29 : Tracking performance of SVRcontroller (a) and SVM-based PID
controller (b) with measurement noise.

83

(a)

(b)

(c)

0 100 200 300 400 500

0.45

0.5

0.55

Time[sec]

γ(t)

0 100 200 300 400 500

0.05

0.1

0.15

SVRcontroller

r(t)
y(t)

0 100 200 300 400 500

0.05

0.1

0.15

Time[sec]

SVM-based PID

r(t)
y(t)

adasdasdasd

ad
as

da
sd

as
d

adasdasdasd

adasdasdasd

Figure 3.30 : Tracking performance of SVRcontroller (a) and SVM-based PID
controller (b) with parametric uncertainty (c).

CSTR
Noiseless

CSTR
Noisy

CSTR
Disturbance

Bio.
Noiseless

Bio.
Noisy

Bio.
Disturbance

1 2 3 4 5 6
0

0.05

0.1

0.15

0.2

0.25

Jcomp

SVRcontroller

SVM-based PID

adasdasdasd

ad
as

da
sd

a
sd

adasdasdasd

a
dasdasdasd

Figure 3.31 : Tracking performance comparison of the controller with respect to the
defined performance index (3.67).

84

4. GENERALIZED SELF-TUNING REGULATOR BASED ON ONLINE
SUPPORT VECTOR REGRESSION 3

4.1 Introduction

Adaptation is a vital characteristic of living organisms that helps to increase their

resistance to adverse environmental conditions. Every adaptation leads to some loss,

in the form of material, energy or information for the organism [73]. The organism can

be strengthened against adverse conditions as a result of repeated adaptation which is

an accumulation of experiences that it can evaluate to minimize the losses involved

in adaptation [73]. Thus, the organism can manage to learn how to alter its own

characteristics against contingency.

By imitating the adaptation features of biological systems, a variety of solutions can

be developed for problems in many engineering fields. Adaptation, when interpreted

in terms of control theory, helps to analyse and control systems with changing

parameters, model uncertainties or varying operating conditions. An adaptive control

system includes a feedback structure to measure the quantity of adaptation and a

mechanism, preferably incorporating some sort of intelligence, to use this quantitative

information to design a controller. By introducing adaptation to a conventional

controller, it is possible to use it to cope with strong nonlinearities, time delays and

time-varying dynamics of systems. The necessity for adaptive controllers arises since

the environment is continuously changing for many real-world systems [63].

The parameter adaptive control can be examined under three main headings in a

common framework according to Astrom [74]: gain scheduling, model reference

control, and self tuning regulators.

Gain scheduling can be reckoned as a mapping from previously defined scenarios

between system parameters or system operating conditions to controller parameters

3This chapter is based on the paper "Uçak K. and Günel G.Ö., (2016), Generalized self-tuning
regulator based on online support vector regression, Neural Computing and Applications, doi:
10.1007/s00521-016-2387-4"

85

[63]. In gain scheduling, the wide range of operating conditions of the system is

firstly divided into small ranges via a priori information, and robust/optimal controllers

are designed for each small range. Decision trees or lookup tables are employed so

as to model the relationship between system conditions and controller parameters.

The proper controller parameters most convenient to the situation of the system are

selected.

Model reference adaptive control (MRAC) is applied to compel the closed-loop system

to exhibit the same behaviour as a reference model. The reference model assigns the

transient and steady-state specifications of the closed loop system. The goal of MRAC

is to ensure convergence of the static and dynamic characteristics of the adjustable

system, to the characteristics of the reference model [73]. The desired closed-loop

behavior of the controlled system is specified by a model, error is computed as the

difference between the model and closed-loop outputs, and controller parameters are

obtained to minimize this error [63].

Self-tuning regulators (STR) are among the most convenient adaptive control methods

for nonlinear systems. They are able to adapt controller parameters automatically [75].

This class of regulators are generally comprised of three parts: a model estimator,

a controller and a block in which the controller parameters are determined from the

estimated model parameters [76]. The regulator has two loops called as inner and

outer loops. The inner loop is composed of the system to be controlled and an ordinary

feedback controller [74]. The outer loop comprises a recursive model estimator and a

design calculation to compute controller parameters [74]. For STR, controller design

alternatives are very rich since it is possible to utilize various types of controllers and

parameter estimators, by combining the powerful features of these components, more

flexible and robust adaptive controllers can be successfully achieved. For example, by

combining the nonlinear function approximation ability of artificial neural networks

(ANN) and robustness of PID controllers, PID type ANN controllers can be designed

to effectively control nonlinear systems [77, 78].

Model structure selection and its parametrization are significiant issues for closed-loop

control performance in self-tuning regulators [73]. In model based control (MBC)

methodologies, controller performance is influenced by modeling inaccuracies.

Although ANNs and adaptive neuro-fuzzy inference systems (ANFIS) have been

86

succesfully employed in the identification and control of numerous nonlinear systems

[19, 23, 25, 79, 80], their functionalities are impressed by local minimas resulting

from non-convex objective functions. Since support vector machines (SVM) possess

convex objective functions, they ensure global minimum and have better generalization

capability with very few trainining data [1, 54, 81] compared to ANN and ANFIS.

Hence SVM-based identification and control techniques have recently been utilized in

adaptive control techniques instead of ANN and ANFIS [2, 5, 28, 31].

In technical literature, there are various controller structures related to STR design

based on soft computing methods. Akhyar and Omatu [77] derived a self-tuning PID

controller using an ANN parameter estimator to control linear and nonlinear systems.

Wang et al. proposed an ANN parameter tuner to approximate the parameters of a

conventional PI controller depending on various operating conditions since unmodeled

system dynamics and disturbances hamper to determine suitable scheduling points in

gain scheduling [78]. Ponce et al. [82] designed a self-tuning control system based

on an ANN controller trained by tracking error instead of net output error to control

nonlinear systems. In this approach, it is only required to know the sign of the system

Jacobian to ensure the convergence of the weighting coefficients and the estimation of

the sign of system Jacobian is uncomplicated compared to estimating system Jacobian

[82]. Flynn et al. [83] proposed to use radial basis function neural network (RBFNN)

to approximate system Jacobian for a turbogenerator system since the convergence

for RBFNN is faster than multilayered feedforward neural networks (MLP), and RBF

networks can be trained much more rapidly and conveniently than MLPs. Abdullah

et al. [84] utilized self-tuning pole-zero placement controller for nonlinear unstable

systems based on RBFNN. The nonlinear dynamics of the system is represented with

a model including a simple linear time-varying sub-model derived via recursive least

squares algorithm and a nonlinear sub-model identified using RBFNN. Wahyudi et

al. [85] deployed an RBFNN parameter estimator trained with extended minimal

resource allocation algorithm (EMRAN) which is a sequential learning technique and

extended Kalman filter (EKF) to directly estimate the parameters of a PID controller.

Firstly, nominal values of PID parameters are obtained with a standart controller design

method, and then these parameters are tuned via RBF parameter estimator that is

sequentially trained to compensate for system parameter variations. Guo and Yang [86]

87

adapted genetic algorithm (GA) to optimize the initial weights of an ANN parameter

estimator to forecast the parameters of a PID controller for a hydro-turbine governor

system. System Jacobian which is required to adjust the parameters of the ANN

parameter estimator is approximated via a second ANN. Kang et al. [87] employed

an ANN controller for speed control of a servo motor without using system model. In

order to tune controller parameters, a linear combination of the tracking error and

its derivative is deployed in place of system Jacobian. Pham and Karaboga [88]

utilized a recurrent neural network (RNN) system model trained with GA for fuzzy

STR to control linear and nonlinear systems. Initially, a RNN model of the system

is determined by offline training with a set of input–output data pairs collected from

the system. Then, the RNN model of the system is gradually improved during online

control [88].

Fuzzy systems have frequently been employed to constitute adaptive mechanisms for

controllers. Fuzzy logic based control methods can be categorized mainly into two

classes, methods in the first category employ fuzzy estimators to tune the parameters

of conventional controllers as in [89–91]. Methods in the second category use fuzzy

logic controllers with tunable parameters which are updated via self tuning algorithms

as in [92, 93]. He et al. [89] reduced the three parameters of the PID controller

to a single unknown variable inspired by Ziegler-Nichols formula and considered

a fuzzy adaptation mechanism to estimate this new single parameter. Gautam and

Ha [90] proposed a fuzzy self-tuning estimator for PID parameters to control a

quadrotor. They used EKF algorithm to update the parameters of the fuzzy estimator.

Ahn et al. [91] approximated the parameters of a PID controller via three seperate

fuzzy estimators. The tunable parameters of the fuzzy estimator are adjusted by

backpropogation algorithm. Evolutionary algorithms have also been used for finding

the optimal parameters of fuzzy inference mechanisms [94, 95]. Bandyopadhyay et

al. [94] deployed a fuzzy-genetic approach to tune the parameters of a self-tuning

PID controller. The adjustable parameters of the PID controller are reduced to

a single parameter using dead-beat control. The controller parameter is predicted

by a fuzzy inference mechanism and the rule base of fuzzy model is optimized

via genetic algorithm. Sharkawy [95] applied three independent fuzzy parameter

estimator mechanisms to tune the parameters of an incremental PID controller.

88

Each PID parameter is tuned with a first order Takagi-Sugeno (TS) fuzzy inference

system, whose parameters are optimally determined offline using a modified genetic

algorithm (GA) [95]. Qiao and Mizumato [92] proposed a peak observer based tuning

mechanism to adjust the scaling coefficients of a fuzzy PID controller. The mechanism

updates the scaling coefficients when the system output has a peak point. Since the

coefficients are not adjusted up to another peak, the proposed tuning mechanism has

a limited field of use and is practical only for step type reference signals. In order to

overcome drawbacks of the peak observer based tuning mechanism, Woo et al. [93]

proposed to tune scaling coefficients of a fuzzy controller using a function of tracking

error during the course of control. The controller parameters are succesfully adapted

even the system has no overshoot. Bouallègue et al. [96] utilized particle swarm

optimization to adjust the parameters of a fuzzy PID controller to control an electrical

DC drive. In fuzzy logic based control methodology, fuzzy rule base generally depends

on the system to be controlled and the type of the controller to be implemented,

so fuzzy rule base is established by intuition or practical experience [91]. In order

to obtain a fuzzy system with suboptimal/optimal parameters, ANFIS based STRs

combining the learning ability of ANNs with reasoning feature of fuzzy systems have

been designed as in [97–99]. When backpropogation algorithm is used to train ANFIS

directly as a parameter estimator, the model of the controlled system is needed. Li

and Priemer [97] employed a modified random optimization method to train a neural

network based fuzzy logic parameter estimator without requiring model of the system

being controlled. Bishr et al. [98] developed an online training algorithm for ANFIS

to estimate the parameters of a self-tuning PID controller. Lu et al. [99] used a wavelet

type-2 fuzzy neural network system model for self-tuning predictive PID controllers

to control liquid-level and heating processes. The parameters of the PIDs are updated

using gradient descent method and the system Jacobians are approximated via wavelet

type-2 fuzzy neural network system model.

In this paper, a generalized self-tuning regulator based on SVR methodology is

proposed to control nonlinear dynamic systems. The main contribution of the paper is

utilizing an online SVR to approximate the optimal parameter values of a self-tuning

regulator. For this purpose, the "closed-loop margin" notion proposed in [3] has been

expanded to design STRs and online SVR update equations are derived. The proposed

89

mechanism is used to optimize the parameters of two different type of controllers,

namely PID and fuzzy PID controllers. Another contribution of the paper, unlike

the existing research in literature, is using online learning method for estimating the

system model. Stability of the closed-loop system has also been analyzed. The

performance of the proposed generalized STRs has been examined on a nonlinear

bioreactor system,and the performance of the generalized STRs has been compared

with SVM-based PID controller proposed by Iplikci in [5]. The results show that the

proposed generalized STR structure and online SVR model attain good modeling and

control performances.

The organization of the paper is presented as follows: Section 4.2 describes the basic

principles of online SVR. Construction of optimization problem so as to utilize SVR

directly as an adaptive parameter estimator and the proposed STRs are explained in

detail in section 4.3. Additionally, the stability analysis of the closed-loop system is

performed. In section 4.4,the performance of the proposed mechanism is simulated

and also, the performance of the proposed method is compared with an SVM-based

PID controller. The study is briefly concluded in section 4.5.

4.2 Online support vector regression

This section beriefly reviews online support vector regression. The basic principles of

support vector regression and online learning method are presented in sections 4.2.1

and 4.2.2, respectively.

4.2.1 An overview of support vector regression

Consider the input-output training instances

T = {xi,yi}N
i=1 xi ∈ X⊆ Rn, yi ∈ R (4.1)

where N and n indicate the number of the training samples and the dimension of the

input samples, respectively. SVR model (4.2) can be deployed in order to capture the

connection among input-output instances in (4.1).

ŷi =< w,ΦΦΦ(xi)>+b, i = 1,2, · · · ,N (4.2)

where "w" represents the weights of the SVR network in feature space (F), "ΦΦΦ(xi)" is

the projection of the input samples to feature space, "b" typifies the bias of regressor

90

and < ., . > is inner product in F [43]. The essence of the optimization problem for

support vector machines (SVM) is based on finding the optimal seperator or regressor.

In classification, the seperator that maximizes the margin between two different classes

is searched. Similarly, in regression, the aim is to find the optimal regressor within a

predefined margin via ε-insensitive loss function. The primal form for optimization

problem is formulated using ε-insensitive loss function as:

min
w,b,ξ ,ξ ?

JPr =
1
2
‖w‖2 +C

N

∑
i=1

(ξi +ξ
?
i) (4.3)

with the following constraints

yi−< w,ΦΦΦ(xi)>−b≤ ε +ξi

< w,ΦΦΦ(xi)>+b− yi ≤ ε +ξ
?
i

ξi,ξ
?
i ≥ 0 , i = 1,2, · · ·N

(4.4)

where ε is the upper value of tolerable error, ξ ’s and ξ ? ’s denote the deviation from

ε tube and called as slack variables [1, 43]. The primal form has non-convex objective

function and the solution may get stuck at local minima. The dual form for the

optimization problem can be obtained using Lagrangian multiplier method. Thus, the

problem in (4.3-4.4) can be rendered to convex problem. For this purpose, a Lagrange

function is derived by introducing non-negative Lagrange multipliers β , β ?, η and η?

as dual variables to compound objective function in (4.3) and constraints in (4.4) as

follows :

LPr =
1
2
‖w‖2 +C

N

∑
i=1

(ξi +ξ
?
i)−

N

∑
i=1

βi(ε +ξi− yi+< w,ΦΦΦ(xi)>+b)

−
N

∑
i=1

β
?
i (ε +ξ

?
i + yi−< w,ΦΦΦ(xi)>−b)−

N

∑
i=1

(ηiξi +η
?
i ξ

?
i)

(4.5)

The optimality conditions for Lagrangian in (4.5) are acquired as:

∂LPr

∂w
= 0−→ w−

N

∑
i=1

βi < w,ΦΦΦ(xi)>= 0 (4.6)

∂LPr

∂b
= 0−→

N

∑
i=1

(βi−β
?
i) = 0 (4.7)

∂LPr

∂ξi
= 0−→ C−βi−ηi = 0 , i = 1,2, ...N (4.8)

∂LPr

∂ξ ?
i

= 0−→ C−β
?
i −η

?
i = 0 , i = 1,2, ...N (4.9)

91

S

E

R

()

() ()

()

f

f h

f

ε

ε

+






−


x

x x

x

S

E

S ()

() ()

()

f

f h

f

ε

ε

+






−


x

x x

x

(a)
Y

(b)
Y

cx
x x

ˆ ()

()
c c

c

c

y f

h

y

=










x

x

cx

ˆ ()
() c c

c
c

y f
h

y

=






x
x

output of svr

new sample

adasdasdasd

adasdasdasd

Figure 4.1 : E, S and R subsets before (a) and after (b) training [1–4].

Thus, substituting (4.6-4.9) in (4.5), dual form of the optimization problem is acquired

in (4.10)-(4.11) as a quadratic programming (QP) problem:

JD =
1
2

N

∑
i=1

N

∑
j=1

(βi−β
?
i)(β j−β

?
j)Ki j + ε

N

∑
i=1

(βi +β
?
i)− yi

N

∑
i=1

(βi−β
?
i) (4.10)

with the following constraints

0≤ βi ≤C , 0≤ β
?
i ≤C

N

∑
i=1

(βi−β
?
i) = 0 , i = 1,2, · · ·N

(4.11)

where Ki j = ΦΦΦ(xi)
T ΦΦΦ(x j). Thus, the optimization problem is degraded to a problem

with single type unknown parameter (β). Various QP algorithms can be implemented

to obtain Lagrange multipliers (β). The solution of the regression problem in (4.2) can

be approximated as in (4.12):

ŷ(x) = ∑
i∈SV

λiK(x,xi)+b , λi = βi−β
?
i (4.12)

where "SV" emblematizes support vectors. This method computes the solution offline,

however online learning algorithms for support vector regression can also be derived

via the objective function and the constraints given in (4.10,4.11).

4.2.2 Online ε-support vector regression

Notion of "margin" is the key to fully comprehend the fundamental idea of online SVR.

Let us predefine an error margin function as:

h(xi) = f (xi)− yi =
N

∑
j=1

λ jKi j +b− yi (4.13)

92

where h(xi) is the margin value, f (xi) is the output of regressor and yi is the actual

output corresponding to input xi from the data set. The training samples are separated

into error support (E), margin support (S) and remaining support (R) subsets depending

on their locations with respect to the margin function and Lagrange multipliers as

follows:

E = {i | |λi|=C, |h(xi)| ≥ ε}

S = {i | 0 < |λi|<C, |h(xi)|= ε}

R = {i | |λi|= 0, |h(xi)| ≤ ε}

(4.14)

When a new sample xc is imbibed by the regressor, it is required to include the new

sample xc into one of these subsets (E,S,R) depending on the margin and Lagrange

multiplier value of the new sample. During this learning process, KKT conditions must

be satisfied automatically for all training instances [2]. Assuming that the Lagrange

multiplier of the new added data is λc = 0, from (4.13), its margin value is acquired as:

h(xc) = f (xc)− yc =
N

∑
j=1

λ jK(xj,xc)+b− yc (4.15)

The Lagrange value of current data (λc) and Lagrange values of previously added

samples are gradually updated to provide all samples satisfy KKT conditions. As

a result of the adjustment process, current data moves into one of the three sets

(E,S,R) and the sets of the previously learned samples may change since Lagrange

multiplier (λi) and margin values of the previously learned samples (h(xi)) may alter

because of admittance of the new data into the regression problem. Thus, the new data

is succesfully ingested by the regressor. This situation is illustrated in Figure 4.1.

Figure 4.1 (a), (b) depicts the margin before and after training, respectively. As

seen in Figure 4.1 (a), the regressor cannot predict correctly for current data since

it actually belongs to set E but the regressor result gives it as R for initial value of

λc. For this reason, the Lagrange multiplier of the current data has to be adjusted.

The incorporation of the newly added data changes the structure of the regression

problem. All Lagrange multipliers are adjusted to yield low prediction error and correct

classification of data. Note that Figure 4.1 shows how the sample in R immigrates to

class S and newly learned sample enters into class E. In online learning, the optimal

regression surface transumes when a new data is transcluded to training samples or a

formerly trained instance is forgotten. In order to provide optimal represention of all

93

existing intances by the regressor, it is required to adjust the parameters of the previous

model by ensuring the KKT conditions for training or forgetting phases. Derivation of

online learning rules necessitates a Lagrange function which is a combination of a

dual objective function and corresponding constraints. The Lagrange function for dual

formulation can be expressed as follows via (4.10,4.11).

LD =
1
2

N

∑
i=1

N

∑
j=1

(βi−β
?
i)(β j−β

?
j)Ki j + ε

N

∑
i=1

(βi +β
?
i)−

N

∑
i=1

yi(βi−β
?
i)

−
N

∑
i=1

(δiβi +δ
?
i β

?
i)−

N

∑
i=1

ui(C−βi)+u?i (C−β
?
i)+ z

N

∑
i=1

(βi−β
?
i)

(4.16)

KKT optimality conditions for dual Lagrangian function in (4.16) are derived in (4.17)

via dual variables:

∂LD

∂βi
=

N

∑
j=1

(β j−β
?
j)Ki j + ε− yi−δi +ui + z = 0

∂LD

∂β ?
i
=−

N

∑
j=1

(β j−β
?
j)Ki j + ε + yi−δ

?
i +u?i − z = 0

(4.17)

δ
(?)
i ≥ 0,u(?)i ≥ 0,δ (?)

i β
(?)
i = 0,u(?)i (C−β

(?)
i) = 0

where superscript δ
(?)
i represents both δi and δ ?

i . KKT condition indicates that at most

one of βi or β ?
i should be nonzero and both are nonnegative [4]. The margin for the ith

sample xi can be designated with (4.18):

h(xi) = f (xi)− yi =
N

∑
j=1

λ jKi j +b− yi (4.18)

The convergence and migration of data in learning or forgetting phases occur according

to the following conditions:

h(xi)≥ ε,λi =−C

h(xi) = ε,−C < λi < 0

− ε ≤ h(xi)≤ ε,λi = 0

h(xi) =−ε,0 < λi <C

h(xi)≤−ε,λi =C

(4.19)

The variation on margin function values of previously learned samples (∆h(xi)) are

derived as in (4.20) via (4.13-4.19) depending on Lagrange multiplier of the current

sample (∆λc) and ∆b [4, 55].

∆h(xi) = Kic∆λc +
N

∑
j=1

Ki j∆λ j +∆b (4.20)

94

The new added data has to satify the dual constraints in (4.11) at every parameter

update step, so

λc +
N

∑
j=1

λ j = 0 (4.21)

is extracted. As given in (4.14), Lagrange multiplier values of the vectors belonging

to subsets E or R are equal to "0" or "C". The migration between subsets especially

affects the Lagrange values of vectors in S. If a sample which belongs to set S remains

in set S again, there is no change on margin values of mentioned sample, that is

∆h(xi) = 0, i ∈ S [55]. Thus, relation between increments of current data (∆λc) and

parameters of the previously obtained model can be formulated:
N

∑
j=1

Ki j∆λ j +∆b =−Kic∆λc , ∑
j∈SV

∆λ j =−∆λc (4.22)

and in matrix form is given as
0 1 · · · 1
1 Ks1s1 · · · Ks1sk
...

...
1 Ksks1 · · · Ksksk




∆b
∆λs1

...
∆λsk

=−


1

Ks1c
...

Kskc

∆λc (4.23)

where the indices of the samples in support vector set are defined as S =

{s1,s2,s3,,sk}. As a consequence, ∆λλλ is attained as:

∆λλλ =


∆b

∆λs1
...

∆λsk

= βββ∆λc (4.24)

where

βββ =


β

βs1
...

βsk

=−ΘΘΘ


1

Ks1c
...

Kskc

 , ΘΘΘ =


0 1 · · · 1
1 Ks1s1 · · · Ks1sk
...

...
1 Ksks1 · · · Ksksk


−1

(4.25)

as given in [4]. Thus, the feasible increment directions for the bias and the Lagrange

multipliers of the samples in S can be obtained for a given ∆λc using (4.23-4.25).

The derivation and calculation of the Lagrange multiplier of current sample (∆λc)

is detailed in [3]. The variation in margin values as a result of increment ∆λc for

non-support samples can be calculated as follows using (4.18,4.20,4.24):
∆h(xz1)
∆h(xz2)

...
∆h(xzm)

= γγγ∆λc, γγγ =


Kz1c
Kz2c

...
Kzmc

+


1 Kz1s1 · · · Kz1sl

1 Kz2s1 · · · Kz2sl
...

...
1 Kzms1 · · · Kzmsl

βββ (4.26)

95

where z1,z2, ...,zm are the indices of non-support samples, γγγ are margin sensitivities

and γγγ = 0 for samples in S. The alternation of the matrix ΘΘΘ for learning and forgetting

stages and detailed information related to recursive algorithm can be attained via [2–4,

55].

4.3 Contruction of Optimization Problem for Self-Tuning Regulator

4.3.1 An overview of self-tuning regulators

The main components of a self-tuning regulator (STR) are system model, parameter

estimator and controller blocks as given in Figure 4.2 where θθθ and XXXc indicate

the controller parameters and input vector of the controller, respectively. In order

to minimize tracking error and estimate feasible controller parameters, the future

behaviour of the system is required, so system model block is essential to approximate

the dynamics of the system. Parameter estimator block computes new controller

parameters by regarding the future behaviour of the plant via the obtained system

model, and then adjusted controller parameters are implemented in the controller block

to make system track reference signal accurately. Any controller with adjustable

parameters can be utilized in the generalized controller block given in Figure 4.2.

In this work, the proposed STR structure is implemented with PID and fuzzy PID

controllers as explained in detail below. Depending on the controlled systems and

design techniques, numerous self-tuning architectures are possible in the parameter

estimation block [76]. As for the system model part, various intelligent modeling

techniques such as ANN [19,23,24], ANFIS [25,100] etc have been applied to identify

the dynamics of system. In our controller structure, SVR is employed to model the

dynamics of the controlled system since it has high generalization capacity and ensures

global minimum in training. Subsequently, another SVR is used as parameter estimator

to approximate controller parameters.

4.3.2 Generalized STR structure based on SVR

The tuning mechanism of the proposed STR architecture based on online SVR is

depicted in Figure 4.3. There are two separate SVR structures in the proposed

mechanism: SVRestimator to calculate the controller parameters and SVRmodel

96

uGeneralized Controller

(,)c cu f= θ Χ
System

Parameter
Estimator

System Model

y
r

my

Controller Parameters

Adjustment
Mechanism

θ̂

Controller Parameters

C
ontro

lle
r P

a
ra

m
e

te
rs

C
on

tr
o

lle
r

P
a

ra
m

e
te

rs

Controller Parameters

Figure 4.2 : Self-tuning regulator.

which predicts the future behaviour of the controlled system. Since SVR has

multi-input-single-output (MISO) structure, a seperate SVRestimator structure is

deployed for each approximated parameter. Therefore, the number of the SVRestimator

structures to be used in parameter estimator block depends on the number of the

adjustable parameters in the controller. For instance, three SVRestimator structures are

employed for PID type STR to forecast Kp, Ki and Kd parameters. The controller

parameters are estimated via SVRestimator as:

θm = festimatorm(ΠΠΠmc) = ∑
k∈SVestimatorm

αmkKestimatorm(ΠΠΠmc,ΠΠΠmk)+bestimatorm

m ∈ {1,2, · · · p}
(4.27)

where ΠΠΠmc indicates the current input of mth estimator, Kestimatorm(., .) is the kernel

matrix, αmk, ΠΠΠmk and bestimatorm are the parameters of the mth parameter estimator,

festimatorm(., .) is the regression function to be optimized in training. The controller

computes a control signal as :

un = gcontroller([θ1(ΠΠΠ1c), · · · ,θm(ΠΠΠmc)],XXXc) (4.28)

where gcontroller indicates the control law computed as the output of the controller, θm

is the mth parameter of controller and XXXc is the current input vector of the controller.

SVRmodel is employed to forecast system behaviour and it calculates the model output

97

cΧ

nu

cΜ
T
D
L

T
D
L

1ny +

+

−
∑

1ˆny +

1modelˆ
n

e
+

T
D
L

()controller 1

Generalized Controller

,n p cu g θ θ =   Χ⋯

1 1
ˆ ˆ() ()c p pcθ θ 
 Π Π⋯

mcΠ

T
D
L

T
D
L

∑

T
D
L

1nr +

−
+

Generalized Adaptive Controller

System

ny

1ˆny +
1

ˆ
ntre

+

1z−

{ }

m m

estimator

estimator

estimator estimator
SV

SVR

ˆ (,)

1,2

m

m mk mk mc
k

K b

m p

θ α
∈

= +

∈

∑ Π Π

⋯

model

model

model model

SVR

ˆ (,)j j c
j SV

y K bλ
∈

= +∑ Μ Μ

1ny +

Controller Parameters

C
on

troller P
a

ra
m

e
ters

C
o

nt
ro

lle
r

P
a

ra
m

e
te

rs
Controller Parameters

Figure 4.3 : Generalized self-tuning regulator based on online SVR.

as

ŷn+1 = fmodel(MMMc) = ∑
j∈SVmodel

λ jKmodel(MMMc,MMM j)+bmodel (4.29)

where fmodel and Kmodel are the regression function and the kernel matrix of the system

model respectively, MMM j’s are support vectors, MMMc is current input, and λ j and bmodel are

the parameters of the system model to be adjusted. SVRestimator and SVRmodel are both

used online to perform learning, prediction and control consecutively. Ideally, during

the course of online working, it is expected that ŷn+1 will eventually converge to yn+1.

Therefore, when the parameters of SVRestimator are optimized, in order to calculate

and observe the impact of the computed control signal (un) on system behaviour and

train SVRestimator precisely, un is applied to SVRmodel at every step of training phase

of parameter estimator to predict system behaviour (yn+1). The control signal applied

to the real system is obtained via the trained parameter estimator and the actual output

yn+1 is determined after applying the calculated control signal to the system. Thus, the

current input of system model MMMc and output yn+1 can be computed for training phase

of SVRmodel. The detailed algorithm for the proposed adaptive control architecture is

given in section 4.3.5.

98

4.3.3 PID type STR based on SVR

PID controller still predominates in the process industries due to its robustness,

effectiveness for wide range of operating conditions and its functional simplicity [77].

It has been widely used in industry due to its simplicity, good control performance and

excellent robustness to uncertainties [101]. The classical incremental PID controller

produces a control signal as follows [5, 31, 73, 101–103]:

un = un−1 +∆un

∆un = Kpn [en− en−1]+Kin[en]+Kdn[en−2en−1 + en−2]
(4.30)

where Kpn , Kin and Kdn respectively indicate the parameters of proportional, integral

and derivative parts of the controller to be tuned. For the proposed mechanism given

in section 4.3.2, the incremental PID control law can be extracted as:

un = gcontroller(θθθ ,XXXc) = un−1 +θθθ
T XXXc

= un−1 +
[
Kpn Kin Kdn

] en− en−1
en

en−2en−1 + en−2

 (4.31)

In an adaptive control scheme, the initially assigned values of the controller parameters

will generally not be optimal [5], hence, it is required to adjust the parameters

via optimization methods [5, 56]. The controller parameters Kp, Ki and Kd are

calculated via online SVR parameter estimator (SVRestimator). For this purpose,

an online SVR has been utilized for each controller parameter since SVR has

multi-input-single-output structure, so parameter estimator is composed of three

separate SVR identifiers. The PID controller parameters are estimated via SVRestimator

as:

θθθ =

K̂pn

K̂in
K̂dn

=

 festimatorp(ΠΠΠpc)
festimatori(ΠΠΠic)
festimatord(ΠΠΠdc)


=

∑k∈SVestimatorp
αpkKestimatorp(ΠΠΠpc,ΠΠΠpk)+bestimatorp

∑k∈SVestimatori
αikKestimatori(ΠΠΠic,ΠΠΠik)+bestimatori

∑k∈SVestimatord
αdkKestimatord(ΠΠΠdc,ΠΠΠdk)+bestimatord


(4.32)

Since the parameters of the controller are estimated via SVR, it is named as "PID type

STR based on SVR". This structure inherits both the robustness of PID controllers and

the nonlinear generalization performance of SVR method.

99

neK

ndeK

nΨ
FLCPIDn

u

PDFLC (,)
n nf ff e eɺ

∑

1z−

∑
+

+

+

+

1z−

∑
+

−
nβ

PD
FLC

n
u

PI
FLC

n
u

n-1e

ne

nf
e

nf
eɺ

FLCPIn
u∆

Controller Parameters

Controller Parameters
Pa

ra
s Paras

Figure 4.4 : Fuzzy PID controller.

4.3.4 Fuzzy PID type STR based on SVR

In Figure 4.4, the structure of an incremental fuzzy PID controller [96] is depictured,

where en denotes the difference between reference signal and system output and

uFLCPIDn
is the output of fuzzy PID controller at time index n. A fuzzy PID controller

is also implemented as the generalized controller in Figure 4.3 and its parameters are

tuned using an online SVRestimator. Inputs of the fuzzy controller are:

e fn = Kenen

ė fn = Kden[en− en−1]
(4.33)

The output of the controller in Figure 4.4 is computed as [92, 93]:

uFLCPDn
= Ψn fFLCPD(e fn, ė fn)

∆uFLCPIn
= βn fFLCPD(e fn, ė fn)

uFLCPIn
= uFLCPIn−1

+∆uFLCPIn

uFLCPIDn
= fFLCPID(e fn, ė fn,Ψn,βn) = uFLCPIn

+uFLCPDn

(4.34)

where the scaling factors Ken , Kden , Ψn and βn are the controller parameters to be

optimized. Ψn and βn are the parameters for the PD and PI parts of the fuzzy PID

controller, fFLCPD is the fuzzy controller, e fn and ė fn are scaled tracking error and

derivative of tracking error, respectively. The derivative and integral parts of the fuzzy

controller can be associated depending on the requirements of the controlled system via

input-output scaling coefficients. In our simulations, triangular membership functions

with cores {−1,−04,0,0.4,1} as in [92] are chosen for both e fn and ė fn as shown in

Figure 4.5 where Γzn denotes the zth fired fuzzy rule. The formulation of fired fuzzy

rule is given as:

Γzn = frules(e fn, ė fn ,kz1,kz2) = Sz +Pz−1 , z ∈ {1,2,3,4} (4.35)

100

0 ie

10.4 ie +

10.4 ie −−
1iA −

iA

1iA +

0
jeɺ

1

0.4
je +ɺ1

0.4
je −

−

ɺ

1jB − jB 1jB +

21 ie −−

nf
e

nf
eɺ

21 ie +

2

1
je −

−

ɺ
2

1
je +ɺ

2jB − 2jB +

2iA +

2iA −

1n ijuΓ = 2 1n iju +Γ =

3 1n i ju +Γ = 4 1 1n i ju + +Γ =

Paras

Paras

Pa
ra

s

Paras

Figure 4.5 : The membership functions for inputs and rule base

nf
enf

eɺ
-1

-0.5
0

0.5
1

-1

-0.5

0

0.5

1
-1

-0.5

0

0.5

1

e

Fuzzy Control Surface

de/dt

u

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Paras

Paras

Pa
ra

s

Paras

Figure 4.6 : Fuzzy control surface.

101

where

Sz =
1

1+ e−kz1e fn
, Pz =

1
1+ e−kz2ė fn

and k11 = k12 = 4, k21 = k22 = 5, k31 = k32 = 6, k41 = k42 = 7. The fuzzy rule surface

depicted in figure 4.6 is composed of two sigmoid functions as in (4.35). Center of

gravity method has been utilized for defuzzification. Thus, the output of the fuzzy

controller can be computed as [92]

fFLCPD(e fn, ė fn) =
∑

4
z=1 wznΓzn

∑
4
z=1 wzn

=
4

∑
z=1

wznΓzn ,
4

∑
z=1

wzn = 1 (4.36)

where

w1n = Ai(e fn)B j(ė fn)

w2n = Ai+1(e fn)B j(ė fn)

w3n = Ai(e fn)B j+1(ė fn)

w4n = Ai+1(e fn)B j+1(ė fn)

and

Ai(e fn) =
ei+1− e fn

ei+1− ei
, Ai+1(e fn) =

e fn− ei

ei+1− ei

B j(ė fn) =
ė j+1− ė fn

ė j+1− ė j
, B j+1(ė fn) =

ė fn− ė j

ė j+1− ė j

are membership functions values. ΓΓΓ = [Γ1n Γ2n Γ3n Γ4n] = [ui j ui+1 j ui j+1 ui+1 j+1]

indicate the fired rules in rule surface since four fuzzy rule are fired at a time depending

on the defined input membership functions. The parameter estimator block tunes the

controller vector θθθ that consists of the Ken , Kden , Ψn and βn. The controller parameters

are estimated as:

θθθ =


K̂en

K̂den

Ψ̂n

β̂n

=


festimatore(ΠΠΠec)

festimatorde(ΠΠΠdec)
festimatorΨ

(ΠΠΠΨc)
festimatorβ

(ΠΠΠβc)



=


∑k∈SVestimatore

αekKestimatore(ΠΠΠec,ΠΠΠek)+bestimatore

∑k∈SVestimatorde
αdekKestimatorde(ΠΠΠdec,ΠΠΠdek)+bestimatorde

∑k∈SVestimatorΨ

αΨkKestimatorΨ
(ΠΠΠΨc,ΠΠΠΨk)+bestimatorΨ

∑k∈SVestimator
β

αβkKestimatorβ
(ΠΠΠβc,ΠΠΠβk)+bestimatorβ


(4.37)

102

Thus, the control signal in (4.33,4.34) is obtained as:

uFLCPIDn
= gcontroller(θθθ ,XXXc) = fFLCPID(θθθ ,XXXc)

= uFLCPIn−1
+(Ψn +βn) fFLCPD(Kenx1,Kdenx2)

XXXc =

[
x1
x2

]
=

[
en

en− en−1

] (4.38)

where θθθ indicates the controller parameters and XXXc is the input of the controller.

By tuning fuzzy PID parameters using online SVRestimator, the strong characteristics

of fuzzy control technique and SVR methodology are merged to build a powerful

controller for nonlinear systems.

4.3.5 Adaptive control algorithm for the generalized STR based on SVR

Input feature vector of parameter estimator(ΠΠΠ) should contain convenient feature

variables that can well represent the closed-loop system’s operating conditions. In the

proposed STR, mainly reference signal and system output are utilized as input features.

However, in order to enhance STR performance, the variables that are functions of

reference and system output such as tracking error, integral of tracking error, derivative

of tracking error and control signal etc. have also been employed as described in

section 4.4. The control procedure for STR with "p" adjustable controller parameters

can be summarized as follows (in the algorithm given below u−n indicates the control

signal predicted with controller parameters obtained at the previous step and u+n stands

for the control signal estimated with trained controller parameters at the current step):

Step 1: Initialization of SVRestimator and SVRmodel parameters.

-SVRestimator(estimator) parameters : αmk = bestimatorm = 0 m ∈ {1,2, · · · p}

-SVRmodel (system model) parameters : λ j = bmodel = 0

Step 2: Prediction step for parameter estimator (θ−m)

-Set time step n.

-Constitute feature vector for parameter estimator (ΠΠΠmc).

Some examples for parameter estimator feature vector are given as follows:

ΠΠΠc = [rn...rn−nr ,yn...yn−ny]

ΠΠΠc = [Pn, In,Dn] where Pn = en−en−1,In = en, Dn = en−2en−1+en−2 and en = rn−yn.

Combination of the reference signal, system output and controller output can also be

utilized in the feature vector. ΠΠΠc = [Pn, In,Dn,rn...rn−nr ,yn...yn−ny ,un−1...un−nu] where

nr, ny and nu represent the number of the past instances of features included in the

103

feature vector.

-Calculate the approximated controller parameters θ−m by SVRestimator trained at

previous step (n−1) via (4.27).

Step 3: Computation of control signal (u−n) and prediction step for system

model(ŷ−n+1))

-Calculate the control signal u−n via (4.27-4.28).

-Constitute feature vector for system model (MMMc).

MMMc = [u−n ...un−nu,yn...yn−ny]

-Apply u−n to SVRmodel and calculate ŷ−n+1 by (4.29).

Step 4: Training step for parameter estimator

-Calculate êtrn+1 = rn+1− ŷ−n+1

If |êtrn+1 |> εclosed−loop

Train parameter estimator via êtrn+1 = rn+1− ŷ−n+1

else

Continue with parameter estimator obtained at previous step

end

Step 5: Prediction step for trained parameter estimator (θ+
m) and computation

of control input by trained estimator (u+n)

-Calculate the controller parameters by trained SVRestimator via (4.27).

-Calculate the control signal u+n produced by the controller using the parameters

obtained by trained SVRestimator via (4.27-4.28).

Step 6: Application of the control signal produced by adapted controller

-Apply u+n to system to calculate yn+1.

Step 7: Prediction and training step for system model(ŷ+n+1)

-Apply u+n to SVRmodel and calculate ŷ+n+1 via (4.29).

-Calculate emodeln+1 = yn+1− ŷn+1

If |emodeln+1|> εmodel

Train system model where emodeln+1 = yn+1− ŷn+1

else

Continue with system model parameters obtained at previous step

end

104

Step 8: Incrementation of time step

-Increment n = n+1 and back to step 2.

4.3.6 Generalized closed-loop system margin

In the proposed generalized adaptive STR architecture, two blocks contain separate

online SVRs: In the system model block SVRmodel computes an estimate of the system

model and in the parameter estimator block each tunable parameter of the controller

is estimated by a different SVRestimator. The training dataset for SVRmodel consists of

pairs (MMMc ,yn+1) which are available during online operation, therefore the training

process is straightforward as explained in section 4.2.2. However, the training of

SVRestimator is not clear, since the input data (ΠΠΠmc) is known, but the desired output

of the estimator, namely the controller parameters (θθθ) to be implemented to produce

control signal are not available to the designer in advance. This situation causes a

significant dilemma to train SVR structures without the explicit information of desired

output data. However, a similar problem which hampers to utilize SVR directly as a

controller in control block was managed to overcome in [3]. For this purpose, Uçak and

Öke Günel proposed "closed-loop system margin" notion to solve this situation. In this

section, since training SVRestimator without a desired output dataset can be formulated

in a similar way to the problem solved in [3], we will configure the "closed-loop

margin" notion so as to train SVRestimator without the need to know the approximated

controller parameters. Let us start by giving two main definitions.

As defined in [3], the regression margin related to SVRmodel is named as "open-loop

margin". This margin is optimized by minimizing the feedforward modeling error

emodeln+1 = yn+1− ŷn+1, the error between the actual system output and the output of

the "learned model". High modeling precision is needed to successfully identify the

system dynamics and compute the tracking error in the next step. This information is

used to tune the parameters of SVRestimators which consequently compute the controller

parameters. Note that, we employ a separate SVRestimator for each tunable controller

parameter. Hence, the performances of SVRmodel and SVRestimators are effective in the

closed-loop success. The closed-loop performance of the overall system is affected

by both the modeling error and the tracking error, so we define "closed-loop margin",

which is a function of the system model margin and parameter estimator margins,

105

S

S

E
R

mcΠ
mΠ

mθ

estimator ()
m mcf Π

mcθ

estimator estimator

estimator estimator

estimator estimator

()

() ()

()

m m

m m

m m

m

m m

m

f

f h

f

ε

ε

+


− 

Π

Π Π

Π

cΜ

Μ

sysY

model ()cf Μ

cy

model model

model model

model model

()

() ()

()

f

f h

f

ε

ε

+ 


− 

Μ

Μ Μ

Μ

{ }

()
estimator

estimator

estimator estimator
SV

controller 1

in

() , 1,2

(,)

,

m

m m

m

u y

m mc

mk mk mc
k

n p c

T

n n n n n n

f m p

K b

u g

u u y y

θ

α

θ θ

∈

− −

= ∈

= +

 =  

 =  

∑

Π

Π Π

Χ

Μ

⋯

⋯

⋯ ⋯

controller ()mcg Π

Parameter Estimator Margin Adaptive Controller System Model Margin

Closed-loop System Margin

inΠ model ()cf Μ
{ }1,2m p∈ ⋯

S

E

R

S

(a) (b) (c)

assad

assad
as

sa
d

assad

Figure 4.7 : Margins of SVRestimator (a), adaptive controller (b) and SVRmodel (c).

whereas it is defined as a function of controller and system model margins in [3].

In tracking control, it is aimed to pursue reference signal as close as possible by

minimizing the error etrn+1 = rn+1− yn+1, between reference input and closed-loop

output, so the closed-loop margin should be minimized. The optimization of the

SVRmodel margin is also important, since for good closed-loop control performance

we need a system model with minimum error. εmodel and εclosed−loop, the upper

values of tolerable error for SVRmodel and the overall closed loop system (SVRmodel

and SVRestimators combined), respectively are set independently by the designer, so

the margin of SVRmodel is optimized independently from the closed loop system

margin. However, the designer cannot set εestimator, the upper value of tolerable

error for SVRestimator, and therefore does not have a direct influence on the margins

of the parameter estimators, but parameter estimator margins can only be affected

indirectly through the combined actions of SVRmodel and the controlled closed loop

structure. We can infer that optimization of closed-loop and SVRmodel margins

will spontaneously lead to the optimization of SVRestimators margins so SVRestimators

parameters can be obtained indirectly while we try to minimize tracking error (or

equivalently we optimize closed-loop margin). The margins of SVRestimator and

SVRmodel are illustrated in Figure 4.7. Parameter estimator SVRestimator margin is

depicted in Figure 4.7 (a), adaptive controller is given in Figure 4.7 (b) and system

model SVRmodel margin is shown in Figure 4.7 (c) where festimatorm and fmodel denote

the regression functions of mth parameter estimator and system model, and gcontroller

indicates the control law. The input of SVRmodel is MMMc and its output is yn+1 while the

input to SVRestimator is ΠΠΠmc and the output is θm, so in Figure 4.7, the input-output axes

of SVRmodel are denominated as MMM and Ysys while the axes for SVRestimator are named

106

mcΠ

1ˆny +

Closed-loop System Margin

mΠ

m

m

estimator estimator

estimator estimator

estimator estimator

()

() ()

()

m

m

m m

m

m m

m

f

f h

f

ε

ε

+


− 

Π

Π Π

Π

model()h Μ

model model()f ε+Μ
model()f Μ

model model()f ε−Μ

mcΠ

Μ

()controller 1 1() () ,

u y

n c p pc c

T

c n n n n n n

u g

u u y y

θ θ

− −

 =  

 =  

Π Π Χ

Μ

⋯

⋯ ⋯

cΜ

model()cf Μ

cy

sysY

S

E

R

S

E

R

assad

as
sa

d

assad

assad

Figure 4.8 : Closed-loop system margin in three dimensions.

as ΠΠΠm and θm. Considering the margins of SVRmodel and the separate SVRestimators

for each tunable controller parameter, we can combine the independent subgraphs

to yield a multidimensional graph which depicts the closed-loop system margin. In

applications, there will generally be several tunable controller parameters and input

vectors will commonly be multi-dimensional, resulting in hypersurfaces when margins

are fused. As a representative graph in Figure 4.8, we illustrate the case where all

inputs and outputs are assumed to be one dimensional vectors and there is only a single

tunable controller parameter, resulting in a hypercube. In Figure 4.8, SVRestimator

margin is drawn on the horizontal plane with axes ΠΠΠ and MMM while SVRmodel margin

is given on the vertical plane, where axes MMM and Ysys represent its input and output.

Since vector MMM includes un and θm, the horizontal regression surface representing

SVRestimator can be depicted with axes ΠΠΠ and MMM instead of ΠΠΠ and θm. During online

operation of the whole control architecture, the margins of the controller parameter

estimators and model are fused, and closed loop margin between closed loop input

and output is intuitively thought as a single margin, as depicted in Figure 4.9. Here,

controller parameter estimator and system model margins are combined resulting in the

"closed-loop margin" and this is projected onto ΠΠΠ−Ysys axes. Figure 4.9 illustrates this

projection for a single controller parameter estimator, before and after online training.

Closed-loop margin is represented with, hclosed−loop(ΠΠΠ), and it is a function of model

margin (hmodel(MMM)) and parameter estimator margin (hestimator(ΠΠΠ)). When training the

closed-loop system, we require that the closed-loop output tracks the reference input,

rn+1, and the error between closed-loop output and reference input etrn+1 = rn+1−yn+1

107

()
()
()

()
closed-loop closed-loop

closed-loop closed-loop

closed-loop closed-loop

f

f h

f

ε

ε

+


− 

Π

Π Π

Π

Πc

Π

output of svr

new sample

S

E

S

(a)
sysY

(b)
sysY

Π

Πc

()()()
1

model controller estimator

model

1

n

c

n

f g f

e

y
+

+







Π S

E

R

R

()()()
1

model controller estimator
model

1

n

c

n

f g f
e

y
+

+





Π

()
()
()

()
closed-loop closed-loop

closed-loop closed-loop

closed-loop closed-loop

f

f h

f

ε

ε

+


− 

Π

Π Π

Π

assad

assad

assad
as

sa
d

Figure 4.9 : Closed loop margin before (a) and after (b) training.

closed-loop closed-loop

closed-loop closed-loop

closed-loop closed-loop

()

() ()

()

f

f h

f

ε

ε

+


− 

Π

Π Π

Π

Πc

Π

closed-loop closed-loop

closed-loop closed-loop

closed-loop closed-loop

()

() ()

()

f

f h

f

ε

ε

+


− 

Π

Π Π

Π

S

E

R

output of closed-loop system

new sample for closed-loop

S

E

S

(a)
R

(b)
R

Π

Πc

1

1

1

ˆ

ˆ
n

n

tr

n

y

e

r
+

+

+





 1

1

1

ˆ
ˆ

n

n
tr

n

y
e

r+

+

+





R

assad

assad

a
ssad

as
sa

d

Figure 4.10 : Closed loop margin before (a) and after (b) training.

is minimized. Based on this, we have used data pairs (ΠΠΠc,rn+1) in training. Hence,

the input and output axes for closed-loop system regression surface are termed as ΠΠΠ

and R in Figure 4.10 and axis R is utilized in place of Ysys for closed-loop system in

Figure 4.10-4.11.

4.3.7 Online support vector regression for parameter estimator

Let the training data set used for the closed-loop system be:

TTT = {ΠΠΠmi,ri+1}N
i=1 ΠΠΠmi ∈ΠΠΠ⊆ Rn,ri+1 ∈ R (4.39)

mΠ

mestimator estimator

estimator estimator

estimator estimator

()

() ()

()

m

m

m m

mc

mc mc

mc

f

f h

f

ε

ε

+


− 

Π

Π Π

Π

model model

model model

model model

()

() ()

()

f

f h

f

ε

ε

+ 


− 

Μ

Μ Μ

Μ

mcΠ

Μ

()controller 1 1() () ,

u y

n c p pc c

T

c n n n n n n

u g

u u y y

θ θ

− −

 =  

 =  

Π Π Χ

Μ

⋯

⋯ ⋯

cΜ

R

E
S

R

S

E

R

()()()
1

model controller estimator

1

ˆ
n

c

tr

n

f g f

e

r
+

+







Π

as
sa

d

assad

assad

assad

Figure 4.11 : Closed-loop system margin in three dimensions.

108

where N and n respectively indicate the number of the training samples and the

dimension of the input samples, ΠΠΠmi is input feature vector of mth parameter estimator

and ri+1 is the reference signal that system is required to track, the closed-loop margin

function of the system for the ith sample ΠΠΠmi can be defined as

hclosed−loop(
[
ΠΠΠ1i · · ·ΠΠΠmi

]
) = ŷi+1− ri+1 = fmodel(MMMi)− ri+1 (4.40)

where

ŷi+1 = fmodel(MMMi) = ∑
j∈SVmodel

λ jKmodel(MMM j,MMMi)+bmodel

λ j = β j−β
?
j

MMMi = [ui · · ·ui−nu, yi · · ·yi−ny]

ui = gcontroller(
[
θ1(ΠΠΠ1i) · · ·θm(ΠΠΠmi)

]
,XXXc)

θm(ΠΠΠmi) = festimatorm(ΠΠΠmi) = ∑
k∈SVestimatorm

αmkKestimatorm(ΠΠΠmk,ΠΠΠmi)+bestimatorm

αmk = ηmk−η
?
mk , m ∈ {1,2, · · · , p}

ΠΠΠmi = [ri · · ·ri−nr , yi · · ·yi−ny , ui−1 · · ·ui−nu]

Since parameters of SVRmodel are fixed and known in training phase of SVRestimator,

and the sole unknown variables are the parameters of the SVRestimator, the closed loop

margin can be rewritten as

hclosed−loop(
[
ΠΠΠ1i · · ·ΠΠΠmi

]
) = ŷi+1− ri+1 = fclosed−loop(

[
ΠΠΠ1i · · ·ΠΠΠmi

]
)− ri+1

(4.41)

with respect to an input-output data pair of closed-loop system (ΠΠΠmi,ri+1). Thus, using

(ΠΠΠmi,ri+1) data pair and closed-loop margin in (4.40,4.41), the incremental learning

algorithm for SVRestimator can be obtained. When new sample ΠΠΠmc is introduced, the

coefficient αmc corresponding this the new sample should be changed in a finite number

of discrete steps until it meets the KKT conditions while ensuring the existing samples

in TTT continue to satify the KKT conditions at each step [4]. The KKT conditions

[3, 4, 43] that are fundamental in convergence and migration of the closed-loop data

are given as :

hclosed−loop(
[
ΠΠΠ1i · · ·ΠΠΠmi

]
)≥ εclosed−loop,αi =−Cclosed−loop

hclosed−loop(
[
ΠΠΠ1i · · ·ΠΠΠmi

]
) = εclosed−loop,−Cclosed−loop < αi < 0

− εclosed−loop ≤ hclosed−loop(
[
ΠΠΠ1i · · ·ΠΠΠmi

]
)≤ εclosed−loop,αi = 0

hclosed−loop(
[
ΠΠΠ1i · · ·ΠΠΠmi

]
) =−εclosed−loop,0 < αi <Cclosed−loop

hclosed−loop(
[
ΠΠΠ1i · · ·ΠΠΠmi

]
)≤−εclosed−loop,αi =Cclosed−loop

(4.42)

109

The incremental algorithm for SVRestimator can be derived by recasting equations

(4.18-4.26) using αm, bestimatorm , hclosed−loop, εclosed−loop, ΠΠΠmi and Kestimatorm in place

of λ , b, h, ε , xxxi and K. Thus, optimal parameters of SVRestimator, αmk, bestimatorm are

sought within εclosed−loop tube by minimizing the tracking error via online learning

algorithm given in section 4.2.2. Thus, the update direction vector for Lagrange

multipliers of support set samples in mth parameter estimator ∆αααm is attained as:

∆αααm =


∆bestimatorm

∆αs1
...

∆αsk

= βββ m∆αmc (4.43)

where

βββ m =


β

βs1
...

βsk

=−ΘΘΘm


1

Kestimatorms1c
...

Kestimatormskc

 , ΘΘΘm =


0 1 · · · 1
1 Kestimatorms1s1

· · · Kestimatorms1sk
...

...
1 Kestimatormsks1

· · · Kestimatormsksk


−1

(4.44)

The margin values of the non-support samples for ∆αmc can be calculated as follows :
∆hclosed−loop(

[
ΠΠΠ1z1 · · ·ΠΠΠmz1

]
)

∆hclosed−loop(
[
ΠΠΠ1z2 · · ·ΠΠΠmz2

]
)

...
∆hclosed−loop(

[
ΠΠΠ1zr · · ·ΠΠΠmzr

]
)

= γγγm∆λc

γγγm =


Kestimatormz1c

Kestimatormz2c
...

Kestimatormzrc

+


1 Kestimatormz1s1
· · · Kestimatormz1sl

1 Kestimatormz2s1
· · · Kestimatormz2sl

...
...

1 Kestimatormzrs1
· · · Kestimatormzrsl

βββ m

(4.45)

where z1,z2, ...,zr are the indices of non-support samples, γγγm are margin sensitivities.

4.3.8 Stability analysis of the closed-loop system

4.3.8.1 Stability analysis for the generalized STR based on SVR

In this subsection, the Lyapunov stability analaysis of the generalized STR based on

SVR has been conducted. In order to clearly explain the stability analysis of the

closed-loop system, firstly, the regression functions of estimator and the system model

are expressed in matrix or vector form. Thus, the regression function of estimator can

110

be expressed as

θm(ΠΠΠmc) = festimatorm(ΩΩΩm,ΠΠΠmc) =


bestimatorm

αm1
...

αmk


T 

1
Km1ΠΠΠmc

...
KmkΠΠΠmc

= ΩΩΩ
T
mKKKestimatorm(ΠΠΠmc)

m ∈ {1,2 · · · p}
(4.46)

Using (4.28) and (4.46), the output of the controller is defined as a function of ΩΩΩ, ΠΠΠ

and XXX as follows:

un = gcontroller(ΩΩΩ,ΠΠΠ,XXX) (4.47)

The regression function of the system model (4.29) which is required to approximate

system Jacobian in stability analysis is obtained as

ŷn+1 = fmodel(λλλ ,MMMc) =


bmodel

λ1
...

λk


T 

1
K1MMMc

...
KkMMMc

= λλλ
T Kmodel(MMMc) (4.48)

In order to derive stability conditions, the following Lyapunov function is deployed

V (etrn+1) =
eT

trn+1
PPP etrn+1

2
(4.49)

where PPP = III (identity matrix). Both the stability of the system and the convergence

of the controller are guaranteed when ∂V
∂ t ≤ 0 [68]. Thus, the derivative of Lyapunov

function (∂V
∂ t) is acquired as

∂V (etrn+1)

∂ t
= eT

trn+1
PPP ėtrn+1 (4.50)

where ėtrn+1 =
∂etrn+1

∂ t =
∂etrn+1

∂un

∂un
∂ t . Considering a small deviation from the equilibrium

point, which corresponds to local stability analysis using equation (4.51) [3, 68], the

incremental change in the control signal (4.47) is obtained as

∆un =
p

∑
m=1

[
∂gcontroller(ΩΩΩ,ΠΠΠ,XXX)

∂ΩΩΩm
∆ΩΩΩm + ∂gcontroller(ΩΩΩ,ΠΠΠ,XXX)

∂ΠΠΠm
∆ΠΠΠm

]
+

i

∑
k=1

[
∂gcontroller(ΩΩΩ,ΠΠΠ,XXX)

∂xk
∆xk

]
(4.51)

where "p" indicates the number of the controller parameters, "i" denotes the number of

the inputs for the controller and xk is the kth input of the controller. Substituting (4.51)

in (4.50), the equation (4.50) can be rearranged as

∂V (etrn+1)

∂ t
= eT

trn+1
PPP

∂etrn+1

∂un

 ∑
p
m=1

[
∂gcontroller(ΩΩΩ,ΠΠΠ,XXX)

∂ΩΩΩm
∆ΩΩΩm + ∂gcontroller(ΩΩΩ,ΠΠΠ,XXX)

∂ΠΠΠm
∆ΠΠΠm

]
+∑

i
k=1

[
∂gcontroller(ΩΩΩ,ΠΠΠ,XXX)

∂xk
∆xk

] 
(4.52)

111

with the assumption ∆ΠΠΠm∼= etrn+1 and ∆xk
∼= etrn+1 . Thus, as can be seen in (4.51-4.52),

stability depends on the increments in Lagrange multipliers of the estimator (∆ΩΩΩm).

The adjustment rule for ∆ΩΩΩm is derived in (4.43-4.44). The Lagrange value for current

data of the mth estimator is computed as

∆αmc = qm min(|Lm
c1
|, |Lm

c2
|, |LLLSSSm|, |LLLEEEm|, |LLLRRRm|) (4.53)

where qm = q = sign(−hclosed−loop(
[
ΠΠΠ1i · · ·ΠΠΠmi

]
) = sign(etrn+1) and Lm

c1
, Lm

c2
are

variations of the current sample and LLLSSSm = [LSSSm
i , i ∈ SSSm], LLLEEEm = [LEEEm

i , i ∈ EEEm], LLLRRRm =

[LRRRm
i , i ∈ RRRm] are the variations of the ΠΠΠmi data in sets SSSm, EEEm, RRRm respectively. The

term min(|Lm
c1
|, |Lm

c2
|, |LLLSSSm|, |LLLEEEm|, |LLLRRRm|) in (4.53) is a positive function of etrn+1 , αmi

and C. Therefore, ∆αmc can be expressed as:

∆αmc = q min(|Lm
c1
|, |Lm

c2
|, |LLLSSSm |, |LLLEEEm|, |LLLRRRm |) = sign(etrn+1) Ψm(etrn+1,αmi,C)

=
etrn+1

|etrn+1|
Ψm(etrn+1,αmi,C) = etrn+1

Ψm(etrn+1,αmi,C)

|etrn+1 |
= µm(etrn+1 ,αmi,C) etrn+1

(4.54)

where µm(etrn+1,αmi,C)≥ 0, Ψm(etrn+1,αmi,C)≥ 0. Thus, using (4.43) and (4.54) the

adjustment rules for all Lagrange multipliers in set SSSm can be given as

∆ΩΩΩm = βββ m ∆αmc = βββ m µm(etrn+1,αmi,C) etrn+1 (4.55)

By substituting (4.55) in (4.52) and expanding
∂etrn+1

∂un
as

∂etrn+1
∂yn+1

∂yn+1
∂un

= −∂yn+1
∂un

,

equation (4.52) can be finalized as follows:

∂V (etrn+1)

∂ t
=−eT

trn+1
PPP

∂etrn+1

∂un

∑
p
m=1

[
∂gcontroller(ΩΩΩ,ΠΠΠ,XXX)

∂ΩΩΩm
βββ m µm(etrn+1 ,αmi,C)+ ∂gcontroller(ΩΩΩ,ΠΠΠ,XXX)

∂ΠΠΠm

]
+∑

i
k=1

[
∂gcontroller(ΩΩΩ,ΠΠΠ,XXX)

∂xk

] etrn+1

∂V (etrn+1)

∂ t
=−eT

trn+1
(QQQ+WWW +ZZZ)etrn+1

(4.56)

where ∂yn+1
∂un

is the system Jacobian approximated via system model (fmodel) and

QQQ = PPP
∂yn+1

∂un

p

∑
m=1

[
∂gcontroller(ΩΩΩ,ΠΠΠ,XXX)

∂ΩΩΩm
βββ m µm(etrn+1,αmi,C)

]
WWW = PPP

∂yn+1

∂un

p

∑
m=1

[
∂gcontroller(ΩΩΩ,ΠΠΠ,XXX)

∂ΠΠΠm

]
ZZZ = PPP

∂yn+1

∂un

i

∑
k=1

[
∂gcontroller(ΩΩΩ,ΠΠΠ,XXX)

∂xm

]
(4.57)

In a nutshell, the stability conditions for closed-loop system in the sense of Lyapunov

can be attained as follows:

112

• Condition 1: If V (t) ≥ 0 and ∂V (t)
∂ t ≥ 0, the stability of the closed-loop system is

ensured

• Condition 2: If QQQ≥ 0, WWW ≥ 0 and ZZZ ≥ 0, the stability of the closed-loop system is

ensured

• Condition 3: If QQQ≥ 0, WWW ≥ 0 and ZZZ ≤ 0 and ‖ QQQ+++WWW ‖≥‖ ZZZ ‖, the stability of the

closed-loop system is ensured

• Condition 4: If QQQ≥ 0, WWW ≤ 0 and ZZZ ≥ 0 and ‖ QQQ+++ZZZ ‖≥‖WWW ‖, the stability of the

closed-loop system is ensured

• Condition 5: If QQQ≥ 0, WWW ≤ 0 and ZZZ ≤ 0 and ‖ QQQ ‖≥‖WWW +++ZZZ ‖, the stability of the

closed-loop system is ensured

• Condition 6: If QQQ≤ 0, WWW ≥ 0 and ZZZ ≥ 0 and ‖WWW +++ZZZ ‖≥‖ QQQ ‖, the stability of the

closed-loop system is ensured

• Condition 7: If QQQ≤ 0, WWW ≥ 0 and ZZZ ≤ 0 and ‖WWW ‖≥‖ QQQ+++ZZZ ‖, the stability of the

closed-loop system is ensured

• Condition 8: If QQQ≤ 0, WWW ≤ 0 and ZZZ ≥ 0 and ‖ ZZZ ‖≥‖ QQQ+++WWW ‖, the stability of the

closed-loop system is ensured

In order to determine, QQQ, ZZZ and WWW , it is required to compute ∂gcontroller(ΩΩΩ,ΠΠΠ,XXX)
∂ΩΩΩm

,
∂gcontroller(ΩΩΩ,ΠΠΠ,XXX)

∂ΠΠΠm
and ∂gcontroller(ΩΩΩ,ΠΠΠ,XXX)

∂xk
. The derivations of ∂gcontroller(ΩΩΩ,ΠΠΠ,XXX)

∂ΩΩΩm
,

∂gcontroller(ΩΩΩ,ΠΠΠ,XXX)
∂ΠΠΠm

and ∂gcontroller(ΩΩΩ,ΠΠΠ,XXX)
∂xk

change depending on the controller to be

utilized. The derivations are given in sec 4.3.8.2 and sec 4.3.8.3 for PID type STR and

Fuzzy PID type STR, respectively.

4.3.8.2 Derivation of the sensitivity functions for PID type STR based on SVR

In this subsection, the sensitivity of the control signal with respect to Lagrange

multipliers of the parameters estimator(∂gcontroller(ΩΩΩ,ΠΠΠ,XXX)
∂ΩΩΩm

), the sensitivity of the

control signal with respect to inputs of the parameters estimator(∂gcontroller(ΩΩΩ,ΠΠΠ,XXX)
∂ΠΠΠm

)

and the sensitivity of the control signal with respect to inputs of the controller

(∂gcontroller(ΩΩΩ,ΠΠΠ,XXX)
∂xk

) have been derived for PID type STR based on SVR. The computation

113

of ∂gcontroller(ΩΩΩ,ΠΠΠ,XXX)
∂ΩΩΩm

is as in (4.58).

∂gcontroller(ΩΩΩ,ΠΠΠ,XXX)

∂ΩΩΩm
=

∂gcontroller(ΩΩΩ,ΠΠΠ,XXX)

∂θθθ m

∂θθθ m

∂ festimatorm(ΩΩΩm,ΠΠΠmc)

∂ festimatorm(ΩΩΩm,ΠΠΠmc)

∂ΩΩΩm

∂gcontroller(ΩΩΩ,ΠΠΠ,XXX)

∂ΩΩΩm
= xm

[
∂ festimatorm(ΩΩΩm,ΠΠΠmc)

∂bestimatorm

∂ festimatorm(ΩΩΩm,ΠΠΠmc)
∂αm1

· · · ∂ festimatorm(ΩΩΩm,ΠΠΠmc)
∂αmk

]
∂gcontroller(ΩΩΩ,ΠΠΠ,XXX)

∂ΩΩΩm
= xm Kestimatorm(ΠΠΠmc)

(4.58)

The sensitivity ∂gcontroller(ΩΩΩ,ΠΠΠ,XXX)
∂ΠΠΠm

is expressed as follows:

∂gcontroller(ΩΩΩ,ΠΠΠ,XXX)

∂ΠΠΠm
=

∂gcontroller(ΩΩΩ,ΠΠΠ,XXX)

∂θθθ m

∂θθθ m

∂ festimatorm(ΩΩΩm,ΠΠΠmc)

∂ festimatorm(ΩΩΩm,ΠΠΠmc)

∂Kestimatorm(ΠΠΠmc)

∂Kestimatorm(ΠΠΠmc)

∂ΠΠΠm

∂gcontroller(ΩΩΩ,ΠΠΠ,XXX)

∂ΠΠΠm
= xmΩΩΩm

∂Kestimatorm(ΠΠΠmc)

∂ΠΠΠm
(4.59)

The sensitivity ∂gcontroller(ΩΩΩ,ΠΠΠ,XXX)
∂xk

is given as follows:

∂gcontroller(ΩΩΩ,ΠΠΠ,XXX)

∂xk
=

∂gcontroller(ΩΩΩ,ΠΠΠ,XXX)

∂x1

∂x1

∂xk
+

∂gcontroller(ΩΩΩ,ΠΠΠ,XXX)

∂x2

∂x2

∂xk

+
∂gcontroller(ΩΩΩ,ΠΠΠ,XXX)

∂x3

∂x3

∂xk

(4.60)

Thus, the sensitivities for inputs can be obtained as

x1 = en− en−1 = x2− en−1

x2 = en = x2

x3 = en−2en−1 + en−2 = x1−2en−1 + en−2 = x2− en−1 + en−2

∂gcontroller(ΩΩΩ,ΠΠΠ,XXX)

∂x1
= θ1 +θ3 = Kpn +Kdn

∂gcontroller(ΩΩΩ,ΠΠΠ,XXX)

∂x2
= θ1 +θ2 +θ3 = Kpn +Kin +Kdn

∂gcontroller(ΩΩΩ,ΠΠΠ,XXX)

∂x3
= θ3 = Kdn

(4.61)

4.3.8.3 Derivation of the sensitivity functions for Fuzzy PID type STR based on

SVR

The sensitivity of the control signal with respect to Lagrange multipliers of the

parameters estimator (∂gcontroller(ΩΩΩ,ΠΠΠ,XXX)
∂ΩΩΩm

), the sensitivity of the control signal with

respect to inputs of the parameters estimator (∂gcontroller(ΩΩΩ,ΠΠΠ,XXX)
∂ΠΠΠm

) and the sensitivity of

the control signal with respect to inputs of the controller (∂gcontroller(ΩΩΩ,ΠΠΠ,XXX)
∂xk

) are derived

for fuzzy PID type STR based on SVR as follows. The computation of ∂gcontroller(ΩΩΩ,ΠΠΠ,XXX)
∂ΩΩΩm

114

is as follows:

∂gcontroller(ΩΩΩ,ΠΠΠ,XXX)

∂ΩΩΩm
=

∂gcontroller(ΩΩΩ,ΠΠΠ,XXX)

∂θθθ m

∂θθθ m

∂ festimatorm(ΩΩΩm,ΠΠΠmc)

∂ festimatorm(ΩΩΩm,ΠΠΠmc)

∂ΩΩΩm

∂gcontroller(ΩΩΩ,ΠΠΠ,XXX)

∂ΩΩΩm
=

∂gcontroller(ΩΩΩ,ΠΠΠ,XXX)

∂θθθ m

[
∂ festimatorm(ΩΩΩm,ΠΠΠmc)

∂bestimatorm

∂ festimatorm(ΩΩΩm,ΠΠΠmc)
∂αm1

· · · ∂ festimatorm(ΩΩΩm,ΠΠΠmc)
∂αmk

]
∂gcontroller(ΩΩΩ,ΠΠΠ,XXX)

∂ΩΩΩm
=

∂gcontroller(ΩΩΩ,ΠΠΠ,XXX)

∂θθθ m
Kestimatorm(ΠΠΠmc)

(4.62)

The computation of ∂gcontroller(ΩΩΩ,ΠΠΠ,XXX)
∂θθθ m

=
∂ fFLCPID(ΩΩΩ,ΠΠΠ,XXX)

∂θθθ m
is given as

∂ fFLCPID(ΩΩΩ,ΠΠΠ,XXX)

∂Ken

=
∂ fFLCPID(ΩΩΩ,ΠΠΠ,XXX)

∂ fFLCPD(e fn, ė fn)

∂ fFLCPD(e fn, ė fn)

∂e fn

∂e fn

∂Ken

= (βn +Ψn)
∂ fFLCPD(e fn, ė fn)

∂e fn
x1

∂ fFLCPID(ΩΩΩ,ΠΠΠ,XXX)

∂Kden

=
∂ fFLCPID(ΩΩΩ,ΠΠΠ,XXX)

∂ fFLCPD(e fn, ė fn)

∂ fFLCPD(e fn, ė fn)

∂ ė fn

∂ ė fn

∂Kden

= (βn +Ψn)
∂ fFLCPD(e fn, ė fn)

∂ ė fn
x2

∂ fFLCPID(ΩΩΩ,ΠΠΠ,XXX)

∂βn
=

∂ fFLCPID(ΩΩΩ,ΠΠΠ,XXX)

∂Ψn
= fFLCPD(e fn, ė fn)

(4.63)

The sensitivity ∂gcontroller(ΩΩΩ,ΠΠΠ,XXX)
∂ΠΠΠm

is expressed as follows:

∂gcontroller(ΩΩΩ,ΠΠΠ,XXX)

∂ΠΠΠm
=

∂gcontroller(ΩΩΩ,ΠΠΠ,XXX)

∂θθθ m

∂θθθ m

∂ festimatorm(ΩΩΩm,ΠΠΠmc)

∂ festimatorm(ΩΩΩm,ΠΠΠmc)

∂Kestimatorm(ΠΠΠmc)

∂Kestimatorm(ΠΠΠmc)

∂ΠΠΠm

∂gcontroller(ΩΩΩ,ΠΠΠ,XXX)

∂ΠΠΠm
=

∂gcontroller(ΩΩΩ,ΠΠΠ,XXX)

∂θθθ m
ΩΩΩm

∂Kestimatorm(ΠΠΠmc)

∂ΠΠΠm
(4.64)

The sensitivity ∂gcontroller(ΩΩΩ,ΠΠΠ,XXX)
∂xk

=
∂ fFLCPID(ΩΩΩ,ΠΠΠ,XXX)

∂xk
is given as follows:

∂ fFLCPID(ΩΩΩ,ΠΠΠ,XXX)

∂xk
=

∂ fFLCPID(ΩΩΩ,ΠΠΠ,XXX)

∂ fFLCPD(e fn, ė fn)
(
∂ fFLCPD(e fn, ė fn)

∂e fn

∂e fn

∂xk
+

∂ fFLCPD(e fn, ė fn)

∂ ė fn

∂ ė fn

∂xk
)

∂ fFLCPID(ΩΩΩ,ΠΠΠ,XXX)

∂xk
= (βn +Ψn)(

∂ fFLCPD(e fn, ė fn)

∂e fn

∂e fn

∂xk
+

∂ fFLCPD(e fn, ė fn)

∂ ė fn

∂ ė fn

∂xk
)

(4.65)
e fn

∂x1
= Ken ,

ė fn

∂x1
= Kden ,

e fn

∂x2
= 0 ,

ė fn

∂x2
= Kden

∂ fFLCPID(ΩΩΩ,ΠΠΠ,XXX)

∂x1
= (βn +Ψn)(

∂ fFLCPD(e fn, ė fn)

∂e fn
Ken +

∂ fFLCPD(e fn, ė fn)

∂ ė fn
Kden)

∂ fFLCPID(ΩΩΩ,ΠΠΠ,XXX)

∂x2
= (βn +Ψn)(

∂ fFLCPD(e fn, ė fn)

∂ ė fn
Kden)

The term
∂ fFLCPD(e fn ,ė fn)

∂e fn
and

∂ fFLCPD(e fn ,ė fn)

∂ ė fn
is computed as:

∂ fFLCPD(e fn , ė fn)

∂e fn
=
(B j(ė fn)Γ2n +B j+1(ė fn)Γ4n)

2− (B j(ė fn)Γ1n +B j+1(ė fn)Γ3n)
2

ei+1− ei

+(Ai(e fn)B j(ė fn))
2 k11e−k11e fn

(1+ e−k11e fn)2
+(Ai+1(e fn)B j(ė fn))

2 k21e−k21e fn

(1+ e−k21e fn)2

+(Ai(e fn)B j+1(ė fn))
2 k31e−k31e fn

(1+ e−k31e fn)2
+(Ai+1(e fn)B j+1(ė fn))

2 k41e−k41e fn

(1+ e−k41e fn)2

(4.66)

115

∂ fFLCPD(e fn, ė fn)

∂ ė fn
=
(Ai(e fn)Γ3n +Ai+1(e fn)Γ4n)

2− (Ai(e fn)Γ1n +Ai+1(e fn)Γ2n)
2

ė j+1− ė j

+(Ai(e fn)B j(ė fn))
2 k12e−k12ė fn

(1+ e−k12ė fn)2
+(Ai+1(e fn)B j(ė fn))

2 k22e−k22ė fn

(1+ e−k22ė fn)2

+(Ai(e fn)B j+1(ė fn))
2 k32e−k32ė fn

(1+ e−k32ė fn)2
+(Ai+1(e fn)B j+1(ė fn))

2 k42e−k42ė fn

(1+ e−k42ė fn)2

4.4 Simulation Results

The performance of the generalized STR with adaptive PID and adaptive fuzzy PID

controllers are evaluated on the bioreactor benckmark problem. Nevertheless, the

SVR based self-tuning regulator scheme proposed in this paper can be implemented

to control a diverse range of systems and to successfully solve fundamental control

problems that frequently appear in practice such as nonlinearity, instability.

4.4.1 Bioreactor system

The bioreactor system is frequently used in technical literature as a benchmark

nonlinear system so as to appraise and compare the performances of proposed control

methodologies [5, 43, 60, 62]. A biorector is a vessel in which water, cells (e.g., yeast

or bacteria) and nutrients (substrate) to be consumed by cells are mixed. As a result of

this consuming, product (both desired and undesired) and more cells emerge [60]. This

system is difficult to control since it has highly nonlinear dynamics and exhibits limit

cycles [60]. The system dynamics can be represented via the following differential

equations:

ẋ1(t) =−x1(t)u(t)+ x1(t)(1− x2(t))e
x2(t)
γ(t)

ẋ2(t) =−x2(t)u(t)+ x1(t)(1− x2(t))e
x2(t)
γ(t)

1+β (t)
1+β (t)− x2(t)

(4.67)

where x1(t) symbolizes the cell concentration, x2(t) indicates the amount of nutrients

in tank, u(t) is the flow rate by which the bioreactor is controlled, γ(t) is nutrient

inhibition parameter, β (t) is grow rate parameter [5, 43, 60–62]. In the closed-loop

system, the aim is to control the cell concentration (y(t) = x1(t)) by manipulating the

flow rate (u(t)). The limitations for the magnitude of the control signal are umin = 0 and

umax = 2. The continuation period of control signal is kept constant at τmin = τmax =

0.5s. The bioreactor system has been simulated using the proposed STR architecture

with both PID and fuzzy PID controllers in the generalized controller block. Since

116

we have assumed that the dynamics of the system is not known, online SVR has

been utilized to identify the unknown dynamics using the input-output data pairs. The

input feature vector for SVRmodel is obtained as MMMccc = [un · · ·un−nu,yn · · ·yn−ny]
T where

nu = ny = 2. Simulations have been performed for three separate cases. 1) Nominal

case with no measurement noise and parametric uncertainty 2) Measurement noise is

added to the controlled output of the system 3) Parametric uncertainty is introduced

to the system. For nominal and measurement noise cases the input feature vectors are

selected as ΠΠΠp = [rn Pn un−1]
T , ΠΠΠi = [rn In In−1 In−2 yn un−1]

T and ΠΠΠd = [rn Dn un−1]
T

for SVRestimator of PID type STR, and ΠΠΠke = [rn Pn un−1]
T , ΠΠΠkde = [rn In yn]

T , ΠΠΠΨ =

[rn Dn]
T , ΠΠΠβ = [rn In yn un−1]

T are employed as input feature vector for SVRestimator of

fuzzy PID STR where Pn = en−en−1, In = en, Dn = en−2en−1+en−2 and en = rn−yn.

For the case with parametric uncertainty, the input feature vectors for SVRestimator of

PID type STR are utilized as ΠΠΠp = [rn Pn ynun−1]
T , ΠΠΠi = [rn In In−1 In−2 yn un−1]

T and

ΠΠΠd = [rn Dn yn un−1]
T , and ΠΠΠke = [rn In In−1 Dn yn un−1]

T , ΠΠΠkde = ΠΠΠΨ = ΠΠΠβ = ΠΠΠke

are deployed as input feature vector for SVRestimator of fuzzy PID STR.

4.4.2 Nominal case with no noise and parametric uncertainty

The tracking performance of both controllers for the case when no noise and parametric

uncertainty is applied to the system and all parameters are fully known is given

in Figure 4.12. The system accurately tracks the reference input. The controller

parameters are depicted in Figure 4.13-4.14. Number of the support vector for both

controller and system models are illustrated in Figure 4.15. As can be seen from

Figure 4.16, the controllers track the sinusoidal reference input accurately.

(a)

(b)

(a)

(b)

0 100 200 300 400 500
0

0.05

0.1

0.15
PID Type STR

r(t)
y(t)

0 100 200 300 400 500
0

0.2

0.4

0.6

Time[sec]

u(t)

0 100 200 300 400 500
0

0.05

0.1

0.15
Fuzzy PID Type STR

r(t)
y(t)

0 100 200 300 400 500
0

0.2

0.4

0.6

Time[sec]

u(t)

assad

assad

as
sa

d

assad

Figure 4.12 : System output (a), control signal (b) for the case with no noise and
parametric uncertainty.

117

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

Kd(t)

Time[sec]

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

Kp(t)

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

Ki(t)

assad

as
sa

d

assad

assad

Figure 4.13 : PID type STR parameters.

0 100 200 300 400 500
0

0.2

0.4

0.6

Ke(t)

0 100 200 300 400 500
0

0.1

0.2

0.3

Kde(t)

Time[sec]

0 100 200 300 400 500
0

0.05

0.1

0.15

0.2

ψ(t)

0 100 200 300 400 500
0

0.2

0.4

0.6

β(t)

Time[sec]

assad
assad

as
sa

d

assad

Figure 4.14 : Fuzzy PID type STR parameters.

(a)

(b)

(a)

(b)

0 100 200 300 400 500
0

5

10

15

Fuzzy PID Type STR

#svke(t)

#svkde(t)

#sv
ψ

(t)

#sv
β
(t)

0 100 200 300 400 500
0

5

10

15

Time[sec]

#svm(t)

0 100 200 300 400 500
0

5

10

15

PID Type STR

#svkp(t)

#svki(t)

#svkd(t)

0 100 200 300 400 500
0

5

10

15

Time[sec]

#svm(t)

assad

a
ss

ad

assad

assad

Figure 4.15 : Number of the support vectors for controllers (a) and system models
(b).

118

(a)

(b)

(a)

(b)

0 100 200 300 400 500
0

0.05

0.1

0.15

PID Type STR

r(t)
y(t)

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

Time[sec]

u(t)

0 100 200 300 400 500
0

0.05

0.1

0.15

Fuzzy PID Type STR

r(t)
y(t)

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

Time[sec]

u(t)

assad

assad

as
sa

d

assad

Figure 4.16 : System output (a), control signal (b) for sinusoidal input.

4.4.3 Meaurement noise

The performance of the controllers under the influence of measurement noise is

evaluated by adding a 30 dB measurement noise to the system output. The tracking

performance and control input for controller are demonstrated in Figure 4.17.

(a)

(b)

(a)

(b)

0 100 200 300 400 500
0

0.05

0.1

0.15
PID Type STR

r(t)
y(t)

0 100 200 300 400 500
0

0.2

0.4

0.6

Time[sec]

u(t)

0 100 200 300 400 500
0

0.05

0.1

0.15
Fuzzy PID Type STR

r(t)
y(t)

0 100 200 300 400 500
0

0.2

0.4

0.6

Time[sec]

u(t)

assad

assad

as
sa

d

assad

Figure 4.17 : System output (a), control signal (b) for the case with measurement
noise (30 dB).

4.4.4 Uncertainity in system parameters

The robustness of the controllers are examined with respect to parametric uncertainty,

γ(t) is presumed as the uncertain system parameter, where its nominal value is

γnom(t) = 0.48 and alters around its nominal value as γ(t) = 0.48+0.06sin(0.016πt).

Figure 4.18 illustrates the tracking performance of the controllers and control signal

applied to the system in this case. By comparing Figure 4.18 with the nominal case

given in Figure 4.12, it can be perceived that uncertainty caused by the time varying

parameter is tolerated.

119

0 50 100 150 200 250

0.42
0.44
0.46
0.48

0.5
0.52
0.54

Time[sec]

γ(t)

0 50 100 150 200 250

0.42
0.44
0.46
0.48

0.5
0.52
0.54

Time[sec]

γ(t)

(a)

(b)

(c)

(b)

(c)

(a)

0 100 200 300 400 500
0

0.05

0.1

0.15
Fuzzy PID Type STR

r(t)
y(t)

0 100 200 300 400 500
0

0.2

0.4

0.6

Time[sec]

u(t)

0 100 200 300 400 500
0

0.05

0.1

0.15
PID Type STR

r(t)
y(t)

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

Time[sec]

u(t)

assad

as
sa

d

assad

assad

Figure 4.18 : System output (a), control signal (b) for the case with parametric
uncertainty (c).

4.4.5 Closed-loop Lyapunov stability analysis

The stability analysis of the proposed control methodology derived in section 4.3.8

is carried out, and the numerical verifications for both PID type STR and Fuzzy PID

type STR are depicted in Figures 4.19-4.21 for noiseless case, and when measurement

noise and parametric uncertainty are added respectively. For stability in the sense of

Lyapunov, both V (etrn+1) ≥ 0 and
∂V (etrn+1)

∂ t ≤ 0 must be ensured simultaneously. As

illustrated in Figures 4.19-4.21, it has been observed that V (etrn+1)≥ 0 and
∂V (etrn+1)

∂ t ≤

0 for both controller during the course of control. In a nutshell, it can be inferred that

the closed-loop systems are stable for all cases.

(a)

(b) (b)

(a)

()V t

t

∂
∂

()V t

()V t

t

∂
∂

()V t

0 100 200 300 400 500
0

2

4

6
x 10

-4 PID Type STR

0 100 200 300 400 500

-10

-8

-6

-4

-2

0

x 10
-3

Time[sec]

0 100 200 300 400 500
0

1

2

3

4

5

x 10
-4 Fuzzy PID Type STR

0 100 200 300 400 500

-0.2

-0.15

-0.1

-0.05

0

Time[sec]

assad

as
sa

d

assad
a

ssad

Figure 4.19 : V (t) (a) and ∂V (t)
∂ t (b) for the case with no noise and parametric

uncertainty.

120

(a)

(b) (b)

(a)

()V t

t

∂
∂

()V t

()V t

t

∂
∂

()V t

0 100 200 300 400 500
0

2

4

6

x 10
-4 PID Type STR

0 100 200 300 400 500

-10

-8

-6

-4

-2

0

x 10
-4

Time[sec]

0 100 200 300 400 500
0

1

2

3

4

5

x 10
-4 Fuzzy PID Type STR

0 100 200 300 400 500

-0.03

-0.02

-0.01

0

Time[sec]

assad

assad

as
sa

d

assad

Figure 4.20 : V (t) (a) and ∂V (t)
∂ t (b) for the case with measurement noise.

(a)

(b) (b)

(a)

()V t

t

∂
∂

()V t

()V t

t

∂
∂

()V t

0 100 200 300 400 500
0

2

4

6

x 10
-4 PID Type STR

0 100 200 300 400 500

-10

-5

0

x 10
-4

Time[sec]

0 100 200 300 400 500
0

2

4

6

x 10
-4 Fuzzy PID Type STR

0 100 200 300 400 500
-2.5

-2

-1.5

-1

-0.5

0
x 10

-4

Time[sec]
assad

assad

assad

as
sa

d

Figure 4.21 : V (t) (a) and ∂V (t)
∂ t (b) for the case with parametric uncertainty.

4.4.6 Comparison of the results with SVM-based PID controller

In order to evaluate the performance comparisons of the controllers, SVM-based

PID controller proposed by Iplikci [5] is deployed to control bioreactor system for

cases with no noise and parametric uncertainty, with measurement noise added to

the system and with parametric uncertainty. In a nutshell, the adjustment mechanism

proposed for SVM-based PID controller optimizes the parameters of a PID controller

via Levenberg-Marquardt algorithm by utilizing K-step ahead future Jacobian of the

system behaviour. The proposed mechanism includes five components : classical PID

controller, controller parameter tuner, SVR NARX model of the system, control signal

correction block and line search block. The PID controller has three tunable parameters

(Kp, Ki, Kd) adjusted via Levenberg-Marquardt algorithm in controller parameter tuner

block. SVR NARX model approximates K-step ahead Jacobians of the system in order

to constitute Jacobian matrix which is required in Levenberg-Marquardt optimization

algorithm. Since the updated controller parameters may not good enough to force the

121

system output to follow the desired trajectory in transient-state because of modeling

inaccuracies and external disturbances, a control signal correction term which is

derived via Taylor expansion of control signal is utilized in control signal correction

block [3,5]. Line search block calculates the the optimal learning rate for control signal

correction term via golden section method. The closed-loop tracking performances

of the controllers proposed in this paper are compared with the closed-loop tracking

competency of SVM-based PID controller given in [5]. When the prediction horizon

of the SVM-based PID controller is increased, it is possible to obtain better or similar

results than PID type STR and Fuzzy PID type STR. In order to compare the controller

under the same conditions and obtain meaningful results, the prediction horizon (K)

of SVM-based PID controller is set as "K = 1". The closed-loop performances of the

controllers for the case with no noise and parametric uncertainty and the case with

measurement noise are illustrated in Figure 4.22 (left and right) respectively. The

robustnesses of the controllers with respect to parametric uncertainty are evaluated in

Figure 4.23. In order to compare controller performances numerically, the following

performance index function is employed

Jcomp =
∞

∑
n=0

[rn+1− yn+1]
2 (4.68)

and the performance comparisons are depicted in Figure 4.24.

(a)

(b)

(c)

(b)

(c)

(a)

0 100 200 300 400 500
0

0.05

0.1

0.15
PID Type STR

r(t)
y(t)

0 100 200 300 400 500
0

0.05

0.1

0.15
Fuzzy PID Type STR

r(t)
y(t)

0 100 200 300 400 500
0

0.05

0.1

0.15

Time[sec]

SVM-based PID

r(t)
y(t)

0 100 200 300 400 500
0

0.05

0.1

0.15
PID Type STR

r(t)
y(t)

0 100 200 300 400 500
0

0.05

0.1

0.15
Fuzzy PID Type STR

r(t)
y(t)

0 100 200 300 400 500
0

0.05

0.1

0.15

Time[sec]

SVM-based PID

r(t)
y(t)

assad

as
sa

d

assad

assad

Figure 4.22 : Comparison of controllers for the case with no noise and parametric
uncertainty (left) and for the case with measurement noise (right).

122

(a)

(b)

(c)

0 100 200 300 400 500
0

0.05

0.1

0.15
PID Type STR

r(t)
y(t)

0 100 200 300 400 500
0

0.05

0.1

0.15
Fuzzy PID Type STR

r(t)
y(t)

0 100 200 300 400 500
0

0.05

0.1

0.15

Time[sec]

SVM-based PID

r(t)
y(t)

assad

as
sa

d

assad

assad

Figure 4.23 : Comparison of controllers for the case with parametric uncertainty.

with no noise
and

parametric
uncertainty

with
measurement

noise

with parametric
uncertainty

1 2 3
0

0.01

0.02

0.03

0.04

0.05

0.06

Jcomp

PID Type STR
Fuzzy PID Type STR
SVM-based PID

0.0281

0.0362 0.0368

0.0303

0.0345

0.0484

0.0293

0.0385

0.0421

assad

as
sa

d

assad

assad

Figure 4.24 : Performance comparison of controllers with respect to the defined
performance index (4.68).

As can be seen from Figure 4.24, PID type STR has the best performance for all cases.

The fuzz PID type STR has better performance than SVM-based PID controller for all

cases. Comparison of the PID type STR and SVM-based PID performances is more

meaningful since the adaptation performance of the STR and Levenberg Marquardt can

be comparable. Therefore, SVR based PID type STR has better tracking performances

than SVM-based PID controller for all cases. In order to exhaustively compare the

123

transient state and steady state behaviour of the controllers, the accuracies of the

controllers are compared in terms of maximum and average values of steady state

errors, settling times (according to 2% error criterion) and overshoots separately for

cases with no noise, with noise and with parametric uncertainty. The results are

tabulated in Table 4.1 and 4.2 respectively. As can be seen from Figure 4.24, and

Table 4.1 : Maximum values of steady state errors (ess(%)), settling times (ts(2%)
(sec)) and overshoots (P.O.(%)).

ess(%) ts(2%) P.O.(%)

Controllers Noiseless Noisy Uncert. Noiseless Noisy Uncert. Noiseless Noisy Uncert.
PID Type STR 0.002 2 2 19.5 27.5 17 1.2605 18.0158 12.9661

Fuzzy PID Type STR 0.0019 2 2 27 34 19.5 0.0016 5.1059 14.5094
SVM-based PID 0.0559 1.185 2 31 36 72.5 0 3.5891 24.5359

Table 4.2 : Average values of steady state errors (ess(%)), settling times (ts(2%)
(sec)) and overshoots (P.O.(%)).

ess(%) ts(2%) P.O.(%)

Controllers Noiseless Noisy Uncert. Noiseless Noisy Uncert. Noiseless Noisy Uncert.
PID Type STR 8.4611x10−4 1.4166 1.6691 10.6 14.5 7.9 0.2530 6.7918 4.5779

Fuzzy PID Type STR 8.0872x10−4 0.9027 1.7872 15.6 17.2 12.7 5.3x10−4 2.9685 6.1315
SVM-based PID 0.0363 0.5211 1.7716 25.3 27.2 27.8 0 1.9421 9.0258

Table 4.1 and 4.2, the controller with the best transient and steady state behaviour

is PID type STR. The results given in Table 4.1 and 4.2 verify the results given in

Figure 4.24.

4.5 Conclusion

Support vector machines have successfully been employed to cope with various

classification and regression problems for nearly two decades. Their performance is

justified to be superior than gradient based intelligent systems like ANNs, ANFISs due

to their convex objective function and better generalization property. However, they

have not been used as controllers since information about control input to be applied

to the system, which is required for SVR training is not available beforehand. In this

paper, a novel architecture where an online SVR is used to tune the parameters of

a generalized STR which optimizes the margin between reference input and system

output has been proposed. There are two online SVR structures employed in the

control system, SVRmodel calculates the model of the controlled system and predicts

its future behaviour and SVRestimator estimates the controller parameters of the STR.

124

Two different controllers have been used in the controller block: adaptive PID and

adaptive fuzzy PID. A separate SVRestimator is designed for each tunable parameter in

the controllers.

The performance of the proposed generalized adaptive control architecture and

parameter estimator is evaluated for both PID and fuzzy PID controllers on a bioreactor

benchmark system. A comprehensive stability analysis of the generalized STR is

performed. Furthermore, the closed-loop tracking performances of the STRs are

compared with SVM-based PID controller proposed by Iplikci. The robustnesses of

the controllers have also been assessed for the noiseless case and when measurement

noise and parametric uncertainty are added. Simulation results indicate that the

proposed adaptation mechanism for generalized STR accomplishes successful tracking

performance as well as good noise rejection and high toleration to parametric

uncertainties.

In future works, new SVR type adjustment mechanisms can be developed by

employing closed-loop margin notion.

Conflict of Interest

The authors declare that there is no conflict of interests regarding the publication of

this paper.

125

126

5. CONCLUSIONS AND RECOMMENDATIONS

In this PhD. thesis, three novel SVR based adaptive controller structures are introduced

for nonlinear systems. In order to deploy SVR as a controller or parameter estimator,

"closed-loop margin" notion is proposed to adjust the parameters of SVR based

structures via tracking error without requiring the controller input as training data.

Thus, closed-loop margin notion paves the way for direct utilization of SVR as a

controller and parameter estimator.

In the first proposed mechanism, SVRNARMA-L2 controller law is designed via

SVRNARX model of the system by achieving the SVRNARMA-L2 submodels from

previously obtained SVRNARX model. For this purpose, conversion parameters

which provide correlation among SVRNARX system model and SVRNARMA-L2 system

model have been utilized. Since the convertion parameters have crucial impact on

control performance, Levenberg-Marquardt algorithm has been employed to optimize

convertion parameters by considering K-step ahead future system behaviour. Thus,

strong identification competency of SVR and the simplicity of the NARMA model are

successfully utilized in derivation of the control law.

In the second adaptive mechanism, SVR has been directly deployed as a controller.

In the overall architecture, two separate SVR’s are used: SVRcontroller is used as

the controller and SVRmodel is utilized to observe the dynamic alterations on system

behaviour resulting from the parameter adjustment of SVRcontroller. Closed-loop

margin notion has been introduced to derive adaptation rules for SVRcontroller.

Finally, a generalized self-tuning regulator mechanism which can be realized for any

controller with adjustable parameters is introduced for nonlinear dynamical systems

by reconfiguring the closed-loop margin notion for STR’s. As in the second control

architecture, SVRmodel is used to approximate the dynamics of the system while a

separate SVRestimator is designed for each tunable parameter of the controller.

127

The performance evaluations of the controllers have been performed on nonlinear

continuously stirred tank reactor (CSTR) system or/and bioreactor benchmark system

by simulation studies. The robustnesses of the controller against system parameter

uncertainty and measurement noise have been evaluated. Also, the success of

the control architectures are compared with the performance of a SVM-based PID

controller proposed in [5]. Additionally, the stability analysis of closed-loop system

for SVRcontroller and STR based on SVRestimator are conducted in detail.

It is significant to note that the implementation of intelligent methods to fast

systems such as robot arm, servo systems etc is a hard task since the adjustment

mechanisms have excessive computational load. In SVR based algorithms, most of

this computational load is due to quadratic programming (QP) solver. In this thesis,

it is justified that the proposed adjustment rules can be realized in real time control of

nonlinear systems with large time constants. Yet, it is believed that the computational

loads of SVR are substantially extenuated by courtesy of mathematical developments

conducted to enhance QP solvers and developments in CPU technology. Depending

on these developments, the proposed control mechanisms can be deployed to control

nonlinear systems with small time constants also, in near future.

As future work, the closed-loop notion proposed in this thesis can be combined with

other control methodologies to lead up to the design of various other SVR-based

adaptive controllers. It is also possible to expand the proposed structures to control

MIMO (multi input-multi output) systems. Additionally, predictive adjustment

mechanisms can be interfused with SVRcontroller and STR based on SVRestimator

architectures to enhance control performance.

128

REFERENCES

[1] Smola, A. and Scholkopf, B. (2004). A tutorial on support vector regression,
Statistics and Computing, 14(3), 199–222.

[2] Wang, X., Du, Z., Chen, J. and Pan, F. (2009). Dynamic Modeling of
Biotechnical Process Based on Online Support Vector Machine, Journal
of Computers, 4(3), 251–258.

[3] Uçak, K. and Günel Öke, G. (2016). An adaptive support vector regressor
controller for nonlinear systems, Soft Computing, 20(7), 2531–2556.

[4] Ma, J., Theiler, J. and Perkins, S. (2003). Accurate on-line support vector
regression, Neural Computation, 15(11), 2683–2703.

[5] Iplikci, S. (2010). A comparative study on a novel model-based PID tuning and
control mechanism for nonlinear systems, International Journal of Robust
and Nonlinear Control, 20(13), 1483–1501.

[6] Uçak, K. and Günel Öke, G. (2016). Generalized Self-Tuning Regulator Based on
Online Support Vector Regression, Neural Computing and Applications.

[7] Butler, H. (1992). Model reference adaptive control: from theory to practice,
Prentice Hall College Div.

[8] Cheng, G., (2006). Process Control and Optimization: Model-Free Adap-
tive(MFA) Control, CRC Press, New York, 4. edition.

[9] Sastry, S. and Bodson, M. (1989). Adaptive Control: Stability, Convergence and
Robustness, Prentice Hall.

[10] Cortes, C. and Vapnik, V. (1995). Support-Vector Networks, Machine Learning,
20(3), 273–297.

[11] Drucker, H., Burges, C.J., Kaufman, L., Smola, A. and Vapnik, V. (1996).
Support vector regression machines, Conference on Neural Information
Processing Systems (NIPS), DENVER, USA.

[12] Vapnik, V., Golowich, S.E. and Smola, A. (1996). Support vector method for
function approximation, regression estimation, and signal processing,
Conference on Neural Information Processing Systems (NIPS), DENVER,
USA.

[13] Uçak, K. and Günel Öke, G. (2016). A Novel Adaptive NARMA-L2 Controller
based on Online Support Vector Regression for Nonlinear Systems, Neural
Processing Letters.

129

[14] Narendra, K.S. and Mukhopadhyay, S. (1997). Adaptive control using
neural networks and approximate models, IEEE Transactions on Neural
Networks, 8(3), 475–485.

[15] Majstorovic, M., Nikolic, I., Radovic, J. and Kvascev, G. (2008). Neural
network control approach for a two-tank system, Symposium on Neural
Network Applications in Electrical Engineering, Belgrade, Serbia.

[16] Pedro, J.O., Nyandoro, O.T.C. and John, S. (2009). Neural Network Based
Feedback Linearisation Slip Control of an Anti-Lock Braking System,
Asian Control Conference, Hong Kong, China.

[17] De Jesus, O., Pukrittayakamee, A. and Hagan, M. (2001). A comparison of
neural network control algorithms, IEEE International Joint Conference
on Neural Networks (IJCNN), Washington, D.C.

[18] Pukrittayakamee, A., De Jesus, O. and Hagan, M.T. (2002). Smoothing
the control action for NARMA-L2 controllers, Midwest Symposium on
Circuits and Systems, Tulsa, OK.

[19] Hagan, M.T., Demuth, H.B. and De Jesus, O. (2002). An introduction to the use
of neural networks in control systems, International Journal of Robust and
Nonlinear Control, 12(11), 959–985.

[20] Wahyudi, M., Mokri, S.S. and Shafie, A.A. (2008). Real time implementation of
NARMA L2 feedback linearization and Smoothed NARMA L2 controls
of a single link manipulator, International Conference on Computer and
Communication Engineering, Kuala Lumpur, Malaysia.

[21] Akbarimajd, A. and Kia, S. (2010). NARMA-L2 Controller for 2-DoF
Underactuated Planar Manipulator, International Conference on Control,
Automation, Robotics and Vision, Singapore.

[22] Vesselenyi, T., Dzitac, S., Dzitac, I. and Manolescu, M.J. (2007). Fuzzy and
neural controllers for a pneumatic actuator, International Journal of
Computers, Communications and Control, 2(4), 375–387.

[23] Efe, M.O. and Kaynak, O. (2000). A comparative study of soft-computing
methodologies in identification of robotic manipulators, Robotics and
Autonomous Systems, 30(3), 221–230.

[24] Efe, M.O. and Kaynak, O. (1999). A comparative study of neural network
structures in identification of nonlinear systems, Mechatronics, 9(3),
287–300.

[25] Denai, M.A., Palis, F. and Zeghbib, A. (2004). ANFIS Based Modelling and
Control of Non-linear Systems: A tutorial, International Conference on
Systems, Man and Cybernetics, Netherlands.

[26] Gretton, A., Doucet, A., Herbrich, R., Rayner, P.J.W. and Scholkopf, B.
(2001). Support vector regression for black-box system identification,
IEEE Workshop on Statistical Signal Processing, Singapore.

130

[27] Rong, H., Zhang, G. and Zhang, C. (2005). Application of support vector
machines to nonlinear system identification, International Symposium on
Autonomous Decentralized Systems, Chengdu, China.

[28] Suykens, J. (2001). Nonlinear modelling and support vector machines, IEEE
Instrumentation and Measurement Technology Conference, Budapest,
Hungary.

[29] Ucak, K. and Gunel, O. (2011). Adaptive PID controller based on online LSSVR
with kernel tuning, International Symposium on Innovations in Intelligent
Systems and Applications, Istanbul, Turkey.

[30] Vapnik, V.N. (1999). An overview of statistical learning theory, IEEE Transactions
on Neural Networks, 10(5), 988–999.

[31] Shang, W., Zhao, S. and Shen, Y. (2008). Adaptive PID Controller Based on
Online LSSVM Identification, IEEE ASME International Conference on
Advanced Intelligent Mechatronics, Xian, China.

[32] Zhao, J., Li, P. and Wang, X.s. (2009). Intelligent PID Controller Design with
Adaptive Criterion Adjustment via Least Squares Support Vector Machine,
Chinese Control and Decision Conference, Guilin, China.

[33] Yuan, X., Wang, Y. and Wu, L. (2008). Composite feedforward-feedback
controller for generator excitation system, Nonlinear Dynamics, 54(4),
355–364.

[34] Takao, K., Yamamoto, T. and Hinamoto, T. (2006). A design of PID
controllers with a switching structure by a support vector machine, IEEE
International Joint Conference on Neural Networks, Vancouver, Canada.

[35] Liu, X., Yi, J. and Zhao, D. (2005). Adaptive inverse control system based on
least squares support vector machines, International Symposium on Neural
Networks, Chongqing, China.

[36] Wang, H., Pi, D. and Sun, Y. (2007). Online SVM regression algorithm-based
adaptive inverse control, Neurocomputing, 70(4-6), 952–959.

[37] Yuan, X.F., Wang, Y.N. and Wu, L.H. (2008). Adaptive inverse control of
excitation system with actuator uncertainty, Neural Processing Letters,
27(2), 125–136.

[38] Zhao, Z., Liu, Z., Xia, Z. and Zhang, J. (2012). Internal Model Control Based
on LS-SVM for a Class of Nonlinear Process, International Conference
on Solid State Devices and Materials Science, Macao, China.

[39] Zhong, W., Pi, D., Sun, Y., Xu, C. and Chu, S. (2006). SVM based internal
model control for nonlinear systems, International Symposium on Neural
Networks, Chengdu, China.

[40] Datta, A. and Ochoa, J. (1996). Adaptive inverse control of excitation system
with actuator uncertainty, Automatica, 32(2), 261–266.

131

[41] Sun, C. and Song, J. (2007). An adaptive internal model control based on
LS-SVM, International Symposium on Neural Networks, Nanjing, China.

[42] Wang, Y.N. and Yuan, X.F. (2008). SVM Approximate-based Internal Model
Control Strategy, Acta Automatica Sinica, 34(2), 172–179.

[43] Iplikci, S. (2006). Online trained support vector machines-based generalized
predictive control of non-linear systems, International Journal of Adaptive
Control and Signal Processing, 20(10), 599–621.

[44] Iplikci, S. (2006). Support vector machines-based generalized predictive control,
International Journal of Robust and Nonlinear Control, 16(17), 843–862.

[45] Camacho, E. (1993). Constrained Generalized Predictive Control, IEEE
Transactions on Automatic Control, 38(2), 327–332.

[46] Clarke, D. and Mohtadi, C. (1989). Properties of generalized predictive control,
Automatica, 25(6), 859–875.

[47] Camacho, E.F. and Bordons, C. (1999). Model Predictive Control,
Springer-Verlag.

[48] Clarke, D., Mohtadi, C. and Tuffs, P. (1987). Generalized Predictive Control -
Part I, Automatica, 23(2), 137–148.

[49] Du, Z. and Wang, X. (2008). Nonlinear Generalized Predictive Control Based
on Online SVR, International Symposium on Intelligent Information
Technology Application, Shanghai.

[50] Shin, J., Kim, H.J., Park, S. and Kim, Y. (2010). Model predictive flight control
using adaptive support vector regression, Neurocomputing, 73(4-6),
1031–1037.

[51] Abu Rub, H. and Awwad, A. (2009). Artificial Neural Networks and Fuzzy Logic
Based Control of AC Motors, IEEE International Electric Machines and
Drives Conference, Miami, FL.

[52] Norgaard, M., Ravn, O., Poulsen, N. and Hansen, L. (2000). Neural Networks
for Modelling and Control of Dynamic Systems, Springer-Verlag.

[53] Ng, G. (1997). Application of Neural Networks to Adaptive Control of Nonlinear
Systems, Research Studies Press.

[54] Cristianini, N. and Shawe-Taylor, J. (2000). An Introduction to Support
Vector Machines and Other Kernel-based Learning Methods, Cambridge
University Press.

[55] Martin, M. (2002). On-line support vector machine regression, European
Conference on Machine Learning(ECML), Helsinki, Finland.

[56] Luenberger, D.G. and Ye, Y. (2008). Linear and Nonlinear Programming,
Springer.

132

[57] Griva, E., Nash, S.G. and Sofer, A. (2009). Linear and Nonlinear Optimization,
SIAM.

[58] Nocedal, J. and Wright, S.J. (1999). Numerical Optimization, Springer.

[59] Cauwenberghs, G. and Poggio, T. (2000). Incremental and Decremental Support
Vector Machine Learning, Annual Neural Information Processing Systems
Conference, Denver, USA.

[60] Ungar, L.H. (1996). Neural Networks for Control:A Bioreactor Benchmark for
Adaptive Network based Process Control, MIT Press.

[61] Efe, M., Abadoglu, E. and Kaynak, O. (1999). A novel analysis and design of a
neural network assisted nonlinear controller for a bioreactor, International
Journal of Robust and Nonlinear Control, 9(11), 799–815.

[62] Efe, M.O. (2007). Discrete Time Fuzzy Sliding Mode Control of a Biochemical
Process, International Conference on Automatic Control, Modeling and
Simulation, Istanbul, Turkey.

[63] Astrom, K. and B., W. (2008). Adaptive Control, Dover Publications.

[64] Haykin, S. (1999). Neural Networks: A Comprehensive Foundation, Prentice Hall.

[65] Wu, K. and Wang, S. (2009). Choosing the kernel parameters for support
vector machines by the inter-cluster distance in the feature space, Pattern
Recognition, 42(5), 710–717.

[66] Han, F., Wang, Z., Lei, M. and Zhou, Z. (2008). An Iterative Modified Kernel for
Support Vector Regression, IEEE International Conference on Cybernetic
Intelligent Systems, Chengdu, China.

[67] Xu, Z., Dai, M. and Meng, D. (2009). Fast and Efficient Strategies for Model
Selection of Gaussian Support Vector Machine, IEEE Transactions on
Systems Man and Cybernetics Part B-Cybernetics, 39(5), 1292–1307.

[68] Saadia, N., Amirat, Y., Pontnau, J. and MSirdi, N. (2001). Neural hybrid control
of manipulators, stability analysis, Robotica, 19(1), 41–51.

[69] Kravaris, C. and Palanki, S. (1988). Robust Nonlinear State Feedback Under
Structured Uncertainty, AICHE Journal, 34(7), 1119–1127.

[70] Wu, W. and Chou, Y. (1999). Adaptive feedforward and feedback control
of non-linear time-varying uncertain systems, International Journal of
Control, 72(12), 1127–1138.

[71] Levenspiel, O. (1999). Chemical Reaction Engineering, John Wiley and Sons.

[72] Fogler, H.S. (2006). Elements of Chemical Reaction Engineering, Prentice Hall
Professional Technical Reference.

[73] Bobal, V., Bohm, J., Fessl, J. and Machacek, J. (2005). Digital Self-tuning
Controller, Springer.

133

[74] Astrom, K.J. (1983). Theory and Applications of Adaptive Control-A Survey,
Automatica, 19(5), 471–486.

[75] Wellstead, P.E., Liptak, B.G. and Renganathan, S. (2006). Process Control and
Optimization: Self-tuning Controllers, CRC Press.

[76] Aström, K., U., B., L., L. and Wittenmark, B. (1977). Theory and Applications
of Self-Tuning Regulators, Automatica, 13(5), 457–476.

[77] Akhyar, S. and Omatu, S. (1993). Self-Tuning PID Control by Neural Networks,
International Joint Conference on Neural Network, Nagoya, Japan.

[78] Wang, G.J., Fong, C.T. and Chang, K.J. (2001). Neural-network-based
self-tuning PI controller for precise motion control of PMAC motors,
IEEE Transactions on Industrial Electronics, 48(2), 408–415.

[79] Shu, H.L. and Pi, Y.G. (2000). PID neural networks for time-delay systems,
Computers and Chemical Engineering, 24(2-7), 859–862.

[80] Spooner, J.T. and Passino, K. (1996). Stable Adaptive Control Using Fuzzy
Systems and Neural Networks, IEEE Transactions on Fuzzy Systems, 4(3),
339–359.

[81] Scholkopf, B. and Smola, A.J. (2002). Learning with Kernels: Support Vector
Machines, Regularization, Optimization, and Beyond, The MIT Press.

[82] Ponce, A.N., Behar, A.A., Hernandez, A.O. and Sitar, V.R. (2004). Neural
Networks for Self-tuning Control Systems, Acta Polytechnica, 44(1),
49–52.

[83] Flynn, D., McLoone, S., Irwin, G.W., Brown, M.D., Swidenbank, E. and Hogg,
B.W. (1997). Neural Control of Turbogenerator Systems, Automatica,
33(11), 1961–1973.

[84] Abdullah, R., Hussain, A.T. and Zayed, A. (2005). A New RBF Neural
Network Based Non-linear Self-tuning Pole-Zero Placement Controller,
International Conference on Artificial Neural Networks, Warsaw, Poland.

[85] Wahyudi, S., Ahmad, W. and Htut, M.M. (2009). Neural-tuned PID controller
for Point-to-point (PTP) positioning system: Model reference approach,
International Colloquium on Signal Processing and Its Applications,
Kuala Lumpur, Malaysia.

[86] Guo, A. and Yang, J. (2007). Self-tuning PID Control of Hydro-turbine
Governor based on Genetic Neural Networks, International Symposium
on Intelligence Computation and Applications, Wuhan, China.

[87] Kang, Y., Chu, M.H., Chang, C.W. and Chen, Y.W. (2007). The Self-Tuning
Neural Speed Regulator Applied to DC Servo Motor, International
Conference on Natural Computation, Haikou, China.

[88] Pham, D.T. and Karaboğa, D. (1999). Self-tuning fuzzy controller design using
genetic optimisation and neural network modelling, Artificial Intelligence
in Engineering, 13(2), 119–130.

134

[89] He, S.Z., Tan, S.H., Xu, F.L. and Wang, P.Z. (1993). PID Self-tuning Control
using a Fuzzy Adaptive Mechanism, International Conference on Fuzzy
Systems, San Francisco, CA.

[90] Gautam, D. and Ha, C. (2013). Control of a Quadrotor Using a Smart
Self-Tuning Fuzzy PID Controller, International Journal of Advanced
Robotic Systems, 10, 1–9.

[91] Ahn, K.K., Truong, D.Q., Thanh, T.Q. and Lee, B.R. (2008). Online
self-tuning fuzzy proportional–integral–derivative control for hydraulic
load simulator, Journal of Systems and Control Engineering, 222(2),
81–95.

[92] Qiao, W.Z. and Mizumoto, M. (1996). PID type fuzzy controller and parameters
adaptive method, Fuzzy Sets Systems, 78(1), 23–35.

[93] Woo, Z.W., Chung, H.Y. and Lin, J.J. (2000). A PID type fuzzy controller with
self-tuning scaling factors, Fuzzy Sets Systems, 115(2), 321–326.

[94] Bandyopadhyay, R., Chakraborty, U.K. and Patranabis, D. (2001). Autotuning
a PID controller: A fuzzy-genetic approach, Journal of Systems
Architecture, 47(7), 663–673.

[95] Sharkawy, A.B. (2010). Genetic fuzzy self-tuning PID controllers for antilock
braking systems, Engineering Application of Artificial Intelligence, 23(7),
1041–1052.

[96] Bouallegue, S., Haggege, J., Ayadi, M. and Benrejeb, M. (2012). PID-type fuzzy
logic controller tuning based on particle swarm optimization, Engineering
Application of Artificial Intelligence, 25(3), 484–493.

[97] Li, C.S. and Priemer, R. (1997). Self-learning General Purpose PID Controller,
Journal of the Franklin Institute, 334(2), 167–189.

[98] Bishr, M., Yang, Y.G. and Lee, G. (2000). Self-Tuning Pid Control Using an
Adaptive Network–Based Fuzzy Inference System, Intelligent Automation
and Soft Computing, 6(4), 271–280.

[99] Lu, C.H., Cheng, C.C., Liu, C.M. and Guo, J.Y. (2012). Self-Tuning
Predictive PID Controller Using Wavelet Type-2 Fuzzy Neural Networks,
International Conference on Fuzzy Theory and Its Applications, Taichung,
Taiwan.

[100] Jang, J.S.R. (1993). ANFIS: Adaptive-Network-Based Fuzzy Inference System,
IEEE Transactions on Systems Man and Cybernetics, 23(3), 665–685.

[101] Sung, S.W., Lee, J. and Beum, L.I. (2009). Process Identification and PID
Control, IEEE Press, John Wiley and Sons.

[102] Aström, K.J. and Hagglund, T. (1995). PID Controllers: Theory, Design and
Tuning, Instrument Society of America.

[103] Visioli, A. (2006). Practical PID Control, Springer.

135

136

CURRICULUM VITAE

Name Surname: Kemal UÇAK

Place and Date of Birth: Ağlasun/ Burdur , 26.10.1983

Adress: ITU, Ayazağa Campus, Faculty of Electrical-Electronics Engineering,
Department of Control and Automation Engineering , Maslak/Istanbul

E-Mail: kemal.ucak@itu.edu.tr

B.Sc.: Pamukkale University, Department of Electrical-Electronics Engineering

M.Sc.: Istanbul Technical University, Department of Control and Automation
Engineering

Professional Experience and Rewards:

Research and Teaching Assistant, Muğla Sıtkı Koçman University, Department of
Electrical-Electronics Engineering (2009-2009).

Research and Teaching Assistant, Istanbul Technical University, Department of
Control and Automation Engineering (2009-....).

List of Publications and Patents:

A) International Journal Papers

Uçak K., Günel Öke G., 2016: An adaptive support vector regressor controller for
nonlinear systems, Soft Computing, 20(7), 2531-2556

Uçak K., Günel Öke G., 2016: A Novel Adaptive NARMA-L2 Controller based on
Online Support Vector Regression for Nonlinear Systems, Neural Processing Letters
(Accepted)

Uçak K., Günel Öke G., 2016: Generalized Self-Tuning Regulator Based on Online
Support Vector Regression, Neural Computing and Applications (Accepted)

B) International Conference Papers

Uçak K., Günel Öke G., 2016: NARMA-L2 Controller Based on Online Support
Vector Regression, International Conference on Advanced Technology and Sciences
(ICAT 2016), 1-3 September 2016, Konya, Turkey (Accepted).

Uçak K., Günel Öke G., 2015: Design of an Adaptive Support Vector Regressor
Controller for a Spherical Tank System, International Conference on Neural
Information Processing (ICONIP 2015), 9-12 November 2015, Istanbul, Turkey.

137

Karaman K., Bekaroğlu T. Y., Söylemez T. M., Uçak K., Günel Öke G., 2015:
Controlling 3- DOF Helicopter via Fuzzy PID Controller, International Conference on
Electrical and Electronics Engineering (ELECO 2015), 26-28 November 2015, Bursa,
Turkey.

Ucak K., Caliskan, F., Oke G., 2013: Fault Diagnosis in a Nonlinear Three-Tank
System via ANFIS, International Conference on Electrical and Electronics
Engineering (ELECO 2013), 28-30 November, 2013, Bursa, Turkey.

Durmus S. M., Ucak K., Soylemez T. M., Oke G., 2013: Train Speed Control
in Moving-Block Railway Systems: An Online Adaptive PD Controller Desing,
IFAC Workshop on Advances in Control and Automation Theory for Transportation
Applications (ACATTA 2013), 16-17 September, 2013, Istanbul, Turkey.

Ucak K., Oke G., 2013: RBF Neural Network Controller based on OLSSVR, Asian
Control Conference (ASCC 2013), 23-26 June, 2013, Istanbul, Turkey.

Ucak K., Oke G., 2013: RBF Neural Network Controller based on OLSSVR, Asian
Control Conference (ASCC 2013), 23-26 June, 2013, Istanbul, Turkey.

Sariyildiz E., Ucak K., Ohnishi K., Oke G., Temeltas H., 2013: Intelligent Systems
Based Solutions for the Kinematics Problem of the Industrial Robot Arms, Asian
Control Conference (ASCC 2013), 23-26 June, 2013, Istanbul, Turkey.

Ucak K., Oke G., 2012: Adaptive Fuzzy PID Controller Based on Online LSSVR,
International Symposium on Innovations in Intelligent Systems and Applications
(INISTA 2012), 2-4 July, 2012, Trabzon, Turkey.

Sariyildiz E., Ucak K., Oke G., Temeltas H., Ohnishi K., 2012: Support Vector
Regression Based Inverse Kinematic Modeling for a 7-DOF Redundant Robot Arm,
International Symposium on Innovations in Intelligent Systems and Applications
(INISTA 2012), 2-4 July, 2012, Trabzon, Turkey.

Ucak K., Oke G., 2011: An Improved Adaptive PID Controller Based on Online
LSSVR with Multi RBF Kernel Tuning, International Conference on Adaptive and
Intelligent Systems (ICAIS 2011), 6-8 September, 2011, Klagenfurt, Austria.

Sariyildiz E., Ucak K., Oke G., Temeltas H., 2011: A Trajectory Tracking
Application of Planar Robot Arm via Support Vector Machines, International
Conference on Adaptive and Intelligent Systems (ICAIS 2011), 6-8 September, 2011,
Klagenfurt, Austria.

Ucak K., Oke G., 2011: Adaptive PID Controller Based on Online LSSVR with
Kernel Tuning, International Symposium on Innovations in Intelligent Systems and
Applications (INISTA 2011), 15-18 June, 2011, Istanbul, Turkey.

Ucak K., Oke G., 2011: Modeling of Quadruple Tank System Using Support
Vector Regression, International Symposium on Innovations in Intelligent Systems and
Applications (INISTA 2011), 15-18 June, 2011, Istanbul, Turkey.

C) National Conference Papers (in Turkish)

Uçak K., Günel Öke G., 2015: Uyarlamalı Destek Vektör Regressör Kontrolör,
Otomatik Kontrol Türk Milli Komitesi Ulusal Toplantısı (TOK 2015), 10-12 Eylül
2015, Denizli, Türkiye.

138

Karaman K., Bekaroğlu T. Y., Söylemez T. M., Uçak K., Günel Öke G., 2015:
3-eksenli Helikopter Kontrolü için Bulanık PID Kontrolör Tasarımı, Otomatik Kontrol
Türk Milli Komitesi Ulusal Toplantısı (TOK 2015), 10-12 Eylül 2015, Denizli, Türkiye.

Sarıyıldız E., Uçak K., Öke G., Temeltaş H., 2013: Endüstriyel Robot Kolu Dinamik
Modelinin Destek Vektör Makinesi Kullanılarak Elde Edilmesi, Otomatik Kontrol Türk
Milli Komitesi Ulusal Toplantısı (TOK 2013), 26-28 Eylül 2013, Malatya, Türkiye.

Uçak K., Çalışkan F., Öke G., 2013: Bir Tank Sisteminde Uyarlamalı
Sinirsel-Bulanık Çıkarım Sistemi Yardımıyla Arıza Teşhisi, Otomatik Kontrol Türk
Milli Komitesi Ulusal Toplantısı (TOK 2013), 26-28 Eylül 2013, Malatya, Türkiye.

Sarıyıldız E., Uçak K., Yalçın K. M., Öke G., Temeltaş H., 2012: 7-Serbestlik
Dereceli PA-10 Robotunun Ters Kinematik Probleminin Destek Vektör Makinesi
Kullanılarak Çözülmesi, Otomatik Kontrol Türk Milli Komitesi Ulusal Toplantısı (TOK
2012), 11-13 Ekim 2012, Niğde, Türkiye.

139

140

