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ÖZET

TEMEL CEBİRLER VE DEĞİŞMELİ TEMEL CEBİRLER

ÜZERİNE

ERYÜZLÜ, Menevşe

Yüksek Lisans Tezi, Matematik Bölümü

Tez Yoneticisi: Prof. Dr. Alev FIRAT

Temmuz, 2017, 34 sayfa

Bu tezde temel cebirler, temel cebirlerin diğer bazı cebirsel yapılarla ilişkileri,

idealleri, zayıf ve ön idealleri incelenmiştir. Birinci bölümde, tez konusu tanıtılmış,

konunun çalışılma amacı ve gelişme süreci özetlenmiştir. İkinci bölümde, tezin

anlaşılması için gerekli olan tanımlar, teoremler ve notlar verilmiştir.

Üçüncü bölümde, Chajda ve Emanovsky’ nin 2004’te yayınlanan, Chajda ve R.

Halas in 2007 de, Ivan Chajda, Radomir Halas ve Jan Kühr un makaleleri esas

alınarak temel cebirlerin özellikleri, temel cebirlerin BCC ve BCK-Cebirleri ile ve

özellikle MV-Cebirleri ile arasındaki ilişki incelenmiştir. Bu bölümün son kısmında,

kafes etki cebirlerine, kafes etki cebirlerinin MV-cebirleri ve temel cebirler ile

arasındaki ilişkiye yer verilmiştir. Dördüncü bölümde, I Chajda ve J. Kühr’un

2013’te yayınladığı makalesi esas alınarak, temel cebirlerin idealleri, zayıf idealleri

ve ön idealleri incelenmistir. Bölümün sonunda etki temel cebirlerinde ideallerle

ilgili bazı özelliklere yer verilmiştir. Beşinci bölümde, bu tez çalışmasında elde

edilen sonuçlar ve devamında yapılacak olan çalışmalar bulunmaktadır.

Anahtar Kelimeler: BCC-cebirleri, BCK-cebirleri, MV-cebirleri, Temel Cebir-

ler, Kafes Etki Cebirleri
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ABSTRACT

ON BASIC ALGEBRAS AND COMMUTATIVE BASIC

ALGEBRAS

ERYÜZLÜ, Menevşe

MSc in Mathematics

Supervisor: Prof. Dr. Alev FIRAT

June, 2016, 34 pages

In this thesis, an algebraic structure called basic algebras, their relations with

some other algebraic structures, ideals, weak and pre-ideals are investigated. In

the first chapter, the subject of the thesis is introduced, the goal of working on this

area and the development process of the subject are summarized. In the second

chapter, some definitions, theorems and notes are given which are necessary to

understand this thesis. In the third chapter, by primiraly considering the paper

of Chajda ve Emanovsky which is published in 2004, the paper of Chajda and R.

Halas which is published in 2007 and the paper of Ivan Chajda, Radomir Halas

and Jan Kühr, the properties of basic algebras, their relation with BCC algebras,

BCK algebras and especially with MV-algebras are investigated. At the end of

this chapter, the lattice effect algebras, and their relation between MV-algebras

and basic algebras are given. In the fourth chapter, by primarily considering the

paper of Ivan Chajda and Jan Kühr , ideals, weak ideals, and pre-ideals of basic

algebras are investigated. At the end of the chapter, some properties about idelas

of effect basic algebras are given. In the fifth chapter, the conclusion of work and

the future work are given.

Key Words: BCC-algebras, BCK algebras, MV-algebras, Basic Algebras, Lattice

Effect Algebras
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1. GİRİŞ

K. Iseki ve Y. Imai, küme teorisindeki fark işlemi ile lojikteki “ → ” işleminin

yapısal özelliklerinin benzerliğinden yola çıkarak BCK-cebirlerini inşa edilmiştir.

Başka bir cebirsel yapı olan MV-cebirleri ise C.C Chang tarafından çok-değerli

Lukasiewicz lojigine cebirsel bir yaklaşım amacıyla tanımlanmış ve daha sonra,

MV-cebirlerinin aslında sınırlı değişmeli BCK-cebirleri olduğu görülmüştür. MV-

cebirlerine kafes teorisel bir yaklaşım amacıyla temel cebirler tanımlanmiş, özelikle

I. Chajda, R. Halas, J. Kühr ve M. Botur tarafından çokça incelenmiştir. Biz bu

tezde, onların çalışmalarını detaylandırarak temel cebirlerin yapısal özelliklerini,

bazı önemli cebirsel yapılar (özellikle MV-cebirleri ve BCK-cebirleri) ile arasındaki

ilişkileri ve temel cebirlerin ideallerinin yapısını çalıştık.
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2. ÖN BİLGİLER

2.1 Kafesler

Tanım 2.1. (Garg, 2000) K boştan farklı bir küme olmak üzere ∧ ve ∨ K üzerinde

iki ikili işlem olsun. Her x, y, z ∈K için aşağıdaki koşullar sağlanıyorsa, (K;∨,∧)
cebirsel yapısına bir kafes denir:

(K1) Değişme Özelliği: x ∨ y = y ∨ x ve x ∧ y = y ∧ x

(K2) Birleşme Özelliği: x ∨ (y ∨ z) = (x ∨ y) ∨ z

(K3) Yutma Özelliği: x ∧ (y ∨ z) = x ve x ∨ (y ∧ z) = y ∧ z.

(K4) Sabit Kuvvetlilik Özelliği: x ∨ x = x ve x ∧ x = x

Tanım 2.2. (Garg, 2000) x, y, z ∈ K olmak üzere aşağıdaki özellikleri sağlayan

(K;∨,∧) kafesine bir dağılmalı kafes denir:

x ∧ (y ∨ z) ≥ (x ∧ y) ∨ (x ∧ z)

x ∨ (y ∧ z) ≤ (x ∨ y) ∧ (x ∨ z)

Tanım 2.3. (Garg, 2000) (K,∧,∨) bir kafes olmak üzere aşağıdaki koşulları sağlayan

K = (K,∧,∨,0,1) cebirsel yapısına bir sınırlı kafes denir:

Her x ∈ K icin x ∧ 1 = x ve x ∨ 1 = 1,

Her x ∈ K icin x ∧ 0 = 0 ve x ∨ 0 = x.

Burada 0 ve 1 özel elemanlardır; öyle ki 0 alt sınır, 1 üst sınırdır.

Tanım 2.4. (Gard, 2000) (L;∨,∧,0,1) bir sınırlı kafes olsun. Her a ∈ L ve her

x, y ∈ [a,1] için xaa = x ve x ≤ y ⇒ ya ≤ xa özelliklerini sağlayan x → xa

dönüşümüne [a,1] üzerindeki bölgesel antiton involusyonu denir. L = (L;∨,∧, (a)a∈L,0,1)
sistemine de Bölgesel Antitone İnvolusyonlu Kafes denir.

Tanım 2.5. (K,∧,∨) bir kafes olsun. Her x ∈K icin ¬x ∨ x = 1 ise x’e bir keskin

eleman denir.
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2.2 BCC-Cebirleri

Tanım 2.6. (Alshehri and Bawazeer, 2012) Aşağıdaki koşulları sağlayan A =
(A;→,1) sistemine (2,0) tipinde bir BCC-Cebri denir:

(BCC1) (x→ y) → ((z → x) → (z → y)) = 1

(BCC2) x→ x = 1

(BCC3) x→ 1 = 1

(BCC4) 1→ x = x

(BCC5) (x→ y = 1 ve y → x) ise x = y dir.

Bir A BCC-Cebri üzerinde ≤ bağıntısı aşağıdaki gibi tanımlıdır:

x ≤ y⇔ x→ y = 1.

≤, en büyük elemanı 0 olan bir sıralama bağıntısıdır:

Yansımalılık: (BCC2)den x ≤ x dir.

Ters-simetri: x ≤ y ve y ≤ x olsun. Bu durumda, x → y ve y → x dir. (BCC5) ten

x = y olur.

Geçişlilik: x ≤ y ve y ≤ z olsun. Bu x → y = 1 ve y → z = 1 demektir. Şimdi,

(BCC1)de x yerine y, y yerine z, z yerine x yazalım. Bu durumda,

(y → z) → ((x→ y) → (x→ z)) = 1 (2.1)

olur. Öte yandan, y → z = 1 olduğu için

(y → z) → ((x→ y) → (x→ z)) = (x→ y) → (x→ z)

dır. O halde, x→ y = 1 olduğu için

(x→ y) → (x→ z) = x→ z

olur. Bu durumda, (2.1) den x→ z = 1 dir. Bu da x ≤ z demektir.
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2.3 BCK-Cebirleri

(Meng and Jun, 1994)

Tanım 2.7. (BCC2)-(BCC5) koşullarını sağlayan A = (A;→,1) sistemi aşağıdaki

koşulları sağlıyorsa, (2,0) tipinde bir BCK-Cebri’dir:

(BCK1) (x→ y) → ((y → z) → (x→ z)) = 1

(BCK 2) x→ ((x→ y) → y) = 1.

Bir A BCK-Cebri’nin en küçük elemanı varsa A ya bir sınırlı BCK-Cebri, aşağıdaki

özelliği sağlıyorsa değişmeli BCK-Cebri denir:

(x→ y) → y = (y → x) → x.

Önerme 2.8. (Chajda and Halas, 2008) Her BCK-Cebri bir BCC-Cebri’dir. Bir

BCC-Cebri’nin BCK-Cebri olması için gerek ve yeter koşul aşağıda verilen Yer

Degiştirme Özdeşliğini (YÖ) sağlamasıdır:

x→ (y → z) = y → (x→ z).

2.4 MV-Cebirleri

Tanım 2.9. (Mundici, 2007) Aşagıdaki özellikleri sağlayan bir A = (A;⊕,¬,0)
sistemi (2,1,0) tipinde bir MV-Cebri’dir:

(MV1) x⊕ (y ⊕ z) = (x⊕ y) ⊕ z

(MV2) x⊕ y = y ⊕ x

(MV3) x⊕ 0 = x

(MV4) ¬¬x = x

(MV5) x⊕ ¬0 = ¬0

(MV6) ¬(¬x⊕ y) ⊕ y = ¬(¬y ⊕ x) ⊕ x.

A MV-Cebri üzerindeki sıralama bağıntısı, x ≤ y⇔¬x⊕ y = 1 dir.

Her A = (A;⊕,¬,0) MV-Cebrinden ∨ ve ∧ aşağıdaki gibi tanımlanarak bir sınırlı

dağılmalı L (A) = (A;∨,∧,0,1) kafesi elde edilebilir:
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x ∨ y = ¬(¬x⊕ y) ⊕ y,

x ∧ y = ¬(¬x ∨ ¬y),

1 = ¬0

Teorem 2.10. (Mundici, 2007) A = (A;⊕,¬,0) bir MV-Cebri olsun ve x, y ∈ A
icin x→ y ∶= ¬x⊕y ile tanımlansın. Bu durumda, B(A) = (A;→,¬0) bir değişmeli

BCK-cebridir ve sınırlı değişmeli BCK-Cebirleri katagorisel olarak MV-cebirlerine

denktir.

Önerme 2.11. (Mundici, 2007) L = (L;∨,∧, (a)a∈L,0,1) bir bölgesel antiton in-

volusyonlu kafes olsun. Bu durumda, aşağıdakiler denktir:

(1) A (L) bir MV-Cebridir.

(2) L dağılmalıdır ve x → y = (x ∨ y)y icin (L;→ 1)de Yerdeğiştirme Özdeşliği

sağlanır.
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3. TEMEL CEBİRLER VE DEĞİŞMELİ TEMEL

CEBİRLER

3.1 Temel Cebirlerin ve Değişmeli Temel Cebirlerin Özellikleri

Tanım 3.1. (Chajda, 2008) A =(A;⊕,¬,0), (2,1,0) tipinde bir cebir olsun. Aşağıdaki

özellikleri sağlıyorsa, A ’ya bir Temel Cebir denir: Her x, y, z ∈ A için

(BA1) x⊕0=x;

(BA2) ¬¬x=x;

(BA3) x⊕¬0=¬0=¬0⊕x;

(BA4) ¬(¬x⊕y)⊕y=¬(¬y⊕x)⊕x;

(BA5) ¬(¬(¬(x⊕y)⊕y)⊕z)⊕(x⊕z)=¬0.

dır. MV-Cebirleri’nde oldugu gibi ¬0 yerine 1 yazacağız.

Tanım 3.2. (Chajda, 2008) A = (A;⊕,¬,0) bir Temel Cebir olsun. Eğer her

x, y ∈ A için x⊕ y = y ⊕ x ise, A ya bir değişmeli Temel Cebir denir.

Örnek 3.3. A = {0, a, b,1} olmak üzere, ⊕ ve ¬ işlemleri aşağıdaki gibi tanımlı

olan A = (A;⊕,¬,0) Temel Cebri değişmelidir.

⊕ 0 a b 1

0 0 a b 1

a a a 1 1

b b 1 b 1

1 1 1 1 1

x ¬x

0 1

a b

b a

1 0

Örnek 3.4. ⊕ işlemi aşağıdaki gibi tanımlı olan Temel Cebir, değişmeli olmayan

bir Temel Cebir’dir:
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⊕ 0 a b ¬ b ¬ a 1

0 0 a b ¬ b ¬ a 1

a a a ¬ a ¬ b 1 1

b b ¬ b ¬ b 1 ¬ a 1

¬ b ¬ b ¬ b 1 1 1 1

¬ a ¬ a 1 ¬ b 1 ¬ a 1

1 1 1 1 1 1 1

Tanım 3.5. (Chajda and Halas, 2009) A = (A;⊕,¬,0) bir Temel Cebir olsun. A

nın boştan farklı alt kümesi B, x⊕ y = y⊕x özelliğini sağlayan en büyük küme ise

B’ye bir blok denir.

Önerme 3.6. (Chajda and Halas, 2008) A =(A;⊕,¬,0), (2,1,0) tipinde bir Temel

Cebir olsun. Bu durumda, her x ∈ A için

¬x⊕ x = x⊕ ¬x = 1

dır.

Kanıt. (BA5)te y=z=0 yazalım. Buradan,

¬(¬(¬(x⊕0)⊕0)⊕0)⊕(x⊕0)=¬x⊕x=¬0

elde edilir. Böylece, ¬x⊕ x = 1 bulunur. Bu eşitlikte x yerine ¬x yazarsak,

¬¬x⊕ ¬x = x⊕ ¬x = 1

bulunur.

�

Teorem 3.7. (Chajda and Kolarik, 2008) (2,1,0) tipindeki bir A =(A;⊕,¬,0) ceb-

rinin bir Temel Cebir olması icin gerek ve yeter koşul A nin (BA1), (BA2), (BA4)

ve (BA5) koşullarını sağlamasıdır.

Kanıt. (BA3)un (BA1), (BA2), (BA4) ve (BA5)ten elde edildiğini göstermek

A’nın bir Temel Cebir olduğunu göstermek için yeterlidir. Bunun için, z=0, x=¬0

alalım ve (BA5)te y yerine x yazalım. O zaman,
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¬(¬(¬(¬0⊕x)⊕x)⊕0)⊕(¬0⊕0)=¬0

elde edilir. (BA1) ve (BA2) kullanıldığında,

(¬(¬0⊕x)⊕x)⊕¬0=¬0

bulunur. Ayrıca, (BA4)ten

(¬(¬x⊕0)⊕0)⊕¬0=¬0

elde edilir. (BA1) ve (BA2)den,

x⊕¬0=¬¬x⊕¬0=¬0

olur. Şimdi, (BA5)te y yerine ¬0, z yerine 0 yazalım. Buradan,

¬(¬(¬x⊕¬0)⊕0)⊕(x⊕0)=¬0

elde edilir. (BA2) ve (1) den,

¬0⊕x=(0⊕¬0)⊕x=¬0

bulunur.

�

Aşağıdaki teoremde, (BA3) dışındaki koşullarin bağımsız oldugunu, hiçbirinin bir-

birinden üretilemeyeceğini göstereceğiz.

Teorem 3.8. (Chajda and Kolarik, 2008) (BA1), (BA2), (BA4) ve (BA5) koşulları

bağımsızdır.

Kanıt. İki elemanlı {0,1} kümesine B diyelim.

● (B;⊕,¬,0), her x,y∈B icin x⊕y=1 ve ¬0=1, ¬1=0 olacak şekilde bir cebir

olsun. Bu durumda, (BA2), (BA4) ve (BA5) sağlanır. x=0 alırsak, 0⊕0=1

olur. Böylece (BA1)in sağlanmadığı görülür.

● Şimdi, (B;⊕) ∧-yarıkafes ve her x∈B için ¬x=1 olsun. Bu durumda (B,⊕,¬,0),

(BA1), (BA4) ve (BA5) i sağlar. x=0 alalım. (BA2)de yerine koyarsak,

¬¬0=1
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olur. Boylece, (BA2)nin sağlanmadığı görülür.

● (B;⊕), Z2 halkası ve ¬0=1, ¬1=0 olsun. (B,⊕,¬,0), (BA1) ve (BA2) koşullarını

sağlar. x=1, y=0 alırsak,

¬(¬1⊕ 0) ⊕ 0 = ¬(0⊕ 0) ⊕ 0 = 1⊕ 0 = 1 (3.1)

¬(¬0⊕ 1) = ¬(1⊕ 1) ⊕ 1 = 0 (3.2)

(3.1)≠(3.2) olduğu icin (BA4) sağlanmaz.

● Son olarak (B,⊕) bir ∨-yarıkafes ve ¬, B üzerinde bir birim dönüşüm

olsun. Bu durumda, (BA1) ve (BA2) sağlanır. {x,y}={0,1} alalım.

¬(¬1⊕ 0) ⊕ 0 = 1⊕ 0 = 1 (3.3)

¬(¬0⊕ 1) ⊕ 1 = 1⊕ 1 = 1 (3.4)

(3.3)=(3.4). O halde, (BA4) sağlanır. Simdi, x=y=z=1 alalım.

¬(¬(¬(1⊕1)⊕1)⊕1)⊕(1⊕1)=1≠0

olduğundan (BA5) sağlanmaz.

�

Teorem 3.9. (Chajda and Kolarik, 2008) A =(A;⊕,¬,0) bir Temel Cebir ise her

x, y, z ∈ A için

¬(¬(x⊕ y) ⊕ y) ⊕ y = x⊕ y

sağlanır.

Kanıt. ¬(¬(x⊕y)⊕y)⊕y=a olsun. (BA5)ten,

¬a⊕(x⊕y)=¬0

olur. O halde, a=0 veya a=x⊕y dir. a=0 olması için her x∈Anın 0 olması gerekir.

Halbuki A , 0 dan farklı bir cebirdir. O halde, a=x⊕y dir.

�
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Aşağıdaki teoremde (2,1,0) tipindeki bir cebrin Temel Cebir olmasi icin gerekli

olan denk koşullar verilecektir.

Teorem 3.10. (Chajda and Halas, 2008) A =(A;⊕,¬,0), (2,1,0) tipinde (BA1),

(BA3) ve (BA4) aksiyomlarını sağlayan bir cebir olsun. Bu durumda, aşağıdakiler

denktir:

(1) A , (BA2) yi sağlar;

(2) A , 0⊕x=x ve ¬¬0=0 özelliklerini sağlar.

Kanıt. (BA3), (BA4) ve (BA1)den

¬¬0⊕ x = ¬(¬0⊕ x) ⊕ x = ¬(¬x⊕ 0) ⊕ 0 = ¬¬x (3.5)

olur.

(1)⇒(2): (BA2)nin sağlandığını kabul edelim. O halde, ¬¬0=0 ve (3.5)ten

0⊕x=¬¬0⊕x=¬¬x=x

elde edilir. Boylece (1)⇒(2) sağlanmış olur.

(2)⇒(1): (2)nin sağlandığını kabul edelim. O halde, (3.5)ten,

x=0⊕x=¬¬0⊕x=¬¬x

olur. Böylece, (2)⇒(1) sağlanmış olur.

�

Sonuc 3.11. (Chajda and Kolarik, 2008) (2,1,0) tipinde bir A =(A;⊕,¬,0) ceb-

rinin bir Temel Cebir olması icin gerek ve yeter koşul A nin (BA4), (BA5) ve

aşağıdaki özellikleri sağlamasıdır:

(BA1+) x⊕0=x=0⊕x;

(BA2-0) ¬¬0=0;

(BA3-) ¬0⊕x=¬0.
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Kanıt. (⇒) A =(A;⊕,¬,0) bir Temel Cebir olsun. Bu durumda, temel cebirin

tanımından (BA4), (BA5), (BA2-0) VE (BA3-) saglanır. Ayrıca A , (BA2)yi de

sağlayacağından Teorem 3.10’dan 0⊕x=x dir. Ayrıca, elimizde

¬(¬x⊕0)⊕0=¬¬x⊕0=x⊕0,

¬(¬0⊕x)⊕x=¬¬0⊕x=0⊕x

var. (BA4)ten, x⊕0=0⊕x dir. 0⊕x=x olduğundan, x⊕0=x bulunur.Böylece (BA1+)

sağlanır.

(⇐) A =(A;⊕,¬,0), (BA4), (BA5), (BA1+), (BA2-0) VE (BA3-) koşullarını sağlayan

(2,1,0) tipinde bir cebir olsun. O halde A , Teorem 3.8 den (BA2)yi sağlar. (BA5)te

y=0, x=¬0 yazarsak,

¬(¬(¬(x⊕0)⊕0)⊕¬0)⊕(x⊕¬0)=0⊕(x⊕¬0)=x⊕¬0=¬0

olur. Boylece, (BA3) sağlanır.

�

Teorem 3.12. (Radomir and Halas, 2008) A =(A;⊕,¬,0) bir Temel Cebir ve ≤,

x, y ∈ A icin x ≤ y ⇒ ¬x ⊕ y = 1 ile tanımlı bir bağıntı olsun. Bu durumda (A;≤)

bir sıralı kümedir. 0 bu kümenin en küçük elemanı ve 1 bu kümenin en büyük

elemanıdır.

Kanıt. Yansıma özelligi Önerme 3.6 dan açıkça görülür. Ters simetriyi göstermek

için x ≤ y ve y ≤ x olduğunu kabul edelim. Bu durumda, ¬x⊕ y = 1 ve ¬y ⊕ x = 1

olur. Buradan,

x = 0⊕ x = ¬1⊕ x = ¬(¬y ⊕ x) ⊕ x = ¬(¬x⊕ y) ⊕ y = ¬1⊕ y = 0⊕ y = y

elde edilir.

Şimdi x ≤ y ve y ≤ z olduğunu kabul edelim. Bu durumda ¬x⊕ y = 1 ve ¬y⊕ y = z

dir. (BA5) kullanılarak,

¬x⊕ z = ¬1⊕ (¬x⊕ z) = ¬(¬y ⊕ z) ⊕ (¬x⊕ z) = ¬(¬(¬1⊕ y) ⊕ z) ⊕ (¬x⊕ z) =
¬(¬(¬(¬x⊕ y) ⊕ y) ⊕ z) ⊕ (¬x⊕ z) = 1
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elde edilir. Boylece x ≤ z olduğu görülür. O halde ≤ bir sıralama bağıntısıdır.

Ayrica, ¬0⊕ x = 1 ve ¬x⊕ 1 = 1 olduğundan, her x ∈ A icin 0 ≤ x ≤ 1 dir.

�

Önerme 3.13. (Radomir and Halas, 2008) A = (A;⊕,¬,0) bir Temel Cebir ve

≤ A üzerindeki sıralama bağıntısı olsun. Bu durumda her x, y, z ∈ A için aşağıdaki

özellikler sağlanır.

(1) x ≤ y ⇔ ¬y ≤ ¬x

(2) x ≤ y ⇒ x⊕ z ≤ y ⊕ z

(3) y ≤ x⊕ y.

Kanıt. (1) x ≤ y olsun. O halde, ¬x⊕ y = 1 dir. (BA5)ten,

¬(¬y ⊕ z) ⊕ (¬x⊕ z) = ¬(¬(¬(¬x⊕ y) ⊕ y) ⊕ z) ⊕ (¬x⊕ z) = 1

bulunur. Yani, ¬y ⊕ z ≤ ¬x⊕ z elde edilir. Bu ise ¬y ≤ ¬x demektir.

Şimdi, ¬y ≤ ¬x olduğunu kabul edelim. (BA2) kullanılarak hemen x ≤ y olduğu

görülebilir.

(2) x ≤ y olsun. Bu durumda, (1) in ispatından ¬y⊕ z ≤ ¬x⊕ z bulunur. ¬y yerine

x, ¬x yerine y yazılırsa x⊕ z ≤ y ⊕ z elde edilir.

(3) 0 ≤ x olduğunu biliyoruz. O halde, (2) den y = 0⊕ y ≤ x⊕ y olur.

�

Tanım 3.14. (Chajda and Kühr, 2013) A = (A;⊕,¬,0) bir Temel Cebir olsun.

Eger x, y, z ∈ A icin,

x ≤ y⇒ z ⊕ x ≤ z ⊕ y

ise A ya monoton denir.

Teorem 3.15. (Radomir and Halas, 2008) A = (A;⊕,¬,0) bir Temel Cebir ve

≤ A üzerindeki bir sıralama bağıntısı olsun. O halde, (A;≤), ∧ ve ∨ işlemleri

aşağıdaki gibi tanımlı olan bir sınırlı kafestir.
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x ∨ y = ¬(¬x⊕ y) ⊕ y ,

x ∧ y = ¬(¬x ∨ ¬y).

Kanıt. Elimizde, her x, y ∈ A için y ≤ ¬(¬x⊕ y) ⊕ y ve x ≤ ¬(¬y ⊕ x) ⊕ x var, A

bir temel cebir olduğu icin ¬(¬x ⊕ y) ⊕ y = ¬(¬y ⊕ x) ⊕ x dir. Buradan, ¬(¬x ⊕
y) ⊕ y = ¬(¬y ⊕ x) ⊕ x, x ve y nin ortak üst sınırıdır. x, y ≤ z olsun. Bu durumda

¬x⊕ y ≥ ¬z ⊕ y dir. Buradan,

¬(¬x⊕ y) ⊕ y ≤ ¬(¬z ⊕ y) ⊕ y = ¬(¬y ⊕ z) ⊕ z = 0⊕ z = z

olur. Bu da ¬(¬x⊕ y)⊕ y, x ve y nin en küçük üst sınırı olduğunu gösterir. Sonuç

olarak, x ∨ y = ¬(¬x⊕ y) ⊕ y dir.

Şimdi, x ∧ y = ¬(¬x ∨ ¬y) olduğunu göstereceğiz. ¬(¬x ⊕ y) ⊕ y, y nin üst sınırı

olduğundan, y ≤ ¬(¬x⊕ y) ⊕ y dir. Buradan,

¬(¬(¬x⊕ y) ⊕ y) ≤ ¬y

y yerine ¬y, x yerine ¬x yazılarak,

¬(¬x ∨ ¬y) = ¬(¬(x⊕ ¬y) ⊕ ¬y) ≤ y

elde edilir. ¬(¬x ∨ ¬y) ≤ x olduğu cok benzer şekilde gösterilebilir. Dolayısıyla,

¬(¬x ∨ ¬y, x ve y nin ortak alt sınırıdır.

m ≤ x, y olsun. O halde, ¬x, ¬y ≤ ¬m dir. ¬x ve ¬y nin en küçük üst sınırı

¬(x⊕ ¬y) ⊕ ¬y olduğu için,

¬(x⊕ ¬y) ⊕ ¬y ≤ ¬m

dir. Sonuç olarak,

¬m ≤ ¬(¬(x⊕ ¬y) ⊕ ¬y) = x ∧ y

olur. Bu da, x ∧ y, x ve y nin en büyük alt sınırı demektir.

�

Teorem 3.16. (Radomir and Halas, 2009)A = (A;⊕,¬,0) bir Temel Cebir olsun.

x ∈ A nin keskin eleman olmasi için gerek ve yeter koşul x⊕ x = x olmasıdır.
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Kanıt. (⇒) x ∈ A keskin eleman olsun. Bu durumda, ¬x ∨ x = ¬(x⊕ x) ⊕ x = 1.

Yani, x⊕x ≤ x dir. Her x ∈ A icin x ≤ x⊕x olduğunu da göz önünde bulundurursak

x⊕ x = x elde etmiş oluruz

(⇐) x⊕ x = x olsun. Bu durumda, ¬x ∨ x = ¬(x⊕ x) ⊕ x = ¬x⊕ x = 1 dir.

�

Teorem 3.17. (Radomir and Halas, 2008) A = (A;⊕,¬,0) bir Temel Cebir olsun

ve ∧ ve ∨ Teorem 3.12 deki gibi tanımlansın. Her a ∈ A ve x ∈ [a,1] icin xa = ¬x⊕a
olsun. Bu durumda L (A) = (A;∧,∨, (a)a∈L,0,1) bir bölgesel antiton involusyonlu

kafestir.

Kanıt. Öncelikle, (E,∨,∧,0,1)in x ↦ x′ + a (x ∈ [a,1]) bölgesel antiton involus-

yonlu bir kafes olduğunu göstereceğiz.

x ↦ x′ dönüşümü E üzerinde bir antiton involusyondur. Ayrıca, (EA3)ten x′′ = x

ve (5)dan x ≤ y ⇔ x′ ≥ y′ elde edilir. Dolayısıyla da

x ∧ y = (x′ ∨ y′)′ ve x ∨ y = (x′ ∧ y′)′

De Morgan kurallarının (E,∨,∧,0,1) kafesinde sağlandığı görülür.

Şimdi bir a ∈ E alalim ve x ∈ [a,1] için x ↦ xa ∶= x′ + a ile tanımlayalım. x′ + a

tanımlı olduğu için (2)ten x ≥ a dır. x, y ∈ [a,1] için x ≤ y durumunda xa = x′+a ≥
y′ + a = ya dır. (5)ten xa ≥ ya olması x ≤ y demektir.

(5) kullanılarak bölgesel antiton involusyon tanımının ikinci koşulunun da sağlandığı

gösterilebilir:

xaa = (x′ + a)′ + a = x.

Böylece, x ↦ x′ + a dönüşümünün [a,1] üzerinde bir antiton involusyon olduğu

görülür. Yani, L (E) = (E,∨,∧, (a)a∈E,0,1) bir bölgesel antiton involusyonlu ka-

festir. L (E) üzerinde,

x⊕ y ∶= (x0 ∨ y)y = (x′ ∨ y)′ + y = (x ∧ y′) + y

tanımlaması kullanılarak bir temel cebir elde edilir.
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�

Teorem 3.18. (Radomir and Halas, 2008) L = (L;∨,∧, (a)a∈L,0,1) bir antiton

involusyonlu kafes olsun. ⊕ ve ¬ işlemleri aşağıdaki gibi tanımlansın:

x⊕ y = (x0 ∨ y)y ve ¬x = x0

Bu durumda, A (L) = (L;⊕,¬,0) bir Temel Cebir’dir. Üstelik, L (A (L)) = L ve

herhangi bir A Temel Cebri icin A (L (A)) = A dir.

Kanıt. L = (L;∨,∧, (a)a∈L,0,1) bir bölgesel antiton involusyonlu bir kafes olsun.

Şimdi, (BA1)-(BA5) koşullarının sağlandığını göstereceğiz.

(BA1) x⊕ 0 = (x0 ∨ 0)0 = x00 = x

(BA2) ¬¬x = x00 = x

(BA3) x⊕ 1 = (x0 ∨ 1)1 = 11 = 1 ve 1⊕ x = (10 ∨ x)x = (0 ∨ x)x = xx = 1

(BA4) ¬x⊕ y = (x00 ∨ y)y = (x ∨ y)y ≥ y olduğu için aşağıdakiler elde edilir:

¬(¬x⊕ y) ⊕ y = ((x ∨ y)y ∨ y)y = (x ∨ y)yy = x ∨ y

¬(¬y ⊕ x) ⊕ x = y ∨ x = x ∨ y

(BA5) ¬(¬(¬(x⊕ y) ⊕ y) ⊕ z) ⊕ (x⊕ z) = ¬(¬(¬x ∨ y) ⊕ z) ⊕ (x⊕ z)

= ((x0 ∨ y ∨ z)z ∨ (x0 ∨ z)z)(x0∨z)z = ((x0 ∨ z)z)(x0∨z)z = 1.

Sonuç olarak, A (L) = (L;⊕,¬,0) bir Temel Cebir’dir.

Şimdi, L (A (L)) = L olduğunu gösterelim. ⊓ ve ⊔, Teorem 3.12 deki gibi üretilen

kafesin ∧ ve ∨ işlemleri olsun. a ∈ L icin fa, [a,1] deki involusyon olsun. O halde,

her x ∈ [a,1] için

fa(x) = ¬x⊕ a = ((¬x)0 ∨ a)a = (x00 ∨ a)a = (x ∨ a)a = xa

olur. Ayrıca,

x ⊔ y = ¬(¬x⊕ y) ⊕ y = ((x ∨ y)y ∨ y)y = (x ∨ y)yy = x ∨ y ve

x ⊓ y = ¬(¬x ∪ ¬y) = (x0 ∨ y0)0 = x ∧ y
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olur. Sonuç olarak, L (A (L)) = L dır.

Şimdi, A (L (A)) = A olduğunu gösterelim. A = (A,⊕,¬,0) bir temel cebir olmak

üzere, + ve ∼ sırasıyla A (L (A)) daki ⊕ ve ¬ işlemleri olsun. Bu durumda, ∼ x =
x0 = ¬x ve

x + y = (x0 ∨ y)y = ¬(¬x ∨ y) ⊕ y = ¬(¬(x⊕ y) ⊕ y) ⊕ y = x⊕ y

olur. Sonuç olarak, A (L (A)) = A dır.

�

3.2 Temel Cebirler ile MV-Cebirleri Arasındaki İlişki

Bu bölümde, temel cebirler ile MV-cebirleri arasındaki ilişkiyi inceleyeceğiz.

Önerme 3.19. (Radomir and Halas) A = (A;⊕,¬,0) bir temel cebir olsun ve

x→ y ∶= ¬x⊕ y ile tanımlansın. Bu durumda aşağıdaki özellikler sağlanır:

(1) B(A ) = (A;→,¬0) ın bir BCC-Cebri olması için gerek ve yeter koşul B(A )nın

(BCC1) koşulunu (denk olarak (A) koşulunu) sağlamasıdır.

(2) x, y, z ∈ A icin (A) özelliği aşağıdaki (A∗) özelliğine denk olur:

x⊕ y ≤ ¬(z ⊕ ¬x) ⊕ (z ⊕ y) (A∗)

Kanıt. (1) (⇒) A = (A;⊕,¬,0) bir temel cebir olsun ve B(A ) = (A;→,¬0) sis-

temi (BCC1) koşulunu sağlasın. Bu durumda B(A ), (BCC2)-(BCC5) koşullarını

sağlar:

(BCC2) x→ x = ¬x⊕ x = 1,

(BCC3) x→ 1 = ¬x⊕ 1 = 1,

(BCC4) 1→ x = ¬0⊕ x = x ,

(BCC5) x→ y = 1 ve y → x = 1 olsun. Bu durumda, ¬x⊕ y = 1 ve ¬y ⊕ x = 1 olur.

Bu da x ≤ y ve y ≤ x demektir. Buradan, x = y olur.

(⇐) A = (A;⊕,¬,0) bir temel cebir olmak üzere B(A ) = (A;→,¬0) sistemi bir

BCC cebri ise, (BCC1) koşulu otomatik olarak sağlanır.
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(2) x → y ≤ z → x) → (z → y) = ¬x ⊕ y ≤ ¬(¬z ⊕ x) ⊕ (¬z ⊕ y) dir. x yerine ¬x, z

yerine ¬z koyup (BA2) özelliği kullanılarak

¬(x⊕ y) ⊕ ¬(z ⊕ ¬x) ⊕ (z ⊕ y) = 1

elde edilir. Bu da x⊕ y ≤ ¬(z ⊕ ¬x) ⊕ (z ⊕ y) demektir.

�

Önerme 3.20. (Radomir and Halas) Bir Temel Cebrin değişmeli olması için gerek

ve yeter koşul (x→ y = ¬y → ¬x) koşulunu sağlamasıdır.

Kanıt. (⇒) A = (A;⊕,¬,0) bir değişmeli Temel Cebir ve x, y ∈ A olsun. Bu

durumda,

x→ y = ¬x⊕ y = y ⊕ ¬x = ¬y → ¬x. (3.6)

(⇐) A = (A;⊕,¬,0) bir temel cebir, x, y ∈ A ve x → y = ¬y → ¬x olsun. Bu

durumda, (3.6) kullanılarak görülür ki A değişmelidir.

�
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Not 3.21. (Michael Botur) “ → ” operatörü, herhangi bir lineer sıralı değişmeli

Temel Cebir icin aşagıdaki gibi ifade edilebilir:

x→ y =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

xy, y ≤ x

1, y > x.

Önerme 3.22. (Radomir and Halas) L = (L;∨,∧, (a)a∈L,0,1) bir antiton invo-

lusyonlu kafes olsun. Bu durumda aşağıdakiler denktir:

(1) A (L ) bir MV-cebridir.

(2) L dağılmalıdır ve x → y = (x ∨ y)y icin (L;→,1) üzerinde Yer Değiştirme

Özdeşliği sağlanır.

Teorem 3.23. (Radomir and Halas) Bir Temel Cebrin MV-Cebri olması için

gerek ve yeter koşul BCC-Cebri olması, yani (A∗) koşulunu sağlamasıdır.

Kanıt. (⇐) A bir MV-cebri olsun. Bu durumda A bir temel cebirdir. Öte yan-

dan, (A;→,¬0) bir değişmeli BCK-cebridir. O halde, (A;→,¬0) in BCC-Cebri

olduğunu göstermek için Yer Değiştirme Özdeşliği’ni sağladığını göstermeliyiz. Bu-

nun icin L (A)yi ele alalim. L (A), Önerme 3.22’den Yer Değiştirme Özdeşliği’ni

saglar. Dolayısıyla da bir BCC-Cebri’dir.

(⇒) A = (A;⊕,¬,0), x→ y = ¬x⊕y olmak üzere (A∗) özelliğini sağlayan bir temel

cebir olsun. (A∗)da y = 0 alalım ve x yerine ¬x yazalım. Bu duruma,

¬x = ¬x⊕ 0 ≤ ¬(z ⊕ x) ⊕ z

elde edilir. Buradan,

x⊕ z ≥ ¬(¬(z ⊕ x) ⊕ z) ⊕ z = (z ⊕ x) ∨ z ≥ z ⊕ x

bulunur. x ve z nin yerleri değiştirilerek z ⊕ x ≥ x ⊕ z nin de sağlandığı kolayca

görülebilir. Sonuç olarak, x, z ∈ Aicinx ⊕ z = z ⊕ x tir. Yani, A değişmelidir. Bu

durumda, L (A ) dağılmalıdır.

Öte yandan, ⊕ değişmeli olduğun için (A∗) aşağıdaki (A∗∗) koşuluna denk olur:

¬y ⊕ x ≤ ¬(¬x⊕ z) ⊕ (¬y ⊕ z). (A∗∗)
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Şimdi, (A∗∗)da x yerine ¬x⊕ z yazıldığında,

¬y ⊕ (¬x⊕ z) ≤ ¬(¬(¬x⊕ z) ⊕ z) ⊕ (¬y ⊕ z) = ¬(x ∨ z) ⊕ (¬y ⊕ z)

elde edilir. [z,1] üzerinde x ∨ z = x olacağından,

¬y ⊕ (¬x⊕ z) ≤ ¬x⊕ (¬y ⊕ z)

olur. x ve y yi birbirinin yerine yazarak benzer şekilde

¬x⊕ (¬y ⊕ z) ≤ ¬y ⊕ (¬x⊕ z)

bulunur. Sonuç olarak, x, y ∈ [z,1] için,

x→ (y → z) = ¬x⊕ (¬y ⊕ z) = ¬y ⊕ (¬x⊕ z) = y → (x→ z)

elde edilir. Yani, [z,1] üzerinde (YÖ) sağlanır.

x, y ∈ [z,1] olmayan durumlarda, (YÖ ) otamatik olarak sağlanır. Örneğin, x /∈
[z,1] ve y ∈ [z,1] durumunu ele alalim. Bu durumda, x < y < z dir. Bu da ¬x⊕z = 1

demek olduğundan, ¬y ⊕ (¬x ⊕ z) = y → (x → z) = 1 olur. Şimdi, eşitliğin diğer

tarafına bakalım. Her zaman için x < ¬y⊕x tir. x < z olduğu için de ¬y⊕x < ¬y⊕z

dir. Buradan, x < ¬y ⊕ z bulunur. Yani, ¬x⊕ (¬y ⊕ z) = 1dir.

x ∈ [z,1], y /∈ [z,1] ve x /∈ [z,1], y /∈ [z,1] durumlarında da (YÖ)nün sağlandığı

benzer şekilde gösterilebilir. Sonuç olarak, L (A)nin dağılmalı bir kafes oldugunu

ve her x, y, z ∈ A için (YÖ) nün sağlandığını gösterdik. O halde, Önerme 3.22 ve

Teorem 3.18 den A bir MV-cebridir.

�

Değişmelilik MV-Cebirlerini Temel Cebirler’den ayıran çok önemli bir özelliktir.

Her MV-Cebri, değişmeli bir temel cebirdir. Ancak, her değişmeli temel cebir bir

MV-Cebri değildir. Micheal Botur, bunu bir örnek ile kanıtlamıştır. Biz inşası

cok uzun olan bu örneği, önemli kısımlarını vurgulayarak daha kısa bir şekilde

vereceğiz. Bunun için önce bazı teorem ve önermelere ihtiyacımız var:

Teorem 3.24. (Botur) A = (A;⊕,¬,0) bir değişmeli temel cebir olsun. O halde,

her x ∈ Aicin , x∗ = x∗ → x olacak şekilde tek bir x∗ ∈ [x,1] vardır.
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Teorem 3.25. (Botur) A = ([0, a];⊕,¬,0) bir temel cebir olsun ve x ∈ [0, a] için

¬′x = a−x ile tanımlansın. Bu durumda, A , A ′ = ([0, a];⊕′,¬′,0) değişmeli temel

cebrine izomorftur.

Şimdi, [0,12] üzerinde bir değişmeli temel cebir inşa edecegiz. [0,a] üzerinde ¬x =
a⊕ ¬x olmasından yararlanarak ¬x ∶= 12 − x ile tanımlayalım.

Önerme 3.26. A = ([0,12],⊕,¬,0) bir değişmeli Temel Cebir olsun. O halde,

f(x, y) ∶= x → y olmak üzere f ∶ [0,12]2 Ð→ [0,12] dönüşümü süreklidir ve her

y ∈ [0,12] ve her x,x1, x2 ∈ [y,12] için aşağıdaki özellikler sağlanır:

(i) f(x, y) = f(¬y,¬x)

(ii) x ≥ y ise f(f(x, y), y) = x

(ii) x1 ≤ x2 ise f(x1, y) ≥ f(x2, y).

Temel cebirlerde de MV-cebirlerinde de x → y ∶= ¬x ⊕ y ile tanımlı olduğundan

x, y ∈ [0,12] icin x → y ∶= 12 − x + y diyebiliriz. Şimdi, aşağıdaki fonksiyonu göz

önünde bulunduralım:

f(x, y) ∶= 12 − x + y + d(x, y),

d(x,y), f(x,y) ve x → y arasındaki fark olsun. Sıfırdan farklı bir d(x,y) bularak,

MV-Cebri olmayan bir Temel Cebir inşa edeceğiz.

Önerme 3.27. (Botur) x ≥ y olmak üzere her x, y ∈ [0,12] için d(x, y) = d(¬y,¬x) =
d(f(x, y), y) dir.

Şimdi, aşagıdaki kümeleri göz önünde bulunduralım:

g = {⟨x∗, x⟩ ∣ x ∈ [0,12]}, h=g = {⟨12 − x,12 − x∗⟩ ∣ x ∈ [0,12]}, k=g = {⟨x,¬x⟩ ∣
x ∈ [6,12]}.

f süreki olduğu için g,h ve k da sürekli eğrilerdir. Dahası, g,h ve k eğrileri {⟨x, y⟩ ∈
[0,12]2 ∣ x ≥ y} bölgesini alti kısıma ayırır:
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Şimdi, d(x,y) yi, dolayısıyla da f(x,y)yi inşa ederek A = ([0,12],⊕,¬,0) Temel

Cebrini tanımlayacağız. g,h,k eğrileri aşağıdaki gibi tanımlansın:

● g, [6,0] dan [12,12] ye

● h, [0,0] dan [6,12] ye

● k, [6,6] dan [12,0] ye

Bu durumda, g,h, ve k [0,12]deki MV-cebrinde çakışır. Alan (I) de d(x,y) piramit

(köşegeni [6,4] ve yükseklik 1.8) olarak tanımlanmıştır. Böylece (I), M,N,O olmak

üzere üç alt bölgeye ayrılır. d(x,y), aşagıdaki gibi tanımlansın:

d(x, y) ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0.9x − 0.9y , x ∈M
1.8y − 0.9x , x ∈ N
10.8 − 0.9x − 0.9y , x ∈ O.
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M N O

I. [0;0],[6;6],[6;4] [0;0],[6;4],[8;4] [6;4],[8;4],[6;6]
II. [6;6],[8;6],[12;12] [8;4],[8;6],[12;12] [8;4’,[8;6],[6;6]
III. [12;6],[12;12],[11.8;6] [8;4],[12;12],[11.8;6] [8;4],[12;6],[11.8;6]
IV. [12;0],[11.8;4],[12;6] [12;0],[8;4],[11.8;4] [8;4],[12;6],[11.8;4]
V. [6;0],[12;0],[8;0.2] [12;0],[8;4],[8;0.2] [6;0],[8;4],[8;0.2]
VI. [0;0],[6;0],[6;0.2] [0;0],[8;4],[6;0,2] [6;0],[8;4],[6;0.2]

Aşağıdaki tabloda f(x,y) bölge bölge verilmiştir:

M N O

I. 12 − 0.1x + 0.1y 12 − 1.9x + 2.8y 22.8 − 1.9x + 0.1y
II. 12 − 0.1x + 0.1y 22.8 − 2.8x + 1.9y 1.2 − 0.1x + 1.9y

III. 120 − 10x + y 12⋅1.9
2.8 − 1

2.8x + 1.9
2.8y 12 − 10x + 19y

IV. 120 − 10x + y 12
1.9 − 1

1.9x + 2.8
1.9y 12 − 1

1.9x + 1
19y

V. 12 − x + 10y 12⋅2.8
1.9 − 2.8

1.9x + 1
1.9y

12
1.9 − 1

19x + 1
1.9y

VI. 12 − x + 10y 12 − 1.9
2.8x + 1

2.8y 120 − 19x + 10y

f(x, y) parçalı fonksiyonu lineer olduğu için f(f(x, y), y) ve f(¬y,¬c) fonksiyon-

ları da lineerdir. f(f(x, y), y) = x ve f(¬y,¬x) = f(x, y)dir. Buradan,

x⊕ y = ¬x→ y = f(¬x, y)

tanımlaması yapıldığında, A = ([0,12],⊕,¬,0) değişmeli temel cebri elde edilir.

Ancak,

0→ (8→ 4) = 10→ 8 = 10¬8→ (10→ 4) = 8→ 6.95 = 11.89,

Yani A , Yer Degiştirme Özdeşliği’ni sağlamaz. Bu da, A bir MV-Cebri değil

demektir.

3.3 Kafes Etki Cebirleri

Şimdi, kafes etki cebirlerini tanımlayarak, Temel Cebir ile ilişkilerini inceleyeceğiz.

Tanım 3.28. (Radomir and Halas) “+”, E üzerinde bir kısmi ikili işlem olmak

üzere, a;ağıdaki özellikleri sağlayan E = (E,+,0,1) cebırsel yapısına bir Etkı Cebrı

denir. Burada 0 ve 1 özel elemanlardır.

(EA1) Eğer a+b tanımlı ise a+b=b+a dır.
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(EA2) Eğer eşitliğin bir yanı tanımlı ise (a+b)+c=a+(b+c) dir.

(EA3) Her a ∈ E icin a+a’=1 olacak şekilde tek bir a′ ∈ E vardir.

(EA4) a+1 tanımlı ise a=0 dir.

(Burada, a+b nin tanımlı olması a + b ∈ E demektir.)

E = (E,+,0,1) üzerinde ≤ bağıntısı aşağıdaki gibi tanımlıdır:

a ≤ b ⇐⇒ c ∈ E icin b = a + c

≤, E üzerinde 0 en küçük, 1 en büyük eleman olmak üzere bir kısmi sıralama

bağıntısıdır. Eğer (E,≤) bir kafes ise E ye bir Kafes Etki Cebri denir.

Etki Cebirleri, aşağıda tanımını verdiğimiz D-posetlere denktir:

Tanım 3.29. (Radomir and Halas) (P,≤), en küçük elemanı 0, en büyük elemanı

1 olan bir poset olsun. “-”, P üzerindeki aşağıdaki gibi tanimli bir kısmi ikili işlem

olsun:

a-b tanımlıdır ⇐⇒ b ≤ a

Her a, b, c ∈ P icin aşağıdaki koşulları sağlayan (P,≤,−,0,1) sistemine D-poset

denir:

(D1) a-0=a,

(D2) a ≤ b ≤ c ise c − b ≤ c − a ve (c-a)-(c-b)=b-a dir.

(P,≤) kafes ise, D-posete D-kafes denir.

D-posetler ve etki cebirleri arasindaki ilişki şöyledir:

(E,+,0,1) bir etki cebri ve ≤, E üzerindeki bir sıralama bağıntısı olsun.

(E,≤,−,0,1) sistemi aşağıdaki özelliğe sahip bir D posettir:

a − b ∶= c ⇐⇒ a = b + c.

Diğer yandan, eğer (P,≤,−,0,1) bir D-poset ise (P,+,0,1) aşağıdaki özelliğe sahip

bir etki cebridir:
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a + b ∶= c ⇐⇒ c ≥ b ve c-b=a.

Kafes etki cebirlerinin ( denk olarak D-kafeslerin) önemli örnekleri ortamoduler

kafesler ve MV-cebirleridir.

Bir E = (E,+,0,1) etki cebrinin bazı önemli özellikleri aşagıdaki gibidir:

(1) a+0=a

(2) a+b tanımlıdır ⇔ a ≤ b′,

(3) a+b tanımlı ise her x ≤ a ve y ≤ b icin x+y tanımlıdır,

(4) b+c tanımlı ise a ≤ b olması için gerek ve yeter koşul a + c ≤ b + c dır,

(5) a+b=c ⇔ a′ = b + c′ ⇔ a = (b + c′)′.

Şimdi, yukarıdaki özelliklerden yararlanarak, bir kafes etki cebrinin bir Temel

Cebir olduğunu göstereceğiz.

Önerme 3.30. E=(E,+,0,1) bir kafes etki cebri olsun ve ⊕ ve ¬ aşağıdaki gibi

tanımlansın:

x⊕ y ∶= (x ∧ ¬y) + y ve ¬x ∶= x′.

Bu durumda, B(E) = (E,⊕,¬0) bir Temel Cebir’dir ve bu Temel Cebrin kafes

sıralaması, kafes etki cebrininki ile aynıdır.

Kanıt. Öncelikle, (E,∨,∧,0,1)in x ↦ x′ + a (x ∈ [a,1]) bölgesel antiton involus-

yonlu bir kafes olduğunu göstereceğiz.

x↦ x′ dönüşümü E üzerinde bir antiton involusyondur. Ayrıca, (EA3) ten x′′ = x

ve (5) ten x ≤ y ⇔ x′ ≥ y′ elde edilir. Dolayısıyla da

x ∧ y = (x′ ∨ y′)′ ve x ∨ y = (x′ ∧ y′)′

De Morgan kurallarının (E,∨,∧,0,1) kafesinde sağlandığı görülür.

Şimdi bir a ∈ E alalim ve x ∈ [a,1] için x ↦ xa ∶= x′ + a ile tanımlayalım. x′ + a

tanımlı olduğu için (2)den x ≥ a dır. x, y ∈ [a,1] için x ≤ y durumunda xa = x′+a ≥
y′ + a = ya dır. (5)ten xa ≥ ya olması x ≤ y demektir.

(5) kullanılarak bölgesel antiton involusyon tanımının ikinci koşulunun da sağlandığı

gösterilebilir:
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xaa = (x′ + a)′ + a = x.

Böylece, x ↦ x′ + a dönüşümünün [a,1] üzerinde bir antiton involusyon olduğu

görülür. Yani, L (E) = (E,∨,∧, (a)a∈E,0,1) bir bölgesel antiton involusyonlu ka-

festir. L (E) üzerinde,

x⊕ y ∶= (x0 ∨ y)y = (x′ ∨ y)′ + y = (x ∧ y′) + y

tanımlaması kullanılarak bir temel cebir elde edilir.

�

Tanım 3.31. (Radomir and Halas) E = (E,+,0,1) bir Kafes Etki Cebri olsun.

Her a, b ∈ E icin (a ∨ b) − b = a − (a ∧ b) sağlanıyorsa, a ve b ye uyumlu elemanlar

denir ve a↔ b ile gösterilir.

“↔” bağıntısı a, b, c ∈ E için aşağıdaki özellikleri sağlar:

● a↔ a, a↔ 0 ve a↔ 1,

● a↔ b ⇔ b↔ a,

● a ≤ b ⇒ a↔ b,

● a↔ b ve a↔ c ise b+c tanımlı olduğunda a↔ (b + c) dir,

● a↔ b, a↔ c ve b ≥ c ise a↔ (b↔ c) dir,

● a↔ b ⇔ a′↔ b′,

● a↔ b ⇔ a↔ b′.

Önerme 3.32. (Radomir and Halas) E=(E,+,0,1) bir Kafes Etki Cebri olsun. Bu

durumda, ondan türetilen B = (E,⊕,¬,0) Temel Cebri aşağıdaki özelliği sağlar:

x ≤ ¬y ve x⊕ y ≤ ¬z ⇒ x⊕ (z ⊕ y) = (x⊕ y) ⊕ z. (3.7)

Kanıt. a+b nin tanımlı olması için gerek ve yeter koşul a ≤ ¬b olmasıydı. Bura-

dan, a⊕ b = (a∧¬b) + b = a+ b olur. Biliyoruz ki, x ≤ ¬y ve x⊕ y ≤ ¬z ise (x+y)+z

tanımlıdır. Üstelik, x+(z+y) tanımlı ise x+(z+y)=(x+y)+z idi. Sonuç olarak,

x⊕ (z ⊕ y) = x + (z + y) = (x + y) + z = (x⊕ y) ⊕ z.
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elde edilir.

�

Tanım 3.33. (3.7) özelliğini sağlayan bir kafes etki cebirine, Etki Temel Cebri

denir.

Önerme 3.34. Bir A Temel Cebrinin (3.7) özelliğini sağlaması için gerek ve yeter

koşul aşağıdaki özelliği sağlamasıdır:

(x ∧ ¬y) ⊕ [(¬(x⊕ y) ∧ z) ⊕ y] = (x⊕ y) ⊕ (¬(x⊕ y) ∧ z). (3.8)

Kanıt. x, y, z ∈ A alalım.

(⇐) x ≤ ¬y ve x ⊕ y ≤ ¬z olsun. Bu durumda, x ∧ ¬y = x dir ve ¬¬z ≤ ¬(x ⊕ y)
olacagindan ¬(x ⊕ y) ⊕ z = z dir. Bu durumda (3.8), x ⊕ (z ⊕ y) = (x ⊕ y) ⊕ z

ifedesine denktir. Böylece (3.7) sağlanmış olur.

(⇒) A nın , (3.7) i sağladığını kabul edelim. Bu durumda, x∧¬y ≤ ¬y dır. Ayrıca,

x ∧ ¬y) ⊕ y = (¬(x ∧ ¬y) ∨ y)y = (¬x ∨ y)y = x⊕ y ≤ (x⊕ y) ∨ ¬z = ¬(¬(x⊕ y) ∧ z)

olur. Buradan,

(x∧¬y)⊕[(¬(x⊕y)∧z)⊕y] = (x∧¬y)⊕y)⊕(¬(x⊕y)∧z) = (x⊕y)⊕(¬(x⊕y)∧z)

elde edilir. Böylece, (3.8) sağlanmış olur.

�

Teorem 3.35. A = (A;⊕,¬,0), 3.7 (yada 3.8) koşulunu sağlayan bir temel cebir

olsun. A üzerindeki kısmi toplama işlemi aşağıdaki gibi tanımlansın:

a+b tanımlıdır ⇔ a ≤ ¬b ve a + b ∶= a⊕ b

dir. Bu durumda, E (A ) = (A,+,0,1) bir kafes etki cebridir.

Kanıt. E (A ) = (A,+,0,1) nin (EA1)-(EA4) koşullarını sağladığını göstereceğiz.

(EA 1) (3.7) de x=0 koyarsak,

y ≤ ¬z ⇒ z ⊕ y = y ⊕ z
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elde edilir. a ≤ b ⇔ ¬a ≥ b olduğu için a+b ve b+a tanımlıdır. Sonuç olarak,

a + b = a⊕ b = b⊕ a = b + a olur.

(EA2) (a+b)+c tanımlı olsun. Bu da a ≤ ¬b ve a⊕b = a+b ≤ ¬c demektir. O halde,

b ≤ a⊕ b ≤ ¬c olur. Yani, b+c tanımlıdır. Üstelik, a⊕ b ≤ ¬c, c ≤ ¬(a⊕ b) ifadesine

denk olduğu için b⊕ c = c⊕ b ≤ ¬(a⊕ b) ⊕ b = ¬a ∨ b = ¬a dir. Bu da, a+(b+c) nin

tanımlı olduğunu gösterir. a+(b+c) tanımlı ise (a+b)+c nin de tanımlı olduğu

benzer şekilde gösterilebilir. Her iki durumda da (3.7) kullanılarak,

(a + b) + c = (a⊕ b) ⊕ c = a⊕ (c⊕ b) = a + (c + b) = a + (b + c)

(EA3) Elimizde a+¬a =1 var. a+b = 1 ise a ≤ b dir. 1 = a⊕b = b⊕a = (¬b∨a)a = (¬b)a

olduğu için a = ¬b ve b = ¬a olur.

(EA4) a+1 tanımlı ise a ≤ ¬1 = 0 dır. Buradan, a=0 dır.

�
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4. İdealler, Zayıf İdealler, Ön Idealler

Temel cebirlerde ve MV-cebirlerinde idealler kongruans çekirdekleri üzerinden in-

celenir. Ancak, MV-cebirlerinde bir kongruansin çekirdeği, MV-olmayan bir te-

mel cebirde çekirdek olmayabilir. Örneğin, A bir MV-cebri olsun. Bu durumda,

∅ ≠⊆ A nın bir kongruans çekirdeği olması için gerek ve yeter koşul J nin, A nın

bir ideali olması; yani aşağıdaki koşulları sağlamasıdır:

(P1) Her a, b ∈ J için a⊕ b ∈ J ,

(P2) a ∈ J ve a ≥ b ise b ∈ J .

Ancak, A bir MV-Cebri değilse, bu koşullar Jnin bir ideal olmasi için yeterli olma-

yabilir. Bu sebeple, Krnavek ve Kuhr bu koşullaıi sağlayan alt kümeleri, ön idealler

olarak adlandırmıştır. Temel cebirlerde de ön ideal için bu tanımı kullanacağız.

Tanım 4.1. (Chajda and Kühr, 2013) A = (A;⊕,¬,0) bir Temel Cebir olsun ve

⊖ islemi a, b ∈ A için a ⊖ b = ¬(b ⊕ ¬a) ile tanımlansın. Bu durumda, J ⊆ A nın

bir kongruans çekirdeği olması için gerek ve yeter koşul her a, b ∈ A için aşagıdaki

koşulların sağlanmasıdır:

(I1) a⊖ b ∈ J ve b ∈ J ise a ∈ J ,

(I2) c ∈ J olmak üzere, a⊖ b ∈ J ve a ≥ b ise (c⊖ b) ⊖ (c⊖ a) ∈ J ,

(I3) c ∈ J olmak üzere, a⊖ b ∈ J ve b⊖ a ∈ J ise (a⊖ c) ⊖ (b⊖ c) ∈ J .

(I4) 0 ∈ J .

Dolayısıyla, yukarıdaki koşulları sağlayan J, A nın bir idealidir. Eger J sadece

(I1) ve (I2) yi sağlıyorsa, zayıf ideal denir. A nin idealler, ön idealler ve zayıf

ideallerinin kümesini sırasıyla I , P ve Z ile göstereceğiz.

Örnek 4.2. (Chajda and Kühr, 2013) B={0,a,b,c,d,1} olsun. Aşağıdaki tabloları

göz önünde bulunduralım :
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⊕ 0 a b c d 1

0 0 a b c d 1

a a a d c d 1

b b d b c d 1

c c a b c 1 1

d d d d 1 d 1

⊖ 0 a b c d 1

0 0 0 0 0 0 0

a a 0 a c 0 0

b b b 0 c 0 0

c c a b 0 c 0

d d a b d 0 0

J1 = {0, a}, J2 = {0, c} ve J3 = {0, a, b, d} olsun. Bu durumda, J1 bir ön ideal, J2

bir zayıf ideal ve J3 bir idealir:

J1 ∶ (P1) 0⊕ a = a ∈ J1, a⊕ a = a ∈ J , a⊕ 0 = a ∈ J1 ve 0⊕ 0 ∈ J1.

(P2) a ∈ J1 alalım. k, A nın k ≤ a koşulunu sağlayan bir elemanı olsun. Bu

durumda, ¬k ⊕ a = 1 dır. Bu, ¬k = 1 demektir. O halde, k = 0 ∈ J1 dir.

Şimdi, 0 ∈ J1 alalım. m, A nın m ≤ 0 koşulunu sağlayan bir elemanı olsun. Bu

durumda, ¬m⊕ 0 = 1 dir. Bu, ¬m = 1 demektir. O halde, m = 0 ∈ J dir.

Sonuç olarak, J1 bir ön idealdir.

J2 ∶ (I1) m ∈ A icin m⊖c ∈ J2 olsun. O halde, m⊖c = c veya m⊖c = 0 dır. Tabloya

göre m ⊖ c = c olacak şekilde bir m ∈ a yoktur. O halde, m ⊖ c = 0 durumunu ele

almamız gerekir. Bu durumda, m = 0 veya m = c dir. Her iki durumda da m ∈ J2
dir.

Şimdi, n ∈ A icin n ⊖ 0 ∈ J2 olsun. O halde, n ⊖ 0 = c veya n ⊖ 0 = 0 dir. Bu

durumda, n = c veya n = 0 dir. Her iki durumda da n ∈ J2 dir.

(I2) a⊖ b ∈ J2 ve a ≥ b (yani ¬b⊕ a = 1) koşullarını sağlayan tek (a,b) ikilisi (c,d)

dir. m ∈ A icin (m⊖ d) ⊖ (m⊖ c) ∈ J2 olsun. Bu durumda, (m⊖ d) ⊖ (m⊖ c) = 0

veya (m⊖d)⊖(m⊖ c) = c dir. Önce, (m⊖d)⊖(m⊖ c) = c olduğunu kabul edelim.

Bu durumda, m⊖ d = c olmak zorundadır. Buradan, m = c ∈ J2 bulunur.

Şimdi, (m⊖d)⊖(m⊖c) = 0 olduğunu kabul edelim. Bu durumda üç ihtimal vardır:

(1) m⊖ d = 0: Bu durumda, m = 0 ∈ J2 dir.

(2) m⊖ d = a ve m⊖ c = d : m⊖ d = a olacak şekilde bir m ∈ A olmadığı için

bu ihtimal ortadan kalkar.
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(3) m⊖d = b ve m⊖ c = d :m⊖d = b olacak şekilde bir m ∈ A olmadığı için bu

ihtimal de ortadan kalkar.

Sonuç olarak, J2 bir zayıf idealdir.

J3 ∶ 0 ∈ J3 olduğu icin (I4) sağlanır. (I1) ve (I2) koşullarının sağlandığı yu-

karıdakine çok benzer bir şekilde gösterilebilir. Şimdi (I3) koşulunu kontrol edeceğiz:

x⊖y ∈ J3 ve y⊖x ∈ J3 olacak şekilde hiç bir x, y ∈ A yoktur. O halde, (I3) koşulunu

doğru kabul edebiliriz. Bu da, J3 ün bir ideal olduğunu gösterir.

Önerme 4.3. (Chajda and Kühr, 2013) (i) (A;+,0,1) bir Kafes Etki Cebri olsun.

Bu durumda, a ⊕ b = (a ∧ b′) + b ve ¬a = a′ ile tanımlanan (A;⊕,¬,0,1) cebirsel

yapısı bir etki temel cebridir. Kısmi toplam, ⊕ işleminin a ≤ ¬b koşulunu sağlayan

(a,b) ikililerine kısıtlanışıdir.

(Chajda and Kühr, 2013) (ii) (A;⊕,¬,0,1) bir etki temel cebri olsun. a ≤ ¬b
koşulunu sağlayan (a,b) ikilileri için a+ b = a⊕ b = (a∧ b′) + b olsun. Bu durumda,

(A;+,0,1) bir kafes etki cebridir.

Pulmannove ve Vincekova, Etki Temel Cebirleri’nde idealleri aşağıdaki gibi ka-

rakterize etmiştir:

Önerme 4.4. (Pulmannove and Vincekova, 2009) A = (A;⊕,¬,0,1) bir etki Te-

mel Cebri olsun ve a ⊘ b = ¬(¬a ⊕ b) ile tanımlansın. ∅ ≠ J ⊆ A nin, A nin bir

ideali olması için gerek ve yeter koşul aşağıdaki koşulları sağlamasıdır:

(i) Her a, b ∈ J için a⊕ b ∈ J ,

(ii) a ∈ J ise her b ∈ A icin a⊘ b ∈ J .

Bu önerme kullanılarak bir Etki Temel Cebrindeki her zayıf idealin bir ideal olduğu

gösterilebilir:

Teorem 4.5. (Chajda and Kühr, 2013) A bir Etki Temel Cebri olsun. Bu du-

rumda, Z (A ) = I (A ) dır.

Kanıt. J ∈ Z (A ) olsun. O halde, J aynı zamanda bir ön idealdir. Yani J, (i)yi

sağlar.
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Şimdi, (ii) yi sağladığını gösterelim. a ∈ J , b ∈ A olsun. 0 ≤ b olduğu icin, ¬a⊕ 0 ≤
¬a⊕ b dir. Buradan, ¬(¬a⊕ b) ≤ ¬(¬a⊕ 0) = a

olur. Bu durumda,

a⊘ b = ¬(¬a⊕ b) ≤ a

olur. J bir ön ideal olduğu için, bu a ⊘ b ∈ J demektir. Sonuç olarak, Z (A ) ⊇
I (A ) olur. Her ideal bir ön ideal olduğu için, Z (A ) = I (A ) dır.

�

Tanım 4.6. (Chajda and Kühr, 2013) A = (A;⊕,¬,0) bir Temel Cebir olsun. Her

a, b, c ∈ A için,

a ≤ b⊕ c⇒ a = b1 ⊕ c1, b1, c1 ∈ A, b1 ≤ b ve c1 ≤ c

koşulu sağlanıyor ise, A nin Riestz Ayrışımı ( kısaca RA) özelliği vardır denir.

Not 4.7. Etki temel cebirlerinde RA’yı ifade etmek için ⊕ yerine kısmi toplam

“+” kullanılır.

Önerme 4.8. (Chajda and Kühr, 2013) Her A kafes etki cebri için aşağıdaki

ifadeler denktir:

(i) A bir MV-cebridir

(ii) A değişmelidir

(iii) A RA’yı sağlar.

Teorem 4.9. (Chajda and Kühr, 2013) Her monoton etki temel cebri RA’yı

sağlar, dolayısıyla MV-Cebri’dir.

Kanıt. A = (A;⊕,¬0) bir monoton Etki Temel Cebri olsun. a ≤ b ⊕ c olacak

şekilde a, b, c ∈ A alalım. c1 = a ∧ c ve b1 = a⊘ c1 alırsak,

b1 ⊕ c1 = (a1 ⊘ c1) ⊕ c1 = a ∨ c1 = a

olur. c1 = a ∧ c seçtiğimiz için c1 ≤ c dir. O halde, tek göstermemiz gereken b1 ≤ b.

A bir etki temel cebri olduğu için x ≤ ¬y durumunda elimizde,
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x⊕ y = x + y = y + x = y ⊕ x

var. “x ≤ y⇒ z ⊕ x ≤ z ⊕ y ” özelliğini ve a ≤ b⊕ c kabulumuz kullanılarak,

c⊕ ¬a ≥ c⊕ ¬(b⊕ c) = ¬(b⊕ c) ⊕ c = ¬b ∨ c ≥ ¬b

elde edilir. Yani, ¬(c⊕ ¬a) ≤ b dır. Ancak,

¬a⊕ c1 = c1 ⊕ ¬a = (a ∧ c) ⊕ ¬a = c⊕ ¬a

olduğu için,

b1 = a⊘ c1 = ¬(¬a⊕ c1) = ¬(c⊕ ¬a)

elde edilir. Sonuç olarak, b1 ≤ b olur.

�
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5. SONUÇ

Bu çalışmada, öncelikle Temel Cebirler’in yapısını ve özelliklerini, daha sonra

da kafesler ile arasındaki bağlantıyı inceledik. Bunun sonucunda, bir temel ce-

bir A = (A;⊕,¬,0) den bir sınırlı kafes (yada bir bölgesel antiton involusyonlu

kafes) L (A) ve her bölgesel antiton involusyonlu kafesten bir temel cebir elde edi-

lebileceğini; üstelik, L (A (L)) = L ve A (L (A)) = A olduğunu gördük. Daha

sonra, temel cebirler ile MV-cebirleri arasındaki ilişkiyi inceledik. Bu iki tip ce-

birsel yapının yapısal özelliklerine baktığımızda, her MV-cebrinin bir değişmeli

temel cebir olduğunu ancak her değişmeli temel cebrin bir MV-cebri olmadığını,

olması için gerek ve yeter koşulun bu temel cebrin aynı zamanda bir BCC-cebri

olması gerektiğini gördük. Bölümün devamında, bir kafes etki cebrinden temel

cebir ve bir temel cebirden kafes etki cebri elde edebileceğimizi gördük. Tezin son

kısmında, temel cebirlerin idealleri, zayıf ve ön ideallerini inceledik. Burada, bir

etki temel cebrinde her zayıf idealin bir ideal olduğu ve her monoton etki temel

cebrinin bir MV-cebri olduğu sonucuna ulaştık.

MV-cebirlerinde ve BCK-cebirlerinde türev üzerine bir çok çalışma yapılmıştır.

Bizim bir sonraki çalışmamız, temel cebirlerde türev incelemek olacaktır. An-

cak, çalışmalarımızın MV-cebirlerindeki türev çalışmalarıyla çakışmaması için,

değişmeli olmayan Temel Cebirler’de çalışacağız.
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