EGE UNIVERSITESI FEN BILIMLERI ENSTITUSU

(YUKSEK LISANS TEZI)

TEMEL CEBIRLER VE DEGISMELI TEMEL
CEBIRLER UZERINE

Menevse ERYUZLU

Tez Danigsmani: Prof. Dr. Alev Firat

Matematik Anabilim Dali

Bilim Dali Kodu: 403.01.01
Sunusg Tarihi: 20.07.2016

Bornava-Izmir

2016






Menevse Eryiizlii tarafindan YUKSEK LISANS tezi olarak sunulan “Temel Ce-
birler ve Degismeli Temel Cebirler Uzerine” baghkl bu calisma E.U. Fen Bilimleri
Lisansiisti Egitim ve (jgretim Yonetmeligi ile E.U. Fen Bilimleri Enstitiisii Egitim
ve (")gretim Yonergesi'nin ilgili hiikiimleri uyarinca tarafimizdan degerlendirilerek
savunmaya deger bulunmusg ve 20.07.2016 tarihinde yapilan tez savunma sinavinda

oybirligi/oygoklugu ile bagarih bulunmustur.

Juri I"Jyeleri Imza
Juri Bagkani: Prof. Dr. Alev FIRAT
Raportor Uye: Yrd. Doc. Dr. Aysegiil CAKSU GULER

Uye: Yrd. Doc. Dr. Sule AYAR OZBAL






EGE UNIVERSITESI FEN BILIMLERI ENSTITUSU

ETiK KURALLARA UYGUNLUK BEYANI

E.U. Lisansiistil Egitim ve Ogretim Yonetmeligi'nin ilgili hiikiimleri uyarinca
Yiiksek Lisans Tezi olarak sundugum “Temel Cebirler ve Degismeli Temel Ce-
birler Uzerine” basglikh bu tezin kendi calismam oldugunu, sundugum tiim sonug,
dokiiman, bilgi ve belgeleri bizzat ve bu tez ¢aligmasi kapsaminda elde ettigimi,
bu tez caligmasiyla elde edilmeyen biitiin bilgi ve yorumlara atif yaptigimi ve bun-
lar1 kaynaklar listesinde usuliine uygun olarak verdigimi, tez caligmasi ve yazimi
sirasinda patent ve telif haklarini ihlal edici bir davranisimin olmadigini, bu te-
zin herhangi bir boltimiinii bu tiniversite veya diger bir tiniversitede bagka bir tez
caligmasi i¢inde sunmadigimi, bu tezin planlanmasindan yazimina kadar biitiin
safhalarda bilimsel etik kurallarina uygun olarak davrandigimi ve aksinin ortaya

¢gikmasi durumunda her tiirlii yasal sonucu kabul edecegimi beyan ederim.

20/07/2016

Menevse Eryiizli






vii
OZET

TEMEL CEBIRLER VE DEGISMELI TEMEL CEBIRLER
UZERINE

ERYUZLU, Menevse

Yiiksek Lisans Tezi, Matematik Bolimu
Tez Yoneticisi: Prof. Dr. Alev FIRAT
Temmuz, 2017, 34 sayfa

Bu tezde temel cebirler, temel cebirlerin diger bazi cebirsel yapilarla iligkileri,
idealleri, zayif ve on idealleri incelenmistir. Birinci boliimde, tez konusu tanitilmais,
konunun c¢aligilma amaci ve gelisme siireci ozetlenmistir. Ikinci boliimde, tezin

anlagilmasi i¢in gerekli olan tanimlar, teoremler ve notlar verilmigtir.

Uciincii boliimde, Chajda ve Emanovsky’ nin 2004’te yaymlanan, Chajda ve R.
Halas in 2007 de, Ivan Chajda, Radomir Halas ve Jan Kiihr un makaleleri esas
alinarak temel cebirlerin ozellikleri, temel cebirlerin BCC ve BCK-Cebirleri ile ve
ozellikle MV-Cebirleri ile arasindaki iligki incelenmigtir. Bu boliimiin son kisminda,
kafes etki cebirlerine, kafes etki cebirlerinin MV-cebirleri ve temel cebirler ile
arasindaki iligkiye yer verilmistir. Dordiincii boliimde, I Chajda ve J. Kiihr'un
2013’te yayimladigr makalesi esas alinarak, temel cebirlerin idealleri, zayif idealleri
ve On idealleri incelenmistir. Boliimiin sonunda etki temel cebirlerinde ideallerle
ilgili baz1 ozelliklere yer verilmigtir. Beginci boliimde, bu tez caligmasinda elde

edilen sonuclar ve devaminda yapilacak olan caligmalar bulunmaktadir.

Anahtar Kelimeler: BCC-cebirleri, BCK-cebirleri, MV-cebirleri, Temel Cebir-
ler, Kafes Etki Cebirleri
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ABSTRACT

ON BASIC ALGEBRAS AND COMMUTATIVE BASIC
ALGEBRAS

ERYUZLU, Menevse

MSc in Mathematics
Supervisor: Prof. Dr. Alev FIRAT
June, 2016, 34 pages

In this thesis, an algebraic structure called basic algebras, their relations with
some other algebraic structures, ideals, weak and pre-ideals are investigated. In
the first chapter, the subject of the thesis is introduced, the goal of working on this
area and the development process of the subject are summarized. In the second
chapter, some definitions, theorems and notes are given which are necessary to
understand this thesis. In the third chapter, by primiraly considering the paper
of Chajda ve Emanovsky which is published in 2004, the paper of Chajda and R.
Halas which is published in 2007 and the paper of Ivan Chajda, Radomir Halas
and Jan Kiihr, the properties of basic algebras, their relation with BCC algebras,
BCK algebras and especially with MV-algebras are investigated. At the end of
this chapter, the lattice effect algebras, and their relation between MV-algebras
and basic algebras are given. In the fourth chapter, by primarily considering the
paper of Ivan Chajda and Jan Kiihr , ideals, weak ideals, and pre-ideals of basic
algebras are investigated. At the end of the chapter, some properties about idelas
of effect basic algebras are given. In the fifth chapter, the conclusion of work and

the future work are given.

Key Words: BCC-algebras, BCK algebras, MV-algebras, Basic Algebras, Lattice
Effect Algebras
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1. GIRIS

K. Iseki ve Y. Imai, kiime teorisindeki fark iglemi ile lojikteki “ — 7 igleminin
yapisal 6zelliklerinin benzerliginden yola ¢ikarak BCK-cebirlerini inga edilmistir.
Bagka bir cebirsel yap1 olan MV-cebirleri ise C.C Chang tarafindan c¢ok-degerli
Lukasiewicz lojigine cebirsel bir yaklagim amaciyla tanimlanmig ve daha sonra,
MV-cebirlerinin ashnda sinirli degismeli BCK-cebirleri oldugu gortilmiistiir. MV-
cebirlerine kafes teorisel bir yaklagim amaciyla temel cebirler tanimlanmig, 6zelikle
[. Chajda, R. Halas, J. Kiihr ve M. Botur tarafindan ¢okca incelenmistir. Biz bu
tezde, onlarin ¢aligmalarini detaylandirarak temel cebirlerin yapisal ozelliklerini,

baz1 6nemli cebirsel yapilar (6zellikle MV-cebirleri ve BCK-cebirleri) ile arasindaki

iligkileri ve temel cebirlerin ideallerinin yapisini caligtik.



2. ON BILGILER

2.1 Kafesler

TANIM 2.1. (Garg, 2000) K bostan farkly bir kiime olmak tzere A ve v K tizerinde
iki ikili iglem olsun. Her x,y, z € K i¢in asaqidaki kosullar saglanwyorsa, (K;v,A)

cebirsel yapisina bir kafes denir:

(K1) Degisme Ozelligi: tNy=yVv T ve TAY=YyAT

(K2) Birlesme Ozelligi: xv (yv z) =(zVy)V 2

(K3) Yutma Ozelligi: x A (yv z) =z ve x vV (yAz)=yAz.

(K4) Sabit Kuvvetlilik Ozelligi: tv =2 ve x AT =x

TANIM 2.2. (Garg, 2000) x,y,z € K olmak izere asaqudaki ozellikleri saglayan
(K;v,N) kafesine bir dagilmaly kafes denir:
rA(yvz)2(xay)v(zaz)

zv(ynz)<(zvy)a(zvz)

TANIM 2.3. (Garg, 2000) (K, A, V) bir kafes olmak tizere asaqidaki kosullar: saglayan

H = (K,A,v,0,1) cebirsel yapisina bir sinirly kafes denir:

Herxe X icinxnl=xvexvl=1,

Herxe X icinxn0=0vexv0=zx.

Burada 0 ve 1 6zel elemanlardir; oyle ki 0 alt sinwr, 1 ust sinwrder.

TANIM 2.4. (Gard, 2000) (L;v,A,0,1) bir ssnrle kafes olsun. Her a € L ve her
z,y € [a,1] i¢in 29 = x ve x <y = y* < x% dzelliklerini saglayan © — x°
dondigimaiine [a,1] izerindeki bolgesel antiton involusyonu denir. £ = (L;V, A, (*)ger,0,1)

sistemine de Bolgesel Antitone Involusyonlu Kafes denir.

TANIM 2.5. (K, A, V) bir kafes olsun. Her x € K icin -z v x =1 ise x’e bir keskin

eleman denir.



2.2 BCC-Cebirleri

TANIM 2.6. (Alshehri and Bawazeer, 2012) Asagidaki kosullary saglayan of =
(A;—,1) sistemine (2,0) tipinde bir BCC-Cebri denir:

(BCCT) (x> y) > (2 =) > (2 > y)) =1

(BCC2) x -z =1

(BCC3) x—-1=1

(BCC4)1—»z=x

(BCC5) (x »>y=1vey—>x) ise x =y dir.

Bir o BCC-Cebri tizerinde < bagintis1 agagidaki gibi tanimhidir:
r<ysr->y=1

<, en biiytik elemani 0 olan bir siralama bagintisidir:

Yansimalilik: (BCC2)den z < z dir.

Ters-simetri: x <y ve y < x olsun. Bu durumda, x - y ve y - x dir. (BCC5) ten

x =y olur.

Gegiglilik: x <y ve y < z olsun. Buz - y =1 ve y - 2z = 1 demektir. Simdi,

(BCCl1)de x yerine y, y yerine z, z yerine x yazalim. Bu durumda,

(y=>2)=>((x->y)>(z-2))=1 (2.1)
olur. Ote yandan, y — z = 1 oldugu icin
y=2)>((z=>y) > (r=>2)=(x>y) > (z>2)
dir. O halde, x - y =1 oldugu icin
(z-y)>(r—>2)=0->2

olur. Bu durumda, (2.1) den z - z = 1 dir. Bu da z < z demektir.



2.3 BCK-Cebirleri
(Meng and Jun, 1994)
TANIM 2.7. (BCC2)-(BCC5) kosullarina saglayan of = (A; —, 1) sistemi asagidaki
kosullary saghyorsa, (2,0) tipinde bir BCK-Cebri’dir:
(BCK1) (z »>y) > ((y > 2) > (x—>2)) =1
(BCK 2) x> ((x > y) > y) = 1.
Bir o7 BCK-Cebri’nin en kii¢iik elemans varsa <7 ya bir ssmirls BCK-Cebri, asagidaki
ozelligi saghyorsa degismeli BCK-Cebri denir:
(z-y)-y=(@y—->z)->u=

ONERME 2.8. (Chajda and Halas, 2008) Her BCK-Cebri bir BCC-Cebri’dir. Bir
BCC-Cebri'nin BCK-Cebri olmasy i¢in gerek ve yeter kosul asagida verilen Yer

Degistirme Ozdesligini ( YO) saglamasidur:

T (y—>2)=y—>(v-2).

2.4 MV-Cebirleri

TANIM 2.9. (Mundici, 2007) Asaqdaki ézellikleri saglayan bir of = (A;®,-,0)
sistemi (2,1,0) tipinde bir MV-Cebri’dir:

(MV1)ze (y@z)=(roy)®z

(MV2) x@y=yex

(MV3) z®0=x

(MV}) ~—x =z

(MV5) & -0 = 0

(MV6) ~(~z0y)dy=-(-ydx)u.

&/ MV-Cebri tizerindeki siralama bagintisi, z <y < -z @y =1 dir.

Her o7 = (A;®,-,0) MV-Cebrinden v ve A agagidaki gibi tanimlanarak bir sinirh
dagilmali Z(A) = (A;v,A,0,1) kafesi elde edilebilir:



zvy=-(-z@®y)dY,
rAy=-(-zVv-y),
1=-0
TEOREM 2.10. (Mundici, 2007) o/ = (A;®,-,0) bir MV-Cebri olsun ve x,y € A
icin x —» y = ~x®y ile tanemlansin. Bu durumda, B(A) = (A;—,=0) bir degismeli

BCK-cebridir ve sunirl degismeli BOCK-Cebirleri katagorisel olarak MV-cebirlerine
denktir.

ONERME 2.11. (Mundici, 2007) L = (L;V, A, (Y)aer, 0, 1) bir bélgesel antiton in-

volusyonlu kafes olsun. Bu durumda, asagidakiler denktir:
(1) </ (L) bir MV-Cebridir.

(2) £ dagimahdir ve & — y = (x v y)¥ icin (L;—~ 1)de Yerdegistirme Ozdesligi

saglanar.



3. TEMEL CEBIRLER VE DEGISMELI TEMEL
CEBIRLER

3.1 Temel Cebirlerin ve Degismeli Temel Cebirlerin Ozellikleri

TANIM 3.1. (Chajda, 2008) of =(A;®,-,0), (2,1,0) tipinde bir cebir olsun. Asagidaki

ozellikleri saglyorsa, </ 'ya bir Temel Cebir denir: Her x,y,z € A i¢in
(BA1) 1®0=x;

(BA2) ——z=ux;

(BA3) 12&-0=-0=-08&z;

(BA4) ~(~a®y)@y=-(~y®1)®1;

(BA5) —(=(-(r®y)®y)®2)® (1®2)=-0.

dur. MV-Cebirleri'nde oldugu gibi =0 yerine 1 yazacagiz.

TANIM 3.2. (Chajda, 2008) o = (A;®,-,0) bir Temel Cebir olsun. Eger her

r,yeAicin x®y =y ®x ise, & ya bir degismeli Temel Cebir denir.

ORNEK 3.3. A = {0,a,b,1} olmak iizere, ® ve - islemleri asagidaki gibi taniml

olan o = (A;®,-,0) Temel Cebri degismelidir.

®@(|0|la|b|! T |-z
00|alb]|1 0| 1
alala|l|1 al| b
bb|1|b]|1 b| a
1)1)1(1|1 110

ORNEK 3.4. & islemi asaqudaki gibi tanamly olan Temel Cebir, degismeli olmayan

bir Temel Cebir’dir:



TANIM 3.5. (Chajda and Halas, 2009) <f = (A;®,-,0) bir Temel Cebir olsun. A
nmn bostan farkl alt kiimest B, x @ y =y ® x ozelligini saglayan en buyik kime ise

B’ye bir blok denir.

ONERME 3.6. (Chajda and Halas, 2008) o/ =(A;@,-,0), (2,1,0) tipinde bir Temel

Cebir olsun. Bu durumda, her x € A i¢in
rT@®r=r0-r=1
dar.
KANIT. (BA5)te y=2=0 yazalim. Buradan,
(= (=(x00)®0)®0)®(x0) =-xdx=-0
elde edilir. Boylece, -z @ = 1 bulunur. Bu esitlikte x yerine -x yazarsak,
——r@®-r=r®-xr=1
bulunur.
OJ

TEOREM 3.7. (Chajda and Kolarik, 2008) (2,1,0) tipindeki bir of =(A;®,-,0) ceb-
rinin bir Temel Cebir olmasi icin gerek ve yeter kosul o/ nin (BA1), (BA2), (BA4)

ve (BA5) kosullarini saglamasidar.

KaANIT. (BA3)un (BA1l), (BA2), (BA4) ve (BA5)ten elde edildigini gostermek
A’nin bir Temel Cebir oldugunu gostermek igin yeterlidir. Bunun i¢in, z=0, x=-0

alalim ve (BA5)te y yerine x yazalim. O zaman,



(= (~(-0@x)®x)®0)d(-060)=-0

elde edilir. (BA1) ve (BA2) kullamldiginda,

(=(-0&x)®x)®-0=-0
bulunur. Ayrica, (BA4)ten

(=(-x®0)®0)d-0=-0
elde edilir. (BA1) ve (BA2)den,

X®-0=--x®-0=-0
olur. Simdi, (BA5)te y yerine -0, z yerine 0 yazalim. Buradan,

—(=(-x0-0)®0)®(x®0)=-0

elde edilir. (BA2) ve (1) den,

-0ex=(0®-0)®x=-0

bulunur.

g

Agagidaki teoremde, (BA3) digindaki kogullarin bagimsiz oldugunu, hi¢birinin bir-

birinden tretilemeyecegini gosterecegiz.

TEOREM 3.8. (Chajda and Kolarik, 2008) (BA1), (BA2), (BA/4) ve (BA5) kosullar

bagimsizdar.

KANIT. Iki elemanl {0,1} kiimesine B diyelim.

e (B;®,-,0), her x,yeB icin x@y=1 ve -0=1, -1=0 olacak sekilde bir cebir
olsun. Bu durumda, (BA2), (BA4) ve (BA5) saglanir. x=0 alirsak, 0&0=1
olur. Boylece (BA1)in saglanmadigi goriiliir.

e Simdi, (B;®) A-yarikafes ve her xeB i¢in -x=1 olsun. Bu durumda (B,®,-,0),

(BA1), (BA4) ve (BA5) i saglar. x=0 alalim. (BA2)de yerine koyarsak,



olur. Boylece, (BA2)nin saglanmadig1 goriiliir.
e (B;®), Z, halkas1 ve -0=1, -1=0 olsun. (B,®,-,0), (BA1) ve (BA2) kosullarini

saglar. x=1, y=0 alirsak,

-(-le0)®0==-(0®0)d0=100=1 (3.1)

-(-0el)=-(1®1)®1=0 (3.2)
(3.1)#(3.2) oldugu icin (BA4) saglanmaz.

e Son olarak (B,®) bir v-yarikafes ve -, B iizerinde bir birim déntigiim

olsun. Bu durumda, (BA1) ve (BA2) saglanir. {x,y}={0,1} alalim.
~(~l©0)®0=10=1 (3.3)

-(-0el)el=101=1 (3.4)
(3.3)=(3.4). O halde, (BA4) saglanir. Simdi, x=y=z=1 alalim.
-(=(-(1el)el)el)®(lal)=1+0

oldugundan (BA5) saglanmaz.

O

TEOREM 3.9. (Chajda and Kolarik, 2008) o =(A;®,-,0) bir Temel Cebir ise her

x,y,z €A icin

-(-(rey)oy)oy=zay

saglanar.

KANIT. =(~(x@®y)®y)®y=a olsun. (BA5)ten,

-2 (x®y)=-0

olur. O halde, a=0 veya a=x@®y dir. a=0 olmas1 i¢in her xeAnin 0 olmasi1 gerekir.

Halbuki o7, 0 dan farkli bir cebirdir. O halde, a=x®y dir.
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Asagidaki teoremde (2,1,0) tipindeki bir cebrin Temel Cebir olmasi icin gerekli

olan denk kosullar verilecektir.

TEOREM 3.10. (Chajda and Halas, 2008) of =(A;®,-,0), (2,1,0) tipinde (BA1),
(BA3) ve (BA4) aksiyomlarine saglayan bir cebir olsun. Bu durumda, asagidakiler
denktir:

(1) o7, (BA2) yi saglar;

(2) o, Odx=1 ve ~~0=0 ézelliklerini saglar.

KANIT. (BA3), (BA4) ve (BAl)den

ﬁﬁ0®$=ﬂ(ﬂ0®$)®$=ﬂ(ﬂ$®0)@O:—!ﬂl’ (35)

olur.

(1)=(2): (BA2)nin saglandigini kabul edelim. O halde, --0=0 ve (3.5)ten
0ox=--0®x=--x=X

elde edilir. Boylece (1)=(2) saglanmisg olur.

(2)=(1): (2)nin saglandigim1 kabul edelim. O halde, (3.5)ten,
x=00x=--00x=--x

olur. Boylece, (2)=(1) saglanmig olur.

g

SoNuc 3.11. (Chajda and Kolarik, 2008) (2,1,0) tipinde bir o/ =(A;®,-,0) ceb-
rinin bir Temel Cebir olmasi icin gerek ve yeter kosul </ nin (BA4), (BA5) ve

asagqidakt ozelliklert saglamasidar:

(BA1+) 2®0=1=0&1;
(BA2-0) ~~0=0;

(BA?—) -0®z=-0.
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KANIT. (=) &/=(A;®,-,0) bir Temel Cebir olsun. Bu durumda, temel cebirin
tammmindan (BA4), (BA5), (BA2-0) VE (BA3-) saglanir. Ayrica o, (BA2)yi de
saglayacagindan Teorem 3.10’dan 0@x=x dir. Ayrica, elimizde
=(=x00)®0=--x00=x®0,
= (=08x)ex=--0ex=06x

var. (BA4)ten, x@0=0&x dir. 0&x=x oldugundan, x®0=x bulunur.Boylece (BA1+)

saglanir.

(=) g=(A;@,-,0), (BA4), (BA5), (BA1+), (BA2-0) VE (BA3-) kosullarim saglayan
(2,1,0) tipinde bir cebir olsun. O halde o7, Teorem 3.8 den (BA2)yi saglar. (BA5)te

y=0, x=-0 yazarsak,
(= (~(x®0)®0)®-0)®(xd-0)=08 (x0-0)=x®-0=-0

olur. Boylece, (BA3) saglanir.

O

TEOREM 3.12. (Radomir and Halas, 2008) o/ =(A;®,-,0) bir Temel Cebir ve <,
r,y € Adcinx <y = -x@®y =1 ile taneml bir bagintr olsun. Bu durumda (A;<)
bir suraly kimedir. 0 bu kumenin en kicuk elemant ve 1 bu kumenin en biyik

elemanadar.

KANIT. Yansima 6zelligi Onerme 3.6 dan acikca goriiliir. Ters simetriyi gostermek
icin x <y ve y < x oldugunu kabul edelim. Bu durumda, -x®y=1ve -y®z =1

olur. Buradan,
r=00zr=-lor=x(-ydr)dr=-(-z0y)dy=-loy=00y=y

elde edilir.

Simdi z <y ve y < z oldugunu kabul edelim. Bu durumda -z @®y=1ve -y®y =z

dir. (BA5) kullanilarak,

—r@®z=-1@(-x@®z2)==(-y®2z)®(-z@dz2)==(-(-10y)d2)d(-x®2) =

“(=(-(~zoy)dYy)®2)d(-xd2)=1



12

elde edilir. Boylece x < 2z oldugu goriiliir. O halde < bir siralama bagintisidir.

Ayrica, -0@®z =1 ve -z ® 1 = 1 oldugundan, her z € A icin 0 <z <1 dir.

ONERME 3.13. (Radomir and Halas, 2008) o/ = (A;®,-,0) bir Temel Cebir ve
< A uzerindeki siralama bagintisy olsun. Bu durumda her x,y,z € A i¢in asagidaki

ozellikler saglanar.
(1) x<y < —y<-w
(2)r<y=>ax®2<ydz

(3) y<zeauy.
KANIT. (1) <y olsun. O halde, -z @y =1 dir. (BA5)ten,
—.(ﬁy@ Z) @ (—u'L‘ ® Z) = —|(—|(—.(ﬁx@y) @y) @ Z) @D (—ul’@Z) =1

bulunur. Yani, -y @ z < -x @ z elde edilir. Bu ise -y < -z demektir.

Simdi, -y < -z oldugunu kabul edelim. (BA2) kullanilarak hemen z < y oldugu

goriilebilir.

(2) x <y olsun. Bu durumda, (1) in ispatindan -y @ z < -z ® z bulunur. -y yerine

X, -x yerine y yazilirsa z @ z < y @ z elde edilir.
(3) 0 <z oldugunu biliyoruz. O halde, (2) den y = 0@y <z @ y olur.

g

TANIM 3.14. (Chajda and Kihr, 2013) of = (A;®,-,0) bir Temel Cebir olsun.

Eger x,y,z € A icin,
T<Yy=>20r<20yY

1se &/ ya monoton denir.

TEOREM 3.15. (Radomir and Halas, 2008) <f = (A;®,-,0) bir Temel Cebir ve
< A dzerindeki bir swralama bagintisy olsun. O halde, (A;<), A ve v iglemleri

asagrdaki gibi tanwmly olan bir simarl kafestir.
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zvy=-(-z@y)®oy,
.Cl?/\y:ﬂ(—!ZL’Vﬂy).

KANIT. Elimizde, her 2,y € Aicin y< ~(-z®y)®y ve r < ~(-~ydz) & x var, &
bir temel cebir oldugu icin =(-z @ y) ®y = -(-y ® z) ® = dir. Buradan, -(-z &
y)®y=-(-y®x)®x, x vey nin ortak list smindir. z,y < z olsun. Bu durumda

-r®y > -2z @y dir. Buradan,
“(~zoy)dy<-(-z0y)dy=-(-y®2)02=002=2

olur. Buda =(-z®y) ®y, x ve y nin en kiigiik tist sinir1 oldugunu gosterir. Sonug

olarak, x vy =-(-z @ y) ®y dir.

Simdi, x Ay = =(-z v -y) oldugunu gosterecegiz. -(-z & y) ® y, y nin st sinir1

oldugundan, y < =(-z ® y) ® y dir. Buradan,

~(-(~zey)oy) <y
y yerine -y, x yerine ~x yazilarak,
~(mzv-y)=-(-(z@-y)®-y) <y

elde edilir. =(-z v -y) < z oldugu cok benzer sekilde gosterilebilir. Dolayisiyla,

—(=z Vv -y, x ve y nin ortak alt simiridur.

m < x,y olsun. O halde, -z, -y < -m dir. -x ve -y nin en kii¢iik iist smir1

-(z ® -y) ® -y oldugu igin,
~(z®-y) ®-y<-m
dir. Sonug olarak,
-m<a(~(r®-y)®-y)=xAY

olur. Bu da, x Ay, x ve y nin en biiylik alt sinir1 demektir.

O

TEOREM 3.16. (Radomir and Halas, 2009)</ = (A;®,-,0) bir Temel Cebir olsun.

x € A nin keskin eleman olmasi i¢in gerek ve yeter kosul x @ x = x olmasidar.
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KANIT. (=) x € A keskin eleman olsun. Bu durumda, -z vz =-(z@x) ®z = 1.
Yani, r@x < x dir. Her x € A icin < x®x oldugunu da goz 6niinde bulundurursak

x @z =x elde etmis oluruz
(<) z@®x =2z olsun. Bu durumda, ~zvz=-(r@®x)®r=-r &z =1 dir.

g

TEOREM 3.17. (Radomir and Halas, 2008) </ = (A;®,-,0) bir Temel Cebir olsun
ve A ve Vv Teorem 3.12 deki gibi tanumlansin. Her a € A ve x € [a, 1] icin x* = ~z@®a
olsun. Bu durumda £ (A) = (A;A,V, (@) aer,0,1) bir bolgesel antiton involusyonlu

kafestir.

KANIT. Oncelikle, (E, v, A,0,1)in « = 2’ + a (z € [a,1]) bolgesel antiton involus-

yonlu bir kafes oldugunu gosterecegiz.

x ~ z' doniigimi E iizerinde bir antiton involusyondur. Ayrica, (EA3)ten =" = x

ve (5)dan = <y < 2’ >y’ elde edilir. Dolayisiyla da
zAy=(x'vy) vexvy= (' ny')

De Morgan kurallarmin (E, Vv, A,0,1) kafesinde saglandigi goriiliir.

Simdi bir a € E alalim ve z € [a,1] igin x — 2% := 2/ + a ile tammlayalm. 2’ + a
taniml oldugu i¢in (2)ten x > a dir. z,y € [a, 1] i¢in 2 < y durumunda z¢ = 2’ +a >

y' +a=y* dir. (5)ten x>y olmasi1 x <y demektir.

(5) kullanilarak bolgesel antiton involusyon taniminin ikinci kogulunun da saglandig

gosterilebilir:
x% = (z'+a) +a=ux.

Boylece, © ~ 2’ + a doéniigiimiiniin [a,1] tizerinde bir antiton involusyon oldugu
goriiliir. Yani, Z(E) = (E,V,A,(*)acr,0,1) bir bolgesel antiton involusyonlu ka-
festir. Z(F) tlizerinde,

vey:=(20vy)=(a'vy) +y=(zry)+y

tanimlamasi kullanilarak bir temel cebir elde edilir.
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0

TEOREM 3.18. (Radomir and Halas, 2008) £ = (L;V, A, (*)acr,0,1) bir antiton

involusyonlu kafes olsun. ® ve — islemleri asagidaki gibi tanimlansin:
r@dy=(20vy)Y ve ~x =20
Bu durumda, </ (L) = (L;®,-,0) bir Temel Cebir’dir. Ustelik, £ (< (L)) = £ ve

herhangi bir of Temel Cebri icin o/ (L (A)) =</ dir.

KANIT. .Z = (L;V, A, (*)acr, 0, 1) bir bolgesel antiton involusyonlu bir kafes olsun.

Simdi, (BA1)-(BA5) kosullarimin saglandigini gosterecegiz.

(BA1l) 200=(2"v0)0 =20 =2

(BA2) ~—z =2 =g
(BA3)zel=(a"vI)l=1l=1veloxr=(1va)*=(0va)*=a*=1

(BA4) -z @y = (2 vy)y = (x vy)Y >y oldugu i¢in agagidakiler elde edilir:

s(rzey)ey=((xvy)vy)=(zvy)W=aVvy

~(~y@r)®r=yvr=cvy
(BAS) =(~(~(zoy)oy)ez)®(z@z)=-(-(-zvy) ®2)® (x®2)
= ((2°vyvz) v (zOv Z)z)(xo\/z)z = ((20v Z)z)(wovz)z - 1.

Sonug olarak, o7 (L) = (L;®,-,0) bir Temel Cebir’dir.

Simdi, £ (7 (L)) = L oldugunu gosterelim. 1 ve u, Teorem 3.12 deki gibi tiretilen
kafesin A ve v iglemleri olsun. a € L icin f,, [a,1] deki involusyon olsun. O halde,

her z € [a,1] i¢in
fo(x)=-z@®a=((-z)°va)=(20va)=(xva) =z®
olur. Ayrica,

ruy=-(-rey)ey=((zvy)vy) =(zvy)W=xvyve

xny=-(-zu-y)=(2"vy") o =xAry
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olur. Sonug olarak, Z(</(L)) = & dir.

Simdi, &7 (Z(A)) = o oldugunu gosterelim. o7 = (A, @, -, 0) bir temel cebir olmak
lizere, 4+ ve ~ sirasiyla &7 (£ (A)) daki @ ve - iglemleri olsun. Bu durumda, ~ x =

20 = -1 ve

r+y=(2"vy)=a(-zvy)ey=-(~(zey)0y)OYy=00Y

olur. Sonug olarak, o7 (£ (A)) = &/ dur.

3.2 Temel Cebirler ile MV-Cebirleri Arasindaki iliski
Bu boliimde, temel cebirler ile MV-cebirleri arasindaki iligkiyi inceleyecegiz.

ONERME 3.19. (Radomir and Halas) o/ = (A;®,-,0) bir temel cebir olsun ve

xr =y :=-x®y ile tanimlansin. Bu durumda asagqidaki ozellikler saglanar:

(1) B() = (A; >, -0) wn bir BCC-Cebri olmasu i¢in gerek ve yeter kosul B(</ )nin
(BCC1) kosulunu (denk olarak (A) kosulunu) saglamasidor.

(2) x,y,z € A icin (A) ozelligi asaqidaki (A*) ozelligine denk olur:

roy<-(z@-x)d(z0y) (A")

KANIT. (1) (=) & = (A;®,-,0) bir temel cebir olsun ve () = (A;—,-0) sis-
temi (BCC1) kogulunu saglasin. Bu durumda #(<7), (BCC2)-(BCC5) kogullarim

saglar:

(BCC2) z »z=-z@x=1,
(BCC3)z—»1=-z®1=1,
(BCC4) 1»z=-00x=0,

(BCC5) x > y=1vey—x=1olsun. Bu durumda, ~z®y =1 ve -y @ z = 1 olur.

Bu da x <y ve y < x demektir. Buradan, x =y olur.

(<) o = (A;®,-,0) bir temel cebir olmak tizere B(7) = (A;—,-0) sistemi bir
BCC cebri ise, (BCC1) kogulu otomatik olarak saglanir.
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2zr-y<z-z)>(z2-y)=-20y<-(-201)®(-2z&y) dir. x yerine -z, z

yerine -z koyup (BA2) 6zelligi kullamlarak
(zoy)o-(z0-z)®(20y)=1

elde edilir. Budaz®y < -(2® -2) @ (2 ® y) demektir.

O

ONERME 3.20. (Radomir and Halas) Bir Temel Cebrin degismeli olmasy i¢in gerek

ve yeter kosul (x -y = -y - -x) kosulunu saglamasidur.

KANIT. (=) & = (A;®,-,0) bir degismeli Temel Cebir ve x,y € A olsun. Bu

durumda,

xay:ﬁx@y:y@ﬂgj:ﬁy—)—\aﬂ (36)

(<) o = (A;9,-,0) bir temel cebir, x,y € A ve x - y = =y - -z olsun. Bu

durumda, (3.6) kullanilarak goriiliir ki <7 degismelidir.
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Not 3.21. (Michael Botur) “ -7 operatori, herhangi bir lineer siralv degismeli

Temel Cebir icin asagidaki gibi ifade edilebilir:

v, y<x
T—=>y=
1, y>ux.

ONERME 3.22. (Radomir and Halas) & = (L;V, A, (%)eer,0,1) bir antiton invo-

lusyonlu kafes olsun. Bu durumda asaqidakiler denktir:
(1) /(L) bir MV-cebridir.
(2) & dagmalidir ve x - y = (x v y)Y icin (L;—,1) dzerinde Yer Degistirme

Ozdesligi saglanur.

TEOREM 3.23. (Radomir and Halas) Bir Temel Cebrin MV-Cebri olmasi i¢in

gerek ve yeter kosul BCC-Cebri olmasi, yani (A*) kosulunu saglamasidar.

KANIT. (<) o/ bir MV-cebri olsun. Bu durumda ¢ bir temel cebirdir. Ote yan-
dan, (A;—,-0) bir degismeli BCK-cebridir. O halde, (A4;—,-0) in BCC-Cebri
oldugunu gostermek icin Yer Degistirme Ozdesligi'ni sagladigim gostermeliyiz. Bu-
nun icin Z(A)yi ele alalim. .2 (A), Onerme 3.22'den Yer Degistirme Ozdegligini
saglar. Dolayisiyla da bir BCC-Cebri’dir.

(=) o =(A;8,-,0),z > y = ~z&y olmak tizere (A*) 6zelligini saglayan bir temel

cebir olsun. (A*)da y = 0 alahm ve x yerine —z yazalim. Bu duruma,
~r=-2®0<-(z02)d 2
elde edilir. Buradan,
rdz2-(-(z0r)0z)®2z=(20T)Vi22z00T

bulunur. x ve z nin yerleri degistirilerek z ®@ x > = @ 2z nin de saglandig1 kolayca
gortilebilir. Sonug olarak, x,z € Aicinz @ z = z ® x tir. Yani, o/ degigmelidir. Bu

durumda, £ (/) dagilmaldir.

Ote yandan, ® degismeli oldugun icin (A*) asagidaki (A**) kosuluna denk olur:

y@r<-(-rdz2)d(~ydz). (A*)



19
Simdi, (A**)da x yerine -z @ z yazildiginda,
Y@ (~rdz)<~(-(~zd2)@z)d(~ydz)=-(xVvz)® (-y®2)
elde edilir. [z, 1] tizerinde x v z = x olacagindan,
Y@ (~x@z)<-cd(-y®2)
olur. x ve y yi birbirinin yerine yazarak benzer sekilde
2@ (~y®z)<-yd(-zez2)
bulunur. Sonug olarak, z,y € [z, 1] i¢in,
T y=2)=-10(y®2)=-yo(~rez)=y~> (v~ 2)

elde edilir. Yani, [z,1] fizerinde (YO) saglanir.

z,y € [2,1] olmayan durumlarda, (YO ) otamatik olarak saglamr. Ornegin, = ¢
[z,1] ve y € [2,1] durumunu ele alalim. Bu durumda, x < y < z dir. Buda -z®z =1
demek oldugundan, -y @ (-x ® z) = y > (r - z) = 1 olur. Simdi, esitligin diger
tarafina bakalim. Her zaman igin « < -y @®x tir. x < z oldugu i¢in de ~y®x < ~y® 2z

dir. Buradan, = < -y & z bulunur. Yani, -z & (-y ® z) = 1dir.

ze[z,1],y ¢ [21] ve z ¢ [2,1],y ¢ [2,1] durumlarinda da (YO)niin saglandig
benzer gekilde gosterilebilir. Sonug olarak, .2 (A)nin dagilmali bir kafes oldugunu
ve her z,y,z € A icin (YO) niin saglandigim gosterdik. O halde, Onerme 3.22 ve
Teorem 3.18 den .7 bir MV-cebridir.

O

Degigmelilik MV-Cebirlerini Temel Cebirler’den ayiran ¢ok énemli bir ozelliktir.
Her MV-Cebri, degismeli bir temel cebirdir. Ancak, her degismeli temel cebir bir
MV-Cebri degildir. Micheal Botur, bunu bir érnek ile kanitlamigtir. Biz insasi
cok uzun olan bu oOrnegi, 6nemli kisimlarin1 vurgulayarak daha kisa bir gekilde

verecegiz. Bunun i¢in 6nce bazi teorem ve onermelere ihtiyacimiz var:

TEOREM 3.24. (Botur) o = (A;®,-,0) bir degismeli temel cebir olsun. O halde,

her x € Aicin , x* = x* - x olacak sekilde tek bir z* € [z, 1] vardar.
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TEOREM 3.25. (Botur) of = ([0,a];®,-,0) bir temel cebir olsun ve x € [0,a] i¢in
-z = a-x ile tanimlansin. Bu durumda, <7 , &' = ([0, a]; ®',~',0) degismeli temel

cebrine izomorftur.

Simdi, [0,12] tizerinde bir degigmeli temel cebir inga edecegiz. [0,a] lizerinde -z =

a ® -~r olmasindan yararlanarak —x := 12 — z ile tanimlayalim.

ONERME 3.26. o7 = ([0,12],®,-,0) bir dejismeli Temel Cebir olsun. O halde,
f(x,y) == x > y olmak tzere f :[0,12]> — [0,12] dondisimi sireklidir ve her

y €[0,12] ve her x,x1, x5 € [y,12] i¢in asaqidaki ozellikler saglanar:
(1) f(z,y) = f(-y,-x)
(i) x >y ise f(f(z,y),y) =2

(i1) 11 < w9 ise f(w1,y) 2 f(22,y).

Temel cebirlerde de MV-cebirlerinde de z — y := -z @ y ile taniml oldugundan
z,y € [0,12] icin x - y := 12 — z + y diyebiliriz. Simdi, agagidaki fonksiyonu goz

ontnde bulunduralim:

f(may) = 12-1’+y+d(l’,y>,
d(x,y), f(x,y) ve x — y arasindaki fark olsun. Sifirdan farkli bir d(x,y) bularak,

MV-Cebri olmayan bir Temel Cebir insa edecegiz.

ONERME 3.27. (Botur) x > y olmak tizere her x,y € [0,12] i¢in d(z, y) = d(~y, ~x) =
d(f(z,y).y) dir.

Simdi, asagidaki kiimeleri goz 6ntinde bulunduralim:

9= {<x*7'r) | Z € [0712]}7 h:g = {(12—1’,12 _‘r*> | Z € [07 12]}7 k:g = {(I,—Jf) |
x €[6,12]}.
f siireki oldugu i¢in g,h ve k da siirekli egrilerdir. Dahasi, g,h ve k egrileri {(x,y) €

[0,12]? | > y} bolgesini alti kisima ayirir:
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10, 2] [12,12]
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Simdi, d(x,y) yi, dolayisiyla da f(x,y)yi ingsa ederek o/ = ([0,12],®,-,0) Temel

Cebrini tanimlayacagiz. g,h k egrileri agagidaki gibi tanimlansin:

e g, [6,0] dan [12,12] ye

e h, [0,0] dan [6,12] ye

e k, [6,6] dan [12,0] ye
Bu durumda, g,h, ve k [0,12]deki MV-cebrinde ¢akigir. Alan (I) de d(x,y) piramit
(kosegeni [6,4] ve yiikseklik 1.8) olarak tanimlanmigtir. Boylece (I), M,N,O olmak

tizere ¢ alt bolgeye ayrilir. d(x,y), asagidaki gibi tanimlansin:

0.9z -0.9y, reM
d(z,y) =4 1.8y-0.9z, zeN
10.8-0.92-0.9y, x¢€O.
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M N O
L [0;0],[6:6],[6:4] [0;0],[6:4],[8:4] [6;4],[8;4],[656]
IL. - [66],[8;6],[12;12] [8;4],[8:6],[12;12] [8;47,[8:6],[6;6]
ML [12:6],(12:12),[11.8:6] [8:4],[12:12),[11.8:6] [8:4],[12:6],[11.8:6]
V. [12:0],[11.8:4],[12:6]  [12:0],[8:4],[11.8:4]  [8:4],[12:6],[11.8:4]
V. [6:00,[12:0],[8;0.2]  [12:0],[8:4],[8:0.2]  [6:0],[8:4],[8:0.2
VL [0;0],[650],[6;0.2] [0;0],[8;4],[6:0,2]  [6:0],[8;4],[6;0.2]

Agagidaki tabloda f(x,y) bolge bolge verilmigtir:

M N O

I 12-01z+01y 12-197+2.8y 228-1.9z+0.1y
I 12-0.1z+0.1y 22.8-28z+19y 1.2-0.1z+1.9y

. 120-10z+y 22 -Laz+ldy  12-102+19y

78 238 )
IV. 120-10z+y 15 - 752+ 23y 12 - 352 + 55y
V. 12-z+10y B8 _28;4 Ly %——x+19y

1
VI 12-z+10y  12-19

f(x,y) parcah fonksiyonu lineer oldugu icin f(f(z,v),y) ve f(-y,-c) fonksiyon-
lar1 da lineerdir. f(f(z,y),y) =« ve f(-y,-x) = f(z,y)dir. Buradan,

rey=-c->y=[f(-z,y)

tanmimlamasi yapildiginda, <7 = ([0,12],,-,0) degismeli temel cebri elde edilir.
Ancak,

0> (8>4)=10->8=10-8 > (10 > 4) =8 - 6.95 = 11.89,
Yani <7, Yer Degistirme Ozdesligi'ni saglamaz. Bu da, 7 bir MV-Cebri degil

demektir.

3.3 Kafes Etki Cebirleri
Simdi, kafes etki cebirlerini tanimlayarak, Temel Cebir ile iligkilerini inceleyecegiz.

TANIM 3.28. (Radomir and Halas) “+7, E idzerinde bir kismi ikili islem olmak
tzere, a;aqudaki ozellikleri saglayan & = (E,+,0,1) cebirsel yapisina bir Etky Cebri

denir. Burada 0 ve 1 ozel elemanlardur.

(EA1) Eger a+b tanumh ise a+b=b+a dur.
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(EA2) Eger egitligin bir yany tanamle ise (a+b)+c=a+(b+c) dir.
(EA3) Her a € E icin a+a’=1 olacak sekilde tek bir o' € E vardir.
(EA4) a+1 tanuml ise a=0 dir.
(Burada, a+b nin taniml olmasi a+be E demektir.)
& =(E,+,0,1) dzerinde < bagintist asaqidaki gibi tanimldar:
a<b<=ceFEicinb=a+c

<, F uzerinde 0 en kigik, 1 en buyik eleman olmak tzere bir kismi siralama

bagimtisidir. Eger (E,<) bir kafes ise &ye bir Kafes Etki Cebri denir.

Etki Cebirleri, asagida tanimini verdigimiz D-posetlere denktir:

TANIM 3.29. (Radomir and Halas) (P, <), en kii¢ik eleman 0, en biyik elemany
1 olan bir poset olsun. “-”, P izerindeki asagidaki gibi tanimli bir kisma ikili islem

olsun:
a-b tanimbidir < b<a

Her a,b,c € P icin asagqrdaki kosullar saglayan (P,<,—,0,1) sistemine D-poset

denar:
(D1) a-0=a,
(D2) a<b<cisec—-b<c—a ve (c-a)-(c-b)=b-a dir.

(P, <) kafes ise, D-posete D-kafes denir.

D-posetler ve etki cebirleri arasindaki iligki soyledir:

(E,+,0,1) bir etki cebri ve <, E tizerindeki bir siralama bagintisi olsun.

(E,<,-,0,1) sistemi agagidaki 6zellige sahip bir D posettir:
a-b=c<==a=b+c

Diger yandan, eger (P, <,—,0,1) bir D-poset ise (P,+,0,1) agagidaki 6zellige sahip

bir etki cebridir:
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a+b:=c <<= c>b ve c-b=a.

Kafes etki cebirlerinin ( denk olarak D-kafeslerin) énemli 6rnekleri ortamoduler

kafesler ve MV-cebirleridir.
Bir & = (E,+,0,1) etki cebrinin baz1 6énemli 6zellikleri agagidaki gibidir:

1) a4+0=a

2) a+b tanimhdir < a <0,

(1)

(2)

(3) a+b tamml ise her x < a ve y < b icin x+y tammhdir,

(4) b+c tamimli ise a < b olmasi i¢in gerek ve yeter kogul a + ¢ < b+ ¢ dir,
(5)

5) atb=c < da'=b+c < a=(b+)".
Simdi, yukaridaki ozelliklerden yararlanarak, bir kafes etki cebrinin bir Temel

Cebir oldugunu gosterecegiz.

ONERME 3.30. E=(E,+,0,1) bir kafes etki cebri olsun ve ® ve - asagidaki gibi

tanimlansin:
x@®y:=(xA-y)+y ve ~x:i=2x

Bu durumda, B(E) = (E,®,-0) bir Temel Cebir’dir ve bu Temel Cebrin kafes

siralamass, kafes etki cebrininki ile aynidar.
KANIT. Oncelikle, (E,v,A,0,1)in z — 2’ +a (z € [a,1]) bolgesel antiton involus-
yonlu bir kafes oldugunu gosterecegiz.

x — 2’ déniligiimii E {izerinde bir antiton involusyondur. Ayrica, (EA3) ten z” = x

ve (5) ten z <y < 2’ >y’ elde edilir. Dolayisiyla da
zAy=(2'vy) vexvy=(x'Ay")

De Morgan kurallarmin (E, v, A,0,1) kafesinde saglandigi goriiliir.

Simdi bir a € E alalim ve z € [a,1] i¢gin x — 2% := 2’ + a ile tammlayalm. 2’ + a
tanimli oldugu i¢in (2)den x > a dir. z,y € [a, 1] igin x < y durumunda x* = 2’ +a >

y' +a=y* dir. (5)ten x>y olmas1 x <y demektir.

(5) kullanilarak bolgesel antiton involusyon taniminin ikinci kogulunun da saglandig:

gosterilebilir:
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x% = (z'+a) +a=uzx.

Boylece,  ~ ' + a déniigiimiiniin [a,1] lizerinde bir antiton involusyon oldugu
goriiliir. Yani, Z(E) = (E,V,A, (*)acr,0,1) bir bolgesel antiton involusyonlu ka-
festir. Z(F) {izerinde,

z@y:=(x0vy) = (' vy)+y=(zry)+y

tanimlamasi kullanilarak bir temel cebir elde edilir.

O

TANIM 3.31. (Radomir and Halas) E = (E,+,0,1) bir Kafes Etki Cebri olsun.
Her a,be E icin (avb)—b=a—- (anb) saglanyorsa, a ve b ye uyumlu elemanlar

denir ve a < b ile gosterilir.

“«" bagintisi a,b, c € E i¢in agagidaki ozellikleri saglar:

ca<a,a<0vea<+1,

ea—bebea,

e a<b=a<+b,

e a < bvea< cise b+c tamiml oldugunda a < (b + ¢) dir,
ea<wb aecveb>cisea<« (b c)dir,
ceabedel

cea<beawl.
ONERME 3.32. (Radomir and Halas) E=(E,+,0,1) bir Kafes Etki Cebri olsun. Bu
durumda, ondan tiretilen B = (E,®,-,0) Temel Cebri asagqidaki ozelligi saglar:
r<-yve x@®y<-z=>r0(z0y)=(r0Y)d 2. (3.7)

KANIT. a+b nin taniml olmasi i¢in gerek ve yeter kosul a < =b olmasiydi. Bura-
dan, a®b = (an-b)+b=a+bolur. Biliyoruz ki, z < -y ve z ® y < -z ise (x+y)+z

tanimhdir. Ustelik, x+(z+y) tamml ise x+(z+y)=(x+y)+z idi. Sonuc olarak,

r@®(zoy)=x+(z+y)=(r+y)+z=(r0Yy)® 2.
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elde edilir.
O

TANIM 3.33. (3.7) 6zelligini saglayan bir kafes etki cebirine, Etki Temel Cebri

denir.

ONERME 3.34. Bir A Temel Cebrinin (3.7) ozelligini saglamasu igin gerek ve yeter

kosul asaqidaki ozelligi saglamasidur:

(zr-y)e[(=(zoy)rz)ey]l=(roy) e (~(zey)A2). (3.8)

KANIT. z,y,2 € A alalim.

(<) 2 < -y ve z®y < =z olsun. Bu durumda, z A -y = z dir ve ==z < =(z ® y)
olacagindan —(z ® y) ® z = z dir. Bu durumda (3.8), z® (z @ y) = (z@y) ® =

ifedesine denktir. Boylece (3.7) saglanmig olur.
(=) & nin , (3.7) i sagladigimi kabul edelim. Bu durumda, x A -y < =y dir. Ayrica,
zA-y)oy=(=(zr-y)vy)=(~zvy)=zoy<(rey)v-z=-(-(zey)z)
olur. Buradan,
(zr-y)e[(-(zey)rz)ey] = (zr-y)oy)@(~(zoy)rz) = (zoy)(~(z0y)A2)
elde edilir. Boylece, (3.8) saglanmig olur.

O

TEOREM 3.35. &/ = (A;®,-,0), 3.7 (yada 3.8) kosulunu saglayan bir temel cebir

olsun. & tzerindeki kismi toplama islemi asagidaki gibi tamimlansin:
a+b tanimhdir < a<-bvea+b:=a®b

dir. Bu durumda, (<) = (A, +,0,1) bir kafes etki cebridir.

KANIT. (&) = (A, +,0,1) nin (EA1)-(EA4) kosullarimi sagladigini gosterecegiz.

(EA 1) (3.7) de x=0 koyarsak,

Y<-z2=>z0Yy=yo =2
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elde edilir. @ < b < -a > b oldugu i¢in a+b ve b+a tanmimhdir. Sonug olarak,

a+b=a®b=b®a=>b+a olur.

(EA2) (a+b)+c tanimh olsun. Buda a < -b ve a®b = a+b < ~¢ demektir. O halde,
b<a®b< -colur. Yani, b+c tammhdir. Ustelik, a ® b < —¢, ¢ < -(a®b) ifadesine
denk oldugu igin b®c=c@®b< -(a®b)®b=-aVvb=-a dir. Bu da, a+(b+c) nin
tanimli oldugunu gosterir. a+(b4c) taniml ise (a+b)+c nin de tanimlh oldugu

benzer sekilde gosterilebilir. Her iki durumda da (3.7) kullanilarak,
(a+b)+c=(adb)dc=ad(codb)=a+(c+b)=a+(b+c)

(EA3) Elimizde a+-a =1 var. a+b=1ise a < bdir. 1 = a®b = bda = (-bva)® = (=b)?

oldugu i¢in a = -b ve b = =a olur.

(EA4) a+1 tamimh ise a < =1 = 0 dir. Buradan, a=0 dur.
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4. Idealler, Zayif Idealler, On Idealler

Temel cebirlerde ve MV-cebirlerinde idealler kongruans cekirdekleri iizerinden in-
celenir. Ancak, MV-cebirlerinde bir kongruansin g¢ekirdegi, MV-olmayan bir te-
mel cebirde cekirdek olmayabilir. Ornegin, </ bir MV-cebri olsun. Bu durumda,
@ +#C A nin bir kongruans ¢ekirdegi olmasi i¢in gerek ve yeter kogul J nin, &/ nin

bir ideali olmasi; yani asagidaki kogullar1 saglamasidir:
(P1) Her a,be Jicina®be J,
(P2) aeJveaxbisebeJ.

Ancak, &7 bir MV-Cebri degilse, bu kogullar Jnin bir ideal olmasi i¢in yeterli olma-
yabilir. Bu sebeple, Krnavek ve Kuhr bu kogullaii saglayan alt kiimeleri, on idealler

olarak adlandirmistir. Temel cebirlerde de 6n ideal i¢in bu tanimi kullanacagiz.

TANIM 4.1. (Chajda and Kiihr, 2013) o = (A;®,-,0) bir Temel Cebir olsun ve
e islemi a,b € A i¢cin ae b = -(b® -a) ile tanvmlansin. Bu durumda, J € A min
bir kongruans cekirdegi olmasi i¢in gerek ve yeter kosul her a,b e A i¢in asagidaki

kosullarin saglanmasidir:

(I1) aebe J vebeJ iseacJ,

(I12) c € J olmak tizere, a©be J vea>b ise (cob)o(coa)eJ,
(I13) c € J olmak tizere, aebe J veboac J ise (aec)e(boc)eJ.
(14) 0 € J.

Dolaysiyla, yukaridaki kosullary saglayan J, </ min bir idealidir. Eger J sadece
(I1) ve (12) yi saglhyorsa, zayf ideal denir. o/ nin idealler, on idealler ve zayif

tdeallerinin kimesini siraswla &, & ve & ile gosterecegiz.

ORNEK 4.2. (Chajda and Kiihr, 2013) B={0,a,b,c,d,1} olsun. Asagqidaki tablolar

goz onunde bulunduralim :
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ollolalbleldl1 ©l0la|blc|d]|1
0l 0|lalblc|d|1 ojoyojoy0p00
allalaldl el dl 1 allal0la|lc|0]0
blloldlpleldli bi|b|b|O|c|O]|0
cllelalblel 1l cllelalb|0]c|O
dlldldldl 11dl1 diid|alb|d]| 0|0

J1 ={0,a}, Jo ={0,c} ve J3 ={0,a,b,d} olsun. Bu durumda, Jy bir on ideal, Jo

bir zayf ideal ve Js bir idealir:
Ji: (Pl)0®a=acJ,a®a=a¢c, a®0=a€cJ ve0@®0¢€ J.

(P2) a € Jy alalim. k, A min k < a kosulunu saglayan bir elemani olsun. Bu

durumda, =k ® a =1 dwr. Bu, =k =1 demektir. O halde, k=0 ¢€ J; dir.

Simdi, 0 € J; alalim. m, A nin m <0 kosulunu saglayan bir elemani olsun. Bu

durumda, -m & 0 =1 dir. Bu, -m =1 demektir. O halde, m =0 ¢€ J dir.
Sonug¢ olarak, Jy bir on idealdir.

Jo: (I1) me Aicin moce Jy olsun. O halde, moc =c veya moc=0 dir. Tabloya
gore m © ¢ = ¢ olacak sekilde bir m € a yoktur. O halde, m 6 ¢ = 0 durumunu ele
almamaz gerekir. Bu durumda, m =0 veya m = c dir. Her iki durumda da m € Jy
dir.

Simdi, n € A icin n© 0 € Jy olsun. O halde, n©0 = c veya ne 0 =0 dir. Bu

durumda, n = c veya n =0 dir. Her iki durumda da n € Jy dir.

(I12) aebe Jy vea2b (yani =b® a =1) kosullarini saglayan tek (a,b) ikilisi (c,d)
dir. me A icin (me d) e (mec) e Jy olsun. Bu durumda, (med)e (mec)=0
veya (mod)e (mec) =c dir. Once, (med)e (mec) = ¢ oldugunu kabul edelim.

Bu durumda, m e d = ¢ olmak zorundadir. Buradan, m = c € Jy bulunur.

Simdi, (med)e(mec) =0 oldugunu kabul edelim. Bu durumda ii¢ ihtimal vardr:

(1) me d=0: Bu durumda, m =0 € Jy dir.
(2) med=avemec=d: moed=a olacak sekilde bir m € A olmadigu i¢in

bu thtimal ortadan kalkar.
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(8) med=bvemeoec=d:med=b olacak sekilde bir m € A olmadigr i¢in bu

thtimal de ortadan kalkar.

Sonug olarak, Jy bir zayif idealdur.

J3: 0 € Js3 oldugu icin (14) saglanar. (11) ve (12) kosullarinan saglandige yu-

karidakine ¢ok benzer bir sekilde gosterilebilir. Simdi (13) kosulunu kontrol edecegiz:

roy e Jy veyor € Js olacak sekilde hi¢ bir x,y € A yoktur. O halde, (13) kosulunu

dogru kabul edebiliriz. Bu da, J3 un bir ideal oldugunu gosterir.

ONERME 4.3. (Chajda and Kiihr, 2013) (i) (A;+,0,1) bir Kafes Etki Cebri olsun.
Bu durumda, a ®b = (aAb')+b ve ~a = a’ ile tanmamlanan (A;®,-,0,1) cebirsel
yapist bir etki temel cebridir. Kiwsmi toplam, & isleminin a < -b kosulunu saglayan

(a,b) ikililerine kisitlanusidir.

(Chajda and Kiihr, 2013) (i) (A;@®,-,0,1) bir etki temel cebri olsun. a < -b
kosulunu saglayan (a,b) ikilileri i¢in a+b=a®b= (aAl')+b olsun. Bu durumda,

(A;+,0,1) bir kafes etki cebridir.

Pulmannove ve Vincekova, Etki Temel Cebirleri'nde idealleri asagidaki gibi ka-

rakterize etmigtir:

ONERME 4.4. (Pulmannove and Vincekova, 2009) of = (A;®,-,0,1) bir etki Te-
mel Cebri olsun ve a @ b = =(-a @& b) ile tanmwmlansin. @ + J € A nin, &/ nin bir

1dealt olmasi i¢in gerek ve yeter kosul asagidaki kosullar, saglamasidur:
(i) Her a,be J i¢cina®be J,

(i) a € J ise herbe A icina@be J.

Bu 6nerme kullanilarak bir Etki Temel Cebrindeki her zayif idealin bir ideal oldugu

gosterilebilir:

TEOREM 4.5. (Chajda and Kihr, 2013) </ bir Etki Temel Cebri olsun. Bu du-
rumda, 2 (<) = () dur.

KANIT. J € Z (/) olsun. O halde, J ayn1 zamanda bir 6n idealdir. Yani J, (i)yi

saglar.
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Simdi, (ii) yi sagladigini gosterelim. a € J, b€ A olsun. 0 < b oldugu icin, -a ® 0 <

-a ® b dir. Buradan, -(-a®b) < -(-a®0) =a

olur. Bu durumda,
a@b=-(-a®b)<a

olur. J bir 6n ideal oldugu ig¢in, bu a @ b € J demektir. Sonug olarak, 2 (&) 2
S () olur. Her ideal bir 6n ideal oldugu i¢in, 2 (&) = # (&) dir.

O
TANIM 4.6. (Chajda and Kiihr, 2013) of = (A;®,-,0) bir Temel Cebir olsun. Her
a,b,ce A igin,

a<bdc=a=bi®c, bi,c1€A, by<buveci<c

kosulu saglanwyor ise, o/ nin Riestz Ayrisimu ( kisaca RA) ozelligi vardir denir.

NoT 4.7. Etki temel cebirlerinde RA iy ifade etmek icin @ yerine kismi toplam

“+7 kullanalor.

ONERME 4.8. (Chajda and Kiihr, 2013) Her <f kafes etki cebri igin asagqidaki
ifadeler denktir:

(1) < bir MV-cebridir

(i1) o degismelidir

(iii) o/ RA’yu saglar.

TEOREM 4.9. (Chajda and Kihr, 2013) Her monoton etki temel cebri RA 'y

saglar, dolayisiyla MV-Cebri’dir.

KANIT. o/ = (A;®,-0) bir monoton Etki Temel Cebri olsun. a < b @ ¢ olacak

sekilde a,b,c € A alalim. ¢; =a A ¢ ve by = a @ ¢ alirsak,
byoci=(a10¢)®cr=ave =a

olur. ¢; = a A ¢ segtigimiz igin ¢; < ¢ dir. O halde, tek gostermemiz gereken by < b.

o/ bir etki temel cebri oldugu i¢in = < -y durumunda elimizde,
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rToyY=r+y=y+r=yoex

var. ‘e<y=z20r<z20y”

ozelligini ve a < b @ ¢ kabulumuz kullanilarak,
c®@-a>2cd-(bodc)=-(bdc)dc=-bvec>-b
elde edilir. Yani, -(c¢® -a) < b dir. Ancak,
—a®cp=c1®-a=(anc)®-a=cd-a
oldugu igin,

bi=aoc;==(-a®c)=-(c®-a)

elde edilir. Sonug olarak, b; < b olur.
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5. SONUC

Bu caligmada, oncelikle Temel Cebirler’in yapisini ve ozelliklerini, daha sonra
da kafesler ile arasindaki baglantiy1 inceledik. Bunun sonucunda, bir temel ce-
bir &7 = (A;®,-,0) den bir siirh kafes (yada bir bolgesel antiton involusyonlu
kafes) .Z(A) ve her bolgesel antiton involusyonlu kafesten bir temel cebir elde edi-
lebilecegini; tstelik, £ (/' (L)) = £ ve @/ (ZL(A)) = o oldugunu gordiik. Daha
sonra, temel cebirler ile MV-cebirleri arasindaki iligkiyi inceledik. Bu iki tip ce-
birsel yapmin yapisal ozelliklerine baktigimizda, her MV-cebrinin bir degismeli
temel cebir oldugunu ancak her degismeli temel cebrin bir MV-cebri olmadigini,
olmasi i¢in gerek ve yeter kogulun bu temel cebrin ayni zamanda bir BCC-cebri
olmas1 gerektigini gordiik. Bolimiin devaminda, bir kafes etki cebrinden temel
cebir ve bir temel cebirden kafes etki cebri elde edebilecegimizi gordiik. Tezin son
kisminda, temel cebirlerin idealleri, zayif ve on ideallerini inceledik. Burada, bir
etki temel cebrinde her zayif idealin bir ideal oldugu ve her monoton etki temel

cebrinin bir MV-cebri oldugu sonucuna ulastik.

MV-cebirlerinde ve BCK-cebirlerinde tiirev iizerine bir ¢ok galigma yapilmigtir.
Bizim bir sonraki caligmamiz, temel cebirlerde tiirev incelemek olacaktir. An-
cak, caligmalarimizin MV-cebirlerindeki tiirev caligmalariyla gakigmamasi igin,

degismeli olmayan Temel Cebirler’de calisacagiz.
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