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Prof. İ. Kuban Altınel . . . . . . . . . . . . . . . . . . .

Prof. Necati Aras . . . . . . . . . . . . . . . . . . .
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ABSTRACT

INTEGER PROGRAMMING FORMULATIONS AND

BENDERS DECOMPOSITION FOR MAXIMUM

INDUCED MATCHING PROBLEM

In this thesis, we investigate Maximum Induced Matching problem (MIM), find-

ing an induced matching having the largest cardinality. The problem is NP-hard for

general graphs. We develop a binary integer programming formulation with less deci-

sion variables compared to other formulations in the literature. Then, we extend the

problem for vertex-weighted graphs and introduce Maximum Vertex-Weighted Induced

Matching problem (MVWIM). We introduce edge-weighted version of MIM and call

it Maximum Edge-Weighted Induced Matching problem (MEWIM). We adapt formu-

lations found in the literature and our formulation to solve MVWIM and MEWIM

instances. In generalized version of Maximum Weighted Induced Matching problem

(MWIM), we assume both vertices and edges have weights, and give a binary integer

programming formulation for it. Since it has many decision variables and constraints,

we implement Benders decomposition approach to partition the problem into smaller

problems. Then, we add some valid inequalities to our formulation to improve the

efficiency of our algorithm. To test the performance of our methodology, we generate

random graphs with different densities. By looking at computational results, it can be

seen that our approach solves instances with medium and large densities significantly

faster than other methods in the literature.
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ÖZET

MAKSİMUM TETİKLENMİŞ EŞLEŞTİRME PROBLEMİ

İÇİN TAMSAYI PROGRAMLAMA FORMÜLASYONU VE

BENDERS AYRIŞTIRMASI

Bu tezde Maksimum Tetiklenmiş Eşleştirme problemini (MIM), en büyük boyuta

sahip tetiklenmiş eşleştirme bulma, inceledik. Bu problem genel çizgeler için NP-

zor’dur. Literatürde bulunan formülasyonlardan daha az karar değişkenine sahip tam-

sayı programlama formülasyonu geliştirdik. Daha sonra, bu problemi düğüm-ağırlıklı

çizgeler için genişleterek Maksimum Düğüm-Ağırlıklı Tetiklenmiş Eşleştirme problem-

ini (MVWIM) tanıttık. MIM’in kenar-ağırlıklı versiyonunu tanıttık ve buna Maksi-

mum Kenar-Ağırlıklı Tetiklenmiş Eşleştirme problemi (MEWIM) adını verdik. Lit-

eratürde bulunan formülasyonları ve bizim formülasyonumuzu MVWIM ve MEWIM

örneklerini çözmek için uyarladık. Maksimum Ağırlıklı Tetiklenmiş Eşleştirme prob-

leminin (MWIM) genelleştirilmiş versiyonunda hem düğümler hem de kenarların ağırlıklı

olduğunu varsaydık ve bunun için bir tamsayı programlama formülasyonu verdik. Bu

formülasyonda çok fazla karar değişkeni ve kısıt olduğundan, problemi daha küçük

problemlere bölmek için Benders parçalama yaklaşımı uyguladık. Daha sonra, algo-

ritmamızın verimliliğini geliştirmek için formülasyonumuza bazı geçerli eşitsizlikler ek-

ledik. Metodumuzun performansını test edebilmek için, farklı yoğunluklara sahip rassal

çizgeler ürettik. Sayısal sonuçlara bakarak, yaklaşımımızın literatürde bulunan diğer

formülasyonlara göre orta ve büyük yoğunluğa sahip örnekleri belirgin derecede daha

hızlı çözdüğü görülebilir.
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1. INTRODUCTION AND LITERATURE REVIEW

For a given graph G = (V,E), two edges are called adjacent if they have a common

end point. A matching is a set of edges such that no two of which are adjacent [3]. An

induced matching in a graph G is a matching such that no two edges in the matching

are joined by an edge of G [4]. In Figure 1.1, the edge set {(1, 5), (2, 6), (4, 8)} forms

a matching since it does not contain two edges that are adjacent. However, edges

(1, 5) and (2, 6) have a common adjacent edge (2, 5). Therefore, it is not an induced

matching. In Figure 1.2, the edge set {(1, 5), (6, 7), (4, 8)} is an induced matching since

no two edges in the set are joined by another edge of G.

Figure 1.1. An example of matching that is not an induced matching

Figure 1.2. An example of induced matching

The graph G′ = (V ′, E ′) is a subgraph of G = (V,E) if vertices and edges of G′

form subsets of the vertices and edges of G. A subgraph G′ is said to be induced if for
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every pair of vertices u and v of G′, (u, v) is an edge of G′ if and only if (u, v) is an

edge of G. In other words, G′ is an induced subgraph of G if it has exactly the edges

that appear in G over the same vertex set [5]. In Figure 1.3, G shows the original

graph. Then, G′ is a subgraph of G since it contains a subset of vertices and edges of

G, but it is not an induced subgraph since edge (4, 5) is not in G′. However, G′′ is an

induced subgraph of G. Then, an induced matching is a matching forming an induced

subgraph [4].

Figure 1.3. An example of subgraph (G′) and induced subgraph (G′′)

The size (or cardinality) of an induced matching is the number of edges in the

induced matching. An induced matching is maximum if its size is the largest among all

possible induced matchings. The Maximum Induced Matching problem (MIM) aims

to find an induced matching with the largest cardinality [6]. In Figure 1.4, the edge set

{(1, 2), (4, 7)} is an induced matching whose size is 2. In fact, we cannot find another

induced matching of size greater than or equal to 2. Therefore, it is a unique maximum

induced matching.
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Figure 1.4. A graph with a unique maximum induced matching {(1, 2), (4, 7)} of size 2

The line graph of G, denoted by L(G), is defined as the intersection graph whose

vertices correspond to the edges of G, and two vertices in L(G) are adjacent if and

only if their corresponding edges in G share a common vertex [7].

The distance between two vertices u, v ∈ V is the number of edges on a shortest

path from u to v in G [8]. Let k be a positive integer. The kth power of G, denoted

as Gk, is the graph with the same vertex set as G such that two vertices are adjacent

in Gk if and only if their distance in G is at most k. In particular, the square G2 of a

graph G has vertex set V and two vertices are joined in G2 only if they are joined by

an edge or a path of two edges in G [9].

A set of vertices is called independent if no two of them are joined by an edge.

The size of an independent set is the number of vertices it contains. An independent

set is maximum if its size is the largest among all possible independent sets [9]. Then,

for any graph G, every induced matching in G corresponds to an independent set

of vertices in the square of line graph of G, denoted by L(G)2, and conversely since

two edges induce a 2K2 (i.e. a disconnected subgraph consisting of four vertices and

two non-incident edges) in G if and only if they are of distance at least 2 in L(G)2.

Also, finding a maximum induced matching in G is equivalent to finding a maximum

independent set in L(G)2 [4]. In Figure 1.5, the edge set {a, b} is an induced matching

in G and it corresponds to an independent set of vertices in L(G)2.
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Figure 1.5. An example of induced matching in G which corresponds to an

independent set in L(G)2

A claw is a complete bipartite graph K1,3. A graph is claw-free if it does not

contain a claw as an induced subgraph. The line graph of any graph is claw-free, and

there is a polynomial time algorithm for finding a maximum independent set of vertices

in claw-free graphs [10]. However, squares of line graphs do not need to be claw-free

as can be seen from Figure 1.6, in which the bold edges of G form a claw in L(G)2.

Therefore, MIM can be solved in polynomial time whenever the maximum independent

set problem can be solved in polynomial time for L(G)2. This property is heavily used

to show that the problem is polynomial time solvable for some restricted graph classes

[11].
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Figure 1.6. An example of a graph whose square of line graph is not claw-free

The distance between edges e and e′ is the length of a shortest path from a

vertex of e to a vertex of e′. Stockmeyer and Vazirani [8] defined maximum δ-separated

matching in which the distance between any two edges in the matching is at least δ.

For δ = 1, the problem is equivalent to regular maximum matching problem, which

can be solved in polynomial time using Edmond’s blossom algorithm [12]. Stockmeyer

and Vazirani [8] showed that, for any integer δ > 1, the related decision problem is

NP-complete. Also, they proved that the problem is NP-complete even for bipartite

graphs of degree 4.

For δ = 2, 2-separated matching is equivalent to induced matching as the distance

between any two edges in an induced matching is at least 2. Stockmeyer and Vazirani

[8] called maximum 2-separated matching as Risk-free Marriage Problem, finding the

maximum number of married couples such that every person is not compatible with

any married people other than the person (s)he is married to. The same problem is

also called as strong matching [13] or maximum distance-2 matching (D2EMIS) [14] in

the literature.

Induced matching problem is extensively studied due to its theoretical and practi-

cal importance. In practice, induced matchings are also heavily used in communication

industry. For a bipartite graph G = (X, Y,E), let edges represent communication ca-

pabilities between broadcaster vertices in X and receiver vertices in Y . For secure
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communication channels, the aim is to select k edges ei (i = 1, ..., k) such that mes-

sages on channel i will be passed from broadcaster X(ei) to receiver Y (ei) by ensuring

that it is impossible for a message broadcast on channel i to be leaked or intercepted.

Induced matchings are also used in applications for VLSI and network flow problems.

[15]

Another application area of induced matching is as follows: for general graphs

that are not necessarily bipartite, let each vertex represent a spy and edges show that

the corresponding spies who know each other. Then, an induced matching of size k is

equivalent to selecting k pairs of spies to work together such that no active spy knows

any other spies except his/her partner [15].

Balakrishnan et al. [14] studied the problem of determining the maximum ca-

pacity of the media access (MAC) layer in wireless ad-hoc networks. Due to spatial

contention for the shared wireless medium, nodes in wireless networks that are close to

each other in space may not be able to transmit data concurrently. A MAC protocol

in each node enables these nodes to resolve channel contention and avoid collisions.

The maximum number of possible concurrent transmissions at the media access layer

that are possible in an ad hoc wireless network is an estimate of the maximum network

capacity. This problem can be modeled as a maximum induced matching problem in

the underlying wireless network. In their paper, Balakrishnan et al. called the problem

as Maximum Distance-2 matching (D2EMIS) problem since the distance between any

two edges in the matching is at least 2.

Figure 1.7. An example of wireless ad-hoc network
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Figure 1.7 is an example of ad-hoc network topology. It shows the set of links that

can communicate concurrently using virtual carrier sensing, where s is the sender and

t is the receiver. First, node s initiates communication to a neighbor by broadcasting

a “request-to-send” (RTS) message. Upon hearing this message, all of s’s neighbors

remain silent for a certain period of time. If t is willing to accept (i.e., it has not

heard any other on-going transmissions), it responds with a “clear-to-send” (CTS)

broadcast message that contains information (e.g., packet length) informing all the

nodes of the duration of the data transmission will last. Upon hearing a successful

CTS message, all of t’s neighbors keep silent for some amount of time (i.e., do not send

an RTS or respond with a CTS). By this way, node s can transmit a data frame to

t, and in return, t sends a link-layer acknowledgment (ACK) that informs a successful

transmission. During this period of time, s and t’s neighbors marked with X’s in the

figure keep silent and cannot send any transmisson [14].

Balakrishnan et al. [14] modeled radio networks as geometric intersection graphs

and introduced graph theoretical modeling of this problem. Assume we are given a

graph G = (V,E), where the vertices of the graph denote the nodes and an edge (u, v)

represents the fact that u is in transmission range of v. The aim is to choose a subset of

edges on which the transmission can occur without conflict. Then, if (s, t) and (s′, t′)

carry simultaneous transmissions, none of the edges (s, s′), (s, t′), (s′, t) or (t, t′) can

be active in the interference graph. With this constraint, the set of edges that can be

chosen is equivalent to an induced matching in G.

Since wireless networks are represented by disk graphs, which are intersection

graphs of a family of disks in the Euclidean space, Balakrishnan et al. [14] mainly

focused on these graphs. They proposed an efficient way to compute an upper bound on

the maximum wireless network capacity. They also gave a distributed algorithm for the

problem for unit disk graphs where the transmission ranges of all nodes are assumed to

be equal. They proved that the greedy solution gives a constant factor approximation

for the D2EMIS problem in unit disk graphs. They provided numerical results of

their greedy solution for different transmission ranges, number of wireless nodes and

probability distributions for the nodes placement in a unit square and showed that the
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maximum network throughput depends on the number of nodes and the distribution

of the nodes in the unit square.

Later, Vassilaras and Christou [2] studied the same problem and extended the

results obtained in [14]. To the best of our knowledge, this was the first study in

the literature where the problem has been addressed from mathematical programming

point of view. They developed an integer programming based exact algorithm to solve

the D2EMIS problem in unit disk graphs. The details of their integer programming

formulation is given in Section 2. They also proposed a greedy algorithm to approxi-

mate the capacity of the network in polynomial time. They compared the exact and

approximate solutions for different network sizes and node distributions. Experimental

results show that their greedy solution procedure provides a good approximation of the

exact solution even for small network sizes.

A set S ∈ V is called a k-packing if for all pairs of distinct vertices u, v ∈ V , the

distance between u and v is at least k. A maximum k-packing is defined as a k-packing

with the maximum cardinality of all possible k-packings in G. Then, any distance-k

matching problem can be transformed into an equivalent k-packing problem by taking

the line graph of G since there always exist a line graph L(G). However, the reverse

may not be possible because we can find a graph L with maxv∈V (L){deg(v)} > 2, for

which there is no graph G such that the line graph of G is L [1].

The maximum k-packing problem is NP-hard for all k in general. Christou and

Vassilaras [1] described a highly parallel distributed algorithm to obtain a near optimal

solution to the maximum 2-packing problem, and therefore for the D2EMIS problem.

The proposed algorithm is in the category of Greedy Randomized Adaptive Search

Procedures (GRASP) for solving combinatorial optimization problems, which have

been successfully applied to a large number of problems. To test the applicability of

their algorithm, they also proposed an integer programming formulation for D2EMIS

problem, which we further disscuss in Section 2. Their experiments show that for

large graph instances, their algorithm can quickly find near-optimal solutions whereas

commercial MIP solver Gurobi fails to solve the problem to optimality as computer
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memory is insufficient for the solver.

Induced matchings have also stimulated a great deal of interest in the discrete

mathematics community. Cameron [4] and Stockmeyer and Vazirani [8] showed that

MIM is NP-hard for general graphs, even for bipartite graphs. However, the problem is

shown to be polynomial time solvable for some graph classes, which we describe next.

A graph is called chordal if for each cycle C in G with four or more vertices, there

is an edge of G joining nonconsecutive vertices of C. This edge is called a chord. A

clique-neighborhood is defined as the set K of edges of a clique together with some

edges each of which is incident to a member of K. Cameron [4] showed that for a

chordal graph G = (V,E), L(G)2 itself is also chordal. As the maximum independent

set problem can be solved in polynomial time in chordal graphs [16], maximum induced

matching problem can be solved in polynomial time by solving maximum independent

set problem in L(G)2. In addition, ifG is chordal, the cardinality of a maximum induced

matching in G equals the cardinality of a minimum set of clique-neighborhoods in G

which covers E(G) [4].

A tree T is a graph in which any two vertices are connected by exactly one

path. For a tree T , L(T )2 does not have to be a tree as can be seen in Figure 1.8.

However, since trees are a special case of chordal graphs, for every tree T , L(T )2

is a chordal graph. Therefore, there is a polynomial-time algorithm for finding the

maximum induced matching for trees [4]. However, L(T )2 may have as many as O(n2)

edges, for example when T is a tree of height one with n vertices. Thus, this algorithm

does not run in linear time. Fricke and Laskar [17] showed that determining the size

of a maximum induced matching in a tree can be done in linear time.
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Figure 1.8. An example of a tree T where L(T )2 is not a tree

It has been an open problem if there is a linear-time algorithm for MIM on

chordal graphs or not since the construction of L(G)2 requires O(m2) time, where m is

the number of edges in G. Brandstädt and Hoàng [18] presented a linear time algorithm

for MIM based on perfect elimination ordering and Lexicographic Breadth-First Search

(LexBFS) on chordal graphs.

For a given family F of non-empty sets, the intersection graph of F has a vertex

set F and an edge between u and v only if they intersect. Some subclasses of intersection

graphs include interval graphs, where F is a set of intervals on a line; chordal graphs,

where F is a set of subtrees of a tree; circular-arc graphs, where F is a set of arcs

of a circle; circle graphs,where F is a set of chords of a circle; polygon-circle graphs,

where F is a set of convex polygons inscribed on a circle. Cameron [11] proved that for

some subclasses, if G has a nice representation as an intersection graph, L(G)2 is also

an intersection graph and if the independent set problem is polynomial time solvable

in L(G)2, the induced matching problem is also polynomial time solvable in G. In

particular, she showed that MIM is polynomial time solvable for polygon-circle graphs,

asteroidal triple-free graphs and interval-filament graphs.

Golumbic and Lewenstein [15] improved the time complexity of the problem for

interval graphs to linear time and proved that induced matching problem is polynomial-

time solvable for trapezoid graphs, k-interval-dimension graphs and cocomparability

graphs by extending the techniques used for interval graphs. They gave a linear time

algorithm for finding a maximum induced matching in a tree, which is simpler than
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the algorithm suggested in [17].

An asteroidal triple (AT) of a graph is a set of three vertices such that any two

of them are joined by a path avoiding the closed neighborhood of the third. A graph

is called asteroidal triple-free (AT-free) if it does not contain an AT. Chang [19] stud-

ied the maximum induced matching problem on classes of graphs related to AT-free

graphs. He defined a wider class of graphs called the line-asteroidal triple-free (LAT-

free) graphs. Using characterization of LAT-free graphs, he showed that maximum

induced matching problem and its generalization, the maximum δ-separated matching

problem on LAT-free graphs can be solved in polynomial time. This result can be

extended to the classes of graphs with bounded asteroidal index. He also proposed a

linear-time algorithm for finding a maximum induced matching in a bipartite permu-

tation (bipartite AT-free) graphs using the greedy approach.

For a graph G = (V,E) the open neighborhood N(x) of a vertex x is the set of

vertices adjacent to x, and the closed neighborhood of x is the set N [x] = x∪N(x). A

set of vertices X is called open-open irredundant (oo-irredundant) if for every x ∈ X,

we have N(x)−N(X − x) 6= ∅. OOIR(G) denotes the maximum cardinality of an oo-

irredundant set of vertices in G. Golumbic and Laskar [13] stated that every induced

matching is also an oo-irredundant set in G. They also gave a relationship between the

size of an induced matching and the irredundancy number for general graphs. They

showed that for circular arc graphs, the maximum number of induced matching equals

bOOIR(G)c.

A strong edge k-coloring of G is a proper k-coloring of the edges such that no

edge is adjacent to two edges of the same color, i.e., a partitioning of its edge set

into k induced matchings. Therefore, MIM is used as a sub-task in finding strong

edge coloring where each color class forms an induced matching [20]. Strong chromatic

index of a graph is defined as the minimum cardinality of strong edge-coloring. The

chromatic number of a graph is the minimum size of a partitioning of its vertices into

independent sets. Since finding maximum induced matching in a graph G is equivalent

to finding a maximum independent set in L(G)2, it follows that the strong chromatic
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index of G equals the chromatic number of L(G)2 [11]. If G has m edges and admits

a strong edge k-coloring, then a largest induced matching in G has size at least m/k

[21]. Figure 1.9 shows an example of strong edge coloring of Peterson graph [22] with

five colors.

Figure 1.9. A strong edge coloring of Petersen graph with five colors

A graph is called weakly chordal if neither the graph itself nor the complement of

the graph has an induced cycle on five or more vertices. Cameron et al. [6] proposed a

polynomial time algorithm to find a maximum induced matching and minimum strong

edge coloring in weakly chordal graphs. Their result also shows that the maximum

induced matching problem can be solved in polynomial time for chordal bipartite graphs

even though the problem is known to be NP-hard for bipartite graphs in general.

A graph is called planar if it can be drawn in such a way that no edges cross each

other [7]. Kang, Mnich and Müller [21] presented an algorithm that, given as input a

planar graph with m edges and maximum degree 3, finds an induced matching of size

at least m/9 in linear-time. Their study support a conjecture of Faudree et al. [23]

that every planar graph of maximum degree 3 is strongly edge 9-colorable.

In the literature, various approximation algorithms for MIM in general graphs

have been proposed. As the optimization version of MIM is NP-hard, one way to

cope with the NP-completeness of the problem is to relax the optimality condition

and search for the existence of any polynomial time algorithm returning a solution
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whose cardinality is close to the maximum number of induced matchings in the graph.

A maximization problem P is said to be approximable with (performance) ratio ρ if

there is a polynomial time algorithm which guarantees to find a solution whose size is

at least 1/ρ times the size of an optimal solution [24].

The first study on the approximability of MIM is done by Zito [25]. He studied the

complexity of MIM in regular graphs and trees. He proved that the maximum induced

matching in a regular graph with degree d can be approximated with a performance

of d − 1/2. He also showed that for every k ≥ 1 there is a constant c ≥ 1 such that

approximating maximum induced matching within a factor c on 4k-regular graphs is

NP-hard, so maximum induced matching is APX-complete for 4k-regular graphs.

Duckworth et al. [26] proved that there is some fixed constant c such that for 3s-

regular graphs with s ≥ 1, the problem of approximating a maximum induced matching

within a factor of c is NP-hard. They improved the approximation bound obtained

by Zito [25] and gave an approximation algorithm which has asymptotic performance

ratio d−1 for the problem in d-regular graphs with d ≥ 3. Gotthilf and Lewenstein [27]

presented another greedy algorithm which achieves 0.75d + 0.15 approximation factor

for the problem.

Furthermore, the parametrized complexity of MIM is studied for some restricted

graph classes. In the field of parameterized complexity analysis, the complexity of a

problem is analyzed in a two-dimensional framework: the input size n, and a parameter

k. A parameterized problem is called fixed-parameter tractable if it can be solved in

f(k).nO(1) time, where f is a function of the parameter k and does not depend on

the input size n. W[1] is the basic complexity class for fixed-parameter intractability

since there is good reason to believe that W[1]-hard problems are not fixed parameter

tractable [28]. In terms of the parameterized complexity of the induced matching

problem on general graphs, it is known that the problem is W[1]-hard. Hence, according

to the parameterized complexity hypothesis, it is unlikely that MIM can be solved in

time O(f(k).nc) for some constant c independent of k [29].
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Kanj et al. [30] examined lower and upper bounds on the size of induced match-

ings for some graph classes like planar graphs, outerplanar graphs and graphs of

bounded genus. They proved that for planar twinless graphs the maximum size of

an induced matching is at least n/40 and this bound cannot be improved beyond (n

+ 10)/27. They improved the results of Moser and Sikdar [29] and showed that the

induced matching problem on planar graphs has a kernel of size at most 40k, which

can be computed in linear time. They also showed that the decision version of the

problem, that is whether a planar graph contains an induced matching of size at least

k can be decided in 91k + n time.

In this thesis, we first give a vertex-based binary integer programming formulation

for MIM, in which the number of decision variables and constraints depend on the

number of vertices in the graph (O(|V |)). Then, we extend the problem for graphs in

which each vertex has a weight and the objective is to maximize the sum of weights of

saturated vertices in an induced matching. The resulting problem is called Maximum

Vertex-Weighted Induced Matching problem (MVWIM). Similarly, in Maximum Edge-

Weighted Induced Matching problem (MEWIM), we assume that the weights are on

the edges of the graph and the total edge weight in an induced matching is to be

maximized. We adapt formulations found in the literature and our formulation for

MIM to solve MVWIM and MEWIM.

In the generalized Maximum Weighted Induced Matching problem (MWIM), we

consider graphs having both edge and vertex weights. The aim is to maximize the

sum of weights of selected edges and saturated vertices in the matching induced by

the selected edges. Our integer programming formulation for MWIM contains many

decision variables and constraints. Instead of considering all decision variables and

constraints simultaneously, we develop a Benders decomposition approach to find an

optimal solution of the problem. By this way, we partition the problem into a master

problem containing only a subset of the variables and a subproblem containing contin-

uous variables. In each iteration, a master problem is solved and based on these values,

the remaining values are determined by a subproblem. Using LP duality theory, new

cuts are generated and added to the master problem to reach optimality.
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The remaining of this thesis is organized as follows. In Section 2, we give for-

mulations found in the literature and our formulation for MIM. Then, we adapt these

formulations to solve MVWIM and MEWIM. Section 3 describes our decomposition

approach used to solve MWIM. In Section 4, we explain some methods developed to

increase the efficiency of our decomposition procedure. We present our computational

results and some key observations about the methods we used in Section 5. Finally,

we summarize our study in Section 6.
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2. PROBLEM FORMULATIONS

2.1. Maximum Induced Matching Problem (MIM)

Vassilaras and Christou [2] introduced a binary integer programming formulation

for MIM. Although they formulated the problem for unit disk graphs, their formulation

can find a maximum induced matching for all graphs.

Let G = (V,E) be an undirected graph with vertex set V and edge set E. In

Vassilaras and Christou’s [2] formulation, each edge (i, j) ∈ E is represented by a

binary decision variable yij, which takes value 1 if edge (i, j) ∈ E is selected in an

optimal MIM, and 0 otherwise. Let Nij ⊆ E be the set of edges that are adjacent to

edge (i, j). Then, their formulation for MIM is as follows:

(VC2011): max
∑

(i,j)∈E

yij (2.1a)

s.t. yij +
∑

(k,l)∈Nij

ykl ≤ 1 ∀ (i, j) ∈ E (2.1b)

yij ∈ {0, 1} ∀ (i, j) ∈ E (2.1c)

The objective function (2.1a) maximizes the number of selected edges. Con-

straints (2.1b) enforce the condition that if an edge (i, j) ∈ E is selected (yij = 1),

none of its adjacent edges can be selected (all ykl = 0 for (k, l) ∈ Nij), and if it is not

selected (yij = 0), at most one of its adjacent edges can be selected. These constraints

guarantee that the selection is an induced matching in G.

The above formulation can be equivalently transformed into a maximum 2-packing

problem on G∗ = L(G). Here, a binary decision variable xi takes value 1 if the corre-

sponding vertex i ∈ G∗ is saturated, and 0 otherwise. Then the resulting formulation
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is as follows [1]:

max
∑

i∈V (G∗)

xi (2.2a)

s.t. xi +
∑

j∈N(i)

xj ≤ 1 ∀ i ∈ V (G∗) (2.2b)

xi ∈ {0, 1} ∀ i ∈ V (G∗) (2.2c)

Note that as the vertices in G∗ = L(G) corresponds to the edges in G, the number

of binary variables and constraints in (2.2) is the same as (2.1), which depends on the

number of edges in the original graph G. In order to solve the problem, Vassilaras

and Christou [2] first generate the line graph L(G) of G where the edges in G become

vertices in L(G) and the edges in L(G) represent adjacent edges in G. Then, they

add some valid inequalities to the model using the fact that a unit disk graph cannot

contain an induced subgraph isomorphic to K1,6, a tree with one internal vertex and 6

leaves. Since enumerating all these inequalities can take exponential time and space,

they use a fixed threshold for the number of valid inequalities and solve the resulting

integer programming formulation to optimality.

Christou and Vassilaras [1] propose a heuristic algorithm to quickly find near-

optimal solutions on disk graphs. To test the performance of their algorithm, they

give another integer programing formulation. In their formulation (2.3), each edge is

also represented by a binary variable yij, but it has more constraints. Their second

formulation is given below:

(CV2013): max
∑

(i,j)∈E(G)

yij (2.3a)

s.t. yij + yjk ≤ 1 ∀ (i, j), (j, k) ∈ E(G) (2.3b)

yij + ykl ≤ 1 ∀ (i, j), (k, l) ∈ E(G) : de((i, j), (k, l)) = 2 (2.3c)

yij ∈ {0, 1} ∀ (i, j) ∈ E(G) (2.3d)
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where de((i, j), (k, l)) represents the distance between edges (i, j) and (k, l).

Here, the objective function (2.3a) again maximizes the number of selected edges.

Constraints (2.3b) ensure that for any adjacent edge pairs, at most one of them can be

selected. Similarly, constraints (2.3c) ensure that for any edge pair having distance of

2, at most one of them can be in an optimal induced matching.

The number of binary variables in these three formulations (2.1), (2.2) and (2.3)

is proportional to the number of edges in the graph, which is O(|V |2) for dense graphs.

Therefore, these formulations do not provide efficient solutions for graphs with a large

number of edges.

Our key observation is that, instead of formulating MIM based on edges, one

can focus on the vertices and decide on which vertices will be saturated in an optimal

induced matching. Based on the saturated vertices, the selected edges in the induced

matching can be easily obtained.

In our vertex-based formulation, a binary variable xi takes value 1 if the corre-

sponding vertex i ∈ V is saturated by induced matching, and 0 otherwise. For a vertex

i ∈ V , the neighborhood of i is denoted as N(i). The objective is to maximize the

number of saturated vertices (divided by 2 to obtain the same result as in the previous

models). In order to have an induced matching, if a vertex i ∈ V is saturated (xi = 1),

exactly one of its adjacent vertices must be saturated. Otherwise (xi = 0), there is

no restriction on the selection of its neighbors, so we can saturate at most |N(i)| of

them. These constraints are represented as the following binary integer programming

formulation:

(MIM): max
∑

i∈V (G)

xi/2 (2.4a)

s.t. xi ≤
∑

j∈N(i)

xj ∀ i ∈ V (G) (2.4b)

∑
j∈N(i)

xj ≤ (|N(i)| − 1)(1− xi) + 1 ∀ i ∈ V (G) (2.4c)
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xi ∈ {0, 1} ∀ i ∈ V (G) (2.4d)

Here, the number of binary variables and the number of constraints depend on

the number of vertices in the graph (O(|V |)). Hence, they are not affected by the

density of a graph and linearly increase as the number of vertices increases.

2.2. Maximum Vertex-Weighted Induced Matching Problem (MVWIM)

In this section, we extend previous formulations for MIM to solve maximum

vertex-weighted induced matching problem (MVWIM). Recall that in MVWIM, we

assume that each vertex i ∈ V has a weight ci and the objective is to maximize the

total weights on vertices saturated by an induced matching. Then, MIM is a special

case of MVWIM where ci = 1/2 for all i ∈ V . So, our vertex-based model (2.4) can

be reformulated to solve MVWIM by only changing the objective function (2.4a) with

the following:

max
∑

i∈V (G)

cixi (2.5)

In Vassilaras and Christou’s formulations (2.1) and (2.3), there is no decision vari-

able representing the saturated vertices. To reformulate their models to solve MVWIM,

we can set wij = ci + cj for all (i, j) ∈ E, where wij’s represent edge weights on the

graph. With this transformation, an instance of MVWIM becomes an instance of

MEWIM, and an optimal solution can be obtained using the models given in the fol-

lowing section.

2.3. Maximum Edge-Weighted Induced Matching Problem (MEWIM)

In maximum edge-weighted induced matching problem (MEWIM), we assume

that each edge (i, j) ∈ E has a weight wij and the total edge weights in an induced
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matching is maximized. Therefore, MIM is a special case of MWIM where wij = 1 for

all (i, j) ∈ E. Since Vassilaras and Christou [1, 2] use a decision variable to represent an

edge, we can reformulate their models (2.1) and (2.3) by slightly changing the objective

function. We need to change the objective functions (2.1a) and (2.3a) with (2.6). The

rest of the constraints (2.1b) - (2.1c) and (2.3b) - (2.3d) remain the same.

max
∑

(i,j)∈E(G)

wijyij (2.6)

In our formulation (2.4), there is no decision variable representing the selected

edges. To reformulate our model to solve MEWIM instances, we need to define a

new binary decision variable yij which takes value 1 if edge (i, j) ∈ E is selected

in the optimal solution and 0 otherwise. New constraints are added to the previous

formulation to link new yij variables to original xi variables. The resulting formulation

is as follows:

(MEWIM): max
∑

(i,j)∈E(G)

wijyij (2.7a)

s.t. xi ≤
∑

j∈N(i)

xj ∀ i ∈ V (G) (2.7b)

∑
j∈N(i)

xj ≤ (|N(i)| − 1)(1− xi) + 1 ∀ i ∈ V (G) (2.7c)

yij ≤ xi ∀ (i, j) ∈ E(G) (2.7d)

yij ≤ xj ∀ (i, j) ∈ E(G) (2.7e)

yij ≥ xi + xj − 1 ∀ (i, j) ∈ E(G) (2.7f)

xi ∈ {0, 1} ∀ i ∈ V (G) (2.7g)

yij ∈ {0, 1} ∀ (i, j) ∈ E(G) (2.7h)

The objective function (2.7a) maximizes the sum of total edge weights correspond-

ing to the selected edges. Constraints (2.7b) and (2.7c), as in the previous formulation

for MIM, guarantee that the selection is an induced matching in G. An edge (i, j) ∈ E
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is selected in an optimal solution (yij = 1) only if both of its end vertices are saturated

by the matching (xi = xj = 1). This is ensured by constraints (2.7d), (2.7e) and (2.7f).

Note that this formulation is valid even when we have some negative wij values. Also

note that if at least one of xi = 0 or xj = 0, edge (i, j) cannot be selected (yij = 0)

because of constraints (2.7d) and (2.7e). Also, constraints (2.7f) forces that if both

xi = xj = 1, edge (i, j) is selected (yij = 1) in the matching. Thus, y-variables always

take on binary values even though they are defined as continuous and we can relax

them as continuous in (2.7h).
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3. BENDERS DECOMPOSITION FOR GENERALIZED

MWIM

MEWIM formulations given in Section 3.2 can be extended to also handle ver-

tex weighted version of the problem. In the generalized Maximum Weighted Induced

Matching problem (MWIM), we consider graphs having both edge and vertex weights.

In addition to edge weights (wij), assume each vertex i ∈ V has a weight ci, and

the sum of weights on selected edges and saturated vertices is to be maximized. Then,

we can generalize Vassilaras and Christou’s formulation (2.1) for MWIM as:

(VC2011 MWIM): max
∑

(i,j)∈E(G)

(wij + ci + cj) yij (3.1a)

s.t. yij +
∑

(k,l)∈Nij

ykl ≤ 1 ∀ (i, j) ∈ E(G) (3.1b)

yij ∈ {0, 1} ∀ (i, j) ∈ E(G) (3.1c)

Also, our generalized version of MWIM formulation is obtained by replacing the

objective function in (2.7). The resulting formulation is as follows:

(MWIM): max
∑

(i,j)∈E(G)

wijyij +
∑

i∈V (G)

cixi (3.2a)

s.t. xi ≤
∑

j∈N(i)

xj ∀ i ∈ V (G) (3.2b)

∑
j∈N(i)

xj ≤ (|N(i)| − 1)(1− xi) + 1 ∀ i ∈ V (G) (3.2c)

yij ≤ xi ∀ (i, j) ∈ E(G) (3.2d)

yij ≤ xj ∀ (i, j) ∈ E(G) (3.2e)

yij ≥ xi + xj − 1 ∀ (i, j) ∈ E(G) (3.2f)

xi ∈ {0, 1} ∀ i ∈ V (G) (3.2g)
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yij ∈ {0, 1} ∀ (i, j) ∈ E(G) (3.2h)

Note that our model contains |V | + |E| binary decision variables. Even if the

y-variables can be relaxed as continuous, the number of constraints is O(|V | + |E|).

It may be computationally difficult for large graphs to solve the problem with all

decision variables and constraints simultaneously. In this section, we focus on deriving

a Benders decomposition algorithm for solving the generalized MWIM.

Our decomposition approach first finds a feasible induced matching using a master

problem that contains only x-variables and then checks whether this induced matching

provides an optimal selection of edges using a subproblem. Let us first reformulate

the problem in terms of only x-variables and an additional continuous variable t which

predicts the maximum edge weight that can be obtained with selection of x-variables:

(MP): max
∑

i∈V (G)

cixi + t (3.3a)

s.t. xi ≤
∑

j∈N(i)

xj ∀ i ∈ V (G) (3.3b)

∑
j∈N(i)

xj ≤ (|N(i)| − 1)(1− xi) + 1 ∀ i ∈ V (G) (3.3c)

t ≤ UB (3.3d)

xi ∈ {0, 1} ∀ i ∈ V (G) (3.3e)

where UB is an upper bound on the weight of any maximum induced matching. This

formulation is similar to binary integer programming formulation for MVWIM, with an

additional constraint (3.3d). It contains significantly fewer decision variables and con-

straints than the original model (3.2), which is advantageous in terms of computational

effort.

In the formulation of master problem (MP), constraints (3.3b) and (3.3c) provide

a feasible induced matching. Since the decision variable t predicts the maximum total
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edge weight in the matching, an initial UB can be calculated by summing up all edge

weights. Tighter values for UB and some valid inequalities for t-variable are given in

Section 4.1. Also, in each iteration, additional cuts are generated and added to the

master problem using a subproblem to reach optimality.

After solving this master problem and finding a feasible vertex selection, denoted

by x̂, the corresponding edge selection represented by y-variables and the total edge

weights on these edges can be obtained using the following subproblem (SP (x̂)):

(SP (x̂)) : max
∑

(i,j)∈E(G)

wijyij (3.4a)

s.t yij ≤ x̂i ∀ (i, j) ∈ E(G) (3.4b)

yij ≤ x̂j ∀ (i, j) ∈ E(G) (3.4c)

yij ≥ x̂i + x̂j − 1 ∀ (i, j) ∈ E(G) (3.4d)

yij ∈ {0, 1} ∀ (i, j) ∈ E(G) (3.4e)

In this formulation, y-variables can be relaxed as continuous as explained in Sec-

tion 2.3. Then the subproblem becomes a linear programming problem. Furthermore,

we do not need to solve it as an LP since the solution can be obtained trivially by

inspection for any given x̂ values. Note that SP (x̂) is always feasible and the optimal

solution is bounded. Hence, the dual of SP (x̂) is always feasible and bounded. Let αij,

βij and γij be dual multipliers associated with the constraints (3.4b), (3.4c) and (3.4d)

in SP (x̂), respectively. Then the dual formulation of the subproblem for a given x̂ is

given below:

(DSP (x̂)) : min
∑

(i,j)∈E(G)

(αijx̂i + βijx̂j + γij(x̂i + x̂j − 1)) (3.5a)

s.t αij + βij + γij ≥ wij ∀ (i, j) ∈ E(G) (3.5b)

αij ≥ 0 ∀ (i, j) ∈ E(G) (3.5c)

βij ≥ 0 ∀ (i, j) ∈ E(G) (3.5d)
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γij ≤ 0 ∀ (i, j) ∈ E(G) (3.5e)

It can be seen that the feasible region of DSP (x̂) does not depend on the value

of x̂, it only affects the objective function. Also, as we mentioned before, DSP (x̂) is

always feasible and bounded.

Although DSP (x̂) is a linear programming problem, its optimal solution can be

obtained without solving it as an LP. Note that the formulation can be decomposed for

each edge (i, j) ∈ E such that the optimum objective value ofDSP (x̂) is the summation

of the optimum objective values of decomposed problems. To find an optimal solution

for DSP (x̂), we can use the following procedure:

If both x̂i = x̂j = 0, we must set γij = 0 to minimize the objective function. In

addition, we need to satisfy the condition that αij + βij ≥ wij. If only one of x̂i = 1 or

x̂j = 1, the corresponding dual variable must take a value of 0, and we need to satisfy

the condition that βij + γij ≥ wij or αij + γij ≥ wij, respectively. If both x̂i = x̂j = 1,

we need to satisfy the condition that αij +βij +γij = wij. Thus, we can obtain infinitely

many (α, β, γ) solutions for DSP (x̂). Let θij represents the proportion of wij that αij

will take. Then, an optimal solution for DSP (x̂) can be found using Algorithm 1 for

a given x̂:
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Algorithm 1 Solution of DSP (x̂)

Require: A graph G = (V,E) and a binary vector x̂ of size |V |

Ensure: A solution of DSP (x̂)

1: For each edge (i, j) ∈ E,

2: if x̂i = 1 and x̂j = 1, or x̂i = 0 and x̂j = 0 then

3: set αij = θijwij , βij = (1− θij)wij and γij = 0

4: else if x̂i = 1 and x̂j = 0 then

5: set αij = 0, βij = wij and γij = 0

6: else if x̂i = 0 and x̂j = 1 then

7: set αij = wij, βij = 0 and γij = 0

8: end if

Our Benders decomposition strategy first solves master problem to optimality,

yielding a feasible (x̂, t̂). Then, we need to find the optimum objective function value

of SP (x̂) and compare it with t̂. Since by duality theorem, the optimum objective

function values of SP (x̂) and DSP (x̂) are the same, we solve DSP (x̂) using Algorithm

1 and calculate the total edge weight obtained by the current selection, denoted by t∗.

If t̂ = t∗, then x̂ corresponds to an optimal induced matching. On the other hand,

if t̂ > t∗, we need to put an additional bound on t-variable in the master problem.

Let (α̂, β̂, γ̂) be an optimal dual multipliers obtained by solving DSP (x̂). Then, the

following constraint is added to the master problem and re-solved in the next iteration

to obtain a new candidate optimal solution:

t ≤
∑

(i,j)∈E(G)

(α̂ijxi + β̂ijxj + γ̂ij(xi + xj − 1)) (3.6)

This type of constraints are called “Benders optimality cuts” as they are based on

the optimality conditions of the subproblem. Since DSP (x̂) can have infinitely many

solutions, the selection of θij parameters results in different cuts. Different θij selection

procedures have been applied to compare computational results in Section 5.
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Remark. For any optimality cut, the violation is obtained by

t−
∑

(i,j)∈E(G)

(α̂ijx̂i + β̂ijx̂j + γ̂ij(x̂i + x̂j − 1)) = t− t∗ (3.7)

where t∗ is the current optimum objective function value for DSP (x̂). Thus, all op-

timality cuts generated in this way have the same violation regardless of the value of

(α̂, β̂, γ̂).

In master problem, instead of adding a single decision variable t, we can create

a decision variable ti for each vertex i ∈ V . These variables are used to predict the

maximum edge weight that can be obtained if we saturate vertex i. To incorporate

this change in our master problem, we simply replace the objective function (3.3a)

and constraint (3.3d) with the following objective function (3.8) and constraints (3.9),

respectively:

max
∑

i∈V (G)

(ti / 2 + cixi) (3.8)

ti ≤ UBi (3.9)

where UBi is an upper bound on the value of ti. A valid numerical value for UBi can

be the maximum edge weight emanating from vertex i. Another valid inequality for

ti-variables is given is Section 4.1.

In this case, Benders decomposition procedure given above needs to be adjusted

accordingly. Optimality cut (3.6) can also be decomposed such that each time we add

a new cut for every ti :

ti ≤
∑

j∈N(i)

(α̂ijxi + β̂ijxj + γ̂ij(xi + xj − 1)) (3.10)

The above solution procedure for MWIM using Benders decomposition is sum-
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marized in Algorithm 2:

Algorithm 2 MWIM Benders Decomposition

Require: A graph G = (V,E) with edge weights wij and vertex weights ci

Ensure: A maximum weighted induced matching

1: Set LB = −∞ and UB =∞

2: Solve MP. Let (x̂, t̂) be a candidate optimal solution. Set UB = t̂ +
∑

i∈V (G)

cix̂i

(or set UB =
∑

i∈V (G)

(t̂i / 2 + cix̂i) )

3: Obtain sum of weights of selected edges by DSP (x̂) using Algorithm 1, denoted

by t∗. Set LB = t∗ +
∑

i∈V (G)

cix̂i.

4: if UB = LB then

5: Current edge selection is a maximum weighted induced matching of G, STOP

6: else

7: Let (α̂, β̂, γ̂) denote an optimal solution of DSP (x̂).

8: Generate optimality cut(s) using (3.6) (or (3.10)) with current optimal dual

solution (α̂, β̂, γ̂), add them to the master problem. Go to step 2.

9: end if
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4. ALGORITHMIC IMPROVEMENTS

4.1. Valid Inequalities

In the master problem formulation (3.3), before adding any optimality cuts, the

only bound for t-variable is the sum of all edge weights, denoted by UB. Since this is

a maximization problem, in the first iteration, t-variable will be at its upper bound.

By tightening its upper bound and adding valid inequalities on t-variable, we can have

smaller upper bound for the objective function value at the first iterations of Algorithm

2, which can result in faster convergence.

To obtain a tighter upper bound for t-variable, we will use the following obser-

vation: for a graph G = (V,E), a matching can contain at most b|V |/2c edges. This

is also valid for any induced matching since an induced matching is also a matching in

G. Based on this observation, we can find an upper bound on the value of t-variable.

Since it is used to predict the maximum edge weight of an induced matching in G, a

numerical bound, denoted by UB∗, can be found by sorting all wij values and sum-

ming up the greatest b|V |/2c of them. Therefore an initial bound on t-variable can be

written as:

t ≤ UB∗ (4.1)

Another approach to find a valid inequality for t-variable is as follows: for any

vertex i ∈ V , if xi = 1, i.e. if it is saturated by an induced matching, it can at most

increase the objective function value by the maximum edge weight emanating from it

and if xi = 0, i.e. if it is not saturated by an induced matching, there is no increase in

the objective function value. Thus, the following inequality is valid for t:

t ≤
∑

i∈V (G)

max
j∈N(i)

{wij} xi / 2 (4.2)
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Similarly, in the decomposed version of master problem, the only bound for ti-

variable is UBi, which is the maximum edge weight emanating from vertex i. In the

formulation, ti-variables represent the maximum edge weight that can be obtained by

saturating vertex i. With a similar argument, we can say that the following inequality

is valid for ti:

ti ≤ max
j∈N(i)

{wij} xi (4.3)

In Section 5, we add these upper bounds and valid inequalities into master prob-

lem formulation and compare their effects on the performance of our decomposition

approach.

4.2. Formulation Tightening

In our formulation (2.4) for MIM, constraints (2.4c) are based on the observation

that if a vertex i ∈ V is not saturated (xi = 0), we can saturate at most |N(i)| of

its neighbors. However, it may be infeasible to saturate all of its neighbors in an

induced matching. To obtain a tighter upper bound for these constraints, we will use

the following method:

For any vertex i ∈ V , let S = N(i) and S
′

= N(S) − {i}. Assume we assign

weights to edges such that all edges {(i, j) : i ∈ S, j ∈ S} will have weight 2, {(i, j) :

i ∈ S, j ∈ S ′} will have weight 1 and other edges will have weight 0. Figure 4.1 shows

assignment of edge weights for vertex i. Then, finding the maximum number of vertices

in S saturated by a matching is equivalent to finding the maximum weighted matching

in G, which can be found by weighted version of Edmond’s blossom algorithm [12]. If

for every vertex i ∈ V , we find maximum weighted matching in such a way and denote

the sum of edge weights on these edges by N∗, we can replace |N(i)| in constraints
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(2.4c) with N∗ and rewrite them as:

∑
j∈N(i)

xj ≤ (N∗ − 1)(1− xi) + 1 ∀ i ∈ V (G) (4.4)

Figure 4.1. An example of construction of maximum weighted induced matching

problem for vertex i

In section 5, we try to replace constraints (2.4c) with (4.4) to see the effect on

the computational time of MIM formulation (2.4).

4.3. Single Branch-and-Bound Tree

In our Benders decomposition approach, we solve the master problem to opti-

mality at each iteration and check whether it is an optimal solution or not using a

subproblem. If not, we add an optimality cut and re-solve it. Although new cuts may

change the structure of the branch-and-bound tree, we may need to revisit candidate

solutions that are discarded earlier. Hence, this process can be very expensive from a

computational point of view. Instead, we can interrupt the branch-and-bound solution

process of master problem each time the solver finds an integer solution x̂ (and t̂) and

check whether optimality cut (3.6) (or (3.10)) that is violated by the current integer
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solution can be generated. If we can generate such an optimality cut, we reject the

current solution, add the newly generated cuts to the problem and resume the solution

process. Otherwise, we accept the current solution as the new incumbent and again

resume the solution process. In our computational tests, this approach consistently

outperformed solving master problem to optimality at each iteration and re-optimizing

it. With this approach, we can solve the problem using a single branch-and-bound tree

that is tightened as necessary as opposed to repeatedly generating a branch-and-bound

tree in each iteration. Therefore, we avoid considerable rework by never visiting a node

and overlooking a truly superior solution. A similar approach was also used in [31, 32]
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5. COMPUTATIONAL RESULTS

To test the efficiency of formulations and improvements mentioned in previous

sections, we conducted a series of experiments. We executed all integer programming

formulations using CPLEX 12.6.1 running on a Windows 7 PC with a 2.3 GHz Intel

Core i5 CPU and 4 GB RAM. We also used CPLEX’s callback functions to solve our

model in a single branch-and-bound tree as described in Section 4.3. We used LEMON

Graph Library 1.2.4 [33] to efficiently implement graph related data structures and

algorithms. Our base test data set contains randomly generated graph instances having

expected edge density (measured as D = 2|E|
|V |X(|V |−1)) of 0.2, 0.5 and 0.8. We increased

the number of vertices |V | up to a level that all methods are unable to solve the

problem. To generate weighted instances, we first generated random graphs as in the

unweighted case, and then assigned an integer weight uniformly distributed between

1 and 10 to each vertex and/or edge. We generated five problem instances for each

problem size, determined by the expected edge density and the number of vertices.

For each problem size, we report the following statistics calculated over five ran-

dom instances:

• “Solved:” the number of problem instances solved to optimality within the allowed

time limit of 1800 seconds.

• “Gap:” the average final percentage optimality gap for all instances (calculated

as (UB−LB)/LB where UB denotes the upper bound and LB denotes the lower

bound).

• “Time:” the average amount of time in seconds spent by each algorithm on all

instances.

In Table 5.1, we compare the performances of Vassilaras and Christou’s formu-

lations VC2011, CV2013 with our vertex-based formulation MIM given in Section 2.4.

In the table, “-” shows that the corresponding method is unable to solve instances in

the given time limit and “*” is used if the corresponding method is unable to solve
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instances due to insufficient memory. First of all, we observe that for any D and |V |

values, Vassilaras and Christou’s first formulation (denoted by VC2011) [2] performs

significantly better compared to their second formulation (denoted by CV2013) [1]. It

solves more instances in the given time limit and does not cause out of memory status.

Also, for low-density, VC2011 has smaller total running time than our formulation. On

the other hand, for moderate and high densities, our formulation performs faster and

solves more instances in the given time limit.

In Table 5.2, we show the effect of formulation tightening approach described

in Section 4.2 for MIM formulation. Here, time column in the modified formulation

also includes the required time to calculate the maximum weighted matchings in the

graph. It can be seen that the modification suggested in Section 4.2 does not provide

a significant difference in total running time and optimality gap for MIM. It follows

that the use of maximum weighted matching for formulation tightening is not justified

by our experiments.

Recall that in our Benders decomposition approach proposed in Section 3, DSP (x̂)

can have infinitely many solutions. By changing θij values, we can obtain different

(α̂, β̂, γ̂), resulting in different cuts in (3.6) and (3.10). To test the effect of θij selec-

tion, we solved all instances by setting all θij values to 0.2, 0.5 and 0.8. Also, we tried

to assign random values between 0 and 1 to θij in each iteration. The result of this

experiment is shown in Table 5.3. Note that regardless of θij values, all possible opti-

mality cuts have the same violation, therefore there is no significant difference between

these options. Computational results also show that θij selection has no clear effect on

total running time and optimality gap. Therefore, we set θij = 0.5 in the remaining

parts for simplicity.

Since DSP (x̂) can have infinitely many solutions, it is also possible to add multi-

ple cuts to the master problem in each iteration. To test the effect of this option, in each

iteration, we generated 10 different cuts by assigning random values between 0 and 1

to θij variables. In Table 5.4, “multiple cut” column shows the result of this operation.

Here, we can see that adding multiple cuts to the master problem has significantly
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Table 5.1. Comparison of formulations for solving MIM

MIM VC2011 CV2013

D |V | Solved Gap Time Solved Gap Time Solved Gap Time

0.2

25 5 0% 0.1 5 0% 0.0 5 0% 0.1

50 5 0% 1.2 5 0% 0.4 5 0% 2.0

75 5 0% 36.8 5 0% 10.6 5 0% 75.0

100 1 8% 1795.0 5 0% 904.8 * * *

125 0 50% 1800.0 0 27% 1800.0 * * *

0.5

25 5 0% 0.1 5 0% 0.1 5 0% 0.3

50 5 0% 0.9 5 0% 3.9 5 0% 25.6

75 5 0% 8.0 5 0% 155.2 0 72% 1800.0

100 5 0% 54.1 0 128% 1800.0 - - -

125 5 0% 217.0 - - - - - -

150 5 0% 1163.3 - - - - - -

175 0 49% 1800.0 - - - - - -

0.8

25 5 0% 0.1 5 0% 0.1 5 0% 0.3

50 5 0% 0.3 5 0% 2.1 5 0% 12.7

75 5 0% 1.2 5 0% 211.6 * * *

100 5 0% 3.5 0 696% 1800.0 * * *

125 5 0% 13.5 - - - * * *

150 5 0% 24.0 - - - * * *

175 5 0% 43.4 - - - * * *

200 5 0% 88.4 - - - * * *

225 5 0% 162.1 - - - * * *

250 5 0% 337.5 - - - * * *
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Table 5.2. Effect of formulation tightening method described in Section 4.2 for MIM

formulation

MIM MIM-modified

D |V | Solved Gap Time Solved Gap Time

0.2

25 5 0% 0.1 5 0% 0.1

50 5 0% 1.2 5 0% 1.2

75 5 0% 36.8 5 0% 38.4

100 1 8% 1795.0 1 8% 1788.9

125 0 50% 1800.0 0 52% 1800.0

0.5

25 5 0% 0.1 5 0% 0.2

50 5 0% 0.9 5 0% 1.2

75 5 0% 8.0 5 0% 8.1

100 5 0% 54.1 5 0% 52.3

125 5 0% 217.0 5 0% 240.7

150 5 0% 1163.3 5 0% 1220.3

175 0 49% 1800.0 0 48% 1800.0

0.8

25 5 0% 0.1 5 0% 0.2

50 5 0% 0.3 5 0% 0.6

75 5 0% 1.2 5 0% 1.6

100 5 0% 3.5 5 0% 4.4

125 5 0% 13.5 5 0% 15.7

150 5 0% 24.0 5 0% 25.5

175 5 0% 43.4 5 0% 50.8

200 5 0% 88.4 5 0% 103.5

225 5 0% 162.1 5 0% 182.1

250 5 0% 337.5 5 0% 356.9
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Table 5.3. Effect of different θij selection in the solution of DSP (x̂)
θij= 0.2 θij= 0.5 θij= 0.8 θij= rand()

D |V | Solved Gap Time Solved Gap Time Solved Gap Time Solved Gap Time

0.2

25 5 0% 0.1 5 0% 0.1 5 0% 0.2 5 0% 0.1

50 5 0% 1.4 5 0% 1.2 5 0% 1.1 5 0% 1.3

75 5 0% 34.3 5 0% 36.8 5 0% 36.0 5 0% 37.4

100 0 7% 1800.0 1 8% 1795.0 0 10% 1800.0 1 6% 1753.5

125 0 54% 1800.0 0 50% 1800.0 0 50% 1800.0 0 50% 1800.0

0.5

25 5 0% 0.1 5 0% 0.1 5 0% 0.1 5 0% 0.1

50 5 0% 1.0 5 0% 0.9 5 0% 0.8 5 0% 0.9

75 5 0% 7.4 5 0% 8.0 5 0% 7.9 5 0% 8.4

100 5 0% 56.6 5 0% 54.1 5 0% 55.7 5 0% 52.9

125 5 0% 215.3 5 0% 217.0 5 0% 217.8 5 0% 220.5

150 5 0% 1179.1 5 0% 1163.3 5 0% 1170.2 5 0% 1161.4

175 0 44% 1800.0 0 49% 1800.0 0 51% 1800.0 0 48% 1800.0

0.8

25 5 0% 0.1 5 0% 0.1 5 0% 0.1 5 0% 0.1

50 5 0% 0.2 5 0% 0.3 5 0% 0.3 5 0% 0.3

75 5 0% 1.4 5 0% 1.2 5 0% 1.1 5 0% 1.4

100 5 0% 3.4 5 0% 3.5 5 0% 3.7 5 0% 3.5

125 5 0% 13.6 5 0% 13.5 5 0% 13.8 5 0% 13.7

150 5 0% 23.8 5 0% 24.0 5 0% 23.8 5 0% 24.3

175 5 0% 42.7 5 0% 43.4 5 0% 42.5 5 0% 43.2

200 5 0% 85.3 5 0% 88.4 5 0% 89.7 5 0% 87.0

225 5 0% 165.9 5 0% 162.1 5 0% 163.7 5 0% 161.6

250 5 0% 336.4 5 0% 337.5 5 0% 337.4 5 0% 340.4

increased the computational time as it becomes harder to solve master problem with

large number of constraints. Therefore, adding multiple cuts to the master problem in

a single iteration is not justified by our experiments.

Our second experiment compares the performances of MWIM formulations given

in Section 3 and shows the effect of proposed improvements suggested in Section 4.1.

The results of this experiment are summarized in Tables 5.5, 5.6, 5.7 and 5.8. In Table

5.5, we observe that Vassilaras and Christou’s formulation [2] modified to solve MWIM,

denoted as VC2011 MWIM, can solve more instances to optimality within the given

time limit with lower total running times and gaps compared to our full model. On the

other hand, our full model for the generalized MWIM has higher total running times

and gaps for all densities.

In Table 5.6, we measure the effect of the suggested improvements on the de-

composition approach where we have single t-variable in the master problem. Here,

we report the following results: “Single t:” Algorithm 2 with single t-variable in the

master problem, “Single t + (4.1):” Algorithm 2 where we use (4.1) as an initial bound

on t-variable in the master problem, “Single t + (4.2):” Algorithm 2 augmented with
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Table 5.4. Effect of generating multiple cuts in each iteration

Single cut Multiple cuts

D |V | Solved Gap Time Solved Gap Time

0.2

25 5 0% 0.1 5 0% 0.2

50 5 0% 1.2 5 0% 2.0

75 5 0% 36.8 5 0% 59.3

100 1 8% 1795.0 0 16% 1800.0

125 0 50% 1800.0 0 90% 1800.0

0.5

25 5 0% 0.1 5 0% 0.1

50 5 0% 0.9 5 0% 1.3

75 5 0% 8.0 5 0% 12.5

100 5 0% 54.1 5 0% 84.4

125 5 0% 217.0 5 0% 287.6

150 5 0% 1163.3 5 0% 1537.9

175 0 49% 1800.0 0 78% 1800.0

0.8

25 5 0% 0.1 5 0% 0.1

50 5 0% 0.3 5 0% 0.5

75 5 0% 1.2 5 0% 1.9

100 5 0% 3.5 5 0% 4.7

125 5 0% 13.5 5 0% 19.6

150 5 0% 24.0 5 0% 35.0

175 5 0% 43.4 5 0% 70.3

200 5 0% 88.4 5 0% 118.3

225 5 0% 162.1 5 0% 202.9

250 5 0% 337.5 5 0% 462.6
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valid inequality (4.2) in the master problem. For the model with single t-variable in the

master problem, it can be observed that inequality (4.1) has a slight improvement in

total running time, but it is unable to solve instances that could not be solved by pure

model. It can only decrease the optimality gap for these instances. On the other hand,

inequality (4.2) has a significant effect on the performance in terms of computational

time and we can solve more instances in the enforced time limit.

Similarly, in Table 5.7, we show the effect of valid inequality (4.3) on the de-

composition approach where we have multiple ti-variables in the master problem. We

report the following results: “Multiple t:” Algorithm 2 with multiple ti-variables in

the master problem, “Multiple t + (4.3):” Algorithm 2 improved with valid inequality

(4.3) in the master problem. Here, we note that valid inequality (4.3) has a significant

improvement in terms of computational effort. It can be seen that the use of valid

inequality (4.3) is justified by our experiments.

Finally, in Table 5.8, we summarize the best implementations for MWIM. If

we compare the running times of full model, in which we have all decision variables

and constraints, and our Benders decomposition approach, it is observed that our

decomposition approach outperforms full model for all instances. Also, comparing two

decomposition approaches, we note that the use of multiple ti-variables in the master

problem along with valid inequalities (4.3) has a significant effect on solution times

and optimality gaps for all instances. By comparing its performance against Vassilaras

and Christou’s formulation [2] adapted for MWIM, we observe that VC2011 MWIM is

faster than our decomposition approach for low density, but, our algorithm performs

better for medium and large densities.
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Table 5.5. Comparison of formulations for solving MWIM

VC2011 MWIM Full model

D |V | Solved Gap Time Solved Gap Time

0.2

25 5 0% 0.1 5 0% 0.5

50 5 0% 0.4 5 0% 7.2

75 5 0% 10.8 1 6% 1745.0

100 5 0% 235.1 - - -

125 0 56% 1800.0 - - -

0.5

25 5 0% 0.2 5 0% 0.5

50 5 0% 6.2 5 0% 13.2

75 5 0% 113.4 5 0% 149.8

100 5 0% 1456.3 5 0% 1524.5

125 0 152% 1800.0 0 860% 1800.0

150 - - - - - -

0.8

25 5 0% 0.2 5 0% 0.6

50 5 0% 4.6 5 0% 12.2

75 5 0% 55.2 5 0% 84.5

100 5 0% 244.1 5 0% 342.3

125 5 0% 896.7 5 0% 1211.2

150 0 88% 1800.0 0 6360% 1800.0

175 - - - - - -

200 - - - - - -

225 - - - - - -

250 - - - - - -
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Table 5.6. Comparison of formulations for solving MWIM

Single t Single t + (4.1) Single t + (4.2)

D |V | Solved Gap Time Solved Gap Time Solved Gap Time

0.2

25 5 0% 0.4 5 0% 0.5 5 0% 0.3

50 3 12% 1453.7 3 7% 1247.8 5 0% 9.8

75 0 410% 1800.0 0 200% 1800.0 3 7% 1759.6

100 - - - - - - 0 50% 1800.0

125 - - - - - - - - -

0.5

25 5 0% 1.3 5 0% 1.1 5 0% 0.3

50 5 0% 436.7 5 0% 324.2 5 0% 5.1

75 0 707% 1800.0 0 346% 1800.0 5 0% 48.3

100 - - - - - - 5 0% 160.9

125 - - - - - - 5 0% 770.9

150 - - - - - - 0 33% 1800.0

0.8

25 5 0% 2.0 5 0% 1.6 5 0% 0.4

50 5 0% 235.4 5 0% 197.3 5 0% 5.3

75 5 0% 852.8 5 0% 824.6 5 0% 13.1

100 0 1554% 1800.0 0 690% 1800.0 5 0% 27.4

125 - - - - - - 5 0% 93.7

150 - - - - - - 5 0% 273.1

175 - - - - - - 5 0% 450.1

200 - - - - - - 5 0% 1234.7

225 - - - - - - 0 86% 1800.0

250 - - - - - - - - -
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Table 5.7. Comparison of formulations for solving MWIM

Multiple t Multiple t + (4.3)

D |V | Solved Gap Time Solved Gap Time

0.2

25 5 0% 0.3 5 0% 0.3

50 5 0% 26.2 5 0% 2.9

75 0 146% 1800.0 5 0% 456.5

100 - - - 0 28% 1800.0

125 - - - - - -

0.5

25 5 0% 0.7 5 0% 0.4

50 5 0% 79.4 5 0% 3.2

75 0 527% 1800.0 5 0% 39.3

100 - - - 5 0% 73.0

125 - - - 5 0% 562.5

150 - - - 0 23% 1800.0

0.8

25 5 0% 1.5 5 0% 0.5

50 5 0% 113.2 5 0% 3.0

75 0 212% 1800.0 5 0% 7.7

100 - - - 5 0% 13.9

125 - - - 5 0% 41.6

150 - - - 5 0% 75.9

175 - - - 5 0% 101.5

200 - - - 5 0% 240.2

225 - - - 5 0% 482.7

250 - - - 5 0% 621.2
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Table 5.8. Comparison of formulations for solving MWIM
VC2011 MWIM Full model Single t + (4.2) Multiple t + (4.3)

D |V | Solved Gap Time Solved Gap Time Solved Gap Time Solved Gap Time

0.2

25 5 0% 0.1 5 0% 0.5 5 0% 0.3 5 0% 0.3

50 5 0% 0.4 5 0% 7.2 5 0% 9.8 5 0% 2.9

75 5 0% 10.8 1 6% 1745.0 3 7% 1759.6 5 0% 456.5

100 5 0% 235.1 - - - 0 50% 1800.0 0 28% 1800.0

125 0 56% 1800.0 - - - - - - - - -

0.5

25 5 0% 0.2 5 0% 0.5 5 0% 0.3 5 0% 0.4

50 5 0% 6.2 5 0% 13.2 5 0% 5.1 5 0% 3.2

75 5 0% 113.4 5 0% 149.8 5 0% 48.3 5 0% 39.3

100 5 0% 1456.3 5 0% 1524.5 5 0% 160.9 5 0% 73.0

125 0 152% 1800.0 0 860% 1800.0 5 0% 770.9 5 0% 562.5

150 - - - - - - 0 33% 1800.0 0 23% 1800.0

0.8

25 5 0% 0.2 5 0% 0.6 5 0% 0.4 5 0% 0.5

50 5 0% 4.6 5 0% 12.2 5 0% 5.3 5 0% 3.0

75 5 0% 55.2 5 0% 84.5 5 0% 13.1 5 0% 7.7

100 5 0% 244.1 5 0% 342.3 5 0% 27.4 5 0% 13.9

125 5 0% 1096.7 5 0% 1211.2 5 0% 93.7 5 0% 41.6

150 0 88% 1800.0 0 6360% 1800.0 5 0% 273.1 5 0% 75.9

175 - - - - - - 5 0% 450.1 5 0% 101.5

200 - - - - - - 5 0% 1234.7 5 0% 240.2

225 - - - - - - 0 86% 1800.0 5 0% 482.7

250 - - - - - - - - - 5 0% 621.2
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6. CONCLUSION AND FURTHER RESEARCH

In the scope of this thesis, we studied Maximum Induced Matching Problem

(MIM), where the aim is to find an induced matching with the largest cardinality. In

practice, induced matchings are heavily used in communication industry to obtain se-

cure communication channels. They are also used to determine the maximum capacity

of MAC layer in wireless ad-hoc networks.

The problem is known to be NP-hard for general graphs, even for bipartite graphs.

In the literature, the problem is studied for some restricted graph classes. It is addressed

from mathematical programming point of view by Vassilaras and Christou [1, 2].

We give a vertex-based integer programming formulation for MIM, having less

number of binary variables and constraints. Then, we described vertex-weighted and

edge-weighted versions of the problem, and call them as Maximum Vertex-Weighted

Induced Matching problem (MVWIM) and Maximum Edge-Weighted Induced Match-

ing problem (MEWIM), respectively. We reformulated the models in the literature and

our model to solve weighted instances.

In the generalized version of Maximum Weighted Induced Matching problem

(MWIM), we considered graphs with both edge and wertex weights. As the formula-

tion for MWIM contains many decision variables and constraints, we applied Benders

decomposition to our proposed formulation. Our decomposition algorithm seeks a fea-

sible induced matching using a master problem and tries to reach optimality with the

help of cuts generated by the subproblem. We added upper bounds on variables and

valid inequalities in the master problem to improve the efficiency of our algorithm.

We tested the efficacy of our approach on randomly generated graph instances.

Computational results show that our decomposition approach performs better than

solving the underlying integer programming formulation. Also, it outperforms the

formulations found in the literature for medium and high densities.
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As a future research, one can focus on solving MIM, MVWIM, MEWIM and

MWIM problems in some specific graph classes and consider developing additional

valid inequalities using their structural properties.
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