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ABSTRACT

‘OAGAIT’: A DECISION SUPPORT SYSTEM FOR GRADING KNEE
OSTEOARTHRITIS USING GAIT DATA

Sen Koktas, Nigar
Ph.D., Department of Information Systems
Supervisor: Prof. Dr. Nese Yalabik

January 2008, 142 pages

Gait analysis is the process of collecting and analyzing quantitative information
about walking patterns of the people. Gait analysis enables the clinicians to
differentiate gait deviations objectively. Diagnostic decision making from gait
data only requires high level of medical expertise of neuromusculoskeletal system
trained for the purpose. An automated system is expected to decrease this

requirement by a ‘transformed knowledge’ of these experts.

This study presents a clinical decision support system for the detecting and
scoring of a knee disorder, namely, Osteoarthritis (OA). Data used for training
and recognition is mainly obtained through Computerized Gait Analysis software.

Sociodemographic and disease characteristics such as age, body mass index and

v



pain level are also included in decision making. Subjects are allocated into four
OA-severity categories, formed in accordance with the Kellgren-Lawrence scale:

“Normal”, “Mild”, “Moderate”, and “Severe”.

Different types of classifiers are combined to incorporate the different types of
data and to make the best advantages of different classifiers for better accuracy. A
decision tree is developed with Multilayer Perceptrons (MLP) at the leaves. This
gives an opportunity to use neural networks to extract hidden (i.e., implicit)
knowledge in gait measurements and use it back into the explicit form of the

decision trees for reasoning.

Individual feature selection is applied using the Mahalanobis Distance measure
and most discriminatory features are used for each expert MLP. Significant
knowledge about clinical recognition of the OA is derived by feature selection
process. The final system is tested with test set and a success rate of about 80% is

achieved on the average.

Keywords: Gait analysis, grading knee OA, combining classifiers, clinical

decision support systems
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‘OAGAIT’: YURUYUS VERILERI KULLANARAK DIiZ OSTEOARTRITI
DERECELENDIRMESI ICIN BIR KARAR DESTEK SISTEMI

Sen Koktas, Nigar
Doktora, Bilisim Sistemleri

Tez Yoneticisi: Prof. Dr. Nese Yalabik

Ocak 2008, 142 sayfa

Yiiriiylis analizi insanlarin yiiriiyiis oriintiileri hakkinda niceliksel bilgi toplama ve
analiz etme yontemidir. Yiirliyiis analizi klinik uzmanlarin yliriiyiisteki sapmalari
objektif olarak ayirt etmelerini saglar. Sadece yiiriiylis verisi ile tanisal karar
vermek kas-sinir-iskelet sistemi hakkinda ileri medikal uzmanlik gerektirir.
Otomatik bir sistemin uzmanlarin “doniistiirilmiis bilgileri” ile bu ihtiyact

azaltacag1 beklenmektedir.

Bu calisma bir diz rahatsizligi olan Osteoartrit’in, tespiti ve derecelendirilmesi
i¢in tasarlanan bir klinik karar destek sistemini sunmaktadir. Ogrenme ve tanima

icin kullanilan veri bir Bilgisayarl Yiirliylis Analizi yazilimi yolu ile toplanmustir.
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Sosyodemografik ve yas, viicut kitle endeksi ve agri seviyesi gibi hastalik
karakteristikleri de karar verme siirecine dahil edilmistir. Kisiler Kellgren-
Lawrence 6lgegine gore dort OA-siddet derecesine ayrilmistir: “Normal”, “Hafif”,

“Orta” ve “Siddetli”.

Farkli tiirlerde verileri kapsamak ve daha iyi dogruluk oranlar1 i¢in farkli
simiflandiricilar  birlestirilmistir.  Yapraklarina Cok Katmanli Algilayicilar
yerlestirilen bir karar agaci gelistirilmistir. Bu yontem, sinir aglarini yiiriyiis
Olciilerinde sakli bilgileri ¢ikarma ve bunlart karar agacinin agik bigimine

sebeplendirme i¢in geri bildirme firsat1 verir.

Mahalanobis Uzaklig1 6l¢iisiinii kullanarak bireysel 6znitelik segme uygulanmig
ve her bir uzman Cok Katmanli Algilayicilar icin en ayirt edici Oznitelikler
kullanilmistir. Oznitelik se¢gme siirecinde OA’nin klinik taninmasi hakkinda
onemli bilgiler ¢ikarilmistir. Uretilen son sistem test verisi ile test edilmis ve

ortalamada yaklasik %80 basar1 oran1 elde edilmistir.

Anahtar Kelimeler: Yiliriiyiis analizi, diz OA’s1 derecelendirilmesi, birlesik

smiflandiricilar, klinik karar destek sistemleri
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CHAPTER 1

INTRODUCTION

1.1. GAIT ANALYSIS

Gait analysis is the process of collecting and analyzing quantitative information
about walking patterns of the people. Gait analysis, when considered as an
automated system, is usually used for two major applications: human

identification and clinical applications.

Human identification is an important security issue. In most cases it is not so easy
to determine the identity of the person but many applications work well for some
special cases, such as gender classification [1], age classification [2] etc. In most
of these studies silhouettes are obtained from image sequences and required
features are gathered from these [3-10]. Since exact human id verification requires
more complex systems and huge amount of data, these studies are at their initial

phases [3-10].

The application of gait analysis in medicine is also a well-studied subject. There
are studies that have shown that the number of surgical procedures is reduced
after a three-dimensional (3-D) gait analysis [11-13]. Moreover, gait analysis is
important for orthopedists to develop a treatment plan or to track the improvement
of persons having gait problems (i.e. Parkinson, cerebral palsy, arthritis [13-20]).

Examples of the application area of clinical gait analysis include [11-15]:



e the assessment of orthopedic diseases’ progression to aid in the

determination of appropriate surgical or orthotic intervention

e the examination of the progression of neuromuscular disorders such as

Parkinson's or muscular dystrophy

e the quantification of the effects of surgery, that is, pre and post-operative

patterns
e the evaluation of the effectiveness of prosthetic joint replacement
e the examination of improvements in orthotic design and
e the quantification of changes in prosthetic design

Gait analysis enables the clinicians to differentiate gait deviations objectively. It
serves not only as a measure of treatment outcome, but also as a useful tool in
planning ongoing care of various neuromuskuloskeletal disorders such as cerebral
palsy, stroke, Osteoarthritis (OA), as a support to other approaches such as X-
rays, MRI, chemical tests etc. Gait process is realized in a ‘gait laboratory’ by the
use of computer-interfaced video cameras to measure the patient’s walking
motion by the use of electrodes placed on the skin to follow muscle activity, and
by the use of force platforms embedded in a walkway to monitor the forces and
torques produced between the patient and the ground. Resultant data (such as knee
angle/time) is tabulated in graphic/numerical forms by commercial software.
Storing gait data makes the comparison of patients to each other (i.e. normal and
patient gait classification) and to themselves (examining improvements of patient

by previous data) possible.

In addition to temporal changes of joint angles and ground reaction force data,
time-distance parameters of the gait such as velocity, cadence, stride length, step
length are recorded. It is not possible to detect the resultant biomechanical
musculoskeletal characteristics using other approaches such as the radiographic
(X-ray, computerized tomography and/or MRI) evaluations, which makes gait

analysis a preferable tool for many cases.



If the physician him/herself interprets the gait data for clinical decision making,
then it may be called a “non-automated procedure” and “automated procedure” if
it is interpreted partially by any kind of decision support software. Non
automated decision making from gait data only requires high level of expertise of
neuromusculoskeletal system trained for the purpose. An automated system is
expected to decrease this requirement by a ‘transformed knowledge’ of these
experts. This way, clinicians’ time is saved, and the probability of human errors is
decreased. Automated gait analysis in medicine may also be used as a consultative

and educational tool.

In this study, ‘Knee Osteoarthritis (OA)’ is chosen as an application. OA severity
levels are established through the Kellgren-Lawrence radiographic grading system
[21]. The decision support system showed here aims to guess the grade of the
illness without need of radiography which is a more expensive system and also

may have invasive side effects [22].

1.2. OSTEOARTHRITIS

OA is a disorder that affects joint cartilage and surrounding tissue that shows

itself by pain, stiffness and loss of function [22]

This disease occurs mostly because of cartilage deformations. Bone can overgrow
at the edges of the affected joint and bumps can be seen and felt. All the
components of the joint deteriorate in some ways and so alter the structure of the
joint. OA usually begins with one of a few joints and most often gradually
increase. Earliest symptom is the pain which is worsened by weight bearing and
relieved by rest. Stiffness is felt after some inactivity and lessens with movement.
As OA progresses, joint motion becomes restricted, and tenderness and crepitus

may appear.

The muscles surrounding and supporting the joint (such as knee) may stretch. So
the joint becomes unstable and stiff, and loses it range of motion. Touching or

moving the joint (particularly when standing, climbing stairs, or walking) can be



very painful. Figure 1.1 shows X-Ray (XR) images of a normal and an OA

affected knee joint. The narrowing of the sick joint can be clearly seen.

Figure 1.1: XR image of a normal and OA affected knee joint [22]

Diagnosis of the disease is made according to symptoms, physical examination
and XR images. XR images show evidence of OA especially in weight-bearing
joints such as hip and knee. Kellgren-Lawrence is a method used for radiological
assessment of OA [21]. According to this method OA is divided into five grades

as follows:
e (Grade 0 indicates a definite absence of x-ray changes of OA.

e Grade 1, doubtful narrowing of joint space and possible outgrowth of the

bone;

e Grade 2, definite outgrowth of the bone and possible narrowing of joint

space;

e (Grade 3, moderate multiple outgrowths, definite narrowing of joints space,

some sclerosis and possible deformity of bone contour;

e Grade 4, large outgrowths, marked narrowing of joint space, severe

sclerosis and definite deformity of bone contour.



Postural exercises for stretching and strengthening are advised for treatment of the
OA. Exercises may help maintain healthy cartilage, increase range of motion, and
strengthen surrounding muscles. Soft chairs, recliners, mattresses, and car seats
may worsen symptoms. Specific exercises may be needed for OA of the spine.
Exercises should include muscle strengthening and low impact aerobic exercises

(such as walking, swimming, and bicycle riding).

Physical therapy is another effective treatment method. Heat improves muscle
function by reducing stiffness and muscle spasm. Massage by trained therapists

and deep heat treatment may be useful. Cold may be applied to reduce pain.

Drugs are used to reduce the symptoms and thus allow more appropriate
exercises. If a sudden injury occurs the fluid inside the joint may be removed and
a form of cortisone may be injected directly to the joint. But this treatment is not a
long term relief. Another injection method is done by hyaluronate which is a
component of a normal joint fluid. This method may provide significant pain

relief for longer time periods.

The replacement of the damaged knee joint with an artificial joint is a surgical
operation applied for treatment of OA of the knee. Surgery may help when all
other treatments fail to relieve pain. It is usually very successful to improve
motion and decrease pain. Since the artificial joint does not last forever, joint

replacement should be considered when function becomes limited.

1.3. LITERATURE SURVEY ABOUT GAIT CLASSIFICATION

A large number of studies are conducted for gait classification. Since gait data is
high dimensional and complex, to design a complete decision support system may
require a combination of all available features. In non automated traditional
systems physicians make decisions about the illnesses by interpreting all available
data. On the other hand, most of the automated systems ignore history and
symptoms of the patient, such as age, pain grade, family history. There are some
known facts about the effects of some factors to cause or to develop OA [20-30],

such as occurring in the same frequency in both sexes before the age of 55 but



being more common in women after 55. Obesity places people (particularly
women) at increased risk for osteoarthritis because of increased weight on the
joints. Injury from different sources can also contribute to osteoarthritis. Repeated
minor injuries or a single injury to a joint may change the normal joint structure.
A genetic defect may promote breakdown of the protective architecture of
cartilage. Actually, in traditional non automated clinical decision making,
physicians listen to the patient and use this kind of qualitative information in
addition to the lab test. So this kind of non-numeric information should also be

included in the decision making process.

The aim of pattern recognition research for clinical gait analysis is to find ways to
support doctors in decision making and treating patients using gait data. Standard
movement patterns are produced for healthy walkers, and then these patterns
served as a baseline for examination of the walking pattern of patients’ gait with
abnormalities or diseases. The interpretations of quantitative gait data are
experimented by pattern recognition techniques before [31, 32]. Most popular of
these are neural networks (NNs) [33-40] and support vector machines (SVMs) [2,
41]. The use of NNs for experimental gait classification is not new. There are
studies in which NNs are trained by force platform data to distinguish ‘healthy’
from ‘pathological’ gait [34, 35, 40]. In addition to these, people are identified
among a few subjects (less than 10) by using joint angles as features [33, 36, 38,
39]. These studies produce reasonable results for NNs use in gait classification. A

few of these studies will be explained in more detail in following paragraphs.

Kohle et al. [34] categorized gait pathology based on the ground reaction forces.
They measured two successive ground reaction forces of 131 subjects having
various diseases like calcanecus fracture, and limb deficiencies. 94 normal
subjects’ data was also gathered. FFT coefficients of vertical components of the
two ground reaction forces were used as inputs to a standard network with one
hidden layer. The accuracy of this network in discriminating healthy from
pathological gait was 95%. This study summarized that simple two-category gait
classification with large number of input parameters is achievable with neural

networks.



A similar study conducted by Barton and Lees [36] extended the classification
problem to a three class case. A neural network with two hidden layers is used to
categorize maximum value of ground reaction forces into one of three categories:
healthy feet, pes cavus (a deformity of the foot characterized by an abnormally
high arch and hyperextension of the toes) and hallux (big toe) valgus. The
pressure patterns of 18 subjects were recorded and scaled to a size and normalized
to the interval [0, 1]. The number of inputs of network reached to 1316 which is
much more than the previous examples. The accuracy of the network was claimed
to vary between 77% and 100% based on the size of the train and test set. Since
the conditions classified here can be identified by routine medical exams, the
advantage of the proposed system was not clearly understandable. In second stage
of the study hip-knee joint angles of the eight healthy subjects were calculated via
a set of four reflective markers. They mentioned that hip—knee joint angle
diagrams are characteristic of a subject’s gait pattern and so could be used for
automated identification of gait patterns. Subjects were walked on a walking
platform under three different conditions; normal walking, simulated leg length
difference and simulated leg weight difference. The angles were normalized in
time; Fourier transformed and normalized to the interval [0, 1]. A neural network
again with two hidden layers is used and 83.3% average accuracy rate was

achieved.

In another study Lafuente et al. [40] used a standard feedforward neural network
with one hidden layer to classify four-category gait patterns. They collected data
from 148 subjects with ankle, knee or hip arthritis and 88 normal subjects without
limb pathology. The features consisted of cadence, velocity and five kinetic
magnitudes. A three layered network was trained by these inputs to discriminate

four classes and an accuracy of 80% was reached.

As a summary these studies have shown the potential for multi-category
classification of the gait patterns. However, if the aim of the classification is
medical usage, more detailed classification problems (i.e. grading of a disease)

with high dimensional and diverse data arise.



Unfortunately, as the dimension of the obtained data increases accuracies may
deteriorate. Recently, the focus has been on combining several classifiers and
getting a consensus of results for better accuracy [42, 43]. Today, combining
methods are preferred for many well known pattern recognition problems such as
character recognition, speech recognition [42-55] etc. On the other hand, decision
trees have been widely used for medical decision making processes [42, 56-62].
They have not been applied to gait data analysis but have demonstrated potential
in analyzing gait data [31]. These two classifiers neural networks and decision
trees have their specific advantages and disadvantages, and most of these
characteristics complement each other. Hence, advantages of both approaches

might be utilized if combined properly.

Automatic feature selection from many numerical gait parameters is another
subject that’s not studied well in medical applications. Actually, there are many
medical practices, testing the variations in the gait attributes which are caused by
the related disease [20-30]. Selection of attributes is usually done by using the
result of these studies by expert clinicians. However, the judgments may vary in
different experts leading to the different interpretations. Obviously, automated
selection lessens the dependence and the load on the experts and gives more

freedom to the researchers.

1.4. OBJECTIVES AND CONTRIBUTIONS OF THE STUDY

The main objective of this study is to design a decision support system to help
physicians by supplying accurate and practical ways to interpret the gait data and
further follow the progress of OA. Grading of the diseases is helpful for
physicians in treatment and operation plans. The treatment plans for knee OA are
made according to the grade of the illness [20, 21, 26-28]. This grading is usually
done by physicians using radiographic films of the knee. The patient is also
walked on the gait laboratory if available and the data is used as assistive to the
radiography results. Actually the classification of sick and normal subjects has
been studied before [18, 19, 34-39], but the grading of the OA is new. The

decision support system developed by this study is expected to be a supportive



tool for grading and treatment planning of knee OA. Moreover computerizing the

current system is expected to provide some additional benefits for gait laboratory

users. Since automated evaluation of the data does not require as much expertise

as manual evaluation, the usage of the gait laboratories may increase. In addition

the misdiagnosis occurring because of different comments of the different experts

are expected to be minimized.

Original contributions of the study are summarized below:

The system supports a base for patient follow up in time. Gait patterns of
the subjects taken in different times can be compared so that more accurate

treatment plans are possible.

Automated feature selection process reveals that gait measurements for
different parts of the body such as knee or hip to be more effective for
different scores of the OA. These results may be valuable for physicians
for effective decision making about treatment of OA and reasoning the
conclusion. Also, dependence and the load on the experts are reduced and
more freedom to the researchers is given by the automated feature

selection process.

Another original contribution of the study is taking advantage of working
with a gait expert at each stage of the study. A physical medicine and
rehabilitation expert gives support to the study as both an expert and a
target user of the proposed decision support system. So, the results of the
data analysis process can be commented for further recognition of the

selected illness and helping the treatment.

Since, all available various structured data is used in a hierarchical way for
design of the decision support system, it models the expert’s decision
making process well. The combined decision tree-MLP approach is also
expected to be applicable to similar type of medical decision making
processes, where both disease characteristics and clinical measurements

and tests are to be combined.



1.5. SUPPORTING PROJECT

This study is implemented as a research project supported by TUBITAK. The

group is composed of physicians, computer scientists, PhD students and technical

personnel. The group communicated well at each stage of the study. Table 1.1

summarizes the milestones of the whole process.

Table 1.1: Stages of the study and results

Stages of the study

Results

Problem definition

Gait laboratory is seen and problems are
listed

Literature survey about previous studies
are done

Objectives of the study are determined

Requirements

analysis

Hardware/software requirements of
laboratory are determined (i.e. new PCs
are bought, a database is created for
easing data collection)

A questionnaire is prepared for expert
physicians to determine expected
features of the system

Face to face interviews are also
implemented

Design

Design of the system is made iteratively
Different feature reduction/selection and
classification methods are compared
New approaches are searched for better
classification (i.e. combining methods)
Results are discussed with expert,
suggested changes are made and
iteration started again
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Table 1.1 (cont)

e Datasets are created by querying the
database

e Preprocessing of the data (i.e. cleaning
empty entries, converting non numeric
features to numeric ones)

Implementation e Feature reduction/ selection methods are
applied

e Two-class experiments are done by
neural network methods

e Multi-class classification is done by
combining decision trees and neural
networks

Testing e System is tested by unseen data

After determining objectives of the study, requirements of the gait laboratory are
determined. The old PC is replaced with the new one, and then required software
is uploaded. Then, most important deficiency of the laboratory is determined as
need of a database. A complete database is created to keep all data together in one
system to ease the query processes. Some software interfaces are created to read
data from the current system and user friendly interfaces are supplied for

laboratory users.

1.6. ORGANIZATION OF THE WORK

The outline of the report is organized according to the steps of classifier design
process. A classifier topology which is similar to Mixture of Experts (MME)
approach based on decision trees and a number of Multilayer Perceptrons (MLPs),
each expert in separating two adjacent degrees is proposed. A scoring of the OA
(0-3), which specifies the degree of the disease, is used as the categories of the
classifier. Finally, the system is tested by unseen data and results are presented in
forward sections of this report. Figure 1.2 shows the stages in classifier design

Pprocess.
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For better design of the classifier some different feature reduction and selection
methods are compared. Averaging method is selected for reduction and the
Mahalanobis Distance criterion is selected for feature selection. Further details
will be discussed in Chapter 4 of the report. Figure 1.3 summarizes the feature

reduction and selection processes.

OAGAIT database
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Figure 1.2: Flowchart for learning and classification phases

Since the feature set is quite diverse new classification approaches like combining
classifiers are searched in the literature. Following the feature reduction and
selection processes a combination algorithm is created by using decision tree and

neural network approaches together.
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Figure 1.3: Flowchart for feature reduction and selection processes

The remainder of the report is organized as follows. In the next section, data
collection and recording methods are discussed. Then in chapter 3 pattern
recognition approaches are summarized. In fourth chapter implementation and
analysis of the results are given. Detailed information about OAGAIT system is

discussed in chapter 5. Finally, conclusion and discussions are presented.
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CHAPTER 2

OSTEOARTHRITIS AND DATA PROPERTIES

2.1. OSTEOARTHRITIS

OA is a disorder that affects joint cartilage and surrounding tissue that shows
itself by pain, stiffness and loss of function [20-23]. Although OA is mostly seen
in older people, it is not caused by the years of use. But, while the younger people

having few symptoms, the older ones develop significant disabilities [22].

2.1.1. Causes

Our joints are normally protected from wearing out by low friction levels,
provided by the cartilages between the bones. OA mostly begins with the
deformation of the cells that form the cartilage. Then, the cartilage may become
soft and cracks on the surface may be seen. Bone can overgrow at the edges of the
affected joint and bumps can be seen and felt. All the components of the joint

deteriorate in some ways and so alter the structure of the joint [20-22].

OA is classified into two groups; primary and secondary. If the cause of the
disease is not known, which is valid for most of the cases, it is called primary OA.
If the cause is another disease or condition like infection, deformity, injury, then it

is called secondary OA. Some people repetitively stress one joint because of their
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jobs (i.e. coal miners, bus drivers) and so increase the risk of OA. Obesity may be
a major factor in the development of OA, particularly of the knee and especially in

women.

2.1.2. Symptoms

Usually, symptoms show themselves in one or a few joints at first. Most
commonly affected joints are hip, knee, fingers, neck, lower back and big toes.
Pain is the first symptom which usually caused by weight bearing activities.
Stiffness is another important symptom which is felt after some inactivity like

sleep [20-22, 25-30].

The affected joint may become less movable and it may be more difficult to
straighten or bend. The irregular cartilage surfaces cause joints to grind, grate, or

crackle when they are moved.

In some joints (such as the knee) the ligaments, which surround and support the
joint, may stretch. So the joint becomes unstable and stiff, and loses it range of
motion. Touching or moving the joint (particularly when standing, climbing stairs,

or walking) can be very painful.

For OA of the spine, the back pain is one of the most common symptoms.
Usually, damages of disks or joints in the spine cause only mild pain and stiffness.
However, OA in the neck or lower back can cause loss of sense, pain, and
weakness in an arm or leg. The overgrowth of bone may presses on the nerves
within the spinal canal or before they exit the canal to go to the legs. This leg pain

caused by this reason may be confused by the reduced blood supply to the legs.

OA may be stable for many years or may progress very rapidly, but most often it
progresses slowly after symptoms are seen. Many people develop some degree of

disability. In [22] some practical ways to live with OA are advised to the patients.
e Exercise affected joints gently (i.e. in a pool)

e Massage at and around affected joints (trained therapist would do it better)
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e Apply a heating pad or a damp and warm towel to affected joints
e Maintain an appropriate weight (extra stress on joints may be dangerous)

e Use special equipment when necessary (for example, walker, neck collar,

or elastic knee support to protect joints from overuse)

e Wear well-supported shoes or athletic shoes

2.1.3. Diagnosis

The diagnosis is made according to characteristics of symptoms, physical
examination, and the XR images. The XR images of many people aged about 40
show some evidences of OA especially in weight-bearing joints such as the hip
and knee. However, XR is not very useful for detecting OA early because it does

not show changes in cartilage, which is where the earliest abnormalities occur.

Magnetic resonance imaging (MRI) can reveal early changes in cartilage, but it is
rarely used because of expensive cost. There are no blood tests for the diagnosis
of OA. But there are some researches about detection of hyaluronic acid within a

blood sample [22].

Kellgren-Lawrence is a method used for radiological assessment of OA. Kellgren

and Lawrence defined this scoring according to these radiological features [21]

e The formation of osteophytes on the joint margins or, in the case of the

knee joint, on the tibial spines.

e Periarticular ossicles; these were found chiefly in relation to the distal and

proximal interphalangeal joints.
e Narrowing of joint cartilage associated with sclerosis of subehondral bone.

e Small pseudocystic areas with sclerotic walls situated usually in the

subchondral bone.

e Altered shape of the bone ends, particularly in the head of femur.
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According to these features OA is divided into five grades as follows:
e None
e Doubtful
e Minimal
e Moderate

e Severe

Grade 0 indicates a definite absence of x-ray changes of OA.
Grade 1, doubtful narrowing of joint space and possible osteophytic lipping;
Grade 2, definite osteophytes and possible narrowing of joint space;

Grade 3, moderate multiple osteophytes, definite narrowing of joints space, some

sclerosis and possible deformity of bone contour;

Grade 4, large osteophytes, marked narrowing of joint space, severe sclerosis and

definite deformity of bone contour.

Figure 2.1 shows XR images of knee joints affected by different grades of OA.
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Grade 2.

Grade 3. Grade 4.

Figure 2.1: OA of the knee [21]

2.1.4. Treatment

Exercises like stretching, strengthening, and postural exercises may help maintain
healthy cartilage, increase range of motion, and strengthen surrounding muscles.
Exercises must be balanced with rest of painful joints, but immobilizing a joint
may make the joint worse. Using excessively soft chairs, recliners, mattresses, and
car seats may worsen symptoms; using car seats moved forward, straight-backed
chairs with relatively high seats, firm mattresses, and bed boards is often

recommended.

For osteoarthritis of the spine, specific exercises may help, and back supports may
be needed when pain is severe. Exercises should include muscle strengthening and

low impact aerobic exercises (such as walking, swimming, and bicycle riding).
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The patient should try to continue his/her normal daily activities such as a hobby

or job.

Physical therapy, often with heat therapy can be helpful. Heat improves muscle
function by reducing stiffness and muscle spasm. Massage by trained therapists
and deep heat treatment may be useful. Cold may be applied to reduce pain.
Splints or supports (such as a cane, crutch, and brace) can protect specific joints
during painful activities. Shoe inserts (orthotics) may help reduce pain during

walking.

Drugs are used to supplement exercise and physical therapy. Drugs do not directly
alter the course of osteoarthritis; they are used to reduce symptoms and thus allow

more appropriate exercises.

If a joint suddenly becomes inflamed, swollen, and painful, most of the fluid
inside the joint may need to be removed and a special form of cortisone may be
injected directly into the joint. This treatment may provide only short-term relief,
and a joint treated with cortisone should not be used too often or damage may
result. A series of injections of hyaluronate (a component of normal joint fluid)
into the joint may provide significant pain relief in some people for longer periods

of time.

The knee replacement surgery is another treatment method which is applied when
the moves become limited. The damaged knee joint may be replaced with an
artificial joint. After a general anesthetic is given, ends of the thigh bone (femur)
and shinbone (tibia) are smoothed so that the parts of the artificial joint (prothesis)
can be attached more easily. One part of the artificial joint is inserted into the
thigh bone, and the other part into the shinbone and the parts are cemented in

place. Figure 2.2 shows the knee replacement operation [22].
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Figure 2.2: Replacing knee operation [22]

Surgery may help when all other treatments fail to relieve pain. Some joints, most
commonly the hip and knee, can be replaced with an artificial joint. It is usually
very successful to improve motion and decrease pain. Therefore, joint
replacement should be considered when function becomes limited. Because the
artificial joint does not last forever, such surgery is often delayed as long as

possible in young people so the need for repeated replacements can be minimized.

A variety of methods that restore cells inside cartilage have been used in younger
people with OA to help cure small defects in cartilage. However, such methods
have not yet been proven valuable when cartilage defects are extensive, as

commonly occurs in older people.

2.2. DATA COLLECTION METHODS

Kaufman states five existing technologies for data collection for gait analysis

[12]:
e Electromechanical linkage method
e Stereo metric method
e Roentgen graphic method
e Accelerometer method
e Magnetic coupling method.
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An exoskeleton apparatus is employed with the electromechanical linkage
method to measure joint motion. The primary disadvantage for this technique is
the cumbersome nature of the instrument and, to a lesser extent, cross coupling of
the sensor inputs and joint motion. The requirement for the exoskeleton
instrument affects the motion of young subjects making it unusable for clinical

measurement.

The stereo metric method is the most popular one currently used for clinical gait
analysis. It employs visible markers attached to the skin on rigid segments of the
body structure and tracks their motion using imaging equipment. This technique is
implemented using charge coupled device (CCD) cameras and frame-grabber
electronics to allow digital images to be captured as the subject moves within the
field of view. Digital image analysis allows the physical location of each marker
to be computed, using triangulation of the views from an array of camera systems.
This technique has minimal impact on the natural motion of the subject and
allows data capture without the need to tether the subject to the data acquisition
hardware. Figure 2.3 shows a laboratory collecting data with stereo metric

method.

A disadvantage of this approach is the increased image analysis complexity
resulting from tracking the apparent position of the markers in a two-dimensional
(2-D) image on a camera frame-to-frame basis and correlating the position of each
marker for the multiple camera positions. Occlusion of markers from the camera
field of view and false readings caused by reflection phantoms pose non-trivial,
unresolved complications in data capture. In addition, passive markers provide
unlabeled trajectory segments that must be manually identified and resolved. This
image analysis task requires a significant amount of time for the data gathering
process. A second major disadvantage is the reduction in resolution as the camera
system is altered to allow a larger field of view. The camera imaging sensors have
a fixed number of pixel elements and a compromise must be reached between
optical field of view and pixel element resolution size, limiting the clinical

measurement volume to approximately a single stride. It is not feasible to measure
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gait patterns or variability with only one traversal of the instrument walkway.

Thus, multiple walking trials need to be collected, which may fatigue the subject.

Figure 2.3: Data collection with stereo metric method (visible markers are attached to body
of the subject) [12]

The biplanar roentgen graphic method employs metal markers and x-ray films
for the measurement of static positions of a body joint. This approach is not
appropriate for the study of dynamic joint motion. Due to the use of ionizing

radiation, it also represents a potential health hazard to the subject.

The accelerometric approach employs sensors attached to the rigid areas of the
human subject that measure accelerations in three dimensions. Joint motion is
then derived through integration of the accelerometer waveforms given
appropriate initial conditions. Integration of the waveforms produces velocities for
each of the sensor locations. A second integration step provides the displacement
as a function of time. This technique can provide the kinematics motion
measurement desired but has been implemented with a tether to the subject for the
data acquisition; however, the tether affects the motion of the subject and
represents an undesirable feature. In addition, this approach requires an accurate

estimate of initial conditions, which is difficult to provide.

The magnetic coupling method employs a reference magnetic field source that
surrounds the subject and an array of magnetic field sensing elements attached to

the rigid segments of the subject.
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Recent rapid developments in hardware technologies created an attractive
environment for image processors. This also created opportunities for gait
analysis using video sequences [3-10]. Beside above methods, a clinical gait
analysis might be limited to a video recording and the measurement of certain gait
stride and temporal parameters such as velocity, cadence, stride length, step length
and percentage of stance/swing. While the video record is a useful tool in
developing and substantiating visual impressions, it is inappropriate to measure
joint and segment gait kinematics directly from the videotape or monitor. They do
not give an indication of the cause of the gait abnormality and so have limited

value in clinical decision-making.

2.3.  PROPERTIES OF GAIT DATA

Studies of biomechanical factors in OA are mainly focused on the knee joint. This
is primarily for two reasons. First, the knee is the most common joint affected by
OA. Second, the anatomy of the knee joint is relatively simpler and more
amenable to biomechanical modeling and noninvasive evaluation than other joints

[20]. Therefore, the data in this study are primarily from measurements on the

knee.

In this study, the gait data are collected by the gait experts in Ankara University
Faculty of Medicine, Department of Physical Medicine and Rehabilitation Gait
Laboratory (shown in Figure 2.4). Before gait analysis, all subjects gave informed
consent as advised by the Ethics Committee. The socio-demographic and clinical
characteristics of the patients were also collected in the lab before the patients are
walked. Electronic format of the form filled by the patients to gather these data is

shown in Figure 2.9.

Collected information other than gait is converted to numerical values before they
are used as features. For example, while weight and height attributes are not used
for classification purpose, body mass index (BMI), which is equal to weight
divided by the square of the height, is created as a new feature. Age of the subject

is calculated from date of birth, disease periods are converted to months as unit.
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Pain and morning stiffness are numeric values between 0 and 10, family history is
a binary value indicating whether the same disease exist in family history or not.
Sex is another binary valued feature where 0 stands for women and 1 for men.

Then, the first subset of the data can be defined as:

A = {age, BMI, pain, stiffness, period, history, sex}

The max and min values of the non binary features of the subjects used in this

study are shown in Table 2.1.

Table 2.1: Limits of the personal features

Normal subjects Patients
Features Min max average min max average
age 19 63 43 41 80 60
BMI 18 46 27 20 49 32
pain 0 0 0 1 10 6,6
stiffness 0 0 0 1 10 5,2
period (year) 0 0 0 0 30 6,6

Subjects underwent gait analysis with the same protocol by one and the same
physician. Spatiotemporal and kinematic data were obtained from the Vicon 370
Motion Measurement and Analysis System. This system consisted of 5 video
cameras, a computer system for data acquisition, processing and analysis and a
data station. The experimental model idealized the lower extremity as a system of
rigid links with spherical joints. The joints were assumed to have a fixed axis of
rotation. Skeletal movement can be described using surface markers placed in

precise anatomical positions.
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Figure 2.4: Data collection (a: gait analysis laboratory, b: a subject walking on the platform)

All subjects were instructed to walk at a self selected speed along the walkway
and to practice until they could consistently and naturally make contact with both
of the force plates. Three acceptable trials were obtained for each foot and
averaged to yield representative values. Time-distance parameters of the gait are
gathered at the end of one cycle. So the second set of the data is composed of time

distance parameters:
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B = {Cadence, Walking Speed, Stride Time, Step Time, Single Support, Double
Support, Stride Length, Step Length}

The kinetic and kinematic features of the gait are gathered by 3D analysis of the
human body. Figure 2.5 shows three planes of the human motion. Flexion-
extension data is taken in sagittal plane, valgus-varus and abduction-adduction

data is taken in frontal plane and rotation data is taken in transvers plane.

Figure 2.5: 3D analysis of human body

External retro-reflective markers, used for computer digitization, were placed on
each of the following anatomic locations: anterior superior iliac spine (ASIS),
sacrum, lateral thigh, joint line of the knee, lateral shank, calcaneus, lateral
malleolus and second metatarsal head. The 3-dimensional position of each
reflective marker was sampled 60 times a second. Markers were placed on the
bony prominences to minimize artifacts due to skin movement. On the other hand,
these locations provided anatomic reference points to locate internally the joint
center position of the hip, knee and ankle. The hip joint center was determined
using leg length, inter-ASIS distance and ASIS-greater trochanter distance
calculated by Vicon Clinical Manager (VCM) [20]. The knee center was located
at one-half the knee width medially along the knee flexion axis. The ankle joint
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center was located at one-half the ankle medially along the ankle flexion axis.

Figure 2.6 shows an example to marker adjustment screen of VICON software.

Figure 2.6: VICON Software marker adjustment screen

Besides kinematic variables, ground reaction force (GRF) data is also gathered in
one gait cycle. Kinetic variables, which are also important for diagnosis, are

calculated by using GRF as shown in Figure 2.7.

Figure 2.7: Calculation of kinetic variables [19]
Moment = GRF x Distance
Power = Moment x Angular velocity
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Ground reaction forces (GRF) were collected using two force plates (Bertec,
Columbus, OH). GRF measurements were acquired simultaneously with a
measurement of the limb position. Time-to second vertical force peak and values
of first and second vertical force peaks were determined. To calculate the
moments, each segment of the limb (thigh, shank and foot) was assumed to be a
rigid body with a coordinate system chosen to coincide with the anatomic axes.
Moments producing flexion-extension, abduction-adduction and internal external
rotation at the knee joint were calculated. Angular velocity and acceleration
around the longitudinal axis were assumed to be negligible. All moments and
ground reaction forces were normalized to body weight and height permitting
comparison with other results in the literature. Table 2.2 summarizes the motion
planes, the anatomic levels and the types of the 33 kinematic gait attributes used

in this study.

Table 2.2: Properties of the used gait attributes (“x”: exists, “-”: not exists, flex: flexion, abd:
abduction, rot: rotation

Joint rotation
angles Joint net moments | Joint net powers
Motion plane

flex abd rot flex abd rot total flex abd rot
anatomic level
Pelvic X X X - - - - - - -
Hip X X X X X X X X X X
Knee X X X X X X X X X X
Ankle X X X X X X X X X X

Then the final subset of the data can be defined as the temporal changes of the

joint angles from four anatomical level and three motion planes (Set C) as below.

C = {PelvicTilt, Pelvic Obliquity Knee Flexion, Knee Varus, ...}
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Each of these attributes in C above is represented by a graph that contains 51
samples taken in equally spaced intervals for one gait cycle. So the attributes for a

given subject can be arranged as a 33-dimensional vector X as below:

X=/X7 x?,... X% where

X(i) = [X(i)b X(i)Z,-'-X(i)ﬂ]

X(’)j is the value of the i gait attribute at j* time period of the gait cycle. Figure

2.8 shows examples of a graphical representation of the joint angle attributes.
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24. DATA STORAGE

As explained above one of the advantages of gait analysis for researchers and
medical experts is opportunity of data storage for comparison and other purposes.
Gait laboratories need comprehensive, user friendly database systems for efficient
data processing. Since each laboratory uses different software, hardware and
biomechanics models, it improved its own particular databases and information
systems. Standardization of data storage methods is important for opportunity of
transferring data between different systems and for creating an international,
easily understandable gait terminology. Some institutions have recognized this
need and founded some standardization societies. GCMAS (Gait and Clinical
Motion Analysis Society) centered in USA and ESMAC (European Society of
Movement Analysis for Adults and Children) centered in Europe are most known
of these societies. But unfortunately a widely used international gait standards
could not be created until today. On the other hand, usage of a standard file format

(c3d) for data storage is becoming widespread [14].

In our gait laboratory collected gait data can be saved as MS Excel file, so the
access and the transfer of the data become easier. These files show the time-
distance parameters of the gait and temporal changes of the joint angles and
graphs of them. An excel file of a patient is shown in Appendix A of the report as
an example. Since there was no database keeping all available data in the system
earlier, it used to be difficult to combine personal information and gait data of the
patients for processing. The patients are asked to fill a form about personal
information and to take WOMAC (Western Ontario and McMaster University
Osteoarthritis Index) questionnaire before walking in the laboratory. Both of
these forms were kept in paper files, so it was mandatory to create an electronic

environment to safely save them for further analysis.

A comprehensive database is designed to automate data collection and query
processes in the scope of the thesis study. Electronic interfaces are created for
entering this information to the database. When the database is opened the first

form to be filled by the user is the patient record form, which is shown in Figure
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2.9. Detailed information about OAGAIT database system is given in fourth
chapter of the report.

B3 Hasta Kayit Formu : Form
Yiirilyiis Analizi Ile Hastalk Tanima Sistemi (YAHTS)
GELISTIRILMESI PROJESI
HASTA KAYIT FORMU

Excel Dosyasini Yukleyiniz Ad Soyad l—
[ Dogum Tarihi l—
Gézat | Yikle | Cinsiyet & Kadn € Erkek
Meslek l—
sag_ Sal Telefon

Bacak Uzunlugu (crm) 11 Adres

Diz Genisligi (cm) l— l— Deney 1D

Ayak Bilegi Genisligi (crm) l— l_ = l—

Hastzlic Suresi (ay) | l_
Boy (crm) l—

Deney Tarihi | ‘ Kila (ka) |

sils ORUSY @ o B vk KellarenSkorusad @ o @ 1% 28 3 6 4

Tutulum ® cag @ sol @ pilateral |KellgenSkorusol @ o @1 @@ 3@ 4

AgriSiddeti ® 4 ® 2 B3 &4 g &g &7 g Ha &g

Hic agrisi yok. Dayanilmaz agrisi var

Sahshwelk &, ®,; &3 &4, &y &, €; &g &g &
Haraket

Hic tutukdugu yal, Cok siddetl tukuldugu var
Tutuklugu

Motlar

Kaydet

Figure 2.9: Patient recording form
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CHAPTER 3

PATTERN RECOGNITION METHODS

3.1. FEATURES AND DIMENSIONALITY REDUCTION

When dealing with high-dimensional data, one faces with the well-known
problem of “curse of dimensionality”. The curse of dimensionality is a term to
describe the problem caused by the exponential increase in volume associated
with adding extra dimensions to a (mathematical) space [72]. In pattern
recognition view, the idea of the curse of dimensionality is that high dimensional
data is difficult to work with for several reasons [64, 65]. Most importantly the
need of exponentially increasing number of training samples with dimension.
Also, adding more features can increase the noise, and hence the error. There may
not be enough samples to get good recognition results. So, dimensionality
reduction is a commonly used step before classification in pattern recognition,
especially when dealing with very high dimensional feature spaces. The original
feature space is mapped onto a new, reduced dimensionality space and the
examples to be used by pattern recognition algorithms are represented in that new
space. The mapping is usually performed either by selecting a subset of the

original features or/and by constructing some new features.

The dimensionality of the feature space may be reduced by the selection of

subsets of good features. Several strategies and criteria are possible for searching
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good subsets. In addition to the improved computational speed, an increase in the
accuracy of the classification algorithms is also expected with reduced feature set.

[64].

Another way to reduce the dimensionality is to map the data on a linear or
nonlinear subspace. This is called linear or nonlinear feature extraction. It does
not necessarily reduce the number of features to be measured, but the advantage
of an increased accuracy may still be gained. Moreover, as lower dimensional
representations yield less complex classifiers better generalizations can be

obtained [64].

There are some significant difficulties in the design of automated medical
decision support systems because of the multidimensional and complex structure
of the clinical data. So, feature reduction and selection always become an

important part of the medical data analysis studies.

3.1.1. Feature Extraction

In most pattern recognition problems the number of samples is smaller than the
number of row features due to practical reasons. In that case the actual feature
space is mapped to another one having fewer dimensions by minimizing the
information lost. There are some widely used mapping algorithms in statistical

pattern recognition like FFT, PCA, wavelet etc.

The most commonly used method for the feature extraction in gait classification is
based on the estimation of parameters (peak values, ranges) as descriptors of the
gait patterns. In that case the classification is done according to the differences
between the class averages of the training set and the parameters of the new
subjects [19, 31]. This method is subjective [31] and neglects the temporal
information of the gait data. There are examples of using statistical feature
reduction techniques in gait analysis, such as Fast Fourier Transform (FFT) [34,
36, 37], Principle Component Analysis (PCA) [19, 24, 31], wavelet transform [32]
and averaging [38, 39].
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FFT:

A fast Fourier transform (FFT) is an efficient algorithm to compute the discrete
Fourier transforms (DFT) and its inverse [72]. FFTs are used in great variety of
applications like digital signal processing, solving partial differential equation,

and quick multiplication of large integers.

Fourier Transform maps a time series into the series of frequencies (their
amplitudes and phases) that compose the time series. Applications of Fourier

transforms in statistical pattern recognition and image processing include [72]:

e Filtering: Since taking Fourier transform of a function means to represent
it as the sum of sine functions, eliminating some high/low frequency
components and taking inverse Fourier transform produce an image

without noises.

e Image Compression: Since a filtered image contains less information than
a noisy image, encoding it requires fewer bits to represent than the original

image.

e Convolution and Deconvolution: Fourier transforms can be used to

efficiently compute convolutions of two sequences.

e Feature reduction for temporal features: FFT coefficients (which is
usually less than original number of time samples) are used for

classification [31, 34]

Let xo, ...., xy.1 be complex numbers. The DFT is defined by the formula

2wy

N—1
Xp=> xpe 8™ k=0,...,N—1.
n=i} (Equation 3.1)
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Evaluating these sums directly would take O(N?) arithmetical operations. An FFT

is an algorithm to compute the same result in only O(V log N) operations.

Since the inverse DFT is the same as the DFT, but with the opposite sign in the

exponent and a 1/N factor, any FFT algorithm can easily be adapted for it as well.

Averaging:

Averaging methods are similar to mean filtering methods in image processing.
Mean filtering is a simple, intuitive and easy to implement method of smoothing
and scaling images [71, 72]. The image is smoothed because the amount of
intensity variation between one pixel and the next is reduced. As an example, for
the scaling, to halve the size of the image each quad of four pixels is replaced by
one pixel with average of the four pixels. This simplest way of scaling images is

mostly recommended for downscaling.
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Figure 3.1: Averaging five consecutive time samples of two gait waveforms
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This property of the averaging makes it usable for time sample reduction of
temporal features. Figure 3.1 shows an example to averaging five consecutive
time samples of two gait waveforms. The dimension of the temporal features is

reduced from 51 to 10 by averaging method.

3.1.2. Feature selection

Automated selection of the gait attributes is not observed in gait classification
literature; medical experts select them or previous studies are taken as references.
Actually, there are many medical practices, testing the variations in the gait
attributes which are caused by the related illness [20-30]. Non-automated
selection of the gait attributes are done by using the result of these studies. But it
may not always be convenient to work with a medical expert for the feature
selection process. Also, the judgments may vary in different experts leading the
different interpretations of the classifiers. Obviously, automated selection lessens
the dependence and the load on the experts and gives more freedom to the

researchers.

Feature selection also helps people to acquire better understanding about their
data by telling them that which are the important features and how they are related

to each other.

The feature selection process is simple defined as follows: given a set of candidate
features, select a subset that performs the best by a given classifier. This
procedure can reduce the cost of recognition and in most cases provide better
classification accuracy. There are some criterion functions for assessing the
goodness of a feature subset. Mahalanobis distance is one of these functions [64,
68-70]. The selection of the criterion function is very important. If we know
which classifier will be used in the problem, then the best criterion is the correct
recognition rate of that classifier. However, it is computationally time consuming
and very difficult to estimate correct recognition rate of the classifier with a

limited number of training samples. This is one of the reasons why Mahalanobis
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distance, which gives an upper bound of the Bayes error rate with a priori

probabilities of classes, is used in many feature selection processes [69].

In statistics, Mahalanobis distance is defined as distance measure based on
correlations between variables by which different patterns can be identified and
analyzed. It is a useful way of determining similarity of an unknown sample set to
a known one. It differs from Euclidean distance is that; it takes into account the
correlations of the data set and is scale-invariant, i.e. not dependent on the scale of

measurements [65, 72].

Formally, the Mahalanobis distance is defined as

Dy () = /(z — ) TP~z — p). (Equation 3.2)

for a multivariate vector

- T
r= [Ty, T2, T3,...,Tp)

with mean

= (i, pia, fiay o )

and covariance matrix P whose (i, j) entry is the covariance

Pij = El(;(z —H )(Zj —H; )J (Equation 3.3)

where 4, = E(X,) is the expected value of the i entry in the vector X

Mahalanobis distance can also be defined as dissimilarity measure between two

random vectors I and ¥ of the same distribution with the covariance matrix P:
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d(.’ff, ﬂ) = \/(’F — ﬁ)TP_l (F - Iﬂ (Equation 3.4)

If the covariance matrix is the identity matrix, the Mahalanobis distance reduces
to the Euclidean distance. If the covariance matrix is diagonal, then the resulting

distance measure is called the normalized Euclidean distance:

1=1 : (Equation 3.5)
Where, o; is the standard deviation of the x; over the sample set.

3.2. CLASSIFIERS

Here, we will discuss only the ones that are used in this study.

3.2.1. Tree Classifiers

Decision Tree Classifiers are used successfully in many diverse areas such as
radar signal classification, character recognition, remote sensing, medical
diagnosis, expert systems, and speech recognition. Perhaps, the most important
feature of decision trees is their capability to break down a complex decision-
making process into a collection of simpler decisions, thus providing a solution

which is often easier to interpret [61].

As an example, the decision tree in Figure 3.2 is constructed to decide whether the
weather is convenient for playing tennis or not. The weather attributes are
outlook, temperature, humidity, and wind speed and the target classification is

“yes’9 Or CCnO,Q.
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Qutlook

Sunmy Rain
Owercast
Humidity i Wind
Yes
High Mormal Strong  Weak
No Yes No Yes

Figure 3.2: An example to decision tree classifier

Comparing to other classification methods the most advantageous differences of

decision trees are [62]:

e They produce understandable tree-structures which clarify the reasoning of

the method (many other techniques lack this and are harder to interpret)
e They can show the problem in as a disjunction of the hypotheses.

e They can be faster in the average than many other approaches.

A classification tree or a decision tree is an example of a multistage decision
process. Instead of using the complete set of features, subsets are used at different

levels of the tree. Three important properties of the decision trees are [42]:

e Decision trees are instable classifiers. Means they are capable of
memorizing the training data so that small changes in data might create a
different structure tree. Instability can be an advantage when ensembles of

classifiers considered.

e Since decision process can be traced as a sequence of simple decisions,

tree classifiers can be defined as intuitive. Tree can capture a knowledge
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base in a hierarchical way; most popular examples are botany, zoology and

medical diagnosis.

e Both quantitative and qualitative features are suitable for building decision
tree classifiers. Binary features and features with a small number of
categories are useful because the decision can be easily branched out.
Since decision trees are not based on the distances in the feature space

they are regarded as nonmetric methods for classification.

A decision tree construction starts with the root and continues separating the parts
of the data to child nodes which is called splitting the tree. Splitting into small
parts continue until a termination criterion is met. A termination criterion may be
that all objects be labeled correctly. In this case the tree has to be pruned to

prevent overtraining.

One can reach from root of the tree to the final class label by asking small
number of questions at nodes (root is the top node of the tree) of the tree.
Depending on the answer a branch is selected and the related child node is visited.
Another decision is made at next node and the process continues until reaching to
a leaf (a terminal node). This leaf shows a class label which can be repeated at
other nodes. If the same number of branches are visited to reach to every leaf of

tree then tree is called balanced. Otherwise it is called imbalanced.

Figure 3.3 shows examples to the balanced and unbalanced trees. Imbalanced trees
indicate that objects near the classification boundaries may need longer decision

chains than the others [42].
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Figure 3.3: Examples to a) balanced and b) unbalanced trees

Splitting Criteria

Consider a c-class problem with { = {w1, Wy, ..., w.}. Let P; be the probability for
class wj at a node t. These probabilities can be calculated by the proportion of the
points from related class within the whole dataset at that node. The impurity of the

distribution of the class labels at t can be measured in different ways.

Entropy based Impurity:

i(ry==)_P/logP, (Equation 3.6)

J=1

According to this formula impurity takes its minimum value when only one class
label exists at the node (0 log 0 = 0). The most impure situation occurs when the

classes have uniform distribution. In that case i(¢)=log c

Gini Impurity:
. — 2
i()=1->_P, (Equation 3.7)
j=1
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For the most pure case again i(¢) = 0. The highest impurity in the case of uniform
distribution is i(2) = (c-1)/c. The Gini index can be defined as the expected
classification error when a random class label is chosen from the distribution of

the labels at t.

Misclassification Impurity:

i(t)=1- n}gx{Pj} (Equation 3.8)

Misclassification impurity gives the expected error if the node was replaced by a

leaf and the chosen label was the corresponding label of the largest P; .

Gain:

Assume that the tree is split into child nodes based on the feature X. Then the gain

in splitting the t is defined as:

[
7l(fv) (Equation 3.9)

Ai(t, X)=i(t) -

veX

If the features are binary then splitting is easier; try each one in turn and choose
the feature with highest gain. However is the features are multiple categories or

continues valued, then an optimal threshold to split node is have to be found.

Among the above methods Gini index is the mostly used one [65]. The choice of
the impurity index is not seem to be very important for the success of the tree
classifier [65]. The more important issues are stopping criteria and the pruning

methods.
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Stopping Criterion

The tree construction can be continued until there are no impure nodes. But this
time overtraining may be a problem for the test dataset. So the training should be
stopped before reaching pure nodes. But if the splitting is stopped too early the

tree may be under-trained. In [65] some options are listed to avoid this problem:
e Use a validation set

e Set a small impurity-reduction threshold. When the greatest possible
reduction of impurity is less than or equal to this threshold stop splitting.

But the problem here is to determine this threshold value.
e Set a threshold values for the number of point at a node

e Use hypothesis testing to see whether a one more split is beneficial or not

Pruning methods

Sometimes early stopping can prevent further beneficial splits. This phenomenon
is called horizon effect [65]. To avoid this one can construct full tree and then
prune it to a smaller size. The aim of pruning is to optimize training error and the

size of the tree.

Reduced error pruning is the simplest pruning method. An additional training set
(pruning set) is used for a simple error check at all non-leaf node. A node is
replaced with a leaf and labeled to the majority class. The error of the tree on the
pruning set is calculated and compared to the error of the first tree. If the new
error is smaller than the previous one, the node is replaced with the leaf.

Otherwise the sub-tree is kept [63].

In pessimistic error pruning method the same dataset is used for both constructing
and pruning the tree. If the number of errors at node is smaller than the number of
errors with a complexity correction at sub-tree of that node, then the node is

replaced by a leaf [63].
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In critical value pruning a critical value is set as a threshold. The tree is checked in
a bottom-up fashion. If a node has a gain in error rate smaller than the critical

value is replaced by leaf [63].

In [63] two more pruning methods are defined: Cost-complexity pruning and
error-based pruning. According to this study critical value pruning and error based
pruning have tendency towards over pruning where as reduced error pruning has
opposite trend. Also it is concluded that, using an aside pruning set does not
always work. Methods used the whole trading set to construct and prune the tree

are found to be more successful.

3.2.2. Neural networks

Artificial neural network (ANN), which is often called Neural Network (NN), is a
mathematical model created by inspiration of biological neural networks. A NN is
created by artificial neurons by connecting them to each other in different
fashions. The information flows through these connections and update the

structure of the networks. So NNs are defined as adaptive systems.

In pattern recognition view, NNs are non-linear statistical data modeling tools.
They can be used to model complex relationships between inputs and outputs or

to find patterns in data.

Neurons

The basic schema of a neuron is shown in Figure 3.4.
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Figure 3.4: A simple neuron model

Let u = [ug,uy,...uq] € R%!be the input vector, v € R be its output.

The vector w = [w},Wa,.. .wq]T € R is synaptic weights. Where

q
v= ¢(¢)and €= Zwi”i where ¢ is the activation function and ¢ is the net
i=0

sum.

The activation function may be hard-limit, linear or sigmoid function. The

sigmoid function is the most used one, because;

e [t can model both linear and hard limit (threshold) functions. It is almost

linear near the origin and hard limited for large weights.

e [t is differentiable, which is important for the training algorithms.

Perceptron

The simplest kind of neural network is a perceptron network, which consists of a
single layer of output nodes. The inputs are given directly to the outputs via
related weights. The sum of the products of the inputs and weights are calculated

and the output is produced according to threshold activation function.
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This one-neuron linear classifier can separate two classes. The weights are
initialized randomly and modified as each sample is subsequently presented to the
inputs of the perceptron. The modification occurs only if the current ample is

misclassified. Perceptron training has following properties [42]:

e If the classes are linearly separable the algorithm always converges in a

finite number of steps.

e If the classes are not linearly separable the algorithm will enter to a loop

and never converges.

Multilayer Perceptron

By connecting two or more perceptron one can construct a Multilayer Perceptron
(MLP). MLP has a feedforward structure, means all units in input layer and
hidden layers are submitted to the only higher layer. A generic example of a MLP

is shown in Figure 3.5.

Input Layer Output Layer
Hidden Layer

—O) o
— @< @

— O

O—
O)—

Figure 3.5: An example to multilayer perceptron with one hidden layer.

The number of hidden layers and number of nodes is not limited, but there are lots

of studies to find best numbers. In late 80s it was shown that an MLP with two
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hidden layers with threshold nodes can approximate any classification problem

[42,65]. In F

Figure 3.6 classification regions that could be constructed by one, two and three
layers are shown [42]. Later, it is proven that even an MLP with single hidden

layer can approximate any function [42].

NN topology

W

Classification

region

Figure 3.6: Examples to classification regions by one, two and three layer MLPs [42]

Most common properties of MLPs are [42, 65]:
e The activation function at input layer is the identity (linear) function
e There are no connections between the nodes at same layer (feedforward)
e There no connection between the nodes at nonadjacent layers

e All the nodes at all hidden layers have the same activation function

Multi-layer networks use a variety of learning techniques; the most popular of

these is backpropagation algorithm. For training of the neural networks, the output

48



values are compared with the correct answer to compute the error function. Then
this error is fed back to the network by various methods. Algorithm adjusts the
weights of each connection in order to reduce the error some small amount. To
adjust weights a general method for non-linear optimization that is called gradient
descent is used. For this, the derivative of the error function with respect to
weights is calculated and the weights are updated to decrease the error. So the
activation function of the network applying backpropagation should be
differentiable. Repeating this process for a sufficiently large number of training
cycles the network will usually converge to some state where the error is small.
The network converged this final state is said that it has learned the target

function.

If a network is trained by very limited number of training samples it can overfit
the data. So the network can not perform well on test data set. Some special
methods should be applied to avoid overfitting. Other problems of network
training are speed of the convergence and stopping convergence in a local
minimum. This causes networks to take a non-optimum state. Decreasing or
increasing the number of hidden layers and nodes may prevent the local minima
problem. Rerunning the algorithm may also work because the weights will be

reinitialized to a different numbers.

3.2.3. Combining Classifiers

The concept of combining classifiers is proposed as a new direction for the
improvement of the performance of individual classifiers. These classifiers can be
based on a variety of classification methodologies, and could achieve better rates
than individual classifiers. The goal of classification result integration algorithms
is to generate more certain, precise and accurate system results. Dietterich [S5]
provides an accessible and informal reasoning as shown in Figure 3.7 from
statistical, computational and representational viewpoints, of why ensembles can

improve results.
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Statistical Computational

Representational

Figure 3.7: Reasons why an ensemble classifier may be better than an individual one [55]

o Statistically: Instead of selecting a single classifier one option may be use
them all and average their outputs. The new classifiers may not be better
than the single best classifier but the risk of selecting an inadequate

classifier is eliminated.

e (Computational: Assuming the training process of each classifier start
somewhere in the space and end closer to the best one (f), combining them

may cause to better approximation than a single classifier.

e Representational: Training an ensemble of simple classifiers to achieve a
high accuracy is more straightforward than training a single more complex

classifier.
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There are several ways of creating multiple classifier system. In [73] three broad

categories are defined.

Different feature spaces: This describes the combination of a set of classifiers,
each designed to use different feature spaces. For example in a person verification
application, several classifiers may be used for different sensor data like retina

scan, facial image etc.

Common feature spaces.: This describes the combination of different classifiers
trained on the same feature space. The classifiers can differ from each other in

some ways.

e The classifiers may be of different type, for example nearest neighbor,

neural network, decision tree etc.
e They may be similar types but use different part of training set.

e They may be similar type but use different initialization parameters, for

example weight initialization of neural networks.

Repeated measurements: This category of combination is about different

classification of an object through repeated measurements.

3.24. Combination Schema

Combination schemas may be classified according to some characteristics

including, level of combination, structure, form of classifiers and training styles.
Level of combination

Combination may be done at different levels as suggested by Kuncheva [42] in

Figure 3.8.
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Combiner Combination

level
D1 DL | - D1 Classifier level
X
y Feature level
Dataset Data level

Figure 3.8: Approaches for building ensemble classifiers (differentiation at each level may be
considered as an approach) [42]

Data level: Raw measurements are given to the combiner that produces posterior
probabilities of class membership. This requires defining a classifier on all sensor
variables. Different datasets may be created by also different preprocessing

methods.

Feature level: Each of features may have its own techniques for reducing
dimension. Different classifiers may perform some local preprocessing on feature

subsets.

Classifier level: Using different base classifiers is a common approach in
combination schemas. Different base classifiers may be preferred due to various
structure of the feature set. Another approach may be differentiating the same
classifier by changing some parameters of it, for example changing initializing or

training parameters of a neural network.

Combination level: Most important issue in combining classifiers is the way

they are combined. According to [43, 71] there are two types of combining rules,
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trained and fixed rules. Trained combiners are different than fixed combiners in
methods of producing final decision. After gathering outputs of the base
classifiers, they are used as an input vector of the combining classifier. The

training set is used for both training base classifiers and combining classifier.

The fixed combining rules make use of the fact that the outputs of the base
classifiers are not just numbers, but that they have a clear interpretation: class
labels, distances, or confidences. The confidence is sometimes interpreted or
generated by fuzzy class membership functions sometimes by class posterior
probabilities. Majority vote, product rule, sum rule, maximum rule are examples

of fixed rules.

For example if only labels are available a majority vote is used [44]. Sometimes
label ranking may be preferred. If continuous outputs like posterior probabilities
are gathered, a linear combination like sum or average may be used. Moreover, it

is possible to train a classifier with the output of another as new features [43].

The structure of a multiple classifier system may be discussed by three style [71].
In parallel combining, results from the base classifiers are passed to the combiner
together. In serial combining the base classifiers are invoked sequentially. In
hierarchical combining, the classifiers are combined in a hierarchy, with the
outputs of one base classifier are given to another one as inputs, in a similar

manner to decision trees.

53



CHAPTER 4

FEATURE SELECTION AND
CLASSIFICATION (GRADING)

4.1. INTRODUCTION

In this study the grading algorithm is designed as a combination of different types
of classifiers, which allows including all available data in decision making
process. Before finalizing this form of the grading algorithm many experiments
have been implemented by different classifiers, different feature
reduction/selection methods. The results of these experiments were helpful for

design of the final algorithm.

e In first trials, the gaits of 111 patients with 110 age-matched normal
subjects are compared. Two different feature reduction techniques, FFT
and averaging are compared by performances of some well known pattern
classifiers. The MD measure is used as an individual feature filtering
criterion and most discriminatory features are determined. Then a set of
linear and non-linear classifiers is tested by a ten-fold cross validation

approach. The details of this trial are given in Section 5.2.

e In second experiment, two popular methods of combining neural networks

are implemented for discrimination of normal and sick patterns. The
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results of classifiers are compared with different output combining rules.

The details of this trial are given in Section 5.3.

e Finally, a decision tree MLP combination is implemented for grading of
the knee OA. Automated feature selection is used for composing datasets
to train MLPs responsible for discriminating neighbor classes. Last section

of this chapter is about design and implementation stages of this algorithm.

4.2. STATISTICAL ANALYSIS OF GAIT DATA: COMPARISON OF
FEATURE REDUCTION/SELECTION AND CLASSIFICATION
ALGORITHMS

The objective of this experiment is to compare the convenient methods for
preprocessing (feature reduction/selection), classification and further analysis
(such as learning curves of the classifiers) of the gait data. For this purpose two
feature reduction techniques (averaging and FFT) are compared by performances
of some well known pattern recognition classifiers. The MD method is used as an
individual feature selection criterion and the most discriminatory features are
determined automatically and the selected attributes are compared with the ones
suggested by previous OA classification studies to discuss the differences of
automated and non automated selection procedures. Next, a set of linear and non
linear classifiers is tested on datasets with different dimensionalities by a
crossvalidation approach. Finally, learning curves of some classifiers are
compared to discuss data size issues (the number of subjects in the training set)

for further studies.

The classification and feature selection algorithms are used from PRTools which
is a Matlab based toolbox for pattern recognition. PRTools supplies about 200

user routines for traditional statistical pattern recognition tasks. [67].
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4.2.1. Feature reduction and selection methods

In this experiment, the data that were formerly collected in Ankara University
Faculty of Medicine gait laboratory from 110 normal and 111 OA patients are
used. All joint angles features from both kinetic and kinematic domains are

included in feature reduction and selection processes.

Data collection process produces a dataset for each subject, including 33 gait
attributes, each having 51 sample points in time, as explained before. Combining
these files into a complete dataset, we got 33 (attributes) x 51(time samples)
dimensional arrays for each subject. The final dataset is thereby composed of 221
subjects presented by 1653 points in feature space. Since the total number of the
features is too large relative to the number of subjects, most of the commonly
used classifiers will suffer from the curse of dimensionality [64, 65]. So, a
reduction in the number of features is needed before the classification process.
Two different reduction techniques are applied to the same dataset for
comparison. Six datasets of the different dimensionalities are composed by
averaging consecutive time sample points for reducing the size of the feature
vectors. Also, FFT is applied to each waveform and each attribute is represented
by one, five, ten or 25 FFT coefficients rather than 51 time samples. At the end of

the reduction process, ten datasets of the different dimensionality are created.

Most of the datasets still have a too high dimension, which forces elimination of
the redundant features. Since the term “features” here represent the time samples
of the gait attributes, they have no meaning by themselves. So the selection is
done by the gait attributes, not by the features. The MD measure is used as a
selection criterion (detailed information about MD based feature selection is given
in Section 3.1.2) Individual performances of the each gait attributes to
discriminate two classes are compared. Instead of the individual selection, a
forward or a backward selection can also be tried in order to avoid the selection of
the similar attributes. However, since the data is from different motion planes and
different anatomic levels of the body, to have similar attributes is not very

probable.
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Table 4.1 summarizes how these datasets are created. The values on this table
represent the MD values produced by each gait attribute with shown number of
time samples. The marked values show the selected attributes for creating
corresponding dataset. All of one dimensional attributes are used for dataset

creation.

The number of selected attributes is limited to reach the best ratio of the number
of subjects and the number of features, which is suggested as one over five in
[64]. Except for the all-mean datasets, the dimensions of the datasets are fixed to
50, since it is reachable by integer number of the attributes for all datasets and
about the ideal ratio (which is 44,2 here). For feature selection distmaha property
of the PRTools to calculate MDs of classes in a dataset is used, as an example
code segment is shown in Table 4.2. Table 4.3 shows the properties of the created
new datasets by combining the selected best features and the MD values produced

by these new datasets.
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Table 4.2: An example to feature selection by distmaha function of PRTools

for i = 1 to #gait_attributes 1. xis an array composed by first 5
fft coefficients of the ith
attribute

2. Convert x to dataset y by
1. x = featfft5 (:,:,1i); presenting class labels array labs

3. Dmis a 2x2 symmetric matrix

2. y = dataset (x, labs); where Dm(i,j) represent the
3. Dm = distmaha (y); Me}halanobls D1st: of cle}sses are
written to a one-dimensional
4. Dmfft5(i) = Dm (1,2); array
. 4. Mahalanobis Distance of classes
n

i and j of dataset y.

Here the naming procedure for datasets are based on the number of time samples
and feature reduction criteria, for example “BesFFT10” represent the dataset that
the time sample reduction is done by FFT algorithm and each attribute is

represented by 10 time samples.

Table 4.3: Datasets after feature reduction and selection processes

# time samples
Composed to represent gait # selected gait Dimension of Mahalanobis
dataset attributes attributes the dataset Distance
Best51d 51 1 51 14.568
Best25d 25 2 50 18.273
Best10d 10 5 50 23.545
Best5d 5 10 50 19.804
Best2d 2 25 50 20.387
Bestld 1 33 33 14.577
BestFFT25 25 2 50 13.244
BestFFT10 10 5 50 15.589
BestFFT5 5 10 50 18.029
BestFFT1 1 33 33 10.625
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As Table 4.3 shows, datasets with about the same dimensionality are composed of
different numbers of gait attributes represented by different numbers of time
samples. So at the end of the classification process it will be possible to discuss
whether the number of gait attributes is more important than the number of time

samples for classification accuracy.

Comparing two reduction techniques based on the MD criterion, averaged
datasets perform better than the corresponding FFT based dataset. While
composing these new datasets, the MD values of the attributes are ordered and the
required number of the best of them is added to the new dataset. So, while some
of the gait attributes may appear in many of the datasets, some may not. As the
table shows, two of ten datasets are created by including all attributes and eight of
them are created by selecting the best ones. The number of appearance times of
attributes in eight datasets are used to compare the discriminatory ability of them
for the classification of the gait patterns of OA patients (only 4 and above are

showed). Appearance times of the gait attributes in eight datasets are:
e KFlex (Knee Flexion): 7
e HMAbd (Hip Abduction Moment): 7
e KMFlex (Knee Flexion Moment): 5
o KRot (Knee Rotation): 4

e KMVal (Knee Valgus Moment): 4

In other trial of the study, the gait attributes were selected by an expert physician
who has suggested four knee-related attributes [38]. All of these four attributes are
appeared in most of the current datasets, too, and moreover three of them are
included in the above table as the most apparent attributes (KFlex, KMFlex,
KMVal). It can be concluded that our selection criterion approximates the expert

knowledge and so contributes to the validation of the approach.
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4.2.2. Comparing Classifiers

As an initial study for classifier selection, s set of linear and nonlinear classifiers
is tested by a ten-fold crossvalidation method. PRTools [67] is used for classifier
construction. Total of nine classifiers are used by some adjustments, for more

information see also [64, 65, 67, 71].

1. Logistic Linear Classifier (loglc)

2. Support vector classifier (svc)

3. Linear Bayes Normal Classifier (Idc): log function is used for adjustment
4. Quadratic Bayes Normal Classifier (qdc)

5. Back-propagation trained feed-forward neural net classifier (bpxnc): 1

hidden layer with 5 nodes

6. Levenberg-Marquardt trained feed-forward neural net classifier (Imnc): 1

hidden layer with 5 nodes
7. Automaric radial basis SVM (rbsvc)
8. Parzen Classifier (parzenc): Datasets are scaled and /og functions are used

9. Parzen density based classifier (parzendc): Datasets are scaled

Since density based classifiers (ldc, qdc, parzenc) suffer from a low numeric
accuracy in the tails of the distributions ‘log’ function is used to compute log-
densities of them. This is needed for overtrained or high dimensional classifiers.
Almost zero-density estimates may otherwise arise for many test samples,
resulting in a bad performance due to numerical problems. Loglc, and SVC, are
other linear classifiers added to set. Loglc is a linear classifier that maximizes the
likelihood criterion using the logistic (sigmoid) function. SVC is a linear support

vector classifier maximizing the distance between support vectors of two classes.
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For neural network classifiers (Imnc, bpxnc), defaults for the numbers of hidden
layers (one) and hidden nodes (five) are used, and the optimization of weights is
done by the Matlab Neural Network Toolbox. Other nonlinear classifiers added to
set are rbsvc and parzendc. rbsvc is a support vector classifier having a radial
basis kernel. Parzendc is a density based classifier using different kernels for the
density estimated for each of the classes. Figure 4.1 shows the error rates of these

classifiers for the averaged and FFT based datasets, respectively.
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0.2 -1 o
@ svc
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0,25
0.2 | @ loglc
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Figure 4.1: Error rates of the classifiers for the a) averaged datasets b) FFT applied datasets
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As can be seen in the figure the averaged datasets perform better than the ones
composed of FFT coefficients. One of the best datasets (best5d) is selected for

further analysis of the gait data.
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Figure 4.2: Learning curves for some classifiers

4.2.3. Results of comparisons

The results of the experiment performed in this study are important for setting a
base for further study of OA grading. Starting from the beginning of the study two
different feature reduction techniques are compared first by the MD criterion and
then by performances of the classifiers. It can be observed that datasets created by
FFT techniques produced worse results in MD calculations and also in the
classification process. Even the datasets composed by averaging all time samples
produced reasonable classification rates, which makes clear how important
activities in the measured angles are for diagnosis. Temporal information of the
waveforms is not so significant for the classifier performances. Since FFT
coefficients represent the changes of the data in time, the higher error rates for
these datasets support the derived result. Also, the severe difference between the

performances of the datasets, bestld (all gait attributes with one time sample), and
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best51d (one gait attribute with all time samples) shows that including more gait

attributes is more informative than including more time samples.

We found a high match between currently selected features on the basis of the
MD and the ones suggested by gait analysis expert. In the current study, besides
the knee features a hip related feature (HMADbd) appeared to perform as well as
the best knee related feature (KFlex). The high discriminatory ability of this
feature shows that the knee OA causes high variation in hip abduction moments as
much as in knee flexion moments of the patients. Moreover, the dataset selected
as the best one (best5d), includes data about the pelvic besides the hip and knee
related ones (PTilt, PRot, HFlex, HAbd, KFlex, KVal, KRot, FDor, HMAbd,
KMVal). To be able to find variation in all levels and motion planes of the

subjects automatic feature selection may be preferred.

Comparing the performances of the classifiers on the basis of the current number
of subjects, it may be concluded that nonlinear classifiers performed quite well
and better than the linear ones. We have compared the learning curves of the
classifiers to investigate whether more data might be helpful. Figure 4.2 shows,
Backpropagation Neural Network (bpxnc) and Parzen density based (parzendc)
classifiers converge faster than the others. Therefore, more data may increase the
performances of the linear classifiers more than the nonlinear ones. We have also
observed that high regularization prevents linear classifiers learning from more
data. Considering the training costs of the algorithms, linear classifiers with a
convenient regularization rate may be included in the further studies with more

data.

These experiments showed us that statistical pattern recognition algorithms

produce promising results for automated analysis of the gait data.

4.3. COMBINING MLPS FOR GAIT CLASSIFICATION

The objective of this part of study is to design a classification algorithm for
discrimination of normal and sick gait patterns. The accuracy of the proposed

system will be safeguarded by using all gait features. To be able to combine all
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features in one classification system, combination methods are expected to be
most suitable. As our previous studies and similar studies proved MLP usage for

gait classification produces reasonable results.

As the dimension of the features and the size of the data increase same accuracies
may not be guaranteed. In similar pattern recognition studies this problem is tried
to be solved by combining classifiers. Combination of NNs [45-51] are widely
used today especially in speech recognition and character recognition studies and
they have showed an increase in the performance of the classifiers. In [48]
Sharkey made a comprehensive experiment to compare two different NNs
combining methods; modular and ensemble ones. She concluded that using an
entire set for training produces more accurate results than decomposing it. In this
study comparison of these two approaches are done in the context of gait
classification. There are also different approaches on combining outputs of
classifiers. In [43] the authors have comparative studies on efficiency of output
combination rules such as majority voting, sum, product, max., and min. rules. In

[43], they concluded that sum rule is superior to others in most of the cases.

A group of MLPs are used to classify the subjects as healthy or sick, using
temporal changes of knee joint angle and time-distance parameters as features.
Two different NNs combination methods are tried. In the first experiment data set
is decomposed into five different sets and five MLPs are trained and tested by
these sets. Then test set results are combined by sum, majority vote and max rules
to produce final class label. In the second experiment, entire data set is used to
train three different architectural MLPs and again outputs are combined by three

different rules and accuracy rates on test set are compared.

4.3.1. Dataset Properties

In this study, decision of which gait attributes to use is done by medical expert,
and four knee related attributes are sclected; knee flexion, knee flexion moment,

knee valgus moment and total knee power graphs of which are shown in Figure
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4.3. In addition, walking velocity, single support and step length are selected as

the time-distance parameters of the gait.

ENEE FLEX/EXTENSION KNEE FLEXION MOMENT ENEE VALGUS MOMENT TOTAL KNEE POWER
i3 2 1 2
D Pk Ext val Gen
e 5 A N ; Y
g 7§ m
v / ] /\_/\ 0 0 /3
e 2 Wl ok
N 154 Mg W g o gl \/ //
s Ex Fix Var Abs
-15 - Bl 2
0 2 4 6 8 100 0 20 40 6 8 100 0 20 4 6 8 10 0 2 4 6 8 100
% Gait Cyole
FNEE FLEX/EXTENSION EWEE FLEXION MOMENT KMEE VALGUS MOMENT TOTAL KMEE POWER
% 2 1 2
D Fix Ext val W Gen
e N a1
g ® m a t
r I 0 t o
o ST G s — M
s Ext Fix Var K aps
15 -1 ] Y 2
0 2 4 e 0 10 0 20 4 60 8 100 0 20 40 60 8 100 % 20 4 B B 9%
% Gait Cycle

Figure 4.3: Graphs of the gait data (healthy (a) and knee osteoarthritis (b))

Each of joint angle related features are represented by a graph that contains 51
samples taken in equally spaced intervals in the time for gait cycle, which is the
time spent for one step. These points composed feature vectors which are used as
inputs of the related MLP. On the other hand, time-distance parameters are static

numerical values which are also used to train another MLP.

Table 4.4: Dataset characteristics

FEATURE #TRAIN H#TEST
VECTOR DATASET #SMP.
FV) H S H S
FV1 KFlex: Knee flexion/extension 51

V2 KMF 1§x: Knee flexion/ 5
extension moment

FV3 KMVal: Knee Valgus Moment 51
61 77 30 33

Fv4 KPTot: Total Knee Power 51

Time-dist: Velocity, single

FVS support, step length

FVé6 Entire set (all of above) 207
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Before passing to classification phase data is cleaned by eliminating rows having
missing values. Finally, 91 healthy and 110 sick subjects’ data is prepared for
classification purpose and shared for training and testing purposes as shown in

Table 4.4 (H: healthy, S: Sick, SMP: Samples).

4.3.2. Classification by Combining MLPs

The basic classifier structure, used in this study is MLPs combination.
Weaknesses of each classifier are diminished by combining classifiers, and more
accurate results are expected. In [48], two methods are described for combining
multiple networks. The first one is the modular approach, in which the task is first
decomposed into several subtasks and a specialist network is then trained using
the inputs pertaining to the corresponding subtask. The second approach is the
ensemble one, in which each network is trained using the same inputs and
provides a different solution to the same task. Outputs from these networks are
combined to reach an integrated result. Complexity is an important issue to be
considered in this case. Differentiation among classifiers may be done by using

initial random weights, different topologies, and varying the input data.

As stated previously the final data that is used here has five feature vectors; four
for temporal changes of knee joint angle (KFlex, KMFlex, KMVal, KPTot) and
one for time-distance parameters. Before training all data sets are scaled to
interval [-1, 1]. Totally eight MLPs are trained using MATLAB neural network
toolbox. These MLPs are combined in different schemas for experiment 1 and
experiment 2 as shown in Figure 4.4. Table 4.5 and Table 4.6 show the topology
of each network and their individual success rates on test data. For the first five
networks number of hidden nodes and hidden Ilayers are determined

experimentally.
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Figure 4.4: MLP combination schemas for experiment 1 (a), and experiment 2 (b) H/S:
Healthy or sick, FV: Feature vector

Experiment 1: Input data is decomposed in five sets composed of different feature
vectors. Five MLPs are trained by these input sets and then outputs of test set are
combined by three different combining rules to reach a final result. So, accuracy

of different combining rules is compared.

Table 4.5: Properties of MLPs used in experiment 1

R R - S
MLPI1 51 35 10 10 24
MLP2 51 35 10 3 7
MLP3 51 35 10 15 76
MLP4 51 35 10 18 7
MLP5 3 2 _ 13 79

Experiment 2: Three different MLPs are trained by using the same composite
input set without any decomposition. Here, differentiation of each network is done

by different number of hidden layers and hidden nodes.

In both experiments different combination approaches are used, but in both cases
combining outputs of classifiers became and important issue. In this study three of
these rules, sum, majority vote and max rules, are experimented and results are

compared by success rates on test data set.
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Table 4.6: Properties of MLPs used in experiment 2

ok ] e | Y
MLP6 207 50 - 6 90
MLP7 207 150 40 6 90
MLPS8 207 207 50 7 89

After training each network with corresponding input set, test data are presented
and the outputs are normalized to use them as posterior probabilities. Since fansig
function is used as the activation function in all layers of networks, outputs are in
interval [-1, 1]. To normalize an output, its absolute value is taken as posterior
probability, and its sign is taken as class label (i.e minus sign is for normal and
plus sign is for sick subject). Then, its 1-complement is recorded as posterior
probability of the other class. Thus, sum and max rules for combining outputs can

be applied.

For sum rule, created posterior probabilities are added up for two classes and
higher value determined the class label. In max rule, the network, producing the
maximum of posterior probabilities determined the class label and the others are
ignored. To find the majority vote, each networks’ output is converted to class
labels by applying a threshold and three agreeing classifiers determine the class
label of the test datum. Table 4.7 shows the obtained success rates on test set by

applying these combining rules.

Table 4.7: Success rates (number and percentage) for combining rules

Combined networks

Combining rule MLP1-MLP5 MLP6-MLP8
#misclassified |success rate (%o)#misclassified | success rate (%,

Sum 4 94 6 90

majority vote 5 92 6 90

Max 5 92 6 90
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As seen in Table 4.6 MLPs used in second experiment produced better
performances which are expected. However, when the dimension of the dataset
increased, and so there are more parameters (like weights) to be tuned, a local
extreme of the error function is likely to be found. An ensemble of simple
classifiers might be better option for such problems [42]. Combining simple
classifiers require condition of diversity. Obviously combining identical
classifiers does not contribute to accuracy. To check whether our five MLPs have
identical classification results or not, we have tested whole dataset by
crossvalidation approach and seen that only % 1.5 of the subjects has been
misclassified by all classifiers, which proves the disagreement of the classifiers.
According to the test set results confusion matrices of the MLPs are created to see
where the misclassifications have occurred. Table 4.8 shows these confusion

matrices where positive (P) means sick subjects.

Table 4.8: Confusion matrices for used MLPs

Predicted

MLP Actual Negative (N) Positive (P)

N 21 9
MLP 1

P 1 32

N 28 2
MLP 2

P 6 27

N 26 4
MLP 3

P 11 22

N 29 1
MLP 4

P 17 16

N 26 4
MLP 5

P 9 24
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These matrices proved that while some MLPs are successful at malfunction
detection, others are good at separating normal subjects. These properties of
simple classifiers support the idea that combining them increases the classification
accuracy. To test this idea, these MLPs are combined by different combining
rules. In this study three of these rules, sum, majority vote and max rules, are

experimented and results are compared by success rates on test data set.

According to these results, it can be concluded that the best individual
performance is produced by MLP6 and MLP7 in which entire data set is used for
training and testing purpose. However, as the dimension of the data and relatively
network size increase, complexity becomes an important drawback. Since it is
difficult to process a large set of data training time increases. However, smaller
MLPs which use only one feature vector produce less accurate results and

combining their outputs increase the accuracy reasonably.

In addition, combining outputs do not increase the accuracy in experiment 2 as
much as in the first one. Increasing the number of networks does not cause any

improvement after an optimum number, which is “three” in our experiment.

The combining rules show equal performance in experiment 2, but in experiment
1 sum rule is superior to others. Then, as complexities are considered combining
many small networks may be preferred when dealing with large dimensional data.
The confusion matrices suggest that further study is needed for the effectiveness

of the selected features.

4.4. A DECISION TREE-MLP MULTICLASSIFIER FOR GRADING
KNEE OA

This part of the study presents the ultimate algorithm behind OAGAIT clinical
decision support system for the detecting and grading of a knee OA. The objective
of this study is to design a classification algorithm to help physicians by
interpreting and further following the progress of OA. The accuracy of the
proposed system is expected to be improved compared to our previous work as

discussed above by using symptoms and history in addition to numeric gait data,

71



with a multi-classifier approach. In the previous studies, selected knee joint angle
features are used to train a single neural network, namely a 3 layer perceptron
(MP) and an 89% success rate was achieved for classification of healthy and sick
patterns [38]. In the next stage of the study, MLP’s with identical topology are
trained by different feature sets and the outputs are combined by fixed combining
rules. This time the success rate of the classifier reached to 94%, for again binary
classification [39], which suggested that the use of combination classifiers may be

used in further work.

Sociodemographic and disease characteristics such as age, body mass index and
pain level are also included in decision making. A grade of the OA (0-3, including
normal with grade zero) is sought. The grade of the disease is already determined

by radiographic methods.

Different types of classifiers are combined to incorporate the different types of
data and to make the best advantages of different classifiers for better accuracy. A
decision tree is developed with Multilayer Perceptrons (MLP) at the leaves. This
gives an opportunity to use neural networks to extract hidden (i.e., implicit)
knowledge in gait measurements and use it back into the explicit form of the
decision trees for reasoning. The approach is similar to the Mixture of Experts
method since different expert MLP’s are used for discriminating different grades
(our categories) of the disease. Individual feature selection criterion is used with
MD measure for feature selection and most discriminatory features are used for

each expert MLP.

Automatic feature selection from many numerical gait parameters is another
subject that’s not studied well before. In this experiment automatic feature
selection process produced some valuable results for further analysis of the

progress of OA.

The main stages of this experiment are shown by a flowchart in Figure 4.5. The

processes followed within these stages are given in detail in following sections.
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4.4.1. Preprocessing of data

As explained in detail in chapter 2 of the report, the gait data is mainly composed
of three different sets of data. The first subset (Set A) of the data is about

symptoms and history of the subjects and defined as:

A = {age, BMI, pain, stiffness, period, history, sex}

In preprocessing steps, some of these variables are converted to numerical values
before they are used as features. For example, while weight and height attributes
are not used for classification purpose, body mass index (BMI), which is equal to
weight divided by the square of the height, is created as a new feature. Age of the
subject is calculated from date of birth, disease periods are converted to months as
unit. Pain and morning stiffness are numeric values between 0 and 10, family
history is a binary value indicating whether the same disease exist in family
history or not. Sex is another binary valued feature where 0 stands for women and
1 for men. The distribution of the subjects for these dataset are shown in Table

2.1 by summarizing min, max and average values of the features.

Table 4.9: Limits of the personal features

Normal subjects Patients
Features min max average min max average
Age 19 63 43 41 80 60
BMI 18 46 27 20 49 32
Pain 0 0 0 1 10 6,6
Stiffness 0 0 0 1 10 52
period (year) 0 0 0 0 30 6,6
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The second set (Set B) of the data is composed of time distance parameters which

are gathered in one cycle of gait.

B = {Cadence, Walking Speed, Stride Time, Step Time, Single Support, Double
Support, Stride Length, Step Length}

The final subset of the data can be defined as the temporal changes of the joint

angles from four anatomical level and three motion planes (Set C) as below.

C = {PelvicTilt, Pelvic Obliquity Knee Flexion, Knee Varus, ...}

These sets of data are grouped according to usage purpose of the data. First two
sets are combined for decision tree training and the third one is for MLPs training.
Before going to further steps the data sets are cleared by deleting the samples
having missing entries from the database. If possible, some missing values are

completed by using previous information of the subject.

4.4.2. Feature Reduction and Selection

The first and second sets of data (A and B) is combined and used for constructing
decision tree. Since the nature of the decision tree algorithms is based on the
selecting best feature and best split point in a top down fashion, an additional

feature selection is not applied to this set.

However at the leaves of the tree attributes from set C is used. Combining all
these attributes into a complete dataset, 33 (attributes) x S51(time samples)
dimensional arrays for each subject are obtained. Figure 4.6 shows the flowchart
for feature reduction and selection processes used in this experiment. The changes
in dimension of the datasets are shown on the lines by “dim” term to clarify the

process.

75



Freprocassed

data
Set A and Set B o
[dirn: 14x1) {dim: 33:-:5':3—1
Feature reduction
Initial fraature by averaging (time
seledtion by samples reduced
physician from 51 o 5)
I -
din: 12x1 Ao
1 v
Compose two-
Feature salaction class datasets
by Gini index
property of DT
|
dirm: dx1 h
¥ Dataset 1 classes 0&1
Traini d Dataset 2: classes 182
,55'.]:'.'%3 E”T Dataset_3: classes 283
v
For each dataset,
calculate Mah,
Dist. for each gait
attribute
v
For each dataset,
i select best B
attributes

Remove related
atiributes

f

L — —Yes— — —

Mo —

Combine selected
atirbutes In a
dataset for
claszsification

{dim: 305}

Figure 4.6: Flowchart for feature reduction and selection processes
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A basic reduction technique is applied before selection as in previous trials. The
dimensions of all attributes are reduced from 51 to 5, by taking means of 10

consecutive time samples. The MD is used as a selection criterion.

Binary class datasets are created for selection of most discriminative gait
attributes. The reason for binary case is due to the expert MLP’s able to
discriminate successive categories, as will be explained later. Since the number of
samples in each case is about 130, the dimensions of the datasets are fixed to 30
by including 6 of attributes. Table 4.10 displays the classes that datasets include

and the levels of selected gait attributes for those datasets.

Table 4.10: Levels of the selected gait attributes for each binary class case (P: Pelvic, F: Foot,
H: Hip, K: Knee)

Attribute number
Classes

1 2 3 4 5 6

0-1 F |[H |K |[K |P |F
2 K K |[K [H K |K
e H |[H |F |H |H |K
3 /K K [K [P K |K
0-2 F |[K |H |[F |K |P

In the next stage, these gait attributes are used for creating input vector of the
related expert MLP. Multidimensional input vectors are created by combining six
best features to train MLPs. The selected feature list is revised by the expert
physician and the similar features are removed to prevent including highly
correlated features in the datasets. Then 6 of 33 features are selected for
composing datasets for each expert MLP. Stages of selection process are

summarized in Table 4.11.
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Table 4.11: Selection of gait attributes using MD values

Calculate Mahalanobis distance matrix between classes in
dataset: the distance matrix between the class means,
sphered using the average covariance matrix of the per-class

centered data.

For i=1 to #gait attributes

e Select ith gait attribute as feature set
e (Create a two class dataset
e Calculate covariance matrix P

e Using the below formula find the Mahalanobis distances
of class means (x, V)

d(Z,7) = V(T - §)TPH(Z - 7).

e Write distance value to array Dm

End

e Sort Dm

e According to number of time samples of gait attribute
select first 1,2,5 or 10 best attributes

e C(Create a new dataset with selected gait attributes

Automatic selection of these attributes gives some valuable information about
progress of the OA. For example while knee related attributes seen more
frequently in dataset composed of classes 1 and 2, hip related ones seem more
discriminative for classes 2 and 3. This shows that as the grade of the illness
increase hip angles are affected more. This kind of information is valuable for

clinical decision making and training physicians.
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4.4.3. Combining classifiers

It is difficult to combine these features due to their diversified units, e.g.,
continuous variables, binary values, and discrete labels. Therefore, the
combination of multiple classifiers is a good solution for a problem involving a
variety of features. It is also important for an M.D. to understand how and/or why
the classifier makes its decisions rather than black-box solutions. Hence, a

classifier that’s able to do that should be aimed.

In this study a Mixture of Decision tree classifiers and Multilayer Perceptrons that
are experts for different regions of the feature space are used for classifying four
levels (0 to3) of the knee OA. In that aspect, the algorithm is similar to the
‘mixture of experts (ME)’ approach in the literature [45]. ME algorithm is based
on the principle of” ‘divide and conquer’ in which a large, hard to solve problem
is divided into many smaller, easier to solve ones [42]. ME is a tree-structured
architecture for supervised learning and further for classification with the
participation of the experts in the final decision making. The ME architecture has
been proposed for neural networks [42]. The experts are neural networks, which
are responsible for a part of the feature space. The selector uses the output of
another neural network, namely ‘the gating network’. If the input to the gating
network is called X, then the output can be defined as a set of coefficients py(x),
.....pL(X) where pi(x) is interpreted as the probability that expert D; is the most
competent expert to label the particular input x [17].

In this study it is aimed to train a decision tree with another subset y of the feature
space instead of training a gating network with the same input x. The output of the
decision tree is again a set of probabilities which are served to expert neural
network at that leaf as prior probabilities of the classes. The neural networks at
each leaf are the experts for classifying the subjects of type falling in that leaf.
Different experts are created by running the feature selection algorithm at each
leaf and designing different structured neural networks according to these selected
features. So one of the networks is responsible for categorization of, for example,

first and second classes, the other is responsible for third and fourth classes.
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Decision tree classifiers are widely used for building classifier ensembles [42, 56,
58]. Binary features and features with small number of discrete values are
especially useful for the purpose since the decision can be easily branched out.
Since distance is not easy to formulate when the objects are described by
categorical or mixed-type features, the decision trees are regarded as nonnumeric
methods for classification [42, 59]. Using decision trees for clinical medical
decision making problems [59] is a popular approach since they are cost effective,
easy to implement and they have descriptive quality, which makes them
advantageous over black-box approaches such as ANN. It is difficult to
incorporate a neural network model into a computer system in an explicit form
since inner formulation and calculations are not shown to the user. In contrast,
once a decision tree model has been built, it can be converted to if...then...else
statements that can be implemented easily in most computer languages without

requiring an additional effort [59, 60].

The four grades of OA are defined by Kellgren grade which is based on the
radiographic assessment of the joint space narrowing. The accuracy of the
proposed system will be safeguarded by using all feature sets A, B, C above with

Kellgren grade-labeled subjects.

The learning and classification processes consist of two stages. In the first stage a
decision tree is trained by using data set A and B. In the second stage, the samples
falling at each leaf is analyzed for feature selection and an expert MLP is trained
by composed datasets using attributes from set C to classify the data into one of
the two categories 0-1, 1-2 etc. Figure 4.7 shows the steps of combining and

training of classifiers with a flowchart.
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4.4.4. Training and testing

The training of our combined algorithm has two divisions, decision tree training
and training of MLPs, as shown in Figure 4.7. Decision tree training is different
than training of many other classifiers for which a topology is created first and
then training data is presented. Decision tree construction and training processes
can not be considered separately. Tree is constructed according to the training data
set by using some predefined criteria. These criteria like splitting and stopping
criteria are important for constructing best tree representing the training set and

avoiding overfitting.

The basic idea of tree learning is to choose a split among all the possible splits at
each node so that the resulting child nodes are pure enough. In our algorithm, only
univariate splits are considered. That is, each split depends on the value of only
one feature variable. All possible splits consist of possible splits of each feature. If
X is a nominal categorical feature of I categories, there are 2" - 1 possible splits
for it. If X is an ordinal categorical or continuous feature with K different values,
there are K - 1 different splits on X. A classification tree is grown starting from the

root node by repeatedly using the following steps on each node.

1. Find each feature’s best split: For each feature, sort its values from the
smallest to the largest. For the sorted feature, go through each value from
top to examine each candidate split point (call it v, if x <= v, the case goes
to the left child node, otherwise, goes to the right.) to determine the best.
The best split point is the one that maximize the splitting criterion when

the node is split according to it.

2. Find the node’s best split: Among the best splits found in step 1, choose

the one that maximizes the splitting criterion.

3. Split the node: Split the node by using its best split found in step 2 if the

stopping rules are not satisfied.
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At node, the best split is chosen to maximize a splitting criterion. This splitting
criterion may be Gini impurity, misclassification impurity etc. For classification

trees the impurity is defined with the Gini index of diversity [42].

Stopping and pruning criteria are also important for tree construction. Stopping
rules control if the tree growing process should be stopped or not. In this study the
number of samples in a node is restricted to be at least 10 so the node is not split

any more.

Pruning step of the tree construction is done by considering structure of our
combination. Means, we applied a method to prune the tree that each leaf has
samples from two classes. In next stage of the combination, MLPs responsible for
discriminating these two classes are replaced to the related leaf. This approach
changed the dimension of the problem from a recognizer for four-categories to
three recognizers with 2 categories, using expert neural networks for

discriminating neighbor classes.

The basic classifiers structure used in the leaves of the decision tree are MLPs.
Three- layered (one hidden layer) MLPs are trained by different input vectors.
These input vectors are trained by automatically selected gait attributes, different
for each leaf as mentioned above. So, they are assumed to be experts in the region

of the binary decision of the category.

The trained MLPs are placed at the leaves of the trained decision tree by class
matching. Figure 4.8 summarizes the proposed combination in a simplified form.

Where;

* Y =1{y1, Y2, .. ¥n} 1s the union of set A and B above

T ={t, t, ... t, } is the set of corresponding threshold values for above,
used for composing tree.

*  X={xy, X2, ... Xm} 1S the set of datasets composed by selected attributes of

set C and presented to the expert networks
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Figure 4.8: Proposed example combination in a simplified symbolic representation.

Implementation of the algorithm and analysis of the results are explained in detail

in next chapter of the report.

Testing of the MLPs is done by crossvalidation method. By this method, the set is
randomly permutated and divided in N (almost) equally sized parts. The classifier
is trained on N-1 parts and the remaining part is used for testing. This is rotated
over all parts. Average error rate and standard deviation is returned as the result.
In this experiment tenfold crossvaldiation is used a short pseudo code is given in

Table 4.12.

Table 4.12: Tenfold Crossvalidaton testing

For i1=1 to iteration count

e Separate 1/10 of the samples for testing randomly
e Train the related MLP with rest of the samples

e Test the trained MLP with separated test samples
e Record the error to an array call Err

e Produce the mean of values of Err and standard
deviations as the result of the testing process
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CHAPTER §

IMPLEMENTATION AND RESULTS

5.1. INTRODUCTION

This chapter is about the implementation of the classification algorithms and
results. As explained in previous chapter the classification algorithm is created by
combining a decision tree with a number of MLPs. First a decision tree is created
by using symptoms and history of the patients and time-distance parameters
together. Then MLPs are trained with different feature sets of gait data to make
them experts for discriminating different grades of the illness. Finally, trained
MLPs are replaced at the leaves of the tree and the algorithm is tested by unseen

data.

5.2. CREATING THE DECISION TREE

A data set having about 40 subjects from each category (0, 1, 2, 3) is composed
for training the decision tree. A tree is fitted to the composed dataset by using
treefit property of the MATLAB Statistical Toolbox. Decision tree is constructed
in top-down fashion with binary splits, where each node checks a numerical value
of a single feature. A termination criterion at a node could be that all objects be
labeled as belonging to the same category. Unfortunately, this is an ideal situation

where the number of samples and features should represent the problem perfectly,
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which is not valid for the data at hand. Here it is aimed to continue until samples
from 2 categories are left. The steps of our tree construction algorithm are shown

in Table 5.1:

Table 5.1: Tree construction algorithm

1. Assign all objects to root node.

2. Split each feature at all its possible split points.

3. For each split point, split the parent node into two
child nodes by separating the samples with values
lower and higher than the split point for the

considered feature.

4. Select the feature and split point with the highest

reduction of impurity.

5. Perform the split of the parent node into the two

child nodes according to the selected split point.

6. Repeat steps 2-5, using each node as a new parent

node, until the tree has maximum size.

7. Prune the tree back using cross-validation to select

the optimal sized tree.

Since we are constructing a classification tree, Gini index impurity is used at step
4 of the algorithm. Consider a c-class problem with £ = {wy, wa, ..., w.}. Let P;

be the probability for class w; at a node t. Gini impurity is defined as

. - 2
i(t)=1- ZP] (Equation 5.1)
j=1
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For the most pure case i(z) = 0. The highest impurity in the case of uniform

distribution is i(?) = (c-1)/c.

A set of possible stopping criteria are explained in Section 3.2 of the report. In
this implementation the method of “setting a threshold value for the number of
samples at a node” is used. The number of samples in each node is limited to 10.

An example tree before pruning is shown in Figure 5.1.
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Pruning is also applied when composing the decision tree. As explained in section
3.2, pruning is a significant step for decision tree construction to avoid overfitting
of the tree to training data. The tree is pruned based on an optimal pruning scheme
that first prunes branches giving less improvement in error cost. To determine the

best size of the tree, it is tested by crossvalidation approach as shown in Table 5.2:

Table 5.2: Pruning algorithm

1. Partition training data in “training” and “validation”
sets.

2. Build a complete tree from the “training” data.

3. Until accuracy on validation set decreases do:

a. For each non-leaf node, N, in the tree do:

b. Temporarily prune the subtree below N and
replace it with a leaf labeled with the current
majority class at that node.

c. Measure and record the accuracy of the pruned
tree on the validation set.

4. Permanently prune the node that results in the

greatest increase in accuracy on the validation set.

This algorithm pools the information from all subsamples to compute the cost for
the whole samples. Applying this method to our tree shown in Figure 5.1 we got a
graph showing the cost versus number of final nodes. The cost value in this graph
represents the misclassification rate for classification trees. The pruning of the tree

is done considering the optimum number of terminal nodes shown in Figure 5.2.
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Figure 5.2: Cost (classification error) versus tree size

Cost graph hints that the number of terminal nodes (leaves) should be chosen
around 2-6 for minimizing the classification error. The tree shown in Figure 5.1 is
pruned 3 times by cost reduction algorithm, and once manually. The aim of
manual pruning is to leave samples from two categories at each leaf.
Unfortunately the desired situation of leaving only two categories at each leaf is
not satisfied fully. Those small numbers of samples at a leaf after pruning will be

ignored by the MLPs.

5.3. FEATURE REDUCTION AND SELECTION PROCESSES

As previously explained gait attributes are represented by 51 time samples.
Consecutive time samples are averaged before training, so each is represented by
five time samples as shown in Figure 5.3. In a previous trial two different feature
reduction techniques are compared first by the MD criterion and then by
performances of the classifiers (section 5.1). It is observed that datasets created by
FFT techniques produced worse results than averaged datasets in MD calculations

and also in the classification process. This study showed that number of time
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samples and number of features should be optimized for better accuracies. In
Figure 5.4 graphs derived from this study are shown; dimension of the datasets are
represented by (#of time samples) x (#of gait attributes). Also, the optimum
ratio of the number of samples and feature size was tried to reach by limiting the

number of selected gait attributes to six.

Figure 5.3: Averaging consecutive time samples for feature reduction

MD based feature selection was implemented after reduction in time samples. The
automated feature selection method is compared with the manual feature selection
done by expert physician in a previous trial (section 5.3). A high match is
recognized between the automated selected features on the basis of the MD
criterion and the ones suggested by the gait analysis expert. This result

encouraged us for using MD criterion in further stages of the study.
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As a result of selection process the features shown in Table 5.3 are obtained.
Different attributes are effective at different stages of OA, as seen in the table. The
parts of the body that the gait attributes are related are important for deriving

information about progression of the knee OA.

Grades 0-1: Most discriminative gait attributes for classification of these grades
are from different parts of the body. This can be commented as in early grades of

the disease a severe deformation in knee joint does not exist.

Grades 1-2: Five of the selected gait attributes for discrimination of these classes
are related to knee joint. This proves that if the grade of the disease progress from
1 to 2, the knee joint is affected seriously. One hip related feature may be the

indicator of the early deformation of this joint.
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Grades 2-3: The results of the selection process for these grades are really
remarkable. Since the number of hip related gait attributes is higher than the knee
related ones for these grade levels, it can be concluded that at advanced levels of
the disease different parts of the body other than knee are also affected. Medically,
it would be incorrect to say that the same disease is also seen in other joints of the
body in high grades but it started to affect the other joints. It is known that most
patients living with the same disease along time may change their postures to
compensate some bad effects of the disease like pain [20, 26, 29, 30]. That may be
why patients with high grade of OA have abnormal hip joint patterns.

Grades 0-2 and grades 1-3: Selected attributes for these grades are not used for
classification purpose but added here to comment about the progress of the
disease. It is seen that most of the attributes for grades 0-2 are common with the
ones for grades 0-1, which shows equal deformation in different parts of the body.
Similarly the attribute for grades 1-3 are common with the ones for grades 1-3

which shows deformation of the knee joint more than the others.

Table 5.3: Selected gait attributes for each two-class case (P: Pelvic, F: Foot, H: Hip, K:
Knee, Flex: Flexion, M: Moment, Tot: Total, Dor: Dosrflexion, Rot: Rotation, Val: Valgus,
Obliq: Obliquity, Adb: Abduction)

Classes Selected Gait Attributes

0-1 F.M.Dor. | H.Flex K.M.Flex | K.Flex P.Tilt F.Rot

1-2 K.Flex K.M.Flex | K.P.Flex |H.P.Tot |K.P.Tot |K.Val

2-3 H.P.Abd | H.Flex A.P.Dor |H.Rot H.P.Flex | K.Val

1-3 K.P.Flex |K.P.Tot |K.Flex P.Oblig |K.M.Rot |K.Val

0-2 F.M.Dor | K.Flex H.Flex F.Dor K.Rot P.Tilt

93



54. IMPLEMENTATION OF MLPS

A set of classifiers are compared by same dimensional datasets. It is concluded
that nonlinear classifiers performed quite well and better than the linear ones.
Backpropagation Neural Network (bpxnc) and Radial Basis Support Vector
Machine (rbsvc) classifiers produced best generalization accuracy by almost all
datasets. Comparing learning rate of the classifiers it was concluded that more
data is needed to increase the performances of the linear classifiers. These results

formed the direction of the study towards using MLPs in further stages.

In second trial of the study combining classifiers approaches are investigated.
Different combination schemas for combining a group of MLPs are experimented.
MLPs are used to classify the subjects as healthy or sick, using temporal changes
of knee joint angle and time-distance parameters as features. Two different
combination methods are tried. In the first experiment five MLPs are trained by
different subsets of the feature space, and in second one three MLPs are trained by
entire feature set. Then the outputs are combined by sum, majority vote and max
rules to produce final class labels. These two experiments show that using entire
data set produces more accurate results than using decomposed data sets, but
complexity becomes an important drawback. However, when a proper combining
rule is applied to decomposed sets, results are more accurate than entire set. So,
for design of the final classification algorithm expert MLPs are trained by

different subsets of the feature set.

Almost 60 subjects from each category are used for composing datasets for MLP
training. Three datasets are created by the selected gait attributes for training three
MLPs. These MLPs are responsible for discrimination of classes 0-1, 1-2 and 2-3
respectively. These MLPs are trained by bpxnc property of the PRTools [27]. This
function creates a feedforward neural network and uses Backpropagation
algorithm for training. MLPs have three-layer structures with binary outputs. They
are tested by crossvalidation approach and an average error rate for each is

gathered as shown in Table 5.4.
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Table 5.4: Classification errors of MLPs

MLP Classes (grades) | Classification error

MLP1 | 0-1 % 11
MLP2 | 1-2 % 16
MLP3 | 2-3 % 21

These MLPs are also tested by receiver operating characteristic (ROC) curve,
which are shown in Figure 4 where x and y axis represent the error of the first and
second classes respectively. ROC curve is a graphical plot of the sensitivity vs. (1
- specificity) for a binary classifier system as its discrimination threshold is

varied, where;

number of true _positives

sensitivity = = -
number _of true positives + number of  false negatives

number _of true negatives

specificity = : —
number _of true negatives + number of _false positives

The ROC can also be represented by plotting the fraction of false negatives vs. the
fraction of false positives as in Figure 5.5. For MLPs setting a threshold values for
posterior probability values determine a point on the ROC curve. Plotting these

points for each possible threshold value creates a curve.
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Error rates and ROC curves of MLPs show that discrimination of some classes are
difficult than the others. In ROC curves, the smaller area under curve (AUC)
shows better classifier. In graph we see that the AUC of MLP discriminating
classes 0-1 is the smallest and the one discriminating classes 2-3 is the greatest.
Then it can be commented that, as the grade of the illness increase the
discrimination power of the gait patterns decrease. Therefore, for discrimination
of these high grades of the disease some more details about these grades may be
added to the classification algorithm. For instance, ignored gait attributes may
also be contributed to the classification process if the number of samples

increases.

5.5. RESULTS

In the second stage of the classification process, expert MLPs are placed at the
leaves of the tree. Figure 5.6 shows an example of the composed tree pruned to

level 3 end corresponding MLPs at leaves of it.
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Table 5.5 shows the number of samples at each leaf of the tree. The signed ones
represent the samples at unexpected leaf; means the MLP at that leaf is not
responsible for detection of that class. For example 2 subjects from class 3 placed
at leaf2, but MLP2 placed at that leaf is responsible for detection of classes 1-2.
Summing up the samples at unexpected leaves we got a %95 training error for

construction of decision tree.
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Table 5.5: Distribution of samples in decision tree

Leaves: L1 L2 L3 L4 L5 L6
Total
Used MLP1 MLP2 MLP2 MLP3 MLP2 MLP3 Error
MLP: (0-1) (1-2) (1-2) (2-3) (1-2) (2-3)
Class-0 40 0 0 0 0 0 0
Class-1 7 11 12 2 7 1 3
Class-2 0 14 8 11 2 5 0
Class-3 0 2 2 13 1 22 5
Total 47 27 22 26 10 28 8

To calculate the overall error rate of the combination, MLP errors and DT error
are used in a formulation. Following code segments summarizes the steps of

calculating error rates for detection of each level of the OA.

For level = 0 to 3

For leaf = 1 to #leaves

Error[level] _ Z samples _ from level in _leaf

xerror _rate _of MLP in_leaf
z samples _ from _level

End

End

The error rate of the decision tree and MLPs are combined in a different fashion

by this formulation. The tree is constructed by equal number of samples (which is
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40) from each level of the illness to objectively calculate the error rates.
According to above formulation, if a sample is sent to wrong leaf of the tree,
means there is no MLP to classify it, then the error rate is taken as 1 in that leaf.
Confusion matrices created by training and test data as shown in Table 5.6 and

Table 5.7 give more detailed information about success rate of the combination.

Table 5.6: Confusion matrix for combination (training data)

Estimated Classes
0 1 2 3 total | error rate
0 39 | 1 0 0 40 0,025
Actual 1 1 |34 | 2 3 40 0,15
classes 2 0 |1 [37] 2 | 40 | 0075
3 0 5 2 33 40 0,175
total 40 | 41 | 41 | 38 160 0,10625

For creation of Table 5.6 data used for training of the combination is presented to
it and the numbers of misclassified samples are detected and almost %90
classification rate is achieved. Since the MLPs were trained with the same data the
contribution of MLP errors on this total error is very small. The reason for most of
these misclassified subjects is that they have been assigned to wrong expert MLP
in decision tree. This wrong assignment is most probable because of pain level
which is a subjective feature determined by subject himself. For example, a
subject from grade 1 can determine his pain level as 10 (max value for pain level)
while the other from grade 3 can say 3. These kind of subjective features are not
preferred in classification processes but experts and medical studies in literature
show that pain level is one of the important indicators of the selected illness, so

added to datasets here.
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Table 5.7: Confusion matrix for combination (test data)

Estimated Classes
0 1 2 3 total | error rate
0 18| 2 0 0 20 0,1
Actual 1 1 |15 2 2 20 0,25
Classes 3 01|17 2 | 20 0,15
3 0| 2 4 14 20 0,3
total 19 | 20 | 23 | 18 80 0,2

Then the algorithm is tested by an unseen dataset composed of 20 samples and
classification rate of %80 is achieved. Since the system is tested by unseen data
the generalization rate reduced from %90 to %80. Because this time the errors

from MLPs are also effective in error calculation.

Finally, for comparing the success of our combination schema with a single
classifier a four-class neural network is trained. A three layered MLP, call it
MLP4, is created having 50 units in input, 10 units in hidden layer and 2 outputs
to discriminate four classes. The same feature reduction and selection processes
are applied to this new dataset, but the number of inputs is increased to 50.
Crossvalidation testing is applied during training. The estimated labels are
gathered as an output of crossvalidation algorithm. Table 5.8 shows the confusion

matrix for MLP4.

Table 5.8: Confusion matrix for MLP4

Estimated classes

0 1 2 3 total | error rate

0 27 | 7 5 1 40 0,325

Actual 1 3 1247 6 40 0,4

classes

2 3 8 | 21 8 40 0,475

3 3 5 |12 | 20 40 0,5

Total | 36 | 44 | 45 | 35 160 0,425
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The classification rate of the MLP4 which is about %58, proved us that using
different expert for different part of the feature space and then combining them

produced reasonable better result than using a single multi-class classifier.

5.6. CLASSIFICATION EXAMPLES

In medical applications, physicians want to see some reasons for class
assignments rather than just learning the results that software produced. The
proposed combination is designed to produce class labels of the new subjects and
the reasons for this assignment. Table 5.9 shows examples of reasoning procedure
which is created by tracking the nodes of the tree in Figure 5.6 and checking
related gait attributes. The physician is able to see which controls are done to
subject for detecting grade of his disease by using this table. The affected gait
attribute field decreases the number of graphs from 33 to 6 that physician may
need to analyze. These are important for treatment planning and supplying

immediate feedback to the subject.

The misclassified examples are also added to the table to be able to discuss
reasons for wrong classification. The reason for most of these misclassified
subjects is that they have been assigned to wrong expert MLP in decision tree.
This wrong assignment is most probable because of pain level which is a
subjective feature determined by subject himself. For example, a subject from
grade 1 can determine his pain level as 10 (max value for pain level) while the
other from grade 3 can say 3. These kind of subjective features are not preferred
in classification processes but experts and medical studies in literature show that
pain level is one of the important indicators of the selected illness, so added to

datasets here.
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5.7.

OVERALL ANALYSIS OF THE RESULTS

Comparing accuracy rate of our algorithm with the manual grading done
by expert physicians it can be summarized that; the physicians can detect
the knee OA by evaluating gait data only. Physicians use radiographic
imaging techniques to grade severity of knee OA and use Kellgren-
Lawrence score as gold standard. There is no study about using gait data
for grading of the OA. This study represents a new approach for
estimating Kellgren-Lawrence grades of the subjects by using only gait
data with an accuracy rate of 80% which is an acceptable rate to use it as a

clinical test.

The causes and compensatory effects of the knee OA has been searched by
some studies before [20, 26, 29]. They concluded that patients with OA of
the knee joint often adapt a gait for alleviating pain, so the motion of the
other joints may be affected [26]. But it is not known if gait adaptation is
mainly related to the severity of the disease [26]. Our data analysis process
indicated relations of severity of the OA and the joints affected by gait
adaptations. We proved the hypothesis of [26] that reduced motion of the

knee joint would be compensated by an increased motion of the hip joint.

The classification success of the implemented combining classifier is
proved by comparing the generalization accuracy of it with a single
uncombined MLP. It can be concluded that our algorithm performed
significantly better than it and supplied some additional advantages like
reasoning etc. But, there are still some drawbacks about detection of high
grades of the disease. Actually, as the grade of the disease increase,
discriminating it from nearest grade becomes more difficult. Most
probable reason for this is patients’ progressive ability to compensate their
gaits by changing gait pattern of some joints. That is why hip joint

waveforms selected as more discriminative features than knee joint ones.
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If we discuss the misclassified examples in all levels of the disease, it is
seen that subjective features like pain contributes to misclassification rate
most. Since the high correlation between the severity of the OA of the
knee and pain level is detected by many studies [20, 26], it is included in

classification process.
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CHAPTER 6

OAGAIT DECISION SUPPORT SYSTEM

6.1. CLINICAL DECISION SUPPORT SYSTEMS

Clinical (or diagnostic) decision support systems (CDSS) can be defined as
interactive computer programs assisting physicians and other health professionals

with decision making tasks [72].

The basic components of a CDSS include a medical knowledge and logical rules
derived from experts. There are many computer applications designed to be a
CDSS. Programs that perform database search or check drug interactions support
decisions, but usually they are not called CDSS. In [73] a CDSS is defined as a
program that supports a reasoning task, implemented behind the user interfaces
and based on the clinical data. For example, a program that takes the laboratory
results as inputs and generates a list of possible diseases is recognized as a clinical
diagnostic decision support system (CDDSS). General purpose programs
accepting clinical findings and generating diagnostic results are typical CDDSSs.
These programs use numerical, logical or artificial intelligence techniques to
convert clinical data to the information that a physician might use for diagnostic

reasoning.

The use of artificial intelligence in medicine started in the early 1970's and

produced a number of experimental systems [73]. INTERNIST I was one of the
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first CDSSs, designed to support diagnosis. It was a rule-based expert system
designed at the University of Pittsburgh in 1974 for the diagnosis of complex
problems in general internal medicine. It uses a tree-structured database that links
diseases with symptoms. Most valuable product of the system was its medical

knowledge base which was used as a basis for successor systems. [74]

MYCIN was another rule-based expert system designed to diagnose and
recommend treatment for certain blood infections. Clinical knowledge in it is
represented as a set of IF-THEN rules. It was a goal-directed system, using a basic
backward chaining reasoning strategy. It was developed in Stanford University.
The EMYCIN (Essential MYCIN) expert system shell, employing MYCIN's
control structures was developed at Stanford in 1980. This domain-independent

framework was used to build diagnostic rule-based expert systems [73].

PIP, the Present Illness Program, was a system built by MIT and Tufts-New
England Medical Center in the 1970s. They gathered data and generated

hypotheses about disease processes in patients with renal disease [73].

The review studies to evaluate the effects of computer based CDSSs on physician
performance and patient outcomes have concluded that CDSSs developed in 70s
as summarized above can improve clinical performance for drug dosing,
preventing care and other aspects of medical care, but not too convincingly for
diagnosis. On the other hand, legal issues such as who would be responsible as a
result of misdiagnosis also prevented these systems to be commercially accepted.
In [73] factors that affect the acceptance and use of CDSSs in clinical practice are

defined as follows.
e Cost
e Degree of user acceptance prior to and after installation
e FEase ofuse

e Interoperability: Integration with existing systems (hardware, other
devices) and existing software programs (integration with patient record

and/or any relevant clinical terminologies)
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Ease of integration within organizational context and routine

Legal and ethical issues

User interface: design, structure, number of forms

Style, manner of presentation of advice/ recommendations/ results to user
Provision of evidence justifying advice and/or recommendations

Involvement of local users during development phase

Today, positive aspects of medical experts about computer usage in clinical

applications, need of rapid access to recent information and need for time saving

increases the number of commercialized CDSSs. Other potential benefits of using

electronic CDSSs in clinical practice are grouped in three broad categories [76]:

1) Improved patient safety

2)

3)

a)
b)

Reducing medication errors

Improving medication and test ordering

Improved quality of care

a)
b)
c)
d)
e)
f)

Increasing clinicians time for patient care

Providing immediate feedback to the patient

Reducing variations in quality of care

Increasing application of clinical pathways and guidelines
Facilitating the use of up-to-date clinical evidence

Improving the clinical documentation and patient satisfaction

Improved efficiency in health care delivery

a)
b)

Reducing the cost by faster processing after initial capital cost

Reducing the test duplications
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DXplain, QMR, ERA and ATHENA are good examples to commercialized
successful systems originating after 80s [73, 75, 77]. DXplain uses a set of clinical
findings (signs, symptoms, and laboratory data) to produce a ranked list of
diagnoses which might explain the clinical manifestations. It provides justification
for why each of these diseases might be considered, suggests what further clinical
information would be useful to collect for each disease, and lists what clinical
manifestations, if any, would be unusual or atypical for each of the specific
diseases [77]. DXplain includes 2,200 diseases and 5,000 symptoms in its
knowledge base. It is developed by Laboratory of Computer Science,
Massachusetts General Hospital, and Harvard Medical School.

QMR has a knowledge base composed of diseases, diagnoses, findings, disease
associations and lab information. It includes information about almost 700
diseases and more than 5,000 symptoms, signs, and labs. It was designed for 3
types of use: as an electronic textbook, as an intermediate level spreadsheet for the
combination and exploration of simple diagnostic concepts and as an expert
consultant program [75]. It is developed by the University of Pittsburgh and First
Databank in California in 1980.

The ATHENA DSS implements guidelines for hypertension, encourages blood
pressure control and recommends guideline-concordant choice of drug therapy. It
is designed to allow clinical experts to customize the knowledge base to
incorporate new evidence or to reflect local interpretations. It has a independent

database so can be integrated into a variety of electronic medical record systems.

6.2. PROPERTIES OF A GOOD CDSS

The implementation of effective CDSS is a challenging task that should involve
interactions between technologies and organizations. There are no obvious
solutions to guarantee success or to avoid failure in this complex process. There
are many factors to reduce errors or to improve health processes, so measuring the
effectiveness of decision support systems is difficult. So, evaluation studies of

CDSSs have typically aimed to measure the impact of a system on a limited part
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of the process [73]. Evaluated systems are mostly designed for providing support
for diagnosis, disease management, drug management or preventive interventions.
Other evaluation topics have included the impact of a system on the quality of
decision making, impact on clinical actions, usability, integration with workflow,
the quality of the clinical advice offered. The cost effectiveness of CDSSs and

their ability to help improve clinical outcomes have been infrequently evaluated.

In a review of computer based systems, most (66%) significantly improved
clinical practice, but 34% did not [78]. There is little scientific evidence to
explain why systems succeed or fail. Some researchers have tried to identify the
system features most important for improving clinical practice by relying on
opinion of a limited number of experts. In [79] the authors systematically
reviewed the literature published up to 2003 to identify features of CDSSs critical
for improving clinical practice. Table 6.1 shows the 15 features of CDSSs derived

from this study.

Table 6.1: Features of a good CDSS [79]

General system features

Integration with charting or order entry system to
support workflow integration

Use of a computer to generate the decision support

Clinician-system interaction features

Automatic provision of decision support as part of
clinician workflow

No need for additional clinician data entry

Request documentation of the reason for not
following CDSS recommendations

Provision of decision support at time and location of
decision making

Recommendations executed by noting agreement
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Table 6.1 (cont.)

Communication content features

Provision of a recommendation, not just an
assessment

Promotion of action rather than inaction

Justification of decision support via provision of
reasoning

Justification of decision support via provision of
research evidence

Auxiliary features

Local user involvement in development process

Provision of decision support results to patients as
well as providers

CDSS accompanied by periodic performance
feedback

CDSS accompanied by conventional education

6.3. FEATURES OF OAGAIT

OAGAIT is designed as a CDSS for grading of the knee OA. On the other hand it
has significant differences from commercialized CDSSs explained in examples. It
has a small knowledge base and database about knee OA but not for all gait
disorders. Its implementation is done by a small amount of money as a part of

academic research project.

A grading method is implemented by a combined pattern recognition system and
embedded into the OAGAIT system. User friendly interfaces are designed for
different modules. The main objective of the OAGAIT is to help physicians for
grading of an already diagnosed disease to ease the treatment planning. Moreover,
some other functions are designed to guide gait analysis process. As discussed in
previous chapters, various structured data such as personal information, time-
distance parameters are collected in the gait laboratory for each subject. Some of

these are stored in paper files. So it used to be difficult to access and combine data
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for processing. A complete database is integrated to OAGAIT system to keep it

together and to access easily when needed.

In our gait laboratory, the commercial software (VICON) used allows gait data to
be saved as MS Excel file. These files show the time-distance parameters of the
gait and temporal changes of the joint angles and their graphs. An excel file of a
patient report is shown in Appendix A as an example. Electronic interfaces are
created for entering this information to the database. When the database is opened
the first form to be filled by the user is the patient record form, which is shown in

Figure 6.1.

B3 Hasta Kayit Formu : Form

Yiirilyiis Analizi Ile Hastalk Tanima Sistemi (YAHTS) (D

GELISTIRILMESI PROJEST
HASTA KAYIT FORMU

Excel Dosyasini Yukleyiniz Ad Soyad l—
[ Dogum Tarihi l—
Gézat | Yikle | Cinsiyet & Kadn € Erkek
Meslek l—
sag_ Sal Telefon

Bacak Uzunlugu (crm) 11 Adres

Diz Genisligi (cm) l— l— Deney 1D

Ayak Bilegi Genisligi (crm) l— l_ = l—

Hastzlic Suresi (ay) | l_
Boy (crm) l—

Deney Tarihi | ‘ Kila (ka) |

sils ORUSY @ o B vk KellarenSkorusad @ o @ 1% 28 3 6 4

Tutulum ® cag @ sol @ pilateral |KellgenSkorusol @ o @1 @@ 3@ 4

AgriSiddeti ® 4 ® 2 B3 &4 g &g &7 g Ha &g

Hic agrisi yok. Dayanilmaz agrisi var

Sahshwelk &, ®,; &3 &4, &y &, €; &g &g &
Haraket

Hic tutukdugu yal, Cok siddetl tukuldugu var
Tutuklugu

Motlar

Kaydet

Figure 6.1: Patient recording form

Besides these, patient tracking forms are created to automate some often used
queries. For example Figure 6.2 shows the query results for a patient’s time
distance parameters and personal information. These types of query forms are

important for database user to learn the number and the date of the experiments of
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the selected subject. Moreover, the physician can compare the changes in the gait

parameters by selecting the different experiments from the list.

x|

B Hasta Izleme Formu : Form

=loi
Yiiriiyiis Analizi Ile Hastallk Tarmima Sistemi (YAHTS)
GELISTIRILMESI PROJESI

HASTA TAKIP FORMU

Ad Soyad WMeslek  [Ev Hanimi
[l Firan El e D.Tarhi  [0L01.1841

Deney ve Tarihleri Crsiyet  [pavan

Telefon
Adres Gorguli Sok, 26/7 Abidinpaga Ankara

Sal Sag
boy  [159 cadence 107,04 | |103,44 |
kilo a5 waking speed 1,03 | |
siride time 115 [ |
tutulum (bilateral \ step time 0o ‘ ) ‘
are o0 | single support 0,44 | |o4e |
alle oykusu |2 double support 0,28 0,20
kellgren |3 siride length 1,16 1,16
agrisiddeti |10 | | step length 0,58 0,61
sabah ve ik 10 |
haraket bacak uzunlugu (83 83
tutklugu diz genisligi 14 |14
bilek genisligi a [ E] |

notes

Figure 6.2: Patient tracking form

Another form supplied by the database system is WOMAC entry form. This is a
validated test designed specifically for the assessment of lower extremity pain and
function in OA of the knee or hip [27, 29]. Figure 6.3 shows the WOMAC form
of the OAGAIT system.
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BEE]
» "
3\ Yiiriylis Analizi Ile Hastalk Tamima Sistemi (YAHTS)
GELISTIRILMESI PROJEST ;
WOMAC FORMU
Ad Soyad Ceney ve Tarihleri
T —— 05
$ 1
7 x Ci3
o[ = =CH — |
{a-] j' C15
10 2 18
€11 i 0% [
ci12 ik

Figure 6.3: WOMAC form

These forms and database tables are used for the main purpose of the system;
grading of the OA. An explanatory and easy to use grading screen is designed for
grading results of the system (Figure 6.4). The grading algorithm will be

explained in more detail in further sections of the report.
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Yiiriiyiis Analizi Ile Hastalk Tanima Sistemi (YAHTS)
GELISTIRILMESI PROJESI
HASTALIK DERECELENDIRME FORMU

O

PATH<2
AGE<55
A
STEPTIME<0.64
7\
Pain=6 ENI=31
e 7o Ty
F 2/ \.3 -/ :\2 2/ -\5

Adi Soyad pain 3 [waveforms: | I =
Ahmet Aladad -
[Bhmet Alada = e 8 | calculated Kellgren grade:
Experiments and dates ’
step time  |0.55
BMI 20 |
< 5]
MNotlar I
Kaydet |

Figure 6.4: Grading screen

6.4. OAGAIT DATABASE

A database with five main tables is used for OAGAIT system. Figure 6.5 shows
these and their relations. The relations of the table are constructed by the used
database system automatically. These relations are important for consistency of

the data, and show the database's structure of how this data is arranged.

The ID entries of the tables represent the unique numbers assigned for the subjects

and construct the relations of all tables. For the tables containing information
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about gait experiment the relation is also provided by experiment ID (expID)

entry.

= G

GAIT_DATA \_.
Cime)

N -
stride_
\ timea
TIME_DIST

WOMAC_RESULTS

4 MEASURE_DATA

stifness period
pain kellgren

Figure 6.5: ER diagram for OAGAIT database

Some of these tables are created for provision of integration of VICON system
and OAGAIT system, and some are designed for storing paper based data on a
computer based system. Detailed explanation of the tables and entries are

presented in this section.

Table “gait_data”: This table is the main table storing temporal variables of the
gait and provides integration of VICON system and OAGAIT system. It is
accessed by both patient tracking and grading functions. Patient record function

writes data to the table.
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EH gait_data: Table

Field Mame Data Type
| |ID Murnber
| |explD Murmber
| |eorder Murmber
| |side Text
| |expDate Dake/Time
| |PTilk Murnber
| |POblig Mumber
| [PRot Murmber
| [HFlex Murnber
| [HAabd Murnber
| [HRok Murnber
| |KFlex Murnber
| [kval Murmber
| [KRot Murnber
| |FDor Murnber
| |FRot Murnber
| |FPro Murnber
| [HMFlex Murmber
| [HMabd Murmber
| [HMRat Murnber
| [KMFlex Murnber
| [KMval Murnber
| |KMRot Mumber
| [FMDor Murmber
| [FMabd Murnber
| [FMRok Murnber
| |HPTot Murnber
| |HPFlex Murnber
| [HPAbd Murmber
| [HPRak Murnber
| [KPTok Murnber
| [KPFlex Murnber
| [KPval Murnber
| |KPRot Murmber
| [APTot Murmber
| [APDor Murnber
| [APAbd Murnber
| |APRoE Murnber

b

Figure 6.6: Table: gait_data

Entries: It has 38 entries as shown in Figure 6.6, 33 of those are related to
temporal gait variables and the rest is about experiment that the subject is walked.
The ID entry of this table is read from VICON system which assigns a numeric ID
to each subject during first visit. Experiment data (expDate) keeps the date of the
gait and used for deriving “age” feature of the subjects with date of birth entry of
another table. Experiment ID (expID) is another system assigned number for each
gait trial of the subject. So the experiments done in different times are stored by a
unique number and allow the patient tracking property of OAGAIT. Eorder is an
automatically generated number to show order of the time sample points for
temporal variables of gait. Side entry is a single character value (L stands for left

and R stands for right) shows which knee of the patient is affected by OA.
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Table “womac_scores”: This table is responsible for keeping answers of the
subjects to the WOMAC questionnaire. The WOMAC form of the database

allows subject ID selection and writes his/her answers to table.

B womac_results : Table
Field Name Data Type
. |ID Murnber
| [expID Murnber
| |at Murnber
| [a2 Murnber
a3 Murnber
S Mumber
| |35 Murnber
| |b1 Murnber
| [k2 Murnber
= Murnber
| |c2 Murnber
|3 Murnber
| |cd Mumber
| |c5 Murnber
| |m® Murnber
| |c7 Murnber
= Murnber
| |9 Murnber
| |c10 Murnber
| [clt Mumber
| |ct12 Murnber
| |c13 Murnber
| |cl4 Murnber
| |cis Murnber
| |cls Murnber
| |ci7 Murnber
| |score Mumber

Figure 6.7: Table: Womac_results

Entries: This table has 20 entries as shown in Figure 6.7, 17 of which are related
to WOMAC questionnaire answers of the subjects. ID and expID entries are
primary key of the table. The entries from al to c17 are numbers taking values 0,
1, 2, 3, 4 or 5 according to answers. The system calculates the WOMAC scores of
the subjects by summing up these values and writes the results to “score” of this

table.

Table “time_dist”: Data of this table are entered by automatic file reading
function of the OAGAIT. The parameters are read from the VICON system and
written to the table by patient record function. It is accessed by patient tracking

and grading functions of the system.
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B time_dist : Table

Field Mame Data Type
| |ID Murmnber
| |explD Mumber
| |side Texk
| |cadence Murnber
| |walkingSpeed Mumber

strideTime Murnber
stepTime Murmber
singleSupport Murmber
| |doubleSuppart Murnber
| |strideLength Mumber
stepLength Mumber

Figure 6.8: Table: time_dist

Entries: This table stores the time distance parameters of the gait as shown in
Figure 6.8. It has 11 entries 8 of which are time distance parameters and first three

are about subject and experiment information as in other tables.

Table “personal_info”: This table is created for storing personal information of
the subjects which were saved in paper files before. Figure 6.9 shows the entries

and data types of the table.

B personal_info : Table

Field Mame Data Type

% |ID Mumber

name Text
| |job Text
| |dbirth Date Tirme
| [sex Murnbeer
| |phone Text

address Text

Figure 6.9: Table: personal_info

Entries: This table has seven entries most of which are not used for grading or
tracking functions. Only the date of birth (dbirth) entry is used for deriving “age”

features of the subjects.

Table “measure data”: This table stores the measurements of the subjects that

are taken just before the gait. These measurements are used for calculation of
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time-distance parameters and temporal variables of the gait by VICON system.
Left and right side of the subjects are measured separately and the initial
characters (“r” or “I”) of the entries represent these sides as shown in Figure 6.10.
The measurements are done by a laboratory expert who writes these numbers to a
paper form. Then this information is saved to the OAGAIT database by patient

record function.

E measure_data : Table

Field Mame Data Type
| |ID Murnbey
| |expID Murnbey
| |expDate Dake/Time
| |direction Tek
| |rleglength Mumber
| [legLength Murnber
| |rknesWidth Murnbey
| |kneewidth Murnbey
| [ranklewidth Murnber
| {lankewidth Mumber
| [height Mumber
| |weight Murmbey
| {FarnilyHist Murnbey
| |lperiod Texk
| |rperiod Tenk
| |kellgren Mumber
| [rkellgren Murnbey
| |achelewvel Murnbey
| |[firstMovache Murnbey
| |notes Memo

Figure 6.10: Table: measure_data

Entries: This table has 20 entries, 17 of which are about measurements of the
subjects. The height and weight entries are used for calculation of BMI features of
the subjects. acheLevel and firstMovAche entries are used as pain and stiffness
features, respectively. These features together with BMI feature are used for

grading function of the OAGAIT system.

6.5. DATA FLOW DIAGRAMS

A data flow diagram (DFD) is a graphical representation of the "flow" of data
through an information system. A DFD is mostly used for the visualization of data
processing. A first level DFD is called context-level DFD which shows the
interaction between the system and the outside entities. This context-level DFD is

then "exploded" to show more detail of the system.
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Figure 6.11 shows level 1 DFD of the designed decision support system.

Integration of VICON Clinical Manager and OAGAIT is also shown here.
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After recording the gait data to OAGAIT database, two main screens can be used
for tracking the patients and grading their illness. DFD for patients tracking

process is shown in Figure 6.12.

patient_id,
expert_nol,
expert_no2

Patient
tracking
screen

inguiry
/ \‘ Symptoms
¢

and history

result

inquiry
patient_id, \
expert_nol,

expert_no2 result

\ Time-

distance
parameters

result

graphs

nauiy —  Temporal
variables
result

Figure 6.12: DFD for patient tracking process

Actually patient tracking is a database query function which enables the
comparison of two different gait experiments of the patient taken in different

times. So, the physician can analyze the recovery of the illness.
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Figure 6.13: DFD for patient grading process

The grading process is mainly composed of two stages as seen in Figure 6.13.
Since the classification algorithm is created by combining two different
classifiers, these stages represent the testing of them by new gait data. Design of

the classification algorithm is detailed in further sections.

6.6. EVALUATION OF OAGAIT AS A CDSS

A comparison table is created for evaluation of OAGAIT system as a CDSS. The
features of a good CDSS suggested by Kuwamoto [79] are searched for OAGAIT
system and the existing features are explained shortly as shown in Table 6.2. It

can be seen that almost all features are supplied by OAGAIT system.
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Table 6.2: Features of OAGAIT compared to the ones suggested in [79]

Features of a good CDSS

Features of OAGAIT

General system features

Integration with charting or order entry system

to support workflow integration

Integration of OAGAIT and VICON system

Use of a computer to generate the decision

support

Fully computerized decision support

Clinician-system interaction features

Automatic provision of decision support as

part of clinician workflow

When the subject’s gait data is entered to the
database the grading info is automatically

displayed on the screen.

No need for additional clinician data entry

All needed data is entered to the database

before processing

Request documentation of the reason for not

following CDSS recommendations

There is a additional notes entry in all forms

Provision of decision support at time and

location of decision making

The grading results are shown on the screen

just after the walking of subject

Recommendations executed by noting

agreement

Not applicable

123



Table 6.2 (cont.)

Communication content features

Provision of a recommendation, not just an

assessment

OAGAIT supply reasoning for the

assessment to help creation of treatment plans

Promotion of action rather than inaction

The system should advise something rather
than a blank screen. OAGAIT produces most
probable two classes as a result rather than

“not classified” message.

Justification of decision support via provision

of reasoning

OAGAIT shows assessment stages to support

reasoning

Justification of decision support via provision

of research evidence

The decision tree property of OAGAIT
supplies research evidences for provision of

OA

Auxiliary features

Local user involvement in development

process

An expert physician is included in the
development process as both an knowledge

expert and end user

Provision of decision support results to

patients as well as providers

Physician is responsible for delivering the

results to the patients

CDSS accompanied by periodic performance

feedback

Not applicable

CDSS accompanied by conventional

education

A short training is given to the physicians

and/or other laboratory staff
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CHAPTER 7

CONCLUSION AND FUTURE DIRECTIONS

7.1. PROPERTIES OF OAGAIT SYSTEM

Within the scope of this study, a CDSS was implemented to help physicians for
grading and further analysis of the knee OA. Main function of OAGAIT is to
interpret gait data almost as close as an expert’s. This interpretation is done by
using expert knowledge on gait and other features in pattern recognition. Main

features of the implemented CDSS can be summarized as following:

e OAGAIT supports the function of radiographic films for grading of OA

and/or other diseases.

e OAGAIT is a fully computerized system, so incorrect decisions by experts

as a result of non-experienced interpretations is minimized.

e [t provides a base for patient follow up in time, which helps physicians to

make more accurate treatment plans.

e [t provides a graphical representation (the decision tree) of the grading
process which brings a description to the decision in addition to

classification.
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e OAGAIT has a complete gait database integrated with the data collection
software VICON. This database combined all new and old gait data in an
easy access and portable environment. Moreover, this database is
convenient to use for further studies about other diseases or integration to

other software systems.

e It has easy-to-use user interfaces, so a short training is enough for the

physicians and/or other laboratory staff

e [t has a short processing time; the grading results are shown on the screen
just after walking of the subject. So immediate feedback to the physician

and the patient is supplied.

7.2. EVALUATION OF THE GRADING ALGORITHM

Combining classifiers produced premising results for many areas in pattern
recognition. Since we deal with a multi-class problem in this study, expert
classifiers for different classes are combined for better generalization accuracy.
The implemented combination schema is expected to increase success rates of

similar medical problems.

Since the classification algorithm was developed using a method similar to spiral
development methodology, the result of one stage is important for design of the
next one. This means, feature reduction/selection and classification algorithms are
selected in a series of successive trials of increasing complexity. Each stage of the
algorithm design produced valuable information about further recognition of the

selected disease, helping treatment plans.

A grading algorithm is created by combining decision trees and MLPs by
considering the results of previous experiments. The symptoms and history
information of the subjects in addition to gait data are also included in the
combination. This data is used to train a decision tree, which gives an opportunity
of the reasoning of the results. The gait data is used to train 3 different MLPs with

binary classifications that are used at the leaves of the decision tree. The feature
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selection processes prior to decision tree and MLP training give us information
about relations between the grade of the illness and the affected body parts.
Namely, while the subjects with low grade of the disease (grade 1 or 2) have
deformation in knee joint, the ones with high grade of the disease (grade 3) have
more deformation in hip joint. Although we analyze a knee disease, we see that
other parts of the body may be affected and so data from these parts should also
be included in the classification processes. Deriving this kind of hidden
information in data provides better clinical recognition of the illness while

contributing the classification accuracy.

Comparing the accuracy of the implemented classifier with a single multi-class
one, it can be concluded that combining a set of binary classifiers produce better
results than a single multi-class one. Since the classes are not easily
distinguishable creating different experts for different subsets of the feature sets
produce better results. But still classification accuracy of the expert MLPs may be
improved. Especially for detection of third grade of the illness some more detailed

analysis may be helpful.

As a final comment, the results and analysis of the classifier both for accuracy and
descriptiveness produced satisfactory results and aimed to be used in gait
laboratories. The combined decision tree-MLP approach is also expected to be
applicable to similar type of medical decision making processes, where both

disease characteristics and clinical measurements and tests are to be combined.

7.3. LIMITATIONS OF THE STUDY

In pattern recognition studies the curse of dimensionality is a significant reason
for poor generalization ability of classifiers. In practice it is often observed that
the added features may degrade the performance of a classifier if the number of
training samples that are used to design the classifier is small relative to the
number of features. This generalization is valid for our study, too. Even though
the amount of collected data far exceeds the data size used by other studies, it is

still not fully satisfactory. If the number of samples was arbitrarily large then
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more features would be included for both creating decision tree and training
MLPs. Most probable, including more features would produce better

generalization accuracies.

As said before the implemented combination algorithm may be used for detection
and grading of similar type of diseases. Because of time and budget restrictions
data collection process limited to only one disease. The algorithm could not be

tested by any other set of data.

Another limitation of the study was about data collection process. In most studies
OA is scaled to five grades (0-4) according to Kellgren-Lawrence radiographic
method. Since most of the fourth grade patients are not able to walk in laboratory
and treated in bed in orthopedics department of the hospitals, to collect their gait
data is difficult. Therefore, in this study data from fourth grade of the OA is

ignored in classification process.

7.4. SUGGESTIONS FOR FUTURE WORK

OAGAIT is currently proposed for use in Ankara University Medicine Faculty
Gait Laboratory. It may be installed to other gait laboratories and tested by many
experts in the future. Testing results may be used for improvement of the system.
If data from other diseases like cerebral palsy (CP) can be added to the database, it
will be preferred by more laboratories in the future. If system is used widely, a
web based collective database system may be designed to help the data sharing
between laboratories. Fast increase in number of samples will lead to design
different classifiers and further analysis of the diseases. Moreover, large amounts
of data may allow the data mining studies by which hidden knowledge in medical

data may be discovered.

In addition to the detection and grading of the diseases, patient follow up property
which is significant for clinical decision making may be added to the system. To
achieve this, the subjects should have gait data collected in determined time
intervals. Therefore a subject should be called to the gait laboratory after some

periods of time like 6 months, 1 year etc. For the design of this function,
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extrapolation methods may be tried by including “time” parameter in the feature

set.

Combining pattern classifiers is one of the recent, popular research areas of
machine learning. Lots of new combining methods and approaches are
implemented everyday. In this study we could try some of them with existing
amount of data. However, some other feature reduction/selection methods or
different combination models may also be tried to optimize the classification
accuracies. Also combination of pattern recognition algorithms and image
processing methods may be tried for evaluating gait analysis data and XR images

for grading.

129



REFERENCES

L. Lee, W. Grimson, “Gait analysis for recognition and classification”,

in Proceedings of the IEEE Conference on Face and Gesture Recognition,
2002, pp. 148-155

. R. Begg,y, J. Kamruzzaman, "A Comparison of Neural Networks and
Support Vector Machines for Recognizing Young-Old Gait Patterns”,
Proceeding of IEEE TENCON Conference, 2003, pp. 354-358

C. Y. Yam, M. S. Nixon, J. N. Carter, “Automated person recognition
by walking and running via model-based approaches”. Pattern
Recognition, vol. 37, pp. 1057-1072 , 2004

M. S. Nixon, J. N. Carter. "Advances in Automatic Gait Recognition,"
in Proceedings of the Sixth IEEE International Conference on Automatic
Face and Gesture Recognition, 2004, pp. 39-144

S. Sarkar, P. J. Phillips, Z. Liu, I. R. Vega, P. Grother, K. W. Bowyer,
“The HumanID Gait Challenge Problem: Data Sets, Performance, and
Analysis”, [EEE Transactions On Pattern Analysis And Machine
Intelligence, vol. 27, pp. 162-177, 2005

L. Wang, W. Hu, T. Tan, “A New Attempt to Gait-Based Human
Identification,” in Proceedings of the International Conference on
Pattern Recognition, 2002, pp. 115-118

R. Collins, R. Gross, J. Shi, “Silhouette-Based Human Identification
from Body Shape and Gait,” in Proceedings of the International

Conference on Automatic Face and Gesture Recognition, 2002, pp. 366-
371

L. Herda, P. Fua, R. Plankers, R. Boulic, D. Thalmann “Skeleton-Based
Motion Capture for Robust Reconstruction of Human Motion”, in
Computer Animation , 2000, pp. 77-82

130



9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

R. Urtasun, P. Fua, “3D Tracking for Gait Characterization and
Recognition”, in Proceedings of the Sixth IEEE International Conference
on Automatic Face and Gesture Recognition, 2004, pp. 17-22

A. Kale, A. Sundaresan, A. N. Rajagopalan, N. P. Cuntoor, R.
Chowdhury, V. Kriiger, R. Chellappa, ’Identification of Humans Using
Gait”, IEEE Transactions On Image Processing, vol. 13, pp.1163-1173,
2004

R. B. Davis, P. A. DeLuca, M. J. Romness, “Clinical Gait Analysis and
Its Role in Treatment Decision-Making”, Medscape General Medicine
vol. 1, 1999

K. R. Kaufman, “SECTION FOUR: Future Directions in Gait
Analysis”, RRDS Gait Analysis in the Science of Rehabilitation, May
2005, http://www.vard.org/mono/gait/kaufman.htm,

R. Baker, “Gait Analysis Methods in Rehabilitation”, Journal of Neuro-
Engineering and Rehabilitation, vol. 3, pp. 1-10, 2006

C. L Vaughan, B. L. Davis, J. C. O'Conner, Dynamics of Human Gait.
Champaign, IL: Human Kinetics, 1991

G. Yavuzer, “The use of computerized gait analyses in the assessment
of Neuromusculoskeletal disorders”, FTR Bil Der - J PMR Sci, vol. 2,
pp. 43-45, 2007

S. Salarian, H. Russmann, F. J. G. Vingerhoets, C. Dehollain, Y. Blanc, P.
R. Burkhard, K. Aminian, “Gait Assessment in Parkinson’s Disease:
Toward an Ambulatory System for Long-Term Monitoring”, [EEE
Transactions On Biomedical Engineering, vol.51, pp. 1434-1443, 2004

R. E. Cook, I. Schneider, M.E. Hazlewood, S.J. Hillman, J.E. Robb, “Gait
analysis alters decision-making in cerebral palsy”. J Pediatr Orthop,
23-3: pp.292-295, 2003

Salazar, A.J. De Castro, O.C. Bravo, R.J., “Novel approach for spastic
hemiplegia classification through the use of support vector machines”,
Proceedings of the 26th Annual International Conference of the
Engineering in Medicine and Biology Society, 2004, pp. 446-469

F. Dobson, M. E. Morris, R. Baker, H. K. Graham, “Gait classification in
children with cerebral palsy: A systematic review”, Gait and Posture,
vol. 25, pp. 140-52, 2007

H. Gok, S. Ergin, G. Yavuzer, "Kinetic and kinematic characteristics of

gait in patients with medial knee arthritis”, Acta Orthop Scand, vol. 73,
pp. 647-652, 2002

131



21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

JH Kellgren, JS Lawrence, ‘Radiological assessment of osteoarthritis’,
Ann Rheum Dis, vol. 16, pp. 494-501, 1957

Osteoarthritis (OA): Bone, Joint, and Muscle Disorders: Merck Manual
Home Edition October 2007,
http://www.merck.com/mmbhe/sec05/ch066/ch066a.html

Osteoarhritis- Risk Factors, December 2006
http://adam.about.com/reports/000035_4.htm

K. J. Deluzio, J. L. Astephen, “Biomechanical features of gait waveform
data associated with knee osteoarthritis: An application of principal
component analysis”, Gait and Posture, vol. 25, pp. 86-93, 2007

Kaufman, K., Hughes, C., Morrey, B., Morrey, M., An, K., “Gait
characteristics of patients with knee osteoarthritis”, Journal of
Biomechanics,, vol. 34, pp. 907-915, 2001

Z. Bejek, R. Paroczai, A. Illyesi, L. Kocsis, R. M. Kiss, “Gait Parameters
Of Patients With Osteoarthritis Of The Knee Joint”, Physical
Education and Sport, vol. 4, pp. 9-16, 2006

F Petersson, T. Boegard, T. Saxne, A. J. Silman, B. Svensson,
“Radiographic osteoarthritis of the knee classified by the Ahlbéick and
Kellgren & Lawrence systems for the tibiofemoral joint in people aged
35-54 years with chronic knee pain”, Annals of the Rheumatic Diseases,
vol. 56, pp. 493496, 1997

N. Samanci, C.Kagar, M. Saym, T. Tuncer, “Primer Diz Osteoartritinde
Metabolik, Endokrin Ve Sosyo-Kiiltiirel Risk Faktorleri Ve
Radyolojik Bulgularla Hiskisi”, Romatizma, vol.18, 2003

L. Sharma, S. Cahue, J. Song, K. Hayes, Y. C. Pai, D. Dunlop, “Physical
Functioning Over Three Years in Knee Osteoarthritis” Role Of
Psychosocial, Local Mechanical, And Neuromuscular Factors”,
Arthritis & Rheumatism, vol. 48, pp 3359-3370, 2003

K. S. Al-Zahrani, A. M. O. Bakheit, “A Study of the Gait
Characteristics of Patients with Chronic Osteoarthritis of the Knee”,
Disability and Rehabilitation, vol. 24, pp. 275-280, 2002

T. Chau, “A review of analytical techniques for gait data, Part 1:
Fuzzy, statistical and fractal methods,” Gait and Posture, vol. 13, pp.
49-66, 2001.

T. Chau, “A review of analytical techniques for gait data, Part 2:

Neural network and wavelet methods”, Gait and Posture, vol. 13, pp.
102-120, 2001.

132



33

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

. G. Barton, P. Lisboa, A. Lees, S. Attfield, “Gait quality assessment using
self-organising artificial neural networks”, Gait and Posture, vol. 25,
pp. 374-379, 2007

M. Kohle , D. Merkl , J. Kastner, “Clinical gait analysis by neural
networks: issues and experiences”, in Proceedings of the 10th IEEE
Symposium on Computer-Based Medical Systems 1997, pp.138

W. Wy, F. Su, Y. Cheng, Y. Chou, “Potential of the Genetic Algorithm
Neural Network in the Assessment of Gait Patterns in Ankle

Arthrodesis”, Annals of Biomedical Engineering, vol. 29, pp. 83-91,
2001

J. G. Barton, A. Lees, “An application of neural networks for
distinguishing gait patterns on the basis of hip-knee joint angle
diagrams” Gait and Posture, vol. 5, pp. 28-33, 1997

M. Kohle , D. Merkl, “Analyzing human gait patterns for malfunction
detection”, in Proceedings of the ACM symposium on Applied computing,
2000, pp. 41-45

N. Sen Koktas, N. Yalabik, “A Neural Network Classifier for Gait
Analysis”, in Proceeding of International Symposium on Health
Informatics and Bioinformatics, 2005, pp. 174-179

N. Sen Koktas, N. Yalabik, G. Yavuzer, “Ensemble Classifiers for
Medical Diagnosis of Knee Osteoarthritis Using Gait Data”, in

Proceeding of IEEE International Conference on Machine Learning and
Applications, 2006, pp. 225-230

R. Lafuente, JM. Belda, J. Sanchez-Lacuesta, C. Soler, J. Prat J. “Design
and test of neural networks and statistical classifiers in computer
aided movement analysis: a case study on gait analysis”, Clinical
Biomechanics, vol. 13, pp. 216-20, 1997

R. K. Begg, M. Palaniswami, B. Owen, “Support Vector Machines for
Automated Gait Classification”, [EEE Transactions On Biomedical
Engineering, vol. 52, pp. 828-838, 2005

L. I. Kuncheva, Combining Pattern Classifiers: Methods and Algorithms.
Wiley-Interscience, 2004

J. Kittler, M. Hatef, R. P. W. Duin, J. Matas, “On Combining
Classifiers”, [EEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 20, pp. 226-239, 1998

R. Ranawana, V. Palade, “Multi classifier systems: Review and

Roadmap for developers”, International Journal of Hybrid Intelligent
Systems, vol. 3, pp. 35-61, 2006

133



45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

M. L. Jordan, R. A. Jacobs, “Hierarchical mixtures of experts and the
EM algorithm”, Neural Computation, vol. 6, pp. 181-214, 1994

J. Mao, “A case study on bagging, boosting and basic ensembles of
neural networks for OCR”, in Proceeding of IJCNN, 1998, pp.1828-
1833

J. Kim, J. Ahn., S. Cho, “Ensemble competitive learning neural
networks with reduced input dimension”, International Journal of
Neural Systems, vol. 6, pp 133-42, 1995

A. J. C. Sharkey, “Types of multinet system”, in Proceedings of the
Third International Workshop on Multiple Classifier Systems, 2002, pp.
108-117

Z. H. Zhou, J. Wu, and W. Tang, "Ensembling neural networks: many
could be better than all", Artificial Intelligence, vol. 137, pp.239-263,
2002

L. K. Hansen, P. Salamon, “Neural Network Ensembles”, /EEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 12, pp.
993-1001, 1990

N. Ueda, “Optimal Linear Combination of Neural Networks for
Improving Classification Performance”, /[EEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 22, pp. 207-215, 2000

G. Fumera, F. Roli, “A Theoretical and Experimental Analysis of
Linear Combiners for Multiple Classifier Systems ”, /[EEE Transactions
on Pattern Analysis and Machine Intelligence, vol.27, pp.942-956, 2005

T. K. Ho, J. J. Hull, S. N. Srihari, “Decision Combination in Multiple
Classifier Systems”, I[EEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 16, pp. 66-75, 1994

R. E. Banfield, L. O. Hall, K. W. Bowyeri, D. Bhadoria, W. P.
Kegelmeyer, S. Eschrich, “A Comparison of Ensemble Creation

Techniques ”, in Proceeding of the International Conference on Multiple
Classifier Systems, 2004, pp. 223-232

T.G. Dietterich. “Ensemble methods in machine learning”, in
Proceeding of Multiple Classifier Systems, 2000, pp. 1-15

A. C Stasis, E. N Loukis, S. A Pavlopoulos, D Koutsouris, “A multiple
decision trees architecture for medical diagnosis: The differentiation
of opening snap, second heart sound split and third heart sound”,
Computational Management Science, vol. 1, pp. 245-274, 2004

134



57

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

. S. Armand, E. Watelain, M. Mercier, G. Lensel, F. Lepoutre, “Linking
clinical measurements and kinematic gait patterns of toe-walking
using fuzzy decision trees”, Gait and Posture, vol. 25, pp. 475-484, 2006

R. Kohavi, “Scaling Up the Accuracy of Naive-Bayes Classifiers: A
Decision-Tree Hybrid”, in Proceeding of International Conference on
Knowledge Discovery and Data Mining, 1996, pp. 202-207

V. Podforelec, P. Kokol, “Evolutionary construction of medical
decision trees”, in Proceedings of the 20th Annual International
Conference of the IEEE Engineering in Medicine and Biology Society,
1998, pp. 1202-1205

K. Tsujino, “Hybrid Knowledge Acqusition by Integrating Decision
Trees and Neural Networks”, in Proceeding of IEEE International
Conference on Neural Networks, 1995, pp. 1379-1383

J. R. Quinlan, “Learning Decision Tree Classifiers”, ACM Computing
Surveys, vol. 28, pp. 71-72, 1996

Decision Tress and Data Mining, May, 2007,
http://www.decisiontrees.net/

F. Esposito, D. Malerba and G. Semeraro, “A comparative analysis of
methods for pruning decision trees”, /[EEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 19, pp. 476491, 1997

Anil K. Jain , Robert P. W. Duin , Jianchang Mao, “Statistical Pattern
Recognition: A Review”, IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 22, pp. 4-37, 2000

R.O. Duda, P.E. Hart, and D.G. Stork, Pattern Classification. John Wiley
and Sons, New York, 2001

M. Skurichina, R.P.W Duin, “Combining Feature Subsets in Feature
Selection”, in Proceeding of the International Conference on Multiple
Classifier Systems, 2005, pp. 165175

R.P.W Duin, PRTOOLS (version 4). A Matlab toolbox for pattern
recognition. Pattern Recognition Group, Delft University of Technology,
February 2004

A K. Jain and D. Zongker, “Feature Selection: Evaluation, Application,
and Small Sample Performance,” [EEE Transactions on Pattern
Analysis and Machine Intelligence, vol.19, pp. 153-158, 1997

M. Kudo, J. Sklansky, “Comparison of algorithms that select features
for pattern classiffers”, Pattern Recognition, vol. 33, pp. 25-41, 2000

135



70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

M. Dash, H. Liu, “Feature selection for classification”, International
Journal of Intelligent Data Analysis, vol. 1, pp. 131-156, 1997

A. R. Webb, Statistical Pattern Recognition, Second Edition, Wiley, 2002

The free encyclopedia, January 2008, http://en.wikipedia.org

Decision Support Systems, January 2008,
http://www.openclinical.org/dss.html

R. A. Miller, “Medical diagnostic decision support systems--past,
present, and future: a threaded bibliography and brief commentary”,

Journal of the American Medical Informatics Association, vol. 1, pp. 8-27,
1994

R. A. Miller, F.E. Masarie, “Use of the Quick Medical Reference
(QMR) program as a tool for medical education”, Methods of
Information in Medicine, vol. 28, pp.340-5, 1989

E. Coiera. The Guide to Health Informatics (2nd Edition). Arnold,
London, October 2003.

DXPlain, January 2008, http://lcs.mgh.harvard.edu/projects/dxplain.html

D. L. Hunt, R. B. Haynes, S. E. Hanna, K. Smith, “Effects of Computer-
Based Clinical Decision Support Systems on Physician Performance

and Patient Outcomes: A Systematic Review”, The Journal of the
American Medical Association, vol. 280, pp. 1339-1346, 1998

K. Kawamoto, “Improving clinical practice using clinical decision

support systems: a systematic review of trials to identify features
critical to success”, BMJ, vol. 330, pp. 330-765, 2005

136



APPENDICES

APPENDIX A. An example to excel file of a subject
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Joint Net Moments and Powers
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RESEARCH INTERESTS
e Pattern recognition
e Combining classifiers
e Feature selection approaches
e Neural networks

e (ait analysis
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