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ABSTRACT

COMPLETELY SIMPLE SEMIGROUPS

Kalkan, Mehmet

Master, Department of Mathematics

Supervisor: Assistant Prof. Dr. Ömür Umut

December 2007, 42 pages

In this thesis, we study on Molaei’s generalized groups, completely simple

semigroups and the equivalence theorems involving them. For this aim, first we

present basic definitions such as regularity and Green’s equivalence. Next, we

deal with Molaei’s generalized groups. In 1999, Molaei introduced generalized

groups as a class of algebras of interest in physics, and proved some results about

them. Then we consider semigroups with no proper ideals known as simple semi-

groups. A simple semigroup is called completely simple semigroup if it satisfies

the conditions minL and minR that is to say if every nonempty set either of

L-classes or of R-classes possesses a minimal member. Finally, we introduce Rees

matrix semigroup to prove that the structure of the Molaei’s generalized groups

is equivalent to the notion of completely simple semigroups.

Keywords: Regularity, Green’s equivalence relations, Molaei’s generalized groups,

simple semigroups, completely simple semigroups, Rees matrix semigroups.
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ÖZET

TAM BASIT YARIGRUPLAR

Kalkan, Mehmet

Master Tezi, Matematik Bölümü

Tez Danışman: Yrd. Doç. Dr. Ömür Umut

Aralık 2007, 42 sayfa

Bu tezde, Molaei’nin genelleştirilmiş gruplarını, tam basit yarı grupları

ve bunları içeren denklik teoremlerini çalışacağız. Bunun için, önce düzenlilik ve

Green denklik bağıntıları gibi temel tanımları sunacağız. Bunun akabinde Mo-

laei’nin genelleştirilmiş gruplarına değineceğiz. 1999 yılında Molaei, genelleştiril-

miş grupları bir cebir dalı olarak ve fizikle ilişkilendirerek tanımlamış ve bu grup-

larla ilgili bazı sonuçları ispatlamıştır. Daha sonra basit yarıgruplar olarak bilinen

ve kendisi dışında alt ideali olmayan yarıgrupları ele alacağız. Bir basit yarıgrup

minL ve minR koşllarını sağlıyorsa, yani boş olamayan her kümenin L-sınıfları

veya R-sınıfları minimal elemanı içerirse, tam basit yarıgrup olarak adlandırılır.

Son olarak, bir Molaei genelleştirilmiş grup yapısının bir basit yarı grup kavramına

denk olduğunu göstermek için Rees matris yarıgruplarını tanımlayacağız.

Anahtar Kelimeler: Düzenlilik, Green denklik bağıntıları, Molaei’nin genelleşmiş

grupları, basit yarıgrouplar, tam basit yarıgruplar ve Rees matris grupları.
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CHAPTER 1

INTRODUCTION

Algebra is a part of mathematics which studies abstract sets with certain

operations defined on them. Semigroup theory is a thriving field in modern

algebra, though perhaps not a very well-known one.

The term semigroup was first coined in a French group theory textbook [1] in

1904 (though with a more stringent definition than the modern one), before be-

ing introduced to the English-speaking mathematical world by Leonard Dickson

the following year [2]. There then followed three decades, during which the only

semigroup theory being done was that done in near-obscurity (at least from the

Western perspective) by a Russian mathematician, Anton Kazimirovich Suschke-

witsch, working in the Ukraine. Suschkewitsch was essentially doing semigroup

theory before the rest of the world knew that there was such a thing, thus many

of this results were rediscovered by later researchers who were unaware of his

achievements.

The first tentative Western steps toward semigroup theory were taken during

the 1930s ([1-4]), and after the publication of a series of highly influential papers

in the early 1940s ([5-7]), the subject exploded.

D.Rees [5], using the Wedderburn Theorem as a template produced a de-

scription of completely 0-simple semigroup. Rees defines a completely simple

semigroup S to be a semigroup satisfying [8]

(i) S is simple;

(ii) Every x in S lies in at least one set fSe, where e, f are idempotents;

(iii) There is a primitive idempotent f under every non primitive idempotent e

of S.
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Let L,M be two sets, let G be a group with zero, and denote by (a)lm the (L,M)

matrix over G with (l, m) entry a and all other entries 0. Let

S = {(a)lm : a ∈ G, a 6= 0, l ∈ L,m ∈ M}

together with the (L,M) matrix over G whose entries are all 0. Let P = (pml)

be an (M, L) matrix over G having at least one non-zero entry in each row and

each column. Let multiplication in S be defined by

(a)ij ◦ (b)lm = (a)ijP (b)lm = (apjlb)im

Rees then show that S, as defined, is a completely simple semigroup, and that

every completely simple semigroup is isomorphic to one defined in this manner.

A. H. Clifford [6], in a paper submitted on 17 December 1940,defined what

we now call a completely regular semigroup as a semigroup satisfying:

for each a ∈ S, ∃ e, a′ ∈ S such that ea = ae = a and aa′ = a′a = e.

The D. Rees’ and the A. H. Clifford’s papers are notable for containing sub-

stantial theorems. Dubreil’s paper is different, but in its way even more remark-

able.

In the 1960s, A. H. Clifford and G. B. Preston wrote a two-volume work on

the algebraic theory of semigroups which played a fundamental role in lying the

basic of the theory.

In 1951, J. A. Green [9] introduced five equivalence relations on semigroup S.

L = {(a, b) ∈ S × S : (∃x, y ∈ S1) xa = b, yb = a},
R = {(a, b) ∈ S × S : (∃u, v ∈ S1) au = b, bv = a},
H = L ∩R,

D = {(a, b) ∈ S × S : (∃c ∈ S) (a, c) ∈ L, (c, b) ∈ R},
J = {(a, b) ∈ S × S : (∃x, y, u, v ∈ S1)xay = b, ubv = a}.
where 1 is an identity element and

S1 =





S if S has an identity

S ∪ {1} otherwise
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These five relations, which all reduce to the universal relation if S is a group,

have proved an immensely powerful tool in examining semigroups, especially reg-

ular semigroups.

V. V. Vagner [10] (1952) and G. B. Preston [11] (1954) independently came

up with the idea of an inverse semigroup. V. V. Vagner called them generalized

groups, which was fortunate, for it is probably better to regard an inverse semi-

group as a generalization of a group rather than a specialization of a semigroup.

M.R.Molaei [12] (1999) introduced Molaei’s generalized groups as the alge-

braic approach to the Unified Theory. He also proved some results about these

groups. The definition of Molaei’s generalized groups has different meaning from

the definition of Vagner.
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CHAPTER 2

BASIC CONCEPTS

Let S be a set and ? : S × S → S a binary operation that maps each ordered

pair (x, y) of S to an element ?(x, y) of S. The pair (S, ?) is called a groupoid.

The mapping ? is called a product of (S, ?). We shall mostly write simply xy

instead of ?(x, y). If we want to emphasize the place of the operation, then we

often write x · y. The element xy(= ?(x, y)) is the product of x and y in S.

Definition 2.1 A non-empty set S with an associative binary operation is called

a semigroup.

Example 2.2 [13] (N, ·) is a semigroup for the usual multiplication of integers,

n ·m. Also (N, +) is a semigroup, when + is the ordinary addition of integers.

Example 2.3 [13] Define (N, ∗) by n∗m = max{n,m}. (N, ∗) is a semigroup,

since

n ∗ (m ∗ k) = max{n,max{m, k}} = max{n,m, k}
= max{max{n,m}, k} = (n ∗m) ∗ k.

Lemma 2.4 The operation ∗ in Example 2.3 is well-defined.

Proof. Let (m, n) = (k, t), without loss of generality, we may assume that

m ≥ n that implies that k = m ≥ n and n = t implies k ≥ t.

Hence, m∗n = max{m,n} = m = k = max{k, t} = k∗t. ¤

Example 2.5 [13] Consider the upper triangular integer matrices

S = {




1 n

0 1


 : n > 1}.
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For all m,n, k ≥ 1;







1 m

0 1







1 n

0 1










1 k

0 1


 =




1 m + n

0 1







1 k

0 1




=




1 (m + n) + k

0 1




=




1 m + (n + k)

0 1




=




1 m

0 1







1 n + k

0 1




=




1 m

0 1










1 n

0 1







1 k

0 1





.

Then S is a semigroup with the well-defined usual matrix product.

Example 2.6 [13] Let TX be the set of all functions φ : X → X. Then (TX , ◦)
is a semigroup, where ◦ is the composition of functions: (φ ◦ϕ)(x) = φ(ϕ(x)) for

all x ∈ X.

Definition 2.7 [14] A nonempty subset T of a semigroup S is a subsemigroup

of S if it is closed under the operation of S; i.e., if a, b ∈ T then ab ∈ T.

Definition 2.8 [14] A nonempty subset T of a semigroup S is a left ideal of S

if s ∈ S, t ∈ T imply st ∈ T ; T is a right ideal if s ∈ S, t ∈ T imply ts ∈ T ; T

is an ideal if it is both a left and a right ideal. An ideal of S different from S is

proper ideal.

Definition 2.9 [14] The intersection of all ideals of a semigroup S, if nonempty,

is the kernel of S.

Lemma 2.10 [14] If I is a simple ideal of a semigroup S, then I is the kernel

of S.
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Proof. If J is an ideal of S, then I ∩ J ⊇ IJ and hence I ∩ J is nonempty

and is thus an ideal of S. But I ∩ J is also an ideal of I. Simplicity of I implies

I ∩ J = I thus I ⊆ J . ¤

Definition 2.11 [14] A subsemigroup F of a semigroup S is a filter of S if for

all x, y ∈ S, xy ∈ F ⇒ x, y ∈ F.

For any element x of a semigroup S, let N(x) (is the N-class of S containing

x) denote the least filter of S containing x, and let

Nx = {y ∈ S : N(x) = N(y)}.

Definition 2.12 [13] Let S be a semigroup. An element x ∈ S is a left identity

of S, if

∀y ∈ S : xy = y.

Similarly, x is a right identity of S, if

∀y ∈ S : yx = y.

If x is both a left and a right identity of S, then x is called an identity of S.

If a semigroup S has a left identity e and a right identity f then e = ef = f ,

and this element is an identity.

Example 2.13 [15] The one element semigroup S = {e}, with ee = e is called

the trivial semigroup.

Definition 2.14 [13] A semigroup is called a monoid, if it has an identity.

Lemma 2.15 [13] A semigroup S can have at most one identity. In fact, if S

has a left identity x and a right identity y, then x = y is an identity and there is

no other identity.
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Proof. By the definitions, y = xy = x. ¤

The identity [16] of a monoid S is usually denoted by 1. But as an example

we can see that the identity of the monoid (N, +) is 0. For a semigroup S we

define a monoid S1 by adjoining an identity to S, if S does not have one:

S1 =





S if S has an identity

S ∪ {1} otherwise

where 1 is an identity element.

A monoid G is a group, if every x ∈ G has a (group) inverse

x−1 ∈ G : xx−1 = 1 = x−1x.

Definition 2.16 Let S and T are semigroups. A map ψ : S → T, is called a

homomorphism if ∀x, y ∈ S;

ψ(xy) = ψ(x)ψ(y).

A one to one and onto homomorphism is called an isomorphism.

Definition 2.17 [13,16] An element x ∈ S is a left zero, if

∀y ∈ S : xy = x.

Similarly, x is a right zero, if

∀y ∈ S : yx = x.

If S does not have a zero it is easy to adjoin an extra element 0. We define

0s = s0 = 00 = 0 ∀s ∈ S,

and we define

S0 =





S if S has a zero element

S ∪ {0} otherwise

7



and refer to S0 as the semigroup obtained from S by adjoining a zero element if

necessary.

Definition 2.18 An element e ∈ S is an idempotent, if e2 = e. The set of all

idempotents of S is denoted by E = ES.

For any semigroup S, ES with the binary relation defined by

e ≤ f ⇔ e = ef = fe.

Lemma 2.19 [14] For any semigroup S, ES is a partial ordered set.

Proof. ES is reflexive; since a ≤ a for all a ∈ ES,

ES is antisymmetric; since if a ≤ b ⇒ a = ab = ba and b ≤ a ⇒ b = ba = ab.

Hence a = b, ∀a, b ∈ ES,

ES is transitive; let a ≤ b and b ≤ c then a ≤ b ≤ c ⇒ a ≤ c ∀a, b, c ∈ ES.

Therefore, ES is a partial ordered set. ¤

Example 2.20 [13] The matrix semigroup

Z2×2 = {




a b

c d


 : a, b, c, d ∈ Z}.

The identity matrix




1 0

0 1


 is the identity of Z2×2 and the zero matrix




0 0

0 0




is its zero.

This monoid has quite many idempotents. As an example,




−1 −1

2 2


 is an

idempotent.

Lemma 2.21 [13] Let e ∈ ES be an idempotent. If xLe, then xe = x. If xRe,

then ex = x.

Proof. If xLe ⇒ (x, e) ∈ L, that is, x = se for some s ∈ S1. Therefore, since

e = ee, x = se · e = xe. Similarly;
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If yRe ⇒ (y, e) ∈ R, that is, y = et for some t ∈ S1.

Therefore, since e = ee, y = e · et = ey. ¤

Definition 2.22 [13] A semigroup S is left cancellative, if

zx = zy ⇒ x = y,

and S is right cancellative,if

xz = yz ⇒ x = y.

If S is both left and right cancellative, then it is cancellative.

Example 2.23 [13] The matrix semigroup Z2×2 is not a cancellative semigroup.



1 0

0 0







1 1

1 1


 =




1 0

0 0







1 1

0 0


 .

But, if we take all matrices M ∈ Z2×2 with det(M) = 1, then this semigroup is

cancellative.

Definition 2.24 [16] An element x of a semigroup S is said to be regular if

there is y ∈ S such that xyx = x. If every element of S is regular, then S is said

to be a regular semigroup.

The notion of regularity is probably the most important bridge between semi-

groups and groups.

In a regular semigroup S we have particularly useful way of looking at the

equivalences L and R. If S is regular semigroup then a = axa ∈ aS, and similarly

a ∈ Sa, a ∈ SaS. Hence in describing the Green equivalences for a regular

semigroup we can drop all references to S1, and assert simply that

aLb ⇔ Sa = Sb,

aRb ⇔ aS = bS,

aJ b ⇔ SaS = SbS.

9



Example 2.25 [13] All groups are regular: x = xx−1x, where x−1 is the group

inverse of x.

Example 2.26 [13] If e ∈ ES is an idempotent, then e = eee, and hence all

idempotents of a semigroup are regular elements of S.

Definition 2.27 [13] A semigroup S is called a completely regular semigroup if

there is a unary operation a → a−1 on S such that:

(a−1)−1 = a, aa−1a = a, aa−1 = a−1a.

Example 2.28 [11,16] Let S = {1, 2}. Then S with the binary operation: 2·2 =

2, 2 · 1 = 1 · 2 = 2, 1 · 1 = 1 is a semigroup. As it seen, the operation · is well-

defined. Now if we define 2−1 = 2, 1−1 = 1, then S is a completely regular

semigroup.

We say that y ∈ S is an inverse element of x ∈ S, if x = xyx and y = yxy . Note

that an inverse element of x, if such an element exists, need not be unique.

Lemma 2.29 [13] Each regular element x ∈ S has an inverse element.

Proof. If x ∈ S is regular, then for some y ∈ S, x = xyx. Now, yxy = yxy·x·yxy,

and so yxy is also regular. Also, x = x ·yxy ·x and consequently yxy is an inverse

element of x. ¤

There is another definition in semigroup theory which is called ”Generalized

group” or ”Inverse semigroup”. This notion presented by Vagner [10]. The

same structure with the name Inverse semigroups was presented by Preston [18]

independently.

Definition 2.30 [10,17] A semigroup S is called an inverse semigroup, if each

x ∈ S has a unique inverse element x−1.

There are other kind of semigroups which are called semigroups admitting

relative inverses, and were studied first by Clifford [6].

10



Definition 2.31 [6] A semigroup S is called a semigroup admitting relative

inverse if for each a ∈ S there exists e ∈ S such that:

ea = ae = a, and there exists b relative to e in S such that ab = ba = e.

In the Example 2.26 the semigroup S is a semigroup admitting relative inverse.

Definition 2.32 [16] A semigroup S is called a rectangular band if

aba = a, ∀a, b ∈ S.

Theorem 2.33 [16] Let S be a semigroup. Then the following conditions are

equivalent:

(1) S is a rectangular band;

(2) every element of S is idempotent, and abc = ac ∀a, b, c ∈ S;

(3) there exist a left zero semigroup L and a right zero semigroup R such that

S ' L×R;

(4) S is isomorphic to a semigroup of the form A × B, where A and B are

non-empty sets, and where multiplication is given by

(a1, b1)(a2, b2) = (a1, b2).

Proof. (1) ⇒ (2). Let a ∈ S. Then by (1) we have a3 = a, and so a4 = a2.

Again by (1) we have a = a(a2)a = a4. Hence a2 = a as required.

Now let a, b, c ∈ S. From (1) we have a = aba, c = cbc and b = b(ac)b. Hence

ac = (aba)(cbc) = a(bacb)c = abc,

as required.

(2) ⇒ (3). Choose and fix an element of S. Let L = Sc and R = cS. Then,

using (2), we see that, for all x = zc and y = tc in L,

xy = zctc = zc2 = zc = x,

11



and so L is a left zero semigroup.Similarly, R is a right zero semigroup. Define

φ : S → L×R by

φ(x) = (xc, cx) x ∈ S.

Then φ is one to one, for if (xc, cx) = (yc, cy) then

x = x2 = xcx by (2)

= ycx = ycy = y2 = y.

Also, φ is onto; since ∀(ac, cb) ∈ L×R, we may use condition (2) to see that

(ac, cb) = (abc, cab) = φ(ab).

Finally, φ is morphism, since ∀ x, y ∈ S,

φ(xy) = (xyc, cxy) = (xc, cy) = (xcyc, cxcy) = (xc, cx)(yc, cy) = φ(x)φ(y).

(3) ⇒ (4). Suppose that S = L× R, where L is a left zero semigroup and R

is a right zero semigroup. Then the product of two elements (a, b) and (c, d) in

S is given by

(a,b)(c,d) = (ac,bd) = (a,d).

Thus we need only take A = L and B = R.

(4) ⇒ (1). Let S = A×B, with the given multiplication. Then for all a = (x, y)

and b = (z, t) in S,

aba =(x,y)(z,t)(x,y) = (x,t)(x,y) = (x,y) = a.

¤
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CHAPTER 3

MOLAEI’S GENERALIZED GROUPS

Definition 3.1 [12,19] A non-empty set G with a binary operation (i.e.; mul-

tiplication) is called Molaei’s generalized group if it satisfies the following three

conditions:

(M1) (xy)z = x(yz) for all x, y, z in G (associative law);

(M2) For each x in G there exists a unique z in G such that xz = zx = x, we

denote z by e(x) (existence and uniqueness of identity);

(M3) For each x in G there exists y in G such that xy = yx = e(x) (existence of

inverse).

Example 3.2 [12] The set G = {




a b

c d


 : a, b, c, and d are real numbers }

with the operation







a b

c d


 ,




e f

g h





 7→




a f

g d


 ,

is a Molaei’s generalized group.

Lemma 3.3 For every x ∈ G, the unique element e(x) ∈ G such that xe(x) =

e(x)x = x is an idempotent.

Proof. Indeed,

e(x)e(x) = (xx−1)(xx−1) = x(x−1(xx−1)) = x((x−1x)x−1)

= x(e(x)x−1) = (xe(x))x−1 = xx−1 = e(x). ¤

Theorem 3.4 [12] Each x in a Molaei’s generalized group G has a unique in-

verse in G.
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Proof. Let x ∈ G be given, and let y, z ∈ G such that yx = xy = e(x) and

zx = xz = e(x). Then

x = xe(x) = x(yx) = x(ye(y))x = ((xy)e(y))x = (e(x)e(y))x

and in a similar way

x = e(x)x = (xy)x = x(e(y)y)x = x(e(y)(yx)) = x(e(y)e(x)).

So the uniqueness of e(x) shows that

e(x)e(y) = e(y)e(x) = e(x).

Hence e(x) = e(y).

Similarly e(x) = e(z).

Thus y = ye(y) = ye(x) = y(xz) = (yx)z = e(x)z = z ¤

Lemma 3.5 Let G be a Molaei’s generalized group and denote the inverse of

x ∈ G by x−1. Then

e(x)e(x−1) = e(x−1)e(x).

Proof.

e(x)e(x−1) = (xx−1)e(x−1) = x(x−1e(x−1)) = xx−1 = e(x).

Similarly,

e(x−1)e(x) = e(x−1)(x−1x) = (e(x−1)x−1)x = x−1x = e(x).

and so e(x)e(x−1) = e(x−1)e(x).

Note that we proved e(x)e(x−1) = e(x−1)e(x) = e(x), which implies that

e(x−1) = e(x) (by (M2) and the fact that e(x)e(x) = e(x)). ¤

Definition 3.6 [12] Let G and H are two Molaei’s generalized groups and

ϕ : G → H is a mapping then ϕ is called a homomorphism if
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ϕ(ab) = ϕ(a)ϕ(b) ∀ a, b ∈ G.

A one to one and onto homomorphism ϕ : G → H is called an isomorphism.

Lemma 3.7 [17] If G is a Molaei’s generalized group and a ∈ G, then

aG = e(a)G, where aG = {ag : g ∈ G}.

Proof. aG = e(a)aG ⊆ e(a)G, and e(a)G = aa−1G ⊆ aG, where a ∈ G and a−1

is the inverse of a. Similarly Ga = Gae(a) ⊆ Ge(a), and Ge(a) = Ga−1a ⊆ Ga

so Ga = Ge(a), where a ∈ G ¤

Lemma 3.8 [17] If G is a Molaei’s generalized group, then for all a ∈ G,

GaG = G.

Proof. If a ∈ G, then GaG ⊆ G. Conversely if x ∈ G, then e(x) = e(e(x)ae(x)).

We have x ∈ Ge(x)G = Ge(e(x)ae(x))G = Ge(x)ae(x)G ⊆ GaG.

Thus G = GaG. ¤

Lemma 3.9 [17] If e(b)G ∩ e(a)G 6= ∅, then e(b)G = e(a)G, where a, b ∈ G.

Proof. Let c ∈ e(b)G ∩ e(a)G. Then there exist f , and d ∈ G such that

c = e(b)d = e(a)f . So e(a)c = e(a)e(a)f = e(a)f = c. Previous lemma im-

plies that there exist z, and t ∈ G such that e(a) = zct. Hence e(a) = ze(a)ct.

Thus e(a) = (e(a))3 = e(a)ze(a)cte(a). If x = e(a)ze(a) and y = te(a), then

e(a) = xcy, e(a)x = xe(a), and ye(a) = y. Let g = cyx, then e(a)g = cyx = g,

and ge(a) = cyxe(a) = cye(a)x = cyx = g. So e(a) = e(e(a)) = g. Thus

e(a)G ⊆ cG ⊆ e(a)G. Hence e(a)G = cG. Similarly e(b)G = cG.

Thus e(a)G = e(b)G. ¤

There is an important propertie of Molaei’s generalized groups;

Let G is a Molaei’s generalized group, then:

If xy = yx, then e(x) = e(y) where x, y ∈ G. So if xy = yx, the G is an Abelian

group.
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CHAPTER 4

COMPLETELY SIMPLE SEMIGROUPS

Definition 4.1 [14] A semigroup S is left simple if S is its only left ideal,

S is right simple if S is its only right ideal and S is simple if S is its only

both-sided ideal.

It means that a semigroup S is said to be simple if it has no proper two-sided

ideals.

Theorem 4.2 [15] The following conditions are equivalent for a semigroup S:

(i) S is simple;

(ii) SaS = S, ∀ a ∈ S;

(iii) For any a, b ∈ S there exist s, t ∈ S such that sat = b;

(iv) S has a single J -class.

Proof. (i) ⇒ (ii) It is easy to see that SaS is an ideal of S. Since S is simple

we must have SaS = S.

(ii) ⇒ (iii) This is obvious.

(iii) ⇒ (iv) Let a, b ∈ S be arbitrary. From (iii) it follows that there are s, t ∈ S

such that sat = b, and also u, v ∈ S such that abv = a. Hence aJ b, and

J = S × S.

(iv) ⇒ (i) Let I be an ideal of S, and let a ∈ I and b ∈ S be arbitrary. By (iv),

we have aJ b; in particular, there are s, t ∈ S1 such that sat = b. Since a ∈ I, it

follows that b ∈ I too, and so I = S. ¤

Example 4.3 [15] Every group G is simple. Indeed, for arbitrary a, b ∈ G we

have

baa−1 = b,

and so the condition (iii) of the above theorem holds.
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Example 4.4 [15] Every rectangular band S = I ×Λ is simple. Indeed, for any

(i, λ), (j, µ) ∈ S we have

(j, µ)(i, λ)(j, λ) = (j, µ).

Definition 4.5 [15] A (left, right or two-sided) ideal I of a semigroup S is said

to be minimal if it contains no other (left, right or two-sided) ideals of S.

Every finite semigroup has minimal left, right and two-sided ideals.

An infinite semigroup need not have any, e.g., N .

Also a semigroup may have several minimal left or right ideals, e.g., a semigroup

of left or right zeros. However, a semigroup has at most one minimal two-sided

ideal. Indeed if I and J are two such ideals then I ∩ J is also an ideal, and is

contained in both I and J , so that we have I = I ∩ J = J.

Theorem 4.6 [15] If I is the minimal two-sided ideal of a semigroup S then I

is a simple semigroup.

Proof. Let a ∈ I be arbitrary. Since I is an ideal, we have IaI is an ideal.

Also IaI ⊆ I since a ∈ I. Minimality of I implies that IaI = I, and hence I is

simple by Theorem 4.2. ¤

If a semigroup S has a zero then it cannot be simple, because {0} is a proper

ideal.

Definition 4.7 [15] A semigroup S with zero is said to be 0-simple if S and {0}
are its only ideals, where S2 6= {0}.

Definition 4.8 [15] A (left, right or two-sided) ideal I of a semigroup S with

zero is said to be minimal if I and {0} (where I 6= 0)are the only (left, right or

two-sided) ideals of S contained in I.

Proposition 4.9 [16] A semigroup S is 0-simple if and only if SaS = S for

every a 6= 0 in S, that is, if and only if for every a, b ∈ S \ {0} there exists

x, y ∈ S such that xay = b.
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Proof. Suppose, first that S is 0-simple. Then S2 is an ideal of S. By definition

S2 6= {0}. So, S2 = S. This follows that S3 = S2.S = S.S = S. Let 0 6= a ∈ S.

Then the subset SaS of S is an ideal. Hence, either SaS = S or SaS = {0}. If

SaS = {0} then the set I = {x ∈ S : SxS = {0}} contains the non-zero element

a. Since I is an ideal of S we have I = S. Thus, SxS = {0} for every x ∈ S. But,

this implies that S3 = {0}, which contradicts to fact that S3 = S. Therefore

SaS = S.

Conversely, suppose SaS = S for all a 6= 0 in S. Then certainly S2 6= {0}. If

A is an ideal of S containing a non-zero element a then

S = SaS ⊆ SAS ⊆ A,

and so A = S. Thus S is 0-simple. ¤

Proposition 4.10 [16] If M is a 0-minimal ideal of S then either M2 = {0} or

M is a 0-simple semigroup.

Proof. Since M2 is an ideal of S contained in M , we must have either M2 = M

or M2 = {0}. Suppose that M2 = M . Then M3 = M . If 0 6= a ∈ M then S1aS1

is a non-zero ideal of S and contained in M . Therefore S1aS1 = M .

Hence MaM ⊆ S1aS1 = M = M3 = M(S1aS1)M = (MS1)a(S1M) ⊆ MaM,

and also in fact MaM = M .

Thus, M is 0-simple by Proposition 4.9. ¤

Definition 4.11 [16] A semigroup S is said to be completely 0-simple if it is

0-simple and if it possesses 0-minimal left and right ideals.

Definition 4.12 [20] A semigroup S is said to be completely simple semigroup

if it satisfies the following conditions:

(C1) SaS = S, ∀a ∈ S; (SaS = {xay : x, y ∈ S} .)

(C2) If e, f ∈ S are idempotents such that ef = fe = e then e = f.

Definition 4.13 [17] A non-empty subset of a completely simple semigroup G

is called a completely simple subsemigroup if it with the binary operation of G is

a completely simple semigroup.
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Theorem 4.14 [17] A non-empty subset H of a completely simple semigroup G

is a completely simple subsemigroup if and only if for all a and b in H, ab−1 ∈ H.

Proof. If H is a completely simple subsemigroup and a, b ∈ H, then the defi-

nition of completely simple subsemigroup implies that: b−1 ∈ H and ab−1 ∈ H.

Conversely, if H 6= ∅ and a, b ∈ H then we have:

bb−1 = e(b) ∈ H, e(b)b−1 = b−1 ∈ H, and ab = a(b−1)−1 ∈ H. ¤

Theorem 4.15 [17] Let a ∈ G and ψ : G → H be a homomorphism. Then the

kernel of ψ at a which is denoted by ker ψ(a) := {x ∈ G : ψ(x) = ψ(e(a))} is

a completely simple subsemigroup of G. Moreover ψ is one-to-one if and only if

ker ψ(a) = {e(a)} for all a ∈ G.

Proof. Let x, y ∈ ker ψ(a). Then

ψ(xy−1) = ψ(x)(ψ(y))−1 = ψ(e(a))(ψ(e(a)))−1

= ψ(e(a))ψ(e(a)−1) = ψ(e(a))ψ(e(a)) = ψ(e(a)).

So xy−1 ∈ ker ψ(a).

Now let ψ be a one-to-one homomorphism, then ker ψ(a) = {e(a)} for all a ∈
G. Conversely if ψ(x) = ψ(y), then ψ(x)ψ(y−1) = ψ(y)ψ(y−1). So ψ(xy−1) =

ψ(e(y)). Since ker ψ(y) = {e(y)} we have

xy−1 = e(y) = e(y−1). (4.1)

Similarly ψ(y−1x) = ψ(e(y)). So

y−1x = e(y) = e(y−1). (4.2)

Hence x = ((y−1)−1) = y by (4.1) and (4.2). ¤
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We now give some properties of completely simple semigroup.

If G and G′ are two completely simple semigroups and ψ : G → G′ is a homo-

morphism, then :

1. ψ(e(a)) = e(ψ(a)) is an identity element in G′ for all a ∈ G;

2. ψ(a−1) = (ψ(a))−1, for all a ∈ G;

3. If K is a completely simple subsemigroup of G, then ψ(K) is a completely

simple subsemigroup of G′;

4. If D is a completely simple subsemigroup of G′ and ψ−1(D) 6= ∅, then ψ−1(D)

is a completely simple subsemigroup of G.
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CHAPTER 5

REES MATRIX SEMIGROUPS

Let S be a semigroup, then for all elements of S;

x ≤ y ⇔ ∃ e ∈ ES : x = ey.

Here, the relation ≤ is;

a) Reflexive, since x = (xx−1)x, where xx−1 ∈ ES;

b) Antisymmetric, since if x = ey and y = fx, then x = ey = eey = ex, and so

x = ey = efx = fex = fx = y;

c) Transitive, since if x = ey and y = fz, then also x = ey = efz, where

e, f ∈ ES.

Therefore ≤ is partial order.

If we restrict ≤ onto ES we get the partial order of idempotents. Indeed, if

e ≤ f then there exists g ∈ ES such that e = gf, and here e = gff = ef = fe as

required.

Proposition 5.1 [14] The following conditions on an element a of a semigroup

S are equivalent.

i) a is completely regular.

ii) a has an inverse with which it commutes.

iii) a ∈ a2Sa2.

iv) a ∈ Sa2 ∩ a2S.

v) a is contained in a subgroup of S.

Theorem 5.2 [14] The following conditions on a semigroup S are equivalent.

i) S is completely regular.
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ii) For every a ∈ S, a ∈ aSa2.

iii) S is a union of disjoint groups.

iv) Every H−class is a group.

v) Every N-class is simple and completely regular.

vi) Every left and every right ideal of S is completely semiprime.

Proof. i) implies ii). This follows from Proposition 5.1.

ii) implies iii). By Proposition 5.1, it suffices to show that ∀ a ∈ S, a a2S. There

exists x ∈ S such that a = axa2 and y ∈ S such that xa = (xa)y(xa)2. Conse-

quently

a = axa2 = a(xa)a = a(xa)y(xa)2a = (axayx)(axa2) = axayxa = axay(xa)

= (axay)(xa)y(xa)2 = ay(xa)2 = (ayx)a(xa) = (ayx)(axa2)(xa)

= (ay)(xa)2(axa) = a(axa) = a2xa

so that a ∈ a2S.

iii) implies iv). Let H be an H-class. For any a ∈ H, a belongs to a maximal

subgroup Ge. But then aHe, so that Ge = H since any two distinct maximal

subgroups are disjoint.

iv) implies v). Since H ⊆ N, each N-class is a union of groups. By [14,

IV.1.4], each N-class is completely regular. Also by Proposition 5.1, for every

a ∈ S, a = a2xa2 for some x ∈ S so that

a = a2xa(a2xa2) ∈ Sa2S,

which [14, II.4.5] implies that every N-class is simple.

v) implies vi). If L is a left ideal of S and a2 ∈ L, then since S is clearly

completely regular, we have a = xa2 ∈ L and L is completely semiprime; the

situation is analogous for every right ideals.
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vi) implies i). For any a ∈ S, Sa2 is a left ideal and a4 ∈ Sa2. But then

a ∈ Sa2; similarly a ∈ a2S, which by Proposition 5.1 implies that S is completely

regular. ¤

Lemma 5.3 [14] A regular semigroup S all of whose idempotents are primitive

is completely regular subgroups given by

Ge = aSa (e ∈ ES, a ∈ Ge).

Proof. Let a ∈ S. Then a = axa and a2 = a2ya2 for somex, y ∈ S. Let e = ax

and f = a2yax,

f 2 = (a2yax)(a2yax) = a2y(axa)ayax = (a2y)2ax = (a2y)ax = f,

ef = (ax)(a2yax) = (axa)(ayax) = a2yax = f,

fe = (a2yax)(ax) = a2yax = f,

so that e, f ∈ ES and e ≥ f . Therefore, we have e = f ⇒ ax = a2yax, which,

after multiplication by a on the right, we get a = a2ya ∈ a2Sa. Since a is arbitrary

in S, this implies that S is completely regular semigroup by Theorem 5.2.

Let e ∈ ES and a ∈ Ge. If x ∈ Ge, then

x = exe = (aa−1)x(a−1a) ∈ aSa,

and thus Ge ⊆ aSa. Conversely, let x = aya. Then x ∈ Gf for some f ∈ ES so

that

ef = e(xx−1) = e(aya)x−1 = xx−1 = f

and dually fe = f so that e ≥ f. By hypothesis, we must have e = f and hence

x ∈ Ge. Since x ∈ aSa is arbitrary, then aSa ⊆ Ge. ¤

Theorem 5.4 [14] The following conditions on a semigroup S are equivalent.

i) S is a completely simple semigroup.

ii) S is completely regular and simple.

iii) S is regular and all its idempotents are primitive.

iv) S is regular and weakly cancellative.

v) S is regular and for any a, x ∈ S, a = axa ⇒ x = xax.
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Proof. i) implies ii). Let e be a primitive idempotent of S and a be any

element of S. Then by simplicity of S, we have a = uev and e = x(ea3e)y for

some u, v, x, y ∈ S. Letting f = evaeyexeaue, we obtain

f 2 = evaeyexea(ueev)aeyexeaue = evaeye(xea3ey)exeaue = evaeyexeaue = f

and evidently f ≤ e so that f = e. Hence

a = ufv = (uev)aeyexea(uev) = a2(eyexe)a2 ∈ a2Sa2

and a is completely regular by Proposition 5.1.

ii) implies iii). Let e, f ∈ ES such that e ≤ f. Then simplicity of S, f = xey

for some x, y ∈ S. Letting a = fxf and b = fyf, we obtain

aeb = (fxf)e(fyf) = f(xey)f = f. (5.1)

For a′ satisfying the equalities a = aa′a, aa′ = a′a, by (5.1) we have

f = aeb = aa′aeb = aa′f = a′af = a′a = aa′ (5.2)

and hence by using (5.1) and (5.2), we obtain

f = (a′a)(a′a) = a′(aa′)a = a′fa = a′(aeb)a = (a′a)(eba) = feba = eba.

But then e = ef = f which implies that f is primitive.

iii) implies iv). Suppose that ax = xb and xa = xb by Lemma 5.3, S is

completely regular, so a inGe and b inGf for some e, f ∈ ES. By Lemma 5.3,

axa ∈ Ge and bxb ∈ Gf . Hence axa = bxa = bxb implies that e = f. Letting

y = exe, we see by Lemma 5.3 that y ∈ Ge, and also that

ay = a(exe) = (ae)xe = axe = bxe = (be)xe = b(exe) = by
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which definition of Ge implies a = b, establishing that S is weakly cancellative.

iv) implies v). If a = axa, then ax = a(xax) and xa = (xax)a, which by weak

cancellation implies that x = xax.

v) implies i). If e, f ∈ ES and e ≤ f, then e = efe so by hypothesis we

also have f = fef = e and every idempotent is primitive. By Lemma 5.3, S is

completely regular. Suppose that S is not simple. Then by Theorem 5.1, S has

more than one N-class, and in particular it must have two N-classes Ne > Nf

with e, f ∈ ES. Letting x ∈ eNfe, we have x = eae ∈ Gg for some a ∈ Nf and

g ∈ ENf
whence

eg = exx−1 = e(eae)x−1 = (eae)x−1 = g

and similarly ge = g. Hence g < e since g ∈ Nf , contradicting the fact that all

idempotents of S are primitive. ¤

Lemma 5.5 [14] Let S be a completely simple semigroup and let e, f ∈ ES.

Then the following statements hold.

i) For any a, b ∈ S, ab ∈ Ge ⇒ aSb ⊆ Ge.

ii) ef = e ⇒ fe = f.

iii) ef = f ⇒ fe = e.

Proof. Note that S satisfies the hypothesis of Lemma 5.3 in view of Theorem

5.4.

i) Let a ∈ Gg, b ∈ Gh, ab ∈ Ge. Then Lemma 5.3 implies aba ∈ Gg and

bab ∈ Gh. Hence a = (aba)u, b = v(bab) for some u ∈ Gg, v ∈ Gh. For any x ∈ S,

using Lemma 5.3, we obtain

axb = (aba)uxv(bab) = (ab)(auxvb)(ab) ∈ Ge

since ab ∈ Ge. Since x is arbitrary, we have aSb ⊆ Ge.

ii) If ef = e, then fe ∈ ES and also fe = fef ∈ Gf by Lemma 5.3. But then

fe = f.
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iii) If ef = f, then fe ∈ ES and also fe = efe ∈ Ge by Lemma 5.3. But then

fe = e. ¤

Definition 5.6 [15,17] Suppose that a semigroup D , and two arbitrary index

sets I and Λ are given. If P : Λ× I → D is a mapping, then I ×D×Λ with the

product

(i, a, λ)(j, b, µ) = (i, apλjb, µ) (5.3)

is a semigroup group. This semigroup is called Rees matrix semigroup (over D

with respect to P) and is denoted by M[D; I, Λ; P ].

Lemma 5.7 The operation (5.3) is associative.

Proof. Since

(i, a, λ)((j, b, µ)(k, c, η)) = (i, a, λ)(j, bpµkc, η) = (i, apλjbpµkc, η)

and also

((i, a, λ)(j, b, µ))(k, c, η) = (i, apλjb, µ)(k, c, η) = (i, apλjbpµkc, η)

then

(i, a, λ)((j, b, µ)(k, c, η)) = ((i, a, λ)(j, b, µ))(k, c, η)

implies that (5.3) is associative. ¤

Lemma 5.8 The operation (5.3) is well-defined.

Proof. Let x = (i, a, λ), y = (j, b, µ) and x1 = (i1, a1, λ1), y1 = (j1, b1, µ1). Now

let (x, y) = (x1, y1) that is x = x1 and y = y1. Then we have i = i1, a = a1, λ =

λ1, j = j1, b = b1 and µ = µ1. This implies pλj = P (λ, j) = P (λ1, j1) = pλ1j1 ,

since P is a well-defined mapping. Also, D is a semigroup with well-defined binary
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operation. That implies apλjb = a1pλ1j1b1.

Hence (i, apλjb, µ) = (i1, a1pλ1j1b1, µ1) that xy = x1y1. ¤

Definition 5.9 (14) Let e be an idempotent of a semigroup S. Then

Ge = {a ∈ S : a = ea = ae, e = aa′ = a′a for some a ∈ S}
= {a ∈ S : a ∈ eS ∩ Se, e ∈ aS ∩ Sa}

where e is an identity element.

Definition 5.10 [15] Suppose that D is a semigroup ( not containing zero) and

I and Λ are two arbitrary index sets, and let P = (pλi) be a Λ × I matrix with

entries from D ∪ {0}, then S = (I ×D × Λ) ∪ {0} with the product

(i, a, λ)(j, b, µ) =





(i, apλjb, µ) if pλj 6= 0

0 otherwise (5.4)

0(i, a, λ) = (i, a, λ)0 = 00 = 0

is a semigroup group, which is called Rees matrix semigroup with zero, and is

denoted by M0[D; I, Λ; P ].

Lemma 5.11 [16] Let G be a group, then S = (I×G×Λ)∪{0} is a completely

0-simple semigroup.

Proof. It is easy to see that the composition (5.4) is associative, but it is

probably more illuminating to observe that S\{0} is in one to one correspondence

with the set I × Λ matrices (a)iλ, (a ∈ G), where (a)iλ denotes the matrix with

entry a in the (i, λ) position and zeros elsewhere. Since (0)iλ is independent

of i and λ we may simply write it as 0. Thus the correspondence extends to a

correspondence between S and the set

G = {(a)iλ : a ∈ G0, i ∈ I, λ ∈ Λ}

We can easily verify that

(a)iλP (b)jµ = (apλjb)iµ,
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where the juxtaposition on the left denote the matrix multiplication in the usual

sense. Thus the composition (5.4) in S corresponds in G to the evidently asso-

ciative composition ◦ given by

(a)iλ ◦ (b)jµ = (a)iλP (b)jµ,

and so is itself associative.

To verify that S is 0-simple, note that for any two non-zero elements (i, a, λ)

and (j, b, µ) of S we may, by the regularity of P , choose ν ∈ Λ and k ∈ I such

that pνi 6= 0, pλk 6= 0, and then easily show that

(j, a−1p−1
νi , ν)(i, a, λ)(k, p−1

λk b, µ) = (j, b, µ).

Hence by Proposition 4.9, S is 0-simple.

To complete the proof that S is completely 0-simple, we must first identify its

idempotents. the non-zero element (i, a, λ) is idempotent if and only if

(i, a, λ) = (i, a, λ)(i, a, λ) = (i, apλia, λ),

that is, if and only if pλi 6= 0 and a = p−1
λi . If we now take two non-zero idempo-

tents e = (i, p−1
λi , λ) and f = (j, p−1

µj , µ), then e ≤ f if and only if ef = fe = e,

that is, if and only if

(i, p−1
λi pλjp

−1
µj , µ) = (j, p−1

µj pµip
−1
λi , λ) = (i, apλia, λ),

that is, if and only ifj = i and λ = µ, that is, if and only if e = f. the conclusion

is that every idempotent is primitive. Certainly there exists a primitive idem-

potent, and so S is completely simple. ¤

The semigroup constructed in accordance with this recipe will, as in Clifford

and Preston [21], be denoted by M0[G; I, Λ; P ], and will be called the I×Λ Rees

matrix semigroup over the 0-group G0 with the regular sandwich matrix P .

Theorem 5.12 [12,17] If G is a Molaei’s generalized group, then G is isomor-

phic to a Rees matrix semigroup.

28



Proof. We choose an element a ∈ G and denote e(a) by 1. There exist two sets

I ⊆ e(G) and Λ ⊆ e(G) such that

(i) {aG : a ∈ e(G)} = {iG : i ∈ I}, and if i1 6= i2 then i1G ∩ i2G = ∅, where

i1, i2 ∈ G;

(ii) {Gb : b ∈ G} = {Gl : l ∈ Λ}, and if l1 6= l2 then Gl1 ∩ Gl2 = ∅, where

l1, l2 ∈ Λ;

(iii) 1 ∈ I ∩ Λ.

For given (i, λ) ∈ I×Λ let ri = i1 and qλ = 1λ. Then fri
: (1G∩G1) → (iG∩G1)

defined by fri
(x) = rix is an one to one mapping. To see this we have

1(1ri) = (11)ri = 1ri and (1ri)1 = 1(ri1) = 1ri. So e(1ri) = 1. Now if rix1 = rix2,

then 1rix1 = 1rix2. Hence (1ri)
−1(1ri)x1 = (1ri)

−1(1ri)x2. Therefore 1x1 =

1x2. Thus x1 = x2. So fri
is a one to one mapping. If y ∈ iG ∩ G1, then

fri
((1ri)

−11y) = y. Because if z = ri(1ri)
−11y, then 1z = 1ri(1ri)

−11y. So

1z = 1y. Hence 1iz′ = 1iy′, where z = iz′ and y = iy′. Therefore (i1i)y′ = (i1i)z′.

So (i1i)−1(i1i)z′ = (i1i)−1(i1i)y′. Hence iz′ = iy′. Thus z = y. So fri
is also

an onto mapping. Lets show that the mapping f (i,qλ) : (iG ∩ G1) → (iG ∩ Gλ)

defined by f (i,qλ)(x) = xqλ is a one to one and onto mapping.

And also we have 1(qλ1) = (1qλ)1 = ((11)λ)1 = qλ1 and (qλ1)1 = qλ(11) = qλ1.

So e(qλ1) = 1. Now if x1qλ = x2qλ, then x1qλ1 = x2qλ1. Hence x1(qλ1)(qλ1)−1 =

x2(qλ1)(qλ1)−1 ⇒ x11 = x21. Thus x1 = x2. So f (i,qλ)(x) is a one to one mapping.

If y ∈ (iG ∩ Gλ),then f (i,qλ)(y.1(qλ1)−1) = y. Because if k = y.1(qλ1)−1qλ, then

k1 = y.1(qλ1)−1qλ1. So k1 = y1. Hence k
′
λ1 = y

′
λ1, where k = k

′
λ and y = y

′
λ.

Therefore, k
′
(λ1λ) = y

′
(λ1λ) ⇒ k

′
(λ1λ)(λ1λ)−1 = y

′
(λ1λ)(λ1λ)−1 ⇒ k

′
λ = y

′
λ.

Thus k = y. So f (i,qλ) is an onto mapping.

Lemmas 3.7 and 3.9 show that {iG : i ∈ I} is a partition for G. Similarly one

can show that {Gλ : λ ∈ Λ} is a partition for G. So {iG∩Gλ : i ∈ I and λ ∈ Λ}
is a partition for G. This fact with the matter which f (i,qλ)ofri

is a one to one

and onto mapping show that each a ∈ G has a unique expression ribqλ, where

b ∈ 1G ∩G1.
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If p : Λ×I → (1G∩G1) defined by p(λ, i) = qλri, then straightforward calculation

shows that Ψ : I × (1G ∩ G1) × Λ → G defined by Ψ(i, b, λ) = ribqλ is an

isomorphism between Rees matrix semigroup M[(1G ∩G1); I, Λ; P ] and G. ¤

Lemma 5.13 [20] Let G be a group and let S = M[G; I, Λ; P ]. Then S is

completely simple semigroup and

ES = {(i, p−1
λi , λ) ∈ S : i ∈ I, λ ∈ Λ}.

Proof. For any a = (i, g, λ), b = (j, h, µ) ∈ S, we have

a = (i, gh−1p−1
λj , λ)(j, h, µ)(i, gp−1

λi , λ) ∈ SbS

and similarly

b = (j, hg−1p−1
µi , µ)(i, g, λ)(j, hp−1

µj , µ) ∈ SaS.

It follows that S must be simple. Furthermore

a2 = (i, g, λ)(i, g, λ)

so that a ia an idempotent if and only if g = p−1
λi . Now consider any two idem-

potents e = (i, p−1
λi , λ) and f = (j, p−1

µj , µ) with e ≤ f. Then e = ef = fe so

that

(i, p−1
λi , λ) = (i, p−1

λi pλjp
−1
µj , µ) = (j, p−1

µj pµip
−1
λi , λ).

Hence i = j, λ = µ, and so e = f. Thus all idempotents in S are primitive, there

fore S is completely simple semigroup. ¤

Theorem 5.14 (Rees Theorem) [14] Let G be a group and let S be a completely

regular simple semigroup; fix g ∈ ES, and let G = Gg,

I = {e ∈ ES : eg = e, } Λ = {f ∈ ES : gf = f},

P = (pfe) where pfe = fe. Then the mapping χ defined by

χ : a → (e, gag, f) (a ∈ S)
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where ag ∈ Ge, ga ∈ Gf , is an isomorphism of S onto T = M[G; I, Λ; P ].

Proof. 1. For any f ∈ Λ, e ∈ I, we have

pfe = fe = (gf)(eg) ∈ gSg = Gg

by Lemma 5.3 and Theorem 5.4 so that P is indeed a matrix over G.

Also gag ∈ Gg = G for any a ∈ S.

Let a be an element of S. If ag ∈ Ge, then u(ag) = e for some u ∈ Ge, and we

obtain

eg = u(ag)g = u(ag) = e,

which shows that e ∈ I. Similarly we see that ga ∈ Gf implies f ∈ Λ. Thus χ

maps S into T.

2. Let a, a′ ∈ S with ag ∈ Ge, ga ∈ Gf , a′g ∈ Ge′ , ga′ ∈ Gf ′ ; then by Lemma

5.5, aa′g ∈ Ge, gaa′ ∈ Gf ′ , and we obtain

(aχ)(a′χ) = (e, gag, f)(e′, ga′g, f ′) = (e, (gag)(fe′)(ga′g), f ′)

= (e, (ga)(gf)(e′g)(a′g), f ′) = (e, [(ga)f ][e′(a′g)], f ′)

= (e, (ga)(a′g), f ′) = (e, g(aa′)g, f ′) = (aa′)χ,

and thus χ is a homomorphism.

3. With the same notation, suppose that aχ = a′χ. Then

(e, gag, f) = (e′, ga′g, f ′)

so that e = e′, gag = ga′g, f = f ′. Consequently

ga = (ga)f = ga(gf) = (ga′g)f = (ga′)(gf) = ga′(gf ′) = (ga′)f ′ = ga′

and dually ag = a′g.

By Theorem 5.4, S is weakly cancellative, so ag = a′g, ga = ga′ ⇒ a = a′.

Thus χ is one-to-one.

4. Let (e, x, f) ∈ T. Theneg = e and gf = f, which by Lemma 5.5 ii) and

iii) imply ge = g = fg.
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Let a = exf. Then

e(ag)e = e(exf)ge = (exf)ge = ag

which by Lemma 5.5 i) implies ag ∈ Ge. Similarly we obtain ga ∈ Gf .

Also

gag = g(exf)g = (fe)x(fg) = gxg = x.

Consequently aχ = (e, x, f) which proves that χ is onto.

Therefore χ is an isomorphism of S onto T. ¤

Lemma 5.15 [22] Rees matrix semigroup is a generalized group.

Proof. In Lemma 5.7, we show that the operation (5.3) is associative.

Thus M[G; I, Λ; P ] is a semi group.

We claim that M[G; I, Λ; P ] is a generalized group.

Now to prove that M[G; I, Λ; P ] satisfies (M2), let (i, a, λ) ∈ M[G; I, Λ; P ] and

consider the element (i, p−1
λi , λ) ∈M[G; I, Λ; P ].

We claim that (i, p−1
λi , λ) is a unique element e ∈M[G; I, Λ; P ] such that

(i, a, λ)(e) = (e)(i, a, λ) = (i, a, λ).

First (i, a, λ)(i, p−1
λi , λ) = (i, apλip

−1
λi , λ) = (i, a, λ)

and (i, p−1
λi , λ)(i, a, λ) = (i, ap−1

λi pλi, λ) = (i, a, λ).

Next, suppose that (i, a, λ)(j, b, µ) = (i, a, λ) for some (j, b, µ) ∈M[G; I, Λ; P ].

Then (i, apλjb, µ) = (i, a, λ), and so (µ = λ) and (apλjb) = a, implying

(b = p−1
λj ). Similarly, (j, b, µ)(i, a, λ) = (i, a, λ) implies j = i. It follows that

(j, b, µ) = (i, p−1
λi , λ) for every (i, a, λ) ∈M[G; I, Λ; P ].

To prove that M[G; I, Λ; P ] satisfies (M3), let (i, a, λ) ∈M[G; I, Λ; P ]. and con-

sider the element (i, p−1
λi a−1p−1

λi , λ) ∈M[G; I, Λ; P ].

It is immediate by the definition of the operation (5.3) that
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(i, a, λ)(i, p−1
λi a−1p−1

λi , λ) = (i, p−1
λi a−1p−1

λi , λ)(i, a, λ) = (i, p−1
λi , λ) = e((i, a, λ)).

Hence M[G; I, Λ; P ] is a generalized group. ¤

Theorem 5.16 [22] Let S be a semigroup. Then the following are equivalent:

(1) S is isomorphic to some M[G; I, Λ; P ].

(2) S is completely simple semigroup.

(3) S is a Molaei’s generalized group.

Proof.

(1) implies (2).

This follows from Lemma 5.13.

(2) implies (1).

This follows from Theorem 5.4 and Theorem 5.14

(3) implies (1).

This follows from Theorem 5.12

(1) implies (3).

This follows from Theorem 5.15
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