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ABSTRACT

COMPLETELY SIMPLE SEMIGROUPS

Kalkan, Mehmet
Master, Department of Mathematics

Supervisor: Assistant Prof. Dr. Omiir Umut

December 2007, 42 pages

In this thesis, we study on Molaei’s generalized groups, completely simple
semigroups and the equivalence theorems involving them. For this aim, first we
present basic definitions such as regularity and Green’s equivalence. Next, we
deal with Molaei’s generalized groups. In 1999, Molaei introduced generalized
groups as a class of algebras of interest in physics, and proved some results about
them. Then we consider semigroups with no proper ideals known as simple semi-
groups. A simple semigroup is called completely simple semigroup if it satisfies
the conditions min; and ming that is to say if every nonempty set either of
L-classes or of R-classes possesses a minimal member. Finally, we introduce Rees
matrix semigroup to prove that the structure of the Molaei’s generalized groups

is equivalent to the notion of completely simple semigroups.

Keywords: Regularity, Green’s equivalence relations, Molaei’s generalized groups,

simple semigroups, completely simple semigroups, Rees matrix semigroups.
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OZET

TAM BASIT YARIGRUPLAR

Kalkan, Mehmet
Master Tezi, Matematik Bolimii
Tez Danigman: Yrd. Dog. Dr. Omiir Umut

Aralik 2007, 42 sayfa

Bu tezde, Molaei’nin genellegtirilmis gruplarini, tam basit yar1 gruplari
ve bunlari iceren denklik teoremlerini ¢alisacagiz. Bunun i¢in, once diizenlilik ve
Green denklik bagintilar1 gibi temel tanimlar: sunacagiz. Bunun akabinde Mo-
laei’nin genellestirilmig gruplarina deginecegiz. 1999 yilinda Molaei, genellegtiril-
mis gruplar1 bir cebir dal olarak ve fizikle iligkilendirerek tanimlamig ve bu grup-
larla ilgili baz1 sonuglar1 ispatlamigtir. Daha sonra basit yarigruplar olarak bilinen
ve kendisi diginda alt ideali olmayan yarigruplari ele alacagiz. Bir basit yarigrup
miny, ve ming kosllarini sagliyorsa, yani bog olamayan her kiimenin L-simiflar
veya R-siniflar1 minimal elemani igerirse, tam basit yarigrup olarak adlandirilir.
Son olarak, bir Molaei genellestirilmis grup yapisinin bir basit yari grup kavramina

denk oldugunu gostermek igin Rees matris yarigruplarini tanimlayacagiz.

Anahtar Kelimeler: Dizenlilik, Green denklik bagintilar,, Molaei’nin genellesmis

gruplar, basit yarigrouplar, tam basit yarigruplar ve Rees matris gruplars.
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CHAPTER 1
INTRODUCTION

Algebra is a part of mathematics which studies abstract sets with certain
operations defined on them. Semigroup theory is a thriving field in modern
algebra, though perhaps not a very well-known one.

The term semigroup was first coined in a French group theory textbook [1] in
1904 (though with a more stringent definition than the modern one), before be-
ing introduced to the English-speaking mathematical world by Leonard Dickson
the following year [2]. There then followed three decades, during which the only
semigroup theory being done was that done in near-obscurity (at least from the
Western perspective) by a Russian mathematician, Anton Kazimirovich Suschke-
witsch, working in the Ukraine. Suschkewitsch was essentially doing semigroup
theory before the rest of the world knew that there was such a thing, thus many
of this results were rediscovered by later researchers who were unaware of his
achievements.

The first tentative Western steps toward semigroup theory were taken during
the 1930s ([1-4]), and after the publication of a series of highly influential papers
in the early 1940s ([5-7]), the subject exploded.

D.Rees [5], using the Wedderburn Theorem as a template produced a de-
scription of completely 0-simple semigroup. Rees defines a completely simple
semigroup S to be a semigroup satisfying [8]

(i) S is simple;
(ii) Every x in S lies in at least one set fSe, where e, f are idempotents;
(iii) There is a primitive idempotent f under every non primitive idempotent e

of S.



Let L, M be two sets, let G be a group with zero, and denote by (a);, the (L, M)

matrix over G with (I,m) entry a and all other entries 0. Let
S={(a)yn:a€G, a#0,l€ Lme M}

together with the (L, M) matrix over G whose entries are all 0. Let P = (p)
be an (M, L) matrix over G having at least one non-zero entry in each row and

each column. Let multiplication in S be defined by

(a)ij © (B)im = (a)i; P(D)im = (ap;ib)im

Rees then show that S, as defined, is a completely simple semigroup, and that
every completely simple semigroup is isomorphic to one defined in this manner.

A. H. Clifford [6], in a paper submitted on 17 December 1940,defined what
we now call a completely regular semigroup as a semigroup satisfying:
for each a € S, 3 e,a’ € S such that ea = ae = a and aa’ = d'a = e.

The D. Rees’” and the A. H. Clifford’s papers are notable for containing sub-
stantial theorems. Dubreil’s paper is different, but in its way even more remark-
able.

In the 1960s, A. H. Clifford and G. B. Preston wrote a two-volume work on
the algebraic theory of semigroups which played a fundamental role in lying the
basic of the theory.

In 1951, J. A. Green [9] introduced five equivalence relations on semigroup S.
L={(a,b)e SxS:(3Fw,ye S') za="b,yb=a},

R ={(a,b) € S x S: (Ju,v €S au=>bbv=a},
H=LNTR,

D={(a,b) e SxS:(3ceSf) (a,c)eL,(c,b) € R},

J ={(a,b) € S x S: (3x,y,u,v € S)zay = b,ubv = a}.

where 1 is an identity element and

S if S has an identity
St =

SU{1} otherwise



These five relations, which all reduce to the universal relation if S is a group,
have proved an immensely powerful tool in examining semigroups, especially reg-
ular semigroups.

V. V. Vagner [10] (1952) and G. B. Preston [11] (1954) independently came
up with the idea of an inverse semigroup. V. V. Vagner called them generalized
groups, which was fortunate, for it is probably better to regard an inverse semi-
group as a generalization of a group rather than a specialization of a semigroup.

M.R.Molaei [12] (1999) introduced Molaei’s generalized groups as the alge-
braic approach to the Unified Theory. He also proved some results about these
groups. The definition of Molaei’s generalized groups has different meaning from

the definition of Vagner.



CHAPTER 2
BASIC CONCEPTS

Let S be a set and x : § x § — S a binary operation that maps each ordered
pair (z,y) of S to an element %(x,y) of S. The pair (S, ) is called a groupoid.
The mapping « is called a product of (S,*). We shall mostly write simply xy
instead of x(x,y). If we want to emphasize the place of the operation, then we

often write x - y. The element xy(= *(z,y)) is the product of x and y in S.

Definition 2.1 A non-empty set S with an associative binary operation is called

a semigroup.

Example 2.2 [13] (N,-) is a semigroup for the usual multiplication of integers,

n-m. Also (N,+) is a semigroup, when + is the ordinary addition of integers.

Example 2.3 [13] Define (N, *) by nxm = mazx{n,m}. (N,x*) is a semigroup,
since
n* (m* k) = mazx{n, max{m, k}} = max{n,m, k}

= max{mazx{n,m}, k} = (n*m) x k.

Lemma 2.4 The operation * in Example 2.3 is well-defined.

Proof. Let (m,n) = (k,t), without loss of generality, we may assume that
m > n that implies that £k = m > n and n =t implies k > t.

Hence, m*n = max{m,n} = m =k = maz{k,t} = kxt. O

Example 2.5 [13] Consider the upper triangular integer matrices

S = in > 1},



For allm,n, k > 1;

1 m 1 n 1 k 1 m+n 1 k
0 1 0 1 0 1 - 0 1 0 1
I (m+n)+k
- 0 1
I m+(n+k)
- 0 1
1 m 1 n+k
- 0 1 0 1
1 m 1 n 1 k
- 0 1 0 1 0 1

Then S is a semigroup with the well-defined usual matriz product.

Example 2.6 [13] Let Tx be the set of all functions ¢ : X — X. Then (Tx,o0)

is a semigroup, where o is the composition of functions: (¢op)(z) = ¢(p(x)) for
allz € X.

Definition 2.7 [14] A nonempty subset T of a semigroup S is a subsemigroup

of S if it is closed under the operation of S; i.e., if a,b € T then ab € T.

Definition 2.8 [1/] A nonempty subset T' of a semigroup S is a left ideal of S
if s € S,t € T imply st € T; T is a right ideal if s € S;t € T imply ts € T; T
is an ideal if it is both a left and a right ideal. An ideal of S different from S is

proper ideal.

Definition 2.9 [14] The intersection of all ideals of a semigroup S, if nonempty,
is the kernel of S.

Lemma 2.10 [14] If I is a simple ideal of a semigroup S, then I is the kernel
of S.



Proof. If J is an ideal of S, then I N J O IJ and hence I N J is nonempty
and is thus an ideal of S. But I N J is also an ideal of I. Simplicity of I implies
INJ=1thusI CJ. O

Definition 2.11 [14] A subsemigroup F' of a semigroup S is a filter of S if for

allz,ye S, rzye F=x,ye€ F.

For any element x of a semigroup S, let N(x) (is the 9-class of S containing

x) denote the least filter of S containing x, and let
Ny ={yesS:N(x)=N(y)}

Definition 2.12 [13] Let S be a semigroup. An element x € S is a left identity
of S, if

Yye s xy=y.
Similarly, x is a right identity of S, if
Yye s yr=y.

If x is both a left and a right identity of S, then x is called an identity of S.

If a semigroup S has a left identity e and a right identity f then e =ef = f,

and this element is an identity.

Example 2.13 [15] The one element semigroup S = {e}, with ee = e is called

the trivial semigroup.
Definition 2.14 [13] A semigroup is called a monoid, if it has an identity.

Lemma 2.15 [13] A semigroup S can have at most one identity. In fact, if S
has a left identity x and a right identity y, then x =y is an identity and there is

no other identity.



Proof. By the definitions, y = zy = . 0

The identity [16] of a monoid S is usually denoted by 1. But as an example
we can see that the identity of the monoid (N,+) is 0. For a semigroup S we

define a monoid S* by adjoining an identity to S, if S does not have one:

S if S has an identity
St =
SU{1} otherwise

where 1 is an identity element.

A monoid G is a group, if every x € G has a (group) inverse
rleG oz t=1=a2"12

Definition 2.16 Let S and T are semigroups. A map ¢ : S — T, is called a

homomorphism if Vx,y € S;

Y(xy) = (x)(y).

A one to one and onto homomorphism is called an isomorphism.

Definition 2.17 [13,16] An element x € S is a left zero, if
VyeS:xy=uz.
Similarly, x is a right zero, if
VyeS:yr=u.
If S does not have a zero it is easy to adjoin an extra element 0. We define
0s=s0=00=0 Vs € S,

and we define

G0 S if S has a zero element
SU{0} otherwise



and refer to S° as the semigroup obtained from S by adjoining a zero element if

necessary.

Definition 2.18 An element e € S is an idempotent, if €2 = e. The set of all

idempotents of S is denoted by E = Eg.
For any semigroup S, Es with the binary relation defined by
e< fe e=ef = fe
Lemma 2.19 [14] For any semigroup S, Es is a partial ordered set.

Proof. FEg is reflexive; since a < a for all a € Fg,

Eys is antisymmetric; since if a < b = a = ab = ba and b < a = b = ba = ab.
Hence a = b, Va,be€ Eg,

Ey is transitive; let a < band b<cthena <b<c=a<c¢ Va,b,c€ Ejg.

Therefore, Eg is a partial ordered set. [l

Example 2.20 [13] The matriz semigroup

a b
72 ={ ca,b,c,d €7}

c d
10 0 0
The identity matriz is the identity of Z**? and the zero matrix
0 1 0 0
15 1ls zero.
-1 -1
This monoid has quite many idempotents. As an example, s an
2 2
tdempotent.

Lemma 2.21 [13] Let e € Eg be an idempotent. If xLe, then xe = z. If xRe,

then ex = x.

Proof. If zLe = (z,¢) € L, that is, x = se for some s € S'. Therefore, since

e = ee,r = se- e = xe. Similarly;



If yRe = (y,e) € R, that is, y = et for some t € S.

Therefore, since e = ee,y = e- et = ey. U
Definition 2.22 [13] A semigroup S is left cancellative, if
2r =2y =T =1,
and S s right cancellative,if
Tz =Yz =T =1.
If S is both left and right cancellative, then it is cancellative.

Example 2.23 [13] The matriz semigroup Z**? is not a cancellative semigroup.

But, if we take all matrices M € Z*** with det(M) = 1, then this semigroup is

cancellative.

Definition 2.24 [16] An element x of a semigroup S is said to be reqular if
there is y € S such that xyx = x. If every element of S is reqular, then S is said

to be a regqular semigroup.

The notion of regularity is probably the most important bridge between semi-
groups and groups.

In a regular semigroup S we have particularly useful way of looking at the
equivalences £ and R. If S is regular semigroup then a = axa € a9, and similarly
a € Sa, a € SaS. Hence in describing the Green equivalences for a regular

semigroup we can drop all references to S', and assert simply that

alb < Sa = Sb,
aRb < aS = bS,

aJb& SaS = SbS.



Example 2.25 [13] All groups are reqular: x = xx~ 'z, where x~! is the group

inverse of x.

Example 2.26 [13] If e € Eg is an idempotent, then e = eee, and hence all

idempotents of a semigroup are regular elements of S.

Definition 2.27 [13] A semigroup S is called a completely regular semigroup if

there is a unary operation a — a~* on S such that:

() t=a, aa la=a, aa™! =a"'a.

Example 2.28 [11,16] Let S = {1,2}. Then S with the binary operation: 2-2 =
2,2-1=1-2=2,1-1=1 1s a semigroup. As it seen, the operation - is well-
defined. Now if we define 271 = 2, 171 = 1, then S is a completely regqular

SEMIGroup.

We say that y € S is an inverse element of x € S, if v = xyx and y = yxy . Note

that an inverse element of z, if such an element exists, need not be unique.
Lemma 2.29 [13] Fach reqular element x € S has an inverse element.

Proof. Ifx € Sisregular, then for somey € S,z = zyx. Now, yry = yzry-z-yry,
and so yxy is also regular. Also, x = x-yxy-x and consequently yzy is an inverse
element of z. O

There is another definition in semigroup theory which is called ” Generalized
group” or "Inverse semigroup”. This notion presented by Vagner [10]. The
same structure with the name Inverse semigroups was presented by Preston [18§]

independently.

Definition 2.30 [10,17] A semigroup S is called an inverse semigroup, if each

x € S has a unique inverse element x 7.

There are other kind of semigroups which are called semigroups admitting

relative inverses, and were studied first by Clifford [6].

10



Definition 2.31 [6] A semigroup S is called a semigroup admitting relative
inverse if for each a € S there exists e € S such that:

ea = ae = a, and there exists b relative to e in S such that ab = ba = e.
In the Example 2.26 the semigroup S is a semigroup admitting relative inverse.

Definition 2.32 [16] A semigroup S is called a rectangular band if

aba = a, Ya,b € S.

Theorem 2.33 [16] Let S be a semigroup. Then the following conditions are
equivalent:

(1) S is a rectangular band;

(2) every element of S is idempotent, and abc = ac Ya,b,c € S;

(3) there exist a left zero semigroup L and a right zero semigroup R such that
S~LXxR;

(4) S is isomorphic to a semigroup of the form A x B, where A and B are

non-empty sets, and where multiplication is given by

(al, bl)(a2, bg) = (CLl, bg)

Proof. (1) = (2). Let a € S. Then by (1) we have a® = a, and so a* = .
Again by (1) we have a = a(a®)a = a*. Hence a® = a as required.

Now let a,b,c € S. From (1) we have a = aba, ¢ = cbc and b = b(ac)b. Hence

ac = (aba)(cbc) = a(bacb)c = abe,

as required.
(2) = (3). Choose and fix an element of S. Let L = Sc and R = ¢S. Then,

using (2), we see that, for all z = zc¢ and y = tc in L,

Ty = zctc = 2t = ze =z,

11



and so L is a left zero semigroup.Similarly, R is a right zero semigroup. Define

¢:S— LxRby
o(z) = (zc,cx) x €S,
Then ¢ is one to one, for if (zc, cx) = (ye, cy) then

r=21>=xcx by (2)

=yex = ycy =y° = y.
Also, ¢ is onto; since V(ac, cb) € L x R, we may use condition (2) to see that
(ac, cb) = (abe, cab) = p(ab).

Finally, ¢ is morphism, since V z,y € S,

P(zy) = (wyc, cry) = (xc, cy) = (veye, cxey) = (we, cx)(ye, cy) = ¢(x)d(y).

(3) = (4). Suppose that S = L x R, where L is a left zero semigroup and R
is a right zero semigroup. Then the product of two elements (a,b) and (¢, d) in

S is given by
(a,b)(c.d) = (acbd) = (a.d).

Thus we need only take A = L and B = R.
(4) = (1). Let S = A x B, with the given multiplication. Then for all a = (x,y)

and b = (z,¢) in S,

aba =(x,y)(z,t)(xy) = (x,t)(xy) = (xy) = a.

12



CHAPTER 3
MOLAEI'S GENERALIZED GROUPS

Definition 3.1 [12,19] A non-empty set G with a binary operation (i.e.; mul-
tiplication) is called Molaei’s generalized group if it satisfies the following three
conditions:

(M1) (xy)z = x(yz) for all x,y,z in G (associative law);

(M2) For each x in G there exists a unique z in G such that vz = zx = z, we
denote z by e(x) (existence and uniqueness of identity);

(M3) For each x in G there exists y in G such that vy = yx = e(x) (existence of

inverse).

a b
Example 3.2 [12] The set G = { a,b,c, and d are real numbers }

with the operation

15 a Molaei’s generalized group.

Lemma 3.3 For every x € G, the unique element e(x) € G such that ze(x) =

e(x)x = x is an idempotent.

Proof. Indeed,
e(z)e(x) = (V) (zx™t) = z(z Y (az™)) = z((z712)z ™)

= z(e(x)z™) = (ze(x))a™! = za™t = e(x). O

Theorem 3.4 [12] Each x in a Molaei’s generalized group G has a unique in-

verse in G.

13



Proof. Let x € G be given, and let y,z € G such that yr = zy = e(x) and

21 = 2z = e(z). Then
v = we(r) = x(yz) = x(ye(y))r = ((zy)e(y))r = (e(z)e(y))x
and in a similar way
v = e(z)r = (zy)z = z(e(y)y)z = x(e(y)(yz)) = z(e(y)e(z)).

So the uniqueness of e(x) shows that

Hence e(z) = e(y).
Similarly e(z) = e(z).

Thus y = ye(y) = ye(z) = y(z2) = (yz)z = e(z)z = 2 O

Lemma 3.5 Let G be a Molaei’s generalized group and denote the inverse of

x € G byx~t. Then

Proof.

Similarly,

and so e(x)e(z™) = e(x™e(z).
Note that we proved e(z)e(z™!) = e(z7!)e(x) = e(z), which implies that
e(z™!) = e(z) (by (M2) and the fact that e(z)e(x) = e(z)). O

Definition 3.6 [12] Let G and H are two Molaei’s generalized groups and

v : G — H is a mapping then ¢ is called a homomorphism if

14



w(ab) = p(a)p(b) Vabed.
A one to one and onto homomorphism ¢ : G — H is called an isomorphism.
Lemma 3.7 [17] If G is a Molaei’s generalized group and a € G, then
aG = e(a)G, where aG = {ag : g € G}.
Proof. aG = e(a)aG C e(a)G, and e(a)G = aa 'G C aG, where a € G and a™!

is the inverse of a. Similarly Ga = Gae(a) C Ge(a), and Ge(a) = Ga™t'a C Ga

so Ga = Ge(a), where a € G O

Lemma 3.8 [17] If G is a Molaei’s generalized group, then for all a € G,
GaG = G.

Proof. Ifa € G, then GaG C G. Conversely if v € G, then e(z) = e(e(x)ae(z)).
We have x € Ge(z)G = Ge(e(z)ae(x))G = Ge(z)ae(x)G C GaG.
Thus G = GaG. O

Lemma 3.9 [17] If e(b)G Ne(a)G # 0, then e(b)G = e(a)G, where a,b € G.

Proof. Let ¢ € e(b)G Ne(a)G. Then there exist f, and d € G such that
c =e(b)d = e(a)f. So e(a)c = e(a)e(a)f = e(a)f = c¢. Previous lemma im-
plies that there exist z, and ¢ € G such that e(a) = zct. Hence e(a) = ze(a)ct.
Thus e(a) = (e(a))® = e(a)ze(a)cte(a). If x = e(a)ze(a) and y = te(a), then
e(a) = zcy, e(a)xr = we(a), and ye(a) = y. Let g = cyx, then e(a)g = cyr = g,
and ge(a) = cyze(a) = cye(a)r = cyr = g. So e(a) = e(e(a)) = g. Thus
e(a)G C ¢G C e(a)G. Hence e(a)G = c¢G. Similarly e(b)G = ¢G.

Thus e(a)G = e(b)G. O

There is an important propertie of Molaei’s generalized groups;
Let G is a Molaei’s generalized group, then:
If xy = yx, then e(x) = e(y) where z,y € G. So if xy = yz, the G is an Abelian

group.

15



CHAPTER 4
COMPLETELY SIMPLE SEMIGROUPS

Definition 4.1 [14] A semigroup S is left simple if S is its only left ideal,
S is right simple if S is its only right ideal and S is simple if S is its only
both-sided ideal.

[t means that a semigroup S is said to be simple if it has no proper two-sided

ideals.

Theorem 4.2 [15] The following conditions are equivalent for a semigroup S:
(i) S is simple;

(ii) SaS =S, Vaes,

(111) For any a,b € S there exist s,t € S such that sat = b;

(iv) S has a single J-class.

Proof. (i) = (i) It is easy to see that SaS is an ideal of S. Since S is simple
we must have SaS = S.

(73) = (i4i) This is obvious.

(7i1) = (iv) Let a,b € S be arbitrary. From (7i¢) it follows that there are s,t € S
such that sat = b, and also u,v € S such that abv = a. Hence aJb, and
J=5x%x8.

(iv) = (i) Let I be an ideal of S, and let a € I and b € S be arbitrary. By (iv),
we have aJb; in particular, there are s,t € S! such that sat = b. Since a € I, it

follows that b € I too, and so I = S. 0

Example 4.3 [15] Every group G is simple. Indeed, for arbitrary a,b € G we

have

and so the condition (iii) of the above theorem holds.

16



Example 4.4 [15] Every rectangular band S = I x A is simple. Indeed, for any
(i, A), (J, ) € S we have

(7, ) () (G, A) = (4, 1)

Definition 4.5 [15] A (left, right or two-sided) ideal I of a semigroup S is said

to be minimal if it contains no other (left, right or two-sided) ideals of S.

Every finite semigroup has minimal left, right and two-sided ideals.
An infinite semigroup need not have any, e.g., V.
Also a semigroup may have several minimal left or right ideals, e.g., a semigroup
of left or right zeros. However, a semigroup has at most one minimal two-sided
ideal. Indeed if I and J are two such ideals then I N J is also an ideal, and is

contained in both I and J, so that we have [ =1NJ = J.

Theorem 4.6 [15] If I is the minimal two-sided ideal of a semigroup S then I

1s a simple semaigroup.

Proof. Let a € I be arbitrary. Since [ is an ideal, we have Ial is an ideal.
Also ITal C I since a € I. Minimality of I implies that Ial = I, and hence [ is

simple by Theorem 4.2. [

If a semigroup S has a zero then it cannot be simple, because {0} is a proper

ideal.

Definition 4.7 [15] A semigroup S with zero is said to be 0-simple if S and {0}

are its only ideals, where S* # {0}.

Definition 4.8 [15] A (left, right or two-sided) ideal I of a semigroup S with
zero is said to be minimal if I and {0} (where I # 0)are the only (left, right or

two-sided) ideals of S contained in I.

Proposition 4.9 [16]/ A semigroup S is 0-simple if and only if SaS = S for
every a # 0 in S, that is, if and only if for every a,b € S\ {0} there exists

x,y € S such that ray = b.

17



Proof. Suppose, first that S is 0-simple. Then S? is an ideal of S. By definition
S% £ {0}. So, S? = S. This follows that S = 5?.5=5.5=2S. Let 0 £ a € S.
Then the subset SaS of S is an ideal. Hence, either SaS = S or SaS = {0}. If
SaS = {0} then the set [ = {x € S: SxS = {0}} contains the non-zero element
a. Since [ is an ideal of S we have [ = S. Thus, SzS = {0} for every z € S. But,
this implies that S* = {0}, which contradicts to fact that S* = S. Therefore
SaS =S.

Conversely, suppose SaS = S for all @ # 0 in S. Then certainly S? # {0}. If

A is an ideal of S containing a non-zero element a then
S =SaS CSAS C A,
and so A = S. Thus S is O-simple. O

Proposition 4.10 [16] If M is a 0-minimal ideal of S then either M? = {0} or

M s a 0-simple semigroup.

Proof. Since M? is an ideal of S contained in M, we must have either M? = M
or M? = {0}. Suppose that M? = M. Then M? = M. If 0 # a € M then S'aS*
is a non-zero ideal of S and contained in M. Therefore S'aS* = M.

Hence MaM C S'aS' = M = M3 = M(S'aS"YM = (MS")a(S*M) C MaM,
and also in fact MaM = M.

Thus, M is 0-simple by Proposition 4.9.

Definition 4.11 [16] A semigroup S is said to be completely 0-simple if it is

0-simple and if it possesses 0-minimal left and right ideals.

Definition 4.12 [20] A semigroup S is said to be completely simple semigroup
if it satisfies the following conditions:

(C1) SaS =8, Ya € S; (SaS ={zay:z,y € S}.)

(C2) If e, f € S are idempotents such that ef = fe = e then e = f.

Definition 4.13 [17] A non-empty subset of a completely simple semigroup G
15 called a completely simple subsemigroup if it with the binary operation of G s

a completely simple semigroup.
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Theorem 4.14 [17] A non-empty subset H of a completely simple semigroup G

is a completely simple subsemigroup if and only if for all a and b in H, ab™' € H.

Proof. If H is a completely simple subsemigroup and a,b € H, then the defi-
nition of completely simple subsemigroup implies that: b=! € H and ab™! € H.
Conversely, if H # () and a,b € H then we have:

b t=elb)e Heb)b'=bte H andab=a(b~')"! € H. O

Theorem 4.15 [17] Let a € G and ¢ : G — H be a homomorphism. Then the
kernel of 1 at a which is denoted by ker ¥ (a) == {x € G : (x) = P(e(a))} is
a completely simple subsemigroup of G. Moreover 1 is one-to-one if and only if

ker ¢(a) = {e(a)} for alla € G.

Proof. Let z,y € ker ¢(a). Then

Ylry™) = (@) (y) " = v(e(a))(W(e(a) ™

So zy~! € ker ¢(a).

Now let 1) be a one-to-one homomorphism, then ker 1(a) = {e(a)} for all a €
G. Conversely if ¥(z) = ¥(y), then Y(2)¥(y™") = ¥(y)¥(y™). So d(ay™) =
(e(y)). Since ker ¥(y) = {e(y)} we have

e(y™). (4.1)

8
<
I
o
—~
<
~—
I

ylr=e(y) =e(y™). (4.2)

Hence z = ((y~1)™!) =y by (4.1) and (4.2). O
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We now give some properties of completely simple semigroup.
If G and G’ are two completely simple semigroups and ¢ : G — G’ is a homo-
morphism, then :
1. Y¥(e(a)) = e(¢p(a)) is an identity element in G’ for all a € G;
2. Y(a™) = (Y(a))™!, for all a € G;
3. If K is a completely simple subsemigroup of GG, then ¥ (K) is a completely
simple subsemigroup of G';
4. If D is a completely simple subsemigroup of G’ and ¢~1(D) # @, then v ~1(D)

is a completely simple subsemigroup of G.
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CHAPTER 5
REES MATRIX SEMIGROUPS

Let S be a semigroup, then for all elements of S
r<y&sdeec Eg:x=ey.

Here, the relation < is;
a) Reflexive, since z = (zx~')z, where zz~! € Fj;
b) Antisymmetric, since if z = ey and y = fz, then z = ey = eey = ex, and so
r=ey=efr=fex=fr=uy;
c) Transitive, since if x = ey and y = fz, then also x = ey = efz, where
e, € Eg.
Therefore < is partial order.

If we restrict < onto Eg we get the partial order of idempotents. Indeed, if
e < f then there exists g € Eg such that e = gf, and here e = gf f =ef = fe as

required.

Proposition 5.1 [14] The following conditions on an element a of a semigroup
S are equivalent.

i) a is completely regular.

i1) a has an inverse with which it commutes.

iti) a € a*Sa’.

i) a € Sa*Na®Ss.

v) a is contained in a subgroup of S.

Theorem 5.2 [1}] The following conditions on a semigroup S are equivalent.

i) S is completely reqular.
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it) For everya € S, a € aSa®.

iii) S is a union of disjoint groups.

i) Every H—class is a group.

v)  Every M-class is simple and completely regqular.

vi) Every left and every right ideal of S is completely semiprime.

Proof. i) implies ii). This follows from Proposition 5.1.

ii) implies iii). By Proposition 5.1, it suffices to show that V a € S, a a*S. There
exists z € S such that @ = aza® and y € S such that za = (za)y(za)?. Conse-
quently

2:

a = ara® = a(ra)a = a(za)y(za)’a = (avayr)(axra?®) = avayra = axay(xa)

= (azay)(za)y(za)* = ay(za)? = (ayr)a(ra) = (ayr)(ara?)(za)
= (ay)(za)*(aza) = a(aza) = a’za

so that a € a?S.

iii) implies iv). Let H be an $-class. For any a € H, a belongs to a maximal
subgroup G.. But then a$je, so that G, = H since any two distinct maximal

subgroups are disjoint.

iv) implies v). Since $ C N, each N-class is a union of groups. By [14,
IV.1.4], each M-class is completely regular. Also by Proposition 5.1, for every

a €S, a=a’xa® for some z € S so that
a = a*za(a*za®) € Sa*S,

which [14, I1.4.5] implies that every DM-class is simple.
v) implies vi). If L is a left ideal of S and a® € L, then since S is clearly

completely regular, we have a = xa? € L and L is completely semiprime; the

situation is analogous for every right ideals.
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vi) implies i). For any a € S, Sa? is a left ideal and a* € Sa?. But then
a € Sa?; similarly a € a2S, which by Proposition 5.1 implies that S is completely

regular. O

Lemma 5.3 [14] A reqular semigroup S all of whose idempotents are primitive

15 completely regular subgroups given by
G. = aSa (e € Eg,a € G,).

Proof. Let a € S. Then a = aza and a? = a?ya? for somex,y € S. Let e = ax
and f = a*yax,

f? = (a*yax)(a*yax) = a*y(axa)ayar = (a’y)*ar = (a’y)ax = f,

ef = (ax)(a*yaxr) = (axa)(ayar) = a*yax = f,

fe = (a*yax)(ax) = a*yaz = f,
so that e, f € Eg and e > f. Therefore, we have e = f = ax = a?yax, which,
after multiplication by a on the right, we get a = a?ya € a?Sa. Since a is arbitrary
in .S, this implies that S is completely regular semigroup by Theorem 5.2.

Let e € Eg and a € G.. If x € G, then

r = ere = (aa"')z(a"'a) € aSa,

and thus G. C aSa. Conversely, let = aya. Then x € G for some f € Eg so
that
ef =e(xz™) =elaya)r ™ =zt = f

and dually fe = f so that e > f. By hypothesis, we must have e = f and hence

x € G,. Since x € aSa is arbitrary, then aSa C G.. O

Theorem 5.4 [14] The following conditions on a semigroup S are equivalent.
i) S is a completely simple semigroup.
it) S is completely reqular and simple.
iii) S is reqular and all its idempotents are primitive.
iv) S is regular and weakly cancellative.

v) S is regular and for any a,x € S, a = ara = v = zax.
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Proof. i) implies ii). Let e be a primitive idempotent of S and a be any
element of S. Then by simplicity of S, we have a = uev and e = z(ea’®e)y for

some u,v,x,y € S. Letting f = evaeyexeaue, we obtain

f? = evaeyexea(ueev)acyereaue = evaeye(vea’ey)ereaue = evaeyereaue = f

and evidently f < e so that f = e. Hence

a = ufv = (uev)aeyerea(uev) = a*(eyere)a® € a>Sa’

and a is completely regular by Proposition 5.1.

ii) implies iii). Let e, f € Eg such that e < f. Then simplicity of S, f = zey

for some z,y € S. Letting a = fxf and b = fyf, we obtain

aeb = (frfle(fyf) = f(zey)f = f. (5.1)

For a' satisfying the equalities a = ad’a, aa’ = d’a, by (5.1) we have

f=uaeb=adaeb =ad f = daf =da=ad (5.2)

and hence by using (5.1) and (5.2), we obtain
f=(da)(da) =d(ad)a=d fa = d(aeb)a = (d'a)(eba) = feba = eba.

But then e = ef = f which implies that f is primitive.

iii) implies iv). Suppose that ax = zb and xa = xb by Lemma 5.3, S is
completely regular, so a inG. and b inGy for some e, f € Eg. By Lemma 5.3,
axa € G, and bxb € Gy. Hence ara = bra = bxb implies that e = f. Letting

y = exe, we see by Lemma 5.3 that y € G, and also that

ay = a(exe) = (ae)re = axe = bxe = (be)xre = b(exe) = by
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which definition of GG, implies a = b, establishing that S is weakly cancellative.

iv) implies v). If a = axa, then az = a(xax) and xa = (raz)a, which by weak

cancellation implies that * = zax.

v) implies i). If e, f € Eg and e < f, then e = efe so by hypothesis we
also have f = fef = e and every idempotent is primitive. By Lemma 5.3, S is
completely regular. Suppose that S is not simple. Then by Theorem 5.1, S has
more than one M-class, and in particular it must have two JM-classes N, > Ny
with e, f € Eg. Letting x € eNye, we have z = eae € G, for some a € Ny and

g € ENf whence

eqg =exxr ! =

and similarly ge = ¢g. Hence g < e since g € Ny, contradicting the fact that all

idempotents of S are primitive. O

Lemma 5.5 [14] Let S be a completely simple semigroup and let e, f € Fsg.
Then the following statements hold.

i) Foranya,b€e S, abe G, = aSb C G..

i) ef =e= fe=f.

iii) ef =f= fe=e.
Proof. Note that S satisfies the hypothesis of Lemma 5.3 in view of Theorem
5.4.

i) Let a € Gy, b € Gy, ab € G.. Then Lemma 5.3 implies aba € G, and
bab € G},. Hence a = (aba)u, b = v(bab) for some u € Gy, v € G},. For any x € S,

using Lemma 5.3, we obtain
azrb = (aba)uzrv(bab) = (ab)(auzvd)(ab) € G,

since ab € G.. Since x is arbitrary, we have aSb C G,.
ii) If ef = e, then fe € Es and also fe = fef € G by Lemma 5.3. But then
fe=1.
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iii) If ef = f, then fe € Eg and also fe = efe € G, by Lemma 5.3. But then
fe=e. O

Definition 5.6 [15,17] Suppose that a semigroup D , and two arbitrary index
sets I and A are given. If P : A X I — D is a mapping, then I X D x A with the

product

(1,0, N) (3, b, 1) = (i, apagb, o) (5.3)

is a semigroup group. This semigroup is called Rees matriz semigroup (over D

with respect to P) and is denoted by M|D; I, A; P].

Lemma 5.7 The operation (5.3) is associative.

Proof. Since

(4,a, \)((J, b, ) (K, c,m)) = (4,0, M) (F, bpuwe, n) = (4, apr;bpurc,n)

and also

(4, a, N)(J, 0, 1)) (k, ¢;m) = (i, apajb, 1) (k, c,m) = (4, aprjbpuc, 1)

then

(i, a, \)((5, 0, ) (K, ¢,m)) = (6 a, A)(5, b, 1) (K, ¢, m)

implies that (5.3) is associative. O
Lemma 5.8 The operation (5.3) is well-defined.

Proof. Let z = (i,a,\),y = (7,b, 1) and z1 = (i1, a1, A1), y1 = (J1,b1, pt1). Now
let (z,y) = (x1,31) that is x = x; and y = 3. Then we have i =iy, a =a;, A =
)\17 ] = j17 b= bl and w= p1. This 1mphes Prj = P(Av.]) - P(Ahjl) = DPxij1s

since P is a well-defined mapping. Also, D is a semigroup with well-defined binary
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operation. That implies apy;b = ai1py,;,01.

Hence (7:7 ap,\jb, M) = (i17 alp)qjlblu ,Ul) that zy = x19,. O

Definition 5.9 (14) Let e be an idempotent of a semigroup S. Then
Ge={a€ S :a=ea=ae, e=ad =da for somea € S}
={aeS:aceSNSe, e caSNSa}

where e 1s an identity element.

Definition 5.10 [15] Suppose that D is a semigroup ( not containing zero) and
I and A are two arbitrary indez sets, and let P = (py;) be a A x I matriz with

entries from D U {0}, then S = (I x D x A) U {0} with the product

<i7 ap/\jbv ILL) Zf DPxj 7& 0
0 otherwise (5.4)

(4,a, \)(J,b, 1) =

0(¢,a,A) = (i,a,\)0 =00 =0
15 a semigroup group, which is called Rees matriz semigroup with zero, and s

denoted by M°[D; I, A; P).

Lemma 5.11 [16] Let G be a group, then S = (I x G x A)U{0} is a completely

0-simple semigroup.

Proof. It is easy to see that the composition (5.4) is associative, but it is
probably more illuminating to observe that S\ {0} is in one to one correspondence
with the set I x A matrices (a);», (a € G), where (a);» denotes the matrix with
entry a in the (i, A) position and zeros elsewhere. Since (0);, is independent
of 1 and A\ we may simply write it as 0. Thus the correspondence extends to a

correspondence between S and the set
G={(a)ix:ae€eGiel,Ne A}
We can easily verify that

(@)irP(b)ju = (aprjb)ip,
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where the juxtaposition on the left denote the matrix multiplication in the usual
sense. Thus the composition (5.4) in S corresponds in G to the evidently asso-

ciative composition o given by

(@)ix o (b)ju = (@)irP(b)jp,

and so is itself associative.
To verify that S is 0-simple, note that for any two non-zero elements (i, a, \)
and (j,b, ) of S we may, by the regularity of P, choose v € A and k € I such

that p,; # 0, pxx # 0, and then easily show that

(J,a pyt v) (i, a, N) (K, pypb, ) = (4, b, ).

Hence by Proposition 4.9, S is O-simple.
To complete the proof that S is completely O-simple, we must first identify its

idempotents. the non-zero element (i,a, \) is idempotent if and only if
(i,a,\) = (i,a,\)(1,a,\) = (i, apxa, A),

that is, if and only if py; # 0 and a = p;il. If we now take two non-zero idempo-
tents e = (i,py;,A\) and f = (j,p/;jl,/vc), then e < f if and only if ef = fe = e,

that is, if and only if
(iap;\ilp)\jp;jla /L) = (jap;jlp,uip;z‘la )\) = (27 apx;a, A):

that is, if and only ifj = ¢ and A = u, that is, if and only if e = f. the conclusion
is that every idempotent is primitive. Certainly there exists a primitive idem-

potent, and so S is completely simple. [l

The semigroup constructed in accordance with this recipe will, as in Clifford
and Preston [21], be denoted by M°[G; I, A; P], and will be called the I x A Rees

matrix semigroup over the O-group G° with the regular sandwich matrix P.

Theorem 5.12 [12,17] If G is a Molaei’s generalized group, then G is isomor-

phic to a Rees matrix semigroup.
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Proof. We choose an element a € G and denote e(a) by 1. There exist two sets
I C e(G) and A C (@) such that

(i) {aG : a € e(G)} = {iG : i € I}, and if 4; # iy then ;G N iyG = 0, where
11,19 € G,

(i) {Gb: be G} = {Gl : 1 € A}, and if I} # I, then GI; N Gly = ), where
l1,l € A,

(ili) 1 € 7 N A.

For given (i, A\) € I x Alet r; = il and g = 1\. Then f,, : (1GNG1) — (iIGNG1)
defined by f,,(xz) = rx is an one to one mapping. To see this we have

1(1r;) = (11)r; = 1r; and (1)1 = 1(r;1) = 1ry. So e(1r;) = 1. Now if rxy = 129,
then 1r;z; = 1ryws. Hence (1r;)7Y(1r))xy = (17;) 7 (1r;)xy. Therefore 1z, =
lzy. Thus z7 = x9. So f,, is a one to one mapping. If y € iG N G1, then
fr.((lr) My) = y. Because if z = ri(1r;) 'y, then 1z = 1ry(1r;)"'1y. So
1z = 1y. Hence 1iz’ = liy/, where z = iz’ and y = iy/. Therefore (i1i)y’ = (i13)z’.
So (i14)7(i14)2" = (ili)~'(ili)y’. Hence iz’ = iy’. Thus z = y. So f,, is also
an onto mapping. Lets show that the mapping f9) : (iGN G1) — (iG N GN)
defined by f@®)(z) = xq, is a one to one and onto mapping.

And also we have 1(gx1) = (1gx)1 = ((11)A\)1 = ¢»1 and (gx1)1 = ¢x(11) = g 1.
So e(qa1) = 1. Now if z1g) = 2qy, then x1gz1 = z2gx1. Hence x1(qp1)(qa1) "t =
79(qx1)(ga1)~! = 211 = 251. Thus z; = 25. So () is a one to one mapping.
If y € (iGN GA),then f09)(y.1(gx1)"!) = 5. Because if k = y.1(qx1) "¢y, then
k1 =1y.1(gx1)""gal. So k1 = y1. Hence k' A\1 =y’ A1, where k = k' A and y = y' \.
Therefore, k' (AIA) = ¢ (ALA) = E'(AIN) (AN =y AN AN = EA =9 A
Thus k = 4. So f&%) is an onto mapping.

Lemmas 3.7 and 3.9 show that {iG : i € I} is a partition for G. Similarly one
can show that {GX : A € A} is a partition for G. So {iGNGA: i € I and X € A}
is a partition for G. This fact with the matter which f®)of, is a one to one

and onto mapping show that each a € G has a unique expression 7;bqy, where

belGNGL.
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Ifp: AxI — (1GNG1) defined by p(A,7) = g1y, then straightforward calculation
shows that ¥ : I x (1G N G1) x A — G defined by (i, b, \) = r;bg, is an

isomorphism between Rees matrix semigroup M[(1G N G1);I,A; P] and G. O

Lemma 5.13 [20] Let G be a group and let S = M[G;1,\; P]. Then S is

completely simple semigroup and
Es={(i,py,,\) €S: i€l A€ A}

Proof. For any a = (i,g,\), b= (j,h,u) € S, we have

a= (z’,ghflp;jl, N (G, b, 1) (i, gpyt, A) € SbS
and similarly

b= (j,hg " P, 1) (i, 9, \)(J, hp,,) 1) € SasS.
It follows that S must be simple. Furthermore

a* = (i,g,\)(i, g, A)

so that a ia an idempotent if and only if ¢ = p;.l. Now consider any two idem-
potents e = (i,py;,\) and f = (j,p;jl,u) with e < f. Then e = ef = fe so

that
(i, D3 s A) = (6,3 PPy » 1) = (J, Dy Duilxi s A)-

Hence ¢ = j, A = i, and so e = f. Thus all idempotents in S are primitive, there

fore S is completely simple semigroup. 0

Theorem 5.14 (Rees Theorem) [14] Let G be a group and let S be a completely

reqular simple semigroup; fix g € Eg, and let G = G,
I={e€Es:eg=e} A={f€Es:gf=/f},
P = (py.) where ps. = fe. Then the mapping x defined by

X :a— (e, gag, f) (a €S)
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where ag € G., ga € Gy, is an isomorphism of S onto T = MG} I, A; P].

Proof. 1. For any f € A, e € I, we have

pre = fe=(g9f)(eg) € gSg = G,

by Lemma 5.3 and Theorem 5.4 so that P is indeed a matrix over G.
Also gag € G, = G for any a € S.
Let a be an element of S. If ag € G., then u(ag) = e for some u € G., and we

obtain

eg = u(ag)g = u(ag) = e,

which shows that e € I. Similarly we see that ga € Gy implies f € A. Thus x
maps S into 7.
2. Leta,d’ € S with ag € G, ga € Gy, d'g € G, ga’ € Gp; then by Lemma
5.5, ad’g € G, gaa’ € Gy, and we obtain
(ax)(a'x) = (e, gag, f)(€', gd'g, [') = (e, (gag)(fe') (ga’g), [')
= (e, (9a)(g9/)(€'9)(d'g), [') = (e, [(ga) f][€'(d'g)], [)
= (e, (ga)(d'g), [') = (e, g(ad’)g, ') = (aa')x,
and thus y is a homomorphism.

3. With the same notation, suppose that axy = a’y. Then

(e;gag, f) = (¢, 9d'g, ')

so that e =€/, gag = gd'g, f = f’. Consequently

ga = (ga)f = ga(gf) = (ga'g)f = (g9a’)(gf) = gd'(gf") = (ga') ' = ga’

and dually ag = d'g.
By Theorem 5.4, S is weakly cancellative, so ag = d'g, ga = ga’ = a = d'.
Thus y is one-to-one.
4. Let (e,z, f) € T. Theneg = e and gf = f, which by Lemma 5.5 ii) and
iii) imply ge = g = fg.
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Let a = exf. Then

e(ag)e = e(exf)ge = (cxf)ge = ag

which by Lemma 5.5 i) implies ag € G.. Similarly we obtain ga € Gy.
Also

gag = glexf)g = (fe)x(fg) = grg = x.

Consequently ax = (e, z, f) which proves that x is onto.

Therefore x is an isomorphism of S onto 7. U
Lemma 5.15 [22] Rees matriz semigroup is a generalized group.

Proof. In Lemma 5.7, we show that the operation (5.3) is associative.
Thus M[G; 1, A; P] is a semi group.
We claim that M[G; I, A; P] is a generalized group.
Now to prove that M[G; I, A; P] satisfies (M2), let (i,a,\) € M|G; 1, A; P] and
consider the element (i, py!, \) € M[G; 1, A; P).

We claim that (i, py;', A) is a unique element e € M[G; I, A; P] such that

(1,a,\)(e) = (e)(i,a, ) = (i,a,N).

First (i,a,\)(i,py; s A) = (i, apapy;, A) = (i, a, \)

and (i, py;, A)(i,a, \) = (i, apy, pais A) = (3, a, \).

Next, suppose that (i,a, A\)(j, b, u) = (i,a, \) for some (4,0, u) € M[G;I,A; P].
Then (i, apx;b, 1) = (4,a, A), and so (u = ) and (apy;b) = a, implying

(b = p;jl). Similarly, (j,b, p)(i,a,\) = (i,a,\) implies j = i. It follows that
(4, b, 1) = (i, pxt, \) for every (i,a,\) € M[G; 1, A; P].

To prove that M[G; I, A; P] satisfies (M3), let (i,a,\) € M[G; I, A; P]. and con-
sider the element (i, pyla~!py!, \) € M[G; 1, A; P).

It is immediate by the definition of the operation (5.3) that
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(4,0, A) (6, pyi a "oy A) = (603 a” oy A (i a, A) = (i3, A) = e(d,a, 0)).
Hence M[G; I, A; P] is a generalized group. 0J

Theorem 5.16 [22] Let S be a semigroup. Then the following are equivalent:
(1) S is isomorphic to some M|G; I, A; P].
(2) S is completely simple semigroup.

(8) S is a Molaei’s generalized group.

Proof.
(1) implies (2).
This follows from Lemma 5.13.
(2) implies (1).
This follows from Theorem 5.4 and Theorem 5.14
(3) implies (1).
This follows from Theorem 5.12
(1) implies (3).
This follows from Theorem 5.15
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