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ÖZET 

 

 

GECİKMELİ DİFERANSİYEL  DENKLEMLERİN ÇÖZÜMLERİNİN  

KARARLILIK , SINIRLILIK  DURUMLARI ve PERİYODİK  

ÇÖZÜMLERİNİN  VARLIĞI 

 

DOĞAN, İlhami 

Yüksek Lisans Tezi , Matematik Anabilim Dalı 

Tez Danışmanı: Prof. Dr. Cemil TUNÇ 

Şubat 2008, 61 sayfa 

 

Bu çalışma üç bölümden oluşmaktadır. Birinci bölümde bazı temel kavramlar, 

teoremler ve lemmalar verilmiştir. İkinci bölümde literatürde geçen üçüncü 

basamaktan gecikmeli diferansiyel denklemlerin çözümlerine ait kararlılık, sınırlılık 

durumları ve periyodik çözümlerinin varlığına ilişkin  sonuçlar verilmiştir. Son 

bölümde ise dördüncü basamaktan gecikmeli diferansiyel denklemlerinin  çözümlerine 

ait  benzer sonuçlar ele alınmıştır.  

 

Anahtar kelimeler : Gecikmeli Diferansiyel Denklemler,Kararlılık, Lyapunov 

fonksiyoneli, Periyodik çözüm, Sınırlılık.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



ABSTRACT 

 

 

ON THE STABILTIY, BOUNDEDNESS  and  EXISTENCE OF  

PERIODIC SOLUTIONS TO NONLINEAR  

DELAY DIFFERENTIAL EQUATIONS 

 

DOĞAN, İlhami 

Msc, Mathematics Science 

Supervisor: Prof. Dr. Cemil TUNÇ 

February 2008, 61 pages 

 

This thesis consists of three chapters. In first chapter, some basic concepts, 

theorems and lemmas have been introduced. In the second chapter, some results, in the 

related literature, concerning to the stability, boundedness and existence of periodic 

solutions to certain third order nonlinear delay differential equations have been given. 

In the last chapter some similar results for certain fourth order nonlinear delay 

differential equations have also been studied.  

 

 Key words : Boundedness, Delay differential equations, Lyapunov functional, 

Periodic solution, Stability.  
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SİMGELER ve KISALTMALAR DİZİNİ 
 
 

Simgeler 

α  : Alfa 

β  : Beta 

δ  : Delta 

ε  : Epsilon 

Φ  : Fi 

cos : Kosinüs 

cot : Kotanjant 

λ  : Lambda 

Ω  : Ohm 

π  : Pi 

ψ  : Psi 

 

ρ  : Ro 

sec : Sekant 

sin : Sinüs 

∞  : Sonsuz 

tan : Tanjant 

θ  : Teta 

 
 
 
 
 
 
 
 

 



1. GİRİŞ  

 

 

İlgili matematik literatürüne bakıldığında 1960’lardan bu yana gecikmeli 

diferansiyel denklemlerin çözümlerinin kararlılık ve sınırlılık durumları için kayda 

değer çalışmalar yapılmıştır. Bu konuları birçok kitapta da içerilmektedir. Ayrıca 

üçüncü ve dördüncü basamaktan gecikmeli diferansiyel denklemler için az sayıda 

çalışma yapıldığı görülmektedir. Belki de gerek üçüncü gerekse dördüncü basamaktan 

lineer olmayan gecikmeli diferansiyel denklemlerin çözümlerinin kararlılık ve sınırlılık 

durumlarına ilişkin çalışmaların az sayıda olması, problemleri incelerken incelemede 

kullanılan Lyapunov fonksiyonellerinin inşa edilmesinin çok zor olmasından 

kaynaklanabilir. Ayrıca Lyapunov fonksiyonellerinin nasıl inşa edileceği  hakkında  

genel bir yöntemin varlığı henüz bilinmemektedir. Gecikmeli olmayan diferansiyel 

denklemler için de aynı problemin var olduğu da bilinmektedir. 

Bilindiği üzere uygulamalı bilim dallarını pek çoğunda, örneğin,  mühendislik, 

fizik v.b. pek çok dalda ele alınan problemlerin matematiksel modellenmesine bir 

diferansiyel denklem karşılık gelir. Söz konusu sistemin hareketi hakkında yorum 

yapabilmek için onu temsil eden diferansiyel denklemin ve bu denklemlerin çözümleri 

hakkında bilgi sahibi olmak gerekir. Bu nedenle bu tezde ele alınacak denklem 

türlerinin çözümlerinin kararlılık ve sınırlılık durumları hakkında bilgi sahibi olmak 

son derece önemlidir. Bu ise söz konusu tezin önemini ortaya koymaktadır. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



2. KAYNAK BİLDİRİŞLERİ  

 

 

Matematik literatürüne bakıldığında 1960’lardan bu yana gecikmeli 

diferansiyel denklemlerin niteliksel davranışları üzerinde çok sayıda çalışma 

yapılmıştır. Gecikmeli diferansiyel denklemleri inceleyen çok sayıda kitap 

yayımlanmıştır. Bunun için Krasovskii(1963), Èl’sgol’ts (1966), Yoshizawa (1966), 

Lyapunov(1966), Èl’sgol’ts ve Norkin (1973), Hale (1977), Burton (1985), 

Kolmanovskii ve Nosov (1986), Gopalsamy (1992), Hale ve Lunel (1993), 

Kolmanovskii ve Myshkis (1999) isimli yazarların kitaplarına başvurulabilir. Ayrıca 

üçüncü basamaktan gecikmeli diferansiyel denklemlerin çözümlerinin kararlılık, 

sınırlılık durumları ve periyodik çözümlerinin varlığı ile ilgili bazı çalışmalar Sinha 

(1973), Okoronkwo (1988), Yunfeng (1992), Tejumola ve Tchegnani (2000), Sadek 

(2003), Sadek (2005), Bereketoglu ve Karakoç (2006) ve Tunç (2006) tarafından 

gerçekleştirilmiştir. Benzer biçimde dördüncü basamaktan gecikmeli diferansiyel 

denklemlerin çözümlerinin kararlılık ve sınırlılık durumları ile ilgili olarak Sinha 

(1973), Okoronkwo (1988), Bereketoğlu (1998), Tejumola ve Tchegnani (2000), 

Sadek (2004) gibi araştırmacılar çalışmalarda bulunmuştur.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



3. TEMEL TANIMLAR  

 

 

Bu bölümde konuyla ilgili daha sonraki bölümlerde kullanılacak olan temel 

tanım ve teoremler alt kısımlarda sırasıyla verilecektir. 

 

 

3.1. Giriş 

 

Bilindiği üzere uygulamalı bilim dallarının pek çoğunda, örneğin,  mühendislik, 

fizik v.b. pek çok dalda ele alınan problemlerin matematiksel modellenmesine bir 

diferansiyel denklem karşılık gelir. Ayrıca, pek çok fiziksel olayda bir sistemin mevcut 

andaki durumu geçmiş durumuna bağlı kalınarak da ifade edilebilir. Söz konusu 

sistemin hareketi hakkında yorum yapabilmek için onu temsil eden diferansiyel 

denklem ve denklemin çözümleri hakkında bilgi sahibi olmak gerekir.  

Aşağıdaki denklemler gecikmeli diferansiyel denklemler için birer örnektir: 

( ) 0)(,)((),(,)( >−=′ tttxtxtftx ττ  

( ) ( ) 0,,,(),(,)( 2121 >−−=′ ττττ txtxtxtftx  

( ) ( )( ) 0)(,)(,)(),(),(,)( ≥−′−′=′′ tttxttxtxtxtftx τττ  

0;)(),(,
2

,
2

,)( ≥







′








′








=′′ ttxtx

t
x

t
xtftx  

Yukarıdaki örneklere bakıldığında gecikmeli diferansiyel denklemler, 

bilinmeyen fonksiyon ve onun türevleri (en yüksek türev hariç) t  ve t  anından önceki 

anlara bağlı olarak ortaya çıkan diferansiyel denklemlerdir (Èl’sgol’ts, 1966). 

İlgili matematik literatürüne bakıldığında 1960’lardan bu yana gecikmeli 

diferansiyel denklemlerin çözümlerinin kararlılık ve sınırlılık durumlarını ele alan 

kayda değer çalışmalar yapılmıştır. Ayrıca bu konuları içeren kitapların bazıları 

aşağıdaki gibi sıralanabilir: Krasovskii (1963), Èl’sgol’ts (1966), Yoshizawa (1966), 

Lyapunov (1966), Èl’sgol’ts ve Norkin (1973), Hale(1977), Burton (1985), 



Kolmanovskii ve Nosov (1986), Gopalsamy (1992), Hale ve Lunel (1993), 

Kolmanovskii ve Myshkis (1999). Ancak üçüncü ve dördüncü basamaktan gecikmeli 

diferansiyel denklemler için yukarıda belirtilen konularda az sayıda çalışmanın 

yapıldığı görülmektedir. Bunun için Sinha (1973), Okoronkwo (1988), Yunfeng 

(1992), Bereketoglu (1998), Tejumola ve Tchegnani (2000), Sadek (2003), Sadek 

(2003), Sadek (2004) Sadek (2005), Bereketoglu ve Karakoç (2006) ,Tunç (2006) gibi 

araştırmacıların makalelerine başvurulabilir. Belki de gerek üçüncü gerekse dördüncü 

basamaktan lineer olmayan gecikmeli diferansiyel denklemlerin çözümlerinin 

kararlılık ve sınırlılık durumlarına ilişkin çalışmaların az sayıda olması, problemleri 

incelerken incelemede kullanılan Lyapunov fonksiyonellerinin inşa edilmesinin çok 

zor olmasından kaynaklanabilir. Ayrıca Lyapunov fonksiyonellerinin nasıl inşa 

edileceği hakkında literatürde genel bir yöntemin varlığı henüz bilinmemektedir. 

Gecikmeli olmayan diferansiyel denklemler için de aynı problemin var olduğu 

bilinmektedir.  

 

 

3.2. Bazı Temel Tanım, Teorem ve Lemmalar  

 

Şimdi, aşağıdaki otonom olmayan gecikmeli diferansiyel denklem sistemini 

gözönüne alalım 

),( txtfx =′ , )( θ+= txxt , 0≤≤− θr , 0≥t ,                          (3.1) 

 Burada [ ) n

H RCf →×∞ ,0:  sürekli dönüşüm, 0)0,( =tf ;  ( ) . ,C  , sürekli 

fonksiyonların Banach uzayı; 0>r  olmak üzere [ ] nRr →− 0 ,:φ  ;  

[ ]( ){ }HRrCC n

H <−∈= φφ :  ,0,  

dır. Varlık teorisine göre, eğer HC∈φ  ve  0≥t  ise, bu takdirde (3.1) denklem 

sisteminin [ )α+00  , tt  aralığında  0tt >  için en az bir ),,( 0 φttx  çözümü vardır öyle ki 

φφ =),(txt  olur. Burada α  pozitif bir sabittir ve   sembolü ise nℜ  de bir normu 

temsile etmekte,  

tφ = )(max ttst φα ≤≤−   



şeklinde tanımlanmaktadır (Burton,1985).  

 

Tanım 3.2.1.  

 

A  ve h  pozitif sabitler olmak üzere, ),( 0 φtx  fonksiyonu  [ ]Atht +− 00  ,  dan 

nR  ye tanımlansın. Bu fonksiyon 0tt =  ( 00 ≥t )  da HC∈φ  başlangıç şartına sahip ve 

aşağıdaki özellikleri sağlasın: 

(i)  Her Attt +<≤ 00  için HCtx ∈),( 0 φ   

(ii) φφ =),( 0tx , 

(iii)  Her Attt +<≤ 00  için ),( 0 φtx , (3.1)  denklemini sağlar.  

Bu takdirde ),( 0 φtx   fonksiyonuna (3.1) denkleminin bir  çözümüdür denir 

(Yoshizawa,1966).  

 

Teorem 3.2.1.  

 

Eğer her t  ve 
1HC∈φ  için ),( φtf  sürekli bir fonksiyon; HH <1 , 0t , 

ct <≤ 00  (burada c  pozitif sabit) ise, bu takdirde (3.1) denkleminin 0tt =  da φ  

başlangıç değerine sahip  bir çözümü var ve 0tt >  için bu çözüm sürekli 

türevlenebilirdir (Yoshizawa,1966).  
 

Tanım 3.2.2.  

 

Kabul edelim ki 0)0,( =tf  dır. Eğer (3.1)  denkleminin sıfır çözümü:  

(i) Her 0>ε  ve  01 tt ≥  için bir  0>δ   vardır öyle ki  [ ]1  ,  tt ≥≤ δφ   için 

εφ <),,( 1ttx  ise bu takdirde kararlıdır.  

(ii) Kararlı ve her 01 tt ≥  için bir 0>η  vardır öyle ki ηφ ≤  olduğunda ∞→t  

için  0),,( 0 →φttx   ise bu takdirde asimptotik kararlıdır (Burton,1985).  

 



Tanım 3.2.3.  

 

Kabul edelim ki ),( φtV , 0≥t  için sürekli bir fonksiyon ve HC∈φ  olsun. 

),( φtV  nin (3.1)  denklemi boyunca türevi  

h

txtVtxhtV
tV tht

h

)),(,()),(,(
suplim),( 00

0
)1.3(

φφ
φ

−+
=′ +

→

  

şeklinde tanımlanmaktadır. Burada ),( 0 φtx  , (3.1) denklemin çözümü ve φφ =),( 00
txt  

(Burton, 1985).  

 

Tanım 3.2.4  

 

Sürekli ve pozitif tanımlı bir [ )∞→ℜ  ,0: nW  fonksiyonuna bir  wedge denir 

(Burton, 1985).  

 

Tanım 3.2.5.  

 

[ ) [ )∞→∞  ,0 ,0:W   sürekli bir fonksiyon ve  0)0( =W  olsun. Eğer her  0>s  

için 0)( >sW  ve W  artan ise W  fonksiyonuna bir  wedge olur (Burton, 1985).  

 

Tanım 3.2.6.  

 

Sürekli ve φ  ye göre Lipschitz koşulunu sağlayan bir [ ) [ )∞→×∞  ,0 ,0: HCV , 

fonksiyoneline, W  bir wedge olmak üzere aşağıdaki şartları sağlaması halinde (3.1) 

denklemi için bir Lyapunov fonksiyoneli denir:  

(i) ),())0(( φφ tVW ≤ , 0)0,( =tV . 

(ii) [ ] 0)),(,()),(,(
1

suplim),( 000)1.3( ≤−+=′
+→ φφ txtVtxhtV

h
xtV ththt   

(Burton,1985).  

 



Teorem 3.2.2.  

 

V , (3.1) denklemi için aşağıdaki koşulları sağlayan bir Lyapunov fonksiyoneli 

olmak üzere  

(i) )(),())0(( 21 φφφ WtVW ≤≤ ,  

burada )(1 rW  ve )(2 rW  wedge fonksiyonlardır.  

(ii) 0),()1.3( ≤′
txtV ,  

ise bu takdirde (3.1) denkleminin sıfır çözümü düzgün kararlıdır (Yunfeng, 1992).  

 

Teorem 3.2.3.  

 

),( φtV  (3.1) denklemi için bir Lyapunov fonksiyoneli olsun. Eğer  

(i) )(),())0(( 21 φφφ WtVW ≤≤ ,  

(Burada )(1 rW  ve )(2 rW  wedge fonksiyonlardır) 

(ii) ))(( ),( 3)1.3( txWxtV t −≤′ ,  

ise, bu takdirde (3.1) denkleminin sıfır çözümü düzgün asimptotik kararlıdır (Sinha, 

1973).  

Şimdi (3.1) gecikmeli diferansiyel denkleminin özel hali olan )( txfx =′  

denklemi için aşağıdaki lemmayı verelim.  

 

Lemma 3.2.1  

 

Kabul edelim ki 0)0( =f , V , CCH =  de tanımlı sürekli bir fonksiyonel ve 

0)0( =V  olsun. Ayrıca )(su , ∞<≤ s0  için negatif olmayan sürekli bir fonksiyon 

∞→u  için ∞→)(su  , 0)0( =u  olsun. Eğer her C∈φ , ),())0(( φφ Vu ≤  0)( ≥φV , 

0)( ≤φV& , ise bu takdirde )( txfx =′  denkleminin 0=tx  çözümü kararlıdır.  

Eğer { }0)(: =′∈= φφ VCZ H   ise o zaman )( txfx =′  fonksiyonelinin 0=tx  

çözümü asimptotik kararlıdır (Sinha, 1973).  

 



Teorem 3.2.4.  

 

  Her CK ≤  için  bir )(KL  vardır öyle ki  

ψφψφ −≤− ),(),( tftf   

ve  

),(),( φφω tftf =+  

olacak şekilde bir 0>ω  varsa ),( φtf  fonksiyonu ω  periyotlu periyodik bir çözüme 

sahiptir (Chukwu, 1978).  

 

Örnek 3.2.1.  

 

İkinci basamaktan gecikmeli lineer olmayan  

))(())(),(()( rtxftxrtxtx −+′−+′′ ϕ =0                                                         (3.2) 

diferansiyel denklemini göz önüne alalım. (3.2) denklemi aşağıdaki sisteme eşdeğerdir.  

)()( tytx =′ ,  

))(),(( )( tyrtxty −−=′ ϕ - )(xf + ∫
−

′
t

rt

dssysxf )())(( .                                     (3.3) 

Burada r  pozitif bir sabittir, ayrıca [ )∞=+ ,0R  olmak üzere ϕ  fonksiyonu 

sürekli ve her +∈ Rt , )( rtx −   ve )(ty  için  

1)(

))(),((
α

ϕ
≥

−

ty

tyrtx
  ( 0)( ≠ty ) 

koşulunu sağlamaktadır; f  türevlenebilen bir fonksiyon ve  her x  için  

2

)(
α≥

x

xf
, ( 0≠x ) 

 ve Lxf ≤′ )(  olsun. Burada 1α , 2α  ve L  pozitif sabitlerdir.  

),(2 0 tt yxV = ∫
x

dssf
0

)(2 + 2y + ∫ ∫
− +

0
2 )( 2

r

t

st

dsdy θθλ  

Lyapunov fonksiyonelini tanımlayalım. Burada λ  pozitif sabit olup ilerde amaca 

yönelik olarak seçilecektir. ),(0 tt yxV  pozitif tanımlıdır. Gerçekten 0)0,0(0 =V  ve 

yukarıda verilen şartlara bağlı olarak  



 

),(0 tt yxV = ∫
x

sds
s
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0

)(
+ 2
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1
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0
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st

dsdy θθλ  

    ≥ ∫
x
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0
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r

t
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2
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α
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yazılabilir. Burada 








=
2

1
 ,

2
min 2

1

α
k  dır. Şimdi (3.3) sistemi boyunca ),(0 tt yxV  

fonksiyonelinin türevi alındığında  

),(0 tt yxV
dt

d
= )())(),(( tytyrtx −−ϕ + ∫
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         + rty )(2λ - ∫
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elde edilir.  
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olduğundan  
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yazılabilir. 
2

L
=λ  olarak seçilirse  

),(0 tt yxV
dt

d
≤ - ( ) 2

1  yLr−α  

olur. 
L

r 1α
<  olmak kaydıyla bir 0>α  sabiti için  

),(0 tt yxV
dt

d
≤ - 0 2 ≤yα  

olur. O halde  (3.2) denkleminin sıfır çözümü kararlıdır.  

 



 

Örnek 3.2.2.  

 

Aşağıdaki otonom olmayan gecikmeli 

)))((()))(()),((,()( trtxftrtxtrtxttx −+−′−+′′ ϕ   

=
22222 )))((())(())(()(1

1

trtxtxtrtxtxt −′+′+−+++
                                 (3.3) 

diferansiyel denklemini göz önüne alalım. (3.3) denklemi aşağıdaki sisteme eşdeğerdir.  

)()( tytx =′ ,  

)))(()),((,( )( trtytrtxtty −−−=′ ϕ - )(xf + ∫
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trt

dssysxf
)(

)())((  

         
))(()())(()(1

1
22222

trtytytrtxtxt −++−+++
+ ,                             (3.4) 

Burada γ≤≤ )(0 tr , γ  pozitif sabit olup ilerde amaca yönelik olarak 

seçilecektir. ϕ   sürekli,her  +∈ Rt , ))(( trtx −   ve ))(( trty −  için  

1)(

)))(()),(((
α

ϕ
≥

−−

ty

trtytrtx
 , ( 0)( ≠ty ) , 

koşulunu sağlamaktadır;  

f  türevlenebilen bir fonksiyon olsun, her x  için 2

)(
α≥

x

xf
, ( 0≠x ) ve 

Lxf ≤′ )(  dır. Burada 1α , 2α  ve  L  pozitif sabitlerdir. Ayrıca  

))(()())(()(1

1
22222

trtytytrtxtxt −++−+++
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21
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yazılabilir. 
21

1
)(

t
tq

+
=  olarak seçelim.  

∞<=
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∞∞

21

1
)(

0
2

0

π
ds

s
dssq  

elde edilir. O halelde ),0(1 ∞∈ Lq .olur.  

Çözümlerin sınırlı olduğunu göstermek için Lyapunov fonksiyonelini  

),,(2 tt yxtV = ∫
x

dssf
0

)(2 + 2y + ∫ ∫
− +
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)(

2 )( 2
tr

t

st

dsdy θθλ , 



şeklinde tanımlayalım Burada λ  pozitif sabit olup ilerde amaca yönelik olarak 

seçilecektir.  

),,( tt yxtV  fonksiyonelinin pozitif tanımlı olduğu açıkça görülmektedir. 

Gerçekten,  

0)0,0,( =tV , ),,( tt yxtV ≥ 222

2

1

2
yx +

α
≥ )( 22

2 yxk + ,                               (3.5) 

Burada  { }-1
2

1
2 2 ,2min α−=k  dır.  

Şimdi de V = ),,( tt yxtV  fonksiyonelinin (3.4) sistemi boyunca türevi 

alındığında  
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yazılabilir. Yukarıda verilen şartlara bağlı olarak kolaylıkla  
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olduğu görülebilir. β≤′ )(tr , 10 << β  alındığı takdirde  
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 alınırsa ise , buna bağlı olarak  
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yazılabilir. Bu yüzden 0>α  için  
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 olmak kaydıyla, (3.5) eşitsizliği kullanıldığında  
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dt

d
≤ - 2 yα +

2

2

1

1

t

y

+

+
  

          ≤
2

2

1

1

t

y

+

+
≤  
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 ),,( tt yxtV  

eşitsizliği elde edilir.  

Son eşitsizliğin 0  dan t  ye integrali alınır, Gronwall-Reid-Bellman eşitsizliği 

kullanılır ise  
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1 1
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∞∈
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L
t

 

olması nedeni ile kolaylıkla (3.4) sisteminin tüm çözümleri sınırlı olduğu görülebilir.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



4. ÜÇÜNCÜ BASAMAKTAN GECİKMELİ DİFERANSİYEL DENKLEMLERDE  

    ÇÖZÜMLERİN KARARLILIK, SINIRLILIK DURUMLARI VE PERİYODİK  

     ÇÖZÜMLERİN VARLIĞI  

 

 

Bu bölümde üçüncü basamaktan gecikmeli diferansiyel denklemlerde 

çözümlerin kararlılık, sınırlılık durumları ve periyodik çözümlerin varlığı ile ilgili bazı 

sonuçlar verilecektir.  

 

 

4.1. Giriş  

 

Bu kısımda üçüncü basamaktan lineer olmayan belli biçimindeki gecikmeli 

diferansiyel denklemlerin niteliksel davranışları; kararlılık, sınırlılık ve periyodik 

çözümlerinin varlığı ile ilgili literatürde geçen bazı sonuçlar incelenecektir. Matematik 

literatüründe yapılan çalışmalar dikkate alındığında üçüncü basamakta lineer olmayan 

gecikmeli diferansiyel denklemlerin yukarıda belirtilen türden davranışlarının 

incelenmesine ilk olarak 1973 yılında başlandığı görülmektedir. Şöyle ki ilk olarak 

Sinha (1973) tarafından  

0))(())(()())(),(()( =−+−′+′′′+′′′ rtxhrtxgtxtxtxftx                                  (4.1) 

gecikmeli diferansiyel denklemi ele alınarak bu denklemin sıfır çözümünün asimptotik 

kararlılığına ilişkin yeter koşullar verildi. Burada f , g  ve h  fonksiyonları bağlı 

bulundukları değişkenlere göre sürekli fonksiyonlar; g  ve h  birinci mertebeden 

sürekli türevlenebilir olup 0)0()0( == hg  ve 0>r  ise bir sabit gecikmedir.  

Daha sonra yukarıdaki denklemin daha değişik bir biçimi olan  

=−+−′−+′′′′′+′′′ )(())(),(()())(),(),(()( htxihtxhtxgtxtxtxtxftx                  (4.2) 

))(),(),(),(),(,( txhtxhtxtxtxtp ′′−′−′   

gecikmeli diferansiyel denklemi Chuwku (1978)  tarafından ele alınarak, bu denklemin 

en az bir periyodik çözüme sahip olduğunu garanti eden ve çözümlerinin sınırlı 

olmasını sağlayan yeter koşullar elde edildi. Burada igf ,,  ve p  sadece mevcut 

bileşenlere bağlı fonksiyonlar ve 0>h  bir sabittir. Ayrıca )(xi  ),( yxg  ve  
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∂
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∂

∂
 ve ),,( zyx

z
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∂

∂
  

türevlerinin mevcut olduğu varsayılmaktadır.  

Benzer biçimde, daha sonradan, Yunfeng (1992)  

)())(( tprtxfxbxax =−+′+′′+′′′                                                                    (4.3) 

)()())(( tpxfrtxxax =+−+′′+′′′ ϕ                                                                  (4.4) 

biçimindeki gecikmeli diferansiyel denklemleri göz önüne alarak, bu denklemlerin 

0)( =tp  olması durumunda çözümlerinin kararlılık ve 0)( ≠tp  olması durumunda ise 

söz konusu denklemlerin çözümlerinin sınırlılık ve periyodik çözümlerinin varlığına 

ilişkin yeter şartlar içeren  bazı teoremleri ispatladı. Burada ar,  ve b  pozitif sabitler, 

)(),(),( tpxxf ϕ  sürekli fonksiyonlar ve 0)0()0( == ϕf  dir.  

Benzer biçimde Sadek (2003)  tarafından gerçekleştirilen bir çalışmada ise  

)()))((()))((( tptrtxftrtxgxax =−+−′+′′+′′′                                               (4.5) 

şeklindeki gecikmeli diferansiyel denklemlerinin çözümlerinin kararlı ve sınırlı 

olmalarını sağlayan ve yeter şartlar içeren sonuçlar oluşturuldu. Burada a ve γ  pozitif 

sabit olmak üzere  

γ≤≤ )(0 tr  ; )(),( xfxg  ve )(tp  

sürekli fonksiyonlar; 0)0()0( == fg  dır.  

Yine aynı yazar, Sadek (2005), bu konu üzerindeki çalışmalarını sürdürerek (4.5) 

denkleminin farklı bir biçimi olan  

0))(()()()( =−+′+′′+′′′ rtxftcxtbxtax                                                          (4.6) 

gecikmeli diferansiyel denklemi için sıfır çözümünün kararlılığına ait bir teorem 

ispatladı.  

Burada )(),( tbta  ve )(tc , [ )∞,0  aralığında pozitif ve sürekli, birinci basamaktan 

türevlenebilen fonksiyonlar; r  pozitif bir sabit; )(xf  sürekli bir fonksiyon ve 

0)0( =f  dır.  

Benzer bir çalışmada ise  Tejumola ve Tchegnani (2000) tarafından  

=−+−′−+′′′′′+′′′ ))(())(),(,(),,,( rtxhrtxrtxtgxxxxtfx  



))(),(,,,,(1 rtxrtxxxxtP −′−′′′                                                                       (4.7)  

gecikmeli diferansiyel denklemi ele alınarak, bu denklemin çözümlerinin sınırlılığı, 

kararlılığı ve periyodik çözümlerinin varlığına ilişkin yeter koşullar içeren sonuçlar 

elde edildi. Burada 0>r  gf , , h  ve 1P  bağlı bulundukları bileşenlere göre reel 

değerli birinci basamaktan sürekli türevlenebilen fonksiyonlardır.  

Ayrıca şunu da belirtelim ki yukarıda belirtilen çalışmalara benzer bazı 

incelemeler Bereketoğlu (1998) ve Tunç (2006) tarafından da gerçekleştirilmiştir. 

Ancak yukarıdaki çalışmalar bu bölümde konu edinen problemlerin ana hatlarını 

belirlemeye yeterli görüldüğünden konunun daha fazla ayrıntılarına girilmek 

istenilmedi.  

Şimdi yukarıda ifade edilen denklemlere ait sonuçları sırası ile ifade edelim.  

 

 

4.2. Üçüncü Basamaktan Gecikmeli Diferansiyel Denklemler İçin Bazı Kararlılık  

       Sonuçları  

 

Bu kesimde ilk olarak Sinha (1973) tarafından (4.1) diferansiyel denklemi için 

verilen kararlılık sonucu üzerinde durulacaktır. Kolaylıkla görülebilir ki (4.1) 

gecikmeli denklemi aşağıdaki sisteme eşdeğerdir:  
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Teorem 4.2.1.  

 

(4.1) denklemindeki fonksiyonlar için a , b , c , 1L  ve 2L  sabitler olmak üzere 

aşağıdaki şartların sağlandığını varsayalım:  
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Bu takdirde r  yeterince küçük seçilmek ve α  sabiti  

ac

b 1
>> α   

eşitsizliğini sağlamak kaydıyla (4.1) denkleminin sıfır çözümü asimptotik kararlıdır.  

 

İspat. Bu teoremin ispatı bir Lyapunov fonksiyoneli  yardımı ile yapılmaktadır. 0≥v  

sabiti yeterince küçük seçilmek üzere  Lyapunov fonksiyoneli  
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şeklinde tanımlanmaktadır. Burada  
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dır . Ayrıca v  sabiti  amaca yönelik olarak  ilerde seçilecektir.  

Yukarıda verilen fonksiyonel göz önüne alındığında, teoremin şartlarına bağlı 

olarak  
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şeklinde yazılabilir. Burada 1>αa  dır.  
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yazılabilir.  

Bu nedenle (4.9) da tanımlanan fonksiyonel  0≥v için pozitif tanımlıdır.  

Şimdi (4.9) da verilen fonksiyonelin t  bağımsız değişkenine göre (4.8) sistemi 

boyunca türevi alındığında,  
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elde edilir.  
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λ≤rK  seçilmek kaydıyla 0≥v  olur.  

Bu durumda (4.10) daki ifade aşağıdaki biçimde ifade edilebilir:  
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Burada  
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olup böylece 0),,( ≤′
ttt zyxV  olduğu kolaylıkla görülebilir. Böylece teoremin ispatı 

tanımlanmış olur (Sinha, 1973).  

Şimdi, ikinci olarak Yunfeng’in (1992) , (4.3) ve (4.4) denklemleri için 0)( =tp  

olması durumunda denklemlerin sıfır çözümlerinin kararlı olması için verilen sonuçları 

ifade edilecektir.  

(4.3) ve (4.4) diferansiyel denklemleri sırasıyla eşdeğer sistem olarak aşağıdaki 

biçimlerde yazılabilir:  
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Teorem 4.2.2.  

 

cba ,, birer sabit olmak üzere 0>− cab  olsun Eğer 0≠x  için  

{ } cxf =′ )(sup , 0)sgn()( >xxf  

iken 0>L  için Lxf ≤′ )( oluyorsa bu takdirde (4.13) sistemine ait sıfır çözümü  









+

−−
<

L

cab

bL

cab
r

)21(
,min

µ
 

olmak kaydıyla  asimptotik kararlıdır.  

Bu teoremin ispatı aşağıda verilecek olan teoremin ispatına benzer olduğundan 

ispat burada verilmeyecektir.  

 

Teorem 4.2.3.  

 

cba ,, birer  sabit olmak üzere  0>− cab  olsun. Eğer 0≠y  için 0
)(
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y

yϕ
 , 

0≠x  için 0)sgn()( >xxf , { } 0)(sup >=′ cxf  iken 0>L  için Ly ≤′ )(ϕ oluyorsa 

(4.14) sistemine ait sıfır çözümü  
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olmak kaydıyla  asimptotik kararlıdır.  

 

İspat: Bu teoremin ispatı için temel araç olan Lyapunov fonksiyoneli  
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biçiminde tanımlanmaktadır. Teoremin şartlarına bağlı olarak V  nin pozitif tanımlı 
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yazılabilir.  
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bulunur. İspatın geri kalan kısmı kolaylıkla tamamlanabilir.Böylece teorem ispatlanmış 

olur.  

Üçüncü olarak Sadek (2003) tarafından (4.5) diferansiyel denklemi için verilen 

kararlılık sonucu üzerinde durulacaktır. Kolaylıkla görülebilir ki, (4.5) gecikmeli 

denklemi 0=p  olması durumunda aşağıdaki sisteme eşdeğerdir:  
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Teorem 4.2.4.  

 

Aşağıdaki şartlar sağlansın:  
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pozitif sabitlerdir.  

Bu teoremin ispatı yukarıda verilen Teorem 4.2.3 ün  ispatına benzerdir.  

Şimdi yine Sadek (2005) tarafından (4.6) diferansiyel denklemi için verilen 

kararlılık sonucu üzerinde durulacaktır.  

 

Teorem 4.2.5.  
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olmak kaydıyla düzgün asimptotik kararlıdır.  

 



İspat: (4.6) gecikmeli denklemi aşağıdaki sisteme eşdeğerdir:  
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şeklinde tanımlanmaktadır. Burada λ  pozitif bir sabittir. 1V  in  (4.16)  sistemi boyunca 

türevi alındığında  
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elde edilir.  



Teoremin şartları ve 222 vuuv +≤  eşitsizliği dikkate alındığında  
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elde edilir. Ayrıca  2V  nin (4.16) sistemi boyunca türevi alındığında ise  
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bulunur.  
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biçimini alır. Öte yandan  
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yazılabilir. Ayrıca teoremin  (i)  ve  (ii)  şartları  
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olmasını gerektirir.  

Bu yüzden bir ))0((1 φW  fonksiyonu bulunabilir ve bu fonksiyon  
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seçildiğinde, bir  0>α  sabiti için  
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eşitsizliği elde edilir. Böylece teorem ispatlanmış oldu. 

Tejumola ve Tchegnani (2000)  taraflarından (4.7) de ele alınan gecikmeli 

diferansiyel denklemi için 0=P  olması durumunda aşağıdaki teorem verildi.  

 

Teorem 4.2.6.  

 

Kabul edelim ki her x  için )0,(0)0( xgh ==  olsun. Ayrıca δ,,,, baba ′′  ve 
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o zaman r  yeterince küçük seçilmek şartıyla (4.7) denkleminin sıfır çözümü düzgün 

asimptotik kararlıdır.  

Bu teoremin ispatı yukarıda verilen teoremin ispatına benzerdir.  

 

 

4.3. Üçüncü Basamaktan Gecikmeli Diferansiyel Denklemler İçin Bazı Sınırlılık  

       Sonuçları  

 

Bu kesimde ilk olarak Chukwu (1978) tarafından (4.2) diferansiyel denklemi için 

verilen sınırlılık sonucu ifade ve ispat edilecektir.  

 

 

Teorem 4.3.1.  
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dır. Böylece 0>h  yeterince küçük olmak kaydıyla bu takdirde (4.2) denklemine ait 

tüm çözümler düzgün sınırlıdır ve düzgün mutlak sınırlıdır.  

 



Şimdi, ikinci olarak Yunfeng (1992) tarafından (4.3) denklemi için 0)( =tp  

olması durumunda denkleminin tüm çözümlerinin sınırlı olması için verilen sonuçlar 

ifade edilecektir.  
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olmak kaydıyla (4.3) denkleminin tüm çözümleri düzgün sınırlıdır.  

Şimdi, üçüncü olarak Sadek (2003) tarafından (4.6) denklemine ait çözümlerin 

sınırlı olması için verilen sonuçlar ifade edilecektir.  

0)( ≠tp  olsun.  

 

Teorem 4.3.3.  
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olmak kaydıyla (4.5) denkleminin tüm çözümleri düzgün sınırlı  ve düzgün mutlak 

sınırlıdır.  

 



Lemma 4.3.1.  

 

RCRtV →×:),( ϕ  Lipschitz şartını sağlayan sürekli bir fonksiyon  olsun.  
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ise bu takdirde (4.6) denkleminin tüm çözümleri düzgün sınırlı ve düzgün mutlak 

Burada 321 ,,, WWWW  negatif olmayan sürekli fonksiyonlardı (wedges) (Sadek, 2003).  

Şimdi yukarıda verilen Teorem 4.3.3 ün ispatını verelim.  

 

İspat: Kolaylıkla görülebilir ki (4.6) gecikmeli denklemi aşağıdaki sisteme eşdeğerdir:  
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Bu teoremin ispatında temel araç olarak  
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olarak tanımlanmaktadır. 1V  ve 2V  fonksiyonların türevleri alındığında, teoremin 

şartlarına bağlı olarak aşağıdaki eşitsizlikler elde edilir:  
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eşitsizliği yazılabilir. Yukarıda elde edilen ifadeler kullanıldığında  
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elde edilir. Buradan da 
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dolayı teoremin ispatı tamamlanır.  

 

Teorem 4.3.4.  

 

Kabul edelim ki her x  için )0,(0)0( xgh ==  olsun. Ayrıca kabul edelim ki a , 

b  δ,,ba ′′  c  pozitif sabitleri var öyle ki 0>− cab  ,  

(i) azyxtfa ≥≥ ),,,(   

(ii) Her zx,  için ve her 0≠y  için  b
y

yxtg
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),,(
 ,  

(iii) Her 0≠x  için δ≥
x

xh )(
 ve  her  x  için  cxh ≤)(  ,  

′
∆∆ 00 ,  birer pozitif sabit olmak üzere  

)(001 zyxP ++∆′+∆≤   

ise r  yeterince küçük seçilmek şartıyla (4.7) denklemine ait her çözüm düzgün sınırlı 

ve düzgün mutlak sınırlıdır.  

 

 

4.4. Üçüncü Basamaktan Gecikmeli Diferansiyel Denklemler İçin Periyodiklik İle  

       İlgili   Bazı Sonuçları  

 

Yunfeng’in (1992) tarafından (4.3) ve (4.4) denklemlerin periyodik çözüme 

sahip  olması için verilen sonuçlar ifade edilecektir.  

 

 

Teorem 4.4.1.  

 

Teorem 4.3.2 teoreminin şartlarına ilaveten )()( tpTtp =+  , mtp ≤)( , ∞→x  

iken 0/)( 0 >≥ cxxf olduğunu varsayalım. Bu takdirde r  sabiti yeterince küçük 



olmak kaydıyla  (4.3) denklemi 0≠T  ( 0≠T ) periyotlu periyodik bir çözüme 

sahiptir.  

 

İspat: (Bkz: Yunfeng (1992)).  

 

Teorem 4.4.2.  

 

Teorem 4.2.3 şartlarına ilaveten )()( tpTtp =+  , mtp ≤)( , ∞→x  iken 

∞→xxf sgn)(  olduğunu varsayalım. Bu takdirde r  sabiti yeterince küçük olmak 

kaydıyla (4.4) denklemi 0≠T  ( 0≠T ) periyotlu periyodik bir çözüme sahiptir.  

 

İspat: (Bkz: Yunfeng (1992)).  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



5. DÖRDÜNCÜ BASAMAKTAN GECİKMELİ DİFERANSİYEL  

    DENKLEMLERDE ÇÖZÜMLERİN KARARLILIK VE SINIRLILIK  

    DURUMLARI 

 

Bu bölümde dördüncü basamaktan gecikmeli diferansiyel denklemlerde 

çözümlerin kararlılık ve sınırlılık durumları ile ilgili bazı sonuçları vereceğiz.  

 

 

5.1. Giriş  

 

Bu bölümde dördüncü basamaktan lineer olmayan belli biçimindeki gecikmeli 

diferansiyel denklemlerin çözümlerinin niteliksel davranışları; kararlılık ve sınırlılık 

durumları ile ilgili literatürde geçen bazı sonuçlar incelenecektir. Matematik 

literatüründe yapılan incelemelere göre dördüncü basamakta lineer olmayan gecikmeli 

diferansiyel denklemlerin yukarıda belirtilen türden davranışlarının incelenmesine ilk 

olarak 1973 yılında başlandığı görülmektedir.  

Şöyle ki ilk olarak Sinha (1973) tarafından  

0))(())(()())(),(()())(()( 21
)4( =−+−′+′′′+′′′′′+ rtxhrtxgtxtxtxftxtxftx             (5.1) 

denklemi ele alınarak bu denkleme ait sıfır çözümünün asimptotik  kararlılığı için yeter 

koşullar elde edildi; burada 1f  , 2f , g  ve h  sürekli , ,0)0()0( == hg  r  sabit, 0≥r  

dir. Ayrıca 2f , g  ve h  nin bağlı bulundukları değişkenlere göre birinci basamaktan 

sürekli türevlenebilir oldukları varsayılmaktadır.  

Daha sonra Okoronkwo (1989) tarafından  

))(()()()())(()( 22
)4( htxghtxtxtxtxftx −′+−′′+′′+′′′′′+ βα   

)()()( 44 tphtxtx =−++ βα                                                                (5.2) 

denklemi ele alınarak bu denkleme ait çözümlerinin sırası ile 0≠p  sınırlılığı ve 

0=p  için ise kararlılığı inceledi. Burada 4242 ,,, ββαα  ve h  pozitif sabitler olup 

gf ,  ve p  sürekli, g  birinci basamaktan türevlenebilirdir.  

Benzer biçimde, yine, Tejumola ve Tchegnani (2000) tarafından benzer bir 

yapıda olan dördüncü basamaktan  



))(),(,(),,,,()4( rtxrtxtxxxxxtx −′′−′+′′′′′′′′′+ ψϕ   

      Prtxhrtxrtxt =−+−′−+ ))(())(),(,(χ                                                (5.3) 

gecikmeli diferansiyel denklemi ele alınarak bu yapıdaki denklemlerin çözümlerinin 

kararlılığına ve sınırlılığına ilişkin yeter koşullar elde etmiştir. Burada 0>r , 

h,,, χψϕ  ve P  bağlı bulundukları bileşenlere  göre reel değerli sürekli fonksiyonlar 

olup  

))(),(),(,,,,,( rtxrtxrtxxxxxtPP −′′−′−′′′′′′=   

dir.  

Yine, Sadek (2004) tarafından  

0))((321
)4( =−+′+′′+′′′+ rtxfxxxx ααα                                                     (5.4) 

ve  

0)())((21
)4( =+−′+′′+′′′+ xfrtxxxx φαα                                                    (5.5) 

denklemlerinin sıfır çözümlerinin kararlılık durumları araştırıldı. Burada 321 ,,, αααr  

pozitif sabitlerdir, )(),( xfx′φ  sürekli fonksiyonlar ve 0)0()0( == fφ  dır.  

Ayrıca f  ve φ  birinci basamaktan sürekli türevlenebilirdir.  

 

 

5.2. Dördüncü Basamaktan Gecikmeli Diferansiyel Denklemler İçin Bazı  

       Kararlılık Sonuçları  

 

Bu kesimde ilk olarak Sinha (1973) tarafından (5.1) diferansiyel denklemi için 

verilen kararlılık sonucu üzerinde durulacaktır.  

 

 

Teorem 5.2.1.  

 

Kabul edelim ki (5.1) denklemi için aşağıdaki şartlar sağlansın:  
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Eğer r  yeterince küçük seçilirse bu takdirde  (5.1) denkleminin sıfır asimptotik 

kararlıdır.  

 

İspat: (5.1) denklemini aşağıdaki sisteme eşdeğerdir.  
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Bu ispatta kullanılacak Lyapunov fonksiyoneli  
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şeklinde tanımlanmaktadır. Burada 0≥v  ,(4.11) de  tanımlanmaktadır.  









=

0
1

0
1

10

2

,,,,,max
ggga

K
δδδ

δ
δδ

δ  

olarak alınmakta ve  

[ ] 2

0
0

0
2

0

)0(
)(

2
)(),(),(),( y

a

h

g

f
dssh

g
twtztytx

x

∫ 






 ′
−+=

δδ
ν  

yw
g

wzw
a

z
ga

f
0

22
0

0
2 2

2
1 δδ

+++







−+  

∫ ++
z

yxhdssfy
g 0

10
)(2)(

2δ
 

∫+++
y

dssgzyg
a

zxh
a 0

)(2)(
2

)(
2

 

{ }∫ −+
z

dsfsyfs
a 0

0
2),(

2
 

{ }∫ −+
y

dsfsfs
g 0

0
220

)0,(
2δ

 

∫+
z

dsssf
0

1 )(2  

dir.  

Yukarıda tanımlanan Lyapunov fonksiyonelinin türevi teoremin şartlarına bağlı 

olarak aşağıdaki eşitsizliği sağlar;  
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burada 02 >δ  ve 0>γ  dir. Ayrıca ),min(3 1 γδλ =  olarak seçilsin. Bu durumda 

yukarıda elde edilen ifade aşağıdaki gibi ifade edilebilir:  
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Buna bağlı olarak 0≤′V  olduğu kolaylıkla görülebilir. Bu ise teoremin ispatını 

tamamlar.  

Şimdi, ikinci olarak Okoronkwo (1989) tarafından (5.2) denklemi için verilen 

sonuçlar ifade edilecektir.  

 

Teorem 5.2.2.  

 

(5.2) de 0)( =tP  ve (5.2) denklemi için aşağıdaki koşulların sağlandığını kabul 

edelim.  
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seçilirse, bu durumda ρβ <dqh  koşulu sağlanır ve (5.2) denkleminin sıfır çözümü 

düzgün asimptotik kararlıdır. 

Bu teoremin ispatı burada verilmeyecektir.  

Üçüncü olarak Tejumola ve Tchegnani (2000) tarafından (5.3) diferansiyel 

denklemi için verilen kararlılık sonucu  üzerinde durulacaktır. (5.3) diferansiyel 

denklemi aşağıdaki sisteme eşdeğerdir.  
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        + ∫
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)())((
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Pdtytxh θθθ .                                                            (5.17) 

 

Teorem 5.2.3.  

 

Kabul edelim ki her yxt ,,  için 0)0,,( =xtχ  = )0,,( ytψ ve yukarıdaki sistemde 

cba ,,  pozitif sabitler olmak üzere 21 ,, δδd  pozitif sabit sayılar vardır ki öyle ki 

aşağıdaki koşullar sağlanır:  
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),,(
0

ψ
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y
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),,(
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χ
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xh
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d
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




−

∗
δ  . 

Bu takdirde r  yeterince küçük seçilmek şartıyla (5.3) denkleminin sıfır çözümü 

düzgün asimptotik kararlıdır.  

Bu teoremin ispatı yukarıda ifade edilen teoremlerin ispatına benzerdir.  

Şimdi de Sadek (2004) tarafından (5.4) diferansiyel denklemi için verilen 

kararlılık sonucu üzerinde durulacaktır.  



 

Teorem 5.2.4.  

 

Kabul edelim ki aşağıdaki  şartlar sağlansın:  

(i) ∆,,,, 4321 αααα  pozitif sabit olmak üzere  ∆≥−− 4
2

13321 )( αααααα . 

(ii) 0)0( =f , her x  için )0(,0sgn)( ≠> xxxf  , ∞→x  iken  
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olmak kaydıyla (5.4) denkleminin sıfır çözümü asimptotik kararlıdır.  

 

İspat: (5.4) diferansiyel denklemi aşağıdaki sisteme eşdeğerdir.  
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İspat için Lyapunov fonksiyonelini  
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şeklinde tanımlanmaktadır. Burada  
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α
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4
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olarak alınmaktadır.  
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olduğundan pozitif tanımlıdır. λ  pozitif sabittir.  

12V   fonksiyoneli aşağıdaki gibi düzenlenebilir.  
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Teoremin şartları dikkate alındığında  
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yazılabilir.  
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elde edilir.  

(i) den 321 ααα >  ve 3241 αααα <  olması nedeni ile  

21132 dd ααα −− ε
αα

0
31

d−
∆

≥                                                                    (5.23) 
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olduğu kolaylıkla elde edilebilir.  

Böylece Lyapunov fonksiyoneli için aşağıdaki eşitsizlik elde edilir;  
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çünkü  
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∆
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dır.  

Şimdi Lyapunov fonksiyonelinin türevini bulalım:  
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yazılabilir. Ayrıca teoremin şartlarına bağlı olarak  
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yazılabilir.  
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elde edilir.  

0)1(
2 21

4 >=++ λ
α

dd  

olduğundan  

2
4231 )2(

2

1
yrdV









+−−≤
′

λαεα 2
4

31

)
2

1

2
( zrα

αα
−

∆
−   

     2
411 2

1
urd








−− αεα                                                                                (5.28) 

olur. 

Öte yandan  
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olması nedeni ile bir 0>ρ  için  

)( 222
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olur.  

İspatın geri kalan kısmı açıktır.Bu ise inceleme altındaki denklemin sıfır 

çözümünün asimptotik kararlı olduğunu gösterir. Böylece teorem ispatlanmış oldu.  

Son olarak yine Sadek (2004) tarafından (5.5) diferansiyel denklemi için 

verilen bir başka kararlılık sonucu  üzerinde durulacaktır.  

 

Teorem 5.2.5.  

 

Kabul edelim ki (5.5) denklemi için aşağıdaki şartlar sağlansın.  
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olmak kaydıyla (5.5 ) denkleminin sıfır çözümü asimptotik kararlıdır.  

 

İspat: (5.4) diferansiyel denklemi aşağıdaki sisteme eşdeğerdir:  
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İspat için Lyapunov fonksiyoneli  

          2
1422

0

22 )()(2),,(2 ydddfdzyxV

x

ttt ααξξ −+= ∫  ηηφ d

y

∫+
0

)(2   

        )(2)(2)( 1
2

1
2

2121 xzfdxfyudzdd +++−++ αα  

        dsdzzuyudzydyzd
r

t

st

θθµφα ∫ ∫
− +

+++++
0

2
2121 )(222)(22       (5.30) 

olarak tanımlanmaktadır. Lyapunov fonksiyoneli aşağıdaki gibi düzenlenebilir:  
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burada γ  fonksiyonu  
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olarak tanımlanmaktadır.  
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Bir önceki teoremin ispatında ortaya çıkan işlemlere bezer biçimde  

2112 )( ddy αφα −′− εαφ
α

αα

α

φ
α ))((

)(
1

3

41

1
2 +′−−

′
−= y

y
  

        εφααααφαα
αα

))((}))({(
1

14
2
1321

31

yy ′+−−′−=   

        εαφ
αα

))(( 1
31

+′−
∆

≥ y   

yazılabilir.  )(21 yφαα ′>  ve 3241 αααα <   olduğundan  

2112 )( ddy αφα −′− ε
αα

0
31

d−
∆

≥                                                                (5.33) 

elde edilir. 

Benzer biçimde teoremin şartlarına bağlı olarak aşağıdaki ifadeler yazılabilir:  
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olması nedeni ile  
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yazılabilir.  

Lyapunov fonksiyonelini türevini alırsak  
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∫
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olduğu görülür. İspatın geri kalan kısmı bir önceki teoremin ispatına benzerdir.  

 

 

5.3. Dördüncü Basamaktan Gecikmeli Diferansiyel Denklemler İçin Bazı  

       Sınırlılık Sonuçları  

 

Bu kesimde Okronkowo (1973) tarafından (5.2) diferansiyel denklemi için 

verilen sınırlılık sonucu ifade edilecektir. Verilecek olan teoremin ispatı ikinci 

bölümde verilen Teorem 4.2.5 ispatına benzer olduğundan, burada ispat 

verilmeyecektir.  

 



Teorem 5.3.1.  

 

Kabul edelim ki Teorem 5.2.2 nin tüm şartları sağlansın. Buna ilaveten 0>M  

bir sabit ve her σ≥t  için Mtp ≤)(  ise bu takdirde (5.2) denkleminin tüm çözümleri 

düzgün sınırlıdır.  
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