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OZET

GECIKMELI DIFERANSIYEL DENKLEMLERIN COZUMLERININ
KARARLILIK , SINIRLILIK DURUMLARI ve PERIYODIK
COZUMLERININ VARLIGI

DOGAN, ilhami
Yiiksek Lisans Tezi , Matematik Anabilim Dali
Tez Danigsmani: Prof. Dr. Cemil TUNC
Subat 2008, 61 sayfa

Bu caligma {i¢ boliimden olusmaktadir. Birinci boliimde bazi temel kavramlar,
teoremler ve lemmalar verilmistir. Ikinci boliimde literatirde gegen iiciincii
basamaktan gecikmeli diferansiyel denklemlerin ¢oziimlerine ait kararlilik, sinirlilik
durumlar1 ve periyodik c¢oziimlerinin varligina iliskin  sonuglar verilmistir. Son
boliimde ise dordiincii basamaktan gecikmeli diferansiyel denklemlerinin ¢oziimlerine

ait benzer sonuglar ele alinmistir.

Anahtar kelimeler : Gecikmeli Diferansiyel Denklemler,Kararlilik, Lyapunov

fonksiyoneli, Periyodik ¢6ziim, Sinirlilik.






ABSTRACT

ON THE STABILTIY, BOUNDEDNESS and EXISTENCE OF
PERIODIC SOLUTIONS TO NONLINEAR
DELAY DIFFERENTIAL EQUATIONS

DOGAN, ilhami
Msc, Mathematics Science
Supervisor: Prof. Dr. Cemil TUNC
February 2008, 61 pages

This thesis consists of three chapters. In first chapter, some basic concepts,
theorems and lemmas have been introduced. In the second chapter, some results, in the
related literature, concerning to the stability, boundedness and existence of periodic
solutions to certain third order nonlinear delay differential equations have been given.
In the last chapter some similar results for certain fourth order nonlinear delay

differential equations have also been studied.

Key words : Boundedness, Delay differential equations, Lyapunov functional,

Periodic solution, Stability.
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SIMGELER ve KISALTMALAR DiZiNi

Simgeler

o . Alfa

B : Beta

o . Delta
£ : Epsilon
D : ki

Ccos : Kosiniis
cot : Kotanjant
A : Lambda
Q : Ohm
7 : Pi

% : Psi

P : Ro

sec : Sekant
sin : Siniis
o : Sonsuz
tan : Tanjant

o0 . Teta



1. GIRIS

llgili matematik literatiiriine bakildiginda 1960’lardan bu yana gecikmeli
diferansiyel denklemlerin ¢oziimlerinin kararlilik ve smirlilik durumlan i¢in kayda
deger calismalar yapilmistir. Bu konulari bircok kitapta da igerilmektedir. Ayrica
liciincii ve dordiinci basamaktan gecikmeli diferansiyel denklemler i¢in az sayida
calisma yapildig1 goriilmektedir. Belki de gerek iiciincii gerekse dordiincii basamaktan
lineer olmayan gecikmeli diferansiyel denklemlerin ¢oziimlerinin kararlilik ve sinirlilik
durumlarina iliskin ¢aligmalarin az sayida olmasi, problemleri incelerken incelemede
kullanilan Lyapunov fonksiyonellerinin inga edilmesinin ¢ok zor olmasindan
kaynaklanabilir. Ayrica Lyapunov fonksiyonellerinin nasil insa edilecegi hakkinda
genel bir yontemin varligi heniiz bilinmemektedir. Gecikmeli olmayan diferansiyel
denklemler icin de ayn1 problemin var oldugu da bilinmektedir.

Bilindigi lizere uygulamali bilim dallarin1 pek cogunda, 6rnegin, miihendislik,
fizik v.b. pek ¢ok dalda ele alinan problemlerin matematiksel modellenmesine bir
diferansiyel denklem karsilik gelir. S6z konusu sistemin hareketi hakkinda yorum
yapabilmek i¢in onu temsil eden diferansiyel denklemin ve bu denklemlerin ¢oziimleri
hakkinda bilgi sahibi olmak gerekir. Bu nedenle bu tezde ele alinacak denklem
tiirlerinin ¢oziimlerinin kararlilik ve sinirlilik durumlar hakkinda bilgi sahibi olmak

son derece onemlidir. Bu ise s6z konusu tezin 6nemini ortaya koymaktadir.



2. KAYNAK BILDIiRiSLERI

Matematik literatiiriine bakildiginda 1960’lardan bu yana gecikmeli
diferansiyel denklemlerin niteliksel davraniglar1 iizerinde ¢ok sayida c¢alisma
yapilmistir. Gecikmeli diferansiyel denklemleri inceleyen c¢ok sayida kitap
yayimlanmistir. Bunun i¢in Krasovskii(1963), El’sgol’ts (1966), Yoshizawa (1966),
Lyapunov(1966), El’sgol’ts ve Norkin (1973), Hale (1977), Burton (1985),
Kolmanovskii ve Nosov (1986), Gopalsamy (1992), Hale ve Lunel (1993),
Kolmanovskii ve Myshkis (1999) isimli yazarlarin kitaplarina basvurulabilir. Ayrica
liciincii basamaktan gecikmeli diferansiyel denklemlerin ¢oziimlerinin kararhlik,
sinirlilik durumlart ve periyodik c¢oziimlerinin varhigi ile ilgili bazi ¢alismalar Sinha
(1973), Okoronkwo (1988), Yunfeng (1992), Tejumola ve Tchegnani (2000), Sadek
(2003), Sadek (2005), Bereketoglu ve Karako¢ (2006) ve Tung¢ (2006) tarafindan
gerceklestirilmistir. Benzer bicimde dordiincii basamaktan gecikmeli diferansiyel
denklemlerin ¢oziimlerinin kararlilik ve sinirlilik durumlan ile ilgili olarak Sinha
(1973), Okoronkwo (1988), Bereketoglu (1998), Tejumola ve Tchegnani (2000),
Sadek (2004) gibi arastirmacilar calismalarda bulunmustur.



3. TEMEL TANIMLAR

Bu boliimde konuyla ilgili daha sonraki boliimlerde kullanilacak olan temel

tanim ve teoremler alt kisimlarda sirasiyla verilecektir.

3.1. Giris

Bilindigi iizere uygulamali bilim dallarinin pek ¢cogunda, 6rnegin, miihendislik,
fizik v.b. pek cok dalda ele alinan problemlerin matematiksel modellenmesine bir
diferansiyel denklem karsilik gelir. Ayrica, pek ¢ok fiziksel olayda bir sistemin mevcut
andaki durumu gecmis durumuna bagli kalinarak da ifade edilebilir. S6z konusu
sistemin hareketi hakkinda yorum yapabilmek icin onu temsil eden diferansiyel
denklem ve denklemin ¢oziimleri hakkinda bilgi sahibi olmak gerekir.

Asagidaki denklemler gecikmeli diferansiyel denklemler icin birer ornektir:

X' ()= f(r, x(0), x(t =7(1)), 7(t)>0
X'(0) = f(t, x@t), x(t—7,), x(t—7,), 7,7, >0

X'(t) = f(t, x@t), X' @), x(t—7@)), X't —7(1))), 7(t) =0

X(1) = f(t, x(é) x(é) x(0), x'(t)j; £>0

Yukaridaki Orneklere bakildiginda gecikmeli diferansiyel denklemler,
bilinmeyen fonksiyon ve onun tiirevleri (en yiiksek tiirev hari¢) ¢ ve ¢ anindan onceki
anlara bagh olarak ortaya ¢ikan diferansiyel denklemlerdir (EI’sgol’ts, 1966).

llgili matematik literatiiriine bakildiginda 1960’lardan bu yana gecikmeli
diferansiyel denklemlerin ¢oziimlerinin kararlilik ve smirlilik durumlarimi ele alan
kayda deger calismalar yapilmistir. Ayrica bu konulari iceren kitaplarin bazilari
asagidaki gibi siralanabilir: Krasovskii (1963), El’sgol’ts (1966), Yoshizawa (1966),
Lyapunov (1966), El’sgol’ts ve Norkin (1973), Hale(1977), Burton (1985),



Kolmanovskii ve Nosov (1986), Gopalsamy (1992), Hale ve Lunel (1993),
Kolmanovskii ve Myshkis (1999). Ancak {igiincii ve dordiincii basamaktan gecikmeli
diferansiyel denklemler icin yukarida belirtilen konularda az sayida calismanin
yapildig1 goriilmektedir. Bunun i¢in Sinha (1973), Okoronkwo (1988), Yunfeng
(1992), Bereketoglu (1998), Tejumola ve Tchegnani (2000), Sadek (2003), Sadek
(2003), Sadek (2004) Sadek (2005), Bereketoglu ve Karakog¢ (2006) ,Tung (2006) gibi
arastirmacilarin makalelerine basvurulabilir. Belki de gerek {iciincii gerekse dordiincii
basamaktan lineer olmayan gecikmeli diferansiyel denklemlerin ¢6ziimlerinin
kararlilik ve sinirlilik durumlarina iliskin ¢alismalarin az sayida olmasi, problemleri
incelerken incelemede kullanilan Lyapunov fonksiyonellerinin inga edilmesinin ¢ok
zor olmasindan kaynaklanabilir. Ayrica Lyapunov fonksiyonellerinin nasil insa
edilecegi hakkinda literatiirde genel bir yontemin varligi heniiz bilinmemektedir.
Gecikmeli olmayan diferansiyel denklemler i¢in de ayni problemin var oldugu

bilinmektedir.

3.2. Baz1 Temel Tanim, Teorem ve Lemmalar

Simdi, asagidaki otonom olmayan gecikmeli diferansiyel denklem sistemini

g0zOniine alalim

xX'=f(t,x,), x, =x(t+6), -r<6<0,:>0, (3.1)

Burada f :[0,e0)xC,, — R" siirekli doniisiim, f(1,0)=0; (C,|.) . siirekli

fonksiyonlarin Banach uzayi; r >0 olmak iizere ¢: [— r, O] —R";

c, ={pe (cl-r0] rR"): |4 < H}
dir. Varlik teorisine gore, eger ¢ C,, ve t=0 ise, bu takdirde (3.1) denklem
sisteminin [to, t, + a) arahiginda > t, icin en az bir x(t,t,,¢) ¢oziimii vardir dyle ki

x,(t,¢) = ¢ olur. Burada o pozitif bir sabittir ve || || sembolii ise R" de bir normu

temsile etmekte,

o(1)

||¢r ” =maX, ;<<



seklinde tanimlanmaktadir (Burton,1985).

Tanim 3.2.1.

A ve h pozitif sabitler olmak iizere, x(¢,,9) fonksiyonu [to —h,t, +A] dan

R" ye tanimlansin. Bu fonksiyon ¢t =¢, (¢, 20) da ¢ e C,, baslangic sartina sahip ve

asagidaki ozellikleri saglasin:

(i) Her t, <t <t,+ A icin x(t,,0)e C,

(i) x(r),9) =9,

(iii) Her ¢, <t <t,+ A icin x(¢,,9), (3.1) denklemini saglar.

Bu takdirde x(#,,¢) fonksiyonuna (3.1) denkleminin bir c¢oziimiidiir denir

(Yoshizawa,1966).
Teorem 3.2.1.

Eger her t ve ¢e CHl icin f(t,¢) siirekli bir fonksiyon; H,<H, t,,
0<t,<c (burada c pozitif sabit) ise, bu takdirde (3.1) denkleminin #=¢, da ¢
baslangic degerine sahip  bir ¢Oziimii var ve ¢>f, icin bu ¢oziim siirekli
tiirevlenebilirdir (Yoshizawa,1966).

Tanim 3.2.2.

Kabul edelim ki f(¢,0) =0 dir. Eger (3.1) denkleminin sifir ¢oziimii:

(i) Here >0 ve t, >¢, igin bir 6 >0 vardir dyle ki [ ||¢|| <0, 12 tl] icin
|x(t,1f1 , ¢)| < € ise bu takdirde kararlidir.

(ii) Kararli ve her ¢, > ¢, i¢in bir 7 > 0 vardir dyle ki ||¢|| <7 oldugunda t — oo

icin x(t,¢,,¢) = 0 ise bu takdirde asimptotik kararlidir (Burton,1985).



Tanim 3.2.3.

Kabul edelim ki V(¢,¢), t =20 i¢in siirekli bir fonksiyon ve ¢e€ C, olsun.

V(t,¢) nin (3.1) denklemi boyunca tiirevi

V(,3.1) (t,9) =limsup V(t+hx,, &, 9)) =V x &,0))

h0 h

seklinde tantmlanmaktadir. Burada x(¢,,¢) , (3.1) denklemin ¢oziimii ve X, t,,.9)=¢

(Burton, 1985).

Tanim 3.2.4

Siirekli ve pozitif tanimhi bir W : R" — [O,oo) fonksiyonuna bir wedge denir

(Burton, 1985).
Tamm 3.2.5.

W [0, o) — [0, oo) siirekli bir fonksiyon ve W(0)=0 olsun. Eger her s>0

icin W(s) >0 ve W artan ise W fonksiyonuna bir wedge olur (Burton, 1985).
Tanim 3.2.6.

Siirekli ve ¢ ye gore Lipschitz kosulunu saglayan bir V : [0, o)X C g = [O, o),
fonksiyoneline, W bir wedge olmak iizere asagidaki sartlar1 saglamasi halinde (3.1)

denklemi i¢in bir Lyapunov fonksiyoneli denir:

@ W) <V(.9), V(1,0)=0.

(ii) Vj;, (t.x,) = limsup, %[V(r + X, (10, 8) =V (t.x, (1. )] < O

(Burton, 1985).



Teorem 3.2.2.

V', (3.1) denklemi i¢in asagidaki kosullart saglayan bir Lyapunov fonksiyoneli

olmak tizere

() W, (g0 <V (t,0) <W,(|¢

)s
burada W,(r) ve W,(r) wedge fonksiyonlardir.
(i) V(;_l) (t,x,)<0,

ise bu takdirde (3.1) denkleminin sifir ¢6ziimii diizgiin kararlidir (Yunfeng, 1992).

Teorem 3.2.3.

V(t,9) (3.1) denklemi i¢in bir Lyapunov fonksiyoneli olsun. Eger
@) W, () <V (1.9) <W, (¢,
(Burada W,(r) ve W,(r) wedge fonksiyonlardir)

),

ise, bu takdirde (3.1) denkleminin sifir ¢oziimii diizgiin asimptotik kararlidir (Sinha,
1973).

(i) V;, (t.x,) < =W, (|x(0)

Simdi (3.1) gecikmeli diferansiyel denkleminin 6zel hali olan x = f(x,)

denklemi i¢in asagidaki lemmay1 verelim.

Lemma 3.2.1

Kabul edelim ki f(0)=0, V, C, =C de taniml siirekli bir fonksiyonel ve

V(0)=0 olsun. Ayrica u(s),0<s <o ic¢in negatif olmayan siirekli bir fonksiyon
u —> oo igin u(s) > oo ,u(0)=0 olsun. Eger her g C, u(p0))<V(g), V() 20,
V(¢) <0, ise bu takdirde x"= f(x,) denkleminin x, =0 ¢6ziimii kararlidir.

Eger Z ={¢e C, :V'(#) =0} ise o zaman x"= f(x,) fonksiyonelinin x, =0

¢Oziimii asimptotik kararlidir (Sinha, 1973).



Teorem 3.2.4.

Her K < C i¢in bir L(K) vardir oyle ki

£ .0 - few)|<|o-v]
ve
f+a.0)=f(t.9)

olacak sekilde bir @ >0 varsa f(t,¢) fonksiyonu @ periyotlu periyodik bir ¢6ziime

sahiptir (Chukwu, 1978).
Ornek 3.2.1.

Ikinci basamaktan gecikmeli lineer olmayan

X+ @(x(t =), X' (@) + f(x(t = 1) =0 (3.2)
diferansiyel denklemini goz oniine alalim. (3.2) denklemi asagidaki sisteme esdegerdir.

X ()= y@),

Y ) ==@(x(t=r),y(1) - f(x) + If’(X(S))y(S)dS - (3.3)

Burada r porzitif bir sabittir, ayrica R" =[O,oo) olmak iizere ¢ fonksiyonu
siirekli ve her 1€ R™, x(t—r) ve y(t) igin

P(x(t—r), y(1))
y()
kosulunu saglamaktadir; f tiirevlenebilen bir fonksiyon ve her x icin

f(x)

X

za, (y(0)#0)

>a,, (x#0)

ve | f '(x)| < L olsun. Burada ¢,, &, ve L pozitif sabitlerdir.

2V, (x,,y,)= 2ff(s)ds+y2+2/1f jyz(ﬁ)dﬁds

Lyapunov fonksiyonelini tanimlayalim. Burada A pozitif sabit olup ilerde amaca

yonelik olarak secilecektir. V,(x,,y,) pozitif tanimhdir. Gercekten V,(0,0)=0 ve

yukarida verilen sartlara bagli olarak



l" t j

0

) sds+- > +/1j jy (0)d&ds

—r t+s

o'—,x

sds+;y +/1_[ jy (6)d@ds

—r t+s

K

1
> 2 x4y k (xt+y?
5 2)’ W ( )

a
yazilabilir. Burada k, :min{f,%} dir. Simdi (3.3) sistemi boyunca V(x,,y,)

fonksiyonelinin tiirevi alindiginda

%Vo (X, y)= =@ —=r), y@)y()+ y(1) jf'(X(S))y(S)dS

t—r

+/1y2(z)r-/1jy2(s)ds.

t—r

elde edilir.

o(x(t—r), y(1))
y(1)

>a,,

f’(x)| <L ve 2|uv| <u’+v?

oldugundan

d L L | f
Vo) Sy Dt Eiyz(s)ds+/1y2(z)r-/1jy2(s)ds

t—r

L L ’
=_ {0{1 - (E + ﬂjr} y+ (5 - ﬂjiyz (s)ds
. L o
yazilabilir. 4 = B olarak secilirse

d

Evo(xr’yr) S_(a’ll _Lr)yz

a . e e .
olur. r < Tl olmak kaydiyla bir & > 0 sabiti i¢in

d >
—V,(x,,y,)<-ay” <0
0 0 (X y,) y

olur. O halde (3.2) denkleminin sifir ¢6ziimii kararlidir.



Ornek 3.2.2.

Asagidaki otonom olmayan gecikmeli
KO+, x(t —r®), X't —r@)) + £ (x(t = (1))

1
1+ 2+ 3O+ X =)+ (X)) + (X = r(1)}

(3.3)

diferansiyel denklemini goz oniine alalim. (3.3) denklemi asagidaki sisteme esdegerdir.

xX'(t) = y(@),

Y () == @(t, x(t = r(1), y(t = r(1)))- f (x) + If'(X(S))Y(S)dS
t—r(t)
1

+ - - . 5 5 , 3.4)
I+t + x> +x"(t—r@®)+y @)+ y>(t —r())

Burada 0<r(t)<y, y pozitif sabit olup ilerde amaca yonelik olarak
secilecektir. ¢ siirekli,her te R™, x(t —r(t)) ve y(t—r(t)) igin

o(x(t —r(1)), y(t —r(1)))
y(1)

2a,,(y0)#0),

kosulunu saglamaktadir;

f tiirevlenebilen bir fonksiyon olsun, her x ig¢in f) 2a,, (x+0) ve
X

|f’(x)| <L dir. Burada «,, a, ve L pozitif sabitlerdir. Ayrica

1 < 1

1+ + X+ X —r@) + Y2 () + y (1 — (1))~ 1+t

2

yazilabilir. g(t) = N ! olarak secelim.

t2

o

I 1
.([q(s)ds=J.1+s2 ds=%<oo

0

elde edilir. O halelde g e L'(0,) .olur.

Coziimlerin sinirli oldugunu gostermek icin Lyapunov fonksiyonelini

x 0 t
W(t,x,,y,)= 2jf(s)ds+y2+2,1 j jyz(e)dads,
0

—r(t) t+s



seklinde tanimlayalim Burada A pozitif sabit olup ilerde amaca yonelik olarak
secilecektir.

V(t,x,,y,) fonksiyonelinin pozitif taniml1 oldugu agikca goriilmektedir.

Gergekten,
V(,0,0)=0, V(t,x,,y,) 2 %xz +%y2 > kz(x2 + yz), 3.5

Burada k, =min{2"'e,,2"'} dur.
Simdi de V=V(t,x,,y,) fonksiyonelinin (3.4) sistemi boyunca tiirevi

alindiginda

%va,x,,y,>:—¢<t,x<r—r<r>>,y(r—r(r)))y(t)

£ [ F/ () y(s)ds
t—r(t)

N y(1)
1+ + X2+ x>t —r@®)+y> @)+ y (t—r(t))

+ A2 (Or() - A= (1) [y (5)ds

t—r(t)

elde edilir. Ayrica

%0 bl 1y
I+ +x° @O+ Xt —r@®)+ Y2 O+ y> @t —r@) 1+t7  1+¢

yazilabilir. Yukarida verilen sartlara bagl olarak kolaylikla

i _ _ £ 2 1+y2 £_ o ( 2
dtV(t,x,,y,)S [0{1 (2+/1)r(t)}y +1+t2 +(2 A r(t))) Iy (s)ds

t—r(t)

oldugu goriilebilir. r'(r) < B, 0< B <1 alindig1 takdirde

2

d L I+y L t
“Vx,y) <-la -+ Dy |y’ = A1- 2(s)d
V(x5 {al G )7} + +(2 ( ﬁ)j,_,{f (s)ds

esitsizligi elde edilir. Eger A= alinirsa ise , buna bagl olarak

2(1-p)

dt

d T 1e-p ] a1ty
Vi(t,x,,y)< {aﬁ 2(1- B) 7})’ +1+t2

yazilabilir. Bu yiizden & > 0 i¢in



_2a(-p)
L2-p)

olmak kaydiyla, (3.5) esitsizligi kullanildiginda

2

1+y
1+1¢2

d
EV(t,xt,yt) <-ay’+

2
Sy 11
1+t 1+17 k,(1+1%)

V(t,x,,y,)

esitsizligi elde edilir.
Son esitsizligin 0 dan ¢ ye integrali alinir, Gronwall-Reid-Bellman esitsizligi
kullanilir ise

1

t2

e L' (0,0)

olmasi nedeni ile kolaylikla (3.4) sisteminin tiim ¢oziimleri sinirli oldugu goriilebilir.



4. UCUNCU BASAMAKTAN GECIKMELI DIFERANSIYEL DENKLEMLERDE
COZUMLERIN KARARLILIK, SINIRLILIK DURUMLARI VE PERIYODIK
COZUMLERIN VARLIGI

Bu bolimde iiclincii basamaktan gecikmeli diferansiyel denklemlerde
coziimlerin kararlilik, sinirlilik durumlart ve periyodik ¢oziimlerin varligr ile ilgili bazi

sonuclar verilecektir.

4.1. Giris

Bu kisimda {igiincii basamaktan lineer olmayan belli bicimindeki gecikmeli
diferansiyel denklemlerin niteliksel davraniglari; kararlilik, smirlilbik ve periyodik
coziimlerinin varligi ile ilgili literatiirde gegen bazi sonuglar incelenecektir. Matematik
literatiirtinde yapilan ¢alismalar dikkate alindiginda {i¢iincii basamakta lineer olmayan
gecikmeli diferansiyel denklemlerin yukarida belirtilen tiirden davraniglarinin
incelenmesine ilk olarak 1973 yilinda baslandigi goriilmektedir. Soyle ki ilk olarak
Sinha (1973) tarafindan

xX"(t) + f (x(0), X' (O)x" (1) + g (x'(t = 1) + h(x(t = r)) = 0 4.1)
gecikmeli diferansiyel denklemi ele alinarak bu denklemin sifir ¢6ziimiiniin asimptotik
kararliligina iliskin yeter kosullar verildi. Burada f, g ve h fonksiyonlar bagh
bulunduklar1 degiskenlere gore siirekli fonksiyonlar; g ve h birinci mertebeden
stirekli tiirevlenebilir olup g(0) = ~(0) =0 ve r > 0 ise bir sabit gecikmedir.

Daha sonra yukaridaki denklemin daha degisik bir bicimi olan

x7(0)+ f(x(@), X' (0), X" ()x" (1) + g (x(t — h), x'(t —h)) +i(x(t —h) = 4.2)

p(t, x(), x'(t), x(t = h), x"(t — h), x"(1))
gecikmeli diferansiyel denklemi Chuwku (1978) tarafindan ele alinarak, bu denklemin
en az bir periyodik ¢6ziime sahip oldugunu garanti eden ve ¢oziimlerinin sinirl

olmasini saglayan yeter kosullar elde edildi. Burada f,g,i ve p sadece mevcut

bilesenlere bagl fonksiyonlar ve & > 0 bir sabittir. Ayrica i(x) g(x,y) ve



p(t,x(0), y(0), x(t = h), y(t = h))

stirekli ve
% (x), %(X’ y),g—i(x, y),g—{c(x, y,z) ve g—i(x, ¥>2)
tiirevlerinin mevcut oldugu varsayilmaktadir.
Benzer bicimde, daha sonradan, Yunfeng (1992)
x”+ax"+bx"+ f(x(t—r)) = p(t) 4.3)
X7+ ax”+ @(x(t—r))+ f(x) = p(t) 4.4)

bicimindeki gecikmeli diferansiyel denklemleri goz Oniine alarak, bu denklemlerin
p(t) =0 olmasi durumunda ¢oziimlerinin kararlilik ve p(¢) # 0 olmasi durumunda ise
s0z konusu denklemlerin ¢oziimlerinin siirlilik ve periyodik ¢oziimlerinin varligina
iliskin yeter sartlar iceren bazi teoremleri ispatladi. Burada r,a ve b pozitif sabitler,
f(x),p(x), p(t) stirekli fonksiyonlar ve f(0) = ¢(0) =0 dir.

Benzer bicimde Sadek (2003) tarafindan gerceklestirilen bir ¢calismada ise

X +ax”+ g (Xt =r)+ f (x(t = r(1)) = p(1) 4.5)
seklindeki gecikmeli diferansiyel denklemlerinin ¢o6ziimlerinin kararli ve sinirh
olmalarin1 saglayan ve yeter sartlar iceren sonuglar olusturuldu. Burada a ve y pozitif
sabit olmak iizere

0<r(®=<y ;8. f(x) ve p()
stirekli fonksiyonlar; g(0) = f(0) =0 dir.

Yine ayni1 yazar, Sadek (2005), bu konu iizerindeki caligmalarini siirdiirerek (4.5)
denkleminin farkli bir bi¢cimi olan

X" +a®)x"+b()x" +c(t) f(x(t—r))=0 (4.6)
gecikmeli diferansiyel denklemi i¢in sifir ¢Oziimiiniin kararlilifina ait bir teorem
ispatladi.

Burada a(z),b(t) ve c(t), [O,oo) aralifinda pozitif ve siirekli, birinci basamaktan
tiirevlenebilen fonksiyonlar; r pozitif bir sabit; f(x) siirekli bir fonksiyon ve
f£(0)=0 dir.

Benzer bir ¢calismada ise Tejumola ve Tchegnani (2000) tarafindan

X7+ f(t,x,x, x)x"+ gt x(t—r), X't —r))+ h(x(t—r)) =



P(t,x,x, x", x(t —r), X' (t — r)) 4.7)
gecikmeli diferansiyel denklemi ele alinarak, bu denklemin c¢oziimlerinin sinirliligi,
kararlilign ve periyodik ¢oziimlerinin varligina iliskin yeter kosullar iceren sonuclar
elde edildi. Burada »r>0  f,g, h ve P, bagh bulunduklar bilesenlere gore reel
degerli birinci basamaktan siirekli tiirevlenebilen fonksiyonlardir.

Ayrica sunu da belirtelim ki yukarida belirtilen caligmalara benzer bazi
incelemeler Bereketoglu (1998) ve Tun¢ (2006) tarafindan da gerceklestirilmistir.
Ancak yukaridaki ¢alismalar bu boliimde konu edinen problemlerin ana hatlarini
belirlemeye yeterli goriildiigiinden konunun daha fazla ayrintilarina girilmek
istenilmedi.

Simdi yukarida ifade edilen denklemlere ait sonuglart sirasi ile ifade edelim.

4.2. Uciincii Basamaktan Gecikmeli Diferansiyel Denklemler icin Bazi Kararlihk

Sonuclari

Bu kesimde ilk olarak Sinha (1973) tarafindan (4.1) diferansiyel denklemi i¢in
verilen kararlilik sonucu iizerinde durulacaktir. Kolaylikla goriilebilir ki (4.1)

gecikmeli denklemi asagidaki sisteme esdegerdir:
xX'(1) =y
Y'(@) = z(1)
2() = = £ (x(0, YO)2() = g (1) = h(x(D) + [ &, (3t + O)z(t + 6)d6

+ j h (x(t +8)) y(t + 6)d6. (4.8)

Teorem 4.2.1.

(4.1) denklemindeki fonksiyonlar i¢in a, b, ¢, L, ve L, sabitler olmak {izere

asagidaki sartlarin saglandigini varsayalim:



h(x)

(i) x#0icin c=>2——=>0;
X

h(x)|<L.

(i) y #0 icin @zmzbo, (A>0); |gW|<L,, .
y

(iii) f(x,y)2a+2>a>0, A>0,a>0).
a
(iv) |x|—>oo iken H(x)= jh(s)ds —> o0,
0

(v) Herx ve y icin y@SO.
X

Bu takdirde r yeterince kiiciik secilmek ve & sabiti

b 1
—>a>—
Cc a

esitsizligini saglamak kaydiyla (4.1) denkleminin sifir ¢6ziimii asimptotik kararlidir.

Ispat. Bu teoremin ispat: bir Lyapunov fonksiyoneli yardimi ile yapilmaktadir. v >0

sabiti yeterince kiiciik se¢ilmek tizere Lyapunov fonksiyoneli

Vx5, 2,) =V, (x(0), y(0) + %vz (x(0), y(1), 2(0))

+2 [(J[y* t+6)+2° (1+6)1d6)d6, (4.9)

-r 6

seklinde tanimlanmaktadir. Burada

Vi(x(1), y(1) =[H (x) + ah(x)y + aG(y)]; G(y) = Ig(S)ds :

V,(x(t), y(t),z2(t)) = ay’ +2yz + oz’ + ZI[f(x,s) — alsds,

dir . Ayrica v sabiti amaca yonelik olarak ilerde secilecektir.
Yukarida verilen fonksiyonel géz Oniine alindiginda, teoremin sartlarina bagl

olarak

v, > %[ZH (x)+aby® +2ah(x)y]



1 o 2 _ (%2
=1y + ) +2H (x) = o’ ()

ah'(s)

%[% (by + h(x))* + 2I {1 - }h(s)ds

> ! [1 —%}h(s)ds = 5 H(x)

yazilabilir. Burada
5 =1-%50
b

dir. V, fonksiyonu kuadratik formda

a 1)y v
V,= (y,z)( j( j+2f[f (x,s5)—alsds
1 a)\z 0

seklinde yazilabilir. Burada aa > 1 dir.

a 1
[1 J simetrik bir matris olup ve pozitif tamimlidir. Buna bagli olarak 6yle bir
a

0, > 0sabit vardir ki
1 2 2
v, 2552()1 +2z7)

yazilabilir.
Bu nedenle (4.9) da tanimlanan fonksiyonel v =0 ic¢in pozitif tanimlidir.
Simdi (4.9) da verilen fonksiyonelin ¢ bagimsiz degiskenine gore (4.8) sistemi

boyunca tiirevi alindiginda,

Vi(x.y,.2,) = —{% - O(h'(x(t))}yz O —{af Lx(0), Y1~ 122 (1)

y(1)
+y() j s
0

ox() (x(2), s)ds

+y(0) + az(r)]{ [ 8,3t +0)2(t+60)a0+ [ b, (x(t +0))z(t +6)d6

—-r

+%J‘_Or[y2(t)—yz(t+9)+z2(t)—z2(t+0)]d9 (4.10)

elde edilir.



2 2p2 b
K =max(L,,L,,0L,,aL,) ve vzg—(’l—”{j >0 (4.11)

rK < A segilmek kaydiyla v >0 olur.
Bu durumda (4.10) daki ifade asagidaki bicimde ifade edilebilir:

, e 2
Vi yez) S = [Lay> @+ vy (1 +6) = rK|y() y(¢ + 0)))d6
—% j {1z’ () + vz (t+6) — rK|2()z(t + 0)|}d O
—% [{ay* @ +v2> (1 + ) rK|y(1)2(t + )} d6

—% j {2 () +vy* (1 + 0) — rK|z(t) y(t + 0)|}d6, (4.12)

Burada

2 22 %
ﬂ:L(ﬂ»—_rKJ >0
2 4

olup bdylece V'(x,,y,,z,) <0 oldugu kolaylikla goriilebilir. Bdylece teoremin ispati
tanimlanmis olur (Sinha, 1973).

Simdi, ikinci olarak Yunfeng’in (1992) , (4.3) ve (4.4) denklemleri i¢in p(t) =0
olmasi durumunda denklemlerin sifir ¢oziimlerinin kararli olmasi i¢in verilen sonuclari
ifade edilecektir.

(4.3) ve (4.4) diferansiyel denklemleri sirasiyla esdeger sistem olarak asagidaki

bicimlerde yazilabilir:

X'=y
Y=z
z=—az—by— f(x)— J.fx'(x(s))y(s)ds (4.13)
X'=y
y=z

7'=—az= ()=o) + [ ¢, (V(s)z(s)ds (4.14)

t—r



Teorem 4.2.2.

a,b, c birer sabit olmak iizere ab—c >0 olsun Eger x # 0 icin
sup{f (0} =c, f(x)sgn(x) >0

iken L >0 i¢in | f ’(x)| < Loluyorsa bu takdirde (4.13) sistemine ait sifir ¢coziimii

. lab—c ab-c
r < min ,
bL (1+2u)L

olmak kaydiyla asimptotik kararhdir.
Bu teoremin ispat1 asagida verilecek olan teoremin ispatina benzer oldugundan

ispat burada verilmeyecektir.

Teorem 4.2.3.

a,b,cbirer sabit olmak iizere ab—c >0 olsun. Eger y #0 i¢in M >2b>0,
y

x#0 icin f(x)sgn(x) >0, sup{f'(x)}=c>0 iken L>0 igin |¢'(y) < Loluyorsa

(4.14) sistemine ait sifir ¢coziimii

.{ab—c ab—c }
r < min

bL "(1+2u)L

olmak kaydiyla asimptotik kararhdir.

Ispat: Bu teoremin ispat icin temel ara¢ olan Lyapunov fonksiyoneli

1
V(x,,y:,2,) = uF (x)+ f(x)y +5ﬂay2 +O(y) + ayz

+%z2 + 7/]). jzz(e)dﬁds

—rt+s
olarak tanimlanmaktadir.

Burada

F(x)= [ f(&)dE ve D(y) = [pimdn



biciminde tanimlanmaktadir. Teoremin sartlarina bagli olarak V nin pozitif taniml

oldugu gosterilebilir. Ayrica V nin tiirevi

V' =—~(a-w)z> = |up(y)y - £y |+ yrz?

~(wy+2) [ 9L ((sNa(s)ds ~y [ 2* (s)ds.

t—r t—r

olarak elde edilebilir.
o’ (y)| < L.

sup{f(‘x)}=¢>0 ve ab—c>0

oldugundan
’ 1) Ly \ > (L Lu [ 2
V(X,,y,’Z,)S—(a—,u—yr—Erjz +[,ub—c—7rjy +[3+7—7t:frz (s)ds.
yazilabilir.
:ab+c>0 , ;/=£+L—’u>0
2b 2 2

olarak ele alindig1 zaman

, ab—c L ab—c Lu
Vix,,y,,z,)<— ——(u+2 2 ——rly’<0
(x> ¥:02,) [ o 5 (# )r}z ( 5 5 rjy

bulunur. Ispatin geri kalan kismi kolaylikla tamamlanabilir.Boylece teorem ispatlanmis
olur.

Ugiincii olarak Sadek (2003) tarafindan (4.5) diferansiyel denklemi igin verilen
kararlilik sonucu iizerinde durulacaktir. Kolaylikla goriilebilir ki, (4.5) gecikmeli

denklemi p =0 olmasi durumunda asagidaki sisteme esdegerdir:

xX'=y
y=z
z=—ax—gM-f@+ [ fx(sNy)ds+ [ (y(s)z(s)ds (4.15)
t—r(t) t—r(t)
Teorem 4.2.4.

Asagidaki sartlar saglansin:



Eger 0<r())<y , )< f,0<f<1;x#0 igin f(x)sgnx>0, y=0 icin
EW 5 450 suplf(0)}=c>0. ab—c>0 ve L>0.M >0 iken
y
|f'(x)| <L

ise (4.5) denkleminin sifir ¢oziimii

v min{ (ab=c)(1- ) (ab—c)(1- ) }
DLA=B)+MQ2+pu—B) u(L+M)1-f)+ L0+ 1)

g\ <M

ab+c

ve U= olmak kaydiyla asimptotik kararlidir Burada a,b, ¢, ¥, B, L ve M

pozitif sabitlerdir.
Bu teoremin ispat1 yukarida verilen Teorem 4.2.3 iin ispatina benzerdir.
Simdi yine Sadek (2005) tarafindan (4.6) diferansiyel denklemi icin verilen

kararlilik sonucu iizerinde durulacaktir.
Teorem 4.2.5.

Kabul edelim ki a(?),b(t) ve c(¢t) fonksiyonlar [O,oo) aralifinda siirekli

tiirevlenebilen fonksiyonlar olmak iizere asagidaki kosullar1 saglasin:

(i) Her 1€ [0,0) icin A>a(r)>a, >0, B2b(t)2b, >0, C>c(t)2c, >0,

(ii) Her x igin f’'(x) < f, <1 ve f(0)=0,x+#0 igin TAC), 2 f,>0,
X
(iii) ab—C >0
b,-C ., , b,—-C
@) p=20"C b0 -0 < =E
2b, Yz, 2
(v) £ > o0 iken (1) > Ove [|c/(t)]dt <o .
0
Bu takdirde (4.6) denklemine ait sifir ¢oziimii
y < min 20fy _agby=C ayb, — C-l;4a0C(1—fl) }
£,C " (+ay)b, f,C 2f,Cll+2u +2a’ +a, +(ab, — C)C}

olmak kaydiyla diizgiin asimptotik kararlidir.



Ispat: (4.6) gecikmeli denklemi asagidaki sisteme esdegerdir:

x'=y
Y=z
z=—a()z=bt)y —c() f(x)+c() jf "(x(5)) y(s)ds . (4.16)
Ayrica

¢(0)|dt <N < oo

y(t) = j c'(s)|ds ve T

olsun.

Bu teoremin ispatinda temel ara¢ olarak
_7(%
V(t’xr’yr’zr):e LO{Vl(t’xt’yr’Zt)+V2(t’xt’yt’Zt)} (417)

Lyapunov fonksiyoneli kullanilacaktir. Burada

X 1 5
Vit 3,2) = e[ F©E + e f )y + by + pad}ly

0
+;zyz+%z2+,1j jyz(e)deds (4.18)

—r t+s

ve
( b
Va(t.x,.3.2) = 63O FEME+] (ayhy = O +ayc) f (x)y

+i2t)y2+(aobo_C)X(Z+aoy)+070(Z+aoy)2 (4.19)

seklinde tanimlanmaktadir. Burada A pozitif bir sabittir. V, in (4.16) sistemi boyunca
tirevi alindiginda

Vit x,,y,,2)=ct) f'(x)y* + uz* — pub(t)y* —a(t)z’

+e(O(y +2) [ £ (x(s)y(s)ds
+Ary? =2 [ y? (0)d6 + uc’ 1) [{L- (O} ()¢
Lucol roo+2 2+l{b’(t)+ a'(t)—lc'(t)} 2
e ul "2 # 2

elde edilir.



Teoremin sartlar ve 2uv|<u’ +v? esitsizligi dikkate alindiginda

cwuy | 1)y <200 KD j Y ()ds
ve
0o Cfir » Cf1t 2
C(t)zif(X(S))y(S)dsS R jy (s)ds
yazilabilir.
Buna bagli olarak
V{(r,xt,y,,zt)s—(ao—ﬂ—cg”jz (ub ct- &—ﬂj

C C (
+( “hotlh jjy (s)ds + e <z>j{1 PN (e
1 / { y}z 1 { , , 1 , } 2
+—pUc (@) f)+—p +=<D(O)+pua(t)——c )y (4.20)
2 y7, 2 y7,
elde edilir. Ayrica V, nin (4.16) sistemi boyunca tiirevi alindiginda ise

V](t,x,,y,,2,) < —(a,b, — C)cyx f(x)—a,C(1— f'(x)y*

+(ayhy = C)Cx [ f/(x(5) y(5)ds +ap (z+a,y)C [ f/(x(5)y(s)ds

1=r t—r

+a c(t)j 1-f <§>f<§)d§+ a c’<t>{f<x>+—}

a

bulunur. Teoremin sartlart ve 2uv| <u” +v* esitsizliginden

VZ/(t’xt’ yt’Zt) < _(aobo _C)(Cofo _%sz —da, {(1 fl)—_aOfl }

L @Chr +(<aobo - OCf, , aCH, aOCflj

5 5 .[ y*(s)ds

+a,c <t>j{1 F O ©dé+— ac'(t){f(x)+—} 4.21)

0
bulunur.

(4.20) ve (4.21) den dolay1



V’(t,x,,y,,z,) =V1'(t,x,,y, ’Zt)+V2,(t’xr’yt’Zr)

C§1rjx2 _(ao —,u—Cflr—aOCflerz

< —(ayb, — C)[Cofo - 5 2

_ 2
_(aob()z C+00C(1_f1)—a02f1r_ﬂgflr_lrjyz

_ 2 ‘
n Cf1+,qu1+(a0b0 C)Cf1_‘_‘locf1_i_aocf1_}L jyz(s)ds
2 2 2 2 2 ks

+(u+a) O (1= £ ) (©)ds + %ﬂC’(I){f (x) + %}

+ lagc’(t){ Flx)+ l} + l{b’(r) + ud'(t) —lc’(t)} 32
2 2 y7i

a

esitsizligi elde edilir. Burada
1
A= E{Cfl + UCf, +(agh, — C)C f, +a,C f, +a>C f,}

alinirsa

= (@b +0)

ve a,b,—C >0
2b0 0~0
olmas1 nedeniyle

V/(t’xt’yr’Zt):Vl,(t’xr’yt’Zr)+V2,(t’xr’yr’Zr)

Cf,r o aby —C _ (+a,)Cfir 2
2 2b, 2

< —(ayb, — C)(Cofo -

_(aobo ~C+4a,C(1-f) Cf,
2

; M+ 20 +2a2 +a, +(a,b, —C)C}rjyz

+(u+a,")d @) (1—f’((f))f((f)d(f+%ﬂc’(t){f(x)+%}

+ %aéc'(t){ Fo+ l} (4.22)

a

bicimini alir. Ote yandan

5 1 , 1,
pe)] FEE +e(t)f )y + {b(0) + paly” + pyz+ -z



= ue[{i- (&Y ©dg +%ﬂc(t){f(x) +al} +%(ﬂy +2)’
+%Lub(t) —e(0)+ P a() - p)y?

> pic, | {1—f'(f)}f(f)d§+%ﬂco{f(x) *%} - %(ﬂy +2)’

0

+%Lub<r)—c<t) 2 {a(t) - )y

ve

Vy(t.%,. v,.2) =age(d)| {1—f’(f)b‘(é)dé+%a§c<t>{f<x>+al}

0

2
+a?0{(z at (ayb, — C)x} , (@, =C)C

a, 2a,

olmasi nedeni ile

V4V, 2 (utad)e, [{L- FOY &dé +%ﬂco{f(X) + al}

0

T %(,Uy+2)2 +%a§co{f(x)+l}

a,

+2Lbzb<t> — )+ 2 {a) - i)y
U

(ayb, —C)x} , (@b, =C)C “23)

a,
+—<(z+a,y)+
2 {( oY) 2a,

a

yazilabilir. Ayrica teoremin (i) ve (ii) sartlari

pb(t) = c(t) + p*{at) = pu}2 by — C+ g1 (ay — p) = aOboz_C +ﬂ{a0bzob_cj >0

olmasin1 gerektirir.

Bu yiizden bir W, (|¢(O)|) fonksiyonu bulunabilir ve bu fonksiyon

W, (p(0)) 20 ve W,(g(0)) <V(t,0)



esitsizligini saglar. Ayni sekilde yukarida elde edilen ifadeler gbz oniine alindiginda

W, (|¢) 2 V(t,4) olacak sekilde bir W, (|¢]) siirekli fonksiyonu kolaylikla bulunabilir.
(4.17) fonksiyonun ¢ bagimsiz degiskenine gore tiirevi alindiginda

d O [ d ()
Ev(t’xt’yt’zt):e O[E(V1+V2)_—|(V1+V2)]

Co

elde edilir. V, +V, ye ait esitsizlik ve ¢’() =[c'(+) < 0 esitsizligi kullanildiginda

@)

Co

’

V/+V,) - V,+V,) <

Cflrjz (aobo—c (1+ao)Cf1rjz
X — - Z

—(ayb, — C)(cofO — 5 o, 5

_(aobo +C+4a,CA-f)

C
y - gl {1+2,u+2a§+a0+(a0b0—C)C}rjy2,

elde edilir. Bu yiizden

2¢,fy  ayb,—C a,b, —C +4a,C(1— f,) }

¥ < min , , >
£,.C " (+ayb,f,C 2f,Cll+2u+2a’ +a, +(a,b, — C)C}

secildiginde, bir «a > 0 sabiti i¢in

’ _y(% 2 2 2
Vit x,y,z)S—e (7 +y +2°) <-W(x(@))

esitsizligi elde edilir. Boylece teorem ispatlanmis oldu.
Tejumola ve Tchegnani (2000) taraflarindan (4.7) de ele alinan gecikmeli

diferansiyel denklemi i¢in P =0 olmasi durumunda asagidaki teorem verildi.
Teorem 4.2.6.

Kabul edelim ki her x i¢in h(0)=0= g(x,0) olsun. Ayrica a,b,a’,b’,0 ve
c pozitif sayilar vardir 6yle ki ab—c >0 ve asagidaki sartlar saglansin:

(i) Her x,y,z ve t icin a"> f(t,x,y,2) > a ,

(ii) Her x,7 i¢in ve her y #0 i¢in b’ > 8t.x.y) >h
y
(iii) Her x # 0 icin h(x) > 8 ve her x igin A'(x)<c

X



o zaman r Yyeterince kii¢iik secilmek sartiyla (4.7) denkleminin sifir ¢oziimii diizgiin
asimptotik kararhdir.

Bu teoremin ispati yukarida verilen teoremin ispatina benzerdir.

4.3. Uciincii Basamaktan Gecikmeli Diferansiyel Denklemler icin Bazi Stmrhlik

Sonuclar:

Bu kesimde ilk olarak Chukwu (1978) tarafindan (4.2) diferansiyel denklemi i¢in

verilen sinirlilik sonucu ifade ve ispat edilecektir.

Teorem 4.3.1.

(4.2) gecikmeli diferansiyel denklemi i¢in a,a’,b,b",c,8, L ve M pozitif
sabitler olmak iizere agsagidaki sartlarin saglandigini varsayalim:

(i) g(x,00=0 her x,y,z i¢cin a’> f(x,y,z)=2a >0 ve her x, y#0 igin

p 8% s
y

(ii) i(0) =0, her x icin @25()69&0) ,i'(x)<c,ab—c>0,
x

(iii) Her x, y,z i¢in

y[%(x,y,O)) <0 , y(g—];(x,y,z)j >0,-L< g—i(x, y)<0,
(iv) Her ¢, x(¢), y(t), z(t), x(t — h), y(t — h) icin
| p(t.x(t), y(t), x(t = h), y(t = h), 2(1))| < M
dir. Boylece h >0 yeterince kiiciik olmak kaydiyla bu takdirde (4.2) denklemine ait

tiim ¢oziimler diizgiin sinirhdir ve diizgiin mutlak sinirlidir.



Simdi, ikinci olarak Yunfeng (1992) tarafindan (4.3) denklemi icin p(t) =0

olmasi durumunda denkleminin tiim ¢6ziimlerinin sinirli olmasi i¢in verilen sonuclar

ifade edilecektir.

Teorem 4.3.2.

a,b,c birer sabit olmak iizere a,b>0, ab—c>0 olsun. Her x#0 i¢in

J(x)

X

>c, >0, her x icin sup{f'(x)}=c>0, f(x)sgn(x)>0; L>0 sabiti icin

| f '(x)| <L ve | p(t)| <m, (m sabit) oldugunu varsayalim. Bu takdirde

.{ab—c ab—c } ab+c
r < min ve U=

bL (1+2u)L 2b

olmak kaydiyla (4.3) denkleminin tiim ¢oziimleri diizgiin sinirlidir.
Simdi, tigiincii olarak Sadek (2003) tarafindan (4.6) denklemine ait ¢oziimlerin
sinirlt olmasi i¢in verilen sonuglar ifade edilecektir.

p(t) #0 olsun.

Teorem 4.3.3.

J(x)

X

Teorem 4.2.4 diin sartlarina ilaveten x # 0 icin ( jz ¢, 20 ve m pozitif

bir sabit olmak {iizere | p(t)| <m sartlarinin saglandigimi varsayalim. Bu takdirde

_ab+c

olmak iizere
¥ < min 2¢, ’ (ab—cz)(l—,B) ’
L+M bM(1+u+ab—c+a+a”)+b(L+M)1+a)l- /)

(ab—c)1- /)
Ld+pu+ab—c+a+a’)+(L+M)u+a>)1-L)

olmak kaydiyla (4.5) denkleminin tiim ¢oziimleri diizgiin sinirli  ve diizgiin mutlak

sinirhdir.



Lemma 4.3.1.

V(t,p): RxC — R Lipschitz sartin1 saglayan siirekli bir fonksiyon olsun.

@ W(x0) <V @,%) W (x0)) +W2[ [w, <|7c<s>|>dsj :
(i) V'(t,x,) <-W(x(0)) + M
ise bu takdirde (4.6) denkleminin tiim ¢oziimleri diizgiin sinirhi ve diizgiin mutlak

Burada W,W,,W,,W, negatif olmayan siirekli fonksiyonlard: (wedges) (Sadek, 2003).

Simdi yukarida verilen Teorem 4.3.3 iin ispatin1 verelim.

Ispat: Kolaylikla goriilebilir ki (4.6) gecikmeli denklemi asagidaki sisteme esdegerdir:
xX'=y
y =z
z=—ax—gM-fW+ [ f(Ny)ds+ [ (y(sNa(o)ds+p@)  (4.24)
t—r(t) t—r(t)
Bu teoremin ispatinda temel ara¢ olarak
V=Vix,y,z2)+V,(x.y,2,)

Lyapunov fonksiyonelini kullanilacaktir. Burada

x 1 5 y
Vi, 3,20 = #] fQdS+ F Oy +pay® + [ g(6)dg

+%z2 +A } jyz(e)deds+§ } jzz(e)deds, (4.25)

—r(t) t+s —r(t) t+s

v, =a’ j F(&)dé +§<ab—c)x2 raf 0y 4y

+(ab—c)x(z+ay) +§(z +ay)? (4.26)

olarak tamimlanmaktadir. V; ve V, fonksiyonlarin tiirevleri alindiginda, teoremin
sartlarina bagli olarak asagidaki esitsizlikler elde edilir:
(ab—c L M

Lk, M 52
w 27727 7jz

d
—Vi(x,,y,,2,)<—
dr 1( y )



7/_

ab—c uL uM )
| ———=—y-=—y-0
[ty Bty

+{12‘+”—L—(1 /)’)/1} [y*(s)ds

t—r(t)

+{%+ﬂ—(l ﬂ)&} jz (s)ds +(u|y|+|zpm

t—r(t)

%VZ (x,,¥,,2,) <—(ab—c)xf(x)—a(c— f’()c))y2 + (ab — c)m|x| + a|z + ay|m

+(ab—c)x [ f(x(s)y(s)ds+(ab—c)x [g(y(s)z(s)ds

t—r(t) t=r(t)
+a(z+ay) [ f/(x(s)y(s)ds+a(z+ay) [g(y(s)z(s)ds .
t—r(t) t—r(t)

Tekrar teoremin sartlart ve 2uv|<u’ +v” esitsizligi kullamldiginda

%VZ (x,,¥,,2,) <—(ab—c)xf(x)+ (ab— c)m|x|

L+ MR

+d|z+ aylm + ab

2

+%(L+M)7/z2 +%(L+M)7y2

—_ 2 !
+ ab CL+%+a—L .[yz(s)ds
2 2 2 t=r (1)

— 2 s
ab CM+aM+a—M vfZZ(S)dS
2 2 2

t—r(t)

esitsizligi yazilabilir. Yukarida elde edilen ifadeler kullanildiginda

Ayayz) S—(ab_c —57—%7—57—%L7—§M7jz2

dt 2b 2
ab—c uL ,uM a’
| 2= A ——L -M
( b > VYA v 7)
ab—c

—(ab—c)xf(x) + (L+M)74c2




t—r(t)

—((1—ﬁ)5—%—%—&2_cM —%M —%M] [2*(s)as

t—r(t)

+ (um+ azm)|y| + (ab— c)m|x| +(m+ am)|z|

olur. Teorem x # 0 i¢in (&j 2 ¢, 20 sartini icerdigi i¢in
X

%V(xt,yt,zt) < —{“bz;c —{5+%(L+M)(l+a)}}/}z2

ab—c
| 2b

—{/1+%(L+M)(,u+a2)}}/}y2

—| (ab- c){c0 —%(L+M)7sz

— (1—ﬁ)ﬂ—§(l+,u+ab—c+a+a2)j J-yz(s)ds

t—r(t)

((1—,6)5—%(1+,u+ab—c+a+a2)j J-ZZ(S)dS

t—r(t)
+ (um + azm)|y| +(ab — c)m|x| +(m+ am)|z| .

elde edilir.

/1=((1—,b’)§(1+,u+ab—c+a+a2)j>O,
M 2
5=((1—,3)7(1+,u+ab—c+a+a )j>0

olsun. Boylece k, > 0 sabitleri icin

%V(x,,yt,z,) <-a(x* +y* +2°) +ka(x +]y|+|2))

a ., 5 2 2y 2 ) ) 3a ,,
=—5(x +y 4z )—E{(|x|—k) +(y[- k) + (2 -k }+7k

a. 2 2y, 3,
<S—Z(P+y )+ =k
2( y ) >



2 2

eM:305k

elde edilir. Buradan da W, (r) = ar alindig takdirde Lemma 4.3.1 den

dolay1 teoremin ispati tamamlanur.
Teorem 4.3.4.

Kabul edelim ki her x icin A(0) =0 = g(x,0) olsun. Ayrica kabul edelim ki a,
b a’,b’,0 c pozitif sabitleri var dyle ki ab—c >0 ,
() a=ft,xy,z)2a

g(t’x’y)zb ,
y

(ii) Her x,z i¢in ve her y #0 igin b >

(iii) Her x # 0 igin 7x) >0 ve her x i¢in h(x)<c ,
X

A,,A, birer pozitif sabit olmak iizere
B < Ay + Ay (A +]y] +]2)
ise r yeterince kiiciik secilmek sartiyla (4.7) denklemine ait her ¢oziim diizgiin sinirl

ve diizgiin mutlak sinirhidir.

4.4. Uciincii Basamaktan Gecikmeli Diferansiyel Denklemler icin Periyodiklik ile
flgili Bazi Sonuclar

Yunfeng’in (1992) tarafindan (4.3) ve (4.4) denklemlerin periyodik ¢6ziime

sahip olmasi i¢in verilen sonuglar ifade edilecektir.

Teorem 4.4.1.

Teorem 4.3.2 teoreminin sartlarina ilaveten p(t+7) = p(¢) ,

p(t)|£m, x|%oo

iken f(x)/x=c, >0o0ldugunu varsayalim. Bu takdirde r sabiti yeterince kiiciik



olmak kaydiyla (4.3) denklemi 7#0 ( T #0) periyotlu periyodik bir c¢oziime

sahiptir.

Ispat: (Bkz: Yunfeng (1992)).

Teorem 4.4.2.

Teorem 4.2.3 sartlarina ilaveten p(t+T)= p(t) ,

p|<m, |§— e iken
f(x)sgnx — o oldugunu varsayalim. Bu takdirde r sabiti yeterince kiiciik olmak

kaydiyla (4.4) denklemi 7 # 0 ( T # 0) periyotlu periyodik bir ¢dziime sahiptir.

Ispat: (Bkz: Yunfeng (1992)).



5. DORDUNCU BASAMAKTAN GECIiKMELIi DIFERANSIYEL
DENKLEMLERDE COZUMLERIN KARARLILIK VE SINIRLILIK
DURUMLARI

Bu boliimde dordiincii basamaktan gecikmeli diferansiyel denklemlerde

coziimlerin kararlilik ve simirlilik durumlari ile ilgili bazi sonuglari verecegiz.

5.1. Giris

Bu boliimde dordiincii basamaktan lineer olmayan belli bicimindeki gecikmeli
diferansiyel denklemlerin ¢oziimlerinin niteliksel davranislari; kararlilik ve smirlilik
durumlar1 ile ilgili literatiirde gecen bazi1 sonuglar incelenecektir. Matematik
literatiiriinde yapilan incelemelere gore dordiincii basamakta lineer olmayan gecikmeli
diferansiyel denklemlerin yukarida belirtilen tiirden davranislarinin incelenmesine ilk
olarak 1973 yilinda baslandig1 goriilmektedir.

Soyle ki ilk olarak Sinha (1973) tarafindan

PO+ fLT@O)x7(@) + £, (x(@), X ())x"(t) + g(x'(t — ) + h(x(t —r)) =0 (5.1)

denklemi ele alinarak bu denkleme ait sifir ¢oziimiiniin asimptotik kararlilig i¢in yeter
kosullar elde edildi; burada f, , f,,g ve h siirekli ,g(0)=h(0)=0, r sabit, r =0
dir. Ayrica f,,g ve h nin bagh bulunduklar1 degiskenlere gore birinci basamaktan

stirekli tiirevlenebilir olduklar1 varsayilmaktadir.

Daha sonra Okoronkwo (1989) tarafindan
PO+ OO0 + ax" (O + Box"(t —h) + g(x'( = h)
+o,x(t)+ B,x(t—h) = p(t) (5.2)
denklemi ele alinarak bu denkleme ait ¢oziimlerinin sirast ile p #0 smirliligr ve
p =0 igin ise kararliligi inceledi. Burada a,,c,,f,,, ve h pozitif sabitler olup
f,g ve p siirekli, g birinci basamaktan tiirevlenebilirdir.

Benzer bicimde, yine, Tejumola ve Tchegnani (2000) tarafindan benzer bir

yapida olan dordiincii basamaktan



xD + o, x,x", x", xVx" +w(t, x(t—r),x"(t—r))
+x(t,x(t=r), X't —r)+h(x(t=r)) =P (5.3)
gecikmeli diferansiyel denklemi ele alinarak bu yapidaki denklemlerin ¢oziimlerinin

kararliligima ve smirliligina iligkin yeter kosullar elde etmistir. Burada r >0,

o, W, x,h ve P bagh bulunduklar1 bilesenlere gore reel degerli siirekli fonksiyonlar

olup
P=Pt,x,x,/x",x" x(t—r),x(t—r),x"(t—r))
dir.
Yine, Sadek (2004) tarafindan
Y +ax”+a,x"+ax + f(x(t-r))=0 (5.4)
ve
Y +rax"+a, X"+ (Xt =)+ f(x)=0 (5.5)

denklemlerinin sifir ¢oziimlerinin kararlilik durumlan arastirildi. Burada r, ¢, ¢, ,,
pozitif sabitlerdir, ¢(x”), f(x) siirekli fonksiyonlar ve ¢(0) = f(0) =0 dur.

Ayrica f ve ¢ birinci basamaktan siirekli tiirevlenebilirdir.

5.2. Dordiincii Basamaktan Gecikmeli Diferansiyel Denklemler icin Bazi

Kararhhk Sonuclar:

Bu kesimde ilk olarak Sinha (1973) tarafindan (5.1) diferansiyel denklemi igin

verilen kararlilik sonucu tizerinde durulacaktir.

Teorem 5.2.1.

Kabul edelim ki (5.1) denklemi i¢in asagidaki sartlar saglansin:
b= f(2)2f"2a+24>0,(1>0) (5.6)

L2 f, >0, (5.7)

g/yz2g’>0, (5.8)



(h°®)"* 2 h(x)/x=h" >0, (5.9)
g'<gMN<E,, "< (x)<SH(0)<S, (5.10)
|x| — oo iken
H(x)zjh(s)ds—)oo (5.11)
0
af, g’h’ — dabh’ =5} 5= >0 (5.12)
o, h’
042 IB 07041/2 > _i)__ (5.13)
(") (2ag"n”) g 0
z# 0 icin
1 B B
j fi5)Ms =) < s (5.14)
ve
ZMS j fz(y,zt)dt>0 (5.15)
dy
0
Eger r yeterince kiiciik secilirse bu takdirde (5.1) denkleminin sifir asimptotik
kararlidir.

Ispat: (5.1) denklemini asagidaki sisteme esdegerdir.
X0 =y@)
Y'(®)=z(t)
Z(t) = w(?)
w(t) = f,(z@O)wt) = £, (1), 2())z(t) — g (y(1) — h(x(1))
+ j‘gy (y(+60))z(t+6)do + Th(x(t +60))y(t+6)deo.

—r —r

Bu ispatta kullanilacak Lyapunov fonksiyoneli

V(x,.y,.2,m,) :%vu(t),y(r),z(r),w(t))

+2T jl[yz(t+0)+z2(t+6’)}10Jd01
r

—r\ 6,

(5.16)



+ % }ﬁ we(t+ e)dHJdel

—r\ 6,
seklinde tanimlanmaktadir. Burada v >0 ,(4.11) de tanimlanmaktadir.

2
szax(ﬁ,é,é‘—o,é'l,ig,é‘—il]

a g 8§ &

olarak alinmakta ve

25 ¢ 'S KO) |,
v[xu),y(r),z(r),w(t)]:g_fjh(s)dﬁ[f;z_o_ %0)}

0 1 20
+(f—2——()}z2 +—w +2wz +—yw
a g a 8

+2—fyjff1(s)ds+2h(x)y
&

+2 bz 42 g(z+2] gls)ds
a a 0

w215l £0 s
a 0

+2—f y stf, (.00 = £2)ds
g

+ 25[ sf,(s)ds

dir.

Yukarida tanimlanan Lyapunov fonksiyonelinin tiirevi teoremin sartlarina bagl
olarak asagidaki esitsizligi saglar;

V,('xt’yt’zt’wt) < —Zﬂwz(t) - 52y2(t) - }/Zz(t)

+ {io y(@)+z(t) + 1 w(t)}
g a

X{J‘{gy(y(t +0)z(t+0)+h (x(t+0)y(t+ 0)}d49}

+3_rv{j{y2(t)+Zz(t)—yz(t+9)—z2(t+9)}d0}



+2 [ -wa+oke .
r =r

burada 8, >0 ve y>0 dir. Ayrica 34 =min(,,¥) olarak segilsin. Bu durumda
yukarida elde edilen ifade asagidaki gibi ifade edilebilir:

VX, y,,2,,w,) < —%j{,uyz(t)+vyz(t+9)—I”K|y(t)J’(t+9)|}d9
_%j{ﬂzzm +v2* (t+6) = rK|z(1) 2(1 + 6)|}d 6
_%j{ﬂyz(t) +vz* (t+60) — rK|y()z(t + 6)|}d6
_%i{ﬂzza) +vy? (1 +6) - rK|z(t) y(t + 6)|}d 6
_% }{ﬂwz(z) +vy* (1 +60) — rK|w(t) y(t + 6)}d 6

—% j {pw® () +vz* (t + 6) — rK|w(t)z(t + 6)|}d 6

burada

12
MU= §+ (@j >0
dir.
Buna bagl olarak V' <0 oldugu kolaylikla goriilebilir. Bu ise teoremin ispatini
tamamlar.

Simdi, ikinci olarak Okoronkwo (1989) tarafindan (5.2) denklemi i¢in verilen

sonuclar ifade edilecektir.
Teorem 5.2.2.

(5.2) de P(¢t) =0 ve (5.2) denklemi icin asagidaki kosullarin saglandigini kabul

edelim.



(i) a, >0,a, >0 ve 0<a,,a;,c,,M <o,
(ii) Her & icin f(&)>a, >0, her £ #0 icin %5) >a, >0 ,her & z(t) igin

la,a, — g'(&)|a, —a,a, f(z(1) > ¢, >0,

(i) g(0)=0, her 7 icin [g(7)|<M veher &#0 icin g(df)—@<ll ,

3

z(1)

(iv) Her z(r) # 0 igin {L | f(f)df}— fa@)<a, .
z(t)

burada

2c,

2
a, a,

A, <

dir,
(v) Eger ¢>1, f=max[f,,[,,M], d =max[l,d,,d,], c,,d, pozitif sabitler

ve A, A, negatif olmayan sabitler

1 a
d=¢+—;d,=¢+—+

a, a,
2 2
g:min%a_“i{)_ﬂl’al 2CO _/12 ’C—o ,
a,d,\ a,a; 4d,\ a;a, 2a,a,d,
. 1 Co
=min[-a,€,-a,&,———
p [3 et 6a1a3]

segilirse, bu durumda fdgh < p kosulu saglanir ve (5.2) denkleminin sifir ¢oziimii

diizgiin asimptotik kararlidir.

Bu teoremin ispat1 burada verilmeyecektir.

Uciincii olarak Tejumola ve Tchegnani (2000) tarafindan (5.3) diferansiyel
denklemi icin verilen kararlilik sonucu iizerinde durulacaktir. (5.3) diferansiyel

denklemi asagidaki sisteme esdegerdir.

/7
X =Yy
7
y =z
7=w

w =—aw—bz—cy—h(x(t))+M(1),



0
M (1) = aw—(t,x,y,2,w) +b [ w(t + 6)d0

Wt y(t—1), 2(t— 1) +bz(t — )+ ¢ j 2t +6)dé
-x(tx(@—r),y(t—r)+cy(t—r)

+J-h'(x(t+6’))y(t+0)d0+P . (5.17)

Teorem 5.2.3.

Kabul edelim ki her #,x,y icin y(z,x,0) =0 =w/(z,y,0) ve yukaridaki sistemde
a,b,c pozitif sabitler olmak iizere d,9,,0, pozitif sabit sayilar vardir ki Oyle ki

asagidaki kosullar saglanir:

() ab—c>0,s=abc—c>—a’d >0,s" =s+2ad(ab—-c)b™";

@ii) Her #,x,y,z,w  O0<@(t,x,y,z,w)<a ;

(ifi) Her 1, y ve her 20 icin 0< 2029 <
Z

(iv) Her ¢t,x veher y#0 icin 0<MSC
y

(W) Her x icin d—2% <5, <n(x)<d
C

(vi) Her x #0 icin d(l— > j<52 PRI

s ab X

Bu takdirde r yeterince kiiciik secilmek sartiyla (5.3) denkleminin sifir ¢éziimii
diizgiin asimptotik kararlidir.
Bu teoremin ispat1 yukarida ifade edilen teoremlerin ispatina benzerdir.

Simdi de Sadek (2004) tarafindan (5.4) diferansiyel denklemi igin verilen

kararlilik sonucu iizerinde durulacaktir.



Teorem 5.2.4.

Kabul edelim ki asagidaki sartlar saglansin:

() @,,a,,a,,a,,A pozitif sabit olmak iizere (&, —a;)a, —ala, = A.

(1) f(0)=0, her x i¢in f(x)sgnx>0,(x#0) ,

x| — oo ijken

F(x)= [ f(§)dE — o

ve
’ 2
0<a,-f'(x)<d,al,
burada
1 A
E=mink—,—
o, 4a,a,d,
ve
— -1
d, =00, +a,a,0,
dir.

A= (%)(dl +d, +1)>0 olmak iizere

. ( o€ A oE j
r < min

d,a, +21 2a,a,, d,,

olmak kaydiyla (5.4) denkleminin sifir ¢6ziimii asimptotik kararhdir.

Ispat: (5.4) diferansiyel denklemi asagidaki sisteme esdegerdir.

’
X =Yy
’
y =z
’
Z=U

W =—u—-o,z—ay— fO)+ [ f(x(5)y(s)ds

t—r

Ispat icin Lyapunov fonksiyonelini

(5.18)



W,(x,,y,,2,) =2d, [ f(EME+ (@, +a,d, —a,d))y’
0
+(a, +a,d, —d,)z> +du’ +2yf (x)+2d,zf (x)
0 ¢
+2a,d, vz +20,d, yz +2d, yu+2zu+ 2 | [ y* (6)d6ds

—rt+s

seklinde tanimlanmaktadir. Burada

1 o
d=e+—,d,=e+—
aZ a'/3

1 A
E = rnln e
o, 4aad

oldugundan pozitif tanimlidir. A pozitif sabittir.

olarak alinmaktadir.

2V, fonksiyoneli asagidaki gibi diizenlenebilir.

2V, = (2d, Jf(«f)dcf POy Lz rady’

3 1

3

0 t
+(ayd, —d, —a,d})2* +24] [ y* (©)déds .

—ri+s

Teoremin sartlar1 dikkate alindiginda

2 [ gL 0= aef g + 22 i -

3 3

=2 F(EME +—- 12, [ FENE- 12 ()
0 a3 0

yazilabilir.

Ayrica
2a, [ F(§E - £ (0 =2[{ar, - F (Y (dE =~ 7 (0)

oldugundan

1 |
+—(f(x)+a3y+0{3dlz)2 +(a,d, —a,d, _a1d22)y2 +(d, _;)uz

(5.19)

(5.20)

(5.21)



2, [ £(£)dE - ()20

ve
7 1@ (x) s
2d, [ f(€)dé - 2¢ j F&ug (5.22)
0
yazilabilir.
d=¢+—,d,=e+—
2 a3
oldugundan , (i) den dolay1
a, ao
o, —od —-ad,=a, —— "2 —(a, + )€
2 3% 1%2 2 al a/3 ( 3 1)

1 2
= p (oo, —a)o, —a o} — (o, +oy)E
1773

2

—-(a,+a))e
a1a3

elde edilir.

(i) den &, > & ve o0, < &, olmasi nedeni ile

o,-ad -ad, = —d,€ (5.23)

1 a’/3
bulunur. Ayrica

(a,d,—a,d —-ad;))=d,(a,—ad —ad,)+d (ad, —a,)

o, A
>d,(a, —a,d, —ad,) >— —d,e
2 (@, 341 ) 3(0’10’3 0€)
Ve
(a,d, —d,—a,d})=d(a,—ad, —ad,)+d,(ad —1)
1
>d(a, —o,d, —od,) >—( —d,€)

1 a1a3
oldugu kolaylikla elde edilebilir.
Boylece Lyapunov fonksiyoneli i¢in asagidaki esitsizlik elde edilir;

X 1 1
2V > 2ejf(§)d§ t— (e a,d,y)’ + )+ ay +a,d,7)’
0 1

3



A

a 1
+{=* —d,&)}y’ +eau’ +{—(
3 a1a3 al a1a3

—alO:‘E‘)}z2

+ 2/1} jyz (0)dOds

—r t+s

>2¢[ f(£)dé

1 1
+—w+az+a,d,y) +—(f () +a,y +a,d,2)’
1 3

3a4A 2 2 2 ' 2
+ +&au” + 72 +24 0)dads , 5.24
4&'10[32 g 40{5“3 l[iy @ ( )
clinkii
A
£<
da,od,

dir.
Simdi Lyapunov fonksiyonelinin tiirevini bulalim:
V) = —80!3y2 - {a4y2 - f(x)y* - d,yzf (%) +a,d, yz)
{a, —ayd, —ad, )z’ — (e d, —Du’

+(du+dyy+2) [ fx(s)y(s)ds + Ay

t—r(t)

) j Y2 (s)ds . (5.25)

t—r

(i1) den

! 2 ’ ’ d, d12 2
o,y — f(x0)y* —dyif () +adyz ={a, - f (x)}{(er?Zj_TZ }

’ d12 2
2 {0{4 _f (X)}TZ

yazilabilir. Ayrica teoremin sartlarina baglh olarak

. odr 1 1Y
{a4_f(-x)}TSZ E+— 8d0a1 Sgdo s

1

0!4y2 _f,(x)yz _d1ny,(x)+0{4d1yZ 2 _"5‘610Zz )



od -1z

olacag agiktir. Boylece

’

V, <—ea,y’ —(

-2d,6)7" —a,eu’.
1%*3

+(du+d,y+2) jf(x(s))y(s)ds +y’r -4 j y>(s)ds (5.26)
t—r(t) —r
yazilabilir.
Eger

A ,
ES—— <«
4ay0n,d, fosa,

ve
2|uv| <u’+v?

esitsizligi kullanilirsa

g 1
v, < —{%e—l(dz% -+ 2/1)r}y2 —( ——a,r)z’
2 a0, 2
J VLA _algye
—j@e=diagr et 417 d  dy + D= 4 [ (s)ds (5.27)
elde edilir.
%(dl+d2+l)=/1>0
oldugundan
g A 1
v, < —{%e—l(dz% -+ 2/1)r}y2 —( ——a,r)z’
2 a0, 2
1 2
- ale—Edl%r u (5.28)
olur.
Ote yandan
. o€ A oE
r < min , s
d,a, +21 2a0,c, da,

olmasi nedeni ile bir p > 0 icin

’

V S—,O(x2 +y>+u’)



olur.
Ispatin geri kalan kismi agiktir.Bu ise inceleme altindaki denklemin sifir
¢Oziimiiniin asimptotik kararli oldugunu gosterir. Boylece teorem ispatlanmis oldu.
Son olarak yine Sadek (2004) tarafindan (5.5) diferansiyel denklemi igin

verilen bir baska kararlilik sonucu iizerinde durulacaktir.

Teorem 5.2.5.

Kabul edelim ki (5.5) denklemi i¢in asagidaki sartlar saglansin.
() o, a,,a,,a,,A pozitif sabit olmak iizere (&, —¢'(Y)at, —aa, > A.

(i) f(0) =0, her x i¢in

f(xX)sgnx>0,(x#0) ,]x - e
iken
F(x)= [ f(E)dE — o
0
ve
O < a4 _f'(x)S gdoa12 , dO — alaz +a2a3a;1
burada

)1 A o, |(2Aa,
£ =mins—, , > -0,
a, 4a,0,d, 4a,d,\ a,a;

olarak tanimlanmaktadir.
(iii) #(0)=0 ve her y i¢in ¢'(y) =2 @, >0 ve her y#0 igin

2Ac,

0<() - <5 < 224
y a0,

dir. Bu takdirde

D% 4 +d, +1)>0

olmak iizere

ve



( £ A oE j
r < min

d,a, 2ea, (a0, +2u) da,a,

olmak kaydiyla (5.5 ) denkleminin sifir ¢6ziimii asimptotik kararlidir.

Ispat: (5.4) diferansiyel denklemi asagidaki sisteme esdegerdir:

X' =y

u=—au—o,z—¢(y)— f(x)+ jgb'(y(s))z(s)ds ) (5.29)
Ispat i¢in Lyapunov fonksiyoneli
W, (5 3,02,) = 2d, | F(EME+(audy —a,d)* +2[ o
> 0
+(a, +a,d, —d,)z" +du’ +2yf(x)+2d, 7 (x)
+20,d,yz +2d,§(y)z +2d, yu +2zu + 2;1} jzz (@)dads  (5.30)

olarak tanimlanmaktadir. Lyapunov fonksiyoneli asagidaki gibi diizenlenebilir:

f (x))+i(u+alz+ald2y)2
7()’) a,

2V, = (2d, | f(§)dé~

1 2 272
+—— (O +y(y+y(nd,2)” +(a,d, —a,d, —a,d;)y
7(y)

r 2 1 2 2 2
+2[9dn =y 7(y) +(d, = +(od, —dy = 7()d])z

+2ﬂ} jzz(ﬁ)dﬁds; (5.31)

—r t+s

burada y fonksiyonu

[48)]
y(y) =3 vy (5.32)
#'(0) y=0

olarak tanimlanmaktadir.



(iii) den her y icin y(y)=>a, ve 0<¢'(y)—y(y)<d, dir. Bir onceki

teoremden

20, [ f@yag -1 2 2ef peeue

3

oldugu bilinmektedir. Bu nedenle

[ 2 (x)
2d, dE —
! fexde y(y)

> 20, [ g -1 >

3

> 2¢ f(£)é

elde edilir.
Bir 6nceki teoremin ispatinda ortaya c¢ikan islemlere bezer bicimde

@ -0, ey =, - C ) O () e

{(alaz - ¢,()’))a3 - a,lza,4 }— (al + ¢,(Y))€

1a3

A ,
2 -0 +o)e

la3
yazilabilir. @, >¢'(y) ve a,, < a,a, oldugundan

: A
o, —¢'(Y)d, —ad,>———d,e (5.33)

1773

elde edilir.

Benzer bicimde teoremin sartlarina bagh olarak asagidaki ifadeler yazilabilir:

(@,d, —at,d, —o,d3)y’ +2[ p(pdn — y* 7(y)
0

=d(a, _¢,(.V)d1 —a’ldz)y2+ dl(d2¢,(y) —a’4)y2 + 2j¢(77)d77 - y27(.V)

a
S 4

o, o,

—dy€) y* +2[gmdn -y’ y(y) .

Ayrica



[oadn = yo(y) = [n¢'pdn = y*1(y) = [ng¢' ()
ve

2? omdn —y*y(y)= j¢(77)d77 - jﬂ¢'(77)d77

y i 1
= [y = gamindn = -_8y°
0
olur. Bu nedenle

)
(@,d, —a,d, —a,d)y* +2[ gapdn -y 1(y)
0

o, A 1 o, A 1
>4 —d,e) —=38,y" > {—*( -d,e)——=6,}y’
o, o, 2 . o, 2
yazilabilir.
Ayrica
2A
O<—0[j—51
ala3

Ve

£ < a, 2A054_51
da,d, | a,0f

olmasi nedeni ile

4\ oo

X 1 2A
(a,d, —a,d, —a,d})y’ +2I¢(77)d77 -y () 2—( > —51j
0 13
olur.

Benzer bicimde

o,d, —d, —df;/(y) =d (o, —dy(y)—d,a)+d,(da 1)

, 1 A
>d1(a2_dl¢(y)_d2a1)2_( —dOS)Z 5
a, o\, 200 10,

elde edilir. Bu yilizden
b

(fO+y(»y+y(yd )’
7(y)

2V, > 28J-f(§)d§+i(u +az+ad,y)’ +
0 al



1(2A ¢
+Z(0{Z;‘ —51jy2+€uz+4a33Aa 2’ +2uf [ (O)déds (5.34)
1773 1773 —rit+s

yazilabilir.

Lyapunov fonksiyonelini tiirevini alirsak

V) = —{a,y’ = f'(0)y* —dyif (0 +a,dyz} —(a, -¢'(0d, —ad,)’

~{d,yp(») —a,y*} = (ad, —Du’ +(du+d,y +2) j¢'(y(S))Z(S)dS

t—r(t)

+ 4 = [ 2 (s)ds (5.35)

t—r

elde edilir.
Daha 6nceden
d,yo(n)-a,y' ={d,y(y) - a,}y’ 2 ea,y’
oldugunu biliyoruz.

Yukarida verilen bilgiler 1s1g1nda , teoremin sartlarina bagh olarak kolaylikla

—dye ) —a’ +(du+d,y+2) [ (0()z(s)ds

t—r(t)

Vv, < —80(3y2 _(
a,a;

+uz'r — Izz(s)ds

t—r

oldugu goriiliir. Ispatin geri kalan kismi bir 6nceki teoremin ispatina benzerdir.

5.3. Dordiincii Basamaktan Gecikmeli Diferansiyel Denklemler Icin Baz

Simirhilik Sonuclari

Bu kesimde Okronkowo (1973) tarafindan (5.2) diferansiyel denklemi ig¢in
verilen smirlilik sonucu ifade edilecektir. Verilecek olan teoremin ispati ikinci
bolimde verilen Teorem 4.2.5 ispatina benzer oldugundan, burada ispat

verilmeyecektir.



Teorem 5.3.1.

Kabul edelim ki Teorem 5.2.2 nin tiim sartlar1 saglansin. Buna ilaveten M >0

bir sabit ve her ¢t > ¢ i¢in | p(t)| <M ise bu takdirde (5.2) denkleminin tiim ¢6ziimleri

diizgiin sinirhidir.
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