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Burcu DARENDE ŞİMŞEK
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ÖZET

Süreç, bir ürün ya da hizmet üretimi sağlayan işletmelerde, istenen özelliklerde ürün
üretmek için gerekli makine, işgücü, donanım ve malzeme gibi belirli girdileri içeren ve
sonucunda bir çıktıya dönüştüren, tanımlanabilir, ölçülebilir ve birbirine bağlı değer yaratan
faaliyetler dizisi olarak tanımlanabilir. Süreç Yeterliliği ise, en temel anlamda süreçten elde
edilen ürünlerin istenen sınırlar içinde kalabilme yeteneğinin bir ölçüsüdür. Süreç yeterlilik
araştırmasında kullanılan süreç yeterlilik indekslerinin tahmin edilmesi için bazı
varsayımların sağlanması gerekir. Bu varsayımlardan en önemlisi sürecin normal dağılıma
uygun olmasıdır. Klasik yeterlilik indekslerinin hesaplaması varsayım bozulmalarından
olumsuz etkilendiğinden, hatalı tahminler elde edilir. Normallik varsayımının sağlanmadığı
durumlar için süreç yeterlilik indekslerinin hesaplanmasında sınırlı sayıda çeşitli yöntemler
mevcuttur. Bu çalışmada, çok değişkenli ve normal dağılım varsayımını sağlamayan
süreçlerin yeterlilik analizinde kullanılmak üzere KMH yöntemi olarak adlandırılan yeni
bir yaklaşım önerilmiştir. Bu amaçla her biri üretim sürecini temsil eden çarpık dağılım
özelliklerine sahip 4 farklı senaryo verisi t-Copula yöntemi kullanılarak üretilmiştir.
Çalışmada, kurgulanan senaryolar üzerinden normallik varsayımını sağlamayan süreçlerin
yeterlilik araştırmasında kullanılan bazı yeterlilik indekslerinin uygulamalarına yer verilmiş
ve bu indekslere alternatif olarak önerilen KMH yöntemine dayalı yeni bir yeterlilik indeksi
tasarlanmıştır. Önerilen KMH süreç yeterlilik indeksi ile literatürde kullanılan bazı
yaklaşımların kitle uygun ürün oranı p’yi tahmin etmedeki hata yüzdeleri elde edilmiş,
böylece önerilen yaklaşımın süreç yeterliliğine karar vermedeki başarısı irdelenmiştir.
Bulgular, çalışmada önerilen indeksin, yine çalışmada yer verilen diğer yeterlilik
indekslerine göre uygun ürün oranı p’yi daha az hata ile tahmin ettiğini ortaya koymuştur.
Çalışmada önerilen yaklaşımın özellikle örneklem hacminin küçük olduğu durumlarda daha
iyi sonuçlar verdiği, örneklem hacmi büyüdükçe yaklaşımdan elde edilen hata yüzdelerinin
diğer yaklaşımlara yakın olduğu görülmüştür.
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ABSTRACT

A process can be defined as a series of activities which create definable, measurable and
interconnected values that contain specific inputs such as machinery, labor, equipment and
materials required to produce a product. Process capability, in the most basic sense, is a
measure of the capability of the products obtained as an output of the process to remain
within the desired limits. In order to estimate the process capability indices used in process
capability research, some assumptions must be satisfied. The most important assumption is
that the process must have a normal distribution. Since the calculation of classical indices is
adversely affected by disturbance in assumptions, incorrect estimations are made. There are
a variety of methods for calculating process capability indices for cases when the assumtion
of normality is not satisfied. In this study, a new approach called KMH method has been
proposed to be used in the capability analysis of processes that do not satisfy the
assumption of multivariate normal distribution. For this purpose, four different data set
which are skewed distribution characteristics are simulated by using t-Copula method
regarding to different scenarios representing the production process. In the study,
implementation of some available capability indices used in the capability analysis of the
nonnormal processes over the conceived scenarios, and then as an alternative to these
indices, a new capability index based on the proposed KMH method was defined. The
proposed process capability index KMH and some of the existing approaches have been
used and obtained error rates in the estimation of population conforming product ratio p
have been obtained to examine the performance of proposed method. Findings show that
the suggested index estimates the conforming product ratio p with smaller error percentages
than the considered available capability indices. It is observed that while the proposed
approach gives better results when the sample size is small, the error percentages are close
to those of considered approaches as the sample size increases.
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Tez çalışmam boyunca bana her türlü yardımını, katkısını, bilgi ve deneyimini esirgemeyen,
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ŞEKİL LİSTESİ
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Şekil 3.3. İlk faz ürün kernel yoğunluk tahmini kontur grafiği (Senaryo I) . . . . . . 79
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xiii
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grafiği (RBG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
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LSL Alt spesifikasyon sınırı

MDY Maksimum düzleştirme yöntemi
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1. GİRİŞ

Herhangi bir ürün veya hizmet çıktısının işletmelerin ilgili birimlerince, müşteri istekleri

doğrultusunda ya da mühendis görüşlerine göre belirlenen bazı özellikleri sağlayabilmesi

için kullanılan ve ürünlerin kalitesini belirleyen makine, alet, ekipman, yöntem, malzeme

ve işgücü gibi faktörlerin oluşturduğu nedenler sisteminin tümüne süreç adı verilir. Süreç

yeterliliği ise en temel anlamda süreçten elde edilen ürünlerin istenen sınırlar içinde

kalabilme kabiliyetinin bir ölçüsü olarak nitelendirilebilir. Süreç yeterliliği, sürecin

değişmezliği ya da istikrarlılığı ile ilgilendiği için süreçteki sözü geçen değişkenlik, çıktının

istikrarlılığının bir ölçüsüdür (Işığıçok, 2012: 257).

Süreç yeterliliği, Sullivan (1984, 1985) tarafından kalite güvence sisteminin değişen bir

felsefesi olarak tanımlandıktan sonra, birçok araştırmacının dikkatini çeken bir konu haline

gelmiştir. Bu konunun en büyük destekleyici sloganları, “ilk seferde doğru üretim” ve

"kaliteli ürün üretmek" şeklinde ifade edilebilir. Sürecin hedeflenen özellikleri sağlamada

yeterli olmadığı durumlarda kaynaklar, genellikle uygun olmayan (non-conforming) ürün

üretmede kullanılmış olacak, uygun olmayan ürünlerin tanımlanması (denetim ya da

müşteri memnuniyetsizliği gibi), değiştirilmesi ya da onarılması sonucunda bazı maliyetler

oluşacaktır. Bu maliyetlerin bazıları somut maliyetler olduğu gibi (değiştirme maliyetleri ya

da onarım maliyetleri gibi), bazıları da ölçülmesi daha zor olan (müşteri memnuniyetsizliği

sonucu oluşan iş kaybı maliyeti gibi) soyut maliyetlerden oluşmaktadır (Spiring, 2010).

Süreç yeterliliği, ilk başlarda, süreç değişkenliği ya da süreç yayılımı ile eş anlamlı olarak

kullanılmaktaydı. Daha sonra Dr. Genichi Taguchi tarafından geliştirilen bu düşünce, hedef

değere olan yakınlık olarak algılanmaya başlamıştır. Taguchi’nin kayıp fonksiyonu, hedef

değer etrafındaki küçük değişkenliği vurgulamaktadır. Taguchi’ye göre en iyi süreç, tüm

ürünlerin hedeflenen değerde üretilmiş olmasıdır. Ürün kalitesini değerlendirirken, kayıp

fonksiyon üzerinde hem süreç yayılımına hem de hedef değere olan yakınlığa dikkat etmek

gerekir. Bir süreçte üretilen tüm ürünler, spesifikasyon sınırları içinde olup, istenen yayılım

büyüklüğüne sahip ancak hedef değer üzerinde merkezlenmemiş de olabilir. Bu durumda

"en iyi süreç" tanımı, tüm ürünlerin hedef değerlerde üretilmesi şeklinde yapılabilir. Ancak

tüm ürünlerin hedef değerlerde üretilmesinin pratikte zor olması nedeniyle, hedef değer
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etrafında küçük bir değişkenlik gösteren süreçler için de "iyi bir süreç" tanımlamasını

kullanmak mümkündür.

Süreç yeterliliği, en yaygın biçimde süreç değişkenliğinin çıktısı olan bir aralık olarak

tanımlanır. Bu aralık, gerçek süreç yayılımı olarak da adlandırılır. Süreç yeterliliği ile ilgili

çalışmalar, sürecin yeterli olup olmadığına karar vermek amacı ile yapılır. Bu amaçla ilgili

süreçten veri toplanır. Verinin elde edildiği sürecin istatistiksel olarak kontrol altında ya da

durağan olması gerekir.

Deleryd’e (1999) göre süreç yeterliliği ile ilgili yapılan çalışmalarda dört temel adım

bulunmaktadır. Bunlar Şekil 1.1’de görüldüğü gibidir:

Şekil 1.1. Süreç yeterliliğine karar vermek için kullanılan dört temel adım

Sekil 1.1’de görülen 4 adım kısaca aşağıdaki gibi açıklanabilir:

Yeterlilik çalışmalarına başlamadan önce dikkatli bir şekilde planlama yapılmalıdır.

İlk olarak, süreçte ölçülmesi gereken kalite karakteristikleri belirlenmeli, daha sonra bu

ölçümlerin ne şekilde ve hangi ölçü aletleri kullanılarak gerçekleştirileceğine karar

verilmelidir. İkinci olarak, bir sürecin yeterli olup olmadığına karar vermeden önce, sürecin

istatistiksel açıdan kontrol altında olması ya da durağan olması gerekir. Aksi halde, ileriki
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dönemler için sürecin yeterliliğinin geçmişteki değeri ile aynı tutarlılığı gösterdiğini

söylemek ve gelecekteki değerlerin de aynı olacağını beklemek mantıklı değildir. Bu

nedenle, durağan olmayan bir sürecin yeterlilik çalışması o andaki süreç yeterliliğini ifade

ettiği için, sürecin gelecekteki yeterliliği ile ilgili bir yargıya varılamaz. Bu durumda,

sürecin kontrol altında olup olmadığına karar vermek amacıyla kalite kontrol grafiklerinin

kullanılması iyi bir yöntemdir. Daha sonraki aşamada, sürecin yeterliliği değerlendirilir.

Durağan bir sürecin yeterliliğini belirlemede kullanılan en basit yöntem, kontrol

grafiklerinden elde edilen bireysel değerlerin histogramını çizmektir. Süreç yeterliliğinin

görsel olarak elde etmenin bir başka yolu, kutu grafiğidir. Süreç yeterliliğinin sayısal olarak

elde edilmesi için de yeterlilik indeksleri geliştirilmiştir. Son olarak, daha iyi bir süreç elde

etmek amacı ile süreç iyileştirme imkanları tanımlanır (Deleryd, 1999).

Süreç yeterliliğine karar vermek amacıyla kullanılan yöntemlerden biri süreç yeterlilik

indeksleridir ve süreç yeterliliğini ölçmede kullanılan çok sayıda yeterlilik indeksi

mevcuttur.

Yeterlilik indeksleri, üretim sürecinin istenen özellikleri sağlamadaki başarısını ölçmede

kullanılan bir ölçüm olarak karşımıza çıkar. Süreç yeterlilik indeksleri, izin verilen süreç

yayılımı ve gerçek süreç yayılımı ile ilgili elde edilen bir oran değeridir ve en temel

anlamda aşağıdaki şekilde ifade edilir:

Yeterlilik oranı =
izin verilen süreç yayılımı

gerçek süreç yayılımı

bu oran ölçekten bağımsız olduğu için farklı kalite değişkenlerine sahip süreçleri

karşılaştırmada kullanılabilen bir ölçümdür. Bu ölçüm değeri ile aynı zamanda süreçteki

kalite değişkenlerine ve üretilen ürüne bakılmaksızın, yeterlilik değerlendirilmesinde

çıkarımlar yapılabilir (Spiring, 2010).

Süreç yeterliliğinin tahmini için kullanılan ve süreç yeterlilik indeksleri (prosess capability

indices) olarak bilinen standart teknikler genellikle parametrik varsayımlara dayanır. Bu

varsayımlardan özellikle normallik varsayımı, süreç yeterlilik indekslerinin hesaplanması

ve yorumlanmasında büyük bir öneme sahiptir. Polansky, Chou ve Mason (1998), Kotz ve

Johnson (1993: 139) ve Sommerville ve Montgomery (1996), bu varsayımda meydana
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gelen küçük bozulmalar sonucu süreç yeterlilik değerlendirmesinin nasıl yanıltıcı

olabileceğini göstermişlerdir. Dolayısıyla, süreç kalitesini değerlendirmede kullanılan süreç

yeterlilik indeksleri tartışmalı hale gelmiştir. Bu tartışmalar sonucunda bazı kalite

uygulayıcıları bu gibi teknikleri saf dışı bırakmışlardır. Ancak, bir üretim sürecinin

yeterliliğinin belirlenmesi endüstriler için yararlı sonuçlar sağlar. Bu nedenle, geçerli ve

kullanışlı yöntemler geliştirilmesi büyük önem taşımaktadır.

Birçok yazar, süreç yeterlilik analizinin uygulanmasındaki olasılıkla ilgili zorlukları ortadan

kaldırmak için esnek parametrik model (flexible parametric model) kullanmayı önermiştir.

Clement (1989), Pearson dağılımını uygulamıştır. Johnson dağılımı Farnum (1996) ve

Chou, Polansky ve Mason (1998) tarafından önerilmiş ve Burr dağılımı Castagliola (1996)

tarafından kullanılmıştır. Ancak, bu yöntemlerin her birinde yeterlilik tahminlerinin

güvenilirliği sadece verinin varsayılan parametrik dağılımlara yaklaştığı durumda

mümkündür. Dağılım probleminin üstesinden gelebilmek için henüz az sayıda parametrik

olmayan yöntem çalışılmıştır. Ayrıca, yapılmış olan çalışmaların çoğu, tek değişkenli kalite

karakteristikleri içindir. Çok değişkenli durumlar için standart indekslerin genişlemeleri,

Chan, Cheng ve Spiring (1988), Chen (1994), Kocherlakota ve Kocherlakota (1991) ve

Pearn, Kotz ve Johnson (1992) tarafından çalışılmıştır. Genellikle bu indeksler çok

değişkenli normal dağılım varsayımına dayanır. Bu varsayım, bazı sorunlara neden olur.

Bunlardan ilki, bu indekslerin çok değişkenli normallik varsayımına çok duyarlı olması,

ikincisi, eldeki veri kümesinin çok değişkenli normal dağılıma uygunluğunun

belirlenmesinin zor olması, son olarak, veri seti çok değişkenli normal dağılıma uymuyorsa

süreç yeterliliğinin belirlenmesinde alternatif bir yöntemin bulunmamasıdır. Önerilen süreç

yeterlilik tahmin edicisinin normallik varsayımına duyarsız olması ve bir alternatif

sağlaması gerekir (Polansky, 2001).

Gunter (1989), ortalama ve standart sapmaları aynı olan bilinen üç farklı dağılıma sahip

süreçlerden elde edilen kusurlu parça sayılarını karşılaştırmıştır. Bu dağılımlar 4,5

serbestlik derecesine sahip ki-kare, 8 serbestlik derecesine sahip ve uniform dağılımı

göstermelerine rağmen, her birinin normal dağıldığı varsayılarak hesaplanan Cp ve Cpk

indekslerinin aynı olduğu görülmüştür. Ancak ±3σ sınırları dışına düşen kusurlu parça

sayılarının önemli derecede farklı olduğu gözlenmiştir. Elde edilen kusurlu oranları,

Ki-kare dağılımı için milyonda 14.000 (ppm); t dağılımı için milyonda 4.000 ve uniform
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dağılımı için milyonda 0 iken; bu oran normal dağılım için 2.700’dür. Bu nedenle Gunter

(1989), süreç dağılımı normal dağılımdan saptığı durumlarda, süreç yeterlilik indekslerinin

güvenilir olmadığı sonucuna varmıştır (Pan ve Wu, 1997).

Pan ve Wu (1997), süreç dağılımı normal dağılıma uygun olmadığı durumlar için süreç

yeterlilik indeksleri ile ilgili olarak çalışmışlardır. S Plus bilgisayar programını kullanarak

normallik varsayımını sağlamayan süreçler için yeterlilik indeksleri elde ederek bu amaçla

kullanılan bir işlemler dizisi geliştirmişlerdir. Bu işlemler dizisi Şekil 1.2’de görülmektedir.



6

BAŞLA

İlgili veri girişi

Temel istatistiklerin
hesaplanması

Uyum iyiliği testleri
kullanılarak dağılımın belli bir
dağılıma uygunluğu test edilir.

Dağılımın yüzde
değerleri hesaplanır.

Veri Pearson ailesinden
olasılık dağılımları

ile modellenebilir mi?

Pearson standart yüzde
tablosuna bakılarak

yüzdeler hesaplanabilir.

Chebyshev eşitsizliği
kullanılarak

UPL = X98, Ortanca = X50,
LPL = X2 alınır.

Temel istatistikler ve
ilgili grafikler çizilir.

Süreç yeterlilik
indeksleri hesaplanır.

DUR

Evet

Hayır

Evet

Hayır

Şekil 1.2. Süreç yeterlilik indekslerini hesaplamak için kullanılan akış şeması

Pan ve Wu (1997), Şekil 1.2’de akış şeması verilen işlemler dizisini üç farklı uygulama

üzerinde çalıştırarak elde ettikleri sonuçları tartışmışlardır. Her birinin karakteristiklerine

göre karar verilen dağılımları dikkate alarak elde edilen süreç yeterlilik indekslerinin normal

dağılımda olduğu gibi, kusurlu oranlarının %0,27 olduğu görülmüştür.
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Son zamanlarda, kalite değişkenlerinin normal olmadığı durumlarda kullanmak amacıyla

klasik süreç yeterlilik indekslerinde bazı değişiklikler yapılması önerilmiştir. Bu öneriler iki

temel yaklaşımda ele alınabilir. Bunlardan ilki, normal olmayan veriyi normal dağılıma

dönüştürmek ve daha sonra klasik yöntemleri kullanmaktır. Johnson (1949), momentler

yöntemine dayanan ve Johnson dönüşüm sistemi olarak adlandırılan bir normal olmayan

veri dönüşüm sistemi geliştirmiştir. Box ve Cox (1964), normal olmayan veriyi normal

veriye dönüştüren bir güç dönüşümler ailesi tanımlamıştır. Somerville ve Montgomery

(1996), çarpık dağılımları, normal dağılıma dönüştüren bir karekök dönüşümü

kullanmışlardır. Niaki ve Abbasi (2007), çarpık kesikli çok değişkenli veriyi çok değişkenli

normal veriye dönüştüren bir kök yöntemi önermişlerdir. Hosseinifard, Abbasi, Ahmad ve

Abdollahian (2009), tek değişkenli normal olmayan süreçler için süreç yeterlilik

indekslerinin tahmininde bir kök dönüşüm yöntemi kullanmışlardır.

Bununla birlikte, dönüşüm yöntemlerinin kullanımının da bazı dezavantajları vardır. İlk

olarak, dönüşüm yöntemleri işlem açısından zaman almakta ve uygulayıcılar hesaplanan

sonuçların orijinal ölçeklerin çevrilmesiyle ilgili sorunlardan dolayı bu yöntemleri

kullanmakta tereddüt etmektedirler.

Normal olmayan süreçler için kullanılan ikinci yaklaşım, veriyi bir dağılıma uydurmak ve

daha sonra normal olmayan yüzdelikleri kullanarak süreç yeterlilik indekslerini tahmin

etmektir. Bu yaklaşımda, normal dağılımda kullanılan 6σ terimi yerine üst yüzdelik değeri

99,865 ve alt yüzdelik değeri 0,135 arasındaki aralık uzunluğu kullanılır. Bu yaklaşımı

kullanan araştırmacılardan birisi olan Clements (1989), yaygın olarak endüstri sektöründe

kullanılan Pearson ailesine ait herhangi bir dağılımın süreç yeterlilik tahminleri için normal

olmayan yüzdelikler yöntemini önermiştir. Pearn ve Kotz (1994), Cpm ve Cpmk indekslerini

normal olmayan dağılımlara uygulamak için Clements yöntemi kullanmıştır. Clements

yöntemi yaygın olarak kullanılmasına rağmen, Wu, Wang ve Liu (1998), bu yöntemin

özellikle çarpık dağılımlar için doğru ölçümler vermediğini göstermişlerdir. Liu ve Chen

(2006), normal olmayan veriler için süreç yeterlilik indeksi hesaplamada kullanılan

Clements yöntemini değiştirerek, Pearson eğrisi yüzdeliklerini kullanmak yerine Burr XII

dağılımı kullanmayı önermişlerdir. Burr XII olasılık yoğunluk dağılımının parametreleri

normal, gama, beta, weibull ve log-normal dağılımlarına uyarlanabilmektedir (Abbasi ve

Niaki, 2010).
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Süreç yeterlilik analizinde, süreç yeterliliğini ölçmede etkili olan süreç değişkenlerinin

birden fazla olması da mümkündür. Fabrika problemlerinde, tek bir değişkenin yanı sıra,

birden fazla kalite değişkenine sahip problemler ile de karşılaşılmaktadır. Örneğin, bir çelik

malzemenin kalitesi, kalınlığına, dayanıklılığına ve hareket kabiliyetine bağlıdır. Bu

durumda, çok değişkenli süreçlerin yeterlilik analizi, çok değişkenli süreç yeterlilik

indekslerinin hesaplanması ile mümkün olacaktır. Çok değişkenli durumlar için süreç

yeterlilik indeksleri, sürecin normallik varsayımına göre farklılıklar göstermektedir.

Çok değişkenli süreçler için literatürde yer alan çalışmalar dört grupta incelenmiştir. Bu

gruplandırmaya göre, süreç yeterlilik indeksleri,

1. Tolerans bölgesi ile süreç bölgesini birbiri ile oranlamaya dayalı olarak;

2. Uygun olmayan ürün elde etme olasılığına dayalı olarak;

3. Temel bileşenler analizi kullanılarak değişkenler arası korelâsyonu kaldırmaya yönelik

olarak;

4. Diğer yaklaşımlar kullanılarak

elde edilmiştir (Shinde ve Khadse, 2009). Bahsi geçen çalışmalar normallik varsayımı

sağlanması koşulu altında ele alınmıştır.

Çok değişkenli üretim süreçleri için normallik varsayımının sağlanmadığı durumlarda süreç

yeterlilik indekslerinin hesaplanması, spesifikasyon bölgesi ve değişkenler arasındaki ilişki

durumu da göz önünde bulundurulduğunda, daha güç ve karmaşık olabilmektedir.

Dağılımın normal olmadığı çok değişkenli süreç yeterlilik analizinde, yeterlilik indekslerini

az hata ile tahmin edebilmek ancak çalışılan verinin dağılım bilgisine uygun tahmin

yöntemleri kullanmakla mümkündür. Ancak, süreç dağılımı bilinen çok değişkenli

dağılımlara uygun olabileceği gibi, bilinen herhangi bir dağılıma uymayan bir süreç de

olabilir.

Polansky (2001), Normal dağılım göstermeyen çok değişkenli süreçler için Kernel

tahminine dayalı bir süreç yeterlilik tahmin yaklaşımı (p̂(H,S)) önermiştir. Önerilen bu

yaklaşımda p̂(H,S) Kernel tahmin edicisi, H bant genişliği matrisi ve S ise spesifikasyon

kümesi olarak tanımlanmıştır. Kernel tahmin edicisinin performansını değerlendirmek
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amacıyla iki değişkenli sekiz farklı dağılım simülasyonu üzerinden elde ettiği sonuçları

normal varsayım altında parametrik normal tahmin edicisi ile elde edilen sonuçlarla

karşılaştırmıştır. Çalışmasında yeterlilik değerlendirmesi yapmak için süreç dışına düşen

ürün oranı p’yi tahmin etmek amacıyla, simüle ettiği dağılımlar, iki değişkenli Normal

Dağılım (aralarında ilişki bulunmayan), iki değişkenli Normal Dağılım (aralarında ilişki

bulunan), basık bir dağılım, çarpık bir dağılım, Bimodal, Trimodal I, Trimodal II ve

Quadrimodal olarak belirlenmiştir. Çalışmasının sonucunda, parametrik normal tahmin

edicisinin Normal dağılımlar için daha iyi sonuçlar verdiğini, Kernel tahmin edicisinin

büyük çaplı örnekler için (n > 200) kullanılmasının daha doğru olacağını, küçük çaplı

örnekler açısından Kernel tahmin edicisinin iyi sonuçlar vermediğini ifade etmiştir.

Polansky’nin (2001) çalışmasında önerdiği Kernel tahmin edicisi p̂(H,S) , n < 200 olan

küçük çaplı örneklemlere uygulandığında p’yi iyi bir şekilde tahmin edemediği ve

sonuçların farklı dağılımlara sahip simülasyon verileri üzerinden elde edildiği göz önünde

bulundurulduğunda, dağılımdan çekilen tek bir örneklem verisinin kitle parametresini

tahmin etmede zayıf kalacağı düşünülmektedir. Nitekim bu çalışmada kullanılacak verilere

Polansky’nin (2001) yöntemi uygulandığında elde edilen sonuçlar düşüncemizi doğrular

niteliktedir. Bu nedenle bu tez çalışmasında, belirlenen senaryo verilerine Metropolis

Hastings örneklemesi uygulanarak, örneklem kümeleri üzerinden Kernel tahminleri elde

edilmiş ve böylece, dağılım bilgisinden uzaklaşmadan küçük çaplı örneklem kümeleri ile

çalışma imkanı sağlayan yeni bir yöntem önerilmiştir. Bu yeni yöntem KMH olarak

adlandırılmış olup, yönteme dayalı süreç yeterlilik indeksi ise p̃KMH olarak ifade edilmiştir.

Bu çalışmada, Normal dağılım varsayımı sağlanmayan çok değişkenli süreçlerin yeterlilik

analizinde kullanılmak üzere t-Copula yöntemi ile üretilen çarpık dağılım özelliklerine

sahip 4 farklı üretim süreci senaryosu kurularak, üretilen senaryo verilerinin dağılımı

Kernel Yoğunluk Tahmin yöntemi ile tahmin edilerek, literatürde çalışılan yeterlilik

indekleri
(
Ypk, p̃

)
ve Polansky (2001)’nin çalışmasında önerdiği p̂(H,S) yaklaşımı ile

p̃KMH indeksinin süreç yeterliliğine karar vermedeki başarısı değerlendirilmektedir. Bu

bağlamda, senaryoların her biri için (n = 50,100,250,500,1000) çapında örneklemler

çektirilmiş ve p̃KMH yaklaşımının örneklem büyüklüğüne olan duyarlılığının incelenmesi

amaçlanmıştır.
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Ayrıca, uygun ürün oranı p ’yi tahmin etmek amacıyla önerilen p̃KMH yaklaşımının

n < 200 (n = 50,100) küçük çaplı örneklemlerden elde edilen sonuçları ile

n > 200 (n = 250,500,1000) büyük çaplı örneklemlerden elde edilen sonuçları

karşılaştırılacak ve p̃KMH indeksinin performansı değerlendirilecektir.

Çalışmanın bu bölümünde, süreç yeterlilik indeksleri ve çalışmanın amacına yönelik bir

çerçeve çizilmeye çalışılmış, çalışmada yapılacaklardan kısaca bahsedilmiştir.

Çalışmanın ikinci bölümü, süreç yeterlilik indekslerinin geniş bir literatür bilgisini

içermektedir. Bu bölümde, hem tek değişkenli süreç yeterlilik indekslerinin, hem de çok

değişkenli süreç yeterlilik indekslerinin normal ve normal olmayan durumlardaki literatür

incelemesine yer verilmiştir.

Çalışmanın üçüncü bölümünde, tezde önerilen p̃KMH yaklaşımın dayandığı teorik bilgi ve

kullanılan yöntemlerden bahsedilmiştir. p̃KMH yaklaşımının performansını değerlendirmek

için kurgulanan senaryo verilerinin üretim aşamaları ve verilerinin dağılım özelliklerine yer

verilmiştir.

Dördüncü bölümde, her bir senaryodan elde edilen sonuçlar yorumlanmış, beşinci

bölümünde tahmin grafikleri ile sonuçların görsel açıdan verilmesi sağlanmıştır.

Çalışmanın son bölümünde ise çalışma sonuçları özetlenmiş ve yeterlilik indekslerine ilişkin

yapılacak gelecek çalışmalar açısından önerilere vurgu yapılmıştır.
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2. SÜREÇ YETERLİLİK İNDEKSLERİ

Süreç yeterlilik indekslerini inceleyebilmek için öncelikle süreç yeterlilik analizinde

kullanılan bazı kavramları tanımlamak gerekir. Bir ürün ya da hizmetin olduğu her yerde

kalitenin belirleyicisi kalite değişkenliklerinin ölçülmesi, özelliklerinin incelenmesi ve

değişkenlik nedenleri ile hata kaynaklarının belirlenmesi için istatistiksel tekniklerden

yararlanılır (Işığıçok, 2012: 69). Bu tekniklerin sağlıklı bir şekilde kullanılabilmesi için

kalite değişkenleri iyi tanımlanmalıdır. Kalite değişkenleri genellikle spesifikasyonlar ile

ilgilidir. Spesifikasyonlar, bir ürünün kalite değişkeninin nihai üründe olduğu kadar ürün

bileşenlerinde ve alt gruplarında da istenen ölçülerde olması anlamına gelir. Kalite

değişkeninin istenen değerine "hedef değer" denir ve T ile gösterilir. Bu hedef değer

genellikle hedefe yeteri kadar yakın olan bir aralık ile sınırlandırılır. Bir kalite değişkeni

için izin verilen en büyük değer "üst spesifikasyon sınırı"; izin verilen en küçük değer "alt

spesifikasyon sınırı"; bu sınırlar arası fark ise "tolerans aralığı" olarak adlandırılır. Bazı

kalite değişkenleri hedef değer için sadece tek bir spesifikasyon sınırına sahip olabilir.

Spesifikasyon sınırlarını sağlayan ürün ya da ürün bileşenleri için "uygun"; spesifikasyon

sınırlarından en az birini sağlamayan ürün ya da ürün bileşenleri için "uygun olmayan"

terimleri kullanılır (Montgomery, 2009: 8-9).

Spesifikasyon sınırlarından farklı olarak kontrol sınırları, sürecin dağılımının kontrol

altında olup olmadığının belirlenmesi için çizilen ve süreç ortalaması ile süreç

değişkenliğine bağlı olarak değişiklik gösteren sınırlar olarak tanımlabilir. Kontrol sınırları

"doğal tolerans sınırları" olarak da adlandırılır (Işığıçok, 2012: 65).

Kontrol sınırlarına genellikle kontrol grafiklerinin çiziminde başvurulur. Kontrol grafikleri

süreçlerden elde edilen ürünlerin gözlem sonuçlarına ilişkin olarak ortaya çıkan değişimleri

gösteren ve sürecin kontrol altında olup olmadığına karar vermede kullanılan görsel

araçlardır. Kontrol grafikleri, alt ve üst olmak üzere kontrol sınırlarından ve bir orta

(merkez) çizgiden oluşmaktadır.

Spesifikasyon sınırlarında olduğu gibi, kontrol sınırları için de "alt kontrol sınırı" ve "üst

kontrol sınırı" tanımlamasının yapılması mümkündür. Üst ve alt kontrol sınırları, değişkenin

normal dağıldığı durumda süreçten alınan ürünlere ilişkin gözlem değerlerinden hesaplanan
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ve kontrol grafiğindeki merkez çizgisine (genellikle ±3σ) eşit uzaklıkta bulunan sınırlardır.

Merkez çizginin her iki yönündeki 3 standart sapma arasında kalan alan, eğrinin altında

kalan toplam alanın %99,73’ünün göstermektedir. üst ve alt kontrol sınırları arasındaki farka,

"doğal tolerans aralığı" denilmektedir. (Işığıçok, 2012: 65).

Spesifikasyon sınırlarına bağlı olarak belirlenen "tolerans aralığı, müşteri isteklerine göre

mühendislik çalışmaları veya üreticiler tarafından dışsal olarak belirlenirken; doğal tolerans

aralığı, üretilen ürünlerin değişkenliğini ifade eder ve üretim sürecinden elde edilir.

Süreç yeterlilik indeksleri, bir ürün ya da hizmet sürecindeki kalite değişkenlerinin aldığı

değerleri, spesifikasyon sınırları ile karşılaştırmayı sağlayan sayısal değerlerdir. Bu

değerler, çoğunlukla "yeterlilik ya da performans indeksleri" ya da "oranları" olarak

tanımlanır. Bir yeterlilik indeksi, müşterilerin sesi (spesifikasyon sınırları) ile sürecin sesini

ilişkilendirir. Örneğin, yeterlilik indeksinin büyük bir değeri, mevcut süreçteki üretim

birimlerinin, müşteri gereksinimlerini karşılamada yeterli olduğunu gösterir. Yeterlilik

indeksleri, süreç hakkında elde edilen karmaşık bilgiyi tek bir sayıya indirgeyerek

özetlediğinden, kullanımları yaygındır. Bu nedenle, sürecin ne kadar iyi çalıştığını

belirlemede kullanılır. Durağan süreçler için, bu indekslerin aynı zamanda sürecin

gelecekteki beklenen performansını ölçmede de kullanılacağı varsayılır. Tedarikçiler, farklı

değişkenler için elde edilen yeterlilik indekslerini, iyileştirme faaliyetlerindeki önceliklerin

belirlenmesinde de kullanmaktadırlar. Aynı zamanda, süreçteki değişikliklerin etkileri,

süreç öncesinde ve sonrasındaki yeterlilik indekslerinin karşılaştırılması ile belirlenebilir.

Literatürde bulunan ve uygulamada kullanılan çok çeşitli süreç yeterlilik indeksi mevcuttur.

Bu indeksler genellikle, kullanım amaçları, özellikleri ve hesaplama biçimleri bakımından

farklılıklar gösterir. Buna rağmen, tasarımlarında benzerlikler görülebilir. Bir süreçten elde

edilen yeterlilik indeksleri temel olarak iki kuşakta incelenebilir. İlk kuşak yeterlilik

indeksleri olarak bilinen, Cp ve Cpk indeksleri, klasik istatistiksel süreç kontrol felsefesine

dayanır. Bu felsefeye göre, istenilen tolerans aralığında tüm ölçüm sonuçlarının "uygun"

olması amaçlanmaktadır. Tolerans aralığı dışında kalan ölçüm değerleri, "uygun olmayan"

olarak kabul edilir.

İkinci kuşak yeterlilik indeksleri olarak bilinen, Cpm indeksi ise, kalite iyileştirme
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çalışmalarına yeni bir yaklaşım getirmiştir (Taguchi yaklaşımı). Bu yaklaşımda, yalnızca

ölçümlerin "uygun" olduğunu bilmek yeterli değil, aynı zamanda "ne kadar uygun"

oldukları hakkında da bilgi sağlaması önemlidir (Kurekova, 2001).

Bu kısımda öncelikle bazı tek değişkenli yeterlilik indeksleri ele alınacak ve bunların dağılım

özellikleri incelenecektir.

2.1. Tek Değişkenli Süreç Yeterlilik İndeksleri

Tek değişkenli süreç yeterlilik indeksleri Normal Dağılım gösteren ve Normal Dağılım

göstermeyen süreçler olarak iki sınıfta incelenmiştir.

2.1.1. Normal dağılıma uyan süreçlerde tek değişkenli süreç yeterlilik indeksleri

Normal Dağılıma uyan süreçler için literatürde yer bulan süreç yeterlilik indeksleri "Klasik

Yeterlilik İndeksleri" olarak adlandırılmaktadır. Bunun nedeni, yeterlilik indeksleri

hesaplanırken süreç dağılımının Normallik koşulunu sağlandığı varsayımına dayalı olması

ve ilk çalışılan yeterlilik indekslerinin temelini oluşturmalarıdır. Klasik yeterlilik

indekslerinden Cp,Cpk ve Cpmk takip eden alt kısımlarda detaylı olarak tanımlanmaktadır.

Cp indeksi

Literatürde çalışılan ilk süreç yeterlilik indeksi Kane (1986) tarafından tanımlanan Cp

indeksidir ve Eş. 2.1’de görüldüğü şekilde elde edilir.

Cp =
USL−LSL

6σ
(2.1)

Eş. 2.1’de verilen USL, (Upper Specification Limit) üst spesifikasyon sınırını; LSL, (Lower

Specification Limit) alt spesifikasyon sınırını; USL−LSL, tolerans aralığını ve σ ise kalite

değişkeninin standart sapmasını ifade eder. Cp indeksi, üretim süreci için dışşal olarak

belirlenen tolerans aralığının, süreç değişkenliğine oranı olarak düşünülmüştür. Cp

indeksinin ölçülmesi için süreç dağılımının Normal Dağılıma uyması, hesaplamada

kullanılacak süreç verisinin rastgele bir şekilde elde edilmesi, diğer bir ifade ile gözlemlerin

birbirinden bağımsız olması ve sürecin kontrol altında olması gerekmektedir. Cp indeksinin
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hesaplanması sonucu elde edilen genellikle 1’den küçük değerler, sürecin doğal sınırları ile

spesifikasyon sınırlarının örtüşmediği anlamına gelir. Bu nedenle Cp indeksinin büyük

değerler alması daha çok tercih edilen bir durumdur. Finley (1992), Cp indeksi için CPI

(Capability Potential ya da Capability Potential Index), diğer bir ifade ile "Yeterlilik

Potansiyel Indeksi" tanımlamasını kullanmıştır. Montgomery (2009) ise Cp indeksine, PCR

(Prosess Capability Ratio), diğer bir ifade ile, "Süreç Yeterlilik Oranı" adını vermiştir.

Cp indeksi ve uygun olmama yüzdesi (non-conforming, %NC)

İki yanlı spesifikasyon sınırlarına sahip süreçler için "uygun olmama" yüzdesi

1−F (USL)+F (LSL) olarak hesaplanır. Burada F (.), süreç değişkeni olan X ’in dağılım

fonksiyonudur. Süreç kalite değişkeninin normal dağılım göstermesi durumunda Φ(.)

birikimli standart normal dağılım fonksiyonu kullanılarak normal dağılım gösteren bir süreç

için uygun olmama alanları şekil 2.1’de gösterilmiştir.

Şekil 2.1. Normal dağılım gösteren bir süreç için uygun olmama alanları

Sürecin normal dağılıma uygunluğu varsayımı altında % NC (% nonconforming), Sekil

2.1’den faydalanarak, Eş. 2.2’de görüldüğü gibi elde edilir:

%NC = 1−Φ

(
USL−µ

σ

)
+Φ

(
LSL−µ

σ

)
(2.2)

Burada, µ süreç ortalaması ve σ süreç standart sapmasıdır. m = (USL+LSL)/2 üst ve alt

spesifikasyon sınırlarının orta noktasıdır.
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Süreç kalite değişkeni tam olarak tolerans aralığında merkezlenmişse (m = µ), Eş. 2.2

yeniden yazılarak 3σ için %NC aşağıdaki şekilde elde edilir:

%NC = 1−Φ

USL−
(

USL+LSL
2

)
σ

+Φ

LSL−
(

USL+LSL
2

)
σ


= 1−Φ

(
2USL−USL−LSL

2σ

)
+Φ

(
2LSL−USL−LSL

2σ

)

= 1−Φ

(
USL−LSL

2σ

)
+Φ

(
LSL−USL

2σ

)

= 1−Φ(3Cp)+Φ(−3Cp)

= 2Φ(−3Cp)

Böylece, Eş. 2.1’de verilen Cp yardımıyla %NC değerine ulaşmak mümkündür.

Şekil 2.2’de Normal dağılım gösteren bir süreç için tolerans aralığı görülmektedir.

Şekil 2.2. Normal dağılım gösteren bir süreç için tolerans aralığı

Örneğin Şekil 2.2’de Tolerans aralığının 6σ olarak benimsenmesi durumunda, Cp = 1,00

olarak elde edileceğinden birikimli standart normal dağılım tablosundan faydalanarak, %NC

elde edilebilir. %NC = 2Φ(−3Cp) = 2Φ(−3) = 2×0,00135 = 0,0027 olarak hesaplanır. O

halde, "%NC =milyonda 2700 parça (parts per million)" ile Cp = 1,33 ise "%NC =milyonda

63 parça (ppm)" olarak ifade edilir. Ancak m 6= µ ise Cp sürecin yeterliliğini doğru ifade
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etmez ve %NC için sağlıklı bir ölçüm sağlamaz. Bu nedenle, Cp süreç ortalama değeri ile

hedef değer (T ) örtüştüğünde sağlıklı bir yeterlilik ölçüsü olarak kullanılabilir. %NC =

2Φ(−3Cp) de yeterlilik için sadece bir alt sınır sağlar (Pearn ve Kotz, 2006).

Tek bir örneklem ile Cp ’nin tahmin edilmesi

Cp indeksinin hesaplanmasında sadece σ parametresinin tahmin edilmesi gerekmektedir.

{x1, ...,xn}, tek değişkenli ve örneklem çapı n olan bir örneklem kümesi ise, Cp ’nin tahmin

edicisi Eş. 2.3’te verildiği şekilde tahmin edilir.

Ĉp =
USL−LSL

6s
(2.3)

Burada, s =
(

1
n−1

n
∑

i=1
(xi− x̄)2

)1/2

durağan, diğer bir ifade ile ortalama ve standart sapması

zaman içinde sabit kalan bir süreçten elde edilen σ ’nın “ bilinen” tahmin edicisidir. Ancak s,

σ ’nın yansız bir tahmin edicisi olmadığından sdüzeltilmiş kullanılmalıdır.

√
(n−1)s

σ
∼ χn−1

ile Ki-dağılımına sahiptir. Ki-dağılımının momentleri Eş. 2.4’ten elde edilebilir.

µ j = 2 j/2 Γ((k+ j)/2)
Γ(k/2)

(2.4)

Burada, Γ(z) Gamma fonksiyonunu, k serbestlik derecesini göstermek üzere Ki-dağılımının

birinci momenti Eş. 2.4 kullanılarak şu şekilde elde edilebilir.

µ1 = 21/2 Γ((n−1+1)/2)
Γ((n−1)/2)

(2.5)

O halde, E
(√

n−1s
σ

)
= 21/2 Γ((n−1+1)/2)

Γ((n−1)/2) eşitliği yazılabilir. Buradan,

E (s) =
√

2
n−1

Γ((n−1+1)/2)
Γ((n−1)/2) σ yazılabileceği açıktır. s’nin σ ’nın yansız bir tahmin edicisi

olabilmesi için, c4 =
√

2
n−1

Γ(n/2)
Γ((n−1)/2) gibi bir standart sapma düzeltme faktörü kullanılır.

Uygulamada süreçten elde edilen veri 60’tan az olduğu durumlarda kullanılan

sdüzeltilmiş =
s
c4

olarak ifade edilir.

Eş. 2.3’te verilen Ĉp formülünü Cp cinsinden yazabilmek için, eşitlik (n−1)1/2 ve σ ile

çarpıp bölünerek yeniden düzenlenirse Eş. 2.6’ya ulaşılabilir.
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Ĉp = (n−1)1/2
(

USL−LSL
6σ

)[
(n−1)s2

σ2

]−1/2

= (n−1)1/2Cp

[
(n−1)s2

σ2

]−1/2

(2.6)

Eş. 2.6 yeniden yazılırsa,

Ĉp = (n−1)1/2Cp

[
(n−1)s2

σ2

]−1/2

= (n−1)
(

Cp

ĈP

)2

=
(n−1)s2

σ2 (2.7)

elde edilir.

Eş. 2.7’de, normallik varsayımı altında, (n−1)s2/σ2 ∼ χ2
n−1 (n−1) serbestlik derecesi ile

Ki-kare dağılır (Chou ve Owen, 1989). Buradan hareketle Chou ve Owen (1989), Ĉp’nin

olasılık yoğunluk fonksiyonunu Eş. 2.8’deki gibi ifade etmişlerdir:

f (x) =
2
[√

(n−1)/2 Cp

]n−1

Γ [(n−1)/2]
xn−1exp

[
−(n−1)(Cp)

2

2x2

]
, x > 0 (2.8)

Ĉp’nin r. momenti

Ĉp ’nin r. momenti Ki-kare dağılımının özellikleri kullanılarak,

E
(
Ĉr

p
)
=

Γ

(
n− r−1

2

)
Γ

(
n−1

2

) [
(n−1)

2

]r/2

Cr
p (2.9)

şeklinde tanımlanır. Buna göre ilk iki moment aşağıdaki gibi elde edilir:

E
(
Ĉp
)
=

Γ

(
n−2

2

)
Γ

(
n−1

2

)[(n−1)
2

]1/2

Cp (2.10)

E
(
Ĉ2

p
)
=

Γ

(
n−3

2

)
Γ

(
n−1

2

)[(n−1)
2

]
C2

p (2.11)

Buradan, E
(
Ĉp

2)−E
(
Ĉp
)2

=Var
(
Ĉp
)

olduğundan,
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Var
(
Ĉp
)
=

n−1
n−3

− n−1
2

[
Γ
(n−2

2

)
Γ
(n−1

2

)]2
C2

p (2.12)

eşitliğine ulaşılır.

E
(
Ĉp
)
’de bilindiği gibi Gamma fonksiyonu özelliğinden Γ(k) =

∞

∫
0

tk−1e−tdt tüm n değerleri

için 1’den büyüktür. n≥ 15 için, bu katsayı (4n−7)/(4n−4) değerine yaklaşır. Bu nedenle

Ĉp , Cp’ nin yanlı ve aşırı tahmin edicisidir. Basit bir örnek verilecek olursa, Eş. 2.13’deki

gibi yan oranının %1’den küçük olması için n > 80 olması gerekmektedir (Pearn ve Kotz,

2006:7-11 ).

∣∣E (Ĉp
)
−Cp

∣∣ /Ĉp ≤ 0,01 (2.13)

Ĉp tahmin edicisinin istatistiksel özellikleri

Pearn, Lin ve Chen (1998), Cp için Eş. 2.14’deki gibi yansız bir tahmin edici önermişlerdir.

C̃p = bn−1Ĉp (2.14)

Burada bn−1 düzeltme faktörüdür ve şu şekilde tanımlanır:

bn−1 =

√
2

n−1

Γ

(
n−1

2

)
Γ

(
n−2

2

) (2.15)

Pearn ve diğerleri (1998), süreç kalite değişkeninin normal dağılım göstermesi koşulu ile

yansız C̃p tahmin edicisinin Cp’nin UMVUE (Uniformly Minimum Variance Unbiased)

tahmin edicisi olduğunu göstermişlerdir. C̃p asimptotik olarak etkin ve tutarlıdır. Ayrıca,

n
1
2
(
C̃p−Cp

) d→N
(
0,C2

p/2
)

dır.

Cp için güven aralıkları

Cp için güven aralıkları, (1−α) güven düzeyinde dağılım özelliklerini kullanarak Ĉp tahmin

edicisine göre Eş. 2.16 görüldüğü gibi,
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√
χ2

n−1,1−α/2
√

n−1
Ĉp,

√
χ2

n−1,α/2
√

n−1
Ĉp (2.16)

C̃p tahmin edicisine göre ise Eş. 2.17 verildiği biçiminde tanımlanır.√
χ2

n−1, 1−α/2
√

n−1bn−1
C̃p,

√
χ2

n−1, α/2
√

n−1bn−1
C̃p (2.17)

Burada, χ2
n−1,α/2 ve χ2

n−1,1−α/2 (n−1) serbestlik derecesine sahip α/2 ve 1−α/2 için elde

edilen Ki-kare değerleridir. Böylece, %100(1−α) Cp ’nin alt güven sınırı (Cags
p ) aşağıdaki

gibi gösterilebilir:

(Cags
p ) =

√
χ2

n−1, 1−α

√
n−1

C̃p

bn−1
=

√
χ2

n−1,1−α

√
n−1

Ĉp (2.18)

Ki-kare dağılımının yüzdelik noktaları genellikle formüller yardımı ile yaklaşık olarak elde

edilir. Yaygın olarak kullanılan ve bilinen yaklaşımlardan olan Fisher’in yaklaşımı Eş.

2.19’da; Wilson-Hilferty’in yaklaşımı ise Eş. 2.20’de verilmiştir.

χυ ,1−α
∼=
(

υ− 1
2

)1/2

+
z1−α√

2
(2.19)

χυ ,1−α
∼= υ

1/2

[
1− 2

9υ
+ z1−α

(
2

9υ

)1/2
]3/2

(2.20)

Burada zα , standart normal dağılımın en üst kantil değeridir. Bu yaklaşımları kullanarak Cp

’nin %100(1−α) güven aralıkları Fisher’in yaklaşımına göre Eş. 2.21 kullanılarak,

[
1

(n−1)
1
2

{(
n− 3

2

) 1
2

−
z α

2√
2

}
Ĉp,

1

(n−1)1/2

{(
n− 3

2

)1/2

+
zα/2√

2

}
Ĉp

]
(2.21)

Wilson-Hilferty’in yaklaşımına göre de Eş. 2.22 yardımıyla,

{1− 2
9(n−1)

− zα/2

[
2

9(n−1)

]1/2
}3/2

Ĉp,

{
1− 2

9(n−1)
+ zα/2

[
2

9(n−1)

]1/2
}3/2

Ĉp


(2.22)
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biçiminde hesaplanabilir (Pearn ve Kotz, 2006: 13).

Cp tahmini için örneklem büyüklüğüne karar verilmesi

Franklin (1999), Cp yeterlilik indeksi için Wilson-Hilferty yaklaşımına dayanan ve yaklaşık

örneklem büyüklüğünü hesaplamada kullanılan bir formül geliştirmiştir. Franklin (1999)

tarafından önerilen formül Eş. 2.23’deki şekildedir.

n∼= 1+
2
9

1[
Z(α)

2 +

√
1+
(

Z(α)
2

)2
−
(

CL
p

Ĉp

)2/3
]2 (2.23)

Eş. 2.23’de Cp ’ye ilişkin istenen alt güven sınırına (CL
p) karar vermek için gerekli örneklem

büyüklüğü hesaplanabilmektedir. Verilen bu formül aracılığı ile örneklem büyüklüğü 10 gibi

küçük değerler için bile doğru sonuçlar elde edildiği gösterilmiştir.

Eş. 2.23’de görüldüğü gibi örneklem büyüklüğü
(
CL

p/Ĉp
)

oranına bağlı ve bu oranın artan

bir fonksiyonudur.

Cp ’ye ilişkin hipotez testleri

Süreç yeterlilik çalışmalarında sürecin yeterliliğine karar vermede kullanılan hipotezler

aşağıdaki gibi kurulabilir:

H0 : Cp ≤C (süreç yeterli değil) (2.24)

H1 : Cp >C (süreç yeterli) (2.25)

Burada C önceden belirlenmiş bir yeterlilik ölçütüdür. Örnek olması açısından, Pearn ve

diğerleri (1998), yokluk hipotezine karar vermek amacı ile tek örneklem için bir φ∗ (x) testi

tanımlamışlardır. Hipotez testinde Cp’nin tahmin edicisi olan ve Eş. 2.14’te verilen C̃p

kullanılmıştır. φ∗ (x) test fonksiyonu;
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φ∗ (x) =


1, C̃p > c0

0, d.d

şeklinde tanımlanmıştır. C̃p > c0 olması durumunda; Eş. 2.24 deki yokluk hipotezini I. tip

hata oranı α (c0) =α ile reddetmekte; diğer bir ifade ile, yeterli olmayan bir süreci yeterli bir

süreç olarak kabul edilme olasılığını göstermektedir. Hipotez testinin kritik değeri c0 olarak

gösterilmiştir. Pearn ve diğerleri (1998), φ∗ testinin α düzeyinde tüm yansız testler arasında

II. tip hatası minimum olan UMP (uniformly most powerful) test olduğunu göstermişlerdir.

Kritik değeri c0 olmak üzere I. tip hata, P
{

C̃p > c0|Cp =C
}
= α olarak tanımlanabilir. Bu

tanım, Eş. 2.7 ve Eş. 2.14 kullanılarak, yeniden düzenlenirse Eş. 2.26’daki gibi yazılabilir.

P

{
bn−1 (n−1)1/2Cp

(
(n−1)s2

σ2

)−1/2

≥ c0 |Cp =C

}
= α

P

{(
(n−1)s2

σ2

)
≤ b2

n−1 (n−1)
[

C
c0

]2
}

= α

(2.26)

Böylece,

b2
n−1 (n−1)

[
C
c0

]2

= χ
2
n−1,α (2.27)

eşitliği elde edilir. Buradan uygun c0 değeri,

c0 =

√
n−1 bn−1C√

χ2
n−1, 1−α

(2.28)

biçiminde elde edilir.

Böylece, C̃p > c0 ise φ∗ (x) = 1 dir ve yokluk hipotezi reddedilerek sürecin yeterli olduğu

yorumu yapılır (Pearn ve diğerleri, 1998).

Cp ’nin güçsüz yönü

Cp indeksinin başlıca güçsüz yönü, sürecin gerçek ortalamasını dikkate almadan, gerçek

süreç yayılımına göre tanımlanan potansiyel yeterliliği ölçmesidir. Bu nedenle Cp, süreç
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ortalama değeri ile hedef değer örtüşmediği sürece sürecin gerçek performansını göstermez.

Bunun sonucu olarak, Cpk indeksi geliştirilmiştir. Cp ve Cpk indeksleri birlikte

kullanıldığında süreç yayılımı ve sürecin konumu bakımından uygun bir yeterlilik indeksi

elde edilmiş olur.

Cpk indeksi

Cp indeksi, sürecin nerede merkezlendiğini dikkate almaz ve süreç ortalama değeri ile hedef

değer örtüşmediği durumlarda sürecin gerçek performansını göstermez. Süreç ortalamasının

hedef değerden sapmasını hesaplamak için Cp ’ye benzer biçimde, süreç ortalamasını da

dikkate alan ve Eş. 2.29’da verilen Cpk indeksi önerilmiştir.

Cpk = min
{

USL−µ

3σ
,

µ−LSL
3σ

}
(2.29)

min{a,b} = (a+b)−|a−b|
2 tanımından faydalanılarak, Cpk = d−|µ−m|

3σ
ile elde edilebilir.

Burada, d = USL−LSL
2 , spesifikasyon aralık uzunluğunun yarısı, m = USL+LSL

2 ise üst ve alt

spesifikasyon sınırları arasındaki orta noktadır. Cp ve Cpk indeksleri ile k arasındaki

doğrudan ilişki aşağıdaki gibi ifade edilebilir:

Cpk =Cp ∗ (1− k) (2.30)

Burada k = |µ−
1
2 (LSL+USL)|

d olarak tanımlanmıştır (Kotz ve Johnson,1993).

Kane (1986), T = 1
2 (LSL+USL) olduğunu varsayarak, yukarıda verilen k’yı k = |µ−T |

d

olarak tanımlamıştır.

µ , spesifikasyon aralığı dışında ise Cpk negatif bir değer alacak ve böylece kalite değişkeni

X bakımından sürecin yeterliliğinin düşük olduğunu gösterecektir.

Cpk indeksi ve uygun olmama yüzdesi (%NC)

Süreç performansı, kalite standartlarını sağlayan çıktıların yüzdesi olarak tanımlanır. Kalite

değişkeninden ölçülen değerlerin spesifikasyon sınırlarıyla karşılaştırılmasına bağlı olarak

ürün, uygun (geçti) veya uygun olmayan (red) olmak üzere iki şekilde karakterize edilebilir.
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O halde üretimdeki uygun çıktıların oranı olarak adlandırılan p, Eş. 2.31’deki gibi

tanımlanır:

p =

USL∫
LSL

f (x)dx = F (USL)−F (LSL) (2.31)

Burada, F (x) , X kalite değişkeninin dağılım fonksiyonu, USL spesifikasyon sınırlarının üst

sınırını, LSL ise alt sınırını ifade eder. Süreç rastgele değişkeni X normal dağılmışşa, %NC

uygun olmama yüzdesi (eski terminolojide kusurlu yüzdesi) Φ(.) kümülatif standart normal

dağılım fonksiyonu kullanılarak aşağıdaki gibi elde edilebilir:

%NC = 1−Φ

(
USL−µ

σ

)
+Φ

(
µ−LSL

σ

)
(2.32)

Cpk ’ya dayalı olarak uygun olma güvencesi

Cpk indeksi, belli bir Cpk değeri ile normal dağılan bir süreç için süreç çıktı sınırlarını (bounds

on the process yield) sağladığından, çıktı indeksi (yield-based index) olarak da adlandırılır

ve aşağıdaki gibi elde edilebilir:

2Φ
(
3Cpk

)
−1≤ p≤Φ

(
3Cpk

)
(2.33)

Pearn ve Kotz (2006: 43), süreç çıktı sınırları ile uygun olmama yüzdesi %NC’yi

ilişkilendirebilmek için Cpk indeksini yeniden Eş. 2.34’de görüldüğü gibi tanımlamışlardır:

Cpk =
d−|µ−m|

3σ
=

1−|(µ−m)/d|
3(σ/d)

=
1−|δ |

3γ
=


1+δ

3γ
, LSL≤ µ ≤ m

1−δ

3γ
, m≤ µ ≤ USL

 (2.34)

Burada, m = (USL+LSL)/2 spesifikasyon sınırlarının orta noktasını, d = (USL−LSL)/2

spesifikasyon aralığının uzunluğunun yarısını ifade eder. δ = (µ−m)/d ve γ = σ/d ile elde

edilir.

Cpk > 0 için, Cpk ve Cp ’nin bir fonksiyonu olarak uygun olmama yüzdesi %NC beklenen

değerinin aşağıdaki eşitlikler yardımıyla yazılması mümkündür.
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m≤ µ ≤USL için, Eş. 2.34 kullanılarak Cpk =
1−δ

3γ
= USL−µ

3σ
olarak yazılabilir. Burada,

LSL−µ

3σ
=

(USL−µ)− (USL−LSL)
3σ

=
USL−µ

3σ
−USL−LSL

3σ
=Cpk−2Cp

olarak elde edilir.

LSL≤ µ ≤m için, Eş. 2.34 kullanılarak Cpk =
1+δ

3γ
= µ−LSL

3σ
olarak yazılabilir. Aynı şekilde,

USL−µ

3σ
=

(USL−LSL)− (µ−LSL)
3σ

=
USL−LSL

3σ
− (µ−LSL)

3σ
= 2Cp−Cpk

olarak elde edilir.

Elde edilen bu eşitlikler, Eş. 2.32’de verilen uygun olmama oranı kullanılarak düzenlenirse,

Eş. 2.35 elde edilir (Kotz ve Johnson, 1993: 53).

%NC = Φ(−3Cpk)+Φ[−3(2Cp−Cpk)] (2.35)

Cpk = 1 için Eş. 2.35’de verilmiş olan uygun olmayan ürün oranının en çok milyonda 2.700

birim çıktı olması beklenir. Cpk = 1,33 ise bu oranın en çok milyonda 66 olması beklenir.

Uygun olmayan ürün oranının milyonda yaklaşık 0,554’den daha az olması için Cpk

değerinin 1,67 olması gerekir. Cpk değerinin 2 olması ise uygun olmayan ürün oranının

milyarda 2 birim çıktı olduğunu ifade eder (Pearn ve Kotz, 2006: 45).

Tek bir örneklem ile Cpk ’nın tahmin edilmesi

Süreç istatistiksel olarak kontrol altında iken, Ĉpk tahmin edicisi Eş. 2.36’da olduğu gibi elde

edilebilir.

Ĉpk =
d−|x−m|

3s
=

{
1− |x−m|

d

}
Ĉp (2.36)

Burada, x̄ = ∑
n
i=1

xi
n , s =

[
∑

n
i=1 (xi− x̄)2/(n−1)

]1/2
olarak tanımlıdır.
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Ĉpk ’nın r. momenti

Normallik varsayımı altında, Kotz ve Johnson (1993: 56-57), Ĉpk nın r. momentini Eş.

2.37’de verildiği gibi elde etmişlerdir.

E
(

Ĉr
pk

)
=

1
3r E

(
1
sr

)
∑

r
j=0 (−1) j

(
r
j

)
dr− jE

(
|x−m| j

)

=

(
d
√

n−1
3σ

)r

E
(
X−r

n−1
)

∑
r
j=0 (−1) j

(
r
j

)(
σ

d
√

n

) j

E
[√

n(x−m)

σ

] j
(2.37)

r = 1 için; Ĉpk ’nın beklenen değerine Eş. 2.38’deki gibi ulaşılabilir.

E
(
Ĉpk
)
=

1
3bn−1

{
d
σ
−
√

2
πn

e−λ/2− |µ−m|
σ

[
1−2φ

(
−
√

λ

)]}
(2.38)

r = 2 için ikinci moment Eş. 2.39’da olduğu gibi elde edilerek, Eş. 2.40’da verilen varyans

değeri kolaylıkla hesaplanabilir.

E
(

Ĉ2
pk

)
=

(
d
√

n−1
3σ

)
E
(
X−2

n−1
) 2

∑
j=0

(−1) j
(

r
j

)(
σ

d
√

n

) j

E
[√

n(x−m)

σ

] j

(2.39)

Var
(
Ĉpk
)
=

n−1
9(n−3)

{(
d
σ

)2

−2
d
σ

[√
2

πn
e−λ/2 +

√
λ

n

(
1−2φ

(√
λ

))]

+
λ +1

n

}
−
[
E
(
Ĉpk
)]2 (2.40)

Burada, merkezi olmama faktörü (non-centrality factor) λ = n(µ−m)2/σ2 olarak ve

düzeltme faktörü bn−1 ise Eş. 2.41’deki gibi tanımlanır.

bn−1 = (2/n−1)1/2
Γ [(n−1)/2]/Γ [(n−1)/2] (2.41)

Kotz ve Johnson (1993: 58), Ĉpk ’nin Cpk için yanlı bir tahmin edici olduğunu

göstermişlerdir. µ = m ise, bu yan değeri n ≤ 10 iken pozitif ancak n ’nin büyük değerleri

için negatif değerler alır. n değeri sonsuza gittikçe yan değeri de sıfıra yaklaşır. d/σ = 3

veya 4 değeri olduğunda n ≥ 20 için, d/σ = 5 olduğunda n ≥ 30 için ve d/σ = 6

olduğunda n≥ 40 için yan değerleri negatiftir. n’nin büyük değerleri için µ = m olduğunda,

gözlemlere dayanarak yan değerinin negatif olduğuna sezgisel bir yorum getirilemez.
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Ayrıca, yan değerini sıfır yapan tam bir n değerine ulaşılması henüz mümkün

gözükmemektedir (Pearn ve Kotz, 2006).

Ĉpk ’nın dağılım özellikleri

Chou ve Owen (1989), Eş. 2.42’de verilen Ĉpk ’nın dağılımını elde etmeden önce Ĉpu ve Ĉpl

’nin dağılımını elde etmişlerdir.

Ĉpk = min
(
Ĉpu,Ĉpl

)
(2.42)

Burada, Ĉpu = (USL − x̄)/3s ve Ĉpl = (x̄ − LSL)/3s olarak ifade edilir. 3
√

nĈpu ve

3
√

n Ĉpl , normallik varsayımı altında (n− 1) serbestlik derecesi ile merkezi olmayan t

dağılımına sahiptir ve merkezi olmama parametreleri
√

n(USL−µ)/σ ve
√

n(µ−LSL)/σ ’

dır (Pearn ve Kotz, 2006: 48).

Ĉpu ≤ y ya da USL−x̄
3s ≤ y olarak yazılır ve düzenlenirse,

√
n(x̄−µ)/σ−

√
n(USL−µ)/σ

s/σ
≥ −3

√
ny

elde edilir. Bu ifadeyi daha sade biçimde, Z+δ1
s/σ

ile yazmak mümkündür. Burada, Z, standart

normal dağılımını ifade etmekte, δ1 ise, δ1 = −
√

n(USL−µ)
σ

= −3
√

nCpu eşitliğini

göstermektedir.

Z+δ1
s/σ

değişkeni, Tf (δ1) ile gösterilmiştir. Burada, Tf (δ1), f serbestlik derecesine sahip

merkezi olmayan t dağılımı göstermektedir ve δ1 merkezi olmama parametresidir.

Böylece, Ĉpu ≤ y eşitsizliği ancak ve ancak Tf (δ1)≥−3
√

ny olduğunda yazılabilir.

Benzer olarak, Ĉpl ≤ y eşitsizliğini de, Tf (δ2) ≤ 3
√

ny olduğunda yazmak mümkündür.

Burada, δ2 =
√

n(µ−LSL)
σ

= 3
√

nCpl eşitliğini göstermektedir.

Ĉpu’nun dağılım fonksiyonu,

FĈpu
(y) = P

[
Tf (δ1)≥−3

√
ny
]

(2.43)

Ĉpu’nun olasılık yoğunluk fonksiyonu,

gĈpu
(y) = 3

√
ngTf (δ1)

(
−3
√

ny
)
, −∞≤ y≤ ∞ (2.44)
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Ĉpl ’nin dağılım fonksiyonu,

FĈpl
(y) = P

[
Tf (δ2)≤ 3

√
ny
]

(2.45)

Ĉpl ’nin olasılık yoğunluk fonksiyonu,

gĈpl
(y) = 3

√
ngTf (δ2)

(
3
√

ny
)
, −∞≤ y≤ ∞ (2.46)

şeklinde tanımlıdır.

Eş. 2.42’ye denk olarak, Tf (δ1)≤−3
√

ny ve Tf (δ2)≥ 3
√

ny yazılabilir.

Böylece Ĉpk ’nın dağılım fonksiyonu,

FĈpk
(y) = 1−P

[
Tf (δ1)≤−3

√
ny , Tf (δ2)≥ 3

√
ny
]

(2.47)

olarak elde edilmiştir.
(
Tf (δ1) , Tf (δ2)

)
bir korelasyon katsayısı ile iki değişkenli merkezi

olmayan t dağılımına sahiptir. Chou ve Owen (1989), Ĉpk ’nın dağılımını elde etmek için iki

bağımlı merkezi olmayan t değişkenin bileşik fonksiyonu için Owen (1965)’in formülünü

kullanmışlardır. Ĉpk nın olasılık yoğunluk fonksiyonu gĈpk
(y) daha karmaşık olarak Eş.

2.48’de verilmektedir.

gĈpk
(y) =


3
√

n∑
2
i=1 gTn−1,δi

(ti) y≤ 0 için,

3
√

n∑
2
i=1

n−1
ti

[
Qn+1

(√
n+1
n−1

ti,δi;O,R
)
−Qn−1 (ti,δi;O,R)

]
y > 0 için,


(2.48)

Burada, t1 =−t2 = 3
√

ny ve δ1 =−3
√

nCpu , δ2 = 3
√

nCpl ,

R =
√

n−1 (δ2−δ1)/(t2− t1)

ve gTn−1,δi
(.) ise n− 1 serbestlik derecesine ve δi parametresine sahip merkezi olmayan t
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dağılımını gösterir. Q f (t,δ ;O,R) fonksiyonu Eş. 2.49’da verilmiştir (Chou ve Owen, 1989).

Q f (t,δ ;O,R) =C( f )
∫ R

0

[
φ

(
tx
f
−δ

)
x f−1

φ(x)
]

dx (2.49)

Cpk için güven aralıkları

Cpk ’nın güven aralığını tam olarak elde edebilmek, Ĉpk ’nın dağılımının merkezi olmayan t

dağılımına sahip iki değişkenin ortak dağılımını içermesi nedeniyle zordur.

Heavlin (1988), %100(1−α) güven aralığını yaklaşık olarak Eş. 2.50’de verildiği gibi

önermiştir.

Ĉpk− zα/2

√
n−1

9n(n−3)
+

Ĉ2
pk

2(n−3)
(1+

6
n−1

) , Ĉpk + zα/2

√
n−1

9n(n−3)
+

Ĉ2
pk

2(n−3)
(1+

6
n−1

)


(2.50)

Zhang, Stenback ve Wardrop, (1990), normal dağılım varsayımına dayalı olarak Ĉpk ’nın

örnekleme dağılımının varyansı ve ortalamasına ilişkin tanımlamalar elde etmiş ve

%100(1−α) güven aralığını Eş. 2.51’deki biçimde formüle etmişlerdir.[(
1− zα/2

√
n−1
n−3

− 1
b2

n−1

)
Ĉpk,

(
1+ zα/2

√
n−1
n−3

− 1
b2

n−1

)
Ĉpk

]
(2.51)

Franklin ve Wasserman (1992) ise, n≥ 30 olduğunda, Bissell’in (1990) yönteminin %95 alt

kontrol limitini doğru bir şekilde elde etmedeki performansını Ĉpk nın birkaç değeri için

simülasyon yaparak göstermiştir. Bissell’in (1990) yöntemi Eş. 2.52’de verilmektedir.

Clcl
pk = Ĉpk− zα

√
1
9n

+
(Ĉpk)

2

2(n−1)
(2.52)

Burada, zα standart normal dağılımın üst α yüzdesini göstermektedir (Pearn ve Kotz, 2006:

51). Nagata ve Nagata (1994) Eş. 2.52’de verilen formüle 1/30
√

n ifadesini ekleyerek, iki

yanlı güven aralıklarını hesaplamada simulasyon tekniği ile doğru sonuçlar elde etmişlerdir.

Nagata ve Nagata (1992) tarafından Cpk için iki yanlı güven aralığı hesaplamada kullanılan

başka bir formül Eş. 2.53’de görüldüğü gibi verilmiştir.
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Ĉpk− zα/2

√
1

9n
+

C2
pk

2(n−1)
, Ĉpk + zα/2

√
1

9n
+

C2
pk

2(n−1)

 (2.53)

Eş. 2.53’de verilen formülden 1/(9n) ifadesi silindiğinde, Cpk ’nın yaklaşık güven aralığı

Eş. 2.54’e indirgenebilir.(
1− zα√

2(n−1)

)
Ĉpk,

(
1+

zα√
2(n−1)

)
Ĉpk, (2.54)

Pearn ve Chen (1998), asimetrik tolerans sınırlarına sahip süreçler için

T = [3(USL)−LSL]/4 olan A ve B gibi iki süreci ele almışlardır. A sürecinin ortalaması

µA = T , B sürecinin ortalaması µB = LSL+d/2; standart sapmaları σA = σB = d/6 olduğu

bilinen bu iki süreç için Eş. 2.29’da Cpk = 1 olduğu görülebilir. Her iki süreç için uygun

olmama beklenen yüzdeleri %0,135 ise; A sürecinin üretimi hedef değerde gerçekleşirken;

B sürecinin üretiminde hedef değerden uzaklaştığı dikkate alındığında, Cpk indeksi bu iki

süreci ayırmada başarılı değildir. Bu problemi çözmek amacı ile C
′′
pk olarak adlandırdıkları

bir indeks önermişler ve bu indeksi diğer genelleştirilmiş Cpk indeksleri ile karşılaştırmıştır.

Eş. 2.55’te önerilen C
′′
pk indeksinin diğerlerine göre daha üstün olduğu görülmüş ve

C
′′
pk =

d∗−A∗

3σ
(2.55)

olarak tanımlanmıştır.

Burada, A∗ = maks
{

d∗ (µ−T )
Du

,
d∗ (µ−T )

Dl

}
; Du = USL − T ; Dl = T − LSL ve

d∗ = min{Dl,Du} ile ifade edilir (Pearn ve Chen, 1998).

Cpk tahmini için örneklem büyüklüğüne karar verilmesi

Cpk’nın tahmin edicisinin örneklem dağılımının Cp’ye göre daha karmaşık olması, ilgili

tahminlerin yapılmasını güçleştirmektedir. Cpk’nın tahmini için örneklem büyüklüğüne

karar verilmesi ile ilgili olarak Kushler ve Hurley (1992), Bissell’in yaklaşımının (1990)

diğer yaklaşımlara göre hesaplama bakımından daha kolay olduğunu ve daha doğru

sonuçlar verdiğini belirtmektedir.
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Franklin ve Wasserman (1992) n ≥ 30 için, Bissell’in yaklaşımının (1990) simulasyonla

Cpk’nın alt %95 güven limiti için doğru sonuçlar verdiğini göstermiştir.

Eş. 2.52’de verilen Bissell’in yaklaşımının alt güven sınırı n ≥ 30 için, 2n− 2 ∼= 2n olarak

alınarak, Cags
pk değeri Eş. 2.56’daki gibi elde edilmiştir.

Cags
pk
∼= Ĉpk−

zα√
n

√
1
9
+

(Ĉpk)
2

2
(2.56)

Eş. 2.56 kullanılarak örneklem büyüklüğü,

n =

(z
α
)2

[
1
9
+

(
Ĉpk
)2

2

]
(

Ĉpk−Clcl
pk

)2 = (zα)
2

[
1

9
(
Ĉpk
)2 +

1
2

]
(

1−Cags
pk /Ĉpk

)2 (2.57)

olur. Burada n değeri, Ĉpk −Cags
pk , α , Ĉpk ve Cags

pk /Ĉpk değerlerine bağlı olarak elde

edilmektedir (Franklin, 1999).

Cpk’ya ilişkin hipotez testleri

Cpk ile ilgili hipotezler aşağıdaki şekilde kurulur.

H0 : Cpk ≤C (süreç yeterli değil) (2.58)

H1 : Cpk >C (süreç yeterli) (2.59)

H0 hipotezi hakkında karar vermek için kullanılan p− değeri yeterli olmayan bir sürecin

(H0 : Cpk ≤ C), yeterli bir süreç olarak (H1 : Cpk > C) yorumlanma riskini ifade eder. Bu

durumda p−değeri < α ise yokluk hipotezi reddedilir ve süreç yeterli olarak değerlendirilir.

Pearn ve Lin (2002), Ĉpk’nın dağılım fonksiyonuna dayalı olarak p− değeri hesaplamada

uygulama kolaylığı sağlayan pratik bir yöntem geliştirmiştir.

Pearn ve Kotz (2006: 57), Eş. 2.58’de verilen yokluk hipotezi hakkında karar vermek için

Eş. 2.60’daki φ∗(x) testini tanımlamıştır.
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φ
∗ (x) =


1, Ĉpk > c0

0, d.d

(2.60)

Eş. 2.60’da Ĉpk > c0 ise, yokluk hipotezi (H0 : Cpk ≤ C), I. tip hata olasılığı α (c0) =

α ile reddedileceği ifade edilmektedir. α ve C değerinin verilmesi durumunda c0 değeri,

P
(

Ĉpk > c0
∣∣Cpk =C

)
= α eşitliği çözülerek elde edilebilir.

Spesifikasyon sınırlarının orta noktası olarak ifade edilen m değeri ile hedef değeri T ’nin aynı

olduğu (T =m) süreçler için Eş. 2.34’te yeniden tanımlanan Cpk indeksi, Cpk =
( d

σ
−|ξ |

)
/3

olarak yazılabilir. Burada, ξ = (µ −m)/σ ’dır. Cpk = C olarak verilirse, b = d/σ eşitliği

b = 3C+ |ξ | ile ifade edilebilir. Yeterlilik koşulu C bilindiğinde c∗ a ilişkin p−değeri,

p−değeri = P
(

Ĉpk > c∗
∣∣Cpk =C

)
=
∫ b
√

n

0
G

(
(n−1)(b

√
n− t)2

9n(c∗)2

)[
φ
(
t +ξ

√
n
)
+φ(t−ξ

√
n)dt

]
eşitliği çözülerek hesaplanabilir.

Benzer olarak, yeterlilik koşulu C, parametre ξ , örneklem büyüklüğü n ve I. tip hata olasılığı

α değerleri için c0 kritik değeri,

∫ b
√

n

0
G
(

(n−1)(b
√

n−t)2

9n(c0)
2

)
[φ (t +ξ

√
n)+φ(t−ξ

√
n)dt] =α eşitliği çözülerek elde edilebilir.

Cpm indeksi

Hsiang ve Taguchi (1985) tarafından tanımlanan Cpm indeksi, Taguchi’nin kayıp fonksiyon

fikrine dayanır ve Taguchi indeksi olarak da adlandırılır. Cpm indeksi, hedef değer (T )

etrafındaki kümelenmeyi dikkate aldığından, sürecin merkezlenme derecesini daha iyi

yansıtır. Bu nedenle, süreç ortalamasının konumu hakkında Cp ve Cpk indekslerine göre

daha sağlıklı bir bilgi sağlar. Cpm indeksi;

Cpm =
USL−LSL

6
√

σ2 +(µ−T )2
=

USL−LSL
6τ

=
d
3τ

(2.61)
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olarak ifade edilir. Burada, USL − LSL, sürecin kabul edilebilir tolerans aralığını;

d = USL− LSL/2, spesifikasyon aralık uzunluğunun (spesifikasyon bandının) yarısını; τ

ise hedef değerden (T ) ortalama sapmayı ifade etmektedir.

τ2 = σ2 +(µ−T )2 = E[(X−T )2] terimi, iki varyans bileşeninden oluşur. Bunlardan ilki,

süreç ortalamasına göre, diğeri de süreç ortalamasının hedeften farkına göre belirlenir.

E[(X−T )2] kayıp değerinin beklenen değeri olduğu için, süreç değişkeni X’in kayıp

fonksiyonunun, ( Kayıp(X) = k(X−T )2 ) bir k pozitif sabit değerleri ile simetrik bir

karesel hata fonksiyonuna yaklaştığı varsayılır. Bu nedenle Cpm yeterlilik indeksi kayıp

değerine dayalı bir indeks olarak tanımlanır.

Cpm indeksinin Eş. 2.61’de görüldüğü gibi, süreç varyansı arttığında payda değeri de

büyüyecek, böylece Cpm indeksi küçülecektir. Ayrıca, süreç ortalaması hedef değerden

uzaklaştığında Cpm indeksinin payda değerinin artacağı, böylece Cpm indeks değerinin

azalacağı; aynı şekilde, süreç ortalaması hedef değere yaklaştığında Cpm indeksinin payda

değerinin azalacağı, böylece Cpm indeks değerinin artacağı söylenebilir.

Cpm indeksi süreç değişkenliğini ölçmesi bakımından Cp indeksinden farklıdır. Cpm indeksi

Cp ve Cpk indeksleri cinsinden Eş. 62’de görüldüğü gibi yazılabilir (Pearn ve Kotz, 2006:

67-68).

Cpm =
USL−LSL

6
√

σ2 +(µ−T )2
=

Cp√
1+
(

µ−T
σ

)2
=

Cpk(
1+
|µ−m|

σ

)√
1+
(

µ−T
σ

)2
(2.62)

Kotz ve Johnson (1999) T = m varsayımı altında tanımlanan k = |µ−m|/d ifadesini

kullanarak,

Cpk =Cp(1− k) (2.63)

Cpm =Cp(1+9C2
pk2)

−1/2
(2.64)

eşitliklerini yazmıştır.

Eş. 2.63 ve Eş. 2.64’de verildiği gibi Cpk ve Cpm indekslerini Cp indeksi cinsinden
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karşılaştırmışlardır. Böylece, 0 ≤ k ≤ 1 için, Cp’nin küçük değerleri için Cpm indeksi Cpk

indeksinden büyük olur. Cp’nin büyük değerleri için Cpm indeksi Cpk indeksinden küçük

olur. Aynı zamanda, Cpm indeksini, Cp ve Cpk indekslerini içerecek şekilde Eş. 2.65’de

verildiği gibi de formüle etmişlerdir.

Cpm =Cp

{
1+9(Cp−Cpk)

2
}−1/2

(2.65)

Cpm indeksi ve uygun olmama yüzdesi (%NC)

T = m varsayımı altında, Eş. 2.66’da verilen Cpm indeksi γ = σ/d ve ξ = (µ −m)/d ’nin

bir fonksiyonu olarak Eş. 2.66’daki gibi yeniden yazılabilir.

Cpm =
d

3
√

σ2 +(µ−m)2
=

1

3
√

(γ2 +ξ 2)
(2.66)

Eş. 2.66’dan ξ değeri,

γ
2 =

1

(3Cpm)
2 −ξ

2 =

(
1

3Cpm
+ξ

)(
1

3Cpm
−ξ

)
(2.67)

ya da

γ =

√(
1

3Cpm
+ξ

)(
1

3Cpm
−ξ

)
=

√(
1

3Cpm
+ |ξ |

)(
1

3Cpm
−|ξ |

)
(2.68)

olarak elde edilir. Burada,

0 ≤ |ξ | ≤ 1/(3Cpm)’dir. Örneğin, 1− 1
3Cpm
≤ Ca ≤ 1 için uygun olmama yüzdesi, normal

dağılım varsayımı altında,

%NC = 1−φ

(
USL−µ

σ

)
+φ

(
µ−LSL

σ

)

= φ

− 2−Ca√
1

3Cpm
2 − (1−Ca)

2

+φ

− Ca√
1

3Cpm
2 − (1−Ca)

2


(2.69)
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olarak elde edilir. Burada, Ca sürecin merkezlenme derecesini ölçmede kullanılan ve Eş.

2.70’te ifade edilen doğruluk (accuracy) indeksidir.

Ca = 1− |µ−m|
d

(2.70)

Ca indeksi, merkez etrafında kümelenme yeteneğini gösterirken, kullanıcıyı süreç

ortalamasının genellikle hedef değere eşit olan m değerinden sapmasına karşı uyarır (Pearn

ve Kotz, 2006: 70-72).

Tek bir örneklem ile Cpm’nin tahmin edilmesi

Chan ve diğerleri (1988), Cpm indeksi için Eş. 2.71’deki,

C̃pm = C̃pm(CCS) =
d

3τ̃CCS
=

d

3
√

∑
n
i=1 (xi−T )2/(n−1)

=
d

3
√

s2 + n
n−1(x−T )2

(2.71)

tahmin ediciyi önermiştir. Bir başka tahmin edici de Boyles (1991) tarafından

Ĉpm = Ĉpm(B) =
d

3τ̃B
=

d

3
√

∑
n
i=1 (xi−T )2/(n)

=
d

3
√

s2
n +

n
n−1

(x−T )2
(2.72)

biçiminde önerilmiştir.

Süreç değişkeninin normal dağıldığı ve T = m varsayımı altında Chan ve diğerleri (1988),

C̃pm tahmin edicisinin olasılık yoğunluk fonksiyonunu, Eş. 2.73’de verildiği gibi

tanımlamışlardır.

fY (y) =
a

2
n
2−1y3

exp
[
−1

2

(
a
y2 +λ

)]
∞

∑
j=0

λ j(
a
y2 )

n
2+ j−1

j!Γ(
n
2
+ j)22 j

, y > 0 (2.73)

Burada, Y = C̃pm, a = C2
pm

(
1+

λ

n

)
(n− 1) ve λ = n(µ−T )2/σ2 olarak ifade edilmiştir.

Y = C̃pm tahmin edicisinin dağılım fonksiyonu ise Eş. 2.74’te
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FY (y) = 1− exp
(
−λ

2

)
∞

∑
j=0

(
λ

2
) j

j!Γ
(n

2
+ j
) ∫ a

2y2

0
t
n
2
+ j−1

e−tdt , y > 0 (2.74)

olarak tanımlanmıştır. Eş. 2.71 ve Eş. 2.72’de tanımlanan tahmin ediciler incelendiğinde

asimptotik olarak eşit olduğu görülebilir (Pearn ve Kotz, 2006: 74-75).

Y = C̃pm ’nin beklenen değeri Eş. 2.75’de verildiği gibidir.

E
(
C̃pm

)
=

(
n−1

2

)1/2

Γ

(
n−1

2

)
Γ

(n
2

) Cpm (2.75)

C̃pm’nin Ortalama Hata Karesi (MSE) ise,

MSE
(
C̃pm

)
=C2

pm

(
n−1

2

){
Γ
(n

2 −1
)

Γ
(n

2

) −
Γ2 (n−1

2

)
Γ2
(n

2

) } (2.76)

olarak tanımlanır. C̃pm tahmin edicisi Cpm indeksi için yanlı ancak, asimptotik olarak yansız

bir tahmin edicidir.

C̃pm ’nin "Yan" değeri;

Yan
(
C̃pm

)
= E

(
C̃pm

)
−Cpm

=

(
n−1

2

)1/2

Γ

(
n−1

2

)
Γ

(n
2

) Cpm−Cpm

=Cpm


(

n−1
2

)1/2

Γ

(
n−1

2

)
Γ

(n
2

) −1



(2.77)

olarak elde edilir. Buradan,

lim
n→∞

Yan
(
C̃pm

)
= limCpm

n→∞

(
( n−1

2 )
1/2

Γ( n−1
2 )

Γ( n
2)

−1
)
=Cpm (1−1) = 0
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olur ki bu da C̃pm tahmin edicisinin asimptotik olarak yansız olduğunu göstermektedir

(Stoumbos, 2002).

Ĉpm ’nin r. momenti

Kotz ve Johnson (1993: 99-100), Ĉpm ’nın r. momenti için

µ
′
r
(
Ĉpm

)
=

(
d
√

n
3σ

)r

exp
(
−λ

2

)
∞

∑
j=0

(
λ

2

) j

j! E
[(

χ2
n+2 j

)−r/2
]

=

(
d
√

n
3σ

)r

exp
(
−λ

2

)
∞

∑
j=0

(
λ

2

) j

j!

Γ

(
n−1

2
+ j
)

Γ

(n
2
+ j
)

(2.78)

formülasyonunu türetmiştir. Burada, ilk iki moment,

E
(
Ĉpm

)
=

d
√

n
3σ

exp
(
−λ

2

)
∞

∑
j=0

(
λ

2

) j

j!
Γ
(n−1

2 + j
)

Γ

(n
2
+ j
) (2.79)

Var
(
Ĉpm

)
=

(
d
√

n
3σ

)2

exp
(
−λ

2

)
∞

∑
j=0


(

λ

2

) j

j!
1

n−2+2 j

−E
[
Ĉpm

]2 (2.80)

ile elde edilir.

Eş. 2.79’da, d/3σ yerine d/3σ = Cp eşitliğini ve λ yerine λ = n(µ−T )2/σ2 eşitliğini

yazılarak yeniden düzenleyen Boyles (1991), E(Ĉpm)’nin doğru bir yaklaşımını önermiş ve

n > 100 için normal bir yaklaşım geliştirmiştir.

E
(
Ĉpm

)
=

 n(n+λ )

2(n+2λ )

Γ

[
(n−1+λ )2 +(n−1)

2(n+2λ )

]

Γ

(
(n+λ )2

2(n+2λ )

)
Cp (2.81)

Eş. 2.81’de görüldüğü gibi, Ĉpm, Cpm’nin yanlı bir tahmin edicisidir. Ĉpm ’nin "Yan" değeri;
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Yan
(
Ĉpm

)
= E

(
Ĉpm

)
−Cpm = Cp

√n
2

Γ

(
n−1

2

)
Γ

(n
2

) −1

 olarak elde edilebilir (Pearn ve

Kotz, 2006: 76).

Cpm için güven aralıkları

Cpm =
USL−LSL

6
√

σ2 +(µ−T )2
=

USL−LSL

6

√
σ2 +

(
λ

n

)
σ2

(2.82)

ifadesi,

Cpm = USL−LSL

6σ

√
1+( λ

n )
ya da Cpm

√
1+
(

λ

n

)
= USL−LSL

6σ
olarak yazılabilir. Böylece,

Ĉpm ∼Cpm

√
1+
(

λ

n

)√
n

χ2
n,λ

şekilde ifade edilebilir (Zimmer, Hubele ve Zimmer, 2001).

Boyles (1991) ve Pearn ve diğerleri (1992) Ĉpm ’nin,

Ĉpm ∼
USL−LSL

6σ

√
n

χ2
n,λ

(2.83)

olarak dağıldığını göstermiştir. Burada, χ2
n,λ , n serbestlik derecesine ve λ = n(µ−T )2

σ2

merkezi olmama parametresi ile merkezi olmayan Ki-kare dağılımına sahiptir (Kotz ve

Johnson, 1993: 99).

Cpm ile merkezi olmayan Ki-kare dağılımı arasındaki ilişki Zimmer ve diğerleri (2001)

tarafından gösterilmiştir.

Zimber ve Hubele (1997), Ĉpm tahmin edicisinin örnekleme dağılımı için yüzdelik tabloları

elde etmişlerdir. Cpm’nin % a(1−α)100 güven aralığı, Ĉpm√
1+

λ

n

√ n
χ2

(1−α/2),n,λ

,
Ĉpm√

1+
λ

n

√ n
χ2

(α/2),n,λ

 (2.84)
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ile ifade edilmiştir. (Zimmer ve diğerleri, 2001).

Cpm tahmini için örneklem büyüklüğüne karar verilmesi

Örneklem büyüklüğüne karar verilmesi, maliyetle ilişkili olduğundan veri toplama işinin

önemli bir adımıdır. Franklin (1999), örneklem büyüklüğüne karara vermek için Boyles

(1991) tarafından önerilen alt kontrol sınırını kullanarak bir formül önermiştir.

n =
2
9

(
1+2ξ 2)
(1+ξ 2)

2
1

zα

2

√√√√1+
(zα

2

)2
−

(
Clcl

pm

Ĉpm

)2/3
(2.85)

Bu eşitliği elde edebilmek için Cpm ’nin istenen alt kontrol sınırına (Clcl
pm) bağlı olarak(

Clcl
pm/Ĉpm

)
oranına ve ξ = (µ−T )/σ değerine ihtiyaç duyulmaktadır.

Cpm ’ye ilişkin hipotez testleri

Cpm indeksi kullanılarak, bir sürecin yeterli olup olmadığına karar vermek için Eş. 2.86-Eş.

2.87’deki hipotezler test edilebilir.

H0 : Cpm ≤C (süreç yeterli değil) (2.86)

H1 : Cpm >C (süreç yeterli) (2.87)

Karar kuralına göre, Ĉpm > c0 ise yokluk hipotezi reddedilir. Burada, c0 kritik değerdir.

Hedef değeri, spesifikasyon sınırlarının ortasında yer alan (T = m) süreçler için Cpm indeksi

yeniden Eş. 2.88’deki gibi yazılabilir.

Cpm =
b(

3(1+ξ 2)
1/2
) (2.88)

Cpm = C ve b = d/σ olarak verildiğinde, b = 3C(1+ξ 2)
1/2

) olarak ifade edilebilir. p−

değeri ise,
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p−değeri =

b
√

n/3c∗∫
0

G

(
b2n

9(c∗)2 − t2

)
φ
(
t +ξ

√
n
)
+φ

(
t−ξ

√
n
)

dt (2.89)

ile hesaplanır. Burada, G(.) χ2
n−1 in dağılım fonksiyonu ve φ(.) ise standart normal olasılık

yoğunluk fonksiyonunu göstermektedir. c∗, örneklem verisinden hesaplanan Ĉpm nin belli

bir değeridir.

Verilen α ve C değerleri için, c0 kritik değeri,

P
(
Ĉpm ≥ c0

∣∣Cpm =C
)
= α (2.90)

eşitliği çözülerek elde edilebilir.

Yeterlilik gereksinimi olarak adlandırılan C, ξ parametresi, örneklem büyüklüğü n ve I. tip

hata olasılığı α verildiğinde, Eş. 2.91 çözülerek kritik değer c0 elde edilebilir.

b
√

n/3c0∫
0

G

(
b2n

9(c0)
2 − t2

)
φ
(
t +ξ

√
n
)
+φ

(
t−ξ

√
n
)

dt = α (2.91)

p < α için yokluk hipotezi reddedilir ve sürecin yeterli olduğu söylenebilir (Pearn ve Kotz,

2006).

Vannman (1995), tek değişkenli ve Cp, Cpk, Cpm ve Cpmk indekslerini içeren, Cp (u,v) olarak

adlandırdığı başka bir yeterlilik indeksi önermiştir. Bu indeks Eş .2.92’de verilmiştir.

Cp (u,v) =
d−u |µ−m|

3
√

σ2 + v(µ−T )2
(2.92)

Burada, µ bilindiği gibi süreç ortalamasını, σ süreç standart sapmasını, d = (USL−LSL)/2

spesifikasyon aralık uzunluğunun yarısını, m = (USL + LSL)/2 üst ve alt spesifikasyon

sınırları arasındaki orta noktayı ve T , hedef değerini ifade etmektedir.

Eş. 2.92’de görülen u,v≥ 0 ise, Cp(u,v) yeterlilik indeksinin u ve v ’nin belli değerleri için

Cp, Cpk, Cpm ve Cpmk indeksleri ile ilişkisi, aşağıdaki şekilde yazılmaktadır.
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Cp (0,0) =Cp , Cp (1,0) =Cpk , Cp (0,1) =Cpm , Cp (1,1) =Cpmk

Bu dört indeks arasındaki ilişki de Eş. 2.93 ve Eş. 2.94’de verildiği gibi gösterilmiştir (Pearn

ve Chen, 1997).

Cpm =Cp

{
1+[(µ−T )/σ ]2

}−1/2
(2.93)

Cpmk =Cpk

{
1+[(µ−T )/σ ]2

}−1/2
(2.94)

Pearn ve Chen (1997), çalışmasında süreç ortalamasının hedef değerden ayrılışına göre

yeterlilik indekslerinin duyarlılığını sıralamış ve en hassastan daha az hassasa doğru sırası

ile Cpmk, Cpm, Cpk ve Cp olacağını belirtmiştir (Pearn ve Chen, 1997).

2.1.2. Normal dağılmayan süreçlerde tek değişkenli süreç yeterlilik indeksleri

Süreç yeterlilik tahmini için kullanılan standart teknikler genellikle parametrik varsayımlara

dayanır ve süreç yeterlilik indeksleri olarak adlandırılır. Sözü geçen parametrik

varsayımların en önemlisi genellikle sürecin normal dağılmasıdır. Bu varsayımda meydana

gelen bozulmalar süreç yeterliliğinde yanıltıcı değerlendirmelere neden olabilmektedir. Bu

nedenle, bir üretim süreç kalitesini değerlendirmede kullanılan süreç yeterlilik indeksleri

tartışmalı hale gelmiştir. Bu tartışma bazı kalite uygulamacılarının bu indeksleri saf dışı

bırakmalarına neden olmuştur. Ancak, bir üretim sürecinin yeterliliğinin belirlenmesi

endüstriler için yararlı sonuçlar sağlar. Bu nedenle sürecin normal dağılmaması durumu

için geçerli yöntemler geliştirilmesi büyük önem taşımaktadır (Polansky, 2001).

Son yıllarda kalite değişkenlerinin normallik varsayımını sağlamadığı durumlarda süreç

yeterlilik analizi için önerilen iki yaklaşım göze çarpmaktadır. Bu yaklaşımlardan ilki,

normal dağılıma uygun olmayan veriyi normal dağılıma dönüştürmek ve daha sonra

yeterlilik indeksleri için önerilen klasik yaklaşımları kullanmaktır. Bu amaçla en çok

kullanılan dönüşüm teknikleri, Johnson (1949) ve Box-Cox (1964) Güç dönüşüm

teknikleridir. İkinci yaklaşım, dağılımın bilinmediği durumlarda veriyi bir dağılıma

uydurmak ve daha sonra normal olmayan yüzdelikler kullanılarak süreç yeterlilik
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indekslerini tahmin etmektir. Bu amaçla en çok kullanılan yöntemlere örnek olarak, Burr

(1942) ve Clements (1989) yüzde metodu verilebilir.

Kalite değişkeninin dağılımı Normal, Lognormal, t, F, Beta ve Gamma dağılımlarını içeren

Pearson ailesi olasılık eğrilerinden birine sahipse;

P(LPL≤ µ ≤UPL) = 1−0,0027 = 0,9973 (2.95)

şeklinde tanımlanır. Clements (1989), normal olmayan süreç yeterlilik indekslerini tahmin

etmek için Pearson dağılım eğrisini kullanarak Eş. 2.104’de süreç ortalaması (µ) yerine süreç

ortanca değerini (M) kullanmıştır. Bunun nedeni, süreç ortancasının, süreç ortalamasına

göre, özellikle uzun kuyruklu çarpık dağılımlara daha az duyarlı (robust) olmasıdır (Pearn

ve Chen, 1997).

Clements (1989) yüzde metodunda, UPL, Pearson ailesinin 99,865 yüzdeliği; LPL, Pearson

ailesinin 0,135 yüzdeliği olarak ifade edilmiştir.

Klasik süreç yeterlilik indekslerinde kullanılan 6σ yerine UPL− LPL aralık uzunluğu

kullanılır. Böylece, normal olmayan süreç yeterlilik indeksi Cp,

Cp =
USL−LSL

x99,865− x0,135
(2.96)

olarak, Cpk ise

Cpu =
USL− x50

x99,865− x50
(2.97)

Cpl =
x50−LSL

x50− x0,135
(2.98)

Cpk = min
{

Cpu,Cpl
}

(2.99)

olarak tanımlanmaktadır.

Burada, xp = p×100. yüzdelik değeri olarak tanımlanmıştır.



42

Pearn ve Kotz (1994), Clements (1989) yöntemini esas alarak Cpm ve Cpmk indekslerini Eş.

2.100 ve Eş. 2.101’de verildiği gibi önermiştir.

Cpm =


USL−LSL

6

√[
x99,865− x0,135

]2
6

+(M−T )2

 (2.100)

Cpmk = min


USL−M

3

√[
x99,865−M

]2
3

+(M−T )2

,
M−LSL

3

√[
M− x0,135

]2
3

+(M−T )2

 (2.101)

Pearn ve Chen (1997), Vannman (1995) tarafından tanımlanan Cp (u,v) indeksini normal

dağılım varsayımı olmadığı durumlar için CN p (u,v) ve C
′
N p (u,v) olarak adlandırdığı iki

indekse genellemiştir. CN p (u,v), Eş. 2.102’de görüldüğü gibi tanımlanmıştır:

CN p (u,v) =
d−u |M−m|

3

√[
F99,865−F0,135

6

]2

+ v(M−T )2

(2.102)

Burada, Fα , α ’ncı yüzdelik (percentile); M, dağılımın ortancası m = (USL−LSL)/2; u,v≥

0 şeklindedir. Cp (u,v) tanımının bulunduğu Eş.2.92’de süreç standart sapması σ ’nın yerine
F99,865−F0,135

6 konularak Eş. 2.102’nin elde edildiği açıktır. Böyle bir yerine koymadaki esas

amaç, ortalamadan (µ) ∓3σ sınırları dışında kalan uygun olmama oranı %0,27 olan normal

dağılım özelliğini taklit edebilmektir. Böylece, CN p (u,v) = 1 olarak hesaplandığında (süreç

iyi bir şekilde merkezlenmişse); spesifikasyon sınırları (LSL, USL) dışına çıkma olasılığı

önemsiz derecede küçük olacaktır. Parametre değerleri (u,v) ’nin (0,0); (0,1); (1,0) ve

(1,1) değerleri için dört farklı forma genellenmiştir. Normal dağılım varsayımı olmaksızın

kullanılabilen bu indeksler Eş. 2.103-Eş. 2.106’da görülmektedir:

CN p =
USL−LSL

F99,865−F0,135
(2.103)

CN pk = min

 USL−M
F99,865−F0,135

2

,
M−LSL

F99,865−F0,135

2

 (2.104)
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CN pm =


USL−LSL

6

√[
F99,865−F0,135

6

]2

+(M−T )2

 (2.105)

CN pmk = min


USL−M

3

√[
F99,865−F0,135

6

]2

+(M−T )2

,
M−LSL

3

√[
F99,865−F0,135

6

]2

+(M−T )2


(2.106)

Yukarıda tanımlanan dört indeks arasındaki ilişki CN pm =CN p

{
1+[(M−T )/σ∗]2

}−1/2
ve

CN pmk =CN pk

{
1+
[
(M−T )/σ ”]2}−1/2

şeklindedir.

Burada, σ∗ =
F99,865−F0,135

6 olarak verilmiştir.

Pearn ve Chen (1997), süreç ortancasının hedef değerden ayrılışına göre yeterlilik

indekslerinin en duyarlıdan az duyarlıya doğru sıralanışının CN pmk, CN pm, CN pk ve CN p

şeklinde olacağını belirtmiştir. Ayrıca, simetrik tolerans sınırları için CN pk = (1− k)CN p ve

CN pmk = (1− k)CN pm olduğunu göstermişlerdir. Burada, k = |M−T |/d "ayrılma oranı"

olarak ifade edilmiştir. Süreç ortalaması hedef değere eşit olduğunda, k=0 ve

CN p = CN pk = CN pm = CN pmk = d/3σ∗ olduğu açıkça görülmektedir. Diğer taraftan, süreç

dağılımı normal dağılım olduğu durumda µ = M ve σ∗ = σ dır. Bu durumda, genellenen

CN p(u,v) indekslerinin parametrik Cp (u,v) indekslerine indirgendiği görülmektedir.

Pearn ve Kotz (1994) ve Pearn ve Chen (1995), Clements yüzde metodunu, normal olmayan

Pearson dağılımlarına uygulamış ve Cp(u,v) için tahmin ediciler önermişlerdir. Önerilen

tahmin ediciler ortalama, standart sapma, basıklık ve çarpıklık tahminlerinden yararlanılarak

iki yüzdelik olan F99,865 ve F0,135 için Up ve Lp tahminlerine dayalıdır. Bu tahmin edici, Eş.

2.107’de verilmiştir.
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C
′
N p (u,v) = (1−u)∗ USL−LSL

6

√[
F99,865−F0,135

6

]2

+ v(M−T )2

+

u∗min


USL−M

3

√[
F99,865−F0,135

3

]2

+ v(M−T )2

,
M−LSL

3

√[
F99,865−F0,135

3

]2

+ v(M−T )2


(2.107)

önerilen indeksler parametre değerleri (u,v) ’nin (0,0); (0,1); (1,0) ve (1,1) değerleri için

dört farklı forma genellenmiştir. Bu genelleştirilmiş formlar Eş. 2.108-Eş. 2.111’de

verilmektedir (Pearn ve Chen, 1997).

C
′
N p =

USL−LSL
F99,865−F0,135

(2.108)

C
′
N pk = min

{
USL−M

F99,865−M
,

M−LSL
M−F0,135

}
(2.109)

C
′
N pm =


USL−LSL

6

√[
F99,865−F0,135

6

]2
+(M−T )2

 (2.110)

C
′
N pmk = min


USL−M

3

√[
F99,865−M

3

]2
+(M−T )2

,
M−LSL

3

√[
M−F0,135

3

]2
+(M−T )2

 (2.111)

Pearn ve Chen (1997) A, B ve C gibi Ki-kare dağılımına sahip üç süreci Eş. 2.103-Eş. 2.106

ve Eş. 2.108-Eş. 2.111’de verilen indeksleri karşılaştırmak amacı ile incelemiştir. Önerilen

CN p indeksinin süreç yeterliliğini ölçmede C
′
N p ve Cp (u,v) indekslerine göre daha tutarlı ve

daha doğru sonuç verdiğini göstermiştir.

Liu ve Chen (2006), Clements (1989) yüzde metodunda Pearson dağılımının yüzdeliklerini

kullanmak yerine Burr dağılımının yüzdeliklerini kullanmışlardır. Burr (1942), X rastgele

değişkeninin yüzdeliklerini elde etmek için Burr XII dağılımı olarak adlandırılan bir dağılım

önermiştir. X rastgele değişkenin dağılım fonksiyonu,
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F (x) =


1− (1+ xc)−k , x≥ 0 , c > 0 , k > 0

0 , x < 0

olarak tanımlanmıştır. Karşılıklı dönüşümler
(

1−F
(

1
y

))
ile elde edilen yeni Burr XII

değişkeni Y ’nin dağılım fonksiyonu ise,

G(y) =


(1+ y−c)

−k
, y≥ 0 , c > 0 , k > 0

0 , y < 0

(2.112)

olarak tanımlıdır. Burada, c ve k sırasıyla çarpıklık ve basıklık katsayılarıdır.

Burr yüzde metodunun adımları (Ahmad, Abdollahian ve Zeephongsesekul, 2008) tarafından

aşağıdaki gibi açıklanmıştır.

Adım 1’de örneklem verisinden örneklem ortalaması x̄, standart sapması s, çarpıklık

katsayısı s3 ve basıklık katsayısı s4 tahmin edilir.

α3 =
(n−2)√
n(n−1)

s3

α4 =
(n−2)(n−3)√

(n2−1)
s4 +3

(n−1)
(n+1)

Adım 2’de yukarıdaki eşitlikler kullanılarak standartlaştırılmış α3 çarpıklık ve α4 basıklık

momentleri hesaplanır.

Adım 3’te, hesaplanan α3 ve α4 değerleri kullanılarak Burr parametrelerinden en uygun c

ve k seçilir. Z = (Y − µ)/σ ile standartlaştırılan değişkenlerin dağılımını elde etmek için

BurrXII dağılımı kullanılır. Burada Y , Burr rastgele değişkenidir.

Burr tablosu kullanılarak standartlaştırılmış değerler Z0,00135, Z0,5 ve Z0,99865 elde edilir.

X’in ilgili yüzdelikleri, iki standartlaştırılmış değerin aşağıdaki gibi eşleştirilmesi sonucu

elde edilir.
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(X− x̄)
s

=
(Y −µ)

σ

Üst, medyan ve alt yüzdelik değerleri aşağıdaki gibi hesaplanır.

x0,135 = x̄+ sZ0,00135

x50 = x̄+ sZ0,5

x99,865 = x̄+ sZ0,99865

Son adımda ise, yukarıda elde edilen eşitlikler kullanılarak Eş. 2.96-Eş. 2.99’da verilen Cp,

Cpu, Cpl ve Cpk süreç yeterlilik indeksleri hesaplanabilir.

Ahmad ve diğerleri (2008), Box-Cox dönüşümü, Clements ve Burr yüzde yöntemlerinin

normal olmayan süreçlerde yeterlilik indeksi hesaplamadaki doğruluğunu incelemek

amacıyla Weibull, Gamma ve Lognormal dağılımlarına sahip her birinin örneklem

büyüklüğü 100 olan 30 örneklem üreterek elde ettikleri verilere Box-Cox dönüşümü ve

Clements ve Burr yüzde metotlarını uygulamışlardır. Karşılaştırma kriteri olarak Ĉpu ele

alınmıştır. Her üç yöntem için elde edilen Ĉpu değerlerinin ortalama ve standart sapmaları

hesaplanmıştır. Sonuç olarak, Burr yüzde yönteminden elde edilen Ĉpu değerleri belirlenen

Ĉpu değerlerinden, en az sapmayı göstermiştir. Burr yüzde metodu kullanılarak elde edilen

Ĉpu değerlerinin standart sapması, Clements yüzde metodu kullanılarak elde edilen Ĉpu

değerlerinin standart sapmasından daha küçüktür. Box-Cox dönüşüm yöntemi ile elde

edilen Ĉpu değerleri belirlenen Cpu değerlerine yakın değildir. Büyük örneklemlerin her üç

metot için de daha iyi sonuçlar sağladığı görülmüştür. Böylece, Burr yüzde metodunun

diğer iki metoda göre daha doğru sonuçlar verdiğini göstermişlerdir.

2.2. Çok Değişkenli Süreç Yeterlilik İndeksleri

Bu bölümde, çok değişkenli süreç yeterlilik indeksleri normal dağılım gösteren ve normal

dağılım göstermeyen süreçler olarak iki sınıfta incelenmiştir.



47

2.2.1. Çok değişkenli normal dağılan süreçlerde süreç yeterlilik indeksleri

Çoğu süreçte uygulamada birden fazla kalite değişkeni bulunmaktadır. Bu değişkenler

genellikle birbirleri ile ilişkili olduğu için çok değişkenli yeterlilik indekslerine gereksinim

duyulmuştur. Çok değişkenli süreçler için literatürde yer alan çalışmalar dört grupta

incelenmiş buna göre çok değişkenli süreç yeterlilik indeksleri,

1. Tolerans bölgesi ile süreç bölgesini birbiri ile oranlamaya dayalı olarak,

2. Uygun olmayan ürün elde etme olasılığına dayalı olarak,

3. Temel bileşenler analizi kullanılarak değişkenler arası korelasyonu kaldırmaya yönelik

olarak,

4. Diğer yaklaşımlar kullanılarak

elde edilmiştir (Shinde ve Khadse, 2009).

2.2.2. Grup I’de yer alan başlıca çalışmaların incelenmesi

Hubele, Shahriari ve Cheng (1991), üç bileşenden oluşan bir [Cpm,PV,LI] yeterlilik vektörü

tanımlamıştır. Yeterlilik vektörünün ilk bileşeni Cpm, Eş. 2.113’de verildiği gibi

tanımlanmıştır.

Cpm =


v
∑

i=1
(USLi−LSLi)

v
∑

i=1
(UPLi−LPLi)


1/v

(2.113)

Burada,

USLi: i. kalite değişkeni için üst spesifikasyon sınırını, LSLi: i. kalite değişkeni için alt

spesifikasyon sınırını, UPLi: i. kalite değişkeni için modifiye edilmiş süreç bölgesinin üst

spesifikasyon sınırını, LPLi: i. kalite değişkeni için modifiye edilmiş süreç bölgesinin alt

spesifikasyon sınırını ve v : kalite değişkeni sayısını göstermektedir.

Yeterlilik vektörünün ikinci bileşeni PV ise,
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PV = P
[

T 2 >
v(n−1)

n− v
Fv,n−v

]
(2.114)

olarak tanımlanmıştır.

Burada, T 2 = n
(
X̄−T

)′
S−1 (X̄−T

)
olarak ifade edilmiştir. T hedef vektörünü, X̄ örneklem

ortalama vektörünü, S, örneklem varyans-kovaryans matrisini, n örneklem büyüklüğünü ve

Fv,n−v ise (v,n− v) serbestlik derecelerine sahip F dağılımını ifade etmektedir.

Yeterlilik vektörünün üçüncü bileşeni LI, modifiye edilmiş süreç bölgesi ile tanımlanan

tolerans bölgesini karşılaştırır. Bu bileşen modifiye edilmiş süreç bölgesinin tolerans

bölgesinin dışına düşüp düşmediğini gösterir. LI = 1 olursa, modifiye edilmiş süreç bölgesi

tolerans bölgesinin içine; LI = 0 ise dışına düştüğü söylenir (Pan ve Lee, 2010).

Taam, Subbaiah ve Liddy (1993), MCp ve MCpm olarak gösterdikleri çok değişkenli iki

yeterlilik indeksi önermiştir.

MCpm =
hacim(R1)

hacim(R2)

Burada,

R1: modifiye edilmiş tolerans bölgesini

R2: çok değişkenli normal dağılıma sahip olduğu varsayılan süreç bölgesinin hesaplanan

%99,73’ünü ifade etmektedir.

Modifiye edilmiş tolerans bölgesi, Pan ve Lee (2010) tarafından şekil 2.3’te çizildiği şekilde

gösterilmiştir.
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Şekil 2.3. Tolerans bölgelerinin gösterimi

Modifiye edilmiş tolerans bölgesi hedef değerde merkezlenmiş ve orijinal tolerans bölgesinin

içine düşen en geniş elipsoid olduğundan MCpm Eş. 2.115’de verildiği gibi tanımlanmıştır.

MCpm = MCp
1
D

(2.115)

Burada, D=
(

1+(µ−T)
′
Σ−1 (µ−T)

)1/2
olarak ifade edilen düzeltme faktörüdür ve süreç

ortalaması hedef değerden sapmış ise kullanılır. MCp indeksi Eş. 2.116’da olduğu gibi

tanımlanmıştır.

MCp =

(
v
∏
i=q

ri

)
πv/2[Γ(v/2)+1]−1

|Σ|1/2(πK (v))v/2[Γ(v/2)+1]−1 (2.116)

Burada, i = 1,2, . . . ,v ’nci kalite değişkeni için,

ri = (USLi−LSLi)/2 ve Γ(.) ise Gamma fonksiyonunu göstermektedir.

MCp indeksi, Pearn, Wang ve Yen (2007) tarafından Eş. 2.117’ de verildiği gibi önerilmiştir.
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MCp =
hacim(modifiye edilmiş tolerans bölgesi)

hacim
[
(X−µ)

′
Σ−1 (X−µ)≤ Q∗

]
=

hacim(modifiye edilmiş tolerans bölgesi)

(πχ2
v,0.9973)

v/2|Σ|1/2[Γ(v/2)+1]−1

(2.117)

Burada, Q∗ v serbestlik derecesine sahip χ2 dağılımının 99,73’ncü yüzdeliğini, |Σ| ise, Σ

’nın determinantını göstermektedir.

MCp tahmin edicisi M̂CP Eş. 2.117’de görülen |Σ| yerine |S| yazılarak,

M̂CP =
hacim(modifiye edilmiş tolerans bölgesi)

hacim(%99.73 süreç bölgesi)

=
hacim(modifiye edilmiş tolerans bölgesi)

(πχ2
v,0.9973)

v/2|S|1/2[Γ(v/2)+1]−1

(2.118)

biçiminde elde edilir. Burada, S örnek varyans-kovaryans matrisi ve |S|, S ’nin

determinantıdır.

Pan ve Lee (2010), MCp ve MCpm indekslerinin tahmin edilmesinde Taam ve diğerleri

(1993)’nin çoklu kalite değişkenleri arasındaki korelasyonu dikkate almamaları ve Hubele

ve diğerleri’nin (1991) önerdiği, üç-bileşenli yeterlilik vektöründeki uygulama zorluğu

nedeniyle NMCp ve NMCpm olarak adlandırdıkları iki yeterlilik indeksi tanımlamıştır. Eş.

2.117’de verilen MCp indeksinin daha basit olarak Eş. 2.119’da verilen biçimde

hesaplanabileceğini göstermişlerdir.

MCp = |ρ|−1/2 (2.119)

Burada, ρ korelasyon matrisini göstermektedir. Korelasyon matrisinin determinant değeri 0

ile 1 arasında bir değer alacağından Eş. 2.119’da görülen MCp indeksi 1’den büyük

değerler alabilir. Diğer bir ifade ile, kalite değişkenleri bağımlı ise, MCp indeksi 1’den

büyük olacaktır. Bu durumda, süreç performans tahminleri gerçek değerlerini aşabilir.

Benzer biçimde, çoklu kalite değişkenleri bağımlı ise MCpm = MCp/D indeksi için de aynı

sorun söz konusudur. Bu durumu göz önünde bulunduran Pan ve Lee (2010), Şekil 2.3’te
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tanımlanan tolerans bölgesini revize ederek Şekil 2.4’de görüldüğü gibi yeni bir bölge

önermiştir.

Şekil 2.4. Yeni tolerans bölgesinin gösterimi

Yeni tolerans bölgesinin, kalite değişkenleri arasındaki kolerasyonu dikkate alınarak

çizilmiş olması nedeniyle ilişki yönünde eğimli bir elipsoid şeklinde olduğu Şekil 2.4’te

görülmektedir. Pan ve Lee (2010) tarafından tanımlanan yeni tolerans bölgesi, Eş. 2.120’de

verildiği gibi önerilmiştir.

Ed,A∗,T =
{

X ∈ IRV|(X−T)
′
(A∗)−1 (X−T) = d2

}
(2.120)

A∗ Matrisinin elemanları aşağıdaki gibidir:

ρi j

(
USLi−LSLi

2d

)(
USL j−LSL j

2d

)
, i, j = 1, . . . ,v

T, hedef vektörünü, ρi j , i. kalite değişkeni ile j. kalite değişkeni arasındaki korelasyon

katsayısını ve USLi−LSLi ise Ed,A∗,T elipsoidini çevreleyen dikdörtgenin her bir tarafındaki

spesifikasyon genişliğini göstermektedir. Böylece Pan ve Lee (2010) tarafından tanımlanan

yeni indeks, Eş. 2.121’deki biçimde yazılabilir.

NMCpm =
Hacim

(
Ed,A∗,T

)
Hacim

(
Ed,Σ ,µ

) (1+(X−T)
′
Σ
−1 (X−T)

)−1/2
(2.121)
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d2 = χ2
1−α,v ise, NMCpm Eş. 2.122’deki gibi yeniden yazılabilir.

NMCpm =
|A∗|1/2

(
πχ2

1−α,v

)v/2[
Γ

(v
2
+1
)]−1

|Σ|1/2
(

πχ2
1−α,v

)v/2[
Γ

(v
2
+1
)]−1

(
1+(X−T)

′
Σ−1 (X−T)

)−1/2

= NMCp/D

(2.122)

Burada, NMCp = (|A∗|/ |Σ |)1/2 ve D = (1+(X−T)
′
(Σ)−1 (X−T))

1/2

olarak ifade edilmiştir. D, süreç ortalaması ile T hedef vektörü arasındaki uzaklığın

Mahalanobis fonksiyonudur.

X1, . . . ,Xn, v kalite değişkenine sahip çok değişkenli bir süreçten rastgele alınan n

büyüklüğündeki örneklem için NMCp indeksinin tahmin edicisi Eş. 2.123’deki gibi

hesaplanmıştır.

N̂MCp = (|A∗|/ |S|)1/2 (2.123)

Burada, S bilindiği gibi örneklem varyans-kovaryans matrisi,

S = (n−1)−1 n
∑

i=1

(
Xi−X

)′ (
Xi−X

)
; X, örneklem ortalama vektörüdür.

X = n−1
n
∑

i=1
Xi biçiminde tanımlanır.

2.2.3. Grup II’de yer alan başlıca çalışmaların incelenmesi

Gonzales ve Sanchez’e (2009) göre, "Yeterlilik indeksleri uygun olmayan ürün oranı ile

yakından ilişkili olabilir."

Bu yorumlama tek değişkenli ve merkezlenmiş süreçler için klasik Cp indeksini

hesaplarken geçerli olabilir. Örneğin Cp = 0,5 ise sürecin yeterli olması için (Cp = 1)

standart sapmanın %50 gibi bir değere kadar indirilmesi gerekir. Ancak, merkezlenmemiş
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ve çok değişkenli süreçler için böyle bir yorumlamayı mümkün kılan bir yeterlilik indeksi

mevcut değildir. Buradan yola çıkarak Gonzales ve Sanchez (2009), sürecin hedeflenen

yeterliliğini koruyabilmek için süreçteki değişkenliğin ne kadar azaltılması ya da

arttırılması gerektiğini doğrudan yorumlayabilen tek değişkenli ve çok değişkenli süreç

yeterlilik indeksleri önermiştir. Tek değişkenli süreçler için önerdikleri yeni indeks uygun

olmayan ürün oranı p ile doğrudan ilişkilidir ve Cn ile gösterilmiştir. Burada n, uygun

olmama oranını (noncomforming propotion) ifade etmektedir. Cn = 1 ise,

P(X ∈ T B) = 1− α olarak tanımlanmıştır. Burada, X ∼ N
(
µ,Σ 2) ve TB ise tolerans

bölgesini göstermektedir. Cn indeksi, gerçekte süreçten elde edilen değişkenlik ile tolere

edilen değişkenliğin oranlanmasına dayanır ve Eş. 2.124’de görüldüğü gibi ifade edilmiştir.

Cn =
Σmaks

Σ
(2.124)

Σ2
maks, X ile aynı yoğunluk fonksiyonuna sahip Xmaks sürecinin P(LSL≤ Xmaks ≤USL) =

1−α ifadesini doğrulayan varyans değeridir. Σmaks ise, süreç ortalaması aynı kalmak koşulu

ile p = α olmasını mümkün kılan en büyük standart sapmadır.

Cn ’nin çok değişkenli süreçler için tanımlanması

Eş. 2.124’de tanımlanan tek değişkenli Cn indeksinin çok değişkenli süreçler için uyarlaması

Eş. 2.125’de görüldüğü gibi ifade edilmiştir.

Cn = f


∣∣∣|Σ|maks

∣∣∣
|Σ|

1/2

(2.125)

Burada, f (.) indeksin özel kullanımlarına bağlı olarak alternatif kullanımı Eş. 2.126’da

verilecektir.

Burada, Σ, sürecin varyans-kovaryans matrisi; Σmaks, P
(
Xmaks /∈ T B

)
= α ile Xmaks çok

değişkenli sürecinin izin verilen maksimum varyans-kovaryans matrisidir.

X çok değişkenli sürecinin değişkenleri birbirinden bağımsız değildir. Bu değişkenler, Y

bağımsız faktörlerin kombinasyonu olarak düşünülebilir. Çok değişkenli analizde bu

bağımsız faktörler genellikle latent (gizli) faktörler olanak bilinir ve Y bağımsız
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faktörlerinin varyanslarında meydana gelen bir değişim, Σ değerinde bir değişime neden

olacağı için süreç değişkenliğinin birincil nedeni olarak sayılabilir. Y bağımsız faktörlerinin

varyanslarındaki değişimler incelenerek çok değişkenli problemin çözümlenme sorunu, tek

değişkenli problemin çözümlenmesi şeklinde ele alınabilir (Gonzales ve Sanchez, 2009).

Gonzales ve Sanchez (2009), normallik varsayımı altında temel bileşenler analizi

kullanarak Y bağımsız faktörlerini elde edip, yeterlilik analizini temel bileşenlerin

varyanslarındaki değişim olarak ele almışlardır. Tanımlamalarında, bilinen temel bileşenler

analizi terminolojisini kullanmışlardır. Buna göre,

Σ =CDC
′

Burada, C: Σ’nın özvektörler matrisini, D: köşegenleri özdeğerlerinden oluşan (λi

i = 1,2, . . . ,m ) köşegen matrisini göstermektedir.

Yi, temel bileşenler analizi sonucu elde edilen i. bağımsız faktörünü göstersin. Bu faktörün

varyansı, λi özdeğeri ile b2
i faktörü çarpılarak değiştirilirse, elde edilen yeni özdeğerler

matrisi D∗(i) ile gösterilir.

D∗(i) = diag(λ1,λ2, . . . ,b2
i λi, ..,λm)

i. bileşenin varyansında meydana gelen bu değişimin X’de neden olduğu değişimin sonucu

X∗(i) ile ve dağılımı da X∗(i) ∼ N(µ,Σ∗(i)) ile gösterilsin. Burada, Σ∗(i)=CD∗i C
′

ile ifade edilir.

Bu yeni dağılım p∗(i) = P(X∗(i) /∈ T B) uygun olmayan ürün oranını içerir. Eş. 2.125’de verilen

Cn indeksi genel olarak Eş. 2.126’da görüldüğü gibi ifade edilmiştir.

Cn,i =


∣∣∣Σmaks

(i)

∣∣∣
|Σ|

1/2

=


(
bmaks

i
)2 m

∏
i=1

λi

m
∏
i=1

λi


1/2

= bmaks
i (2.126)

bmaks
i , p∗(i) = α ile i. faktörde Σmaks

(i) değişime neden olan değerdir ve Cn,i ≥ 1, i = 1,2, . . . ,m

ise süreç yeterlidir.

Süreç yeterli değilse, Cn,i indeksi hangi faktörün düzeltilmesi gerektiğini gösterebilir.
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Diğer bir çalışmada ise, Castagliola ve Castellanos (2005), iki değişkenli normal süreçler

için BCp ve BCpk olarak tanımladıkları yeni yeterlilik indeksleri önermiştir. Süreç kalite

değişkenlerinin (X1, X2) ve tolerans sınırlarının X1 için [L1, U1]; X2 için [L2, U2] olarak

gösterildiği varsayıldığında, bu sınırların oluşturduğu tolerans bölgesi A ile gösterilmiştir.

Σ ’nın özvektörleri kullanarak süreç bölgesini Ai, i=1,2,3,4 olan dört bölgeye ayırmışlardır.

Normal dağılımın simetrik özelliği nedeniyle, her bir Ai alanında gözlemlenenlerin oranının

1/4 olduğu ifade edilebilir. A1,A2,A3,A4 bölgelerinin tolerans bölgesi A ile kesişen poligan

konveksleri Q1,Q2,Q3,Q4 olarak tanımlanmıştır (örneğin Qi = A∩Ai ).

Her bir Ai ve tolerans bölgesi içinde gözlemlenenlerin oranı qi, i=1,2,3,4 olarak ifade edilirse,

Ai bölgesinde oluşan uygun olmayan birimlerin oranı pi =
1
4 −qi olmak üzere,

BCpk =
1
3

min
{
−φ
−1 (2p1) ,−φ

−1 (2p2) ,−φ
−1 (2p3) ,−φ

−1 (2p4)
}

(2.127)

biçiminde ifade edilebilir.

Castagliola ve Castellanos (2005) Eş. 2.127’de tanımladıkları bu indeksin BĈpk tahmin

edicisini elde edebilmek için bir prosedür geliştirmişlerdir. Bu prosedürün algoritması

aşağıdaki gibi özetlenebilir.

X1, . . . ,Xn, kontrol altında bir süreçten çekilen n büyüklüğünde bir örneklem ve

Xk =
(
Xk,1,Xk,2

)′
ise,

1. örneklemden beklenen değer vektörünün ve varyans-kovaryans matrisinin tahminleri

elde edilir. µ̂ =
1
n

n
∑

k=1
Xk

Σ̂ =
1

n−1

n
∑

k=1
(Xk− µ̂)(Xk− µ̂)T

2. Σ̂’nın özdeğerleri ve özvektörleri hesaplanır.

3. Q1,Q2,Q3,Q4 konveks polinomlarının köşeleri hesaplanır.

4. q̂1, q̂2, q̂3, q̂4 oranları hesaplanır ve p̂i =
1
4 − q̂i elde edilir.

5. Buradan,

B̂Cpk =
1
3min

{
−φ−1 (2p̂1) ,−φ−1 (2 p̂2) ,−φ−1 (2 p̂3) ,−φ−1 (2p̂4)

}
tahmini elde edilebilir.
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Castagliola ve Castellanos (2005), benzer biçimde yeni BCp indeksini Eş. 2.128’de

görüldüğü gibi tanımlamışlardır.

BCp = BC∗pk = maksBCpk (2.128)

BCpk, −Φ−1 (2p̂1) ,−Φ−1 (2 p̂2) ,−Φ−1 (2p̂3) ve −Φ−1 (2p̂4) değerleri arasında minimum

değere sahip olan olarak tanımlandığı için, BCpk maksimum değerine ancak şu durumlarda

ulaşır:

• −Φ−1 (2p̂1) =−Φ−1 (2 p̂2) =−Φ−1 (2p̂3) =−Φ−1 (2 p̂4) maksimum olduğunda,

• p1 = p2 = p3 = p4 =
p
4 minimum olduğunda ya da

• q1 = q2 = q3 = q4 =
q
4 maksimum olduğunda.

Böylece,

BCp = BC∗pk =−
1
3

Φ
−1 {2× (p/4)}=−1

3
Φ
−1(p/2) (2.129)

olarak elde edilebilir.

Burada, uygun olmayan ürün oranı p Eş. 2.130’da,

p = 2Φ(−3BCp) (2.130)

olarak tanımlanmıştır.

2.2.4. Grup III’te yer alan başlıca çalışmaların incelenmesi

Wang ve Chen (1998), normal dağılıma sahip çoklu kalite değişkenleri arasındaki

korelasyonu ortadan kaldırmak için temel bileşenler analizi kullanarak kısa dönemli

üretimler için çok değişkenli bir süreç yeterlilik indeksi önermiştir. Önerdikleri yeni indeks

Eş. 2.131’de görüldüğü gibi elde edilir.

MCp =

[
v

∏
i=1

Cp:PCi

]1/v

(2.131)
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Burada, Cp:PCi =
USLPCi−LSLPCi

6
√

λPCi

Cp:PCi , i. bileşenin tek değişkenli Cp yeterlilik indeks değerini; LSLPCi ve USLPCi i. bileşenin

alt ve üst spesifikasyon sınırlarını ifade eder. λPCi , i. bileşenin özdeğeri; v, seçilen bileşen

sayısıdır. Benzer biçimde Cpk:PCi ve Cpm:PCi indekslerini de tanımlamışlardır.

Wang (2005), çok değişkenli süreç yeterlilik indekslerini, temel bileşenler analizine dayalı

yeni bir prosedür kullanarak elde etmeye çalışmıştır. Bu prosedüre göre, çok değişkenli

süreç yeterlilik indekslerine ağırlıklandırılmış geometrik ortalamalara dayalı olarak karar

verilir. İlk bileşen çoklu kalite değişkenlerinin varyansının en büyük kısmını; ikinci bileşen

bu varyansın ikinci en büyük kısmını açıklar ve bu şekilde diğer bileşenlerin varyansı

açıklama oranları belirlenebilir. Wang’ın (2005) önerdiği yeterlilik indeksleri Eş. 2.132 ve

Eş. 2.133’de görülmektedir.

MCp =

[
t

∏
i=1

Cev
pv

] 1
∑

t
i=1 ev

(2.132)

MCpk =

[
t

∏
i=1

Cev
pkv

] 1
∑

t
i=1 ev

(2.133)

Burada, ev, v. bileşenin özdeğerini; t, bileşenlerin sayısını gösterir. MCp ve MCpk, Cp ve

Cpk’nın kısa dönemli çok değişkenli süreç yeterlilik indekslerini ifade eder.

Shinde ve Khadse (2009), Wang ve Chen (1998) tarafından tanımlanan LSLPCi ve USLPCi

sınırlarının uygulamada yanlış sonuç verdiğini bir örnek yardımı ile ispatlamışlardır. Wang

ve Chen (1998) tarafından hesaplanan yeterlilik indekslerinin yanlış olma nedeni olarak,

farklı temel bileşenlerin spesifikasyon sınırlarının birbirinden bağımsız olduğunu

varsaymaları olarak açıklamışlardır. Temel bileşenlerin sadece dağılımlarının bağımsız

olduğunu, ancak spesifikasyon sınırlarının birbirleri ile bağlantılı olduğunu ispatlamışlardır.

Bu nedenle, elde edilen temel bileşenlere ait sınırları yeniden tanımlayarak Mp1 ve Mp2

olarak adlandırdıkları çok değişkenli süreç yeterlilik indekslerini önermişlerdir. Bu

indeksler için temel bileşenleri deneysel olasılık dağılımlarına dayalı olarak

tanımlamışlardır.
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2.2.5. Grup IV’te yer alan başlıca çalışmaların incelenmesi

Literatürdeki birçok yeterlilik indeksi, tolerans bölgesi içine düşen tüm ürünleri eşit

derecede "kabul edilebilir" olarak değerlendirmektedir (Goethals ve Cho, 2011). Tolerans

bölgesinde hedef değerden ölçümlerin uzaklığını gösterebilmesi amacıyla Goethals ve Cho

(2011), parabolik bir kayıp fonksiyonu tanımlamışlardır.

X = (X1, . . . ,Xv) ile v değişkenden oluşan ve çok değişkenli normal dağılıma sahip kalite

değişkenler vektörü ise, L(X) , X kalite değişkeninin kalitesindeki kaybın bir ölçüsü olsun.

L(X)’in hedef vektörü T komşuluğunda Taylor Serisine açılımı Eş. 2.134’de verildiği gibi

tanımlanmıştır.

L(X) = L(T)+

[
DL(T)

′]
1!

(X−T)+(X−T)
′

[
D2L(T)

′]
2!

+ · · ·+

[
DvL(T)

′]
v!

(X−T)v+Rv(X)

(2.134)

L(X)’in yaklaşığı ise,

L(X)≈ 1
2
(X−T)

′ [
D2L(T)

′]
(X−T) (2.135)

biçimindedir.

Kayıp fonksiyonu yaklaşımı genel terimleri ile Eş. 2.136’da yeniden yazılırsa

L(X)≈
v

∑
i=1

i

∑
j=1

δi j(xi− τi)(x j− τ j) (2.136)

olur.

Burada, δi j =
(

∂ 2L
∂xi∂x j

∣∣∣
X=T

)
∀i 6= j, i ve j kalite değişkenleri arasındaki kayıp katsayısını

göstermektedir.

Goethals ve Cho (2011), tanımladıkları MCpmc çok değişkenli yeterlilik indeksini elde

edebilmek için kayıp fonksiyonunun beklenen değerini Eş. 2.137’de verildiği gibi elde

etmişlerdir.
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E [L(X)]≈
v

∑
i=1

δii

[
Λii+(µi− τi)

2
]
+

v

∑
i=2

i−1

∑
j=1

δi j
[

Λij +(µi− τi)
(
µ j− τ j

)]
(2.137)

Çok değişkenli yeterlilik indeksi Eş. 2.138 ’de verildiği gibi tanımlanmıştır.

MCpmc =

[
∏

v
i=1 (USLi−LSLi)

Volv(PR%99,73)

]1/v 1
D

=
VR

D
(2.138)

Burada, Volv (PR%99,73) = (πχ2
v,0.0027)

v/2[
Γ( v

2 +1)
]−1
∣∣∣∑v

i=1 ∑
i
j=1 Λi j

∣∣∣1/2
ve D, Eş.

2.139’daki şekilde ifade edilmiştir.

D =

[
δii

[
1+

v

∑
i=1

(µi− τi)Λii
−1(µi− τi)

]
+δi j

[
1+

v

∑
i=1

(µi− τi)Λii
−1(µi− τi)

]]
(2.139)

Önerilen MCpmc indeksi diğer indekslere göre birçok düzeltme sunmaktadır. İlk olarak,

dikdörtgensel tolerans bölgesini göz ardı etmeden, endüstriyel uygulamalarda kullanımı

kolay ve daha gerçekçi bir yaklaşım sergilemektedir. Ayrıca, süreç hedef değerden sapan

süreç ortalamasını göz önünde bulunduran kalite kayıp fonksiyonunu dahil etmesi, hem

üretici ve hem de müşterinin ürünü değerlendirmesi bakımından önemlidir (Goethals ve

Cho, 2011).

2.2.6. Çok değişkenli normal dağılmayan süreçlerde süreç yeterlilik indeksleri

Klasik süreç yeterlilik indekslerinin tahmin edilmesi için bazı varsayımların sağlanması

gerekir. Bu varsayımlardan en önemlisi sürecin normal dağılıma uygun olmasıdır. Klasik

Cp ve Cpk gibi indekslerin hesaplanması varsayım bozulmalarından olumsuz etkilenir ve bu

nedenle de hatalı tahminler elde edilir. Normallik varsayımının sağlanmadığı durumlar için

süreç yeterlilik indekslerinin hesaplanmasında çeşitli yöntemler vardır ve bunlardan biri de

Kernel yoğunluk tahmin yöntemidir. Kernel yoğunluk tahmin yöntemi, X rastgele

değişkenin olasılık yoğunluk fonksiyonu f (X) ’i tahmin etmek için kullanılan parametrik

olmayan bir tahmin yöntemidir. Genellikle süreçten elde edilen gözlem değerlerinin

dağılımı bilinmediği ya da bilinen bir dağılıma uymadığı durumlarda gözleme dayalı olarak

Kernel yoğunluk tahminleri elde edilebilir.
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Kernel tahmin edicisi, Silverman (1986: 15) tarafından Eş. 2.140’da verildiği gibi tanımlanır.

f̂ (x) =
1

nh

n

∑
i=1

K
(

x−Xi

h

)
(2.140)

Burada, n gözlem sayısını, h düzleştirme ya da bant genişliği parametresini ifade eder.

Kernel yoğunluk tahmin yöntemi, parametrik olmayan regresyon, yoğunluk tahmini ve risk

fonksiyonunu içeren bir parametrik olmayan eğri tahminidir. Bu tahminler, eğrinin

düzgünlüğünü kontrol eden bant genişliği parametresine ve Kernel fonksiyon türüne

bağlıdır. K, Kernel fonksiyonu olarak adlandırılır ve Eş. 2.141’de verilen koşulu sağlayan

genellikle simetrik olan bir olasılık yoğunluk fonksiyonu, örneğin normal dağılım

fonksiyonu olarak belirlenebilir.

∫
K (x)dx = 1 (2.141)

Kernel fonksiyonları arasında en çok kullanılan Kernel fonksiyonu, Normal (Gaussian)

Kernel fonksiyonudur ve Eş. 2.142’de verilmiştir.

K (x) =
1√
2π

exp
(
−x2/2

)
(2.142)

Normal Kernel fonksiyonu, tanım aralığı gereği sınırsız bir fonksiyon türü olduğundan bazı

durumlarda Epanechnikov Kernel fonksiyonu da tercih edilir. Epanechnikov Kernel

fonksiyonu Eş. 2.143’deki gibi tanımlanır.

K (x) =
3
4
(
1− x2) I[−1,1] (x) (2.143)

Burada, I [−1,1] fonksiyonun tanımlı aralığı olan [−1,1] aralığını temsil etmektedir. Diğer

bilinen Kernel fonksiyonları Çizelge 2.1.’de verilmiştir.
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Çizelge 2.1. Kernel fonksiyon türleri

Kernel Fonksiyon Türü K (x)

Uniform (Düzgün)
1
2

I[−1,1] (x)

Triangle (üçgen) (1−|x|)I[−1,1](x)

Quartic (dördüncü dereceden)
15
16
(
1− x2)2I[−1,1] (x)

Çizelge 2.1’de verilen Kernel fonksiyon türleri için verilebilecek örnekleri arttırmak

mümkündür.

Çok değişkenli durumlar için ise, K fonksiyonu K : IRd → IR, d-değişkenli Kernel

fonksiyonu olarak adlandırılan sürekli bir fonksiyondur ve Eş. 2.144-Eş. 2.146’de verilen

koşulları sağlamalıdır.

∫
IRd

K (x)dx = 1 (2.144)

∫
IRd

xK (x)dx = 0 (2.145)

∫
IRd

xx
′
K (x)dx = µ2(K)I (2.146)

Burada,

µ2 (K) =
∫

IRd
x2

i K (x)dx (2.147)

olarak tanımlanır.

I, tüm i ’ler için d×d boyutlu birim matristir. Bu varsayımlar ile K, "0" ortalama vektörü ve

µ2 (K) kovaryans matrisine sahip çok değişkenli bir yoğunluk fonksiyonudur.

H bant genişliği matrisi, simetrik pozitif tanımlı d×d boyutlu bir matristir ve çok değişkenli

Kernel fonksiyonu Eş. 2.148’de verildiği gibi tanımlanır.
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KH (x) = |H|−1/2K(H−1/2x) (2.148)

f (x;H) fonksiyonunun tahmini Eş. 2.149’da verildiği gibi ifade edilir.

Tüm x ∈ IRd için

f̂ (x;H) = n−1
n

∑
i=1

KH(x−Xi) (2.149)

şeklinde tanımlanır.

Çok değişkenli Kernel tahmin yönteminde en çok tercih edilen Kernel fonksiyon türü olan

çok değişkenli Normal Kernel fonksiyonu Eş. 2.150’de tanımlandığı şekilde verilmiştir

(Silvermen, 1986: 76).

K (x) = (2π)−d/2exp
(
−1

2
XT X

)
(2.150)

Kernel Tahmin Yöntemi normal dağılım göstermeyen verilerin olasılık yoğunluk

fonksiyonu tahmininde kullanılan önemli bir parametrik olmayan tahmin yöntemidir.

Kernel Tahmin Yönteminde kullanılan ve yoğunluk tahmininde rol oynayan iki önemli

unsur; Kernel fonksiyon türü ve bant genişliği matrisi olarak sınıflandırılabilir. Özellikle,

bant genişliği matrisi, kernel tahmininin performans değerlendirilmesinde önemli bir role

sahiptir. Performans ölçütü, Kernel yoğunluk tahmininin hedef yoğunluk fonksiyonuna ne

kadar yaklaştığı ile ilgilidir. Bu amaçla, Kernel tahmininin performansını ölçmede

Bütünleşik Hata Kareler (ISE), Bütünleşik Hata Kareler Ortalaması (MISE) ve Hata Kareler

Ortalamasına bir asimptotik yaklaşım olan (AMISE) gibi hata kriter ölçütleri

kullanılmaktadır.

Bant genişliği seçimi

Bant genişliği matrisi seçiminde çeşitli yöntemler olmakla birlikte en sık kullanılanları cross

validation (çapraz sağlama) ve Plug-in seçim yöntemidir. Daha az kullanımı olan ve Terrell

(1990) tarafından tanımlanan Maksimum Düzleştirme Yönteminde (MDY), veri ölçeği ile

tutarlı maksimum düzleştirme sağlayan yoğunluk tahmini elde edilmektedir. Terrell matris
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parametrizasyonu olarak h2H
′

kullanmıştır. Burada,
∣∣∣H ′
∣∣∣ = 1 olarak tanımlanmıştır. Hata

kriteri AMISE değerini minimize eden h değeri Eş. 2.151’den hesaplanabilir.

h =

 dV (K)

n
∫

IRd
tr2
(
H′D f (x)

)
dx


1/(d+4)

(2.151)

Duong (2005), Terrell (1990) tarafından tanımlanan Maksimum Düzleştirme Yöntemine

minimaks bir yaklaşım önererek Eş. 2.152’de verilen eşitliği elde etmiştir.

ĤMS =

(d +8)(d+6)/2
πd/2V (K)

16(d +2)nΓ

(
d
2
+4
)


2/(d+2)

S (2.152)

Burada S, örneklem varyans kovaryans matrisini, Γ ise Gamma fonksiyonunu ifade

etmektedir.

Normal dağılıma uygun olmayan süreçlerde karşılaşılan en büyük zorluk, dağılımın bilinen

bir dağılıma uygun olmaması nedeniyle uygun ürün olasılık tahminlerinde karmaşık integral

alma işlemi ile karşı karşıya kalma durumudur.

Huang, Pahwa ve Kong (2012) dağılımı bilinmeyen tek değişkenli parametrik olmayan

süreçler için yeterlilik indekslerini, Kernel yoğunluk tahmini ve Metropolis Hastings (MH)

örneklem algoritması kullanarak elde etmişlerdir. Normallik varsayımı gerektiren tek

değişkenli Cp ve Cpk indeksleri yerine uygunluk (ürün) temeline dayalı olarak elde edilen

Yp, Ypk indekslerini kullanmışlardır. Yp (potansiyel uygunluk), Ypk (ürün) indekslerinin

tanımı Eş. 2.153 - Eş. 2.156’da verilmiştir.

Ürün, spesifikasyon sınırları ya da bölgesi içine düşme olasılığı olarak tanımlanır.

Tek değişkenli süreçler için, ürün = P [USL≤ X ≤ LSL] olarak ve çok değişkenli süreçler

için ürün = P [X ∈ΩS] olarak ifade edilir.

Tek değişkenli süreçler için bu indeksler,
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Ypk =
∫ USL

LSL
f (X)dx (2.153)

Yp = Maxµ

{
Ypk
}
= Maxµ

{∫ USL

LSL
f (X)dx

}
(2.154)

Çok değişkenli süreçler için bu indeksler,

Ypk =
∫

Ωs

f (X)dX (2.155)

Yp = Maxµ

{
Ypk
}
= Maxµ

{∫
Ωs

f (X)dX
}

(2.156)

olarak tanımlanır. Burada µ , X ’in ortalama vektörünü, Ωs spesifikasyon bölgesini

göstermektedir.

Polansky (2001), normal dağılım göstermeyen süreçler için Kernel tahminine dayalı bir süreç

yeterlilik tahmin yaklaşımı önermiştir. Süreç yeterlilik fonksiyonu olan, uygun olmayan ürün

oranı p ’nin Kernel’e dayalı tahmini Eş. 2.157’de verildiği şekilde tanımlamıştır.

p̂(H,S) = 1−
∫

Ωs

f̂ (x,H)dx = 1−n−1
n

∑
i=1

KH(x−Xi) (2.157)

Polansky’in (2001) çalışmasında önerdiği Kernel tahmin edicisinin n < 200 olan küçük

çaplı örneklemlere uygulanması sonucu p ’yi iyi bir şekilde tahmin edemediği ve

sonuçların farklı dağılımlara sahip tek bir simülasyon verisi üzerinden elde edildiği göz

önünde bulundurulduğunda, dağılımdan çekilen tek bir örneklem verisinin kitle parametresi

tahmin etmede zayıf kalacağı düşünülmektedir. Bu düşünceden yola çıkarak, tez

çalışmasında Polansky (2001)’in çalışmasından farklı olarak, tek bir örneklem kümesi ile

çalışmak yerine aynı dağılımlı birden fazla örneklem kümesi ile çalışılmıştır. Çalışmada,

Polansky’nin küçük çaplı örneklemlerde zayıf kalan yönünü güçlendiren bir indeks

önerilmiştir. Önerilen indeks, örnekleme yöntemlerinin kitleyi tahmin etmedeki gücünü

kullanmakta ve Kernel tahmin yöntemi ile örnekleme yöntemlerinden biri olan Metropolis

Hastings örneklemesini bir araya getirerek, Kernel tahmin yöntemi ile dağılımı tahmin

edilen süreç ile aynı dağılımlı örneklem kümeleri üzerinden tahmin yapılmasına olanak

sağlamaktadır.



65

Bu tez çalışmasında önerilen indeks, p̃KMH ile gösterilmiş ve Eş. 2.157’de verilen p̂(H,S)

indeksine farklı bir yaklaşım olarak Eş. 2.158’te verildiği şekilde tanımlanmıştır.

p̃KMH =
∫

Ωs

f̂ (x,H)dx = n−1
∫

Ωs

n

∑
i=1

KHMH (x−Xi) (2.158)

Burada Ωs spesifikasyon bölgesini ifade etmektedir. f̂ (x,H), Kernel Tahmin Yöntemi

kullanılarak elde edilen dağılım fonksiyonunun tahminini göstermektedir. Önerilen p̃KMH

indeksi, Kernel tahmin yöntemine dayalı (K) Metropolis Hastings (MH) örneklemesi

uygun ürün olasılık tahminini ifade etmektedir.
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3. NORMAL DAĞILMAYAN ÇOK DEĞİŞKENLİ SÜREÇ

YETERLİLİK İNDEKSİ İÇİN BİR YÖNTEM ÖNERİSİ: KMH

YÖNTEMİ

Süreç yeterlilik indeksleri ile ilgili olarak verilen geniş bir literatür anlatımından sonra

çalışmamızda normal dağılmayan çok değişkenli süreçler için uygun ürün oranı p ’yi

tahmin etmek amacıyla Kernel Yoğunluk Tahmin yöntemi ve (K) Metropolis Hastings

(MH) örneklemesi kullanılarak yeni bir yöntem önerilmiştir. Bu yöntem KMH Yöntemi

olarak adlandırılmıştır. KMH yönteminin süreç yeterliliğine karar vermedeki başarısını

ölçmek amacı ile bu yönteme dayalı yeni bir süreç yeterlilik indeksi tasarlanmıştır. Bu

indeks ise (p̃KMH) olarak ifade edilmiştir. Önerilen p̃KMH yaklaşımının uygun ürün oranı p

’yi tahmin etmedeki başarısını ölçmek için t-Copula yöntemi kullanılarak bir kıyaslama

verisi üretilmiştir. Kıyaslama verisinden uygun ürün oranı p hesaplanarak Eş. 3.1

yardımıyla hata yüzdeleri elde edilmiştir.

%ε =

∣∣∣∣ p̃KMH− p
p

∣∣∣∣×%100 (3.1)

Çalışmada ayrıca p̃KMH değerleri ile Huang ve diğerleri’nin (2012) Ypk (ürün) indeksi ve

Polansky (2001)’in önerdiği Kernel tahminine dayalı süreç yeterlilik tahmin yaklaşımı olan

p̂(H,S) değerleri hesaplanarak her birinin p tahminlerine ilişkin hata yüzdeleri elde edilmiş

ve sonuçlar karşılaştırılmıştır.

3.1. Çalışmada Önerilen Yöntem ve Kullanılan Yaklaşımlar

Kernel tahmin yöntemi daha önce de belirtildiği gibi normal dağılmayan çok değişkenli

süreçlerin dağılımını tahmin etmek amacıyla kullanılan parametrik olmayan bir yöntemdir.

Kernel tahmin yönteminde, Kernel yoğunluk tahmin fonksiyonu f̂ (x;H), Kernel

fonksiyonu KH (x) ve Kernel fonksiyon türü K (x) ile gösterilmiştir. Kernel yoğunluk

tahmin yaklaşımını daha anlaşılır bir şekilde ifade etmek için aşağıda verilen eşitlikleri

yazmakta fayda vardır:

KH (x) = |H|−1/2K(H−1/2x) ise burada, H bant genişliği matrisi olmakla birlikte K(H−
1
2 x),

Eş. 3.2’ de verildiği şekilde yazılır.
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K
(

H−1/2x
)
= |H|−1/2K(x) (3.2)

Bir Kernel fonksiyon türü olan çok değişkenli Normal Kernel fonksiyonu

K (x) = (2π)−d/2exp(−1/2X
′
X) ile ifade edilir. Kernel yoğunluk tahmin yönteminde çok

değişkenli Normal Kernel fonksiyon türünün kullanılması durumunda Eş. 3.2 yeniden

yazılırsa K
(

H−1/2x
)
, Eş. 3.3’deki gibi elde edilir.

K
(

H−1/2x
)
= |H|−1/2

[
(2π)−d/2 exp

(
−1

2

(
H−1/2x

)′ (
H−1/2x

))]
(3.3)

Böylece, Kernel yoğunluk tahmin fonksiyonu f̂ (x;H) = n−1
∑

n
i=1 KH (x−Xi) , Eş. 3.3

yardımıyla daha açık olarak,

f̂ (x;H) = n−1
n

∑
i=1
|H|−1/2

[
(2π)−d/2 exp

(
−1

2
(x−Xi)H−1(x−Xi)

′
)]

(3.4)

Eş. 3.4’te verildiği şekilde yazılır.

Çalışma verisinin dağılımı bilinmediği ve herhangi bilinen bir dağılıma uymadığı

varsayılmıştır. Bu nedenle süreç verisinin dağılımı Eş. 3.4’te verilen Kernel yoğunluk

tahmin fonksiyonu ile tahmin edilmiştir. Normal dağılmayan çok değişkenli süreçler için

uygun ürün oranı p′yi tahmin etmek amacıyla çalışmamızda önerdiğimiz KMH yöntemine

dayalı olarak tasarlanan yeterlilik indeksi p̃KMH , Eş. 3.5’de verildiği şekilde tanımlanmıştır.

p̃KMH =
∫

Ωs

f̂ (x,H)dx = n−1
∫

Ωs

n

∑
i=1

KHMH (x−Xi)dx (3.5)

Burada H bant genişliği matrisini, Ωs, spesifikasyon bölgesini göstermektedir. Eş. 3.5’te

görülen KHMH (x−Xi) Eş. 3.6’da verildiği gibi ifade edilmiştir.

KHMH (x−Xi) = |H|−
1
2 K(H−

1
2 (x−Xi)) (3.6)

KHMH (x−Xi) gösteriminin kullanılma nedeni, süreç dağılımının Kernel yoğunluk yöntemi

ile tahmin edilmesinden sonra aynı dağılıma sahip örneklem kümeleri elde etmek için süreç

verisine Metropolis Hastings örnekleme yönteminin uygulanmasıdır.



69

Metropolis Hastings örneklemesi

Metropolis Hastings (MH) örneklemesi yaygın olarak kullanılan bir Markov Zincirleri

Monte Carlo tekniğidir. MH örneklemesinin en temel kullanım amacı, doğrudan örneklem

çekmesi zor dağılımlardan benzetim yapılarak büyük çaplı rastgele örneklemler elde

etmektir (Hitchcock, 2003). Bu çalışmada, normal dağılıma uygun olmayan çok değişkenli

gözlem değerlerinin Kernel tahmininden yola çıkarak aynı Kernel dağılımlı ( f̂ (x))

örneklemler elde etmek amacı ile MH örneklemesi kullanılacak, böylece, sürece ait normal

dağılıma uygun olmayan çok değişkenli yeterlilik indeksleri tahmin edilmeye çalışılacaktır.

MH örneklemesinin tercih edilmesinin nedeni, söz konusu tekniğin, Kernel tahmin

yönteminde kullanılan fonksiyon türünden ve sürecin spesifikasyon bölgesinin şeklinden

etkilenmemesi ve özellikle, düzensiz ve doğrudan integral işlemlerini zorlaştıran

spesifikasyon bölgesine sahip çok değişkenli uygulamalar için kolay uygulanabilir

olmasıdır. Bilinen parametrik dağılımlara (Normal, Uniform, Gamma) uygulanan Monte

Carlo benzetimi ile f̂ (X) dağılımından doğrudan örneklem çekmek dağılım yapısının

karmaşık bir özellik taşıması nedeniyle kolay değildir. Bu nedenle, MH örneklemesi

uygulanarak f̂ (X) dağılımından örneklem çekilmektedir.

MH örneklemesinde bir "hedef dağılımı (target distribution)" ve bir "öneri dağılımı

(proposal distribution)" kullanılır. Süreç yeterlilik indekslerinin hesaplanması amacı ile

süreçten elde edilen Kernel tahmini f̂ (X) "hedef dağılımını"; benzetim yapılması kolaylığı

açısından q(. | X) koşullu yoğunluk dağılımı ise "öneri dağılımını" ifade etmektedir.

Öneri dağılımı olarak en yaygın kullanılan dağılımlar, tek değişkenli durumlar için Uniform

(U(a,b)) ve Normal dağılımdır. Uniform dağılımı x’den bağımsız olduğundan Uniform öneri

dağılımı q(x∗ | x) = q(x∗) şeklinde tanımlanır. Yine, Normal öneri dağılımı ise, q(x∗ | x) =
1

2π
√

σ
exp
(
− (x∗−x)2

2σ2

)
olarak ifade edilir (Huang ve diğerleri, 2012).

Çok değişkenli MH örneklemesinde, X = (X1,X2, ..,Xd), d değişkenli rastgele bir örneklem

vektörü ve X (t) örneklemin t. durumunu göstermek üzere;

Çok değişkenli MH örnekleme algoritması aşağıdaki adımları içerir:
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Adım 1: t = 1 olarak alınır.

Adım 2: Bir U = (u1,u2, . . . ,ud) başlangıç değer vektörü üretilir ve X (t) =U olarak alınır.

Adım 3: t = t +1 olarak alınır.

q(X/X t−1) dağılımından bir öneri X∗ üretilir.

Kabul olasılığı α = min(1,
p(X∗)

p(X (t−1))

q(X (t−1)/X∗)
q(X∗/X (t−1))

) hesaplanır.

U(0,1) dağılımından bir u noktası üretilir.

u≤ α ise önerilen X∗ kabul edilir ve X (t) = X∗ olarak alınır.

u > α ise önerilen X∗ kabul edilmez ve X (t) = X (t−1) olarak kalır.

Adım 4: 3. Adım t = T olana kadar aynı işlemler devam ettirilir.

MH örnekleme yönteminin özelliklerinden ve yordam adımlarından kısaca bahsedildikten

sonra, MH örneklemesinin kullanımında izlenecek adımlar şu şekildedir:

Öncelikle örneklem çekilmesi hedeflenen iki değişkenli Kernel tahmin dağılımı f̂ (x) "hedef

dağılımı" olarak; iki değişkenli normal dağılım ise "öneri dağılımı" olarak alınmıştır.

İki değişkenli normal dağılımın simetrik bir yapıda olması nedeniyle
q(x(t−1)/x∗)
q(x∗/x(t−1))

oranı 1

değerini alır ve çok değişkenli MH örneklemesinde hesaplanacak kabul olasılığı

α = min
{

1, p(x∗)
p(x(t−1))

}
ile basitçe elde edilebilir (Martinez ve Martinez, 2002).

"Hedef dağılımı olasılık fonksiyonu"

f̂ (x;H) = n−1
n

∑
i=1

KH (x−Xi) (3.7)

"Öneri dağılımı olasılık fonksiyonu (iki değişkenli)"
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f (x1,x2) =
1

2π
√

detΣ
exp
(
−1

2
(X−µ)

′
Σ
−1 (X−µ)

)
(3.8)

olarak gösterilir ve burada bilindiği gibi,

µ =

 µ1

µ2



Σ =


σ2

1 σ12

σ21 σ2
2


ile ifade edilir.

Önerilen p̃KMH yaklaşımı ile karşılaştırılmak üzere literatürde çalışılmış iki farklı indeks

üzerinde durulmuştur.

p̃KMH yaklaşımı ile karşılaştırılan ilk indeks, dağılımı bilinmeyen tek değişkenli parametrik

olmayan süreçler için Huang ve diğerleri’nin (2012) önerdiği Ypk (ürün) indeksidir.

Eş. 2.155’de verilen Ypk (ürün) indeksi, çok değişkenli süreçler için Eş. 3.9 yardımı ile

tahmin edilmiştir.

Ypk = 1− uygun olmayan ürün sayısı
toplam örnek sayısı

(3.9)

p̃KMH yaklaşımı ile karşılaştırılan ikinci indeks, Polansky (2001)’in Kernel tahminine dayalı

süreç yeterlilik tahmin yaklaşımıdır ve Eş. 2.157’de verilen p̂(H,S) değerleri çalışma verisi

kullanılarak tahmin edilmiştir. Elde edilen sonuçlar için hata yüzdeleri hesaplanmıştır.

Ayrıca, çalışma verisinin çok değişkenli normal dağılıma uyduğu varsayımı altında klasik

parametrik uygun ürün oranı p tahmin edilmiş ve eldeki sonuçlar karşılaştırılmıştır.

Ortalaması µ , kovaryans matrisi Σ olan çok değişkenli normal dağılım için tanımlanan p

parametresi, Eş. 3.10’daki gibidir.
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p =
∫

Ωs

Φµ,Σ(X)dx (3.10)

Eş. 3.10’da verilen uygun ürün oranı p’nin tahmin edilmesi için Eş. 3.11 kullanılmıştır.

p̃ =
∫

Ωs

Φ
µ̂,Σ̂

(X)dx (3.11)

Çalışma verisi çok değişkenli ve normal dağılmadığı aynı zamanda herhangi bilinen bir

dağılıma uymadığı için verinin olasılık fonksiyonu üzerinden tahmin yapmaya uygun

olmaması ve Kernel tahmin yöntemi ile tahmin edilen yoğunluk fonksiyonu üzerinden

integral alma zorluğu nedeniyle, p̃KMH tahmininde, numerik integral hesaplama

yöntemlerinden biri olan Trapezoidal Numerik İntegrasyon yöntemine başvurulmuştur.

3.2. Çalışma Verisi

Üretim işletmelerinin seri üretim öncesinde süreç kalite kontrolünü sağlayarak hatalı ürün

üretimine mahal vermeden minimum maliyet, maksimum kapasite ile çalışmayı

amaçlamaları gerekmektedir. Bu da üretim öncesi iyi bir planlama ile mümkündür. Aksi

durumda, seri üretim esnasında alınan ürün özelliklerinin hedeflenen ürün özelliklerinden

sapma göstermesine, uygun olmayan ürün üretimine, müşteri şikâyetlerine ve boşa giden

harcamalara neden olacağı açıktır. Bu nedenle, çalışmada tasarlanan senaryolar seri üretime

geçmeden önceki planlama aşaması olan çevrimdışı (offline) üretim olarak düşünülmüş ve

üretimi yapılacak ürün kalite değişkenleri hedef vektörü ve spesifikasyon sınırları

belirlenerek 4 farklı senaryo tasarlanmıştır. Senaryolar için üretilecek ürün kalite

değişkenlerinin X1 = x11,x12, . . . ,x1n ve X2 = x21,x22, . . . ,x2n olduğu ve X1 ile X2 arasında

ρ = 0,7 gibi yüksek bir ilişki bulunduğu varsayılmıştır. Her bir senaryo için üretimi

yapılacak ürün hedef vektörü [6,5;0,65] ve spesifikasyon sınırları 0,2505≤ X1 ≤ 10,2495;

0,02505≤ X2 ≤ 0,9999 olarak belirlenmiştir.

Dağılımı bilinmeyen ve çok değişkenli normal dağılmayan süreçlere örnek olması açısından

üretim senaryolarında kullanılacak süreç verisi MATLAB Programı yardımı ile üretilmiş

olup gerekli kod dizisi EK-1’de verilmektedir. Süreç verileri üretilirken t-Copula yöntemi

kullanılmıştır. Öncelikle, üretim senaryolarının her biri için işletmede üretilmesi mümkün
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olan tüm ürün kapasitesinin (ürün kitlesi) bir milyon üründen oluştuğu varsayılmıştır. Ürün

kalite değişkenleri olan X1 ile X2’nin marjinal dağılımları X1 ∼ Gamma Dağılımı(k, θ) ve

X2 ∼ Beta Dağılımı(α,β ) olarak belirlenmiş ve belirlenen parametreleri Çizelge 3.1’de

verilmiştir. X1 ile X2 ’nin dağılım özellikleri belirlenirken, çok değişkenli ve normal

dağılıma uygun olmayan süreçleri temsil etmesi amacıyla marjinal dağılımların çarpık

özellik göstermesine dikkat edilmiştir. Bilindiği üzere, Gamma dağılımı parametrelerinden

olan k, şekil parametresi; θ ise ölçü parametresi olarak adlandırılmaktadır. Gamma

dağılımının çarpıklık değerinin ( 2√
k
), k şekil parametresine bağlı olması nedeniyle, k

büyüdükçe dağılım özelliklerinin normal dağılıma yaklaştığı söylenebilir. Ayrıca, Gamma

dağılımının [0, ∞] aralığında tanımlı olması nedeniyle senaryo verilerinin hedef vektörü ve

spesifikasyon bölgesi açısından birbirine yakın ve mantıksal sonuçlar vermesi amacıyla

Gamma dağılım parametreleri k ve θ her senaryo için aynı alınmıştır. İkinci marjinal

dağılım olan Beta dağılımı için şekil parametre değerlerine göre bazı sınıflandırmalar

mevcuttur. Örneğin;

• α < 1; β < 1 için U şeklinde olduğu;

• α = 1; β > 1 için kesinlikle düşüş gösterdiği;

• α = β için 1/2 etrafında simetrik olduğu;

• α > 1; β > 1 tek modlu olduğu;

• α > 2; β = 1 kesinlikle konveks olduğu bilinmektedir.

Beta dağılım parametreleri α ve β belirlenirken yukarıda belirtilen dağılım şekillerinden

yola çıkarak tek modlu ve çarpık özellikte olanlar tercih edilmiştir. Çalışmada senaryolar

için belirlenen çalışma verilerinin marjinal dağılım özellikleri Çizelge 3.1’de görülmektedir.

Çizelge 3.1. Veri setlerinin dağılım özellikleri

Marjinal Dağılımlar

Veri Setleri X1 ∼ Gamma Dağılımı(k,θ) X2 ∼ Beta Dağılımı(α,β )

Senaryo I k = 3,0;θ = 2,0 α = 2,0;β = 5,0

Senaryo II k = 3,0;θ = 2,0 α = 0,5;β = 0,5

Senaryo III k = 3,0;θ = 2,0 α = 2,0;β = 7,0

Senaryo IV k = 3,0;θ = 2,0 α = 2,0;β = 6,0
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Çizelge 3.1’te verilen dağılım özelliklerine göre t-Copula yöntemi ile üretilen ürün kitle

verileri kıyaslama verisi olarak kullanılmıştır. Üretim senaryoları için fabrikanın çevrimdışı

aşamasında olduğu varsayılarak ilk fazda üretilen ürün miktarı 1000 olarak alınmıştır. Her

bir senaryo için ilk faz ürün üretimi Çizelge 3.1’de verilen marjinal dağılım özelliklerine

göre t-Copula yöntemi kullanılarak üretilmiştir.

3.3. Çalışma Adımları

Adım 1

Çalışmamızın ilk adımında, çalışma verilerinin çok değişkenli Kernel yoğunluk tahminleri

f̂ (X ;H)’yı elde etmek için Horová, Kolác̆ek ve Zelinka (2012) tarafından geliştirilen

düzleştirme aracı kullanılmıştır. Tahmin edilen Kernel tahmin grafikleri Senaryo I için şekil

3.3 ve Şekil 3.4’te, Senaryo II için Şekil 3.7 ve Şekil 3.8’de, Senaryo III için Şekil 3.11 ve

Şekil 3.12’de, Senaryo IV için Şekil 3.15 ve Şekil 3.16’da verilmiştir. Çalışmada kullanılan

Kernel fonksiyon türü K (x) , çok değişkenli Normal Kernel fonksiyonu olarak belirlenmiş

ve bant genişliği matrisleri H Maksimum Düzleştirme Yöntemi (MDY) ile tahmin

edilmiştir. Ayrıca, Kernel yoğunluk tahminlerinin bant genişliği parametresine olan

duyarlılığını görebilmek amacıyla bant genişliği matrisleri H, çalışma verisinin Standart

Normal Dağılıma uygunluğu varsayımı altında Referans Bant Genişliği matris tahmin

yöntemi kullanılarak da tahmin edilmiş, sonuçlar Çizelge 3.2’de verilmiştir.

Çizelge 3.2. Bant genişliği matrisleri

Veri setleri Maksimum Düzleştirme
Yöntemi ile Bant Genişliği
Matris Tahmini

Referans Bant Genişliği
Matris Tahmini

Senaryo I - Faz I
[1,4335 0,0457
0,0457 0,0031

] [1,2185 0,0388
0,0388 0,0026

]
Senaryo II - Faz I

[1,4535 0,0898
0,0898 0,0148

] [1,2355 0,0763
0,0763 0,0126

]
Senaryo III - Faz I

[1,3080 0,0354
0,0354 0,0021

] [1,1119 0,0301
0,0301 0,0018

]
Senaryo IV - Faz I

[1,5108 0,0420
0,0420 0,0025

] [1,2843 0,0357
0,0357 0,0021

]
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Çizelge 3.2’den de görüldüğü gibi Maksimum Düzleştirme Yöntemi (MDY) ile tahmin

edilen bant genişliği matris elemanlarının Referans Bant Genişliği (MBG) ile tahmin edilen

matris elemanlarından daha büyük değerlere sahip olduğu, bu nedenle Maksimum

Düzleştirme Yöntemi ile yapılan tahminlerin süreç verisine daha fazla bir düzgünleştirme

işlemi yaparak Kernel yoğunluk tahminlerinin elde edildiği söylenebilir.

Adım 2

Her bir senaryo için çalışma verisinin Kernel yoğunluk tahminleri f̂ (X ;H) elde edildikten

sonra 2. Adımda, üretim senaryoları için ilk fazda üretilen ürün dağılım özelliklerinin her faz

için aynı olacağı varsayılarak üretime geçmeden önce ilk fazdan alınan ürün verisi ile aynı

dağılımlı örneklem çekilmesi ve sürecin yeterliliğine karar vermek için kullanımı örerilen

p̃KMH değerlerinin örneklem kümeleri üzerinden elde edilmesi hedeflenmiştir. Bu amaçla

MH örneklem algoritması kullanılmıştır.

Seri üretim öncesinde sadece ilk faz ürün verisinden tahmin edilecek p̃KMH değerinin kitle

parametresi p ile karşılaştırılarak sürecin yeterli olup olmadığına karar vermede yanıltıcı

sonuçlara neden olacağı düşünülmektedir. Bu nedenle ilk faz ürün dağılımı Kernel dağılım

tahmini f̂ (X ;H) ile aynı dağılımlı örneklem kümelerinin her biri n = 50, n = 100, n =

250, n = 500 ve n = 1000 büyüklüğünde olacak şekilde belirlenmiş ve 10 tane örneklem

kümesi elde edilmiştir. Ayrıca örneklem küme sayısı artırıldığında sonuçlar arasında ortaya

çıkan varyans değişimlerini gözlemlemek amacıyla 20 tane örneklem kümesi çektirilerek

aynı işlem her bir örneklem kümesine de uygulanmıştır. MH örneklemesi için MATLAB

programında gerekli kodlar yazılarak program çıktısı elde edilmiş ve kod dizisi EK-1’de

verilmiştir.

Adım 3

Çalışmamızın bu aşamasında, kıyaslama verisi olarak kullanılan ürün kitlesinden hesaplanan

parametrik uygun ürün oranı p ile süreçten çekildiği varsayılan ve ilk faz ürün verisi ile aynı

dağılımlı örneklem kümelerinden tahmin edilecek p̃KMH, Ypk (ürün) , p̃ ve p̂(H,S) değerleri

karşılaştırılacaktır. Hata yüzdeleri Eş. 3.1 ile verilen %ε =
∣∣∣ p̃KMH−p

p

∣∣∣×%100 yardımıyla
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hesaplanmıştır. Hesaplanan hata yüzdeleri "Simülasyon Sonuçları ve Değerlendirilmesi"

bölümünde Çizelge 4.1 - Çizelge 4.40’da verilmiş ve yorumlanmıştır.

3.4. Çalışma Verilerinin Dağılım Özellikleri

Çalışmada kıyaslama verisi olarak kullanılacak ürün kitlesi N = 1 000 000 olarak

belirlendikten sonra, ürün uygunluğuna karar vermek amacı ile spesifikasyon sınırları

belirlenmiştir. Daha önce de ifade edildiği gibi spesifikasyon sınırları dışsal olarak

belirlenen, kalite mühendislerince teknik bilgi ve deneyim sonucunda üretilen ürün

niteliğine göre karar verilen sınırlardır. Bu nedenle çalışmada spesifikasyon sınırları

belirlenirken üretilen dağılım ortalamaları ve maksimum, minimum değerleri dikkate

alınarak mantıksal çerçevede belirlenmiş ve aşağıda verilmiştir:

Spesifikasyon Alt Sınırı: [X1 = 0,2505; X2 = 0,02505],

Spesifikasyon Üst Sınırı: [X1 = 10,2495; X2 = 0,9999].

Senaryo I

Senaryo I için, Marjinal dağılımları daha önce belirlenen ve Çizelge 3.1.’de verilen X1 ∼

Gamma(3,2), X2 ∼ Beta(2,5) dağılım özelliklerine sahip değişkenler arası ρ = 0,7 ilişki

bulunan çok değişkenli ürün kitlesi üretilmiştir. Kitle Saçılım Grafiği Şekil 3.1’de verilmiştir.
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Şekil 3.1. Ürün kitle saçılım grafiği (Senaryo I)

Şekil 3.1’de görülen ürün kitle saçılım grafiği üretilen verinin dağılım özelliklerini ve verinin

düzlem üzerindeki saçılımını göstermektedir.

Senaryo I için ürün kitle verisinden hesaplanan uygun ürün sayısı 876 694 olarak elde

edilmiştir. Uygun ürün oranı p = 0,8767 şeklinde hesaplanmıştır. Daha sonra yine,

t-Copula yöntemi ile X1 ∼ Gamma(3,2), X2 ∼ Beta(2,5) dağılım özelliklerine sahip ve

değişkenler arası ρ = 0,7 ilişki bununan çok değişkenli ilk faz ürün verisi üretilmiştir.

Üretilen verinin saçılım grafiği Şekil 3.2’de verilmiştir.
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Şekil 3.2. İlk faz ürün saçılım grafiği (Senaryo I)

Şekil 3.2’de verilen ilk faz ürün saçılım grafiğinden, iki değişken arasında pozitif yönlü

doğrusal bir ilişki olduğu görülmektedir.

Ürün özellikleri belirlenerek elde edilen ilk faz ürün verisinin dağılımı normal dağılıma

uygun olmadığı için f (X) dağılımının f̂ (X ;H) tahmini Kernel tahmin yöntemi ile elde

edilmiştir.

Kernel yoğunluk tahmin grafikleri ilk faz ürün verisi için Şekil 3.3-Şekil 3.4’de

görülmektedir.
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Şekil 3.3. İlk faz ürün kernel yoğunluk tahmini kontur grafiği (Senaryo I)

Şekil 3.3’te ilk faz ürün verisinden elde edilen Kernel yoğunluk tahmin kontur grafiği

görülmektedir. Kontur grafiği, verinin Kernel yoğunluk tahmini sonrasındaki üstten

yoğunluk kesitini göstermektedir. Her bir kontür çizgisi, eşit yoğunluk yüksekliğine sahip

noktaları ifade etmekte ve şekilden verinin tek modlu bir yapıya sahip olduğu

anlaşılmaktadır.

Şekil 3.4. Kernel yoğunluk tahmin grafiği (Senaryo I)



80

Şekil 3.4’te ilk faz ürün verisinin Kernel yoğunluk tahmin grafiği görülmektedir. Şekil

3.3’teki kontur grafiğinin 3-boyutlu görüntüsü olan grafikten verinin tek modlu olduğu daha

açık görülmektedir.

Senaryo II

Senaryo II için, Çizelge 3.1’de Marjinal dağılımları X1 ∼Gamma(3,2) X2 ∼ Beta(0,5, 0,5)

olarak verilen çok değişkenli ve aralarında ρ = 0,7 ilişki bulunan ürün kitlesi üretilmiştir.

Üretilen Kitle Saçılım Grafiği Şekil 3.5’de verilmiştir.

Şekil 3.5. Ürün kitle saçılım grafiği (Senaryo II)

Şekil 3.5’de görülen ürün kitle saçılım grafiği üretilen verinin dağılım özelliklerini ve verinin

saçılımını göstermektedir.

Senaryo II için uygun ürün sayısı 783 703 ürün olarak elde edilmiştir. Uygun ürün oranı

p = 0,7837 şeklinde hesaplanmıştır.

Daha sonra, ilk faz ürün verisi üretilmiş bunun için yine

X1 ∼ Gamma(3,2) X2 ∼ Beta(0,5,0,5) dağılım özellikleri kullanılarak çok değişkenli ve

aralarında ρ = 0,7 ilişki bulunan veri aynı şekilde elde edilmiştir. Üretilen verinin saçılım

grafiği Şekil 3.6’da verilmiştir.
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Şekil 3.6. İlk faz ürün saçılım grafiği (Senaryo II)

Şekil 3.6’da verilen ilk faz ürün saçılım grafiğinden, iki değişken arasında pozitif yönlü

doğrusal bir ilişki olduğu görülmektedir.

Kernel yoğunluk tahmin grafikleri İlk faz ürün verisi için Şekil 3.7-Şekil 3.8’de

görülmektedir.

Şekil 3.7. İlk faz ürün kernel yoğunluk tahmini kontur grafiği (Senaryo II)
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Şekil 3.7, ilk faz ürün verisinin Kernel Yoğunluk tahmin kontur grafiğini göstermektedir.

Kontur grafiğinden verinin iki modlu olduğu söylenebilir.

Şekil 3.8. Kernel yoğunluk tahmin grafiği (Senaryo II)

Şekil 3.8’de ilk faz ürün verisinin MATLAB programı yardımı ile çizilen Kernel Yoğunluk

tahmin grafiği görülmektedir. Şekil 3.7’deki kontur grafiğinin 3-boyutlu grafiği olan

yoğunluk grafiğinden verinin iki modlu olduğu görülmektedir.

Senaryo III

Senaryo III için t-Copula yöntemi kullanılarak MATLAB yazılımı yardımıyla marjinal

dağılımları Çizelge 3.1’de verilen X1 ∼ Gamma(3,2) X2 ∼ Beta(2,7) olan ürün kitlesi

üretilmiştir. Üretilen Kitle Saçılım Grafiği Şekil 3.9’da verilmiştir.



83

Şekil 3.9. Ürün kitle saçılım grafiği (Senaryo III)

Şekil 3.9’da görülen ürün kitle saçılım grafiği, üretilen verinin dağılım özelliklerini ve verinin

saçılımını göstermektedir.

Uygun ürün sayısı Senaryo III için 869 378 ürün olarak elde edilmiştir. Uygun ürün oranı

p = 0,8694 şeklinde hesaplanmıştır.

X1 ∼ Gamma(3,2) X2 ∼ Beta(2,7) marjinal dağılım özelliklerine sahip iki değişkenli

aralarında ilişki ρ = 0,7 bulunan ilk faz ürün verisi üretilmiştir.

Üretilen verinin saçılım grafiği Şekil 3.10’da verilmiştir.
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Şekil 3.10. İlk faz ürün saçılım grafiği (Senaryo III)

Şekil 3.10’da verilen ilk faz saçılım grafiğinden, iki değişken arasında pozitif yönlü doğrusal

bir ilişki olduğu görülmektedir.

Şekil 3.11. İlk faz ürün kernel yoğunluk tahmini kontur grafiği (Senaryo III)

Şekil 3.11, ilk faz ürün verisinin MATLAB programı yardımı ile elde edilen Kernel Yoğunluk

tahmin kontur grafiğini göstermektedir.
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Şekil 3.12. Kernel yoğunluk tahmin grafiği (Senaryo III)

Şekil 3.12’de ilk ürün verisinin MATLAB programı yardımı ile elde edilen Kernel Yoğunluk

tahmin grafiği görülmektedir.

Senaryo IV

Senaryo IV için, Marjinal dağılımları X1 ∼ Gamma(3,2) X2 ∼ Beta(2,6) olan ürün kitlesi

üretilmiştir. Üretilen Kitle Saçılım Grafiği Şekil 3.13’de verilmiştir.

Şekil 3.13. Ürün kitle saçılım grafiği (Senaryo IV)
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Şekil 3.13’de görülen ürün kitle saçılım grafiği üretilen verinin dağılım özelliklerini ve

verinin saçılımını göstermektedir.

Uygun ürün sayısı Senaryo IV için 873 499 ürün olarak elde edilmiştir. Uygun ürün oranı

p = 0,8735 şeklinde hesaplanmıştır.

Uygun ürün oranı p hesaplandıktan sonra, X1 ∼ Gamma(3,2) X2 ∼ Beta(2,6) dağılım

özelliklerine sahip ilk faz ürün verisi üretilmiştir. üretilen verinin saçılım grafiği Şekil

3.14’de verilmiştir.

Şekil 3.14. İlk faz ürün saçılım grafiği (Senaryo IV)

Şekil 3.14’de verilen ilk faz ürün saçılım grafiğinden, iki değişken arasında pozitif yönlü

doğrusal bir ilişki olduğu görülmektedir.
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Şekil 3.15. İlk faz ürün kernel yoğunluk tahmini kontur grafiği (Senaryo IV)

Şekil 3.15, ilk faz ürün verisinin Kernel Yoğunluk tahmin kontur grafiğini göstermektedir. İlk

faz ürün verisinin tek modlu olduğu görülmektedir. Kontur grafiğinin 3- boyutlu görüntüsü

Şekil 3.16’da verilmiştir.

Şekil 3.16. Kernel yoğunluk tahmin grafiği (Senaryo IV)

Şekil 3.16’dan Kontur grafiğine benzer olarak ilk faz ürün verisinin tek modlu olduğu

görülmektedir.
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Metropolis Hastings yöntemi ile çekilen örneklem kümeleri ve özellikleri

Daha önce de belirtildiği gibi, çevrimdışı üretim aşamasında ilk faz veriden hesaplanan

parametre tahmin sonuçlarının uygun ürün oranı p’yi iyi bir şekilde tahmin ettiğini

söylemek ve tek bir örneklem kümesi üzerinden yakalanan tahmin başarısını kıstas alarak

çevrimiçi üretimde güvenilir sonuçlar elde edildiğini düşünmek süreç yeterliliği açısından

yanıltıcı sonuçlar verecektir. Bu nedenle Polansky (2001)’ in aksine ilk faz ürün verisi ile

çalışmak yerine, ilk faz verisi ile aynı dağılımlı örneklem kümeleri üzerinden yaklaşım

sonuçlarını yorumlamanın daha doğru olacağı düşünülmüştür. Böylece Kernel dağılımı

tahmin edilen ilk faz verisinden örneklem çekmek ve daha duyarlı tahminler elde etmek

amacı ile Metropolis Hastings örnekleme yöntemi kullanılmıştır.

MH örneklemesi ile her birinin gözlem sayısı n = 50, n = 100, n = 250, n = 500 ve

n = 1000 olan 10’ar ve 20’şer tane örneklem küme seti oluşturulmuş ve örneklem

kümelerinden Ypk, p̃KMH , p̃ ve p̂(H,S) tahminleri ve hata yüzdeleri hesaplanmıştır.

Sonuçlar 4. "Simülasyon Sonuçları ve Değerlendirilmesi" kısmında çizelgeler halinde

verilmiş ve örneklem küme setlerinden elde edilen hata yüzdelerini gösteren çizgi

grafiklerine de aynı bölümde yer verilmiştir. MH örneklemesi, tahmin hesaplamaları ve

çizgi grafiklerinin elde edilmesi için Matlab Programında yazılan kod dizileri Ek-1 de

verilmektedir.
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4. SİMÜLASYON SONUÇLARI VE DEĞERLENDİRİLMESİ

4.1. Senaryo I İçin Elde Edilen Sonuçlar

Senaryo I için Kernel yoğunluk tahmin yöntemine dayalı MH örneklemesi ile n = 50, n =

100, n = 250, n = 500 ve n = 1000 gözlemli örneklem kümelerinden hesaplanan Ypk, p̃KMH ,

p̃ ve p̂(H,S) değerleri, kitleden hesaplanan uygun ürün oranı p ile karşılaştırılarak hata

yüzdeleri elde edilmiştir. Kernel yoğunluk tahminleri yapılırken Maksimum Düzleştirme

Yöntemi (MDY) bant genişliği matrisi ve örneklem kümelerinin Normal dağılım gösterdiği

varsayımına dayalı Referans Bant Genişliği (RBG) matrisi kullanılmıştır. Her bir gözlem

sayısı için her iki bant genişliği matrisi kullanılarak hesaplanan tahmin sonuçları n = 50

gözlem sayısına sahip örneklem kümeleri için Çizelge 4.1’de verilmiştir.
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Çizelge 4.1. Senaryo I için tahmin değerleri ve hata yüzdeleri (n = 50, öks = 10)

ÖRNEKLEM
KÜMELERİ

REFERANS BANT GENİŞLİĞİ İLE YAPILAN TAHMİN DEĞERLERİ
VE HATA YÜZDELERİ

MAKSİMUM DÜZLEŞTİRME YÖNTEMİ BANT GENİŞLİĞİ İLE
YAPILAN TAHMİN DEĞERLERİ VE HATA YÜZDELERİ

Ypk p̃KMH p̃ p̂(H,S) εYpk ε p̃KMH ε p̃ ε p̂(H,S) Ypk p̃KMH p̃ p̂(H,S) εYpk ε p̃KMH ε p̃ ε p̂(H,S)
1 0,9400 0,8941 0,9185 0,7882 %7,220 %1,985 %4,768 %10,095 0,9400 0,8850 0,9185 0,7753 %7,220 %0,947 %4,768 %11,566
2 0,9600 0,8529 0,8862 0,7882 %9,502 %2,715 %1,084 %10,095 0,9600 0,8426 0,8862 0,7753 %9,502 %3,890 %1,084 %11,566
3 0,9800 0,9033 0,9471 0,7882 %11,783 %3,034 %8,030 %10,095 0,9800 0,8968 0,9471 0,7753 %11,783 %2,293 %8,030 %11,566
4 1,0000 0,9284 0,9489 0,7882 %14,064 %5,897 %8,235 %10,095 1,0000 0,9190 0,9489 0,7753 %14,064 %4,825 %8,235 %11,566
5 0,9200 0,8926 0,9358 0,7882 %4,939 %1,814 %6,741 %10,095 0,9000 0,8764 0,9308 0,7753 %2,658 %0,034 %6,171 %11,566
6 0,9600 0,9288 0,9422 0,7882 %9,502 %5,943 %7,471 %10,095 0,9600 0,9206 0,9422 0,7753 %9,502 %5,007 %7,471 %11,566
7 1,0000 0,8862 0,8792 0,7882 %14,064 %1,084 %0,285 %10,095 1,0000 0,8715 0,8792 0,7753 %14,064 %0,593 %0,285 %11,566
8 0,9600 0,9084 0,9358 0,7882 %9,502 %3,616 %6,741 %10,095 0,9600 0,8998 0,9358 0,7753 %9,502 %2,635 %6,741 %11,566
9 0,9400 0,8397 0,8866 0,7882 %7,220 %4,220 %1,129 %10,095 0,9400 0,8312 0,8866 0,7753 %7,220 %5,190 %1,129 %11,566
10 0,8600 0,8093 0,8447 0,7882 %1,905 %7,688 %3,650 %10,095 0,8600 0,7983 0,8447 0,7753 %1,905 %8,943 %3,650 %11,566

ORTALAMA 0,9520 0,8844 0,9125 0,7882 %8,970 %3,799 %4,814 %10,095 0,9500 0,8741 0,9120 0,7753 %8,742 %3,436 %4,756 %11,566
VARYANS 0,0017 0,0015 0,0013 0,0000 %0,148 %0,045 %0,095 %0,000 0,0019 0,0016 0,0013 0,0000 %0,173 %0,073 %0,093 %0,000

Çizelge 4.2. Senaryo I için tahmin değerleri ve hata yüzdelerinin ortalama ve varyansları (n = 50, öks = 20)

ORTALAMA
DEĞERLER

REFERANS BANT GENİŞLİĞİ İLE YAPILAN TAHMİN DEĞERLERİ
VE HATA YÜZDELERİ

MAKSİMUM DÜZLEŞTİRME YÖNTEMİ BANT GENİŞLİĞİ İLE
YAPILAN TAHMİN DEĞERLERİ VE HATA YÜZDELERİ

Ypk p̃KMH p̃ p̂(H,S) εYpk ε p̃KMH ε p̃ ε p̂(H,S) Ypk p̃KMH p̃ p̂(H,S) εYpk ε p̃KMH ε p̃ ε p̂(H,S)
ORTALAMA 0,9550 0,8844 0,9108 0,7882 %9,122 %4,857 %5,600 %10,095 0,9515 0,8730 0,9108 0,7753 %8,913 %4,911 %5,704 %11,566
VARYANS 0,0017 0,0029 0,0020 0,0000 %0,178 %0,131 %0,086 %0,000 0,0020 0,0037 0,0021 0,0000 %0,184 %0,224 %0,091 %0,000
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Çizelge 4.1’den n = 50 gözlem sayısına sahip örneklem kümelerinden hesaplanan Ypk,

p̃KMH , p̃ ve p̂(H,S) tahminleri ve hata yüzdeleri (%ε) görülmektedir. Koyu olarak görülen

hata yüzde değerleri, önerilen yaklaşımın diğer yaklaşımlara göre daha küçük bir hata ile

ürün kitle parametresi olan uygun ürün oranı p’yi tahmin ettiğini ifade etmektedir.

Çizelgeden ayrıca örnekleme kümeleri üzerinden elde edilen yaklaşım değerlerinin

ortalamaları karşılaştırıldığında, en iyi sonucun önerilen p̃KMH yaklaşımı ile elde edildiği,

örnekleme kümeleri arasında oluşan varyans değerlerinin 0,000’a çok yakın olması

nedeniyle tahmin ortalamaları üzerinden yaklaşımları karşılaştırmanın anlamlı olacağı

söylenebilir. Çizelge 4.1’de görülen hata yüzde değerlerinin karşılaştırma kolaylığı

sağlaması açısından çizgi grafiği çizdirilerek Şekil 4.1’de verilmiştir.

(a) (b)

Şekil 4.1. Senaryo I için hata yüzdeleri çizgi grafiği (n = 50,öks = 10)

Şekil 4.1 de verilen grafikler Senaryo I’e ait faz I verisi ile aynı dağılımlı örneklem

kümelerinden elde edilen εYpk, ε p̃KMH , ε p̃ ve ε p̂(H,S) hata yüzdelerini göstermektedir.

Grafiklerden ilki daha önce de belirtildiği gibi dağılımı bilinmeyen çok değişkenli süreç

verisinin dağılımının Referans Bant Genişliği (RBG) tahmin yöntemi yardımıyla Kernel

yoğunluk tahmini yapılarak aynı dağılımdan çektirilen 10 tane örneklem kümesinden,

ikincisi ise Maksimum Düzleştirme Yöntemi (MDY) yardımıyla Kernel yoğunluk tahmini

yapılarak aynı yoğunluk dağılımdan çektirilen 10 tane örneklem kümesinden

hesaplanmıştır. Grafikler incelendiğinde, her iki grafikte de p̃KMH yaklaşımı ile elde edilen

hata yüzdelerinin diğer üç yönteme göre daha iyi sonuç verdiği görülmektedir. Çizelge

4.1’de 10 örneklem kümesi üzerinden elde edilen ortalama ve varyans değerleri ile

karşılaştırarak yaklaşımların örneklem kümesine karşı duyarlılığına karar vermek amacıyla

ayrıca 20 örneklem kümesi ile de çalışılarak sonuçlar Çizelge 4.2’de verilmiştir.
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Çizelge 4.2’de n = 50 gözlem sayısına sahip 20 örneklem kümesinden hesaplanan Ypk,

p̃KMH , p̃ ve p̂(H,S) tahminleri ve hata yüzdelerinin (%ε) ortalama ile varyans değerleri

görülmektedir. Bu değerler, Çizelge 4.1’de verilen 10 örneklem kümesinden hesaplanan

Ypk, p̃KMH , p̃ ve p̂(H,S) tahminleri ve hata yüzdelerinin (%ε) ortalama ile varyans

değerleri ile karşılaştırıldığında, örneklem kümesi sayısındaki artış sonucu kümeler

arasında oluşan ortalama ve varyans değerlerinde çok fazla bir fark olmadığı görülmektedir.

Sonuçlar karşılaştırıldığında n = 50 gözlem sayısına sahip 10 örneklem kümesi ile 20

örneklem kümesinden elde edilen hata yüzdeleri için ε p̃KMH değerlerinin diğer

yaklaşımlara göre daha iyi sonuç verdiği görülmektedir.

n = 100 gözlem sayısına sahip örneklem kümeleri için elde edilen tahmin sonuçları Çizelge

4.3’de verilmiştir.
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Çizelge 4.3. Senaryo I için tahmin değerleri ve hata yüzdeleri (n = 100, öks = 10)

ÖRNEKLEM
KÜMELERİ

REFERANS BANT GENİŞLİĞİ İLE YAPILAN TAHMİN DEĞERLERİ
VE HATA YÜZDELERİ

MAKSİMUM DÜZLEŞTİRME YÖNTEMİ BANT GENİŞLİĞİ İLE
YAPILAN TAHMİN DEĞERLERİ VE HATA YÜZDELERİ

Ypk p̃KMH p̃ p̂(H,S) εYpk ε p̃KMH ε p̃ ε p̂(H,S) Ypk p̃KMH p̃ p̂(H,S) εYpk ε p̃KMH ε p̃ ε p̂(H,S)
1 0,9600 0,9068 0,9266 0,8212 %9,502 %3,433 %5,692 %6,331 0,9700 0,9109 0,9339 0,8100 %10,642 %3,901 %6,524 %7,608
2 0,9800 0,9267 0,9493 0,8212 %11,783 %5,703 %8,281 %6,331 0,9800 0,9243 0,9526 0,8100 %11,783 %5,429 %8,657 %7,608
3 0,9700 0,9201 0,9425 0,8212 %10,642 %4,950 %7,505 %6,331 0,9500 0,8953 0,9318 0,8100 %8,361 %2,122 %6,285 %7,608
4 0,9400 0,8612 0,8864 0,8212 %7,220 %1,768 %1,106 %6,331 0,9400 0,8492 0,8845 0,8100 %7,220 %3,137 %0,890 %7,608
5 0,9200 0,8894 0,9254 0,8212 %4,939 %1,449 %5,555 %6,331 0,9000 0,8732 0,9171 0,8100 %2,658 %0,399 %4,608 %7,608
6 0,9300 0,8822 0,9030 0,8212 %6,080 %0,627 %3,000 %6,331 0,9300 0,8765 0,9062 0,8100 %6,080 %0,023 %3,365 %7,608
7 0,8900 0,8804 0,9201 0,8212 %1,517 %0,422 %4,950 %6,331 0,8800 0,8571 0,9030 0,8100 %0,376 %2,236 %3,000 %7,608
8 0,9500 0,8960 0,9073 0,8212 %8,361 %2,201 %3,490 %6,331 0,9500 0,8898 0,9106 0,8100 %8,361 %1,494 %3,867 %7,608
9 0,9800 0,9453 0,9410 0,8212 %11,783 %7,825 %7,334 %6,331 0,9800 0,9388 0,9410 0,8100 %11,783 %7,083 %7,334 %7,608
10 0,9900 0,9417 0,9512 0,8212 %12,923 %7,414 %8,498 %6,331 0,9900 0,9360 0,9512 0,8100 %12,923 %6,764 %8,498 %7,608

ORTALAMA 0,9510 0,9050 0,9253 0,8212 %8,475 %3,579 %5,541 %6,331 0,9470 0,8951 0,9232 0,8100 %8,019 %3,259 %5,303 %7,608
VARYANS 0,0010 0,0008 0,0005 0,0000 %0,129 %0,075 %0,060 %0,000 0,0013 0,0010 0,0005 0,0000 %0,168 %0,062 %0,066 %0,000

Çizelge 4.4. Senaryo I için tahmin değerleri ve hata yüzdelerinin ortalama ve varyansları (n = 100, öks = 20)

ORTALAMA
DEĞERLER

REFERANS BANT GENİŞLİĞİ İLE YAPILAN TAHMİN DEĞERLERİ
VE HATA YÜZDELERİ

MAKSİMUM DÜZLEŞTİRME YÖNTEMİ BANT GENİŞLİĞİ İLE
YAPILAN TAHMİN DEĞERLERİ VE HATA YÜZDELERİ

Ypk p̃KMH p̃ p̂(H,S) εYpk ε p̃KMH ε p̃ ε p̂(H,S) Ypk p̃KMH p̃ p̂(H,S) εYpk ε p̃KMH ε p̃ ε p̂(H,S)
ORTALAMA 0,9525 0,9070 0,9256 0,8212 %8,646 %3,644 %5,581 %6,331 0,9505 0,8997 0,9256 0,8100 %8,418 %3,203 %5,582 %7,608
VARYANS 0,0006 0,0006 0,0003 0,0000 %0,082 %0,060 %0,036 %0,000 0,0008 0,0006 0,0003 0,0000 %0,102 %0,046 %0,037 %0,000
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Çizelge 4.3’de n= 100 gözlem sayısına sahip örneklem kümelerinden hesaplanan Ypk, p̃KMH ,

p̃ ve p̂(H,S) tahminleri ve hata yüzdeleri (%ε) görülmektedir. Koyu renkle ifade edilen

değerler, ürün kitle parametresi olan uygun ürün oranı p’yi diğer yaklaşımlara göre daha

iyi temsil eden yaklaşımı göstermektedir. p̃KMH yaklaşımı ile elde edilen hata yüzdelerinin

diğer üç yönteme göre daha iyi sonuç verdiği söylenebilir.

(a) (b)

Şekil 4.2. Senaryo I için hata yüzdeleri çizgi grafiği (n = 100,öks = 10)

Şekil 4.2’de verilen grafikler Senaryo I’e ait faz I verilerinden elde edilen εYpk, ε p̃KMH , ε p̃

ve ε p̂(H,S) hata yüzdelerini göstermektedir. Grafiklerden ilkinde Referans Bant Genişliği

tahmin yöntemi yardımıyla Kernel yoğunluk tahmini yapılarak aynı dağılımdan çektirilen

10 tane örneklem kümesinden, ikincisinde ise Maksimum Düzleştirme Yöntemi yardımıyla

Kernel yoğunluk tahmini yapılarak aynı dağılımdan çektirilen 10 tane örneklem kümesinden

hesaplanmıştır. Grafikler incelendiğinde, her iki grafikte de p̃KMH yaklaşımı ile elde edilen

hata yüzdelerinin diğer üç yönteme göre daha iyi sonuç verdiği görülmektedir. Her iki bant

genişliği tahmin yöntemi kullanılarak elde edilen sonuçların benzer bir eğilim gösterdiği

söylenebilir.

Çizelge 4.4’de n = 100 gözlem sayısına sahip 20 örneklem kümesinden hesaplanan Ypk,

p̃KMH , p̃ ve p̂(H,S) tahminleri ve hata yüzdelerinin (%ε) ortalama ile varyans değerleri

görülmektedir. Bu değerler, Çizelge 4.3’de verilen 10 örneklem kümesinden hesaplanan

Ypk, p̃KMH , p̃ ve p̂(H,S) tahminleri ve hata yüzdelerinin (%ε) ortalama ile varyans

değerleri ile karşılaştırıldığında, örneklem küme sayısındaki artış sonucu kümeler arasında

oluşan ortalama ve varyans değerlerinde çok fazla bir fark olmadığı söylenebilir. Çizelge

4.4’te verilen hata yüzdelerinin ortalama değerleri karşılaştırıldığında koyu olan değerlere
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sahip yaklaşım olan p̃KMH yaklaşımının daha küçük bir hata ile p’yi tahmin ettiği,

yaklaşımlara göre daha iyi sonuçlar verdiği görülmektedir.

Aynı şekilde elde edilen n = 250 gözlem sayısına sahip örneklem kümeleri için sonuçlar

Çizelge 4.5’de verilmiştir.



96

Çizelge 4.5. Senaryo I için tahmin değerleri ve hata yüzdeleri (n = 250, öks = 10)

ÖRNEKLEM
KÜMELERİ

REFERANS BANT GENİŞLİĞİ İLE YAPILAN TAHMİN DEĞERLERİ
VE HATA YÜZDELERİ

MAKSİMUM DÜZLEŞTİRME YÖNTEMİ BANT GENİŞLİĞİ İLE
YAPILAN TAHMİN DEĞERLERİ VE HATA YÜZDELERİ

Ypk p̃KMH p̃ p̂(H,S) εYpk ε p̃KMH ε p̃ ε p̂(H,S) Ypk p̃KMH p̃ p̂(H,S) εYpk ε p̃KMH ε p̃ ε p̂(H,S)
1 0,9800 0,9389 0,9363 0,8041 %11,783 %7,095 %6,798 %8,2810 0,9200 0,8847 0,9181 0,7952 %4,939 %0,913 %4,722 %9,2962
2 0,9400 0,8914 0,9034 0,8041 %7,220 %1,677 %3,046 %8,2810 0,9720 0,9388 0,9427 0,7952 %10,870 %7,083 %7,528 %9,2962
3 0,9680 0,9266 0,9355 0,8041 %10,414 %5,692 %6,707 %8,2810 0,9600 0,9207 0,9368 0,7952 %9,502 %5,019 %6,855 %9,2962
4 0,9600 0,9229 0,9404 0,8041 %9,502 %5,270 %7,266 %8,2810 0,9360 0,9005 0,9177 0,7952 %6,764 %2,715 %4,677 %9,2962
5 0,9680 0,9373 0,9493 0,8041 %10,414 %6,912 %8,281 %8,2810 0,9440 0,9097 0,9275 0,7952 %7,677 %3,764 %5,794 %9,2962
6 0,9406 0,9342 0,9720 0,8041 %7,289 %6,559 %10,870 %8,2810 0,9720 0,9381 0,9555 0,7952 %10,870 %7,004 %8,988 %9,2962
7 0,9360 0,8979 0,9150 0,8041 %6,764 %2,418 %4,369 %8,2810 0,9360 0,9108 0,9314 0,7952 %6,764 %3,890 %6,239 %9,2962
8 0,9880 0,9595 0,9566 0,8041 %12,695 %9,445 %9,114 %8,2810 0,9360 0,8890 0,9102 0,7952 %6,764 %1,403 %3,821 %9,2962
9 0,9840 0,9456 0,9564 0,8041 %12,239 %7,859 %9,091 %8,2810 0,9520 0,8957 0,9236 0,7952 %8,589 %2,167 %5,350 %9,2962
10 0,9560 0,9248 0,9387 0,8041 %9,045 %5,486 %7,072 %8,2810 0,9520 0,9232 0,9404 0,7952 %8,589 %5,304 %7,266 %9,2962

ORTALAMA 0,9621 0,9279 0,9404 0,8041 %9,737 %5,841 %7,261 %8,281 0,9480 0,9111 0,9304 0,7952 %8,133 %3,926 %6,124 %9,296
VARYANS 0,0004 0,0004 0,0004 0,0000 %0,046 %0,055 %0,053 %0,000 0,0003 0,0004 0,0002 0,0000 %0,037 %0,047 %0,025 %0,000

Çizelge 4.6. Senaryo I için tahmin değerleri ve hata yüzdelerinin ortalama ve varyansları (n = 250, öks = 20)

ORTALAMA
DEĞERLER

REFERANS BANT GENİŞLİĞİ İLE YAPILAN TAHMİN DEĞERLERİ
VE HATA YÜZDELERİ

MAKSİMUM DÜZLEŞTİRME YÖNTEMİ BANT GENİŞLİĞİ İLE
YAPILAN TAHMİN DEĞERLERİ VE HATA YÜZDELERİ

Ypk p̃KMH p̃ p̂(H,S) εYpk ε p̃KMH ε p̃ ε p̂(H,S) Ypk p̃KMH p̃ p̂(H,S) εYpk ε p̃KMH ε p̃ ε p̂(H,S)
ORTALAMA 0,9524 0,9159 0,9286 0,8041 %8,635 %4,527 %5,922 %8,281 0,9483 0,9068 0,9294 0,7952 %8,167 %4,142 %6,011 %9,296
VARYANS 0,0004 0,0004 0,0003 0,0000 %0,047 %0,047 %0,033 %0,000 0,0005 0,0008 0,0003 0,0000 %0,063 %0,042 %0,034 %0,000
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Çizelge 4.5’te n=250 gözlem sayısına sahip örneklem kümelerinden hesaplanan Ypk, p̃KMH ,

p̃ ve p̂(H,S) tahminleri ve hata yüzdeleri (%ε) görülmektedir. p̃KMH yaklaşımı ile elde

edilen hata yüzdelerinin diğer üç yönteme göre daha iyi sonuç verdiği söylenebilir.

Maksimum Bant Genişliği tahmin yöntemi ile elde edilen sonuçların Referans Bant

Genişliği ile yapılan tahmin sonuçlarından daha az hata yüzdesine sahip olduğu ürün kitle

parametresi olan uygun ürün oranı p’ye daha yakın sonuçlar verdiği görülmektedir.

(a) (b)

Şekil 4.3. Senaryo I için hata yüzdeleri çizgi grafiği (n = 250,öks = 10)

Şekil 4.3’de görülen grafikler Senaryo I’e ait faz I verilerinden elde edilen εYpk, ε p̃KMH , ε p̃

ve ε p̂(H,S) hata yüzdelerini göstermektedir. Grafiklerden ilkinde Referans Bant Genişliği

tahmin yöntemi yardımıyla, ikincisinde ise Maksimum Düzleştirme Yöntemi yardımıyla

Kernel yoğunluk tahmini yapılarak aynı dağılımdan çektirilen 10 tane örneklem

kümesinden hesaplanmıştır. Grafikler incelendiğinde, her iki grafikte de p̃KMH yaklaşımı ile

elde edilen hata yüzdelerinin diğer üç yönteme göre daha iyi sonuç verdiği görülmektedir.

Her iki bant genişliği tahmin yöntemi kullanılarak elde edilen sonuçların benzer bir eğilim

gösterdiği söylenebilir.

Çizelge 4.6’da n = 250 gözlem sayısına sahip 20 örneklem kümesinden hesaplanan Ypk,

p̃KMH , p̃ ve p̂(H,S) tahminleri ve hata yüzdelerinin (%ε) ortalama ile varyans değerleri

görülmektedir. Bu değerler, Çizelge 4.3’de verilen 10 örneklem kümesinden hesaplanan

Ypk, p̃KMH , p̃ ve p̂(H,S) tahminleri ve hata yüzdelerinin (%ε) ortalama ile varyans

değerleri ile karşılaştırıldığında, örneklem küme sayısındaki artış sonucu kümeler arasında

oluşan ortalama ve varyans değerlerinde çok fazla bir fark olmadığı söylenebilir. n = 500

gözlem sayısına sahip örneklem kümeleri için sonuçlar Çizelge 4.7’de verilmiştir.
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Çizelge 4.7. Senaryo I için tahmin değerleri ve hata yüzdeleri (n = 500, öks = 10)

ÖRNEKLEM
KÜMELERİ

REFERANS BANT GENİŞLİĞİ İLE YAPILAN TAHMİN DEĞERLERİ
VE HATA YÜZDELERİ

MAKSİMUM DÜZLEŞTİRME YÖNTEMİ BANT GENİŞLİĞİ İLE
YAPILAN TAHMİN DEĞERLERİ VE HATA YÜZDELERİ

Ypk p̃KMH p̃ p̂(H,S) εYpk ε p̃KMH ε p̃ ε p̂(H,S) Ypk p̃KMH p̃ p̂(H,S) εYpk ε p̃KMH ε p̃ ε p̂(H,S)
1 0,9480 0,9198 0,9233 0,8483 %8,133 %4,916 %5,315 %3,239 0,9600 0,9212 0,9300 0,8402 %9,502 %5,076 %6,080 %4,163
2 0,9540 0,9308 0,9361 0,8483 %8,817 %6,171 %6,775 %3,239 0,9520 0,9205 0,9314 0,8402 %8,589 %4,996 %6,239 %4,163
3 0,9500 0,9298 0,9376 0,8483 %8,361 %6,057 %6,947 %3,239 0,9520 0,9155 0,9235 0,8402 %8,589 %4,426 %5,338 %4,163
4 0,9420 0,9209 0,9351 0,8483 %7,448 %5,042 %6,661 %3,239 0,9620 0,9287 0,9324 0,8402 %9,730 %5,931 %6,353 %4,163
5 0,9600 0,9289 0,9372 0,8483 %9,502 %5,954 %6,901 %3,239 0,9620 0,9241 0,9286 0,8402 %9,730 %5,407 %5,920 %4,163
6 0,9300 0,9093 0,9233 0,8483 %6,080 %3,718 %5,315 %3,239 0,9480 0,9082 0,9245 0,8402 %8,133 %3,593 %5,452 %4,163
7 0,9600 0,9260 0,9246 0,8483 %9,502 %5,623 %5,464 %3,239 0,9620 0,9276 0,9321 0,8402 %9,730 %5,806 %6,319 %4,163
8 0,9700 0,9339 0,9344 0,8483 %10,642 %6,524 %6,581 %3,239 0,9440 0,9234 0,9397 0,8402 %7,677 %5,327 %7,186 %4,163
9 0,9640 0,9338 0,9413 0,8483 %9,958 %6,513 %7,369 %3,239 0,9540 0,9164 0,9280 0,8402 %8,817 %4,528 %5,851 %4,163
10 0,9340 0,9175 0,9211 0,8483 %6,536 %4,654 %5,064 %3,239 0,9580 0,9241 0,9325 0,8402 %9,273 %5,407 %6,365 %4,163

ORTALAMA 0,9512 0,9251 0,9314 0,8483 %8,498 %5,517 %6,239 %3,239 0,9554 0,9210 0,9303 0,8402 %8,977 %5,050 %6,110 %4,163
VARYANS 0,0002 0,0001 0,0001 0,0000 %0,022 %0,008 %0,007 %0,000 0,0000 0,0000 0,0000 0,0000 %0,005 %0,005 %0,003 %0,000

Çizelge 4.8. Senaryo I için tahmin değerleri ve hata yüzdelerinin ortalama ve varyansları (n = 500, öks = 20)

ORTALAMA
DEĞERLER

REFERANS BANT GENİŞLİĞİ İLE YAPILAN TAHMİN DEĞERLERİ
VE HATA YÜZDELERİ

MAKSİMUM DÜZLEŞTİRME YÖNTEMİ BANT GENİŞLİĞİ İLE
YAPILAN TAHMİN DEĞERLERİ VE HATA YÜZDELERİ

Ypk p̃KMH p̃ p̂(H,S) εYpk ε p̃KMH ε p̃ ε p̂(H,S) Ypk p̃KMH p̃ p̂(H,S) εYpk ε p̃KMH ε p̃ ε p̂(H,S)
ORTALAMA 0,9537 0,9249 0,9309 0,8483 %8,783 %5,502 %6,181 %3,239 0,9535 0,9201 0,9308 0,8402 %8,760 %4,948 %6,176 %4,163
VARYANS 0,0001 0,0001 0,0001 0,0000 %0,010 %0,014 %0,012 %0,000 0,0001 0,0001 0,0001 0,0000 %0,009 %0,016 0,0001 %0,000
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Çizelge 4.7’de n= 500 gözlem sayısına sahip örneklem kümelerinden hesaplanan Ypk, p̃KMH ,

p̃ ve p̂(H,S) tahminleri ve hata yüzdeleri (%ε) görülmektedir. p̂(H,S) yaklaşımı ile elde

edilen hata yüzdelerinin diğer üç yönteme göre daha iyi sonuç verdiği söylenebilir. Referans

Bant Genişliği ile yapılan sonuçların Maksimum Düzleştirme Yöntemi ile elde edilen tahmin

sonuçlarından daha az hata yüzdesine sahip olduğu ürün kitle parametresi olan uygun ürün

oranı p’ye daha yakın sonuçlar verdiği görülmektedir.

(a) (b)

Şekil 4.4. Senaryo I için hata yüzdeleri çizgi grafiği (n = 500,öks = 10)

Şekil 4.4’te görülen grafikler Senaryo I’e ait faz I verilerinden elde edilen εYpk, ε p̃KMH , ε p̃

ve ε p̂(H,S) hata yüzdelerini göstermektedir. İlk Grafik, Referans Bant Genişliği tahmin

yöntemi yardımıyla Kernel yoğunluk tahmini yapılarak aynı dağılımdan çektirilen 10 tane

örneklem kümesi üzerinden elde edilen hata yüzdelerini göstermektedir. İlk grafikte

p̂(H,S) yaklaşımı ile p’nin daha iyi tahmin edildiği görülmektedir. İkinci grafikte ise

Maksimum Düzleştirme Yöntemi yardımıyla Kernel yoğunluk tahmini yapılarak aynı

dağılımdan çektirilen 10 tane örneklem kümesinden hesaplanmıştır. İkinci grafik

incelendiğinde de, p̂(H,S) yaklaşımının başarılı olduğu görülmektedir. Ayrıca her iki

grafikten de önerilen p̃KMH yaklaşımı sonuçları ile p̂(H,S) yaklaşımı sonuçlarının

genellikle diğer iki yaklaşıma göre birbirine yakın sonuçlar verdiği açıkça görülmektedir.

Çizelge 4.8’de n = 500 gözlem sayısına sahip 20 örneklem kümesinden hesaplanan Ypk,

p̃KMH , p̃ ve p̂(H,S) tahminleri ve hata yüzdelerinin (%ε) ortalama ile varyans değerleri

görülmektedir. Bu değerler, Çizelge 4.7’de verilen 10 örneklem kümesinden hesaplanan Ypk,

p̃KMH , p̃ ve p̂(H,S) tahminleri ve hata yüzdelerinin (%ε) ortalama ile varyans değerleri

ile karşılaştırıldığında, 10 örneklem kümesi için hesaplanan hata yüzdelerinde olduğu gibi
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20 örneklem kümesinden hesaplananlar için de geçerli olduğu, diğer bir ifade ile p̂(H,S)

yaklaşımının daha iyi sonuç verdiği söylenebilir.

n = 1000 gözlem sayısına sahip örneklem kümeleri için sonuçlar Çizelge 4.9’da verilmiştir.
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Çizelge 4.9. Senaryo I için tahmin değerleri ve hata yüzdeleri (n = 1000, öks = 10)

ÖRNEKLEM
KÜMELERİ

REFERANS BANT GENİŞLİĞİ İLE YAPILAN TAHMİN DEĞERLERİ
VE HATA YÜZDELERİ

MAKSİMUM DÜZLEŞTİRME YÖNTEMİ BANT GENİŞLİĞİ İLE
YAPILAN TAHMİN DEĞERLERİ VE HATA YÜZDELERİ

Ypk p̃KMH p̃ p̂(H,S) εYpk ε p̃KMH ε p̃ ε p̂(H,S) Ypk p̃KMH p̃ p̂(H,S) εYpk ε p̃KMH ε p̃ ε p̂(H,S)
1 0,9520 0,9315 0,9295 0,8382 %8,589 %6,251 %6,023 %4,391 0,9500 0,9226 0,9310 0,8322 %8,361 %5,236 %6,194 %5,075
2 0,9430 0,9287 0,9315 0,8382 %7,562 %5,931 %6,251 %4,391 0,9440 0,9180 0,9273 0,8322 %7,677 %4,711 %5,772 %5,075
3 0,9440 0,9242 0,9311 0,8382 %7,677 %5,418 %6,205 %4,391 0,9520 0,9223 0,9302 0,8322 %8,589 %5,201 %6,102 %5,075
4 0,9650 0,9367 0,9318 0,8382 %10,072 %6,844 %6,285 %4,391 0,9400 0,9184 0,9305 0,8322 %7,220 %4,756 %6,137 %5,075
5 0,9530 0,9309 0,9341 0,8382 %8,703 %6,182 %6,547 %4,391 0,9500 0,9327 0,9401 0,8322 %9,387 %6,388 %7,232 %5,075
6 0,9600 0,9280 0,9258 0,8382 %9,502 %5,851 %5,601 %4,391 0,9450 0,9233 0,9286 0,8322 %7,791 %5,315 %5,920 %5,075
7 0,9440 0,9280 0,9273 0,8382 %7,677 %5,851 %5,772 %4,391 0,9500 0,9205 0,9314 0,8322 %8,361 %4,996 %6,239 %5,075
8 0,9540 0,9297 0,9293 0,8382 %8,817 %6,045 %6,000 %4,391 0,9410 0,9155 0,9239 0,8322 %7,334 %4,426 %5,384 %5,075
9 0,9490 0,9294 0,9374 0,8382 %8,247 %6,011 %6,924 %4,391 0,9280 0,9051 0,9159 0,8322 %5,851 %3,239 %4,471 %5,075
10 0,9530 0,9239 0,9254 0,8382 %8,703 %5,384 %5,555 %4,391 0,9400 0,9186 0,9317 0,8322 %7,220 %4,779 %6,274 %5,075

ORTALAMA 0,9517 0,9291 0,9303 0,8382 %8,555 %5,977 %6,116 %4,391 0,9449 0,9197 0,9291 0,8322 %7,779 %4,905 %5,973 %5,075
VARYANS 0,0001 0,0000 0,0000 0,0000 %0,007 %0,002 %0,002 %0,000 0,0001 0,0000 0,0000 0,0000 %0,009 %0,006 %0,005 %0,000

Çizelge 4.10. Senaryo I için tahmin değerleri ve hata yüzdelerinin ortalama ve varyansları (n = 1000, öks = 20)

ORTALAMA
DEĞERLER

REFERANS BANT GENİŞLİĞİ İLE YAPILAN TAHMİN DEĞERLERİ
VE HATA YÜZDELERİ

MAKSİMUM DÜZLEŞTİRME YÖNTEMİ BANT GENİŞLİĞİ İLE
YAPILAN TAHMİN DEĞERLERİ VE HATA YÜZDELERİ

Ypk p̃KMH p̃ p̂(H,S) εYpk ε p̃KMH ε p̃ ε p̂(H,S) Ypk p̃KMH p̃ p̂(H,S) εYpk ε p̃KMH ε p̃ ε p̂(H,S)
ORTALAMA 0,9530 0,9319 0,9333 0,8382 %8,703 %6,297 %6,458 %4,391 0,9527 0,9254 0,9302 %7,779 %8,663 %5,555 %6,098 %5,075
VARYANS 0,0001 0,0001 0,0001 0,0000 %0,014 %0,013 %0,007 %0,000 0,0000 0,0000 0,0000 %0,009 %0,005 %0,003 %0,003 %0,000
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Çizelge 4.9’da n = 1000 gözlemli örneklem kümelerinden hesaplanan Ypk, p̃KMH , p̃ ve

p̂(H,S) tahminleri ve hata yüzdeleri (%%ε) görülmektedir. Referans Bant Genişliği ile

yapılan tahmin değerleri için p̂(H,S) yaklaşımının diğer yaklaşımlara göre daha iyi sonuç

verdiği görülmektedir. Maksimum Düzleştirme Yöntemi ile bant genişliği ile yapılan

tahminler sonucu elde edilen örnekleme kümeleri üzerinden hesaplanan hata yüzdeleri için

ise p̃KMH yaklaşımının daha iyi sonuç verdiği söylenebilir.

Yüzde değerleri göre yöntemleri karşılaştırmak amacıyla çizdirilen çizgi grafikleri Şekil

4.5’te verilmiştir.

(a) (b)

Şekil 4.5. Senaryo I için hata yüzdeleri çizgi grafiği (n = 1000,öks = 10)

Şekil 4.5’te verilen grafikler incelendiğinde ilk grafikteki sonuçlardan p̃KMH , p̃

yaklaşımlarının hata yüzdeleri açısından benzer sonuçlar verdiği, diğer yaklaşımlara göre

p’yi daha iyi tahmin ettiği görülmektedir. Örneklem kümelerinin n = 1000 gözlem içerdiği

göz önünde bulundurulduğunda dağılımın Normal dağıldığı varsayımı ile Referans Bant

Genişliği tahmin yöntemi kullanıldığından ilk grafikte , p̃’nın p’yi tahmin etmede başarılı

olması ve gözlem sayısı büyüdükçe dağılımın normal dağılıma yakınsayarak klasik tahmin

edici p̃’nin daha iyi sonuçlar vermesi olasıdır. Öyle ki ikinci grafik incelendiğinde

Maksimum Düzleştirme Yöntemi ile tahmin edilen kernel yoğunluk tahminleri üzerinden

çektirilen örneklem kümelerine p̃KMH yaklaşımı uygulandığında p’yi daha iyi tahmin ettiği

görülmektedir.

Çizelge 4.10’dan n = 1000 gözlem sayısına sahip 20 örneklem kümesinden hesaplanan Ypk,

p̃KMH , p̃ ve p̂(H,S) tahminleri ve hata yüzdelerinin (%ε) ortalama ile varyans değerleri
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görülmektedir. 10 örneklem kümesi için elde edilen sonuçlardan farklı olarak her iki bant

genişliği tahmin yönteminde de p̂(H,S) yaklaşımının daha iyi sonuçlar verdiği

görülmektedir.

Örnekleme kümesi sayısı (öks) ve her bir örnekleme kümesindeki gözlem sayısı büyüdükçe

kümeler arasında varyans değerinin küçüldüğü görülmektedir.

4.2. Senaryo II İçin Elde Edilen Sonuçlar

Senaryo II için Kernel yoğunluk tahmin yöntemine dayalı MH örneklemesi ile elde edilen

n = 50, 100, 250, 500 ve 1000 gözlemli örneklem kümelerinden hesaplanan uygun ürün

olasılıkları (Ypk, p̃KMH , p̃, p̂(H,S)) kitle uygun ürün oranı p ile karşılaştırılarak, Hata

yüzdeleri elde edilmiştir. Hesaplanan tahmin sonuçları n = 50 için Çizelge 4.11’de

verilmiştir.
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Çizelge 4.11. Senaryo II için tahmin değerleri ve hata yüzdeleri (n = 50, öks = 10)

ÖRNEKLEM
KÜMELERİ

REFERANS BANT GENİŞLİĞİ İLE YAPILAN TAHMİN DEĞERLERİ
VE HATA YÜZDELERİ

MAKSİMUM DÜZLEŞTİRME YÖNTEMİ BANT GENİŞLİĞİ İLE
YAPILAN TAHMİN DEĞERLERİ VE HATA YÜZDELERİ

Ypk p̃KMH p̃ p̂(H,S) εYpk ε p̃KMH ε p̃ ε p̂(H,S) Ypk p̃KMH p̃ p̂(H,S) εYpk ε p̃KMH ε p̃ ε p̂(H,S)
1 0,9600 0,8746 0,9037 0,6385 %22,496 %11,599 %15,312 %18,527 0,9200 0,8342 0,8889 0,6238 %17,392 %6,444 %13,424 %20,403
2 0,8600 0,7929 0,8528 0,6385 %9,736 %1,174 %8,817 %18,527 0,8600 0,7840 0,8528 0,6238 %9,736 %0,038 %8,817 %20,403
3 0,9400 0,7956 0,8717 0,6385 %19,944 %1,518 %11,229 %18,527 0,9400 0,7851 0,8717 0,6238 %19,944 %0,179 %11,229 %20,403
4 0,9600 0,8078 0,8607 0,6385 %22,496 %3,075 %9,825 %18,527 0,9600 0,7972 0,8607 0,6238 %22,496 %1,723 %9,825 %20,403
5 0,8800 0,7730 0,8420 0,6385 %12,288 %1,365 %7,439 %18,527 0,8800 0,7625 0,8420 0,6238 %12,288 %2,705 %7,439 %20,403
6 0,9200 0,8116 0,8419 0,6385 %17,392 %3,560 %7,426 %18,527 0,9200 0,7967 0,8419 0,6238 %17,392 %1,659 %7,426 %20,403
7 0,9800 0,7890 0,8187 0,6385 %25,048 %0,676 %4,466 %18,527 0,9800 0,7742 0,8187 0,6238 %25,048 %1,212 %4,466 %20,403
8 0,9400 0,8348 0,8846 0,6385 %19,944 %6,520 %12,875 %18,527 0,9400 0,8219 0,8846 0,6238 %19,944 %4,874 %12,875 %20,403
9 0,8800 0,7488 0,8170 0,6385 %12,288 %4,453 %4,249 %18,527 0,8800 0,7649 0,8381 0,6238 %12,288 %2,399 %6,941 %20,403
10 0,8400 0,7645 0,8401 0,6385 %7,184 %2,450 %7,197 %18,527 0,8200 0,7434 0,8287 0,6238 %4,632 %5,142 %5,742 %20,403

ORTALAMA 0,9160 0,7993 0,8533 0,6385 %16,881 %3,639 %8,884 %18,527 0,9100 0,7864 0,8528 0,6238 %16,116 %2,637 %8,818 %20,403
VARYANS 0,0023 0,0013 0,0008 0,0000 %0,373 %0,110 %0,124 %0,000 0,0024 0,0008 0,0005 0,0000 %0,394 %0,047 %0,089 %0,000

Çizelge 4.12. Senaryo II için tahmin değerleri ve hata yüzdelerinin ortalama ve varyansları (n = 50, öks = 20)

ORTALAMA
DEĞERLER

REFERANS BANT GENİŞLİĞİ İLE YAPILAN TAHMİN DEĞERLERİ
VE HATA YÜZDELERİ

MAKSİMUM DÜZLEŞTİRME YÖNTEMİ BANT GENİŞLİĞİ İLE
YAPILAN TAHMİN DEĞERLERİ VE HATA YÜZDELERİ

Ypk p̃KMH p̃ p̂(H,S) εYpk ε p̃KMH ε p̃ ε p̂(H,S) Ypk p̃KMH p̃ p̂(H,S) εYpk ε p̃KMH ε p̃ ε p̂(H,S)
ORTALAMA 0,8980 0,7932 0,8521 0,6385 %16,465 %5,789 %9,588 %18,527 0,8960 0,7805 0,8522 0,6238 %15,955 %4,989 %9,530 %20,403
VARYANS 0,0068 0,0036 0,0022 0,0000 %0,488 %0,252 %0,194 %0,000 0,0062 0,0031 0,0024 0,0000 %0,487 %0,244 %0,238 %0,000
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Çizelge 4.11’de, n = 50 gözlem sayısına sahip 10 örneklem kümesinden hesaplanan Ypk,

p̃KMH , p̃ ve p̂(H,S) tahminleri ve hata yüzdelerinin (%ε) ortalama ile varyans değerleri

görülmektedir. Ürün kitle parametresi p’nin önerilen yaklaşım olan p̃KMH ile diğer üç

yönteme göre daha iyi tahmin edildiği açıkça görülmektedir. p̃KMH yaklaşımının diğer

yaklaşımlara göre p’yi tahmin etmedeki başarısı, Şekil 4.6’da verilen çizgi grafiklerinden

daha iyi anlaşılabilir.

(a) (b)

Şekil 4.6. Senaryo II için hata yüzdeleri çizgi grafiği (n = 50,öks = 10)

Şekil 4.6’da görülen her iki grafikte de p̃KMH yaklaşımının iyi sonuçlar verdiği ve hata yüzde

seviyesinin diğerlerine göre çok aşağıda olduğu görülmektedir.

Çizelge 4.12’de n = 50 gözlem sayısına sahip 20 örneklem kümesinden hesaplanan Ypk,

p̃KMH , p̃ ve p̂(H,S) tahminleri ve hata yüzdelerinin (%ε) ortalama ile varyans değerleri

görülmektedir. Bu değerler, Çizelge 4.11’de verilen 10 örneklem kümesinden hesaplanan

Ypk, p̃KMH , p̃ ve p̂(H,S) tahminleri ve hata yüzdelerinin (%ε) ortalama ile varyans

değerleri ile karşılaştırıldığında, örneklem küme sayısındaki artış sonucu kümeler arasında

oluşan ortalama ve varyans değerlerinde çok fazla bir fark olmadığı söylenebilir.

n = 100 gözlem sayısına sahip örneklem kümeleri için sonuçlar Çizelge 4.13’da verilmiştir.
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Çizelge 4.13. Senaryo II için tahmin değerleri ve hata yüzdeleri (n = 100, öks = 10)

ÖRNEKLEM
KÜMELERİ

REFERANS BANT GENİŞLİĞİ İLE YAPILAN TAHMİN DEĞERLERİ
VE HATA YÜZDELERİ

MAKSİMUM DÜZLEŞTİRME YÖNTEMİ BANT GENİŞLİĞİ İLE
YAPILAN TAHMİN DEĞERLERİ VE HATA YÜZDELERİ

Ypk p̃KMH p̃ p̂(H,S) εYpk ε p̃KMH ε p̃ ε p̂(H,S) Ypk p̃KMH p̃ p̂(H,S) εYpk ε p̃KMH ε p̃ ε p̂(H,S)
1 0,9100 0,8547 0,8854 0,6497 %16,116 %9,060 %12,977 %17,098 0,8900 0,8319 0,8783 0,6386 %13,564 %6,150 %12,071 %18,515
2 0,9600 0,8267 0,8818 0,6497 %22,496 %5,487 %12,518 %17,098 0,9600 0,8176 0,8818 0,6386 %22,496 %4,326 %12,518 %18,515
3 0,8500 0,7779 0,8400 0,6497 %8,460 %0,740 %7,184 %17,098 0,8500 0,7657 0,8373 0,6386 %8,460 %2,297 %6,839 %18,515
4 0,9000 0,7936 0,8448 0,6497 %14,840 %1,263 %7,796 %17,098 0,9000 0,7856 0,8480 0,6386 %14,840 %0,242 %8,205 %18,515
5 0,9000 0,8157 0,8650 0,6497 %14,840 %4,083 %10,374 %17,098 0,8900 0,7987 0,8587 0,6386 %13,564 %1,914 %9,570 %18,515
6 0,9100 0,7866 0,8403 0,6497 %16,116 %0,370 %7,222 %17,098 0,9100 0,7762 0,8403 0,6386 %16,116 %0,957 %7,222 %18,515
7 0,8300 0,7725 0,8384 0,6497 %5,908 %1,429 %6,980 %17,098 0,8300 0,7586 0,8331 0,6386 %5,908 %3,203 %6,303 %18,515
8 0,8500 0,7619 0,8249 0,6497 %8,460 %2,782 %5,257 %17,098 0,8500 0,7513 0,8249 0,6386 %8,460 %4,134 %5,257 %18,515
9 0,9500 0,8742 0,9032 0,6497 %21,220 %11,548 %15,248 %17,098 0,9500 0,8641 0,9032 0,6386 %21,220 %10,259 %15,248 %18,515
10 0,9400 0,8884 0,8804 0,6497 %19,944 %13,360 %12,339 %17,098 0,9400 0,8264 0,8810 0,6386 %19,944 %5,449 %12,415 %18,515

ORTALAMA 0,9000 0,8152 0,8604 0,6497 %14,840 %5,012 %9,789 %17,098 0,8970 0,7976 0,8587 0,6386 %14,457 %3,893 %9,565 %18,515
VARYANS 0,0020 0,0020 0,0007 0,0000 %0,322 %0,224 %0,111 %0,000 0,0020 0,0013 0,0007 0,0000 %0,322 %0,086 %0,110 %0,000

Çizelge 4.14. Senaryo II için tahmin değerleri ve hata yüzdelerinin ortalama ve varyansları (n = 100, öks = 20)

ORTALAMA
DEĞERLER

REFERANS BANT GENİŞLİĞİ İLE YAPILAN TAHMİN DEĞERLERİ
VE HATA YÜZDELERİ

MAKSİMUM DÜZLEŞTİRME YÖNTEMİ BANT GENİŞLİĞİ İLE
YAPILAN TAHMİN DEĞERLERİ VE HATA YÜZDELERİ

Ypk p̃KMH p̃ p̂(H,S) εYpk ε p̃KMH ε p̃ ε p̂(H,S) Ypk p̃KMH p̃ p̂(H,S) εYpk ε p̃KMH ε p̃ ε p̂(H,S)
ORTALAMA 0,9095 0,8256 0,8678 0,6497 %16,482 %6,517 %10,733 %17,098 0,9100 0,8122 0,8728 0,6386 %16,116 %5,076 %11,364 %18,515
VARYANS 0,0031 0,0018 0,0008 0,0000 %0,351 %0,153 %0,122 %0,000 0,0023 0,0013 0,0013 0,0000 %0,367 %0,087 %0,205 %0,000
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Çizelge 4.13’te n = 100 gözlem sayısına sahip 10 örneklem kümesinden hesaplanan Ypk,

p̃KMH , p̃ ve p̂(H,S) tahminleri ve hata yüzdelerinin (%ε) ortalama ile varyans değerleri

görülmektedir. Ürün kitle parametresi p’nin önerilen yaklaşım olan p̃KMH ile diğer üç

yönteme göre daha iyi tahmin edildiği açıkça görülmektedir. Öyle ki, diğer üç yöntemin

hata seviyeleri %20’lere yaklaşırken, p̃KMH ’nın p’yi tahmin etmede ki hata yüzdeleri

ortalama %3’lerde seyretmektedir.

p̃KMH yaklaşımının diğer yaklaşımlara göre p’yi tahmin etmedeki başarısı, Şekil 4.7’de

verilen çizgi grafiklerinden daha iyi anlaşılabilir.

(a) (b)

Şekil 4.7. Senaryo II için hata yüzdeleri çizgi grafiği (n = 100,öks = 10)

Şekil 4.7’de her iki bant genişliği tahmin yöntemi için p̃KMH yaklaşımının iyi sonuçlar

verdiği görülmektedir.

Çizelge 4.14’te n = 100 gözlem sayısına sahip 20 örneklem kümesinden hesaplanan Ypk,

p̃KMH , p̃ ve p̂(H,S) tahminleri ve hata yüzdelerinin p̃KMH yaklaşımı için iyi sonuçlar

verdiği ve her iki bant genişliği tahmin yönteme için de diğer yaklaşımlardan daha küçük

hata seviyesi ile p’yi tahmin ettiği görülmektedir.

n = 250 gözlem sayısına sahip örneklem kümeleri için sonuçlar Çizelge 4.15’de verilmiştir.
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Çizelge 4.15. Senaryo II için tahmin değerleri ve hata yüzdeleri (n = 250, öks = 10)

ÖRNEKLEM
KÜMELERİ

REFERANS BANT GENİŞLİĞİ İLE YAPILAN TAHMİN DEĞERLERİ
VE HATA YÜZDELERİ

MAKSİMUM DÜZLEŞTİRME YÖNTEMİ BANT GENİŞLİĞİ İLE
YAPILAN TAHMİN DEĞERLERİ VE HATA YÜZDELERİ

Ypk p̃KMH p̃ p̂(H,S) εYpk ε p̃KMH ε p̃ ε p̂(H,S) Ypk p̃KMH p̃ p̂(H,S) εYpk ε p̃KMH ε p̃ ε p̂(H,S)
1 0,9200 0,8499 0,8744 0,6837 %17,392 %8,447 %11,573 %12,759 0,9360 0,8449 0,8760 0,6729 %19,433 %7,809 %11,777 %14,138
2 0,8880 0,8067 0,8485 0,6837 %13,309 %2,935 %8,268 %12,759 0,9000 0,8263 0,8727 0,6729 %14,840 %5,436 %11,356 %14,138
3 0,8920 0,8264 0,8627 0,6837 %13,819 %5,449 %10,080 %12,759 0,9560 0,8561 0,8867 0,6729 %21,985 %9,238 %13,143 %14,138
4 0,8880 0,8349 0,8676 0,6837 %13,309 %6,533 %10,706 %12,759 0,9240 0,8164 0,8550 0,6729 %17,902 %4,173 %9,098 %14,138
5 0,9440 0,8734 0,8894 0,6837 %20,454 %11,446 %13,487 %12,759 0,9440 0,8393 0,8743 0,6729 %20,454 %7,095 %11,561 %14,138
6 0,9040 0,8317 0,8634 0,6837 %15,350 %6,125 %10,170 %12,759 0,9400 0,8402 0,8696 0,6729 %19,944 %7,209 %10,961 %14,138
7 0,9040 0,8360 0,8576 0,6837 %15,350 %6,673 %9,430 %12,759 0,9160 0,8469 0,8867 0,6729 %16,881 %8,064 %13,143 %14,138
8 0,8880 0,8276 0,8628 0,6837 %13,309 %5,602 %10,093 %12,759 0,9320 0,8361 0,8699 0,6729 %18,923 %6,686 %10,999 %14,138
9 0,9000 0,8394 0,8693 0,6837 %14,840 %7,107 %10,923 %12,759 0,8920 0,8151 0,8594 0,6729 %13,819 %4,007 %9,659 %14,138
10 0,9000 0,8237 0,8593 0,6837 %14,840 %5,104 %9,647 %12,759 0,8640 0,8076 0,8565 0,6729 %10,246 %3,050 %9,289 %14,138

ORTALAMA 0,9028 0,8350 0,8655 0,6837 %15,197 %6,542 %10,438 %12,759 0,9204 0,8329 0,8707 0,6729 %17,443 %6,277 %11,099 %14,138
VARYANS 0,0003 0,0003 0,0001 0,0000 %0,050 %0,050 %0,020 %0,000 0,0008 0,0003 0,0001 0,0000 %0,127 %0,041 %0,021 %0,000

Çizelge 4.16. Senaryo II için tahmin değerleri ve hata yüzdelerinin ortalama ve varyansları (n = 250, öks = 20)

ORTALAMA
DEĞERLER

REFERANS BANT GENİŞLİĞİ İLE YAPILAN TAHMİN DEĞERLERİ
VE HATA YÜZDELERİ

MAKSİMUM DÜZLEŞTİRME YÖNTEMİ BANT GENİŞLİĞİ İLE
YAPILAN TAHMİN DEĞERLERİ VE HATA YÜZDELERİ

Ypk p̃KMH p̃ p̂(H,S) εYpk ε p̃KMH ε p̃ ε p̂(H,S) Ypk p̃KMH p̃ p̂(H,S) εYpk ε p̃KMH ε p̃ ε p̂(H,S)
ORTALAMA 0,9120 0,8345 0,8663 0,6837 %16,371 %6,482 %10,539 %12,759 0,9104 0,8262 0,8666 0,6729 %16,167 %5,441 %10,574 %14,138
VARYANS 0,0006 0,0005 0,0003 0,0000 %0,094 %0,083 %0,046 %0,000 0,0006 0,0005 0,0003 0,0000 %0,094 %0,076 %0,042 %0,000
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Çizelge 4.15’te n = 250 gözlem sayısına sahip örneklem kümelerinden hesaplanan Ypk,

p̃KMH , p̃ ve p̂(H,S) tahminleri ve hata yüzdeleri (%ε) görülmektedir. Maksimum

Düzleştirme Yöntemi ile elde edilen sonuçların Referans Bant Genişliği ile yapılan tahmin

sonuçlarından daha az hata yüzdesine sahip olduğu ürün kitle parametresi olan uygun ürün

oranı p’ye daha yakın sonuçlar verdiği görülmektedir. Ayrıca her iki tahmin yönteminde de

p̃KMH yaklaşımı ile elde edilen hata yüzdelerinin diğer üç yönteme göre daha iyi sonuç

verdiği söylenebilir.

(a) (b)

Şekil 4.8. Senaryo II için hata yüzdeleri çizgi grafiği (n = 250,öks = 10)

Şekil 4.8’de görülen grafikler Senaryo II’ye ait faz I verilerinden elde edilen εYpk, ε p̃KMH ,

ε p̃ ve ε p̂(H,S) hata yüzdelerini göstermektedir. Grafikler incelendiğinde, her iki grafikte de

p̃KMH yaklaşımı ile elde edilen hata yüzdelerinin diğer üç yönteme göre daha iyi sonuç

verdiği görülmektedir. Her iki bant genişliği tahmin yöntemi kullanılarak elde edilen

sonuçların benzer bir eğilim gösterdiği söylenebilir.

Çizelge 4.16’da Maksimum Düzleştirme Yöntemi ile elde edilen sonuçların Referans Bant

Genişliği ile yapılan tahmin sonuçlarından daha az hata yüzdesine sahip olduğu ve 10

örneklem kümesi için hesaplanan hata yüzderine benzer olarak ürün kitle parametresi olan

uygun ürün oranı p’ye daha yakın sonuçlar verdiği görülmektedir.
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Çizelge 4.17. Senaryo II için tahmin değerleri ve hata yüzdeleri (n = 500, öks = 10)

ÖRNEKLEM
KÜMELERİ

REFERANS BANT GENİŞLİĞİ İLE YAPILAN TAHMİN DEĞERLERİ
VE HATA YÜZDELERİ

MAKSİMUM DÜZLEŞTİRME YÖNTEMİ BANT GENİŞLİĞİ İLE
YAPILAN TAHMİN DEĞERLERİ VE HATA YÜZDELERİ

Ypk p̃KMH p̃ p̂(H,S) εYpk ε p̃KMH ε p̃ ε p̂(H,S) Ypk p̃KMH p̃ p̂(H,S) εYpk ε p̃KMH ε p̃ ε p̂(H,S)
1 0,9440 0,8707 0,8747 0,7091 %20,454 %11,101 %11,612 %9,518 0,9180 0,8548 0,8755 0,7005 %17,137 %9,072 %11,714 %10,616
2 0,8900 0,8336 0,8548 0,7091 %13,564 %6,367 %9,072 %9,518 0,9000 0,8281 0,8581 0,7005 %14,840 %5,665 %9,493 %10,616
3 0,8800 0,8477 0,8777 0,7091 %12,288 %8,166 %11,994 %9,518 0,8980 0,8301 0,8599 0,7005 %14,585 %5,921 %9,723 %10,616
4 0,9180 0,8748 0,8901 0,7091 %17,137 %11,624 %13,577 %9,518 0,9120 0,8328 0,8694 0,7005 %16,371 %6,265 %10,935 %10,616
5 0,9260 0,8628 0,8782 0,7091 %18,157 %10,093 %12,058 %9,518 0,9160 0,8383 0,8677 0,7005 %16,881 %6,967 %10,718 %10,616
6 0,8840 0,8309 0,8559 0,7091 %12,798 %6,023 %9,213 %9,518 0,9080 0,8286 0,8581 0,7005 %15,861 %5,729 %9,493 %10,616
7 0,9180 0,8474 0,8605 0,7091 %17,137 %8,128 %9,800 %9,518 0,8740 0,8280 0,8571 0,7005 %11,522 %5,653 %9,366 %10,616
8 0,9000 0,8435 0,8590 0,7091 %14,840 %7,630 %9,608 %9,518 0,8880 0,8327 0,8586 0,7005 %13,309 %6,252 %9,557 %10,616
9 0,9000 0,8508 0,8757 0,7091 %14,840 %8,562 %11,739 %9,518 0,8920 0,8323 0,8648 0,7005 %13,819 %6,201 %10,348 %10,616
10 0,8840 0,8417 0,8630 0,7091 %12,798 %7,401 %10,119 %9,518 0,9100 0,8322 0,8622 0,7005 %16,116 %6,189 %10,017 %10,616

ORTALAMA 0,9044 0,8504 0,8690 0,7091 %15,401 %8,510 %10,879 %9,518 0,9016 0,8338 0,8631 0,7005 %15,044 %6,391 %10,136 %10,616
VARYANS 0,0005 0,0002 0,0001 0,0000 %0,074 %0,036 %0,023 %0,000 0,0002 0,0001 0,0000 0,0000 %0,032 %0,010 %0,006 %0,000

Çizelge 4.18. Senaryo II için tahmin değerleri ve hata yüzdelerinin ortalama ve varyansları (n = 500, öks = 20)

ORTALAMA
DEĞERLER

REFERANS BANT GENİŞLİĞİ İLE YAPILAN TAHMİN DEĞERLERİ
VE HATA YÜZDELERİ

MAKSİMUM DÜZLEŞTİRME YÖNTEMİ BANT GENİŞLİĞİ İLE
YAPILAN TAHMİN DEĞERLERİ VE HATA YÜZDELERİ

Ypk p̃KMH p̃ p̂(H,S) εYpk ε p̃KMH ε p̃ ε p̂(H,S) Ypk p̃KMH p̃ p̂(H,S) εYpk ε p̃KMH ε p̃ ε p̂(H,S)
ORTALAMA 0,9090 0,8455 0,8675 0,7091 %15,988 %7,891 %10,687 %9,518 0,9072 0,8380 0,8675 0,7005 %15,759 %6,931 %10,692 %10,616
VARYANS 0,0003 0,0001 0,0001 0,0000 %0,043 %0,016 %0,012 %0,000 0,0003 0,0001 0,0001 0,0000 %0,046 %0,020 %0,014 %0,000
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Çizelge 4.17’den n = 500 gözlem sayısına sahip 10 örneklem kümesinden hesaplanan Ypk,

p̃KMH , p̃ ve p̂(H,S) tahminleri ve hata yüzdelerinin (%ε) görülmektedir. burada her ne

kadar örneklem kümelerinde p̃KMH yaklaşımı ile birlikte p̂(H,S) yaklaşımının da iyi

sonuçlar verdiği gözlemlenmekle birlikte örneklem kümeleri ortalamaları incelendiğinde

p̃KMH yaklaşımının her iki bant genişliği tahmin yöntemi için de diğer yaklaşımlardan iyi

sonuç verdiği söylenebilir.

(a) (b)

Şekil 4.9. Senaryo II için hata yüzdeleri çizgi grafiği (n = 500,öks = 10)

Şekil 4.9’da yer alan çizgi grafiklerinde Çizelge 4.17’deki sonuçlar özetlenmiştir. Her iki

tahmin yöntemi için de p̃KMH yaklaşımının iyi sonuçlar verdiği n = 500 gözlem sayısı için

örneklem kümelerinden elde edilen hata yüzde değerleri arasındaki varyansın azaldığı

özellikle Maksimum Düzleştirme Yöntemi ile elde edilen tahmin değerlerini gösteren ikinci

grafikte açıkca oluşan düzgün eğilimden görülmektedir.

Çizelge 4.18’de p̃KMH yaklaşımına göre Maksimum Düzleştirme Yöntemi ile elde edilen

sonuçların Referans Bant Genişliği ile yapılan tahmin sonuçlarından daha az hata yüzdesine

sahip olduğu ve 10 örneklem kümesi için hesaplanan hata yüzderine benzer olarak ürün kitle

parametresi olan uygun ürün oranı p’ye daha yakın sonuçlar verdiği görülmektedir.

n = 1000 gözlem sayısına sahip örneklem kümeleri için sonuçlar Çizelge 4.19’da verilmiştir.
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Çizelge 4.19. Senaryo II için tahmin değerleri ve hata yüzdeleri (n = 1000, öks = 10)

ÖRNEKLEM
KÜMELERİ

REFERANS BANT GENİŞLİĞİ İLE YAPILAN TAHMİN DEĞERLERİ
VE HATA YÜZDELERİ

MAKSİMUM DÜZLEŞTİRME YÖNTEMİ BANT GENİŞLİĞİ İLE
YAPILAN TAHMİN DEĞERLERİ VE HATA YÜZDELERİ

Ypk p̃KMH p̃ p̂(H,S) εYpk ε p̃KMH ε p̃ ε p̂(H,S) Ypk p̃KMH p̃ p̂(H,S) εYpk ε p̃KMH ε p̃ ε p̂(H,S)
1 0,9190 0,8613 0,8635 0,7115 %17,264 %9,902 %10,182 %9,213 0,9240 0,8625 0,8780 0,7038 %17,902 %10,055 %12,033 %10,195
2 0,9030 0,8687 0,8833 0,7115 %15,223 %10,846 %12,709 %9,213 0,9230 0,8554 0,8691 0,7038 %17,775 %9,149 %10,897 %10,195
3 0,8980 0,8498 0,8621 0,7115 %14,585 %8,434 %10,004 %9,213 0,8930 0,8436 0,8634 0,7038 %13,947 %7,643 %10,170 %10,195
4 0,9110 0,8561 0,8617 0,7115 %16,243 %9,238 %9,953 %9,213 0,8960 0,8415 0,8572 0,7038 %14,329 %7,375 %9,379 %10,195
5 0,8950 0,8489 0,8651 0,7115 %14,202 %8,320 %10,387 %9,213 0,9110 0,8378 0,8639 0,7038 %16,243 %6,903 %10,234 %10,195
6 0,9120 0,8599 0,8724 0,7115 %16,371 %9,723 %11,318 %9,213 0,8840 0,8320 0,8485 0,7038 %12,798 %6,163 %8,268 %10,195
7 0,9260 0,8602 0,8661 0,7115 %18,157 %9,761 %10,514 %9,213 0,8920 0,8418 0,8594 0,7038 %13,819 %7,414 %9,659 %10,195
8 0,9170 0,8541 0,8600 0,7115 %17,009 %8,983 %9,736 %9,213 0,9060 0,8431 0,8595 0,7038 %15,605 %7,579 %9,672 %10,195
9 0,9270 0,8653 0,8715 0,7115 %18,285 %10,412 %11,203 %9,213 0,9100 0,8526 0,8714 0,7038 %16,116 %8,792 %11,191 %10,195
10 0,9150 0,8567 0,8680 0,7115 %16,754 %9,315 %10,757 %9,213 0,8990 0,8382 0,8569 0,7038 %14,712 %6,954 %9,340 %10,195

ORTALAMA 0,9123 0,8581 0,8674 0,7115 %16,409 %9,493 %10,676 %9,213 0,9038 0,8449 0,8627 0,7038 %15,325 %7,803 %10,084 %10,195
VARYANS 0,0001 0,0000 0,0000 0,0000 %0,019 %0,006 %0,008 %0,000 0,0002 0,0001 0,0001 0,0000 %0,029 %0,014 %0,012 %0,000

Çizelge 4.20. Senaryo II için tahmin değerleri ve hata yüzdelerinin ortalama ve varyansları (n = 1000, öks = 20)

ORTALAMA
DEĞERLER

REFERANS BANT GENİŞLİĞİ İLE YAPILAN TAHMİN DEĞERLERİ
VE HATA YÜZDELERİ

MAKSİMUM DÜZLEŞTİRME YÖNTEMİ BANT GENİŞLİĞİ İLE
YAPILAN TAHMİN DEĞERLERİ VE HATA YÜZDELERİ

Ypk p̃KMH p̃ p̂(H,S) εYpk ε p̃KMH ε p̃ ε p̂(H,S) Ypk p̃KMH p̃ p̂(H,S) εYpk ε p̃KMH ε p̃ ε p̂(H,S)
ORTALAMA 0,9071 0,8543 0,8661 0,7115 %15,746 %9,014 %10,520 %9,213 0,9065 0,8489 0,8672 0,7038 %15,669 %8,319 %10,656 %10,195
VARYANS 0,0001 0,0001 0,0000 0,0000 %0,017 %0,016 %0,008 %0,000 0,0001 0,0001 0,0001 0,0000 %0,016 %0,016 %0,009 %0,000
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Çizelge 4.19’da n = 1000 ve 10 örneklem kümesinden hesaplanan Ypk, p̃KMH , p̃ ve p̂(H,S)

tahminleri ve hata yüzdelerinin (%ε) ortalama ile varyans değerleri görülmektedir. Burada

Referans Bant Genişliği ile yapılan tahmin değerleri ile yaklaşımlar üzerinden hesaplanan

hata yüzdelerinin çoğunlukla p̂(H,S) yaklaşımı için iyi sonuçlar verdiği ve hata yüzde

ortalamasının da yine p̂(H,S) için daha iyi olduğu görülmektedir. Ancak Maksimum

Düzleştirme Yöntemine ile p̃KMH yaklaşımı daha iyi sonuçlar vermektedir.

(a) (b)

Şekil 4.10. Senaryo II için hata yüzdeleri çizgi grafiği (n = 1000,öks = 10)

Şekil 4.10.(a) da p̂(H,S) ile p̃KMH den elde edilen hata yüzdelerinin çok yakın olduğu ve

diğer iki yaklaşıma göre p’yi daha iyi tahmin ettiği görülmektedir. Şekil 4.10.(b) de ise

p̃KMH nin diğer üç yaklaşıma göre iyi sonuçlar verdiği 6. Örneklem kümesi için p’nin en

düşük hata yüzdesi ile tahmin edildiği görülmektedir.

Çizelge 4.20’de Maksimum Düzleştirme Yöntemi ile elde edilen sonuçların Referans Bant

Genişliği ile yapılan tahmin sonuçlarından daha az hata yüzdesine sahip olduğu ve 10

örneklem kümesi için hesaplanan hata yüzderine benzer olarak ürün kitle parametresi olan

uygun ürün oranı p’ye daha yakın sonuçlar verdiği görülmektedir.

4.3. Senaryo III İçin Elde Edilen Sonuçlar

Senaryo III için Kernel yoğunluk tahmin yöntemine dayalı MH örneklemesi ile elde edilen

n = 50, 100, 250, 500 ve 1000 gözlemli örneklem kümelerinden hesaplanan uygun ürün

olasılıkları (Ypk, p̃KMH , p̃, p̂(H,S)) ile kitle uygun ürün oranı p karşılaştırılarak, Hata

yüzdeleri elde edilmiştir. Her bir gözlem sayısı için her iki bant genişliği matrisi

kullanılarak hesaplanan tahmin sonuçları n = 50 için Çizelge 4.21’de verilmiştir.
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Çizelge 4.21. Senaryo III için tahmin değerleri ve hata yüzdeleri (n = 50, öks = 10)

ÖRNEKLEM
KÜMELERİ

REFERANS BANT GENİŞLİĞİ İLE YAPILAN TAHMİN DEĞERLERİ
VE HATA YÜZDELERİ

MAKSİMUM DÜZLEŞTİRME YÖNTEMİ BANT GENİŞLİĞİ İLE
YAPILAN TAHMİN DEĞERLERİ VE HATA YÜZDELERİ

Ypk p̃KMH p̃ p̂(H,S) εYpk ε p̃KMH ε p̃ ε p̂(H,S) Ypk p̃KMH p̃ p̂(H,S) εYpk ε p̃KMH ε p̃ ε p̂(H,S)
1 0,9000 0,7803 0,7904 0,7864 %3,520 %10,248 %9,087 %9,547 0,9400 0,8532 0,8862 0,7729 %8,121 %1,863 %1,932 %11,100
2 0,9400 0,8747 0,9089 0,7864 %8,121 %0,610 %4,543 %9,547 0,9600 0,8674 0,9049 0,7729 %10,421 %0,230 %4,083 %11,100
3 0,9600 0,8630 0,8854 0,7864 %10,421 %0,736 %1,840 %9,547 0,9600 0,8888 0,9377 7 0,7729 %10,421 %2,231 %7,856 %11,100
4 0,9400 0,8893 0,8966 0,7864 %8,121 %2,289 %3,129 %9,547 1,000 0,9331 0,9658 0,7729 %15,022 %7,327 %11,088 %11,100
5 0,9600 0,9066 0,8927 0,7864 %10,421 %4,279 %2,680 %9,547 0,9200 0,8731 0,9233 0,7729 %5,820 %0,426 %6,200 %11,100
6 0,9200 0,8656 0,8414 0,7864 %5,820 %0,437 %3,221 %9,547 0,9600 0,9084 0,9372 0,7729 %10,421 %4,486 %7,798 %11,100
7 0,9400 0,8880 0,9150 0,7864 %8,121 %2,139 %5,245 %9,547 1,000 0,8559 0,8895 0,7729 %15,022 %1,553 %2,312 %11,100
8 0,9600 0,9111 0,9330 0,7864 %10,421 %4,796 %7,315 %9,547 0,9400 0,8758 0,9136 0,7729 %8,121 %0,736 %5,084 %11,100
9 0,9000 0,8228 0,8278 0,7864 %3,520 %5,360 %4,785 %9,547 0,9200 0,8309 0,8782 0,7729 %5,820 %4,428 %1,012 %11,100
10 0,9800 0,9612 0,9800 0,7864 %12,721 %10,559 %12,721 %9,547 0,8400 0,7913 0,8293 0,7729 %8,121 %1,863 %1,932 %11,100

ORTALAMA 0,9400 0,8763 0,8871 0,7864 %8,121 %4,145 %5,457 %9,547 0,9440 0,8678 0,9066 0,7729 %9,731 %2,514 %4,930 %11,100
VARYANS 0,0007 0,0024 0,0030 0,0000 %0,094 %0,140 %0,113 %0,000 0,0021 0,0016 0,0015 0,0000 %0,106 %0,050 %0,108 %0,000

Çizelge 4.22. Senaryo III için tahmin değerleri ve hata yüzdelerinin ortalama ve varyansları (n = 50, öks = 20)

ORTALAMA
DEĞERLER

REFERANS BANT GENİŞLİĞİ İLE YAPILAN TAHMİN DEĞERLERİ
VE HATA YÜZDELERİ

MAKSİMUM DÜZLEŞTİRME YÖNTEMİ BANT GENİŞLİĞİ İLE
YAPILAN TAHMİN DEĞERLERİ VE HATA YÜZDELERİ

Ypk p̃KMH p̃ p̂(H,S) εYpk ε p̃KMH ε p̃ ε p̂(H,S) Ypk p̃KMH p̃ p̂(H,S) εYpk ε p̃KMH ε p̃ ε p̂(H,S)
ORTALAMA 0,9450 0,8806 0,9083 0,7864 %8,804 %3,260 %4,671 %9,547 0,9530 0,8692 0,9024 0,7729 %9,616 %4,323 %4,963 %11,100
VARYANS 0,0013 0,0010 0,0006 0,0000 %0,158 %0,038 %0,062 %0,000 0,0010 0,0021 0,0017 0,0000 %0,088 %0,112 %0,000 %0,000
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Çizelge 4.21’den n = 50 gözlem sayısına sahip örneklem kümelerinden hesaplanan Ypk,

p̃KMH , p̃ ve p̂(H,S) tahminleri ve hata yüzdeleri (%ε) görülmektedir. Örnekleme kümeleri

arasında oluşan varyans değerlerinin 0,000’a çok yakın olması nedeniyle tahmin

ortalamaları üzerinden yaklaşımları karşılaştırmanın anlamlı olacağı söylenebilir.

Örnekleme kümeleri üzerinden elde edilen yaklaşım değerlerinin ortalamaları

karşılaştırıldığında, Referans Bant Genişliği ve Maksimum Düzleştirme Yöntemi

kullanılarak yapılan tahminler için en iyi sonucun önerilen p̃KMH yaklaşımı ile elde edildiği

görülmektedir. Çizelge 4.21’de görülen hata yüzde değerlerinin karşılaştırma kolaylığı

sağlaması açısından çizgi grafiği çizdirilerek Şekil 4.11’de verilmiştir.

(a) (b)

Şekil 4.11. Senaryo III için hata yüzdeleri çizgi grafiği (n = 50,öks = 10)

Şekil 4.11’de verilen grafikler incelendiğinde, her iki grafikte de p̃KMH yaklaşımı ile elde

edilen hata yüzdelerinin diğer üç yönteme göre daha iyi sonuç verdiği görülmektedir.

Çizelge 4.22’de n = 50 gözlem sayısına sahip 20 örneklem kümesinden hesaplanan Ypk,

p̃KMH , p̃ ve p̂(H,S) tahminleri ve hata yüzdelerinin (%ε) ortalama ile varyans değerleri

görülmektedir. Bu değerler, Çizelge 4.21’de verilen 10 örneklem kümesinden hesaplanan

Ypk, p̃KMH , p̃ ve p̂(H,S) tahminleri ve hata yüzdelerinin (%ε) ortalama ile varyans

değerleri ile karşılaştırıldığında, örneklem küme sayısındaki artış sonucu kümeler arasında

oluşan ortalama ve varyans değerlerinde çok fazla bir fark olmadığı görülmektedir.
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Çizelge 4.23. Senaryo III için tahmin değerleri ve hata yüzdeleri (n = 100, öks = 10)

ÖRNEKLEM
KÜMELERİ

REFERANS BANT GENİŞLİĞİ İLE YAPILAN TAHMİN DEĞERLERİ
VE HATA YÜZDELERİ

MAKSİMUM DÜZLEŞTİRME YÖNTEMİ BANT GENİŞLİĞİ İLE
YAPILAN TAHMİN DEĞERLERİ VE HATA YÜZDELERİ

Ypk p̃KMH p̃ p̂(H,S) εYpk ε p̃KMH ε p̃ ε p̂(H,S) Ypk p̃KMH p̃ p̂(H,S) εYpk ε p̃KMH ε p̃ ε p̂(H,S)
1 0,9800 0,9079 0,9065 0,8086 %12,721 %4,428 %4,267 %6,993 0,9600 0,8898 0,9118 0,7995 %10,421 %2,346 %4,877 %8,040
2 0,9600 0,9239 0,9370 0,8086 %10,421 %6,269 %7,775 %6,993 0,9400 0,9100 0,9427 0,7995 %8,121 %4,670 %8,431 %8,040
3 0,9300 0,8763 0,9108 0,8086 %6,970 %0,794 %4,762 %6,993 0,9700 0,9160 0,9465 0,7995 %11,571 %5,360 %8,868 %8,040
4 0,9500 0,9439 0,9521 0,8086 %9,271 %8,569 %9,512 %6,993 0,9200 0,8302 0,8686 0,7995 %5,820 %4,509 %0,092 %8,040
5 0,9000 0,8620 0,8923 0,8086 %3,520 %0,851 %2,634 %6,993 0,9300 0,8877 0,9183 0,7995 %6,970 %2,105 %5,625 %8,040
6 0,9700 0,9274 0,9095 0,8086 %11,571 %6,671 %4,612 %6,993 0,9300 0,8587 0,8892 0,7995 %6,970 %1,231 %2,277 %8,040
7 0,9600 0,9174 0,9474 0,8086 %10,421 %5,521 %8,972 %6,993 0,9000 0,8968 0,9371 0,7995 %3,520 %3,152 %7,787 %8,040
8 0,9200 0,8722 0,9084 0,8086 %5,820 %0,322 %4,486 %6,993 0,9600 0,8833 0,9021 0,7995 %10,421 %1,599 %3,761 %8,040
9 0,9200 0,8875 0,9170 0,8086 %5,820 %2,082 %5,475 %6,993 0,9800 0,9317 0,9301 0,7995 %12,721 %7,166 %6,982 %8,040
10 0,9300 0,8868 0,9316 0,8086 %6,970 %2,001 %7,154 %6,993 0,9800 0,9297 0,9538 0,7995 %12,721 %6,936 %9,708 %8,040

ORTALAMA 0,9420 0,9005 0,9213 0,8086 %8,351 %3,751 %5,965 %6,993 0,9470 0,8934 0,9200 0,7995 %8,926 %3,907 %5,841 %8,040
VARYANS 0,0007 0,0007 0,0004 0,0000 %0,088 %0,085 %0,051 %0,000 0,0007 0,0010 0,0007 0,0000 %0,097 %0,046 %0,097 %0,000

Çizelge 4.24. Senaryo III için tahmin değerleri ve hata yüzdelerinin ortalama ve varyansları (n = 100, öks = 20)

ORTALAMA
DEĞERLER

REFERANS BANT GENİŞLİĞİ İLE YAPILAN TAHMİN DEĞERLERİ
VE HATA YÜZDELERİ

MAKSİMUM DÜZLEŞTİRME YÖNTEMİ BANT GENİŞLİĞİ İLE
YAPILAN TAHMİN DEĞERLERİ VE HATA YÜZDELERİ

Ypk p̃KMH p̃ p̂(H,S) εYpk ε p̃KMH ε p̃ ε p̂(H,S) Ypk p̃KMH p̃ p̂(H,S) εYpk ε p̃KMH ε p̃ ε p̂(H,S)
ORTALAMA 0,9400 0,8960 0,9178 0,8086 %8,121 %3,765 %5,568 %6,993 0,9500 0,8977 0,9241 0,7995 %9,271 %4,147 %6,308 %8,040
VARYANS 0,0009 0,0009 0,0007 0,0000 %0,113 %0,066 %0,090 %0,000 0,0004 0,0010 0,0007 0,0000 %0,058 %0,065 %0,092 %0,000



117

Çizelge 4.23’te n = 100 gözlem sayısına sahip 10 örneklem kümesinden hesaplanan Ypk,

p̃KMH , p̃ ve p̂(H,S) tahminleri ve hata yüzdelerinin (%ε) ortalama ile varyans değerleri

görülmektedir. Ürün kitle parametresi p’nin önerilen yaklaşım olan p̃KMH ile diğer üç

yönteme göre daha iyi tahmin edildiği açıkça görülmektedir.

(a) (b)

Şekil 4.12. Senaryo III için hata yüzdeleri çizgi grafiği (n = 100,öks = 10)

Şekil 4.12’de verilen grafikler incelendiğinde, ilk grafikte görülen, Referans Bant

Genişliğine göre hesaplanan hata yüzdeleri için 1. ve 6. Örneklem kümeleri dışındaki

örneklem kümelerinde p̃KMH yaklaşımının iyi sonuç verdiği söylenebilir. İkinci grafikte

Maksimum Düzleştirme Yönteminin 4. Örneklem kümesi dışındaki örneklem kümelerinde

p̃KMH yaklaşımının daha iyi sonuç verdiği görülmektedir.

Çizelge 4.24’te n = 100 gözlem sayısına sahip 20 örneklem kümesinden hesaplanan Ypk,

p̃KMH , p̃ ve p̂(H,S) tahminleri ve hata yüzdelerinin 10 örneklem kümesine göre hesap edilen

hata yüzdeleri ile benzer olduğu ve p’nin önerilen yaklaşım olan p̃KMH ile diğer üç yönteme

göre daha iyi tahmin edildiği söylenebilir.
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Çizelge 4.25. Senaryo III için tahmin değerleri ve hata yüzdeleri (n = 250, öks = 10)

ÖRNEKLEM
KÜMELERİ

REFERANS BANT GENİŞLİĞİ İLE YAPILAN TAHMİN DEĞERLERİ
VE HATA YÜZDELERİ

MAKSİMUM DÜZLEŞTİRME YÖNTEMİ BANT GENİŞLİĞİ İLE
YAPILAN TAHMİN DEĞERLERİ VE HATA YÜZDELERİ

Ypk p̃KMH p̃ p̂(H,S) εYpk ε p̃KMH ε p̃ ε p̂(H,S) Ypk p̃KMH p̃ p̂(H,S) εYpk ε p̃KMH ε p̃ ε p̂(H,S)
1 0,9440 0,9152 0,9160 0,7941 %8,581 %5,268 %5,360 %8,661 0,9560 0,9196 0,9417 0,7847 %9,961 %5,774 %8,316 %9,742
2 0,9360 0,9101 0,9256 0,7941 %7,660 %4,681 %6,464 %8,661 0,9480 0,8974 0,9074 0,7847 %9,041 %3,221 %4,371 %9,742
3 0,9520 0,9167 0,9230 0,7941 %9,501 %5,441 %6,165 %8,661 0,9000 0,8823 0,9111 0,7847 %3,520 %1,484 %4,796 %9,742
4 0,9240 0,9068 0,9277 0,7941 %6,280 %4,302 %6,706 %8,661 0,9520 0,9191 0,9359 0,7847 %9,501 %5,717 %7,649 %9,742
5 0,9600 0,9250 0,9378 0,7941 %10,421 %6,395 %7,867 %8,661 0,9360 0,9206 0,9416 0,7847 %7,660 %5,889 %8,305 %9,742
6 0,9200 0,8992 0,9201 0,7941 %5,820 %3,428 %5,832 %8,661 0,9320 0,8833 0,9108 0,7847 %7,200 %1,599 %4,762 %9,742
7 0,9640 0,9384 0,9478 0,7941 %10,881 %7,937 %9,018 %8,661 0,9680 0,9280 0,9403 0,7847 %11,341 %6,740 %8,155 %9,742
8 0,9440 0,9047 0,9162 0,7941 %8,581 %4,060 %5,383 %8,661 0,9720 0,9391 0,9467 0,7847 %11,801 %8,017 %8,891 %9,742
9 0,9640 0,9199 0,9348 0,7941 %10,881 %5,809 %7,522 %8,661 0,9480 0,9119 0,9230 0,7847 %9,041 %4,888 %6,165 %9,742
10 0,9400 0,9042 0,9245 0,7941 %8,121 %4,003 %6,338 %8,661 0,9480 0,8759 0,9022 0,7847 %9,041 %0,748 %3,773 %9,742

ORTALAMA 0,9448 0,9140 0,9274 0,7941 %8,673 %5,132 %6,666 %8,661 0,9460 0,9077 0,9261 0,7847 %8,811 %4,408 %6,518 %9,742
VARYANS 0,0002 0,0001 0,0001 0,0000 %0,032 %0,018 %0,014 %0,000 0,0004 0,0005 0,0003 0,0000 %0,055 %0,062 %0,038 %0,000

Çizelge 4.26. Senaryo III için tahmin değerleri ve hata yüzdelerinin ortalama ve varyansları (n = 250, öks = 20)

ORTALAMA
DEĞERLER

REFERANS BANT GENİŞLİĞİ İLE YAPILAN TAHMİN DEĞERLERİ
VE HATA YÜZDELERİ

MAKSİMUM DÜZLEŞTİRME YÖNTEMİ BANT GENİŞLİĞİ İLE
YAPILAN TAHMİN DEĞERLERİ VE HATA YÜZDELERİ

Ypk p̃KMH p̃ p̂(H,S) εYpk ε p̃KMH ε p̃ ε p̂(H,S) Ypk p̃KMH p̃ p̂(H,S) εYpk ε p̃KMH ε p̃ ε p̂(H,S)
ORTALAMA 0,9446 0,9113 0,9249 0,7941 %8,650 %4,818 %6,378 %8,661 0,9434 0,9046 0,9237 0,7847 %8,512 %4,052 %6,245 %9,742
VARYANS 0,0001 0,0002 0,0001 0,0000 %0,020 %0,020 %0,012 %0,000 0,0001 0,0002 0,0001 0,0000 %0,021 %0,013 %0,000 %0,000
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Çizelge 4.25’te n = 250 gözlem sayısına sahip örneklem kümelerinden hesaplanan Ypk,

p̃KMH , p̃ ve p̂(H,S) tahminleri ve hata yüzdeleri (%ε) görülmektedir. Maksimum

Düzleştirme Yöntemi ile elde edilen sonuçların ortalama olarak Referans Bant Genişliği ile

yapılan tahmin sonuçlarından daha az hata yüzdesine sahip olduğu ürün kitle parametresi

olan uygun ürün oranı p’ye daha yakın sonuçlar verdiği görülmektedir. Ayrıca her iki

tahmin yönteminde de p̃KMH yaklaşımı ile elde edilen hata yüzdelerinin diğer üç yönteme

göre daha iyi sonuç verdiği söylenebilir.

(a) (b)

Şekil 4.13. Senaryo III için hata yüzdeleri çizgi grafiği (n = 250,öks = 10)

Şekil 4.13’deki grafikler incelendiğinde, her iki grafikte de p̃KMH yaklaşımı ile elde edilen

hata yüzdelerinin diğer üç yönteme göre daha iyi sonuç verdiği görülmektedir.

Çizelge 4.26’da verilen hata yüzdelerinden, 10 örneklem kümesi için hesaplanan hata

yüzderine benzer olarak p̃KMH yaklaşımını ürün kitle parametresi p’yi daha iyi tahmin

ettiği söylenebilir. Maksimum Düzleştirme Yöntemi ile elde edilen sonuçların Referans

Bant Genişliği ile yapılan tahmin sonuçlarından daha az hata yüzdesine sahip olduğu

görülmektedir.



120

Çizelge 4.27. Senaryo III için tahmin değerleri ve hata yüzdeleri (n = 500, öks = 10)

ÖRNEKLEM
KÜMELERİ

REFERANS BANT GENİŞLİĞİ İLE YAPILAN TAHMİN DEĞERLERİ
VE HATA YÜZDELERİ

MAKSİMUM DÜZLEŞTİRME YÖNTEMİ BANT GENİŞLİĞİ İLE
YAPILAN TAHMİN DEĞERLERİ VE HATA YÜZDELERİ

Ypk p̃KMH p̃ p̂(H,S) εYpk ε p̃KMH ε p̃ ε p̂(H,S) Ypk p̃KMH p̃ p̂(H,S) εYpk ε p̃KMH ε p̃ ε p̂(H,S)
1 0,9560 0,9210 0,9241 0,8389 %9,961 %5,935 %6,292 %3,508 0,9240 0,9062 0,9222 0,8310 %6,280 %4,233 %6,073 %4,417
2 0,9480 0,9195 0,9261 0,8389 %9,041 %5,763 %6,522 %3,508 0,9400 0,9231 0,9405 0,8310 %8,121 %6,177 %8,178 %4,417
3 0,9540 0,9236 0,9288 0,8389 %9,731 %6,234 %6,832 %3,508 0,9520 0,9191 0,9314 0,8310 %9,501 %5,717 %7,131 %4,417
4 0,9420 0,9127 0,9259 0,8389 %8,351 %4,980 %6,499 %3,508 0,9400 0,9244 0,9359 0,8310 %8,121 %6,326 %7,649 %4,417
5 0,9260 0,8999 0,9104 0,8389 %6,510 %3,508 %4,716 %3,508 0,9640 0,9066 0,9187 0,8310 %10,881 %4,279 %5,671 %4,417
6 0,9580 0,9154 0,9187 0,8389 %10,191 %5,291 %5,671 %3,508 0,9480 0,9159 0,9288 0,8310 %9,041 %5,349 %6,832 %4,417
7 0,9680 0,9339 0,9327 0,8389 %11,341 %7,419 %7,281 %3,508 0,9520 0,9068 0,9193 0,8310 %9,501 %4,302 %5,740 %4,417
8 0,9280 0,9131 0,9197 0,8389 %6,740 %5,026 %5,786 %3,508 0,9480 0,8944 0,9203 0,8310 %9,041 %2,876 %5,855 %4,417
9 0,9520 0,9273 0,9337 0,8389 %9,501 %6,660 %7,396 %3,508 0,9320 0,9085 0,9199 0,8310 %7,200 %4,497 %5,809 %4,417
10 0,9400 0,9160 0,9265 0,8389 %8,121 %5,360 %6,568 %3,508 0,9560 0,8949 0,9133 0,8310 %9,961 %2,933 %5,049 %4,417

ORTALAMA 0,9472 0,9182 0,9247 0,8389 %8,949 %5,618 %6,356 %3,508 0,9456 0,9100 0,9250 0,8310 %8,765 %4,669 %6,399 %4,417
VARYANS 0,0002 0,0001 0,0000 0,0000 %0,023 %0,011 %0,006 %0,000 0,0001 0,0001 0,0001 0,0000 %0,018 %0,015 %0,010 %0,000

Çizelge 4.28. Senaryo III için tahmin değerleri ve hata yüzdelerinin ortalama ve varyansları (n = 500, öks = 20)

ORTALAMA
DEĞERLER

REFERANS BANT GENİŞLİĞİ İLE YAPILAN TAHMİN DEĞERLERİ
VE HATA YÜZDELERİ

MAKSİMUM DÜZLEŞTİRME YÖNTEMİ BANT GENİŞLİĞİ İLE
YAPILAN TAHMİN DEĞERLERİ VE HATA YÜZDELERİ

Ypk p̃KMH p̃ p̂(H,S) εYpk ε p̃KMH ε p̃ ε p̂(H,S) Ypk p̃KMH p̃ p̂(H,S) εYpk ε p̃KMH ε p̃ ε p̂(H,S)
ORTALAMA 0,9466 0,9187 0,9281 0,8389 %8,880 %5,669 %6,755 %3,508 0,9461 0,9139 0,9279 0,8310 %8.822 %5,120 %6,734 %4,417
VARYANS 0,0001 0,0001 0,0001 0,0000 %0,018 %0,012 %0,009 %0,000 0,0001 0,0001 0,0001 0,0000 %0,016 %0,010 %0,008 %0,000
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Çizelge 4.27’de n = 500 gözlem sayısına sahip örneklem kümelerinden hesaplanan Ypk,

p̃KMH , p̃ ve p̂(H,S) tahminleri ve hata yüzdeleri (%ε) görülmektedir. Referans Bant

Genişliği ve Maksimum Düzleştirme Yöntemi ile yapılan tahminlerde, p̂(H,S)

yaklaşımının diğer üç yönteme göre daha iyi sonuç verdiği söylenebilir. Referans Bant

Genişliği ile yapılan sonuçların Maksimum Bant Genişliği tahmin yöntemi ile elde edilen

tahmin sonuçlarından daha az hata yüzdesine sahip olduğu ürün kitle parametresi olan

uygun ürün oranı p’ye daha yakın sonuçlar verdiği görülmektedir.

(a) (b)

Şekil 4.14. Senaryo III için hata yüzdeleri çizgi grafiği (n = 500,öks = 10)

Şekil 4.14’te görülen grafikler Senaryo I’e ait faz I verilerinden elde edilen εYpk, ε p̃KMH , ε p̃

ve ε p̂(H,S) hata yüzdelerini göstermektedir. İlk grafikte p̂(H,S) yaklaşımı ile p’nin daha

iyi tahmin edildiği görülmektedir. İkinci grafikte ise Maksimum Düzleştirme Yöntemi

yardımıyla Kernel yoğunluk tahmini yapılarak aynı dağılımdan çektirilen 10 tane örneklem

kümesinden hesaplanmıştır. İkinci grafik incelendiğinde, örneklem kümelerinden

hesaplanan tahmin sonuçlarının değişkenlik gösterdiği, 1.,5.,7.,8.,10. Örneklem

kümelerinde p̃KMH yaklaşımı daha iyi sonuç verirken; diğerlerinde p̂(H,S) yaklaşımının

başarılı olduğu görülmektedir.

Çizelge 4.28’deki 20 örneklem kümesinden hesaplanan Ypk, p̃KMH , p̃ ve p̂(H,S) tahminleri

ve hata yüzdelerinden p̂(H,S) ile daha iyi tahminler elde edildiği görülmektedir. Referans

Bant Genişliği yöntemine göre p̂(H,S) yaklaşımının daha iyi sonuç verdiği görülmektedir.

Maksimum Düzleştirme Yöntemi ile elde edilen sonuçlarda, 10 örneklem kümesi için

hesaplanan hata yüzdelerinden farklı olarak p̃ yaklaşımının p’ye daha yakın sonuçlar

verdiği söylenebilir.
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Çizelge 4.29. Senaryo III için tahmin değerleri ve hata yüzdeleri (n = 1000, öks = 10)

ÖRNEKLEM
KÜMELERİ

REFERANS BANT GENİŞLİĞİ İLE YAPILAN TAHMİN DEĞERLERİ
VE HATA YÜZDELERİ

MAKSİMUM DÜZLEŞTİRME YÖNTEMİ BANT GENİŞLİĞİ İLE
YAPILAN TAHMİN DEĞERLERİ VE HATA YÜZDELERİ

Ypk p̃KMH p̃ p̂(H,S) εYpk ε p̃KMH ε p̃ ε p̂(H,S) Ypk p̃KMH p̃ p̂(H,S) εYpk ε p̃KMH ε p̃ ε p̂(H,S)
1 0,9450 0,9253 0,9303 0,8278 %8,696 %6,430 %7,005 %5,232 0,9400 0,9180 0,9212 0,8223 %8,121 %5,590 %5,958 %5,418
2 0,9530 0,9232 0,9227 0,8278 %9,616 %6,188 %6,131 %5,232 0,9410 0,9128 0,9169 0,8223 %8,236 %4,992 %5,464 %5,418
3 0,9490 0,9239 0,9262 0,8278 %9,156 %6,269 %6,533 %5,232 0,9440 0,9320 0,9399 0,8223 %8,581 %7,200 %8,109 %5,418
4 0,9410 0,9171 0,9285 0,8278 %8,236 %5,487 %6,798 %5,232 0,9420 0,9153 0,9262 0,8223 %8,351 %5,280 %6,533 %5,418
5 0,9560 0,9375 0,9432 0,8278 %9,961 %7,833 %8,489 %5,232 0,9510 0,9222 0,9282 0,8223 %9,386 %6,073 %6,763 %5,418
6 0,9380 0,9143 0,9235 0,8278 %7,890 %5,164 %6,223 %5,232 0,9500 0,9307 0,9375 0,8223 %9,271 %7,051 %7,833 %5,418
7 0,9420 0,9265 0,9310 0,8278 %8,351 %6,568 %7,085 %5,232 0,9530 0,9241 0,9343 0,8223 %9,616 %6,292 %7,465 %5,418
8 0,9450 0,9222 0,9288 0,8278 %8,696 %6,075 %6,832 %5,232 0,9390 0,9107 0,9195 0,8223 %8,006 %4,750 %5,763 %5,418
9 0,9620 0,9328 0,9318 0,8278 %10,651 %7,292 %7,177 %5,232 0,9470 0,9304 0,9318 0,8223 %8,926 %7,016 %7,177 %5,418
10 0,9550 0,9365 0,9343 0,8278 %9,846 %7,718 %7,465 %5,232 0,9380 0,9131 0,9212 0,8223 %7,890 %5,026 %5,958 %5,418

ORTALAMA 0,9486 0,9259 0,9300 0,8278 %9,110 %6,502 %6,974 %5,232 0,9445 0,9209 0,9277 0,8223 %8,638 %5,927 %6,702 %5,418
VARYANS 0,0001 0,0001 0,0000 0,0000 %0,008 %0,008 %0,005 %0,000 0,0000 0,0001 0,0001 0,0000 %0,004 %0,009 %0,008 %0,000

Çizelge 4.30. Senaryo III için tahmin değerleri ve hata yüzdelerinin ortalama ve varyansları (n = 1000, öks = 20)

ORTALAMA
DEĞERLER

REFERANS BANT GENİŞLİĞİ İLE YAPILAN TAHMİN DEĞERLERİ
VE HATA YÜZDELERİ

MAKSİMUM DÜZLEŞTİRME YÖNTEMİ BANT GENİŞLİĞİ İLE
YAPILAN TAHMİN DEĞERLERİ VE HATA YÜZDELERİ

Ypk p̃KMH p̃ p̂(H,S) εYpk ε p̃KMH ε p̃ ε p̂(H,S) Ypk p̃KMH p̃ p̂(H,S) εYpk ε p̃KMH ε p̃ ε p̂(H,S)
ORTALAMA 0,9467 0,9269 0,9321 0,8278 %8,885 %6,612 %7,208 %4,785 0,9466 0,9205 0,9283 0,8223 %8,874 %5,878 %6,772 %5,418
VARYANS 0,0001 0,0000 0,0000 0,0000 %0,009 %0,006 %0,003 %0,000 0,0001 0,0000 0,0000 0,0000 %0,004 %0,004 %0,000 %0,000
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Çizelge 4.29 da, Referans Bant Genişliği ile yapılan tahminlerde 6. örneklem kümesi hariç,

tüm örneklem kümelerinde en iyi tahminlerin p̂(H,S) yaklaşımı ile yapıldığı görülmektedir.

Maksimum Düzleştirme Yöntemi ile yapılan tahminlerde ise p̃KMH ve p̂(H,S) yaklaşımların

kitle parametresini tahmin etmedeki başarıları değişkenlik göstermektedir. Örneğin, öks =

2,4,8,10 için p̃KMH yaklaşımı daha iyi sonuçlar verdiği görülmektedir.

(a) (b)

Şekil 4.15. Senaryo III için hata yüzdeleri çizgi grafiği (n = 1000,öks = 10)

Şekil 4.15.(a) da p̂(H,S) nın diğer yaklaşımlara göre p’yi daha iyi tahmin ettiği

görülmektedir. Maksimum Düzleştirme Yöntemi ile yapılan tahminlerde ise p̃KMH ve

p̂(H,S) nin kitle parametresini tahmin etmedeki başarıları değişkenlik göstermektedir.

Şekil 4.15.(b) den öks = 2,4,8,10 için p̃KMH nın daha iyi sonuçlar verdiği görülmektedir.

Çizelge 4.30’daki 20 örneklem kümesinden hesaplanan Ypk, p̃KMH , p̃ ve p̂(H,S) tahminleri

ve hata yüzdelerinden p̂(H,S) ile daha iyi tahminler elde edildiği görülmektedir.

4.4. Senaryo IV İçin Elde Edilen Sonuçlar

Senaryo IV için Kernel yoğunluk tahmin yöntemine dayalı MH örneklemesi ile elde edilen

n = 50, 100, 250, 500 ve 1000 gözlemli örneklem kümelerinden hesaplanan uygun ürün

olasılıkları (Ypk, p̃KMH , p̃, p̂(H,S)) kitle uygun ürün oranı p ile karşılaştırılarak, hata

yüzdeleri elde edilmiştir. Kernel yoğunluk tahminleri yapılırken, MDY bant genişliği

matrisi ve örneklem kümelerinin normal dağılım gösterdiği varsayımına dayalı RBG matrisi

kullanılmıştır. Her bir gözlem sayısı için her iki bant genişliği matrisi kullanılarak

hesaplanan tahmin sonuçları n = 50 için Çizelge 4.31’de verilmiştir.
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Çizelge 4.31. Senaryo IV için tahmin değerleri ve hata yüzdeleri (n = 50, öks = 10)

ÖRNEKLEM
KÜMELERİ

REFERANS BANT GENİŞLİĞİ İLE YAPILAN TAHMİN DEĞERLERİ
VE HATA YÜZDELERİ

MAKSİMUM DÜZLEŞTİRME YÖNTEMİ BANT GENİŞLİĞİ İLE
YAPILAN TAHMİN DEĞERLERİ VE HATA YÜZDELERİ

Ypk p̃KMH p̃ p̂(H,S) εYpk ε p̃KMH ε p̃ ε p̂(H,S) Ypk p̃KMH p̃ p̂(H,S) εYpk ε p̃KMH ε p̃ ε p̂(H,S)
1 0,9000 0,8010 0,8097 0,7071 %3,034 %8,300 %7,304 %19,050 0,9000 0,7855 0,8097 0,6916 %3,034 %10,074 %7,304 %20,824
2 0,9400 0,8862 0,9198 0,7071 %7,613 %1,454 %5,301 %19,050 0,9400 0,8788 0,9198 0,6916 %7,613 %0,607 %5,301 %20,824
3 0,9600 0,8709 0,8929 0,7071 %9,903 %0,298 %2,221 %19,050 0,9600 0,8610 0,8929 0,6916 %9,903 %1,431 %2,221 %20,824
4 0,9800 0,9376 0,9275 0,7071 %12,192 %7,338 %6,182 %19,050 0,9800 0,9291 0,9275 0,6916 %12,192 %6,365 %6,182 %20,824
5 0,9600 0,9021 0,9018 0,7071 %9,903 %3,274 %3,240 %19,050 0,9600 0,8923 0,9018 0,6916 %9,903 %2,152 %3,240 %20,824
6 0,9600 0,8743 0,8626 0,7071 %9,903 %0,092 %1,248 %19,050 0,9600 0,8605 0,8626 0,6916 %9,903 %1,488 %1,248 %20,824
7 0,9400 0,8903 0,9181 0,7071 %7,613 %1,923 %5,106 %19,050 0,9400 0,8802 0,9181 0,6916 %7,613 %0,767 %5,106 %20,824
8 0,9200 0,8672 0,8812 0,7071 %5,323 %0,721 %0,882 %19,050 0,9200 0,8601 0,8853 0,6916 %5,323 %1,534 %1,351 %20,824
9 0,8600 0,7914 0,8160 0,7071 %1,546 %9,399 %6,583 %19,050 0,8600 0,7787 0,8160 0,6916 %1,546 %10,853 %6,583 %20,824
10 1,000 0,9439 0,9742 0,7071 %14,482 %8,060 %11,528 %19,050 1,0000 0,9401 0,9742 0,6916 %14,482 %7,624 %11,528 %20,824

ORTALAMA 0,9420 0,8765 0,8904 0,7071 %8,151 %4,086 %4,960 %19,050 0,9420 0,8666 0,8908 0,6916 %8,151 %4,290 %5,006 %20,824
VARYANS 0,0016 0,0025 0,0026 0,0000 %0,160 %0,140 %0,104 %0,000 0,0016 0,0027 0,0026 0,0000 %0,160 %0,162 %0,100 %0,000

Çizelge 4.32. Senaryo IV için tahmin değerleri ve hata yüzdelerinin ortalama ve varyansları (n = 50, öks = 20)

ORTALAMA
DEĞERLER

REFERANS BANT GENİŞLİĞİ İLE YAPILAN TAHMİN DEĞERLERİ
VE HATA YÜZDELERİ

MAKSİMUM DÜZLEŞTİRME YÖNTEMİ BANT GENİŞLİĞİ İLE
YAPILAN TAHMİN DEĞERLERİ VE HATA YÜZDELERİ

Ypk p̃KMH p̃ p̂(H,S) εYpk ε p̃KMH ε p̃ ε p̂(H,S) Ypk p̃KMH p̃ p̂(H,S) εYpk ε p̃KMH ε p̃ ε p̂(H,S)
ORTALAMA 0,9510 0,8850 0,9123 0,7071 %9,027 %3,719 %4,764 %19,050 0,9480 0,8731 0,9101 0,6916 %8,683 %3,146 %4,518 %20,824
VARYANS 0,0015 0,0014 0,0008 0,0000 %0,167 %0,058 %0,073 %0,000 0,0015 0,0014 0,0007 0,0000 %0,173 %0,083 %0,065 %0,000
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Çizelge 4.31’den n = 50 gözlem sayısına sahip örneklem kümelerinden hesaplanan Ypk,

p̃KMH , p̃ ve p̂(H,S) tahminleri ve hata yüzdeleri (%ε) görülmektedir. Referans Bant

Genişliği ve Maksimum Düzleştirme Yöntemi kullanılarak yapılan tahminler için en iyi

sonucun ortalamada önerilen p̃KMH yaklaşımı ile elde edildiği görülmektedir. Çizelge

4.31’de görülen hata yüzde değerlerinin karşılaştırma kolaylığı sağlaması açısından çizgi

grafiği çizdirilerek Şekil 4.16’da verilmiştir.

(a) (b)

Şekil 4.16. Senaryo IV için hata yüzdeleri çizgi grafiği (n = 50,öks = 10)

Şekil 4.16’daki verilen grafikler incelendiğinde ilk grafikteki sonuçlardan 1. ve 9. örneklem

kümelerinden hesaplanan Ypk yaklaşımı ile diğer yaklaşımlara göre p’yi daha iyi tahmin

ettiği görülmektedir. 2, 3, 6, 7. ve 8. örneklem kümelerinden hesaplanan p̃KMH yaklaşımı ile

daha iyi sonuçlar elde edilmiştir. 4. ve 5. Örneklem kümelerinden hesaplanan p̃ yaklaşımı

ile p daha iyi tahmin edilmiştir. İkinci grafikte görülen Maksimum Düzleştirme Yöntemi

ile yapılan tahminlerde de ilk grafikteki gibi Ypk, p̃KMH , p̃ yaklaşımların kitle parametresini

tahmin etmedeki başarıları değişkenlik göstermektedir.

Çizelge 4.32’de p̃KMH yaklaşımına göre Maksimum Düzleştirme Yöntemi ile elde edilen

sonuçların Referans Bant Genişliği ile yapılan tahmin sonuçlarından daha az hata yüzdesine

sahip olduğu ve 10 örneklem kümesinde olduğu gibi p̃KMH yaklaşımı ile p daha iyi tamin

edildiği söylenebilir.
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Çizelge 4.33. Senaryo IV için tahmin değerleri ve hata yüzdeleri (n = 100, öks = 10)

ÖRNEKLEM
KÜMELERİ

REFERANS BANT GENİŞLİĞİ İLE YAPILAN TAHMİN DEĞERLERİ
VE HATA YÜZDELERİ

MAKSİMUM DÜZLEŞTİRME YÖNTEMİ BANT GENİŞLİĞİ İLE
YAPILAN TAHMİN DEĞERLERİ VE HATA YÜZDELERİ

Ypk p̃KMH p̃ p̂(H,S) εYpk ε p̃KMH ε p̃ ε p̂(H,S) Ypk p̃KMH p̃ p̂(H,S) εYpk ε p̃KMH ε p̃ ε p̂(H,S)
1 0,9900 0,9296 0,9238 0,8076 %13,337 %6,422 %5,758 %7,544 0,9900 0,9130 0,9174 0,7958 %13,337 %4,522 %5,026 %8,895
2 0,9600 0,9448 0,9552 0,8076 %9,903 %8,163 %9,353 %7,544 0,9600 0,9404 0,9565 0,7958 %9,903 %7,659 %9,502 %8,895
3 0,9500 0,8904 0,9192 0,8076 %8,758 %1,935 %5,232 %7,544 0,9500 0,8882 0,9214 0,7958 %8,758 %1,683 %5,488 %8,895
4 0,9300 0,9117 0,9306 0,8076 %6,468 %4,373 %6,537 %7,544 0,9300 0,9117 0,9354 0,7958 %6,468 %4,373 %7,086 %8,895
5 0,9200 0,8648 0,8945 0,8076 %5,323 %0,996 %2,404 %7,544 0,9200 0,8572 0,8945 0,7958 %5,323 %1,866 %2,404 %8,895
6 0,9700 0,9175 0,9034 0,8076 %11,048 %5,037 %3,423 %7,544 0,9700 0,9082 0,9043 0,7958 %11,048 %3,973 %3,526 %8,895
7 0,9900 0,9437 0,9657 0,8076 %13,337 %8,037 %10,555 %7,544 0,9800 0,9259 0,9553 0,7958 %12,192 %5,999 %9,365 %8,895
8 0,9300 0,8921 0,9296 0,8076 %6,468 %2,129 %6,422 %7,544 0,9300 0,8869 0,9296 0,7958 %6,468 %1,534 %6,422 %8,895
9 0,9400 0,9029 0,9245 0,8076 %7,613 %3,366 %5,839 %7,544 0,9400 0,8947 0,9238 0,7958 %7,613 %2,427 %5,758 %8,895
10 0,9400 0,8939 0,9355 0,8076 %7,613 %2,335 %7,098 %7,544 0,9400 0,8889 0,9355 0,7958 %7,613 %1,763 %7,098 %8,895

ORTALAMA 0,9520 0,9091 0,9282 0,8076 %8,987 %4,279 %6,262 %7,544 0,9510 0,9015 0,9274 0,7958 %8,872 %3,580 %6,168 %8,895
VARYANS 0,0006 0,0006 0,0005 0,0000 %0,081 %0,067 %0,059 %0,000 0,0005 0,0005 0,0004 0,0000 %0,071 %0,044 %0,051 %0,000

Çizelge 4.34. Senaryo IV için tahmin değerleri ve hata yüzdelerinin ortalama ve varyansları (n = 100, öks = 20)

ORTALAMA
DEĞERLER

REFERANS BANT GENİŞLİĞİ İLE YAPILAN TAHMİN DEĞERLERİ
VE HATA YÜZDELERİ

MAKSİMUM DÜZLEŞTİRME YÖNTEMİ BANT GENİŞLİĞİ İLE
YAPILAN TAHMİN DEĞERLERİ VE HATA YÜZDELERİ

Ypk p̃KMH p̃ p̂(H,S) εYpk ε p̃KMH ε p̃ ε p̂(H,S) Ypk p̃KMH p̃ p̂(H,S) εYpk ε p̃KMH ε p̃ ε p̂(H,S)
ORTALAMA 0,9405 0,8880 0,9115 0,8076 %7,670 %3,197 %4,361 %7,544 0,9405 0,8807 0,9119 0,7958 %7,670 %3,000 %4,391 %8,895
VARYANS 0,0007 0,0009 0,0007 0,0000 %0,096 %0,033 %0,085 %0,000 0,0007 0,0009 0,0006 0,0000 %0,096 %0,031 %0,085 %0,000
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Çizelge 4.33’te n = 100 gözlem sayısına sahip 10 örneklem kümesinden hesaplanan Ypk,

p̃KMH , p̃ ve p̂(H,S) tahminleri ve hata yüzdelerinin (%ε) ortalama ile varyans değerleri

görülmektedir. Ürün kitle parametresi p’nin önerilen yaklaşım olan p̃KMH ile diğer üç

yönteme göre daha iyi tahmin edildiği açıkça görülmektedir.

(a) (b)

Şekil 4.17. Senaryo IV için hata yüzdeleri çizgi grafiği (n = 100,öks = 10)

Şekil 4.17’de verilen grafikler incelendiğinde, Çizelge 4.33’te verilen sonuçların bir özeti

görülmektedir. İlk grafikte Referans Bant Genişliği kullanılarak hesaplanan Ypk, p̃KMH , p̃

ve p̂(H,S) yaklaşım değerlerinin hata yüzdelerinden, en küçük değerlerin p̃KMH yaklaşımı

sonucu elde edildiği görülmektedir. Bununla beraber, 1. ve 6. örneklem kümeleri için

p̃ yaklaşımının, 7. örneklem kümesi için de p̂(H,S) yaklaşımının daha iyi sonuç verdiği

söylenebilir.

Çizelge 4.34 incelendiğinde, her iki yöntem için elde edilen sonuçlardan p̃KMH yaklaşımının

p̃’yi tahmin etmede daha başarılı olduğu görülmektedir.
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Çizelge 4.35. Senaryo IV için tahmin değerleri ve hata yüzdeleri (n = 250, öks = 10)

ÖRNEKLEM
KÜMELERİ

REFERANS BANT GENİŞLİĞİ İLE YAPILAN TAHMİN DEĞERLERİ
VE HATA YÜZDELERİ

MAKSİMUM DÜZLEŞTİRME YÖNTEMİ BANT GENİŞLİĞİ İLE
YAPILAN TAHMİN DEĞERLERİ VE HATA YÜZDELERİ

Ypk p̃KMH p̃ p̂(H,S) εYpk ε p̃KMH ε p̃ ε p̂(H,S) Ypk p̃KMH p̃ p̂(H,S) εYpk ε p̃KMH ε p̃ ε p̂(H,S)
1 0,9640 0,9335 0,9370 0,8314 %10,361 %6,869 %7,270 %4,820 0,9480 0,9137 0,9202 0,8236 %8,529 %4,602 %5,346 %5,713
2 0,9640 0,9128 0,9286 0,8314 %10,361 %4,499 %6,308 %4,820 0,9440 0,8957 0,9193 0,8236 %8,071 %2,541 %5,243 %5,713
3 0,9480 0,9114 0,9336 0,8314 %8,529 %4,339 %6,880 %4,820 0,9680 0,9256 0,9347 0,8236 %10,819 %5,965 %7,006 %5,713
4 0,9400 0,9082 0,9256 0,8314 %7,613 %3,973 %5,965 %4,820 0,9400 0,9064 0,9254 0,8236 %7,613 %3,766 %5,942 %5,713
5 0,9560 0,9044 0,9234 0,8314 %9,445 %3,537 %5,713 %4,820 0,9720 0,9245 0,9387 0,8236 %11,276 %5,839 %7,464 %5,713
6 0,9520 0,9173 0,9281 0,8314 %8,987 %5,014 %6,251 %4,820 0,9360 0,9026 0,9236 0,8236 %7,155 %3,331 %5,736 %5,713
7 0,9480 0,9016 0,9139 0,8314 %8,529 %3,217 %4,625 %4,820 0,9640 0,9282 0,9433 0,8236 %10,361 %6,262 %7,991 %5,713
8 0,9520 0,8986 0,9141 0,8314 %8,987 %2,873 %4,648 %4,820 0,9360 0,8974 0,9125 0,8236 %7,155 %2,736 %4,465 %5,713
9 0,9600 0,9202 0,9286 0,8314 %9,903 %5,346 %6,308 %4,820 0,9640 0,9203 0,9366 0,8236 %10,361 %5,358 %7,224 %5,713
10 0,9720 0,9320 0,9423 0,8314 %11,276 %6,697 %7,876 %4,820 0,9480 0,9010 0,9268 0,8236 %8,529 %3,148 %6,102 %5,713

ORTALAMA 0,9556 0,9140 0,9275 0,8314 %9,399 %4,636 %6,184 %4,820 0,9520 0,9115 0,9281 0,8236 %8,987 %4,355 %6,252 %5,713
VARYANS 0,0001 0,0001 0,0001 0,0000 %0,012 %0,019 %0,011 %0,000 0,0002 0,0002 0,0001 0,0000 %0,025 %0,020 %0,013 %0,000

Çizelge 4.36. Senaryo IV için tahmin değerleri ve hata yüzdelerinin ortalama ve varyansları (n = 250, öks = 20)

ORTALAMA
DEĞERLER

REFERANS BANT GENİŞLİĞİ İLE YAPILAN TAHMİN DEĞERLERİ
VE HATA YÜZDELERİ

MAKSİMUM DÜZLEŞTİRME YÖNTEMİ BANT GENİŞLİĞİ İLE
YAPILAN TAHMİN DEĞERLERİ VE HATA YÜZDELERİ

Ypk p̃KMH p̃ p̂(H,S) εYpk ε p̃KMH ε p̃ ε p̂(H,S) Ypk p̃KMH p̃ p̂(H,S) εYpk ε p̃KMH ε p̃ ε p̂(H,S)
ORTALAMA 0,9490 0,9123 0,9233 0,8314 %8,643 %4,443 %5,695 %4,820 0,9472 0,9052 0,9224 0,8236 %8,437 %3,704 %5,598 %5,713
VARYANS 0,0003 0,0003 0,0002 0,0000 %0,043 %0,042 %0,030 %0,000 0,0003 0,0003 0,0002 0,0000 %0,043 %0,040 %0,031 %0,000
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Çizelge 4.35. incelendiğinde, Referans Bant Genişliği ile yapılan tahminlerde örneklem

kümelerinde en iyi tahminlerin p̃KMH ve p̂(H,S) yaklaşımları ile yapıldığı görülmektedir.

Ortalamada p̃KMH yaklaşımının daha iyi sonuç verdiği söylenebilir. Maksimum

Düzleştirme Yöntemi ile yapılan tahminlerde de p̃KMH ve p̂(H,S) yaklaşımların kitle

parametresini tahmin etmedeki başarıları değişkenlik göstermektedir. Örneğin, 3,5 ve 7.

Örneklem kümelerinde p̂(H,S) yaklaşımı daha iyi sonuçlar verdiği görülmektedir, ancak

ortalamada p̃KMH yaklaşımı daha başarılıdır.

(a) (b)

Şekil 4.18. Senaryo IV için hata yüzdeleri çizgi grafiği (n = 250,öks = 10)

Şekil 4.18’de verilen grafikler incelendiğinde, ilk grafikteki sonuçlardan 2, 3, 4, 5, 7 ve 8.

Örneklem kümelerinde p̃KMH yaklaşımının diğer yaklaşımlara göre p’yi daha iyi tahmin

ettiği görülmektedir. Maksimum Düzleştirme Yöntemi ile yapılan tahminlerde ise 3,5 ve

7. Örneklem kümeleri için p̂(H,S) yaklaşımının daha iyi sonuçlar verdiği, ortalamada ise

p̃KMH yaklaşımı daha iyi sonuçlar verdiği görülmektedir.

Çizelge 4.36’da n = 250 gözlem sayısına sahip 20 örneklem kümesinden hesaplanan Ypk,

p̃KMH , p̃ ve p̂(H,S) tahminleri ve hata yüzdelerinin 10 örneklem kümesine göre hesap edilen

hata yüzdeleri ile benzer olduğu ve p’nin önerilen yaklaşım olan p̃KMH ile diğer üç yönteme

göre daha iyi tahmin edildiği söylenebilir.
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Çizelge 4.37. Senaryo IV için tahmin değerleri ve hata yüzdeleri (n = 500, öks = 10)

ÖRNEKLEM
KÜMELERİ

REFERANS BANT GENİŞLİĞİ İLE YAPILAN TAHMİN DEĞERLERİ
VE HATA YÜZDELERİ

MAKSİMUM DÜZLEŞTİRME YÖNTEMİ BANT GENİŞLİĞİ İLE
YAPILAN TAHMİN DEĞERLERİ VE HATA YÜZDELERİ

Ypk p̃KMH p̃ p̂(H,S) εYpk ε p̃KMH ε p̃ ε p̂(H,S) Ypk p̃KMH p̃ p̂(H,S) εYpk ε p̃KMH ε p̃ ε p̂(H,S)
1 0,9480 0,9300 0,9266 0,8244 %8,529 %6,468 %6,079 %5,621 0,9440 0,9028 0,9173 0,8172 %8,071 %3,354 %5,014 %6,445
2 0,9420 0,9046 0,9106 0,8244 %7,842 %3,560 %4,247 %5,621 0,9520 0,9178 0,9244 0,8172 %8,987 %5,072 %5,827 %6,445
3 0,9480 0,9232 0,9419 0,8244 %8,529 %5,690 %7,831 %5,621 0,9640 0,9223 0,9289 0,8172 %10,361 %5,587 %6,342 %6,445
4 0,9500 0,9268 0,9404 0,8244 %8,758 %6,102 %7,659 %5,621 0,9500 0,9108 0,9247 0,8172 %8,758 %4,270 %5,861 %6,445
5 0,9640 0,9387 0,9406 0,8244 %10,361 %7,464 %7,682 %5,621 0,9380 0,9047 0,9161 0,8172 %7,384 %3,572 %4,877 %6,445
6 0,9340 0,9004 0,9151 0,8244 %6,926 %3,080 %4,762 %5,621 0,9400 0,8985 0,9115 0,8172 %7,613 %2,862 %4,350 %6,445
7 0,9540 0,9213 0,9272 0,8244 %9,216 %5,472 %6,148 %5,621 0,9760 0,9345 0,9347 0,8172 %11,734 %6,983 %7,006 %6,445
8 0,9520 0,9254 0,9276 0,8244 %8,987 %5,942 %6,193 %5,621 0,9280 0,9084 0,9211 0,8172 %6,239 %3,995 %5,449 %6,445
9 0,9360 0,9265 0,9396 0,8244 %7,155 %6,068 %7,567 %5,621 0,9600 0,9226 0,9339 0,8172 %9,903 %5,621 %6,915 %6,445
10 0,9380 0,9081 0,9169 0,8244 %7,384 %3,961 %4,969 %5,621 0,9360 0,9024 0,9193 0,8172 %7,155 %3,309 %5,243 %6,445

ORTALAMA 0,9466 0,9205 0,9287 0,8244 %8,369 %5,381 %6,314 %5,621 0,9488 0,9125 0,9232 0,8172 %8,621 %4,463 %5,688 %6,445
VARYANS 0,0001 0,0001 0,0001 0,0000 %0,011 %0,020 %0,018 %0,000 0,0002 0,0001 0,0001 0,0000 %0,028 %0,017 %0,008 %0,000

Çizelge 4.38. Senaryo IV için tahmin değerleri ve hata yüzdelerinin ortalama ve varyansları (n = 500, öks = 20)

ORTALAMA
DEĞERLER

REFERANS BANT GENİŞLİĞİ İLE YAPILAN TAHMİN DEĞERLERİ
VE HATA YÜZDELERİ

MAKSİMUM DÜZLEŞTİRME YÖNTEMİ BANT GENİŞLİĞİ İLE
YAPILAN TAHMİN DEĞERLERİ VE HATA YÜZDELERİ

Ypk p̃KMH p̃ p̂(H,S) εYpk ε p̃KMH ε p̃ ε p̂(H,S) Ypk p̃KMH p̃ p̂(H,S) εYpk ε p̃KMH ε p̃ ε p̂(H,S)
ORTALAMA 0,9513 0,9226 0,9282 0,8244 %8,907 %5,616 %6,262 %5,621 0,9499 0,9168 0,9277 0,8172 %8,746 %4,958 %6,202 %6,445
VARYANS 0,0001 0,0002 0,0001 0,0000 %0,013 %0,020 %0,019 %0,000 0,0001 0,0002 0,0002 0,0000 %0,014 %0,023 %0,020 %0,000
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Çizelge 4.37’den n = 500 gözlem sayısına sahip 10 örneklem kümesinden hesaplanan Ypk,

p̃KMH , p̃ ve p̂(H,S) tahminleri ve hata yüzdelerinin (%ε) görülmektedir. Burada Referans

Bant Genişliği ile yapılan tahminlerden her ne kadar örneklem kümelerinde p̃KMH

yaklaşımı ile birlikte p̂(H,S) yaklaşımının da iyi sonuçlar verdiği gözlemlenmiş olsa da

örneklem kümeleri ortalamaları incelendiğinde p̃KMH yaklaşımının her iki bant genişliği

tahmin yöntemi için de diğer yaklaşımlardan iyi sonuç verdiği görülmektedir. Maksimum

Düzleştirme Yöntemi ile yapılan tahminlerde p̃KMH yaklaşımının daha iyi sonuçlar verdiği

görülmektedir.

(a) (b)

Şekil 4.19. Senaryo IV için hata yüzdeleri çizgi grafiği (n = 500,öks = 10)

Şekil 4.19’da görülen ilk grafikte 2, 6, 7 ve 10. Örneklem kümelerinde p̃KMH yaklaşımının

diğer yaklaşımlara göre p’yi daha iyi tahmin ettiği görülmektedir. İkinci grafikte ise 7.

Örneklem kümesi hariç, tüm örneklem kümeleri için p̃KMH yaklaşımının iyi sonuçlar

verdiği ve hata yüzde seviyesinin diğerlerine göre aşağıda olduğu görülmektedir.

Çizelge 4.38’de n = 500 gözlem sayısına sahip 20 örneklem kümesinden hesaplanan Ypk,

p̃KMH , p̃ ve p̂(H,S) tahminleri ve hata yüzdelerinin 10 örneklem kümesine göre hesap edilen

hata yüzdeleri ile benzer olduğu ve p’nin önerilen yaklaşım olan p̃KMH ile diğer üç yönteme

göre daha iyi tahmin edildiği söylenebilir.
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Çizelge 4.39. Senaryo IV için tahmin değerleri ve hata yüzdeleri (n = 1000, öks = 10)

ÖRNEKLEM
KÜMELERİ

REFERANS BANT GENİŞLİĞİ İLE YAPILAN TAHMİN DEĞERLERİ
VE HATA YÜZDELERİ

MAKSİMUM DÜZLEŞTİRME YÖNTEMİ BANT GENİŞLİĞİ İLE
YAPILAN TAHMİN DEĞERLERİ VE HATA YÜZDELERİ

Ypk p̃KMH p̃ p̂(H,S) εYpk ε p̃KMH ε p̃ ε p̂(H,S) Ypk p̃KMH p̃ p̂(H,S) εYpk ε p̃KMH ε p̃ ε p̂(H,S)
1 0,9510 0,9279 0,9258 0,8272 %8,872 %6,228 %5,987 %5,301 0,9540 0,9284 0,9368 0,8209 %9,216 %6,285 %7,247 %6,022
2 0,9420 0,9231 0,9266 0,8272 %7,842 %5,678 %6,079 %5,301 0,9480 0,9282 0,9386 0,8209 %8,529 %6,262 %7,453 %6,022
3 0,9560 0,9259 0,9321 0,8272 %9,445 %5,999 %6,709 %5,301 0,9580 0,9341 0,9380 0,8209 %9,674 %6,938 %7,384 %6,022
4 0,9560 0,9311 0,9278 0,8272 %9,445 %6,594 %6,216 %5,301 0,9480 0,9317 0,9395 0,8209 %8,529 %6,663 %7,556 %6,022
5 0,9520 0,9255 0,9303 0,8272 %8,987 %5,953 %6,503 %5,301 0,9540 0,9242 0,9273 0,8209 %9,216 %5,804 %6,159 %6,022
6 0,9590 0,9283 0,9250 0,8272 %9,788 %6,274 %5,896 %5,301 0,9530 0,9280 0,9303 0,8209 %9,101 %6,239 %6,503 %6,022
7 0,9440 0,9259 0,9278 0,8272 %8,071 %5,999 %6,216 %5,301 0,9470 0,9253 0,9301 0,8209 %8,414 %5,930 %6,480 %6,022
8 0,9480 0,9225 0,9238 0,8272 %8,529 %5,610 %5,758 %5,301 0,9430 0,9176 0,9222 0,8209 %7,956 %5,049 %5,575 %6,022
9 0,9520 0,9296 0,9348 0,8272 %8,987 %6,422 %7,018 %5,301 0,9240 0,9104 0,9274 0,8209 %5,781 %4,224 %6,171 %6,022
10 0,9530 0,9183 0,9200 0,8272 %9,101 %5,129 %5,323 %5,301 0,9450 0,9215 0,9326 0,8209 %8,185 %5,495 %6,766 %6,022

ORTALAMA 0,9513 0,9258 0,9274 0,8272 %8,907 %5,989 %6,171 %5,301 0,9474 0,9249 0,9323 0,8209 %8,460 %5,889 %6,729 %6,022
VARYANS 0,0000 0,0000 0,0000 0,0000 %0,004 %0,002 %0,002 %0,000 0,0001 0,0000 0,0000 0,0000 %0,012 %0,006 %0,004 %0,000

Çizelge 4.40. Senaryo IV için tahmin değerleri ve hata yüzdelerinin ortalama ve varyansları (n = 1000, öks = 20)

ORTALAMA
DEĞERLER

REFERANS BANT GENİŞLİĞİ İLE YAPILAN TAHMİN DEĞERLERİ
VE HATA YÜZDELERİ

MAKSİMUM DÜZLEŞTİRME YÖNTEMİ BANT GENİŞLİĞİ İLE
YAPILAN TAHMİN DEĞERLERİ VE HATA YÜZDELERİ

Ypk p̃KMH p̃ p̂(H,S) εYpk ε p̃KMH ε p̃ ε p̂(H,S) Ypk p̃KMH p̃ p̂(H,S) εYpk ε p̃KMH ε p̃ ε p̂(H,S)
ORTALAMA 0,9510 0,9268 0,9276 0,8272 %8,872 %6,105 %6,199 %5,301 0,9496 0,9243 0,9313 0,8209 %8,706 %5,818 %6,615 %6,022
VARYANS 0,0000 0,0000 0,0000 0,0000 %0,005 %0,003 %0,004 %0,000 0,0001 0,0000 0,0000 0,0000 %0,007 %0,005 %0,005 %0,000
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Çizelge 4.39’da n = 1000 gözlem sayısına sahip 10 örneklem kümesinden hesaplanan Ypk,

p̃KMH , p̃ ve p̂(H,S) tahminleri ve hata yüzdelerinin (%ε) ortalama ile varyans değerleri

görülmektedir. Burada Referans Bant Genişliği ile yapılan tahmin değerleri ile yaklaşımlar

üzerinden hesaplanan hata yüzdelerinin 10. Örneklem kümesi dışında p̂(H,S) yaklaşımı

için iyi sonuçlar verdiği ve hata yüzde ortalamasının da yine p̂(H,S) için daha iyi olduğu

görülmektedir. Ancak Maksimum Düzleştirme Yöntemi kullanıldığında p̃KMH yaklaşımının

ortalamada daha iyi sonuçlar verdiği görülmektedir.

(a) (b)

Şekil 4.20. Senaryo IV için hata yüzdeleri çizgi grafiği (n = 1000,öks = 10)

Şekil 4.20’de ilk grafik için p̂(H,S) ile p̃KMH yaklaşımından elde edilen hata yüzdelerinin

çok yakın olduğu ve p̂(H,S) yaklaşımının diğer iki yaklaşıma göre p’yi daha iyi tahmin

ettiği görülmektedir. İkinci grafikte ise 7. Örnekleme kadar p̂(H,S) ve p̃KMH yaklaşım

değerlerinin birbirine yakın olduğu ve p̂(H,S) diğer üç yaklaşıma göre iyi sonuçlar verdiği

görülmektedir. Ancak p̃KMH yaklaşımının ortalamada p’yi tahmin etmede daha başarılı

olduğu ve 9. Örneklem kümesi ile p’nin en düşük hata yüzdesi tahmin edildiği

görülmektedir.

Çizelge 4.40’da n = 1000gözlem sayısına sahip 20 örneklem kümesinden hesaplanan Ypk,

p̃KMH , p̃ ve p̂(H,S) tahminleri ve hata yüzdelerinin 10 örneklem kümesine göre hesap

edilen hata yüzdeleri ile benzer olduğu Referans Bant Genişliği ile yapılan tahmin değerleri

ile yaklaşımlar üzerinden hesaplanan hata yüzdelerinin p̂(H,S) yaklaşımı için daha iyi

sonuçlar verdiği söylenebilir. Ancak Maksimum Düzleştirme Yöntenminde p̃KMH

yaklaşımın ortalamada daha iyi sonuçlar verdiği görülmektedir.
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5. ÖRNEKLEM KÜMELERİNİN KERNEL TAHMİN GRAFİKLERİ

Çalışmanın 3. Bölümünde ayrıntılı olarak ele alınan bant genişliği matrisleri, Maksimum

Düzleştirme Yöntemine göre elde edilmiş, ayrıca bant genişliği matrisinin dağılım bilgisine

duyarlılığını değerlendirebilmek amacıyla ilk faz ürün veri setlerinin Normal dağılıma

uygunluğu varsayımı ile Referans Bant Genişliği matris değerleri de tahmin edilerek Kernel

tahmin grafikleri elde edilmiş olup Matlab programında yazılan kod dizileri Ek-1’de

verilmiştir. Grafikler, tekrardan kaçınmak için sadece n = 1000 gözlemli örneklem

kümeleri için elde edilmiş ve yorumlanmıştır. Grafikler üzerinde görülen mavi çarpı (x)

simgesi, n = 1000 gözlem sayısına sahip ilk ürün gözlem değerlerini; 100*100 hücreden

oluşan koyu mavi kısım, süreç bölgesini ve renkli kısım ise gözlem değerlerinin

spesifikasyon bölgesindeki yoğunluğunu göstermektedir. Spesifikasyon bölgesi dışına

düşen gözlem noktaları (x) ile açıkça görülmektedir. Grafikler 4 farklı senaryo için elde

edilmiş, bu grafikler oluşturulurken daha önce ayrıntılı olarak açıklanan bant genişliği

matrisleri için iki farklı yöntem kullanılmış ve her bir grafik görsel anlamda daha iyi

anlaşılabilmesi için hem iki boyutlu bir izdüşüm şeklinde, hem de spesifikasyon bölgesine

göre konumlanmasının yüzeysel açıdan görünümü şeklinde çizdirilerek verilmeye

çalışılmıştır. Bu nedenle, grafik sayısının fazla olması, her senaryo verisi üzerinden elde

edilen örneklem kümelerinin grafiklerinin yorumu açısından benzer olması ve anlatım

tekrarından kaçınmak amacıyla, her bir senaryo için ilk örneklem kümeleri üzerinden

çizdirilen grafikler yorumlanmış, diğer örneklem kümelerine ait grafiklere çalışmada yer

verilmemiştir.

5.1. Senaryo I İçin Tahmin Grafikleri

Senaryo I için çizdirilen grafikler, 1. örneklem kümesi için Şekil 5.1’den Şekil 5.4’e kadar

verilen grafiklerden görülmektedir.

Referans Bant Genişliği ile Kernel yoğunluk tahmini

1. örneklem kümesi için referans bant genişliği matrisi kullanılarak elde edilen spesifikasyon

bölgesine göre saçılım grafiği Şekil 5.1’de görülmektedir.
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Şekil 5.1. Senaryo I, 1. örneklem kümesinin spesifikasyon bölgesine göre saçılım grafiği
(RBG)

Sekil 5.1’de verilen grafikte, çalışmanın en başında belirlenen spesifikasyon sınırları içinde

kalan bölgenin Kernel yoğunluk tahmin kontur sınırları, diğer bir ifade ile gözlem

değerlerinin bant genişliği matrisine ve Kernel fonksiyon türüne göre düzgünleştirilerek

tahmin edilen dağılımın şekli, iki boyutlu olarak görülmektedir. Ayrıca, spesifikasyon

bölgesi dışına düşen gözlem noktaları (x) ile görülmektedir. Şekil 5.1’de verilen grafiğin

farklı bir açıdan görüntüsü olan ve üç boyutlu uzayda Kernel yoğunluk tahmininin üst

yüzey kesitinin görülmesine imkan veren dağılım tahmin grafiği Şekil 5.2’de verilmiştir.
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Şekil 5.2. Senaryo I, 1. örneklem kümesinin spesifikasyon bölgesine göre
konumlanmasının yüzeysel açıdan görünüm grafiği (RBG)

Şekil 5.2 ile verilen grafik, 1. örneklem kümesinin spesifikasyon bölgesine göre

konumlanmasının yüzeysel açıdan görünümünü vermekle birlikte, yine spesifikasyon

bölgesi dışına düşen gözlemleri daha iyi bir şekilde görmemizi sağlamaktadır. 1. örneklem

kümesi için referans bant genişliği matrisi kullanılarak elde edilen grafiklerle görsel açıdan

farklılık oluşup oluşmadığını inceleyebilmek için Maksimum Düzleştirme Yöntemi bant

genişliği ile elde edilen Kernel yoğunluk tahmin grafikleri Şekil 5.3 ve Şekil 5.4’te

verilmiştir.
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Maksimum Düzleştirme Yöntemi bant genişliği ile Kernel yoğunluk tahmin grafikleri

Şekil 5.3. Senaryo I, 1. örneklem kümesinin spesifikasyon bölgesine göre saçılım grafiği
(MDY)

Şekil 5.3’te 1. örneklem kümesinin spesifikasyon bölgesine göre saçılım grafiği

görülmektedir. Spesifikasyon bölgesi dışına düşen gözlem noktaları (x) ve tahmin kontur

grafiği görülmektedir. Kernel tahmin grafiğinin farklı bir açıdan görüntüsü olan ve üç

boyutlu uzayda Kernel yoğunluk tahmininin üst yüzey kesitinin görülmesine imkan veren

dağılım tahmin grafiği Şekil 5.4’de verilmiştir.
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Şekil 5.4. Senaryo I, 1. örneklem kümesinin spesifikasyon bölgesine göre
konumlanmasının yüzeysel açıdan görünüm grafiği (MDY)

Şekil 5.4 ile verilen grafik, 1. örneklem kümesinin spesifikasyon bölgesine göre

konumlanmasının yüzeysel açıdan görünümünü vermekle birlikte, yine spesifikasyon

bölgesi dışına düşen gözlemleri daha iyi bir şekilde görmemizi sağlamaktadır. 1. örneklem

kümesi için elde edilen tahmin grafikleri hem Referans Bant Genişliği, hem de Maksimum

Düzleştirme Yöntemi bant genişliği ile yapılan yoğunluk tahmin grafikleri açısından

benzerlik göstermekte, ancak Maksimum Düzleştirme Yöntemi bant genişliği ile Kernel

yoğunluk tahmin grafiklerinin daha pürüzsüz bir görüntü oluşturduğu, diğer bir ifade ile

verilere maksimum düzgünleştirme uygulanarak, Kernel fonksiyon türüne daha yaklaşık bir

yoğunluk tahmini elde etmemizi sağladığı söylenebilir.

5.2. Senaryo II İçin Tahmin Grafikleri

Senaryo II için çizdirilen grafikler, 1. örneklem kümesi için Şekil 5.5’den Şekil 5.8’e kadar

verilen grafiklerden görülmektedir.

Referans bant genişliği ile Kernel yoğunluk tahmini

2. örneklem kümesi için Referans Bant Genişliği matrisi kullanılarak elde edilen

spesifikasyon bölgesine göre saçılım grafiği Şekil 5.5’de görülmektedir.
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Şekil 5.5. Senaryo II, 1. örneklem kümesinin spesifikasyon bölgesine göre saçılım grafiği
(RBG)

Sekil 5.5’de verilen grafikte, spesifikasyon bölgesi dışına düşen gözlem noktaları (x) ile

görülmektedir. Şekil 5.5’de verilen grafiğin farklı bir açıdan görüntüsü olan ve üç boyutlu

uzayda Kernel yoğunluk tahmininin üst yüzey kesitinin görülmesine imkan veren dağılım

tahmin grafiği Şekil 5.6’da verilmiştir.

Şekil 5.6. Senaryo II, 1. örneklem kümesinin spesifikasyon bölgesine göre
konumlanmasının yüzeysel açıdan görünüm grafiği (RBG)
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Şekil 5.6 ile verilen grafik, 1. örneklem kümesinin spesifikasyon bölgesine göre

konumlanmasının yüzeysel açıdan görünümünü vermekle birlikte, yine spesifikasyon

bölgesi dışına düşen gözlemleri daha iyi bir şekilde görmemizi sağlamaktadır. 1. örneklem

kümesi için referans bant genişliği matrisi kullanılarak elde edilen grafiklerle görsel açıdan

farklılık oluşup oluşmadığını inceleyebilmek için Maksimum Düzleştirme Yöntemi bant

genişliği ile elde edilen Kernel yoğunluk tahmin grafikleri Şekil 5.7 ve Şekil 5.8’da

verilmiştir.

Maksimum düzleştirme yöntemi bant genişliği ile Kernel yoğunluk tahmin grafikleri

Şekil 5.7. Senaryo II, 1. örneklem kümesinin spesifikasyon bölgesine göre saçılım grafiği
(MDY)

Şekil 5.7’de 1. örneklem kümesinin spesifikasyon bölgesine göre saçılım grafiği

görülmektedir. Spesifikasyon bölgesi dışına düşen gözlem noktaları (x) ve tahmin kontur

grafiği görülmektedir. Kernel tahmin grafiğinin farklı bir açıdan görüntüsü olan ve üç

boyutlu uzayda Kernel yoğunluk tahmininin üst yüzey kesitinin görülmesine imkan veren

dağılım tahmin grafiği Şekil 5.9’da verilmiştir.
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Şekil 5.8. Senaryo II, 1. örneklem kümesinin spesifikasyon bölgesine göre
konumlanmasının yüzeysel açıdan görünüm grafiği (MDY)

Şekil 5.8 ile verilen grafik, 1. örneklem kümesinin spesifikasyon bölgesine göre

konumlanmasının yüzeysel açıdan görünümünü vermekle birlikte, yine spesifikasyon

bölgesi dışına düşen gözlemleri daha iyi bir şekilde görmemizi sağlamaktadır. 1. örneklem

kümesi için elde edilen tahmin grafikleri hem Referans Bant Genişliği, hem de Maksimum

Düzleştirme Yöntemi bant genişliği ile yapılan yoğunluk tahmin grafikleri açısından

benzerlik göstermekte, ancak Maksimum Düzleştirme Yöntemi bant genişliği ile Kernel

yoğunluk tahmin grafiklerinin daha pürüzsüz bir görüntü oluşturduğu, diğer bir ifade ile

verilere maksimum düzgünleştirme sağlayarak, Kernel fonksiyon türüne daha yaklaşık bir

yoğunluk tahmini elde etmemizi sağladığı görülmektedir.

5.3. Senaryo III İçin Tahmin Grafikleri

Senaryo III için çizdirilen grafikler, 10 farklı örneklem kümeleri için Şekil 5.9’dan Şekil

5.12’ye kadar verilen grafiklerden görülmektedir.

Referans bant genişliği ile Kernel yoğunluk tahmini

1. örneklem kümesi için referans bant genişliği matrisi kullanılarak elde edilen spesifikasyon

bölgesine göre saçılım grafiği Şekil 5.9’da görülmektedir.
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Şekil 5.9. Senaryo III, 1. örneklem kümesinin spesifikasyon bölgesine göre saçılım grafiği
(RBG)

Sekil 5.9’da verilen grafikte, çalışmanın en başında belirlenen spesifikasyon sınırları içinde

kalan bölgenin Kernel yoğunluk tahmin kontur sınırları, diğer bir ifade ile gözlem

değerlerinin bant genişliği matrisine ve Kernel fonksiyon türüne göre düzgünleştirilerek

tahmin edilen dağılımın şekli iki boyutlu olarak görülmektedir. Ayrıca, spesifikasyon

bölgesi dışına düşen gözlem noktaları (x) ile görülmektedir. Şekil 5.9’de verilen grafiğin

farklı bir açıdan görüntüsü olan ve üç boyutlu uzayda Kernel yoğunluk tahmininin üst

yüzey kesitinin görülmesine imkan veren dağılım tahmin grafiği Şekil 5.10’da verilmiştir.

Şekil 5.10. Senaryo III, 1. örneklem kümesinin spesifikasyon bölgesine göre
konumlanmasının yüzeysel açıdan görünüm grafiği (RBG)
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Şekil 5.10 ile verilen grafik, 1. örneklem kümesinin spesifikasyon bölgesine göre

konumlanmasının yüzeysel açıdan görünümünü vermekle birlikte, yine spesifikasyon

bölgesi dışına düşen gözlemleri daha iyi bir şekilde görmemizi sağlamaktadır. 1. örneklem

kümesi için referans bant genişliği matrisi kullanılarak elde edilen grafiklerle görsel açıdan

farklılık oluşup oluşmadığını inceleyebilmek için Maksimum Düzleştirme Yöntemi bant

genişliği ile elde edilen Kernel yoğunluk tahmin grafikleri Şekil 5.11 ve Şekil 5.12’de

verilmiştir.

Maksimum düzleştirme yöntemi bant genişliği ile Kernel yoğunluk tahmin grafikleri

Şekil 5.11. Senaryo III, 1. örneklem kümesinin spesifikasyon bölgesine göre saçılım grafiği
(MDY)

Şekil 5.11’de 1. örneklem kümesinin spesifikasyon bölgesine göre saçılım grafiği

görülmektedir. Spesifikasyon bölgesi dışına düşen gözlem noktaları (x) ve tahmin kontur

grafiği görülmektedir. Kernel tahmin grafiğinin farklı bir açıdan görüntüsü olan ve üç

boyutlu uzayda Kernel yoğunluk tahmininin üst yüzey kesitinin görülmesine imkan veren

dağılım tahmin grafiği Şekil 5.12’de verilmiştir.
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Şekil 5.12. Senaryo III, 1. örneklem kümesinin spesifikasyon bölgesine göre
konumlanmasının yüzeysel açıdan görünüm grafiği (MDY)

Şekil 5.12 ile verilen grafik, 1. örneklem kümesinin spesifikasyon bölgesine göre

konumlanmasının yüzeysel açıdan görünümünü vermekte ve spesifikasyon bölgesi dışına

düşen gözlemleri daha iyi bir şekilde görmemizi sağlamaktadır. 1. örneklem kümesi için

elde edilen tahmin grafikleri hem Referans Bant Genişliği, hem de Maksimum Düzleştirme

Yöntemi bant genişliği ile yapılan yoğunluk tahmin grafikleri açısından benzerlik

göstermekte, ancak Maksimum Düzleştirme Yöntemi bant genişliği ile Kernel yoğunluk

tahmin grafiklerinin daha pürüzsüz bir görüntü oluşturduğu, diğer bir ifade ile verilere

maksimum düzgünleştirme sağlayarak, Kernel fonksiyon türüne daha yaklaşık bir yoğunluk

tahmini elde etmemizi sağladığı görülmektedir.

5.4. Senaryo IV İçin Tahmin Grafikleri

Senaryo IV için çizdirilen grafikler, 10 farklı örneklem kümeleri için Şekil 5.13’den Şekil

5.16’ya kadar verilen grafiklerden görülmektedir.

Referans bant genişliği ile Kernel yoğunluk tahmini

1. örneklem kümesi için Referans Bant Genişliği matrisi kullanılarak elde edilen

spesifikasyon bölgesine göre saçılım grafiği Şekil 5.13’de görülmektedir.
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Şekil 5.13. Senaryo IV, 1. örneklem kümesinin spesifikasyon bölgesine göre saçılım grafiği
(RBG)

Sekil 5.13’de verilen grafikte, gözlem değerlerinin bant genişliği matrisine ve Kernel

fonksiyon türüne göre düzgünleştirilerek tahmin edilen dağılımın şekli iki boyutlu olarak

görülmektedir. Ayrıca, spesifikasyon bölgesi dışına düşen gözlem noktaları (x) ile

görülmektedir. Şekil 5.13’de verilen grafiğin farklı bir açıdan görüntüsü olan ve üç boyutlu

uzayda Kernel yoğunluk tahmininin üst yüzey kesitinin görülmesine imkan veren dağılım

tahmin grafiği Şekil 5.14’de verilmiştir.

Şekil 5.14. Senaryo IV, 1. örneklem kümesinin spesifikasyon bölgesine göre
konumlanmasının yüzeysel açıdan görünüm grafiği (RBG)
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Şekil 5.14 ile verilen grafik, 1. örneklem kümesinin spesifikasyon bölgesine göre

konumlanmasının yüzeysel açıdan görünümünü vermektedir. 1. örneklem kümesi için

Referans Bant Genişliği matrisi kullanılarak elde edilen grafiklerle görsel açıdan farklılık

oluşup oluşmadığını inceleyebilmek için Maksimum Düzleştirme Yöntemi bant genişliği

ile elde edilen Kernel yoğunluk tahmin grafikleri Şekil 5.15 ve Şekil 5.16’da verilmiştir.

Maksimum düzleştirme yöntemi bant genişliği ile Kernel yoğunluk tahmin grafikleri

Şekil 5.15. Senaryo IV, 1. örneklem kümesinin spesifikasyon bölgesine göre saçılım grafiği
(MDY)

Şekil 5.15’de 1. örneklem kümesinin spesifikasyon bölgesine göre saçılım grafiği

görülmektedir. Spesifikasyon bölgesi dışına düşen gözlem noktaları (x) ve tahmin kontur

grafiği görülmektedir. Kernel tahmin grafiğinin farklı bir açıdan görüntüsü Şekil 5.16’da

verilmiştir.
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Şekil 5.16. Senaryo IV, 1. örneklem kümesinin spesifikasyon bölgesine göre
konumlanmasının yüzeysel açıdan görünüm grafiği (MDY)

Şekil 5.16 ile verilen grafik, 1. örneklem kümesinin spesifikasyon bölgesine göre

konumlanmasının yüzeysel açıdan görünümünü vermekle birlikte, yine spesifikasyon

bölgesi dışına düşen gözlemleri daha iyi bir şekilde görmemizi sağlamaktadır. 1. örneklem

kümesi için elde edilen tahmin grafikleri hem Referans Bant Genişliği, hem de Maksimum

Düzleştirme Yöntemi bant genişliği ile yapılan yoğunluk tahmin grafikleri açısından

benzerlik göstermektedir. Maksimum Düzleştirme Yöntemi bant genişliği ile Kernel

yoğunluk tahmin grafiklerinin daha pürüzsüz bir görüntü sağlamaktadır.
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6. SONUÇ VE ÖNERİLER

Üretimin devamlılığı açısından, üretilen mal ve hizmetin müşteri isteklerine ve

beklentilerine cevap vermesinin sağlanması, üretim aşamasında uygun olmayan ürün

sayısının azaltılması ve böylece üretim maliyetlerinin düşürülebileceği göz önünde

bulundurulduğunda, süreç yeterlilik analizinin fabrika süreç problemlerinde ne denli önemli

rol oynadığı anlaşılabilir.

Sürecin yeterli olduğuna karar vermede, süreç dağılımının Normal dağılıma uygun olması,

klasik yeterlilik indekslerin doğru tahmin edilmesinde önemli bir rol oynamaktadır.

Üretim sürecinin Normal dağılıma uymadığı durumda, klasik yeterlilik indeksleri ile doğru

tahminler elde edilemediği, yapılan literatür çalışmasıyla, varsayım bozulmaları sonucu

doğru tahminlere ulaşmak için yazarlar tarafından çok çeşitli yaklaşımlar geliştirildiği

görülmektedir. Örneğin, tek değişkenli üretim süreçleri için, normallik varsayımının

sağlanmadığı durumlarda kullanılabilecek yaklaşımlardan ilki, normal dağılıma uygun

olmayan veriyi normal dağılıma dönüştürmek ve daha sonra yeterlilik indeksleri için

önerilen klasik yaklaşımları kullanmaktır. Bu amaçla en çok kullanılan dönüşüm teknikleri,

Johnson (1949) ve Box-Cox (1964) Güç dönüşüm teknikleridir. İkinci yaklaşım ise,

dağılımın bilinmediği durumlarda veriyi bir dağılıma uydurmak ve daha sonra normal

olmayan yüzdelikler kullanılarak süreç yeterlilik indekslerini tahmin etmektir. Bu amaçla

en çok kullanılan yöntemlere örnek olarak, Clements (1989) yüzde metodu ve Burr yüzde

metodu verilebilir.

Çok değişkenli üretim süreçleri için normallik varsayımının sağlanmadığı durumlarda süreç

yeterlilik indekslerinin hesaplanması, spesifikasyon bölgesi ve değişkenler arasındaki ilişki

durumu da göz önünde bulundurulduğunda, daha güç ve karmaşık olabilmektedir. Normal

Dağılıma uygun olmayan çok değişkenli süreç yeterlilik analizinde, yeterlilik indekslerini,

az hata ile tahmin edebilmek ancak, çalışılan verinin dağılım bilgisine uygun tahmin

yöntemleri kullanmakla mümkündür. Süreç dağılımı, bilinen çok değişkenli dağılımlara

uygun olabileceği gibi, herhangi bilinen bir dağılıma uygun olmayan bir süreç de olabilir.

Süreç dağılımının bilinmediği durumlarda, yoğunluk tahmini için kullanılan en yaygın

yöntem Kernel Yoğunluk Tahmin yöntemidir. Kernel Yoğunluk Tahmin yöntemi, X rastgele
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değişkenin olasılık yoğunluk fonksiyonu f (X)’i tahmin etmek için kullanılan parametrik

olmayan bir tahmin yöntemidir. Genellikle süreçten elde edilen gözlem verisinin dağılımı

bilinmediği ya da bilinen bir dağılıma uygun olmadığı durumlarda gözleme dayalı olarak

Kernel yoğunluk tahminleri elde edilebilir.

Süreç dağılımının Normal dağılıma yakınsaması için gerekli örneklem büyüklüğü ile

çalışmak ve bilinen Merkezi Limit Teoreminden yola çıkarak, klasik yeterlilik indekslerini

kullanmak da mümkündür. Ancak, Normal Dağılım yaklaşımı için gerekli örnek sayısının

büyük olması halinde, örneklem çekme işlemi maliyetli ya da imkansız olabilmektedir. Bu

aşamada örnekleme yöntemlerinden faydalanmak kaçınılmazdır. Bu nedenle, bu tez

çalışmasında çarpık dağılıma sahip süreçler dikkate alınarak t-Copula yöntemi ile üretilen

Senaryo verilerine, Metropolis-Hastings (MH) örneklemesi uygulanmıştır.

MH örneklemesi kullanılarak süreç dağılımı ile aynı dağılım özelliklerine sahip örneklem

büyüklüğü n = 50,100,250,500 ve 1000 olan 10’a ve 20’şer tane farklı örneklem kümesi

elde edilmiştir. Daha önce tanımlarına ve özelliklerine ayrıntılı şekilde yer verilen çok

değişkenli yeterlilik indeksler Ypk, p̃KMH , p̃ ile tez çalışmasında önerilen p̃KMH indeksinin,

uygun ürün oranı p ’ye ilişkin tahminlerde, örneklem büyüklüğünden (n) ve örnekleme

kümesi sayısından nasıl etkilendiği incelenmiştir.

Sonuçlar özetlenecek olursa, Senaryo I’de örneklem büyüklüğü n = 50 için elde edilen hata

yüzdeleri, Referans Bant Genişliği (RBG) ve Maksimum Düzleştirme Yöntemi (MDY) ile

yapılan ortalama tahminler için benzerlik göstermekle birlikte p̃KMH yaklaşımı ile uygun

ürün oranı p’nin daha az hata yüzdesi ile tahmin edildiği söylenebilir. 10 tane örneklem

kümesinden hesaplanan RBG ile yapılan tahminler için ortalamada ε p̃KMH = %3,799,

εYpk = %8,970, ε p̃ = %4,814 ve ε p̂(H,S) = %10,095 olarak elde edilmiştir. MDY ile

yapılan tahminlerde ise ortalama hata yüzdeleri, ε p̃KMH = %3,436, εYpk = %8,742,

ε p̃ = %4,756 ve ε p̂(H,S) = %11,566 olarak hesaplanmıştır. Her iki yöntemde de n = 50

büyüklüğü için hata yüzdeleri incelendiğinde, p̃KMH’nin diğer yöntemlere göre daha düşük

bir hata yüzdesine sahip olduğu görülmektedir. 20 örneklem kümesinden elde edilen

sonuçlar için benzer tahminler elde edilmiştir.

n = 100 için RBG ile yapılan tahminler için ortalamada ε p̃KMH = %3,579, εYpk = %8,475,
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ε p̃ = %5,541 ve ε p̂(H,S) = %6,331 olarak elde edilmiştir. MDY ile yapılan tahminlerde

ise ortalama hata yüzdeleri, ε p̃KMH = %3,259, εYpk = %8,019, ε p̃ = %5,303 ve ε p̂(H,S) =

%7,608 olarak elde edilmiştir. Her iki yöntemde de n = 100 büyüklüğü için hata yüzdeleri

incelendiğinde, p̃KMH’nin diğer yöntemlere göre daha düşük bir hata yüzdesi ile tahmin

sağladığı söylenebilir. 20 örneklem kümesinden hesaplanan tahmin sonuçları benzerdir.

n = 250 için RBG ile yapılan tahminler için ortalamada ε p̃KMH = %5,841, εYpk = %9,737,

ε p̃ = %7,261 ve ε p̂(H,S) = %8,281 olarak bulunmuştur. MDY ile yapılan tahminlerde ise

ortalama hata yüzdeleri, ε p̃KMH = %3,926, εYpk = %8,133, ε p̃ = %6,124 ve

ε p̂(H,S) = %9,296 olarak elde edilmiştir. n = 250 için p̃KMH indeksinin her iki yöntemde

de düşük hata yüzdesine sahip olduğu görülmekle birlikte MDY’ne göre daha iyi sonuç

verdiği söylenebilir. 20 örneklem kümesinden hesaplanan tahminler için de aynı yorumlar

yapılabilir.

n = 500 için RBG ile yapılan tahminlerden hesaplanan ortalama hata yüzdeleri

ε p̃KMH = %5,517, εYpk = %8,498, ε p̃ = %6,239 ve ε p̂(H,S) = %3,239 olarak

bulunmuştur. MDY ile yapılan tahminlerde ise ortalama hata yüzdeleri, ε p̃KMH = %5,050,

εYpk = %8,977, p̃ = %6,110 ve ε p̂(H,S) = %4,136 olarak elde edilmiştir. n = 500 için

p̂(H,S) indeksinin her iki yöntemde de düşük hata yüzdesine sahip olduğu , p̃KMH

indeksinin MDY’ne göre p̂(H,S) yaklaşımına yakın sonuçlar verdiği söylenebilir. 20

örneklem kümesinden hesaplanan tahminler için de p̂(H,S) yaklaşımının p’yi tahmin

etmede daha başarılı olduğu söylenebilir.

n = 1000 için RBG ile yapılan tahminlerden hesaplanan ortalama hata yüzdeleri ε p̃KMH =

%5,977, εYpk =%8,555, ε p̃=%6,116 ve ε p̂(H,S) =%4,391 olarak bulunmuştur. MDY ile

yapılan tahminlerde ise ortalama hata yüzdeleri, ε p̃KMH = %4,905, εYpk = %7,779, ε p̃ =

%5,973 ve ε p̂(H,S) = %5,075 olarak elde edilmiştir. n = 1000 için p̂(H,S) indeksinin

RBG ile yapılan tahminlerde daha düşük hata yüzdesine sahip olduğu, p̃KMH indeksinin ise

MDY ile p′yi daha iyi tahmin ettiği görülse de p̂(H,S) yaklaşımına yakın sonuçlar verdiği

söylenebilir. 20 örneklem kümesinden hesaplanan tahminlerde ise p̂(H,S) yaklaşımının her

iki yöntem için p’yi tahmin etmede daha başarılı olduğu söylenebilir.

Senaryo II için sonuçlar özetlenecek olursa, örneklem büyüklüğü n = 50 için elde edilen
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hata yüzdeleri, RBG ile yapılan tahminler için ortalamada ε p̃KMH = %3,639,

εYpk = %16,881, ε p̃ = %8,884 ve ε p̂(H,S) = %18,527 olarak elde edilmiştir. MDY ile

yapılan tahminlerde ise ortalama hata yüzdeleri, ε p̃KMH = %2,637, εYpk = %16,116,

ε p̃ = %8,818 ve ε p̂(H,S) = %20,403 olarak hesaplanmıştır. Her iki yöntemde de n = 50

büyüklüğü için hata yüzdeleri incelendiğinde, p̃KMH’nin diğer yöntemlere göre çok düşük

bir hata yüzdesine sahip olduğu görülmektedir. 20 örneklem kümesinden elde edilen

sonuçlar için benzer tahminler elde edilmiştir.

n = 100 için RBG ile yapılan tahminler için ortalamada ε p̃KMH = %5,012,

εYpk = %14,840, ε p̃ = %9,789 ve ε p̂(H,S) = %17,098 olarak elde edilmiştir. MDY ile

yapılan tahminlerde ise ortalama hata yüzdeleri, ε p̃KMH = %3,893, εYpk = %14,457,

ε p̃ = %9,565 ve ε p̂(H,S) = %18,515 olarak elde edilmiştir. Her iki yöntemde de n = 100

büyüklüğü için hata yüzdeleri incelendiğinde, p̃KMH’ın diğer yaklaşımlara göre daha düşük

bir hata yüzdesi ile tahmin sağladığı söylenebilir. 20 örneklem kümesinden hesaplanan

tahmin sonuçları aynı şekilde yorumlanabilir.

n = 250 için RBG ile yapılan tahminler için ortalamada ε p̃KMH = %6,542,

εYpk = %15,197, ε p̃ = %10,438 ve ε p̂(H,S) = %12,759 olarak bulunmuştur. MDY ile

yapılan tahminlerde ise ortalama hata yüzdeleri, ε p̃KMH = %6,277, εYpk = %17,443,

ε p̃ = %11,099 ve p̂(H,S) = %14,138 olarak elde edilmiştir. n = 250 için p̃KMH indeksinin

her iki yöntemde de düşük hata yüzdesine sahip olduğu görülmektedir. 20 örneklem

kümesinden hesaplanan tahminler incelendiğinde, yine p̃KMH indeksinin diğer yöntemlere

göre daha iyi sonuç verdiği söylenebilir.

n = 500 için RBG ile yapılan tahminlerden hesaplanan ortalama hata yüzdeleri

ε p̃KMH = %8,510, εYpk = %15,401, ε p̃ = %10,879 ve ε p̂(H,S) = %9,518 olarak

hesaplanmıştır. MDY ile yapılan tahminlerde ise ortalama hata yüzdeleri,

ε p̃KMH = %6,391, εYpk = %15,044, ε p̃ = %10,136 ve ε p̂(H,S) = %10,616 olarak elde

edilmiştir. n = 500 için p̃KMH indeksinin her iki yöntemde de düşük hata yüzdesine sahip

olduğu görülmektedir. 20 örneklem kümesinden hesaplanan tahminler için de

p̃KMH yaklaşımının p’yi tahmin etmede daha başarılı olduğu söylenebilir.

n = 1000 için RBG ile yapılan tahminlerden hesaplanan ortalama hata yüzdeleri
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ε p̃KMH = %9,493, εYpk = %16,409, ε p̃ = %10,676 ve ε p̂(H,S) = %9,213 olarak

bulunmuştur. Hata yüzdeleri incelendiğinde, p̂(H,S) yaklaşımının daha iyi sonuç verdiği

görülse de p̃KMH yaklaşımının hata yüzdesi ile çok yakın olduğu görülmektedir. MDY ile

yapılan tahminlerde ise ortalama hata yüzdeleri, ε p̃KMH = %7,803, εYpk = %15,325,

ε p̃ = %10,084 ve ε p̂(H,S) = %10,195 olarak elde edilmiştir. n = 1000 için p̂(H,S)

indeksinin RBG ile yapılan tahminlerde daha düşük hata yüzdesine sahip olduğu , p̃KMH

indeksinin ise MDY ile p′yi daha iyi tahmin ettiği görülmektedir. 20 örneklem kümesinden

hesaplanan tahminlerde ise p̃KMH yaklaşımının her iki yöntem için p’yi tahmin etmede

daha başarılı olduğu söylenebilir.

Senaryo III için sonuçlar özetlenecek olursa, örneklem büyüklüğü n = 50 için elde edilen

hata yüzdeleri, RBG ile yapılan tahminler için ortalamada ε p̃KMH = %4,145,

εYpk = %8,121, ε p̃ = %5,457 ve ε p̂(H,S) = %9,547 olarak elde edilmiştir. MDY ile

yapılan tahminlerde ise ortalama hata yüzdeleri, ε p̃KMH = %2,514, εYpk = %9,731,

ε p̃ = %4,930 ve ε p̂(H,S) = %11,100 olarak hesaplanmıştır. Her iki yöntemde de n = 50

büyüklüğü için hata yüzdeleri incelendiğinde, p̃KMH’nin diğer yöntemlere göre çok düşük

bir hata yüzdesine sahip olduğu görülmektedir. 20 örneklem kümesinden elde edilen

sonuçlar için benzerdir. p̃KMH diğer yöntemlere daha iyi sonuç vermektedir.

n = 100 için RBG ile yapılan tahminler için ortalamada ε p̃KMH = %3,751, εYpk = %8,751,

ε p̃ = %5,965 ve ε p̂(H,S) = %6,993 olarak elde edilmiştir. MDY ile yapılan tahminlerde

ise ortalama hata yüzdeleri, ε p̃KMH = %3,907, εYpk = %8,926, ε p̃ = %5,841 ve

ε p̂(H,S) = %8,040 olarak elde edilmiştir. Her iki yöntemde de n = 100 büyüklüğü için

hata yüzdeleri incelendiğinde, p̃KMH yaklaşımının hata yüzdesinin diğer yaklaşımlara göre

daha düşük olduğu söylenebilir. 20 örneklem kümesinden hesaplanan tahmin sonuçları aynı

şekilde yorumlanabilir.

n = 250 için RBG ile yapılan tahminler için ortalamada ε p̃KMH = %5,132, εYpk = %8,673,

ε p̃ = %6,666 ve ε p̂(H,S) = %8,661 olarak bulunmuştur. MDY ile yapılan tahminlerde ise

ortalama hata yüzdeleri, ε p̃KMH = %4,408, εYpk = %8,811, ε p̃ = %6,518 ve

ε p̂(H,S) = %9,742 olarak elde edilmiştir. n = 250 için p̃KMH indeksinin her iki yöntemde

de düşük hata yüzdesine sahip olduğu görülmektedir. 20 örneklem kümesinden hesaplanan
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tahminler incelendiğinde, yine p̃KMH indeksinin diğer yöntemlere göre daha iyi sonuç

verdiği söylenebilir.

n = 500 için RBG ile yapılan tahminlerden hesaplanan ortalama hata yüzdeleri ε p̃KMH =

%5,618, εYpk = %8,949, ε p̃ = %6,356 ve ε p̂(H,S) = %3,508 olarak hesaplanmıştır. MDY

ile yapılan tahminlerde ise ortalama hata yüzdeleri, ε p̃KMH = %4,669, εYpk = %8,765, ε p̃ =

%6,399 ve ε p̂(H,S) = %4,417 olarak elde edilmiştir. n = 500 için p̂(H,S) yaklaşımının

her iki yöntemde de düşük hata yüzdesine sahip olduğu görülmektedir. MDY için p̂(H,S)

ve p̃KMH’den elde edilen sonuçların yakın olduğu görülmektedir. 20 örneklem kümesinden

hesaplanan tahminler için referans bant genişliği tahmini ile hesaplanan p̂(H,S) yaklaşımı

daha düşük hata yüzdesine sahipken; MDY de p̃ yaklaşımının p’yi tahmin etmede daha

başarılı olduğu görülmüştür.

n = 1000 için RBG ile yapılan tahminlerden hesaplanan ortalama hata yüzdeleri

ε p̃KMH = %6,502, εYpk = %9,110, ε p̃ = %6,974 ve ε p̂(H,S) = %5,232 olarak

bulunmuştur. Hata yüzdeleri incelendiğinde, p̂(H,S) yaklaşımının daha iyi sonuç verdiği

görülmektedir. MDY ile yapılan tahminlerde ise ortalama hata yüzdeleri,

ε p̃KMH = %5,937, εYpk = %8,638, ε p̃ = %6,702 ve ε p̂(H,S) = %5,418. olarak elde

edilmiştir. n = 1000 için p̂(H,S) indeksinin her iki yöntem ile p′yi diğer yaklaşımlara göre

daha iyi tahmin ettiği görülmektedir. MDY için p̂(H,S) ve p̃KMH’den elde edilen

sonuçların yakın olduğu söylenebilir. 20 örneklem kümesinden hesaplanan tahminlerde ise

p̂(H,S) yaklaşımının her iki yöntem için p’yi tahmin etmede daha başarılı olduğu

söylenebilir.

Son olarak, Senaryo IV için eldeki sonuçlar özetlenecek olursa, örneklem büyüklüğü

n = 50 için hesaplanan hata yüzdeleri, RBG ile yapılan tahminler için ortalamada

ε p̃KMH = %4,086, εYpk = %8,151, ε p̃ = %4,960 ve ε p̂(H,S) = %19,050 olarak elde

edilmiştir. MDY ile yapılan tahminlerde ise ortalama hata yüzdeleri, ε p̃KMH = %4,290,

εYpk = %8,151, ε p̃ = %5,006 ve ε p̂(H,S) = %20,824 olarak hesaplanmıştır. Her iki

yöntemde de n = 50 büyüklüğü için hata yüzdeleri incelendiğinde, p̃KMH’nin diğer

yöntemlere göre özellikle, Ypk ve p̂(H,S) yaklaşımlarından çok düşük bir hata yüzdesine

sahip olduğu görülmektedir. 20 örneklem kümesinden elde edilen sonuçlar için benzerdir.

p̃KMH’nin diğer yöntemlere daha iyi sonuç verdiği görülmüştür.
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n = 100 için RBG ile yapılan tahminler için ortalamada ε p̃KMH = %4,279, εYpk = %8,987,

ε p̃ = %6,262 ve ε p̂(H,S) = %7,544 olarak elde edilmiştir. MDY ile yapılan tahminlerde

ise ortalama hata yüzdeleri, ε p̃KMH = %3,580, εYpk = %8,872, ε p̃ = %6,168 ve

ε p̂(H,S) = %8,895 olarak elde edilmiştir. Her iki yöntemde de n = 100 büyüklüğü için

hata yüzdeleri incelendiğinde, p̃KMH yaklaşımının diğer yaklaşımlara göre daha düşük bir

hata yüzdesine sahip olduğu kolaylıkla görülmektedir. 20 örneklem kümesinden hesaplanan

tahmin sonuçları aynı şekilde yorumlanabilir.

n = 250 için RBG ile yapılan tahminler için ortalamada ε p̃KMH = %4,636, εYpk = %9,399,

ε p̃ = %6,184 ve ε p̂(H,S) = %4,820 olarak bulunmuştur. MDY ile yapılan tahminlerde ise

ortalama hata yüzdeleri, p̃KMH = %4,355, Ypk = %8,987, ε p̃ = %6,252 ve

ε p̂(H,S) = %5,713 olarak elde edilmiştir. n = 250 için p̃KMH indeksinin her iki yöntemde

de düşük hata yüzdesine sahip olduğu görülmektedir. p̃KMH indeksinin RBG ile yapılan

tahmin sonuçlarında p̂(H,S) yaklaşımına yakın sonuçlar verdiği görülmektedir. 20 öeklem

kümesinden hesaplanan tahminler incelendiğinde, yine p̃KMH indeksinin diğer yöntemlere

göre daha iyi sonuç verdiği söylenebilir.

n = 500 için RBG ile yapılan tahminlerden hesaplanan ortalama hata yüzdeleri

ε p̃KMH = %5,381, εYpk = %8,369, ε p̃ = %6,314 ve ε p̂(H,S) = %5,621 olarak

hesaplanmıştır. MDY ile yapılan tahminlerde ise ortalama hata yüzdeleri,

ε p̃KMH = %4,463, εYpk = %8,621, ε p̃ = %5,688 ve ε p̂(H,S) = %6,445 olarak elde

edilmiştir. n = 500 için p̃KMH yaklaşımının her iki yöntemde de düşük hata yüzdesine sahip

olduğu görülmektedir. RBG ile yapılan tahminler için p̂(H,S) ve p̃KMH’den elde edilen

sonuçların yakın olduğu görülmektedir. 20 örneklem kümesinden hesaplanan tahminler için

referans bant genişliği tahmini ile hesaplanan p̃KMH yaklaşımının daha düşük hata

yüzdesine sahip olduğu görülmüştür.

n = 1000 için RBG ile yapılan tahminlerden hesaplanan ortalama hata yüzdeleri

ε p̃KMH = %5,989, εYpk = %8,907, ε p̃ = %6,171 ve ε p̂(H,S) = %5,301 olarak

bulunmuştur. Hata yüzdeleri incelendiğinde, her ne kadar p̂(H,S) yaklaşımının daha iyi

sonuç verdiği görülse de, p̃KMH yaklaşım sonuçları ile yakın sonuç verdiği görülmektedir.

MDY ile yapılan tahminlerde ise hata yüzdeleri, ε p̃KMH = %5,889, εYpk = %8,460,

ε p̃ = %6,729 ve ε p̂(H,S) = %6,022 olarak elde edilmiştir. n = 1000 için MDY ile p̃KMH
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indeksinin p’yi diğer yaklaşımlara göre daha iyi tahmin ettiği görülmektedir. 20 örneklem

kümesinden hesaplanan tahminlerde ise p̂(H,S) yaklaşımının RBG ile yapılan tahminler

için p’yi tahmin etmede daha başarılı olduğu, MDY ile p̃KMH indeksinin p’yi daha iyi

tahmin ettiği görülmektedir.

Sonuç olarak, kurgulanan 4 farklı üretim senaryosundan hesaplanan hata yüzde değerleri

karşılaştırıldığında, kitle uygun ürün oranı p’yi, en iyi p̃KMH indeksinin tahmin ettiği,

önerilen p̃KMH indeksinin, örneklem kümesi sayısına (10 ve 20 örneklem kümesi için)

duyarlı olmadığı gözlenmiştir. Ancak, büyük çaplı örneklemler için (n > 500), p̂(H,S)

indeksinin p̃KMH indeksine ve diğer yaklaşımlara göre kitle parametresini daha az hata ile

tahmin ettiği görülmüştür. p̃KMH indeksinin, çekilen örnek sayısına duyarlı olduğu,

örneklem büyüklüğü arttıkça (n > 500), hata yüzdelerinin p̂(H,S) indeksi için hesaplanan

hata yüzdeleri ile yakın sonuçlar verdiği görülmüştür.

Örneklem kümeleri üzerinden Referans Bant Genişliği matrisi ve Maksimum Düzleştirme

Yöntemi ile yapılan tahmin sonuçları incelendiğinde, bant genişliği matris yöntemi

bakımından, p̃KMH indeksinin örneklem büyüklüğüne duyarlı olmadığı ve hata yüzdelerinin

her iki bant genişliği yöntemi için diğer indeks hesaplamalarına göre daha iyi sonuç verdiği

gözlenmiştir.

Beklenildiği gibi, örneklem büyüklüğünün az olması ve süreç parametre değerinin küçük

çaplı örneklemler ile daha iyi tahmin edilebilmesi bu tez çalışmasında amaçlanan bir

sonuçtur. p̃KMH indeksinin diğer yöntemlere göre p’yi tahmin etmede başarılı olduğu

görülmektedir. Şüphesiz ki tahmin sonuçlarını iyileştirmek, süreç dağılımına daha uygun

bant genişliği yöntemleri seçimi ile mümkün olacaktır. Bunun için sürecin dağılımı iyi

yorumlanmalı, önerilen p̃KMH indeksinin uygulamada kullanımı için süreç dağılımının iyi

bir şekilde tahmin edilmesi gerekmektedir.

Bu tez çalışmasında, çok değişkenli süreçler için süreç yeterliliğine karar vermede

kullanılacak olan yeni bir yöntem önerilmiştir. KMH yöntemi olarak adlandırılan bu

yöntemin literatürdeki diğer yeterlilik indekslerine göre başarısını ölçmek amacıyla p̃KMH

indeksi tasarlanmıştır. Çalışmada kurgulanan senaryolar üzerinden süreç dağılımı Kernel

Yoğunluk Tahmin yöntemi ile tahmin edilmeye çalışılmıştır. Kernel Yoğunluk Tahmini ile
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süreç dağılımının en iyi şekilde tahmin edilmesi Kernel fonksiyon türüne ve bant genişliği

parametresine bağlıdır. Bu nedenle doğru tahminlere ulaşılabilmek için veriye uygun

Kernel fonksiyon türünün belirlenmesi ve bant genişliği parametresinin doğru şekilde

tahmin edilmesi gereklidir. Çalışmada, bant genişliği parametresinin tahmini için kullanılan

yöntemlere alternatif olarak farklı yöntemlerin kullanılması da mümkündür. Çalışmada

kurgulanan senaryolarda baz alınan Gamma ve Beta marjinal dağılımlarından farklı olarak

Normal dağılıma uygun olmayan diğer çarpık dağılımlar da kullanılabilir. Ayrıca marjinal

dağılımlar arasındaki ilişki derecesinin çeşitlendirilmesi yapılacak ileriki çalışmaları

zenginleştirecektir.
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33. Johnson, N. L. (1949). Systems of frequency curves generated by methods of translation.
Biometrika, 36, 149-176.

34. Kane, V. E. (1986). Process capability indices. Journal Quality Technology, 18, 41-52.

35. Kocherlakota S., Kocherlakota K. (1991). Process capability indices: Bivariate normal
distribution. Communications in Statistics - Theory and Methods, 20, 2529-2547.

36. Kotz, S. and Johnson, N. L. (1993). Process capability indices. London: Chapman &
Hall, 212.

37. Kotz, S. & Johnson, N. L. (1999). Delicate relations among the basic process capability
indices Cp, Cpk, Cpm and their modifications. Communications Statistics - Theory and
Method, 28(3), 849–861

38. Kurekova, E. (2001). Measurement process capability-trends and approaches.
Measurement Science Review, 1(1), 43-46.

39. Kushler, R.H. and Hurley, P. (1992). Confidence bounds for capability indices. Journal
of Quality Technology, 24(4), 188-195.

40. Liu, P.H. and Chen, F.L (2006). Process capability analysis of non-normal process data
using the Burr XII distribution. International Journal Advanced Manufacturing and
Technology, 27, 975-984.

41. Martinez, W. L. And Martinez, A. R. (2002). Computational statistics handbook with
MATLAB. New York: Chapman & Hall.

42. Montgomery, D. C. (2009). Introduction to Statistical Quality Control (6rd Edition).
New York, USA: John Wiley and Son.

43. Nagata, Y. and Nagahata, H. (1992). Approximation formulas for the confidence
intervals of process capability indices. Reports of Statistical Application Research,
Japanese Union of Scientists and Engineers, 39(3), 15-29.

44. Nagata, Y. and Nagahata, H. (1994). Approximation formulas for the lower confidence
ıntervals of process capability indices. Okayama Economic Review, 25, 301-314.

45. Niaki, S. T. A. and Abbasi, B. (2007). Skewness reduction approach in multi-attribute
process monitoring. Journal of Communications in Statistics - Theory and Methods,
36(12), 2313 -2325.

46. Owen, D. B. (1965). A special case of bivariate non-central t-distribution. Biometrica,
52(3/4), 437-446.

47. Pan, J. N. and Wu, S. L. (1997). Process capability analysis for non-normal relay test
data. Microelectronics and Reliability, 37(3), 421-428.

48. Pan, J. N., Lee, C. Y. (2010). New capability indices for evaluating the performance of
multivariate manufacturing processes. Quality and Reliability Engineering International,
26, 3–15.



162

49. Pearn, W. L. and Chen, K. S. (1995). Estimating process capability indices for
non-normal Pearsonian populations. Quality and Reliability Engineering International,
11(5), 386-388.

50. Pearn, W. L. and Chen, K. S. (1997). Capability indices for non-normal distributions
with an application in electrolytic capacitor manufacturing. Microelectron Reliability,
37(12), 1853-1858.

51. Pearn, W. L. and Chen, K. S. (1998). New generalization of process capability ındex
Cpk. Journal of Applied Statistics, 25, 801-810.

52. Pearn, W. L. and Kotz, S. (1994). Application of Clements’ method for calculating
second and third generation process capability indices for Non-normal personian
populations. Quality Engineering, 7, 139–145.

53. Pearn, W. L. and Kotz, S. (2006). Encyclopedia and Handbook of Process Capability
Indices: A Comprehensive Exposition of Quality Control Measure. Singapore: World
Scientific.

54. Pearn, W. L., Kotz, S. and Johnson, N. L. (1992). Distributional and inferential properties
of process capability indices. Journal of Quality Technology, 24(4), 216-33.

55. Pearn, W. L. and Lin G. H. (2002). Estimated incapability index: Reliability and
decision making with sample information. Quality and Reliability Engineering
International, 18(2), 141-147.

56. Pearn, W. L., Lin, G. H. and Chen, K. S. (1998). Distributional and inferential properties
of the process accuracy and process precision indices. Communications in Statistics -
Theory and Methods, 27, 985-1000.

57. Pearn, W. L., Wang, F. K. and Yen, C. H. (2007). Multivariate capability indices:
Distributional and inferential properties. Journal of Applied Statistics, 34(8), 941-962.

58. Polansky, A. M. (2001). A smooth nonparametric approach to multivariate process
capability. Technometrics, 43(2), 199-211.

59. Polansky, A. M., Chou, Y. M. and Mason, R. L. (1998). Estimating process capability
indices for a truncated distribution. Quality Engineering, 11(2), 257–265.

60. Shinde, R. L. and Khadse, K. G. (2009). Multivariate process capability using principal
component analysis. Quality and Reliability Engineering International, 25(1), 69-77.

61. Silverman, B. W. (1986). Density Estimation For Statistics And Data Analysis. Chapman
and Hall, London.

62. Somerville, S. and Montgomery, D. (1996). Process capability indices and non-normal
distributions. Quality Engineering, 19(2), 305–316.

63. Spiring, F. (2010). Determining and Assessing Process Capability for Engineers and
Manufacturing. New York: Nova Science Publishers.

64. Stoumbos, Z. G. (2002). Process capability indices: Overview and extensions. Nonlinear
Analysis: Real World Applications, 3, 191-210.

65. Sullivan, L. P. (1984). Reducing variability: A new approach to quality. Quality Progr.,
17, 15-21.



163

66. Sullivan, L. P. (1985). Letters. Quality Progr., 18, 7-8.

67. Taam, W., Subbaiah, P. and Liddy, J. W. (1993). A note on multivariate capability indices.
Journal of Applied Statistics, 20, 339-351.

68. Terrell, G.R. (1990). The maximal smoothing principle in density estimation. Journal of
the American Statistical Association, 85, 470-477.

69. Vännman, K. (1995). A unified approach to capability indices. Statistica Sinica, 5, 805-
820.

70. Wang, F. K. and Chen, J. C. (1998). Capability index using principal components
analysis. Quality Engineering, 11, 21–27.

71. Wang, C. H. (2005). Constructing multivariate process capability indices for short-run
production. International Journal of Advanced Manufacturing Technology, 26,
1306–1311.

72. Wu, H. H., Wang, J. S, Liu, T. L. (1998). Discussions of the Clements-based process
capability indices. In: Proceedings of the 1998 CIIE National Conference. 561–566.

73. Zhang, N. F., Stenback, G. A. and Wardrop, D. M. (1990). Interval estimation of process
capability index Cpk, Communications in Statistics-Theory and Methods, 19, 4455-4470.

74. Zimmer, L. S. and Hubele, N. F. (1997). Quantiles of the sampling distribution of Cpm.
Quality Engineering, 10, 309–329.

75. Zimmer, L. S., Hubele, N. F. and Zimmer, W. J. (2001). Confidence ıntervals and sample
size determination for Cpm. Quality and Reliability Engineering International, 17, 51-
68.



164



165

EKLER



166

EK-1. t-Copula yöntemi kullanılarak veri üretme

function y= Multivariatedata(n,rho,k,theta,alfa,beta)
Z=mvnrnd([0 0], [1 rho; rho 1], n);
U=normcdf(Z);
X=[gaminv(U(:,1),k,theta) betainv(U(:,2),alfa,beta)]
[n1,ctr1]=hist(X(:,1),20);
[n2,ctr2]=hist(X(:,2),20);
subplot(2,2,2);plot(X(:,1),X(:,2),'.');axis([0 20 -2 2]);
h1=gca;
title('Gamma ve Beta Dagilimlarina Bagli Olarak Uretilen

Verinin Grafigi');
subplot(2,2,4);
bar(ctr1,-n1,1);
axis([0 20 -max(n1)*1.1 0]);
axis('off');
h2 = gca;
subplot(2,2,1);
barh(ctr2,-n2,1);
axis([-max(n2)*1.1 0 -2 2]);
axis('off');
h3 = gca;
h1.Position = [0.35 0.35 0.55 0.55];
h2.Position = [.35 .1 .55 .15];
h3.Position = [.1 .35 .15 .55];
colormap([.8 .8 1]);
B=X
mean(B)
save('...mat','B')
end
% Kaynak: http://www.mathworks.com/help/stats/examples/

simulating-dependent-random-variables-using-copulas.html
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EK-1. (devam) MH örneklemesi ile hedef dağılımdan örneklem çekilmesi

close all
%% Metropolis Hastings Orneklemesi
T =1000; % Maksimum iterasyon sayisi
thetamin = [0.25 0.025]; thetamax = [10.25 1]; % theta1 ve

theta2 icin minimum ve maksimum sinirlar
theta = zeros( 2, T ); % orneklemin depolanma alani
% seed=1; rand( 'state' , seed ); randn('state',seed );
% rastgele orneklemi sabit tutmak icin tanimli seed
mu = [6.0014 0.2500]; sigma = [11.9958 0.3432; 0.3432

0.0209];
%% orneklemeye baslanir
N=20; A=zeros((N*2),T);
for j=1:2:(N*2)

t = 1;
theta(1,1)= abs(unifrnd( thetamin(1) , thetamax(1) ));%

theta1 icin baslangic deger
theta(2,1)= abs(unifrnd( thetamin(2) , thetamax(2) ));%

theta2 icin baslangic deger
for i=1:N;

while t < T % T ornekleme ulasilana kadar devam
edilir
t= t + 1;
% theta icin yeni bir deger onerilir
theta_star=abs(mvnrnd( mu, sigma));
theta_star1=theta_star(1,1); theta_star2=

theta_star(1,2);
theta1=theta(1,t-1); theta2=theta(2,t-1);
pratio= mernel(theta_star1, theta_star2)/kernel(

theta1, theta2);
alpha = min( [ 1 pratio ] ); % kabul orani

hesaplanir
u= rand; % U[ 0 1 ] dagilimdan rastgele bir sayi

cekilir
if u < alpha; % oneri kabul edilecek mi?

theta(:,t)=theta_star; % onerilen deger theta
'nin yeni degeri olur

else
theta(:,t)=theta(:,t-1);% theta icin eski

deger gecerli olur
end

end
end
theta;
A(j:j+1,:)=A(j:j+1,:)+ theta;

end
B=(A(:,1:T))'; save('...mat','B'); nonconforming=0;
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EK-1. (devam) MH örneklemesi ile hedef dağılımdan örneklem çekilmesi

for i=1:2:(2*N-1);
for j=1:(T);

if ((0.2505<= B(j,i)&& B(j,i)<= 10.2495))
&&((0.02505<= B(j,i+1) && B(j,i+1)<= 0.9999));
nonconforming=nonconforming+0;

else
nonconforming=nonconforming+1;

end
end

end
nonconforming
ypk=1-(nonconforming/(N*(T)))
% Kaynak: http://psiexp.ss.uci.edu/research/teachingP205C/205

C_old.pdf
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EK-1. (devam) Gaussian Kernel Fonksiyonu için yazılan kod dizisi

function z=kernel(theta1, theta2)
close all
load('...mat'); % Veri dosyasinin yuklenmesi
n=numel(B(:,1));
% Ilk faz veri icin elde edilen bant genisligi matrisi
H=[1.2843 0.0357;0.0357 0.0021]; M=[theta1 theta2];
D=repmat(M, n, 1); d=2;
count=1; C=zeros(n,d);
for j=1:1

for i=1:n
a(i,:) = D(j,:)-B(i,:);

end
C(:,count)=C(:,count)+a(:,1);
C(:,count+1)=C(:,count+1)+a(:,2);
count=count+2;

end
i1=sqrt(inv(det(H)))*(1/(2*pi))*exp(-0.5*((C)*(inv(H))*(C)'))

;
z=(1/n)*trace(i1);
end



170

EK-1. (devam) Ypk değerinin hesaplanması

function out = ypk
clc
load('...mat')
n=10; X=B;
nonconforming=0;
for j=1:n;

if ((0.2505<= X(j,1)&& X(j,1)<=10.2495))&&((0.02505<= X(j
,2) && X(j,2)<= 0.9999));
nonconforming=nonconforming+0;

else
nonconforming=nonconforming+1;

end
end
nonconforming
conforming=n-nonconforming
out=(conforming/(n))
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EK-1. (devam) p̃KMH değerinin hesaplanması

function out = trapezoidal_rule_double_integral(x, y, mat)
x=linspace(0.2505,10.2495,100)';
y=linspace(0.02505,0.9999,100);
load ('X.mat');
load ('Y.mat');
mat=fullkern;
out=trapz(y,trapz(x,mat,1),2);
end

function [A] = fullkern(X,Y)
clear; close all
load('...mat');
n=numel(B(:,1));
% H=msp(B',NaN,NaN,NaN,'gaus')
H=[(4/(n*4))^(1/3)]*cov(B)
F=B;
load ('X.mat'); load ('Y.mat');
m=numel(X(:,1)); k=numel(Y(1,:));
A=zeros(m,k);
for j=1:k;

for i=1:m;
M=[X(i,j),Y(i,j)];
C=repmat(M, n, 1);
z=C-F;
i1=sqrt(inv(det(H)))*(1/(2*pi))*exp(-0.5*((z)*(inv(H)

)*(z)'));
t=(1/n)*trace(i1);
A(i,j)=A(i,j)+t;

end
end
clearvars F X Y
end
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EK-1. (devam) p̃ değerinin hesaplanması

function t= integral(X1,X2)
clc; clear; close all;
load('....mat')
X1=B(:,1)
X2=B(:,2)
C=cov(X1,X2)
mu_u=mean(X1)
mu_k=mean(X2)
% C = [sigma_u^2 ro*sigma_u*sigma_k;... ro*sigma_u*sigma_k

sigma_k]
mu = [mu_u;mu_k];
fun =@(X1,X2) ((1/sqrt(det(C)*(2*pi)^2))*exp(-0.5*transpose

([X1;X2]-mu)*inv(C)*([X1;X2]-mu)))
p = integral2(@(X1,X2)arrayfun(fun,X1,X2)

,0.2505,10.2495,0.02505,0.9999)
q=1-p;
end
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EK-1. (devam) Çizgi grafiklerinin elde edilmesi

function cizgigrafik
a = xlsread('grafikx.xlsx.');
save 'grafikx.mat.'
y=[a(:,1) a(:,2) a(:,3) a(:,4)];
x=(1:10);
plot(x,y,'DisplayName','y');
hold on
legend('Y_p_k','p^~_K_M_H','p^~','p(H,S)')
xlabel('Orneklem Kumeleri')
ylabel('Hata Yuzdeleri')
end
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EK-1. (devam) Spesifikasyon bölgesine göre saçılım grafiğinin elde edilmesi

function createcontour(xdata1, ydata1, zdata1)
%CREATECONTOUR(XDATA1, YDATA1, ZDATA1)
% XDATA1: contour x
% YDATA1: contour y
% ZDATA1: contour z
filename1='gridX.xlsx';
xdata1=xlsread(filename1);
filename2='gridY.xlsx';
ydata1=xlsread(filename2);
%filename3='ZDATA1.xlsx'
%zdata1=xlsread(filename3);
zdata1=kerncontour;
hold all
%contour(xdata1,ydata1,zdata1)
createplot
surf(xdata1,ydata1,reshape(zdata1,100,100))
end
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EK-1. (devam)

function [zdata1] = kerncontour(X,Y)
clear; close all;
load('...mat'); n=numel(B(:,1));
%H=msp(B',NaN,NaN,NaN,'gaus');
H=[(4/(n*4))^(1/3)]*cov(B);
F=B; load('X.mat'); load ('Y.mat');
m=numel(X(:,1)); k=numel(Y(1,:));
zdata1= zeros(m,k);
for j=1:k;

for i=1:m;
M=[X(i,j),Y(i,j)];
C=repmat(M, n, 1);
z=C-F;
i1=sqrt(inv(det(H)))*(1/(2*pi))*exp(-0.5*((z)*(inv(H)

)*(z)'));
t=(1/n)*trace(i1);
zdata1(i,j)=zdata1(i,j)+t;

end
end
zdata1
clearvars F X Y
xlswrite('ZDATA1.xlsx',zdata1);
end

function createplot(a1, b1)
% CREATEPLOT1(X1, Y1)
% X1: vector of x data
% Y1: vector of y data
% Auto-generated by MATLAB on 25-Jul-2016 17:55:19
% filename='N11.xlsx'
% a=xlsread(filename)
load('...mat'); a=B; a1=a(:,1); b1=a(:,2);
% Create plot
plot(a1,b1,'Marker','x','LineStyle','none');
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