

A NOVEL SOFTWARE DEVELOPMENT METHODOLOGY FOR

RESEARCH-BASED SOFTWARE PROJECTS

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

ATILIM UNIVERSITY

BY

İBRAHİM CERECİ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR

THE DEGREE OF DOCTOR OF PHILOSOPHY

IN

THE DEPARTMENT OF SOFTWARE ENGINEERING

FEBRUARY 2019

Approval of the Graduate School of Natural and Applied Sciences, Atilim

University.

 Prof. Dr. Ali Kara

 Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of

Doctor of Philosophy in Software Engineering, Atilim University.

 Prof. Dr. Ali Yazıcı

 Head of Department

This is to certify that we have read the thesis “A Novel Software Development

Methodology For Research-Based Software Projects” submitted by “İbrahim Cereci”

and that in our opinion it is fully adequate, in scope and quality, as a thesis for the

degree of Doctor of Philosophy.

 Asst. Prof. Dr. Ziya Karakaya

 Supervisor

Examining Committee Members:

Prof. Dr. Ali Yazıcı _____________________

Software Engineering, Atılım University

Prof. Dr. Erdoğan Doğdu _____________________

Computer Engineering, Çankaya University

Asst. Prof. Dr. Erol Özçelik _____________________

Psychology Department, Çankaya University

Asst. Prof. Dr. Serhat Peker _____________________

Software Engineering, Atılım University

Asst. Prof. Dr. Ziya Karakaya _____________________

Computer Engineering, Atılım University

 Date: 01.02.2019

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare that,

as required by these rules and conduct, I have fully cited and referenced all material

and results that are not original to this work.

 Name, Last name:

 Signature:

iii

ABSTRACT

A NOVEL SOFTWARE DEVELOPMENT METHODOLOGY FOR

RESEARCH-BASED SOFTWARE PROJECTS

Cereci, İbrahim

Ph.D. Candidate, Software Engineering Department

Supervisor: Asst. Prof. Dr. Ziya Karakaya

February 2019, 124 pages

Software development in mid-sized or large-scale projects is usually carried by a

group of individuals, whose coordination, choosing suitable development practices

for the group and keeping track of the software development process are all

challenging tasks. Software development methodologies are heavily utilized for these

purposes. Although previously proposed methodologies manage to meet the needs of

the industry, they are not tailored to do so for academicians developing research-

based software projects at universities. Therefore, in this thesis, our first aim is to

show the necessity of a new software development methodology for research-based

projects carried by the universities. Then, through current literature, interviews and

questionnaires, the needs and the best practices of research-based projects are

collected using grounded theory qualitative method. Finally, after completing the

analysis of the findings, a new software development methodology is proposed

tailored to the needs of the researchers that are working on research-based software

projects. The proposed methodology is evaluated by the experts and it is found useful

for the research-based software projects. Collected issues and best-practices are

proposed as a guideline for the project managers, team members, funding agencies,

universities, and the end-users of research-based software projects. These guidelines

can be utilized to increase the productiveness of such projects.

Keywords: Software Development Methodology, Research-Based Software Project,

Software Engineering, Project Management

iv

ÖZ

ARAŞTIRMA TABANLI YAZILIM PROJELERİ İÇİN YENİ BİR YAZILIM

GELİŞTİRME METODOLOJİSİ

Cereci, İbrahim

Doktora Derecesi Adayı, Yazılım Mühendisliği Bölümü

Tez Yöneticisi: Dr. Öğretim Üyesi Ziya Karakaya

Şubat 2019, 124 sayfa

Orta ve büyük ölçekli yazılım geliştirme projeleri genellikle bir çok takım üyesi

tarafından birlikte geliştirilirler. Takım üyelerinin koordine edilmesi, grup için uygun

geliştirme yöntemleri kullanılması ve grubun yazılım geliştirme sürecinin kontrolü

zor problemlerdir. Yazılım geliştirme metotları yoğunlukla bu zor problemlerin

çözümü için kullanılmaktadırlar. Var olan yazılım geliştirme metotları her ne kadar

endüstrinin ihtiyaçlarını karşılasalar dahi, akademisyenler tarafından üniversitelerde

yürütülen araştırma tabanlı yazılım geliştirme proje ihtiyaçlarını sağlamaya yönelik

değillerdir. Bu çalışmada; araştırma tabanlı yazılım projeleri için yeni bir metotun

gerekli olduğunu ortaya koymak adına, bu alanda çalışan kişilerin ihtiyaçları ve

üstün yöntemleri nitel bir çalışma ile toplanıp, toplanan veriler ışığında da, araştırma

tabanlı yazılım projeleri için yeni bir yazılım geliştirme metotu sunulmuştur.

Önerilen metot alan uzmanlarının sağladığı uzman görüşleri ile değerlendirilip

araştırma tabanlı yazılım projeleri için uygun bulunmuştur. Çalışma sırasında

toplanmış olan alan problemleri ve üstün yöntemler, araştırma tabanlı yazılım

projelerinde yer almak isteyen proje yöneticileri, takım üyeleri, üniversiteler ve

destekleyici kurumlara öneriler olarak bir çerçevede sunulmuştur. Bu öneriler

kullanılarak ilerde gerçekleştirilecek olan benzeri projelerin verimlilikleri

artırılabilir.

Anahtar Kelimeler: Yazılım Geliştirme Süreci, Araştırma Tabanlı Yazılım Projesi,

Yazılım Mühendisliği, Proje Yönetimi

v

To My Parents

vi

ACKNOWLEDGMENTS

 I would like to express sincere appreciation to my supervisor Asst. Prof. Dr. Ziya

Karakaya for his guidance and support through the thesis period. Thanks also go to

my family who supported me the entire time.

vii

TABLE OF CONTENTS

ABSTRACT .. iii

ÖZ ... iv

ACKNOWLEDGMENTS .. vi

TABLE OF CONTENTS ... vii

LIST OF TABLES .. xi

LIST OF FIGURES ... xii

LIST OF ABBREVIATIONS ... xiii

CHAPTER 1 .. 1

INTRODUCTION ... 1

1.1 Motivation .. 1

1.2 Research Questions .. 2

1.3 The significance of the Study... 3

1.4 Methodology .. 3

1.5 Limitations and Boundaries ... 4

1.6 Structure of the Thesis ... 5

CHAPTER 2 .. 6

BACKGROUND INFORMATION AND LITERATURE REVIEW 6

2.1 Background Information .. 6

2.1.1. Waterfall [19]: .. 7

2.1.2. Prototyping [20]: .. 8

2.1.3. Incremental [21]: .. 9

2.1.4. Spiral [22]: ... 11

2.1.5. Rapid Application Development (RAD) [23]: ... 12

2.1.6. Extreme Programming (XP) [24]: .. 14

2.1.7. Scrum [25]: .. 15

viii

2.1.8. Comparison of Software Development Methodologies ... 17

2.2 Literature Review ... 22

CHAPTER 3 .. 27

RESEARCH DESIGN & METHODOLOGY ... 27

3.1 Alternative qualitative research methods ... 27

3.2 Research Design ... 28

3.3 Data Collection .. 30

3.3.1 Interviews .. 30

3.3.2 Questionnaires ... 35

3.3.3 Expert Opinions .. 36

3.4 Implementation of Research Methodology .. 37

3.4.1 Open Coding .. 38

3.4.2 Axial Coding .. 39

3.4.3 Selective Coding .. 39

3.5 Steps of the Methodology .. 39

CHAPTER 4 .. 42

ANALYSIS OF THE DATA ... 42

4.1 Analysis of the Interview Data ... 42

4.1.1 Items Related with the Inception of the Projects ... 45

4.1.2 Problems Related with Team Members ... 46

4.1.3 Budget Problems .. 48

4.1.4 Problems Related with University ... 49

4.1.5 Communication Problems .. 51

4.1.6 Unexpected Risks ... 54

4.1.7 Project Success Factors .. 55

4.1.8 Suggestions for a New Methodology ... 57

4.2 Analysis of the Questionnaire Data ... 58

CHAPTER 5 .. 65

PROPOSED METHODOLOGY ... 65

ix

5.1 The motivation for a new Software Development Methodology 65

5.2 Values and Principles of Research-Based Agile Software Development Methodology

(RBAgile) ... 70

5.3 Life-Cycle .. 74

5.4 Actors, Roles, and Responsibilities .. 75

5.4.1 Project Manager ... 75

5.4.2 Researchers .. 76

5.4.3 Graduate Students .. 76

5.4.4 End-User .. 77

5.4.5 Customer (Product Owner) .. 77

5.4.6 Area Experts (Subject Matter Experts, Domain Experts) 77

5.4.7 Funding Agencies (Project Sponsor) ... 77

5.4.8 University ... 78

5.4.9 Industry Partners .. 78

5.4.10 Partner Institutions ... 78

5.5 Detailed Explanation of Life-Cycle Steps ... 78

5.5.1. Project Initiation ... 79

5.5.2. Selection of the Tasks .. 79

5.5.3. Daily/Weekly Cycle ... 80

5.5.4. Iteration of the Task Development ... 80

5.5.5. Evaluation of the Tasks .. 81

5.5.6. Constant Improvement ... 81

5.5.7. Updating the Skill Assessments ... 81

5.5.8. Releasing the Project/Project Closure .. 81

5.6 Guidelines Offered for Research-Based Software Projects 82

5.7 Discussion of the Proposed Methodology ... 86

5.8 Expert Opinions ... 87

CHAPTER 6 .. 93

CONCLUSION AND FUTURE WORK .. 93

x

REFERENCES .. 98

APPENDIX A .. 104

SEMI-STRUCTURED INTERVIEW QUESTIONS (IN TURKISH) 104

APPENDIX B .. 107

QUESTIONNAIRE (IN TURKISH) ... 107

APPENDIX C .. 110

CONSENT FORM (IN TURKISH) ... 110

APPENDIX D .. 111

SEMI-STRUCTURED INTERVIEW QUESTIONS (IN ENGLISH) 111

APPENDIX E .. 114

QUESTIONNAIRE (IN ENGLISH) ... 114

APPENDIX F... 117

BASIC LIFE-CYCLE OF “RBAgile” ... 117

DETAILED VIEW OF THE “RBAgile” LIFE-CYCLE ... 118

APPENDIX H .. 119

QUESTIONNAIRE FOR EXPERT OPINIONS (IN TURKISH) 119

QUESTIONNAIRE FOR EXPERT OPINIONS (IN ENGLISH) 122

xi

LIST OF TABLES

TABLE

Table 2.1 – Characteristics of SDMs Based on Requirements Analysis: 18

Table 2.2 - Characteristics of SDMs Based on Status of Development Team: 18

Table 2.3 - Characteristics of SDMs Based on User’s Participations: 19

Table 2.4 - Characteristics of SDMs Based on Project Type and Associated Risk: .. 19

Table 3.1 - List of projects participated by interviewees ... 31

Table 4.1 - Frequency Table of the ‘Project Planning’ Category 60

Table 4.2 - Frequency Table of the ‘Staff’ Category ... 61

Table 4.3 - Frequency Table of the ‘Communication’ Category 62

Table 4.4 - Frequency Table of the ‘Budget’ Category ... 63

Table 4.5 - Frequency Table of the ‘Software Development’ Category 63

Table 5.1 – Suitability of common SDMs for Research-Based Software Projects 69

Table 5.2 – Comparison of the Twelve Principles of Agile and the Twelve Principles

of RBAgile ... 72

Table 5.3 – Framework for the Guidelines offered to Project Managers 83

Table 5.4 – Framework for the Guidelines offered to Project Team Members 84

Table 5.5 – Framework for the Guidelines offered to End-Users/Customers............ 85

Table 5.6 – Framework for the Guidelines offered to Funding Agency and

Universities .. 85

Table 5.7 – Frequency Table of the Expert Opinions .. 89

Table 5.8 – Aggregated Frequency Table of the Expert Opinions 90

Table 5.9 - Aggregated Frequency Table of the Second Round of Expert Opinions 92

xii

LIST OF FIGURES

Figure 3.1 Steps of the Research Methodology ... 41

Figure 4.1 Interviewee’s Role in Software Project .. 43

Figure 4.2 Interviewee Gender Distribution .. 43

Figure 4.3 Project Funding Distribution .. 44

Figure 4.4 Funding Duration of the Projects .. 44

Figure 4.5 Project Inception Axial Coding .. 46

Figure 4.6 Problems with Team Members Axial Coding .. 48

Figure 4.7 Budget Problems Axial Coding .. 49

Figure 4.8 University Problems Axial Coding ... 49

Figure 4.9 Communication Problems Axial Coding .. 51

Figure 4.10 Unexpected Risks Axial Coding ... 54

Figure 4.11 Success Factors Axial Coding .. 55

Figure 4.12 Suggestions to New Methodology .. 57

Figure 5.1 - Relation between Software Development Methodology and Project

Management ... 67

Figure 5.2 - Basic Life-Cycle Diagram of RBAgile .. 74

Figure 5.3 - Detailed View of the RBAgile Life-Cycle ... 75

xiii

LIST OF ABBREVIATIONS

AR - Action Research

COTS - Commercial Off-The-Shelf

CSR - Case Study Research

EBM - Evidence-Based Medicine

EBSE - Evidence-Based Software Engineering

GSD - Global Software Development

GT - Grounded Theory

OSS - Open Source Software

PM - Project Manager

RAD - Rapid Application Development

RBAgile - Research-Based Agile Software Development Methodology

RBSP - Research-Based Software Project

R&D - Research and Development

SDM - Software Development Methodology

SE - Software Engineering

XP - Extreme Programming

1

CHAPTER 1

INTRODUCTION

1.1 Motivation

Software Engineering (SE) is a complex field, and such complexity comes from both

technological and human-related aspects. Human behavior, interaction, and

communication are at the center of SE studies [1]. Usually, most software projects

consist of numerous members working in parallel. To monitor the process and to

ease the development of the software, developers utilize Software Development

Methodologies (SDM) designed to help decide about the project lifecycle and how

the development phase will progress. There is a variety of common software

development methodologies proposed to fulfill the specific needs of the industry as

per the conditions. In this way, each SDM has its strengths and weaknesses, and no

single methodology can cover the needs of all the possible software projects.

Although there are many software development methodologies present, none of them

are specifically tailored to the needs of research-based software projects carried out

in the university environment [2] - an apparent gap in the literature. Industry projects

and funded university projects have some fundamental differences. Focus on

research in the universities versus focus on the product in the industry projects is one

of the most apparent differences, but not the only one. Apart from this, the

commercialization of university research has brought about specific obstacles not

present in the industry [3]. The literature is not extensive concerning the differences

between these two, or on the shortcomings of university projects, save a handful. See

[2] [4] [5].

Research-Based Software Projects (RBSPs) are those that involve substantial

research and development (R&D) at university environments and are managed by

academicians. In this study, RBSPs are sometimes mentioned as university projects,

academic projects or projects carried by academicians. RBSPs do not merely consist

of software projects and include those from other disciplines with software

incorporated therein. The literature on research-based software development is rare.

2

To the best of our knowledge, only one research group has focused on the

importance of this problem extensively. In the present work, we aim to propose a

software development methodology that is designed explicitly for RBSPs that are

carried at universities.

1.2 Research Questions

The main research problem is directly related to research-based software projects

done in universities. Currently, there is no specific software development

methodology available to researchers to develop their RBSPs. Our strategy is to

identify the problems faced by team members working on such projects, to find the

best practices that apply to these types of projects, and to propose an SDM that is

easily and effectively usable by researchers working on RBSPs. To achieve that, the

following research questions are formed:

1. At what level, the common software development methodologies are effectively

implemented in research-based software projects?

The authors have determined from the literature that, in the early phases, projects

developed by universities generally do not employ common development

methodologies effectively. This motivated us to identify the specific needs of

researchers and how they approach the development process to come up with a

suitable SDM for their purposes.

2. What are the common problems faced by the project team while working on

research-based software projects?

There are limited studies that show the problems faced during the development of

RBSPs. The authors’ aim with this research question is to identify the common

challenges and issues by using two different fact-finding techniques, namely

interviewing and surveying, applied to individuals that have participated in such

projects.

3. What are the best practices that are employed in research-based software

projects?

3

Gathering the best practices from the academicians who have participated in

research-based projects is essential for anyone who aims to develop a methodology

that is both practical and suitable for the needs of individuals working on RBSPs.

Based on the above questions, the purpose of this study is to develop and propose a

new software development methodology that will satisfy the needs of individuals

involved in research-based software projects at universities.

1.3 The significance of the Study

Both the author and the thesis supervisor have been previously involved in software

development projects in their universities and noticed first-hand that when SDMs are

not utilized, those projects tend not to reach their potential. To increase the efficiency

of RBSPs and not to waste the resources supplied by the national and international

funding agencies, suitable SDMs need to be employed. In the present work

developed as the first of its kind to the best of our knowledge, it is expected that the

methodology to increase the productivity and improve the software development

process in the long run for universities. As a result, these institutions, researchers and

the funding agencies are likely to gain more efficiency. Additionally, stating the

issues that are faced by the project team during the development of RBSPs, and

providing guidelines for all the interested parties will allow these universities,

funding agencies, and other researchers to understand the problemmatic areas better

and propose new solutions accordingly.

1.4 Methodology

According to [6] and [7], statistics and quantitative methods cannot describe

phenomena adequately if the subject area contains the complexity of human

behavior. In page 11 of [7], there is a quote from LaPiere [8] that states “The study of

human behavior is time-consuming, intellectually fatiguing, and depends for its

success upon the ability of the investigator. Quantitative measurements are

quantitatively accurate; qualitative evaluations are always subject to the errors of

human judgment. It would seem far more worthwhile to make a shrewd guess

regarding that which is essential than to accurately measure that which is likely to

prove irrelevant.” This is also true in the present study. Since software development

4

projects include human behavior, interaction, and relations in their core, qualitative

research methodologies are accepted as more suitable for SE research.

Here, qualitative research has been carried by the authors for understanding and

categorizing the problems faced by team members and their best practices in RBSPs.

Different qualitative research techniques have been considered, and consequently,

Grounded Theory (GT) [9] is found to be the most suitable alternative. GT is an

inductive method that utilizes the data to the extent of forming theories [10]. Data for

GT is usually collected through interviews, field notes, and memos [11]. After data

collection, the next step is to transcribe the data that is collected via voice or video

recording. Then, through open coding, transcribed data is scanned, and the concepts

are categorized, or in other words “coded.” In later steps of the research, the

constructed categories are refined, and their relations are driven. Finally, one or more

stories can be driven from the data and personal memos, to develop theories that are

grounded in the actual data which was collected at the beginning.

To gather the needs and best practices of the individuals that have participated in

RBSPs, interviews are arranged with twenty interviewees and, later, the findings of

these interviews are validated with a questionnaire that is applied to forty-seven

academicians during the 3rd International Conference on Computer Science and

Engineering (UBMK) held in 2018 in Sarajevo/Bosnia and Herzegovina. Based on

the literature and the result of our research, a new software development

methodology is proposed that is iteratively improved and validated with the help of

expert opinions. The proposed method appears in Chapter 5, and the details about the

research steps, research methods, and the data sets can be found in Chapter 3,

Research Design & Methodology.

1.5 Limitations and Boundaries

This study is only related to the software projects that are research-based and carried

out at universities and by academicians. Any other projects that involve the industry

are out of the scope of this study. The issues, challenges, and the best practices of the

team members are collected through interviews and questionnaires. Data collection is

limited to these two sources. Convenience sampling is applied in this study so that it

can be considered as a bias. The selected sample size of the study (20) is large

5

enough to generalize to universities not included in this study. The interviews are

mainly conducted with academicians working in Turkey. Four of the academicians

were working on international RBSPs. All the forty-seven participants of the

questionnaire were academicians who were attendees of an international conference

in the field of computer science.

The study aims to focus on certain parts of the software development and project

management phases and to propose a methodology that is both usable and meets the

needs of team members working on RBSPs. Neither all aspects of the software

development nor management may be included in the study, and only the aspects that

are addressed through interviews and questionnaire and those that are applicable will

be considered. The strengths, weaknesses, and suitable areas of the common software

development methods will not be investigated in this study. Those are taken from the

current literature and detailed in the background information and literature review

chapter. The limitations faced during this research study are listed in the concluding

chapter, Chapter 6.

1.6 Structure of the Thesis

In Chapter 2, the background of the problem is stated alongside the related literature

review. The research methodology, the steps, the data sets, and the details about the

employed methodologies are described in Chapter 3. The analysis of the applied

methods and the findings appear in Chapter 4. Later, Chapter 5 includes the proposed

methodology in detail. The discussion of the methodology and expert opinions

follow. Finally, Chapter 6 consists of the answers to the research questions,

limitations of the proposed method, and the conclusion by summarizing the

contributions and future works of the study.

6

CHAPTER 2

BACKGROUND INFORMATION AND LITERATURE REVIEW

2.1 Background Information

Before giving information about the current literature, and positioning our study in

the literature, it is useful to provide some background information about various

common software development methods since understanding their strengths and

weaknesses and comparatively determining which ones are beneficial under what

circumstances are essential to position our methodology.

The software development process occurs in various phases such as design, product

management, and project management. There are different methodologies, namely

Waterfall, Prototyping, Iterative, Incremental, Spiral, Rapid Application

Development (RAD), Extreme Programming (XP), and Scrum. Each has their

advantages and disadvantages [12]. The life-cycle model contains all the related

stages of software development, including maintenance, and is considered as a

subfield of systems development life-cycle.

Software development methodology is a framework that emerged in the 1960s based

on the development life-cycle. These methodologies consist of a set of steps related

to the day-to-day work of the team [13]. The flexibility of the frameworks allows the

development team to introduce custom stages as needed to the development phase.

A system development methodology is a framework which is used for structuring,

planning and controlling the process of developing an information system [14]. A

wide variety of these frameworks have been introduced over the years, each with its

own strengths and weaknesses, which implies that no one development methodology

is ideal for all projects. Custom-tailored methods for specific development teams are

the most usable ones.

The definitions of software development methodologies and their strengths and

weaknesses are gathered from the literature including references [14], [15], [16],

[17], [18], [12], [19], [20], [21], [22], [23], [24], and [25] as listed below.

7

2.1.1. Waterfall [19]:

The Waterfall is a linear development methodology with distinct steps. It is a formal

method that utilizes a top-down development approach. Some of the phases can be

merged, and the starting and ending points can be changed from project to project.

The basic principles of the Waterfall are as follows:

1. The project is divided into sequential phases; minor overlaps are possible

between the phases

2. Emphasis is heavy on planning, time schedules, target dates, budgets and

implementation of the entire system at one time.

3. Control and monitoring are tight through the project life-cycle. Extensive

documentation is done, and formal reviews and approval of the user are present.

The strengths of the Waterfall method include:

1. Ideal for less experienced teams and project managers.

2. Strict development phases let documenting and reviewing to be high quality,

reliable and on time.

3. Progress is measurable.

4. The model is simple, making it easy to understand and use.

5. Resource allocation is pre-planned and easy to follow.

Some of the weaknesses of the Waterfall model are:

1. Rigid, well-defined phases convey inflexibility.

2. Production is slow and costly.

3. Backward movements are minimal, with progress always forward.

4. Little chance to use iteration.

5. The approach heavily relies on early identification and specification of the

requirements, making it not feasible or applicable in some projects.

8

6. Requirement inconsistencies, missing components, and other problems are often

detected at later stages, causing inconveniences.

7. Performance testing does not start before fully completing the system.

8. Once the testing stage is reached, it is challenging to return to a previous stage to

fix specific problems.

9. Adapting to changes is difficult.

10. The approach is not suitable for long and ongoing software projects.

11. Excessive documenting is time-consuming.

2.1.2. Prototyping [20]:

Prototyping is an iterative process in which a working replica of the system is

developed over time. It may be used within other SDMs. The basic principles of

Prototyping are as follows:

1. It is not a complete stand-alone development methodology, but rather an

approach to handle certain parts of the traditional methods.

2. It aims to reduce project risks by reducing the tasks into small manageable parts

and developing them at early stages.

3. The user is involved in the development process.

4. Iterative modification occurs to the proposed prototypes to achieve the user’s

desired specifications.

5. Some prototypes are wholly discarded, while others can be kept and turned into

actual products

The strengths of Prototyping can be listed as below:

1. It can model the essential aspects of the system in the early stages.

2. It improves user’s participation and communication with the stakeholders.

3. It validates user requirements with the prototypes that are presented during the

early stages.

4. Users can see and come into contact with the product.

9

5. It helps to identify missing functionalities or misunderstood functions of the

system.

6. It improves the efficiency of the software product.

7. It encourages innovation and design flexibility.

The weaknesses of Prototyping include these:

1. The process is time-consuming and, hence, not suitable for a project that has a

tight budget.

2. The designer should be experienced; otherwise, implementation difficulties can

be incorrectly estimated, resulting in not finishing the deliverables on schedule.

3. It has no strict approval and control mechanisms.

4. Significant requirement changes may occur.

5. Non-functional items are hard to identify.

6. If the prototype does not include enough user needs, the resulting design may be

inflexible.

7. If the prototype is thought to be a throwaway and is kept as the final product, the

end-product quality would be lower than the acceptable level.

8. Multiple iterations of the prototyping phase negatively affect the budget and

scheduling limits.

2.1.3. Incremental [21]:

The life-cycle of an Incremental model can be visualized as a Multi-Waterfall cycle.

In the Incremental model, the development cycles are divided into smaller modules,

thus making each module far more manageable. Each module passes through all the

phases separately, including requirement gathering, design, development, and testing.

The basic principles of the Incremental model are as follows:

1. Multiple Waterfalls are performed back-to-back in such a way that all the phases

are followed, and one module is completed before starting the next one.

10

2. The overall requirements of the entire project may be well-defined before

advancing the individual Waterfall phases.

3. As an alternative, all the requirements, the design and system core may be

established and, later, individual parts may be completed through iterative

Prototyping.

The strengths of the Incremental method are as follows:

1. Developers can achieve a moderate level of control with manageable module

sizes. Related documentation can be prepared at certain milestones to evaluate

the status properly.

2. Working software is created quickly at the early stages of the software life-cycle.

3. Stakeholders can see fully working modules as early which will ensure the

delivery of the desired output.

4. It reduces integration and other architectural risks.

5. Each increment adds to the previously completed modules and forms more and

more complete systems at later stages.

6. Debugging and testing during a small iteration is easy.

7. It offers a chance to monitor how the changes affect the system.

Some of the negative aspects of the Iterative model are as follows:

1. The overall system requirements may be neglected while handling multiple

Waterfalls for individual modules.

2. Those modules to be integrated will be developed at different times, which means

that the way they affect and interact with each other should be defined in the

early stages.

3. Overlapping the phases of the iteration are not possible.

4. If difficult modules are left to later stages of the development, completing the

entire system will be troublesome.

11

2.1.4. Spiral [22]:

The Spiral model focuses on project risks, and it is not a standalone development

methodology. Usually, according to the nature of the risks, the Spiral model employs

another traditional method within its life-cycle. The basic principles of the Spiral

method are as follows:

1. Heavy focus on risk assessment and reduction. It divides the project into smaller

parts to reduce development complexity and gives a chance to evaluate risks

throughout the entire life-cycle of the project.

2. Each cycle guarantees specific steps to be followed repetitively. This is to ensure

the necessary steps to reduce the risks taken through the project life-cycle.

3. Determining the objectives, alternatives, evaluating those alternatives and

reducing risks, developing and testing the artifacts and planning the next iteration

is part of each iteration of the Spiral model.

4. Each cycle gathers the needs of the stakeholders and, at the end of each iteration,

decides whether they are met or not.

Strengths:

1. Heavy focus on the project risks reduces the chance of their occurrence.

2. It is possible to make changes to the project or add new functionalities at later

stages of the development.

3. Spiral can adopt a second suitable method according to the risks associated with

the project.

4. Customer feedback is welcomed at all stages of the project life-cycle.

The weaknesses that are identified with the Spiral method are listed below:

1. Choosing the correct set of methodologies for each cycle of the Spiral model can

be challenging.

2. It is heavily tailored for individual projects and, since every project has a

different set of risks, reusability is low in the Spiral model.

12

3. No strict deadlines are present in the iterations. Budget and scheduling issues

may arise, potentially causing the chance of not meeting schedule or budget.

4. The Spiral model should be followed correctly for the smooth development of the

project.

5. It is not suitable for smaller-size projects.

6. The cost of using the Spiral method is high.

2.1.5. Rapid Application Development (RAD) [23]:

RAD prioritizes prototyping above design specifications in order to develop the

software system in a short amount of time. Compromises to the execution speed,

usability and features may occur due to the short amount of time allocated to the

project. The basic principles of RAD are as follows:

1. Fast development with low investment cost for a relatively high-quality product.

2. It breaks the project into smaller parts to reduce development complexity and

risks that go with it.

3. It heavily utilizes computer-aided tools for fast development of quality systems.

4. Satisfying the business needs is foremost, whereas engineering and technically

correct development are secondary.

5. Strict delivery deadlines exist. Usually, the features are dropped to meet the

deadlines instead of extending the deadline itself.

6. User involvement is necessary to identify the needs and verify the product

promptly.

7. RAD does not employ throwaway prototypes. Instead, the prototype developed

through the life-cycle is converted to the actual product.

Some of the strengths of RAD are as seen below:

1. The earlier stages of the development operational version of the product are

present.

2. Developing the software quickly usually reduces production costs.

13

3. RAD reduces development time.

4. The user’s opinion is considered while focusing on the essential system elements.

5. User demands can be quickly integrated into the system.

6. Reusability of the components is increased.

7. The approach significantly saves budget, production time and effort.

The downsides of the RAD are as follows:

1. Increasing the development speed and lowering the production cost may result in

lower quality products.

2. Highly experienced teams and individuals are needed to set the requirements

correctly.

3. If there is missing information between the user and the developers, the

developed system may diverge from the expected product easily without any

control mechanism.

4. More requirements than needed may be introduced, causing unnecessary work to

be done at later stages.

5. The resulting product may be loaded with an unnecessary number of extra

features.

6. Since documentation is not a priority, coding and other practices may be violated

during project development.

7. The resulting systems usually are not modular. They are not easily reused.

8. RAD is not suitable for smaller projects with limited budgets as the costs for

modeling and code automation is high in RAD.

9. Due to the nature of rapid development, scalability is not a primary concern, only

stated business needs are. The resulting product may not be scalable.

10. To be able to integrate modules developed on different Prototyping iterations, the

interfaces should be defined well and early in the project life-cycle.

14

2.1.6. Extreme Programming (XP) [24]:

Extreme Programming is an agile software development methodology developed by

Kent Beck in 1999. Beck’s vision was that to write any code; first, tests of that code

should be written. Also, coding should be done in pairs where one person does the

actual coding while the second person generates further ideas. His goal was writing

high-quality software quickly while adapting to changing requirements. XP has five

main values. These are namely: communication, simplicity, feedback, courage, and

respect [26]. Through these values; planning, analyzing and designing phases are not

done for the whole project. Instead, they are performed little by little when needed,

thereby helping to reduce the cost of changing software.

In this study, two examples from the agile methodology, namely XP and Scrum have

been explained. These are two of the most common agile methods [27]. In Chapter 5,

Agile manifesto, values and principles of agile are also listed.

The basic principles of XP are as follows:

1. The focus is on quickly realizing the actual code rather than detailed analysis,

planning, and modeling at the beginning.

2. The features are called “stories” in XP.

3. The customer picks the next release with the most valuable stories among all of

them.

4. The stories are turned into smaller tasks by the programmers, who take

responsibility for development for several tasks.

5. The programmer prepares test cases to show the completion of the tasks.

6. Working with another person, the programmer completes the assigned tasks for

release.

7. There is a set of XP practices utilized throughout all the project phases. These are

user stories, small releases, metaphor, simple design, tests, refactoring, pair

programming, continuous integration, collective ownership, on-site customer, 40-

hour weeks, open workspace, and just rules [24].

15

Strengths:

1. Allows companies to save time and cost to realize the entire project. Less

documentation and more focus on the deliverable product enable cost reduction.

Problems are usually solved by communication among team members.

2. XP projects maintain simplicity. The code is somewhat simpler and can be

improved at any moment that is necessary.

3. The development process is visible and accountable for the use of tests. Also,

developers can easily show progress.

4. End-user involvement is high, and there is constant feedback because of it. This

is necessary to identify and make fast changes.

5. Employee satisfaction and retention is usually high in projects that follow XP

Weaknesses:

1. XP tends to focus on code more than design. Since good design is essential to

develop sound software products, this may be perceived as the main disadvantage

of using XP.

2. Quality assurance is not measured in XP projects. As a result, defects may occur

in the code.

3. XP is not a suitable methodology for the projects where the programmers are

separated geographically, or the customer is not able to be present with the

development team.

4. Lack of documentation requires the developers to be more experienced. Since

they are forced to solve most problems among themselves, a good understanding

of the underlying system and the technics is, therefore, required for the team.

2.1.7. Scrum [25]:

In [28], the definition of Scrum is given as follows: “Scrum is a framework within

which people can address complex adaptive problems, while productively and

creatively delivering products of the highest possible value. Scrum itself is a simple

framework for effective team collaboration on complex products.” Scrum has been

16

used for different types of projects. Because of this, it is known as an agile project

management tool. Scrum is designed mainly for small teams of less than ten people

in which the work is broken into parts that can be completed within specified

periods, called ‘sprints.’ The duration of sprints may vary from two weeks to a

month.

Basic principles of Scrum:

1. Scrum has three leading roles. Product Owner, the Scrum Master, and the team.

The Product Owner represents the client organization and is an active member of

the team. The Scrum Master is the project manager that measures and controls

the process. The team is the people that develop the project as expected.

2. The Product Owner creates a backlog which are the requirements ordered by

their priorities.

3. The sprint planning team takes the backlog and selects a few priority items to

complete within the current sprint.

4. Daily stand-in meetings which are less than fifteen minutes are held by the Scrum

Master which allow him to track the progress and guide the team.

5. A review of the completed sprint is made, and the next sprint is started.

6. The entire process repeats itself if there are items in the backlog that are not

solved yet.

Some of the strengths of the Scrum are listed below:

1. The Scrum method helps developers save money and time.

2. It requires little documentation. Hence, in projects where business requirements

documentation is hard to form can be developed using Scrum.

3. Since the sprints are for short durations and a set of backlog items are handled at

any given time, fast development is possible and can be tested quickly with

Scrum.

4. Regular meetings are held which increase the frequency of progress updates.

5. Project development can be tracked easily.

17

6. Scrum is iterative and continuous feedback is taken from the user.

7. Short sprints, a small number of backlog items and continuous customer

integration makes it easier to make changes in projects.

8. Daily meetings increase individual productivity and make identifying problems

easy and fast.

The weaknesses of the Scrum are as follows:

1. If there is no definite end date of the project, there is a chance that the customer

will continuously demand new functionalities to be added.

2. For projects where, specific tasks are not well defined, estimating the time and

budget costs can be difficult. Also, some of the tasks may be done over multiple

sprints, causing inaccurate cost estimations.

3. Team members need to be both experienced and committed. Otherwise, the

project will suffer extensively.

4. For larger teams, coordination and fast movement is a challenge, rendering

Scrum inapplicable.

5. Novice individuals cannot be part of the team. All members need to be experts in

their areas. If some members leave during the project, it will have a sizable

adverse effect on the project.

6. Quality management is hard to employ in Scrum projects.

2.1.8. Comparison of Software Development Methodologies

A comparison of various software development methodologies is made in studies

such as [16], [29], [30] and [31]. In [16], they have identified different project

characteristics that influence the decision of selecting the most appropriate software

development methodology for a specific project. Tables 2.1 – 2.4 shows these

different project characteristics of the common SDMs based on requirements

analysis, the status of the development team, user participation, project type, and

associated risks. Accordingly, no one methodology is suitable for all types of

18

software projects. All the tables ranging from Table 2.1 to Table 2.4 are modified by

the authors of this study to incorporate the comparison of the Scrum methodology.

Table 2.1 – Characteristics of SDMs Based on Requirements Analysis:

Requirements

analysis
Waterfall Prototype Iterative Spiral RAD

Agile

XP Scrum

Are requirements

easily

understandable and

defined?

Yes No No No Yes No No

Do we change

requirements quite

often?

No Yes No Yes No Yes Yes

Can we define

requirements at the

starting of

iteration?

Yes No Yes No Yes No No

Table 2.2 - Characteristics of SDMs Based on Status of Development Team:

Development

Team
Waterfall Prototype Iterative Spiral RAD

Agile

XP Scrum

Less experience on

similar projects
No Yes No Yes No No Yes

Less domain

knowledge (new to

the technology)

Yes No Yes Yes No No No

Less experience on

tools to be used
Yes No No Yes No No No

Availability of

training if required
No No Yes No Yes Yes Yes

19

Table 2.3 - Characteristics of SDMs Based on User’s Participations:

User’s participation Waterfall Prototype Iterative Spiral RAD

Agile

XP Scrum

User participation

in all phases
No Yes No No Yes Yes Yes

Limited user

participation
Yes No Yes Yes No No No

User has no

previous experience

of participation in

similar projects

No Yes Yes Yes No No No

Users are experts of

problem domain
No Yes Yes No Yes Yes Yes

Table 2.4 - Characteristics of SDMs Based on Project Type and Associated Risk:

Project Type and

Risk
Waterfall Prototype Iterative Spiral RAD

Agile

XP Scrum

Project is the

enhancement of the

existing system

No No Yes No Yes Yes Yes

Funding is suitable

for the project
Yes Yes No No Yes No Yes

High reliability

requirements
No No Yes Yes No Yes Yes

Tight project

schedule
No Yes Yes Yes Yes No Yes

Use of reusable

components
No Yes No Yes Yes Yes Yes

Are resources (time,

money, people, etc.) scarce
No Yes No Yes No No Yes

20

Both the traditional software development methods and agile ones fail to fit the

general process of research-based software development. It is clear to see that

traditional methods, such as Waterfall and RAD, call for the requirements to be set at

early stages. Once done, these requirements should not change further to complete

the development successfully. This is not possible in RBSPs which at times employ

inexperienced graduate students within the development team, unlike agile,

prototype, and iterative as they require expertise in the entire team. Also, in agile

methods, team members are expected to solve problems among themselves rather

than relying on extensive documentation. These are just some of the examples

showing the incompatibility of the common SDM for RBSPs. Set of

incompatibilities of SDMs are given in Chapter 5 as a table.

The authors have collected the needs and the problems of RBSPs via interviews and

questionnaires, which will be discussed in the forthcoming chapters. However, the

items that are described in Tables 2.1 – 2.4 in order, can be generalized for RBSPs as

below:

1. Since research-based projects heavily rely on the research component, not all

requirements may be apparent at the beginning of the project and may be

discovered during the project life-cycle.

2. Requirements may often change with the discovery of ideas and methods during

the project development.

3. These types of projects are usually funded by national or international funding

agencies, which often demand that researchers list the requirements before

approval. As a result, an abstract idea of the requirements should be set followed

by changes for subsequent acceptance.

4. Research-based projects generally require a complex system to be built due to

difficulties related to research methodology, underlying science, or other issues

and difficulties.

5. Often, the development team in such projects comprise graduate students and

researchers. Although researchers and professors are regarded as more

experienced on similar projects, have enough domain knowledge, and possess

21

experience with the development tools, graduate students usually are new to the

field and lack due background.

6. Training of scholarship students is required in some cases which need to be

considered in project planning.

7. In RBSPs, there may be either no participation or full participation by end-users,

which matter profoundly depends on the nature of the project and how it is

initiated.

8. End-users may be experts in the field and be or not be experienced with similar

projects.

9. RBSPs usually include designing a novel system with significant research

involvement. However, some projects are funded by funding agencies which let

researchers enhance a previously generated system.

10. RBSPs usually require funding to be carried out.

11. In most cases, high-reliability systems are developed by research-based projects,

be it the realization of a mathematical model or cutting-edge technological

software.

12. Research-based software projects have tight schedules because of the funding

agencies. In most cases, again funding is for a fixed period, and one must show

satisfactory progress through the development phase. At the end of the funding

period, usually, no extension is granted by these agencies.

13. Resources can be considered scarce. Funding agencies insist on giving the

amount that will satisfy the project needs. Generally, in order to be funded by

these agencies, academicians ask for reasonable amounts of resources and no

more.

14. Overall, the reusability of the components is not the primary concern of such

projects. However, if the project is expected to be expanded after its completion

or similar projects are expected to be carried, then reusability may be a concern.

22

2.2 Literature Review

Creating a successful software project is not an easy task. Both industry and

universities struggle to develop successful projects from time to time. In [32], the

authors conduct a survey of over 200 middle-level to senior programmers to identify

the percentage of IT software project failures. The findings reveal that around 11% -

15% of such projects are terminated even before any deliverables are completed due

to changes in requirements and the project scope as being the main reasons. Also,

around 16% - 22% of the completed projects are considered unsuccessful.

In the literature, various studies show the problems faced in software projects. In

[33], low qualification of the employees, lack of clear goals, inadequate financial

planning of the project, insufficient attention from project heads and unstable

legislation are listed as some of the reasons behind these problems. In [34], lack of

cultural understanding in project teams and lack of communication are considered as

some of the main barriers. Communication problems are more apparent in Global

Software Development (GSD) initiatives rather than the standard ones since team

members usually consist of people from around the world, making coordination and

communication with team members more critical cases. In [35], the authors propose

to use process patterns to detect coordination problems in the project team. These

patterns contain information about potential violations but using them is labor-

intensive for project managers. Identifying coordination problems becomes more

difficult when multiple staff is responsible for various tasks and when tasks often

change in a dynamic environment. Although the present work attempts to include

some of the best practices and problems of the industry as part of its solution, it does

not include software projects that are carried out by the industry explicitly.

University and industry software projects are not always wholly separate, and there

are some collaborative studies made between the two sectors. Both parties gain from

a possible collaboration [36]. The industry gains more relevant research results and

researchers can better understand the scope and type of problems to attack. In the

present study, a series of sample works by both industry and academicians is

considered, and lessons learned from such interactions are reported. As a way to

increase these collaborations, academic researchers and students need to talk to the

companies to learn from their real problems, while industry practitioners are

23

expected to find researchers of the field as they are likely to have more detailed and

up-to-date data about their problems. Collaboration between industry and universities

is commonly consultancy-based. In [37], a different type of collaboration is also

listed. Payment of software professionals in empirical studies, payment of software

companies for extra work, the researcher acting as a client, use of software

professionals in industry seminars and short experiments and surveys can also be

considered as other forms of industry-university collaboration. Although such

partnerships with the industry are essential, this study mainly focuses on the software

projects that are research-based and completed by universities.

Some alternative methods can be used instead of common SDMs during software

development in universities. For example, the authors of [38] have proposed the use

of Evidence-Based Software Engineering (EBSE) for projects as rooted in Evidence-

Based Medicine (EBM), whose goal is “the integration of the best research evidence

with clinical expertise and patient values” [39]. The EBSE method is said to be

suitable for research-based projects since it involves multiple possible solutions to a

problem to be tried and the best solution to be picked at the end. However, it can be

costly when applied to the entirety of the project artifacts, but still useful for project

parts that are critical. Furthermore, the solution is unknown at the beginning because

of the research-heavy requirement of the parts. EBSE is conducted in five steps: (i)

Convert the need for information into answerable questions; (ii) Track down the best

evidence that answers the questions at hand; (iii) Critically appraise the evidence for

its validity, impact, and applicability; (iv) Integrate software expertise and

stakeholders’ values into the critical appraise; and (v) Evaluate own effectiveness in

steps one through four and try to improve them next time.

Open Source Project Management is another method that is employed by

geographically separated people to work together and develop a software system

collectively. Researchers have investigated why talented developers contribute to

Open Source Software (OSS) without any monetary incentives [40]. In [41], it is

shown that most OSSs are developed by a single developer. Although there are

multiple contributors to the project, in the beginning, most fail to commit to the

project extensively. There is only a handful of successful OSS projects where many

24

developers get together to work. Apart from this, OSS is a loose development

methodology which does not work well within allocated time and budget limits.

There are limited studies on research-based software projects. However, the existing

ones clearly show the gap in the literature and explain the need for a new

methodology that is tailored to the needs of the researchers working on such projects.

In this respect, researchers of [2] investigate the need for a novel software

development methodology for software projects in universities in the form of a case

study focusing on four projects initiated by universities, including one from Sri-

Lanka. Project management is said to be mainly dependent on the industry. As said

before, no one method is suitable for all the projects and different methods are

utilized in different situations. No method focuses on research, innovation, and

learning at the same time. Hence, the authors of [2] suggest that there is a need for

such a methodology. In the study, researchers focus on the adaptation of agile project

management to manage IT projects in Sri-Lanka, with the finding that adaptation is

around 25%, which is insufficient. In the same study, successful software projects

around the world that are initiated at universities are considered. Namely Google,

Linux operating system, Apache, and Vidisayura, which is a successful project from

Sri-Lanka, are the focus of the case study. The authors conclude that creating a novel

software development methodology for such projects at universities is a hard task

because of the innovative and dynamic structure of such projects. It is additionally

observed that, in the early phases of the project development, none of the projects

mentioned above use common software development practices.

In [5], the differences between industry and universities in software development is

discussed. The researchers mention entrepreneurial universities, which form

institutions like firms that develop software products. The study states that these

organizations rarely adopt common software development methodologies in their

development cycles. One of the main differences between them and the industry is

observed as in the motivation section; the industry mainly focuses on software

development, and research is a secondary issue. At universities, however, the

situation is reversed. The primary focus is on research and to do so; software

development is carried. The expected outputs are also different; academics focus on

research findings and publications whereas the industry mainly focuses on delivering

25

products and making a profit. Including the end-user in university, projects are often

hard because it is considered to be a voluntary act. In the industry, though, there is a

client and stakeholders that pay for the creation of the project, so they are more

invested in the project itself. Another point is that university researchers are more

open to trying out new ideas and changing the system architecture in future stages;

whereas the industry is bound with the contract at the beginning of the project and

does not tend to diverge from the initial planning. Lastly, researching a novel

software development methodology for universities is listed as one of the future

works of studies by these institutions.

In [4], an analysis is made of the factors contributing to software development at

universities. From the literature, the researchers divide the projects into three stages

as project initiation, system development, and implementation. In each stage, they

list a set of factors contributing to software development. During the project

initiation stage, the topic, issues, concerns, community needs, resources, time, staff,

funds, and area experts are found as some of the components that contribute to the

success of a project. During system development, skilled staff, ideas, objects, and

team structure are the main factors. During implementation, immediate user

adoption, intellectual property licensing, finance, skilled staff, communication

networks, technology transfer offices, marketing activities, communication among

members, industry-university partnerships, and start-up firms are found to be the

factors. These findings show a more compact list of factors for the three stages. For

project initiation: problem identification, team, interested community, for system

development: team, interested community, development skills, and resources, and

finally for Implementation: team, interested community and sustainability are listed

as the significant aspects affecting the success of software development. In

conclusion, researchers state that these factors can be used to propose a suitable

software development methodology for entrepreneurial universities.

In [42], a thesis study is conducted where differences between industry projects and

academical projects are considered. The Grounded Theory method is used to collect

and analyze the needed information through interviews, forced ranking and a case

study. An analysis of the data shows significant differences between industry and

academic software projects. People retention, lack of funds and economic

26

uncertainty, access restriction to publication libraries, late plans on project

development, getting end-user interaction, problems due to industry partnership,

problems with funding agencies, and product maintenance issues raised by the user

are found to be the main challenges faced by the academicians that are involved with

research-based software development at universities. Also, best practices are

categorized and listed for research supervisors, research groups, universities, and

regulatory institutions individually. At the end of the study, a framework is proposed

based on the considerations of each group. In the conclusion of the study, researchers

state that there is currently no software development methodology to respond to the

needs of individuals working on research-based software development projects,

adding that additional studies can be pursued to propose a new software development

methodology. These findings also precisely point to the gap in the literature and

show the necessity for the present research and its motivation.

27

CHAPTER 3

RESEARCH DESIGN & METHODOLOGY

This chapter explains how the present work is formed and which research steps are

taken to complete it. All the selected methods will be explained alongside all the

necessary steps of those methods to gather and analyze the data. Through the

literature, it is observed that the topic of research-based software engineering is

rarely delved into by researchers. In the literature review, it is already shown that for

Software Engineering research that heavily involves a human factor, qualitative

research methods are widely used and accepted. Here, since we gather the needs of

the academicians and their best practices, human involvement is also very high. For

this reason, we use qualitative research techniques to identify the problem and gather

data to form the necessary solution to the stated problem. For this purpose, various

qualitative research methods are considered among which, one is selected as suitable

as explained herein. All the qualitative research methods fall under two types of

reasoning approach: inductive and deductive [43]. Deductive reasoning utilizes a top-

down approach and takes a given theory about the topic of interest and tests that

theory to narrow it down to a more specific one. Inductive reasoning works, though,

in the opposite direction; it is considered as a bottom-up approach, and the researcher

starts by detecting patterns and relationships among concepts and, then, proceeds to

form a hypothesis using them.

3.1 Alternative qualitative research methods

The other methods considered for this study are Action Research, Ethnography,

Case-Study Research, and Grounded Theory. Action research (AR) [44] is a research

process in which both the researcher and the area expert actively participate. The

inquiry is conducted by and for those taking action. AR consists of a series of

processes [45] such as selecting a focus, clarifying theories, identifying research

questions, collecting data, analyzing data, reporting results, and finally taking

informed action. These steps cyclically repeat themselves until the desired

improvement level is achieved. Action research is mainly used to test theories and

28

not to form them. Ethnography [46] studies the social interactions of the people that

are in their natural environment and offers insight into a person's views and actions.

To derive meaningful results, the researcher would need to stay among the research

subjects for an extended period to actively or passively observe them. These types of

research are useful when the researcher intends to observe the natural environment of

the subjects without changing the settings of their environment. Case-Study Research

(CSR) [47] is an in-depth study of a situation rather than statistically surveying a

large set of happenings. CSR does not offer a full answer to a situation because of its

scope restrictions, but still correctly directs the researcher to create a hypothesis.

Grounded Theory (GT) [10] is a research method which lets the researcher

categorize and conceptualize the patterns and structures of the area of interest

through constant comparison. At first, codes are generated from the data which are

later compared with each other to reveal the links and relations among them. Finally,

theories are formed accordingly.

3.2 Research Design

Previous studies such as [42] have utilized the seven questions that are asked in [48]

to make suitable choices for their qualitative research designs. Similarly, we answer

the following seven questions to make educated decisions about our research design.

1. What types of information or data are collected?

The types of software development practices the individuals in RBSPs use, the

issues they face, and their best practices are collected. To this end, the data

related to people, interactions, actions, limitations, rules, goals, structure, and

practices are gathered.

2. What are the data collection techniques?

Semi-structured interviews, questionnaires, expert opinions, memos, documents

related to research-based software projects and literature review.

3. Where and among what group or groups of people is the research conducted?

The study will mainly take place at universities in Turkey where individuals are

involved in funded RBSPs. The subjects to interview are selected by their

availability, relevance, and accessibility. Convenience sampling [49], which is a

non-probability sampling technique in which participants are selected due to their

29

convenient accessibility and their proximity to the researcher, is used to reach out

to various researchers for the study.

4. What strategies are used for data triangulation?

The datasets collected from the universities will be compared with the findings

from the literature. Semi-structured interviews will be done with more than a

person per project when available to increase the rigor of the study.

5. Is the study undertaken by one person or with the assistant of others? Is there

multiple investigator triangulation?

All the data will be collected by the author of the study. However, the analysis

will be done under the guidance of the supervisor; that is, two individuals will

conduct the study. In this way, triangulation will be ensured.

6. What are the theories framing the present study (theoretical triangulation)?

The common software development methods as described in Chapter 2,

qualitative research practices, software engineering practices, and issues and best

practices taken from the literature in Chapter 2 are used extensively to form this

study.

7. Is the study funded? How much will the project cost in time and money?

The project is not funded. This is a Ph.D. thesis study. As for the timeframe, the

thesis alone is expected to take less than four years.

In this study, the authors aim to come up with new theories that will demonstrate

both the needs and the best practices of the individuals that work on RBSPs making

it inductive research. Ethnography and Action Research call for the researcher to be

involved in the action or observe entire processes, neither of which is practical or

handleable in the stated timeframe. As mentioned before, the CSR is mostly

deductive in which one tests their previous hypothesis on a selected sample. In GT,

the researcher generates codes, find relations among them and can reach a hypothesis

in a bottom-up approach. As far as the needs and the benefits of the research methods

go, GT proves to be the most suitable candidate.

The problems, best-practices, and factors affecting the success of university projects

are collected in Chapter 2 as per the literature in [42] and [4]. The findings of these

studies are considered while proposing a new methodology for RBSPs in Chapter 5.

Theoretic triangulation is ensured with the inclusion of these previous findings.

30

3.3 Data Collection

Both primary and secondary data collection is done in this study. Secondary data

collection relies on the results of the previously conducted similar studies. The

findings of the previous studies will also be taken into consideration while proposing

a new methodology as explained above.

In this study, three types of primary data is collected. These are interviews,

questionnaires, and expert opinions.

3.3.1 Interviews

Interviews are done with twenty individuals who have worked on fifteen different

research-based software projects. All the projects were originated from the

universities and had external funding from either a national or international funding

organization. The software projects are numbered from one to fifteen, and the

interviewees are numbered from one to twenty to anonymize the participants.

Convenience sampling is utilized while selecting the participants for the interviews

as explained before. Although there is no personal information taken from the

interviewees and it is envisioned that the questions asked are not disturbing, and

moreover it has the option of not participating in the study or leaving at any time, a

letter of consent is taken from all the attendees. Besides, to be sure, the researcher

applied to the Ethics Committee of the University and received approval for both the

interviews and the questionnaire.

Table 3.1 below lists the necessary details of all the projects and the related

interviewees. Following Table 3.1, the projects are explained in written form.

Detailed information about the projects as well as the analysis of the interviews is

given in the sequel.

31

Table 3.1 - List of projects participated by interviewees
Project

No
Project Area

Interviewee

Numbers

Interviewee

Positions
Funding Staff

1

Designing and simulating a
drilling device

1 Researcher Domestic, 2 years

2 graduate

students, 4
researchers, 1

project manager

2
Health informatics curriculum

design
2,8

Researcher,
Graduate

Student

International, 2

years

3 graduate

students, 5

researchers, 1
project manager

3
Designing and building an oil

rig
3, 9

Researcher,

Graduate

Student

Domestic, 2 years

2 graduate

students, 4
researchers, 1

project manager

4
Developing a security solution

for governmental institutions
4 Researcher Domestic, 2.5 years

5 graduate
students, 4

researchers, 1

project manager

5 Surgery simulation 5,12

Researcher,

Graduate
Student

Domestic, 3 years

4 graduate
students, 5

researchers, 1

project manager

6 Remote access laboratory 6, 10
Project

Manager,

Researcher

International, 2

years

5 graduate

students, 14

researchers, 1
project manager

7 Jet Engine Design 7
Project

Manager
Domestic, 3 years

1 project manager,

3 graduate students

8 3D surgical locator 11,13

Researcher,

Graduate

Student

Domestic, 3 years

1 project manager,

5 researchers, 7

graduate students

9 Dyslexia Detection 14
Graduate

Student
Domestic, 2 years

1 project manager,

2 graduate students

10
Virtual and face to face

education design
15

Project

Manager

International, 2

years

1 project manager,

5 researchers, 10

graduate students,

30 testers

11
Natural Language Processing

for the Turkish Language
16

Project

Manager
Domestic, 1.5 years

1 project manager,
1 researcher, 3

graduate students

12
Technological Teaching

Material for Mentally Disabled

Students

17
Graduate

Student
Domestic, 1.5 years

1 project manager,
3 researchers, 2

graduate students

13
Innovative Mathematical

Applications for Classrooms
18 Researcher

International, 2

years

1 project manager,
9 researchers, 5

graduate students

14 Online Learning Material 19 Researcher Domestic, 2 years
1 project manager,

1 researcher, 3

graduate students

15 Sensory Networks 20 Researcher Domestic, 1.5 years

1 project manager,

4 researchers, 5
graduate students

Project 1 is about designing and simulating a drilling device and heavily software-

focused but still multidisciplinary. The funding was from a domestic organization

and for two years. Two graduate students, four researchers, and a project manager

were present in the project. At the end of the funding period, the project was deemed

successful. The interviewee was a researcher in the project.

The second project is related to health informatics curriculum design. The software

design was a part of the overall project. Funding was given by an international

32

organization for two years. The staff consists of three graduate students, five

researchers, and a project manager. The first interviewee is a researcher and the

second one a graduate student. The project still has six months of funding, thus still

incomplete.

Project 3 includes designing and building an oil rig, involving both software and

hardware components. It was funded by a domestic funding organization for two

years as an ongoing project, where two graduate students, four researchers, and a

manager are employed. The first interviewee is one of the researchers and the second

interviewee is a graduate student.

Project 4 is related to developing a security solution for governmental institutions.

The project includes security software development and the deployment of a fully

functioning security system — a local agency funded the project for two and a half

years. Overall, nine people work on the project: five graduate students, four

researchers, and a project manager. The project succeeded at the end of the funding

period, and the interviewee is a researcher in the project.

The fifth project is a simulation of brain surgery. Software components come

together with haptic devices and other hardware components to increase the

authenticity of the simulation. The project was funded by a domestic funding

organization for three years. A total of four graduate students, five researchers, and a

project manager were involved. At the end of the funding period, the project was

successful. The interviews were done with a researcher and a graduate student.

Project 6 develops a remote access laboratory by combining software and lab device

hardware for the purpose. The funding was taken from an international organization.

In the project, five graduate students, one project manager, and fourteen researchers

from six countries participated with some as customers involved in only some parts

of the project. At the end of the funding period, this project was also deemed

successful, maintained and utilized for more than three years after the funding

period. The interviewees were the project manager and a graduate student.

The seventh project was about designing a jet engine. The software component of the

project heavily relies on mathematical calculations and precise engineering. A

domestic agency gave the funding for three years. Only a single project manager and

33

three graduate students participated in the development. The project was deemed

successful, and the interview is conducted with the project manager.

Project 8 was related to a 3D navigation tool for a specific surgery operation. A

domestic funding agency funded the project, and both medical and computational

experts participated in the project overseen by one manager, and five researchers and

seven graduate students as participants. The project was completed successfully. The

first interviewee was a researcher in the project and the second one a graduate

student.

Project 9 was about developing software that can detect dyslexia in students. The

project is funded by a domestic funding organization for two years. Only one project

manager and two graduate students participated in the development of the project. As

of writing this thesis, the project is on hiatus, and it is not clear whether the team will

be able to complete it. The interview was conducted with one of the graduate

students in the project.

In Project 10, a virtual and face-to-face education system is designed and developed.

There was a single project manager, five researchers, ten graduate students and 30

testers with funding from an international agency for two years. Three countries

cooperated in the project, which is still ongoing. The interview is done with the

project manager.

Project 11 tackles the problem of developing a natural language processing software

for the Turkish language. The funding is taken from a domestic agency for 36

months, and the team is composed of a project manager, one researcher, and three

graduate students. The project ended successfully and maintained by the team

members. As a result; the application is still being used today. The interview was

conducted with the manager of the project.

Technological teaching material for mentally disabled students was developed in

Project 12 comprising a project manager, three researchers, and two graduate

students and funded locally for 36 months. Upon termination of the funding, the

project was complete. The interview is done with one of the graduate students of the

project.

34

In Project 13, innovative mathematical applications are developed for classroom

environments. The project was funded by an international institution for two years

and conducted by three countries with a single project manager, nine researchers, and

five graduate students. It is an ongoing project and, by now, six months is left for it

to be completed. The interview is conducted with one of the researchers in the

project.

Project 14 was to develop an online learning material interface and financed locally

for two years. There were one project manager, one researcher and three graduate

students in the project as well as third-party developers as additional support. The

project was completed successfully. The interview is done with the researcher of the

project.

The last project, Project 15 was about sensory networks and funded by a domestic

agent for 36 months. In the project, there was one manager, four researchers, and five

graduate students, who completed the work successfully. The interview is conducted

with one of the researchers within the project team.

The conducted interviews were all semi-structured consisting of thirty-four questions

addressing the issues and challenges faced during the development of RBSPs and the

best practices which help develop successful projects.

A full list of interview questions can be found in Appendix A in Turkish and

Appendix D in English. Here is a glimpse into some of the items:

• Did you realize a traditional software development methodology in your

project?

• How many full-time and part-time staff do you have?

• What was the primary motivation of the staff to join the project?

• How often did you conduct meetings?

• Did the graduate students possess enough background? Did their skills match

the project expectations?

• Did the academic hierarchy that the staff is in negatively affect the project

development?

35

• Was there an end-user at the inception of the project, or did the research idea

originate from the researchers? If so, how involved were the end-users?

• Did any unexpected risk appear during the development of the project? What

were the reasons?

• Did you notice any communication problems among the project staff? What

were the reasons behind them?

• How much do you think traditional software development methodologies

apply to research-based university projects?

• What are the differences between industrial projects and research-based

projects?

When to stop collecting data through interviews is an important issue to be

considered in qualitative research studies [50]. A widely accepted method is to check

whether one has reached saturation or not [51]. The saturation indicates whether,

considering the collected data and its analysis, further data collection and analysis is

unnecessary. Two types of saturation methods have been used in this work, namely

Theoretical Saturation and Data Saturation. According to [9], grouping is done to

categorize the collected data. If conducting new interviews stop adding any more

useful information which contributes to previous categories, theoretical saturation is

reached. Data saturation is achieved when no additional coding is being generated

through data collection, and further coding is not feasible [52]. In this study,

interviews are concluded when the analysis yields no additional theories and codes in

the last couple of interviews. In the same way, before the analysis, the authors

noticed a rapid increase in the repetitive answers in the final interviews, which is

considered as another indicator that saturation is being reached.

3.3.2 Questionnaires

The Questionnaire to validate the findings of the interviews is shared with peers to

see whether the questions are understandable and related to the findings of the

interviews. After receiving feedback from the experts and revising questions

accordingly, the questionnaire is distributed among 47 participants of an international

conference on computer science and engineering with a specific track for software

36

engineering. Among the participants, 40% stated that they have been working as an

academician for 0-5 years, 26% between 6-10 years and the remaining 34% more

than ten years. Only 2% of the participants stated that they do not know about

software engineering and project management; 4% stated they have little knowledge,

38% stated they have moderate knowledge, 38% stated they have good knowledge,

and the remaining 17% stated they have very good knowledge about software

engineering and project management. When asked about how many research-based

software development projects that the participants had been involved in as a PM,

researcher or a graduate student they answered: 17% never participated, 19% only

participated in a single project, 36% in two to three projects, 11% in four to five

projects, and the remaining 17% in more than 5 research-based software

development projects. The questionnaire can be found in Appendix B in Turkish and

Appendix E in English. The analysis of the questionnaire is given in the following

chapter along with the analysis of the interviews.

3.3.3 Expert Opinions

After conducting all the interviews and analyzing them, a suitable questionnaire is

prepared to validate the findings. The results of the interviews, questionnaires and

the findings from the literature are used to propose a new software development

methodology for research-based software projects. The proposed methodology is

evaluated by using the expert opinion method. Due to time constraints, CSR is not an

available choice to evaluate the proposed methodology. In the absence of empirical

data, expert knowledge is regarded as the best or only possible source of information

[53] [54]. Experts can be identified by their qualifications, training, experience,

professional memberships, and peer recognition [55]. In the present two types of

expert definition is done: (i) Academicians at the level of Assistant Professor or

higher, working in a university department related with software engineering for

more than five years and participated in RBSPs. (ii) Academicians that are at the

level of Assistant Professor or higher, working in any university department for more

than five years and participated in more than five RBSPs. With the inclusion of these

two types of experts in the study, the expertise from both Software Engineering, and

RBSPs are covered. Expert opinions are gathered from eight experts; seven were

academicians for more than ten years and one for five to ten years. Five of the

37

experts claimed to have average knowledge about software development

methodologies; one claimed to have very good knowledge, one with good

knowledge, and the remaining one little knowledge about SDMs. From all the

experts, three had participated in more than five RBSPs, four in 2-3 RBSPs and one

in just one RBSP. Two of the experts that had participated in more than five projects

were from a department that is not related to computer science or software

engineering. The analysis of the expert opinions is exhibited as the last item of

Chapter 5.

3.4 Implementation of Research Methodology

To come up with a sound methodology, the research problem is studied and

discussed among the researchers and their available peers. Later, an extensive

literature review is performed to position the research topic accurately. Possible

research methodologies are discussed, and a suitable one is selected.

Software engineering significantly involves human components. To do research that

can capture the nature of the human element, qualitative studies are suitable for this

field. As explained before, in this study, multiple qualitative research methods are

considered. Different methods have different qualities. Here, as stated previously,

Grounded Theory [9] is found to be the most suitable option.

Grounded theory was first proposed by Glasser & Strauss 1967 in their book named

“The Discovery of Grounded Theory” [9]. Since then, there have been many

variations of how GT research should be conducted as a systematic way of

discovering a theory through data collected using social research [56]. Conducting

interviews, questionnaires and taking field notes are standard practices to collect data

to analyze. GT is also an inductive method that utilizes the data to the extent of

forming theories [10], which implies that one collects the data, analyzes it

individually and compares them against each other to derive meaningful

relationships amongst them. All of this, in the end, should result in forming a

complete theory about the research question. When GT was initially formed, only a

single theory could be derived from the collected data. Later on, with the new

variations of GT, multiple theory forming is made possible [57]. Every variation of

GT has some specific steps to follow. The original pattern started with open coding,

38

which takes the transcribed interview or any other type of data and labels them.

Giving labels related to the content of the data is called ‘coding’ in GT which can be

done manually by traversing the data, line by line, or automatized with modern

qualitative research tools such as NVivo [58]. After open coding is performed, the

relations among the codes need to be discovered. This is done in the axial coding

phase, where the codes are grouped by their relations regardless of physical actions,

contextual similarity, or people related to them. These relations generate specific and

separate groups in the codes, which will, later, be used to generate theories. Constant

comparison is required with other groups to make sure that the groups that are

formed are logical and sound. The final step of the research is integrating multiple

categories, refining them and forming actual theories.

In this study, the GT variation proposed by Strauss and Corbin [57] is used to enable

the integration of the literature study as a base point for research to be done as well

as to make room for multiple theories to be formed at the end of the study. Different

from the original GT, the steps of the GT in [57] include open coding, axial coding,

and selective coding.

3.4.1 Open Coding

In this study, open coding is performed to structure the data into categories. This

takes long lines of textual data and makes an abstraction of its contents. Open coding

is performed by the researchers considering the actions taken in the projects, types of

problems and challenges faced, and the type of best practices carried out by them.

For example, about the experience of the graduate students in the project,

Interviewee 4 stated “Technically speaking, graduate students were sufficient.

Security-wise, their background was not exhaustive. Researchers mostly had to train

and teach graduate students as they would be the ones to develop the system. Also,

directing the graduate students and monitoring them closely increased the success

rate of the developed modules.” This text is coded with open coding as: “Sufficient

experience,” “Training done,” and “Close monitoring.” “Sufficient experience”

shows us that this project did not experience problems due to the knowledge level of

graduate students. “Training done” and “Close monitoring” show us the best

practices followed by the researchers of the project. In this study, a second researcher

is asked to code a sample of two of the interviews to check whether similar codes are

39

generated or not. Resulting codes were found categorically similar. This step is taken

to show researcher bias was not significant on the creation of the codes.

3.4.2 Axial Coding

In the axial coding phase, we made constant comparisons among the “codes” that are

formed in the open-coding phase. Some of the codes are grouped, others are

aggregated or dropped, and some are not grouped, but a different type of

relationships are shown among various codes. For example, codes “Rare meetings,”

“No information flow,” “Long distance partners,” and “Communication issues” can

all be grouped under “Problems with the flow of information.” By grouping different

codes, we can understand the causes of such issues more efficiently. Axial coding

enables us to focus on the main problems rather than list all the possible issues

present in the research field. Also, the previously mentioned item, “Sufficient

experience,” might be the result of Training done and Close monitoring. These types

of codes are not aggregated but, still, a “cause and effect” type of relations among

them can be shown.

3.4.3 Selective Coding

Summarization of all the finding is done in this phase of the GT and theories are

formed using the axial codes, which alongside their inter-relations are used to form

additional hypotheses about the problems and challenges faced in RBSPs. Alongside

the issues, best practices derived from the previously completed projects are also

incorporated while forming mentioned theories. However, forming these theories are

not the end of our qualitative research, and the complete steps are explained below.

3.5 Steps of the Methodology

Grounded Theory does not cover the entirety of our research, and some stages come

after it to validate the findings and propose a solution. All the general steps followed

in this study are displayed in Figure 3.1.

40

These steps are:

1. The research problem is formulated after a literature review in the field.

2. From the findings that come from the literature review and the expectations of

the researchers, semi-structured preliminary interviews are formed.

3. The interviews are tested on a small set of subjects to be finalized.

4. Interviews are performed with academicians that have participated in research-

based software development projects at universities.

5. While conducting the interviews, data analysis is also carried out by the

researchers to include open coding, axial coding, and field notes.

6. Open coding is performed, which offers a vague idea about the problems and

challenges faced by the researchers and their best practices.

7. Axial coding is performed by comparing the stated problems and grouping them

to form logical groups.

8. Selective coding is applied to prioritize the most critical problems, challenges,

and best practices.

9. After data saturation is reached and no new coding is generated from the

interviews, the interviews are terminated, and the GT methodology is used to

form the final theories.

10. The results of the GT are validated by surveying the academicians of this field

using a questionnaire.

11. All the previously generated data are considered, and a new methodology is

proposed.

12. In addition to proposing a novel methodology, previously generated data is used

to create guidelines for the PMs, team members, funding agencies and

universities that will participate in RBSPs.

13. The validation of the proposed methodology is done by gathering expert opinions

and including necessary additions to the method, the text, and the guidelines.

41

Figure 3.1 Steps of the Research Methodology

42

CHAPTER 4

ANALYSIS OF THE DATA

This chapter includes the analysis of the data collected via the interviews and the

questionnaire. As stated earlier, previous literature on the topic shows a handful of

studies that focus on research-based software development. However, these studies

also clearly state the importance and the need for a new methodology for research-

based projects. To this end, in the present work, semi-structured interviews are held

with academicians that participated in research-based software development projects.

The problems they faced during the development of the projects, challenging parts

and the best practices applied by them are collected in these interviews. Also, after

the analysis of the interviews, a questionnaire is distributed to validate the

importance of the identified problems.

4.1 Analysis of the Interview Data

Twenty interviewees participated in fifteen different research-based software projects

at universities. Ten of them were researchers, six of them graduate students and four

of them were project managers in projects. The distribution of the participants’

occupation within the research-based projects is shown in Figure 4.1. The

interviewees are selected so that both genders are represented in the study. Seven

females and thirteen males participated in the interviews with gender distribution as

shown in Figure 4.2.

43

Figure 4.1 Interviewee’s Role in Software Project

Figure 4.2 Interviewee Gender Distribution

The software projects related to the interview study were all funded: four by an

international agency and the remaining eleven by a domestic one in Turkey as per the

distribution in Figure 4.3. The duration of the funds varies from project to project

from one and a half years to two years, two and a half years or three years as

depicted in Figure 4.4.

44

Figure 4.3 Project Funding Distribution

Figure 4.4 Funding Duration of the Projects

During the interviews, the participants are asked if any software development

methodology is employed during the development of their RBSPs. None of the

participants reported using a software development methodology in their projects.

Although they claim to have not used any initially, further interviews yield that in

some of the projects, development methods are used indeed. These were not common

software development methods, rather those that come from the personal and

previous experiences of the project managers. In four of the fifteen projects, the

45

personal methods employed by the researchers had similar traits to the prototyping

methodology.

As stated above, the first stage of analyzing the data with GT is to code the

transcribes of the interviews using Open Coding. Next, Axial Coding is done to

group the codes generated in the open-coding process. The following is the list of

categories that come out of the axial coding phase of GT:

1. Items Related with the Inception of the Projects

2. Problems Related with Team Members

3. Budget Problems

4. Problems Related with University

5. Communication Problems

6. Unexpected Risks

7. Project Success Factors

8. Suggestions for New Methodologies

4.1.1 Items Related with the Inception of the Projects

One can see in Figure 4.5 below the open codes lack of detailed planning,

insufficient initial planning, end-user involvement, and research solution/ideas and

the axial coding that is related with all of them; Project Inception.

In eleven of the fifteen projects, the idea of the project came directly from the project

manager. The remaining four projects were initiated from the funding agencies and

according to their software needs. In five of the projects, end-user participation was

not present, and the rest of the projects had a different level of end-user involvement

throughout. Most commonly, end-users are involved in the requirement gathering

and testing phases. Not having end-user involvement is reported as one of the

problems faced in RBSPs.

Among the fifteen projects, only three had detailed planning at the beginning of the

project, and the remaining twelve projects had overall planning that generally

includes project tasks. However, the details of the projects are decided during the

development phase.

46

In thirteen of the fifteen projects, possible solutions to research problems are

reported to be found in group meetings. The remaining two projects reported that the

project manager decided which solutions to be pursued. Apart from the meetings and

the PM, other solutions are said to come from the literature, trial and error during

development, and prior experiences from similar projects.

As a result of not having detailed planning at the beginning of the project, most of

the projects reported that they could follow the initial project plan by only up to

70%-80%. Project 9 (P9) is the only project that reported a dramatic divergence from

initial planning, by following only 40% of the initial planning. Interviewee in P9

points to the requirement changes during the later stages of the project as a reason for

this dramatic divergence. There is only one project that reported following the initial

plan 100% which is one of the two with detailed planning at the beginning of the

project.

Figure 4.5 Project Inception Axial Coding

4.1.2 Problems Related with Team Members

Axial coding Team Members and the open codes that are related to that category are

shown in Figure 4.6 below.

Some of the main problems reported in the interviews were directly related to the

staff involved in these projects. Staff turnover in university projects is reported as

one of the major problems. Especially, graduate students tend to leave the research-

47

based project frequently. Therefore, it is likely that if there is no reliable

documentation, if the departing staff has unique skills or is responsible for a specific

part of the project by themselves when they leave the project, the know-how leaves

with them. P1, P3, P5, P6, and P8 reported having severe problems with the staff

leaving the project. The know-how is wholly lost in certain parts and required to be

re-developed in some cases, and new staff adjustment became equally problematic.

In P2, P4, P7, P10, P11, P13, and P15 staff recirculation is also stated as a problem.

However, the adverse effects were not as dramatic as the previously mentioned

projects. The remaining four projects stated that staff recirculation was not a

problem, or there was no staff leaving the project.

According to thirteen of the fifteen projects considered in the interviews, the

experience level of the graduate students is deemed low and insufficient. Some

interviewees stated this as one of the major problems of the project. In some cases,

the inexperienced staff is considered in the life-cycle before the project and training

of the staff is included. Unplanned training of the staff was also done in some

projects, causing shifts in the schedule. There were also projects where training was

not present. In such cases, graduate students learned the necessary skills from the

literature, or during the development of the software.

The interviewees reported that procuring full-time staff for the projects is hard due to

low pay. As a result of this, in the fifteen projects, only five had full-time staff,

despite whose presence, still the majority comprises part-timers. Reports claim that

having part-time staff negatively affects the projects. The part-time staff does not

devote all their available time to the project and usually have other responsibilities

elsewhere. University projects have relatively lower payment standards compared to

the industry. This is stated to hurt the motivation of graduate students.

The interviews clearly show that the academic hierarchy within the project staff

yields no negative effect and, to the contrary, in four of the projects, having an

academic hierarchy is reported to be a positive effect on the development process.

Communication problems were one of the main problems stated in the interviews.

Although mostly related to the people involved in the project, in axial-coding

communication was stated as a separate entity to analyze it in more depth.

48

Figure 4.6 Problems with Team Members Axial Coding

4.1.3 Budget Problems

Axial coding Budget Problems and the related open codes partial payment,

insufficient funds, payment fixed for items and payment delays are shown in Figure

4.7.

Seven of the fifteen projects reported budget problems in the interviews.

Procurement problems related to funding agencies, payment dates being inconsistent,

and simply not having enough money to develop the actual product are reported as

the main budget problems in these projects. The other eight projects managed to use

the funds effectively and did not report having any significant problems.

Commonly, the funding agencies ask for the budget plan with the application of the

project to better understand the overall cost of the project. However, in reality, the

items stated in the budget plan may cost less or more than the initially planned

values. In such cases, project managers wish to move the budget for specific items to

other more critical items. In the interviews, it is seen that the funding agencies are

not flexible enough about switching budget between items at later stages. In RBSPs

where requirements and limitations may not be known in advance, this condition

proves to be a burden for PMs.

Only in three of the fifteen projects, there was a dedicated budget for the

maintenance of the project, and the rest (twelve) are only funded for the development

period by the funding agencies.

49

Figure 4.7 Budget Problems Axial Coding

4.1.4 Problems Related with University

The interviewees are asked about the problems faced specifically in the university

projects. These items are gathered in the University Problems axial code below in

Figure 4.8.

Figure 4.8 University Problems Axial Coding

The items Part-time restriction, Know-how lost with leavers, and graduate students

lack experience were already explained as related with the People code. Since the

interviewees listed them as the problems belonging specifically related to university-

based projects, they are included under the University Problems as well. Most of the

graduate students that participate in these projects are also research assistants at

universities and attend laboratories, grade assignments and participate in proctoring

multiple exams; hence, they are already loaded heavily with other tasks and utilizing

them in RBSPs can be problematic for PMs.

50

Academic time restrictions are another hurdle, not only for graduate students but for

all academicians. Since none of the project managers and researchers work as full-

time on these projects, academic workload hinders their ability to work on these

projects. Interviewees state that certain periods such as midterm and final weeks

should be included in the project time-schedule since most of the staff will not be

able to focus on the project in these weeks and so they should be handled

accordingly. Any development methodology adopted for RBSPs should also consider

the workload of the academicians not to overburden them if they aim to be usable.

The Administrative works required by the funding agencies and periodic reporting of

the project are also stated as obstacles faced by academicians. During the reporting

periods, the project development slows, and most of the staff are focused on

preparing the required documentation. These tasks should also be included in the

time-plan for the smooth operation of the project without any delays.

From the interviews, it is seen that RBSPs developed at universities are heavily

focused on the research aspect and that the development of the product is secondary.

Outputs such as papers, theses, and dissertations are the primary motivation for the

staff that participates in such projects. Sometimes, schedules and priorities are

shaped according to these outputs instead of finishing the product itself. This is

stated as a problem unique to university settings.

In RBSPs, due to the research aspect, the requirements can often change. At the

beginning of the project, detailed planning may not be possible since all the research

details are not finalized yet. During the development of the project, research items

are identified, and requirements are changed according to new findings. This is again

reported as a university-specific problem by the interviewees. Any methodology that

is for RBSPs should be able to cope with requirements that often change.

Low salaries, procurement problems, job definition not being clear, and

infrastructural problems are reported as other barriers faced within university

projects. As explained before, procurement problems occur because of the

bureaucracy related to the funding agencies and not being able to transfer budget

among payment items. Infrastructural problems occur due to the limitations of the

university where the project is developed. Since these projects take up to two or three

years to be completed, during this period, specific software and hardware should be

51

supported by the university. Interviewees reported that universities fail to support

such projects from time to time and that PMs are forced to procure such items

through other means.

In university projects, job definitions may not be well-defined. In the industry, job

definitions for staff are rigid and usually focus on a single type of task at any given

time. In university projects, since there is not enough budget to procure additional

staff, the present members are required to participate in multiple tasks at any given

time. Domain experts, requirements, testing, development, and documenting experts

usually do not exist in university projects, making staff undertake most of such duties

by themselves.

4.1.5 Communication Problems

Communication is stated as one of the major problems faced in RBSPs by the

interviewees. The axial code Communication and all the related open codes are

displayed in Figure 4.9 below.

Figure 4.9 Communication Problems Axial Coding

The main communication problem reported in the interviews are the problems with

the flow of information among the members of the project. Various reasons are given

for this problem.

52

One of the reasons is related to the project manager. It is stated that if the PM lacks

the necessary leadership skills and is unable to communicate with the staff

effectively, the project is likely to fail. In the interviews, no such cases are pointed

out, but still, the interviewees stated this scenario as a possibility.

Another likely scenario is working with international partners in the project. In our

interviews, four of the fifteen projects were international projects, where partners

from different countries participate. Communication problems happen in such cases

because of the geographical limitations and the cultural differences among the

development teams in different countries. Interviewees reported that communication

over the Internet is not as effective as face-to-face communication, thus becoming

another drawback of international projects.

Personal issues among the staff are reported as another problem related to

communication. These problems are felt at the graduate student-level more

frequently. The PM and the researchers are usually more dedicated to the project and

tend to be more agreeable. Some graduate students are reported to only care about

their theses, which is usually a part of the overall project itself. They are found to be

non-cooperative with their peers. Some PMs stated that they had to speak to graduate

students to solve such problems personally. In some cases, graduate students even

left the project as a result.

Task distribution is reported to be one of the conventional communication problems

faced in RBSPs. If the PM does not explicitly state the responsibilities of the staff

according to their skillset at the beginning of the project, confusions are bound to

occur, and certain parts of the projects may be neglected as a result. In P5, P7, P8,

P10, P13 communications related to task distribution are reported. In P10, when the

PM discovered that such a problem indeed existed in the project, they were able to

quickly fix it with a meeting held specifically for the purpose. The detailed

distribution of tasks to individual members is done, and the project is continued

without significant drawbacks. In P7, task distribution was done at the beginning, but

the skillset of the graduate students is found to be not suitable for the current

distribution. A new task distribution is, therefore, done after assessing the skills of

the graduate students.

53

The primary method of relaying information among the members of the projects is

stated as the meetings held during the development of the projects in unison with the

interviewees. The frequency of the meetings, their participants, and types of

meetings are all considered to be among the critical factors for a successful project.

From the interviews, it is seen that optimal meetings should be frequent. The most

successful projects reported holding weekly interviews with all members present.

Although frequent meetings are regarded as overhead to the already busy schedule of

the academicians, their benefits are so much that they should not be ignored. Weekly,

bi-weekly, monthly, and once every six months are the most common frequencies as

stated by the interviewees, who also added that meeting every six months was not

enough or filled the communication gap. None of the staff had an idea about what the

other members are working on and the status of the project. Meeting once every six

months means the team only met with the funding agency and never without them.

The interviewees that reported to have fewer problems with the flow of information

said that they made participation in the meetings mandatory. In the weekly meetings,

both the progress of the general project is stated, and the individual responsibilities

and progress are reported. Interviewee 4 stated that having various type of meetings;

such as progress meeting, task allocation meeting, problem definition meeting is also

an advantage. Formatted and documented meetings can be used to track progress

easily. At the beginning of the interview, a reminder of the previous meeting can be

given briefly and, later, the project management task meetings and project progress

meetings can be held separately with related staff. There can also be meetings where

staff shows their spotting a specific research problem and possible solutions to be

discussed at such gatherings.

Meeting face-to-face with all the project members may not be possible in some

projects due to geographical limitations. When the participants are from different

cities or different countries, face-to-face meetings cannot be done frequently with the

entire staff. In such cases, interviewees stated that video conferencing over the

Internet is the only alternative. Although it may not be as productive, they are still

better than communicating via email or chat messages.

54

Any software development methodology for research-based projects is stated to have

a substantial meeting schedule suitable for the staff. The frequency and type of

meetings should be clarified at the beginning of the project.

4.1.6 Unexpected Risks

Some unexpected risks occur during the development of the software in research-

based projects, as shown in Figure 4.10 below.

Figure 4.10 Unexpected Risks Axial Coding

Some of the unexpected risks that occur in research-based projects such as

infrastructural issues, staff turnover, financial problems, and remote partner issues

are mentioned in the previous items. In order to group up all the unexpected risks

under a single umbrella, these items are also gathered here. Interviewees mentioned

that remote partners could be unresponsive sometimes. In international projects

where responsibility is divided among the participating countries, some parts can be

incomplete or delayed due to the participants. In P6, the PM stated that this appeared

to be so severe that they had to cut the funding of one of the participating

universities.

Demands of the funding agencies are also reported as being a burden to the project

staff. Usually, every six months progress reports are prepared and given to the

55

funding agency to continue receiving the funds. These reporting periods are said to

have low productivity with the development of the actual project. Alongside the

bureaucracy overheads, these factors are stated to be integrated into the project time-

schedule in order to not be repeated later.

The participants stated that no documentation except the ones required by the

funding agencies is done. None of the projects considered in the interviews include

coding documentation. This occurs while, in an environment where staff

recirculation is high, keeping documentation related to coding is a must if one

intends to minimize the loss of know-how.

Technological changes are listed as another unexpected risk. In six of the fifteen

projects, these changes are reported to hurt the development of the projects. Some

previously found solutions became obsolete, and engine changes or new hardware

requirements arose. On the other hand, technological changes are reported to have a

positive effect on P7, as the inclusion of the new methods and hardware increased the

efficiency of the project.

4.1.7 Project Success Factors

The Success Factors that are affecting RBSPs positively are also gathered from the

interviewees and put in Table 4.11 below.

Figure 4.11 Success Factors Axial Coding

56

In fourteen of the twenty interviews, having compatible teammates, a good project

manager and a good team are shown as factors positively affecting the success of a

project. It is a common belief among the interviewees that a team that has worked

together or is highly compatible will have fewer communication issues. Teams that

believe in the vision of the PM will most likely embrace the project more than other

instances.

The distribution of the tasks according to the skills of the staff is another factor

reported to influence the success of research-based projects positively. In the

interviews, it is seen that when task distribution is not apparent or is not suitable to

the skillset of the staff, problems are likely to arise. To avoid such problems, a

method to assess the skillset of the staff can be used.

All but two interviewees reported the knowledge level of graduate students as

insufficient. To optimize the effectiveness of these individuals, constant monitoring

and strict planning are suggested by the interviewees. In projects where the PM

interacts with the graduate students as one-to-one or relevant researchers give

mentoring and track the progress of the graduate students closely, success is deemed

more likely. Training the graduate students both technologically and specifically for

the research field resulted in a positive effect on the completion of the projects.

It is stated that the critical parts of the projects should be identified in the early

stages of the development. These tasks should be focused on early and completed as

soon as possible.

Peer review is suggested as an effective method of development since multiple

individuals will have an idea of the same parts of the code and errors can be detected

more efficiently [59]. On the other hand, peer reviewing the entire project is not an

easy task and may quickly become cumbersome to the participants.

It has been previously mentioned that the flow of information relies on meetings held

during project development. Holding structured meetings frequently and having a

follow-up document is suggested as a factor that will positively affect the

development of the research-based projects.

57

4.1.8 Suggestions for a New Methodology

In the interviews, the participants are asked about their suggestions to someone

intending to develop a software development methodology for RBSPs.

Consequently, a list of items is suggested believed to be useful for such

methodologies. The items can be seen in Figure 4.12 below.

Figure 4.12 Suggestions to New Methodology

In this respect, it is suggested that the new methodology find ways to increase the

flow of information among the members of the project. Face-to-face communication

is given to increase information flow. Frequent and well-structured meetings to be

held face-to-face or using video conferencing in the worst-case scenarios can also

increase the flow of information.

Adapting technology was another item. Integrating the use of document sharing, task

tracking, version tracking, and online platforms were suggested.

Another remark was that Decision making about the research solutions should be

done collectively by the members of the project. The type of meetings should support

a system, where decisions are taken and recorded so that they can be backtraced at

any given time to minimize possible confusions about the decisions.

58

The Skillsets of the project staff should be evaluated in the early phases of the project

so that proper task assignment can be done. A formal way of evaluating the skillset

could be proposed.

A List of skills that are necessary for the completion of the project is suggested for

comparison with that of the staff so that the gaps between the current skills and

necessary skills can be found.

Coding using modern languages such as C# and Java are stated as not enough for

some of the research-intensive items in the projects. Scientific validation of the

results should be done using scientific software to compare the results with the codes

generated in the project.

Training is another item suggested to be included in these projects. Both topics,

specific training and project management training, are said to be useful for RBSPs. It

is reported that projects that integrate area-specific training to graduate students

generally perform well. Two of the projects reported that the graduate students

needed to be trained about the work ethics and scheduling issues.

Despite these, not all the problems pointed out in the interviews along with the

suggested solutions are directly related to software development methodologies. Still,

though, all the possible problems, challenges, and best practices are collected

through the interviews. The ones that are applicable will be integrated into the

proposed methodology in the next chapter.

4.2 Analysis of the Questionnaire Data

The questionnaires are conducted among forty-seven individual academicians that

participated in an international conference as explained before.

Among the participants, 40% stated that they have been working as an academician

for 0-5 years, 26% between 6-10 years and the remaining 34% more than ten years.

Only 2% of the participants stated that they do not know about software engineering

and project management; 4% stated they have little knowledge, 38% stated they have

moderate knowledge, 38% stated they have good knowledge, and the remaining 17%

stated they have very good knowledge about software engineering and project

management.

59

When asked about how many research-based software development projects that the

participants had been involved in as a PM, researcher or a graduate student they

answered: 17% never participated, 19% only participated in a single project, 36% in

two to three projects, 11% in four to five projects, and the remaining 17% in more

than 5 research-based software development projects.

The questionnaire was prepared using a Likert scale with five items as 1. Not

important, 2. Slightly important, 3. Moderately important, 4. Important, and 5. Very

important. The participants are asked about how important they believe the listed

problems are to the failure of any research-based software project.

There are six categories in the questionnaire related to the findings of the interview

study; these categories are as follows:

1. Personal Information

2. Project Planning

3. Staff

4. Communication

5. Budget

6. Software Development

An analysis of the personal information category is given as the participant

demographics above. The most frequent responses to the rest of the questions are

given in the frequency tables per category in Tables 4.1 – 4.5.

Issues related to Project Planning are graded in Table 4.1. As can be seen from the

frequency table, the participants choose “No detailed planning done before the

project” as the major problem in the project planning phase. “Absence of end-user or

customer in the project,” “End-user participation is low,” and “Alternative solutions

to the parts that require R&D were not set at early stages” as the important issues.

No issue is deemed as not important, slightly important or moderately important in

this category.

60

Table 4.1 - Frequency Table of the ‘Project Planning’ Category

1
 -

 N
o

t

im
p

o
rt

an
t

2
 -

 S
li

g
h

tl
y

im
p

o
rt

an
t

3
 -

 M
o

d
er

at
el

y

im
p

o
rt

an
t

4
 -

 I
m

p
o

rt
an

t

5
 -

 V
er

y

im
p

o
rt

an
t

1- Absence of end-user or customer in the

project

2.1% 6.4% 23.4% 53.2% 14.9%

2- End-user participation is low in the project 0.0% 10.6% 21.3% 46.8% 21.3%

3- No detailed planning done prior to the

project

0.0% 4.3% 17.0% 21.3% 57.4%

4- Alternative solutions to the parts that

require R&D were not set at early stages

2.1% 4.3% 40.4% 40.4% 12.8%

The next category in the questionnaire is staff-related issues as per Table 4.2.

Accordingly, only “Staff recirculation is high” is found to be a very important issue.

This directly confirms the interviews conducted and the findings of previous

literature [42]. The issues; “The knowledge level of graduate students is not

sufficient”, “Most of the staff are part-time”, “The project staff are not well-informed

about project management”, “The project staff are not well-informed in the research

field”, “The academic workloads of the project staff negatively affects the project”,

and “The skillset of the graduate students is not determined early. Accordingly task

distribution is unbalanced” are found to be important by the participants. There were

no issues in this category rated as “not important,” “slightly important” or

“moderately important” by the majority of the participants. These findings support

the idea that the problems in RBSP are usually individual-oriented.

61

Table 4.2 - Frequency Table of the ‘Staff’ Category

1
 -

 N
o

t

im
p

o
rt

an
t

2
 -

 S
li

g
h

tl
y

im
p

o
rt

an
t

3
 -

 M
o

d
er

at
el

y

im
p

o
rt

an
t

4
 -

 I
m

p
o

rt
an

t

5
 -

 V
er

y

im
p

o
rt

an
t

1- The knowledge level of graduate students is

not sufficient.

2.1% 6.4% 25.5% 48.9% 17.0%

2- Most of the staff are part-time. 4.3% 12.8% 25.5% 51.1% 6.4%

3- Staff recirculation is high. 0.0% 6.4% 17.0% 34.0% 42.6%

4- The project staff are not well-informed

about project management.

0.0% 6.4% 36.2% 42.6% 14.9%

5- The project staff are not well-informed in

the research field.

0.0% 2.1% 36.2% 42.6% 19.1%

6- The academic workloads of the project staff

negatively affect the project.

2.1% 6.4% 31.9% 44.7% 14.9%

7- The skillset of the graduate students is not

determined early. Accordingly task

distribution is unbalanced.

0.0% 2.1% 27.7% 46.8% 23.4%

‘Communication’ is said to be one of the major problems in the interviews. The

frequency table of the questionnaire answers to this category is given in Table 4.3

below. The issues; “There are communication problems among project staff” and

“The project manager does not communicate with the project team effectively” are

found to be the very important issues related to the communication. The interviews

yield the flow of information between the team members as one of the most critical

issues. Frequent and structured meetings are often proposed as a solution to this

problem. The participants said that “Not holding frequent, well-structured meetings

regularly” is an important problem in RBSPs. The issues; “Communication and

coordination problems with the remote partners” and “The project staff only have

information about their parts in the project. They do not follow the progress of the

project and others” are most commonly answered as moderately important issues.

62

Table 4.3 - Frequency Table of the ‘Communication’ Category

1
 -

 N
o

t

im
p

o
rt

an
t

2
 -

 S
li

g
h

tl
y

im
p

o
rt

an
t

3
 -

 M
o

d
er

at
el

y

im
p

o
rt

an
t

4
 -

 I
m

p
o

rt
an

t

5
 -

 V
er

y

im
p

o
rt

an
t

1- There are communication problems among

project staff

0.0% 0.0% 12.8% 40.4% 46.8%

2- Not holding frequent, well-structured

meetings regularly

0.0% 0.0% 19.1% 51.1% 29.8%

3- Communication and coordination problems

with the remote partners

0.0% 8.5% 42.6% 31.9% 17.0%

4- The project staff only have information

about their parts in the project. They do not

follow the progress of the project and others

0.0% 8.5% 44.7% 29.8% 17.0%

5- The project manager does not communicate

with the project team effectively

0.0% 2.1% 10.6% 40.4% 46.8%

Another set of issues are directly related to the budget problems. The answers to the

issues related to the budget are given in Table 4.4 below. All the issues under the

budget category; “Insufficient budget,” “After the initial allocation, the budget

cannot be shifted between the project items,” and “The payments are not on time, or

they are partially done” are found to be important issues to the participants.

63

Table 4.4 - Frequency Table of the ‘Budget’ Category

1
 -

 N
o

t

im
p

o
rt

an
t

2
 -

 S
li

g
h

tl
y

im
p

o
rt

an
t

3
 -

 M
o

d
er

at
el

y

im
p

o
rt

an
t

4
 -

 I
m

p
o

rt
an

t

5
 -

 V
er

y

im
p

o
rt

an
t

1- Insufficient budget 0.0% 6.4% 17.0% 42.6% 34.0%

2- After the initial allocation, the budget

cannot be shifted between the project items

2.1% 8.5% 29.8% 40.4% 19.1%

3- The payments are not on time or they are

partially done

0.0% 8.5% 23.4% 38.3% 29.8%

Issues related to software development are also inquired about, and frequency table

to the answers are displayed in Table 4.5 below. All five items of the software

development category are found to be important issues to the participants.

Table 4.5 - Frequency Table of the ‘Software Development’ Category

1
 -

 N
o

t

im
p

o
rt

an
t

2
 -

 S
li

g
h

tl
y

im
p

o
rt

an
t

3
 -

 M
o

d
er

at
el

y

im
p

o
rt

an
t

4
 -

 I
m

p
o

rt
an

t

5
 -

 V
er

y

im
p

o
rt

an
t

1- Not utilizing software development

methodologies effectively

0.0% 0.0% 17.0% 53.2% 29.8%

2- Lack of documentation throughout the

project

0.0% 4.3% 27.7% 46.8% 21.3%

3- The project management tools are not

utilized properly.

0.0% 6.4% 29.8% 46.8% 17.0%

4- Lack of coding standards to ease the

integration of newcomers into the project

0.0% 4.3% 27.7% 42.6% 25.5%

5- Loss of know-how with the staff leaving the

project

0.0% 2.1% 14.9% 48.9% 34.0%

64

The questionnaire also included a single open-ended question asking the participants

to write about any other problems that they believe are important factors for the

failure of research-based projects. Few did so as per the remarks that follow:

1. Requirement analysis is not done completely.

2. There are infrastructural problems

3. There exist coordination issues

4. Participant selection is not skill-based, but relation-based.

5. Long project times. Research not being up-to-date at the end.

6. Customer requirement analysis and feasibility analysis should be done at the

beginning of the project.

7. Area experts should be present in the project.

The sentiments gathered from the open-ended questions reflect the data from the

interviews. Items such as “requirement analysis is not done completely” cannot be or

need not be dealt with in RBSPs since the nature of R&D makes early decisions on

requirements impossible [60]. This is an expected aspect of all RBSPs.

65

CHAPTER 5

PROPOSED METHODOLOGY

Based on the literature review and research conducted by authors through interviews

and survey, we conclude that neither there is a specific software development

methodology tailored to RBSPs, nor the existing methodologies are being used

effectively in the present RBSPs. In [61], ‘research-based project’ is defined as “.....

one in which the primary goal is to acquire knowledge of some kind or to resolve

some kind of uncertainty, rather than producing a tangible product as a deliverable.”

By Research-Based Software Projects, it is meant those containing software

development, at least in part, conducted in a university environment and generally

managed by academicians. During the interviews conducted within this study, the

interviewees who participated in such projects are asked about the key issues and

challenges faced throughout their project progress. The collected results are then

validated and advanced through the questionnaire by asking about the importance of

these issues concerning the failure of RBSPs. Next, a novel methodology is formed -

referred to as “RBAgile” - that is specifically tailored to RBSP.

In this chapter, all the features of the proposed methodology are explained, including

the motivation for a new method, basic principles, details, participating actors, life-

cycle, and additional guidelines for the researchers.

5.1 The motivation for a new Software Development Methodology

As stated in Chapter 2, to the best of our knowledge, the current development

methodologies do not meet all the needs of the RBSPs. Furthermore, a comparison of

these methodologies as provided in the section on background information also

reveal that no one methodology is suitable for all types of projects and that each

methodology has its weaknesses, thus preventing it from fulfilling the needs of the

individuals working on RBSPs. For example, the requirements are not prone to

change in Waterfall, Iterative and RAD methods; whereas the nature of RBSPs

dictates often changing requirements, even in the later stages of the project. Another

example could be given about agile as well as a few other traditional methods, where

66

those participating in the project team are expected to be highly knowledgeable and

even experts in their fields. In the RBSPs, graduate students are often employed

whose level of knowledge is often deemed low and inadequate. Any methodology

that requires all team members to be experts may not be suitable for RBSPs since the

majority of graduate students are not experts. One more example can be given about

the inclusion of end-user/customer participation as mandatory, which is the case in

most of the agile methods and some others, such as Prototyping and RAD. This also

conflicts with the nature of RBSPs, where end-user/customer participation is not

mandatory.

These incompatibilities of the current methodologies drive us to come up with a new

methodology that suits the needs of individuals working on RBSPs. To do this, we

first investigated the problems and best practices from the literature, and then further

analyzed them by conducting interviews and questionnaire studies.

Although the literature is quite limited on the problems in RBSPs, still the author(s)

managed to find two significantly relevant studies related to the factors contributing

to the success of university projects [4] and the problems faced by individuals in

such projects [42].

In [4], the factors that positively contribute to the success of the university projects

are given in three categories, namely (i) project’s initiation, (ii) development, and

(iii) implementation. The most significant aspects affecting the success of the

software development listed under these three categories can be given as follows:

Project initiation: problem identification, team, and interested community,

System development: team, interested community, development skills, and

resources,

Implementation: team, interested community and sustainability.

In [42], people retention, lack of funds and economic uncertainty, access restriction

to publication libraries, late plans on project development, getting end-user

interaction, problems due to industry partnership, problems with funding agencies,

and product maintenance issues raised by the user are found to be the main

challenges faced by the individuals that are involved in software development within

university environments.

67

Interviews and questionnaire results from our study showed that not only are SDM

steps problematic in RBSPs but also problems usually arise related to the project

management. Figure 5.1 shows the relationship between software development

methodology and project management while including some other aspects. As can be

seen from the figure, SDM and PM are highly integrated. Some of the development

methodologies, such as Scrum, heavily concentrate on the project management

aspect of the project, while others, such as Waterfall, only concentrate on the life-

cycle and the steps necessary to be taken. On the contrary, in our research, we come

up with both the SDM and the PM steps needed to be included in a methodology for

RBSPs.

Figure 5.1 - Relation between Software Development Methodology and Project Management

The main problems as determined by the present work are listed below:

1. Project Inception issues: (i) End-user/customer did not exist in the project, or

their participation is low; (ii) Detailed planning was not done at the beginning of

the project; and (iii) Alternative solutions to the potential research problems were

not set at early stages.

2. Team Member issues : (i) Knowledge levels of the graduate students were not

sufficient; (ii) Most of the staff were part-time and, hence, did not allocate

enough hours to the project; (iii) Staff turnover is high, leading to loss of know-

how; (iv) Project staff were not familiar with the project management culture; (v)

Academic workloads of the team members negatively affect the project; and (vi)

Skillset of the graduate students are not determined early, so task distribution is

problematic.

68

3. Communication issues: (i) Personal issues among team members; (ii)

Coordination problems with remote partners; (iii) Project Manager lacking

leadership skills; and (iv) Absence of frequent, well-structured meetings to relay

information and get feedback about project issues.

4. Budget issues: (i) Budget was insufficient for the project; (ii) Budget could not

be shifted among different procurement items after the initial distribution and (iii)

Payments were either not made on time or made partially.

5. Other issues: (i) Software Development Methodologies were not utilized

effectively; (ii) Documentation and coding standards were insufficient, and (iii)

Online project management tools were not utilized properly.

Table 5.1 below shows characteristics of RBSPs, and the current SDMs are not fit for

these characteristics and are not being used to solve the issues of RBSPs effectively.

There are similarities between the problems gathered from the literature and those

identified in this study.

69

Table 5.1 – Suitability of common SDMs for Research-Based Software Projects

Facts about RBSPs Waterfall Prototype Spiral RAD

Agile

XP Scrum

Requirements cannot be

set entirely at the

beginning of RBSPs,

and change often during

the project phases

✖ ✔ ✔ ✖ ✔ ✔

Includes inexperienced

graduate students as

team members

✔ ✖ ✔ ✖ ✔ ✖

Absence of

customer/end-user
✔ ✖ ✖ ✖ ✖ ✔

Daily communication

of team members is not

guaranteed

✔ ✔ ✔ ✔ ✔ ✖

Training of the team

members is a part of the

project life cycle and

practices

✔ ✔ ✖ ✔ ✔ ✖

Funding is generally

tight and for a limited

time

✖ ✖ ✖ ✔ ✔ ✔

Constant monitoring,

mentoring of the

graduate students are

required

✖ ✔ ✔ ✖ ✖ ✖

Low level of

operational

overhead on team

members.

✖ ✖ ✖ ✖ ✖ ✖

70

Development phases

are similar to general

approaches used by

academicians in their

projects

✔ ✔ ✖ ✖ ✖ ✔

Easy to use by

academicians that are

NOT knowledgeable

about SDMs.

✖ ✔ ✖ ✖ ✔ ✔

Should contain the

solutions to the issues

and challenges of

RBSPs mentioned in

this study

✖ ✖ ✖ ✖ ✖ ✖

Our primary motivation is to help those working on RBSPs to carry out their projects

successfully. To this end, a new methodology is proposed to focus on the problems

from literature and this study and to include the best-practices collected from similar

projects to fit the RBSPs needs. The issues that are not directly addressed in the

proposed methodology are given as the best practices to those willing to participate

in similar projects in Section 5.6 below.

5.2 Values and Principles of Research-Based Agile Software Development

Methodology (RBAgile)

The proposed methodology in this chapter is called “Research-Based Agile Software

Development Methodology,” or RBAgile in brief. The Manifesto for RBAgile is

given below and includes the values and principles of the proposed methodology.

In [62], the agile manifesto is given, where four values and twelve principles are

presented and widely accepted. All the agile methods share these ideas to some

degree. Some studies have modified these values and principles for their specific

needs. For example, in [63] and [64] the values and the principles of the agile

manifesto is modified in order to be used for scientific research purposes. In the

present work, we also take four values and twelve principles of the agile manifesto

71

and modify this manifesto to reflect the values and principles of research-based

software projects.

Below are the six values of RBAgile:

1. Individuals and interactions over processes and tools

2. Working software over comprehensive documentation

3. Customer collaboration over contract negotiation

4. Responding to change over following a plan

5. Easy-to-use and lightweight methods over intricate and elaborate ones

6. Skill-oriented task allocation over self-organizing teams.

The first four items are directly taken from the agile manifesto without any change.

The first, second and fourth items are directly related with the RBSPs and should be

included for any method intended to solve RBSPs’ problems. The third item states

the importance of customer collaboration over contract negotiation, which is also

essential for RBSPs. However, the end-user or the customer may not be present in all

of the RBSPs, or they might simply not be needed in some cases. This is one of the

differences between the projects that utilize agile methods and RBSPs.

The fifth item is added according to the needs of the RBSPs. As stated before, the

current methodologies are not efficiently used by the RBSPs. Henceforth, proposing

a new method that will be complex and detailed would result in it being ignored by

the individuals also involved in RBSPs. In order to be usable by RBSPs, a method

should be lightweight, meaning that adopting it should not consume much time, its

operation overhead should be low, and it should not entail intricate stages such that

even those outside the software field can find the method easy to use.

The last item is added in the list of values to defend ‘skill-oriented task allocation’

referred to as one of the significant problems in RBSPs according to our interviews.

Since RBSPs have limited resources, it is vital to acquire the staff that has the most

suitable skills for the project and to assigns them to the tasks they can excel

according to their skillset. Also, early skill assessment of the graduate students

reveals the necessary areas for additional training.

72

The twelve principles of RBAgile can be seen on the right side of Table 5.2 below, in

comparison with the twelve principles of agile.

Table 5.2 – Comparison of the Twelve Principles of Agile and the Twelve Principles of RBAgile

No The Twelve Principles of Agile The Twelve Principles of RBAgile Status

1

Our highest priority is to satisfy

the customer through early and

continuous delivery of valuable

software.

Prioritize the satisfaction of the end-

user, the customer or the project

manager through early and continuous

delivery of valuable software.

Modified

2

Welcome changing requirements,

even late in development. Agile

processes harness change for the

customer's competitive advantage.

Welcome changing requirements,

even late in development. Agile

processes harness change which is in

the nature of the Research &

Development heavy software projects.

Modified

3

Deliver working software

frequently, from a couple of weeks

to a couple of months, with a

preference to the shorter

timescale.

Deliver working software frequently,

from a couple of weeks to a couple of

months, with a preference to the

shorter timescale.

Same

4

Business people and developers

must work together daily

throughout the project.

When possible, business people, area

experts, end-users, customers and

team members must work together

intimately throughout the project.

Modified

5

Build projects around motivated

individuals. Give them the

environment and support they

need, and trust them to get the job

done.

Distribute the tasks based on the skills

of the individuals. Give them the

environment, the support, and the

training they need and monitor their

progress while they carry out the job.

Replaced

6

The most efficient and effective

method of conveying information

to and within a development team

is face-to-face conversation.

The most efficient and effective

method of conveying information to

and within a development team is

face-to-face conversation.

Same

73

7
Working software is the primary

measure of progress.

Working software is the primary

measure of progress.
Same

8

Agile processes promote

sustainable development. The

sponsors, developers, and users

should be able to maintain a

constant pace indefinitely.

Agile processes promote sustainable

development. The sponsors,

developers, and users should be able

to maintain a constant pace

indefinitely.

Same

9

Continuous attention to technical

excellence and good design

enhances agility.

Continuous attention to technical

excellence and good design enhances

agility.

Same

10

Simplicity - the art of maximizing

the amount of work not done - is

essential.

Simplicity is essential, not only as the

art of maximizing the amount of work

not done but also employing an easy-

to-understand and easy-to-use

“lightweight” method.

Modified

11

The best architectures,

requirements, and designs emerge

from self-organizing teams.

By establishing the critical parts of the

project in the early stages, and

collectively coming up with the

solutions to the problems emerged, a

project becomes prosperous.

Replaced

12

At regular intervals, the team

reflects on how to become more

effective, then tunes and adjusts its

behavior accordingly.

At regular intervals, the team reflects

on how to become more effective,

then tunes and adjusts its behavior

accordingly.

Same

As seen from Table 5.2, principles 1, 2, 4, and 10 are modified to meet the needs of

the research-based software projects. The principles numbered as 5 and 11 are our

new additions to the principles of agile. The remaining six principles are kept as they

are.

74

This modified version of the agile manifesto is a draft version called the “Manifesto

for Research-Based Agile Software Development.” The latest version of this

manifesto can be found online in [65].

5.3 Life-Cycle

The RBAgile Life-Cycle diagrams can be seen below in Figures 5.2 and 5.3. The

diagram in Figure 5.2 shows the essential life-cycle elements of the RBAgile,

whereas 5.3 displays a more detailed view of the life-cycle phases.

Figure 5.2 - Basic Life-Cycle Diagram of RBAgile

75

Figure 5.3 - Detailed View of the RBAgile Life-Cycle

The details of the life-cycle steps of RBAgile appear in Section 5.5. Before a detailed

explanation of each step, the participating actors in RBSPs and their roles and

responsibilities are defined in Section 5.4. The high quality, full page versions of the

life-cycle diagrams can also be found in Appendix F and Appendix G.

5.4 Actors, Roles, and Responsibilities

Many different actors take part in the development of RBSPs some of whom, such as

the project manager, researcher, and graduate students, are those that develop the

project. Others can be partners, funders, authority, or the actual users of the project

outputs. Not all these actors always coexist in all RBSPs. For example, the end-user

or customer may not exist in all RBSP or finding an area expert to externally guide

the project team may not be possible for a particular project.

5.4.1 Project Manager

The project manager (PM) is the leader of the project team [66] and always an

academician. The responsibilities of the project manager predate other team members

and include the initiation of the project, planning, procurement, designing, execution

of the entire project, overseeing the progress and finalizing the project to mention a

few [67]. In RBSPs, the idea of the project usually comes from the PM, thus making

her/him the primary initiator of the project. Initial planning, finding suitable team

76

members, and applying for funding are common responsibilities for the PM before

the project begins. During the project, the PM coordinates the team members, sets

out the rules to be followed, makes task distributions, organizes meetings,

communicates with the outside actors such as funding agencies and end-users, and

designates some of these responsibilities to other team members. The PM is not an

optional role, and all RBSPs should have one.

5.4.2 Researchers

In RBSPs researchers are academicians that have completed their doctoral studies.

Some of the commonly expected responsibilities of the researchers are conducting

research, finding solutions to research problems, monitoring the progress of the

graduate students, educating and directing graduate students, attending the project

meetings, and carrying out the duties assigned to them by the PM. Although

researcher participation is not mandatory for RBSPs, most of them incorporate

multiple researchers.

5.4.3 Graduate Students

These are the other members that develop RBSPs. Graduate students, as the name

suggests, study masters or doctoral degrees at universities and join the project team

with the aim to do research, design and develop programs, perform testing, and carry

out the other responsibilities that are assigned to them by the PM and the researchers.

In RBSPs, the PM can directly communicate with the graduate students in order to

assign tasks and monitor their progress, or a researcher can supervise one or more

graduate students and handle their participation in the project. Graduate students are

generally research or teaching assistants at the same time at universities and have

responsibilities there as well. A common reason for graduate students to participate

in RBSPs is to research their thesis studies. In that case, the PM or one of the

researchers is the advisor for the graduate student, and part of the entire RBSP is the

thesis study for the graduate student. The graduate student role is not mandatory for

RBSPs, but most projects involve graduate students at any rate.

77

5.4.4 End-User

The end-user is a person or a community that will use the output of the project,

meaning that the software program is primarily designed for them [68]. End-user

participation may not be possible or required due to the nature of the research being

carried out in the RBSP. Whenever due, presenting requirements, updating or

removing old requirements, and offering feedback to the progress of the project are

the primary responsibilities that are expected from end-users. When such

participation is not possible but needed, the PM should act as the end-user and take

over their responsibilities.

5.4.5 Customer (Product Owner)

The customer is a role that usually could not be found in RBSPs. Due to the nature of

the projects in RBSPs, they are initiated by the PM. However, in some cases,

governmental institutions or industry firms may request specific R&D software to be

developed. In such cases, the party that requested the R&D software is often

regarded as the customer. The typical responsibilities of the customer include but are

not limited to, stating their vision for the software product clearly, participating in the

gathering and fine-tuning of the requirements, and participating in test phases to give

feedback about the outputs [69].

5.4.6 Area Experts (Subject Matter Experts, Domain Experts)

These are the people that have authority in the area related to the research topic and

possess expert-level knowledge on a discipline, technology, product, process or an

entire field [70]. The primary responsibility of the area experts is to serve as a

consultant in projects and share their expertise on the topics wherever required.

Finding an available area expert may not be possible for all research areas, or one of

the team members may already be an area expert. In these cases, external area

experts do not participate in the RBSPs.

5.4.7 Funding Agencies (Project Sponsor)

Funding agencies are the institutions that sponsor the projects. Sponsoring includes

supplying financial resources and providing direction. Most RBSPs are funded by

such entities, whose responsibilities can include supplying funds, participating in

78

meetings with the project team, tracking the progress of the project, clarifying the

scope of the project, and making executive decisions [71].

5.4.8 University

As mentioned before, RBSPs are carried out in a university environment. These

universities also participate in RBSPs in some ways. Technology transfer offices

guide academicians and help them apply to the funding agencies. In some cases,

laboratories or necessary hardware are provided for projects. Universities may also

have internal funding organizations that support RBSPs financially.

5.4.9 Industry Partners

Along with being a customer to an RBSP, industry firms can also be a partner to a

project. When team members come together with industry partners, the task is

divided among them. Industry partner responsibilities include gathering or supplying

requirements, designing and developing project software, participating in meetings,

providing area expertise, and other tasks. Such a partnership is not a necessary role

for RBSPs. In some projects, it may be impossible to find an industry firm, or it may

simply be unnecessary due to the nature of the project.

5.4.10 Partner Institutions

Both in international projects and those carried by multiple institutions domestically,

managing institutions partner up with other institutions. Partner institutions are

considered as team members and share the same responsibilities as the managing

institution’s team members. They may employ researchers and graduate students, but

there is only one PM in the project based in the managing institution. As such,

partner institutions do not employ PMs and can be managed by a researcher who

directly communicates with the PM in the managing institution.

5.5 Detailed Explanation of Life-Cycle Steps

The steps of the RBAgile Life-cycle are:

1. Project Initiation;

2. Selection of the Tasks;

3. Daily Cycle of Development;

79

4. Iteration of the Task Development;

5. Evaluation of the Tasks;

6. Constant Improvement;

7. Updating the Skill Assessments; and

8. Releasing the Project Closure

Each of these steps contains multiple actions to be performed by multiple actors. The

details of these steps come in what follows.

5.5.1. Project Initiation

The PM is heavily involved in the project initiation stage and identifies the research

problems so as to decide on the initial requirements of the project. The PM lists the

necessary skills to be able to develop such an RBSP. Candidate team members are

also asked to fill the skill assessment forms. As a result, at this stage the skills needed

for the project and the possible team members’ skill are gathered for a comparison

between the needed skills and the currently available ones. This comparison reveals

the gaps in the necessary skills. Being aware of these gaps is crucial in order to plan

appropriate training for the team members. In this respect, procurement of the team

members is done according to their skills. The necessary skills for the project

document, individual skill assessment documents, a list of initial requirements, and

the list of research problems are the outputs of the Project Initiation phase.

There are many studies in the literature on how to assess the skills of the individuals.

The techniques shown in some of these works, such as [72], [73], [74], [75], [76],

and [77], can be used for skill assessment. Another easy way of assessing skills is

merely listing the necessary skills for the project in one sheet and asking individuals

to state their level of competence for each one. The answers may also be collected

digitally for easy updating as the project progresses.

5.5.2. Selection of the Tasks

In this phase, team members decide on which tasks to be worked on in the next

iteration. While deciding on the tasks, the importance of the tasks should be

considered, and the tasks that are most critical to the project should be handled in the

80

early iterations of the project life-cycle. The critical tasks, updated requirements, and

the solutions to the problems related to the tasks are all decided collectively

throughout the meetings held with the project team members. At the end of each

meeting, a list of selected tasks is generated and shared with all the team members.

The tasks that are selected to be worked on in the iteration do not have to be related

to software development only and project management tasks such as procurements,

training, and documentation are also included in this set.

5.5.3. Daily/Weekly Cycle

In the daily/weekly cycle of the project, graduate students participate in the

development of tasks that are distributed according to their skillset. The researchers

oversee the progress of one or more graduate students, mentor them, and train them

in order to ensure a smooth workflow. Meanwhile, the PM oversees the entire team

members, assigns researchers on solving various research questions and re-arranges

researcher/graduate student hierarchy upon necessity. In RBSPs, team members

usually have additional responsibilities, such as academic undertakings, and work on

these projects as part-time. Since RBAgile is a lightweight method, as part of its

novelty the present work intends to reduce the overhead of employing an SDM. In

this way, daily meetings and daily reporting of the progress is not mandatory and

such operations are performed as frequently as the team members are comfortable

with doing them.

5.5.4. Iteration of the Task Development

The daily/weekly cycle phase of the life-cycle repeats itself as long as the iteration

takes which is usually two to four weeks. Some tasks are exceptions and may require

multiple iterations to be completed. As explained before, the tasks included in the

iteration phase do not have to be software development tasks and producing research

items such as papers and dissertations or writing documentation for the funding

agency is also a part of the iteration. Although not explicitly included in the list of

selected tasks, testing and quality control steps are also a part of the iteration phase.

81

5.5.5. Evaluation of the Tasks

After an iteration is completed, one or more tasks related to that iteration need to be

evaluated. If end-users, customers, area-experts are present, they are expected to

participate in such evaluation. Otherwise, the project manager or the researcher that

monitors the progress of the tasks take over as the evaluator. At the end of the

evaluation, the tasks are categorized as fully completed, partially completed, or

incomplete/rejected. Those deemed as fully completed are expected to be worked on

in the next iteration. If there are any problems faced during the task development,

such problems need to be brought to constant improvement and set for the upcoming

task assignment meetings, where related team members should collectively come up

with the solutions to the problems.

5.5.6. Constant Improvement

After the evaluation of each iteration ends, the effectiveness of the project itself is

evaluated by the team members. The problems and challenges faced are brought to

constant improvement in meetings, and changes to the employed methodology or the

team members are made in order to avoid further incidents. The completion of a set

of tasks may also result in changes to the requirements which need to be brought to

the attention of the team members in such meetings.

5.5.7. Updating the Skill Assessments

During the project works, those student members will gain new knowledge and

improve their skillset [78]. These changes should be reflected in the skill assessment

document. The updates may be reflected whenever needed, but it is advised to be

revised at least once in every two iterations. Based on monitorization and continuous

assessment, the manager may sometimes need to delete the skills that were assumed

to be possessed by the student or reduce the level of skills recorded in the document.

5.5.8. Releasing the Project/Project Closure

RBSPs are usually sponsored by funding agencies for a fixed period, and they are

finalized when all tasks are completed, and the end-user, customer, or PM is

satisfied, or once the funding period is ended. When there is a fund for the

82

maintenance of the project, the project is released at a satisfactory stage, and the

project development life-cycle is continued during the maintenance of the project.

5.6 Guidelines Offered for Research-Based Software Projects

In a previous study, the author proposed a framework for university projects [42].

The framework contains essential items to consider for supervisors, research groups,

and regulators. In the present study, we gather essential factors and best-practices

directly from the individuals that participated in RBSPs. In Tables 5.3 to 5.6, the

framework appears for the guidelines formed from the best-practices and categorized

according to the role of the participants.

83

Table 5.3 – Framework for the Guidelines offered to Project Managers

Role: Project Manager Description and Examples

Collective decision

making

While finding solutions to the problems, identifying the critical parts, and

evaluating the tasks always include related individuals to the decision-

making progress through meetings.

Well-structured

frequent meetings

Decide on a fixed interval for the meetings; ensure it suits the majority of

the team members, and always record the minutes of the meetings and the

decisions taken therein.

Staff procurement When deciding whom to involve in the project, always check their skill

compatibility with the needed skills for the project. Being compatible with

other individuals in the project is a significant advantage. If the skills of

the individuals are entirely unknown, small sample projects that require

similar skills to the actual project can be given to the candidates to measure

their skill levels.

Early staff evaluation Knowing the skillset of the individuals in the project lets one plan suitable

training tasks and make task distribution more balanced.

Employ online tools in

project management

Online tools such as versioning, task management, continuous integration,

and continuous testing to make the management of the project more

comfortable and reduce the need to communicate.

Leadership skills Projects that have a manager who communicates well with the team and

shows leadership skills are deemed as successful by the team members.

Familiarity with

Software Development

PM is advised to employ at least one researcher, as a team member, who is

familiar with SDMs to carry the project steps successfully.

Employ a document

management system

In an environment where staff turnover is frequent and expected, having a

reliable document management system integrated with the task

management system will help to keep the know-how within the project.

84

Table 5.4 – Framework for the Guidelines offered to Project Team Members

Role: Team Member Description and Examples

Always communicate Do not hesitate to ask others for help. Communication is a critical

component of a successful project. The best form of communication is

face-to-face.

Motivation One should participate in parts of the project that they feel motivated

about. For graduate students, writing a thesis based on the project they are

involved with provides extra incentive for them.

Embrace change RBSPs include R&D; hence, the requirements cannot be set at the

beginning of the project. Be ready for some changes even in the later

stages of the project.

Work ethics Work ethics become a problem among the team members in some projects.

In order not to frustrate the researchers and the project manager one

responds to, one should always be on time, not forget scheduled events, be

respectful to their fellow team members, and be mindful of other issues.

Pay attention to

received feedback

When an end-user provides feedback, a customer, project manager or even

another researcher in the project should always pay attention to such

feedback as the completion of the tasks depends on these remarks.

Fulfill roles Make sure to have enough team members that will carry the necessary

roles within the method.

Reuse, Borrow Reuse any previously developed, open source or Commercial Off-The-

Shelf (COTS) module in software development to reduce time in the

current project.

85

Table 5.5 – Framework for the Guidelines offered to End-Users/Customers

Role:

End-User/Customer

Description and Examples

Be available Always be available for the project team. The project team will need end-

user participation in some of the meetings related to the problems,

progress, or evaluation. Be there for them in order to increase productivity.

Give detailed feedback The feedback they are trying to get from end-user is crucial for the project

team. Be it in the requirements gathering phase, the progress of the project

or the acceptance of the completed tasks, end-user feedback will drive the

team members.

Table 5.6 – Framework for the Guidelines offered to Funding Agency and Universities

Role:

Funding Agency/

University

Description and Examples

Consistent payments While funding a project, make sure to be consistent with the payment

schedule, and do not cut expenses without sound reasoning in order to keep

the spirits of the team members high.

Flexibility among

payment items

In RBSPs, it is impossible to foresee the exact amount of payment required

for certain items. Let the project managers shift the money among the

payment items. By doing so, the funding agency would be supporting the

unexpected expenses faced in the late project phases.

Do not overburden the

project team

While asking for documentation and other administrative work from the

project team, funding agencies should be careful not to overburden the

team members. Otherwise, the efforts of the project team are likely to shift

from developing the project to replying to the required administrative

works.

In Tables 5.3 to 5.6, a framework is proposed for those involved in RBSPs

highlighting individuals’ roles. The first column in each table shows the given best-

practices for the individuals, and the second column explains the said best-practices.

86

5.7 Discussion of the Proposed Methodology

When proposing a new methodology for RBSPs, we decided that it should be an

agile one. Previously, it was stated that no current agile methods are suitable for the

needs of the RBSPs, but a considerable portion of the values and principles of agile

manifesto are in line with the needs of RBSPs. What we did in the end, is to start

with the agile manifesto, and modify it so that all its values and principles will apply

to the RBSPs. Utilizing this modified manifesto, the findings of the literature and our

research, we proposed a new methodology similar to Scrum in principle. However,

the proposed methodology contains significant differences from the Scrum. In detail,

as opposed to Scrum, RBAgile prioritizes distribution of the tasks according to the

skills of the individuals, constant monitoring of the developers, and integrating

custom training within the methodology. We also removed the mandatory daily

progress meetings from the methodology. Instead, the designated team member will

oversee the progress of the task development as frequently as they feel comfortable

doing so. This was a necessary addition to reduce the operating overhead of the

proposed methodology.

Additionally, Scrum requires the customer to be a part of the development team and

work daily with them throughout the project. In RBAgile, having a customer in the

project is desired, but not necessary. The absence of the customer can be covered by

the project manager or researchers. Proposing a method that would not diverge from

the ongoing habits of the academicians that participate in RBSPs was another

concern for us. Research done yielded that dividing the project into small tasks,

assigning these tasks to the developers, working closely with the developers and

monitoring their progress, training the team members, and giving constant feedback

are all familiar concepts for the academicians that participate in RBSPs. In another

way, our method acts as an umbrella that contains these best-practices under formally

defined lifecycle steps.

There is a family of a methodology, called ‘Crystal Methods,’ which also prioritize

the skills of the team members [79] in project development. The Crystal Methods

approach claims that formal methodologies are not necessary for developing

successful projects and makes the process a secondary focus. RBAgile shares some

87

of its features with Crystal Methods but defends the use of formal methodologies and

the necessity of following a formal life-cycle in RBSPs.

5.8 Expert Opinions

A case study is a good research method to evaluate various aspects of our proposed

methodology [80]. However, in the present study, a case study approach is not

utilized. The RBSPs generally takes two to three years to be completed which means

that, in order to test the method on a single RBSP, a more extended period is required

as compared to the present attempt. We did not have that much time at hand. Also,

finding a PM that will accept the proposed methodology and utilize it in a funded

project is another issue. In the present study, to evaluate the suggested RBAgile

without applying a case study approach, we turned to collect expert opinions. This

study defines experts as “academicians that are Assistant Professor or higher, having

worked in Computer Science or Software Engineering departments for more than

five years and participated in RBSPs before.” Another accepted expert definition is

one who is employed in any university department for five years and who has

participated in more than five RBSPs.

To conduct the expert opinion study, Chapter 5 of the present study, which explains

the RBAgile, and a Likert scale questionnaire is given to ten experts. Experts are

asked to read the entire text and, later, answer the questionnaire using their expertise

in the field. Eight experts did so, and the questionnaire can be found in Appendix H

in Turkish and in Appendix I in English. In Table 5.7 below, the frequency of the

questionnaire items is given. The responses to the questionnaire were (i) Strongly

Disagree, (ii) Disagree, (iii) Undecided, (iv) Agree, and (v) Strongly Agree [81]. In

Table 5.8, the options strongly disagree and disagree are combined, and the options

strongly agree and agree are combined, leaving three aggregated responses: (i)

Disagree, (ii) Undecided, (iii) Agree, to present the expert opinions in terms of

positive, negative or neutral responses [82]. In the questionnaire, enough space is

given after each question for the experts to provide reasoning for their answers as

requested.

At the end of the questionnaire, an open-ended question is asked in order to collect

all the suggestions, and criticisms experts have for the proposed methodology. The

88

feedback taken from the experts is reflected in the guidelines provided in Chapter 5,

as well as the section explaining the RBAgile. Those parts deemed problematic in the

said text are clarified by rewriting or clarifying the information differently. For

example, the values and principles of the agile methodology and RBAgile were

separately given in the original text. After the feedback, the items are put side by side

in a table in order to show the differences more clearly. From the eight experts, seven

were academicians for more than ten years and one for five to ten years. Five of the

experts claimed to have average knowledge about software development

methodologies; one claimed to have very good knowledge, one with good

knowledge, and the remaining one little knowledge about SDMs. From all the

experts, three had participated in more than five RBSPs, four in 2-3 RBSPs and one

in just one RBSP. Two of the experts that had participated in more than five projects

were from a department that is not related to computer science or software

engineering. For our study, gathering expert opinions from outside of the related

departments was essential to discover the understandability and usability of RBAgile

for those not familiar with SDMs.

89

Table 5.7 – Frequency Table of the Expert Opinions

1
 –

 S
tr

o
n
g

ly

D
is

ag
re

e

2
 -

 D
is

ag
re

e

3
 -

 U
n

d
ec

id
ed

4
 -

 A
g

re
e

5
 –

 S
tr

o
n
g

ly

A
g

re
e

1- RBAgile is an easy to learn method 0.00% 0.00% 0.00% 62.50% 37.50%

2- RBAgile is easy to use by academicians that

are knowledgeable about SDMs.

0.00% 0.00% 0.00% 25.00% 75.00%

3- RBAgile is easy to use by academicians that

are NOT knowledgeable about SDMs.

0.00% 0.00% 37.50% 37.50% 25.00%

4- RBAgile employs project development

phases that are familiar to academicians.

0.00% 12.50% 12.50% 37.50% 37.50%

5- RBAgile is a useful SDM for RBSPs. 0.00% 0.00% 0.00% 37.50% 62.50%

6- RBAgile is more useful than the common

SDMs (such as Waterfall, Scrum, XP, Spiral)

for RBSPs.

0.00% 0.00% 40.00% 40.00% 20.00%

7- Employing RBAgile will increase the

productivity of RBSPs.

0.00% 0.00% 25.00% 37.50% 37.50%

8- RBAgile includes all the necessary steps

needed for software development in RBSPs.

0.00% 0.00% 37.50% 12.50% 50.00%

9- RBAgile does not convey extensive

administrative costs to the team members.

0.00% 0.00% 25.00% 50.00% 25.00%

10- RBAgile contains the solutions to the

issues and challenges of RBSPs as mentioned

in the given text.

0.00% 0.00% 12.50% 37.50% 50.00%

90

Table 5.8 – Aggregated Frequency Table of the Expert Opinions

Disagree Undecided Agree

1- RBAgile is an easy to learn method. 0.00% 0.00% 100.00%

2- RBAgile is easy to use by academicians that

are knowledgeable about SDMs.

0.00% 0.00% 100.00%

3- RBAgile is easy to use by academicians that

are NOT knowledgeable about SDMs.

0.00% 37.50% 62.50%

4- RBAgile employs project development

phases that are familiar to academicians.

12.50% 12.50% 75.00%

5- RBAgile is a useful SDM for RBSPs. 0.00% 0.00% 100.00%

6- RBAgile is more useful than the common

SDMs (such as Waterfall, Scrum, XP, Spiral)

for RBSPs.

0.00% 40.00% 60.00%

7- Employing RBAgile will increase the

productivity of RBSPs.

0.00% 25.00% 75.00%

8- RBAgile includes all the necessary steps

needed for software development in RBSPs.

0.00% 37.50% 62.50%

9- RBAgile does not convey extensive

administrative costs to the team members.

0.00% 25.00% 75.00%

10- RBAgile contains the solutions to the

issues and challenges of RBSPs as mentioned

in the given text.

0.00% 12.50% 87.50%

Table 5.7 and Table 5.8 clearly show that most of the statements on the left are

agreed to by experts. Statements 1, 2, and 5 are agreed 100% so, meaning that

experts agree that RBAgile can be learned quickly, can be used easily by

academicians familiar with SDMs and that it is a useful SDM for RBSPs. There is

only one statement in the questionnaire that received a 13% disagreement; the item

“RBAgile employs project development phases that are familiar to academicians.”

91

This means that only one expert disagreed who stated that the selection of the staff in

RBAgile, which is skill-based, is significantly different from the methods they

employ, so that phase of the project seemed completely unfamiliar. Statements 4, 7,

9, and 10 are agreed to by more than 75% of the experts. Statement 6 exhibits a

comparison between common SDMs and RBAgile. Three experts explained that they

lack the necessary knowledge on common SDMs to answer this question and left it

blank. 60% of the remaining experts answered as “Agree,” and the remaining 40%

answered “Undecided.” Following Statement 6, the statements “RBAgile is easy to

use by academicians that are NOT knowledgeable about SDMs” and “RBAgile

includes all the necessary steps needed for software development in RBSPs” received

the highest “Undecided” rate with 38%. Based on the feedback, the authors decided

to rewrite the parts of the text that explain these aspects of the proposed methodology

to make them clearer. In the feedback, no significant changes are demanded by

experts for the contents of the RBAgile itself, but the feedback taken is used to create

additional guidelines for the PMs and team members. With the new changes done to

the document, the second round of expert opinions is collected from the same eight

experts in order to observe any positive changes. The results of the second round of

expert opinions can be seen in Table 5.9 below. The table shows a significant

improvement of acceptance rate in the collected answers. The feedback taken in the

second round of expert opinions required no changes to the methodology.

92

Table 5.9 - Aggregated Frequency Table of the Second Round of Expert Opinions

 Disagree Undecided Agree

1- RBAgile is an easy to learn method. 0.00% 0.00% 100.00%

2- RBAgile is easy to use by academicians that

are knowledgeable about SDMs.

0.00% 0.00% 100.00%

3- RBAgile is easy to use by academicians that

are NOT knowledgeable about SDMs.

0.00% 12.50% 87.50%

4- RBAgile employs project development

phases that are familiar to academicians.

12.50% 12.50% 75.00%

5- RBAgile is a useful SDM for RBSPs. 0.00% 0.00% 100.00%

6- RBAgile is more useful than the common

SDMs (such as Waterfall, Scrum, XP, Spiral)

for RBSPs.

0.00% 16.67% 83.33%

7- Employing RBAgile will increase the

productivity of RBSPs.

0.00% 25.00% 75.00%

8- RBAgile includes all the necessary steps

needed for software development in RBSPs.

0.00% 25.00% 75.00%

9- RBAgile does not convey extensive

administrative costs to the team members.

0.00% 0.00% 100.00%

10- RBAgile contains the solutions to the

issues and challenges of RBSPs as mentioned

in the given text.

0.00% 12.50% 87.50%

93

CHAPTER 6

CONCLUSION AND FUTURE WORK

In this study, three main research questions are investigated, and answers to those

questions are presented.

The first research question was:

1. At what level, the common software development methodologies are effectively

implemented in research-based software projects?

To answer the first research question, a literature review was performed, and

interviews were conducted with the individuals that participated in RBSPs. It is seen

that, within university environments, no common software development

methodology is employed by individuals, and that project managers and other team

members usually make use of their previous knowledge about developing similar

projects instead of utilizing an already known methodology. The answer to the

research question can be found in Chapter 2 and Chapter 4. The literature review in

Chapter 2 involves previous studies, such as [2] and [5], which display the lack of

software development methodologies in projects initiated at universities. An analysis

of the interviews for this study can be found in Chapter 4 based on which none of the

participants appear to include a common software development methodology in their

studies. Most refer to habits from previously worked projects as reflected in their

RBSPs. A more in-depth investigation yielded that most of the habits participants

described are similar to the already known methods, namely prototyping. Since none

of the university projects highlight a common methodology used, the “At what level,

the common software development methodologies are effectively implemented in

Research-Based Software Projects?” is fully answered as “Common methodologies

are not being utilized in RBSPs.”

The second research question asks:

2. What are the common problems faced by the project team while working on

research-based software projects?

94

The common issues and challenges faced by the project team during the development

of RBSPs were gathered both from the literature, the interviews and the

questionnaires conducted in this study. In Chapter 2, literature studies [4] and [42]

refer to some problems related to the projects carried out by universities. In [42],

these problems were put into eight categories, namely people retention, lack of funds

and economic uncertainty, access restriction to publication libraries, late plans on

project development, getting end-user interaction, problems due to industry

partnership, problems with funding agencies, and product maintenance issues.

Chapter 4 here is the analysis of our interview and questionnaire data, all of which

set out the problems faced by the individuals working on RBSPs. In the interviews,

twenty-four problems are categorized into six different groups as the inception of the

projects, people, budget, the university, communication, and unexpected risks. Later

in the questionnaire, these twenty-four problems are validated with a different set of

academicians. In the result of the questionnaire, none of the twenty-four problems

are deemed as unimportant or slightly important. Four problems are found to be very

important, eighteen of the problems are found to be important, and the remaining two

problems are found to be moderately important. Based on these findings, this

research question is considered as fully answered in the study.

The last research question was:

3. What are the best practices that are employed in research-based software

projects?

In Chapter 2, the literature review, the factors contributing to the success of the

university projects are listed in [4]. In this study, these factors are gathered from the

literature survey. In [42], the best practices of individuals have taken part in

university projects are collected via interviews and later applied as a framework for

the individuals that will participate in university projects.

In this study, the conducted interviews contain questions that collect the best

practices of the individuals that participate in RBSPs as well as their issues and

challenges. Also, in Chapter 4, the analysis of the interviews is given where the

collected best practices are shown as success factors and suggestions for a new

methodology. Some of the best practices include increasing the flow of information,

face-to-face communication, employ well-structured frequent meetings, collective

95

decision making, compatible teammates, critical parts established and handled early,

balanced task distribution, and so on. Accordingly, the last research question is fully

answered in this study.

After answering all the research questions, the purpose of this study, which is “to

develop and propose a new software development methodology that will satisfy the

needs of individuals involved in research-based software projects at universities.” is

achieved upon the introduction of “RBAgile” in Chapter 5. The proposed

methodology is based on the key issues, challenges, and the best practices gathered

from the individuals having participated in RBSPs, as well as additional findings

from the literature. The proposed method is considered an agile methodology by the

authors since it follows and expands the values and principles of the agile manifesto.

Chapter 5 shows the comparison between The Agile Manifesto and Manifesto for

Research-Based Agile Software Development which is produced in the present

study. RBAgile is defined with its life-cycle, actors, details of its phases, values,

principles, and its discussion in Chapter 5. RBAgile is evaluated by the experts and

overwhelmingly accepted as easy to learn, easy to use, and a useful method that

solves stated problems for RBSPs.

As in all studies, the present work also has its limitations. To begin with, the research

that is performed on this study is based on Grounded Theory, which is a well-known

qualitative research method with its limitations. For instance, the findings of

qualitative studies are not as scalable as quantitative studies for larger populations.

To overcome the shortcoming of the qualitative studies, a questionnaire is conducted,

and the findings of the interviews are validated. The quantitative data gathered from

the interviews validated the findings of the results, adding more confidence to the

generalizability of this study. Another limitation is due to the interviews. The

selection of the participants was made through convenience sampling, which can be

seen as a limitation. The number of the interviewees was high, and data saturation

was reached in the interviews; though more interviews with others who have

participated in the same projects could be held in order to triangulate the results

better. The sample size of the questionnaire was forty-seven people. Although all of

them were quality sources since they are academicians familiar with the research

field, this number could be increased further to guarantee added generalizability.

96

Expert opinions are gathered from 8 academicians. Although the number may seem

low, the feedback acquired from these academicians were all high-quality. Still, more

expert opinions could provide additional insight into the issues. Another point is that

the literature considered in the review section is all English with the primary sources

of surveying performed on IEEE Xplore, ACM digital library, Scopus, and Google

Scholar. Therefore, any literature that is written in a different language or does not

show up as a result in these searches may have been overlooked. Finally, time was

another limitation of this study. Since thesis studies are concluded in a limited

amount of time, more thorough research could have been best. As an example, the

proposed methodology could have been employed in multiple RBSPs as case-studies

due to the time they take to be completed, that is two to three years on average.

In this study, three main outputs are produced: the problems faced in RBSPs, the

best-practices of RBSPs, and the proposed methodology. The findings related to the

problems and the best practices are believed to be useful for those who wish to

participate in such projects. To know what type of challenges they may face, and

what type of solutions are proposed to these challenges is considered as valuable

information. These outputs may also be studied by the funding agencies as well as

universities to understand the common issues and best practices better so that they

can evaluate their positions in such projects and use their resources more effectively.

The last output of the study is the proposed methodology. By employing RBAgile,

team members are expected to increase the productivity of their development,

increase the flow of information, set tasks according to the skills of the team

members, and overall have a better experience developing RBSPs. Other than team

members, funding agencies and universities may find the methodology useful and

study the steps suggested in this method to optimize their project phases.

As a future study, the proposed methodology RBAgile can be applied to one or more

RBSPs as case-studies, and the success of these projects may be monitored to

discover the usefulness of the method. The proposed methodology can also be

accepted as an initial draft with additions or alterations to the methodology done

according to the feedback gathered from the case studies. Another future attempt

may be to introduce the proposed methodology to funding agencies to modify their

97

methods and come up with a more suitable funding procedure that increases the

success rate of research-based software projects.

Other academicians may also take the findings of this study, as well as the

methodology proposed as a base point and research and expand it to suit their own

specific needs.

98

REFERENCES

[1] C. B. Seaman, “Qualitative methods in empirical studies of software

engineering,” IEEE Trans. Softw. Eng., vol. 25, no. 4, pp. 557–572, Jul. 1999.

[2] D. M. P. Dias, N. D. Kodikara, and M. Jayawardena, “The Need for Novel

Development Methodologies for Software Projects in Universities : A Sri

Lankan Case Study,” Int. J. Futur. Comput. Commun., vol. 2, no. 5, pp. 10–

14, 2013.

[3] J. Farsi, M. Modarresi, and H. Zarea, “Obstacles and Solutions of

Commercialization of University Research: Case Study of Small Businesses

Development Center of University of Tehran,” J. Knowl. Manag. Econ. Inf.

Technol., vol. 1, 2011.

[4] M. Dias, Y. Ekanayaka, and N. D. Kodikara, “Analysis of factors contributing

to software development in Sri Lankan universities,” Proceedings - Pacific

Asia Conference on Information Systems, PACIS 2014. 2014.

[5] M. Dias, N. Kodikara, and Y. Ekanayaka, “Differences between universities

and industry in software development,” 32nd Natl. Inf. Technol. Conf.

Colombo, Sri Lanka, pp. 207–211, 2014.

[6] N. K. Denzin and Y. S. Lincoln, Sage handbook of qualitative research. 2000.

[7] S. J. Taylor, R. Bogdan, and M. DeVault, Introduction to Qualitative

Research Methods: A Guidebook and Resource. Wiley, 2015.

[8] I. Deutscher, F. P. Pestello, and H. F. G. Pestello, Sentiments and Acts.

Transaction Publishers, 1993.

[9] B. G. Glaser and A. L. Strauss, The Discovery of Grounded Theory. 1967.

[10] H. R. Wagner, B. G. Glaser, and A. L. Strauss, “The Discovery of Grounded

Theory: Strategies for Qualitative Research.,” Soc. Forces, 1968.

[11] M. B. Miles, A. M. Huberman, and J. Saldana, Qualitative Data Analysis.

SAGE Publications, 2014.

[12] M. L. DESPA, “Comparative study on software development

methodologies.,” Database Syst. J., vol. 5, no. 3, pp. 37–56, 2014.

[13] G. Elliott, Global Business Information Technology: An Integrated Systems

Approach. Pearson Addison Wesley, 2004.

[14] Centers for Medicare & Medicaid Services, “Selecting a development

99

approach,” Centers Medicare Medicaid Serv., 2005.

[15] R. Sorensen, “A Comparison of Software Development Methodologies.” p.

15, 1995.

[16] H. B. Mahapatra and B. Goswami, “Selection of Software Development

Methodology (SDM): A Comparative Approach,” Int. J. Adv. Res. Comput.

Sci. Softw. Eng., vol. 5, no. 3, pp. 58–61, 2015.

[17] M. Y. Al-Tarawneh, M. S. Abdullah, and A. B. M. Ali, “A proposed

methodology for establishing software process development improvement for

small software development firms,” Procedia Comput. Sci., vol. 3, pp. 893–

897, 2011.

[18] Y. Dittrich, “What does it mean to use a method? Towards a practice theory

for software engineering,” Inf. Softw. Technol., vol. 70, pp. 220–231, 2016.

[19] W. W. Royce, “Managing the Development of Large Software Systems:

Concepts and Techniques,” in Proceedings of the 9th International

Conference on Software Engineering, 1987, pp. 328–338.

[20] J. E. Cooling and T. S. Hughes, “The Emergence of Rapid Prototyping as a

Real-Time Software Development Tool,” in Second International Conference

on Software Engineering for Real Time Systems, 1989.

[21] R. Victor, “Iterative and Incremental Development :,” no. June, pp. 47–56,

2003.

[22] B. W. Boehm, T. R. W. Defense, and S. Group, “A Spiral Model of Software

Development and Enhancement,” no. 1, 1987.

[23] Blue Ink Technical Details, “Rapid Application Development,” Republished

on Developers.net October 14 2005. Rapid, 2005. .

[24] K. Beck, “Embracing Change with Extreme Programming,” Comput. (Vol. 32

, Issue 10 , Oct 1999, pp. 70–77, 1999.

[25] L. Rising, N. S. Janoff, and A. G. C. Systems, “The Scrum Software

Development Process for Small Teams,” no. August, 2000.

[26] K. Beck, Extreme Programming Explained: Embrace Change. Boston, MA,

USA: Addison-Wesley Longman Publishing Co., Inc., 2000.

[27] E. Mnkandla and B. Dwolatzky, “A survey of agile methodologies,” SAIEE

Africa Research Journal. 2004.

[28] “What is Scrum?” [Online]. Available:

100

https://www.scrum.org/resources/what-is-scrum. [Accessed: 22-Jan-2019].

[29] A. A. Choukou, “Agile Software Development Methodologies : A

Comparative Study,” Atilim University.

[30] A. Meidan, J. A. García-García, M. J. Escalona, and I. Ramos, “Selecting

Development Approach,” Comput. Stand. Interfaces, vol. 51, pp. 71–86, 2017.

[31] M. JAVANMARD and M. ALIAN, “Comparison between Agile and

Traditional software development methodologies,” Cumhuriyet Science

Journal. 2015.

[32] K. El Emam and G. A. Koru, “A replicated survey of IT software project

failures,” IEEE Softw., 2008.

[33] P. Kagan, A. Naumova, and Y. Vilman, “The Problems of project

management software implementation in construction corporations,” MATEC

Web Conf., vol. 73, pp. 4–8, 2016.

[34] M. Niazi et al., “Challenges of project management in global software

development: A client-vendor analysis,” Inf. Softw. Technol., vol. 80, pp. 1–

19, 2016.

[35] C. Amrit and J. Van Hillegersberg, “Detecting coordination problems in

collaborative software development environments,” Inf. Syst. Manag., 2008.

[36] J. C. Carver and R. Prikladnicki, “Industry-Academia Collaboration in

Software Engineering,” IEEE Softw., vol. 35, no. 5, pp. 120–124, 2018.

[37] M. Jorgensen, “Working with Industry,” 2017 IEEE/ACM 5th Int. Work.

Conduct. Empir. Stud. Ind., 2017.

[38] B. A. Kitchenham, T. Dyba, and M. Jorgensen, “Evidence-Based Software

Engineering,” in Proceedings of the 26th International Conference on

Software Engineering, 2004, pp. 273–281.

[39] S. E. Straus and F. A. McAlister, “Evidence-based medicine: a commentary

on common criticisms,” CMAJ, vol. 163, no. 7, pp. 837–841, 2000.

[40] J. West and S. Gallagher, “Patterns of Open Innovation in Open Source

Software,” Open Innov. Res. a New Paradig., 2008.

[41] C. Joo, H. Kang, and H. Lee, “Anatomy of Open Source Software Projects :,”

5th Int. Conf. Commun. Comput. Appl., no. October, pp. 12–14, 2012.

[42] D. Dias, “Managing Research Based Software Product Development in Sri

Lankan Universities,” no. i, 2016.

101

[43] N. Walliman, Research Methods: The Basics. Routledge, 2011.

[44] G. I. Susman and R. D. Evered, “An Assessment of the Scientific Merits of

Action Research,” Adm. Sci. Q., vol. (23), pp. 582–603, 1978.

[45] R. Sagor, Guiding School Improvement with Action Research. Alexandria, Va:

ASCD, 2000.

[46] J. Van Maanen, Tales of the Field: On Writing Ethnography. Chicago,

University of Chicago Press, 1988.

[47] R. K. Yin, Case Study Research, Design and Methods, 3rd ed. Newbury Park:

SAGE Publications, 2002.

[48] B. L. Berg, Qualitative Research Methods for the Social Sciences, 4th ed. S.

L. Kelbaugh: Pearson Addison Wesley, 2001.

[49] J. Altmann, “Observational study of behavior: sampling methods,” Behaviour,

vol. 49, no. 3, pp. 227–67, 1974.

[50] P. I. Fusch and L. R. Ness, “Are We There Yet? Data Saturation in Qualitative

Research,” 2015.

[51] B. Saunders et al., “Saturation in qualitative research: exploring its

conceptualization and operationalization,” Qual. Quant., 2018.

[52] G. Guest, A. Bunce, and L. Johnson, “How Many Interviews Are Enough?:

An Experiment with Data Saturation and Variability,” Field methods, 2006.

[53] W. J. Sutherland, “Predicting the ecological consequences of environmental

change: A review of the methods,” in Journal of Applied Ecology, 2006.

[54] P. M. Kuhnert, T. G. Martin, and S. P. Griffiths, “A guide to eliciting and

using expert knowledge in Bayesian ecological models,” Ecology Letters.

2010.

[55] B. M. Ayyub, Elicitation of expert opinions for uncertainty and risk. 2001.

[56] E. DePoy and L. N. Gitlin, “Naturalistic Designs,” Introd. to Res., pp. 158–

172, 2016.

[57] A. L. Strauss and J. Corbin, Strauss, A., & Corbin, J. (1990). 2008.

[58] R. Smyth, Nvivo. 2008.

[59] L. Bornmann, “Scientific peer review,” Annu. Rev. Inf. Sci. Technol., 2011.

[60] S. Augustine, B. Payne, F. Sencindiver, S. Woodcock, and G. Chin, Agile

Project Management: How to Succeed in the Face of Changing Project

Requirements. 2004.

102

[61] C. Cobb, “What is a research based project?,” 2016. [Online]. Available:

https://www.quora.com/What-is-a-research-based-project. [Accessed: 21-Jan-

2019].

[62] K. Beck et al., “Manifesto for agile software development,” 2001.

[63] X. Amatriain, “Manifesto for Agile Research,” 2009. [Online]. Available:

https://xamat.github.io/AgileResearch/. [Accessed: 19-Jan-2019].

[64] X. Amatriain, “Principles behind the Agile Research Manifesto,” 2009.

[Online]. Available: https://xamat.github.io/AgileResearch/principles.html.

[Accessed: 19-Jan-2019].

[65] I. Cereci, “Manifesto of RBAgile,” 2019. [Online]. Available:

https://github.com/icereci/RBAgileManifesto. [Accessed: 20-Feb-2019].

[66] V. S. Anantatmula, “Project manager leadership role in improving project

performance,” EMJ - Eng. Manag. J., 2010.

[67] L. Crawford, “Profiling the competent project manager,” in Proceedings of

PMI Research Conference, 2000, pp. 3–15.

[68] P. Christensson, “End User,” 2006. [Online]. Available:

https://techterms.com/definition/enduser. [Accessed: 21-Jan-2019].

[69] H. S. Sverrisdottir, H. T. Ingason, and H. I. Jonasson, “The role of the product

owner in scrum-comparison between theory and practices,” Procedia-Social

Behav. Sci., vol. 119, pp. 257–267, 2014.

[70] M.-F. Costabile, D. Fogli, C. Letondal, P. Mussio, and A. Piccinno, “Domain-

expert users and their needs of software development,” in HCI 2003 End User

Development Session, 2003.

[71] J. Bollen, D. Crandall, D. Junk, Y. Ding, and K. Börner, “From funding

agencies to scientific agency,” EMBO Rep., 2014.

[72] T. C. Kratschmer, P. K. Malkin, and K. Srinavas, “Method to assess the skill

level of software development,” US7962890B2.

[73] D. R. Lacy, T. G. Lautzenheiser, and M. A. Bucher, “System and method for

performing skill set assessment using a hierarchical minimum skill set

definition,” US6524109B1.

[74] S. Varadarajan and K. K. Rao, “System and method for skill management of

knowledge workers in a software industry,” US20050222899A1.

[75] L. C. e Silva and A. P. C. S. Costa, “Decision model for allocating human

103

resources in information system projects,” Int. J. Proj. Manag., 2013.

[76] S. Smee, “Skill based assessment,” BMJ, 2003.

[77] D. L. Largent, “Measuring and Understanding Team Development by

Capturing Self-assessed Enthusiasm and Skill Levels,” ACM Trans. Comput.

Educ., vol. 16, no. 2, p. 6:1--6:27, Feb. 2016.

[78] J. H. L. Koh, S. C. Herring, and K. F. Hew, “Project-based learning and

student knowledge construction during asynchronous online discussion,”

Internet High. Educ., vol. 13, no. 4, pp. 284–291, 2010.

[79] A. Cockburn, Crystal Clear, A Human-Powered Methodology for Small

Teams. 2004.

[80] B. Kitchenham, L. Pickard, and S. L. Pfleeger, “Case studies for method and

tool evaluation,” IEEE Softw., vol. 12, no. 4, pp. 52–62, 1995.

[81] H. N. Boone and D. A. Boone, “Analyzing likert data,” J. Ext., vol. 50, no. 2,

pp. 1–5, 2012.

[82] R. G. Hollingsworth, T. P. Collins, V. E. Smith, and S. C. Nelson, “Simple

statistics for correlating survey responses,” J. Ext., vol. 49, no. 5, pp. 14–21,

2011.

104

APPENDIX A

SEMI-STRUCTURED INTERVIEW QUESTIONS (IN TURKISH)

Proje Hakkında Genel Sorular:

1. Projenizin konusunu kısaca özetler misiniz?

2. Projenizin için destek aldınız mı? Nereden, ne süreyle bir destek alındı?

3. Projenizde yazılım geliştirme metodolojisi olarak mevcut bir metodolojiden

yararlandınız mı?

4. Destek süresi sonunda projeniz başarıya ulaştı mı?

Proje Çalışanlarıyla Alakalı Sorular:

1. Projede kaç kişi hangi posizyonlarda çalışmıştır?

2. Tam zamanlı ve yarı zamanlı çalışanlar var mıydı? Kaç tane?

3. Projeye katılanlar ne şekilde ve neden katıldılar?

4. Projenize dışardan dahil olan bir alan uzmanı var mıydı?

5. Ne sıklıkla grup toplantıları gerçekleştirebildiniz?

6. Projenizde çalışan bursiyerler ne ölçüde beklediğiniz yetkinliklere sahipti?

Herhangi bir tecrübe eksikliğini gözlemlediniz mi?

a. (EVET) Bu bir problem yarattı mı? Daha az tecrübeli kişileri projeye

ne şekilde adapte edebiliriz?

b. (HAYIR) Bu öğrencileri ne şekilde değerlendirdiniz? Proje temel

kısımlarında yer aldılar mı?

7. Projede çalışanların içinde bulundukları akademik hierarşi (prof, araştırmacı,

vs) proje geliştirme sürecine ne şekilde yansıdı? Nasıl bir şekilde proje

yönetimini sürdürdünüz?

Araştırma Süreciyle Alakalı Sorular:

1. Yapılacak olan ARGE adımlarını detaylı olarak önceden planladınız mı?

2. (EVET)Planlama yaptıysanız; bu plana ne ölçüde uygun devam edebildiniz?

3. (EVET)Planlamaya uymadığınız yerler var ise değişikliğin nedenleri

(teknoloji seçimi, araştırma yeterliliği, dış etkiler, mimari değişikliği, vb.)

nelerdir?

4. Araştırma problemleri çözümünde kullandığınız fikirler nasıl ortaya çıktı?

105

5. ARGE gereksinimi olan bölümlerde alternatif çözümleri önceden belirlediniz

mi? İlk sırada olan çözüm yeterli oldu mu? Hangi ölçüde altertatif yöntemlere

başvurdunuz?

Proje Geliştirme Sürecine Dair Sorular:

1. Proje oluşum aşamasında fikir sizden mi çıktı, yoksa proje çıktısını

kullanacak bir son kullanıcı projenin ilk aşamasından beri mevcut muydu?

a. (VARDI) Proje oluşum aşamasına ne derece dahil oldular?

b. (VARDI) Proje süresince aktif rol aldılar mı? Ne kadar süre (yüzde

kaçı, kaç ay)?

c. (HAYIR) Eksikliği hissedildi mi?

2. Başlangıçta öngördüğünüz ihtiyaçların proje süresince değişime uğradı mı?

Uğradıysa; ne boyutta projeyi etkiledi?

3. (DESTEK ALINDIYSA) Destek aldığınız kurum, proje bitiminde projenin

sürdürülebilmesi(maintain) için gerekli bütçe ve zaman sağladı mı? Projeyi

hangi aşamada bitirmek durumunda kaldınız?

4. Bütçe açısından sorun yaşadınız mı? Yaşadıysanız bu sorun proje içeriğinizin

değişmesine (kısıtlanmasına) neden oldu mu? Alternatif bütçe oluşturma

gereksinimi doğdu mu?

5. Projeniz için öngördüğünüz iş-zaman planı ne ölçüde gerçekleştirildi?

6. Öngördüğünüz proje süresi herhangi bir kısıt yarattı mı?

7. Projeniz risk analizi değerlendirmesine yazdığınız unsurlar ne ölçüde

beklediğiniz şekilde gerçekleşti?

8. Beklemediğiniz riskler ortaya çıktı mı? Anlatır mısınız?

9. Projenizde geliştirme süresince teknolojik değişimlere bağlı olarak etkilenme

yaşandı mı?

Problemlerle Alakalı Sorular:

1. Proje süresince karşılaştığınız proje çalışanları arasında iletişime dair

problemler var mıydı? Sizce bunların sebepleri nelerdir?

2. Üniversitelerde yönetilen araştırma tabanlı projeler genellikle bir araştırmaya

yönelik yapılırlar ve belli bir yayın çıkarma, tez yazma gibi motivasyonla

personeller bulmaktadırlar. Sizdeki çalışanların ana motivasyonu da bu

şekilde miydi? Bu projeyi nasıl etkiledi?

106

3. Üniversite projelerinde çalışan personel genellikle kısa süreli çalışma

eğilimde olup, eğitimi, araştırması sonlanınca ayrılmaktadır. Sizin proje

süresince devir daim yüksek miydi? (EVET) Bunun proje geliştirme sürecine

olumsuz etkileri nelerdir?

4. Sizce endüstri projelerinde karşılaşmayıp üniversite projelerinde karşılaşılan

problemler nelerdir?

5. Projenin herhangi bir aşamasında karşılaştığınız başka sorunlar ve engeller

nelerdir?

Yazılım Geliştirme Metodolojisi Hakkında Sorular:

1. Var olan yazılım geliştirme metotlarının araştırma tabanlı projelere ne şekilde

katkısı olduğunu düşünüyorsunuz? Etkili bir şekilde kullanılabiliniyorlar mı?

2. Sizce endüstrideki ticari yazılım projeleri ile üniversitelerde yürütülen

araştırma tabanlı yazılım geliştirme projeleri arasında ne gibi farklar vardır?

3. Eğer bir araştırma tabanlı yazılım geliştirme metodu geliştiriliyor olsa,

geçmişteki metotlara göre ne konuda iyileştirme yapmasını önerirsiniz?

Gördüğünüz ve karşılaştığınız eksikler nelerdir?

Projenizin başarılı olmasını sağlayan etkenler sizce nelerdi?

107

APPENDIX B

QUESTIONNAIRE (IN TURKISH)

Sayın Katılımcı,

Bu çalışma, Atılım Üniversitesi Bilgisayar Mühendisliği Bölümü Öğr. Gör. İbrahim

Cereci tarafından yürütülmektedir. Çalışmanın amacı, üniversitelerde yürütülen

araştırma tabanlı yazılım geliştirme projelerinde karşılaşılan problemlerin

tespiti ve önceliklerinin belirlenmesidir. Katılacağınız çalışmada bu tip projelerdeki

tecrübelerinize veya beklentilerinize dair sorular olacaktır. Çalışmaya katılım

tamamen gönüllülük temelindedir. Çalışmada sizden kimlik bilgisi

istenmeyecektir. Cevaplarınız gizli tutulacak ve elde edilecek bilgiler bilimsel bilgi

üretmekte kullanılacaktır. Karşılaşacağınız sorular genel olarak kişisel rahatsızlık

vermeyeceği öngörülen sorulardır. Ancak herhangi bir nedenden ötürü kendinizi

rahatsız hissederseniz araştırmayı yarıda bırakmakta serbestsiniz.

Aşağıdaki sorularda kendinize uygun olan şıkkı işaretleyiniz.

1- Ne kadar süredir akademisyen olarak çalışmaktasınız?

a) 0-5 yıl b) 6-10 yıl c) 10 yıl üzeri

2- Yazılım Mühendisliği ve Proje Yönetimi Hakkında ne derece bilgi sahibisiniz?

 a) Bilgi sahibi değilim b) Az c) Orta d) İyi e) Çok İyi

3- Kaç adet araştırma tabanlı, yazılım geliştirme içeren projede yürütücü,

araştırmacı veya bursiyer olarak yer aldınız?

 a) 0 b) 1 c) 2-3 d) 4-5 e) 5+

İlgili taraflar ile yapılan görüşmeler sonucu tespit edilen; Üniversitelerde yürütülen

Araştırma tabanlı yazılım geliştirme projelerinde sıklıkla karşılaşılan problemler,

aşağıda kategoriler bazında listelenmektedir.

Sizden talebimiz: tecrübe ve bilgi birikiminizden hareketle, bir projenin başarısız

olmasında aşağıdaki problemlerin hangi boyutta etki edebileceğini

işaretlemenizdir.

1. Etkisiz 2. Az Etkili 3. Orta Düzey Etkili 4. Etkili 5.

Çok Etkili

Proje Planlama

1- Proje fikrinin araştırmacı tarafından ortaya atılması, proje

çıktısını kullanacak bir son kullanıcı bulunmaması

1 2 3 4 5

2- Son kullanıcının yeterince projeye dahil olmaması 1 2 3 4 5

3- Proje öncesinde detaylı planlama yapılmamış olması 1 2 3 4 5

4- ARGE gereksinimi olan bölümlerde alternatif çözümlerin 1 2 3 4 5

108

önceden yeterince belirlenmemiş olması

Personel

1- Proje bursiyerlerinin yeterli yetkinlikte olmamaları 1 2 3 4 5

2- Proje elemanlarının büyük çoğunluğunun yarı-zamanlı çalışıyor

olması

1 2 3 4 5

3- Proje süresince çok sayıda ayrılan personel olması 1 2 3 4 5

4- Projede yer alan personelin proje yönetim süreçlerine hakim

olmaması

1 2 3 4 5

5- Projede yer alan personelin proje araştırma alanında tecrübesiz

olması

1 2 3 4 5

6- Proje çalışanlarının akademik yük ve sorumluluklarının projeye

negatif yansımaları olması.

1 2 3 4 5

7- Bursiyerlerin yeteneklerinin önceden belirlenmemiş olması ve iş

dağıtımının yetenekler bazında dengesiz olması

1 2 3 4 5

İletişim

1- Proje çalışanları arasında iletişim sorunları bulunması 1 2 3 4 5

2- Proje süresince yeterli sayıda nitelikli toplantı/bilgilendirme

yapılmaması

1 2 3 4 5

3- Projedeki uzak ortakların (remote partner) iletişim ve

koordinasyon problemleri

1 2 3 4 5

4- Çalışanların projede sadece kendi kısımları hakkında bilgi

sahibi olmaları. Genel işleyişi bilmemeleri

1 2 3 4 5

5- Proje yöneticisinin takımla etkili şekilde iletişime geçmemesi 1 2 3 4 5

Bütçe

1- Bütçe yetersizliği 1 2 3 4 5

2- Bütçe kalemlerinin proje süresince oluşan ihtiyaçlara göre

değiştirilememesi

1 2 3 4 5

3- Ödemelerin vaktinde ve tam yapılmaması 1 2 3 4 5

Yazılım Geliştirme

109

1- Projede yazılım geliştirme metotlarının etkili şekilde

kullanılmaması.

1 2 3 4 5

2- Projede yeterli dökümantasyon yapılmamış olması 1 2 3 4 5

3- Projede, proje yönetim araçlarının düzenli kullanılmaması 1 2 3 4 5

4- Sonradan katılan personelin yazılıma rahatlıkla adapte olmasını

sağlayacak bir kodlama standardı olmaması.

1 2 3 4 5

5- Projeden ayrılan yazılımcılar ile uzmanlığın (know how)

gitmesi

1 2 3 4 5

Bu tür projelerde önemli olduğunu düşündüğünüz diğer problemleri aşağıdaki

boş alana yazabilirsiniz.

110

APPENDIX C

CONSENT FORM (IN TURKISH)

Sayın Katılımcı,

Bu çalışma, Atılım Üniversitesi Bilgisayar Mühendisliği Bölümü Öğr.
Gör. İbrahim Cereci tarafından yürütülmektedir. Çalışmanın amacı,
üniversitelerde yürütülen araştırma tabanlı yazılım geliştirme projelerinin
geliştirme süreçlerinde ne tür problemlerle karşılaşıldığını, ve bu
problemlere çözüm olarak, bu alandaki üstün yöntemleri tespit ederek,
yeni bir yazılım geliştirme metodu önermektir. Katılacağınız çalışmada
sizlere bu tip projelerde tecrübelerinize dair sorular sorulacaktır. Bunun için
uygulamacı, izninize göre size ses kaydı ile veya yazılı olarak mülakat
yapacaktır. Bu çalışmada, sizi şaşırtmak, tutarlı-tutarsız yanıtlarınızı veya "
bir açığınızı yakalamak" veya benzeri bir başka amaç yoktur. Dolayısıyla,
araştırmamızın sağlıklı ve geçerli bilimsel bilgi üretebilmesi için sizden
sadece, sorulara gönül rahatlığıyla, samimi ve kendinizi en gerçekçi
şekilde tanımlayacak cevaplar vermeniz beklenmektedir.

Çalışmaya katılım tamamıyla gönüllülük temelindedir. Çalışmada,
sizden kimlik bilgisi istenmeyecektir. Araştırmacı tarafından veri girişi ve
analizi için vermiş olduğunuz bilgilerden kimliğinizi belirtecek hiçbir bilgi
olmayacağı gibi, sağladığınız cevaplar sadece araştırmacı ve yardımcı
araştırmacılar tarafından görülecektir. Cevaplarınız gizli tutulacak, elde
edilecek bilgiler bilimsel bilgi üretmekte kullanılacaktır.

Çalışma boyunca karşılaşacağınız sorular, çalışmanın amacına hizmet
edecek şekilde seçilmiş ve genel olarak kişisel rahatsızlık vermeyeceği
öngörülen sorulardır. Ancak, çalışma sırasında sorulardan ya da herhangi
başka bir nedenden ötürü kendinizi rahatsız hissederseniz araştırmayı
yarıda bırakmakta serbestsiniz. Bunun için herhangi bir hak kaybına
uğramayacaksınız. Böyle bir durumda uygulayıcıya araştırmadan çekilmek
istediğinizi söylemeniz yeterlidir. Çalışma sonunda, araştırma ile ilgili bilgi
veren bir yazılı form size okunacak, arkasından da sorularınız
cevaplanacaktır.

Bu çalışmaya katıldığınız için şimdiden teşekkür ederiz. Çalışma
hakkında daha fazla bilgi almak için Bilgisayar Mühendisliği Bölümü öğretim
görevlisi İbrahim Cereci ile iletişim kurabilirsiniz (E-posta:
ibrahim.cereci@atilim.edu.tr).

FORMU DOLDURUP İMZALADIKTAN SONRA TESLİM EDİNİZ.

Bu çalışmaya tamamen gönüllü olarak katılıyorum ve istediğim
zaman yarıda kesip çıkabileceğimi biliyorum. Verdiğim bilgilerin
bilimsel amaçlı yayınlarda kullanılmasını kabul ediyorum.

Ad, Soyad İmza Tarih
____/____/2018

111

APPENDIX D

SEMI-STRUCTURED INTERVIEW QUESTIONS (IN ENGLISH)

General questions about the project:

1. Summarise the topic of your project?

2. Did you have funding for your project? If you did, what was the duration of

the funding?

3. Did you use any software development methodology in your project? Name

the methodology.

4. Did the project succeed at the end of the funding period?

Questions related to the team members:

1. How many people worked on the project? In which positions?

2. How many full-time and part-time employees were involved in the project?

3. Why did team members join the project? What was their main motivation?

4. Was there an area expert that is externally involved in the project?

5. How often did you hold meetings? What type of meetings did you hold? Who

participated in the meetings?

6. Did you find the experience levels of the graduate students sufficient?

a. (YES) Did this cause any problems? How did you utilize people with

low experience levels to the project?

b. (NO) How did you utilize these graduate students? Were they part of

the core development team?

7. Did the academic hierarchy that the team members are in caused any

problems?

Questions related to the research process:

1. Did you plan the R&D steps in detail before the project start date?

2. (YES) To what percentage did you follow this plan?

3. (YES) If you diverge from the plan what were the reasons? (tech choice,

research incompetency, external factors, architectural changes, etc.)

4. How did you usually come up with the solutions to the research problems

during development?

112

5. Did you prepare alternative solutions to the parts that heavily rely on R&D

before the start of the project? Were your initial solutions usually applicable?

Questions related to project development phase:

1. Did the idea of the project come from the PM? Was there any end-user or

customer present that were going the use the product, at the beginning of your

project?

a. (YES) How much did they involve the project?

b. (YES) Did they actively participated in all stages of the development?

c. (NO) Did the absence of them negatively affect the project?

2. Did the requirements you set at the beginning of the project? How did it

affect the project?

3. (FUNDED) Did the funding agency give funds for the maintenance of the

project? Did you have to stop development at any stage?

4. Did you face budget problems? How did these problems affect the project?

5. How well did you follow the schedule?

6. Did time limitations affect the project negatively?

7. How accurate was your initial risk assessment plan?

8. Did unexpected risks occur? Explain.

9. Did technological changes affect the project in any way?

Questions related to the problems:

1. What type of communication issued did you face between team members?

What do you think were the reasons?

2. Projects that are carried by universities usually focus on research.

Dissemination, thesis, and publications can be the main motivation. Was that

the case for you? How did it affect the project?

3. Was the staff turnover high? How did it affect the project?

4. What are the problems that are faced at the university projects and not at the

industry?

5. Explain any other problems you faced at any stages of the project.

113

Questions related to software development:

1. Do you think current software development methodologies are usable in a

research-based software project? Are they being used effectively?

2. What kind of features would you like to see in a new software development

methodology for research-based projects? What kind of shortcomings did you

notice with the current methods?

What were the factors that positively affect the development of your

project?

114

APPENDIX E

QUESTIONNAIRE (IN ENGLISH)

Dear Participant,

This study is carried by Instructor Ibrahim Cereci in Atilim University Computer

Engineering Department. The study aims to identify and prioritize the problems that

are faced during the development of research-based software projects. In this study,

questions about your past experiences in similar projects or your expectations in such

projects are going to be asked. Participation in the study is completely voluntary. No

identification information will be collected in this study. Your answers will be kept

confidential and will only be used to generate research data. The questions in this

questionnaire are anticipated not to give disturbance to the participant. Still, if you

for any reason feel uncomfortable, you are free to quit the questionnaire at any

time you wish.

Select the item that is most suitable for you.

1- How long are you employed as an academician?

a) 0-5 years b) 6-10 years c) over 10 years

2- How do you evaluate your knowledge level about software engineering and

project management?

 a) None b) Little c) Medium d) Well e) Excellent

3- How many research-based software projects did you participate in?

 a) 0 b) 1 c) 2-3 d) 4-5 e) 5+

After holding interviews with the academicians, problems faced in research-based

projects have been listed below in categories.

What we ask of you is to grade the effect of the problems listed below, according to

their importance to the failure of research-based projects, according to your

experience in the field.

1. Not important 2. Slightly important 3. Moderately important 4. Important

5. Very important

Project Planning

1- Lack of end-user or customer in the project 1 2 3 4 5

2- End-user participation is low in the project 1 2 3 4 5

3- No detailed planning is done before the project 1 2 3 4 5

4- Alternative solutions to the parts that require R&D were not set

at early stages

1 2 3 4 5

115

Staff

1- Knowledge levels of graduate students are not sufficient 1 2 3 4 5

2- Most of the staff are part-time 1 2 3 4 5

3- Staff recirculation is high 1 2 3 4 5

4- Project staff are not well-informed about project management 1 2 3 4 5

5- Project staff are not well-informed in the research field 1 2 3 4 5

6- Academic workloads of the project staff negatively affect the

project

1 2 3 4 5

7- Skillset of the graduate students are not determined early; task

distribution is unbalanced

1 2 3 4 5

Communication

1- There are communication problems among project staff 1 2 3 4 5

2- Not holding frequent, well-structured meetings regularly 1 2 3 4 5

3- Communication and coordination problems with the remote

partners.

1 2 3 4 5

4- Project staff only have information about their parts in the

project. They do not follow the progress of the project and others

1 2 3 4 5

5- Project manager does not communicate with the project team

effectively

1 2 3 4 5

Budget

1- Insufficient budget 1 2 3 4 5

2- After the initial allocation, the budget cannot be shifted between

the project items

1 2 3 4 5

3- Payments are not on time or partially done 1 2 3 4 5

116

Software Development

1- Not utilizing software development methodologies effectively 1 2 3 4 5

2- Lack of documentation throughout the project 1 2 3 4 5

3- Project management tools are not utilized properly 1 2 3 4 5

4- Lack of coding standard that will ease the integration of

newcomers to the project

1 2 3 4 5

5- Loss of know-how with the staff leaving the project 1 2 3 4 5

What are some other problems that you believe are important factors for the

failure of research-based projects?

117

APPENDIX F

BASIC LIFE-CYCLE OF “RBAgile”

118

APPENDIX G

DETAILED VIEW OF THE “RBAgile” LIFE-CYCLE

119

APPENDIX H

QUESTIONNAIRE FOR EXPERT OPINIONS (IN TURKISH)

Sayın Katılımcı,

Bu çalışma, Atılım Üniversitesi Bilgisayar Mühendisliği Bölümü Öğr. Gör. İbrahim

Cereci tarafından yürütülmektedir. Çalışmanın amacı, üniversitelerde yürütülen

araştırma tabanlı yazılım geliştirme içeren projelerinde kullanılmak için

önerilmiş olan RBAgile adlı yazılım geliştirme metodunu birçok farklı boyuttan

değerlendirmektir. Metot ile alakalı tarafınıza sunulan dokümanı okuduktan

sonra, bu tip projelerdeki tecrübelerinize veya beklentilerinize dair sorular olacaktır.

Çalışmaya katılım tamamen gönüllülük temelindedir. Cevaplarınız gizli tutulacak ve

elde edilecek bilgiler bilimsel bilgi üretmekte kullanılacaktır. Karşılaşacağınız

sorular genel olarak kişisel rahatsızlık vermeyeceği öngörülen sorulardır. Ancak

herhangi bir nedenden ötürü kendinizi rahatsız hissederseniz araştırmayı yarıda

bırakmakta serbestsiniz.

Aşağıdaki sorularda kendinize uygun olan şıkkı işaretleyiniz.

1- Ne kadar süredir akademisyen olarak çalışmaktasınız?

a) 1-5 yıl b) 6-10 yıl c) 10 yıl üzeri

2- Yazılım Mühendisliği ve Proje Yönetimi Hakkında ne derece bilgi sahibisiniz?

 a) Bilgi sahibi değilim b) Az c) Orta d) İyi e) Çok İyi

3- Kaç adet araştırma tabanlı, yazılım geliştirme içeren projede yürütücü,

araştırmacı veya bursiyer olarak yer aldınız?

 a) 0 b) 1 c) 2-3 d) 4-5 e) 5+

Üniversitelerde yürütülen araştırma tabanlı yazılım geliştirme projelerinde

kullanılmak üzere geliştirilmiş olan RBAgile adlı yazılım geliştirme metoduna dair

aşağıda birtakım cümleler verilmektedir. Sizden talebimiz: metodun açıklandığı

dokümanı okuduktan sonra tecrübe ve bilgi birikiminizden hareketle, RBAgile

hakkında aşağıda belirtilen cümlelere ne derece katıldığınızı işaretlemenizdir.

İşaretlediğiniz şıklara dair EK AÇIKLAMA gereksinimi duymanız halinde sorunun

hemen altında bulunan açıklama bölümünü kullanabilirsiniz. Özellikle katılmadığınız

sorularda açıklama yapmanız, çalışmamızı daha ileri noktaya götürmede önemli

katkılar sağlayacaktır.

Birden beşe kadar olan seçeneklerin tam karşılıkları aşağıda belirtildiği şekildedir.

1. Kesinlikle Katılmıyorum

2. Katılmıyorum

120

3.Kararsızım

4. Katılıyorum

5. Kesinlikle Katılıyorum

1- RBAgile öğrenmesi kolay bir metotdur.

Açıklama:

1 2 3 4 5

2- RBAgile, yazılım mühendisliği alanı uzmanı akademisyenler

tarafından kolaylıkla kullanılabilir.

Açıklama:

1 2 3 4 5

3- RBAgile, yazılım geliştirme metotları hakkında bilgi sahibi

olmayan akademisyenler tarafından dahi kolaylıkla

kullanılabilir.

Açıklama:

1 2 3 4 5

4- RBAgile, akademisyenlerin proje geliştirmeye dair alışık

oldukları yöntemlere uygundur.

Açıklama:

1 2 3 4 5

5- RBAgile, araştırma tabanlı yazılım geliştirme projeleri için

kullanışlı bir metottur.

Açıklama:

1 2 3 4 5

6- RBAgile, araştırma tabanlı yazılım geliştirme projeleri için,

yaygın yazılım geliştirme metotlarına kıyasla (örn: waterfall,

SCRUM, XP, Spiral) daha kullanışlıdır.

Açıklama:

1 2 3 4 5

7- RBAgile metodunun kullanılması, araştırma tabanlı yazılım

geliştirme projelerindeki verimliliği artıracaktır.

Açıklama:

1 2 3 4 5

121

8- RBAgile metodu, akademisyenlerin yazılım geliştirme

projelerinde ihtiyaç duyacakları tüm yazılım geliştirme

basamaklarını kapsar.

Açıklama:

1 2 3 4 5

9- RBAgile, proje çalışanlarına metodun uygulanmasından

kaynaklı ağır ek yük getirmez.

Açıklama:

1 2 3 4 5

10- RBAgile, okuduğunuz metinde tanımlanmış olan araştırma

tabanlı proje problemlerinin çözümlerini kapsar.

Açıklama:

1 2 3 4 5

RBAgile ile alakalı her türlü eleştiri, ekleme ve değişiklik önerilerinizi lütfen

aşağıda belirtiniz.

Ayrıca eksik veya yanlış olduğunu düşündüğünüz kısımları direkt tarafınıza

iletilmiş olan metin üzerinden de gösterebilirsiniz.

Çalışmaya katıldığınız için teşekkür ederiz.

122

APPENDIX I

QUESTIONNAIRE FOR EXPERT OPINIONS (IN ENGLISH)

Dear Participant,

This study is carried by Instructor Ibrahim Cereci in Atilim University Computer

Engineering Department. The study aims to evaluate various aspects of the RBAgile,

which is the proposed research-based software development methodology by the

researcher. After reading the given document that is related with RBAgile, please

state your level of agreement to the below statements about RBAgile. Use your past

experiences in similar projects or your expectations in such projects. Participation in

the study is completely voluntary. No identification information will be collected in

this study. Your answers will be kept confidential and will only be used to generate

research data. The questions in this questionnaire are anticipated not to give

disturbance to the participant. Still, if you for any reason feel uncomfortable, you are

free to quit the questionnaire at any time you wish.

Select the item that is most suitable for you.

1- How long are you employed as an academician?

a) 1-5 years b) 6-10 years c) over 10 years

2- How do you evaluate your knowledge level about software engineering and

project management?

 a) None b) Little c) Medium d) Well e) Excellent

3- How many research-based software projects did you participate in?

 a) 0 b) 1 c) 2-3 d) 4-5 e) 5+

Please use explanation fields to justify your reasoning, especially if you answer the

question as strongly disagree, disagree or undecided.

1. Strongly Disagree

2. Disagree

3.Undecided

4. Agree

5. Strongly Agree

123

1- RBAgile is an easy to learn methodology

Explanation:

1 2 3 4 5

2- RBAgile can easily be used by the academicians that are

knowledgeable about software engineering.

Explanation:

1 2 3 4 5

3- RBAgile can easily be used by the academicians that are NOT

knowledgeable about software engineering.

Explanation:

1 2 3 4 5

4- RBAgile includes development and management steps that are

familiar to the academicians.

Explanation:

1 2 3 4 5

5- RBAgile is a useful method for research-based software

development projects.

Explanation:

1 2 3 4 5

6- RBAgile is more useful than the common software development

methodologies (e.g., waterfall, Scrum, XP, Spiral) for research-

based software projects.

Explanation:

1 2 3 4 5

7- Using RBAgile in research-based software projects should

increase the productivity of the development.

Explanation:

1 2 3 4 5

124

8- RBAgile includes all the necessary steps for software

development in research-based software projects.

Explanation:

1 2 3 4 5

9- RBAgile does not bring excessive operation overhead to the

project development team.

Explanation:

1 2 3 4 5

10- RBAgile contains the solutions for all of the problems that are

stated in the given text.

Explanation:

1 2 3 4 5

Please write any criticism, request, and corrections about RBAgile below.

Thank you for attending this study.

