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Bu calismanin birinci kisminda, diferansiyel operatorler, Sturm-Liouville
operatdrii ve ters spektral problemler ile ilgili bilgiler verilmistir. Ikinci boliimde,
diferansiyel operatorlerin spektral teorisinde sik sik kullanilan temel tanim ve
teoremler verilmistir. Uciincii boliimde Sturm-Liouville operatdrii ve doniisiim
operatorii icin genel bilgiler verilmistir. Dordiincii boliimde, diiz spektral problemler
ile ilgili agiklamalar, teoremler ters problem formiilleri ve teklik teoremleri verilmistir.
Besinci boliimde genellesmis fonksiyon Kkatsayili Sturm-Liouville operatoriiniin
spektral karakteristikleri incelenmis ve ters problem ¢6ziilmiistiir.
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In first section of this seminar, informations about differential operators,
Sturm-Liouville Operators and inverse spectral problems are given.In the second
section, Some fundamental definitions and theorems that use of often in spectral theory
of differential operators are given.In the third chapter, General informations of Sturm-
Liouville operators and tranformation operators are examined In the fourth chapter,
explanations about straight spectral problems are given theorems, inverse problem
formulas and uniqueness theorems. In the fifth chapter, the spectral characteristics of
the Sturm-Liouville operator with generalized function coefficients are investigated
and the inverse problem is solved.
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1. GIRIS

Operatorlerin spektral teorisi, matematik, fizik ve mekanigin pek ¢ok
alanlarinda genis bir sekilde kullanilmaktadir. Lineer operatorlerin spektral teorisinin
esas kaynaklari titresim teorisinin problemleridir. Ozellikle [,ve L, soyut Hilbert uzay1
tanimlandiktan sonra Hilbert uzayinda lineer 6z eslenik operatorler teorisi hizla
gelismeye baglamigtir. 19. ve 20. yiizyillarda bu konularda ¢alisan matematikgiler
tarafindan gelistirilerek iist seviyelere cikarilmistir. Bu c¢alismalarda 6zdegerler,
ozfonksiyonlar, spektral fonksiyon, normlastirict sayilar gibi spektral veriler
tamimlamis ve farkli yontemlerle veriler i¢in asimptotik formiiller bulunmustur.
Spektral teori i¢in 6nemli olan agilim teoremleri de ispatlanmistir. Bu ¢alismada amag
Sturm-Liouville operatériiniin siireksiz bir a noktasinin yarattigi degisimleri, spektral
verileri, 6zdegerleri ve Ozfonsiyonlar1 belirlemek, onlarin asimptotik davraniglarini

incelemek ve spektral verilere gore ters problemi ¢ozmektir.
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2. ONCEKI CALISMALAR

Literatiirde regiiler ve singililer olmak iizere iki tiir diferansiyel operator

tanimlanmis ve spektral teorileri yapilandirilmistir. Tanim bolgesi sonlu ve katsayilari
siirekli fonksiyonlar olan diferansiyel operatore regiiler, tanim bdlgesi sonsuz veya
katsayilar1 sonlu sayida siireksiz nokta olan diferansiyel operatorlere singiiler
diferansiyel operatér denir. 2. Mertebeden regiiler operatorler igin spektral teori
giiniimiizde Sturm-Liouville teorisi olarak bilinir. Ilk defa 19. Yiizyilda Charles Sturm
ve Joseph Liouville tarafindan ortaya konulmustur. Baslangigta 1s1 iletimi
problemlerinde yogun olarak kullanilan teori, giiniimiizde farkli fiziksel problemlerde
de uygulanmaktadir. Basta Naimark [1] olmak iizere, Titchmarsh [2], Jorgens [3],
Atkinson [4] bu teoriye biiylik katki saglamistir.
Spektral analizin ters problemleri spektral karakteristiklerine gore baslangic
verilerinin bulunusundan olusur. Bu tarz problemler mekanik, matematik, fizik,
elektronik, meteoroloji, jeofizik gibi bilim dallarinda kullanilir. Ters problem teorisi
son yillarda giderek artan sekilde bir ilgi gormektedir. Bu konudaki ilk ¢aligsmalar bir
dizinin titresimini aciklayan denklemin ¢6ziimii ile ilgili olarak D. Bernoulli, Euler,
Liouville ve Sturm tarafindan yapilmistir. Ters spektral problemlerin temel sonuglar
20. Yizyilin sonlarma dogru ortaya konulmustur. Son zamanlarda ters spektral
problemlerin uygulamalari i¢in yeni uygulama alanlar1 ortaya ¢ikmistir.

Diferansiyel operatorlerin spektral problemleri diiz ve ters spektral problemler
olmak tiizere iki ana dalda incelenmistir. Spektral analizin dogrudan problemleri bir
operatoriin spektral 6zelliklerinin arastirilmasindan olusur. Ters problem, operatorleri
spektral 6zelliklerine dayanarak operatoriintin kurulmasini olusturmaktir. Bu spektral
verileri bir, iki veya daha ¢ok spektrum, spektral fonksiyon ve normallestirici sabitler,
Weyl fonksiyonu gibi kavramlar olusturur. Klasik Sturm-Liouville operatorleri igin
dogrudan ve ters problem kapsamli olarak incelenmistir [5-9]. Siireksizliklerin varligi,
sinir deger probleminin arastirilmasinda énemli niteleyici degisiklikler tiretir. Cesitli
formiilasyonlarda siireksiz Sturm-Liouville sinir deger problemi icin diiz ve ters

problemler incelenmistir [6-14].
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Bu tezde ¢oziimlerin integral temsillerini elde etmek i¢in teknikler verilecek ve
¢Oziimlerin ozellikleri incelenecek.
Buna ek olarak, i¢ noktada siireksiz fonksiyon katsayili Sturm-Liouville

spektral problemler farkli yaklasimlar da incelenmistir [15-17].
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3. TEMEL KAVRAMLAR

Tamm 3.1. C kompleks sayilar cismi iizerinde tanimlanmis bir H lineer vektor
uzayini ele alalim. H deki bir vektor ciftine bir say1 karsi getiren <.,.>:H X H — C
fonksiyoneli asagidaki oOzelliklere sahipse <.,.> ‘ye X lizerinde bir i¢c ¢arpim,
(X, <.,.>) ikilisine i¢ ¢carpim uzay: denir.

Heru,ve Hicin<u,v >=<u,v >

Heruuve HveaeCicn<au,v>=a<u,v>
Heru,vvweHicin<u+v,w>=<uw>4+<v,w>

Herue Hu#0igcin< u,u >=>0

Bu i¢ ¢arpimla donatilmis bir lineer vektor uzayina i¢ ¢arpim uzayi denir.

dwv)=lu—-vll={<u—-vu-v>
metrigine gore tam bir i¢ garpim uzayina Hilbert uzay: denir.

Tamm 3.2.  L?[a, b] uzay1

b
12[a,b] = {x(t): f Le(O)]2dt < oo}

seklinde tanimlanir. Bu uzayda i¢ ¢arpim,

b _
<f.g>= | r@gedx

seklinde tanimlanir.
Tanmm 3.3. Bir X = (X, d) metrik uzayinda (x,,) dizisi ele alalim. Eger her € > 0
sayisna karsilik her m,n > N icin
d(Xp, xp) < €

olacak sekilde N = N (¢) sayist bulunabiliyorsa (x,,) dizisine bir Cauchy dizisi denir.
Tammm 3.4. X = (X, d) metrik uzayinda her Cauchy dizisi yakinsak ise yani
X, = x € X ise (X, d) metrik uzayina tamdir denir.
Tamim 3.5. X bir K cismi lizerinde bir vektor uzay1 olsun.

ILll:x =Ry, x = [l
doniistimii Vx,y € X ve Va € K i¢in

x| =0 x=0

4
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llax|l = lalllx|

I+ yll = llxll + Iyl
ozelliklerini sagliyorsa Xiizerinde norm adini alir ve (X, ||. ||) ikilisine normiu vektor
uzayr denir.
Tamim 3.6.  Lineer uzaylarda tanimli doniisiimlere operatdr denir.
Tamm 3.7.  Bir T lineer operatorii, asagidaki dzellikleri saglayan bir operatordiir.
T’nin tanim kiimesi bir vektdr uzay olup, deger kiimesi de ayni cisim {izerinde bir
vektor uzaydir.
Vx,y € D(T) ve a skaleri i¢in ( D(T): tanim kiimesi)

T(x+y)=Tx+Ty

T(ax) = aTx
Tanim 3.8. A:S(x,6) — S(Ax, €) olsun. |x — x,| < & igin |Ax — Axy| < € ise A
operatoriine siireklidir denir.
Tanmm 3.9. H,ve H,iki Hilbert uzay1 ve L: H; — H, siirli lineer bir operatér olsun.
Eger, L*: H, = H, operatorii < Lx,y > =< x, L'y > sartin1 sagliyorsa L* operatoriine
L nin eslenigi denir. Eger L = L*ise L operatdriine 6z eslenik operator denir.
Tamim 3.10. L, D(L) tanim bolgesinde sinirli lineer bir operator olmak tizere
Ly =y

esitligini saglayan y(x) # 0 fonksiyonu mevcut ise A sayisina L operatoriiniin
0zdegeri y(x, A) fonksiyonuna ise A ya karsilik gelen 6zfonksiyon denir.
Tamm 3.11. p(A) ={1€C:(A— )"t € L(X)} kompleks sayilar kiimesine A

operatoriniin regiiler degerler kiimesi 0(4) = C/ 2(4) kiimesine ise A operatdriiniin

spektrumu denir. A € p(A) olmak iizere R(1;A) = (A—AI)™! operatdriine A

operatoriiniin rezolventi denir.
Tannm3.12. x>0 veya (x—> o) iken eger % -0(x)=f(kx) =
o(g(x)) ve |%| siirliise f(x) = 0(g(x)) olarak gosterilir.

Tamm 3.13.  y4,¥2, v e vee oo, Yy, ler ortak [ araliginda tanimhi ise ve (n-1) kez

tiirevleri alinabilir n tane fonksiyonlar olsun.
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y1 ces yn
W (Y1, V2 e ve e ey V) = ( 3 ;_ )
yl(n Do yr(ln 1y

ifadesinin determinantina n fonksiyonunun Wronski’si denir.

Bu boliimdeki tanim ve teoremler [14]” den alinmastir.
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4. MATERYAL VE YONTEM

Bu boliimde sonlu araliktaki Sturm Liouville operatorleri igin spektral teoriye
giris yapilacaktir. Bolim 4.1. de spektral analizin diiz problemleri anlatilacaktir.
Boliim 4.2. de Sturm-Liouville operatoriiniin sinir deger problemleri igin ana spektral
karakteristiklerini sunulacak. Ozellikle 6zfonksiyon ve o6zdegerlerin varliginin
asimptotik davraniglar1 iizerindeki teoremi ispatlanacaktir. Bolim 4.2 de
ozfonksiyonlarin 6zellikleri incelenecektir. Ozfonksiyon sisteminin tamamlandig ve
L,(0,m) de ortogonal bir sistem olusturdugu kanitlanacaktir. Biz 6zfonksiyonlari
karakterlerini arastirip ve (0, ) araliginda n. dereceden 6zfonksiyonlarin tam olarak

n tane sifirlar1 oldugunu kanitlayacagiz.

4.1. Sturm Liouville Operatorii

Asagidaki L = L(q(x), h, H) smir deger problemini g6z 6niine alalim.
ly=—y +qx)y =2y, 0<x<m (4.1)
U(y) = y'(0) — hy(0) = 0, Viy) =y'(m) + Hy(m) =0 (4.2)
Burada A spektral parametre, q(x), H, h reel say1 ve q(x)eL,(0, A). Burada [ operatorii
Sturm-Liouville operatoriidiir.
Tanim 4.1.1. L deki A parametresinin degerleri sifirdan farkli ¢6ziimleri 6zdegerlere
ve bunlara karsilik gelen fonksiyonlara da 6zfonksiyonlar denir. Ozdegerlerin dizisi L
nin spektrumlarina denk gelir.
Biz bu bdliimde L nin basit spektral 6zelliklerini elde edecegiz ve 6zfonksiyonlarin ve
0zdegerlerin asimptotik davraniglarini ¢alisacagiz.
[lk sartlar altinda (3.1) in ¢dziimleri C(x, 1), S(x, 1), ¢(x, 1), (x, A) olsun.
co,A)=1 <c¢'(0,1)=0 S0OA1=0 S0O1H=1
90, =1 ¢'(0,)=h y@)=1 YP'(mr,1)=-H
Her sabit x i¢in @ (x, 1), ¥(x, 1), C(x, 1), S(x, 1) x e bagh fonksiyonlardir.
Ulp) =¢'(0,4) —he(0,1) =0, V) =¢'(m, ) + HY(m,1) =0 (4.3
A = W (x, 1), 0(x, 1)) (4.4)

7
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olur. A(1) L nin karakteristik fonksiyonudur.
(y(x),z(x)) =y(x).z'(x) —y'(x).z(x) ifadesi y ve z nin Wronskianidir.
Liouvile’nin formiilii (¢ (x, 1), ¢ (x, 1)) Wronskian1 x bagli degildir[21]. (3.4)’ de x=0
ve x=m yazilirsa sunu elde edilir.
A =V(p) =-U®) (4.5)
Teorem 4.1.1. Karakteristik fonksiyonun {1,,} sifirlar1 L nin sinir deger probleminin
degerleri ile gakisir. @(x,A,) vep(x, 4,) fonksiyonlar1 O6zfonksiyonlardir ve
asagidaki sart1 saglayan bir ardisik {,,} ler vardir:
Y, An) = B (X, 4) P # 0 (4.6)
Ispat:
Ao, A(A) min bir sifir1 olsun. (4.3) ve (4.5) sayesinde P (x, ) = Bo- @ (x, 1g)
olur ve fonksiyonlar p(x, 1y), (x, 4¢) (4.2) deger sartlarin1 saglar. Bundan dolay1 A,
bir 6z deger ve Y(x,4y),¢(x,4,) fonksiyonlaritda buna karsilik gelen
6zfonksiyonlardir.
Ao L’ nin bir 6zdegeri olsun ve y, da buna karsilik gelen 6zfonksiyon olsun. U(y,) =
V(yo) = 0 olur buradan y,(0) # 0 olur. y,(0) = 1 yazabiliriz. y;(0) = h ve bu
ylizden y,(x) = @(x, 4o), (4.5) bize A(Ag) = V(p(x,40)) = V(yo(x)) = 0 ifadesini
verir. Dolayisiyla biz her 6zdegere bir 6zfonksiyon karsilik geldigini kanitlamis olduk.

Boliim boyunca asagidaki notasyonu kullanacagiz.
T
a, = J ©%(x,1,).dx (4.7)
0

{a,} sayilar1 normlastirici sayilari ve {ay, 1,,} sayilari da L nin spektral verileridir.
Lemma4.1.1. Bna, = —A(4,) (4.8)
ifadesi (4.6) yardimiyla 8, sayilar1 tanimlanir ve A(1) = % A(A)
ispat:
—P" (0, ) + q(0).P(x, 1) = W(x, 1) — " (x,4,) + q(x). p(x, 4,)
= An- 0 (x, 4,)

Buradan sunu elde ederiz.

d

T WD, 0(x An)) = P, D). 9" (x, An) =7 (x, ). 9 (x, 43)

= (A=) ¥(x D). 9(x,4n)
8
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ifadesi ve (3.5) yardimiyla
=) [ 0. 000 20).dx
0

= (0o D, 00 )
=¢'(m,A,) +H o(r,A,) + ' (0,1) — h.y(0,1) = —A(R)

olur. 2 - A, igin bu terim soyle olur:

f " )0 (e ). dx = —B(A)
0

(4.6) ve (4.7) kullanilarak (4.8) elde edilmis olur.

Teorem 4.1.2. {1,,} 6zdegerleri ve ¢ (x, A,,)ve Y(x, A,,) O6zfonksiyonlari reeldir. A(A)
nin biitiin sifirlar basittir. A(4,) # 0. L,(0, ) deki farkli 6zdegerlere karsilik gelen
ozfonksiyonlar ortogonaldir.

Ispat:

An ve Ay 0zdegerler ve sirasiyla bunlara karsilik gelen 6zfonksiyonlar y, (x) ve yi (x)

olsun.
T T
[ 10003 dx = [ 3.9 ).
0 0
ve buradan
T T
e [ G- = 2 | 3 0.7
0 0
veya
T
J Vn (). yic (). dx
0
olur.

Ilave olarak A° = u + iv, v # 0 reel olmayan bir 6zdeger ve y°(x) # 0. q(x),h, H
reel oldugu i¢in A% = u — iv i ayrica y°(x) 6zfonksiyonunu elde ederiz. 1° # A0
oldugu i¢in
ly°llz, = fonyo(x).m. dx = 0 olur. Boylece L nin {A,} biitiin dzdegerleri ve
o(x, A,)ve Y(x, A,) 6zfonksiyonlar1 da reeldir.a,, ve B, sifirdan farkli oldugundan
(4.8) i elde ederiz. A(1,) # 0
Lemma 4.1.2. |k| — oo i¢in agagidaki asimptotik formiil

9
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1
@(x,A) = coskx + 0 (mexp(lrlx)> = 0(exp(|T]|x))

@' (x,A) = —k.sinkx + 0(exp|t|x) = O(|k|exp|t|x) (4.9)

Y(x,A) =cosk(m—x)+ 0 (I%I exp(lrl(n — x))) = O(exp(l‘tl(n — x))

Y'(x, 1) = k.sink(m — x) + O(explrl(n — x)) = O(Ikl exp(lrl(n — x))) (4.10)

xe[0,m] ile esittir. Burada ve devaminda A =k? ve t=Imp, o ve O Landau
sembolleridir.

Ispat:

sinkx Tsink(x —t)
@(x,A) = coskx + h. + f
0

k . q(t).p(t, 1) (4.11)

oldugunu gosterelim. Aslinda Volterra integral denklemi

sinkx 7T sink(x—t)
+J,

p p .q(t).y(t, 1) tek bir ¢oziime sahiptir. Ote

y(x,A) = coskx + h.

yandan belli bir y(x, 1) fonksiyonu bu denklemi saglar. Buradan tiirev alirsak
V' D+ K2y =q(x).y(x D, y0,)=1 y(0,)=h
y(x,A) = @(x,A) ve (4.1) saglanir. (4.11) i sdyle hesaplayabiliriz.
¢'(x,A) = —k.sinkx + h.coskx + f(jc cosk(x —t).q(t).o(t, 1).dt (4.12)
#(A) = max (lpCx, 1) exp(—|tix)).
|sinkx| < exp(|t|x) ve |coskx| < exp(|t|x)

oldugu i¢in |k| = 1, x€[0, 7] igin (3.11) saglanur.

c
lo(x, )| exp(—]|t|x) <1+ ﬁ (h+ u(/l).foxlq(t)l.dt <C + ﬁ.,u(l) ve sonug
olarak u(1) < ¢, + I%I olur.

Yeterli biiyiikliikte bir |k| ig¢in u(4) = O(1) olur. Bu sonucun sag tarafina (4.11) ve
(4.12) konulursa (4.9)’a ve benzer sekilde (4.10) ulasabiliriz. (4.10) dogrudan (4.9) u
verir. Aslinda

P +q0). YD) =YD, Y@ =1 P'(r,A)=-H
oldugundan @(x,A) = Y(r — x, 1) fonksiyonu asagidaki fonksiyonu saglar ve
baslangi¢ kosullarina gore

—¢"(x, )+ qm—x).p(x, 1) =ApGA) $O,1) =1, @'0,1)=H
10
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Bu nedenle (4.9) asimptotik formiilii ¢(x, 4) fonksiyonu i¢in de gegerlidir. Buradan
(4.10) a ulasiriz.
Teorem 4.1.3. L nin sinir deger problemi sayilabilir sayida O6zdegere sahiptir.

{An}nz0, n = 0igin

w K
Po=yAn=n+—+—= {Kilel (4.13)
p(x,A,) = cosnx + E"(x), &, ()] < C, (4.14)

n

1 V3
W=h+H+—J q(t).dt
2 0

Burada ve her yerde aymi {K,} gibi aym1 semboller [, deki ¢esitli dizileri gosterir. C
sembolii x, 4, n gibi bagimli olmayan pozitif sabitleri belirtir.

Ispat:

(4.9) daki @(x, 1) icin (4.11) ve (4.12) deki sag taraflarin asimptotlarini degistirirsek
sunu hesaplayabiliriz

sinkx 1 (*
@(x,A) = coskx + q;(x).———+ — q(t).sink(x — 2t).dt + O

exp(|tlx)
k| 2k,

pZ
@' (x,1) = —k.sinkx + q,(x).coskx
1 [ exp(|t|x
+ Ef q(t).cosk(x — 2t).dt + O <$)
0

¢ (x, ) veg'(x, ) ifadelerine (4.15) diyelim. Burada q,(x) = h+. [ q(t).dt

olur. (4.5) e gore ve (4.15) yardimiyla A(1) = ¢’ (1, A) + H. (7, A) yazilir.

A(A) = —k.sinkm + w.coskm + K (k) (4.16)
K(k) = % jnq(t). cosk(m — 2t).dt + O (% exp(ltln))
0
Gs ={k:|lk—K| =6, K=0,121,%2,........}, 6 > 0 olsun. Yeterli biiyiikliikte bir
k* = k*(6) icin
|sinkm| = Cs. |k|.exp(|tim), keGs, (4.17)
|A(A)| = Cs. |k|.exp(|t|m), keGs, k| = k* (4.18)

oldugunu gostermeliyiz.

k = o + i olsun. (4.17) 1 kanitlamak yeterli olacaktir.

11
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11
= : —_— = > >
Ds {k ae[ 2,2,{_0,|k|_6}

0(k) = |sinkm|exp(—|t|m) alahm. keDg olsun. r < 1 i¢in 8 (k) = Gg olur.
(exp(ikm) — exp(—ikm))
2i

r>1igin 6(k) = ll_eXp(Zw?eXp(_zan > % olur. Boylece (4.17) kanitlanmis oldu.

sinkm =

Sonug olarak (4.16) y1 kullanarak keGg icin

A(A) = —k.sinkn <1 +0 (%))

2
ve bu ylizden (4.18) gegerlidir. T,, = {/1: |A] = (n + %) } alalim. (4.16) yardimiyla
AAD) =fA)+gA), fQ) =—k.sinkm, |gA)| < Cexp(|t|mr) elde edilir.
(4.17) ye gore yeterli biiyiikliikte bir n(n = n*) i¢in |[f(1)| > |g(1)|, Aet, olur.
Rouche teoremine [5] gore A(A) nin T, i¢indeki sifirlarinin sayisi

f(A) = —k. sinkm sifirlarinin sayisi ile aynidir ve n+1 tanedir. Boylece
A < (nTH)Zyuvarmda L nin tam olarak n+1 6zdegeri vardir. Simdi Rouche teoremini
¥n(8) = {k: |k — n| < 8} yuvarinda uygulayaraky,,(§) yuvarindaki yeterince biiyiik
bir n igin A(k?) mn bir sifirt vardir yani k,, = \/A—n Keyfi bir § > 0 i¢in
k=n+¢, e =0(1), no>o (4.19)
(4.19) u (4.16) da yerine koyarsak:
0=Ak?)=—-(n+e¢,).sin(n+¢&,).m+w.cos(n+¢g,).7m+K,

—n.sine,w + w.cose,m + K, =0 (4.20)
, 1 1
sing,m = 0 (E) &n = 0(;)
(4.20) yi kullanarak bir kez daha &, = <~ + 2 oldugunu buluruz dolayisiyla (4.13)

gecerlidir. (4.13) i (4.15) de yerine koyarsak (4.14) e ulasiriz.

1 (" w ]
e(x) = h+5.f q(t).dt—x.;—x.[(n .sinnx
0

1 (* 1
+ —.f q(t).sinn(x — 2t).dt + O (—) (4.21)
2 J, n
Sonug olarak |&,(x)| < C olur ve (3.1.3) teoremi kanitlanmis olur.

12
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(4.6) yardmiyla x =  i¢in B, = (¢(m,1,)" ! olur. (4.7), (4.8), (4.14) ve (4.21)
kullanilarak

o K, _ . Kn _ et T Kn

=24 B= (DR, AG) =DM+ (422)
elde edilir. A(A) basit sifirlara sahip oldugundan ve n > 0 i¢in A(4,,) = (—1)™* dir.

an

Aciklama: Eger q(x)eW}N ve N > 1 olursa daha 6ncede hesaplandig1 gibi asimptotik

formiiller soyle olur.

kn=n+ XV LS wy =0, k20, w, =2 -
an=§+2§y:11:—f+%, Wi =, k=0, a,>0 @29
Gergekten q(x)eWy olsun.
%.foxq(t). cosk(x — 2t).dt = Sirlfx. (g(x) +q(0) + ﬁ. foxq’(t).cosk(x — 2t).dt,
%.foxq(t).sink(x —2t).dt = szx.(q(x) —q(0)) — ﬁ. fox q'(t).cosk(x — 2t).dt

(4.24)
(4.15) ve (4.24) den

¢(x,4) = coskx + (h ‘e f xq (®). dt> Sk o <M>
0

2 k k3
(4.11) ve (4.12) nin sag taraflarinda yerine koyarsak, (4.24) ve (4.16) y1 kullanarak
A(A)ve @?(x, A) igin asimptotlar elde edilir. (4.15) ve (4.16)

sinkx coskx
X + QZo(X)-T

@(x,1) = coskx + q,(x).
X

4k2" ),

q'(t).cosk(x — 2t).dt + O <@)

sinkx
k

@' (x,1) = —k.sinkx + q,(x).coskx + g, (x).

X

1
— "(t). si — 2t).
+4k . q'(t).sink(x — 2t) dt+0< 2
sinkm  Ky(k)

r Tk

BXP(ITIx)>

A(A) = —k.sinkm + w. coskm + wy,.

(4.25)

X

1
q1(x) = h+§-f q(t).dt, wg = q(m) + H.q,(m),
0

1 . -1+ *
q2j(x) =Z-(q(x)+(—1)f+1.q(0))+( 2) fo q(t).q.(0).dt, j=0,1,
13
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1 (" exp(|t|m
K,(k) = —.f q'(t).sink(mr — 2t).dt + O <M>
4 ), k
(4.25) den benzer argiimanlar ¢ikarilir.
. Ky
k,=n+¢,, —n.sman.n+w.cosenrt+7=0

olur. Bu nedenle
w K,
kn =R+E+F, {Kn}elz

olur. Benzer sekilde (4.23) deki formiillerde hesaplanabilir.
Teorem 4.1.2. {1, }ns0 spektrumlarinin sartlarim1 tek basina A(A) karakteristik

fonksiyonu belirler. Soyle formiile edilir.

Ay — A
2

= (4.26)

AQY) = 7. (Ag — 2). 1_[
n=0

Ispat:
(4.1.16) dan itibaren A(A) nin bitin A lari 17, dir. Sonug olarak Hadamardin
2

carpanlara ayirma teoremi [5] A(A) ¢arpim sabiti sifirlar1 yardimiyla belirlenir.

= A
AQR) = c.ﬂ(1 ——) (4.27)
An
n=0
. - 2
A(A) = —p.sinpmt = —A. . 1_[ (1 - ﬁ)
n=1
AR A=A TR T A — 22
sm=c [T 1 (4 52=5)
AQD) Ao A n=1/1” 11 n‘—2

(4.13) ve (4.16) y1 ele alarak hesaplarsak

AW | 1—[“’ My =12
lim —= 1, lim 1+ =1
A== A(Q) —— nz -7

n=1

ve bu nedenle

=
n
C = 7'[./10. _2
n
no1

Bunu (4.27) de yerine koyarsak (4.26) ya ulasiriz.

14
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Aciklama: Benzer sonuclar, diger ayrilmis sinir kosullar tiirlerine sahip Sturm-
Liouville operatorleri i¢in gegerlidir. Asagida kullanilacak bu sonuglari kisaca
Ozetleyelim.

Sinir kosullar1 U(y) = 0, y(m) = 0ile (4.1) denklemi i¢in sinir deger problemi L, =
L1(q(x),h) disinelim. L; in {u,}nso Ozdegerleri basittir ve d(1) = ¢(m, 1)

karakteristik fonksiyonunun sifirlariyla ¢akisir.

- )
d(d) = #”—2 (4.28)
n=0 (Tl + 1/2)
T
{un, Anidnzo, Ay = f 02 (x, uy,). dx
0
L, in asimtotik formiilii:
1 w K
Vi =n+o+—+— {Kulel, (4.29)
Kn
g =5+ {Knidely (4.30)

1 s
wy = h+§.j q(t).dt
0

Sinir kosullar1 V(y) = 0, y(0) = 0 ile (4.1) denklemi igin sinir deger problemi L° =
L°(q(x),H) diisiinelim. L° in {19},., Ozdegerleri basittir ve A°(1) = (0,1) =
S'(m, 1) + H.S(m, A) karakteristik fonksiyonunun sifirlariyla gakisir.S(x, 1) volterra

integral denklemini saglar.

sinkx *sink(x — 2t)
S(x, 1) = +f .q(t).S(t, 1).dt (4.31)
k 0 k
|k| = oo i¢in
( sinkx 1 1
S(x, 1) = k +0 (lklz.exp(lrlx)> =0 <m.exp(lrlx)>,
{ S'(x,A) = coskx + (%exp(ltlx)) = O(exp(ltlx)), (4.32)
1
A°(Q) = coskm + <m exp(ltln)), T=Imp

Diger taraftan

15
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pry]
A°(2) = —
n—o(n+1/2)
1 0
A%=n+§+—+—n, {KyJel,

Sinir kosullar1 y() = 0, y(0) = 0 ile (4.1) denklemi igin sinir deger problemi L =
L%(q(x)) disiinelim. L% in {u3},>; Ozdegerleri basittir ve d°(A) = S(m, 1)

karakteristik fonksiyonunun sifirlariyla cakisir ve

0
Un — A
d°(1) = 7. 1_[ "
n=1
0 wy Ky
Un =N+ y 3 o {Kn}el,

1 Vs
0
wy =§f q(t).dt
0

olur.

Lemma4.13. 4, < p, <Apy1, n=0 iki smir deger probleminin L ve L,
0zdegerleri dontistimliidiir.

Ispat:

Lemma (4.1.1) in ispatindan

d
a(fp(x. Do u)=GA—w.ox1).p(x, 1) (4.34)

=10 | G000 dx = (9. D0 G {{
0

=@ A).¢"(m, 1) — ¢'(m, ). (1, ) = d(D).Aw) — d(w).A(A)

u = A i¢in sunu elde ederiz.

T d d
f ©%(x,1).dx = d(1).A(1) —d(1).A(Q) ile A(R) = a.A(A), d(1) = ad(l)
0
Ozellikle bu sonu¢ asagidaki ifadeyi verir:
a, = —A(4,).d(4,) (4.35)

16
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1 _d @
dz(/l)'fo (pz(x,l).dx——ﬁ(m), —w<A<4m,  dA) %0

A%)

T fonksiyonu R — {u,,|n = 0} tizerinde monoton azalandir.

Boylece

i A(Y)

Aotint0 d(2)

Sonug olarak (4.13) ve (4.29) kullanilarak (4.33) e ulasilir.
Bu boliimdeki bilgiler [20] ‘den alinmgtir.

:i—oo

4.2. Ozfonksiyonlarin Ozellikleri

Bu boliimde Sturm-Liouville sinir deger operatdrii L nin 6zfonksiyonlariin
eksiksiz oldugunu ve L, (0, ) de ortogonal bir temel olusturdugunu kanitlayacagiz.
Ayni zamanda 6zfonksiyonlarin Fourier serilerinin [0, ] tizerinde tek bir noktada
birlestigini gosterecegiz. Tamlik ve genisleme problemleri matematiksel fizikteki
cesitli problemleri Fourier yontemi ile ¢dzmek ve spektral teori i¢in dnemlidir.
Teorem 4.2.1. Smir deger problemi L nin {@(x,4,),n = 0} O6zfonksiyonlarin
sistemleri de L, (0, ) de tamdir.

f(x), xe[0, ] de kesin siirekli bir fonksiyon olsun.

(o]

1 s
F0) = @), an=—. f £(6). 0(t ). dt, (4.34)
n=0 n -0
f(x)eL,(0, ) igin (4.34) serisi L, (0, m)de yakinsaktir.
T [ee]
f |f ()| dx = Z a,.la,|?> (parseval esitligi) (4.35)
0 n=0

Ispat:

e, ). Yt 1), x<t,
p(t, D). Y, 1), x=t,

Glxt,A) = L{

vEy ve asagidaki fonksiyonu diigiinelim

17
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Y(x,A) = fﬂ G(x, t,A).f(t).dt

0

-z (v [ oe s

+ w(x,ﬂ).f tp(t,/l).f(t).dt>

G(x,t,A) fonksiyonu L i¢in Green fonksiyonudur. G(x,t,A) fonksiyonu Sturm-
Liouville operatorii icin ters operatoriin cekirdegidir. Yani Y(x,A) smir deger
probleminin ¢éziimiidiir.

Y —AY+f(x)=0, UXY)=V(Y)=0, (4.36)
Ifadesi ile kolayca dogrulanmis olur. (4.6) ve (4.2) teoremini kullanarak

Res;—;,Y (x,4)

_ thwuqumkoﬂww

+ ot 1), f Wt 1), f(t).dt>

B "
= 500G ). | F0.p(2,).de
ifadesi ve (4.8) yardimiyla
Resy=y Y(x,4) = ai' @ (x, A,). 7Tf(t). o(t,1,).dt (4.37)
n 0

f(x)eL,(0,m) olsun.
fﬂf(t)-(P(t.ln).dt =0, n=0
0

O halde (4.2.4), Res;—;,Y (x,4) = 0, ve sonug olarak her sabit xe[0, ] igin Y (x, 1)
tamdir. Dahas1 her sabit § > 0 ve yeterince biiylik bir k* > 0 i¢in (4.9), (4.10), (4.18)

den

YDl <2,
k|’
Maksimum kurali ve Liouville teoremi kullanilarak Y (x, A1) = 0. Bundan ve ve (4.36)
den f(x) = 0 olur.

peGs, |k| = k”

18
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Simdi feAC[0,m] keyfi ve siirekli bir islevi olsun. ¢@(x,)ve Y(x,A) (4.1) in

coziimleri, Y (x, 1) doniistiiriirsek

Y(x,A) =

1 x
IEYO) <‘/’(x' ). fo (—o"(t, D) +q(®).0(t, A)) (0. dt

+ o (x, ). f”(—llj"(t, D +q@®). D). f(©).db)

(4.4) iin parcalar1 yardimiyla ikinci tiirev igeren terimlerin biitlinlestirilmesi,

1
Y(x /’D—g——.(Zl(x,l)+Z2(x,l)) (4.38)
1000 = g5 (000 [ 900/ 20
+ oG | 90 @D, 9© = ©
1
2,00 = g5 (hF@p 0+ 11 [ 050

i, A).f 4(©). 96, 2). £(©).dt + 9, A).J 4(©). (6, 2). £(0). dt
0 x
Sabit bir § > 0 ve yeterince biiyiik k* > 0 i¢in (4.9), (4.10), (4.18) kullanilarak

max |7, (x, 2)] < keGs, |k| = k* (4.39)

C
[k’
lim max |Z;(x,4)| =0 (4.40)

p—0o 0<x<1

Ik olarak g(x) in [0, 7] {izerinde kesintisiz oldugunu varsayalim.

20,2) = == 906 D-9(0- 9(6:2) ) + 96 - g(O- Y& D)

1
A(D) (
—w’(x,l).j g'(t)gb(t,/l).dt)
0
(4.9), (4.10) ve (4.18) yardimiyla

[nax |Zl(x M <—, keGs, |k|=k*

k|’
Simdi g(t)eL(0, ) olsun. Sabit bir § > 0 ve siirekli bir g.(t) secelim.

[ 190 - gu(0lat < 5

19
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+ _ 1 x 1] i r
c ‘o‘i‘f‘s’%””|m>|("/’("'”"fo'4" (t.A)|.dt+|<p<x,A>|.L|¢ (t,mdt)

keGs, k| = k* igin

c@©
|kl

Bundan dolay1 bir k® > 0 vardir ki |k| = k° igin [nax |Z1(x,1)| < € saglar. Keyfi
<X<TT

&
max |Z1(x, )| < max [Z;(x,4; g)| + max [Z(x, 4, 9 — gl < 5+
0<x<T 0<x<T 0<x<T 2

€ > 0 i¢in (4.40) a ulasiriz.
2
In(x) = = [ ¥ (x,2). d2 integralini diisiinelim. ©, = {2: 2] = (n + 1/,) "} (4.38) ve
(4.40) yi takip eden
I,(x) = f(x) + ey(x), Al,im max |ey(x)] =0 (4.41)
—00 <1

0=x
Rezidii teoremi yardimiyla I, (x) i hesaplayabiliriz. (4.37) yardimiyla
N

1 T
L Gns Z . ARy A= a—.f F(D). 0t 1,). dt
n 0

n=0
(4.41) ile (4.34) e ulasabiliriz.
4) {p(x, 1)} ns0 Ozfonksiyonlar1 L, (0,7) de ortogonaldir ve tamdir. L, (0, )
deki ortogonal temel ve parseval esitliginden gegerlidir.

Bu boliimdeki bilgiler [6]’den alinmustir.
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5. BULGULAR ve TARTISMA

5.1. Genellesmis Fonksiyon Katsayih Sturm-Liouville Operatoriiniin Spektral

Karakteristiklerinin Incelenmesi

Operatorlerin spektral teorisinde kullanilan STURM-LIOUVILLE operatori
sOyle tanimlanir.

L = L(q(x), h, H) smir deger problemini géz 6niine alalim.
ly=—y"+qx).y=2a, 0<x<m
U):=y'"(0)—hy(0) =0, V() :=y'(r)+Hy(m) =0

Burada [ operatorii Sturm-Liouville operatoriidiir.

Yukaridaki sekilde ifade edilen sinir deger problemini inceleyelim. Verilen A spektral
parametre q(x) reel degerli fonksiyon olup W, (0, w)dendir. h ve H birer reel sayidir.
Tanmm 5.1.1. L’nin sifirdan farkli A parametresinin degerleri ozdegelerdir. Bu
ozdegerlere karsilik gelen basit olmayan ¢dziimler dzfonksiyonlardir. Ozdegerlerin
kiimesi L’ nin spektrumlaridir.

L nin spektral ozelliklerini, Ozdegerlerini ve Ozfonksiyonlarin asimptotik

davranislarini inceleyelim. Kendi sinir sartlarimiza gore operatorii ifade edersek soyle

olur:
—y"+q(x).y =2y, x € (0,a)U(a,m) q(x)eL,(0,m) (5.1)
U(ly) =y'(0) —h.y(0) =0 V) =y'(m)+H.y(n) =0 (5.2)

(y@a+0)—y(a—0) = ay'(a)
1 )‘{y'a(+0) =Y'(@a-0) =y'a)

ve (5.3) ifadeleri asagidaki denkleme denktir [1]:
—y" + (a.8'"(x —a) +q(x).y =Ly
p(x, 1), Y(x,1),C(x,A)ve S(x,A) ifadeleri (5.1) denkleminin ilk sartlar altindaki

(5.3)

¢Oziimleri olsun.
o, ): 9(0,4) =1, ¢'(0,1) =h=>U(p)=0
Y, A): Y(mA) =1, Y'(mA)=—-H=>V@) =0, 1=k?
olur.

AD) =< Y(x, 1), p(x, 1) > (5.4)
21
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oldugunu gosterelim. Wronskian determinantina gore

YA e(xA)
YA 9 ()

olur. A(A) fonksiyonu L nin karakteristik fonksiyonudur. x=0 ve x=mr koyarsak

AQ) =V(p) = -U®W) (5.5)

<P(x, ), (x,2) >= =yPx,A).0'(x, 1) —¢P'(x, ). p(x,1)

elde edilir.
Simdi A(A) ifadesinin siirekli oldugunu gosterelim:
<Y,Z>ar0=y(@+0).z'(a+0)—y'(a+0).z(a+ 0)
= (y(a -0 +ay'(a— 0)).2’(a —-0)—y'(a—0). (z(a —0)+a.z'(a— 0))
=y(@—-0)z@—-0+ay@—-0).z@-0)—y'(@—-0).z@-0)
—a.y'(a—0).z'(a—0)
= .2 =y Z)x=a0 =< ¥, Z >x=a0
<yz>=<YPD, o) >=9xD.0'(x,) =Y’ (x,1).0(x, 1) =V(p)
=-U®)
oldugundan < y, z > a noktasi da dahil olmak {izere tiim (0, r)’ de siireklidir.
Teorem 5.1.1. Karakteristik fonksiyonun {A,} sifirlart sinir deger probleminin
Ozdegerleriyle cakisir.gp(x, 1), PY(x,A) fonksiyonlar1 6zfonksiyonlar ve asagidaki
sart1 saglayan ardisik {f3,,} ler vardur.

Y(x,A) = Bp-o(x,4), Bp#0 (5.6)
Burada a,, i¢in su notasyonu kullanacagiz.
a, = fon ©%(x,1,).dx (5.7)

{a,.} sayilari normallestirilmis sayilar ve {1, a,, } spektral verilerdir.

ispat:

1) Ay, A(1) nin bir sifir1 olsun. (5.2)-(5.5) den ¥(x,A,) = Bo@(x,4y) olur ve
@(x, ), Y(x, 1y)fonksiyonlari (5.2) sinir sartlarini saglar. Bundan dolay1 A, 6zdeger
ve bu 6zdegerlere karsilik gelen 6zfonksiyonlarda ¢ (x, Ay), Y (x, A,) olur.

2) Ay L nin bir 6zdegeri olsun.y, uygun bir 6zfonksiyon olsun. Buradan U(y,) =
V(yo) =0 olur. y, # 0 oldugu agiktir. Genelligi bozmadan y,(0) = 1 yazalim.
Buradan y;(0) = h olur. Sonug olarak y,(x) = ¢(x, 4,) olur. Bu nedenle (5.5) bize

AAg) =V(p(x,29)) = V(y0(x)) = 0
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oldugunu verir. Sonu¢ olarak her bir 6zdeger i¢in yalmiz bir 6zfonksiyon vardir.
Boylece ispat tamamlanir.

Lemma 5.1.1. Onceki teoremden ve A(1) ifadesinden

Pn-an = —A(4) (5.8)
oldugu ortaya ¢ikar.
Ispat:
=P "D +q00). P, ) = 1 P(x, )
—@" (%, ) + q(0)- 9(x, An) = Ay 9(x, 1)
Buradan

d d
a < l/)(x, A), (P(x, An) > = a (lp(x' A) @ (x' An) - l/} (x: A)‘P(x’ An)

Carpimin tiirevinden yararlanirsak:
=96 0.0"(x, ) + P(x, ). " (x, 1) =P (x, D). ¢ (x. A7)
— (%, 1).¢'(x,43)
=Y, A).0"(x,4,) = 9" (x,). @ (x, 4,)
=Y (x,1).[q(x). @(x, A) = An. @ (x, 4)] = [q(x). 1 (x, 1) = 2.9 (x, D]. @(x, A7)
= (1 =2).9(x, D). 9(x, 1,)

= (A=A, j PO (D). dx = < P(x, A), 9 (x, ) ST
0

= (Y6, D). 9" (6 An) =9’ (0, D). 9(x, 4n)),
= 1/)(7'[' A) <P’(7T: An) - lp,(ﬂ' /1) ‘P(T[' An) + l/J,(O, A) <P(O, An) - 1/)(0, /1) (P,(O, An)
=¢'(m,2,) + H.o(1, 4,) + ¢'(0,1) — h.yp(0, 1) = —A(%,)
olur. Burada 4,;: A(4,,)) =0ve 1 - A, i¢in

AW - M@ d

J| 00 A D = ~=H T = AW 1,

B jo 020 ). dx = —A(A)

(5.7) den

an-ﬁn = _A(/ln) (5-9)
olarak elde edilir.

Simdi ¢oziimleri kuralim:
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x < aigin:
C(x,A) = Cy(x,A) ve S(x,A) = Sy(x, 1) (5.10)
X > a igin:
C(x,A) = A1.Co(x, 1) + B;.So(x, 1)
S(x,A) = A,.Co(x,A) + B,.So(x, 1)
@(x, 1) =C(x,A) + h.S(x, 4) (5.11)
Olacak sekilde ve (5.3) kullanirsak:
A;.Cy(a, 1) + B1.Sp(a, 1) = Cy(a, 1) + a.Cj(a, 1)
A1.Coa(LA) + B1.Sy(a, 1) = Cy(a, 1)

A = Co(a,A) + a.Cy(a, 1)Sy(a, 1)
1.4 Co(@,)Sy(a, )

A1=Cy(a,4).5y(a,4) + a. Cy(,a).Sy(a, 1) — Cy(a, 1).Sp(a, 2)
A=1+a.Cy(a, 1).Sy(a, 4) (5.12)
Ayni metotla B;'i de buluruz.

_1G(@ ) Co(a,d) + a.Cy(a,4)
G 2) Co(a, 1)

=Cy(a, 1).C(,ad)-Cy(, 2a). C5(,ad) — a. [Cy(a, 1)]?
By=- a.[C{(a, 1)]? (5.13)

B,

Simdi denklemi kendi sartlarimiza gore, A, ve B,katsayilarina gore yazalim:
A,.Cy(a, 1) + B,.Sp(a, A1) = Sp(a,4) + a.Si(a, 1)
A,.C)(a,A) + B,.Sy(a, A) = S§(,al)
Buradan

A = SoGad) + a.Si(a, 1)  Sy(a, )
2 So(a,2) So(a, )

=So(a, ). So(a, D+a.Sp(a, D). Sp(a, 1) — Sp(a,4). So(a, 1)
Ay=a.[S{a(, 1)]? (5.14)
Ayn1 yontemle devam edersek

_[Co(a, 1) So(a, ) + a.Sy(a, A)
IR Se(a, 1)

=So(a, 1).Cy(a, 1) — Cy(a, 1).Sy(a, A)- a.Sy(a, ). Cy(a, 1)

B,=1-a.5q(a,1).Cy(a, 1) (5.15)
24
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i saglayan Cy(x, A) asagidaki sekilde belirlenir.

*sink(x —t
Co(x,A) = coskx + f %.q(t)fo(t,/l).dt
0
Ardisik yaklasimlar metoduna gére 1. ve 2. Terimi yerine yazarsak:

sink(x—t)
. .

=cos kx+f0x q(t).coskt.dt +

f(f —Sink’((x_t) ) q(t).f;c—smk’(:_y).q(t).cosky. dy + o(ki2
Burada integral iglerinde bazi cebirsel islemler yaparsak:

X

1
coskx+ﬁ.smkx.f q(t).dt

0
1 X
+—. | sink(x —2t).q(t).dt
2k ),
1 X t
+ —. | sink(x —t).q(¢). sinkt.j q(y).dy.dt
2k2" ), 0
1 1
=cos kx + -.sin kx.foxq(t).dt + m.foxq(t) .dcosk(x —2t) —
1 x t
-z €08 kx. [y q(®). [, q).dy.dt

= cos kx + %.sin kx. foxq(t). dt+$. q(t). cosk(x — 2t).5
X

1
e cosk(x — 2t).q'(t).dt
0

=cos kx + %.sin kx.foxq(t). dt+$. [q(x) — q(0)]. cos kx —

1 X
4—,{2.J;) cosk(x — 2t).q'(t).dt
Son terim kismi integrasyon yardimiyla su hale gelir:

1 X
Co(x,A) = coskx +ﬁ.sinkx.f q(t).dt
0

+— {[q(x) —q(0)] - % [foxq(t). dt]z}.cos kx + 0(,%2) (5.16)

4k2’
Bulunur. Simdi C,(x, A) ifadesinin tiirevini alalim:

1 X
Cy(x,A) = —k.sinkx + - Cos kx.f q(t).dt
0

— 2 {laG) - q@] - 3. [ q(®. dt]z} sinkx +0(3) (5.17)
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olur. Simdi de S,(x, 1) ifadesini inceleyip bulalim:

sin kx 1

So(x, ) =

f sink(x —t).q(t).So(t, A).dt

Ardisik yaklagimlar yontemlyle birinci ve ikinci terimi yerine yazalim:

sinkx 1 (* ]
+ —f sink(x —t).q(t).sinkt.dt

SO(x)/l) = k kz

+k_13 fxsmk(x —0).q(®). f sink(t — y).q(y). sinky. dy. dt + o( )

Integral iclerinde baz1 cebirsel islemler yaparsak ifade soyle olur:

sinkx 1 x 1 x
Solx, A) = PaiaY=E coskx. f q(t). d1:+2k2 f q(t).cosk(x — 2t)
x t
—=—. | sink(x - t).q(t).coskt.f q(y).dy.dt
2k3 "), 4
=Si7;kx—m coskxf q(t).dt
1 X
e q(t).dsmk(x—Zt)—m U q(t). j q(y). dyl sinkx
ink .
2% - coskx. f q(t). dt+4k3 [q(x) + q(0)]. sinkx —

4-k3 [f q(®). f q(y). dy] sinkx

Son terimde kismi integrasyon yapilirsa Sy(x, 4) ifadesi su hale gelir:

Solx, 1) = Sir;ckx - 2—'1162 coskx. fxq(t).dt
4k3 [(q(x) +q(0)) —= [f q(t). dt] ] sinkx + o (;3) (5.18)

Simdi Sy (x, A) ifadesinin tiirevini alalim:

So(x,A) = coskx +
1 X
T sinkx. f q(t). d1:+4k2 [(q(x) +q(0)) — = U q(t). dtl ] coskx

1
+o (k—) (5.19)
Simdi A;, B; katsayilarim1 hesaplayip bu katsayilar yardimiyla C(x,A) terimini
bulalim:

A=1+a.Ci(a, 2).Sy@ ) =1 +
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a.{[—k. sinka + %.coska. fO q(t).dt —— [(q(a) —q(0)) —

%. an q(®). dt]z]] .sinka}.

1 a
{coska+ﬁ smkaf q(t).dt

4k2 (q(@) +q(0)) — = U q(t). dtl ] coska}

=1 — a.k.sinka.coska — E.Sinzka. fo q(t).dt — E{(q(a) + q(O)) —
%[foaq(t). dt]z} .sinka. coska + %coszka. foaq(t). dt +

%.sinka. coska. [foaq(t). dt]2 - {(q(a) q(0)) -
%. an q(®). dt]z} .sinka. coska + O(k—lz)

Bazi cebirsel islemler sonucunda:

a

a a
=1——=.k.sin2ka + —.cosZka.f q(t).dt
2 2 .

¢ sin2k
8k .Sin a.

CI(t) dtl —[q(@) = q(0)] + U q (o). dtl —[q(a) —q(0)]

1 ]2 2
+§.UO q(t).dt”

elde edilir. Sonug olarak A, ifadesi soyle olur:

A=1— %.k. sin2ka + %.cosZka. foa q(t).dt

, 2
+< . sinzka. |[[7 q(6).dt]” + q(a)] (5.20)
Simdi B, katsayisini bulalim:

B; = —a.[C4(a, 2)]?

=-a [[—k.sinka + % coska. foaq(t). dt — ﬁ. [(q(a) - q(O)) —
2
%. an q(t). dt]z]] .sinka]
a a > a a
= —a.k?. sin’ka —Z.coszka. [f q(t).dtl +E.k.2.sinka. coska.j q(t).dt
0 0
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_%. [(q(a) —q(0)) — % [.[:q(t).dtl .sin’ka

Bazi cebirsel islemler sonucunda:

1
+ O(E)

a 2

gUO q(t).dtl +%.(q(a)—q(0))
_ a 2

—g. f q(t).dtl
[V 0

% cosaka | U ®) dtr—f (@) — q(0)) += U ®) dtr]
3" '_8' oq : 2 q 3" Oq :

a

a
+—.k.sin2ka. j q(t).dt
2 0
2

a a a
B, = .(cos2ka—1) + 7 k.sinZka.f q(t).dt
0
+7-10@) + q(0)]
_%_ [[foaq(t). dt]2 + (q(@) + q(O))] .cos2ka + 0(%) (5.21)

ifadesi elde edilmis olur. Simdi A,ifadesini bulalim:

Ay=a.[Sy(a, 1)]?

1
A = . E—
2 = a.(coskx + T .sinkx

] q(t). dt+4k2 [(q(x)+q(0))—— U q(t). dtl ] coskx)?

— 2 .
=a.cos’ka + ;. fO q(t).dt.sin2ka + 0 (ﬁ)

A, = % (1 + cos2ka) + % foaq(t). dt.sin2ka + O (%) (5.22)

Son olarak B,ifadesini hesaplayalm:

B,=1-a.5;(a,1).Cy(a, 1)

1 X
=1- a.{—k.sinkx+§.cos kx.J q(t).dt
0

—i [q(x) — (O)]—1 fx (t) dt2 sin kx
a1 q > Oq . . .
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X

1
{coskx + ﬁ.smkx.f q(t).dt

0

4k2 (q(x)+q(0))—— U q(t). dtl ] coskx}

B, = 1+ k.sin2ka —~. Jy q(©).dt.cos2ka + 0(;) (5.23)
Simdi C (x, A) ¢dziimiinii yazalim:

C(x, A) = Al' C()(x, /1) + Bl.So(x, /1)

a

a a
=4{1—=.k. sinZka+—.c052ka.f q(t).dt
2 2 o

a A 2 d ’
+E sin2ka. —U; q(0). t] +q(a)

1 X
cos kx + —.sinkx. f q(t).dt
2k’ 0

1 1 [ §
+ oz [q(x)—q(O)]—z.UO q(t).dtl .cos kx

2

+(0('2 .(cos2ka—1) + %. k.sin2ka. jaq(t) dt + [q@) + q(0)]
% [U q(t). dtl + (q(a) —q(O))] cos2ka).
{sir]ikx — % coskx. qu(t). dt

+ [(Q(x)+Q(0))—— [ J q(t). dtl ] Slnkx}

a
=— E.k. sink(2a — x) — =. k.sinkx — E.sinZka. sinkx.f q(t).dt
2 2 4 .
a

a
+coskx + 5 cos2ka. coskx.f q(t).dt
0

X a

a
q(t).dt + E.sinZka. sinkx.f q(t).dt

a
——.(cos2ka —1). coskx.f
4 0

0
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a X
——.cosk(2a — x).f q(t).dt
4 0

X

a a a
+Z.coskx.f q(t).dt +E.cosk(2a—x).f q(t).dt
0 0

2
——{q(x) q(0) ——U q(t). dtl } sin2ka. coskx

P

1 a a
+— q(t). dt.sinkx + 1 + —.cosZka.f q(t).dt
2k’ 2 o

2
4k {q(a) + = U q(t). dtl } sin2ka. coskx +— (cos2ka—1)

1 [(* 2
{Q(x)+q(a)—z.U q(t).dtl }.sinkx
0

X

a a
- q(t).dt.f q(t).dt.sin2ka. coskx
4k J, 0

2
+— {q@) + q(0)}.sinkx — i {q(x) +q(0) + = U q(t). dt] } sinkx.cos2ka

= —% sin2ka. coskx{q(x) q(0) —= U q(t). dtl —2.q(a) — U q(t). dtl
2. .dt. .d
+ fo q(t).dt fo q(t) t}
+%_(2.f0 q(t).dt.f0 q(t).dt + q(x) + q(0))

1 x 2 x 2
_Elf q(t).dtl —2.q(a) — 2.q(0) — U q(t).dtl
0 0
Buradan ifadeyi toparlarsak:

a a a
Clx,A) = —3 k.sink(2a — x) — > k.sinkx + T cosk(2a — x).

{2. joxq(t). dt. Joaq(t). dt} + %. coskx. Joxq(t). dt — %.sink(Za - x).
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{q(x)—z-q(a)—q(o)—%U q(t).dtl —U q(t).dtl

+ Z.qu(t).dt.faq(t).dt}

+i.sinkx {q(a) +q(0) — % [foxq(t).dt]2 + %. f;cq(t). dt} (5.24)
elde edilir.
Boylece C(x, 1) ifadesini olusturduk. Simdi S(x, A1) ifadesini olusturalim:

S(x,A) = A,.Co(x,A) + By.So(x, 1)

a a 1 1 x
la. cos?ka + —.sinZka.f q(t).dt + O(E)l . lcoskx + —.sinkx.f q(t). dtl
0 0

2k 2k
+ |2 i 22 TiA 0521 fa @.de| [ L sk fx (). dt
2. .Stn a 2.COS a. . q r . k ZkZ.COS X. . q .

a a a x
= —.cos2ka.coskx — —.coskz + —.cos2ka. sinkx.j q(t).dt
2 2 4k .

a & a a a
— —.sinkx.f q(t).dt + —.sin2ka. coskx.f q(t).dt + —.sin2ka. sinkx
4k 0 2k 6 2

sinkx
k

a X
——.sin2ka. coskx.f q(t).dt +
4k 0

¢ cos2ka.sink fa (t)dt+0(1)
Zk.COS a. SINKX. . q . k2

S(x,A) = g. (cos2ka. coskx + sin2ka. sinkx)

a X
+ e (cos2ka.sinkx — sin2ka. coskx).f q(t).dt
0

a

+ T q(t).dt. (sin2ka. coskx — cos2ka. sinkx)
0

sinkx

L coskx — = 'kfx(t)dt+
Z.COS X 4k.Sln X. . q .

X
S(x,A) = E. cosk(2a—x) — E. coskx — i.sink(Za - x).f q(t).dt
2 2 4k .

sinkx
k

a a a x
—ﬁ.smk(Za — x).j;) q(t).dt — E.smkx.fo q(t).dt —
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a a
S(x,A) = E.cosk(Za —x)— E.coskx —

ﬁ.sink(Za —x). [foxq(t). dt + 2. foaq(t). dt] — %.Sinkx. [foxq(t). dt + S] (5.25)

seklinde bulunmus olur. Simdi Q(x, 1) ¢6zlimiinii kurmaya calisalim:

o, 1) =C(x,A) + h.S(x, 1)

a a
p(x, ) = [_E k.sink(2a — x) — ok k.sinkx

a x 2
+Z.cosk(2a—x).{2.f0 q(t).dt.j; q(t).dt}

X

+%.coskx.j q(t).dt

0

2 sink(2 2 0 -2 (“a.ae|
- g-sink(za = 0.44) = 2.4 = a00) ~ | 0.

— U:q(t).dtr + z.foxq(t).dt. foaq(t).dt}

a 1| r* 24 ¥
+@.smkx{q(a)+q(0)—§.Uo q(t).dtl +E.f0q(t).dt}]

fox q(t).dt + 2. f:q(t). dtl

h |2 cosk(2a — x) — <. coskx — — . sink(2a — x)
. Z.COS a X Z.COS X 4k.Sln a X).

a ink jx (t)dt+4
4k.sm X. Oq . "

o(x, ) = —%. k.[sink(2a — x) + sinkx] + % coskx. E fqu(t). dt + h] +
.cosk(2a — x). [foaq(t). dt — % f;cq(t). dt + h] + ﬁ.sinkx. E (q(a) + q(O)) _

.[fOXQ(t).dt]z + % qu(t).dt - %.h] + ﬁ.sink(Za — x).{[%.q(x) —q(a) —

NIR AR NQ

QO] =3[ q@.de]" = 2.[[7 q.de] + [ a(©).dr. 7 (o). de +
2.h. [} q(6).dt — h. [ q(t).dt} (5.26)

@ (x, 1) ifadesini olusturmus olduk. Simdi de tiirevini hesaplayalim:

1 X
Q'(x,A) = %. k?.[cosk(2a — x) — coskx] — k.%.sinkx. [EJ q(t).dt + hl
0
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a a a 1 (*
+Z.coskx.q(x) +k.E.smk(2a—x). f Q(t)'dt_f'f q(t).dt +h
0 0

a
+ Z.cosk(Za —x).q(x)

+E k l( + O)—l fx(t)alt2
4.cos X. 2.q(a) q(0) 7 0q .

2—h (¥ 4
+TJ;) q(t)dt—hE]}

a 1
-7 cosk(Za—x){ qx) — q(a)—— q(O)—— U q(t). dtl

n U a®. dt]

+f0 a0, dtf q(t).dt + 2. hf q(®). dt—hf q(®). dt}

= E.kz. [cosk(2a — x) — coskx] — k.—.sinkx. [ f q(t).dt + h] +
a

k.-.sink(2a — x). [f q(t). dt—— f q(t). dt+h] —.coskx. {q(x) +l q(a) +

E.q(O) — Z' Uo q(t).dt] + T'fo q(t).dt — E'h} + %.cosk(Za — x).{z.q(x) +
1 1 x 2 1 a 2 x a
q@ +3.q(0) + 7. [[; a@®.dt] +-.[f;a@®).dt] — [ q(®).dt. [} q(t).dt ~

a X
2.h [ q(0).dt +h. ] q(t).dt} (5.27)
Simdi ¢oziimiimiizl baslangi¢ sartlarina gére yazalim:

A =-V(p) = —¢'(m,A) — H.p(m, 1)

AQY) = %_kz. [coskm — cosk(2a — )] + k.%.sinkn. E J " (). dt + hl
0
—k.%.sink(Za — ). E.an(t). dt — J:q(t). dt — hl

a 1[(" 2 1 1
+Z.coskn ZU;) q(t).dtl —[q(n)+§.q(a)+§.q(0)]

h—2 (™ 4
+—— | q@®).dt+-.h
a J, a
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a 4 2
+Z.cosk(2a—n).{f0 q(t).dt.j; q(t).dt

a 1 1 1[(" 2
+2.h.f0 q(t).dt—[E.q(n)+q(a)+§.q(0)]—Z.U; q(t).dtl

- [ f aq(w.dtr —h f nq(t).dt} +

a a 1 ("
+§.H.k. [sink(2a — ) + sinkm] _E'H' coskm [E,f q(t).dt+hl
0

a

a 1 (" 1
2.H.cosk(2a—n).U q(t).dt——.j q(t).dt+hl+0<—.exp(|r|7r))
0 0

2 k

a a
c E'kz' [coskm — cosk(2a — m)] + k.i.sinkn.

1 s
—.j q(t).dt+h+Hl
2 Jy

a

+k.%.sink(2a ~ E.an(t).dt _ JO q(6).dt —h + Hl

a o NL[[T dz 1 1
+Z'COS T ZU; q(t). tl —[q(n)+5.q(a)+§.q(0)]
T h—2 4
+jo q(t).dt.[T—H]+E.h—2.h.H

T

a a
+Z.cosk(2a — ). {jo q(t).dt. Uo q(t).dt + Hl

a dt. Th 1 1
+2.jO q(0). dt. [ —H]—[E.q(n)+q(a)+§.q(0)]

s 2 a 2 T
—%.UO q(t).dtl —%UO q(t).dtl —h.JO q(t).dt—Z.h.H}

+ o(exp(|z|m))

Ag(R) = %.kz. [coskm — cosk(2a — m)]
_a |l fﬂ (t).dt+h+H
W1—2. 2 . q .

alT[ a
== |z dt — dt—h+H
wo=5 5[ aw.ar- [ qrar-non]
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1[(" 2 1 1
Wgz%.{Z.U; q(t).dtl —[q(n)+§.q(a)+§.q(0)]

T h—2 4
+f q(t).dt.[——H]+—.h—2.h.H
0 a a

a T a
A =Z.U;) q(t).dt.UO q(t).dt+Hl

a 1 1
+ 2..[; q(t).dt.[h — H] — [E.q(n) + q(a) +§.q(0)]

—%. U:Tq(t).dtl —%. U;aq(t).dtl — h. fonq(t).dt —2.h.H

olarak tanimlayalim. Sonug olarak:

A(Y) = %.kz. [coskm — cosk(2a — )] + wy. k. sinkm + w,. k. sink(2a — ) +
ws. coskrm + wy. cosk(2a — 1) (5.28)
olur.
A(A) y1 bilinen yontemler kullanarak karakteristik fonksiyonun agagidaki 6zelliklerini
ve sinir problemlerinin 6zdegerlerini A,, = k2 elde ederiz.
|k| > oo igin A(2) = 0(|k|exp(|T|r))

h > 0,C;, > 0 vardir ki |[Imk| = hicin |A(1)| = Ch(lklexp(lFln)) dolayisiyla {A,,}
ozdegerleri |Imk| < h igerisindedir.
Gs = {k: |k — k| = 6} belirtir. |A(2)| = Cslk|exp(IT|7), keGs A% = (k3)? olsun.
Ao(2) = k. ((wy.sinkm + wy. sink(2a — m)) olur. k, = k3 + 0(1), n - oo ifadesi
(5.10), (5.11) i (5.7) de yerine koyarsak

2
an = f:QUZ(X, A).dx = fon (—% k.[sink(2a — x) + sinkx]) Jdx =

a?.k?

4

[fonsinzk(Za —x).dx + fon sinkx.dx + fon 2. sinkx. sink(2a — x) . dx])
(5.29)

olur.
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al = f (k. ((wy.sinkm + w,. sink(2a — n)))z. dx
0

(le + w2

> — Wi. Ws. cosZka) s

Buradan |a,| = C olur. Bunun anlami a,, = 0(1)ve a,,”! = 0(1) olmasidir. Buradan

Brn =¥(0,4,) = (5.30)

1
@(m,An)

olur ve buradan |B,| = C 4..29 ve B,,.a, = A1 (4,), {Al(l) = :—AA(A)} den sonucu

elde ederiz.

5.2.Ters Problem

Ters problemi agagidaki spektral 6zelliklere gore ¢ozecegiz.

1. Weyl fonksiyonundan M ()

2. Spektral veriler {1, i, }ns0

3. Iki spektrum {A,,, 0, }n=0

Bu ters problemler siireksizlikler olmaksizin Sturm-Liouville denklemleri i¢in iyi
bilinen ters problemin genellestirilmesidir. [21, 25]

Oncelikle ispatlarimizi (i)-;(iii) i¢in yapalim. Bunun igin, L ile birlikte, ayni
formdaki smir katsayist olan bir L harfini dikkate alalim, ancak katsayilar
G(x), h, H,d,d,) farkhidir.

Eger belirli bir a sembolii, L ile ilgili bir nesne anlamma gelirse, @, L ile ilgili
benzer nesneyi gosterirve d = a — a
®d(x, 1), (5.1) inU(P) =1,V(D) = 0 ve (5.3) sinir sartlart altinda bir ¢6ziimii olsun.
M) = ®(0,1) olsun. &(x,1), M(A) fonksiyonlarmin Weyl ¢oziimleri ve sinir

deger problemi i¢in Weyl fonksiyonu olarak adlandirilir.

D(x, 1) = % = SC6,A) + M(L). o(x, 1) (5.31)
(p(x, 1), ®(x, 1)) =1 (5.32)
(p(x, 1), P(x, 1)) = @' (x, ). P(x, 1) — p(x,1). P (x,1) = U(P) =1
M@y = 24 5.33
( )—m (5.33)
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6(A) =(0,1) =V(S), sinir sartlar1 U(y) = 0, y(m) = 0 ile (4.1) denklemi igin sinir
deger problemi L;'nin ve atlama kosullart (4.3)'ln karakteristik fonksiyonudur.
{tn}ns0 6 (A) nmin sifirlart olsun.
Teorem 5.2.1 Eger M(1) = M(A) ise L = L olur. Boylece Weyl fonksiyonunun
sartlar1, operatorii tek sekilde belirler.
ispat:
9" (x,2) = 0(Ik|Vexp(|7]( — x))) (5.34)
|A(D)| = Cslklexp(|t|m), keGs Gs ={k: |k — k,| = 6} (5.35)
(5.31), (5.32) ve (5.35) yardimiyla
|®Y(x,1)| < Cslk|""texp(—|t|m), keGg (5.36)

P(x,A) = [P]k (x, /1)]ﬂ=1‘2 formiilii ile matrisleri tanimlayalim:

{ Py(x,2) = U™ (x,1). @' (x, 1) — 2U.§'(x,2),
- | y 4 (5.37)
Pi(x,2) = ®UV(x, D). G(x, 1) — U= (x, 1). P(x, 1)
Pll(x' /1) = 5,(x' /1) - (Z)I(X, /1)
Pio(x, ) = ¢(x, 1) — ®(x, )
Buradan
{(p(x, A =P(x,).0(x, 1) + P1(x,1).9"(x, 1) (5.38)
D(x,A) = P (x%,A). D(x,A) + P (x,1). D' (x,1) '

@06, = [B'(x,2) = ¢'(x, D] [pCx, D] + [ (x, 1) — B(x, V] [¢' (x, D]
o(x, ) = D' (x,2). §(x, 1) — D(x,1).¢'(x,1)
P(xA) = [F(x, ) — P, D] D) + [¢(x, 1) — P(x, V)] D' (x, 1)
D(x,A) = @(x,1). D' (x,1) — F(x, 1). D(x, 1)
(5.31) ve (5.37)'ye gore, her sabit x i¢in, P;;(x, 1) fonksiyonlar1 A ile basit kutuplar

A ve A, meromorfiktir. G§ = Gs N Gg olur,

e (x,1) = 0(lk|Vexp(||n)) (5.39)
(5.36), (5.37) ve (5.39) ifadelerinden
|Pio(x, )| < Cslkl™,  |Pii(x, D] < Cs, keGy (5.40)

(5.31) ve (5.37)'den sonra, eger M(1) = M(A) ise, her sabit x icin, P;;(x,A)
fonksiyonlariin hepsi A'dadir. (5.40) ile birlikte bu Py, (x, 1) = 0,P;;(x, 1) = A(x)

verir. Buradan (5.38)’i kullanarak suna ulasiriz.
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(x, 1) = AX).3(x, 1), ®(x,2) = A(x).P(x, 1) (5.41)

Buradan

a a
p(x,A) = E'kz' [cosk(2a — x) — coskx] — k.E.sinkx.

%.fxq(t).dt + hl
0

a 1 X
+ k.%.sink(Za—x).UO q(t).dt—E.JO q(t).dt+hl

a 1 Loy LI d2
+Z'COS X. q(x)+§.q(a)+§.q( )—Z.U; q(t). tl

L2k x(t)dt o
a.oq. =

a
+ T cosk(2a — x)

{24 +q@ +3.90) +3.[[Fq@.de] +5.[[Fq@).de]" -

S q(e).de. [ q(t).dt — 2.h. [ q(t).dt + h. [ q (D). dt} +0 (%) x<a
(5.42)
@(x,1) = (—b;.coskx + b,.cosk(2a — x))

+o <% exp(lrln)), (5.43)

Ifadeleri |k| — o, argke[e,m — €], &€ > 0 icin hesaplanirsa

@(x,1) = 27 bexp(—ikm)(1 + 0(k™1)),
x <aiginb =1vex > aicin b = by olur. Benzer sekilde hesaplarsak

®(x, ) = (ikb) texp(ikm)(1+ 0(k™))
seklinde olur. (5.32) ve (5.41) ile birlikte biitin x ve A i¢in b, = by, A(x) =1,
o(x, 1) = @(x,1), P(x,1) = P(x,A) olarak bulunur. Sonug olarak L = L dir.
Teorem 5.2.2.  Eger 1, = 1,,a, = d,,n =0 ise L = L olur. Béylece Spektral
verilere ait {1,,, a, },>0 operatorleri tek sekilde belirler.

Ispat: (5.33) den Weyl fonksiyonu M (1) basit kutup 4,, ile meromorfiktir.
B =9(0,1,) = —

Y Bn-an = A1 (4,) ve (4.36) kullanilarak asagidaki ifade
hesaplanir.
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Res 6 B 1
1=, = na) T o " a

(5.44)

F'={A=u+iviu= (2h?)"%2.v? — h?} ifadesi Imk = +h in A =k? altndaki
gortntisi olsun. I, = T' N {A: |A]| < n,} belirtip asagidakileri dikkate alalim.
Lo =, U{A A =, A € intT}, T,y =T, U{A: || = 1, A1 € intT}

Weyl fonksiyonu M(A) igin A€ int I}, diizenli oldugundan Cauchy teoremi

yardimiyla

1 M(w) .

M(A) = P f m.dﬂ, A€ int Ty
T'no
6n = Y(x, 1) ifadesi bize
Oop = O(exp(l‘rlrt)) (5.45)
verir. (5.35), (5.33) ve (5.45) i kullanarak
IM(Q)| < Cs. k|71, keGs (5.46)

elde edilir. Bundan dolay1

1 M(w)

MO =0 | =™
Tn1

olur.

Bu integrali rezidii teoremi yardimiyla hesaplar ve asagidaki ifadeye ulasiriz.

oo

1

n=1
Teoremin hipotezi altinda (5.47) e baktigimizda M (A)ve Teorem 5.2.1
yardimiyla L = L elde edilir.

Teorem 5.2.3.  Eger A, = Ay, Up = i, n = 0ise (0,m) araliginda q(x) = G(x)

h=h H=H,a=a, a; =d,vea, =d,

Ispat:
A(A) = k. (by. coskm — b,.cosk(2a — 1)) — wy. sinkm — w,.sink(2a — T)
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+0(exp(|r|n)) (5.48)
A(A) dizisi, A, %oldugunda tamdir ve Sonug olarak, A(A), sifirlarla carpimsal bir sabite

kadar tek bir sekilde belirlenir.

= A
AQD) = C. 1—[ (1 - /1—) (5.49)
n=0 n
Ay (A) = k2. (by.coskm — b,. cosk(2a — 1)) (5.50)

ifadesine gore

- 2
Ao(l) = Qoll_[<1 _A_O>’ .Q.O = T[.bl - (Za - n)bz
n=1 p

olur. Buradan

A do—A T — A, — 20
B e o T (14 22=%)
Ao(l) Ao.ﬂo.l n:lAn A An_l
A — —oo alirsak

%) An
C = _/10. Qo. HA_O
n=1 "

ifadesini elde ederiz. (5.49) da yerine yazarsak

Ay — A
. (5.51)
n

A =00 =20 | [

n=1
elde edilir. (5.51)'den itibaren {1,,},,s0 spektrumlarinin spesifikasyonu karakteristik
fonksiyon A(A)'i kesin olarak belirler. Benzer sekilde §(4) fonksiyonu {u;}ns0
sifirlart yardimiyla tek sekilde belirlenir. Simdi A, = A,,, g, = fi,, n = 0 alalim.
A(2) = A(2), (A1) = (1) olur. Sonug olarak (4.36) yardimiyla M (1) = M(1) elde
edilir. Buradan ve Teorem 5.2.1” den q(x) = §(x), h=h, H =H, a = g,

a, = d, ve a, = d, olur.
5.3.Ters Problemin Coziimii
Bu boéliimde, Cauchy'nin integral formiilii, Rezidii teoremi ve spektral veriler

yardimiyla L’nin sinir deger probleminin ters problemini ¢dzecegiz. Ana denklemin
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¢ozlimiinli kullan arak ters problemlerin ¢oziimii i¢in algoritmalar sagliyoruz. L’nin
spektral verilerin (4, ) n=01,72,.. Kurtarilmasinin tersine problem oldugunu
diisiiniiyoruz. Sinir deger problemi L ve L olacak sekilde {,, := |/1n - Tn| + |y — ¥l

oldugunda

=@ s=Tm ) Gulll<o, (5.52)
n=oo

olur.i,j=01venk =0,+1,+2, ... icin @(x,A) ilk baglangic kosullar
#(0,1) =1,%'(0,1) = h altinda potansiyel § ile (5.52)'in bir ¢éziimii oldugunu

gosterecegiz.
/1n0 = Anf Anl = /Tnt Yno = Vn Yn1 = Vo
Oni(x) = (X, A1),  Pni(x) = @(x, A1),
< @(x, 1), pgj(x) > 1 x
Quj = - [ o050t
" 20k Vi (A — ki) 2Akjvij o o

Qnikj(X) = Qpj(x, An;)
Benzer sekilde yukaridaki tanimda @ ile ¢'yi degistirerek Qy i, A)’n
tamimlayabiliriz.  Schwarz’in  lemmasmi  kullanarak  (Bak[5,p.130]) ve
o, ), (x,) ved,, =A% + 0(1), n > o ifadelerinden asagidaki asimptotik
ifadeleri elde ederiz:

o ()| < caagl + 1y7 (5.53)
c

|Qnisj ()] < m, |Q7<:;E>(x)| < c(129] + |29] +1)" (5.54)
n k

nk=0+1+2, ... i,j,v=0,1veC pozitif bir sabittir. Benzer sonuglar
@ni(x) ve Qnixj(x) igin de gegerlidir.
Lemma 5.3.1. ¢, (x, )ve Qp;x;(x) yukaridaki gibi tanimlansm. i, j = 0,1 ve n,k =
0,+1,+2,....i¢in

G = i) + I8 o(Onito®)- 910 () — Critn (- 911 (0)  (5.55)
serisi kesinlikle ve diizgiin bir sekilde xe [0, ] /{as}7x, e yakinsar.

Ispat:

(5.52)’den ag = @;, ag = dg s = 1,m yazabiliriz. (x, A)ve @'(x, A) ifadelerinden

41



S. BULGULAR ve TARTISMA Sinan SEVINC

|(p(")(x, D) — @ (x, A)| < Cl|A|" texp(||x) (5.56)
Benzer sekilde
W@ (x, ) — P (x, 1)| < ClAI" exp(|t](m — x)) (5.57)
G§ = Gs N Gg olsun.
[ @ (x, 1)| = 0(|1A|7e!"I™=2) (5.58)
|A(D)| = Cs|Alexp(|t|m) tim AeGs (A > 0) (5.59)
(5.57), (5.58), (5.59) ve (5.32) dan
@ (x, 1) — dP (x, )| < CslA1" 2 exp(—|t]x), 2eGy (5.60)

elde edilir. Simdi P(x, A) ifadesini tanimlayalim:

o) P | _[e(xd) ()
Fx) D] loxd) ¢'(xd)

Her sabit x i¢in Py (x,A) fonksiyonu A, 1, ve A, basit noktalarda meromorfiktir.

P(x, )

Cauchy’nin teoremini elde ettik [5].

Plk(x'Z)
(=27

1
Plk(x, A) - 61]( r f k = 1,2, (561)
I'p

2mi
AeintTly, ve 8j, Kronecker deltadir.
< ¢p(x, ), p(x,1) >=1ve (5.40) ifadeleri asagidaki ifadeyi ima eder.
Pi(x,2) = 1+ (0, 1) = G(x,2)).¢'(x, )

~ () = ¢(x,).¢' (1) (5.62)
le@(x, D] =0(|A]Pe™*) 0<x<m v=0]1, (5.63)

(5.58), (5.37), (5.56), (5.60) ve (5.62) ifadelerinden
[Py (x, 1) — 15| < C51A17%, 2eGy (5.64)

oldugunu cikarabiliriz. (5.61) ve (5.64) ifadelerinden T,; = {A:|A| =|2%|, n =
0,¥1, %2, ...} icin asagidaki elde edilir.

1 Py (x,
P (o) — 8y = lim — M.d(

noe 271 Jp ¢ — 2

Bu ifadeyi (5.38) de yerine yazarsak:

o(x,A) = ¢(x,A) + lim L @(x,1). P11 (x,{) + @' (x, 1). P15(x,{) @
n-oo 2717l o 21— (
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olur. (5.34) ve (5.37) ifadelerini ele alarak yukaridaki ifadeye yazalim:
¢(x,4) = o(x, 1)
1 <Px, ), 9(x,0) >

+ rllggﬁ =7 Q). 0(x,0).d]  (5.65)
(5.46) den
p(x, ), P(x, _ ~
Resteny L2 PED 2 Fi(0). 00 6) = Gy 0. 0410

Sonu¢ olarak (5.65) integralini Rezidii teoremi yardimiyla hesaplamis olduk.
[5,p.112] A = A,,; alarak n — o igin (5.55) ifadesine ulastik. (5.53) ve (5.54)
asimptotik formiillerini xe(as, as;1), 0 < s < m igin tiiretiyoruz.

Yukaridaki argiimanlardan, her bir sabit x igin, (5.3.4) ifadesinin ¢,;(x) n =
0,+1,+2,..vei =0,1,"c gore linecer denklemler sistemi olarak diistiniildigi
gorilmiistir.

Bu nedenle, (5.55)"0 ters problemin ana denklemi olarak kullanmak uygun degildir.

V, u=mni), n=0,+1,+2,.. vei = 0,1, gibi bir dizi indeks olsun. her

sabit xe [0, ] /{as}7L, igin vektorleri su sekilde tanimlayalim:

¢(x A) - [d)u(x) uev = ¢n0g§% di(x) - [(ﬁu(X)]uEV N gnjgg

n=0,F1F2,..
Bu formiil:
¢n0(x) _ [Zgl _Zn QDnO(X) I¢nO(X)l — [({1 —Zﬁl] [‘f’no(x)
¢n1 (X) 0 1 Pn1 (X) ¢n1 (x) anl (X)
halini alir. Eger belli bir n i¢in ¢,, = 0 is€ ¢, (x) = ¢y, (x) = 0 aliriz.

] (5.66)

Buradan blok matrisleri tammlayalim: u = (n,i), v = (k,j) iken

— Hno,ko (x) Hno,kl (x)
wvev Hnl,ko (x) Hnl,kl(x) n,k=0,$1,$2,...

H(x) = [Hu,v(x)]

olur.

[Hno,ko(x) Hno,kl(x)] _ [{;1 —{;1] Qnoto(®*)  Qnoa(x) [(k Ck
Hnl,ko(x) Hnl,kl(x) 1 in,ko(x) in,kl(x) -1

Benzer sekilde, @ni(x),(:)m-,kj(x) ile onceki tanimlarda @p;(x), Qpigj(x)'i
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degistirerek Q(x),H(x)'i tanmmlanz. ¢@(x,1),¥'(x,1),4, =A% +0(1), n—
0, ¥p =¥ +0(1), n - o,(5.53),(5.54) ve Schwarz’in lemmasindan

69| [0 )| < carsi+ v, v=01,

_ C.0k;
|Hpi i O, | i ()| < m (5.67)
|15 @) AP o] < e8] + 148 + 1)7¢, v =0.1. (5.68)

Sinirh dizilerin a = [a, ],y Banach uzaymm ||allg = supyeylayl ile ele alalim.
Her sabit xe(ag, agy1), 0 < s <m igin, B'den B'ye hareket eden operator E +

H(x)ve E — H(x)'in lineer sinirli operatdr oldugu (5.67) ve (5.68) de goriiliir ve

H H C z T ol o
IHENA G| < Csupn 18- /12|+1

Burada boliimiin ana sonucunu veriyoruz.

Teorem 5.3.2. Her xe[0,7]/{as}tt, i¢in ¢(x)eB vektori B Banach uzayinda

asagidaki denklemi verir:

B(x, 1) = (E + H(x)) b (x) (5.69)

Ayrica operatdr E + H(x)'nin sinirl bir ters operatdrii vardir, (5.3.18) denklemi tek

sekilde ¢oziilebilir.

Ispat: ¢ (x)notasyonunu kullanarak yazacagimiz formiil
@ni(x) = ¢pi(x) + Z Hni,kj(x)-(pkj(x)' (n,DeV, (k,j)eV
k,j
(5.55) formiilii ile esdegerdir. Benzer sekilde H(x) notasyonunu kullanarak
(n, D), (L)), (k, )€V igin

Haiy ) = Baggj 09 + ) Pl (O Hpe () = 0
k.t

veya bagka formda
(E + H(x)) (E—H@)=E
L ve L icin yer degistirirsek benzer sekilde asagidaki ifadeyi elde ederiz.
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$() = (E-H)@(), (E—H®)(E+H®)=0

_ -1
Bundan dolay1 operator (E +H (x)) var ve bir lincar sinirli operatordiir. (5.69)

denklemi ters problemin temel denklemi olarak adlandirilir. (5.69) denklemini
¢ozmek, ¢ (x) vektorii ve sonug olarak ¢,,; (x) fonksiyonu bulmaya yarar. Bu nedenle,

ters problemlerimizin ¢oziimii i¢in asagidaki algoritmalar elde ederiz.

Algoritma 5.3.3. {4, ¥nln=075172,.. Spektral verileri verilsin. g(x), h, H,a5,s = 1,m
kuralim:

L yi secelim ve ¢(x) ve H(x)’i hesaplayalim.

(5.69) denklemini ¢ozerek (5.66) lizerinden ¢(x) ve @,o(x)’1 hesaplayalim.

Bazi n’ler segelim ve asagidaki formiiller yardimiyla q(x), h, H,a ve a ifadeleri

kurulur.
(p‘;’l,O(x) ¢;10(n)
q(x) = +24, h=@.0), H=-—
Pno(x) " no Pno ()
a+0)— a—»0
Pno(a+0) =§0'no(a—0); a=(pn0( ) = Pno( )

Pno(@—0)

Algoritma 5.3.4. M(Q) verilsin. q(x), h, H, a ve a ifadeleri kurulur.

(5.31) den {A,,, VnIn=0+1,72,.. spektral verileri kurulur.

(5.54) algoritmasindan q(x), h, H, a ve a ifadeleri kurulur.

Algoritma 5.3.5. {4, tntn=071,72,. IKi spektrum verileri verilsin. q(x), h, H,a ve a
ifadeleri kurulur.

(5.33) den M(Q) ifadesini kurulur.

Algoritma (5.55) ile q(x), h, H, a ve a ifadeleri kurulur.
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5. SONUCLAR ve ONERILER

Tezde genellesmis fonksiyon katsayili Sturm-Liouville operatorii i¢in (0, 1)
araliginda siireksiz bir a noktasi alarak operatdr i¢in olusacak diiz ve ters problemler
incelenmistir. Buradan hareketle bu a noktasinin operatore ve spektral verilere nasil
yansidigi ters problemi nasil etkiledigi anlatilmistir.

Bu tezde 6zgiin sonuglar olup elde edilen sonuglar konuya derinlik kazandirmis

olup bundan sonra yapilacak ¢aligmalara kaynak olabilecek niteliktedir.
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