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ABSTRACT

RISK-AVERSE MULTI-STAGE MIXED-INTEGER
STOCHASTIC PROGRAMMING PROBLEMS

Ali İrfan Mahmutoğulları

Ph.D. in Industrial Engineering

Advisor: Özlem Çavuş İyigün

Co-Advisor: Mehmet Selim Aktürk

January 2019

Risk-averse multi-stage mixed-integer stochastic programming problems form a

class of extremely challenging problems since the problem size grows exponentially

with the number of stages, they are non-convex due to integrality restrictions,

and their objective functions are nonlinear in general. In this thesis, we first focus

on such problems with an objective of dynamic mean conditional value-at-risk.

We propose a scenario tree decomposition approach to obtain lower and upper

bounds for their optimal values and then use these bounds in an evaluate-and-cut

procedure which serves as an exact solution algorithm for such problems with in-

teger first-stage decisions. Later, we consider a risk-averse day-ahead scheduling

of electricity generation or unit commitment problem where the objective is a dy-

namic coherent risk measure. We consider two different versions of the problem:

adaptive and non-adaptive. In the adaptive model, the commitment decisions are

updated in each stage, whereas in the non-adaptive model, the commitment deci-

sions are fixed in the first-stage. We provide theoretical and empirical analyses on

the benefit of using an adaptive multi-stage stochastic model. Finally, we inves-

tigate the trade off between the adaptivity of the model and the computational

effort to solve it for risk-averse multi-stage production planning problems with

an objective of dynamic coherent risk measure. We also conduct computational

experiments in order to verify the theoretical findings and discuss the results of

these experiments.

Keywords: Risk-averse optimization, Multi-stage stochastic programming,

Mixed-integer programming, Dynamic coherent risk measures.
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ÖZET

RİSKTEN KAÇINAN ÇOK AŞAMALI KARMA TAM
SAYILI RASSAL PROGRAMLAMA PROBLEMLERİ

Ali İrfan Mahmutoğulları

Endüstri Mühendisliği, Doktora

Tez Danışmanı: Özlem Çavuş İyigün

İkinci Tez Danışmanı: Mehmet Selim Aktürk

Ocak 2019

Riskten kaçınan çok aşamalı karma tam sayılı rassal programlama problemleri,

problem büyüklüğünün aşama sayısıyla hızla artması, tam sayı kısıtlamaları ne-

deniyle konveks olmamaları ve amaç fonksiyonlarının genellikle doğrusal olma-

ması yüzünden çok zor problemlerdir. Bu tezde, öncelikle amaç fonksiyonları

dinamik ortalama şartlı riske maruz değer olan problemleri ele alıyoruz. Bu prob-

lemlerin en iyi değerleri için alt ve üst sınırlar veren bir senaryo gruplama yöntemi

öneriyoruz ve daha sonra bu sınırları, ilk aşamasındaki değişkenleri tam sayı olan

problemler için bir kesin çözüm yöntemi olan hesapla-ve-kes prosedüründe kul-

lanıyoruz. Daha sonra, amaç fonksiyonu dinamik tutarlı risk ölçütü olan riskten

kaçınan gün öncesi elektrik üretimi olarak da bilinen birim taahhütü problem-

ini ele alıyoruz. Bu problemin iki farklı türünü göz önünde bulunduruyoruz.

Uyarlanabilir modelde, taahhüt kararları her aşamada güncellenirken uyarlana-

maz modelde bu kararlar ilk aşamada veriliyor. Uyarlanabilir modeli kullanmanın

getirisini teorik ve deneysel olarak gösteriyoruz. Son olarak da amaç fonksiyon-

ları dinamik tutarlı risk ölçütleri olan riskten kaçınan çok aşamalı üretim plan-

lama problemleri için uyarlanabilirlik ve hesaplama emeği arasındaki dengeyi

inceliyoruz. Ayrıca, teorik bulgularımızı doğrulamak için hesaplamalı deneyler

düzenleyip, deney sonuçlarını tartışıyoruz.

Anahtar sözcükler : Riskten kaçınan optimizasyon, Çok aşamalı rassal program-

lama, Karma tam sayılı programlama, Dinamik tutarlı risk ölçütleri.
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Karaşan, Asst. Prof. Emre Nadar and Asst. Prof. Sakine Batun for accepting to

be a member of my examination committee and for their valuable suggestions.

It was an honor and a privilege to be a member of Bilkent IE family, and I

would like to thank each member of the department.

I am grateful to so many people for their unlimited support to me. First, I

would like to thank my dear friends Haşim Özlü, Cemal İlhan and Nur Timurlenk
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Chapter 1

Introduction

The vast majority of operations research literature is devoted to deterministic op-

timization models where problem parameters are deterministic and known when

the decision is made. A deterministic optimization model can be written as

min
x∈X

f(x),

where x ∈ Rm is the vector of decision variables, f : Rm → R is the cost function

to be minimized and X ⊆ Rm is the set of feasible solutions.

However, parameters of many real life problems are not deterministic and not

exactly known when the decisions are made. Demand of a product or return of

an asset are examples of such parameters. Stochastic programming deals with

optimization problems where some (or all) problem parameters are subject to

uncertainty and follow known probability distributions. Theory of stochastic

programming dates back to Dantzig’s pioneering work [1] in 1955. Recent ap-

plications in finance, energy, health care and production systems revealed that

stochastic programming is a powerful tool to elaborate uncertainty in these sys-

tems. The modern theory and applications in various areas of operation research

are discussed in [2], [3], [4] and references therein.
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Stochastic optimization models are divided into two groups depending on

their attitude towards risk: risk-neutral and risk-averse models. In risk-neutral

(stochastic optimization) models, the objective is to minimize expected total cost.

The generic risk-neutral model is

min Eξ[f(x, ξ)],

s.t. x ∈ X (ξ),

where f(x, ξ) is the random cost depending on the decision vector x and random

problem parameters ξ. The set of all feasible decisions X (ξ) is also defined by ξ.

The expectation Eξ is taken with respect to ξ and assumed to be well-defined (see,

for example, [5]). The risk-neutral model minimizes the cost “on the average”

as a corollary of the Law of Large Numbers. However, risk-neutral models are

reasonable only if the long term performance is considered irrespective of specific

realizations. The following portfolio optimization example shows a shortcoming

of risk-neutral models in existence of risky realizations.

Example 1. ( [3], pg. 13) An investor wishes to maximize the total expected

return by distributing an initial capital W onto m different risky assets. Let xi

be the amount invested in asset i and Ri be the (random) return of asset i for

i = 1, . . . ,m. The corresponding optimization model is

min − Eξ

[
m∑
i=1

ξixi

]
, (1.1)

s.t.
m∑
i=1

xi = W,

x = (x1, x2, . . . , xm) ∈ Rm
+ ,

where ξi = 1 + Ri and Rm
+ is the nonnegative orthant in Rm. Note that, the

objective function (1.1) can alternatively be written as:

Eξ

[
m∑
i=1

ξixi

]
=

m∑
i=1

Eξ [ξi]xi =
m∑
i=1

µixi,

where µi = 1 + E [Ri]. An optimal solution of the problem is to invest all capital

2



into the asset which has the highest expected return. Therefore, optimal value is

−µ∗W where µ∗ := max1≤i≤m µi.

Obviously, an optimal solution of the risk-neutral portfolio optimization prob-

lem may be subject to high level of risk. The total return depends on realization

of the return of one asset only.

Example 1 illustrates that risk-neutral models cannot elaborate the risk due

to specific realizations. This result motivates the risk-averse (stochastic opti-

mization) models which reflect preferences of a decision maker who avoids risk.

Different types of risk-averse models are available in the literature (see, Chap-

ter 2, for a detailed discussion on these models). In this thesis, we consider the

risk-averse models where a risk measure is used to reflect the risk-aversion of the

decision maker.

A risk measure is defined as a function ρ : Z → R which “quantifies” the risk

involved in a random outcome. Here, Z is a set of random variables for which

lower values are preferable, that is, they define a random cost. An interpretation

of the risk measure is given in [6] as: ρ(Z) is a fair one-time charge a risk-averse

decision maker would be willing to pay instead of random cost Z ∈ Z. In other

words, ρ(Z) is the “risk-adjusted deterministic cost” of the random cost Z. Risk

measures are useful to model risk-averse attitudes of decision makers. Moreover,

they are easier to interpret and have practical meaning. Therefore, they are

widely used in the literature. A canonical risk-averse model is given by

min ρ(f(x, ξ)),

s.t. x ∈ X (ξ),

where the expectation in the risk-neutral model is replaced by a risk measure.

In many stochastic optimization models, as in Example 1, the realization of

random problem parameters occurs once and for all. In that case, decision vari-

ables can be grouped into two sets: the first and second stage variables. The first

stage variables correspond to decisions which are made before the realization of
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Figure 1.1: The decision process in multi-stage models.
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random problem parameters. On the other hand, the second stage variables cor-

respond to decisions which are made after observing the realization of random

problem parameters. Thus, these model are called as two-stage models. However,

in multi-stage models, the randomness unveils gradually a over fixed length deci-

sion horizon and decisions are made between two consecutive realizations. These

decision epochs are called as stages.

In multi-stage models, the first stage decision x1 is made based on the first

stage deterministic problem parameters ξ1. Then, a realization of the second stage

problem parameters ξ2 occurs and the second stage decisions x2 are made. This

decision process continues through a T−stage decision horizon. If the random

parameters evolve as a discrete-time stochastic process with finite support, then

the whole process can be represented by a T−stage scenario tree. The decision

process in multi-stage models is depicted in Figure 1.1.

Multi-stage models provide high adaptability of decisions in a dynamic envi-

ronment. However, they are more challenging than their two-stage counterparts

due to their increasing problem size which, in general, increases exponentially

with respect to the number of stages T .

In this thesis, we consider solution methods for risk-averse multi-stage mixed-

integer stochastic optimization models. These models are large scale non-convex

optimization problems for which no efficient solution method is available, to the

best of our knowledge. Difficulty of these problems is due to three main reasons.

The first reason is the risk measures used in the objective function. Unlike their

risk-neutral counterparts, risk-averse models do not enjoy decomposition directly

due to structure of risk measures used in the objective. The second reason is

scalability. For a non-trivial problem, size of a multi-stage model grows exponen-

tially with the number of stages. The third reason is the mixed-integer nature of
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decision variables. Even if the multi-stage problem is deterministic, the resulting

problem is still a large scale mixed-integer model.

Therefore, in this thesis, we provide approximate and exact solution meth-

ods for risk-averse multi-stage mixed-integer stochastic optimization models. We

provide theoretical discussions on these methods such as guaranteed bounds for

approximate methods, and convergence proofs for exact methods. We also pro-

vide a set of computational experiments on different problems in order to test

the proposed methods. In these experiments, we use problems from different

areas of operations research such as location, production, expansion and power

system optimization. Computational results of these experiments indicate that

the proposed methods are powerful tools for risk-averse multi-stage mixed-integer

stochastic optimization models.

The rest of the thesis is organized as follows. In Chapter 2, we present the

related literature on risk-averse stochastic optimization problems. In Chapter 3,

we propose a scenario tree decomposition approach, namely group subproblem

approach, to obtain bounds for risk-averse multi-stage mixed-integer stochastic

optimization problems with an objective of dynamic mean conditional value-at-

risk (mean-CVaR). Our approach does not require any special problem structure

such as convexity and linearity, therefore it can be applied to a wide range of

problems. We obtain lower bounds by using different convolution of mean-CVaR

risk measures and different scenario partition strategies. The upper bounds are

obtained through the use of optimal solutions of group subproblems. Using these

lower and upper bounds, we propose a solution algorithm for risk-averse mixed-

integer multi-stage stochastic problems with mean-CVaR risk measures. We test

the performance of the proposed algorithm on a multi-stage stochastic lot sizing

problem and compare different choices of lower bounds and partition strategies.

Comparison of the proposed algorithm to a commercial solver reveals that, on the

average, the proposed algorithm yields 1.13% stronger bounds. The commercial

solver, on the average, requires more than a factor of five additional running time

to reach the same optimality gap obtained by the proposed algorithm.
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In Chapter 4, we propose an exact solution algorithm for risk-averse multi-

stage mixed-integer stochastic optimization problems with an objective of dy-

namic mean-CVaR risk measure and binary first stage decision variables. The

proposed algorithm is based on an evaluate-and-cut procedure and it uses lower

bounds obtained from a scenario tree decomposition method presented in Chapter

3. We also show that, under the assumption that the first stage integer variables

are bounded, our algorithm solves problems with mixed-integer variables in all

stages. Computational experiments on risk-averse multi-stage stochastic server

location and generation expansion problems reveal that the proposed algorithm

is able to solve problem instances with more than one million binary variables

within a reasonable time under a modest computational setting.

In Chapter 5, we consider day-ahead scheduling of electricity generation or

unit commitment which is an important and challenging optimization problem in

power systems. Variability in net load arising from the increasing penetration of

renewable technologies have motivated study of various classes of stochastic unit

commitment models. In the models with non-adaptive commitment, the gener-

ation schedule for the entire day is fixed while the dispatch is adapted to the

uncertainty, whereas in the models with adaptive commitment, the generation

schedule is also allowed to dynamically adapt to the uncertainty realization. The

latter one provides more flexibility in the generation schedule, however, it requires

significantly higher computational effort. To justify this additional computational

effort, we provide theoretical and empirical analyses of the value of adaptive com-

mitment for risk-averse multi-stage stochastic unit commitment models. The

value of adaptive commitment measures the relative advantage of adaptive com-

mitment over its non-adaptive counterpart. Our results indicate that, for unit

commitment models, value of adaptive commitment increases with the level of

uncertainty and number of periods, and decreases with the degree of risk-aversion

of the decision maker.

In Chapter 6, we consider risk-averse multi-stage production planning prob-

lems as a generalization of the unit commitment problem discussed in Chapter

5. In these problems, we make set-up decisions of a set of generators and pro-

duction amount decisions of each generator in order to satisfy random demand
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of a single product through a multi-stage decision horizon. For these problems,

we consider two types of models with respect to their adaptivity to the demand

uncertainty. In fully adaptive models, both set-up and production decisions are

given in on-line fashion, that is, they are adapted to demand uncertainty. How-

ever, in the models with non-adaptive set-up decisions, the set-up decisions are

off-line, that is, they are fixed at the beginning of the decision horizon whereas the

production decisions are on-line. We discuss the trade off between flexibility of

the adaptive set-up decisions and computational convenience of the non-adaptive

set-up decisions. As an intermediate case between the models with adaptive and

non-adaptive set-up decisions, we also consider a model with partially adaptive

set-up decisions. Moreover, we propose a rolling horizon solution algorithm for

the fully adaptive model where the model with non-adaptive set-up decisions is

used as an approximation. In order to reduce computational difficulty of the

proposed models and the rolling horizon method, we consider restricting the

production amounts as affine functions of demand realizations. We propose an-

alytical results on the relation among the optimal solutions of the models with

fully adaptive, partially adaptive, non-adaptive set-up decisions and the solution

obtained from the rolling horizon algorithm. Finally, we conduct a set of compu-

tational experiments on a risk-averse multi-stage lot sizing problem to investigate

the computational efficiency of the proposed rolling horizon method and verify

the analytical results.

Chapters 3, 5 and 6 correspond to approximate solution methods for risk-

averse multi-stage mixed-integer stochastic programming problems. In Chapter

4, we provide an exact solution approach for these problems where the objective

is a dynamic mean-CVaR risk measure. The concluding remarks and a discussion

on the contribution of this thesis to the literature are given in Chapter 7. We also

provide a detailed discussion on future research directions and possible extensions

of current work in Chapter 7.
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Chapter 2

Literature Review

In stochastic optimization problems, risk-averse attitude of decision makers can be

represented in several ways. In this chapter, we present a brief survey of existing

approaches in risk-averse optimization such as expected utility theory, stochastic

dominance, chance constraints and mean-risk models. Then, we present defini-

tions of coherent, conditional and dynamic risk measures. Finally, we present the

existing literature on decomposition methods for multi-stage stochastic program-

ming problems.

2.1 Expected Utility Theory

In expected utility theory, two random outcomes are compared based on their

expected (dis-)utilities. A random variable Z is preferred to another random

variable W if E[u(Z)] ≤ E[u(W )] where u(·) is some dis-utility function. Let

f(x, ξ) be the random cost due to decision x and random problem parameters

ξ. Also let X (ξ) be the set of feasible decisions with respect to ξ. Then, the
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optimization problem is given as

min
x∈X (ξ)

Eξ[u(f(x, ξ))]. (2.1)

If u(·) is convex, then Jensen’s inequality

u(Eξ[f(x, ξ)]) ≤ Eξ[u(f(x, ξ))],

implies that the certain outcome Eξ[f(x, ξ)] is at least as preferable as the random

outcome f(x, ξ). Therefore, (2.1) is a risk-averse formulation for any convex and

non-decreasing u(·). Moreover, if u(·) is affine, (2.1) is a risk-neutral formulation

and if u(·) is concave, it is a risk-seeking formulation. If the random outcome

represents profit instead of cost, (2.1) is replaced with a maximization problem

where u(·) is assumed to be non-decreasing and concave. In that case, u(·) is

called as a utility function.

An important measure of risk-aversion is coefficient of absolute risk-aversion

A(x, u) = −u′′(x)/u′(x) proposed in [7] and [8] to control the degree of risk-

aversion. However, interpreting (dis-)utility functions is not straightforward. A

more detailed discussion on usage of (dis-)utility functions in risk-averse problems

can be found in [3].

2.2 Stochastic Dominance Constraints

Another way to deal with risk is to use stochastic dominance constraints in

stochastic optimization models. Stochastic dominance constraints enable the de-

cision maker to compare two different random variables with respect to their

involved risk. A random variable Z dominates another random variable W in

the first order, i.e. Z <(1) W , if F (a) 6 G(a) for all a ∈ R and in the second

order, i.e. Z <(2) W , if
∫ a
−∞ F (x)dx ≤

∫ a
−∞G(x)dx for all a ∈ R where F (·) and

G(·) are distribution functions of Z and W , respectively. If a reference random
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outcome Z is known, then a set of constraints can be included in stochastic opti-

mization problems which ensure that an optimal solution is at least as preferable

as Z. However, determining the reference random outcome is another issue that

the decision maker should address before adding these constraints to the model.

Stochastic dominance constraints date back to pioneering works [9] and [10].

A more detailed discussion about using stochastic dominance constraints in risk-

averse problems can be found in [3] and [4].

2.3 Chance Constraints

A canonical formulation of chance constrained stochastic programming models is

given as

min Eξ[f(x, ξ)], (2.2)

s.t. Pr{gj(x, ξ) ≤ 0,∀j ∈ J } ≥ p, (2.3)

x ∈ X (ξ), (2.4)

where constraint (2.3) ensures that the set of constraints gj(x, ξ) ≤ 0,∀j ∈ J hold

with probability of at least p ∈ (0, 1). Chance constrained models are introduced

in [11] in 1959.

Even under simplest settings, these models are challenging. This challenge

follows from the fact that the set of feasible solutions of the problem (2.2)-(2.4)

can be non-convex even if the function gj(·) is convex in x for all j ∈ J and X (ξ)

is a convex set (see, for example, [12] for a detailed discussion).

A detailed survey on chance constrained stochastic programming models can

be found in [2] and [3].
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2.4 Mean-risk Models

The model

min
x∈X (ξ)

Eξ[f(x, ξ)] + λD[f(x, ξ)] (2.5)

is called as a mean-risk model where Eξ[f(x, ξ)] and D[f(x, ξ)] are expected value

of the random cost and some dispersion measure, respectively. Here λ is the

price of risk which controls the degree of risk-aversion. In his seminal work

[13], Markowitz presents the first mean-risk model for a portfolio optimization

problem.

The most natural choice for the dispersion measure in problem (2.5) is variance,

that is, D(·) = V(·) as in [13]. In that case, both upper and lower deviations

from the mean cost are penalized in (2.5). However, we prefer lower cost values,

therefore penalization of lower deviations is not desirable. The following example

highlights this shortcoming of using variance as a dispersion measure in problem

(2.5).

Example 2. ( [14]) Assume that the random variable ξ takes values ξ1 and ξ2

with probabilities p and 1− p, respectively for some p ∈ (0, 1). Let Z take values

Z(ξ1) = −a for some a > 0 and Z(ξ2) = 0 depending on the realization of ξ.

Similarly, let W be another random variable with W (ξ1) = W (ξ2) = 0. The

mean-risk function F (·) := Eξ[·] + λV[·] is calculated for Z and W as F (Z) =

−ap+λa2p(1−p) and F (W ) = 0. Thus, if λa(1−p) > 1, we have F (Z) > F (W ).

However, W dominates Z, that is, W (ξ1) ≥ Z(ξ1) and W (ξ2) ≥ Z(ξ2).

Consider mean-risk model (2.5) where f(x, ξ) := xZ+(1−x)W and X := [0, 1].

Note that f(x, ξ) = xZ and f(1, ξ) is dominated by f(x, ξ) for x ∈ X . However,

x = 1 is not an optimal solution of (2.5) since f(1, ξ) = F (Z) is strictly greater

than f(0, ξ) = F (W ).

In Example 2, the optimal solution of the mean-risk model (2.5) is W even

though Z always takes lower values than W . This example reveals that a optimal

solution of the mean-risk model (2.5) may not be the most preferable solution.
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Hence, we need to specify some axioms in order to measure the risk involved in a

random cost properly. A more detailed discussion about using mean-risk models

in risk-aversion can be found in [3] and [15].

2.5 Coherent Risk Measures

Let Ω be a sample space equipped with a sigma algebra F and Z := Lp(Ω,F , P )

be the space of all random variables that have finite moment of order p with

respect to probability distribution P for some p ∈ [1,∞). An element ω of the

sample space Ω is called as a scenario.

A risk measure is a function ρ : Z → R∪{∞}∪{−∞} which assigns a random

variable to risk involved in that random variable. Then, the risk-averse stochastic

optimization problem is

min
x∈X (ξ)

ρ(f(x, ξ)). (2.6)

In order to guarantee that the problem (2.6) has meaningful interpretations, we

follow the concept of coherent risk measure defined in [16].

Let Z,W ∈ Z be uncertain outcomes defined on the probability space

(Ω,F , P ) for which lower realizations are preferable. A risk measure ρ : Z → R
is called coherent if it satisfies:

• (A1) Convexity: ρ(αZ + (1−α)W ) ≤ αρ(Z) + (1−α)ρ(W ) for all Z,W ∈
Z and α ∈ [0, 1],

• (A2) Monotonicity: Z � W implies ρ(Z) ≤ ρ(W ) for all Z,W ∈ Z,

• (A3) Translational Equivariance: ρ(Z+ t) = ρ(Z) + t for all t ∈ R and Z ∈
Z,

• (A4) Positive Homogeneity: ρ(tZ) = tρ(Z) for all t > 0 and Z ∈ Z,
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where Z � W indicates component-wise partial ordering such that Zω ≤ Wω for

almost every ω ∈ Ω. Here, Zω is the value that Z takes in scenario ω ∈ Ω.

The above axioms have practical interpretations. Axioms (A1) and (A4) imply

that diversification does not create extra risk or equivalently, ρ(·) is sub-additive

in a sense that

ρ(Z +W ) ≤ ρ(Z) + ρ(W ) for all Z,W ∈ Z.

Axiom (A2) implies that higher cost yields higher risk. Axiom (A3) implies that

increasing the cost for a fixed t units increases risk by the same amount. Finally,

axiom (A4) implies that risk remains same regardless of currency type. A more

detailed discussion on interpretations of these axioms can be found in [16].

Important examples of coherent risk measures are quantile and deviation based

risk measures. One example of the former one is conditional value-at-risk (CVaR)

(see, for example, [17])

CVaRα(Z) := inf
η∈R

{
η +

1

1− α
E[(Z − η)+]

}
. (2.7)

where (a)+ = max{a, 0}, a ∈ R and α ∈ [0, 1) is the level parameter. The

infimum on the right hand side of (2.7) is attained at η∗ = VaRα(Z) where value-

at-risk (VaR) corresponds to left-side quantile of Z. The interpretation of VaR

at level α is that “costs larger than VaRα(Z) occur with probability of at most

α” (see, for example, [3]). Similarly, CVaRα(Z) corresponds to “the expected

cost in most pessimistic 100α percent of all scenarios”. CVaR is a coherent risk

measure, but VaR violates sub-additivity.

Another quantile-based risk measure, namely mean-CVaR, is defined as a con-

vex combination of mean cost and CVaR, that is,

ρ(Z) := (1− ε)E[Z] + εCVaRα(Z), (2.8)

for some weight parameter ε ∈ [0, 1]. Definition of CVaR only represents the

quantile information, however, (2.8) conveys both expected cost and the quantile
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information and thus generalizes CVaR.

An example of deviation based coherent risk measures is mean-upper semi

deviation (MUSD). The mean-upper semi deviation is defined as the sum of

expected cost and a penalty term for expected upper deviation from the mean

cost, that is,

MUSD(Z) := E[Z] + λE[(Z − E[Z])+], (2.9)

for some penalty parameter λ ∈ [0, 1].

More examples for coherent risk measures and a detailed discussion on their

theoretical properties can be found in [3], [18] and references therein.

In this thesis, we consider a multi-stage decision horizon, therefore we consider

extension of coherent risk measures in a dynamic setting.

2.6 Conditional and Dynamic Risk Measures

In order to measure risk in a dynamic setting, we use conditional risk measures

as an extension of coherent risk measures. Consider sigma algebras Ft ⊆ Ft+1

and spaces Zt := Lp(Ω,Ft, P ) and Zt+1 := Lp(Ω,Ft+1, P ) defined using these

sigma algebras. A mapping ρFt+1|Ft : Zt+1 → Zt is called one-step conditional

risk measure if:

• (B1) Convexity: ρFt+1|Ft(αZ + (1− α)W ) � αρFt+1|Ft(Z) +

(1− α)ρFt+1|Ft(W ) for all Z,W ∈ Zt+1 and α ∈ [0, 1],

• (B2) Monotonicity: Z � W implies ρFt+1|Ft(Z) � ρFt+1|Ft(W ) for all Z,W ∈
Zt+1,

• (B3) Translational Equivariance: ρFt+1|Ft(Z + W ) = ρFt+1|Ft(Z) +

W for all W ∈ Zt and Z ∈ Zt+1,

• (B4) Positive Homogeneity: ρFt+1|Ft(tZ) = tρFt+1|Ft(Z) for all t >

0 and Z ∈ Zt+1.
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Axioms (B1)-(B4) have similar interpretations with axioms (A1)-(A4). More-

over, ρFt+1|Ft(·) has a similar interpretation with the coherent risk measure ρ(·).
ρFt+1|Ft(Z) is a fair one-time Ft−measurable charge a risk-averse decision maker

would be willing to pay instead of Ft+1−measurable cost Z ∈ Zt+1. Alterna-

tively, it can be said that ρFt+1|Ft(Z) is the “risk-adjusted Ft−measurable cost”

of cost Z.

Thus, one-step conditional counterparts of (2.7) and (2.9) can be defined as

inf
η∈Zt

{
η +

1

1− α
E[(Z − η)+|Ft]

}
, (2.10)

and

E[Z|Ft] + λE[(Z − E[Z|Ft])+|Ft], (2.11)

respectively. Theoretical properties of one-step conditional risk measures are

extensively discussed in [19].

In a T−stage decision environment, we consider the risk involved in a random

cost sequence instead of a single random cost. Let the nested sequence of sigma

algebras {∅,Ω} = F1 ⊂ F2 ⊂ · · · ⊂ FT = F be called as a filtration which repre-

sents our gradually increasing information through a T−stage planning horizon.

The set of all Ft−measurable and p−integrable random variables are denoted by

Zt := Lp(Ω,Ft, P ) for t ∈ {1, 2, . . . , T} for some p ∈ [1,∞). Note that since

F1 = {∅,Ω}, Z1 = R.

Consider the composition

ρF2|F1 ◦ ρF3|F2 ◦ · · · ◦ ρFT |FT−1
: ZT

ρFT |FT−1−−−−−−→ ZT−1 · · · Z3

ρF3|F2−−−−→ Z2

ρF2|F1−−−−→ R,

and let %1,T : ZT → R be a dynamic risk measure such that

%1,T := ρF2|F1 ◦ ρF3|F2 ◦ · · · ◦ ρFT |FT−1
, (2.12)

where each ρFt+1|Ft is a conditional risk measure for all t = 1, · · · , T − 1. By the
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translational equivariance axiom (B3), %1,T (·) can equivalently be written as:

%1,T (Z1, Z2, . . . , ZT ) = Z1 + ρF2|F1(Z2 + ρF3|F2(Z3 + · · ·+ ρFT |FT−1
(ZT ) · · · )),

(2.13)

where Zt ∈ Zt is the cost incurred at stage t = 1, · · · , T .

We can interpret %1,T (Z1, Z2, . . . , ZT ) as a fair one-time deterministic charge

a risk-averse decision maker would be willing to pay instead of random cost

sequence {Zt}Tt=1. Another interpretation of %1,T (Z1, Z2, . . . , ZT ) is the “risk-

adjusted deterministic cost” of random cost sequence {Zt}Tt=1.

2.7 Risk-averse Multi-stage Mixed-integer

Stochastic Programming Problem

In this thesis, our main interest is a risk-averse multi-stage mixed-integer stochas-

tic programming problem. We use ξt and xt to denote the vector of problem pa-

rameters and decisions at stage t ∈ {1, . . . , T}, respectively. Note that, for each t,

ξt and xt are Ft−measurable. The collection of all decisions through the decision

horizon x := (x1, x2, . . . , xT ) is called as a policy. At the first stage, the vector of

problem parameters ξ1 and decisions x1 are deterministic since F1 = {0, ∅}. At

stage t ∈ {2, . . . , T}, some or all problem parameters are random.

The risk-averse multi-stage mixed-integer stochastic programming problem can

be defined as

min
x∈X

%1,T (f1(x1), f2(x2, ξ2), . . . , fT (xT , ξT )), (2.14)

where X := X1 × X2(x1, ξ2) × · · · × XT (xT−1, ξT ) is an abstract representation

of (possibly non-linear) set of feasible polices. The first stage feasibility set

X1 ⊆ Rn1 × Zm1 is a mixed-integer deterministic set and for t ∈ {2, . . . , T},
Xt : Rnt−1 × Zmt−1 × Ξt ⇒ Rnt × Zmt are Ft−measurable mixed-integer point-

to-set mappings. The set Ξt is the support of ξt, for t ∈ {2, . . . , T}. The first

stage cost is deterministic and represented by a possibly nonlinear, real-valued
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function f1 : Rn1 × Zm1 → R. The cost functions ft : Rnt × Zmt × Ξt → R,

t ∈ {2, . . . , T} are Ft−measurable and may be nonlinear. If each one-step con-

ditional risk measure in the definition of (2.12) is conditional expectation, that

is, ρFt+1|Ft(·) = E[·|Ft] for each t ∈ {1, 2, . . . , T − 1}, the risk-averse multi-stage

mixed-integer stochastic programming problem (2.14) reduces to its risk-neutral

counterpart. The problem (2.14) can equivalently be written as

min f1(x1) + ρF2|F1

[
f2(x2, ξ2) + ρF3|F2

(
+ · · ·+ ρFT |FT−1

{fT (xT , ξT )}
)]
,

s.t. x1 ∈ X1, xt ∈ Xt(xt−1, ξt), t ∈ {2, . . . , T},

by using the relation between the dynamic risk measure and one-step condi-

tional risk measures given in (2.13). Alternatively, a dynamic programming (DP)

formulation of the risk-averse multi-stage mixed-integer stochastic programming

problem can be written as

min
x1∈X1

f1(x1) + ρF2|F1

[
min

x2∈X2(x1,ξ2)
f2(x2, ξ2)+

ρF3|F2

(
min

x3∈X3(x2,ξ3)
+ · · ·+ ρFT |FT−1

{
min

xT∈XT (xT−1,ξT )
fT (xT , ξT )

})]
. (2.15)

Two phenomena have an essential role in formulations of risk-averse multi-

stage mixed-integer stochastic programming problems. Decisions at stage t ∈
{1, . . . , T} are made based on the available information up to stage t. This

requirement is called as non-anticipativity. Moreover, for any state of the system

at stage t, optimal decisions should not involve possible future realizations that

cannot happen. This principle is called as time consistency (see, [20]).

If the random parameters’ values ξ1, ξ2, . . . , ξT evolve as a discrete-time

stochastic process with discrete support, that is |Ξt| < ∞ for all t ∈ {2, . . . , T},
then the whole process can be represented by a T−stage scenario tree1. In this

1Even though the random parameters have continuous support, an empirical distribution
obtained by sampling without replacement can be used to approximate the true distribution at
any accuracy. A detailed discussion is given in Section 5 of [3].
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scenario tree, each node at stage t ∈ {1, 2, . . . , T} represents a possible realiza-

tion of random process ξ1, ξ2, . . . , ξt. In this case, a deterministic optimization

problem, namely deterministic equivalent problem (DEP), can be used to solve

the risk-averse multi-stage mixed-integer stochastic programming problem where

each decision at each node of the scenario tree is represented by a variable in DEP.

However, for any non-trivial scenario tree, size of DEP grows exponentially and

problem gets computationally intractable for even moderate number of scenarios.

Therefore, existing solution techniques for the risk-averse multi-stage stochastic

programming problems are based on stage-wise and scenario-wise decomposition

of scenario tree.

2.8 Decomposition Methods for Multi-stage

Stochastic Programming Problems

Stochastic dual dynamic programming (SDDP) is a sampling-based stage-wise

scenario tree decomposition technique for multi-stage stochastic programming

problems. The method is first proposed in [21] for risk-neutral problems and

later extended to risk-averse problems in [22], [23] and [24]. SDDP is based on

approximation of cost-to-go functions in DP formulation (2.15) by piecewise linear

functions. The convergence to an optimal solution is guaranteed under convexity

assumption. Moreover, in SDDP, the random data process is assumed to be

stage-wise independent, that is, ξt+1 does not depend on ξ[t]. This assumption on

stage-wise independence enables us to write cost-to-go functions as functions of

stages. In [25], an extension of SDDP is proposed for the risk-neutral problems

with integer variables by relaxing the integrality requirements. Later, in [26], this

approach is extended to risk-averse mixed-integer problems. Recently, in [27], an

extension of SDDP is proposed to solve risk-neutral multi-stage mixed-integer

problems with binary state variables. They prove that SDDP method provides

an exact solution to the problem in finite number of iterations when the cuts

satisfy some sufficient conditions.
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In [28], a scenario-wise decomposition method is proposed for two-stage risk-

averse mixed-integer stochastic programming problems. The proposed method is

based on a branch-and-bound (BB) procedure where decomposition is achieved

by dualizing the non-anticipativity constraints in a Lagrangian manner. Later,

this BB procedure is extended to risk-neutral multi-stage problems in [29]. This

procedure is also extended to two-stage risk-averse problems by exploiting the

structure of specific risk measures in [30] and [31].

Another scenario-wise decomposition method for risk-neutral multi-stage con-

vex optimization problems, namely progressive hedging algorithm (PHA), is pro-

posed in [32]. PHA is based on iteratively solving saddle points of a proximal

augmented Lagrangian function that decomposes for each scenario. Then, single

scenario solutions are hedged to get a non-anticipative solution. In [33] and [34],

PHA is extended to risk-neutral multi-stage mixed-integer problems where con-

vergence to an optimal solution is not guaranteed. In [35], PHA is used to solve

nodal relaxations within the framework of a branch-and-bound algorithm. A de-

tailed discussion on PHA for risk-neutral multi-stage convex optimization prob-

lems can be found in [36].

A scenario-wise scenario tree decomposition method for risk-averse multi-stage

stochastic programming problems is proposed in [37]. The decomposition is ob-

tained by relaxing non-anticipativity constraints in a Lagrangian manner and

solving the dual of the problem. In [37], the problem is assumed to be linear and

hence convergence to the optimal solution is guaranteed.

A recent stream of research proposes an alternative way of obtaining bounds for

mixed-integer multi-stage stochastic problems via a scenario tree decomposition.

In that approach, the sample space is partitioned into subspaces called as groups,

and the problem is solved for the scenarios in a group instead of the original

sample space. These smaller problems are called as group subproblems. In [38], a

group subproblem approach is proposed for risk-neutral mixed-integer two-stage

stochastic problems. They show that the expected value of the optimal values of

group subproblems gives a lower bound on the optimal value of the original prob-

lem. Later, this approach is extended to the risk-neutral multi-stage problems
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in [39], [40], and [41]. Recently, in [42], group subproblem approach is applied to

risk-averse mixed-integer multi-stage stochastic problems where the objective is

a concave dis-utility function applied to the total cost over the planning horizon.

Recent studies reveal that it is possible to come up with exact solution methods

for risk-neutral and risk-averse two-stage mixed-integer stochastic programming

problems by exploiting the nature of binary variables. In [43], no-good cuts are

used in an evaluate-and-cut procedure for risk-neutral two-stage mixed-integer

models with binary first stage decisions. The proposed procedure is a scenario

decomposition algorithm which iteratively evaluates the objective value for a set

of binary first stage solutions and cuts these solutions from the feasible set. In [44],

the procedure is extended to risk-averse two-stage problems with binary first stage

variables. They consider three different exact solution algorithms using dual rep-

resentations of coherent risk measures, scenario decomposition, cutting planes,

subgradient method and no-good cuts. The computational experiments presented

by [43] and [44] reveal that risk-neutral and risk-averse two-stage stochastic pro-

graming problems with binary first stage variables can be solved optimally within

reasonable computation times.

2.9 Summary

Although the aforementioned solution methods are available for related problems,

the complex structure of risk-averse multi-stage mixed-integer programming prob-

lems prohibits computationally tractable solution methods. For example, conver-

gence of SDDP is based on convexity assumption which does not hold in existence

of integer variables. Another challenge in risk-averse multi-stage mixed-integer

programming problems is decomposition. Unlike their risk-neutral counterparts,

when non-anticipative constraints are relaxed, the risk-averse problems do not

decompose into each scenario.

We consider a group subproblem approach to obtain bounds for risk-averse
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multi-stage mixed-integer programming problems in Chapter 3. Although simi-

lar scenario grouping based bounds have been obtained for risk-neural problems

in [38], [39], [40], [41] and risk-averse models with dis-utility functions in [42], to

the best of our knowledge, such bounds were not available for the risk-averse mod-

els with coherent risk measures. We later use the bounds obtained from group

subproblems in an exact solution procedure in Chapter 4. To the best of out

knowledge, there is no other exact solution method available for even moderate

size instances of any class of risk-averse multi-stage mixed-integer programming

problems. In Chapters 5 and 6, we investigate the trade off between the adapt-

ability of these models and their computational performance. Although, the

value of adaptivity has been investigated for some risk-neutral models (see, for

example, [45]), similar results were missing for risk-averse models.
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Chapter 3

Bounds on Risk-averse

Multi-stage Mixed-integer

Stochastic Programming

Problems with Mean-CVaR

In this chapter, we propose a scenario tree decomposition algorithm for risk-averse

multi-stage mixed-integer stochastic problems with a dynamic objective function

defined via mean-CVaR. The suggested algorithm is based on group subproblem

approach and it is used to find lower and upper bounds on the optimal value of

the problem. We propose infinitely many valid lower bounds on mean-CVaR risk

measure that can be used within the frame of the algorithm. We also investigate

the effect of scenario partitioning strategies on the quality of the different lower

bounds by considering different partitioning strategies based on the structure of

the scenario tree and disparateness of scenario realizations.

The organization of the chapter is as follows: In Section 3.1, we present prob-

lem definition and scenario tree representation of the random process of problem

parameters. Section 3.2 includes our main results on obtaining different lower
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bounds for mean-CVaR via a scenario grouping approach. We consider the appli-

cation of these lower bounds to a risk-averse mixed-integer multi-stage stochastic

problem with a dynamic objective function defined via mean-CVaR. We also sug-

gest a method to obtain an upper bound. The computational study conducted on

a multi-stage lot sizing problem and related discussions are presented in Section

3.3. Section 3.4 is devoted to concluding remarks.

The results of this chapter are published in European Journal of Operational

Research [46].

3.1 Problem Definition and Scenario Tree

Representation

We first recall the risk-averse multi-stage mixed-integer stochastic programming

problem

min
x∈X

%1,T (f1(x1), f2(x2, ξ2), . . . , fT (xT , ξT )), (3.1)

where X := X1 × X2(x1, ξ2) × · · · × XT (xT−1, ξT ) is the abstract representation

of a (possibly non-linear) set of feasible polices. The first stage feasibility set

X1 ⊆ Rn1 × Zm1 is a mixed-integer deterministic set and for t ∈ {2, . . . , T},
Xt : Rnt−1×Zmt−1×Ξt ⇒ Rnt×Zmt are Ft−measurable mixed-integer point-to-set

mappings. Here, Ξt is the support of ξt. The cost in the first stage is deterministic

and represented by a possibly nonlinear, real-valued function f1 : Rn1×Zm1 → R.

The cost functions ft : Rnt × Zmt × Ξt → R, t ∈ {2, . . . , T} are Ft−measurable

and may be nonlinear.

When a multi-stage stochastic process is considered, all realizations of the

process form a scenario tree in the finite distribution case. In this section, we

follow the notation used in [37] to represent the scenario tree. Let Ωt be the set

of nodes at stage t ∈ {1, . . . , T}. At stage t = 1, there is only one node, called

as root node and it is represented by v1. The nodes at stages t ∈ {2, . . . , T}
represent elementary events in Ft, that is Ft = σ(Ωt), a sigma algebra on Ωt.
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(a) (b)

Figure 3.1: An example of four-stage scenario tree. (a) Ω1,Ω2,Ω3 and Ω4 are the
set of nodes at stages 1, 2, 3 and 4, respectively. (b) C(v) is the set of children
nodes of node v, a(v) is the ancestor node of node v and pvu is the conditional
probability of node u given v.

The set ΩT corresponds to all possible scenarios, that is ΩT = Ω. Each node

v ∈ Ωt, t ∈ {2, . . . , T} has a unique ancestor at stage t− 1 and this ancestor node

is called as a(v). Also, each node v ∈ Ωt, t ∈ {1, . . . , T − 1} has a set of children

nodes C(v) such that C(v) = {u ∈ Ωt+1 : a(u) = v}. The probability measure P

can be specified by conditional probabilities

pvu := P [u|v], v ∈ Ωt, u ∈ C(v), t ∈ {1, . . . , T − 1},

and probability of a scenario ω ∈ ΩT can be computed as

pω = pv1v2pv2v3 . . . pvt−1ω,

where v1, v2, . . . , vt−1, ω is the unique path from root node v1 to node ω.

The notation mentioned above is depicted in Figure 3.1 for a four-stage scenario

tree.

The following fact is known as dual representation of coherent measures of

risk (see, for example, [18]) and will be used in our results: if ρ(·) is a coherent

measure of risk, then, under some mild assumptions, for every random variable
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Z ∈ Z,

ρ(Z) = max
µ∈A
〈µ, Z〉, (3.2)

where A ⊆ Z∗ is a compact and convex set. We call this set as the dual set of the

risk measure ρ(·). A coherent measure of risk can be characterized via its dual

set.

In [37], the dual representation of coherent risk measures is extended to dy-

namic measures of risk. If %1,T (·) is a dynamic risk measure given as in (2.13),

then for every sequence of random variables {Zt ∈ Zt}Tt=1,

%1,T (Z1, Z2, . . . , ZT ) = max
qT∈QT

〈qT , Z1 + Z2 + · · ·+ ZT 〉, (3.3)

where

QT = At−1 ◦ · · · ◦ A2 ◦ A1, (3.4)

andAt, t ∈ {2, . . . , T} is a convex and compact set used in the dual representation

of ρFt+1|Ft(·). The operator “◦” defines convolution of probability measures, that

is,

(µt ◦ qt)(u) = qt(a(u))µt(a(u), u),∀u ∈ Ωt+1,

and

At ◦ Qt = {µt ◦ qt : qt ∈ Qt, µt ∈ At},

for all t ∈ {1, 2, . . . , T − 1}. Recall that a(u) is the ancestor node of u.

As already mentioned in this section, we use conditional mean-CVaR as one-

step conditional risk measure. We first recall the definitions of CVaR and mean-

CVaR. Let

CVaRα(Z) := inf
η∈R

{
η +

1

1− α
E[(Z − η)+]

}
, (3.5)

where (Z)+ = max{Z, 0} in a component-wise manner and α ∈ [0, 1) is the level

parameter.
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Given a level parameter α ∈ [0, 1) and a weight parameter ε1 ∈ [0, 1], mean-

CVaR of Z ∈ Z is defined as

ρ(Z) := (1− ε1)E[Z] + ε1CVaRα(Z). (3.6)

As seen in (3.6), despite CVaR, mean-CVaR risk measure conveys the expected

value information of a random variable, as well. As α or ε1 increases, the decision-

maker gets more risk-averse. Also note that, the expression in (3.6) can equiva-

lently be represented as the following linear program for finite probability spaces.

ρ(Z) = minimize
ϑ,η

(1− ε1)
∑
ω∈Ω

pωZω + ε1

(
η +

1

1− α
∑
ω∈Ω

pωϑω

)
subject to ϑω ≥ Zω − η, ∀ω ∈ Ω

ϑω ≥ 0, ∀ω ∈ Ω.

When the sample space is finite, the dual representation (3.2) holds for mean-

CVaR with the set A represented as (see, for example, [18]):

A = {µ ∈ Z∗ : 1− ε1 ≤ µω ≤ 1 + ε2,∀ω ∈ Ω and E[µ] = 1} , (3.7)

where

ε2 :=
α

1− α
ε1 ≥ 0,

and E[µ] =
∑

ω∈Ω pωµω.

For any Zt+1 ∈ Zt+1, the one-step conditional mean-CVaR risk measure

ρFt+1|Ft(Zt+1) with parameters αt ∈ [0, 1) and ε1t ∈ [0, 1] and its dual set At
are defined similar to (3.6) and (3.7). However, in (3.5), the infimum is over

ηt ∈ Zt and the expectation operators in (3.5)-(3.7) are replaced with conditional

expectations with respect to Ft .

For the remainder of the chapter, we will focus on mean-CVaR risk measure.

Hence, we will use ρ(·) to refer to mean-CVaR and ρFt+1|Ft(·), t ∈ {1, 2 . . . , T−1}
to refer to one-step conditional mean-CVaR.
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3.2 Bounds

Let ρ(·) be a mean-CVaR risk measure with dual setA. We would like to construct

another coherent risk measure ρ̃(·) which provides a time consistent lower bound

for ρ(·). The risk measure ρ̃(·), or equivalently its dual set Ã, can be constructed

in different ways. When the cardinality of the sample space is large, due to

computational concerns, one may think of dealing with subsets of sample space

separately and then obtaining a lower bound for ρ(·). For such construction, we

need the definition of scenario groups and partition.

A subset of scenarios S ⊆ Ω is called as a group. Let S = {Sj}Jj=1 be a collec-

tion of groups that forms a partition of Ω, that is,
⋃J
j=1 Sj = Ω and Sj

⋂
Sj′ = ∅

for all j, j′ ∈ {1, 2, . . . , J} such that j 6= j′. Note that the groups may not be nec-

essarily disjoint (see, [39]), i.e. Sj
⋂
Sj′ 6= ∅, but for the ease of representation, we

partition the sample space into disjoint groups. Let G be a σ−algebra generated

by partition S where each group Sj ∈ S, j ∈ {1, 2, . . . , J} corresponds to an ele-

mentary event j of G . The probability of an elementary event j is pj =
∑

ω∈Sj pω

which is the total probability of scenarios in Sj. We also define the adjusted

probability of each scenario ω as pjω = pω/pj for all ω ∈ Sj and j ∈ {1, 2, . . . , J}.
Note that, G is a sub σ−algebra of F .

Once a partition of the sample space Ω is given, one way to construct ρ̃(·) is to

define it as a convolution of a coherent risk measure ρ̃G : L∞(Ω,G , P )→ R with

dual set ÃG and a one-step conditional risk measure ρ̃F |G : Z → L∞(Ω,G , P ) with

dual set ÃF |G . That is, ρ̃(·) = (ρ̃G ◦ ρ̃F |G )(·), and its dual set is the convolution

of the sets ÃG and ÃF |G such that Ã = ÃF |G ◦ ÃG .

Note that, ρ̃F |G (·) can be represented in terms of ρSj(·), j ∈ {1, 2 . . . , J}, that

is,
[
ρ̃F |G (·)

]
j

= ρSj(·) (see, for example, [6]) where ρSj : L∞(Ω, σ(Sj), P ) → R
is a coherent risk measure and σ(Sj) is the σ−algebra on Sj. Figure 3.2 depicts

aforementioned notation for a given partition of a scenario tree with five scenarios.

For mean-CVaR, ρ̃(·) or equivalently its dual set Ã, can be explicitly stated.
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(a) (b)

(c) (d)

Figure 3.2: (a) An example partition for a two-stage scenario tree: There are five
scenarios 1, 2, 3, 4, and 5 with probabilities p1, p2, p3, p4, and p5, respectively. (b)
S = {Sa, Sb} is a partition of Ω where Sa = {1, 2, 3} and Sb = {4, 5}. Nodes a
and b correspond to groups Sa and Sb with probabilities pa = p1 + p2 + p3 and
pb = p4 + p5, respectively. (c) ρ : Z → R is the original risk measure. (d) G
is a sub σ−algebra of F . ρ̃G : L∞(Ω,G , P ) → R is a coherent risk measure
and ρ̃F |G : Z → L∞(Ω,G , P ) is a one-step conditional risk measure that can be
represented via ρSa : L∞(Ω, σ(Sa), P ) → R and ρSb : L∞(Ω, σ(Sb), P ) → R as
[ρ̃F |G (·)]a = ρSa(·) and [ρ̃F |G (·)]b = ρSb(·).

Let parameters of ρ̃G be α1 ∈ [0, 1), ε11 ∈ [0, 1], and ε12 = α1

1−α1 ε
1
1, and parameters

of ρ̃F |G be α2 ∈ [0, 1), ε21 ∈ [0, 1] and ε22 = α2

1−α2 ε
2
1. Consider the convolution

ρ̃ = ρ̃G ◦ ρ̃F |G : F → R and its dual set

Ã = ÃF |G ◦ ÃG = {µ ∈ Z∗ : µ = µ1 ◦ µ2, µ1 ∈ ÃG , µ2 ∈ ÃF |G }

= {µ ∈ Z∗ : µ = µ1 ◦ µ2, 1− ε11 ≤ µ1
j ≤ 1 + ε12,∀j ∈ 1, 2 . . . , J and E[µ1] = 1,

1− ε21 ≤ µ2
ω ≤ 1 + ε22, ∀ω ∈ Ω and E[µ2|G ] = 1}, (3.8)

where E[µ1] =
∑

j∈{1,...,J} pjµ
1
j , [E[µ2|G ]]j =

∑
ω∈Sj pjωµ

2
ω for j ∈ {1, . . . , J}, and

1 is a G -measurable random variable that takes value of one in all realizations.
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Construction of the set Ã for the example in Figure 3.2 is as follows

ÃG =

{
(µa, µb) ∈ R2 :

1− ε11 ≤ µa ≤ 1 + ε12,

1− ε11 ≤ µb ≤ 1 + ε12,

(p1 + p2 + p3)µa + (p4 + p5)µb = 1

}
.

ÃF |G =

{
(µ1, µ2, µ3, µ4, µ5) ∈ R5 :

1− ε21 ≤ µ1 ≤ 1 + ε22,

1− ε21 ≤ µ2 ≤ 1 + ε22,

1− ε21 ≤ µ3 ≤ 1 + ε22,

1− ε21 ≤ µ4 ≤ 1 + ε22,

1− ε21 ≤ µ5 ≤ 1 + ε22,
p1

p1 + p2 + p3

µ1 +
p2

p1 + p2 + p3

µ2 +
p3

p1 + p2 + p3

µ3 = 1,

p4

p4 + p5

µ4 +
p5

p4 + p5

µ5 = 1

}
.

Ã = ÃF |G ◦ ÃG =

{
(µaµ1, µaµ2, µaµ3, µbµ4, µbµ5) ∈ R5 :

(µa, µb) ∈ ÃG , (µ1, µ2, µ3, µ4, µ5) ∈ ÃF |G

}
.

Now, we are ready to prove that a lower bound for mean-CVaR risk measure

ρ(·) can be obtained by ρ̃(·) = (ρ̃G ◦ ρ̃F |G )(·).

Proposition 1. Let ρ(·) be a mean-CVaR risk measure with parameters α ∈
[0, 1), ε1 ∈ [0, 1], ε2 = α

1−αε1 ≥ 0, and dual set A . Also let ρ̃(·) = (ρ̃G ◦ ρ̃F |G )(·)
where ρ̃G is a mean-CVaR risk measure with parameters α1 ∈ [0, 1), ε11 ∈ [0, 1],

ε12 = α1

1−α1 ε
1
1, and dual set ÃG ; and ρ̃F |G is a one-step conditional mean-CVaR

risk measure with parameters α2 ∈ [0, 1), ε21 ∈ [0, 1], ε22 = α2

1−α2 ε
2
1, and dual set
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ÃF |G . Then, ρ̃(Z) ≤ ρ(Z) for all Z ∈ Z if

1− ε1 ≤ (1− ε11)(1− ε21) and

(
1 +

α1

1− α1
ε11

)(
1 +

α2

1− α2
ε21

)
≤ 1 +

α

1− α
ε1.

(3.9)

Proof. Let µ ∈ Ã = ÃF |G ◦ ÃG . Then, from (3.8), there exist µ1 ∈ ÃG and

µ2 ∈ ÃF |G such that µ = µ1 ◦ µ2 with E[µ1] = 1 and E[µ2|G ] = 1. Properties

of conditional expectation implies that E[µ] = E [E [µ|G ]] = E [E [µ1 ◦ µ2|G ]] =

E [µ1 ◦ E [µ2|G ]] = E [µ1 ◦ 1] = E[µ1] = 1.

From the definition of ε2, ε
1
2 and ε22, second part of (3.9) implies (1+ε12)(1+ε22) ≤

1 + ε2. Moreover, by (3.8), (1− ε11)(1− ε21) ≤ µω ≤ (1 + ε12)(1 + ε22) for all ω ∈ Ω.

If 1− ε1 ≤ (1− ε11)(1− ε21) and (1 + ε12)(1 + ε22) ≤ 1 + ε2, then 1− ε1 ≤ µω ≤ 1 + ε2,

for all ω ∈ Ω which implies, µ ∈ A. Since µ is arbitrary, Ã ⊆ A.

For any Z ∈ Z, let ρ̃(Z) = maxµ∈Ã〈µ, Z〉 and µ∗ ∈ arg maxµ∈Ã〈µ, Z〉. If

Ã ⊆ A, then µ∗ ∈ A and ρ̃(Z) = 〈µ∗, Z〉 ≤ maxµ∈A〈µ, Z〉 = ρ(Z). Since Z is

arbitrary, ρ̃(Z) ≤ ρ(Z) for all Z ∈ Z.

Proposition 1 partially extends Theorem 8 and Corollary 6 of [47] to mean-

CVaR risk measure. It implies that, under conditions (3.9), ρ̃(·) = (ρ̃G ◦ρ̃F |G )(·) is

a valid lower bound for ρ(·) for any partition S of Ω. If ρ(·) is a conditional mean-

CVaR risk measure, Proposition 1 still applies. In this case, the expectations in

the proof are replaced with corresponding conditional expectations.

3.2.1 Possible Lower Bounds

We have shown that a lower bound for ρ(·) can be obtained by convolutions

of mean-CVaR risk measures whose parameters satisfy condition (3.9). Due to

Proposition 1, we can generate infinitely many lower bounds. Under the settings

on Proposition 1, Table 3.1 presents some special cases of parameters of ρ̃G (·)
and ρ̃F |G (·) such that they can be used to obtain a lower bound for ρ(·).

30



Parameters of ρ̃G Parameters of ρ̃F |G

ρ̃G ◦ ρ̃F |G ε11 ε12 α1 ε21 ε22 α2

ρG ◦ EF |G ε1 ε2 α 0 0 0

ρsG ◦ ρsF |G 1−
√

1− ε1
√

1 + ε2 − 1
√

1+ε2−1√
1+ε2−

√
1−ε1

1−
√

1− ε1
√

1 + ε2 − 1
√

1+ε2−1√
1+ε2−

√
1−ε1

EG ◦ ρF |G 0 0 0 ε1 ε2 α

Table 3.1: Possible choices of ρ̃G (·) and ρ̃F |G (·) that can be used to obtain lower
bound on mean-CVaR risk measure ρ(·).

LB Choice S S ′

ρG ◦ EF |G 3.5 2.5

ρsG ◦ ρsF |G 3.12 3

EG ◦ ρF |G 3 3.5

Table 3.2: Values of different lower bounds (LB’s) for Example 3.

Bounds ρG ◦EF |G and EG ◦ρF |G represent the extreme cases where either ρ̃G (·)
or ρ̃F |G (·) is the expectation operator. Bound ρsG ◦ ρsF |G is an intermediate case

where both ρ̃G (·) and ρ̃F |G (·) have the same parameters, that is, α1 = α2, ε11 = ε21

and ε12 = ε22. Under these conditions, in order to construct the largest set Ã, the

inequalities in (3.9) are forced to hold at equality.

An interesting question is whether one of the possible lower bounds presented

above is always preferable among others. Following example reveals that ρsG ◦ρsF |G
is not necessarily the tightest bound among others.

Example 3. Consider a random variable Z with sample space Ω = {ωi}4
i=1. All

four realizations have equal probabilities, that is, pωi = 1/4 for all i ∈ {1, 2, 3, 4}.
The value that Z takes under scenario ωi is i, that is, Zωi = i for i ∈ {1, 2, 3, 4}.

Let ε1 = 1 and α = 0.5, then (3.6) reduces to CVaR value at α = 0.5 and then

ρ(Z) = 3.5.

Two different partitions of scenarios are S = {{ω1, ω2}, {ω3, ω4}} and S ′ =

{{ω1, ω4}, {ω2, ω3}}. Values of the three bounds for partitions S and S ′ are given

in Table 3.2.
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As seen in Table 3.2, the tightest bounds for partitions S and S ′ are bounds

ρG ◦ EF |G and EG ◦ ρF |G , respectively. Another observation is the fact that

ρsG ◦ ρsF |G is not necessarily the tightest bound among others. In Example 3,

although either ρG ◦ EF |G or EG ◦ ρF |G can be the tightest bound among others

under different scenario partitions, the computational experiments in Section 3.3

reveal that EG ◦ ρF |G is the most promising lower bound choice.

Although in [3] it is shown that, under some assumptions, the lower bound ρG ◦
EF |G can be extended to any coherent risk measures, the other bounds provided

in Table 3.1 may not be applicable for all coherent risk measures. Example 4

reveals that EG ◦ ρF |G is not necessarily a valid lower bound for an arbitrary

coherent risk measure.

Example 4. Consider a random variable Z that takes values Zω1 = 100, Zω2 = 0,

Zω3 = 1 and Zω4 = 500 with probabilities 0.3, 0.2, 0.4 and 0.1, respectively. Let

ρF |G (·) be the one-step conditional first-order mean semi-deviation with λ = 0.5 in

(2.9). For partition S = {{ω1, ω2}, {ω3, ω4}}, ρ(Z) = 104.32 but (EG ◦ρF |G )(Z) =

106.36.

Therefore, EG ◦ρF |G is not necessarily a valid lower bound for all coherent risk

measures.

3.2.2 Lower Bound for Optimization Problem

In this section, we extend the lower bound proposed in Proposition 1 to a risk-

averse mixed-integer multi-stage stochastic problem with an objective of dynamic

mean-CVaR risk measure. As discussed in Chapter 2, the problem (3.1) can be

written as a DP problem,

(P) min
x1∈X1

f1(x1) + ρ(Q(x1, ξ)), (3.10)

where

Q(x1, ξ) = min
xt∈Xt,t∈{2,...,T}

%2,T (f2(x2, ξ2), . . . , fT (xT , ξT )) , (3.11)
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ξ = {ξt}Tt=2, ρ(·) is a mean-CVaR risk measure with parameters α ∈ [0, 1) and

ε1 ∈ [0, 1], and %2,T (·) is a dynamic mean-CVaR risk measure. Let x∗1 and z∗ be

an optimal first stage solution and the optimal value of (P), respectively.

Recall the partition S = {Sj}Jj=1 of Ω and sigma algebra G induced by this

partition. Then, the jth group subproblem is just problem (P) with sample space

Sj and adjusted probabilities pjω, ω ∈ Sj. Additionally, the risk measure ρ(·) in

(3.10) is replaced by ρSj(·). For j ∈ {1, 2, . . . , J}, let zj be the optimal value

of jth group subproblem. Also let ZLB be a G -measurable random variable that

takes value of zj with probability pj =
∑

ω∈Sj pω.

In Theorem 1, we show that a lower bound for risk-averse mixed-integer multi-

stage stochastic problem (P) can be obtained by using optimal values of group

subproblems.

Theorem 1. Let ρ̃G : L∞(Ω,G , P ) → R be a mean-CVaR risk measure with

parameters α1 ∈ [0, 1) and ε11 ∈ [0, 1]; and ρ̃F |G : L∞(Ω,F , P )→ L∞(Ω,G , P ) be

a conditional mean-CVaR risk measure with parameters α2 ∈ [0, 1) and ε21 ∈ [0, 1]

satisfying 1 − ε1 ≤ (1 − ε11)(1 − ε21) and
(

1 + α1

1−α1 ε
1
1

)(
1 + α2

1−α2 ε
2
1

)
≤ 1 + α

1−αε1.

Then, z∗ ≥ ρ̃G (ZLB).

Proof. Recall that x∗1 is an optimal first stage solution of (P). Note that, it is

a feasible first stage solution for each group subproblem. By optimality of each

group subproblem, we have

f1(x∗1) + ρSj(Q(x∗1, ξ)) ≥ zj, ∀j ∈ {1, . . . , J}

and

f1(x∗1) + ρ̃F |G (Q(x∗1, ξ)) � ZLB. (3.12)

The values on both sides of inequality (3.12) are G−measurable. Since, ρG (·) is

a coherent risk measure and it satisfies monotonicity axiom (A2), we get

ρ̃G (f1(x∗1) + ρ̃F |G (Q(x∗1, ξ))) ≥ ρ̃G (ZLB). (3.13)
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Note that, f1(x∗1) is an F−measurable cost. Since G is a sub σ−algebra of F ,

f1(x∗1) is G−measurable, as well. Applying translational equivariance axiom (A3)

to the left hand side of (3.13), we get

ρ̃G (ρ̃F |G (f1(x∗1) +Q(x∗1, ξ))) ≥ ρ̃G (ZLB). (3.14)

Since conditions in (3.9) are satisfied, we can apply Proposition 1 to the left hand

side of inequality (3.14) and obtain:

ρ(f1(x∗1) +Q(x∗1, ξ)) ≥ ρ̃G (ZLB).

Finally, using translational equivariance axiom (A3), we get

z∗ = f1(x∗1) + ρ(Q(x∗1, ξ)) ≥ ρ̃G (ZLB).

Theorem 1 implies that a lower bound on the optimal value of (P) can be

obtained by solving group subproblems and then applying ρ̃G (·) to the optimal

values of these group subproblems. Since group subproblems include smaller

number of scenarios compared to the original problem, they are computationally

less challenging. Moreover, applying ρ̃G (·) to the optimal values of group sub-

problems requires negligible computational effort, since it is only the calculation

of value of a risk measure ρ̃G (·) for a given random cost.

Although the dynamic risk measure (2.13) is widely used in the literature,

there are other risk measures that can be used to evaluate the risk of a sequence

of random variables. We show that our approach can also be applied to the

risk-averse mixed-integer multi-stage stochastic problems with different dynamic

extensions of mean-CVaR.
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3.2.3 Extension to Other Dynamic Measures of Risk

Some examples of dynamic risk measures apart from (2.13) are multiperiod mean-

CVaR and sum of mean-CVaR (see, [48] and [49], respectively). For a sequence

of random variables Zt ∈ Zt, t ∈ {1, . . . , T} adopted to the filtration Ft, t ∈
{1, . . . , T}, multiperiod mean-CVaR is defined as

ρmulti({Zt}Tt=2) =
T∑
t=2

λtE[ρFt|Ft−1(Zt)], (3.15)

and sum of mean-CVaR is represented as

ρsum({Zt}Tt=2) =
T∑
t=2

λtρt(Zt), (3.16)

with
∑T

t=2 λt = 1, λt ≥ 0 for t ∈ {2, 3, . . . , T}.

Our approach is also applicable for the case where the risk measure is applied

to whole scenario cost as a time inconsistent objective function, that is,

ρwhole({Zt}Tt=1) = ρ(Z1 + Z2 + . . .+ ZT ). (3.17)

Although the risk measure (3.17) can be applied to a sequence of random vari-

ables, it is not a dynamic measure of risk.

The risk measure defined in (3.15) is a time consistent dynamic measure of

risk whereas the risk measures (3.16) and (3.17) are not time consistent.

In the following three propositions, we show that a lower bound for these three

risk measures can be obtained by scenario grouping. Therefore, our approach is

still valid for Problem (P) with an objective of one of these risk measures.

Consider an arbitrary sequence of random variables Zt ∈ Zt, t ∈ {1, . . . , T}
adopted to the filtration Ft, t ∈ {1, . . . , T}. To avoid notational ambiguity, ex-

pectation operators and risk measures are given without reference sigma algebras.
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Proposition 2. For a multiperiod mean-CVaR risk measure ρmulti(·) as defined

in (3.15), E ◦ ρmulti(·) is a valid lower bound.

Proof. If multiperiod mean-CVaR risk measure (3.15) is applied to the sequence

Zt ∈ Zt, t ∈ {1, . . . , T}, then

ρmulti({Zt}Tt=2) =
T∑
t=2

λtE
[
ρFt|Ft−1(Zt)

]
.

Since ρFt|Ft−1(·) is a conditional mean-CVaR risk measure, the lower bound E ◦
ρFt|Ft−1(·) applies for t ∈ {2, 3, . . . , T}. Then,

ρmulti({Zt}Tt=2) ≥
T∑
t=2

λtE
[
E
[
ρFt|Ft−1(Zt)

]]
.

Since expectation is a linear operator, we get

ρmulti({Zt}Tt=2) ≥ E

[
T∑
t=2

λtE[ρFt|Ft−1(Zt)]

]
,

or equivalently,

ρmulti({Zt}Tt=2) ≥ E
[
ρmulti({Zt}Tt=2)

]
.

Since the sequence Zt ∈ Zt, t ∈ {1, . . . , T} is arbitrary, the desired result follows.

Proposition 3. For a sum of mean-CVaR risk measure ρsum(·) as defined in

(3.16), E ◦ ρsum(·) is a valid lower bound.

Proof. If sum of mean-CVaR risk measure (3.16) is applied to the sequence Zt ∈
Zt, t ∈ {1, . . . , T}, then

ρsum({Zt}Tt=2) =
T∑
t=2

λtρt(Zt).
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Similarly, E ◦ ρt(·) applies for t ∈ {2, 3, . . . , T}. Then,

ρsum({Zt}Tt=2) ≥
T∑
t=2

λtE [ρt(Zt)] ,

and

ρsum({Zt}Tt=2) ≥ E

[
T∑
t=2

λtρt(Zt)

]
,

or equivalently,

ρsum({Zt}Tt=2) ≥ E
[
ρsum({Zt}Tt=2)

]
.

Since the sequence Zt ∈ Zt, t ∈ {1, . . . , T} is arbitrary, the desired result follows.

Proposition 4. For the risk measure ρwhole(·) as defined in (3.17), ρ̃G ◦ ρ̃F |G (·) is

a valid lower bound if parameters of ρ̃G (·) and ρ̃F |G (·) satisfy conditions in (3.9).

Proof. Follows from Proposition 1.

As shown above, our proposed lower bound is quite general and can be applied

to other dynamic mean-CVaR measures.

3.2.4 Upper Bound for Optimization Problem

Obtaining an upper bound, or equivalently finding a feasible solution of a min-

imization problem, is crucial for the instances where an optimal solution is not

available. A good quality feasible solution gives the decision maker an action

to be taken and measures the quality of obtained lower bound when an optimal

solution is not available.

An upper bound for the optimal value of (P) can be obtained by using optimal

solutions of group subproblems. Once jth group subproblem is solved, an optimal

solution of it, namely xj, is obtained. Let UBj be the optimal value of (P) where

(some of) the variables appearing in jth group subproblem are set to xj. We call
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this problem as restricted problem. Since some of the problem variables are fixed,

solving the restricted problem is easier than the original one and the resulting

scenario tree can become decomposable.

If the restricted problem does not have a feasible solution, then correspond-

ing upper bound UBj is set to infinity. The best available upper bound UB is

obtained by taking minimum of UBj values over all j ∈ {1, . . . , J}, that is,

UB = min
j∈{1,...,J}

UBj. (3.18)

In Algorithm 1, we present how group subproblem approach can be used to ob-

tain lower and upper bounds for the multi-stage risk-averse mixed-integer problem

(P) with dynamic mean-CVaR objective. The algorithm can be easily adopted

to the other risk measures given in Section 3.2.3.

3.3 Computational Experiments

In this section, we conduct our numerical experiments on a multi-stage lot sizing

problem studied in [50]. All computational experiments are performed on an

Intel(R) Core(TM) i7-4790 CPU@3.60 GHz computer with 8.00 GB of RAM

with Java 1.8.0.31 and IBM ILOG CPLEX 12.6. We first introduce risk-averse

multi-stage lot sizing problem (RAMLSP) with dynamic mean-CVaR defined in

(2.13). Then, we compare the results obtained via usage of different scenario

partition strategies and lower bound choices. We also compare the proposed

algorithm and CPLEX in terms of solution quality and required CPU time.
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Algorithm 1 Lower and upper bounds for (P)

Input: A risk-averse mixed-integer multi-stage stochastic problem (P) and a
partition S = {Sj}Jj=1 of sample space Ω.
Initialize: LB ← −∞ and UB ← +∞

Lower Bounding:

for all j ∈ {1, 2, . . . , J} do
Solve the jth group subproblem.
xj ← an optimal solution of jth group subproblem
zj ← optimal value of jth group subproblem

end for
Let ZLB be a random variable that takes value zj with probability pj =∑

ω∈Sj pω
LB ← ρ̃G (ZLB)

Upper Bounding:

for all j ∈ {1, 2, . . . , J} do
UBj ← the optimal value of the original problem with the additional con-
straint where (some of) the variables appearing in jth group subproblem are
set to xj.

end for
UB ← minj∈{1,2...,J} UBj

Return: LB and UB

3.3.1 Risk-averse Multi-stage Lot Sizing Problem with

Mean-CVaR

The objective of RAMLSP is to minimize the dynamic mean-CVaR risk mea-

sure over T periods subject to demand satisfaction and capacity constraints.

RAMLSP-T-r represents an RAMLSP instance with T stages in which random

components can take r different values at each stage. Therefore, total number

of scenarios in an RAMLSP-T-r instance is rT−1. We generate random test in-

stances as in [50]. The same setting of the parameters is also used by [39], that

is, htu ∼ U [0, 10], αtu ∼ U [3.2, 4.8]E[h], βtu ∼ U [320, 480]E[h], dtu ∼ U [0, 100]

and Mtu ∼ U [40T, 60T ], where U [a, b] represents uniform distribution between a

and b.
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Using the scenario tree representation given in Section 3.1 RAMLSP can be

stated as follows:

(RAMLSP) (3.19)

minimize Z1 + ρF2|F1

(
Z2 + ρF3|F2

(
Z3 + . . .+ ρFT |FT−1

(ZT ) . . .
))

(3.20)

subject to Ztu = αtuxtu + βtuytu + htustu, ∀u ∈ Ωt, t ∈ {1, . . . , T} (3.21)

s(t−1)a(u) + xtu = dtu + stu, ∀u ∈ Ωt, t ∈ {1, . . . , T} (3.22)

xtu ≤Mtuytu, ∀u ∈ Ωt, t ∈ {1, . . . , T} (3.23)

xtu, stu ≥ 0 and integer, ytu ∈ {0, 1}, ∀u ∈ Ωt, t ∈ {1, . . . , T}
(3.24)

s0a(v1) = 0.

Here xtu is the production level, ytu is the setup indicator and stu is the inven-

tory level variables at node u ∈ Ωt in period t ∈ {1, . . . , T}. αtu, βtu, htu, dtu and

Mtu denote unit production cost, setup cost, inventory holding cost, demand and

production capacity parameters, respectively. Z1 is the sum of deterministic pro-

duction, setup and inventory holding costs incurred in the first stage. Similarly,

Ztu is the cost incurred at node u ∈ Ωt at stage t ∈ {2, . . . , T}. Zt represents

the random variable that takes values of Ztu, u ∈ Ωt with respective probabili-

ties. The objective (3.20) is the dynamic risk value over the planning horizon.

Constraints (3.21) calculate the cost incurred at each node of the scenario tree.

Constraints (3.22) and (3.23) are inventory balance and capacity constraints, re-

spectively. Constraints (3.24) are domain constraints. Unlike [50] and [39], we

assume that production and inventory levels are required to be integer valued.

Although this assumption increases the problem complexity, we have a more re-

alistic representation to evaluate the performance of the algorithm. In order to

linearize RAMLSP, the linearization of mean-CVaR presented in Section 3.1 is

used.

For the computational experiments, we use three different values of weight

parameter ε1 ∈ {0.8, 0.5, 0.3} and level parameter α ∈ {0.9, 0.8, 0.7} of mean-

CVaR. Therefore, we have nine different risk-aversion settings.
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3.3.2 Choices of Scenario Partitions and Lower Bounds

As seen in Example 3, the value of each lower bound highly depends on chosen sce-

nario partition. We consider four possible scenario partition strategies obtained

by grouping the scenarios in different ways, namely index1, index2, similar and

different. For each strategy, we can also specify the number of scenarios in each

group as a function of the number of scenarios |Ω| and the number of groups J .

Let a%b be the remainder after the division of a ∈ R by b ∈ R, d·e be the ceiling

function, and b·c be the floor function. Then, each scenario grouping strategy

yields a scenario partition that has J groups, where |Ω|%J groups have cardi-

nality d|Ω|/Je and J − (|Ω|%J) groups have cardinality b|Ω|/Jc. For example,

if |Ω| = 32 and J = 5 then the cardinality of two groups will be seven and the

other three groups will have cardinality of six.

Partition strategies index1 and index2 are based on the structure of scenario

tree. In index1, the last stage nodes sharing the highest number of common nodes

are placed into the same group. On the other hand, index2 is obtained by placing

the last stage nodes sharing the least number of common nodes into the same

group.

If a priori information on the cost of each single scenario under an optimal

solution is available, the groups can also be obtained with respect to similarity

and diversity of individual scenarios. Since this information is not available before

solving the original problem, the deterministic version of the original problem

apriori can be solved for each scenario separately, and the corresponding single

scenario costs can be used to obtain two different scenario partition strategies

named as similar and different. Note that, for both strategies, an additional

computational effort is required to obtain single scenario costs.

In strategy similar, we assign d|Ω|/Je scenarios that have the largest single

scenario costs to the first group. Then, depending on the cardinality of the second

group, d|Ω|/Je or b|Ω|/Jc scenarios that have the second largest single scenario

costs are assigned to the second group, and so on.
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Figure 3.3: An example of three-stage scenario tree with 16 scenarios.

In partition strategy different, each scenario is assigned to one of J groups by

assigning the scenario with the largest single scenario cost to the first group, the

scenario with the second largest single scenario cost to the second group, and so

on. This assignment process returns to the first group after assigning the first J

scenarios and the process restarts. It is ended after all scenarios are placed in a

group.

With respect to single scenario cost values, in strategy similar, the dispersion

within each group is low, however, the dispersion between the groups is high. On

the other hand, in partition strategy different, the dispersion within each group

is high.

Example 5. Figure 3.3 depicts the scenario tree for an RAMLSP-3-4 instance

where the numbers near the scenarios indicate the cost of each individual scenario.

The scenarios can be ordered as ω9, ω4, ω11, ω6, ω7, ω16, ω13, ω1, ω10, ω2, ω8,

ω3, ω12, ω14, ω15, ω5 where the individual scenario costs decrease moving through

from ω9 to ω5. Table 3.3 presents different scenario partition strategies for this

scenario tree.

In order to observe the quality of bounds obtained by different scenario parti-

tion strategies and lower bound choices, the proposed algorithm is applied to five
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Partition Strategy S1 S2 S3 S4

index1 {ω1, ω2, ω3, ω4} {ω5, ω6, ω7, ω8} {ω9, ω10, ω11, ω12} {ω13, ω14, ω15, ω16}

index2 {ω1, ω5, ω9, ω13} {ω2, ω6, ω10, ω14} {ω3, ω7, ω11, ω15} {ω4, ω8, ω12, ω16}

similar {ω9, ω4, ω11, ω6} {ω7, ω16, ω13, ω1} {ω10, ω2, ω8, ω3} {ω12, ω14, ω15, ω5}

different {ω9, ω7, ω10, ω12} {ω4, ω16, ω2, ω14} {ω11, ω13, ω8, ω15} {ω6, ω1, ω3, ω5}

Table 3.3: Different scenario partitions S = {S1, S2, S3, S4} for the example sce-
nario tree in Figure 3.3.

RAMLSP-3-30 instances generated via different random seeds. Total number of

scenarios is 900. We consider the number of groups as J ∈ {2, 4, 10}, and hence

each group subproblem includes 450, 225, and 90 scenarios, for the respective

value of J . While obtaining upper bounds, optimal production decisions of group

subproblems are fixed in the restricted problems. As noted before, for strategies

similar and different, single scenario costs are required. The CPU time needed

to obtain these values are also included in the running time of the algorithm.

In order to measure the quality of lower and upper bounds, an optimality gap

information Gap(%) = 100 ((UB − LB)/UB) is used. All running times are re-

ported in seconds. The results are presented in Table 3.4, where the Gap and

Time values are the average values of five randomly generated instances.
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The bold entries in Table 3.4 correspond to the smallest optimality gap values

among all lower bound choices, partition strategies and number of groups. It can

be observed that, the smallest optimality gap values are obtained with strategy

different, lower bound choice EG ◦ ρF |G , and J = 2. Regarding to the optimality

gap, EG ◦ ρF |G is the best lower bound choice. In general, for EG ◦ ρF |G , the

partition strategy different provides the smallest optimality gap for any J value,

and the strategy similar is the worst one. This is a consequence of the fact that

group subproblems with original dynamic risk measure reflect the risk-aversion

behavior of the original problem better when the dispersion within groups is high.

Moreover, the running time of the algorithm decreases as moving through lower

bound choices ρG ◦EF |G , ρsG ◦ ρsF |G and EG ◦ ρF |G , in general. For example, with

partition strategy different and J = 2, the average running times for lower bound

choices ρG ◦ EF |G , ρsG ◦ ρsF |G and EG ◦ ρF |G are 57.18, 37.79 and 14.6 seconds,

respectively. On the other hand, no partition strategy is preferable among others

for all lower bound choices with respect to the running time. The computational

experiments summarized in Table 3.4 reveal that the partition strategy different

and the lower bound choice EG ◦ ρF |G are the most promising choices when the

bound quality and the running time are considered.

Although the upper bounds obtained from different partitions are incompara-

ble, a hierarchy of lower bounds can be obtained using refinement chains. More-

over, the lower bound values can be improved by relaxing the requirement that

groups should be disjoint. If this requirement is relaxed, some fixed scenarios

appear in each group. We call this as scenario fixing. In the next subsection, we

will discuss refinement chains, scenario fixing, and their impact on the quality of

the lower bound.

3.3.3 Refinement Chains and Scenario Fixing

In [42], refinement chains and scenario fixing are considered to improve the quality

of lower bounds obtained via scenario grouping. We suggest Proposition 5 to

construct a refinement chain. We show a relation between two lower bounds
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obtained via two different special scenario partitioning with the lower bound

choice EG ◦ ρF |G . Let LB(S1) and LB(S2) be the lower bounds EG 1 ◦ ρF |G 1

and EG 2 ◦ ρF |G 2 on the optimal value z∗ of (P), obtained by partitions S1 =

{S1
1 , . . . , S

1
J} and S2 = {S2

1 , . . . , S
2
M} where G 1 and G 2 are the sigma algebras

induced by S1 and S2, respectively.

Proposition 5. Let S1 and S2 be two different partitions of Ω, where S1
j

⋂
S1
j′ = ∅

for j, j′ ∈ {1, . . . , J}, j 6= j′ and S2
m

⋂
S2
m′ = ∅ for m,m′ ∈ {1, . . . ,M}, m 6= m′.

If for all S1
j ∈ S1, j ∈ {1, . . . , J} there exists S2

k ∈ S2, k ∈ {j1, . . . , jKj} such that

S1
j =

⋃
k∈{j1,...,jKj }

S2
k, then LB(S1) ≥ LB(S2).

Proof. For j ∈ {1, . . . , J} and k ∈ {j1, . . . , jKj}, let zj and z̃k be the optimal

values of group subproblems defined by groups S1
j ∈ S1 and S2

k ∈ S2, respectively.

Also let pj =
∑

ω∈S1
j
pω and p̃k =

∑
ω∈S2

k
pω.

Since S2
k , k ∈ {j1, . . . , jKj} is a partition of S1

j , Theorem 1 implies that

zj ≥
∑

k∈{j1,...,jKj }

p̃k
pj
z̃k, ∀j ∈ {1, . . . , J},

where p̃k
pj

is the total conditional probability of scenarios in S2
k , k ∈ {j1, . . . , jKj}

given S1
j . Then, we have

∑
j∈{1,...,J}

pjz
j ≥

∑
j∈{1,...,J}

pj

 ∑
k∈{j1,...,jKj }

p̃k
pj
z̃k

 ,

or equivalently, ∑
j∈{1,...,J}

pjz
j ≥

∑
j∈{1,...,J}

∑
k∈{1,...,Kj}

p̃kz̃
k.

Then, we get ∑
j∈{1,...,J}

pjz
j ≥

∑
m∈{1,...,M}

p̃mz̃
m,

where p̃m =
∑

ω∈S2
m
pω and z̃m is the optimal value of the group subproblem S2

m

for m ∈ {1, . . . ,M}. Hence, LB(S1) ≥ LB(S2) by definition of LB(S1) and

LB(S2).
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Partition Groups

S1 Ω

S2 {ω9, ω11, ω7, ω13, ω10, ω8, ω12, ω15}, {ω4, ω6, ω16, ω1, ω2, ω3, ω3, ω14, ω5}

S4 {ω9, ω7, ω10, ω12} ,{ω4, ω16, ω2, ω14}, {ω11, ω13, ω8, ω15},{ω6, ω1, ω3, ω5}

S8 {ω9, ω10}, {ω4, ω2}, {ω11, ω8}, {ω6, ω3}, {ω7, ω12}, {ω16, ω14}, {ω13, ω15}, {ω1, ω5}

S16 {ω9}, {ω4}, {ω11}, {ω6}, {ω7}, {ω16}, {ω13}, {ω1}, {ω10}, {ω2}, {ω8}, {ω3}, {ω12}, {ω14}, {ω15}, {ω5}

Table 3.5: A refinement chain for the scenario tree in Example 5 where the
partition strategy is different.

A sequence of partitions S1,S2,S3, . . ., for which LB(S1) ≥ LB(S2) ≥
LB(S3) ≥ · · · , is called a refinement chain. Table 3.5 shows a refinement chain

for the scenario tree in Example 5, where the partition strategy different is used

and SJ denotes a partition with J groups. Note that, in partition S16, each group

subproblem is a deterministic problem with only one scenario.

We conduct a computational experiment where five different RAMLSP-3-32 in-

stances with 1024 scenarios are used with the refinement chain S1,S2,S4, . . . ,S128

which is obtained with partition strategy different. Table 3.6 presents the num-

ber of scenarios in each group (# sce), the average lower bound gap (LB Gap)

and the average running time (Time) for each partition of the refinement chain.

LB Gap values are calculated as

LB Gap(%) = 100
z∗ − LB

z∗
,

where z∗ is the optimal value of our problem.

As expected, the quality of the lower bound obtained by scenario grouping

increases when the number of scenarios in each group subproblem increases with

a cost of longer running times. Another suggestion of [42] is relaxing the disjoint

groups assumption to improve lower bound quality. Recall that ω ∈ Ω is a

scenario with probability pω and J is the number of groups. We can relax disjoint

groups assumption by placing ω into k ∈ {2, . . . , J} different groups. In this case,

ω is replaced with k identical scenarios each having a probability of pω/k and these

new scenarios are placed into k different groups.
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We conduct another set of computational experiments for five different

RAMLSP-3-32 instances where eight scenarios with the largest single scenario

cost appear at each group and we present the results in Table 3.7. It is observed

that the quality of lower bounds improves when we allow some scenarios to appear

in all groups. However, the running times may get larger since the number of

scenarios in each group subproblem increases. For example, when J = 2, α = 0.7,

ε1 = 0.3, for the case where eight scenarios are fixed, the LB Gap decreases by

0.01% but the required time to obtain lower bound increases to 2749.1 from 104

seconds.
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3.3.4 Computational Study Results for Larger Number

of Stages

Up to now, we have shown that the lower bound choice EG ◦ ρF |G , the par-

tition strategy different, and considering disjoint groups is the most promising

combination among all bound and partition combinations. Therefore, further

computational experiments are conducted on the instances with more stages un-

der this setting. We also conduct a set of computational experiments to compare

the performance of the proposed algorithm with CPLEX in terms of optimality

gap and solution time.

In the upper bounding phase of the proposed algorithm, the restricted problem

is solved for each group. When the number of groups J in a partition is large,

the upper bounding phase requires long CPU times. Therefore, one may solve

the restricted problem for only a subset of groups. Another computational en-

hancement for the upper bounding phase is running the restricted problems with

a prespecified time limit and reporting the objective value of current incumbent

solution as UBj. Since, the optimal value of the restricted problem is an upper

bound for the original problem, the objective value of any incumbent solution is

also a valid upper bound.

We solve RAMLSP-3-64, RAMLSP-4-8, and RAMLSP-5-4 problems with 3,

4, and 5 stages, respectively, and for each risk setting, we generate five instances

using different random seeds. The algorithm is applied with lower bound choice

EG ◦ ρF |G and the partition strategy different, where number of groups, J , takes

values of 4, 8, 16, and 32. The number of restricted problems to be solved is

dJ/5e, which are selected randomly. The time limit for each restricted problem

is set to 10 seconds. The results are presented in Table 3.8.
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Proposed Algorithm CPLEX

α ε1 Gap Time Gap CPLEX GAP Difference Time CPLEX Delay

0.9

0.8 1.02% 68.9 2.76% 1.74% 248.3 3.60

0.5 0.92% 132.6 3.47% 2.55% 2366.7 17.84

0.3 0.74% 697.4 1.39% 0.65% 719.9 1.03

0.8

0.8 0.71% 27.5 2.04% 1.33% 241.9 8.79

0.5 0.66% 97.4 1.48% 0.82% 403.9 4.15

0.3 0.60% 376.1 0.89% 0.29% 603.0 1.60

0.7

0.8 0.54% 51.8 2.47% 1.93% 246.4 4.75

0.5 0.56% 129.2 1.13% 0.57% 444.2 3.44

0.3 0.48% 373.1 0.81% 0.33% 1445.6 3.87

Table 3.9: Comparison of optimality gaps and running times of the proposed
algorithm with CPLEX.

As seen in Table 3.8, increasing the number of groups in the partition may

not always yield CPU time saving. As J increases, the optimality gap increases,

on the other hand, the CPU time may not always decrease. Specifically, when

J is increased to 32 from 16, the CPU time increases in all of the instances. As

the number of groups J increases, the subproblems get smaller in size. However,

the number of group subproblems and the restricted problems to solve increases.

Therefore, increasing the number of groups may not always result in a decrease

in the running time of the algorithm.

An interesting question is the comparison of the proposed algorithm with

CPLEX in terms of optimality gap and CPU time. To make a fair compari-

son, we use RAMLSP-3-64 instances where CPLEX is run as long as it reaches

to the optimality gap or the CPU time of the proposed algorithm.

When CPLEX is allowed to run with one hour of time limit, it cannot solve

any of the instances optimally. Table 3.9 presents the comparison of the proposed

algorithm with CPLEX for J = 4.

In Table 3.9, the column “Gap CPLEX ” corresponds to the optimality gap

value reported by CPLEX when it is allowed to run as long as the running time

of the proposed algorithm. Moreover, the values in the column “GAP Difference”
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is measured as the difference between CPLEX gap and the gap obtained by the

proposed algorithm. When CPLEX is allowed to run as long as the solution time

of the proposed algorithm, the algorithm yields 1.13% stronger bounds on the

average. For example, when α = 0.7 and ε1 = 0.8, our algorithm terminates

with an optimality gap of 0.54% within 51.8 seconds. CPLEX stops with an

optimality gap of 1.93% within the same time limit, that is, the bounds obtained

by our algorithm is 1.39% better than the bounds obtained by CPLEX.

In Table 3.9, the column “Time CPLEX ” corresponds to the time in seconds

that CPLEX takes to reduce its gap to the level of the gap obtained by the

proposed algorithm. Also, the values in the column “Delay” are measured as the

ratio of Time CPLEX to the running time of the proposed algorithm (Time).

CPLEX requires 5.45 times longer running time to achieve the optimality gap

of the proposed algorithm, on the average. For α = 0.9 and ε1 = 0.5, CPLEX

requires 2366.7 seconds to achieve the optimality gap of the proposed algorithm,

that means CPLEX needs to spend more than 17 times of the running time of

the proposed algorithm in order to reach this optimality gap. These results show

that the proposed algorithm outperforms CPLEX with respect to both optimality

gap and running time.

3.4 Conclusion

In this chapter, we propose a group subproblem approach for risk-averse mixed-

integer multi-stage stochastic problems with a dynamic risk measure defined by

mean-CVaR. To the best of our knowledge, this is the first study where group

subproblem approach is applied to a risk-averse problem with an objective of a

dynamic risk measure. We show that infinitely many lower bounds on the optimal

value of the problem can be obtained by using different convolution of mean-CVaR

risk measures. An upper bound is obtained through the use of optimal solutions of

group subproblems, as well. The results are tested by a computational study on a

multi-stage lot sizing problem. The effect of partition strategies and lower bound

choices on the optimality gap of the proposed algorithm is investigated. Possible
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computational enhancements such as refinement chains and scenario fixing are

also considered.

It is revealed that, on the average, the optimality gap of the proposed algorithm

is 1.13% stronger than the optimality gap of CPLEX within the same running

time. By solving the original problem with CPLEX, the optimality gaps of our

algorithm can be achieved with additional running time more than a factor of

five.
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Chapter 4

An Exact Solution Approach for

Risk-averse Mixed-integer

Multi-stage Stochastic

Programming Problems

In this chapter, we propose an exact solution algorithm for risk-averse mixed-

integer multi-stage stochastic programming problems with an objective of dy-

namic mean-CVaR risk measure and binary first stage variables. The proposed

method is based on an evaluate-and-cut procedure where the lower bounds are

obtained from group subproblems. Moreover, we show that, under the assump-

tion that the first stage integer variables are bounded, the problem with mixed-

integer variables in all stages can be solved with the proposed algorithm. In

order to observe the performance of the proposed algorithm, we conduct a set

of computational experiments on risk-averse mixed-integer multi-stage problems.

In our experiments, we consider large instances of risk-averse multi-stage stochas-

tic server location and generation expansion problems. We also investigate some

implementation details of the algorithm such as scenario partitioning choices and

group sizes and then analyze their effects on the performance of the algorithm.
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As the computational experiments reveal, under modest computational settings,

the proposed algorithm is able to solve large problem instances with over one

million binary variables within a reasonable time.

The organization of the chapter is as follows: In Section 4.1, we define risk-

averse mixed-integer multi-stage stochastic programing problems. In Section 4.2,

we present the bounds obtained by scenario grouping. The proposed algorithm

is presented in Section 4.3. In Section 4.4, we show that our algorithm can

also be used for the problems with mixed-integer variables in all stages. The

computational experiments are given in Section 4.5. The concluding remarks are

presented Section 4.6.

The results of this chapter are accepted for publication in Annals of Operations

Research.

4.1 Problem Definition

We first recall the risk-averse multi-stage stochastic programming problem

min
x∈X

%1,T (f1(x1), f2(x2, ξ2), . . . , fT (xT , ξT )), (4.1)

where X1 ⊆ RK1
+ × ZL1

+ × {0, 1}M1 is a mixed-integer deterministic set and Xt :

RKt−1

+ ×ZLt−1

+ ×{0, 1}Mt−1×Ξt ⇒ RKt
+ ×ZLt+ ×{0, 1}Mt is the point-to-set mapping

representing mixed-integer Ft-measurable decisions at stage t ∈ {2, . . . , T}.

In this chapter, we use a scenario tree representation similar to the one in

Chapter 3. Let N and E be the set of nodes and edges of the scenario tree,

respectively. Nodes at stage t ∈ {1, . . . , T} correspond to possible realizations of

the history until that stage. Let Ωt be the set of nodes at stage t ∈ {1, . . . , T}
and hence N =

⋃
t∈{1,...,T}Ωt. At the first stage, there is only one node r called

as the root node.

A scenario can also be defined as a unique path from the root node to a node
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Figure 4.1: A four-stage scenario tree.

in ΩT . Let pω be the probability of scenario ω ∈ Ω. Then, probability associated

with node n ∈ N is pn =
∑

ω∈Pn pω where Pn is the set of scenarios passing

through node n ∈ N . For the root node, we naturally have pr = 1.

In the scenario tree representation, the sigma algebra FT consists of all subsets

of ΩT . For every node n ∈ N \{r} at stage t, there exists a unique ancestor node

A(n) ∈ Ωt−1 such that the edge (A(n), n) is in E . For each node n ∈ N \ ΩT ,

there exists a set of children nodes C(n) = {m ∈ Ωt+1 : A(m) = n} such that

Ωt+1 =
⋃
n∈Ωt
C(n). For t ∈ {1, . . . , T − 1}, let Ft be the subalgebra of Ft+1

generated by sets C(n) for all n ∈ Ωt. Hence, there is a one-to-one correspondence

between elementary events of Ft and nodes in the set Ωt, for t ∈ {1, . . . , T}.
By construction, we get the filtration F1 ⊂ F2 · · · ⊂ FT . The aforementioned

notation is depicted on an example of four-stage scenario tree in Figure 4.1.

The number of decision variables in Problem (4.1) is proportional to the num-

ber of nodes |N | in the scenario tree. Since |N | grows exponentially with the

number of stages for any non-trivial scenario tree, solving Problem (4.1) is com-

putationally demanding for even small number of stages.

In this chapter, we focus on the case where ρFt+1|Ft is a conditional mean-CVaR

risk measure for t ∈ {1, . . . , T − 1}. The conditional mean-CVaR is defined as

ρFt+1|Ft(Zt+1) = (1− ε)E[Zt+1|Ft] + εCVaRα(Zt+1|Ft), (4.2)
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where

CVaRα(Zt+1|Ft) = inf
η∈Zt

{
η +

1

1− α
E[(Zt+1 − η)+|Ft]

}
,

is conditional CVaR defined with parameter α ∈ [0, 1) and ε ∈ [0, 1]. In (4.2),

mean-CVaR value of a random variable Zt+1 ∈ Zt+1 can be interpreted as a

convex combination of its conditional expectation and conditional CVaR values.

4.2 Lower Bounds via Scenario Grouping

In this section, we present a lower bound for our problem by using scenario

grouping as discussed in Chapter 3. The proposed lower bound is used in the

algorithm presented in the next section.

Recall the probability space for problem (4.1), (Ω,F , P ) where Ω is the sample

space. A subset of scenarios S ⊆ Ω is called as a group. Let S = {Sj}Jj=1 be

a collection of groups that forms a partition of Ω, that is,
⋃J
j=1 Sj = Ω and

Sj
⋂
Sj′ = ∅ for all j, j′ ∈ {1, 2, . . . , J} such that j 6= j′. The empty intersection

requirement can be relaxed (see, for example, [39]).

The total probability of scenarios in group Sj is pj =
∑

ω∈Sj pω for j ∈
{1, . . . , J}. We also define conditional probability of scenario ω given that ω ∈ Sj
as p̃ω = pω/pj and P̃ as the probability distribution defined by these conditional

probabilities on the sample space Sj.

We define jth group subproblem as problem (4.1) which is defined on the

probability space (Sj, F̃ , P̃ ) where F̃ is the sigma algebra generated by Sj.

Proposition 6. Let zj be the optimal value of jth group subproblem. Then,∑J
j=1 pjzj is a lower bound for the optimal value of (4.1).

Proof. See Theorem 1 in Chapter 3. �
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In this chapter, we develop another lower bound obtained from scenario group-

ing.

Proposition 7. Let z̃j be the optimal value of jth group subproblem in which

integrality requirements for the decision variables at stages t ∈ {2, 3, . . . , T} are

relaxed. Then
∑J

j=1 pj z̃j is a lower bound for the optimal value z of (4.1) .

Proof. Due to Proposition 6, we have z ≥
∑J

j=1 pjzj. Since, zj ≥ z̃j for all

j ∈ {1, 2, . . . , J}, we get z ≥
∑J

j=1 pjzj ≥
∑J

j=1 pj z̃j. �

Note that the lower bound in Proposition 7 is no stronger than the lower

bound in Proposition 6. However, calculating the lower bound in Proposition 7 is

computationally easier since it requires solving group problems without integrality

requirements for the decision variables at stages t ∈ {2, 3, . . . , T}. Hence, the

latter lower bound is used in the proposed algorithm.

Scenario grouping significantly reduces the computational effort required to

solve the risk-averse mixed-integer multi-stage programming problem (4.1). Fig-

ure 4.2 illustrates the scenario trees of group subproblems obtained via scenario

grouping. The scenarios of the original problem are placed in groups S1, S2 and

S3 and indicated by colors red, green and blue, respectively.

4.3 An Exact Solution Algorithm for the

Problems with Binary First Stage

Variables

In this section, extending the idea in [43], we propose an exact solution algorithm

for the risk-averse mixed-integer multi-stage stochastic programming problem

(4.1) with binary first stage variables, that is, X1 ⊆ {0, 1}M1 and K1 = L1 = 0.

The proposed algorithm stores a set D ⊆ X1 of candidate first stage solutions

and an incumbent first stage solution x∗1 ∈ D through execution. If a candidate
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Figure 4.2: A four-stage scenario tree and the new scenario trees used in group
subproblems.

first stage solution x′1 ∈ D is a feasible first stage solution for problem (4.1), then

solving (4.1) with constraint x1 = x′1 gives an upper bound for the optimal value

of (4.1). The incumbent solution x∗1 is the first stage solution which yields the

smallest upper bound value among all candidate solutions in D.

For a given scenario partition, a socalled lower bound is obtained on the optimal

value of (4.1) by applying scenario grouping for (4.1) with first stage feasibility

set X1 \ D. Note that, this is not necessarily a lower bound for the original

problem (4.1) since some feasible first stage solutions are eliminated from X1. At

each iteration, if this lower bound is smaller than the objective value given by

x∗1, then the algorithm adds the new candidate solutions to set D; otherwise, the

algorithm terminates.

Since we assume that all first stage decision variables are binary, extraction of
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the candidate first stage solutions in D from X1, that is obtaining the set X1 \D,

can be done by using no-good cuts. A no-good cut separates a specific binary

vector from a set. Specifically, a no-good cut for binary vector x′1 is of the form

∑
i:x′1i=1

(1− x1i) +
∑
i:x′1i=0

x1i ≥ 1,

where x1i and x′1i correspond to the ith component of vectors x1 and x′1, respec-

tively (see, for example, [51]). Then we have,

X1 \ D =

x1 ∈ X1 :
∑
i:x′1i=1

(1− x1i) +
∑
i:x′1i=0

x1i ≥ 1, ∀x′1 ∈ D

 .

The overall scheme of the proposed algorithm is an evaluate-and-cut procedure

presented in Algorithm 2.

Proposition 8. Algorithm 2 terminates after a finite number of iterations finding

an optimal solution if problem (4.1) is feasible and has finite optimal value or with

declaration of infeasibility if (4.1) is infeasible.

Proof. At the lower bounding phase of each iteration of the algorithm, at least

one first stage solution is removed from X1 and added to D or the algorithm

terminates directly. Also since X1 ⊆ {0, 1}M1 , the cardinality of X1 is finite.

Therefore, the algorithm terminates after a finite number of iterations. Consider

the following two cases:

(a) Problem (4.1) is feasible and has finite optimal value: Let z∗(X1) be the

optimal value of problem (4.1) as a function of the first stage feasibility set

X1. Since, the cardinality of X1 is finite, we have

z∗(X1) = min {z∗(D), z∗(X1 \ D)} (4.3)

at any iteration of the algorithm. For an incumbent solution x∗1 ∈ D, we

also have UB = z∗({x∗1}) = z∗(D) and LB ≤ z∗(X1 \ D) due to definitions
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of upper and lower bounds used in the algorithm. When the algorithm

terminates with UB ≤ LB, the incumbent first stage solution guarantees

z∗({x∗1}) = z∗(D) = UB ≤ LB ≤ z∗(X1 \ D). Hence, using (4.3), we get

z∗(X1) = z∗({x∗1}) and therefore x∗1 is an optimal first stage solution of

problem (4.1).

(b) Problem (4.1) is infeasible: If the problem is infeasible, UB never takes a

finite value since none of the problems in upper bounding phase is feasible.

Then, at the end of the algorithm, the incumbent is null and UB is positive

infinity.

If each group includes only one scenario, the proposed algorithm is a scenario

decomposition algorithm where the non-anticipativity in all stages is completely

relaxed. However, the proposed algorithm allows to obtain stronger lower bounds

by partially maintaining non-anticipativity due to scenario grouping.

Another important property of Algorithm 2 is decomposition of the problem

in the upper bounding phase. When the first stage decisions are fixed to x′1 in the

original problem, the resulting problem decomposes into |Ω2| smaller problems.

These smaller problems are risk-averse mixed-integer multi-stage problems with

T − 1 stages. Therefore, we benefit from decomposition of the original problem

in both lower and upper bounding phases of Algorithm 2.

In the next section, we show that the proposed algorithm can be used to solve

the risk-averse mixed-integer multi-stage stochastic programming problems where

the first stage decisions are mixed-integer as well.
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4.4 Extension to the General Risk-averse

Mixed-integer Multi-stage Stochastic

Programming Problems

Although the proposed algorithm guarantees an exact solution for risk-averse

mixed-integer multi-stage stochastic programming problems with a dynamic

mean-CVaR objective function and binary first stage variables, it can be used

for the general case, where the first stage decision variables are not necessarily

pure binary. Let Q(x1) be the risk adjusted cost-to-go function depending on the

first stage solution x1, that is,

Q(x1) :=ρF2|F1

(
min

x2∈X2(x1,ξ2)
f2(x2, ξ2)

+ · · ·+ ρFT |FT−1

(
min

xT∈XT (xT−1,ξT )
fT (xT , ξT )

)
· · ·
)
. (4.4)

Then, the general risk-averse mixed-integer multi-stage stochastic programming

problem can be written as

min f1(x1) +Q(x1)

s.t. x1 = (r1; y1; b1) ∈ X1,

r1 = (r11, r12, . . . , r1K1) ∈ R ⊆ RK1
+ , (4.5)

y1 = (y11, y12, . . . , y1L1) ∈ Z ⊆ ZL1
+ ,

b1 = (b11, b12, . . . , b1M1) ∈ B ⊆ {0, 1}M1 ,

where r1, y1, and b1 represent continuous, integer and binary decision vectors in

the first stage, respectively and x1 represents the concatenate vector of first stage

variables. Recall that we have already assumed the decisions at stages 2, 3, . . . , T

are mixed-integer.

Recently, [27] show that, under some reasonable assumptions, any risk-neutral

mixed-integer stochastic problems with mixed-integer state variables can be ap-

proximated by binarizing the state variables. In our context, we only consider
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binarizing the first stage integer variables. Following the similar arguments pre-

sented by [52] and [27], we can solve the general mixed-integer problem (4.5) by

using binary representation of the integer first stage variables y1.

Assumption 1. The first stage integer variables in the general mixed-integer

problem (4.5) are bounded.

Assumption 1 holds for the most real life problems and ensures that there

exists a non-negative real number U such that y1l ≤ U for all l ∈ {1, 2, . . . , L1}.
For each l ∈ {1, 2, . . . , L1}, y1l =

∑τ
i=0 2iγ1li is an exact representation of y1l

with binary variables γ1li, i ∈ {0, 1, . . . , τ} and τ = blog2 Uc. Thus, the general

mixed-integer problem (4.5) can be written as

min f1(x1) +Q(x1)

s.t. x1 = (r1;A(Γ); b1) ∈ X1, (4.6)

r1 ∈ R, A(Γ) ∈ Z,Γ ∈ {0, 1}L1×(τ+1), b1 ∈ B,

where A : {0, 1}L1×(τ+1) → ZL1
+ is a linear mapping that restores y1 from binary

variables Γ.

We can employ Algorithm 2 to solve (4.6) where the evaluate-and-cut proce-

dure is applied only to the first stage binary variables. Unlike the case where the

first stage variables are pure binary, the continuous variables in the first stage

prohibit decomposition in the upper bounding phase of the algorithm. However,

the computational results in Section 4.5.2 reveal that the proposed algorithm effi-

ciently solves the general mixed-integer problem though decomposition is possible

only in the lower bounding phase.

4.5 Computational Experiments

In this section, we present the results of the computational experiments con-

ducted on risk-averse multi-stage stochastic server location problem (SSLP) and
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Table 4.1: The degrees of risk aversion used in computational experiments.

DRA ε α
I 0.4 0.7
II 0.6 0.8
III 0.8 0.9

generation expansion problem (GEP). In risk-averse multi-stage SSLP, the first

stage decision variables are pure binary. Therefore, Algorithm 2 is directly ap-

plied to the problem. However, in risk-averse GEP, the first stage variables are

mixed-integer and hence we use the extension presented in Section 4.4 to solve

these problems.

In our experiments, we use different degrees of risk-aversion (DRA) by changing

the values of the parameters of conditional mean-CVaR risk measure (4.2). These

values are presented in Table 4.1.

The computational experiments are performed on an Intel(R) Core(TM) i7-

4790 CPU@3.60 GHz computer with 8.00 GB of RAM. The algorithm is imple-

mented on Java 1.8.0.31 where IBM ILOG CPLEX version 12.6 with default set-

tings is used to solve optimization problems. For each test problem, five instances

are generated randomly and average values are reported. The performance of the

proposed algorithm is compared to deterministic equivalent problem (DEP) of

same instances.

4.5.1 Stochastic Server Location Problem

SSLP is a popular two-stage risk-neutral stochastic programming problem in

the literature. The motivation and detailed discussion on SSLP can be found

in [53]. An instance of SSLP is available in SIPLIB library at http://www2.

isye.gatech.edu/~sahmed/siplib. In our experiments, we use a risk-averse

and multi-stage version of SSLP.

The statement of risk-averse multi-stage SSLP is as follows: In a T -stage
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decision horizon, the objective is to determine the location of servers on a set

of potential nodes of a given network so as to minimize the dynamic coherent

risk defined in (2.13) where we use conditional mean-CVaR risk measure with

parameters ε and α at each stage.

Servers can be located on M different potential server location nodes. There

is a fixed cost cm of locating a server at node m ∈ {1, 2, . . . ,M}. There are V

different clients, whose demands at stage t ∈ {2, 3, . . . , T} should be satisfied by

one of the located servers. Let dtvm be the demand of client v if it is served by the

server located at m at stage t. One unit of profit is obtained for each unit of served

demand. The service capacity of a server is u. If the capacity is not enough to

serve all demands, a unit of demand can be served by the server located at m by

an overcapacity serving cost qtm at stage t. A client may or may not appear under

each scenario independently from other clients. Under each scenario, a client may

appear at a stage with probability 0.5. Let htv(ω) = 1 if client v appears at stage

t under scenario ω, and 0, otherwise. Let ht be an Ft-measurable random vector

whose components are htv with P{htv = 1} = P{htv = 0} = 0.5.

Location decisions are made at the first stage. Therefore, fixed cost due to

server location decisions is incurred in the first stage. The allocation decisions

are made at subsequent stages t ∈ {2, 3, . . . , T}. At stage t, the random cost is

the total service cost at stage t. The DEP of risk-averse multi-stage SSLP can be

modeled by using parameters and decision variables for each node of the scenario

tree. Moreover, linearization of mean-CVaR risk measure is possible by defining

additional auxiliary variables and constraints as shown in Chapter 3.

As an example, the DEP of the risk-averse three-stage SSLP is given below

which can be extended for larger number of stages easily. In the below model, a

superscript n or n′ indicates that the corresponding parameter or decision variable

is defined for node n ∈ Ω2 or n′ ∈ Ω3 of the scenario tree, respectively.

min
M∑
m=1

cmzm + (1− ε)
∑
n∈Ω2

pnZ̃
n
2 + ε

(
η1 +

1

1− α
∑
n∈Ω2

pnϕ
n
2

)
, (4.7)
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s.t. Z̃n
2 =

M∑
m=1

(
V∑
v=1

−d2n
vmy

2n
vm + q2n

m o
2n
m

)
+ (1− ε)

∑
n′∈C(n)

pn′

pn
Z̃n′

3

+ ε

ηn2 +
1

1− α
∑

n′∈C(n)

pn′

pn
ϕn
′

3

 , ∀n ∈ Ω2, (4.8)

Z̃n′

3 =
M∑
m=1

(
V∑
v=1

−d3n′

vmy
3n′

vm + q3n′

m o3n′

m

)
, ∀n′ ∈ Ω3, (4.9)

ϕn2 ≥ Z̃n
2 − η1, ∀n ∈ Ω2, (4.10)

ϕn
′

3 ≥ Z̃n′

3 − ηn2 , ∀n ∈ Ω2, n
′ ∈ C(n), (4.11)

V∑
v=1

dtnvmy
tn
vm ≤ uzm + otnm , ∀m ∈ {1, 2, . . . ,M}, n ∈ Ωt, t ∈ {2, 3}, (4.12)

M∑
m=1

ytnvm = htnv , ∀v ∈ {1, 2, . . . , V }, n ∈ Ωt, t ∈ {2, 3}, (4.13)

zm ∈ {0, 1}, ytnvm ∈ {0, 1}, otnm ≥ 0,

∀m ∈ {1, 2, . . . ,M}, v ∈ {1, 2, . . . , V }, n ∈ Ωt, t ∈ {2, 3}, (4.14)

Z̃n
t , ϕ

n
t ≥ 0, ∀n ∈ Ωt, t ∈ {2, 3}, (4.15)

η1, η
n
2 ∈ R, ∀n ∈ Ω2, (4.16)

where zm takes value 1 if a server is located on node m and 0 otherwise, ytnvm takes

value 1 if client v is served by a server located on node m for n ∈ Ωt at stage t

and 0 otherwise, and otnm is the over capacity used by server m for the node n ∈ Ωt

at stage t.

The objective function (4.7) and constraints (4.8)-(4.11) linearize the dynamic

coherent risk measure (2.13) defined by mean-CVaR at each stage. The con-

straints (4.12) and (4.13) are capacity and allocation constraints, respectively.

The variables in (4.14) are the original problem variables. The auxiliary variables

in (4.15) are used to linearize the mean-CVaR risk measure. Finally, variables in

(4.16) are due to definition of mean-CVaR.

A test problem of risk-averse multi-stage SSLP is represented as T -SSLP-M -V -

b where T is the number of stages, M is the number of potential server location

nodes, V is the number of clients and b is the number of different values that
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Table 4.2: Problem statistics for risk-averse multi-stage SSLP instances.

Number
Test problem

Number of Number of Number of
of stages scenarios constraints binary variables

2

2-SSLP-5-25-50 50 1,601 6,255
2-SSLP-5-25-100 100 3,201 12,505
2-SSLP-10-50-50 50 3,101 25,010
2-SSLP-10-50-100 100 6,201 50,010
2-SSLP-10-50-500 500 31,001 250,010
2-SSLP-10-50-1000 1,000 62,001 500,010
2-SSLP-10-50-2000 2,000 124,001 1,000,010

3

3-SSLP-5-25-10 100 3,531 13,755
3-SSLP-5-25-20 400 13,461 52,505
3-SSLP-5-25-50 2,500 81,651 318,755
3-SSLP-5-25-100 10,000 323,301 1,262,505
3-SSLP-10-50-10 100 6,831 55,010
3-SSLP-10-50-20 400 26,061 210,010
3-SSLP-10-50-50 2,500 158,151 1,275,010

4

4-SSLP-5-25-10 1,000 35,631 138,755
4-SSLP-5-25-20 8,000 269,861 1,052,505
4-SSLP-10-50-10 1,000 68,931 555,010

the random vector ht can take at stage t. Therefore, the number of scenarios

in T -SSLP-M -V -b is bT−1. Similar to [53], the problem parameters are selected

as cm ∼ U [40, 80], dtvm ∼ U [0, 25], u = 2
∑V
v=1 maxm,n,t dtnvm

M
, and qtm = 1000. Here,

U [a, b] indicates that the respective value is sampled form the uniform distribution

with range [a, b]. Problem statistics for risk-averse multi-stage SSLP instances

used in the experiments are presented in Table 4.2.

In the proposed algorithm, for each instance of all problems presented in Ta-

ble 4.2, we consider a partition with two groups with equal cardinalities, that

is, S = {S1, S2} with |S1| = |S2|. The partitions are constructed in three differ-

ent ways by using the scenario tree structure or randomly. In similar partition,

the groups are generated by placing the scenarios with large number of common

nodes in the scenario tree into the same group. However, in different partition,

we place the scenarios with small number of common nodes into the same group.

Finally, in random partition, the scenarios are assigned to the groups randomly.

Note that for two-stage problems, all partitioning strategies are equivalent since
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Figure 4.3: The partitions similar, different and random (from left to right,
respectively) for a three-stage scenario tree where each color represents a group.

the locations of nodes in the second stage of the scenario tree are interchangeable.

For a deeper discussion on the construction of partitions and their impact on the

quality of bounds, we refer to [54] and [46] where various extensions on scenario

grouping are considered. However, as seen in the results of our computational ex-

periments, using a simple scenario grouping strategy is adequate for the proposed

algorithm. Figure 4.3 depicts the three different scenario partitions we consider

on a three-stage scenario tree.

In Table 4.3, we report the number of instances solved optimally (# opt out

of five), average optimality gap (Gap) and solution time in seconds (Time) for

DEP. Two hours of time limit is imposed when solving DEP of each instance. We

also report the average number of iterations (# iter) and running time in seconds

(Time) for the proposed algorithm with the three different partitions we consider.

Note that, all reported values are averages for five instances of each problem.

The computational experiments reveal that as problem size grows, CPLEX

fails to solve DEPs of the problem instances. For example, the problems 2-SSLP-

10-50-2000 and 3-SSLP-10-50-50 have over one million binary variables, none

of the DEPs are solved optimally within two hours of time limit for any value

of DRA. Especially, 3-SSLP-10-50-50 instances terminate with large optimality

gap values (59.11%, 85.64% and 27.91%, for DRA I, II, and III, respectively).

However, the proposed algorithm solves all of these instances optimally in less

than two hours with at least one of the three partitions we consider.

In Table 4.3, the bold entries are the smallest running times among the three

different partitions for each problem. Moreover, in the last row of the table, for
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each partitioning strategy, we present the percentage of test problems in which

this strategy performs better than the other ones. When the three partitioning

strategies are compared in the two-stage problems, no significant difference is

observed as expected. However, for three- and four-stage problems, the similar

partition performs better than different and random partitions. Since each group

subproblems obtained by the similar partition includes scenarios with many com-

mon nodes of the scenario tree, these group subproblems have less complicated

structure than the ones obtained by other partitions. Hence, in the lower bound-

ing phase of the proposed algorithm, the similar partition yields group subprob-

lems that are easier to solve. On the other hand, the lower bounds and candidate

solutions provided by different partition are expected to be better than the ones

given by similar partition. Overall, similar is the best scenario partition choice

among all partitions in 47.06% of all instances. This value is 37.25% and 15.69%

for different and random partitions, respectively.

When we analyze the test problem 4-SSLP-5-25-20 at DRA I, it is observed

that CPLEX could only solve 2 out of 5 DEP instances optimally within the time

limit and the average optimality gap is 10.36%. On the other hand, our algorithm

could solve all of the five instances optimally and the average computation time

of our proposed algorithm is 1830.9, 2539.3 and 2795.1 seconds for the similar,

different and random partitions, respectively. We observe similar results for the

test problem 4-SSLP-5-25-20 at DRA II as well. CPLEX could only solve 3 out

of 5 DEP optimally within the time limit of 7200 seconds. The average gap is

3.37% for those instances. We again could solve all of the five instances optimally

and the average computation time of our proposed algorithm is 1205.5, 1849.1

and 1957.0 seconds for the similar, different and random partitions, respectively.

Although the proposed algorithm with the simplest choice of the number of

groups J = 2 enables us to solve the large scale instances efficiently, we also

investigate the performance of the algorithm by changing the value of J . As the

number of groups J increases, the number of scenarios per group subproblem

decreases. In that case, it can be expected that the group subproblems are easier

to solve and hence the running time of Algorithm 2 decreases with the number

of groups J .

70



Figure 4.4: Average running time (in seconds) of the proposed algorithm with
respect to different number of groups for five instances of 3-SSLP-5-25-16 problem
with different degrees of risk-aversion and partitions.
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In Figure 4.4, we present the average running time of the proposed

algorithm in seconds with respect to different number of groups J ∈
{2, 4, 8, 16, 32, 64, 128, 256} for five instances of 3-SSLP-5-25-16 problem with dif-

ferent degrees of risk-aversion and partitions.

Since the total number of scenarios in 3-SSLP-5-25-16 instances is 256, the

number of scenarios in a group subproblem is 128, 64, 32, 16, 8, 4, 2 and 1

for the respective values 2, 4, 8, 16, 32, 64, 128 and 256 of J . Although it

may be expected that the running time of Algorithm 2 decreases with increasing

number of groups J , we observe the contrary in the results of our experiments in

general. There can be two reasons of this. First, in the upper bounding phase, the

algorithm requires evaluation of each candidate solution in D. When the number

of group subproblems is large, we can expect the cardinality of the set D to be

large as well. Therefore, large values of J may yield evaluation of upper bound

values for large number of candidate solutions. The second reason is that a larger

number of groups J yields looser lower bounds and therefore the running time of

the algorithm increases. In the extreme case of J = 256, the performance of the

proposed algorithm is the worst compared to the other values of J . Note that this
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result motivates to use scenario grouping instead of pure scenario decomposition.

Nonetheless, increasing the J value can still be beneficial for some instances as

shown in Figure 4.4. For example, for the instances with DRA I and different

partition, the running time decreases as J increases from 2 through 8.

4.5.2 Generation Expansion Problem

The generation expansion problem (GEP) is an optimization problem that ap-

pears in power systems. The objective of GEP is to minimize the total cost due

to construction and generation decisions for different types of generators over a

fixed-length decision horizon. We use the mathematical model used in [27] where

the problem data are adapted from [55].

In the deterministic version of the problem, the power demand at stage t ∈
{1, . . . , T} is given as dt and it is assumed that I types of power generators are

available.The fixed construction and unit production costs of a type i ∈ {1, . . . , I}
generator are ai and bi, respectively. There is a limit ui on the total number of

type i generators constructed over the decision horizon. Moreover, the production

amount of a type i generator cannot exceed Ui. The deterministic GEP is given

as

min
T∑
t=1

I∑
i=1

(aizti + biyti) , (4.17)

s.t. yti ≤

(
t∑

τ=1

zτi

)
Ui, ∀i ∈ {1, . . . , I}, t ∈ {1, . . . , T}, (4.18)

T∑
t=1

zti ≤ ui, ∀i ∈ {1, . . . , I}, (4.19)

I∑
i=1

yti ≥ dt, ∀i ∈ {1, . . . , I}, (4.20)

yti ≥ 0, zti ∈ Z+, ∀i ∈ {1, . . . , I}, t ∈ {1, . . . , T}, (4.21)

where zti is the number of generators of type i ∈ {1, . . . , I} constructed at stage
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t ∈ {1, . . . , T} and yti is the total production amount of type i generators at stage

t. The objective function (4.17) is the sum of construction and production costs

over T stages. Constraints (4.18) and (4.19) ensure that the production schedule

is feasible. The demand satisfaction is ensured in constraint (4.20). Domain

restrictions are given in constraint (4.21).

We consider a risk-averse version of GEP where the demand at stages t =

2, . . . , T is random. The objective of risk-averse GEP is to determine the number

of generators to be constructed and production amounts for each type of genera-

tors so as to minimize the dynamic coherent risk defined in (2.13) with conditional

mean-CVaR at each stage. The DEP of risk-averse GEP can be obtained easily

by defining additional variables and constraints similar to DEP (4.7) - (4.16) of

SSLP.

A test problem of risk-averse GEP is represented as T -GEP-b where T is the

number of stages and b is the number of different values that the random demand

dt can take at each stage t ∈ {2, . . . , T}. Problem statistics for the risk-averse

GEP instances used in the experiments are given in Table 4.4.

The deterministic problem parameters are given in Table 4.5. We assume that

the first stage demand is d1 = D/2 and the demand at stages t ∈ {2, . . . , T}
is dt ∼ U [D/4, 3D/4] where D is the total production capacity, that is, D =∑I

i=1 Uiui.

Since both integer and continuous variables appear in all stages of GEP, we

can use the extension of the proposed method presented in Section 4.4 to solve

risk-averse GEP. Therefore, we binarize the integer variables in the first stage of

GEP and perform the evaluate-and-cut procedure in Algorithm 2 for only these

variables. In this case, the problem in the upper bounding phase of the algorithm

does not enjoy decomposition.

In computational experiments on GEP instances, we consider similar partition

with J = 2 and 4 where cardinalities of the groups of a partition are the same. In

Table 4.6, we report the number of instances solved optimally (# opt out of five)
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and solution time in seconds (Time) for DEP. Four hours of time limit is imposed

when solving DEP of each instance. We also report the average number of itera-

tions (# iter) and running time in seconds (Time) of the proposed algorithm for

J = 2 and 4. As before, all reported values are averages of five instances of each

test problem.

For small instances such as 3-GEP-10, 3-GEP-20, 3-GEP-40, 4-GEP-10 and

4-GEP-20 solution time of DEP is less than the running time of the algorithm for

all degrees of risk aversion. For a moderate instance 3-GEP-100, the algorithm

with J = 2 outperforms solving DEP for DRA I and II. For the largest instance,

namely 4-GEP-50, CPLEX either does not report any feasible solution of DEP

within the time limit or terminates with memory error before four hours. The

algorithm with J = 2 also does not terminate for these instances in four hours.

However, the algorithm with J = 4 solves all 4-GEP-50 instances in 11089.7,

11188.5 and 12850.2 seconds for DRA I, II and III, respectively. Although J = 2

is a better choice for small and moderate instances, for larger instances J = 4

yields better results.

The results of the computational experiments on risk-averse multi-stage SSLP

and GEP demonstrate the effectiveness of our proposed algorithm. They also

verify our initial claim that it is an easily implementable exact solution algorithm

for risk-averse mixed-integer multi-stage stochastic problems with an objective

of dynamic mean-CVaR and binary first stage decisions. Although, in GEP, we

partially binarize the first stage variables and do not benefit decomposition in

the upper bounding phase, the algorithm is able to solve large instances of this

problem.

4.6 Conclusion

Risk-averse mixed-integer multi-stage stochastic programming problems form a

class of challenging large scale and non-convex optimization problems. Moreover,

no exact solution algorithm is available for these problems in the literature. In this
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paper, we propose an exact solution algorithm for risk-averse mixed-integer multi-

stage stochastic programming problems with an objective of dynamic mean-CVaR

risk measure and binary first stage decisions. Later, we prove that the algorithm

can be used to solve the general risk-averse mixed-integer multi-stage stochastic

programming problems.

The proposed algorithm is based on an evaluate-and-cut procedure and a sim-

ple scenario tree decomposition method. The computational experiments on large

instances of risk-averse multi-stage SSLP reveal that the proposed algorithm re-

quires significantly less computational effort than solving the deterministic equiv-

alent problem with CPLEX. Moreover, an extension of the proposed method is

used to solve large instances of risk-averse GEP where mixed-integer decisions

appear in all stages. We also discuss the effect of implementation details, such as

partitioning strategy and number of groups in a partition, on the performance of

the algorithm.

Since we did not make any structural assumptions on the problem structure

such as complete or relative recourse, stage-wise independency, convexity, and

linearity of feasibility constraints, our proposed algorithm could be applied to a

wide range of problems.
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Algorithm 2 An exact solution algorithm for problem (4.1).

1: Input: An instance of problem (4.1) and a partition S of scenarios.
2: Initialize:
3: Incumbent solution x∗ ← null,
4: Set of candidate first stage solutions D ← ∅,
5: LB ← −∞, UB ← +∞.
6: while UB > LB and X1 \ D 6= ∅ do
7: Lower Bounding

8: for all j ∈ {1, 2, . . . , J} do
9: Solve the jth group subproblem with first stage feasible set X1 \ D by

relaxing integrality requirements at stages {2, 3, . . . , T}.
10: if The group subproblem is infeasible then
11: Terminate and go to line 27
12: else
13: Let z̃j be the optimal value of the group subproblem.
14: Let x′1 be an optimal first stage solution of the group subproblem.
15: D ← D

⋃
{x′1}

16: end if
17: end for
18: LB ←

∑J
j=1 pj z̃j

19: Upper Bounding

20: for all x′1 ∈ D do
21: Solve problem (4.1) with first stage decision x′1 i.e. x1 = x′1. Let x

and z be an optimal solution and the optimal value, respectively. If the
problem is infeasible z ←∞.

22: if z < UB then
23: UB ← z and x∗ ← x
24: end if
25: end for
26: end while
27: Return: x∗ and UB.
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Table 4.3: Computational study results for risk-averse multi-stage SSLP.

Test Problem
DEP

Proposed Algorithm
similar different random

# opt Gap Time # iter Time # iter Time # iter Time

DRA I

2-SSLP-5-25-50 5 - 0.3 2 0.9 2 1.0 2 0.8
2-SSLP-5-25-100 5 - 0.8 2 1.7 2 1.6 2 1.5
2-SSLP-10-50-50 5 - 9 2.6 5.8 2 6.1 2.4 6.4
2-SSLP-10-50-100 5 - 180.1 2.2 11.7 2 13.6 2.2 13.5
2-SSLP-10-50-500 0 0.03% 7200 2 201.3 2 254.4 2 216.2
2-SSLP-10-50-1000 0 0.89% 7200 2 757.6 2.4 793.9 2 761.1
2-SSLP-10-50-2000 0 16.45% 7200 2 3511.9 2 3487.2 2 3654.0

3-SSLP-5-25-10 5 - 3 2 1.5 2 2.0 2 1.8
3-SSLP-5-25-20 5 - 15.1 2.2 10.4 2 9.3 2 9.5
3-SSLP-5-25-50 5 - 1270 2 193.8 2 219.0 2 217.1
3-SSLP-5-25-100 1 11.39% 7143 2 4292.9 2 4711.4 2 4867.9
3-SSLP-10-50-10 5 - 82.1 2.4 15.9 2 14.5 2 15.1
3-SSLP-10-50-20 5 - 2273.8 2.2 201.2 2 204.2 2 229.7
3-SSLP-10-50-50 0 59.11% 7200 2 7117.1 2 7882.9 2 8597.9
4-SSLP-5-25-10 5 - 112.6 2.2 44.3 2 48.6 2.2 55.1
4-SSLP-5-25-20 2 10.36% 6914.2 2 1830.9 2 2539.3 2 2795.1
4-SSLP-10-50-10 2 0.87% 6913.1 4.2 2758.6 2.4 1775.0 2.4 1822.9

DRA II

2-SSLP-5-25-50 5 - 0.4 2.2 1.0 2 0.9 2 0.7
2-SSLP-5-25-100 5 - 0.8 2.2 1.6 2 1.3 2 1.5
2-SSLP-10-50-50 1 0.07% 5940.6 2.4 7.1 2.6 6.8 2.6 6.9
2-SSLP-10-50-100 0 0.10% 7200 2.4 15.2 2.4 17.9 2.2 14.5
2-SSLP-10-50-500 0 1.21% 7200 2 216.2 2 203.9 2 205.5
2-SSLP-10-50-1000 0 4.37% 7200 2 760.9 2.2 782.2 2.2 821.7
2-SSLP-10-50-2000 0 14.94% 7200 2 3390.2 2 3506.1 2 3442.8

3-SSLP-5-25-10 5 - 1.8 2.6 2.1 2 1.3 2.4 2.3
3-SSLP-5-25-20 5 - 10.2 2 7.3 2 10.2 2 10.7
3-SSLP-5-25-50 5 - 417.1 2 163.1 2 174.0 2.2 199.4
3-SSLP-5-25-100 1 20.02% 7101.9 2 3519.2 2 3991.3 2 3181.8
3-SSLP-10-50-10 5 - 72.4 2.8 18.0 2.2 17.0 2 25.4
3-SSLP-10-50-20 5 - 1270.5 2.4 243.4 2.8 202.1 2.6 311.6
3-SSLP-10-50-50 0 85.64% 7200 3 6231.4 2.2 5818.9 2.2 6152.9
4-SSLP-5-25-10 5 - 93.8 2.6 50.1 2.4 43.4 2.4 61.7
4-SSLP-5-25-20 3 3.37% 5699.2 2 1205.5 2 1849.1 2 1957.0
4-SSLP-10-50-10 1 1.15% 6559 7.8 6117.4 2.2 7837.1 3 8766.2

DRA III

2-SSLP-5-25-50 5 - 0.3 2.2 0.9 2.2 1.0 2.4 0.8
2-SSLP-5-25-100 5 - 0.9 2.2 1.6 2.2 1.5 2.2 1.7
2-SSLP-10-50-50 0 0.02% 7200 2.6 6.7 2.6 7.2 2.2 5.8
2-SSLP-10-50-100 0 0.04% 7200 2.2 13.2 2.4 14.4 2.4 15.7
2-SSLP-10-50-500 0 3.22% 7200 2.2 212.3 2 216.0 2 200.5
2-SSLP-10-50-1000 0 7.41% 7200 2 656.6 2 649.2 2 695.6
2-SSLP-10-50-2000 0 15.59% 7200 2 3077.3 2.2 3245.8 2.2 3325.7

3-SSLP-5-25-10 5 - 1.2 2.8 2.4 2.4 2.6 3.2 3.3
3-SSLP-5-25-20 5 - 15.2 2.2 8.5 2.2 8.4 2.4 12.8
3-SSLP-5-25-50 5 - 398.5 2 155.1 2 134.7 2 149.2
3-SSLP-5-25-100 2 13.80% 6259.6 2 2483.6 2 2446.5 2 2643.6
3-SSLP-10-50-10 5 - 37.9 15.8 127.9 12.4 249.7 9.8 212.2
3-SSLP-10-50-20 5 - 1305.8 4.8 462.0 2 247.2 4 485.3
3-SSLP-10-50-50 0 27.91% 7200 2.6 6286.8 2.8 5254.2 2 4444.3
4-SSLP-5-25-10 5 - 67.9 4.4 86.7 3.4 91.6 3.2 124.9
4-SSLP-5-25-20 4 2.84% 3779 2.2 1539.8 2 939.5 2.8 2267.4
4-SSLP-10-50-10 2 1.34% 5547.4 6.4 4288.5 2.6 6760.2 5.2 6844.5

The percentage of test problems the partition performs best 47.06% 37.25% 15.69%
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Table 4.4: Problem statistics for risk-averse GEP instances.

Number of
Test problem

Number of Number of Number of
stages scenarios constraints integer variables

3

3-GEP-10 100 1,608 666
3-GEP-20 400 6,208 2,526
3-GEP-40 1,600 24,408 9,846
3-GEP-100 10,000 151,008 60,606
3-GEP-200 40,000 602,008 241,206

4

4-GEP-10 1,000 16,708 6,666
4-GEP-20 8,000 126,608 50,526
4-GEP-50 125,000 1,915,508 765,306

Table 4.5: Parameters of GEP instances.

i 1 2 3 4 5 6
ai 1,446,000 795,000 575,000 1,613,000 1,650,000 1,671,000
bi 16.62 38.82 43.17 0.51 5.00 16.91
Ui 412,450 142,350 138,700 430,700 63,875 204,400
ui 1 2 2 1 3 1
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Table 4.6: Computational study results for risk-averse GEP.

Test Problem DEP
Proposed Algorithm
J = 2 J = 4

#opt Time #iter Time #iter Time

DRA I

3-GEP-10 5 0.1 6.8 1.7 8.6 3.6
3-GEP-20 5 0.5 5.2 3.6 7 7.9
3-GEP-40 5 8.4 2.8 15.2 3.2 19.6
3-GEP-100 5 176.0 2 65.8 2.8 108.0
3-GEP-200 5 6227.0 2.2 2115.4 2.4 718.9
4-GEP-10 5 3.2 6.6 14.4 8.6 28.8
4-GEP-20 5 81.1 5.2 161.9 8.6 336.5
4-GEP-50 0 14400 *** *** 11.6 11089.7

DRA II

3-GEP-10 5 0.1 6.6 1.6 12.8 4.6
3-GEP-20 5 0.5 5.6 5.6 14 15.3
3-GEP-40 5 8.5 4.4 25.0 5.8 43.9
3-GEP-100 5 146.1 3 101.1 4 170.3
3-GEP-200 5 5617.7 3 3106.1 3.2 909.9
4-GEP-10 5 2.8 7.4 16.0 14.6 48.3
4-GEP-20 5 70.5 8.8 277.3 15 592.7
4-GEP-50 0 14400 *** *** 16.6 11188.5

DRA III

3-GEP-10 5 1.4 7.6 1.9 21.8 8.1
3-GEP-20 5 6.3 8.8 6.7 27.8 31.1
3-GEP-40 5 8.1 7 40.3 11 88.5
3-GEP-100 5 95.7 4.2 143.9 7 276.9
3-GEP-200 5 5246.5 4.6 4712.6 5.8 1670.3
4-GEP-10 5 7.9 14.2 31.3 24.6 83.7
4-GEP-20 5 74.0 10.4 342.2 35.2 1361.4
4-GEP-50 0 14400 *** *** 36.4 12850.2
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Chapter 5

The Value of Adaptive

Commitment in Risk-averse Unit

Commitment under Uncertainty

Unit commitment is an important optimization problem emerging from power

systems. Uncertainty and variability in net load arising from the increasing pen-

etration of renewable technologies have motivated study of various classes of

stochastic unit commitment models in recent years. In the models with non-

adaptive commitment, the generation schedule for the entire day is fixed whereas

the dispatch is adapted to the uncertainty. On the other hand, in the models with

adaptive commitment, the generation schedule is also allowed to dynamically

adapt to the realization uncertainty. The latter ones provide more flexibility in

the generation schedule, however, they require significantly higher computational

effort than the former ones. In order to justify this additional computational

effort, in this chapter, we provide theoretical and empirical analyses of the value

of adaptive commitment for risk-averse multi-stage stochastic unit commitment

models.

The rest of the chapter is organized as follows: In Section 5.1, we define
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the risk-averse unit commitment problem and present stochastic models with

or without adaptive commitment decisions. In Section 5.2, we define the value

of adaptive commitment and provide analytical bounds for it. In Section 5.3, we

present results of computational experiments. In Section 5.4, concluding remarks

are presented.

The results of this chapter are available online at arxiv.org/abs/1808.00999.

5.1 Motivation and Problem Definition

Unit commitment (UC) is a challenging optimization problem used for day-

ahead generation scheduling given net load forecasts and various operational

constraints [56]. The output schedule includes on-off status of generators (com-

mitment decisions) and the production amounts (economic dispatch decisions)

for every time period.

There has been a great deal of research on deterministic UC models where

the problem parameters are assumed to be known exactly (see, for example, [57]

and references therein). However, these models cannot capture variability and

uncertainty in the nature of the problem. Common sources of uncertainty are de-

partures from forecasts and unreliable equipment. The departures from forecasts

generally stem from the variability in net load and production amounts, whereas

unreliable equipment may result in generator and transmission line outages a

(see, [58] and [59], for a technical discussion). Moreover, the penetration of re-

newable energy has increased the volatility of power systems in recent years since

the production amount of energy from wind and solar power are not controllable

but can only be forecasted.

Robust optimization and stochastic programming are two common frameworks

used to address the uncertainty in UC problems. In robust optimization models,

it is assumed that the uncertain parameters take values in some uncertainty sets

and the objective is to minimize the worst case cost ( [60], [61], [62], [63] and [64]).
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In stochastic programming models, the uncertainty is represented by a probability

distribution ( [65], [66], [67], [68] and [69]).

In UC models with non-adaptive commitment, the generation schedule is fixed

for the entire day before the beginning of the day while dispatch is adapted to

uncertainty as in [70] and [71]. On the other hand, the models with adaptive

commitment, both the generation schedule and dispatch are allowed to dynam-

ically adapt to uncertainty realization at each hour (see for example, [69], [72]

and [73]). Therefore, they incorporate multistage forecasting information with

varying accuracy and express relation between time periods appropriately. How-

ever, in general, the models with adaptive commitment are computationally dif-

ficult than the models with non-adaptive commitment. A detailed comparison

can be found in [74] and [75].

The computational challenge of the models with adaptive commitment moti-

vates the question on whether the effort to solve them is worthwhile. In [45], this

question is addressed for a risk-neutral stochastic capacity planning problem. In

this chapter, we address this question for risk-averse unit commitment problems

where the objective is a dynamic measure of risk. We provide theoretical and

empirical analysis on the value adaptive commitment which measures the rela-

tive advantage to solve the risk-averse unit commitment models with adaptive

commitment over the models with non-adaptive commitment.

We first present an abstract deterministic formulation of the UC problem.

Let I be the number of generators and T be the number of periods. Also, let

I := {1, . . . , I} and T := {1, . . . , T} be the sets of generators and time periods,

respectively. A canonical formulation of the UC problem is as follows:

min
T∑
t=1

ft(ut,vt,wt) (5.1)

s.t.
I∑
i=1

vit ≥ dt, ∀t ∈ T (5.2)

q
i
uit ≤ vit ≤ qiuit, ∀i ∈ I, t ∈ T (5.3)

(u1,v1,w1) ∈ X1, (5.4)
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(ut,vt,wt) ∈ Xt(ut−1,vt−1,wt−1), ∀t ∈ T \ {1} (5.5)

ut ∈ {0, 1}I ,vt ∈ RI
+,wt ∈ Rk, ∀t ∈ T (5.6)

Decision variables uit and vit represent the binary on/off status and produc-

tion of generator i ∈ I in period t ∈ T , respectively. The bold symbols

ut := (u1t, u2t, . . . , uIt) and vt := (v1t, v2t, . . . , vIt) are the vectors of status and

production decisions in period t ∈ T , respectively. The vector wt denotes aux-

iliary variables associated with period t ∈ T . These variables can be used for

modeling various operational constraints. The objective (5.1) is the sum of pro-

duction, start-up and shut-down costs in all periods where the function ft(·)
represents the total cost in a period t ∈ T . Constraint (5.2) ensures satisfaction

of the power demand where the net load dt is equal to the total power demand

minus the power generated from renewable sources. Constraint (5.3) enforces

lower and upper production limits on the generators. Other operational restric-

tions such as transmission capacity constraints are represented by constraints

(5.4) and (5.5). The temporal relationship between consecutive periods such as

start-up, ramp-up, shut-down and ramp-down restrictions can also be included

in the set constraint (5.5). Domain restrictions of the decision variables are given

by constraint (5.6). An explicit deterministic model is given in Appendix A.

In the deterministic formulation (5.1)-(5.6), net load values are assumed to

be known exactly. However, this is a restrictive assumption in practice. We

assume that the net load is random and denoted by a random variable d̃t in

period t ∈ T from a probability space (Ω,F , P ). Here Ω is a sample space

equipped with sigma algebra F and probability measure P . An element of the

sample space Ω is called as a scenario (or a sample path) and represents a possible

realization of the net load values in all periods. The sequence of sigma algebras

{∅,Ω} = F1 ⊂ F2 ⊂ · · · ⊂ FT = F is called as a filtration and it represents the

gradually increasing information through the decision horizon 1, 2, . . . , T . The

set of Ft−measurable random variables is denoted by Zt for t ∈ T . The random

net load d̃t in period t is Ft−measurable, that is d̃t ∈ Zt for t ∈ T . Note that

since F1 = {∅,Ω} by definition, Z1 = R and the demand in the first period is

deterministic.
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To extend the deterministic UC model to this uncertainty setting, we have that

the decisions in period t to depend on realization of the history of net load process

d̃[t] := (d̃1, . . . , d̃t) up to period t. Therefore, we use the Ft−measurable vectors

ũt(d̃[t]), ṽt(d̃[t]) and w̃t(d̃[t]) to represent status, production and auxiliary decisions

in period t ∈ T , respectively. The total cost at period t is also Ft−measurable,

i.e., ft(ũt(d̃[t]), ṽt(d̃[t]), w̃t(d̃[t])) ∈ Zt. We use conditional risk measures ρFt+1|Ft :

Zt+1 → Zt in order to quantify the risk involved in a random cost at period t+ 1

based on the available informations at period t for t ∈ T \ {T}. An example of a

conditional risk measure is the conditional mean-upper semi deviation

ρFt+1|Ft(Zt+1) = E[Zt+1|Ft] + λE[(Zt+1 − E[Zt+1|Ft])+|Ft], (5.7)

where E[Zt+1|Ft] is the conditional expectation with respect to the sigma algebra

Ft, λ ∈ [0, 1] is a parameter controlling the degree of risk aversion and (Zt+1)+ is

the point-wise positive part function for all Zt+1 ∈ Zt+1.

The objective of the risk averse UC (RA-UC) problem is to minimize the risk

involved with the cost sequence {Zt}Tt=1 where Zt := ft(ũt(d̃[t]), ṽt(d̃[t]), w̃t(d̃[t]))

is a shorthand notation for the total cost in period t ∈ T . Thus, as in

[3] and [37], we define the dynamic coherent risk measure % : Z1 × Z2 ×
· · · × ZT → R by using nested composition of the conditional risk measures

ρF2|F1(·), ρF3|F2(·), . . . , ρFT |FT−1
(·), that is,

%(Z1, Z2, . . . , ZT ) := Z1 + ρF2|F1(Z2 + · · · ρFT |FT−1
(ZT ) · · · )

is the risk associated with this cost sequence. Due to translational equivariance

property of conditional risk measures, we have an alternative representation of

the dynamic coherent measure of risk %(·) as

ρ

(
T∑
t=1

Zt

)
:= %(Z1, Z2, . . . , ZT ) (5.8)

where ρ = ρF2|F1 ◦ ρF3|F2 ◦ · · · ◦ ρFT |FT−1
: Z → R is called as a composite risk

measure and Z := ZT . The composite risk measure ρ(·) satisfies the coherence

axioms (A1)-(A4). Therefore, ρ(·) is a coherent risk measure as shown in [3, Eqn.
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Figure 5.1: Order of decisions in the model with non-adaptive commitment.

Decide
{ut}Tt=1,v1,w1

Observe
d̃2

Decide
v2,w2

... Observe
d̃T

Decide
vT ,wT

Figure 5.2: Order of decisions in the model with adaptive commitment.

Decide
u1,v1,w1

Observe
d̃2

Decide
u2,v2,w2

... Observe
d̃T

Decide
uT ,vT ,wT

6.234].

We consider two different models for the RA-UC problem. In the model with

non-adaptive commitment, the on/off status decisions are fixed at the beginning

of the day and production (or dispatch) decisions are adapted to uncertainty in the

random demand. On the other hand, in the model with adapted commitment,

both the status and production decisions are fully adapted to uncertainty in

net load. In order to clarify the distinction between two models, the decision

dynamics are depicted in 5.1 and 5.2, respectively.

The model with non-adaptive commitment (NC) for the RA-UC problem is

given as

min ρ

[
T∑
t=1

ft(ut, ṽt(d̃[t]), w̃t(d̃[t]))

]
, (5.9)

s.t.
∑
i∈I

ṽit(d̃[t]) ≥ d̃t, ∀t ∈ T , (5.10)

q
i
uit ≤ ṽit(d̃[t]) ≤ qiuit, ∀i ∈ I, t ∈ T , (5.11)

(u1,v1,w1) ∈ X1, (5.12)

(ut, ṽt(d̃[t]), w̃t(d̃[t])) ∈

Xt(ut−1, ṽt−1(d̃[t−1]), w̃t−1(d̃[t−1]), d̃[t]), ∀t ∈ T \ {1}, (5.13)

ut ∈ {0, 1}I , ṽt(d̃[t]) ∈ RI
+, w̃t(d̃[t]) ∈ Rk, ∀t ∈ T . (5.14)
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The objective (5.9) of NC is the composite risk measure defined in (5.8) applied

to the total cost sequence. The inequalities (5.10) and (5.11) are analogous to the

constraints (5.2) and (5.3), respectively. The set constraint (5.12) is identical to

(5.4) since the net load in the first period is deterministic. In constraint (5.13), Xt
is an Ft−measurable feasibility set. The domain constraint (5.14) states that only

production and auxiliary decisions depend on the demand history and the status

decisions are deterministic. However, in the model with adaptive commitment

of the RA-UC problem, all decisions are made based on the history. Hence, the

model with adaptive commitment (AC) can be written as

min ρ

[
T∑
t=1

ft(ũt(d̃[t]), ṽt(d̃[t]), w̃t(d̃[t]))

]
, (5.15)

s.t.
∑
i∈I

ṽit(d̃[t]) ≥ d̃t, ∀t ∈ T , (5.16)

q
i
ũit(d̃[t]) ≤ ṽit(d̃[t]) ≤ qiũit(d̃[t]), ∀i ∈ I, t ∈ T , (5.17)

(u1,v1,w1) ∈ X1, (5.18)

(ũt(d̃[t]), ṽt(d̃[t]), w̃t(d̃[t])) ∈

Xt(ũt−1(d̃[t−1]), ṽt−1(d̃[t−1]), w̃t−1(d̃[t−1]), d̃[t]),∀t ∈ T \ {1}, (5.19)

ũt(d̃[t]) ∈ {0, 1}I , ṽt(d̃[t]) ∈ RI
+, w̃t(d̃[t]) ∈ Rk,∀t ∈ T . (5.20)

Note that the model AC is identical with NC except that the status decisions are

fully adaptive to the random net load process.

An optimal solution of either NC and AC is a policy that minimizes the value

of the dynamic coherent risk measure in the corresponding problem. Both in

NC and AC, the optimality of a policy should only be with respect to possible

future realizations given the available information at the time when the decision

is made. This principle is called as time consistency. In [20, Example 2], it is

shown that time consistency enables us to use the composite risk measure in

minimization among all possible decisions instead of nested minimizations in a

dynamic coherent measure of risk. We prefer conditional risk measures to repre-

sent the risk-averse behavior of decision makers since they yield time consistent

formulation of the problem and their interpretation is clear.
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5.2 Value of Adaptive Commitment

Although an optimal solution of AC provides a more flexible day-ahead schedule

with respect to different realizations of parameters, the number of binary vari-

ables in AC is proportional to N × I where N is the number of possible demand

realizations in all periods if Ω is finite. However, the number of binary variables

in NC is proportional to T × I. Since N >> T for any non-trivial problem,

computational difficulty of AC is significantly more than NC. Therefore, it is im-

portant to figure out if the additional effort to solve AC is worthwhile. We define

the value of adaptive commitment in order to quantify the relative advantage of

the optimal policy with adaptive commitment decisions over its counterpart with

non-adaptive commitment decisions.

Definition 1. The value of adaptive commitment (VAC) is the difference between

the optimal values of NC and AC, that is, VAC = zNC − zAC where zNC and zAC

are the optimal values of NC and AC, respectively.

Since an optimal solution of AC provides more flexibility in status decisions

with respect to uncertain net load realizations, we have zNC ≥ zAC and therefore

VAC ≥ 0. The complex structure of risk-averse UC problem prohibits exact

calculation of VAC unless both NC and AC are solved optimally. Even calculation

of bounds for VAC is not possible for UC problem. Thus, we provide theoretical

bounds on the VAC under some assumptions.

Assumption 2. There exists a generator j∗ ∈ I such that q
j∗
≤ d̃t ≤ qj∗ with

probability 1 with no minimum start up and shut down time and no rumping

limits for each t ∈ T .

Assumption 2 ensures that NC and AC always have at least one feasible so-

lution and therefore both problems have complete recourse. Assumption 2 holds,

for example, when it is possible to outsource the unmet power demand. In that

case, decisions uj∗ and vj∗ represent outsourcing decision and amount of out-

sourced energy, respectively. Alternatively, uj∗ and vj∗ can be used to formulate

the opportunity cost due to lost demand.
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Assumption 3. There exists an upper bound dmax
t ∈ R+ on the net load values

such that 0 ≤ d̃t ≤ dmax
t with probability 1 for each t ∈ T .

Assumption 3 holds in practice and states that the net load in each period

is bounded. We also define D̃ :=
∑T

t=1 d̃t as the total net load and Dmax :=∑T
t=1 d

max
t as an upper bound on D̃.

Assumption 4. The production cost at each stage is defined as

ft(ũt(d̃[t]), ṽt(d̃[t]), w̃t(d̃[t])) =
∑
i∈I

gi(ũit(d̃[t]), ṽit(d̃[t]), w̃it(d̃[t]))

where gi(·) is sum of a fixed commitment cost and a non-decreasing convex dis-

patch cost for all i ∈ I.

If Assumption 4 holds, the function gi(·) can be written as

gi(ũit(d̃[t]), ṽit(d̃[t]), w̃it(d̃[t])) = aiũit(d̃[t]) + hi(ṽit(d̃[t]))

for a coefficient ai ≥ 0 and a non-decreasing convex function hi(·) with hi(0) = 0

for all i ∈ I. Assumption 4 is somewhat restrictive since it ignores start-up and

shut-down costs. However this assumption is necessary for the analytical results.

In Section 5.3, we will provide numerical results showing that the analytical

results hold in instances with start-up and shut-down costs as well.

Theorem 2. Under Assumptions 2, 3 and 4, we have that

α∗D
max − α∗ρ(D̃) ≤ VAC ≤ α∗Dmax − α∗ρ(D̃),

where

α∗ := min
i∈I

{
ai + hi(qi)

}/
max
i∈I
{qi} and

α∗ := max
i∈I
{ai + hi(qi)}

/
min
i∈I

{
q
i

}
are cost related problem parameters corresponding to under and over estimations

on per unit production costs, respectively.
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Proof. Assumption 2 implies that both NC and AC are feasible. Since the net

loads are bounded due to Assumption 3, both models have at least one optimal

solution.

Let {ũ∗t , ṽ
∗
t , w̃

∗
t}t∈T be an optimal policy obtained by solving AC. By Assump-

tion 4, we have

∑
t∈T

ft(ũt(d̃[t]), ṽt(d̃[t]), w̃t(d̃[t])) =
∑
t∈T

∑
i∈I

gi(ũit(d̃[t]), ṽit(d̃[t]), w̃it(d̃[t])).

For a realization d1, d2, . . . , dT of the random net load process d̃1, d̃2, . . . , d̃T ,

let [u∗t , v
∗
t , w

∗
t ] := [ũ∗t , ṽ

∗
t , w̃

∗
t ](d[t]) be the optimal status and production decisions

for t ∈ T . Then, we have

∑
t∈T

∑
i∈I

gi(u
∗
it, v

∗
it, w

∗
it) =

∑
t∈T

∑
i∈I

aiu
∗
it + hi(v

∗
it)

≥
∑
t∈T

∑
i∈I

aiu
∗
it + hi(qiu

∗
it) =

∑
t∈T

∑
i∈I

aiu
∗
it + hi(qi)u

∗
it

=
∑
t∈T

∑
i∈I

[ai + hi(qi)]u
∗
it ≥

∑
t∈T

∑
i∈I

[ai + hi(qi)]
v∗it
qi

≥
∑
t∈T

∑
i∈I

min
i∈I

{
ai + hi(qi)

}
max
i∈I
{qi}

v∗it

= α∗
∑
t∈T

∑
i∈I

v∗it = α∗
∑
t∈T

dt,

where the first inequality holds due to feasibility and non-deceasing monotonicity

of hi(·). The second inequity also follows from feasibility. The second equality

holds since h(qu) = h(q)u for any function h : R → R with h(0) = 0 where

q ∈ R+ and u ∈ {0, 1}.

Since
∑

t∈T
∑

i∈I gi(u
∗
it, v

∗
it, w

∗
it) ≥ α∗

∑
t∈T dt for any sample path

d1, d2, . . . , dT , we have
∑

t∈T
∑

i∈I gi(ũit(d̃[t]), ṽit(d̃[t]), w̃it(d̃[t])) � α∗
∑

t∈T d̃t =

α∗D̃. Due to the monotonicity axiom (A2) and positive homogeneity axiom
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(A4), we get

zAC = ρ

(∑
t∈T

∑
i∈I

gi(ũit(d̃[t]), ṽit(d̃[t]), w̃it(d̃[t]))

)
≥ ρ(α∗D̃) = α∗ρ(D̃).

Next, we consider a feasible policy {û∗t , v̂
∗
t , ŵ

∗
t}t∈T to the AC model where

ûj∗t(d̃[t]) = 1, v̂j∗t(d̃[t]) = d̃t and all other status and generation variables are

set to zero for a sample path d1, d2, . . . , dt. The feasibility of the solution is

guaranteed by Assumption 2. Then,

zAC ≤ ρ

(∑
t∈T

∑
i∈I

gi(ûit(d̃[t]), v̂it(d̃[t]), ŵit(d̃[t]))

)

= ρ

(∑
t∈T

aj∗ + hj∗(d̃t)

)
= ρ

(∑
t∈T

aj∗ + hj∗(d̃t)

d̃t
d̃t

)

≤ ρ

(∑
t∈T

aj∗ + hj∗(qj∗)

q
j∗

d̃t

)
≤

max
i∈I
{ai + hi(qi)}

min
i∈I

{
q
i

} ρ

(∑
t∈T

d̃t

)

= α∗ρ

(∑
t∈T

d̃t

)
≤ α∗ρ(D̃),

where the first inequality follows from feasibility, the second inequality follows

from Assumption 2 and the third equality follows from axiom (A4) and the def-

inition of α∗. Thus, we get lower and upper bounds for the AC model, that

is,

α∗ρ(D̃) ≤ zAC ≤ α∗ρ(D̃). (5.21)

Note that in the NC model, the status decisions in period t ∈ T are identical for

all realizations of problem parameters in that period and satisfies max{ṽ∗it(d̃[t])} ≤
qu∗it andDmax ≤

∑
t∈T max{ṽ∗it(d̃[t])}. Moreover, the policy {û∗t , v̂

∗
t , ŵ

∗
t}t∈T is also

feasible for the NC model and ρ(D̃) ≤ Dmax. Using these facts, a similar analysis

can be used to obtain lower and upper bounds for NC model and we get

α∗D
max ≤ zNC ≤ α∗Dmax. (5.22)
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Hence, the claim of the theorem follows from (5.21) and (5.22).

The inequalities given in (5.21) and (5.22) relate the optimal values of AC and

NC, respectively, to the under and over estimations on per unit production costs.

If the generators are almost identical and lower and upper production limits

are close enough, we have α∗ ≈ α ≈ α∗. Then, we have

VAC ≈ α(Dmax − ρ(D̃)). (5.23)

Note that 0 ≤ ρ(D̃) ≤ Dmax and the approximation (5.23) implies that the VAC

increases with Dmax and therefore variability in the net load. However, for fixed

variability, the VAC decreases with ρ(D̃) and therefore the degree of risk aversion.

Assume that the net load in period t ∈ T is d̃t = dt + U [−∆,∆] where dt is a

deterministic value and U [−∆,∆] is an error term uniformly distributed between

−∆ and ∆ for some ∆ ∈ R+. Also, assume that the composite risk measure

ρ(·) is obtained using conditional mean-upper semi deviation as given in (5.7) for

simplicity. Then,

VAC ≈ α(Dmax − ρ(D̃))

= α

(
T∑
t=1

dmax
t − ρ

(
T∑
t=1

d̃t

))

= αT

(
1− λ

4

)
∆ (5.24)

where the second equality follows from definitions of dmax
t , d̃t and evaluation

of mean-upper semi deviation risk measure ρ(·). The approximation in (5.24)

suggests that the VAC increases with the number of periods T and the variability

in the net load ∆. However, VAC decreases with the degree of risk aversion λ.

The inverse relation between VAC and the degree of risk aversion may seem

counter-intuitive at first glance. However, as the degree of risk aversion increases,

ρ(D̃) gets closer to Dmax, that is, the decision maker tries to minimize the cost in
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Figure 5.3: Scenario tree for the system with 10 generators.

the most pessimistic scenarios. In that case, AC sacrifices its adaptivity in order

to put emphasize to the most pessimistic scenarios. Thus, optimal values of NC

and AC get closer.

5.3 Computational Experiments

The analytical results of the previous section rely on restrictive assumptions to

simplify the structure of the RA-UC problem. In order to see how the VAC

behave in the absence of these assumptions, we conduct two sets of computational

experiments.

We first consider a power system with 10 generators in the computational

experiments. We use the data set presented in [56] with some modifications. We

also consider a random net load process with eight scenarios where the power

demand at each hour is subject to uncertainty. The scenario tree depicting the

random process is given in Figure 5.3. A similar scenario tree structure is used

in [72].
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The test data is presented in Appendix B. We use the base net load values

presented in Table B.1 to generate random net load values. A variability pa-

rameter ε is used to control the dispersion of net load across all scenarios. Net

load values for each scenario are presented in Table B.2. All other parameters

except the production limits are set to the values given in [56]. The lower and

upper production limits are increased by a half in order to avoid infeasibility in

case of large variability in the net load amount. Start/shut-up/down limits are

calculated as in [73]. A PC with two 2.2GHz processors and 6 GB of RAM is

used in the computational experiments.

The quadratic production cost functions {hi(·)}i∈I are approximated by a

piecewise linear cost function with four pieces of equal lengths. This approxi-

mation of convex cost functions enables us to have a linear model for RA-UC

problem and yields near-optimal solutions (see, for example, [71]). We also use a

conditional mean-upper semi deviation risk measure (5.7) in each period.

We model and solve NC and AC for five different values of variability parameter

ε and six different values of the penalty parameter λ. For each ε and λ pair, we

calculate VAC in terms of difference of optimal values, that is,

VAC ($) = zNC − zAC ,

and in terms of percentage

VAC (%) =
zNC − zAC

zAC
,

The results on the VAC are presented in Figure 5.4.

Figure 5.4 verifies our analytical findings on VAC. We observe an increase in

VAC with the uncertainty in net load values. The VAC and hence importance

of adaptive commitment decisions increases as the dispersion among the scenar-

ios increases. As expected, the day-ahead schedule obtained by solving AC is

more adaptive and provides more flexibility in case of high variability of problem

parameters.
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Table 5.1: Solution times of NC for the system with 10 generators (in seconds)

ε\λ 0 0.1 0.2 0.3 0.4 0.5
0.1 7.5 10.4 9.6 7.7 7.2 7.2
0.2 4.2 3.8 3.5 4.0 3.7 3.2
0.3 12.2 10.9 9.5 8.1 7.8 6.0
0.4 7.9 3.8 4.1 4.0 3.3 2.7
0.5 8.8 5.4 6.3 4.8 4.8 4.6

We also observe decrease in the VAC with the level of risk aversion. In par-

allel with the analytical results in Theorem 2, higher risk aversion leads lower

VAC. Hence, the importance of the multi-stage model decreases as risk aversion

increases.

We also consider a rolling horizon policy obtained by solving NC in each period

and fixing the decisions at that period with respect to the optimal solution of NC.

In order to the measure the quality of the rolling horizon policy, we calculate the

gap between the value of the rolling horizon policy and the optimal value of AC.

The gap value GAP is calculated in terms of difference of objective values

GAP ($) = zRH − zAC ,

and in terms of percentage

GAP (%) =
zRH − zAC

zAC
.

where zRH is the value of the rolling horizon policy. Note that since rolling horizon

provides a feasible policy to the multistage problem that is at least as good as

that of NC, we have that 0 ≤ GAP ≤ VAC. The results are presented in Figure

5.5.

We present the solution times for each NC and AC instance at Table 5.1 and

Table 5.2, respectively. The required time to obtain the rolling horizon policy is

also presented in Table 5.3.
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Table 5.2: Solution times of AC for the system with 10 generators (in seconds)

ε\λ 0 0.1 0.2 0.3 0.4 0.5
0.1 1004.2 1280.0 1255.2 1489.7 1789.6 2009.1
0.2 328.3 381.6 400.4 444.7 324.6 393.8
0.3 480.0 1042.4 435.8 780.0 453.8 358.5
0.4 192.9 674.5 529.4 323.0 328.6 279.8
0.5 85.7 147.5 116.6 119.0 118.5 113.1

Table 5.3: Required time to obtain the rolling horizon policy for the system with
10 generators (in seconds)

ε\λ 0 0.1 0.2 0.3 0.4 0.5
0.1 16.6 15.1 14.7 13.6 14.9 12.8
0.2 8.0 9.0 9.0 8.7 8.0 8.5
0.3 15.1 17.3 15.1 15.2 14.6 11.4
0.4 9.0 10.4 8.3 9.1 7.7 7.8
0.5 10.2 9.6 9.0 12.3 9.7 9.5

In all instances, the rolling horizon policy performs much better than the pol-

icy obtained by solving NC problem with a small increase in computational ef-

fort. The GAP (%) of rolling horizon policy is 0.12% on average (with maximum

0.32%) whereas the VAC (%) is 1.42% on average (with maximum 3.20%). Thus,

the rolling horizon policy can provide enough flexibility in generation schedule to

obtain a near-optimal schedule in RA-UC problems with a reasonable computa-

tional effort.

The computational effort to solve the AC model is much larger than that of

the NC model and the rolling horizon policy in all instances. The higher the

net load variability leads higher VAC while decreasing the solution times as an

additional benefit.

In the data given in [56], transmission capacity constraints are missing. There-

fore, we conduct another set of experiments on the IEEE reliability test sys-

tem [76] where transmission capacity constraints are also included in the model.

This system has 24 buses, 34 transmission lines and 32 generators. In these ex-

periments, we use the parameters presented in [77] and we consider T = 6, 7, 8, 9

and 10 stage problems with mean-upper semi deviation risk measure (5.7). As
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in the previous set of experiments, the quadratic cost functions are replaced by

their piece-wise linear approximations. We assume that the net load value at each

stage can take values (1− ε)dt and (1 + ε)dt with equal probabilities where dt is

the deterministic net load value at stage t ∈ T in the original data set. Thus, the

resulting scenario tree is a binary tree where the number of scenarios is 2T−1 in

a T−stage problem. Some instances of AC require long CPU times or cannot be

solved optimally due to memory limitations. For these instances, the exact value

of VAC cannot be calculated, however, we use the best objective value after two

hours in calculation of an approximate VAC. The results of these experiments are

presented in Figure 5.6 and Table 5.4.

Results in Table 5.4 reveal that with the existence of transmission capacity

constraints, our findings on the relationship between VAC and degree of risk

aversion, level of uncertainty of net load values and number of periods hold,

in general. For the instances that cannot be solved within the time limit, the

average optimality gap values are 0.03% and 0.07% for T = 8 and 9, respectively.

Therefore, we obtain a good approximation of VAC and our findings are consistent

in this approximation as well. However, for T = 10, the average optimality gap

for the instances that cannot be solved within the time limit is 0.32%. Because

of this poor approximation of VAC, we observe that approximate VAC fluctuates

as λ increases for the instances T = 10, ε ∈ {0.3, 0.4}. However, even T = 10, the

results of the instances with ε ∈ {0.1, 0.2, 0.5} confirm our findings.

Especially for, T = 9 and 10, AC cannot be solved within two hours of time

limit, on the other hand, the longest running time for NC is 1724.41 seconds. The

average CPU times of NC and AC for the data set in [77] are given in Table 5.5.

The CPU time for AC, compared to NC, increases very rapidly as T increases

even though the additional computational effort brings a benefit in the objective

less than 1% in all instances. Therefore, implementing the policy obtained by

solving NC can be a promising alternative under industry time constraints.
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5.4 Conclusion

Recent improvements in the renewable power production technologies have moti-

vated the stochastic unit commitment problems, since these models can explicitly

address the variability in net load. The models with adaptive commitment pro-

vide completely flexible schedules where all decisions are adapted to the uncer-

tainty. However, these models require high computational effort, and therefore,

their non-adaptive counterparts are used to obtain approximate policies. In or-

der to justify the additional effort to solve the model with adaptive commitment

rather than its non-adaptive counterpart, we define the VAC and provide ana-

lytical and computational results on it. These results reveal that, for RA-UC

problems, the VAC decreases with the degree of risk aversion, and increases with

the level of uncertainty and number of time periods.
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Figure 5.4: Results of the computational experiments on the VAC($) and VAC(%)
for the system with 10 generators with respect to different variability (ε) and
degree of risk aversion levels (λ).
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Figure 5.5: Results of the computational experiments on GAP($) and GAP(%)
for the system with 10 generators with respect to different variability (ε) and
degree of risk aversion levels (λ).
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Figure 5.6: Results of the computational experiments on the VAC(%) for the
system with 32 generators with respect to different variability (ε) and degree of
risk aversion levels (λ).
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Table 5.4: VAC($) and VAC(%) for the system with 32 generators with respect
to different variability (ε) and degree of risk aversion levels (λ).

T ε\λ 0 0.1 0.2 0.3 0.4 0.5

6

0.1
107.86 97.51 91.31 85.11 78.91 72.73
0.07% 0.06% 0.06% 0.05% 0.05% 0.05%

0.2
410.26 393.11 370.31 346.26 323.32 300.70
0.26% 0.25% 0.23% 0.21% 0.20% 0.18%

0.3
755.90 699.71 641.85 601.45 554.11 506.83
0.47% 0.43% 0.39% 0.36% 0.33% 0.30%

0.4
1086.54 1002.56 923.08 848.99 781.85 715.17
0.67% 0.61% 0.55% 0.50% 0.46% 0.41%

0.5
1313.64 1211.58 1115.92 1025.51 939.97 858.95
0.80% 0.73% 0.66% 0.60% 0.54% 0.48%

7

0.1
103.72 108.93 91.31 85.11 83.68 72.73
0.06% 0.06% 0.05% 0.05% 0.05% 0.04%

0.2
468.64 442.63 421.27 394.76 360.73 342.83
0.26% 0.24% 0.23% 0.21% 0.19% 0.18%

0.3
828.53 771.33 707.70 657.86 602.85 546.62
0.45% 0.41% 0.37% 0.34% 0.31% 0.28%

0.4
1100.65 1020.47 946.89 871.97 812.28 750.36
0.59% 0.54% 0.49% 0.45% 0.41% 0.37%

0.5
1391.73 1283.89 1175.38 1085.07 992.53 897.97
0.74% 0.67% 0.60% 0.55% 0.49% 0.44%

8

0.1
115.55 97.51 91.31 94.47 78.91 80.03
0.06% 0.05% 0.04% 0.04% 0.04% 0.04%

0.2
497.70 467.20 438.09 401.12 371.40 343.64
0.24% 0.22% 0.21% 0.19% 0.17% 0.16%

0.3
835.65 771.17 704.73 648.16 594.22 541.80
0.39% 0.36% 0.33% 0.30% 0.27% 0.24%

0.4
1052.62* 966.11* 884.84* 808.41* 736.43 668.59*

0.49% 0.45% 0.40% 0.36% 0.32% 0.29%

0.5
1411.91 1297.33 1189.99 1080.89 993.60 905.40
0.66% 0.59% 0.53% 0.47% 0.43% 0.38%

9

0.1
569.40 555.62 514.87 494.91 456.22 426.90
0.24% 0.23% 0.21% 0.20% 0.19% 0.18%

0.2
840.97 796.39 746.61 697.92 649.63 608.69
0.35% 0.33% 0.31% 0.28% 0.26% 0.24%

0.3
1370.20* 1275.94* 1180.00* 1096.45* 1015.09* 936.09*

0.57% 0.52% 0.48% 0.44% 0.40% 0.36%

0.4
1460.80* 1343.19* 1232.00* 1135.35* 1039.17* 961.80*

0.60% 0.54% 0.49% 0.44% 0.40% 0.36%

0.5
1881.41 1742.39 1609.45 1483.10 1363.85 1250.51
0.76% 0.69% 0.63% 0.57% 0.51% 0.46%

10

0.1
620.71* 581.99* 544.72* 507.70* 471.40* 435.80*
0.23% 0.21% 0.20% 0.18% 0.17% 0.16%

0.2
1164.00* 1094.52* 1007.44* 936.85* 833.71* 624.08*

0.42% 0.40% 0.36% 0.33% 0.29% 0.22%

0.3
1574.31* 1298.25* 1356.30* 1066.33* 988.83* 850.78*

0.57% 0.46% 0.48% 0.37% 0.34% 0.29%

0.4
1615.47* 1313.53* 1463.80* 910.46* 1249.11* 1146.56*

0.58% 0.46% 0.51% 0.31% 0.42% 0.38%

0.5
2387.27 2209.31 2040.97 1882.50 1730.43 1584.75
0.85% 0.77% 0.69% 0.63% 0.57% 0.51%

* VAC is calculated with the best objective value obtained after two hours.
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Table 5.5: Average CPU times (in seconds) of NC and AC (for the instances that
cannot be solved in two hours, the CPU times are taken as 7200 seconds.)

T NC AC
6 2.75 10.25
7 6.60 25.64
8 18.98 1551.31
9 116.83 4187.73
10 703.59 6445.46
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Chapter 6

Approximations to Risk-averse

Multi-stage Production Planning

Problems

In this chapter, we consider risk-averse multi-stage production planning problems

as a generalization of the unit commitment problem discussed in Chapter 5. In

these problems, we make setup (or status) decisions of a set of production units

and production amount decisions of each unit in order to satisfy random demand

of a single product. For these problems, we consider two models with respect

to their adaptivity to the uncertainty. In fully adaptive models, both setup and

production decisions are given in on-line fashion, that is, they are adapted to

demand uncertainty. However, in the models with non-adaptive setup decisions,

the setup decisions are off-line, that is, they are fixed at the beginning of the

decision horizon whereas the production decisions are on-line. We discuss the

trade off between flexibility of the adaptive setup decisions and computational

convenience of the model with non-adaptive setup decisions. As an intermediate

case, we also consider a model with partially adaptive setup decisions. Moreover,

we propose a rolling horizon approach for the fully adaptive model where the

model with non-adaptive setup decisions is used as an approximation. In order to
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reduce the computational difficulty of the rolling horizon algorithm, we consider

restricting the production amounts to affine functions of demand realizations.

We propose analytical results on the relation among the optimal values of the

models with fully adaptive, partially adaptive, non-adaptive setup decisions and

the objective value obtained from the rolling horizon algorithm. Finally, we

conduct a set of computational experiments on a risk-averse multi-stage lot sizing

problem to investigate the computational efficiency of the proposed models and

verify the analytical results.

The rest of the chapter is organized as follows: In Sections 6.1 and 6.2, we

present the deterministic and risk-averse models for multi-period production plan-

ning problems, respectively. Approximations to the fully adaptive risk-averse

model are given in Section 6.3. In Section 6.4, we present a rolling horizon so-

lution method for the risk-averse multi-stage production planning problems. In

Section 6.5, we present results of our computational experiments. The concluding

remarks are presented in Section 6.6.

6.1 Deterministic Problem

In a T−period planning horizon, we decide production schedule of I different

units (or generators, machines etc.) in order to satisfy the demand of a certain

product. The demand at period t ∈ {1, . . . , T} is given by dt. Each unit has

lower and upper production limits. Unit i ∈ {1, . . . , I} can produce at least q
i

units and at most qi units of product if it is working.

Let ut := (u1t, u2t, . . . , uIt) ∈ {0, 1}I and vt := (v1t, v2t, . . . , vIt) ∈ RI
+ be the

vectors of decision variables that represent status and production amounts at pe-

riod t, respectively. The remaining auxiliary decisions at period t are represented

by a J−dimensional real vector wt ∈ RJ
+. The total cost at period t is given by a

function ft(ut,vt,wt). Then, the deterministic multi-period production planning

104



problem is given in as:

(DET) min
T∑
t=1

ft(ut,vt,wt), (6.1)

s.t. q
i
uit ≤ vit ≤ qiuit, ∀i ∈ {1, 2, . . . , I}, t ∈ {1, 2, . . . , T}, (6.2)

I∑
i=1

vit ≥ dt, ∀t ∈ {1, 2, . . . , T}, (6.3)

(u1,v1,w1) ∈ X1, (6.4)

(ut,vt,wt) ∈ Xt(ut−1,vt−1,wt−1), ∀t ∈ {2, 3, . . . , T}, (6.5)

ut ∈ {0, 1}I+,vt ∈ RI
+,wt ∈ RJ

+, ∀t ∈ {1, 2, . . . , T}, (6.6)

where the objective (6.1) is the total cost over T periods. Constraint (6.2) ensures

that production amounts satisfy lower and upper production limits. Constraint

(6.3) is demand satisfaction constraint. Constraints (6.4) and (6.5) reflect addi-

tional system dynamics and ensure that the production schedule is feasible.

The model DET provides a canonical formulation for a broad class of deter-

ministic multi-period production planing problems including unit commitment

and lot sizing problems. In unit commitment problems, for example, the objec-

tive is to minimize total energy production cost while satisfying load constraints

through a multi-period decision horizon in a power system. The total cost is the

sum of fixed commitment costs, convex dispatch cost, start up and shut down

costs as well as other operational costs. The ramping and transmission require-

ments can easily be represented as a set constraint similar to (6.5). Similarly,

in single-item lot sizing problems, the objective is the sum of fixed and variable

costs of production and inventory holding costs through T−periods. Let I = 2

where i = 1 corresponds to the actual production unit and i = 2 is a dummy unit.

Decision variable u1t ∈ {0, 1} takes value 1 if there is production at period t and

0 otherwise. Also let u2t ∈ {0, 1} represent the binary decision which indicates

if there is a positive inventory at the beginning of period t. Also, let v1t and

v2t be the production and inventory amounts in period t, respectively. Inventory

balance requirement can also be represented by the set constraints. Thus, the lot

sizing problem can also be written as the deterministic multi-period production
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planning problem DET.

Although DET enables us to model multi-period decision problems, it assumes

that demand values are deterministic and exactly known at the beginning of the

entire decision horizon. This assumption can be quite restrictive in many real

life applications. For example, net load values in unit commitment problems

are subject to uncertainty due to unreliable equipment and power generated by

renewable sources. Also, demand values in lot sizing problems are not exactly

known but only be forecastable in many real-life applications. Therefore, we

consider an extension of DET to a stochastic setting where the demand values at

each period are random.

6.2 Risk-averse Multi-stage Production

Planning Problem

Let (Ω,F , P ) be a probability space where Ω is a sample space, F be the sigma

algebra representing the set of all events defined on Ω and P be a probability mea-

sure. The nested sequence of sigma algebras {∅,Ω} = F1 ⊂ F2 ⊂ · · · ⊂ FT = F is

called a filtration and it represents our gradually increasing information through

a T−stage planning horizon. The set of all Ft−measurable and p−integrable

random variables are denoted by Zt := Lp(Ω,Ft, P ) for t ∈ {1, 2, . . . , T} for some

p > 1.

We assume that demand amount at period t is random and denoted by a

random variable d̃t in period t ∈ {1, 2, . . . , T}. Then, d̃t is Ft−measurable, that

is, d̃t ∈ Zt. The demand process d̃1, d̃2, . . . , d̃T evolves as a stochastic process with

a specified probability distribution. An element ω ∈ Ω is called as a scenario and

corresponds to a realization d1, d2, . . . , dT of the demand process d̃1, d̃2, . . . , d̃T .

Let pω be the probability of scenario ω. Note that since F1 = {∅,Ω} by definition,

Z1 = R and therefore the demand amount at the first period is deterministic.

To extend the deterministic model DET to this uncertainty setting, we
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should ensure that the decisions at period t depend only on the history of

demand realization d̃[t] := (d̃1, d̃2, . . . , d̃t) up to period t. This requirement

is called as non-anticipativity. Therefore, we use Ft−measurable mappings

ut(d̃[t]),vt(d̃[t]),wt(d̃[t]) to represent our status, production and auxiliary de-

cisions, respectively at period t. Note that, in that case, all decisions are

fully adaptive to the underlying filtration. The total cost at period t is also

Ft−measurable, i.e., ft(ut(d̃[t]),vt(d̃[t]),wt(d̃[t])) ∈ Zt. The feasibility sets

Xt(ut−1(d̃[t−1]),vt−1(d̃[t−1]),wt−1(d̃[t−1]), d̃[t]) are also given by the data process

for t ∈ {2, . . . , T}. The decisions at period t are made after observation of the

demand realization at period t. We call a decision epoch as a stage and in our

case, a stage corresponds to a period.

A sequence of measurable mappings {ut(·),vt(·),wt(·)}Tt=1 with respect to the

underlying filtration is called as an implementable policy. Moreover, a policy is

said to be feasible if it satisfies problem specific constraints analogous to (6.2)-

(6.6) (see, for example, [37]).

As in the rest of the thesis, we use conditional risk measures to represent

the attitude of a decision maker towards risk. The conditional risk measure

ρFt+1|Ft : Zt+1 → Zt quantifies the risk involved in Ft+1−measurable random

variable based on the available information in period t ∈ {1, . . . , T − 1}.

At stage t ∈ {1, . . . , T}, the objective of the decision maker is to minimize sum

of the total cost at stage t and the risk-adjusted cost in the future stages over

all implementable and feasible policies. Then, risk-averse (stochastic) multi-stage

production planning problem can be written in a nested form:

min
(u1,v1,w1)∈X1

f1(u1,v1,w1)

+ ρF2|F1

[
min

(u2(d̃[2]),v2(d̃[2]),w2(d̃[2]))∈X2

f2(u2(d̃[2]),v2(d̃[2]),w2(d̃[2]))

+ ρF3|F2

{
min

(u3(d̃[3]),v3(d̃[3]),w3(d̃[3]))∈X3

f3(u3(d̃[3]),v3(d̃[3]),w3(d̃[3])) + · · ·
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+ ρFT |FT−1

(
min

(u3(d̃[T ]),v3(d̃[T ]),w3(d̃[T ]))∈XT
fT (uT (d̃[T ]),vT (d̃[T ]),wT (d̃[T ]))

)
· · ·

}]
,

where dependence of feasibility sets to decision and demand processes is assumed

but not explicitly written for notational brevity. The risk-averse multi-stage

production planning problem can be written in several ways as also stated in [3].

As an example, the problem can be modeled as

(RA-A)

min f1(u1,v1,w1) + ρF2|F1

[
f2(u2(d̃[2]),v2(d̃[2]),w2(d̃[2])) + · · ·

+ ρF3|F2

{
f3(u3(d̃[3]),v3(d̃[3]),w3(d̃[3]))

+ · · ·+ ρFT |FT−1

(
fT (uT (d̃[T ]),vT (d̃[T ]),wT (d̃[T ]))

)
· · ·

}]
, (6.7)

s.t. q
i
uit(d̃[t]) ≤ vit(d̃[t]) ≤ qiuit(d̃[t]),

∀i ∈ {1, 2, . . . , I}, t ∈ {1, 2, . . . , T}, (6.8)

I∑
i=1

vit(d̃[t]) ≥ d̃t, ∀t ∈ {1, 2, . . . , T}, (6.9)

(u1,v1,w1) ∈ X1, (6.10)

(ut(d̃[t]),vt(d̃[t]),wt(d̃[t])) ∈ Xt(ut(d̃[t−1]),vt(d̃[t−1]),wt(d̃[t−1]), d̃[t]),

∀t ∈ {2, 3, . . . , T}, (6.11)

ut(d̃[t]) ∈ {0, 1}I+,vt(d̃[t]) ∈ RI
+,wt(d̃[t]) ∈ RJ

+, ∀t ∈ {1, 2, . . . , T}.
(6.12)

The objective (6.7) is the risk value associate with the cost sequence f1(·),
f2(·), . . . , fT (·). Constraints (6.8), (6.9), (6.10), (6.11) and (6.12) are analogues

to their deterministic counterparts (6.2), (6.3), (6.4), (6.5) and (6.6), respectively.

In order to get an alternative representation of this risk value, we define the

dynamic coherent risk measure % : Z1 × Z2 × · · · × ZT → R by using nested

composition of the conditional risk measures ρF2|F1(·), ρF3|F2(·), . . . , ρFT |FT−1
(·),
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that is,

%(Z1, Z2, . . . , ZT ) := Z1 + ρF2|F1(Z2 + · · · ρFT |FT−1
(ZT ) · · · ),

for any cost sequence {Zt}Tt=1 where Zt ∈ Zt for any t ∈ {1, 2, . . . , T}. Due

to translational equivariance property of conditional risk measures, we have an

alternative representation of the dynamic coherent measure of risk %(·) as

ρ

(
T∑
t=1

Zt

)
:= %(Z1, Z2, . . . , ZT ), (6.13)

where ρ = ρF2|F1 ◦ ρF3|F2 ◦ · · · ◦ ρFT |FT−1
: Z → R is called as a composite

risk measure and Z := ZT . Note that, in the risk-neural case ρ(·) reduces to

expectation operator E(·). The composite risk measure ρ(·) satisfies the coherence

axioms (A1)-(A4) and therefore it is a coherent measure of risk as shown in [3,

Eqn. 6.234].

min. ρ

(
T∑
t=1

ft(ut(d̃[t]),vt(d̃[t]),wt(d̃[t]))

)
, (6.14)

s.t. (6.8), (6.9), (6.10), (6.11) and (6.12),

where f1(u1(d̃[1]),v1(d̃[1]),w1(d̃[1])) := f1(u1,v1,w1) for notational consistency.

If the random demand values evolve as a discrete-time stochastic process with

finite support, then the whole process can be represented by a T−stage scenario

tree where Ωt is the set of nodes at stage t ∈ {1, . . . , T}. Each node n of the

scenario tree at stage t corresponds to a possible realization of d[t]. Note that in

this case, each last stage node n ∈ ΩT corresponds to a scenario ω ∈ Ω.

In finite realization case, the risk-averse multi-stage production planning prob-

lem can be written as a large deterministic problem called as deterministic equiv-

alent problem (DEP) by defining a decision variable for each status, production

and auxiliary decision at each node of the scenario tree. Therefore, the size of

DEP grows exponentially with the number of stages T for any non-trivial sce-

nario tree. Moreover, the problem quickly becomes computationally intractable

109



since the status decisions are binary in this DEP. This computational challenge

motivates following questions:

• Is it possible to quantify the benefit of solving the model with a fully adap-

tive policy?

• Is it worthwhile to solve a large scale non-convex DEP to obtain a fully

adaptive policy?

• In which instances, a fully adaptive policy is necessary?

• Can we sacrifice the adaptivity of our decisions to some extend for ease of

computation?

In this chapter, we try to answer these questions by considering several approxi-

mations of the risk-averse multi-stage model of multi-period production planning

problem. Some of these questions are answered for a risk-neutral multi-stage

stochastic programming problem in [78]. Moreover, non-adaptive and partially

adaptive polices are considered for specific applications of risk-neutral models

such as lot-sizing [79] and inventory planning [80] problems.

In the next sections, we obtain approximations to problem RA-A by varying

adaptivity of setup decisions. We also consider a rolling horizon approach based

on these approximations.

6.3 Approximations

6.3.1 Non-adaptive Setup Model

In this section, we consider an approximation of RA-A where the setup decisions

are non-adaptive. The risk-averse multi-stage production planning problem with
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Figure 6.1: Decision processes in RA-A (top) and RA-N (bottom) problems mod-
els .
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... Observe
d̃T

Decide
vT ,wT

non-adaptive setup decisions is given as

(RA-N)

min. f1(u1,v1,w1) + ρF2|F1

[
f2(u2,v2(d̃[2]),w2(d̃[2]))

+ ρF3|F2

{
f3(u3,v3(d̃[3]),w3(d̃[3])) + · · ·

+ ρFT |FT−1

(
fT (uT ,vT (d̃[T ]),wT (d̃[T ]))

)
· · ·

}]
, (6.15)

s.t. q
i
uit ≤ vit(d[t]) ≤ qiuit, ∀i ∈ {1, 2, . . . , I}, t ∈ {1, 2, . . . , T}, (6.16)

I∑
i=1

vit(d̃[t]) ≥ d̃t, ∀t ∈ {1, 2, . . . , T} (6.17)

(u1,v1,w1) ∈ X1, (6.18)

(ut,vt(d̃[t]),wt(d̃[t])) ∈ Xt(ut−1,vt(d̃[t−1]),wt(d̃[t−1]), d̃[t]),

∀t ∈ {2, 3, . . . , T}, (6.19)

ut ∈ {0, 1}I+,vt(d̃[t]) ∈ RI
+,wt(d̃[t]) ∈ RJ

+, ∀t ∈ {1, 2, . . . , T}. (6.20)

Note that, in the model RA-N, the schedule decisions are deterministic and there-

fore, they can also be seen as first stage decisions. An interpretation of this fact

is that the status decisions are made at the beginning of the decision horizon,

however, the production and auxiliary decisions are made after observing the de-

mand realization at each stage. Figure 6.1 highlights the difference of decision

processes in problems with adaptive and non-adaptive schedules.
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In the DEP of RA-A, the number of binary variables is N × I where

N :=
∑T

t=1 |Ωt| is the number of nodes in the scenario tree. This number grows

exponentially with the number of stages. On the other hand, in the DEP of

RA-N, the number of binary variables is T × I whose value grows linearly with

the number of stages. Since N >> T for any non-trivial problem, computational

difficulty of RA-A is significantly more than RA-N.

The following example shows that the difference between the optimal values

of RA-A and RA-N can be arbitrarily large even for a two-stage problem if the

demand is unbounded.

Example 6. Consider a risk-neutral instance of the problem with T = 2, I =

d1
ε
e for some 0 < ε < 1, q

i
= qi = 1 for all i ∈ {1, . . . , I}. Let

ft(ut(d̃[t]),vt(d̃[t]),wt(d̃[t])) =
∑I

i=1 vit(d̃t) for t ∈ {1, 2}. The demand in the

first period is 1 unit and demand in the second period takes values 1 and 1
ε

units

equally likely.

The optimal value of RA-A is 3
2

+ 1
2
d1
ε
e and the optimal value of RA-N is

1 + d1
ε
e. The difference between the optimal values is −1

2
+ 1

2
d1
ε
e and it can be

arbitrarily large since ε can be arbitrarily small.

However, if Assumptions 2, 3 and 4 in Chapter 5 hold, then as a corollary of

Theorem 2 in the same chapter, we have

α∗ρ(D̃) ≤ zA ≤ zN ≤ α∗Dmax (6.21)

where zA and zN are the optimal values of RA-A and RA-N, respectively and

the parameters α∗, α
∗, D̃ and Dmax are defined as in Chapter 5. Therefore, it

is possible to calculate a bound on the approximation error due to non-adaptive

setup decisions. Moreover, Assumptions 2, 3 and 4 are not too restrictive and

already hold for the lot sizing problem with outsourcing option or lost demand.
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Figure 6.2: Decision processes in problems with a partially adaptive setup deci-
sions where the setup decisions are updated in every τ periods.
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6.3.2 Partially Adaptive Setup Model

As an intermediate case between the models with adaptive and non-adaptive

setup decisions, we consider a third model with partially adaptive setup decisions.

In this model, the setup decisions are given in every τ periods such that 1 ≤ τ ≤ T

whereas the production and auxiliary decisions are given in every period. The

decision process for the model with partially adaptive setup decisions is given in

Figure 6.2.

Note that in a model with partially adaptive setup decisions, ut depends only

on the demand history up to period
⌈
t
τ

⌉
, that is ut is Fd tτ e-measurable where

d·e is the ceiling function. Thus, the risk-averse multi-stage production planning

problem with a partially adaptive setup decisions is given as

(RA-P(τ))

min f1(u1,v1,w1) + ρF2|F1

[
f2(u2(d̃[d 2

τ e]),v2(d̃[2]),w2(d̃[2])) + · · ·
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+ ρF3|F2

{
f3(u3(d̃[d 3

τ e]),v3(d̃[3]),w3(d̃[3]))

+ · · ·+ ρFT |FT−1

(
fT (uT (d̃[dTτ e]),vT (d̃[T ]),wT (d̃[T ]))

)
· · ·

}]
, (6.22)

s.t. q
i
uit(d̃[d tτ e]) ≤ vit(d̃[t]) ≤ qiuit(d̃[d tτ e]),

∀i ∈ {1, 2, . . . , I}, t ∈ {1, 2, . . . , T}, (6.23)

I∑
i=1

vit(d̃[t]) ≥ d̃t, ∀t ∈ {1, 2, . . . , T} (6.24)

(u1,v1,w1) ∈ X1, (6.25)

(ut(d̃[d tτ e]),vt(d̃[t]),wt(d̃[t])) ∈

Xt(ut(d̃[d t−1
τ e]),vt(d̃[t−1]),wt(d̃[t−1]), d̃[t]), ∀t ∈ {2, 3, . . . , T}, (6.26)

ut(d̃[d tτ e]) ∈ {0, 1}
I
+,vt(d̃[t]) ∈ RI

+,wt(d̃[t]) ∈ RJ
+,

∀t ∈ {1, 2, . . . , T}. (6.27)

The model RA-P has
∑dT/τe−1

k=0 |Ωkτ+1| binary variables and provides an in-

termediate case between the models with adaptive and non-adaptive schedules

in terms of adaptivity of setup decisions. Note that if τ = 1, the model RA-P

coincides with the model RA-A where the setup decisions are adapted to the

random process. Similarly, when τ = T , it coincides with RA-N where the setup

decisions are non-adaptive. Therefore, the RA-P enables the decision maker to

control the desired level of adaptivity of the setup decisions and the number of

binary variables in the model. In the next proposition, we prove the relationship

between the optimal values of RA-A, RA-N and RA-P.

Proposition 9. We have zA ≤ zP (τ) ≤ zN where zA is the optimal value of

RA-A, zP (τ) is the optimal value of RA-P(τ) and zN is the optimal value of

RA-N.

Proof. An equivalent representation of RA-N can be obtained by adding ad-

ditional constraints to RA-A to ensure that the setup decisions at stage t are

identical for all possible realizations of d[t] for t ∈ {1, . . . , T}. On the other
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hand, an equivalent representation of RA-P(τ) can be obtained by adding addi-

tional constraints to RA-A such that the setup decisions at stage t are identical

for the possible realizations of d[t] that share same history up to period
⌈
t
τ

⌉
for

t ∈ {1, . . . , T}. Thus, the claim in the proposition follows.

Although smaller τ values yield more adaptive schedules, decreasing τ may

increase the cost of the obtained schedules. The following examples shows an

instance with zP (τ2) < zP (τ1) where 1 < τ1 < τ2 < T .

Example 7. Consider a risk-neutral instance of the problem with T = 4, I =

2, q
1

= q
2

= q1 = q2 = 1. Let ft(ut(d̃[t]),vt(d̃[t]),wt(d̃[t])) =
∑2

i=1 vit(d̃[t]) for

t ∈ {1, 2, 3, 4}. The demand in the first three periods is 1 unit and demand

in the last period takes values 1 and 2 equally likely. Note that, in this case,

zA = zP (3) = 4.5, however zP (2) = zN = 5.

6.4 A Rolling Horizon Approach

In a classical rolling horizon (RH) approach, at each period, an approximate

problem is solved for the rest of the decision horizon and immediate decisions are

implemented for the current period. Iterating over all periods a feasible policy is

obtained. RH approach is shown to be an effective tool in multi-stage scheduling

problems (see, [81] and references therein for a more detailed discussion). A RH

approach can be employed for RA-A by solving RA-N at every τ ∈ {1, . . . , T}
stages and implementing an optimal policy of this approximation for the next τ

stages. We first make a complete recourse assumption in order to ensure that all

problems can be solved optimally during execution of the RH approach.

Assumption 5. Given any partial feasible policy {ut(·),vt(·),wt(·)}t
′
t=1, the

model RA-N starting from period t′ + 1 is always feasible.

Algorithm 3 outlines the RH approach proposed for RA-A.
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Algorithm 3 Rolling Horizon Algorithm for RA-A

1: Require: An integer τ ∈ {1, . . . , T}
2: Initialize: Set update epoch t = 1 and policy {ut(·),vt(·),wt(·)}Tt=1 = null
3: for t ≤ T do
4: for n ∈ Ωt do
5: Given the demand history d1, d2, . . . , dt−1 corresponding to node n and

{ut(·),vt(·),wt(·)}t−1
t=1, solve RA-N. Let {ût(·), v̂t(·), ŵt(·)}Tt=t be an op-

timal policy.
6: (ut(·),vt(·),wt(·)) ← (ût(·), v̂t(·), ŵt(·)) for stages t ∈ {t, t + 1, . . . , t +

τ − 1}.
7: Update: t← t+ τ
8: end for
9: end for

10: Return: Policy {ut(·),vt(·),wt(·)}Tt=1

Let zRH(τ) be the objective value corresponding to the policy obtained from

Algorithm 3 for a given τ value. The following proposition shows the relation

between zRH(τ), zA, zP (τ) and zN .

Proposition 10. zA ≤ zP (τ) ≤ zRH(τ) ≤ zN for τ ∈ {1, . . . , T}.

Proof. Due to Assumption 5, the policy {ut(·),vt(·),wt(·)}Tt=1 obtained by Algo-

rithm 3 is feasible for RA-P(τ) and the setup decision ut(·) is Fd tτ e−measurable.

Therefore, zP (τ) ≤ zRH(τ). In the first epoch of Algorithm 3, that is for t = 1,

the initial policy is an optimal solution of RA-N with the objective value zN .

Throughout the update epochs, the objective value is non-increasing. Thus,

zRH(τ) ≤ zN .

Proposition 11. Under Assumptions 2, 3 and 4 in Chapter 5, we have zRH(τ)
zA
≤

α∗Dmax

α∗ρ(D̃)
for τ ∈ {1, . . . , T}.

Proof. The proof follows from the inequalities given in (6.21) and Proposition

10.

Note that Proposition 11 provides a worst-case bound for the performance of

the rolling horizon algorithm. Obtaining worst case bounds of a RH approach for
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an optimization problem is rare in the literature. For example, recently in [82],

worst case bounds of a RH approach can only be shown for a multi-stage fixed

charge transportation problem for some specific cases.

Algorithm 3 requires solving the RA-N model
∑dT/τe−1

k=0 |Ωkτ+1| times. This

number also grows exponentially with the number of stages, and therefore Algo-

rithm 3 may require long computation times. In order to reduce the computa-

tional difficulty in Algorithm 3, we consider restricting the production decision

in RA-N at stage t to an affine function of random demands up to t, that is,

ADR: vit(d̃[t]) =
t∑

t′=1

Ait′td̃t′ +Bit, ∀t ∈ {1, 2, . . . , T}, i ∈ {1, 2, . . . , I}, (6.28)

where Ait′t and Bit for t′, t ∈ {1, . . . , T} with t′ ≤ t and i ∈ {1, . . . , I} are the real

valued coefficients that define the affine policy. Another alternative is a simpler

policy where the production decision at stage t is an affine function of random

demand at stage t only, that is,

SADR: vit(d̃[t]) = Aitd̃t +Bit, ∀t ∈ {1, 2, . . . , T}, i ∈ {1, 2, . . . , I} (6.29)

with coefficients Ait and Bit for t ∈ {1, . . . , T}, i ∈ {1, . . . , I} that define an affine

policy. Note that, in finite support case, a realization of d̃[t] can be represented

by t−dimensional real-valued vector. Similarly, vt(d̃[t]) can also be represented

by an I−dimensional real-valued vector. Thus, the decision rule in (6.28) can be

represented

ADR: vt(d̃[t]) =
t∑

t′=1

At′td̃t′ +Bt, ∀t ∈ {1, 2, . . . , T}, (6.30)

where At′t ∈ RI×t′ and Bt ∈ RI×1 for t′ ∈ {1, . . . , t}. Also, the decision rule in

(6.29) can be written as

SADR: vt(d̃[t]) = Atd̃t +Bt, ∀t ∈ {1, 2, . . . , T}, (6.31)

where At ∈ RI×t and Bt ∈ RI×1.
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Affine decision rules have been considered in the context of stochastic pro-

gramming since the pioneering work [83]. However, successful implementations

such as [84] and [85] in multi-stage setting have appeared recently in the litera-

ture. In the risk-averse context, usage of affine decision rules have not attracted

much attention. In [86], the decisions are restricted to affine functions of the

problem parameters where the objective is a non-dynamic CVaR in a reservoir

management problem. To the best of our knowledge, affine decision rules have

not been used in a risk-averse multi-stage stochastic optimization problem with

an objective of dynamic coherent risk measure.

The risk-averse multi-stage production planning problem with non-adaptive

schedule and affine decision rules is given by

(RA-N-ADR)

min. f1(u1, A11d1 +B1,w1) + ρF2|F1

[
f2(u2,

2∑
t′=1

At′2d̃t′ +B2,w2(d̃[2]))

+ ρF3|F2

{
f3(u3,

3∑
t′=1

At′3d̃t′ +B3,w3(d̃[3])) + · · ·

+ ρFT |FT−1

(
fT (uT ,

T∑
t′=1

At′T d̃t′ +BT ,wT (d̃[T ]))

)
· · ·

}]
, (6.32)

s.t. qut ≤
t∑

t′=1

At′td̃t′ +Bt ≤ qut, t ∈ {1, 2, . . . , T}, (6.33)

1>
( t∑
t′=1

At′td̃t′ +Bt

)
≥ d̃t, ∀t ∈ {1, 2, . . . , T} (6.34)

(u1, A11d1 +B1,w1) ∈ X1, (6.35)

(ut,
t∑

t′=1

At′td̃t′ +Bt,wt(d̃[t])) ∈

Xt(ut−1,

t−1∑
t′=1

At′(t−1)d̃t′ +Bt−1,wt(d̃[t−1]), d̃[t]), ∀t ∈ {2, 3, . . . , T},

(6.36)

ut ∈ {0, 1}I+, At′t ∈ RI×t′ , Bt ∈ RI×1,wt(d̃[t]) ∈ RJ
+,

∀t ∈ {1, 2, . . . , T}, t′ ∈ {1, 2, . . . , t}, (6.37)
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Algorithm 4 Rolling Horizon Algorithm with Affine Decision Rules for RA-A

1: Require: An integer τ ∈ {1, . . . , T}
2: Initialize: Set update epoch t = 1 and policy {ut(·),vt(·),wt(·)}Tt=1 = null
3: for t ≤ T do
4: for n ∈ Ωt do
5: Given the demand history d1, d2, . . . , dt−1 corresponding to node n

and {ut(·),vt(·),wt(·)}t−1
t=1, solve RA-N-ADR or RA-N-SADR. Let

{ût(·), v̂t(·), ŵt(·)}Tt=t be an optimal policy.
6: (ut(·),vt(·),wt(·)) ← (ût(·), v̂t(·), ŵt(·)) for stages t ∈ {t, t + 1, . . . , t +

τ − 1}.
7: Update: t← t+ τ
8: end for
9: end for

10: Return: Policy {ut(·),vt(·),wt(·)}Tt=1

where 1 ∈ RI is the vector of all ones. q := (q
1
, . . . , q

I
) and q := (q1, . . . , qI).

A similar model RA-N-SADR can be written for the simpler affine decision rule

SADR.

Therefore, we can modify Algorithm 3 where we use affine decision rules in the

approximating problem.

Let zRH−ADR(τ) and zRH−SADR(τ) be the objective values corresponding to

the policy obtained from Algorithm 4 with ADR and SADR, respectively.

6.5 Computational Experiments

We conduct a set of computational experiments on a risk-averse lot sizing prob-

lem in order to observe the performance of the approximations to the risk-averse

multi-stage production planning problem and verify the findings in the previous

sections. All computational experiments are performed on an Intel(R) Core(TM)

i7-4790 CPU@3.60 GHz computer with 8.00 GB of RAM. The algorithm is im-

plemented on Java 1.8.0.31 where IBM ILOG CPLEX version 12.6 with default

settings is used as the solver.
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We generate problem instances similar to the ones in Section 3.3 except we

define d̃t ∼ U [50−100ε, 50+100ε] where ε ∈ {0.1, 0.2, 0.3, 0.4, 0.5} is a parameter

that controls the variability of the demand values. The lower production limits

are also set to one fourth of the upper production limits. We use conditional

mean upper semi-deviation risk measure

ρFt+1|Ft(Zt+1) = E[Zt+1|Ft]+λE[(Zt+1−E[Zt+1|Ft])+|Ft] ∀Zt+1 ∈ Zt+1, (6.38)

for all t ∈ {1, . . . , T − 1} in our experiment. We also consider λ ∈ {0, 0.25, 0.5}
to control the degree of risk-aversion. Note that, if λ = 0, then the problem is

risk-neutral.

We consider T = 5 and 6 stage instances where the demand can take K

different values equally likely and independently at each stage. For T = 5, we let

K ∈ {2, 3, 4} and for T = 6, we let K ∈ {2, 3}. Note that for K = 2, 3 or 4, the

corresponding scenario tree is a binary, ternary and quaternary tree, respectively.

Moreover, the total number of scenarios in an instance is KT−1. The detailed

results are presented in Tables C.1-C.13 in Appendix C.

We first investigate how close the optimal value of RA-A to the optimal value

of RA-N in order to measure the benefit of solving the model with adaptive setup

decisions. Thus, we define a metric called as the value of adaptive setup decisions

as:

VAS (%) =
zN − zA

zA
,

similar to the definition of VAC in Chapter 5. VAS defines the percentage of

increase in the objective value when RA-N is solved instead of RA-A. The exact

value of VAS can only be calculated if both RA-A and RA-N are solved optimally.

Since for some instances of RA-A cannot be solved optimally when T = 5, K = 4

and T = 6, K = 3, we present the analysis for the remaining instances. The

results are presented in Figure 6.3.

As shown in Figure 6.3, VAS increases with the variability in demand values

(ε) and the number of stages (T ) and decreases with the degree of risk-aversion

(λ). The largest VAS value 8.11% is attained when T = 6, K = 2, λ = 0 and
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ε = 0.5. Moreover, VAS is zero for all instances with low demand variability

ε = 0.1. The VAS and hence the importance of the model with adaptive setup

decisions increase with variability and the number of stages and decrease with the

degree of risk-aversion. Note that, this result is also consistent with the theoretical

and computational results in Chapter 5. We consider a similar comparison for

the models with adaptive and partially adaptive setup decisions. We define the

relative value of adaptive setup decisions compared to partially adaptive setup

decisions as:

VAS(τ) (%) =
zP (τ)− zA

zA
,

where VAS(τ) (%) measures the percentage of increase in the objective value if

RA-P with τ is solved instead of RA-A. The results are given in Figure 6.4.

As seen in Figure 6.4, VAS(τ)(%) values also increase with demand variabil-

ity and the number of stages and decreases with the degree of risk-aversion, in

general. Although we cannot always expect that VAS(2) ≤ VAS(3) as shown in

Example 7, the average performance of RA-P with τ = 2 (VAS(2)% = 0.45 on

the average) is better than RA-P with τ = 3 (VAS(3)% = 1.08 on the average).

We also define

VAS-RH(τ) (%) =
zRH(τ)− zA

zA
,

in order to measure the percentage of increase in the objective value when the

solution of the RH algorithm is used instead of the optimal fully adaptive setup

decisions.

In Figure 6.5, we can observe that the relative importance of the adaptive setup

decisions compared to the rolling horizon solutions also increases with variability

and the number of stages and decreases with the degree of risk aversion. Moreover,

as τ decreases, the RH algorithm performs better in terms of objective value with

a cost of computation time. The average VAS-RH(τ) (%) values for τ = 1, 2 and

3 are 1.40 %, 1.40 % and 1.47 %, respectively whereas the average computation

times are 0.53, 0.32 and 0.16, respectively.

Finally, in order to measure the relative advantage of the optimal solution
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with adaptive setup decisions compared to the solution obtained from the RH

with affine decision rules, we define

VAS-RH-ADR(τ) (%) =
zRH−ADR(τ)− zA

zA
,

and

VAS-RH-SADR(τ) (%) =
zRH−SADR(τ)− zA

zA
,

as the percentage of increase in the objective value when the RH algorithm with

ADR and SADR is used instead of RA-A, respectively. The results are given in

Figures 6.6 and 6.7

It can be observed from Figures 6.6 and 6.7 that, the RH algorithm with

affine decisions rules cannot perform better that the RH algorithm. For some

instances, the approximation error is more than 18.24 %. Moreover, it is not easy

to capture the effect on problem parameters such as ε, T and λ on the quality of

the obtained solution. However, we present some larger instances where RH with

affine decision rule saves computation time later in this section.

We investigate the relation among all approximations to RA-A for the instance

T = 6, K = 3, λ = 0.25 and ε = 0.5. The results of the experiments on this

instances are summarized in Table 6.1.

As seen in Table 6.1, the model with adaptive setup decisions cannot be solved

due to an “out of memory” error as in other large instances as shown in Table

C.1. For this instance, even the model with partially adaptive setup decisions with

τ = 2 cannot be solved optimally after one hour of time limit and terminates with

1.75% optimality gap and the best incumbent value of 14212.81. On the other

hand, the model with partially adaptive setup decisions with τ = 3 can be solved

only in 73.4 seconds with the optimal value of 14607.68. Although it requires

only 0.8 seconds, the model with non-adaptive setup decisions performs the worst

among these models. Moreover, we have zA ≤ zP (2) ≤ zN and zA ≤ zP (3) ≤ zN ,

as we have expected.

Another result in Table 6.1 is the promising performance of the rolling horizon
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Table 6.1: CPU times (in seconds) and the objective values for the instance
T = 6, K = 3, λ = 0.25 and ε = 0.5.

Value Time (in seconds)

zA *** ***

zP (2) 14212.81 3600 (1.75 %)

zP (3) 14607.68 73.4

zN 15383.73 0.8

zRH(1) 14966.23 3.3

zRH(2) 15026.68 1.6

zRH(3) 15383.73 1.0

zRH−ADR(1) 15402.47 6.9

zRH−ADR(2) 15760.2 3.6

zRH−ADR(3) 15705.36 2.0

zRH−SADR(1) 15402.47 7.7

zRH−SADR(2) 15760.2 3.7

zRH−SADR(3) 15705.36 1.9

algorithm. For τ = 1, 2 and 3, the running times of the rolling horizon algorithm

are 3.3,1.6 and 1.0 seconds, respectively. Despite its short running time, the

rolling horizon algorithm could improve the optimal solution of RA-N through

iterations. Moreover, as τ increases, the number of problems to be solved through

the execution of the rolling horizon algorithm decrease. The results also verify

Proposition 10, that is, zA ≤ zRH(τ) ≤ zN holds as expected for τ ∈ {1, 2, 3}.

The results presented in Table 6.1, lead to the following chain of inequalities:

zA ≤ zP (2) ≤ zP (3) ≤ zRH(1) ≤ zRH(2) ≤ zRH(3) = zN ≤ zRH−ADR(1) =

zRH−SADR(1) ≤ zRH−ADR(3) = zRH−SADR(3) ≤ zRH−ADR(2) = zRH−SADR(2).

In Table 6.1, we can also observe that the rolling horizon policies with affine

decision rules are neither time nor cost effective. Therefore, we conduct another

set of experiments on larger problem instances. Table 6.2 presents the CPU times

(in seconds) and the objective values of the rolling horizon algorithm without

affine decision rules, with ADR and with SADR for T = 10, K = 2, λ = ε = 0.5

instances with τ = 1. For this large instance, RA-A and RA-P terminate due to
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an “out-of-memory” error without reporting any feasible solution.

In Table 6.2, it can be seen that although the rolling horizon algorithm gives

the best objective values, it takes longer times if no affine decision rule is used.

The average CPU time for the rolling horizon algorithm is 51.5 seconds although

ADR and SADR require 46.6 and 15.5 seconds, on the average. Another ob-

servation from Table 6.2 is that using SADR in the rolling horizon algorithm is

computationally more efficient than ADR although both perform equally for all

instances in terms of objective. Also, note that, the RH algorithm with or with-

out affine decision rules can find a feasible solution to the problem despite RA-A

and RA-P fail to do so.

6.6 Conclusion

In this chapter of the thesis, we consider a risk-averse model for multi-period

production problem where the decisions are the setup and production decisions

for a set of production units. Although the risk-averse model provides flexibility

to adapt the dynamic environment, its solution requires great computational ef-

fort. In order to reduce this computational effort, we propose alternative models

with non-adaptive and partially- adaptive setup decisions. Moreover, we propose

a rolling horizon algorithm to the model with adaptive setup decisions. We also

consider restricting the production decisions to affine functions of demand his-

tory to reduce to computation time of the rolling horizon algorithm. We present

analytical and computational results which investigate the quality of solutions ob-

tained by the approximations. The computational results reveal that the benefit

of solving the fully adaptive model increases with variability of demand values and

the number of stages and decreases with the degree of risk-aversion. Moreover,

it is observed that the RH algorithm with affine decision rules can be employed

to solve large problem instances for which RA-A and RA-P fail.
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Figure 6.3: Results of the computational experiments on the VAS(%) for the
risk-averse lot-sizing problem with respect to different variability levels (ε) and
degrees of risk aversion (λ).
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Figure 6.4: Results of the computational experiments on the VAS(τ)(%) for the
risk-averse lot-sizing problem with respect to different variability levels (ε), de-
grees of risk aversion (λ) and τ ∈ {2, 3}.
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Figure 6.5: Results of the computational experiments on the VAS-RH(τ)(%) for
the risk-averse lot-sizing problem with respect to different variability levels (ε),
degrees of risk aversion levels (λ) and τ ∈ {1, 2, 3}.
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Figure 6.6: Results of the computational experiments on the VAS-RH-
ADR(τ)(%) for the risk-averse lot-sizing with respect to different variability (ε),
degree of risk aversion levels (λ) and τ ∈ {1, 2, 3}.
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Figure 6.7: Results of the computational experiments on the VAS-RH-
SADR(τ)(%) for the risk-averse lot-sizing with respect to different variability
(ε), degree of risk aversion levels (λ) and τ ∈ {1, 2, 3}.
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Table 6.2: the CPU times (in seconds) and the objective values of the rolling
horizon algorithm without affine decision rules, with ADR and with SADR for a
T = 10, K = 3, λ = ε = 0.5 instances with τ = 1.

λ ε RH RH-ADR RH-SADR

0

0.1
Time 51.3 44.0 13.0
Obj. 18141.27 18141.27 18141.27

0.2
Time 43.2 38.7 13.9
Obj. 18877.02 19796.90 19796.90

0.3
Time 43.4 37.9 15.4
Obj. 19614.35 20571.58 20571.58

0.4
Time 44.2 39.1 14.3
Obj. 20349.43 21511.28 21511.28

0.5
Time 45.6 41.1 14.6
Obj. 21199.92 23636.98 23636.98

0.25

0.1
Time 56.2 50.8 14.5
Obj. 18217.19 18217.19 18217.19

0.2
Time 53.2 49.5 15.1
Obj. 19030.81 19962.75 19962.75

0.3
Time 52.6 49.0 16.6
Obj. 19861.93 20766.52 20766.52

0.4
Time 53.1 47.7 17.5
Obj. 20674.30 21762.39 21762.39

0.5
Time 57.2 52.3 17.1
Obj. 21597.18 24102.10 24102.10

0.5

0.1
Time 55.1 49.8 14.5
Obj. 18292.94 18292.94 18292.94

0.2
Time 53.3 48.2 15.4
Obj. 19184.90 20131.12 20131.12

0.3
Time 53.1 48.5 16.3
Obj. 20102.48 20967.80 20967.80

0.4
Time 54.0 49.9 17.9
Obj. 21001.19 22027.73 22027.73

0.5
Time 56.9 51.7 17.0
Obj. 22002.44 24565.23 24565.23
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Chapter 7

Conclusion

In this dissertation, we consider risk-averse multi-stage mixed-integer stochastic

programming which form a class of extremely challenging optimization problems.

In Chapter 3, we propose a scenario tree decomposition algorithm, called as sce-

nario grouping, for risk-averse multi-stage mixed-integer stochastic problems with

a dynamic objective function defined via mean-CVaR. The suggested algorithm

is used to find lower and upper bounds on the optimal value of the problem.

We investigate the effect of scenario partitioning strategies on the quality of the

different lower bounds by considering different partitioning strategies based on

the structure of the scenario tree and disparateness of scenario realizations.

In Chapter 4, we extend the findings of Chapter 3 to an exact solution proce-

dure. The proposed method is based on an evaluate-and-cut procedure where the

lower bounds are obtained from group subproblems. Moreover, we show that, un-

der the assumption that the first stage integer variables are bounded, the problem

with mixed-integer variables in all stages can be solved with the proposed algo-

rithm. As the computational experiments reveal, under modest computational

settings, the proposed algorithm is able to solve large problem instances within

a reasonable time.
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In Chapter 5, we consider an application of risk-averse multi-stage mixed-

integer stochastic programming problems to a power system optimization prob-

lem. Uncertainty and variability in net load arising from the increasing penetra-

tion of renewable technologies have motivated study of various classes of stochas-

tic unit commitment models in recent years. In the models with non-adaptive

commitment, the generation schedule for the entire day is fixed whereas the dis-

patch is adapted to the uncertainty. On the other hand, in the models with

adaptive commitment, the generation schedule is also allowed to dynamically

adapt to the uncertainty realization. The latter ones provide more flexibility in

the generation schedule, however, they require significantly higher computational

effort than the former ones. In order to justify this additional computational

effort, in this chapter, we provide theoretical and empirical analyses of the value

of adaptive commitment for risk-averse multi-stage stochastic unit commitment

models.

In Chapter 6, we consider risk-averse multi-stage production planning problems

as a generalization of the unit commitment problem discussed in Chapter 5. In

these problems, we first consider two models with respect to their adaptivity to

the uncertainty. In fully adaptive models, both setup and production decisions

are given in on-line fashion, that is, they are adapted to demand uncertainty.

However, in the models with non-adaptive setup decisions, the setup decisions are

off-line, that is, they are fixed at the beginning of the decision horizon whereas

the production decisions are on-line. As an intermediate case, we also consider

a model with partially adaptive setup decisions. Moreover, we propose a rolling

horizon approach for the problem. In order to reduce the computational effort

of the rolling horizon algorithm, we consider restricting the production amounts

to affine functions of demand realizations during the execution of the algorithm.

We conduct a set of computational experiments on a risk-averse multi-stage lot

sizing problem to investigate the computational efficiency of the proposed models

and verify the analytical results.

In Chapters 3 and 4, the group subproblems can be assigned to different threads

of a computer and solved in parallel during the execution of Algorithms 1 and

2. Similarly, parallel computing can be used to solve the problems in the upper
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bounding phase of these algorithms. Parallel implementation of the proposed al-

gorithms may decrease the running time significantly, especially when the number

of groups is large. Therefore, it can be considered as a future research direction.

Another possible extension of the study is to find better scenario partitioning

strategies in Chapter 3. Since the scenario partitioning strategies have a direct

impact on the quality of the bounds, it can be interesting to seek the partitioning

strategy which yields the best lower and upper bounds.

We consider unit commitment and multi-period production planning problems

in Chapters 5 and 6, respectively. However, the theoretical results and the pro-

posed algorithms in these chapters can also be considered for other risk-averse

multi-stage problems. Performance of the rolling horizon polices with affine de-

cision rules are promising. As a future research direction, it would be interesting

to consider these rolling horizon policies in different problems.
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Appendix A

Deterministic Unit Commitment

Formulation

Indexes and Sets

t : Period index, i : Generator index,

T : Number of periods, I : Number of generators,

T : Set of periods, I : Set of generators,

l : Transmission line index, L : Set of transmission lines,

Parameters

ai : Fixed cost of running generator i ∈ I,

hi(·) : Production cost function of running generator i ∈ I,

specifically, hi(v) = biv + civ
2 for v ≥ 0

with parameters bi, ci ∈ R+,

SUi : Start-up cost of generator i ∈ I,

SDi : Shut-down cost of generator i ∈ I,

q
i

: Minimum production amount of generator i ∈ I,

143



qi : Maximum production amount of generator i ∈ I,

dt : Net load in period t ∈ T ,

Mi : Minimum up time of generator i ∈ I,

Li : Minimum down time of generator i ∈ I,

V ′i : Start up rate of generator i ∈ I,

Vi : Ramp up rate of generator i ∈ I,

B′i : Shut down rate of generator i ∈ I,

Bi : Ramp down production limit of generator i ∈ I,

Cl : Capacity of transmission line l ∈ L,

K : Flow line distribution matrix.

Variables

uit : Status of generator i ∈ I in period t ∈ T ,

(1 if generator i is ON in period t; 0 otherwise),

vit : Production amount of generator i ∈ I in period t ∈ T ,

yit : Start up decision of generator i ∈ I in period t ∈ T ,

(1 if ui(t−1) = 0 and uit = 1; 0 otherwise),

zit : Shut down decision of generator i ∈ I in period t ∈ T ,

(1 if ui(t−1) = 1 and uit = 0; 0 otherwise).

Model

min
u,v,y,z

T∑
t=1

I∑
i=1

aiuit + hi(vit) + SUiyit + SDizit, (A.1)

s.t. (5.2), (5.3)

uit − ui(t−1) ≤ uiτ , ∀t ∈ T ,∀i ∈ I,

∀τ ∈ {t+ 1, . . . ,min{t+Mi, T}} (A.2)

ui(t−1) − uit ≤ 1− uiτ , ∀t ∈ T ,∀i ∈ I,

∀τ ∈ {t+ 1, . . . ,min{t+ Li, T}} (A.3)
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uit − ui(t−1) ≤ yit, ∀t ∈ T ,∀i ∈ I (A.4)

ui(t−1) − uit ≤ zit, ∀t ∈ T , ∀i ∈ I (A.5)

vit − vi(t−1) ≤ V ′i yit + Viui(t−1),

∀t ∈ T ,∀i ∈ I (A.6)

vi(t−1) − vit ≤ B′izit +Biuit,

∀t ∈ T ,∀i ∈ I (A.7)

− Cl ≤ Kvt ≤ Cl,

∀t ∈ T ,∀l ∈ L (A.8)

uit, yit, zit ∈ {0, 1}, vti ≥ 0, ∀t ∈ T ,∀i ∈ I.

The objective (A.1) is total fixed, production, start up and shut down costs.

Constraints (A.2), (A.3), (A.4) and (A.5) are minimum up time, minimum down

time, start up and shut down constraints, respectively. The rump/start up rate

constraint is given in (A.6). Similarly, (A.7) is the rump/shut down rate con-

straint. Constraints (A.8) are the flow balance constraints in linear form as given

in [73].
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Appendix B

Computational Experiment Data

Table B.1: Demand Data (MW = megawatt)

t 1 2 3 4 5 6

dt (MW) 700 750 850 950 1000 1100
t 7 8 9 10 11 12

dt (MW) 1150 1200 1300 1400 1450 1500
t 13 14 15 16 17 18

dt (MW) 1400 1300 1200 1050 1000 1100
t 19 20 21 22 23 24

dt (MW) 1200 1400 1300 1100 900 800

Table B.2: Scenario Data

Period (or hour) t
Scenario Probability 1-6 7-12 13-18 19-24

1 0.125 dt (1− ε)dt (1− ε)dt (1− ε)dt
2 0.125 dt (1− ε)dt (1− ε)dt (1 + ε)dt
3 0.125 dt (1− ε)dt (1 + ε)dt (1− ε)dt
4 0.125 dt (1− ε)dt (1 + ε)dt (1 + ε)dt
5 0.125 dt (1 + ε)dt (1− ε)dt (1− ε)dt
6 0.125 dt (1 + ε)dt (1− ε)dt (1 + ε)dt
7 0.125 dt (1 + ε)dt (1 + ε)dt (1− ε)dt
8 0.125 dt (1 + ε)dt (1 + ε)dt (1 + ε)dt
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Appendix C

Results of Computational

Experiments in Chapter 6
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Table C.1: CPU times (in seconds) and the objective values of RA-A instances.

T = 5 T = 6

λ ε K = 2 K = 3 K = 4 K = 2 K = 3

0

0.1
Time 0.2 0.3 1.24% 0.3 64.6
Obj. 9415.86 9916.17 9730.32 11343.05 11782.75

0.2
Time 0.1 0.5 3.10% 0.1 1.18%
Obj. 9853.30 10503.80 10154.41 12035.57 12389.17

0.3
Time 0.1 1.7 2.38% 0.2 1.95%
Obj. 10257.57 11019.13 10340.87 12545.89 12842.93

0.4
Time 0.0 8.1 1.45% 0.3 1.49%
Obj. 10611.26 11395.39 10548.54 12862.63 13145.20

0.5
Time 0.0 1.9 1681.9 0.2 1.28%
Obj. 10835.47 11529.25 10685.05 13092.75 13351.83

0.25

0.1
Time 0.0 0.5 27.2 0.1 68.8
Obj. 9448.08 9943.67 9773.42 11388.43 11852.38

0.2
Time 0.0 0.5 0.78% 0.3 0.80%
Obj. 9917.74 10569.21 10247.60 12126.30 12519.57

0.3
Time 0.0 0.8 1.46% 0.5 ***
Obj. 10387.21 11143.16 10538.67 12779.80 ***

0.4
Time 0.2 6.0 1.37% 0.4 ***
Obj. 10766.29 11610.79 10837.50 13220.07 ***

0.5
Time 0.1 5.7 *** 0.5 ***
Obj. 11116.26 11875.63 *** 13552.95 ***

0.5

0.1
Time 0.0 0.3 *** 0.1 15.9
Obj. 9478.04 9971.71 *** 11433.06 11916.47

0.2
Time 0.0 0.6 50.8 0.3 0.34%
Obj. 9977.66 10638.15 9815.76 12215.52 12649.76

0.3
Time 0.03 0.58 0.03% 0.20 1.43%
Obj. 10477.07 11257.47 10323.20 12964.76 13225.77

0.4
Time 0.0 3.7 *** 0.3 1.36%
Obj. 10919.87 11800.19 *** 13545.53 13574.87

0.5
Time 0.0 4.4 *** 0.5 1.01%
Obj. 11323.72 12167.68 *** 13973.84 13955.31

For the instances that cannot be solved within the time limit of one hour the
optimality gap returned by CPLEX is presented instead of CPU time.

***: Terminated due to out of memory error.
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Table C.2: CPU times (in seconds) and the objective values of RA-P instances
with τ = 2.

T = 5 T = 6

λ ε K = 2 K = 3 K = 4 K = 2 K = 3

0

0.1
Time 0.2 0.2 0.9 0.1 2.5
Obj. 9415.86 9916.17 9730.32 11343.05 11852.98

0.2
Time 0.0 0.6 22.1 0.0 0.24%
Obj. 9853.30 10503.80 10154.41 12035.57 12618.86

0.3
Time 0.0 0.4 15.6 0.2 1.54%
Obj. 10257.57 11019.13 10420.12 12699.01 13164.15

0.4
Time 0.0 0.5 4.8 0.2 1.59%
Obj. 10611.26 11411.13 10643.11 13199.50 13584.63

0.5
Time 0.0 0.2 2.3 0.1 1.23%
Obj. 10964.66 11726.72 10766.42 13565.14 13974.16

0.25

0.1
Time 0.3 0.3 2.4 0.1 22.7
Obj. 9448.08 9943.67 9773.42 11388.43 11895.18

0.2
Time 0.1 0.5 20.2 0.2 1231.6
Obj. 9917.74 10569.21 10252.41 12126.30 12745.46

0.3
Time 0.0 0.5 22.8 0.1 2.01%
Obj. 10387.21 11143.16 10621.29 12864.20 13339.73

0.4
Time 0.0 1.1 16.3 0.3 2.28%
Obj. 10766.29 11610.79 10936.06 13455.23 13801.65

0.5
Time 0.0 0.7 8.7 0.3 1.75%
Obj. 11145.04 11966.80 11126.52 13917.66 14212.81

0.5

0.1
Time 0.0 0.3 1.7 0.1 12.6
Obj. 9478.04 9971.71 9815.76 11433.06 11938.33

0.2
Time 0.0 0.4 8.0 0.1 444.5
Obj. 9977.66 10638.15 10326.57 12215.52 12871.53

0.3
Time 0.0 0.5 4.6 0.3 1.31%
Obj. 10477.07 11257.47 10775.18 12998.02 13530.38

0.4
Time 0.0 0.7 15.0 0.4 1.71%
Obj. 10919.87 11800.03 11214.69 13676.14 14017.41

0.5
Time 0.0 0.7 9.3 0.3 1.62%
Obj. 11325.07 12221.51 11478.86 14230.58 14451.53

For the instances that cannot be solved within the time limit of one hour the
optimality gap returned by CPLEX is presented instead of CPU time.
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Table C.3: CPU times (in seconds) and the objective values of RA-P instances
with τ = 3.

T = 5 T = 6

λ ε K = 2 K = 3 K = 4 K = 2 K = 3

0

0.1
Time 0.2 0.2 2.6 0.1 0.2
Obj. 9415.86 9916.17 9730.32 11343.05 11852.98

0.2
Time 0.0 0.3 1.2 0.1 2.1
Obj. 9853.30 10532.76 10188.14 12035.57 12710.73

0.3
Time 0.0 1.8 2.7 0.0 12.2
Obj. 10290.58 11116.88 10463.23 12728.11 13413.88

0.4
Time 0.0 0.3 1.9 0.1 39.8
Obj. 10615.14 11632.54 10960.25 13420.75 13936.27

0.5
Time 0.0 1.0 79.5 0.3 11.4
Obj. 11024.17 12107.46 11492.06 14010.79 14372.72

0.25

0.1
Time 0.0 0.2 2.1 0.0 1.0
Obj. 9448.08 9943.67 9773.42 11388.43 11895.18

0.2
Time 0.0 0.2 16.5 0.1 6.6
Obj. 9917.74 10587.75 10255.84 12126.30 12795.12

0.3
Time 0.0 0.7 10.3 0.2 82.7
Obj. 10387.21 11214.21 10623.76 12864.20 13551.12

0.4
Time 0.0 0.8 35.3 0.2 139.1
Obj. 10771.61 11771.79 11146.25 13602.20 14125.81

0.5
Time 0.0 0.6 15.4 0.1 73.4
Obj. 11206.26 12293.98 11705.29 14253.58 14607.68

0.5

0.1
Time 0.0 0.1 1.5 0.0 1.2
Obj. 9478.04 9971.71 9815.76 11433.06 11938.33

0.2
Time 0.0 0.2 8.9 0.3 2.4
Obj. 9977.66 10643.80 10326.57 12215.52 12881.40

0.3
Time 0.0 0.5 10.0 0.1 32.4
Obj. 10477.07 11314.53 10770.83 12998.02 13697.08

0.4
Time 0.0 0.3 27.4 0.5 52.2
Obj. 10920.73 11911.71 11318.25 13780.64 14310.57

0.5
Time 0.0 0.3 2.0 0.2 53.7
Obj. 11380.28 12482.37 11902.68 14492.92 14840.45
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Table C.4: CPU times (in seconds) and the objective values of RA-N instances.

T = 5 T = 6

λ ε K = 2 K = 3 K = 4 K = 2 K = 3

0

0.1
Time 0.0 0.1 1.7 0.1 0.8
Obj. 9415.86 9916.17 9730.32 11343.05 11852.98

0.2
Time 0.0 0.5 2.7 0.1 0.6
Obj. 9853.30 10532.76 10188.14 12035.57 12710.73

0.3
Time 0.0 0.3 0.8 0.0 0.6
Obj. 10290.58 11149.09 10739.95 12728.11 13568.30

0.4
Time 0.2 0.1 0.7 0.0 0.7
Obj. 10728.04 11765.52 11383.94 13420.75 14426.11

0.5
Time 0.3 0.1 0.7 0.0 0.7
Obj. 11165.37 12381.91 12064.79 14154.40 15243.87

0.25

0.1
Time 0.0 0.1 0.8 0.1 0.7
Obj. 9448.08 9943.67 9773.42 11388.43 11895.18

0.2
Time 0.0 0.3 0.8 0.2 0.8
Obj. 9917.74 10587.75 10255.84 12126.30 12795.12

0.3
Time 0.0 0.2 0.8 0.3 0.8
Obj. 10387.21 11231.59 10824.89 12864.20 13694.89

0.4
Time 0.0 0.1 0.8 0.9 0.7
Obj. 10856.87 11875.51 11477.91 13602.20 14594.89

0.5
Time 0.0 0.1 0.8 0.0 0.8
Obj. 11326.43 12519.40 12166.62 14381.19 15383.73

0.5

0.1
Time 0.0 1.0 0.8 0.1 0.7
Obj. 9478.04 9971.71 9815.76 11433.06 11938.33

0.2
Time 0.0 0.1 0.8 0.3 0.7
Obj. 9977.66 10643.80 10326.57 12215.52 12881.40

0.3
Time 0.0 0.5 0.7 0.0 0.8
Obj. 10477.07 11315.67 10914.17 12998.02 13824.30

0.4
Time 0.0 0.1 0.8 0.1 0.8
Obj. 10976.67 11987.61 11579.24 13780.64 14767.45

0.5
Time 0.1 0.1 0.8 0.1 0.8
Obj. 11476.20 12659.52 12277.52 14604.21 15536.19
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Table C.5: CPU times (in seconds) and the objective values of the rolling horizon
algorithm with τ = 1.

T = 5 T = 6

λ ε K = 2 K = 3 K = 4 K = 2 K = 3

0

0.1
Time 0.5 0.8 1.6 0.6 2.1
Obj. 9415.86 9916.17 9730.32 11343.05 11852.98

0.2
Time 0.0 0.5 2.3 0.2 2.7
Obj. 9853.30 10532.76 10188.14 12035.57 12710.73

0.3
Time 0.1 0.9 2.1 0.3 2.1
Obj. 10290.58 11149.09 10739.37 12728.11 13568.30

0.4
Time 0.1 0.9 2.0 0.2 2.2
Obj. 10728.04 11765.52 11378.28 13420.75 14359.41

0.5
Time 0.1 0.9 2.0 0.5 2.4
Obj. 11090.09 12381.91 12057.26 14105.94 14761.46

0.25

0.1
Time 0.1 1.0 2.0 0.7 2.1
Obj. 9448.08 9943.67 9773.42 11388.43 11895.18

0.2
Time 0.3 0.5 2.1 0.8 2.2
Obj. 9917.74 10587.75 10255.84 12126.30 12795.12

0.3
Time 0.1 0.7 2.0 0.7 2.5
Obj. 10387.21 11231.59 10824.34 12864.20 13694.89

0.4
Time 0.1 0.7 2.3 0.6 3.4
Obj. 10856.87 11875.51 11473.08 13602.20 14520.07

0.5
Time 0.4 0.6 2.3 1.3 3.3
Obj. 11262.48 12519.40 12158.59 14319.22 14966.23

0.5

0.1
Time 0.1 0.5 2.1 2.2 2.2
Obj. 9478.04 9971.71 9815.76 11433.06 11938.33

0.2
Time 0.1 0.5 2.2 0.7 2.3
Obj. 9977.66 10643.80 10326.57 12215.52 12881.40

0.3
Time 0.3 0.6 2.3 0.6 2.3
Obj. 10477.07 11315.67 10913.68 12998.02 13824.30

0.4
Time 0.1 0.5 2.3 0.5 3.4
Obj. 10976.67 11987.61 11575.31 13780.64 14688.32

0.5
Time 0.1 0.5 2.4 1.0 3.1
Obj. 11426.08 12659.52 12269.08 14521.23 15183.45
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Table C.6: CPU times (in seconds) and the objective values of the rolling horizon
algorithm with τ = 2.

T = 5 T = 6

λ ε K = 2 K = 3 K = 4 K = 2 K = 3

0

0.1
Time 0.0 0.4 1.2 0.3 1.1
Obj. 9415.86 9916.17 9730.32 11343.05 11852.98

0.2
Time 0.0 0.3 1.3 0.2 1.1
Obj. 9853.30 10532.76 10188.14 12035.57 12710.73

0.3
Time 0.1 0.7 1.4 0.1 2.9
Obj. 10290.58 11149.09 10739.95 12728.11 13568.30

0.4
Time 0.2 0.4 1.3 0.1 1.2
Obj. 10728.04 11765.52 11383.94 13420.75 14359.41

0.5
Time 0.1 0.5 1.3 0.1 1.1
Obj. 11090.09 12381.91 12064.79 14105.94 14841.07

0.25

0.1
Time 0.0 1.9 1.2 0.3 1.0
Obj. 9448.08 9943.67 9773.42 11388.43 11895.18

0.2
Time 0.1 0.6 1.4 0.2 1.1
Obj. 9917.74 10587.75 10255.84 12126.30 12795.12

0.3
Time 0.2 0.7 1.3 0.4 1.1
Obj. 10387.21 11231.59 10824.89 12864.20 13694.89

0.4
Time 0.1 0.4 1.2 0.2 1.6
Obj. 10856.87 11875.51 11477.91 13602.20 14520.07

0.5
Time 0.0 0.5 1.2 0.4 1.6
Obj. 11262.48 12519.40 12166.62 14319.22 15026.68

0.5

0.1
Time 0.1 0.5 1.3 0.2 0.8
Obj. 9478.04 9971.71 9815.76 11433.06 11938.33

0.2
Time 0.1 0.4 1.3 0.5 1.0
Obj. 9977.66 10643.80 10326.57 12215.52 12881.40

0.3
Time 0.3 0.6 1.2 0.3 1.1
Obj. 10477.07 11315.67 10914.17 12998.02 13824.30

0.4
Time 0.0 0.5 1.4 0.4 1.6
Obj. 10976.67 11987.61 11579.24 13780.64 14688.32

0.5
Time 0.0 0.5 1.3 0.7 1.5
Obj. 11426.08 12659.52 12277.52 14521.23 15226.41
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Table C.7: CPU times (in seconds) and the objective values of the rolling horizon
algorithm with τ = 3.

T = 5 T = 6

λ ε K = 2 K = 3 K = 4 K = 2 K = 3

0

0.1
Time 0.0 0.3 0.7 0.3 0.4
Obj. 9415.86 9916.17 9730.32 11343.05 11852.98

0.2
Time 0.0 0.5 1.2 0.0 0.5
Obj. 9853.30 10532.76 10188.14 12035.57 12710.73

0.3
Time 0.0 0.3 1.6 0.1 0.5
Obj. 10290.58 11149.09 10739.37 12728.11 13568.30

0.4
Time 0.1 0.2 1.3 0.1 0.5
Obj. 10728.04 11765.52 11378.28 13420.75 14426.11

0.5
Time 0.2 0.3 1.2 0.2 1.1
Obj. 11165.37 12381.91 12057.26 14154.40 15243.87

0.25

0.1
Time 0.0 0.2 0.7 0.1 0.6
Obj. 9448.08 9943.67 9773.42 11388.43 11895.18

0.2
Time 0.1 0.3 0.9 0.1 0.5
Obj. 9917.74 10587.75 10255.84 12126.30 12795.12

0.3
Time 0.1 0.4 1.2 0.1 0.6
Obj. 10387.21 11231.59 10824.34 12864.20 13694.89

0.4
Time 0.1 0.5 1.1 0.1 0.7
Obj. 10856.87 11875.51 11473.08 13602.20 14594.89

0.5
Time 0.1 0.4 1.1 0.2 1.0
Obj. 11326.43 12519.40 12158.59 14381.19 15383.73

0.5

0.1
Time 0.0 0.2 0.9 0.1 0.5
Obj. 9478.04 9971.71 9815.76 11433.06 11938.33

0.2
Time 0.1 0.4 0.9 0.1 0.5
Obj. 9977.66 10643.80 10326.57 12215.52 12881.40

0.3
Time 0.1 0.2 1.0 0.1 0.4
Obj. 10477.07 11315.67 10913.68 12998.02 13824.30

0.4
Time 0.0 0.2 1.2 0.1 0.6
Obj. 10976.67 11987.61 11575.31 13780.64 14767.45

0.5
Time 0.1 0.3 1.0 0.1 0.9
Obj. 11476.20 12659.52 12269.08 14604.21 15536.19
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Table C.8: CPU times (in seconds) and the objective values of the rolling horizon
algorithm with ADR and τ = 1.

T = 5 T = 6

λ ε K = 2 K = 3 K = 4 K = 2 K = 3

0

0.1
Time 0.3 2.8 6.8 0.9 4.8
Obj. 9415.86 9916.17 9730.32 11343.05 11852.98

0.2
Time 0.4 0.9 5.0 0.9 4.9
Obj. 9853.30 10532.76 10188.14 12035.57 12710.73

0.3
Time 0.4 1.3 5.3 0.8 4.2
Obj. 10290.58 11149.09 10739.95 13717.79 13568.30

0.4
Time 0.2 1.4 5.5 0.6 4.0
Obj. 11732.89 11765.52 11386.30 14437.31 14426.11

0.5
Time 0.5 0.9 5.2 0.4 6.8
Obj. 12227.26 12381.91 12458.11 15188.14 15108.42

0.25

0.1
Time 1.9 0.8 4.9 0.5 4.6
Obj. 9448.08 9943.67 9773.42 11388.43 11895.18

0.2
Time 0.3 0.9 5.6 0.6 4.6
Obj. 9917.74 10587.75 10255.84 12126.30 12795.12

0.3
Time 0.3 1.0 5.1 0.5 4.2
Obj. 10387.21 11231.59 10824.89 13847.22 13694.89

0.4
Time 0.7 0.8 5.6 1.1 4.4
Obj. 11875.76 11875.51 11478.89 14572.01 14594.89

0.5
Time 0.4 0.9 5.0 0.7 6.9
Obj. 12381.55 12519.40 12650.93 15326.88 15402.47

0.5

0.1
Time 0.5 0.8 5.2 0.4 4.4
Obj. 9478.04 9971.71 9815.76 11433.06 11938.33

0.2
Time 0.3 1.0 4.9 0.5 4.5
Obj. 9977.66 10643.80 10326.57 12215.52 12881.40

0.3
Time 0.3 0.9 3.3 0.5 4.5
Obj. 10477.07 11315.67 12038.14 13984.65 13824.30

0.4
Time 0.1 0.9 5.5 0.5 4.7
Obj. 12023.04 11987.61 11579.25 14717.37 14767.45

0.5
Time 0.4 0.9 5.2 0.5 6.8
Obj. 12541.36 12659.52 12942.87 16111.47 15683.67
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Table C.9: CPU times (in seconds) and the objective values of the rolling horizon
algorithm with ADR and τ = 2.

T = 5 T = 6

λ ε K = 2 K = 3 K = 4 K = 2 K = 3

0

0.1
Time 0.2 0.8 3.7 0.4 2.0
Obj. 9415.86 9916.17 9730.32 11343.05 11852.98

0.2
Time 0.1 0.6 3.6 0.2 1.7
Obj. 9853.30 10532.76 10188.14 12035.57 12710.73

0.3
Time 0.1 0.9 2.9 0.6 4.6
Obj. 10290.58 11149.09 10739.95 12728.11 13568.30

0.4
Time 0.2 0.6 3.1 0.5 2.0
Obj. 10728.04 11765.52 11383.94 13420.75 14426.11

0.5
Time 0.1 0.7 3.0 0.2 3.5
Obj. 11165.37 12381.91 12462.40 14154.40 15528.24

0.25

0.1
Time 0.1 1.2 3.0 0.2 2.1
Obj. 9448.08 9943.67 9773.42 11388.43 11895.18

0.2
Time 0.1 0.7 3.3 0.3 1.9
Obj. 9917.74 10587.75 10255.84 12126.30 12795.12

0.3
Time 0.4 1.0 3.3 0.2 2.0
Obj. 10387.21 11231.59 10824.89 12864.20 13694.89

0.4
Time 0.1 0.6 3.1 0.3 1.9
Obj. 10856.87 11875.51 11477.91 13602.20 14594.89

0.5
Time 0.1 0.6 3.1 0.2 3.6
Obj. 11326.43 12519.40 12654.86 14381.19 15760.20

0.5

0.1
Time 0.4 0.5 3.0 0.2 1.9
Obj. 9478.04 9971.71 9815.76 11433.06 11938.33

0.2
Time 0.2 0.7 2.8 0.3 2.0
Obj. 9977.66 10643.80 10326.57 12215.52 12881.40

0.3
Time 0.4 0.7 2.2 0.2 2.0
Obj. 10477.07 11315.67 12038.14 12998.02 13824.30

0.4
Time 0.3 0.7 2.8 0.3 2.0
Obj. 10976.67 11987.61 11579.24 13780.64 14767.45

0.5
Time 0.2 0.8 2.9 0.2 3.7
Obj. 11476.20 12659.52 12942.87 16522.34 16001.52
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Table C.10: CPU times (in seconds) and the objective values of the rolling horizon
algorithm with ADR and τ = 3.

T = 5 T = 6

λ ε K = 2 K = 3 K = 4 K = 2 K = 3

0

0.1
Time 0.2 0.4 1.6 0.2 0.6
Obj. 9415.86 9916.17 9730.32 11343.05 11852.98

0.2
Time 0.1 0.6 2.0 0.3 0.7
Obj. 9853.30 10532.76 10188.14 12035.57 12710.73

0.3
Time 0.1 0.4 2.3 0.1 0.6
Obj. 10290.58 11149.09 10739.95 12728.11 13568.30

0.4
Time 0.0 0.2 2.6 0.2 0.5
Obj. 10728.04 11765.52 11386.30 13420.75 14426.11

0.5
Time 0.1 0.3 1.7 0.1 2.9
Obj. 11165.37 12381.91 12458.11 14154.40 15571.46

0.25

0.1
Time 0.1 0.3 1.6 0.2 0.8
Obj. 9448.08 9943.67 9773.42 11388.43 11895.18

0.2
Time 0.1 0.3 1.9 0.2 0.8
Obj. 9917.74 10587.75 10255.84 12126.30 12795.12

0.3
Time 0.0 0.3 1.9 0.2 0.7
Obj. 10387.21 11231.59 10824.89 12864.20 13694.89

0.4
Time 0.0 0.3 2.4 0.2 0.7
Obj. 10856.87 11875.51 11478.89 13602.20 14594.89

0.5
Time 0.0 0.4 2.2 0.1 2.0
Obj. 11326.43 12519.40 12650.93 14381.19 15705.36

0.5

0.1
Time 0.3 0.5 1.6 0.2 0.7
Obj. 9478.04 9971.71 9815.76 11433.06 11938.33

0.2
Time 0.1 0.7 1.7 0.2 0.7
Obj. 9977.66 10643.80 10326.57 12215.52 12881.40

0.3
Time 0.1 0.4 0.9 0.2 0.7
Obj. 10477.07 11315.67 12038.14 12998.02 13824.30

0.4
Time 0.2 0.4 2.5 0.4 0.7
Obj. 10976.67 11987.61 11579.25 13780.64 14767.45

0.5
Time 0.2 0.2 2.1 0.3 2.1
Obj. 11476.20 12659.52 12849.40 16522.34 15845.34
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Table C.11: CPU times (in seconds) and the objective values of the rolling horizon
algorithm with SADR and τ = 1.

T = 5 T = 6

λ ε K = 2 K = 3 K = 4 K = 2 K = 3

0

0.1
Time 0.3 1.3 5.6 0.6 5.2
Obj. 9415.86 9916.17 9730.32 11343.05 11852.98

0.2
Time 0.2 2.0 5.5 0.5 5.4
Obj. 9853.30 10532.76 10188.14 12035.57 12710.73

0.3
Time 0.4 1.4 6.3 0.4 5.6
Obj. 10290.58 11149.09 10739.95 13717.79 13568.30

0.4
Time 0.1 1.3 7.4 0.5 4.9
Obj. 11732.89 11765.52 11386.30 14437.31 14426.11

0.5
Time 0.3 1.5 5.9 4.5 7.4
Obj. 12227.26 12381.91 12458.11 15188.14 15108.42

0.25

0.1
Time 0.3 1.7 6.1 0.5 5.2
Obj. 9448.08 9943.67 9773.42 11388.43 11895.18

0.2
Time 0.2 3.1 6.3 1.9 5.3
Obj. 9917.74 10587.75 10255.84 12126.30 12795.12

0.3
Time 0.3 1.3 6.0 1.2 5.1
Obj. 10387.21 11231.59 10824.89 13847.22 13694.89

0.4
Time 0.1 1.2 6.9 1.7 5.5
Obj. 11875.76 11875.51 11478.89 14572.01 14594.89

0.5
Time 0.3 1.1 6.3 0.6 7.7
Obj. 12381.55 12519.40 12650.93 15326.88 15402.47

0.5

0.1
Time 0.1 1.0 5.6 0.5 5.4
Obj. 9478.04 9971.71 9815.76 11433.06 11938.33

0.2
Time 0.3 1.0 6.2 0.6 5.4
Obj. 9977.66 10643.80 10326.57 12215.52 12881.40

0.3
Time 0.2 1.1 4.2 0.5 5.3
Obj. 10477.07 11315.67 12038.14 13984.65 13824.30

0.4
Time 0.3 1.0 6.7 0.5 5.2
Obj. 12023.04 11987.61 11579.25 14717.37 14767.45

0.5
Time 0.2 1.1 6.2 0.6 8.4
Obj. 12541.36 12659.52 12942.87 16111.47 15683.67
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Table C.12: CPU times (in seconds) and the objective values of the rolling horizon
algorithm with SADR and τ = 2.

T = 5 T = 6

λ ε K = 2 K = 3 K = 4 K = 2 K = 3

0

0.1
Time 0.5 0.9 4.1 0.9 1.9
Obj. 9415.86 9916.17 9730.32 11343.05 11852.98

0.2
Time 0.1 0.7 3.8 0.1 2.5
Obj. 9853.30 10532.76 10188.14 12035.57 12710.73

0.3
Time 0.1 0.9 3.7 0.1 2.1
Obj. 10290.58 11149.09 10739.95 12728.11 13568.30

0.4
Time 0.3 0.8 3.6 0.4 1.7
Obj. 10728.04 11765.52 11383.94 13420.75 14426.11

0.5
Time 0.1 1.0 3.9 0.1 3.6
Obj. 11165.37 12381.91 12462.40 14154.40 15528.24

0.25

0.1
Time 0.0 0.8 3.6 0.4 2.2
Obj. 9448.08 9943.67 9773.42 11388.43 11895.18

0.2
Time 0.3 1.0 3.4 0.2 2.1
Obj. 9917.74 10587.75 10255.84 12126.30 12795.12

0.3
Time 0.2 0.9 3.6 0.4 2.0
Obj. 10387.21 11231.59 10824.89 12864.20 13694.89

0.4
Time 0.1 1.3 3.7 0.1 2.0
Obj. 10856.87 11875.51 11477.91 13602.20 14594.89

0.5
Time 0.1 0.8 3.7 0.6 3.7
Obj. 11326.43 12519.40 12654.86 14381.19 15760.20

0.5

0.1
Time 0.2 0.7 4.0 0.3 2.0
Obj. 9478.04 9971.71 9815.76 11433.06 11938.33

0.2
Time 0.1 0.7 3.5 0.3 2.2
Obj. 9977.66 10643.80 10326.57 12215.52 12881.40

0.3
Time 0.1 0.8 2.8 0.3 2.1
Obj. 10477.07 11315.67 12038.14 12998.02 13824.30

0.4
Time 0.1 0.7 3.5 0.3 1.9
Obj. 10976.67 11987.61 11579.24 13780.64 14767.45

0.5
Time 0.3 0.7 3.6 0.6 3.8
Obj. 11476.20 12659.52 12942.87 16522.34 16001.52
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Table C.13: CPU times (in seconds) and the objective values of the rolling horizon
algorithm with SADR and τ = 3.

T = 5 T = 6

λ ε K = 2 K = 3 K = 4 K = 2 K = 3

0

0.1
Time 0.2 0.4 2.1 0.2 0.6
Obj. 9415.86 9916.17 9730.32 11343.05 11852.98

0.2
Time 0.1 0.2 2.3 0.1 0.7
Obj. 9853.30 10532.76 10188.14 12035.57 12710.73

0.3
Time 0.0 0.3 2.6 0.1 0.6
Obj. 10290.58 11149.09 10739.95 12728.11 13568.30

0.4
Time 0.1 0.2 2.8 0.1 0.7
Obj. 10728.04 11765.52 11386.30 13420.75 14426.11

0.5
Time 0.1 0.3 2.0 0.2 2.7
Obj. 11165.37 12381.91 12458.11 14154.40 15571.46

0.25

0.1
Time 0.1 0.4 1.7 0.1 0.9
Obj. 9448.08 9943.67 9773.42 11388.43 11895.18

0.2
Time 0.1 0.2 2.2 0.1 0.9
Obj. 9917.74 10587.75 10255.84 12126.30 12795.12

0.3
Time 0.1 0.3 2.1 0.3 0.8
Obj. 10387.21 11231.59 10824.89 12864.20 13694.89

0.4
Time 0.0 0.4 2.5 0.1 0.8
Obj. 10856.87 11875.51 11478.89 13602.20 14594.89

0.5
Time 0.1 0.3 2.0 0.0 1.9
Obj. 11326.43 12519.40 12650.93 14381.19 15705.36

0.5

0.1
Time 0.4 0.5 1.6 0.1 0.7
Obj. 9478.04 9971.71 9815.76 11433.06 11938.33

0.2
Time 0.2 0.5 2.0 0.2 0.8
Obj. 9977.66 10643.80 10326.57 12215.52 12881.40

0.3
Time 0.0 0.3 1.0 0.1 0.8
Obj. 10477.07 11315.67 12038.14 12998.02 13824.30

0.4
Time 0.1 0.2 2.6 0.1 0.7
Obj. 10976.67 11987.61 11579.25 13780.64 14767.45

0.5
Time 0.1 0.4 2.1 0.1 2.1
Obj. 11476.20 12659.52 12849.40 16522.34 15845.34
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