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ABSTRACT

RISK-AVERSE MULTI-STAGE MIXED-INTEGER
STOCHASTIC PROGRAMMING PROBLEMS

Ali Irfan Mahmutogullari
Ph.D. in Industrial Engineering
Advisor: Ozlem Cavus Iyigiin
Co-Advisor: Mehmet Selim Aktiirk
January 2019

Risk-averse multi-stage mixed-integer stochastic programming problems form a
class of extremely challenging problems since the problem size grows exponentially
with the number of stages, they are non-convex due to integrality restrictions,
and their objective functions are nonlinear in general. In this thesis, we first focus
on such problems with an objective of dynamic mean conditional value-at-risk.
We propose a scenario tree decomposition approach to obtain lower and upper
bounds for their optimal values and then use these bounds in an evaluate-and-cut
procedure which serves as an exact solution algorithm for such problems with in-
teger first-stage decisions. Later, we consider a risk-averse day-ahead scheduling
of electricity generation or unit commitment problem where the objective is a dy-
namic coherent risk measure. We consider two different versions of the problem:
adaptive and non-adaptive. In the adaptive model, the commitment decisions are
updated in each stage, whereas in the non-adaptive model, the commitment deci-
sions are fixed in the first-stage. We provide theoretical and empirical analyses on
the benefit of using an adaptive multi-stage stochastic model. Finally, we inves-
tigate the trade off between the adaptivity of the model and the computational
effort to solve it for risk-averse multi-stage production planning problems with
an objective of dynamic coherent risk measure. We also conduct computational
experiments in order to verify the theoretical findings and discuss the results of

these experiments.

Keywords:  Risk-averse optimization, Multi-stage stochastic programming,

Mixed-integer programming, Dynamic coherent risk measures.
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OZET

RISKTEN KACINAN COK ASAMALI KARMA TAM
SAYILI RASSAL PROGRAMLAMA PROBLEMLERI

Ali Irfan Mahmutogullari
Endiistri Miithendisligi, Doktora
Tez Danigmani: Ozlem Cavus lyigiin
Ikinci Tez Damsmant: Mehmet Selim Aktiirk
Ocak 2019

Riskten kacinan ¢ok agamali karma tam sayili rassal programlama problemleri,
problem biiyiikliigiiniin agsama sayisiyla hizla artmasi, tam say1 kisitlamalar: ne-
deniyle konveks olmamalar: ve amag fonksiyonlarinin genellikle dogrusal olma-
mas1 yiiziinden ¢ok zor problemlerdir. Bu tezde, oncelikle amag fonksiyonlar:
dinamik ortalama sarth riske maruz deger olan problemleri ele aliyoruz. Bu prob-
lemlerin en iyi degerleri i¢in alt ve st sinirlar veren bir senaryo gruplama yontemi
oneriyoruz ve daha sonra bu sinirlari, ilk asamasindaki degiskenleri tam say1 olan
problemler i¢in bir kesin ¢oziim yontemi olan hesapla-ve-kes prosediiriinde kul-
laniyoruz. Daha sonra, amag fonksiyonu dinamik tutarh risk ol¢iitii olan riskten
kaginan giin 6ncesi elektrik iiretimi olarak da bilinen birim taahhiitii problem-
ini ele aliyoruz. Bu problemin iki farkli tirtinii géz 6niinde bulunduruyoruz.
Uyarlanabilir modelde, taahhiit kararlar1 her asamada gilincellenirken uyarlana-
maz modelde bu kararlar ilk agamada veriliyor. Uyarlanabilir modeli kullanmanin
getirisini teorik ve deneysel olarak gosteriyoruz. Son olarak da amag fonksiyon-
lar1 dinamik tutarh risk olctitleri olan riskten kaginan ¢ok agamali iiretim plan-
lama problemleri i¢in uyarlanabilirlik ve hesaplama emegi arasindaki dengeyi
inceliyoruz. Ayrica, teorik bulgularimizi dogrulamak icin hesaplamali deneyler
diizenleyip, deney sonuclarini tartigiyoruz.

Anahtar sozcikler: Riskten kaginan optimizasyon, Cok asamali rassal program-
lama, Karma tam sayili programlama, Dinamik tutarh risk olciitleri.
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Chapter 1

Introduction

The vast majority of operations research literature is devoted to deterministic op-
timization models where problem parameters are deterministic and known when

the decision is made. A deterministic optimization model can be written as

min  f(z),

TeEX

where x € R™ is the vector of decision variables, f : R™ — R is the cost function

to be minimized and X C R™ is the set of feasible solutions.

However, parameters of many real life problems are not deterministic and not
exactly known when the decisions are made. Demand of a product or return of
an asset are examples of such parameters. Stochastic programming deals with
optimization problems where some (or all) problem parameters are subject to
uncertainty and follow known probability distributions. Theory of stochastic
programming dates back to Dantzig’s pioneering work |1] in 1955. Recent ap-
plications in finance, energy, health care and production systems revealed that
stochastic programming is a powerful tool to elaborate uncertainty in these sys-
tems. The modern theory and applications in various areas of operation research

are discussed in [2], [3], [4] and references therein.



Stochastic optimization models are divided into two groups depending on
their attitude towards risk: risk-neutral and risk-averse models. In risk-neutral
(stochastic optimization) models, the objective is to minimize expected total cost.

The generic risk-neutral model is

min - Ee[f(z,§)],
st. ze X(§),

where f(xz,&) is the random cost depending on the decision vector z and random
problem parameters . The set of all feasible decisions X'(§) is also defined by €.
The expectation E is taken with respect to £ and assumed to be well-defined (see,
for example, [5]). The risk-neutral model minimizes the cost “on the average”
as a corollary of the Law of Large Numbers. However, risk-neutral models are
reasonable only if the long term performance is considered irrespective of specific
realizations. The following portfolio optimization example shows a shortcoming

of risk-neutral models in existence of risky realizations.

Example 1. ( [3], pg. 13) An investor wishes to mazimize the total expected
return by distributing an wnitial capital W onto m different risky assets. Let x;
be the amount invested in asset i and R; be the (random) return of asset i for

1=1,...,m. The corresponding optimization model is

i=1
S.1. f: €T; = W,
i=1

r = (r1,22,...,2m) € R,

min  — K¢

where § = 1 + R; and R is the nonnegative orthant in R™. Note that, the
objective function can alternatively be written as:

Zfﬂi] = ZEE &)z = Z HiLs
i=1 i=1 i=1

E¢

where p; = 1+ E[R;]. An optimal solution of the problem is to invest all capital

2



into the asset which has the highest expected return. Therefore, optimal value is

— W where p* 1= max<j<m ;-

Obviously, an optimal solution of the risk-neutral portfolio optimization prob-
lem may be subject to high level of risk. The total return depends on realization

of the return of one asset only.

Example [1] illustrates that risk-neutral models cannot elaborate the risk due
to specific realizations. This result motivates the risk-averse (stochastic opti-
mization) models which reflect preferences of a decision maker who avoids risk.
Different types of risk-averse models are available in the literature (see, Chap-
ter , for a detailed discussion on these models). In this thesis, we consider the
risk-averse models where a risk measure is used to reflect the risk-aversion of the

decision maker.

A risk measure is defined as a function p : Z — R which “quantifies” the risk
involved in a random outcome. Here, Z is a set of random variables for which
lower values are preferable, that is, they define a random cost. An interpretation
of the risk measure is given in [6] as: p(Z) is a fair one-time charge a risk-averse
decision maker would be willing to pay instead of random cost Z € Z. In other
words, p(Z) is the “risk-adjusted deterministic cost” of the random cost Z. Risk
measures are useful to model risk-averse attitudes of decision makers. Moreover,
they are easier to interpret and have practical meaning. Therefore, they are

widely used in the literature. A canonical risk-averse model is given by

min - p(f(z,8)),
st. ze X(§),

where the expectation in the risk-neutral model is replaced by a risk measure.

In many stochastic optimization models, as in Example [I} the realization of
random problem parameters occurs once and for all. In that case, decision vari-
ables can be grouped into two sets: the first and second stage variables. The first

stage variables correspond to decisions which are made before the realization of

3



Figure 1.1: The decision process in multi-stage models.

Decide Observe Decide o Observe Decide
T 62 To fT ol

random problem parameters. On the other hand, the second stage variables cor-
respond to decisions which are made after observing the realization of random
problem parameters. Thus, these model are called as two-stage models. However,
in multi-stage models, the randomness unveils gradually a over fixed length deci-
sion horizon and decisions are made between two consecutive realizations. These

decision epochs are called as stages.

In multi-stage models, the first stage decision x; is made based on the first
stage deterministic problem parameters &;. Then, a realization of the second stage
problem parameters & occurs and the second stage decisions x, are made. This
decision process continues through a T'—stage decision horizon. If the random
parameters evolve as a discrete-time stochastic process with finite support, then
the whole process can be represented by a T'—stage scenario tree. The decision

process in multi-stage models is depicted in Figure [1.1]

Multi-stage models provide high adaptability of decisions in a dynamic envi-
ronment. However, they are more challenging than their two-stage counterparts
due to their increasing problem size which, in general, increases exponentially

with respect to the number of stages 7.

In this thesis, we consider solution methods for risk-averse multi-stage mixed-
integer stochastic optimization models. These models are large scale non-convex
optimization problems for which no efficient solution method is available, to the
best of our knowledge. Difficulty of these problems is due to three main reasons.
The first reason is the risk measures used in the objective function. Unlike their
risk-neutral counterparts, risk-averse models do not enjoy decomposition directly
due to structure of risk measures used in the objective. The second reason is
scalability. For a non-trivial problem, size of a multi-stage model grows exponen-

tially with the number of stages. The third reason is the mixed-integer nature of



decision variables. Even if the multi-stage problem is deterministic, the resulting

problem is still a large scale mixed-integer model.

Therefore, in this thesis, we provide approximate and exact solution meth-
ods for risk-averse multi-stage mixed-integer stochastic optimization models. We
provide theoretical discussions on these methods such as guaranteed bounds for
approximate methods, and convergence proofs for exact methods. We also pro-
vide a set of computational experiments on different problems in order to test
the proposed methods. In these experiments, we use problems from different
areas of operations research such as location, production, expansion and power
system optimization. Computational results of these experiments indicate that
the proposed methods are powerful tools for risk-averse multi-stage mixed-integer

stochastic optimization models.

The rest of the thesis is organized as follows. In Chapter [2| we present the
related literature on risk-averse stochastic optimization problems. In Chapter
we propose a scenario tree decomposition approach, namely group subproblem
approach, to obtain bounds for risk-averse multi-stage mixed-integer stochastic
optimization problems with an objective of dynamic mean conditional value-at-
risk (mean-CVaR). Our approach does not require any special problem structure
such as convexity and linearity, therefore it can be applied to a wide range of
problems. We obtain lower bounds by using different convolution of mean-CVaR
risk measures and different scenario partition strategies. The upper bounds are
obtained through the use of optimal solutions of group subproblems. Using these
lower and upper bounds, we propose a solution algorithm for risk-averse mixed-
integer multi-stage stochastic problems with mean-CVaR risk measures. We test
the performance of the proposed algorithm on a multi-stage stochastic lot sizing
problem and compare different choices of lower bounds and partition strategies.
Comparison of the proposed algorithm to a commercial solver reveals that, on the
average, the proposed algorithm yields 1.13% stronger bounds. The commercial
solver, on the average, requires more than a factor of five additional running time

to reach the same optimality gap obtained by the proposed algorithm.



In Chapter 4] we propose an exact solution algorithm for risk-averse multi-
stage mixed-integer stochastic optimization problems with an objective of dy-
namic mean-CVaR risk measure and binary first stage decision variables. The
proposed algorithm is based on an evaluate-and-cut procedure and it uses lower
bounds obtained from a scenario tree decomposition method presented in Chapter
Bl We also show that, under the assumption that the first stage integer variables
are bounded, our algorithm solves problems with mixed-integer variables in all
stages. Computational experiments on risk-averse multi-stage stochastic server
location and generation expansion problems reveal that the proposed algorithm
is able to solve problem instances with more than one million binary variables

within a reasonable time under a modest computational setting.

In Chapter [ we consider day-ahead scheduling of electricity generation or
unit commitment which is an important and challenging optimization problem in
power systems. Variability in net load arising from the increasing penetration of
renewable technologies have motivated study of various classes of stochastic unit
commitment models. In the models with non-adaptive commitment, the gener-
ation schedule for the entire day is fixed while the dispatch is adapted to the
uncertainty, whereas in the models with adaptive commitment, the generation
schedule is also allowed to dynamically adapt to the uncertainty realization. The
latter one provides more flexibility in the generation schedule, however, it requires
significantly higher computational effort. To justify this additional computational
effort, we provide theoretical and empirical analyses of the value of adaptive com-
mitment for risk-averse multi-stage stochastic unit commitment models. The
value of adaptive commitment measures the relative advantage of adaptive com-
mitment over its non-adaptive counterpart. Our results indicate that, for unit
commitment models, value of adaptive commitment increases with the level of
uncertainty and number of periods, and decreases with the degree of risk-aversion

of the decision maker.

In Chapter [6] we consider risk-averse multi-stage production planning prob-
lems as a generalization of the unit commitment problem discussed in Chapter
bl In these problems, we make set-up decisions of a set of generators and pro-

duction amount decisions of each generator in order to satisfy random demand
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of a single product through a multi-stage decision horizon. For these problems,
we consider two types of models with respect to their adaptivity to the demand
uncertainty. In fully adaptive models, both set-up and production decisions are
given in on-line fashion, that is, they are adapted to demand uncertainty. How-
ever, in the models with non-adaptive set-up decisions, the set-up decisions are
off-line, that is, they are fixed at the beginning of the decision horizon whereas the
production decisions are on-line. We discuss the trade off between flexibility of
the adaptive set-up decisions and computational convenience of the non-adaptive
set-up decisions. As an intermediate case between the models with adaptive and
non-adaptive set-up decisions, we also consider a model with partially adaptive
set-up decisions. Moreover, we propose a rolling horizon solution algorithm for
the fully adaptive model where the model with non-adaptive set-up decisions is
used as an approximation. In order to reduce computational difficulty of the
proposed models and the rolling horizon method, we consider restricting the
production amounts as affine functions of demand realizations. We propose an-
alytical results on the relation among the optimal solutions of the models with
fully adaptive, partially adaptive, non-adaptive set-up decisions and the solution
obtained from the rolling horizon algorithm. Finally, we conduct a set of compu-
tational experiments on a risk-averse multi-stage lot sizing problem to investigate
the computational efficiency of the proposed rolling horizon method and verify

the analytical results.

Chapters and [6] correspond to approximate solution methods for risk-
averse multi-stage mixed-integer stochastic programming problems. In Chapter
[, we provide an exact solution approach for these problems where the objective
is a dynamic mean-CVaR risk measure. The concluding remarks and a discussion
on the contribution of this thesis to the literature are given in Chapter [7]] We also
provide a detailed discussion on future research directions and possible extensions
of current work in Chapter



Chapter 2

Literature Review

In stochastic optimization problems, risk-averse attitude of decision makers can be
represented in several ways. In this chapter, we present a brief survey of existing
approaches in risk-averse optimization such as expected utility theory, stochastic
dominance, chance constraints and mean-risk models. Then, we present defini-
tions of coherent, conditional and dynamic risk measures. Finally, we present the
existing literature on decomposition methods for multi-stage stochastic program-

ming problems.

2.1 Expected Utility Theory

In expected utility theory, two random outcomes are compared based on their
expected (dis-)utilities. A random variable Z is preferred to another random
variable W if E[u(Z)] < Elu(W)] where u(-) is some dis-utility function. Let
f(z,€&) be the random cost due to decision z and random problem parameters

€. Also let X(&) be the set of feasible decisions with respect to £. Then, the



optimization problem is given as

min - Eelu(f(z,£))]- (2.1)

zeX(£)

If u(-) is convex, then Jensen’s inequality

u(Be[f(x,E)]) < Belu(f(2,£))];

implies that the certain outcome E¢[f(x, &)] is at least as preferable as the random
outcome f(x,§). Therefore, is a risk-averse formulation for any convex and
non-decreasing u(-). Moreover, if u(-) is affine, is a risk-neutral formulation
and if u(-) is concave, it is a risk-seeking formulation. If the random outcome
represents profit instead of cost, is replaced with a maximization problem
where u(-) is assumed to be non-decreasing and concave. In that case, u(-) is

called as a utility function.

An important measure of risk-aversion is coefficient of absolute risk-aversion
A(x,u) = —u"(x)/u/(z) proposed in [7] and [§] to control the degree of risk-
aversion. However, interpreting (dis-)utility functions is not straightforward. A
more detailed discussion on usage of (dis-)utility functions in risk-averse problems

can be found in [3].

2.2 Stochastic Dominance Constraints

Another way to deal with risk is to use stochastic dominance constraints in
stochastic optimization models. Stochastic dominance constraints enable the de-
cision maker to compare two different random variables with respect to their
involved risk. A random variable Z dominates another random variable W in
the first order, i.e. Z =) W, if F(a) < G(a) for all a € R and in the second
order, i.e. Z = W, if [* F(x)dx < [ G(x)dx for all a € R where F(-) and

G(-) are distribution functions of Z and W, respectively. If a reference random



outcome Z is known, then a set of constraints can be included in stochastic opti-
mization problems which ensure that an optimal solution is at least as preferable
as Z. However, determining the reference random outcome is another issue that

the decision maker should address before adding these constraints to the model.

Stochastic dominance constraints date back to pioneering works [9] and [10].
A more detailed discussion about using stochastic dominance constraints in risk-

averse problems can be found in 3] and [4].

2.3 Chance Constraints

A canonical formulation of chance constrained stochastic programming models is

given as

min - Ee[f(z, )], (2.2)
s.t. Pr{g;(z,&) <0,Vje T} >p, (2.3)
r e X(§), (2.4)

where constraint ([2.3) ensures that the set of constraints g;(z,§) < 0,Vj € J hold
with probability of at least p € (0, 1). Chance constrained models are introduced
in [11] in 1959.

Even under simplest settings, these models are challenging. This challenge
follows from the fact that the set of feasible solutions of the problem ([2.2))-([2.4])
can be non-convex even if the function g;(-) is convex in z for all j € J and X(§)

is a convex set (see, for example, [12] for a detailed discussion).

A detailed survey on chance constrained stochastic programming models can
be found in [2] and [3].
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2.4 Mean-risk Models

The model

min - Eelf(2,6)] + AD[/(z.€) (25)

is called as a mean-risk model where E¢[f(x,&)] and D[f(x, £)] are expected value
of the random cost and some dispersion measure, respectively. Here A is the
price of risk which controls the degree of risk-aversion. In his seminal work
[13], Markowitz presents the first mean-risk model for a portfolio optimization

problem.

The most natural choice for the dispersion measure in problem is variance,
that is, D(-) = V(-) as in [13]. In that case, both upper and lower deviations
from the mean cost are penalized in ([2.5)). However, we prefer lower cost values,
therefore penalization of lower deviations is not desirable. The following example

highlights this shortcoming of using variance as a dispersion measure in problem

23).

Example 2. ( [14]) Assume that the random variable & takes values &' and &2
with probabilities p and 1 — p, respectively for some p € (0,1). Let Z take values
Z(&Y) = —a for some a > 0 and Z(&?) = 0 depending on the realization of €.
Similarly, let W be another random wvariable with W (&') = W(€%) = 0. The
mean-risk function F(-) = E¢[-] + AV[] is calculated for Z and W as F(Z) =
—ap+Aa*p(1—p) and F(W) = 0. Thus, if N\a(1—p) > 1, we have F(Z) > F(W).
However, W dominates Z, that is, W (') > Z(£') and W (&%) > Z(&£?).

Consider mean-risk model where f(x,€) .= xZ+(1—x)W and X = |0, 1].
Note that f(x,&) = xZ and f(1,&) is dominated by f(x,§) for x € X. However,
x =1 is not an optimal solution of since f(1,€) = F(Z) is strictly greater
than f(0,&) = F(W).

In Example , the optimal solution of the mean-risk model ([2.5) is W even
though Z always takes lower values than WW. This example reveals that a optimal

solution of the mean-risk model ([2.5) may not be the most preferable solution.
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Hence, we need to specify some axioms in order to measure the risk involved in a
random cost properly. A more detailed discussion about using mean-risk models

in risk-aversion can be found in [3] and [15].

2.5 Coherent Risk Measures

Let  be a sample space equipped with a sigma algebra .# and Z := L,(Q2, .#, P)
be the space of all random variables that have finite moment of order p with
respect to probability distribution P for some p € [1,00). An element w of the

sample space ) is called as a scenario.

A risk measure is a function p : Z — RU{oo}U{—00} which assigns a random
variable to risk involved in that random variable. Then, the risk-averse stochastic
optimization problem is

min - p(f(z,§)). (2.6)

zeX(£)

In order to guarantee that the problem (2.6 has meaningful interpretations, we

follow the concept of coherent risk measure defined in [16].

Let Z,W € Z be uncertain outcomes defined on the probability space
(Q, .7, P) for which lower realizations are preferable. A risk measure p: Z — R

is called coherent if it satisfies:

(A1) Convexity: p(aZ + (1 —a)W) < ap(Z)+ (1 —a)p(W) for all Z, W €
Z and a € [0, 1],

(A2) Monotonicity: Z < W implies p(Z) < p(W) for all Z, W € Z,

e (A3) Translational Equivariance: p(Z+t) = p(Z)+t for allt € R and Z €
Z,

o (A4) Positive Homogeneity: p(tZ) =tp(Z) for all t > 0 and Z € Z,

12



where Z < W indicates component-wise partial ordering such that 7, < W, for

almost every w € Q). Here, Z,, is the value that Z takes in scenario w € ).

The above axioms have practical interpretations. Axioms (A1) and (A4) imply
that diversification does not create extra risk or equivalently, p(-) is sub-additive

in a sense that
p(Z4+W)<p(Z)+p(W) forall ZW € Z.

Axiom (A2) implies that higher cost yields higher risk. Axiom (A3) implies that
increasing the cost for a fixed t units increases risk by the same amount. Finally,
axiom (A4) implies that risk remains same regardless of currency type. A more

detailed discussion on interpretations of these axioms can be found in [16].

Important examples of coherent risk measures are quantile and deviation based
risk measures. One example of the former one is conditional value-at-risk (CVaR)

(see, for example, [17])

CVaR,(Z) = 717161]1%{7] + ﬁ]E[(Z — n)+]}. (2.7)
where (a)y = max{a,0}, a € R and a € [0,1) is the level parameter. The
infimum on the right hand side of is attained at n* = VaR,(Z) where value-
at-risk (VaR) corresponds to left-side quantile of Z. The interpretation of VaR
at level « is that “costs larger than VaR,(Z) occur with probability of at most
o’ (see, for example, [3]). Similarly, CVaR,(Z) corresponds to “the expected
cost in most pessimistic 100a percent of all scenarios”. CVaR is a coherent risk

measure, but VaR violates sub-additivity.

Another quantile-based risk measure, namely mean-CVaR, is defined as a con-

vex combination of mean cost and CVaR, that is,
p(Z) = (1 —¢)E[Z] + eCVaR,(Z), (2.8)

for some weight parameter ¢ € [0,1]. Definition of CVaR only represents the
quantile information, however, (2.8) conveys both expected cost and the quantile
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information and thus generalizes CVaR.

An example of deviation based coherent risk measures is mean-upper semi
deviation (MUSD). The mean-upper semi deviation is defined as the sum of
expected cost and a penalty term for expected upper deviation from the mean
cost, that is,

MUSD(Z) := E[Z] + AE[(Z — E[Z])], (2.9)

for some penalty parameter A € [0, 1].

More examples for coherent risk measures and a detailed discussion on their

theoretical properties can be found in [3], [18] and references therein.

In this thesis, we consider a multi-stage decision horizon, therefore we consider

extension of coherent risk measures in a dynamic setting.

2.6 Conditional and Dynamic Risk Measures

In order to measure risk in a dynamic setting, we use conditional risk measures
as an extension of coherent risk measures. Consider sigma algebras .%#; C %4
and spaces Z; := L,(Q, %, P) and 211 = L,(2, Fi41, P) defined using these
sigma algebras. A mapping pz,, |z, : 211 — Z¢ is called one-step conditional

risk measure if:

(B1) Convexity: pz, 1z (aZ + (1 —a)W) 2 apz,., ,12,(2) +
(1= a)pz,.12, (W) for all Z, W € Z,44 and « € [0, 1],

e (B2) Monotonicity: Z < W implies pz,, 17, (Z) =2 pz,.112, (W) for all Z, W e
Zt+17
e (B3) Translational Equivariance: pgz,. 17 (Z + W) = pgz.1%(Z) +

W foral W € Z; and Z € 2,44,

(B4) Positive Homogeneity: pz, 12 (tZ) = tpz,,z(Z) foralt >
0Oand Z € Z;;.
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Axioms (B1)-(B4) have similar interpretations with axioms (A1)-(A4). More-
over, pz,, 17 (-) has a similar interpretation with the coherent risk measure p(-).
P77 (Z) is a fair one-time .%#; —measurable charge a risk-averse decision maker
would be willing to pay instead of .%#;,;—measurable cost Z € Z;,;. Alterna-
tively, it can be said that pz, 2 (Z) is the “risk-adjusted % —measurable cost”
of cost Z.

Thus, one-step conditional counterparts of (2.7) and (2.9)) can be defined as

inf {0+ ——E((Z = n). |7}, (2.10)
and
E[Z|F) + AE[(Z — E[Z|F))+| F), (2.11)

respectively. Theoretical properties of one-step conditional risk measures are

extensively discussed in |19].

In a T'—stage decision environment, we consider the risk involved in a random
cost sequence instead of a single random cost. Let the nested sequence of sigma
algebras {0,Q} = F; C F, C -+ C Fr = F be called as a filtration which repre-
sents our gradually increasing information through a T'—stage planning horizon.
The set of all /;—measurable and p—integrable random variables are denoted by
Z = L,(Q,F, P) for t € {1,2,...,T} for some p € [1,00). Note that since
F={0,Q}, 2, =R.

Consider the composition

PFp|Fr_y PF3|Fo PFy| 71
PFs|FL O PF3| Fp O O PFp|Fp_y P 27— 211"+ 23 > Zo > R,

and let o1 7 : Zr — R be a dynamic risk measure such that

01T = P3|, © PF|F2 O+ * O PFp| Ty (2.12)

where each pz,, |2 is a conditional risk measure for all¢ =1,--- ,7'— 1. By the
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translational equivariance axiom (B3), g1 7(-) can equivalently be written as:

017(Z1, Zay ... Zr) = Z1 + pay)7 (Lo + pzy)2,(Zs + - + papize . (Zr) -+ +)),
(2.13)
where Z; € Z; is the cost incurred at stage t =1,--- ,T.

We can interpret gy 7(Z1, Za, ..., Zr) as a fair one-time deterministic charge
a risk-averse decision maker would be willing to pay instead of random cost
sequence {Z;}7_,. Another interpretation of 01 7(Z1,Zs,...,Z7) is the “risk-

adjusted deterministic cost” of random cost sequence {Z;}1_;.

2.7 Risk-averse Multi-stage Mixed-integer

Stochastic Programming Problem

In this thesis, our main interest is a risk-averse multi-stage mized-integer stochas-
tic programming problem. We use & and x; to denote the vector of problem pa-
rameters and decisions at stage t € {1,...,T}, respectively. Note that, for each ¢,
& and x; are .#;—measurable. The collection of all decisions through the decision
horizon z := (21, xa,...,xr) is called as a policy. At the first stage, the vector of
problem parameters &; and decisions z; are deterministic since #; = {0,0}. At

stage t € {2,...,T}, some or all problem parameters are random.

The risk-averse multi-stage mixed-integer stochastic programming problem can
be defined as

gg/lvl o17(fi(z1), folx2,8). .-, fr(ar, &r)), (2.14)
where X = X} x Xy(x1,&) X -+ X Xp(xp_1,&r) is an abstract representation

of (possibly non-linear) set of feasible polices. The first stage feasibility set
X € R™ x Z™ is a mixed-integer deterministic set and for ¢t € {2,...,T},
X R0 x 7M1 x 2, = R™ x Z™ are .#;—measurable mixed-integer point-
to-set mappings. The set =; is the support of &, for ¢t € {2,...,T}. The first

stage cost is deterministic and represented by a possibly nonlinear, real-valued

16



function f; : R™ x Z™ — R. The cost functions f; : R™ x Z™ x =, — R,
t €{2,...,T} are #;—measurable and may be nonlinear. If each one-step con-
ditional risk measure in the definition of is conditional expectation, that
is, 77 () = E[-|#] for each t € {1,2,...,T — 1}, the risk-averse multi-stage
mixed-integer stochastic programming problem ([2.14]) reduces to its risk-neutral
counterpart. The problem can equivalently be written as

min fl(xl) + PF3|F1 [f2($27 52) + PF3| T2 (+ - pﬁT|=6/\T—1{fT(xT7 gT)}” )
s.t. x € Xl,l’t S Xt(xt_l,ft), t € {2, . ,T},

by using the relation between the dynamic risk measure and one-step condi-
tional risk measures given in (2.13)). Alternatively, a dynamic programming (DP)
formulation of the risk-averse multi-stage mixed-integer stochastic programming

problem can be written as

min fi(xry) + min To, &)+
xlexlfl( 1) + P77 Le%(ml@)ﬁ( 2,&2)

PF3| s ( min et PFr|Fr_1 { min fT(xT7§T)}) ] : (215)

x3E€X3(x2,63) xreXr(zr_1,6T)

Two phenomena have an essential role in formulations of risk-averse multi-
stage mixed-integer stochastic programming problems. Decisions at stage t €
{1,...,T} are made based on the available information up to stage ¢. This
requirement is called as non-anticipativity. Moreover, for any state of the system
at stage t, optimal decisions should not involve possible future realizations that

cannot happen. This principle is called as time consistency (see, [20]).

If the random parameters’ values &1,&,...,&r evolve as a discrete-time
stochastic process with discrete support, that is |Z;| < oo for all t € {2,...,T},

then the whole process can be represented by a T'—stage scenario treeﬂ. In this

!'Even though the random parameters have continuous support, an empirical distribution
obtained by sampling without replacement can be used to approximate the true distribution at
any accuracy. A detailed discussion is given in Section 5 of [3].
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scenario tree, each node at stage t € {1,2,...,T} represents a possible realiza-
tion of random process &1,&s,...,&. In this case, a deterministic optimization
problem, namely deterministic equivalent problem (DEP), can be used to solve
the risk-averse multi-stage mixed-integer stochastic programming problem where
each decision at each node of the scenario tree is represented by a variable in DEP.
However, for any non-trivial scenario tree, size of DEP grows exponentially and
problem gets computationally intractable for even moderate number of scenarios.
Therefore, existing solution techniques for the risk-averse multi-stage stochastic
programming problems are based on stage-wise and scenario-wise decomposition

of scenario tree.

2.8 Decomposition Methods for Multi-stage

Stochastic Programming Problems

Stochastic dual dynamic programming (SDDP) is a sampling-based stage-wise
scenario tree decomposition technique for multi-stage stochastic programming
problems. The method is first proposed in [21] for risk-neutral problems and
later extended to risk-averse problems in [22], [23] and [24]. SDDP is based on
approximation of cost-to-go functions in DP formulation by piecewise linear
functions. The convergence to an optimal solution is guaranteed under convexity
assumption. Moreover, in SDDP, the random data process is assumed to be
stage-wise independent, that is, {1 does not depend on §;. This assumption on
stage-wise independence enables us to write cost-to-go functions as functions of
stages. In [25], an extension of SDDP is proposed for the risk-neutral problems
with integer variables by relaxing the integrality requirements. Later, in [26], this
approach is extended to risk-averse mixed-integer problems. Recently, in [27], an
extension of SDDP is proposed to solve risk-neutral multi-stage mixed-integer
problems with binary state variables. They prove that SDDP method provides
an exact solution to the problem in finite number of iterations when the cuts

satisfy some sufficient conditions.
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In [2§], a scenario-wise decomposition method is proposed for two-stage risk-
averse mixed-integer stochastic programming problems. The proposed method is
based on a branch-and-bound (BB) procedure where decomposition is achieved
by dualizing the non-anticipativity constraints in a Lagrangian manner. Later,
this BB procedure is extended to risk-neutral multi-stage problems in [29]. This
procedure is also extended to two-stage risk-averse problems by exploiting the

structure of specific risk measures in [30] and [31].

Another scenario-wise decomposition method for risk-neutral multi-stage con-
vex optimization problems, namely progressive hedging algorithm (PHA), is pro-
posed in [32]. PHA is based on iteratively solving saddle points of a proximal
augmented Lagrangian function that decomposes for each scenario. Then, single
scenario solutions are hedged to get a non-anticipative solution. In [33] and [34],
PHA is extended to risk-neutral multi-stage mixed-integer problems where con-
vergence to an optimal solution is not guaranteed. In [35], PHA is used to solve
nodal relaxations within the framework of a branch-and-bound algorithm. A de-
tailed discussion on PHA for risk-neutral multi-stage convex optimization prob-

lems can be found in [36].

A scenario-wise scenario tree decomposition method for risk-averse multi-stage
stochastic programming problems is proposed in [37]. The decomposition is ob-
tained by relaxing non-anticipativity constraints in a Lagrangian manner and
solving the dual of the problem. In [37], the problem is assumed to be linear and

hence convergence to the optimal solution is guaranteed.

A recent stream of research proposes an alternative way of obtaining bounds for
mixed-integer multi-stage stochastic problems via a scenario tree decomposition.
In that approach, the sample space is partitioned into subspaces called as groups,
and the problem is solved for the scenarios in a group instead of the original
sample space. These smaller problems are called as group subproblems. In [3§], a
group subproblem approach is proposed for risk-neutral mixed-integer two-stage
stochastic problems. They show that the expected value of the optimal values of
group subproblems gives a lower bound on the optimal value of the original prob-

lem. Later, this approach is extended to the risk-neutral multi-stage problems
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in [39], [40], and [41]. Recently, in [42], group subproblem approach is applied to
risk-averse mixed-integer multi-stage stochastic problems where the objective is

a concave dis-utility function applied to the total cost over the planning horizon.

Recent studies reveal that it is possible to come up with exact solution methods
for risk-neutral and risk-averse two-stage mixed-integer stochastic programming
problems by exploiting the nature of binary variables. In [43], no-good cuts are
used in an evaluate-and-cut procedure for risk-neutral two-stage mixed-integer
models with binary first stage decisions. The proposed procedure is a scenario
decomposition algorithm which iteratively evaluates the objective value for a set
of binary first stage solutions and cuts these solutions from the feasible set. In [44],
the procedure is extended to risk-averse two-stage problems with binary first stage
variables. They consider three different exact solution algorithms using dual rep-
resentations of coherent risk measures, scenario decomposition, cutting planes,
subgradient method and no-good cuts. The computational experiments presented
by [43] and [44] reveal that risk-neutral and risk-averse two-stage stochastic pro-
graming problems with binary first stage variables can be solved optimally within

reasonable computation times.

2.9 Summary

Although the aforementioned solution methods are available for related problems,
the complex structure of risk-averse multi-stage mixed-integer programming prob-
lems prohibits computationally tractable solution methods. For example, conver-
gence of SDDP is based on convexity assumption which does not hold in existence
of integer variables. Another challenge in risk-averse multi-stage mixed-integer
programming problems is decomposition. Unlike their risk-neutral counterparts,
when non-anticipative constraints are relaxed, the risk-averse problems do not

decompose into each scenario.

We consider a group subproblem approach to obtain bounds for risk-averse
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multi-stage mixed-integer programming problems in Chapter [3] Although simi-
lar scenario grouping based bounds have been obtained for risk-neural problems
in [38], [39], [40], [41] and risk-averse models with dis-utility functions in [42], to
the best of our knowledge, such bounds were not available for the risk-averse mod-
els with coherent risk measures. We later use the bounds obtained from group
subproblems in an exact solution procedure in Chapter [l To the best of out
knowledge, there is no other exact solution method available for even moderate
size instances of any class of risk-averse multi-stage mixed-integer programming
problems. In Chapters [5] and [6] we investigate the trade off between the adapt-
ability of these models and their computational performance. Although, the
value of adaptivity has been investigated for some risk-neutral models (see, for

example, [45]), similar results were missing for risk-averse models.
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Chapter 3

Bounds on Risk-averse
Multi-stage Mixed-integer
Stochastic Programming
Problems with Mean-CVaR

In this chapter, we propose a scenario tree decomposition algorithm for risk-averse
multi-stage mixed-integer stochastic problems with a dynamic objective function
defined via mean-CVaR. The suggested algorithm is based on group subproblem
approach and it is used to find lower and upper bounds on the optimal value of
the problem. We propose infinitely many valid lower bounds on mean-CVaR risk
measure that can be used within the frame of the algorithm. We also investigate
the effect of scenario partitioning strategies on the quality of the different lower
bounds by considering different partitioning strategies based on the structure of

the scenario tree and disparateness of scenario realizations.

The organization of the chapter is as follows: In Section [3.1) we present prob-
lem definition and scenario tree representation of the random process of problem

parameters. Section includes our main results on obtaining different lower
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bounds for mean-CVaR via a scenario grouping approach. We consider the appli-
cation of these lower bounds to a risk-averse mixed-integer multi-stage stochastic
problem with a dynamic objective function defined via mean-CVaR. We also sug-
gest a method to obtain an upper bound. The computational study conducted on

a multi-stage lot sizing problem and related discussions are presented in Section
3.3} Section [3.4]is devoted to concluding remarks.

The results of this chapter are published in European Journal of Operational
Research [46].

3.1 Problem Definition and Scenario Tree

Representation

We first recall the risk-averse multi-stage mixed-integer stochastic programming

problem

géi}(l ovr(fi(zr), fa(wa, &), - ., fr(ar, &r)), (3.1)

where X := X} X Xa(x1,&) X -+ X Xp(xp_q,&r) is the abstract representation
of a (possibly non-linear) set of feasible polices. The first stage feasibility set
A € R™ x Z™ is a mixed-integer deterministic set and for ¢t € {2,...,T},
X, R x 7M1 x 2y = R™ X Z™ are .%;—measurable mixed-integer point-to-set
mappings. Here, =, is the support of . The cost in the first stage is deterministic
and represented by a possibly nonlinear, real-valued function f; : R™ xZ™ — R.
The cost functions f; : R™ x Z™ x =, — R, t € {2,...,T} are .#,—measurable

and may be nonlinear.

When a multi-stage stochastic process is considered, all realizations of the
process form a scenario tree in the finite distribution case. In this section, we
follow the notation used in [37] to represent the scenario tree. Let €2; be the set
of nodes at stage t € {1,...,T}. At stage t = 1, there is only one node, called
as root node and it is represented by v;. The nodes at stages t € {2,...,T}

represent elementary events in %, that is %, = o(£2;), a sigma algebra on €.
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Figure 3.1: An example of four-stage scenario tree. (a) €2, s, Q3 and Q4 are the
set of nodes at stages 1, 2, 3 and 4, respectively. (b) C(v) is the set of children
nodes of node v, a(v) is the ancestor node of node v and p,, is the conditional
probability of node u given v.

The set €27 corresponds to all possible scenarios, that is {2 = 2. Each node
v e, te{2,...,T} has a unique ancestor at stage t — 1 and this ancestor node
is called as a(v). Also, each node v € {,t € {1,...,7 — 1} has a set of children
nodes C'(v) such that C(v) = {u € Q441 : a(u) = v}. The probability measure P

can be specified by conditional probabilities
Pow = Plujv], veQuelCv), te{l,..., T —1},
and probability of a scenario w € {2y can be computed as
Pw = DvivaPugvg -+ - Pup_jw
where vy, v, ..., v;_1,w is the unique path from root node v; to node w.

The notation mentioned above is depicted in Figure3.1|for a four-stage scenario

tree.

The following fact is known as dual representation of coherent measures of
risk (see, for example, [18]) and will be used in our results: if p(-) is a coherent

measure of risk, then, under some mild assumptions, for every random variable
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ZeZ,

p(Z) = max (u, Z), (3:2)

where A C Z* is a compact and convex set. We call this set as the dual set of the
risk measure p(-). A coherent measure of risk can be characterized via its dual

set.

In [37], the dual representation of coherent risk measures is extended to dy-
namic measures of risk. If g; r(-) is a dynamic risk measure given as in (2.13)),

then for every sequence of random variables {Z; € Z;}L_ |,

QI,T(ZI; ZQ, oot ZT) = Imax <qT, Zl == ZQ + -+ ZT>, (33)
qr€QT
where
Qr=A;10---0Ay0Ay, (3-4)
and A;, t € {2,...,T} is a convex and compact set used in the dual representation

[P

of pz,. .17 (). The operator “o” defines convolution of probability measures, that

(11t © qe)(u) = gqr(a(u))pe(a(u), u), Yu € Qpyq,

and

AtOQt:{MtOCIti% € Qt, Ikt GAt};

for all t € {1,2,...,T — 1}. Recall that a(u) is the ancestor node of w.

As already mentioned in this section, we use conditional mean-CVaR as one-
step conditional risk measure. We first recall the definitions of CVaR and mean-
CVaR. Let

CVaRy(Z) = inf {n + ﬁ]E[(Z - nm} , (3.5)

neR

where (Z); = max{Z,0} in a component-wise manner and « € [0, 1) is the level

parameter.
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Given a level parameter o € [0,1) and a weight parameter ¢; € [0, 1], mean-
CVaR of Z € Z is defined as

p(Z):=(1—¢)E[Z] + 6 CVaR,(2). (3.6)

As seen in ({3.6]), despite CVaR, mean-CVaR risk measure conveys the expected
value information of a random variable, as well. As « or €, increases, the decision-
maker gets more risk-averse. Also note that, the expression in (3.6) can equiva-

lently be represented as the following linear program for finite probability spaces.

. ¥ 1
p(Z) = minimize (1 —¢) prZw + € ('r] + 14 prﬁw>

/1‘97
y weQ we

subject to 9, > Z,—1n, Ywe
¥, >0, YweQ.

When the sample space is finite, the dual representation ({3.2)) holds for mean-
CVaR with the set A represented as (see, for example, [18]):

A={peZ:1—e <p, <1l+e,Vwe Qand E[u] =1}, (3.7)

where

and E[/'L] = ZwEQ Puwlle-

For any Z;,; € Z;,1, the one-step conditional mean-CVaR risk measure
PFeir |7 (Ziy1) with parameters oy € [0,1) and e, € [0,1] and its dual set A,
are defined similar to and . However, in , the infimum is over
1n; € Z; and the expectation operators in — are replaced with conditional

expectations with respect to .%; .

For the remainder of the chapter, we will focus on mean-CVaR risk measure.
Hence, we will use p(-) to refer to mean-CVaR and pz,,,#(-), t € {1,2...,T—1}

to refer to one-step conditional mean-CVaR.
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3.2 Bounds

Let p(+) be a mean-CVaR risk measure with dual set A. We would like to construct
another coherent risk measure p(-) which provides a time consistent lower bound
for p(-). The risk measure j(-), or equivalently its dual set A, can be constructed
in different ways. When the cardinality of the sample space is large, due to
computational concerns, one may think of dealing with subsets of sample space
separately and then obtaining a lower bound for p(-). For such construction, we

need the definition of scenario groups and partition.

A subset of scenarios S C Q is called as a group. Let & = {S;}/_, be a collec-
tion of groups that forms a partition of €2, that is, U;f:l S;=Qand S;NS5 =0
for all j,7" € {1,2,...,J} such that j # j'. Note that the groups may not be nec-
essarily disjoint (see, [39]), i.e. S;()S4" # 0, but for the ease of representation, we
partition the sample space into disjoint groups. Let & be a o—algebra generated
by partition S where each group S; € S,j € {1,2,...,J} corresponds to an ele-
mentary event j of ¢. The probability of an elementary event jisp; = > . s, Po
which is the total probability of scenarios in S;. We also define the adjusted
probability of each scenario w as p;, = p,/p; for allw € S; and j € {1,2,...,J}.
Note that, ¢4 is a sub o—algebra of .%.

Once a partition of the sample space €2 is given, one way to construct p(-) is to
define it as a convolution of a coherent risk measure py : Lo(£2,9, P) — R with
dual set Ay and a one-step conditional risk measure Pzl Z2 = Loo(Q,9, P) with
dual set Avgr‘g. That is, p(-) = (pg © pzj»)(-), and its dual set is the convolution
of the sets ./Zg and ./qug such that A = .qugg o ./Zg

Note that, p##(-) can be represented in terms of pg,(-),7 € {1,2...,J}, that
is, [ﬁg|g(~)]j = ps,(+) (see, for example, [6]) where pg, : Loo(Q,0(S;),P) = R
is a coherent risk measure and o(S;) is the o—algebra on S;. Figure depicts

aforementioned notation for a given partition of a scenario tree with five scenarios.

For mean-CVaR, p(-) or equivalently its dual set j, can be explicitly stated.
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Figure 3.2: (a) An example partition for a two-stage scenario tree: There are five
scenarios 1,2, 3,4, and 5 with probabilities p1, p2, ps, ps, and ps, respectively. (b)
S = {54, Sp} is a partition of  where S, = {1,2,3} and S, = {4,5}. Nodes a
and b correspond to groups S, and S, with probabilities p, = p; 4+ p2 + p3 and
P» = P4 + ps, respectively. (¢) p : Z — R is the original risk measure. (d) ¢
is a sub o—algebra of #. py : L(Q,%9,P) — R is a coherent risk measure
and pziy 1 Z = Lo(2,9, P) is a one-step conditional risk measure that can be
represented via pg, @ Loo(2,0(5,), P) — R and pg, : Lo(Q2,0(Sp), P) — R as
[0719()]a = ps. () and [pz5 ()]s = ps, ().

Let parameters of py be o' € [0,1), e} € [0,1], and €} = 2 ¢!, and parameters
of priw be o € [0,1), ¢ € [0,1] and € = %e% Consider the convolution

p=pygopzy:F — Rand its dual set

ﬁz@f}@oﬂg:{MEZ*3M=M10M27M1Eﬂ%7u2ezy|g}
:{MGZ*;M:ulo/f,l—e%§u§§1+e%,VjE1,2...,JandE[,u1]:1,
-6l <p? <146, VweQand E[p?|¥] =1}, (3.8)

where E[u'] = 32,0, | piny, [El?|9]]; = 3 oes, pjwpti; for j € {1,...,J}, and
1 is a ¥-measurable random variable that takes value of one in all realizations.
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Construction of the set A for the example in Figure is as follows

-AV% - {(Maaﬂb) S RQ :

1—e <pa <1+6,

1_6131%31“‘6%7

(p1 4+ P2+ p3)ta + (Pa + D5) s = 1}-

Avy\ff = {(M17N27M3;M47N5) S R5 :

1_€%§M1§1+637
1_6%§M2§1+€§7
1—€f <ps<1+e,
-6 <py <146,
1_6%§M5§1+€§7
b1 1+ D2 1o + b3
S PN T BT E—
P1+ P2 + Ps3 p1+ P2 + P3 p1+ P2 + P3

P4 et Ps M5:1}
P4+ D5 P4+ D5

:u3:17

ﬂzﬂﬂwﬂé=%%mwwmwmmmwwdéwi

(/,La,/,bb) € ./Z{?, (H17M27u37u4au5) € jﬂl‘f}

Now, we are ready to prove that a lower bound for mean-CVaR risk measure

p(+) can be obtained by p(-) = (pg © pzw)(:).

Proposition 1. Let p(-) be a mean-CVaR risk measure with parameters o €
0,1), 1 € [0,1], €2 = 1%-€1 > 0, and dual set A . Also let p(-) = (py © pr1%)(*)

where py is a mean-CVaR risk measure with parameters o € [0,1), el € [0,1],

1 - ~ . ..
€ = li‘Te%, and dual set Ay; and pzy is a one-step conditional mean-CVaR

risk measure with parameters o® € [0,1), € € [0,1], € = 1%5¢3, and dual set
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./qug. Then, p(Z) < p(Z) for all Z € Z if

041 a2
l—e <(1—e)(1—¢é) and (1—}— e%) <1+ ef) <1+ €.

1—al 1 -«

(3.9)

Proof. Let u € A = Avg“g o ./Z(g. Then, from , there exist u' € ./Z(g and
2 € Az such that = p' o p® with E['] = 1 and E[u?|¢] = 1. Properties
of conditional expectation implies that E[u] = E[E [p|¥9]] = E[E [u! o p?|¥9]] =
Elp' oE[p?|9]] =E[p' 0 1] = E[u'] = 1.

From the definition of €,, €} and €3, second part of implies (1+€3)(1+¢€3) <
1+ €. Moreover, by (3.8), (1 —€})(1 —€?) < pu < (1+6€)(1+€3) for all w € Q.
Ifl—e, <(1—€l)(1—€) and (1+e)(1+€3) <1+e, then 1 —e; < g, < 1469,
for all w € Q which implies, 1 € A. Since y is arbitrary, A C A.

For any Z € Z, let p(Z) = max,z{(u, Z) and p* € argmax . z(u, Z). If
A C A, then pt e Aand p(Z) = (", Z) < maxuea(p, Z) = p(Z). Since Z is
arbitrary, p(Z) < p(Z) for all Z € Z. O

Proposition [1] partially extends Theorem 8 and Corollary 6 of [47] to mean-
CVaR risk measure. It implies that, under conditions (3.9)), p(-) = (pyop.zz)(-) is
a valid lower bound for p(-) for any partition S of Q. If p(+) is a conditional mean-
CVaR risk measure, Proposition (1| still applies. In this case, the expectations in

the proof are replaced with corresponding conditional expectations.

3.2.1 Possible Lower Bounds

We have shown that a lower bound for p(-) can be obtained by convolutions
of mean-CVaR risk measures whose parameters satisfy condition (3.9). Due to
Proposition (1} we can generate infinitely many lower bounds. Under the settings
on Proposition , Table presents some special cases of parameters of pg(-)
and pz»(-) such that they can be used to obtain a lower bound for p(-).
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Parameters of py Parameters of pgy
Py © Priy el € al € € a?
pz © Ezig €1 €2 e’ 0 0 0
o piny | 1- VT | Va1 | ol | 1- VI | Va1 | i
Ey o pzy 0 0 0 €1 €2 a

Table 3.1: Possible choices of py(-) and pzi»(-) that can be used to obtain lower
bound on mean-CVaR risk measure p(-).

LB Choice | S S’
pg o Bz | 3.5 | 2.5

Py o pf%g 3.12| 8

Table 3.2: Values of different lower bounds (LB’s) for Example .

Bounds py oE 714 and Ey o p 714 represent the extreme cases where either P (+)
or pziy(-) is the expectation operator. Bound p, o Py 1S an intermediate case
where both py () and pg»(-) have the same parameters, that is, o' = o?, €] = €}
and €} = €2. Under these conditions, in order to construct the largest set A, the
inequalities in are forced to hold at equality.

An interesting question is whether one of the possible lower bounds presented
above is always preferable among others. Following example reveals that PO Py

is not necessarily the tightest bound among others.

Example 3. Consider a random variable Z with sample space Q = {w;}1_,. All
four realizations have equal probabilities, that is, p,, = 1/4 for alli € {1,2,3,4}.
The value that Z takes under scenario w; is i, that is, Z,, =i fori € {1,2,3,4}.

Let €1 =1 and o = 0.5, then (@ reduces to CVaR value at o = 0.5 and then
p(Z) =3.5.

Two different partitions of scenarios are S = {{wi,wa}, {ws,ws}} and &’ =
{{w1,wa}, {w2, ws}t}. Values of the three bounds for partitions S and S are given

in Table[3.2.
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As seen in Table [3.2] the tightest bounds for partitions S and &’ are bounds
py © Eziy and Egy o pziy, respectively. Another observation is the fact that
piy © p}‘g is not necessarily the tightest bound among others. In Example
although either py o E 74 or Ey o pzi» can be the tightest bound among others
under different scenario partitions, the computational experiments in Section |3.3

reveal that Ey o p#¢ is the most promising lower bound choice.

Although in [3] it is shown that, under some assumptions, the lower bound pg o
E#» can be extended to any coherent risk measures, the other bounds provided
in Table may not be applicable for all coherent risk measures. Example [
reveals that Ey o pzi» is not necessarily a valid lower bound for an arbitrary

coherent risk measure.

Example 4. Consider a random variable Z that takes values Z,, = 100, Z,, =0,
Zy, = 1 and Z,, = 500 with probabilities 0.3, 0.2, 0.4 and 0.1, respectively. Let
pz1%(-) be the one-step conditional first-order mean semi-deviation with A = 0.5 in
(2.9). For partition S = {{wy,wa}, {ws, wi}}, p(Z) = 104.32 but (Eyopzy)(Z) =
106.36.

Therefore, By o p 7|4 is not necessarily a valid lower bound for all coherent risk

measures.

3.2.2 Lower Bound for Optimization Problem

In this section, we extend the lower bound proposed in Proposition [1| to a risk-
averse mixed-integer multi-stage stochastic problem with an objective of dynamic
mean-CVaR risk measure. As discussed in Chapter , the problem can be
written as a DP problem,

(P)  min  fi(z1) + p(Q(21,9)), (3.10)

T1EX]
where

Q(r1,§) = min oy 7 (fo(22,82), - -, fr(or, ér)), (3.11)

xi€X,te{2,...,T}
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& =1{&L,, p(+) is a mean-CVaR risk measure with parameters a € [0,1) and
€1 € [0,1], and po7(+) is a dynamic mean-CVaR risk measure. Let 2} and z* be

an optimal first stage solution and the optimal value of (P), respectively.

Recall the partition S = {S;}7_; of Q and sigma algebra ¢ induced by this
partition. Then, the j* group subproblem is just problem (P) with sample space
S; and adjusted probabilities pj,,w € S;. Additionally, the risk measure p(-) in
is replaced by pg,(-). For j € {1,2,...,J}, let 27 be the optimal value
of j™ group subproblem. Also let Z; 5 be a ¥-measurable random variable that

takes value of 27 with probability p; =" 3, Pu-

In Theorem [I], we show that a lower bound for risk-averse mixed-integer multi-
stage stochastic problem (P) can be obtained by using optimal values of group

subproblems.

Theorem 1. Let py : Loo(Q,9,P) — R be a mean-CVaR risk measure with
parameters o € [0,1) and €1 € [0,1]; and pgy - Loo(Q, F, P) = Loo(, 4, P) be
a conditional mean-CVaR risk measure with parameters o € [0,1) and €} € [0, 1]
satisfying 1 — e < (1 —el)(1 — €2) and (1 + %e}) <1 + %e%) <14 %e.
Then, z* > py(ZLp).

Proof. Recall that 7 is an optimal first stage solution of (P). Note that, it is
a feasible first stage solution for each group subproblem. By optimality of each

group subproblem, we have

fl(‘f{) + pS]<Q($T7€>) > Zj? vj < {17 T J}

and
fi(@}) + prw(Q(21,€)) = Zip. (3.12)

The values on both sides of inequality (3.12) are ¢4 —measurable. Since, pg(-) is

a coherent risk measure and it satisfies monotonicity axiom (A2), we get

Py (f[1(2]) + pzw(Q(21,€))) = py(ZLB). (3.13)
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Note that, fi(z}) is an .# —measurable cost. Since ¢ is a sub oc—algebra of .7,

fi(x3) is 9 —measurable, as well. Applying translational equivariance axiom (A3)
to the left hand side of (3.13]), we get

Py (pze(fi(z]) + Q(x1,£))) > py(ZLp). (3.14)

Since conditions in (3.9)) are satisfied, we can apply Proposition [1|to the left hand
side of inequality ((3.14)) and obtain:

p(fr(27) + Q(a7,€)) = py(ZLp)-

Finally, using translational equivariance axiom (A3), we get

2= filz1) + p(Q21,€)) = pg(Zp)-

Theorem (1| implies that a lower bound on the optimal value of (P) can be
obtained by solving group subproblems and then applying pg(-) to the optimal
values of these group subproblems. Since group subproblems include smaller
number of scenarios compared to the original problem, they are computationally
less challenging. Moreover, applying pg(-) to the optimal values of group sub-
problems requires negligible computational effort, since it is only the calculation

of value of a risk measure pg/(-) for a given random cost.

Although the dynamic risk measure is widely used in the literature,
there are other risk measures that can be used to evaluate the risk of a sequence
of random variables. We show that our approach can also be applied to the
risk-averse mixed-integer multi-stage stochastic problems with different dynamic

extensions of mean-CVaR.
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3.2.3 Extension to Other Dynamic Measures of Risk

Some examples of dynamic risk measures apart from are multiperiod mean-
CVaR and sum of mean-CVaR (see, [48] and [49], respectively). For a sequence
of random variables Z; € Z;,t € {1,...,T} adopted to the filtration Z;,t €
{1,..., T}, multiperiod mean-CVaR is defined as

T

P ZY ) = Y MElpsiz L (Z); (3.15)

t=2

and sum of mean-CVaR is represented as

Sum {Zt Z)\tpt Zt (316)

with Y.L, A =1, A\ >0fort e {2,3,...,T}.

Our approach is also applicable for the case where the risk measure is applied

to whole scenario cost as a time inconsistent objective function, that is,
p M ZAE ) = p(Zy + Zy+ .+ Zp). (3.17)

Although the risk measure (3.17) can be applied to a sequence of random vari-

ables, it is not a dynamic measure of risk.

The risk measure defined in (3.15)) is a time consistent dynamic measure of

risk whereas the risk measures ([3.16)) and (3.17) are not time consistent.

In the following three propositions, we show that a lower bound for these three
risk measures can be obtained by scenario grouping. Therefore, our approach is

still valid for Problem (P) with an objective of one of these risk measures.

Consider an arbitrary sequence of random variables 7, € Z,,t € {1,...,T}
adopted to the filtration %, ¢t € {1,...,T}. To avoid notational ambiguity, ex-

pectation operators and risk measures are given without reference sigma algebras.
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Proposition 2. For a multiperiod mean-CVaR risk measure p™ % (-) as defined
in , Eo pmulti() is a valid lower bound.

Proof. If multiperiod mean-CVaR risk measure (3.15)) is applied to the sequence
Zy € Zit € {1,...,T}, then

T

pmum({Zt}f:Q) - Z ME [p,%{%fl(zt)] )

t=2

Since pz,#,_, () is a conditional mean-CVaR risk measure, the lower bound E o
P77, (-) applies for t € {2,3,...,T}. Then,

T
multz {Zt}t 2 > Z P/t|<%_1(Zt)H .
t=2

Since expectation is a linear operator, we get

T

Z ME[p.z, 7, (Z4)]

t=2

Y

P ({Ziti) Z B

or equivalently,

P {2 ) 2 B [p ({Z3)] -

Since the sequence Z; € Z;,t € {1,...,T} is arbitrary, the desired result follows.
O]

Proposition 3. For a sum of mean-CVaR risk measure p*™(-) as defined in
, E o p¥™(-) is a valid lower bound.

Proof. 1f sum of mean-CVaR risk measure (3.16) is applied to the sequence Z; €
Zt,t € {]., ce ,T}, then

Sum {Zt}t 2 ZAtpt Zt

36



Similarly, E o p,(-) applies for t € {2,3,...,T}. Then,

T
Sum {Zt}t 2 > Z Pt Zt
t=2

and

P ZA,) > E

)

T
Z )‘tpt(Zt)
t=2

or equivalently,
P ({Z:}is) 2 E [P ({Zi})] -

Since the sequence Z; € Z;,t € {1,...,T} is arbitrary, the desired result follows.
O]

Proposition 4. For the risk measure p*"*¢(-) as defined in , Py opzig(:) is
a valid lower bound if parameters of py(-) and pzy(-) satisfy conditions in .

Proof. Follows from Proposition [1} O

As shown above, our proposed lower bound is quite general and can be applied

to other dynamic mean-CVaR measures.

3.2.4 Upper Bound for Optimization Problem

Obtaining an upper bound, or equivalently finding a feasible solution of a min-
imization problem, is crucial for the instances where an optimal solution is not
available. A good quality feasible solution gives the decision maker an action
to be taken and measures the quality of obtained lower bound when an optimal

solution is not available.

An upper bound for the optimal value of (P) can be obtained by using optimal
solutions of group subproblems. Once j* group subproblem is solved, an optimal
solution of it, namely 27, is obtained. Let U B; be the optimal value of (P) where

some of) the variables appearing in j* group subproblem are set to z7. We call
P gmjgr g
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this problem as restricted problem. Since some of the problem variables are fixed,
solving the restricted problem is easier than the original one and the resulting

scenario tree can become decomposable.

If the restricted problem does not have a feasible solution, then correspond-
ing upper bound UB; is set to infinity. The best available upper bound UB is
obtained by taking minimum of UB; values over all j € {1,...,J}, that is,

UB= min UB,. (3.18)

In Algorithm[I] we present how group subproblem approach can be used to ob-
tain lower and upper bounds for the multi-stage risk-averse mixed-integer problem
(P) with dynamic mean-CVaR objective. The algorithm can be easily adopted
to the other risk measures given in Section [3.2.3]

3.3 Computational Experiments

In this section, we conduct our numerical experiments on a multi-stage lot sizing
problem studied in [50]. All computational experiments are performed on an
Intel(R) Core(TM) i7-4790 CPU@3.60 GHz computer with 8.00 GB of RAM
with Java 1.8.0.31 and IBM ILOG CPLEX 12.6. We first introduce risk-averse
multi-stage lot sizing problem (RAMLSP) with dynamic mean-CVaR defined in
(2.13). Then, we compare the results obtained via usage of different scenario
partition strategies and lower bound choices. We also compare the proposed

algorithm and CPLEX in terms of solution quality and required CPU time.
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Algorithm 1 Lower and upper bounds for (P)

Input: A risk-averse mixed-integer multi-stage stochastic problem (P) and a
partition S = {S;}/_; of sample space €.
Initialize: LB < —oo and UB <+ 400

Lower Bounding:
for all j € {1,2,...,J} do
Solve the j%* group subproblem.
27 < an optimal solution of j*" group subproblem
2J < optimal value of j** group subproblem
end for
Let Z;p be a random variable that takes value z/ with probability p; =
Zwesj Puw
LB ﬁg(ZLB)

Upper Bounding:

for all j € {1,2,...,J} do
UB; <« the optimal value of the original problem with the additional con-
straint where (some of) the variables appearing in 5 group subproblem are
set to z7.

end for

UB < minjeg 2

ceay

Return: LB and UB

3.3.1 Risk-averse Multi-stage Lot Sizing Problem with
Mean-CVaR

The objective of RAMLSP is to minimize the dynamic mean-CVaR risk mea-
sure over T periods subject to demand satisfaction and capacity constraints.
RAMLSP-T-r represents an RAMLSP instance with 7" stages in which random
components can take r different values at each stage. Therefore, total number
of scenarios in an RAMLSP-T-r instance is 77~!. We generate random test in-
stances as in [50]. The same setting of the parameters is also used by [39], that
is, hy, ~ U[0,10], oy ~ U[3.2,4.8]E[h], B, ~ U[320,480|E[h], dy, ~ U[0,100]
and My, ~ U[40T,60T], where Ula, b] represents uniform distribution between a
and b.
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Using the scenario tree representation given in Section [3.1 RAMLSP can be

stated as follows:

(RAMLSP) (3.19)
minimize Z; + pz,|7, (Zg + P73 7 (Z3 + .t papar . (Z7) . )) (3.20)
subject to  Zy, = iy + Bl + hiwSt, Yu € Qy, t € {1,...,T} (3.21)
S(t—Da(u) + Ttu = Ay + Stu,  Yu € Qy, t€{1,...,T} (3.22)

o < MY, Yu €y, t€{l,...,T} (3.23)

Ty, St > 0 and integer, yy,, € {0,1}, Yu ey, t€{1,...,T}

30a(v1) = O

Here x4, is the production level, y;, is the setup indicator and sy, is the inven-
tory level variables at node u € Q; in period t € {1,...,T}. @, Bru, Ptw, di and
My, denote unit production cost, setup cost, inventory holding cost, demand and
production capacity parameters, respectively. Z; is the sum of deterministic pro-
duction, setup and inventory holding costs incurred in the first stage. Similarly,
Zy, 18 the cost incurred at node u € Q; at stage t € {2,...,T}. Z; represents
the random variable that takes values of Z;,,u € €; with respective probabili-
ties. The objective is the dynamic risk value over the planning horizon.
Constraints calculate the cost incurred at each node of the scenario tree.

Constraints (3.22)) and (3.23) are inventory balance and capacity constraints, re-
spectively. Constraints (3.24)) are domain constraints. Unlike [50] and [39], we

assume that production and inventory levels are required to be integer valued.

Although this assumption increases the problem complexity, we have a more re-
alistic representation to evaluate the performance of the algorithm. In order to
linearize RAMLSP, the linearization of mean-CVaR presented in Section is

used.

For the computational experiments, we use three different values of weight
parameter ¢; € {0.8,0.5,0.3} and level parameter o € {0.9,0.8,0.7} of mean-

CVaR. Therefore, we have nine different risk-aversion settings.
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3.3.2 Choices of Scenario Partitions and Lower Bounds

As seen in Example[3] the value of each lower bound highly depends on chosen sce-
nario partition. We consider four possible scenario partition strategies obtained
by grouping the scenarios in different ways, namely index1, index2, similar and
different. For each strategy, we can also specify the number of scenarios in each
group as a function of the number of scenarios |{2| and the number of groups J.
Let a%b be the remainder after the division of a € R by b € R, [-] be the ceiling
function, and |-| be the floor function. Then, each scenario grouping strategy
yields a scenario partition that has J groups, where |Q2|%.J groups have cardi-
nality [|Q|/J] and J — (|Q2|%J) groups have cardinality ||2|/J]|. For example,
if || = 32 and J = 5 then the cardinality of two groups will be seven and the

other three groups will have cardinality of six.

Partition strategies index! and index2 are based on the structure of scenario
tree. In indexrl, the last stage nodes sharing the highest number of common nodes
are placed into the same group. On the other hand, indez2 is obtained by placing

the last stage nodes sharing the least number of common nodes into the same

group.

If a priori information on the cost of each single scenario under an optimal
solution is available, the groups can also be obtained with respect to similarity
and diversity of individual scenarios. Since this information is not available before
solving the original problem, the deterministic version of the original problem
apriori can be solved for each scenario separately, and the corresponding single
scenario costs can be used to obtain two different scenario partition strategies
named as similar and different. Note that, for both strategies, an additional

computational effort is required to obtain single scenario costs.

In strategy similar, we assign [|€2|/J] scenarios that have the largest single
scenario costs to the first group. Then, depending on the cardinality of the second
group, [|Q]/J] or ||Q2|/J] scenarios that have the second largest single scenario

costs are assigned to the second group, and so on.
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w; 12

wg 6
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w14
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w3 10
w3
wys 2

wg 11

Figure 3.3: An example of three-stage scenario tree with 16 scenarios.

In partition strategy different, each scenario is assigned to one of J groups by
assigning the scenario with the largest single scenario cost to the first group, the
scenario with the second largest single scenario cost to the second group, and so
on. This assignment process returns to the first group after assigning the first J
scenarios and the process restarts. It is ended after all scenarios are placed in a

group.

With respect to single scenario cost values, in strategy similar, the dispersion
within each group is low, however, the dispersion between the groups is high. On
the other hand, in partition strategy different, the dispersion within each group
is high.

Example 5. Figure depicts the scenario tree for an RAMLSP-3-4 instance
where the numbers near the scenarios indicate the cost of each individual scenario.
The scenarios can be ordered as wy, Wy, Wi1, We, W7, Wig, W13, W1, Wig, W2, Ws,
w3, Wi, Wi4, Wi, ws where the individual scenario costs decrease moving through

from wy to ws. Table presents different scenario partition strategies for this

scenario tree.

In order to observe the quality of bounds obtained by different scenario parti-

tion strategies and lower bound choices, the proposed algorithm is applied to five
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Partition Strategy ‘

S

So

S3

Sy

index1
index2
similar

different

{Wh Wwa, Ws, w4}
{W1>W57W97w13}
{w97 Wy, W11, W6}

{ws), wr, Wio, wlz}

{w57 We, W, Ws}
{w2> We, W10, w14}
{w%WlGanBawl}

{w4, w16, W2, w14}

{W97W107w117w12}
{wg,w7,wn,w15}
{wl(h Wa, Wg, Mg}

{wu, w13,ws,w15}

{W13, W14, W15, w16}
{UJ4, wg, W12, ww}
{wlz, W14, W15, W5}

{WG./ W1, W3, (}J5}

Table 3.3: Different scenario partitions S = {51, Ss, S3, S4} for the example sce-
nario tree in Figure .

RAMLSP-3-30 instances generated via different random seeds. Total number of
scenarios is 900. We consider the number of groups as J € {2,4,10}, and hence
each group subproblem includes 450, 225, and 90 scenarios, for the respective
value of J. While obtaining upper bounds, optimal production decisions of group
subproblems are fixed in the restricted problems. As noted before, for strategies
similar and different, single scenario costs are required. The CPU time needed
to obtain these values are also included in the running time of the algorithm.
In order to measure the quality of lower and upper bounds, an optimality gap
information Gap(%) = 100 (UB — LB)/UB) is used. All running times are re-
ported in seconds. The results are presented in Table [3.4], where the Gap and

Time values are the average values of five randomly generated instances.
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The bold entries in Table [3.4] correspond to the smallest optimality gap values
among all lower bound choices, partition strategies and number of groups. It can
be observed that, the smallest optimality gap values are obtained with strategy
different, lower bound choice Ey o pz)y, and J = 2. Regarding to the optimality
gap, Ey o pz1# is the best lower bound choice. In general, for Ey o pz4, the
partition strategy different provides the smallest optimality gap for any J value,
and the strategy similar is the worst one. This is a consequence of the fact that
group subproblems with original dynamic risk measure reflect the risk-aversion

behavior of the original problem better when the dispersion within groups is high.

Moreover, the running time of the algorithm decreases as moving through lower
bound choices py o Ez4, pg o Py and Eg o pzy, in general. For example, with
partition strategy different and J = 2, the average running times for lower bound
choices py 0o Ez1y, p5 o pf%g and Ey o pzio are 57.18, 37.79 and 14.6 seconds,
respectively. On the other hand, no partition strategy is preferable among others
for all lower bound choices with respect to the running time. The computational
experiments summarized in Table reveal that the partition strategy different
and the lower bound choice Eg o pz¢ are the most promising choices when the

bound quality and the running time are considered.

Although the upper bounds obtained from different partitions are incompara-
ble, a hierarchy of lower bounds can be obtained using refinement chains. More-
over, the lower bound values can be improved by relaxing the requirement that
groups should be disjoint. If this requirement is relaxed, some fixed scenarios
appear in each group. We call this as scenario fixing. In the next subsection, we
will discuss refinement chains, scenario fixing, and their impact on the quality of

the lower bound.

3.3.3 Refinement Chains and Scenario Fixing

In [42], refinement chains and scenario fixing are considered to improve the quality
of lower bounds obtained via scenario grouping. We suggest Proposition |5 to

construct a refinement chain. We show a relation between two lower bounds
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obtained via two different special scenario partitioning with the lower bound
choice Ey o pgiy. Let LB(S') and LB(S?) be the lower bounds Eg1 o pgzign
and Eg2 o pzig2 on the optimal value z* of (P), obtained by partitions S =
{S1,...,5%} and 8 = {S},...,5%} where 4! and ¥? are the sigma algebras
induced by S! and &2, respectively.

Proposition 5. Let S* and §* be two different partitions of Q, where S} (1 Sj, = 0
for g7 €{1,...,J}, j# 7 and S2,(S2, =0 form,m’' € {1,..., M}, m # m'.
[ffor all S; € §', j€{1,...,J} there exists S; € 8%,k € {j1,...,jk,} such that

.....

Proof. For j € {1,...,J} and k € {j1,...,jk,}, let 2/ and Z*¥ be the optimal
values of group subproblems defined by groups Sj1 € 8! and S? € §?, respectively.
Also let p; = Zwes; po and Py = Ewes,f oy .

Since SZ,k € {ji,... ,JK,} is a partition of S}, Theorem |1| implies that
J> 03 Bovieqn,. ),
p.

where % is the total conditional probability of scenarios in SZ,k € {j1,...,] K; )
J

given S}. Then, we have

or equivalently,

2 = 2. 2wt

je{1,..., je{1,....J} ke{l,....K;}
Then, we get
2. Wﬂ> > bt
je{1,..., me{l,...,M}

where pp, = > o2 Po and 2™ is the optimal value of the group subproblem Sz
for m € {1,...,M}. Hence, LB(S') > LB(S?) by definition of LB(S') and
LB(S?). O
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Partition Groups

S Q

Sy {wg, w11, wr, Wiz, wio, w8, Wiz, wis }, {wa, We, Wi, Wi, Wa, Wy, Wa, Wia, Ws f

Sy {W9>W77W107W12} 7{W4~,W167W27W14}7 {W117W13~,W87W15}>{W67W17W3>w5}

Ss {wo, wio}, {wa, wa}, {wir, ws}, {we, wa}, {wr, wia}, {wis, wia}, {wis, wis}, {wr, ws}

Si6 {wol, {wi}, {wn}, {ws}, {wr} {wie}, {wis} {wi}, {wio}, {wa}, {ws}, {ws} {wiz}, {wia}, {wis}, {ws}

Table 3.5: A refinement chain for the scenario tree in Example |5 where the
partition strategy is different.

A sequence of partitions S', 82,83, ..., for which LB(S') > LB(S?) >
LB(8?) > ---, is called a refinement chain. Table shows a refinement chain
for the scenario tree in Example |5 where the partition strategy different is used
and S; denotes a partition with J groups. Note that, in partition Si4, each group

subproblem is a deterministic problem with only one scenario.

We conduct a computational experiment where five different RAMLSP-3-32 in-
stances with 1024 scenarios are used with the refinement chain &1, S, Sy, . .., Siog
which is obtained with partition strategy different. Table presents the num-
ber of scenarios in each group (# sce), the average lower bound gap (LB_Gap)
and the average running time (Time) for each partition of the refinement chain.

LB_Gap values are calculated as

“_ LB
LB_Gap(%) = 10027,

where z* is the optimal value of our problem.

As expected, the quality of the lower bound obtained by scenario grouping
increases when the number of scenarios in each group subproblem increases with
a cost of longer running times. Another suggestion of [42] is relaxing the disjoint
groups assumption to improve lower bound quality. Recall that w € € is a
scenario with probability p, and J is the number of groups. We can relax disjoint
groups assumption by placing w into k € {2, ..., J} different groups. In this case,
w is replaced with & identical scenarios each having a probability of p,, /k and these

new scenarios are placed into k different groups.
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We conduct another set of computational experiments for five different
RAMLSP-3-32 instances where eight scenarios with the largest single scenario
cost appear at each group and we present the results in Table It is observed
that the quality of lower bounds improves when we allow some scenarios to appear
in all groups. However, the running times may get larger since the number of
scenarios in each group subproblem increases. For example, when J =2, o = 0.7,
€1 = 0.3, for the case where eight scenarios are fixed, the LB_Gap decreases by
0.01% but the required time to obtain lower bound increases to 2749.1 from 104

seconds.
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3.3.4 Computational Study Results for Larger Number
of Stages

Up to now, we have shown that the lower bound choice Ey o pzy, the par-
tition strategy different, and considering disjoint groups is the most promising
combination among all bound and partition combinations. Therefore, further
computational experiments are conducted on the instances with more stages un-
der this setting. We also conduct a set of computational experiments to compare
the performance of the proposed algorithm with CPLEX in terms of optimality

gap and solution time.

In the upper bounding phase of the proposed algorithm, the restricted problem
is solved for each group. When the number of groups J in a partition is large,
the upper bounding phase requires long CPU times. Therefore, one may solve
the restricted problem for only a subset of groups. Another computational en-
hancement for the upper bounding phase is running the restricted problems with
a prespecified time limit and reporting the objective value of current incumbent
solution as UB;. Since, the optimal value of the restricted problem is an upper
bound for the original problem, the objective value of any incumbent solution is

also a valid upper bound.

We solve RAMLSP-3-64, RAMLSP-4-8, and RAMLSP-5-4 problems with 3,
4, and 5 stages, respectively, and for each risk setting, we generate five instances
using different random seeds. The algorithm is applied with lower bound choice
Ey o pz1# and the partition strategy different, where number of groups, J, takes
values of 4, 8, 16, and 32. The number of restricted problems to be solved is
[J/5], which are selected randomly. The time limit for each restricted problem

is set to 10 seconds. The results are presented in Table |3.8]
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Proposed Algorithm CPLEX
a € | Gap Time Gap_CPLEX GAP Difference | Time_CPLEX Delay
0.8 | 1.02% 68.9 2.76% 1.74% 248.3 3.60
0.9 0.5]0.92% 132.6 3.47% 2.55% 2366.7 17.84
0.3 | 0.74% 697.4 1.39% 0.65% 719.9 1.03
0.8 |0.71% 27.5 2.04% 1.33% 241.9 8.79
0.8 0.5 0.66% 97.4 1.48% 0.82% 403.9 4.15
0.3 | 0.60% 376.1 0.89% 0.29% 603.0 1.60
0.8 | 0.54% 51.8 2.47% 1.93% 246.4 4.75
0.7 05[056%  129.2 1.13% 0.57% 444.2 3.44
0.3 | 0.48% 373.1 0.81% 0.33% 1445.6 3.87

Table 3.9: Comparison of optimality gaps and running times of the proposed
algorithm with CPLEX.

As seen in Table [3.8] increasing the number of groups in the partition may
not always yield CPU time saving. As J increases, the optimality gap increases,
on the other hand, the CPU time may not always decrease. Specifically, when
J is increased to 32 from 16, the CPU time increases in all of the instances. As
the number of groups J increases, the subproblems get smaller in size. However,
the number of group subproblems and the restricted problems to solve increases.
Therefore, increasing the number of groups may not always result in a decrease

in the running time of the algorithm.

An interesting question is the comparison of the proposed algorithm with
CPLEX in terms of optimality gap and CPU time. To make a fair compari-
son, we use RAMLSP-3-64 instances where CPLEX is run as long as it reaches
to the optimality gap or the CPU time of the proposed algorithm.

When CPLEX is allowed to run with one hour of time limit, it cannot solve
any of the instances optimally. Table presents the comparison of the proposed
algorithm with CPLEX for J = 4.

In Table 3.9, the column “Gap_CPLEX” corresponds to the optimality gap
value reported by CPLEX when it is allowed to run as long as the running time

of the proposed algorithm. Moreover, the values in the column “GAP Difference”
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is measured as the difference between CPLEX gap and the gap obtained by the
proposed algorithm. When CPLEX is allowed to run as long as the solution time
of the proposed algorithm, the algorithm yields 1.13% stronger bounds on the
average. For example, when o = 0.7 and ¢; = 0.8, our algorithm terminates
with an optimality gap of 0.54% within 51.8 seconds. CPLEX stops with an
optimality gap of 1.93% within the same time limit, that is, the bounds obtained
by our algorithm is 1.39% better than the bounds obtained by CPLEX.

In Table [3.9] the column “Time_ CPLEX” corresponds to the time in seconds
that CPLEX takes to reduce its gap to the level of the gap obtained by the
proposed algorithm. Also, the values in the column “Delay” are measured as the
ratio of Time_CPLEX to the running time of the proposed algorithm (7Time).
CPLEX requires 5.45 times longer running time to achieve the optimality gap
of the proposed algorithm, on the average. For a = 0.9 and ¢; = 0.5, CPLEX
requires 2366.7 seconds to achieve the optimality gap of the proposed algorithm,
that means CPLEX needs to spend more than 17 times of the running time of
the proposed algorithm in order to reach this optimality gap. These results show
that the proposed algorithm outperforms CPLEX with respect to both optimality

gap and running time.

3.4 Conclusion

In this chapter, we propose a group subproblem approach for risk-averse mixed-
integer multi-stage stochastic problems with a dynamic risk measure defined by
mean-CVaR. To the best of our knowledge, this is the first study where group
subproblem approach is applied to a risk-averse problem with an objective of a
dynamic risk measure. We show that infinitely many lower bounds on the optimal
value of the problem can be obtained by using different convolution of mean-CVaR
risk measures. An upper bound is obtained through the use of optimal solutions of
group subproblems, as well. The results are tested by a computational study on a
multi-stage lot sizing problem. The effect of partition strategies and lower bound

choices on the optimality gap of the proposed algorithm is investigated. Possible
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computational enhancements such as refinement chains and scenario fixing are

also considered.

It is revealed that, on the average, the optimality gap of the proposed algorithm
is 1.13% stronger than the optimality gap of CPLEX within the same running
time. By solving the original problem with CPLEX, the optimality gaps of our
algorithm can be achieved with additional running time more than a factor of

five.
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Chapter 4

An Exact Solution Approach for
Risk-averse Mixed-integer

Multi-stage Stochastic

Programming Problems

In this chapter, we propose an exact solution algorithm for risk-averse mixed-
integer multi-stage stochastic programming problems with an objective of dy-
namic mean-CVaR risk measure and binary first stage variables. The proposed
method is based on an evaluate-and-cut procedure where the lower bounds are
obtained from group subproblems. Moreover, we show that, under the assump-
tion that the first stage integer variables are bounded, the problem with mixed-
integer variables in all stages can be solved with the proposed algorithm. In
order to observe the performance of the proposed algorithm, we conduct a set
of computational experiments on risk-averse mixed-integer multi-stage problems.
In our experiments, we consider large instances of risk-averse multi-stage stochas-
tic server location and generation expansion problems. We also investigate some
implementation details of the algorithm such as scenario partitioning choices and

group sizes and then analyze their effects on the performance of the algorithm.
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As the computational experiments reveal, under modest computational settings,
the proposed algorithm is able to solve large problem instances with over one

million binary variables within a reasonable time.

The organization of the chapter is as follows: In Section 4.1 we define risk-
averse mixed-integer multi-stage stochastic programing problems. In Section
we present the bounds obtained by scenario grouping. The proposed algorithm
is presented in Section [£.3] In Section [£.4 we show that our algorithm can
also be used for the problems with mixed-integer variables in all stages. The

computational experiments are given in Section [4.5] The concluding remarks are

presented Section [4.6]

The results of this chapter are accepted for publication in Annals of Operations

Research.

4.1 Problem Definition

We first recall the risk-averse multi-stage stochastic programming problem

gggg o1,7(f1(z1), fa(w2,&2), . . ., fr(zr, &), (4.1)

where X3 C RE' x Z2' x {0, 1} is a mixed-integer deterministic set and X; :
Rf’” X Zf‘l x {0, 1}Mi-1 x =, = RE* x Z2 % {0, 1} is the point-to-set mapping

representing mixed-integer .%;-measurable decisions at stage ¢t € {2,...,T}.

In this chapter, we use a scenario tree representation similar to the one in
Chapter [3] Let N and £ be the set of nodes and edges of the scenario tree,
respectively. Nodes at stage t € {1,...,T} correspond to possible realizations of
the history until that stage. Let §; be the set of nodes at stage t € {1,...,T}
and hence N = Ute{l,...,T} ;. At the first stage, there is only one node r called

as the root node.

A scenario can also be defined as a unique path from the root node to a node
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Figure 4.1: A four-stage scenario tree.

in Q. Let p, be the probability of scenario w € €). Then, probability associated
with node n € N is p, = Zwem P Where P, is the set of scenarios passing

through node n € N. For the root node, we naturally have p, = 1.

In the scenario tree representation, the sigma algebra Fr consists of all subsets
of Qp. For every node n € N'\ {r} at stage ¢, there exists a unique ancestor node
A(n) € ;1 such that the edge (A(n),n) is in €. For each node n € N\ Qr,
there exists a set of children nodes C(n) = {m € Q41 : A(m) = n} such that
Q1 = Upeg,C(n). Fort € {1,...,T — 1}, let F; be the subalgebra of F;,
generated by sets C(n) for all n € ;. Hence, there is a one-to-one correspondence
between elementary events of F; and nodes in the set €, for t € {1,...,T}.
By construction, we get the filtration /; C Fy--- C Fp. The aforementioned

notation is depicted on an example of four-stage scenario tree in Figure [4.1]

The number of decision variables in Problem ({4.1]) is proportional to the num-
ber of nodes |[N| in the scenario tree. Since |[N| grows exponentially with the
number of stages for any non-trivial scenario tree, solving Problem (4.1)) is com-

putationally demanding for even small number of stages.

In this chapter, we focus on the case where pz,, |z, is a conditional mean-CVaR

risk measure for t € {1,...,T — 1}. The conditional mean-CVaR is defined as

pfé‘t+1\ﬁt(zt+1) = (1 - E)E[Zt+1|a%s] + ECvaRa(ZtJrlLajt)» (4-2)
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where .
CVala(Zestl %0 = inf {0+ 2Bl Zuss = )17 |

is conditional CVaR defined with parameter o € [0,1) and € € [0,1]. In (4.2),
mean-CVaR value of a random variable Z;,; € Z;,; can be interpreted as a

convex combination of its conditional expectation and conditional CVaR values.

4.2 Lower Bounds via Scenario Grouping

In this section, we present a lower bound for our problem by using scenario
grouping as discussed in Chapter [} The proposed lower bound is used in the

algorithm presented in the next section.

Recall the probability space for problem (4.1)), (€2,.%, P) where €2 is the sample
space. A subset of scenarios S C (1 is called as a group. Let S = {Sj}jzl be
a collection of groups that forms a partition of €2, that is, szl S; = Q and
S;N S =0 for all j,5" € {1,2,...,J} such that j # j'. The empty intersection

requirement can be relaxed (see, for example, [39]).

The total probability of scenarios in group S; is p; = > . s, Pu for 5 €
{1,...,J}. We also define conditional probability of scenario w given that w € S;
as P, = Pu/p; and P as the probability distribution defined by these conditional

probabilities on the sample space S;.

We define j** group subproblem as problem (4.1)) which is defined on the
probability space (5], ﬂ‘N, ﬁ) where .Z is the sigma algebra generated by S;.

Proposition 6. Let z; be the optimal value of j™ group subproblem. Then,
Z‘j]:l p;jzj is a lower bound for the optimal value of .

Proof. See Theorem [I] in Chapter [3 O O
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In this chapter, we develop another lower bound obtained from scenario group-
ing.
Proposition 7. Let Z; be the optimal value of j™ group subproblem in which

integrality requirements for the decision variables at stages t € {2,3,...,T} are
relazed. Then Z;.lepjij is a lower bound for the optimal value z of :

Proof. Due to Proposition @, we have z > ijlpjzj. Since, z; > Z; for all
. J J r
J€{1,2,...,J}, weget 2> 5 pjz; > ) 5 piZ. U O

Note that the lower bound in Proposition 7] is no stronger than the lower
bound in Proposition [6] However, calculating the lower bound in Proposition [7]is
computationally easier since it requires solving group problems without integrality
requirements for the decision variables at stages t € {2,3,...,7}. Hence, the

latter lower bound is used in the proposed algorithm.

Scenario grouping significantly reduces the computational effort required to
solve the risk-averse mixed-integer multi-stage programming problem . Fig-
ure illustrates the scenario trees of group subproblems obtained via scenario
grouping. The scenarios of the original problem are placed in groups S, S2 and

S3 and indicated by colors red, green and blue, respectively.

4.3 An Exact Solution Algorithm for the
Problems with Binary First Stage

Variables

In this section, extending the idea in [43], we propose an exact solution algorithm
for the risk-averse mixed-integer multi-stage stochastic programming problem
(4.1)) with binary first stage variables, that is, X; C {0,1}* and K; = L, = 0.

The proposed algorithm stores a set D C A of candidate first stage solutions

and an incumbent first stage solution =7 € D through execution. If a candidate
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Figure 4.2: A four-stage scenario tree and the new scenario trees used in group
subproblems.

first stage solution x| € D is a feasible first stage solution for problem (4.1)), then
solving (4.1)) with constraint x; = 2] gives an upper bound for the optimal value
of (4.1). The incumbent solution z7 is the first stage solution which yields the

smallest upper bound value among all candidate solutions in D.

For a given scenario partition, a socalled lower bound is obtained on the optimal
value of by applying scenario grouping for with first stage feasibility
set X1 \ D. Note that, this is not necessarily a lower bound for the original
problem since some feasible first stage solutions are eliminated from X;. At
each iteration, if this lower bound is smaller than the objective value given by
x7, then the algorithm adds the new candidate solutions to set D; otherwise, the

algorithm terminates.

Since we assume that all first stage decision variables are binary, extraction of
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the candidate first stage solutions in D from X}, that is obtaining the set X; \ D,
can be done by using no-good cuts. A no-good cut separates a specific binary

vector from a set. Specifically, a no-good cut for binary vector z} is of the form

Z (1—my,) + Z ry; 2> 1,

s e —
iz =1 w:zq,=0

where z; and z; correspond to the i component of vectors z; and z, respec-

tively (see, for example, [51]). Then we have,

XM\D=queX: Yy (l—a)+ » ;=1 VaheD

LY S o —
], =1 ], =0

The overall scheme of the proposed algorithm is an evaluate-and-cut procedure

presented in Algorithm

Proposition 8. Algorithm[g terminates after a finite number of iterations finding
an optimal solution if problem (4.1)) is feasible and has finite optimal value or with
declaration of infeasibility if 18 infeasible.

Proof. At the lower bounding phase of each iteration of the algorithm, at least
one first stage solution is removed from A&} and added to D or the algorithm
terminates directly. Also since X; C {0,1}M1 the cardinality of X; is finite.
Therefore, the algorithm terminates after a finite number of iterations. Consider

the following two cases:

(a) Problem is feasible and has finite optimal value: Let z*(AX;) be the
optimal value of problem (4.1)) as a function of the first stage feasibility set

X;. Since, the cardinality of X} is finite, we have
2*(X)) = min{z*(D), z* (X, \ D)} (4.3)

at any iteration of the algorithm. For an incumbent solution z7 € D, we
also have UB = z*({z}}) = 2*(D) and LB < z*(X, \ D) due to definitions
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of upper and lower bounds used in the algorithm. When the algorithm
terminates with UB < LB, the incumbent first stage solution guarantees
2*({z3}) = 2*(D) = UB < LB < z*(X; \ D). Hence, using (4.3), we get
2*(AX)) = z*({z7}) and therefore z7 is an optimal first stage solution of
problem (|4.1]).

(b) Problem is infeasible: If the problem is infeasible, UB never takes a
finite value since none of the problems in upper bounding phase is feasible.
Then, at the end of the algorithm, the incumbent is null and U B is positive
infinity.

If each group includes only one scenario, the proposed algorithm is a scenario
decomposition algorithm where the non-anticipativity in all stages is completely
relaxed. However, the proposed algorithm allows to obtain stronger lower bounds

by partially maintaining non-anticipativity due to scenario grouping.

Another important property of Algorithm [2| is decomposition of the problem
in the upper bounding phase. When the first stage decisions are fixed to z in the
original problem, the resulting problem decomposes into |€2;| smaller problems.
These smaller problems are risk-averse mixed-integer multi-stage problems with
T — 1 stages. Therefore, we benefit from decomposition of the original problem

in both lower and upper bounding phases of Algorithm [2

In the next section, we show that the proposed algorithm can be used to solve
the risk-averse mixed-integer multi-stage stochastic programming problems where

the first stage decisions are mixed-integer as well.
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4.4 Extension to the General Risk-averse
Mixed-integer Multi-stage Stochastic

Programming Problems

Although the proposed algorithm guarantees an exact solution for risk-averse
mixed-integer multi-stage stochastic programming problems with a dynamic
mean-CVaR objective function and binary first stage variables, it can be used
for the general case, where the first stage decision variables are not necessarily
pure binary. Let Q(z1) be the risk adjusted cost-to-go function depending on the

first stage solution x, that is,

Q) =psis, (| min  fo(es, &)

x2€Xa (1,62

+ Pﬁﬂ%_l( min fT($T7§T)> ) (4.4)

xr€Xr(xr_1,6T)

Then, the general risk-averse mixed-integer multi-stage stochastic programming

problem can be written as

min fi(z1) + Q(z1)
st.x1 = (ri; v 01) € A4,
Tll,Tlg,...,TlKl)ERngl, (45)

™ :(
y1 = (11, 412, - v1n,) € Z C LY,
b1 = (b1, br2, .., b)) € B C {0,131

where r1,y;, and by represent continuous, integer and binary decision vectors in
the first stage, respectively and z; represents the concatenate vector of first stage
variables. Recall that we have already assumed the decisions at stages 2,3,...,T

are mixed-integer.

Recently, [27] show that, under some reasonable assumptions, any risk-neutral
mixed-integer stochastic problems with mixed-integer state variables can be ap-

proximated by binarizing the state variables. In our context, we only consider
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binarizing the first stage integer variables. Following the similar arguments pre-
sented by [52] and |27], we can solve the general mixed-integer problem (4.5)) by

using binary representation of the integer first stage variables y;.

Assumption 1. The first stage integer variables in the general mized-integer

problem are bounded.

Assumption [I] holds for the most real life problems and ensures that there
exists a non-negative real number U such that y;;, < U for all I € {1,2,...,L}.
For each | € {1,2,...,L1}, yu = Y.,_y 2"y Is an exact representation of yy
with binary variables vy, ¢ € {0,1,...,7} and 7 = |log, U|. Thus, the general
mixed-integer problem can be written as

min f1<l’1) + Q(l‘l)
s.t. xy = (r1; A(D); by) € A4, (4.6)
€ R,AT) € Z, T €{0,1}1*0+Y b, € B,

where A : {0,1}1x(+D Zfrl is a linear mapping that restores y; from binary

variables I'.

We can employ Algorithm [2| to solve where the evaluate-and-cut proce-
dure is applied only to the first stage binary variables. Unlike the case where the
first stage variables are pure binary, the continuous variables in the first stage
prohibit decomposition in the upper bounding phase of the algorithm. However,
the computational results in Section reveal that the proposed algorithm effi-
ciently solves the general mixed-integer problem though decomposition is possible

only in the lower bounding phase.

4.5 Computational Experiments

In this section, we present the results of the computational experiments con-

ducted on risk-averse multi-stage stochastic server location problem (SSLP) and
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Table 4.1: The degrees of risk aversion used in computational experiments.

DRA ¢ o
I 0.4 0.7
IT 0.6 0.8
III 0.8 09

generation expansion problem (GEP). In risk-averse multi-stage SSLP, the first
stage decision variables are pure binary. Therefore, Algorithm [2] is directly ap-
plied to the problem. However, in risk-averse GEP, the first stage variables are
mixed-integer and hence we use the extension presented in Section to solve

these problems.

In our experiments, we use different degrees of risk-aversion (DRA) by changing
the values of the parameters of conditional mean-CVaR risk measure (4.2). These
values are presented in Table [4.1]

The computational experiments are performed on an Intel(R) Core(TM) i7-
4790 CPU@3.60 GHz computer with 8.00 GB of RAM. The algorithm is imple-
mented on Java 1.8.0.31 where IBM ILOG CPLEX version 12.6 with default set-
tings is used to solve optimization problems. For each test problem, five instances
are generated randomly and average values are reported. The performance of the
proposed algorithm is compared to deterministic equivalent problem (DEP) of

same instances.

4.5.1 Stochastic Server Location Problem

SSLP is a popular two-stage risk-neutral stochastic programming problem in
the literature. The motivation and detailed discussion on SSLP can be found
in [53]. An instance of SSLP is available in SIPLIB library at http://www2.
isye.gatech.edu/~sahmed/siplib. In our experiments, we use a risk-averse

and multi-stage version of SSLP.

The statement of risk-averse multi-stage SSLP is as follows: In a T-stage
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decision horizon, the objective is to determine the location of servers on a set
of potential nodes of a given network so as to minimize the dynamic coherent
risk defined in ([2.13)) where we use conditional mean-CVaR risk measure with

parameters € and « at each stage.

Servers can be located on M different potential server location nodes. There
is a fixed cost ¢, of locating a server at node m € {1,2,...,M}. There are V
different clients, whose demands at stage t € {2,3,...,T} should be satisfied by
one of the located servers. Let df = be the demand of client v if it is served by the
server located at m at stage t. One unit of profit is obtained for each unit of served
demand. The service capacity of a server is u. If the capacity is not enough to
serve all demands, a unit of demand can be served by the server located at m by
an overcapacity serving cost ¢’ at stage t. A client may or may not appear under
each scenario independently from other clients. Under each scenario, a client may
appear at a stage with probability 0.5. Let hl(w) = 1 if client v appears at stage
t under scenario w, and 0, otherwise. Let A! be an .%,-measurable random vector
whose components are hf with P{hf =1} = P{hl =0} = 0.5.

Location decisions are made at the first stage. Therefore, fixed cost due to
server location decisions is incurred in the first stage. The allocation decisions
are made at subsequent stages t € {2,3,...,T}. At stage ¢, the random cost is
the total service cost at stage t. The DEP of risk-averse multi-stage SSLP can be
modeled by using parameters and decision variables for each node of the scenario
tree. Moreover, linearization of mean-CVaR risk measure is possible by defining

additional auxiliary variables and constraints as shown in Chapter [3]

As an example, the DEP of the risk-averse three-stage SSLP is given below
which can be extended for larger number of stages easily. In the below model, a
superscript n or n’ indicates that the corresponding parameter or decision variable

is defined for node n € Q5 or n’ € 3 of the scenario tree, respectively.

M
. = 1 i
min Z CmZm + (1 —€) Z PnZy + € (771 + T Z pn<,02> , (4.7)
m=1

nefls nefls
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n n , 2n n _2n P
s.t. Zy = E (E ~ Yo, + O 3n> +(1—¢) —Z
n’eC(n)

m=1

+e€ n2+— Z Do), Wne (4.8)
nGC(n)
Z = Z <Z — 3y n) . Wn' e Qs, (4.9)
m=1
Oy > 75 —m, Vn€Q, (4.10)
o > 70—, Yn € Qu,n’ €C(n), (4.11)

12
> odn i Suzy o, Vme{L,2,... . M},ne 0, te {23}, (412)

v=1

Zym = A" Yoe{l,2,...,V},neQ,te {23} (4.13)

Zm € {0,1}, 9y € {0,1}, 0 >0,

Vme{1,2,...., M}, ve{1,2,....,V} nete{23} (4.14)
Z' ot >0, VneQ,te{23}, (4.15)
n,ns €R, Vn € Qy, (4.16)

where z,, takes value 1 if a server is located on node m and 0 otherwise, y/" takes
value 1 if client v is served by a server located on node m for n € ), at stage ¢
and 0 otherwise, and o!" is the over capacity used by server m for the node n € €,

at stage t.

The objective function and constraints — linearize the dynamic
coherent risk measure defined by mean-CVaR at each stage. The con-
straints and are capacity and allocation constraints, respectively.
The variables in are the original problem variables. The auxiliary variables
in are used to linearize the mean-CVaR risk measure. Finally, variables in
are due to definition of mean-CVaR.

A test problem of risk-averse multi-stage SSLP is represented as T-SSLP-M-V -
b where T is the number of stages, M is the number of potential server location

nodes, V' is the number of clients and b is the number of different values that
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Table 4.2: Problem statistics for risk-averse multi-stage SSLP instances.

Number Number of Number of Number of
Test problem . i . :
of stages scenarios  constraints binary variables
2-SSLP-5-25-50 50 1,601 6,255
2-SSLP-5-25-100 100 3,201 12,505
2-SSLP-10-50-50 50 3,101 25,010
92 2-SSLP-10-50-100 100 6,201 50,010
2-SSLP-10-50-500 500 31,001 250,010
2-SSLP-10-50-1000 1,000 62,001 500,010
2-SSLP-10-50-2000 2,000 124,001 1,000,010
3-SSLP-5-25-10 100 3,531 13,755
3-SSLP-5-25-20 400 13,461 52,505
3-SSLP-5-25-50 2,500 81,651 318,755
3 3-SSLP-5-25-100 10,000 323,301 1,262,505
3-SSLP-10-50-10 100 6,831 55,010
3-SSLP-10-50-20 400 26,061 210,010
3-SSLP-10-50-50 2,500 158,151 1,275,010
4-SSLP-5-25-10 1,000 35,631 138,755
4 4-SSLP-5-25-20 8,000 269,861 1,052,505
4-SSLP-10-50-10 1,000 68,931 555,010

the random vector h' can take at stage t. Therefore, the number of scenarios
in T-SSLP-M-V-b is bT~1. Similar to [53], the problem parameters are selected
as e ~ U0,80],d!, ~ U[0,25],u = 22Xt Mmant bl oy gt = 1000. Here,

» Yom M

Ula, b] indicates that the respective value is sampled form the uniform distribution
with range [a,b]. Problem statistics for risk-averse multi-stage SSLP instances

used in the experiments are presented in Table [4.2]

In the proposed algorithm, for each instance of all problems presented in Ta-
ble 4.2, we consider a partition with two groups with equal cardinalities, that
is, § = {51, 52} with |S;| = |S2|. The partitions are constructed in three differ-
ent ways by using the scenario tree structure or randomly. In similar partition,
the groups are generated by placing the scenarios with large number of common
nodes in the scenario tree into the same group. However, in different partition,
we place the scenarios with small number of common nodes into the same group.
Finally, in random partition, the scenarios are assigned to the groups randomly.

Note that for two-stage problems, all partitioning strategies are equivalent since
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Figure 4.3: The partitions similar, different and random (from left to right,
respectively) for a three-stage scenario tree where each color represents a group.

the locations of nodes in the second stage of the scenario tree are interchangeable.
For a deeper discussion on the construction of partitions and their impact on the
quality of bounds, we refer to [54] and [46] where various extensions on scenario
grouping are considered. However, as seen in the results of our computational ex-
periments, using a simple scenario grouping strategy is adequate for the proposed
algorithm. Figure depicts the three different scenario partitions we consider

on a three-stage scenario tree.

In Table , we report the number of instances solved optimally (# opt out
of five), average optimality gap (Gap) and solution time in seconds (Time) for
DEP. Two hours of time limit is imposed when solving DEP of each instance. We
also report the average number of iterations (# iter) and running time in seconds
(Time) for the proposed algorithm with the three different partitions we consider.

Note that, all reported values are averages for five instances of each problem.

The computational experiments reveal that as problem size grows, CPLEX
fails to solve DEPs of the problem instances. For example, the problems 2-SSLP-
10-50-2000 and 3-SSLP-10-50-50 have over one million binary variables, none
of the DEPs are solved optimally within two hours of time limit for any value
of DRA. Especially, 3-SSLP-10-50-50 instances terminate with large optimality
gap values (59.11%, 85.64% and 27.91%, for DRA I, II, and III, respectively).
However, the proposed algorithm solves all of these instances optimally in less

than two hours with at least one of the three partitions we consider.

In Table [£.3] the bold entries are the smallest running times among the three

different partitions for each problem. Moreover, in the last row of the table, for
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each partitioning strategy, we present the percentage of test problems in which
this strategy performs better than the other ones. When the three partitioning
strategies are compared in the two-stage problems, no significant difference is
observed as expected. However, for three- and four-stage problems, the similar
partition performs better than different and random partitions. Since each group
subproblems obtained by the similar partition includes scenarios with many com-
mon nodes of the scenario tree, these group subproblems have less complicated
structure than the ones obtained by other partitions. Hence, in the lower bound-
ing phase of the proposed algorithm, the similar partition yields group subprob-
lems that are easier to solve. On the other hand, the lower bounds and candidate
solutions provided by different partition are expected to be better than the ones
given by similar partition. Overall, similar is the best scenario partition choice
among all partitions in 47.06% of all instances. This value is 37.25% and 15.69%

for different and random partitions, respectively.

When we analyze the test problem 4-SSLP-5-25-20 at DRA 1, it is observed
that CPLEX could only solve 2 out of 5 DEP instances optimally within the time
limit and the average optimality gap is 10.36%. On the other hand, our algorithm
could solve all of the five instances optimally and the average computation time
of our proposed algorithm is 1830.9, 2539.3 and 2795.1 seconds for the similar,
different and random partitions, respectively. We observe similar results for the
test problem 4-SSLP-5-25-20 at DRA II as well. CPLEX could only solve 3 out
of 5 DEP optimally within the time limit of 7200 seconds. The average gap is
3.37% for those instances. We again could solve all of the five instances optimally
and the average computation time of our proposed algorithm is 1205.5, 1849.1

and 1957.0 seconds for the similar, different and random partitions, respectively.

Although the proposed algorithm with the simplest choice of the number of
groups J = 2 enables us to solve the large scale instances efficiently, we also
investigate the performance of the algorithm by changing the value of J. As the
number of groups J increases, the number of scenarios per group subproblem
decreases. In that case, it can be expected that the group subproblems are easier
to solve and hence the running time of Algorithm [2| decreases with the number

of groups J.
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Figure 4.4: Average running time (in seconds) of the proposed algorithm with
respect to different number of groups for five instances of 3-SSLP-5-25-16 problem
with different degrees of risk-aversion and partitions.
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In Figure we present the average running time of the proposed
algorithm in seconds with respect to different number of groups J €
{2,4,8,16, 32,64, 128,256} for five instances of 3-SSLP-5-25-16 problem with dif-

ferent degrees of risk-aversion and partitions.

Since the total number of scenarios in 3-SSLP-5-25-16 instances is 256, the
number of scenarios in a group subproblem is 128, 64, 32, 16, 8, 4, 2 and 1
for the respective values 2, 4, 8, 16, 32, 64, 128 and 256 of J. Although it
may be expected that the running time of Algorithm [2| decreases with increasing
number of groups .J, we observe the contrary in the results of our experiments in
general. There can be two reasons of this. First, in the upper bounding phase, the
algorithm requires evaluation of each candidate solution in D. When the number
of group subproblems is large, we can expect the cardinality of the set D to be
large as well. Therefore, large values of J may yield evaluation of upper bound
values for large number of candidate solutions. The second reason is that a larger
number of groups J yields looser lower bounds and therefore the running time of
the algorithm increases. In the extreme case of J = 256, the performance of the

proposed algorithm is the worst compared to the other values of J. Note that this
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result motivates to use scenario grouping instead of pure scenario decomposition.
Nonetheless, increasing the J value can still be beneficial for some instances as
shown in Figure [£.4] For example, for the instances with DRA I and different

partition, the running time decreases as J increases from 2 through 8.

4.5.2 Generation Expansion Problem

The generation expansion problem (GEP) is an optimization problem that ap-
pears in power systems. The objective of GEP is to minimize the total cost due
to construction and generation decisions for different types of generators over a
fixed-length decision horizon. We use the mathematical model used in [27] where

the problem data are adapted from [55].

In the deterministic version of the problem, the power demand at stage t €
{1,...,T} is given as d; and it is assumed that I types of power generators are
available. The fixed construction and unit production costs of a typei € {1,...,I}
generator are a; and b;, respectively. There is a limit u; on the total number of
type ¢ generators constructed over the decision horizon. Moreover, the production

amount of a type ¢ generator cannot exceed U;. The deterministic GEP is given

as
T I
min Z Z (aizti + bzytz) s (417)
t=1 i=1
t
sty < (sz) U, Vie{l,...,I},te{l,...,T}, (4.18)
T=1
T
Y mi<w, Vie{l,... I}, (4.19)
t=1
I
Zyti Z dt7 VZ € {17"'7I}a (420)
i=1
Yi >0, zy€Zy, Vie{l,....,I},te{l,..., T}, (4.21)
where z;; is the number of generators of type i € {1,...,1} constructed at stage
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t € {1,...,T} and y; is the total production amount of type i generators at stage
t. The objective function is the sum of construction and production costs
over T' stages. Constraints and ensure that the production schedule
is feasible. The demand satisfaction is ensured in constraint . Domain
restrictions are given in constraint .

We consider a risk-averse version of GEP where the demand at stages t =
2,...,T is random. The objective of risk-averse GEP is to determine the number
of generators to be constructed and production amounts for each type of genera-
tors so as to minimize the dynamic coherent risk defined in ([2.13]) with conditional
mean-CVaR at each stage. The DEP of risk-averse GEP can be obtained easily
by defining additional variables and constraints similar to DEP - of
SSLP.

A test problem of risk-averse GEP is represented as T-GEP-b where T is the
number of stages and b is the number of different values that the random demand
d; can take at each stage t € {2,...,T}. Problem statistics for the risk-averse

GEP instances used in the experiments are given in Table

The deterministic problem parameters are given in Table We assume that
the first stage demand is d; = D/2 and the demand at stages t € {2,...,T}
is d; ~ U[D/4,3D/4] where D is the total production capacity, that is, D =
Zz‘lzl Uiu;.

Since both integer and continuous variables appear in all stages of GEP, we
can use the extension of the proposed method presented in Section to solve
risk-averse GEP. Therefore, we binarize the integer variables in the first stage of
GEP and perform the evaluate-and-cut procedure in Algorithm [2] for only these
variables. In this case, the problem in the upper bounding phase of the algorithm

does not enjoy decomposition.

In computational experiments on GEP instances, we consider similar partition
with J = 2 and 4 where cardinalities of the groups of a partition are the same. In

Table 4.6, we report the number of instances solved optimally (# opt out of five)
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and solution time in seconds (Time) for DEP. Four hours of time limit is imposed
when solving DEP of each instance. We also report the average number of itera-
tions (# iter) and running time in seconds (Time) of the proposed algorithm for
J =2 and 4. As before, all reported values are averages of five instances of each

test problem.

For small instances such as 3-GEP-10, 3-GEP-20, 3-GEP-40, 4-GEP-10 and
4-GEP-20 solution time of DEP is less than the running time of the algorithm for
all degrees of risk aversion. For a moderate instance 3-GEP-100, the algorithm
with J = 2 outperforms solving DEP for DRA T and II. For the largest instance,
namely 4-GEP-50, CPLEX either does not report any feasible solution of DEP
within the time limit or terminates with memory error before four hours. The
algorithm with J = 2 also does not terminate for these instances in four hours.
However, the algorithm with J = 4 solves all 4-GEP-50 instances in 11089.7,
11188.5 and 12850.2 seconds for DRA 1, IT and III, respectively. Although J = 2
is a better choice for small and moderate instances, for larger instances J = 4

yields better results.

The results of the computational experiments on risk-averse multi-stage SSLP
and GEP demonstrate the effectiveness of our proposed algorithm. They also
verify our initial claim that it is an easily implementable exact solution algorithm
for risk-averse mixed-integer multi-stage stochastic problems with an objective
of dynamic mean-CVaR and binary first stage decisions. Although, in GEP, we
partially binarize the first stage variables and do not benefit decomposition in
the upper bounding phase, the algorithm is able to solve large instances of this

problem.

4.6 Conclusion

Risk-averse mixed-integer multi-stage stochastic programming problems form a
class of challenging large scale and non-convex optimization problems. Moreover,

no exact solution algorithm is available for these problems in the literature. In this

74



paper, we propose an exact solution algorithm for risk-averse mixed-integer multi-
stage stochastic programming problems with an objective of dynamic mean-CVaR
risk measure and binary first stage decisions. Later, we prove that the algorithm
can be used to solve the general risk-averse mixed-integer multi-stage stochastic

programming problems.

The proposed algorithm is based on an evaluate-and-cut procedure and a sim-
ple scenario tree decomposition method. The computational experiments on large
instances of risk-averse multi-stage SSLP reveal that the proposed algorithm re-
quires significantly less computational effort than solving the deterministic equiv-
alent problem with CPLEX. Moreover, an extension of the proposed method is
used to solve large instances of risk-averse GEP where mixed-integer decisions
appear in all stages. We also discuss the effect of implementation details, such as
partitioning strategy and number of groups in a partition, on the performance of

the algorithm.

Since we did not make any structural assumptions on the problem structure
such as complete or relative recourse, stage-wise independency, convexity, and
linearity of feasibility constraints, our proposed algorithm could be applied to a

wide range of problems.
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Algorithm 2 An exact solution algorithm for problem (4.1)).

1: Input: An instance of problem (4.1)) and a partition S of scenarios.

2: Initialize:

3: Incumbent solution x* <— null,

4: Set of candidate first stage solutions D <+ (),

5. LB < —00, UB + +00.

6: while UB > LB and X, \ D # () do

7:  Lower Bounding

8: forallje{l,2,...,J} do

9: Solve the j™ group subproblem with first stage feasible set X; \ D by
relaxing integrality requirements at stages {2,3,...,T}.

10: if The group subproblem is infeasible then

11: Terminate and go to line

12: else

13: Let Z; be the optimal value of the group subproblem.

14: Let z be an optimal first stage solution of the group subproblem.

15: D« D\ J{~}

16: end if

17:  end for

18: LB+« Y1 p%

19:  Upper Bounding

20: for all 2} € D do

21: Solve problem (4.1)) with first stage decision x| i.e. x; = 2{. Let T
and Z be an optimal solution and the optimal value, respectively. If the
problem is infeasible Z < ooc.

22: if Z < UB then
23: UB <+ zZand z* <=
24: end if

25: end for
26: end while
27: Return: z* and UB.
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Table 4.3: Computational study results for risk-averse multi-stage SSLP.

Proposed Algorithm

Test Problem DEP similar different random
#opt  Gap Time # iter  Time | #iter  Time | #iter  Time
2-SSLP-5-25-50 5 - 0.3 2 0.9 2 1.0 2 0.8
2-SSLP-5-25-100 5 - 0.8 2 1.7 2 1.6 2 1.5
2-SSLP-10-50-50 5 - 9 2.6 5.8 2 6.1 2.4 6.4
2-SSLP-10-50-100 5 - 180.1 2.2 11.7 2 13.6 2.2 13.5
2-SSLP-10-50-500 0 0.03% 7200 2 201.3 2 254.4 2 216.2
2-SSLP-10-50-1000 0 0.89% 7200 2 757.6 2.4 793.9 2 761.1
2-SSLP-10-50-2000 0 16.45% 7200 2 3511.9 2 3487.2 2 3654.0
3-SSLP-5-25-10 5 - 3 2 1.5 2 2.0 2 1.8
DRA I 3-SSLP-5-25-20 5 - 15.1 2.2 10.4 2 9.3 2 9.5
3-SSLP-5-25-50 5 - 1270 2 193.8 2 219.0 2 217.1
3-SSLP-5-25-100 1 11.39% 7143 2 4292.9 2 47114 2 4867.9
3-SSLP-10-50-10 5 - 82.1 2.4 15.9 2 14.5 2 15.1
3-SSLP-10-50-20 5 - 2273.8 2.2 201.2 2 204.2 2 229.7
3-SSLP-10-50-50 0 59.11% 7200 2 7117.1 2 7882.9 2 8597.9
4-SSLP-5-25-10 5 - 112.6 2.2 44.3 2 48.6 2.2 55.1
4-SSLP-5-25-20 2 10.36% 6914.2 2 1830.9 2 2539.3 2 2795.1
4-SSLP-10-50-10 2 0.87% 6913.1 4.2 2758.6 2.4 1775.0 2.4 1822.9
2-SSLP-5-25-50 5 - 0.4 2.2 1.0 2 0.9 2 0.7
2-SSLP-5-25-100 5 - 0.8 2.2 1.6 2 1.3 2 1.5
2-SSLP-10-50-50 Il 0.07% 5940.6 2.4 7.1 2.6 6.8 2.6 6.9
2-SSLP-10-50-100 0 0.10% 7200 2.4 15.2 2.4 17.9 2.2 14.5
2-SSLP-10-50-500 0 1.21% 7200 2 216.2 2 203.9 2 205.5
2-SSLP-10-50-1000 0 4.37% 7200 2 760.9 2.2 782.2 2.2 821.7
2-SSLP-10-50-2000 0 14.94% 7200 2 3390.2 2 3506.1 2 3442.8
3-SSLP-5-25-10 5 - 1.8 2.6 2.1 2 1.3 2.4 2.3
3-SSLP-5-25-20 5 - 10.2 2 7.3 2 10.2 2 10.7
DRATL | 3 951p5.9550 | 5 - 417.1 2 1631 | 2 1740 | 22 1994
3-SSLP-5-25-100 1 20.02% 7101.9 2 3519.2 2 3991.3 2 3181.8
3-SSLP-10-50-10 5 - 72.4 2.8 18.0 2.2 17.0 2 25.4
3-SSLP-10-50-20 5 - 1270.5 2.4 243.4 2.8 202.1 2.6 311.6
3-SSLP-10-50-50 0 85.64% 7200 3 62314 2.2 5818.9 2.2 6152.9
4-SSLP-5-25-10 5 - 93.8 2.6 50.1 2.4 43.4 24 61.7
4-SSLP-5-25-20 3 3.37% 5699.2 2 1205.5 2 1849.1 2 1957.0
4-SSLP-10-50-10 1 1.15% 6559 7.8 6117.4 2.2 7837.1 3 8766.2
2-SSLDP-5-25-50 5 N 0.3 2.2 0.9 2.2 1.0 2.4 0.8
2-SSLP-5-25-100 5 . 0.9 2.2 1.6 2.2 1.5 2.2 1.7
2-SSLP-10-50-50 0 0.02% 7200 2.6 6.7 2.6 7.2 2.2 5.8
2-SSLP-10-50-100 | 0 0.04% 7200 2.2 13.2 2.4 14.4 2.4 15.7
2-SSLP-10-50-500 0 3.22% 7200 2.2 212.3 2 216.0 2 200.5
2-SSLP-10-50-1000 | 0  7.41% 7200 2 656.6 2 649.2 2 695.6
2-SSLP-10-50-2000 0 15.59% 7200 2 3077.3 2.2 3245.8 2.2 3325.7
3-SSLP-5-25-10 5 - 12 2.8 2.4 2.4 2.6 32 3.3
3-SSLP-5-25-20 5 . 15.2 2.2 8.5 2.2 8.4 2.4 12.8
DRATIL | 3 g51,p-5-25-50 5 - 308.5 2 155.1 2 1347 | 2 149.2
3-SSLP-5-25-100 2 13.80% 6259.6 2 2483.6 2 2446.5 2 2643.6
3-SSLP-10-50-10 5 - 37.9 158 127.9 | 124 2497 | 98  212.2
3-SSLP-10-50-20 5 - 1305.8 48  462.0 2 247.2 4 485.3
3-SSLP-10-50-50 0 27.91% 7200 2.6 6286.8 2.8 5254.2 2 4444.3
4-SSLP-5-25-10 5 - 67.9 14 86.7 34 91.6 32 1249
4-SSLP-5-25-20 4 2.84% 3779 2.2 1539.8 2 939.5 2.8 2267.4
4-SSLP-10-50-10 2 134% 55474 64 42885 | 26 67602 | 52 68445
The percentage of test problems the partition performs best 47.06% 37.25% 15.69%
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Table 4.4: Problem statistics for risk-averse GEP instances.

Number of Number of Number of Number of
stages Test problem scenarios  constraints integer variables
3-GEP-10 100 1,608 666
3-GEP-20 400 6,208 2,526
3 3-GEP-40 1,600 24,408 9,846
3-GEP-100 10,000 151,008 60,606
3-GEP-200 40,000 602,008 241,206
4-GEP-10 1,000 16,708 6,666
4 4-GEP-20 8,000 126,608 50,526
4-GEP-50 125,000 1,915,508 765,306
Table 4.5: Parameters of GEP instances.
) 1 2 3 4 5 6
a; | 1,446,000 795,000 575,000 1,613,000 1,650,000 1,671,000
b; 16.62 38.82 43.17 0.51 5.00 16.91
U; | 412,450 142,350 138,700 430,700 63,875 204,400
u; 1 2 2 1 3 1
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Table 4.6: Computational study results for risk-averse GEP.

Proposed Algorithm

Test Problem DEP J=2 J =1
#opt Time | #iter Time | #iter  Time
3-GEP-10 5 0.1 6.8 1.7 8.6 3.6
3-GEP-20 5 0.5 5.2 3.6 7 7.9
3-GEP-40 5 8.4 2.8 15.2 3.2 19.6
3-GEP-100 5 176.0 2 65.8 2.8 108.0
DRAT | 3.GEP-200 5 6227.0| 22 21154 24 7189
4-GEP-10 5 3.2 6.6 14.4 8.6 28.8
4-GEP-20 5 81.1 5.2 161.9 8.6 336.5
4-GEP-50 0 14400 | *** orok 11.6  11089.7
3-GEP-10 5 0.1 6.6 1.6 12.8 4.6
3-GEP-20 5 0.5 5.6 5.6 14 15.3
3-GEP-40 5 8.5 4.4 25.0 5.8 43.9
3-GEP-100 5 146.1 3 101.1 4 170.3
DRA 11 3-GEP-200 5 5617.7 3 3106.1 | 3.2 909.9
4-GEP-10 5 2.8 7.4 16.0 14.6 48.3
4-GEP-20 5 70.5 8.8 277.3 15 592.7
4-GEP-50 0 14400 | *** oAk 16.6 11188.5
3-GEP-10 5 1.4 7.6 1.9 21.8 8.1
3-GEP-20 5 6.3 8.8 6.7 27.8 31.1
3-GEP-40 5 8.1 7 40.3 11 88.5
3-GEP-100 5 95.7 4.2 143.9 7 276.9
DRAIIT | 3-GEP-200 5 5246.5 | 4.6 47126 | 5.8 1670.3
4-GEP-10 5 7.9 14.2 31.3 24.6 83.7
4-GEP-20 5 74.0 10.4 3422 | 352 13614
4-GEP-50 0 14400 | *** orok 36.4 12850.2
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Chapter 5

The Value of Adaptive
Commitment in Risk-averse Unit

Commitment under Uncertainty

Unit commitment is an important optimization problem emerging from power
systems. Uncertainty and variability in net load arising from the increasing pen-
etration of renewable technologies have motivated study of various classes of
stochastic unit commitment models in recent years. In the models with non-
adaptive commitment, the generation schedule for the entire day is fixed whereas
the dispatch is adapted to the uncertainty. On the other hand, in the models with
adaptive commitment, the generation schedule is also allowed to dynamically
adapt to the realization uncertainty. The latter ones provide more flexibility in
the generation schedule, however, they require significantly higher computational
effort than the former ones. In order to justify this additional computational
effort, in this chapter, we provide theoretical and empirical analyses of the value
of adaptive commitment for risk-averse multi-stage stochastic unit commitment

models.

The rest of the chapter is organized as follows: In Section we define
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the risk-averse unit commitment problem and present stochastic models with
or without adaptive commitment decisions. In Section [5.2] we define the value
of adaptive commitment and provide analytical bounds for it. In Section |5.3], we
present results of computational experiments. In Section [5.4] concluding remarks

are presented.

The results of this chapter are available online at arxiv.org/abs/1808.00999.

5.1 Motivation and Problem Definition

Unit commitment (UC) is a challenging optimization problem used for day-
ahead generation scheduling given net load forecasts and various operational
constraints [56]. The output schedule includes on-off status of generators (com-
mitment decisions) and the production amounts (economic dispatch decisions)

for every time period.

There has been a great deal of research on deterministic UC models where
the problem parameters are assumed to be known exactly (see, for example, [57]
and references therein). However, these models cannot capture variability and
uncertainty in the nature of the problem. Common sources of uncertainty are de-
partures from forecasts and unreliable equipment. The departures from forecasts
generally stem from the variability in net load and production amounts, whereas
unreliable equipment may result in generator and transmission line outages a
(see, [58] and [59], for a technical discussion). Moreover, the penetration of re-
newable energy has increased the volatility of power systems in recent years since
the production amount of energy from wind and solar power are not controllable

but can only be forecasted.

Robust optimization and stochastic programming are two common frameworks
used to address the uncertainty in UC problems. In robust optimization models,
it is assumed that the uncertain parameters take values in some uncertainty sets
and the objective is to minimize the worst case cost ( [60], [61], [62], [63] and [64]).

81


arxiv.org/abs/1808.00999

In stochastic programming models, the uncertainty is represented by a probability
distribution ( [65], |66], [67], [68] and [69]).

In UC models with non-adaptive commitment, the generation schedule is fixed
for the entire day before the beginning of the day while dispatch is adapted to
uncertainty as in [70] and [71]. On the other hand, the models with adaptive
commitment, both the generation schedule and dispatch are allowed to dynam-
ically adapt to uncertainty realization at each hour (see for example, [69], [72]
and [73]). Therefore, they incorporate multistage forecasting information with
varying accuracy and express relation between time periods appropriately. How-
ever, in general, the models with adaptive commitment are computationally dif-
ficult than the models with non-adaptive commitment. A detailed comparison
can be found in [74] and [75].

The computational challenge of the models with adaptive commitment moti-
vates the question on whether the effort to solve them is worthwhile. In [45], this
question is addressed for a risk-neutral stochastic capacity planning problem. In
this chapter, we address this question for risk-averse unit commitment problems
where the objective is a dynamic measure of risk. We provide theoretical and
empirical analysis on the value adaptive commitment which measures the rela-
tive advantage to solve the risk-averse unit commitment models with adaptive

commitment over the models with non-adaptive commitment.

We first present an abstract deterministic formulation of the UC problem.
Let I be the number of generators and 7" be the number of periods. Also, let
Z:={1,....,1} and T := {1,...,T} be the sets of generators and time periods,

respectively. A canonical formulation of the UC problem is as follows:

T
min th(ut,vt,wt) (5.1)
=1
I
st Y vw>dy, VEET (5.2)
i=1
quir < vip < Gug, Vi€ Lt €T (5.3)
<U1, Vi, wl) S Xl? (54)
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(’U,t,’Ut, wt) € Xt(ut_l, 'Ut_l,’lUt_l), Vit € T\ {1} (55)
u, € {0,1} v, e RL w, e R, vt e T (5.6)

Decision variables u; and v; represent the binary on/off status and produc-
tion of generator ¢ € Z in period t € T, respectively. The bold symbols
wy = (U, oy, . .., upy) and vy = (vy, Vay, . .., V) are the vectors of status and
production decisions in period ¢t € T, respectively. The vector w; denotes aux-
iliary variables associated with period ¢ € 7. These variables can be used for
modeling various operational constraints. The objective is the sum of pro-
duction, start-up and shut-down costs in all periods where the function f;(-)
represents the total cost in a period t € T. Constraint ensures satisfaction
of the power demand where the net load d; is equal to the total power demand
minus the power generated from renewable sources. Constraint enforces
lower and upper production limits on the generators. Other operational restric-
tions such as transmission capacity constraints are represented by constraints
and . The temporal relationship between consecutive periods such as
start-up, ramp-up, shut-down and ramp-down restrictions can also be included
in the set constraint . Domain restrictions of the decision variables are given

by constraint (5.6). An explicit deterministic model is given in Appendix [A]

In the deterministic formulation —, net load values are assumed to
be known exactly. However, this is a restrictive assumption in practice. We
assume that the net load is random and denoted by a random variable glvt in
period t € T from a probability space (2, F,P). Here 2 is a sample space
equipped with sigma algebra F and probability measure P. An element of the
sample space ) is called as a scenario (or a sample path) and represents a possible
realization of the net load values in all periods. The sequence of sigma algebras
{0,y =F, C Fo C--- C Fr = F is called as a filtration and it represents the
gradually increasing information through the decision horizon 1,2,...,7. The
set of F;—measurable random variables is denoted by Z; for ¢t € 7. The random
net load c?t in period t is F;—measurable, that is czg € Z, for t € T. Note that
since F; = {0),Q} by definition, Z; = R and the demand in the first period is

deterministic.
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To extend the deterministic UC model to this uncertainty setting, we have that
the decisions in period ¢ to depend on realization of the history of net load process
c?[t] = (671, o ,gt) up to period t. Therefore, we use the F;—measurable vectors
ﬁt(glv[t}), 5t(glv[t]) and @t(glv[t]) to represent status, production and auxiliary decisions
in period t € T, respectively. The total cost at period t is also J;—measurable,
ie., ft(ﬁt(dv[t]), 5t(£lv[t]), ibt(c?[t])) € Z;. We use conditional risk measures pr, |z :
Zy1 — 2Z¢ in order to quantify the risk involved in a random cost at period ¢ + 1
based on the available informations at period ¢ for ¢ € T\ {T'}. An example of a

conditional risk measure is the conditional mean-upper semi deviation
PFeia1F(Ze1) = BlZea | F] + AE[(Zig1 — E[Zp | F))+ |7, (5.7)

where E[Z,,1|F;] is the conditional expectation with respect to the sigma algebra
Fi, A € ]0,1] is a parameter controlling the degree of risk aversion and (Z;41)4 is

the point-wise positive part function for all Z,,, € Z;.4.

The objective of the risk averse UC (RA-UC) problem is to minimize the risk
involved with the cost sequence {Z;}L_, where Z; := ft(ﬁt(giv[t]), 5t(dv[t}), @t(glv[t]))
is a shorthand notation for the total cost in period ¢ € 7. Thus, as in
[3] and [37], we define the dynamic coherent risk measure o : Z; x Z5 X

- X Zr — R by using nested composition of the conditional risk measures

pfz\Fl('>7 p]:3|]:2(')7 e 7p]:T|]:T—1(')’ that is,
Q(Zlv ZQ: ) ZT) = Zl + PFa|F (22 + PFr|Fr_1 (ZT) o )

is the risk associated with this cost sequence. Due to translational equivariance
property of conditional risk measures, we have an alternative representation of

the dynamic coherent measure of risk o(+) as

p (Z Zt> = o(Zy, Zs, ..., Zr) (5.8)

where p = pr, 17 © Pry|F © 0 O PrpFr, - 2 — Ris called as a composite risk
measure and Z := Zp. The composite risk measure p(-) satisfies the coherence

axioms (A1)-(A4). Therefore, p(-) is a coherent risk measure as shown in [3, Eqn.
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Figure 5.1: Order of decisions in the model with non-adaptive commitment.
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Figure 5.2: Order of decisions in the model with adaptive commitment.
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We consider two different models for the RA-UC problem. In the model with

non-adaptive commitment, the on/off status decisions are fixed at the beginning

of the day and production (or dispatch) decisions are adapted to uncertainty in the

random demand. On the other hand, in the model with adapted commitment,

both the status and production decisions are fully adapted to uncertainty in

net load. In order to clarify the distinction between two models, the decision
dynamics are depicted in [5.1) and [5.2], respectively.

The model with non-adaptive commitment (NC) for the RA-UC problem is

given as

min p th(utﬁt@t])aﬁ)t@t])) )

T

t=1

st > Tuldy) > dy, VEET,

1€L

q it < 52’15(67[71) < Quy, VieZ,te T,

(’U,l,vl,wl) € Xla

(s, Bi(dpy ), Wi (dpy)) €

Xy (w1, ¥y (dy)), @i (dyvy), dpy), ¥t € T\ {1},
w, € {0, 1}, 9,(dy) € RL, w,(dy) € R*, Vt € T.
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The objective of NC is the composite risk measure defined in applied
to the total cost sequence. The inequalities and are analogous to the
constraints and , respectively. The set constraint is identical to
since the net load in the first period is deterministic. In constraint , Xy
is an JF;—measurable feasibility set. The domain constraint states that only
production and auxiliary decisions depend on the demand history and the status
decisions are deterministic. However, in the model with adaptive commitment
of the RA-UC problem, all decisions are made based on the history. Hence, the

model with adaptive commitment (AC) can be written as

T
min p th(ﬁt(&t]),ﬁt(it}),ﬂyt(cﬁl/[t])) ; (5.15)
t=1
st Y Tuldy) > dy, VEET, (5.16)
€T
q.Tie(diy) < Ve(dyy) < Glla(dyy), Vi€ Tt €T, (5.17)
(ug, vy, w;) € &Y, (5.18)
(ﬂt(élv[t}), 57&(3&])7 ﬂ)t@m)) S
Xy (Wt (dy—1) Do (dpp—)), Wer (dipmyy) dig), Ve € T\ {1}, (5.19)
Wy(dy) € {0, 1}, 0y(dy) € RL, wy(dy) € RE, Ve T. (5.20)

Note that the model AC is identical with NC except that the status decisions are

fully adaptive to the random net load process.

An optimal solution of either NC and AC is a policy that minimizes the value
of the dynamic coherent risk measure in the corresponding problem. Both in
NC and AC, the optimality of a policy should only be with respect to possible
future realizations given the available information at the time when the decision
is made. This principle is called as time consistency. In [20, Example 2], it is
shown that time consistency enables us to use the composite risk measure in
minimization among all possible decisions instead of nested minimizations in a
dynamic coherent measure of risk. We prefer conditional risk measures to repre-
sent the risk-averse behavior of decision makers since they yield time consistent

formulation of the problem and their interpretation is clear.
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5.2 Value of Adaptive Commitment

Although an optimal solution of AC provides a more flexible day-ahead schedule
with respect to different realizations of parameters, the number of binary vari-
ables in AC is proportional to A/ x I where N is the number of possible demand
realizations in all periods if €2 is finite. However, the number of binary variables
in NC is proportional to 7' x I. Since N’ >> T for any non-trivial problem,
computational difficulty of AC is significantly more than NC. Therefore, it is im-
portant to figure out if the additional effort to solve AC is worthwhile. We define
the value of adaptive commitment in order to quantify the relative advantage of
the optimal policy with adaptive commitment decisions over its counterpart with

non-adaptive commitment decisions.

Definition 1. The value of adaptive commitment (VAC) is the difference between

the optimal values of NC and AC, that is, VAC = 2N — 24€ where 2N¢ and 24¢

are the optimal values of NC and AC, respectively.

Since an optimal solution of AC provides more flexibility in status decisions

NC > »AC and therefore

with respect to uncertain net load realizations, we have z
VAC > 0. The complex structure of risk-averse UC problem prohibits exact
calculation of VAC unless both NC and AC are solved optimally. Even calculation
of bounds for VAC is not possible for UC problem. Thus, we provide theoretical

bounds on the VAC under some assumptions.

Assumption 2. There exists a generator j* € I such that 4. < c’ivt < G- with
probability 1 with no minimum start up and shut down time and mo rumping
limits for each t € T.

Assumption [2| ensures that NC and AC always have at least one feasible so-
lution and therefore both problems have complete recourse. Assumption [2| holds,
for example, when it is possible to outsource the unmet power demand. In that
case, decisions u;+ and v;- represent outsourcing decision and amount of out-
sourced energy, respectively. Alternatively, u;~ and v;- can be used to formulate

the opportunity cost due to lost demand.
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Assumption 3. There exists an upper bound di"** € Ry on the net load values
such that 0 < d; < d** with probability 1 for eacht € T.

Assumption [3| holds in practice and states that the net load in each period
is bounded. We also define D := 23:1 d, as the total net load and D™ =

Zthl d;*®* as an upper bound on D.

Assumption 4. The production cost at each stage is defined as

Fu@(dyy), Bu(dpy), @i (dig)) =Y _ gi@ae(di), Dae(dly ), Die(dpy)

€L

where g;(+) is sum of a fized commitment cost and a non-decreasing convex dis-

patch cost for all i € L.

If Assumption 4| holds, the function g¢;(-) can be written as

gi(ait(glv[t])u ,@t(dv[t])’ {Dit(d[t]» = aiait(glv[t}) + hz‘@it(dv[t]))

for a coefficient a; > 0 and a non-decreasing convex function h;(-) with 2;(0) =0
for all i € Z. Assumption [] is somewhat restrictive since it ignores start-up and
shut-down costs. However this assumption is necessary for the analytical results.
In Section we will provide numerical results showing that the analytical

results hold in instances with start-up and shut-down costs as well.

Theorem 2. Under Assumptions|[3, [4 and[f, we have that

o, DM — a*p(ﬁ) < VAC < o*D™ — aup(D),
where

a, 1= min {al + hy( } /max {g;} and

i€l

o = max{a; + hi(q;)} /Ifgzn {Ql}

are cost related problem parameters corresponding to under and over estimations

on per unit production costs, respectively.
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Proof. Assumption [2] implies that both NC and AC are feasible. Since the net
loads are bounded due to Assumption [3] both models have at least one optimal

solution.

Let {u;,v;, w; };c7 be an optimal policy obtained by solving AC. By Assump-

tion 4 we have

th Ut t]) ’Ut(d[t , Wy d[t Zzgz uzt d[t Uzt<d[t) wzt(d[t ))

teT teT i€l
For a realization di,ds,...,dr of the random net load process Jl, 672, e ,JT,
let [uf, vf, w;] .= [u;,v;, w;]|(dy) be the optimal status and production decisions

for t € T. Then, we have

Z Z 9i (i, Vi, wiy) = Z Z azuz, + hi(vi;)

teT i€l teT i€l

>ZZault+h qult ZZazult—l—h
teT i€l teT i€l

:ZZ[amLhi Jus >ZZaz+h
teT i€l teT i€l

> Z Z Igzn {ai i hi(q')}

g max{y)

:a*zzvit:a*zdt,

teT 1€ teT

*
Vs

where the first inequality holds due to feasibility and non-deceasing monotonicity
of h;(-). The second inequity also follows from feasibility. The second equality
holds since h(qu) = h(q)u for any function h : R — R with h(0) = 0 where
q € R, and u € {0,1}.

Since D, o7 D iz Gilui, Vi, wyh) > oy, rdy for any sample path

di,da, ... dr, we have 3, Ziezgi(ﬂit(cj[t]%,ﬁit(g[t]%wit(giv[t})) =y ZteTCZf =
a,D. Due to the monotonicity axiom (A2) and positive homogeneity axiom
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(A4), we get

AC =) (Z Zgi(ﬂit@t]),@t@t])» 75#(%])))
teT i€l

2 plaD) = a,p(D).

Next, we consider a feasible policy {u;,v;,w; }er to the AC model where
ﬂj*t(glv[t}) Bl @j*t(gi[t]) = d, and all other status and generation variables are
set to zero for a sample path di,ds,...,d;. The feasibility of the solution is
guaranteed by Assumption 2 Then,

24¢ < p (Z Zgi(ait(glv[t])ﬁit(g[t})v {"\it(glv[t]))>

teT 1€
teT teT dy
e (Ton) ~ nax {a; + hi(g;)} _
g(Z—‘” J(q”)dt> <= p| 2 d
& b minfef N\
=a’p (Z &;) < a*p(ﬁ),
teT

where the first inequality follows from feasibility, the second inequality follows
from Assumption [2] and the third equality follows from axiom (A4) and the def-
inition of a*. Thus, we get lower and upper bounds for the AC model, that
is,

a,p(D) < 249 < o p(D). (5.21)

Note that in the NC model, the status decisions in period t € T are identical for
all realizations of problem parameters in that period and satisfies maX{QNJ;((ﬂt])} <
quj, and D™ <N max {0}, (dy)}. Moreover, the policy {@], ¥}, W} }e7 is also

feasible for the NC model and p(D) < D™**. Using these facts, a similar analysis

can be used to obtain lower and upper bounds for NC model and we get
o, D™ < ZNC < of D (5.22)
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Hence, the claim of the theorem follows from ([5.21)) and (/5.22]). O

The inequalities given in (5.21)) and ([5.22)) relate the optimal values of AC and

NC, respectively, to the under and over estimations on per unit production costs.

If the generators are almost identical and lower and upper production limits

are close enough, we have a, ~ a =~ o*. Then, we have

VAC ~ a(D™ — p(D)). (5.23)

Note that 0 < p(D) < D™ and the approximation (5.23) implies that the VAC
increases with D™ and therefore variability in the net load. However, for fixed

variability, the VAC decreases with p(D) and therefore the degree of risk aversion.

Assume that the net load in period t € T is CZ =d; + U[—A, A] where d; is a
deterministic value and U[—A, Al is an error term uniformly distributed between
—A and A for some A € R,. Also, assume that the composite risk measure
p(+) is obtained using conditional mean-upper semi deviation as given in for
simplicity. Then,

VAC =~ a(D™ — p(D))

o ()
=T (1 - %) A (5.24)

where the second equality follows from definitions of d;"*, c?t and evaluation
of mean-upper semi deviation risk measure p(-). The approximation in ((5.24])
suggests that the VAC increases with the number of periods T" and the variability

in the net load A. However, VAC decreases with the degree of risk aversion A.

The inverse relation between VAC and the degree of risk aversion may seem
counter-intuitive at first glance. However, as the degree of risk aversion increases,

p(D) gets closer to D™*_ that is, the decision maker tries to minimize the cost in
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Figure 5.3: Scenario tree for the system with 10 generators.

the most pessimistic scenarios. In that case, AC sacrifices its adaptivity in order
to put emphasize to the most pessimistic scenarios. Thus, optimal values of NC

and AC get closer.

5.3 Computational Experiments

The analytical results of the previous section rely on restrictive assumptions to
simplify the structure of the RA-UC problem. In order to see how the VAC
behave in the absence of these assumptions, we conduct two sets of computational

experiments.

We first consider a power system with 10 generators in the computational
experiments. We use the data set presented in [56] with some modifications. We
also consider a random net load process with eight scenarios where the power
demand at each hour is subject to uncertainty. The scenario tree depicting the

random process is given in Figure [5.3] A similar scenario tree structure is used
in [72].
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The test data is presented in Appendix B We use the base net load values
presented in Table to generate random net load values. A variability pa-
rameter € is used to control the dispersion of net load across all scenarios. Net
load values for each scenario are presented in Table [B.2] All other parameters
except the production limits are set to the values given in [56]. The lower and
upper production limits are increased by a half in order to avoid infeasibility in
case of large variability in the net load amount. Start/shut-up/down limits are
calculated as in [73]. A PC with two 2.2GHz processors and 6 GB of RAM is

used in the computational experiments.

The quadratic production cost functions {h;(-)}iez are approximated by a
piecewise linear cost function with four pieces of equal lengths. This approxi-
mation of convex cost functions enables us to have a linear model for RA-UC
problem and yields near-optimal solutions (see, for example, [71]). We also use a

conditional mean-upper semi deviation risk measure (5.7)) in each period.

We model and solve NC and AC for five different values of variability parameter
e and six different values of the penalty parameter \. For each € and A\ pair, we

calculate VAC in terms of difference of optimal values, that is,
VAC ($) = 2N — 249,

and in terms of percentage

The results on the VAC are presented in Figure [5.4]

Figure [5.4] verifies our analytical findings on VAC. We observe an increase in
VAC with the uncertainty in net load values. The VAC and hence importance
of adaptive commitment decisions increases as the dispersion among the scenar-
ios increases. As expected, the day-ahead schedule obtained by solving AC is
more adaptive and provides more flexibility in case of high variability of problem

parameters.

93



Table 5.1: Solution times of NC for the system with 10 generators (in seconds)

e\A| 0 0.1 02 03 04 0.5
01|75 104 96 77 72 72
02|42 38 35 40 3.7 32
0.3 (122 109 95 81 7.8 6.0
04179 38 41 40 33 27
05| 88 54 63 48 48 46

We also observe decrease in the VAC with the level of risk aversion. In par-
allel with the analytical results in Theorem [2, higher risk aversion leads lower
VAC. Hence, the importance of the multi-stage model decreases as risk aversion

increases.

We also consider a rolling horizon policy obtained by solving NC in each period
and fixing the decisions at that period with respect to the optimal solution of NC.
In order to the measure the quality of the rolling horizon policy, we calculate the
gap between the value of the rolling horizon policy and the optimal value of AC.

The gap value GAP is calculated in terms of difference of objective values
CAP (§) = 2t — 24C,

and in terms of percentage

LJRH _ LAC

GAP (%) =

where 2% is the value of the rolling horizon policy. Note that since rolling horizon

provides a feasible policy to the multistage problem that is at least as good as
that of NC, we have that 0 < GAP < VAC. The results are presented in Figure
0.0l

We present the solution times for each NC and AC instance at Table [5.1] and
Table [5.2] respectively. The required time to obtain the rolling horizon policy is
also presented in Table |5.3|
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Table 5.2: Solution times of AC for the system with 10 generators (in seconds)

e\A 0 0.1 0.2 0.3 0.4 0.5

0.1 | 1004.2 1280.0 1255.2 1489.7 1789.6 2009.1
0.2 | 3283 381.6 4004 4447 3246 393.8
0.3 | 480.0 10424 4358 780.0 453.8 358.5
0.4 1929 6745 5294 323.0 328.6 279.8
0.5 | 857 1475 116.6 119.0 118.5 113.1

Table 5.3: Required time to obtain the rolling horizon policy for the system with
10 generators (in seconds)

e\A| 0 01 02 03 04 05
0.1 |16.6 15.1 14.7 13.6 149 128
0280 90 90 &7 80 &85
03 ]151 173 151 152 146 114
04190 104 83 91 77 78
051102 96 9.0 123 97 9.5

In all instances, the rolling horizon policy performs much better than the pol-
icy obtained by solving NC problem with a small increase in computational ef-
fort. The GAP (%) of rolling horizon policy is 0.12% on average (with maximum
0.32%) whereas the VAC (%) is 1.42% on average (with maximum 3.20%). Thus,
the rolling horizon policy can provide enough flexibility in generation schedule to
obtain a near-optimal schedule in RA-UC problems with a reasonable computa-

tional effort.

The computational effort to solve the AC model is much larger than that of
the NC model and the rolling horizon policy in all instances. The higher the
net load variability leads higher VAC while decreasing the solution times as an
additional benefit.

In the data given in [56], transmission capacity constraints are missing. There-
fore, we conduct another set of experiments on the IEEE reliability test sys-
tem [76] where transmission capacity constraints are also included in the model.
This system has 24 buses, 34 transmission lines and 32 generators. In these ex-
periments, we use the parameters presented in [77] and we consider T'= 6,7, 8,9

and 10 stage problems with mean-upper semi deviation risk measure (5.7). As
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in the previous set of experiments, the quadratic cost functions are replaced by
their piece-wise linear approximations. We assume that the net load value at each
stage can take values (1 — €)d; and (1 + €)d; with equal probabilities where d; is
the deterministic net load value at stage t € T in the original data set. Thus, the
resulting scenario tree is a binary tree where the number of scenarios is 277! in
a T'—stage problem. Some instances of AC require long CPU times or cannot be
solved optimally due to memory limitations. For these instances, the exact value
of VAC cannot be calculated, however, we use the best objective value after two
hours in calculation of an approximate VAC. The results of these experiments are
presented in Figure [5.6] and Table

Results in Table reveal that with the existence of transmission capacity
constraints, our findings on the relationship between VAC and degree of risk
aversion, level of uncertainty of net load values and number of periods hold,
in general. For the instances that cannot be solved within the time limit, the
average optimality gap values are 0.03% and 0.07% for T' = 8 and 9, respectively.
Therefore, we obtain a good approximation of VAC and our findings are consistent
in this approximation as well. However, for T' = 10, the average optimality gap
for the instances that cannot be solved within the time limit is 0.32%. Because
of this poor approximation of VAC, we observe that approximate VAC fluctuates
as A increases for the instances T'= 10, € € {0.3,0.4}. However, even T' = 10, the
results of the instances with e € {0.1,0.2,0.5} confirm our findings.

Especially for, T'= 9 and 10, AC cannot be solved within two hours of time
limit, on the other hand, the longest running time for NC is 1724.41 seconds. The
average CPU times of NC and AC for the data set in [77] are given in Table 5.5

The CPU time for AC, compared to NC, increases very rapidly as T increases
even though the additional computational effort brings a benefit in the objective
less than 1% in all instances. Therefore, implementing the policy obtained by

solving NC can be a promising alternative under industry time constraints.
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5.4 Conclusion

Recent improvements in the renewable power production technologies have moti-
vated the stochastic unit commitment problems, since these models can explicitly
address the variability in net load. The models with adaptive commitment pro-
vide completely flexible schedules where all decisions are adapted to the uncer-
tainty. However, these models require high computational effort, and therefore,
their non-adaptive counterparts are used to obtain approximate policies. In or-
der to justify the additional effort to solve the model with adaptive commitment
rather than its non-adaptive counterpart, we define the VAC and provide ana-
lytical and computational results on it. These results reveal that, for RA-UC
problems, the VAC decreases with the degree of risk aversion, and increases with

the level of uncertainty and number of time periods.

97



Figure 5.4: Results of the computational experiments on the VAC($) and VAC(%)
for the system with 10 generators with respect to different variability (e) and
degree of risk aversion levels (\).
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Figure 5.5: Results of the computational experiments on GAP($) and GAP(%)
for the system with 10 generators with respect to different variability (e) and
degree of risk aversion levels (\).
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Figure 5.6: Results of the computational experiments on the VAC(%) for the
system with 32 generators with respect to different variability (¢) and degree of
risk aversion levels (\).
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Table 5.4: VAC($) and VAC(%) for the system with 32 generators with respect
to different variability (€) and degree of risk aversion levels ().

T | e\ 0 0.1 0.2 0.3 0.4 0.5
10786 9751 9131 8511 7801 7273

0L 007%  006%  0.06%  005%  0.05%  0.05%
0y | 41026 39311 37031 31626 323.32 30070

<1 026%  025%  023%  021%  0.20%  0.18%

o3| 75590 69971 G485 60145 55A11 50683

61 %2 047%  043%  0.39%  0.36%  0.33%  0.30%
(4| 108651 100256 923.08  §48.99 78185 71517

1 067%  061%  055%  0.50%  0.46%  0.41%

[ 131364 121158 111592 102551 93997 85895

051 080%  0.73%  0.66%  0.60%  0.54%  0.48%
10372 10893 90131 _ 8511 8368  72.73

011 006%  006%  005%  005%  0.05%  0.04%
oo | MS64 44263 42027 30476 30073  342.83

<1 026%  0.24%  023%  021%  0.19%  0.18%

o3| 52853 T7L33 10770 65756 60285 54662
TIUS ) 045%  041%  037T%  0.34%  031%  0.28%
o4 | 110065 102047 94689 87107 81228 75036

S 059%  0.54%  049%  045%  041%  0.37%
139173 1283.80 117538 1085.07  992.53  897.07

051 074%  067%  0.60%  055%  0.49%  0.44%
11555 9751 9131 9447 7891  80.03

0L 006%  0.05%  0.04%  0.04%  0.04%  0.04%
oo | 770 46720 43509 4012 37140 343.64

< 024%  022%  021%  0.19%  0.17%  0.16%

o3| $9505 7TTLIT 70473 64816 59422 54180
81U 030%  036%  033%  030%  027%  0.24%
o4 | 105262% 9G6.I1%  SSL8IF SOSATF 73043 608.50°

S 049%  045%  0.40%  0.36%  0.32%  0.29%
T411.01 129733 1189.90 108089  993.60  905.40

051 066%  059%  053%  047%  043%  0.38%
56040  555.62 51487 49491 45622 426.90

011 024%  023%  021%  020%  0.19%  0.18%
0y | SW097 79639 TAGEL  697.92  649.63  60S.69

<1 035%  033%  031%  028%  0.26%  0.24%

o3 | 137020 1275.94% 1180.00° 109645 1015.09% 936.00%
D2 057%  052%  048%  0.44%  0.40%  0.36%
o | T00.80% 1313.19% 1232.00F 113535 108917 96L.80°
S1060%  0.54%  049%  0.44%  0.40%  0.36%
C[IS8TAT 174239 160945 148310  1363.85  1250.51

051 076%  0.69%  0.63%  057%  051%  0.46%
62071F  581.09% 544.72F 50770 47140  435.80°

011 023%  021%  020%  018%  0.17%  0.16%
0y | TI6L00F 109452% 100744 036.85% S33.71% 624087

<1 042%  040%  036%  033%  020%  0.22%
1574.31% 1298.25% 1356.30* 1066.33* 988.83%  850.78
10030 0570 046%  048%  037%  0.34%  0.29%
o4 | 161547 T313.53% 146380% 910.46% 1240.11% 1146.56°

S 058%  046%  051%  031%  042%  0.38%
9387.27 220031 2040.07 1882.50 173043  1584.75

051 085%  0.77%  0.69%  063%  057%  0.51%

* VAC is calculated with the best objective value obtained after two hours.
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Table 5.5: Average CPU times (in seconds) of NC and AC (for the instances that
cannot be solved in two hours, the CPU times are taken as 7200 seconds.)

T | NC AC
6 | 2.75 10.25
7 | 6.60 25.64
8 | 1898 1551.31
9 | 116.83 4187.73
10 | 703.59 6445.46
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Chapter 6

Approximations to Risk-averse
Multi-stage Production Planning

Problems

In this chapter, we consider risk-averse multi-stage production planning problems
as a generalization of the unit commitment problem discussed in Chapter bl In
these problems, we make setup (or status) decisions of a set of production units
and production amount decisions of each unit in order to satisfy random demand
of a single product. For these problems, we consider two models with respect
to their adaptivity to the uncertainty. In fully adaptive models, both setup and
production decisions are given in on-line fashion, that is, they are adapted to
demand uncertainty. However, in the models with non-adaptive setup decisions,
the setup decisions are off-line, that is, they are fixed at the beginning of the
decision horizon whereas the production decisions are on-line. We discuss the
trade off between flexibility of the adaptive setup decisions and computational
convenience of the model with non-adaptive setup decisions. As an intermediate
case, we also consider a model with partially adaptive setup decisions. Moreover,
we propose a rolling horizon approach for the fully adaptive model where the

model with non-adaptive setup decisions is used as an approximation. In order to
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reduce the computational difficulty of the rolling horizon algorithm, we consider
restricting the production amounts to affine functions of demand realizations.
We propose analytical results on the relation among the optimal values of the
models with fully adaptive, partially adaptive, non-adaptive setup decisions and
the objective value obtained from the rolling horizon algorithm. Finally, we
conduct a set of computational experiments on a risk-averse multi-stage lot sizing
problem to investigate the computational efficiency of the proposed models and

verify the analytical results.

The rest of the chapter is organized as follows: In Sections and we
present the deterministic and risk-averse models for multi-period production plan-
ning problems, respectively. Approximations to the fully adaptive risk-averse
model are given in Section [6.3] In Section we present a rolling horizon so-
lution method for the risk-averse multi-stage production planning problems. In
Section [6.5], we present results of our computational experiments. The concluding

remarks are presented in Section [6.6]

6.1 Deterministic Problem

In a T'—period planning horizon, we decide production schedule of I different
units (or generators, machines etc.) in order to satisfy the demand of a certain
product. The demand at period ¢ € {1,...,T} is given by d;. Each unit has
lower and upper production limits. Unit ¢ € {1,...,I} can produce at least q,

units and at most g; units of product if it is working.

Let w; == (uyg, Uy, - .-, up) € {0,1} and vy := (vig, voy, . .., vps) € ]Rfr be the
vectors of decision variables that represent status and production amounts at pe-
riod ¢, respectively. The remaining auxiliary decisions at period ¢ are represented
by a J—dimensional real vector w; € Ri. The total cost at period ¢ is given by a

function f;(w, vy, w;). Then, the deterministic multi-period production planning
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problem is given in as:

T
(DET) min th(utylvtawt)a (6.1)
=1

st qup < v < Qui, Vi€ {1,2,...,I},te{1,2,...,T}, (6.2)
I

d v =dy, VEe{1,2,...,T}, (6.3)
i=1

(ulavhwl) S Xla (64)
(’U,t, Uy, ’lUt) - Xt(ut_l, Vi—1, 'wt_l), YVt € {2, 3, A ,T}, (65)
w, € {0,1} v, e R w, eRY, Vte{1,2,...,T}, (6.6)

where the objective (6.1]) is the total cost over T periods. Constraint (6.2)) ensures
that production amounts satisfy lower and upper production limits. Constraint
(6.3) is demand satisfaction constraint. Constraints (6.4) and (6.5)) reflect addi-

tional system dynamics and ensure that the production schedule is feasible.

The model DET provides a canonical formulation for a broad class of deter-
ministic multi-period production planing problems including unit commitment
and lot sizing problems. In unit commitment problems, for example, the objec-
tive is to minimize total energy production cost while satisfying load constraints
through a multi-period decision horizon in a power system. The total cost is the
sum of fixed commitment costs, convex dispatch cost, start up and shut down
costs as well as other operational costs. The ramping and transmission require-
ments can easily be represented as a set constraint similar to . Similarly,
in single-item lot sizing problems, the objective is the sum of fixed and variable
costs of production and inventory holding costs through T'—periods. Let [ = 2
where ¢ = 1 corresponds to the actual production unit and ¢ = 2 is a dummy unit.
Decision variable uy; € {0, 1} takes value 1 if there is production at period ¢ and
0 otherwise. Also let ug € {0,1} represent the binary decision which indicates
if there is a positive inventory at the beginning of period t. Also, let vy; and
v be the production and inventory amounts in period ¢, respectively. Inventory
balance requirement can also be represented by the set constraints. Thus, the lot

sizing problem can also be written as the deterministic multi-period production
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planning problem DET.

Although DET enables us to model multi-period decision problems, it assumes
that demand values are deterministic and exactly known at the beginning of the
entire decision horizon. This assumption can be quite restrictive in many real
life applications. For example, net load values in unit commitment problems
are subject to uncertainty due to unreliable equipment and power generated by
renewable sources. Also, demand values in lot sizing problems are not exactly
known but only be forecastable in many real-life applications. Therefore, we
consider an extension of DET to a stochastic setting where the demand values at

each period are random.

6.2 Risk-averse Multi-stage Production

Planning Problem

Let (Q, F, P) be a probability space where Q2 is a sample space, F be the sigma
algebra representing the set of all events defined on €2 and P be a probability mea-
sure. The nested sequence of sigma algebras {(),Q} = Fy C Fo C - C Fr = Fis
called a filtration and it represents our gradually increasing information through
a T—stage planning horizon. The set of all F;—measurable and p—integrable
random variables are denoted by 2Z; := L,(Q, F;, P) for t € {1,2,...,T} for some
p> 1.

We assume that demand amount at period ¢ is random and denoted by a
random variable d, in period t € {1,2,...,T}. Then, d; is Fi;—measurable, that
is, Jt € Z;. The demand process c?l, JQ, cee ElVT evolves as a stochastic process with
a specified probability distribution. An element w € € is called as a scenario and
corresponds to a realization dy,ds,...,dr of the demand process CZ, 672, e ,JT.
Let p,, be the probability of scenario w. Note that since F; = {(), Q} by definition,

Z; = R and therefore the demand amount at the first period is deterministic.

To extend the deterministic model DET to this uncertainty setting, we
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should ensure that the decisions at period ¢ depend only on the history of
demand realization Jm = (cﬂ,c@,,c@) up to period t. This requirement
is called as non-anticipativity. Therefore, we use JF;—measurable mappings
ut(glv[t]),vt(cﬂt]),wt(&v[t]) to represent our status, production and auxiliary de-
cisions, respectively at period t. Note that, in that case, all decisions are
fully adaptive to the underlying filtration. The total cost at period ¢ is also
Fi;—measurable, i.e., ft(ut(g[t]),vt(cj[t]),wt(gm)) € Z;. The feasibility sets
Xt(ut,l(cj[t_l]),vt,l(glv[t_l}),wt,l(giv[t_l]),glv[t}) are also given by the data process
for t € {2,...,T}. The decisions at period ¢ are made after observation of the
demand realization at period t. We call a decision epoch as a stage and in our

case, a stage corresponds to a period.

A sequence of measurable mappings {u;(-), v:(-), w;(-)}_, with respect to the
underlying filtration is called as an implementable policy. Moreover, a policy is
said to be feasible if it satisfies problem specific constraints analogous to —
(6.6) (see, for example, [37]).

As in the rest of the thesis, we use conditional risk measures to represent
the attitude of a decision maker towards risk. The conditional risk measure
PFra|Fe © Zi+1 — 2Z¢ quantifies the risk involved in F;;—measurable random

variable based on the available information in period ¢t € {1,...,T — 1}.

At stage t € {1,...,T}, the objective of the decision maker is to minimize sum
of the total cost at stage t and the risk-adjusted cost in the future stages over
all implementable and feasible policies. Then, risk-averse (stochastic) multi-stage

production planning problem can be written in a nested form:

min U, U1, W
(u1,U17w1)€X1f1< b 1>

+ Pr|F [ min f2(ua(dpg)), va(dpy), wa(dp))

(ua(djz)),v2(dj)) wa(d[2))) EX>

+ pFy 7 _ min Fa(us(dpy), vs(dp), ws(dpy)) + -
(us(d[3)),v3(d(3)),ws(dz)))€EX3
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+ prlfT—1< min fT(UT(J[T]%”T(d[T]%wT(UT[T]))) }],

(us(dir)),v3(dr)) ws (dyp))) EXT

where dependence of feasibility sets to decision and demand processes is assumed
but not explicitly written for notational brevity. The risk-averse multi-stage
production planning problem can be written in several ways as also stated in [3].

As an example, the problem can be modeled as
(RA-A)

min f1(’U:17 Ul»’wl) + PFF [f2(u2(67[2]); ’02(67[2}), ’wz(dvm)) + o

+ PFs| 7 {fs(u3<d[3])7 ”3(5[3])7 “’3(5[3]))

+ -t PE (fT(uT(Jm), vr(dir), wT@T}))) o H ; (6.7)

s.t. giuz’t(glv[t}) < Uit(glv[t]) < qiuit(glv[t})a

Vie{l,2,...,1},te{1,2,...,T}, (6.8)
I
Zvit(gi[t}) Z C/i\;‘/a Vit € {1727-"7T}7 (69)
=1
(ul,vl,wl) c Xl, (610)
(wi(dyy), vi(dyg), wi(dpy)) € X (wy(dy)), vi(dy—), wi(dy1p), dig),
vte{2,3,...,T}, (6.11)
w(dy) € {0,1} v, (dy) € RL wy(dy) € R, Vte{1,2,...,T}.
(6.12)

The objective (6.7]) is the risk value associate with the cost sequence fi(-),

f2(-), ..., fr(-). Constraints (6.8), (6.9), (6.10), (6.11)) and (6.12) are analogues
to their deterministic counterparts (6.2), (6.3), (6.4), (6.5) and (6.6)), respectively.

In order to get an alternative representation of this risk value, we define the
dynamic coherent risk measure p : Z; X Z5 X --- X Zp — R by using nested

composition of the conditional risk measures pz,# (*), p.25)2 (), - - P21 701 (),
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that is,

o2y, Zg, ..., 20) =21+ payz, (Lo + - papze . (Zr) - -+ ),

for any cost sequence {Z;}_; where Z; € Z; for any t € {1,2,...,T}. Due
to translational equivariance property of conditional risk measures, we have an

alternative representation of the dynamic coherent measure of risk o(-) as

ﬁ (i Zt> = Q(Zl,ZQ,...,ZT), (613)

where p = pgz,17, © Pz, © - 0 Papl7r, - 2 — R is called as a composite
risk measure and Z := Zp. Note that, in the risk-neural case p(-) reduces to
expectation operator E(-). The composite risk measure p(-) satisfies the coherence
axioms (A1)-(A4) and therefore it is a coherent measure of risk as shown in |3
Eqn. 6.234].

min. p <Z ft(ut(cﬂt]),vt(cﬂt}),wt(glv[t}))> ; (6.14)

t=1

st (6.8), (-9, (6:10), @-11) and (6.12).

where f; (ul(cﬂl]),vl(cz[l]), wl(cz[l])) := fi(u,v1,wy) for notational consistency.

If the random demand values evolve as a discrete-time stochastic process with
finite support, then the whole process can be represented by a T'—stage scenario
tree where €2, is the set of nodes at stage t € {1,...,T}. Each node n of the
scenario tree at stage ¢ corresponds to a possible realization of dj. Note that in

this case, each last stage node n € {)p corresponds to a scenario w € §2.

In finite realization case, the risk-averse multi-stage production planning prob-
lem can be written as a large deterministic problem called as deterministic equiv-
alent problem (DEP) by defining a decision variable for each status, production
and auxiliary decision at each node of the scenario tree. Therefore, the size of
DEP grows exponentially with the number of stages T for any non-trivial sce-

nario tree. Moreover, the problem quickly becomes computationally intractable
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since the status decisions are binary in this DEP. This computational challenge

motivates following questions:

e [s it possible to quantify the benefit of solving the model with a fully adap-
tive policy?

e [s it worthwhile to solve a large scale non-convex DEP to obtain a fully

adaptive policy?
e In which instances, a fully adaptive policy is necessary?

e Can we sacrifice the adaptivity of our decisions to some extend for ease of

computation?

In this chapter, we try to answer these questions by considering several approxi-
mations of the risk-averse multi-stage model of multi-period production planning
problem. Some of these questions are answered for a risk-neutral multi-stage
stochastic programming problem in [78]. Moreover, non-adaptive and partially
adaptive polices are considered for specific applications of risk-neutral models

such as lot-sizing [79] and inventory planning [80] problems.

In the next sections, we obtain approximations to problem RA-A by varying
adaptivity of setup decisions. We also consider a rolling horizon approach based

on these approximations.

6.3 Approximations

6.3.1 Non-adaptive Setup Model

In this section, we consider an approximation of RA-A where the setup decisions

are non-adaptive. The risk-averse multi-stage production planning problem with
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Figure 6.1: Decision processes in RA-A (top) and RA-N (bottom) problems mod-

els .
Decide Observe Decide Observe Decide
Uy, V1, W dQ U2, V2, W2 dT ur,vr,wr
Decide N Obs~erve N Decide ObsNerve Decide
{ud ), v, wy ds UV, Wo dr v, W
non-adaptive setup decisions is given as
(RA-N)
min.  fi(u1,v1, w1) + pay) 2 [fQ('UQ; ’02(67[2}), ’w2(67[2}))
+ P73, {f3(u3, 173(67[3])7 ’w3(dv[3])) + o
+ Pz Fr s <fT(UT7 UT(J[T]), wT@T}))) H ; (6.15)
.t qui < vie(dp) < Qug, Vie{1,2,... I} te{1,2,...,T}, (6.16)
I
> valdy) > dp, VEE{1,2,....T} (6.17)
i=1
('ul,’Ul,’U)1> c Xl, (618)
(wy, ’Ut(g[t}), wt(g[t])) € Xi(w—q, Ut(g[t—l]), wt(g[t—l})a Cj[t]),
Vte{2,3,...,T}, (6.19)
w, € {0, 1} v, (dy) € RL  w,(dy) e RY, Vie{1,2,...,T}. (6.20)

Note that, in the model RA-N, the schedule decisions are deterministic and there-

fore, they can also be seen as first stage decisions. An interpretation of this fact

is that the status decisions are made at the beginning of the decision horizon,

however, the production and auxiliary decisions are made after observing the de-

mand realization at each stage. Figure highlights the difference of decision

processes in problems with adaptive and non-adaptive schedules.

111



In the DEP of RA-A, the number of binary variables is AN x I where
N =37, |9 is the number of nodes in the scenario tree. This number grows
exponentially with the number of stages. On the other hand, in the DEP of
RA-N, the number of binary variables is T" x I whose value grows linearly with

the number of stages. Since N’ >> T for any non-trivial problem, computational
difficulty of RA-A is significantly more than RA-N.

The following example shows that the difference between the optimal values
of RA-A and RA-N can be arbitrarily large even for a two-stage problem if the

demand is unbounded.

Example 6. Consider a risk-neutral instance of the problem with T = 2,1 =
(1] for some 0 < e < 1, ¢, = @ = 1 forall i € {1,....1}. Let
ft(ut(cﬂt]),vt(&it]),wt(aAl/[t])) Sy 4 vi(dy) for t € {1,2}. The demand in the
first period is 1 unit and demand in the second period takes values 1 and % units
equally likely.

The optimal value of RA-A is 3 + 1[1] and the optimal value of RA-N is
14 [1]. The difference between the optimal values is —% + 3[1] and it can be

arbitrarily large since € can be arbitrarily small.

However, if Assumptions and [ in Chapter [5] hold, then as a corollary of

Theorem [2| in the same chapter, we have

a,.p(D) < A <IN < f Dmex (6.21)

where 2% and zV are the optimal values of RA-A and RA-N, respectively and
the parameters a,, o, D and D™ are defined as in Chapter . Therefore, it
is possible to calculate a bound on the approximation error due to non-adaptive
setup decisions. Moreover, Assumptions and [4] are not too restrictive and

already hold for the lot sizing problem with outsourcing option or lost demand.
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Figure 6.2: Decision processes in problems with a partially adaptive setup deci-

sions where the setup decisions are updated in every 7 periods.

Decide Observe Decide Observe

{7y, v1, w dsy Vo, Wy drin
Decide Observe Decide Observe

2r — 5 — o — ~
{Ut}t:TH, Vrg1, Wryp dria Vry2,Wri2 dar i1

Decide Observe Decide

3T 7

{ut}t:27-+17 Vor41, Wary dori2 Vor42, Wari2

6.3.2 Partially Adaptive Setup Model

As an intermediate case between the models with adaptive and non-adaptive
setup decisions, we consider a third model with partially adaptive setup decisions.
In this model, the setup decisions are given in every 7 periods such that 1 <7 <T
whereas the production and auxiliary decisions are given in every period. The
decision process for the model with partially adaptive setup decisions is given in

Figure 6.2

Note that in a model with partially adaptive setup decisions, u; depends only
on the demand history up to period HL that is u; is F [q—measurable where
[-] is the ceiling function. Thus, the risk-averse multi-stage production planning

problem with a partially adaptive setup decisions is given as
(RA-P(7))

min  fi (w1, v1, w1) + pryF fz(u2(d[[g”)v ’02(67[2})7 ’wz(g[?})) T+
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—|-P}'3|J-'2{f3 Us 67[ ”3(67[3]%1"3(5[3]))

+- +pr|le<fT ] vT@To,wT(&im)))---}], (6.22)
var

s.t. quzt( ”’—I] dt] < Qiui(d ”T—I])’

vie{L2,. . Ihte{l2. . ..T} (6.23)
I
> valdy) > di, VE€{1,2,...,T} (6.24)
=1
(ul,'vl,'wl) € Xl, (625)

(we(d 7)) vy(di), wy(dy)) €
X, (e (d =) v (dy1)), wi(dy_1)), dy), Yt e {2,3,...,T}, (6.26)

Ut(d”%”) S {0, 1}+,’Ut(d[t]) & Ri;wt@?[t]) S Ri,
vt e {1,2,...,T). (6.27)

The model RA-P has ,LT/Oﬂ_l |Q%r+1] binary variables and provides an in-
termediate case between the models with adaptive and non-adaptive schedules
in terms of adaptivity of setup decisions. Note that if 7 = 1, the model RA-P
coincides with the model RA-A where the setup decisions are adapted to the
random process. Similarly, when 7 = T, it coincides with RA-N where the setup
decisions are non-adaptive. Therefore, the RA-P enables the decision maker to
control the desired level of adaptivity of the setup decisions and the number of
binary variables in the model. In the next proposition, we prove the relationship
between the optimal values of RA-A, RA-N and RA-P.

Proposition 9. We have 24 < zP(T) < 2N where 24 is the optimal value of
RA-A, 2P(7) is the optimal value of RA-P(t) and 2" is the optimal value of
RA-N.

Proof. An equivalent representation of RA-N can be obtained by adding ad-
ditional constraints to RA-A to ensure that the setup decisions at stage t are

identical for all possible realizations of dy; for ¢t € {1,...,7}. On the other
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hand, an equivalent representation of RA-P(7) can be obtained by adding addi-
tional constraints to RA-A such that the setup decisions at stage ¢ are identical
for the possible realizations of dj that share same history up to period (ﬂ for

t € {1,...,T}. Thus, the claim in the proposition follows. ]

Although smaller 7 values yield more adaptive schedules, decreasing 7 may
increase the cost of the obtained schedules. The following examples shows an

instance with 27 (7)) < 2F(1;) where 1 <7y <1 < T.

Example 7. Consider a risk-neutral instance of the problem with T = 4,1 =
2,4, =¢,=q = q = 1. Let fe(wi(dpg), vi(dpy), wildy)) = Zil vir(dpy) for
t € {1,2,3,4}. The demand in the first three periods is 1 unit and demand
i the last period takes values 1 and 2 equally likely. Note that, in this case,

24 = 2FP(3) = 4.5, however zF(2) = 2N = 5.

6.4 A Rolling Horizon Approach

In a classical rolling horizon (RH) approach, at each period, an approximate
problem is solved for the rest of the decision horizon and immediate decisions are
implemented for the current period. Iterating over all periods a feasible policy is
obtained. RH approach is shown to be an effective tool in multi-stage scheduling
problems (see, [81] and references therein for a more detailed discussion). A RH
approach can be employed for RA-A by solving RA-N at every 7 € {1,...,T}
stages and implementing an optimal policy of this approximation for the next 7
stages. We first make a complete recourse assumption in order to ensure that all

problems can be solved optimally during execution of the RH approach.

Assumption 5. Given any partial feasible policy {wu.(-),v,(:),w:(-)}._,, the
model RA-N starting from period t' + 1 is always feasible.

Algorithm [3] outlines the RH approach proposed for RA-A.

115



Algorithm 3 Rolling Horizon Algorithm for RA-A

1: Require: An integer 7 € {1,...,T}

2: Initialize: Set update epoch = 1 and policy {@;(+), v:(-), w(-)}_; = null

3: for t <7 do

4:  forn €y do

5: Given the demand history dy,ds, ...,d;_; corresponding to node n and
{a,(+),9,(-), w,(-)}!Z1, solve RA-N. Let {u(+), vy(- ),'L/l\Jt(-)}tT:z be an op-
timal policy.

6: (@ (1), 0 (+), wi(+)) < (ue(+), (), wy(-)) for stages t € {t,t+1,...,t+
T —1}.

7: Update: t +— t+ 7

8: end for

9: end for

10: Return: Policy {w,(-),v,(), w,(-) }.,

Let 2%5(7) be the objective value corresponding to the policy obtained from
Algorithm [3] for a given 7 value. The following proposition shows the relation

between 2P (7), 24, 2F(7) and 2.

Proposition 10. 24 < 2P(7) < BH(7) <2V for7 € {1,...,T}.

Proof. Due to Assumption [5] the policy {@;(-), D:(-),w;(-)}L, obtained by Algo-
rithm [3|is feasible for RA-P(7) and the setup decision w(+) is F B —measurable.
Therefore, z7(7) < 2B (7). In the first epoch of Algorithm [3 that is for = 1,
the initial policy is an optimal solution of RA-N with the objective value z%.
Throughout the update epochs, the objective value is non-increasing. Thus,

ZRH () < 2V O

Proposition 11. Under Assumptions @ @ andl 4l in C’hapter@ we have = (T) <

*?(H;X forme{l,...,T}.

Proof. The proof follows from the inequalities given in (6.21]) and Proposition
10 O]

Note that Proposition [11| provides a worst-case bound for the performance of

the rolling horizon algorithm. Obtaining worst case bounds of a RH approach for
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an optimization problem is rare in the literature. For example, recently in [82],
worst case bounds of a RH approach can only be shown for a multi-stage fixed

charge transportation problem for some specific cases.

Algorithm [3| requires solving the RA-N model Z[T/ T Q41| times. This
number also grows exponentially with the number of stages, and therefore Algo-
rithm |3 may require long computation times. In order to reduce the computa-
tional difficulty in Algorithm [3, we consider restricting the production decision

in RA-N at stage t to an affine function of random demands up to ¢, that is,

ADR:  wi(d, ZAt/tdt/+B,t, vie{1,2,....,T}ie{1,2,...,1}, (6.28)

t'=1

where Ay and By for 't € {1,..., T} with ¢/ <tandi € {1,..., [} are the real
valued coefficients that define the affine policy. Another alternative is a simpler
policy where the production decision at stage t is an affine function of random

demand at stage t only, that is,
SADR: wy(dy) = Aud, + By, Vte{1,2,...,T}ie{1,2,...,1}  (6.29)

with coefficients Ay and By for t € {1,...,T},i € {1,..., I} that define an affine
policy. Note that, in finite support case, a realization of Ell[t] can be represented
by t—dimensional real-valued vector. Similarly, vt(cj[t]) can also be represented
by an I—dimensional real-valued vector. Thus, the decision rule in can be

represented

ADR:  v,(d}) ZAt/tdt/JrBt, vt e {1,2,...,T}, (6.30)

t'=1

where Ay € R and B, € R for ¢ € {1,...,t}. Also, the decision rule in

(6.29) can be written as
SADR: w(dy) = Audy + B, Vte{1,2,...,T}, (6.31)

where A, € R and B, € RI*!.

117



Affine decision rules have been considered in the context of stochastic pro-
gramming since the pioneering work [83]. However, successful implementations
such as [84] and [85] in multi-stage setting have appeared recently in the litera-
ture. In the risk-averse context, usage of affine decision rules have not attracted
much attention. In [86], the decisions are restricted to affine functions of the
problem parameters where the objective is a non-dynamic CVaR in a reservoir
management problem. To the best of our knowledge, affine decision rules have
not been used in a risk-averse multi-stage stochastic optimization problem with

an objective of dynamic coherent risk measure.

The risk-averse multi-stage production planning problem with non-adaptive

schedule and affine decision rules is given by

(RA-N-ADR)
2

min.  fi(u1, Aiidi + B, wy) + pgy 2, [fz(um ZAMCAZ;/ + Bs, ’wz(gf[z]))

t'=1

3
+ P75 7, {f3(u3, Z Apzdy + Bs, w3(d[3])) +

t'=1

T
+ PFr|Frs (fT(’UJT7 Z Ayrdy + Br, wT(lffv[T}))) e }] ) (6.32)

t'=1

t
st que <Y Apdy + By <qu,, te€{1,2,.... T}, (6.33)
t'=1
t ~ ~
1T<2At/tdt/ +Bt> >d, vte{l,2,....T} (6.34)
t'=1
(’U,l, Alldl + Bl, 'lUl) - Xl, (635)

¢
(uy, Z Apdy + By, wt(d[t])) S

t'=1
t—1

Xt(ut—h Z At’(t—l)&;’ + Bt—l; wt(&/[t—l]% Cfi{[t})a Vit € {27 37 s 7T}7

t'=1

U € {O, 1}iaAt’t € RIth,Bt € RIXl,wt<(/iv[t]> € Ri,
Vie{1,2,...,THt € {1,2,...,t}, (6.37)
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Algorithm 4 Rolling Horizon Algorithm with Affine Decision Rules for RA-A

1: Require: An integer 7 € {1,...,T}

2: Initialize: Set update epoch = 1 and policy {@;(+), v:(-), w(-)}_; = null
3: for t <7 do

4:  forn €y do

5: Given the demand history di,ds,...,d;_; corresponding to node n

and {@,(-),,(-),w,(-)}'Z}, solve RA-N-ADR or RA-N-SADR. Let
{a,(-),0¢(-), we(-)}; be an optimal policy.
6: (@ (1), 0 (+), wi(+)) < (Ue(+), (), wy(+)) for stages t € {t,t+1,...,t+

T—1}.
7: Update: t +— t+ 7
8: end for
9: end for

10: Return: Policy {u;(-),v(+), w; (")},

where 1 € R’ is the vector of all ones. q = (gl,...,gl) and ¢ := (Gy,...,q;)-
A similar model RA-N-SADR can be written for the simpler affine decision rule
SADR.

Therefore, we can modify Algorithm [3] where we use affine decision rules in the

approximating problem.

Let zBH-ADPE(7) and FH-94APE(1) be the objective values corresponding to

the policy obtained from Algorithm ] with ADR and SADR, respectively.

6.5 Computational Experiments

We conduct a set of computational experiments on a risk-averse lot sizing prob-
lem in order to observe the performance of the approximations to the risk-averse
multi-stage production planning problem and verify the findings in the previous
sections. All computational experiments are performed on an Intel(R) Core(TM)
i7-4790 CPU@3.60 GHz computer with 8.00 GB of RAM. The algorithm is im-
plemented on Java 1.8.0.31 where IBM ILOG CPLEX version 12.6 with default

settings is used as the solver.
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We generate problem instances similar to the ones in Section except we
define d;, ~ U[50 — 100¢, 50+ 100€] where € € {0.1,0.2,0.3,0.4,0.5} is a parameter
that controls the variability of the demand values. The lower production limits
are also set to one fourth of the upper production limits. We use conditional

mean upper semi-deviation risk measure
PF1F(Zit1) = BlZept | R+ AB[(Zi1 —E[Zp | ) +|F] VZii1 € 2444, (6.38)

for all t € {1,...,T — 1} in our experiment. We also consider A € {0,0.25,0.5}
to control the degree of risk-aversion. Note that, if A = 0, then the problem is

risk-neutral.

We consider 7' = 5 and 6 stage instances where the demand can take K
different values equally likely and independently at each stage. For T' = 5, we let
K € {2,3,4} and for T' = 6, we let K € {2,3}. Note that for K = 2,3 or 4, the
corresponding scenario tree is a binary, ternary and quaternary tree, respectively.

Moreover, the total number of scenarios in an instance is K7 ~!'. The detailed

results are presented in Tables in Appendix [C]

We first investigate how close the optimal value of RA-A to the optimal value
of RA-N in order to measure the benefit of solving the model with adaptive setup
decisions. Thus, we define a metric called as the value of adaptive setup decisions

as: N A
5 =z
VAS (%) = Z—A’

similar to the definition of VAC in Chapter [} VAS defines the percentage of
increase in the objective value when RA-N is solved instead of RA-A. The exact
value of VAS can only be calculated if both RA-A and RA-N are solved optimally.
Since for some instances of RA-A cannot be solved optimally when T'=5 K =4
and T" = 6, K = 3, we present the analysis for the remaining instances. The

results are presented in Figure [6.3]

As shown in Figure [6.3] VAS increases with the variability in demand values
(€) and the number of stages (T") and decreases with the degree of risk-aversion
(A). The largest VAS value 8.11% is attained when 7" = 6, K = 2, A = 0 and
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e = 0.5. Moreover, VAS is zero for all instances with low demand variability
e = 0.1. The VAS and hence the importance of the model with adaptive setup
decisions increase with variability and the number of stages and decrease with the
degree of risk-aversion. Note that, this result is also consistent with the theoretical
and computational results in Chapter We consider a similar comparison for
the models with adaptive and partially adaptive setup decisions. We define the
relative value of adaptive setup decisions compared to partially adaptive setup
decisions as:
2P(1) = 24

VAS(7) (%) = ——5—

A

where VAS(7) (%) measures the percentage of increase in the objective value if
RA-P with 7 is solved instead of RA-A. The results are given in Figure [6.4]

As seen in Figure [6.4] VAS(7)(%) values also increase with demand variabil-
ity and the number of stages and decreases with the degree of risk-aversion, in
general. Although we cannot always expect that VAS(2) < VAS(3) as shown in
Example [7], the average performance of RA-P with 7 = 2 (VAS(2)% = 0.45 on
the average) is better than RA-P with 7 = 3 (VAS(3)% = 1.08 on the average).

We also define
AH(r) — A

VAS-RH(r) (%) = ——5——.

in order to measure the percentage of increase in the objective value when the

solution of the RH algorithm is used instead of the optimal fully adaptive setup

decisions.

In Figure|6.5 we can observe that the relative importance of the adaptive setup
decisions compared to the rolling horizon solutions also increases with variability
and the number of stages and decreases with the degree of risk aversion. Moreover,
as 7 decreases, the RH algorithm performs better in terms of objective value with
a cost of computation time. The average VAS-RH(7) (%) values for 7 = 1,2 and
3 are 1.40 %, 1.40 % and 1.47 %, respectively whereas the average computation
times are 0.53, 0.32 and 0.16, respectively.

Finally, in order to measure the relative advantage of the optimal solution
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with adaptive setup decisions compared to the solution obtained from the RH

with affine decision rules, we define

VAS-RH-ADR(7) (%) = —,

and

ZRH—SADR(T) A

VAS-RH-SADR(r) (%) = " :

as the percentage of increase in the objective value when the RH algorithm with
ADR and SADR is used instead of RA-A, respectively. The results are given in

Figures [6.6] and

It can be observed from Figures and that, the RH algorithm with
affine decisions rules cannot perform better that the RH algorithm. For some
instances, the approximation error is more than 18.24 %. Moreover, it is not easy
to capture the effect on problem parameters such as €, T' and A\ on the quality of
the obtained solution. However, we present some larger instances where RH with

affine decision rule saves computation time later in this section.

We investigate the relation among all approximations to RA-A for the instance
T =6,K =3\ =0.25and ¢ = 0.5. The results of the experiments on this

instances are summarized in Table [6.1]

As seen in Table the model with adaptive setup decisions cannot be solved
due to an “out of memory” error as in other large instances as shown in Table
[C.1] For this instance, even the model with partially adaptive setup decisions with
7 = 2 cannot be solved optimally after one hour of time limit and terminates with
1.75% optimality gap and the best incumbent value of 14212.81. On the other
hand, the model with partially adaptive setup decisions with 7 = 3 can be solved
only in 73.4 seconds with the optimal value of 14607.68. Although it requires
only 0.8 seconds, the model with non-adaptive setup decisions performs the worst
among these models. Moreover, we have 24 < 2P(2) < 2V and 24 < 2P(3) < 2V,

as we have expected.

Another result in Table is the promising performance of the rolling horizon
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Table 6.1: CPU times (in seconds) and the objective values for the instance
T=6,K=3\=0.25and e =0.5.

Value  Time (in seconds)

ZA ksksk *kk

2P (2) 14212.81 3600 (1.75 %)
2P (3) 14607.68 73.4
2N 15383.73 0.8
ZRH (1) 14966.23 3.3
ZRH(2) 15026.68 1.6
2BH(3) 15383.73 1.0
ZRH=ADR(1)  15402.47 6.9
ZRH-ADE(2)  15760.2 3.6
LRH=ADR(3)  15705.36 2.0
LRH=SADR(1)  15402.47 7.7
ZRH=SADE(9)  15760.2 3.7
LRH=SADE 3y 15705.36 1.9

algorithm. For 7 = 1,2 and 3, the running times of the rolling horizon algorithm
are 3.3,1.6 and 1.0 seconds, respectively. Despite its short running time, the
rolling horizon algorithm could improve the optimal solution of RA-N through
iterations. Moreover, as 7 increases, the number of problems to be solved through
the execution of the rolling horizon algorithm decrease. The results also verify
Proposition |10} that is, 24 < 2 (1) < 2V holds as expected for 7 € {1,2,3}.

The results presented in Table [6.1], lead to the following chain of inequalities:
ZA S ZP(Z) S ZP(S) S ZRH(I) S ZRH(Q) S ZRH(?)) — ZN S ZRH—ADR(1> —
ZRH—SADR(l) < ZRH—ADR(?)) — ZRH—SADR(g) < ZRH—ADR(Q) — ZRH—SADR(Q)‘

In Table [6.1], we can also observe that the rolling horizon policies with affine
decision rules are neither time nor cost effective. Therefore, we conduct another
set of experiments on larger problem instances. Table presents the CPU times
(in seconds) and the objective values of the rolling horizon algorithm without
affine decision rules, with ADR and with SADR for T'= 10, K =2, A=¢=10.5

instances with 7 = 1. For this large instance, RA-A and RA-P terminate due to
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an “out-of-memory” error without reporting any feasible solution.

In Table 6.2} it can be seen that although the rolling horizon algorithm gives
the best objective values, it takes longer times if no affine decision rule is used.
The average CPU time for the rolling horizon algorithm is 51.5 seconds although
ADR and SADR require 46.6 and 15.5 seconds, on the average. Another ob-
servation from Table is that using SADR in the rolling horizon algorithm is
computationally more efficient than ADR although both perform equally for all
instances in terms of objective. Also, note that, the RH algorithm with or with-
out affine decision rules can find a feasible solution to the problem despite RA-A

and RA-P fail to do so.

6.6 Conclusion

In this chapter of the thesis, we consider a risk-averse model for multi-period
production problem where the decisions are the setup and production decisions
for a set of production units. Although the risk-averse model provides flexibility
to adapt the dynamic environment, its solution requires great computational ef-
fort. In order to reduce this computational effort, we propose alternative models
with non-adaptive and partially- adaptive setup decisions. Moreover, we propose
a rolling horizon algorithm to the model with adaptive setup decisions. We also
consider restricting the production decisions to affine functions of demand his-
tory to reduce to computation time of the rolling horizon algorithm. We present
analytical and computational results which investigate the quality of solutions ob-
tained by the approximations. The computational results reveal that the benefit
of solving the fully adaptive model increases with variability of demand values and
the number of stages and decreases with the degree of risk-aversion. Moreover,
it is observed that the RH algorithm with affine decision rules can be employed

to solve large problem instances for which RA-A and RA-P fail.
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Figure 6.3: Results of the computational experiments on the VAS(%) for the
risk-averse lot-sizing problem with respect to different variability levels (¢) and
degrees of risk aversion (\).
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Figure 6.4: Results of the computational experiments on the VAS(7)(%) for the
risk-averse lot-sizing problem with respect to different variability levels (¢), de-
grees of risk aversion (A) and 7 € {2, 3}.
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Figure 6.5: Results of the computational experiments on the VAS-RH(7)(%) for
the risk-averse lot-sizing problem with respect to different variability levels (e),
degrees of risk aversion levels (A) and 7 € {1, 2, 3}.
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Figure 6.6:

degree of risk aversion levels (A) and 7 € {1, 2, 3}.

Results of the computational experiments on the VAS-RH-
ADR(7)(%) for the risk-averse lot-sizing with respect to different variability (e),
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Figure 6.7:

Results of the computational experiments on the VAS-RH-

SADR(7)(%) for the risk-averse lot-sizing with respect to different variability

(€), degree of risk aversion levels (\) and 7 € {1,2,3}.
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Table 6.2: the CPU times (in seconds) and the objective values of the rolling
horizon algorithm without affine decision rules, with ADR and with SADR for a
T =10, K = 3,\ = ¢ = 0.5 instances with 7 = 1.

A€ | RH  RH-ADR RH-SADR
Time | 51.3 44.0 13.0

011 Onj. | 18141.27 18141.27  18141.27
0 | Time | 432 38.7 13.9

= Obj. | 18877.02 19796.90  19796.90
o3 | Time | 434 37.9 15.4

0 | %2 Obj. | 19614.35 20571.58  20571.58
o4 | Time | 442 39.1 14.3

| Obj. | 20349.43 21511.28  21511.28
Time | 45.6 411 14.6

051 Obj. | 21199.92 23636.98  23636.98
Time | 56.2 50.8 14.5

011 Onj. | 18217.19 1821719 18217.19
oy | Time | 532 49.5 15.1

= Obj. | 19030.81 19962.75  19962.75
o3 | Time | 526 49.0 16.6
0.25 1 %21 Obj. | 19861.93 20766.52  20766.52
o4 | Time | 531 477 17.5

| Obj. | 20674.30 21762.39  21762.39
Time | 57.2 52.3 17.1

051 Obj. | 21597.18 2410210  24102.10
Time | 55.1 49.8 14.5

011 Onj. | 18292.94 18292.94  18292.94
oy | Time | 533 48.2 15.4

2| Obj. | 19184.90 20131.12  20131.12
Time | 53.1 485 16.3

0.5 | 03| Opi. | 2010248 20967.80  20967.80
o4 | Time | 540 49.9 17.9

| Obj. | 21001.19  22027.73  22027.73
Time | 56.9 51.7 17.0

051 On. | 22002.44 2456523 24565.23
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Chapter 7

Conclusion

In this dissertation, we consider risk-averse multi-stage mixed-integer stochastic
programming which form a class of extremely challenging optimization problems.
In Chapter [3, we propose a scenario tree decomposition algorithm, called as sce-
nario grouping, for risk-averse multi-stage mixed-integer stochastic problems with
a dynamic objective function defined via mean-CVaR. The suggested algorithm
is used to find lower and upper bounds on the optimal value of the problem.
We investigate the effect of scenario partitioning strategies on the quality of the
different lower bounds by considering different partitioning strategies based on

the structure of the scenario tree and disparateness of scenario realizations.

In Chapter [4 we extend the findings of Chapter [3to an exact solution proce-
dure. The proposed method is based on an evaluate-and-cut procedure where the
lower bounds are obtained from group subproblems. Moreover, we show that, un-
der the assumption that the first stage integer variables are bounded, the problem
with mixed-integer variables in all stages can be solved with the proposed algo-
rithm. As the computational experiments reveal, under modest computational
settings, the proposed algorithm is able to solve large problem instances within

a reasonable time.
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In Chapter [5, we consider an application of risk-averse multi-stage mixed-
integer stochastic programming problems to a power system optimization prob-
lem. Uncertainty and variability in net load arising from the increasing penetra-
tion of renewable technologies have motivated study of various classes of stochas-
tic unit commitment models in recent years. In the models with non-adaptive
commitment, the generation schedule for the entire day is fixed whereas the dis-
patch is adapted to the uncertainty. On the other hand, in the models with
adaptive commitment, the generation schedule is also allowed to dynamically
adapt to the uncertainty realization. The latter ones provide more flexibility in
the generation schedule, however, they require significantly higher computational
effort than the former ones. In order to justify this additional computational
effort, in this chapter, we provide theoretical and empirical analyses of the value
of adaptive commitment for risk-averse multi-stage stochastic unit commitment

models.

In Chapter[6], we consider risk-averse multi-stage production planning problems
as a generalization of the unit commitment problem discussed in Chapter [5l In
these problems, we first consider two models with respect to their adaptivity to
the uncertainty. In fully adaptive models, both setup and production decisions
are given in on-line fashion, that is, they are adapted to demand uncertainty.
However, in the models with non-adaptive setup decisions, the setup decisions are
off-line, that is, they are fixed at the beginning of the decision horizon whereas
the production decisions are on-line. As an intermediate case, we also consider
a model with partially adaptive setup decisions. Moreover, we propose a rolling
horizon approach for the problem. In order to reduce the computational effort
of the rolling horizon algorithm, we consider restricting the production amounts
to affine functions of demand realizations during the execution of the algorithm.
We conduct a set of computational experiments on a risk-averse multi-stage lot
sizing problem to investigate the computational efficiency of the proposed models

and verify the analytical results.

In Chapters[3land ], the group subproblems can be assigned to different threads
of a computer and solved in parallel during the execution of Algorithms [I| and

[2l Similarly, parallel computing can be used to solve the problems in the upper
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bounding phase of these algorithms. Parallel implementation of the proposed al-
gorithms may decrease the running time significantly, especially when the number
of groups is large. Therefore, it can be considered as a future research direction.
Another possible extension of the study is to find better scenario partitioning
strategies in Chapter [3] Since the scenario partitioning strategies have a direct
impact on the quality of the bounds, it can be interesting to seek the partitioning

strategy which yields the best lower and upper bounds.

We consider unit commitment and multi-period production planning problems
in Chapters [ and [6] respectively. However, the theoretical results and the pro-
posed algorithms in these chapters can also be considered for other risk-averse
multi-stage problems. Performance of the rolling horizon polices with affine de-
cision rules are promising. As a future research direction, it would be interesting

to consider these rolling horizon policies in different problems.
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Appendix A

Deterministic Unit Commitment

Formulation

Indexes and Sets

t : Period index, 1 : Generator index,
T : Number of periods, I : Number of generators,
T : Set of periods, T : Set of generators,
[ : Transmission line index, L : Set of transmission lines,
Parameters

a; : Fixed cost of running generator ¢ € Z,
hi(+) : Production cost function of running generator i € Z,
specifically, h;(v) = byv + cv* for v > 0
with parameters b;, c; € R,
SU; : Start-up cost of generator ¢ € Z,
SD; : Shut-down cost of generator i € Z,

: Minimum production amount of generator ¢ € Z,

RS
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Variables

Model

- - Maximum production amount of generator ¢ € Z,

: Net load in period t € T,

M; : Minimum up time of generator ¢ € 7,

; - Minimum down time of generator i € Z,

: Start up rate of generator i € Z,
: Ramp up rate of generator ¢ € Z,

: Shut down rate of generator ¢ € Z,

; : Ramp down production limit of generator i € Z,

: Capacity of transmission line [ € L,

: Flow line distribution matrix.

it © Status of generator ¢ € Z in period ¢t € T,

(1 if generator i is ON in period t; 0 otherwise),

it - Production amount of generator ¢ € Z in period t € T,

it - Start up decision of generator ¢ € Z in period t € T,

(1 if ui¢—1) = 0 and u; = 1; 0 otherwise),

: Shut down decision of generator ¢ € Z in period t € T,

(1 if ui—1) = 1 and u; = 0; 0 otherwise).

T I
min Z Z ;U + hi(vit) + SUzyzt -+ SDizit,

U,0,Y,2
S

s.t. (6.2,
Uip — Ui—1) < Uir, VE €T, Vi €T,
Vre{t+1,...,min{t + M;,T}}
Uigi—1) — Up < 1 —wyr, VE €T, Vi €T,
Vre{t+1,...,min{t + L;, T}}
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Uit — ui(t—l) S Yit, Vit € T, Vi el <A4)

Ui(i—1) — Uit < 24, VEE T, Vi el (A.5)
Vit — Vie—1) < Vi + Vitti—1),

VieT,Viel (A.6)
Vit—1) — Vit < Bizip + Bis,

VteT,Viel (A.7)
—C < Ky, < C,

VieT,Viel (A.8)

Wits Yirs 2it € {0, 1}, vy >0, YVt € T, Vi € T.

The objective (A.1) is total fixed, production, start up and shut down costs.
Constraints (A.2)), (A.3), (A.4) and are minimum up time, minimum down
time, start up and shut down constraints, respectively. The rump/start up rate
constraint is given in . Similarly, is the rump/shut down rate con-
straint. Constraints are the flow balance constraints in linear form as given
in [73].
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Appendix B

Computational Experiment Data

Table B.1: Demand Data (MW = megawatt)

t 1 2 [ 3 ] 4] 5 ] 6
d, (MW) | 700 | 750 | 850 | 950 | 1000 | 1100
t 7 [ 8 | 9 | 10 | 11 | 12
d, (MW) | 1150 | 1200 | 1300 | 1400 | 1450 | 1500
t 13 | 14 | 15 | 16 | 17 | 18
d, (MW) | 1400 | 1300 | 1200 | 1050 | 1000 | 1100
t 19 | 20 | 21 | 22 | 23 | 24
d, (MW) | 1200 | 1400 | 1300 | 1100 | 900 | 800

Table B.2: Scenario Data

Period (or hour) ¢
Scenario Probability 1-6 7-12 13-18 19-24

1 0.125 d (1—ed, (1—e)d; (1—e€)d;
2 0.125 d (1—ed, (1—ed, (1+e€)d,
3 0.125 d (1-ed; (1+ed; (1-e)d,
4 0.125 d (1—-ed: (1+ed: (1+e€)d
5 0.125 d, (14+ed, (1—ed, (1—e)d,
6 0.125 d; (1+ed; (1—ed (1+e€)d,
7 0.125 d (1+ed, (1+ed, (1—e)d,
8 0.125 d, (14+ed, (1+ed, (1+e€)d,
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Appendix C

Results of Computational

Experiments in Chapter @
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Table C.1: CPU times (in seconds) and the objective values of RA-A instances.

T=5 T=6
A oe | | K=2 K=3 K=4| K=2 K=3
Time | 0.2 0.3 1.24% 0.3 64.6
011 Obj. | 941586 9916.17  9730.32 | 11343.05 11782.75
o | Time | 01 0.5 3.10% 0.1 1.18%
“ 1 Obj. | 9853.30 10503.80 10154.41 | 12035.57 12389.17
o3 | Time | 0.1 1.7 2.38% 0.2 1.95%
0 | %21 Obj. | 10257.57 11019.13 10340.87 | 12545.89 12842.93
o4 | Time | 00 8.1 1.45% 0.3 1.49%
“ | Obj. | 10611.26 11395.39 10548.54 | 12862.63 13145.20
Time | 0.0 1.9 1681.9 0.2 1.28%
051 Obj. | 10835.47 11529.25 10685.05 | 13092.75 13351.83
Time | 0.0 0.5 97.2 0.1 68.8
017 Obj. | 9448.08 9943.67 9773.42 | 11388.43 11852.38
0o | Time | 0.0 0.5 0.78% 0.3 0.80%
“| Obj. | 9917.74 10569.21 10247.60 | 12126.30 12519.57
o3 | Time | 0.0 0.8 1.46% 0.5 Hokok
0.25 | %21 Obj. | 10387.21 11143.16 10538.67 | 12779.80  ***
o4 | Time | 0.2 6.0 1.37% 0.4 ok
1 Obj. | 10766.20 11610.79 10837.50 | 13220.07  ***
Time | 0.1 5.7 ok 0.5 Hork
051 Obj. | 11116.26 11875.63  *** | 13552.95  ***
Time | 0.0 0.3 ok 0.1 15.9
011 Obj. | 0478.04 997171 *** | 11433.06 11916.47
0 | Time | 0.0 0.6 50.8 0.3 0.34%
“ 1 Obj. | 9977.66 10638.15 9815.76 | 12215.52 12649.76
o3 | Time | 003 058  0.03% | 020  1.43%
0.5 1 %21 Obj. | 10477.07 11257.47 10323.20 | 12964.76 13225.77
o4 | Time | 0.0 3.7 ok 0.3 1.36%
““ 1 Obj. | 10919.87 11800.19  *** | 13545.53 13574.87
Time | 0.0 4.4 ok 0.5 1.01%
051 Obj. | 11323.72 12167.68  *** | 13973.84 13955.31

For the instances that cannot be solved within the time limit of one hour the
optimality gap returned by CPLEX is presented instead of CPU time.
*#%. Terminated due to out of memory error.
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Table C.2: CPU times (in seconds) and the objective values of RA-P instances
with 7 = 2.

T=5 T=6
A oe | | K=2 K=3 K=4| K=2 K=3
Time | 0.2 0.2 0.9 0.1 2.5

017 Obj. | 941586 991617  9730.32 | 11343.05 11852.98
0o | Time | 0.0 0.6 22.1 0.0 0.24%

“| Obj. | 9853.30 10503.80 10154.41 | 12035.57 12618.86

0. | Time | 0.0 0.4 15.6 0.2 1.54%

0 |21 Obj. | 10257.57 11019.13 10420.12 | 12699.01 13164.15
0. | Time | 0.0 0.5 4.8 0.2 1.59%

1 Obj. | 10611.26 11411.13 10643.11 | 13199.50 13584.63
Time | 0.0 0.2 2.3 0.1 1.23%

051 Obj. | 10964.66 11726.72 10766.42 | 13565.14 13974.16
Time | 0.3 0.3 2.4 0.1 22.7

017 0Obj. | 9448.08 9943.67 9773.42 | 11388.43 11895.18
0o | Time | 0.1 0.5 20.2 0.2 1231.6

“ | Obj. | 9917.74 10569.21 10252.41 | 12126.30 12745.46
Time | 0.0 0.5 22.8 0.1 2.01%

0.25 | 03 1 ops | 10387.21 11143.16  10621.20 | 12864.20 13339.73
0 | Time | 0.0 1.1 16.3 0.3 2.28%

| Obj. | 10766.20 11610.79 10936.06 | 13455.23 13801.65
Time | 0.0 0.7 8.7 0.3 1.75%

051 Obj. | 11145.04 11966.80 11126.52 | 13917.66 14212.81
Time | 0.0 0.3 1.7 0.1 12.6

011 Obj. | 9478.04 997171  9815.76 | 11433.06 11938.33
0o | Time | 0.0 0.4 8.0 0.1 444.5

“| Obj. | 9977.66 10638.15 10326.57 | 12215.52 12871.53
Time | 0.0 0.5 4.6 0.3 1.31%

0.5 | O3 Opi. | 10477.07 1125747 10775.18 | 12098.02  13530.38
0 | Time | 0.0 0.7 15.0 0.4 1.71%

| Obj. | 10919.87 11800.03 11214.69 | 13676.14 14017.41
Time | 0.0 0.7 9.3 0.3 1.62%

051 Obj. | 11325.07 12221.51 11478.86 | 14230.58 14451.53

For the instances that cannot be solved within the time limit of one hour the
optimality gap returned by CPLEX is presented instead of CPU time.
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Table C.3: CPU times (in seconds) and the objective values of RA-P instances
with 7 = 3.

T=5 T=6
A oe | K=2 K=3 K=4| K=2 K=3
Time | 0.2 0.2 2.6 0.1 0.2
011 Oni. | 941586 9916.17  9730.32 | 11343.05 11852.98
0o | Time | 0.0 0.3 1.2 0.1 2.1
“ 1 Obj. | 9853.30 10532.76 10188.14 | 12035.57 12710.73
0. | Time | 0.0 1.8 2.7 0.0 12.2
0 %21 Obj. | 10290.58 11116.88 10463.23 | 12728.11 13413.88
0. | Time | 0.0 0.3 1.9 0.1 39.8
=1 Obj. | 10615.14 11632.54 10960.25 | 13420.75 13936.27
Time | 0.0 1.0 79.5 0.3 11.4
051 Obj. | 11024.17 12107.46 11492.06 | 14010.79  14372.72
Time | 0.0 0.2 2.1 0.0 1.0
011 Onj. | 9448.08 994367 9773.42 | 11388.43 11895.18
0o | Time | 0.0 0.2 16.5 0.1 6.6
“ 1 Obj. | 9917.74 10587.75 10255.84 | 12126.30 12795.12
Time | 0.0 0.7 10.3 0.2 82.7
0.25 | 03 Obj. | 10387.21 11214.21 10623.76 | 12864.20 13551.12
0. | Time | 0.0 0.8 35.3 0.2 139.1
=1 Obj. | 10771.61 11771.79 11146.25 | 13602.20 14125.81
Time | 0.0 0.6 15.4 0.1 73.4
051 Obj. | 1120626 12293.98 11705.29 | 14253.58 14607.68
Time | 0.0 0.1 15 0.0 1.2
011 Oni. | 0478.04 997171  9815.76 | 11433.06 11938.33
0o | Time | 0.0 0.2 8.9 0.3 2.4
“ 1 Obj. | 9977.66 10643.80 10326.57 | 12215.52 12881.40
0. | Time | 0.0 0.5 10.0 0.1 32.4
0.5 1 %21 Obj. | 10477.07 11314.53 10770.83 | 12098.02 13697.08
04 | Time | 0.0 0.3 27.4 0.5 52.2
1 Obj. | 10920.73 11911.71 11318.25 | 13780.64 14310.57
Time | 0.0 0.3 2.0 0.2 53.7
051 Oni. | 11380.28  12482.37 1190268 | 14492.92  14840.45
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Table C.4: CPU times (in seconds) and the objective values of RA-N instances.

T=5 T=6
A oe | K=2 K=3 K=4| K=2 K=3
Time | 0.0 0.1 1.7 0.1 0.8

011 Oni. | 941586 9916.17  9730.32 | 11343.05 11852.98
0o | Time | 0.0 0.5 2.7 0.1 0.6

“| Obj. | 9853.30 10532.76 10188.14 | 12035.57 12710.73

0.3 | Time | 0.0 0.3 0.8 0.0 0.6

0 1521 Obj. | 10290.58 11149.09 10739.95 | 12728.11 13568.30
0. | Time | 0.2 0.1 0.7 0.0 0.7

““ 1 Obj. | 10728.04 11765.52 11383.94 | 13420.75 14426.11
Time | 0.3 0.1 0.7 0.0 0.7

051 Obj. | 11165.37 12381.91 12064.79 | 14154.40 15243.87
Time | 0.0 0.1 0.8 0.1 0.7

011 Onj. | 9448.08  9943.67 9773.42 | 11388.43 11895.18
0o | Time | 0.0 0.3 0.8 0.2 0.8

“ 1 Obj. | 9917.74 10587.75 10255.84 | 12126.30 12795.12
Time | 0.0 0.2 0.8 0.3 0.8

0.25 | 031 ops | 10387.21 11231.50 10824.89 | 12864.20 13694.89
0. | Time | 0.0 0.1 0.8 0.9 0.7

1 Obj. | 10856.87 11875.51 11477.91 | 13602.20 14594.89
Time | 0.0 0.1 0.8 0.0 0.8

051 Oni. | 1132643 12519.40 12166.62 | 14381.19 15383.73
Time | 0.0 1.0 0.8 0.1 0.7

011 Onj. | 9478.04 997171  9815.76 | 11433.06 11938.33
0o | Time | 0.0 0.1 0.8 0.3 0.7

“ 1 Obj. | 9977.66 10643.80 10326.57 | 12215.52 12881.40
Time | 0.0 0.5 0.7 0.0 0.8

0.5 | 0.3 Obj. | 10477.07 11315.67 10914.17 | 12998.02 13824.30
0 | Time | 0.0 0.1 0.8 0.1 0.8

1 Obj. | 10976.67 11987.61 11579.24 | 13780.64 14767.45
Time | 0.1 0.1 0.8 0.1 0.8

051 Oni. | 1147620 12659.52 12277.52 | 14604.21 15536.19
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Table C.5: CPU times (in seconds) and the objective values of the rolling horizon
algorithm with 7 = 1.

T=5 T=6
A oe | K=2 K=3 K=4| K=2 K=3
Time | 0.5 0.8 1.6 0.6 2.1
011 Ob. | 9415.86  9916.17  9730.32 | 11343.05 11852.98
0o | Time | 0.0 0.5 7] 0.2 2.7
“ 1 Obj. | 9853.30 10532.76 10188.14 | 12035.57 12710.73
o | 03| Time| o1 0.9 2.1 0.3 2.1
| Obj. | 10290.58 11149.09 10739.37 | 12728.11 13568.30
0.4 | Time | 0.1 0.9 2.0 0.2 2.2
1 Obj. | 10728.04 11765.52 11378.28 | 13420.75 14359.41
Time | 0.1 0.9 2.0 0.5 2.4
051 Obj. | 11090.09 12381.91 12057.26 | 14105.94 14761.46
Time | 0.1 1.0 2.0 0.7 2.1
011 Obj. | 944808  9943.67 9773.42 | 11388.43 11895.18
0o | Time | 0.3 0.5 2.1 0.8 2.2
“ 1 Obj. | 9917.74 10587.75 10255.84 | 12126.30 12795.12
Time | 0.1 0.7 2.0 0.7 2.5
0.25 | 03 1 ops | 10387.21 11231.50 10824.34 | 12864.20 13694.89
o4 | Time | 0.1 0.7 2.3 0.6 3.4
1 Obj. | 10856.87 11875.51 11473.08 | 13602.20 14520.07
Time | 0.4 0.6 2.3 1.3 3.3
051 Obj. | 11262.48 12519.40 12158.59 | 14319.22 14966.23
Time | 0.1 0.5 2.1 2.2 2.2
O-11 Obj. | 9478.04 997171  9815.76 | 11433.06 11938.33
0o | Time | 0.1 0.5 2.2 0.7 2.3
“ 1 Obj. | 9977.66 10643.80 10326.57 | 12215.52 12881.40
05 | Time | 0.3 0.6 2.3 0.6 2.3
0.5 1 %21 Obj. | 10477.07 11315.67 10913.68 | 12998.02 13824.30
04 | Time | 0.1 0.5 2.3 0.5 3.4
1 Obj. | 10976.67 11987.61 11575.31 | 13780.64 14688.32
Time | 0.1 0.5 2.4 1.0 3.1
051 Obj. | 11426.08 12659.52 12269.08 | 14521.23 15183.45
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Table C.6: CPU times (in seconds) and the objective values of the rolling horizon
algorithm with 7 = 2.

T=5 T=6
A oe | K=2 K=3 K=4| K=2 K=3
Time | 0.0 0.4 1.2 0.3 1.1

011 Ob. | 9415.86  9916.17  9730.32 | 11343.05 11852.98
0o | Time | 0.0 0.3 1.3 0.2 1.1

“ 1 Obj. | 9853.30 10532.76 10188.14 | 12035.57 12710.73

0 | Time | 0.1 0.7 1.4 0.1 2.9

0 %21 Obj. | 10290.58 11149.09 10739.95 | 12728.11 13568.30
0. | Time | 0.2 0.4 1.3 0.1 1.2

1 Obj. | 10728.04 11765.52 11383.94 | 13420.75 14359.41
Time | 0.1 0.5 1.3 0.1 1.1

051 Obj. | 11090.09 12381.91 12064.79 | 14105.94 14841.07
Time | 0.0 1.9 1.2 0.3 1.0

011 Obj. | 944808  9943.67 9773.42 | 11388.43 11895.18
0o | Time | 0.1 0.6 1.4 0.2 1.1

“ 1 Obj. | 9917.74 10587.75 10255.84 | 12126.30 12795.12
Time | 0.2 0.7 1.3 0.4 1.1

0.25 | 031 ops | 10387.21 11231.50 10824.89 | 12864.20 13694.89
o4 | Time | 0.1 0.4 1.2 0.2 1.6

1 Obj. | 10856.87 11875.51 11477.91 | 13602.20 14520.07
Time | 0.0 0.5 1.2 0.4 1.6

051 Obj. | 11262.48 12519.40 12166.62 | 14319.22 15026.68
Time | 0.1 0.5 1.3 0.2 0.8

O-11 Obj. | 9478.04 997171  9815.76 | 11433.06 11938.33
0o | Time | 0.1 0.4 1.3 0.5 1.0

“ 1 Obj. | 9977.66 10643.80 10326.57 | 12215.52 12881.40
Time | 0.3 0.6 1.2 0.3 1.1

0.5 | 031 Opi. | 10477.07 11315.67 10914.17 | 12998.02  13824.30
o | Time | 0.0 0.5 1.4 0.4 1.6

1 Obj. | 10976.67 11987.61 11579.24 | 13780.64 14688.32
Time | 0.0 0.5 1.3 0.7 1.5

051 Obj. | 11426.08 12659.52 12277.52 | 14521.23 15226.41
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Table C.7: CPU times (in seconds) and the objective values of the rolling horizon
algorithm with 7 = 3.

T=5 T=6
A oe | K=2 K=3 K=4| K=2 K=3
Time 0.0 0.3 0.7 0.3 0.4
011 Ob. | 9415.86  9916.17  9730.32 | 11343.05 11852.98
0o | Time | 0.0 0.5 1.2 0.0 0.5
“ 1 Obj. | 9853.30 10532.76 10188.14 | 12035.57 12710.73
o | 03| Time| 00 0.3 1.6 0.1 0.5
| Obj. | 10290.58 11149.09 10739.37 | 12728.11 13568.30
0.4 | Time | 0.1 0.2 1.3 0.1 0.5
1 Obj. | 10728.04 11765.52 11378.28 | 13420.75 14426.11
Time | 0.2 0.3 1.2 0.2 1.1
051 Obj. | 11165.37 12381.91 12057.26 | 14154.40 15243.87
Time | 0.0 0.2 0.7 0.1 0.6
011 Obj. | 944808  9943.67 9773.42 | 11388.43 11895.18
0o | Time | 0.1 0.3 0.9 0.1 0.5
“ 1 Obj. | 9917.74 10587.75 10255.84 | 12126.30 12795.12
Time | 0.1 0.4 1.2 0.1 0.6
0.25 | 031 ops | 10387.21 11231.50 10824.34 | 12864.20 13694.89
o4 | Time | 0.1 0.5 1.1 0.1 0.7
1 Obj. | 10856.87 11875.51 11473.08 | 13602.20 14594.89
Time | 0.1 0.4 1.1 0.2 1.0
051 Obj. | 11326.43 12519.40 12158.59 | 14381.19 15383.73
Time | 0.0 0.2 0.9 0.1 0.5
O-11 Obj. | 9478.04 997171  9815.76 | 11433.06 11938.33
0o | Time | 0.1 0.4 0.9 0.1 0.5
“ 1 Obj. | 9977.66 10643.80 10326.57 | 12215.52 12881.40
Time | 0.1 0.2 1.0 0.1 0.4
0.5 | 031 Opi. | 10477.07 11315.67 10913.68 | 12998.02 13824.30
o | Time | 0.0 0.2 1.2 0.1 0.6
1 Obj. | 10976.67 11987.61 11575.31 | 13780.64 14767.45
Time | 0.1 0.3 1.0 0.1 0.9
051 Obj. | 11476.20 12659.52 12269.08 | 14604.21 15536.19
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Table C.8: CPU times (in seconds) and the objective values of the rolling horizon
algorithm with ADR and 7 = 1.

T=5 T=6
A oe | K=2 K=3 K=4| K=2 K=3
Time | 0.3 2.8 6.8 0.9 4.8

011 Oni. | 941586 9916.17  9730.32 | 11343.05 11852.98
0o | Time | 04 0.9 5.0 0.9 4.9

“ 1 Obj. | 9853.30 10532.76 10188.14 | 12035.57 12710.73

0. | Time | 04 1.3 5.3 0.8 4.2

0 |72 1 Obj. | 10290.58 11149.09 10739.95 | 13717.79 13568.30
0 | Time | 02 1.4 5.5 0.6 4.0

=1 Obj. | 11732.89 11765.52 11386.30 | 14437.31 14426.11
Time | 0.5 0.9 5.2 0.4 6.8

051 Obj. | 1222726 12381.91 12458.11 | 15188.14 15108.42
Time | 1.9 0.8 4.9 0.5 4.6

011 Oni. | 9448.08  9943.67 9773.42 | 11388.43 11895.18
0o | Time | 0.3 0.9 5.6 0.6 4.6

“ 1 Obj. | 9917.74 10587.75 10255.84 | 12126.30 12795.12
Time | 0.3 1.0 5.1 0.5 4.2

0.25 | 031 ops | 10387.21 11231.50 10824.89 | 13847.22  13694.89
0 | Time | 0.7 0.8 5.6 1.1 4.4

1 Obj. | 11875.76 11875.51 11478.89 | 14572.01 14594.89
Time | 0.4 0.9 5.0 0.7 6.9

051 Opj. | 12381.55 12519.40 12650.93 | 15326.88 15402.47
Time | 0.5 0.8 5.2 0.4 4.4

011 Oni. | 9478.04 997171  9815.76 | 11433.06 11938.33
0o | Time | 0.3 1.0 4.9 0.5 4.5

“ 1 Obj. | 9977.66 10643.80 10326.57 | 12215.52 12881.40

05 | Time | 0.3 0.9 3.3 0.5 4.5

0.5 | %21 Obj. | 10477.07 11315.67 12038.14 | 13984.65 13824.30
04 | Time | 0.1 0.9 5.5 0.5 4.7

1 Obj. | 12023.04 11987.61 11579.25 | 14717.37 14767.45
Time | 0.4 0.9 5.2 0.5 6.8

051 Oni. | 12541.36 12659.52 12942.87 | 16111.47 15683.67
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Table C.9: CPU times (in seconds) and the objective values of the rolling horizon
algorithm with ADR and 7 = 2.

T=5 T=6
A oe | K=2 K=3 K=4| K=2 K=3
Time | 0.2 0.8 3.7 0.4 2.0

011 Ob. | 9415.86  9916.17  9730.32 | 11343.05 11852.98
0o | Time | 0.1 0.6 3.6 0.2 1.7

“ 1 Obj. | 9853.30 10532.76 10188.14 | 12035.57 12710.73

0 | Time | 0.1 0.9 2.9 0.6 4.6

0 %21 Obj. | 10290.58 11149.09 10739.95 | 12728.11 13568.30
0. | Time | 0.2 0.6 3.1 0.5 2.0

1 Obj. | 10728.04 11765.52 11383.94 | 13420.75 14426.11
Time | 0.1 0.7 3.0 0.2 3.5

051 Obj. | 11165.37 12381.91 12462.40 | 14154.40 15528.24
Time | 0.1 1.2 3.0 0.2 2.1

011 Obj. | 944808  9943.67 9773.42 | 11388.43 11895.18
0o | Time | 0.1 0.7 3.3 0.3 1.9

“ 1 Obj. | 9917.74 10587.75 10255.84 | 12126.30 12795.12
Time | 0.4 1.0 3.3 0.2 2.0

0.25 | 03 1 ops | 10387.21 11231.50 10824.80 | 12864.20 13694.89
o4 | Time | 0.1 0.6 3.1 0.3 1.9

1 Obj. | 10856.87 11875.51 11477.91 | 13602.20 14594.89
Time | 0.1 0.6 3.1 0.2 3.6

051 Obj. | 11326.43 12519.40 12654.86 | 14381.19  15760.20
Time | 0.4 0.5 3.0 0.2 1.9

O-11 Obj. | 9478.04 997171  9815.76 | 11433.06 11938.33
0o | Time | 0.2 0.7 2.8 0.3 2.0

“ 1 Obj. | 9977.66 10643.80 10326.57 | 12215.52 12881.40
Time | 0.4 0.7 2.2 0.2 2.0

0.5 | 031 Oni. | 10477.07 11315.67 12038.14 | 12998.02 13824.30
0 | Time | 0.3 0.7 2.8 0.3 2.0

1 Obj. | 10976.67 11987.61 11579.24 | 13780.64 14767.45
Time | 0.2 0.8 2.9 0.2 3.7

051 Obj. | 11476.20 12659.52 12942.87 | 16522.34 16001.52
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Table C.10: CPU times (in seconds) and the objective values of the rolling horizon
algorithm with ADR and 7 = 3.

T=5 T=6
A oe | K=2 K=3 K=4| K=2 K=3
Time | 0.2 0.4 1.6 0.2 0.6

011 Ob. | 9415.86  9916.17  9730.32 | 11343.05 11852.98
0o | Time | 0.1 0.6 2.0 0.3 0.7

“ 1 Obj. | 9853.30 10532.76 10188.14 | 12035.57 12710.73

o | 03| Time| o1 0.4 2.3 0.1 0.6

| Obj. | 10290.58 11149.09 10739.95 | 12728.11 13568.30

0. | Time | 0.0 0.2 2.6 0.2 0.5

1 Obj. | 10728.04 11765.52 11386.30 | 13420.75 14426.11
Time | 0.1 0.3 1.7 0.1 2.9

051 Obj. | 11165.37 12381.91 12458.11 | 14154.40 15571.46
Time | 0.1 0.3 1.6 0.2 0.8

011 Obj. | 944808  9943.67 9773.42 | 11388.43 11895.18
0o | Time | 0.1 0.3 1.9 0.2 0.8

“ 1 Obj. | 9917.74 10587.75 10255.84 | 12126.30 12795.12
Time | 0.0 0.3 1.9 0.2 0.7

0.25 | 031 ops | 10387.21 11231.50 10824.89 | 12864.20 13694.89
0 | Time | 0.0 0.3 2.4 0.2 0.7

1 Obj. | 10856.87 11875.51 11478.89 | 13602.20 14594.89
Time | 0.0 0.4 2.2 0.1 2.0

051 Obj. | 11326.43 12519.40 12650.93 | 14381.19 15705.36
Time | 0.3 0.5 1.6 0.2 0.7

O-11 Obj. | 9478.04 997171  9815.76 | 11433.06 11938.33
0o | Time | 0.1 0.7 1.7 0.2 0.7

“ 1 Obj. | 9977.66 10643.80 10326.57 | 12215.52 12881.40
Time | 0.1 0.4 0.9 0.2 0.7

0.5 | 031 Oni. | 10477.07 11315.67 12038.14 | 12998.02 13824.30
o | Time | 02 0.4 2.5 0.4 0.7

1 Obj. | 10976.67 11987.61 11579.25 | 13780.64 14767.45
Time | 0.2 0.2 2.1 0.3 2.1

051 Obj. | 11476.20 1265952 12849.40 | 16522.34 15845.34
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Table C.11: CPU times (in seconds) and the objective values of the rolling horizon
algorithm with SADR and 7 = 1.

T=5 T=6
A oe | K=2 K=3 K=4| K=2 K=3
Time | 0.3 1.3 5.6 0.6 5.2

0LV Oni. | 941586 9916.17  9730.32 | 11343.05 11852.98
0o | Time | 0.2 2.0 5.5 0.5 5.4

“ 1 Obj. | 9853.30 10532.76 10188.14 | 12035.57 12710.73

o |os Time | 0.4 1.4 6.3 0.4 5.6

2| Obj. | 10290.58 11149.09 10739.95 | 13717.79 13568.30

0.4 | Time | 0.1 1.3 7.4 0.5 4.9

=1 Obj. | 11732.89 11765.52 11386.30 | 14437.31 14426.11
Time | 0.3 15 5.9 4.5 7.4

051 Obj. | 1222726 12381.91 12458.11 | 15188.14 15108.42
Time | 0.3 1.7 6.1 0.5 5.2

011 Oni. | 9448.08  9943.67 9773.42 | 11388.43 11895.18
0o | Time | 0.2 3.1 6.3 1.9 5.3

“ 1 Obj. | 9917.74 10587.75 10255.84 | 12126.30 12795.12
Time | 0.3 1.3 6.0 1.2 5.1

0.25 | 03 1 ops | 10387.21 11231.50 10824.8 | 13847.22  13694.89
04 | Time | 0.1 1.2 6.9 1.7 5.5

1 Obj. | 11875.76 11875.51 11478.89 | 14572.01 14594.89
Time | 0.3 1.1 6.3 0.6 7.7

051 Obj. | 12381.55 12519.40 12650.93 | 15326.88 15402.47
Time | 0.1 1.0 5.6 0.5 5.4

011 Oni. | 9478.04 997171  9815.76 | 11433.06 11938.33
0o | Time | 0.3 1.0 6.2 0.6 5.4

“ 1 Obj. | 9977.66 10643.80 10326.57 | 12215.52 12881.40
Time | 0.2 1.1 4.2 0.5 5.3

0.5 | 03 Obj. | 10477.07 11315.67 12038.14 | 13984.65 13824.30
o | Time | 0.3 1.0 6.7 0.5 5.2

1 Obj. | 12023.04 11987.61 11579.25 | 14717.37 14767.45
Time | 0.2 1.1 6.2 0.6 8.4

051 Oni. | 12541.36 12659.52 12942.87 | 16111.47 15683.67
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Table C.12: CPU times (in seconds) and the objective values of the rolling horizon
algorithm with SADR and 7 = 2.

T=5 T=6
A oe | K=2 K=3 K=4| K=2 K=3
Time | 05 0.9 4.1 0.9 1.9

O-11 Ob. | 9415.86  9916.17  9730.32 | 11343.05 11852.98
0o | Time | 0.1 0.7 3.8 0.1 2.5

“ 1 Obj. | 9853.30 10532.76 10188.14 | 12035.57 12710.73

o | 03| Time| o1 0.9 3.7 0.1 2.1

| Obj. | 10290.58 11149.09 10739.95 | 12728.11 13568.30

04 | Time | 0.3 0.8 3.6 0.4 1.7

1 Obj. | 10728.04 11765.52 11383.94 | 13420.75 14426.11
Time | 0.1 1.0 3.9 0.1 3.6

051 Obj. | 11165.37 12381.91 12462.40 | 14154.40 15528.24
Time | 0.0 0.8 3.6 0.4 2.2

011 Obj. | 944808  9943.67 9773.42 | 11388.43 11895.18
0o | Time | 0.3 1.0 3.4 0.2 2.1

“ 1 Obj. | 9917.74 10587.75 10255.84 | 12126.30 12795.12
Time | 0.2 0.9 3.6 0.4 2.0

0.25 | 031 ops | 10387.21 11231.50 10824.80 | 12864.20 13694.89
o4 | Time | 0.1 1.3 3.7 0.1 2.0

1 Obj. | 10856.87 11875.51 11477.91 | 13602.20 14594.89
Time | 0.1 0.8 3.7 0.6 3.7

051 Obj. | 11326.43 12519.40 12654.86 | 14381.19  15760.20
Time | 0.2 0.7 4.0 0.3 2.0

O-11 Obj. | 9478.04 997171  9815.76 | 11433.06 11938.33
0o | Time | 0.1 0.7 3.5 0.3 2.2

“ 1 Obj. | 9977.66 10643.80 10326.57 | 12215.52 12881.40
Time | 0.1 0.8 2.8 0.3 2.1

0.5 | 031 Oni. | 10477.07 11315.67 12038.14 | 12998.02 13824.30
04 | Time | 0.1 0.7 3.5 0.3 1.9

1 Obj. | 10976.67 11987.61 11579.24 | 13780.64 14767.45
Time | 0.3 0.7 3.6 0.6 3.8

051 Obj. | 11476.20 12659.52 12042.87 | 16522.34 16001.52
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Table C.13: CPU times (in seconds) and the objective values of the rolling horizon
algorithm with SADR and 7 = 3.

T=5 T=6
A oe | K=2 K=3 K=4| K=2 K=3
Time | 0.2 0.4 2.1 0.2 0.6

O-11 Ob. | 9415.86  9916.17  9730.32 | 11343.05 11852.98
0o | Time | 0.1 0.2 7] 0.1 0.7

“ 1 Obj. | 9853.30 10532.76 10188.14 | 12035.57 12710.73

0. | Time | 0.0 0.3 2.6 0.1 0.6

0 %21 Obj. | 10290.58 11149.09 10739.95 | 12728.11 13568.30
0.4 | Time | 0.1 0.2 2.8 0.1 0.7

1 Obj. | 10728.04 11765.52 11386.30 | 13420.75 14426.11
Time | 0.1 0.3 2.0 0.2 2.7

051 Obj. | 11165.37 12381.91 12458.11 | 14154.40 15571.46
Time | 0.1 0.4 1.7 0.1 0.9

011 Obj. | 944808  9943.67 9773.42 | 11388.43 11895.18
0o | Time | 0.1 0.2 2.2 0.1 0.9

“ 1 Obj. | 9917.74 10587.75 10255.84 | 12126.30 12795.12
Time | 0.1 0.3 2.1 0.3 0.8

0.25 | 031 ops | 10387.21 11231.50 10824.80 | 12864.20 13694.89
0 | Time | 0.0 0.4 2.5 0.1 0.8

1 Obj. | 10856.87 11875.51 11478.89 | 13602.20 14594.89
Time | 0.1 0.3 2.0 0.0 1.9

051 Obj. | 11326.43 12519.40 12650.93 | 14381.19 15705.36
Time | 0.4 0.5 1.6 0.1 0.7

O-11 Obj. | 9478.04 997171  9815.76 | 11433.06 11938.33
0o | Time | 0.2 0.5 2.0 0.2 0.8

“ 1 Obj. | 9977.66 10643.80 10326.57 | 12215.52 12881.40

0. | Time | 0.0 0.3 1.0 0.1 0.8

0.5 1 %21 Obj. | 10477.07 11315.67 12038.14 | 12998.02 13824.30
04 | Time | 0.1 0.2 2.6 0.1 0.7

1 Obj. | 10976.67 11987.61 11579.25 | 13780.64 14767.45
Time | 0.1 0.4 2.1 0.1 2.1

051 Obj. | 11476.20 1265952 12849.40 | 16522.34 15845.34
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