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ABSTRACT

In this thesis, the challenges faced and lessons learned while establishing a large-scale

high performance cloud computing service that enables online mechanical structural

analysis and many other scientific applications using the finite element analysis (FEA)

technique, will be described. Within an High Performance Computing (HPC) envi-

ronment, several jobs with different demands can co-exist thus it becomes a challenge

for the service provider to efficiently utilize its own resources while also satisfying the

quality expectations of job submitters. Such a service is intended to process many

independent and loosely-dependent tasks concurrently. In order to reach optimal job

scheduling metrics each job type that can be submitted to the cluster must be carefully

examined, its space and time characteristics must be well-understood and quantified.

Challenges faced include accurate characterization of complex FEA jobs, handling of

many-task mixed jobs, sensitivity of task execution to multi-threading parameters, ef-

fective multi-core scheduling within a single computing node, and achieving seamless

scaling across multiple nodes. It is found that significant performance gains in terms

of both job completion latency and throughput are possible via dynamic or “smart”

batch partitioning and resource-aware scheduling compared to the naive Shortest Job

First (SCF) and aggressively-parallel scheduling techniques.

Chapter 3 of this thesis present an end-to-end discussion on the technical issues

related to the design and implementation of a new cloud computing service for finite

element analysis (FEA). Several design choices for HPC services at different layers

of the cloud computing architecture are investigated to simplify and broaden its use

cases. Investigations start with the software-as-a-service (SaaS) layer and compare

parallel linear equation solvers. In order to minimize job latency and maximize the
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overall job throughput, several matrix characteristics are perceived. Developing such

an understanding is also crucial for HPCaaS systems to automatically select the

amount of computing resources per job. In following sections, the design of a “smart”

scheduler that can dynamically select some of the required parameters, partition the

workload and schedule it in a resource-aware manner will be demonstrated. Results

showing that an up to 7.53x performance improvement over an aggressive scheduler

using mixed FEA loads, will be presented. In addition to the performance studies,

a complementary discussion on critical issues related to the data privacy, security,

accounting, and portability of the cloud service will also be given.

The new trend in engineering is to solve complex computational problems in the

cloud over HPC services provided by different vendors. To further deepen the analyses

of workloads representing HPC-related tasks in science and engineering, in chapter 4,

performances of direct vs. iterative linear equation solvers are compared to help with

the development of job schedulers that can automatically choose the best solver type

and tune them (e.g. precondition the matrices) according to job characteristics and

workload conditions that are frequently encountered on HPC cloud services. As a

proof of concept, three classical elasticity problems will be used, namely a Cantilever

beam, Lame problem and Stress Concentration Factor (SCF). These models theoreti-

cally represent many real-life mechanical situations in structural engineering, namely

aerospace, automotive, construction and machinery industries. The representative

linear problems are meshed with increasing granularities, which leads to various ma-

trix sizes; largest having 1 billion non-zero elements. Detailed finite element analyses

over an IBM HPC cluster are executed. First, a multi-frontal parallel is used, sparse

direct solver and evaluate its performance with Cholesky and LU decompositions of

the generated matrices with respect to memory usage, and multi-core, multi-node exe-

cution performances. As for the iterative solver, the PETSc library is used and carried

out computations with several Krylov subspace methods (CG, BiCG, GMRES) and
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preconditioner combinations (BJacobi, SOR, ASM, None). Later in Chapter 4, the

direct and iterative solver results are compared and contrasted in order to find the

most suitable algorithm for varying cases obtained from numerical modeling of these

three-dimensional linear elasticity problems.

In addition to aforementioned studies, as a supplementary research, infrastructure-

as-a-service (IaaS) layer for HPC is examined and characteristics like application

performance, load isolation, and deployment speed issues using application containers

(Docker) are observed. These characteristics are also compared to physical and virtual

machines (VM) over a public cloud. For this purpose, HPC-specific deployment using

application containers technology is evaluated and performance metrics are examined

in order to contribute to evaluation of these technologies for job schedulers to be

used on Cloud Computing infrastructures. This phase of the research focuses on the

understanding the behavior of cloud computing infrastructures under circumstances

where deployment and utilization of containers (Docker) with a chosen software is

necessary.

To summarize, this multi-disciplinary doctoral thesis covers most of the critical

aspects and computational challenges of providing FEA in the cloud for structural

mechanics including ease of deployment, batch-level performance, job-level isolation,

financial accounting and content security. It utilizes several modern software tools

and techniques, while also contributing new ones to the literature.
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ÖZETÇE

Bu tezde, bulut bilişim ortamında çalışan büyük ölçekli bir yüksek başarımlı hesaplama

düzeneği kurulumu sırasında karşılaşılan güçlükler ve öğrenimler aktarılacaktır. Özel

olarak çevrimiçi bir mekanik yapısal analiz sistemine, genel olarak ise bir çok bilim ve

mühendislik alanına uygulanabilecek bu öğrenimler, sonlu elemanlar yöntemine özel

bir vurgu yapılarak incelenecektir.

Yüksek başarımlı hesaplama ortamlarında aynı anda birden çok farklı türde ve

özellikte iş aynı anda bulunurlar. Hizmet sağlayıcının iş gönderen kullanıcıların bek-

lentilerini karşılamak ve aynı anda da yüksek başarım ortamının en verimli şekilde

kullanılması gibi birbiriyle çelişen iki kaygıyı dengelemesi gerekmektedir. Böyle bir

düzeneğin verimli çalışması için ise küme üzerindeki işlere ve kümenin verili andaki du-

rumuna göre davranabilen akıllı bir zamanlama yönteminin geliştirilmesi kritik önem

taşımaktadır. Bu zamanlama yönteminin geliştirilmesi için gerekli ön çalışmalar,

kümenin çözümlemeye çalıştığı iş türlerinin anlaşılıp sınıflandırılması, bu yüklerin za-

man ve alan ihtiyaçlarının anlaşılması ve nicel olarak tanımlanmasını içermektedir.

İkinci aşamada ise, bu iş yüklerinin çok çekirdekli ve çok düğümlü ortamlarda kay-

nakların verimli kullanılmasının sağlacak şekilde nasıl zamanlanabileceği sorusunun

cevabının araştırılması gerekmektedir. Araştırmalar sırasında iş türlerinden ve hesaplama

kümesinin gerçek zamanlı durumundan haberdar olan akıllı bir zamanlama yöntemi

kullanılarak, kullanıcılar açısından gecikmeleri azaltmanın, hizmet sağlayıcılar açısından

ise verimliliği arttırmanın mümkün olduğunu, bu tür durumlarda yaygın olarak kul-

lanılan en kısa olanın önce çözümlenmesi veya agresif olarak bütün kaynakların kul-

lanılması yöntemlerinden daha iyi sonuçlar alınabildiğini gözlemlenmiştir.

Bu tezin ilk bölümleri sonlu elemanlar yöntemini bir bulut bilişim hizmeti olarak
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sunmak için gereken tasarımların ve uygulamarın teknik bir tartışmasını içermektedir.

Bu teknik tartışma özünde, kurgulanan yüksek başarımlı hesaplama hizmetinin değişik

katmanlarda incelenmesi ve mimarilerin oluşturulmasını kapsamaktadır. İlk olarak

yazılım hizmeti katmanına odaklanarak doğrusal denklem takımlarının çözümlerini

incelenecektir. Ardından bu incelemeler sırasında hesaplamalara temel oluşturan ma-

trislerin karakteristiklerinin işler kümeye gönderilmeden belirlenmesi ve iş hesaplama

değişkenlerinin bunlara göre güncellenmesinin verimliliğinin arttırılmasına ve aynı

zamanda gecikmelerin azaltılmasına çok büyük katkıları olduğunu gözlemlediği bul-

gular paylaşılacaktır. Bu giriş kısmını takip eden diğer bölümlerde ise tasarlanan

akıllı zamanlayıcı ve başarıma olan 7.53x hızlandırıcı etkisi deney sonuçları ile be-

raber gösterilecektir. Başarım üzerine verilecek örneklerin ardından ise veri güvenliği,

fiyatlandırma ve taşınabilirlik gibi konular da incelenecektir.

İlerleyen bölümlerde ise mühendislik hesaplamalarında yeni yeşermekte olan bir

yaklaşım olan yüksek başarımlı bulut bilişim hizmetlerinin kullanılmasının daha etkin

hale getirilmesine katkı vermek amacıyla, direkt ve iteratif doğrusal denklem takımı

çözücülerinin incelenmesini çeşitlendirilecektir. Ayrıca akıllı zamanlayıcının sadece

donanım anlamında hesaplama parametrelerini değil bunun yanı sıra da çözümlenecek

işin yapısına göre yazılım parametrelerine de müdahale etmesini sağlamak amacıyla

gerçekleştirilen araştırmaların sonuçlarına yer verilecektir. Bu araştırmalar sırasında

kullanılan gerçek hayattan alınma doğrusal elastisite problemleri hakkında da kısa bil-

gilere yer verilecektir. Çeşitli çözünürlüklerde ayrıklaştırılarak örgüleri oluşturulmuş

bu modellerin kullanıldığı, geliştirilen akıllı zamanlayıcının değişkenlerini belirlendiği,

Cholesky, LU gibi direkt çözücülerin yanı sıra çeşitli Krylov Altuzay Yöntemleri ile de

sınandığı deneylerin sonuçlarını paylaşılacaktır. Bu bellek kullanımı, çoklu çekirdek,

çoklu düğüm koşum davranışlarını daha sonra lineer elastisite problemlerinin çözümü

için gerekli donanım ve yazılım değişkenlerini verimli şekilde ayarlamak için temel

olarak kullanabilecektir.
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Bahsedilen çalışmalara ek olarak ise altyapı servisi katmanına da odaklanıp, yüksek

başarımlı hesaplama için uygulama kapları kullanıldığında başarım, yalıtım ve kuru-

lum hızı gibi parametrelerin davranışlarını gözlemlendiği çalışmalara da yer verile-

cektir. Uygulama kaplarının, fiziksel ve sanal makinalarla davranış farklarının da

yorumlanacağı bu kısım tezin son bölümünü oluşturacaktır.
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CHAPTER I

INTRODUCTION

According to the U.S. National Institute of Standards and Technology (NIST) [1],

[2]:“Cloud Computing is a model for enabling convenient, on-demand network access

to a shared pool of configurable computing resources . . . that can be rapidly pro-

visioned and released with minimal management effort.” NIST further differentiates

cloud as having “five essential characteristics, three service models, and four de-

ployment models”. Cloud services should essentially have on-demand network-based

accessibility, resource pooling and rapid elasticity characteristics, could be provided

via software, platform or infrastructure as-a-service models (as illustrated in Figure

1), and be made available through private, community, public or hybrid deployments.

An infrastructure service (or IaaS) virtualizes the capacities of physical computing

hardware such as the CPU, storage or networking equipment and provides remote,

shared access to these virtualized resources. Platform services (or PaaS) are usually

exposed via web services and are shared among different desktop applications as well

as online software services. End-user software services (or SaaS) hide the infrastruc-

ture or platform specific details from the clients and they are usually accessed via

web portals. Each layer can be provided on top the other (e.g. a platform service

can be deployed in virtual machines hosted by an IaaS provider), but many SaaS

or PaaS providers still prefer to provide services on top of their own infrastructure

today. Different service providers operating at the same layer are beginning to stan-

dardize their interfaces to enable “horizontal integration” (e.g. open virtual machine

formats). However, “vertical integration” among different cloud service layers and

providers is still an ongoing research area. The results of these investigations will
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affect large-scale governmental and business cloud deployment decisions.

SaaS

Sofware as a Service (End-user Portals/GUI)

PaaS

Platform as a Service (Web Services and Microservices)

IaaS

Infrastructure as a Service (Virtual Machines and Containers)

Figure 1: Different service models for cloud computing and the logical layering among

them.

Experiences with the engineering and scientific communities reveal the need for

cloud computing services that can be shared among different disciplines for solving

common problems. The current practice for solving large-scale high-performance com-

puting (HPC) problems is to acquire expensive hardware resources and gain special

Information Technology (IT) skills to manage those [3]. While IT management is not

the main goal of the engineering community, ultimately significant time and effort is

spent on installing, maintaining, and tuning computing resources. Furthermore, most

hardware resources and associated software licenses remain underutilized after a few

initial runs. People who do not have the skills, time or finances to take on these IT

challenges are deterred from pursuing this path.

Unfortunately, most of the HPC cloud services offered today are for advanced users

only, who can understand both parallel computing paradigms and IT management

including virtualization issues. Some acclaimed HPC services just provide a set of

physical or virtual machines to their end users, i.e. Infrastructure as a Service (IaaS).

Others provide HPC as a platform service (PaaS), which in addition to infrastructure,

2



establish clusters bound by communication mechanisms such as Message Passing In-

terface (MPI) [4] and queues for job management. These two models make a good

attempt in addressing the low-utilization problems witnessed in privately-held super-

computers, but do not address the lack of highly-skilled experts both in advanced

computational methods and cluster management, simultaneously. For most engineers

who are only experts in their respective fields, HPC Software as a Service (SaaS)

model is the only viable cloud model. In HPC-SaaS model, sector-specific software

packages with interactive graphical user interfaces are provided over the Internet [5].

But unfortunately, none of these services have automated and advanced mechanisms

for selecting the best solver and system settings for submitted jobs [6].

Cloud Computing models offer tremendous cost savings and sharing opportu-

nities to technical communities, (especially those in developing countries) that deal

with similar engineering problems including finite element analysis (FEA) [7]. Within

this scope, cloud computing paradigm has been well-accepted, since gives equal op-

portunity to engineers, researchers, students as well as small-medium enterprises in

accessing flexible and scalable computational resources anytime and anywhere in the

world, and as long as they need it. There is no up-front capital investment for servers

and the operational expenses are manageable. The premise is that everyone can now

attempt to solve large and complex engineering problems.

Co-operation among distributed and dynamic engineering teams is another moti-

vating scenario for the use of High Performance Computing-as-a-Service (HPCaaS).

Large-scale engineering simulations (e.g. for aerospace, automotive, and civil engi-

neering) and big data jobs can still consume days stealing from design time, thus

business opportunities for enterprises [8]. Integrating development, testing and de-

ployment operations (DevOps) capabilities with application containers such as Docker

into HPC can be the remedy. Democratizing HPCaaS requires automation both at

the cloud platform and infrastructure layers, which will be explored in this thesis.
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Recent developments in Computer-Aided Design (CAD) software packages and

Additive Manufacturing technologies enable engineers, researches and employees of

small-medium sized companies, to rapidly develop complex 3D structures [9]. How-

ever, in such situations, there is also a need to understand the mechanical behavior of

such components to confirm their safe and satisfactory performance on the field [10].

A significant portion of such commonly-encountered designs turn into demanding

computations that require resources beyond the capacity of desktop computers. High

Performance Computing (HPC) cloud services [11], [12], [13], a.k.a HPCaaS, offers a

significant alternative by letting everyone to utilize scalable computational resources

on demand. Removing the need for up-front capital investment for servers and setting

the the usage fees help people to access this once luxurious field. However, in engi-

neering and science, complicated physical problems are defined as partial differential

equations (PDE), and numerical solutions to such problems often demand extraordi-

nary amounts of resources to return a meaningful insight. Also if the multi-tenant

scenarios that are frequently encountered in cloud computing services are taken into

account, sustaining an adequate quality of service becomes demanding.

Nowadays, one of the main questions about HPC acquisition is whether “to buy

or rent” these HPC resources. Alternatives include: Physical HPC, Virtual HPC, and

recently added Dockerized HPC models. Acquiring a physical HPC cluster requires

both a Capital Expense (CapEX) for buying the IT equipment and Operational Ex-

penses (OpEx) afterwards, which cannot be justified for tens of years if the cluster is

not highly utilized (e.g. < %20). The Virtual HPC model, a.k.a. HPC-as-a-Service

or the public Cloud HPC, removes the CapEx and minimizes the OpEx costs. Utility

costs that include electricity, CRAC cooling, backup storage, security, and availability

are all merged into a single rate such as $0.1/CPU-hour and $0.02/GB-month [14].

While the accounting can get quite complex due to variety of server capacities, data

center regions, and market models, one can easily reserve a server (e.g. Amazon EC2
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m4.large instance) for $500/year [14], which includes all utility costs and guarantees

business continuity. Therefore, HPCaaS has become a price-competitive, flexible, and

powerful proposition [15]. The reasons for relatively slower adoption of this model

within the HPC community has been due to security concerns, fear of vendor lock-

in, and lack of understanding of the HPC technical issues among the cloud service

providers (e.g. lack of the needed cluster-level control, varying performance, network

contentions, and cluster availability when instances are reserved in larger counts).

Yet, the maturity, stability and multi-vendor availability of HPC cloud services are

also increasing over time.

In addition to the mentioned infrastructure related issues, in HPC software envi-

ronments, there is an ever increasing task of maintaining software packages, handling

dependent libraries, and making application-specific configurations [16]. There are

still significant performance overheads for doing these tasks in the Virtual HPC model.

Copying virtual machines (VMs) inside or among public-private clouds, installing spe-

cial operating systems (OS) and HPC software can be a hassle and consume time.

There can also be higher OpEx costs associated for storing many pre-configured VMs

for different HPC applications in the long-run. Fortunately, this cost can now be

reduced with the container technology.

From the HPCaaS providers’ point of view, such a service could only be sustainable

and profitable, (1) if significant number of customers can be served by the very same

cluster, and (2) the contentment of end-users can be achieved via low-pricing, high

performance, and predictability. Since satisfying both the maximum job through-

put requirements of service providers and the minimum latency and predictability

requirements of the customers is a contradictory situation, it is still possible to find

an equilibrium point that satisfies both sides through solver-aware and task-aware

scheduling.

A large set of HPCaaS demanding problems encountered in industry are related to
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physics based problems that are especially originating from solid and fluid mechanics.

Such problems eventually map to solving the partial differential equations (PDE)

based on the finite element method (FEM). FEM is a generally-applicable numerical

method to approximately solve partial differential equations (PDE) and for most of

the serious industrial applications requires HPC setups. Figure 2 shows some of the

application areas of FEA including mechanical structural analysis, heat transfers, fluid

dynamics, acoustics, and electromagnetic modeling. Several other related numerical

methods have been developed in the past (FEM, FDM, FVM, BEM in Figure 2),

each of which may be more suitable for different application areas due to special

characteristics of that given problem space. In addition, numerous open-source and

proprietary software tools that enable application of these numerical methods to real-

life problems are available in the market as desktop or mainframe applications. Some

of the well-known packages include Nastran, Ansys, Abaqus, CalculiX, Code Aster,

and various others [17]. However, the installation and large-scale maintenance of

these tools over continuously evolving operating system (OS), processor and cluster

technologies can be costly and cumbersome for the end users. Therefore, to lower

the barrier of entry for technical individuals as well as small and medium businesses

(SMB) [18], FEA applications can be deployed as a cloud computing services. In

order to use such a domain specific SaaS, all that the users will need is a personal

computing device with a browser and an Internet connection to enable them to access

the HPC cloud service for FEA.

Other components shown Figure 2 will be described in detail later in Section 3.1.
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Figure 2: Layers and logical components of a modern HPC cloud service are shown.

Current research focus is on developing the FEA PaaS.

Today it is common, even for a moderate engineering analyses used in industry

to have millions of degrees-of-freedom. In addition to this fine meshing practice,

industry standards enforce engineers to incorporate non-linearities such as contact

modeling, large deformations, and complex materials into their analysis. The time

for such simulations can be measured in hours and even days. Such computationally

demanding activities are usually carried out by multiple engineers simultaneously,

especially during peak periods close to project deadlines. All these considerations

make it critical for research and development (R&D) institutions to provision high-

performance computing (HPC) resources, plan job scheduling, and do smart resource

allocations.
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In order to determine fundamental constraints that drive the performance of such

an online service and to design a scheduling algorithm, the computational charac-

teristics (RAM and multi-core CPU usage, I/O behavior) of illustrative mechanical

tasks are analyzed and identified, a scheduler concept that could smartly and simul-

taneously configure optimal resource allocations per task and per mixed-batches of

tasks is proposed. Remarkable performance increases over a conventional (First-In-

Fist-Out) and an aggressive (all-core parallelized) schedulers are observed. However,

only SPOOLES [19] was tested as the linear equation solver in the research that

forms the body of Chapter 3, as there were numerous other tunable parameters to

deal with. In Chapter 4, performances of direct vs. iterative linear equation solvers

and preconditioners with representative mechanical workloads will also be compared.

For this purpose, as a first step, direct solver characteristics using Cholesky and LU

decompositions of the matrices and report the memory usage and parallel execution

times are tested. In order to test the iterative solver characteristics, benchmarks with

several Krylov subspace methods (GMRES, CG, BiCG) and preconditioner combi-

nations (ASM, SOR, BJacobi, None) are executed. Previously [19], solely the NZE

properties of matrices were examined, whereas in this thesis also the corresponding

condition numbers (before and after preconditioning) of resulting matrices are taken

into account.

To sustain high-performance in a FEA service, first of all, there is a need to ac-

curately characterize workloads. As FEA is a broad area of research, in this thesis,

the focus is set mainly on mechanical structural analysis, which is used ubiquitously

in automotive, aviation, home appliances, construction and defense industries as well

as academia. The lessons learned and methods developed will be generally applicable

to other FEA and HPC subject areas, since the underlying mathematical and com-

putational principles are mostly similar. In following chapters, structural mechanics

benchmarks using open source software tools and over local physical machines will
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be executed. Additionally, later in the thesis, a discussion on extension of the work

into other SaaS application areas and use virtual or remote infrastructure-as-a-service

(IaaS) resources [20] within the service has been made. Contributions of this thesis

are as follows:

• Design and implementation of a new online FEA cloud service different from ex-

isting offerings. This service provides shared services at the software-level (SaaS-

PaaS) whereas most existing services are based on hardware sharing (IaaS).

• Performance characterization of representative FEA workloads (based on real-

life objects like beams, rotors etc.) and their mixes over shared memory (multi-

core) and distributed memory (multi-node) resources.

• A comprehensive evaluation of alternative task execution, scheduling strategies

and showing performance improvements using smart scheduling.

• Discussions about critical underlying Linux OS process and memory manage-

ment mechanisms that most other FEA works stay oblivious to.

• A complementary discussion on cloud service privacy, security, accounting, and

portability issues, the lack of which can lead to breaking or abandonment of

this service by clients.

• Evaluation of application containers within the HPCaaS context.

• A “smart scheduler” prototype design

The rest of the thesis is organized as follows. Section 2 describes the previous

work including issues related to cloud security and privacy. This section also presents

a literature review on similar research and technologies. Section 3 overviews the

design of the FEA service architecture, describes the benchmarks used and presents

results for workload characterization. This section also describes the experimental
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setup and gives detailed performance results. Section 4 demonstrates the different

combinations of Direct and Iterative Solvers with several preconditioners and also

discusses the utilization of application containers and their evaluations using several

types of HPC workloads. Section 5 discusses some of the future work and concludes

the thesis.
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CHAPTER II

PREVIOUS WORK AND LITERATURE REVIEW

There are hundreds of supercomputers in the world [21] and some of these may be

providing FEA computation services along with other HPC services. However, these

supercomputers are usually used by selected research communities and are not avail-

able to the broader public. During the last few years, in order to broaden the utiliza-

tion of these resources, there have been attempts to establish HPC cloud services or

HPC as a service. In February 2010, SGI announced Cyclone–HPC Cloud [22]. Cy-

clone implements both SaaS and IaaS models. Cyclone’s SaaS model has commercial

and open-source software solutions for several disciplines including computational bi-

ology and chemistry, fluid dynamics, FEA, and electromagnetic. In their SaaS model,

the licensing issues for the commercial software are left to the clients. Cyclone’s IaaS

model lets the clients install and run their software on SGI’s hardware. Penguin Com-

puting also provides an HPC service called Penguin Computing on Demand (POD).

POD serves at the IaaS level and makes CPU, GPU, and storage resources avail-

able through the Internet for technical computing. It does not provide PaaS or SaaS

models.

In 2007, Sun Microsystems (now Oracle) claimed to have made some of the open-

source Computer Aided Engineering (CAE) packages including CalculiX available

through the Sun Grid [23] . In this system, the user had to prepare the input file

locally with a pre-processor and upload it to the Sun Grid. Next, CalculiX solver was

used to solve the problem on Sun’s infrastructure service at 1$/CPU-hour. The service

is currently not available. Recent research also suggests that IaaS-based HPC cloud

services [24] [25] can suffer in performance especially due to VM resource competition
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and lack of low-latency interconnection needed by specialized parallel engineering

simulations.

FIDESYS Online (http://online.cae-fidesys.com/) is another FEA cloud service

at the alpha stage (as of 2012) that evolved from a packaged program [26]. Similar

to the proposed Cloud FEA service, it allows application of meshing, boundaries

and forces to uploaded CAD files followed by the calculations and analysis in the

cloud. They do not focus on job characterization for effective multi-core or multi-node

scheduling as done in this thesis. FEMHub, hp-FEM Group, University of Nevada,

Reno (http://femhub.org/) is another FEA cloud service project in progress, which

provides software-layer sharing similar to ours. Users can write Python code through

the web interface and access FEMHub’s FEA engine called Hermes. This service also

does not focus on job characterization and scheduling issues.

Scheduling, especially production scheduling, is also a major research field in-

side Industrial Engineering. Chiang et al. [27] address the Flexible Manufacturing

Scheduling (FMS) problem with Critical Ratio-Based heuristics and genetic algo-

rithm. Other algorithms called dispatching rules [28] include FIFO, Shortest Process-

ing Time (SPT) [29], Critical Ratio (CR), EDD (Earliest Due Date), and Shortest

Remaining Processing Time (SRPT). Park et al. [29] proposed a multi-class SVM-

based task scheduler for heterogeneous grids that maps queued tasks to machines

based on their sizes and machines’ loads as well as their machine computing powers

to minimize the total completion time (makespan) of all tasks. Their results sug-

gest that SVM scheduler can closely follow the performance of the best performing

heuristics (Early First, Light Least) and soundly outperform Round Robin scheduler.

Breslow et al. [30] develop a technique called job striping that colocates job pairs on

the same node in order to increase throughput and energy-efficiency. This approach

can increase throughput up to %26 and energy efficiency up to 22 % in environments

where heterogeneous workloads are computed. Work in this thesis differs from [29]
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and other prior scheduling work such that FEA tasks can be split further and a de-

cision MP vs. MPI parallelization models can be made before scheduling tasks onto

machines. Therefore, there is neither a bound nor a dependence on the performance

of other heuristics. In fact, in Table 5, outperforming of both SJF and Aggressive

schedulers is shown. Doulamis et al. [31] study task allocation in Grids and suggest

an earliest completion time scheduling algorithm based on estimated task completion

times. However estimating completion times for nonlinear tasks is a challenging re-

search problem. Belytschko and Mish [32] examine the computability of nonlinear

problems in solid and structural mechanics problems. A measure of the level of dif-

ficulty (L : 1 → 10) is proposed and examples of typical engineering simulations are

classified by this measure. In the future, the smart scheduler may be compared with

deadline-based algorithms from different research fields.

For FEA of assembled complex structures finding and tracking the dependen-

cies among tasks and their execution ordering is also an interesting research area.

Amoura et al. [33] discuss the issue of task preemption for independent tasks over

multi-processor to obtain minimum makespan. Calculating the number of different

scheduling alternatives given a batch of independent tasks and computing resources

is a known “counting problem” whose solution is given by the Stirling number of

the second kind S(n, j), where n denotes the number of tasks and j the number of

cores. The research model for hierarchical multiprocessor tasks (M-tasks) [34] also

creates a data and control dependency graph among parallel tasks and schedules tasks

to multi-core resources by layers (root-to-leaves) to assure overall progress. In this

thesis, analysis of assembled (multi-part) systems and computational dependencies

among them are taken into consideration.

Cloud-based mechanical structural analysis efforts have been initiated by a previ-

ous research [35] and additional contribution in this direction [19] were made. Related
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research and development efforts include SimScale [5] and similar others [36]. Sim-

Scale provides its customers an interactive and web-based finite element cloud service

for mechanical, thermal and CFD analysis using OpenFOAM[37], CalculiX [38] and

CodeAster [39] FEA engines at the back-end. While they provide suggestions about

some ”rules of thumb” [11] for selecting direct vs. iterative (PETSc) solvers, the

process is currently not automated. They suggest using direct solvers for job sizes

smaller than 50,000 degrees of freedom (DOF). This thesis aims to fill the gap in

practice by designing automatic procedures for job characterization and assignment

of necessary resources.

A study on performance of parallel linear equation solvers has been carried out

by Bui and Meschke [40], They found that system re-ordering and scaling perform

effectively and enhance the stability of the outcome. They have executed their pre-

conditioning collations to develop domain-specific (tunnel engineering) knowledge. In

another related study, Pommerell and Fichtner [41] have also examined the behavior

of iterative solvers on VLSI device simulations. Sourbier et al. [42] developed a hybrid

iterative/direct solver combination in order to model the frequency-domain seismic

waves. They are still working towards generalizing their perspective for other fields.

Again, these studies are complementary to this research that focuses on the structural

analysis domain.

Increased availability and affordability of 3D printers and improved additive manu-

facturing techniques for various materials motivates the use of topology optimization

techniques [43], since these techniques save immense time during design and pro-

duction [12]. Topology optimization starts with a virtual block of material and it

automatically reduces mass up to a desired volume fraction (e.g. 0.2x) by removing

the unnecessary parts without compromising the desired stress-strain constraints of

the object under given forces. Recently, this technique has been made available as a

cloud service [13], so that designers can quickly reach the optimal concept design that
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meets their requirements without hardware investments. This work is complementary

to these cloud services, as it aims to organize and speed up the solution process.

Process Containers were first implemented and integrated into the Linux Kernel

in 2007 starting with version 2.6.x by Paul Menage, et al. [44]. The goal was to

provide resource isolation (CPU, memory, I/O, network) and prioritization among

controlled group (cgroups) of processes. Light-weight containers can be setup, con-

figured, shipped, copied, deployed, and terminated much faster than Virtual HPC,

since they run on the same OS kernel share this kernel’s resources and libraries. They

are also designed to isolate jobs within a cluster; but this is a claim to be tested ex-

tensively. This isolation within the cluster should make different HPC applications

co-exist and utilize the underlying hardware resources without any conflicts. Finally,

containers can remove the need for queue scheduling and management software such

as PBS [45] and SLURM [46], since there is a separate and isolated process for every

HPC job to be executed.

Container technologies can be classified into two as “application containers” and

“system containers” [47]. Docker is an example for the former, whereas Linux Con-

tainers (LXC) [48] and OpenVZ for the latter. App containers execute a single pro-

cess, whereas system containers have full OS stack. Due to its light-weight approach

and ease of deployment, Docker [49] is the most widely adopted technology among

the systems community for now. It is available for Linux, Windows, and Unix-based

OS such as MacOS. Scientists can easily share pre-packaged images that are loaded

with scientific software and data via Docker Hub. Images can be layered (using a

layered file system) to share functionality and save disk space. However, sharing can

create resource contention and reduce performance if not handled properly.

Ruan et al. [47] investigate container performance in the cloud and find that

extra VM layer adds ∼ 5% overhead in CPU-intensive SPEC benchmarks and almost
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no overhead in STREAM memory benchmark. They also found that AUFS layered-

FS can create ∼ 40% additional latency in read/write operations, due to file copies

among layers for write operations. But, this problem was recently solved by Shifter

[50] via write caching. Shifter aims to accelerate science via “container computing”

and REST-based web interfaces for image management. It also claims startup times

that are 2x − 5x faster due to their per-node writable cache that especially benefits

Python HPC applications that scan file system paths to find dynamically linked

library (DLL) files.

Recently, there has been an emerging interest in the use of containers for manag-

ing scientific workloads [49], HPC [48] and in the cloud [51]. Skyport utilizes Docker

containers to ease software deployment for scientific workflows [52],[53]. Babu finds

LXC to give better result in packet transfers [54] and to have less fluctuations where

processes communicate with each other frequently. Xavier, et al. [48], [55] measure

the performance of containers in HPC environments. They conclude that containers

could obtain a very low overhead leading to near-native performance, but performance

isolation in containers is immature. However, these studies do not discuss the distinc-

tions between different containers and the impact of adding an extra virtualization

layer between the bare metal and containers.

Within the public cloud, Amazon EC2 Container Services (ECS) and Google

Container Engine (GKE) both primarily support Docker containers. GKE is built

upon the open-source Kubernetes system for container deployment and orchestration.

Ruan et al [47] find up to 11% difference between ECS and GKE using Hadoop,

Spark, Kmeans benchmarks, but they also admit that they cannot fully control the

VM instances (IaaS) underneath their containers and it may not be fair to make clear

conclusions. In this research, bare metal physical servers in the cloud are also used

for control purposes. Microsoft also supports containers via public Azure Container
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Service. However, it is quite debatable whether it is a good practice to run contain-

ers inside virtual machines (VMs), since a major reason for their invention was to

replace heavy-weight VMs. Containers are also beginning to finding sector-specific

applications. For example, in the mobile telecommunications world, a Docker con-

tainer can be used to contain a small cell service [56] inside a base station and small

cell identifiers can be mapped to docker ports.

Altiscale provides Hadoop-as-a-Service, where clients load their data into quickly

bootable Hadoop clusters (Hbase, Hive included). It had to solve the multi-tenancy

problem reliably, at scale and had to optimize usage of CPU and storage resources.

Alternatives were running Docker over Hadoop and benefiting from YARN contain-

ers or running Hadoop over Docker. Their solution was to use Docker containers.

Altiscale got acquired by SAP HANA group. SequenceIQ is another startup com-

pany that attempts to solve the same problem; it got acquired by Hortonworks. Such

computationally demanding activities are usually carried out by multiple engineers

simultaneously, especially during peak periods close to project deadlines. All of these

considerations make it critical for research and development (R&D) institutions to

provision HPC resources, plan job scheduling, and do smart resource allocations.

With the advent of Serverless applications and embedded Fog Computing tools

such as OpenFaaS [57] and their public cloud, backend counter-parts such as Amazon

Lambda, and Microsoft Functions, and Google Cloud Functions [58] it has recently

become feasible to push some of the computations to the edges, i.e. Edge Computing.

Increased sensitivity of end users to product security and privacy will determine

their choice of the aforementioned cloud deployment model: public, private or com-

munity. The most sensitive users with top-secret products to analyze will deploy

private clouds behind firewalls [59]. No information should leak outside unless their

security policies are breached from outside or inside. However, these users will poten-

tially trade-off cost savings and compromise high utilizations [60]. Publicly deployed
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cloud services are potentially prone to both insider (i.e. service provider) and out-

sider (i.e. man-in-the-middle) attacks. Using the well-known public and private key

encryption methods (e.g. SSL used in HTTPS) as well as applying Message Authen-

tication Codes (MAC) over the exchanged FEM models can alleviate some of these

problems, namely data security and integrity will be protected. However, these se-

curity precautions should not hinder sharing of data among cloud users. One way

to allow controlled sharing is to use Authorization-Based Access Control (ABAC)

methods [61] instead of Role-Based Access Control (RBAC), where the former allows

finer-granularity control over the resources. In ABAC, users can assign certain usage

rules or quotas (e.g. using SAML certificates [61]) over server, storage, and network

resources or over data stored in file systems and delegate these privileges to other

users. A privilege works for only a given resource and provides limited access. RBAC

(e.g. username/password and group) allows unlimited access to all resources owned

by a user/group. Therefore, even a small inadvertent mistake done at the user level

or at a higher privilege level (e.g. root or administrator) can result in the exposition

of significant amount of personal or organizational data.

An advantage of working in the FEA cloud services area is that users are allowed to

pre-process their models locally and only upload transformed matrices into the cloud

service for further processing. This way even a potential malicious attacker inside

the service provider would be no able to reconstruct the design details of the original

customer product. Basically, after these transformations one cannot differentiate

whether the matrix belongs to the chassis of a stealth plane or a toilet pump.

Another related but orthogonal issue to security of cloud services is the reliability

and availability of these services. Since these are well-matured research areas no

further details are given here, but refer users back to publications on data redundancy

and system fault-tolerance [62]. Denial of Service (DoS) attacks are yet another

concern for cloud service availability, but again there are well-known network filtering
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and throttling techniques to eliminate (or alleviate the adverse affects of) these types

of attacks.

Due to the government compliance and security privacy issues people in different

countries may not disallowed to use international FEA services. Therefore, FEA

services in different parts of the world may still be a valuable proposition. When

standards such as Open Grid Forum’s Open Cloud Computing Interface (OCCI) [63]

are developed these providers will be able communicate and share/port models among

each other easily.
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CHAPTER III

DESIGN AND IMPLEMENTATION OF SOFTWARE

LAYER

3.1 FEA Service Architectural Design

A wide variety of sectors including automotive, aviation, construction, and academia

deal with mechanical structural analysis problems. In these sectors a rigorous me-

chanical evaluation of components has to be carried out before they are produced.

This practice saves time and money in the design, prototyping and manufacturing

phases of a product’s lifecycle [64] and increases the reliability of the produced parts

reducing the possibility of recalls and critical failures [65]. In addition, different parts

of a complex system (e.g. engine, tires, wings, and chassis of a plane) are usually

designed by different groups or subcontractors in different parts of the world. There-

fore, a FEA cloud service could facilitate both independent and collaborative parts

design and development processes.

In today’s practice engineers first use CAD tools for quick and accurate parts’

design. Next, they save their designs in proprietary file formats (e.g. CATPart,

prt, dwg) or export these files in portable formats such as initial graphics exchange

specification (IGES) or standard for the exchange of product model data (STP) [64].

Currently the “STL” format designed for rapid 3D STereo-Lithographical prototyping

to provide surface geometry information is imported. To obtain a realistic Finite

Element Model (FEM) from the CAD file, a pre-processor tool (such as NetGen [66])

can be used to import the design, apply meshing to it, select materials for the part,

set boundary conditions, and define external forces. The extended model is then

saved in a special file format that can be processed by the FEA solvers.
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Fig. 3 shows the architectural design and some of the implementation details of

the FEA service. It consists of the web portal, pre-processor, job scheduler, solvers,

and post-processor components in their respective order of execution.

Pre-
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Clients

Web

Clients
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Solvers
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Geometry (CAD)
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Solver Input

Geometry (CAD) Solver Input Solver Input

Solver Output

(Results)

Results Deck

Solver Input

Figure 3: FEA Cloud Service Architecture.

3.1.1 Web portal

Web portals such as Liferay, Drupal, and Joomla [67] serve as the front-end for all

user-to-cloud-service and user-to-user interactions. These interactions include creat-

ing accounts, logins, uploading and sharing files, pre-processing and post-processing

FEM, communicating results to other users, short messaging, attending forums, blogs,

wikis, etc. Each user gets its own account and a private file storage area in the filer

or database via this web portal. The files uploaded can be raw CAD files or pre-

processed text based solver input files. The interaction is similar to cloud services

such as an online email system, but FEA portal also allows users to execute analysis

of their jobs on top of the FEA engine. Currently, the Java-based Liferay portal

is being used because of its ease of integration with other web technologies and the

other components of the FEA service. The portal also allows users to interact with
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different parts of the FEA engine.

3.1.2 Pre-processor and solver

CalculiX [38] is used as the solver for the online FEA service, because of its open-

source availability, wide-adoption in the community and extensive support for solving

different engineering problems. CalculiX package has a separate pre-processing tool

called CGX (CalculiX GraphiX) [68] that can be used to read and transform the

contents of various portable CAD files into a finite element model. In the service

design, the pre-and-post processing steps are allowed to be done either (1) offline with

desktop tools such as NetGen [66], FEMAP and CGX, or (2) offline inside the web

browser’s JavaScript [69] engine (such as Google Chrome V8) for quick interactions

or privacy, or (3) online through the use of custom JavaScript integration code for

WebGL backed by a server side meshing engine (e.g. NetGen API running on the

servers). Note that in the last two cases no extra software installation will be required

on the client side and in case (3) even large-scale meshing jobs can be done quickly

with high-end servers. “WebGL is a cross-platform, royalty-free web standard for a

low-level 3D graphics API based on OpenGL ES 2.0, exposed through the HTML5

Canvas element as Document Object Model interfaces [70].” Fig. 4 shows a screenshot

of the 3D viewing of a meshed structure inside the portal of the web site. Canvas

element together with the WebGL API can enable the users to interact with (select,

rotate, zoom, etc.) the 3D objects especially in the pre- and post-processing phases

of the design.
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Figure 4: A screenshot from the online pre-processing step for the FEA service.

Meshed structures can be generated from CAD files and viewed online. Note: We-

bGL is currently supported by Google Chrome, Mozilla Firefox and a few other web

browsers, but its adoption is increasing. Certain OS and browser settings may be

required. See http://cloud.ozyegin.edu.tr/fem.

The finite element model is consequently converted into a large sparse matrix

by CCX (CalculiX CrunchiX) [38] representing the system of linear equations and

solved by the underlying solvers such as SPOOLES (Sparse Object-Oriented Linear

Equation Solver) [71]. Results obtained helps to estimate the physical displacements,

stresses and strains on the structure under applied forces. Several other open-source

or proprietary linear equation solvers (PARDISO [72], TAUCS) can also be used

together with CalculiX [73]. SPOOLES direct solver is used in this thesis; therefore

the details for other solvers are skipped for brevity. There are also tools for sub-

structuring objects before executing the FEA such as METIS and its parallel version
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PARMETIS [74]. METIS is used for partitioning graphs and finite element meshes,

and producing fill reducing orderings for sparse matrices. A sub-structuring (aka

domain decomposition) tool is not included in the design for two reasons: (1) research

shows that [73] parallel equation solver methods that work at a lower-level than the

FEM can be much faster than parallel sub-structuring methods, (2) Sub-structuring

requires explicit knowledge about the geometry of the object: As will be seen in

Section 3.4 customers can be sensitive about the privacy of their design and the fact

that the cloud service provider knows about their intellectual property can be a big

concern.

Solving the equation in the matrix form [K].{u} = {f}, is essential in both linear

and nonlinear, static and dynamic FEA [73]. In the context of structural mechanics,

{u} is related to the displacements of each finite element. SPOOLES has four major

calculation steps:

• Communicate: Read K&f matrices,

• Reorder: (PKP T ).(Pu) = Pf ,

• Factor: Apply Lower-Upper (LU) factorization,

• Solve: Forward and Backward substitutions.

SPOOLES can be executed in a serial (single-threaded), multithreaded (pthreads)

or multi-node (MPI) fashion [71], therefore all of the steps above can be parallelized.

The results (displacements and stresses) are saved in a specially-formatted file called

FRD in CalculiX.

3.1.3 Post-processor

Post-processing can also be done online or offline similar to preprocessing. For exam-

ple, the CGX tool can be used to read the FRD file and visualize the results on the

object under given forces as shown in Figure 5.
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Figure 5: Screenshots from FEA of Beam, Disk, Hood, Brake objects under dynamic

forces.

After all results are saved into the file system in FRD file format, CGX tool can

be used to visualize the stresses and strains on the object under given boundary

conditions as shown in Figure 3.

3.1.4 Job scheduler

FEA jobs with different CPU, memory and I/O needs need to be first character-

ized and then scheduled accordingly for optimal processing performance. In addition,

multi-tenant cloud services such as ours require a careful balance between job isola-

tion for customer quality of service (QoS) assurance and mixed execution for high

throughput and better resource utilization for service providers. This is a multi-

variate optimization problem that can be mapped into an NP-hard “bin packing”

problem. The scheduler needs to make automated, smart decisions on admission
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control, job throttling, concurrent scheduling and even rescheduling. The evalua-

tions and results of different representative FEA loads on single-core, multi-core and

many-node (MPI) configurations on two alternative systems (low-end PCs and high-

end servers) are presented and different scheduling techniques are discussed in the

following sections.

The next section describes some of these representative workloads and discusses

some of the job-to-resource scheduling issues based on real results.

3.2 Workload Characterization

In this section, the three models shown in Figure 5 are used to guide the performance

tests and the FEA service design. These models are chosen because of the differences

and some controlled similarities in their processing complexities. The first is an

8m × 1m × 1m concrete cantilever beam under a 9 MN bending force applied at

its free end (i.e. a civil engineering case). The second is a jet engine disk under a

high-speed centrifugal force (i.e. an aviation case). The third and fourth are cases

from the automotive industry; first being a car Hood that is getting loaded with

a concentrated force from above and second being a Brake rotor under centrifugal

forces. Both the pre-and-post processed versions of these structures are shown in Fig.

5. Red tones represent the maximum stress areas in the body and show potential

points of failure [68]. The product designers are expected to evaluate these results

and either alleviate the stress points via redesign or indicate conditions for acceptable

use of their products in their data sheets.

The initial file size of these models is relatively small (largest hood is < 6MB)

and therefore they can be immediately mapped to memory resolving any further disk

I/O issues. When meshed at a very fine-granularity the file sizes can go up to a few

GB increasing the overall impact of I/O and requiring a more careful consideration.

Other processing-related FEM parameters include number of elements (hexahedrons,
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tetrahedrons, etc.), integration points for each element, and the number of nodes (or

total points) in the model. Most of these parameters are found that they do not

have a major effect on the performance, since the model is transformed into matrices

before being processed by the solvers and most of these matrices are extremely sparse

(i.e. filled with zeros). Sparse direct linear equations solvers such as SPOOLES

can take advantage of this fact to obtain a compact, memory-efficient representation

of the FEM. Therefore, in the results (Section 3.3), it is observed that both the

computational complexity and the memory requirements for the mechanical structural

analyses done in this thesis are positively correlated with the number of non-zero

elements (NZE) in the matrix (e.g. see Fig. 7), which was also indicated by prior

related work [75]. However, note that there can be counterexamples to this rule for

FEA of objects with drastically different geometries, materials and analysis types.

Section 3.3.7 discusses one such scenario for the effect of geometry on performance.

The future work includes handling parallel I/O for bigger FEM files with MPI-IO

or using distributed task processing systems such as MapReduce [76] for this purpose.

MapReduce is used in other cloud projects to process 100s of GB of enterprise log

files and therefore it is possible to apply it to parallelize FEA I/O loads as well.

The NZE count and sparsity (i.e. % NZE/Total Elements) of the sample objects

can be summarized as follows: Beam 38K NZE (7.4%), Disk 2.96M NZE (0.2%) and

Hood 26.2M NZE (0.013%). The NZE of the Brake component is varied from 8 to 55

million via controlled fine-granularity meshing and its effects on memory and CPU

time are measured in Section 3.3 (see Table 7).
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Figure 6: Memory profiling and comparison of linear and nonlinear FEA of Hood

using Valgrind Massif tool. Nonlinear analysis of Hood did 18 iterations. Gi–Ti refer

to Giga and Tera instructions, respectively. Results for FEA of other objects looked

similar and therefore they are omitted for brevity.)

The parallel portion of the analysis code also affects its processing performance

over multiple cores and nodes. Amdahl’s law dictates that adding more cores beyond

8−16 to solve 50−75% parallelizable jobs, which are very common in FEA, will have
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a small incremental performance impact [77]. These FEA jobs are processed on two

different systems: high-end servers each with 8-core CPUs and 12–24 GB memory and

low-end PCs with 2-core CPU and 2 GB memory. The code is timed and the parallel

portion is measured to span 65% and 61% of the overall execution time, respectively.

The results confirmed the validity of Amdahl’s Law (i.e. increased benefits with

diminishing returns) for these CPU-intensive HPC loads and therefore the details are

skipped for brevity. However, cases where some large NZE jobs triggered swapping

(with kswapd in Linux) due to lack of memory are also encountered, especially on the

PC system with less memory. In such cases, the jobs will eventually complete, but it

will be impossible to predict when they will or what the overall system throughput

may be. Therefore, such cases should be avoided. Section 3.3 will present detailed

experimental results.

3.2.1 Linear vs. nonlinear analysis

The linear analysis theory is based on the assumption that the displacements are

small with respect to the geometry of the structure and the material is linear elastic

(Hookean). Therefore, the solution is found in one step. This assumption is no

longer true when the displacements are large so that the applied forces also affect

the geometry and the equilibrium equations must be iteratively reimposed during the

computation, or the material behavior is nonlinear [78].

The nonlinear analysis divides the problem into smaller incremental steps and

the final solution is found by iteration and by checking convergence conditions. The

size of increments can be defined by the user, but in CalculiX it is advisable to

let the program decide on this parameter at run-time for faster convergence. The

convergence criterion is that the residual forces (i.e. difference between the internal

and the external forces) of the structure are small enough (e.g. ¡0.00001%). If they

are small enough, the solution is accepted as converged. Otherwise, the iteration will
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continue until either convergence or a maximum iteration count is reached. If the

maximum iteration is reached, the computation will stop.

3.3 Experiments

In this section, the experimental setup for cloud performance evaluation is described

(Subsection 3.3.1) and a systematic analysis of the described FEM loads is presented.

Since the proposed FEA service will be a multi-tenant, concurrent job processing

system, there is a need to understand the CPU usage and memory impact of executing

different types of jobs (different FEMs and linear vs. nonlinear analysis) in a multi-

threaded fashion. Second, the limits of concurrent processing are tested by scheduling

J identical jobs each using a single thread (Subsection 3.3.2). Third, the number

of threads T for each job is increased to better utilize the C cores in each node

(Subsection 3.3.3). Then, jobs that cannot be sustained on a single node are run over

multiple nodes using MPI to benefit from additional distributed computing resources

(CPU and memory) (Subsection 3.3.4). Next, different jobs are mixed in order to

compare different scheduling techniques and advantages of smart scheduling that takes

adaptive parameter tuning into account are shown (Subsection 3.3.5). Finally, the

effects of structure geometry on the analysis performance are investigated (Subsection

3.3.7).

3.3.1 Experimental Setup

Two types of systems are used for the experiments. The first is a PC cluster consisting

of 8×HPDC5850 personal computers (PCs) with one 2.3 GHz AMD Athlon X2 Dual-

Core Processor, 2 GB Memory and 250 GB 7200 rpm disk. These nodes are connected

via a 100Mbps Cisco Catalyst 2950 Ethernet switch. The second system is a high-

performance IBM Blade system in the data center with 4× IBMH22BladeServers

in HPC-H chassis providing 1Gbps connectivity among the blades. Each IBM blade

server has two 2.40 GHz Intel Xeon Quad-Core E5530 Processors, 12–24 GB Memory,
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and two 72 GB 15000 rpm disks each. To summarize, PCs have 2 cores and servers

have 8 cores per node. Red Hat Enterprise Linux 5 server OS, CalculiX, SPOOLES,

and openMPI are installed on all of these systems. Four FEA workloads described

in the previous section are used for performance comparisons, namely Beam, Disk,

Hood and Brake and their mixes.

3.3.2 Single S/W Thread and OS Scheduler

In this subsection, a controlled experiment is executed by running J identical jobs of

the three workloads (Beam, Disk, Hood) concurrently on a single server node and a

single PC node. The software multi-threading (MT) parameter is set as T = 1. Figure

7 shows the execution time and throughput results in a log10 - log2 scale of time and

job count parameters, respectively for the two different hardware settings. Results

confirm that the server (with 8 cores) and the PC (with 2 cores) can respectively

handle 8 and 2 concurrent Beam and Disk jobs without any performance decay. No

latency increase per increasing job count is observed until the physical core count is

reached, C. In the sustained performance (i.e. flat latency) regions it is found that

the time difference between the loads to be directly proportional to the number of

NZE (38 K vs. 2.96 M vs. 26.2 M). Based on these observations, it is possible to

better predict the expected run time and memory needs of newly arriving jobs and

mixes of jobs by comparing their NZE with those of the already characterized jobs

and their observed performances. However, one has to be careful about making exact

decisions based on NZE as there are other factors affecting the performance.
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Figure 7: Processing of beam, disk and hood jobs with only 1 thread/job on (a) IBM

server and (b) HP PC systems. The time increases and throughput drops immediately

when the total core count is exceeded.

The Hood job sees significant performance degradation after four jobs in server

(with 12 GB RAM) and even with one job in PC (with 2 GB RAM). The reason

is simply the lack of enough RAM to sustain the processing of multiple concurrent

Hood jobs. Memory profiling using Valgrind Massif profiler [79] has been carried out

and it is found that the maximum memory requirements of Beam, Disk and Hood to

be 4.7 MB, 380 MB and 3.15 GB, respectively. These values were all approximately

0.13 KB times the NZE of these model matrices and since the object structures were

quite different the result is surprising. This magic value could be explained as the

total size of global variables (structs, integers, etc.) that need to be allocated in

CalculiX and SPOOLES per NZE. The subject with different multi-threading pa-

rameters, linear-vs.-nonlinear analysis and with objects that have larger NZE (e.g.

Brake) are investigated in Subsection 3.3.5.
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Figure 6 shows the dynamically-changing memory allocation of CalculiX for the

Hood job over time for linear and nonlinear analysis with 1 thread. The linear analysis

makes one cycle first allocating the memory for the matrix, factorizing and solving the

problem and finally de-allocating it when the calculations are finished. The maximum

memory allocation is 3.148 GB. The nonlinear analysis will go into a cycle of memory

allocation and de-allocation for each iteration, but the maximum allocated memory

will be comparable to the linear analysis. For example, the nonlinear analysis of the

Hood job iterates 18 times before convergence and the peak memory value is around

3.247 GB (within 3% of linear analysis).

Next, the same experiments are repeated with different thread counts (1–2–4–8

threads) on each model. It is found that increasing the number of threads slightly in-

creases the maximum memory used (see Table 1). The percentage of memory increase

depends on the job. The increase is mainly due to the replication of application code

(e.g. ccx program) in memory and not the matrix as this data is shared among the

threads. It is also know that Linux OS will not replicate the shared libraries (such as

libc.so and ld.so) for threads. An investigation of memory maps (cat /proc/processid/

maps file in Linux) reveals this fact. Note that if jobs are distributed with MPI on

multiple machines the benefit gained from data and library sharing will be forfeited.

Table 1: Increasing the multi-threading count slightly increases the maximum memory
used while processing FEA jobs (Hood on IBM server).

Threads Max Memory (GB) KB/NZE

1 3.148 0.126
2 3.154 0.126
4 3.198 0.128
8 3.315 0.132

Referring back to Fig. 7, the throughput results show that for short-running jobs

(i.e. Beam) there can be a small incremental benefit in pushing more jobs than the
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core count, C, of the system, but with the long-running jobs the throughput can

only be sustained until J ≤ C. A significant performance difference between the

time and throughput results of the server (3– 10×) and the PC is observed. This

can be attributed to the differences in CPUs, bus speeds, and memory sizes. It

can be concluded that the cheap PC clusters may not be feasible for provisioning

a high-quality FEA cloud service. The big performance difference between the two

alternative strategies (e.g. the 3–10× more jobs completed at the same time) justifies

the higher price of servers.

3.3.3 Multi S/W Thread and OS Scheduler

In this subsection, the multi-threading (MT) parameter, T, is increased at the appli-

cation level to see whether any benefits can be gained by adapting this parameter.

MT creates a potential for running parts of a job on different cores. Note that the

OS will not be able to parallelize jobs that are not explicitly multi-threaded by the

application. However, one cannot easily specify on which core each thread should

execute explicitly in a single machine, since this is dynamically decided by the OS

scheduler (this matters less when cores are symmetric). The motivation for automat-

ically tuning T parameter is two folds: (1) long running jobs will be parallelized (2)

mixes of jobs can be better interleaved. All results in this section were obtained on

the IBM systems.

Fig. 8 shows the total execution time and throughput results for the Beam job

for different T (1–8) values. As Beam is a very short running job, trying to divide it

further into pieces has a diverse effect on the performance (execution time increases

and throughput drops). The best throughput is obtained at T = 1 and J = 16

on IBM server (C = 8). Pushing more jobs beyond this point also degrades the

performance.
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Figure 8: Execution time and throughput results for many-task multi-core processing

of beam on IBM server.

Figure 9 shows the time and throughput results for Disk. Note that the latency

drops and throughput increases until T = 8 for J = 1. For J = 2 throughput increases

until T = 4 and then drops slightly. For J = 4, throughput increases until T = 2.

By observing this trend, the rule J ≤ C from Subsection 3.3.2 can be extended as

J × T ≤ C. The throughput of Disk workload is highest at J = 16 and T = 1

point (0.35 jobs/s). However, note that the total latency is also high around 50s as

16 × 1 > C = 8. Therefore, it is again found the best latency-throughput trade-off

at J × T = C point with [J = 8,T = 1] and [J = 4,T = 2] points. The former choice

gives better throughput and the latter has better latency. The choice can be made

based on how critical either performance metric is in a given context. For example,

the service providers would prefer higher throughput, but the clients would prefer

lower latency.
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Figure 9: Execution time and throughput results for many-task multi-core processing

of disk on IBM server.

The results in Figure 10 further confirm the findings using the Hood job. The high-

est throughput/latency point is at [J = 2,T = 4]. To conclude, longer-running jobs

will benefit significantly from increased (but carefully-controlled) software threading,

until the core count value, C, is reached in a single node. However, for mixed jobs

the tuning and multi-node distribution will have to be done automatically. In current

state-of-the-art, programmers usually assign jobs the maximum threading parame-

ter that (they believe) will fully-utilize the allocated resources. This is called as the

“aggressive strategy” and compared to the “smart scheduling” in Subsection 3.3.5.
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Figure 10: Execution time and throughput results for many-task multi-core processing

of hood on IBM server.

3.3.3.1 Multi-threaded nonlinear analysis

Since nonlinear analysis is an iterative process, the effect of multi-threading is tested

on nonlinear FEA and compared it to linear FEA with one of the jobs. The results

in Table 2 were obtained on the IBM server with 24 GB RAM and using the Hood

job. Results show that nonlinear jobs can gain more speedup from multi-threading

as the percentage (and importance) of the initial serial part of the code diminishes as

there occurs more iterations over the same code. Note that each iteration in nonlinear

analysis (which maps approximately to one linear FEA) will internally have a serial

and a parallel portion. That serial portion cannot benefit from parallelization and

therefore the speedup is not as high as expected. The increased speedup values in

nonlinear analysis can be attributed to the reduction of the importance of the global

initialization phase. In this run the analysis iterates 18 times before convergence and

iteration count depends on various factors including convergence criterion, object ge-

ometry, and applied forces. If the maximum iteration count is set to a relatively

small value such that it is reached before the highly-constraint convergence criteria

(e.g. < 0.000001%), then the total non-linear analysis time can be approximately
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calculated as linear time× iteration count× speedup ratio between linear and non-

linear analysis. Also note that this is a property of the direct solver and iterative

solvers may demonstrate different behavior. Finally, the nonlinear analysis in Table

2 also consistently shows performance drop after thread count (16) exceeds the core

count (8).

Table 2: Comparison of the time and speedups for linear and nonlinear analysis of
Hood on IBM server.

Linear Nonlinear
Thread Time (s) Speedup Time (s) Speedup

1 160.24 1 2517.218 1
2 113.2 1.41 1833.705 1.37
4 94.82 1.69 1220.27 2.06
8 83.38 1.92 983.537 2.56
16 97.77 1.64 1057.107 2.38

The nonlinear time analysis for the Hood and Disk jobs are completed with dif-

ferent concurrent job and thread counts. The results further confirm the J × T ≤ C

rule.

Note that some of these problems are open-ended with respect to the overall

FEA cloud service design as other factors including accounting and quotas will also

determine how long a certain user can be allowed to run a job on the cloud system.

In a certain accounting model, jobs may be preempted and paused (or killed) because

the user has no remaining credit for analysis.

3.3.4 MT vs. MPI, Single and Multiple Nodes

Table 3 shows the comparison results for software multi-threading (MT) and the

Message Passing Interface (MPI) in a single machine for one hood and one disk job

(J=1) on the IBM server. It is known that MPI (distributed memory model) will

communicate via explicit message passing and in MT threads will share the same

process address space (shared memory model). First, the overhead associated with
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messaging is quantified irrespective of any network equipment capabilities (i.e. in a

single machine). Table 3 shows the comparison results for software multi-threading

(MT) and the Message Passing Interface (MPI) in a single machine for one Hood and

one Disk job (J = 1) on the IBM server (with 12 GB RAM). Results confirm that

as the core count increases, MPI performance degrades over the MT version for both

jobs and the slowdown reaches ∼ 0.82 level (i.e. 18% performance loss) even at 8

cores.

Table 3: Time comparison of MT vs. MPI on IBM with Hood and Disk jobs.

Hood Disk
Core MT MPI Slowdown MT MPI Slowdown

1 158.9 161.2 0.99 22.71 22.87 0.99
2 121.2 126.8 0.96 15.36 18.33 0.84
4 85.44 100.6 0.85 11.57 14.01 0.83
8 73.3 83.83 0.87 9.286 11.3 0.82

Related publications suggest designing new processor architectures called Message

Passing Processors [80] which are distributed memory multi-core processors that com-

municate using message passing among themselves. However, the outcome suggests

that for tightly-coupled systems shared memory architectures or “MT” should be pre-

ferred over “MPI”. MPI should only be preferred as an option to “scale out” resources

beyond a single node as there are always limits to “scaling up” local resources. For

example, it is seen that the Hood job could not run properly on a single HP PCs

(N = 1) due to lack of memory. Table 4 shows the benefits of employing MPI in such

scenarios. If MT and MPI are taken as two alternative strategies for resource pooling

(or virtualization), the same total number of cores, e.g. TC = 2, can be configured

either as one node [N = 1,C = 2] (using MT) or two nodes [N = 2,C = 1] (using

MPI). While Table 3 showed some performance degradations due to messaging, Ta-

ble 4 shows that there may still be large savings with MPI due to the avoidance of
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memory swaps (e.g. first case in Table 4, 1325.6/475.5 ∼ 2.79× gain). Similar gains

are observed for the TC = 4 [2 ∼ 2 and 4 ∼ 1] and TC = 8 [4 ∼ 2 and 8 ∼ 1] config-

urations over MT, but with diminishing returns as the job does not benefit from the

additional memory resources. Note that the network bandwidth for this PC cluster

was 100 Mbps and this may be the cause of some of the bottlenecks. In the future,

there is a plan to repeat these experiments with 1–10 Gbps switches.

Table 4: Execution time comparison of MT vs. MPI for Hood on PC.

Total Core Node x Core Time (s)

2 1 x 2 1325.4 (Swap)
2 2 x 1 475.5
4 2 x 2 278.5
4 4 x 1 268.2
8 4 x 2 318.0
8 8 x 1 271.0

3.3.5 Smart Scheduling for Mixed Jobs

In previous subsections, each workload type (i.e. the Beam, Disk and Hood) is

evaluated extensively, but separately, on different number of cores and with vary-

ing threading (T) and concurrent job count (J) parameters. In this subsection, these

three workloads are mixed to get one step closer to a real life batch processing sce-

nario. Given the processing limits of the systems in Fig. 7 and findings in previous

subsections, a job mix that would substantially load the system is created and the

effects of different scheduling strategies are highlighted. The mix consists of 4 Hood,

32 Disk, and 1024 Beam jobs and the goal is to finish the batch as quickly as possible.

Three different scheduling strategies that are compared are called the Shortest-Job-

First (SJF), Aggressive strategy and smart scheduling. SJF strategy simply allocates

1 Thread per job (T = 1) and lets the OS scheduler handle the effective job-to-core

placements. The Aggressive strategy wants to utilize all cores and splits all jobs into
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threaded parts as many as the core count (T = C) of nodes before handing over

to the OS scheduler. The smart scheduler calculates and sets a different threading

parameter for different job types based on a logarithmic function of the NZE, predicts

the potential memory use and tracks resource usage as well as available capacities.

All schedulers use Round-Robin (RR) algorithm for load balancing over multiple ma-

chines at this time.

Algorithm 1 Smart Scheduler Algorithm

1: Determine optimum core counts
2: Determine necessary memory needs
3: Set priority value to nonzero elements
4: Place the job into priority queue
5: if There is sufficient memory in any of the nodes and enough cores in them then
6: if There is only one maximum memory granting node then
7: Select maximum memory granting node
8: else
9: Use round-robin technique
10: end if
11: else if There is single no single node with sufficient memory or core then
12: Use MPI to distribute the job with possible minimum node count
13: else
14: Wait for the next job completion and check once again
15: end if

The smart scheduler briefly works as follows:

1. The jobs are characterized when they are uploaded to the system. Optimum

core counts and necessary memory needs are determined (Characterization).

2. When a job is submitted for processing it is placed into a priority queue with

its priority value set to its amount of nonzero elements (use benefits of SJF).

3. If there’s enough memory in any of the nodes and enough cores in them, then the

maximum memory granting node is selected. When there are multiple matching

nodes, round-robin technique is used (implicit load balancing).
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4. If there is no single node with sufficient memory or core available for the job,

MPI is used to distribute the job with possible minimum MPI node count (avoids

swapping).

5. If there’s no resource available, then the new job waits for the next job comple-

tion and checks once again (admission control). If the job requires more memory

and CPU cores than the cluster can provide than policy-based admission control

will be applied (either all rejected, or some admitted based on customer class

type).

The new jobs arriving into the system would be characterized and classified ac-

cordingly by the Smart scheduler before execution. For example, its sets the threading

parameters as T=1 for beam, T=2 for disk and T=4 for hood. As seen in Table 5,

the Aggressive multi-threading strategy creates additional thread handling burden on

the OS scheduler slowing down the total execution times while attempting to utilize

all the cores. On one server aggressive is 7.53 times slower than Smart and 7.07

times slower than SJF schedulers. Smart scheduler provides 7% additional improve-

ment over the SJF strategy that still depends on a very efficient OS scheduler. For

two servers, Smart provides a speedup of 6.79x over Aggressive and 1.53x over SJF.

Estimates for execution times for this job mix are also obtained by superposing the

concurrent execution times of each job type using Figure 7 and found these estimates

to be highly accurate (within 1-10% range).

Table 5: Comparison of Scheduling Strategies over the Mixed Many-Task Job on IBM
server.

Smart (T=Adaptive) SJF (T=1) Aggressive (T=8)

1 Server 240.7 (7.53) 256.4 (7.07) 1812.5 (1)
2 Servers 130.45 (6.79) 199.98 (4.43) 886.2 (1)
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3.3.6 Design of Smart Scheduler

The main structure of the proposed scheduler can be seen in Figure 11. The flow of

a submitted job passes through six phases. First of all the model is submitted to the

system. This is the initial submission of the job, it is a raw user input which enters

the system. Then the job enters the characterization phase which is a FIFO queue

where each submitted job gets analyzed and created. At this point jobs are in ”New”

state. As the third phase, pre-processing is applied to the jobs. They get categorized

and created. This portion of the scheduler is the actual producer of jobs for the solver.

Once the jobs are pre-processed and created their states become ”Ready” and they

enter an aging priority queue where they wait for execution. Solver is actually the

consumer of jobs. Its main function is select the most appropriate job from the queue,

submit it to the cluster and turn its state into ”Running”. After this phase, jobs enter

the Terminated Job List where all ”Terminated” jobs wait for post-processing.

Figure 11: Main structure of the scheduler.

When a job is submitted to the system it occupies the ”New” state and waits

for the pre-processor to pick the job for evaluation. After the job is pre-processed,

classified and submitted to the queue it occupied the ”Ready” state. The smart
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scheduler dequeues the job and submits the it to the cluster for solution. This state

of the job is called ”Running”. A job may be in the ”Terminated” when its execution

is finished. Execution can get terminated in a normal way or can be killed by the

user and also can have a solution-time error. These states of a job are represented in

Figure 12.

New

Ready Running

Terminated

Figure 12: Job State Diagram.

In the heart of the smart scheduler, the classical Producer-Consumer approach is

being used. Here the producer module characterizes new jobs and pushes them into

the queue. In the smart scheduler module is called the ”Pre-Processor”. The module

called ”Queue” actually holds the jobs in ”Ready” state in a heap data structure.

Finally there is the Consumer module which houses the main implementation of

the smart scheduler described as Algorithm 1. This module aims to pick up the

most appropriate job in the queue and submit it to the cluster. This approach is

demonstrated in Figure 13.

Queue ConsumerProducer

Figure 13: Producer-Consumer Approach.

Pre-Processor (Producer) module tries to determine the non-zero elements of the
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resulting matrix for a submitted job. During the experiments leading to the design of

the smart scheduler, it is observed that the amount of non-zero elements in the sparse

stiffness matrices are the main driver behind the CPU-Time, CPU-Count and RAM

needs. Therefore, the proposed Pre-Processor module aims to figure out the amount

of non-zero elements of the jobs in “New” state and using this information it defines

the CPU, Node and RAM needs of a job and makes them “Ready” for the consumer.

This parameter (non-zero elements) also gives an idea about the most appropriate

solver-preconditioner choice.

As the data structure that holds the jobs that are in ”Ready” state, a Priority

Queue which gives jobs a priority between [0:127] is implemented. In this approach,

an assumption is made so that the lower the number more prior the job is. In order to

avoid starvation issues which rise frequently when priority queues are used, an aging

mechanism is introduced. Each job’s prioritization is increased by one after waiting

for 15 mins. And finally, if two jobs have the same priority number then the one who

has entered the queue before has the priority relative to the newer one.

Solver (behaves in the design as the Consumer) pops up the most appropriate job

from the queue and submits it to the cluster. Within this context, “most appropriate-

ness” is a dynamic concept that changes its meaning depending on the status of the

cluster and waiting time of the jobs in the queue. Smart scheduler tries to maximize

the throughput and minimize the waiting time at the same time using the limited

resources of the cluster.

Producer-Consumer implementation uses three threads that are running continu-

ously. The Queue is a blocking-queue that gets locked whenever a thread starts using

it. The behavior of these threads are listed below:

• Producer Thread: This thread continuously tracks the “New” jobs, pre-

processes them and turns them into “Ready”, places into the queue and notifies

the waiting consumers (if any).
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• Consumer Thread: This threads pops up the most appropriate job smartly

and submits it into the cluster. If the queue is empty the consumer thread waits

to get notified by the producer.

• Aging Tracker Thread: This thread continuously checks the ages of waiting

jobs and gets them aged when necessary.

These results for smart scheduling are promising. The future work includes com-

pleting a comprehensive analysis with different job mixes and comparisons with a

wider variety of scheduling algorithms.

3.3.7 Effect of the geometry on performance (with same NZE)

This section shows some of the open research questions in performance characteri-

zation of FEA loads. Hsieh et al. [73] found that the geometrical properties of the

structure, especially appendages and/or holes, can have significant effect on both the

processing time and memory footprint of the analysis. This brought up a very in-

teresting point that triggered further investigation. For comparison, two new models

called circle and hollow-circle are generated in this subsection as shown in Figure 14,

where the latter is exactly the same as the former object except that it has a hole

in the middle. Since the structure with a hole would have fewer elements (assuming

the same element type) and thus fewer NZE, the granularity of the meshing for the

hollow-circle object is increased until their NZE were approximately the same. Table

6 lists some of the properties and analyses results for these two objects. While the

NZE counts are very similar for the two objects (within 2%) the processing times are

reduced drastically for the hollow object (112s → 52s, 54% savings) for 8 threads

and (396s → 110s, 72% savings) for 1 thread. Memory footprint is reduced by 32%

for 8 threads and by 45% for 1 thread. The finite element type (C3D4 – tetrahedral

with four nodes) used for the two models are also the same. This analysis shows

that even the same amount of force applied to two similar objects can have different
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performance outcomes. All other parameters being about the same, one recognizes a

positive correlation between memory usage and the execution time, i.e. the job that

uses more memory will also take longer to execute. Note that memory allocation

functions such as malloc() also have associated time costs and large FEA loads with

huge memory footprints will test the limits of OS memory management. While the

Linux slab allocator uses free lists of already allocated data structures (i.e. caches

per object type) finding preallocated objects may not be possible when the memory

limits are forced. Matrices from finite element problems are often banded, since they

describe the coupling between elements and elements are usually not coupled with

other elements over arbitrarily large distances in real-life scenarios. Using banded-

ness of different matrices as a means for performance characterization and comparison

among different workloads is left as a future work.

Figure 14: Two control objects, circle and hollow-circle, are used to measure the effect

of geometry and force on FEA processing time and memory.

The geometric analysis is continued with the Brake component, shown in Fig.

4, which is also circular and has holes on it. By increasing the meshing granularity

of the Brake component, several models called B1–B6 are obtained and listed in

Table 7. The NZE count was increased from 8.7 million to 47.1 million. Time and

memory usage of FEA for B1–B6 are analyzed. The last model caused memory swaps

even on the 24 GB servers, therefore the granularity of meshing is not increased any
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Table 6: Effect of geometry on the FEA CPU time and memory usage.

Object Circle Hollow Circle

Mesh Options Very fine, 1, 0.1 Very fine, 1.5, 0.1
NZE 5576731 5469133

Exec. Time (8 threads) 112.33 s 52.43 s
Exec. Time (1 thread) 396.50 s 110.93 s

Memory (%GB 24 GB, T=8) 12.2 8.3
Memory (%GB 24 GB, T=1) 10.8 6.0

Nodes 86344 86937
Element 461,234 (C3D4) 439,169 (C3D4)

further. The memory usage varies from 0.3 to 0.5 KB/NZE. In terms of NZE model

B4 is comparable to the previously analyzed Hood job. However, B4 allocates about

(10.78 GB/3.15 GB) 3.42× more memory than Hood. The execution time B4 also

takes (396.5s/83.4s) 4.75×more time than Hood. Together with the analysis for circle

objects above it can be concluded that memory allocation efficiency (time for malloc()

and the underlying memory management strategies) can be a significant performance

bottleneck in the processing time. This problem is also called the “memory wall” in

the OS and Computer Architecture literature. Cloud service designers should also be

aware of the architectural compatibilities of all the tools and attached shared libraries

(32-bit vs. 64-bit) that their systems are dependent on.

3.4 Discussions on other cloud service related issues

This section provides a detailed discussion on the remaining issues related to the

success of a FEA cloud computing service.

3.4.1 Multiple dimensions of smartness

A smart scheduler for the FEA cloud service can utilize various dimensions related

to the analysis in addition to the performance related ones mentioned above. Addi-

tional dimensions that can be used to make optimal and dynamic scheduling decisions
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Table 7: CPU time and memory usage variations for different meshing (thus NZE)
configurations of the Brake component.

Model
Code

Max Mesh
Size (mm)

Non-zero
elem.

(million)

Memory(%)
(for 24GB)

Max.
Memory

(GB)

Per NZE
mem

(KB/NZE)

Exec.
Time (s)

(8
Threads)

B1 2 8.7 9.8 2.549 0.307 83.312
B2 1.5 15.1 17.9 4.554 0.316 -
B3 1.35 19.3 27.4 6.895 0.374 270.254
B4 1.3 25.2 46.6 10.78 0.447 353.162
B5 1.2 37.3 77.2 19.43 0.52 757.04
B6 1.0 47.1 >100 -(>24GB) SWAP SWAP

include: class-awareness (jobs from paying vs. free customers), deadline-awareness

(using the critical-ratio parameter to decide next job to schedule from a batch), FEA-

job-awareness (linear vs. nonlinear analysis, material nonlinearity), file-size awareness

(I/O intensive), power-awareness (co-locating jobs on a few nodes to shut-down or

spin-down other servers), Amdahl-awareness (estimating parallelizable portion of the

code to adjust T parameter), memory-awareness (prioritizing memory needs over

CPU in RAM-scarce systems), network-awareness (MT vs. MPI tradeoffs), and last

but not least accuracy-awareness (trading-off speed vs. accuracy, e.g. to quickly gen-

erate approximate results). In this thesis, only performance related dimensions are

taken into account and integrating other dimensions into the decision process are left

as future work.

3.4.2 Security and privacy issues

Increased sensitivity of end users to product security and privacy will determine their

choice of the aforementioned cloud deployment models: public, private or community.

The most sensitive users with top-secret products to analyze will deploy private clouds

behind firewalls. No information should leak outside unless their security policies are

breached from outside or inside. However, these users will potentially trade-off cost
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savings and compromise high utilizations.

FEA presents a special case in privacy such that most matrix operations require

only additive and multiplicative algebra. Fortunately, for a limited set of algebraic

operations including addition and multiplication there are homomorphic encryption

schemes that allow operators to carry out the necessary calculations over the en-

crypted data (rather than unencrypted or clear text data) while preserving the cor-

rectness of computation as well as the privacy of the original data. This way even a po-

tential malicious attacker inside the service provider would not be able to reconstruct

the design details of the original customer product. Basically, after these transforma-

tions one cannot differentiate whether the matrix belongs to the chassis of a stealth

plane or a toilet pump. Briefly, let R and S be two sets and the encryption function

be E : R → S. Additively homomorphic means: E(a + b) = PLUS(E(a), E(b))

and multiplicatively homomorphic means: E(a × b) = MULT (E(a), E(b)) where E

is given by the function y = E(x) = a mod n, where a = x+ r×p and the decryption

is given by x = D(y) = y mod p. Homomorphic encryption technique with basic ma-

trices is tested and found that vector operations (additions and multiplications) can

be successfully completed over encrypted data, which is the basis for FEA. However,

this strategy is not integrated into CalculiX and SPOOLES tools, yet. Homomorphic

encryption has also been used in the database field for running privacy-preserving

queries over data stored at cloud service providers and in wireless sensor networks

for privacy-preserving data aggregation. Therefore, the same techniques could be

applied for privacy-preserving FEA in the cloud as well. This topic requires further

investigation and constitutes the future work.

Publicly deployed cloud services are potentially prone to both insider (i.e. service

provider) and outsider (i.e. man-in-the-middle) attacks. Using the well-known public

and private key encryption methods (e.g. SSL used in HTTPS) as well as applying

Message Authentication Codes (MAC) over the exchanged FEM models can alleviate
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some of these problems, namely the data security and integrity can be protected.

However, these security precautions should not hinder sharing of data among cloud

users. One way to allow controlled sharing is to use Authorization-Based Access

Control (ABAC) methods [61] instead of Role-Based Access Control (RBAC), where

the former allows finer-granularity control over the resources. In ABAC, users can

assign certain usage rules or quotas (e.g. using SAML certificates) over server, storage,

and network resources or over data stored in file systems and delegate these privileges

to other users. A privilege works for only a given resource and provides limited access.

RBAC (e.g. username/password and group) allows unlimited access to all resources

owned by a user/group. Therefore, even a small inadvertent mistake done at the user

level or at a higher privilege level (e.g. root or admin) can result in the exposition of

significant amount of personal or organizational data.

3.4.3 Pricing and accounting

Cloud service providers and telecommunication companies have adopted several mod-

els for pricing and charging [81], [82], [83]. These include monthly fixed charging (for

infinite or quota-based use) or pay-per-use (the “use” can be per analysis, a batch of

analyses, or per CPU/h). In both cases the user pays at the end. This way the users

are saved from making large risky investments up front, also known as the Capital

Expense or CapEx. Customers only incur the costs of what they use, or the Opera-

tional Expense or OpEx, and they may decide to change their business model or IT

scaling during this trial period reducing the IT risk involved with the CapEx. How-

ever, there are certain scenarios where bulk purchasing becomes a better option and

service providers should also consider this alternative in their pricing strategies: e.g.

some organizations have quarterly or annual budgets and if they cannot spend the

budget allocated for their unit, then they lose the option to use it even in the future

budget cycles. In those cases, an option such as buying “10,000 FEA” or “10,000
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CPU/h worth of processing power for FEA” becomes an alternative. To be able to

charge the users based on different accounting models, there is a need to monitor the

server CPU and memory usage or analysis counts accurately. Currently, the Hyperic

HQ tool shown in Figure 15 and Hyperic Sigar API is being tested for online per-

process resource (CPU, memory, network) monitoring. In this scenario, there is also

additional counters attached to the scheduler, which tracks the jobs completed per

client.

Figure 15: Overall (or per process) CPU, memory network and other resource usages

can be tracked with Hyperic for cloud service accounting.

3.4.4 Standardization and portability

Strong progress on horizontal integration of cloud services has been accomplished and

there is ongoing work on vertical integration. Standards such as Open Virtualization

Format (OVF) allow IaaS providers to export and import Virtual Machines, which

could be created at other provider sites. This way the customers can move their data

and tasks freely based on cost, performance, or usability criteria without worrying

about vendor lock-ins. OVF is currently supported by many hypervisors underlying
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the IaaS. Other standardization bodies such as Open Grid Forum’s Open Cloud Com-

puting Interface (OCCI) [63] also focused their initial efforts of IaaS interoperability,

but over time evolved to include PaaS and SaaS layer integration issues. The FEA

service can currently import several of the standard input FEM formats and exports

results in the FRD file format that can be visualized using CGX. In the future, the

list of supported input, output file formats will be expanded so that users can take

away their analysis results easily; there are various open-source conversion tools that

can be used for this purpose.

Due to the government compliance and security privacy issues people in different

countries may be banned from using international FEA services (e.g. consider top-

secret military designs). Therefore, replicating and provisioning cloud FEA services

in different parts of the world may still be a valuable proposition.
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CHAPTER IV

EVALUATION AND CHARACTERIZATION OF

PLATFORM AND INFRASTRUCTURE LAYERS

In previous chapter, only the direct solvers included in the SPOOLES [71] library

were used. In this chapter, a common framework for comparison of direct vs. itera-

tive solvers is provided; and PETSc library [84] is chosen for this purpose. Iterative

methods are favored over direct methods when the memory-space requirements of the

matrices are beyond the capabilities of the computing system in hand (either stan-

dalone or distributed). However, direct solvers can also be favored when various jobs

are executed in an HPC environment and stability as well as the precision of the solu-

tions are of critical importance. Iterative solvers may be more effective and accurate

on particular domain-related situations. Hence, a fair comparison is necessary.

The sparse, multi-frontal direct solver MUMPS [85] is also used. MUMPS is the

main public domain multi-frontal solver that can be easily integrated into PETSc.

Another reason for using MUMPS instead of SPOOLES is that, this multi-frontal

solver is also ideal for parallelization. The performance of MUMPS library with

Cholesky and LU decompositions of the generated matrices is evaluated. In order to

evaluate the performance of iterative solvers, various Krylov subspace methods [86]

(CG, BiCG, GMRES) combined with representative preconditioners (BJacobi, SOR,

ASM) within the PETSc library are used.

4.1 Platform Layer: Design of Automated Parallel Solvers

First, the direct and iterative solvers as well as the preconditioners are briefly de-

scribed in Subsection 4.1.1 and then the finite element models (FEM) used to test
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these solvers are explained in Subsection 4.1.2.

4.1.1 Direct and Iterative Solvers

Krylov subspace methods are used to solve linear system of equations by iteratively

multiplying the matrix A starting with vector b, resulting in A.b, A2.b, and so on,

until it converges [87]. Widely-used algorithms of Krylov subspace methods include

Conjugate Gradient (CG), Biconjugate Gradient (BiCG), and Generalized Minimum

Residual (GMRES). These methods are evaluated first with no preconditioning and

then by preconditioning the matrices using Block Jacobi (Bjacobi), Additive Schwarz

Method (ASM), and Successive Over Relaxation (SOR) methods. These precondi-

tioning methods are expected to reduce the condition number of the matrix, therefore

reducing the number of iterations for convergence, thus leading to faster solutions.

Since readers are well-versed with these methods and concepts, the details are skipped

here for brevity [88] [89].

In order to develop a comparison environment for iterative and direct methods,

the PETSc (Portable, Extensible Toolkit for Scientific Computation) library [84] is

selected. In order to evaluate the behavior of direct solvers, MUMPS [90], [85] that

can straightforwardly be used within PETSc is chosen. The performance of MUMPS

with LU and Cholesky decompositions is assessed. For the iterative solvers, various

Krylov Subspace algorithms that are combined with preconditioners (ASM, SOR,

BJacobi) all within the PETSc library are used. A well matching solver-preconditioner

combination is critical and readers are referred to the related literature to learn about

the implementation details of these methods [88], [91], [92], [93], [94].

The performance comparisons of direct and iterative methods are done with re-

spect to memory usage and multi-core and multi-node execution times over an HPC

cluster, consisting of 8 x IBM HS22 Blade Servers each with 2 Intel-Xeon CPUs (8

physical cores) and 24 GB memory (up to 4 nodes are used in these analyses).
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4.1.2 Finite Element Models

Figures 16, 17, 18 show the three classical linear elasticity problems, namely a Can-

tilever beam, Lame problem and Stress Concentration Factor (SCF) modeled for

comparing different iterative and direct methods. Cantilever beam is one of the sim-

plest problems for testing strength of materials, where one of the ends of a beam

is clamped and the other end is subjected to a vertical force that causes bending.

Lame is an axial symmetric problem [89] [95] where an annular cylinder is subjected

to uniform pressures both from outside and inside. In SCF problem, there is a hole

in the object and the outer dimensions go to infinity. The force lines are denser

around the hole, which causes stress concentration potentially leading to crack ini-

tiation. These models theoretically represent many real-life mechanical situations in

structural engineering, namely aerospace, automotive, construction and machinery

industries.

Figure 16: Cantilever beam.
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Figure 17: Stress Concentration Factor (SCF).

Figure 18: Lame problem.
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These three linear problems are meshed with increasing granularities using the

CUBIT tool [96] to create their finite element models. As shown in Table 8, there is

an inverse correlation between the number of elements and average size of an element;

as the mesh gets finer the average size of elements gets smaller. This will end up with

more degrees-of-freedom (larger matrices) and larger rank for the solution space (M).

This method creates more accurate results but are computationally more expensive.

Since elements in a finite element mesh only interact with the surrounding elements

and don’t have any effect with the remaining ones, the finer meshed problem domains

yield sparse matrices. Because of this phenomena, the Non-Zero Elements (NZE) are

noted to calculate the degree of sparseness of the resulting matrices that are solved

using sparse linear equation solvers.

As shown in Table 8, Cantilever, Lame and SCF problems are meshed in 5 dif-

ferent sizes (minimum, small, medium, large, maximum) and their maximum sizes

respectively had approximately 32 million, 739 million, and 956 million NZE. The

(NZE) and sparsity (NZE/(M × M) × 100%) ratio of the resulting matrices are

noted. In addition to these, the resulting matrices are solved using sparse linear

equation solvers utilizing either iterative (e.g. CG) or direct (e.g. LU) algorithms. It

is previously observed [35] that both the CPU and memory requirements needed to

solve a FEM are directly related to the NZE and matrix properties. In this chapter,

the possible effects of the condition number of the matrices on iterative solution per-

formance are also examined. Inclusion of effects of other advanced matrix properties

such as condition number, wavelength, and bandwidth will be part of the future work.

4.2 Performance Comparison of Solvers

This section summarizes the outcomes for the memory needs and job execution times

of fifteen test cases given in Table 8. The performance collations of iterative vs.

methods are carried out with respect to multi-core and multi-node execution speeds
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Table 8: Matrix properties of Cantilever, Lame and SCF problems for several degrees
of mesh coarseness.

Model Name Job Size Element Size Elements Matrix Size NZE Sparsity

Cantilever

Minimum 32 90 768 33840 % 94.26
Small 16 784 3456 163800 % 98.62

Medium 8 5464 14040 705240 % 99.64
Large 4 44992 78312 5136840 % 99.91

Maximum 2 346921 459918 32637744 % 99.98

SCF

Minimum 80 89 2214 236466 % 95.17
Small 40 1146 18708 2636748 % 99.24

Medium 20 6790 98343 15073191 % 99.84
Large 10 55770 736905 120593655 % 99.97

Maximum 5 448440 5659596 956996262 % 99.99

Lame

Minimum 256 93 1941 226017 % 94.00
Small 128 378 12768 1801044 % 98.89

Medium 64 1625 77487 12051837 % 99.79
Large 32 18750 587262 96948108 % 99.97

Maximum 16 125000 4347846 739238994 % 99.99

and as well as RAM usage over an HPC cluster that consists of 8 x IBM HS22

Blade Servers with two Intel-Xeon CPUs(8 physical cores), 24 GB of RAM and Linux

operating systems (Red Hat Enterprise) on each of them.

First of all, for all the finite element jobs under consideration, ”minimum”-sized

job was too tiny both in terms of CPU-time requirements as well as memory needs.

They failed to show the differences either between direct and iterative methods, or

preconditioners. Almost all of these executions were completed under one second and

therefore parallelization attempts only made the run times worse as job decomposition

needs overshadow parallelization’s benefits. Therefore, minimum and small tasks

(NZE < ∼ 1, 000, 000) are not suitable for HPC. The examinations will be continued

with outcomes for medium and larger-sized (NZE > 1, 000, 000) models with and

without preconditioners.
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4.2.1 Results without Preconditioning

Figure 19 shows performances of solvers with the medium-sized SCF, Lame, and

Cantilever jobs having (1, 000, 000 < NZE < 10, 000, 000). These jobs benefit in

time domain from increased parallelization until 16 core count after which the gains

diminish; the small Cantilever problem is an exception since it can have decreasing

or varying performance, especially with the Iterative solvers, for increased paral-

lelization. Direct algorithms (LU and Cholesky) can perform better than iterative

algorithms (CG, BiCG) only for the Cantilever case, whereas in the larger Stress

Concentration Factor and Lame problems these algorithms demonstrate better out-

comes up to ∼ 3x faster (e.g. collate Direct-LU vs. Iterative-CG). To summarize, in

addition to a possible benefit of 2x−3x speedups, an additional 2x−3x speedup can

be gained when an appropriate solver is used. Direct algorithms should be preferred

for smaller jobs and iterative ones are more feasible for the larger models. Finally,

there is a need to stress that the results demonstrating the performance observations

of iterative algorithms includes no preconditioner effects. In Figure 19d, it can be

noticed that iterative algorithms use less memory than direct ones and among the

direct algorithms, Cholesky uses less memory than LU. Since more memory allocation

also means slower execution speeds, time measurements observations also agree with

the corresponding memory consumption.
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Figure 19: Execution Time (sec) and Memory (MB) usage of medium-sized Can-

tilever, SCF and Lame jobs.

Table 9: Jobs ordered in increasing number of NZE. Performance of best direct and
iterative solvers compared.

Name Size NZE
1-Core

Time (s)
Fast.

Time (s)
Core N.
(Fastest)

Time (s)
Core N.
(Fastest)

Cantilever Min 768 33480 0.02 0.02 1 0.02 1
Cantilever Small 3456 163800 0.19 0.19 1 0.071 1

Lame Min 1941 226017 0.06 0.06 1 0.095 1
SCF Min 2214 236466 0.09 0.08 4 0.084 1

Cantilever Medium 14040 705240 2.00 0.98 8 0.217 8
Lame Small 12768 1801044 1.22 0.57 8 1.272 8
SCF Small 18708 2636748 0.93 0.48 8 1.857 8

Cantilever Large 78312 5136840 12.38 4.83 8 4.206 4
Lame Medium 77487 12051837 13.14 4.21 8 23.51 16
SCF Medium 98343 15073191 13.97 6.52 8 27.264 16

Cantilever Max 459918 32637744 139.90 47.26 16 71.37 8
Lame Large 587262 96948108 169.07 44.87 16 644.14 32
SCF Large 736905 120593655 159.11 47.96 16 703.96 32
Lame Max 4347846 739238994 2924.25 443.42 32 SWAP SWAP
SCF Max 5650596 956996262 2823.73 550.21 32 SWAP SWAP

Results in Figure 20 and Figure 21 for the Large and Maximum sized jobs gen-

erally provided matching performance figures and outcomes. Within the test suite,
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only Lame-max and SCF-max tasks gained from parallelization using 32 cores. Fig-

ure 21 shows the run times of iterative algorithms without preconditioners for these

maximum-sized tasks. Direct algorithms could not return the results for the two

maximum sized jobs for SCF and Lame having ∼ 740, 000, 000 and ∼ 960, 000, 000

NZE, respectively. Their memory consumption hit the maximum capacity of nodes

approximately around 22 GB; and the virtual memory management function of the

operating system triggered the utilization of disk swap areas in order to satisfy the

memory needs. Those results are not recorded and reported because of the non-

reliable nature of the disk swap area usage. Here, the conclusion is that the iterative

algorithms not only improve the performance over direct ones, but also make it fea-

sible for huge tasks (NZE > 500, 000, 000) to properly return a result where direct

algorithms completely fail. Figure 19 demonstrates the run times of iterative algo-

rithms without using preconditions.
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Figure 20: Execution Time (sec) and Memory (MB) usage of large-sized Cantilever,

SCF and Lame jobs.
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Figure 21: Execution Time (sec) of max-sized SCF and Lame jobs.

4.2.2 Results with Preconditioning

In this subsection, the effect of preconditioners are examined to figure out the perfor-

mance trade-offs. It is noticed that preconditioners provide notable gains in execution

speeds, but at the same time it can also increase memory consumption compared to

tasks that are run without preconditioners. All the execution times published in this

subsection include the time that is necessary for the application of the preconditioner.

Here, it is also of special importance to contain the preconditioning time needed, be-

cause this total time gives a fair premise for collation with no-preconditioner cases.

Note that the preconditioning time converges to a negligible portion of the total run

time when solution times get bigger.

Figure 22 shows that effects of preconditiners, in general, improves execution

speeds of iterative algorithms (CG, BiCG, GMRES) except for the cases of SOR with

BiCG and ASM preconditioner with CG. The combination of CG iterative algorithm

with Bjacobi preconditioner with its 47.6 second run time, has a 25% faster perfor-

mance than the combination of CG-SOR (63.5 sec) and 36% faster performance than

GMRES-BJacobi combination(74.8 sec), which are the second and third best per-

forming combinations after CG-Bjacobi. To summarize, preconditioning can enhance

execution speed by 25− 36%.
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Figure 22: Effect of different preconditioners on execution times of different Iterative

solvers.

4.2.2.1 Preconditioning Effect on Memory

Figure 23 demonstrates the memory consumption of the Cantilever task for different

degrees of mesh coarseness with the Direct (LU, Cholesky) algorithms and Iterative-

BiCG algorithm that uses no preconditioning, a Block-jacobi preconditioned matrix

and an ASM preconditoner. As expected, the memory need increases as NZE grows

and the log-log figure indicates an average of 30-100 bytes per element (e.g. 30MB-

100MB/1 Million NZE). Direct algorithms use more memory than iterative ones and

between the direct algorithms LU option requires more memory than the Cholesky

option. While Block-jacobi preconditioner does not have a big impact on memory

consumption, on contrary ASM can remarkably increase the memory consumption (by

50-100%). A very similar impression for the CG and GMRES algorithms is acquired,

therefore their combinations with BiCG are excluded for briefness. One significant

point is that the SOR preconditioner does not function together with BiCG. Also,

the outcomes for the Lame and SCF tasks and their memory consumption patterns
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for various degrees of mesh coarseness have exhibited the same structure, where the

direct algorithms demand more memory than the iterative ones.
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Figure 23: Memory usage of direct-vs-iterative BiCG method with different precon-

ditioning; for Cantilever problem at different granularities (NZE).

4.2.2.2 Preconditioning Effect on Execution Time

Figure 22 shows that Preconditioning in general improves execution times of iterative

methods (CG, GMRES, BiCG) except for the ASM preconditioner for CG. The best

preconditioner for all Iterative solver types is Block-Jacobi (Bjacobi).

In Figure 24, the preconditioner is set as Bjacobi and compare the time perfor-

mances of different Iterative methods for the biggest job: SCF problem meshed at

maximum granularity. The performance between the best Iterative solver CG, and

second best BiCG is ∼ 2x and between CG and GMRES it is ∼ 4x. To summa-

rize, iterative solver Conjugate Gradient (CG) with the Block-Jacobi preconditioner

demonstrates the most outstanding performance among the test cases.
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4.2.3 Comparison of the Best Direct and Iterative Methods

Table 9 compares the performances of best direct and iterative methods. Until now,

the outcomes show that the Cholesky algorithm is the best performing direct solver

meanwhile Conjugate Gradient algorithm with a Block Jacobi preconditioner is the

best iterative-preconditioner choice. Next, the run time characteristics of these iter-

ative vs. direct algorithms are collated and describe the outcomes for all of the tasks

in Table 10. It can be rapidly pointed out that direct algorithms including Cholesky

method cannot successfully return results for the maximum-sized Lame and SCF

models having ∼ 740, 000, 000 to 1, 000, 000, 000 NZE. However, the Iterative CG-

Bjacobi combination completes these jobs within 7− 10 minutes time range. As the

job sizes increase, they also benefit more from parallelization. However, if there is

enough memory and time direct solvers are guaranteed to return a result, whereas

the Iterative solvers may not converge even if there is enough memory when they

encounter ill-conditioned matrices. These issues will be discussed in Section 4.2.4.
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Table 10: Non-Zero Element ordering for Cantilever (C), Lame (L) and Stress Con-
centration Factor (S) Jobs including a performance collation of best iterative and
direct solutions.

Job Properties Iterative-CG-BJacobi Direct-Cholesky
Name Size NZE Time (ms)1-core Time (ms) Fastest Core # Fastest Time (ms) Core # Fastest
C-min 768 33,840 0.02 0.02 1 0.02 1

C-small 3,658 163,800 0.19 0.19 1 0.071 1
L-min 1,941 226,017 0.06 0.06 1 0.095 1
S-min 2,214 236,466 0.09 0.08 4 0.84 1

C-medium 14,040 705,240 2.00 0.98 8 0.217 8
L-small 12,768 1,801,044 1.22 0.57 8 1.272 8
S-small 18,708 2,636,748 0.93 0.48 8 1.857 8
C-large 78,312 5,136,840 12.38 4.38 8 4.206 4

L-medium 77,487 12,051,837 13.14 4.21 8 23.51 16
S-medium 98,343 15,073,191 13.97 6.52 8 27.26 16

C-max 459,918 32,637,744 139.90 47.26 16 71.37 8
L-large 587,262 96,948,108 169.07 44.87 16 644.14 32
S-large 736,905 120,593,655 159.11 47.96 16 703.96 32
L-max 4,347,846 739,238,994 2,924.25 443.42 32 SWAP SWAP
S-max 5,650,596 956,996,262 2,823.73 550.21 32 SWAP SWAP

Although HPC clusters are used, the memory management modules of the local

nodes and their OS can create problems for HPC jobs; i.e. they are not optimized

for managing large chunks of memory beyond 8-10 GBs, a modern OS (Linux in

this case) installed in the 64-bit machines with 24GB physical memory can certainly

allocate all available memory to processes, but this allocation and de-allocation has

significant diverse impact on execution times [97]. It is observed that most of the

time is spent in allocating or moving the memory rather than solving the matrices.

Operating System enhancements such as permitting HPC user processes and related

data structures to benefit from the slab allocator can be fairly helpful.
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Figure 25: A first-degree polynomial fit for prediction of execution times using NZE

of matrices.

Figure 25 demonstrates linear polynomial fit for NZE vs. execution time on a

logarithmic scale for single and multi core cases. For the single-core case the identified

linear function is:

log10 (time) = log10 (NZE)× 1.1866− 7.187 (1)

and for the multi-core case, the identified function is:

log10 (time) = log10 (NZE)× 1.0016− 6.293 (2)

The related R2 values of 0.9539-0.9678 are close to 1, indicating a fine fit. In the

next subsection, an exploration on the fact that divergence from the regression line

happens in situations where the matrix under consideration is ill-conditioned to an

extent, is given.
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4.2.4 Effect of Condition Number on Performance

The condition number (CN) for a nonsingular matrix A given by Equation 3:

K(A) = ‖A‖ .
∥∥A−1

∥∥ (3)

can be utilized to decide how quickly an iterative algorithm may converge to a

solution [98]. For ill-conditioned cases where K(A) is large, solution speed (thus

convergance) can be quite slow-going or may even diverge. Figures 26, 27, 28 exhibit

that as the coarseness of the meshes for SCF, Cantilever and Lame models decrease,

their corresponding matrices will become more diagonal, which also contributes to

the reduction of their condition numbers as demonstrated in Table 11.

(a) (b) (c) (d) (e)

Figure 26: Matrix bandwidth properties of Cantilever Problem, (a) Min, (b) Small,
(c) Medium, (d) Large, (e) Max. Matrices tend to have a more diagonal structure as
the mesh gets finer.

(a) (b) (c) (d) (e)

Figure 27: Matrix bandwidth properties of SCF Problem, (a) Min, (b) Small, (c)
Medium, (d) Large, (e) Max. Matrices tend to have a more diagonal structure as the
mesh gets finer.
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(a) (b) (c) (d) (e)

Figure 28: Matrix bandwidth properties of Lame Problem, (a) Min, (b) Small, (c)
Medium, (d) Large, (e) Max. Matrices tend to have a more diagonal structure as the
mesh gets finer.

The condition numbers, K, are calculated by taking the ratio of maximum eigen-

value to the minimum using PETSc library. The results are given in Table 4. A careful

examination of the K (Max. CN) values shown in Table 11 in parallel with the perfor-

mance outcomes demonstrated in Table 10 tells that using the K values together with

the NZE of two meshed objects can help to describe their performance dissimilarities.

For example, while the SCF-small task shown in Table 10 has around 30% more NZE

than Lame-Small task, it executes and returns a result in about 25% shorter time

(0.93 vs. 1.22 sec with 1 core and 0.47 vs. 0.57 when 8 cores are used). Another al-

most identical deviation is encountered among Lame-SCF Large tasks. This outcome

can be related to the larger condition number of Lame-Small task (50.29× 1013) col-

lated to the condition number of SCF-small task (13.35× 1013). One challenge faced

when the condition number is included as a parameter into FEA execution time pre-

diction efforts, is that the condition number computation itself may not converge.

Figure 29 shows one such case, where the condition number computation for one of

the well-conditioned matrices converges quickly, whereas the ill-conditioned one os-

cillates for thousands of iterations without returning a result. Since the performance

variabilities due to condition number are relatively minor (< 10%) in these cases, its

comprehensive study and incorporation in the equations are left as future work.
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Table 11: Convergence behavior of Condition Number computations of the matrices
from test suite.

Job Name K (Max CN) C × 1013

Cantilever

Minimum 5.384
Small 5.384

Medium 5.384
Large 0.462

Maximum 0.216

SCF

Minimum 19.64
Small 13.35

Medium 8.19
Large 4.40

Maximum 2.39

Lame

Minimum 66.98
Small 50.29

Medium 28.32
Large 14.40

Maximum 7.06
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Figure 29: Computation of condition number for well vs. ill conditions.

4.3 Infrastructure Layer: App Containers vs. Physical and
Virtual Machines

A typical HPC-as-a-Service supplier using containers need to supply service for mul-

tiple, geographically scattered request with various demands. Docker is a recently

developed technology being used in Cloud Computing environments as a solution to
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overcome the dependency problems of jobs being submitted to the infrastructure. So

that the cloud computing paradigm aims to be as generic as possible, there is an ever

increasing task of handling and coordinating multiple libraries, software packages and

application-specific environment variables for service suppliers. By using container

technology, this issue may be handled by using predefined instances with specific

software and hardware characteristics encoded and deployed easily whenever needed.

This approach also guarantees the existence of the resources as requested and encap-

sulates the performance metrics so that it can’t be affected by other jobs running

concurrently within the same system. This isolation within the cluster, makes differ-

ent applications with different dependencies co-exist, run and utilize the underlying

hardware without conflicts. Another advantage that can be mentioned about utiliza-

tion of containers is that they do not run on hypervisors like virtual machines but run

on operating system’s kernel, share the kernel and standard application libraries of the

operating system. This property of containers makes them lightweight so that they

can be distributed and loaded quickly whenever a need uprises and exhibit similar

performance characteristics as bare-metal applications.

Figure 30 illustrates different alternatives for setup and execution of HPC software;

in this case, OpenFOAM Computational Fluid Dynamics (CFD) toolkit. In a classic

installation scenario, shown as CASE 1, a physical server would be acquired either by

buying it or renting it from a cloud data center. Next, a host Operating System (OS)

is installed on this hardware and install OpenFOAM over this OS (e.g. by running

sudo apt-get install openfoam command in Ubuntu). In CASE 2, a machine with OS

will be used and Docker [49] will be installed on top of the Host OS first (e.g. apt-get

install docker) as a virtualization layer and use Docker to pull the Ubuntu:latest +

OpenFOAM images to prepare the HPC environment. Images on the same physical

machine or different machines can communicate via MPI (Message Passing Interface)

as usual. In CASE 3, the OS is virtualized by a Type1 (Native) Virtual Machine

72



Monitoring (VMM) software and OpenFOAM is installed inside that VM. This case

provides isolation of all application layer software including HPC at the OS kernel

level. VMWare ESX Server [99], Microsoft Hyper-V [100], Kernel Virtual Machine

(KVM) [101], and Xen [102] are among the widely used system software for this

purpose. In CASE 4, there is excessive layering of virtualization starting with a host

OS, a Type2 (Hosted) VMM, and then a guest OS with OpenFOAM inside. This

case may only viable for development purposes.
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Figure 30: Alternatives for installation of OpenFOAM CFD software over physical,

virtualized and dockerized resources.

4.3.1 Application Containers

Process Containers were first implemented and integrated into the Linux Kernel by

Paul Menage, et al. [44] starting with version 2.6.x. The goal was to provide resource
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isolation (CPU, memory, I/O, network) and prioritization among controlled group of

processes, called cgroups. Light-weight containers can be setup, configured, shipped,

copied, deployed, and terminated much faster than VM clusters, since they run on

the same OS kernel and share this kernel’s resources, drivers, and libraries. They are

also designed to isolate jobs within a cluster; but this is a claim to be tested exten-

sively. Isolation within the cluster could make different HPC and high-throughput

applications co-exist and utilize the underlying hardware resources without any con-

flicts. Finally, containers can remove the need for queue scheduling and resource

management software such as PBS/Torque, SLURM, LSF, and YARN, since there is

a separate and isolated process for every HPC job to be executed.

Container technologies can be classified into two as ”application containers” and

”system containers” [47]. Docker is an example for the former, whereas Linux Con-

tainers (LXC) [48] and OpenVZ for the latter. App containers execute a single pro-

cess, whereas system containers have full OS stack. Due to its light-weight approach

and ease of deployment, Docker [49] is the most widely adopted technology among

the systems community for now. It is available for Linux, Windows, and Unix-based

OS such as MacOS. Scientists can easily share pre-packaged images that are loaded

with scientific software and data via Docker Hub (hub.docker.com). Images can be

layered (using a layered file system) to share functionality and save disk space. How-

ever, sharing can create resource contention and reduce performance if not handled

properly.

4.3.1.1 Docker

Each Docker container is a process that runs in its own namespace for PID, UTS, IPC,

Mount, and Network [103]. The storage and file system layers are implemented by

union of mount points, a.k.a Unification File System (UFS; e.g. AUFS). Table 12 lists

some of the commonly used commands for Docker image creation and management.
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You can install software into images by “pulling” layers on top of each other, usually

stating with the OS layer, then possibly pulling a database layer and/or a HPC

software such as OpenFOAM. You can rename your images and save them into Docker

Hub (hub.docker.com/) cloud repository for later use and sharing. Commands in

Table 12 help you login, logout, list and manage these custom Docker images. The

details are skipped here for brevity, but Table 12 serves as a good reference.

Table 12: Commonly used Docker management commands.

docker pull ubuntu:latest Install the latest Ubuntu OS on the image
docker run -ti ubuntu:latest /bin/bash Run docker image interactively (via shell).

Ctrl+D exits container, but changes are lost if not committed.
docker run ubuntu:latest echo ”Hello World.” “Hello World” application for Docker.
cd ˜ ; mkdir pareng Make a directory in the image.
docker images List current docker images
docker rmi image id Delete the specified docker image
docker pull postgres:9.4.5 Install a Postgres DB on the image
docker run -d –name postgres container postgres:9.4 Start the postgres loaded image and go the the
docker exec -ti postgres container /bin/bash SQL CLI for postgres
docker ps –l List running docker images
echo ”FROM ubuntu:latest” > Dockerfile Build new images from existing images using
docker build -t new-image:1.0 . Dockerfile
docker commit dockerid my/image Save changes
docker login/logout Docker repository Login and Logout
docker tag my/changedimage myid/webserver Push docker image to docker cloud
docker push myid/webserver
docker port dockerid Show all mapped ports for dockerid
docker cp Copy files between container and local file system

4.3.2 CPU-Intensive and I/O Intensive Benchmarks

OpenFOAM Computational Fluid Dynamics (CFD) software can solve an extensive

range of fluid flow, heat transfer, mechanical, acoustics, and electromagnetic problems

[37]. Parallel simulations are first executed on OpenFOAM for two laminar flow

experiments: depthCharge2D and depthCharge3D. These examples simulate a gas

bubble exploding inside a water-filled container; which also has air on top the water.

The 0.1-0.5-1 seconds of this bubble explosion event is simulated, which indeed takes

much longer time to simulate. OpenFOAM uses the compressibleInterFoam solver,
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which is a solver for 2 compressible, laminar and turbulant, immiscible fluids (iso-

thermal or non-isothermal). Simulation files for depthCharge2D from OpenFoam

examples are copied into the image, setup the configuration for domain decomposition

methods and run OpenFOAM in parallel.

4.3.3 Setting up OpenFOAM on Docker

Containers provide similar portability and faster deployment benefits to VMs, except

that they are lighter-weight, as they do not replicate the OS-related kernel and driver

codes. In that regard, containers can be compared to cloud Platform Services (PaaS),

whereas VMs are the infrastructure (IaaS).

4.3.3.1 OpenFOAM

An open-source software called OpenFOAM Computational Fluid Dynamics (CFD)

that can solve an extensive engineering range of fluid flow, heat transfer, mechan-

ical, acoustics, and electromagnetic problems [37] is used. Parallel simulations on

OpenFOAM for two laminar flow experiments: depthCharge2D and depthCharge3D

(see Figure 31) are executed. These examples simulate a gas bubble exploding in-

side a water-filled container; which also has air on top the water. The 0.1-0.5-1

seconds of this bubble explosion event is simulated, which indeed takes much longer

time to compute. OpenFOAM uses the compressibleInterFoam solver, which is a

solver for 2 compressible, laminar and turbulant, immiscible fluids (iso-thermal or

non-isothermal).

4.3.3.2 Domain Decomposition in Docker: Simple and Scotch Methods

One of the most effectively and widely used parallel computing approaches used during

solution of the equation systems resulting from discretizations of partial differential

equations is the domain decomposition method (DDM) where the data is divided

into subdomains and shared among processes. In non-overlapping version of DDM,
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(a) (b) (c)

Figure 31: Solution of DepthCharge2D problem visualized using Paraview software
at (a) 0.1 sec, (b) 0.5 sec, (c) 1.0 sec.

all subdomains are independent from each other and can be handled as separate

computational entities. Independence of subdomains paves the way for efficient par-

allelization and scaling of finite element computations. Adaptive mesh refinement

techniques can also be used flexibly without any need of change in other subdomains.

This method has a great potential for implementation in real life engineering and sci-

entific problems and by modularity, flexibility promises ways to optimize and refactor

bottlenecks in the implementation without demanding a need for remodeling of the

whole system.

During past years, in order to incorporate this method into actively used software

efficiently, several libraries have been implemented. They may be divided into two

main groups: 1) Libraries for modeling and solving using DDM (e.g. PETSc and

MODULEF)[104] and 2) Libraries for decomposing the domain into optimal subdo-

mains in order to guarantee the scaling of the code using multiple processes (e.g.

METIS and SCOTCH). Libraries like METIS and SCOTCH [105] aim to decrease

boundaries between subdomains in order to minimize the communication need be-

tween processes, while simultaneously trying to keep the computation load of each

process balanced with others for optimal CPU usage.
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OpenFOAM uses a domain decomposition tool called “decomposePar” with sim-

ple, hierarchical, scotch, and metis options; next openMPI is used to parallelize the

computation. With the simple method, how to decompose the physical problem ge-

ometrically such as (x = 1, y = 2, z = 1) for a 2-core calculation parallelized in y

direction is manually specified. With the scotch method, no geometric input is pro-

vided, as this selection is automated and the “best” option is selected by the method

itself. After the simulation ParaView software is used to visualize the results.

4.4 Performance Comparison and Results for Docker vs.
VM

Application containers such as Docker form an alternative to Virtual Machines (VM)

and provide faster development as well as deployment of HPC services over cloud com-

puting infrastructures[48]. Throughout the recent section that is based on a previous

research [106], performance of Docker containers with virtual machines using Open-

FOAM [37] software over a public cloud is collated. It is discovered that while Docker

offers ∼ 10x gains in new HPC cluster setup times, it has no noteworthy performance

handicaps compared to virtual machine technologies or even to infrastructures based

physical machines. Domain Decomposition Methods (DDM) including Simple manual

DDM and Scotch, which automates the selection of the best geometrical partition, are

also compared. Since the workloads (e.g. DepthCharge3D) were highly symmetric,

different DDM methods could not differentiate in performance.

In this subsection, architectural alternatives, advantages as well as disadvantages

of each alternative, are discussed. The three setups on Scaleway cloud that are rep-

resentative of the cases shown in Figure 30, physical, virtual and dockerized HPC

alternatives will be compared in this section. Performance and isolation benchmark-

ing results for Physical, Virtual and Dockerized HPC alternatives over the public

Scaleway cloud will be provided. Scaleway C2S physical servers have 4 (x86-64)

cores, 8GB RAM, and 2.5Gbps NIC. For physical cluster tests, first Ubuntu 14.0.4 is
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used as the OS and OpenFOAM is installed directly on the top of OS. For Dockerized

HPC, Docker is installed and OpenFOAM is executed inside those, again on top of

C2S servers. For Virtual Server tests, Scaleway VC1M with 4 (x86-64) cores is used,

4GB RAM, KVM for virtualization, Ubuntu 14.0.4 and OpenFoam inside.

• CASE #1 Physical Server: Scaleway C2S is tested with 4 (x86-64) cores, 8GB

RAM, 2.5Gbps NIC; installed with Ubuntu 14.0.4 and OpenFOAM inside.

• CASE #2 Physical + Docker: Scaleway C2S is tested (h/w same as above);

installed with Ubuntu, Docker and OpenFOAM inside.

• CASE #3 Virtual Server: Scaleway VC1M is tested with 4 (x86-64) cores,

4GB RAM, which uses KVM for virtualization; installed with Ubuntu 14.0.4

and OpenFoam inside.

• CASE #4 CASE#4 alternative of installing Docker inside a VM image is not

tested, since this creates unnecessary layering and comparisons.

Before going into performance comparisons it must be denoted that the biggest

contribution of Docker by experience is its setup and bootup times. While it can take

about 10-15 minutes to download and install OpenFOAM from repository (sudo apt-

get install openfoam30) onto a bare metal server or into a VM, this complete operation

takes about 1 minute in Docker (docker pull myid/ubuntu14.04 openfoam3.0.1). The

boot time for a physical and virtual machine are also on the order of 1-2 minutes,

whereas this value is meaured as a few seconds in Docker. Therefore, these are

expected to be the major contributions of Docker, if it passes the performance test

as detailed below.

The results for 1-2-4 cores as shown in Table 13, 14, 15, 16 are reported. Linux

“time” command inside the Docker shell is used to obtain real, user, and system

times separately. “Real” reports the wall-clock time, “User” refers to the total CPU
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(multi-core) time spent in user mode, and “Sys” refers to the total CPU (multi-core)

time spent in kernel mode. These breakdowns are reported where needed; otherwise

“real” time values are reported. A separate CPU or memory profiler are not installed

as these suites can also affect observed time. Experiments are run three times and the

average is reported; the variances are less than 1% in most cases. Table 13 shows the

DepthCharge2D 0.5 second simulation results with real, user, system time breakdowns

for control purposes. Taking the single (1) core time as reference and using Amdahl’s

Law, from the speedups for measured times of 2-4-8 cores, the parallelizable portion

of the code is calculated to be 62%. The system overhead is ¡ 2%.

Table 13: DepthCharge2D – 0.5 second simulation multi-core time (real, user, sys)
results.

Cores Real (sec) User (sec) Sys (sec)
1 520.9 (ref.) 517.7 2.8
2 371.7 (x1.40) 668.9 7.5
4 273.3 (x1.90) 867.4 11.6
8 230.9 (x2.26) 1275.8 21.2

Table 14 shows the results and comparison for timing of the same DepthCharge2D

0.5 second task over a physical, dockerized and virtual machine. It is found that, the

physical machine results are the best in all cases, as expected. Docker performs

4,5% better than virtual server on a single core, but 3% worse on 2-core with simple

decomposition. In most cases Docker and Virtual are no worse than 5% from the

Physical installation. In this performance comparison, simple manual decomposition

is also found to work better than scotch. However, note that the problem is domain

is uniform and symmetric and the number of cores are relatively low (2-4), therefore

not leaving scotch lots of alternatives for optimization. Effect of graph partitioning

applications such as SCOTCH and METIS [105] becomes more apparent once the

domain is geometrically more complex and the meshing structure is non-uniform
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throughout the region.

Table 14: DepthCharge2D – 0.5 second simulation results.

1 2 (Simple) 2 (Scotch) 4 (Simple) 4 (Scotch)
Time (s) Time (s) Time (s) Time (s) Time (s)

Physical Machine 522.66 359.84 373.61 269.61 283,39
Physical + Docker 524,1 126.8 0.96 15.36 18.33
Virtual Machine 548.8 383.87 391.28 274.38 282.66

About Docker AUFS vs. Volumes: Results show no major difference for CPU-

intensive workloads such as OpenFOAM, since the IO layer is not loaded / tested

significantly.

Results for DepthCharge2D - 1 second and DepthCharge 3D - 0.1 second simula-

tion results can be found in Tables 15 and 16. The performance of Dockerized HPC is

comparable to (and sometimes slightly better than) both Physical and Virtual HPC

setups. Therefore, it is concluded here that there is no significant performance differ-

ence among Physical, Virtual and Dockerized HPC choices and the real improvements

can be achieved within multi core hardware and HPC solvers and software.

In Table 15, the results for a longer simulation (DepthCharge2D - 1 second) are

presented together with the iteration counts for the solver. In general, the time it takes

to solve a 1 second simulation is less than twice the length of 0.5 second simulations

shown in Table 14. The solver seems to make optimizations by converging faster and

reducing iteration counts benefiting the overall completion time. Again, it is found

that the completion times for all alternatives to be within 5% of each other with a

few non-conclusive exceptions.

Table 16 shows the execution times for 0.1 second depthCharge3D experiment.

This complex CFD calculation requires 2.5 hours on a single core and 1 hour

on 4 cores. The performance of Dockerized HPC is comparable to (and sometimes
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Table 15: DepthCharge2D – 1 second simulation results.

1 2 (simple) 2 (scotch)
Iterations Time (s) Iterations Time (s) Iterations Time (s)

Physical Machine 5854 1021.21 5759 694.3 5642 571.5
Physical+Docker 5854 1026.24 5759 601.61 5642 594.8
Virtual Machine 5854 1059.3 5759 609.71 5642 604.65

slightly better than) both Physical and Virtual HPC setups. Therefore, the conclu-

sion reached is that there is no significant performance difference among Physical,

Virtual and Dockerized HPC choices and the real improvements can be achieved

within multi-core hardware and HPC solvers and software.

Table 16: DepthCharge 3D - 0.1 second simulation results.

1 2 (Simple) 2 (Scotch) 4 (Simple) 4 (Scotch)
Time (min:sec) Time (min:sec) Time (min:sec) Time (min:sec) Time (min:sec)

Physical Machine 146:28 79:03 82:15 58:02 61:53
Physical + Docker 147:40 83:20 92:22 56:39 62:07
Virtual Machine 151:45 80:35 86:33 52:18 60:02

4.4.0.1 Isolation Tests and Results

In Table 17, the isolation test results can be seen. Two DepthCharge2D tasks using 4-

core each over an 8-core server. In this experiment, two depthCharge2D loads (Load1

& Load2) with scotch decomposition on the same 8-core machine are executed by

using 4-cores for each load, to understand whether there are interactions among loads

and whether Docker can provide the desired isolation properties. Table 17 shows the

execution times with real, user, system breakdowns. The most important learning

from these results is that, loads can slow each other by 10-11% when executed together

over Docker, but this slowdown can mainly be attributed to the switching costs in the

kernel as seen in the 28-30% increase in the ”system” time. This observation triggers

other OS level studies for HPC, therefore the future work will include 1-changing
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priorities of jobs to observe the effectiveness of OS in differentiating them and 2-

changing the default time-sharing, fair preemptive scheduling of Ubuntu Linux into

Batch, FIFO, Round-Robin (SCHED BATCH, SCHED FIFO, SCHED RR) methods

[47]. It must also be noted here that when Load1 and Load2 where dispatched onto a

4-core machine with the option to use 4-cores each, the experiments did not complete

(i.e. experiments are terminated after 4 hours). Therefore, the container world should

also benefit from automated job schedulers, or the burden of careful workload planning

would be on the programmers’ or cluster-owners’ side.

Table 17: Isolation test results. Two DepthCharge2D tasks using 4-core each over an
8-core server.

Real (sec) User-4core (sec) Sys-4core (sec)
Load1-only 270.0 (ref.) 870.0 (Ref.) 11.5 (Ref.)

Load1 (with L1+L2) 299.3 (+%10.8) 924.6 (+%6.3) 15.0 (+%30.4)
Load2 (with L1+L2) 300.1 (+%11.1) 907.4 (+%4.3) 14.8 (+%28.7)

Finally, Docker application container performance is compared with Physical ma-

chines and VM, which are the commonly use HPCaaS infrastructure alternatives.

As the CPU-intensive benchmark, OpenFOAM computational fluid dynamics (CFD)

software is used and as for the IO-intensive benchmarks, Hadoop teragen and terasort

with different job sizes (1-40GB) and HDFS block sizes (32-64-128 MB) (Figures 32

and 33) are used.
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Figure 32: Physical Servers: Hadoop TeraGen and TeraSort benchmarks with differ-

ent data (1-40GB) and block sizes (32MB-128MB).
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Figure 33: Docker Servers: Hadoop TeraGen and TeraSort benchmarks with different

data (1-40GB) and block sizes (32MB-128MB).
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CHAPTER V

CONCLUSION AND FUTURE WORK

In this thesis, the design and implementation of a Finite Element Analysis cloud

service that can be used to solve common problems in the High Performance Technical

Computing (HPTC) field is described. For these purposes, the CPU and memory

requirements of representative structural mechanics workloads are characterized and

addressed some of the performance challenges related to concurrent job processing

are addressed. An extensive performance benchmarking over heterogeneous multi-

core, multi-node computing resources is carried out and it shown that effective job

characterization and smart scheduling via automated parameter tuning for effective

utilization of CPU and memory resources can result in significant time and throughput

improvements. The aim of the study is to simplify use of these FEA tools by a broader

community of people including SMBs and academicians without the burden of IT

management.

Additionally, to further deepen the understanding of the solver behavior, it is

found that iterative solvers with selective Krylov subspace methods such as CG and

preconditioning such as BJacobi can deliver better performance than direct solvers

for the larger-sized linear mechanical structural analysis jobs. However, in certain

niche cases direct solvers –usually smaller sized jobs- can also show better perfor-

mance. Thus, there is a need for selecting the best solver type and preconditioning

combinations in HPC-FEA cloud services for predictable performance and price. The

common belief that time and memory are exchangable in HPC (i.e. that you can

always buy time by throwing more memory at the problem) is disproven. Because,

any serious-sized computational job (> 10 million NZE) will hit the limits of OS
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memory management. In addition to aforementioned observations, it can claimed

that parallelization is only feasible for larger-sized jobs, but none of the jobs in these

test cases benefits from ≥ 32 core parallelization.

In this characterization study, it is demonstrated that in addition to the 2x− 3x

speedups gained from parallelization of FEA tasks, one can gain an additional 2x−3x

speedup by carefully setting up of solver types and preconditioner combinations. This

study therefore yields notable performance increases towards improving throughput

and minimizing job latencies for batch FEA tasks, which were discussed in section

3.1. Additionally, studies on involving condition number, as a parameter into the job

execution time prediction, have been evaluated, but gave little return compared to

utilization of Non-zero elements.

To summarize, the future work consists of extending the service into areas shown

in Figure 2 as “future extensions”, handling parallel I/O for bigger FEM files with

MPI-IO or MapReduce, more performance analyses using different job mixes, geome-

tries, materials, scheduling algorithms and fully-implementing system features such

as privacy-awareness and automated accounting into the FEA service. The knowledge

gained through detailed job characterization to design a task-aware, multi-core/multi-

node scheduling algorithm that can dynamically select necessary computation pa-

rameters, repartition the loads and submit them to the cluster in a resource-aware

manner [107] can be very critical in development of online FEA services. Using such

domain-specific smart job scheduling algorithms, it becomes possible to improve the

utilization, performance and predictability of job executions for HPC-SaaS cloud ser-

vices.

In this thesis, the performance and isolation characteristics of OpenFOAM CFD

software with Docker containers are also tested and results are compared to physical

and virtual machines in the Scaleway cloud. It is found that Dockerized HPC can be
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setup and deployed much faster than pyshical or virtual HPC alternatives and its per-

formance is comparable. While there is still some room for performance improvement

of container technologies at the OS level, the potential 5−10% savings would be neg-

ligible compared to the 10−15x improvements provided by containers in deployment

times. If scientific workflows and engineering problems requiring HPC solutions can

be quickly setup, tested and then reconfigured and retested, then IT related bottle-

necks would be removed allowing engineers to focus on solving their real scientific or

sectoral problems. Containers are found to carry this huge potential. This research

can be extended with different HPC jobs, on different public clouds, and using differ-

ent solvers and scenarios to obtain more detailed understanding of Dockerized HPC

applications in the Cloud. Additionally, experiments for comparing the performance

and isolation characteristics of Native, Dockerized, and Virtualized Cluster models

with CPU intensive HPC workloads and I/O-intensive Hadoop workloads have also

been executed and reported.

Hopefully, the proposed service will simplify and help the design and wide-scale

use of FEA and other scientific and engineering applications including heat transfer,

fluid dynamics, acoustics, and electromagnetic modeling in the future.
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Birkhäuser Basel, 2010.

[82] F. A. Alali and C.-L. Yeh, “Cloud computing: Overview and risk analysis,”
Journal of Information Systems, vol. 26, no. 2, pp. 13–33, 2012.

[83] B. Martens, M. Walterbusch, and F. Teuteberg, “Costing of cloud computing
services: A total cost of ownership approach,” in 2012 45th Hawaii International
Conference on System Sciences, pp. 1563–1572, Jan 2012.

[84] B. Smith, PETSc (Portable, Extensible Toolkit for Scientific Computation),
pp. 1530–1539. Boston, MA: Springer US, 2011.

[85] P. Amestoy, I. Duff, and J.-Y. L’Excellent, “Mumps multifrontal massively
parallel solver version 2.0,” 1998.

94



[86] V. Simoncini and D. B. Szyld, “Recent computational developments in krylov
subspace methods for linear systems,” Numerical Linear Algebra with Applica-
tions, vol. 14, no. 1, pp. 1–59.

[87] Y. Saad, Iterative Methods for Sparse Linear Systems. Philadelphia, PA, USA:
Society for Industrial and Applied Mathematics, 2nd ed., 2003.

[88] M. H. Gutknecht, “A brief introduction to krylov space methods for solving lin-
ear systems,” in Frontiers of Computational Science (Y. Kaneda, H. Kawamura,
and M. Sasai, eds.), (Berlin, Heidelberg), pp. 53–62, Springer Berlin Heidelberg,
2007.

[89] J. Chen, Y. Lee, and S. Shieh, “Revisit of two classical elasticity problems
by using the trefftz method,” Engineering Analysis with Boundary Elements,
vol. 33, no. 6, pp. 890 – 895, 2009.

[90] I. S. Duff and J. K. Reid, “The multifrontal solution of indefinite sparse sym-
metric linear,” ACM Trans. Math. Softw., vol. 9, pp. 302–325, Sept. 1983.
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