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VIBRATION ANALYSIS OF A ROTATING DOUBLE TAPERED EULER-
BERNOULLI BEAM FEATURING BENDING-BENDING-TORSION
COUPLED USING FINITE ELEMENT METHOD

SUMMARY

Beams are very common types of structural components. It is possible to classify
beams based on their geometric configuration which can be as following: uniform,
taper, thin and thick. If practically analyzed, the non-uniform beams provide a much
better distribution of strength and mass than uniform beams and may supply with
special functional requirements in aeronautics, architecture, innovative engineering,
and other robotics applications. Design of such structures is important to resist
dynamic forces, such as earthquakes and wind. It requires the basic knowledge of
mode shapes and natural frequencies of those structures. In this research work, the
equation of motion of a double tapered cantilever Euler beam is derived to find out the
natural frequencies of the structure. Finite element formulation has been done by using
principle of Hamilton. Natural frequencies and mode shapes are obtained for different
taper ratios. The effect of taper ratio on mode shapes and natural frequencies are
evaluated and compared. The variation of natural frequency at different speeds and
different hub radius is shown in tables.

There are two general types of vibration: forced and free. If we consider free vibration,
there are no externally applied forces during vibration, but an external force may have
caused an initial displacement or velocity in the system. In this thesis carry out free
vibration system. Simple EBB theory is used for the helicopter blade that is modeled as a
long, thin beam. Rotating tapered BBT beam results are not available in open literature,
the examined beam geometry is modeled in the following FEM programmes ABAQUS,
ANSYS and validation is made by using the results calculated by ABAQUS and ANSYS.
After the validation of the analytical models, finite element method is applied to these
models to get the element matrices, i.e. element stiffness and mass matrices. Based on the
number of elements used in the structural modeling code, all the element matrices are
assembled by considering the finite element rules to obtain the global matrices. The
boundary conditions (are fixed at the root and free at the end) are applied to the global
matrices to get the reduced matrices and the matrix systems of equations are obtained for
the structural models. Modal analysis is used to solve the matrix equations and the results
that are obtained by solving these matrix equations of motion are compared with the
previously validated analytical ones to check the accuracy and the correctness of finite
element formulation and a good congruence between the results is observed.

XXi






EGILME-EGILME-BURULMA ETKILESIME MARUZ KALAN IKi
EKSENDE DARALAN BiR EULER BERNOULLI KiRiSIN DOGAL
FREKANSININ SONLU ELEMANLAR YONTEMIYLE INCELENMESI

OZET

Bu yiiksek lisans tezinin amaci iki diizlemde daralan egilme-egilme-burulma
etkilesimli, aski1 durumundaki bir helikopter palinin dogal frekanslarinin daralma
oraninin degisimiyle nasil degistigini, sonlu elemenlar yontemiyle incelemektir.

Bu calismada; giris boliimii, Euler kirigin yapisal formiilasyonii, diizgiin daralan kirigin
formiilasyonu ve sonlu elemanlar formiilasyonu olmak {izere dort ana bolim yer
almaktadir.

Giris boliimiinde genel olarak kirislerden bahsedilmistir. Kirisler ¢ok yaygin yapisal
bilesen tipleridir ve geometrik konfigiirasyonlarina gore diizgiin veya daralan ve ince
veya kalin olarak siniflandirilabilirler. Euler-Bernoulli kiris teorisi veya diger adiyla
sadece kirig teorisi, diizgiin izotropik bir kirigin elastikliginin basitlestirilmis bir
ifadesidir. Bu teori ile kiriglerin yilik tasima ve ¢okme karakteristikleri hesaplanir.
Zamanla diizlem teorisi ve sonlu elemanlar analizi gibi ilave analiz araglar
gelistirilmistir fakat, basit kiris teorisi bilimin ihtiya¢ duydugu en 6nemli ara¢ olmaya
devam etmistir.

Giinlimiizde, hava araglarinin kanat yada pallerinin modal analizleri yapilirken bir cok
yontem kullanilmaktadir. Bu yontemlerden birisi, kanadin bir ucu sabit diger ucu
serbest Euler-Bernoulli kirisi olarak modellenip, dinamik 6zellikleri hakkinda bilgi
elde etmektir. Kirislerin dinamik ozellikleri, frekanslar ve mod sekilleri olarak
tanimlanir. Bu 6zellikler, yapilarin maruz kaldiklan titresimlerin ve bu titresimlere
yapilar tarafindan verilen cevaplarin incelenmesinde kullanilir. Titresim cisimlerin
sabit bir referans eksene veya nominal bir pozisyona gore tekrarlanan hareketi olarak
ifade edilir. Titresim karakteristlikleri miithendislik tasarimlari agisindan 6nemli bir
etkiye sahip olabilir. Titresim bazen zararlidir ve kagmilmalidir 6zellikle ucak
govdeleri, kanat kokleri gibi yerlerde yorulmaya neden olur ve ¢atlaklar olusturabilir,
bazen de oldukga yararlidir ve istenilir (miizik enstriimanlarinda dogal frekansa denk
getirmek i¢in yapiy1 titreterek rezonans dzelliginin kullanilmak istenmesi). iki durum
i¢in de titresimin nasil 6l¢iildiigii ve analiz edildigi mithendislik i¢in 6nemlidir. Pratik
olarak analiz edilirse, diizgiin olmayan kirisler diizgiin kirislerden daha iyi bir kiitle ve
kuvvet dagilimi saglar ve mimarlik, havacilik, robotik ve diger yenilik¢i mithendislik
uygulamalarinda 6zel fonksiyonel gereksinimleri karsilayabilir. Bahsedilen énemli
mithendislik uygulamalarinda kullanildiklari i¢in donen ve daralan kirislerin dinamik
ozellikleri, tasarim ve verim acisindan ¢ok 6nemlidir. Bu tiir yapilarin tasarimi, riizgar
ve deprem gibi dinamik kuvvetlere kars1 koymak i¢in de dikkate alinmaktadir. Bu
durum da yapilarin dogal frekanslar1 ve mod sekilleri hakkinda temel bilgileri
gerektirir.

Dinamik inceleme kapsaminda ilk olarak kiris teorileri hakkinda kisa bilgiler verilerek
kiris problemlerinde kullanilan hareket denklemlerinin gikarimlar yapilmustir. Iki
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genel titresim tiirli vardir: zorlanmis ve serbest. Serbest titresimi diisiiniiliirse, titresim
sirasinda digsaridan uygulanan hicbir kuvvet yoktur, ancak harici bir kuvvet sistemde
bir baslangi¢ yer degistirmesine veya hizina neden olmus olabilir. Bu tezdeki
caligmalar serbest titresim olarak diisiiniilmektedir. Kayma gerilmelerinin etkisinin
diistiniilmedigi, sekil degisimi 6ncesi ve sonrasi kiris kesitinin diizlemsel ve kiris eksenine
dik kaldigr Euler-Bernoulli kirig teorisi ile helikopter pali modeli calisilmistir. Bu
kirislerin serbest titresimi, iki farkli malzeme kullanilarak incelenmistir. Modellenen
paller i¢in homojen ve izotrop kabulii yapilarak ilgili hesaplamalar stirdiiriilmiistir.

Yapinin dogal frekanslarini bulmak i¢in iki eksende daralan bir Euler- Bernouli kirigi
modellenmistir. Sonlu elemanlar formiilasyonu, Hamilton’s prensibi kullanilarak elde
edilmistir. Farkli daralma oranlari i¢in dogal frekanslar ve mod sekilleri elde edilir.
Daralma oranin dogal frekanslar ve mod sekilleri tizerindeki etkisi degerlendirilerek
karsilastirilmistir. Farkli hizlarda ve daralma oranlarinda dogal frekansin degisimi
tablolarla gdsterilmistir.

Helikopter pali i¢in ince uzun bir Kiris modellenmis ve Euler-Bernoulli kiris teorisi
kullanilmustir. Sonuglar agik literatiirde mevcut bulunmamakta, incelenen kiris modeli
ABAQUS ve ANSYS gibi ticari sonlu elemanlar programinda modellenmistir ve bu
iki program tarafindan hesaplanan sonuglar kullanilarak dogrulama yapilmistir.

Analitik modellerin dogrulamas: yapildiktan sonra, yapisal formiilasyonun son bolimii
olan sonlu elemanlar modellemesine baslanmistir. Ik olarak deplasman alanlari,
polinomlar ile tanimlanmistir. Deplesman alanlarindaki noktalar egilme egilme burulma
etkilesimli, toplamda 10 serbestlik derecesine sahip olacak sekilde modellenmistir.
Tanimlanan deplasman alanlari, eleman diigiim noktalarindaki deplasman ifadeleri
cinsinden yazilarak sekil fonksiyonlar elde edilmistir. Bu sekil fonksiyonlari, daha 6nce
analitik kisimda elde edilen potansiyel ve kinetik enerji ifadelerinde kullanilarak sirasiyla
eleman katilik ve eleman kiitle matrisleri gibi eleman seviyesindeki matrislerin ¢ikarimi
yapilmistir. Eleman matrislerinin, sonlu elemanlar yontemine uygun olarak toplanmasi ile
tim yapiya ait global matrisler elde edilmistir.

Elde edilen global matris, yapisal modelleme kodunda kullanilan elemanlarin sayisina
bagli olarak, tiim elemanlar matrislerini sonlu elemanlar kurallar1 dikkate alinarak
birlestirilmistir. Bir ucu sabit, diger ucu serbest olan smir kosullar1 uygulanarak
indirgenmis matrisler elde edilmis ve global matrislere uygulanmistir. Yapisal
modeller i¢in denklem matrisleri elde edilmistir. Diizgiin, daralmayan Euler Bernoulli
kiris i¢in s+onlu elemanlar yontemi ile ¢6ziim bulmak i¢in elde edilen global matris
igin . Daralan kiris formiilasyonu, 6nceden elde edilen dénen egilme-egilme-burulma
etkilesimli kirigin katilik ve kiitle matrislerine entegre edilmistir. Hareket
denklemlerinden gelen matris denklemlerini ¢6zmek igin Matlab programi
kullanilarak modal analiz yapilmustir.

Bu tez kapsaminda simetrik olmayan egilme-egilme-burulma etkilesimli Euler
bernoulli kiris kesiti de incelenmistir ve daha Onceki yapilan c¢aligmalarla
karsilastirilmistir. Simetrik olmayan kirislerin ilk ti¢ dogal frekanasi ¢ok etkilemedigi
gbézlemlenmigtir. Daha sonrasinda yapilan calismalarda simetrik kirig olarak
tasarlanip, sonuglar bu tasarlanan kirise gore elde edilmistir. Bu matris ¢oziilerek elde
edilen sonuglarin dogrulugunu kontrol etmek i¢in 6nceden dogrulanmis analitik
degerlerle karsilastirma yapilmistir ve sonuglar arasinda ¢ok iyi bir uyum oldugu
gozlemlenmistir. Yapilan ¢alismaya ek olarak Euler Bernoulli kirisine donmeden
kaynakl1 etki verilmistir ve bunun dogal frekans {lizerine etkisi incelenmistir. Donen
kirig ve donmeyen kiris arasinda karsilastirma yapilmistir. Elde edilen degerler bir
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tablo haline getirilip farkli degerlerde daralma oranina gore grafikler ¢izdirilmistir ve
yorumlanmustir.

Sonug olarak, donen Euler kirisin dogal frekans iizerinde etkisi, donmeyen kirigin
daralma orani ve simetrik olmayan Kkiris kesiti etkisine gore daha fazla etkiye sahip
oldugu gozlemlenmistir. Bunun sebebi ise merkezka¢ kuvvetinin hizin karesiyle
artmasindan kaynaklidir. Farkli daralma oranina gére mod sekilleri c¢izilmistir.
Simetrik olmayan kiris profili i¢cin YY egilme modu disinda dogal frekansa etkisi yok
denecek kadar azdir.
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1. INTRODUCTION

Beams, have practical significance in engineering design, whose geometry and/or
material properties diversify along the length, for instance they are used to reduce
volume or weight as well as to increase stability and strength of structures. It has been
used in many engineering applications, and there are many searches on transverse
vibration of uniform beams can be found in the literature. However, if practically
analyzed, non-uniform beams can provide a better or more appropriate mass and force
distribution than uniform beams, and therefore meet specific functional requirements
in architecture, aerospace, robotics and other innovative engineering applications
countless work. Non-prismatic members are increasingly used in diversity as well as

aesthetic, economic and other issues.

The design of such structures that will withstand dynamic forces such as wind and
earthquake requires knowledge of the mode shapes of vibration and natural
frequencies. The linear free vibration of the Euler Bernoulli tapered beam on a
horizontal or vertical plane finds a wide range of application for the springs in

electrical contacts and electromechanical devices.

Up to now, many scientists have found different methods to find the mode shapes and
behavior of beams. Euler beam theory is used for tapered beam vibration analysis.
Here, the free vibration analysis is a process that defines a structure with its natural
characteristics, which are frequency and mode shapes. The change of the modal
properties directly provides an indication of the structural state based on changes in

mode patterns and the vibration frequencies.

There are many methods developed to calculate beam frequencies and mode shapes.
Due to improvements in the calculation techniques and the availability of software,
FEA is less demanding than traditional methods. Previous to development of the FEM,
there existed an approximation technique for solving DE called the Method of
Weighted Residuals (MWR). These formulations have displacements and rotations as

the primary nodal variables, to ensure the continuity necessity each node has both slope



and deflection as nodal variables. A cubic polynomial function is assumed since the
beam element has four nodal variables. The clamped free beam that is being considered
here is assumed to be homogeneous and isotropic. Beam of rectangular cross-section
area with width and depth varying linearly are taken and elemental mass and stiffness
matrices are being derived. The effects of taper ratio on the fundamental frequency
and mode shapes are shown in with comparison for clamped-free beam via graphs and

tables. After obtaining the results are compared with the available analytical solutions.

1.1 Purpose of Thesis

According to the literature review and previous sub-section, thefollowing objectives

are determined for the present thesis;

e Derivating formulation of equation of motion of linearly tapered in two plane

for rectangular cross-section EBB.
e Obtaining of HSF and the elemental mass and stiffness matrices for FEA.
e Vibration charecteristics of rotating tapered Euler-Bernoulli beam.
e Vibration charecteristics of non-rotating tapered Euler-Bernoulli beam.

e Examining of coupling effect on vibration charasteristic of EBB.



1.2 Literature Review

Ozdemir and Kaya [1] determined the free vibration analysis of a rotating tapered
EBB. The beam tapers linearly in the horizontal planes simultaneously. In this study,

non-dimensional natural frequencies are found of the tapered EBB by using DTM.

Ozgumus and Kaya [2] derivated the differential equation from the Bernoulli-Euler
equation for the natural frequencies of a tapered cantilever beam. The beam tapers
linearly in the vertical planes and in the horizontal simultaneously. The effects of

different taper ratio on the vibration frequency have been analyzed.

Mabie and Rogers [3] using the Bernoulli Euler's equations, investigated the free
vibrations of the cantilever beams. Two configurations of interest are considered in
their analysis: (a) linearly variable width and constant thickness and (b) linear variable

thickness and constant width. Graphs are drawn for each case.

Ece et al. [4] derivated the modal analysis of isotropic beam with diffirent cross-
section. The management equation is reduced to a normal differential equation in
spatial coordinate for a family of cross-sectional area geometry with increase
incrementally varying width. The beam modal analysis are obtained for three different
boundary conditions such as clamped, simply supported and connected to the free ends
by analytical method. Mode shapes and natural frequencies are calculated for different
set of boundary conditions. It shows that the unformability in the section affects mode

shapes and natural frequencies.

Bazoune & Khulief [5] derivated in this article, a beam element is obtained for modal
analysis of a rotating tapered beam with rotating inertia and shear deformations. The
finite model have involve linear tapering in horizontal and vertical planes and four
degrees of freedom. This formulation allows any combination of uneven lengths as
well as taper ratios. Clear expressions for the stiffness matrices and finite element mass
are obtained using the consistent mass approach, taking into account the effects of
centrifugal stifness. Numerical solutions are produced and the generalized eigenvalue
problem is defined for variable taper ratios and a wide range of rotational speeds. The
results are found first ten vibration modes for both hinged end and fixed conditions.
Comparisons are made with numerical results and the exact solutions available in the

literature.



Banerjee and Williams [6] used the Euler-Bernoulli theory and Bessel. Functions for
obtaining clear expressions for complete static rigidity for bending, axial and torsional
deformation of an axially loaded tapered beam. Procedures are provided to calculate
the number of critical buckling loads of a clamped clamp member overrun by any test
load, since therefore an existing algorithm can be used to find precise critical buckling

loads of structures.

Raju et al. [7] derivated the vibration analysis of the beam using a simple FEM
formulation. They applied to large amplitude vibrations for different conditions, that

iIs, simply supported tapered beams which is linearly varying depth and width tapers.

Mabie and Rogers [8] presented the free vibrations of a tapered in two planes cantilever
beam with (1) end support and (2) end mass by using the Bernoulli-Euler equation.
The Euler beam was thinned linearly in the vertical planes and horizontal planes at the
same time as the contraction ratio in the horizontal plane was equal to that in the
vertical plane. The frequency, second, third, fourth and fifth harmonic can be easily
obtained for various taper ratios. The table shows that the affect of the taper ratio on
various harmonics. For in the latter case, a table and the resulting tables show the affect
of the taper ratio and the ratio of the end mass to the beam mass on the fundamental
frequency and higher harmonics. Although presented earlier, the free-ended beam

condition is also included for comparison.

Gupta and Rao [9] studied a width and depth of linearly varying mass matrices and
stiffness matrices of a twisted beam element. It is assumed that the twist angle changes
linearly along the length of the beam. The affects of rotational inertia and shear
deformation have been considered in the derivation of the elementary matrices. The
first four mode shapes and natural frequencies have been found for cantilever beams
of various breadth and depth taper ratios at variable angles of twist. The results were

compared with those available.

Hodges [10] are investigated the stability of elastic torsion, lead-lag bending, and flap
bending of uniform, untwisted, cantilever rotor blades for hovering flight condition.
The equations of motion are obtained by simplifying the general, non-linear, partial
differential equations of motion of a rotating cantilever blade. By using strip theory
the aerodynamic forces are obtained. The accuracy of the results are type of mode

shapes and sensitive to the number of element used in the analysis.



Ozgumus and Kaya [11] studied, Timoshenko beam featuring coupling between
torsional and flapwise bending vibrations is performed on a rotating cantilever
cantilever with rectangular cross section which changes linearly in two planes.
Differential equations of motion are derivated by using Hamilton’s principle. A new
and effective mathematical method called the Differential Transform Method (DTM)
is used to find mode shapes and the natural frequencies of the taper beam. The effects
of taper ratio, rotation speed parameter and core radius parameter are examined and
given in tables and figures. Validation is completed from comparisons with studies in

the open literature and convergence of natural frequencies.

CWS To [12] presented in this article that expressions for the mass and stiffness
matrices of a tapered beam finite element model including rotary inertia and shear
deformation. The element cross-section rotation is considered to be the sum of the
displacement , shear, and transverse slope. Along the length of beam, dimesions of
cross-sectional is vary linearly. In addition, the other was used to determine the aspect
ratio over the eigenvalues of the thin walled taper beam structures. The affects of rotary

inertia and shear deformation are to reduce the eigenvalues of the structure.






2. THEORY OF EULER BERNOULLI BEAM

The EBB theory or simply beamed theory, is a simplified expression of the elasticity
of a smooth isotropic beam. With this theory the load bearing and collapse
characteristics of the beams are calculated. Over time, additional analysis tools such
as plane theory and finite element analysis have been developed, but simple beam
theory remains the most important tool of science. Especially in civil and mechanical

engineering areas.

Equation of Beam:The elasticity curve is defined for a beam that is made of long thin

one-dimensional isotropic material

o 2
[Elﬂ —w 2.1)
(3x2 6x2

This is known as the Euler-Bernoulli equation. If we consider the beam as a one-
dimensional object in the x-axis direction, the u (x) curve defines the collapse in the
beam. w is a function of x, u, and other variables. E is the modulus of elasticity and |

is the inertia modulus. Here, u = u (x), w = w (x), and El is constant, ie:

4

IR (2.2)
0 X

This equation defines the collapse of an even fixed beam and is one of the most basic

elements used in engineering applications.The meanings of the terms are:

« u collapse of the beam.

bending of beam.

4
El 88 u4 bending moment of beam.
X
a 2
-— lEIa ;‘l shear stress in the beam.
X X



This beam is defined as a one-dimensional object according to the assumptions made.
The beam must be smooth, the distributed loads must not be in the plane and torsion
should not be present. The tensile stress is defined as follows:

Mc 8

0=—=Ec— (2.3)
I 0x2

The c is in the direction of u and indicates the distance between the force in the
direction of application and the neutral axis. M is the bending moment. Considering
the cross-section of the isotropic beam, the upper part of the pull-out occurs at the top
and the compression stresses at the bottom, which are also the maximum stresses in
the beam. If the neutral axis passing through the middle is a normal axis, the tensile

and compression stress value is zero.

Boundry Conditions: The beam equation has a maximum of four boundary conditions

calculated by taking the derivative according to x. The boundary conditions generally

consist of model supports, ie loads, moments and other effects that affect their point.

Fix Free

BN
—

Figure 1: Cantilever Beam

An example of the support beam Figure 1: which is fixed so that it does not move at
all, the other end of the beam is completely free. It is understood that when it is fixed,
the bending and the collapse are zero, the bending moment and the shear force are
zero. In the case where El is constant, the left-most coordinate of x is taken as zero

and the right-most side is considered to be L (the length of the L beam).

OX

= 0 (fixed) 24)

x=0

x=0



— =0 ; —-El— =0 (free
0°X 0°x (free)

x=L x=L

The most common boundary conditions :
ou - g
U= i Oindicates that there is a fixed support.
X

2
u - . . .
u= Fx = 0 indicates pin connection. (collapse and moment is zero).
X

o’u _du . . : :
Vil v 0 indicates that there is no connection and therefore no load.
a 2
. [Elg ’2‘] =F indicates that there is a force F in the application point.
X X

Load Case:The application load can be found under boundary conditions or as a
function of w. Distributed load is often preferred for convenience. The boundary
conditions are used in determining the loads in the model and especially in the

vibration analysis.

The delta function is used as an aid when modeling point loads. For example, let's
consider a beam with a fixed support L length and the F load to the top of the free end

of it. Considering the boundary conditions, it can be state as follows:

du
ou
Uly=o =0; x X:0=0 2.7
2 3 (2.8)
0°X L 0°X L




As a function,

o*u
Bl - Fo(x—L) (2.9)
. au _
Ulyo =0 x T 0 (2.10)
o%u
~ | =0 (2.11)
0°X w

The boundary conditions (3. Derivative) of the shear stress were removed, otherwise
there would be a contradiction here. These are the same boundary value problems and
both come to the same conclusion:

F
u=——@3Lx*=x°
o1 ) (2.12)

In applications where several point loads are loaded in different regions, u (x) has an
important function. The use of this function makes the situation very simple, otherwise

the beam would have to be divided into sections with 4 different boundary conditions.

Intelligent formulation with many different loads and interesting problems caused by
these loads can be solved easily. For example, the vibrations in the beam can be
calculated using the load as a function:

o%u
0 t?

W(x,1) = —u (2.13)
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Here is the linear density of the p beam and is definitely not constant. This time-
dependent load change makes the equation a partial differential equation. Another
interesting example is that the rotational motion of the beam is defined by the constant

angular velocity:

w(u) = pw?u (2.14)

In the Euler-Bernoulli beam theory only axial unit elongation €, is used as seen in

Figure 2 and lateral unit elongations. £;, and €,3. are negligible.

Figure 2: Unit Elongations in EBB Theory

To sum up, in this beam theory, a planar section perpendicular to the axis of the beam
before displacement, after the displacement, both the plane and the vertical axis of the
reference axis it is considered to still perpendicular. This feature of the Euler-Bernoulli

beam is shown in Figure 3.

R,
|
|

()

11



(b)
Figure 3: (a) Out-of-Plane Bending Motion of the Euler-Bernoulli Beam
(b) Out-of-Plane Bending and Shear Angle due to Bending of Beam Element

2.1 Out-of-plane bending motion of a rotating, linear Euler — Bernoulli beam

For the equation of Out-of-plane bending motion of a rotating, linear Euler — Bernoulli

beam, Figure 2.8 is used for writing the necessary expressions.

oy V()
£lx,t)dx A VIt

i 'l”l I] ‘

Vix,t)

dx

Figure 4: Forces and Moments on Euler-Bernoulli Beam Element

The connection between bending moment and beam displacement is given below.

52W(X t)

M (x,t) = El (x) (2.1.1)

12



Using forces and moments in Figure 4 and if it is written moment balance relative to
A, it is accepted as counterclockwise positive direction, the following equation is

obtained.

M(x1) + MY 4 - M(xt) +
o 2.1.2)

{V(x,t) + de}dx + f (x,t)dx% -T @dx =0
X 2 X

After making the necessary adjustments, the equation is divided by dx and if limitdx — 0'is
applied, the equation (2.1.2) is reduced to the following expression.

vix =T MY
X X

(2.1.3)

If the force balance is written on the vertical axis using the forces in Figure 4 and if z the

direction is considered positive, the following equation is obtained.

(2.1.4)

V(xt)+ de—V(x,t) + f(x,t)dx = m(x)dxyw—w
X o

After making the necessary adjustments, both sides of the equation are divided by dx and

equation (2.1.4) is reduced to the following expression.

§2w(x t)

NOY) | £ (x t)dx = m(x) (2.1.5)
X
After substituting Equations (2.1.1) and (2.1.3), into the equation (2.1.5) the rotating
uniform Euler-Bernoulli beam out-of-plane bending motion equation is found by

Newton's approach as follows.

m(x)dxézvgt(x ) {EI (x )52W(x t)} 5 {T SW(x, 1)

ST }:f(x,t) (2.1.6)

13



2.1.1 Centrifugal Force Calculation

One of the important terms in the rotating beam equations is the centrifugal force. This
force is defined as the tendency of the non-flexible body rotating around any point and

leaving the axis of rotation.In this section, this force expression is extracted.

A fixed free L-length beam is seen inFigure 5, from the point of rotation of the non
flexiblerotor head with a radius r rotating at a constant angular o velocity. Beam; it
has the characteristic of homogeneous and isotropic material. By taking a beam
element dx long over this beam and this element examined inFigure 6. The balance
equations of the forces acting on this beam element are written in x direction and the

centrifugal force expression is obtained.

‘a4z
A
B
J
I
i 7 —
S — // ___________________________________________ ;
I s % __|h »
J
! - ax [
L
Figure 5: Rotating uniform cantilever beam model
__ M+dM
y

mm:zdy ‘
, A S+ds
M

j—“‘ ~ i
=k
i

- @
- -
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Figure 6: The forces and moments on the rotating beam element

The linear velocity of a beam element located at a distance from the rotating point R+x
is defined as fallow.

V=QR+x) (2.15)
The centrifugal force acting on the beam element is given below.

Fop = ™~ = mQ?(R + 2.16

CF_(R+x)_m ( x) (2.16)

For the calculation of tensile force, the equilibrium equation is written in x direction.

T +dT — T = mQ?*(R + x)dx, dT = mQ?(R + x)dx (2.17)

The integral of the expression in equation (2.17) is achieved by the following

expression of the tensile force (centrifugal force) which acts on the entire beam and
changes along the beam.

s fOL mQ?(R + x)dx

(2.18)
4 Y
* :
R
I: '
q—v: x'
0 e
' 0 '
L
-
Figure 7: Rotating beam element representation for FEM
Referring to Figure 7, the centrifugal force given by Equation (2.18) can be
expressed in the form of finite elements as follows
Fop(x) = pAQ? [R(L —Li—x)+3L—Li—x)L+L - x')] (2.19)
Where
Li(i — 1)% (2.20)

15



and n is the number of elements.

2.1.2 Energy expressions

The rotating Euler Bernoulli beam modeled as pre-twisted elastic blade featuring under

bending-bending-torsion. Figure 8, Figure 10 are used to obtain equations of motion.

Figure 8: Section View of Rotating Euler — Bernoulli Beam with Pre-Torsion
Before and After Bending-Bending-Torsional Displacements

1
1
1
1
'
1
A

1

|

|

|

1

/ 1
/ 1
T

|

I

I

I

‘1_(‘{/‘ W

3

Figure 9: Top and side view

Where @ is the pretwist angle of structural undeformed beam;w, out-of-plane bending
(flapping) displacement; v, chordwise bending (delay)displacement and ¢ are defined
as torsional displacement.
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The point referenced in Figure 8and Figure 9;Pybefore displacement, P after flapwise
bending displacement and P after chordwise bending displacement. The coordinates
of this reference point before and after displacement are respectively as follows.

Before deformation (coordinates of P, ):

X, =R+X (2.21)
y, =ncos@d—<&sin @ (2.22)
z,=nsin @+ &cosd (2.23)

After deformation (coordinates of P):

X =R+ X+U—[rsin(0+¢)+Ecos(0+g)W-[ncos(@+¢)+ Esin(@+ ) (2.24)
Y, =V +7C08(6 + ¢) — &Sin(0 + @) (2.25)
Z, = W+ &Cos(0 + @) + 1Sin(0 + ¢) (2.26)
Here, flapwise bending and the rotation angle due to chordwise, @, is small so it is
assumed that Sin@ = @ . In order to research the torsional stability, the torsion angle ¢

¢2

also Sing = ¢ but the second order terms are assumed that Cos¢ ~1— % (Hodges and

Dowell, 1974). According to this assumptions Eqgs. (2.24-2.26) can be derivated as

below;

X, = R+X+U-— {77(¢) + 5(1— ﬁj}w'—[n[l— ¢—2) + §(¢)}v‘ (2.27)

2 2
Y=V 77(1— %j ~&lg) (228)
7, =W+ 5(1— ¢—22] +71(p) (2.29)

Knowing that , and r, are the position vectors of the reference point before and after

deformation, respectively, dr, and dr,are given by

17



dr, = (dxo i + (dyo )] +(dz, )R (2.30)
dr, = (dx, )i +(dy, )j +(dz, k (2.31)
Here, i, ] and k are denotes the unit vectors in the x, y and z directions,
respectively.
The components of dr, and dr, are expressed as follows
dx, = dx (2.32)
dy, =dn (2.33)
¢2
dy, = (V' - 7¢¢’ — &4 )dx + (1— 7Jd n—¢dg (2.36)
dz, = d& (2.34)
¢ ¢’
| )1 e o s o= 15 | ) -
(2.35)
¢’ ¢’
{w’(¢)+ v'[1-?qu{v'(qﬁ)-w'[l-?j]dg
¢2
dy, = (V' - ngpg’ - §¢’)d><+(1—7)dn —gds (2.36)
¢2
dz, = (W — &g’ — ¢ )Jdx + gd 77 — [1— 7]dg (2.37)
Here ( ), denotes differentiation with respect to the position x.
dx
dr, - dF, —dr, - d, = 2[dx dz d&][s,]{dn (2.38)
dg
gxx gxn gxg
Where [gij]: Ex Epp Epe

Ex b5 Eg
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If Eqgs. between (2.32) and (2.37) are substituted into Eq. (2.38), the components of the

strain tensor &;; are found as follows

B L ) SCE

27y, =—E¢"+ngg" — UV + vV + Sv'w” (2.40)
2Y e =N+ S — UW' + SW'W" + 7w'V" (2.41)
Where, 7,:, 7,, and ¢, are the shear strains and the axial strain, respectively.

To find simpler expressions for strain components, see Equation. (2.39) - (2.41), if
higher order terms are neglected, magnitude analysis order is performed by using

scheme of ordering which is used by Hodges and Dowell (1974).

Table 1: Ordering schme for BBT coupled Euler beam formulation

Term Order
Ug O(s?)
v’ O(e)
w O(e)
¢ O(é‘)
¢ 0(?)
v O(&?)
w” O(&?)

According to the Table 1, Equation. (2.39) - (2.41) can be simplified as below

r\2 "2
& = Uy +%+%—TN"—§W" (2.42)
2V g =59’ (2.43)
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2y, =n¢’ (2.44)

In the cause of the centrifugal force . the associated axial displacement u; and uniform
strain are related to each other as follow

, F.(x
Uy =& ‘Ei) (2.45)

where the expression of the centrifugal force. F.- (X) . is given by
L
Fer () = [ pAQ? (R +X)dx (2.46)

The potential energy expression is given as follows

1 L
U= ! ( jAj Ec’o +G(r,,” +yx§2d77d§)dx (2.47)

The paremeter A is known as the cross-sectional area, G is the shear modulus and E

is the Elasticity modulus. In Table 2, the area integrals are given.

Table 2: Area integrals for energy expressions

Area Integrals

[[dnde = A [[n°dnde =1,
[[minds=ne  [[pln® +&*hnds =1,

[[r? + &2 )dmde =3 [[&rdmds =1,

The paremeter I, is the mass moment of inertia, I,, I, and I,,, are the second moment

of inertia.
1 HFCF (x)[(w) v @) } FEL () +EL (W +G (¢’)2}dx (2.48)
2 5 PA

Where El, and El, are the bending rigidities and GJ is the torsional rigidity of the

Euler beam cross-section.

The velocity expression has determined in order to obtain kinetic energy expression.
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The velocity vector of the point P by the reason of rotation of the beam is written as

follows

+ QK xF (2.49)

where
F=xi+y,]+2K (2.50)
If Eq.(2.50) is substituted into Eq.(2.49), the total velocity vector expression can
be shown by
V=(%-Qy)i +(y,+Qx)j+2k (2.51)
Taking the derivatives of Eqs.(2.27)-(2.29) with respect to substituting these

values into equation (2.51) and time, the velocity components are found as follows

V, = Uy + (5p — )W — {77(1— 2y §¢}V’ +(ndd— EP)V' -

2
(2.52)

{V =)= 549
2

Vy=V-(ng+&)g+ {R +X+U, {5(1—(']5—22) + 77¢}W’ —{77(1— ¢2)—(§¢}V}Q (2.53)

V, =W+ (- g (2.54)
This paremeter W, v, ¢ represents derivation with in regard to time, t.

The Kinetic energy equation is given by

3 =%f[ [ v,z v +vf)d77d§}1x (2.55)

After substituting Egs.(2.52)-(2.54) into Eq.(2.55) and with respect to the

definitions given by Table 2, the following kinetic energy equation is found.
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3

[t + 7 071,67 -

2pRe, [N g +Vd— (R+X)Q°H |+ (256)
2phe, W — (R+ )2 |+
201, QW + pl Q2 (V') + pl Q[ + ()2 Jlx

Eq.(2.58) reduces to its final form is given by

53 = [ oA + ) + Q2]+ 1, (dod) -

2pPe, |00 (VOp + pS1) + (V54 + goit) — (R + X)Q2 ($S' +V' 5|+

2 phe, (W + i — (R + X)Q2 (poW + W 5¢) |+ (257)
Pl & + pl O (VW + W &) + pA(VS + WEW -+ Q*VV)

Pl Q2 (V)% + pl Q2 [p5g+w ' JJdx

2.1.3 Boundry Conditions and Equation of Motions

Potential and kinetic energy expressions obtained above. Hamilton's principle is
applied to non-rotating, linear Euler-Bernoulli beam for obtaining equation of motion

and boundary conditions. Hamilton principle as follows identified.

[60U-3-w)dt=0 (2.58)

The expression W denotes the virtual work of irreversible forces.

Equation of motion :

PLON" = pAQ™ + pl , Q*W" + El V" — (Fe V') +

. (2.59)
2pAQ%, ¢+ pAQ%e, (R + X)¢' + pA(V —e,p) =0

pl Q"W + pl QN+ El W — (Fe W) —

} (2.60)
PAQ%e ¢ — pAQ%e (R + X)¢' + pA(W—e,¢) =0
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% (Feed) — PAQ® [(R +X)(eW +e,v’) — ezv] —GJg" +

(2.61)
P, Q%+ pAleW—e, V) + 1,6 =0
Boundry conditions:
At x=0,
v(0,t) =w(0,t) = ¢(0,t) =V'(0,t) =w'(0,t) (2.62)
At x=L,

PLON + ol OW + ELV" —F V' + pAQ%, (R+X)p=0  (2.63)
Pl QW + pl OV + El W' — (Fe W) — pAQ%e (R+X)p =0 (2.64)

¢ =V =W =0 (2.65)
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3. MODELING OF LINEARLY TAPERED BEAMS

3.1 Euler Bernoulli Beam Model

In this thesis, free vibration analysis and mode shapes of a rotating double tapered
Euler-Bernoulli beam that undergoes chordwise bending, flapwise bending and torsion
vibration are performed. Structural modeling of a rotating BBT coupled Euler-
Bernoulli beam is shown Figure 10.

Centroid

Center of flexure

Figure 10: Helicopter blade with asymmetric cross-section.

The Euler-Bernoulli beam is assumed 10 degree of freedom, two bending, two rotation
and one torsion at each node. At first the Euler beam analyzed without taper and then
presented how to effect of taper ratio to vibration. Here, Euler beam of length L is
shown Figure 10. The xyz axes is a global orthogonal coordinate system. In this thesis
the Euler beam is supposed to be rotating at a constant angular velocity, Q. The y-axis
lies in the plane of rotation. The e;and e, represent the offsets of the center of flexure

from the centroid in the z and y directions, in return.

The torsional vibration are not coupled with flapwise bending and chordwise bending

vibrations. In addition to this, for a monosymmetric cross-section, the centroid and the
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shear center not coincide and the bending vibration that is in the direction of the
symmetry axis is independent of the other vibrations while the bending vibration that
is perpendicular to the symmetry axis is coupled with the torsional vibration (Li et al.,
2004). Thus, for structures with asymmetric cross-section, bending vibrations, i.e.,

flapwise bending and chordwise bending, get coupled with the torsion vibration.

Differential equations of motion are obtained for a beam model that has such an
asymmetric cross-section and that undergoes coupled chordwise bending-torsion,
flapwise bending vibrations. The beam that is illustrated in Figure 11, is modeled as

an Euler-Bernoulli beam since helicopter blades are long and thin structures.

Figure 11: Euler-Bernoulli beam top view

If the main equations for the height h(x), the breadth b(x), the cross sectional area,
A(x) and the second moment of inertia, Iy(x) of a Euler beam and tapers in two

planes are as follows

bo) = bo(1- %) h() = ho(1-c,%)" 3.1)

A =4 (1- %) (1-ck)" and 1(x)= |0[1—cb Ejm(l—ch 83 3.2)

where the breadth taper ratio, c; are given by

b h
Cb:].—aand Ch:l_h_o (33)
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In terms of type of taper, the values of the constants, n and m, are shown in Figure
12. This thesis analyse rectengular cross section Euler Bernoulli beamson = 3, m =
1 values are used to beam that tapers linearly in two planes. Since the Elastisite

modulus E, the material density, o and the shear modulus G are assumed to be

constant, the mass per unit length pA, the shear rigidity kAG and the flapwise bending

rigidity El, vary according to the Egs. (3.1) and (3.2).

Shape Factors Cate-
Shape n m gory
(1) (2 (3) (4)

Wide-flange or l-section 2.1 to 2.6 | varies
- —' Constant dimensions b, 1, 1
4. Varying depth d
o

Bending about horizontal axis

Closed box section 2.1 to 2.6 | varies
Constant dimensions b, ¢,
Varying depth 4

Bending about horizontal axis

Solid, rectangular section 3 1
Constant width & N
Varying depth d
Bending about horizontal axis

.-

i

Solid, rectangular section 1 1
a Constant width b
Varying depth d
Bending about vertical axis

L

=3

Open-web section 2 0
Constant dimenslons b, I
Varying depth 4

Bending about horizontal axis

i

ol
=1

' j Tower secton 2 0
L _J Constant areas concentrated near corners
Varying dimension 4
oo )
- 3
Solid, circular section 14 2
/ Varying diameter d

5
Solid, square section 4 2 r
Varying dimension d

-

3

Figure 12: Different cross-sectional shapes of tapered beam with shape factors
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3.1.1 Formulation of governing differential equation of tapered beam

A general Euler’s Bernoulli beam is considered which is tapered linearly in horizontal

plane. The fundamental beam vibrating equation for Bernoulli-Euler is given by

02 0%y pA (0%y\

= (e122) + - (32)=0 (3.4)
The width is varying linearly given by

b = by + (by — by)(x/1) (3.9)

Similarly area and moment of inertia will be varying accordingly
Ay = h[by + (by — by)(x/D] (3.6)
L = 5 [by + (bg — by) Ge/DIR (3.7)

The beam area and moment of inertia at any cross-section are written after considering
the variation along the length to be linear. Where p is the weight density, A is the area,
and together ‘pA / g’ is the mass per unit length, E is the modulus of elasticity and ‘I’
is the moment of inertia and | is the length of the beam. Here we considered only the
free vibration, so considering the motion to be of formy(x,t) = z(x) sin(w t), SO

applying the following relation to the fundamental beam equation we get

= (182) =2 @ (38)

x2 dx?
Depending on the number of elements used in the developed structural modeling code,
the element matrices are assembled by considering the finite element rules to obtain
the global matrices. The boundary conditions of rotor blade, i.e. w (0,t)=w' =
(0,t) =@ (0,t) = 0, are applied to the global matrices to get the reduced matrix
equations of motion that are given below

[M*1{G} + [K°]{gq} = {0} (3.9)

Due to rotating beam, additional terms appear in the element matrices because of the
centrifugal force. These terms are derivated Eq.(2.19) by using FEM formulation for

obtaining the centrifugal force.
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Firstly, the modal matrix, [®] , is calculated by using the eigenvectors obtained by
solving the following determinant

|—w?[M*] + [K°]| = 0 (3.10)
The transpose of the model matrix

—w?[I] + [2] = {0} (3.12)

Here [A?] is the diagonal matrix, [1] is the identity matrix of natural frequencies.
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4. FINITE ELEMENT METHOD

Aircraft structures require computer analysis due to operation panels, support bars,
beams and it consists of thousands of structures like frames. Computer based on

specific approaches for the analysis of such structures finite element method is used.

In general, the modeling of such a structure, a small number of elements, simplified
geometric details, physical the features are as accurate as possible; but without detail
format. The results obtained by running this model, about the overall behavior of the
structure information as compared to small hand accounts an idea of whether or not an

approach data.

Figure 13: Rotor blade finite element model divided small elements

In addition to the analytical method, the finite element method is widely used in the
solution of engineering problems. Modal analysis of a beam by using FEM, natural
frequency values and mode shapes can be found. With this method, vibration problems
can be solved easily. The problem is first divided into small elements in Figure 13.

Providing the solution separately in these divided elements ease and accuracy.

The assemblage of such small elements represents the whole body. Each small
elements are solved individually then combined to obtain solution for the whole body.
With the development of computer systems, difficult vibration problems are solved
more easily and in a short time. Especially analytical solution with finite element
method based programs such as ANSYS, ABAQUS CAE, Nastran impossible
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vibration problems can be solved easily. The most used of these programs ANSYS

computerized numerical analysis program, as well as stress analysis, acoustic analysis,

as well as operations, natural frequency and mode shapes are easily it can be found.

4.1 Calculation of Shape Function

The main axis of the beam is discretized using straight two-noded 1D Euler beam finite

elements having a uniform cross-sectional shape and mass distribution within each

element.
9:1 2
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Figure 14: BBT Euler beam finite element model.

Obtaining of shape functions is  fundamental task in any finite element

implementation. Genalrelly two-dimensional beams are used for identical to matrix of

structures and their analysis using the finite element formulation. Euler-Bernoulli

beam equation assumption that the plane is normal to the neutral axis before

deformationneutral axis after deformation. Because there are four nodal variables for

the beamelement with a cubic polynomial function for v(x), is assumed as

vV =ay+ a;x + ayx?* + azx3
W =a, + a-x + a.x* + a,x3
4 5 6 7
Oy =v'=a; + a,x + azx?
0z =w'=as + agx + a,x?

D =ag+ agx

(3.9)
(3.10)
(3.11)
(3.12)

(3.13)

where 0z is the angle due to chordwise bending , v is the chorwise bending, w is the

flapwise bending, Oy is the angle due to flapwise bending, and ¢ is the torsion angle.
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Qg

VOO=[L X x 2x°] Z;

as

V(x)= [C][a]

For convenience local coordinate system is taken x; =0, x,=L that leads to

v, [ 0 0 0 0
w,| |00 0 0 1
6,/ |01 0 0 0
6, |00 0 0 0
6 1=|0 0 0 0 0
v, | 1L L2 Lo
w, [0 0 0 0 1
0, |0 1 2L 3> 0
6, |10 0 0 0 O
] |0 0 0 0 O
Where
b}

Eq. (3.14) can be writen as

O r O O O +r O o o

R O O O O O O O O

V(x) =[C]A]*{o}
Vv (x)=[N]p}

Where

Matrix of shape functions are

3x?  2x°
TRE
[NV]: 3X2 2X3

> L
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[N]=[c]A]"

M o o O O o o o o o

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)



0 1-22 2% x4 5 0
N, ] 2L L L
v 0 3x2_2x3 —x2+x_3
L2 L3 L L2
6x 6x° 4x 3x?
[N&]: 2 2
6X 6X 2X  3X
=~ 00 —+—
L L L L
2 2
N,, |=
i 6x 6x> —2x 3x2
0 —- + 0

[Nv], [ Nw], [N, ], [N,], [Ng] are the shape functions of euler bernoulli beam which

is undergoes bending bending torsion.

From shape function and energy derivation which is include taper equation the element

stiffness and mass matrices are found as follows;

1§ dN, T[dN, T [dN, ][ dN,
[K ]_-([{Fd(x)([ dx } [ dx +[ dx} [ dx

34
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el [{om 16 X 1o X v T I IV T D
|a[N¢]T[N¢]+

a1 21 T bbb T - 622

L

12610, X T I, T, T v D)o

Where [K ] is the element stiffness matrix obtained from the kinetic energy and [M€]

Is the element mass matrix obtained from the potential energy.
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5. NUMERICAL ANALYSIS

5.1 Validation of the strucural model
Nonrotating BBT beam example is solved to validate the built structural model.
Geometrical and material properties are given below in Table 3.

Table 3: Geometrical and material properties of the nonrotating bending-bending-
torsion coupled uniform beam model.

Property Value Property Value
E 213.9% 10°N /m? L 0.1524 m
L, 3496 107 ?m*  GJ 9.14m?
L 2.7928 *107°m* I, 0.502 kg m
A 58.97 m? p 7859 kg/m3
ey 0.1930x10°m e, 1.1938x10°m

Results are compared with Rao and Carnegie (1970). Carnegie and Dawson (1971) .

Table 4: Non-rotating BBT Euler Beam frequencies (Hz)

Carnegie and

Mode Present Rao and Carnegie D
awson

Uncoupled Coupled Uncoupled Coupled Uncoupled Coupled
st
ZZ 957816 96.7813  96.9 96.9 96.9 96.9
Bending
nd
2"ZZ - 6o6E) 60625 607 6065  607.3  607.3
Bending
st
LYY ge5.022 84102 869 8412 8684 8458
Bending

Torsion 1052.02  1092.37 1048.5 1072.9 1048.23  1074.02

In Table 4, the first two ZZ bending modes are not changing much by coupling effect.
Although e, value much bigger than e;, Y'Y Bending mode has a significant reducing
according to the results. In addition, the uncoupled mode is lower than the coupled
torsion mode. As a result, although coupling has an increasing effect on the torsion

modes, it has a reducing effect on the bending modes.
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After validation non-rotating BBT beam, rotating Euler-Bernoulli beam is modeled
and validate by using ABAQUS.

Table 5: Rotating BBT Euler Beam frequencies (Hz)

_ _ e, = 0.1930 « 10~3 and e; = 0and
Mode ep=0ande; =0 ™ e, =0 e, = 1.1938 * 103
50rad/sn 100rad/sn 50rad/sn 100 rad/sn 50 rad/sn 100 rad/sn

st

A 97.17 98.32 97.17 9832  97.17 98.32
Bending

nd

2 Zz 606.61  607.62 60659 60761 60661  607.62
Bending

st

=YY 86099  861.12 861 86113 84104  841.16
Bending

Torsion 1052.32 1052.42 1052.74 1052.84  1091.99 1092.09

The first four modes are given Table 5 and different coupling value and angular
velocity has been viewed. Natural frequencies are calculated with different condition
ie. Q=50rad/sn, e, =0,e, =11938+10"3 and Q= 100rad/sn, e; =
0.1930 = 1073, e, = 0. By reason of the increasing centrifugal force that makes the

beam stiffer, rotational speed has an increasing affect on the natural frequencies.
For numerical analysis a taper beam is considered with the following properties:

Table 6: Geometrical and material properties of the rotating bending-bending-torsion

coupled uniform beam model.

Property Value Property Value
E 70*10% N/m? L 3m
I, 1.172 * 10~ 5m* GJ 1.172 * 10~ >m*
1, 1.45 * 10~ °m* 1, 0.502 kg m
b 0.02848 m p 3200 kg/m3
h 0.078 m e 9.36x10°m
e, 0

Any paper that studies a rotating coupled Euler-Bernoulli beam is not present in open
literature. For these reason, Euler Bernoulli beam model is built in ABAQUS and
ANSYSS to validate the results of the present research. The the geometrical and material

properties of this beam model are presented in Table 6.
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Table 7: Free natural frequencies (Hz) of nonrotating uniform Euler Bernoulli beam.
Q=0

Mode Present ABAQUS ANSYS

6.64 6.6215 6.5458
23.31 23.21 23.745
41.55 41.172 41.107
116.1 116.17 115.72

A OwWwPN -

In Table 7, variation of the coupled natural frequencies and the results are compared
with the ones given by commercial program ABAQUS and ANSYS. Subsequent to
obtaining natural frequencies of non rotating Euler bernoulli beam, rotating Euler
bernoulli beam is examined. First four natural frequencies of rotating BBT Euler beam
are shown in Table 8 and the results are compared with Ozdemir, Phd thesis. The

results are quite similar.

Table 8: Free natural frequencies with regard to rotational speed 50 (rad/sec). Q=50

Mode Ozdemir, PhD

Present >

(H2) Thesis
(Hz)

1 10.83 10.88

2 24.04 24.87

3 46.07 46.21

4 120.6 120.87

After discretizing to 20 numbers of elements, natural frequencies of the BBT tapered

beam are calculated using MATLAB program and shown in Figure 15.

T

Figure 15: ¢j, =0.5,
¢, = 0, Tapered Euler Bernoulli Beam in ANSYS
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Table 9: ¢, =0.5,
¢, = 0, Natural Frequancy Tapered Euler Bernoulli Beam

Mode Number Present Frequency
MATLAB in ANSYS

(Hz)

1 8.01 8.03

2 25.33 25.84

3 43.76 43.86

4 117.51 118.5

In Figure 16, first four natural frequencies of BBT Euler Bernoulli Beam and mode

shapes are shown.

Frequency is 8.0185 Hz

0 05 1 15 2 25
Frequency is 25.3254 Hz

w

05 |
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05 | T T T
0 |
03 05 1 15 2 25 3
Frequency is 117.5142 Hz
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Figure 16: ¢, =0.5,
¢, = 0, Mode Shape of Tapered Euler Bernoulli Beam

Table 10: ¢, =0.8,
¢, = 0, Natural Frequancy Tapered Euler Bernoulli Beam in ANSYS

Mode Number Present Frequency
MATLAB  in ANSYS
(Hz)
1 9.9 9.68
2 28.39 27.54
3 47.41 47.436
4 105.6 105.88

Table 11: ¢, = 0.5,
¢, = 0.5, Natural Frequancy Tapered Euler Bernoulli Beam in ANSYS
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Mode Number Present Frequency
MATLAB in ANSYS

(Hz)
1 8.68 8.71
2 30.52 30.498
3 36.9 36.959
4 91.81 92.527

Different taper ratios are examined for BBT Euler beam in above tables. The analytical
results are compared with Ansys. It is seen that there is a good agreement between the
results of ANSYS and the results of the this study which proves the accuracy and
correctness of the built structural model. In below tables, the variation of the natural
frequencies of a tapered BBT Euler beam with respect to the variable taper ratio, Cb

,Ch and the rotational speed parameter, €2, are shown.
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Table 12: 1.Natural Frequancy of Non-rotating BBT Euler Bernolli Beam

Ch
Ch 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0 656 677 702 730 763 802 850 910 9.90
01| 665 687 711 739 772 812 860 921 10.01
02 | 676 698 722 750 783 823 871 932 1012
03| 689 710 735 763 79 836 884 945 10.26
04 | 703 725 749 778 811 851 899 960 1041
05| 721 742 767 795 829 868 917 9.79 10.60
06 | 742 764 783 817 850 890 939 10.01 10.83
07| 770 792 816 845 879 919 968 1030 11.12
08 | 808 830 855 884 917 958 1007 10.69 1151

As the height taper ratio and width taper ratio increase, first natural frequancy is also

increase for non-rotating BBT beam. As you can see from table, height taper ratio

and width taper ratio are almost same effective on first natural frequancy.
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Table 13: 2.Natural Frequancy of Non-rotating BBT Euler Bernolli Beam

Cp

Ch

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

23.04

23.79

24.65

25.63

26.78

28.16

29.85

31.68

30.10

23.38

24.13

24.99

25.97

27.13

28.51

30.20

31.99

30.39

23.76

2451

25.37

26.36

27.52

28.91

30.60

32.33

30.72

24.20

24.95

25.81

26.81

27.97

29.36

31.06

32.73

31.10

24.71

25.47

26.33

27.33

28.49

29.89

31.59

33.19

31.53

25.33

26.09

26.95

27.95

29.12

30.52

32.23

33.74

32.06

26.08

26.85

27.72

28.72

29.89

31.30

33.01

34.42

32.71

27.06

27.83

28.70

29.71

30.89

32.30

34.02

35.32

33.56

28.39

29.17

30.05

31.06

32.25

33.67

35.40

36.60

34.79

As the height taper ratio and width taper ratio increase, second natural frequancy is

also increase for non-rotating BBT beam. As you can see from table, height taper

ratio and width taper ratio are almost same effective on second natural frequancy.
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Table 14: 3.Natural Frequancy of Non-rotating BBT Euler Bernolli Beam

Cp

Ch

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.1

0.2

0.3

0.4

05

0.6

0.7

0.8

41.08

39.88

38.64

37.36

36.03

34.64

33.19

31.97

34.76

41.48

40.27

39.02

37.73

36.38

34.98

33.52

32.33

35.13

41.94

40.71

39.45

38.14

36.78

35.36

33.88

32.74

35.55

42.45

41.21

39.93

38.61

37.23

35.79

34.29

33.20

43.05

41.79

40.49

39.15

37.75

36.30

34.78

33.75

43.77

42.49

41.17

39.80

38.38

36.90

35.35

34.39

36.03 36.58 37.24

44.65

43.34

41.99

40.60

39.15

37.64

36.07

35.18

38.04

45.80

44.46

43.07

41.64

40.16

38.62

37.00

36.20

39.07

4741

46.02

44.60

43.12

41.59

40.00

38.33

37.58

40.45

While the height taper ratio is increasing, third natural frequancy is decreasing for

non-rotating BBT beam. As width taper ratio increase natural frequancy increase

also. As you can see from table, taper ratios have different effect on third natural

frequancy.
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Table 15: 4.Natural Frequancy of Non-rotating BBT Euler Bernolli Beam

Cp

Ch 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0 | 11488 11526 11570 116.20 116.80 117.54 116.31 111.0 105.6
0.1(110.11 11049 11092 11142 112.00 112.72 113.65 1121 106.6
0.2 [ 105.21 105.59 106.01 106.49 107.07 107.77 108.66 109.8 107.8
0.3 100.16 100.52 100.94 101.41 101.97 102.65 103.52 104.7 106.4
04| 9492 9528 9568 96.14 96.69 97.35 98.19 99.32 101.0
05| 8946 89.80 90.20 90.64 91.17 9181 92.62 93.70 95.32
06| 83.71 84.05 8443 8486 8537 8599 86.76 87.80 89.33
07| 7760 7793 7829 7871 7920 79.79 8052 8151 8296
08| 7099 7130 7165 7205 7251 73.06 73.76 74.68 76.04

While the height taper ratio and width taper ratio is increasing, fourth natural

frequancy is decreasing for non-rotating BBT beam. As you can see from table

height taper ratio is more effective on fourth natural frequancy.
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Table 16: 1.Natural Frequancy of Rotating BBT Euler Bernolli Beam (50 rad/sn)

Cp

Ch 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0 10.88 11.07 1128 1152 11.80 12.14 1255 13.09 13.80

01 | 1112 1131 1152 1176 12.05 1239 1281 13.34 14.06

0.2 | 1140 11.59 11.80 12.04 1233 12.67 13.09 13.63 14.36

03 | 11.72 1191 1212 1237 12.66 13.00 1343 1397 14.70

04 | 1210 12.29 1250 1275 13.04 13.39 1382 1436 15.10

05 | 1255 12.74 1296 1321 1351 1386 1429 1484 1558

06 | 1311 1331 1353 13.78 14.08 1443 1487 1542 16.16

0.7 | 13.82 14.02 1425 1451 1481 1517 1560 16.16 1691

08 | 1477 1498 1521 1547 15.78 16.14 1658 17.14 17.89

As the height taper ratio and width taper ratio increase, first natural frequancy is also
increase for rotating BBT beam. As you can see from table, both taper ratios are

same effective on first natural frequancy.
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Table 17: 2.Natural Frequancy of Rotating BBT Euler Bernolli Beam(50 rad/sn)

Cp

Ch

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

24.87

25.25

25.67

26.16

26.73

27.42

28.27

29.35

30.84

25.63

26.01

26.43

26.92

27.50

28.19

29.04

30.13

31.62

26.49

26.87

27.30

27.79

28.37

29.07

29.92

31.02

32.52

27.49

27.87

28.30

28.80

29.38

30.08

30.94

32.04

33.55

28.66

29.05

29.48

29.98

30.57

31.27

32.13

33.24

34.76

30.06

30.45

30.89

31.40

31.99

32.69

33.56

34.68

36.20

31.78

32.17

32.62

33.13

33.73

34.44

35.31

36.44

37.97

33.95

34.35

34.80

35.32

35.93

36.65

37.53

38.66

40.20

36.80

37.22

37.68

38.21

38.70

39.23

39.89

40.76

42.04

When the height taper ratio and width taper ratio is increasing of beam, second

natural frequancy is also increasing for rotating BBT beam. As you can see from

table width taper ratio is more effective on second natural frequancy.
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Table 18: 3.Natural Frequancy of Rotating BBT Euler Bernolli Beam(50 rad/sn)

Cp

Ch 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0 | 46.21 4516 44.08 4298 4185 40.70 39.54 38.38 37.28

0.1 | 46.61 4554 4445 4334 4220 41.04 3986 38.69 37.57

0.2 | 47.06 4598 4487 43.74 4259 4141 4022 39.03 37.89

03 | 4758 4648 4536 4421 43.04 41.84 40.63 3942 38.27

04 | 48.17 47.06 4592 4475 4356 4234 4111 39.88 38.83

0.5 | 48.89 47.75 4659 4540 44.19 4295 4169 4043 39.56

0.6 | 49.78 48.61 4742 46.21 4497 4370 4241 4112 4046

0.7 | 50.94 49.75 4852 4727 4599 4469 4336 42.04 41.60

08 | 5260 51.36 50.09 48.79 4747 46.11 4474 4336 43.14

As the height taper ratio increase of beam, third natural frequancy is decreasing for
rotating BBT beam while width taper ratio increasing fourth natural frequancy is also
increasing As you can see from table, taper ratios have different effect on third

natural frequancy.
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Table 19: 4.Natural Frequancy of Rotating BBT Euler Bernolli Beam (50 rad/sn)

Cp

Ch 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0 |120.88 116.25 11150 106.61 101.56 96.34 90.88 85.14 79.04

0.1 121.28 116.64 111.87 106.98 101.92 96.69 91.22 8547 79.34

0.2 |121.73 117.07 11230 107.39 10233 97.08 91.60 85.84 79.69

03 ]122.24 11758 112.79 107.87 102.80 97.53 92.04 86.25 80.09

04 ]12286 118.18 113.38 108.44 103.35 98.07 9255 86.74 80.55

0.5]123.61 11891 114.09 109.13 104.02 98.71 93.17 87.33 8111

0.6 | 11947 119.84 115.00 110.01 104.87 99,53 9395 88.08 8181

0.7 | 11432 11540 116.23 111.21 106.02 100.63 95.00 89.07 82.74

0.8 [108.99 110.01 111.17 11249 107.73 102.27 96.56 90.54 84.12

As the height taper ratio increase of beam, fourth natural frequancy is decreasing for
rotating BBT beam while width taper ratio increasing fourth natural frequancy is also
increasing till critical taper ratio. As you can see from table width taper ratio is more

effective on fourth natural frequancy.
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In below figures, the first fourth natural frequencies of a rotating tapered Euler-
Bernoulli beam with respect to the rotational speed parameter, Q and the variation of
taper ratios, Cb and Ch, is shown. In addition, first four figures shows that effect on
natural frequencies when Cb is constant and Ch is variable. The other four figures

shows that effect on natural frequencies when Ch is constant and Cb is variable.
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Figure 17: Variation of the first natural frequency with respect to Cb is constant, Ch

is variable and the rotational speed parameter Q.
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Figure 18: Variation of the second natural frequency with respect to Cb is constant,
Ch is variable and the rotational speed parameter Q.
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Cb is constant, Ch is variable
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Figure 19: Variation of the third natural frequency with respect to Cb is constant, Ch

is variable and the rotational speed parameter Q.
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Figure 20: Variation of the fourth natural frequency with respect to Cb is constant,
Ch is variable and the rotational speed parameter Q.
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Chis constant, Cb is variable
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Figure 21: Variation of the first natural frequency with respect to Ch is constant, Cb
is variable and the rotational speed parameter Q.
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Figure 22:Variation of the second natural frequency with respect to Ch is constant,
Cb is variable and the rotational speed parameter Q.
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Chis constant, Cb is variable
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Figure 23: Variation of the third natural frequency with respect to Ch is constant, Cb

is variable and the rotational speed parameter Q.
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Figure 24: Variation of the fourth natural frequency with respect to Ch is constant,
Cb is variable the and rotational speed parameter Q.

It is noticed that rotational speed has an increasing affect on the natural frequencies
because of the increasing centrifugal force that makes the beam stiffer. Centrifugal

force is directly commeasurable to the square of the rotational speed.






6. CONCLUSIONS AND RECOMMENDATIONS

This thesis study provides a simple procedure for obtaining stiffness and mass
matrices. Tapered Euler's Bernoulli rectangular beam recommended procedure has
been verified by pre-produced results and method. Shape functions, mass and The
stiffness matrices are calculated for the beam using the Finite Element Method. It
requires less computational effort due to the availability of the computer program.

The affects of taper ratios and the rotational speed on the natural frequencies are

investigated. The following results are presented:

e It was seen that coupling is not much effect on basic frequency. YY bending

mode frequancy is a little increasing when beam is coupled.

e At natural frequencies, the effect of rotation speed is more dominant than the
taper ratio.

e The width taper ratio has an increasing effect on the natural frequencies of both
bending and torsion.

e Mode shapes are drawn for different taper ratios.

e The height taper ratio has a increasing effect on the fundamental first two
natural frequency. Third and fourth natural frequencies decrease as the height
taper ratio increases.

e The torsional frequencies decrease as height ratio increase while its increase
up to value called the critical taper ratio then decrease as width taper ratio

increase.

Future studies in this direction will aim to implement the applying to above methods
for pre-twist and functionally graded tapered beams show results. The Bernoulli beam
gives a more practical idea about the beamvibration frequency and mode
shapes.Timoshenko beam will be use for how to effect of shear to free vibration and
element number can be increase. Mass can be put end of the taper beam and mode

analysis can be performed.
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