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VIBRATION ANALYSIS OF A ROTATING DOUBLE TAPERED EULER-

BERNOULLI BEAM FEATURING BENDİNG–BENDİNG-TORSION 

COUPLED USING FINITE ELEMENT METHOD 

 

SUMMARY 

Beams are very common types of structural components. It is possible to classify 

beams based on their geometric configuration which can be as following: uniform, 

taper, thin and  thick. If practically analyzed, the non-uniform beams provide a much 

better distribution of strength and mass than uniform beams and may supply with 

special functional requirements in aeronautics, architecture, innovative engineering, 

and other robotics applications. Design of such structures is important to resist 

dynamic forces, such as earthquakes and wind. It requires the basic knowledge of 

mode shapes and natural frequencies  of those structures. In this research work, the 

equation of motion of a double tapered cantilever Euler beam is derived to find out the 

natural frequencies of the structure. Finite element formulation has been done by using 

principle of  Hamilton. Natural frequencies and mode shapes are obtained for different 

taper ratios. The effect of taper ratio on mode shapes and natural frequencies are 

evaluated and compared. The variation of natural frequency at different speeds and 

different hub radius is shown in tables. 

There are two general types of vibration: forced and free. If we consider free vibration, 

there are no externally applied forces during vibration, but an external force may have 

caused an initial displacement or velocity in the system. In this thesis carry out free 

vibration system. Simple EBB theory is used for the helicopter blade that is modeled as a 

long, thin beam. Rotating tapered BBT beam results are not available in open literature, 

the examined beam geometry is modeled in the following FEM programmes ABAQUS, 

ANSYS and validation is made by using the results calculated by ABAQUS and ANSYS. 

After the validation of the analytical models, finite element method is applied to these 

models to get the element matrices, i.e. element stiffness and mass matrices. Based on the 

number of elements used in the structural modeling code, all the element matrices are 

assembled by considering the finite element rules to obtain the global matrices. The 

boundary conditions (are fixed at the root and free at the end) are applied to the global 

matrices to get the reduced matrices and the matrix systems of equations are obtained for 

the structural models. Modal analysis is used to solve the matrix equations and the results 

that are obtained by solving these matrix equations of motion are compared with the 

previously validated analytical ones to check the accuracy and the correctness of finite 

element formulation and a good congruence between the results is observed. 
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EGİLME-EGİLME-BURULMA ETKİLEŞİME MARUZ KALAN İKİ 

EKSENDE DARALAN BİR EULER BERNOULLI KİRİŞİN DOĞAL 

FREKANSININ SONLU ELEMANLAR YÖNTEMİYLE İNCELENMESİ 

ÖZET 

Bu yüksek lisans tezinin amacı iki düzlemde daralan egilme-egilme-burulma 

etkileşimli, askı durumundaki bir helikopter palinin doğal frekanslarının daralma 

oranının değişimiyle nasıl değiştiğini, sonlu elemenlar yöntemiyle incelemektir. 

Bu çalışmada; giriş bölümü, Euler kirişin yapısal formülasyonü, düzgün daralan kirişin 

formülasyonu ve sonlu elemanlar formülasyonu olmak üzere dört ana bölüm yer 

almaktadır. 

Giriş bölümünde genel olarak kirişlerden bahsedilmiştir. Kirişler çok yaygın yapısal 

bileşen tipleridir ve geometrik konfigürasyonlarına göre düzgün veya daralan ve ince 

veya kalın olarak sınıflandırılabilirler. Euler-Bernoulli kiriş teorisi veya diğer adıyla 

sadece kiriş teorisi, düzgün izotropik bir kirişin elastikliğinin basitleştirilmiş bir 

ifadesidir. Bu teori ile kirişlerin yük taşıma ve çökme karakteristikleri hesaplanır. 

Zamanla düzlem teorisi ve sonlu elemanlar analizi gibi ilave analiz araçları 

geliştirilmiştir fakat, basit kiriş teorisi bilimin ihtiyaç duyduğu en önemli araç olmaya 

devam etmiştir.  

Günümüzde, hava araçlarının kanat yada pallerinin modal analizleri yapılırken bir çok 

yöntem kullanılmaktadır. Bu yöntemlerden birisi, kanadın bir ucu sabit diğer ucu 

serbest Euler-Bernoulli kirişi olarak modellenip, dinamik özellikleri hakkında bilgi 

elde etmektir. Kirişlerin dinamik özellikleri, frekanslar ve mod şekilleri olarak 

tanımlanır. Bu özellikler, yapıların maruz kaldıkları titreşimlerin ve bu titreşimlere 

yapılar tarafından verilen cevapların incelenmesinde kullanılır. Titreşim cisimlerin 

sabit bir referans eksene veya nominal bir pozisyona göre tekrarlanan hareketi olarak 

ifade edilir. Titreşim karakteristlikleri mühendislik tasarımları açısından önemli bir 

etkiye sahip olabilir. Titreşim bazen zararlıdır ve kaçınılmalıdır özellikle uçak 

gövdeleri, kanat kökleri gibi yerlerde yorulmaya neden olur ve çatlaklar oluşturabilir, 

bazen de oldukça yararlıdır ve istenilir (müzik enstrümanlarında doğal frekansa denk 

getirmek için yapıyı titreterek rezonans özelliğinin kullanılmak istenmesi). İki durum 

için de titreşimin nasıl ölçüldüğü ve analiz edildiği mühendislik için önemlidir. Pratik 

olarak analiz edilirse, düzgün olmayan kirişler düzgün kirişlerden daha iyi bir kütle ve 

kuvvet dağılımı sağlar ve mimarlık, havacılık, robotik ve diğer yenilikçi mühendislik 

uygulamalarında özel fonksiyonel gereksinimleri karşılayabilir. Bahsedilen önemli 

mühendislik uygulamalarında kullanıldıkları için dönen ve daralan kirişlerin dinamik 

özellikleri, tasarım ve verim açısından çok önemlidir. Bu tür yapıların tasarımı, rüzgar 

ve deprem gibi dinamik kuvvetlere karşı koymak için de dikkate alınmaktadır. Bu 

durum da yapıların doğal frekansları ve mod şekilleri hakkında temel bilgileri 

gerektirir.  

Dinamik inceleme kapsamında ilk olarak kiriş teorileri hakkında kısa bilgiler verilerek 

kiriş problemlerinde kullanılan hareket denklemlerinin çıkarımları yapılmıştır. İki 
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genel titreşim türü vardır: zorlanmış ve serbest. Serbest titreşimi düşünülürse, titreşim 

sırasında dışarıdan uygulanan hiçbir kuvvet yoktur, ancak harici bir kuvvet sistemde 

bir başlangıç yer değiştirmesine veya hızına neden olmuş olabilir. Bu tezdeki 

çalışmalar serbest titreşim olarak düşünülmektedir. Kayma gerilmelerinin etkisinin 

düşünülmediği, şekil değişimi öncesi ve sonrası kiriş kesitinin düzlemsel ve kiriş eksenine 

dik kaldığı Euler-Bernoulli kiriş teorisi ile helikopter pali modeli çalışılmıştır. Bu 

kirişlerin serbest titreşimi, iki farklı malzeme kullanılarak incelenmiştir. Modellenen 

paller için homojen ve izotrop kabulü yapılarak ilgili hesaplamalar sürdürülmüştür. 

Yapının doğal frekanslarını bulmak için iki eksende daralan bir Euler- Bernouli kirişi 

modellenmiştir. Sonlu elemanlar formülasyonu, Hamilton’s prensibi kullanılarak elde 

edilmiştir. Farklı daralma oranları için doğal frekanslar ve mod şekilleri elde edilir. 

Daralma oranın doğal frekanslar ve mod şekilleri üzerindeki etkisi değerlendirilerek 

karşılaştırılmıştır. Farklı hızlarda ve daralma oranlarında doğal frekansın değişimi 

tablolarla gösterilmiştir. 

Helikopter pali için ince uzun bir kiriş modellenmiş ve Euler-Bernoulli kiriş teorisi 

kullanılmıştır. Sonuçlar açık literatürde mevcut bulunmamakta, incelenen kiriş modeli 

ABAQUS ve ANSYS gibi ticari sonlu elemanlar programında modellenmiştir ve bu 

iki program tarafından hesaplanan sonuçlar kullanılarak doğrulama yapılmıştır. 

Analitik modellerin doğrulaması yapıldıktan sonra, yapısal formülasyonun son bölümü 

olan sonlu elemanlar modellemesine başlanmıştır. İlk olarak deplasman alanları, 

polinomlar ile tanımlanmıştır. Deplesman alanlarındaki noktalar eğilme eğilme burulma 

etkileşimli, toplamda 10 serbestlik derecesine sahip olacak şekilde modellenmiştir. 

Tanımlanan deplasman alanları, eleman düğüm noktalarındaki deplasman ifadeleri 

cinsinden yazılarak şekil fonksiyonları elde edilmiştir.  Bu şekil fonksiyonları, daha önce 

analitik kısımda elde edilen potansiyel ve kinetik enerji ifadelerinde kullanılarak sırasıyla 

eleman katılık ve eleman kütle matrisleri gibi eleman seviyesindeki matrislerin çıkarımı 

yapılmıştır. Eleman matrislerinin, sonlu elemanlar yöntemine uygun olarak toplanması ile 

tüm yapıya ait global matrisler elde edilmiştir.  

Elde edilen global matris, yapısal modelleme kodunda kullanılan elemanların sayısına 

bağlı olarak, tüm elemanlar matrislerini sonlu elemanlar kuralları dikkate alınarak 

birleştirilmiştir. Bir ucu sabit, diğer ucu serbest olan sınır koşulları uygulanarak 

indirgenmiş matrisler elde edilmiş ve global matrislere uygulanmıştır. Yapısal 

modeller için denklem matrisleri elde edilmiştir. Düzgün, daralmayan Euler Bernoulli 

kiriş için s+onlu elemanlar yöntemi ile çözüm bulmak için elde edilen global matris 

için . Daralan kiriş formülasyonu, önceden elde edilen dönen eğilme-eğilme-burulma 

etkileşimli kirişin katılık ve kütle matrislerine entegre edilmiştir. Hareket 

denklemlerinden gelen matris denklemlerini çözmek için Matlab programı 

kullanılarak modal analiz yapılmıştır.  

Bu tez kapsamında simetrik olmayan eğilme-eğilme-burulma etkileşimli Euler 

bernoulli kiriş kesiti de incelenmiştir ve daha önceki yapılan çalışmalarla 

karşılaştırılmıştır. Simetrik olmayan kirişlerin ilk üç doğal frekanası çok etkilemediği 

gözlemlenmiştir. Daha sonrasında yapılan çalışmalarda simetrik kiriş olarak 

tasarlanıp, sonuçlar bu tasarlanan kirişe göre elde edilmiştir. Bu matris çözülerek elde 

edilen sonuçların doğruluğunu kontrol etmek için önceden doğrulanmış analitik 

değerlerle karşılaştırma yapılmıştır ve sonuçlar arasında çok iyi bir uyum olduğu 

gözlemlenmiştir. Yapılan çalışmaya  ek olarak  Euler Bernoulli kirişine dönmeden 

kaynaklı etki verilmiştir ve bunun doğal frekans üzerine etkisi incelenmiştir. Dönen 

kiriş ve dönmeyen kiriş arasında karşılaştırma yapılmıştır. Elde edilen değerler bir 
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tablo haline getirilip farklı değerlerde daralma oranına göre grafikler çizdirilmiştir ve 

yorumlanmıştır.   

Sonuç olarak, dönen Euler kirişin doğal frekans üzerinde etkisi, dönmeyen kirişin 

daralma oranı ve simetrik olmayan kiriş kesiti etkisine göre daha fazla etkiye sahip 

olduğu gözlemlenmiştir. Bunun sebebi ise merkezkaç kuvvetinin hızın karesiyle 

artmasından kaynaklıdır. Farklı daralma oranına göre mod şekilleri çizilmiştir. 

Simetrik olmayan kiriş profili için YY eğilme modu dışında doğal frekansa etkisi yok 

denecek kadar azdır. 
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1.  INTRODUCTION 

Beams, have practical significance in engineering design, whose geometry and/or 

material properties diversify along the length, for instance they are used to reduce 

volume or weight as well as to increase stability and strength of structures. It has been 

used in many engineering applications, and there are many searches on transverse 

vibration of uniform beams can be found in the literature. However, if practically 

analyzed, non-uniform beams can provide a better or more appropriate mass and force 

distribution than uniform beams, and therefore meet specific functional requirements 

in architecture, aerospace, robotics and other innovative engineering applications 

countless work. Non-prismatic members are increasingly used in diversity as well as 

aesthetic, economic and other issues. 

The design of such structures that will withstand dynamic forces such as wind and 

earthquake requires knowledge of the mode shapes of vibration and natural 

frequencies. The linear free vibration of the Euler Bernoulli tapered beam on a 

horizontal or vertical plane finds a wide range of application for the springs in 

electrical contacts and electromechanical devices. 

Up to now, many scientists have found different methods to find the mode shapes and 

behavior of beams. Euler beam theory is used for tapered  beam vibration analysis. 

Here, the free vibration analysis is a process that defines a structure with its natural 

characteristics, which are frequency and mode shapes. The change of the modal 

properties directly provides an indication of the structural state based on changes in 

mode patterns and the vibration frequencies. 

There are many methods developed to calculate beam frequencies and mode shapes. 

Due to improvements in the calculation techniques and the availability of software, 

FEA is less demanding than traditional methods. Previous to development of the FEM, 

there existed an approximation technique for solving DE called the Method of 

Weighted Residuals (MWR). These formulations have displacements and rotations as 

the primary nodal variables, to ensure the continuity necessity each node has both slope 
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and deflection as nodal variables. A cubic polynomial function is assumed since the 

beam element has four nodal variables. The clamped free beam that is being considered 

here is assumed to be homogeneous and isotropic. Beam of rectangular cross-section 

area with width and depth varying linearly are taken and elemental mass and stiffness 

matrices are being derived. The effects of taper ratio on the fundamental frequency 

and mode shapes are shown in with comparison for clamped-free beam via graphs and 

tables. After obtaining the results are compared with the available analytical solutions. 

1.1 Purpose of Thesis 

According to the literature review and previous sub-section, thefollowing objectives 

are determined for the present thesis; 

 Derivating formulation of  equation of motion of linearly tapered in two plane 

for rectangular cross-section EBB. 

 Obtaining of HSF and the elemental mass and stiffness matrices for FEA. 

 Vibration charecteristics of rotating tapered Euler-Bernoulli beam. 

 Vibration charecteristics of non-rotating tapered Euler-Bernoulli beam. 

 Examining of coupling effect on vibration charasteristic of EBB. 
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1.2 Literature Review 

Özdemir and Kaya [1] determined the free vibration analysis of a rotating tapered 

EBB. The beam tapers linearly in the horizontal planes simultaneously. In this study, 

non-dimensional natural frequencies are found of the tapered EBB by using DTM.  

Ozgumus and Kaya [2] derivated the differential equation from the Bernoulli-Euler 

equation for the natural frequencies of a tapered cantilever beam. The beam tapers 

linearly in the vertical planes and in the horizontal simultaneously. The effects of 

different taper ratio on the vibration frequency have been analyzed. 

Mabie and Rogers [3] using the Bernoulli Euler's equations, investigated the free 

vibrations of the cantilever beams. Two configurations of interest are considered in 

their analysis: (a) linearly variable width and constant thickness and (b) linear variable 

thickness and constant width. Graphs are drawn for each case. 

Ece et al. [4] derivated the modal analysis of isotropic beam with diffirent cross-

section. The management equation is reduced to a normal differential equation in 

spatial coordinate for a family of cross-sectional area geometry with increase 

incrementally varying width. The beam modal analysis are obtained for three different 

boundary conditions such as clamped, simply supported and connected to the free ends 

by analytical method. Mode shapes and natural frequencies are calculated for different 

set of boundary conditions. It shows that the unformability in the section affects mode 

shapes and natural frequencies. 

Bazoune & Khulief [5] derivated in this article, a beam element is obtained for modal 

analysis of a rotating tapered beam with rotating inertia and shear deformations. The 

finite model have involve linear tapering in horizontal and vertical planes and four 

degrees of freedom. This formulation allows  any combination of uneven lengths as 

well as taper ratios. Clear expressions for the stiffness matrices and finite element mass 

are obtained using the consistent mass approach, taking into account the effects of 

centrifugal stifness. Numerical solutions are produced and the generalized eigenvalue 

problem is defined for variable taper ratios and  a wide range of rotational speeds. The 

results are found first ten vibration modes for both hinged end and fixed conditions. 

Comparisons are made with numerical results and the exact solutions available in the 

literature. 
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Banerjee and Williams [6] used the Euler-Bernoulli theory and Bessel. Functions for 

obtaining clear expressions for complete static rigidity for bending, axial and torsional 

deformation of an axially loaded tapered beam. Procedures are provided to calculate 

the number of critical buckling loads of a clamped clamp member overrun by any test 

load, since therefore an existing algorithm can be used to find precise critical buckling 

loads of structures. 

Raju et al. [7] derivated the vibration analysis of the beam using a simple FEM 

formulation. They applied to large amplitude vibrations for different conditions, that 

is, simply supported tapered beams which is linearly varying depth and width tapers. 

Mabie and Rogers [8] presented the free vibrations of a tapered in two planes cantilever 

beam with (1) end support and (2) end mass by using the Bernoulli-Euler equation. 

The Euler beam was thinned linearly in the vertical planes and horizontal planes at the 

same time as the contraction ratio in the horizontal plane was equal to that in the 

vertical plane. The frequency, second, third, fourth and fifth harmonic can be easily 

obtained for various taper ratios. The table shows that the affect of the taper ratio on 

various harmonics. For in the latter case, a table and the resulting tables show the affect 

of the taper ratio and the ratio of the end mass to the beam mass on the fundamental 

frequency and higher harmonics. Although presented earlier, the free-ended beam 

condition is also included for comparison. 

Gupta and Rao [9] studied a width and depth of linearly varying mass matrices and 

stiffness matrices of a twisted beam element. It is assumed that the twist angle changes 

linearly along the length of the beam. The affects of rotational inertia and shear 

deformation have been considered in the derivation of the elementary matrices.The 

first four mode shapes and natural frequencies have been found for cantilever beams 

of various breadth and depth taper ratios at variable angles of twist. The results were 

compared with those available. 

Hodges [10]  are investigated  the stability of elastic torsion, lead-lag bending, and flap 

bending of uniform, untwisted, cantilever rotor blades for hovering flight condition. 

The equations of motion are obtained by simplifying the general, non-linear, partial 

differential equations of motion of a rotating cantilever blade. By using strip theory 

the aerodynamic forces are obtained. The accuracy of the results are type of mode 

shapes and sensitive to the number of element used in the analysis. 
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Ozgumus and Kaya [11] studied, Timoshenko beam featuring coupling between 

torsional and flapwise bending vibrations is performed on a rotating cantilever 

cantilever with rectangular cross section which changes linearly in two planes. 

Differential equations of motion are derivated by using Hamilton’s principle. A new 

and effective mathematical method called the Differential Transform Method (DTM) 

is used to find mode shapes and the natural frequencies of the taper beam. The effects 

of taper ratio, rotation speed parameter and core radius parameter are examined and 

given in tables and figures. Validation is completed from comparisons with studies in 

the open literature and convergence of natural frequencies. 

CWS To [12] presented in this article that expressions for the mass and stiffness 

matrices of a tapered beam finite element model including rotary inertia and shear 

deformation. The element cross-section rotation is considered to be the sum of the 

displacement , shear, and transverse slope. Along the length of beam, dimesions of 

cross-sectional is vary linearly. In addition, the other was used to determine the aspect 

ratio over the eigenvalues of the thin walled taper beam structures. The affects of rotary 

inertia and shear deformation are to reduce the eigenvalues of the structure. 
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2.  THEORY OF EULER BERNOULLI BEAM 

The EBB theory or simply beamed theory, is a simplified expression of the elasticity 

of a smooth isotropic beam. With this theory the load bearing and collapse 

characteristics of the beams are calculated. Over time, additional analysis tools such 

as plane theory and finite element analysis have been developed, but simple beam 

theory remains the most important tool of science. Especially in civil and mechanical 

engineering areas. 

Equation of Beam:The elasticity curve is defined for a beam that is made of long thin 

one-dimensional isotropic material 

                                                          


2

 𝑥2
[𝐸𝐼


2

𝑢

 𝑥2
] = 𝑤                                                        (2.1) 

This is known as the Euler-Bernoulli equation. If we consider the beam as a one-

dimensional object in the x-axis direction, the u (x) curve defines the collapse in the 

beam. w  is a function of x, u, and other variables. E is the modulus of elasticity and I 

is the inertia modulus. Here, u = u (x), w = w (x), and EI is constant, ie: 

                                                      
     

4

4

x

u
EI




 = ѡ(x)    

                                           

(2.2)                                                                                                   

 

This equation defines the collapse of an even fixed beam and is one of the most basic 

elements used in engineering applications.The meanings of the terms are: 

• u collapse of the beam. 

• 
x

u




bending of beam.  

•
4

4

x

u
EI




bending moment of beam. 

•−


 x
[𝐸𝐼


𝟐

𝒖

 𝒙𝟐
] shear stress in the beam. 
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This beam is defined as a one-dimensional object according to the assumptions made. 

The beam must be smooth, the distributed loads must not be in the plane and torsion 

should not be present. The tensile stress is defined as follows: 

 
𝜎 =

𝑀𝑐

𝐼
= 𝐸𝑐


𝟐

𝒖

 𝒙𝟐
 

 

(2.3) 

 

 

The c is in the direction of u and indicates the distance between the force in the 

direction of application and the neutral axis. M  is the bending moment. Considering 

the cross-section of the isotropic beam, the upper part of the pull-out occurs at the top 

and the compression stresses at the bottom, which are also the maximum stresses in 

the beam. If the neutral axis passing through the middle is a normal axis, the tensile 

and compression stress value is zero. 

Boundry Conditions:The beam equation has a maximum of four boundary conditions 

calculated by taking the derivative according to x. The boundary conditions generally 

consist of model supports, ie loads, moments and other effects that affect their point. 

 

 
 

Figure 1: Cantilever Beam 

An example of the support beam Figure 1: which is fixed so that it does not move at 

all, the other end of the beam is completely free. It is understood that when it is fixed, 

the bending and the collapse are zero, the bending moment and the shear force are 

zero. In the case where EI is constant, the left-most coordinate of x is taken as zero 

and the right-most side is considered to be L (the length of the L beam). 

 
0

0


x

u    ;     0
0






x
x

u
 (fixed) 

                                                                       

(2.4) 
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0

2

2






Lx
x

u
   ;    0

3

3







Lx
x

u
EI  (free) 

(2.5) 

 

The most common boundary conditions : 

• 0





x

u
u indicates that there is a fixed support. 

• 0
2

2







x

u
u indicates pin connection. (collapse and moment is zero). 

• 0
3

3

2

2











x

u

x

u
 indicates that there is no connection and therefore no load. 

•−


 x
[𝐸𝐼


𝟐

𝒖

 𝒙𝟐
] =F indicates that there is a force F in the application point. 

Load Case:The application load can be found under boundary conditions or as a 

function of w. Distributed load is often preferred for convenience. The boundary 

conditions are used in determining the loads in the model and especially in the 

vibration analysis. 

The delta function is used as an aid when modeling point loads. For example, let's 

consider a beam with a fixed support L length and the F load to the top of the free end 

of it. Considering the boundary conditions, it can be state as follows: 

 

 
0

4

4


xd

ud
EI  (2.6) 

 

 𝑢|𝑥=0 = 0 ;          0
0






x
x

u
                                                                                       (2.7) 

 
0

2

2






Lx
x

u
       F

x

u
EI

Lx









3

3

                                                                       

(2.8) 
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As a function, 

 
)(

4

4

LxF
x

u
EI

Lx








    (2.9) 

     

 

𝑢|𝑥=0 = 0      ;   0
0






x
x

u
                                                                                        (2.10) 

    

 
0

2

2






Lx
x

u
  (2.11) 

                                                                             

The boundary conditions (3. Derivative) of the shear stress were removed, otherwise 

there would be a contradiction here. These are the same boundary value problems and 

both come to the same conclusion: 

 
)3(

6

32 xLx
EI

F
u   (2.12) 

 

In applications where several point loads are loaded in different regions, u (x) has an 

important function. The use of this function makes the situation very simple, otherwise 

the beam would have to be divided into sections with 4 different boundary conditions. 

Intelligent formulation with many different loads and interesting problems caused by 

these loads can be solved easily. For example, the vibrations in the beam can be 

calculated using the load as a function: 

 

2

2

),(
t

u
txw




   (2.13) 
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Here is the linear density of the μ beam and is definitely not constant. This time-

dependent load change makes the equation a partial differential equation. Another 

interesting example is that the rotational motion of the beam is defined by the constant 

angular velocity: 

 ѡ(𝑢) = µ𝜔2𝑢                                                                                                       (2.14) 

In the Euler-Bernoulli beam theory only axial unit elongation Ɛ𝟏𝟏 is used as seen in 

Figure 2 and lateral unit elongations. Ɛ𝟏𝟐 and Ɛ𝟏𝟑. are negligible. 

 

 

 

 

 

 

 

 

Figure 2:   Unit Elongations in EBB Theory 

 

To sum up, in this beam theory, a planar section perpendicular to the axis of the beam 

before displacement, after the displacement, both the plane and the vertical axis of the 

reference axis it is considered to still perpendicular. This feature of the Euler-Bernoulli 

beam is shown in Figure 3. 

 

 

 

 

 

 

 

 

 

(a) 
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(b) 

Figure 3: (a) Out-of-Plane Bending Motion of the Euler-Bernoulli Beam 

(b) Out-of-Plane Bending and Shear Angle due to Bending of Beam Element 

2.1  Out-of-plane bending motion of a rotating, linear Euler – Bernoulli beam 

For the equation of Out-of-plane bending motion of a rotating, linear Euler – Bernoulli 

beam, Figure 2.8 is used for writing the necessary expressions. 

 

 

 

 

 

 

 

 

 

 

Figure 4: Forces and Moments on Euler-Bernoulli Beam Element 

 

The connection between bending moment and beam displacement is given below. 

 
2

2 ),(
)(),(

x

txw
xEItxM




  (2.1.1) 
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Using forces and moments in Figure 4 and  if it is written moment balance relative to 

A , it is accepted as counterclockwise positive direction, the following equation is 

obtained.  

 

0
2

),(
),(

),(

),(
),(

),(













dx
x

w
T

dx
dxtxfdxdx

x

txV
txV

txMdx
x

txM
txM













   (2.1.2) 

After making the necessary adjustments, the equation is divided by dx  and if limit 0dx is 

applied, the equation (2.1.2) is reduced to the following expression. 

 

x

txM

x

w
TtxV







 ),(
),(      (2.1.3) 

If the force balance is written on the vertical axis using the forces in Figure 4 and if z the 

direction is considered positive, the following equation is obtained. 

 
2

2 ),(
)(),(),(

),(
),(

t

txw
dxxmdxtxftxVdx

x

txV
txV








     (2.1.4) 

After making the necessary adjustments, both sides of the equation are divided by dx  and  

equation (2.1.4) is reduced to the following expression. 

 
2

2 ),(
)(),(

),(

t

txw
xmdxtxf

x

txV








     (2.1.5) 

After substituting Equations (2.1.1) and (2.1.3), into the equation (2.1.5)  the rotating 

uniform Euler-Bernoulli beam out-of-plane bending motion equation is found by 

Newton's approach as follows. 

 
),(

),(),(
)(

),(
)(

2

2

2

2

2

2

txf
x

txw
T

xx

txw
xEI

xt

txw
dxxm 






































    (2.1.6) 
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2.1.1 Centrifugal Force Calculation 

 

One of the important terms in the rotating beam equations is the centrifugal force. This 

force is defined as the tendency of the non-flexible body rotating around any point and 

leaving the axis of rotation.In this section, this force expression is extracted. 

A fixed free L-length beam is seen inFigure 5, from the point of rotation of the non 

flexiblerotor head with a radius r rotating at a constant angular ω velocity. Beam; it 

has the characteristic of homogeneous and isotropic material. By taking a beam 

element dx long over this beam and this element examined inFigure 6. The balance 

equations of the forces acting on this beam element are written in x direction and the 

centrifugal force expression is obtained.  

 

Figure 5: Rotating uniform cantilever beam model 
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Figure 6: The forces and moments on the rotating beam element 

The linear velocity of a beam element located at a distance from the rotating point R+x 

is defined as fallow.  

 𝑉 = Ω(𝑅 + 𝑥)         (2.15) 

The centrifugal force acting on the beam element is given below. 

 𝐹𝐶𝐹 =
𝑚𝑉2

(𝑅+𝑥)
= 𝑚Ω2(𝑅 + 𝑥)                                                                                   (2.16) 

For the calculation of tensile force, the equilibrium equation is written in x direction. 

 𝑇 + 𝑑𝑇 − 𝑇 = 𝑚Ω2(𝑅 + 𝑥)𝑑𝑥,   𝑑𝑇 = 𝑚Ω2(𝑅 + 𝑥)𝑑𝑥          (2.17) 

The integral of the expression in equation (2.17) is achieved by the following 

expression of the tensile force (centrifugal force) which acts on the entire beam and 

changes along the beam. 

 𝑇 = ∫ 𝑚Ω2(𝑅 + 𝑥)𝑑𝑥
𝐿

0
                                                                                             (2.18) 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Rotating beam element representation for FEM 

 

Referring to Figure 7, the centrifugal force given by Equation (2.18) can be 

expressed in the form of finite elements as follows 

 

 𝐹𝐶𝐹(𝑥) = 𝜌𝐴Ω2 [𝑅(𝐿 − 𝐿𝑖 − 𝑥′) +
1

2
(𝐿 − 𝐿𝑖 − 𝑥′)(𝐿 + 𝐿𝑖 − 𝑥′)]                       (2.19) 

 

Where  

 𝐿𝑖(𝑖 − 1)
𝐿

𝑛
                                                                                                              (2.20) 
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and n is the number of elements.  

 

2.1.2 Energy expressions 

 

The rotating Euler Bernoulli beam modeled as pre-twisted elastic blade featuring under 

bending-bending-torsion. Figure 8, Figure 10 are used to obtain equations of motion. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8:  Section View of Rotating Euler – Bernoulli Beam with Pre-Torsion 

Before and After Bending-Bending-Torsional Displacements 

 

 

 
 

Figure 9: Top and side view 

 

 

Where   is the pretwist angle of structural undeformed beam;w, out-of-plane bending 

(flapping) displacement; v, chordwise bending (delay)displacement and ϕ are defined 

as torsional displacement. 
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The point referenced in Figure 8and Figure 9;𝑃0before displacement, P after flapwise 

bending displacement and P after chordwise bending displacement. The coordinates 

of this reference point before and after displacement are respectively as follows. 

Before deformation (coordinates of ): 

 

                                                            xRxo                                                            (2.21) 

                                                             sincos oy                                         (2.22) 

                                                             cossin oz                                         (2.23)  

 

After deformation (coordinates of P ): 
 
 

          'sincos'cossin1 vwuxRx           (2.24) 

                                                      SinCosvy1
                       (2.25) 

                                                      SinCoswz1
                       (2.26)                                         

 

Here, flapwise bending and the rotation angle due to chordwise,  , is small so it is 

assumed that  Sin . In order to research the torsional stability, the torsion angle  

also  Sin but the second order terms are assumed that 

2

2
1


 Cos  (Hodges and 

Dowell, 1974). According to this assumptions Eqs. (2.24-2.26) can be derivated as 

below; 

     '
2

1'
2

1
22

1 vwuxRx 


































 





   (2.27) 

  


 









2
1

2

1 vy     (2.28) 

  


 









2
1

2

1 wz  (2.29) 

Knowing that 0r


 and 
1r


 are the position vectors of the reference point before and after 

deformation, respectively, 0rd


 and 
1rd


are given by 

 

0P
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                                                  kdzjdyidxrd


0000                                   (2.30) 

                                                                                                         

                                                  kdzjdyidxrd


1111                                     (2.31)                                                       

 

Here, i


, j


 and k


 are denotes the unit vectors in the x , y  and z  directions, 

respectively. 

The components of 0rd


 and 
1rd


 are expressed as follows 

                                                          dxdx 0                                                       (2.32) 

                                                          ddy 0                                                            (2.33) 

 
   


 dddxvdy 










2
1

2

1     (2.36) 

                                                          ddz 0                                                                  (2.34) 

       

     
2

1
2

1

2
1

2
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22

22
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














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  (2.35)                         
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Here    denotes differentiation with respect to the position x . 
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If Eqs. between (2.32) and (2.37) are substituted into Eq. (2.38), the components of the 

strain tensor ij  are found as follows 

       
    222

22

0
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1

2

)(

2
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



 wvwv

wv
uxx             (2.39) 

                              wvvvvux
   02                                (2.40) 

                             vwwwwux
   02                                 (2.41) 

Where ,  x ,  x  and xx are the shear strains and the axial strain, respectively.  

To find simpler expressions for strain components, see Equation. (2.39) - (2.41), if 

higher order terms are neglected, magnitude analysis order is performed by using 

scheme of ordering which is used by Hodges and Dowell (1974). 

Table 1: Ordering schme for BBT coupled Euler beam formulation 

 
 

Term 

 

Order 

 

0u  )( 2O  
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v   
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According to the Table 1, Equation. (2.39) - (2.41) can be simplified as below 
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                                                        
x2                                                     (2.43) 
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                                                        
x2                                                      (2.44) 

 

 

In the cause of the centrifugal force . the associated axial displacement 0u  and uniform 

strain  are related to each other as follow  
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u CF )(

00                                                        (2.45) 

 

where the expression of the centrifugal force. )(xFCF . is given by  

                                                   dxxRAxF

L

x

CF )()( 2                                    (2.46) 

The potential energy expression is given as follows 
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The paremeter A is known as the cross-sectional area, G  is the shear modulus and E 

is the Elasticity modulus. In Table 2, the area integrals are given. 

Table 2: Area integrals for energy expressions 

Area Integrals 
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The paremeter 𝐼𝑎 is the mass moment of inertia, 𝐼𝑧 , 𝐼𝑦 and 𝐼𝑦𝑧 are the second moment 

of inertia. 
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Where yEI  and 
zEI are the bending rigidities and GJ is the torsional rigidity of the 

Euler beam cross-section. 

The velocity expression has determined in order to obtain kinetic energy expression. 
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The velocity vector of the point P  by the reason of rotation of the beam is written as 

follows  

                                                     rk
t

r
V







  

 

 
                                             (2.49) 

where  

                                                    kzjyixr


111                         (2.50) 

If  Eq.(2.50) is substituted into Eq.(2.49), the total velocity vector expression can 

be shown by 
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Taking the derivatives of Eqs.(2.27)-(2.29) with respect to substituting these 

values into equation (2.51) and time, the velocity components are found as follows 
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                                                        wVz                                              (2.54)                                                                                   

This paremeter w , v ,   represents derivation with in regard to time, t. 

The kinetic energy equation is given by 
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After substituting Eqs.(2.52)-(2.54) into Eq.(2.55) and with respect to the 

definitions given by Table 2, the following kinetic energy equation is found.  
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Eq.(2.58) reduces to its final form is given by 
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2.1.3 Boundry Conditions and Equation of Motions 

 

Potential and kinetic energy expressions obtained above. Hamilton's principle is 

applied to non-rotating, linear Euler-Bernoulli beam for obtaining equation of motion 

and boundary conditions. Hamilton principle as follows identified. 
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The expression W denotes the virtual work of irreversible forces.  

Equation of motion : 
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Boundry conditions: 

 

At x=0,  
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3.  MODELING OF LINEARLY TAPERED BEAMS 

3.1 Euler Bernoulli Beam Model 

In this thesis, free vibration analysis and mode shapes of a rotating double tapered 

Euler-Bernoulli beam that undergoes chordwise bending, flapwise bending and torsion 

vibration are performed. Structural modeling of a rotating BBT coupled Euler-

Bernoulli beam is shown Figure 10. 

 

Figure 10: Helicopter blade with asymmetric cross-section. 

 

The Euler-Bernoulli beam is assumed 10 degree of freedom, two bending, two rotation 

and one torsion at each node. At first the Euler beam analyzed without taper and then 

presented how to effect of taper ratio to vibration. Here, Euler beam of length L is 

shown Figure 10. The xyz axes is a global orthogonal coordinate system. In this thesis 

the Euler beam is supposed to be rotating at a constant angular velocity, Ω. The y-axis 

lies in the plane of  rotation. The 𝑒1and 𝑒2 represent the offsets of the center of flexure 

from the centroid in the z and y directions, in return. 

The torsional vibration are not coupled with flapwise bending and chordwise bending 

vibrations. In addition to this, for a monosymmetric cross-section, the centroid and the 
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shear center not coincide and the bending vibration that is in the direction of the 

symmetry axis is independent of the other vibrations while the bending vibration that 

is perpendicular to the symmetry axis is coupled with the torsional vibration (Li et al., 

2004). Thus, for structures with asymmetric cross-section, bending vibrations, i.e., 

flapwise bending and chordwise bending, get coupled with the torsion vibration. 

Differential equations of motion are obtained for a beam model that has such an 

asymmetric cross-section and that undergoes coupled chordwise bending-torsion, 

flapwise bending vibrations. The beam that is illustrated in Figure 11, is modeled as 

an  Euler-Bernoulli beam since helicopter blades are long and thin structures. 

 

Figure 11: Euler-Bernoulli beam top view 

 

 

 

If the main equations for the height  xh , the breadth  xb , the cross sectional area,

 xA  and the second moment of inertia,  xI y  of a Euler beam and  tapers in two 

planes are as follows 

                                      𝑏(𝑥) = 𝑏0 (1 − 𝑐𝑏
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where the breadth taper ratio, 𝑐𝑏 are given by  

                                       𝑐𝑏 = 1 −
𝑏

𝑏0
 and  𝑐ℎ = 1 −

ℎ

ℎ0
              (3.3) 
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In terms of type of taper, the values of the constants, n  and m , are shown in Figure 

12. This thesis analyse rectengular cross section Euler Bernoulli beam so 𝑛 = 3, 𝑚 =

1 values are used to beam that tapers linearly in two planes. Since the Elastisite  

modulus E , the material density,   and the shear modulus G are assumed to be 

constant, the mass per unit length A , the shear rigidity kAG  and the flapwise bending 

rigidity yEI  vary according to the Eqs. (3.1) and (3.2). 

 

Figure 12: Different cross-sectional shapes of tapered beam with shape factors 
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3.1.1 Formulation of governing differential equation of tapered beam 

A general Euler’s Bernoulli beam is considered which is tapered linearly in  horizontal 

plane. The fundamental beam vibrating equation for Bernoulli-Euler is given by 

                                            
∂2

∂𝑥2 (𝐸𝐼
∂2𝑦

∂𝑥2) +
𝜌𝐴

𝑔
(

∂2𝑦

∂𝑡2 ) = 0                                      (3.4) 

The width is varying linearly given by 

                                              𝑏 = 𝑏1 + (𝑏0 − 𝑏1)(𝑥 𝑙⁄ )                                          (3.5) 

Similarly area and moment of inertia will be varying accordingly 

                                              𝐴𝑥  = ℎ[𝑏1 + (𝑏0 − 𝑏1)(𝑥 𝑙⁄ )]                                  (3.6) 

                                                   𝐼𝑥 =
1

12
[𝑏1 + (𝑏0 − 𝑏1)(𝑥 𝑙⁄ )]ℎ3

                                  (3.7) 

The beam area and moment of inertia at any cross-section are written after considering 

the variation along the length to be linear. Where ρ is the weight density, A is the area, 

and together ‘𝜌𝐴 / 𝑔’ is the mass per unit length, E is the modulus of elasticity and ‘I’ 

is the moment of inertia and l is the length of the beam. Here we considered only the 

free vibration, so considering the motion to be of form𝑦(𝑥, 𝑡) = 𝑧(𝑥) 𝑠𝑖𝑛(𝜔 𝑡), so 

applying the following relation to the fundamental beam equation we get 

                                                
∂2

∂𝑥2
(𝐸𝐼

∂2𝑦

∂𝑥2
) =

𝜌𝐴

𝑔
(𝜔2𝑧)                                            (3.8) 

Depending on the number of elements used in the developed structural modeling code, 

the element matrices are assembled by considering the finite element rules to obtain 

the global matrices. The boundary conditions of rotor blade, i.e. 𝑤 (0, 𝑡)= 𝑤′ =

(0, 𝑡) = 𝛷 (0, 𝑡) = 0, are applied to the global matrices to get the reduced matrix 

equations of motion that are given below 

                                                    [𝑀𝑠]{𝑞̈} + [𝐾𝑠]{𝑞} = {0}                                    (3.9) 

Due to rotating beam, additional terms appear in the element matrices because of the 

centrifugal force. These terms are derivated Eq.(2.19) by using FEM formulation for 

obtaining the centrifugal force. 
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Firstly, the modal matrix, , is calculated by using the eigenvectors obtained by 

solving the following determinant 

                                            |−𝜔2[𝑀𝑠] + [𝐾𝑠]| = 0                                              (3.10) 

The transpose of the model matrix 

                                             −𝜔2[𝐼] + [𝜆2] = {0}                                                  (3.11) 

Here [𝜆2]is the diagonal matrix, [I]is the identity matrix of natural frequencies. 
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4.  FINITE ELEMENT METHOD 

Aircraft structures require computer analysis due to operation panels, support bars, 

beams and it consists of thousands of structures like frames. Computer based on 

specific approaches for the analysis of such structures finite element method is used. 

In general, the modeling of such a structure, a small number of elements, simplified 

geometric details, physical the features are as accurate as possible; but without detail 

format. The results obtained by running this model, about the overall behavior of the 

structure information as compared to small hand accounts an idea of whether or not an 

approach data. 

 

 

 

 

 

 

 

 

Figure 13: Rotor blade finite element model divided small elements 

 

In addition to the analytical method, the finite element method is widely used in the 

solution of engineering problems. Modal analysis of a beam by using FEM, natural 

frequency values and mode shapes can be found. With this method, vibration problems 

can be solved easily. The problem is first divided into small elements in Figure 13. 

Providing the solution separately in these divided elements ease and accuracy. 

The assemblage of such small elements represents the whole body. Each small 

elements are solved individually then combined to obtain solution for the whole body. 

With the development of computer systems, difficult vibration problems are solved 

more easily and in a short time. Especially analytical solution with finite element 

method based programs such as ANSYS, ABAQUS CAE, Nastran impossible 
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vibration problems can be solved easily. The most used of these programs ANSYS 

computerized numerical analysis program, as well as stress analysis, acoustic analysis, 

as well as operations, natural frequency and mode shapes are easily it can be found. 

4.1 Calculation of Shape Function 

The main axis of the beam is discretized using straight two-noded 1D Euler beam finite 

elements having a uniform cross-sectional shape and mass distribution within each 

element. 

 

Figure 14: BBT Euler beam finite element model. 

 

Obtaining of shape functions is  fundamental task in any finite element 

implementation. Genalrelly two-dimensional beams are used for identical to matrix of 

structures and their analysis using the finite element formulation. Euler-Bernoulli 

beam equation assumption that the plane is normal to the neutral axis before 

deformationneutral axis after deformation. Because there are four nodal variables for 

the beamelement with a cubic polynomial function for ν(x), is assumed as 

                                      ν   =𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3                                         (3.9) 

                                       w  =𝑎4 + 𝑎5𝑥 + 𝑎6𝑥2 + 𝑎7𝑥3                                       (3.10) 

y𝜈′=𝑎1 + 𝑎2𝑥 + 𝑎3𝑥2                                            (3.11) 

z    = 𝑤′=𝑎5 + 𝑎6𝑥 + 𝑎7𝑥2                                        (3.12) 

                                           Φ   =𝑎8 + 𝑎9𝑥                                                            (3.13) 

where zis the angle due to chordwise bending , ν is the chorwise bending, w is the 

flapwise bending, yis the angle due to flapwise bending, and is the torsion angle. 
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                                             V(x)=[1  x  𝑥 2𝑥3][

𝑎0

𝑎1

𝑎2

𝑎3

]                                             (3.14) 

                                                        V(x)= [C][𝛼]                                                  (3.15)  

For convenience local coordinate system is taken 𝑥1=0, 𝑥2=L that leads to 
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Where  

                                                              aAb                                                           (3.17) 

                                                                bAa
1

                                                (3.18) 

Eq. (3.14) can be writen as   

                                                               bACxV
1

)(


                                                    (3.19) 

                                                             bNxV )(                                               (3.20) 

Where      

                                                                    1
 ACN                                             (3.21) 

Matrix of shape functions are 
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 [Nv], [ Nw], [N𝜃𝑦], [N𝜃𝑧], [Nϕ] are the shape functions of euler bernoulli beam which 

is undergoes bending bending torsion. 

From shape function and energy derivation which is include taper equation the element 

stiffness and mass matrices are found as follows; 
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Where [𝐾𝑒] is the element stiffness matrix obtained from the kinetic energy and [𝑀𝑒] 

is the element mass matrix obtained from the potential energy. 
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5.  NUMERICAL ANALYSIS 

5.1 Validation of the strucural model 

Nonrotating BBT beam example is solved to validate the built structural model. 

Geometrical and material properties are given below in Table 3 . 

Table 3: Geometrical and material properties of the nonrotating bending-bending-

torsion coupled uniform beam model. 

Property Value  Property Value  

E 213.9∗ 109𝑁/𝑚2 L 0.1524 m 

𝐼𝑦 34.96 ∗ 10−12𝑚4 GJ 9.14𝑚2 

𝐼𝑧 2.7928 ∗ 10−9𝑚4 𝐼𝑎 0.502 kg m 

A 58.97 𝑚2 𝜌 7859 𝑘𝑔 𝑚3⁄  

𝑒1 m3101930.0   𝑒2 m3101938.1   

 

Results are compared with Rao and Carnegie (1970). Carnegie and Dawson (1971) .  

 

 

Table 4: Non-rotating BBT Euler Beam frequencies (Hz) 

  
 

Rao and Carnegie 

 

Carnegie and 

Dawson 
Mode Present 

 Uncoupled Coupled Uncoupled Coupled Uncoupled Coupled 

1st ZZ 

Bending 
96.7816 96.7813 96.9 96.9 96.9 96.9 

2nd ZZ 

Bending 
606.52 606.25 607 606.5 607.3 607.3 

1st YY 

Bending 
865.022 841.02 869 841.2 868.4 845.8 

Torsion 1052.02 1092.37 1048.5 1072.9 1048.23 1074.02 

 

In Table 4, the first two ZZ bending modes are not changing much by coupling effect. 

Although 𝑒2 value much bigger than 𝑒1,  YY Bending mode has a significant reducing 

according to the results. In addition, the uncoupled mode is lower than the coupled 

torsion mode. As a result, although coupling has an increasing effect on the torsion 

modes, it has a reducing effect on the bending modes.  
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After validation non-rotating BBT beam, rotating Euler-Bernoulli beam is modeled 

and validate by using ABAQUS. 

Table 5: Rotating BBT Euler Beam frequencies (Hz) 

   
𝑒1 = 0.1930 ∗ 10−3 and  

 𝑒2 = 0 

 
𝑒1 = 0 and  

 𝑒2 = 1.1938 ∗ 10−3 
Mode 𝑒1 = 0 and 𝑒2 = 0 

 50 rad/sn 100 rad/sn 50 rad/sn 100 rad/sn 50 rad/sn 100 rad/sn 

1st ZZ 

Bending 
97.17 98.32 97.17 98.32 97.17 98.32 

2nd ZZ 

Bending 
606.61 607.62 606.59 607.61 606.61 607.62 

1st YY 

Bending 
860.99 861.12 861 861.13 841.04 841.16 

Torsion 1052.32 1052.42 1052.74 1052.84 1091.99 1092.09 

 

The first four modes are given Table 5 and different coupling value and angular 

velocity has been viewed. Natural frequencies are calculated with different condition 

i.e. Ω = 50 𝑟𝑎𝑑/𝑠𝑛, 𝑒1 = 0, 𝑒2 = 1.1938 ∗ 10−3 and Ω = 100 𝑟𝑎𝑑/𝑠𝑛,  𝑒1 =

0.1930 ∗ 10−3, 𝑒2 = 0. By reason of the increasing centrifugal force that makes the 

beam stiffer, rotational speed has an increasing affect on the natural frequencies.  

For numerical analysis a taper beam is considered with the following properties: 

Table 6: Geometrical and material properties of the rotating bending-bending-torsion 

coupled uniform beam model. 

Property Value  Property Value  

E 70*109 N/m2 L 3 m 

𝐼𝑦 1.172 ∗ 10−5𝑚4 GJ 1.172 ∗ 10−5𝑚4 

𝐼𝑧 1.45 ∗ 10−9𝑚4 𝐼𝑎 0.502 kg m 

b 0.02848 m 𝜌 3200 𝑘𝑔 𝑚3⁄  

h 0.078 m 𝑒1 m31036.9   

𝑒2 0   

 

Any paper that studies a rotating coupled Euler-Bernoulli beam is not present in open 

literature. For these reason, Euler Bernoulli beam model is built in ABAQUS and 

ANSYS to validate the results of the present research. The the geometrical and material 

properties of this beam model are presented in Table 6. 

 



39 

Table 7: Free natural frequencies (Hz) of nonrotating uniform Euler Bernoulli beam. 

Ω=0 

 

Mode Present 

 

ABAQUS 

 

 

ANSYS 

  

1 6.64 6.6215 6.5458 

2 23.31 23.21 23.745 

3 41.55 41.172 41.107 

4 116.1 116.17 115.72 

 

In Table 7, variation of the coupled natural frequencies and the results are compared 

with the ones given by commercial program ABAQUS and ANSYS. Subsequent to 

obtaining natural frequencies of non rotating Euler bernoulli beam, rotating Euler 

bernoulli beam is examined. First four natural frequencies of rotating BBT Euler beam 

are shown in Table 8 and the results are compared with Özdemir, Phd thesis. The 

results are quite similar. 

Table 8: Free natural frequencies with regard to rotational speed 50 (rad/sec). Ω=50 

 

Present 

(Hz) 

 

Özdemir, PhD 

Thesis 

(Hz) 

 

Mode 

1 10.83 10.88 

2 24.04 24.87 

3 46.07 46.21 

4 120.6 120.87 

 

After discretizing to 20 numbers of elements, natural frequencies of the BBT tapered 

beam are calculated using MATLAB program and shown in Figure 15. 

 

Figure 15:  𝒄𝒃 =0.5,  
 𝒄𝒉 = 𝟎, Tapered Euler Bernoulli Beam in ANSYS 
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Table 9:  𝒄𝒃 = 0.5,  

 𝒄𝒉 = 𝟎, Natural Frequancy Tapered Euler Bernoulli Beam 

Mode Number Present 

MATLAB 

Frequency 

in ANSYS 

(Hz) 

1 8.01 8.03 

2 25.33 25.84 

3 43.76 43.86 

4 117.51 118.5 

 

In Figure 16, first four natural frequencies of BBT Euler Bernoulli Beam and mode 

shapes are shown. 

 

 

 

 

 

 

 

 

Figure 16:  𝒄𝒃 =0.5,  
 𝒄𝒉 = 𝟎, Mode Shape of Tapered Euler Bernoulli Beam 

 

Table 10:  𝒄𝒃 =0.8,  
 𝒄𝒉 = 𝟎, Natural Frequancy Tapered Euler Bernoulli Beam in ANSYS 

Mode Number Present 

MATLAB 

Frequency 

in ANSYS 

(Hz) 

1 9.9 9.68 

2 28.39 27.54 

3 47.41 47.436 

4 105.6 105.88 

 

Table 11: 𝒄𝒃 = 0.5,  
 𝒄𝒉 = 𝟎. 𝟓, Natural Frequancy Tapered Euler Bernoulli Beam in ANSYS 
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Mode Number Present 

MATLAB 

Frequency 

in ANSYS 

(Hz) 

1 8.68 8.71 

2 30.52 30.498 

3 36.9 36.959 

4 91.81 92.527 

 

Different taper ratios are examined for BBT Euler beam in above tables. The analytical 

results are compared with Ansys. It is seen that there is a good agreement between the 

results of ANSYS and the results of the this study which proves the accuracy and 

correctness of the built structural model. In below tables, the variation of the natural 

frequencies of a tapered BBT Euler beam with respect to the variable taper ratio, Cb 

,Ch and the rotational speed parameter, Ω, are shown. 
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Table 12: 1.Natural Frequancy of Non-rotating BBT Euler Bernolli Beam 

 

     

 𝑐𝑏 

    

𝑐ℎ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

0                             6.56 6.77 7.02 7.30 7.63 8.02 8.50 9.10 9.90 

0.1 6.65 6.87 7.11 7.39 7.72 8.12 8.60 9.21 10.01 

0.2 6.76 6.98 7.22 7.50 7.83 8.23 8.71 9.32 10.12 

0.3 6.89 7.10 7.35 7.63 7.96 8.36 8.84 9.45 10.26 

0.4 7.03 7.25 7.49 7.78 8.11 8.51 8.99 9.60 10.41 

0.5 7.21 7.42 7.67 7.95 8.29 8.68 9.17 9.79 10.60 

0.6 7.42 7.64 7.88 8.17 8.50 8.90 9.39 10.01 10.83 

0.7 7.70 7.92 8.16 8.45 8.79 9.19 9.68 10.30 11.12 

0.8 8.08 8.30 8.55 8.84 9.17 9.58 10.07 10.69 11.51 

 

As the height taper ratio and width taper ratio increase, first natural frequancy is also 

increase for non-rotating BBT beam. As you can see from table, height taper ratio 

and width taper ratio are almost same effective on first natural frequancy. 
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Table 13: 2.Natural Frequancy of Non-rotating BBT Euler Bernolli Beam 

        𝑐𝑏     

𝑐ℎ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

0 23.04 23.38 23.76 24.20 24.71 25.33 26.08 27.06 28.39 

0.1 23.79 24.13 24.51 24.95 25.47 26.09 26.85 27.83 29.17 

0.2 24.65 24.99 25.37 25.81 26.33 26.95 27.72 28.70 30.05 

0.3 25.63 25.97 26.36 26.81 27.33 27.95 28.72 29.71 31.06 

0.4 26.78 27.13 27.52 27.97 28.49 29.12 29.89 30.89 32.25 

0.5 28.16 28.51 28.91 29.36 29.89 30.52 31.30 32.30 33.67 

0.6 29.85 30.20 30.60 31.06 31.59 32.23 33.01 34.02 35.40 

0.7 31.68 31.99 32.33 32.73 33.19 33.74 34.42 35.32 36.60 

0.8 30.10 30.39 30.72 31.10 31.53 32.06 32.71 33.56 34.79 

 

As the height taper ratio and width taper ratio increase, second natural frequancy is 

also increase for non-rotating BBT beam. As you can see from table, height taper 

ratio and width taper ratio are almost same effective on second natural frequancy. 
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Table 14: 3.Natural Frequancy of Non-rotating BBT Euler Bernolli Beam 

        𝑐𝑏     

𝑐ℎ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

0 41.08 41.48 41.94 42.45 43.05 43.77 44.65 45.80 47.41 

0.1 39.88 40.27 40.71 41.21 41.79 42.49 43.34 44.46 46.02 

0.2 38.64 39.02 39.45 39.93 40.49 41.17 41.99 43.07 44.60 

0.3 37.36 37.73 38.14 38.61 39.15 39.80 40.60 41.64 43.12 

0.4 36.03 36.38 36.78 37.23 37.75 38.38 39.15 40.16 41.59 

0.5 34.64 34.98 35.36 35.79 36.30 36.90 37.64 38.62 40.00 

0.6 33.19 33.52 33.88 34.29 34.78 35.35 36.07 37.00 38.33 

0.7 31.97 32.33 32.74 33.20 33.75 34.39 35.18 36.20 37.58 

0.8 34.76 35.13 35.55 36.03 36.58 37.24 38.04 39.07 40.45 

 

While the height taper ratio is increasing, third natural frequancy is decreasing for 

non-rotating BBT beam. As width taper ratio increase natural frequancy increase 

also. As you can see from table, taper ratios have different effect on third natural 

frequancy. 
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Table 15: 4.Natural Frequancy of Non-rotating BBT Euler Bernolli Beam 

        𝑐𝑏     

𝑐ℎ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

0 114.88 115.26 115.70 116.20 116.80 117.54 116.31 111.0 105.6 

0.1 110.11 110.49 110.92 111.42 112.00 112.72 113.65 112.1 106.6 

0.2 105.21 105.59 106.01 106.49 107.07 107.77 108.66 109.8 107.8 

0.3 100.16 100.52 100.94 101.41 101.97 102.65 103.52 104.7 106.4 

0.4 94.92 95.28 95.68 96.14 96.69 97.35 98.19 99.32 101.0 

0.5 89.46 89.80 90.20 90.64 91.17 91.81 92.62 93.70 95.32 

0.6 83.71 84.05 84.43 84.86 85.37 85.99 86.76 87.80 89.33 

0.7 77.60 77.93 78.29 78.71 79.20 79.79 80.52 81.51 82.96 

0.8 70.99 71.30 71.65 72.05 72.51 73.06 73.76 74.68 76.04 

 

While the height taper ratio and width taper ratio is increasing, fourth natural 

frequancy is decreasing for non-rotating BBT beam. As you can see from table 

height taper ratio is more effective on fourth natural frequancy. 
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Table 16: 1.Natural Frequancy of Rotating BBT Euler Bernolli Beam (50 rad/sn) 

 
     

 𝑐𝑏 

    

𝑐ℎ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

0                             10.88 11.07 11.28 11.52 11.80 12.14 12.55 13.09 13.80 

0.1 11.12 11.31 11.52 11.76 12.05 12.39 12.81 13.34 14.06 

0.2 11.40 11.59 11.80 12.04 12.33 12.67 13.09 13.63 14.36 

0.3 11.72 11.91 12.12 12.37 12.66 13.00 13.43 13.97 14.70 

0.4 12.10 12.29 12.50 12.75 13.04 13.39 13.82 14.36 15.10 

0.5 12.55 12.74 12.96 13.21 13.51 13.86 14.29 14.84 15.58 

0.6 13.11 13.31 13.53 13.78 14.08 14.43 14.87 15.42 16.16 

0.7 13.82 14.02 14.25 14.51 14.81 15.17 15.60 16.16 16.91 

0.8 14.77 14.98 15.21 15.47 15.78 16.14 16.58 17.14 17.89 

 

As the height taper ratio and width taper ratio increase, first natural frequancy is also 

increase for rotating BBT beam. As you can see from table, both taper ratios are 

same effective on first natural frequancy. 
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Table 17: 2.Natural Frequancy of Rotating BBT Euler Bernolli Beam(50 rad/sn) 

        𝑐𝑏     

𝑐ℎ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

0 24.87 25.63 26.49 27.49 28.66 30.06 31.78 33.95 36.80 

0.1 25.25 26.01 26.87 27.87 29.05 30.45 32.17 34.35 37.22 

0.2 25.67 26.43 27.30 28.30 29.48 30.89 32.62 34.80 37.68 

0.3 26.16 26.92 27.79 28.80 29.98 31.40 33.13 35.32 38.21 

0.4 26.73 27.50 28.37 29.38 30.57 31.99 33.73 35.93 38.70 

0.5 27.42 28.19 29.07 30.08 31.27 32.69 34.44 36.65 39.23 

0.6 28.27 29.04 29.92 30.94 32.13 33.56 35.31 37.53 39.89 

0.7 29.35 30.13 31.02 32.04 33.24 34.68 36.44 38.66 40.76 

0.8 30.84 31.62 32.52 33.55 34.76 36.20 37.97 40.20 42.04 

 

When the height taper ratio and width taper ratio is increasing of beam, second 

natural frequancy is also increasing for rotating BBT beam. As you can see from 

table width taper ratio is more effective on second natural frequancy. 
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Table 18: 3.Natural Frequancy of Rotating BBT Euler Bernolli Beam(50 rad/sn) 

        𝑐𝑏     

𝑐ℎ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

0 46.21 45.16 44.08 42.98 41.85 40.70 39.54 38.38 37.28 

0.1 46.61 45.54 44.45 43.34 42.20 41.04 39.86 38.69 37.57 

0.2 47.06 45.98 44.87 43.74 42.59 41.41 40.22 39.03 37.89 

0.3 47.58 46.48 45.36 44.21 43.04 41.84 40.63 39.42 38.27 

0.4 48.17 47.06 45.92 44.75 43.56 42.34 41.11 39.88 38.83 

0.5 48.89 47.75 46.59 45.40 44.19 42.95 41.69 40.43 39.56 

0.6 49.78 48.61 47.42 46.21 44.97 43.70 42.41 41.12 40.46 

0.7 50.94 49.75 48.52 47.27 45.99 44.69 43.36 42.04 41.60 

0.8 52.60 51.36 50.09 48.79 47.47 46.11 44.74 43.36 43.14 

 

As the height taper ratio increase of beam, third natural frequancy is decreasing for 

rotating BBT beam while width taper ratio increasing fourth natural frequancy is also 

increasing As you can see from table, taper ratios have different effect on third 

natural frequancy. 
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Table 19: 4.Natural Frequancy of Rotating BBT Euler Bernolli Beam (50 rad/sn) 

        𝑐𝑏     

𝑐ℎ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

0 120.88 116.25 111.50 106.61 101.56 96.34 90.88 85.14 79.04 

0.1 121.28 116.64 111.87 106.98 101.92 96.69 91.22 85.47 79.34 

0.2 121.73 117.07 112.30 107.39 102.33 97.08 91.60 85.84 79.69 

0.3 122.24 117.58 112.79 107.87 102.80 97.53 92.04 86.25 80.09 

0.4 122.86 118.18 113.38 108.44 103.35 98.07 92.55 86.74 80.55 

0.5 123.61 118.91 114.09 109.13 104.02 98.71 93.17 87.33 81.11 

0.6 119.47 119.84 115.00 110.01 104.87 99.53 93.95 88.08 81.81 

0.7 114.32 115.40 116.23 111.21 106.02 100.63 95.00 89.07 82.74 

0.8 108.99 110.01 111.17 112.49 107.73 102.27 96.56 90.54 84.12 

 

As the height taper ratio increase of beam, fourth natural frequancy is decreasing for 

rotating BBT beam while width taper ratio increasing fourth natural frequancy is also 

increasing till critical taper ratio. As you can see from table width taper ratio is more 

effective on fourth natural frequancy. 
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In below figures, the first fourth natural frequencies of a rotating tapered Euler-

Bernoulli beam with respect to the rotational speed parameter, Ω and the variation of 

taper ratios, Cb and Ch,  is shown. In addition, first four figures shows that effect on 

natural frequencies when Cb is constant and Ch is variable. The other four figures 

shows that effect on natural frequencies when Ch is constant and Cb is variable. 

 

Figure 17: Variation of the first natural frequency with respect to Cb is constant, Ch 

is variable and the rotational speed parameter Ω. 

 

Figure 18: Variation of the second natural frequency with respect to Cb is constant, 

Ch is variable and the rotational speed parameter Ω. 
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Figure 19: Variation of the third natural frequency with respect to Cb is constant, Ch 

is variable and the rotational speed parameter Ω. 

 

Figure 20: Variation of the fourth natural frequency with respect to Cb is constant, 

Ch is variable and the rotational speed parameter Ω. 
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Figure 21: Variation of the first natural frequency with respect to Ch is constant, Cb 

is variable and the rotational speed parameter Ω. 

 

 

 

Figure 22:Variation of the second natural frequency with respect to Ch is constant, 

Cb is variable and the rotational speed parameter Ω. 
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Figure 23: Variation of the third natural frequency with respect to Ch is constant, Cb 

is variable and the rotational speed parameter Ω. 

 

 

Figure 24: Variation of the fourth natural frequency with respect to Ch is constant, 

Cb is variable the and rotational speed parameter Ω. 

 

It is noticed that rotational speed has an increasing affect on the natural frequencies 

because of the increasing centrifugal force that makes the beam stiffer. Centrifugal 

force is directly commeasurable to the square of the rotational speed.  
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6.  CONCLUSIONS AND RECOMMENDATIONS 

This thesis study provides a simple procedure for obtaining stiffness and mass 

matrices. Tapered Euler's Bernoulli rectangular beam recommended procedure has 

been verified by pre-produced results and method. Shape functions, mass and The 

stiffness matrices are calculated for the beam using the Finite Element Method. It 

requires less computational effort due to the availability of the computer program.  

The affects of taper ratios and the rotational speed on the natural frequencies are 

investigated. The following results are presented: 

 It was seen that coupling is not much effect on basic frequency. YY bending 

mode frequancy is a little increasing when beam is coupled. 

 At natural frequencies, the effect of rotation speed is more dominant than the 

taper ratio. 

 The width taper ratio has an increasing effect on the natural frequencies of both 

bending and torsion. 

 Mode shapes are drawn for different taper ratios.  

 The height taper ratio has a increasing effect on the fundamental first two 

natural frequency. Third and fourth natural frequencies decrease as the height 

taper ratio increases. 

 The torsional frequencies decrease as height ratio increase while its increase 

up to value called the critical taper ratio then decrease as width taper ratio 

increase. 

 

Future studies in this direction will aim to implement the applying to above methods 

for pre-twist and functionally graded tapered beams show results. The Bernoulli beam 

gives a more practical idea about the beamvibration frequency and mode 

shapes.Timoshenko beam will be use for how to effect of shear to free vibration and 

element number can be increase. Mass can be put end of  the taper beam and mode 

analysis can be performed. 
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