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ABSTRACT

NON-REALIZABILITY OF BRAID GROUPS BY DIFFEOMORPHISMS

Ugurlu, Nalan Sena
M.S., Department of Mathematics

Supervisor: Prof. Dr. Mustafa Korkmaz

August 2023, 48| pages

The mapping class group Mod(3,) is the group of isotopy classes of orientation pre-
serving diffeomorphisms of >J;,. The realization problem asks if a given subgroup
' — Mod(%,,z) lifts to Diff " (3,, z) where 3, is a closed orientable surface, and
Mod(X,, z) is the mapping class group of ¥, with n marked points. Morita’s non-
lifting theorem gives a negative answer to the realization problem for infinite sub-
groups of the mapping class group Mod(X,). In this thesis, we focus on two different
proofs of this theorem one due to Bestvina, Church and Souto [21]], and the other due
to Salter and Tshishiku [22]. For this purpose, in the first proof, we will consider the
case that I" is an arbitrary finite index subgroup of the mapping class group directly
[21]], and we will consider the result with different numbers of marked points of >,
as well. In the second proof, we will consider the case that I' is a braid group, i.e.,

I' = B, [22], then use this to prove Morita’s result.

Keywords: Mapping Class Groups, Braid Groups, Orientation Preserving Diffeomor-

phisms, Morita’s Non-lifting Theorem
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ORGU GRUPLARININ DIFEOMORFIZMALARLA GOSTERILMEMESI

Ugurlu, Nalan Sena
Yiiksek Lisans, Matematik Bolumii

Tez Yoneticisi: Prof. Dr. Mustafa Korkmaz

Agustos 2023 , 8] sayfa

Gonderim siif grubu Mod(3,), ¥, nin yon koruyan difeomorfizmalarmin izotopi
siniflarinin grubudur. Gosterim problemi, verilen bir I' < Mod(X,, z) alt grubunun
Diff " (3,,z)’a yiikselip yiikselmedigini sorar, burada 3, kapali, yonledirilebilir bir
ylizey ve Mod(X,z), 3, nin n isaretli noktali génderim sinif grubudur. Morita’nin
yiikseltilmeme teoremi, gonderim sinif gruplarinin sonsuz altgurplari i¢in gosterim
problemine olumsuz bir cevap verir. Bu tezde, bu teoremin biri Bestvina, Church
ve Souto [21]’ya ve digeri Salter ve Tshishiku [22]’ya ait olan iki farkli kanitina
odaklaniyoruz. Bu amagla, ilk kanitta direkt olarak I’nin gonderim simif grubunun
rastgele bir sonlu indeksli alt grubu oldugu durumu ele alacagiz [21] ve ayrica farklh
sayida isaretli nokta ile elde edilen sonucu inceleyecegiz. ikinci kanitta, I'nin bir
orgii grubu oldugu durumu ele alacagiz, yani I' = B,, [22], ardindan bunu Morita’nin

sonucunu kanitlamak icin kullanacagiz.

Anahtar Kelimeler: Gonderim Simif Gruplari, Orgii Gruplari, Oryantasyon Koruyan

Difeomorfizmalar, Morita’nin Yiikseltilmeme Teoremi
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Problem Definition

For an orientable surface X,, the mapping class group Mod(3,) is the group of
orientation-preserving diffeomorphisms of X, up to isomorphism, and Mod(X,, z)
is the mapping class group of X, with n marked points where z is the set of marked
points. The realization problem asks if a subgroup I' < Mod(%,, z) lifts to the
set Diff*(3,, z) of orientation preserving diffeomorphisms fixing the set z or the set
Homeo™ (3,) of orientation preserving homeomorphisms, and this problem has been

answered for the cases of different types of the group I'.

Nielsen realization problem asks that for a finite subgroup I' of Mod(X,), does I lift
to Diff *(2,) or Homeo™ (%), and it is answered affirmatively by Kerckhoff [12]. In
this article, Kerckhoff showed that a finite subgroup I' < Mod(Eg) does not lift to
Diff +(Eg) using foliations for the orientable case (i.e., the case that X, is orientable),
and he mentioned the non-orientable case as well. Before him, Kravetz [4] claimed
to prove the same thing, but his proof was using the statement that the Teichmiiller
space has negative curvature. However, Masur showed that this statement was false

(see [8]] and [[11]).

In his paper [[13]], Morita stated that we can ask the same question for infinite sub-
groups of the mapping class group as well, and showed that the answer for Diff " (3,)
was negative where ¥, is of genus g > 18. Later, in his article [16], Morita showed
that g > 5 is enough to get the same answer instead of 18. Markovic showed in his
paper [17] that for ¥, a closed surface of genus g > 5, Mod(X,) cannot be realized
by Homeo™ (3,). In this paper, he also stated that the result holds for g > 2 indeed.
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He said that the way he used to prove the case g > 5 can be generalized to g > 2, but

the case g = 2 needs a different technique than he used.

1.2 Contributions and Novelties

In this thesis, we try to understand two different proofs of Morita’s result for g >
5 due to [21]], [22]]. The first proof uses the Euler numbers to show a finite index
subgroup I' < Mod(X,, z) does not lift to the set G(X,, z) of orientation preserving
homeomorphisms fixing the point z € >, which are differentiable at »z with its inverse
is also differentiable at z, and then generalizes this result [21]]. Before introducing the
second proof, we need to know the braid groups. A braid group is the group of isotopy
classes of braids. This group was first defined by Emil Artin [2]. The second proof we
are going to consider uses the non-realizability of braid groups by diffeomorphisms
and then shows that Mod(3,) does not lift to Diff (3, for ¥, is a closed orientable

surface of genus g > 2 [22].

1.3 The Outline of the Thesis

In Chapter[2] we give some basic definitions and properties of needed objects such as

indicable groups, one-parameter subgroups, braid and mapping class groups.

Chapter [3] consists of two main sections both of which are dedicated to a particu-
lar proof of Morita’s non-lifting theorem. In each section, we will see the needed

theorems and prove some of them, and then get Morita’s result.

In Subsection [3.1.3] we see a proof of Morita’s non-lifting theorem by using Propo-
sition 46 which says a finite index subrgoup of 71 (3, z) does not lift to G(%,, z) for
g > 2. To prove this, we use Milnor-Wood Inequality 43] B2] and the existence of a
diffeomorphism 7 (in Lemma[49)) and Lemma [51]

In Subsection[3.2.2] we prove the same theorem by means of braid groups and Remark
which is about the action of B,,_; on the points of B,, non-indicability of B,
for n > 5, Thurston Stability Theorem and Lemma which says that every

2



homomorphism f : B, — GL(R) has abelian image for n > 5. To prove this
lemma, we use One Parameter Subgroups [2.1.4.1]






CHAPTER 2

PRELIMINARIES

2.1 Algebra

A group G is said to be perfect if it is equal to its commutator subgroup, namely
G =[G,q].

Let H be a subgroup of a group G.
e The index [G : H| of H in G is defined as the number of left (or, equivalently
right) cosets of H.

e H is said to be of finite index if the index of H in G is finite.

We will use the following definition to give an example in Section [2.1.1{only.

Let X = {x1,...,7,} be aset. Define X ' as {z;',... 2;'}. A finite sequence of
elements of X U X! is called a word. If the sequence has no elements, then we call
it the empty word. By cancelling the elements of the form z - (z~!) from any word,

we get a group. Then the group G is called a free group with generating set X.

2.1.1 Indicable and Non-indicable Groups

Definition 1. Ler G be a group. If there is a surjective homomorphism from H to 7.
for every non-trivial finitely generated subgroup H < G, this group is called locally

indicable.

As an example of locally indicable group, consider the free group Fi,; generated

5



by two elements a,b. Any non-trivial subgroup of F,) is a free group, and any
free group can be surjected onto Z homomorphically (for example, one can take the
homomorphism sending a generator to 1 and the other generators to 0). This means,
there is a surjective homomorphism from any non-trivial finitely generated subgroup

of Fy,py to Z which makes F{, ;) locally indicable.

For other two examples, consider the groups Q, R with respect to usual addition.
Their non-trivial finitely generated subgroups are abelian and any element of these
groups are of infinite order. Recall the fundamental theorem of finitely generated
abelian groups which says that every finitely generated abelian group is isomorphic
to a direct sum of Z" and a torsion subgroup. Since the elements of an arbitrary
non-trivial finitely generated subgroup H of Q or R are of infinite order, H should
be isomorphic to Z" for some n € N, and therefore it can be surjected into Z ho-
momorphically. Since H is arbitrary, this reasoning holds for any non-trivial finitely

generated subgroup, and so @, R are locally indicable.

Definition 2. A group G is called strongly non-indicable if it has a non-trivial finitely

generated perfect subgroup.

Remark 3. Note that if a group G is strongly non-indicable, then it is locally non-
indicable. Because a strongly non-indicable group G has a non-trivial finitely gener-
ated subgroup H which is perfect. Remember the fact that for an arbitrary group
K and a normal subgroup N < G, the quotient K/N is abelian if and only if
N D [K, K]. Therefore, to have a homomorphism ¢ from H to an abelian group,
we need to have ker(¢p) O [H, H| = H which gives the image of ¢ trivial. So ¢
cannot be surjective, and GG cannot be locally indicable.

If a group G has a torsion element, then it has a non-trivial finitely generated sub-
group which does not surject to Z, so that G is locally non-indicable. In particular, if

G has a non-trivial finite subgroup, then it is locally non-indicable.

To get an example of a strongly non-indicable group, consider the symmetric group
Sz on Z. The alternating group As on {1,2,3,4,5} is a non-trivial subgroup of Sz,
which is finitely generated (because it is finite). Since any element of Aj; can be
written as a product of commutators in Aj, it is perfect. So, Sy is strongly non-

indicable.



We will see in Proposition @ ii) that B,, is strongly non-indicable for n > 5 (see
2.1.3).

Remark 4. Assume G is not a locally indicable group, and H be a subgroup of G
such that there is no surjective homomorphism from H to 7. This means there is no
surjection from H/[H, H| to Z. Let N be a normal subgroup of G with H N\ N # H
which means there is an element h € H with h ¢ N. Then, N 2 [HN, HN]|
which implies that there is no surjective homomorphism from HN/N to Z. Since
HN/N < G/N, G/N is not locally indicable as well.

The same reasoning applies to strongly non-indicable groups also.

2.1.2 Mapping Class Groups

Dehn gave a generating set for the mapping class groups and introduced the Dehn
twists. Nielsen worked on the classification of mapping class groups, later his work

was improved by Thurston.

Definition 5. For a manifold Y., the group of isotopy classes of the orientation pre-
serving homeomorphisms of Y is called the mapping class group of X. This group is
denoted by Mod(Y).

In the special case that the manifold Y. is smooth, the above definition becomes the
following:

The mapping class group Mod(X) is mo(Homeo™ (X)) which is isomorphic to
mo(DiffH (X)) [19].

Definition 6. Let 3. be a surface and z C Y. be the set of marked points of X (i.e., let

the elements of z be distinguished).
o The set Mod(X, z) is defined as the set of mapping classes of the surface ¥
which sends an element z € z to an element z of the same set z.

e The subgroup of Mod(X) consisting of the mapping classes fixing each z € z
is called the pure mapping class group, denoted by PMod (%, z).

We could equivalently define the pure mapping class group as
PMod(%, z):=Diff (2, z) /Diff’ (2, z)

7



where Diff’ (X, z) denotes the normal subgroup of Diff* (X, z) whose elements

are isotopic to identity via an isotopy which fixes the set z.

Theorem 7. (Birman Exact Sequence [|19]) For a surface 3. whose Euler character-
istic x(X) < 0 (see Section with a marked point z, the following sequence is

exact:

1 — m (3, 2) = Mod(%, 2) = PMod(%, z) — Mod(X) — 1.

2.1.2.1 Some Mapping Classes

The first example of mapping classes that we will see in this subsection is a Dehn

twist. There are two approaches to Dehn twists, but they are actually the same.

Definition 8. Let T : S' x [0,1] — S x [0, 1] be defined as T(0,t) = (6 — 27t t).
Let > be an oriented surface, and o« C . be a simple closed curve with a regular
neighborhood N. For an orientation preserving map ¢ : S' x [0,1] — N, the
homeomorphism T, : ¥ — X defined as T,(x) = ¢ o T o ¢~ 1(x) for x € N and
To(z) =z forx € ¥\ N is called a (right) Dehn Twist about cv.

Fact 9. The isotopy class of T, does not depend on the neighborhood N or the isotopy
class of the curve o Therefore, this class is an element of Mod(X).

We will refer to the class of T, as Dehn twist as well and denote it by T,, again.

Let us introduce the second approach.

Definition 10. Let 3. be an orientable surface, and o« C 3 be a simple closed curve.
Cut the surface X along . This results in two boundary components on %.. Twist a
neighborhood of one of these components to the right by 2w radians, then glue along
the curve a. This process gives a homeomorphism which is called a Dehn Twist about

Q.

As in Fact 9] the isotopy class of « does not affect the isotopy class of T, and the

notation will be the same as explained there.

8



Figure 2.1: How the Dehn twist 7}, acts on a curve b

Another element of the mapping class group is the class of a hyperelliptic involution.
We will need this concept for the proof of Theorem [65] Let 3, be a genus-g surface.
Let r be a reflection of a regular (4g + 2)—gon through its center. Then, r is a

hyperelliptic involution, and the isotopy class of r is an element of Mod(3,) [19].

2.1.3 Braid Groups

Although it is first defined by Artin, the concept of a braid appears in older mathe-
matical works as well. For example, Gauss used it while studying knots [[18]], and

Hurwitz used the concept implicitly in his paper [1] in 1891 .

Unlike Artin who defined a braid group as a collection of strands, Hurwitz considered
a braid group as the fundamental group of a configuration space, and his understand-
ing of braid groups was forgotten till it was reused by Neuwirth, Fadell and Fox in

the articles [|5]] and [|6] in 1962.

We are going to state both definitions here, but we will use the second definition.
First, we shall start with the definition introduced by Artin in 1925. This is the first

rigorous definition for braid groups.
Definition 11. Let p1, po, . . ., p,, be n distinct points inD?, and f; : [0,1] — D?x[0, 1]
be paths such that f;([0, 1]) are pairwise disjoint fori € {1,2,...,n}, andleto € S,
be a permutation. If

o fi(t) e D* x {t}

e fi(0) = pi x {0}

e fi(1) = pog x {1},



then the maps f; are called strands, and the collection (f1, fa, ..., fn) of the strands

is called a braid.

The product of two braids (f1 (), f2(t), ..., fu(t)), (g1(t), g2(t), ..., gn(t)) is defined

as

f:(2t) 0<t<5
(fl(t)me(t)? B 7fn(t)) ' (gl<t)792(t)7 cee 7gn(t)> = 3
Joy(2t—1) L1 <t<1
see Figure 2.2
g1 92 93 i o f3

// \\ \)

Figure 2.2: The product (hy, ha, hg) of braids ( f1, fo, f3) and (g1, g2, g3)

Finally, we can define braid groups.
Definition 12. The group of isotopy classes of braids with the binary operation de-
fined above is called the braid group on n strands which is denoted by B,,.
Let us continue with the second definition. Here, we need to know what a configura-
tion space is.
Definition 13. Let X be a topological space. The set

{(x1,29,...,2,) € X" : x; # x; whenever i # j}

is called the (n™) configuration space of X, and it is denoted by Conf,,(X).

By means of this, we can introduce the surface braid groups.

Definition 14. For a surface %, the fundamental group B, (X):=m(Conf, (X)) is
called a surface braid group. In the special case that . = D? B, (X)) is denoted by
B,.

10



A specific type of surface braid group gives us the alternative definition that we were

looking for.

Remark 15. [19] Let z = {z1,2,...,2,} be marked points of D*. Then, B, =
Mod(D?, z).

Remark 16. Let z; = {z1, 29, . . ., 2;} denote the set of the marked points of D?.
(i) Since B,,_1 acts on first n — 1 points (namely, B,,_, acts on the set z,,_1), it stabi-

lizes the n™ point in B,, (in other words, B,,_, fixes the set z,, \ Z,,_1) (see Definition
[74).

(ii) By (i), By, stabilizes the (n+1)" point in B, 1. The inclusion  from (D?, z,) to the
sphere S? stabilizes the same point, and 1 gives an inclusion B, 1(D?) < B, 1(S?).
Thus, we have an inclusion B, — B, 1(S?) which stabilizes the (n + 1) point in
B, 1(5?).

2.1.3.1 Braid Relations

The braid group B, is generated by the elements o; € 7;(Conf,(ID?)) that change
the places of the i and the (i + 1)* points counter-clockwise, and fix the remaining

points where ¢ € {1,2,...,n — 1} (see Figure[2.3).

Figure 2.3: The strand generator o; of B,,

There are some relations between these o;, called the braid relations:

® 0;0;410; = 0;410;0;41 fori € {1, 2, e, — 2}

® 0,0; = 0,05 for |Z —]‘ > 1.

In fact, Artin [2] showed that the group B5,, can be presented as

Bn = <O'1,0'2, ceeyOp_1:100,410; = 0,410,041 for: € {1, 2, e, — 2},

0,05 = 0;0; for |Z — ]| > 1}>

11



2.14 Lie Algebra

A Lie algebra g over a field F' is a vector space g over a field F' with a binary opera-

tion, called Lie bracket; [-,-] : ¢ X g — g such that

e [, -] is bilinear, i.e., [aX + bY, Z] = a[X, Z] + b[Y, Z] and [X,aY + bZ] =
alX,Y]+b[X, Z] forall a,b € F and forall X, Y, Z € g,

e [X,X]=0forall X € g,and

o the Jacobi identity [ X, [Y, Z||+|Y, [Z, X||+[Z,[X, Y]] = 0forall X, Y, Z € g
holds.

Two elements X and Y in the Lie algebra g are said to commute if [X,Y] = 0.

The Lie algebra g is called commutative if any two elements X and Y of g commute.
A Lie group G is a group, which is also a finite dimensional smooth manifold such
that the group operation G X G — G, (g1,92) — ¢19- and the inversion G — G,

g — g~ ! are smooth (i.e., infinitely many times continuously differentiable) maps.

2.1.4.1 One Parameter Subgroups

Definition 17. Let G be a topological group (see Definition[I9). A continuous group

homomorphism ¢ : R — G is called a one parameter subgroup.

In particular, a one parameter subgroup of GL,(R) (or PSL,,(R)) is a continuous
group homomorphism ¢ : R — GL,(R) (¢ : R — PSL,(R) respectively). We will
use this concept in Chapter 3} Sometimes the image GG of a one-parameter subgroup

is referred as a one-parameter subgroup, and we will do so.

Remark 18. By definition, it follows that the preimage of a one-parameter subgroup

of any group is abelian.
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2.2 Topology

Definition 19. A topological group G is a topological space which is also a group

such that the group operation G X G — G, (g1, 92) — 9192 and the inversion G — G,

1

g — g~ are continuous.

Definition 20. Let X be a topological space and x € X. A continuous
map 7y : [0, 1] — X satisfying v(0) = (1) = x is called a loop based at z.

Let X and'Y be topological spaces, and f : X — Y be a continuous map.
o If f is a bijection and f~' is continuous as well, then f is called a homeomor-
phism.

e The spaces X and 'Y are said to be homeomorphic if there is a homeomorphism

between them.

A subspace of a topological space is called a simple closed curve if it is homeomor-

phic to the unit circle S*.

A closed curve which is not homotopic to a point, boundary component or puncture

is called an essential curve.

Let XY be two topological spaces. An embedding f : X — Y is a one-to-one

continuous map from X to Y such that [ gives a homeomorphism from X to f(X).
Definition 21. A 2—dimensional manifold is called a surface.

Theorem 22. (Classification of surfaces [|19]) Any closed (i.e., compact without
boundary), orientable surface is homeomorphic to the connected sum of a sphere

and g > 0 many tori.

The number g above is called the genus of the surface.

Definition 23. Let M be a manifold.

o A function f : M — R is called differentiable at x € M if it is differentiable

around x in any chart.
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o f is differentiable if it is differentiable at every point x € M.

e For a bijection f between two manifolds M, N, if f and f~! are continuously

differentiable r times, then f is said to be a C"-diffeomorphism.

2.3 Algebraic Topology

Definition 24. Let X and Y be topological spaces, and f,qg : X — Y be two contin-

uous functions.

o A family of maps hy : X — X such that the associated map H : X x[0,1] = Y/,
H(z,t) = h(z) is continuous and satisfies H(x,0) = hy = f(z), H(z,1) =
hy = g(x) for all © € X is called a homotopy from f to g.

e [n this case, the maps f and g are said to be homotopic fo each other.

Remark 25. Being homotopic is an equivalence relation. This allows us to give

Definition [26]
Let f,g : X — Y be two embeddings between two topological spaces X,Y .
e A homotopy h : X x [0,1] — Y with h(z,0) = f(z) and h(z,1) = g(x) is
called an isotopy from f to g if h(x,t) is an embedding for every t € [0, 1].

o [f there is an isotopy between the spaces X and Y, then they are said to be

isotopic to each other.

Definition 26. Ler X be a topological space and 1,7, : [0,1] — X be two paths
with v1(1) = 72(0). The binary operation * is defined as

1 (2t), 0<t<3
T* Y2 =
Y2t—1), $<t<1

is called concatenation.

Definition 27. For the topological space X, and a point xo € X. Concatenation
operation and the set (X, xo):={[y] : v isaloop at xqin X'}, where [y] denotes
the class of loops at xy in X homotopic to -y, define a group which is called the

fundamental group of X, and the point x is called the base point.
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Definition 28. Let X and X be two topological spaces, and let p : X > Xbea
continuous surjection. Suppose that for every x € X, x has an open neighborhood
U C X such that p~'(U) is a union of open sets which are disjoint and their image

under p is homeomorphic to U.

Then, the space X with the function p : X — X is called a covering space of X.

Definition 29. Let p : X 5 Xbea covering space, and f : X — X be a homeo-
morphism. If the diagram

- [
X—X

p\X /P

commutes, then f is called a deck transformation or a covering transformation.

Let f : X — Y be a continuous maps between topological spaces X and Y with
f(zo) = yo. Then, the induced homomorphism f, : 71 (X, z9) — m(Y,yo) of the
fundamental groups is defined as f.([v]) = [f o 7].

Proposition 30. (Lifting Criterion [15]) Let Y be path-connected and locally-path
connected. For a covering space p : ()?, zo) — (X, o), amap f : (Y,y0) — (X, z0)
lifts to (X, o) if and only if f.(m1(Y,y0)) € pa(m (X, o).

Proposition 31. (Unique Lifting Property [15|]) Let p : X = X bea covering space,
f Y — X be a continuous map where Y is connected, and fvl, f; .Y — X be two
lifts of f. Iffl(y’) = fg(y’)for some y €Y, then fl(y) = ﬁ(y)for ally €Y, ie.,

these two lifts are the same.

Definition 32. A continuous map p : I/ — B is said to have homotopy lifting prop-
erty with respect to the space X if the existence of a homotopy g, : X — B and a lift
Jo : X — FE of go implies the existence of a lift g; - X — FE of g;.

//>' E
g}f// p
// 90
X —B
gt
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A map p : E — B satisfying homotopy lifting property with respect to any space X

is called a fibration.

Covering spaces (see Definition[28)), projections, and fiber bundles (see Definition[33)

are fibrations.

Definition 33. Let I, B, E be topological spaces, and p : E — B be a projection
map. If for all b € B, there are an open neighborhood U C B of b and a homomor-
phism h : p~1(U) — U x F which makes the diagram

—>U><F

\/

commute, where m : U x F' — U is defined as 7 (u, f) — wu, then p is said to be a
fiber bundle, B is called the base space, £ is said to be the total space, and F is said
to be a fiber.

Let G be a topological group acting faithfully on F (i.e., for g € G and forall f € F,
gf = [ implies that g is the identity element of G). Let U C B be an open set in
B, and the collection of homeomorphisms {¢ : U x F — p~Y(U)} (¢ is said to be a
chart over U) satisfy

o the diagram

UxF%p

\/

commutes for any chart ¢ over U,
e forall b € B, there is an open neighborhood over which there is a chart,

o for a chart ¢ over U and V' C U open, the restriction of ¢ to V' is a chart over
v,
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e for any two charts ¢ and ¢' over U, there is a continuous map 0y, : U — G

such that ¢'(u, ) = ¢(u, 0y (u) f) for allw € U and for all f € F,

o {¢p:U X F — p Y (U)} is maximal with respect to these properties.

Then, G is called a structure group of F.

A principal G—bundle over B is a fiber bundle p : & — B with fiber F' = G and

structure group G acting by left translations.

For a fiber bundle, if the fiber is the circle S*, then it is called a circle bundle, and if

the fiber is an n dimensional plane, then it is called an n—plane bundle.

A section of a vectorbundle p : F — Bisamaps: B — E suchthat po s = idp,

namely the map s is a right inverse of p.

Let B be a manifold. Linear functionals on the tangent space at a point p € B are

called tangent covectors.

The space T; B of all covectors at p is called the cotangent space at p. The union of
all cotangent spaces at all points p € B is a vector bundle called the cotangent bundle,

denoted by 177 B.

Sections of cotangent bundle 7% B — B are called differential 1—forms on B. The
set of differential 1—forms is denoted by Q' (B).

Let p : E — B be a vector bundle over a manifold B, and let £(B) denote the space
of smooth sections of B. A connection in P is amap V : Q'(B) x £(B) — &(B)
such that

e VY is linear over C°(B) in X, i.e., Vix,19x,Y = fVx, Y + ¢Vy,Y for
f,9€C,

e VY is linear over R in Y, ie.,, Vx(aY; + bYs) = aVxY; + bVxY; for
a,beR,

e for f € C®(B), Vx(fY) = fVxY + (Xf)Y
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where V xY denotes the image of (X, Y) under V. Here, V xY is called the covariant

derivative of Y in the direction of X.

For the G,p and V as above, consider G as a Lie group with lie algebra g. The
curvature of V is defined as Fy:=dV + [V, V].

A vector bundle which is endowed with a connection of curvature 0 is called a flat

bundle.

Definition 34. Let X be a connected topological space. A simply connected topolog-
ical space X witha covering space p : X — X is called the universal cover of X.

Let f : X — X be a continuous map between two topological spaces X , X. If there
is a finite set C C X such that restriction of f to X \ f7HC) with image X \ C'is a

covering, then f is said to be a branched covering.

2.3.1 Lefschetz-Hopf Fixed Point Theorem

Let X be a topological space and f : X — X be a continuous map. The sum

L(f) = Z(—WTr(f* L Hi(X,Q) — Hy(X,Q)),

where T'r( f.) denotes the trace of the matrix representation of the induced map f.,

is called the Letschetz number of f.

Let f : X — X be a continuous map, and zy € X be a fixed point of f. The index

i(f, o) of xo with respect to f is the winding number of z about the map f.

Theorem 35. (Lefschetz-Hopf Fixed Point Theorem [20]) If the number of fixed points

of a continuous map f : X — X is finite, then

Y ilfx) =L(f)

zE€Fiz(f)
where i(f, x) denotes the index of x, namely the sum of indices of fixed points of [ is

equal to L(f).

2.3.2 CW-complexes

We will use this concept in Subsection [2.5]to define what an Euler characteristic is.
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e Let XY be a discrete space of points. Call the elements of X° as 0—cells.

e Let D! be homeomorphic to n—dimensional disk D". Attach n—cells D” to

Xm"~1 via the continuous maps ¢ : D" — X!, That s,

xr=x"" ] {Ds}.
o1 (2)~a

This will give us X™ endowed with the quotient topology.

For the index set / = Nor I = {0,1,...,n}, consider the set X = J, ., X".

The topology on X under which a subset of X is open (respectively closed) if and
only if AN X" is open (respectively closed) for all n is called the weak topology.

The union X = | J, ., X * endowed with with weak topology is called a CW-complex.
The space X" is called the k-skeleton of X.

For a CW-complex X,

e if X = X for some k € N, then X is k—dimensional,

e if X is not k—dimensional for every £ € N, then X is infinite dimensional.

2.4 Hyperbolic Geometry

There are several models for the hyperbolic plane. We are going to use only two of

them which are the upper half plane model and disk model.

2.4.1 Upper Half Plane Model

For the rest of the thesis let H:={(z,y) € R? |y > 0}, and call it the upper half

plane.

In the upper half-plane model of the hyperbolic plane, the lines are of the following
forms (see Figure [2.4)):

e intersection of a circle centered on the x—axis with HZ,
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e intersection of a line perpendicular to z—axis with H?2.

2

Figure 2.4: Two types of lines in the upper half plane model of hyperbolic plane

In this setting, two lines are said to be parallel if they do not intersect. The lines that

intersect at infinity are parallel as well.

Remark 36. If we have two points one of which is fixed, as the other point approaches

r—axis, the distance between them tends to infinity.

2.4.2 Disk Model

Let D? denote the open unit circle {(z,y) € R? | 22 + y? < 1}.

In the disk model of the hyperbolic plane, the lines are of the form (see Figure [2.5):

e the intersection of D? with a circle {(z,y) € R? | 2%+ y* = r for some r € R}

which intersects the boundary of D? perpendicularly

e aline passing through the center of the unit circle D?.
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&

Figure 2.5: Lines in disk model of the hyperbolic plane

Here, O denotes the center of D?

Remark 37. If we have two points one of which is fixed, as the other point approaches

the boundary of D?, the distance between them approaches infinity.
Definition 38. A map f : U — V preserving the angle between any two curves
passing through a point u for all uw € U is called a conformal map.

An invertible transformation f(z) which is of the form % where a,b,c,d € C is

called a linear fractional transformation.

There is a conformal homeomorphism between H? and D?.

Note that a linear fractional transformation is a conformal mapping. It can be ex-
pressed as a composition of dilations, inversions, rotations, and translations, and it

maps circles or lines to circles or lines.

2.5 Euler Characteristic and Euler Class

Definition 39. Ler X be a finite-dimensional CW-complex, and let cell,,(X) denote
the number of k—dimensional cells of X. Then, the Euler characteristic x(X) of X

is Y e (—1)"cell; (X).
In the special case of a 2—dimensional CW-complex, the above definition turns out
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that:
X(X)=V—-E+F

where V', E, and F' stand for the numbers of vertices, edges, and faces of X respec-

tively.

Definition 40. Let B be a surface. Let 1) be an 2—plane bundle with total space F,
base space B and projection map p. The Euler class (or Euler number) of 7 is the
cohomology class e(n) € H?*(B;Z) which corresponds to u|g under the canonical
isomorphism

p*: H*B;Z) — H*(E;7)

where u is the fundamental cohomology class, i.e., the unique class such that for
each fiber ' = p~'(b), the restriction u|r € H*(F';Z) is the unique non-zero class
in H*(F; 7).

Remark 41. Euler characteristic and Euler class are preserved under homotopy

equivalence.

In 1970, Wood [9] proved the following inequality.

Theorem 42. (/21], Milnor-Wood Inequality) A flat orientable circle bundle Ep over
a closed surface ¥, of genus g has the Euler number satisfying |e(Ep)| <2g-—2.

This was a generalization of a previous result shown by Milnor [3]] in 1957. The

following theorem is equivalent to Milnor’s result.

Theorem 43. ([21|], Milnor’s Inequality) A flat linear orientable circle bundle FE,

over a closed surface ¥, of genus g has the Euler number satisfying |e(E,)| < g — 1.
As referred in [21]], [[10] gives a proof of the following special case of Milnor-Wood
Inequality:

Lemma 44. [2]|] For a closed orientable hyperbolic surface 3., of genus g > 2, the
circle bundle corresponding to the induced action of the group of deck transforma-

tions of the upper half plane H? on 0,,H? has Euler number 2 — 2g.
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CHAPTER 3

MAIN RESULTS

3.1 Some Groups of Mapping Classes Not Realized By Diffeomorphisms

Throughout this section, we will use the map £’ which is described in the following

subsection.

3.1.1 Themap F

Let 2z € X, be a point. Remember the Birman exact sequence

1 m1(5,,2) 5 Mod(S,, 2) — Mod(%,) — 1.

Here, to understand the homomorphism F' : m(2,,2) — Mod(2,, 2), let v €
m1 (X, 2), and let ¥ 0,1 — ¥, be an element of the homotopy class of v, the
map F' pushes z along the path 7 € 1, and drag the rest of the surface as z goes (see
Figure[3.1). Birman called this map as spin map [19]. Note that F(v) € Mod(%,, z).

Figure 3.1: How the map F' behaves
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The map sending ¢ to 7(1 —t) can be considered as an isotopy from idy., to itself. As
stated in Section 3 of [21]], there is an isotopy f; : ¥, — X, such that f,(z) = > (1—t)
and fo = idzg.

3.1.2 Needed Theorems

We will need the following lemma to prove Proposition 46| For this reason, we need

the setting that we will use in Proposition

Recall that the group G(X,, z) is the set of all orientation preserving homeomor-
phisms f : ¥, — X, such that z is a fixed point of f and both f, and f~! are
differentiable at z. There is an epimorphism G (3, z) — Mod(3, 2).

Assume that there is a realization:

(2, 2) , Mod(%,, 2).

We can consider H? as the universal cover of ¥, by endowing 3, with a hyperbolic

metric.

All the orange points above are
projected to orange points below.
All the blue geodesics above are
J p oo
projected into y € (X, 2).

Figure 3.2: H? as the universal cover of %,

Choose a point Z € p~!(z), and a representative ¢., from F'(y). By Homotopy Lifting

24



Property there is a lift of ¢, which is unique by Unique Lifting Property Let
¢ m1(2,, 2) — G(H?, 2) be the map sending ~ to this unique lift. With this setting,

we are ready to state the following lemma.

Lemma 45. ([21|], Lemma 3.2) For vy € 71(X,, 2), the homeomorphism 57 = ¢(7) :
H? — H? can be extended to the closure Ez = H? U 0, H? of H2. Moreover, the
action of this extended homeomorphism on OH? is the same as the action of deck

transformation % corresponding to .

Proof. By definition of F' (see Subsection 3.1.1), we know that if the point z were
not marked, then F'(y) would be trivial. This means, ¢~ would be homotopic to the
identity in this case. Assume the point z is not a marked point. Remember the map f;
in Subsection We get f; is a homotopy from the identity to ¢., with fy = idg,
and f; = ¢,. By Unique Lifting Property 31} there is a unique lift ﬁ of f to H? with
fo = idy2. This gives us a new lift 57 ::fl of ¢,. In other words, ¢ could be lifted in

a different way.

We get &57(2) = 712 where 7 is the deck transformation corresponding to . By
Unique Lifting Property |31} knowing the image at 2 tells us the whole lifting. For this

reason,
70 by = b (3.1)

Therefore, &5 moves every point in the hyperbolic plane H? by at most a fixed constant.
This makes the distance between a point p € H? and its image (Z(p) smaller and
smaller as we get near to the boundary at infinity O,,JH? of the hyperbolic plane. Thus,
5 continuously extends to O,,H?, and its action on 9,,H? is the same as identity. By
, the action of 57 coincides with 7. O

We will need the following proposition, which implies that the surface braid group
B, (%,) does not lift to G(2,, z), and so does not lift to Diff (3, z) as well, to prove
Theorem 321

Proposition 46. (/21]], Proposition 3.1) For a closed surface Y., of genus g > 2
with a marked point z € Y4, the inclusion I' (see Subsection of a finite index
subgroup I' < m1(X,, z) does not lift to G(¥,, z).
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Proof. To get a contradiction, assume that there is a realization ¢ : m(2,,2) —
G(3,,2). For an element v € m(%,, z), there is an element f; € Diff™(3,, 2)
(as described in Subsection [3.1.T) which depends only on +, and there is a mapping
class F'(y) € Mod(%,, z) (as described in Subsection[3.1.1)). Recall the setting before
Lemma as explained there, there is a unique lift d:w of ¢, and so a homomorphism
¢ m(%,,2) — G(H2, 2) sending 7 to ¢.,.

Recall that FI is the union of the upper half plane, the x—axis and the point at infinity.
This means we can consider I \ {Z} as a half-open annulus. To this open side of the
annulus, attach the space of directions P, T5H? of the tangent space at Z, and name

the resulting closed annulus A (see Figure[3.3).

ANAILAAANANN AN
NNLINNINNNNNNNNNAY
ANAINNINNNNNNNNNNNY
SNLINNNNNNNNNNNNAY
N Y
ANLINNNNNNNNNNNNNY
ANIANNINNNNNNNNNNNY

Figure 3.3: How we get the closed annulus .4 from o \ {z}.

The blue circle represents the space of directions of the tangent space at .

By Lemma the map 57 extends to H for all v € m(Xy, z), which leads us
to an action of 7 (X,, ) on o \ {Z}. This means we have an action on the closed
annulus .4 except on its boundary component which is made by attaching the space of
directions. We can extend this action to whole annulus A because qqu, is differentiable
at z for all v € m (X, 2), and so we already have an action on the space of directions
which is induced by the map v — do, |5 from 7 (%, z) to GL* (T5H?2). Here, we
used the map 57|g because in order to have the image of the tangent space around the

point z a tangent space around z again, we need a map fixing the point z.

By Milnor’s Inequality 3] the circle bundle £ over ¥, induced by this action has
Euler number |e(E;)| < g — 1. On the other boundary component, the action is, as

described in Lemma [45] induced by deck transformations. By Lemma 4] the circle
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bundle F> induced by this action has Euler number |e(FEy)| = 2 — 2g.

There is a deformation retraction from A to F; and a deformation retraction from A
to Fy. For this reason, the Euler numbers e(F; ) and e(FE5) should be the same by the
Remark [41] which implies 2|1 — g| = [2—2g| = |e(E»)| = |e(E1)| < g— 1, but this
cannot happen. Therefore, there cannot exist a lift ¢. For the case of a finite index

subgroup, the argument is the same. [

We will need the following lemma to prove Theorem [52] Part b).

Lemma 47. ([21], Lemma 4.1) By means of the projection map p, : Confy(X,) — 3,
defined as

($1,.Z'2, R ,$k> — T,

the configuration space Confy(X,) becomes a fiber bundle over ¥,.

Let mi(p1) : m(Confy(X3,), (21,22, ...,2k)) — m1(Xy, 21) be the homomorphism
resulted from taking the related part of the long exact sequence of homotopy groups.

Then, this map has a right inverse 1 : (X4, 21) — m(Confy(X,), (21, 22, ..., 2k))-

Confy(X,)

.
pll e

Xig

Figure 3.4: The section o

Proof. Consider a compact T’ C X, surface homeomorphic to a torus with one bound-
ary component, and an essential (i.e., not homotopic to a marked point or a boundary
component) simple closed curve C' C T with z; € C forall i € {1,2,...,k}. Iden-
tify the remaining part, ¥, \ int(7") with a point, and call the resulting torus T. Project
this torus to C'. Figure [3.5]shows this process.
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5

2 )
21

The curve C' as
the image of >,

under the map a

Figure 3.5: The map a : X, — C

In this way, we get a map a : ¥, — C fixing the curve C' pointwise. Let r; be the
rotation of C' sending 2; to z;, and let ¢« : C' — X, be the inclusion map. Define

o 1 Mg — X4 to be the composition ¢ o 7; o a.

Fact 48. The followings hold.

The image of C under the map «; is C forall i € {1,2,...,k} by definition.

o a;(z1) =z foralli € {1,2,... k} by definition.

The restriction of oy to C' is the identity map by its definition.

a; 1 g — Xg has no fixed points if it # 1. Because
— If a point z € ¥, is not in the curve C, then since it is mapped to C, its
image cannot be z anymore.
— If'the point z € ¥, is in C, then it is first mapped to itself by the map a,

and then rotated which makes the image of z different than itself again.

o Forallx € ¥, a;(z) # o(x) if i # j because after mapping the surface ¥, to
the curve C via the map a, the rotations r; and r; rotate the point x in different

fashions.

Let o(x):=(x, (), ..., ar(z)) be a map.

e The image of o is in fact the configuration space Confj(X,) because there
are no two components «;(z), a;(z) with ¢ # j and o;(z) = «;(z) for some

r € ¥, by Fact[48]
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e pi(o(x)) = x by definition.

This makes the map o : 3, — Conf;(X,) a section of the fiber bundle
p1: Confy(E,) = X,.
Then, there is a homomorphism
n:m(Xg, 21) = m(Confr(Xy,), (21, 22, - - -, 2k))

induced by the map o with 7 (p;) o 7 is the identity map. O

Proposition 49. [2]|] For a surface X, of genus g > 6, there is a diffeomorphism
T : 3, = X, of order o(T) = 3 whose number of fixed points |Fix(7)| is greater than

or equal to 2 such that the quotient ¥,/ () has genus h > 2.

Proof. For a proof given in a more general way, see the Fact of Case 3 in the proof of

Theorem 1.2 in [21]. We will prove the proposition by using two different ways.

Case 1: g = 3h + 2 for some integer h > 2

Let us identify the xy—plane with the complex plane C, let 7" be the equilateral trian-
glular region in this plane with vertices v, = 'Sk for k € {1,2,3}. Let us identify
the z = 5 plane with the complex plane C and consider the triangular region with ver-
tices Ty = ¢' 3% for k € {1,2,3}. For k € {1,2,3}, consider the line segments v;, 7},
between the vertices of these two triangular regions. For all i € {1, 2, 3} and for all
j€{1,2,...,h}, add the arcs l; starting at v; ending at v; which intersect the line seg-
ment vy, Uy, only at the points T;, v;, and which gives for any two j1, jo € {1,2,...,h},
the intersection ! N I5, = {v;,v;}. Call the resulting object 3. We can choose [
so that fg is invariant under the rotation 7 by 2%—mdians about z—axis as it can be
seen in the Figure Let X, be the boundary of a tubular neighborhood of ig. The
diffeomorphism 7 induces a diffeomorphism 7 : X, — >, of order 3 with 4 fixed

points, and ¥, /(7) is an orientable surface of genus i > 2 as we needed.
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Figure 3.6: ig in Case 3

Case 2: g = 3h + 1 for some integer h > 2

Let h # 2. Take ig in the previous case. Identify z = —5 plane with the complex
pane C and consider the equilateral triangular region whose vertices are vy, = eisk
for k € {1,2,3}. Draw the line segments v, vy for k& € {1,2,3}. Call the resulting
object fg (see Figure . Define 7 same as the case before. Take the boundary of a
regular neighborhood of flg say >,. Similar to the case before, >}, is invariant under

7, 7 has 6 fixed points on ¥, and ¥,/(7) is an orientable surface of genus h > 2.

Figure 3.7: ig in Case 2, x # 2

To prove the case g = 7, consider a regular 30—gonal region 7" as in Figure [3.8]
Identify its antipodal edges to get a genus-7 surface 7. Define the diffeomorphism
7 on T as the rotation by 2 about the center O of T'. Then, 7 is of order 3. 7(x;) =
x1, T(xg) = x2,7(0) = O and these are the only fixed points of 7. T induces a
diffeomorphism 7 : X, — X, which has 3 fixed points, the images of O, z; and x5

under 7" — X,,.
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Figure 3.8: Regular 30-gonal region T'

Y7 — ¥7/(7) is a3 — 1 branched cover branching on 3 points. Then,

X(37 \ {z1, 22, 0}) = 3x(57/ (1) \ {7(21), 7(22), 7(O)}).

Say X, /(7) is a genus-k surface. We have 2 — 2 -7 — 3 = 3(2 — 2k — 3) which gives
the fact that 3;/(7) is a genus-2 surface.

Case 3: g = 3h for some integer h > 2

Similar to Case 2 before, consider the 4g—gonal region P whose edges are identified

as in the Figure

Figure 3.9: Regular 4g—gonal region P

This gives us a genus-g surface >,. Let 7 : P — P be the diffeomorphism defined as
the rotation by 2?” radians about O. Then, the only fixed points of 7 on P are O and
K. 7 induces a diffeomorphism 7 : ¥, — X, which has 2 fixes points which are the

images of the fixed points of 7 under the map P — .
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¥, — X,/(7) is a 2 — 1 branched cover branching at 2 points. Then,

X(3g \ {K, O}) = 2x(8y /(1) \ {7(K), 7(O)}).

Let 3,/(7) be of genus k. Then, 2 — 2¢g — 2 = 2(2 — 2k — 2) which gives g = 2k.
Since g > 6, 3,/(7) has genus k£ > 2. O

Lemma 50. (/21|], Remark of Case 3 of Proof of Theorem 1.2) For the diffeomorphism
T 1 Xy — X, mentioned in Proposition and the mapping class T' corresponding
to T, if we assume that the map 1 from the centralizer C(T) to Diff*(%,) is a lifting,

then (T and T are conjugate.

Let C'(7, z) denote the subgroup of C'(7) whose elements fix the set z pointwise.

Lemma 51. ([21], Lemma 4.2) For the diffeomorphism T and Z the set of projections
of the fixed points of T, the homomorphism o given by the homeomorphisms of ¥,/ (T)
fixing Z induced by the diffeomorphisms f € C(7) (for more details about these, see
the proof of Part (a) of Theorem [52), the image o(C(7,2)) under « of the subgroup
C(7,2) is a subset of G(3,/(T),Z).

Proof. There is a conformal structure which makes 7 biholomorphic. For a fixed
point z of 7, since 7 is of order 3, there are coordinates ¢ around z with 7(¢) = w -
where w is the third root of unity. Note that by o(w) = 3, {1, w} span C as a real vector
space. Let f € C(7,z), consider the derivative df, : 1,3, — 1,3, of f around x.
Since f(r(¢) = T(f(Q)), f(@C) = w(f(C)). So, dfuw = wdf,. This means df,
commutes with any element of C as {1,w} spans C. So, it is differentiable. Then,
considering the projections of the surface >, and its tangent space around the point z,
and considering the compositions with the projection p to 3,/(7) of the maps f and
df,, we get the derivative do( f), () of the map a(f) : 3¥y/(7) — X,/(7) induced by f
at the projection of the point . This means «( f) is differentiable with a differentiable
inverse at p(x) satisfying a(f)(p(x)) = p(z). Since x was an arbitrary fixed point,

this property of a( f) holds for any p(z) € z. Thus, a(C(7,2)) C G(¥,/(7),z). O
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3.1.3 Morita’s Non-lifting Theorem

In his paper [13], Morita stated the following theorem for the surface >, of genus
g > 18, and later in [16], he showed that g > 5 is enough to get the same result
instead of 18. Here, we will prove the cases for ¢ > 6 with an arbitrary number of

marked points and g > 2 with at least one marked point in a different way.

Theorem 52. ([21|], Theorem 1.2) Let ¥, be a surface of genus g, z be the set of
marked points of 4. Then,
(a) If g > 6, the exact sequence

0 — Diff’(Z,,z) — Diff *(Z,,z) — Mod(%,,z) — 0

does not split.

(b) If g > 2 and the cardinality |z| > 1, then the above result holds. Moreover,
no finite index subgroup of Mod(X,, z) lifts to Diff *(2,,z). (Also, no finite index
subgroup of Mod(%,, z) lifts to G(3,, z1).)

Proof. (b) Note that the group Diff " (3, z) is a subgroup of G(3,, z), so the group
Mod(%, 2) does not lift to Diff *(3,, z) by Proposition This proves the case for
|z| = 1and g > 2.

Assume g > 2,|z| > 2. By means of the projection map p; : Confy(X,) — X,
defined as (xq, x, ..., ) — 1, the configuration space Conf},(3,) becomes a fiber
bundle over X,. By taking the related part of the long exact sequence of homotopy

groups, we get a homomorphism
m(p1) : m(Confy(X,), (21, 22, .. ., 2)) = ™1 (X, 21).
By Lemma 7] we know that this homomorphism has a right inverse. Let
Z:=(21, 29, ..., 2,) € Confy(X,).

Forgetting all marked points except z; gives the same exact sequence as we have seen
in Subsection [3.1.1] before, and if we forget all the marked points, the Birman Exact

Sequence (see Theorem [7)) becomes:
1 — m(Confy(X,),Z) — PMod(X,,2z) — Mod(2,) — 1.
Considering these sequences with the maps 1 and 7 (p;) before, we get:
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1 —— m(Confy(X,),Z) —— PMod(X,,z) — Mod(X,;) — 1

(T T T

1 ———— m (B, 21) —— Mod(Z,, z1) —— Mod(X,) — 1.

In particular, the map between groups m; (Confy(3,),Z) and PMod(X,, z) is injec-
tive. Let G < Mod(%,, z) be a finite index subgroup. Then, PMod(3,,z) NG is a fi-
nite index subgroup of PMod(X,, z). Let I be the inverse image of PMod(3,,z)NG
in 7y (Conf(3,), Z). By the map between 71 (Confy(%,), Z) and PMod(X,, z) being
injective, I" has finite index in 71 (Conf(X,), Z). Then, the image 7 (p;)(I") of the
group I" under the function 7 (p;) has finite index in 7 (X, 21). Since there exists a
right inverse 7 of the map ; (p,), if the group G lifts to Diff* (3, z), then 7 (p;)(T)
would lift to Diff (3, z). But this cannot happen by Proposition @, and by the fact
that Diff (2, 21) < G(Z,, 21) -

(a) By Part b), the case of g > 6 and |z| > 1 follows. So, assume |z| = 0. By Propo-
sition there is a diffeomorphism 7 : X, — >, of order 3 such that the number of
fixed points of 7 is greater than or equal to 2 and that X,/(7) is of genus at least 2.

Assume that the centralizer C(T) lifts to Diff *(3,) via the map ¢ : C(T) —
Diff " (3,), where T is the class of the diffeomorphism 7 in Mod(X,). Then, the
order of ¢(T') is 3. Since T is the mapping class corresponding to 7 and since ¢ is a
lifting, ¢/(T") and 7 are isotopic. By Lemma these two are conjugate. So, we may

assume without loss of generality that )(T) = .

Letp : ¥, — X,/(7) be the projection map, and let Z = {Z1, %3, ..., Z;} be the set
of projections of the fixed points of ¥, to ¥,/(7). Any f € C(7) induces a map
K :%,/(t)\z = X,/{(r) \ Z with z, 7% (z) € X, \ Fiz(r) giving the same image
under K for k € Z. Extending K gives us a homeomorphism K of 3,/(7) fixing Z.
Thus, we can define a homomorphism « : C(7) — Homeo™ (3,/(7),Z) defined as
a(f) = K. By definition of «, we have ker(a) = (7). We had ¢ : C(T") — C(7)
before. By Lemma[51}, a(C(7,2)) C G(3,/(7),Z). Since ¢)(T) = 7, we have 1) :
C(T)/(T) — C(1)/(r). Since (7) is the kernel of o, by considering the composition
a0 1, we get an action C(T')/(T) — Homeo™ (2,/(7),Z).
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Via the lifting ¢, we can identify C(T")/(T") with C(7)/(7). Remember from the
definition of the map « that a diffeomorphism f € Diff*(3,) commuting with 7

induces a homeomorphism ¥, /(1) — X, /(1) fixing Z setwise.

Consider the image of C'(7")/(T") under the map
C(T)/(T) — Homeo™ (3,/(7),z) — Mod(%,/(7),Z).
If the image of an element of Homeo™ (3, /(7),Z) under the map
Homeo " (X,/(7),2z) — Mod(%,/(7),Z)

is the identity, then this element is either the identity in Homeo™ (3, /(7),Z) or 7 or
72. But, all of these three elements correspond to the identity in C'(7')/(T'). So, there
is a subgroup G of Mod(X,/(7),Z) that can be identified with C'(T") /(T’).

Let ['=G N PMod(%,/(7),z). Then, by both G and PMod(3,/(r),z) being of
finite index, I' is of finite index in Mod(X,/(7),z). For each z € C(T),2T =
Tz, so Y(x)Y(T) = (T)(z). This implies that ¢)(x) € C(¢(T)). Therefore,
P(C(T)) € C(Y(T)) = C(r) as we assumed ¢(7") = 7. Thus, the image of I'
under ¢ is contained in C(7). Moreover, since I' C PMod(X,/(7),Z), ¢ (I") should
be contained in C'(7,z). By Lemma [51] a(4(T")) is a subset of G(3,/(7),Z). This
means a finite index subgroup of Mod(X,/(7), Z) lifts to G(X,/(7),z) where £, /(T)
is a surface of genus A > 2 with at least 1 marked points which contradicts the note in

parenthesis of Case (b) of this theorem. Therefore, there cannot be such a lift ¢p. [

3.2 On Non-realizability of Braid Groups By Diffeomorphisms

3.2.1 Needed Theorems

As stated in [22], Theorem 4.1 (iii) of [14] implies that:

Theorem 53. ([22], Theorem 3.6) Let z,, be the set of n marked points in the closed
disc D2,

(a) The inclusion map (D?,z,) < (3, z,) induces an injection B,, — B, (X) where

the surface Y is not the sphere S>.
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(b) If ¥ = 52, identify B,, with Mod(D?, z,,) via the isomorphism B,, = Mod(D, z,,)
in Remark Let A denote the Dehn twist of a boundary parallel curve in D?. Then,
the inclusion (D, z,) < (5%, 2,.1) induces a homomorphism ¢ : B, — B,1(S?)
such that ker(¢) C (A) and ker(¢) is contained in the center of B,,.

Proposition 54. (/22)], Proposition 3.4)
(i) For n > 5, the set
S:{aia;rllzlgign—%

generates [B,, By, and any two 0,0, }y, 0507}, € S are conjugate in [B,, By].

(ii) ([22|], Proposition 3.4 and [|7], Corollary 2.2) For n > 5,
[Bm Bn] - HBm Bn]a [Bm Bn]]

Therefore, B, is strongly non-indicable for n > 5.

Proof. (i) Let 0; € B,, denote the braid which interchanges the *" and the i 4 1%
points for 1 < i < n, and let o,, be the braid that which interchanges the n'* and

the first points of the configuration space. Let (S) denote the normal closure of (S).

Since the map A : B,, — Z sending [[}_, 0. to > " | m, is the abelianization map,

i=19i
S = {oio}, : 1 < i < n—1}is asubset of [B,, B,]. Consider the following
numbers 7,7 + 1,4 + 3, 7 modulo n. Since any two 0;,0; of 0y, ..., 0, are conjugate,

the quotient B, /(S) is abelian. Because 0,0 ' € (S) implies 0;(S) = 0;(S). So, if
(S) is a normal subgroup of B, then S generates [B,,, B,,].

Claim: The group (S) is a normal subgroup of B,,.
Proof of the claim: Note thatn > 5and | — (i + 3)|,|(i + 1) — (i + 3)| > 2,50 7443

commutes with o;, 0;11.

For all 7, j we have aiaj_l € (S) because if i < j, then

010" = (0:071)(0:1107) - (01007 ),

and if ¢ > 7, then aiaj_l = ((ajaj_jl)(ajJrla;Q) o (ojemo )L

Moreover, o; 'o;,1 € (S) because
~1 11 ~1 1
0; Oit1 = 0i430,,30; Oip1 = 0i430; 0;410,,3 € (S).
So, similar to the reasoning above, any o; laj isin (S).
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Then,

aj(oi0 )0t = (0j0735)(0is0i03405 )
(050733)(0i071) (014305 )
and crj_l(az-aijrll)aj = (a;lai)(aijrllaj). Thus, (S) < B, because 0;0..%, 0:0.},

-1 -1 -1 . . .
0iy30; ", 05 03,0,.,0; are all in (S). This proves the claim.

To complete the proof of part (i), we need to show that all the elements of S are

conjugate in [B,,, B,]. By braid relations (see Section 2.1.3.1)),
—1 -1 1
(Ui0i+10'i+2)0'z’0'i+1(Uiai+10i+2) = 0i+10;9-
Note that (aiai+1oi+20;33) € (B, B,]. As 0,3 commutes with ; and 0, 1,
-3 —1 —3\-1 ~1
(Ui0i+10i+20i+3)0i0¢+1(Ui0i+10z’+202‘+3) = 0i+10,;49

which gives the elements Jia;rll and 0i+1‘7i—+12 are conjugate in [B,,, B,].

(ii) Need to write 0,0, Jrll € S as a commutator in [B,,, B,]. Since n > 5, there

is some j that makes o; commute with o;,0;;1. Then, by braid relations (Section
ET3T) again,

0071 = (0i0i110:)(0; o o)

= (‘712+1(7i0@'+1)(051‘7;+11‘7ﬁ11)
= [O'fH_lO'iO'j_Z, O'Z‘_HO'j_l].
Since (S) = [B,, B,], we have [B,, B,] is perfect. O

Remark 55. (/|7], Corollary 2.2) In addition to Proposition any homomorphism

from |B,,, B,] to an abelian group is trivial.

Lemma 56. (/22|], Lemma 3.9) For a group G generated by elements T, . .., T, such
that

(1) 7; are mutually conjugate forallv =1,...,n

(2) There is k > 2 with [1;, 7;] = 1 for |j —i| > k (where | - | is the distance in R /nZ),
and for n > 2k + 1, every homomorphism f : G — GL3 (R) has abelian image.

Proof. In this proof, we will need Subsection [2.1.4.1] By Remark [I8] the preimage
of a one-parameter subgroup of the projective linear group PSLy(R) in GL; (R) is
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abelian. Let 7 denote the projection from GL3 (R) to PSLy(R). If we show that the
image of the projection f:=7 o f : G — PSLy(R) to PSLy(R) is contained in a

one-parameter subgroup, then we are done.

Let 7; denote f(7;). By assumption (1) we know any two 7;,7; are conjugate for all
i,7=1,...,n whenever 7;,7; # I. Andif 7; = I for some ¢ = 1,...,n, then all its
conjugates, namely all other 7;’s, should be . Thus, for a non-trivial homomorphism

f,wehaveT; # I, foralli=1,...,n.

Assume the image of f is not contained in a one-parameter subgroup. This means that
there are 7;, 7; which do not commute. By relabelling if necessary, we may assume

that 7 = 1 and 2 < j < k is the minimal index which gives 7, 7; do not commute.

Claim: 7 = 2 for some relabelling.

Proof of the claim: Assume otherwise. Then, either 7; and 7;—; commute or not.

Case 1: T; and T;—1 do not commute. Then, by relabelling again, we get 71, 7> do not

commute, i.e., j = 2.

Case 2: T; and T,—1 commute. Since j was the minimum index giving 7; does not
commute with 77, 7;_; should commute with 7. Thus, 71, 7; € Cpgsr,®)(Tj—1). Note
that Cpgr,®)(Tj—1) € PSLy(R), and PSLy(IR) is a one-parameter subgroup, i.e.,
there is a continuous group homomorphism ¢ : R — PSL,,(R), which implies 77, 7;
should commute (recall Section [2.1.4.1] here), contradicting the assumption. Hence,

J = 2 which proves the claim.

By assumption (2) and the fact that n > 2k + 1, 7, > commutes with 77 and 75.
Therefore, 71,75 € CPSLQ(R)(Tk+2) which means 77,7, commute, contradicting the

assumption that the image of f is not contained in a one-parameter subgroup. [

Plugging k£ = 2 and assigning 7; = o; (Where o; is as described above) in this lemma,

we get the following.

Lemma 57. ([22], Lemma 3.8) For n > 5, every homomorphism f : B, — GLJ (R)

has abelian image.

Theorem 58. (/22], Thurston Stability Theorem) Let M be a manifold and let x € M
be given. For a diffeomorphism g of M fixing x, denote the derivative by (Dg), €
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GL(T,M). Then, the group G = {g € Diff " (M) : g(x) = z,(Dg). = I} is locally

indicable (and so are any subgroup of G).

Figure 3.10: Figure of Lemma

Lemma 589. ([22|], Lemma 4.1) Suppose that there is a realization

Diff* (3,)

Then, the number of fixed points |Fix(c(1))| = 2+ 2g where v denotes the class of the
hyperelliptic involution (see Figure where T is a diffeomorphism in the class ().

Proof. Suppose that the diffeomorphism o (¢) has n fixed points, say x1, zs, ..., Tp.
Consider the induced branched cover X, — S?. Removing these fixed points, we get
a 2—fold covering X, \ {1, z2,...,2,} of S\ {c(¢)(21),0()(z2),...,0(t)(z,)}.
Thus we have the equality

X(Zg \ {21, 22, 20 }) = 20(S* \ {o (1) (1), 0 (1) (22), ., o (1) (2n)})

between the Euler characteristics. So, 2 — 2g —n = 2(2 — n), and hence, the number

of fixed points of o(¢) is n = 2 + 2g.

Another way: Let h be a Riemannian metric on >,. Since ¢ is hyperelliptic involution,
it is of finite order, so we can consider the metric h + (o(¢))*h + ((o(¢))*)*h +

..+ ((o(¢))""1)*h which is o(¢)—invariant where n = o(c(¢)). Therefore, we can
consider o(¢) as an isometry on X, in this metric. Let z € X, be any fixed point of
o(¢). Since o(¢) is an isometry, it is determined by its derivative at z. This derivative is

a 2 x 2 orthogonal matrix whose determinant is 1 by o(¢) being orientation preserving.
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By o(¢) being non-trivial, its derivative at = is non-trivial and so x is an isolated fixed
point of index 1. By their indices being equal to 1, if we can find the sum of the
indices of the fixed points, we get the number of fixed points. By = being arbitrary,
all the fixed points of o(¢) are isolated of the same index. By Lefschetz-Hopf Fixed
Point Theorem [35] sum of the indices of fixed points is the same as the Lefschetz

number which is:

2

L(o(1)) = Y _(~1)'Tr((0(v) : Hi(2,,Q) = Hi(2y,Q)) =2 + 2.

=0

So, |Fix(o(e))| = 2 + 2¢. O

Remark 60. (/22|], Corollary 4.2) Let x € C(0(v)) be an arbitrary element, and let
y € Fix(a(¢)). Then, (o(1)) o x(y) = x(a(1))(y) = z(y), i.e, z(y) € Fix(a(1)).
Since |Fix(o(1))| = 2g + 2, we can consider the symmetric group on Fix(o(t)) as
Sag+2, and get a permutation representation p : C(o(t)) — Sagia of C(o(1)) on
Fix(o(¢)). In other words, the elements of C(c(t)) can be represented as permuta-

tions on Fix(a(1)).

Let a, o/ € C(o(1)) be isotopic, then p(a) = p(a’). For a proof of this, see the proof
of Lemma 4.5 of [22]].

Lemma 61. (/22|], Lemma 4.3) For the genus g of X, is greater than or equal to 2,
there is a non-indicable subgroup B < C(1) which is isomorphic to a quotient of
Bigyo (here v denotes the class of the hyperelliptic involution T in Figure [3.10]is a

diffeomorphism in the class ().

Proof. Let ¢; be simple closed curves as in Figure 3.10] Then, ¢; and ¢, intersect
only at one point transversely for all ¢ € {1,2,...,2¢}, and ¢; and ¢; does not inter-
sect for |i — j| > 2. Therefore, the Dehn twists T, satisfy the braid relations. Hence,
the group B = (T, : i € {1,2,...,2g + 1}) € Mod(X,) is a non-trivial quotient
of Bygio. Note that g > 2 implies 2g + 2 > 6 and so B,y is non-indicable (by
Proposition[54). By being a quotient of a non-indicable group, B is non-indicable (by
Remark [4). ¢ fixes each ¢;, so T, € C(v) for each 4, and B < C(1). O

Remark 62. Consider B as a quotient By,.o/N. Then, let B’ be the restriction of the

quotient B to By, i.e., let B"=DBy,.1 /(NN By,41). By being a non-trivial quotient
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of a strongly non-indicable subgroup, B’ is also strongly non-indicable for g > 2. By
Remark Byy1 fixes a point in Bag . Being the quotients of these groups, B’ fixes
a point in B < C(1). Considering the images of B and B’ under o, o(B') fixes a
pointin o(B) < a(C()) < C(o(v)). Therefore, the action of B' on Fix(o(t)) has a
fixed point.

Lemma 63. (/22], Lemma 4.5) Let |1 : Bagyo — Sagi2 be the homomorphism which
sends the element changing the places of i"" and i + 1° points in the configuration
space o; € By to the permutation (i1 + 1) € Syyio. Let 0 : Byyro — B =
Bsgy1o/N be the map sending o; to the Dehn twist T,, about the curve c; in the group
B (see Figure for the curve c;). Since o; generate By, o and T,; generate the
group B (see the proof of Lemma , the map 0 is a homomorphism from Bag. o to
B.

Then, the diagram

ol
Bzg+2 - S2g+2

|52

B

commautes.

Proof. Note that any two realizations of T, are isotopic. By Remark [60] their image
should be the same. This means that finding the image of a realization of 7, under
p gives the image of any realization of 7. Take a realization ﬁi of T,, which is
invariant under the diffeomorphism o(¢) and whose support is a neighborhood of ¢;.
Then, the image of TVCZ. under p is (i i + 1) which is the same as the image of o; under

14, in other words, the diagram commutes. L]

The following is a version of Proposition 46| for a compact surface X for a different

number n of marked points.

Theorem 64. ([22|], Theorem 1.1) Let 3. be a compact surface, and let z be the set of
marked points of ¥ with |z| = n. Recall the map F in the Section[3.1.1]
(a) If the boundary 0% = (), then F : B,(X) — Mod(X, z) is not realized by C*

41



diffeomorphisms for all n > 6.
(b) If the boundary 0% # (, then F : B,(X) — Mod(X,z) is not realized by C*
diffeomorphisms for all n > 5.

Proof. (a) Assume that Y. = () and that for n > 6, there is a lift

Diff* (%, 0%, )

where Diff ¥ (X2, 9%, z) denotes the group of C'* diffeomorphisms f from ¥ to X pre-

serving z setwise such that the restriction of f to 9% is the identity.

Then, by Theorem @ (b), there is a non-trivial homomorphism
Y By, — Mod(%, z).

For any subgroup H of B,,_; witnessing the non-indicablity of 5,,_; (in particular, by
Proposition (ii), H can be taken as [B,,_1, B,,_1]), H Nker(y)) # H, so by Remark
B,,_1/ker(v) is non-indicable. Therefore, the image ¢(B,_1) = B,_1/ker(¢) of
B, for n > 6 is also non-indicable. Thus, Mod(X,z) O v(B,,_1) is non-indicable.

As B,,_; stabilizes z\ z,,_; (by Remark(i)), o(B,_1) fixes some point x € z\z,_;.
Let D : B, ; — GL3 (R) be the derivative at z. Since for n > 5, every homomor-
phism f : B, — GLj (R) should have abelian image (by Lemma , the perfect
subgroup [B,,—1, B,,—1] should be in the kernel of D. Then, by Thurston Stability
Theorem [B,,_1, B,_1] should be locally indicable which is not (by Proposition

54).

(b) O # 0, i.e., n > 5 In this case, Mod (X, z) is still strongly non-indicable, and by
Remark(ii), the lift o(B,,) fixes some point x € z,; \ z. Let D : B, — GLJ (R)
denote the derivative at z. By Lemma [B,, B,] C ker(D), and by Thurston
Stability Theorem[58|[B,,, B,,] is locally indicable which is not the case. ]
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3.2.2 Morita’s Non-lifting Theorem

Here, we prove Part (b) of Theorem [52]in a different way for an arbitrary number of

marked points of >J,.

Theorem 65. ([22], Theorem 1.2) Let 3., be a closed surface of genus g. For g > 2,
the group Mod(X,) does not lift to Diff " (3,).

Proof. Recall that for a realization o : Mod(%,) — Diff*(3,) has a stongly non-
indicable subgroup o (B’) < Diff"(3,) where B’ is the image of the abovementioned
non-indicable subgroup B in By, 1, 1.€., it is a quotient of By, (see Remark . So,
B’ is non-indicable by Remark [4] and o(B’) is the image of B’ under o. Moreover,
o(B') acts on 3, with a global fixed point p € ¥, (see Remark [62).

Since o(p) = p, we can consider the derivative D, : o(B’) —GL3 (R) at p. We know
that the image of By, under D, 0 0 : By,y1 —GLj (R) is abelian by Lemma

By being a quotient of this group, B’ should have abelian image under this map.

Let P < B’ be a subgroup of B’ witnessing the non-indicability of B’ (i.e., let P
be a non-trivial finitely generated perfect subgroup of B’). Then, the image o(P) of
subgroup P under o should have trivial image under D, by above. But, by Thurston
Stability Theorem 58| o (P) should be locally indicable which is a contradiction. So,

there cannot be such a realization o. O]
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CHAPTER 4

CONCLUSIONS

In this thesis, we dealt with the answer to the question if a finite index subgroup of
Mod(3,) lifts to Diff*(3,) where X, is a surface of genus g. Morita answered this
question for g > 18 and later for g > 5 [[16]]. We considered two different proofs of

this result.

In the first proof due to [21]], we take a finite index subgroup I' of (X, z) for
z € ¥y and g > 2, and assume that I" lifts to G(3,, ). Then, we get a closed annulus
A from H? \ {z}. Then, by Milnor 43| and Milnor-Wood 42| Inequalities, we get the
contradiction that the Euler numbers of two boundary components of this annulus
cannot be the same. From the result that I" does not lift to G(X,, z), we get our main

result.

For the second proof due to [22], we first show the fact that the braid group B,, is
non-indicable. Then, we take a subgroup P of B’ witnessing the non-indicability of
B’ where B’ is a quotient of By,q. Then, we show that the image of P under a
realization o should be trivial. However, Thurston Stability Theorem [58|implies that

o(P) is locally indicable which is a contradiction.

In conclusion, we get Mod(X,) is not realized by orientation preserving diffeomor-
phisms of 3, for ¢ > 2. Moreover, any finite index subgroup I" of Mod(X,, z) does
not lift to Diff 7 (X, z) where |z| > 1 for the same g, and if we take z of an arbitrary

cardinality, then " does not lift to Diff " (3, z) for g > 6.
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