

T.C.
BIRUNI UNIVERSITY
INSTITUTE OF GRADUATE EDUCATION
DEPARTMENT OF MOLECULAR BIOLOGY AND GENETICS
MOLECULAR AND MEDICAL GENETICS GRADUATE PROGRAM

**TEMOZOLOMIDE RESISTANCE IN GLIOBLASTOMA; EFFECT OF
CALCIUM-BINDING PROTEIN S100P**

Submitted by:
Fatma Ezzahara Khaled Gadur

Submitted to:
Asst. Prof. Dr. Elif Sibel Aslan

June, 2023

T.C.
BIRUNI UNIVERSITY
INSTITUTE OF GRADUATE EDUCATION
DEPARTMENT OF MOLECULAR BIOLOGY AND GENETICS
MOLECULAR AND MEDICAL GENETICS GRADUATE PROGRAM

**TEMOZOLOMIDE RESISTANCE IN GLIOBLASTOMA; EFFECT OF
CALCIUM-BINDING PROTEIN S100P**

Submitted by:
Fatma Ezzahara Khaled Gadur

Submitted to:
Asst. Prof. Dr. Elif Sibel Aslan

June, 2023

DECLARATION

I hereby declare that the project work entitled “Temozolomide Resistance in Glioblastoma; Effect of Calcium-Binding Protein S100P” submitted to the Biruni university, is a record of an original work done by me under the guidance of Asst. Prof. Dr. Elif Sibel Aslan, Head Of Molecular biology & Genetics Department, Biruni university, and this project work is submitted in the fulfilment of the requirements for the award of Molecular and Medical Genetics Master degree. The results embodied in this thesis have not been submitted to any other University or Institute for the award of any degree or diploma.

ACKNOWLEDGMENT

Completing this Thesis Writing entitled “Temozolomide Resistance in Glioblastoma; Effect of Calcium-Binding Protein S100P”- last requirement for the Master of Molecular and Medical Genetics is truly a marathon, and the researcher would not have been able to complete this journey without the aid and support of countless people who in one way or another contributed and extended their valuable assistance. The researcher would like to express his heartfelt gratitude, appreciation and thanks to the following individuals for reviewing parts of the manuscript, to Asst. Prof. Dr. Elif Sibel Aslan Head Of Molecular biology & Genetics Department, thesis adviser and statistician, for her continuous support, patience, motivation, valuable comments, suggestions and her immense knowledge and advises to make the research meaningful, and to Sajjad Eslamkhah who provided encouraging and constructive feedbacks and valuable comments and suggestions in developing the research and for his guidance and encouragement to finish the study.

Table of Content

I. Abstract.....	x
I. Özet.....	x
II. Introduction	1
II.1.1 Glioblastoma	1
II.1.2 Classifications of Glioblastomas.....	1
II.1.3 Treatment challenges.....	2
II.1.4 Epidemiology	2
II.1.5 Etiology	2
II.1.6 Symptoms.....	3
II.1.7 Diagnosis	3
II.1.7.1 Conventional MRI:	3
II.1.7.2 MRI spectroscopy (MRS):	4
II.1.7.3 fMRI (Functional Magnetic resonance imaging)	4
II.1.8 Glioblastoma Grading	5
II.1.9 Pathophysiology	6
II.1.9 Histopathology	6
II.1.10 Glioblastoma Treatment.....	7
II.2 Temozolomide Resistance.....	8
II.3 Calcium-Binding Protein P S100P	10
III. Materials and Methods.....	14
III.1. Dataset selection and data preprocessing.....	14
III.2. Co-expression network analysis	15
III.3. Cell lines and culture	15
III.4. Transfection of siRNA	16
III.5. Quantitative Real-time Polymerase Chain Reaction and Gene Expression.....	17
III.6. MTT Assay	18
III.7. Development of Temozolomide-Resistant Cells	19
III.8. Statistical Analysis.....	19
IV. Results	20
IV.1. DEG Analysis	20

IV.2. S100P and their co-expressed DEGs	21
IV.3. IC50 analysis of parental and resistant U251 cells.....	21
IV.4. Altered expression of S100P and TRIM29.....	22
V. Discussion	23
VI. Conclusion.....	24
VII. References.....	26

Abbreviations

EGFR	Epidermal growth factor receptor
BBB	Blood-brain barrier
CNS.	Central nervous system
GBM	Glioblastoma
TME	Tumor microenvironment
CBTRUS	Central Brain Tumour Registry of the United States
CT	Computed Tomography
MRI	Magnetic resonance imaging
MRS	Magnetic resonance spectroscopy
WHO	World Health Organisation
MGMT	O6-methylguanine-DNA methyltransferase
TERT	Telomerase reverse transcriptase
H3F3A	H3 histone, family 3A
FGFR	Fibroblast growth factor receptors
NTRK	Neurotrophic tropomyosin kinase receptors
GFAP	Glial fibrillary acidic protein
ANC	Neutrophils Count
MTIC	5-(3-methyltriazen-1-yl) imidazole-4-carboxamide
AIC	5-aminoimidazole-4-carboxamide
MGMT	Suicide methylguanine-DNA methyltransferase
MMR	DNA mismatch repair
TMZ	Temozolomide.
EF-hand	Helix-loop-helix
TEM	Transendothelial migration
ICC	Intrahepatic cholangiocarcinomas
GEO	Gene Expression Omnibus
DEGs	Differentially expressed genes
FBS	Fetal bovine serum
DMSO	Dimethyl sulfoxide
DMEM	Dulbeccos Modified Eagle Medium
qRT-PCR	Real-time polymerase chain reaction
Ct	Threshold cycle
MTT	3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

List of Figures

Figure 1. Post-gadolinium administration MRI spectroscopy.....	4
Figure 2. MRI presenting the levels of NAA exceeding choline indicating a healthy brain.....	4
Figure 3. f-MRI spectroscopy of a patient that was taken throughout object naming....	5
Figure4. Chemical Structure of Temozolomide.....	8
Figure.5: S100P location on Chromosome 4 - NC_000004.12.....	11
Figure6. Expression levels of SP100 in different cell types.....	11
Figure. 7 (A) Boxplot showing the normalized expression values for the samples....	20
Figure 8 (A) Co-expression network of DEGs identified in our study.....	21
Figure 9. Non-linear regression analysis of temozolomide dose-response curve in parental and resistant U251 cells with or without S100P siRNA transfection.....	22
Figure10. Expression levels of S100P and TRIM29 in parental, resistant cells	22

List of Tables

Table 1. Glioblastoma grading.....	5
Table 2. Significant Molecular Modifications in Glioblastoma.....	6
Table 3: The primer pairs used in the study.....	19

I. Abstract

Glioblastoma multiforme (WHO grade IV) is a devastating and aggressive primary brain tumor, characterized by poor prognosis and lack of efficient standard-of-care treatments. The vast majority of patients receiving radiotherapy along with Temozolomide chemotherapy, tend to develop Temozolomide resistance, hence resulting in tumor recurrence. Regardless of the advanced Glioblastoma treatments, Temozolomide remains the backbone of high-grade glioblastoma treatment. The poor prognosis and chemoresistance of glioblastoma raise the necessity to further-develop and investigate in order to identify novel molecular targets involved with chemoresistance in glioblastoma. The Calcium-Binding Protein S100P is involved with Chemoresistance, metastasis, as well as poor clinical outcomes in many malignancies. This research aims to shed light on the role played by Calcium-Binding Protein (S100P) in Temozolomide resistance in glioblastoma.

Keywords: Brain Cancer, Glioblastoma, Temozolomide, Chemoresistance, Calcium-Binding Protein S100P.

I. Özet

Glioblastoma multiforme (WHO derece IV), kötü prognoz ve etkili standart bakım tedavilerinin olmaması ile karakterize, yıkıcı ve agresif bir birincil beyin tümörüdür. Temozolomid kemoterapisi ile birlikte radyoterapi alan hastaların büyük çoğunluğu Temozolomid direnci geliştirme eğilimindedir ve bu nedenle tümör nüksüne neden olur. Gelişmiş Glioblastoma tedavilerinden bağımsız olarak Temozolomide, yüksek dereceli glioblastoma tedavisinin bel kemiği olmaya devam etmektedir. Glioblastomanın zayıf prognozu ve kemodirenci, glioblastomada kemodirenç ile ilgili yeni moleküler hedefleri belirlemek için daha fazla geliştirme ve araştırma gerekliliğini arttırmır. Kalsiyum Bağlayıcı Protein S100P, birçok malignitede Kemorezistans, metastaz ve ayrıca kötü klinik sonuçlarla ilişkilidir. Bu araştırma, glioblastomada Temozolomid direncinde Kalsiyum Bağlayıcı Proteinin (S100P) oynadığı role ışık tutmayı amaçlamaktadır.

II. Introduction

II.1 Glioblastoma

II.1.1 Overview

Glioblastoma abbreviated as GBM and known as a grade IV astrocytoma, is a fast-proliferating and devastating brain cancer. Glioblastoma is the most frequently diagnosed form of brain cancer [1]. In most cases, glioblastoma tends to migrate to the nearby brain tissues rather than to the distant organs. Glioblastoma is a result of the abnormal proliferation of astrocytic cells which support nerve cells in healthy tissues. Glioblastoma usually occurs in the brain but in some cases, it also occurs in the spinal cord and originates in the brain de novo or develops from astrocytomas with a lower grade. In adults, glioblastoma usually arises in the cerebral hemispheres mainly in the brain's frontal and temporal lobes.

Glioblastoma is a malignant and aggressive tumor that leads to death in an average of six months or less if not treated. Once diagnosed, it is critical to receive immediate professional neurosurgical and neuro-oncological care to elongate the survival rate of patients [1].

II.1.2 Classifications of Glioblastomas

Glioblastomas are categorized into primary glioblastomas and secondary glioblastomas each of them develops via distinct genetic pathways in patients of distinct ages resulting in different clinical outcomes [2]. Primary glioblastomas represent 80% of glioblastomas, this subclass is observed in individuals with an average age of 62 years. On the other hand, secondary glioblastomas arise from oligodendrogloma or astrocytomas with a lower grade in individuals with an average age of 45 years. Secondary glioblastomas are often found in the brain's frontal lobe, experience a lower grade of necrosis, and maintain a more enhanced prognosis compared with primary glioblastomas [3].

The Cancer Genome Atlas genetically classified glioblastoma into three different subclasses: classical glioblastoma, proneural glioblastoma, and glioblastoma mesenchymal. Each subclass is distinguished by distinct genetic mutations inducing epidermal growth factor receptor (EGFR) activation, platelet-derived growth factor receptor alpha activation, and neurofibromin 1 deletions, respectively. These subclasses possess different prognostic values, the mesenchymal subclass exhibits the shortest survival rates, while the proneural subclass exhibits the longest survival rates [4]. The tumor microenvironment composition is associated with the molecular subclasses of glioblastoma. Mesenchymal subclass show increased expression levels of CD4+ T cells, macrophages, and neutrophils [5] which is also involved with higher glioblastoma grades [4,6].

II.1.3 Treatment challenges

There are many factors contributing to the treatment deficiency in glioblastomas, the main factor is its localization in the brain given that the BBB (blood-brain barrier) possesses a physical barrier as well as a biochemical barrier to the central nervous system (CNS) for big molecules [7,8]. The second factor is the capability of glioblastomas to develop resistance to conventional therapy [9, 10,11,12], as well as its limited capacity for brain self-repair.

Another factor to take into consideration is malignant cell migration to adjacent brain tissue. The consequential neurotoxicity of glioblastoma treatment also plays a critical role in the treatment deficiency of GBMs. Furthermore, The impaired tumor blood supply acts as a factor via inhibiting effective drug delivery in glioblastoma. Moreover, Tumor-induced seizures and tumor capillary leakage also play a vital role, leading to an accumulation of fluid around the tumor, or what's known as peritumoral edema and intracranial hypertension. Inter-tumor and intra-tumor heterogeneity also play a role in treatment success rate since it presents a combination of diverse subclasses of glioblastoma [4] and stromal cells in the TME (tumor microenvironment) [13,14].

II.1.4 Epidemiology

Glioblastomas have one of the shortest survival rates among all cancers [15] which is not surprising given that it is the most widespread, aggressive, and malignant brain and central nervous system tumors. CBTRUS-2013 Central Brain Tumour Registry of the United States- indicates that the average annual incidence rate of age-adjusted glioblastoma is 3.19 per 100,000 population, which is the most elevated incidence rate in the malignant CNS (central nervous system) and brain tumors [16]. Glioblastoma represents roughly 15% of all CNS cancers and approximately 45% of primary malignant brain cancers [16].

Glioblastomas are more reported in men than women, given that the incidence rate is 1.57 % higher in men than women [17]. Primary glioblastoma is more reported in men, while secondary glioblastoma is more reported in women [18]. Glioblastoma can occur at any age. Though it is more likely to occur in older adults given its median diagnosis age of 64 years and considered rare in younger ages and children. The age-related incidence rises at ages from 75 to 84 years and decreases after 85 years [3].

Even though GBM is the most frequent malignant brain cancer, the overall median survival rate is about 15 months, while the progression-free survival rate is only 6 months [1]. Yet, the survival rate is roughly 40% in the first year after diagnosis and in the second year after diagnosis, the survival rate is only 17%. The 5 years survival rate of GBM is 4.6% and it has not increased in the last 30 years [19,20,21].

II.1.5 Etiology

In large proportions, no genetic or environmental factors have been identified. Glioblastomas are sporadic, just like most cancer types. Yet there are a couple of risk factors that led to glioblastoma in some cases. Research revealed an increased

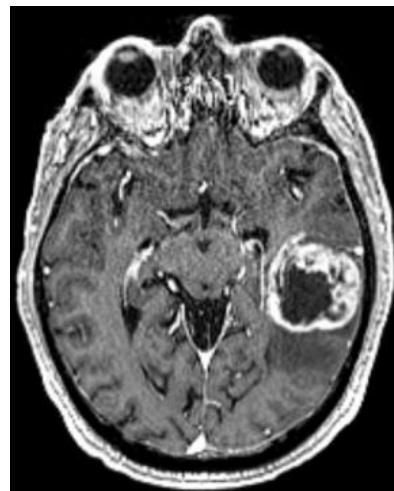
prevalence (17%) of prior exposure to therapeutic radiotherapy in GMB patients [22]. Indicating that prior exposure to therapeutic radiation raises the risk of glioblastoma incidence. The latency between exposure to radiation and glioblastoma incidence ranges from a few years to many decades.

Research indicates a reduced glioblastoma incidence with allergies and atopic diseases [23]. Anti-inflammatory medications possess a protective impact on glioblastomas [24].

Research indicates no concrete proof of GMB associations with lifestyle such as alcohol consumption, smoking drug usage, or exposure to N- Nitroso compounds [25]. Research indicates that cell phones don't raise the risk of glioblastoma incidence. Yet, long-term usage of cell phones has not been fully examined and requires further research [26].

A set of hereditary cancer syndromes highly raise the incidences of glioblastomas, such as Li-Fraumeni syndrome and Lynch syndrome [27]. Other studies reported that the incidence of glioblastoma increases with reduced susceptibility to allergy, immune genes, immune factors, and specific single-nucleotide polymorphisms [24].

II.1.6 Symptoms


The symptoms of glioblastoma include; persistent headaches followed by seizures, loss of appetite, focal neurological deficits, gradual speech difficulty, intracranial pressure like nausea, changes in the ability to think and learn, vomiting, double or blurred vision, changes in mood and personality, and new onset of seizures [3,26, 27].

II.1.7 Diagnosis

State-of-the-art imaging technologies can accurately specify the site of brain cancer, such as computed tomography (CT or CAT scan) as well as MRI (magnetic resonance imaging). During surgery, intraoperative MRI can be used to guide tissue biopsies and tumor removal. For the examination of the tumor's chemical profile Magnetic resonance spectroscopy (MRS) is used [27].

II.1.7.1 Conventional MRI:

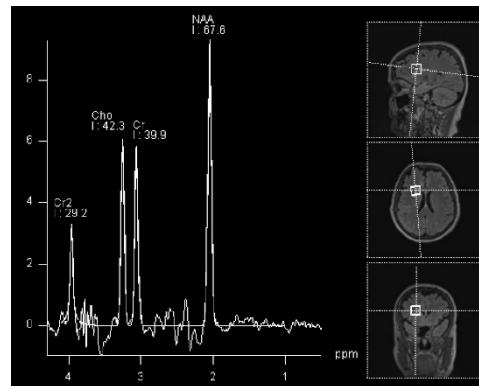

MRI stands for Magnetic resonance imaging which is the most significant imaging analysis for astrocytoma. MRI examination is performed twice firstly before the patient receives the IV contrast and then performed again after the patient receives the IV contrast. If the tumor displays the contrast and appears bright on images this indicates astrocytoma with a higher grade. Some imaging lines allow indications of brain infiltration, swelling, and tumor cellularity [27]. As shown in the figure below glioblastomas exhibit intense contrast enhancement as well as central necrosis, unlike Lower-grade gliomas that do not exhibit considerable contrast enhancement [27].

Fig 1. Post-gadolinium administration MRI spectroscopy [27].

II.1.7.2 MRI spectroscopy (MRS):

MRS is a non-invasive method used for tissue sampling, yet it is not as precise as a conventional biopsy. MRS is an imaging machine that is based on Magnetic resonance imaging, which gives an insight into the chemical and molecular composition of a given tumor and functions according to the fact that particular molecules exist abundantly in healthy brain tissues, while other molecules exist abundantly in tumor tissues such as choline. The results are illustrated in a diagram that shows the amount of each chemical in different brain areas. If the levels of NAA exceed choline, this indicates a healthy brain as shown in Figure 2 below. The contrary results increase the probability of a tumor [27].

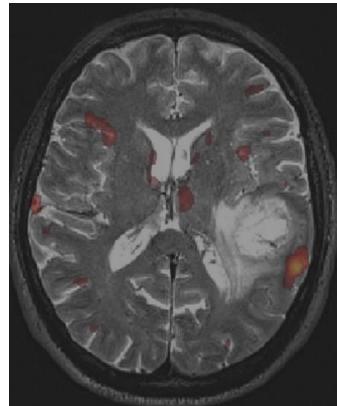


Fig. 2 MRI presents the levels of NAA exceeding choline indicating a healthy brain [27].

II.1.7.3 fMRI (Functional Magnetic resonance imaging)

Functional MRI is a valid practice used to discover the impacts of particular actions performed by the patient on the activity of specific brain parts. This practice is essential to determine the brain parts of the patient that would result in disabilities if impaired.

The parts that exhibit brain activity are illustrated in signals distinguished by red and yellow colors as shown in Figure 3 below [27].

Fig 3. Functional MRI spectroscopy of a patient that was taken throughout object naming. [27]

For patients in which the tumor is found in functionally critical parts, such as the motor cortex, speech centers, or visual cortex, Functional MRI possesses a vital adjunct, especially regarding the planning of surgical intervention. The red and yellow signal exhibits considerable activity in the left temporoparietal area, in the anatomical part required for proper language production, and close to the glioblastoma site [27].

II.1.8 Glioblastoma Grading

Glioblastomas are categorized according to their morphology by WHO as grades 5 distinct. Grade I represents benign tumors, grade II represents moderately benign tumors, grade III represents lower-grade malignant tumors, and finally, grade IV includes glioblastoma multi-forme which is an aggressive malignant tumor.

As mentioned earlier, CT and MRI are used to scan for brain tumors, once a tumor is detected a biopsy is obtained and inspected by a neuropathologist. Tissue analysis is performed to designate the tumor's grade. The glioblastoma grades provide insight into the type and WHO tumor classification and the growth rate of the tumor. The table below shows the different grading of glioblastoma [27].

Table 1. Glioblastoma grading.

Classification	Histologic Grades
Grade II	Cytologic atypia (nuclear shape difference, size variation, and hyperchromasia
Grade III	Anaplasia and elevated mitotic activity (high cellularity)
Grade IV	Necrosis and microvascular proliferation.

II.1.9 Pathophysiology

Glioblastoma cells express multiple epigenetic and genetic modifications. these modifications are essential in recognizing, categorizing, and comprehending the specific behavior of a certain tumor as well as its resistance to a given treatment. Glioblastoma stem cells have key mutations in addition to triggering mutations. Primary glioblastoma tumors originate from neural stem cell precursors, while secondary glioblastomas originate from genetic mutations in mature neural cells such as astrocytes.

Genetic mutations express and suppress specific genes, resulting in cellular and extracellular matrix modifications that eventually lead to multiple biochemical forms. Thus, the name glioblastoma multiforme is derived from the degree of genotypic variations [28].

The table below shows a set of precise genetic modifications found in glioblastomas that can be useful for prognosis and therapy response prediction and could also be used to determine therapeutic targets. Next-generation sequencing provides molecular profiling and analysis of glioblastomas to enhance diagnostic precision, therapeutic target specification, and prognosis.

Table 2. Significant Molecular Modifications in Glioblastoma [27, 29, 30, 31,32]

IDH mutation	Prognostic value, potential therapeutic target
MGMT methylation status	Prognostic value, predictive value for response to temozolomide
EGFR mutation	Diagnostic marker for glioblastoma, potential therapeutic target
TERT promoter mutation	Diagnostic marker for glioblastoma
Gain for 7p and loss of 10q	Diagnostic marker for glioblastoma
H3F3A	Diagnostic marker for a subset of gliomas (H3 K27M-mutant and H3 G34 mutant), therapeutic target
FGFR fusion	Therapeutic target
NTRK fusion	Therapeutic target

II.1.9 Histopathology

Glioblastoma is histopathologically characterized by necrosis, microvascular proliferation, pleomorphic cell composition, nuclear hyperchromasia, significant angiogenesis, and increased mitotic and cellular activity [33, 34]. Moreover, recently formed vessels comprise various Weibel-Palade bodies which do not exist in the

endothelial cells of healthy brains. Moreover, vessels might possess thrombi that lead to damage in endothelial cells and hence promote tumor proliferation [3].

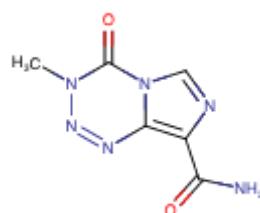
The necrosis patterns differ in primary and secondary glioblastoma. In primary glioblastoma, the necrotic regions exist in the large necrotic areas in the center leading to lack in blood supply, and also exist in several small foci surrounded by pseudopalisading. While in secondary glioblastoma, necrotic regions only exist in several small foci surrounded by pseudo-palisading [26]. Astrocytomas possess GFAP (glial fibrillary acidic protein). Loss of its expression implies high malignancy and indicates undifferentiated tumor cells [3].

II.1.10 Glioblastoma Treatment

Current glioblastoma treatment care includes maximal safe surgical resection ensuring the removal of the tumor accompanied by radiation and adjuvant chemotherapy. During the tumor resection surgery, the tumor is removed as much as possible without damaging the nearby healthy brain tissues required for healthy neurological activity. Nevertheless, glioblastomas are enclosed by a surrounding of tumor cells that migrate, penetrate, and invade nearby healthy tissue, hence it is difficult to resect the tumor completely. Yet tumor resection comes in quite handy with cells that show resistance to chemotherapy and/or radiotherapy and hence decrease intracranial pressure. Moreover, debulking the tumor during surgery helps increase the life span of patients and enhances their life quality.

In the majority of cases, a craniotomy is performed, in which the skull is opened to access the tumor location. This is often performed with computer-guided imaging and employing intra-operative mapping approaches to specify the sites of the language cortex, motor, speech cortex, and sensory. Intraoperative mapping is performed during the operation on an awake patient and mapping the anatomy of their language function throughout the operation to determine which tumor parts can be removed without causing any disabilities

Post-surgery treatments include radiation therapy and chemotherapy, which can begin once the wound is healed. Radiation selectively destroys the remaining tumor cells. In standard external beam radiation therapy, several radiation fractions sessions are exposed to the tumor site and its surroundings to eliminate the migrating infiltrating tumor cells. Each session damages healthy and tumor tissues, with a time gap between sessions to only allow normal cells to repair their damage. This procedure is performed in 10 to 30 sessions depending on the case, frequently delivered once a day or five days a week. Radiation therapy results in enhanced results and more prolonged survival rates in comparison with surgery alone.


Radiosurgery is a therapy procedure that employs technological radiation delivery systems to concentrate radiation at the location of the tumor tissues while decreasing the radiation exposure to the nearby healthy brain tissues. Radiosurgery is applicable for cases with tumor recurrence usually utilizing further data based on MRS or PET scans. Patients receiving chemotherapy are given certain chemicals designed to destroy tumor tissues. Temozolomide is the current mainstay chemotherapy for glioblastoma. Daily Drug administration is usually performed during radiotherapy treatment and for six cycles post-radiotherapy sessions throughout the maintenance stage. Every cycle is 28 days long, in which temozolomide is administrated in the first 5 days of every cycle, followed by rest for 23 days.

Furthermore, the Tumor Treating Fields treatment is administrated throughout the maintenance stage, it involves exposure to alternating electrical fields, which help inhibit cancer cells from growing and dividing. Tumor treating fields treatment combined with chemotherapy enhanced the median overall survival of patients from 16 to 20.9 months. Last but not least, Lomustine chemotherapy and bevacizumab targeted therapy are both given to patients with progressed tumors [30, 27, 35,36, 37]

II.2 Temozolomide Resistance

Temozolomide is an alkylating chemical utilized as a chemotherapy treatment in glioblastoma multiforme as well as refractory anaplastic astrocytoma. In 1999 temozolomide was FDA-approved as an oral capsule, while the intravenous injection was FDA-approved on February 27, 2009 [38]. The Chemical Formula of Temozolomide is (C₆H₆N₆O₂) and its chemical structure is shown in Figure 1 below.

Temozolomide is an imidazotetrazine pro-drug characterized by acidic pH stability yet meets spontaneous non-enzymatic hydrolysis at neutral or merely basic pH. The given characteristics of Temozolomide permit its oral and intravenous applications [38, 39,40, 41]. After initial hydrolysis, additional reactions release a significantly reactive methyl diazonium cation with the ability to methylate diverse residues on adenosine and guanine bases resulting in DNA lesions and eventually apoptosis [40, 41]. Regardless of the significant genetic heterogeneity, Glioblastoma usually possesses impaired DNA repair systems, resulting in alkylating agent sensitivity. Unfortunately -in the long term-glioblastoma tumors tend to develop resistance to alkylating agents [38, 42, 43, 44].

Fig. 4 Chemical Structure of Temozolomide.

Temozolomide treatment induces myelosuppression in which bone marrow activity declines leading to a decrease in red blood cells, platelets, and white blood cells. Myelosuppression is observed to be more intense in females and geriatric patients. Given the fact that Temozolomide treatment and myelosuppression are associated - prior to Temozolomide treatment- the platelet count should be $\geq 100 \times 10^9/L$, and the patient's ANC (neutrophils count) should be $\geq 1.5 \times 10^9/L$. ANC and platelet count should be monitored weekly throughout the treatment and until recovery [38, 44].

Patients receiving Temozolomide treatment are observed to develop myelodysplastic syndrome and myeloid leukemia as a secondary malignancy. Temozolomide patients are also susceptible to Pneumocystis pneumonia and severe hepatotoxicity. Moreover, experiments conducted on animals indicate that temozolomide causes severe embryo-fetal toxicity for both male and female patients, hence patients must follow a contraception routine for three months in males and six months in females after receiving temozolomide treatment [38].

Temozolomide is abbreviated as TMZ which is a small lipophilic alkylating agent with only 194 Da that falls under imidazotetrazine category. Imidazotetrazines are organic polycyclic compounds composing an imidazole ring linked to a tetrazine ring. Imidazole is a 5-membered ring made up of three carbons, and two nitrogens centered at the 1- and 3-positions. Tetrazine is made up of two carbons and four nitrogens and it is a 6-membered aromatic heterocycle [38, 41, 43, 44, 45].

Temozolomide is capable of crossing the BBB (blood-brain barrier) to act on CNS tumors. Once absorbed, Temozolomide spontaneously and non-enzymatically breaks down at physiological pH forming MTIC (5-(3-methyltriazen-1-yl) imidazole-4-carboxamide), and starts reacting with water forming AIC (5-aminoimidazole-4-carboxamide) and an extremely active methyl-diazonium cation. Glioblastoma and brain tumors in general retain more alkaline pH levels than normal tissues, favoring Temozolomide activation in tumor tissues [41,44].

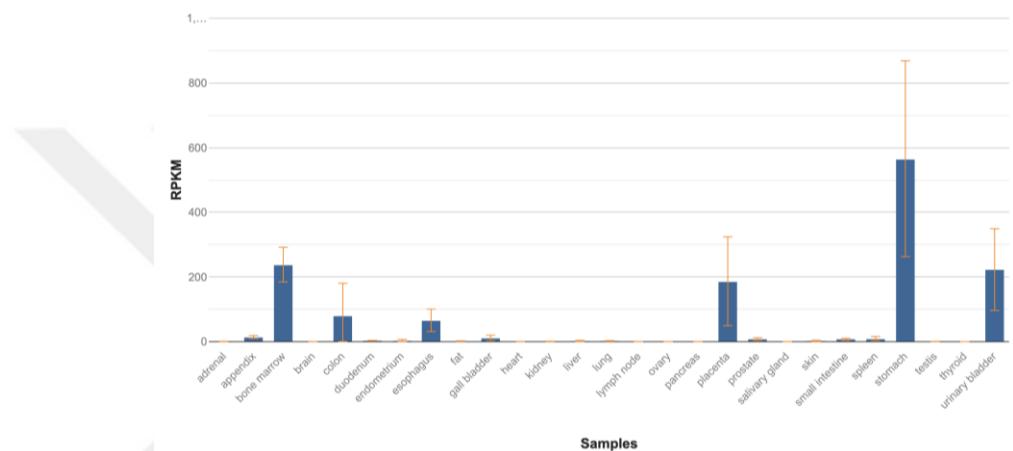
The methyl-diazonium cation favors DNA methylation of guanine at the N7 and O6 position (N7-MeG 70%), (O6-MeG, 6%), adenine at the N3 position (N3-MeA, 9%). While N3-MeA and N7-MeG are quickly restored via the base-excision repair pathway and are not direct mediators of TMZ toxicity, lesions such as N3-MeA are fatal if do not go through repairing. On the other hand, repairing O6-MeG demands an enzyme called MGMT (suicide methylguanine-DNA methyltransferase), which repairs guanine by removing the methyl group. O6-MeG mispairs with thymine if not restored by MGMT leads to the activation of the MMR pathway (DNA mismatch repair) removing the thymine (not the O6-MeG), causing ineffective repair cycles and eventually breaking the DNA strand resulting in apoptosis [41, 44].

Since DNA mismatch repair pathway activation is essential for TMZ cytotoxicity, cells that harbor decreased or missing MGMT activity and functional MMR pathway are the most susceptible to TMZ administration. Temozolomide treatment failure in glioblastomas involves the upregulation of MGMT and the downregulation of MMR (TMZ resistance) [41, 43, 44].

Recent studies focused on the immunomodulatory impacts of TMZ and its associations with its myelosuppressive impacts indicated that lymphodepletion may improve the antitumor effect of cellular immunotherapy and enhance memory cell dynamics by modifying tumor-specific and tumor-tolerant cells. The diminished immunosuppressive Treg cells at the tumor site can potentially induce enhanced immunotherapy responses [46].

In terms of toxicity, myelosuppression is the major dose-limiting toxicity of temozolomide. Even though myelosuppression is likely to arise at any dosage, it is more severe at increased dosages [38]. Patients receiving higher dosages encountered adverse reactions, such as infection, prolonged and intense myelosuppression, and even death. Patients who received 2000 mg per day for five days encountered pyrexia, pancytopenia, and multiorgan failure, which eventually led to death. Hence complete blood count administration is crucial for patients with temozolomide overdose [38, 44]. Evidence revealed that combining TMZ chemotherapy with radiation resulted in a two-month increase in overall survival in glioblastoma [47].

II.3 Calcium-Binding Protein P S100P


Ca²⁺-binding protein P -abbreviated as S100P- is a S100 family member. This family of proteins is composed of two EF-hand (helix-loop-helix) calcium-binding motifs, and are located in the nucleus and/or cytoplasm of a broad spectrum of cells and are associated with vast cellular activities including cell cycle progression and differentiation, regulation of calcium homeostasis, cell proliferation, cell invasion, apoptosis, protein phosphorylation, cell motility, cancer metastasis, autoimmunity, Chemotaxis, angiogenesis, regulation of transcriptional factors, cytoskeleton interactions, and inflammation [48]. There are more than 20 small dimeric calcium-binding proteins in the S100 family, hence it is considered the greatest group of the EF-hand superfamily [49].

The S100 genes family members exist as a cluster on chromosome 1q21; yet, S100P gene is localized at chromosome 4p16 as shown in Figure 3 below. S100P protein binds to Ca²⁺, Zn²⁺, and Mg²⁺ [50].

Fig. 5 S100P location on Chromosome 4 - NC_000004.12

S100P protein was initially discovered in the placenta of humo sapiens [48] it is also found in other organs as shown in Figure 4 below which depicts an experiment in which RNA sequencing was performed on 95 human tissue samples from 27 distinct tissues to demonstrate the tissue-specificity of SP100[50].

Fig. 6. Expression levels of SP100 in different cell types.

S100P possesses a distinct structural domain called EF-hand motif, which is found as intracellular or secreted homodimers or heterodimers. The EF-hand motif composition differs from one cellular context to another [51].

The roles played by S100P primarily depend on its regulations of or interactions with diverse molecules that carry out the regulation of extracellular matrix remodelings, and actin cytoskeleton dynamics such as Ezrin, myosin IIA, IQGAP1, cathepsin D, and phosphorylated cofilin [52,52,54,55]. S100P functions as a signaling molecule both, intracellularly and extracellularly [65, 57, 58]. Even though the mechanisms of S100P regulations have not been thoroughly reported in DNA, microarray reveals that S100P is upregulated by estradiol [59], progesterone [60], and HER2 overexpression [61].

S100P acts as an oncogene by activating RAGE which is a receptor for advanced glycation end product [62]. The extracellular ligand-binding domain of this receptor binds to various ligands such as S100P and triggers a downstream signaling pathway that stimulates cell proliferation, viability, as well as cell motility. studies reported that blocking the interactions between S100P and RAGE results in efficient inhibition of tumor growth [63].

Furthermore, the elevation in cellular calcium concentrations results in the formation of S100P dimers that act by binding and activating cytoplasmic proteins known as Ezrin [64]. The interactions between Ezrin and S100P dimers stimulate TEM (transendothelial migration) in patients with pancreatic cancer, lung cancer, and TNBC [65]. Additionally, S100P upregulates cyclin D1 and CDK2 which in response promoted cell proliferation in hepatocellular carcinoma [66]. The accumulation of S100P protein in tumor cells promotes the invasion of tumors by triggering angiogenesis [67]. S100P is predominantly found in the nucleus and cytoplasm of cells, yet it is found in the extracellular matrix as well, in both autocrine and paracrine manner [68].

Elevated plasma levels of S100P are highly involved with the deficient prognosis of MBC patients (metastatic breast cancer). Research indicates that radiation therapy of these patients results in a decrease in plasma levels of S100P [69].

S100P plays a vital role in drug responses in various types of cancer, either by promoting drug resistance [71, 71] or improving drug sensitivity [72]. In pancreatic cancer, the overexpression of S100P impacts 5-fluorouracil resistance [73], and also affects the irinotecan resistance in prostate cancer [74]. Moreover, the overexpression of S100P is correlated with the resistance to several drugs including cyclophosphamide, mitoxantrone, etoposide, and methotrexate in various cancer cell lines [75].

Studies also showed that S100P binds p53 and its negative regulator HDM2 which blocks p53-HDM2 complex binding resulting in an increase of the p53 level. The p53 induced by S100P impairs the activation of its transcriptional targets such as bax, hdm2, and p21WAF after DNA damage. S100P improves chemoresistance via binding and inactivating p53 [76]. On the other hand, a study conducted on patients with ovarian cancer cells revealed a

chemosensitization impact of S100P in different chemotherapeutic drugs such as carboplatin, 5-fluorouracil, paclitaxel, doxorubicin, and etoposide [77]. another study conducted on 8307 cell lines (colon cancer) indicates that S100P is involved with oxaliplatin sensitivity in cells that exhibit drug resistance [78]. These discoveries imply that both chemo-resistance and chemo-sensitivity can be fine-tuned by S100P in several cancers [79].

Studies associate S100P with increased cell motility and proliferation favoring the progression of diverse solid cancers [80, 81]. In addition, a study performed on benign rat mammary cell lines indicated that the overexpression of S100P stimulates metastasis [82]. Other studies associate S100P mechanistically with high cell migration and collective cell invasion [83,84]. S100P expression promotes cell motility and proliferation in vitro and carries out CRC metastasis in vivo [85].

The crystal structure of calcium-binding proteins S100P indicates that the homodimer S100P is made up of 95 amino acid monomer exhibiting a four α -helical structure and

the gene that codes for S100P is located on the human chromosome 4, at 4p16 [86, 87]. This specific chromosomal site has been linked with Huntington's disease [88], Wolf-Hirschhorn syndrome, Familial Wolfram syndrome [89, 90], Crohn's disease [91], and cervical cancer [92, 93].

In gastrointestinal cancers, S100P acts as a prognostic biomarker [94, 95]. Recent publications pursue enhancing the detection of oral cancer from salivary proteins, salivary RNA, salivary proteases, proteomic, and transcriptomic classes of several biomarkers including S100P. S100P transcripts were significantly increased in Oral squamous cell carcinoma [96]. In a recent study single-cell sequencing of RNA was performed on 144,878 samples from 14 pairs of iCCA tumors and normal liver tissues, the study revealed that S100P acts as a marker for iCCA perihilar large duct type (iCCApHl) and peripheral small duct type (iCCApps). S100P+ iCCApHl has considerably decreased levels of infiltrating CD4+ T cells, CD56+ NK cells, and elevated CCL18+ macrophages and PD1+CD8+ T cells in comparison with S100P- iCCApps [97].

S100P is overexpressed in mucin-secreting intrahepatic cholangiocarcinoma and is indicated to be a vital biomarker for perihilar large duct type cancer (iCCApHl) [98,99]. S100P is used as a non-invasive biomarker to identify non-metastatic pancreatic cancer [100]. S100P plays a noteworthy role in the tumorigenesis and immune microenvironment of pancreatic cancer suggesting that S100P presents a novel immune-related biomarker [101]. S100P has been previously reported as a metastasis and progression-related gene in ICC [102, 103]. S100P is a promising immunocytochemical marker [104].

S100P is upregulated in several types of cancer and plays a crucial role in the progression of tumors [105, 106, 107]. A recent study discovered that KRT17 and S100P genes were highly associated in nine intrahepatic cholangiocarcinomas (ICC) gene expression datasets, ICCs with S100P and KRT17 upregulation were involved with a poorer prognosis than those with downregulated S100P and KRT17 [108]. Survival analysis showed decreased survival for patients with upregulated S100P in HMECs cells [109]. In Lung Adenocarcinoma S100P was shown to be highly associated with the prognosis of LUAD patients. S100P drives TAMs (Tumor-associated macrophages) migration and M2 polarization in the immuno-suppressive tumor niche. Moreover, S100P drives the recruitment and polarization of TAMs in tumor tissues, which are crucial in the formation of an immunosuppressive tumor niche [110].

The upregulation of miR495 or S100P knockdown depressed the proliferation and invasion of pancreatic adenocarcinoma cells and promoted its apoptosis [111,112,113,114], S100P also plays a role in dysplastic leukoplakia and oral squamous cell carcinoma [115]. Moreover, elevated immuno-histochemical levels of S100P are correlated with significantly decreased survival rates of patients with breast [116, 117],

Hepatocellular [118,119] early stage non-small cell lung [120,121, 122, [123], Colon [124], Gallbladder Cancer [125, 126,127] and ovarian cancers [128,129] Breast cancer [130,131,132,133] prostate cancer [134], human acute myeloid leukemia [135], Colorectal Neoplasia [136,137,138]

Last but not least recent research indicates that S100P protein is a potent inducer of metastasis, and it is significantly correlated with decreased survival times in cancer. This study's findings pinpoint at least two S100P-dependent migration pathways, the first one is extracellular and the second one is intracellular, and indicate that the C-terminal lysine of S100P can be used as a target for the inhibition of several migration-inducing interactions of S100P proteins and S100P-based metastasis [139].

III. Materials and Methods

III.1. Dataset selection and data preprocessing

For this study, we selected the microarray gene expression data of U251 cells that were both sensitive and resistant to temozolomide. The dataset was obtained from the Gene Expression Omnibus (GEO) database, using the accession number GSE100736 (Available from <https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE100736>). This dataset comprised a total of six samples, three samples representing temozolomide-sensitive cells and the other three samples representing temozolomide-resistant cells. To ensure the reliability and accuracy of the analysis, we performed data preprocessing using R version 4.2.3 and several relevant packages, including LIMMA [140], GEOquery [141], Biobase, and ggplot2 [142]. The data preprocessing steps involved background correction and normalization. Background correction was carried out using the NormalizeQuantiles function within the LIMMA package. This step helps eliminate systematic variations in the data caused by factors unrelated to the gene expression itself.

After background correction, normalization techniques were applied to ensure that the gene expression values were on a comparable scale. And for this purpose, the Normalize Quantiles function from the LIMMA package was used. By normalizing the data, we could minimize technical variations introduced during the experimental process. Next, we performed data filtering to remove probes with low expression values that could potentially introduce noise into the analysis. We retained only those probes that exhibited expression in at least 50% of the samples within each group (temozolomide-sensitive and temozolomide-resistant cells). This step ensured that the selected probes were representative of the gene expression patterns in each group.

To determine genes that were differentially expressed between temozolomide-sensitive and resistant U251 cells, we conducted differential expression analysis. This analysis was performed using the limma package in R, which employs a linear model approach to estimate the differential expression. The DEG analysis was based on the following

criteria: an absolute log fold-change ($|\log FC|$) greater than or equal to 5 and an adjusted p-value less than 0.0001. These thresholds were chosen to prioritize genes that exhibited substantial changes in expression levels between the two cell groups while also ensuring statistical significance. By following these rigorous data preprocessing and analysis steps, we aimed to identify robust differentially expressed genes (DEGs) that could potentially be associated with temozolomide resistance in U251 cells.

III.2. Co-expression network analysis

To gain a deeper understanding of the interrelationships among the differentially expressed genes (DEGs) pinpointed in our study, we conducted co-expression network analysis. This analysis was performed using Cytoscape version 3.9.1 [143] along with the GeneMANIA plugin [144]. The GeneMANIA plugin facilitated the construction of a co-expression network by integrating various types of functional interaction data, including co-expression, co-localization, and shared protein domains. This comprehensive approach allowed us to explore potential functional relationships among the DEGs.

To visualize the co-expression network, we employed the force-directed layout algorithm available in Cytoscape. This algorithm strategically positions nodes that exhibit strong connectivity in close proximity to one another. This visualization approach helps identify clusters or modules of genes that may share common functions or participate in similar biological processes. Furthermore, we utilized the NetworkAnalyzer plugin to evaluate the network's topological characteristics and identify the most interactive DEGs within the network. Various measures such as degree centrality and betweenness centrality were employed to assess the significance of individual nodes in the network. Degree centrality represents the number of connections a gene has with other genes, while betweenness centrality indicates the extent to which a gene serves as a bridge between different modules or clusters within the network.

The co-expression network, along with the identification of the most interactive DEGs, provides valuable insights into potential functional relationships and pathways that could be involved in glioblastoma. By analyzing the network, we can uncover key genes or modules that play crucial roles in the disease's molecular mechanisms. To further elucidate the biological significance of the identified genes, we recommend conducting functional annotation and pathway analysis. These additional analyses can shed light on the specific molecular functions, biological processes, and pathways in which the DEGs are involved. Such information could aid in unraveling the underlying mechanisms of glioblastoma and potentially screen for novel therapeutic targets for this devastating disease.

III.3. Cell lines and culture

The U-251 human glioblastoma cell line, a widely used cell line for glioblastoma cancer research, was obtained commercially. The cells were cultured in RPMI-1640 media

supplemented with 1% antibiotics and 10% fetal bovine serum (FBS). This culture medium provided the necessary nutrients and growth factors to support cell growth and viability. The addition of antibiotics helped prevent contamination during cell culture. The cell culture was maintained in a humidified incubator with 5% carbon dioxide at a constant temperature of 37 degrees Celsius. This controlled environment mimicked physiological conditions suitable for the growth and survival of the U-251 cells.

For subculturing or passaging, the cells were detached from the culture flask using trypsinization. Trypsin, a proteolytic enzyme, facilitated the detachment of cells from the culture surface, allowing for their subsequent transfer to new culture vessels. The detached cells were then resuspended in a fresh medium for further growth and experimentation. To ensure long-term storage and preservation of the U-251 cells, cryopreservation techniques were employed. The cells were cryopreserved in Dulbecco's Modified Eagle Medium (DMEM) supplemented with 10% FBS and 10% dimethyl sulfoxide (DMSO). The addition of DMSO acted as a cryoprotectant, preventing damage to the cells during the freezing and thawing processes.

Cryopreservation allowed for the establishment of a cell bank for future experiments and maintained the genetic stability of the cell line. Throughout the experimental procedures, the U251 cells in the log phase of growth were utilized. The log phase represents the period of active cell proliferation, ensuring consistent and reliable results across subsequent tests. By employing these standardized cell culture techniques and maintaining the cells in optimal conditions, we ensured the availability of viable U-251 glioblastoma cells for our experiments, allowing for the reliable investigation of temozolomide sensitivity and resistance mechanisms.

III.4. Transfection of siRNA

In order to investigate the functional role of SP100 gene in U-251 glioblastoma cancer cells, we employed the Gene Pulser electroporation device for transfection. The specific siRNA targeting SP100 (Santa Cruz, USA) was utilized for gene knockdown.

The transfection process was conducted following the manufacturer's instructions provided by Bio-Rad. Briefly, U-251 cells were harvested and resuspended in an appropriate electroporation buffer. The siRNA and cell suspension were mixed together, and the mixture was transferred to an electroporation cuvette. The cuvette containing the cell-siRNA mixture was then placed in the Gene Pulser electroporation device.

To optimize transfection efficiency, we applied specific electroporation parameters. The settings used were TC = 12.5 ms and voltage = 160 V with a square wave. These parameters were determined based on preliminary experiments and established protocols for efficient gene delivery into U-251 cells. Following electroporation, the transfected cells were immediately transferred to various cell culture plates or dishes, depending on the specific assays or experiments being conducted. The choice of culture

plates was based on the requirements of the downstream analyses and assays. Subsequent experimental procedures were performed according to the specific assays and endpoints of interest. The transfected cells were incubated under appropriate culture conditions, including a humidified incubator at 37 degrees Celsius with 5% carbon dioxide. The transfection of siRNA allowed for the targeted knockdown of the SP100 gene in U-251 glioblastoma cells, providing a valuable tool to investigate the functional consequences of SP100 depletion in the context of glioblastoma.

III.5. Quantitative Real-time Polymerase Chain Reaction and Gene Expression

To assess the gene expression levels of SP100 and TRIM29 in U-251 glioblastoma cells, quantitative real-time polymerase chain reaction (qRT-PCR) was performed. The primer sequences used for the amplification were obtained from Bioneer (South Korea) and are listed in Table 3.

U-251 glioblastoma cells were seeded in 6-well plates at a density of 4×10^5 cells per well, using plates from SPL (South Korea). The cells were allowed to adhere and grow until reaching the desired confluence. Total RNA was extracted from the cells using the Trizol reagent, specifically the RiboEx Kit from GeneAll (Korea). The Trizol reagent is a widely used method for efficient RNA isolation from various biological samples. Following the extraction, cDNA synthesis was performed according to the protocol provided within the kit, utilizing the cDNA synthesis components from Biofact (Korea).

To quantify the expression levels of SP100 and TRIM29 genes, qRT-PCR was carried out using the SYBR Premix Ex Taq from Biofact. The StepOne Plus real-time PCR equipment from Applied Biosystems (Thermo Fisher Scientific, USA) was employed for the amplification and detection of the PCR products. This system allows for real-time monitoring of the amplification process, enabling accurate quantification of gene expression levels. GAPDH, a commonly used housekeeping gene, was utilized as an internal control for normalization purposes. It helps account for variations in RNA input and cDNA synthesis efficiency, ensuring accurate comparisons between different samples.

The mRNA expression levels of SP100 and TRIM29 genes were determined using the $2^{-\Delta\Delta Ct}$ method. This method involves calculating the fold change in gene expression relative to a control or reference sample, based on the threshold cycle (C_t) values obtained during qRT-PCR. By employing qRT-PCR and the $2^{-\Delta\Delta Ct}$ technique, we were able to quantitatively analyze the expression levels of SP100 and TRIM29 genes in U-251 glioblastoma cells. This analysis provides valuable insights into the potential involvement of these genes in glioblastoma and their potential roles as biomarkers or therapeutic targets.

Table 3: The primer pairs used in the study.

Sequence of primers	Primer	Gene name
5'-AAGGATGCCGTGGATAAATTGC-3' 5'- ACACGATGAACACTCACTGAAGTC-3'	Forward Reverse	SP100
5'-CTGTTCGCGGGCAATGAGT-3' 5'-TGCCTTCCATAGAGTCCATGC-3'	Forward Reverse	TRIM 29
5'-CTGGGCTACACTGAGCACC -3' 5'- AAGTGGTCGTTGAGGGCAATG-3'	Forward Reverse	GAPDH
5'-CCGUGGAAUAAUUGCUCAdTdT -3' 5' -UUGAGCAAUUAUCCACGGdTdT-3'	Sense Anti-Sense	SP 100 siRNA

III.6. MTT Assay

The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay was employed to assess the cytotoxic effects of Temozolomide on glioblastoma cancer cells. This colorimetric assay is commonly used to measure cell viability and proliferation. U-251 glioblastoma cells were seeded in 96-well plates at a density of 1.2×10^4 cells per well and allowed to adhere and grow overnight. The cells were then treated with various concentrations of the drug candidate, Temozolomide, ranging from 0.01 to 100 μM . This concentration range was chosen to evaluate the dose-dependent response of the cells to the drug.

Following a 48-hour incubation period, the MTT assay was performed. The MTT solution, prepared at a concentration of 5 mg/ml, was added to each well (20 μl per well). The cells were further incubated for 4 hours to allow the conversion of the yellow tetrazolium salt, MTT, into purple formazan crystals by metabolically active cells. After the incubation period, the formazan crystals were dissolved by adding 100 μl of dimethyl sulfoxide (DMSO) to each well. This step solubilized the formazan crystals, resulting in a colored solution proportional to the number of viable cells. The absorbance of the solution was measured using a microplate reader (Tecan, Switzerland) at a wavelength of 570 nm, with a reference wavelength of 620 nm to account for background noise and non-specific absorbance.

All experiments were performed in triplicate to ensure reliable and reproducible results. The average absorbance values were used to quantify cell viability and determine the

cytotoxic impacts of Temozolomide on the U-251 glioblastoma cells. By conducting the MTT assay, we were able to assess the effect of Temozolomide treatment on the viability and proliferation of glioblastoma cancer cells. The results obtained from this assay contribute to our understanding of the drug's efficacy and provide valuable information for further investigations and potential clinical applications.

III.7. Development of Temozolomide-Resistant Cells

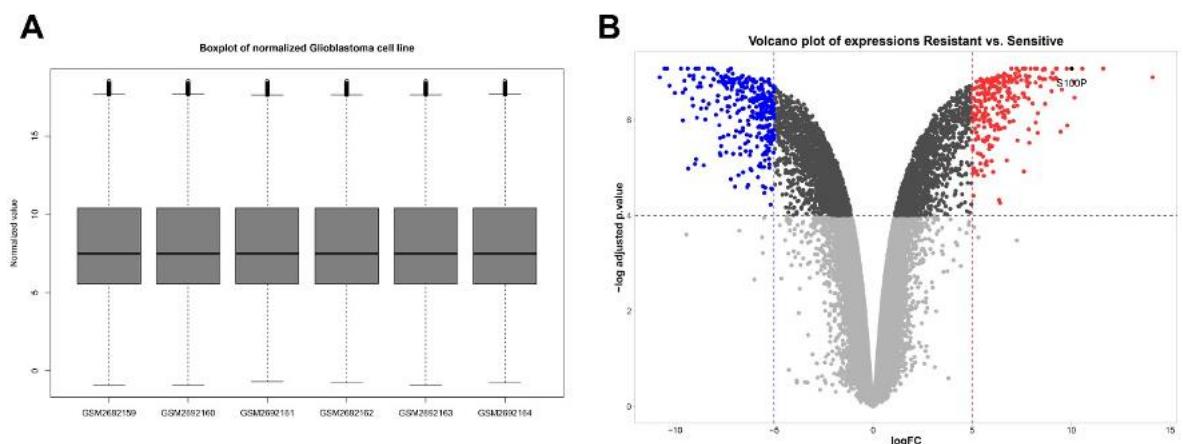
To investigate the development of resistance to temozolomide in glioblastoma cells, we employed a gradual exposure approach. U251 cells were subjected to increasing concentrations of temozolomide over several months to induce resistance. The final concentration of temozolomide used for this purpose was 100 μ M, which represents a clinically relevant concentration. Initially, U251 cells were cultured in regular media without the presence of temozolomide to establish a control group. In parallel, another set of U251 cells was exposed to incrementally increasing concentrations of temozolomide. The concentration was gradually escalated over time, allowing the cells to adapt and develop resistance to the drug. During the selection process, the temozolomide-resistant cells were continuously cultured in media containing the final concentration of 100 μ M temozolomide. This ensured the maintenance and stability of the acquired resistance phenotype. The control cells, on the other hand, were cultured without temozolomide to serve as a comparison group.

The temozolomide-resistant cells, along with the control cells, were subsequently utilized for further experiments and analyses. By comparing the resistant cells to the control cells, we aimed to identify and characterize the molecular and phenotypic changes associated with temozolomide resistance in glioblastoma. The development of temozolomide-resistant cells provides an invaluable model system for studying the mechanisms underlying drug resistance in glioblastoma. These cells allow for the exploration of altered signaling pathways, genetic changes, and potential therapeutic strategies to overcome resistance and enhance treatment efficacy.

III.8. Statistical Analysis

In this investigation, rigorous statistical analysis was performed to ensure the reliability and significance of the obtained results. Multiple independent assessments were conducted for each dataset to minimize experimental variability. Descriptive statistics, such as the mean and standard deviation, were calculated based on the measurement data to summarize the central tendency and variability of the samples.

To evaluate group differences and similarities, statistical tests such as t-tests or analysis of variance (ANOVA) were employed, depending on the nature of the comparisons. These tests allowed us to determine the statistical significance of observed differences between experimental groups. The choice of specific statistical tests was based on the experimental design and research questions. The statistical analysis was performed using GraphPad Prism version 8 software. This software is widely used for statistical


analysis and data visualization in biomedical research. A p-value of 0.05 was set as the threshold for statistical significance, indicating a 5% probability of obtaining the observed results by chance alone. Results with p-values below this threshold were considered statistically significant.

In addition to conventional statistical analysis, bioinformatics analysis was also conducted using R version 4.2.3, a powerful programming language and software environment for statistical computing and graphics. Various packages, including LIMMA, GEOquery, Biobase, and ggplot2, were utilized for bioinformatics analysis. These packages provide a range of functions and tools for data manipulation, differential gene expression analysis, visualization, and interpretation. The combination of statistical analysis using GraphPad Prism and bioinformatics analysis using R allowed us to comprehensively analyze and interpret the data obtained from different experiments and datasets. This integrated approach enabled us to draw meaningful conclusions, identify significant findings, and gain deeper insights into the investigated phenomena.

IV. Results

IV.1. DEG Analysis

We performed differential gene expression analysis to identify genes that were differentially expressed between temozolomide-sensitive and resistant U251 cells. The normalized expression values for the samples are shown in Fig. 7A. We identified a total of 591 differentially expressed genes (DEGs) using the mentioned criteria (Fig 7. 2B). Of the 591 DEGs, 263 genes were upregulated and 328 genes were downregulated in TMZ-resistant cells compared to temozolomide-sensitive cells. These genes may play important roles in the development of resistance to temozolomide in glioblastoma cells and may represent potential therapeutic targets for overcoming drug resistance.

Fig. 7 (A) Boxplot showing the normalized expression values for the samples. The box represents the interquartile range (IQR), the line within the box represents the median, and the whiskers extend to 1.5 times the IQR. (B) Volcano plot showing the DEGs between temozolomide-sensitive and resistant U251 cells. The x-axis

represents the logFC in expression, and the y-axis represents the negative log10 of the adjusted p-value. The red dots represent upregulated DEGs, the blue dots represent downregulated DEGs, and the gray dots represent non-significant genes. The dotted lines represent the cutoffs for statistical significance ($|\log\text{FC}| \geq 5$ and adjusted p-value < 0.0001).

IV.2. S100P and their co-expressed DEGs

To explore the co-expression relationships among the DEGs identified in our study, we constructed a co-expression network using the GeneMANIA plugin in Cytoscape (Fig. 8 2A). The purple lines in the network indicate highly co-expressed DEGs in a common network. We identified S100P as the gene with the highest degree in the network, with 45 interactions with other DEGs. To further explore the potential functional relationships of S100P with its co-expressed DEGs, we extracted the direct neighbors of S100P in the network and analyzed them as a separate network. The results showed that TRIM29 was the second-highest ranked gene in this network, with 23 interactions and a direct interaction with S100P (Fig. 8B).

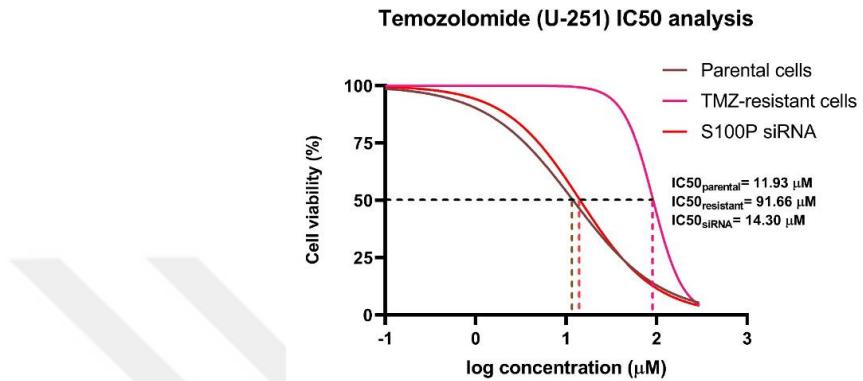


Fig. 8 (A) Co-expression network of DEGs identified in our study. The purple lines indicate highly co-expressed DEGs in a common network. S100P is shown as a red oval and TRIM29 is shown as a yellow oval. (B) Network of the direct neighbors of S100P in the co-expression network shown in panel A. S100P is shown as a red oval and TRIM29 is shown as a yellow oval. The purple lines indicate the interactions between the direct neighbors of S100P.

IV.3. IC50 analysis of parental and resistant U251 cells

To investigate the effect of temozolomide resistance on U251 cells, we performed IC50 analysis on both parental and resistant cells. We found that the IC50 value of temozolomide in the parental U251 cells was 11.93 μM , while in the resistant U251

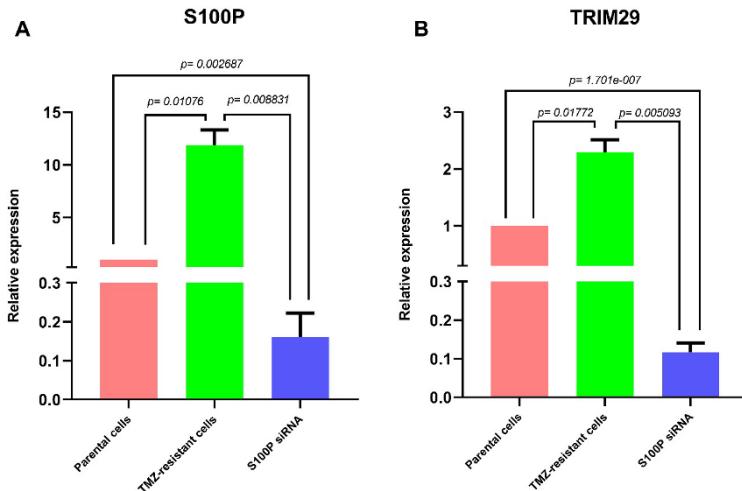

cells, it increased to 91.66 μ M, indicating that the resistant cells were significantly less sensitive to temozolomide treatment. To further explore the role of S100P in temozolomide resistance, we transfected resistant U251 cells with S100P siRNA and performed IC50 analysis. We found that the IC50 value decreased to 14.3 μ M, indicating that downregulation of S100P sensitized the resistant cells to temozolomide treatment (Fig. 9).

Fig. 9 Non-linear regression analysis of temozolomide dose-response curve in parental and resistant U251 cells with or without S100P siRNA transfection.

IV.4. Altered expression of S100P and TRIM29

To investigate the effect of temozolomide resistance on the expression of S100P and TRIM29, we performed qRT-PCR analysis on parental, resistant, and resistant cells transfected with S100P siRNA. Our results showed a significant increase in the expression levels of S100P and TRIM29 in the resistant cells compared to parental cells ($p < 0.05$). Interestingly, upon transfection of S100P siRNA, the expression levels of both S100P and TRIM29 significantly decreased compared to the resistant and parental cells ($p < 0.05$). These findings suggest that S100P may play a crucial role in the upregulation of TRIM29 in temozolomide-resistant U251 cells (Fig. 10).

Fig. 10 Expression levels of S100P and TRIM29 in parental, resistant, and S100P siRNA transfected cells. (A) qRT-PCR analysis showed a significant increase in the expression level of S100P in resistant cells compared to parental cells ($p < 0.05$). Transfection of S100P siRNA resulted in a significant decrease in the expression level of S100P compared to resistant and parental cells ($p < 0.05$). (B) qRT-PCR analysis showed a significant increase in the expression level of TRIM29 in resistant cells compared to parental cells ($p < 0.05$). Transfection of S100P siRNA resulted in a significant decrease in the expression level of TRIM29 compared to resistant and parental cells ($p < 0.05$).

V. Discussion

Glioblastoma (GBM) is the most common and lethal primary brain tumor in adults, with a median survival period of less than two years, despite advances in surgery, radiation treatment, and chemotherapy [145, 146]. Temozolomide (TMZ) is a chemotherapy medicine commonly used to treat GBM. Unfortunately, not all patients benefit from it, and one of the biggest problems in treating GBM is TMZ resistance [147,148].

There are several mechanisms underlying TMZ resistance, and one of them is the overexpression of the calcium-binding protein S100P [149]. S100P is a nuclear protein that controls the expression of genes and DNA repair [150]. Overexpression of S100P in GBM cells may cause resistance to TMZ by promoting DNA repair and reducing the production of O6-methylguanine (O6MeG), a DNA adduct responsible for temozolomide's cytotoxicity [146, 152].

Various strategies have been proposed to overcome TMZ resistance in GBM, including targeting the expression or function of the S100P protein. In a recent study, researchers investigated the impact of S100P on TMZ resistance in glioblastoma, as well as the potential of this protein as a therapeutic target [153]. In the study, the researchers used

computational bioinformatics analysis of gene expression and siRNA to target S100P protein expression levels in order to identify the mechanisms that may prevent TMZ resistance in GBM. They also investigated the possible relationship between S100P and TRIM29 in the development of TMZ resistance in glioblastoma cells. The results showed that TMZ was more effective in preventing tumor development in vitro when S100P was suppressed, indicating that targeting S100P may be a useful strategy for overcoming TMZ resistance in glioblastoma [154]. However, it is important to note that S100P is not the only component that plays a role in determining TMZ resistance, and combination treatments that focus on different pathways may be required to overcome resistance [155].

Additionally, the research was carried out with the use of cell lines and bioinformatics, and it is not yet known whether the findings can be applied to real-life situations involving actual individuals. Targeting S100P in glioblastoma patients will need more clinical testing to evaluate safety and effectiveness. Despite these limitations, the study's findings shed new light on the molecular mechanisms of glioblastoma and may contribute to the development of more effective treatments. Further research is needed to fully investigate the therapeutic potential of S100P inhibitors and to determine the safety and efficacy of this approach. In conclusion, targeting S100P may be a promising strategy to overcome TMZ resistance in glioblastoma, but more research is needed to fully explore this potential therapeutic avenue.

VI. Conclusion

In conclusion, the findings of this study demonstrate the potential for targeting the calcium-binding protein S100P as a promising strategy to overcome Temozolomide resistance in glioblastoma. The results reveal that silencing S100P can sensitize glioblastoma cells to Temozolomide treatment, ultimately enhancing its efficacy. The implications of these findings are significant, as they not only provide new insights into the underlying mechanisms of Temozolomide resistance, but also offer a potential therapeutic avenue for the treatment of glioblastoma. Glioblastoma is a highly aggressive form of brain cancer that has proven difficult to treat. Despite advances in treatment options, including the use of Temozolomide, the five-year survival rate for patients with this disease remains low. One of the main obstacles to effective treatment is the development of resistance to chemotherapy drugs like Temozolomide. Therefore, identifying new targets for therapy is critical to improving outcomes for patients with glioblastoma.

The results of this study suggest that S100P may play a critical role in Temozolomide resistance in glioblastoma. S100P is a calcium-binding protein that has been implicated in various cellular processes, including proliferation, migration, and invasion. Previous studies have shown that S100P is overexpressed in a variety of cancers, including glioblastoma, and that its expression is associated with poor prognosis. In this study,

we used RNA interference to silence S100P expression in glioblastoma cells and examined the effects on Temozolomide sensitivity. The results showed that S100P silencing significantly increased the sensitivity of glioblastoma cells to Temozolomide treatment, suggesting that S100P may be a key mediator of Temozolomide resistance in these cells.

Importantly, the findings of this study have potential implications for the development of new therapeutic approaches for glioblastoma. By targeting S100P, it may be possible to sensitize glioblastoma cells to Temozolomide and enhance its efficacy. This approach could potentially overcome Temozolomide resistance and improve treatment outcomes for patients with glioblastoma. However, further research is needed to fully investigate the molecular mechanisms of S100P-mediated Temozolomide resistance and to explore the therapeutic potential of S100P inhibitors in glioblastoma treatment. It will be important to determine whether S100P is a general mediator of chemotherapy resistance in glioblastoma or whether it is specific to Temozolomide. Additionally, the development of S100P inhibitors will require careful evaluation to ensure their safety and efficacy.

In summary, this study provides valuable insights into the mechanisms of Temozolomide resistance in glioblastoma and offers a potential therapeutic avenue for the treatment of this devastating disease. By targeting S100P, it may be possible to enhance the efficacy of Temozolomide and overcome resistance, ultimately improving outcomes for patients with glioblastoma. While further research is needed to fully explore the therapeutic potential of S100P inhibitors, this study represents an important step forward in the ongoing effort to improve treatment options for patients with this challenging disease.

VII. References

[1] Tamimi, A. F., & Juweid, M. E. (2017). Epidemiology and Outcome of Glioblastoma. In *Codon Publications eBooks* (pp. 143–153).
<https://doi.org/10.15586/codon.glioblastoma.2017.ch8>

[2] Kleihues, P., & Ohgaki, H. (2000). Phenotype vs Genotype in the Evolution of Astrocytic Brain Tumors. *Toxicologic Pathology*, 28(1), 164–170.
<https://doi.org/10.1177/019262330002800121>

[3] Kanderi, T. (2022b, September 12). *Glioblastoma Multiforme*. StatPearls - NCBI Bookshelf. <https://www.ncbi.nlm.nih.gov/books/NBK558954/>

[4] Verhaak, R. G., Hoadley, K. A., Purdom, E., Wang, V., Qi, Y., Wilkerson, M. D., Miller, C. A., Ding, L., Golub, T. R., Mesirov, J. P., Alexe, G., Lawrence, M. S., O'Kelly, M. E., Tamayo, P., Weir, B. A., Gabriel, S., Winckler, W., Gupta, S., Jakkula, L., . . . Hayes, D. N. (2010). Integrated Genomic Analysis Identifies Clinically Relevant Subtypes of Glioblastoma Characterized by Abnormalities in PDGFRA, IDH1, EGFR, and NF1. *Cancer Cell*, 17(1), 98–110.
<https://doi.org/10.1016/j.ccr.2009.12.020>

[5] Wang, Q., Hu, B., Kim, K., Kim, H., Squatrito, M., Scarpace, L., deCarvalho, A. C., Lyu, S., Li, P., Li, Y., Barthel, F. P., Cho, H. C., Lin, Y., Olson, S. D., Martinez-Ledesma, E., Zheng, S., Chang, E. Y., Sauvé, C. E. G., Olar, A., . . . Verhaak, R. G. (2017). Tumor Evolution of Glioma-Intrinsic Gene Expression Subtypes Associates with Immunological Changes in the Microenvironment. *Cancer Cell*, 32(1), 42-56.e6.
<https://doi.org/10.1016/j.ccr.2017.06.003>

[6] Majc, B., Novak, M., Kopitar-Jerala, N., Jewett, A., & Breznik, B. (2021). Immunotherapy of Glioblastoma: Current Strategies and Challenges in Tumor Model Development. *Cells*, 10(2), 265. <https://doi.org/10.3390/cells10020265>

[7] Theodorakis, P. E., Müller, E., Craster, R. V., & Matar, O. (2017). Physical insights into the blood–brain barrier translocation mechanisms. *Physical Biology*, 14(4), 041001. <https://doi.org/10.1088/1478-3975/aa708a>

[8] Fokas, E., Steinbach, J. P., & Rödel, C. (2013). Biology of brain metastases and novel targeted therapies: Time to translate the research. *Biochimica Et Biophysica Acta - Reviews on Cancer*, 1835(1), 61–75.
<https://doi.org/10.1016/j.bbcan.2012.10.005>.

[9] Lathia J.D., Mack S.C., Mulkearns-hubert E.E., Valentim C.L.L., Rich J.N. (2015) Cancer stem cells in glioblastoma. *Genes Dev.* 1203–1217. doi: 10.1101/gad.261982.115.tumors.

[10] Chen, J., Li, Y., Yu, T., McKay, R. M., Burns, D. K., Kernie, S. G., & Parada, L. F. (2012). A restricted cell population propagates glioblastoma growth after chemotherapy. *Nature*, 488(7412), 522–526. <https://doi.org/10.1038/nature11287>

[11] Galli, R., Binda, E., Orfanelli, U., Cipelletti, B., Gritti, A., De Vitis, S., Fiocco, R., Foroni, C., DiMeco, F., & Vescovi, A. L. (2004). Isolation and Characterization of Tumorigenic, Stem-like Neural Precursors from Human Glioblastoma. *Cancer Research*, 64(19), 7011–7021. <https://doi.org/10.1158/0008-5472.can-04-1364>

[12] Osuka, S., & Van Meir, E. G. (2017). Overcoming therapeutic resistance in glioblastoma: the way forward. *Journal of Clinical Investigation*, 127(2), 415–426. <https://doi.org/10.1172/jci89587>

[13] Broekman M.L., Maas S.L.N., Abels E.R., Mempel T.R., Krichevsky A.M., Breakefield X.O. Multidimensional communication in the microenvirons of glioblastoma. *Nat. Rev. Neurol.* 2018 doi: 10.1038/s41582-018-0025-8.

[14] Broekman, M. L. D., Maas, S. L. N., Abels, E. R., Mempel, T. R., Krichevsky, A. M., & Breakefield, X. O. (2018). Multidimensional communication in the microenvirons of glioblastoma. *Nature Reviews Neurology*, 14(8), 482–495. <https://doi.org/10.1038/s41582-018-0025-8>

[15] Louis, D. N., Perry, A., Reifenberger, G., Von Deimling, A., Figarella-Branger, D., Cavenee, W. K., Ohgaki, H., Wiestler, O. D., Kleihues, P., & Ellison, D. W. (2016). The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. *Acta Neuropathologica*, 131(6), 803–820. <https://doi.org/10.1007/s00401-016-1545-1>

[16] Singh, N., Miner, A., Hennis, L., & Mittal, S. (2020). Mechanisms of temozolomide resistance in glioblastoma - a comprehensive review. *Cancer Drug Resistance*. <https://doi.org/10.20517/cdr.2020.79>

[17] Ostrom, Q. T., Gittleman, H., Liao, P., Rouse, C., Chen, Y., Dowling, J. S., Wolinsky, Y., Kruchko, C., & Barnholtz-Sloan, J. S. (2012). CBTRUS Statistical Report: Primary Brain and Central Nervous System Tumors Diagnosed in the United States in 2006-2010. *Neuro-oncology*, 15(suppl 2), ii1–ii56. <https://doi.org/10.1093/neuonc/not151>

[18] Ohgaki H, Dessen P, Jourde B, Horstmann S, Nishikawa T, Di Patre PL, Burkhard C, Schüler D, Probst-Hensch NM, Maiorka PC, Baeza N, Pisani P,

Yonekawa Y, Yasargil MG, Lütolf UM, Kleihues P. Genetic pathways to glioblastoma: a population-based study. *Cancer Res.* 2004 Oct 01;64(19):6892-9.

[19] Brown, M. E., Ebert, L. M., & Gargett, T. (2019). Clinical chimeric antigen receptor- T cell therapy: a new and promising treatment modality for glioblastoma. *Clinical & Translational Immunology*, 8(5), e1050. <https://doi.org/10.1002/cti2.1050>

[20] Kollis, P. M., Ebert, L. M., Toubia, J., Bastow, C. R., Ormsby, R. J., Poonnoose, S., Lenin, S., Tea, M. N., Pitson, S. M., Gomez, G. A., Brown, M. E., & Gargett, T. (2022). Characterising Distinct Migratory Profiles of Infiltrating T-Cell Subsets in Human Glioblastoma. *Frontiers in Immunology*, 13. <https://doi.org/10.3389/fimmu.2022.850226>

[21] Ostrom, Q. T., Gittleman, H., Liao, P., Rouse, C., Chen, Y., Dowling, J. S., Wolinsky, Y., Kruchko, C., & Barnholtz-Sloan, J. S. (2012). CBTRUS Statistical Report: Primary Brain and Central Nervous System Tumors Diagnosed in the United States in 2006-2010. *Neuro-oncology*, 15(suppl 2), ii1–ii56. <https://doi.org/10.1093/neuonc/not151>

[22] Hodges, L. C., Smith, J. L., Garrett, A., & Tate, S. (1992). Prevalence of Glioblastoma Multiforme in Subjects with Prior Therapeutic Radiation. *Journal of Neuroscience Nursing*. <https://doi.org/10.1097/01376517-199204000-00005>

[23] Brenner, A. V., Linet, M. S., Fine, H. A., Shapiro, W. R., Selker, R. G., Black, P. M., & Inskip, P. D. (2002). History of allergies and autoimmune diseases and risk of brain tumors in adults. *International Journal of Cancer*, 99(2), 252–259. <https://doi.org/10.1002/ijc.10320>

[24] Houlston, R. S., Amirian, E. S., Davlin, S. L., Rice, T., Wrensch, M., & Bondy, M. L. (2011b). Effects of antihistamine and anti-inflammatory medication use on risk of specific glioma histologies. *International Journal of Cancer*, 129(9), 2290–2296. <https://doi.org/10.1002/ijc.25883>.

[25] Hochberg, F. H., Toniolo, P., Cole, P. L., & Salcman, M. (1990). Nonoccupational risk indicators of glioblastoma in adults. *Journal of Neuro-oncology*, 8(1). <https://doi.org/10.1007/bf00182087>

[26] Urbanska, K., Sokołowska, J. J., Szmidt, M., & Sysa, P. (2014b). Review Glioblastoma multiforme – an overview. *Contemp Oncol*, 5, 307–312. <https://doi.org/10.5114/wo.2014.40559>

[27] *Glioblastoma Multiforme – Symptoms, Diagnosis and Treatment Options*. (n.d.). <https://www.aans.org/en/Patients/Neurosurgical-Conditions-and-Treatments/Glioblastoma-Multiforme>

[28] Stoyanov, G. S., Dzhenkov, D., Ghenev, P. I., Iliev, B., Enchev, Y., & Tonchev, A. B. (2018). Cell biology of glioblastoma multiforme: from basic science to diagnosis and treatment. *Medical Oncology*, 35(3). <https://doi.org/10.1007/s12032-018-1083-x>

[29] Hegi, M. E., Diserens, A., Gorlia, T., Hamou, M., De Tribolet, N., Weller, M., Kros, J. M., Hainfellner, J. A., Mason, W. P., Mariani, L., Bromberg, J. E. C., Hau, P., Mirimanoff, R., Cairncross, J. G., Janzer, R. C., & Stupp, R. (2005). *MGMTGene Silencing and Benefit from Temozolomide in Glioblastoma*. *The New England Journal of Medicine*, 352(10), 997–1003. <https://doi.org/10.1056/nejmoa043331>

[30] Stupp, R., Mason, W. P., Van Den Bent, M. J., Weller, M., Fisher, B., Taphoorn, M. J. B., Belanger, K., Brandes, A. A., Marosi, C., Bogdahn, U., Curschmann, J., Janzer, R. C., Ludwin, S. K., Gorlia, T., Allgeier, A., Lacombe, D., Cairncross, J. G., Eisenhauer, E., & Mirimanoff, R. O. (2005). Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma. *The New England Journal of Medicine*, 352(10), 987–996. <https://doi.org/10.1056/nejmoa043330>

[31] Stupp, R., Mason, W. P., Van Den Bent, M. J., Weller, M., Fisher, B., Taphoorn, M. J. B., Belanger, K., Brandes, A. A., Marosi, C., Bogdahn, U., Curschmann, J., Janzer, R. C., Ludwin, S. K., Gorlia, T., Allgeier, A., Lacombe, D., Cairncross, J. G., Eisenhauer, E., & Mirimanoff, R. O. (2005). Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma. *The New England Journal of Medicine*, 352(10), 987–996. <https://doi.org/10.1056/nejmoa043330>

[32] Taphoorn, M. J. B., Stupp, R., Coens, C., Osoba, D., Kortmann, R., Van Den Bent, M. J., Mason, W. P., Mirimanoff, R. O., Baumert, B. G., Eisenhauer, E., Forsyth, P., & Bottomley, A. (2005). Health-related quality of life in patients with glioblastoma: a randomised controlled trial. *Lancet Oncology*, 6(12), 937–944. [https://doi.org/10.1016/s1470-2045\(05\)70432-0](https://doi.org/10.1016/s1470-2045(05)70432-0)

[33] Louis, D. N., Ohgaki, H., Wiestler, O. D., Cavenee, W. K., Burger, P. C., Jouvet, A., Scheithauer, B. W., & Kleihues, P. (2007). The 2007 WHO Classification of Tumours of the Central Nervous System. *Acta Neuropathologica*, 114(2), 97–109. <https://doi.org/10.1007/s00401-007-0243-4>.

[34] Linkous, A. G., & Yazlovitskaya, E. M. (2011). Angiogenesis in Glioblastoma Multiforme: Navigating the Maze. *Anti-cancer Agents in Medicinal Chemistry*, 11(8), 712–718. <https://doi.org/10.2174/187152011797378643>

[35] Martínez-García, M., Álvarez-Linera, J., Carrato, C., Ley, L., Luque, R., Maldonado, X., Martínez-Aguillo, M., Navarro, L., Vaz-Salgado, M. A., & Gil, M. (2018). SEOM clinical guidelines for diagnosis and treatment of glioblastoma (2017). *Clin Transl Oncol*, 20(1), 22–28. <https://doi.org/10.1007/s12094-017-1763-6>.

[36] Herrlinger U, Schäfer N, Steinbach JP, Weyerbrock A, Hau P, Goldbrunner R, Friedrich F, Rohde V, Ringel F, Schlegel U, Sabel M, Ronellenfitsch MW, Uhl M, Maciaczyk J, Grau S, Schnell O, Hänel M, Krex D, Vajkoczy P, Gerlach R, Kortmann RD, Mehdorn M, Tüttenberg J, Mayer-Steinacker R, Fietkau R, Brehmer S, Mack F, Stuplich M, Kebir S, Kohnen R, Dunkl E, Leutgeb B, Proescholdt M, Pietsch T, Urbach H, Belka C, Stummer W, Glas M. (2016) Bevacizumab Plus Irinotecan Versus Temozolomide in Newly Diagnosed O6-Methylguanine-DNA Methyltransferase Nonmethylated Glioblastoma: The Randomized GLARIUS Trial. *J Clin Oncol*. 10;34(14):1611-9.

[37] Kanderi, T. (2022, September 12). *Glioblastoma Multiforme*. StatPearls - NCBI Bookshelf. <https://www.ncbi.nlm.nih.gov/books/NBK558954/#>

[38] FDA Approved Drug Products: TEMODAR (temozolomide) capsules and injection

[39] Baker, S. D., Wirth, M. A., Statkevich, P., Reidenberg, P., Alton, K. B., Sartorius, S. E., Dugan, M., Cutler, D. M., Batra, V., Grochow, L. B., Donehower, R. C., & Rowinsky, E. K. (1999). Absorption, metabolism, and excretion of 14C-temozolomide following oral administration to patients with advanced cancer. *PubMed*, 5(2), 309–317. <https://pubmed.ncbi.nlm.nih.gov/10037179>

[40] Denny, B. J., Wheelhouse, R. T., Stevens, M. F. G., Tsang, L. L. H., & Slack, J. F. (1994). NMR and Molecular Modeling Investigation of the Mechanism of Activation of the Antitumor Drug Temozolomide and Its Interaction with DNA. *Biochemistry*, 33(31), 9045–9051. <https://doi.org/10.1021/bi00197a003>

[41] Zhang, J., Stevens, M. F. G., & Bradshaw, T. D. (2012). Temozolomide: Mechanisms of Action, Repair and Resistance. *Current Molecular Pharmacology*, 5(1), 102–114. <https://doi.org/10.2174/1874467211205010102>

[42] Wirsching, H., Galanis, E., & Weller, M. (2016). Glioblastoma. In *Handbook of Clinical Neurology* (pp. 381–397). Elsevier BV. <https://doi.org/10.1016/b978-0-12-802997-8.00023-2>

[43] Thomas, A., Tanaka, M., Trepel, J. B., Reinhold, W. C., Rajapakse, V. N., & Pommier, Y. (2017). Temozolomide in the Era of Precision Medicine. *Cancer Research*, 77(4), 823–826. <https://doi.org/10.1158/0008-5472.can-16-2983>

[44] *Temozolomide: Uses, Interactions, Mechanism of Action / DrugBank Online*. (n.d.-b). DrugBank. <https://go.drugbank.com/drugs/DB00853>

[45] De Gooijer, M. C., De Vries, N. M., Buckle, T., Buil, L. C., Beijnen, J. H., Boogerd, W., & Van Tellingen, O. (2018). Improved Brain Penetration and Antitumor Efficacy of Temozolomide by Inhibition of ABCB1 and ABCG2. *Neoplasia*, 20(7), 710–720. <https://doi.org/10.1016/j.neo.2018.05.001>

[46] Karachi, A., Dastmalchi, F., Mitchell, D., & Rahman, M. (2018). Temozolomide for immunomodulation in the treatment of glioblastoma. *Neuro-oncology*, 20(12), 1566–1572. <https://doi.org/10.1093/neuonc/noy072>

[47] Stupp, R., Brada, M., Van Den Bent, M. J., Tonn, J. C., & Pentheroudakis, G. (2014). High-grade glioma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. *Annals of Oncology*, 25, iii93–iii101. <https://doi.org/10.1093/annonc/mdu050>

[48] Bresnick, A. R., Weber, D. J., & Zimmer, D. B. (2015). S100 proteins in cancer. *Nature Reviews Cancer*, 15(2), 96–109. <https://doi.org/10.1038/nrc3893>

[49] Zimmer, D. B., Eubanks, J. O., Ramakrishnan, D., & Criscitiello, M. F. (2013). Evolution of the S100 family of calcium sensor proteins. *Cell Calcium*, 53(3), 170–179. <https://doi.org/10.1016/j.ceca.2012.11.006>

[50]. S100P S100 calcium binding protein P [Homo sapiens (human)]. (2023). *NCBI*, Gene ID: 6286. <https://www.ncbi.nlm.nih.gov/gene/6286>

[51] Gibadulinova, A., Tothova, V., Pastorek, J., & Pastorekova, S. (2011). Transcriptional regulation and functional implication of S100P in cancer. *Amino Acids*, 41(4), 885–892. <https://doi.org/10.1007/s00726-010-0495-5>

[52] Whiteman, H. J., Weeks, M. E., Dowen, S. E., Barry, S., Timms, J. F., Lemoine, N. R., & Crnogorac-Jurcevic, T. (2007). The Role of S100P in the Invasion of Pancreatic Cancer Cells Is Mediated through Cytoskeletal Changes and Regulation of Cathepsin D. *Cancer Research*, 67(18), 8633–8642. <https://doi.org/10.1158/0008-5472.can-07-0545>

[53] Arumugam, T., Simeone, D. M., Van Golen, K. L., & Logsdon, C. D. (2005). S100P Promotes Pancreatic Cancer Growth, Survival, and Invasion. *Clinical Cancer Research*, 11(15), 5356–5364. <https://doi.org/10.1158/1078-0432.ccr-05-0092>

[54] Du, M., Wang, G., Ismail, T. M., Gross, S. R., Fernig, D. G., Barraclough, R., & Rudland, P. S. (2012). S100P Dissociates Myosin IIA Filaments and Focal Adhesion Sites to Reduce Cell Adhesion and Enhance Cell Migration. *Journal of Biological Chemistry*, 287(19), 15330–15344. <https://doi.org/10.1074/jbc.m112.349787>

[55] Heil, A., Nazmi, A. R., Koltzscher, M., Poeter, M., Austermann, J., Assard, N., Baudier, J., Kaibuchi, K., & Gerke, V. (2011). S100P Is a Novel Interaction Partner and Regulator of IQGAP1. *Journal of Biological Chemistry*, 286(9), 7227–7238. <https://doi.org/10.1074/jbc.m110.135095>

[56] Parkkila, S., Pan, P., Ward, A., Gibadulinova, A., Oveckova, I., Pastorekova, S., Pastorek, J., Martinez, A. R., Helin, H., & Isola, J. (2008b). The calcium-binding protein S100P in normal and malignant human tissues. *BMC Clinical Pathology*, 8(1). <https://doi.org/10.1186/1472-6890-8-2>

[57] Donato, R. (2001). S100: a multigenic family of calcium-modulated proteins of the EF-hand type with intracellular and extracellular functional roles. *The International Journal of Biochemistry & Cell Biology*, 33(7), 637–668. [https://doi.org/10.1016/s1357-2725\(01\)00046-2](https://doi.org/10.1016/s1357-2725(01)00046-2)

[58] Jiang, H., Hu, H., Tong, X., Jiang, Q., Zhu, H., & Zhang, S. (2012). Calcium-binding protein S100P and cancer: mechanisms and clinical relevance. *Journal of Cancer Research and Clinical Oncology*, 138(1), 1–9. <https://doi.org/10.1007/s00432-011-1062-5>

[59] Terasaka, S., Aita, Y., Inoue, A., Hayashi, S., Nishigaki, M., Aoyagi, K., Sasaki, H., Wada-Kiyama, Y., Sakuma, Y., Akaba, S., Tanaka, J., Sone, H., Yonemoto, J., Tanji, M., & Kiyama, R. (2004). Using a customized DNA microarray for expression profiling of the estrogen-responsive genes to evaluate estrogen activity among natural estrogens and industrial chemicals. *Environmental Health Perspectives*, 112(7), 773–781. <https://doi.org/10.1289/ehp.6753>

[60] Bray, J. D., Jelinsky, S. A., Ghatge, R. P., Bray, J. A., Tunkey, C. D., Saraf, K. A., Jacobsen, B. M., Richer, J. K., Brown, E. F., Winneker, R. C., Horwitz, K. B., & Lytle, C. R. (2005). Quantitative analysis of gene regulation by seven clinically relevant progestins suggests a highly similar mechanism of action through progesterone receptors in T47D breast cancer cells. *The Journal of Steroid Biochemistry and Molecular Biology*, 97(4), 328–341. <https://doi.org/10.1016/j.jsbmb.2005.06.032>

[61] Mackay, A., Jones, C. R., Dexter, T., Silva, R., Bulmer, K., Jones, A., Simpson, P. T., Harris, R. M., Jat, P. S., Neville, A., Reis, L. F. L., Lakhani, S. R., & O'Hare, M. J. (2003). cDNA microarray analysis of genes associated with ERBB2 (HER2/neu) overexpression in human mammary luminal epithelial cells. *Oncogene*, 22(17), 2680–2688. <https://doi.org/10.1038/sj.onc.1206349>

[62] Xie, J., Méndez, J. a. J., Méndez-Valenzuela, V., & Aguilar-Hernández, M. M. (2013). Cellular signalling of the receptor for advanced glycation end products (RAGE). *Cellular Signalling*, 25(11), 2185–2197. <https://doi.org/10.1016/j.cellsig.2013.06.013>

[63] Taguchi, A., Blood, D. K., G, D. F., A, C., Lee, D. M., Qu, W., Tanji, N., Lu, Y., Lalla, E., Fu, C. D., Hofmann, M. A., Kislinger, T., Ingram, M. D., Lu, A., Tanaka, H., Hori, O., Ogawa, S., Stern, D., & Schmidt, A. M. (2000). Blockade of RAGE–amphoterin signalling suppresses tumour growth and metastases. *Nature*, 405(6784), 354–360. <https://doi.org/10.1038/35012626>

[64] Gibadulinova, A., Tothova, V., Pastorek, J., & Pastorekova, S. (2011b). Transcriptional regulation and functional implication of S100P in cancer. *Amino Acids*, 41(4), 885–892. <https://doi.org/10.1007/s00726-010-0495-5>

[65] Kikuchi, K., McNamara, K. M., Miki, Y., Iwabuchi, E., Kanai, A., Miyashita, M., Ishida, T., & Sasano, H. (2019). S100P and Ezrin promote trans-endothelial migration of triple negative breast cancer cells. *Cellular Oncology*, 42(1), 67–80. <https://doi.org/10.1007/s13402-018-0408-2>

[66]. Kim, J. H., Jung, K., Noh, J. Y., Eun, J. W., Woo, J., Xie, H., Ahn, Y., Ryu, J., Park, W. S., Lee, J. P., & Nam, S. W. (2009). Targeted disruption of S100P suppresses tumor cell growth by down-regulation of cyclin D1 and CDK2 in human hepatocellular carcinoma. *PubMed*, 35(6), 1257–1264. <https://pubmed.ncbi.nlm.nih.gov/19885547/>

[67] Bulk, E., Hascher, A., Liersch, R., Mesters, R. M., Diederichs, S., Sargin, B., Gerke, V., Hotfilder, M., Vormoor, J., Berdel, W. E., Serve, H., & Müller-Tidow, C. (2008). Adjuvant Therapy with Small Hairpin RNA Interference Prevents Non–Small Cell Lung Cancer Metastasis Development in Mice. *Cancer Research*, 68(6), 1896–1904. <https://doi.org/10.1158/0008-5472.can-07-2390>

[68]. Chandramouli, A., Mercado-Pimentel, M. E., Hutchinson, A. J., Gibadulinova, A., Olson, E. R., Dickinson, S. E., Shanas, R., Davenport, J. M., Owens, J., Bhattacharyya, A. K., Regan, J. W., Pastorekova, S., Arumugam, T., Logsdon, C. D., & Nelson, M. T. (2010). The induction of S100p expression by the Prostaglandin

E₂(PGE₂)/EP4 receptor signaling pathway in colon cancer cells. *Cancer Biology & Therapy*, 10(10), 1056–1066. <https://doi.org/10.4161/cbt.10.10.13373>

[69] Peng, C., Chen, H., Wallwiener, M., Modugno, C., Cuk, K., Madhavan, D., Trumpp, A., Heil, J., Marmé, F., Nees, J., Riethdorf, S., Schott, S., Sohn, C., Pantel, K., Schneeweiss, A., Yang, R., & Burwinkel, B. (2016). Plasma S100P level as a novel prognostic marker of metastatic breast cancer. *Breast Cancer Research and Treatment*, 157(2), 329–338. <https://doi.org/10.1007/s10549-016-3776-1>

[70] Győrffy, B., Surowiak, P., Kiesslich, O., Denkert, C., Schäfer, R., Dietel, M., & Lage, H. (2006). Gene expression profiling of 30 cancer cell lines predicts resistance towards 11 anticancer drugs at clinically achieved concentrations. *International Journal of Cancer*, 118(7), 1699–1712. <https://doi.org/10.1002/ijc.21570>

[71] Arumugam, T., Simeone, D. M., Van Golen, K. L., & Logsdon, C. D. (2005b). S100P Promotes Pancreatic Cancer Growth, Survival, and Invasion. *Clinical Cancer Research*, 11(15), 5356–5364. <https://doi.org/10.1158/1078-0432.ccr-05-0092>

[72] Wang, Q., He, Z., Gao, J., Hu, S., Mingli, H., Liu, M., Zheng, J., & Tang, H. (2008b). S100P sensitizes ovarian cancer cells to carboplatin and paclitaxel in vitro. *Cancer Letters*. <https://doi.org/10.1016/j.canlet.2008.07.017>

Tang H, Liu YJ, Liu M, Li X. Establishment and gene analysis of an oxaliplatin-resistant colon cancer cell line THC8307/L-OHP. *Anticancer Drugs*. (2007) 18:633–9. doi: 10.1097/CAD.0b013e3280200428

[73]. Arumugam, T., Simeone, D. M., Van Golen, K. L., & Logsdon, C. D. (2005c). S100P Promotes Pancreatic Cancer Growth, Survival, and Invasion. *Clinical Cancer Research*, 11(15), 5356–5364. <https://doi.org/10.1158/1078-0432.ccr-05-0092>

[74] Basu, G. D., Azorsa, D. O., Kiefer, J., Rojas, Á. G., Tuzmen, S., Barrett, M. P., Trent, J. M., Kallioniemi, O., & Mousses, S. (2008). Functional evidence implicating S100P in prostate cancer progression. *International Journal of Cancer*, 123(2), 330–339. <https://doi.org/10.1002/ijc.23447>

[75] Győrffy, B., Surowiak, P., Kiesslich, O., Denkert, C., Schäfer, R., Dietel, M., & Lage, H. (2006b). Gene expression profiling of 30 cancer cell lines predicts resistance towards 11 anticancer drugs at clinically achieved concentrations. *International Journal of Cancer*, 118(7), 1699–1712. <https://doi.org/10.1002/ijc.21570>

[76] Gibadulinova, A., Pastorek, M., Filipcik, P., Radvak, P., Csaderova, L., Vojtesek, B., & Pastorekova, S. (2016b). Cancer-associated S100P protein binds and inactivates p53, permits therapy-induced senescence and supports chemoresistance. *Oncotarget*, 7(16), 22508–22522. <https://doi.org/10.18632/oncotarget.7999>

[77] Wang, Q., He, Z., Gao, J., Hu, S., Mingli, H., Liu, M., Zheng, J., & Tang, H. (2008c). S100P sensitizes ovarian cancer cells to carboplatin and paclitaxel in vitro. *Cancer Letters*. <https://doi.org/10.1016/j.canlet.2008.07.017>

[78] Tang, H., Liu, Y., Liu, M., & Li, X. (2007). Establishment and gene analysis of an oxaliplatin-resistant colon cancer cell line THC8307/L-OHP. *Anti-Cancer Drugs*, 18(6), 633–639. <https://doi.org/10.1097/cad.0b013e3280200428>

[79] Cong, Y., Cui, Y., Wang, S., Jiang, L., Cao, J., Zhu, S., Birkin, E., Lane, J. B., Ruge, F., Jiang, W. G., & Qiao, G. (2020). Calcium-Binding Protein S100P Promotes Tumor Progression but Enhances Chemosensitivity in Breast Cancer. *Frontiers in Oncology*, 10. <https://doi.org/10.3389/fonc.2020.566302>

[80] Jiang, H., Hu, H., Tong, X., Jiang, Q., Zhu, H., & Zhang, S. (2012b). Calcium-binding protein S100P and cancer: mechanisms and clinical relevance. *Journal of Cancer Research and Clinical Oncology*, 138(1), 1–9. <https://doi.org/10.1007/s00432-011-1062-5>

[81] Tóthová, V., & Gibadulinova, A. (2013). S100P, a peculiar member of S100 family of calcium-binding proteins implicated in cancer. *Acta Virologica*, 57(02), 238–246. https://doi.org/10.4149/av_2013_02_238

[82] Wang, G., Platt-Higgins, A., Carroll, J., De Silva Rudland, S., Winstanley, J., Barracough, R., & Rudland, P. S. (2006). Induction of Metastasis by S100P in a Rat Mammary Model and Its Association with Poor Survival of Breast Cancer Patients. *Cancer Research*, 66(2), 1199–1207. <https://doi.org/10.1158/0008-5472.can-05-2605>

[83] Du, M., Wang, G., Barsukov, I. L., Gross, S. R., Smith, R. D., & Rudland, P. S. (2020). Direct interaction of metastasis-inducing S100P protein with tubulin causes enhanced cell migration without changes in cell adhesion. *Biochemical Journal*, 477(6), 1159–1178. <https://doi.org/10.1042/bcj20190644>.

[84] Nakayama, H., Ohuchida, K., Yonenaga, A., Sagara, A., Ando, Y., Kibe, S., Takesue, S., Abe, T., Endo, S., Koikawa, K., Okumura, T., Shido, K., Miyoshi, K., Nakata, K., Moriyama, T., Miyasaka, Y., Inoue, S., Ohtsuka, T., Mizumoto, K., & Nakamura, M. (2019). S100P regulates the collective invasion of pancreatic cancer cells into the lymphatic endothelial monolayer. *International Journal of Oncology*. <https://doi.org/10.3892/ijo.2019.4812>

[85]. Schmid, F., Dahlmann, M., Röhrich, H., Kobelt, D., Hoffmann, J., Burock, S., Walther, W., & Stein, U. (2022). Calcium-binding protein S100P is a new target gene of MACC1, drives colorectal cancer metastasis and serves as a prognostic biomarker. *British Journal of Cancer*, 127(4), 675–685. <https://doi.org/10.1038/s41416-022-01833-3>

[86] Schäfer, B. W., Wicki, R., Engelkamp, D., Mattei, M., & Heizmann, C. W. (1995). Isolation of a YAC clone covering a cluster of nine S100 genes on human chromosome 1q21: rationale for a new nomenclature of the S100 calcium-binding protein family. *Genomics*, 25(3), 638–643. [https://doi.org/10.1016/0888-7543\(95\)80005-7](https://doi.org/10.1016/0888-7543(95)80005-7)

[87] Zhang, H., Wang, G., Ding, Y., Wang, Z., Barraclough, R., Rudland, P. S., Fernig, D. G., & Rao, Z. (2003). The Crystal Structure at 2 Å Resolution of the Ca²⁺-binding Protein S100P. *Journal of Molecular Biology*, 325(4), 785–794. [https://doi.org/10.1016/s0022-2836\(02\)01278-0](https://doi.org/10.1016/s0022-2836(02)01278-0).

[88] Nørremølle, A., Budtz-Jørgensen, E., Fenger, K., Nielsen, J., Sørensen, M. S., & Hasholt, L. (2009). 4p16.3 haplotype modifying age at onset of Huntington disease. *Clinical Genetics*, 75(3), 244–250. <https://doi.org/10.1111/j.1399-0004.2008.01136.x>

[89] Ingersoll, R. G., Hetmanski, J. B., Park, J., Fallin, M. D., McIntosh, I., Wu-Chou, Y. H., Chen, P. P., Yeow, V., Chong, S. S., Cheah, F. S., Sull, J. W., Jee, S. H., Wang, H., Wu, T., Murray, T., Huang, S., Ye, X., Jabs, E. W., Redett, R. J., . . . Beaty, T. H. (2010). Association between genes on chromosome 4p16 and non-syndromic oral clefts in four populations. *European Journal of Human Genetics*, 18(6), 726–732. <https://doi.org/10.1038/ejhg.2009.228>

[90] Zollino, M., Murdolo, M., & Neri, G. (2008). The terminal 760 kb region on 4p16 is unlikely to be the critical interval for growth delay in Wolf-Hirschhorn syndrome. *Journal of Medical Genetics*. <https://doi.org/10.1136/jmg.2008.058370>

[91] Raelson, J. V., Little, R. D., Ruether, A., Fournier, H., Paquin, B., Van Eerdewegh, P., Bradley, W. G., Croteau, P., Nguyen-Huu, Q., Segal, J., Debrus, S., Allard, R., Rosenstiel, P., Franke, A., Jacobs, G., Nikolaus, S., Vidal, J., Szego, P. L., Laplante, N., . . . Schreiber, S. (2007). Genome-wide association study for Crohn's disease in the Quebec Founder Population identifies multiple validated disease loci. *Proceedings of the National Academy of Sciences of the United States of America*, 104(37), 14747–14752. <https://doi.org/10.1073/pnas.0706645104>.

[92] Singh, R. K., Indra, D. M., Mitra, S., Mondal, R. K., Basu, P., Roy, A., Roychoudhury, S., & Panda, C. K. (2007). Deletions in chromosome 4 differentially

associated with the development of cervical cancer: evidence of slit2 as a candidate tumor suppressor gene. *Human Genetics*, 122(1), 71–81.
<https://doi.org/10.1007/s00439-007-0375-6>

[93] Sims, J. S., Graham, B., Pacurari, M., Leggett, S. S., Tchounwou, P. B., & Ndebele, K. (2014). Di-Ethylhexylphthalate (DEHP) Modulates Cell Invasion, Migration and Anchorage Independent Growth through Targeting S100P in LN-229 Glioblastoma Cells. *International Journal of Environmental Research and Public Health*, 11(5), 5006–5019. <https://doi.org/10.3390/ijerph110505006>

[94] Liu, B., Tang, C., Dai, X., Zeng, L., Cheng, F., Chen, Y., & Zeng, C. (2021). Prognostic Value of S100P Expression in Patients With Digestive System Cancers: A Meta-Analysis. *Frontiers in Oncology*, 11. <https://doi.org/10.3389/fonc.2021.593728>

[95] Guo, A., Wang, F., Ji, Q., Geng, H., Lin, Y., Wang, L., Tie, W., Zhang, Y., Thorne, R. F., Liu, G., & Xu, A. (2021). Proteome Analyses Reveal S100A11, S100P, and RBM25 Are Tumor Biomarkers in Colorectal Cancer. *Proteomics Clinical Applications*, 15(1), 2000056. <https://doi.org/10.1002/prca.202000056>

[96] Shaw, A., Garcha, V., Shetty, V., Vinay, V., Bhor, K., Ambildhok, K., & Karande, P. (2022). Diagnostic Accuracy of Salivary Biomarkers in Detecting Early Oral Squamous Cell Carcinoma: A Systematic Review and Meta-Analysis. *Asian Pacific Journal of Cancer Prevention*, 23(5), 1483–1495.
<https://doi.org/10.31557/apjcp.2022.23.5.1483>

[97] Song, G., Shi, Y., Meng, L., Ma, J., Huang, S., Zhang, J., Wu, Y., Li, J., Lin, Y., Yang, S., Rao, D., Cheng, Y., Lin, J., Ji, S., Liu, Y., Jiang, S., Wang, X., Zhang, S., Ke, A., . . . Gao, Q. (2022). Single-cell transcriptomic analysis suggests two molecularly distinct subtypes of intrahepatic cholangiocarcinoma. *Nature Communications*, 13(1). <https://doi.org/10.1038/s41467-022-29164-0>

[98] Komuta, M., Govaere, O., Vandecaveye, V., Akiba, J., Van Steenbergen, W., Verslype, C., Laleman, W., Pirenne, J., Aerts, R., Yano, H., Nevens, F., Van IJcken, W. F. J., & Roskams, T. (2012). Histological diversity in cholangiocellular carcinoma reflects the different cholangiocyte phenotypes. *Hepatology*, 55(6), 1876–1888.
<https://doi.org/10.1002/hep.25595>

[99] Rhee, H., Ko, J. M., Chung, T. D., Jee, B. A., Kwon, S. Y., Nahm, J. H., Seok, J. Y., Yoo, J., Choi, J., Thorgeirsson, S. S., Andersen, J. B., Lee, H. S., Woo, H. G., & Park, Y. (2018). Transcriptomic and histopathological analysis of cholangiolocellular differentiation trait in intrahepatic cholangiocarcinoma. *Liver International*, 38(1), 113–124. <https://doi.org/10.1111/liv.13492>

[100] Hrabák, P., Šoufal, J., Kalousová, M., Krechler, T., Vocka, M., Hanuš, T., Petruželka, L., Svačina, Š., Žák, A., & Zima, T. (2022). Novel biochemical markers for non-invasive detection of pancreatic cancer. *Neoplasma*, 69(02), 474–483. https://doi.org/10.4149/neo_2022_210730n1075

[101] Zou, W., Li, L., Wang, Z., Jiang, N., Wang, F., Hu, M., & Liu, R. (2021). Up-regulation of S100P predicts the poor long-term survival and construction of prognostic signature for survival and immunotherapy in patients with pancreatic cancer. *Bioengineered*, 12(1), 9006–9020. <https://doi.org/10.1080/21655979.2021.1992331>

[102] Wu, T., Han, C. S., Lunz, J. G., Michalopoulos, G. K., Shelhamer, J. H., & Demetris, A. J. (2002). Involvement of 85-kd cytosolic phospholipase A₂ and cyclooxygenase-2 in the proliferation of human cholangiocarcinoma cells. *Hepatology*, 36(2), 363–373. <https://doi.org/10.1053/jhep.2002.34743>

[103] Fabris, L., Cadamuro, M., Moserle, L., Dziura, J., Cong, X., Sambado, L., Nardo, G., Sonzogni, A., Colledan, M., Furlanetto, A., Bassi, N., Massani, M., Cillo, U., Mescoli, C., Indraccolo, S., Rugge, M., Okolicsanyi, L., & Strazzabosco, M. (2011). Nuclear expression of S100A4 calcium-binding protein increases cholangiocarcinoma invasiveness and metastasization. *Hepatology*, 54(3), 890–899. <https://doi.org/10.1002/hep.24466>

[104] Sano, N., Tabata, K., Oda, T., Yanagita, M., Suzuki, T., Komatsubara, T., Kawata, H., & Fukushima, N. (2022). Bile cytology diagnosis in challenging cases: Validation of diagnostic bile cytology criteria and extensive study for immunocytochemical markers. *Diagnostic Cytopathology*, 50(3), 123–132. <https://doi.org/10.1002/dc.24930>

[105] Prica, F., Radon, T. P., Cheng, Y., & Crnogorac-Jurcevic, T. (2016). The life and works of S100P - from conception to cancer. *PubMed*, 6(2), 562–576. <https://pubmed.ncbi.nlm.nih.gov/27186425>

[106] Salama, I., Malone, P., Mihaimeed, F., & Jones, J. R. (2008). A review of the S100 proteins in cancer. *Ejso*, 34(4), 357–364. <https://doi.org/10.1016/j.ejso.2007.04.009>

[107] Gross, S. R., Sin, C. G. T., Barraclough, R., & Rudland, P. S. (2014). Joining S100 proteins and migration: for better or for worse, in sickness and in health. *Cellular and Molecular Life Sciences*, 71(9), 1551–1579. <https://doi.org/10.1007/s00018-013-1400-7>

[108] Wang, X., Zhu, W., Wang, Z., Huang, J., Wang, S., Bai, F., Li, T., Zhu, Y., Zhao, J., Yang, X., Lu, L., Zhang, J., Jia, H., Dong, Q., Chen, J., Andersen, J. B., Ye, D., & Qin, L. (2022). Driver mutations of intrahepatic cholangiocarcinoma shape clinically relevant genomic clusters with distinct molecular features and therapeutic vulnerabilities. *Theranostics*, 12(1), 260–276. <https://doi.org/10.7150/thno.63417>

[109] Fuh, K. F., Withell, J. S., Shepherd, R. K., & Rinker, K. D. (2022). Fluid Flow Stimulation Modulates Expression of S100 Genes in Normal Breast Epithelium and Breast Cancer. *Cellular and Molecular Bioengineering*. <https://doi.org/10.1007/s12195-021-00704-w>

[110] Wu, J., Zhou, J., Xu, Q., Foley, R., Guo, J., Zhang, X., Tian, C. F., Mu, M., Xing, Y., Liu, Y., Wang, X., & Hu, D. G. (2021). Identification of Key Genes Driving Tumor Associated Macrophage Migration and Polarization Based on Immune Fingerprints of Lung Adenocarcinoma. *Frontiers in Cell and Developmental Biology*, 9. <https://doi.org/10.3389/fcell.2021.751800>

[111] Jiang, P., Zhang, X., Song, C., Zhang, Y., & Wu, Y. (2021). S100P acts as a target of miR - 495 in pancreatic cancer through bioinformatics analysis and experimental verification. *Kaohsiung Journal of Medical Sciences*, 37(7), 562–571. <https://doi.org/10.1002/kjm2.12383>

[112] Camara, R., Ogbeni, D., Gerstmann, L., Ostovar, M., Hurer, E., Scott, M., Mahmoud, N., Radon, T. P., Crnogorac-Jurcevic, T., Patel, P., MacKenzie, L., Chau, D. Y., Kirton, S. B., & Rossiter, S. (2020). Discovery of novel small molecule inhibitors of S100P with in vitro anti-metastatic effects on pancreatic cancer cells. *European Journal of Medicinal Chemistry*, 203, 112621. <https://doi.org/10.1016/j.ejmech.2020.112621>

[113] Jensen, G. S., Mortensen, M. B., Klöppel, G., Nielsen, M. B., Nielsen, O. H., & Detlefsen, S. (2020). Utility of pVHL, maspin, IMP3, S100P and Ki67 in the distinction of autoimmune pancreatitis from pancreatic ductal adenocarcinoma. *Pathology Research and Practice*, 216(5), 152925. <https://doi.org/10.1016/j.prp.2020.152925>

[114] Almeida, P. P., De Barros Cardoso, C. R., & De Freitas, L. G. (2020). PDAC-ANN: an artificial neural network to predict pancreatic ductal adenocarcinoma based on gene expression. *BMC Cancer*, 20(1). <https://doi.org/10.1186/s12885-020-6533-0>

[115] Sivadasan, P., Gupta, M., Sathe, G., Sudheendra, H. V., Sunny, S. P., Renu, D., Hari, P., Gowda, H., Suresh, A., Kuriakose, M. A., & Sirdeshmukh, R. (2020). Salivary proteins from dysplastic leukoplakia and oral squamous cell carcinoma and

their potential for early detection. *Journal of Proteomics*, 212, 103574.

<https://doi.org/10.1016/j.jprot.2019.103574>

[116] Wang, G., Platt-Higgins, A., Carroll, J., De Silva Rudland, S., Winstanley, J., Barraclough, R., & Rudland, P. S. (2006b). Induction of Metastasis by S100P in a Rat Mammary Model and Its Association with Poor Survival of Breast Cancer Patients. *Cancer Research*, 66(2), 1199–1207. <https://doi.org/10.1158/0008-5472.can-05-2605>

[117] Maciejczyk, A., Łacko, A., Ekiert, M., Jagoda, E., Wysocka, T., Matkowski, R., Hałoń, A., Győrffy, B., Lage, H., & Surowiak, P. (2013). Elevated nuclear S100P expression is associated with poor survival in early breast cancer patients. *PubMed*, 28(4), 513–524. <https://doi.org/10.14670/hh-28.513>

[118] Yuan, R., Chang, K., Chen, Y., Hsu, H., Lee, P., Lai, P., & Jeng, Y. (2013). S100P Expression Is a Novel Prognostic Factor in Hepatocellular Carcinoma and Predicts Survival in Patients with High Tumor Stage or Early Recurrent Tumors. *PLoS ONE*, 8(6), e65501. <https://doi.org/10.1371/journal.pone.0065501>.

[119] Qi, L., Ma, L., Wu, F., Chen, Y., Xing, W., Jiang, Z., Zhong, J., Chen, Z., Gong, W., Ye, J., Li, H., Shang, J., Xiang, B., & Li, L. (2021). S100P as a novel biomarker of microvascular invasion and portal vein tumor thrombus in hepatocellular carcinoma. *Hepatology International*, 15(1), 114–126. <https://doi.org/10.1007/s12072-020-10130-1>

[120] Diederichs, S., Bulk, E., Steffen, B., Ji, P., Tickenbrock, L., Lang, K., Zänker, K. S., Metzger, R., Schneider, P. M., Gerke, V., Thomas, M., Berdel, W. E., Serve, H., & Müller-Tidow, C. (2004). S100 Family Members and Trypsinogens Are Predictors of Distant Metastasis and Survival in Early-Stage Non-Small Cell Lung Cancer. *Cancer Research*, 64(16), 5564–5569. <https://doi.org/10.1158/0008-5472.can-04-2004>

[121] Sun, L., Zhang, Z., Yao, Y., Li, W., & Gu, J. (2020). Analysis of expression differences of immune genes in non-small cell lung cancer based on TCGA and ImmPort data sets and the application of a prognostic model. *Annals of Translational Medicine*, 8(8), 550. <https://doi.org/10.21037/atm.2020.04.38>

[122] Zhao, R., Ding, D., Yu, W., Zhu, C., & Ding, Y. (2020). The Lung Adenocarcinoma Microenvironment Mining and Its Prognostic Merit. *Technology in Cancer Research & Treatment*, 19, 153303382097754. <https://doi.org/10.1177/1533033820977547>

[123] Wang, T., Du, G., & Tang, B. Z. (2021). The S100 protein family in lung cancer. *Clinica Chimica Acta*, 520, 67–70. <https://doi.org/10.1016/j.cca.2021.05.028>

[124] Wang, Q., Zhang, Y., Lin, G., Qiu, H., Wu, B., Mobbs, D., Zhao, Y., Chen, Y., & Lu, C. (2012). S100P, a potential novel prognostic marker in colorectal cancer. *Oncology Reports*. <https://doi.org/10.3892/or.2012.1794>

[125] Sugezawa, K., Murawaki, Y., Sakamoto, T., & Fujiwara, Y. (2022). Gallbladder Cancer with Biliary Intraepithelial Neoplasia Complicated by Pancreaticobiliary Maljunction: A Case Report. *Yonago Acta Medica*. <https://doi.org/10.33160/yam.2022.02.008>

[126] Mathai, A. M., Alexander, J., Huang, H., Li, C., Jeng, Y., Fung, K. M., Harris, W. H., Swanson, P. E., Truong, C. D., & Yeh, M. M. (2021). S100P as a marker for poor survival and advanced stage in gallbladder carcinoma. *Annals of Diagnostic Pathology*, 52, 151736. <https://doi.org/10.1016/j.anndiagpath.2021.151736>

[127] Tian, Z., Meng, L., Long, X., Diao, T., Hu, M., Wang, M., Li, M., & Wang, J. (2020). Identification and validation of an immune-related gene-based prognostic index for bladder cancer. *PubMed*, 12(9), 5188–5204. <https://pubmed.ncbi.nlm.nih.gov/33042413>.

[128] Wang, X., Tian, T., Li, X., Zhao, M., Lou, Y., Qian, J., Liu, Z., Chen, H., & Cui, Z. (2015). High expression of S100P is associated with unfavorable prognosis and tumor progression in patients with epithelial ovarian cancer. *PubMed*, 5(8), 2409–2421. <https://pubmed.ncbi.nlm.nih.gov/26396916>

[129] Surowiak, P., Maciejczyk, A., Materna, V., Drag-Zalesinska, M., Wojnar, A., Pudełko, M., Kędzia, W., Spaczyński, M., Dietel, M., Zabel, M., & Lage, H. (2007). Unfavourable prognostic significance of S100P expression in ovarian cancers. *Histopathology*. <https://doi.org/10.1111/j.1365-2559.2007.02714.x>

[130] Cong, Y., Cui, Y., Wang, S., Jiang, L., Cao, J., Zhu, S., Birkin, E., Lane, J. B., Ruge, F., Jiang, W. G., & Qiao, G. (2020b). Calcium-Binding Protein S100P Promotes Tumor Progression but Enhances Chemosensitivity in Breast Cancer. *Frontiers in Oncology*, 10. <https://doi.org/10.3389/fonc.2020.566302>

[131] Xu, B., Amallraja, A., Swaminathan, P., Elsey, R., Davis, C. M., Theel, S., Viet, S., Petersen, J. L., Krie, A., Davies, G., Williams, C., Ehli, E. A., & Meißner, T. (2020). Case report: 16-yr life history and genomic evolution of an ER⁺ HER2⁻ breast cancer. *Cold Spring Harbor Molecular Case Studies*, 6(6), a005629. <https://doi.org/10.1101/mcs.a005629>

[132] Yin, Q., Yang, X., Li, L., Xu, T., Zhou, W., Gu, W., Ma, F., & Yang, R. (2020). The Association Between Breast Cancer and Blood-Based Methylation of S100P and HYAL2 in the Chinese Population. *Frontiers in Genetics*, 11. <https://doi.org/10.3389/fgene.2020.00977>

[133] Tian, Z., Wu, G., Liao, X., Yang, Q., & Wu, Y. (2020). An immune- related prognostic signature for predicting breast cancer recurrence. *Cancer Medicine*, 9(20), 7672–7685. <https://doi.org/10.1002/cam4.3408>

[134] Lu, C., Chen, C., Luo, C., Lei, T., & Zhang, M. (2020). Knockdown of ferritin heavy chain (FTH) inhibits the migration of prostate cancer through reducing S100A4, S100A2, and S100P expression. *Translational Cancer Research*, 9(9), 5418–5429. <https://doi.org/10.21037/tcr-19-2852>

[135] Yang, X., Jin, J., Huang, J., Li, P. R., Xue, J., Wu, X., & He, Z. Y. (2020). Expression and clinical significance profile analysis of S100 family members in human acute myeloid leukemia. *European Review for Medical and Pharmacological Sciences*, 24(13), 7324–7334. https://doi.org/10.26355/eurrev_202007_21896

[136] E, P., Bures, J., Moravkova, P., & Kohoutova, D. (2021). Tissue mRNA for S100A4, S100A6, S100A8, S100A9, S100A11 and S100P Proteins in Colorectal Neoplasia: A Pilot Study. *Molecules*, 26(2), 402. <https://doi.org/10.3390/molecules26020402>

[137] Guo, A., Wang, F., Ji, Q., Geng, H., Lin, Y., Wang, L., Tie, W., Zhang, Y., Thorne, R. F., Liu, G., & Xu, A. (2021b). Proteome Analyses Reveal S100A11, S100P, and RBM25 Are Tumor Biomarkers in Colorectal Cancer. *Proteomics Clinical Applications*, 15(1), 2000056. <https://doi.org/10.1002/prca.202000056>

[138] Sun, W., Luo, L., Fang, D., Tang, T., Ni, W., Dai, B., Sun, H., & Jiang, L. (2020). A Novel DNA Aptamer Targeting S100P Induces Antitumor Effects in Colorectal Cancer Cells. *Nucleic Acid Therapeutics*, 30(6), 402–413. <https://doi.org/10.1089/nat.2020.0863>

[139] Ismail, T. M., Gross, S. R., Lancaster, T., Rudland, P. S., & Barracough, R. (2021). The Role of the C-Terminal Lysine of S100P in S100P-Induced Cell Migration and Metastasis. *Biomolecules*, 11(10), 1471. <https://doi.org/10.3390/biom11101471>

[140] Smyth GK. Limma: linear models for microarray data. Bioinformatics and computational biology solutions using R and Bioconductor. 2005:397-420.

[141] Davis, S. M., & Meltzer, P. S. (2007). GEOquery: a bridge between the Gene Expression Omnibus (GEO) and BioConductor. *Bioinformatics*, 23(14), 1846–1847. <https://doi.org/10.1093/bioinformatics/btm254>

[142] Wickham H. ggplot2. Wiley interdisciplinary reviews: computational statistics. 2011;3(2):180-5.

[143] Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. M., Ramage, D., Amin, N., Schwikowski, B., & Ideker, T. (2003). Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. *Genome Research*, 13(11), 2498–2504. <https://doi.org/10.1101/gr.1239303>

[144] Mostafavi, S., Ray, D., Warde-Farley, D., Grouios, C., & Morris, Q. (2008). GeneMANIA: a real-time multiple association network integration algorithm for predicting gene function. *GenomeBiology.com (London. Print)*, 9(Suppl 1), S4. <https://doi.org/10.1186/gb-2008-9-s1-s4>

[145] Alves, A. P. N. N., Gomes, I. N. F., Carloni, A. C., Rosa, M. N., Da Silva, L. S., Evangelista, A. F., Reis, R. L., & Silva, V. D. M. (2021). Role of glioblastoma stem cells in cancer therapeutic resistance: a perspective on antineoplastic agents from natural sources and chemical derivatives. *Stem Cell Research & Therapy*, 12(1). <https://doi.org/10.1186/s13287-021-02231-x>

[146] Ullah, I., Chung, K., Bae, S., Li, Y., Kim, C., Choi, B. Y., Nam, H. Y., Kim, S. Y., Yun, C., Lee, K. Y., Kumar, P., & Lee, S. Y. (2020). Nose-to-Brain Delivery of Cancer-Targeting Paclitaxel-Loaded Nanoparticles Potentiates Antitumor Effects in Malignant Glioblastoma. *Molecular Pharmaceutics*, 17(4), 1193–1204. <https://doi.org/10.1021/acs.molpharmaceut.9b01215>

[147] Fang, C., Wang, K., Stephen, Z. R., Mu, Q., Kievit, F. M., Chiu, D. T., Press, O. W., & Zhang, M. (2015). Temozolomide Nanoparticles for Targeted Glioblastoma Therapy. *ACS Applied Materials & Interfaces*, 7(12), 6674–6682. <https://doi.org/10.1021/am5092165>

[148] Johannessen, T. A., & Bjerkvig, R. (2012). Molecular mechanisms of temozolomide resistance in glioblastoma multiforme. *Expert Review of Anticancer Therapy*, 12(5), 635–642. <https://doi.org/10.1586/era.12.37>

[149] Li, Y., Deng, G., Qi, Y., Zhang, H., Gao, L., Jiang, H., Ye, Z., & Liu, B. (2020). Bioinformatic Profiling of Prognosis-Related Genes in Malignant Glioma Microenvironment. *Medical Science Monitor*, 26. <https://doi.org/10.12659/msm.924054>

[150] Zhou, Y., Shao, Y., Hu, W., Zhang, J., Shi, Y., Kong, X., & Jiang, J. (2022). A novel long noncoding RNA SP100-AS1 induces radioresistance of colorectal cancer via sponging miR-622 and stabilizing ATG3. *Cell Death Differ*, 30(1), 111–124. <https://doi.org/10.1038/s41418-022-01049-1>

[151] Lee, S. Y. (2016). Temozolomide resistance in glioblastoma multiforme. *Genes and Diseases*, 3(3), 198–210. <https://doi.org/10.1016/j.gendis.2016.04.007>

[152] Jovčevska, I. (2020). Next Generation Sequencing and Machine Learning Technologies Are Painting the Epigenetic Portrait of Glioblastoma. *Frontiers in Oncology*, 10. <https://doi.org/10.3389/fonc.2020.00798>

[153] Sharma, T. The Role of Bromodomain-Containing Proteins in Development and Disease. *Curr Mol Bio Rep* 9, 9–19 (2023). <https://doi.org/10.1007/s40610-023-00152-7>

[154] Kaina, B., & Christmann, M. (2019). DNA repair in personalized brain cancer therapy with temozolomide and nitrosoureas. *DNA Repair*, 78, 128–141. <https://doi.org/10.1016/j.dnarep.2019.04.007>

[155] Eslamkhah S, Alizadeh N, Safaei S, Mokhtarzadeh A, Amini M, Baghbanzadeh A, et al. Micro RNA-34a sensitises MCF-7 breast cancer cells to carboplatin through the apoptosis induction. *Gene Reports*. 2021;25:101361.

Temozolomide Resistance in Glioblastoma; Effect of Calcium-Binding Protein S100P

ORJİNALLIK RAPORU

% 9

BENZERLİK ENDEKSİ

% 7

İNTERNET KAYNAKLARI

% 5

YAYINLAR

% 3

ÖĞRENCİ ÖDEVLERİ

BİRİNCİL KAYNAKLAR

1

www.mdpi.com

İnternet Kaynağı

% 1

2

Bernarda Majc, Metka Novak, Nataša Kopitar Jerala, Anahid Jewett, Barbara Breznik.

% 1

"Immunotherapy of Glioblastoma: Current Strategies and Challenges in Tumor Model Development", Cells, 2021

Yayın

3

assets.researchsquare.com

İnternet Kaynağı

% 1

4

www.researchgate.net

İnternet Kaynağı

<% 1

5

Submitted to Alcorn State University

Öğrenci Ödevi

<% 1

6

Submitted to Royal Holloway and Bedford New College

Öğrenci Ödevi

<% 1

7

www.science.gov

İnternet Kaynağı

<% 1