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NEURAL NETWORK BASED CHANNEL ESTIMATION FOR 

TIME-VARYING OFDM SYSTEMS 

 
 

ABSTRACT 

 
 

Systems like LTE makes it possible to reach data rates up to a maximum of 

100Mbit/s. However, these bit rates are accessible when there is nomadic mobility at 

the user end. As the user’s movement speed increases, the necessity of a low- 

complexity channel estimation method is also increasing because the time-invariant 

feature of the channel deteriorates. Deep learning is increasingly embedded in var- 

ious fields and slowly replacing conventional methods across many sectors. It has 

already proven its capability to decrease computational complexity and increase 

the system’s performance. This thesis proposes a channel estimation method for 

time-varying orthogonal frequency division multiplexing (OFDM) channels using 

deep neural networks (DNN). We utilize a Legendre polynomial approach to repre- 

sent the rapidly changing time-varying OFDM channel to reduce the computational 

complexity of the estimation. Using linear minimum mean-square error (LMMSE), 

initial values of the polynomial coefficients that represent the channel are estimated, 

and the estimation accuracy has been improved with DNN. The results are com- pared 

with an iterative estimation algorithm that is space alternating generalized 

expectation maximization—maximum a posteriori probability (SAGE-MAP) and 

LMMSE estimation. It is shown that smaller mean square error (MSE) and symbol 

error rates (SER) were obtained with DNN-based estimation at lower signal-to-noise 

ratios. 

Keywords: Orthogonal Frequency Division Multiplexing (OFDM), Channel Es- 

timation, Neural Networks, Time-Variant Channels, Rapidly Changing 

Channels, Legendre Polynomials, Space Alternating Generalized Expectation 

Maximization Posteriori Probability (SAGE-MAP). 
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ZAMANLA DEĞİŞEN OFDM SİSTEMLERDE YAPAY SİNİR AĞI 

TABANLI KANAL KESTİRİMİ 

 
 

ÖZET 

 
 

LTE gibi sistemler sayesinde, maksimum 100 Mbit/s’ye kadar veri 

hızlarına ulaşmak mümkün olmaktadır. Ancak, bu hızlara kullanıcı tarafındaki 

hareketliliğin olmadığı veya düşük olduğu senaryolarda erişilebilir. Kullanıcının 

hareket hızı art- tıkça, kanal kestirimi yönteminin düşük kompleksiteye sahip 

olması gerekliliği de art- maktadır, çünkü kanalın zamana bağımlı özelliği 

kötüleşmektedir. Derin öğrenme, birçok sektörde geleneksel yöntemlerin yavaş 

yavaş yerini almaya başlayarak, çeşitli alanlarda sıkça kullanılır hale 

gelmektedir. Derin öğrenmenin hesaplama karmaşık- lığını azaltmak ve sistem 

performansını artırmak hakkındaki kabiliyeti kanıtlan- mıştır. Bu tez, derin sinir 

ağları (DNN) kullanarak zamana bağlı ortogonal frekans bölmeli çoklu erişim 

(OFDM) kanalları için bir kanal kestirimi yöntemi önermekte- dir. Kanal 

kestiriminin hesaplama karmaşıklığını azaltmak için zamana bağlı hızla değişen 

OFDM kanalını temsil etmek için Legendre polinom katsayıları kullanıl- 

maktadır. Lineer minimum ortalama karesel hata (LMMSE) kullanılarak kanalı 

temsil eden polinom katsayılarının başlangıç değerleri kestirilmiş ve kestirim 

doğru- luğu DNN ile arttırılmıştır. Sonuçlar, mekansal alternatif genelleştirilmiş 

beklenti maksimizasyonu - maksimum a posteriori olasılık (SAGE-MAP) ve 

LMMSE kanal kestirim yöntemi ile karşılaştırılmaktadır. Düşük sinyal-gürültü 

oranlarında DNN temelli kestirim daha küçük ortalama karesel hata (MSE) ve 

sembol hata oranları (SER) elde edildiği gösterilmiştir. 

Anahtar Sözcükler: Dikey Frekans Bölmeli Çoğullama (OFDM), Kanal 

Kestirimi, Yapay Sinir Ağları, Zamanla Değişen Kanallar, Hızla Değişen 

Kanallar„ Löjandır Polinomları, Sage-Map. 
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1. INTRODUCTION

1.1 Orthogonal Frequency Division Multiplexing

Orthogonal frequency division multiplexing (OFDM) is a prevalent method

used for many of the latest wireless and telecommunication standards due to its

robustness against limitations such as frequency selective fading and delay spread.

In OFDM systems, delay spread is minimized by using multiple sub-carriers of lesser

bandwidth [1]. Additionally, sub-carriers are specifically created to be orthogonal

to one another, allowing them to share the same bandwidth without interfering.

This makes the use of guard bands unnecessary, and the sub-carriers can be tightly

packed to improve channel efficiency. Additionally, utilizing a single-stage equaliza-

tion with OFDM, a frequency-selective channel may be converted into a series of

flat fading channels, allowing for a more straightforward equalizer layout. [2]. With

these vital advantages, OFDM became widely used in commercial systems as an

effective physical-layer method [3], [4].

1.2 Channel Estimation

The performance of wireless communication systems is heavily reliant on chan-

nel estimation. In OFDM systems with time-varying channels, the orthogonality

between the sub-carriers may be lost, and this causes an Inter-Channel Interfer-

ence (ICI) [5]. Because of ICI, the channel estimation and equalization methods get

complicated due to the diagonal structure of the channel matrix in time-invariant

channels being lost [5]. There are many studies on OFDM systems related to channel

estimation, both time-varying and time-invariant. Since it is the optimum method

for reducing the minimum square error (MSE) of channel estimates in the presence
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of AWGN, linear minimum mean square error (LMMSE) is a favored technique used

in channel estimation on OFDM systems. [6]. In [7] basis expansion model is used to

arrange the modulation over an OFDM symbol and combine the transmitting signal

with the time-varying part to form the new pilot signal for MIMO linear time-varying

(LTV) channel estimation. In this method, spectral efficiency decreases due to plenty

of sub-carriers required for the pilot. A Slepian-based estimator is proposed in [8]

for multiple-input multiple-output (MIMO) systems with iterative receivers. In [9],

a modified Kalman filter is introduced, used in time-varying channels and carrying

out iterations inside different symbols of pilot sub-carriers.

Additionally, there are other methods for channel estimate, including neural

network-based channel estimation. Studies in this field are often conducted with

time-invariant channel setups. Functional Link Neural Fuzzy Network (FLNFN)

is employed in [10] for channel estimation, and the authors found that it performs

better than several conventional methods like least square (LS) and minimum means

square error (MMSE) algorithms. The authors propose a channel estimator based on

a tensor-train deep neural network (TT-DNN) for time-varying channel estimation

in MIMO systems [11]. The performance of TT-DNN is better than the DNN

counterparts in terms of convergence rate, estimation accuracy, and robustness.

However, even though there are fewer model parameters, the complexity of the

overall system increased. In [12], to predict the OFDM channel, a multi-layered

perceptron (MLP) based neural network (NN) is presented, which is trained with a

back-propagation (BP) technique. The proposed method performs better than the

conventional Least Mean Square (LMS) algorithm. However, there is a trade-off

between performance and complexity.

1.3 Motivation

Deep learning is a promising approach in wireless communications to overcome

complicated channel distortion and interference with channel estimation and signal

detection [13]. Deep learning’s application to wireless communications has recently

2



received much interest. Considerable studies have begun to merge deep learning with

traditional wireless communication. The authors of [13] carried out a deep learning

channel estimation study in an OFDM system by treating the entire receiver as a

black box. They showed how deep learning might be used in OFDM systems for

channel estimation and signal detection but did not consider time-varying channel

circumstances. The authors in [14] propose a deep learning technique for channel es-

timation improvement in OFDM systems with uplink time-varying channels. They

assemble a channel parameter refine network (CPR-Net) by leveraging fully con-

nected deep neural networks (FC-DNN) and blending it with conventional channel

estimation approaches.

In this work, we discuss the results of our channel estimation study using neural

networks for time-varying channels in OFDM systems. While performing the channel

estimation, it is assumed that the channel changes slowly throughout each OFDM

block, and the channel is modeled with the Legendre polynomial and found with the

neural network. Using linear minimum mean-square error (LMMSE), initial values

of the polynomial coefficients are estimated and the estimated values were improved

with the neural network. The results are compared with LMMSE estimation and

SAGE-MAP algorithm which is an iterative channel estimation method for time

varying channels in literature.

1.4 Contribution of the Thesis

The thesis contributions can be listed as follows:

1. Researches on channel estimation using neural networks in OFDM systems

mostly consider channels that do not change over time. In this thesis, a channel

estimation method for time-varying channels has been presented and the com-

munication channel is modeled using Legendre polynomial coefficients. The

estimation is carried out on those coefficients rather than whole channel. Esti-

mating a set of Legendre polynomial coefficients rather than a whole channel

3



reduces the computational complexity of the estimation.

2. By working on time-varying channels, we design a neural network-based chan-

nel estimation technique for OFDM systems with a better MSE performance

than the SAGE algorithm at small signal-to-noise ratios (SNR). And this is

more feasible in real-life scenarios when the channel is rapidly changing.

3. It is also an important study in terms of minimizing the time delay caused by

iterative channel estimation algorithms, especially in post-5g systems where

channels that change rapidly over time are considered.

1.5 Thesis Outline

Chapter 1 presents a literature review for OFDM and Channel Estimation

in time-variant and time-invariant channels and also, describes the motivation of

the thesis. Also, working principals of the OFDM and OFDM channel estimation is

described. In Chapter 2, OFDM signal and channel models of the communication

scenarios and basis expansion model for the used Legendre polynomial approach

to model the communication channel are presented. Chapter 3 presents the pro-

posed DNN-based channel estimation method and provides the computer simulation

results. Finally, in Chapter 4 the main conclusions of this thesis are summarized.

4



2. PRINCIPLES OF ORTHOGONAL FREQUENCY

DIVISION MULTIPLEXING

Traditional modulation methods, including amplitude modulation (AM), fre-

quency modulation (FM), and binary phase-shift keying (BPSK), modulate the

incoming data bits across a single carrier. OFDM is a multi-carrier modulation

technique that transmits information using several carriers within the allotted band-

width. The frequency-selective channel is divided into many narrow-band flat fading

channels with OFDM using overlapping signals. Various frequency components of

the signal undergo different fading when they are exposed to a frequency-selective

fading channel. OFDM combines modulation and multiplexing to share given band-

width among modulated data sources. By breaking up the overall frequency selective

fading channel into smaller flat fading channels, OFDM solves the issue rather than

attempting to eliminate frequency selective fading.

Figure 2.1 Basic Block Diagram of an OFDM System

Fig. 2.1 shows the block diagram of a simple OFDM system. As a general

scenario, let’s assume we have N sub-carriers. Frequencies that are orthogonal to

one another are the centers of each sub-carrier. The serial-to-parallel converter takes

5



the serial input data bits and outputs N parallel streams, where N is the number

of sub-carriers. A constellation mapper is used to convert these parallel streams

into digitally modulated forms (QAM, QPSK, BPSK). Since the OFDM signal is in

the time domain, the transmitter side uses the Inverse Discrete Fourier Transform

(IDFT) to transform the signal into the time domain. By replicating the final portion

of the OFDM signal and putting it at the start of the transmission, the cyclic prefix

is included as a guard interval. The Inter-Symbol Interference (ISI) issue is reduced

by eliminating them entirely at the receiver side by prefixing each OFDM symbol

with a cyclic prefix. After the cyclic prefix is inserted, the data is then serialized,

turned to analog, and filtered to provide a continuous time-domain signal [15].

The blocks in the receiver, except for the equalizer, match the blocks in the

transmitter. Flat fading on each sub-carriers affects the phase and the magnitude

of each sub-carriers without causing any ISI or ICI. The single tap equalizer cor-

rects the amplitude and phase of each sub-carriers by performing a single complex

multiplication per sub-carriers [15].

2.1 OFDM Channel Estimation

Not all subcarriers in an OFDM system are used for information transmission;

certain subcarriers are set aside for pilot signals (carriers) required for channel esti-

mation. For receiver design in OFDM systems and many functional communication

systems, channel estimation is essential [2].

In wireless systems, signals travel along a radio channel before reaching the

receiver. If the receiver properly estimated how the channel affects the transmitted

signal, the sent information can be retrieved. Signals are reflected and dispersed,

so they travel through several channels to reach the receiver. Furthermore, because

transmitters, receivers, and objects move around, the channel response can alter

quickly over time [2]. Differential modulation methods can be used to eliminate

the channel estimation step, but such systems have a lower data rate and a cost of

6



3–4 dB SNR [2, 4, 6]. With all these effects in wireless systems, channel estimation

becomes a challenging problem since the channel is highly dynamic, unlike guided

media.

LMMSE channel estimation is a broad category that includes several differ-

ent channel estimation approaches that vary in complexity and mean squared error

(MSE). Therefore, an appropriate method among many techniques can be employed

based on the resources and specifications of a given system. [6] Information is mod-

ulated onto orthogonal carriers in OFDM systems. To accurately identify the sent

information, each sub-frequency carrier’s response must be evaluated and retrieved

from the frequency samples due to its unique channel circumstances. The time-

domain channel can be represented as an FIR filter, similar to single-carrier sys-

tems, where channel characteristics can be determined from time-domain received

samples before being transformed to the frequency domain to produce the channel

frequency response (CFR). Utilizing the available information on frequency domain

subchannels, the estimation can also be applied in the frequency domain. Instead

of calculating FIR coefficients, one tap CFR can be determined in this manner. [6]

Two fundamental approaches for OFDM channel estimation are shown in Fig.

2.2 and 2.3: decision-directed channel estimation (DD-CE) and pilot-assisted chan-

nel estimation (PA-CE). In DD-CE, the first stage evaluates the channel’s frequency

response (training mode), which involves transmitting training symbols known to

the transmitter and receiver. Information symbols are conveyed in the second phase

(data mode), and the estimation from the training mode is utilized to remove the

channel effect on the data symbols. Since the symbols used in the training step are

known to the system, high spectral efficiency can be achieved with the DD-CE, but

in cases where the channel changes rapidly, the channel estimation in the training

mode will become invalid in data mode. It is, therefore, primarily appropriate for

burst transmission when the channel conditions are typically stationary. [2, 6]

When the channel under consideration is time-varying, channel estimation

7



Figure 2.2 Pilot and data symbol placement for DD-CE

performance can be improved with PA-CE. Unlike DD-CE, pilot symbols are not just

in front of the data but are interspersed between the data symbols. LS estimation

estimates the CFR of the pilot symbols during channel estimation. Then, the CFR of

the related data symbols can be found through interpolation. The spectral efficiency

is decreased because only pilot symbols, which must adhere to strict performance

requirements, are employed for channel estimation in PA-CE. This situation can be

improved with super-imposed channel estimation SP-CE. [2]

Using SAGE-MAP algorithm as a channel estimation method, authors in [16]

demonstrated discrete Legendre orthogonal basis functions may be used to describe

rapidly changing fading channels for the first time. In OFDM systems with fre-

quency selective fading and highly mobile transceivers, it is sufficient to have a

limited number of expansion coefficients for excellent channel estimation [16]. The

implementation of the algorithm in the time domain is one of the key advantages of

the suggested method.

8



Figure 2.3 Pilot and data symbol placement for PA-CE

2.2 Signal and Channel Models

The OFDM system is taken into account with N subcarriers. The transmitter

actively broadcasts data signals using K amongst N subcarriers. Moreover, the re-

maining N −K subcarriers are not transmitted [16]. The signal that is transmitted

in the time domain is defined as

s(m,n) =
1

N

K−1∑
k=0

d(m, k)ej2πn
k
N (2.1)

n represents the discrete-time index during the mth OFDM symbol, and k is the

discrete-frequency index. The frequency domain data symbol d(m, k) is the one that

is sent across the kth OFDM subchannel at discrete time m. The transmitted signal

s(m,n) can be represented as a zero-mean complex Gaussian sequence using the

central limit theorem when a sufficiently big K is available. After that, an Lc-length

cyclic prefix is included. In a time-varying multipath mobile radio channel with

discrete-time impulse response h(n, l), l = 0, 1..., L− 1 and L ≤ Lc, L stand for the

9



maximum channel length. Following matched filtering, symbol-rate sampling, and

the removal of symbols with cyclic prefixes, the discrete Fourier transform (DFT) is

inferred on the received signal at the receiver.

We can assume the time-varying channel impulse response (CIR) to be constant

throughout one OFDM symbol when the normalized Doppler frequency is sufficiently

small, that is; h(m, l) for m = 0, 1, ...M − 1 where M indicates the length of an

OFDM frame consisting of M consecutive OFDM symbols. [16]

At the output of DFT, we can obtain the frequency domain received signal,

noise, and channel coefficients that is Y (m, k), W (m, k), H(m, k) respectively each

corresponding to the mth OFDM symbol and kth subchannel. And by collecting

received signal samples in a vector, we can express them in a vector form as follows.

[16]

y(m) =
L−1∑
l=0

diag(sl(m))hl(m) + w(m) ∈ CN (2.2)

where

y(m) = [y(mNg), y(mNg + 1), ..., y(mNg +N − 1)]T

w(m) = [w(mNg), w(mNg + 1), ..., w(mNg +N − 1)]T

hl(m) = [h(mNg, l), h(mNg + 1, l), ..., h(mNg +N − 1, l)]T

and, Ng
∆
= N + Lc. Assuming Jakes model for the channel dynamics, the auto-

correlation function of the channel is founded by L—path wide-sense stationary

uncorrelated scattering (WSSUS) Rayleigh fading coefficients at the (mNg + n)th

discrete times with zeroth-order Bessel function of the first kind.

s(m,−l) = s(m,N − l) for l = 0, 1, ..., L− 1. due to cyclic prefix employed at

the transmitter. Thus, sl(m) = vshift(s(m), l), where vshift(s(m), l) represent the

l-step circular shift operator for a column vector

s(m) = [s(m, 0), s(m, 1), ..., s(m,N − 1)

10



with defining Sl(m) = diag(sl(m))

S(m)
∆
= [S0(m), S1(m), ..., SL−1(m)] ∈ CNxLN (2.3)

and

h ∆
= [hT0 (m), hT1 (m), ..., hTL−1(m) ∈ CNxLN

we can express the received signal model in (2.2) as follows

y(m) = S(m)h(m) + w(m) (2.4)

2.3 Selection of Channel Basis Expansion Model

The receiver’s performance is highly dependent on the time-varying channel

impulse response estimation. h = [hT (0),hT (1)...,hT (M − 1)]T ∈ CMNL from the

MN(MN < MNL) dimensional received vector y = [yT (0),yT (1)...,yT (M−1)]T ∈

CMNL. It appears that calculating the channel vector h by means of y is difficult

since there are more unknowns to be determined than known equations.

We begin by using an appropriate BEM to characterize the time fluctuations

of the discrete-time channel impulse response h(mNg + n, l) over a data block of M

OFDM symbol. Channel coefficients, h(t, l) can be represented as weighted sums of

NgM orthogonal basis functions ψq(t) in the interval [0, NgMTs] for each channel

path l = 0, 1, ..., L− 1. But the amount of the coefficients requires a lot of compu-

tational power. However, the weighted sum of a much smaller number D(≪MNg)

of appropriate orthonormal basis functions may be used to approximate it properly.

h̃(t, l) =
D−1∑
q=0

ψq(t)c(q, l), t = 0, 1, ...,MNg − 1 (2.5)

where c(q, l) represents the expansion coefficients.

The inverse transformation can be used as an alternative to deriving the ex-

pansion coefficients by using the orthogonality feature of the basis functions.

c(q, l) =

MNg−1∑
t=0

ψq(t)h(t, l), q = 0, 1, ..., D − 1 (2.6)
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This allows the matrix representation of the channel and the expansion coef-

ficients for each channel path.

h̃l = Ψcl (2.7)

c̃l = Ψ†hl (2.8)

where

h̃l = [h̃(0, l), h̃(1, l), ..., h̃(MNg − 1, l)]T ∈ CMNg

cl = [(0, l), c(1, l), ..., c(D − 1, l)]T ∈ CD

and Ψ matrix that stores the orthogonal basis vectors as

Ψ = [ψ(0),ψ(1), ...,ψ(MNg − 1)]T ∈ RMNg×D (2.9)

with

ψ(t) = [ψ0(t), ψ0(t), ..., ψD−1(t)]
T

t = 0, 1, ...,MNg − 1.

In our work, we use a BEM based on the orthonormal discrete Legendre

polynomial-BEM (DLP-BEM) to explain the temporal fluctuations of the channel.

With a limited number of basis functions, the DLP-BEM is especially well suited to

expressing the channel’s low-pass equivalent. The DLP basis functions also benefit

from being independent of channel statistics and having expansion coefficients that

become increasingly uncorrelated as the number of observations rises, as illustrated

in Appendix A of [16].

With the recursive computation of normalization coefficients of the correspond-

ing discrete orthogonal Legendre polynomials and removing the cyclic prefix from

(2.7) it follows that:

Φ(m) = IL ⊗Ψ(m)

12



Ψ(m) = [ψ(mNg), ψ(mNg + 1), ψ(mNg +N − 1)]T ∈ RN

h̃(m) = Φ(m)c (2.10)

Note that ⊗ stands for Kronecker product. Finally, the received signal is

represented in terms of the reduced dimensions channel vector by replacing 2.10

into 2.4.

y(m) = Z(m)c+w(m) (2.11)

where Z(m)
∆
= S(m)Φ(m) and S(m) is defined in (2.4)

As an example in Fig. 2.4 to Fig. 2.7 there are comparisons of actual channel

h(t) and channel produced with Legendre for a single channel path.

Figures. 2.4-2.7 shows a comparison between the channel response generated

by Legendre polynomials and the real channel response for a single channel path in

WIMAX-OFDM system with M = 5 and M = 8. Below figures show the channel

response obtain by Legendre polynomials h̃(t) and actual channel response h(t) are

really close to each other. From Fig. 2.4, where D = 3, and Fig. 2.5, where D = 4,

we can observe Legendre polynomials perform better when D is bigger. Note that

D represents the number of expansion coefficients for a single channel path.

As shown in the figures the channel response generated by Legendre polyno-

mials is nearly as same as real channel response, When D is higher there are more

coefficients to represent the channel impulse response this increases the similarity

of the generated channel (channel produced with Legendre polynomials) to the real

channel. But a higher D also causes more computational complexity.
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Figure 2.4 Comparison of Actual Channel Response and Channel Response
Produced With Legendre Polynomial

Number of Legendre Coefficients: D=3

Number of OFDM Blocks: M=5
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Figure 2.5 Comparison of Actual Channel Response and Channel Response
Produced With Legendre Polynomial

Number of Legendre Coefficients: D=4

Number of OFDM Blocks: M=5
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Figure 2.6 Comparison of Actual Channel Response and Channel Response
Produced With Legendre Polynomial

Number of Legendre Coefficients: D=3

Number of OFDM Blocks: M=8
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Figure 2.7 Comparison of Actual Channel Response and Channel Response
Produced With Legendre Polynomial

Number of Legendre Coefficients: D=4

Number of OFDM Blocks: M=8
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3. PROPOSED DNN BASED CHANNEL ESTIMATION

Node layers, input layers, output layers, and one or more hidden layers make up

deep neural networks (DNNs). Nodes are also known as artificial neurons. There are

connections between each artificial neuron and differences in threshold and weight.

If a node’s output exceeds the defined threshold level, it is activated and sends data

to the network’s next layer. No data is sent to the following layer if the node is not

enabled.

Deep learning (DL) is bringing a significant technical change to wireless com-

munication systems applications such as channel estimation, radio resource alloca-

tion and signal decoding [17]. The authors of [18] collected energy feedback data

to study downlink channel estimates utilizing a wireless energy transfer system.

Compared to more traditional estimations like LS or linear MMSE, a deep neural

network model estimates channel response more precisely. When a training data

set is sufficiently big, these experiments have numerically illustrated machine learn-

ing’s compelling potential for channel estimation. The authors in [17] proposed two

distinct types of NN to help with channel estimation in a MIMO-OFDM system

using the two alternative scenarios of fading multi-path channel models based on

the TDL-A model described in the 5G networks. The recommended DNN-based

channel estimation techniques are trained to utilize ideal channels and their associ-

ated least squares channel estimates. Due to the proposed DNN-based estimation’s

successful learning of the channel parameters, they found fewer channel estimation

errors than traditional LS and LMMSE estimations.
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3.1 DNN Based Channel Estimation for OFDM

To overcome the drawbacks mentioned in LS and LMMSE estimations, we

suggest a DNN-based estimation that minimizes the MSE between the channel es-

timation produced by LMMSE estimation and the actual channel. As shown in fig

3.1., the recommended DNN structure is set up as a series of layers, including an

input layer, an output layer, and hidden layers. Our proposed DNN structure has

four hidden layers that contain several neurons for the MIMO-OFDM scheme under

consideration. A neuron, in particular, is a type of computational unit that can

carry out the following computations:

f

( p∑
i=1

wixi + bias

)
= f

(
w1x1 + w2x2 + ...+ wpxp + bias

)
(3.1)

where f is the activation function xi is the i-th input (i = 1, ..., p), wi is the weight

of the i-th input and p is a neuron’s total number of inputs.

Figure 3.1 The DNN structure used for channel estimation

The output is then determined by an activation function, a tangent sigmoid

function in our proposed structure.

f(z) =
e2z − 1

e2z + 1
(3.2)

The output value will be nearer to 1.0 (more positive) when the input is more

significant and nearer to -1.0 when the input is more minor (more negative).
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Figure 3.2 Structure of a single neuron

For the training process of DNN-based estimation, the structure is given an

input and output data set. Input is Legendre polynomials of channel estimates

obtained from the LMMSE estimation, c̃l from (2.8), and the output is Legendre

polynomials derived from the actual channel information, which is cl from (2.7) to

converge the estimates to be close the actual channel parameters. Thus, it reduces

the MSE between the estimation and the actual channel. Notice that we are model-

ing the channel response in terms of Legendre polynomials, so the input and output

of the proposed structure consist of coefficients of the Legendre Polynomials [16].

3.2 Initialization of Channel Coefficients

In this thesis we are using a DNN based channel estimation method. DNNs

are based on the idea of the feedforward neural network, where data is processed

through a series of layers, each layer performing a transformation on the data, until it

reaches the output layer, which produces the final output. DNN is used to converge

the estimations to be closer to the actual channel parameters. Since we are using a

18



basis expansion model and Legendre polynomial coefficients to model our channel

response, the input is Legendre polynomials of channel estimates obtained from

the linear minimum mean square error (LMMSE) estimation, and the output is

Legendre polynomials derived from the actual channel information. To obtain the

first estimate of the channel, we can utilize the pilot symbols Using equation 2.11.

Then, we can express the received vector for an OFDM frame with a duration of M

as

y = Zc+w (3.3)

where

y = [yT (0),yT (1), ...,yT (M − 1)]T (3.4)

Z = [ZT (0),ZT (1), ...,ZT (M − 1)]T (3.5)

and

Z(m) = S(m)Φ(m) = [S0(m)Ψ(m),S1(m)Ψ(m), ...,SL−1(m)Ψ(m)] (3.6)

With inverse Fourier transform diagonal matrix Sl(m) can be obtained as:

Sl(m) = diag
(
vshift(s(m), l)

)
=

1

N

K−1∑
k=0

d(m, k)e
−j2πlk

N diag(F∗
N(k)) (3.7)

where FN (k) denotes the kth column of the DFT matrix. Using equation 3.7 Z(m)

can be expressed as

Z(m) =
K−1∑
k=0

d(m, k)Uk(m) (3.8)

with

Uk(m) = FT
L(k)⊗

(
(1T

D ⊗ 1

N
F∗
N(k))⊙Ψ(m)

)
∈ CNxDL (3.9)

where 1D refers to a vector consisting of all elements equal to one, with a length

of D, ⊙ represents the element by element product. FL(k) denotes the first L terms
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of the kth column of the DFT matrix (F ), We consider Z(m) = Zp(m) + ZD(m)

where the matrices obtained form the pilot and data symbols are shown as:

Zp(m) =
K−1∑
k∈Ip

d(m, k)Uk(m) (3.10)

and

ZD(m) =
K−1∑
k∈ID

d(m, k)Uk(m) (3.11)

We can obtain the initial estimations of the channel vector c with fewer di-

mensions by applying the LMMSE method to the received signal model (3.3) in the

following manner:

c(0) = ΣcZ
†
P(ZPΣcZ

†
P +VD +N0IMN)

−1y (3.12)

where

ZP = [ZT
P (0),Z

T
P (1), ...,Z

T
P (M − 1)]T ∈ CMNxDL,

VD
∆
= diag{VD(0),VD(1), ...,VD(M − 1)} ∈ CMNxMN

VD(m)
∆
=

∑
k∈ID(m) Uk(m)ΣcU

†
k(m) ∈ CNxN . In order to make the matrix inversion

process simpler, we use the matrix inversion lemma as demonstrated above, resulting

in...

c(0)
(
Z†

P (VD +N0IMN)
−1ZP + Σ−1

c

)−1

Z†
P

(
VD +N0IMN

)−1

y (3.13)

With this transformation we need to take a matrix inversion of only size DLxDL

rather than MNxMN [16].

By implementing this transformation, we only need to perform a matrix inver-

sion of size DLxDL instead of MNxMN , as (VD + N0IN)
−1 is precomputed and

MN is larger than NL.

3.3 Training of DNN

A dataset of 30000 realizations is acquired for the proposed neural network to

train and test it. We utilize 15%- as the validation set, 15%- as the testing set, and
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70%- of the data for training. Table 3.1 shows that DNN has 30, 60, 60, 60, and 30

neurons in the input, hidden, and output layers. There are 15 Legendre coefficients

for a three-path channel in our structure, from DL = 15 as shown in Table 3.3.

There are 30 variables, the same as the number of neurons in the input and output

layers because each coefficient contains real and imaginary components. As shown

in table 3.1.

DNN-based estimation reduces the MSE between the estimation and the actual

channel. Notice that we are estimating the Legendre polynomials that model the

channel. The loss function that is employed during the training phase is specified as

MSE =
1

NeT

T∑
t=1

Ne∑
ne=1

||c̃ne
l (t)− cne

l (t)||22 (3.14)

Where Ne is the number of epochs (realizations) used to train the network, and

cne
l (t) is the Legendre polynomials derived from the actual channel corresponding

to the c̃ne
l (t), which is Legendre polynomials estimated by LMMSE estimation and

improved by DNN.

In the proposed structure actual channel is modeled with Legendre Polyno-

mials. Because of that, estimated values by the network are Legendre Polynomial

coefficients, not the actual channel coefficients. (Later, a DLP-BEM is employed

on Legendre Polynomial coefficients to describe the time fluctuations of the chan-

nel). Coefficients of the Legendre polynomials are determined with LMMSE channel

estimation, and these estimates are used as the input for the DNN’s training. In

contrast, Legendre polynomials derived from the actual channel are the output of

DNN for the training to lower the MSE and enhance the estimation.

3.4 Simulation Results

LMMSE and SAGE-MAP algorithm-based channel estimation methods are

used to compare the result of our proposed technique. SAGE-MAP algorithm em-

ploys the signal model given by (2.11) except for the pilot symbols for channel
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Table 3.1 DNN Structure for Channel Estimation
Layer Neurons f(z)

Input Layer 30 -

Hidden Layer 1 60 tansig

Hidden Layer 2 60 tansig

Hidden Layer 3 60 tansig

Hidden Layer 4 60 tansig

Output Layer 30 purelin

Table 3.2 Training Parameters for DNN Model
Parameters Values

Training Function Resilient Backpropagation (RP)

Max. number of epoches 1000

Max. validation failures 10

estimation. SAGE-MAP is a variation of widely used Expectation Maximazition

(EM) method modified by the Space Alternating Generalized EM (SAGE) algo-

rithm, which updates subsets of parameters sequentially in one iteration. This

paper won’t cover the SAGE-MAP approach in length because it has been explored

and used to solve several communications issues. For a general explanation of the

SAGE method and its application to a problem relevant to the work presented here,

see [19] and [16], respectively.

Table 3.3 displays the structural parameters for the OFDM system utilized

in simulations, whereas Tables 3.2 and 3.1 display the parameters for the DNN

model. We performed the simulations and compared the result under three different

modulation schemes QPSK, BPSK, and 16-QAM. As a benchmark, we included

LMMSE estimation, and SAGE-MAP estimation [16]. We considered an OFDM

system with M = 2 frames, N = 128 subcarriers and Dp = 6 pilot spacing for each

modulation scheme and two different scenarios for the velocities of the transmitter

and receiver. In the first scenario, the mobility between the transmitter and receiver

is low such that the normalized Doppler Frequency is fdNorm= 0.02. In the second
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Table 3.3 OFDM System Parameters
Parameters Values

OFDM Frame Size 256

Cyclic Prefix 10

Modulations QPSK, BPSK, 16-QAM

Max. Channel Path (L) 3

Amount of Legendre Coefficients (D) 5

scenario the mobility between the transmitter and receiver is high such that the

normalized Doppler Frequency is fdNorm= 0.08

The simuations results of various channel estimations to compare MSE are

shown in Figs. 3.3, 3.4 and 3.5. The results under both fdNorm values for a single

modulation scheme are shown in each graph. The QPSK (quadrature phase-shift

keying modulation), BPSK (binary phase-shit keying) and 16QAM (16-quadrature

amplitude modulation) techniques are used to modulate the transmitted data in the

simulations. All channel estimation techniques deliver an MSE decreasing smoothly

as the SNR increases, as seen in Figs. 3.3, 3.4 and 3.5. LMMSE estimation results

in the worst MSE performance in both scenarios. Because LMMSE only uses the

mean and covariance matrices, it does not consider statistical channel information.

The proposed DNN-based estimation technique yields the best MSE perfor-

mance at low and medium SNR levels. When the SNR level rises above 10-15 dB

levels, the DNN-based estimation yields worse MSEs than the LMMSE estimation

and SAGE algorithm. The reason for this might be the lack of noise influences in

higher SNRs in the data that DNN is using to train the network. Since the effect of

noise is more observable in lower SNRs, the neural network is more likely to train

itself better to diminish the effect of noise in lower SNRs. We might also use more

datasets to train the network to have a better MSE performance in higher SNRs.

This way, the neural network would have more samples to observe and learn how to

arrange its biases and weights for higher SNR levels.
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Figure 3.3 MSE curves of the channel estimations with 16-QAM modulation
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Figure 3.4 MSE curves of the channel estimations with QPSK modulation

The severity of doppler effects can also be seen in Figs 3.3, 3.4, and 3.5. In the

2. scenario, where fdNorm is higher, LMMSE estimation, the SAGE algorithm, and
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Figure 3.5 MSE curves of the channel estimations with BPSK modulation

0 5 10 15 20 25 30

SNR (dB)

10-1

100

S
E

R

SER(LMMSE) - Fd=0.08

SER(SAGE) - Fd=0.08

SER(NN) - Fd=0.08

SER(LMMSE) - Fd=0.02

SER(SAGE) - Fd=0.02

SER(NN) - Fd=0.02

Figure 3.6 SER curves of the channel estimations with 16-QAM modulation

DNN-based estimation yield worse MSEs than their 1. scenario MSE performances.

For DNN, the MSE performance recovery rate decreases as SNR increases when
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Figure 3.7 SER curves of the channel estimations with QPSK modulation
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Figure 3.8 SER curves of the channel estimations with BPSK modulation

fdNorm is smaller. We can also overcome this by using more datasets for the training

of the network because the influence of the Doppler effect is lesser when the relative
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speed between the transmitter and receiver is smaller.

Figs 3.6, 3.7 and 3.8 shows the SER of various channel estimations. When we

examine the SER curves, the differences between the methods are not easily seen.

But even so, we can see that the DNN and SAGE algorithms perform better than

LMMSE.
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4. CONCLUSIONS

For OFDM systems and deep learning-based channel estimation approaches,

Chapter 1 of this thesis presents a survey of the literature on channel estimation on

rapidly changing channels. The thesis’ significant contributions are also emphasized.

The working principles of OFDM systems and channel estimation are discussed in

Chapter 2. Additionally, OFDM signal and channel models for the various communi-

cation scenarios are described, along with a basis expansion model for the Legendre

polynomial technique that was utilized to simulate the communication channel. Be-

cause of the high relative mobility between the receiver and transmitter, Chapter

3 introduces a new neural network-based channel estimating approach for OFDM

systems that enhances LMMSE estimation. Through computer simulations, it has

been demonstrated that the proposed neural network-based channel estimation ap-

proach outperforms LMMSE estimation and the SAGE algorithm, particularly at

lower SNR. Computer simulations have been used to assess the MSE performance of

the proposed neural network-based channel estimation approach and the BER per-

formance in transmission for OFDM systems. On top of the LMMSE estimate, the

NN-based channel estimation technique was used. Legendre polynomial coefficients

of 30000, estimated by LMMSE, are input into the training process of NN, and each

corresponding output data is the Legendre polynomial coefficients produced from

the actual corresponding channel.

In each iteration step during the training process of NN, the neurons’ weights

and biases are arranged so that Legendre polynomial coefficients estimated by the

LMMSE estimation are close to or the same as the coefficients derived from the

actual channel. The computer simulations’ results obtained are as follows:
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• The NN-based channel estimation method was shown to be very effective in

lowering the noise and doppler effects on the communication channel. In par-

ticular, MSE and BER performance of the proposed method in lower SNR

levels are much better than the LMMSE estimation and the SAGE algorithm.

• The simulations were also carried out with three modulation schemes: QPSK,

BPSK, and 16-QAM. NN-based channel estimation in lower SNR values in all

scenarios is better than the LMMSE estimation and the SAGE algorithm.

• The simulations showed that at higher SNR values, MSE and BER perfor-

mance are worse than the LMMSE estimation and the SAGE algorithm. The

reason for this might be the following. NN has a training phase where it learns

from the data belongs the actual scenarios; the data sets contain information

from 0 dB to 30 dB. In lower SNR values, the effect of noise is more observable

than the higher SNR values. Thus NN can accurately arrange the weights and

the biases of neurons for lower SNR values, whereas it can not arrange the

weights and biases for higher SNR values as well as lower values.

4.1 Future Work

In this thesis a DNN based channel estimation approach is studied for OFDM

systems under time varying channel conditions. The result of this study shows

that with DNN improving channel estimation performance of LMMSE estimation is

possible especially for lower SNR levels. This study could be extended for DNN to

perform better also at higher SNR levels.
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