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ABSTRACT 

 

NOVEL RESISTANCE-FREE RET TYROSINE KINASE INHIBITOR 

DISCOVERY THROUGH DYNAMIC STRUCTURE-BASED 

PHARMACOPHORE AND QSAR MODELING AND VIRTUAL SCREENING 

OF ULTRA LARGE LIGAND LIBRARIES 

 
 
 

Sayyah, Ehsan 

Bioengineering Master’s Program 

Thesis Advisor: Prof. Dr. Serdar Durdaği 

 

June 2023, 157 pages 

 

 

 

 

Gene fusion and point mutations cause to activate RET tyrosine kinase where the gene 

fusion is responsible for non-small cell lung cancer and papillary thyroid cancers and 

the point mutation on the RET proto-oncogene, which is the receptor tyrosine kinase, 

causes multiple endocrine neoplasia type 2A and 2B (MEN2A, MEN2B) and Familial 

medullary thyroid cancer. Furthermore, small molecules as inhibitors bind to the 

binding site of RET kinase domain to block their enzymatic activity. On the other hand, 

a single amino acid change on the RET kinase position can provide resistance to the 

tyrosine kinase inhibitors, so it is essential to find a compound with activity against 

RET mutants. So, we hypothesize that with in-silico E-pharmacophore modeling of 

molecular dynamics trajectories and predicting pIC50 values of small molecules from 

several libraries using QSAR models, we can discover new small molecules that can 

inhibit the activation of RET proto-oncogene and their signaling pathways, so it can 

stop the growth of tumor sizes with the lowest resistance to that inhibitor. 

 

 

Keywords: E-Pharmacophore; Medullary Thyroid Cancer; Non-Small Cell Lung 

Cancer; RET proto-oncogene; QSAR  
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ÖZET 

 

 

ULTRA BÜYÜK LİGAND KÜTÜPHANELERİNİN SANAL TARAMASI VE 

DİNAMİK YAPI TEMELLİ FARMAKOFOR VE QSAR MODELLEMESİ İLE 

YENİ REZİSTANS GÖSTERMEYEN RET TİROZİN KİNAZ İNHİBİTÖRÜNÜN 

KEŞFİ 

 

 

 

Ehsan Sayyah 

Biyomühendislik Yüksek Lisans Programı 

Tez Danışmanı: Prof. Dr. Serdar Durdaği 

 

 

 

Haziran 2023, 157 sayfa 

 

 

 

 

Gen füzyonları ve nokta mutasyonları, gen füzyonunun non-small cell lung cancer ve 

papiller tiroid kanserlerinden sorumlu olduğu ve RET proto-onkogenindeki nokta 

mutasyonunun, reseptör tirozin kinazı olan RET proto-onkogeninin aktivasyonuna 

neden olduğu, multiple endokrin neoplazi tip 2A ve 2B (MEN2A, MEN2B) ve familial 

medüller tiroid kanseriyle ilişkilidir. Ayrıca, inhibitör olarak kullanılan küçük 

moleküller RET kinaz etki alanına bağlanarak enzimatik aktivitelerini engellerler. 

Bununla birlikte, RET kinaz pozisyonunda tek bir amino asit değişikliği, tirozin kinaz 

inhibitörlerine direnç sağlayabilir, bu nedenle RET mutasyonlarına karşı etkili bir 

bileşik bulmak önemlidir. Bu nedenle, moleküler dinamik trajelerin e-farmakofor 

modellemesi ve QSAR modelleri kullanılarak küçük moleküllerin çeşitli 

kütüphanelerinden elde edilen pIC50 değerlerinin tahmin edilmesi ile RET proto-

onkogenin aktivasyonunu ve sinyal yolaklarını inhibe edebilen yeni küçük moleküller 

keşfedebileceğimizi hipotez ediyoruz. Bu şekilde, tümör büyümesini ve inhibitöre 

karşı en düşük direnci olan tümör boyutlarını durdurabiliriz. 

Anahtar Kelimeler: E-Farmakofor; Küçük Hücreli olmayan Akciğer Kanseri; 

Medüller Tiroid Kanseri; RET proto-onkogeni; QSAR 
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 Chapter 1 

Introduction 

1.1 Purpose of Thesis 

 

Thyroid cancer and non-small cell lung cancer (NSCLC) are among the most 

frequent types of cancer worldwide and can be associated with high morbidity and 

mortality rates. Despite recent advances in cancer treatment, effective therapies for 

these cancers remain limited, highlighting the need for new and innovative approaches 

to cancer drug discovery. 

One potential target for drug discovery in these cancers is the RET tyrosine kinase 

protein. RET, a transmembrane receptor tyrosine kinase situated within the cell 

membrane, assumes a pivotal function in fostering cellular proliferation, differentiation, 

and viability. Activating mutations in RET have been found to be associated with the 

development and progression of several types of cancer, including medullary thyroid 

cancer and NSCLC. 

Medullary thyroid cancer is a rare type of thyroid cancer that arises from the C 

cells of the thyroid gland. It accounts for approximately 5-10% of all thyroid cancers 

and can be associated with familial genetic syndromes. In contrast, NSCLC is a 

heterogeneous group of lung cancers that account for approximately 85% of all lung 

cancer cases. NSCLC is often diagnosed at advanced stages and has a poor prognosis, 

highlighting the need for new therapeutic options. 

RET has garnered attention as a prospective focus for the discovery of cancer 

drugs, specifically in relation to medullary thyroid cancer and non-small cell lung 

cancer (NSCLC). Preclinical studies have shown that inhibition of RET signaling can 

lead to reduced tumor growth and improved survival outcomes in animal models. 

Additionally, recent clinical trials have shown promising results for RET inhibitors in 

patients with medullary thyroid cancer and NSCLC, highlighting the potential of this 

approach for cancer treatment. 

Selpercatinib (LOXO-292) and Pralsetinib (BLU-667) are two highly selective 

RET inhibitors that have shown great potential in clinical trials. Both medications have 

received approval from the FDA for treating metastatic RET fusion-positive NSCLC 
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and medullary thyroid cancer, showcasing remarkable rates of response and long-

lasting effects. 

The main problem with the currently available RET inhibitors, such as 

selpercatinib and pralsetinib, is the emergence of resistance mutations. While these 

drugs have shown promising results in clinical trials, some patients have developed 

resistance to the therapy over time, leading to disease progression and reduced 

treatment efficacy (Drilon et al. 2020; V. Subbiah et al. 2018). 

The emergence of resistance mutations can occur through various mechanisms, 

including changes in the binding affinity of the drug to its target, alterations in 

downstream signaling pathways, and activation of compensatory signaling pathways. 

For example, a common resistance mutation in RET is the gatekeeper mutation 

(V804M), which affects the binding of the drug to its target site and reduces its 

inhibitory effect (Drilon et al. 2017). 

Another challenge with the use of Selpercatinib and Pralsetinib is their selectivity 

for RET, which may limit their efficacy in patients with tumors that have multiple driver 

mutations. In these cases, combination therapies with other drugs may be necessary to 

achieve optimal treatment outcomes (Gainor et al. 2021). 

To address these challenges, there is a need for the development of new RET 

inhibitors that can overcome resistance mutations and have broader selectivity for 

tumors with multiple driver mutations.  

Despite these advances, the development of RET inhibitors has been challenging 

due to the high degree of homology between RET and other tyrosine kinases. 

Developing inhibitors that are both potent and selective for RET has been a major 

obstacle in drug discovery efforts. In recent years, in-silico drug discovery methods 

have emerged as powerful tools for identifying novel RET inhibitors (Lanzi et al. 2009; 

Lin and Shaw 2016). 

Computer aid drug discovery methods such as QSAR and pharmacophore 

modeling can be used to screen large libraries of compounds for potential RET 

inhibitors. Machine learning algorithms can be trained on large data sets of known RET 

inhibitors and non-inhibitors to predict novel compounds that are likely to bind to RET 

with high affinity. Pharmacophore modeling can be used to identify common structural 

features among known RET inhibitors and use these features to screen virtual 

compound libraries (Brogi et al. 2020; Zhang, Chung, and Oldenburg 1999). 
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Molecular dynamics simulations can also be used to generate MD trajectories for 

analysis, which can provide valuable insights into the binding mode and specificity of 

potential inhibitors. By combining computational methods with experimental 

biophysical and pharmacological studies, it may be possible to identify novel RET 

inhibitors with improved therapeutic properties (Drilon et al. 2017). 

1.2 Scientific Aims of the Thesis 

 

The primary aim of this thesis is to develop novel RET tyrosine kinase inhibitors 

that can effectively halt the growth of medullary thyroid cancer and non-small cell 

lung cancer (NSCLC) by identifying hit molecules using computational methods such 

as quantitative structure-activity relationship (QSAR) and e-pharmacophore modeling. 

The study also aims to gain insights into the mechanism of RET inhibition by 

analyzing the binding properties of the most promising compounds to the RET tyrosine 

kinase protein. By comparing the results of QSAR and e-pharmacophore modeling, 

this research aims to determine the most effective approach for identifying potential 

RET inhibitors. In addition to identifying hit molecules for RET inhibitors, this thesis 

also aims to develop inhibitors that are less prone to resistance. Previous studies have 

shown that some RET inhibitors, such as Selpercatinib and Pralsetinib, may develop 

resistance due to mutations in the binding site of the inhibitor. Therefore, a key 

objective of this research is to design inhibitors that can effectively bind to the RET 

tyrosine kinase protein and overcome resistance caused by mutations. By doing so, 

this research aims to contribute to the development of more effective and long-lasting 

treatments for medullary thyroid cancer and NSCLC (Drilon et al. 2018a; Lin and 

Shaw 2016; Vidal et al. 2005). The ultimate goal of this research is to contribute to the 

development of more efficient drug discovery pipelines for RET inhibitors, thereby 

improving the therapeutic options available to patients suffering from medullary 

thyroid cancer and NSCLC. 
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Chapter 2 

Literature Review 

2.1 Cancer 

 

Cancer is a disease that results from the uncontrolled growth and spread of 

abnormal cells in the body. The first recorded case of cancer was found in an Egyptian 

textbook written around 1600 BCE. Throughout history, cancer has been known by 

many names, including "the emperor of all maladies", "the king of terrors", and "the 

great crippler". It is a major public health issue worldwide, with millions of new cases 

and deaths each year (Siddhartha Mukherjee 2011). As per the World Health 

Organization (WHO), cancer stands as the second most prevalent cause of mortality 

worldwide, resulting in approximately 10 million deaths in the year 2020 (Ferlay J, 

Ervik M, Lam F, Colombet M, Mery L, Piñeros M 2020). In Turkey, cancer is also a 

significant health problem. According to the Turkish Ministry of Health, cancer was 

the second leading cause of death in 2019, accounting for 21.6% of all deaths (Dr. 

BİRİNCİ et al. 2020). In the early 20th century, researchers discovered that cancer was 

caused by changes, or mutations, in the DNA of cells. This led to the development of 

treatments such as chemotherapy, radiation therapy, and surgery. In recent years, 

advances in cancer research have led to the development of targeted therapies and 

immunotherapies, which have exhibited encouraging outcomes in the treatment of 

some types of cancer. Furthermore, computer-aided drug discovery techniques have 

played a crucial role in the development of targeted therapies and immunotherapies for 

cancer treatment (The American Cancer Society 2021). 

2.1.1 Thyroid Cancer.  Thyroid cancer is a type of cancer that originates in 

the thyroid gland, a butterfly-shaped gland located in the neck that secretes hormones 

that govern the body's metabolic processes. The incidence of thyroid cancer has been 

increasing in recent decades, and some experts believe that improved access to care 

and advances in diagnostic technology have contributed to this trend (Davies and 

Welch 2014; Morris et al. 2013). 

The molecular pathogenesis of thyroid cancer is complex and not fully 

understood, but genetic alterations that activate oncogenic pathways are thought to 

play a key role in the development of the disease. (2,6) Common genetic alterations in 
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thyroid cancer include mutations in genes such as BRAF, RAS, and RET, which 

promote cell proliferation and survival (Xing 2013). 

The typical diagnosis of thyroid cancer involves a blend of physical examination, 

imaging tests, and biopsy of thyroid tissue. To aid in treatment decisions, the Bethesda 

System for Reporting Thyroid Cytopathology is extensively employed as a 

classification system for interpreting the results of thyroid biopsies (Cibas and Ali 

2009). The 2015 American Thyroid Association Management Guidelines provide 

recommendations for the evaluation and management of thyroid nodules and 

differentiated thyroid cancer (Haugen et al. 2016). 

The treatment approach for thyroid cancer is contingent upon various factors, 

including the cancer's type, stage, and patient-specific considerations like age and 

overall health. Possible treatment options encompass surgical intervention to remove 

a portion or the entirety of the thyroid gland, radioiodine therapy to eliminate thyroid 

cells, and external beam radiation therapy (Haddad et al. 2022). 

In conclusion, thyroid cancer is a complex disease with a rising incidence. 

Understanding its molecular pathogenesis and appropriate management strategies are 

crucial for improving outcomes for patients with thyroid cancer. 

2.1.1.1 Classification of Thyroid Cancer. Thyroid cancer can be classified into 

four main histological types: papillary thyroid carcinoma (PTC), follicular thyroid 

carcinoma (FTC), medullary thyroid carcinoma (MTC), and anaplastic thyroid 

carcinoma (ATC) (2). Among them, PTC and FTC are differentiated thyroid 

carcinomas (DTC), while MTC and ATC are undifferentiated thyroid carcinomas 

(UTC) (Nikiforov and Nikiforova 2011). 
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2.1.1.1.1 Papillary Thyroid Carcinoma. The BRAF V600E mutation is the most 

common genetic alteration found in PTC, occurring in around 40-45% of cases (Xing 

2013). This mutation results in a constitutively activated BRAF protein, which in turn 

activates the downstream MEK-ERK signaling pathway, leading to increased cell 

proliferation and survival. The RET/PTC rearrangements, which are present in around 

10-20% of cases, involve the fusion of the RET proto-oncogene with various partner 

genes, resulting in a constitutively activated RET protein. The RAS mutations, which 

are present in around 10-15% of cases, result in a constitutively activated RAS protein, 

leading to the activation of the same downstream MEK-ERK signaling pathway as the 

BRAF mutation (Agrawal et al. 2014). Exposure to ionizing radiation is a well-known 

risk factor for developing PTC. This can occur due to exposure to radiation during 

childhood or adolescence, as the thyroid gland is more sensitive to radiation damage 

during these periods of development. In addition, certain inherited genetic conditions, 

such as familial adenomatous polyposis and Cowden syndrome, can increase the risk 

of developing PTC. Exposure to certain chemicals or environmental toxins, such as 

asbestos and certain pesticides, may also increase the risk of PTC (Crnčić et al. 2020). 

2.1.1.1.2 Follicular Thyroid Carcinoma. Follicular thyroid carcinoma (FTC) 

ranks as the second most prevalent form of thyroid cancer, accounting for 

approximately 10-15% of cases (Nikiforov and Nikiforova 2011). FTC arises from the 

cells that produce and store thyroid hormones, known as follicular cells and is 

characterized by the formation of abnormal, cancerous follicles in the thyroid gland. 

FTC is more common in women than in men and typically occurs in individuals over 

the age of 40 (Ashorobi and Lopez 2023). The majority of FTC cases are sporadic, 

meaning they occur without a known genetic cause. However, certain genetic 

mutations have been identified as risk factors for developing FTC. One of the most 

well-studied mutations is the RAS gene mutation, which is found in approximately 40-

50% of FTC cases (Xing 2013). Mutations in RAS lead to the persistent activation of 

the RAS protein, consequently triggering the downstream MAPK signaling pathway. 

This activation contributes to heightened cell proliferation and survival. Other genetic 

mutations that have been implicated in the development of FTC include the PAX8-

PPARγ rearrangement and mutations in the TERT promoter region (Nikiforov and 

Nikiforova 2011).  
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FTC development is associated with a recognized risk factor, which is exposure 

to ionizing radiation. Like PTC, FTC can occur due to exposure to radiation during 

childhood or adolescence, as the thyroid gland is more sensitive to radiation damage 

during these periods of development. In addition, certain inherited genetic conditions, 

such as Cowden syndrome and Carney complex, can increase the risk of developing 

FTC (Xing 2013). FTC is typically diagnosed through a combination of imaging 

studies, such as ultrasound and radioactive iodine scans, and biopsy of thyroid nodules. 

Treatment options for FTC include surgery to remove the affected thyroid tissue, and 

radioactive iodine therapy to destroy any remaining cancerous cells. In some cases, 

chemotherapy and external radiation therapy may also be used (Ashorobi and Lopez 

2023). 

2.1.1.1.3 Medullary Thyroid Cancer. Medullary thyroid carcinoma (MTC) is an 

uncommon form of thyroid cancer originating from the parafollicular cells, also 

referred to as C-cells. These cells are responsible for producing the hormone 

calcitonin. MTC accounts for approximately 5-10% of all thyroid cancers (Wells et al. 

2015a). Unlike other types of thyroid cancer, MTC is not typically associated with 

exposure to ionizing radiation, and there are several known genetic mutations that can 

cause this cancer. MTC can occur sporadically or as part of an inherited syndrome. 

Approximately 75% of all MTC cases are sporadic and occur without a known genetic 

cause. The remaining 25% of cases are inherited and are associated with germline 

mutations in the RET proto-oncogene, which encodes a receptor tyrosine kinase that 

regulates cell growth and differentiation (Moura et al. 2011). Multiple endocrine 

neoplasias (MEN) type 2 is the most well-known inherited syndrome associated with 

MTC and is caused by mutations in the RET gene. MEN2 is further divided into two 

subtypes: MEN2A, which is characterized by the presence of MTC, 

pheochromocytoma (a tumor of the adrenal gland), and hyperparathyroidism; and 

MEN2B, which is characterized by the presence of MTC, pheochromocytoma, and a 

variety of other clinical features (Wells et al. 2015a). In sporadic MTC cases, somatic 

mutations in the RET gene have been identified in up to 50% of cases, as well as 

mutations in other genes such as RAS and TP53 (Moura et al. 2011).  
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These mutations lead to the activation of the RET signaling pathway, which 

promotes cell growth and proliferation. Inherited mutations in the RET gene typically 

involve the loss of function of the RET protein, which can predispose individuals to 

the development of MTC. MTC is typically diagnosed through the measurement of 

serum calcitonin levels and imaging studies such as ultrasound, CT, and MRI scans. 

Treatment options for MTC include surgery to remove the affected thyroid tissue, as 

well as any lymph nodes that may be involved. In cases where cancer has spread 

beyond the thyroid, chemotherapy and radiation therapy may also be used (Romei, 

Ciampi, and Elisei 2016). 

 

2.1.1.1.4 Anaplastic Thyroid Carcinoma. Anaplastic thyroid carcinoma (ATC) 

is a rare, aggressive, and highly malignant cancer that accounts for less than 2% of all 

thyroid cancers. It arises from the follicular cells of the thyroid gland and is 

characterized by the rapid and uncontrolled growth of cancerous cells that invade the 

surrounding tissues and organs. ATC typically presents in elderly individuals and 

carries an unfavorable prognosis due to its aggressive characteristics and limited 

treatment options. Although the precise cause of ATC is not entirely comprehended, it 

is believed, similar to other forms of thyroid cancer, to be associated with genetic 

mutations. Several mutations have been identified in ATC, including mutations in the 

TP53, BRAF, and PIK3CA genes (Agrawal et al. 2014). TP53 is a tumor suppressor 

gene that helps prevent the development of cancer by regulating cell growth and 

division. Mutations in TP53 can result in the loss of its tumor suppressor activity, 

leading to uncontrolled cell growth and the development of cancer. BRAF and 

PIK3CA are oncogenes that promote cell growth and proliferation. Mutations in these 

genes can activate their signaling pathways, leading to the development and 

progression of cancer. ATC is usually diagnosed based on a combination of imaging 

studies and biopsy results. Treatment options for ATC include surgery, radiation 

therapy, and chemotherapy, either alone or in combination. However, due to its 

aggressive nature and resistance to conventional therapies, the prognosis for ATC is 

generally poor, with a five-year survival rate of less than 10% (Smallridge et al. 2012). 

In recent years, there have been advances in targeted therapies and 

immunotherapies that show promise in the treatment of ATC. These therapies aim to 

specifically target the genetic mutations that drive the growth of cancer cells or to 
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stimulate the patient's own immune system to attack the cancer cells. Clinical trials are 

ongoing to evaluate the effectiveness of these new treatments in improving the 

outcomes for patients with ATC. 

2.1.2 Lung Cancer. Lung cancer ranks among the primary contributors to 

cancer-related fatalities on a global scale. It is a type of cancer that starts in the cells 

of the lung tissue, usually in the cells lining the air passages. The disease can be traced 

back to ancient times, with evidence of lung cancer found in mummies from Egypt and 

Peru. However, it was not until the 20th century that the disease became recognized as 

a major public health concern (Herbst 2013). In the early 1900s, lung cancer was 

relatively rare, with most cases occurring in people who worked in the mining and 

manufacturing industries. However, with the rise of cigarette smoking in the mid-20th 

century, the incidence of lung cancer began to increase rapidly. Studies in the 1950s 

and 1960s established a strong link between smoking and lung cancer, and smoking 

remains the primary cause of the disease today (Doll and Peto 1976). When a person 

inhales cigarette smoke, the carcinogenic compounds in the smoke can damage the 

cells lining the lungs. Over time, this damage can lead to the development of cancerous 

cells that can grow and spread throughout the lung tissue and beyond. Other risk factors 

for lung cancer include exposure to radon gas, asbestos, and air pollution, as well as a 

family history of the disease (The American Cancer Society medical and editorial 

content team 2019). Lung cancer can be difficult to detect in its early stages, as 

symptoms often do not appear until the disease has progressed. Frequent indications 

of lung cancer encompass coughing, chest pain, difficulty breathing, and coughing up 

blood. The available treatment alternatives for lung cancer consist of surgery, radiation 

therapy, chemotherapy, and targeted therapy, which are determined based on the 

cancer's stage and type (PDQ Adult Treatment Editorial Board 2002). Unfortunately, 

lung cancer has a high mortality rate, with only about 20% of patients surviving for 5 

years after diagnosis. This is largely due to the fact that the disease is often diagnosed 

at an advanced stage, when it has already spread to other parts of the body. In addition, 

the aggressive nature of lung cancer and its resistance to many conventional treatments 

make it a difficult disease to manage (Molina et al. 2008). 
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2.1.2.1 Classification of Lung Cancer. Lung cancer is typically categorized 

into two primary types: small cell lung cancer (SCLC) and non-small cell lung cancer 

(NSCLC) (PDQ Adult Treatment Editorial Board 2002). Non-small cell lung cancer 

(NSCLC) prevails as the most prevalent form, comprising approximately 85% of all 

diagnosed lung cancer cases (Lukeman 2015). NSCLC can be further classified into 

three subtypes based on the type of cells found in the tumor: adenocarcinoma, 

squamous cell carcinoma, and large cell carcinoma (Travis et al. 2015). The 

classification of NSCLC is important because it can help determine the appropriate 

treatment approach, as well as the prognosis and potential outcomes of the disease 

(Detterbeck et al. 2017). SCLC is less common than NSCLC, accounting for about 

15% of all lung cancer cases. It is characterized by small cells that grow rapidly and 

form large tumors that can quickly spread to other parts of the body (PDQ Adult 

Treatment Editorial Board 2002). Overall, the classification of lung cancer is based on 

the type of cells found in the tumor and is important for guiding treatment decisions 

and predicting outcomes. 

2.1.2.1.1 Small Cell Lung Cancer. Small cell lung cancer (SCLC) is a highly 

malignant type of lung cancer that arises from neuroendocrine cells in the bronchial 

epithelium. SCLC is known for its aggressive nature and tendency to rapidly spread to 

other parts of the body (Gazdar, Bunn, and Minna 2017). The majority of SCLC cases 

are caused by smoking, with up to 98% of patients having a history of smoking (PDQ 

Adult Treatment Editorial Board 2002). Other risk factors for SCLC include exposure 

to radon, asbestos, and other environmental toxins (Molina et al. 2008). Mutations in 

several genes have been linked to the development and progression of SCLC. The most 

commonly mutated genes in SCLC are TP53, RB1, and PTEN, which are known tumor 

suppressor genes (George et al. 2015). Other frequently mutated genes in SCLC 

include MYC, NOTCH, and the SWI/SNF chromatin remodeling complex genes 

(Rudin and Poirier 2016). SCLC is highly responsive to chemotherapy and radiation 

therapy, but it often becomes resistant to treatment and relapses quickly. 

Immunotherapy has shown promising results in the treatment of SCLC, with the PD-

1 inhibitor pembrolizumab being approved as a first-line treatment for SCLC in certain 

cases (Horn et al. 2018). 
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2.1.2.1.2 Non-Small Cell Lung Cancer. Non-small cell lung cancer (NSCLC) 

accounts for approximately 85% of all lung cancer cases and can be further classified 

into three subtypes: adenocarcinoma, squamous cell carcinoma, and large cell 

carcinoma (Siegel, Miller, and Jemal 2020). Adenocarcinoma is the most common 

subtype of NSCLC and often arises from cells that line the small air sacs (alveoli) in 

the lungs. It is more likely to occur in people who have never smoked and is often 

associated with certain genetic mutations, such as EGFR, ALK, and ROS1 (Lichtenfels 

et al. 2018). Squamous cell carcinoma, also known as epidermoid carcinoma, arises 

from the cells that line the airways in the lungs. It is strongly associated with tobacco 

smoking and may be caused by mutations in genes such as TP53, CDKN2A, and 

PIK3CA. Large cell carcinoma, also known as undifferentiated carcinoma, is a less 

common subtype of NSCLC and is named for the large size of the tumor cells. It can 

arise from any part of the lung and is often associated with genetic mutations such as 

TP53 and KRAS (Siegel et al. 2020). Like SCLC, NSCLC can also be caused by 

mutations in various genes that are involved in cell growth and division, DNA repair, 

and cell death. These mutations can occur spontaneously or be caused by exposure to 

carcinogens such as tobacco smoke, air pollution, and radiation (Lichtenfels et al. 

2018). Recent studies have identified RET proto-oncogene as a potential therapeutic 

target in NSCLC. RET is a receptor tyrosine kinase that plays a crucial role in cell 

proliferation, differentiation, and survival. RET mutations are found in approximately 

1-2% of lung adenocarcinomas and have been shown to drive tumor growth and 

progression (Gainor and Shaw 2013). Several small molecule inhibitors targeting RET 

have been developed and are currently undergoing clinical trials in NSCLC. Early 

results have shown promising activity of these inhibitors in patients with RET-mutant 

NSCLC, suggesting that RET inhibition may be a viable treatment option for this 

subset of patients (Drilon et al. 2016, 2018b). In addition to RET mutations, other 

genetic alterations such as EGFR, ALK, and ROS1 are also being targeted with 

specific inhibitors in NSCLC (Paik et al. 2011). With the increasing availability of 

targeted therapies, the molecular classification of NSCLC has become increasingly 

important for identifying patients who may benefit from these therapies and for 

designing personalized treatment regimens (Travis et al. 2015). 
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2.2 Tyrosine Kinase  

 

Tyrosine kinases are a class of enzymes that play a crucial role in cell signaling 

and are important targets for cancer therapy (Roskoski 2016). They facilitate the 

transfer of a phosphate group from ATP to a tyrosine residue on a protein substrate, 

thereby initiating the activation of subsequent signaling pathways that govern cell 

growth, differentiation, and survival (Lemmon and Schlessinger 2010). Dysregulated 

activation of tyrosine kinases has been associated with the onset and advancement of 

various cancer types, such as leukemia, breast cancer, lung cancer, and gastrointestinal 

stromal tumors (GIST) (Blume-Jensen and Hunter 2001). Mutations or overexpression 

of tyrosine kinase genes can lead to constitutive activation of downstream signaling 

pathways, promoting uncontrolled cell proliferation and survival (Weinstein and Joe 

2008). Targeting tyrosine kinases has become a major focus of cancer therapy, and 

several tyrosine kinase inhibitors (TKIs) have been developed and approved for 

clinical use in various types of cancer. TKIs work by binding to the ATP-binding site 

of the tyrosine kinase domain, inhibiting kinase activity and downstream signaling 

(Wong, Siah, and Lo 2019). Examples of FDA-approved TKIs include imatinib for the 

treatment of chronic myeloid leukemia (CML) and GIST, erlotinib for non-small cell 

lung cancer (NSCLC), and trastuzumab for HER2-positive breast cancer (Joo, 

Visintin, and Mor 2013). Despite the clinical success of TKIs, resistance to these 

agents can develop through various mechanisms, including acquisition of secondary 

mutations in the target kinase domain or activation of alternative signaling pathways 

(Johnson et al. 2016). Understanding the underlying molecular mechanisms of 

resistance and developing strategies to overcome resistance is an active area of 

research in cancer therapeutics. 

Tyrosine kinases are divided into two categories: receptor tyrosine kinase (RTK) 

and non-receptor tyrosine kinase (NRTK). Receptor tyrosine kinases are 

transmembrane receptors that are expressed on cell surface. Binding the ligands on 

their extracellular domain cause to activation of RTKs. On the other hand, non-

receptor tyrosine kinases (NRTKs) are placed in cytoplasm or bound to cell membrane 

(Siveen et al. 2018).  RTKs have 58 subfamilies, such as, fibroblast growth factor 

receptor (FGFR), epidermal growth factor receptor (EGFR), insulin receptor (IR), 

rearranged during transfection (RET), etc. (Hubbard 1999).  
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RTKs are activated by ligand-induced dimerization, which occurs when two 

receptor monomers bind to the same ligand. This binding leads to a conformational 

change in the receptor that brings the intracellular domains into close proximity, 

allowing them to auto phosphorylate each other on specific tyrosine residues. This 

autophosphorylation leads to the recruitment of downstream signaling molecules that 

bind to the phosphorylated tyrosine residues, leading to the activation of downstream 

signaling pathways (Lemmon and Schlessinger 2010). The ligand-receptor interaction 

is highly specific, and each RTK has a unique set of ligands that activate it. For 

example, the epidermal growth factor receptor (EGFR) is activated by binding to EGF 

or transforming growth factor-alpha (TGF-α), while the platelet-derived growth factor 

receptor (PDGFR) is activated by binding to PDGF (Yarden and Sliwkowski 2001). 

The activated RTKs initiate downstream signaling pathways that regulate various 

cellular functions. The two major signaling pathways activated by RTKs are the Ras-

MAPK pathway and the PI3K-Akt pathway. The Ras-MAPK pathway is activated by 

RTKs and leads to the activation of the mitogen-activated protein kinase (MAPK) 

cascade, which ultimately results in the activation of transcription factors that regulate 

gene expression. The Ras-MAPK pathway is set in motion through the recruitment of 

the adaptor protein Grb2 to the phosphorylated tyrosine residues on the activated 

receptor tyrosine kinase (RTK). Grb2 subsequently recruits the guanine nucleotide 

exchange factor SOS, which triggers the activation of the small GTPase Ras. Activated 

Ras, in turn, initiates the MAPK cascade, ultimately resulting in the activation of 

transcription factors like c-Fos and c-Jun (Chang and Karin 2001). The PI3K-Akt 

pathway is also activated by RTKs and regulates various cellular functions, including 

cell survival and proliferation. The activation of the PI3K-Akt pathway is initiated by 

the recruitment of the adaptor protein Gab1 to the phosphorylated tyrosine residues on 

the activated RTK. Gab1 then recruits the regulatory subunit of PI3K, leading to the 

activation of PI3K. Activated PI3K then produces the lipid second messenger 

phosphatidylinositol (Chang and Karin 2001; Manning and Cantley 2007; Mendelsohn 

and Baselga 2000)-trisphosphate (PIP3), which recruits Akt to the plasma membrane. 

Akt is then phosphorylated and activated by upstream kinases, leading to the regulation 

of various downstream effectors that regulate cell survival and proliferation (Manning 

and Cantley 2007). Dysregulation of RTK signaling pathways has been implicated in 

various cancers. In many cases, cancer cells overexpress or mutate RTKs, leading to 

constitutive activation of downstream signaling pathways. For example, the EGFR is 
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frequently overexpressed in various cancers, including lung, colon, and breast cancer. 

Overexpression of EGFR leads to constitutive activation of the Ras-MAPK and PI3K-

Akt pathways, resulting in increased cell proliferation, survival, and metastasis 

(Mendelsohn and Baselga 2000). Genes can also lead to constitutive activation of 

downstream signaling pathways. For example, mutations in the PDGFR gene have 

been identified in gastrointestinal stromal tumors (GISTs). These mutations give rise 

to the ligand-independent activation of the PDGFR, causing a persistent activation of 

the Ras-MAPK and PI3K-Akt pathways (Heinrich et al. 2003). The dysregulation of 

RTK signaling pathways in cancer has made them attractive targets for therapeutic 

intervention. Several RTK inhibitors have been developed that target various RTKs, 

including EGFR, PDGFR, and vascular endothelial growth factor receptor (VEGFR). 

These inhibitors have shown promising results in clinical trials and have been 

approved for the treatment of various cancers (Roskoski 2021). For example, the 

EGFR inhibitor gefitinib has been approved for the treatment of non-small cell lung 

cancer (NSCLC) with activating mutations in the EGFR gene. Gefitinib targets the 

intracellular tyrosine kinase domain of EGFR, inhibiting downstream signaling 

pathways and leading to decreased cell proliferation and survival (Maemondo et al. 

2010). Similarly, imatinib, a small molecule inhibitor of PDGFR, has been approved 

for the treatment of GISTs. Imatinib targets the ATP-binding site of PDGFR, inhibiting 

its tyrosine kinase activity and downstream signaling pathways (Joensuu 2006). 

2.3 Classification of Tyrosine Kinase Inhibitor   

 

Tyrosine kinase inhibitors (TKIs) are a class of drugs that selectively inhibit the 

activity of tyrosine kinases, which play a key role in various signaling pathways 

involved in cancer development and progression. TKIs can be classified based on their 

chemical structure, target specificity, and mechanism of action. The initial generation 

of TKIs consists of imatinib, which focuses on the BCR-ABL fusion protein in chronic 

myeloid leukemia (CML), and sunitinib, which targets receptors such as vascular 

endothelial growth factor receptor (VEGFR), platelet-derived growth factor receptor 

(PDGFR), and c-Kit in renal cell carcinoma (RCC). These inhibitors are ATP-

competitive and bind to the catalytic site of the kinase, preventing ATP from binding 

and inhibiting kinase activity (Druker et al. 2001; Motzer et al. 2007). The second 

generation of TKIs includes dasatinib, which targets BCR-ABL and Src kinases in 

CML, and axitinib, which targets VEGFR in RCC. These inhibitors are also ATP-
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competitive but have a higher binding affinity and broader target specificity compared 

to first-generation inhibitors. Dasatinib has been shown to induce deeper and faster 

responses than imatinib in CML patients, including those with imatinib-resistant 

disease (Kantarjian et al. 2006). Axitinib has been shown to significantly prolong 

progression-free survival and overall survival in patients with advanced RCC who 

failed first-line therapy with sunitinib or cytokine therapy (Rini et al. 2011). The third 

generation of TKIs includes ponatinib, which targets BCR-ABL, and several other 

kinases involved in CML, and osimertinib, which targets epidermal growth factor 

receptor (EGFR) with the T790M resistance mutation in non-small cell lung cancer 

(NSCLC). These inhibitors are both irreversible and can overcome resistance to earlier 

generation inhibitors. Ponatinib has been shown to induce deep and durable responses 

in heavily pretreated CML patients, including those with BCR-ABL mutations that 

confer resistance to other TKIs (Cortes et al. 2013). In NSCLC patients with the 

T790M mutation, osimertinib has demonstrated substantial enhancements in 

progression-free survival and overall survival when compared to platinum-based 

chemotherapy (Mok et al. 2017). In addition to these classifications, TKIs can also be 

categorized based on their target specificity. For example, crizotinib and ceritinib 

target anaplastic lymphoma kinase (ALK) in NSCLC, and dabrafenib and vemurafenib 

target BRAF in melanoma. These inhibitors have shown significant clinical benefit in 

patients with their respective molecular targets (Chapman et al. 2011; Shaw et al. 

2013). Despite their efficacy, TKIs can cause various adverse effects, such as diarrhea, 

nausea, skin rash, and cardiovascular toxicity. In addition, the development of 

resistance to TKIs is a major challenge in the treatment of cancer, highlighting the 

need for the development of new and improved inhibitors. 

2.4 Rearranged During Transfection (RET) Kinase 

 

RET (rearranged during transfection) is a proto-oncogene that encodes a receptor 

tyrosine kinase (RTK) is located on chromosome 10q11.2 which is a pericentromeric 

region and it is involved in various signaling pathways, including cell survival, 

proliferation, and differentiation. RET was first identified as a fusion gene with the H4 

gene in a thyroid cancer sample in 1985 (Takahashi, Ritz, and Cooper 1985; Wells and 

Santoro 2009). Since then, RET mutations and rearrangements have been identified in 

various cancer types, including papillary and medullary thyroid carcinoma, lung 

adenocarcinoma, and colorectal cancer (V. Subbiah et al. 2018). 
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The RET protein is a receptor tyrosine kinase situated across the cell membrane, 

featuring distinct components including an extracellular domain, a single 

transmembrane domain, and an intracellular domain. Within the extracellular domain, 

there are four cadherin-like repeats and a cysteine-rich domain, responsible for ligand 

binding, receptor dimerization, and subsequent activation, as depicted in Figure 1. The 

intracellular domain contains a juxtamembrane domain, a catalytic domain, and a C-

terminal tail, which are responsible for signal transduction and downstream signaling 

pathways (Mulligan 2014; Plaza-Menacho, Mologni, and McDonald 2014). 

The crystal structure of the RET extracellular domain has been determined in 

complex with glial cell line-derived neurotrophic factor (GDNF), its cognate ligand, 

and the GDNF family receptor alpha 1 (GFRα1), a co-receptor that enhances ligand 

binding and specificity. The complex structure reveals a dimeric arrangement of the 

RET extracellular domains, with GDNF and GFRα1 binding at the interface between 

the two monomers. The structure also provides insights into the mechanism of ligand-

induced dimerization and activation of the receptor (Lu et al. 2015; Parkash et al. 

2008). 

The crystal structure of the RET kinase domain has also been determined in 

complex with ATP and a small molecule inhibitor, revealing the active conformation 

of the kinase and the binding site of the inhibitor. The structure provides insights into 

the mechanism of kinase activation and inhibition, as well as the design of selective 

and potent RET inhibitors for cancer therapy (Chen et al. 2016; DeLano et al. 2000). 
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Figure  1. The RET receptor tyrosine kinase's domains 

The RET receptor tyrosine kinase consists of an arrangement comprising an 

extracellular domain encompassing four cadherin-like domains and a cysteine-rich 

region, a transmembrane region spanning the plasma membrane, and an intracellular 

domain that houses a substantial tyrosine kinase domain 

(Drosten and Pützer 2006). 

 

The activation of RET entails the interaction between its extracellular domain 

and ligands, including glial cell line-derived neurotrophic factor (GDNF) and other 

ligands from the GDNF family. This interaction is facilitated by the presence of Ca2+ 

ions (Wells and Santoro 2009). The ligand binding induces dimerization of RET with 

its co-receptors, the GDNF family receptor alpha (GFRα) proteins, leading to 

autophosphorylation of the intracellular tyrosine residues in the RET kinase domain. 

GDNF, Neurturin, Artemin and Persephin are the four glial derived neurotrophic factor 

ligands which are bound to the RET in conjunction with GFRα1, GFRα2, GFRα3, 
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GFRα4 respectively and generate a ternary complex which is an important complex 

for RET signaling and it shown in Figure 2. and Figure 3. This GFL-GFRα-RET 

complex is caused to dimerization and activation of the RET tyrosine kinase (De Falco 

et al. 2017; Wells and Santoro 2009). 

 

Figure  2. The RET receptor tyrosine kinase, its interaction with GDNF family 

ligands and coreceptors 

The diagram illustrates the RET receptor tyrosine kinase, its engagement with GDNF 

family ligands, and the involvement of vital functional domains. This includes the 

transmembrane receptor function of the four GFLs (glial cell line-derived 

neurotrophic factor family) and the binding of GFLs to RET via interactions with cell 

surface coreceptors from the GFRα family  

(Mulligan 2018). 
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Figure  3. The domain structure of the RET receptor–coreceptor–ligand complex 

The provided figure showcases the domain arrangement of the 2/2/2 complex 

involving the RET receptor, coreceptor, and ligand. The receptor, depicted in gray, 

exhibits its specific structural domains. The coreceptors, GFRAL and GFRα1–4, are 

displayed in blue, while the ligands GDF15, GDNF, NRTN, ARTN, and persephin 

are depicted in cyan 

(Trenker and Jura 2020). 

Autophosphorylation of the tyrosine residues in the kinase domain activates the 

RET receptor by inducing a conformational change that exposes the docking sites for 

downstream signaling molecules, such as the adaptors Shc, Grb2, and Gab1, and the 

effector enzymes PI3K, PLCγ, and Src. These signaling molecules are recruited to the 

activated RET receptor and initiate downstream signaling pathways, including the 

RAS/RAF/MAPK and PI3K/AKT pathways, which regulate cell growth, survival, 

differentiation, and migration (Mulligan 2014; Plaza-Menacho 2018). 

The activation of RET is tightly regulated by multiple mechanisms, including 

the interaction with its ligands and co-receptors, the activity of its negative regulators, 

such as protein tyrosine phosphatases (PTPs) and Sprouty proteins, and the formation 

of intracellular protein complexes that modulate the signaling output. Dysregulation 

of RET signaling, due to genetic mutations, overexpression, or aberrant activation of 

its downstream effectors, has been implicated in various human diseases, including 
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cancer and neurodegenerative disorders (Plaza-Menacho et al. 2007; Trenker and Jura 

2020). 

Phosphorylation of RET is a key post-translational modification that regulates 

the activity of the receptor and downstream signaling pathways. The intracellular 

domain of RET contains multiple tyrosine residues that can be phosphorylated by 

various tyrosine kinases, including RET itself (autophosphorylation) and non-RET 

kinases such as c-Src and focal adhesion kinase (FAK) (Mulligan 2014; Plaza-

Menacho 2018). 

Phosphorylation of specific tyrosine residues in RET creates docking sites for 

downstream signaling molecules, such as the adaptor protein SHC, the docking protein 

GRB2, and the cytoplasmic protein tyrosine phosphatase SHP2. These molecules can 

activate downstream signaling pathways, including the RAS-MAPK and PI3K-AKT 

pathways, which are involved in cell proliferation, survival, and differentiation 

(Mulligan 2019). 

Phosphorylation of other tyrosine residues in RET can also create negative 

feedback loops that downregulate the activity of the receptor and prevent excessive 

signaling. For example, phosphorylation of tyrosine 981 in RET creates a binding site 

for the adaptor protein NCK, which can recruit the E3 ubiquitin ligase CBL to the 

receptor and induce its degradation (5,6). Also, autophosphorylation of tyrosine 1062 

in the c-tail of the RET protein plays a crucial role in signaling. This process facilitates 

the recruitment of intracellular adaptors like SHC, FRS2, and IR1/2. Consequently, 

RET activates the RAS-MAPK and PI3K-AKT-mTOR cascades, which serve as 

important pathways for signal transduction (De Falco et al. 2017). 

In addition to tyrosine phosphorylation, RET can also be phosphorylated on 

serine and threonine residues by various serine/threonine kinases, including PKC, 

PKA, and GSK3. These phosphorylation events can also regulate the activity of the 

receptor and downstream signaling pathways (Östman and Böhmer 2001). 

Overall, phosphorylation of RET is a dynamic and complex process that plays a critical 

role in the regulation of cellular signaling and physiological processes. Dysregulation 

of RET phosphorylation has been implicated in various diseases, including cancer and 

neurodegenerative disorders. 

In the thyroid gland, RET is essential for the development and function of the 

parafollicular C-cells, which produce calcitonin, a hormone that regulates calcium 

metabolism. Activating mutations in RET are the major cause of hereditary medullary 
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thyroid carcinoma (MTC), a rare form of thyroid cancer that arises from the C-cells. 

In sporadic MTC, somatic mutations in RET are also frequently found, indicating that 

RET is a key driver of this cancer type (Mulligan 2014). 

In the lung, RET has been implicated in the development of non-small cell lung 

cancer (NSCLC), the most common form of lung cancer. Rearrangements of the RET 

gene, which result in fusion with other genes such as KIF5B or CCDC6, are found in 

a small subset of NSCLC patients, and RET inhibitors have shown promising results 

in preclinical and clinical studies (Kumi Kawai 2020). 

Furthermore, within the nervous system, RET is expressed in diverse neuronal 

populations and plays a crucial role in the formation and sustenance of the enteric and 

sympathetic nervous systems, along with the central nervous system. Loss-of-function 

mutations in RET are the cause of Hirschsprung disease, a congenital disorder 

characterized by the absence of enteric ganglia in the distal bowel, which leads to 

severe constipation and intestinal obstruction. Moreover, RET has been linked to the 

development of various neurodegenerative disorders, such as Parkinson's disease and 

Alzheimer's disease, although the precise mechanisms involved are not yet 

comprehensively understood (Jing et al. 1996). Due to (Kramer and Liss 2015) RET 

plays a crucial role in the survival of dopamine neurons and provides neuroprotection, 

particularly when challenged by neurotoxins. On the other hand, Parkinson’s disease 

adversely affects dopamine neurons, leading to a decline in dopamine levels. Although 

GFL have shown promise in promoting the survival of midbrain dopamine neurons, 

their effectiveness in clinical trials with PD patients has been limited. Consequently, 

targeting RET presents an opportunity for PD treatment. The main challenge lies in 

delivering GFL to the brain of patients, which can be addressed by developing small 

molecules that specifically target RET and possess favorable pharmacodynamic 

properties to penetrate the blood-brain barrier. Such an approach represents a disease-

modifying strategy that could enable the inclusion of early-stage PD patients in clinical 

trials. 

Mutations in the RET gene can lead to various diseases, including cancer and 

inherited disorders. In cancer, RET mutations are found in multiple types of tumors, 

including papillary thyroid carcinoma (PTC), lung cancer, and multiple endocrine 

neoplasia type 2 (MEN2) syndromes. These mutations can result in constitutive 

activation of the RET protein, leading to aberrant signaling and tumor growth 

(Mulligan 2014). 



22  

In PTC, the most common RET mutation is a point mutation in codon 634, which 

accounts for approximately 90% of all RET mutations in PTC. This mutation leads to 

a single amino acid substitution of cysteine to arginine (C634R) in the extracellular 

domain of the RET protein, resulting in ligand-independent dimerization and 

activation of the receptor (Marsh, Learoyd, and Robinson 1995; Romei et al. 2016). 

In MEN2 syndromes, RET mutations are inherited in an autosomal dominant manner 

and can lead to the development of medullary thyroid carcinoma (MTC), a rare and 

aggressive form of thyroid cancer. The mutations in MEN2 are clustered in specific 

regions of the RET gene, including codons 609, 611, 618, 620, 634, and 918, and can 

result in constitutive activation of the RET protein and downstream signaling pathways 

(Wells et al. 2015b). 

Several RET inhibitors have been developed to target RET-driven cancers, such 

as vandetanib and cabozantinib for MTC and selpercatinib for RET fusion-positive 

cancers. However, the development of resistance to these inhibitors is a major 

challenge, highlighting the need for the development of new and improved therapies 

for RET-mutant cancers (Drilon et al. 2018a; Vivek Subbiah et al. 2018). 

2.5 Acquired resistance. 

 

Acquired resistance has been a major challenge in the clinical use of RET kinase 

inhibitors in the treatment of medullary thyroid cancer (MTC) and non-small cell lung 

cancer (NSCLC). The development of acquired resistance can ultimately lead to 

disease progression and relapse in patients. This resistance can either be primary, 

where the tumor does not respond to the treatment due to intrinsic or patient-specific 

factors, or acquired, where the cancer obtains the ability to resist the activity of an 

inhibitor to which it was previously susceptible (Drilon et al. 2018a). 

There are several mechanisms of acquired resistance in RET inhibition, 

including on-target resistance, pathway-driven resistance, and alternative pathway-

driven resistance. On-target resistance can occur due to target amplification or 

secondary resistance mutations, which decrease the affinity of the inhibitor to the 

target. Pathway-driven resistance can occur when mutations downstream of the RET 

signaling pathway cause constitutive activation of the pathway. Alternative pathway-

driven resistance can occur when alternative RTKs are activated in tumor cells to 

bypass the inhibition and confer acquired resistance (Zhang et al. 2022). 



23  

In MTC, acquired resistance to RET inhibition is a significant clinical issue, with 

studies identifying various mechanisms of resistance, such as mutations in the RET 

kinase domain and activation of alternative pathways, including the PI3K/Akt/mTOR 

pathway. In NSCLC, RET fusions are the primary target for RET inhibition, with 

acquired resistance occurring due to mechanisms such as secondary mutations in the 

RET kinase domain and activation of alternative signaling pathways, including the 

EGFR and MET pathways (Pan et al. 2021). 

Acquired resistance typically involves modifying the RET kinase, the target 

molecule, or acquiring mutations that allow for bypass signaling. Within the RET 

kinase domain, specific single amino acid changes have been identified as contributors 

to target-mediated resistance against various tyrosine kinase inhibitors (TKIs). These 

changes occur in the hinge segment of the RET kinase, with mutations found in RET 

V804, Y806, and G810, as well as in the activation segment with S904. Notably, RET 

kinase V804 plays a crucial role in what is known as the ‘gatekeeper’ position, 

controlling the accessibility of the hydrophobic ATP-binding and drug-binding pocket. 

This positioning can potentially impact the binding affinity of the RET kinase for ATP 

and most frequent single mutations in this residue which are identified in patients with 

MTC and NSCLC, is mutation of valine to methionine or leucine (V804M/L). other 

mutations that mostly caused resistance to selective RET inhibitors are G810S located 

at floor of solvent-front, Y806C/N mutation located at hinge, V738A mutation located 

at β2 strand and L730V/I mutations located at roof of the solvent-front site of the RET 

proto-oncogene (Salvatore, Santoro, and Schlumberger 2021).  

Several studies have identified the presence of specific mutations in medullary 

thyroid cancer (MTC) patients. These include the M918T mutation as well as double 

mutations such as V804M/G810S, V804M/Y806C, and Y806C/V738A (Liu et al. 

2020; Xia and Ou 2020). 

To overcome acquired resistance in RET inhibition, several strategies have been 

proposed, including change of doses and schedules, combination therapy, and 

development of new inhibitors. Combination therapy can be used with other rational 

inhibitors or with traditional chemotherapy drugs, targeting and stopping the bypass 

tracks. Developing novel potent inhibitors with higher specificity for mutant types is 

also a potential strategy to overcome on-target driven resistance mechanisms (Casals 

et al. 2017). 



24  

2.6 RET Kinase Inhibitors 

 

Inhibitors are molecules that can bind to a protein or enzyme and decrease its 

activity. In the case of RET kinase inhibitors, these molecules are designed to bind 

specifically to the ATP-binding pocket of the RET kinase domain, which is necessary 

for its activity (Vodopivec and Hu 2022). By binding to this pocket, the inhibitor can 

prevent ATP from binding to the kinase, leading to inhibition of its activity and 

downstream signaling pathways. There are several classes of RET kinase inhibitors, 

including multikinase inhibitors that target multiple receptor tyrosine kinases, and 

selective inhibitors that target RET specifically. These inhibitors have shown promise 

in preclinical and clinical studies for the treatment of RET-driven cancers, including 

lung cancer and medullary thyroid cancer (Li et al. 2023; Santoro et al. 2020). The 

FDA has approved two selective RET inhibitors for the treatment of RET-driven 

cancers: selpercatinib (Retevmo) and pralsetinib (Gavreto). 

2.6.1 Selpercatinib. Selpercatinib is a small molecule inhibitor designed to 

target the ATP-binding pocket of the RET kinase domain. Its chemical structure 

consists of a pyrrolopyridine core with multiple substitutions and functional groups, 

which are responsible for its binding specificity and potency (Drilon et al. 2018a). 

Selpercatinib, marketed as Retevmo, is a targeted RET kinase inhibitor that 

obtained approval from the U.S. Food and Drug Administration (FDA) in May 2020. 

It is indicated for the treatment of RET fusion-positive non-small cell lung cancer 

(NSCLC), RET-mutant medullary thyroid cancer (MTC), and RET fusion-positive 

thyroid cancer. Selpercatinib was developed based on the structure of the RET kinase 

domain and its interaction with ATP and inhibitors. The molecule was designed to 

bind specifically to the ATP-binding pocket of RET kinase and inhibit its activity, 

leading to the inhibition of downstream signaling pathways (FDA 2020b). In 

preclinical and clinical studies, selpercatinib has demonstrated potent activity against 

RET fusion-positive and mutant tumors, including NSCLC, MTC, and thyroid cancer, 

with high response rates and durable responses. Selpercatinib was approved based on 

the results of two Phase I/II clinical trials, LIBRETTO-001 and LIBRETTO-531, 

which evaluated the efficacy and safety of the drug in patients with advanced RET 

fusion-positive NSCLC and RET-mutant MTC, respectively. The studies showed that 

selpercatinib had significant clinical activity and an acceptable safety profile in these 

patient populations (Drilon et al. 2018a). In addition to its use in RET fusion-positive 
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NSCLC and MTC, selpercatinib is also being evaluated in other RET-driven cancers, 

including papillary thyroid cancer, solid tumors with RET gene fusions, and other 

advanced solid tumors (Vivek Subbiah et al. 2018). 

Selpercatinib has shown remarkable clinical activity against RET fusion-positive 

non-small cell lung cancer (NSCLC) and thyroid cancer. However, resistance to 

selpercatinib has been observed in some patients, particularly those with acquired 

mutations in the RET kinase domain, such as gatekeeper mutations V804L and G810R. 

These mutations are known to confer resistance to multiple kinase inhibitors by 

hindering drug binding to the ATP-binding pocket. Studies have shown that 

selpercatinib can still exhibit partial inhibitory activity against these mutations, albeit 

at higher concentrations. The drug is thought to achieve this by binding it to an 

allosteric site near the kinase domain, which stabilizes the inactive conformation of 

the RET kinase and reduces its activity even in the presence of activating mutations 

(Rosen et al. 2021). 

One study demonstrated that in vitro treatment with selpercatinib could 

effectively suppress RET signaling and induce apoptosis in cell lines expressing 

gatekeeper mutations, albeit at higher concentrations than those required for wild-type 

RET. Another study showed that in patients with RET fusion-positive cancers who 

developed acquired resistance to selpercatinib, combination therapy with a second-

generation RET inhibitor, pralsetinib, could overcome the resistance and achieve 

durable responses (Shabbir et al. 2023). 

2.6.2 Pralsetinib. Gavreto, also known as pralsetinib, is an additional 

selective RET kinase inhibitor that has received FDA approval for the treatment of 

cancers driven by RET alterations. Developed by Blueprint Medicines, it was granted 

accelerated approval in September 2020 for the management of advanced or metastatic 

RET-mutant medullary thyroid cancer and RET fusion-positive thyroid cancer 

(GAVRETOTM (pralsetinib) Prescribing Information (U.S.) 2020). 

Like selpercatinib, pralsetinib also targets the ATP-binding pocket of the RET 

kinase domain and inhibits its activity. It has demonstrated potent and selective 

inhibition of RET in preclinical studies and has shown promising clinical activity in 

patients with RET-driven cancers, including lung cancer, thyroid cancer, and other 

solid tumors. 
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The structure of pralsetinib is similar to that of selpercatinib, with a pyrazole-

pyridine scaffold and a 3,5-dimethylpiperazine group for binding to the ATP-binding 

pocket of the RET kinase domain. However, there are differences in the chemical 

substitutions and modifications, which may contribute to differences in their 

pharmacological and therapeutic properties (V. Subbiah et al. 2018). 

Pralsetinib, also known as BLU-667, is a selective RET kinase inhibitor that has 

shown promising results in preclinical and clinical studies for the treatment of RET-

driven cancers, particularly non-small cell lung cancer and medullary thyroid cancer 

(Griesinger et al. 2022; Taylor et al. 2019). Like other RET inhibitors, pralsetinib binds 

to the ATP-binding pocket of the RET kinase domain, preventing the binding of ATP 

and subsequent activation of downstream signaling pathways (Wang 2013). In Figure 

4. it shown that Pralsetinib bind to the ATP binding site of RET protein.  

 

Figure  4. Surface view of the Pralsetinib in the ATP binding site of RET protein. 

Pralsetinib was developed using a structure-based drug design approach, in 

which the crystal structure of the RET kinase domain was used to guide the design of 

small molecule inhibitors that can bind specifically to the ATP-binding pocket of the 

kinase (Knowles et al. 2006; Luo et al. 2021). Preclinical studies have shown that 

pralsetinib has potent inhibitory activity against several RET fusion variants and 

mutations, including those that are resistant to other RET inhibitors such as vandetanib 

and cabozantinib (Drilon et al. 2013). 
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In a phase I/II clinical trial, pralsetinib demonstrated high response rates and 

durable clinical benefits in patients with RET fusion-positive non-small cell lung 

cancer and medullary thyroid cancer, with manageable side effects (Drilon et al. 2019; 

Griesinger et al. 2022). Based on these results, pralsetinib was granted accelerated 

approval by the U.S. Food and Drug Administration (FDA) in 2020 for the treatment 

of adult patients with metastatic RET fusion-positive non-small cell lung cancer (FDA 

2020a). 

Pralsetinib has also shown activity against RET fusion proteins and mutations 

that confer resistance to other RET inhibitors, such as selpercatinib. However, some 

mutations, such as RET V738A, Y806C/N, G810S and L730V/I have been shown to 

confer resistance to pralsetinib as well (the L730V/I RET roof mutations display 

different activities toward pralsetinib an selpercatinib) (Drilon et al. 2018c; Vivek 

Subbiah et al. 2018). Pralsetinib acts as an ATP-competitive inhibitor by binding to 

the ATP-binding pocket of the RET kinase domain, thereby preventing ATP from 

binding and inhibiting downstream signaling pathways (Li et al. 2023). Resistance to 

pralsetinib can occur through mutations in the RET kinase domain that alter the 

conformation of the ATP-binding pocket or increase its affinity for ATP, thereby 

reducing the binding of the inhibitor (V. Subbiah et al. 2018). 
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Chapter 3 

Theoretical Background 

 

3.1 Quantitative Structure – Activity Relationship (QSAR) 

 

Quantitative structure-activity relationship (QSAR) is a computational technique 

used in drug discovery and development to predict the biological activity of new 

compounds based on their structural properties. The first QSAR study was conducted 

in 1868 by Crum-Brown and Fraser, who established a correlation between the 

chemical structures of a series of barbiturates and their sedative effects (Brown and 

Fraser 1868). Since then, QSAR has been extensively used in drug design to predict 

the biological activity, toxicity, and other properties of novel compounds. 

QSAR is based on the assumption that the biological activity of a compound is 

related to its physicochemical properties and structural features. The goal of QSAR is 

to develop a mathematical model that can predict the biological activity of new 

compounds based on their structural and physicochemical properties (Arthur, Ejeh, 

and Uzairu 2020). To achieve this, QSAR models are trained using a set of compounds 

with known biological activity, and their physicochemical and structural properties are 

characterized using various descriptors such as molecular weight, solubility, and 

lipophilicity. These descriptors are then used to generate a mathematical model that 

can predict the biological activity of new compounds. 

QSAR has several advantages over traditional drug discovery methods. It can 

significantly reduce the time and cost required to develop new drugs by allowing 

researchers to predict the biological activity of novel compounds before they are 

synthesized and tested in the laboratory (Fujita 1995). Additionally, QSAR models can 

be used to optimize the properties of existing drugs, such as improving their selectivity 

and reducing their toxicity. 

3.2 Structure-Based Pharmacophore Modeling 

 

Structure-based pharmacophore is a computational technique used in drug 

discovery to identify the essential chemical features required for ligand binding to a 

target protein. The process of pharmacophore generation involves the identification of 

ligand-protein interactions, which are then translated into a three-dimensional (3D) 

pharmacophore model (Jain 1996). This model represents the spatial arrangement of 
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chemical features, including hydrogen bond donors, hydrogen bond acceptors, 

hydrophobic regions, and ionic interactions, that are critical for ligand binding to the 

target protein. Structure-based pharmacophore generation is based on the hypothesis 

that structurally diverse ligands that bind to the same protein share common chemical 

features that are essential for binding (Wolber and Langer 2005). 

The pharmacophore hypothesis can be created by analyzing a set of structurally 

diverse ligands that bind to the target protein. By identifying the common chemical 

features present in these ligands, a 3D pharmacophore model can be generated that 

represents the essential chemical features required for ligand binding to the target 

protein. This model can then be used to screen large databases of compounds to 

identify potential lead compounds with similar chemical features (Jain 1996). 

To evaluate the fitness of a compound to the pharmacophore model, a scoring function 

is used. The scoring function is a mathematical approach that quantifies the fit between 

the pharmacophore model and the ligand. The fitness score is calculated based on the 

interactions between the ligand and the pharmacophore model, such as the distance 

between the ligand and the pharmacophore features, the angles between the ligand and 

the pharmacophore features, and the orientation of the ligand within the 

pharmacophore model (Wang, Fu, and Lai 1997). 

The fitness score is calculated using a mathematical formula that takes into 

account the degree of match between the ligand and the pharmacophore features. In 

pharmacophore modeling, the fitness score (FS) is calculated based on the following 

equation: 

 

𝑭𝑺 =  𝒏 +  (𝒏𝒑  ×  𝒘𝒑)  +  (𝒏𝒉𝒃  ×  𝒘𝒉𝒃)  +  (𝒏𝒓  ×  𝒘𝒓)               Equation 3. 1 

 

Where n is the number of matching features, 𝒏𝒑  is the number of matched 

pharmacophore points, 𝒘𝒑 is the weight assigned to the pharmacophore points, 𝒏𝒉𝒃 is 

the number of matched hydrogen bond acceptors and donors, 𝒘𝒉𝒃 is the weight 

assigned to hydrogen bonds, 𝒏𝒓  is the number of rotatable bonds in the ligand, and 

𝒘𝒓 is the weight assigned to rotatable bonds. This formula allows for a quantitative 

evaluation of the degree of fit between a ligand and a pharmacophore, which can be 

used to prioritize or filter large virtual compound libraries and to predict the biological 

activity of compounds (Jain 1996). 
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An e-pharmacophore, or energy-optimized structure-based pharmacophore, is a 

computational method used in drug discovery. It has proven to offer superior virtual 

screening speed and enrichments when compared to molecular docking utilizing 

Glide's "standard precision" (SP) scoring function (Moumbock et al. 2021).  

3.3 Z-Score 

 

The Z-score is a statistical measure that evaluates the deviation of a value from 

the mean in terms of standard deviation. It is calculated by subtracting the mean from 

the value of interest and dividing it by the standard deviation: 

 

𝒁 − 𝒔𝒄𝒐𝒓𝒆 =  (𝒗𝒂𝒍𝒖𝒆 −  𝒎𝒆𝒂𝒏) / 𝒔𝒕𝒂𝒏𝒅𝒂𝒓𝒅 𝒅𝒆𝒗𝒊𝒂𝒕𝒊𝒐𝒏  Equation 3. 2 

 

In drug discovery, the Z-score is used to evaluate the potency of a compound 

relative to a reference dataset. It allows researchers to compare the activity of a 

compound against the activity distribution of a large number of compounds. The Z-

score is particularly useful when working with datasets that have a non-normal 

distribution, as it provides a standardized measure of deviation that is not affected by 

the distribution's shape. 

In drug discovery, the Z-score is used in a variety of applications, such as virtual 

screening, hit identification, and lead optimization. It is commonly used to evaluate 

the potency of a compound in vitro and in vivo, as well as its pharmacokinetic and 

pharmacodynamic properties (Andrade 2021). 

3.4 METACORE™/METADRUG™ 

 

The METACORE™/METADRUG™ tool offered by Clarivate Analytics is a 

popular online platform in the field of drug discovery that provides an extensive profile 

of pharmacokinetic and pharmacodynamic properties for a selected compound or 

group of compounds. By utilizing 25 common diseases binary QSAR models and 26 

toxicities binary QSAR models, the Tanimoto Prioritization (TP) value of a compound 

can be determined based on its similarity to the training and test sets of the QSAR 

models. The primary objective of this platform is to predict the major metabolites of 

an input structure and their impact on the key enzymes of the human body (Ekins et 

al. 2006). The METACORE™/METADRUG™ platform utilizes QSAR to forecast 
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the pharmacokinetic and pharmacodynamic characterization of small molecules. The 

Cooper statistical parameters, including sensitivity, specificity, accuracy, and 

Matthews Correlation Coefficient (MCC), are used to verify the effectiveness of the 

QSAR models in this platform. These parameters are used to evaluate the fitness, 

robustness, and predictive power of the QSAR models (Dogan and Durdagi 2021). The 

MCC is a correlation coefficient between experimental values and predicted values, 

while sensitivity measures correctly predicted positives, specificity measures correctly 

predicted negatives, and accuracy measures how close the model can get to the true 

value. Overall, the METACORE™/METADRUG™ platform is a reliable tool for 

pharmacokinetic and pharmacodynamic prediction and evaluation in drug discovery 

research (Myshkin et al. 2012). 

3.5 Molecular Docking 

 

Molecular docking is a computational method used to study the binding between 

a protein receptor and a small molecule ligand. The main aim of molecular docking is 

to predict the binding affinity and orientation of a ligand to its target protein receptor, 

which can then be used to design novel drugs or optimize existing ones. The method 

involves generating multiple conformations of the ligand and protein receptor and then 

evaluating their binding energy scores to obtain the most favorable conformation. 

The scoring functions used in molecular docking are typically based on the 

principles of thermodynamics and include empirical, physics-based, and hybrid 

approaches. One commonly used scoring function is the empirical scoring function, 

which assigns weights to various factors such as hydrogen bonding, van der Waals 

interactions, and electrostatics. The most popular empirical scoring function is 

AutoDock, which uses a combination of Lamarckian genetic algorithm and a local 

search algorithm for docking simulations (Morris et al. 1639). 

Another scoring function used in molecular docking is the physics-based force 

field approach, which uses the principles of molecular mechanics to calculate the 

binding energy of the protein-ligand complex. This approach is more accurate than the 

empirical scoring function but requires significant computational resources.  

In recent years, machine learning algorithms have been applied to improve the 

accuracy of molecular docking. These methods use large datasets to train a predictive 

model that can estimate the binding affinity of new ligands to a protein receptor. One 
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such method is DeepDock, which uses a deep neural network to predict the binding 

affinity of protein-ligand complexes (Jiménez-Luna et al. 2020). 

Molecular docking is a computational technique used to determine the structure 

of a complex formed between a drug candidate and the target molecule, which is 

referred to as a docking pose. In many molecular docking simulations, the ligand is 

allowed to have complete conformational flexibility, while the target is restricted to a 

few flexible residues at the binding site or is considered entirely rigid to minimize 

computational resources. Multiple docking poses can be generated by considering 

different orientations of the ligand within the binding site, which necessitates the use 

of a score to rank the different docking poses. This score, known as the docking score, 

is computed based on the binding free energy (∆Gbind) but is subject to certain 

assumptions to accelerate computer calculations (Suhandi et al. 2021). 

 

𝜟𝑮𝒃𝒊𝒏𝒅 =  𝜟𝑯𝒃𝒊𝒏𝒅 −  𝑻𝜟𝑺𝒃𝒊𝒏𝒅                                                                                                        Equation 3. 3 

The formula used in the calculation of docking scores involves the enthalpy 

change (𝜟𝑯𝒃𝒊𝒏𝒅 ) and entropy change (𝜟𝑺𝒃𝒊𝒏𝒅) due to binding, along with the 

temperature (T). However, during this process, it is assumed that the binding of a 

ligand to the target does not result in a significant change in entropy. Therefore, the 

calculation of 𝜟𝑮𝒃𝒊𝒏𝒅  could be accomplished through the direct computation of 

𝜟𝑯𝒃𝒊𝒏𝒅 . To compute the enthalpy change, one can determine the change in internal 

energy, 𝜟𝑼𝒃𝒊𝒏𝒅 , and account for the effects of pressure, 𝑷, and volume changes, 𝜟𝑽, 

using the equation: 

 𝜟𝑯𝒃𝒊𝒏𝒅 =  𝜟𝑼𝒃𝒊𝒏𝒅 −  𝑷𝜟𝑽             Equation 3. 4 

In molecular docking, it is generally assumed that when a smaller ligand binds 

to a protein, it does not have a significant effect on the volume of the protein. This 

means that the second term in equation 3.4, which accounts for changes in volume, 

can be disregarded, and the binding free energy ∆𝑮𝒃𝒊𝒏𝒅  can be assumed to be equal to 

the enthalpy change 𝜟𝑯𝒃𝒊𝒏𝒅 . Therefore, the internal energy changes due to binding, 
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𝜟𝑼𝒃𝒊𝒏𝒅 , can be used to directly calculate ∆𝑮𝒃𝒊𝒏𝒅 , and is typically employed in the 

calculation of docking scores. 

 

∆𝑮𝒃𝒊𝒏𝒅 =  𝜟𝑮𝟎 + 𝜟𝑮𝒉−𝒃𝒐𝒏𝒅 ∑ 𝒇(∆𝒓, ∆𝜶) +  ∆𝑮𝒊𝒐𝒏𝒊𝒄  ∑ 𝒇(∆𝒓, ∆𝜶) +𝒊𝒐𝒏𝒊𝒄𝒉−𝒃𝒐𝒏𝒅

 ∆𝑮𝒂𝒓𝒐𝒎 ∑ 𝒇(∆𝒓, ∆𝜶) + ∆𝑮𝒍𝒊𝒑𝒐 ∑ |𝑨𝒍𝒊𝒑𝒐| + ∆𝑮𝒓𝒐𝒕𝑵𝒓𝒐𝒕𝒍𝒊𝒑𝒐𝒂𝒓𝒐𝒎𝒂𝒕𝒊𝒄          Equation 3. 5 

 

Equation 3.5 comprises a constant term 𝜟𝑮𝟎 that does not depend on the system 

and several terms that correspond to ideal hydrogen bonds, ionic interactions, aromatic 

interactions, and lipophilic interactions. These terms are multiplied by a penalty 

function 𝑓 (∆𝒓, ∆𝜶). The term ∆𝑮𝒓𝒐𝒕 is multiplied by 𝑵𝒓𝒐𝒕, which is the count of 

rotatable bonds in the ligand. This multiplication accounts for the decrease in free 

energy when a rotatable bond in the ligand is assumed to be fixed during binding. This 

approach was described by (Christopher J. 2004). 

In Maestro, various docking algorithms such as Glide / HTVS, Glide / SP, and 

Glide / XP were used for molecular docking analysis (Halgren et al. 2004). The 

Glide/HTVS algorithm, which does not have advanced settings, provides a practical 

docking method for scanning libraries containing a large number of molecules. Since 

scanning a large number of molecules in docking simulations using advanced settings 

and overly sensitive algorithms is costly and time-consuming, first scanning with 

Glide/HTVS provides practical and convenient results for the rough filtering of large 

molecule libraries. Glide/HTVS is a method that contributes to a significant reduction 

in the cost of drug development by enabling the rapid screening of the biological 

activity of large chemical libraries. It is a preferred computational strategy to accelerate 

structure-based drug design studies (Halgren et al. 2004). 

The Glide/SP algorithm offers more advanced settings and improved parameters 

compared to Glide/HTVS. To reduce errors in Coulomb and vows interactions, net 

ionic charge interactions on charged groups such as carboxylates and guanidiniums 

have been reorganized. Interactions energies have been improved by reducing the 

interaction energies of directly contributing atoms, thereby reducing inequalities in 

interaction energies. The interaction energy between two charged groups has also been 

improved to some extent in the Glide/SP algorithm. The most significant variable 

introduced in the Glide/SP algorithm is the solvent model component. If charged and 

polar groups of protein and ligand molecules are not properly soluble, serious 
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constraints occur in ligand poses. In this case, the physical effects of water molecule 

interactions are neglected, making the complex physically unrealistic. The 

accessibility of charged groups to solvent must be evaluated very carefully, and the 

trapping of water molecules in hydrophobic pockets by the ligand can prevent 

interactions and should be avoided. The location and surroundings of water molecules 

in the protein active site when the ligand is bound are very important, but existing 

continuity solvent models have difficulty capturing these details. To prevent these 

errors, open water regions are placed for each ligand pose, and exposure of various 

groups to open water is measured using empirical scoring terms and solvation effects 

are also included in the calculations. The open water approach employed in Glide/SP 

reliably rejects the majority of false positives that arise in any empirical docking 

calculation. Although Glide/SP is a more precisely developed algorithm than 

Glide/HTVS, it has been developed relatively less precisely than Glide/XP, which is 

required to scan a large number of molecules. Therefore, some false positives are 

relatively ignored in Glide/XP due to the need to consider the algorithm's speed, which 

enables the safe virtual screening of tens or hundreds of thousands of ligands. For 

example, errors due to solubility in Glide/SP are evaluated with fewer penalty 

coefficients than in Glide/XP. 

The Glide/XP algorithm differs from Glide/SP in that it uses a more 

comprehensive funnel to achieve binding structures with greater differences. Glide/SP 

is utilized to initiate processing with binding, while Glide/XP utilizes various parts of 

the molecule as anchor points to generate better scoring by considering each anchor 

point. In the Glide/XP protocol, the explicit water model used in Glide/SP is further 

developed to better evaluate serious physical principal violations during binding and 

to provide higher penalties. GlideScore XP particularly scores the occupancy rate of 

hydrophobic pockets that can interact with the hydrophobic groups of the ligand. The 

most important physical effects that are against binding are ligand, protein, or both's 

strain energy, loss of entropy of ligand and protein, and insolubility (Friesner et al. 

2006). 

3.6 Molecular Dynamics (MD) Simulations 

 

MD simulation is a crucial tool in the field of in-silico study of biological 

systems. This approach involves a time-dependent treatment of an atomic system to 
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provide valuable insights into the stability and conformational changes of proteins and 

nucleic acids. The origins of molecular dynamics can be traced back to the late 1950s 

when Alder and Wainwright used this approach to study hard spheres (Alder and 

Wainwright 1959). The next significant advancement came in 1964 when Rahman 

introduced the use of force fields in MD simulations. The first application of MD 

simulations to study proteins was conducted by Mc Cammon and his colleagues in 

their work on bovine pancreatic trypsin inhibitors (McCammon, Gelin, and Karplus 

1977). 

MD simulations have emerged as a popular method to investigate the 

conformation, mobility, and thermodynamics of large biological systems. 

Additionally, MD methods are employed in crystallography and NMR tools to enhance 

the quality of the structure. In the pursuit of developing novel drugs, MD simulations 

are particularly useful in elucidating ligand-protein complexes. The simulations are 

based on Newton's second law, F=ma, and integrate the equation of motion to 

determine the positions, velocities, and accelerations of the system. 

The equation of motion known as Newton's second law can be expressed as:  

𝑭𝒊  =  𝒎𝒊 𝒂𝒊          Equation 3. 6 

where F represents the net force acting on an object, m represents its mass, and a 

represents the resulting acceleration. 

The gradient of the potential energy can be used to describe the force, 

 

 𝑭𝒊 = −𝜵𝒊𝑽                                            Equation 3. 7 

 

The two equations are merged, resulting in: 

 

−𝒅𝑽

𝒅𝒓𝒊
= 𝒎𝒊

𝒅𝟐𝒓𝒊

𝒅𝒕𝟐
              Equation 3. 8 

 

where V represents potential energy. 

 

The force calculations in MD simulations are typically done using empirical 

potential energy functions or force fields, which are mathematical functions that 

describe the interactions between atoms and molecules. The force fields used in MD 

simulations are parameterized using experimental data or quantum mechanical 
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calculations and are essential for accurately simulating the system's behavior (Leach 

1996). 

MD simulations have revolutionized the study of biological systems and have 

been used to investigate the structure, stability, and dynamics of proteins, nucleic 

acids, and other biomolecules. The approach has been applied to a wide range of 

biological problems, including protein folding, ligand binding, enzyme catalysis, and 

membrane transport. However, MD simulations are computationally intensive and 

require substantial computational resources, and the accuracy of the results depends 

on the accuracy of the force field used (Karplus and McCammon 2002). 

3.7 MD Trajectory Analysis 

 

MD trajectory analysis is a critical component of the molecular dynamic 

simulation workflow, as it allows for the interpretation and extraction of meaningful 

information from the large amounts of data generated during the simulation (Dror et 

al. 2012). 

3.7.1 Root-Mean-Square Deviation (RMSD). The Root Mean Square 

Deviation (RMSD) is a commonly used analysis method for MD trajectories. It 

involves calculating the RMSD of all frames in the trajectory relative to the initial 

conformation using the following formula: 

𝑹𝑴𝑺𝑫 =  √
𝟏

𝑵
∑ 𝜹𝒊

𝟐𝑵
𝒊=𝟏        Equation 3. 9 

 

  

This equation calculates the RMSD by taking the distance between N pairs of 

equivalent atoms, represented by the symbol δ. 

The RMSD is defined as follows for two sets of n points (𝑟𝑖
′ and 𝑟𝑖): 

 

𝑹𝑴𝑺𝑫𝒙 =  √
𝟏

𝑵
∑ (𝒓𝒊

′(𝒕𝒙) − 𝒓𝒊(𝒕𝒓𝒆𝒇))𝟐𝒏
𝒊=𝟏                Equation 3. 10 

 

The equation involves selecting the N number of atoms and comparing their 

positions in different frames of the simulation trajectory. The reference time, 𝑡𝑟𝑒𝑓 is 

usually set as the time of the first frame (t=0), and the position of the selected atoms 

in subsequent frames is superimposed onto the reference frame. The position of the 
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selected atoms in each frame is denoted by 𝑟 
′, and is recorded at a specific time 𝑡𝑥. 

This process is repeated for every frame in the simulation trajectory (Wu, Chandler, 

and Chandler 1988). 

3.7.2 Root-Mean-Square Fluctuation (RMSF). The RMSF is a valuable 

tool to analyze local fluctuations in the protein chain. It provides information on the 

variability of each residue along the simulation trajectory. The formula to calculate the 

RMSF of residue i is:  

𝑹𝑴𝑺𝑭𝒊 =  √
𝟏

𝑵
∑ < (𝒓𝒊

′(𝒕 ) − 𝒓𝒊(𝒕𝒓𝒆𝒇))𝟐 >𝑻
𝒕=𝟏               Equation 3. 11 

 

Root Mean Square Fluctuation (RMSF) can be used to assess the local changes 

that occur along the protein chain. To calculate the RMSF for a given residue i, the 

position of that residue (𝑟𝑖) is compared to the position of the atoms in that residue 

after they have been superimposed on a reference structure (𝑟𝑖
′). The average of the 

square distance over the selection of atoms in the residue is then taken, and this value 

is divided by the trajectory time 𝑡𝑟𝑒𝑓. The procedure is repeated for each residue in the 

protein chain (Wu et al. 1988). 

3.8 Molecular Mechanics the Generalized Born Solvent Accessible 

Surface Area (MM/GBSA)  

 

The calculation of binding free energy for biomolecular systems is crucial in 

comprehending the thermodynamic properties that are also measured in experiments. 

The use of MD simulations is currently one of the most advanced methods in tracking 

biomolecular systems and estimating binding free energies. There are different 

approaches available to compute free energies using computational methods. Although 

some methods can be highly accurate and provide results comparable to experimental 

values, they require sophisticated, time-consuming, and expensive computations. 

However, there are also faster and computationally cheaper methods available that 

may not provide accurate binding free energies but can be used for ranking different 

compounds. An example of such an approach is the end-point free energy 

computations, which are computationally efficient and only consider the final state of 

the system. The MM/GBSA approach is one such end-point free energy computation 

method generally used to estimate binding free energies for protein-ligand complexes, 
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aiding in scoring and ranking different ligands against the protein targets (Genheden 

and Ryde 2015; Wang et al. 2019). 

The MM/GBSA score is calculated using molecular mechanics (MM) and 

implicit solvation approaches to determine the polar and non-polar contributions. The 

calculation of the MM/GBSA score involves two terms, namely the change in internal 

energy (∆𝐸𝑀𝑀) calculated by MM and the solvation-free energy (∆𝐺𝑆𝑂𝐿) determined 

by the implicit solvation approach, while also considering the entropy contribution 

(∆𝑆). The formula for MM/GBSA computations can be expressed as:  

 

 ∆𝑮𝒃𝒊𝒏𝒅 =  ∆𝑬𝑴𝑴 +  ∆𝑮𝑺𝑶𝑳 −  𝑻∆𝑺                Equation 3. 12 

 

where ∆𝐸𝑀𝑀  represents the change in internal energy that includes contributions from 

∆𝐸𝑖𝑛𝑡 + ∆𝐸𝑒𝑙𝑒  + ∆𝐸𝑣𝑑𝑤. This approach is frequently used to calculate binding free 

energies for protein-ligand complexes and to score and rank different ligands against 

protein targets. It is computationally efficient, allowing for the rapid ranking of 

different compounds (Genheden and Ryde 2015; Wang et al. 2019).  

The implicit solvation methods estimate the solvation energy and express it as follows: 

 

∆𝑮𝑺𝑶𝑳  =  ∆𝑮𝑮𝑩  +  ∆𝑮𝑺𝑨                   Equation 3. 13 

 

 

In the MM/GBSA approach, the nonpolar contributions to the free energy are 

represented by ∆𝐺𝑆𝐴, which is estimated using the solvent-accessible surface area 

(SASA) method. The polar contribution, or the electrostatic solvation energy, is 

denoted by ∆𝐺𝐺𝐵 and is calculated by the generalized Born surface area (GB) 

approach, as described by (Wang et al. 2019). 

 

∆𝑮𝑺𝑨  =  𝜸. 𝑺𝑨𝑺𝑨 +  𝒄                 Equation 3. 14 

 

 

In the given equation, the term SASA represents the solvent-accessible surface 

area. The symbol gamma (𝛾) is related to the surface tension, while c denotes the 

constant free energy contribution of the vacuum. 
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Chapter 4 

Methodology 

 

The aim of this research was to identify potential inhibitors for the RET proto-

oncogene with the lowest resistance to mutations compared to the reference molecule, 

through an extensive screening of over 500 million molecules from the ZINC and 

Chemdiv databases. The methodology employed in this study was multifaceted, 

involving various computational techniques. 

The first step in our workflow involved text mining of the ZINC database to 

extract relevant information on potential ligands for RET. Using the AutoQSAR 

module, a QSAR model was developed to predict the pIC50 values of a fragment-based 

ligand library. The resulting molecules were then subjected to a z-score analysis, with 

a threshold range of 2-3 based on the number of molecules. The hits that passed this 

filter were then evaluated for their cancer score using the MetaCoreTM/MetaDrugTM 

platform. 

To prepare the ligands for virtual screening, the Schrödinger-Maestro's LigPrep 

tool was employed, and the RET structure was prepared with a grid center based on 

the Pralsetinib grid. Molecular dynamics (MD) simulation and MM/GBSA calculation 

were then conducted. As a secondary method, a long MD simulation was carried out 

for 7JU5, and an e-pharmacophore for all frames was generated to obtain a hypothesis. 

A Python script was used to analyze and visualize the hypothesis in frames with the 

lowest RMSD, and the coordinates with the lowest RMSD were employed to screen 

the fragment-based ligand libraries of the ZINC and Chemdiv databases. 

To filter the molecules, 2D structures were initially filtered using the Lipinski 

Rules. 2D pharmacophore features were then calculated for the molecules using RDKit 

in Python, and the resulting hits were filtered based on the minimum features obtained 

from the hypothesis generated from long MD. The filtered molecules were then 

screened using the Phase tool to obtain fitness scores, and a z-score analysis was 

conducted on these scores. The molecules with a z-score of 2 or higher were retained, 

and if the count of molecules was less than 20, the top 20 molecules with the highest 

fitness scores were selected, and glide SP docking was performed on them. Molecules 

with the lowest docking scores were subjected to MD simulation and MM/GBSA 

calculation. 
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Next, the molecules with MM/GBSA scores above a predefined threshold were 

subjected to long MD simulation and MM/GBSA calculation to determine if there 

were significant differences. Furthermore, eight critical RET mutations identified in 

the literature were evaluated one by one. The corresponding protein structures were 

prepared, and a grid center was created for each mutation. The molecules that passed 

the MM/GBSA threshold were then subjected to Glide SP docking and MD simulation 

and MM/GBSA calculation, and the resulting graphs were analyzed and visualized. 

The methodology employed in this study was comprehensive, utilizing various 

computational techniques to identify potential inhibitors for the RET proto-oncogene 

that have the lowest resistance to mutations compared to Pralsetinib, as a reference 

inhibitor. The workflow was optimized to filter out non-relevant hits and select the 

most promising candidates for further analysis. The complete method is represented in 

a schematic in Figure 5.  

Figure  5. Schematic representation of the complete method for the discovery of a 

novel resistance-free RET tyrosine kinase inhibitor.  

The method includes dynamic structure-based pharmacophore and QSAR modeling, 

as well as a virtual screening of ultra-large ligand libraries. 
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4.1 Method 1: A Fusion of Text Mining and QSAR for Predictive Drug 

Discovery 

 

Our first method focuses on leveraging text mining techniques and QSAR 

modeling to predict pIC50 values for small molecules. This method includes several 

steps that allow us to extract relevant data from the literature, preprocess, curate the 

data, and build QSAR models using the curated data. Additionally, we utilize docking 

and molecular dynamics simulation with MMGBSA calculations to validate our 

predictions. These steps are performed using a combination of open-source and 

commercial software tools, and the resulting data are analyzed using statistical 

methods to identify the most promising small molecules for further study. By 

leveraging this methodology, we are able to rapidly identify compounds with the 

potential for therapeutic applications in drug discovery. 

4.1.1 Text mining. In order to perform text mining on small molecules that 

inhibit the RET proto-oncogene protein, a filtering process was applied to select 120 

molecules with IC50 values of 5 nM and below from the ChEMBL database as shown 

in Appendix (Table A.1). ChEMBL is a database maintained by the European 

Molecular Biology Laboratory that provides information on biological activities of 

small molecules, their interactions with protein targets, and ADMET properties, and 

is widely used by researchers in drug discovery (Mendez et al. 2019). The 2D 

structures and IUPAC names of these molecules were then compiled, and similarities 

between the structures were analyzed. The most frequently occurring fragments within 

these molecules were identified. Additionally, a list of RET inhibitor drugs that are 

approved or in clinical trials was created and displayed. The similarities between the 

structures of these drugs and the most common fragments found in the small molecules 

from the ChEMBL database were analyzed, and the fragments that were most likely 

to inhibit the RET protein were identified.  

These fragments were then used to conduct text mining on a library of 500 

million small molecules with known IUPAC names obtained from the ZINC database. 

ZINC is a freely available database of over 500 million commercially available 

compounds used for virtual screening and drug discovery (Sterling and Irwin 2015). 

A Python script was developed to search for each fragment name within the IUPAC 

names of the 500 million molecules to determine how many of the compounds 
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contained the fragment in their structure. All of the IUPAC names that contained the 

same fragment were then added to a text file. The IUPAC names were converted into 

their SMILES and SDF formats using the MolConverter tool from Marvin Suite, a tool 

from ChemAxon. Finally, all of the SDF files were converted into the Mae format, 

which is compatible with Schrödinger-maestro software, using the SDConvert tool 

from the command line. 

4.1.2 Development and Application of QSAR Model for Predicting pIC50. 

We aimed to create a reliable QSAR model for RET protein-related molecules using 

the ChEMBL database. For this purpose, a total of 885 molecules with known IC50 

values were extracted from the ChEMBL database. Among these, 793 molecules were 

selected as the internal set, while the remaining 92 molecules were used as the external 

set. The IC50 values of all molecules were converted to pIC50 values using the 

following equation: 

 

𝐩𝐈𝐂𝟓𝟎  =  −𝐥𝐨𝐠(𝐈𝐂𝟓𝟎)                 Equation 4. 1 

 

The AutoQSAR tool in the Schrödinger Maestro software was used to develop 

and validate the QSAR models. The compounds were divided into a 30% test set (238 

compounds) and a 70% training set (555 compounds). The QSAR models were 

evaluated on the test set, and the model with the highest R-square value and highest 

R-square value after the prediction was chosen as the final model. The selected model 

was then used to predict the pIC50 values of all molecules in our created libraries. Due 

to the large number of molecules, the libraries were divided into several files to reduce 

their size and speed up the predictions. Finally, the predicted results were obtained in 

CSV file format and were read using a Python script with the Pandas library. Pandas 

is a powerful data manipulation and analysis library for Python (McKinney 2010). 

After merging the predicted pIC50 values into a Data Frame using the Pandas library, 

the normal distribution curve of the predicted data was visualized to analyze the 

distribution pattern. Z-Scores of pIC50 values were also calculated to evaluate the 

predicted values and select the most promising molecules for further investigation. The 

Z-Score is a statistical measure that indicates the deviation of a data point from the 

mean of the population. In this study, compounds with Z-Scores of 2 or 3 and over, 
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were selected as promising molecules. The threshold for the Z-Score selection was 

based on the number of molecules, where 2 is usually taken as the threshold. However, 

if a large number of molecules had Z-Scores over 2, then the threshold was raised to 3 

and over to ensure that the selected molecules were truly significant.  

4.1.1 METACORE™/METADRUG ™ Analysis. All the molecules 

obtained from the Z-Score calculation were separated into different files in SDF 

format. so that each file contains a maximum of 500 molecules. Then files are uploaded 

to the METACORETM platform to screen the “cancer therapeutic activity prediction 

QSAR”. This functionality allows for the prediction of a compound's likelihood to 

exhibit anticancer activity. The screening process involves comparing input 

compounds to those with known high anticancer activity and assigning a probability 

value between 0 and 1, with values above 0.5 indicating potential anticancer activity. 

To construct the cancer therapeutic activity QSAR model, a set of descriptors and a 

training set of 886 compounds, achieving a sensitivity of 0.95, specificity of 0.92, 

accuracy of 0.93, and MCC of 0.87 were used. Also, the model was validated with a 

test set of 167 compounds, achieving a sensitivity of 0.89, specificity of 0.83, accuracy 

of 0.86, and MCC of 0.72. Based on the initial screening results, a cutoff value of 0.5 

was established, and only molecules with probabilities ≥ 0.5 selecting for further 

consideration while filtering out the rest. 

4.1.2 Protein Preparation. The RCSB Protein Data Bank was used to obtain 

the X-Ray diffraction structure of RET (PDB ID: 7JU5 (Subbiah et al. 2021)), which 

was co-crystallized with Pralsetinib, a selective RET TKs inhibitor, and has a 

resolution of 1.90 Å. Before using the protein for any computational experiments such 

as docking or MD simulations, it needs to be modified from its tense X-Ray diffracted 

form. The protein was processed using the Protein Preparation Wizard (Madhavi 

Sastry et al. 2013) to assign bond orders, add hydrogens, create zero-order bonds to 

metals, and recreate disulfide bonds. Missing side chains or loops were filled in with 

Prime (Jacobson et al. 2004), and water beyond 5Å of hetero groups was removed. 

The protonation states of the protein at pH assigned by PROPKA and side chain atoms 

were minimized with the OPLS3e force field (Harder et al. 2016).
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4.1.3 Receptor Grid Generation. A receptor grid can be created to limit the 

movement of the ligand within a cubic region that includes the active site, so that only 

interactions with the active region are calculated. Partial flexibility can be achieved by 

allowing some rotatable bonds in the receptor active region to rotate during grid 

generation (Friesner et al. 2006; Halgren et al. 2004). The active part of the receptor is 

defined with respect to the reference ligand, and matching atoms are placed at the same 

coordinates as in the reference ligand. The internal coordinates of atoms outside the 

grid are rearranged while preserving their positions. At this stage, rotatable bonds are 

roughly scored. Then, a minimization process is applied to refine the torsion angles 

not found in the active site. Finally, post-docking minimization is performed. Binding 

modes that do not fully meet all constraints during grid application are not considered. 

The receptor grid for the RET was generated using the Receptor Grid Generation 

Tool with the prepared structure. The grid was generated based on the co-crystallized 

native ligand, Pralsetinib, with a default measurement of 10 Å on all sides. No 

constraints were applied during the process, and rotation of hydroxyl or thiol groups 

of THR729, THR753, THR754, SER765, SER767, SER774, TYR791, TYR806, 

SER811, SER819, SER891, SER896, and THR946 was allowed. The (x, y,z) 

coordinates of the grid center are (21.76, 13.093, -23.514). 

4.1.4 Ligand Preparation. To generate 3D structures for each molecule, the 

LigPrep module of maestro was employed (Chen and Foloppe 2010). During 

preparation, Epik was used to predict the ionization states of molecules at a pH of 7.0 

±2.0 (Shelley et al. 2007). The molecules with chiral centers were generated as 

stereoisomers. At most 4 structures with possible stereoisomers and ionization states 

were generated for each compound. The force field used for the preparation was 

OPLS3e (Roos et al. 2019).  

4.1.5 Virtual Screen Workflow. Virtual screening workflow is a 

computational technique used to identify potential ligands for a target protein from a 

large library of compounds. One of the most widely used virtual screening methods is 

molecular docking, which involves the prediction of the binding mode and binding 

affinity of small molecule ligands to the target protein.  

 



45  

In molecular docking, different scoring functions are used to evaluate the 

binding affinity of the ligands to the protein. These scoring functions are based on 

various physical and chemical properties of the ligands and the protein-ligand 

complex. There are different types of molecular docking methods available, including 

High-Throughput Virtual Screening (HTVS), Standard Precision (SP) docking, and 

extra Precision (XP) docking. These methods differ in their computational complexity 

and accuracy. In the virtual screen workflow tool, all these methods are performed in 

order and considering the percentage of impact. 

To perform the HTVS docking method, the tool imports the ligand library and a 

grid center file created based on Pralsetinib. Epik state penalties are added to the 

docking score, and a partial charge cutoff of 0.15 is set. Post-docking minimization is 

carried out with strain correction terms during the final scoring. Additionally, the tool 

generates up to one pose per compound, and 25% of the best-compounds are retained 

and passed through SP docking. 

Then, SP docking occurs by adding Epik state penalties to the docking score, set 

0.15 as a cutoff for the partial charge, and post-docking minimization was performed 

by applying strain correction terms during the final scoring. Also, it keeps generating 

up to 1 pose per compound and after docking 25% of the best compounds with good 

scoring states are retained and pass through XP docking. 

Finally, the XP docking method is used to refine the top hits from HTVS and SP 

docking. Epik state penalties are added to the docking score, and the partial charge 

cutoff is set to 0.15. Post-docking minimization is performed with the tool generating 

up to one pose per compound. Only 10% of the best compounds with the best scoring 

states are retained after docking, but if 10% contain less than 10 compounds then the 

percentage increases to 20%. The top 10 molecules with the best docking scores from 

each library are selected for further analysis. 
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4.1.6 Molecular Dynamics (MD) Simulations. The 10 molecules with the 

lowest docking scores from each library were selected for all-atom MD simulations, 

which were conducted using the Desmond software (Bowers et al. 2006). The protein 

RET (PDB ID: 7JU5 (Subbiah et al. 2021)) was placed in a solvation box of the TIP3P 

model (Jorgensen et al. 1983), with a buffer of 10 Å around the protein in an 

orthorhombic shape. To ensure thermodynamic equilibrium, the isothermal-isobaric 

ensemble NPT was used, with a constant pressure of 1.01325 bar and temperature of 

310 K. The system was initially neutralized with Na+ atoms and a salt concentration 

of 0.15 M (NaCl) at a physiological pH of 7.4. The simulations were conducted for 

each compound individually using the Nose-Hoover thermostat and Martyna-Tobias-

Klein barostat (Martyna, Klein, and Tuckerman 1992). The RESPA integrator was 

used for bonded, near non-bonded, and far non-bonded interactions, with time steps of 

2.0, 2.0, and 6.0 femtoseconds, respectively. A cut-off of 9 Å was set for short-range 

electrostatics and van der Waals interactions, while the particle mesh Ewald method 

(Essmann et al. 1995) and Periodic Boundary Conditions were applied for long-range 

electrostatic interactions. The OPLS3e force field was used to calculate the potential 

energy of the system. Before the simulations commenced, Desmond relaxed and 

minimized the system. In addition to the simulation described above, five additional 

simulations were performed on the same system, each with a different seed number to 

account for the effect of random initialization on the results. These simulations were 

run for a shorter duration of 10 ns but were repeated five times to obtain a total 

simulation time of 50 ns. From each of these simulations, 1000 frames were collected 

for analysis. 

4.1.7 Molecular Mechanics the Generalized Born Solvent Accessible 

Surface Area (MM/GBSA) Calculations. MM/GBSA used in Prime was employed 

to compute the binding energies. For each 10 ns MD simulation, 100 protein-ligand 

complexes were extracted from the trajectories. For every 10 frames, 1 frame was used 

to calculate MM/GBSA.  

The implicit solvation model, VSBG 2.0 (Li et al. 2011) was utilized to define 

the dielectric constant as a variable under the OPLS3e forcefield. Thus, the internal 

dielectric constant can range between 1.0 and 4.0 while the outside system is treated 

as a water system with a constant dielectric constant of 80 (Li et al. 2011). Following 
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the calculations of each complex, average values and standard deviations were 

calculated for each compound. 

 

4.2 Method 2: Leveraging E-Pharmacophore Hypothesis and Long MD 

Trajectories for Accelerated Ligand Screening in Drug Discovery 

 

In addition to our first method, we have developed a second approach in our 

research that focuses on ligand screening using the e-pharmacophore hypothesis 

generated from trajectories with the lowest RMSD of long MD simulation. This 

method involves several steps that allow us to identify potential ligand molecules for 

a specific target protein using molecular dynamics simulations and e-pharmacophore 

hypotheses. These ligands are then subjected to further analysis using statistical 

methods to identify the most promising candidates for further study. By using this 

methodology, we are able to rapidly screen large libraries of compounds and identify 

the most promising ones for further study, leading to the discovery of novel drug 

candidates. 

4.2.1 Protein Preparation. To utilize the protein in any computational 

experiments, including docking or MD simulations, it requires modifications from its 

tense X-Ray diffracted form which is obtained from the RCSB Protein Data Bank 

using PDB ID: 7JU5 (Subbiah et al. 2021). Also, the ligand was removed from the 

protein-ligand complex and got it as wildtype RET. Furthermore, eight mutated RET 

obtain by changing eight different residues individually: G810S, V804L, V804M, 

V738A, Y806C, Y806N, L730V, and L730I. Also, another three mutated RET which 

include Y806C-V738A, V804M-Y806C, and V804M-G810S mutations are obtained 

by changing residues. So, we obtain eleven mutated and one wildtype RET protein and 

a RET protein in complex with Pralsetinib.  

The Protein Preparation Wizard (Madhavi Sastry et al. 2013) was employed to 

process the protein-Ligand complex, wildtype RET, and eleven mutated by assigning 

bond orders, adding hydrogens, creating zero-order bonds to metals, and regenerating 

disulfide bonds. Any missing side chains or loops were filled in using Prime (Jacobson 

et al. 2004), and any water located beyond 5Å of hetero groups were eliminated. The 

protein's protonation states at the assigned pH by PROPKA, as well as its side chain 

atoms, were minimized using the OPLS3e force field (Harder et al. 2016). 
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4.2.2 Receptor Grid Generation. The Receptor Grid Generation Tool was 

used to generate a receptor grid for the RET-Pralsetinib complex, using the prepared 

structure and based on the co-crystallized native ligand, Pralsetinib, with a default 

measurement of 10 Å on all sides. The process did not involve any constraints, and the 

rotation of hydroxyl or thiol groups of THR729, THR753, THR754, SER765, SER767, 

SER774, TYR791, TYR806, SER811, SER819, SER891, SER896, and THR946 was 

allowed. Moreover, the receptor grid for eleven mutated RET and the wildtype 

generated based on the co-crystal pose of native Pralsetinib with the same process we 

used for the complex one. Also, for each protein suggested rotatable residues are 

allowed to rotate. The resulting grid center (x, y, z) coordinates for all the prepared 

proteins are (21.76, 13.093, -23.514).  

4.2.3 Long Molecular Dynamics (MD) Simulations. The RET protein in 

complex with Pralsetinib (PDB ID: 7JU5) was subjected to all-atoms molecular 

dynamics (MD) simulations using the Desmond software (Bowers et al. 2006). The 

protein complex was solvated using the TIP3P model (Jorgensen et al. 1983) with an 

orthorhombic shape and a buffer of 10 Å around the protein. To maintain 

thermodynamic equilibrium, the isothermal-isobaric ensemble NPT was utilized with 

a constant pressure of 1.01325 bar and temperature of 310 K. The system was 

neutralized with Na+ ions and a salt concentration of 0.15 M (NaCl) at pH 7.4. The 

Nose-Hoover thermostat and Martyna-Tobias-Klein barostat (Martyna et al. 1992) 

were used for temperature and pressure control. Bonded, near non-bonded, and far 

non-bonded interactions were integrated using the RESPA integrator with time steps 

of 2.0, 2.0, and 6.0 femtoseconds, respectively. Short-range electrostatics and van der 

Waals interactions were truncated at 9 Å, while long-range electrostatic interactions 

were calculated using the particle mesh Ewald method (Essmann et al. 1995) with 

periodic boundary conditions. The OPLS3e force field was used to calculate the 

potential energy of the system. Prior to the simulations, the system was relaxed and 

minimized using Desmond. The simulations were performed for 500 ns, and 5000 

frames were collected. 
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4.2.4 E-Pharmacophore Modeling. Our aims are to generate multiple 

pharmacophore hypotheses from the long MD simulation's numerous frames using the 

e-pharmacophore tool of PHASE. For this purpose, we extracted 5000 frames from the 

trajectory and used the e-pharmacophore method to create pharmacophore models 

based on the receptor-ligand complex from PHASE. During the process, we set the 

maximum number of features that can be created by this method as 7, with a minimum 

distance of 2 Å between features and a minimum distance of 4 Å between features of 

the same type. Additionally, we used a receptor-based excluded volume shell, 

considering the Van der Waals radii of the receptor atoms and fixing their scaling 

factor at 0.5. 

However, considering a large number of frames, we needed to minimize the 

estimated time for creating hypotheses and getting results in CSV format files to 

simplify data visualization. We achieved this by executing the process from the 

Schrödinger-Maestro command line through a bash script. Firstly, the script created 

the grid center of Pralsetinib in each frame, split the receptor and ligand from the 

complex, then create a hypothesis with the e-pharmacophore method by applying in-

place docking, and created a pharmacophore hypothesis for each frame, and then 

generated output in CSV format files. 

Additionally, we developed a Python script to visualize the hypotheses and 

identify which hypotheses were generated the most during the long MD simulation, 

especially in frames with the lowest backbone RMSD while the protein aligned on 

frame 0. After identifying the selected hypotheses, we utilized them in ligand 

screening. 

4.2.5 Ligand Filtering.  In this approach, we employed ligand libraries 

which consist of fragment-based libraries obtained from a previous method and four 

different libraries from the Chemdiv database. These libraries contain over 300 million 

compounds in total. To ensure high-quality compounds, we utilized filtering methods 

such as Lipinski’s rule of five (Lipinski et al. 2001), in combination with 2D 

pharmacophore features. A Python script was developed to read the SDF file of each 

compound, calculate their physicochemical descriptors, and apply filtering based on 

these values.  
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Compounds that meet the criteria of Lipinski’s rule of five, including a molecular 

weight below 500 Da, logP below 5, no more than 5 hydrogen bond donors (HBD), 

and no more than 10 hydrogen bond acceptors (HBA), were selected for the creation 

of 2D pharmacophore features using RDKit library in Python. This library can 

calculate the 2D pharmacophores of ligands based on atom pair descriptors and 

topological distances between them. Moreover, compounds that pass Lipinski’s rules 

of five, are filtered based on features selected in the e-pharmacophore modeling step. 

So, those compounds that contain at least the same number of each feature in our 

reference feature hypothesis are passed the filtering part.  

4.2.6 Ligand Preparation.  To generate 3D structures for each compound, 

we used maestro's LigPrep module (Chen and Foloppe 2010). In order to predict the 

correct ionization states for a pH range of 7.0 ±2.0, Epik was employed during 

preparation, as recommended by Shelley et al. (2007). Molecules with chiral centers 

were created as stereoisomers based on their 3D atomic geometry, and a maximum of 

four structures with possible stereoisomers and ionization states were generated for 

each compound. The OPLS3e force field was utilized for preparation, according to 

Roos et al. (2019). 

4.2.7 Ligand Screening. In order to search for potential ligands, the PHASE 

software is utilized to perform ligand and database screening. This process Screening 

the ligand libraries based on the hypothesis selected from the e-pharmacophore 

analyzing part to find the ligands highly matched on the reference hypothesis by using 

existing conformers. Phase screen score is selected as the scoring function of 

screening, no constraints are involved, and rejection criteria are set as default. Specify 

the number of hits to return per molecule in the Return at most 1 hit per molecule by 

sorting the hits by decreasing their phase screen score.  
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4.2.8 METACORE™/METADRUG ™ Analysis. After the screening 

process based on the hypothesis and data sorted by decreasing the phase screen score, 

the data for each library was placed into a Pandas library Data Frame. The distribution 

pattern of the predicted data was analyzed by visualizing the normal distribution curve. 

Z-Scores were calculated for the phase screen score values to evaluate the fitness score 

values and select the most promising molecules for further investigation. Promising 

molecules were selected based on a Z-Score threshold of 2 or higher. However, if the 

number of molecules with Z-Scores over 2 was less than 20, then the top 20 molecules 

were selected to predict their anticancer activity scores. 

The molecules obtained from the Z-Score calculation were separated into 

separate SDF files, each containing a maximum of 500 molecules. These files were 

uploaded to the METACORETM platform to screen for potential cancer therapeutic 

activity. This screening process involves comparing the input compounds to those with 

known high anticancer activity and assigning a probability value between 0 and 1. 

Values above 0.5 indicate potential anticancer activity. For the construction of the 

cancer therapeutic activity QSAR model, a collection of 886 compounds was utilized 

along with a set of descriptors as the training set. The model exhibited notable 

performance metrics, including a sensitivity of 0.95, specificity of 0.92, accuracy of 

0.93, and MCC of 0.87. To validate the model, an additional test set of 167 compounds 

was employed, resulting in a sensitivity of 0.89, specificity of 0.83, accuracy of 0.86, 

and MCC of 0.72. Based on the initial screening results, a cutoff value of 0.5 was 

established, and only molecules with probabilities greater than or equal to 0.5 were 

selected for further consideration, while the rest were filtered out. 

4.2.9 Molecular Docking. The molecular docking process utilized the Glide 

program, which employs force field-based scoring functions (Friesner et al. 2006; 

Halgren et al. 2004). The docking jobs were configured with the OPLS3e force field 

(Roos et al. 2019) and set to Standard Precision (SP). The default settings from 

Glide/SP docking protocol were used, with the addition of Epik state penalties to the 

docking score, and post-docking minimization performed for five poses, rejecting 

minimization for poses within an energy window of 0.50 kcal/mol.  

To expand the number of docking poses, the ring sampling energy window was 

established at 2.5 kcal/mol. In the initial docking phase, 50,000 poses per ligand were 
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retained, and subsequently, the top 4,000 poses per ligand were subjected to energy 

minimization. Additionally, expanded sampling was employed to bypass the 

elimination of poses during the rough scoring stage. After identifying the best poses 

with the lowest docking scores, the top 10 molecules from each library were selected 

for the next step in the docking protocol. 

4.2.10 Molecular Dynamics (MD) Simulations. The top 10 molecules of 

each library that passed the glide/SP docking step were subjected to all-atoms 

molecular dynamics (MD) simulations using the Desmond software (Bowers et al., 

2006). The protein complex was solvated with an orthorhombic shape using the TIP3P 

model (Jorgensen et al. 1983) and a buffer of 10 Å around the protein. To maintain 

thermodynamic equilibrium, the isothermal-isobaric ensemble NPT was used, with a 

constant pressure of 1.01325 bar and temperature of 310 K. The system was 

neutralized with Na+ ions, and a salt concentration of 0.15 M (NaCl) at pH 7.4 was 

applied. Temperature and pressure control were achieved using the Nose-Hoover 

thermostat and Martyna-Tobias-Klein barostat (Martyna et al. 1992), respectively. The 

interactions were integrated using the RESPA integrator with time steps of 2.0, 2.0, 

and 6.0 femtoseconds for bonded, near non-bonded, and far non-bonded interactions, 

respectively. Short-range electrostatics and van der Waals interactions were truncated 

at 9 Å, and long-range electrostatic interactions were calculated using the particle mesh 

Ewald method (Essmann et al. 1995) with periodic boundary conditions. The OPLS3e 

force field was used to calculate the potential energy of the system. The system was 

relaxed and minimized using Desmond before simulations. Three repeats of 10 ns MD 

simulations were performed, and 1000 frames were collected. 
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4.2.11 Molecular Mechanics the Generalized Born Solvent Accessible 

Surface Area (MM/GBSA) Calculations. The binding energies were calculated 

using MM/GBSA in Prime. 100 protein-ligand complexes were extracted from the 

trajectories of each 10 ns MD simulation, and MM/GBSA was computed for every 10 

frames, resulting in a total of 1000 complexes per simulation. The VSBG 2.0 implicit 

solvation model was used with the OPLS3e forcefield, allowing the internal dielectric 

constant to vary between 1.0 and 4.0, while the outside system was treated as a water 

system with a constant dielectric constant of 80. Li et al. (2011) described this method 

in detail. The average values and standard deviations were calculated for each 

compound after the calculations for each individual complex were completed. 

4.2.12 Long Molecular Dynamics Simulations. The MM/GBSA 

calculation results were used to set a threshold of -65 and molecules with an average 

MM/GBSA score lower than this threshold were chosen for further analysis. These 

selected hit molecules underwent all-atoms long molecular dynamics (MD) 

simulations using Desmond software, with the protein complex being solved using the 

TIP3P model and a buffer of 10 Å around the protein. To maintain thermodynamic 

equilibrium, the NPT ensemble was employed with a constant pressure of 1.01325 bar 

and temperature of 310 K, and the system was neutralized with Na+ ions and a salt 

concentration of 0.15 M (NaCl) at pH 7.4. Temperature and pressure control were 

maintained using the Nose-Hoover thermostat and Martyna-Tobias-Klein barostat, 

respectively. The RESPA integrator was used to integrate the interactions with time 

steps of 2.0, 2.0, and 6.0 femtoseconds for bonded, near non-bonded, and far non-

bonded interactions, respectively. Short-range electrostatics and van der Waals 

interactions were truncated at 9 Å, and long-range electrostatic interactions were 

calculated using the particle mesh Ewald method with periodic boundary conditions. 

The OPLS3e force field was used to calculate the potential energy of the system. 

Before the simulations, the system was relaxed and minimized using Desmond. MD 

simulations were performed with 200 ns for each hit molecule, and 2000 frames were 

collected. 
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4.2.13 Molecular Docking on Mutated Proteins. To investigate the 

potential resistance of our hit molecules compared to Pralsetinib, we sought to dock 

them onto the RET protein, which is known to show resistance to some TK inhibitors 

due to mutations on its binding site. We carried out individual docking experiments 

for each of the eleven different mutations on the RET protein using the glide/SP 

protocol to determine the docking score and the docking poses of our hit molecules to 

observe how the interactions between our hit molecules and the RET protein change 

in the context of these mutations and analyze effects of them on molecules behavior 

by MD simulation analysis. 

The docking jobs were configured using the OPLS3e force field and set to 

Standard Precision (SP), with default settings and the addition of Epik state penalties 

to the docking score. Post-docking minimization was performed for ten poses, 

rejecting minimization for poses within an energy window of 0.50 kcal/mol, and 

expanded sampling was employed to generate more poses for docking by setting the 

energy window for ring sampling to 2.5 kcal/mol. During the initial phase of docking, 

50,000 poses per ligand were retained, and the best 4,000 poses per ligand were used 

for energy minimization. After identifying the best poses with the lowest docking 

scores for each hit molecule, that pose was selected for the MD simulation analysis. 

This approach allowed us to investigate how the interactions of our hit molecules 

change their behavior compared to our reference molecule, Pralsetinib, and whether 

they exhibit resistance to mutations on the binding site of RET tyrosine kinase. 

4.2.14 Molecular Dynamics (MD) Simulation for Mutated Proteins. All 

the hit molecules and Pralsetinib were subjected to all-atoms molecular dynamics 

(MD) simulations with their docking poses in each mutation using the Desmond 

software (Bowers et al. 2006). Each hit molecule in a complex with mutated proteins 

was solvated with an orthorhombic shape using the TIP3P model (Jorgensen et al. 

1983) and a buffer of 10 Å around the protein. To maintain thermodynamic 

equilibrium, the isothermal-isobaric ensemble NPT was used, with a constant pressure 

of 1.01325 bar and temperature of 310 K.  

The system was neutralized with Na+ ions, and a salt concentration of 0.15 M 

(NaCl) at pH 7.4 was applied. Temperature and pressure control were achieved using 

the Nose-Hoover thermostat and Martyna-Tobias-Klein barostat (Martyna et al. 1992), 
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respectively. The interactions were integrated using the RESPA integrator with time 

steps of 2.0, 2.0, and 6.0 femtoseconds for bonded, near non-bonded, and far non-

bonded interactions, respectively. Short-range electrostatics and van der Waals 

interactions were truncated at 9 Å, and long-range electrostatic interactions were 

calculated using the particle mesh Ewald method (Essmann et al. 1995) with periodic 

boundary conditions. The OPLS3e force field was used to calculate the potential 

energy of the system. The system was relaxed and minimized using Desmond before 

simulations. MD simulations in the length of 10 ns were performed for each complex, 

and 1000 frames were collected. Furthermore, 50 ns MD simulations with collecting 

5000 frames was performed for molecules with low resistance against mutated RET in 

comparison with Pralsetinib. 

4.2.15 Molecular Mechanics the Generalized Born Solvent Accessible 

Surface Area (MM/GBSA) Calculations for Mutated Proteins. The binding free 

energies were calculated using MM/GBSA in Prime. 100 protein-ligand complexes 

were extracted from the trajectories of each 10 ns MD simulation, and 500 complexes 

were extracted from trajectories of molecules with 50 ns MD simulations. So, 

MM/GBSA was computed for every 10 frames, resulting in a total of 1000 complexes 

per simulation, and also for every 10 frames in a total of 5000 complexes that were 

extracted from trajectories.  

The VSBG 2.0 implicit solvation model was used with the OPLS3e forcefield, 

allowing the internal dielectric constant to vary between 1.0 and 4.0, while the outside 

system was treated as a water system with a constant dielectric constant of 80. Li et al. 

(2011) described this method in detail. The average values and standard deviations 

were calculated for each compound after the calculations for each complex were 

completed. 
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4.2.16 METACORETM Toxicity Analysis.  To perform toxicity analysis, 

the platforms rely on a variety of data sources, including public databases of known 

toxicants, as well as in-house data generated through experimental testing. Then it 

applies machine learning algorithms and other analytical techniques to these data sets 

in order to generate predictions of toxicity for new compounds. So, hit molecules were 

subjected to binary toxicity QSAR test in the MetaCore™/MetaDrug™ platform. All 

molecules test in 26 toxicity QSAR models and each of them has a cutoff value, mostly 

a cutoff value is 0.5, and molecules with values higher than 0.5 indicate potential 

toxicity.  
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Chapter 5    

Results 

 

5.1 Results for First Method 

 

In our first method, various approaches were employed such as text mining and 

the QSAR model, and their outcomes are presented below, categorized by relevant 

subheadings. 

5.1.1 Text Mining and QSAR. To do the text mining, after collecting the 

top 120 molecules with IC50 value of 5 nM and under it from the ChEMBL database 

then their 2D structures and IUPAC names are listed as shown in Table A.1. After 

analyzing similarities between those small molecules, fragments that are contained in 

most of the small molecules are listed and shown in Table 1.  

Table 1. Similar Fragments Between Top 120 ChEMBL Molecules That Target RET 

Similar Fragments Between Top 120 ChEMBL Molecules That Target RET. 

2D structure IUPAC 
Number of 

fragments 
2D structure IUPAC 

Number of 

fragments 

 

[(1R) ‐2‐hydroxy‐1‐

phenylethyl] amino 
4 

 

5‐ethoxy‐6‐oxo‐

1,6‐dihydro 

pyridin-3‐yl 

15 

 

pyridin 31 

 

trifluoromethyl 29 

 

4‐chloro‐phenol 5 

 

fluorophenyl 19 

 
4‐ethylpiperazin 43 

 

3‐methyl‐1H‐

indazol 
3 
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Table 1. (cont.d) 

 

4‐methyl‐3‐

(trifluoromethyl) 

phenyl 

17 

 

phenol 17 

 

phenyl 98 

 

benzamide 10 

 

6‐oxo‐1,6‐

dihydropyridin 
17 

 

4‐methylpiperazin 40 

 

(trifluoromethyl) 

phenyl 
24 

  

1 

  

6 

 

oxazol 13 

  

 

3 

 

6,7‐

dimethoxyquinazolin 

 

13 

 

Difluorophenol  

3 

 

fluorophenol  

11 

  

 

2 

 

1,2,3,4‐

tetrahydronaphthalen 

 

2 

 

piperidin  

26 

 
 

 

17 

  

 

8 

  

 

36 

 
 

 

2 

 
 

 

2 

 

 

 

4 

 
 

 

5 

 

pyrazol  

12 
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Then, RET inhibitor drugs which are approved or in a clinical trial that are shown 

in Table 2. are used to detect the most frequent fragments between them by detecting 

their IUPAC names in text format, and seventeen fragments are mostly seen between 

them as shown in Table 3.  

 

Table 2. 2D Structure of Approved Drugs and In Clinical Trail Drug Targeted RET Protein 

2D Structure of Approved Drugs and In Clinical Trail Drug Targeted RET Protein 

Drug Name 2D Structure Drug Name 2D Structure 

Sunitinib 

 

Selpercatinib 

 

Vandetanib 

 

Pralsetinib (BLU-

667) 

 

Cabozantinib 

 

Agerafenib (RXDX-

105) 
 

Regorafenib 

 

Enbezotinib (TPX-

0046) 

 

Ponatinib 

 

Zeteletinib 

(BOS172738) 
 

Lenvatinib 

 

dovitinib (TKI258) 

 

Fostamatinib 
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Table 3. Similar Fragments Between Approved and In Clinical Trail Drugs Targeted RET Protein. 

Similar Fragments Between Approved and In Clinical Trail Drugs Targeted RET 

Protein. 

2D structure IUPAC 
Number of 

fragments 2D structure IUPAC 
Number 

of 

fragments 

 

pyridine 5 

 

trifluoromethyl 4 

 

4‐methyl‐3‐(trifluo

romethyl)phenyl 

 
1 

 

Fluorophenyl 

 
2 

 

phenyl 7 

 

Benzamide 

 
1 

 

(trifluoromethyl)ph

enyl 3 

 

4‐methylpiperazin 

 
2 

 

3‐(1,1,1‐trifluoro‐2

‐methylpropan‐2‐yl

)‐1,2‐oxazol‐5‐yl 

 

2 

 

Oxazole 

 
2 

 

Piperidine 1 

 

6,7‐dimethoxyquin

azolin 

 
2 

 

1H‐pyrazolo[3,4‐d]

pyrimidin‐4‐amine 

 
1 

 

Pyrazole 

 
1 

  
So, by analyzing similar fragments between ChEMBL structures and RET 

inhibitor which are approved or in clinical trial, 10 of those fragments are chosen as 

fragments that can play an important role to inhibit the RET protein as you can see in 

Table 4.  
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Table 4. Most Frequent Fragments Between 120 ChEMBL Compounds And 13 Approved and In Clinical Trials Drugs 

Most Frequent Fragments Between 120 ChEMBL Compounds And 13 Approved and 

In Clinical Trials Drugs. 

 

So, it is decided to go through these fragments to do text mining inside the ZINC 

data library. This data library contains IUPAC names of 500 million small molecules 

got from the ZINC database. So, by using a python script it is found that each fragment 

name is included in how many compounds between the IUPAC names of 500 million 

small molecules as shown in Table 5. Then, all the IUPAC names that contain those 

fragment names are added to a text file to convert IUPAC names to SMILES and SDF 

format files using the MolConverter tool. Moreover, these SDF files are all converted 

to Mae format, with the SDConvert tool of Maestro from the command line. 
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Table 5. The Number of Compounds Includes Fragments Name in Their IUPAC Names 

The Number of Compounds Includes Fragments Name in Their IUPAC Names. 

Fragments Count of the fragment in 500Million ZINC 

database 

Piperidin 88.836.619 

Pyridin 83.144.820 

Pyrazol 59.598.058 

Oxazol 31.169.364 

Piperazin 23.438.212 

Trifluoromethyl 13.169.364 

Quinazolin 1.954.454 

Pyrazin-2-carboxamid 809.172 

Fluorophenol 89.172 

[(1r,4r)-4-hydroxycyclohexyl] amino 2.450 

 

In contrast, the AUTOQSAR tool in maestro was utilized to generate various 

QSAR models based on 885 ChEMBL compounds that target RET protein. Using 

linear fingerprints of internal sets (793 compounds), the KPLS algorithm produced the 

best model with an R-square value of 0.8769 for the training set and a Q-square value 

of 0.6864 for the test sets, as illustrated in Figure 6. 
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Figure  6. QSAR model created using AUTOQSAR tool of the maestro  

Also, the model was validated by predicting pIC50 values of the external set (92 

compounds), and the R-square of the model for the external set was obtained as 0.6521 

as shown in Figure 7. 

 

Figure  7. Scatter plot for predicted pIC50 of compounds in external set (R-square is 

equal to 0.6521). 
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The model was utilized to anticipate pIC50 values for eight out of ten libraries 

based on frequent fragments. For two libraries with a small number of compounds, all 

of their compounds were selected for analysis. Due to the high number of compounds 

in each library, a Python script was developed to read and calculate the mean of the 

predicted pIC50 values for each library. The normal distribution and z-score of each 

compound were also calculated to analyze the distribution of predicted pIC50 values. 

Compounds with a z-score value above a threshold of two or three (depending on the 

number of compounds) were selected for further analysis. Table 6. displays the number 

of compounds from each library selected and their corresponding z-score threshold. 

Table 6. Number of Compounds That Selected from Each Library Based on Their Cutoff Values. 

Number of Compounds That Selected from Each Library Based on Their Cutoff 

Values. 

Library 

name 

cutoff Number of 

compounds 

Library name cutoff Number of 

compounds 

Piperidin 3 5.488 Trifluoromethyl 2 1.660 

Pyridin 3 14.326 Quinazolin 2 5.813 

Pyrazol 3 25.289 Pyrazin-2-

carboxamid 

3 2.671 

Oxazol 3 2.204 Fluorophenol - All compounds 

Piperazin 2 10.908 [(1r,4r)-4-hydroxy 

cyclohexyl] amino 

- All compounds 

5.1.2 METACORE™/METADRUG ™ Results. All compounds selected 

through the z-score analysis were subjected to QSAR models in the METACORETM 

platform to predict their anticancer activity score. The cutoff value for the score was 

set to 0.5, with compounds having scores above this value considered to have high 

anticancer activity. Therefore, this cutoff value was employed as a filtering criterion, 

and compounds with scores exceeding 0.5 from each library were selected for further 

analysis. In Table 7. the number of compounds over the cutoff value is shown.  
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Table 7. The number of compounds in each library with anticancer activity scored over 0.5. 

The number of compounds in each library with anticancer activity scored over 0.5. 

Library name Number of 

compounds 

Library name Number of 

compounds 

Piperidin 2.756 Trifluoromethyl 1.101 

Pyridin 12.974 Quinazolin 5.626 

Pyrazol 17.316 Pyrazin-2-carboxamid 2.413 

Oxazol 1.756 Fluorophenol 63.537 

Piperazin 7.576 [(1r,4r)-4-hydroxy cyclohexyl] amino 2.136 

 

5.1.3 Virtual Screen Workflow. All molecules with an anticancer activity 

score above 0.5 in each library underwent HTVS, SP, and XP docking using the virtual 

screen workflow tool of maestro. The top 25% of compounds were retained for HTVS 

and SP docking, while the top 10% were retained for XP docking, except for cases 

where there were fewer compounds, in which case the retention rate was increased to 

20%. From the XP docking results, the top 10 molecules with the lowest docking 

scores for each library were selected for further analysis through MD simulation, as 

presented in Tables 8-17. 
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Table 8. Top 10 Molecules of Library Including Piperidin Fragment with Their Docking Scores. 

Top 10 Molecules of Library Including Piperidin Fragment with Their Docking 

Scores. 

Structure  IUPAC Name docking score 

(kcal/mol) 

 

  

2-[(3S)-3-(2-hydroxyethyl) piperidin-1-yl]-2-oxo-N-

(1-oxo-1,2,3,4-tetrahydroisoquinolin-7-yl) acetamide 

 

-9.326 

 
 

 

 

5-{3-ethyl-2H-pyrazolo[3,4-b] pyridin-5-yl}-2-oxo-

1,2-dihydrospiro[indole-3,4'-piperidin]-1'-ium 

 

 

-8.983 

 
 

 

(1R)-1-[(3S)-1-{[3-fluoro-4-(4-methyl-1H-pyrazol-1-

yl) phenyl] carbamoyl} piperidin-3-yl] ethan-1-

aminium 

 

 

-8.797 

 

  

2-[(3R)-3-(hydroxymethyl) piperidin-1-yl]-2-oxo-N-

(1-oxo-1,2,3,4-tetrahydroisoquinolin-7-yl) acetamide 

 

-8.791 

 

  

(3R)-3-{[5-(3-methyl-2H-indazol-5-yl)pyridin-2-

yl]carbamoyl}piperidin-1-ium 

 

-8.606 

 

  

4-{[5-(3-methyl-2H-indazol-5-yl)pyridin-2-

yl]carbamoyl}piperidin-1-ium 

 

-8.587 

 
 

 

2-oxo-5-{2H-pyrazolo[3,4-b]pyridin-5-yl}-1,2-

dihydrospiro[indole-3,4'-piperidin]-1'-ium 

 

-8.498 

 

  

(3S)-3-{[5-(3-methyl-2H-indazol-5-yl)pyridin-2-

yl]carbamoyl}piperidin-1-ium 

 

-8.410 

 

  

4-({5-[4-(difluoromethyl)-3-fluorophenyl]pyridin-2-

yl}carbamoyl)piperidin-1-ium 

 

 

-8.288 

 

  

(3S)-1-{[3-fluoro-4-(4-methyl-1H-pyrazol-1-

yl)phenyl]carbamoyl}-N-methylpiperidin-3-aminium 

 

-8.280 
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Table 9. Top 10 Molecules of Library Including Pyridine Fragment with Their Docking Scores. 

Top 10 Molecules of Library Including Pyridine Fragment with Their Docking 

Scores. 

Structure IUPAC Name docking score 

(kcal/mol) 

 
 

 

N-(4-methyl-3-{[2-(methylcarbamoyl) pyridin-4-yl] 

oxy}phenyl)-2H-indazole-5-carboxamide 

 

-10.137 

 

  

N-(4-chloro-3-{[(2-hydroxyethyl) (methyl) amino] 

methyl}phenyl)-3-methyl-2H-pyrazolo[3,4-

b]pyridine-5-carboxamide 

 

-9.772 

 
 

 

 

N-methyl-4-(2-methyl-5-{1H-pyrrolo[2,3-b]pyridine-

3-amido}phenoxy)pyridine-2-carboxamide 

 

 

-9.724 

 

  

N-{3-[(5-hydroxypentyl)oxy]-4-methylphenyl}-5-(1-

methyl-1H-pyrazol-4-yl)pyridine-3-carboxamide 

 

-9.509 

 

  

methyl 2-[2-fluoro-4-({[(2S)-5-(pyridin-3-yl)pentan-

2-yl]carbamoyl}amino)phenyl]acetate 

 

-9.457 

 
 

 

4-{[4-(hydroxymethyl)-3-methylphenyl]amino}-3-

methyl-N-[(pyridin-3-yl)methyl]benzamide 

 

 

-9.389 

 

  

N'-(2-hydroxyethyl)-N-(2-methyl-2,3-dihydro-1H-

isoindol-5-yl)-N'-[(pyridin-3-

yl)methyl]ethanediamide 

 

-9.370 

 
 

 

2-fluoro-4-[(2-methyl-5-{[(pyridin-3-

yl)methyl]carbamoyl}phenyl)amino]benzoic acid 

 

 

-9.339 

 

  

N-(6-acetyl-2H-1,3-benzodioxol-5-yl)-5-(2,3-

dihydro-1-benzofuran-5-yl)pyridine-3-carboxamide 

 

-9.287 

 
 

 

7-fluoro-6-(4-{1H-pyrrolo[2,3-b] pyridin-3-yl} 

piperidine-1-carbonyl)-1,2,3,4-tetrahydroquinolin-2-

one 

 

 

-9.249 
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Table 10. Top 10 Molecules of Library Including Pyrazol Fragment with Their Docking Scores. 

Top 10 Molecules of Library Including Pyrazol Fragment with Their Docking 

Scores. 

Structure IUPAC Name docking score 

(kcal/mol) 

 

  

4-({3-ethyl-2H-pyrazolo[3,4-b]pyridin-5-yl}amino)-

3-methyl-N-[(pyridin-3-yl)methyl]benzamide 

 

-10.270 

 

  

N-[2-(2,3-dihydro-1H-inden-5-yloxy)ethyl]-5-(1-

methyl-1H-pyrazol-4-yl)pyridine-3-carboxamide 

-9.991 

 

  

N-(4-chloro-3-{[(2-

hydroxyethyl)(methyl)amino]methyl}phenyl)-3-

methyl-2H-pyrazolo[3,4-b]pyridine-5-carboxamide 

-9.772 

 

  

N-(4-chloro-3-{[(2-

hydroxyethyl)(methyl)amino]methyl}phenyl)-4-(4-

methyl-1H-pyrazol-1-yl)benzamide 

-9.627 

 

  

N-[3-fluoro-4-(4-methyl-1H-pyrazol-1-yl)phenyl]-N'-

[(1s,4s)-4-(hydroxymethyl)cyclohexyl]ethanediamide 

-9.610 

 

  

3-methyl-N-{4-methyl-3-[(4-methylpyridin-2-

yl)oxy]phenyl}-2H-pyrazolo[3,4-b]pyridine-5-

carboxamide 

-9.553 

 

  

N'-[3-fluoro-4-(4-methyl-1H-pyrazol-1-yl)phenyl]-N-

[(2S)-1-hydroxypropan-2-yl]-N-[(2S)-2-

hydroxypropyl]ethanediamide 

-9.517 

 

  

3-hydroxy-7-methoxy-N-{3-methyl-2H-pyrazolo[3,4-

b]pyridin-5-yl}naphthalene-2-carboxamide 

-9.451 

 
 

 

[(2S)-1-({[3-fluoro-4-(4-methyl-1H-pyrazol-1-

yl)phenyl]carbamoyl}carbonyl)pyrrolidin-2-

yl]methanaminium 

-9.335 

 

  

3-methyl-N-{4-methyl-3-[(oxan-4-

yl)methoxy]phenyl}-2H-pyrazolo[3,4-b]pyridine-5-

carboxamide 

-9.332 
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Table 11. Top 10 Molecules of Library Including Oxazol Fragment with Their Docking Scores. 

Top 10 Molecules of Library Including Oxazol Fragment with Their Docking Scores. 

Structure IUPAC Name docking score 

(kcal/mol) 

 

  

(2R)-N-(2-cyclopropyl-1,3-benzoxazol-5-yl)-2-

(pyridin-3-yl)propanamide 

-8.993 

 

  

N-[4-methyl-3-(1,3-oxazol-2-yl)phenyl]-2H-indazole-

5-carboxamide 

-8.953 

 

  

1-(2-cyclopropyl-1,3-benzoxazol-5-yl)-3-[(2R,3R)-

1,3-dihydroxybutan-2-yl]urea 

-8.721 

 

  

N'-(2-cyclopropyl-1,3-benzoxazol-5-yl)-N-(2-

hydroxyethyl)-N-(3-hydroxypropyl)ethanediamide 

-8.541 

 

  

5-ethynyl-N-[4-methyl-3-(1,3-oxazol-2-

yl)phenyl]pyridine-3-carboxamide 

-8.371 

 
 

 

5-cyclopropyl-N-[6-methyl-5-(1-methyl-1H-pyrazol-

4-yl)pyridin-2-yl]-1,2-oxazole-3-carboxamide 

-8.323 

 

  

1-(2-cyclopropyl-1,3-benzoxazol-5-yl)-3-[(2R)-6-

hydroxyhexan-2-yl]urea 

-8.093 

 

  

N-(3-hydroxy-4-methylphenyl)-1,3-benzoxazole-5-

carboxamide 

-8.021 

 

  

N'-(2-cyclopropyl-1,3-benzoxazol-5-yl)-N-ethyl-N-(3-

hydroxypropyl)ethanediamide 

-7.913 

 

  

N-[4-methyl-3-(1,3-oxazol-2-yl)phenyl]-2H-

pyrazolo[4,3-b]pyridine-6-carboxamide 

-7.896 
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Table 12. Top 10 Molecules of Library Including Piperazin Fragment with Their Docking Scores. 

Top 10 Molecules of Library Including Piperazin Fragment with Their Docking 

Scores. 

Structure IUPAC Name docking score 

(kcal/mol) 

 
 

 

2-[(2S)-1-[(2-fluoro-4-methoxyphenyl) methyl]-3-

oxopiperazin-2-yl]-N-[3-(pyridin-3-yl) propyl] 

acetamide 

 

-9.192 

 

  

2-[(2R)-1-[(2-fluoro-4-methoxyphenyl)methyl]-3-

oxopiperazin-2-yl]-N-[3-(pyridin-3-

yl)propyl]acetamide 

 

-9.181 

 

  

[5-({3-ethyl-2H-pyrazolo[3,4-b]pyridin-5-yl}amino)-

2-(4-methylpiperazin-1-yl)phenyl]methanol 

-8.988 

 

  

1-{2-[4-(1-cyclopropyl-1H-1,3-benzodiazol-5-

yl)phenoxy]ethyl}-4-methylpiperazin-1-ium 

-8.965 

 

  

1-cyclopropyl-5-{4-[2-(4-methylpiperazin-1-

yl)ethoxy] phenyl}-1H-1,3-benzodiazole 

-8.880 

 

  

7-[4-(piperazine-1-carbonyl)phenyl]-3-

(trifluoromethyl)quinoline 

-8.859 

 

  

N-[4-(4-ethylpiperazin-1-yl)-3-fluorophenyl]-3-(1H-

pyrazol-3-yl)benzamide 

-8.731 

 

  

4-{2-[4-(1-cyclopropyl-1H-1,3-benzodiazol-5-yl) 

phenoxy]ethyl}-1-methylpiperazin-1-ium 

-8.725 

 

  

4-{4-[3-(trifluoromethyl)quinolin-7-yl]benzoyl} 

piperazin-1-ium 

-8.697 

 

  

4-[4-({3-ethyl-2H-pyrazolo[3,4-b]pyridin-5-

yl}amino)-2-(trifluoromethyl)phenyl]piperazin-1-ium 

-8.694 
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Table 13. Top 10 Molecules of Library Including Trifluorophenol Fragment with Their Docking Scores. 

Top 10 Molecules of Library Including Trifluorophenol Fragment with Their 

Docking Scores. 

Structure IUPAC Name docking score 
(kcal/mol) 

 

  

2-[(5-methyl-1,3-oxazol-2-yl) methoxy]-N- {4-[( 

pyrrolidine-1-yl )methyl]-3-(trifluoromethyl) 

phenyl}acetamide 

-8.505 

 

  

N-(2-acetyl-2,3-dihydro-1H-isoindol-5-yl)-2-chloro-5-

(trifluoromethyl)pyridine-3-carboxamide 

-8.244 

 

  

(5S)-N-{4-[(pyrrolidin-1-yl)methyl]-3-

(trifluoromethyl)phenyl}-4,5,6,7-tetrahydro-2H-

indazole-5-carboxamide 

-8.218 

 

  

2-amino-N-[4-(methoxymethyl)-3-(trifluoromethyl) 

phenyl]-5-nitropyridine-3-carboxamide 

-8.128 

 

  

 

N-{4-[(pyrrolidin-1-yl)methyl]-3-(trifluoromethyl) 

phenyl}-2H-pyrazolo[3,4-b]pyridine-5-carboxamide 

-8.047 

 

  

 

1-[(4-{2H-pyrazolo[3,4-b]pyridine-5-amido}-2-

(trifluoromethyl)phenyl)methyl]pyrrolidin-1-ium 

-8.047 

 

  

 

ethyl 3-{2-fluoro-4-[5-(trifluoromethyl)pyridine-3-

amido]phenyl}propanoate 

 

 

-7.959 

 

  

N-[2-(carbamoylmethyl)-1,2,3,4-tetrahydroisoquinolin 

-7-yl]-2-chloro-5-(trifluoromethyl)pyridine-3-

carboxamide 

-7.949 

 

  

5-ethyl-N-[4-(methoxymethyl)-3-(trifluoromethyl) 

phenyl]pyridine-3-carboxamide 

-7.937 

 

  

 

4-({4-[(5-cyanopyridin-3-yl)amino]-2-(trifluoro 

methyl)phenyl}methyl)-1-ethylpiperazin-1-ium 

 

 

-7.904 
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Table 14. Top 10 Molecules of Library Including Quinazolin Fragment with Their Docking Scores. 

Top 10 Molecules of Library Including Quinazolin Fragment with Their Docking 

Scores. 

Structure IUPAC Name docking score 

(kcal/mol) 

 

  

(2R)-2-(2,3-dihydro-1-benzofuran-5-yl)-N-(4,4-

dimethyl-2-oxo-1,2,3,4-tetrahydroquinazolin-6-yl)-2-

hydroxyacetamide 

 

-9.295 

 

  

N-(3-methyl-2-oxo-1,2,3,4-tetrahydroquinazolin-6-yl)-

3-(1H-1,2,4-triazol-3-yl)benzamide 

 

-9.264 

 

  

4-(4-acetyl-2-methoxyphenoxy)-N-(3-methyl-2-oxo-

1,2,3,4-tetrahydroquinazolin-6-yl)butanamide 

 

-9.111 

 

  

3-[(2-aminoquinazolin-6-yl)amino]-4-methyl-N-

[(pyridin-3-yl)methyl]benzamide 

 

-9.088 

 

  

N-(1,3-dimethyl-2-oxo-1,2,3,4-tetrahydroquinazolin-6-

yl)-6-methoxy-2H-indazole-5-carboxamide 

 

-9.032 

 

  

6-{3-ethyl-2H-pyrazolo[3,4-b]pyridin-5-yl}-1,2,3,4-

tetrahydroquinazolin-2-one 

 

-8.929 

 

  

4-amino-N-[4-bromo-3-

(hydroxymethyl)phenyl]quinazoline-7-carboxamide 

 

-8.905 

 

  

N-[4-fluoro-3-(4H-1,2,4-triazol-3-yl)phenyl]-2-

methyl-4-oxo-3,4-dihydroquinazoline-7-carboxamide 

 

-8.769 

 

  

ethyl 8-(quinazolin-7-yl)imidazo[1,2-a]pyridine-6-

carboxylate 

 

-8.596 

 

  

3-methyl-N-(3-methyl-2-oxo-1,2,3,4-

tetrahydroquinazolin-6-yl)-2-oxo-2,3-dihydro-1H-1,3-

benzodiazole-5-carboxamide 

 

-8.583 
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Table 15. Top 10 Molecules of Library Including Pyrazin-2-carboxamid Fragment with Their Docking Scores. 

Top 10 Molecules of Library Including Pyrazin-2-carboxamid Fragment with Their 

Docking Scores. 

Structure IUPAC Name docking score 

(kcal/mol) 

 
 

 

 

N-(2-{[(3-carbamoyl-4-methylphenyl)carbamoyl] 

amino}ethyl)pyrazine-2-carboxamide 

 

-9.455 

 

  

(9aR)-N-[6-methyl-5-(1-methyl-1H-pyrazol-4-

yl)pyridin-2-yl]-octahydro-1H-pyrido[1,2-a]pyrazine-

2-carboxamide 

 

-9.154 

 

  

N-{2-[(6-ethoxy-1,2,3,4-tetrahydroisoquinoline-2-

carbonyl)amino]ethyl}pyrazine-2-carboxamide 

 

-9.111 

 
 

 

 

5-amino-6-chloro-3-[(3-methyl-2H-indazol-5-yl) 

amino]pyrazine-2-carboxamide 

 

 

-9.061 

 

  

N-(6-acetyl-2H-1,3-benzodioxol-5-yl)-6-(4-

chlorophenyl)pyrazine-2-carboxamide 

 

-9.054 

 

  

(9aS)-N-[6-methyl-5-(1-methyl-1H-pyrazol-4-

yl)pyridin-2-yl]-octahydro-1H-pyrido[1,2-a]pyrazine-

2-carboxamide 

 

-8.986 

 
 

 

3-amino-N-(4-chloro-3-{[(2-fluorophenyl)methyl] 

carbamoyl}phenyl)pyrazine-2-carboxamide 

 

-8.949 

 

  

 

6-bromo-3-[(3-methyl-2H-indazol-5-yl)amino] 

pyrazine-2-carboxamide 

 

-8.676 

 

  

N-(6-acetyl-2H-1,3-benzodioxol-5-yl)-5-(2-

methoxyethoxy)pyrazine-2-carboxamide 

 

-8.464 

 

  

N-(6-acetyl-2H-1,3-benzodioxol-5-yl)-5-

(cyclopropylmethoxy)pyrazine-2-carboxamide 

 

-8.326 
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Table 16. Top 10 Molecules of Library Including Fluorophenol Fragment with Their Docking Scores. 

Top 10 Molecules of Library Including Fluorophenol Fragment with Their Docking 

Scores. 

Structure IUPAC Name docking score 

(kcal/mol) 

 

 

 

6-({[(1S)-1-(5-ethyl-4H-1,2,4-triazol-3-yl)ethyl] 

amino}methyl)-2,3-difluorophenol 

 

-9.954 

 

 
 

4-{5-[3-(2H-1,3-benzodioxol-5-yloxy)propyl]-1,2,4-

oxadiazol-3-yl}-3-fluorophenol 

 

-9.6247 

 
 

 

 

3-({[3,4'-bipyridin]-2'-yl}amino)-5-fluorophenol 

 

-9.461 

 

 
 

2-{2-amino-5H,6H,7H,8H-pyrido[3,4-d]pyrimidine-

7-carbonyl}-6-fluorophenol 

 

-9.448 

 

 

 

 

2-[({6-chloro-7H-pyrrolo[2,3-d]pyrimidin-4-

yl}amino) methyl]-3-fluorophenol 

 

-9.185 

 

 
 

4-{3-[3-(2,3-dihydro-1-benzofuran-5-yl)-1,2,4-

oxadiazol-5-yl]propyl}-2-fluorophenol 

 

-9.144 

 
 

 

4-(5-{3-[(benzenesulfonyl)methyl]phenyl}-1,2,4-

oxadiazol-3-yl)-3-fluorophenol 

 

-9.105 

 

 

 

 

3-(6-aminopyridin-3-yl)-4-fluorophenol 

 

-8.981 

 

 
 

6-({3-ethyl-2H-pyrazolo[3,4-b]pyridin-5-yl}amino)-

2,3-difluorophenol 

 

-8.957 

 

 

 

 

5-({[3,4'-bipyridin]-2'-yl}amino)-2-fluorophenol 

 

-8.955 
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Table 17. Top 10 Molecules of Library Including [(1r,4r)-4-hydroxycyclohexyl]amino Fragment with Their Docking Scores. 

Top 10 Molecules of Library Including [(1r,4r)-4-hydroxycyclohexyl]amino 

Fragment with Their Docking Scores. 

Structure IUPAC Name docking score 

(kcal/mol) 

 
 

 

 

4-{[(1r,4r)-4-hydroxycyclohexyl]amino}-7H-pyrrolo 

[2,3-d]pyrimidin-3-ium 

 

-8.312 

 

 

 

 

4-{[(1r,4r)-4-hydroxycyclohexyl]amino}quinoline-

3-carbonitrile 

 

-8.265 

 

  

3-{[(1r,4r)-4-hydroxycyclohexyl]amino}-5-

(trifluoromethyl)pyridine-2-carbonitrile 

 

-7.780 

 

  

N-{2-[(2R)-2,3-dihydro-1,4-benzodioxin-2-

yl]ethyl}-6-{[(1r,4r)-4-

hydroxycyclohexyl]amino}pyridine-3-carboxamide 

 

-7.765 

 

  

2-{methyl[(1r,4R)-4-hydroxycyclohexyl]amino}-N-

[5-(3-methylthiophen-2-yl)-1,3,4-oxadiazol-2-

yl]acetamide 

 

-7.690 

 
 

 

 

6-nitro-7-{[(1r,4r)-4-hydroxycyclohexyl]amino}-

3,4-dihydroquinazolin-4-one 

 

-7.627 

 

  

 

1-phenyl-5-{[(1r,4r)-4-hydroxycyclohexyl]amino}-

1H-pyrazole-4-carbonitrile 

 

-7.465 

 

  

 

2-(methoxymethyl)-6-{[(1r,4r)-4-

hydroxycyclohexyl] amino}-3,4-dihydropyrimidin-

4-one 

 

-7.227 

 

  

2-(propan-2-yl)-1-{3-[(6-{[(1r,4r)-4-hydroxy 

cyclohexyl]amino}pyridin-3-yl)formamido]propyl}-

1H-imidazol-3-ium 

 

-7.125 

 

  

N-{3-[2-(propan-2-yl)-1H-imidazol-1-yl]propyl}-6-

{[(1r,4r)-4-hydroxycyclohexyl]amino}pyridine-3-

carboxamide 

 

-7.125 
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Ultimately, in order to compare the obtained results with reference molecules, 

redocking experiments were conducted using glide/XP to Pralsetinib and 

Selpercatinib. The purpose was to determine whether the redock poses of these 

molecules were consistent with their co-crystal poses. The redock pose with the lowest 

RMSD between the redocked and co-crystal poses was chosen as the first pose for MD 

simulation. The corresponding docking score was used as the reference docking score. 

Table 18. presents the redocking scores of the reference molecules and their RMSD 

values between the co-crystal structures. Additionally, Figure 5.3 illustrates the 

structures of the reference molecules and their redocked poses. 

Table 18. 2D Structure of Pralsetinib and Selpercatinib, Their RMSD Value with Co-Crystal Structure, and Their Glide/XP Score. 

2D Structure of Pralsetinib and Selpercatinib, Their RMSD Value with Co-Crystal 

Structure, and Their Glide/XP Score. 

Structure name docking score (kcal/mol) RMSD (Å) 

 
 

 

 

Pralsetinib 

 

-9.463 

 

2.254 

 

 

 

 

Selpercatinib 

 

-9.164 

 

1.202 

 

Figure  8. Structure of reference molecules with their redock poses.  

Left side co-crystal structure of Selpercatinib with its redock poses (RMSD of 1.20 

Å) which is shown in green. Right side co-crystal structure of Pralsetinib with the 

redock pose (RMSD of 2.25 Å) which is shown in blue. 

Pralsetinib Selpercatinib 
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5.1.4 Molecular Dynamics Simulations and MM/GBSA calculation. The 

molecular dynamics simulations were conducted for the top 10 molecules from each 

library, as well as Selpercatinib and Pralsetinib. The simulations were run for a 

duration of 10 ns, with 1000 frames collected from each simulation. Each simulation 

was repeated five times with different seed numbers. Once all the simulations were 

completed, 100 protein-ligand complex structures were extracted from the trajectories 

of each simulation, and MM/GBSA calculations were performed. The average 

MM/GBSA of the 100 structures for all repeats was calculated, and the average for the 

five repeats was obtained. These averages were obtained for all the molecules, and the 

total MM/GBSA average for Pralsetinib, Selpercatinib, and the top 4 hit molecules 

with the lowest MM/GBSA averages are presented in Table 19. 

Table 19. Total Average of MM/GBSA For Two Reference Molecules and Top 4 Hit Molecules. 

Total Average of MM/GBSA For Two Reference Molecules and Top 4 Hit Molecules. 

name Library Total average 

MM/GBSA 

(kcal/mol) 

Pralsetinib Reference 
-75.544 ± 3.415 

Selpercatinib Reference 
-75.677 ± 5.096 

N-(6-acetyl-2H-1,3-benzodioxol-5-yl)-6-(4-chlorophenyl) 

pyrazine-2-carboxamide 

Pyrazine-2-

carboxamide 
-61.673 ± 4.167 

N-(4-methyl-3-{[2-(methylcarbamoyl) pyridin-4-yl] oxy} 

phenyl)-2H-indazole-5-carboxamide 

pyridine 
-60.273 ± 3.976 

N-{3-[(5-hydroxypentyl) oxy]-4-methylphenyl}-5-(1-

methyl-1H-pyrazol-4-yl) pyridine-3-carboxamide 

pyridine 
-60.737 ± 4.609 

N-(6-acetyl-2H-1,3-benzodioxol-5-yl)-5-(2,3-dihydro-1-

benzofuran-5-yl) pyridine-3-carboxamide 

pyridine 
-60.121 ± 5.567 
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5.2 Results for Second Method 

 

The second approach is based on the e-pharmacophore hypothesis derived from 

poses exhibiting the lowest RMSD from MD simulation, and the results are presented 

in a step-by-step manner. 

5.2.1 E-Pharmacophore Modeling Results. For this approach, 500 ns MD 

simulation was performed for RET protein in complex with Pralsetinib (PDB ID: 

7JU5) by collecting 5000 frames. Then, all of the 5000 frames are extracted as protein-

ligand complex from the trajectory and by developing a script, the grid center of all 

the structures are determined as (x,y,z) coordinates. So, by using these coordinates e-

pharmacophore method is used to create pharmacophore models between protein-

ligand complexes with a maximum of seven features. Furthermore, all the hypotheses 

created by the e-pharmacophore method pass through further analysis by developing 

another python script. The script visualizes all the hypotheses and analyzes the 

frequency of the hypotheses between the frames with low RMSD values, as can be 

seen in Table 20. However, it is understood that the most frequent hypothesis among 

the hypothesis containing five features is ADDRR which is generated 2,892 times 

during Md simulation frames and the second most frequent hypothesis is ADRR which 

contains four features and is seen in 895 frames, as it is shown in Figure 5.4 and 5.5. 

Also, it is found that both of the hypotheses are generated in frames with low RMSD. 

ADRR was generated in frame 4338 with an RMSD value of 1.093 Å and ADDRR 

was generated in frame 4291 with an RMSD value of 1.098 Å.  
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Table 20. All Hypotheses Created by the E-Pharmacophore Method with The Total Number of That Hypothesis in Total Frames. 

All Hypotheses Created by the E-Pharmacophore Method with The Total Number of 

That Hypothesis in Total Frames. 

Features number of hypotheses 

ARR 23 

ADRR 895 

DRRR 9 

AHRR 4 

ADDRR 2892 

AADRR 5 

ADHRR 266 

DDRRR 19 

DHRRR 4 

ADRRR 5 

ADDRRR 26 

AADDRR 16 

ADDHRR 812 

DDHRRR 13 

ADHRRR 1 

ADDHRRR 4 

ADDDHRR 2 

AADDHRR 5 
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Figure  9. Bar chart comparison of top 2 five-feature hypotheses and their frequency 

in frames with low RMSD 

(Number in the x-axis represents the frame number with the lowest RMSD value 

containing that hypothesis). 

 

Figure  10. Bar chart comparison of top 2 four-feature hypotheses and their 

frequency in frames with low RMSD  

(Number in the x-axis represents the frame number with the lowest RMSD value 

containing that hypothesis). 



81  

As a result of the aforementioned analyses, the ADDRR hypothesis generated in 

frame 4291 with its feature coordinates was selected for the screening of ligands that 

contain similar features in similar coordinates. Figure 11. displays the ligand pose of 

Pralsetinib bound to the RET protein with the ADDRR hypothesis overlaid on it for 

reference. 

 

 

 

Figure  11. Matching ADDRR hypothesis on Pralsetinib in complex with RET 

protein. 

5.2.2 Ligand Filtering Results. To implement this approach, four additional 

libraries were incorporated from the Chemdiv database, namely Anticancer, Indole, 

CMET, and FDA-approved libraries, along with the libraries obtained from text 

mining in the previous method. Therefore, a total of 14 libraries were screened based 

on the selected hypothesis. Table 21. displays the total number of compounds in each 

library. 

Table 21. Number of Molecules in Each Library 

Number of Molecules in Each Library. 

Library name Number of compounds Library name Number of 

compounds 

Anticancer_Chemdiv 61538 Quinazolin 1943971 

Indole_chemdiv 9753 Trifluoromethyl 13135584 

CMET_chemdiv 15080 Oxazol 18873912 

FDA2022_chemdiv 2452 Piperazin 23438212 

[(1r,4r)-4-hydroxycyclohexyl] 

amino 

2450 
Pyrazol 59598058 

Fluorophenol 87084 Pyridin 82890693 

Pyrazin-2-carboxamide 808826 Piperidin 88836619 
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In order to screen the ligands using the hypothesis, it is necessary to convert their 

structures into three-dimensional representations using the ligprep tool in Maestro. 

However, due to the large number of molecules in eight libraries (Pyrazin-2-

carboxamid, Quinazolin, Trifluoromethyl, Oxazol, Piperidin, Pyrazol, Pyridin, and 

Piperidin), it is important to implement filtering methods to reduce their numbers in a 

meaningful way. To accomplish this, a script was developed to filter these eight 

libraries based on Lipinski's rule of five and extract the 2D pharmacophore features of 

each compound. The selected molecules for screening are those that have at least one 

hydrogen bond acceptor (A), two hydrogen bond donors (D), and two aromatic rings 

(R). The resulting number of compounds after applying the filters in each library is 

shown in Table 22. 

Table 22. Table of Compounds Number, Before and After Applying the Filters 

Table of Compounds Number, Before and After Applying the Filters. 

Library Name 
Total number of 

compounds 

NO. of compound 

after Lipinski filtering 

No. of compounds after 2D 

pharmacophore filtering 

Pyrazin-2-

carboxamide 

808826 808409 265254 

Quinazolin 1943971 1943147 725334 

Trifluoromethyl 13135584 13133987 1861924 

Oxazol 18873912 18836970 3675265 

Piperazin 23438212 23376816 2017852 

Pyrazol 59598058 59315668 17328653 

Pyridin 82890693 82773428 19475110 

Piperidin 88836619 88355043 9750272 

 

5.2.3 Ligand Screening and METACORE™/METADRUG ™ Results. 

After converting all compounds into three-dimensional structures using Ligprep, the 

Ligand and Database Screening tool of PHASE was employed to fit the selected 

hypothesis onto the ligands. The screening process took place in two different ways: 

• Screening ligands where four out of the five features of the reference hypothesis 

matched the ligands. 
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• Screening ligands where all five features of the reference hypothesis matched 

the ligands. 

Following the fitting process, a fitness score was calculated for each ligand to 

assess how well the reference hypothesis aligned with each ligand. Subsequently, a 

normal distribution curve was generated for all the molecules in each library, and the 

z-score values of the fitness scores were calculated using a Python script. A cutoff 

value of 2 was set to select molecules, and only those with z-score values of 2 or above 

were further analyzed. However, if the number of compounds with z-score values 

above 2 was less than 20, the top 20 molecules with high fitness scores were selected 

instead. Then their anticancer activity scores predicted using the METACORETM 

platform and ligands with scores over the cutoff value, 0.5, are selected. Table 23. 

displays the number of compounds in each library where four reference features 

matched and the number of compounds in that library with z-score values above 2 and 

the number of compounds with anticancer activity higher than 0.5. Additionally, Table 

24. illustrates the number of compounds in which all five reference features matched 

and had z-score values above 2 and anticancer activity scores higher than 0.5. 

 

Table 23. Number of Compounds in Each Library That Contain 4 Features of Total 5 with Z-Score Value Above 2 and Anticancer Activity Higher Than 0.5. 

Number of Compounds in Each Library That Contain 4 Features of Total 5 with Z-

Score Value Above 2 and Anticancer Activity Higher Than 0.5. 

Library Name 4 Feature Fitting  

(Number of compounds) 
Z-score values ≥ 2 Anticancer 

Activity ≥ 

0.5 

Anticancer_Chemdiv 3389 23 22 

Indole_chemdiv 365 Top 20 14 

CMET_chemdiv 1091 Top 20 18 

FDA2022_chemdiv 294 Top 20 13 

[(1r,4r)-4-

hydroxycyclohexyl] 

amino 
229 Top 20 19 

Fluorophenol 13674 Top 20 20 

Pyrazin-2-carboxamide 
75199 444 444 

Quinazolin 181859 521 420 

Trifluoromethyl 375685 670 562 

Oxazol 742089 9193 7103 

Piperazin 156068 1279 853 

Pyrazol 4169229 8380 5787 

Pyridin 3213502 15923 13373 

Piperidin 1005469 13342 9481 
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Table 24. Number of Compounds in Each Library Contain All 5 Features with Z-Score Value Above 2 and Anticancer Activity Higher Than 0.5. 

Number of Compounds in Each Library Contain All 5 Features with Z-Score Value 

Above 2 and Anticancer Activity Higher Than 0.5. 

Library Name 5 Feature Fitting 

(number of compounds) 
Z-score values ≥ 2 Anticancer 

Activity ≥ 0.5 

Anticancer_Chemdiv 7 7 7 

Indole_chemdiv 2 2 2 

CMET_chemdiv 7 7 7 

FDA2022_chemdiv 1 - - 

[(1r,4r)-4-hydroxycyclo 

hexyl] amino 
0 - - 

Fluorophenol 0 - - 

Pyrazin-2-carboxamide 47 Top 20 19 

Quinazolin 299 Top 20 20 

Trifluoromethyl 36 Top 20 12 

Oxazol 340 Top 20 20 

Piperazin 1033 Top 20 19 

Pyrazol 8332 109 89 

Pyridin 5696 149 144 

Piperidin 2233 74 57 

 

5.1.1 Molecular Docking, Molecular Dynamics Simulations, and 

MM/GBSA Results. For the compounds in each library with anticancer activity scores 

higher than 0.5, glide/SP docking was performed. From each library, the top 10 

molecules with the lowest docking scores were selected to proceed with molecular 

dynamics (MD) simulations. Additionally, for the reference molecule Pralsetinib, 

glide/SP docking was used to redock the ligand and compare the resulting pose with 

the co-crystal structure. As a result, two poses were selected as reference pose, first 

pose with a docking score of -9.491 (kcal/mol) and an RMSD value of 2.842 Å chosen 

as the reference pose for docking, and the other pose with the docking score of -8.911 

(kcal/mol) and an RMSD value of 2.542 Å selected as a first pose for MD simulations 

because of lower RMSD value between that pose and co-crystal pose. The disparity 

between the redocking poses and the co-crystal pose is depicted in Figure 12. and the 

docking results are presented in Table 25.  
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Figure  12. The three-dimensional structure of the co-crystal structure of 

PRALSETINIB aligns on the redocking pose with better docking score (shown in 

red) and with low RMSD value (shown in purple). 

Table 25. Docking Score and RMSD Values of Pralsetinib Glide/SP Redocking Poses. 

Docking Score and RMSD Values of Pralsetinib Glide/SP Redocking Poses. 

  Docking score 

(kcal/mol) 

RMSD (Å) from 

cocrystal 

PRALSETINIB redocking pose -9.491 2.842 

PRALSETINIB redocking pose -8.911 2.542 

 

Docking scores for all ligands in each library were recorded, and three repeats 

of 10 ns MD simulations were conducted for the top 10 molecules from each library. 

From each MD simulation, 100 protein-ligand complexes were extracted, and the 

MM/GBSA free energy was calculated. The average MM/GBSA values were 

determined for each MD simulation, and the overall average was computed across the 

three repeats. This process was repeated for each ligand in each library, and the total 

averages were compiled for further analysis and selection of hit molecules. The redock 

pose of PRALSETINIB, which exhibited a low RMSD value, was also subjected to 

the same processes, and its total MM/GBSA average was set as the reference score (-

71.275 kcal/mol). Using a threshold value of -65 kcal/mol for the total MM/GBSA 

averages, a total of 12 molecules were identified as hit molecules with values below 

the threshold. In Table 26. all 12 molecules are named as Hit1-Hit12 for better use in 

Tables and merged with their ZINC id, Then the results for these 12 hit molecules are 

presented in Table 27. Also, the 2D structures of 12 hit molecules and their 3D 

structures with fitting pharmacophores on them are illustrated in Figures 13 and 14 

respectively. 
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Table 26. All 12 Hit Molecules, Their ZINC ID, and Their IUPAC Names 

All 12 Hit Molecules, Their ZINC ID, and Their IUPAC Names. 
 

Zinc ID IUPAC Name 

Hit1 ZINC767808756 
(((1-phenyl-1H-pyrazol-4-yl)methyl)carbamoyl)methyl 

3-(1H-1,2,4-triazol-3-yl)benzoate 

Hit2 ZINC364815311 
2-[4-(pyridin-2-yloxy)phenoxy]-N-[2-(1H-1,2,4-triazol-

3-yl)phenyl] acetamide 

Hit3 ZINC476943771 
3-(5-chlorothiophen-2-yl)-N-{3-[(2-

hydroxyethyl)sulfanyl]-1H-1,2,4-triazol-5-yl}-1-methyl-

1H-pyrazole-4-carboxamide 

Hit4 ZINC513956406 
3-oxo-N-[(1R)-1-{4-

[(phenylcarbamoyl)amino]phenyl}ethyl]-2H,3H-

[1,2,4]triazolo[4,3-a]pyridine-6-carboxamide 

Hit5 ZINC513768922 
3-oxo-N-{3-[2-(pyridin-2-yl)ethynyl]phenyl}-2H,3H-

[1,2,4] triazolo [4,3-a]pyridine-6-carboxamide 

Hit6 ZINC96309479 (S)-1-(4-methylbenzyl)-3-(1-(3-(pyridin-4-yl)-1H-

pyrazol-5-yl) piperidin-3-yl) urea 

Hit7 ZINC96309483 (S)-1-(4-fluorobenzyl)-3-(1-(3-(pyridin-4-yl)-1H-pyrazol-

5-yl) piperidin-3-yl) urea 

Hit8 ZINC257289132 
1-(4-{6-[(5-methyl-1H-pyrazol-3-yl) amino]pyridin-2-

yl}piperidin-1-yl)-3-phenylpropan-1-one 

Hit9 ZINC9677876 5-amino-N-(3,4-dimethoxyphenethyl)-1-(2-((2-

ethoxyphenyl) amino)-2-oxoethyl)-1H-1,2,3-triazole-4-

carboxamide 

Hit10 ZINC792285195 
N'-{3-[(1R)-1,2-dihydroxyethyl] phenyl}-N-[1-(4-

methylphenyl)-5-(propan-2-yl)-1H-pyrazol-4-

yl]ethanediamide 

Hit11 ZINC44892020 (S)-2-(2,5-dioxo-2,3,4,5-tetrahydro-1H-benzo[e][1,4] 

diazepin-3-yl)-N-(5-(4-methoxybenzyl)-1,3,4-thiadiazol-

2-yl)acetamide 

Hit12 ZINC64449182 4-((6,7-dimethoxy-2,4-dioxo-1,4-dihydroquinazolin-

3(2H)-yl) methyl)-N-(4-fluorobenzyl) benzamide 
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Table 27. Results Determined For 12 Hit Molecules, Docking Scores, MM/GBSA Averages, Anticancer Activity Scores, and Fitness Scores. 

Results Determined For 12 Hit Molecules, Docking Scores, MM/GBSA Averages, 

Anticancer Activity Scores, and Fitness Scores.  

Name ZINC ID Docking 

Score 

(kcal/mol) 

Total MM/GBSA 

average 

(kcal/mol) 

Anticancer 

activity score 

Fitness 

Score 

PRALSETINIB - -9.491 -71.276 ± 4.44 0.75 - 

Hit1 ZINC767808756 -9.924 -68.368 ± 3.25 0.57 1.838 

Hit2 ZINC364815311 -9.71 -69.106 ± 3.05 0.72 1.830 

Hit3 ZINC476943771 -10.085 -65.675 ± 3.22 0.68 1.752 

Hit4 ZINC513956406 -9.861 -75.633 ± 4.0 0.69 1.699 

Hit5 ZINC513768922 -10.095 -65.365 ± 3.20 0.7 1.659 

Hit6 ZINC96309479 -6.931 -68.721 ± 4.46 0.78 1.656 

Hit7 ZINC96309483 -6.587 -66.030 ± 4.36 0.77 1.656 

Hit8 ZINC257289132 -9.449 -65.425 ± 2.81 0.63 1.729 

Hit9 ZINC9677876 -5.964 -65.444 ± 4.28 0.67 0.296 

Hit10 ZINC792285195 -9.051 -66.867 ± 6.12 0.62 1.610 

Hit11 ZINC44892020 -6.777 -70.844 ± 4.64 0.69 1.674 

Hit12 ZINC64449182 -7.323 -65.163 ± 7.22 0.68 1.581 

 

 

 

Figure  13. Two-dimensional structures of 12 hit molecules. 
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Figure  14. Three-dimensional structures of 12 hit molecules with pharmacophore 

features fit on them. 

 

For further analysis, 12 hit molecules and the reference molecule underwent 200 

ns MD simulations, collecting a total of 2000 frames. The purpose was to investigate 

the behavior of the ligands and their interactions over an extended simulation time. 

The results are presented in Table 28. indicate that the MM/GBSA average for the 

Hit10 ligand significantly increased, the MM/GBSA average of this ligand was -

66.867 kcal/mol during the 10 ns MD simulation but it increases to -48.861 kcal/mol 

by increasing the simulation time to 200 ns. This change in MM/GBSA average 

suggested weaker protein-ligand interactions and less favorable binding affinity as the 

simulation time increased. This ligand may encounter challenges in establishing stable 

interactions within the protein's binding site. Conversely, there were Hit9 ligands in 

which the MM/GBSA average decreased from -65.444 kcal/mol to -79.447 kcal/mol, 

indicating more favorable interactions and potentially stronger binding affinity. 
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Table 28. Total MM/GBSA Average of 12 Hit Molecules and PRALSETINIB During 10 ns and 200 ns MD Simulations. 

 Total MM/GBSA Average of 12 Hit Molecules and PRALSETINIB During 10 ns and 

200 ns MD Simulations. 

Name Total MM/GBSA average 

(kcal/mol) (10 ns) 

MM/GBSA 

average (kcal/mol) 

(200 ns) 

PRALSETINIB -71.276 ± 4.44 -75.112 ± 3.25 

Hit1 -68.368 ± 3.25 -67.845 ± 3.28 

Hit2 -69.106 ± 3.05 -70.020 ± 3.49 

Hit3 -65.675 ± 3.22 -61.818 ± 4.10 

Hit4 -75.633 ± 4.0 -71.679 ± 3.79 

Hit5 -65.365 ± 3.20 -65.700 ± 3.14 

Hit6 -68.721 ± 4.46 -61.846 ± 4.73 

Hit7 -66.030 ± 4.36 -71.732 ± 3.35 

Hit8 -65.425 ± 2.81 -62.482 ± 2.86 

Hit9 -65.444 ± 4.28 -79.447 ± 6.37 

Hit10 -66.867 ± 6.12 -48.861 ± 6.67 

Hit11 -70.844 ± 4.64 -63.103 ± 6.41 

Hit12 -65.163 ± 7.22 -52.210 ± 8.00 

 

5.2 Comparative Analysis of Hit Molecules Obtained from Two Methods 

 

We present an analysis of selected molecules obtained from two methods and 

their interactions with mutations on the RET protein. Following a stringent threshold 

of -65 kcal/mol for the MM/GBSA average, none of the molecules from the first 

method met the criteria. However, from the second method, 12 hit molecules exhibited 

an MM/GBSA average above the threshold. Detailed analysis of the molecular 

interactions during MD simulations was conducted, and the findings are illustrated 

through interaction diagrams and histograms (Figure 16). According to Figure 15. 

Pralsetinib exhibits strong hydrogen bonding interactions with Ala 807 and Glu 805 

residues. It also demonstrates favorable hydrophobic interactions with Leu 730, Val 

738, Ala 756, Lys 758, Val 804, and Leu 881 residues. Additionally, Figure 17. 

provides information about the RMSD (Root Mean Square Deviation) of the ligand 

while it is fitted onto the protein and presents probability distributions using normal 

curves for the 12 hit molecules and PRALSETINIB. Analysis of the Figure reveals 

that certain molecules have low RMSD probabilities, indicating a wide range of 

RMSD values and instability during the simulation. 
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Figure  15. Interaction diagram and histogram of PRALSETINIB during 200 ns MD 

simulation  

(Green, blue, and purple colors represent the H-bonds, water bridges, and 

hydrophobic interactions respectively). The surface view of the wildtype RET 

protein in complex with Pralsetinib is depicted at the bottom. The residues within the 

binding site of the protein have been labeled for clarity. 
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Figure  16. Interaction diagram and histogram of 12 hit molecules during 200 ns MD 

simulation  

(Hit1-Hit12 from top to bottom respectively), (green, blue, purple, and pink colors 

represent the H-bonds, water bridges, and hydrophobic and ionic interactions 

respectively). 
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Figure 16 (Cont.d) 
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Figure  17. Lig fit prot RMSD and normal distribution probability plots of Pralsetinib 

and 12 hit molecules during 10 ns MD simulation in wildtype RET protein. 

5.2.1 Molecular Docking, MD Simulations and MM/GBSA Results for 

Mutated Proteins. The 12 hit molecules were individually combined with eleven 

mutated RET proteins, and the glide/SP docking method was performed for each 

combination. The docking poses obtained were used as initial poses for 10 ns 

molecular dynamics (MD) simulations, and the MM/GBSA free energy values were 

calculated. The differences in MM/GBSA average values (ΔΔG) between the wildtype 

RET and each mutated protein were calculated for each hit molecule. If the MM/GBSA 

average value of a hit molecule was higher than -60 kcal/mol in a mutated protein, it 

was considered as showing resistance to that mutation. Eight single mutations and 

three double mutations were identified as important based on the literature. During the 

analysis of single mutations, it was found that Hit1 and Hit9 molecules had MM/GBSA 

values lower than -60 kcal/mol, indicating that they did not show resistance to these 

mutations. Similarly, in the analysis of double mutations, Hit4, Hit9, and Hit12 

molecules had MM/GBSA averages lower than -60 kcal/mol, suggesting that they may 

not show resistance to double mutations. Notably, the Hit9 molecule was found to be 

common in both the single mutations and double mutations categories. Graph 

depicting the RMSD of the ligand during protein fitting and probability distributions 

using normal curves (Figure 18.) supported these findings. The Hit9 molecule 

exhibited stable RMSD values throughout the MD simulations, particularly in 

simulations with mutated proteins. Moreover, the MM/GBSA averages and ΔΔG 

values for hit molecules are given in Tables 29-39.  
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Figure  18. Lig Fit Prot graph of RMSD (Å)/time (ns) for 10 ns simulations and 

normal distribution probability plots  

Graphs for PRALSETINIB and Hit1, Hit4, Hit9, and Hit12 compounds on RET 

protein with (A) G810S, (B) V804M, (C) V804L, (D) Y806N, (E) Y806C, (F) 

V738A, (G) L730V, (H) L730I, (I) V804M-G810S, (J) V804M-Y806C, (K) Y806C-

V738A mutations. (green, blue, black, red, and magenta colors represent Hit4, Hit12, 

PRALSETINIB, Hit1, and Hit9 respectively) 

From the data presented in Table 29. it can be observed that the mutation of 

residue 810 from Glycine to Serine leads to an increase in the docking score of 

Pralsetinib from -9.491 kcal/mol to -5.952 kcal/mol. This indicates that the G810S 
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K 
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mutation decreases the binding affinity of Pralsetinib to the RET protein. However, 

the MM/GBSA average value does not show a significant change, suggesting that the 

mutation may have a limited impact on the overall binding energy and stability of the 

complex. Figure 19. which displays the interaction histograms, reveals that only Glu 

775 residue forms a hydrogen bond with Pralsetinib, while Leu 730 and Val 738 

residues contribute to hydrophobic interactions. Similar results are observed for other 

mutations such as V804L/M, Y806C/N, L730V, V804M/Y806C, and Y806C/V738A, 

indicating low interactions during the MD simulations as shown in Figure 19. On the 

other hand, mutations such as V738A, L730I, and V804M/G810S result in an increase 

in the docking score but a decrease in the MM/GBSA average value. Furthermore, it 

is evident that during the mutations, Pralsetinib forms hydrogen bonds with different 

residues compared to those in the wildtype structure. Interestingly, in some cases, there 

are no hydrogen bonds observed between Pralsetinib and the mutated RET protein 

during MD simulations. It has been observed that the positioning of Pralsetinib alters 

notably when it is docked onto the majority of mutated RET proteins. Appendix A.1 

provides a visual representation of the various docking positions of Pralsetinib in RET 

with different mutations. 

Table 29. Docking Scores, MM/GBSA Averages, And ΔΔG Results of PRALSETINIB And 12 Hit Molecules for RET Protein with G810S Mutation. 

Docking Scores, MM/GBSA Averages, And ΔΔG Results of PRALSETINIB And 12 

Hit Molecules for RET Protein with G810S Mutation. 
 

G810S 

Name Docking 

Score 

kcal/mol 

Wildtype MM/GBSA 

average (kcal/mol) 

MM/GBSA 

average kcal/mol 

ΔΔG 

PRALSETINIB -5.952 -71.276 ± 4.44 -70.422 ± 5.88 0.853 

Hit1 -9.381 -68.368 ± 3.25 -66.735 ± 4.97 1.633 

Hit2 -6.909 -69.106 ± 3.05 -65.591 ± 3.69 3.515 

Hit3 -5.837 -65.675 ± 3.22 -50.653 ± 3.94 15.022 

Hit4 -8.233 -75.633 ± 4.0 -65.409 ± 4.74 10.224 

Hit5 -8.616 -65.365 ± 3.20 -65.181 ± 3.27 0.184 

Hit6 -7.404 -68.721 ± 4.46 -66.453 ± 4.64 2.269 

Hit7 -7.173 -66.030 ± 4.36 -48.914 ± 7.01 17.116 

Hit8 -8.962 -65.425 ± 2.81 -65.990 ± 4.19 -0.565 

Hit9 -6.769 -65.444 ± 4.28 -70.107 ± 4.27 -4.663 

Hit10 -6.746 -66.867 ± 6.12 -59.493 ± 3.59 7.374 

Hit11 -7.237 -70.844 ± 4.64 -69.080 ± 2.84 1.763 

Hit12 -7.986 -65.163 ± 7.22 -70.565 ± 4.45 -5.401 
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Table 30. Docking Scores, MM/GBSA Averages, and ΔΔG Results of PRALSETINIB and 12 Hit Molecules for RET Protein with V804L Mutation. 

Docking Scores, MM/GBSA Averages, and ΔΔG Results of PRALSETINIB and 12 Hit 

Molecules for RET Protein with V804L Mutation. 
 

V804L 

Name Docking 

Score 

kcal/mol 

Wildtype MM/GBSA 

average (kcal/mol) 

MM/GBSA 

average kcal/mol 

ΔΔG 

PRALSETINIB -6.442 -71.276 ± 4.44 -67.371 ± 5.28 3.905 

Hit1 -8.872 -68.368 ± 3.25 -68.290 ± 3.35 0.078 

Hit2 -8.336 -69.106 ± 3.05 -70.621 ± 3.30 -1.515 

Hit3 -8.153 -65.675 ± 3.22 -61.651 ± 4.04 4.025 

Hit4 -7.701 -75.633 ± 4.0 -68.167 ± 5.71 7.467 

Hit5 -8.277 -65.365 ± 3.20 -65.523 ± 3.11 -0.158 

Hit6 -7.156 -68.721 ± 4.46 -63.568 ± 5.67 5.153 

Hit7 -6.419 -66.030 ± 4.36 -63.060 ± 4.20 2.970 

Hit8 -9.019 -65.425 ± 2.81 -65.581 ± 3.14 -0.156 

Hit9 -7.276 -65.444 ± 4.28 -67.536 ± 7.30 -2.092 

Hit10 -7.054 -66.867 ± 6.12 -55.696 ± 4.48 11.171 

Hit11 -6.845 -70.844 ± 4.64 -64.617 ± 4.87 6.227 

Hit12 -6.852 -65.163 ± 7.22 -57.444 ± 6.11 7.719 

 

Table 31. Docking Scores, MM/GBSA Averages, and ΔΔG Results of PRALSETINIB and 12 Hit Molecules for RET Protein with V804M Mutation. 

Docking Scores, MM/GBSA Averages, and ΔΔG Results of PRALSETINIB and 12 Hit 

Molecules for RET Protein with V804M Mutation. 
 

V804M 

Name Docking Score 

kcal/mol 

Wildtype MM/GBSA 

average (kcal/mol) 

MM/GBSA 

average kcal/mol 

ΔΔG 

PRALSETINIB -6.386 -71.276 ± 4.44 -64.583 ± 3.32 6.693 

Hit1 -9.384 -68.368 ± 3.25 -69.399 ± 3.55 -1.032 

Hit2 -6.793 -69.106 ± 3.05 -64.775 ± 4.44 4.331 

Hit3 -7.718 -65.675 ± 3.22 -66.271 ± 3.76 -0.596 

Hit4 -8.775 -75.633 ± 4.0 -69.430 ± 3.85 6.203 

Hit5 -7.994 -65.365 ± 3.20 -64.623 ± 2.79 0.742 

Hit6 -7.058 -68.721 ± 4.46 -59.632 ± 3.11 9.089 

Hit7 -7.527 -66.030 ± 4.36 -70.322 ± 5.54 -4.292 

Hit8 -7.404 -65.425 ± 2.81 -64.803 ± 3.31 0.622 

Hit9 -7.189 -65.444 ± 4.28 -71.029 ± 6.37 -5.585 

Hit10 -8.19 -66.867 ± 6.12 -59.358 ± 8.94 7.509 

Hit11 -6.764 -70.844 ± 4.64 -65.557 ± 4.45 5.286 

Hit12 -6.784 -65.163 ± 7.22 -58.197 ± 4.36 6.966 

 

 

 

 

 

 

 

 



97  

 

Table 32. Docking Scores, MM/GBSA Averages, and ΔΔG Results of PRALSETINIB and 12 Hit Molecules for RET Protein with Y806N Mutation. 

Docking Scores, MM/GBSA Averages, and ΔΔG Results of PRALSETINIB and 12 Hit 

Molecules for RET Protein with Y806N Mutation. 
 

Y806N 

Name Docking Score 

kcal/mol 

Wildtype MM/GBSA 

average (kcal/mol) 

MM/GBSA 

average kcal/mol 

ΔΔG 

PRALSETINIB -9.172 -71.276 ± 4.44 -70.527 ± 3.27 0.749 

Hit1 -9.816 -68.368 ± 3.25 -70.163 ± 2.99 -1.796 

Hit2 -9.154 -69.106 ± 3.05 -67.011 ± 3.19  2.094 

Hit3 -8.361 -65.675 ± 3.22 -59.176 ± 4.83 6.499 

Hit4 -9.045 -75.633 ± 4.0 -64.184 ± 3.59 11.449 

Hit5 -8.692 -65.365 ± 3.20 -59.488 ± 3.63  5.877 

Hit6 -7.29 -68.721 ± 4.46 -57.580 ± 4.77  11.141 

Hit7 -7.595 -66.030 ± 4.36 -59.660 ± 4.91 6.370 

Hit8 -6.366 -65.425 ± 2.81 -59.499 ± 4.20 5.926 

Hit9 -7.393 -65.444 ± 4.28 -65.937 ± 6.03 -0.493 

Hit10 -6.603 -66.867 ± 6.12 -47.763 ± 4.31 19.104 

Hit11 -6.817 -70.844 ± 4.64 -56.535 ± 7.18 14.309 

Hit12 -7.002 -65.163 ± 7.22 -59.317 ± 5.91 5.846 

 

Table 33. Docking Scores, MM/GBSA Averages, and ΔΔG Results of PRALSETINIB and 12 Hit Molecules for RET Protein with Y806C Mutation. 

Docking Scores, MM/GBSA Averages, and ΔΔG Results of PRALSETINIB and 12 Hit 

Molecules for RET Protein with Y806C Mutation. 
 

Y806C 

Name Docking Score 

kcal/mol 

Wildtype MM/GBSA 

average (kcal/mol) 

MM/GBSA average 

kcal/mol 

ΔΔG 

PRALSETINIB -7.846 -71.276 ± 4.44 -55.282 ± 7.17 15.994 

Hit1 -8.333 -68.368 ± 3.25 -68.106 ± 3.18 0.262 

Hit2 -8.415 -69.106 ± 3.05 -68.405 ± 2.93 0.700 

Hit3 -5.552 -65.675 ± 3.22 -54.615 ± 5.84 11.061 

Hit4 -8.024 -75.633 ± 4.0 -66.074 ± 4.29 9.560 

Hit5 -6.211 -65.365 ± 3.20 -61.694 ± 3.93 3.671 

Hit6 -6.538 -68.721 ± 4.46 -44.831 ± 5.16 23.890 

Hit7 -6.579 -66.030 ± 4.36 -50.145 ± 6.71 15.885 

Hit8 -6.711 -65.425 ± 2.81 -62.577 ± 3.27 2.848 

Hit9 -6.55 -65.444 ± 4.28 -69.954 ± 4.81 -4.510 

Hit10 -6.294 -66.867 ± 6.12 -58.217 ± 3.95 8.650 

Hit11 -6.39 -70.844 ± 4.64 -56.191 ± 5.52 14.653 

Hit12 -7.094 -65.163 ± 7.22 -69.849 ± 4.58 -4.686 
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Table 34. Docking Scores, MM/GBSA Averages and ΔΔG Results of PRALSETINIB and 12 Hit Molecules for RET Protein with V738A Mutation. 

Docking Scores, MM/GBSA Averages and ΔΔG Results of PRALSETINIB and 12 Hit 

Molecules for RET Protein with V738A Mutation. 
 

V738A 

Name Docking Score 

kcal/mol 

Wildtype MM/GBSA 

average (kcal/mol) 

MM/GBSA 

average kcal/mol 

ΔΔG 

PRALSETINIB -8.557 -71.276 ± 4.44 -74.830 ± 3.47 -3.555 

Hit1 -9.108 -68.368 ± 3.25 -67.224 ± 3.97 1.144 

Hit2 -7.698 -69.106 ± 3.05 -66.344 ± 3.97 2.761 

Hit3 -6.134 -65.675 ± 3.22 -53.235 ± 2.98 12.440 

Hit4 -8.246 -75.633 ± 4.0 -57.834 ± 8.41 17.799 

Hit5 -9.112 -65.365 ± 3.20 -62.706 ± 2.51 2.659 

Hit6 -6.994 -68.721 ± 4.46 -67.042 ± 4.24 1.679 

Hit7 -7.412 -66.030 ± 4.36 -68.318 ± 4.22 -2.288 

Hit8 -8.66 -65.425 ± 2.81 -62.871 ± 2.96 2.554 

Hit9 -6.199 -65.444 ± 4.28 -89.540 ± 6.13 -24.096 

Hit10 -5.843 -66.867 ± 6.12 -61.954 ± 6.70 4.913 

Hit11 -6.062 -70.844 ± 4.64 -60.636 ± 6.75 10.208 

Hit12 -6.171 -65.163 ± 7.22 -67.527 ± 5.25 -2.364 

 

Table 35. Docking Scores, MM/GBSA Averages, and ΔΔG Results of PRALSETINIB and 12 Hit Molecules for RET Protein with L730V Mutation. 

Docking Scores, MM/GBSA Averages, and ΔΔG Results of PRALSETINIB and 12 Hit 

Molecules for RET Protein with L730V Mutation. 
 

L730V 

Name Docking Score 

kcal/mol 

Wildtype MM/GBSA 

average (kcal/mol) 

MM/GBSA average 

kcal/mol 

ΔΔG 

PRALSETINIB -6.432 -71.276 ± 4.44 -66.568 ± 3.46 4.708 

Hit1 -9.396 -68.368 ± 3.25 -72.185 ± 3.68 -3.817 

Hit2 -8.139 -69.106 ± 3.05 -72.727 ± 3.98 -3.621 

Hit3 -7.162 -65.675 ± 3.22 -61.621 ± 3.85 4.054 

Hit4 -7.541 -75.633 ± 4.0 -60.969 ± 5.32 14.664 

Hit5 -8.076 -65.365 ± 3.20 -65.049 ± 2.95 0.316 

Hit6 -7.136 -68.721 ± 4.46 -58.776 ± 4.56 9.946 

Hit7 -6.011 -66.030 ± 4.36 -50.923 ± 4.20 15.106 

Hit8 -7.343 -65.425 ± 2.81 -65.154 ± 3.03 0.271 

Hit9 -6.693 -65.444 ± 4.28 -66.019 ± 5.02 -0.575 

Hit10 -6.325 -66.867 ± 6.12 -43.242 ± 6.87 23.625 

Hit11 -6.058 -70.844 ± 4.64 -62.419 ± 7.00 8.425 

Hit12 -7.196 -65.163 ± 7.22 -64.220 ± 5.39 0.944 
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Table 36. Docking Scores, MM/GBSA Averages, and ΔΔG Results of PRALSETINIB and 12 Hit Molecules for RET Protein with L730I Mutation. 

Docking Scores, MM/GBSA Averages, and ΔΔG Results of PRALSETINIB and 12 Hit 

Molecules for RET Protein with L730I Mutation. 
 

L730I 

Name Docking Score 

kcal/mol 

Wildtype MM/GBSA 

average (kcal/mol) 

MM/GBSA 

average kcal/mol 

ΔΔG 

PRALSETINIB -5.789 -71.276 ± 4.44 -74.972 ± 4.42 -3.696 

Hit1 -7.164 -68.368 ± 3.25 -64.213 ± 4.51 4.155 

Hit2 -5.452 -69.106 ± 3.05 -43.788 ± 5.10 25.317 

Hit3 -5.711 -65.675 ± 3.22 -55.680 ± 4.56 9.996 

Hit4 -6.927 -75.633 ± 4.0 -57.996 ± 3.65 17.637 

Hit5 -6.738 -65.365 ± 3.20 -62.848 ± 2.86 2.517 

Hit6 -7.165 -68.721 ± 4.46 -60.419 ± 3.26 8.303 

Hit7 -6.136 -66.030 ± 4.36 -71.463 ± 3.79 -5.434 

Hit8 -6.444 -65.425 ± 2.81 -51.096 ± 6.34 14.329 

Hit9 -5.108 -65.444 ± 4.28 -68.327 ± 5.64 -2.882 

Hit10 -5.672 -66.867 ± 6.12 -56.270 ± 4.13 10.597 

Hit11 -5.451 -70.844 ± 4.64 -50.242 ± 5.97 20.601 

Hit12 -5.494 -65.163 ± 7.22 -64.355 ± 5.04 0.808 

 

Table 37. Docking Scores, MM/GBSA Averages, and ΔΔG Results of PRALSETINIB and 12 Hit Molecules for RET Protein with Y806C-V738A Mutations. 

Docking Scores, MM/GBSA Averages, and ΔΔG Results of PRALSETINIB and 12 Hit 

Molecules for RET Protein with Y806C-V738A Mutations. 
 

Y806C-V738A 

Name Docking 

Score 

kcal/mol 

Wildtype MM/GBSA 

average (kcal/mol) 

MM/GBSA 

average 

(kcal/mol) 

ΔΔG 

PRALSETINIB -9.341 -71.276 ± 4.44 -69.866 ± 3.58 1.410 

Hit1 -6.038 -68.368 ± 3.25 -52.464 ± 4.19 15.904 

Hit2 -6.93 -69.106 ± 3.05 -58.725 ± 7.23 10.381 

Hit3 -6.204 -65.675 ± 3.22 -64.416 ± 3.87 1.259 

Hit4 -7.739 -75.633 ± 4.0 -65.313 ± 3.77 10.320 

Hit5 -9.642 -65.365 ± 3.20 -61.160 ± 2.58 4.205 

Hit6 -5.985 -68.721 ± 4.46 -71.835 ± 4.58 -3.113 

Hit7 -5.996 -66.030 ± 4.36 -49.785 ± 4.58 16.245 

Hit8 -8.751 -65.425 ± 2.81 -63.732 ± 3.33 1.693 

Hit9 -5.593 -65.444 ± 4.28 -73.889 ± 5.63 -8.445 

Hit10 -6.144 -66.867 ± 6.12 -48.664 ± 6.30 18.203 

Hit11 -6.275 -70.844 ± 4.64 -60.156 ± 6.30 10.688 

Hit12 -7.31 -65.163 ± 7.22 -62.607 ± 4.65 2.557 
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Table 38. Docking Scores, MM/GBSA Averages, and ΔΔG Results of PRALSETINIB and 12 Hit Molecules for RET Protein with V804M-Y806C Mutations. 

Docking Scores, MM/GBSA Averages, and ΔΔG Results of PRALSETINIB and 12 Hit 

Molecules for RET Protein with V804M-Y806C Mutations. 
 

V804M-Y806C 

Name Docking Score 

kcal/mol 

Wildtype MM/GBSA 

average (kcal/mol) 

MM/GBSA 

average (kcal/mol) 

ΔΔG 

PRALSETINIB -6.33 -71.276 ± 4.44 -60.055 ± 3.29 11.220 

Hit1 -7.581 -68.368 ± 3.25 -61.190 ± 3.02 7.178 

Hit2 -5.372 -69.106 ± 3.05 -44.059 ± 4.37 25.047 

Hit3 -7.292 -65.675 ± 3.22 -57.153 ± 4.9 8.522 

Hit4 -8.266 -75.633 ± 4.0 -60.286 ± 3.60 15.348 

Hit5 -6.823 -65.365 ± 3.20 -59.493 ± 3.07 5.872 

Hit6 -7.3 -68.721 ± 4.46 -66.299 ± 5.75 2.422 

Hit7 -7.657 -66.030 ± 4.36 -69.789 ± 3.80 -3.760 

Hit8 -6.739 -65.425 ± 2.81 -56.402 ± 5.64 9.023 

Hit9 -6.5 -65.444 ± 4.28 -65.264 ± 5.32 0.180 

Hit10 -6.27 -66.867 ± 6.12 -60.695 ± 4.15 6.172 

Hit11 -6.783 -70.844 ± 4.64 -54.689 ± 6.01 16.155 

Hit12 -7.368 -65.163 ± 7.22 -64.793 ± 3.51 0.370 

 

Table 39. Docking Scores, MM/GBSA Averages, and ΔΔG Results of PRALSETINIB and 12 Hit Molecules for RET Protein with V804M- G810S Mutations. 

Docking Scores, MM/GBSA Averages, and ΔΔG Results of PRALSETINIB and 12 Hit 

Molecules for RET Protein with V804M- G810S Mutations. 
 

V804M-G810S 

Name Docking Score 

kcal/mol 

Wildtype MM/GBSA 

average (kcal/mol) 

MM/GBSA 

average (kcal/mol) 

ΔΔG 

PRALSETINIB -6.231 -71.276 ± 4.44 -73.890 ± 4.63 -2.614 

Hit1 -7.398 -68.368 ± 3.25 -65.635 ± 5.44  2.733 

Hit2 -6.867 -69.106 ± 3.05 -63.212 ± 4.97 5.894 

Hit3 -7.524 -65.675 ± 3.22 -61.878 ± 4.74 3.797 

Hit4 -7.861 -75.633 ± 4.0 -73.985 ± 3.36 1.649 

Hit5 -7.063 -65.365 ± 3.20 -61.412 ± 3.50 3.953 

Hit6 -6.6 -68.721 ± 4.46 -52.713 ± 8.08 16.008 

Hit7 -6.558 -66.030 ± 4.36 -63.063 ± 4.98 2.967 

Hit8 -7.285 -65.425 ± 2.81 -56.958 ± 4.16 8.467 

Hit9 -6.628 -65.444 ± 4.28 -64.061 ± 6.55 1.383 

Hit10 -6.54 -66.867 ± 6.12 -56.792 ± 8.07 10.075 

Hit11 -6.395 -70.844 ± 4.64 -61.382 ± 11.63 9.461 

Hit12 -5.971 -65.163 ± 7.22 -62.987 ± 5.94 2.177 

 

Based on the aforementioned tables, it can be observed that the Hit9 molecule, 

selected as a promising compound capable of forming favorable interactions with both 

wildtype and mutated RET, exhibits a docking score of -5.96 kcal/mol and an 

MM/GBSA average value of -65.163 kcal/mol in the wildtype RET. The results shown 

in Figures 19 and 20 indicate that during various mutations, both the docking scores 
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and MM/GBSA average values of Hit9 decrease, and ΔΔG value of that is mostly 

negative during all mutations. Furthermore, Figure 21 illustrates the interaction 

histogram of the Hit9 molecule during different mutations. In the wildtype RET, Hit9 

forms hydrogen bonds with Ala 807 and Asp 892, engages in hydrophobic interactions 

with Leu 730, Ala 756, Lys 756, and Leu 760 residues, and participates in ionic 

interactions with Arg 878, Asn 879, and Asp 892 residues. Interestingly, during RET 

mutations, the Hit9 molecule maintains hydrogen bond formation with Ala 807, Asp 

892 residues, or both, similar to its interaction pattern in the wildtype. Additionally, 

hydrophobic interactions with Leu 730 and Lys 756 residues persist in most of the 

mutations. The stability of these interactions in both wildtype and mutated RET 

suggests that Hit9 may not exhibit resistance during these mutations. Also, as shown 

in appendix A.2, the docking pose of the Hit9 molecule while docking on mutated RET 

doesn’t show significant differences in comparison with the pose of it on wildtype 

RET. Moreover, it appears to be more favorable than Pralsetinib in inhibiting the RET 

signaling pathway during various mutations. This is supported by the fact that 

Pralsetinib, in some mutations, fails to form hydrogen bonds and exhibits completely 

different binding poses compared to the wildtype. 
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Figure  19. MM/GBSA average difference between wildtype and mutated RET in 12 

hit molecules and Pralsetinib.  

(A) G810S, (B) V804L, (C) V804M, (D) Y806N, (E) Y806C, (F) V738A, (G) 

L730V, (H) L730I. 
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Figure  20. MM/GBSA average difference between wildtype and mutated RET in 12 

hit molecules and Pralsetinib.  

(A) Y806C/V738A, (B) V804M/Y806C, (C) V804M/G810S. 
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Figure  21. Interaction histogram of Pralsetinib during 10 ns MD simulation  

(A) G810S, (B) L730I, (C) L730V, (D) V738A, (E) V804L, (F) V804M, (G) Y806C, 

(H) Y806N, (I) V804M/Y806C, (J) V804M/G810S and (K) Y806C/V738A 

mutations. 
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Figure  22. Interaction histogram of Hit9 molecule during 10 ns MD simulation 

(A) G810S, (B) L730I, (C) L730V, (D) V738A, (E) V804L, (F) V804M, (G) Y806C, 

(H) Y806N, (I) V804M/Y806C, (J) V804M/G810S and (K) Y806C/V738A 

mutations. 
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To assess the stability of Hit9 under various mutations, a 50 ns molecular 

dynamics (MD) simulation was conducted, and 2000 frames were collected from each 

simulation. The findings are presented in Table 40. revealing no significant changes 

during the 50 ns MD simulation. Additionally, the three-dimensional structure of RET 

bound to the Hit9 compound, with labeled residues within the binding site, is depicted 

in Figure 23. Furthermore, Appendix A.2 showcases the docking poses of the Hit9 

compound in all eleven mutated RET structures. 

 
Table 40.  MM/GBSA Average of Hit9 Molecule During 50 Ns MD Simulations. 

MM/GBSA Average of Hit9 Molecule During 50 Ns MD Simulations. 

Hit9 G810S V804L V804M Y806N Y806C V738A L730V L730I 

MM/GBSA 

(kcal/mol) 

(10 ns) 

-70.107 

± 4.27 

-67.536 

± 7.30 

-71.029 

± 6.37 

-65.937 

± 6.03 

-69.954 

± 4.81 

-89.540 

± 6.13 

-66.019 

± 5.02 

-68.327 

± 5.64 

MM/GBSA 

(kcal/mol) 

(50 ns) 

-69.639 

± 4.66 

-69.460 

± 7.07 

-70.393 

± 6.23 

-59.897 

± 5.09 

-70.578 

± 5.73 

-88.613 

± 5.47 

-69.054 

± 4.93 

-62.274 

± 4.38 

 

 

 

Figure  23. The surface view of the wildtype RET protein in complex with Hit9. The 

residues within the binding site of the protein have been labeled. 

 

To predict the toxicity scores of the compounds Hit1, Hit4, Hit9, and Hit12, 

QSAR models in the METACORETM/METADRUGTM platform were utilized. 

Typically, a cutoff value of 0.5 is used, where scores exceeding 0.5 indicate potential 
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toxicity. However, for the cytotoxicity model, a cutoff value of 6 is preferred, with 

lower scores being more desirable. Similarly, the skin sensitization model employs a 

cutoff value of 10, and scores higher than 10 indicate weak to moderate sensitization. 

Based on the data presented in Table 5.41, the hit molecules demonstrate a lower 

potential for toxicity upon general analysis. Notably, Hit9, which has been identified 

as a compound lacking resistance to the studied mutations, exhibits a significantly low 

potential for toxicity. As per the AMES and Cytotoxicity models, their predicted scores 

are 0.55 and 6.57, respectively. 

 

Table 41. Toxicity Prediction Scores (TP) of 4 hit molecules (Scores Don’t Pass the Cutoff Represented by Red). 

Toxicity Prediction Scores (TP) of 4 hit molecules (Scores Don’t Pass the Cutoff 

Represented by Red). 

Name Hit1 Hit4 Hit9 Hit12 

AMES (TP) 0.36 0.44 0.55 0.46 

Cytotoxicity model, -log GI50 (M) (TP) 4.52 4.64 6.57 5.08 

MRTD (TP) 0.15 0.1 0.28 0.31 

Carcinogenicity Mouse Female (TP) 0.33 0.34 0.47 0.05 

Carcinogenicity Mouse Male (TP) 0.44 0.16 0.21 0.1 

Carcinogenicity Rat Female (TP) 0.3 0.29 0.22 0.02 

Carcinogenicity Rat Male (TP) 0.22 0.21 0.15 0.01 

Anemia (TP) 0.18 0.27 0.15 0.13 

Carcinogenicity (TP) 0.21 0.26 0.17 0.03 

Cardiotoxicity (TP) 0.26 0.27 0.15 0.41 

Genotoxicity (TP) 0.35 0.28 0.15 0.2 

Hepatotoxicity (TP) 0.15 0.19 0.21 0.12 

Nephrotoxicity (TP) 0.21 0.08 0.13 0.12 

Neurotoxicity (TP) 0.15 0.11 0.1 0.01 

Liver Cholestasis (TP) 0.33 0.13 0.07 0.08 

Liver Lipid Accumulation (TP) 0.21 0.34 0.39 0.27 

Liver Necrosis (TP) 0.56 0.25 0.43 0.64 

Liver Weight Gain (TP) 0.25 0.09 0.09 0.37 

Kidney Necrosis (TP) 0.06 0.11 0.11 0.08 

Kidney Weight Gain (TP) 0.11 0.03 0.06 0.04 

Nephron Injury (TP) 0.29 0.07 0.09 0.31 

SkinSens, EC3 (TP) 31.85 42.07 59.62 31.7 

Nasal pathology (TP) 0.15 0.04 0.07 0.11 

Testicular toxicity (TP) 0.3 0.32 0.27 0.02 

Pulmonary toxicity (TP) 0.12 0.04 0.05 0.05 

Epididymis toxicity (TP) 0.21 0.14 0.13 0.09 

Reactive OK R OK OK 
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Chapter 6 

Discussion 

 

This thesis aims to use new methodologies to screen chemical databases to find 

hit molecules that can bind to the RET protein with favorable interactions to inhibit 

the signaling pathway of the RET protein even during several mutations.  

Through text mining, we generated 10 chemical libraries for analysis. 

Additionally, we selected 4 libraries from the ChemDiv database for further 

investigation. Collectively, these libraries encompass a total of 290 million compounds 

that will undergo analysis to identify potential hit molecules capable of inhibiting the 

RET proto-oncogene. The focus is on identifying compounds that remain effective 

against various point mutations, ensuring their potential as inhibitors is unaffected. 

Two methods were employed and described in detail in the methods section. In 

the first method of this thesis, we aim to create QSAR models based on their numerical 

properties using all known compounds that targeted RET proteins instead of creating 

3D QSAR based on the pharmacophore model for a few numbers of compounds which 

are obtained in previous studies (Kuchana et al. 2022). So, the pIC50 values for the 

huge number of compounds can be predicted in a shorter time duration. In this method, 

a QSAR model was developed using 793 molecules from the ChEMBL database that 

directly targets the RET protein. The dataset was divided into a 70% training set and a 

30% test set, resulting in an internal set with an R-square value of 0.876. The QSAR 

model was further tested on an external set of 92 molecules, yielding an R-square value 

of 0.652. These R-square values suggest that the model has a strong correlation 

between the input structural features of compounds and their activity and properties, 

indicating its reliability in predicting the biological activity and property of new 

compounds. This established QSAR model was then applied to predict the pIC50 values 

of all 10 libraries identified through text mining. Next, a series of steps were 

undertaken, including the elimination of compounds based on z-score calculations and 

consideration of their anticancer activity. Molecular docking was performed using a 

virtual screen workflow. Among the top 10 molecules with low docking scores in each 

library, molecular dynamics (MD) simulations were conducted with 5 repeats. The 

MM/GBSA energy calculation was performed for these molecules. 
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The results revealed 4 molecules with low MM/GBSA scores across all libraries. 

However, when compared to the reference molecules, Pralsetinib and Selpercatinib, 

these 4 molecules did not exhibit favorable MM/GBSA energy values. Selpercatinib 

had a glide/XP value of -9.164 kcal/mol and an MM/GBSA value of -75.67 kcal/mol, 

while Pralsetinib had a glide/XP value of -9.463 kcal/mol and an MM/GBSA value of 

-75.543 kcal/mol. On the other hand, the top molecule from a library containing the 

pyrazin-2-carboxamid fragment had a glide/XP value of -9.053 kcal/mol, along with 

an MM/GBSA value of -61.673 kcal/mol. In the second method, we introduced a novel 

approach to add innovation to the study. Previous research, such as the study conducted 

by Ouassaf et al. (2022), has commonly employed structure-based pharmacophore 

modeling to determine the pharmacophore hypothesis of a ligand-based on its 

cocrystal structure. This hypothesis is then utilized in virtual screening. In this thesis, 

we propose a different approach by utilizing e-pharmacophore modeling throughout 

all frames of molecular dynamics (MD) simulations. This allows us to determine 

which pharmacophore hypotheses are favorable during the entire MD simulations and 

whether they are generated in a low RMSD pose of the ligand. By employing this 

method, we aim to gain insights into the most relevant pharmacophore hypotheses that 

emerge throughout the entire dynamics of the ligand in the simulations. So, in the 

second method, Structure-based pharmacophore models were generated using e-

pharmacophore algorithms from 5000 frames of a 500ns molecular dynamics (MD) 

simulation. Among the generated models, the ADDRR hypothesis was observed 

frequently across the frames. Notably, the ADDRR hypothesis was identified in frame 

4291, which exhibited a low root mean square deviation (RMSD) value of 1.098 Å, 

making it a promising candidate. This hypothesis from frame 4291 was selected for 

ligand screening across all fourteen libraries. Following the filtering of libraries based 

on Lipinski rules and the inclusion of a minimum ADDRR 2D pharmacophore, the 

selected compounds underwent z-score calculations of their phase screen scores and 

assessment of their anticancer activity using binary QSAR. Lipinski filtering is applied 

to reduce the number of compounds analyzed by ensuring they contain a minimum 

number of ADDRR features. However, it's important to note that 2D pharmacophore 

analysis can still be performed without Lipinski filtering. In such cases, numerous 

compounds that do not adhere to the Lipinski rules may be identified as hit molecules. 

Subsequently, Glide/SP docking was performed on these compounds, and 10ns MD 
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simulations were conducted in three repeats and their MM/GBSA energy values are 

calculated.  

The reference molecule, Pralsetinib, exhibited a Glide/SP value of -9.491 

kcal/mol and an MM/GBSA value of -71.276 kcal/mol. Among all the libraries, twelve 

hit molecules were identified with MM/GBSA values exceeding -65 kcal/mol. These 

twelve molecules underwent 200ns MD simulations, revealing that the MM/GBSA 

value for Pralsetinib decreased to -75.111 kcal/mol. Notably, only the Hit9 molecule 

exhibited an MM/GBSA value superior to Pralsetinib. Hit9 had a Glide/SP value of -

5.964 kcal/mol, indicating its potential to bind to the ATP binding site of RET. 

Furthermore, its MM/GBSA value decreased from -65.444 to -79.446 kcal/mol. All 12 

molecules were subsequently docked into eight mutated RET and three double-

mutated RET proteins. Subsequent 10ns MD simulations were performed, and their 

MM/GBSA values were calculated. Through these calculations, it was observed that 

the Hit9 molecule showed the potential to bind to the mutated RET, and its MM/GBSA 

value decreased during the mutation process. In comparison, the binding pose of 

Pralsetinib in the mutated RET proteins showed significant changes, potentially 

influenced by the docking algorithms employed. The observed significant change in 

the docking pose of Pralsetinib could potentially be attributed to its resistance to the 

mutations under investigation. In clinical cases, Pralsetinib has been shown to exhibit 

resistance to these mutations. While docking Pralsetinib to the binding site of RET, it 

is bind to that region even if the interactions are not optimal. Consequently, this 

substantial change in the docking pose may indicate that Pralsetinib cannot effectively 

penetrate the binding pocket of the mutated RET, which could contribute to its 

resistance. Therefore, considering the potential challenges posed by the mutated 

residues in the binding pocket, it is plausible that employing an alternative docking 

method such as induce fit docking could yield better results when docking Pralsetinib 

to the ATP binding pocket. It is also worth noting that the presence of these mutations 

may induce conformational changes in the structure of the protein binding pocket. 

Consequently, Pralsetinib may not be able to bind to the mutated binding pocket in the 

same pose as it does with the wildtype RET. These conformational changes might 

explain the discrepancies observed between the results obtained from various in vivo 

and xenograft studies and the findings of our study. Furthermore, it's important to note 

that conducting 10 ns MD simulations provides a relatively short timeframe for 
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observing the detailed interactions between molecules and the residues within the 

binding pocket. Longer simulation times may be necessary to gain a more 

comprehensive understanding of how the molecules interact with the binding pocket 

residues. 
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Chapter 7 

Conclusion 

 

In conclusion, our study aimed to explore novel hit molecules capable of 

inhibiting the signaling pathway of the RET proto-oncogene to reduce tumor size in 

medullary thyroid cancer and NSCLC. We employed two methods to achieve this 

objective. The first method involved the analysis of hit molecules obtained from 

QSAR models based on the numerical properties of compounds targeting RET 

proteins. 

 

The second method utilized a unique approach that involved generating 

structure-based pharmacophores from molecular dynamics simulation trajectories. We 

selected the most favorable pharmacophore hypothesis based on a low RMSD pose. 

From this method, we obtained 12 hit molecules. Subsequently, we analyzed the 

activity of these 12 hit molecules in RET proteins with mutations in their binding 

pocket. We compared their results with Pralsetinib, which served as the reference 

molecule. Remarkably, our findings revealed that the Hit9 molecule exhibited the 

potential to bind to the ATP binding pocket of the RET protein and demonstrated a 

favorable MM/GBSA score compared to Pralsetinib. 

 

Overall, our study provides valuable insights into potential hit molecules that 

can effectively target the ATP binding site of the RET protein, offering promise for 

further exploration in the development of therapeutics for medullary thyroid cancer 

and NSCLC. 
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