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ABSTRACT

NOVEL RESISTANCE-FREE RET TYROSINE KINASE INHIBITOR
DISCOVERY THROUGH DYNAMIC STRUCTURE-BASED
PHARMACOPHORE AND QSAR MODELING AND VIRTUAL SCREENING
OF ULTRA LARGE LIGAND LIBRARIES

Sayyah, Ehsan
Bioengineering Master’s Program
Thesis Advisor: Prof. Dr. Serdar Durdagi

June 2023, 157 pages

Gene fusion and point mutations cause to activate RET tyrosine kinase where the gene
fusion is responsible for non-small cell lung cancer and papillary thyroid cancers and
the point mutation on the RET proto-oncogene, which is the receptor tyrosine kinase,
causes multiple endocrine neoplasia type 2A and 2B (MEN2A, MEN2B) and Familial
medullary thyroid cancer. Furthermore, small molecules as inhibitors bind to the
binding site of RET kinase domain to block their enzymatic activity. On the other hand,
a single amino acid change on the RET kinase position can provide resistance to the
tyrosine kinase inhibitors, so it is essential to find a compound with activity against
RET mutants. So, we hypothesize that with in-silico E-pharmacophore modeling of
molecular dynamics trajectories and predicting pIC50 values of small molecules from
several libraries using QSAR models, we can discover new small molecules that can
inhibit the activation of RET proto-oncogene and their signaling pathways, so it can

stop the growth of tumor sizes with the lowest resistance to that inhibitor.

Keywords: E-Pharmacophore; Medullary Thyroid Cancer; Non-Small Cell Lung

Cancer; RET proto-oncogene; QSAR
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OZET

ULTRA BUYUK LIGAND KUTUPHANELERININ SANAL TARAMASI VE
DINAMIK YAPI TEMELLI FARMAKOFOR VE QSAR MODELLEMESI ILE
YENI REZISTANS GOSTERMEYEN RET TiROZIN KiNAZ INHIBITORUNUN
KESFi

Ehsan Sayyah
Biyomuihendislik Yiiksek Lisans Programi

Tez Danigmant: Prof. Dr. Serdar Durdagi

Haziran 2023, 157 sayfa

Gen flizyonlar1 ve nokta mutasyonlari, gen fiizyonunun non-small cell lung cancer ve
papiller tiroid kanserlerinden sorumlu oldugu ve RET proto-onkogenindeki nokta
mutasyonunun, reseptor tirozin kinazi olan RET proto-onkogeninin aktivasyonuna
neden oldugu, multiple endokrin neoplazi tip 2A ve 2B (MEN2A, MEN2B) ve familial
mediiller tiroid kanseriyle iliskilidir. Ayrica, inhibitér olarak kullanilan kiiciik
molekiiller RET kinaz etki alanina baglanarak enzimatik aktivitelerini engellerler.
Bununla birlikte, RET kinaz pozisyonunda tek bir amino asit degisikligi, tirozin kinaz
inhibitorlerine direng saglayabilir, bu nedenle RET mutasyonlarina kars1 etkili bir
bilesik bulmak onemlidir. Bu nedenle, molekiiler dinamik trajelerin e-farmakofor
modellemesi ve QSAR modelleri kullanilarak kiiciik molekiillerin ~ gesitli
kitiphanelerinden elde edilen plCso degerlerinin tahmin edilmesi ile RET proto-
onkogenin aktivasyonunu ve sinyal yolaklarini inhibe edebilen yeni kiiciik molekiiller
kesfedebilecegimizi hipotez ediyoruz. Bu sekilde, tiimor blyimesini ve inhibitére

kars1 en diisiik direnci olan tiimor boyutlarin1 durdurabiliriz.

Anahtar Kelimeler: E-Farmakofor; Kiiciik Hiicreli olmayan Akciger Kanseri;
Meduiller Tiroid Kanseri; RET proto-onkogeni; QSAR
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Chapter 1

Introduction

1.1 Purpose of Thesis

Thyroid cancer and non-small cell lung cancer (NSCLC) are among the most
frequent types of cancer worldwide and can be associated with high morbidity and
mortality rates. Despite recent advances in cancer treatment, effective therapies for
these cancers remain limited, highlighting the need for new and innovative approaches
to cancer drug discovery.

One potential target for drug discovery in these cancers is the RET tyrosine kinase
protein. RET, a transmembrane receptor tyrosine kinase situated within the cell
membrane, assumes a pivotal function in fostering cellular proliferation, differentiation,
and viability. Activating mutations in RET have been found to be associated with the
development and progression of several types of cancer, including medullary thyroid
cancer and NSCLC.

Medullary thyroid cancer is a rare type of thyroid cancer that arises from the C
cells of the thyroid gland. It accounts for approximately 5-10% of all thyroid cancers
and can be associated with familial genetic syndromes. In contrast, NSCLC is a
heterogeneous group of lung cancers that account for approximately 85% of all lung
cancer cases. NSCLC is often diagnosed at advanced stages and has a poor prognosis,
highlighting the need for new therapeutic options.

RET has garnered attention as a prospective focus for the discovery of cancer
drugs, specifically in relation to medullary thyroid cancer and non-small cell lung
cancer (NSCLC). Preclinical studies have shown that inhibition of RET signaling can
lead to reduced tumor growth and improved survival outcomes in animal models.
Additionally, recent clinical trials have shown promising results for RET inhibitors in
patients with medullary thyroid cancer and NSCLC, highlighting the potential of this
approach for cancer treatment.

Selpercatinib (LOX0-292) and Pralsetinib (BLU-667) are two highly selective
RET inhibitors that have shown great potential in clinical trials. Both medications have

received approval from the FDA for treating metastatic RET fusion-positive NSCLC



and medullary thyroid cancer, showcasing remarkable rates of response and long-
lasting effects.

The main problem with the currently available RET inhibitors, such as
selpercatinib and pralsetinib, is the emergence of resistance mutations. While these
drugs have shown promising results in clinical trials, some patients have developed
resistance to the therapy over time, leading to disease progression and reduced
treatment efficacy (Drilon et al. 2020; V. Subbiah et al. 2018).

The emergence of resistance mutations can occur through various mechanisms,
including changes in the binding affinity of the drug to its target, alterations in
downstream signaling pathways, and activation of compensatory signaling pathways.
For example, a common resistance mutation in RET is the gatekeeper mutation
(V804M), which affects the binding of the drug to its target site and reduces its
inhibitory effect (Drilon et al. 2017).

Another challenge with the use of Selpercatinib and Pralsetinib is their selectivity
for RET, which may limit their efficacy in patients with tumors that have multiple driver
mutations. In these cases, combination therapies with other drugs may be necessary to
achieve optimal treatment outcomes (Gainor et al. 2021).

To address these challenges, there is a need for the development of new RET
inhibitors that can overcome resistance mutations and have broader selectivity for
tumors with multiple driver mutations.

Despite these advances, the development of RET inhibitors has been challenging
due to the high degree of homology between RET and other tyrosine kinases.
Developing inhibitors that are both potent and selective for RET has been a major
obstacle in drug discovery efforts. In recent years, in-silico drug discovery methods
have emerged as powerful tools for identifying novel RET inhibitors (Lanzi et al. 2009;
Lin and Shaw 2016).

Computer aid drug discovery methods such as QSAR and pharmacophore
modeling can be used to screen large libraries of compounds for potential RET
inhibitors. Machine learning algorithms can be trained on large data sets of known RET
inhibitors and non-inhibitors to predict novel compounds that are likely to bind to RET
with high affinity. Pharmacophore modeling can be used to identify common structural
features among known RET inhibitors and use these features to screen virtual

compound libraries (Brogi et al. 2020; Zhang, Chung, and Oldenburg 1999).
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Molecular dynamics simulations can also be used to generate MD trajectories for
analysis, which can provide valuable insights into the binding mode and specificity of
potential inhibitors. By combining computational methods with experimental
biophysical and pharmacological studies, it may be possible to identify novel RET

inhibitors with improved therapeutic properties (Drilon et al. 2017).

1.2 Scientific Aims of the Thesis

The primary aim of this thesis is to develop novel RET tyrosine kinase inhibitors
that can effectively halt the growth of medullary thyroid cancer and non-small cell
lung cancer (NSCLC) by identifying hit molecules using computational methods such
as quantitative structure-activity relationship (QSAR) and e-pharmacophore modeling.
The study also aims to gain insights into the mechanism of RET inhibition by
analyzing the binding properties of the most promising compounds to the RET tyrosine
kinase protein. By comparing the results of QSAR and e-pharmacophore modeling,
this research aims to determine the most effective approach for identifying potential
RET inhibitors. In addition to identifying hit molecules for RET inhibitors, this thesis
also aims to develop inhibitors that are less prone to resistance. Previous studies have
shown that some RET inhibitors, such as Selpercatinib and Pralsetinib, may develop
resistance due to mutations in the binding site of the inhibitor. Therefore, a key
objective of this research is to design inhibitors that can effectively bind to the RET
tyrosine kinase protein and overcome resistance caused by mutations. By doing so,
this research aims to contribute to the development of more effective and long-lasting
treatments for medullary thyroid cancer and NSCLC (Drilon et al. 2018a; Lin and
Shaw 2016; Vidal et al. 2005). The ultimate goal of this research is to contribute to the
development of more efficient drug discovery pipelines for RET inhibitors, thereby
improving the therapeutic options available to patients suffering from medullary
thyroid cancer and NSCLC.



Chapter 2

Literature Review

2.1 Cancer

Cancer is a disease that results from the uncontrolled growth and spread of
abnormal cells in the body. The first recorded case of cancer was found in an Egyptian
textbook written around 1600 BCE. Throughout history, cancer has been known by
many names, including "the emperor of all maladies"”, "the king of terrors”, and "the
great crippler”. It is a major public health issue worldwide, with millions of new cases
and deaths each year (Siddhartha Mukherjee 2011). As per the World Health
Organization (WHO), cancer stands as the second most prevalent cause of mortality
worldwide, resulting in approximately 10 million deaths in the year 2020 (Ferlay J,
Ervik M, Lam F, Colombet M, Mery L, Pifieros M 2020). In Turkey, cancer is also a
significant health problem. According to the Turkish Ministry of Health, cancer was
the second leading cause of death in 2019, accounting for 21.6% of all deaths (Dr.
BIRINCI et al. 2020). In the early 20th century, researchers discovered that cancer was
caused by changes, or mutations, in the DNA of cells. This led to the development of
treatments such as chemotherapy, radiation therapy, and surgery. In recent years,
advances in cancer research have led to the development of targeted therapies and
immunotherapies, which have exhibited encouraging outcomes in the treatment of
some types of cancer. Furthermore, computer-aided drug discovery techniques have
played a crucial role in the development of targeted therapies and immunotherapies for

cancer treatment (The American Cancer Society 2021).

2.1.1  Thyroid Cancer. Thyroid cancer is a type of cancer that originates in
the thyroid gland, a butterfly-shaped gland located in the neck that secretes hormones
that govern the body's metabolic processes. The incidence of thyroid cancer has been
increasing in recent decades, and some experts believe that improved access to care
and advances in diagnostic technology have contributed to this trend (Davies and
Welch 2014; Morris et al. 2013).

The molecular pathogenesis of thyroid cancer is complex and not fully
understood, but genetic alterations that activate oncogenic pathways are thought to
play a key role in the development of the disease. (2,6) Common genetic alterations in
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thyroid cancer include mutations in genes such as BRAF, RAS, and RET, which
promote cell proliferation and survival (Xing 2013).

The typical diagnosis of thyroid cancer involves a blend of physical examination,
imaging tests, and biopsy of thyroid tissue. To aid in treatment decisions, the Bethesda
System for Reporting Thyroid Cytopathology is extensively employed as a
classification system for interpreting the results of thyroid biopsies (Cibas and Ali
2009). The 2015 American Thyroid Association Management Guidelines provide
recommendations for the evaluation and management of thyroid nodules and
differentiated thyroid cancer (Haugen et al. 2016).

The treatment approach for thyroid cancer is contingent upon various factors,
including the cancer's type, stage, and patient-specific considerations like age and
overall health. Possible treatment options encompass surgical intervention to remove
a portion or the entirety of the thyroid gland, radioiodine therapy to eliminate thyroid
cells, and external beam radiation therapy (Haddad et al. 2022).

In conclusion, thyroid cancer is a complex disease with a rising incidence.
Understanding its molecular pathogenesis and appropriate management strategies are

crucial for improving outcomes for patients with thyroid cancer.

2.1.1.1 Classification of Thyroid Cancer. Thyroid cancer can be classified into
four main histological types: papillary thyroid carcinoma (PTC), follicular thyroid
carcinoma (FTC), medullary thyroid carcinoma (MTC), and anaplastic thyroid
carcinoma (ATC) (2). Among them, PTC and FTC are differentiated thyroid
carcinomas (DTC), while MTC and ATC are undifferentiated thyroid carcinomas
(UTC) (Nikiforov and Nikiforova 2011).



2.1.1.1.1 Papillary Thyroid Carcinoma. The BRAF V600E mutation is the most
common genetic alteration found in PTC, occurring in around 40-45% of cases (Xing
2013). This mutation results in a constitutively activated BRAF protein, which in turn
activates the downstream MEK-ERK signaling pathway, leading to increased cell
proliferation and survival. The RET/PTC rearrangements, which are present in around
10-20% of cases, involve the fusion of the RET proto-oncogene with various partner
genes, resulting in a constitutively activated RET protein. The RAS mutations, which
are present in around 10-15% of cases, result in a constitutively activated RAS protein,
leading to the activation of the same downstream MEK-ERK signaling pathway as the
BRAF mutation (Agrawal et al. 2014). Exposure to ionizing radiation is a well-known
risk factor for developing PTC. This can occur due to exposure to radiation during
childhood or adolescence, as the thyroid gland is more sensitive to radiation damage
during these periods of development. In addition, certain inherited genetic conditions,
such as familial adenomatous polyposis and Cowden syndrome, can increase the risk
of developing PTC. Exposure to certain chemicals or environmental toxins, such as

asbestos and certain pesticides, may also increase the risk of PTC (Crn¢i¢ et al. 2020).

2.1.1.1.2 Follicular Thyroid Carcinoma. Follicular thyroid carcinoma (FTC)
ranks as the second most prevalent form of thyroid cancer, accounting for
approximately 10-15% of cases (Nikiforov and Nikiforova 2011). FTC arises from the
cells that produce and store thyroid hormones, known as follicular cells and is
characterized by the formation of abnormal, cancerous follicles in the thyroid gland.
FTC is more common in women than in men and typically occurs in individuals over
the age of 40 (Ashorobi and Lopez 2023). The majority of FTC cases are sporadic,
meaning they occur without a known genetic cause. However, certain genetic
mutations have been identified as risk factors for developing FTC. One of the most
well-studied mutations is the RAS gene mutation, which is found in approximately 40-
50% of FTC cases (Xing 2013). Mutations in RAS lead to the persistent activation of
the RAS protein, consequently triggering the downstream MAPK signaling pathway.
This activation contributes to heightened cell proliferation and survival. Other genetic
mutations that have been implicated in the development of FTC include the PAX8-
PPARY rearrangement and mutations in the TERT promoter region (Nikiforov and
Nikiforova 2011).



FTC development is associated with a recognized risk factor, which is exposure
to ionizing radiation. Like PTC, FTC can occur due to exposure to radiation during
childhood or adolescence, as the thyroid gland is more sensitive to radiation damage
during these periods of development. In addition, certain inherited genetic conditions,
such as Cowden syndrome and Carney complex, can increase the risk of developing
FTC (Xing 2013). FTC is typically diagnosed through a combination of imaging
studies, such as ultrasound and radioactive iodine scans, and biopsy of thyroid nodules.
Treatment options for FTC include surgery to remove the affected thyroid tissue, and
radioactive iodine therapy to destroy any remaining cancerous cells. In some cases,
chemotherapy and external radiation therapy may also be used (Ashorobi and Lopez
2023).

2.1.1.1.3 Medullary Thyroid Cancer. Medullary thyroid carcinoma (MTC) is an
uncommon form of thyroid cancer originating from the parafollicular cells, also
referred to as C-cells. These cells are responsible for producing the hormone
calcitonin. MTC accounts for approximately 5-10% of all thyroid cancers (Wells et al.
2015a). Unlike other types of thyroid cancer, MTC is not typically associated with
exposure to ionizing radiation, and there are several known genetic mutations that can
cause this cancer. MTC can occur sporadically or as part of an inherited syndrome.
Approximately 75% of all MTC cases are sporadic and occur without a known genetic
cause. The remaining 25% of cases are inherited and are associated with germline
mutations in the RET proto-oncogene, which encodes a receptor tyrosine kinase that
regulates cell growth and differentiation (Moura et al. 2011). Multiple endocrine
neoplasias (MEN) type 2 is the most well-known inherited syndrome associated with
MTC and is caused by mutations in the RET gene. MENZ2 is further divided into two
subtypes: MENZ2A, which is characterized by the presence of MTC,
pheochromocytoma (a tumor of the adrenal gland), and hyperparathyroidism; and
MEN2B, which is characterized by the presence of MTC, pheochromocytoma, and a
variety of other clinical features (Wells et al. 2015a). In sporadic MTC cases, somatic
mutations in the RET gene have been identified in up to 50% of cases, as well as
mutations in other genes such as RAS and TP53 (Moura et al. 2011).



These mutations lead to the activation of the RET signaling pathway, which
promotes cell growth and proliferation. Inherited mutations in the RET gene typically
involve the loss of function of the RET protein, which can predispose individuals to
the development of MTC. MTC is typically diagnosed through the measurement of
serum calcitonin levels and imaging studies such as ultrasound, CT, and MRI scans.
Treatment options for MTC include surgery to remove the affected thyroid tissue, as
well as any lymph nodes that may be involved. In cases where cancer has spread
beyond the thyroid, chemotherapy and radiation therapy may also be used (Romei,
Ciampi, and Elisei 2016).

2.1.1.1.4 Anaplastic Thyroid Carcinoma. Anaplastic thyroid carcinoma (ATC)
Is a rare, aggressive, and highly malignant cancer that accounts for less than 2% of all
thyroid cancers. It arises from the follicular cells of the thyroid gland and is
characterized by the rapid and uncontrolled growth of cancerous cells that invade the
surrounding tissues and organs. ATC typically presents in elderly individuals and
carries an unfavorable prognosis due to its aggressive characteristics and limited
treatment options. Although the precise cause of ATC is not entirely comprehended, it
is believed, similar to other forms of thyroid cancer, to be associated with genetic
mutations. Several mutations have been identified in ATC, including mutations in the
TP53, BRAF, and PIK3CA genes (Agrawal et al. 2014). TP53 is a tumor suppressor
gene that helps prevent the development of cancer by regulating cell growth and
division. Mutations in TP53 can result in the loss of its tumor suppressor activity,
leading to uncontrolled cell growth and the development of cancer. BRAF and
PIK3CA are oncogenes that promote cell growth and proliferation. Mutations in these
genes can activate their signaling pathways, leading to the development and
progression of cancer. ATC is usually diagnosed based on a combination of imaging
studies and biopsy results. Treatment options for ATC include surgery, radiation
therapy, and chemotherapy, either alone or in combination. However, due to its
aggressive nature and resistance to conventional therapies, the prognosis for ATC is
generally poor, with a five-year survival rate of less than 10% (Smallridge et al. 2012).

In recent vyears, there have been advances in targeted therapies and
immunotherapies that show promise in the treatment of ATC. These therapies aim to

specifically target the genetic mutations that drive the growth of cancer cells or to
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stimulate the patient's own immune system to attack the cancer cells. Clinical trials are
ongoing to evaluate the effectiveness of these new treatments in improving the

outcomes for patients with ATC.

2.1.2  Lung Cancer. Lung cancer ranks among the primary contributors to
cancer-related fatalities on a global scale. It is a type of cancer that starts in the cells
of the lung tissue, usually in the cells lining the air passages. The disease can be traced
back to ancient times, with evidence of lung cancer found in mummies from Egypt and
Peru. However, it was not until the 20th century that the disease became recognized as
a major public health concern (Herbst 2013). In the early 1900s, lung cancer was
relatively rare, with most cases occurring in people who worked in the mining and
manufacturing industries. However, with the rise of cigarette smoking in the mid-20th
century, the incidence of lung cancer began to increase rapidly. Studies in the 1950s
and 1960s established a strong link between smoking and lung cancer, and smoking
remains the primary cause of the disease today (Doll and Peto 1976). When a person
inhales cigarette smoke, the carcinogenic compounds in the smoke can damage the
cells lining the lungs. Over time, this damage can lead to the development of cancerous
cells that can grow and spread throughout the lung tissue and beyond. Other risk factors
for lung cancer include exposure to radon gas, asbestos, and air pollution, as well as a
family history of the disease (The American Cancer Society medical and editorial
content team 2019). Lung cancer can be difficult to detect in its early stages, as
symptoms often do not appear until the disease has progressed. Frequent indications
of lung cancer encompass coughing, chest pain, difficulty breathing, and coughing up
blood. The available treatment alternatives for lung cancer consist of surgery, radiation
therapy, chemotherapy, and targeted therapy, which are determined based on the
cancer's stage and type (PDQ Adult Treatment Editorial Board 2002). Unfortunately,
lung cancer has a high mortality rate, with only about 20% of patients surviving for 5
years after diagnosis. This is largely due to the fact that the disease is often diagnosed
at an advanced stage, when it has already spread to other parts of the body. In addition,
the aggressive nature of lung cancer and its resistance to many conventional treatments

make it a difficult disease to manage (Molina et al. 2008).



2.1.2.1 Classification of Lung Cancer. Lung cancer is typically categorized
into two primary types: small cell lung cancer (SCLC) and non-small cell lung cancer
(NSCLC) (PDQ Adult Treatment Editorial Board 2002). Non-small cell lung cancer
(NSCLC) prevails as the most prevalent form, comprising approximately 85% of all
diagnosed lung cancer cases (Lukeman 2015). NSCLC can be further classified into
three subtypes based on the type of cells found in the tumor: adenocarcinoma,
squamous cell carcinoma, and large cell carcinoma (Travis et al. 2015). The
classification of NSCLC is important because it can help determine the appropriate
treatment approach, as well as the prognosis and potential outcomes of the disease
(Detterbeck et al. 2017). SCLC is less common than NSCLC, accounting for about
15% of all lung cancer cases. It is characterized by small cells that grow rapidly and
form large tumors that can quickly spread to other parts of the body (PDQ Adult
Treatment Editorial Board 2002). Overall, the classification of lung cancer is based on
the type of cells found in the tumor and is important for guiding treatment decisions

and predicting outcomes.

2.1.2.1.1 Small Cell Lung Cancer. Small cell lung cancer (SCLC) is a highly
malignant type of lung cancer that arises from neuroendocrine cells in the bronchial
epithelium. SCLC is known for its aggressive nature and tendency to rapidly spread to
other parts of the body (Gazdar, Bunn, and Minna 2017). The majority of SCLC cases
are caused by smoking, with up to 98% of patients having a history of smoking (PDQ
Adult Treatment Editorial Board 2002). Other risk factors for SCLC include exposure
to radon, asbestos, and other environmental toxins (Molina et al. 2008). Mutations in
several genes have been linked to the development and progression of SCLC. The most
commonly mutated genes in SCLC are TP53, RB1, and PTEN, which are known tumor
suppressor genes (George et al. 2015). Other frequently mutated genes in SCLC
include MYC, NOTCH, and the SWI/SNF chromatin remodeling complex genes
(Rudin and Poirier 2016). SCLC is highly responsive to chemotherapy and radiation
therapy, but it often becomes resistant to treatment and relapses quickly.
Immunotherapy has shown promising results in the treatment of SCLC, with the PD-
1 inhibitor pembrolizumab being approved as a first-line treatment for SCLC in certain
cases (Horn et al. 2018).
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2.1.2.1.2 Non-Small Cell Lung Cancer. Non-small cell lung cancer (NSCLC)
accounts for approximately 85% of all lung cancer cases and can be further classified
into three subtypes: adenocarcinoma, squamous cell carcinoma, and large cell
carcinoma (Siegel, Miller, and Jemal 2020). Adenocarcinoma is the most common
subtype of NSCLC and often arises from cells that line the small air sacs (alveoli) in
the lungs. It is more likely to occur in people who have never smoked and is often
associated with certain genetic mutations, such as EGFR, ALK, and ROS1 (Lichtenfels
et al. 2018). Squamous cell carcinoma, also known as epidermoid carcinoma, arises
from the cells that line the airways in the lungs. It is strongly associated with tobacco
smoking and may be caused by mutations in genes such as TP53, CDKNZ2A, and
PIK3CA. Large cell carcinoma, also known as undifferentiated carcinoma, is a less
common subtype of NSCLC and is named for the large size of the tumor cells. It can
arise from any part of the lung and is often associated with genetic mutations such as
TP53 and KRAS (Siegel et al. 2020). Like SCLC, NSCLC can also be caused by
mutations in various genes that are involved in cell growth and division, DNA repair,
and cell death. These mutations can occur spontaneously or be caused by exposure to
carcinogens such as tobacco smoke, air pollution, and radiation (Lichtenfels et al.
2018). Recent studies have identified RET proto-oncogene as a potential therapeutic
target in NSCLC. RET is a receptor tyrosine kinase that plays a crucial role in cell
proliferation, differentiation, and survival. RET mutations are found in approximately
1-2% of lung adenocarcinomas and have been shown to drive tumor growth and
progression (Gainor and Shaw 2013). Several small molecule inhibitors targeting RET
have been developed and are currently undergoing clinical trials in NSCLC. Early
results have shown promising activity of these inhibitors in patients with RET-mutant
NSCLC, suggesting that RET inhibition may be a viable treatment option for this
subset of patients (Drilon et al. 2016, 2018b). In addition to RET mutations, other
genetic alterations such as EGFR, ALK, and ROS1 are also being targeted with
specific inhibitors in NSCLC (Paik et al. 2011). With the increasing availability of
targeted therapies, the molecular classification of NSCLC has become increasingly
important for identifying patients who may benefit from these therapies and for
designing personalized treatment regimens (Travis et al. 2015).
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2.2 Tyrosine Kinase

Tyrosine kinases are a class of enzymes that play a crucial role in cell signaling
and are important targets for cancer therapy (Roskoski 2016). They facilitate the
transfer of a phosphate group from ATP to a tyrosine residue on a protein substrate,
thereby initiating the activation of subsequent signaling pathways that govern cell
growth, differentiation, and survival (Lemmon and Schlessinger 2010). Dysregulated
activation of tyrosine kinases has been associated with the onset and advancement of
various cancer types, such as leukemia, breast cancer, lung cancer, and gastrointestinal
stromal tumors (GIST) (Blume-Jensen and Hunter 2001). Mutations or overexpression
of tyrosine kinase genes can lead to constitutive activation of downstream signaling
pathways, promoting uncontrolled cell proliferation and survival (Weinstein and Joe
2008). Targeting tyrosine kinases has become a major focus of cancer therapy, and
several tyrosine kinase inhibitors (TKIs) have been developed and approved for
clinical use in various types of cancer. TKIs work by binding to the ATP-binding site
of the tyrosine kinase domain, inhibiting kinase activity and downstream signaling
(Wong, Siah, and Lo 2019). Examples of FDA-approved TKIs include imatinib for the
treatment of chronic myeloid leukemia (CML) and GIST, erlotinib for non-small cell
lung cancer (NSCLC), and trastuzumab for HER2-positive breast cancer (Joo,
Visintin, and Mor 2013). Despite the clinical success of TKIs, resistance to these
agents can develop through various mechanisms, including acquisition of secondary
mutations in the target kinase domain or activation of alternative signaling pathways
(Johnson et al. 2016). Understanding the underlying molecular mechanisms of
resistance and developing strategies to overcome resistance is an active area of
research in cancer therapeutics.

Tyrosine kinases are divided into two categories: receptor tyrosine kinase (RTK)
and non-receptor tyrosine kinase (NRTK). Receptor tyrosine Kkinases are
transmembrane receptors that are expressed on cell surface. Binding the ligands on
their extracellular domain cause to activation of RTKs. On the other hand, non-
receptor tyrosine kinases (NRTKSs) are placed in cytoplasm or bound to cell membrane
(Siveen et al. 2018). RTKs have 58 subfamilies, such as, fibroblast growth factor
receptor (FGFR), epidermal growth factor receptor (EGFR), insulin receptor (IR),
rearranged during transfection (RET), etc. (Hubbard 1999).
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RTKs are activated by ligand-induced dimerization, which occurs when two
receptor monomers bind to the same ligand. This binding leads to a conformational
change in the receptor that brings the intracellular domains into close proximity,
allowing them to auto phosphorylate each other on specific tyrosine residues. This
autophosphorylation leads to the recruitment of downstream signaling molecules that
bind to the phosphorylated tyrosine residues, leading to the activation of downstream
signaling pathways (Lemmon and Schlessinger 2010). The ligand-receptor interaction
is highly specific, and each RTK has a unique set of ligands that activate it. For
example, the epidermal growth factor receptor (EGFR) is activated by binding to EGF
or transforming growth factor-alpha (TGF-a), while the platelet-derived growth factor
receptor (PDGFR) is activated by binding to PDGF (Yarden and Sliwkowski 2001).
The activated RTKs initiate downstream signaling pathways that regulate various
cellular functions. The two major signaling pathways activated by RTKSs are the Ras-
MAPK pathway and the PI3K-Akt pathway. The Ras-MAPK pathway is activated by
RTKs and leads to the activation of the mitogen-activated protein kinase (MAPK)
cascade, which ultimately results in the activation of transcription factors that regulate
gene expression. The Ras-MAPK pathway is set in motion through the recruitment of
the adaptor protein Grb2 to the phosphorylated tyrosine residues on the activated
receptor tyrosine kinase (RTK). Grb2 subsequently recruits the guanine nucleotide
exchange factor SOS, which triggers the activation of the small GTPase Ras. Activated
Ras, in turn, initiates the MAPK cascade, ultimately resulting in the activation of
transcription factors like c-Fos and c-Jun (Chang and Karin 2001). The PI3K-Akt
pathway is also activated by RTKSs and regulates various cellular functions, including
cell survival and proliferation. The activation of the PI3K-Akt pathway is initiated by
the recruitment of the adaptor protein Gab1 to the phosphorylated tyrosine residues on
the activated RTK. Gab1l then recruits the regulatory subunit of PI3K, leading to the
activation of PI3K. Activated PI3K then produces the lipid second messenger
phosphatidylinositol (Chang and Karin 2001; Manning and Cantley 2007; Mendelsohn
and Baselga 2000)-trisphosphate (PIP3), which recruits Akt to the plasma membrane.
Akt is then phosphorylated and activated by upstream kinases, leading to the regulation
of various downstream effectors that regulate cell survival and proliferation (Manning
and Cantley 2007). Dysregulation of RTK signaling pathways has been implicated in
various cancers. In many cases, cancer cells overexpress or mutate RTKs, leading to

constitutive activation of downstream sign@ing pathways. For example, the EGFR is



frequently overexpressed in various cancers, including lung, colon, and breast cancer.
Overexpression of EGFR leads to constitutive activation of the Ras-MAPK and PI3K-
Akt pathways, resulting in increased cell proliferation, survival, and metastasis
(Mendelsohn and Baselga 2000). Genes can also lead to constitutive activation of
downstream signaling pathways. For example, mutations in the PDGFR gene have
been identified in gastrointestinal stromal tumors (GISTs). These mutations give rise
to the ligand-independent activation of the PDGFR, causing a persistent activation of
the Ras-MAPK and PI13K-Akt pathways (Heinrich et al. 2003). The dysregulation of
RTK signaling pathways in cancer has made them attractive targets for therapeutic
intervention. Several RTK inhibitors have been developed that target various RTKSs,
including EGFR, PDGFR, and vascular endothelial growth factor receptor (VEGFR).
These inhibitors have shown promising results in clinical trials and have been
approved for the treatment of various cancers (Roskoski 2021). For example, the
EGFR inhibitor gefitinib has been approved for the treatment of non-small cell lung
cancer (NSCLC) with activating mutations in the EGFR gene. Gefitinib targets the
intracellular tyrosine kinase domain of EGFR, inhibiting downstream signaling
pathways and leading to decreased cell proliferation and survival (Maemondo et al.
2010). Similarly, imatinib, a small molecule inhibitor of PDGFR, has been approved
for the treatment of GISTs. Imatinib targets the ATP-binding site of PDGFR, inhibiting

its tyrosine kinase activity and downstream signaling pathways (Joensuu 2006).

2.3 Classification of Tyrosine Kinase Inhibitor

Tyrosine kinase inhibitors (TKIs) are a class of drugs that selectively inhibit the
activity of tyrosine kinases, which play a key role in various signaling pathways
involved in cancer development and progression. TKIs can be classified based on their
chemical structure, target specificity, and mechanism of action. The initial generation
of TKIs consists of imatinib, which focuses on the BCR-ABL fusion protein in chronic
myeloid leukemia (CML), and sunitinib, which targets receptors such as vascular
endothelial growth factor receptor (VEGFR), platelet-derived growth factor receptor
(PDGFR), and c-Kit in renal cell carcinoma (RCC). These inhibitors are ATP-
competitive and bind to the catalytic site of the kinase, preventing ATP from binding
and inhibiting kinase activity (Druker et al. 2001; Motzer et al. 2007). The second
generation of TKIs includes dasatinib, which targets BCR-ABL and Src kinases in
CML, and axitinib, which targets VEGFR4in RCC. These inhibitors are also ATP-



competitive but have a higher binding affinity and broader target specificity compared
to first-generation inhibitors. Dasatinib has been shown to induce deeper and faster
responses than imatinib in CML patients, including those with imatinib-resistant
disease (Kantarjian et al. 2006). Axitinib has been shown to significantly prolong
progression-free survival and overall survival in patients with advanced RCC who
failed first-line therapy with sunitinib or cytokine therapy (Rini et al. 2011). The third
generation of TKIs includes ponatinib, which targets BCR-ABL, and several other
kinases involved in CML, and osimertinib, which targets epidermal growth factor
receptor (EGFR) with the T790M resistance mutation in non-small cell lung cancer
(NSCLC). These inhibitors are both irreversible and can overcome resistance to earlier
generation inhibitors. Ponatinib has been shown to induce deep and durable responses
in heavily pretreated CML patients, including those with BCR-ABL mutations that
confer resistance to other TKIs (Cortes et al. 2013). In NSCLC patients with the
T790M mutation, osimertinib has demonstrated substantial enhancements in
progression-free survival and overall survival when compared to platinum-based
chemotherapy (Mok et al. 2017). In addition to these classifications, TKIs can also be
categorized based on their target specificity. For example, crizotinib and ceritinib
target anaplastic lymphoma kinase (ALK) in NSCLC, and dabrafenib and vemurafenib
target BRAF in melanoma. These inhibitors have shown significant clinical benefit in
patients with their respective molecular targets (Chapman et al. 2011; Shaw et al.
2013). Despite their efficacy, TKIs can cause various adverse effects, such as diarrhea,
nausea, skin rash, and cardiovascular toxicity. In addition, the development of
resistance to TKIs is a major challenge in the treatment of cancer, highlighting the

need for the development of new and improved inhibitors.

2.4 Rearranged During Transfection (RET) Kinase

RET (rearranged during transfection) is a proto-oncogene that encodes a receptor
tyrosine kinase (RTK) is located on chromosome 10g11.2 which is a pericentromeric
region and it is involved in various signaling pathways, including cell survival,
proliferation, and differentiation. RET was first identified as a fusion gene with the H4
gene in a thyroid cancer sample in 1985 (Takahashi, Ritz, and Cooper 1985; Wells and
Santoro 2009). Since then, RET mutations and rearrangements have been identified in
various cancer types, including papillary and medullary thyroid carcinoma, lung
adenocarcinoma, and colorectal cancer (V$ubbiah et al. 2018).



The RET protein is a receptor tyrosine kinase situated across the cell membrane,
featuring distinct components including an extracellular domain, a single
transmembrane domain, and an intracellular domain. Within the extracellular domain,
there are four cadherin-like repeats and a cysteine-rich domain, responsible for ligand
binding, receptor dimerization, and subsequent activation, as depicted in Figure 1. The
intracellular domain contains a juxtamembrane domain, a catalytic domain, and a C-
terminal tail, which are responsible for signal transduction and downstream signaling
pathways (Mulligan 2014; Plaza-Menacho, Mologni, and McDonald 2014).

The crystal structure of the RET extracellular domain has been determined in
complex with glial cell line-derived neurotrophic factor (GDNF), its cognate ligand,
and the GDNF family receptor alpha 1 (GFRal), a co-receptor that enhances ligand
binding and specificity. The complex structure reveals a dimeric arrangement of the
RET extracellular domains, with GDNF and GFRal binding at the interface between
the two monomers. The structure also provides insights into the mechanism of ligand-
induced dimerization and activation of the receptor (Lu et al. 2015; Parkash et al.
2008).

The crystal structure of the RET kinase domain has also been determined in
complex with ATP and a small molecule inhibitor, revealing the active conformation
of the kinase and the binding site of the inhibitor. The structure provides insights into
the mechanism of kinase activation and inhibition, as well as the design of selective
and potent RET inhibitors for cancer therapy (Chen et al. 2016; DeLano et al. 2000).
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Figure 1. The RET receptor tyrosine kinase's domains

The RET receptor tyrosine kinase consists of an arrangement comprising an
extracellular domain encompassing four cadherin-like domains and a cysteine-rich
region, a transmembrane region spanning the plasma membrane, and an intracellular
domain that houses a substantial tyrosine kinase domain

(Drosten and Putzer 2006).

The activation of RET entails the interaction between its extracellular domain
and ligands, including glial cell line-derived neurotrophic factor (GDNF) and other
ligands from the GDNF family. This interaction is facilitated by the presence of Ca?*
ions (Wells and Santoro 2009). The ligand binding induces dimerization of RET with
its co-receptors, the GDNF family receptor alpha (GFRa) proteins, leading to
autophosphorylation of the intracellular tyrosine residues in the RET kinase domain.
GDNF, Neurturin, Artemin and Persephin are the four glial derived neurotrophic factor

ligands which are bound to the RET in conjunction with GFRal, GFRa2, GFRa3,
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GFRo4 respectively and generate a ternary complex which is an important complex
for RET signaling and it shown in Figure 2. and Figure 3. This GFL-GFRa-RET
complex is caused to dimerization and activation of the RET tyrosine kinase (De Falco
et al. 2017; Wells and Santoro 2009).

A RET
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Kinase

Figure 2. The RET receptor tyrosine kinase, its interaction with GDNF family
ligands and coreceptors

The diagram illustrates the RET receptor tyrosine kinase, its engagement with GDNF
family ligands, and the involvement of vital functional domains. This includes the
transmembrane receptor function of the four GFLs (glial cell line-derived
neurotrophic factor family) and the binding of GFLs to RET via interactions with cell
surface coreceptors from the GFRa family

(Mulligan 2018).
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Figure 3. The domain structure of the RET receptor—coreceptor—ligand complex

The provided figure showcases the domain arrangement of the 2/2/2 complex
involving the RET receptor, coreceptor, and ligand. The receptor, depicted in gray,
exhibits its specific structural domains. The coreceptors, GFRAL and GFRa1-4, are
displayed in blue, while the ligands GDF15, GDNF, NRTN, ARTN, and persephin
are depicted in cyan

(Trenker and Jura 2020).

Autophosphorylation of the tyrosine residues in the kinase domain activates the
RET receptor by inducing a conformational change that exposes the docking sites for
downstream signaling molecules, such as the adaptors Shc, Grb2, and Gab1l, and the
effector enzymes PI3K, PLCy, and Src. These signaling molecules are recruited to the
activated RET receptor and initiate downstream signaling pathways, including the
RAS/RAF/MAPK and PI3K/AKT pathways, which regulate cell growth, survival,
differentiation, and migration (Mulligan 2014; Plaza-Menacho 2018).

The activation of RET is tightly regulated by multiple mechanisms, including
the interaction with its ligands and co-receptors, the activity of its negative regulators,
such as protein tyrosine phosphatases (PTPs) and Sprouty proteins, and the formation
of intracellular protein complexes that modulate the signaling output. Dysregulation
of RET signaling, due to genetic mutations, overexpression, or aberrant activation of

its downstream effectors, has been implicated in various human diseases, including
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cancer and neurodegenerative disorders (Plaza-Menacho et al. 2007; Trenker and Jura
2020).

Phosphorylation of RET is a key post-translational modification that regulates
the activity of the receptor and downstream signaling pathways. The intracellular
domain of RET contains multiple tyrosine residues that can be phosphorylated by
various tyrosine kinases, including RET itself (autophosphorylation) and non-RET
kinases such as c-Src and focal adhesion kinase (FAK) (Mulligan 2014; Plaza-
Menacho 2018).

Phosphorylation of specific tyrosine residues in RET creates docking sites for
downstream signaling molecules, such as the adaptor protein SHC, the docking protein
GRBZ2, and the cytoplasmic protein tyrosine phosphatase SHP2. These molecules can
activate downstream signaling pathways, including the RAS-MAPK and PI3K-AKT
pathways, which are involved in cell proliferation, survival, and differentiation
(Mulligan 2019).

Phosphorylation of other tyrosine residues in RET can also create negative
feedback loops that downregulate the activity of the receptor and prevent excessive
signaling. For example, phosphorylation of tyrosine 981 in RET creates a binding site
for the adaptor protein NCK, which can recruit the E3 ubiquitin ligase CBL to the
receptor and induce its degradation (5,6). Also, autophosphorylation of tyrosine 1062
in the c-tail of the RET protein plays a crucial role in signaling. This process facilitates
the recruitment of intracellular adaptors like SHC, FRS2, and IR1/2. Consequently,
RET activates the RAS-MAPK and PI3K-AKT-mTOR cascades, which serve as
important pathways for signal transduction (De Falco et al. 2017).

In addition to tyrosine phosphorylation, RET can also be phosphorylated on

serine and threonine residues by various serine/threonine kinases, including PKC,
PKA, and GSK3. These phosphorylation events can also regulate the activity of the
receptor and downstream signaling pathways (Ostman and Béhmer 2001).
Overall, phosphorylation of RET is a dynamic and complex process that plays a critical
role in the regulation of cellular signaling and physiological processes. Dysregulation
of RET phosphorylation has been implicated in various diseases, including cancer and
neurodegenerative disorders.

In the thyroid gland, RET is essential for the development and function of the
parafollicular C-cells, which produce calcitonin, a hormone that regulates calcium

metabolism. Activating mutations in RET Zge the major cause of hereditary medullary



thyroid carcinoma (MTC), a rare form of thyroid cancer that arises from the C-cells.
In sporadic MTC, somatic mutations in RET are also frequently found, indicating that
RET is a key driver of this cancer type (Mulligan 2014).

In the lung, RET has been implicated in the development of non-small cell lung
cancer (NSCLC), the most common form of lung cancer. Rearrangements of the RET
gene, which result in fusion with other genes such as KIF5B or CCDC6, are found in
a small subset of NSCLC patients, and RET inhibitors have shown promising results
in preclinical and clinical studies (Kumi Kawai 2020).

Furthermore, within the nervous system, RET is expressed in diverse neuronal
populations and plays a crucial role in the formation and sustenance of the enteric and
sympathetic nervous systems, along with the central nervous system. Loss-of-function
mutations in RET are the cause of Hirschsprung disease, a congenital disorder
characterized by the absence of enteric ganglia in the distal bowel, which leads to
severe constipation and intestinal obstruction. Moreover, RET has been linked to the
development of various neurodegenerative disorders, such as Parkinson's disease and
Alzheimer's disease, although the precise mechanisms involved are not yet
comprehensively understood (Jing et al. 1996). Due to (Kramer and Liss 2015) RET
plays a crucial role in the survival of dopamine neurons and provides neuroprotection,
particularly when challenged by neurotoxins. On the other hand, Parkinson’s disease
adversely affects dopamine neurons, leading to a decline in dopamine levels. Although
GFL have shown promise in promoting the survival of midbrain dopamine neurons,
their effectiveness in clinical trials with PD patients has been limited. Consequently,
targeting RET presents an opportunity for PD treatment. The main challenge lies in
delivering GFL to the brain of patients, which can be addressed by developing small
molecules that specifically target RET and possess favorable pharmacodynamic
properties to penetrate the blood-brain barrier. Such an approach represents a disease-
modifying strategy that could enable the inclusion of early-stage PD patients in clinical
trials.

Mutations in the RET gene can lead to various diseases, including cancer and
inherited disorders. In cancer, RET mutations are found in multiple types of tumors,
including papillary thyroid carcinoma (PTC), lung cancer, and multiple endocrine
neoplasia type 2 (MEN2) syndromes. These mutations can result in constitutive
activation of the RET protein, leading to aberrant signaling and tumor growth
(Mulligan 2014). 21



In PTC, the most common RET mutation is a point mutation in codon 634, which
accounts for approximately 90% of all RET mutations in PTC. This mutation leads to
a single amino acid substitution of cysteine to arginine (C634R) in the extracellular
domain of the RET protein, resulting in ligand-independent dimerization and
activation of the receptor (Marsh, Learoyd, and Robinson 1995; Romei et al. 2016).
In MEN2 syndromes, RET mutations are inherited in an autosomal dominant manner
and can lead to the development of medullary thyroid carcinoma (MTC), a rare and
aggressive form of thyroid cancer. The mutations in MEN2 are clustered in specific
regions of the RET gene, including codons 609, 611, 618, 620, 634, and 918, and can
result in constitutive activation of the RET protein and downstream signaling pathways
(Wells et al. 2015b).

Several RET inhibitors have been developed to target RET-driven cancers, such
as vandetanib and cabozantinib for MTC and selpercatinib for RET fusion-positive
cancers. However, the development of resistance to these inhibitors is a major
challenge, highlighting the need for the development of new and improved therapies
for RET-mutant cancers (Drilon et al. 2018a; Vivek Subbiah et al. 2018).

2.5 Acquired resistance.

Acquired resistance has been a major challenge in the clinical use of RET kinase
inhibitors in the treatment of medullary thyroid cancer (MTC) and non-small cell lung
cancer (NSCLC). The development of acquired resistance can ultimately lead to
disease progression and relapse in patients. This resistance can either be primary,
where the tumor does not respond to the treatment due to intrinsic or patient-specific
factors, or acquired, where the cancer obtains the ability to resist the activity of an
inhibitor to which it was previously susceptible (Drilon et al. 2018a).

There are several mechanisms of acquired resistance in RET inhibition,
including on-target resistance, pathway-driven resistance, and alternative pathway-
driven resistance. On-target resistance can occur due to target amplification or
secondary resistance mutations, which decrease the affinity of the inhibitor to the
target. Pathway-driven resistance can occur when mutations downstream of the RET
signaling pathway cause constitutive activation of the pathway. Alternative pathway-
driven resistance can occur when alternative RTKSs are activated in tumor cells to

bypass the inhibition and confer acquired resistance (Zhang et al. 2022).
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In MTC, acquired resistance to RET inhibition is a significant clinical issue, with
studies identifying various mechanisms of resistance, such as mutations in the RET
kinase domain and activation of alternative pathways, including the PI3K/Akt/mTOR
pathway. In NSCLC, RET fusions are the primary target for RET inhibition, with
acquired resistance occurring due to mechanisms such as secondary mutations in the
RET kinase domain and activation of alternative signaling pathways, including the
EGFR and MET pathways (Pan et al. 2021).

Acquired resistance typically involves modifying the RET kinase, the target
molecule, or acquiring mutations that allow for bypass signaling. Within the RET
kinase domain, specific single amino acid changes have been identified as contributors
to target-mediated resistance against various tyrosine kinase inhibitors (TKIs). These
changes occur in the hinge segment of the RET kinase, with mutations found in RET
V804, Y806, and G810, as well as in the activation segment with S904. Notably, RET
kinase V804 plays a crucial role in what is known as the ‘gatekeeper’ position,
controlling the accessibility of the hydrophobic ATP-binding and drug-binding pocket.
This positioning can potentially impact the binding affinity of the RET kinase for ATP
and most frequent single mutations in this residue which are identified in patients with
MTC and NSCLC, is mutation of valine to methionine or leucine (V804M/L). other
mutations that mostly caused resistance to selective RET inhibitors are G810S located
at floor of solvent-front, Y806C/N mutation located at hinge, V738A mutation located
at B2 strand and L730V/I mutations located at roof of the solvent-front site of the RET
proto-oncogene (Salvatore, Santoro, and Schlumberger 2021).

Several studies have identified the presence of specific mutations in medullary
thyroid cancer (MTC) patients. These include the M918T mutation as well as double
mutations such as V804M/G810S, V804M/Y806C, and Y806C/V738A (Liu et al.
2020; Xia and Ou 2020).

To overcome acquired resistance in RET inhibition, several strategies have been
proposed, including change of doses and schedules, combination therapy, and
development of new inhibitors. Combination therapy can be used with other rational
inhibitors or with traditional chemotherapy drugs, targeting and stopping the bypass
tracks. Developing novel potent inhibitors with higher specificity for mutant types is
also a potential strategy to overcome on-target driven resistance mechanisms (Casals
etal. 2017).
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2.6 RET Kinase Inhibitors

Inhibitors are molecules that can bind to a protein or enzyme and decrease its
activity. In the case of RET kinase inhibitors, these molecules are designed to bind
specifically to the ATP-binding pocket of the RET kinase domain, which is necessary
for its activity (Vodopivec and Hu 2022). By binding to this pocket, the inhibitor can
prevent ATP from binding to the kinase, leading to inhibition of its activity and
downstream signaling pathways. There are several classes of RET kinase inhibitors,
including multikinase inhibitors that target multiple receptor tyrosine kinases, and
selective inhibitors that target RET specifically. These inhibitors have shown promise
in preclinical and clinical studies for the treatment of RET-driven cancers, including
lung cancer and medullary thyroid cancer (Li et al. 2023; Santoro et al. 2020). The
FDA has approved two selective RET inhibitors for the treatment of RET-driven

cancers: selpercatinib (Retevmo) and pralsetinib (Gavreto).

2.6.1  Selpercatinib. Selpercatinib is a small molecule inhibitor designed to
target the ATP-binding pocket of the RET kinase domain. Its chemical structure
consists of a pyrrolopyridine core with multiple substitutions and functional groups,
which are responsible for its binding specificity and potency (Drilon et al. 2018a).

Selpercatinib, marketed as Retevmo, is a targeted RET kinase inhibitor that
obtained approval from the U.S. Food and Drug Administration (FDA) in May 2020.
It is indicated for the treatment of RET fusion-positive non-small cell lung cancer
(NSCLC), RET-mutant medullary thyroid cancer (MTC), and RET fusion-positive
thyroid cancer. Selpercatinib was developed based on the structure of the RET kinase
domain and its interaction with ATP and inhibitors. The molecule was designed to
bind specifically to the ATP-binding pocket of RET kinase and inhibit its activity,
leading to the inhibition of downstream signaling pathways (FDA 2020b). In
preclinical and clinical studies, selpercatinib has demonstrated potent activity against
RET fusion-positive and mutant tumors, including NSCLC, MTC, and thyroid cancer,
with high response rates and durable responses. Selpercatinib was approved based on
the results of two Phase I/Il clinical trials, LIBRETTO-001 and LIBRETTO-531,
which evaluated the efficacy and safety of the drug in patients with advanced RET
fusion-positive NSCLC and RET-mutant MTC, respectively. The studies showed that
selpercatinib had significant clinical activity and an acceptable safety profile in these
patient populations (Drilon et al. 2018a). byaddition to its use in RET fusion-positive



NSCLC and MTC, selpercatinib is also being evaluated in other RET-driven cancers,
including papillary thyroid cancer, solid tumors with RET gene fusions, and other
advanced solid tumors (Vivek Subbiah et al. 2018).

Selpercatinib has shown remarkable clinical activity against RET fusion-positive
non-small cell lung cancer (NSCLC) and thyroid cancer. However, resistance to
selpercatinib has been observed in some patients, particularly those with acquired
mutations in the RET kinase domain, such as gatekeeper mutations VV804L and G810R.
These mutations are known to confer resistance to multiple kinase inhibitors by
hindering drug binding to the ATP-binding pocket. Studies have shown that
selpercatinib can still exhibit partial inhibitory activity against these mutations, albeit
at higher concentrations. The drug is thought to achieve this by binding it to an
allosteric site near the kinase domain, which stabilizes the inactive conformation of
the RET kinase and reduces its activity even in the presence of activating mutations
(Rosen et al. 2021).

One study demonstrated that in vitro treatment with selpercatinib could
effectively suppress RET signaling and induce apoptosis in cell lines expressing
gatekeeper mutations, albeit at higher concentrations than those required for wild-type
RET. Another study showed that in patients with RET fusion-positive cancers who
developed acquired resistance to selpercatinib, combination therapy with a second-
generation RET inhibitor, pralsetinib, could overcome the resistance and achieve
durable responses (Shabbir et al. 2023).

2.6.2  Pralsetinib. Gavreto, also known as pralsetinib, is an additional
selective RET kinase inhibitor that has received FDA approval for the treatment of
cancers driven by RET alterations. Developed by Blueprint Medicines, it was granted
accelerated approval in September 2020 for the management of advanced or metastatic
RET-mutant medullary thyroid cancer and RET fusion-positive thyroid cancer
(GAVRETOTM (pralsetinib) Prescribing Information (U.S.) 2020).

Like selpercatinib, pralsetinib also targets the ATP-binding pocket of the RET
kinase domain and inhibits its activity. It has demonstrated potent and selective
inhibition of RET in preclinical studies and has shown promising clinical activity in
patients with RET-driven cancers, including lung cancer, thyroid cancer, and other

solid tumors.
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The structure of pralsetinib is similar to that of selpercatinib, with a pyrazole-
pyridine scaffold and a 3,5-dimethylpiperazine group for binding to the ATP-binding
pocket of the RET kinase domain. However, there are differences in the chemical
substitutions and modifications, which may contribute to differences in their
pharmacological and therapeutic properties (V. Subbiah et al. 2018).

Pralsetinib, also known as BLU-667, is a selective RET kinase inhibitor that has
shown promising results in preclinical and clinical studies for the treatment of RET-
driven cancers, particularly non-small cell lung cancer and medullary thyroid cancer
(Griesinger et al. 2022; Taylor et al. 2019). Like other RET inhibitors, pralsetinib binds
to the ATP-binding pocket of the RET kinase domain, preventing the binding of ATP
and subsequent activation of downstream signaling pathways (Wang 2013). In Figure
4. it shown that Pralsetinib bind to the ATP binding site of RET protein.

Figure 4. Surface view of the Pralsetinib in the ATP binding site of RET protein.

Pralsetinib was developed using a structure-based drug design approach, in
which the crystal structure of the RET kinase domain was used to guide the design of
small molecule inhibitors that can bind specifically to the ATP-binding pocket of the
kinase (Knowles et al. 2006; Luo et al. 2021). Preclinical studies have shown that
pralsetinib has potent inhibitory activity against several RET fusion variants and
mutations, including those that are resistant to other RET inhibitors such as vandetanib
and cabozantinib (Drilon et al. 2013). 26



In a phase I/11 clinical trial, pralsetinib demonstrated high response rates and
durable clinical benefits in patients with RET fusion-positive non-small cell lung
cancer and medullary thyroid cancer, with manageable side effects (Drilon et al. 2019;
Griesinger et al. 2022). Based on these results, pralsetinib was granted accelerated
approval by the U.S. Food and Drug Administration (FDA) in 2020 for the treatment
of adult patients with metastatic RET fusion-positive non-small cell lung cancer (FDA
2020a).

Pralsetinib has also shown activity against RET fusion proteins and mutations
that confer resistance to other RET inhibitors, such as selpercatinib. However, some
mutations, such as RET V738A, Y806C/N, G810S and L730V/I have been shown to
confer resistance to pralsetinib as well (the L730V/I RET roof mutations display
different activities toward pralsetinib an selpercatinib) (Drilon et al. 2018c; Vivek
Subbiah et al. 2018). Pralsetinib acts as an ATP-competitive inhibitor by binding to
the ATP-binding pocket of the RET kinase domain, thereby preventing ATP from
binding and inhibiting downstream signaling pathways (Li et al. 2023). Resistance to
pralsetinib can occur through mutations in the RET kinase domain that alter the
conformation of the ATP-binding pocket or increase its affinity for ATP, thereby
reducing the binding of the inhibitor (V. Subbiah et al. 2018).
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Chapter 3
Theoretical Background

3.1 Quantitative Structure — Activity Relationship (QSAR)

Quantitative structure-activity relationship (QSAR) is a computational technique
used in drug discovery and development to predict the biological activity of new
compounds based on their structural properties. The first QSAR study was conducted
in 1868 by Crum-Brown and Fraser, who established a correlation between the
chemical structures of a series of barbiturates and their sedative effects (Brown and
Fraser 1868). Since then, QSAR has been extensively used in drug design to predict
the biological activity, toxicity, and other properties of novel compounds.

QSAR is based on the assumption that the biological activity of a compound is
related to its physicochemical properties and structural features. The goal of QSAR is
to develop a mathematical model that can predict the biological activity of new
compounds based on their structural and physicochemical properties (Arthur, Ejeh,
and Uzairu 2020). To achieve this, QSAR models are trained using a set of compounds
with known biological activity, and their physicochemical and structural properties are
characterized using various descriptors such as molecular weight, solubility, and
lipophilicity. These descriptors are then used to generate a mathematical model that
can predict the biological activity of new compounds.

QSAR has several advantages over traditional drug discovery methods. It can
significantly reduce the time and cost required to develop new drugs by allowing
researchers to predict the biological activity of novel compounds before they are
synthesized and tested in the laboratory (Fujita 1995). Additionally, QSAR models can
be used to optimize the properties of existing drugs, such as improving their selectivity
and reducing their toxicity.

3.2 Structure-Based Pharmacophore Modeling

Structure-based pharmacophore is a computational technique used in drug
discovery to identify the essential chemical features required for ligand binding to a
target protein. The process of pharmacophore generation involves the identification of
ligand-protein interactions, which are then translated into a three-dimensional (3D)

pharmacophore model (Jain 1996). This model represents the spatial arrangement of
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chemical features, including hydrogen bond donors, hydrogen bond acceptors,
hydrophobic regions, and ionic interactions, that are critical for ligand binding to the
target protein. Structure-based pharmacophore generation is based on the hypothesis
that structurally diverse ligands that bind to the same protein share common chemical
features that are essential for binding (Wolber and Langer 2005).

The pharmacophore hypothesis can be created by analyzing a set of structurally

diverse ligands that bind to the target protein. By identifying the common chemical
features present in these ligands, a 3D pharmacophore model can be generated that
represents the essential chemical features required for ligand binding to the target
protein. This model can then be used to screen large databases of compounds to
identify potential lead compounds with similar chemical features (Jain 1996).
To evaluate the fitness of a compound to the pharmacophore model, a scoring function
is used. The scoring function is a mathematical approach that quantifies the fit between
the pharmacophore model and the ligand. The fitness score is calculated based on the
interactions between the ligand and the pharmacophore model, such as the distance
between the ligand and the pharmacophore features, the angles between the ligand and
the pharmacophore features, and the orientation of the ligand within the
pharmacophore model (Wang, Fu, and Lai 1997).

The fitness score is calculated using a mathematical formula that takes into
account the degree of match between the ligand and the pharmacophore features. In
pharmacophore modeling, the fitness score (FS) is calculated based on the following

equation:

FS = n+ (n, X wp) + (pp X wpp) + (0. X w,) Equation 3. 1

Where n is the number of matching features, m, is the number of matched
pharmacophore points, w,, is the weight assigned to the pharmacophore points, 1, is

the number of matched hydrogen bond acceptors and donors, wy,, is the weight
assigned to hydrogen bonds, n,. is the number of rotatable bonds in the ligand, and
w,. is the weight assigned to rotatable bonds. This formula allows for a quantitative
evaluation of the degree of fit between a ligand and a pharmacophore, which can be
used to prioritize or filter large virtual compound libraries and to predict the biological

activity of compounds (Jain 1996).
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An e-pharmacophore, or energy-optimized structure-based pharmacophore, is a
computational method used in drug discovery. It has proven to offer superior virtual
screening speed and enrichments when compared to molecular docking utilizing

Glide's "standard precision” (SP) scoring function (Moumbock et al. 2021).

3.3 Z-Score

The Z-score is a statistical measure that evaluates the deviation of a value from
the mean in terms of standard deviation. It is calculated by subtracting the mean from
the value of interest and dividing it by the standard deviation:

Z — score = (value — mean) / standard deviation Equation 3. 2

In drug discovery, the Z-score is used to evaluate the potency of a compound
relative to a reference dataset. It allows researchers to compare the activity of a
compound against the activity distribution of a large number of compounds. The Z-
score is particularly useful when working with datasets that have a non-normal
distribution, as it provides a standardized measure of deviation that is not affected by
the distribution's shape.

In drug discovery, the Z-score is used in a variety of applications, such as virtual
screening, hit identification, and lead optimization. It is commonly used to evaluate
the potency of a compound in vitro and in vivo, as well as its pharmacokinetic and

pharmacodynamic properties (Andrade 2021).

3.4 METACORE™/METADRUG™

The METACORE™/METADRUG™ tool offered by Clarivate Analytics is a
popular online platform in the field of drug discovery that provides an extensive profile
of pharmacokinetic and pharmacodynamic properties for a selected compound or
group of compounds. By utilizing 25 common diseases binary QSAR models and 26
toxicities binary QSAR models, the Tanimoto Prioritization (TP) value of a compound
can be determined based on its similarity to the training and test sets of the QSAR
models. The primary objective of this platform is to predict the major metabolites of
an input structure and their impact on the key enzymes of the human body (Ekins et
al. 2006). The METACORE™/METADRUG™ platform utilizes QSAR to forecast
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the pharmacokinetic and pharmacodynamic characterization of small molecules. The
Cooper statistical parameters, including sensitivity, specificity, accuracy, and
Matthews Correlation Coefficient (MCC), are used to verify the effectiveness of the
QSAR models in this platform. These parameters are used to evaluate the fitness,
robustness, and predictive power of the QSAR models (Dogan and Durdagi 2021). The
MCC is a correlation coefficient between experimental values and predicted values,
while sensitivity measures correctly predicted positives, specificity measures correctly
predicted negatives, and accuracy measures how close the model can get to the true
value. Overall, the METACORE™/METADRUG™ platform is a reliable tool for
pharmacokinetic and pharmacodynamic prediction and evaluation in drug discovery
research (Myshkin et al. 2012).

3.5 Molecular Docking

Molecular docking is a computational method used to study the binding between
a protein receptor and a small molecule ligand. The main aim of molecular docking is
to predict the binding affinity and orientation of a ligand to its target protein receptor,
which can then be used to design novel drugs or optimize existing ones. The method
involves generating multiple conformations of the ligand and protein receptor and then
evaluating their binding energy scores to obtain the most favorable conformation.

The scoring functions used in molecular docking are typically based on the
principles of thermodynamics and include empirical, physics-based, and hybrid
approaches. One commonly used scoring function is the empirical scoring function,
which assigns weights to various factors such as hydrogen bonding, van der Waals
interactions, and electrostatics. The most popular empirical scoring function is
AutoDock, which uses a combination of Lamarckian genetic algorithm and a local
search algorithm for docking simulations (Morris et al. 1639).

Another scoring function used in molecular docking is the physics-based force
field approach, which uses the principles of molecular mechanics to calculate the
binding energy of the protein-ligand complex. This approach is more accurate than the
empirical scoring function but requires significant computational resources.

In recent years, machine learning algorithms have been applied to improve the
accuracy of molecular docking. These methods use large datasets to train a predictive

model that can estimate the binding affinity of new ligands to a protein receptor. One
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such method is DeepDock, which uses a deep neural network to predict the binding
affinity of protein-ligand complexes (Jiménez-Luna et al. 2020).

Molecular docking is a computational technique used to determine the structure
of a complex formed between a drug candidate and the target molecule, which is
referred to as a docking pose. In many molecular docking simulations, the ligand is
allowed to have complete conformational flexibility, while the target is restricted to a
few flexible residues at the binding site or is considered entirely rigid to minimize
computational resources. Multiple docking poses can be generated by considering
different orientations of the ligand within the binding site, which necessitates the use
of a score to rank the different docking poses. This score, known as the docking score,

is computed based on the binding free energy (AGping) but is subject to certain

assumptions to accelerate computer calculations (Suhandi et al. 2021).

AGping = AHpina — TASpina Equation 3. 3
The formula used in the calculation of docking scores involves the enthalpy
change (AHpinq) and entropy change (ASpinq) due to binding, along with the
temperature (T). However, during this process, it is assumed that the binding of a
ligand to the target does not result in a significant change in entropy. Therefore, the
calculation of AGp;,,q could be accomplished through the direct computation of
AHy;,.q . To compute the enthalpy change, one can determine the change in internal
energy, AUpina , and account for the effects of pressure, P, and volume changes, 4V,
using the equation:
AHping = AUpina — PAV Equation 3. 4
In molecular docking, it is generally assumed that when a smaller ligand binds
to a protein, it does not have a significant effect on the volume of the protein. This
means that the second term in equation 3.4, which accounts for changes in volume,
can be disregarded, and the binding free energy AGp;,g Can be assumed to be equal to

the enthalpy change AH,;,4 . Therefore, the internal energy changes due to binding,
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AUy;na, Can be used to directly calculate AGp;,g, and is typically employed in the
calculation of docking scores.

AGbind = AGO + AGh—bond Zh—bond f(AT', A(X) + AGionic Zionic f(Ar,Aa) +
AG 4rom Zaromatic f(AT, Aa) + AGlipo ZlipolAlipol + AG,o¢Nyot Equation 3. 5

Equation 3.5 comprises a constant term AG, that does not depend on the system
and several terms that correspond to ideal hydrogen bonds, ionic interactions, aromatic
interactions, and lipophilic interactions. These terms are multiplied by a penalty
function f (Ar,Aa). The term AG,,; is multiplied by N,.,., which is the count of
rotatable bonds in the ligand. This multiplication accounts for the decrease in free
energy when a rotatable bond in the ligand is assumed to be fixed during binding. This
approach was described by (Christopher J. 2004).

In Maestro, various docking algorithms such as Glide / HTVS, Glide / SP, and
Glide / XP were used for molecular docking analysis (Halgren et al. 2004). The
Glide/HTVS algorithm, which does not have advanced settings, provides a practical
docking method for scanning libraries containing a large number of molecules. Since
scanning a large number of molecules in docking simulations using advanced settings
and overly sensitive algorithms is costly and time-consuming, first scanning with
Glide/HTVS provides practical and convenient results for the rough filtering of large
molecule libraries. Glide/HTVS is a method that contributes to a significant reduction
in the cost of drug development by enabling the rapid screening of the biological
activity of large chemical libraries. It is a preferred computational strategy to accelerate
structure-based drug design studies (Halgren et al. 2004).

The Glide/SP algorithm offers more advanced settings and improved parameters
compared to Glide/HTVS. To reduce errors in Coulomb and vows interactions, net
ionic charge interactions on charged groups such as carboxylates and guanidiniums
have been reorganized. Interactions energies have been improved by reducing the
interaction energies of directly contributing atoms, thereby reducing inequalities in
interaction energies. The interaction energy between two charged groups has also been
improved to some extent in the Glide/SP algorithm. The most significant variable
introduced in the Glide/SP algorithm is the solvent model component. If charged and
polar groups of protein and ligand molecules are not properly soluble, serious
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constraints occur in ligand poses. In this case, the physical effects of water molecule
interactions are neglected, making the complex physically unrealistic. The
accessibility of charged groups to solvent must be evaluated very carefully, and the
trapping of water molecules in hydrophobic pockets by the ligand can prevent
interactions and should be avoided. The location and surroundings of water molecules
in the protein active site when the ligand is bound are very important, but existing
continuity solvent models have difficulty capturing these details. To prevent these
errors, open water regions are placed for each ligand pose, and exposure of various
groups to open water is measured using empirical scoring terms and solvation effects
are also included in the calculations. The open water approach employed in Glide/SP
reliably rejects the majority of false positives that arise in any empirical docking
calculation. Although Glide/SP is a more precisely developed algorithm than
Glide/HTVS, it has been developed relatively less precisely than Glide/XP, which is
required to scan a large number of molecules. Therefore, some false positives are
relatively ignored in Glide/XP due to the need to consider the algorithm's speed, which
enables the safe virtual screening of tens or hundreds of thousands of ligands. For
example, errors due to solubility in Glide/SP are evaluated with fewer penalty
coefficients than in Glide/XP.

The Glide/XP algorithm differs from Glide/SP in that it uses a more
comprehensive funnel to achieve binding structures with greater differences. Glide/SP
is utilized to initiate processing with binding, while Glide/XP utilizes various parts of
the molecule as anchor points to generate better scoring by considering each anchor
point. In the Glide/XP protocol, the explicit water model used in Glide/SP is further
developed to better evaluate serious physical principal violations during binding and
to provide higher penalties. GlideScore XP particularly scores the occupancy rate of
hydrophobic pockets that can interact with the hydrophobic groups of the ligand. The
most important physical effects that are against binding are ligand, protein, or both's
strain energy, loss of entropy of ligand and protein, and insolubility (Friesner et al.
2006).

3.6 Molecular Dynamics (MD) Simulations

MD simulation is a crucial tool in the field of in-silico study of biological

systems. This approach involves a time-dependent treatment of an atomic system to
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provide valuable insights into the stability and conformational changes of proteins and
nucleic acids. The origins of molecular dynamics can be traced back to the late 1950s
when Alder and Wainwright used this approach to study hard spheres (Alder and
Wainwright 1959). The next significant advancement came in 1964 when Rahman
introduced the use of force fields in MD simulations. The first application of MD
simulations to study proteins was conducted by Mc Cammon and his colleagues in
their work on bovine pancreatic trypsin inhibitors (McCammon, Gelin, and Karplus
1977).

MD simulations have emerged as a popular method to investigate the
conformation, mobility, and thermodynamics of large biological systems.
Additionally, MD methods are employed in crystallography and NMR tools to enhance
the quality of the structure. In the pursuit of developing novel drugs, MD simulations
are particularly useful in elucidating ligand-protein complexes. The simulations are
based on Newton's second law, F=ma, and integrate the equation of motion to
determine the positions, velocities, and accelerations of the system.

The equation of motion known as Newton's second law can be expressed as:

F; = m;aq; Equation 3.6
where F represents the net force acting on an object, m represents its mass, and a
represents the resulting acceleration.

The gradient of the potential energy can be used to describe the force,

Fi = —ViV Equation 3. 7

The two equations are merged, resulting in:

—dV =m dz‘)"i
dr; b de?

Equation 3. 8

where V represents potential energy.

The force calculations in MD simulations are typically done using empirical
potential energy functions or force fields, which are mathematical functions that
describe the interactions between atoms and molecules. The force fields used in MD

simulations are parameterized using experimental data or quantum mechanical
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calculations and are essential for accurately simulating the system's behavior (Leach
1996).

MD simulations have revolutionized the study of biological systems and have
been used to investigate the structure, stability, and dynamics of proteins, nucleic
acids, and other biomolecules. The approach has been applied to a wide range of
biological problems, including protein folding, ligand binding, enzyme catalysis, and
membrane transport. However, MD simulations are computationally intensive and
require substantial computational resources, and the accuracy of the results depends

on the accuracy of the force field used (Karplus and McCammon 2002).

3.7 MD Trajectory Analysis

MD trajectory analysis is a critical component of the molecular dynamic
simulation workflow, as it allows for the interpretation and extraction of meaningful
information from the large amounts of data generated during the simulation (Dror et
al. 2012).

3.7.1  Root-Mean-Square Deviation (RMSD). The Root Mean Square
Deviation (RMSD) is a commonly used analysis method for MD trajectories. It
involves calculating the RMSD of all frames in the trajectory relative to the initial

conformation using the following formula:
RMSD = \/%Zﬁvzl 82 Equation 3. 9

This equation calculates the RMSD by taking the distance between N pairs of
equivalent atoms, represented by the symbol 9.

The RMSD is defined as follows for two sets of n points (r; and r;):

RMSD, = J%Z?zl(rg(tx) - ri(tref))z Equation 3. 10

The equation involves selecting the N number of atoms and comparing their
positions in different frames of the simulation trajectory. The reference time, t,. is
usually set as the time of the first frame (t=0), and the position of the selected atoms

in subsequent frames is superimposed onto the reference frame. The position of the
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selected atoms in each frame is denoted by r’, and is recorded at a specific time t,.
This process is repeated for every frame in the simulation trajectory (Wu, Chandler,
and Chandler 1988).

3.7.2  Root-Mean-Square Fluctuation (RMSF). The RMSF is a valuable
tool to analyze local fluctuations in the protein chain. It provides information on the
variability of each residue along the simulation trajectory. The formula to calculate the
RMSF of residue i is:

RMSF; = \/%21;1 < (ri(t) — r,-(tref))z > Equation 3. 11

Root Mean Square Fluctuation (RMSF) can be used to assess the local changes
that occur along the protein chain. To calculate the RMSF for a given residue i, the
position of that residue (r;) is compared to the position of the atoms in that residue
after they have been superimposed on a reference structure (r;'). The average of the
square distance over the selection of atoms in the residue is then taken, and this value
is divided by the trajectory time ¢,.r. The procedure is repeated for each residue in the

protein chain (Wu et al. 1988).

3.8 Molecular Mechanics the Generalized Born Solvent Accessible
Surface Area (MM/GBSA)

The calculation of binding free energy for biomolecular systems is crucial in
comprehending the thermodynamic properties that are also measured in experiments.
The use of MD simulations is currently one of the most advanced methods in tracking
biomolecular systems and estimating binding free energies. There are different
approaches available to compute free energies using computational methods. Although
some methods can be highly accurate and provide results comparable to experimental
values, they require sophisticated, time-consuming, and expensive computations.
However, there are also faster and computationally cheaper methods available that
may not provide accurate binding free energies but can be used for ranking different
compounds. An example of such an approach is the end-point free energy
computations, which are computationally efficient and only consider the final state of
the system. The MM/GBSA approach is one such end-point free energy computation
method generally used to estimate binding free energies for protein-ligand complexes,
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aiding in scoring and ranking different ligands against the protein targets (Genheden
and Ryde 2015; Wang et al. 2019).

The MM/GBSA score is calculated using molecular mechanics (MM) and
implicit solvation approaches to determine the polar and non-polar contributions. The
calculation of the MM/GBSA score involves two terms, namely the change in internal
energy (AEM M) calculated by MM and the solvation-free energy (AGSOL) determined
by the implicit solvation approach, while also considering the entropy contribution

(AS). The formula for MM/GBSA computations can be expressed as:

AGbind = AEMM + AGSOL — TAS Equation 3. 12

where AE);,, represents the change in internal energy that includes contributions from
AE;n; + AE,,. + AE,4, . This approach is frequently used to calculate binding free
energies for protein-ligand complexes and to score and rank different ligands against
protein targets. It is computationally efficient, allowing for the rapid ranking of
different compounds (Genheden and Ryde 2015; Wang et al. 2019).

The implicit solvation methods estimate the solvation energy and express it as follows:

AGSOL = AGGB + AGSA Equation 3. 13

In the MM/GBSA approach, the nonpolar contributions to the free energy are
represented by AGs,, which is estimated using the solvent-accessible surface area
(SASA) method. The polar contribution, or the electrostatic solvation energy, is
denoted by AGgp and is calculated by the generalized Born surface area (GB)

approach, as described by (Wang et al. 2019).

AGgy = Y.SASA + ¢ Equation 3. 14
In the given equation, the term SASA represents the solvent-accessible surface

area. The symbol gamma (y) is related to the surface tension, while ¢ denotes the

constant free energy contribution of the vacuum.
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Chapter 4
Methodology

The aim of this research was to identify potential inhibitors for the RET proto-
oncogene with the lowest resistance to mutations compared to the reference molecule,
through an extensive screening of over 500 million molecules from the ZINC and
Chemdiv databases. The methodology employed in this study was multifaceted,
involving various computational techniques.

The first step in our workflow involved text mining of the ZINC database to
extract relevant information on potential ligands for RET. Using the AutoQSAR
module, a QSAR model was developed to predict the plCso values of a fragment-based
ligand library. The resulting molecules were then subjected to a z-score analysis, with
a threshold range of 2-3 based on the number of molecules. The hits that passed this
filter were then evaluated for their cancer score using the MetaCore™/MetaDrug™
platform.

To prepare the ligands for virtual screening, the Schrédinger-Maestro's LigPrep
tool was employed, and the RET structure was prepared with a grid center based on
the Pralsetinib grid. Molecular dynamics (MD) simulation and MM/GBSA calculation
were then conducted. As a secondary method, a long MD simulation was carried out
for 7JU5, and an e-pharmacophore for all frames was generated to obtain a hypothesis.
A Python script was used to analyze and visualize the hypothesis in frames with the
lowest RMSD, and the coordinates with the lowest RMSD were employed to screen
the fragment-based ligand libraries of the ZINC and Chemdiv databases.

To filter the molecules, 2D structures were initially filtered using the Lipinski
Rules. 2D pharmacophore features were then calculated for the molecules using RDKit
in Python, and the resulting hits were filtered based on the minimum features obtained
from the hypothesis generated from long MD. The filtered molecules were then
screened using the Phase tool to obtain fitness scores, and a z-score analysis was
conducted on these scores. The molecules with a z-score of 2 or higher were retained,
and if the count of molecules was less than 20, the top 20 molecules with the highest
fitness scores were selected, and glide SP docking was performed on them. Molecules
with the lowest docking scores were subjected to MD simulation and MM/GBSA

calculation.
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Next, the molecules with MM/GBSA scores above a predefined threshold were
subjected to long MD simulation and MM/GBSA calculation to determine if there
were significant differences. Furthermore, eight critical RET mutations identified in
the literature were evaluated one by one. The corresponding protein structures were
prepared, and a grid center was created for each mutation. The molecules that passed
the MM/GBSA threshold were then subjected to Glide SP docking and MD simulation
and MM/GBSA calculation, and the resulting graphs were analyzed and visualized.

The methodology employed in this study was comprehensive, utilizing various
computational techniques to identify potential inhibitors for the RET proto-oncogene
that have the lowest resistance to mutations compared to Pralsetinib, as a reference
inhibitor. The workflow was optimized to filter out non-relevant hits and select the
most promising candidates for further analysis. The complete method is represented in

a schematic in Figure 5.
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Figure 5. Schematic representation of the complete method for the discovery of a

novel resistance-free RET tyrosine kinase inhibitor.

The method includes dynamic structure-based pharmacophore and QSAR modeling,
as well as a virtual screening of ultra-large ligand libraries.
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4.1 Method 1: A Fusion of Text Mining and QSAR for Predictive Drug
Discovery

Our first method focuses on leveraging text mining techniques and QSAR
modeling to predict plICso values for small molecules. This method includes several
steps that allow us to extract relevant data from the literature, preprocess, curate the
data, and build QSAR models using the curated data. Additionally, we utilize docking
and molecular dynamics simulation with MMGBSA calculations to validate our
predictions. These steps are performed using a combination of open-source and
commercial software tools, and the resulting data are analyzed using statistical
methods to identify the most promising small molecules for further study. By
leveraging this methodology, we are able to rapidly identify compounds with the
potential for therapeutic applications in drug discovery.

4.1.1  Text mining. In order to perform text mining on small molecules that
inhibit the RET proto-oncogene protein, a filtering process was applied to select 120
molecules with IC50 values of 5 nM and below from the ChEMBL database as shown
in Appendix (Table A.1). ChEMBL is a database maintained by the European
Molecular Biology Laboratory that provides information on biological activities of
small molecules, their interactions with protein targets, and ADMET properties, and
is widely used by researchers in drug discovery (Mendez et al. 2019). The 2D
structures and IUPAC names of these molecules were then compiled, and similarities
between the structures were analyzed. The most frequently occurring fragments within
these molecules were identified. Additionally, a list of RET inhibitor drugs that are
approved or in clinical trials was created and displayed. The similarities between the
structures of these drugs and the most common fragments found in the small molecules
from the ChEMBL database were analyzed, and the fragments that were most likely
to inhibit the RET protein were identified.

These fragments were then used to conduct text mining on a library of 500
million small molecules with known IUPAC names obtained from the ZINC database.
ZINC is a freely available database of over 500 million commercially available
compounds used for virtual screening and drug discovery (Sterling and Irwin 2015).
A Python script was developed to search for each fragment name within the IUPAC

names of the 500 million molecules to determine how many of the compounds
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contained the fragment in their structure. All of the IUPAC names that contained the
same fragment were then added to a text file. The IUPAC names were converted into
their SMILES and SDF formats using the MolConverter tool from Marvin Suite, a tool
from ChemAxon. Finally, all of the SDF files were converted into the Mae format,
which is compatible with Schrddinger-maestro software, using the SDConvert tool

from the command line.

4.1.2 Development and Application of QSAR Model for Predicting plCso.

We aimed to create a reliable QSAR model for RET protein-related molecules using
the ChEMBL database. For this purpose, a total of 885 molecules with known ICso
values were extracted from the ChEMBL database. Among these, 793 molecules were
selected as the internal set, while the remaining 92 molecules were used as the external
set. The ICso values of all molecules were converted to plCso values using the
following equation:

pICso = —log(ICsg) Equation 4. 1

The AutoQSAR tool in the Schrédinger Maestro software was used to develop
and validate the QSAR models. The compounds were divided into a 30% test set (238
compounds) and a 70% training set (555 compounds). The QSAR models were
evaluated on the test set, and the model with the highest R-square value and highest
R-square value after the prediction was chosen as the final model. The selected model
was then used to predict the pICso values of all molecules in our created libraries. Due
to the large number of molecules, the libraries were divided into several files to reduce
their size and speed up the predictions. Finally, the predicted results were obtained in
CSV file format and were read using a Python script with the Pandas library. Pandas
is a powerful data manipulation and analysis library for Python (McKinney 2010).
After merging the predicted pICso values into a Data Frame using the Pandas library,
the normal distribution curve of the predicted data was visualized to analyze the
distribution pattern. Z-Scores of pIC50 values were also calculated to evaluate the
predicted values and select the most promising molecules for further investigation. The
Z-Score is a statistical measure that indicates the deviation of a data point from the

mean of the population. In this study, compounds with Z-Scores of 2 or 3 and over,
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were selected as promising molecules. The threshold for the Z-Score selection was
based on the number of molecules, where 2 is usually taken as the threshold. However,
if a large number of molecules had Z-Scores over 2, then the threshold was raised to 3

and over to ensure that the selected molecules were truly significant.

411 METACORE™/METADRUG ™ Analysis. All the molecules
obtained from the Z-Score calculation were separated into different files in SDF
format. so that each file contains a maximum of 500 molecules. Then files are uploaded
to the METACORETM platform to screen the “cancer therapeutic activity prediction
QSAR”. This functionality allows for the prediction of a compound's likelihood to
exhibit anticancer activity. The screening process involves comparing input
compounds to those with known high anticancer activity and assigning a probability
value between 0 and 1, with values above 0.5 indicating potential anticancer activity.
To construct the cancer therapeutic activity QSAR model, a set of descriptors and a
training set of 886 compounds, achieving a sensitivity of 0.95, specificity of 0.92,
accuracy of 0.93, and MCC of 0.87 were used. Also, the model was validated with a
test set of 167 compounds, achieving a sensitivity of 0.89, specificity of 0.83, accuracy
of 0.86, and MCC of 0.72. Based on the initial screening results, a cutoff value of 0.5
was established, and only molecules with probabilities > 0.5 selecting for further

consideration while filtering out the rest.

4.1.2  Protein Preparation. The RCSB Protein Data Bank was used to obtain
the X-Ray diffraction structure of RET (PDB ID: 7JU5 (Subbiah et al. 2021)), which
was co-crystallized with Pralsetinib, a selective RET TKs inhibitor, and has a
resolution of 1.90 A. Before using the protein for any computational experiments such
as docking or MD simulations, it needs to be modified from its tense X-Ray diffracted
form. The protein was processed using the Protein Preparation Wizard (Madhavi
Sastry et al. 2013) to assign bond orders, add hydrogens, create zero-order bonds to
metals, and recreate disulfide bonds. Missing side chains or loops were filled in with
Prime (Jacobson et al. 2004), and water beyond 5A of hetero groups was removed.
The protonation states of the protein at pH assigned by PROPKA and side chain atoms
were minimized with the OPLS3e force field (Harder et al. 2016).
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4.1.3 Receptor Grid Generation. A receptor grid can be created to limit the
movement of the ligand within a cubic region that includes the active site, so that only
interactions with the active region are calculated. Partial flexibility can be achieved by
allowing some rotatable bonds in the receptor active region to rotate during grid
generation (Friesner et al. 2006; Halgren et al. 2004). The active part of the receptor is
defined with respect to the reference ligand, and matching atoms are placed at the same
coordinates as in the reference ligand. The internal coordinates of atoms outside the
grid are rearranged while preserving their positions. At this stage, rotatable bonds are
roughly scored. Then, a minimization process is applied to refine the torsion angles
not found in the active site. Finally, post-docking minimization is performed. Binding
modes that do not fully meet all constraints during grid application are not considered.

The receptor grid for the RET was generated using the Receptor Grid Generation
Tool with the prepared structure. The grid was generated based on the co-crystallized
native ligand, Pralsetinib, with a default measurement of 10 A on all sides. No
constraints were applied during the process, and rotation of hydroxyl or thiol groups
of THR729, THR753, THR754, SER765, SER767, SER774, TYR791, TYR806,
SER811, SER819, SER891, SER896, and THR946 was allowed. The (x, V,z)
coordinates of the grid center are (21.76, 13.093, -23.514).

4.1.4  Ligand Preparation. To generate 3D structures for each molecule, the
LigPrep module of maestro was employed (Chen and Foloppe 2010). During
preparation, Epik was used to predict the ionization states of molecules at a pH of 7.0
2.0 (Shelley et al. 2007). The molecules with chiral centers were generated as
stereoisomers. At most 4 structures with possible stereoisomers and ionization states
were generated for each compound. The force field used for the preparation was
OPLS3e (Roos et al. 2019).

415  Virtual Screen Workflow. Virtual screening workflow is a
computational technique used to identify potential ligands for a target protein from a
large library of compounds. One of the most widely used virtual screening methods is
molecular docking, which involves the prediction of the binding mode and binding

affinity of small molecule ligands to the target protein.
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In molecular docking, different scoring functions are used to evaluate the
binding affinity of the ligands to the protein. These scoring functions are based on
various physical and chemical properties of the ligands and the protein-ligand
complex. There are different types of molecular docking methods available, including
High-Throughput Virtual Screening (HTVS), Standard Precision (SP) docking, and
extra Precision (XP) docking. These methods differ in their computational complexity
and accuracy. In the virtual screen workflow tool, all these methods are performed in
order and considering the percentage of impact.

To perform the HTVS docking method, the tool imports the ligand library and a
grid center file created based on Pralsetinib. Epik state penalties are added to the
docking score, and a partial charge cutoff of 0.15 is set. Post-docking minimization is
carried out with strain correction terms during the final scoring. Additionally, the tool
generates up to one pose per compound, and 25% of the best-compounds are retained
and passed through SP docking.

Then, SP docking occurs by adding Epik state penalties to the docking score, set
0.15 as a cutoff for the partial charge, and post-docking minimization was performed
by applying strain correction terms during the final scoring. Also, it keeps generating
up to 1 pose per compound and after docking 25% of the best compounds with good
scoring states are retained and pass through XP docking.

Finally, the XP docking method is used to refine the top hits from HTVS and SP
docking. Epik state penalties are added to the docking score, and the partial charge
cutoff is set to 0.15. Post-docking minimization is performed with the tool generating
up to one pose per compound. Only 10% of the best compounds with the best scoring
states are retained after docking, but if 10% contain less than 10 compounds then the
percentage increases to 20%. The top 10 molecules with the best docking scores from

each library are selected for further analysis.
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4.1.6  Molecular Dynamics (MD) Simulations. The 10 molecules with the
lowest docking scores from each library were selected for all-atom MD simulations,
which were conducted using the Desmond software (Bowers et al. 2006). The protein
RET (PDB ID: 7JU5 (Subbiah et al. 2021)) was placed in a solvation box of the TIP3P
model (Jorgensen et al. 1983), with a buffer of 10 A around the protein in an
orthorhombic shape. To ensure thermodynamic equilibrium, the isothermal-isobaric
ensemble NPT was used, with a constant pressure of 1.01325 bar and temperature of
310 K. The system was initially neutralized with Na+ atoms and a salt concentration
of 0.15 M (NacCl) at a physiological pH of 7.4. The simulations were conducted for
each compound individually using the Nose-Hoover thermostat and Martyna-Tobias-
Klein barostat (Martyna, Klein, and Tuckerman 1992). The RESPA integrator was
used for bonded, near non-bonded, and far non-bonded interactions, with time steps of
2.0, 2.0, and 6.0 femtoseconds, respectively. A cut-off of 9 A was set for short-range
electrostatics and van der Waals interactions, while the particle mesh Ewald method
(Essmann et al. 1995) and Periodic Boundary Conditions were applied for long-range
electrostatic interactions. The OPLS3e force field was used to calculate the potential
energy of the system. Before the simulations commenced, Desmond relaxed and
minimized the system. In addition to the simulation described above, five additional
simulations were performed on the same system, each with a different seed number to
account for the effect of random initialization on the results. These simulations were
run for a shorter duration of 10 ns but were repeated five times to obtain a total
simulation time of 50 ns. From each of these simulations, 1000 frames were collected

for analysis.

4.1.7  Molecular Mechanics the Generalized Born Solvent Accessible
Surface Area (MM/GBSA) Calculations. MM/GBSA used in Prime was employed
to compute the binding energies. For each 10 ns MD simulation, 100 protein-ligand
complexes were extracted from the trajectories. For every 10 frames, 1 frame was used
to calculate MM/GBSA.

The implicit solvation model, VSBG 2.0 (Li et al. 2011) was utilized to define
the dielectric constant as a variable under the OPLS3e forcefield. Thus, the internal
dielectric constant can range between 1.0 and 4.0 while the outside system is treated

as a water system with a constant dielectric constant of 80 (Li et al. 2011). Following
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the calculations of each complex, average values and standard deviations were

calculated for each compound.

4.2 Method 2: Leveraging E-Pharmacophore Hypothesis and Long MD

Trajectories for Accelerated Ligand Screening in Drug Discovery

In addition to our first method, we have developed a second approach in our
research that focuses on ligand screening using the e-pharmacophore hypothesis
generated from trajectories with the lowest RMSD of long MD simulation. This
method involves several steps that allow us to identify potential ligand molecules for
a specific target protein using molecular dynamics simulations and e-pharmacophore
hypotheses. These ligands are then subjected to further analysis using statistical
methods to identify the most promising candidates for further study. By using this
methodology, we are able to rapidly screen large libraries of compounds and identify
the most promising ones for further study, leading to the discovery of novel drug
candidates.

4.2.1  Protein Preparation. To utilize the protein in any computational
experiments, including docking or MD simulations, it requires modifications from its
tense X-Ray diffracted form which is obtained from the RCSB Protein Data Bank
using PDB ID: 7JU5 (Subbiah et al. 2021). Also, the ligand was removed from the
protein-ligand complex and got it as wildtype RET. Furthermore, eight mutated RET
obtain by changing eight different residues individually: G810S, V804L, V804M,
V738A, Y806C, YB06N, L730V, and L730I. Also, another three mutated RET which
include Y806C-V738A, V804M-Y806C, and V804M-G810S mutations are obtained
by changing residues. So, we obtain eleven mutated and one wildtype RET protein and
a RET protein in complex with Pralsetinib.

The Protein Preparation Wizard (Madhavi Sastry et al. 2013) was employed to
process the protein-Ligand complex, wildtype RET, and eleven mutated by assigning
bond orders, adding hydrogens, creating zero-order bonds to metals, and regenerating
disulfide bonds. Any missing side chains or loops were filled in using Prime (Jacobson
et al. 2004), and any water located beyond 5A of hetero groups were eliminated. The
protein's protonation states at the assigned pH by PROPKA, as well as its side chain

atoms, were minimized using the OPLS3e force field (Harder et al. 2016).
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4.2.2 Receptor Grid Generation. The Receptor Grid Generation Tool was
used to generate a receptor grid for the RET-Pralsetinib complex, using the prepared
structure and based on the co-crystallized native ligand, Pralsetinib, with a default
measurement of 10 A on all sides. The process did not involve any constraints, and the
rotation of hydroxyl or thiol groups of THR729, THR753, THR754, SER765, SER767,
SER774, TYR791, TYR806, SER811, SER819, SER891, SER896, and THR946 was
allowed. Moreover, the receptor grid for eleven mutated RET and the wildtype
generated based on the co-crystal pose of native Pralsetinib with the same process we
used for the complex one. Also, for each protein suggested rotatable residues are
allowed to rotate. The resulting grid center (X, y, z) coordinates for all the prepared
proteins are (21.76, 13.093, -23.514).

4.2.3  Long Molecular Dynamics (MD) Simulations. The RET protein in
complex with Pralsetinib (PDB ID: 7JU5) was subjected to all-atoms molecular
dynamics (MD) simulations using the Desmond software (Bowers et al. 2006). The
protein complex was solvated using the TIP3P model (Jorgensen et al. 1983) with an
orthorhombic shape and a buffer of 10 A around the protein. To maintain
thermodynamic equilibrium, the isothermal-isobaric ensemble NPT was utilized with
a constant pressure of 1.01325 bar and temperature of 310 K. The system was
neutralized with Na+ ions and a salt concentration of 0.15 M (NaCl) at pH 7.4. The
Nose-Hoover thermostat and Martyna-Tobias-Klein barostat (Martyna et al. 1992)
were used for temperature and pressure control. Bonded, near non-bonded, and far
non-bonded interactions were integrated using the RESPA integrator with time steps
of 2.0, 2.0, and 6.0 femtoseconds, respectively. Short-range electrostatics and van der
Waals interactions were truncated at 9 A, while long-range electrostatic interactions
were calculated using the particle mesh Ewald method (Essmann et al. 1995) with
periodic boundary conditions. The OPLS3e force field was used to calculate the
potential energy of the system. Prior to the simulations, the system was relaxed and
minimized using Desmond. The simulations were performed for 500 ns, and 5000

frames were collected.
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4.2.4  E-Pharmacophore Modeling. Our aims are to generate multiple
pharmacophore hypotheses from the long MD simulation's numerous frames using the
e-pharmacophore tool of PHASE. For this purpose, we extracted 5000 frames from the
trajectory and used the e-pharmacophore method to create pharmacophore models
based on the receptor-ligand complex from PHASE. During the process, we set the
maximum number of features that can be created by this method as 7, with a minimum
distance of 2 A between features and a minimum distance of 4 A between features of
the same type. Additionally, we used a receptor-based excluded volume shell,
considering the Van der Waals radii of the receptor atoms and fixing their scaling
factor at 0.5.

However, considering a large number of frames, we needed to minimize the
estimated time for creating hypotheses and getting results in CSV format files to
simplify data visualization. We achieved this by executing the process from the
Schrodinger-Maestro command line through a bash script. Firstly, the script created
the grid center of Pralsetinib in each frame, split the receptor and ligand from the
complex, then create a hypothesis with the e-pharmacophore method by applying in-
place docking, and created a pharmacophore hypothesis for each frame, and then
generated output in CSV format files.

Additionally, we developed a Python script to visualize the hypotheses and
identify which hypotheses were generated the most during the long MD simulation,
especially in frames with the lowest backbone RMSD while the protein aligned on
frame 0. After identifying the selected hypotheses, we utilized them in ligand

screening.

4.25 Ligand Filtering. In this approach, we employed ligand libraries
which consist of fragment-based libraries obtained from a previous method and four
different libraries from the Chemdiv database. These libraries contain over 300 million
compounds in total. To ensure high-quality compounds, we utilized filtering methods
such as Lipinski’s rule of five (Lipinski et al. 2001), in combination with 2D
pharmacophore features. A Python script was developed to read the SDF file of each
compound, calculate their physicochemical descriptors, and apply filtering based on

these values.
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Compounds that meet the criteria of Lipinski’s rule of five, including a molecular
weight below 500 Da, logP below 5, no more than 5 hydrogen bond donors (HBD),
and no more than 10 hydrogen bond acceptors (HBA), were selected for the creation
of 2D pharmacophore features using RDKit library in Python. This library can
calculate the 2D pharmacophores of ligands based on atom pair descriptors and
topological distances between them. Moreover, compounds that pass Lipinski’s rules
of five, are filtered based on features selected in the e-pharmacophore modeling step.
So, those compounds that contain at least the same number of each feature in our

reference feature hypothesis are passed the filtering part.

426  Ligand Preparation. To generate 3D structures for each compound,
we used maestro's LigPrep module (Chen and Foloppe 2010). In order to predict the
correct ionization states for a pH range of 7.0 £2.0, Epik was employed during
preparation, as recommended by Shelley et al. (2007). Molecules with chiral centers
were created as stereoisomers based on their 3D atomic geometry, and a maximum of
four structures with possible sterecisomers and ionization states were generated for
each compound. The OPLS3e force field was utilized for preparation, according to
Roos et al. (2019).

4.2.7  Ligand Screening. In order to search for potential ligands, the PHASE
software is utilized to perform ligand and database screening. This process Screening
the ligand libraries based on the hypothesis selected from the e-pharmacophore
analyzing part to find the ligands highly matched on the reference hypothesis by using
existing conformers. Phase screen score is selected as the scoring function of
screening, no constraints are involved, and rejection criteria are set as default. Specify
the number of hits to return per molecule in the Return at most 1 hit per molecule by

sorting the hits by decreasing their phase screen score.
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428 METACORE™/METADRUG ™ Analysis. After the screening
process based on the hypothesis and data sorted by decreasing the phase screen score,
the data for each library was placed into a Pandas library Data Frame. The distribution
pattern of the predicted data was analyzed by visualizing the normal distribution curve.
Z-Scores were calculated for the phase screen score values to evaluate the fitness score
values and select the most promising molecules for further investigation. Promising
molecules were selected based on a Z-Score threshold of 2 or higher. However, if the
number of molecules with Z-Scores over 2 was less than 20, then the top 20 molecules
were selected to predict their anticancer activity scores.

The molecules obtained from the Z-Score calculation were separated into
separate SDF files, each containing a maximum of 500 molecules. These files were
uploaded to the METACORE™ platform to screen for potential cancer therapeutic
activity. This screening process involves comparing the input compounds to those with
known high anticancer activity and assigning a probability value between 0 and 1.
Values above 0.5 indicate potential anticancer activity. For the construction of the
cancer therapeutic activity QSAR model, a collection of 886 compounds was utilized
along with a set of descriptors as the training set. The model exhibited notable
performance metrics, including a sensitivity of 0.95, specificity of 0.92, accuracy of
0.93, and MCC of 0.87. To validate the model, an additional test set of 167 compounds
was employed, resulting in a sensitivity of 0.89, specificity of 0.83, accuracy of 0.86,
and MCC of 0.72. Based on the initial screening results, a cutoff value of 0.5 was
established, and only molecules with probabilities greater than or equal to 0.5 were

selected for further consideration, while the rest were filtered out.

4.2.9  Molecular Docking. The molecular docking process utilized the Glide
program, which employs force field-based scoring functions (Friesner et al. 2006;
Halgren et al. 2004). The docking jobs were configured with the OPLS3e force field
(Roos et al. 2019) and set to Standard Precision (SP). The default settings from
Glide/SP docking protocol were used, with the addition of Epik state penalties to the
docking score, and post-docking minimization performed for five poses, rejecting
minimization for poses within an energy window of 0.50 kcal/mol.

To expand the number of docking poses, the ring sampling energy window was
established at 2.5 kcal/mol. In the initial docking phase, 50,000 poses per ligand were
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retained, and subsequently, the top 4,000 poses per ligand were subjected to energy
minimization. Additionally, expanded sampling was employed to bypass the
elimination of poses during the rough scoring stage. After identifying the best poses
with the lowest docking scores, the top 10 molecules from each library were selected

for the next step in the docking protocol.

4.2.10  Molecular Dynamics (MD) Simulations. The top 10 molecules of
each library that passed the glide/SP docking step were subjected to all-atoms
molecular dynamics (MD) simulations using the Desmond software (Bowers et al.,
2006). The protein complex was solvated with an orthorhombic shape using the TIP3P
model (Jorgensen et al. 1983) and a buffer of 10 A around the protein. To maintain
thermodynamic equilibrium, the isothermal-isobaric ensemble NPT was used, with a
constant pressure of 1.01325 bar and temperature of 310 K. The system was
neutralized with Na+ ions, and a salt concentration of 0.15 M (NaCl) at pH 7.4 was
applied. Temperature and pressure control were achieved using the Nose-Hoover
thermostat and Martyna-Tobias-Klein barostat (Martyna et al. 1992), respectively. The
interactions were integrated using the RESPA integrator with time steps of 2.0, 2.0,
and 6.0 femtoseconds for bonded, near non-bonded, and far non-bonded interactions,
respectively. Short-range electrostatics and van der Waals interactions were truncated
at9 A, and long-range electrostatic interactions were calculated using the particle mesh
Ewald method (Essmann et al. 1995) with periodic boundary conditions. The OPLS3e
force field was used to calculate the potential energy of the system. The system was
relaxed and minimized using Desmond before simulations. Three repeats of 10 ns MD

simulations were performed, and 1000 frames were collected.
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4.2.11 Molecular Mechanics the Generalized Born Solvent Accessible
Surface Area (MM/GBSA) Calculations. The binding energies were calculated
using MM/GBSA in Prime. 100 protein-ligand complexes were extracted from the
trajectories of each 10 ns MD simulation, and MM/GBSA was computed for every 10
frames, resulting in a total of 1000 complexes per simulation. The VSBG 2.0 implicit
solvation model was used with the OPLS3e forcefield, allowing the internal dielectric
constant to vary between 1.0 and 4.0, while the outside system was treated as a water
system with a constant dielectric constant of 80. Li et al. (2011) described this method
in detail. The average values and standard deviations were calculated for each

compound after the calculations for each individual complex were completed.

4212 Long Molecular Dynamics Simulations. The MM/GBSA
calculation results were used to set a threshold of -65 and molecules with an average
MM/GBSA score lower than this threshold were chosen for further analysis. These
selected hit molecules underwent all-atoms long molecular dynamics (MD)
simulations using Desmond software, with the protein complex being solved using the
TIP3P model and a buffer of 10 A around the protein. To maintain thermodynamic
equilibrium, the NPT ensemble was employed with a constant pressure of 1.01325 bar
and temperature of 310 K, and the system was neutralized with Na+ ions and a salt
concentration of 0.15 M (NaCl) at pH 7.4. Temperature and pressure control were
maintained using the Nose-Hoover thermostat and Martyna-Tobias-Klein barostat,
respectively. The RESPA integrator was used to integrate the interactions with time
steps of 2.0, 2.0, and 6.0 femtoseconds for bonded, near non-bonded, and far non-
bonded interactions, respectively. Short-range electrostatics and van der Waals
interactions were truncated at 9 A, and long-range electrostatic interactions were
calculated using the particle mesh Ewald method with periodic boundary conditions.
The OPLS3e force field was used to calculate the potential energy of the system.
Before the simulations, the system was relaxed and minimized using Desmond. MD
simulations were performed with 200 ns for each hit molecule, and 2000 frames were

collected.
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4.2.13  Molecular Docking on Mutated Proteins. To investigate the
potential resistance of our hit molecules compared to Pralsetinib, we sought to dock
them onto the RET protein, which is known to show resistance to some TK inhibitors
due to mutations on its binding site. We carried out individual docking experiments
for each of the eleven different mutations on the RET protein using the glide/SP
protocol to determine the docking score and the docking poses of our hit molecules to
observe how the interactions between our hit molecules and the RET protein change
in the context of these mutations and analyze effects of them on molecules behavior
by MD simulation analysis.

The docking jobs were configured using the OPLS3e force field and set to
Standard Precision (SP), with default settings and the addition of Epik state penalties
to the docking score. Post-docking minimization was performed for ten poses,
rejecting minimization for poses within an energy window of 0.50 kcal/mol, and
expanded sampling was employed to generate more poses for docking by setting the
energy window for ring sampling to 2.5 kcal/mol. During the initial phase of docking,
50,000 poses per ligand were retained, and the best 4,000 poses per ligand were used
for energy minimization. After identifying the best poses with the lowest docking
scores for each hit molecule, that pose was selected for the MD simulation analysis.
This approach allowed us to investigate how the interactions of our hit molecules
change their behavior compared to our reference molecule, Pralsetinib, and whether

they exhibit resistance to mutations on the binding site of RET tyrosine kinase.

4.2.14  Molecular Dynamics (MD) Simulation for Mutated Proteins. All
the hit molecules and Pralsetinib were subjected to all-atoms molecular dynamics
(MD) simulations with their docking poses in each mutation using the Desmond
software (Bowers et al. 2006). Each hit molecule in a complex with mutated proteins
was solvated with an orthorhombic shape using the TIP3P model (Jorgensen et al.
1983) and a buffer of 10 A around the protein. To maintain thermodynamic
equilibrium, the isothermal-isobaric ensemble NPT was used, with a constant pressure
of 1.01325 bar and temperature of 310 K.

The system was neutralized with Na+ ions, and a salt concentration of 0.15 M
(NaCl) at pH 7.4 was applied. Temperature and pressure control were achieved using
the Nose-Hoover thermostat and Martyna-Tobias-Klein barostat (Martyna et al. 1992),
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respectively. The interactions were integrated using the RESPA integrator with time
steps of 2.0, 2.0, and 6.0 femtoseconds for bonded, near non-bonded, and far non-
bonded interactions, respectively. Short-range electrostatics and van der Waals
interactions were truncated at 9 A, and long-range electrostatic interactions were
calculated using the particle mesh Ewald method (Essmann et al. 1995) with periodic
boundary conditions. The OPLS3e force field was used to calculate the potential
energy of the system. The system was relaxed and minimized using Desmond before
simulations. MD simulations in the length of 10 ns were performed for each complex,
and 1000 frames were collected. Furthermore, 50 ns MD simulations with collecting
5000 frames was performed for molecules with low resistance against mutated RET in

comparison with Pralsetinib.

4.2.15 Molecular Mechanics the Generalized Born Solvent Accessible
Surface Area (MM/GBSA) Calculations for Mutated Proteins. The binding free
energies were calculated using MM/GBSA in Prime. 100 protein-ligand complexes
were extracted from the trajectories of each 10 ns MD simulation, and 500 complexes
were extracted from trajectories of molecules with 50 ns MD simulations. So,
MM/GBSA was computed for every 10 frames, resulting in a total of 1000 complexes
per simulation, and also for every 10 frames in a total of 5000 complexes that were
extracted from trajectories.

The VSBG 2.0 implicit solvation model was used with the OPLS3e forcefield,
allowing the internal dielectric constant to vary between 1.0 and 4.0, while the outside
system was treated as a water system with a constant dielectric constant of 80. Li et al.
(2011) described this method in detail. The average values and standard deviations
were calculated for each compound after the calculations for each complex were

completed.
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4216 METACORE™ Toxicity Analysis. To perform toxicity analysis,
the platforms rely on a variety of data sources, including public databases of known
toxicants, as well as in-house data generated through experimental testing. Then it
applies machine learning algorithms and other analytical techniques to these data sets
in order to generate predictions of toxicity for new compounds. So, hit molecules were
subjected to binary toxicity QSAR test in the MetaCore™/MetaDrug™ platform. All
molecules test in 26 toxicity QSAR models and each of them has a cutoff value, mostly
a cutoff value is 0.5, and molecules with values higher than 0.5 indicate potential

toxicity.
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5.1 Results for First Method

Chapter 5
Results

In our first method, various approaches were employed such as text mining and

the QSAR model, and their outcomes are presented below, categorized by relevant

subheadings.

5.1.1

Text Mining and QSAR. To do the text mining, after collecting the

top 120 molecules with 1C50 value of 5 nM and under it from the ChEMBL database
then their 2D structures and IUPAC names are listed as shown in Table A.1. After

analyzing similarities between those small molecules, fragments that are contained in

most of the small molecules are listed and shown in Table 1.

Table 1.

Similar Fragments Between Top 120 ChEMBL Molecules That Target RET.

Number of Number of
2D structure IUPAC 2D structure IUPAC
fragments fragments
I 5-ethoxy-6-0xo-
(ot | O] e |
phenylethy e Z pyridin-3-yl
I‘J%C. F
| pyridin 31 F—c¢ trifluoromethyl 29
= F
OH
-
4-chloro-phenol 5 = ‘ fluorophenyl 19
NS
¢
cl
HJC\I HM 7
N Il 3-methyl-1H-
y - i i NS y
N 4-ethylpiperazin 43 NP indazol 3
HyC
N
H
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Table 1. (cont.d)

CH

/ 4-methyl-3-
S ‘ (trifluoromethyl) 17 phenol 17
=, phenyl
C. NH,
~ .
| phenyl 98 benzamide 10
=
| 6-0x0-1,6 A
-0x0-1,6- . .
NH dihydropyridin 17 [Mj 4-methylpiperazin 40
- L
:
4-(2-hydroxy-2-
F F
(trifluoromethyl) 21 methylpropyl) -3- 1
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26 © hydroxycyclohexy]] 1w
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H B
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Then, RET inhibitor drugs which are approved or in a clinical trial that are shown
in Table 2. are used to detect the most frequent fragments between them by detecting

their IUPAC names in text format, and seventeen fragments are mostly seen between

them as shown in Table 3.

Table 2.

2D Structure of Approved Drugs and In Clinical Trail Drug Targeted RET Protein

Drug Name 2D Structure Drug Name 2D Structure
o -
Sunitinib /L P Selpercatinib ~
AL /
. E;'f 3Oy
Vandetanib N 1L Pralsetinib (BLU- LI:
AL 667)
. AN C P
Cabozantinib %Ifl- Agerafenib (RXDX- e A A AT
L Ak or 105) TS
Regorafenib J"yf T 0 E‘qj Enbezotinib (TPX-
N LA 0046)
. T
Ponatinib T AT Zeteletinib T
5 (BOS172738)
™ M // 4 e .
Lenvatinib Sse dovitinib (TKI1258) Qj\ﬂf:\;‘
@.k A L
Fostamatinib
L)
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Table 3.

Similar Fragments Between Approved and In Clinical Trail Drugs Targeted RET
Protein.

Number
2D structure IUPAC ';'r‘;mber of | 2D structure IUPAC of
gments ;
ragments

[}

Ng\\\\ ) /F
Q pyridine 5 F —C& trifluoromethyl 4
= F

E

/S T 4-methyl-3-(trifluo Fluoronhenti
: /‘ romethyl)phenyl 1 = pheny 2
X, X
¢ ¢
. Q MNH;
X Benzamid
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| phenyl 7 1
=
f ‘cH,
(trifluoromethyl)ph 3 4-methylpiperazin 2
| = enyl |
AN~ (leJ
.
F——F 3-(1,1,1-trifluoro-2 0
Hae——cr -methylpropan-2-yl Oxazole
)-1,2-oxazol-5-yl 2 \ ;/ 2
7 o M

/
c=n
ne” /”w 6,7-dimethoxyquin
Piperidine 1 . P azolin 2
N '
H
Nk
H
1H-pyrazolo[3,4-d] N Pvrazole
Hffj\l"' pyrimidin-4-amine 1 \ \7;\1 y 1
NN L

N

So, by analyzing similar fragments between ChEMBL structures and RET
inhibitor which are approved or in clinical trial, 10 of those fragments are chosen as
fragments that can play an important role to inhibit the RET protein as you can see in
Table 4.
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Table 4.

Most Frequent Fragments Between 120 ChEMBL Compounds And 13 Approved and
In Clinical Trials Drugs.

20 structure IUPAC 2D structure IUTRAC
. |
\‘f [(1R) -2-hydrosy-1- § N, canel
phenylethy]] amine ‘\ ' Y

® ”
L

O | e | |
r;LU pyrazine-2-carboxamids &? oxazol

O pipenidin EI;J quinazolin
X

[(1rdr) -4-
[ ] h}'drmc}'c}_‘c]eh exvl]

So, it is decided to go through these fragments to do text mining inside the ZINC
data library. This data library contains IUPAC names of 500 million small molecules
got from the ZINC database. So, by using a python script it is found that each fragment
name is included in how many compounds between the IUPAC names of 500 million
small molecules as shown in Table 5. Then, all the IUPAC names that contain those
fragment names are added to a text file to convert IUPAC names to SMILES and SDF
format files using the MolConverter tool. Moreover, these SDF files are all converted
to Mae format, with the SDConvert tool of Maestro from the command line.
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Table 5.

The Number of Compounds Includes Fragments Name in Their IUPAC Names.

Fragments Count of the fragment in 500Million ZINC
database
Piperidin 88.836.619
Pyridin 83.144.820
Pyrazol 59.598.058
Oxazol 31.169.364
Piperazin 23.438.212
Trifluoromethyl 13.169.364
Quinazolin 1.954.454
Pyrazin-2-carboxamid 809.172
Fluorophenol 89.172
[(1r,4r)-4-hydroxycyclohexyl] amino 2.450

In contrast, the AUTOQSAR tool in maestro was utilized to generate various
QSAR models based on 885 ChEMBL compounds that target RET protein. Using

linear fingerprints of internal sets (793 compounds), the KPLS algorithm produced the

best model with an R-square value of 0.8769 for the training set and a Q-square value

of 0.6864 for the test sets, as illustrated in Figure 6.
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Figure 6. QSAR model created using AUTOQSAR tool of the maestro

Also, the model was validated by predicting plCso values of the external set (92
compounds), and the R-square of the model for the external set was obtained as 0.6521

as shown in Figure 7.

KPLS Linear (External Validation)

10

Predicted pICS50
W f=3 Ln [=1] | [*2] W

%]

is 4.5 55 6.5 75 8.5 8.5
Compound pICS0

Figure 7. Scatter plot for predicted plCso of compounds in external set (R-square is
equal to 0.6521).
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The model was utilized to anticipate pICso values for eight out of ten libraries
based on frequent fragments. For two libraries with a small number of compounds, all
of their compounds were selected for analysis. Due to the high number of compounds
in each library, a Python script was developed to read and calculate the mean of the
predicted plCso values for each library. The normal distribution and z-score of each
compound were also calculated to analyze the distribution of predicted pICso values.
Compounds with a z-score value above a threshold of two or three (depending on the
number of compounds) were selected for further analysis. Table 6. displays the number
of compounds from each library selected and their corresponding z-score threshold.
Table 6.

Number of Compounds That Selected from Each Library Based on Their Cutoff
Values.

Library cutoff Number of Library name cutoff Number of
name compounds compounds
Piperidin 3 5.488 Trifluoromethyl 2 1.660
Pyridin 3 14.326 Quinazolin 2 5.813
Pyrazol 3 25.289 Pyrazin-2- 3 2.671
carboxamid
Oxazol 3 2.204 Fluorophenol - All compounds
Piperazin 2 10.908 [(1r,4r)-4-hydroxy - All compounds
cyclohexyl] amino

51.2 METACORE™/METADRUG ™ Results. All compounds selected
through the z-score analysis were subjected to QSAR models in the METACORETM
platform to predict their anticancer activity score. The cutoff value for the score was
set to 0.5, with compounds having scores above this value considered to have high
anticancer activity. Therefore, this cutoff value was employed as a filtering criterion,
and compounds with scores exceeding 0.5 from each library were selected for further

analysis. In Table 7. the number of compounds over the cutoff value is shown.

64



Table 7.

The number of compounds in each library with anticancer activity scored over 0.5.

Library name Number of Library name Number of
compounds compounds
Piperidin 2.756 Trifluoromethyl 1.101
Pyridin 12.974 Quinazolin 5.626
Pyrazol 17.316 Pyrazin-2-carboxamid 2413
Oxazol 1.756 Fluorophenol 63.537
Piperazin 7.576 [(1r,4r)-4-hydroxy cyclohexyl] amino 2.136
513 Virtual Screen Workflow. All molecules with an anticancer activity

score above 0.5 in each library underwent HTVS, SP, and XP docking using the virtual
screen workflow tool of maestro. The top 25% of compounds were retained for HTVS
and SP docking, while the top 10% were retained for XP docking, except for cases
where there were fewer compounds, in which case the retention rate was increased to
20%. From the XP docking results, the top 10 molecules with the lowest docking

scores for each library were selected for further analysis through MD simulation, as

presented in Tables 8-17.
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Table 8.

Top 10 Molecules of Library Including Piperidin Fragment with Their Docking

Scores.
Structure IUPAC Name docking score
(kcal/mol)
2-[(3S)-3-(2-hydroxyethyl) piperidin-1-yl]-2-oxo-N-
Ho i /UWOé (1-ox0-1,2,3,4-tetrahydroisoquinolin-7-yl) acetamide -9.326
é‘;\}() | 5-{3-ethyl-2H-pyrazolo[3,4-b] pyridin-5-yl}-2-oxo-
f@N 1,2-dihydrospiro[indole-3,4piperidin]-L-ium 8.983
a
% (LR)-1-[(3S)-1-{[3-fluoro-4-(4-methyl-1H-pyrazol-1-
T yl) phenyl] carbamoyl} piperidin-3-yl] ethan-1- 8797
—~ ; aminium
. o 2-[(3R)-3-(hydroxymethyl) piperidin-1-yl]-2-oxo-N-
PR \Gij (1-ox0-1,2,3,4-tetrahydroisoquinolin-7-yl) acetamide -8.791

Y (3R)-3-{[5-(3-methyl-2H-indazol-5-yl)pyridin-2-

O)L 2] = yl]carbamoyl}piperidin-1-ium -8.606

M 4-{[5-(3-methyl-2H-indazol-5-yl)pyridin-2-

- yl]carbamoyl}piperidin-1-ium -8.587
2-0x0-5-{2H-pyrazolo[3,4-b]pyridin-5-y1}-1,2-
dihydrospiro[indole-3,4'-piperidin]-1'-ium -8.498
(3S)-3-{[5-(3-methyl-2H-indazol-5-yl)pyridin-2-
yl]carbamoyI}piperidin-1-ium -8.410

we | 4-({5-[4-(difluoromethyl)-3-fluorophenyl]pyridin-2-
T./O yl}carbamoyl)piperidin-1-ium
Y@/@ -8.288
J} (3S)-1-{[3-fluoro-4-(4-methyl-1H-pyrazol-1-
v )k“ yl)phenyl]carbamoyl}-N-methylpiperidin-3-aminium -8.280
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Table 9.

Top 10 Molecules of Library Including Pyridine Fragment with Their Docking

Scores.
Structure IUPAC Name docking score
(kcal/mol)
e N-(4-methyl-3-{[2-(methylcarbamoyl) pyridin-4-ylI]
%9 oxy}phenyl)-2H-indazole-5-carboxamide -10.137
Q
Q.
: j@ . N-(4-chloro-3-{[(2-hydroxyethyl) (methyl) amino]
TN | methylphenyl)-3-methyl-2H-pyrazolo[3,4- -9.772
b]pyridine-5-carboxamide
L
\1"’1 N-methyl-4-(2-methyl-5-{1H-pyrrolo[2,3-b]pyridine-
)
L 3-amido}phenoxy)pyridine-2-carboxamide -9.724
0
X @/Lk N-{3-[(5-hydroxypentyl)oxy]-4-methylpheny!}-5-(1-
SN methyl-1H-pyrazol-4-yl)pyridine-3-carboxamide -9.509
P . | methyl 2-[2-fluoro-4-({[(2S)-5-(pyridin-3-yl)pentan-
\“/D\J\?'\/\/Lj i
N 2-yl]carbamoyl}amino)phenyl]acetate -9.457
Je 4-{[4-(hydroxymethyl)-3-methylphenyl]amino}-3-
o methyl-N-[(pyridin-3-yl)methyl]benzamide
/@ -9.389
>
N N'-(2-hydroxyethyl)-N-(2-methyl-2,3-dihydro-1H-
|
# 2w, | isoindol-5-yl)-N'-[(pyridin-3- -9.370
Hn/\/“\IH‘\“ i .
. yl)methyl]ethanediamide
@ﬁ 2-fluoro-4-[(2-methyl-5-{[(pyridin-3-
5 yl)methyl]carbamoyl}phenyl)amino]benzoic acid
' ? -9.339
“\.
o— | N-(6-acetyl-2H-1,3-benzodioxol-5-yl)-5-(2,3-
o ~
~ I NLE( dihydro-1-benzofuran-5-yl)pyridine-3-carboxamide -9.287
Ao 7-fluoro-6-(4-{1H-pyrrolo[2,3-b] pyridin-3-yI}
“ﬁm piperidine-1-carbonyl)-1,2,3,4-tetrahydroquinolin-2-
one -9.249
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Table 10.

Top 10 Molecules of Library Including Pyrazol Fragment with Their Docking

Scores.
Structure IUPAC Name docking score
(kcal/mol)
g 4-({3-ethyl-2H-pyrazolo[3,4-b]pyridin-5-yl}amino)-
HN\; j DY” 3-methyl-N-[(pyridin-3-yl)methyl]benzamide -10.270
‘ s
N #
e N-[2-(2,3-dihydro-1H-inden-5-yloxy)ethyl]-5-(1- -9.991
¥ @3 methyl-1H-pyrazol-4-yl)pyridine-3-carboxamide
j@\ N-(4-chloro-3-{[(2- -9.772
it "I+ | hydroxyethyl)(methyl)amino]methyl}phenyl)-3-
methyl-2H-pyrazolo[3,4-b]pyridine-5-carboxamide
\ N-(4-chloro-3-{[(2- -9.627
N'J@xQ .
- hydroxyethyl)(methyl)amino]methyl}phenyl)-4-(4-
methyl-1H-pyrazol-1-yl)benzamide
o N-[3-fluoro-4-(4-methyl-1H-pyrazol-1-yl)phenyl]-N'- -9.610
VON“/L/C[ [(1s,4s)-4-(hydroxymethyl)cyclohexyl]ethanediamide
i ] D i 3-methyl-N-{4-methyl-3-[(4-methylpyridin-2- -9.553
o % L= | yhoxy]phenyl}-2H-pyrazolo[3,4-b]pyridine-5-
carboxamide
- N'-[3-fluoro-4-(4-methyl-1H-pyrazol-1-yl)phenyl]-N- -9.517
:O/"’\ﬂ)i;v [(2S)-1-hydroxypropan-2-yl]-N-[(2S)-2-
{\' hydroxypropyl]ethanediamide
SN 3-hydroxy-7-methoxy-N-{3-methyl-2H-pyrazolo[3,4- -9.451
//QJ;( b]pyridin-5-yl}naphthalene-2-carboxamide
Ff [(2S)-1-({[3-fluoro-4-(4-methyl-1H-pyrazol-1- -9.335
©, yl)phenyl]carbamoyl}carbonyl)pyrrolidin-2-
[Jmethanaminium
X /]
¥
J
3-methyl-N-{4-methyI-3-[(oxan-4- -9.332

yl)methoxy]phenyl}-2H-pyrazolo[3,4-b]pyridine-5-

carboxamide
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Table 11.

Top 10 Molecules of Library Including Oxazol Fragment with Their Docking Scores.

Structure IUPAC Name docking score
(kcal/mol)
N, o (2R)-N-(2-cyclopropyl-1,3-benzoxazol-5-yl)-2- -8.993
N n (pyridin-3-yl)propanamide
o N-[4-methyl-3-(1,3-0xazol-2-yl)phenyl]-2H-indazole- -8.953
T g . | 5-carboxamide
\@7 1-(2-cyclopropyl-1,3-benzoxazol-5-yl)-3-[(2R,3R)- -8.721
) o | <
ey 1,3-dihydroxybutan-2-yl]urea
N'-(2-cyclopropyl-1,3-benzoxazol-5-yl)-N-(2- -8.541
\/\5% 1< | hydroxyethyl)-N-(3-hydroxypropyl)ethanediamide
5-ethynyl-N-[4-methyl-3-(1,3-oxazol-2- -8.371
S
[ N”@fj yl)phenyl]pyridine-3-carboxamide
5-cyclopropyl-N-[6-methyl-5-(1-methyl-1H-pyrazol- -8.323
1 . 4-yl)pyridin-2-yl]-1,2-oxazole-3-carboxamide
HN. L\
Mo A
L
\
, . 1-(2-cyclopropyl-1,3-benzoxazol-5-yl)-3-[(2R)-6- -8.093
,_/\/J\-;‘lﬂb\/@}_ﬂ
L hydroxyhexan-2-yl]urea
R N-(3-hydroxy-4-methylphenyl)-1,3-benzoxazole-5- -8.021
HJQ\N n | carboxamide
H [ \>
; N'-(2-cyclopropyl-1,3-benzoxazol-5-yl)-N-ethyl-N-(3- -7.913
/\/))kﬂ/\@‘%ﬂ hydroxypropyl)ethanediamide
N-[4-methyl-3-(1,3-0xazol-2-yl)phenyl]-2H- -7.896

pyrazolo[4,3-b]pyridine-6-carboxamide
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Table 12.

Top 10 Molecules of Library Including Piperazin Fragment with Their Docking

Scores.
Structure IUPAC Name docking score
(kcal/mol)
9 2-[(2S)-1-[(2-fluoro-4-methoxyphenyl) methyl]-3-
oxopiperazin-2-yl]-N-[3-(pyridin-3-ylI) propyl] -9.192
‘ {K acetamide
Ivge:
Q) 2-[(2R)-1-[(2-fluoro-4-methoxyphenyl)methyl]-3-
oxopiperazin-2-yl]-N-[3-(pyridin-3- -9.181
. K; yl)propyl]acetamide
AT
@/ [5-({3-ethyl-2H-pyrazolo[3,4-b]pyridin-5-yl}amino)- -8.988
w 1 V/Q:/’” 2-(4-methylpiperazin-1-yl)phenyl]methanol
57 1-{2-[4-(1-cyclopropyl-1H-1,3-benzodiazol-5- -8.965
- \ :/> yl)phenoxy]ethyl}-4-methylpiperazin-1-ium
SONS
P 1-cyclopropyl-5-{4-[2-(4-methylpiperazin-1- -8.880
- > | yhethoxy] phenyl}-1H-1,3-benzodiazole
SSNS
7-[4-(piperazine-1-carbonyl)phenyl]-3- -8.859
P O ,u (trifluoromethyl)quinoline
\
(\HJ N-[4-(4-ethylpiperazin-1-yl)-3-fluorophenyl]-3-(1H- -8.731
iO/L /@\) pyrazol-3-yl)benzamide
P 4-{2-[4-(1-cyclopropyl-1H-1,3-benzodiazol-5-yl) -8.725
- \ :/> phenoxy]lethyl}-1-methylpiperazin-1-ium
sW<na
4-{4-[3-(trifluoromethyl)quinolin-7-yl]benzoyl} -8.697
Q O o piperazin-1-ium
¢
4-[4-({3-ethyl-2H-pyrazolo[3,4-b]pyridin-5- -8.694

yl}amino)-2-(trifluoromethyl)phenyl]piperazin-1-ium
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Table 13.

Top 10 Molecules of Library Including Trifluorophenol Fragment with Their

Docking Scores.

Structure IUPAC Name docking score
(kcal/mol)
2-[(5-methyl-1,3-oxazol-2-yl) methoxy]-N- {4-[( -8.505
) J & pyrrolidine-1-yl Ymethyl]-3-(trifluoromethyl)
i A, O phenyl}acetamide
M N-(2-acetyl-2,3-dihydro-1H-isoindol-5-yl)-2-chloro-5- -8.244
7(1/\%,“ = | (trifluoromethyl)pyridine-3-carboxamide
PO
(5S)-N-{4-[(pyrrolidin-1-yl)methyl]-3- -8.218
_ (trifluoromethyl)phenyl}-4,5,6,7-tetrahydro-2H-
------ : ") | indazole-5-carboxamide
0 | 2-amino-N-[4-(methoxymethyl)-3-(trifluoromethyl) -8.128
N S szj; phenyl]-5-nitropyridine-3-carboxamide
-8.047
7 N-{4-[(pyrrolidin-1-yl)methyl]-3-(trifluoromethyl)
- Q phenyl}-2H-pyrazolo[3,4-b]pyridine-5-carboxamide
-8.047
7 1-[(4-{2H-pyrazolo[3,4-b]pyridine-5-amido}-2-
- Q (trifluoromethyl)phenyl)methyl]pyrrolidin-1-ium
J ethyl 3-{2-fluoro-4-[5-(trifluoromethyl)pyridine-3-
/@/H\n amido]phenyl}propanoate -7.959
[ T
- m N-[2-(carbamoylmethyl)-1,2,3,4-tetrahydroisoquinolin -7.949
’\’\(\rk A -7-yl]-2-chloro-5-(trifluoromethyl)pyridine-3-
" carboxamide
o o | 5-ethyl-N-[4-(methoxymethyl)-3-(trifluoromethyl) -7.937
S /Q; phenyl]pyridine-3-carboxamide
0 T
N 4-({4-[(5-cyanopyridin-3-yl)amino]-2-(trifluoro
(Hj methyl)phenyl}methyl)-1-ethylpiperazin-1-ium -7.904

71




Table 14.

Top 10 Molecules of Library Including Quinazolin Fragment with Their Docking

Scores.
Structure IUPAC Name docking score
(kcal/mol)
HY (2R)-2-(2,3-dihydro-1-benzofuran-5-yl)-N-(4,4-
Qm«@“ dimethyl-2-ox0-1,2,3,4-tetrahydroquinazolin-6-yl)-2- -9.295
hydroxyacetamide
H o N-(3-methyl-2-0x0-1,2,3,4-tetrahydroquinazolin-6-yl)-
OO - -
/‘@i o | 3-(1H-1,2,4-triazol-3-yl)benzamide -9.264
i o 4-(4-acetyl-2-methoxyphenoxy)-N-(3-methyl-2-oxo-
Uy | ey YPRENDS)N-Smetny
Y@“ : 1,2,3,4-tetrahydroquinazolin-6-yl)butanamide -9.111
. 3-[(2-aminoquinazolin-6-yl)amino]-4-methyl-N-
QA)K@(@\J\ [(pyridin-3-y)methyl]benzamide -9.088
| N-(1,3-dimethyl-2-o0x0-1,2,3,4-tetrahydroquinazolin-6-
© N [s] D/
m yl)-6-methoxy-2H-indazole-5-carboxamide -9.032
T
Hoo 6-{3-ethyl-2H-pyrazolo[3,4-b]pyridin-5-yl}-1,2,3,4-
N NH tetrahydroquinazolin-2-one -8.929
ﬁ\ 4-amino-N-[4-bromo-3-
y (hydroxymethyl)phenyl]quinazoline-7-carboxamide -8.905
Y
N-[4-fluoro-3-(4H-1,2,4-triazol-3-yl)phenyl]-2-
/ZK/O/ ‘ )\ methyl-4-oxo-3,4-dihydroquinazoline-7-carboxamide -8.769
Sy ethyl 8-(quinazolin-7-yl)imidazo[1,2-a]pyridine-6-
|
o # carboxylate -8.596
g ' e
Ny
' 3-methyl-N-(3-methyl-2-0x0-1,2,3,4-
%D)L ~ tetrahydroquinazolin-6-yl)-2-oxo-2,3-dihydro-1H-1,3- -8.583

benzodiazole-5-carboxamide
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Table 15.

Top 10 Molecules of Library Including Pyrazin-2-carboxamid Fragment with Their

Docking Scores.

Structure IUPAC Name docking score
(kcal/mol)
E::]Lf,
a N-(2-{[(3-carbamoyl-4-methylphenyl)carbamoyl] -9.455
,? amino}ethyl)pyrazine-2-carboxamide
o
. (9aR)-N-[6-methyl-5-(1-methyl-1H-pyrazol-4-
g Ij j\ " yl)pyridin-2-yl]-octahydro-1H-pyrido[1,2-a]pyrazine- -9.154
: '\/:Q 2-carboxamide
ij\r i N-{2-[(6-ethoxy-1,2,3,4-tetrahydroisoquinoline-2-
U0 | carbonyl)amino]ethyl}pyrazine-2-carboxamide -9.111
HNHT
’%;j 5-amino-6-chloro-3-[(3-methyl-2H-indazol-5-yl)
I i amino]pyrazine-2-carboxamide -9.061
If
o— | N-(6-acetyl-2H-1,3-benzodioxol-5-yl)-6-(4-
o ) chlorophenyl)pyrazine-2-carboxamide -9.054
Y
= (9aS)-N-[6-methyl-5-(1-methyl-1H-pyrazol-4-
g |j Jk § yl)pyridin-2-yl]-octahydro-1H-pyrido[1,2-a]pyrazine- -8.986
: '\/j/\) 2-carboxamide
T 3-amino-N-(4-chloro-3-{[(2-fluorophenyl)methyl]
[Jj[ carbamoyl}phenyl)pyrazine-2-carboxamide -8.949
A
o
P
6-bromo-3-[(3-methyl-2H-indazol-5-yl)amino] -8.676
f” ‘ " pyrazine-2-carboxamide
»— | N-(6-acetyl-2H-1,3-benzodioxol-5-yl)-5-(2-
/ijLN methoxyethoxy)pyrazine-2-carboxamide -8.464
P W e ! ’ o
¢ | N-(6-acetyl-2H-1,3-benzodioxol-5-yl)-5-
/[hji /(Ef (cyclopropylmethoxy)pyrazine-2-carboxamide -8.326
v/\u N o
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Table 16.

Top 10 Molecules of Library Including Fluorophenol Fragment with Their Docking

Scores.
Structure IUPAC Name docking score
(kcal/mol)
o 6-({[(1S)-1-(5-ethyl-4H-1,2,4-triazol-3-yl)ethyl]
/%N%ﬂ'ﬁ amino}methyl)-2,3-difluorophenol -9.954
. 4-{5-[3-(2H-1,3-benzodioxol-5-yloxy)propyl]-1,2,4-
@’(MU> oxadiazol-3-yI}-3-fluorophenol -9.6247
\‘ =
// 3-({[3,4"-bipyridin]-2'-yI}amino)-5-fluorophenol -9.461
|
o o 2-{2-amino-5H,6H,7H,8H-pyrido[3,4-d]pyrimidine-
’ NY\NJ\/J)L@/ 7-carbonyl}-6-fluorophenol -9.448
N A
/@w 2-[({6-chloro-7H-pyrrolo[2,3-d]pyrimidin-4- -9.185
o yl}amino) methyl]-3-fluorophenol
;j 4-{3-[3-(2,3-dihydro-1-benzofuran-5-yl)-1,2,4-
HUD/\/\:/ oxadiazol-5-yl]propyl}-2-fluorophenol -9.144
‘ 4-(5-{3-[(benzenesulfonyl)methyl]phenyl}-1,2,4-
I oxadiazol-3-yl)-3-fluorophenol -9.105
- ~
3-(6-aminopyridin-3-yl)-4-fluorophenol -8.981
HO | Y
Z NH2
HO 6-({3-ethyl-2H-pyrazolo[3,4-b]pyridin-5-yl}amino)-
Wadh Nﬁ 2,3-difluorophenol -8.957
\N/ 7
© 5-({[3,4'-bipyridin]-2'-yl}amino)-2-fluorophenol -8.955
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Table 17.

Top 10 Molecules of Library Including [(1r,4r)-4-hydroxycyclohexyl]amino
Fragment with Their Docking Scores.

carboxamide

Structure IUPAC Name docking score
(kcal/mol)
4-{[(1r,4r)-4-hydroxycyclohexyl]amino}-7H-pyrrolo -8.312
[2,3-d]pyrimidin-3-ium
4-{[(1r,4r)-4-hydroxycyclohexyl]Jamino}quinoline- -8.265
3-carbonitrile
3-{[(1r,4r)-4-hydroxycyclohexyllamino}-5-
(trifluoromethyl)pyridine-2-carbonitrile -7.780
N-{2-[(2R)-2,3-dihydro-1,4-benzodioxin-2-
yllethy1}-6-{[(1r,4r)-4- -7.765
hydroxycyclohexyllamino}pyridine-3-carboxamide
2-{methyl[(1r,4R)-4-hydroxycyclohexyllamino}-N-
[5-(3-methylthiophen-2-yl)-1,3,4-oxadiazol-2- -7.690
yllacetamide
[\,_:_L 6-nitro-7-{[(1r,4r)-4-hydroxycyclohexyl]lamino}- -7.627
m 3,4-dihydroquinazolin-4-one
©\ w 1-phenyl-5-{[(1r,4r)-4-hydroxycyclohexyl]amino}- -7.465
“\N,\% 1H-pyrazole-4-carbonitrile
\O
K“:jo 2-(methoxymethy1)-6-{[(1r,4r)-4- -7.227
hydroxycyclohexyl] amino}-3,4-dihydropyrimidin-
4-one
0 2-(propan-2-yl)-1-{3-[(6-{[(1r,4r)-4-hydroxy
{u/\/\“\m cyclohexyllamino}pyridin-3-yl)formamido]propyl}- -7.125
' 1H-imidazol-3-ium
0 N-{3-[2-(propan-2-yl)-1H-imidazol-1-yl]propyl}-6-
) "'N 0 | {[(1r,4r)-4-hydroxycyclohexyl]amino}pyridine-3- -7.125
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Ultimately, in order to compare the obtained results with reference molecules,
redocking experiments were conducted using glide/XP to Pralsetinib and
Selpercatinib. The purpose was to determine whether the redock poses of these
molecules were consistent with their co-crystal poses. The redock pose with the lowest
RMSD between the redocked and co-crystal poses was chosen as the first pose for MD
simulation. The corresponding docking score was used as the reference docking score.
Table 18. presents the redocking scores of the reference molecules and their RMSD
values between the co-crystal structures. Additionally, Figure 5.3 illustrates the

structures of the reference molecules and their redocked poses.

Table 18.

2D Structure of Pralsetinib and Selpercatinib, Their RMSD Value with Co-Crystal
Structure, and Their Glide/XP Score.

Structure name docking score (kcal/mol) RMSD (A)
e /i‘*N/L-'{T_ -
/‘N,LNJ H () Pralsetinib -9.463 2.254
7_<;.5 7_),»-.“
@ Selpercatinib -9.164 1.202
V\\“P”E/NH‘V
)QDH/O 5 I j N
\N‘ [
Selpercatinib Pralsetinib \

Figure 8. Structure of reference molecules with their redock poses.

Left side co-crystal structure of Selpercatinib with its redock poses (RMSD of 1.20
A) which is shown in green. Right side co-crystal structure of Pralsetinib with the
redock pose (RMSD of 2.25 A) which is shown in blue.
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514  Molecular Dynamics Simulations and MM/GBSA calculation. The
molecular dynamics simulations were conducted for the top 10 molecules from each
library, as well as Selpercatinib and Pralsetinib. The simulations were run for a
duration of 10 ns, with 1000 frames collected from each simulation. Each simulation
was repeated five times with different seed numbers. Once all the simulations were
completed, 100 protein-ligand complex structures were extracted from the trajectories
of each simulation, and MM/GBSA calculations were performed. The average
MM/GBSA of the 100 structures for all repeats was calculated, and the average for the
five repeats was obtained. These averages were obtained for all the molecules, and the
total MM/GBSA average for Pralsetinib, Selpercatinib, and the top 4 hit molecules
with the lowest MM/GBSA averages are presented in Table 19.

Table 19.
Total Average of MM/GBSA For Two Reference Molecules and Top 4 Hit Molecules.

name Library Total average
MM/GBSA
(kcal/mol)
Pralsetinib Reference _75.544 + 3.415
Selpercatinib Reference -75.677 + 5.096
N-(6-acetyl-2H-1,3-benzodioxol-5-yl)-6-(4-chlorophenyl) Pyrazine-2- 61,673 + 4167
pyrazine-2-carboxamide carboxamide
N-(4-methyl-3-{[2-(methylcarbamoyl) pyridin-4-yI] oxy} pyridine -60.273 + 3.976
phenyl)-2H-indazole-5-carboxamide
N-{3-[(5-hydroxypentyl) oxy]-4-methylphenyl}-5-(1- pyridine -60.737 + 4.609

methyl-1H-pyrazol-4-yl) pyridine-3-carboxamide
N-(6-acetyl-2H-1,3-benzodioxol-5-yl)-5-(2,3-dihydro-1- pyridine

benzofuran-5-yl) pyridine-3-carboxamide

-60.121 + 5.567
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5.2 Results for Second Method

The second approach is based on the e-pharmacophore hypothesis derived from
poses exhibiting the lowest RMSD from MD simulation, and the results are presented

in a step-by-step manner.

52.1  E-Pharmacophore Modeling Results. For this approach, 500 ns MD
simulation was performed for RET protein in complex with Pralsetinib (PDB ID:
7JU5) by collecting 5000 frames. Then, all of the 5000 frames are extracted as protein-
ligand complex from the trajectory and by developing a script, the grid center of all
the structures are determined as (X,y,z) coordinates. So, by using these coordinates e-
pharmacophore method is used to create pharmacophore models between protein-
ligand complexes with a maximum of seven features. Furthermore, all the hypotheses
created by the e-pharmacophore method pass through further analysis by developing
another python script. The script visualizes all the hypotheses and analyzes the
frequency of the hypotheses between the frames with low RMSD values, as can be
seen in Table 20. However, it is understood that the most frequent hypothesis among
the hypothesis containing five features is ADDRR which is generated 2,892 times
during Md simulation frames and the second most frequent hypothesis is ADRR which
contains four features and is seen in 895 frames, as it is shown in Figure 5.4 and 5.5.
Also, it is found that both of the hypotheses are generated in frames with low RMSD.
ADRR was generated in frame 4338 with an RMSD value of 1.093 A and ADDRR
was generated in frame 4291 with an RMSD value of 1.098 A.
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Table 20.

All Hypotheses Created by the E-Pharmacophore Method with The Total Number of
That Hypothesis in Total Frames.

Features number of hypotheses
ARR 23
ADRR 895
DRRR 9
AHRR 4

ADDRR 2892

AADRR 5

ADHRR 266

DDRRR 19

DHRRR

ADRRR 5

ADDRRR 26

AADDRR 16

ADDHRR 812

DDHRRR 13

ADHRRR 1

ADDHRRR 4
ADDDHRR 2
AADDHRR 5
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Figure 9. Bar chart comparison of top 2 five-feature hypotheses and their frequency
in frames with low RMSD

(Number in the x-axis represents the frame number with the lowest RMSD value
containing that hypothesis).
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Figure 10. Bar chart comparison of top 2 four-feature hypotheses and their
frequency in frames with low RMSD
(Number in the x-axis represents the frame number with the lowest RMSD value
containing that hypothesis).
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As a result of the aforementioned analyses, the ADDRR hypothesis generated in

frame 4291 with its feature coordinates was selected for the screening of ligands that

contain similar features in similar coordinates. Figure 11. displays the ligand pose of
Pralsetinib bound to the RET protein with the ADDRR hypothesis overlaid on it for

reference.

Figure 11. Matching ADDRR hypothesis on Pralsetinib in complex with RET
protein.

522 Ligand Filtering Results. To implement this approach, four additional

libraries were incorporated from the Chemdiv database, namely Anticancer, Indole,

CMET, and FDA-approved libraries, along with the libraries obtained from text

mining in the previous method. Therefore, a total of 14 libraries were screened based

on the selected hypothesis. Table 21. displays the total number of compounds in each

library.

Table 21.

Number of Molecules in Each Library.

Library name Number of compounds | Library name Number of
compounds
Anticancer_Chemdiv 61538 Quinazolin 1943971
Indole_chemdiv 9753 Trifluoromethyl 13135584
CMET _chemdiv 15080 Oxazol 18873912
FDA2022_chemdiv 2452 Piperazin 23438212
[(1r,4r)-4-hydroxycyclohexyl] 2450 Pyrazol 59598058
amino
Fluorophenol 87084 Pyridin 82890693
Pyrazin-2-carboxamide 808826 Piperidin 88836619
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In order to screen the ligands using the hypothesis, it is necessary to convert their
structures into three-dimensional representations using the ligprep tool in Maestro.
However, due to the large number of molecules in eight libraries (Pyrazin-2-
carboxamid, Quinazolin, Trifluoromethyl, Oxazol, Piperidin, Pyrazol, Pyridin, and
Piperidin), it is important to implement filtering methods to reduce their numbers in a
meaningful way. To accomplish this, a script was developed to filter these eight
libraries based on Lipinski's rule of five and extract the 2D pharmacophore features of
each compound. The selected molecules for screening are those that have at least one
hydrogen bond acceptor (A), two hydrogen bond donors (D), and two aromatic rings
(R). The resulting number of compounds after applying the filters in each library is
shown in Table 22.

Table 22.

Table of Compounds Number, Before and After Applying the Filters.

. Total number of NO. of compound No. of compounds after 2D
Library Name
compounds after Lipinski filtering pharmacophore filtering
Pyrazin-2- 808826 808409 265254
carboxamide
Quinazolin 1943971 1943147 725334
Trifluoromethyl 13135584 13133987 1861924
Oxazol 18873912 18836970 3675265
Piperazin 23438212 23376816 2017852
Pyrazol 59598058 59315668 17328653
Pyridin 82890693 82773428 19475110
Piperidin 88836619 88355043 9750272

523 Ligand Screening and METACORE™/METADRUG ™ Results.
After converting all compounds into three-dimensional structures using Ligprep, the
Ligand and Database Screening tool of PHASE was employed to fit the selected

hypothesis onto the ligands. The screening process took place in two different ways:

o Screening ligands where four out of the five features of the reference hypothesis

matched the ligands.
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o Screening ligands where all five features of the reference hypothesis matched
the ligands.

Following the fitting process, a fitness score was calculated for each ligand to
assess how well the reference hypothesis aligned with each ligand. Subsequently, a
normal distribution curve was generated for all the molecules in each library, and the
z-score values of the fitness scores were calculated using a Python script. A cutoff
value of 2 was set to select molecules, and only those with z-score values of 2 or above
were further analyzed. However, if the number of compounds with z-score values
above 2 was less than 20, the top 20 molecules with high fitness scores were selected
instead. Then their anticancer activity scores predicted using the METACORE™
platform and ligands with scores over the cutoff value, 0.5, are selected. Table 23.
displays the number of compounds in each library where four reference features
matched and the number of compounds in that library with z-score values above 2 and
the number of compounds with anticancer activity higher than 0.5. Additionally, Table
24. illustrates the number of compounds in which all five reference features matched
and had z-score values above 2 and anticancer activity scores higher than 0.5.

Table 23.

Number of Compounds in Each Library That Contain 4 Features of Total 5 with Z-
Score Value Above 2 and Anticancer Activity Higher Than 0.5.

Library Name 4 Feature Fitting Z-score values > 2 Anticancer
(Number of compounds) Activity >
0.5
Anticancer_Chemdiv 3389 23 22
Indole_chemdiv 365 Top 20 14
CMET_chemdiv 1091 Top 20 18
FDA2022_chemdiv 294 Top 20 13
[(1r,4n)-4-
hydroxycyclohexyl] 229 Top 20 19
amino
Fluorophenol 13674 Top 20 20
Pyrazin-2-carboxamide 75199 444 444
Quinazolin 181859 521 420
Trifluoromethyl 375685 670 562
Oxazol 742089 9193 7103
Piperazin 156068 1279 853
Pyrazol 4169229 8380 5787
Pyridin 3213502 15923 13373
Piperidin 1005469 13342 9481
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Table 24.

Number of Compounds in Each Library Contain All 5 Features with Z-Score Value
Above 2 and Anticancer Activity Higher Than 0.5.

Library Name 5 Feature Fitting Z-score values > 2 Anticancer
(number of compounds) Activity > 0.5
Anticancer_Chemdiv 7 7 7
Indole_chemdiv 2 2 2
CMET_chemdiv 7 7 7
FDA2022_chemdiv 1 - -
[(1r,4r)-4-hydrqucyclo 0 ) )
hexyl] amino
Fluorophenol 0 - -
Pyrazin-2-carboxamide 47 Top 20 19
Quinazolin 299 Top 20 20
Trifluoromethyl 36 Top 20 12
Oxazol 340 Top 20 20
Piperazin 1033 Top 20 19
Pyrazol 8332 109 89
Pyridin 5696 149 144
Piperidin 2233 74 57

5.1.1 Molecular Docking, Molecular Dynamics Simulations, and
MM/GBSA Results. For the compounds in each library with anticancer activity scores
higher than 0.5, glide/SP docking was performed. From each library, the top 10
molecules with the lowest docking scores were selected to proceed with molecular
dynamics (MD) simulations. Additionally, for the reference molecule Pralsetinib,
glide/SP docking was used to redock the ligand and compare the resulting pose with
the co-crystal structure. As a result, two poses were selected as reference pose, first
pose with a docking score of -9.491 (kcal/mol) and an RMSD value of 2.842 A chosen
as the reference pose for docking, and the other pose with the docking score of -8.911
(kcal/mol) and an RMSD value of 2.542 A selected as a first pose for MD simulations
because of lower RMSD value between that pose and co-crystal pose. The disparity
between the redocking poses and the co-crystal pose is depicted in Figure 12. and the

docking results are presented in Table 25.
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Figure 12. The three-dimensional structure of the co-crystal structure of
PRALSETINIB aligns on the redocking pose with better docking score (shown in
red) and with low RMSD value (shown in purple).

Table 25.
Docking Score and RMSD Values of Pralsetinib Glide/SP Redocking Poses.

Docking score RMSD (A) from
(kcal/mol) cocrystal
PRALSETINIB redocking pose -9.491 2.842
PRALSETINIB redocking pose -8.911 2.542

Docking scores for all ligands in each library were recorded, and three repeats
of 10 ns MD simulations were conducted for the top 10 molecules from each library.
From each MD simulation, 100 protein-ligand complexes were extracted, and the
MM/GBSA free energy was calculated. The average MM/GBSA values were
determined for each MD simulation, and the overall average was computed across the
three repeats. This process was repeated for each ligand in each library, and the total
averages were compiled for further analysis and selection of hit molecules. The redock
pose of PRALSETINIB, which exhibited a low RMSD value, was also subjected to
the same processes, and its total MM/GBSA average was set as the reference score (-
71.275 kcal/mol). Using a threshold value of -65 kcal/mol for the total MM/GBSA
averages, a total of 12 molecules were identified as hit molecules with values below
the threshold. In Table 26. all 12 molecules are named as Hit1-Hit12 for better use in
Tables and merged with their ZINC id, Then the results for these 12 hit molecules are
presented in Table 27. Also, the 2D structures of 12 hit molecules and their 3D
structures with fitting pharmacophores on them are illustrated in Figures 13 and 14

respectively.
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Table 26.

All 12 Hit Molecules, Their ZINC ID, and Their [IUPAC Names.

Zinc ID

IUPAC Name

(((2-phenyl-1H-pyrazol-4-yl)methyl)carbamoyl)methyl

Hitl ZINC767808756
3-(1H-1,2,4-triazol-3-yl)benzoate

Hit2 ZINC364815311 2-[4-(pyridin-2-yloxy)phenoxy]-N-[2-(1H-1,2,4-triazol-
3-yl)phenyl] acetamide

Hit3 ZINCA76943771 3-(5-chlorothiophen-2-yl)-N-{3-[(2-
hydroxyethyl)sulfanyl]-1H-1,2,4-triazol-5-yl}-1-methyl-
1H-pyrazole-4-carboxamide

Hitd ZINC513956406 | S OXO-N-(IR)-1-{4-
[(phenylcarbamoyl)amino]phenyl}ethyl]-2H,3H-
[1,2,4]triazolo[4,3-a]pyridine-6-carboxamide

Hit5 ZINC513768922 3-0x0-N-{3-[2-(pyridin-2-yl)ethynyl]phenyl}-2H,3H-
[1,2,4] triazolo [4,3-a]pyridine-6-carboxamide

Hit6 ZINC96309479 (S)-1-(4-methylbenzyl)-3-(1-(3-(pyridin-4-yl)-1H-
pyrazol-5-yl) piperidin-3-yl) urea

Hit7 ZINC96309483 (S)-1-(4-fluorobenzyl)-3-(1-(3-(pyridin-4-yl)-1H-pyrazol-
5-yl) piperidin-3-yl) urea

Hits ZINC257289132 1-(4-{6-[(5-methyl-1H-pyrazol-3-yl) amino]pyridin-2-
yl}piperidin-1-yl)-3-phenylpropan-1-one

Hit9 ZINC9677876 5-amino-N-(3,4-dimethoxyphenethyl)-1-(2-((2-
ethoxyphenyl) amino)-2-oxoethyl)-1H-1,2,3-triazole-4-
carboxamide

Hit10 ZINC792285195 N'-{3-[(1R)-1,2-dihydroxyethyl] phenyI}-N-[1-(4-
methylphenyl)-5-(propan-2-yl)-1H-pyrazol-4-
yl]ethanediamide

Hitll ZINC44892020 (S)-2-(2,5-diox0-2,3,4,5-tetrahydro-1H-benzo[e][1,4]
diazepin-3-yl)-N-(5-(4-methoxybenzyl)-1,3,4-thiadiazol-

2-yl)acetamide
Hit12 ZINC64449182 4-((6,7-dimethoxy-2,4-dioxo-1,4-dihydroquinazolin-

3(2H)-yl) methyl)-N-(4-fluorobenzyl) benzamide
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Table 27.

Results Determined For 12 Hit Molecules, Docking Scores, MM/GBSA Averages,
Anticancer Activity Scores, and Fitness Scores.

Name ZINC ID Docking Total MM/GBSA | Anticancer | Fitness
Score average activity score | Score
(kcal/mol) (kcal/mol)

PRALSETINIB - -9.491 -71.276 £ 4.44 0.75 -
Hitl ZINC767808756 -9.924 -68.368 + 3.25 0.57 1.838
Hit2 ZINC364815311 -9.71 -69.106 * 3.05 0.72 1.830
Hit3 ZINCA76943771 -10.085 -65.675 + 3.22 0.68 1.752
Hit4 ZINC513956406 -9.861 -75.633 £4.0 0.69 1.699
Hit5 ZINC513768922 -10.095 -65.365 + 3.20 0.7 1.659
Hit6 ZINC96309479 -6.931 -68.721 + 4.46 0.78 1.656
Hit7 ZINC96309483 -6.587 -66.030 + 4.36 0.77 1.656
Hit8 ZINC257289132 -9.449 -65.425 +2.81 0.63 1.729
Hit9 ZINC9677876 -5.964 -65.444 + 4.28 0.67 0.296
Hit10 ZINC792285195 -9.051 -66.867 + 6.12 0.62 1.610
Hitll ZINC44892020 -6.777 -70.844 + 4.64 0.69 1.674
Hit12 ZINC64449182 -7.323 -65.163 + 7.22 0.68 1.581

Hit1
Ot ey

Figure 13. Two-dimensional structures of 12 hit molecules.
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Hit6 Hit7 )

Figure 14. Three-dimensional structures of 12 hit molecules with pharmacophore
features fit on them.

For further analysis, 12 hit molecules and the reference molecule underwent 200
ns MD simulations, collecting a total of 2000 frames. The purpose was to investigate
the behavior of the ligands and their interactions over an extended simulation time.
The results are presented in Table 28. indicate that the MM/GBSA average for the
Hit10 ligand significantly increased, the MM/GBSA average of this ligand was -
66.867 kcal/mol during the 10 ns MD simulation but it increases to -48.861 kcal/mol
by increasing the simulation time to 200 ns. This change in MM/GBSA average
suggested weaker protein-ligand interactions and less favorable binding affinity as the
simulation time increased. This ligand may encounter challenges in establishing stable
interactions within the protein's binding site. Conversely, there were Hit9 ligands in
which the MM/GBSA average decreased from -65.444 kcal/mol to -79.447 kcal/mol,

indicating more favorable interactions and potentially stronger binding affinity.
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Table 28.

Total MM/GBSA Average of 12 Hit Molecules and PRALSETINIB During 10 ns and

200 ns MD Simulations.

Name Total MM/GBSA average MM/GBSA
(kcal/mol) (10 ns) average (kcal/mol)
(200 ns)
PRALSETINIB -71.276 £ 4.44 -75.112 £3.25
Hitl -68.368 + 3.25 -67.845 + 3.28
Hit2 -69.106 + 3.05 -70.020 £ 3.49
Hit3 -65.675 + 3.22 -61.818 £4.10
Hit4 -75.633+£4.0 -71.679 £3.79
Hit5 -65.365 + 3.20 -65.700 £ 3.14
Hit6 -68.721 + 4.46 -61.846 £ 4.73
Hit7 -66.030 + 4.36 -71.732 £3.35
Hit8 -65.425 £ 2.81 -62.482 + 2.86
Hit9 -65.444 + 4.28 -79.447 + 6.37
Hit10 -66.867 £ 6.12 -48.861 £ 6.67
Hitll -70.844 + 4.64 -63.103 + 6.41
Hit12 -65.163 £ 7.22 -52.210 £ 8.00

5.2 Comparative Analysis of Hit Molecules Obtained from Two Methods

We present an analysis of selected molecules obtained from two methods and
their interactions with mutations on the RET protein. Following a stringent threshold
of -65 kcal/mol for the MM/GBSA average, none of the molecules from the first
method met the criteria. However, from the second method, 12 hit molecules exhibited
an MM/GBSA average above the threshold. Detailed analysis of the molecular
interactions during MD simulations was conducted, and the findings are illustrated
through interaction diagrams and histograms (Figure 16). According to Figure 15.
Pralsetinib exhibits strong hydrogen bonding interactions with Ala 807 and Glu 805
residues. It also demonstrates favorable hydrophobic interactions with Leu 730, Val
738, Ala 756, Lys 758, Val 804, and Leu 881 residues. Additionally, Figure 17.
provides information about the RMSD (Root Mean Square Deviation) of the ligand
while it is fitted onto the protein and presents probability distributions using normal
curves for the 12 hit molecules and PRALSETINIB. Analysis of the Figure reveals
that certain molecules have low RMSD probabilities, indicating a wide range of

RMSD values and instability during the simulation.
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Figure 15. Interaction diagram and histogram of PRALSETINIB during 200 ns MD
simulation
(Green, blue, and purple colors represent the H-bonds, water bridges, and
hydrophobic interactions respectively). The surface view of the wildtype RET
protein in complex with Pralsetinib is depicted at the bottom. The residues within the
binding site of the protein have been labeled for clarity.
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Figure 16. Interaction diagram and histogram of 12 hit molecules during 200 ns MD
simulation
(Hit1-Hit12 from top to bottom respectively), (green, blue, purple, and pink colors
represent the H-bonds, water bridges, and hydrophobic and ionic interactions
respectively).
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RMSD of 12 hit molecules Normal Distribution

RMSD (A)

Figure 17. Lig fit prot“ ?F:MSD and normal distribution probability pIi)tS of Pralsetinib
and 12 hit molecules during 10 ns MD simulation in wildtype RET protein.
5.2.1  Molecular Docking, MD Simulations and MM/GBSA Results for

Mutated Proteins. The 12 hit molecules were individually combined with eleven

mutated RET proteins, and the glide/SP docking method was performed for each

combination. The docking poses obtained were used as initial poses for 10 ns
molecular dynamics (MD) simulations, and the MM/GBSA free energy values were
calculated. The differences in MM/GBSA average values (AAG) between the wildtype

RET and each mutated protein were calculated for each hit molecule. If the MM/GBSA

average value of a hit molecule was higher than -60 kcal/mol in a mutated protein, it

was considered as showing resistance to that mutation. Eight single mutations and
three double mutations were identified as important based on the literature. During the
analysis of single mutations, it was found that Hit1 and Hit9 molecules had MM/GBSA
values lower than -60 kcal/mol, indicating that they did not show resistance to these
mutations. Similarly, in the analysis of double mutations, Hit4, Hit9, and Hitl2
molecules had MM/GBSA averages lower than -60 kcal/mol, suggesting that they may
not show resistance to double mutations. Notably, the Hit9 molecule was found to be
common in both the single mutations and double mutations categories. Graph
depicting the RMSD of the ligand during protein fitting and probability distributions
using normal curves (Figure 18.) supported these findings. The Hit9 molecule
exhibited stable RMSD values throughout the MD simulations, particularly in
simulations with mutated proteins. Moreover, the MM/GBSA averages and AAG

values for hit molecules are given in Tables 29-39.
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Figure 18. Lig Fit Prot graph of RMSD (A)/time (ns) for 10 ns simulations and
normal distribution probability plots

Graphs for PRALSETINIB and Hitl, Hit4, Hit9, and Hit12 compounds on RET
protein with (A) G810S, (B) V804M, (C) V804L, (D) Y806N, (E) Y806C, (F)
V738A, (G) L730V, (H) L7301, (1) V804M-G810S, (J) V804M-Y806C, (K) Y806C-
V738A mutations. (green, blue, black, red, and magenta colors represent Hit4, Hit12,
PRALSETINIB, Hitl, and Hit9 respectively)

From the data presented in Table 29. it can be observed that the mutation of
residue 810 from Glycine to Serine leads to an increase in the docking score of

Pralsetinib from -9.491 kcal/mol to -5.952 kcal/mol. This indicates that the G810S
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mutation decreases the binding affinity of Pralsetinib to the RET protein. However,
the MM/GBSA average value does not show a significant change, suggesting that the
mutation may have a limited impact on the overall binding energy and stability of the
complex. Figure 19. which displays the interaction histograms, reveals that only Glu
775 residue forms a hydrogen bond with Pralsetinib, while Leu 730 and Val 738
residues contribute to hydrophobic interactions. Similar results are observed for other
mutations such as V804L/M, Y806C/N, L730V, V804M/Y806C, and Y806C/V738A,
indicating low interactions during the MD simulations as shown in Figure 19. On the
other hand, mutations such as V738A, L7301, and V804M/G810S result in an increase
in the docking score but a decrease in the MM/GBSA average value. Furthermore, it
is evident that during the mutations, Pralsetinib forms hydrogen bonds with different
residues compared to those in the wildtype structure. Interestingly, in some cases, there
are no hydrogen bonds observed between Pralsetinib and the mutated RET protein
during MD simulations. It has been observed that the positioning of Pralsetinib alters
notably when it is docked onto the majority of mutated RET proteins. Appendix A.1
provides a visual representation of the various docking positions of Pralsetinib in RET

with different mutations.

Table 29.

Docking Scores, MM/GBSA Averages, And AAG Results of PRALSETINIB And 12
Hit Molecules for RET Protein with G810S Mutation.

G810S
Name Docking Wildtype MM/GBSA MM/GBSA AAG
Score average (kcal/mol) average kcal/mol
kcal/mol
PRALSETINIB -5.952 -71.276 + 4.44 -70.422 + 5.88 0.853
Hitl -9.381 -68.368 + 3.25 -66.735 + 4.97 1.633
Hit2 -6.909 -69.106 + 3.05 -65.591 + 3.69 3.515
Hit3 -5.837 -65.675 + 3.22 -50.653 + 3.94 15.022
Hit4 -8.233 -75.633+4.0 -65.409 + 4.74 10.224
Hit5 -8.616 -65.365 + 3.20 -65.181 + 3.27 0.184
Hit6 -7.404 -68.721 + 4.46 -66.453 + 4.64 2.269
Hit7 -7.173 -66.030 + 4.36 -48.914 £ 7.01 17.116
Hit8 -8.962 -65.425 + 2.81 -65.990 + 4.19 -0.565
Hit9 -6.769 -65.444 + 4.28 -70.107 + 4.27 -4.663
Hit10 -6.746 -66.867 + 6.12 -59.493 + 3.59 7.374
Hit11l -7.237 -70.844 + 4.64 -69.080 + 2.84 1.763
Hit12 -7.986 -65.163 + 7.22 -70.565 + 4.45 -5.401
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Table 30.

Docking Scores, MM/GBSA Averages, and AAG Results of PRALSETINIB and 12 Hit
Molecules for RET Protein with V804L Mutation.

V804L
Name Docking Wildtype MM/GBSA MM/GBSA AAG
Score average (kcal/mol) average kcal/mol
kcal/mol
PRALSETINIB -6.442 -71.276 £ 4.44 -67.371 £5.28 3.905
Hitl -8.872 -68.368 £ 3.25 -68.290 + 3.35 0.078
Hit2 -8.336 -69.106 + 3.05 -70.621 £ 3.30 -1.515
Hit3 -8.153 -65.675 + 3.22 -61.651 £ 4.04 4.025
Hit4 -7.701 -75.633+£4.0 -68.167 £5.71 7.467
Hit5 -8.277 -65.365 + 3.20 -65.523 + 3.11 -0.158
Hit6 -7.156 -68.721 £ 4.46 -63.568 + 5.67 5.153
Hit7 -6.419 -66.030 + 4.36 -63.060 + 4.20 2.970
Hit8 -9.019 -65.425 +2.81 -65.581 + 3.14 -0.156
Hit9 -7.276 -65.444 £ 4.28 -67.536 + 7.30 -2.092
Hit10 -7.054 -66.867 £ 6.12 -55.696 + 4.48 11.171
Hitll -6.845 -70.844 £ 4.64 -64.617 + 4.87 6.227
Hitl12 -6.852 -65.163 £ 7.22 -57.444 +6.11 7.719
Table 31.

Docking Scores, MM/GBSA Averages, and AAG Results of PRALSETINIB and 12 Hit
Molecules for RET Protein with V804M Mutation.

V804M
Name Docking Score Wildtype MM/GBSA MM/GBSA AAG
kcal/mol average (kcal/mol) average kcal/mol
PRALSETINIB -6.386 -71.276 £ 4.44 -64.583 + 3.32 6.693
Hitl -9.384 -68.368 + 3.25 -69.399 + 3.55 -1.032
Hit2 -6.793 -69.106 + 3.05 -64.775 £ 4.44 4.331
Hit3 -7.718 -65.675 + 3.22 -66.271 + 3.76 -0.596
Hit4 -8.775 -75.633+4.0 -69.430 + 3.85 6.203
Hit5 -7.994 -65.365 + 3.20 -64.623 + 2.79 0.742
Hit6 -7.058 -68.721 + 4.46 -59.632 + 3.11 9.089
Hit7 -7.527 -66.030 + 4.36 -70.322 £ 5.54 -4.292
Hit8 -7.404 -65.425 + 2.81 -64.803 + 3.31 0.622
Hit9 -7.189 -65.444 + 4.28 -71.029 + 6.37 -5.585
Hit10 -8.19 -66.867 + 6.12 -59.358 + 8.94 7.509
Hit11 -6.764 -70.844 + 4.64 -65.557 + 4.45 5.286
Hit12 -6.784 -65.163 + 7.22 -58.197 + 4.36 6.966
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Table 32.

Docking Scores, MM/GBSA Averages, and AAG Results of PRALSETINIB and 12 Hit
Molecules for RET Protein with Y806N Mutation.

Y806N
Name Docking Score Wildtype MM/GBSA MM/GBSA AAG
kcal/mol average (kcal/mol) average kcal/mol
PRALSETINIB -9.172 -71.276 £ 4.44 -70.527 £+ 3.27 0.749
Hitl -9.816 -68.368 £ 3.25 -70.163 + 2.99 -1.796
Hit2 -9.154 -69.106 £ 3.05 -67.011 + 3.19 2.094
Hit3 -8.361 -65.675 £ 3.22 -59.176 + 4.83 6.499
Hit4 -9.045 -75.633+4.0 -64.184 + 3.59 11.449
Hit5 -8.692 -65.365 £ 3.20 -59.488 + 3.63 5.877
Hit6 -7.29 -68.721 + 4.46 -57.580 £ 4.77 11.141
Hit7 -7.595 -66.030 + 4.36 -59.660 + 4.91 6.370
Hit8 -6.366 -65.425 + 2.81 -59.499 + 4.20 5.926
Hit9 -7.393 -65.444 + 4.28 -65.937 £ 6.03 -0.493
Hit10 -6.603 -66.867 £ 6.12 -47.763 £ 4.31 19.104
Hit11l -6.817 -70.844 £ 4.64 -56.535 + 7.18 14.309
Hit12 -7.002 -65.163 £ 7.22 -59.317 £5.91 5.846
Table 33.

Docking Scores, MM/GBSA Averages, and AAG Results of PRALSETINIB and 12 Hit
Molecules for RET Protein with Y806C Mutation.

Y806C
Name Docking Score Wildtype MM/GBSA MM/GBSA average | AAG
kcal/mol average (kcal/mol) kcal/mol

PRALSETINIB -7.846 -71.276 £ 4.44 -55.282 £ 7.17 15.994
Hitl -8.333 -68.368 + 3.25 -68.106 + 3.18 0.262
Hit2 -8.415 -69.106 + 3.05 -68.405 £ 2.93 0.700
Hit3 -5.552 -65.675 + 3.22 -54.615 £ 5.84 11.061
Hit4 -8.024 -75.633+4.0 -66.074 £ 4.29 9.560
Hit5 -6.211 -65.365 + 3.20 -61.694 + 3.93 3.671
Hit6 -6.538 -68.721 + 4.46 -44.831 £5.16 23.890
Hit7 -6.579 -66.030 + 4.36 -50.145 £ 6.71 15.885
Hit8 -6.711 -65.425 + 2.81 -62.577 £ 3.27 2.848
Hit9 -6.55 -65.444 + 4.28 -69.954 + 4.81 -4.510
Hit10 -6.294 -66.867 + 6.12 -58.217 £ 3.95 8.650
Hit11l -6.39 -70.844 + 4.64 -56.191 + 5.52 14.653
Hit12 -7.094 -65.163 + 7.22 -69.849 + 4.58 -4.686
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Table 34.

Docking Scores, MM/GBSA Averages and AAG Results of PRALSETINIB and 12 Hit
Molecules for RET Protein with V738A Mutation.

V738A
Name Docking Score Wildtype MM/GBSA MM/GBSA AAG
kcal/mol average (kcal/mol) average kcal/mol
PRALSETINIB -8.557 -71.276 £ 4.44 -74.830 £ 3.47 -3.555
Hitl -9.108 -68.368 * 3.25 -67.224 £ 3.97 1.144
Hit2 -7.698 -69.106 * 3.05 -66.344 + 3.97 2.761
Hit3 -6.134 -65.675 £ 3.22 -53.235+£2.98 12.440
Hit4 -8.246 -75.633£4.0 -57.834 £8.41 17.799
Hit5 -9.112 -65.365 * 3.20 -62.706 + 2.51 2.659
Hit6 -6.994 -68.721 + 4.46 -67.042 £ 4.24 1.679
Hit7 -7.412 -66.030 * 4.36 -68.318 £ 4.22 -2.288
Hit8 -8.66 -65.425 £ 2.81 -62.871 £ 2.96 2.554
Hit9 -6.199 -65.444 + 4.28 -89.540 £ 6.13 -24.096
Hit10 -5.843 -66.867 £ 6.12 -61.954 £ 6.70 4913
Hitll -6.062 -70.844 £ 4.64 -60.636 £ 6.75 10.208
Hit12 -6.171 -65.163 + 7.22 -67.527 £5.25 -2.364
Table 35.

Docking Scores, MM/GBSA Averages, and AAG Results of PRALSETINIB and 12 Hit
Molecules for RET Protein with L730V Mutation.

L730V
Name Docking Score Wildtype MM/GBSA MM/GBSA average | AAG
kcal/mol average (kcal/mol) kcal/mol
PRALSETINIB -6.432 -71.276 £ 4.44 -66.568 + 3.46 4.708
Hitl -9.396 -68.368 * 3.25 -72.185 + 3.68 -3.817
Hit2 -8.139 -69.106 * 3.05 -72.727 £ 3.98 -3.621
Hit3 -7.162 -65.675 £ 3.22 -61.621 £ 3.85 4.054
Hit4 -7.541 -75.633 £4.0 -60.969 + 5.32 14.664
Hit5 -8.076 -65.365 * 3.20 -65.049 + 2.95 0.316
Hit6 -7.136 -68.721 + 4.46 -58.776 + 4.56 9.946
Hit7 -6.011 -66.030 * 4.36 -50.923 +4.20 15.106
Hit8 -7.343 -65.425 + 2.81 -65.154 + 3.03 0.271
Hit9 -6.693 -65.444 + 4.28 -66.019 + 5.02 -0.575
Hit10 -6.325 -66.867 + 6.12 -43.242 + 6.87 23.625
Hitll -6.058 -70.844 + 4.64 -62.419 + 7.00 8.425
Hit12 -7.196 -65.163 £ 7.22 -64.220 £5.39 0.944
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Table 36.

Docking Scores, MM/GBSA Averages, and AAG Results of PRALSETINIB and 12 Hit
Molecules for RET Protein with L7301 Mutation.

L730I
Name Docking Score Wildtype MM/GBSA MM/GBSA AAG
kcal/mol average (kcal/mol) average kcal/mol
PRALSETINIB -5.789 -71.276 £ 4.44 -74.972 £ 4.42 -3.696
Hitl -7.164 -68.368 + 3.25 -64.213 +4.51 4.155
Hit2 -5.452 -69.106 + 3.05 -43.788 +5.10 25.317
Hit3 -5.711 -65.675 + 3.22 -55.680 + 4.56 9.996
Hit4 -6.927 -75.633 £ 4.0 -57.996 + 3.65 17.637
Hit5 -6.738 -65.365 + 3.20 -62.848 + 2.86 2.517
Hit6 -7.165 -68.721 + 4.46 -60.419 + 3.26 8.303
Hit7 -6.136 -66.030 + 4.36 -71.463 +3.79 -5.434
Hit8 -6.444 -65.425 + 2.81 -51.096 + 6.34 14.329
Hit9 -5.108 -65.444 + 4.28 -68.327 +5.64 -2.882
Hit10 -5.672 -66.867 + 6.12 -56.270 + 4.13 10.597
Hitll -5.451 -70.844 + 4.64 -50.242 +5.97 20.601
Hit12 -5.494 -65.163 + 7.22 -64.355+5.04 0.808
Table 37.

Docking Scores, MM/GBSA Averages, and AAG Results of PRALSETINIB and 12 Hit
Molecules for RET Protein with Y806C-V738A Mutations.

Y806C-V738A
Name Docking Wildtype MM/GBSA MM/GBSA AAG
Score average (kcal/mol) average
kcal/mol (kcal/mol)
PRALSETINIB -0.341 -71.276 £ 4.44 -69.866 + 3.58 1.410

Hitl -6.038 -68.368 + 3.25 -52.464 + 4.19 15.904
Hit2 -6.93 -69.106 + 3.05 -58.725 £ 7.23 10.381
Hit3 -6.204 -65.675 + 3.22 -64.416 + 3.87 1.259

Hit4 -7.739 -75.633 £ 4.0 -65.313 + 3.77 10.320
Hit5 -9.642 -65.365 + 3.20 -61.160 + 2.58 4.205

Hit6 -5.985 -68.721 + 4.46 -71.835 + 4.58 -3.113
Hit7 -5.996 -66.030 + 4.36 -49.785 + 4.58 16.245
Hit8 -8.751 -65.425 + 2.81 -63.732 £ 3.33 1.693

Hit9 -5.593 -65.444 + 4.28 -73.889 £ 5.63 -8.445
Hit10 -6.144 -66.867 £ 6.12 -48.664 + 6.30 18.203
Hit11l -6.275 -70.844 + 4.64 -60.156 £ 6.30 10.688
Hit12 -7.31 -65.163 + 7.22 -62.607 £ 4.65 2.557
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Table 38.

Docking Scores, MM/GBSA Averages, and AAG Results of PRALSETINIB and 12 Hit
Molecules for RET Protein with V804M-Y806C Mutations.

VV804M-Y806C
Name Docking Score Wildtype MM/GBSA MM/GBSA AAG
kcal/mol average (kcal/mol) average (kcal/mol)
PRALSETINIB -6.33 -71.276 £ 4.44 -60.055 + 3.29 11.220
Hitl -7.581 -68.368 + 3.25 -61.190 + 3.02 7.178
Hit2 -5.372 -69.106 + 3.05 -44.059 + 4.37 25.047
Hit3 -7.292 -65.675 + 3.22 -57.153 £ 4.9 8.522
Hit4 -8.266 -75.633 £ 4.0 -60.286 * 3.60 15.348
Hit5 -6.823 -65.365 + 3.20 -59.493 + 3.07 5.872
Hit6 -7.3 -68.721 + 4.46 -66.299 + 5.75 2.422
Hit7 -7.657 -66.030 + 4.36 -69.789 + 3.80 -3.760
Hit8 -6.739 -65.425 + 2.81 -56.402 + 5.64 9.023
Hit9 -6.5 -65.444 + 4.28 -65.264 + 5.32 0.180
Hit10 -6.27 -66.867 £ 6.12 -60.695 + 4.15 6.172
Hitll -6.783 -70.844 + 4.64 -54.689 + 6.01 16.155
Hit12 -7.368 -65.163 £ 7.22 -64.793 £ 3.51 0.370
Table 39.

Docking Scores, MM/GBSA Averages, and AAG Results of PRALSETINIB and 12 Hit
Molecules for RET Protein with V804M- G810S Mutations.

V804M-G810S
Name Docking Score Wildtype MM/GBSA MM/GBSA AAG
kcal/mol average (kcal/mol) average (kcal/mol)

PRALSETINIB -6.231 -71.276 £+ 4.44 -73.890 + 4.63 -2.614
Hitl -7.398 -68.368 + 3.25 -65.635 +5.44 2.733
Hit2 -6.867 -69.106 + 3.05 -63.212 £ 4.97 5.894
Hit3 -7.524 -65.675 + 3.22 -61.878 £ 4.74 3.797
Hit4 -7.861 -75.633+4.0 -73.985 + 3.36 1.649
Hit5 -7.063 -65.365 + 3.20 -61.412 + 3.50 3.953
Hit6 -6.6 -68.721 + 4.46 -52.713 £ 8.08 16.008
Hit7 -6.558 -66.030 + 4.36 -63.063 + 4.98 2.967
Hit8 -7.285 -65.425 £ 2.81 -56.958 + 4.16 8.467
Hit9 -6.628 -65.444 + 4.28 -64.061 * 6.55 1.383
Hit10 -6.54 -66.867 £ 6.12 -56.792 + 8.07 10.075
Hitll -6.395 -70.844 £ 4.64 -61.382 + 11.63 9.461
Hit12 -5.971 -65.163 + 7.22 -62.987 £ 5.94 2.177

Based on the aforementioned tables, it can be observed that the Hit9 molecule,
selected as a promising compound capable of forming favorable interactions with both
wildtype and mutated RET, exhibits a docking score of -5.96 kcal/mol and an
MM/GBSA average value of -65.163 kcal/mol in the wildtype RET. The results shown
in Figures 19 and 20 indicate that during various mutations, both the docking scores
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and MM/GBSA average values of Hit9 decrease, and AAG value of that is mostly
negative during all mutations. Furthermore, Figure 21 illustrates the interaction
histogram of the Hit9 molecule during different mutations. In the wildtype RET, Hit9
forms hydrogen bonds with Ala 807 and Asp 892, engages in hydrophobic interactions
with Leu 730, Ala 756, Lys 756, and Leu 760 residues, and participates in ionic
interactions with Arg 878, Asn 879, and Asp 892 residues. Interestingly, during RET
mutations, the Hit9 molecule maintains hydrogen bond formation with Ala 807, Asp
892 residues, or both, similar to its interaction pattern in the wildtype. Additionally,
hydrophobic interactions with Leu 730 and Lys 756 residues persist in most of the
mutations. The stability of these interactions in both wildtype and mutated RET
suggests that Hit9 may not exhibit resistance during these mutations. Also, as shown
in appendix A.2, the docking pose of the Hit9 molecule while docking on mutated RET
doesn’t show significant differences in comparison with the pose of it on wildtype
RET. Moreover, it appears to be more favorable than Pralsetinib in inhibiting the RET
signaling pathway during various mutations. This is supported by the fact that
Pralsetinib, in some mutations, fails to form hydrogen bonds and exhibits completely

different binding poses compared to the wildtype.
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AAG of 12 hit and Pralsetinib in GB10S mutations
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Figure 19. MM/GBSA average difference between wildtype and mutated RET in 12
hit molecules and Pralsetinib.
(A) G810sS, (B) V804L, (C) V804M, (D) Y806N, (E) Y806C, (F) V738A, (G)
L730V, (H) L730l.
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AAG of 12 hit and Pralsetinib in YB06C-V738A mutations
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Figure 20. MM/GBSA average difference between wildtype and mutated RET in 12
hit molecules and Pralsetinib.
(A) Y806C/V738A, (B) V804M/Y806C, (C) V804M/G810S.
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Figure 21. Interaction histogram of Pralsetinib during 10 ns MD simulation
(A) G810s, (B) L730I, (C) L730V, (D) V738A, (E) V804L, (F) V804M, (G) Y806C,
(H) Y806N, (1) V804M/Y806C, (J) V804M/G810S and (K) Y806C/V738A
mutations.
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Figure 22. Interaction histogram of Hit9 molecule during 10 ns MD simulation
(A) G810sS, (B) L7301, (C) L730V, (D) V738A, (E) V804L, (F) V804M, (G) Y806C,
(H) Y806N, (1) V804M/Y806C, (J) V804M/G810S and (K) Y806C/V738A

mutations.
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To assess the stability of Hit9 under various mutations, a 50 ns molecular
dynamics (MD) simulation was conducted, and 2000 frames were collected from each
simulation. The findings are presented in Table 40. revealing no significant changes
during the 50 ns MD simulation. Additionally, the three-dimensional structure of RET
bound to the Hit9 compound, with labeled residues within the binding site, is depicted
in Figure 23. Furthermore, Appendix A.2 showcases the docking poses of the Hit9

compound in all eleven mutated RET structures.

Table 40.
MM/GBSA Average of Hit9 Molecule During 50 Ns MD Simulations.

Hit9 G810S | V804L | V804M | Y8B06N | Y806C | V738A | L730V | L7301
l\(/lkl\clzl?rﬁj)b\ -70.107 | -67.536 | -71.029 | -65.937 | -69.954 | -89.540 | -66.019 | -68.327
(10 ns) +427 | £730 | £6.37 | +6.03 +4.81 +6.13 +5.02 +5.64
I\(/Ikl\éle{f/;rsj)o\ -69.639 | -69.460 | -70.393 | -59.897 | -70.578 | -88.613 | -69.054 | -62.274
(50 ns) +466 | £7.07 | £6.23 | +5.09 +5.73 +5.47 +4.93 +4.38

Figure 23. The surface view of the wildtype RET protein in complex with Hit9. The
residues within the binding site of the protein have been labeled.

To predict the toxicity scores of the compounds Hitl, Hit4, Hit9, and Hitl2,
QSAR models in the METACORE™/METADRUG™ platform were utilized.
Typically, a cutoff value of 0.5 is used, where scores exceeding 0.5 indicate potential
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toxicity. However, for the cytotoxicity model, a cutoff value of 6 is preferred, with
lower scores being more desirable. Similarly, the skin sensitization model employs a
cutoff value of 10, and scores higher than 10 indicate weak to moderate sensitization.
Based on the data presented in Table 5.41, the hit molecules demonstrate a lower
potential for toxicity upon general analysis. Notably, Hit9, which has been identified
as a compound lacking resistance to the studied mutations, exhibits a significantly low
potential for toxicity. As per the AMES and Cytotoxicity models, their predicted scores
are 0.55 and 6.57, respectively.

Table 41.

Toxicity Prediction Scores (TP) of 4 hit molecules (Scores Don’t Pass the Cutoff
Represented by Red).

Name Hitl Hit4 Hit9 Hit12
AMES (TP) 0.36 0.44 0.55 0.46
Cytotoxicity model, -log G150 (M) (TP) 4.52 4.64 6.57 5.08
MRTD (TP) 0.15 0.1 0.28 0.31
Carcinogenicity Mouse Female (TP) 0.33 0.34 0.47 0.05
Carcinogenicity Mouse Male (TP) 0.44 0.16 0.21 0.1
Carcinogenicity Rat Female (TP) 0.3 0.29 0.22 0.02
Carcinogenicity Rat Male (TP) 0.22 0.21 0.15 0.01
Anemia (TP) 0.18 0.27 0.15 0.13
Carcinogenicity (TP) 0.21 0.26 0.17 0.03
Cardiotoxicity (TP) 0.26 0.27 0.15 0.41
Genotoxicity (TP) 0.35 0.28 0.15 0.2
Hepatotoxicity (TP) 0.15 0.19 0.21 0.12
Nephrotoxicity (TP) 0.21 0.08 0.13 0.12
Neurotoxicity (TP) 0.15 0.11 0.1 0.01
Liver Cholestasis (TP) 0.33 0.13 0.07 0.08
Liver Lipid Accumulation (TP) 0.21 0.34 0.39 0.27
Liver Necrosis (TP) 0.56 0.25 0.43 0.64
Liver Weight Gain (TP) 0.25 0.09 0.09 0.37
Kidney Necrosis (TP) 0.06 0.11 0.11 0.08
Kidney Weight Gain (TP) 0.11 0.03 0.06 0.04
Nephron Injury (TP) 0.29 0.07 0.09 0.31
SkinSens, EC3 (TP) 31.85 42.07 59.62 31.7
Nasal pathology (TP) 0.15 0.04 0.07 0.11
Testicular toxicity (TP) 0.3 0.32 0.27 0.02
Pulmonary toxicity (TP) 0.12 0.04 0.05 0.05
Epididymis toxicity (TP) 0.21 0.14 0.13 0.09
Reactive OK R OK OK

107



Chapter 6

Discussion

This thesis aims to use new methodologies to screen chemical databases to find
hit molecules that can bind to the RET protein with favorable interactions to inhibit
the signaling pathway of the RET protein even during several mutations.

Through text mining, we generated 10 chemical libraries for analysis.
Additionally, we selected 4 libraries from the ChemDiv database for further
investigation. Collectively, these libraries encompass a total of 290 million compounds
that will undergo analysis to identify potential hit molecules capable of inhibiting the
RET proto-oncogene. The focus is on identifying compounds that remain effective
against various point mutations, ensuring their potential as inhibitors is unaffected.

Two methods were employed and described in detail in the methods section. In
the first method of this thesis, we aim to create QSAR models based on their numerical
properties using all known compounds that targeted RET proteins instead of creating
3D QSAR based on the pharmacophore model for a few numbers of compounds which
are obtained in previous studies (Kuchana et al. 2022). So, the pICso values for the
huge number of compounds can be predicted in a shorter time duration. In this method,
a QSAR model was developed using 793 molecules from the ChEMBL database that
directly targets the RET protein. The dataset was divided into a 70% training set and a
30% test set, resulting in an internal set with an R-square value of 0.876. The QSAR
model was further tested on an external set of 92 molecules, yielding an R-square value
of 0.652. These R-square values suggest that the model has a strong correlation
between the input structural features of compounds and their activity and properties,
indicating its reliability in predicting the biological activity and property of new
compounds. This established QSAR model was then applied to predict the pICso values
of all 10 libraries identified through text mining. Next, a series of steps were
undertaken, including the elimination of compounds based on z-score calculations and
consideration of their anticancer activity. Molecular docking was performed using a
virtual screen workflow. Among the top 10 molecules with low docking scores in each
library, molecular dynamics (MD) simulations were conducted with 5 repeats. The

MM/GBSA energy calculation was performed for these molecules.
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The results revealed 4 molecules with low MM/GBSA scores across all libraries.
However, when compared to the reference molecules, Pralsetinib and Selpercatinib,
these 4 molecules did not exhibit favorable MM/GBSA energy values. Selpercatinib
had a glide/XP value of -9.164 kcal/mol and an MM/GBSA value of -75.67 kcal/mol,
while Pralsetinib had a glide/XP value of -9.463 kcal/mol and an MM/GBSA value of
-75.543 kcal/mol. On the other hand, the top molecule from a library containing the
pyrazin-2-carboxamid fragment had a glide/XP value of -9.053 kcal/mol, along with
an MM/GBSA value of -61.673 kcal/mol. In the second method, we introduced a novel
approach to add innovation to the study. Previous research, such as the study conducted
by Ouassaf et al. (2022), has commonly employed structure-based pharmacophore
modeling to determine the pharmacophore hypothesis of a ligand-based on its
cocrystal structure. This hypothesis is then utilized in virtual screening. In this thesis,
we propose a different approach by utilizing e-pharmacophore modeling throughout
all frames of molecular dynamics (MD) simulations. This allows us to determine
which pharmacophore hypotheses are favorable during the entire MD simulations and
whether they are generated in a low RMSD pose of the ligand. By employing this
method, we aim to gain insights into the most relevant pharmacophore hypotheses that
emerge throughout the entire dynamics of the ligand in the simulations. So, in the
second method, Structure-based pharmacophore models were generated using e-
pharmacophore algorithms from 5000 frames of a 500ns molecular dynamics (MD)
simulation. Among the generated models, the ADDRR hypothesis was observed
frequently across the frames. Notably, the ADDRR hypothesis was identified in frame
4291, which exhibited a low root mean square deviation (RMSD) value of 1.098 A,
making it a promising candidate. This hypothesis from frame 4291 was selected for
ligand screening across all fourteen libraries. Following the filtering of libraries based
on Lipinski rules and the inclusion of a minimum ADDRR 2D pharmacophore, the
selected compounds underwent z-score calculations of their phase screen scores and
assessment of their anticancer activity using binary QSAR. Lipinski filtering is applied
to reduce the number of compounds analyzed by ensuring they contain a minimum
number of ADDRR features. However, it's important to note that 2D pharmacophore
analysis can still be performed without Lipinski filtering. In such cases, numerous
compounds that do not adhere to the Lipinski rules may be identified as hit molecules.

Subsequently, Glide/SP docking was performed on these compounds, and 10ns MD
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simulations were conducted in three repeats and their MM/GBSA energy values are
calculated.

The reference molecule, Pralsetinib, exhibited a Glide/SP value of -9.491
kcal/mol and an MM/GBSA value of -71.276 kcal/mol. Among all the libraries, twelve
hit molecules were identified with MM/GBSA values exceeding -65 kcal/mol. These
twelve molecules underwent 200ns MD simulations, revealing that the MM/GBSA
value for Pralsetinib decreased to -75.111 kcal/mol. Notably, only the Hit9 molecule
exhibited an MM/GBSA value superior to Pralsetinib. Hit9 had a Glide/SP value of -
5.964 kcal/mol, indicating its potential to bind to the ATP binding site of RET.
Furthermore, its MM/GBSA value decreased from -65.444 to -79.446 kcal/mol. All 12
molecules were subsequently docked into eight mutated RET and three double-
mutated RET proteins. Subsequent 10ns MD simulations were performed, and their
MM/GBSA values were calculated. Through these calculations, it was observed that
the Hit9 molecule showed the potential to bind to the mutated RET, and its MM/GBSA
value decreased during the mutation process. In comparison, the binding pose of
Pralsetinib in the mutated RET proteins showed significant changes, potentially
influenced by the docking algorithms employed. The observed significant change in
the docking pose of Pralsetinib could potentially be attributed to its resistance to the
mutations under investigation. In clinical cases, Pralsetinib has been shown to exhibit
resistance to these mutations. While docking Pralsetinib to the binding site of RET, it
is bind to that region even if the interactions are not optimal. Consequently, this
substantial change in the docking pose may indicate that Pralsetinib cannot effectively
penetrate the binding pocket of the mutated RET, which could contribute to its
resistance. Therefore, considering the potential challenges posed by the mutated
residues in the binding pocket, it is plausible that employing an alternative docking
method such as induce fit docking could yield better results when docking Pralsetinib
to the ATP binding pocket. It is also worth noting that the presence of these mutations
may induce conformational changes in the structure of the protein binding pocket.
Consequently, Pralsetinib may not be able to bind to the mutated binding pocket in the
same pose as it does with the wildtype RET. These conformational changes might
explain the discrepancies observed between the results obtained from various in vivo
and xenograft studies and the findings of our study. Furthermore, it's important to note

that conducting 10 ns MD simulations provides a relatively short timeframe for
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observing the detailed interactions between molecules and the residues within the
binding pocket. Longer simulation times may be necessary to gain a more

comprehensive understanding of how the molecules interact with the binding pocket
residues.
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Chapter 7

Conclusion

In conclusion, our study aimed to explore novel hit molecules capable of
inhibiting the signaling pathway of the RET proto-oncogene to reduce tumor size in
medullary thyroid cancer and NSCLC. We employed two methods to achieve this
objective. The first method involved the analysis of hit molecules obtained from
QSAR models based on the numerical properties of compounds targeting RET

proteins.

The second method utilized a unique approach that involved generating
structure-based pharmacophores from molecular dynamics simulation trajectories. We
selected the most favorable pharmacophore hypothesis based on a low RMSD pose.
From this method, we obtained 12 hit molecules. Subsequently, we analyzed the
activity of these 12 hit molecules in RET proteins with mutations in their binding
pocket. We compared their results with Pralsetinib, which served as the reference
molecule. Remarkably, our findings revealed that the Hit9 molecule exhibited the
potential to bind to the ATP binding pocket of the RET protein and demonstrated a
favorable MM/GBSA score compared to Pralsetinib.

Overall, our study provides valuable insights into potential hit molecules that
can effectively target the ATP binding site of the RET protein, offering promise for
further exploration in the development of therapeutics for medullary thyroid cancer
and NSCLC.

112



REFERENCES

Agrawal, Nishant, Rehan Akbani, B. Arman Aksoy, Adrian Ally, Harindra Arachchi,
Sylvia L. Asa, J. Todd Auman, Miruna Balasundaram, Saianand Balu, Stephen B.
Baylin, Madhusmita Behera, Brady Bernard, Rameen Beroukhim, Justin A.
Bishop, Aaron D. Black, Tom Bodenheimer, Lori Boice, Moiz S. Bootwalla, Jay
Bowen, Reanne Bowlby, Christopher A. Bristow, Robin Brookens, Denise
Brooks, Robert Bryant, Elizabeth Buda, Yaron S. N. Butterfield, Tobias Carling,
Rebecca Carlsen, Scott L. Carter, Sally E. Carty, Timothy A. Chan, Amy Y. Chen,
Andrew D. Cherniack, Dorothy Cheung, Lynda Chin, Juok Cho, Andy Chu, Eric
Chuah, Kristian Cibulskis, Giovanni Ciriello, Amanda Clarke, Gary L. Clayman,
Leslie Cope, John A. Copland, Kyle Covington, Ludmila Danilova, Tanja
Davidsen, John A. Demchok, Daniel DiCara, Noreen Dhalla, Rajiv Dhir, Sheliann
S. Dookran, Gideon Dresdner, Jonathan Eldridge, Greg Eley, Adel K. EI-Naggar,
Stephanie Eng, James A. Fagin, Timothy Fennell, Robert L. Ferris, Sheila Fisher,
Scott Frazer, Jessica Frick, Stacey B. Gabriel, lan Ganly, Jianjiong Gao, Levi A.
Garraway, Julie M. Gastier-Foster, Gad Getz, Nils Gehlenborg, Ronald Ghossein,
Richard A. Gibbs, Thomas J. Giordano, Karen Gomez-Hernandez, Jonna
Grimsby, Benjamin Gross, Ranabir Guin, Angela Hadjipanayis, Hollie A. Harper,
D. Neil Hayes, David I. Heiman, James G. Herman, Katherine A. Hoadley, Matan
Hofree, Robert A. Holt, Alan P. Hoyle, Franklin W. Huang, Mei Huang, Carolyn
M. Hutter, Trey Ideker, Lisa lype, Anders Jacobsen, Stuart R. Jefferys, Corbin D.
Jones, Steven J. M. Jones, Katayoon Kasaian, Electron Kebebew, Fadlo R. Khuri,
Jaegil Kim, Roger Kramer, Richard Kreisberg, Raju Kucherlapati, David J.
Kwiatkowski, Marc Ladanyi, Phillip H. Lai, Peter W. Laird, Eric Lander, Michael
S. Lawrence, Darlene Lee, Eunjung Lee, Semin Lee, William Lee, Kristen M.
Leraas, Tara M. Lichtenberg, Lee Lichtenstein, Pei Lin, Shiyun Ling, Jinze Liu,
Wenbin Liu, Yingchun Liu, Virginia A. LiVolsi, Yiling Lu, Yussanne Ma,
Harshad S. Mahadeshwar, Marco A. Marra, Michael Mayo, David G. McFadden,
Shaowu Meng, Matthew Meyerson, Piotr A. Mieczkowski, Michael Miller,
Gordon Mills, Richard A. Moore, Lisle E. Mose, Andrew J. Mungall, Bradley A.

113



Murray, Yuri E. Nikiforov, Michael S. Noble, Akinyemi I. Ojesina, Taofeek K.
Owonikoko, Bradley A. Ozenberger, Angeliki Pantazi, Michael Parfenov, Peter J.
Park, Joel S. Parker, Evan O. Paull, Chandra Sekhar Pedamallu, Charles M. Perou,
Jan F. Prins, Alexei Protopopov, Suresh S. Ramalingam, Nilsa C. Ramirez,
Ricardo Ramirez, Benjamin J. Raphael, W. Kimryn Rathmell, Xiaojia Ren, Sheila
M. Reynolds, Esther Rheinbay, Matthew D. Ringel, Michael Rivera, Jeffrey
Roach, A. Gordon Robertson, Mara W. Rosenberg, Matthew Rosenthal, Sara
Sadeghi, Gordon Saksena, Chris Sander, Netty Santoso, Jacqueline E. Schein,
Nikolaus Schultz, Steven E. Schumacher, Raja R. Seethala, Jonathan Seidman,
Yasin Senbabaoglu, Sahil Seth, Samantha Sharpe, Kenna R. Mill. Shaw, John P.
Shen, Ronglai Shen, Steven Sherman, Margi Sheth, Yan Shi, llya Shmulevich,
Gabriel L. Sica, Janae V. Simons, Rileen Sinha, Payal Sipahimalani, Robert C.
Smallridge, Heidi J. Sofia, Matthew G. Soloway, Xingzhi Song, Carrie Sougnez,
Chip Stewart, Petar Stojanov, Joshua M. Stuart, S. Onur Sumer, Yichao Sun,
Barbara Tabak, Angela Tam, Donghui Tan, Jiabin Tang, Roy Tarnuzzer, Barry S.
Taylor, Nina Thiessen, Leigh Thorne, Vésteinn Thorsson, R. Michael Tulttle,
Christopher B. Umbricht, David J. Van Den Berg, Fabio Vandin, Umadevi
Veluvolu, Roel G. W. Verhaak, Michelle Vinco, Doug Voet, Vonn Walter,
Zhining Wang, Scot Waring, Paul M. Weinberger, Nils Weinhold, John N.
Weinstein, Daniel J. Weisenberger, David Wheeler, Matthew D. Wilkerson,
Jocelyn Wilson, Michelle Williams, Daniel A. Winer, Lisa Wise, Junyuan Wu,
Liu Xi, Andrew W. Xu, Liming Yang, Lixing Yang, Travis I. Zack, Martha A.
Zeiger, Dong Zeng, Jean Claude Zenklusen, Ni Zhao, Hailei Zhang, Jianhua
Zhang, Jiashan Zhang, Wei Zhang, Erik Zmuda, and Lihua Zou. 2014. “Integrated
Genomic Characterization of Papillary Thyroid Carcinoma.” Cell 159(3):676-90.
doi: 10.1016/J.CELL.2014.09.050.

Alder, B. J., and T. E. Wainwright. 1959. “Studies in Molecular Dynamics. 1. General

Method.” The Journal of Chemical Physics 31(2):459-66. doi:
10.1063/1.1730376.

114



Andrade, Chittaranjan. 2021. “Z Scores, Standard Scores, and Composite Test Scores.”
Indian ~ Journal of Psychological Medicine  43(6):555. doi:
10.1177/02537176211046525.

Arthur, David Ebuka, Stephen Ejeh, and Adamu Uzairu. 2020. “Quantitative Structure-
Activity Relationship (QSAR) and Design of Novel Ligands That Demonstrate
High Potency and Target Selectivity as Protein Tyrosine Phosphatase 1B (PTP
1B) Inhibitors as an Effective Strategy Used to Model Anti-Diabetic Agents.”
Journal of Receptor and Signal Transduction Research 40(6):501-20. doi:
10.1080/10799893.2020.1759092.

Ashorobi, Damilola, and Peter P. Lopez. 2023. “Follicular Thyroid Cancer.”
StatPearls.

Blume-Jensen, Peter, and Tony Hunter. 2001. “Oncogenic Kinase Signalling.” Nature
411(6835):355-65. doi: 10.1038/35077225.

Bowers, Kevin J., Edmond Chow, Huafeng Xu, Ron O. Dror, Michael P. Eastwood,
Brent A. Gregersen, John L. Klepeis, Istvan Kolossvary, Mark A. Moraes,
Federico D. Sacerdoti, John K. Salmon, Yibing Shan, and David E. Shaw. 2006.
“Scalable Algorithms for Molecular Dynamics Simulations on Commodity
Clusters.” Proceedings of the 2006 ACM/IEEE Conference on Supercomputing,
SC’06. doi: 10.1145/1188455.1188544.

Brogi, Simone, Teodorico Castro Ramalho, Kamil Kuca, José L. Medina-Franco, and
Marian Valko. 2020. “Editorial: In Silico Methods for Drug Design and
Discovery.” Frontiers in Chemistry 8:612. doi:
10.3389/FCHEM.2020.00612/BIBTEX.

Brown, A. C., and T. R. Fraser. 1868. “On the Connection between Chemical

Constitution and Physiological Action; with Special Reference to the

Physiological Action of the Salts of the Ammonium Bases Derived from

115



Strychnia, Brucia, Thebaia, Codeia, Morphia, and Nicotia - PubMed.” Retrieved
May 26, 2023 (https://pubmed.ncbi.nlm.nih.gov/17230757/).

Casals, Eudald, Muriel F. Gusta, Macarena Cobaleda-Siles, Ana Garcia-Sanz, and
Victor F. Puntes. 2017. “Cancer Resistance to Treatment and Antiresistance Tools
Offered by Multimodal Multifunctional Nanoparticles.” Cancer Nanotechnology
8(1). doi: 10.1186/S12645-017-0030-4.

Chang, L., and M. Karin. 2001. “Mammalian MAP Kinase Signalling Cascades.”
Nature 410(6824):37—40. doi: 10.1038/35065000.

Chapman, Paul B., Axel Hauschild, Caroline Robert, John B. Haanen, Paolo Ascierto,
James Larkin, Reinhard Dummer, Claus Garbe, Alessandro Testori, Michele
Maio, David Hogg, Paul Lorigan, Celeste Lebbe, Thomas Jouary, Dirk
Schadendorf, Antoni Ribas, Steven J. O’Day, Jeffrey A. Sosman, John M.
Kirkwood, Alexander M. M. Eggermont, Brigitte Dreno, Keith Nolop, Jiang Li,
Betty Nelson, Jeannie Hou, Richard J. Lee, Keith T. Flaherty, and Grant A.
McArthur. 2011. “Improved Survival with Vemurafenib in Melanoma with BRAF
V600E Mutation.” The New England Journal of Medicine 364(26):2507-16. doi:
10.1056/NEJMOA1103782.

Chen, I. Jen, and Nicolas Foloppe. 2010. “Drug-like Bioactive Structures and
Conformational Coverage with the LigPrep/ConfGen Suite: Comparison to
Programs MOE and Catalyst.” Journal of Chemical Information and Modeling
50(5):822-39. doi: 10.1021/CI100026X.

Chen, Ying Nan P., Matthew J. Lamarche, Ho Man Chan, Peter Fekkes, Jorge Garcia-
Fortanet, Michael G. Acker, Brandon Antonakos, Christine Hiu Tung Chen,
Zhouliang Chen, Vesselina G. Cooke, Jason R. Dobson, Zhan Deng, Feng Fel,
Brant Firestone, Michelle Fodor, Cary Fridrich, Hui Gao, Denise Grunenfelder,
Huai Xiang Hao, Jaison Jacob, Samuel Ho, Kathy Hsiao, Zhao B. Kang, Rajesh
Karki, Mitsunori Kato, Jay Larrow, Laura R. La Bonte, Francois Lenoir, Gang

Liu, Shumei Liu, Dyuti Majumdar, Matthew J. Meyer, Mark Palermo, Lawrence

116



Perez, Minying Pu, Edmund Price, Christopher Quinn, Subarna Shakya, Michael
D. Shultz, Joanna Slisz, Kavitha Venkatesan, Ping Wang, Markus Warmuth,
Sarah Williams, Guizhi Yang, Jing Yuan, Ji Hu Zhang, Ping Zhu, Timothy
Ramsey, Nicholas J. Keen, William R. Sellers, Travis Stams, and Pascal D. Fortin.
2016. “Allosteric Inhibition of SHP2 Phosphatase Inhibits Cancers Driven by
Receptor Tyrosine Kinases.” Nature 2016 535:7610 535(7610):148-52. doi:
10.1038/nature18621.

Christopher J., Cramer. 2004. “Essentials of Computational Chemistry.” John Wiley &
Sons 1-624.

Cibas, Edmund S., and Syed Z. Ali. 2009. “The Bethesda System for Reporting
Thyroid Cytopathology.” Thyroid : Official Journal of the American Thyroid
Association 19(11):1159-65. doi: 10.1089/THY.2009.0274.

Cortes, J. E., D. W. Kim, J. Pinilla-lbarz, P. le Coutre, R. Paquette, C. Chuah, F. E.
Nicolini, J. F. Apperley, H. J. Khoury, M. Talpaz, J. DiPersio, D. J. DeAngelo, E.
Abruzzese, D. Rea, M. Baccarani, M. C. Miller, C. Gambacorti-Passerini, S.
Wong, S. Lustgarten, V. M. Rivera, T. Clackson, C. D. Turner, F. G. Haluska, F.
Guilhot, M. W. Deininger, A. Hochhaus, T. Hughes, J. M. Goldman, N. P. Shah,
and H. Kantarjian. 2013. “A Phase 2 Trial of Ponatinib in Philadelphia
Chromosome—Positive Leukemias.” New England Journal of Medicine
369(19):1783-96. doi:
10.1056/NEJMOA1306494/SUPPL_FILE/NEJIMOA1306494_APPENDIX.PDF

Crnci¢, Tatjana Bogovi¢, Maja Ili¢ Tomas, Neva Girotto, and Svjetlana Grbac
Ivankovi¢. 2020. “Risk Factors for Thyroid Cancer: What Do We Know So Far?”
Acta Clinica Croatica 59.(Supplement 1):66-72. doi:
10.20471/ACC.2020.59.51.08.

117



Davies, Louise, and H. Gilbert Welch. 2014. “Current Thyroid Cancer Trends in the
United States.” JAMA Otolaryngology-- Head & Neck Surgery 140(4):317-22.
doi: 10.1001/JAMAQTO.2014.1.

DeLano, Warren L., Mark H. Ultsch, Abraham M. De Vos, and James A. Wells. 2000.
“Convergent Solutions to Binding at a Protein-Protein Interface.” Science
287(5456):1279-83. doi:
10.1126/SCIENCE.287.5456.1279/SUPPL_FILE/1044724S1_THUMB.GIF.

Detterbeck, Frank C., Daniel J. Boffa, Anthony W. Kim, and Lynn T. Tanoue. 2017.
“The Eighth Edition Lung Cancer Stage Classification.” Chest 151(1):193-203.
doi: 10.1016/j.chest.2016.10.010.

Dogan, Berna, and Serdar Durdagi. 2021. “Drug Re-Positioning Studies for Novel
HIV-1 Inhibitors Using Binary QSAR Models and Multi-Target-Driven In Silico
Studies.” Molecular Informatics 40(2). doi: 10.1002/MINF.202000012.

Doll, Richard, and Richard Peto. 1976. “Mortality in Relation to Smoking: 20 Years’
Observations on Male British Doctors.” British Medical Journal 2(6051):1525.
doi: 10.1136/BMJ.2.6051.1525.

Dr. BIRINCI, Suayip, M. Mahir Dr.ULGU, Berrak BORA Dr. BASARA, Irem
SOYTUTAN CAGLAR, Asiye AYGUN, Tugcan Adem OZDEMIR, and Banu
KULALI. 2020. THE MINISTRY of HEALTH of TURKIYE HEALTH STATISTICS
YEARBOOK.

Drilon, A., G. Oxnard, L. Wirth, B. Besse, O. Gautschi, S. W. D. Tan, H. Loong, T.
Bauer, Y. J. Kim, A. Horiike, K. Park, M. Shah, C. McCoach, L. Bazhenova, T.
Seto, M. Brose, N. Pennell, J. Weiss, I. Matos, N. Peled, B. C. Cho, Y. Ohe, K.
Reckamp, V. Boni, M. Satouchi, G. Falchook, W. Akerley, H. Daga, T. Sakamoto,
J. Patel, N. Lakhani, F. Barlesi, M. Burkard, V. Zhu, V. Moreno Garcia, J.
Medioni, M. Matrana, C. Rolfo, D. H. Lee, H. Nechushtan, M. Johnson, V.
Velcheti, M. Nishio, R. Toyozawa, K. Ohashi, L. Song, J. Han, A. Spira, F. De

118



Braud, K. Staal Rohrberg, S. Takeuchi, J. Sakakibara, S. Wagar, H. Kenmotsu, F.
Wilson, B.Nair, E. Olek, J. Kherani, K. Ebata, E. Zhu, M. Nguyen, L. Yang, X.
Huang, S. Cruickshank, S. Rothenberg, B. Solomon, K. Goto, and V. Subbiah.
2019. “PL02.08 Registrational Results of LIBRETTO-001: A Phase 1/2 Trial of
LOXO0-292 in Patients with RET Fusion-Positive Lung Cancers.” Journal of
Thoracic Oncology 14(10):S6-7. doi: 10.1016/J.JTHO.2019.08.059.

Drilon, Alexander, Zishuo I. Hu, Gillianne G. Y. Lai, and Daniel S. W. Tan. 2017.
“Targeting RET-Driven Cancers: Lessons from Evolving Preclinical and Clinical
Landscapes.” Nature Reviews Clinical Oncology 2017 15:3 15(3):151-67. doi:
10.1038/nrclinonc.2017.175.

Drilon, Alexander, Zishuo I. Hu, Gillianne G. Y. Lai, and Daniel S. W. Tan. 2018a.
“Targeting RET-Driven Cancers: Lessons from Evolving Preclinical and Clinical
Landscapes.” Nature Reviews. Clinical Oncology 15(3):151-67. doi:
10.1038/NRCLINONC.2017.175.

Drilon, Alexander, Zishuo I. Hu, Gillianne G. Y. Lai, and Daniel S. W. Tan. 2018b.
“Targeting RET-Driven Cancers: Lessons from Evolving Preclinical and Clinical
Landscapes.” Nature Reviews. Clinical Oncology 15(3):151-67. doi:
10.1038/NRCLINONC.2017.175.

Drilon, Alexander, Zishuo I. Hu, Gillianne G. Y. Lai, and Daniel S. W. Tan. 2018c.
“Targeting RET-Driven Cancers: Lessons from Evolving Preclinical and Clinical
Landscapes.” Nature Reviews. Clinical Oncology 15(3):151-67. doi:
10.1038/NRCLINONC.2017.175.

Drilon, Alexander, Geoffrey R. Oxnard, Daniel S. W. Tan, Herbert H. F. Loong,
Melissa Johnson, Justin Gainor, Caroline E. McCoach, Oliver Gautschi, Benjamin
Besse, Byoung C. Cho, Nir Peled, Jared Weiss, Yu-Jung Kim, Yuichiro Ohe,
Makoto Nishio, Keunchil Park, Jyoti Patel, Takashi Seto, Tomohiro Sakamoto,
Ezra Rosen, Manisha H. Shah, Fabrice Barlesi, Philippe A. Cassier, Lyudmila
Bazhenova, Filippo De Braud, Elena Garralda, Vamsidhar Velcheti, Miyako

119



Satouchi, Kadoaki Ohashi, Nathan A. Pennell, Karen L. Reckamp, Grace K. Dy,
Jurgen Wolf, Benjamin Solomon, Gerald Falchook, Kevin Ebata, Michele
Nguyen, Binoj Nair, Edward Y. Zhu, Luxi Yang, Xin Huang, Elizabeth Olek, S.
Michael Rothenberg, Koichi Goto, and Vivek Subbiah. 2020. “ Efficacy of
Selpercatinib in RET Fusion—Positive Non-Small-Cell Lung Cancer .” New
England Journal of Medicine 383(9):813-24. doi:
10.1056/NEJMOA2005653/SUPPL_FILE/NEJIMOA2005653_DATA.-
SHARING.PDF.

Drilon, Alexander, Natasha Rekhtman, Maria Arcila, Lu Wang, Andy Ni, Melanie
Albano, Martine Van Voorthuysen, Romel Somwar, Roger S. Smith, Joseph
Montecalvo, Andrew Plodkowski, Michelle S. Ginsberg, Gregory J. Riely,
Charles M. Rudin, Marc Ladanyi, and Mark G. Kris. 2016. “Cabozantinib in
Patients with Advanced RET-Rearranged Non-Small-Cell Lung Cancer: An
Open-Label, Single-Centre, Phase 2, Single-Arm Trial.” The Lancet Oncology
17(12):1653-60. doi: 10.1016/S1470-2045(16)30562-9.

Drilon, Alexander, Lu Wang, Adnan Hasanovic, Yoshiyuki Suehara, Doron Lipson,
Phil Stephens, Jeffrey Ross, Vincent Miller, Michelle Ginsberg, Maureen F.
Zakowski, Mark G. Kris, Marc Ladanyi, and Naiyer Rizvi. 2013. “Response to
Cabozantinib in Patients with RET Fusion-Positive Lung Adenocarcinomas.”
Cancer Discovery 3(6):630-35. doi: 10.1158/2159-8290.CD-13-0035.

Dror, Ron O., Robert M. Dirks, J. P. Grossman, Huafeng Xu, and David E. Shaw.
2012. “Biomolecular Simulation: A Computational Microscope for Molecular
Biology.” Annual Review of Biophysics 41(1):429-52. doi: 10.1146/ANNUREV-
BIOPHYS-042910-155245.

Drosten, Matthias, and Brigitte M. Piitzer. 2006. “Mechanisms of Disease: Cancer
Targeting and the Impact of Oncogenic RET for Medullary Thyroid Carcinoma
Therapy.” Nature Clinical Practice Oncology 2006 3:10 3(10):564-74. doi:
10.1038/ncponc0610.

120



Druker, Brian J., Charles L. Sawyers, Hagop Kantarjian, Debra J. Resta, Sofia
Fernandes Reese, John M. Ford, Renaud Capdeville, and Moshe Talpaz. 2001.
“Activity of a Specific Inhibitor of the BCR-ABL Tyrosine Kinase in the Blast
Crisis of Chronic Myeloid Leukemia and Acute Lymphoblastic Leukemia with
the Philadelphia Chromosome.” The New England Journal of Medicine
344(14):1038-42. doi: 10.1056/NEJM200104053441402.

Ekins, S., A. Bugrim, L. Brovold, E. Kirillov, Y. Nikolsky, E. Rakhmatulin, S.
Sorokina, A. Ryabov, T. Serebryiskaya, A. Melnikov, J. Metz, and T. Nikolskaya.
2006. “Algorithms for Network Analysis in Systems-ADME/Tox Using the
MetaCore and MetaDrug Platforms.” Xenobiotica; the Fate of Foreign
Compounds in Biological Systems 36(10-11):877-901. doi:
10.1080/00498250600861660.

Essmann, Ulrich, Lalith Perera, Max L. Berkowitz, Tom Darden, Hsing Lee, and Lee
G. Pedersen. 1995. “A Smooth Particle Mesh Ewald Method.” The Journal of
Chemical Physics 103(19):8577-93. doi: 10.1063/1.470117.

De Falco, Valentina, Francesca Carlomagno, Hong yu Li, and Massimo Santoro. 2017.
“The Molecular Basis for RET Tyrosine-Kinase Inhibitors in Thyroid Cancer.”
Best Practice & Research Clinical Endocrinology & Metabolism 31(3):307-18.
doi: 10.1016/J.BEEM.2017.04.013.

FDA. 2020a. “FDA Approves Pralsetinib for Lung Cancer with RET Gene Fusions.”
Retrieved April 11, 2023 (https://www.fda.gov/drugs/resources-information-

approved-drugs/fda-approves-pralsetinib-lung-cancer-ret-gene-fusions).

FDA. 2020b. “FDA Approves Selpercatinib for Lung and Thyroid Cancers with RET
Gene  Mutations  or  Fusions.”  Retrieved  April 10, 2023
(https://www.fda.gov/drugs/drug-approvals-and-databases/fda-approves-

selpercatinib-lung-and-thyroid-cancers-ret-gene-mutations-or-fusions).

121



Ferlay J, Ervik M, Lam F, Colombet M, Mery L, Pifieros M, et al. 2020. “Global
Cancer Observatory: Cancer Today.” International Agency for Research on
Cancer. Retrieved (https://gco.iarc.fr/today).

Friesner, Richard A., Robert B. Murphy, Matthew P. Repasky, Leah L. Frye, Jeremy
R. Greenwood, Thomas A. Halgren, Paul C. Sanschagrin, and Daniel T. Mainz.
2006. “Extra Precision Glide: Docking and Scoring Incorporating a Model of
Hydrophobic Enclosure for Protein-Ligand Complexes.” Journal of Medicinal
Chemistry 49(21):6177-96. doi:
10.1021/IM0512560/SUPPL_FILE/JM0512560S120060602_023733.PDF.

Fujita, Toshio. 1995. “QSAR and Drug Design: New Developments and
Applications.” 493.

Gainor, Justin F., Giuseppe Curigliano, Dong Wan Kim, Dae Ho Lee, Benjamin Besse,
Christina S. Baik, Robert C. Doebele, Philippe A. Cassier, Gilberto Lopes, Daniel
S. W. Tan, Elena Garralda, Luis G. Paz-Ares, Byoung Chul Cho, Shirish M.
Gadgeel, Michael Thomas, Stephen V. Liu, Matthew H. Taylor, Aaron S.
Mansfield, Viola W. Zhu, Corinne Clifford, Hui Zhang, Michael Palmer, Jennifer
Green, Christopher D. Turner, and Vivek Subbiah. 2021. “Pralsetinib for RET
Fusion-Positive Non-Small-Cell Lung Cancer (ARROW): A Multi-Cohort, Open-
Label, Phase 1/2 Study.” The Lancet Oncology 22(7):959-69. doi:
10.1016/S1470-2045(21)00247-3.

Gainor, Justin F., and Alice T. Shaw. 2013. “Novel Targets in Non-Small Cell Lung
Cancer: ROS1 and RET Fusions.” The Oncologist 18(7):865-75. doi:
10.1634/THEONCOLOGIST.2013-0095.

GAVRETO™ (pralsetinib) Prescribing Information (U.S.). 2020. “Blueprint
Medicines Announces FDA Approval of GAVRETO™ (Pralsetinib) for the
Treatment of Adults with Metastatic RET Fusion-Positive Non-Small Cell Lung

Cancer.” Retrieved April 10, 2023 (https://ir.blueprintmedicines.com/news-

122



releases/news-release-details/blueprint-medicines-announces-fda-approval-

gavretotm-pralsetinib).

Gazdar, Adi F., Paul A. Bunn, and John D. Minna. 2017. “Small-Cell Lung Cancer:
What We Know, What We Need to Know and the Path Forward.” Nature Reviews
Cancer 2017 17:12 17(12):725-37. doi: 10.1038/nrc.2017.87.

Genheden, Samuel, and Ulf Ryde. 2015. “The MM/PBSA and MM/GBSA Methods to
Estimate Ligand-Binding Affinities.” Expert Opinion on Drug Discovery
10(5):449-61. doi: 10.1517/17460441.2015.1032936.

George, Julie, Jing Shan Lim, Se Jin Jang, Yupeng Cun, Luka Ozretia, Gu Kong,
Frauke Leenders, Xin Lu, Lynnette Fernandez-Cuesta, Graziella Bosco, Christian
Mdiller, llona Dahmen, Nadine S. Jahchan, Kwon Sik Park, Dian Yang, Anthony
N. Karnezis, Dedeepya Vaka, Angela Torres, Maia Segura Wang, Jan O. Korbel,
Roopika Menon, Sung Min Chun, Deokhoon Kim, Matt Wilkerson, Neil Hayes,
David Engelmann, Brigitte Piitzer, Marc Bos, Sebastian Michels, Ignacija Vlasic,
Danila Seidel, Berit Pinther, Philipp Schaub, Christian Becker, Janine Altmiiller,
Jun Yokota, Takashi Kohno, Reika Iwakawa, Koji Tsuta, Masayuki Noguchi,
Thomas Muley, Hans Hoffmann, Philipp A. Schnabel, Iver Petersen, Yuan Chen,
Alex Soltermann, Verena Tischler, Chang Min Choi, Yong Hee Kim, Pierre P.
Massion, Yong Zou, Dragana Jovanovic, Milica Kontic, Gavin M. Wright,
Prudence A. Russell, Benjamin Solomon, Ina Koch, Michael Lindner, Lucia A.
Muscarella, Annamaria La Torre, John K. Field, Marko Jakopovic, Jelena
Knezevic, Esmeralda Castafios-Vélez, Luca Roz, Ugo Pastorino, Odd Terje
Brustugun, Marius Lund-Iversen, Erik Thunnissen, Jens Kohler, Martin Schuler,
Johan Botling, Martin Sandelin, Montserrat Sanchez-Cespedes, Helga B.
Salvesen, Viktor Achter, Ulrich Lang, Magdalena Bogus, Peter M. Schneider,
Thomas Zander, Sascha Ansén, Michael Hallek, Jirgen Wolf, Martin Vingron,
Yasushi Yatabe, William D. Travis, Peter Nirnberg, Christian Reinhardt, Sven
Perner, Lukas Heukamp, Reinhard Buttner, Stefan A. Haas, Elisabeth Brambilla,

Martin Peifer, Julien Sage, and Roman K. Thomas. 2015. “Comprehensive

123



Genomic Profiles of Small Cell Lung Cancer.” Nature 2015 524:7563
524(7563):47-53. doi: 10.1038/nature14664.

Griesinger, F., G. Curigliano, M. Thomas, V. Subbiah, C. S. Baik, D. S. W. Tan, D. H.
Lee, D. Misch, E. Garralda, D. W. Kim, A. J. van der Wekken, J. F. Gainor, L.
Paz-Ares, S. V. Liu, G. P. Kalemkerian, Y. Houvras, D. W. Bowles, A. S.
Mansfield, J. J. Lin, V. Smoljanovic, A. Rahman, S. Kong, A. Zalutskaya, M.
Louie-Gao, A. L. Boral, and J. Maziéres. 2022. “Safety and Efficacy of Pralsetinib
in RET Fusion-Positive Non-Small-Cell Lung Cancer Including as First-Line
Therapy: Update from the ARROW Trial.” Annals of Oncology : Official Journal
of the European Society for Medical Oncology 33(11):1168-78. doi:
10.1016/J. ANNONC.2022.08.002.

Haddad, Robert I., Lindsay Bischoff, Douglas Ball, Victor Bernet, Erik Blomain, Naifa
Lamki Busaidy, Michael Campbell, Paxton Dickson, Quan Yang Duh, Hormoz
Ehya, Whitney S. Goldner, Theresa Guo, Megan Haymart, Shelby Holt, Jason P.
Hunt, Andrei lagaru, Fouad Kandeel, Dominick M. Lamonica, Susan Mandel,
Stephanie Markovina, Bryan Mclver, Christopher D. Raeburn, Rod Rezaee, John
A. Ridge, Mara Y. Roth, Randall P. Scheri, Jatin P. Shah, Jennifer A. Sipos,
Rebecca Sippel, Cord Sturgeon, Thomas N. Wang, Lori J. Wirth, Richard J.
Wong, Michael Yeh, Carly J. Cassara, and Susan Darlow. 2022. “Thyroid
Carcinoma, Version 2.2022 NCCN CLINICAL PRACTICE GUIDELINES IN
ONCOLOGY.” JNCCN Journal of the National Comprehensive Cancer Network
20(8):925-51. doi: 10.6004/JINCCN.2022.0040.

Halgren, Thomas A., Robert B. Murphy, Richard A. Friesner, Hege S. Beard, Leah L.
Frye, W. Thomas Pollard, and Jay L. Banks. 2004. “Glide: A New Approach for
Rapid, Accurate Docking and Scoring. 2. Enrichment Factors in Database
Screening.”  Journal of Medicinal Chemistry 47(7):1750-59. doi:
10.1021/JM030644S/SUPPL._FILE/JM030644S_S.PDF.

Harder, Edward, Wolfgang Damm, Jon Maple, Chuanjie Wu, Mark Reboul, Jin Yu
Xiang, Lingle Wang, Dmitry Lupyan, Markus K. Dahlgren, Jennifer L. Knight,

124



Joseph W. Kaus, David S. Cerutti, Goran Krilov, William L. Jorgensen, Robert
Abel, and Richard A. Friesner. 2016. “OPLS3: A Force Field Providing Broad
Coverage of Drug-like Small Molecules and Proteins.” Journal of Chemical
Theory and Computation 12(1):281-96. doi: 10.1021/ACS.JCTC.5B00864.

Haugen, Bryan R., Erik K. Alexander, Keith C. Bible, Gerard M. Doherty, Susan J.
Mandel, Yuri E. Nikiforov, Furio Pacini, Gregory W. Randolph, Anna M. Sawka,
Martin Schlumberger, Kathryn G. Schuff, Steven I. Sherman, Julie Ann Sosa,
David L. Steward, R. Michael Tuttle, and Leonard Wartofsky. 2016. “2015
American Thyroid Association Management Guidelines for Adult Patients with
Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid
Association Guidelines Task Force on Thyroid Nodules and Differentiated
Thyroid Cancer.” Thyroid 26(1):1-133. doi:
10.1089/THY.2015.0020/ASSET/IMAGES/LARGE/FIGURE 8.JPEG.

Heinrich, Michael C., Christopher L. Corless, George D. Demetri, Charles D. Blanke,
Margaret Von Mehren, Heikki Joensuu, Laura S. McGreevey, Chang Jie Chen,
Annick D. Van Den Abbeele, Brian J. Druker, Beate Kiese, Burton Eisenberg,
Peter J. Roberts, Samuel Singer, Christopher D. M. Fletcher, Sandra Silberman,
Sasa Dimitrijevic, and Jonathan A. Fletcher. 2003. “Kinase Mutations and
Imatinib Response in Patients with Metastatic Gastrointestinal Stromal Tumor.”
Journal of Clinical Oncology : Official Journal of the American Society of
Clinical Oncology 21(23):4342-49. doi: 10.1200/JC0.2003.04.190.

Herbst. 2013. “Lung Cancer Lung Cancer Lung Cancer.” Conn’s Current Therapy
2020 2030(November):133-41.

Horn, Leora, Aaron S. Mansfield, Aleksandra Szczgsna, Libor Havel, Maciej
Krzakowski, Maximilian J. Hochmair, Florian Huemer, Gydrgy Losonczy,
Melissa L. Johnson, Makoto Nishio, Martin Reck, Tony Mok, Sivuonthanh Lam,
David S. Shames, Juan Liu, Beiying Ding, Ariel Lopez-Chavez, Fairooz
Kabbinavar, Wei Lin, Alan Sandler, and Stephen V. Liu. 2018. “First-Line

Atezolizumab plus Chemotherapy in Extensive-Stage Small-Cell Lung Cancer.”

125



New England Journal of Medicine 379(23):2220-29. doi:
10.1056/NEJMOA1809064/SUPPL_FILE/NEJIMOA1809064 DATA-
SHARING.PDF.

Hubbard, Stevan R. 1999. “Structural Analysis of Receptor Tyrosine Kinases.”
Progress in Biophysics and Molecular Biology 71(3-4):343-58. doi:
10.1016/S0079-6107(98)00047-9.

Jacobson, Matthew P., David L. Pincus, Chaya S. Rapp, Tyler J. F. Day, Barry Honig,
David E. Shaw, and Richard A. Friesner. 2004. “A Hierarchical Approach to All-
Atom  Protein  Loop  Prediction.”  Proteins  55(2):351-67.  doi:
10.1002/PROT.10613.

Jain, Ajay N. 1996. “Scoring Noncovalent Protein-Ligand Interactions: A Continuous
Differentiable Function Tuned to Compute Binding Affinities.” Journal of
Computer-Aided Molecular Design 10(5):427-40. doi:
10.1007/BF00124474/METRICS.

Jiménez-Luna, José, Alberto Cuzzolin, Giovanni Bolcato, Mattia Sturlese, and Stefano
Moro. 2020. “A Deep-Learning Approach toward Rational Molecular Docking
Protocol Selection.” Molecules 2020, Vol. 25, Page 2487 25(11):2487. doi:
10.3390/MOLECULES25112487.

Jing, Shugian, Duanzhi Wen, Yanbin Yu, Paige L. Holst, Yi Luo, Mei Fang, Rami
Tamir, Laarni Antonio, Zheng Hu, Rod Cupples, Jean Claude Louis, Sylvia Hu,
Bruce W. Altrock, and Gary M. Fox. 1996. “GDNF-Induced Activation of the Ret
Protein Tyrosine Kinase Is Mediated by GDNFR-Alpha, a Novel Receptor for
GDNE.” Cell 85(7):1113-24. doi: 10.1016/S0092-8674(00)81311-2.

Joensuu, H. 2006. “Gastrointestinal Stromal Tumor (GIST).” Annals of Oncology
17(SUPPL. 10). doi: 10.1093/annonc/mdI274.

126



Johnson, Douglas B., Monica V. Estrada, Roberto Salgado, Violeta Sanchez, Deon B.
Doxie, Susan R. Opalenik, Anna E. Vilgelm, Emily Feld, Adam S. Johnson,
Allison R. Greenplate, Melinda E. Sanders, Christine M. Lovly, Dennie T.
Frederick, Mark C. Kelley, Ann Richmond, Jonathan M. Irish, Yu Shyr, Ryan J.
Sullivan, Igor Puzanov, Jeffrey A. Sosman, and Justin M. Balko. 2016.
“Melanoma-Specific MHC-1I Expression Represents a Tumour-Autonomous
Phenotype and Predicts Response to Anti-PD-1/PD-L1 Therapy.” Nature
Communications 2016 7:1 7(1):1-10. doi: 10.1038/ncomms10582.

Joo, Won Duk, Irene Visintin, and Gil Mor. 2013. “Targeted Cancer Therapy — Are
the Days of Systemic Chemotherapy Numbered?” Maturitas 76(4):308-14. doi:
10.1016/J.MATURITAS.2013.09.008.

Jorgensen, William L., Jayaraman Chandrasekhar, Jeffry D. Madura, Roger W. Impey,
and Michael L. Klein. 1983. “Comparison of Simple Potential Functions for
Simulating Liquid Water.” The Journal of Chemical Physics 79(2):926-35. doi:
10.1063/1.445869.

Kantarjian, Hagop, Francis Giles, Lydia Wunderle, Kapil Bhalla, Susan O’Brien,
Barbara Wassmann, Chiaki Tanaka, Paul Manley, Patricia Rae, William
Mietlowski, Kathy Bochinski, Andreas Hochhaus, James D. Griffin, Dieter
Hoelzer, Maher Albitar, Margaret Dugan, Jorge Cortes, Leila Alland, and Oliver
G. Ottmann. 2006. “Nilotinib in Imatinib-Resistant CML and Philadelphia
Chromosome—Positive ALL.” New England Journal of Medicine 354(24):2542—
51. doi:
10.1056/NEJMOA055104/SUPPL_FILE/NEJIM_KANTARJIAN_2542SA1.PD
F.

Karplus, Martin, and J. Andrew McCammon. 2002. “Molecular Dynamics Simulations

of  Biomolecules.” Nature Structural Biology 9(9):646-52. doi:
10.1038/NSB0902-646.

127



Knowles, Phillip P., Judith Murray-Rust, Svend Kjer, Rizaldy P. Scott, Sarah
Hanrahan, Massimo Santoro, Carlos F. Ibafiez, and Neil Q. McDonald. 2006.
“Structure and Chemical Inhibition of the RET Tyrosine Kinase Domain.”
Journal of Biological Chemistry 281(44):33577-87. doi:
10.1074/IBC.M605604200.

Kramer, Edgar R., and Birgit Liss. 2015. “GDNF-Ret Signaling in Midbrain
Dopaminergic Neurons and Its Implication for Parkinson Disease.” FEBS Letters

589(24PartA):3760—-72. doi: 10.1016/J.FEBSLET.2015.11.006.

Kuchana, Vinutha, Vaeshnavi Kashetti, Sai Kiran Reddy Peddi, Sreekanth Sivan, and
Vijjulatha Manga. 2022. “Integrated Computational Approach for in Silico Design
of New Purinyl Pyridine Derivatives as B-Raf Kinase Inhibitors.” Journal of
Receptors and Signal Transduction 42(5):439-53. doi:
10.1080/10799893.2021.1999472/SUPPL_FILE/IRST_A_1999472_SM9172.P
DF.

Kumi Kawai, and Naoya Asai Masahide Takahashi. 2020. “Roles of the RET Proto-
Oncogene in Cancer and Development.” JMA Journal 3(3):175-81. doi:
10.31662/JMAJ.2020-0021.

Lanzi, Cinzia, Giuliana Cassinelli, Valentina Nicolini, and Franco Zunino. 2009.
“Targeting RET for Thyroid Cancer Therapy.” Biochemical Pharmacology
77(3):297-309. doi: 10.1016/J.BCP.2008.10.033.

Leach, Andrew R. 1996. “Molecular Modelling : Principles and Applications.” 595.
Lemmon, Mark A., and Joseph Schlessinger. 2010. “Cell Signaling by Receptor
Tyrosine Kinases.” Cell 141(7):1117-34. doi: 10.1016/J.CELL.2010.06.011.

Li, Jianing, Severin T. Schneebeli, Joseph Bylund, Ramy Farid, and Richard A.
Friesner. 2011. “IDSite: An Accurate Approach to Predict P450-Mediated Drug
Metabolism.” Journal of Chemical Theory and Computation 7(11):3829-45. doi:
10.1021/CT200462Q/SUPPL_FILE/CT200462Q_SI_001.PDF.

128



Li, Tao, Wen Yu Yang, Ting Ting Liu, Yao Li, Lu Liu, Xuan Zheng, Lei Zhao, Fan
Zhang, and Yi Hu. 2023. “Advances in the Diagnosis and Treatment of a Driving
Target: RET Rearrangements in Non-Small-Cell Lung Cancer (NSCLC)
Especially in China.” Technology in Cancer Research and Treatment 22. doi:
10.1177/15330338221148802/ASSET/IMAGES/LARGE/10.1177_1533033822
1148802-FIG1.JPEG.

Lichtenfels, Ana Julia De F. C., Diana A. Van Der Plaat, Kim De Jong, Cleo C. Van
Diemen, Dirkje S. Postma, Ivana Nedeljkovic, Cornelia M. Van Duijn, Najaf
Amin, Sacha La Bastide-VVan Gemert, Maaike De Vries, Cavin K. Ward-Caviness,
Kathrin Wolf, Melanie Waldenberger, Annette Peters, Ronald P. Stolk, Bert
Brunekreef, H. Marike Boezen, and Judith M. Vonk. 2018. “Long-Term Air
Pollution Exposure, Genome-Wide DNA Methylation and Lung Function in the
LifeLines Cohort Study.” Environmental Health Perspectives 126(2). doi:
10.1289/EHP2045.

Lin, Jessica J., and Alice T. Shaw. 2016. “Resisting Resistance: Targeted Therapies in
Lung Cancer.” Trends in Cancer 2(7):350-64. doi:
10.1016/J.TRECAN.2016.05.010.

Lipinski, Christopher A., Franco Lombardo, Beryl W. Dominy, and Paul J. Feeney.
2001. “Experimental and Computational Approaches to Estimate Solubility and
Permeability in Drug Discovery and Development Settings.” Advanced Drug
Delivery Reviews 46(1-3):3-26. doi: 10.1016/S0169-409X(00)00129-0.

Liu, Xuan, Xueqing Hu, Tao Shen, Qi Li, Blaine H. M. Mooers, and Jie Wu. 2020.
“RET Kinase Alterations in Targeted Cancer Therapy.” Cancer Drug Resistance
3(3):472. doi: 10.20517/CDR.2020.15.

Lu, Yue C., Olha V. Nazarko, Richard Sando, Gabriel S. Salzman, Thomas C. Stidhof,
and Demet Arag. 2015. “Structural Basis of Latrophilin-FLRT-UNCS5 Interaction
in Cell Adhesion.” Structure (London, England : 1993) 23(9):1678-91. doi:
10.1016/J.STR.2015.06.024.

129



Lukeman, John M. 2015. “What Is Lung Cancer?” Perspectives in Lung Cancer 30—
40. doi: 10.1159/000400400.

Luo, Zhibo, Lingli Wang, Zhifei Fu, Bin Shuai, Miaorong Luo, Guoping Hu, Jian
Chen, Jikui Sun, Jiansong Wang, Jian Li, Shuhui Chen, and Yang Zhang. 2021.
“Discovery and Optimization of Selective RET Inhibitors via Scaffold Hopping.”
Bioorganic &  Medicinal ~ Chemistry  Letters  47:128149.  doi:
10.1016/J.BMCL.2021.128149.

Madhavi Sastry, G., Matvey Adzhigirey, Tyler Day, Ramakrishna Annabhimoju, and
Woody Sherman. 2013. “Protein and Ligand Preparation: Parameters, Protocols,
and Influence on Virtual Screening Enrichments.” Journal of Computer-Aided
Molecular Design 27(3):221-34. doi: 10.1007/S10822-013-9644-8.

Maemondo, Makoto, Akira Inoue, Kunihiko Kobayashi, Shunichi Sugawara, Satoshi
Oizumi, Hiroshi Isobe, Akihiko Gemma, Masao Harada, Hirohisa Yoshizawa,
Ichiro Kinoshita, Yuka Fujita, Shoji Okinaga, Haruto Hirano, Kozo Yoshimori,
Toshiyuki Harada, Takashi Ogura, Masahiro Ando, Hitoshi Miyazawa, Tomoaki
Tanaka, Yasuo Saijo, Koichi Hagiwara, Satoshi Morita, and Toshihiro Nukiwa.
2010. “Gefitinib or Chemotherapy for Non—Small-Cell Lung Cancer with Mutated
EGFR.” New England Journal of Medicine 362(25):2380-88. doi:
10.1056/NEJMOA0909530/SUPPL_FILE/NEJMOA0909530_DISCLOSURES.
PDF.

Manning, Brendan D., and Lewis C. Cantley. 2007. “AKT/PKB Signaling: Navigating
Downstream.” Cell 129(7):1261-74. doi: 10.1016/J.CELL.2007.06.009.

Marsh, D. J., D. L. Learoyd, and B. G. Robinson. 1995. “Medullary Thyroid
Carcinoma: Recent Advances and Management Update.” Thyroid: Official
Journal of the American Thyroid Association 5(5):407-24. doi:
10.1089/THY.1995.5.407.

130



Martyna, Glenn J., Michael L. Klein, and Mark Tuckerman. 1992. “Nosé—Hoover
Chains: The Canonical Ensemble via Continuous Dynamics.” The Journal of
Chemical Physics 97(4):2635-43. doi: 10.1063/1.463940.

McCammon, J. Andrew, Bruce R. Gelin, and Martin Karplus. 1977. “Dynamics of
Folded Proteins.” Nature 267(5612):585-90. doi: 10.1038/267585A0.

McKinney, Wes. 2010. “Data Structures for Statistical Computing in Python.”
Proceedings of the 9th Python in Science Conference 56-61. doi:
10.25080/MAJORA-92BF1922-00A.

Mendelsohn, John, and Jose Baselga. 2000. “The EGF Receptor Family as Targets for
Cancer  Therapy.” Oncogene 2000 19:56  19(56):6550-65.  doi:
10.1038/sj.0nc.1204082.

Mendez, David, Anna Gaulton, A. Patricia Bento, Jon Chambers, Marleen De Veij,
Eloy Fé¢lix, Maria Paula Magarifos, Juan F. Mosquera, Prudence Mutowo, Michat
Nowotka, Maria Gordillo-Marafion, Fiona Hunter, Laura Junco, Grace
Mugumbate, Milagros Rodriguez-Lopez, Francis Atkinson, Nicolas Bosc, Chris
J. Radoux, Aldo Segura-Cabrera, Anne Hersey, and Andrew R. Leach. 2019.
“ChEMBL: Towards Direct Deposition of Bioassay Data.” Nucleic Acids
Research 47(D1):D930-40. doi: 10.1093/NAR/GKY1075.

Mok, Tony S., Yi-Long Wu, Myung-Ju Ahn, Marina C. Garassino, Hye R. Kim, Suresh
S. Ramalingam, Frances A. Shepherd, Yong He, Hiroaki Akamatsu, Willemijn S.
M. E. Theelen, Chee K. Lee, Martin Sebastian, Alison Templeton, Helen Mann,
Marcelo Marotti, Serban Ghiorghiu, and Vassiliki A. Papadimitrakopoulou. 2017.
“Osimertinib or Platinum-Pemetrexed in EGFR T790M-Positive Lung Cancer.”
The New England Journal of Medicine 376(7):629-40. doi:
10.1056/NEJMOA1612674.

Molina, Julian R., Ping Yang, Stephen D. Cassivi, Steven E. Schild, and Alex A. Adjei.
2008. “Non-Small Cell Lung Cancer: Epidemiology, Risk Factors, Treatment, and
Survivorship.” Mayo Clinic Proceedings 83(5):584-94. doi: 10.4065/83.5.584.

131



Morris, Garrett M., David S. Goodsell, Robert S. Halliday, Ruth Huey, William E.
Hart, Richard K. Belew, and Arthur J. Olson. 1639. “Automated Docking Using
a Lamarckian Genetic Algorithm and an Empirical Binding Free Energy
Function.” Journal of Computational Chemistry 19(14):16391662. doi:
10.1002/(SIC1)1096-987X(19981115)19:14.

Morris, Luc G. T., Andrew G. Sikora, Tor D. Tosteson, and Louise Davies. 2013. “The
Increasing Incidence of Thyroid Cancer: The Influence of Access to Care.”
Thyroid : Official Journal of the American Thyroid Association 23(7):885-91.
doi: 10.1089/THY.2013.0045.

Motzer, Robert J., Thomas E. Hutson, Piotr Tomczak, M. Dror Michaelson, Ronald M.
Bukowski, Olivier Rixe, Stéphane Oudard, Sylvie Negrier, Cezary Szczylik,
Sindy T. Kim, Isan Chen, Paul W. Bycott, Charles M. Baum, and Robert A. Figlin.
2007. “Sunitinib versus Interferon Alfa in Metastatic Renal-Cell Carcinoma.” The
New England Journal of Medicine 356(2):115-24. doi:
10.1056/NEJMOA065044.

Moumbock, Aurélien F. A., Jianyu Li, Hoai T. T. Tran, Rahel Hinkelmann, Evelyn
Lamy, Henning J. Jessen, and Stefan Gilinther. 2021. “EPharmaLib: A Versatile
Library of e-Pharmacophores to Address Small-Molecule (Poly-)Pharmacology.”
Journal of Chemical Information and Modeling 61(7):3659-66. doi:
10.1021/ACS.JCIM.1C00135/ASSET/IMAGES/LARGE/CI1C00135_0007.JPE
G.

Moura, Margarida M., Branca M. Cavaco, Anténio E. Pinto, and Valeriano Leite.
2011. “High Prevalence of RAS Mutations in RET-Negative Sporadic Medullary
Thyroid Carcinomas.” The Journal of Clinical Endocrinology & Metabolism
96(5):E863-68. doi: 10.1210/JC.2010-1921.

Mulligan, Lois M. 2014. “RET Revisited: Expanding the Oncogenic Portfolio.” Nature
Reviews Cancer 2014 14:3 14(3):173-86. doi: 10.1038/nrc3680.

132



Mulligan, Lois M. 2018. “GDNF and the RET Receptor in Cancer: New Insights and
Therapeutic  Potential.”  Frontiers in  Physiology  9(JAN).  doi:
10.3389/FPHYS.2018.01873.

Mulligan, Lois M. 2019. “GDNF and the RET Receptor in Cancer: New Insights and
Therapeutic  Potential.” Frontiers in  Physiology 10(JAN):1873. doi:
10.3389/FPHYS.2018.01873/BIBTEX.

Myshkin, Eugene, Richard Brennan, Tatiana Khasanova, Tatiana Sitnik, Tatiana
Serebriyskaya, Elena Litvinova, Alexey Guryanov, Yuri Nikolsky, Tatiana
Nikolskaya, and Svetlana Bureeva. 2012. “Prediction of Organ Toxicity
Endpoints by QSAR Modeling Based on Precise Chemical-Histopathology
Annotations.” Chemical Biology & Drug Design 80(3):406-16. doi:
10.1111/3.1747-0285.2012.01411.X.

Nikiforov, Yuri E., and Marina N. Nikiforova. 2011. “Molecular Genetics and
Diagnosis of Thyroid Cancer.” Nature Reviews. Endocrinology 7(10):569-80.
doi: 10.1038/NRENDO.2011.142.

Ostman, Arne, and Frank D. Béhmer. 2001. “Regulation of Receptor Tyrosine Kinase
Signaling by Protein Tyrosine Phosphatases.” Trends in Cell Biology 11(6):258—
66. doi: 10.1016/S0962-8924(01)01990-0.

Ouassaf, Mebarka, Ossama Daoui, Sarfaraz Alam, Souad Elkhattabi, Salah Belaidi,
and Samir Chtita. 2022. “Pharmacophore-Based Virtual Screening, Molecular
Docking, and Molecular Dynamics Studies for the Discovery of Novel FLT3
Inhibitors.” Journal of Biomolecular Structure and Dynamics. doi:
10.1080/07391102.2022.2123403/SUPPL_FILE/TBSD_A_2123403_SM1349.D
OCX.

Paik, Paul K., Maria E. Arcila, Michael Fara, Camelia S. Sima, Vincent A. Miller,
Mark G. Kris, Marc Ladanyi, and Gregory J. Riely. 2011. “Clinical Characteristics

133



of Patients with Lung Adenocarcinomas Harboring BRAF Mutations.” Journal of
Clinical Oncology 29(15):2046-51. doi: 10.1200/JC0.2010.33.1280.

Pan, Yue, Chao Deng, Zhenhua Qiu, Chenghui Cao, and Fang Wu. 2021. “The
Resistance Mechanisms and Treatment Strategies for ALK-Rearranged Non-
Small Cell Lung Cancer.” Frontiers in Oncology 11:3945. doi:
10.3389/FONC.2021.713530/BIBTEX.

Parkash, Vimal, Veli Matti Leppénen, Heidi Virtanen, Jaana M. Jurvansuu, Maxim M.
Bespalov, Yulia A. Sidorova, Pia Runeberg-Roos, Mart Saarma, and Adrian
Goldman. 2008. “The Structure of the Glial Cell Line-Derived Neurotrophic
Factor-Coreceptor Complex: INSIGHTS INTO RET SIGNALING AND
HEPARIN BINDING.” Journal of Biological Chemistry 283(50):35164—72. doi:
10.1074/IBC.M802543200.

PDQ Adult Treatment Editorial Board. 2002. “Small Cell Lung Cancer Treatment

(PDQ®): Patient Version.” PDQ Cancer Information Summaries.

Plaza-Menacho, 1., L. Mologni, and N. Q. McDonald. 2014. “Mechanisms of RET
Signaling in Cancer: Current and Future Implications for Targeted Therapy.”

Cellular Signalling 26(8):1743-52. doi: 10.1016/J.CELLSIG.2014.03.032.

Plaza-Menacho, Ivan. 2018. “Structure and Function of RET in Multiple Endocrine
Neoplasia Type 2.” Endocrine-Related Cancer 25(2):T79-90. doi: 10.1530/ERC-
17-0354.

Plaza-Menacho, Ivan, Luca Mologni, Elisa Sala, Carlo Gambacorti-Passerini, Anthony
I. Magee, Thera P. Links, Robert M. W. Hofstra, David Barford, and Clare M.
Isacke. 2007. “Sorafenib Functions to Potently Suppress RET Tyrosine Kinase
Activity by Direct Enzymatic Inhibition and Promoting RET Lysosomal
Degradation Independent of Proteasomal Targeting.” Journal of Biological
Chemistry 282(40):29230-40. doi: 10.1074/IJBC.M703461200.

134



Rini, Brian I., Bernard Escudier, Piotr Tomczak, Andrey Kaprin, Cezary Szczylik,
Thomas E. Hutson, M. Dror Michaelson, Vera A. Gorbunova, Martin E. Gore,
Igor G. Rusakov, Sylvie Negrier, Yen Chuan Ou, Daniel Castellano, Ho Yeong
Lim, Hirotsugu Uemura, Jamal Tarazi, David Cella, Connie Chen, Brad
Rosbrook, Sinil Kim, and Robert J. Motzer. 2011. “Comparative Effectiveness of
Axitinib versus Sorafenib in Advanced Renal Cell Carcinoma (AXIS): A
Randomised Phase 3 Trial.” The Lancet 378(9807):1931-39. doi: 10.1016/S0140-
6736(11)61613-9.

Romei, Cristina, Raffaele Ciampi, and Rossella Elisei. 2016. “A Comprehensive
Overview of the Role of the RET Proto-Oncogene in Thyroid Carcinoma.” Nature
Reviews Endocrinology 2016 12:4 12(4):192-202. doi: 10.1038/nrendo.2016.11.

Roos, Katarina, Chuanjie Wu, Wolfgang Damm, Mark Reboul, James M. Stevenson,
Chao Lu, Markus K. Dahlgren, Sayan Mondal, Wei Chen, Lingle Wang, Robert
Abel, Richard A. Friesner, and Edward D. Harder. 2019. “OPLS3e: Extending
Force Field Coverage for Drug-Like Small Molecules.” Journal of Chemical
Theory and Computation 15(3):1863-74. doi: 10.1021/ACS.JCTC.8B01026.

Rosen, Ezra Y., Melissa L. Johnson, Sarah E. Clifford, Romel Somwar, Jennifer F.
Kherani, Jieun Son, Arrien A. Bertram, Monika A. Davare, Eric Gladstone, Elena
V. Ivanova, Dahlia N. Henry, Elaine M. Kelley, Mika Lin, Marina S. D. Milan,
Binoj C. Nair, Elizabeth A. Olek, Jenna E. Scanlon, Morana Vojnic, Kevin Ebata,
Jaclyn F. Hechtman, Bob T. Li, Lynette M. Sholl, Barry S. Taylor, Marc Ladanyi,
Pasi A. Janne, S. Michael Rothenberg, Alexander Drilon, and Geoffrey R. Oxnard.
2021. “Overcoming MET-Dependent Resistance to Selective RET Inhibition in
Patients with RET Fusion-Positive Lung Cancer by Combining Selpercatinib with
Crizotinib.” Clinical Cancer Research : An Official Journal of the American
Association for Cancer Research 27(1):34-42. doi: 10.1158/1078-0432.CCR-20-
2278.

135



Roskoski, Robert. 2016. “Classification of Small Molecule Protein Kinase Inhibitors
Based upon the Structures of Their Drug-Enzyme Complexes.” Pharmacological
Research 103:26-48. doi: 10.1016/J.PHRS.2015.10.021.

Roskoski, Robert. 2021. “Properties of FDA-Approved Small Molecule Protein Kinase
Inhibitors: A 2021 Update.” Pharmacological Research 165. doi:
10.1016/J.PHRS.2021.105463.

Rudin, Charles M., and John T. Poirier. 2016. “Shining Light on Novel Targets and
Therapies.” Nature Reviews Clinical Oncology 2016 14:2 14(2):75-76. doi:
10.1038/nrclinonc.2016.203.

Salvatore, Domenico, Massimo Santoro, and Martin Schlumberger. 2021. “The
Importance of the RET Gene in Thyroid Cancer and Therapeutic Implications.”
Nature Reviews Endocrinology 2021 17:5 17(5):296-306. doi: 10.1038/s41574-
021-00470-9.

Santoro, Massimo, Marialuisa Moccia, Giorgia Federico, and Francesca Carlomagno.
2020. “RET Gene Fusions in Malignancies of the Thyroid and Other Tissues.”
Genes 2020, Vol. 11, Page 424 11(4):424. doi: 10.3390/GENES11040424.

Shabbir, Arafat, Arsenije Kojadinovic, Tabinda Shafig, and Prabhjot S. Mundi. 2023.
“Targeting RET Alterations in Cancer: Recent Progress and Future Directions.”
Critical Reviews in Oncology/Hematology 181. doi:
10.1016/J.CRITREVONC.2022.103882.

Shaw, Alice T., Dong-Wan Kim, Kazuhiko Nakagawa, Takashi Seto, Lucio Crin0,
Myung-Ju Ahn, Tommaso De Pas, Benjamin Besse, Benjamin J. Solomon, Fiona
Blackhall, Yi-Long Wu, Michael Thomas, Kenneth J. O’Byrne, Denis Moro-
Sibilot, D. Ross Camidge, Tony Mok, Vera Hirsh, Gregory J. Riely, Shrividya
Iyer, Vanessa Tassell, Anna Polli, Keith D. Wilner, and Pasi A. Jéanne. 2013.
Crizotinib versus Chemotherapy in Advanced ALK -Positive Lung Cancer .” New
England Journal of Medicine 368(25):2385-94. doi:

136



10.1056/NEJMOA1214886/SUPPL_FILE/NEJMOA1214486_APPENDIX.PDF

Shelley, John C., Anuradha Cholleti, Leah L. Frye, Jeremy R. Greenwood, Mathew R.
Timlin, and Makoto Uchimaya. 2007. “Epik: A Software Program for PK( a )
Prediction and Protonation State Generation for Drug-like Molecules.” Journal of
Computer-Aided Molecular Design 21(12):681-91. doi: 10.1007/S10822-007-
9133-Z.

Siddhartha Mukherjee. 2011. “The Emperor of All Maladies.” P. 57(4) 460 in A

biography of cancer. Simon and Schuster Canada.

Siegel, Rebecca L., Kimberly D. Miller, and Ahmedin Jemal. 2020. “Cancer Statistics,
2020.” CA: A Cancer Journal for Clinicians 70(1):7-30. doi:
10.3322/CAAC.21590.

Siveen, Kodappully S., Kirti S. Prabhu, Iman W. Achkar, Shilpa Kuttikrishnan,
Sunitha Shyam, Abdul Q. Khan, Maysaloun Merhi, Said Dermime, and Shahab
Uddin. 2018. “Role of Non Receptor Tyrosine Kinases in Hematological
Malignances and Its Targeting by Natural Products.” Molecular Cancer 2018 17:1
17(1):1-21. doi: 10.1186/S12943-018-0788-Y.

Smallridge, Robert C., Kenneth B. Ain, Sylvia L. Asa, Keith C. Bible, James D.
Brierley, Kenneth D. Burman, Electron Kebebew, Nancy Y. Lee, Yuri E.
Nikiforov, M. Sara Rosenthal, Manisha H. Shah, Ashok R. Shaha, and R. Michael
Tuttle. 2012. “American Thyroid Association Guidelines for Management of
Patients with Anaplastic Thyroid Cancer.” Thyroid : Official Journal of the
American Thyroid Association 22(11):1104-39. doi: 10.1089/THY.2012.0302.

Sterling, Teague, and John J. Irwin. 2015. “ZINC 15 - Ligand Discovery for
Everyone.” Journal of Chemical Information and Modeling 55(11):2324-37. doi:
10.1021/ACS.JCIM.5B00559/ASSET/IMAGES/LARGE/CI-2015-
00559J_0005.JPEG.

137



Subbiah, V., T. Shen, S. S. Terzyan, X. Liu, X. Hu, K. P. Patel, M. Hu, M. Cabanillas,
A. Behrang, F. Meric-Bernstam, P. T. T. Vo, B. H. M. Mooers, and J. Wu. 2021.
“Structural Basis of Acquired Resistance to Selpercatinib and Pralsetinib
Mediated by Non-Gatekeeper RET Mutations.” Annals of Oncology : Olfficial
Journal of the European Society for Medical Oncology 32(2):261-68. doi:
10.1016/J.ANNONC.2020.10.599.

Subbiah, V., V. Velcheti, B. B. Tuch, K. Ebata, N. L. Busaidy, M. E. Cabanillas, L. J.
Wirth, S. Stock, S. Smith, V. Lauriault, S. Corsi-Travali, D. Henry, M. Burkard,
R. Hamor, K. Bouhana, S. Winski, R. D. Wallace, D. Hartley, S. Rhodes, M.
Reddy, B. J. Brandhuber, S. Andrews, S. M. Rothenberg, and A. Drilon. 2018.
“Selective RET Kinase Inhibition for Patients with RET-Altered Cancers.” Annals
of Oncology : Official Journal of the European Society for Medical Oncology
29(8):1869-76. doi: 10.1093/ANNONC/MDY137.

Subbiah, Vivek, Justin F. Gainor, Rami Rahal, Jason D. Brubaker, Joseph L. Kim,
Michelle Maynard, Wei Hu, Qiongfang Cao, Michael P. Sheets, Douglas Wilson,
Kevin J. Wilson, Lucian Dipietro, Paul Fleming, Michael Palmer, Mimi 1. Hu,
Lori Wirth, Marcia S. Brose, Sai Hong Ignatius Ou, Matthew Taylor, Elena
Garralda, Stephen Miller, Beni Wolf, Christoph Lengauer, Timothy Guzi, and
Erica K. Evans. 2018. “Precision Targeted Therapy with BLU-667 for RET-
Driven Cancers.” Cancer Discovery 8(7):836-49. doi: 10.1158/2159-8290.CD-
18-0338/42851/AM/PRECISION-TARGETED-THERAPY-WITH-BLU-667-
FOR-RET.

Suhandi, Cecep, Ersa Fadhilah, Nurfianti Silvia, Annisa Atusholihah, Randy Rassi
Prayoga, Sandra Megantara, and Muchtaridi Muchtaridi. 2021. “Molecular
Docking Study of Mangosteen (Garcinia Mangostana L.) Xanthone-Derived
Isolates as Anti Androgen.” Indonesian Journal of Cancer Chemoprevention
2021, Vol. 12, Pages 11-20 12(1):11-20. doi:
10.14499/INDONESIANJCANCHEMOPREV12ISS1PP11-20.

138



Takahashi, Masahide, Jerome Ritz, and Geoffrey M. Cooper. 1985. “Activation of a
Novel Human Transforming Gene, Ret, by DNA Rearrangement.” Cell
42(2):581-88. doi: 10.1016/0092-8674(85)90115-1.

Taylor, Matthew H., Justin F. Gainor, Mimi I. Nan Hu, Viola Weijia Zhu, Gilberto
Lopes, Sophie Leboulleux, Marcia S. Brose, Martin H. Schuler, Daniel W.
Bowles, Dong-Wan Kim, Christina S. Baik, Elena Garralda, Chia-Chi Lin,
Douglas Adkins, Debashis Sarker, Giuseppe Curigliano, Hui Zhang, Corinne
Clifford, Christopher D. Turner, and Vivek Subbiah. 2019. “Activity and
Tolerability of BLU-667, a Highly Potent and Selective RET Inhibitor, in Patients
with Advanced RET-Altered Thyroid Cancers.”
Https://Doi.Org/10.1200/JC0.2019.37.15 suppl.6018 37(15 suppl):6018-6018.
doi: 10.1200/JC0.2019.37.15_SUPPL.6018.

The American Cancer Society. 2021. “The History of Cancer.” The American Cancer
Society. Retrieved (https://www.cancer.org/cancer/understanding-cancer/history-

of-cancer.html).

The American Cancer Society medical and editorial content team. 2019. “Lung Cancer

Causes, Risk Factors, and Prevention.” The American Cancer Society 1-14.

Travis, William D., Elisabeth Brambilla, Andrew G. Nicholson, Yasushi Yatabe, John
H. M. Austin, Mary Beth Beasley, Lucian R. Chirieac, Sanja Dacic, Edwina
Duhig, Douglas B. Flieder, Kim Geisinger, Fred R. Hirsch, Yuichi Ishikawa,
Keith M. Kerr, Masayuki Noguchi, Giuseppe Pelosi, Charles A. Powell, Ming
Sound Tsao, and Ignacio Wistuba. 2015. “The 2015 World Health Organization
Classification of Lung Tumors: Impact of Genetic, Clinical and Radiologic
Advances Since the 2004 Classification.” Journal of Thoracic Oncology : Official
Publication of the International Association for the Study of Lung Cancer
10(9):1243-60. doi: 10.1097/JT0O.0000000000000630.

139



Trenker, Raphael, and Natalia Jura. 2020. “Receptor Tyrosine Kinase Activation: From
the Ligand Perspective.” Current Opinion in Cell Biology 63:174-85. doi:
10.1016/J.CEB.2020.01.016.

Vidal, Marcos, Samuel Wells, Anderson Ryan, and Ross Cagan. 2005. “ZD6474
Suppresses Oncogenic RET Isoforms in a Drosophila Model for Type 2 Multiple

Endocrine Neoplasia Syndromes and Papillary Thyroid Carcinoma.” Cancer
Research 65(9):3538-41. doi: 10.1158/0008-5472.CAN-04-4561.

Vodopivec, Danica M., and Mimi I. Hu. 2022. “RET Kinase Inhibitors for RET-
Altered Thyroid Cancers.” Therapeutic Advances in Medical Oncology 14. doi:
10.1177/17588359221101691/ASSET/IMAGES/LARGE/10.1177_1758835922
1101691-FIG3.JPEG.

Wang, Ercheng, Huiyong Sun, Junmei Wang, Zhe Wang, Hui Liu, John Z. H. Zhang,
and Tingjun Hou. 2019. “End-Point Binding Free Energy Calculation with
MM/PBSA and MM/GBSA: Strategies and Applications in Drug Design.”
Chemical Reviews 119(16):9478-9508. doi: 10.1021/ACS.CHEMREV.9B00055.

Wang, Renxiao, Ying Fu, and Luhua Lai. 1997. “A New Atom-Additive Method for
Calculating Partition Coefficients.” Journal of Chemical Information and
Computer Sciences 37(3):615-21. doi:
10.1021/C1960169P/SUPPL_FILE/C1615.PDF.

Wang, Xinquan. 2013. “Structural Studies of GDNF Family Ligands with Their
Receptors-Insights into Ligand Recognition and Activation of Receptor Tyrosine
Kinase RET.” Biochimica et Biophysica Acta 1834(10):2205-12. doi:
10.1016/J.BBAPAP.2012.10.008.

Weinstein, 1. Bernard, and Andrew Joe. 2008. “Oncogene Addiction.” Cancer
Research 68(9):3077-80. doi: 10.1158/0008-5472.CAN-07-3293.

Wells, Samuel A., Sylvia L. Asa, Henning Dralle, Rossella Elisei, Douglas B. Evans,

Robert F. Gagel, Nancy Lee, Andreas MacHens, Jeffrey F. Moley, Furio Pacini,
140



Friedhelm Raue, Karin Frank-Raue, Bruce Robinson, M. Sara Rosenthal,
Massimo Santoro, Martin Schlumberger, Manisha Shah, and Steven G.
Waguespack. 2015a. “Revised American Thyroid Association Guidelines for the
Management of Medullary Thyroid Carcinoma.” Thyroid 25(6):567-610. doi:
10.1089/THY.2014.0335/ASSET/IMAGES/LARGE/FIGURE 3.JPEG.

Wells, Samuel A., Sylvia L. Asa, Henning Dralle, Rossella Elisei, Douglas B. Evans,
Robert F. Gagel, Nancy Lee, Andreas MacHens, Jeffrey F. Moley, Furio Pacini,
Friedhelm Raue, Karin Frank-Raue, Bruce Robinson, M. Sara Rosenthal,
Massimo Santoro, Martin Schlumberger, Manisha Shah, and Steven G.
Waguespack. 2015b. “Revised American Thyroid Association Guidelines for the
Management of Medullary Thyroid Carcinoma.” Thyroid 25(6):567-610. doi:
10.1089/THY.2014.0335/ASSET/IMAGES/LARGE/FIGURE 3.JPEG.

Wells, Samuel A., and Massimo Santoro. 2009. “Targeting the RET Pathway in
Thyroid Cancer.” Clinical Cancer Research : An Official Journal of the American
Association for Cancer Research 15(23):7119-23. doi: 10.1158/1078-0432.CCR-
08-2742.

Wolber, Gerhard, and Thierry Langer. 2005. “LigandScout: 3-D Pharmacophores
Derived from Protein-Bound Ligands and Their Use as Virtual Screening Filters.”
Journal of Chemical Information and Modeling 45(1):160-69. doi:
10.1021/C1049885E.

Wong, Chi Heem, Kien Wei Siah, and Andrew W. Lo. 2019. “Estimation of Clinical
Trial Success Rates and Related Parameters.” Biostatistics 20(2):273-86. doi:
10.1093/BIOSTATISTICS/KXX069.

Wu, David., David Chandler, and David Chandler. 1988. “Solutions Manual for

Introduction to Modern Statistical Mechanics.” 91.

Xia, Bing, and Sai Hong Ignatius Ou. 2020. “Simultaneous RET Solvent-Front and

Gatekeeper Resistance Mutations In Trans: A Rare TKI-Specific Therapeutic

141



Challenge?” Journal of Thoracic Oncology : Official Publication of the
International Association for the Study of Lung Cancer 15(4):479-81. doi:
10.1016/J.JTHO.2020.02.001.

Xing, Mingzhao. 2013. “Molecular Pathogenesis and Mechanisms of Thyroid Cancer.”
Nature Reviews. Cancer 13(3):184. doi: 10.1038/NRC3431.

Yarden, Yosef, and Mark X. Sliwkowski. 2001. “Untangling the ErbB Signalling
Network.” Nature Reviews. Molecular Cell Biology 2(2):127-37. doi:
10.1038/35052073.

Zhang, Ji Hu, Thomas D. Y. Chung, and Kevin R. Oldenburg. 1999. “A Simple
Statistical Parameter for Use in Evaluation and Validation of High Throughput
Screening Assays.” Journal of Biomolecular Screening 4(2):67-73. doi:
10.1177/108705719900400206.

Zhang, Yujie, Zhichao Xing, Tianyou Liu, Minghai Tang, Li Mi, Jinggiang Zhu,
Wenshuang Wu, and Tao Wei. 2022. “Targeted Therapy and Drug Resistance in
Thyroid Cancer.” European Journal of Medicinal Chemistry 238. doi:
10.1016/J.EJMECH.2022.114500.

142






