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ABSTRACT 

 

FRAUD DETECTION IN BLOCKCHAIN CRYPTOCURRENCIES 

 

 
 

Kumaş, Osman 

Computer Engineering Masters Program 

Thesis Advisor: Assistant Professor Alper CAMCI 

 

 
 

June 2023, 75 pages 
 

 

 
 
 

The rise of cryptocurrencies has brought both benefits and challenges, including the increase 

in cybercriminal activities like money laundering and illegal services. To protect decentralized 

and anonymous cryptocurrency networks, reliable fraud detection systems are urgently needed. 

Previous approaches using conventional machine learning and graph-based algorithms have 

struggled with generalization and robustness. This research focuses on using graph neural 

network (GNN) architectures, including GCN, GAT, GraphSAGE, GIN, and RGGCN, for 

cryptocurrency fraud detection. 

 

These GNN architectures capture complex dependencies and relationships in Ethereum 

transactions modeled as graphs. GCN efficiently handles message-passing and aggregation to 

learn local and global dependencies, while GraphSAGE uses sampling and aggregation for 

large-scale graphs. GAT incorporates attention mechanisms to focus on relevant nodes, GIN 

offers flexibility in handling different graph structures, and RGGCN captures both local and 

global information with residual connections. 

 

Extensive experiments were conducted on labeled datasets of fraudulent and genuine 

transactions to develop accurate and robust fraud detection models. Significant features were 
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extracted from the graph structure, enabling the identification of subtle fraudulent patterns. 

Overcoming challenges such as imbalanced datasets and scalability is crucial for reliable early 

detection and prevention of fraud. 

 

The findings contribute to enhancing the safety of digital currencies. The goal is to equip 

financial institutions, regulatory bodies, and cryptocurrency platforms with advanced GNN 

detection and mitigation tools, using frameworks like GCN, GAT, GraphSAGE, GIN, 

RGGCN, to safeguard the security of the global cryptocurrency market. 

 

 
 

Keywords: Etherium Fraud Detection, Blockchain Fraud Detection, Graph Neural Networks, 

Graph Convolutional Networks (GCN), Graph Attention Networks (GAT), Graph Sample and 

Aggregated (GraphSAGE), Graph Isomorphism Networks (GIN),  Residual Gated Graph 

Convolutional Network (RGGCN). 
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Kripto paraların hızla kabul görmesi, para aklama ve yasa dışı hizmetler gibi bir dizi zorluğu 

da beraberinde getirmiştir. Merkezi olmayan ve anonim yapıları nedeniyle kripto para ağlarının 

açıklığını ve güvenliğini korumak için güvenilir bir dolandırıcılık tespit sistemi gerekmektedir. 

Önceki yaklaşımlarda, geleneksel makine öğrenimi ve graf tabanlı algoritmalar genellikle 

gelecekteki zaman adımlarında genelleme ve sağlamlık sorunları yaşamaktadır. Bu 

araştırmada, graf yapılı sinir ağı (GNN) mimarileri olan GCN, GAT, GraphSAGE, GIN ve 

RGGCN, kripto para dolandırıcılığı tespiti için kullanılmaktadır. 

 

Bu GNN mimarileri, Ethereum işlemlerini graf olarak modellenerek, karmaşık bağımlılıkları 

ve ilişkileri yakalamaktadır. GCN, etkili mesaj iletimi ve birleştirme yetenekleriyle yerel ve 

küresel bağımlılıkları öğrenirken, GraphSAGE büyük ölçekli grafikler için örnekleme ve 

birleştirme stratejileri kullanmaktadır. GAT, ilgili düğümlere odaklanmak için dikkat 

mekanizmalarını entegre ederken, GIN farklı graf yapılarıyla esnek bir birleştirme fonksiyonu 

sunar ve RGGCN, yerel ve küresel graf bilgisini artakalan bağlantılarla yakalar. 
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Sağlam ve doğru kripto para dolandırıcılığı tespiti modelleri oluşturmak için sahte ve gerçek 

işlemlerin etiketlenmiş veri setleri üzerinde kapsamlı deneyler gerçekleştirildi. Graf yapısından 

önemli özellikler çıkarılarak, hileli desenlerin tespiti mümkün hale getirildi. Dengesiz veri 

setleri ve ölçeklenebilirlik gibi engellerin aşılması, güvenilir erken tespit ve önleme 

mekanizmaları için hayati önem taşımaktadır. 

 

Bu bulgular, dijital para birimlerinin güvenliğini artırmaya katkıda bulunmaktadır. Hedef, 

finansal kuruluşlar, düzenleyici kurumlar ve kripto para platformlarını, GCN, GAT, 

GraphSAGE, GIN, RGGCN gibi çerçeveler kullanarak gelişmiş GNN tespit ve hafifletme 

araçlarıyla donatmaktır. Bu sayede küresel kripto para piyasasının güvenliğini sağlamak 

mümkün olacaktır. 

 

 

 

Anahtar Kelimeler: Etherium Dolandırıcılık Tespiti, Blokzincir Dolandırıcılık Tespiti, Graf 

Nöral Ağı, Graf Konvolüsyon Ağı (GCN), Graf Dikkat Ağı (GAT), Graf Basit ve Toplu 

Ağı(GraphSAGE), Graf Izomorfizm Ağı (GIN),  Artık Geçitli Grafik Konvolüsyon Ağı 

(RGGCN). 
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Chapter 1 

 

Introduction 
 

1.1 Theoretical Framework 
 

 Numerous industries have been revolutionized by the advent of blockchain 

technology, particularly in the domain of decentralized digital transactions. Nonetheless, the 

widespread adoption of blockchain-based cryptocurrencies has attracted malicious actors 

looking to exploit vulnerabilities and indulge in fraudulent activities. Fraudulent practices, 

such as phishing schemes, money laundering, and unauthorized transactions, pose a 

substantial threat to the integrity and dependability of blockchain-based financial systems. 

Detecting and averting fraud in these decentralized networks is crucial for protecting user 

interests, maintaining trust, and promoting the continued growth and adoption of 

blockchain-based cryptocurrencies. The matter at the spot is the implementation of reliable 

fraud detection mechanisms that adapt to the unique characteristics and difficulties of 

blockchain-based cryptocurrencies. Due to factors such as pseudonymity, the negligible 

presence of a regulating body, and the complexity of transactional relationships within the 

blockchain ecosystem, traditional fraud detection techniques designed for centralized 

financial systems are often inapplicable to blockchain networks. In order to identify and 

mitigate fraudulent activities in these decentralized environments, therefore, novel 

approaches are required. This thesis intends to solve the aforementioned issue by proposing 

a comprehensive framework for detecting fraud in blockchain-based cryptocurrencies. The 

research will concentrate on the following primary aims: 

 

Identification of Fraudulent Patterns: Develop innovative algorithms and techniques 

for detecting and analyzing fraudulent patterns in blockchain transactions. This includes 

identifying suspicious transactional behaviors, anomalous transaction flows, and transaction 

metadata anomalies. (Singh, S., Singh, S. & Kajla, T., 2023.) 

 

Graph-Based Analysis: Model the interconnected character of blockchain transactions 

using graph theory and network analysis methodologies. By representing accounts and 

transactions as nodes and edges in a graph structure, this research seeks to capitalize on the 

inherent relationships and dependencies within the network to enhance the accuracy and 
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efficiency of fraud detection. (Alarab, I., Prakoonwit, S. & Nacer, M.I., 2020,) 

 

Machine Learning and Artificial Intelligence: Utilize cutting-edge machine learning 

and artificial intelligence techniques to enhance the proposed framework's fraud detection 

capabilities. This requires the development of predictive models, anomaly detection 

algorithms, and ensemble learning approaches in order to identify fraudulent accounts and 

transactions with a high degree of precision and recall. (Schmidhuber, 2015) 

 

By addressing these objectives, this thesis aims to contribute to the creation of robust 

and efficient fraud detection mechanisms that are tailored particularly for blockchain-based 

cryptocurrencies. The proposed framework will provide stakeholders, such as financial 

institutions, regulators, and users, with the tools and insights essential to detect and prevent 

fraudulent activities within the blockchain ecosystem. 

 
 

1.2 Statement of the Problem 
 

Integrity and trustworthiness of blockchain-based cryptocurrencies face significant 

challenges due to fraudulent activities. The decentralized and pseudonymous nature of these 

digital assets makes them susceptible to various types of deception, such as phishing, money 

laundering, and unauthorized transactions. To ensure the security and dependability of 

blockchain networks, it is essential to detect and prevent such fraudulent activities. Existing 

methods struggle to effectively deal with the graph-structured nature of blockchain data, 

despite the advancements in fraud detection techniques. Traditional approaches that rely on 

tabular or sequential data fail to capture the interconnected relationships between blockchain 

network transactions and entities. Therefore, these methods may have limited precision and 

scalability when applied to the detection of fraud in cryptocurrencies. This study addresses 

the need for robust and effective fraud detection mechanisms designed specifically for 

blockchain-based cryptocurrencies. The objective is to develop novel graph-based 

methodologies capable of precisely identifying fraudulent transactions and activities by 

leveraging the underlying graph structure of blockchain data. The research seeks to resolve 

the following significant issues: 

 

Developing efficient strategies to represent blockchain transactions and entities as a 
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graph, thereby facilitating the use of graph-based fraud detection algorithms. Previous 

research has shown the significance of graph-based representations for capturing the 

complex relationships and dependencies within blockchain networks. (Wang, Luo & Zhou  

2020). Extraction of informative characteristics from a graph representation that capture 

pertinent characteristics and patterns indicative of fraudulent behavior. Graph-specific 

feature engineering techniques, such as node embeddings and graph convolutional 

networks, have demonstrated potential for capturing node-level and structural information 

for fraud detection tasks (Wu, Pan, Chen, Long, Zhang  & Philip 2020). Developing scalable 

and computationally efficient algorithms capable of managing the vastness and volatility of 

blockchain data. Processing immense amounts of blockchain transactions and facilitating 

real-time fraud detection necessitates efficient graph-based algorithms and optimization 

techniques (Hamilton, Ying & Leskovec, 2017). 

 

By addressing these obstacles, this study hopes to contribute to the creation of 

sophisticated fraud detection mechanisms that are tailored specifically for blockchain-based 

cryptocurrencies. The findings of this study will provide valuable insights and actionable 

suggestions for enhancing the security and dependability of decentralized financial systems. 

 

 

1.3 Purpose of The Study 
 

 

The primary objective of this study is to overcome the shortcomings of previous 

approaches by harnessing the capabilities of these state-of-the-art GNN architectures. GCN, 

introduced by Kipf and Welling, (Kipf & Welling, 2017), enables effective information 

propagation and feature aggregation among connected nodes in the bitcoin transaction 

graph. GAT, proposed by Veličković (Velickovic, P., Cucurull, G., Casanova, A., Romero, 

A., Lio, P. & Bengio, Y., 2017), incorporates attention mechanisms to assign different 

importance weights to neighboring nodes, allowing the model to focus on the most relevant 

information. GraphSAGE, introduced by Hamilton (Hamilton, Ying & Leskovec, 2017), 

addresses the scalability issue by sampling and aggregating features from local 

neighborhoods, enabling efficient learning on large-scale graphs. GIN, provides a flexible 

and expressive aggregation function that can capture structural similarities in diverse graph 

datasets. RGGCN, introduced by Li  (Li, Tarlow, Brockschmidt & Zemel, 2015), 
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incorporates residual connections and gated mechanisms to capture both local and global 

graph information, enhancing the model's representation power. 

 

Through extensive experimentation and evaluation on real-world bitcoin transaction data, 

this study aims to assess the effectiveness of these GNN architectures in detecting fraudulent 

activities. The performance of these architectures will be compared in terms of accuracy, 

precision, recall, and F1-score to highlight their capabilities in overcoming the limitations 

of previous approaches. By achieving this purpose, this research contributes to the 

advancement of fraud detection techniques specifically tailored for bitcoin transactions. The 

utilization of state-of-the-art GNN architectures provides novel insights into uncovering 

hidden patterns and enhancing the security and integrity of the blockchain ecosystem. 

 

 

Examine the influence of various graph-based techniques on the scalability and 

computational efficiency of fraud detection systems.Evaluate the computational 

requirements and operational performance of GCN, GAT, GraphSAGE, GIN and  RGGCN 

when processing massive blockchain datasets. To enhance the efficacy of fraud detection 

algorithms, investigate possible optimizations and trade-offs. By addressing these 

objectives, this study intends to contribute to the existing body of knowledge on graph-based 

fraud detection in blockchain-based cryptocurrencies by providing valuable insights and 

recommendations for enhancing the security and reliability of decentralized financial 

systems. 

 

 

1.4 Hypothesis 
 

This thesis proposes that employing graph-based applications and attention 

mechanisms can considerably improve the accuracy and efficacy of blockchain-based 

cryptocurrency fraud detection. By leveraging the inherent network structure and 

relationships present in blockchain transaction data, in conjunction with attention 

mechanisms that focus on relevant features and patterns, it is anticipated that the proposed 

approach will improve the ability to detect fraudulent accounts and transactions, thereby 

reducing financial losses and ensuring the integrity of blockchain-based financial systems. 
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This hypothesis is supported by findings from prior research that demonstrate the 

efficacy of graph-based approaches and attention mechanisms in various domains. Graph-

based models, such as Graph Convolutional Networks (GCNs), Graph Attention Networks 

(GATs), Graph Sample and Aggregated(GraphSAGE), Graph Isomorphism Networks (GIN) 

and Residual Gated Graph Convolutional Network(RGGCN) have been shown to be capable 

of capturing complex relationships and dependencies in network data, resulting in improved 

performance in tasks such as node classification and link prediction (Kipf & Welling, 2017) 

(Velickovic, Cucurull, Casanova, Romero, Lio & Bengio, 2017). In addition, attention 

mechanisms have demonstrated their effectiveness in concentrating on relevant information 

and boosting the discriminative power of neural networks. 

 

It is hypothesized that employing graph-based applications and attention mechanisms 

to the specific problem of fraud detection in blockchain-based cryptocurrencies will result 

in the following outcomes: 

 

• Enhanced Accuracy: The incorporation of graph-based features and attention 

mechanisms will enhance the model's ability to capture nuanced patterns and 

anomalies associated with fraudulent accounts and transactions, resulting in an 

increase in the accuracy of detecting fraudulent activities. By considering the 

interconnectedness of accounts and transactions, the graph-based approach is 

anticipated to increase the model's robustness against adversarial attacks and 

attempts to conceal fraudulent behavior. 

 

• Efficient Feature Extraction: Attention mechanisms will enable the model to 

prioritize essential information and focus on relevant features, resulting in 

more efficient and effective fraud detection with reduced computational 

requirements. Experiments will be conducted on real-world blockchain 

datasets to empirically verify the hypothesis, comparing the performance of 

the proposed graph-based approach with existing fraud detection methods. The 

evaluation metrics precision, recall, F1 score, and area under the ROC curve 

(AUC) will be used to determine the efficacy of the proposed method for 

detecting and preventing fraud in blockchain-based cryptocurrencies. 
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Chapter 2 

 

Literature Review 
 

 

  

2.1 Previous Research 

 

By mining Ethereum-based transaction records, Tan (Tan, Tan, Zhang & Li, 2021) 

proposes a method for detecting Ethereum deception. Using web crawlers to capture labeled 

fraudulent addresses, reconstructing a transaction network based on the public transaction 

book, extracting node features for identifying fraudulent transactions using an amount-based 

network embedding algorithm, and using the graph convolutional network model to classify 

addresses into legal addresses and fraudulent addresses are all steps involved in this method. 

 

 

A One-Class Graph Neural Network-based anomaly detection framework for the 

Ethereum blockchain network is proposed by Patel (Patel, Pan & Rajasegarar, 2020). The 

proposed method can detect anomalies with greater precision than traditional non-graph-

based machine learning algorithms. Due to their incapacity to capture internode or account 

relationship information, traditional machine learning-based techniques such as One-Class 

Support Vector Machine and Isolation Forest are ineffective at identifying anomalies in 

Ethereum transactions. The conclusion of the paper is that the proposed method can 

effectively represent Ethereum transactions using an attributed graph with nodes and edges 

that depict interdependencies, making it a more effective method for detecting anomalies in 

the Ethereum blockchain network. 

 

Poursafaei proposes SigTran, a graph-based technique for detecting malicious nodes 

on blockchain networks (Poursafaei, Rabbany & Zilic, 2021). SigTran generates a graph 

from transaction records in a blockchain and represents nodes according to their structural 

and transactional properties. These node representations reliably distinguish between nodes 

participating in illicit activities. SigTran achieves an F1 score of 0.92 on Bitcoin and 0.94 

on Ethereum, outperforming significantly more complex platform-dependent models on 

these benchmarks. The conclusion of this paper is that SigTran is an efficient and general 

method for detecting unlawful activity in blockchain transaction networks. 
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The conclusion of the paper (Pourhabibi, Ong, Kam & Boo, 2020) is that graph-based 

anomaly detection techniques are among the most commonly used techniques for analyzing 

connectivity patterns in communication networks and identifying suspicious behaviors. 

However, the nature of the input network is a fundamental aspect of Graph Based Anomaly 

Detection (GBAD) approaches, and the limitations of supervised and semi-supervised 

learning techniques may prevent the implementation of GBAD approaches in certain 

circumstances. The authors suggest that future research should focus on developing more 

efficient and effective GBAD approaches capable of managing large-scale and complex 

networks. 

 

Kumar, A., Ghosh, S. Kumar, Ghosh, and Verma (Kumar, Ghosh & Verma, 2022) 

propose a self-training method that uses a guided sharpening technique with a pair of 

autoencoders to incorporate unlabeled data into the training procedure. Autoencoders are 

neural networks that learn to reconstruct their input data and are utilized for feature 

extraction and dimensionality reduction. Using one autoencoder to generate a sharpened 

version of the input data and another autoencoder to reconstruct the original input data from 

the sharpened version is the guided sharpening technique. This procedure offers helpful 

hints for incorporating unlabeled data into the training procedure. They conducted 

experiments on three distinct real-world databases to demonstrate the efficacy of the 

methodology. On the elliptic bitcoin fraud dataset, they demonstrated that incorporating 

unlabeled data increased the F1 score of the model trained on limited labeled data by 

approximately 10%. The F1 score is a measure of a model's accuracy that takes both 

precision and recall into account. 

 

Duan (Duan, Yan, Dong, Zhang & Yu, 2022) highlights the vulnerabilities of the 

blockchain ecosystem to criminal activity and the limitations of existing phishing fraud 

detection technologies, which largely rely on shallow machine learning, resulting in low 

detection precision.  The paper proposes the TransDetectionNet graph classification network 

model to address this issue. The model uses the Edge-sampling To Node Vector 

(Esmp2NVec) node embedding algorithm to extract the features concealed within the 

directed transaction network. In order to extract node features, the paper employs graph 
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convolutional neural networks (GraphSAGE and GCN) to learn the topological space 

structure between nodes, where nodes represent Ethereum accounts. 

 

A Heterogeneous Graph Transformer Networks (S_HGTNs) model for smart contract 

anomaly detection is proposed to identify financial malfeasance on the Ethereum platform 

(Liu, Tsai, Bhuiyan, Peng & Liu, 2022). By extracting features from intricate smart 

contracts, the model effectively identifies anomalous smart contracts. The classification 

results indicate that this model outperforms the conventional model, and the small standard 

deviation demonstrates the model's effectiveness and consistency. This paper concludes that 

anomaly detection for smart contracts can effectively prevent concealed security threats 

such as financial fraud, illegal financing, and money laundering. 

 

Using machine learning to detect illicit Bitcoin transactions in Elliptic data, one of the 

largest Bitcoin transaction graphs (Alarab & Prakoonwit, 2023). According to the paper, 

using supervised learning and graph convolutional network models for anti-money 

laundering has produced promising results in prior research. However, these studies failed 

to account for the temporal information of the dataset, yielding unsatisfactory results. In 

addition, the literature on the applicability of active learning to blockchain datasets is 

limited. In order to overcome these limitations, the paper proposes a classification model 

that integrates long-short-term memory with GCN, dubbed temporal-GCN, to classify illicit 

transactions based solely on transaction characteristics. Literature-documented active 

learning frameworks utilizing a variety of acquisition functions are contrasted here.  

 

SemiGNN is a semi-supervised attentive graph neural network proposed for financial 

misconduct detection (Wang, Lin, Cui, Jia, Wang, Fang, Yu, Zhou, Yang & Qi, 2019). The 

network uses multi-view labeled and unlabeled data for fraud detection and proposes a 

hierarchical attention mechanism to better correlate distinct neighbors and different views. 

Attention mechanism makes the model interpretable by specifying which fraud factors are 

significant and why users are predicted to be fraudulent. The investigation conducted with 

Alipay users demonstrates that the proposed method achieves greater accuracy than existing 

methods on two tasks. The results that are interpretable also provide insightful insights into 

the duties. The conclusion of the paper is that the proposed SemiGNN method can be used 
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to detect financial misconduct and generate interpretable results. 

 

Hassanzadeh, Nayak, and Stebili (2012) propose a framework for analyzing the 

effectiveness of various graph metrics in identifying individuals with anomalous 

relationships in online social networks. Using their methodology on datasets from existing 

online social networks, the authors identified a number of performance-enhancing metrics. 

The empirical analysis shows that the relationship between average betweenness centrality 

and edges detects anomalies more precisely than other methods. The paper concludes that 

the direct connectivity of online social networks can facilitate illegal activity, and that their 

proposed framework can aid in detecting anomalous behavior in such networks. 

 

Kaufman (Kaufman & Iaremenko, 2022) concentrates on detecting anomalies in real-

time Ethereum trades from specific accounts in order to prevent potential accidents and 

economic losses caused by fraud on the cryptocurrency market. The authors evaluated the 

efficacy of traditional and novel algorithms for detecting pointwise, contextual, and 

collective anomalies in the sample, time, and frequency domains. They categorized the 

algorithms in accordance with their detection strategy and labeled a point as an anomaly if 

it received a majority vote. The paper concludes that combining distinct groups of 

algorithms can result in an effective real-time detector with an alarm time of no more than 

a few seconds and a high degree of certainty. 

 

 

Noekhah (Noekhah, binti Salim & Zakaria, 2020) discusses the growing need for 

detecting opinionated spam in e-commerce in order to prevent its negative effects on 

business reputations. Existing spam detection techniques take into account only one or two 

types of spam entities, such as reviews, reviewers, reviewer groups, and products. In 

addition, they employ a limited number of features pertaining to behavior, content, and the 

relationship between entities, which reduces the detection accuracy. These techniques rely 

predominantly on synthetic datasets to analyze their model and cannot be applied to the real-

world setting. To overcome these limitations, the researchers propose a novel graph-based 

model known as "Multi-iterative Graph-based opinion Spam Detection" (MGSD). This 

model simultaneously analyzes all entity types within a unified structure, revealing both 
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implicit (i.e., similar entity's) and explicit (i.e., different entity's) relationships. The MGSD 

model evaluates the'spamminess' effects of entities more efficiently by employing a novel 

multi-iterative algorithm that considers various sets of factors to update the entities' 

spamminess score. 

 

Hassan (Hassan, Rehmani & Chen, 2022) focuses on detecting anomalies in real-time 

Ethereum transactions from specific accounts to prevent potential accidents and economic 

losses caused by fraud on the cryptocurrency market. The authors assessed the performance 

of conventional and innovative algorithms for detecting pointwise, contextual, and 

collective anomalies in the sample, time, and frequency domains. According to their 

detection strategy, they categorized the algorithms and designated a point as an anomaly if 

it received a majority vote. Combining distinct groups of algorithms can result in an 

effective real-time detector with an alarm time of no more than a few seconds and a high 

degree of certainty, according to the paper's conclusion. 

 

 

Hu (Hu, Li, Zhuang, Huang & Dong, 2020) proposes GFD, an innovative method for 

detecting deception in mobile advertising. The method identifies fraudulent mobile 

advertising applications using a weighted heterogeneous graph and techniques of deep 

learning. The method builds a weighted heterogeneous graph to represent behavior patterns 

among users, mobile apps, and mobile advertisements and employs a time window-based 

statistical analysis technique to extract intrinsic features from the tabular sample data. In 

addition, a neural network that incorporates graph-based and attribute-based features is 

proposed for distinguishing fraudulent apps from legitimate apps. The experimental results 

on a real-world dataset reveal that the proposed method outperforms conventional learning 

techniques. 

 

GCNs to detect money laundering on the Bitcoin blockchain (Alarab, Prakoonwit & 

Nacer, 2020). The authors conducted experiments to determine the efficacy of GCNs in 

detecting suspicious transactions and compared it to other cutting-edge methods. In terms 

of accuracy and effectiveness, the results demonstrated that GCNs outperformed other 

techniques. Therefore, it is possible to conclude that GCNs in the Bitcoin blockchain possess 
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a high level of anti-money laundering capability. 

 

According to Kamiali, these two applications are the most productive for applying data 

mining techniques to blockchain data (Kamiali, Kramberger & Fister, 2021). Examining the 

current trends in leveraging the synergies of blockchain technology and data mining 

techniques for anomaly detection, as well as identifying the most important machine 

learning techniques and constructing a taxonomy of those techniques used to enhance 

blockchain technology for specific purposes, was the objective of this review. The authors 

also examined the data mining techniques employed over the past five years and found that 

Gradient Boosting was the most widely used technique during the first two years. 

Throughout this five-year research period, SVM and Random Forest were two of the most 

frequently employed methods. In spite of this, the authors observed that these two methods 

yielded the best results in the majority of studies published in 2019 and 2020, with Random 

Forest also being popular in 2021. The authors have observed an increase in the use of neural 

networks, gradient boosting, deep learning, and LSTM over the past two years. 

 

Using graph neural network models to detect phishing fraud on the Ethereum trading 

network (Kanezashi, Suzumura, Liu & Hirofuchi, 2022). In comparing the efficacy of 

homogeneous and heterogeneous GNN models, the authors found that heterogeneous 

models that account for transaction edge types outperform homogeneous models. Across all 

metrics, the RGCN model performed the best in particular. However, accuracy did not 

improve when node types were considered as novel input features compared to the baseline 

homogeneous GNN model. In conclusion, heterogeneous GNN models are more effective 

at detecting deception in the Ethereum trading network. 

Bangcharoensap (Bangcharoensap, Kobayashi, Shimizu, Yamauchi & Murata, 2015) 

proposes a graph-based semi-supervised learning technique for detecting online auction 

fraud. The strategy relies on the social interactions of fraudsters and their propensity to 

participate in auctions hosted by members of the same collusion group. The authors 

extended the modified adsorption model to enable the propagation of information from a 

small group of identified fraudsters to the entire graph. They found that fraudsters frequently 

engage in intense interactions with their neighbors and incorporated this finding into the 2-

STEP model. In addition, the authors discovered that weighted degree centrality is a 
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distinguishing characteristic between fraudsters and legitimate users, which they utilized to 

actively detect fraud. According to data from the real world, incorporating weighted degree 

centrality into the model can significantly enhance precision. 

 

The study (Tang, Li, Gao & Li, 2022) proposes Contrastive Learning of Last Actions 

(CLL) as a technique for capitalizing on distinctions between users. CLL is designed for 

unlabeled data and uses neural network sequence models to comprehend the difference 

between a user's most recent and prior actions. This study introduces a Global Model (GM) 

that detects all users in order to address the issue of underfitting and capitalize on the 

similarities between users. This allows the model to adapt to various users and increase its 

detection effectiveness. The experimental results demonstrate that CLL is superior to other 

loss functions and that GM is effective at enhancing model performance and substantially 

reducing training and testing durations. When detecting anomalies on trading platforms, the 

paper emphasizes the significance of taking into consideration both user similarities and 

user differences. 

 

Using Bitcoin's anonymity mechanism, ransomware attacks have proliferated in recent 

years (Wang, Pang, Chen, Zhao, Huang, Chen & Han, 2021). In addition to the amount of 

ransom demanded, ransomware activities result in recovery costs, reputational injury, and 

productivity loss. The most prevalent type of ransomware is crypto-ransomware, which 

encrypts the victim's files and demands Bitcoin payment in exchange for the decryption key. 

In addition, the study revealed that ransomware attacks are more likely to target businesses 

than individuals. According to the study's authors, prevention is the key to mitigating the 

impact of ransomware attacks. They recommend regular backups, employee training, and 

software updates to prevent exploits of vulnerabilities. 

 

The effectiveness of blockchain technology in detecting fraud in various business 

domains, such as insurance, banks, online transactions, real estate, and credit card use (Singh 

& Kajla, 2023). The study employed a Systematic Literature Review (SLR) methodology 

with keywords such as blockchain, fraud detection, and financial domain to investigate the 

increasing acceptance of blockchain technology. Individuals with a variety of business 

objectives can rely heavily on blockchains to combat fraud, as the research accentuates the 
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real-world applications of blockchain technology to secure the gateway for online 

transactions. The SLR of this study aids in the identification of future avenues with practical 

implications by drawing to the attention of researchers the evaluations of blockchain's 

efficacy that have already been conducted. However, it does not rule out the unexplored 

possibility of zero or less efficacy in some organizations. 

 

Existing fraud detection systems in the e-commerce sector have degraded performance 

and cannot adapt to new fraud patterns. The authors propose eFraudCom, a competitive 

graph neural network (CGNN)-based fraud detection system, to address this issue. Modeling 

normal and fraudulent behavior distributions independently, the CGNN is used to classify 

user behaviors. Some normal behaviors are used as limited supervision information to guide 

the CGNN in building a stable normal behavior profile. This eliminates the system's 

dependence on fraudulent behaviors and enables it to identify new fraud patterns (Zhang, 

Li, Huang, Wu, Zhou, Yang & Gao, 2022). 

 

Using machine learning techniques, (Valadares, Villela, Bernardino, Goncalves & 

Vieira, 2023) propose a method for identifying professional and informal user profiles in 

Ethereum. The proposed method groups and categorizes user behavior by combining 

unsupervised and semi-supervised learning. In terms of accuracy, precision, recall, F-scores, 

MCC, and AUC-ROC, the results indicate that the proposed method outperforms existing 

supervised learning techniques.  

 

 
 

2.2 Blockchain 
 

 Blockchain technology, which was introduced in 2008 by the pseudonymous figure 

Satoshi Nakamoto, has received considerable attention for its potential to revolutionize 

numerous industries. A blockchain is essentially a distributed and decentralized ledger that 

securely records and verifies transactions. It eliminates the need for centralized 

intermediaries by providing a transparent, immutable record of digital assets or information 

(Nakamoto, 2008). A blockchain is a chain of blocks, each of which contains a catalog of 

transactions or data. These blocks are cryptographically linked, ensuring the integrity and 

immutability of the information recorded. The decentralized nature of the blockchain, 
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facilitated by a network of nodes, renders it resistant to interference and censorship (Swan, 

2015). The capacity of blockchain technology to obtain consensus among multiple 

participants in a trustless environment is one of its defining characteristics. Through 

mechanisms such as proof-of-work (PoW), proof-of-stake (PoS), and other variants, 

consensus is reached on the validity and ordering of transactions. This consensus process 

ensures the security and consistency of the blockchain (Nakamoto, 2008). 

 

The applications of blockchain technology extend beyond cryptocurrencies like 

Bitcoin. It can be used to facilitate a variety of tasks, including supply chain management, 

digital identity verification, decentralized finance, and voting systems, among others. Smart 

contracts, which are coded agreements with predefined conditions, extend the capabilities 

of blockchain by facilitating automated and transparent transactions (Swan, 2015). The 

benefits of blockchain technology stem from its decentralized and transparent nature, which 

reduces reliance on intermediaries and increases participant confidence. Blockchain has the 

potential to increase efficiency, security, and accountability in a variety of domains by 

eradicating single points of failure and providing transparent auditability (Tapscott, D. & 

Tapscott, A., 2017.).However, there are challenges associated with blockchain technology. 

Among the main areas requiring additional research and development are scalability, energy 

consumption, privacy, and regulatory concerns. Understanding the underlying principles of 

blockchain technology, its mechanisms, and its potential applications is crucial for 

evaluating its benefits, addressing its limitations, and realizing its transformative potential. 

 

 

2.3 Blockchain Cryptocurrencies 
 

In the sphere of decentralized digital currencies, blockchain-based cryptocurrencies 

have emerged as a disruptive innovation. The blockchain technology enables secure peer-

to-peer transactions without the need for intermediaries (Nakamoto, 2008). Bitcoin, which 

Nakamoto introduced in 2008, is the pioneering cryptocurrency that uses blockchain 

technology to facilitate decentralized and trustless transactions. Since then, numerous 

cryptocurrencies have been created, each with its own distinct characteristics and 

applications. The advantages of blockchain-based cryptocurrencies over traditional 

financial systems are numerous. First, they provide increased security via cryptographic 
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techniques, making it difficult for unauthorized parties to alter transaction records (Bano, 

S., Al-Bassam, M. & Danezis, G., 2017). The decentralized nature of blockchain ensures 

that no single entity controls the network, thereby fostering transparency and minimizing 

the risk of fraud and manipulation (Swan, 2015). Moreover, the use of consensus 

mechanisms, such as proof-of-work (PoW) and proof-of-stake (PoS), guarantees the 

integrity and immutability of transactions. 

 

 

Despite these benefits, however, blockchain-based cryptocurrencies encounter a 

number of obstacles. The prevalence of fraudulent activities within the blockchain 

ecosystem is a significant obstacle. Due to the pseudonymous nature of transactions and the 

absence of a central authority, cryptocurrencies are attractive to fraudsters (Koshy , 2014). 

In the cryptocurrency space, various types of fraud, including phishing attacks, Ponzi 

schemes, and money laundering, have been observed. To address these obstacles, 

researchers and industry professionals have investigated various approaches for detecting 

and preventing misconduct in blockchain-based cryptocurrencies. Traditional methods, such 

as rule-based systems and statistical analysis, have been utilized, but they frequently fail to 

detect sophisticated and constantly evolving fraud schemes . Consequently, there is a 

growing need for sophisticated techniques that can effectively identify fraudulent activities 

by leveraging the unique characteristics of blockchain data. 

 

In recent years, graph-based approaches have garnered considerable interest as a 

promising technique for detecting fraud in blockchain-based cryptocurrencies. By 

representing transactions and entities as nodes in a graph and capturing their complex 

relationships, graph-based methods provide an effective framework for detecting patterns 

and anomalies indicative of fraudulent behavior (Wang, Luo & Zhou, 2020). These 

approaches investigate the framework and fluctuations within the blockchain network using 

graph neural networks and graph algorithms, that allows more precise and capable of scaling 

fraud detection. (Hamilton, Ying & Leskovec, 2017). 

 

In conclusion, blockchain-based cryptocurrencies offer a decentralized and secure 

transaction system. Nonetheless, the prevalence of fraud presents significant challenges to 
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the integrity and dependability of these digital assets. Utilizing the inherent graph structure 

of the data to identify fraudulent activities, graph-based methods have emerged as a 

promising solution for fraud detection in blockchain-based cryptocurrencies. In the sections 

that follow, we will scrutinize the specific graph-based methodologies and techniques 

utilized for blockchain-based cryptocurrency fraud detection. 

 

2.3.1 Bitcoin. It serves as a platform for the development and execution of smart 

contracts, which are Bitcoin, which Satoshi Nakamoto founded in 2008, is the very first and 

most well-known decentralized cryptocurrency. It operates on a blockchain-based peer-to-

peer network that serves as the public ledger for all Bitcoin transactions. Bitcoin 

revolutionized the concept of digital currency by eliminating intermediaries such as banks 

and granting users direct control of their funds. (Nakamoto, 2008). Bitcoin relies on 

cryptographic techniques to secure transactions and preserve the blockchain's integrity. A 

decentralized and immutable ledger of all Bitcoin transactions is created by grouping 

transactions into blocks and linking them in a sequential chain. This distributed ledger 

ensures transparency and prevents double-spending, which occurs when the same Bitcoin is 

utilized in multiple transactions (Swan, 2015). Proof-of-work (PoW) is the agreement 

procedure responsible for the decentralized character of Bitcoin. The miners of the Bitcoin 

network compete to solve complex mathematical problems; the person who is first to do so 

adds a new block to the blockchain and gets recognized with newly-minted Bitcoins. This 

process assures the security and immutability of the blockchain, as modifying a previous 

block would require a substantial amount of computational power and be economically 

prohibitive (Nakamoto, 2008). In addition, Bitcoin addresses, which are represented by 

cryptographic keys, are utilized to transmit and receive funds. These addresses are 

pseudonymous because, unless the user voluntarily discloses it, they do not divulge the 

user's identity. The public nature of the blockchain enables the transparent monitoring of 

Bitcoin transactions and addresses (Swan, 2015).   

 

Bitcoin's decentralized and visible nature, coupled with its capacity for pseudonymous 

transactions, has made it attractive for a number of applications and cases, including online 

payments, remittances, and investments. However, Bitcoin's accelerated growth and 

adoption have posed challenges, particularly in the areas of security and fraud detection. 

Malicious actors have exploited the inherent anonymity and pseudo-anonymity of Bitcoin 
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transactions for money laundering and other illicit transactions, ransomware attacks, and 

fraudulent schemes (Foley, Karlsen & Putniņš, 2019). 

 

For the development of effective fraud detection mechanisms in the cryptocurrency 

ecosystem, it is crucial to comprehend the complexities of Bitcoin, its transactional 

dynamics, and the vulnerabilities associated with its decentralized nature. Using 

sophisticated techniques and models, such as graph-based applications and attention 

mechanisms, it is possible to improve the detection and prevention of fraudulent activities, 

thereby contributing to the security and credibility of the Bitcoin network and the broader 

blockchain ecosystem. 

 

2.3.2 Ethereum. Ethereum, which Vitalik Buterin introduced in 2015, is a 

decentralized blockchain platform that exceeds the capabilities of traditional 

cryptocurrencies like Bitcoin. It serves as a platform for the development and execution of 

smart contracts, which are agreements whose terms are written directly in code (Buterin, 

2014). Ethereum's novel strategy enables the creation of decentralized programs capable of 

individually executing transactions and interacting with one another on the Ethereum 

blockchain. Ether (ETH) is Ethereum's (ETH) native cryptocurrency. Ethereum operates on 

a blockchain. Ethereum, like Bitcoin, uses a decentralized network of nodes to maintain a 

transparent and immutable transaction ledger. Ethereum, on the other hand, is distinguished 

by its incorporation of a language for programming that is Turing-complete, allowing 

developers to construct and deploy smart contracts (Buterin, 2014). On the Ethereum 

platform, smart contracts are executed by the Ethereum Virtual Machine (EVM), which 

operates on each network node. This virtual machine facilitates code execution without 

requiring a central authority. Smart contracts have many possible uses that includes banking, 

decentralized trading systems, as well as supply chain management (Buterin, 2014). 

Ethereum's capacity to support decentralized applications via decentralized autonomous 

organizations (DAOs) is one of its key characteristics. DAOs are organizations that operate 

on the Ethereum blockchain, are administered by a community of stakeholders, and are 

governed by smart contracts (Buterin, 2014). This decentralized governance structure 

permits greater openness, equity, and resiliency. Additionally, Ethereum introduced ERC-

20 tokens, which are fungible tokens built on the Ethereum blockchain. These tokens have 

become the basis for a variety of blockchain-based initiatives, such as Initial Coin Offerings 
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(ICOs) and decentralized finance (DeFi) applications (Buterin, 2015). They allow for the 

creation of new digital assets and offer a standardized framework for token implementation 

and interoperability. 

 

Significant growth and adoption of the Ethereum network have attracted developers 

and businesses from a variety of industries. As with any innovative technology, Ethereum 

is not devoid of obstacles. Scalability, security, and the detection of fraudulent activities 

within the Ethereum ecosystem are ongoing issues requiring additional research and 

development. Understanding the complexities of Ethereum's architecture, smart contracts, 

and potential for decentralized applications is essential for advancing blockchain technology 

and maximizing its potential across multiple industries. Researchers and practitioners can 

contribute to the creation of more secure, scalable, and efficient decentralized systems by 

addressing the challenges and investigating the opportunities presented by Ethereum. 

 

 

 

 

 

2.4 Fraud Detection Methods in Artificial Intelligence 
 

Artificial intelligence (AI) techniques have demonstrated remarkable efficacy in 

identifying and preventing fraudulent activities in the crucial application area of fraud 

detection. (Phua, Lee, Smith & Gayler,  2010) Traditional rule-based and statistical methods 

have limitations in detecting complex and evolving fraud schemes, necessitating 

sophisticated AI-based approaches. In recent years, a number of AI techniques, such as 

machine learning and deep learning, have been applied to fraud detection with encouraging 

outcomes. 

 

2.4.1 Machine learning approaches. Due to their ability to understand patterns and 

anomalies from massive datasets, machine learning algorithms have been widely 

implemented for fraud detection. On the grounds of a derived set of data attributes, 

supervised learning algorithms such as logistic regression, decision trees, and random 

forests have been utilized for identifying transactions as fraudulent or legitimate. (Bolton , 

2002). Support Vector Machines (SVMs) have also been utilized for the detection of fraud 

due to their capacity to differentiate between fraudulent and non-fraudulent instances in a 
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feature with a high dimension space. (Dal Pozzolo,  2015). For the detection of previously 

unknown fraud patterns, unsupervised learning techniques, such as clustering algorithms 

and anomaly detection, are useful. (Bhuyan, Bhattacharyya & Kalita, 2013.) Clustering 

algorithms, such as k-means and DBSCAN, group similar transactions together, allowing 

the identification of clusters with anomalous behavior. A study (Rosenfeld, Restrepo, 

Gerard, Bruce, Branch, Lewin & Bezzo, 2018) report that anomaly identification 

algorithms, including one-class SVM and Isolation Forest, detect changes from 

conventional patterns without needing training data with labels. 

 

2.4.2 Deep learning approaches. Deep learning approaches and artificial neural 

networks particularly have exhibited extraordinary performance in numerous domains, 

involving fraud detection. Recurrent Neural Networks (RNNs) and Long Short-Term 

Memory (LSTM) networks have been used for recognizing credit card transaction fraud in 

temporal information using RNNs and LSTMs. (Dal Pozzolo, Boracchi, Caelen, Alippi & 

Bontempi, 2017). A study (Jiang,  Chen, Gu, Choo, Liu, Yu,  Huang, & Mohapatra, 2019) 

report that Convolutional Neural Networks (CNNs) have been used to derivered meaningful 

attiributes from transactional data, allowing the detection of complex fraud patterns. 

 

Graph neural networks (GNNs) became known as an efficient fraud detection tool, 

especially in network-based fraud scenarios. GNNs utilize the inherent graph structure of 

data to assimilate relational information between entities and recognize unusual trends 

(Ying, 2018). Graph Neural Networks (GNNs), including Graph Convolutional Networks 

(GCNs) and Graph Attention Networks (GATs) have been applied to fraud detection tasks 

with improved precision and scalability. (Wu, Pan, Chen, Long, Zhang, & Philip, 2020). 

 

Using graph neural networks, machine learning and deep learning detection of fraud 

methods in artificial intelligence have made significant advances. These techniques enable 

the analysis of massive datasets, the identification of previously unknown fraudulent 

activities, and the detection of complex fraud patterns. In the sections that follow, we will 

examine the specific AI-based fraud detection techniques used for blockchain-based 

cryptocurrencies. 
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2.5 Graph Based Applications 
 

In recent years, graph-based applications have received considerable attention as a 

robust framework for analyzing and modeling complex relationships and structures. A graph 

is a collection of elements (also known as vertices) connected by edges in this context. 

Graphs offer a flexible and intuitive representation of interlinked data, making them suitable 

for various applications, including social networks, recommendation systems, biological 

networks, and fraud detection, among others. By representing entities and their 

relationships, graphs capture both structural and semantic information about a system. 

Nodes in a graph can represent various entities, such as users, products, web pages, or DNA, 

while edges represent the relationships or interactions between these nodes. This 

representation makes it possible to investigate complex phenomena such as patterns, 

clustering, and influence propagation. (Fortunato, 2010.). 

 

The ability of graph-based applications to incorporate both local and global 

dependencies within a network is a significant advantage. Local dependencies refer to a 

node's immediate neighbors, whereas global dependencies encompass the structure and 

connectivity of the graph as a whole. This all-encompassing perspective enables the analysis 

of complex systems, the identification of influential nodes, and the prediction of behaviors 

based on the network topology (Leskovec, Huttenlocher & Kleinberg, 2010). Utilizing 

graph algorithms and machine learning techniques, graph-based applications frequently 

extract valuable insights and make predictions. Graph algorithms, such as PageRank, 

community detection, and measures of graph centrality, provide instruments for analyzing 

the structure and properties of graphs. A study (Hamilton, Ying & Leskovec, 2017) describe 

how machine learning techniques including graph neural networks (GNNs), graph-based 

clustering, and link prediction facilitate the extraction of patterns and predictive modeling 

on graph data. Multiple domains have demonstrated the effectiveness of graph-based 

applications. Graph-based algorithms facilitate the identification of communities, influential 

users, and information diffusion patterns, for example, in social network analysis. Graphs 

capture user-item interactions in recommendation systems and enable personalized 

recommendations based on graph-based similarity measures. In bioinformatics, graphs are 
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used to model protein-protein interactions and gene regulatory networks, thereby facilitating 

drug discovery and disease analysis (Kwak, Lee, Park & Moon 2010). Understanding the 

principles and techniques of graph-based applications is crucial for realizing the potential of 

graph data and maximizing its benefits across multiple domains. Researchers and 

practitioners can develop accurate predictive models and make informed decisions based on 

the complex relationships and structures inherent in the data by leveraging the power of 

graphs. 

 

2.5.1 Graph convolutional networks. Graph Convolutional Networks (GCNs) are 

known as a reliable approach for learning representations and performing operations on 

graph-structured data. GCNs extend Convolutional Neural Networks (CNNs) to graphs, 

facilitating the application of deep learning techniques to graph data. ( Kipf & Welling, 

2017). GCNs facilitate the modeling of complex relationships and the extraction of 

meaningful features from graph nodes by utilizing the structural information and 

connectivity patterns of graphs. Convolutional layers in conventional CNNs operate on 

regular grids, such as images, in which each pixel has a fixed number of neighbors. 

However, graphs lack a defined neighborhood structure and are inherently irregular. GCNs 

resolve this difficulty by defining convolutional operations on graphs, which enables the 

aggregation of data from neighboring nodes. 

 

GCNs are designed to propagate and update node representations by collecting data 

from adjacent nodes. This is accomplished by combining the characteristics of a node with 

those of its neighbors using graph-based message transit schemes. The aggregation process 

enables the encoding of both local and global structural information (Kipf & Welling, 2017) 

by allowing each node to collect data from its immediate vicinity. GCNs typically consist 

of multiple layers, each of which aggregates and transforms node representations. In each 

layer, node characteristics are modified by considering the characteristics of neighboring 

nodes, typically via a weighted sum or concatenation operation. The transformed features 

then capture complex patterns and relationships within the graph (Veličković,  Cucurull, 

Casanova, Romero, Lio & Bengio, 2018). GCNs are able to encapsulate higher-order 

dependencies in graphs, which is one of their primary benefits. Information from distant 

nodes can be propagated and incorporated into node representations by layering multiple 

GCN layers. This hierarchical aggregation facilitates the modeling of complex relationships 
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and duties such as classification of nodes, prediction of links, and predictions at the graph 

level. 

GCNs have demonstrated outstanding performance in numerous disciplines, including 

social network analysis, recommendation systems, biological network analysis, and fraud 

detection. They have been successfully applied to duties like community detection, node 

classification, and anomaly detection, demonstrating their effectiveness in collecting graph 

structure and learning meaningful representations from graph data. ( Zhou, Cui, Zhang, 

Yang, Liu & Sun, 2018). 

 

2.5.2 Graph attention aetworks. Graph Attention Networks (GAT) have come about 

as an efficient architecture for learning representations of graph-structured data and 

executing tasks on such data. GATs enhance the expressiveness and modeling capabilities 

of graph convolutional networks (GCNs) by integrating attention mechanisms that enable 

adaptive feature aggregation and weighting based on the importance of neighboring nodes. 

(Veličković, P., Cucurull, Casanova, Romero, Lio & Bengio, 2018). This allows GATs to 

concentrate on relevant nodes and capture intricate graph relationships. GATs are based on 

attention weights for each neighboring node, which indicate the significance or relevance of 

that node's characteristics to the target node. This attention mechanism permits GATs to 

dynamically assign various weights to different nodes during the aggregation process, 

thereby capturing fine-grained dependencies and decreasing reliance on fixed neighborhood 

structures (Kipf  & Welling, 2017). 

 

Attention weights in a GAT are computed using a self-learned mechanism that 

considers both the characteristics of the target node and its companions. A shared attention 

mechanism, which is typically implemented as a layer of a neural network, generates 

attention coefficients for each pair of graph nodes. Attention coefficients indicate the 

significance or relevance of neighboring characteristics to the target node.(Velickovic,  

Fedorov, Lio, Bresson & Hamilton, 2020). The attention weights are then used to calculate 

a weighted sum of the neighboring node's characteristics, taking the learned attention 

coefficients into consideration. This process of aggregation enables each node to acquire 

information from its neighbors, focusing on the most relevant nodes and effectively 

capturing the underlying graph structure. In addition, GATs frequently employ a multi-head 

mechanism in which multiple attention mechanisms are applied in parallel, enabling the 
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model to capture diverse aspects of node interactions and increase its expressive power (Lee 

& Cho, 2021). Utilizing attention mechanisms in GATs is advantageous in numerous ways. 

First, it allows the model to allocate greater weight to relevant nodes, enabling it to focus on 

the most informative portions of the graph. Second, it enables GATs to identify long-range 

dependencies by assigning non-zero attention weights to distant nodes in the graph. Thus, 

GATs are ideally adapted for tasks involving large and intricate graphs. The attention 

mechanism is also differentiable, which facilitates end-to-end training and enables the 

model to learn the most efficient attention patterns for the given task (Zhou, Cui, Hu, Zhang, 

Yang, Liu, Wang, Li & Sun, 2020). In a variety of graph-related tasks, including node 

classification, link prediction, and graph-level prediction, GATs have exhibited optimistic 

performance. In domains such as social network analysis, recommendation systems, and 

biological network analysis, their effectiveness in capturing graph structure and learning 

meaningful node representations has been proven. 

 

2.5.3 Graph sample and aggregated. GraphSAGE is a resilient framework for graph 

neural networks that enables learning representations on massive amounts graphs by 

sampling and aggregating local neighborhood information. It overcomes the limitations of 

conventional graph convolutional networks (GCNs) by employing a flexible sampling 

strategy and an aggregating mechanism that can capture the rich structural and feature 

information of a graph (Hamilton, Ying & Leskovec, 2017). The core concept of 

GraphSAGE is to generate node representations by sampling and aggregating information 

from a node's k-hop neighborhood, where k represents the number of steps between the 

target node and the sample node. Unlike GCNs, which operate on fixed neighborhood 

structures, GraphSAGE permits adaptive sampling of various neighborhood sizes and 

configurations, allowing the model to effectively capture both local and global graph 

information (Ying, He, Chen, Eksombatchai, Hamilton & Leskovec, 2018). GraphSAGE 

uses a trainable aggregator function that accepts in feed the attributes of a node and its 

sampled neighboring nodes and generates a fixed-length representation for the target node 

to conduct the sampling and aggregation process. The aggregator function can be 

implemented using a variety of mechanisms, such as mean aggregation, max pooling, and 

LSTM-based aggregators, allowing for the capture of diverse graph patterns and 

characteristics (Hamilton & Leskovec 2017). 
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During the training phase, GraphSAGE learns to aggregate and update node 

representations iteratively by minimizing a loss function that evaluates how well the model 

performed on a specific downstream task. The model can encompass both local and global 

information while retaining the expressive power of the graph structure (Velikovi, Cucurull, 

Casanova, Romero, Lio, and Bengio, 2018). In a variety of graph-based tasks, including 

node classification, link prediction, and graph-level prediction, GraphSAGE has 

demonstrated impressive performance. It has been successfully applied in diverse domains 

such as social network analysis, recommendation systems, and knowledge graph 

completion, demonstrating its adaptability and efficacy in capturing the complex 

dependencies and patterns present in real-world graphs (Liu, ZLuo, Shen, Wang & Tang, 

2020). The advantages of GraphSAGE include its capacity to efficiently manage large-scale 

graphs through neighborhood sampling, its adaptability to capture both local and global 

information, and its capability to learn expressive representations that generalize well to a 

variety of downstream tasks. These features make GraphSAGE a valuable instrument for 

graph-structured data analysis and prediction. 

 

2.5.4 Graph isomporphism networks. Graph Isomorphism Networks (GIN) is a 

graph neural network (GNN) design that has attracted considerable interest in graph-based 

applications. GIN, which was introduced by Ying, He, Chen, Eksombatchai and Hamilton 

in 2018,  (Ying, He, Chen, Eksombatchai, Hamilton & Leskovec, 2018) seeks to overcome 

the limitations of previous GNN models by employing permutation-invariant operations and 

a learnable aggregation function to ensure the model's efficacy across various graph 

structures. 

 

The GIN model aggregates and updates node representations iteratively based on 

neighborhood information. It uses a series of Graph Isomorphism Network layers, each of 

which consists of two primary steps: aggregation and transformation. GIN calculates the 

sum of the representations of a node's neighbors, including the node itself, during the 

aggregation phase. This ensures that the model integrates neighborhood-specific 

information. GIN employs fully connected layers with activation functions to update the 

node representations during the transformation step. 
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Utilizing a global aggregating operation is a defining characteristic of GIN. This 

operation compiles information from all graph nodes into a fixed-length representation that 

depicts the global structure of the graph. The aggregated representation is then concatenated 

with the representations of the nodes and used for subsequent predictions or downstream 

tasks(Ying, He, Chen, Eksombatchai, Hamilton & Leskovec, 2018). 

 

The GIN model has proven its efficacy in a variety of graph-related applications, 

including node classification, graph classification, and graph generation. It has 

demonstrated competitive performance in comparison to other state-of-the-art GNN models, 

indicating its capacity to recognize complex graph patterns and relationships. 

 

2.5.5 Residual gated graph convolutional network. Residual Gated Graph 

Convolutional Network (RGGCC) is a graph neural network (GNN) framework intended to 

model graph-structured data and identify intricate relationships within graphs. RGGCC 

integrates the ideas of residual connections and gated mechanisms to improve the process 

of representation learning. 

 

Inspired by residual networks in image classification, to facilitate the flow of data 

through numerous layers of the graph convolutional network. Residual connections enable 

the model to bypass certain layers while retaining crucial information from previous layers, 

which mitigates the vanishing gradient problem and enhances the training procedure 

(Bresson & Laurent , 2017). 

 

In addition, RGGCC employs gated mechanisms, such as the gate activation function, 

to control the flow of information and selectively update node representations. The gate 

activation function, which is applied to the output of each graph convolutional layer, 

determines how much information is propagated to the next layer. By selectively filtering 

and updating information, the model is able to concentrate on pertinent features while 

discarding noise or irrelevant data. 

 

RGGCC's combination of residual connections and gated mechanisms enables the 

model to encompass both local and global dependencies within the graph. It improves the 
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model's performance on various graph-related tasks, such as node classification, graph 

classification, and link prediction, by enhancing the model's ability to learn more expressive 

graph representations (Bresson & Laurent, 2017). 
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Chapter 3 

 

Research Methodology 
 

3.1 Research Design 
 

This study will employ a quantitative research methodology to examine the efficacy 

of graph-based fraud detection methods in blockchain-based cryptocurrencies. Data 

collection and analysis will be required to achieve the research objectives. This study's 

primary objective is to evaluate the effectiveness and applicability of graph-based 

techniques for detecting and preventing fraud in blockchain-based cryptocurrencies. In the 

study, analogous studies, as well as their methods and outcomes, will be examined, followed 

by the determination of the dataset and the application of preparatory procedures to the 

dataset. After determining the methods related to the methods to be applied, the outcomes 

will be compared. The purpose of this study is to assess the precision, efficacy, and 

scalability of these methodologies for detecting fraudulent transactions. 

 

3.2 Evaluation Metrics 
 

In the field of data science, it is essential to evaluate the performance of machine 

learning models in order to determine their effectiveness and make informed decisions. 

Evaluation metrics provide quantitative measurements for assessing the performance of 

models across a variety of tasks and data sets.  

 

Precision, recall, and the F1 value are essential metrics of assessment for classification 

tasks. Precision is the proportion of correctly identified positive instances among the 

predicted positives, whereas recall is the proportion of authentic positive instances correctly 

identified by the model. (Powers,  2020) The F1 score is a harmonic mean of precision and 

completeness, incorporating both precision and recall. 

 

Popular evaluation metrics quantify the proportion of correct predictions made by a 

model relative to the total number of instances. While accuracy provides a general overview 

of model performance, it can be misleading in datasets where one class predominates. 
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Consequently, precision must be evaluated alongside other metrics (Sokolova & Lapalme, 

2009). 

When there is an imbalance between classes, the macro average and weighted average 

are useful evaluation metrics. The macro average determines the average performance 

across all divisions independently and uniformly. In contrast, the weighted average takes 

into consideration the support of each class to account for class distribution. These metrics 

provide insight into the model's performance across distinct classes, taking into account 

imbalanced datasets (Sokolova & Lapalme,  2009).  

 

Graphical representations of a model's classification performance are the Receiver 

Operating Characteristic (ROC) curve and the Precision-Recall (PR) curve. The ROC curve 

compares the true positive rate (sensitivity) to the false positive rate (1 - specificity), while 

the PR curve depicts the tradeoff between recall and precision. Area Under the Curve (AUC) 

is a summary of the performance of the model, with larger values indicating a greater 

capacity for discrimination. (Fawcett, 2006). 

 

Evaluation metrics play a crucial role in data science, enabling the assessment of 

model performance and facilitating decision-making. Precision, recall, F1 score, accuracy, 

macro average, weighted average, ROC curve, precision-recall curve, and area under the 

curve (AUC) constitute an exhaustive set of metrics for evaluating classification models 

across multiple domains. Understanding these evaluation metrics enables data scientists to 

interpret and compare model performance with precision, thereby improving decision-

making in real-world applications. 

 

3.3 Dataset & Preparation 
 

The research will involve collecting a comprehensive dataset of blockchain 

transactions, including transaction attributes and network structures. The dataset will 

include both fraudulent and legitimate transactions to enable comparative analysis. 

 

As the most prominent application of blockchain technology, cryptocurrencies face 

substantial financial losses from phishing schemes. Accounts and transactions on the 

Ethereum blockchain are termed as nodes and edges, correspondingly, in our research, 
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allowing us to formulate the detection of fraudulent accounts as a classification problem for 

nodes. 

 

This dataset enables researchers to investigate and resolve the obstacles posed by 

phishing activities on the Ethereum blockchain network. By leveraging the network 

structure and supplied attributes, researchers can investigate various methods for detecting 

and mitigating phishing scams, thereby contributing to the ecosystem's security and 

integrity. 

 

The resulting dataset contains 2,973,489 nodes, each of which corresponds to a unique 

Ethereum address in the transaction network. Moreover, the dataset contains 13,551,303 

edges, which represent transactions between these Ethereum addresses. Among the total 

number of nodes, 1,165 have been labeled as phishing nodes or non-phishing nodes. The 

MulDiGraph.pkl-formatted dataset is presented as a networkx object contained within a 

pickle file. Every node in the graph corresponding to an Ethereum address and contains a 

"isp" attribute indicating whether the node represents a fraudulent account. The edges of the 

graph have two attributes: "amount," which represents the balance of the associated 

transaction, and "timestamp," which represents the transaction's timestamp. Notably, the 

dataset includes a mean degree of 4.5574, emphasizing the average number of connections 

or transactions per Ethereum address. 

 

A subgraph is extracted from the transaction network using a technique similar to (Wu, 

Qi, Dan, You, Chen, Chen, & Zheng, 2020) because of the discrepancy of the node label. 

Afterwards, we taken neighboring inbound and outgoing nodes from every one of the 

randomly selected nodes. Then, a subgraph consisting of only the chosen nodes and half of 

their neighbors is extracted. The extracted subgraph contains 5,969 nodes and 83,512 edges. 

 

Certain nodes in this transaction network collection have distinct responsibilities from 

those of a typical account (address). A small number of nodes represent alternative 

categories, such as exchange accounts, token contracts, etc., while the vast majority 

represent ordinal accounts. Despite the fact that these account node categories have no direct 

connection to phishing fraud detection applications because they cannot be labeled "fraud 
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accounts," we believe the information will be indicative of suspicious transactions and 

account detection.  The timestamps of the edges that represent transactions in financial 

transaction networks are crucial for machine learning. We randomly selected 80% of the 

nodes for training and the remaining nodes for testing based on the transaction 

timestamp.We implement a node classification assignment for account fraud detection, so 

we must assign each node to training and testing data. As input for every GNN model, we 

define the node feature set in Table 1. In addition to each node's transaction volume and 

periodicity, graph analytics (PageRank and degree distributions) yield additional 

characteristics. This table presents a collection of base node characteristics that can be used 

to analyze account nodes in a network or graph. These characteristics provide valuable 

insight into the transactional behavior and network centralization of individual account 

nodes. Each characteristic is defined as follows: 

 

o send_num: This feature represents the count of transactions sent from the 

specific account node. It quantifies the level of outgoing transactional activity 

associated with the account node. 

 

o recv_num: This feature denotes the count of transactions received by the account 

node. It quantifies the level of incoming transactional activity associated with 

the account node. 

 

o send_amount: This feature indicates the total amount (e.g., monetary value) sent 

from the account node. It provides insights into the financial activity associated 

with the account. 

 

o recv_amount: This feature indicates the total amount (e.g., monetary value) 

received by the account node. It provides insights into the financial activity 

associated with the account. 

 

o pagerank: This feature represents the PageRank score assigned to the account 

node. PageRank is a commonly used method that assesses the significance or 

centrality of a network node. The pagerank score indicates the significance or 



31  

influence of the account node within the network. 

 

These base node features described on Table serve as valuable metrics for analyzing 

the transactional behavior, financial flows, and network position of individual account nodes 

within a larger graph or network structure. Researchers and analysts can gain deeper insights 

into the behavior and significance of account nodes in domains including finance, social 

networks, and web graphs by leveraging these features. 

Table 1 

 
Base Node Features 

 

 

 

 
 

 

 

 
 

 

 

3.4 Graph Based Models 
 

3.4.1 GCN. Graph Convolution Networks (GCNs) are comprised of multiple essential 

components that process graph-structured data and store meaningful representations. Each 

 
Feature Name 

 
Description 

 
 
send_num 

It represents the transaction count sent from the 
account node. It indicates the number of 
transactions initiated by the account. 

recv_num 

It represents the transaction count received by the 
account node. It indicates the number of 
transactions received by the account. 

send_amount 

It represents the total amount sent from the 
account node. It indicates the cumulative value of 
all the transactions initiated by the account. 

recv_amount 

Total amount received by this account node  It 
represents the total amount received by the 
account node. It indicates the cumulative value of 
all the transactions received by the account. 

pagerank 

It represents the PageRank score of the account 
node. PageRank is an algorithm that measures the 
importance or centrality of a node in a graph. In 
the context of fraud detection, it can be used to 
identify accounts that have a higher influence or 
involvement in the network. 
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node corresponds to an entity and contains information regarding its features. Adjacency 

matrices or adjacency lists, which capture the relationships between vertices, are typical 

representations of the graph structure. The central operation of GCNs is graph convolution, 

which accumulates information from adjacent nodes to amend the representation of each 

node. This operation combines node attributes and learned weights to generate novel 

representations that incorporate both local and global structural information. GCNs use a 

message transit scheme that transmits data between nodes via the graph's edges. Using the 

adjacency matrix or adjacency list, the features of contiguous nodes are aggregated in each 

layer. This aggregation procedure encapsulates the influence and dependencies of 

neighboring nodes on the target node. After graph convolution, an activation function is 

applied to the node representations in order to induce nonlinearities. ReLU, sigmoid, and 

tanh are prevalent functions. The activation function ensures that the representations can 

capture complex relationships and display nonlinear behavior. GCNs typically consist of 

numerous layers stacked on top of one another. Each layer performs graph convolution 

followed by activation, which enables the network to capture data from multiple graph hops. 

Stacking multiple layers enables the model to acquire increasingly complex representations 

by integrating information from a larger community. Information traverses network layers 

during the transfer of information forward. After applying the activation function, the graph 

convolution operation combines the characteristics of adjacent nodes within each layer. The 

revised depictions include progressively more structural detail. Following the throw to the 

forward, GCNs use backward propagation to compute grades and modify model parameters. 

The gradients are computed with respect to a specified loss function, and optimization 

algorithms such as stochastic gradient descent (SGD) or Adam are used to modify the 

weights. This process enables the network to acquire optimal representations for the given 

task. (Kipf & Welling, 2017). 

 

The convolution layer is a crucial part of the Graph Convolutional Network (GCN) 

architecture. It is responsible for aggregating and revising node representations by 

considering information about neighboring nodes. The number of neurons in a GCN is 

proportional to the dimensionality of node representations or the length of output feature 

vectors. Each node in the graph represents a feature vector, and the number of neurons 

represents the length or dimension of each feature vector. The number of neurons in a GCN 

conv layer is typically determined by the desired representation capacity and the complexity 
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of the problem. The input geometry of a Graph Convolutional Network (GCN) typically 

depends on its implementation and library. The input geometry of a GCN is typically a 

tensor or matrix representing the graph structure and node characteristics. 

 

 

Depending on the representation employed, the geometry of a graph structure 

component can vary. Adjacency matrices are frequently used to depict the structure of a 

graph, with each element representing the presence or absence of an edge between any two 

vertices. The shape of the adjacency matrix is (N, N), where N is the number of vertices in 

the graph. Within the context of Graph Convolutional Networks (GCN), ReLU refers to the 

Rectified Linear Unit activation function. ReLU is a frequent nonlinear activation function 

used in neural networks such as GCNs to introduce nonlinearity and encode complex data 

relationships. The dropout layer is a regularization technique used in Graph Convolutional 

Networks (GCNs) to prevent overfitting and improve the model's generalizability. Dropout 

is a common technique in neural networks that can also be implemented in GCNs. The 

dropout layer sets a random fraction of input values to zero during training. This entails that 

the layer "drops out" a portion of the node characteristics or activations, requiring the model 

to acquire more robust and generalized representations. Typically, during testing and 

inference, the dropout layer is disabled and all input values are utilized. In general, when 

discussing Graph Convolutional Networks (GCN), the expression "sigmoid" refers to the 

activation function used within the GCN architecture. The sigmoid activation function is a 

common non-linear activation function that compresses input values to the range 0 to 1. In 

the illustration, Figure 1 shown above, the input graph is passed through multiple graph 

convolutional layers that alter the node representations. The refined representations are then 

applied to task-specific layers, such as node or graph classification. Applying the 

appropriate output layers for the specific task yields the final output. 

 

This application flow, along with the accompanying illustration, illustrates how GCNs 

process and learn from graph-structured data. It can be used to explain the fundamental steps 

involved in applying GCNs and comprehending their potential in tasks involving graph 

representation learning. 

Graph Convolution Networks (GCNs) are comprised of multiple essential components 
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that process graph-structured data and store meaningful representations. Each node 

corresponds to an entity and contains information regarding its features. Adjacency matrices 

or adjacency lists, which capture the relationships between vertices, are typical 

representations of the graph structure. The central operation of GCNs is graph convolution, 

which accumulates information from adjacent nodes to amend the representation of each 

node. This operation combines node attributes and learned weights to generate novel 

representations that incorporate both local and global structural information. GCNs use a 

message transit scheme that transmits data between nodes via the graph's edges. Using the 

adjacency matrix or adjacency list, the features of contiguous nodes are aggregated in each 

layer. This aggregation procedure encapsulates the influence and dependencies of 

neighboring nodes on the target node. After graph convolution, an activation function is 

applied to the node representations in order to induce nonlinearities. ReLU, sigmoid, and 

tanh are prevalent functions. The activation function ensures that the representations can 

capture complex relationships and display nonlinear behavior. GCNs typically consist of 

numerous layers stacked on top of one another. Each layer performs graph convolution 

followed by activation, which enables the network to capture data from multiple graph hops. 

Stacking multiple layers enables the model to acquire increasingly complex representations 

by integrating information from a larger community. Information traverses network layers 

during the transfer of information forward. After applying the activation function, the graph 

convolution operation combines the characteristics of adjacent nodes within each layer. The 

revised depictions include progressively more structural detail. Following the throw to the 

forward, GCNs use backward propagation to compute grades and modify model parameters. 

The gradients are computed with respect to a specified loss function, and optimization 

algorithms such as stochastic gradient descent (SGD) or Adam are used to modify the 

weights. This process enables the network to acquire optimal representations for the given 

task. (Kipf & Welling, 2017). 

 

The convolution layer is a crucial part of the Graph Convolutional Network (GCN) 

architecture. It is responsible for aggregating and revising node representations by 

considering information about neighboring nodes. The number of neurons in a GCN is 

proportional to the dimensionality of node representations or the length of output feature 
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vectors. Each node in the graph represents a feature vector, and the number of neurons 

represents the length or dimension of each feature vector. The number of neurons in a GCN 

conv layer is typically determined by the desired representation capacity and the complexity 

of the problem. The input geometry of a Graph Convolutional Network (GCN) typically 

depends on its implementation and library. The input geometry of a GCN is typically a 

tensor or matrix representing the graph structure and node characteristics. 

 

 

Depending on the representation employed, the geometry of a graph structure 

component can vary. Adjacency matrices are frequently used to depict the structure of a 

graph, with each element representing the presence or absence of an edge between any two 

vertices. The shape of the adjacency matrix is (N, N), where N is the number of vertices in 

the graph. Within the context of Graph Convolutional Networks (GCN), ReLU refers to the 

Rectified Linear Unit activation function. ReLU is a frequent nonlinear activation function 

used in neural networks such as GCNs to introduce nonlinearity and encode complex data 

relationships. The dropout layer is a regularization technique used in Graph Convolutional 

Networks (GCNs) to prevent overfitting and improve the model's generalizability. Dropout 

is a common technique in neural networks that can also be implemented in GCNs. The 

dropout layer sets a random fraction of input values to zero during training. This entails that 

the layer "drops out" a portion of the node characteristics or activations, requiring the model 

to acquire more robust and generalized representations. Typically, during testing and 

inference, the dropout layer is disabled and all input values are utilized. In general, when 

discussing Graph Convolutional Networks (GCN), the expression "sigmoid" refers to the 

activation function used within the GCN architecture. The sigmoid activation function is a 

common non-linear activation function that compresses input values to the range 0 to 1. In 

the illustration, Figure 1 shown above, the input graph is passed through multiple graph 

convolutional layers that alter the node representations. The refined representations are then 

applied to task-specific layers, such as node or graph classification. Applying the 

appropriate output layers for the specific task yields the final output. 

 

This application flow, along with the accompanying illustration, illustrates how GCNs 

process and learn from graph-structured data. It can be used to explain the fundamental steps 
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involved in applying GCNs and comprehending their potential in tasks involving graph 

representation learning. 

 

 
 

Figure 1. GCN Application Flow. 

 

 

3.4.2 GAN. Each node in the graph is associated with a feature vector in the GAT 

conv layer. The GAT conv layer computes attention coefficients for each node and its 

neighbors using a self-attention mechanism. Attention coefficients indicate the significance 

or relevance of neighboring nodes to the target node. Typically, attention is computed 

utilizing a shared learnable attention mechanism that allocates weights to nodes based on 

their feature similarity. The attention coefficients are then used to weight the neighboring 

nodes' feature vectors. The feature vectors are multiplied by the attention coefficients in 

order to emphasize or minimize the contributions of various neighbors based on their 

relative significance. This procedure enables the GAT to focus on various portions of the 

graph based on the importance of the nodes. The weighted feature vectors of neighboring 

nodes are then aggregated to create a new representation for every node.  

 

Methods of aggregation may include calculating a weighted sum, utilizing mean or 

maximum aggregating, or employing more intricate attention mechanisms. Following the 
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aggregation step, a non-linear activation function, such as ReLU or LeakyReLU, is 

employed to introduce non-linearity and capture complex data patterns. The activated 

features are used to update the graph's node representations. It refers to the dimensionality 

of the node representations or the size of the output feature vectors when discussing the 

number of neurons in a GAT conv layer. Each node in the graph corresponds to a feature 

vector, and the number of neurons indicates the length or dimension of these feature vectors. 

Typically, the number of neurons in a GAT conv layer is determined by the intended 

representation capacity and the problem's complexity. The number of neurons in a GAT 

conv layer is determined by variables such as the magnitude of the input feature vectors, the 

complexity of the graph data, and the specific task being performed. It can be determined 

through experimentation and refining in accordance with the model's performance and 

requirements. Node features, which define the characteristics or attributes associated with 

each node in the graph, are the primary input to a GAT. Depending on the specific dataset 

and application, the dimension of the node's attributes can vary. For instance, if each node 

is represented by a feature vector of length d, then the typical input format for node features 

would be (N, d), where N is the number of nodes in the graph (Velickovic, P., Rieke, N., & 

Welling, M. , 2021). 

 

 

The illustration Figure 2 depicts the sequential passage of data through the GAT 

model, beginning with the input graph and passing through the graph attention layers, 

attention mechanisms, aggregation steps, and task-specific layers before producing the 

output. This flow depicts the process of learning node representations while taking into 

account the significance of various nodes and their connections using GATs' attention 

mechanisms. 
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Figure 2. GAT Application Flow. 

 

 

3.4.3 Graphsage. GraphSAGE (Graph Sample and Aggregated) is an algorithm for 

learning graph representations that seeks to generate node embeddings by aggregating 

information from the node's local neighborhood. It uses the graph structure to capture 

relational information between nodes and to discover evocative node representations. 

GraphSAGE samples a neighborhood of fixed size surrounding each node in the graph. It 

selects a subset of neighboring nodes according to predefined sampling strategies such as 

uniform sampling, random walks, or customized PageRank. The sampled neighborhood 

nodes are then aggregated to produce a representative embedding for the central node. To 

consolidate the information from the neighbors, aggregation functions such as mean 

aggregation, maximum pooling, and attention mechanism are used. 

The aggregated embeddings and the current node's own features are combined to alter 

the node's representation. This updated representation is then employed for subsequent 

operations such as node classification, link prediction, and anomaly detection. An initial 

embedding or feature vector is assigned to each node in the graph.For each node, a 

neighborhood of fixed size is sampled, and the neighboring nodes' embeddings are 

aggregated. The aggregation function encapsulates the neighborhood's structure and 

characteristics to produce a representative embedding for the central node. The aggregated 

embedding is combined with the node's own features, and the updated representation is used 
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to learn a predictive model by employing supervised or unsupervised learning techniques. 

The important advantage of GraphSAGE is its ability to learn node embeddings using local 

neighborhood information, allowing the algorithm to capture both structural and attribute-

based graph relationships.  

 

In the figure above Figure 3, the input graph is subjected to neighbor sampling, in 

which a subset of each node's neighbors is selected. The features of the sampled neighbors 

are then aggregated to create a representation for each node. This procedure is repeated 

across multiple GraphSage layers in order to refine node representations. To perform 

subsequent tasks, task-specific layers are added, and the final output is dependent on the 

specific task requirements. The illustration depicts the sequential flow of data through the 

GraphSage model, highlighting the neighbor sampling, aggregation, and subsequent layers 

for executing various graph-related tasks. This flow encapsulates the essence of GraphSage's 

ability to learn expressive node representations by considering each node's immediate 

neighborhood. 

 

 

 

 

 
Figure 3. GraphSAGE Application Flow. 
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3.4.4 Gin . The Graph Isomorphism Network (GIN) architecture is a graph neural 

network (GNN). GIN is designed to learn node representations that are independent of the 

ordering of adjacent nodes and are capable of capturing global graph structure.GIN's 

structure and operation can be described as follows:  

• Message Passing: GIN employs the message passing paradigm typical of 

GNNs. Each node in the graph collects information from its companions 

through a step of message passing. In contrast to other GNNs, GIN does not 

rely on the structure of message-passing mechanisms such as graph 

convolutions or graph attention. GIN instead employs a more generic 

aggregation procedure.  

• Aggregation Operation: GIN aggregates using a symmetric sum operation. At each 

layer, each node contributes its own representation to the sum of the representations of 

its neighbors. This symmetric aggregation guarantees that the order of the neighbors 

does not influence the representation of the resulting node. The aggregation operation 

can be defined mathematically as follows: h_il represents the node representation at 

layer l for node i, MLPl is a multi-layer perceptron (MLP) applied element-wise, N(i) is 

the set of neighboring nodes of node i, and epsilon and lambda are learnable parameters 

that balance the self-information and neighbor information. 

 

ℎ𝑖
𝑙 = 𝑀𝐿𝑃𝑙 ((1 + 𝜖𝜆]ℎ𝑖

𝑙−1  +  ∑ ℎ𝑗
𝑙−1

𝑗𝜖𝑁(𝑖)

)) 

 

• Readout Function: GIN uses a readout function to combine the representations 

of all graph nodes into a singular graph-level representation. Typically, the 

output function is a permutation-invariant operation such as summation or 

mean pooling. This graph-level representation can be utilized for subsequent 

tasks like graph classification.  

• Depth and Stacking: GIN elements can be stacked to enhance the model's depth 

and expressiveness. Multiple GIN layers stacked together allow the model to 
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capture higher-order dependencies and more complex graph structures.   

• Predictions at the Graph and Node Levels: GIN can be used for both graph-

level and node-level prediction assignments. For graph-level tasks, the graph-

level representation derived from the readout function is fed into fully 

connected layers, followed by the appropriate activation functions and output 

layers, in order to generate predictions. For node-level tasks, the final GIN 

layer's node representations can be employed for node classification, link 

prediction, and other node-level predictions.  

• The key strength of GIN lies in its theoretical power. Study(Xu,  Hu, Leskovec 

& Jegelka, 2018) showed that GIN with a sufficiently large MLP and enough 

graph convolutional layers can approximate any permutation-invariant 

function on graphs, making it a powerful graph representation learning 

framework. 

 

 

 

 

 

 

3.4.5 Rggcn. Residual Gated Graph Convolutional Network (RGGCN) is a graph 

neural network architecture proposed by Bresson, X. and Laurent, T. (Bresson, X. & 

Laurent, T., 2017). RGGCN employs residual connections and gate mechanisms to enhance 

the learning of node representations from graph-structured data. The first stage in deploying 

RGGCN entails defining and representing the graph of input. In a graph, nodes (vertices) 

and edges (connections) represent the connections between nodes. Each node in the graph 

is associated with a feature vector containing data unique to that node. Using graph 

convolutional layers, RGGCN aggregates data from the neighborhood of a node. Each 

convolutional graph layer receives as input the node features and the adjacency matrix. Each 

RGGCN graph convolutional layer comprises residual connections. Residual connections 

allow the model to bypass the convolutional operation by propagating the input node 

features directly to the output of the layer. This alleviates the problem of vanishing gradients 
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and enhances the network's information flow. mRGGCN implements a gate mechanism to 

control the flow of data through residual connections. As part of the gate mechanism, a 

gating function generates a gate value between 0 and 1 for each node. This gate value is 

multiplied element-by-element with the input features of the residual connection, allowing 

the model to selectively adjust node representations. Following residual connections, an 

activation function, such as ReLU or sigmoid, is implemented to incorporate nonlinearity 

and improve the model's expressive capacity. RGGCN can be layered with multiple graph 

convolutional layers in order to capture higher-order dependencies and more intricate graph 

structures. The output of one layer serves as the input for the subsequent layer, allowing the 

model to obtain increasingly generalized representations. The ultimate output of the 

RGGCN model depends on the specific assignment. It can be used for classification of 

nodes, prediction of links, and classification of graphs. Backpropagation and gradient 

descent are used to optimize the model's parameters so as to minimize the loss between the 

predicted output and the labels of the ground truth. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



43  

Chapter 4  

 

Findings 
 

4.1 Introduction 
 

The purpose of our experiments was to evaluate and compare the efficacy of three 

graph-based methodologies: Graph Convolutional Networks (GCN), Graph Attention 

Networks (GAT), Graph Sample and Aggregated(GraphSAGE), Graph Isomorphism 

Networks (GIN) and Residual Gated Graph Convolutional Network(RGGCN). We present the 

results of our experiments. We evaluate their ability to detect fraud in blockchain-based 

cryptocurrencies using an exhaustive dataset of actual transactions. 

 

Multiple evaluation metrics were employed to assess the performance of each fraud 

detection technique. These metrics consist of precision, recall, F1 score, and support. 

Precision is the proportion of correctly identified fraudulent transactions among all 

fraudulent transactions predicted. Recall measures the ability to identify fraudulent 

transactions precisely among all actual fraudulent transactions. The F1 score is the harmonic 

mean of precision and recall and represents a balanced evaluation of performance as a 

whole. In a dataset, support is the number of instances in each class (fraudulent and 

legitimate transactions). 

 

This study utilized two convolution layers with 32 neurons, a five-column input shape, 

and a two-column output shape. The initial convolution layer was followed by the 

application of the relu activation function with a dropout probability of 0.5. After a second 

layer was applied, the sigmoud output function was implemented.  With a 0.02 learning rate 

and a vertical weight parameter of 0.0005, the Adam optimizer is utilized. Cross-entropy is 

utilized for model training as a lost function. Classweights are computed based on the 

number of valid and fraudulent nodes and transmitted to the loss function. Within the scope 

of this investigation, this methodology was applied to every Graph-Based Application. 
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4.2 GCN Results 
 

Table 2 demonstrates that the Graph Convolutional Network (GCN) model performed 

extraordinarily well in classifying instances into two categories: "Legit" and "Fraud." 

Precision, recall, and F1 score provide insight into the model's capacity to classify instances 

accurately and capture both positive and negative instances. The GCN model achieved 0.93 

precision for the "Legit" class, signifying that the vast majority of instances predicted as 

"Legit" were indeed "Legit." However, the precision for the "Fraud" class was lower, at 

0.41, indicating that its predictions contained some false positives. Comparable recall 

performance was demonstrated by the GCN model, with recall values of 0.78 for the "Legit" 

class and 0.73 for the "Fraud" class. This demonstrates that the model accurately identified 

a significant proportion of actual instances within both classes. The F1 score, which 

incorporates both precision and recall, strengthens the evaluation of performance. The 

"Legit" class has an F1 score of 0.85, indicating a satisfactory equilibrium between precision 

and recall. However, the F1 score for the "Fraud" category is lesser at 0.52, indicating that 

detection of instances belonging to this category needs improvement. The overall accuracy 

of the GCN model is 0.77, indicating that 77% of instances within the dataset have been 

correctly classified. This metric provides an all-encompassing view of the model's 

effectiveness across all classes. 

 

In conclusion, the GCN model's ability to classify instances into the "Legit" and 

"Fraud" categories is promising. The proportional recall for both classes and high precision 

for the "Legit" class indicate that the model captures the vast majority of instances within 

the dataset. However, there is room for development in the "Fraud" category in terms of 

precision and F1 score. It may be necessary to further refine and optimize the model so that 

it can detect instances of deception more precisely. These findings contribute to the 

understanding and applicability of graph neural networks, such as GCN, for fraud detection 

and related tasks in numerous domains. 
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Table 2 

 
Results of GCN Application 

 

 

 

 

 

Figure 4 depicts the confusion matrix produced by the GCN (Graph Convolutional 

Network) application when classifying instances into the "Not-Fraud" and "Fraud" 

categories. It provides a comprehensive view of the model's performance and can be 

analyzed further to determine its efficacy. 

 

The matrix discloses the following data: 

 

True Label: 

• There are 656 instances correctly designated "Not-Fraud" for the "Not-Fraud" class. 

• There are 49 instances of the "Fraud" class that are accurately designated as "Fraud." 

 

Predicted Label: 

• Of the instances predicted as "Not-Fraud", 656 are true negatives, indicating they are 

accurately identified as "Not-Fraud." 

• Of the instances forecasted as "Fraud", 188 are false positives, meaning they are 

incorrectly classified as "Fraud" 

• Of the instances predicted as "Not-Fraud," 49 are false negatives, i.e., they have been 

incorrectly labeled as "Not-Fraud." 

 
Precision Recall F1 Score Support 

Legit 0.93 

   
0.78 

  
0.85 

   
844 

Fraud 0.41 0.83 0.63 179 

Accuracy   0.81 1023 

Macro Average 0.67 0.82 0.75 1023 

Weighted Average 0.84 0.81 0.83 1023 
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• Of the instances predicted as "Fraud", 130 are true positives, accurately designated 

as "Fraud" 

 

The confusion matrix provides valuable insight into the GCN model's efficacy in 

classifying instances as "Not-Fraud" or "Fraud" It highlights both the assets and weaknesses 

of the model. The high number of true negatives and true positives suggests that the GCN 

model can effectively classify a substantial portion of instances belonging to both 

classifications. This demonstrates the model's ability to reliably identify "Not-Fraud" and 

"Fraud" instances. Nonetheless, the prevalence of false positives and false negatives 

indicates that the model is not flawless and may misclassify some instances. False positives 

represent instances mistakenly labeled "Fraud", whereas false negatives represent instances 

incorrectly labeled "Not-Fraud". These misclassifications can have significant 

repercussions, particularly in the context of detecting fraud, where accurate identification is 

essential. Using the confusion matrix's values, additional performance metrics such as 

precision, recall, and F1 score can be calculated to obtain a more comprehensive evaluation 

of the GCN application. These metrics provide a deeper comprehension of the model's 

precision, sensitivity, and overall performance in separating the two classes. 

 

In conclusion, the perplexity matrix provides valuable insight into the performance of 

the GCN application for classifying instances as "Not-Fraud" or "Fraud." False positives 

and false negatives indicate that there is room for development, despite the model's 

proficiency in correctly identifying a substantial number of instances. To address these 

misclassifications and enhance the overall performance of the GCN model in fraud detection 

scenarios, additional analysis and potential model enhancements can be investigated. 
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Figure 4. GCN Application Confusion Matrix. 

 

In Figure 5, the relationship between the true positive rate (TPR) or recall and the false 

positive rate (FPR) at varying threshold settings is depicted. A higher AUC indicates 

superior classification performance.For the given ROC curve with an AUC of 0.71135, the 

plot would depict the trade-off between the true positive rate and the false positive rate, 

indicating the classifier's ability to distinguish between positive and negative classes. 

 

A Precision-Recall curve illustrates the tradeoff between accuracy and recall for 

various classification thresholds. It is notably useful in situations involving an imbalanced 

class distribution. The AUC of the Precision-Recall curve quantifies the overall precision 

and recall performance of the classifier. In the provided Precision-Recall curve with an AUC 

of 0.39148, the plot illustrates the relationship between precision and recall at various 

classification thresholds. It provides information regarding the model's ability to correctly 

identify positive instances (precision) while capturing all pertinent positive instances 

(recall). 
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Figure 5. ROC and Precision-Recall Curves with Threshold for GCN 

 

 

4.3 GAT Results 
 

A number of performance metrics for the classification task are provided by examining 

the results depicted in Table 3 of the GAT application. The efficacy of the model can be 

evaluated using precision, recall, F1 score, support, precision, and the macro and weighted 

averages. The model achieves a precision of 0.96 for the "Legit" category and 0.67 for the 

"Fraud" category, indicating that precision measures the accuracy of positive predictions. 

These values indicate that the model accurately identifies "Legit" instances, whereas 

"Fraud" instances are less precise. Recall, also referred to as sensitivity, assesses the model's 

ability to identify positive instances with reliability. Recall values of 0.91 for the "Legit" 

class and 0.84 for the "Fraud" class indicate that the model reliably identifies a substantial 

proportion of "Legit" and "Fraud" instances. The F1 score, which takes precision and recall 

into account, is a balanced metric. The class "Legit" has an F1 score of 0.94, which indicates 

an outstanding balance between precision and recall. The "Fraud" class's F1 score of 0.75 

indicates a relatively weak balance between precision and recall for detecting instances of 

fraud. Support refers to the number of instances in each class, with 844 identified as "Legit" 

and 179 as "Fraud." These graphs depict the distribution of classes within the dataset. It is 

reported that the model's overall accuracy is 0.90, indicating that the GAT application 

correctly classifies approximately 90% of the instances in the dataset. The macro average 
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and weighted average aggregate measurements for both categories. The average scores for 

precision, recall, and F1 at the macro level are 0.82, 0.88, and 0.84, respectively. The 

average weighted precision, recall, and F1 scores are 0.91, 0.90, and 0.90, respectively. 

These values represent class distribution and summarize the overall efficacy of the model. 

 

In conclusion, the GAT application accurately classifies instances as "Legit" or 

"Fraud." The model achieves a high level of precision for the "Legit" class, indicating that 

accurate positive predictions can be made. However, the "Fraud" class has relatively lesser 

precision, indicating that there is room for improvement in identifying instances of fraud. 

The relatively high recall values for both classes indicate that the model is capable of 

capturing a substantial proportion of positive instances. The F1 scores for the "Legit" 

category demonstrate a comparatively better balance between precision and recall than those 

for the "Fraud" category. The classification performance of the GAT model is excellent, as 

indicated by its overall accuracy of 0.90. 

 

 
 

Table 3 

 
Results of GAT Application 

 

 

 

 

 

 

In Figure 6, the perplexity matrix corresponds to the results of the GAT (Graph 

 
 

 
Precision 

 

 
Recall 

 
F1 Score 

 
Support 

 
Legit 

                   
0.96 

   
0.91 

    
0.94 

   
844 

Fraud 0.67 0.84 0.75 190 

Accuracy   0.90 1023 

Macro Average 0.82 0.88 0.84 1023 

Weighted Average 0.91 0.90 0.90 1023 
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Attention Network) application, namely the classification of instances into the "Not-Fraud" 

and "Fraud" classes. This matrix provides a comprehensive overview of the model's 

performance and can be further analyzed to determine its efficacy. 

 

The matrix can be examined in the following manner: 

 

True Label: 

 

• 770 instances of the "Not-Fraud" class are correctly classified as "Not-Fraud." 

• 28 instances of the "Fraud" class are accurately classified as "Fraud." 

 

Anticipated Label: 

 

• 770 instances predicted as "Not-Fraud" are true negatives, implying that they have 

been correctly identified as "Not-Fraud." 

• 74 instances forecasted as "Fraud" are false positives, meaning they are incorrectly 

classified as "Fraud." 

• Thirty instances predicted as "Not-Fraud", 28 are false negatives, indicating that they 

have been incorrectly classified as "Not-Fraud." 

• Of the instances forecasted as "Fraud", 151 are true positives, accurately identified 

as "Fraud." 

The confusion matrix provides essential information regarding the GAT model's 

performance in classifying instances as "Not-Fraud" and "Fraud" It highlights both the 

model's assets and weaknesses, as evidenced by the high number of true negatives and true 

positives and the presence of false positives and false negatives, respectively. The high 

number of true negatives indicates that the model is adept at accurately identifying instances 

that are "Not-Fraud." Similarly, the high number of true positives indicates that the model 

can reliably identify instances that are "Fraud" These results demonstrate the model's ability 

to differentiate between the two classes. The presence of false positives and false negatives, 

however, indicates that the model is imperfect and may misclassify some instances. False 

positives are instances that are incorrectly classified as "Fraud", whereas false negatives are 

instances that are incorrectly designated as "Not-Fraud". These misclassifications have 

practical ramifications, especially in the context of detecting fraud, where accurate 
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identification is crucial. Using the confusion matrix's values, additional performance metrics 

such as precision, recall, and F1 score can be calculated to obtain a more comprehensive 

evaluation of the GAT application. These metrics provide a deeper comprehension of the 

model's precision, sensitivity, and overall performance in separating the two classes. 

 

In conclusion, the perplexity matrix provides valuable insight into the performance of 

the GAT application in classifying instances as "Not-Fraud" or "Fraud." False positives and 

false negatives indicate that there is room for development, despite the model's proficiency 

in correctly identifying a substantial number of instances. In order to resolve these 

misclassifications and improve the overall performance of the GAT model in fraud detection 

scenarios, additional analysis and potential enhancements can be explored. 

 

 

 

 

 

Figure 6. GAT Application Confusion Matrix. 
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In Figure 7, the relationship between the true positive rate (TPR) or recall and the false 

positive rate (FPR) at different threshold settings is depicted. A higher AUC indicates 

superior classification performance. For the provided ROC curve with an AUC of 0.88941, 

the plot would depict the trade-off between the true positive rate and the false positive rate, 

indicating the classifier's ability to distinguish between positive and negative classes. A 

Precision-Recall curve illustrates the tradeoff between accuracy and recall for various 

classification thresholds. It is notably useful in situations involving an imbalanced class 

distribution. The AUC of the Precision-Recall curve quantifies the overall precision and 

recall performance of the classifier. In the provided Precision-Recall curve with an AUC of 

0.74229, the diagram would illustrate the relationship between precision and recall at 

various classification thresholds. It provides information regarding the model's ability to 

correctly identify positive instances (precision) while capturing all pertinent positive 

instances (recall). 

 

 

 

 

Figure 7. ROC and Precision-Recall Curves with Threshold for GAT 

 

 

4.4 GraphSage Results 
 

Examining the GraphSage application's Table 4 results enables us to evaluate the 

efficacy of the model using various metrics. The table contains information regarding 

precision, recall, F1 score, support, precision, and macro and weighted averages. Precision 

is the degree to which accurate forecasts are made. The GraphSage model achieves a 

precision of 0.95 for the "Legit" class, signifying that 95% of instances predicted as "Legit" 
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are accurate. The "Fraud" class has a precision of 0.49, indicating that 49% of instances 

predicted as "Fraud" are accurate predictions. Recall, also referred to as sensitivity, assesses 

the model's ability to identify positive instances with reliability. The model's recall is 0.82 

for the "Legit" class and 0.80 for the "Fraud" class. This indicates that 82% of "Legit" 

instances and 80% of "Fraud" instances are precisely identified by the model. In a singular 

metric, the F1 score optimizes the trade-off between precision and recall. The "Legit" 

category's F1 score of 0.88 indicates a reasonable equilibrium between precision and recall. 

The "Fraud" class's F1 score of 0.61 indicates a relatively weak balance between precision 

and recall when identifying instances of fraud. 844 instances in the support column are 

designated "Legit" while 179 instances are labeled "Fraud." The reported accuracy of the 

model is 0.82, indicating that the GraphSage application classifies approximately 82% of 

instances in the dataset accurately. The macro average and weighted average are measures 

of the two divisions as a whole. At the macro level, the average precision, recall, and F1 

score are 0.72, 0.81, and 0.74. The weighted mean precision, recall, and F1 score are 0.87, 

0.82, and 0.83 respectively. These values accommodate for class distribution and provide 

an overall evaluation of the model's performance. 

 

In conclusion, the GraphSage application performs well in terms of accurately 

classifying instances as "Legit" or "Fraud." The model achieves a high level of precision for 

the "Legit" class, indicating that accurate positive predictions can be made. However, the 

precision of the "Fraud" class is comparatively lower, indicating that fraud identification 

could be improved. The relatively high recall values for both classes indicate that the model 

is capable of capturing a substantial proportion of positive instances. The F1 scores for the 

"Legit" category demonstrate a comparatively better balance between precision and recall 

than those for the "Fraud" category. The classification performance of the GraphSage model 

is excellent, as indicated by its overall accuracy of 0.82. 
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Table 4 

 
Results of GraphSage Application 

 

 

 

 

 

The provided confusion matrix in Figure 8, corresponds to the results of the GraphSage 

application, specifically in classifying instances into the "Not-Fraud" and "Fraud" classes. 

This matrix offers a comprehensive overview of the model's performance and can be 

analyzed further to evaluate its effectiveness. 

 

The matrix can be reviewed as follows: 

 

True Label: 

 

• For the "Not-Fraud" class, 694 instances are correctly classified as "Not-

Fraud". 

• For the "Fraud" class, 36 instances are correctly classified as "Fraud". 

 

Predicted Label: 

 

• Among the instances predicted as "Not-Fraud", 694 instances are true 

negatives, indicating that they are correctly identified as "Not-Fraud". 

• Among the instances predicted as "Fraud", 150 instances are false positives, 

 
 

 
Precision 

 

 
Recall 

 
F1 Score 

 
Support 

 
Legit 

                   
0.95 

   
0.82 

    
0.88 

   
844 

Fraud 0.49 0.80 0.61 179 

Accuracy   0.82 1023 

Macro Average 0.72 0.81 0.74 1023 

Weighted Average 0.87 0.82 0.83 1023 
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implying that they are incorrectly classified as "Fraud". 

• Among the instances predicted as "Not-Fraud", 36 instances are false 

negatives, suggesting that they are incorrectly labeled as "Not-Fraud". 

• Among the instances predicted as "Fraud", 143 instances are true positives, 

correctly identified as "Fraud". 

The confusion matrix provides crucial insights into the performance of the GraphSage 

model in terms of classifying instances as "Not-Fraud" and "Fraud". It highlights both the 

model's strengths, as evidenced by the high number of true negatives and true positives, and 

its weaknesses, as indicated by the presence of false positives and false negatives. The high 

number of true negatives suggests that the model is proficient in correctly identifying 

instances that are genuinely "Not-Fraud". Similarly, the high number of true positives 

indicates the model's ability to accurately identify instances that are indeed "Fraud". These 

findings demonstrate the model's effectiveness in distinguishing between the two classes. 

However, the presence of false positives and false negatives signifies that the model is not 

perfect and may misclassify some instances. False positives represent instances that are 

incorrectly classified as "Fraud", while false negatives represent instances that are 

incorrectly labeled as "Not-Fraud". These misclassifications have practical implications, 

particularly in the context of fraud detection, where accurate identification is crucial. To 

obtain a more comprehensive evaluation of the GraphSage application, additional 

performance metrics such as precision, recall, and F1 score can be computed using the 

values from the confusion matrix. These metrics offer a deeper understanding of the model's 

accuracy, sensitivity, and overall performance in distinguishing between the two classes. 

 

In summary, the provided confusion matrix offers valuable insights into the 

performance of the GraphSage application in classifying instances as "Not-Fraud" and 

"Fraud". While the model demonstrates proficiency in correctly identifying a significant 

number of instances, there is room for improvement, as indicated by the presence of false 

positives and false negatives. Further analysis and potential enhancements can be explored 

to address these misclassifications and improve the overall performance of the GraphSage 

model in fraud detection scenarios. 
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Figure 8. GraphSage Application Confusion Matrix. 

 

 

In Figure 9, the relationship between the true positive rate (TPR) or recall and the false 

positive rate (FPR) at various threshold settings is illustrated. A higher AUC indicates 

superior classification performance. For the provided ROC curve with an AUC of 0.84730, 

the plot would depict the trade-off between the true positive rate and the false positive rate, 

indicating the classifier's ability to distinguish between positive and negative classes. A 

Precision-Recall curve illustrates the tradeoff between accuracy and recall for various 

classification thresholds. It is notably useful in situations involving an imbalanced class 

distribution. The AUC of the Precision-Recall curve quantifies the overall precision and 

recall performance of the classifier. In the provided Precision-Recall curve with an AUC of 

0.58801, the diagram would illustrate the relationship between precision and recall at 

various classification thresholds. It provides information regarding the model's ability to 

correctly identify positive instances (precision) while capturing all pertinent positive 

instances (recall). 
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Figure 9. ROC and Precision-Recall Curves with Threshold for GraphSage 

 

4.5 GIN Results 
 

Reviewing Table 5's GIN (Graph Isomorphism Network) application results, we can 

evaluate the efficacy of the model using various metrics. The table contains information 

regarding precision, recall, F1 score, support, precision, and macro and weighted averages. 

Precision is the degree to which accurate forecasts are made. The GIN model achieves a 

precision of 0.94 for the "Legit" class, indicating that 94% of instances that are predicted as 

"Legit" are accurate. The "Fraud" class has a precision of 0.52, indicating that 52% of 

instances predicted as "Fraud" are accurate predictions. Recall, also referred to as sensitivity, 

assesses the model's ability to identify positive instances with reliability. The model's recall 

is 0.85 for the "Legit" class and 0.74 for the "Fraud" class. This indicates that 85% of "Legit" 

instances and 74% of "Fraud" instances are reliably identified by the model. In a singular 

metric, the F1 score optimizes the trade-off between precision and recall. The "Legit" 

category's F1 score of 0.89 indicates a reasonable equilibrium between precision and recall. 

The "Fraud" class's F1 score of 0.61 indicates a relatively weak balance between precision 

and recall when identifying instances of fraud. 844 instances in the support column are 

labeled "Legit" while 179 instances are labeled "Fraud." The reported model accuracy is 

0.83, indicating that the GIN application correctly classifies roughly 83% of the instances 

in the dataset. The macro average and weighted average are measures of the two divisions 

as a whole. At the macro level, the average precision, recall, and F1 score are 0.73, 0.80, 

and 0.75. The weighted averages for precision, recall, and F1 score are 0.87, 0.83, and 0.84, 

respectively. These values accommodate for class distribution and provide an overall 

evaluation of the model's performance. 
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According to the presented results, the GIN application demonstrates a promising 

ability to precisely classify instances as "Legit" or "Fraud." The model achieves a high level 

of precision for the "Legit" class, indicating that accurate positive predictions can be made. 

However, the precision of the "Fraud" class is comparatively lower, indicating that fraud 

identification could be improved. The relatively high recall values for both classes indicate 

that the model is capable of capturing a substantial proportion of positive instances. The F1 

scores for the "Legit" category demonstrate a comparatively better balance between 

precision and recall than those for the "Fraud" category. The GIN model's overall accuracy 

of 0.83 indicates that it performs well in classifying instances. To improve the performance 

of the model, particularly in detecting instances of fraud, additional analysis and potential 

enhancements can be explored. 

 

 

Table 5 

 
Results of GIN Application 

 

 

 

 

 

 

 

 

The provided confusion matrix in Figure 10,  represents the results of the GIN 

application in classifying instances into the "Not-Fraud" and "Fraud" classes. This matrix 

allows for an in-depth analysis of the model's performance and can be further evaluated to 

 
 

 
Precision 

 

 
Recall 

 
F1 Score 

 
Support 

 
Legit 

                   
0.94 

   
0.85 

    
0.89 

   
844 

Fraud 0.52 0.74 0.61 179 

Accuracy   0.83 1023 

Macro Average 0.73 0.80 0.75 1023 

Weighted Average 0.87 0.83 0.84 1023 
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assess its effectiveness. 

 

The matrix can be reviewed as follows: 

 

True Label: 

 

• For the "Not-Fraud" class, 720 instances are correctly classified as "Not-

Fraud". 

• For the "Fraud" class, 46 instances are correctly classified as "Fraud". 

 

Predicted Label: 

 

• Among the instances predicted as "Not-Fraud", 720 instances are true 

negatives, meaning they are correctly identified as "Not-Fraud". 

• Among the instances predicted as "Fraud", 124 instances are false positives, 

indicating that they are incorrectly classified as "Fraud". 

• Among the instances predicted as "Not-Fraud", 46 instances are false 

negatives, suggesting that they are incorrectly labeled as "Not-Fraud". 

• Among the instances predicted as "Fraud", 133 instances are true positives, 

correctly identified as "Fraud". 

 

 

The confusion matrix provides insightful information regarding the performance of 

the GIN model in classifying instances as "Not-Fraud" or "Fraud" It highlights both the 

model's assets and limitations, as evidenced by the high number of true negatives and true 

positives, as well as the presence of false positives and false negatives. The high number of 

true negatives indicates that the model accurately identifies instances that belong to the 

"Not-Fraud" class. Similarly, the high number of true positives demonstrates that the model 

can reliably identify instances that belong to the "Fraud" class. These results demonstrate 

that the model can differentiate between the two classes. Nonetheless, the prevalence of 

false positives and false negatives indicates that the model is imperfect and may misclassify 

certain instances. False positives are instances that are incorrectly classified as "Fraud", 
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whereas false negatives are instances that are incorrectly designated as "Not-Fraud". These 

misclassifications have practical ramifications, particularly in the context of detecting fraud, 

where accurate identification is crucial. Using the confusion matrix's values, additional 

performance metrics such as precision, recall, and F1 score can be calculated for a 

comprehensive evaluation of the GIN application. These metrics provide a deeper 

comprehension of the model's precision, sensitivity, and overall performance in separating 

the two classes. 

 

In conclusion, the perplexity matrix provides valuable insight into the performance of 

the GIN application in classifying instances as "Not-Fraud" or "Fraud." False positives and 

false negatives indicate that there is room for development, despite the model's proficiency 

in correctly identifying a substantial number of instances. In order to resolve these 

misclassifications and improve the overall performance of the GIN model in fraud detection 

scenarios, additional analysis and potential enhancements can be explored. 

      

 

 

 

Figure 10. GIN Application Confusion Matrix. 
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In Figure 12, the relationship between the true positive rate (TPR) or recall and the 

false positive rate (FPR) at various threshold settings is depicted. A higher AUC indicates 

superior classification performance. For the provided ROC curve with an AUC of 0.82633, 

the plot would depict the trade-off between the true positive rate and the false positive rate, 

indicating how well the classifier can differentiate between positive and negative classes. A 

Precision-Recall curve illustrates the tradeoff between accuracy and recall for various 

classification thresholds. It is notably useful in situations involving an imbalanced class 

distribution. The AUC of the Precision-Recall curve quantifies the overall precision and 

recall performance of the classifier. In the provided Precision-Recall curve with an AUC of 

0.58044, the diagram would illustrate the relationship between precision and recall at 

various classification thresholds. It provides information regarding the model's ability to 

correctly identify positive instances (precision) while capturing all pertinent positive 

instances (recall). 

 

 

 

 

Figure 11. ROC and Precision-Recall Curves with Threshold for GIN 

 

4.6 RGGCN Results 
 

Taking into account the RGGCN (Residual Gated Graph Convolutional Network) 

application results shown in Table 6, we can evaluate the efficacy of the model using a 

variety of metrics. The table contains information regarding precision, recall, F1 score, 

support, precision, and macro and weighted averages. Precision is the degree to which 

accurate forecasts are made. The RGGCN model achieves a 0.96 precision for the "Legit" 
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class, indicating that 96% of instances predicted as "Legit" are accurate. Precision of 0.46 

for the "Fraud" class indicates that sixty percent of instances predicted as "Fraud" are 

accurate positives. Recall, also referred to as sensitivity, assesses the model's ability to 

identify positive instances with reliability. The model's recall is 0.79 for the "Legit" class 

and 0.84 for the "Fraud" class. This indicates that 79% of "Legit" instances and 84% of 

"Fraud" instances are precisely identified by the model. In a singular metric, the F1 score 

optimizes the trade-off between precision and recall. The "Legit" category's F1 score of 0.86 

indicates an outstanding balance between precision and recall. The "Fraud" class's F1 score 

of 0.59 indicates a relatively weak balance between precision and recall when identifying 

instances of fraud. 844 instances are labeled "Legit" in the support column, while 179 

instances are labeled "Fraud." The reported accuracy of the model is 0.80, which indicates 

that the RGGCN application classifies approximately 80% of the instances in the dataset 

accurately. The macro average and weighted average are measures of the two divisions as a 

whole. The average precision, recall, and F1 score at the macro level are 0.71, 0.81, and 

0.73, respectively. The weighted averages for precision, recall, and F1 score are 0.87, 0.80, 

and 0.82, respectively. These values accommodate for class distribution and provide an 

overall evaluation of the model's performance. 

 

In conclusion, the RGGCN application precisely classifies instances as "Legit" or 

"Fraud." The model achieves a high level of precision for the "Legit" class, indicating that 

accurate positive predictions can be made. However, the precision of the "Fraud" class is 

comparatively lower, indicating that fraud identification could be improved. The relatively 

high recall values for both classes indicate that the model is capable of capturing a 

substantial proportion of positive instances. The F1 scores for the "Legit" category 

demonstrate a comparatively better balance between precision and recall than those for the 

"Fraud" category. The classification performance of the RGGCN model is excellent, as 

indicated by its overall accuracy of 0.80. To improve the performance of the model, 

particularly in detecting instances of fraud, additional analysis and potential enhancements 

can be explored. 
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Table 6 

 
Results of RGGCN Application 

 

 

 

 

 

The provided confusion matrix in Figure 12,  represents the outcomes of the RGGCN 

application in classifying instances into the "Not-Fraud" and "Fraud" classes. It offers a 

detailed view of the true labels and predicted labels for these classes, allowing for a thorough 

evaluation of the model's performance. 

 

The matrix can be reviewed as follows: 

 

True Label: 

 

• For the "Not-Fraud" class, there are 665 instances correctly classified as "Not-

Fraud". 

• For the "Fraud" class, there are 29 instances correctly classified as "Fraud". 

 

Predicted Label: 

 

• Among the instances predicted as "Not-Fraud", 665 instances are true 

negatives, indicating they are correctly identified as "Not-Fraud". 

• Among the instances predicted as "Fraud", 179 instances are false positives, 

 
 

 
Precision 

 

 
Recall 

 
F1 Score 

 
Support 

 
Legit 

                   
0.96 

   
0.79 

    
0.86 

   
844 

Fraud 0.46 0.84 0.59 179 

Accuracy   0.80 1023 

Macro Average 0.71 0.81 0.73 1023 

Weighted Average 0.87 0.80 0.82 1023 
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suggesting they are incorrectly classified as "Fraud". 

• Among the instances predicted as "Not-Fraud", 29 instances are false 

negatives, meaning they are incorrectly labeled as "Not-Fraud". 

• Among the instances predicted as "Fraud", 150 instances are true positives, 

correctly identified as "Fraud". 

 

The confusion matrix provides valuable insights into the performance of the RGGCN 

model in terms of classifying instances as "Not-Fraud" and "Fraud". It highlights the model's 

strengths, as evident from the high number of true negatives and true positives, as well as 

its limitations, as indicated by the presence of false positives and false negatives. The high 

number of true negatives indicates the model's effectiveness in correctly identifying 

instances that genuinely belong to the "Not-Fraud" class. Similarly, the high number of true 

positives demonstrates the model's capability to accurately identify instances that truly fall 

into the "Fraud" class. These findings showcase the model's ability to distinguish between 

the two classes. However, the presence of false positives and false negatives reveals the 

model's limitations. False positives represent instances that are incorrectly classified as 

"Fraud", while false negatives represent instances that are incorrectly labeled as "Not-

Fraud". These misclassifications have practical implications, especially in the context of 

fraud detection, where accurate identification is crucial. To gain a comprehensive evaluation 

of the RGGCN application, additional performance metrics such as precision, recall, and F1 

score can be calculated using the values from the confusion matrix. These metrics provide 

a deeper understanding of the model's accuracy, sensitivity, and overall performance in 

distinguishing between the two classes. 

 

In conclusion, the provided confusion matrix offers valuable insights into the 

performance of the RGGCN application in classifying instances as "Not-Fraud" and 

"Fraud". While the model demonstrates proficiency in correctly identifying a substantial 

number of instances, there is room for improvement, as indicated by the presence of false 

positives and false negatives. Further analysis and potential enhancements can be explored 

to address these misclassifications and improve the overall performance of the RGGCN 

model in fraud detection scenarios. 
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Figure 12. RGGCN Application Confusion Matrix. 

 

In Figure 13, the relationship between the true positive rate (TPR) or recall and the false 

positive rate (FPR) at various threshold settings is illustrated. A higher AUC indicates 

superior classification performance. For the given ROC curve with an AUC of 0.85187, 

the plot would depict the trade-off between the true positive rate and the false positive 

rate, indicating the classifier's ability to distinguish between positive and negative classes. 

A Precision-Recall curve illustrates the tradeoff between accuracy and recall for various 

classification thresholds. It is notably useful in situations involving an imbalanced class 

distribution. The AUC of the Precision-Recall curve quantifies the overall precision and 

recall performance of the classifier. In the provided Precision-Recall curve with an AUC 

of 0.56620, the plot illustrates the relationship between precision and recall at various 

classification thresholds. It provides information regarding the model's ability to correctly 

identify positive instances (precision) while capturing all pertinent positive instances 

(recall). 
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Figure 13. ROC and Precision-Recall Curves with Threshold for RGGCN 
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Chapter 5 

 

Discussion and Conclusions 

 
 

 

5.1 Discussion 
 

In this section, we provide a comprehensive analysis of the most important findings 

and potential threats to the validity of our study on detecting deception in Bitcoin 

transactions using graph-based deep learning algorithms. Comparing and analyzing the 

performance of five algorithms — Graph Convolutional Networks (GCN), Graph Attention 

Networks (GAT), Graph Sample and Aggregated (GraphSAGE), Graph Isomorphism 

Networks (GIN), and Residual Gated Graph Convolutional Network (RGGCN) — in 

detecting fraudulent patterns in Ethereum transactions is our first step. We delve into the 

implications of these findings by examining the advantages and disadvantages of each 

algorithm from multiple angles. Internal and external factors that may affect the 

interpretation and generalizability of our results and pose potential challenges to the validity 

of our study are then discussed. We gain a deeper understanding of the efficacy and 

limitations of graph-based deep learning algorithms for fraud detection in the Etherium 

ecosystem by analyzing both the most significant findings and the threats to their validity. 

 

5.1.1 Main findings. In this research, three graph-based deep learning algorithms, GCN, 

GAT , GraphSage, GIN and RGGCN were applied to the detection of fraud in Etherium 

transactions. The following are the key findings of our analysis: 

 

 5.1.1.1 Performance, accuracy and precision comparision. In this thesis, we compared 

and evaluated the performance of various Graph Neural Network (GNN) methods for fraud detection 

based on the following evaluation criteria: ROC Curve AUC, Accuracy (F1 Score), Precision for 

Legitimate cases, and Precision for Fraud cases. The results of the analysis are summarized as follows: 

 

• GAT: Among the GNN methods, GAT demonstrated the highest performance in terms of ROC 

Curve AUC (0.88941) and Accuracy (0.90). It also achieved the highest precision for Legitimate 

cases (0.96) and a relatively high precision for Fraud cases (0.67). 

 

• RGGCN: RGGCN ranked second in performance, with a ROC Curve AUC of 0.85187. It 

achieved a high precision for Legitimate cases (0.96) but had a relatively lower precision for 
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Fraud cases (0.52). 

 

• GraphSAGE: GraphSAGE performed well, obtaining a ROC Curve AUC of 0.84730 and an 

Accuracy of 0.82. It showed a high precision for Legitimate cases (0.95) but had a relatively 

lower precision for Fraud cases (0.49). 

 

• GIN: GIN obtained a ROC Curve AUC of 0.82633, indicating reasonable performance. It 

achieved a high precision for Legitimate cases (0.94) but had a lower precision for Fraud cases 

(0.46) compared to the top-ranked methods. 

 

• GCN: GCN demonstrated the lowest performance among the GNN methods, with a ROC Curve 

AUC of 0.71135. It had a relatively lower Accuracy (0.77) and precision rates for both Legitimate 

cases (0.93) and Fraud cases (0.41). 

 

Based on these results, it can be concluded that GAT is the most effective GNN architecture for fraud 

detection in the context of this study. It achieved the highest overall performance in terms of ROC Curve 

AUC, Accuracy, and precision rates for both Legitimate and Fraud cases 

 

 

 

 5.1.1.2  Robustness and scalability. GAT exhibits superior performance in fraud detection, 

as indicated by its highest ROC Curve AUC and F1 Score among the methods. It demonstrates high 

precision in both legitimate and fraudulent cases. GAT is well-known for its robustness in capturing 

complex relationships within graph data, enabling it to effectively handle various types of fraud patterns. 

Additionally, GAT exhibits good scalability by efficiently processing large-scale graphs through its 

attention mechanism. 

 

RGGCN demonstrates relatively high performance in fraud detection, characterized by a comparatively 

high ROC Curve AUC and F1 Score. While it achieves a high precision score for legitimate cases, its 

precision score for fraudulent cases is lower compared to GAT and GIN. RGGCN showcases robustness 

by leveraging residual connections and gating mechanisms to capture intricate dependencies within the 

graph. However, the scalability of RGGCN may vary depending on the size and complexity of the graph. 

 

GraphSAGE performs well in fraud detection, displaying a relatively high ROC Curve AUC and F1 

Score. It achieves a high precision score for legitimate cases but exhibits lower precision for fraudulent 

cases compared to GAT and GIN. GraphSAGE demonstrates robustness by aggregating information from 
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neighboring nodes, effectively capturing the graph's structure. In terms of scalability, GraphSAGE 

generally performs efficiently for moderate to large-scale graphs. 

 

GIN demonstrates reasonably good performance in fraud detection, characterized by a moderate ROC 

Curve AUC and F1 Score. It achieves high precision for legitimate cases but has a lower precision score 

for fraudulent cases compared to GAT and RGGCN. GIN's robustness lies in its ability to handle graph 

structural variations and diverse fraud patterns. It exhibits scalability and efficiency for large-scale graphs 

due to its aggregation and pooling operations. 

 

GCN shows the lowest performance in fraud detection, with the lowest ROC Curve AUC and F1 Score 

among the methods. While it achieves relatively high precision for legitimate cases, its precision score 

for fraudulent cases is lower compared to the other methods. GCN's robustness is limited by its reliance 

on fixed-size neighborhoods, which may not effectively capture long-range dependencies in the graph. 

Additionally, the scalability of GCN may pose challenges for large-scale graphs due to its neighborhood-

based operations. 

 

In summary, GAT and GIN outperform RGGCN, GraphSAGE, and GCN in terms of performance, 

robustness, and scalability. These methods achieve better results in fraud detection, account for graph 

structural variations, and demonstrate efficient scalability for large-scale graphs. 

 
 5.1.1.3 Generalizability and adaptability. In general, our findings indicate that GAT and 

RGGCN perform better than other GCN, GraphSage aand GIN at detecting deception in Etherium 

transactions. However, the selection of an algorithm should take into account computational resources, 

scalability, and application-specific requirements. Further study is required to investigate optimization 

strategies and the adaptability of the algorithms to emergent fraud techniques and other cryptocurrencies. 

GAT demonstrates excellent generalizability and adaptability in fraud detection, achieving the highest 

performance in terms of ROC Curve AUC, F1 Score, and precision for both legitimate and fraudulent 

cases. Its ability to capture complex relationships and dependencies in graph data allows it to generalize 

well to different types of fraud patterns and adapt to various graph structures. 

 

RGGCN shows good generalizability and adaptability, with relatively high performance in terms of ROC 

Curve AUC and F1 Score. It achieves high precision for legitimate cases and moderate precision for 

fraudulent cases. RGGCN's utilization of residual connections and gating mechanisms enables it to 

capture complex dependencies and adapt to different graph structures, enhancing its generalizability and 

adaptability. 
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GraphSAGE exhibits reasonable generalizability and adaptability, performing well in terms of ROC 

Curve AUC and F1 Score. It achieves high precision for legitimate cases but has slightly lower precision 

for fraudulent cases compared to GAT and GIN. GraphSAGE's ability to aggregate information from 

neighboring nodes allows it to capture the graph's structure effectively, enhancing its generalizability and 

adaptability to different graph datasets. 

 

GIN demonstrates moderate generalizability and adaptability, with a decent performance in terms of ROC 

Curve AUC and F1 Score. It achieves high precision for legitimate cases but lower precision for 

fraudulent cases compared to GAT and RGGCN. GIN's strength lies in its robustness to handle graph 

structural variations and adapt to different types of fraud patterns, contributing to its generalizability and 

adaptability. 

 

GCN shows relatively lower generalizability and adaptability compared to the other methods, as 

evidenced by its lower performance in terms of ROC Curve AUC and F1 Score. Although it achieves 

relatively high precision for legitimate cases, its precision for fraudulent cases is lower. GCN's reliance 

on fixed-size neighborhoods limits its ability to capture long-range dependencies and adapt to diverse 

graph structures, affecting its generalizability and adaptability. 

 

In summary, GAT and RGGCN demonstrate higher generalizability and adaptability compared to 

GraphSAGE, GIN, and GCN. They exhibit superior performance, robustness, and scalability, making 

them suitable for detecting fraud in various graph datasets. However, it is essential to consider the specific 

characteristics and requirements of the application domain when selecting the most suitable GNN method. 

 
 
 

5.2 Threats To Validity 
 

Here, we highlight some of the risks associated with our research into Etherium fraud 

detection utilizing graph-based deep learning algorithms. Internal and external validity are 

the two main groups into which we divide these threats. 

 

5.2.1  Internal validity. The term "internal validity" is used to describe how much credit can 

be given to the study's experimental design rather than other, potentially influencing, elements. 

Our study's internal validity may be at risk from the following factors: 

 

• Sampling Bias: Our research uses a single dataset for both training and testing. 

The results may not be transferable to other datasets or real-world settings if 
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the dataset does not accurately represent the overall characteristics of Bitcoin 

transactions or contains biases. 

 

• Feature Selection: The effectiveness of graph-based deep learning algorithms 

depends heavily on the selection and quality of input features. Inaccurate or 

irrelevant attributes may introduce noise or bias, degrading the performance of 

the system. 

 

• Algorithm Implementation: Getting accurate results from graph-based deep 

learning algorithms relies heavily on their proper implementation. The 

performance and accuracy of the model could be negatively impacted by 

mistakes in the implementation, such as inappropriate model architecture or 

hyperparameter tuning. 

 

• Model Overfitting: Deep learning models are subject to overfitting, which 

occurs when the model becomes excessively specialized to the training data 

and fails to generalize well to unseen data. Overfitting can result in exaggerated 

performance metrics during evaluation, but poor performance in actual 

applications. 

 

5.2.2  External validity. The ability of the results to be used in other situations is what is meant 

by the term "external validity." Potential risks to the generalizability of our study include the 

following: 

 

• Limited Dataset: For Etherium fraud detection, it may be difficult to find large, 

diverse datasets. There may be limitations to the applicability of our findings 

if our research uses a dataset that is not representative of the population as a 

whole. 

 

• Dynamic Nature of Etherium: Because of Etherium's dynamic nature, the most 

effective methods of fraud are always evolving as well. As new fraud patterns 

arise, it is possible that the efficacy of our graph-based deep learning 

algorithms will change over time, reducing the generalizability of our findings. 
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• Transferability to Other Cryptocurrencies: Although Etherium is the most 

popular cryptocurrency, each blockchain system may have distinctive 

characteristics and transaction structures. Consequently, the applicability of 

our graph-based deep learning algorithms to other cryptocurrencies may be 

limited, and additional research would be required to validate their efficacy in 

various contexts. 

 

• Difficulties Associated with Real-World Implementation: The transition from 

a research study to a real-world implementation of fraud detection algorithms 

can present additional practical difficulties. In real-world settings, 

computational resources, system scalability, and deployment feasibility may 

influence the performance and applicability of the algorithms. 

 

We must take these concerns into account when interpreting our study's findings and 

work to mitigate them to the best of our abilities if we want to assure the validity and 

dependability of our results. 

 

5.3 Conclusion 
 

 

This research concentrated on a thorough comparison of five different graph neural 

network (GNN) architectures -the GCN, the GAT, GraphSage, GIN, and the RGGCN- for 

the important goal of detecting crypto fraud. A total of 2,230 nodes from various parts of 

the cryptocurrency ecosystem were used in our intensive experimentation and analysis. 

Several key players in the cryptocurrency ecosystem were represented in this dataset. This 

included accounts, token contracts, and exchanges. 

 

The findings obtained from the GCN architecture indicated an avarage level of 

performance, with an overall accuracy score of 0.77. In contrast, the recall and precision 

rates for fraud detection were only 0.41 and 0.93, respectively. Class Fraud received an F1 

score of 0.77, indicating that there is room for growth. In contrast, the GAT architecture 

produced significantly more accurate results, with an accuracy of 0.90. In addition to a 

higher precision of 0.67 for fraud detection, it achieved a recall rate of 0.84 and an F1-score 

of 0.75 for Fraud. These figures suggest that the GAT model's ability to recognize fraudulent 
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transactions has increased. In terms of detecting fraudulent activity, the GraphSage 

architecture demonstrated an accuracy of 0.82, precision of 0.49, recall of 0.80, and F1-

score of 0.61. In terms of detecting fraudulent activity, the GIN architecture displayed an 

accuracy of 0.83, precision of 0.52, recall of 0.74, and F1-score of 0.61. In terms of detecting 

fraudulent activity, the RGGCN architecture displayed an accuracy of 0.80, precision of 

0.46, recall of 0.84, and F1-score of 0.80. Even though it demonstrated an acceptable level 

of performance, there is still room for improvement to enhance the precision and overall 

efficacy of fraud detection. The GAT model outperformed all other architectures when both 

the macro and weighted average F1 scores were considered. Macro and weighted average 

F1 scores for the GAT model were 0.75 and 0.94, respectively. It demonstrated a healthy 

balance between precision and recall, indicating that it can detect fraudulent activity 

effectively. 

 

In considering these findings, we have determined that GNN architectures, specifically 

GAT, have the potential to detect cryptographic deception. To enhance the model's precision 

and overall performance, however, additional optimization and fine-tuning is necessary. 

Future research should center on the investigation of new techniques, such as ensemble 

methods and the incorporation of temporal information, for the purpose of enhancing the 

fraud detection capabilities of GNN architectures in the cryptocurrency space. 

 

 

 

5.4 Future Work 
 

 

Building upon the insights gained from this study, there are several avenues for further 

research to apply the findings to other specific blockchain cryptocurrency networks. The 

following future works are recommended: 

 

• Application to Ethereum Network: Ethereum is one of the most popular 

blockchain platforms, known for its smart contract capabilities. This study can 

be extended to evaluate the performance of GNN architectures, such as GAT, 

GraphSage, GIN, GCN, and RGGCN, specifically on the Ethereum network. 

By adapting the models to Ethereum's unique characteristics, including smart 
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contracts, addresses, and transaction types, the effectiveness of GNN 

architectures for fraud detection in the Ethereum ecosystem can be assessed. 

 

• Evaluation on Bitcoin Network: Bitcoin is the most well-known and widely 

used cryptocurrency. Future research can focus on applying GNN architectures 

to the Bitcoin network and assessing their performance in detecting fraudulent 

activities. This can involve analyzing the transaction graph, network topology, 

and features specific to the Bitcoin ecosystem. 

 

• Investigation of other blockchain networks: In addition to Ethereum and 

Bitcoin, there are various other blockchain networks, such as Ripple, Litecoin, 

and Cardano, each with its own characteristics and transaction patterns. Future 

works can explore the application of GNN architectures to these networks and 

investigate their effectiveness in detecting fraud within each specific 

blockchain ecosystem. 

 

• Incorporation of domain-specific features: To enhance the fraud detection 

capabilities of GNN architectures, future studies can consider incorporating 

domain-specific features relevant to different blockchain networks. These 

features can include network reputation, token properties, transaction volumes, 

and network participant behavior. By integrating such features into the GNN 

models, the performance and accuracy of fraud detection can be further 

improved. 

 

• Comparison with traditional fraud detection methods: As a comparative 

analysis, future research can compare the performance of GNN architectures 

with traditional fraud detection methods, such as rule-based systems, anomaly 

detection, or supervised learning algorithms. This would provide insights into 

the relative strengths and weaknesses of GNN approaches in detecting fraud 

within blockchain cryptocurrency networks. 

 

• Investigation of privacy-preserving techniques: Privacy is a critical concern in 
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blockchain networks. Future works can explore privacy-preserving techniques, 

such as federated learning or secure multi-party computation, to train GNN 

models on decentralized data sources while preserving the confidentiality of 

sensitive information. This would enable the application of GNN architectures 

for fraud detection in scenarios where data privacy is a primary concern. 

 

By addressing these future research directions, the study's findings can be extended 

and applied to specific blockchain cryptocurrency networks, including Ethereum, Bitcoin, 

and other prominent networks. This would contribute to the development of effective fraud 

detection systems tailored to the unique characteristics of each blockchain ecosystem. 
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