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ABSTRACT

Master's Thesis

Analysis of Wound Healing Assay Data of Phase-Contrast Optical Microscopy
Using Traditional Computer Vision and Deep Learning Techniques 

Yusuf Sait ERDEM

  İzmir Demokrasi University
    Graduate School of Natural and Applied Sciences

Electrical and Electronics Department

Supervisor: Prof. Dr. Devrim ÜNAY

Co-Supervisor: Prof. Dr. Behçet Uğur TÖREYİN
 

This thesis aims to investigate the performances of image segmentation and
image synthesis methods applied to wound healing assay data, and propose novel
solutions to improve accuracies. For segmentation, the utilization of both traditional
and deep-learning approaches is studied in various scenarios. Additionally, the thesis
addresses the challenge of limited training data commonly encountered in biomedical
research. To overcome this problem, methods for generating synthetic assay data is
explored.  The  comparative  analysis  and  demonstration  of  these  methods  are
performed over a  phase-contrast  optical  microscopy time-series dataset  of wound
healing assays. 

While  classical  computer  vision  techniques  have  been  widely  used  for
segmentation of wound healing assay images, there is a scarcity of studies focusing
on solutions  based on recently  emerged deep learning techniques.  Therefore,  this
thesis examines traditional segmentation methods in addition to the investigation of
the segmentation capability of deep learning solutions to provide improved analysis
and  quantification  of  wound  healing  assays.  Moreover,  efficient  methods  for
generating  synthetic  assay  data  are  explored  to  improve  the  segmentation
performance of deep learning methods, particularly in situations where training data
are limited which is often encountered in biomedical research.

Keywords:  Image  segmentation,  computer  vision,  deep  learning,  medical  data
synthesis, phase-contrast microscopy data, wound healing assay data analysis

2023, 47 pages
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ÖZET

Yüksek Lisans Tezi

Geleneksel Bilgisayarda Görü ve Derin Öğrenme Teknikleri Kullanılarak Faz
Kontrast Optik Mikroskopi Yara İyileşmesi Deney Verilerinin Analizi

Yusuf Sait ERDEM

İzmir Demokrasi Üniversitesi
Fen Bilimleri Enstitüsü

Elektrik - Elektronik Mühendisliği Anabilim Dalı

Danışman: Prof. Dr. Devrim ÜNAY

II. Danışman: Prof. Dr. Behçet Uğur TÖREYİN

Bu  tez,  yara  iyileşme  deneyi  verileri  için  görüntü  bölütleme  ve  görüntü
sentezleme yöntemlerinin  başarımlarını  araştırmayı  amaçlamaktadır  ve başarımları
iyileştirmek  için  yeni  yöntemler  önermektedir.  Bölütlemede,  farklı  durumlarda
kullanabilmek için, geleneksel ve derin öğrenme yaklaşımları incelenmiştir. Ayrıca,
biyomedikal  araştırmalarda  sıkça  karşılaşılan  işaretli  eğitim  verisetlerinin  sınırlı
olması  durumuna da değinilmektedir.  Bu sorunu aşmak için sentetik  deney verisi
oluşturma  yöntemleri  incelenmiştir.  Bu  yöntemlerin  karşılaştırmalı  analizi,  yara
iyileşme  deneylerinin  faz  kontrastlı  optik  mikroskopi  zaman  serisi  veriseti
kullanılarak gerçekleştirilmektedir.

Klasik  bilgisayarlı  görme  teknikleri,  yara  iyileşme  deneyi  görüntülerinin
bölütlenmesinde  yaygın  bir  şekilde  kullanılmaktadır.  Ancak  bu  alanda,  son
zamanlarda  yaygınlaşan  derin  öğrenme  tekniklerine  dayalı  çalışmaların  eksikliği
bulunmaktadır. Bu nedenle bu tez, yara iyileşmesi deneylerinin daha hassas analizi
ve  nicelleştirilmesi  için  geleneksel  bölütleme yöntemlerini  incelemenin  yanı  sıra,
derin  öğrenme  çözümlerinin  bölütleme  yeteneklerini  de  araştırmaktadır.  Ayrıca,
biyomedikal çalışmalarda sıkça karşılaşılan eğitim verisin sınırlı olması durumunda,
derin öğrenme yöntemlerinin bölütleme performansını iyileştirmek için etkili sentetik
deney verisi oluşturma yöntemleri de araştırılmıştır.

Anahtar Kelimeler:  Görüntü bölütleme, bilgisayarlı görü, derin öğrenme, medikal
veri sentezi, faz-kontrast miksorkopi verisi, yara iyileşmesi veri analizi
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1.  INTRODUCTION

Wound healing assays are essential tools in biomedical research, providing

valuable  data  for  understanding  the  complex  process  of  cell  migration.  Accurate

analysis and quantification of wound healing assays is important in research topics

such as the study of cellular responses to various stimulus, understanding the cell-to-

cell interactions, and exploration of cell migration mechanisms.

 Imaging techniques, such as phase-contrast or fluorescent microscopy, are

employed for acquiring data from wound healing assays. Among these techniques,

phase-contrast imaging is preferable for being less harmful, making it more suitable

for studying living specimens. However, accurately segmenting objects of interest

from phase-contrast microscopy images can be challenging due to less highlighted

boundaries of the subjects.

Advancements  in  automated  microscopy  techniques  has  greatly  helped  in

generating  large  amounts  of  data  efficiently  from  wound  healing  experiments.

However,  manual  segmentation  of  this  large  amount  of  data  is  laborious,  time-

consuming, and affected by subjective style variation, leading to inconsistent results.

As a result, automated segmentation techniques have gained popularity as they offer

more efficient and reliable solutions for analyzing wound healing data.

The literature on segmentation of wound healing assays can be categorized

into two main  approaches:  traditional  methods and deep learning-based methods.

Traditional  methods have the advantage of not requiring excessive computational

resources or long computation times. However, they usually require parameter to be

tuned manually and thus they are more difficult to generalize for different conditions.

In contrast, the recently emerged deep learning methods achieve higher accuracies

and they are better at generalization in segmentation tasks. However, they require

significant  computational  power  (or  longer  processing  times)  and  a  substantial

amount  of  annotated  data  for  training.  Advantages  and  disadvantages  of  both

approaches in terms of performance and resource requirements need to be considered

when selecting the appropriate method for the task at hand.
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In this thesis, traditional and deep learning based segmentation methods for

wound healing assay data are studied, and novel solutions are proposed to achieve

improved performance. In addition to the investigation of wound healing assay data

segmentation methods, the challenge of limited training data is also addressed which

is  commonly  encountered  in  biomedical  research.  To  overcome  this  difficulty,

methods for generating synthetic assay data are explored, compared and showcased

using  a  wound  healing  assay  time-series  dataset  of  phase-contrast  optical

microscopy.
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2.  GENERAL INFORMATION / RELEVANT LITERATURE

2.1. Wound Healing Assay

Wound  healing  assays  provide  information  about  mechanisms  governing

collective cell migration which is essential for analysis of biological topics such as

immune  system  activation,  growth  of  the  tumor,  and  metastasis  as  well  as

embodiment of tissues.  As a result, this technique stands as a fundamental method

for molecular biologists. 

In typical procedure of wound healing assays, the confluent monolayer of the

subject cells is scratched to produce open wound area. Then, the cells are observed

while they migrate to close the gap [1, 2]. The process of the cells closing the wound

area can be observed via various methods. Two popular solutions that are utilized are

time-lapse  imaging  with  phase-contrast  microscopy  (PCM)  and  fluorescence

microscopy.  In  fluorescence  microscopy,  cellular  structures  are  highlighted  by

labeling  with  fluorescent  stains.  On the  other  hand,  this  labeling  procedure  may

change behavior of the subject cell or harm the cells due to electromagnetic radiation

[3, 4]. In contrast, in PCM light is used to observe cellular structures without using

staining/labeling on the specimen, thus it constitutes a safer alternative.

2.2. Semantic Segmentation

For  the  analysis  of  PCM  images  of  wound  healing  assays,  accurate

segmentation of the wound front is  a necessity.  Manual annotation of the wound

front may be inconvenient since it is time-consuming and annotator-dependent. Thus

automated, fast, and robust segmentation solutions are needed. 

In  literature,  methods  frequently  utilized  for  cell  segmentation  in  PCM

images can be grouped into two as traditional image processing based approaches

and methods based on deep-learning. While the deep-learning methods require plenty

of  training  data  together  with  excessive  amount  of  computational  resources,  the

traditional  methods  may  require  careful  tuning  of  some  parameters  for  accurate

segmentation of the cells.
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2.2.1. Traditional Approaches

For  the  segmentation  of  wound healing  assays,  there  are  some frequently

employed methods by biomedical researchers such as Cell Image Velocimetry (CIV)

[5] and MRI Wound Healing Tool macro which is an ImageJ macro [6]. To achieve

a precise segmentation result  when using the CIV segmentation method, the user

should set parameters such the kernel size, the local contrast normalization radius,

and local and global filtering thresholds. In the MRI Wound Healing Tool plugin,

users  should  not  only  select  their  preferred  technique  but  also  fine-tune  the

parameters such as the radius of the structuring element utilized in the morphological

opening, and the minimum wound size. 

To segment  wound healing assay data, in TScratch wound analysis tool by

Gebäck - Tobias et al.,  curvelet  transformation with morphological operations are

combined [7]. First, a curvelet magnitude image is created by using two scale-levels

and  morphological  opening  operation  is  applied.  The  scale-level  parameters  are

automatically found or can be tuned for making the margins of the wound apparent.

Then, two peak areas on the curvelet histogram are assumed to be true edges, while

the rest are  discarded as noise edges. Further morphological operations applied for

improving the resulting segmentation image.

In another method for analysis of wound healing assays, Matsubayashi et al.'s

‘White wave’ method [8] offers a different approach by analyzing the wound closure

in place of direct frontier distance calculations for analysis of wound healing assays.

Histogram of the vertical average pixel intensity difference values  is generated  for

consecutive frames. Then the positions of the edges of the wound are identified by

the horizontal (x) coordinates of two histogram average intensity values that peaked.

According to Matsubayashi et al., the use of average value for wound fronts is more

reliable and carries more information than direct frontier distances. 

There are various other methods proposed in the literature for segmentation of

the wound healing assays involving morphological operations additional to various

traditional computer vision techniques such as entropy filtering,  variance filtering,

and contrast enhancement and adaptive binarization [9 – 12].

4



Under certain circumstances, these methods are effective, but they rely on a

multitude of critical parameters including the kernel size [10, 11, 13], saturation rate

[9, 10], scale-level  [7], and kernel average percentage threshold [13]. Requirement

of human interaction to choose the suitable parameter set to obtain a decent level of

precision  and  consistency  under  variety  of  settings,  makes  these  methods

cumbersome to apply in practice.

2.2.2. Deep-Learning

In  addition  to  traditional  computer  vision  techniques,  deep-learning  based

methods are also used for the segmentation of wound healing assays, which have

emerged as a powerful and versatile tool for deriving meaningful information from

complex and imprecise data. Deep learning methods have higher accuracy compared

to traditional methods in various problems, but they require a significant amount of

(accurately annotated) training data and computational resources. However, since the

analysis  of  wound  healing  images  does  not  require  real-time  processing,  deep

learning  methods  are  efficient  in  such  applications  when  a  sufficient  amount  of

training data is available.

Ronneberger  et  al.  introduced  U-Net  and  demonstrated  its  efficacy  by

applying it to the task of segmenting individual cells in phase-contrast microscopy

images.  The  architecture  of  U-Net  illustrated  in  Figure  2.2.2.1.  consists  of  a

contracting path and an an expanding path. The contracting path has a number of

blocks  with  3x3  convolutions,  followed  by  rectified  linear  activation  unit

(ReLU) and 2x2 max pooling. The number of channels is doubled while the size of

the feature maps is reduced by half at each step. In the expanding path, while the

feature map sizes are doubled with up-sampling operation, a 2x2 convolution halves

the number of channels. Then concatenation with corresponding feature maps from

the contracting path, and two 3x3 convolutions with ReLU activation are applied at

each step.
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Figure 2.2.2.1.   Structure of the U-Net model (adapted from [Ronneberger et al.,

2015]).

Mahmud et al.  [14] utilized a shallow U-Net with only 1 encoding and 1

decoding  steps  for  blood  pressure  prediction  from  photoplethysmogram  and

electrocardiogram signals. Through a more lightweight version of the U-Net model,

they were able to achieve superior performance compared to a majority of existing

approaches in a more resource-efficient manner.

 Vaswani et al. [15] introduced “attention” mechanism in neural networks.

The attention mechanism allows the neural network to focus more on the relevant

parts of the input data, while reducing signal activation on irrelevant parts which is

expected  to  enhance  the  efficiency  of  the  model.  Oktay  et  al.  [16]  applied  this

methodology  on  a  U-Net  and  demonstrated  its  efficacy  on  biomedical  image

segmentation.

The U-Net model is also employed for the segmentation of wound healing

assay images [17]–[19]. Mayalı et al. [17] utilized the U-Net model for segmentation
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of collective cell regions in phase-contrast images of wound healing assays for the

first  time.  Javer  et  al.  [18]  and  Oldenburg  et  al.  [19]  also  utilized  U-Net  for

segmentation of wound healing images.  Different from Mayalı et al., in the latter

two methods the cells are segmented individually and morphological operations are

applied after for obtaining cell cluster regions from fluorescence microscopy images.

2.3. Deep-Learning for Data Generation

Deep learning-based methods have gained great  success  and popularity  in

many  image  processing  tasks  such  as  object  detection  [20],  classification  [21],

segmentation [22], and depth-estimation [23]. The availability and diversity of large

amounts of annotated training data are one of the determinants of the effectiveness of

deep learning methods. However, in medical-related tasks the shortage of such data

is  commonplace  due  to  issues  associated  with  data  sharing,  variation  in  data

acquisition methods, and the requirement of expert knowledge when it comes to data

annotation.  Data  augmentation  by  creating  slightly  modified  copies  of  already

existing data or by generating new synthetic data from existing data is a solution

when there is a lack of sufficient  training data.  The former is the most preferred

approach  as  it  is  easy  to  apply,  but  such  small  modifications  may  bring  little

additional information. To the contrary, the latter is a more sophisticated approach

that  may generate  semantically  more meaningful  examples  and thus  enable  more

variability and richness in the training dataset [24].

Realistic synthesis of artificial data has become widespread in many fields

[25]–[27] especially by the introduction of Generative Adversarial Networks (GANs)

by Goodfellow et  al.  [28].  In  GANs,  outputs  of  the  synthetic  data  generator  are

evaluated  by  another  deep  neural  network.  This  discriminator  network  is  trained

together with the generative network to learn if the given input is real or artificially

generated  by comparing  the outputs  of the generative  network and the real  data.

While  the generative  network learns  to  generate  more realistic  data  via  feedback

from the discriminator network, the discriminator learns to distinguish generated data

from the real one.

Isola et al.  [26] introduced an image-to-image translation method, Pix2pix,

utilizing a conditional GAN (C-GAN), where an additional constraint on the input is
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used in both the generation and discrimination steps of a GAN model. They used a

U-Net  [29]  based  structure  for  the  generator  and  PatchGAN  [30]  for  the

discriminator  of  the  C-GAN  model.  In  addition  to  the  discriminator’s  objective

function in the C-GAN, L1 distance between the generated data and the real input is

utilized  as an additional  term in the C-GAN loss  function.  Finally,  to  synthesize

images in a more stochastic manner, dropout operations were applied on some layers

of the generator network. The authors stated that, this strategy made little impact and

applying noise in the input directly had even less of an impact on the output. 

Karras et al.  [31] proposed a novel generator architecture using GANs for

data generation. In this method, they utilized a GAN model by inserting noise input

into  feature  layers  together  with  learned  special  scaling  factors  to  improve

stochasticity.  They  also  used  AdaIN layers,  initially  employed  in  Huang  et  al.'s

Neural Style Transfer (NST)  method [32], in each feature layer.

In an NST framework, the input comprises of a content image and a style

image. The NST method aims to combine the style input’s low-level features with

the  high-level  semantic  features  of  the  content  input  using  an  artificial  neural

network.  It  was  initially  proposed  for  artistic  style  transfer  [32],  [33],  but  then

utilized for other image processing tasks such as source adoption [34], [35], and data

augmentation [36]–[40]. Mikołajczyk et al. [40] utilized NST for transferring styles

of different kinds of skin lesion images. Cicalese et al. [37] adopted a similar method

for histopathology images. Zheng et al. [38] and Jackson et al. [39] both introduced

data augmentation with style transfer at the same time. They both used style transfer

for augmenting arbitrary object images using chosen style images. Jackson et al. [39]

further utilized style embedding instead of a style image input. Likewise, Yamashita

et al. [36] utilized NST for augmenting histopathology images using various images

from different domains as style inputs.

Deep learning has also been utilized for synthesizing time-lapse microscopy

images before.  These solutions are validated on two popular microscopy imaging

techniques that allow time-lapse acquisition; phase-contrast microscopy (PCM) and

fluorescence microscopy. Theagarajan et al. [41] synthesized PCM images of single

cells and confined cell clusters in different classes unconditionally using GAN. Bailo
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et al. [42] generated bright-field microscopy images of blood cell clusters by first

generating locations for each cell. They modeled the distribution of the cells in the

cell  clusters  by  considering  cell  adhesion  via  a  mathematical  formula,  then

synthesized realistic cell images utilizing a Pix2pixHD [43] model, which is a C-

GAN method. Fu et al. applied a similar procedure before, by randomly generating

ellipses as spatial constraints for the generation of 3D biological structures, captured

by fluorescence microscopy [44]. They proposed a spatially constrained CycleGAN

model  for  the  final  image  synthesis  step  by  modifying  the  CycleGAN structure.

While  Goldsborough  et  al.  [45]  utilized  GANs  for  the  synthesis  of  fluorescent

microscopy images  of  single  cells,  Baniukiewicz  et  al.  [46] adopted C-GANs by

using manual segmentation masks as spatial constraints for a similar task.

We conducted an attribute-based comparison of various prominent methods

applied to PCM data generation as shown in Table 2.2.3.1, to point out the novelty of

our method.

Table  2.2.3.1. Attribute-based  comparison  of  prominent  methods  and  the

proposed method.

    

The contributions  of  this  study are as follows. We utilized  an NST-based

method different from the existing solutions proposed for data generation, as shown

in Table 3.2.2.1, since GANs have more complex structures and are difficult to train

due to adversarial training [25], [28], [47]. Furthermore we have used a patch-based
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training method in order to process images in higher resolution with limited memory,

benefiting from the nature of the cell clusters that are atomic only in small regions.

Also, we provided noise input to the network for increasing the stochasticity in the

generated data.

Wound  healing  assays  provide  valuable  information  for  biomedical

researchers. Classical computer vision techniques can be employed for segmentation

of the assay images which is utilized for simpler and reliable analysis of the wound

healing assays. Although there are some studies focused on automated analysis of

wound  healing  assay  time-series  images  by  using  classical  image  processing

techniques, solutions based on the recent and emerging deep learning techniques are

scarce.  Accordingly,  the  purpose  of  this  thesis  is  to  examine  the  segmentation

capability of such solutions toward improved precision on analysis and quantification

of wound healing assays from phase-contrast optical microscopy time-series images.

Additionally, it seeks to investigate efficient ways of generating synthetic assay data

for  contributing  to  the  segmentation  performance  of  deep  learning  methods  in

situations where there is a scarcity of training data and computational resources. 
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3. MATERIALS AND METHODS

3.1. Wound Healing Assay Data

Wound healing  assays  are  conducted  for  the  acquisition  of  phase-contrast

time-lapse images. Breast cancer cell line MCF7 ( 7.5×105 cells per well) and normal

breast cell line MCF10A (1×106 cells per well) were seeded on 12-well plates. 24

hours after the seeding, when they reached to confluency, the cells were treated with

10μg/ml mitomycin C for two hours, to prevent proliferation.  Then, mitomycin C

containing  medium  was  replaced  with  serum-free  medium  and  the  scratch  was

introduced with a 10μl pipette tip. The cells were placed in the incubation chamber

and observed with Leica DMI8 confocal microscope for two days at 37°C with 5%

CO2. The phase contrast images of three positions per well were captured once every

hour.

In total, in this study 328 images from 14 wound healing assays were used.

The  images  are  stored  in  8-Bit,  grayscale,  TIFF  format  with  1920×1440  pixel

resolution. Some samples from the dataset are depicted in Figure 3.1.1.

Figure 3.1.1.  Sample images from the phase-contrast wound healing assay

dataset where the boundaries of the wound fronts manually segmented by experts are

overlaid  in  red.  The  images  are  sampled  from different  time-lapse  imaging  sets

(assays) in the dataset, indicated by A, B, C, and D. Samples correspond to the start

and end frames of each assay.
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The wound healing assay images were manually annotated using the ImageJ

[6]  manual  annotation  and  Supervisely  [48]  online  annotation  tools  under  the

guidance  of  field  experts.  The  acquired  assay  images  and  annotation  masks  are

1920×1440 pixels in size. The annotations correspond to the frames starting from the

time-point where cell adhesion is realized until the wound closure is completed in

each time-lapse microscopy image of every wound healing assay.

All models are trained and tested on a laptop with an NVIDIA GeForce GTX

1650 GPU with 4GBs of GPU memory.

3.2. Methods

3.2.1. Semantic Segmentation

Semantic image segmentation refers to the process of dividing an image into

regions or segments for content analysis which is a fundamental task in computer

vision. This process identifies boundaries around regions of interest, enabling further

analysis  and  manipulation  of  visual  content.  Segmented  images  allow  computer

vision systems to extract specific objects, features, or regions which is a crucial step

for analysis of the content data. In this thesis, two methods are proposed for the two

primary  approaches  to  semantic  segmentation  of  wound  healing  assay  images:

traditional computer vision and deep-learning.

3.2.1.1. Traditional Computer Vision Method

In this section, a new method based on traditional computer vision techniques

is  described  for  segmentation  of  wound fronts  in  the  wound healing  assays.  By

employing  a  combination  of  well-established  traditional  computer  vision-based

operations, such as variance filtering and morphological operations, the method aims

to achieve accurate and reliable segmentation results. The flowchart of the method is

demonstrated in the Figure 3.2.1.1.1.
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Figure  3.2.1.1.1. Flowchart  of  the  proposed  wound  healing  assay  data

segmentation method based on traditional computer vision approach.

For  segmentation  of  the  wound  healing  assay  images,  at  first,  variance

filtering  is  applied  on  the  gray-scale  images  of  wound  healing  assays.  Then,

Gaussian smoothing operation is applied using a kernel with a predetermined kernel

size  of  25×25.  The  determination  of  the  kernel  size  parameter  is  based  on  the

approximate  pixel  length  of  a  cell  in  the  input  image.  The  resulting  image  is

13



binarized by taking negative values as zeros and positive values as ones. In order to

remove  small,  occupied  regions  a  dilation  operation  is  applied  followed  by  an

erosion operation. The resulting image includes empty wound regions as zeros and

occupied cell regions as ones. Later, small regions touching to the edges of the frame

are eliminated as in the method of Zordan et al. [9]. For the first frame of the wound

healing assay time series, all regions are considered as cell regions except for the

largest wound region. For the subsequent frames, the remaining zero regions are not

explicitly  labeled  as  wound regions,  but  they  are  considered  as  potential  wound

regions. 

In the binary image, for determination of the small regions as wound region

or not,  temporal  information  is  taken into account.  The zero regions  are  initially

sorted based on their sizes. A  shrinkage rate is calculated by dividing the biggest

empty region in the current frame to the biggest empty region of the previous frame.

The current biggest empty area is multiplied by the shrinkage rate. If a region in the

subsequent frames has a size larger than this calculated area, it is considered as a

wound region candidate.  These  candidate  regions  are  assigned as  wound regions

starting from the biggest to smallest.  Candidate regions are no longer assigned as

wound regions if the total wound region exceeds the previous total wound region.

This step is applied by considering that, in a wound healing assay the wound region

shrinks over time.

3.2.1.2. Deep-Learning Method

The U-Net convolutional neural network is a well-known and precise method

for  segmenting  medical  images,  and  therefore  it  is  applicable  for  accurate

segmentation  of  phase-contrast  microscopy  wound  healing  assay  data.  However,

when dealing with large inputs (for example 1024×1024 or higher sized images), the

computational  requirements  of the U-Net structure increases exponentially.  While

several  approaches  have  been  developed  to  utilize  U-Net  models  with  limited

resources,  such  as  down-sampling  or  tiling  the  input  data,  these  methods  may

decrease the accuracy of the results  or  be impractical  for  data  with large  atomic

characteristics,  like  wound  healing  assay  images.  In  this  study,  a  low-cost  and

accurate segmentation method for high-resolution wound healing assay time-series
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images is examined by utilizing a shallow U-Net structure with a high-resolution

input as depicted in the Figure 3.2.1.2.1.

Figure  3.2.1.2.1. Structures  of  the  original  U-Net  model  (top)  and  the

proposed shallower U-Net model (bottom) where the size of the generated feature

maps are increased by decreasing the number them in each layer.

To  address  the  challenge  of  training  with  high-resolution  images  under

resource constraints, some modifications were introduced to the U-Net architecture

similar to Mahmud et al. [14], who used a single-level U-Net structure for resource

efficiency. However, unlike Mahmud et al.’s method in this study the sizes of the

feature  maps  are  augmented  while  simultaneously  decreasing  the  number  of

generated  feature  maps  to  maintain  optimal  memory  usage  instead  of  decreasing

encoding and decoding steps to one. The number of convolutional layers is further

reduced to minimize the number of feature maps as shown in the Figure 3.2.1.2.1.
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These modifications enabled to enhance the resolution of the inputs and outputs of

the segmentation model from 256×256 pixels to 512×512 pixels.

3.2.1.3. Metrics

To  evaluate  the  segmentation  accuracy  achieved  by  the  methods  under

investigation, the Dice coefficient is employed. It is calculated as follows:

DiceScore ( RPred , RGT )=
2 ∗|RPred ∩ RGT|

|RPred|+|RGT|
(1)

where RPred represents the predicted pixel regions and RGT refers to the ground truth

regions.

As part of the quantification process, in addition to the proportion of the open

wound  region's  area,  the  extent  of  wound  closure  during  the  experiment  is

determined by the Mean Surface Distance which is calculated for the detected wound

surfaces at each frame. The Mean Surface Distance measures the average distance

between two surfaces by taking the minimum distances across surfaces into account

as given below:

MSD ( Surf 1 , Surf 2 )=
1

N Surf 1+NSurf 2
(∑

i=1

N Surf 1

|d i
Surf 1→ Surf 2|+∑

i=1

NSurf 2

|d i
Surf 2→ Surf 1|) (2)

where Surf1 and Surf2 represent the surfaces of the opposing wound regions, NSurf1

and NSurf2 denote the point counts of the surfaces, and  d represents the Euclidean

pixel distances in 2D.

An MSD-based wound front distance measurement  method is proposed to

quantify wound healing assay time-series images.  Two opposite wound fronts are

detected to measure MSD in between them. At first, a rotated bounding box is fitted

into each wound region. A mid-line is drawn towards the longitude of the bounding

box and two tip points of the lines are taken. Then the wound surface is separated
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into from two points on the surface line where they are closest points to the taken

points from the previous step as shown in the Figure 3.2.1.3.1.

Figure 3.2.1.3.1. Images depicting the determination of the two wound front

lines by the proposed algorithm on two frames corresponding to different timepoints.

The MSD (2) is calculated based on the extracted two wound fronts as depicted on

the left part of the Figure 3.2.1.3.2. A graph of MSD-based wound front distance

measures calculated across a complete wound healing assay (full time series data) are

given in the right side of the Figure 3.2.1.3.2.
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Figure 3.2.1.3.2. Left: Image for depicting the minimum cross distances used

in  Mean  Surface  Distance  (MSD)  calculation.  Right: MSD-based  wound  front

distance measures of a wound healing assay. 

3.2.2. Data Generation

Studies for image synthesis, for applications such as data augmentation and

realistic data generation, have recently made rapid progress with the breakthroughs

of the Neural Style Transfer (NST) method and Generative Adversarial  Networks

(GANs). GAN-based methods have gained considerable attention for their ability to

generate  realistic  and high-quality  synthetic  data  by learning the  underlying  data

distribution. While GANs have been used for both data augmentation and generation,

the NST was not used for data generation tasks. On the other hand, the NST method

has a simpler structure than GANs. 

In this thesis, a novel NST-based approach for data generation alongside a

novel method utilizing well  established C-GAN-based approach are proposed and

their  synthesis  capabilities  for  our  specific  problem are  explored.  Moreover,  the

performance of the NST method has been compared to that of a modified and fine-

tuned  conditional  GAN  (C-GAN).  These  methods  have  been  applied  to  the

conditional generation of phase-contrast microscopy wound healing assay time-series

images. Binary segmentation maps representing the cell and wound regions are given

as conditional inputs. Quantitative and qualitative results showed that our proposed

NST-based  data  generation  not  only  outperforms  the  modified  C-GAN  but  also

requires less resources. Furthermore, when utilized as a data augmentation method, it
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has been demonstrated  that  the  novel  NST-based method improves  segmentation

performance.

3.2.2.1. Conditional GAN-Based Data Generation Method

To synthesize PCM images of wound healing assays, Isola et al.'s C-GAN

model [26] is adopted as shown in Figure 3.2.2.1.1. The assay images were fed in as

real inputs while the corresponding manually annotated segmentation masks served

as the conditional inputs. We modified the architecture by replacing the L1-norm

objective  function  with  the  mean  of  the  Structural  Dissimilarity  Index  Measure

(DSSIM) and the L1-norm.

Figure 3.2.2.1.1.  Overview of the C-GAN model developed for synthesizing

phase-contrast microscopy images of wound healing assays.

The  DSSIM  measure  was  derived  from  the  Structural  Similarity  Index

Measure (SSIM) which computes the perceptual dissimilarity between two images

by comparing their structural information [49]. The SSIM has previously been used

as an additional  loss term for training other GAN-based data  generation methods

[50]–[52]. The formulas of the SSIM and DSSIM are as given below:
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DSSIM term is added as a supplementary loss function (SLF) together with

L1-norm  as  the  objective  function  of  the  C-GAN  model  to  better  preserve  the

structural  features.  The  supplementary  loss  value  is  calculated  by  averaging  the

DSSIM and L1 loss values which are normalized between 0 and 1.

3.2.2.2. Neural Style Transfer Method

After the feed-forward NST method is proposed by Huang et al. as shown in

Figure 3.2.2.2.1, style transfer became available without a separate training process

for  each  input  at  inference.  Additionally,  the  Adaptive  Instance  Normalization

(AdaIN) layer aided the efficient transfer of feature statistics to the content input

[32].
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Figure  3.2.2.2.1. Overview  of  Huang  et  al.'s  feed-forward  neural  style

transfer model.

In  this  study,  a  novel  high-resolution,  low-cost  data  generation  method  is

developed  by  utilizing  NST  for  synthesizing  phase-contrast  microscopy  wound

healing assay data. The NST model takes a binary mask, which indicates the wound

regions,  as  input.  The  content  and  style  inputs  were  represented  by  the  regions

occupied by cell clusters and a real wound healing assay image respectively. Random

noise  was  added  directly  to  the  content  input.  The  outputs  generated  are  high-

resolution even under resource constraints thanks to patch-based training, the high-

resolution inference process, and the simpler structure of the feed-forward NSTs as

compared to GANs. Two separate models were trained for wound and cell regions to

improve the quality of the results further.

3.2.2.2.1. Training Based on Patches

In the proposed method, while the feed-forward neural style transfer model

was trained using patches of the image, during inference the trained model was used

for generating the entire image at once as shown in  Figure 3.2.2.2.1.1. In a similar

manner,  Huang et  al.  trained the NST model  using smaller  patches  and obtained

higher resolution outputs. We modified this approach to obtain even higher quality
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results for synthetic data generation. In Huang et al.’s method, input images were

first resized by making the shortest dimension 512 pixels and keeping the aspect ratio

of the original input images same. Then, random patches of 256×256 pixel resolution

were used in the training step and 512×512 pixel resolution images were generated at

inference [32]. In this study, on the other hand, we maintained a high quality input, at

a pixel resolution of 1920×1440 pixels, then patches of 512×512 pixels were used in

the training phase. The resulting outputs were at 1920×1440-pixel resolution. The

amount of memory required for inference was lower than that used in the training

phase since there were no additional gradient calculations. This enabled processing

of larger inputs at inference. It is worth noting that since the neural network model is

fully convolutional, the input resolution may differ at training and inference times.

 

Figure 3.2.2.2.1.1. Overview of the patch-based style transfer method. The

diagram above illustrates the patch training procedure. The diagram below shows the

inference procedure yielding high resolution outputs via the trained model.
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Processing the entire image at once at inference while training with patches

enables  achieving  a  higher  accuracy  despite  limited  memory.  This  approach

concentrates the learning capability of the network to learn the visible local patterns

within  a  patch  at  the  cost  of  losing  structural  information  at  higher  scales.

Nevertheless, in images of cell groups there is not much structural pattern on a large-

scale. Moreover, the integrity between patches is supplied by generating the image as

a whole in the generation step. A visual comparison is given in Figure 3.2.2.2.1.2.

Figure 3.2.2.2.1.2. Visual comparison of with and without using patch-based

training.  (a)  Synthesized  image  without  using  patch-based  training.  The  output

resolution is 512×512 pixels. (b) Synthesized image by using patch-based training

and full resolution inference. The output resolution is 1920×1440 pixels.

3.2.2.2.2. Spatial Condition Input

Gatys et al. first introduced spatial control in NST [33]. Furthermore, Huang

et al. utilized spatial control in a feed-forward NST model for the first time [32] by

integrating a spatial control mask into the input. The spatial control mask is a binary

image  where  the  regions  to  be  stylized  are  indicated  with  1s,  while  0s  indicate

regions that should not be affected. However, in the proposed method, rather than

using  a  single  model  for  style  transfer  with  binary  spatial  control,  two  separate

models were trained and used with binary content images of wound healing assays.
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For generating the wound healing assay images, one model was trained to generate

the empty regions (i.e. wound areas) while the second model was trained to generate

regions  occupied  by  cell  clusters.  The  wound  healing  assay  images  could  be

generated by a single model as well. However, our experiments showed that using

separate models to simplify the task improved the results. Furthermore, generating

wound and cell regions separately allows using different style combinations, which

improves the diversity of the results. The style inputs were masked using manual

segmentation  maps  while  training  the  respective  models  as  shown  in  Figure

3.2.2.2.2.1.

Figure  3.2.2.2.2.1.  Diagram  of  the  proposed  NST-based  data  synthesis

method with spatial  control.  The style input image is masked for wound and cell

cluster regions separately. The segmentation mask is used for masking the wound

regions and the inverse of the mask is used for masking the cell cluster regions. For

generating the cell cluster regions or wound regions; respective style mask, target

mask  and  model  is  used.  After  cell  cluster  regions  and  the  wound  regions  are

generated, they are combined to give the final output.
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3.2.2.2.3. Noise Input

In contrast  to Huang et  al.'s  method,  and to  increase the variations  in the

resulting wound healing assay images,  random noise was added to the respective

regions  in  the  content  image.  Karras  et  al.  utilized  a  similar  idea  for  stochastic

variation in data generation using GANs. Specifically,  the authors input Gaussian

noise at different layers of their network [31].
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4. RESEARCH FINDINGS AND DISCUSSIONS

4.1. Semantic Segmentation Results

4.1.1. Traditional Approach Results

Figure  4.1.1.  showcases performances  of the classical  methods for  wound

healing assay image segmentation utilizing dice coefficient score metric. The results

show  that  the  novel  classical  wound  healing  assay  image  segmentation  method

outperforms the existing methods in almost  every frame and in the average Dice

coefficient  scores acquired from the two wound healing  assay data  from the  test

dataset.

Figure  4.1.1.  Figure  of  comparison  between  the  classical  wound  healing

assay segmentation methods and sample images from the applied test dataset. The

graphs  at  the  top  include  Dice  coefficient  scores  of  the  classical  segmentation

methods.  The  images  at  the  bottom  illustrate  original  frames,  ground  truth

segmentation masks and segmentation outputs of our classical segmentation method

sampled throughout from two wound healing assays.
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4.1.2. Deep-Learning Results

The  Figure  4.1.2.1.  shows  exemplary  results  obtained  by  utilizing  the

standard  U-Net  and  shallow  U-Net  models  with  512×512  and  1024×1024  pixel

resolutions.  The obtained segmentation maps are overlayed with the ground truth

maps where the gray-scale pixels show true positive cell regions, cyan pixels show

true positive wound regions, yellow pixels show false positive wound regions, and

magenta pixels show false positive cell regions.

Figure 4.1.2.1. Sample results from the test dataset by the standard (left-most

three  columns)  and shallow U-Net  models.  The  segmentation  maps  obtained  are

overlayed with the ground truth maps, where grayscale pixels represent true positive

cell  regions,  cyan  pixels  represent  true  positive  wound  regions,  yellow  pixels

represent false positive wound regions, and magenta pixels represent false positive

cell regions.

Table 4.1.2.1 presents quantitative comparison of shallow and high-resolution

U-Net with standard U-Net models by surface-based and region-based metrics. These

results  depict  that  our  proposed  shallow U-Net  with  1024×1024  pixel  resolution

achieves the best performance in both surface-based and region-based metrics.
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Table 4.1.2.1. Quantitative comparison between standard U-Net model and

shallow  and  high-resolution  U-Net  models  using  surface-based  and  region-based

metrics on test dataset.

Resizing operations are applied in the decoding side of the U-Net structure,

after encoding part. Table 4.1.2.2. shows the impact of replacing these resizing layers

with up convolution layers on wound healing segmentation problem.

Table  4.1.2.2. Comparison  table  between  application  of  resizing  and  up-

convolution  operations  in  the U-Net  based segmentation  method by surface-  and

pixel-based metrics. 

Results in the Table 4.1.2.2. show that there is no significant improvement

obtained by replacing the resize operations with up-convolution operations during
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the decoding phase in the U-Net model. Furthermore, up-convolution layer requires

more computational resource as compared to the resizing operation.

4.2. Data Generation Results

4.2.1. Quantitative Evaluation Metrics

In this study, SSIM, Multiscale structural similarity (MS-SSIM), and Peak

Signal-to-Noise  Ratio  (PSNR)  metrics  were  used  for  quantitative  assessment  of

image  synthesis  via  ablation  studies,  and  Fréchet  inception  distance  (FID)  [53]

metric was used for more delicate quality comparison of the generated images which

aims to quantify how humans perceive the quality of a given set of images.

    

MS-SSIM is a multi-scaled version of the SSIM metric, where the SSIM is

calculated for the image at different resolutions. In this paper, the original image was

half-sampled 4 times, the SSIM was calculated for each resolution, and the average is

reported.

    

PSNR is a well-known metric used for measuring the quality of images in

many  image-processing  applications  when  there  is  a  ground-truth  image  to  be

compared. It is computed as shown below: 

where Y and Ŷ denote the true and generated images, respectively.  

    

To quantify the perceived quality of the generated images, the FID was used.

The FID metric, which was initially developed for real object images, has also been

used to assess medical  data [54], [55]. It  was developed to compare distances of

“perceptual”   distributions  between  two  datasets.  To  calculate  the  perceptual

distance, high level semantic feature maps are generated by a pre-trained Inception

neural network model.
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The Inception-V3 model  used  as  feature  extractor  for  FID was originally

trained with images of size 299×299 pixels [56]. However, since the Inception model

is a fully convolutional neural network, the FID score can be calculated for images

with  different  resolutions.  In  our  study,  the  FID  score  was  calculated  for  high

resolution images since one advantage of the NST-based data generation method is

its  high-resolution  output.  However,  FID  score  for  standard  resolution  is  also

calculated according to convention.  Bicubic interpolation was used in the resizing

operation. The FID metric is calculated by down-scaling images to 299×299-pixel

resolution unless a different resolution is explicitly denoted in this paper.

4.2.2. Ablation Studies

The performance metrics presented in ablation studies were calculated on the

test set.  The entire wound healing dataset was randomly partitioned into 80% for

training and 20% for testing.

    

We tested the effect of DSSIM loss term on the performance of the C-GAN.

The PSNRs of the generated results to the ground truth images were used to compare

the L1 and L1-DSSIM supplementary loss functions (SLFs).

    

Table 4.2.2.1 shows average PSNR values calculated over 44 test frames of 2

different  assays  from our  dataset.  Figure  4.2.2.1  also  shows  sample  synthesized

images with the corresponding PSNR values of the generated images comparing L1

and L1-DSSIM SLFs in the C-GAN’s objective function.

Table 4.2.2.1. Average PSNR values derived from generated images from the

C-GAN models trained by using L1 and L1-DSSIM supplementary loss functions

(SLFs) separately. 44 images were generated by using mask images from our test-set.

Each model is trained for 1000 epochs.

30



Figure 4.2.2.1. Comparison between L1 and L1-DSSIM supplementary loss

functions (SLFs) used in C-GAN model training.  Each model is trained for 1000

epochs.

The  average  PSNR  values  in  Table  4.2.2.1  and  the  sample  synthesized

images in Figure 4.2.2.1 show that,  using average of L1 and DSSIM as the SLF

improves realistic details and reduces visible repetitive artifacts. The increase in the

PSNR values supports that using DSSIM together with the L1 distance loss function

results in better synthesis.

Table  4.2.2.2  shows  the  performance  comparison  of  synthesizing  wound

healing assay images with the proposed NST-based method by using a single model
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for  the  whole  image  vs.  two separate  models  for  cell  cluster  and empty  wound

regions via the SSIM, MS-SSIM, and PSNR metrics.

Table 4.2.2.2. Comparison of single and multiple models for generating the

cell cluster and the empty wound regions

Table  4.2.2.3  presents  the  FID  metric  performance  comparison  of  patch-

based and down-sampled images as training inputs of the NST model. As observed,

patch-based  approach  yields  lower  FID  scores  and  thus  outperforms  the  down-

sampling based approach.

Table 4.2.2.3. FID metric comparison of patch-based training and training

with down-sampled inputs.

4.2.3. Quantitative Evaluation Results

The images in Figure 4.2.3.1. show sample results, input masks and the real

images that the mask is produced from. Each row pair displays the real images and

corresponding masks of the consecutive frames from the same assays. As it can be

deduced visually, the images generated by the C-GAN based method have similar

artifacts  and  similar  styles  in  every  sample,  even  though  the  input  masks  are

different. On the contrary, the images generated by the proposed NST-based method

do not produce repetitive artifacts;  they depict  large variations  in cell-shapes and
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distributions, even when the input masks are similar. Furthermore, the styles of the

overall images are more diverse compared to the results of the C-GAN method.

    

Figure 4.2.3.1. Samples of synthesized phase-contrast wound healing assay

images generated by both the proposed NST-based method and the C-GAN method.

The first  two columns display the original  images along with their  corresponding

masks,  while  the  third  and fourth  columns  display  the  images  generated  by  our

proposed method and the C-GAN method, respectively.

The  results  in  Table  4.2.3.1.  provide  the  perceptual  quality  comparison

between  our  NST-based  method  and  the  C-GAN  method.  The  FID  values  are

calculated for 299×299 and 1920×1440 pixel resolutions. It is worth noting that even
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though the C-GAN based method was trained to generate lower resolution outputs

(512×512), the FID scores calculated on lower resolution are better for our NST-

based method, which has outputs at 1920×1440 pixel resolution.

Table 4.2.3.1. Comparison of the FID metric using 5-fold cross-validation is

conducted between our novel NST-based method and the C-GAN method for the

generation of wound healing assay data.

4.2.4. Qualitative Evaluation Results

In addition to comparison by quantitative metrics, we compared the image

synthesis  performances  of  the  methods  by  subjective  evaluation  of  the  domain

experts as shown in Figure 4.2.4.1.

    We took two frames  each  from the  14  assays  in  our  dataset  for  qualitative

evaluation by domain experts. The two frames, along with their manual annotations,

were taken from the beginning and end of the assays to enrich the diversity in the

collected frames. Manual annotations were input as conditions to synthesize wound

healing assay images by the C-GAN and NST methods. The models that were used

to generate the synthesized data were trained on the portion of the ground-truth data

excluding the assays that include the binary maps that were in the input set as in the

k-fold cross validation.

    

    A total of 7 molecular biologists who worked on the phase-contrast microscopy

wound healing data before were individually invited to rate the 28 synthesized data
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by their naturalism and artifact-freeness, separately. The observers are categorized as

"novices" and "experts" based on their  practical  experience on working with (i.e.

acquiring and analyzing) similar data. 2 observers were considered as "experts" (>6

months  of  experience)  while  the  remaining  5  were  "novices"  (1-6  months  of

experience).  The  naturalism  attribute  was  rated  between  1  and  5,  where  1

corresponds  to  “not  realistic”  and  5  corresponds  to  “very  realistic

(indistinguishable)”. The artifact-freeness attribute was also rated between 1 and 5,

where 1 corresponds to “contains many artifacts” and 5 corresponds to “no artifacts”.

For  a  reference,  the  condition  input  and the  corresponding real  image were  also

shown to the participants together with the synthesized data. The synthesized data

was  shown to  the  subjects  by  hiding  the  source  and  the  order  of  the  data  was

randomly shuffled to prevent any bias.

Figure  4.2.4.1. Results  of  qualitative  assessment  for  the  naturalism  and

artifact-freeness  attributes  of  synthesized  images  by  NST-based  and  GAN-based

methods. (a) Numeric results of quantitative assessment by novices and experts; (b)

overall scores; (c) scores by expert observers; (d) scores by novice observers.
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The results  in Figure 4.2.4.1.  indicate  that  the NST-based data  generation

method outperforms the C-GAN method in synthesizing more  realistic  and more

artifact-free  wound  healing  assay  images  with  a  high  margin  according  to

professionals' perception. While our method is favored in both attributes including

naturalism, it is favored by a higher margin for artifact-freeness.

The  impact  of  including  the  generated  images,  by  the  novel  NST-based

method,  in  the  training  data  of  a  semantic  segmentation  task  is  demonstrated.

Accordingly, a modified U-Net [29] model is trained to segment the wound front in

wound healing assays. The modification to the U-net architecture mitigates the trade-

off  between  training  with  high-resolution  images  and  the  availability  of  training

resources. Briefly, the size of the feature maps is increased, and then, to balance the

amount of memory used, the number of the generated feature maps is decreased. The

convolutional layers are reduced to decrease the number of the feature maps. By this

way, the inputs and outputs of the segmentation model were increased to 512×512

from 256×256 pixel resolution.

    

    From the 328 images in the wound healing assay time-series image dataset, 79

images were separated for testing. The remaining 249 images belonging to 12 wound

healing  assays  were  used  for  training  of  the  data  augmentation  models  and  the

segmentation model. Figure 4.2.4.2. shows the performance metrics of the modified

U-Net segmentation models that were trained on different sets of data.

    

36



Figure 4.2.4.2. Validation results of segmentation by the U-Net based model

that is trained using different sets of data with a confidence interval of 95%. The U-

Net  model  is  trained  with  249  real  training  data  until  overfitting  and  the  best

performing  model  according  to  the  validation  loss  value  is  resulted.  The  same

procedure is repeated two times on the last trained model by adding 249 synthesized

data using the NST-based method. RI stands for real images,  while SI stands for

synthetic images. (a) Set similarity metrics; (b) surface distance-based metrics.

    The results  shown in Figure 4.2.4.2. were obtained from the modified U-Net

models that are taken from 3 stages of the training process with different datasets. At

the first  stage 249 real  data  used as  the training  data.  In  the  next  2  stages,  249

synthesized images, by our NST-based method, are added to the training set. The

training is performed for 200 epochs in each stage.  For each new stage,  the best

performing model from the last stage is taken for training. The NST-based model

used for generating these 249 data is trained by using only the data from training set.

Figure 4.2.2.3. shows the binary cross entropy loss values during these training steps.
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Figure 4.2.4.3. The graph of validation Dice scores from the training of the

modified U-Net segmentation model per epoch. The training has 3 stages composed

of 200 epochs each. In the first stage, 249 real data were used in the training. For the

next stages, 249 newly generated images by our NST-based method were added to

the  training  dataset.  Except  for  the  last  stage,  validation  scores  after  the  best-

performed epochs are not included in the graph. These epochs are marked by red

lines.

    According  to  the  results  in  Figure  4.2.4.3.  the  wound  healing  assay  data

synthesized by our NST-based method contributed to the segmentation performance

as training data.  The validation scores of the segmentation model increased from

98.11% to 98.93% in Dice score and in Jaccard index increased from 95.76% to

97.56% with 95% confidence interval by using 249 synthesized images in addition to

the initial dataset consisting of 249 real data. Doubling the number of synthesized

images and continuing the training did not contribute to segmentation performance

any further.
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5. CONCLUSIONS, CONTRIBUTIONS AND FUTURE WORK

Our  proposed  traditional  computer  vision-based  method  for  segmenting

wound  fronts  in  wound  healing  assays,  utilizes  variance  filtering,  Gaussian

smoothing, dilation, and erosion operations to achieve accurate segmentation results.

By  considering  temporal  information  and  the  characteristic  shrinkage  of  wound

regions  over  time,  the  method  effectively  identifies  and assigns  potential  wound

regions. This approach provides a valuable tool for automated and reliable wound

front  segmentation  in  wound healing  assays,  contributing  to  the  advancement  of

wound healing research.

The examined traditional method requires Gaussian blurring kernel parameter

to be fine-tuned for segmentation which corresponds to the approximate pixel value

of the radius of the cells in the assay images. In the future a prepossessing method

can be applied for estimating  the value of this  kernel  parameter  automatically  to

provide a fully-automated solution.

U-Net based segmentation is also an automated method with higher accuracy

when there is efficient amount of training data and computational power. Application

of shallow and high-resolution U-Net based method increases the performance by

requiring same amount of computational resource as compared to the standard U-Net

model.

In this study, also a novel Neural Style Transfer (NST) based data generation

method for generating phase-contrast microscopy data of wound healing assays is

examined.  It  is  concluded  that  the  NST-based  method  performs  better  than

Conditional  Generative  Adversarial  Network  (C-GAN)  under  constraints  of

computational  resources.   The  qualitative  and  quantitative  metrics  show that  our

proposed  patch-based  NST-based  method  outperforms  the  C-GAN  alternative  in

terms of quality and diversity of the generated images. 

To the best of our knowledge, this is the first NST-based method proposed

for data generation task which does not use GAN. While we demonstrated the NST-

based method for synthesizing phase-contrast microscopy (PCM) time-lapse images
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of wound healing assays, this approach is the first of its kind for any type of imagery

as far as we know. NST-based data generation method by not using GAN is less

resource demanding and easier to train since the latter one has adversarial training

procedure. Our NST-based method's inference time is ~3.3 seconds while C-GAN

method's is only ~33 milliseconds.  On the other hand, training of the NST-based

method takes only ~2.5 minutes while training the C-GAN based method takes ~25

hours. 

    

Also,  as  far  as  we  know,  this  is  the  first  synthesis  method  proposed  for

generating artificial wound healing assay data that does not require any additional

calculation of (thus prior information on) cell distribution statistics. The model learns

the cell distribution from the input data and with the style input and random noise

input, the cells are distributed. Our NST-based data generation method theoretically

can generate infinitely many different results by changing the input conditions and/or

the noise input. Even though the cell distribution is generated automatically, wound

region  mask  input  is  required  for  controlling  cell  and  wound  regions  in  our

algorithm.  The  code  for  generating  the  results  will  be  available  at

http://https://github.com/IDU-CVLab/NST_for_Gen upon  appropriate  request.  In

future  work,  the  condition  mask  can  be  automatically  generated  to  increase

variability.

        

In  future  work,  AdaIN  can  be  used  in  many  layers  to  better  preserve

structural information, yet this approach may require more computational resources.

Also, the noise input can be applied in multiple layers instead of a single layer for

improving the diversity in the generated images.
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