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ABSTRACT
Master's Thesis

Analysis of Wound Healing Assay Data of Phase-Contrast Optical Microscopy
Using Traditional Computer Vision and Deep Learning Techniques
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This thesis aims to investigate the performances of image segmentation and
image synthesis methods applied to wound healing assay data, and propose novel
solutions to improve accuracies. For segmentation, the utilization of both traditional
and deep-learning approaches is studied in various scenarios. Additionally, the thesis
addresses the challenge of limited training data commonly encountered in biomedical
research. To overcome this problem, methods for generating synthetic assay data is
explored. The comparative analysis and demonstration of these methods are
performed over a phase-contrast optical microscopy time-series dataset of wound
healing assays.

While classical computer vision techniques have been widely used for
segmentation of wound healing assay images, there is a scarcity of studies focusing
on solutions based on recently emerged deep learning techniques. Therefore, this
thesis examines traditional segmentation methods in addition to the investigation of
the segmentation capability of deep learning solutions to provide improved analysis
and quantification of wound healing assays. Moreover, efficient methods for
generating synthetic assay data are explored to improve the segmentation
performance of deep learning methods, particularly in situations where training data
are limited which is often encountered in biomedical research.

Keywords: Image segmentation, computer vision, deep learning, medical data
synthesis, phase-contrast microscopy data, wound healing assay data analysis
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OZET
Yiiksek Lisans Tezi

Geleneksel Bilgisayarda Gorii ve Derin Ogrenme Teknikleri Kullamlarak Faz
Kontrast Optik Mikroskopi Yara Iyilesmesi Deney Verilerinin Analizi

Yusuf Sait ERDEM

izmir Demokrasi Universitesi
Fen Bilimleri Enstitiisii
Elektrik - Elektronik Miihendisligi Anabilim Dah

Damsman: Prof. Dr. Devrim UNAY

I1. Damsman: Prof. Dr. Behcet Usur TOREYIN

Bu tez, yara iyilesme deneyi verileri icin goriintii boliitleme ve goriinti
sentezleme yontemlerinin bagarimlarini arastirmayi amaclamaktadir ve basarimlari
iyilestirmek icin yeni yontemler Onermektedir. Boliitlemede, farkli durumlarda
kullanabilmek icin, geleneksel ve derin 6grenme yaklasimlari incelenmistir. Ayrica,
biyomedikal arastirmalarda sikca karsilasilan isaretli egitim verisetlerinin sinirh
olmas1 durumuna da deginilmektedir. Bu sorunu asmak icin sentetik deney verisi
olusturma yontemleri incelenmigtir. Bu yontemlerin karsilastirmali analizi, yara
iyilesme deneylerinin faz kontrasth optik mikroskopi zaman serisi veriseti
kullanilarak gerceklestirilmektedir.

Klasik bilgisayarli gorme teknikleri, yara iyilesme deneyi goriintiilerinin
béliitlenmesinde yaygin bir sekilde kullanilmaktadir. Ancak bu alanda, son
zamanlarda yayginlasan derin 6grenme tekniklerine dayali calismalarin eksikligi
bulunmaktadir. Bu nedenle bu tez, yara iyilesmesi deneylerinin daha hassas analizi
ve nicellestirilmesi icin geleneksel boliitleme yontemlerini incelemenin yani sira,
derin 6grenme coziimlerinin boliitleme yeteneklerini de arastirmaktadir. Ayrica,
biyomedikal ¢alismalarda sikca karsilasilan egitim verisin sinirli olmasi durumunda,
derin 6grenme yontemlerinin boliitleme performansim iyilestirmek icin etkili sentetik
deney verisi olusturma yontemleri de aragtirilmistir.

Anahtar Kelimeler: Goriintli boliitleme, bilgisayarli gorii, derin 6grenme, medikal
veri sentezi, faz-kontrast miksorkopi verisi, yara iyilesmesi veri analizi

2023, 47 sayfa
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1. INTRODUCTION

Wound healing assays are essential tools in biomedical research, providing
valuable data for understanding the complex process of cell migration. Accurate
analysis and quantification of wound healing assays is important in research topics
such as the study of cellular responses to various stimulus, understanding the cell-to-

cell interactions, and exploration of cell migration mechanisms.

Imaging techniques, such as phase-contrast or fluorescent microscopy, are
employed for acquiring data from wound healing assays. Among these techniques,
phase-contrast imaging is preferable for being less harmful, making it more suitable
for studying living specimens. However, accurately segmenting objects of interest
from phase-contrast microscopy images can be challenging due to less highlighted

boundaries of the subjects.

Advancements in automated microscopy techniques has greatly helped in
generating large amounts of data efficiently from wound healing experiments.
However, manual segmentation of this large amount of data is laborious, time-
consuming, and affected by subjective style variation, leading to inconsistent results.
As a result, automated segmentation techniques have gained popularity as they offer

more efficient and reliable solutions for analyzing wound healing data.

The literature on segmentation of wound healing assays can be categorized
into two main approaches: traditional methods and deep learning-based methods.
Traditional methods have the advantage of not requiring excessive computational
resources or long computation times. However, they usually require parameter to be
tuned manually and thus they are more difficult to generalize for different conditions.
In contrast, the recently emerged deep learning methods achieve higher accuracies
and they are better at generalization in segmentation tasks. However, they require
significant computational power (or longer processing times) and a substantial
amount of annotated data for training. Advantages and disadvantages of both
approaches in terms of performance and resource requirements need to be considered

when selecting the appropriate method for the task at hand.



In this thesis, traditional and deep learning based segmentation methods for
wound healing assay data are studied, and novel solutions are proposed to achieve
improved performance. In addition to the investigation of wound healing assay data
segmentation methods, the challenge of limited training data is also addressed which
is commonly encountered in biomedical research. To overcome this difficulty,
methods for generating synthetic assay data are explored, compared and showcased
using a wound healing assay time-series dataset of phase-contrast optical

microscopy.



2. GENERAL INFORMATION / RELEVANT LITERATURE

2.1. Wound Healing Assay
Wound healing assays provide information about mechanisms governing
collective cell migration which is essential for analysis of biological topics such as
immune system activation, growth of the tumor, and metastasis as well as
embodiment of tissues. As a result, this technique stands as a fundamental method

for molecular biologists.

In typical procedure of wound healing assays, the confluent monolayer of the
subject cells is scratched to produce open wound area. Then, the cells are observed
while they migrate to close the gap [1, 2]. The process of the cells closing the wound
area can be observed via various methods. Two popular solutions that are utilized are
time-lapse imaging with phase-contrast microscopy (PCM) and fluorescence
microscopy. In fluorescence microscopy, cellular structures are highlighted by
labeling with fluorescent stains. On the other hand, this labeling procedure may
change behavior of the subject cell or harm the cells due to electromagnetic radiation
[3, 4]. In contrast, in PCM light is used to observe cellular structures without using

staining/labeling on the specimen, thus it constitutes a safer alternative.

2.2. Semantic Segmentation
For the analysis of PCM images of wound healing assays, accurate
segmentation of the wound front is a necessity. Manual annotation of the wound
front may be inconvenient since it is time-consuming and annotator-dependent. Thus

automated, fast, and robust segmentation solutions are needed.

In literature, methods frequently utilized for cell segmentation in PCM
images can be grouped into two as traditional image processing based approaches
and methods based on deep-learning. While the deep-learning methods require plenty
of training data together with excessive amount of computational resources, the
traditional methods may require careful tuning of some parameters for accurate

segmentation of the cells.



2.2.1. Traditional Approaches

For the segmentation of wound healing assays, there are some frequently
employed methods by biomedical researchers such as Cell Image Velocimetry (CIV)
[5] and MRI Wound Healing Tool macro which is an ImageJ macro [6]. To achieve
a precise segmentation result when using the CIV segmentation method, the user
should set parameters such the kernel size, the local contrast normalization radius,
and local and global filtering thresholds. In the MRI Wound Healing Tool plugin,
users should not only select their preferred technique but also fine-tune the
parameters such as the radius of the structuring element utilized in the morphological

opening, and the minimum wound size.

To segment wound healing assay data, in TScratch wound analysis tool by
Gebédck - Tobias et al., curvelet transformation with morphological operations are
combined [7]. First, a curvelet magnitude image is created by using two scale-levels
and morphological opening operation is applied. The scale-level parameters are
automatically found or can be tuned for making the margins of the wound apparent.
Then, two peak areas on the curvelet histogram are assumed to be true edges, while
the rest are discarded as noise edges. Further morphological operations applied for

improving the resulting segmentation image.

In another method for analysis of wound healing assays, Matsubayashi et al.'s
‘White wave’ method [8] offers a different approach by analyzing the wound closure
in place of direct frontier distance calculations for analysis of wound healing assays.
Histogram of the vertical average pixel intensity difference values is generated for
consecutive frames. Then the positions of the edges of the wound are identified by
the horizontal (x) coordinates of two histogram average intensity values that peaked.
According to Matsubayashi et al., the use of average value for wound fronts is more

reliable and carries more information than direct frontier distances.

There are various other methods proposed in the literature for segmentation of
the wound healing assays involving morphological operations additional to various
traditional computer vision techniques such as entropy filtering, variance filtering,

and contrast enhancement and adaptive binarization [9 — 12].



Under certain circumstances, these methods are effective, but they rely on a
multitude of critical parameters including the kernel size [10, 11, 13], saturation rate
[9, 10], scale-level [7], and kernel average percentage threshold [13]. Requirement
of human interaction to choose the suitable parameter set to obtain a decent level of
precision and consistency under variety of settings, makes these methods

cumbersome to apply in practice.

2.2.2. Deep-Learning

In addition to traditional computer vision techniques, deep-learning based
methods are also used for the segmentation of wound healing assays, which have
emerged as a powerful and versatile tool for deriving meaningful information from
complex and imprecise data. Deep learning methods have higher accuracy compared
to traditional methods in various problems, but they require a significant amount of
(accurately annotated) training data and computational resources. However, since the
analysis of wound healing images does not require real-time processing, deep
learning methods are efficient in such applications when a sufficient amount of

training data is available.

Ronneberger et al. introduced U-Net and demonstrated its efficacy by
applying it to the task of segmenting individual cells in phase-contrast microscopy
images. The architecture of U-Net illustrated in Figure 2.2.2.1. consists of a
contracting path and an an expanding path. The contracting path has a number of
blocks with 3x3 convolutions, followed by rectified linear activation unit
(ReLU) and 2x2 max pooling. The number of channels is doubled while the size of
the feature maps is reduced by half at each step. In the expanding path, while the
feature map sizes are doubled with up-sampling operation, a 2x2 convolution halves
the number of channels. Then concatenation with corresponding feature maps from
the contracting path, and two 3x3 convolutions with ReLU activation are applied at

each step.
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Figure 2.2.2.1. Structure of the U-Net model (adapted from [Ronneberger et al.,
2015]).

Mahmud et al. [14] utilized a shallow U-Net with only 1 encoding and 1
decoding steps for blood pressure prediction from photoplethysmogram and
electrocardiogram signals. Through a more lightweight version of the U-Net model,
they were able to achieve superior performance compared to a majority of existing

approaches in a more resource-efficient manner.

Vaswani et al. [15] introduced “attention” mechanism in neural networks.
The attention mechanism allows the neural network to focus more on the relevant
parts of the input data, while reducing signal activation on irrelevant parts which is
expected to enhance the efficiency of the model. Oktay et al. [16] applied this
methodology on a U-Net and demonstrated its efficacy on biomedical image

segmentation.

The U-Net model is also employed for the segmentation of wound healing

assay images [17]-[19]. Mayali et al. [17] utilized the U-Net model for segmentation



of collective cell regions in phase-contrast images of wound healing assays for the
first time. Javer et al. [18] and Oldenburg et al. [19] also utilized U-Net for
segmentation of wound healing images. Different from Mayali et al., in the latter
two methods the cells are segmented individually and morphological operations are

applied after for obtaining cell cluster regions from fluorescence microscopy images.

2.3. Deep-Learning for Data Generation

Deep learning-based methods have gained great success and popularity in
many image processing tasks such as object detection [20], classification [21],
segmentation [22], and depth-estimation [23]. The availability and diversity of large
amounts of annotated training data are one of the determinants of the effectiveness of
deep learning methods. However, in medical-related tasks the shortage of such data
is commonplace due to issues associated with data sharing, variation in data
acquisition methods, and the requirement of expert knowledge when it comes to data
annotation. Data augmentation by creating slightly modified copies of already
existing data or by generating new synthetic data from existing data is a solution
when there is a lack of sufficient training data. The former is the most preferred
approach as it is easy to apply, but such small modifications may bring little
additional information. To the contrary, the latter is a more sophisticated approach
that may generate semantically more meaningful examples and thus enable more

variability and richness in the training dataset [24].

Realistic synthesis of artificial data has become widespread in many fields
[25]-[27] especially by the introduction of Generative Adversarial Networks (GANs)
by Goodfellow et al. [28]. In GANSs, outputs of the synthetic data generator are
evaluated by another deep neural network. This discriminator network is trained
together with the generative network to learn if the given input is real or artificially
generated by comparing the outputs of the generative network and the real data.
While the generative network learns to generate more realistic data via feedback
from the discriminator network, the discriminator learns to distinguish generated data

from the real one.

Isola et al. [26] introduced an image-to-image translation method, Pix2pix,

utilizing a conditional GAN (C-GAN), where an additional constraint on the input is

7



used in both the generation and discrimination steps of a GAN model. They used a
U-Net [29] based structure for the generator and PatchGAN [30] for the
discriminator of the C-GAN model. In addition to the discriminator’s objective
function in the C-GAN, L1 distance between the generated data and the real input is
utilized as an additional term in the C-GAN loss function. Finally, to synthesize
images in a more stochastic manner, dropout operations were applied on some layers
of the generator network. The authors stated that, this strategy made little impact and

applying noise in the input directly had even less of an impact on the output.

Karras et al. [31] proposed a novel generator architecture using GANs for
data generation. In this method, they utilized a GAN model by inserting noise input
into feature layers together with learned special scaling factors to improve
stochasticity. They also used AdalN layers, initially employed in Huang et al.'s
Neural Style Transfer (NST) method [32], in each feature layer.

In an NST framework, the input comprises of a content image and a style
image. The NST method aims to combine the style input’s low-level features with
the high-level semantic features of the content input using an artificial neural
network. It was initially proposed for artistic style transfer [32], [33], but then
utilized for other image processing tasks such as source adoption [34], [35], and data
augmentation [36]-[40]. Mikolajczyk et al. [40] utilized NST for transferring styles
of different kinds of skin lesion images. Cicalese et al. [37] adopted a similar method
for histopathology images. Zheng et al. [38] and Jackson et al. [39] both introduced
data augmentation with style transfer at the same time. They both used style transfer
for augmenting arbitrary object images using chosen style images. Jackson et al. [39]
further utilized style embedding instead of a style image input. Likewise, Yamashita
et al. [36] utilized NST for augmenting histopathology images using various images

from different domains as style inputs.

Deep learning has also been utilized for synthesizing time-lapse microscopy
images before. These solutions are validated on two popular microscopy imaging
techniques that allow time-lapse acquisition; phase-contrast microscopy (PCM) and
fluorescence microscopy. Theagarajan et al. [41] synthesized PCM images of single

cells and confined cell clusters in different classes unconditionally using GAN. Bailo
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et al. [42] generated bright-field microscopy images of blood cell clusters by first
generating locations for each cell. They modeled the distribution of the cells in the
cell clusters by considering cell adhesion via a mathematical formula, then
synthesized realistic cell images utilizing a Pix2pixHD [43] model, which is a C-
GAN method. Fu et al. applied a similar procedure before, by randomly generating
ellipses as spatial constraints for the generation of 3D biological structures, captured
by fluorescence microscopy [44]. They proposed a spatially constrained CycleGAN
model for the final image synthesis step by modifying the CycleGAN structure.
While Goldsborough et al. [45] utilized GANs for the synthesis of fluorescent
microscopy images of single cells, Baniukiewicz et al. [46] adopted C-GANs by

using manual segmentation masks as spatial constraints for a similar task.

We conducted an attribute-based comparison of various prominent methods
applied to PCM data generation as shown in Table 2.2.3.1, to point out the novelty of

our method.

Table 2.2.3.1. Attribute-based comparison of prominent methods and the

proposed method.

Conditional Noise | Patch Conditional
Method Type |Normalization Data
Input | Based .
Layer Generation
Huang et al. [16] | NST AdalN - Yes No
Isola etal. [17] | GAN - n f‘ single| -\, Yes
ayer
Karras et al. [28]| GAN AdaiN " Im”'t'p'e No Yes
ayers
Proposed NST AdalN n ? single Yes Yes
ayer

The contributions of this study are as follows. We utilized an NST-based
method different from the existing solutions proposed for data generation, as shown
in Table 3.2.2.1, since GANs have more complex structures and are difficult to train

due to adversarial training [25], [28], [47]. Furthermore we have used a patch-based



training method in order to process images in higher resolution with limited memory,
benefiting from the nature of the cell clusters that are atomic only in small regions.
Also, we provided noise input to the network for increasing the stochasticity in the

generated data.

Wound healing assays provide valuable information for biomedical
researchers. Classical computer vision techniques can be employed for segmentation
of the assay images which is utilized for simpler and reliable analysis of the wound
healing assays. Although there are some studies focused on automated analysis of
wound healing assay time-series images by using classical image processing
techniques, solutions based on the recent and emerging deep learning techniques are
scarce. Accordingly, the purpose of this thesis is to examine the segmentation
capability of such solutions toward improved precision on analysis and quantification
of wound healing assays from phase-contrast optical microscopy time-series images.
Additionally, it seeks to investigate efficient ways of generating synthetic assay data
for contributing to the segmentation performance of deep learning methods in

situations where there is a scarcity of training data and computational resources.
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3. MATERIALS AND METHODS

3.1. Wound Healing Assay Data

Wound healing assays are conducted for the acquisition of phase-contrast
time-lapse images. Breast cancer cell line MCF7 ( 7.5x10° cells per well) and normal
breast cell line MCF10A (1x10° cells per well) were seeded on 12-well plates. 24
hours after the seeding, when they reached to confluency, the cells were treated with
10pg/ml mitomycin C for two hours, to prevent proliferation. Then, mitomycin C
containing medium was replaced with serum-free medium and the scratch was
introduced with a 10pl pipette tip. The cells were placed in the incubation chamber
and observed with Leica DMI8 confocal microscope for two days at 37°C with 5%
CO,. The phase contrast images of three positions per well were captured once every

hour.

In total, in this study 328 images from 14 wound healing assays were used.
The images are stored in 8-Bit, grayscale, TIFF format with 1920%1440 pixel

resolution. Some samples from the dataset are depicted in Figure 3.1.1.

Assay A Assay B

0 hour 27 hours 0 hour 27 hours

Assay C Assay D

0 hour 19 hours 2 hours 19 hours

Figure 3.1.1. Sample images from the phase-contrast wound healing assay

dataset where the boundaries of the wound fronts manually segmented by experts are
overlaid in red. The images are sampled from different time-lapse imaging sets
(assays) in the dataset, indicated by A, B, C, and D. Samples correspond to the start

and end frames of each assay.
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The wound healing assay images were manually annotated using the ImageJ
[6] manual annotation and Supervisely [48] online annotation tools under the
guidance of field experts. The acquired assay images and annotation masks are
1920x%1440 pixels in size. The annotations correspond to the frames starting from the
time-point where cell adhesion is realized until the wound closure is completed in

each time-lapse microscopy image of every wound healing assay.

All models are trained and tested on a laptop with an NVIDIA GeForce GTX
1650 GPU with 4GBs of GPU memory.

3.2. Methods
3.2.1. Semantic Segmentation
Semantic image segmentation refers to the process of dividing an image into
regions or segments for content analysis which is a fundamental task in computer
vision. This process identifies boundaries around regions of interest, enabling further
analysis and manipulation of visual content. Segmented images allow computer
vision systems to extract specific objects, features, or regions which is a crucial step
for analysis of the content data. In this thesis, two methods are proposed for the two
primary approaches to semantic segmentation of wound healing assay images:

traditional computer vision and deep-learning.

3.2.1.1. Traditional Computer Vision Method
In this section, a new method based on traditional computer vision techniques
is described for segmentation of wound fronts in the wound healing assays. By
employing a combination of well-established traditional computer vision-based
operations, such as variance filtering and morphological operations, the method aims
to achieve accurate and reliable segmentation results. The flowchart of the method is

demonstrated in the Figure 3.2.1.1.1.
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Gray-Scale Image

Y

Variance Filter

Y

Gaussian Smoothing

Y

Morphological Operations

Y

Add largest empty region
to wound regions

[

Add current region to
wound regions

wound region area
<

previous frame's

current region = next
largest empty region

F

Shrinkage rate = largest wound

current region
-

Yes

region { previous frame's largest
wound region

largest wound region /
shrinkage rate

Ma

Y

Remove isolated cell
regions touching to edges

l

Segmentation Mask

Figure 3.2.1.1.1. Flowchart of

filtering is applied on the gray-scale

approximate pixel length of a cell in

the proposed wound healing assay data

segmentation method based on traditional computer vision approach.

For segmentation of the wound healing assay images, at first, variance
images of wound healing assays. Then,
Gaussian smoothing operation is applied using a kernel with a predetermined kernel
size of 25x25. The determination of the kernel size parameter is based on the

the input image. The resulting image is
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binarized by taking negative values as zeros and positive values as ones. In order to
remove small, occupied regions a dilation operation is applied followed by an
erosion operation. The resulting image includes empty wound regions as zeros and
occupied cell regions as ones. Later, small regions touching to the edges of the frame
are eliminated as in the method of Zordan et al. [9]. For the first frame of the wound
healing assay time series, all regions are considered as cell regions except for the
largest wound region. For the subsequent frames, the remaining zero regions are not
explicitly labeled as wound regions, but they are considered as potential wound

regions.

In the binary image, for determination of the small regions as wound region
or not, temporal information is taken into account. The zero regions are initially
sorted based on their sizes. A shrinkage rate is calculated by dividing the biggest
empty region in the current frame to the biggest empty region of the previous frame.
The current biggest empty area is multiplied by the shrinkage rate. If a region in the
subsequent frames has a size larger than this calculated area, it is considered as a
wound region candidate. These candidate regions are assigned as wound regions
starting from the biggest to smallest. Candidate regions are no longer assigned as
wound regions if the total wound region exceeds the previous total wound region.
This step is applied by considering that, in a wound healing assay the wound region

shrinks over time.

3.2.1.2. Deep-Learning Method

The U-Net convolutional neural network is a well-known and precise method
for segmenting medical images, and therefore it is applicable for accurate
segmentation of phase-contrast microscopy wound healing assay data. However,
when dealing with large inputs (for example 1024x1024 or higher sized images), the
computational requirements of the U-Net structure increases exponentially. While
several approaches have been developed to utilize U-Net models with limited
resources, such as down-sampling or tiling the input data, these methods may
decrease the accuracy of the results or be impractical for data with large atomic
characteristics, like wound healing assay images. In this study, a low-cost and

accurate segmentation method for high-resolution wound healing assay time-series
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images is examined by utilizing a shallow U-Net structure with a high-resolution

input as depicted in the Figure 3.2.1.2.1.

1

foput | "‘“**"""’Iqlﬁ*l"“"* == |-

|

Segmentation
mask

it | ) [ q---d‘sl@l-»--«» == |=

% (Conv 3x3 + RelLU) x2

q Max Pooling 2x2

q Upsampling 2x2 Segmentation
mask

— Concatenation

Figure 3.2.1.2.1. Structures of the original U-Net model (top) and the
proposed shallower U-Net model (bottom) where the size of the generated feature

maps are increased by decreasing the number them in each layer.

To address the challenge of training with high-resolution images under
resource constraints, some modifications were introduced to the U-Net architecture
similar to Mahmud et al. [14], who used a single-level U-Net structure for resource
efficiency. However, unlike Mahmud et al.’s method in this study the sizes of the
feature maps are augmented while simultaneously decreasing the number of
generated feature maps to maintain optimal memory usage instead of decreasing
encoding and decoding steps to one. The number of convolutional layers is further

reduced to minimize the number of feature maps as shown in the Figure 3.2.1.2.1.
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These modifications enabled to enhance the resolution of the inputs and outputs of

the segmentation model from 256256 pixels to 512x512 pixels.

3.2.1.3. Metrics
To evaluate the segmentation accuracy achieved by the methods under

investigation, the Dice coefficient is employed. It is calculated as follows:

2 % |Rp g N RGT‘
| Roveal Rt

DiceScore (R4, Rr|= 1)

where Rprq represents the predicted pixel regions and Rgr refers to the ground truth

regions.

As part of the quantification process, in addition to the proportion of the open
wound region's area, the extent of wound closure during the experiment is
determined by the Mean Surface Distance which is calculated for the detected wound
surfaces at each frame. The Mean Surface Distance measures the average distance
between two surfaces by taking the minimum distances across surfaces into account

as given below:

Nup1 Nupa
MSD | Surf 1, Surf 2| =—————| 3 [ =512y 3 [ g5z st @
i=1

NSurf1+NSurf2 i=1

where Surfl and Surf2 represent the surfaces of the opposing wound regions, Nsu
and Nsur denote the point counts of the surfaces, and d represents the Euclidean

pixel distances in 2D.

An MSD-based wound front distance measurement method is proposed to
quantify wound healing assay time-series images. Two opposite wound fronts are
detected to measure MSD in between them. At first, a rotated bounding box is fitted
into each wound region. A mid-line is drawn towards the longitude of the bounding

box and two tip points of the lines are taken. Then the wound surface is separated
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into from two points on the surface line where they are closest points to the taken

points from the previous step as shown in the Figure 3.2.1.3.1.

Figure 3.2.1.3.1. Images depicting the determination of the two wound front

lines by the proposed algorithm on two frames corresponding to different timepoints.

The MSD (2) is calculated based on the extracted two wound fronts as depicted on
the left part of the Figure 3.2.1.3.2. A graph of MSD-based wound front distance
measures calculated across a complete wound healing assay (full time series data) are

given in the right side of the Figure 3.2.1.3.2.
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Figure 3.2.1.3.2. Left: Image for depicting the minimum cross distances used
in Mean Surface Distance (MSD) calculation. Right: MSD-based wound front

distance measures of a wound healing assay.

3.2.2. Data Generation

Studies for image synthesis, for applications such as data augmentation and
realistic data generation, have recently made rapid progress with the breakthroughs
of the Neural Style Transfer (NST) method and Generative Adversarial Networks
(GANSs). GAN-based methods have gained considerable attention for their ability to
generate realistic and high-quality synthetic data by learning the underlying data
distribution. While GANs have been used for both data augmentation and generation,
the NST was not used for data generation tasks. On the other hand, the NST method

has a simpler structure than GANSs.

In this thesis, a novel NST-based approach for data generation alongside a
novel method utilizing well established C-GAN-based approach are proposed and
their synthesis capabilities for our specific problem are explored. Moreover, the
performance of the NST method has been compared to that of a modified and fine-
tuned conditional GAN (C-GAN). These methods have been applied to the
conditional generation of phase-contrast microscopy wound healing assay time-series
images. Binary segmentation maps representing the cell and wound regions are given
as conditional inputs. Quantitative and qualitative results showed that our proposed
NST-based data generation not only outperforms the modified C-GAN but also

requires less resources. Furthermore, when utilized as a data augmentation method, it
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has been demonstrated that the novel NST-based method improves segmentation

performance.

3.2.2.1. Conditional GAN-Based Data Generation Method
To synthesize PCM images of wound healing assays, Isola et al.'s C-GAN
model [26] is adopted as shown in Figure 3.2.2.1.1. The assay images were fed in as
real inputs while the corresponding manually annotated segmentation masks served
as the conditional inputs. We modified the architecture by replacing the L1-norm
objective function with the mean of the Structural Dissimilarity Index Measure

(DSSIM) and the L1-norm.

Content Image Generated Image Real Image

Generative
Model

Discriminative
Model

—+ Fake / Real

Figure 3.2.2.1.1. Overview of the C-GAN model developed for synthesizing

phase-contrast microscopy images of wound healing assays.

The DSSIM measure was derived from the Structural Similarity Index
Measure (SSIM) which computes the perceptual dissimilarity between two images
by comparing their structural information [49]. The SSIM has previously been used
as an additional loss term for training other GAN-based data generation methods

[50]-[52]. The formulas of the SSIM and DSSIM are as given below:

g fty + 51 204y + 52
SSIM(z,y) = z 5 5 3 ;
Mz + py + 851 oz + oy + 52

1 — SSIM(x,y)
2

DSSIM(x,y) =
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DSSIM term is added as a supplementary loss function (SLF) together with
L1-norm as the objective function of the C-GAN model to better preserve the
structural features. The supplementary loss value is calculated by averaging the

DSSIM and L1 loss values which are normalized between 0 and 1.

3.2.2.2. Neural Style Transfer Method
After the feed-forward NST method is proposed by Huang et al. as shown in
Figure 3.2.2.2.1, style transfer became available without a separate training process
for each input at inference. Additionally, the Adaptive Instance Normalization
(AdalN) layer aided the efficient transfer of feature statistics to the content input

[32].
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NST Based Data Synthesis

NST Model
Style Input ——— \E/GG';Q
rzg?e_er AdalN Decoder > Output
Content Input ——|  {rained)
E VGG-19 |
Encoder Content
(pre- Loss
5 trained)
Style Losses
Figure 3.2.2.2.1. Overview of Huang et al.'s feed-forward neural style

transfer model.

In this study, a novel high-resolution, low-cost data generation method is
developed by utilizing NST for synthesizing phase-contrast microscopy wound
healing assay data. The NST model takes a binary mask, which indicates the wound
regions, as input. The content and style inputs were represented by the regions
occupied by cell clusters and a real wound healing assay image respectively. Random
noise was added directly to the content input. The outputs generated are high-
resolution even under resource constraints thanks to patch-based training, the high-
resolution inference process, and the simpler structure of the feed-forward NSTs as
compared to GANs. Two separate models were trained for wound and cell regions to

improve the quality of the results further.

3.2.2.2.1. Training Based on Patches
In the proposed method, while the feed-forward neural style transfer model
was trained using patches of the image, during inference the trained model was used
for generating the entire image at once as shown in Figure 3.2.2.2.1.1. In a similar
manner, Huang et al. trained the NST model using smaller patches and obtained

higher resolution outputs. We modified this approach to obtain even higher quality
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results for synthetic data generation. In Huang et al.’s method, input images were
first resized by making the shortest dimension 512 pixels and keeping the aspect ratio
of the original input images same. Then, random patches of 256 %256 pixel resolution
were used in the training step and 512x512 pixel resolution images were generated at
inference [32]. In this study, on the other hand, we maintained a high quality input, at
a pixel resolution of 1920%1440 pixels, then patches of 512x512 pixels were used in
the training phase. The resulting outputs were at 1920x1440-pixel resolution. The
amount of memory required for inference was lower than that used in the training
phase since there were no additional gradient calculations. This enabled processing
of larger inputs at inference. It is worth noting that since the neural network model is

fully convolutional, the input resolution may differ at training and inference times.

Training
Style
Input
- S e Sample
1920 x 1440 Bt 256x256  ~ontent | NST Model
256 x 256
1920 x 1440 Random
Noise
Inference
Style
Input
NST Model
Content
Input

1920 x 1440 Random
Noise

Figure 3.2.2.2.1.1. Overview of the patch-based style transfer method. The
diagram above illustrates the patch training procedure. The diagram below shows the

inference procedure yielding high resolution outputs via the trained model.
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Processing the entire image at once at inference while training with patches
enables achieving a higher accuracy despite limited memory. This approach
concentrates the learning capability of the network to learn the visible local patterns
within a patch at the cost of losing structural information at higher scales.
Nevertheless, in images of cell groups there is not much structural pattern on a large-
scale. Moreover, the integrity between patches is supplied by generating the image as

a whole in the generation step. A visual comparison is given in Figure 3.2.2.2.1.2.

NST Based Data Synthesis

“(b)

Figure 3.2.2.2.1.2. Visual comparison of with and without using patch-based
training. (a) Synthesized image without using patch-based training. The output
resolution is 512x512 pixels. (b) Synthesized image by using patch-based training

and full resolution inference. The output resolution is 1920x1440 pixels.

3.2.2.2.2. Spatial Condition Input
Gatys et al. first introduced spatial control in NST [33]. Furthermore, Huang
et al. utilized spatial control in a feed-forward NST model for the first time [32] by
integrating a spatial control mask into the input. The spatial control mask is a binary
image where the regions to be stylized are indicated with 1s, while Os indicate
regions that should not be affected. However, in the proposed method, rather than
using a single model for style transfer with binary spatial control, two separate

models were trained and used with binary content images of wound healing assays.
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For generating the wound healing assay images, one model was trained to generate
the empty regions (i.e. wound areas) while the second model was trained to generate
regions occupied by cell clusters. The wound healing assay images could be
generated by a single model as well. However, our experiments showed that using
separate models to simplify the task improved the results. Furthermore, generating
wound and cell regions separately allows using different style combinations, which
improves the diversity of the results. The style inputs were masked using manual
segmentation maps while training the respective models as shown in Figure

3.2.2.2.2.1.

Real Image

:(:)I Switch

Generated :
(D Add O 1t
Cell Region peration

[D And Operation

Cell Region Style
Mask Input Output
Content Ger?;taation ) Generated
Input Wound Region

Wound Region {
Mask

Figure 3.2.2.2.2.1. Diagram of the proposed NST-based data synthesis
method with spatial control. The style input image is masked for wound and cell
cluster regions separately. The segmentation mask is used for masking the wound
regions and the inverse of the mask is used for masking the cell cluster regions. For
generating the cell cluster regions or wound regions; respective style mask, target
mask and model is used. After cell cluster regions and the wound regions are

generated, they are combined to give the final output.
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3.2.2.2.3. Noise Input
In contrast to Huang et al.'s method, and to increase the variations in the
resulting wound healing assay images, random noise was added to the respective
regions in the content image. Karras et al. utilized a similar idea for stochastic
variation in data generation using GANs. Specifically, the authors input Gaussian

noise at different layers of their network [31].
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4. RESEARCH FINDINGS AND DISCUSSIONS

4.1. Semantic Segmentation Results

4.1.1. Traditional Approach Results
Figure 4.1.1. showcases performances of the classical methods for wound
healing assay image segmentation utilizing dice coefficient score metric. The results
show that the novel classical wound healing assay image segmentation method
outperforms the existing methods in almost every frame and in the average Dice

coefficient scores acquired from the two wound healing assay data from the test

dataset.
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Figure 4.1.1. Figure of comparison between the classical wound healing

assay segmentation methods and sample images from the applied test dataset. The
graphs at the top include Dice coefficient scores of the classical segmentation
methods. The images at the bottom illustrate original frames, ground truth
segmentation masks and segmentation outputs of our classical segmentation method

sampled throughout from two wound healing assays.
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4.1.2. Deep-Learning Results
The Figure 4.1.2.1. shows exemplary results obtained by utilizing the
standard U-Net and shallow U-Net models with 512x512 and 1024%1024 pixel
resolutions. The obtained segmentation maps are overlayed with the ground truth
maps where the gray-scale pixels show true positive cell regions, cyan pixels show
true positive wound regions, yellow pixels show false positive wound regions, and

magenta pixels show false positive cell regions.

H 256x256 512x512 1024x1024 256x256 512x512 1024x1024

Figure 4.1.2.1. Sample results from the test dataset by the standard (left-most
three columns) and shallow U-Net models. The segmentation maps obtained are
overlayed with the ground truth maps, where grayscale pixels represent true positive
cell regions, cyan pixels represent true positive wound regions, yellow pixels
represent false positive wound regions, and magenta pixels represent false positive

cell regions.

Table 4.1.2.1 presents quantitative comparison of shallow and high-resolution
U-Net with standard U-Net models by surface-based and region-based metrics. These
results depict that our proposed shallow U-Net with 1024x1024 pixel resolution

achieves the best performance in both surface-based and region-based metrics.
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Table 4.1.2.1. Quantitative comparison between standard U-Net model and
shallow and high-resolution U-Net models using surface-based and region-based

metrics on test dataset.

U-Net (256x256) U-Net (512x512) U-Net (1024x1024)
Dice Score: |0.86 £0.14 Dice Score:  |0.90 +0.16 Dice Score:  |0.91 £0.15
Jaccard Ind.: |0.77 + 0.17 Jaccard Ind.: |0.85+0.18 Jaccard Ind.: |0.85 +0.17
MSD: 2298 +31.57 MSD: 23.01 + 100.43 MSD: 13.03 £ 31.65
HD: 179.09 +138.03 HD: 110.71 + 160.13 HD: 119.58 + 121.04
Avg. HD: 38.23 +42.80 Avg. HD: 40.35 £ 175.38 Avg. HD: 22.52 + 46.28

Resizing operations are applied in the decoding side of the U-Net structure,
after encoding part. Table 4.1.2.2. shows the impact of replacing these resizing layers

with up convolution layers on wound healing segmentation problem.

Table 4.1.2.2. Comparison table between application of resizing and up-
convolution operations in the U-Net based segmentation method by surface- and

pixel-based metrics.

Resize Up-Convolution
E, Dice Score: |0.8577 £ 0.05 Dice Score:  |0.8345 +0.16
% Jaccard Ind.: |0.7727 + 0.07 Jaccard Ind.: |0.7398 + 0.18
§ MSD: 10.5893 + 5.13 MSD: 10.6325 + 16.59
a HD: 75.7822 + 36.11 HD: 74.8773 £+ 62.16
Avg. HD: 17.8874 + 7.93 Avg. HD: 17.8490 + 19.58
= Resize Up-Convolution
% Dice Score:  [0.9327 £ 0.02 Dice Score:  |0.8838 + 0.17
E Jaccard Ind.: |0.8860 + 0.03 Jaccard Ind.: [0.8208 + 0.19
E MSD: 3.9466 + 1.81 MSD: 10.7581 + 42.61
Z |HD: 33.8289 + 10.03 HD: 58.0324 + 78.47
= Avg. HD: 6.8967 + 2.57 Avg. HD: 18.6283 + 74.09

Results in the Table 4.1.2.2. show that there is no significant improvement

obtained by replacing the resize operations with up-convolution operations during
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the decoding phase in the U-Net model. Furthermore, up-convolution layer requires

more computational resource as compared to the resizing operation.

4.2. Data Generation Results

4.2.1. Quantitative Evaluation Metrics
In this study, SSIM, Multiscale structural similarity (MS-SSIM), and Peak
Signal-to-Noise Ratio (PSNR) metrics were used for quantitative assessment of
image synthesis via ablation studies, and Fréchet inception distance (FID) [53]
metric was used for more delicate quality comparison of the generated images which

aims to quantify how humans perceive the quality of a given set of images.

MS-SSIM is a multi-scaled version of the SSIM metric, where the SSIM is
calculated for the image at different resolutions. In this paper, the original image was
half-sampled 4 times, the SSIM was calculated for each resolution, and the average is

reported.

PSNR is a well-known metric used for measuring the quality of images in
many image-processing applications when there is a ground-truth image to be
compared. It is computed as shown below:

MAX =255,
width height

1 A~
MSE= — Y. . -$ 3
width X height ; yg} ( (x,») (x,y))

MAX?
PSNR =10xlog,

MSE

where Y and Y denote the true and generated images, respectively.

To quantify the perceived quality of the generated images, the FID was used.
The FID metric, which was initially developed for real object images, has also been
used to assess medical data [54], [55]. It was developed to compare distances of
“perceptual”  distributions between two datasets. To calculate the perceptual
distance, high level semantic feature maps are generated by a pre-trained Inception

neural network model.
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The Inception-V3 model used as feature extractor for FID was originally
trained with images of size 299x299 pixels [56]. However, since the Inception model
is a fully convolutional neural network, the FID score can be calculated for images
with different resolutions. In our study, the FID score was calculated for high
resolution images since one advantage of the NST-based data generation method is
its high-resolution output. However, FID score for standard resolution is also
calculated according to convention. Bicubic interpolation was used in the resizing
operation. The FID metric is calculated by down-scaling images to 299x299-pixel

resolution unless a different resolution is explicitly denoted in this paper.

4.2.2. Ablation Studies
The performance metrics presented in ablation studies were calculated on the
test set. The entire wound healing dataset was randomly partitioned into 80% for

training and 20% for testing.

We tested the effect of DSSIM loss term on the performance of the C-GAN.
The PSNRs of the generated results to the ground truth images were used to compare

the L1 and L1-DSSIM supplementary loss functions (SLFs).

Table 4.2.2.1 shows average PSNR values calculated over 44 test frames of 2
different assays from our dataset. Figure 4.2.2.1 also shows sample synthesized
images with the corresponding PSNR values of the generated images comparing L1

and L.1-DSSIM SLFs in the C-GAN’s objective function.

Table 4.2.2.1. Average PSNR values derived from generated images from the
C-GAN models trained by using L1 and L1-DSSIM supplementary loss functions
(SLFs) separately. 44 images were generated by using mask images from our test-set.

Each model is trained for 1000 epochs.

SLF (L1) SLF (L1 - DSSIM)
Average PSNR: 897 £0.13 9.18 £ 0.11
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Generated Images

Real Images

SLF (L1) SLF (L1 - DSSIM)

PSNR: 9.27 9.32

Figure 4.2.2.1. Comparison between L1 and L1-DSSIM supplementary loss
functions (SLFs) used in C-GAN model training. Each model is trained for 1000

epochs.

The average PSNR values in Table 4.2.2.1 and the sample synthesized
images in Figure 4.2.2.1 show that, using average of L1 and DSSIM as the SLF
improves realistic details and reduces visible repetitive artifacts. The increase in the
PSNR values supports that using DSSIM together with the L1 distance loss function

results in better synthesis.

Table 4.2.2.2 shows the performance comparison of synthesizing wound

healing assay images with the proposed NST-based method by using a single model
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for the whole image vs. two separate models for cell cluster and empty wound

regions via the SSIM, MS-SSIM, and PSNR metrics.

Table 4.2.2.2. Comparison of single and multiple models for generating the

cell cluster and the empty wound regions

Method SSIMt MS-SSIMt PSNR?
Single Model 0.3332 0.2831 7.3542
Separate Models 0.3804 0.3309 7.4190

Table 4.2.2.3 presents the FID metric performance comparison of patch-
based and down-sampled images as training inputs of the NST model. As observed,
patch-based approach yields lower FID scores and thus outperforms the down-

sampling based approach.

Table 4.2.2.3. FID metric comparison of patch-based training and training

with down-sampled inputs.

Method FID|
Down-Sampling 347.0227
Patch-Based 340.0559

4.2.3. Quantitative Evaluation Results
The images in Figure 4.2.3.1. show sample results, input masks and the real
images that the mask is produced from. Each row pair displays the real images and
corresponding masks of the consecutive frames from the same assays. As it can be
deduced visually, the images generated by the C-GAN based method have similar
artifacts and similar styles in every sample, even though the input masks are
different. On the contrary, the images generated by the proposed NST-based method

do not produce repetitive artifacts; they depict large variations in cell-shapes and
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distributions, even when the input masks are similar. Furthermore, the styles of the

overall images are more diverse compared to the results of the C-GAN method.

NST-Based Method
(1920x1440)

Frame
Number

Real Image

C-GAN Method (512x512)

31

32

Figure 4.2.3.1. Samples of synthesized phase-contrast wound healing assay
images generated by both the proposed NST-based method and the C-GAN method.
The first two columns display the original images along with their corresponding
masks, while the third and fourth columns display the images generated by our

proposed method and the C-GAN method, respectively.
The results in Table 4.2.3.1. provide the perceptual quality comparison
between our NST-based method and the C-GAN method. The FID values are

calculated for 299%x299 and 1920x1440 pixel resolutions. It is worth noting that even
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though the C-GAN based method was trained to generate lower resolution outputs
(512x512), the FID scores calculated on lower resolution are better for our NST-

based method, which has outputs at 1920x1440 pixel resolution.

Table 4.2.3.1. Comparison of the FID metric using 5-fold cross-validation is
conducted between our novel NST-based method and the C-GAN method for the

generation of wound healing assay data.

Proposed NST Method C-GAN Method
&3:1 FID| FID| FID| FID|
(299x299) (1920x1440) (299x299) (1920x1440)
1 367.53 37.33 523.51 48.87
2 568.43 48.32 453.52 49.03
3 487.43 40.99 388.20 41.90
4 336.04 35.29 359.44 47.43
5 395.50 43.73 428.29 55.95
Avg.: 410.92 41.43 430.59 48.64

4.2.4. Qualitative Evaluation Results
In addition to comparison by quantitative metrics, we compared the image
synthesis performances of the methods by subjective evaluation of the domain

experts as shown in Figure 4.2.4.1.

We took two frames each from the 14 assays in our dataset for qualitative
evaluation by domain experts. The two frames, along with their manual annotations,
were taken from the beginning and end of the assays to enrich the diversity in the
collected frames. Manual annotations were input as conditions to synthesize wound
healing assay images by the C-GAN and NST methods. The models that were used
to generate the synthesized data were trained on the portion of the ground-truth data
excluding the assays that include the binary maps that were in the input set as in the

k-fold cross validation.

A total of 7 molecular biologists who worked on the phase-contrast microscopy

wound healing data before were individually invited to rate the 28 synthesized data
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by their naturalism and artifact-freeness, separately. The observers are categorized as
"novices" and "experts" based on their practical experience on working with (i.e.
acquiring and analyzing) similar data. 2 observers were considered as "experts" (>6
months of experience) while the remaining 5 were "novices" (1-6 months of
experience). The naturalism attribute was rated between 1 and 5, where 1

[13

corresponds to “not realistic” and 5 corresponds to “very realistic
(indistinguishable)”. The artifact-freeness attribute was also rated between 1 and 5,
where 1 corresponds to “contains many artifacts” and 5 corresponds to “no artifacts”.
For a reference, the condition input and the corresponding real image were also
shown to the participants together with the synthesized data. The synthesized data
was shown to the subjects by hiding the source and the order of the data was

randomly shuffled to prevent any bias.

Naturalism Artifact-Freeness Overall
NST-Based GAN-Based NST-Based GAN-Based B NST-Based (Ours) M GAN-Based
(Ours) (Ours)

Experts 4.00
| Average: 325031 | 230037 | 3812020 | 1792022 | 3.00
Novices 200
|Average: 2.27 £ 0.11 ‘ 1.79+0.18 ‘ 3.77£0.64 ‘ 1.84+0.14
1.00
Overall
0.00

| Average: 2.97 £0.35 ‘ 215+ 0.34 ‘ 3.80£0.36 ‘ 1.80+0.19

Naturalism Artifact-Freeness
(a) (b)
Experts Novices
B NST-Based (Ours) ®GAN-Based B NST-Based (Ours) mGAN-Based
4.00 4.00
3.00 3.00
2.00 2.00
1.00 1.00 -
000 Naturalism Artifact-Freeness 0.00 Naturalism Artifact-Freeness
(c) (d)

Figure 4.2.4.1. Results of qualitative assessment for the naturalism and
artifact-freeness attributes of synthesized images by NST-based and GAN-based
methods. (a) Numeric results of quantitative assessment by novices and experts; (b)

overall scores; (c) scores by expert observers; (d) scores by novice observers.
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The results in Figure 4.2.4.1. indicate that the NST-based data generation
method outperforms the C-GAN method in synthesizing more realistic and more
artifact-free wound healing assay images with a high margin according to
professionals' perception. While our method is favored in both attributes including

naturalism, it is favored by a higher margin for artifact-freeness.

The impact of including the generated images, by the novel NST-based
method, in the training data of a semantic segmentation task is demonstrated.
Accordingly, a modified U-Net [29] model is trained to segment the wound front in
wound healing assays. The modification to the U-net architecture mitigates the trade-
off between training with high-resolution images and the availability of training
resources. Briefly, the size of the feature maps is increased, and then, to balance the
amount of memory used, the number of the generated feature maps is decreased. The
convolutional layers are reduced to decrease the number of the feature maps. By this
way, the inputs and outputs of the segmentation model were increased to 512x512

from 256%256 pixel resolution.

From the 328 images in the wound healing assay time-series image dataset, 79
images were separated for testing. The remaining 249 images belonging to 12 wound
healing assays were used for training of the data augmentation models and the
segmentation model. Figure 4.2.4.2. shows the performance metrics of the modified

U-Net segmentation models that were trained on different sets of data.
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Figure 4.2.4.2. Validation results of segmentation by the U-Net based model
that is trained using different sets of data with a confidence interval of 95%. The U-
Net model is trained with 249 real training data until overfitting and the best
performing model according to the validation loss value is resulted. The same
procedure is repeated two times on the last trained model by adding 249 synthesized
data using the NST-based method. RI stands for real images, while SI stands for

synthetic images. (a) Set similarity metrics; (b) surface distance-based metrics.

The results shown in Figure 4.2.4.2. were obtained from the modified U-Net
models that are taken from 3 stages of the training process with different datasets. At
the first stage 249 real data used as the training data. In the next 2 stages, 249
synthesized images, by our NST-based method, are added to the training set. The
training is performed for 200 epochs in each stage. For each new stage, the best
performing model from the last stage is taken for training. The NST-based model
used for generating these 249 data is trained by using only the data from training set.

Figure 4.2.2.3. shows the binary cross entropy loss values during these training steps.
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Figure 4.2.4.3. The graph of validation Dice scores from the training of the
modified U-Net segmentation model per epoch. The training has 3 stages composed
of 200 epochs each. In the first stage, 249 real data were used in the training. For the
next stages, 249 newly generated images by our NST-based method were added to
the training dataset. Except for the last stage, validation scores after the best-
performed epochs are not included in the graph. These epochs are marked by red

lines.

According to the results in Figure 4.2.4.3. the wound healing assay data
synthesized by our NST-based method contributed to the segmentation performance
as training data. The validation scores of the segmentation model increased from
98.11% to 98.93% in Dice score and in Jaccard index increased from 95.76% to
97.56% with 95% confidence interval by using 249 synthesized images in addition to
the initial dataset consisting of 249 real data. Doubling the number of synthesized
images and continuing the training did not contribute to segmentation performance

any further.
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5. CONCLUSIONS, CONTRIBUTIONS AND FUTURE WORK

Our proposed traditional computer vision-based method for segmenting
wound fronts in wound healing assays, utilizes variance filtering, Gaussian
smoothing, dilation, and erosion operations to achieve accurate segmentation results.
By considering temporal information and the characteristic shrinkage of wound
regions over time, the method effectively identifies and assigns potential wound
regions. This approach provides a valuable tool for automated and reliable wound
front segmentation in wound healing assays, contributing to the advancement of

wound healing research.

The examined traditional method requires Gaussian blurring kernel parameter
to be fine-tuned for segmentation which corresponds to the approximate pixel value
of the radius of the cells in the assay images. In the future a prepossessing method
can be applied for estimating the value of this kernel parameter automatically to

provide a fully-automated solution.

U-Net based segmentation is also an automated method with higher accuracy
when there is efficient amount of training data and computational power. Application
of shallow and high-resolution U-Net based method increases the performance by
requiring same amount of computational resource as compared to the standard U-Net

model.

In this study, also a novel Neural Style Transfer (NST) based data generation
method for generating phase-contrast microscopy data of wound healing assays is
examined. It is concluded that the NST-based method performs better than
Conditional Generative Adversarial Network (C-GAN) under constraints of
computational resources. The qualitative and quantitative metrics show that our
proposed patch-based NST-based method outperforms the C-GAN alternative in

terms of quality and diversity of the generated images.

To the best of our knowledge, this is the first NST-based method proposed
for data generation task which does not use GAN. While we demonstrated the NST-

based method for synthesizing phase-contrast microscopy (PCM) time-lapse images
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of wound healing assays, this approach is the first of its kind for any type of imagery
as far as we know. NST-based data generation method by not using GAN is less
resource demanding and easier to train since the latter one has adversarial training
procedure. Our NST-based method's inference time is ~3.3 seconds while C-GAN
method's is only ~33 milliseconds. On the other hand, training of the NST-based
method takes only ~2.5 minutes while training the C-GAN based method takes ~25

hours.

Also, as far as we know, this is the first synthesis method proposed for
generating artificial wound healing assay data that does not require any additional
calculation of (thus prior information on) cell distribution statistics. The model learns
the cell distribution from the input data and with the style input and random noise
input, the cells are distributed. Our NST-based data generation method theoretically
can generate infinitely many different results by changing the input conditions and/or
the noise input. Even though the cell distribution is generated automatically, wound
region mask input is required for controlling cell and wound regions in our
algorithm. The code for generating the results will be available at

http://https://github.com/IDU-CVLab/NST for Gen upon appropriate request. In

future work, the condition mask can be automatically generated to increase

variability.

In future work, AdalN can be used in many layers to better preserve
structural information, yet this approach may require more computational resources.
Also, the noise input can be applied in multiple layers instead of a single layer for

improving the diversity in the generated images.
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