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DOKTORA TEZi

AKILLI ALGORITMALARA DAYALI NESNELERIN INTERNETI ICIN
DAYANIKLI IDS TASARIMI

Tamara Saad Mohamed AL-JANABI

Aksaray Universitesi
Fen Bilimleri Enstitisi
Elektrik-Elektronik ve Bilgisayar Miihendisligi Anabilim Dal

Damisman: Prof. Dr. Sezgin AYDIN
OZET

Genel olarak Nesnelerin Interneti'nin (loT'ler) ve Ozellikle Hareketli Nesnelerin
Interneti'nin (IoMT'ler) givenlik aciklari, arastirmacilar1 davetsiz misafirlere ve
saldirilara kars1 glvenlik sistemleriyle donatmaya motive eder. loMT'ler igin
anormallik tespitinin izinsiz giris tespiti ile entegrasyonu yeterince ele alinmamastir.
Bu calisma, anormallik tespiti icin bir Kalman ve Cauchy kiimelemesi olusturarak ve
bunu Extreme Learning Machine (ELM) smiflandiricisint kullanarak loMT'ler
icindeki kimlik dogrulama diigiimleri icin kullanarak bu sorunu ele almaktadir.
Algoritma, cesitli bilesenlerden olusur. Bunlardan ilki, WiFi'yi IMU verileriyle
birlestirmeye dayali bir kapali ortam igindeki yayalarin yoringesini tahmin etmek
icin Kalman filtresi tabanli model, ikincisi Kalman filtresini kullanarak tahmini
yoriingeye dayali olarak loMT'deki anormallik davranisini tespit etmek icin
guvenilirlik degerlendirmesi, U¢tinclsi de, bir Online Sequential Extreme 6grenme
makinesi (OSELM) kullanarak saldirilarin tanimlanmasi i¢in anormallik algilamay1
cevrimigi 6grenme ile entegre ederek 1oMT sistemleri igin IDS modelidir. OSELM
algoritmasi, WiFi parmak izi i¢in TamperU veri seti ve izinsiz giris tespiti icin
KDD99 kullanilarak uygulanmis ve degerlendirilmistir. Ayrica, izinsiz giris tespiti ve
anormallik tespiti icin karsilastirma O6lgUtleri ile yapilan bir karsilastirma, dnerilen
tim  siiflandirma  Olgutleri  agisindan  Onerilen  yaklasimin  istinligiini
kanitlamaktadir. Gelistirilen algoritma, anormallik tespiti i¢in mevcut iki modelle,
yani gelisen veri akisi i¢in bir ¢ok yogunluklu kiimeleme algoritmast (MUDI) ve
gelisen veri akislarinin rastgele sekillendirilmis kiimeler halinde tamamen ¢evrimigi
kiimelenmesi (CEDAS) ile karsilastirildi. Sonuclar, bu c¢alismada gelistirilen
algoritmanin, kullanilan anormalliklerin farkli yiizdeleri, farkli sayida yaya sayisi ve
farkli ortalama yaya hizlarini iceren U¢ farkli senaryo altinda anormallik ve izinsiz
giris tespiti agisindan stiinliigiinii kanitlamistir.

Anahtar Kelimeler: Kalman filtresi, Anomali Tespiti, Saldir1 Tespit Sistemleri,
Asirt Ogrenme Makinesi, Hareketli nesnelerin interneti, Wi-Fi sensorleri, Kalman
Cauchy.

Ekim , 2022; 138 Sayfa
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ABSTRACT

The vulnerabilities of the Internet of Things (l1oTs) in general and the Internet of
Mobility Things (IoMTs) in particular motivate researchers to equip them with
security systems against intruders and attacks. The integration of anomaly detection
with intrusion detection for loMTs has not been addressed adequately. This study
tackles this issue through building a Kalman and Cauchy clustering for anomaly
detection and using it for authentication nodes within 1oMTs using the Extreme
Learning Machine (ELM) classifier. The algorithm is composed of various
components; firstly, the Kalman filter-based model for estimating the trajectory of
pedestrians within an indoor environment based on fusing WiFi with IMU data.
Secondly, trustworthiness assessment for detecting anomaly behaviour in IoMT
based on the estimated trajectory using the Kalman filter. Thirdly, the trust IDS
model for IoMT systems by integrating anomaly detection with online learning for
attacks identification using an Online Sequential Extreme learning
machine(OSELM). The OSELM algorithm has been implemented and evaluated
using TamperU dataset for WiFi fingerprinting and KDD99 for intrusion detection.
Furthermore, a comparison with benchmarks for intrusion detection and anomaly
detection proves the superiority of the proposed approach in terms of all the
considered classification metrics. The developed algorithm was compared with two
existing models for anomaly detection, namely, a multi-density clustering algorithm
for evolving data stream (MUDI) and fully online clustering of evolving data streams
into arbitrarily shaped clusters (CEDAS). The results proved the superiority of the
developed algorithm in this work in terms of anomaly and intrusion detection under
three different scenarios that include different percentages of added anomalies,
different numbers of pedestrians, and different average speeds of pedestrians.

Keywords : Kalman filter, Anomaly Detection, Intrusion Detection Systems,
Extreme Learning Machine, Internet of mobility things, Wi-Fi sensors, Kalman
Cauchy.
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1. INTRODUCTION

The constant development of the Internet of Things (IoT) technology has effectively
aided society's progress in recent years. The 10T, which embeds wireless network
connectivity, multi-sensors, and technology into traditionally non-smart everyday
objects, is gradually making the concept of “smart objects” a reality. Thinking about
the 10T, we usually think of stationary objects like appliances, home automation
systems, or stationery products like the Good Night Lamp. Moving things, such as
self-driving cars and robots, and those that walk beside us (mobile devices and
wearables), are anticipated to be key components of the 10T. The IoMT (Internet of
Moving Things) takes it a step further, connecting moving objects such as cars,
phones, robots, and mobile devices (Althobaiti, 2020). Moving things (such as
automobiles, buses, lorries, trains, people, wearable gadgets, mobile phones, and
tablets) and others that can be tracked, exchanged, or interacted with bits of data over
mobile network or Wi-Fi Internet connections are included in the loMT. Because
moving things are so important in modern life, it's only logical that they'd be linked
to networks (Junfeng Tian et al., 2019). Considering the vital role that moving items
play in our modern lives, such as delivering people and goods, it becomes only
natural that vehicles like cars, trucks, and trains would become networked. Both
companies and people are interested in learning more about location, fuel efficiency,
and the relationship to other vehicles, and being able to track data across multiple
environments provides a more complete picture of our lives, which helps companies

design and create products that make more sense for people.

The application of anomaly detection in general has been addressed in different
fields such as identifying abnormal behavior using Internet of Things (loT),
predictive maintenance in industrial environment, and detecting abnormal activities
in networks (Gaddam et al., 2020), etc. However, one special type of anomaly
detection has not received adequate attention from researchers is the anomaly
identification in internet of moving things (IoMT). Considering the vulnerability of
this networks in the aspect of falling under intrusion from outsiders, providing them
with smart anomaly detection algorithm to assist the functionalities of intrusion
detection is promising for increasing the security of them and alleviating the

accuracy of attacks detection (Junfeng Tian et al., 2019) .



1.1 10T Background

Security concerns are impeding the adoption of 10T technology in everyday business
and life (Arshad et al., 2020). In comparison to conventional networks, the Internet
of Things environment is dynamic (Ghaleb, Maarof, Zainal, Al-Rimy, et al., 2019).
As a result, standardizing a clear visualization for its topology is difficult. The vast
majority of traditional security measures are incompatible with the Internet of Things
paradigm (Moustafa et al., 2018). Furthermore, memory (Arshad et al., 2020) CPU,
and power capacity are all limited in many IoT sensors and actuators. Due to these
constraints, traditional security measures are computationally prohibitive.
Furthermore, a new issue arises when attackers compromise susceptible nodes and
exploit them to initiate a series of pipelined attacks from within the internal network.
The high proportion of heterogeneous Internet of Things devices presents an

additional challenge in this situation.

Despite the fact that 10T devices differ in several ways, They must strive to achieve a
shared task, such as , computational capacity, functionality , network connectivity
and software specs (Granjal et al., 2015). Regardless, when the participating nodes
use different protocols and standards, the heterogeneity of 10T nodes has an impact
(Borgia, 2014). As a result of a lack of consistency among many of the protocols,
traditional solutions are unable to cooperate with one another (Chen et al., 2018;
Qadri et al., 2020). As a result, determining the presence of compromised nodes
and/or attacks becomes difficult. Furthermore, the security levels of the various
protocols vary. As a result, protocols with weak security pose a threat to the entire

0T system.

In order to deal with 10T security concerns, several solutions have been developed,
which can be classified into two categories: detection and prevention (Singh and
Kumar, 2020). Prevention is the first line of defence against an attack on the system
or its data. To ensure that only those with the proper authorization have access to 10T
resources, these solutions employ cryptography and biometrics (Allig et al., 2019).
However, if the attacks were launched from a valid (but compromised) node within
the network, the preventive measure is ineffective. In this scenario, the attacker has
complete control over all resources, including encryption/decryption keys and login

credentials. This compromised node appears legitimate to the rest of the network,



allowing the attacker to carry out malicious actions such as data falsification and
manipulation (Albahri et al., 2021).

Insurance firms, for example, can track real-time driving behaviours and offer
discounts to good drivers (and, presumably, raise the rates of bad drivers). Audi's
Traffic Light Detection technology adjusts the vehicle's speed to match the speed of
traffic lights, saving time and fuel (de Souza et al., 2015). On the Internet of Things,
the Internet of Moving Things has gathered data on communication and the link
between moving sensors and servers. Moving items data, such as self-driving cars,
people, freight, robots, and drones, are generated swiftly in real life. These moving
objects can collect a vast amount of related trajectory data via various sensors and
upload it to a server over the network, where we can evaluate and detect anomalies.
The Internet of Moving Things poses enormous challenges for city leaders today
(Teng et al., 2019), but it also offers significant opportunities to leverage the mobile-
technology boom to improve everything, from city services to air quality, as well as
provide new insights into public safety and long-term urban planning and air quality
forecasting (Wang et al., 2019). When the above moving things move, position
information is generated in the form of a trajectory, and multi-sensor data is
generated at the same time. Human examination of these moving entities, particularly
outlier analysis, has significant practical implications. People normally compare
moving objects as a whole, and the complete moving object is the basic unit of
outlier detection. We may not be able to detect outlying portions this way and use
them for raising the security level of intruders in the network. This motivates
developers of systems to integrate anomaly detection of loMTs with IDSs to increase
security and minimize vulnerability. Figure 1.1 presents the usage of IoMTs for
detecting anomalies of vehicles driving on the highway.



Figure 1.1. Internet of Moving Things (IoMTs) sensors are useful for detecting
anomalies in the roads to mitigates hazards (Wang et al., 2019).

The application of anomaly detection, in general, has been addressed in different
fields, such as identifying abnormal behaviors using 10T (Gaddam et al., 2020),
predictive maintenance in industrial environments (De Benedetti et al., 2018), and
detecting abnormal activities in networks (Salman et al., 2019), etc. Considering the
vulnerability of these networks in the aspect of falling under intrusion from outsiders,
providing them with a smart anomaly detection algorithm to assist the functionalities
of intrusion detection is promising for increasing their security and alleviating the
accuracy of attacks detection. The goal of this study is to develop an anomaly
detection algorithm and IDS for IoMT. This algorithm exploits the mobility pattern
of the individual nodes in the network by using Kalman filtering-based sensor fusion.
The utilized sensors are WiFi and inertial measurement units carried by the
pedestrians for estimating their trajectories. Next, the predicted trajectories are used
as stream data input for the Cauchy-based clustering algorithm for anomaly
detection. The anomaly detection is finally used to extend the feature space of the

intrusion detection algorithm based on the extreme learning machine model.

Literature evidence suggests that various approaches have been developed for
anomaly detection based on stream data clustering, such as those proposed by ( Islam
et al., 2019; Amini et al., 2016; (Skrjanc et al., 2018); (Weng & Liu, 2019).
However, all these proposals were only made for clustering with identifying outliers
(Amini et al., 2016); (Islam et al., 2019) for intrusion detection, but without
exploiting special characteristics about the networks in general or the mobile nodes
in loMTs in particular (Skrjanc et al., 2018). On the other side, it is observed that the



linkage between the anomaly behaviour of mobile nodes and detecting the
capabilities of intrusion detection systems in IoMTs has not been exploited nor
addressed. In the work of (Junfeng Tian et al., 2019), the moving things outlier
detection algorithm has been proposed for anomaly detection in loMTs. The distance
of the moving things is equal to the weighted sum of the location distance and the
multi-sensor distance; a three-step framework is used to detect the generalized
anomaly using multi-sensor data generalization, moving things partitioning, and
anomaly detection. However, it misses a linkage with an IDS for securing the
network against attacks. Furthermore, its anomaly detection does not provide
integration between process models and measurement models for state estimation

which is needed for using an accurate estimation in anomaly detection.

Outsider attack detection is concerned with defending the 10T system against attacks
from outside the network (Al-rimy et al., 2018); (Moustafa et al., 2018). This is
usually accomplished by placing the IDS on the network's perimeter. As effective as
this strategy may be in preventing external attacks (from the Internet, for example)
from harming an 10T system, it has no effect on an attack initiated from within the
system. It's possible for an attacker to avoid detection in this instance because it
doesn't have to enter the network. As a result, the detection system would have no

idea what was going on.

This technique defends against attacks initiated from within the network itself (
Ghaleb et al., 2018; (Xia et al., 2019). In order to launch a series of attacks against
the network, the attacker must employ legitimate but compromised nodes, which
makes it harder to detect by existing solutions. Because the insider attacks are
frequently performed out through authorized (trustworthy) nodes that the attackers

have managed to corrupt, it becomes more difficult to identify the attacks.

Insider attacks have been the subject of several proposals for solutions
(Thanigaivelan et al., 2018); (B. Ghaleb et al., 2018)(F. A. Ghaleb, Maarof, Zainal,
Al-Rimy, et al., 2019); (Foley et al., 2020). These solutions attempt to identify
discriminative patterns that can be used to distinguish attack traffic from normal
traffic. By watching the traffic transferred between neighbouring nodes, such as
packet size and data rate, these systems can identify any network inconsistencies. It's

possible that this approach could help identify resource exhaustion and spoofing



attacks, but it can't identify attacks that change data and spread misleading
information to other nodes in close proximity (F. A. Ghaleb, Maarof, Zainal, Al-
Rimy, et al., 2019).

Researchers assume that attackers maintain a consistent threat regime and never
change their behaviour in these investigations. Many of these solutions are unaware
of the complex obfuscation techniques employed by skilled attackers and malicious
software to evade detection. When it comes to devising solutions, they assume that
there is a steady stream of attacks on their systems. Because of the dynamic nature of
the Internet of Things (loT), advanced attackers are adapting their attack methods to
escape detection. As a result, the defence systems become obsolete because of

concept drift.
1.2 Problem Statement

Reading the literature, it is observed that various approaches were developed for
anomaly detection based on stream data clustering such as the work of (Islam et al.,
2019); (Amini et al., 2016) (Skrjanc et al., 2018); (Weng & Liu, 2019). However, all
of them were only made for clustering with identifying outliers (Amini et al., 2016)
(Islam et al., 2019) or for intrusion detection but without exploiting special
characteristics about the networks in general or the mobile nodes in IoMTs in
particular (Skrjanc et al., 2018). On the other side, it is observed that linking between
anomaly behaviour of mobile nodes and detecting capabilities of intrusion detection
system in IoMTs has not been exploited nor addressed. In the work of (Junfeng Tian
et al., 2019), The moving things outlier detection algorithm has been proposed for
anomaly detection of the Internet of Moving Things. The distance of moving things,
which is equal to the weighted sum of the location distance and the multi-sensor
distance, and then apply a three-step framework to detect the generalized anomaly
using multi-sensor data generalization, moving things partitioning, and anomaly
detection. However, it misses a linking with an IDS for securing the network against
attacks. Furthermore, its anomaly detection does not provide an integration between
process model and measurement model for state estimation which is needed for using

an accurate estimation in the anomaly detection.



There are six sub questions that must be answered in order to understand the research

aim.

1. How to recognize the trustworthiness of transmitted/received data by IoMT
nodes?

How to recognize the compromised nodes within loMT system?

How to detect anomaly behaviour in IoMT based on the estimated trajectory?

How to generate IDs in loMT environment ?

a &~ DN

How to improve the detection accuracy?
1.3 Research Aim and Contributions

The aim of the proposed study is to develop an anomaly detection algorithm and IDS
for IoMT. This algorithm exploits the mobility pattern of the individual nodes in the
network by using Kalman filtering based sensor fusion. The used sensors are WiFi
and inertial measurement units carried by the pedestrians for estimating their
trajectories. Next, the predicted trajectories are used as stream data input to Cauchy
based clustering algorithm for the functionality of anomaly detection. The anomaly
detection is finally then used for extending the feature space of intrusion detection

algorithm based on deep believe neural network model.
This Aim is accomplished based on the following contributions :

1. Create a framework for intrusion detection using mobility anomaly detection and
trained model for attacks.

2. Develop a Kalman filter-based model for estimating the trajectory of pedestrians
within an indoor environment based on fusing WiFi with IMU data.

3. Propose a Cauchy-based clustering method for detecting anomaly behaviour in
IoMT based on the estimated trajectory by Kalman filter.

4. Propose an extreme learning machine-based IDS model for IloMT systems using
the Cauchy clustering scheme proposed in (1) for the training phase of an

extreme learning machine to improve the detection accuracy.

o

Evaluate the proposed algorithm using classification and networking metrics



1.4 Research Scope

The developed algorithm aims at detecting anomaly in general and IDS in particular,

that happens in internet of moving things loMTs.

1. The type of attacks that we are addressing are data tampering attacks. In data
tampering, the attackers manipulate the user’s information intentionally to disrupt
their privacy using unwanted activities.

2. The loT devices that carry important user’s information such as location, fitness,
billing price of smart equipment are in great danger to encounter these data
tampering attacks (Junfeng Tian et al., 2019).

3. The considered sensors are devices occupied with accelerometers, gyros, GPS,
and heart rate sensor (X. Li & Zou, 2021) .

Such attacks are threats to Identification, Authorization, Accessibility,

Confidentiality, and Integrity.
1.5 Problem Formulation

Assuming that we have an indoor environment E combined of set of floors F given

as:
F = {f1'f2'--fn} (1-1)

Where

f: denotes floor of ID i

n denotes the maximum ID for floors

And multi-room in each floor given as

R = {rl,li rl,Z' .. rl,NR(f1)' 7‘2'1, T‘2’2, . TZ,NR(fZ)’ T'fn’NR(fn)} (12)
Where

NR(f;) denotes the number of rooms in floor f;

Set of Pedestrians denotes by

P ={p1, 02 - Pm} (1.3)



m denotes the number of Pedestrians.

The Pedestrians are expected to be moving within the environment while they carry
smart device or nodes with an IoMT networking connectivity. The nodes contains
WiFi sensor which enables receiving WiFi signal from various access points located

at given locations in the environment. The set of access points is given as

AP = {ap,, ap,, ...apy} (1.4)

Where

k denotes the number of access points .

The WiFi signal is used to predict the location of the Pedestrians based on the
fingerprint. Hence, we have IoMT network that is consisted of the Pedestrians
devices. The goal is to build a system that uses the location information of the
neighboring nodes for detecting anomaly behaviour in the mobility. Next, we secure
the network with an IDS system that detects two types of attacks, namely, blackhole
and DDoS.

1.6 Thesis Motivation

The application of anomaly detection in general has been addressed in different
fields such as identifying abnormal behavior using Internet of Things (loT),
predictive maintenance in industrial environment, and detecting abnormal activities
in networks, (Breitenbacher et al., 2019) etc. However, one special type of anomaly
detection has not received adequate attention from researchers is the anomaly
identification in internet of moving things (IoMT) (Gaddam et al., 2020).
Considering the vulnerability of this networks in the aspect of falling under intrusion
from outsiders, providing them with smart anomaly detection algorithm to assist the
functionalities of intrusion detection is promising for increasing the security of them

and alleviating the accuracy of attacks detection (Arshad et al., 2020).

1.7 Method of Study

This thesis tackles the issue of Vulnerabilities Internet of Moving Things (IloMTs)
through building a Kalman (Fan et al.,, 2019) (Sung et al., 2018) and Cauchy



clustering for anomaly detection and using it for authentication nodes within loMTs
using extreme learning machine classifier (Skrjanc et al., 2018). The algorithm is
combined of various components: firstly, Kalman filter-based model for estimating
the trajectory of pedestrians within an indoor environment based on fusing WiFi with
IMU data (X. Li & Zou, 2021). Secondly, trustworthiness assessment for detecting
anomaly behaviour in IoMT based on the estimated trajectory by Kalman filter.
Thirdly, trust IDS model for loMT systems by integrating anomaly detection with
online learning for attacks identification using online sequential extreme learning
machine. The algorithm has been implemented and evaluated using TamperU dataset
for WiFi fingerprinting (Lohan et al., 2017) and KDD99 for intrusion detection
(Moustafa & Slay, 2015). Furthermore, a comparison with benchmarks for intrusion
detection and anomaly detection proves the superiority in terms of all classification

metrics.
1.8 Thesis Outlines
The rest of this thesis is organized as follows:

e Chapter two: Presents the Literature survey and related works
e Chapter three: Methodology
e Chapter four: presents the experimental design, results, and analysis

e Chapter five: presents the conclusion and future works.
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2. LITERATURE REVIEW

Despite the crucial role of the Internet of Things (1oT) technology in our daily life
and business activities, they have been associated with several security threats and
concerns due to the heterogeneity and huge number of devices connected to the 10T,
as well as the ineffectiveness of the conventional security protocols (Sha et al.,
2020). Even though there are obvious differences in the connected devices in terms
of their function, software application, computational capability; and network
connectivity, it is necessary that they work together to achieve a target (Granjal et al.,
2015). This implies that any fault in the security protocol of any of the connected
devices will affect the performance of the entire system and prevent it from
performing optimally. To ensure adequate protection of 10T systems, several security
protocols have been developed; these security protocols can be categorized into
reactive and proactive protocols. Regarding the proactive protocols, also called
preventive approaches, they are developed to protect data and communications using
authentication and cryptographic procedures (Chen et al., 2018). These preventive
protocols can prevent attacks targeted at sensitive information and data on other
nodes, but they cannot prevent a compromised node from propagating altered
information with the rest of the network nodes (van der Heijden et al., 2018). On the
other hand, the reactive protocols are developed to detect attacks and prevent them
from occurring. One common example of the reactive protocols is the intrusion
detection systems that identifies the existence of malicious network activities and

identify the compromised devices.

A typical loT network is a system of numerous devices and components that are
interconnected to a network for effective exchange of data and information between
such components as exhibited in Figure 2.1 (Lo et al., 2019). Such systems exhibit
better performance in terms of effectiveness, efficiency and productivity. However, a
major problem of such integration of components and devices is the issue of security
threats. As these systems are connected to the Internet, they are prone to several
attacks that can compromise the integrity, confidentiality, and authenticity of the
exchanged data.

This literature provides a comprehensive explanation of Intrusion Detection Systems

(IDS) in 10T and loMT. Additionally, abuse-based detection and anomaly-based
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detection which are the main classification of the Intrusion Detection System (IDS)
had been explained in critical analysis.
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Figure 2.1. The main components of 10T architecture (Lo et al., 2019).

2.1 Anomaly Detection In loMT

The existing literature contains a wide range of approaches developed for handling
the problem of anomaly detection in general, and for the internet of mobile things in
particular. From a general perspective, some approaches to anomaly detection were
based on clustering. In the work of (Islam et al., 2019), a fully online density-based
clustering algorithm for changing data streams was developed under the name of
Buffer-based Online Clustering for Evolving Data Stream (BOCEDS). The micro-
cluster radius is recursively updated to its local optimal using this approach. It also
includes a buffer for storing unnecessary micro-clusters and a fully online pruning
mechanism for extracting the buffer's momentarily irrelevant micro-cluster.
Furthermore, BOCEDS presents an online micro-cluster energy-updating mechanism
based on the data stream's spatial information. The algorithm contains an outlier
buffer that can be used for rejecting anomaly behavior or detecting it. Other
algorithms were based on the density change to detect anomaly behavior with the
inclusion of the historical behavior of algorithms. In the work of (Amini et al., 2016),
Multi-Density (MUDI)-Stream was developed; it consists of four basic components
and an online-offline algorithm. It stores summary information about a growing
multi-density data stream in the form of core mini-clusters during the online phase.

The final clusters are generated using an adapted density-based clustering algorithm

12



in the offline phase. The grid-based approach is utilized as an outlier buffer to handle
noise, anomaly behavior, and multi-density data while also reducing the clustering
merging time. Other algorithms were based on mathematical density models. The
study by (Skrjanc et al., 2018) introduced the eCauchy approach for classification
issues, which is a unique evolving probabilistic Cauchy clustering method. This
approach was used to monitor cyber-attacks on a broad scale. The described strategy
results in a more flexible system for detecting attacks. In the work of (Weng & Liu,
2019), the statistical features of the subsequence of streams were considered. The
work has provided an analysis of the differences between anomalies in single time
series and anomalies in multi-dimensional time series. Next, it proposed a collective
anomaly detection algorithm named iForestFS for a multi-dimensional stream based
on iForest in a cloud environment. The Markov Jump Particle Filter was used in the
work of (Slavic et al., 2020) to analyse multiple video situations where a semi-
autonomous vehicle accomplishes a set of tasks in a closed environment. The
implementation of an automated data engineering pipeline for anomaly detection in
IoT sensor data was proposed in the work of (X. Li and Zou, 2021). The method
employs loT sensors, Raspberry Pis, Amazon Web Services (AWS), and a variety of
machine learning approaches to discover anomalous cases in the smart home security
system. The moving things outlier identification algorithm was proposed in (Wang et
al., 2019) as a generalized approach for anomaly detection from the Internet of
Moving Things. The distance of moving things was proposed as being equal to the
weighted sum of the location distance and the multi-sensor distance; the generalized
anomaly was detected using a three-step framework that included multi-sensor data
generalization, moving things partitioning, and anomaly detection. A similarity
metric Convolutional Neural Network (CNN) based on a channel attention model
was proposed for traffic anomaly detection task in the work by Kang et al. (2019).
The method consists mostly of (i) a Siamese network with a hierarchical attention
model based on word embedding that can measure similarities between anomalies
and templates selectively; (ii) a deep transfer learning algorithm can automatically
annotate an unlabeled collection while fine-tuning the network; (iii) a background
modeling method for anomaly extraction that combines geographical and temporal
information. The association between the experience of sleep deprivation among
drivers during lengthy journeys and CO, concentrations in automobiles was

hypothesized in the study by (Chung & Kim, 2020). The assistant collects
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multimodal signals using five sensors that detect CO, CO,, and particulate matter
(PM), as well as the temperature and humidity data. These signals are then sent to a
server via the 10T where they are analysed by a deep neural network to determine the
vehicle's air quality. To create an air quality anomaly detection model, the deep
network uses long short-term memory (LSTM), skip-generative adversarial network
(GAN), and variational auto-encoder (VAE) models. The deep learning models use
LSTMs to acquire data, while the semi-supervised deep learning models use GANs
and VAEs. The goal of this assistant is to deliver real-time vehicle air quality
information to drivers, such as PM alarms and sleep-deprived driving alerts to
prevent accidents. A summary of the related studies is presented in Table 2.1.

Table 2.1. A summary of the related studies of anomaly detection in IoMT.

Author(s) Research Problem Solution Limitation(s) Detection
Type

Islam, et al. | Most of the | A fully online clustering | CEDASrequires Insider
(2019) algorithms are | algorithm for evolving | predefining the global

either fully offline, | data  stream  called | optimal radius of

hybrid CEDAS . The algorithm | micro-clusters, which

online/offline, ~ or | contains an  outlier | is a difficult tasks

cannot handle the | buffer that can be used

property of evolving | for rejecting anomaly

data stream. behavior or detecting it
Amini et al. | Other  algorithms | Multi-Density (MUDI)- | Streaming algorithms | Insider
(2016) were  based on | Stream was developed; | must have a consistent

mathematical
density models.

it consists of four basic
components and an

and minimal memory
storage, as well as a

online-offline algorithm. | short computation
It stores summary | time.

information about a | MUDI-overall
growing  multi-density | Stream's complexity is
data stream in the form | determined by the
of core mini-clusters | complexities of its

during the online phase.
The grid-based approach
is utilized as an outlier
buffer to handle noise,
anomaly behavior, and
multi-density data while
also reducing  the
clustering merging time.

components.
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Table 2.1. (Continued).

Author(s) Research Problem | Solution Limitation(s) Detection
Type
Skrjanc et al. | Developing cyber- | Introduced the eCauchy | The method's current | Insider
(2018) attack  monitoring | approach for | flaw is that it doesn't
methodology  that | classification issues, | include a  cluster
can keep the | which is a unique | merging mechanism,
classifier up to date. | evolving  probabilistic | which might reduce
Cauchy clustering | the amount of clusters
method. This approach | formed.
was used to monitor
cyber-attacks on a broad
scale. The goal is to
create an IDS that can
categorize intrusions as
well as regular behavior
based on input variables.
A label (Action) is
assigned to each
connection vector,
indicating the sort of
connection.
Weng and | Due to the | Analysis of the | The proposed method | Insider
Liu (2019) variations between | differences between | was just tested to see if
anomaly detection | anomalies in single time | it was suitable for
in multidimensional | series and anomalies in | collective anomaly
and univariate time | multi-dimensional time | detection in
series data, there are | series. Next, it proposed | multidimensional
numerous issues | a collective anomaly | streams, but it was not
with collective | detection algorithm | compared to other
anomaly detection | named iForestFS for a | methods.
for multi-dimensional
multidimensional stream based on iForest
streams. in a cloud environment.
Slavic et al. | How anomalies | The  Markov  Jump | There are two types of | Insider
(2020) were discovered and | Particle Filter was used | abnormal situations:

an algorithm was
developed to detect
anomalies at both
the observation and
prediction levels.

in this work to analyse

multiple video situations
where a semi-
autonomous vehicle

accomplishes a set of
tasks in a closed
environment.

I Video sequences
with previously unseen
visuals; ii) Video
sequences with
previously seen images
but new video
dynamics/motions.
This  research  was
mostly focused on the
first type.
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Table 2.1. (Continued).

Author(s) Research Problem Solution Limitation(s) Detection
Type
Li and Zou | The fast growth of | An  automated data | It's employed in an anti- | Insider
(2021) System of  Chip | engineering pipeline for | theft home security
(SoC)  technology, | detecting anomalies in | system in a closed
the Internet of Things | IoT  sensor data is | environment for an
(loT), cloud | investigated and | automated data pipeline
computing, and | proposed. The method | for 10T sensor anomaly
artificial intelligence | employs 10T sensors, | detection.
has opened up new | Raspberry Pis, Amazon
avenues for | Web Services (AWS),
improving and fixing | and a variety of machine
current issues. learning approaches to
discover anomaly cases in
the smart home security
system.
Wang et al. | People's physical and | Approach for anomaly | It's possible that the data | Insider
(2019) emotional wellbeing | detection  from  the | properties in  this
are adversely harmed | Internet of  Moving | investigation  weren't
by poor air quality. | Things. The distance of | evident, or that the data
Many practical | moving  things  was | varied so much that no
elements will | proposed as being equal | acceptable model could
influence the change | to the weighted sum of | be trained.
in smog | the location distance and
concentration, and it | the multi-sensor distance;
will have nonlinear | the generalised anomaly
properties. was detected using a
three-step framework that
included multi-sensor
data generalisation,
moving things
partitioning, and anomaly
detection.
Kang et al | Because the number | For traffic anomaly | Used to tackle the | Insider
(2019) of traffic anomalies | detection, the  study | shortfall of training data
is so small, typical | suggested a similarity | and overfitting.
deep learning | metric Convolutional
approaches suffer | Neural Network (CNN)
from a severe over- | based on a channel
fitting problem. attention model.
Chung and | Traffic accidents can | The assistant collects | Excess notifications are | Insider
Kim (2020) be caused by | multimodal signals using | not taken into account

sleeplessness

(fatigue) and
decreased cognition,
and the number of

traffic accidents
caused by driver
sleepiness and
exhaustion is
increasing every
year.

five sensors that detect
CO, CO,, and particulate
matter (PM), as well as
the  temperature and
humidity —data. These
signals are then sent to a
server via the loT where
they are analysed by a
deep neural network to
determine the vehicle's air
quality.

in this model.
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2.2 IDS-related Works For 1oT

The existing network intrusion detection systems can be divided into misuse-based
and anomaly-based detection systems. To build a detection model for misuse-based
IDS, they rely on already known attack signatures, however for anomaly-based IDS,
they include identified patterns of the regular activities and treat all other patterns as
malicious. These two categories of IDS are further detailed in the following sub-

sections.

2.2.1 Misuse-based IDS

The misuse-based IDS contain patterns of already known attacks and new patterns
that match such patterns are considered as attack. Various studies have proposed and
developed misuse-based IDS; for instance Yang et al. (2018); developed an IoT
intrusion detection technique based on active learning which relies on the human-in-
the-loop concept to combine human intelligence with machine learning to ensure
data sufficiency. The study addressed the issue of collecting numerous data for the
training phase due to the limited wireless channel capacities between different 10T
components by ensuring that only the helpful ‘unlabeled’ data are labeled. The
developed approach iteratively executed a supervised technique on the labeled data,
selected the following group of data from the unlabeled data set for labeling by the
expert. Then, the recently labeled data are added to the ground truth for the training
of the supervised learning technique. This process is repeated until a predefined level
of accuracy is reached. However, the training process requires human intervention

which makes it labor and time intensive and susceptible to error.

A real-time IDS called SEVLETE was developed by Raza et al. (2013); this system
provides end-to-end security in 6LOWPAN networks using message security
technologies such as IPSec and DTLS. The model was developed for the detection of
routing attacks, such as spoofing, alteration, and sinkhole attacks. Hence, it can
protect data from manipulation by identifying the malicious nodes in the network.
One problem with this system is that it does not offer protection against tampering of
data contained in the node itself (as in situations of a legitimate node been
manipulated) and cannot stop the altered node from disseminating false information
as shown in Figure 2.2.
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Figure 2.2. 10T setup using a) IDS modules b) Node placement according to the
experimental results (Raza et al. 2013).

Moustafa et al. (2018) came up with an ensemble model (statistical flow features-
based) for the protection of network traffic in 10T infrastructures. One feature of this
approach is that it can aggregate the flow of traffic while ensuring the removal of the
redundant observations those results from flooding attacks, thereby improving the
efficiency and effectiveness of the proposed system. The first phase of the model is
the extraction of a set of specialized features from the network protocols, such as
MQTT, HTTP, and DNS. Then, the extracted features are employed for the training
of several machine learning frameworks, such as Artificial Neural Networks, Naive
Bayes, and Decision Tree. During the training, the individual decisions serve as the
basis for the production of the final decision via a voting strategy. This increases the
diversity of the classification strategies and encourages assessment of the network
traffic from various perspectives, thereby improving the detection accuracy of the
system. Meanwhile, the proposed system requires the presence of mobile agents that
must be activated individually at a time. One drawback of this approach is the
inability to identify the coexistence of the context information generated by the
nearby nodes of the nodes that are currently active. The coexistence of such
information could be useful in the detection of complicated botnet attacks that work
evasively and cooperatively to deliberately alter the current limits of the normal

traffic profile.
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Zhou et al. (2021) presented the first automata-based IDS for use in 10T; this novel
approach focused on addressing the issue of heterogeneity in I0T nodes by striving
towards building a unified security solution for the whole network. The proposed
method extended the Labeled Transition System to uniformly describe the whole
components of the 10T system. Terms and graphs were used to provide a
characterization of the amalgamation of these components in the form of abstracted
actions. Then, the comparison of the new observations with the already built profile
was done using these abstracted actions. However, increases in the heterogeneity of
the components increases the sparsely and dimensionality of the data owing to the
variations amongst the features of the different components, making the devising of a

unified representation a tedious task.

Arshad et al. (2020) proposed a lightweight IDS for energy conservation and
preservation of communication overhead in 10T nodes with limited resources. In the
proposed model, the nodes work together by sharing attacks info with an edge device
which serves as the major IDS component as shown in Figure 2.3. Sustenance of
network resources was ensured by allowing detection at both edge device and local
nodes levels. However, the information propagated by the IoT nodes are not wholly
trustworthy owing to the possibility of some of the nodes being manipulated and
used by attackers for the transmission of adulterated or misleading information.
Furthermore, internal attackers that sabotage the network from within using some
compromised nodes may not have to worry about edge-based detection because it
will be bypassed. Hence, the performance of the proposed system in attacks detection

will be significantly reduced.
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2021).

Arshad et al. (2020) proposed a novel system for effective intrusion detection in
machine-to-machine networks that does not impose significant energy and
connectivity costs on the participating host and edge nodes. According to the results,
the proposed solution has a low overhead in terms of energy usage and memory
consumption. To overcome challenges of system are security problems, abnormality,
and service failure, Atul et al. (2021) proposed an effective framework of energy
aware smart home. The study employed the machine learning technique to
distinguish the abnormality sources of the contact model. The said study that the
result showed an 85% accuracy rate. Prabhakaran and Kulandasamy, (2021)
proposed an attention-based recurrent convolutional neural network to detect
intrusion or non-intrusion in text data. According to the authors, the proposed
intrusion detection and safe data storage mechanism is highly secure and is never
compromised by any kind of conspiracy attack. Tally and Amintoosi, (2021)
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suggested a hybrid genetic algorithm approach for detecting intrusion and compared
it to the traditional method. The proposed method outperformed the conventional

method, according to the results.
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Based on a stacked auto encoder, He et al. (2019) proposed a novel intrusion
detection scheme as shown in Figure 2.4. Despite the positive results of the proposed
method, the authors pointed out that there is a gap in detection ability between
lightweight intrusion detection and the deep learning method. To provide an easy-to-
use security vulnerability checking and analysis solution for the IoT related
developers and users, Hong et al. (2017) designed and enhanced an interface for a
web based security analysis software for the internet of things. Halder et al. (2019)
devised a new strategy for overcoming the limitations of both uniform and Gaussian
deployments for energy-efficient and quick detection. The authors thoroughly
investigated the effects of various network parameters on detection probability and
concluded that when compared to other methods, the detection probability increased
by more than 25%. Han et al. (2015) suggested a motion detection and tracking

system based on passive radio frequency recognition tags for efficient intrusion
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detection. Twins is accurate in detecting moving objects, with very low position
errors of 0.75 m on average, according to the findings as shown in Figure 2.5.
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Figure 2.5. Accurate in detecting moving objects a) Critical state of Twins b)
Minimum power vs. distance (Han et al., 2015).

Keung et al. (2012) investigated the intrusion detection issue in a mobile sensor
network with an emphasis on k-barrier coverage against moving intruders. The study
found that when compared to a static sensor area, coverage efficiency can be

enhanced by an order of magnitude with the same number of sensors.

Jie Tian et al. (2014) proposed a hybrid deployment of mobile and static sensors to
detect smart intruders with the purpose of crossing the monitored domain. The
findings demonstrated that the proposed scheme would achieve a high detection
probability while consuming little energy from mobile sensors. In another respect, to
minimize the distance an external attacker would travel before being detected,
Katneni et al. (2012) suggested a hybrid Gaussian-ring deployment. On the other
hand, the results of proposal presented by Hu et al. (2014) regarding the quality of
the sensor in the network, uncovered that the network’s lifetime has improved by
17.4%, while the delay in detection has decreased by 101.6%. Shafiq et al. (2020)

used an objective soft set technique to pick successful features, as well as a new
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feature selection metric. The experimental findings obtained by proposed algorithms
are promising, with more than 95% accuracy.

The study by Kumar et al. (2020), presented a self-adaptive misuse-based IDS for
dynamic 10T platforms, especially networks that permits nodes to frequently join and
leave the network. The proposed system relied on self-taught learning for the
classification of the unknown events into harmful and non-harmful classes while
features extraction from the observed instances was based on deep learning. Then,
the extracted features were used for the determination of the event category though
this adaptive approach lacks a system of determining the status (harmful or non-
harmful) of the source of the unknown event, providing the room for the
compromised node to disseminate harmful information with features that seem to be
non-harmful. This adaptation process could cause a major deviation from the normal
network profile and could be exploited by attackers to implement undetected attacks
using the altered network profile. An IDS has been provided by (A. Li et al., 2020),
for the protection of the perceptual layer of 10T systems owing to its proneness to
numerous attacks, as well as the inability to implement a comprehensive IDS due to
scarcity of resources. In the proposed solution, a clustering-based model was
deployed on certain cluster heads for resource conservation while the model was
built using Game theory and PSO. The model consolidated both misuse-based and
anomaly-based approaches to enable high level attacks detection accuracy and low
false alarms. However, the system is prone to internal attacks that can directly reach
the 10T nodes because the deployment of the detection model on the cluster heads

means that the scrutinization at the cluster heads will be bypassed.

Attacks on 10T systems are mainly launched using sophisticated strategies that can
implement sustainable attacks like botnets and malware. Hence, researches have
been devoted to the development of approaches for the prevention and detection of
such attacks. The available approaches for attacks detection and prevention can be
classified into anomaly-based, misuse-based, specification-based techniques as

discussed further in the following sub-sections.
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2.2.1.1 Drawbacks of misuse-based IDS

Misuse-based IDS are developed to only detect known attacks and not previously
unknown attacks. This means that the misuse-based IDS have low accuracy level in
the detection of zero-day attacks. Furthermore, attackers have access to more
resources, and are highly intelligent to the point that they are also deploying
measures to evade detection (Singh and Kumar, 2020). Most of the current attack
forms cannot be accurately identified by the conventional misuse-based IDS; hence,
there is a need to continuously update the existing attack detection methods to be at
par with the trends in cyber-attacks (Al-rimy et al., 2018). Hence, misuse-based IDS

cannot efficiently detect novel and emerging attack types.

2.3 Anomaly-based IDS In loT

The anomaly-based IDS are developed with a normal profile of the normal system
behavior for comparison and identification of abnormal system patterns. New
network profiles are considered malicious if they deviate significantly from the
already established normal profile, else, they are considered benign. The anomaly-
based IDS for 10T are classified into those for external attack detection and those for
internal attack detection; this classification is based on the source of the attacks.
External attacks can be prevented using the conventional security techniques, such as
encryption and intrusion prevention techniques, but for internal attacks, they are not
easily detected using such traditional mechanisms. Hence, various studies have been
devoted to the development of measures to counter such attacks and the available
solutions are classified into those for protection against external attacks and those for
protection against internal attacks. Protection against external attacks is aimed at
protecting the system from attacks launched from outside the network while internal
attack detection aims to prevent the success of attacks launched from within the
network. The major problem with internal attacks is that the attacker launches the
attack using legitimate but compromised nodes from the targeted network in a

manner that cannot be detected by the existing detection methods (Li et al., 2019).

Several studies have been conducted on the detection of external and internal attacks
on loT networks and most of these studies proposed data-driven solutions that
requires the collection of data during normal network operation or during attack
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moments to build the detection models. With these data, models of the normal and
attack profiles of the networks have been developed using several machine learning
and Al algorithms to enable the detection and calculation of the parameters and
thresholds.

Li et al. (2019) demonstrated that using blockchain technology to create a signature
database will help improve the robustness and efficacy of signature-based intrusion
detection systems in adversarial scenarios. Li et al. (2018) proposed a compact but
efficient message verification approach based on collaborative intrusion detection
network. The findings uncovered that suggested approach can identify malicious
nodes. Similarly, Madsen et al. (2018) examined the influence of intrusion sensitivity
in a simulated collaborative intrusion detection network environment as shown in

Figure 2.6.
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Figure 2.6. Improvement of the detection capabilities a) The typical high-level
architecture of a challenge-based CIDN b) Trust values of malicious
nodes (Madsen et al., 2018).

To improve the detection capabilities of a single intrusion detection device, Li et al.

(2018) used collaborative intrusion detection networks. The outcomes demonstrated
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that the proposed mechanism can detect malicious nodes. Based on anomaly and
specification intrusion detection modules, Bostani and Sheikhan (2017) proposed a
novel real-time hybrid intrusion detection framework. According to the results, the
proposed hybrid approach achieved a true positive rate of 76.19%. Yahyaoui et al.
(2019) suggested a novel anomaly protocol to combine machine learning detection
with a statistical method for malicious node localization. The authors claimed that
the proposed protocol had a high accuracy rate of more than 95%. Farzaneh (2019)
introduced an anomaly-based lightweight Intrusion Detection System that was
completely effective in detecting attacks and applicable to large-scale networks as
shown in Figure 2.7.
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Figure 2.7. Improved an IDS a) Proposed model b) Normal Distribution (Farzaneh et
al., 2019).

In the same way, Tama et al. (2019) improved an intrusion detection system based on
hybrid feature selection and two-level classifier ensembles. The suggested model had
an accuracy of 85.8%, a sensitivity of 86.8 %, and a detection rate of 88.0 %. Bagaa

et al. (2020) proposed a new machine learning-based security architecture that
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combines a monitoring agent and an Al-based reaction agent. The authors
investigated existing possible solutions and claimed that the proposed model
achieved 99.71 % accuracy in detecting anomalies. Nomm and Bahsi (2018) reported
that using Anomaly-based detection; it is possible to induce highly accurate
unsupervised learning models with small feature set sizes. Verma and Ranga (2020)
studied the prospects of using machine learning classification algorithms for securing
Internet of Things against denial-of-service attacks. The authors employed Friedman
and Nemenyi tests in their analyses and reported that classification and regression
trees both are the suitable choice for building Internet of Things specific anomaly-
based intrusion detection systems.

2.4 Detection of External Attacks

External attack detection techniques, as earlier stated, were developed for the
detection and prevention of external network attacks. Such techniques are normally
deployed at the main points of connection between the internal network and the

external environment, such as at the cluster heads, gateways, and fog layer.

Akyildiz et al. (2006) developed a two-layer anomaly detection system for the
automation systems in smart homes. The detection responsibility in the systems was
divided between the service provider and the service user. On the side of the user,
data collection is done at the local nodes and collected at the home gateway (HG).
Being that the network traffic is monitored by the HG, the detection responsibility
can be easily transferred to the HG to conserve the available computational resources
at the nodes. Attack detection is done via comparison of the suspected pattern from a
specific node with the related normal pattern already built for that node. On the side
of the service provider, the anomalous pattern is further analyzed at the HG to
establish similarities across the network. Hence, it is possible to detect similar
abnormality by the other HGs, thereby helping in early detection of the attacks at the
other premises. The study, however, assumes a stationary sensor and nodes operating
environment, as well as limited data exchange between the nodes communication
within the system; they also assumed a stable packet loss and small payload. This is
not applicable to applications that co-interact and work collectively as the pattern of
the whole system can be affected by a change in the pattern of one sensor.

Furthermore, the HG only makes use of the packet header and some statistics on
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packet information and this is not complex enough for efficient and accurate attacks

detection.

A deep learning-based anomaly detection model has been presented by Meidan et al.
(2018) for the detection of evasive botnets that alters their behavior upon every
attack on 10T nodes. The extracted statistical features from the snapshots of the
pattern of benign traffic are used by the model for the training of the deep auto-
encoder model for every IoT device and for building the normal node profile. This
profile contains the compressed representation at the potential layer of the auto-
encoder and this profile serves as the basis for the determination of the threshold
separating the normal & malicious patterns. The respective features vector is applied
at the detection time on the observed snapshot. Then, the auto encoder attempts
reconstruction of the snapshot and if failed, the snapshot is considered malicious.
However, the behavior of the 10T is assumed to be stationary in the proposed model.
However, this assumption is not applicable to most I0T systems whose behaviors are
subject to changes with time. Therefore, the performance of the model and its
detection accuracy will be affected as a result of reliance on fixed thresholds. The
model further supposes that all the considered snapshots come with a total set of
features but this may not be true as many factors are responsible for the availability
of those features, such as the running environment, the capacity of the network, the

availability of data, the absence of bad sensors, and the presence of noise.

The study by Breitenbacher et al. (2019) developed an anomaly-based IDS for use
on loT components following the whitelisting approach; this approach stipulates a
range of legitimate applications that can be executed on the 10T node in a manner
that only the listed applications it is possible to run on the nearby I0T node. Hence,
when malicious software uses obfuscation techniques to hide its true pattern, the
model can detect these adaptive attacks by making them resemble the benign ones.
The issue with this technique is its reliance on rigid whitelist that cannot be possible
in dynamic loT platforms. Furthermore, there is no guarantee that the whitelist can
be exhaustive because it might contain some of the legitimate programs. There is a
chance of updating the whitelist with newly discovered programs during the
operational stage, but this can only be done if deemed necessary by the network

operator.
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GARUDA was proposed by Aljawarneh and Vangipuram (2020) as a Fuzzy
Gaussian dissimilarity feature section method when building IDS for IoT devices.
The highpoint of the proposed method is that it addressed the issue of standard
similarity measures, such as Euclidean distance which has no upper boundary or
cosine similarity that has no consideration of the magnitude of the vectors when
determining the similarity between two vectors. With GARUDA, training data
dimensionality is reduced by clustering the features incrementally; this ensures that
only a small set of unique features are selected. The determination of the number of
clusters is based on a threshold that represents the allowable limit of intra-cluster
features dissimilarity. However, the study considers all the data generated by the 10T
devices to follow the Gaussian distribution, which is not applicable in most cases,
especially in an environment that is highly dynamic. Hence, the proposed GARUDA

may not perform the dissimilarity calculations accurately.

Pamukov et al. (2018) relied on the Negative Selection Algorithm (NSA) for normal
behavior modeling using self and non-self-strategies. The proposed model comprised
of two layers to ensure that the resource-constrained IoT nodes are protected from
the burden of training since the normal training set is built by the first layer using the
NSA, while the second layer relies on this training data to train the Neural Network
(NN) algorithm. However, the study assumes a stationary definition of self and non-
self which may not be applicable to IoT applications as their behavior evolve with
time due to the dynamicity of loT environments.

A fog-based IDS was proposed for 10T devices by Lyu et al. (2017) . The study
strived for early detection of anomalies in 10T nodes by deploying hyper-ellipsoidal
clustering at the fog layer in consideration of the based on the collected data at the
nodes level. Hence, the processing overhead is relayed into the fog node for real-time
accurate detection while ensuring low overhead on the 10T nodes. Each node is
programmed to send data to the fog node at every predetermined time window either
to implement sensor-level clustering by dealing with the data gathered by each
sensor or fog level clustering by looking at the data together. Then, the new
observations are categorized based on such clustering into anomalous or benign. The
problem of this approach is that it did not consider the possible correlation that may

exist between the fog node-connected 10T nodes; this correlation can be useful in the
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propagation of the information about emerging attacks launched against one or more
nodes.

A three-layer supervised anomaly-based IDS was proposed by Anthi et al. (2019) for
IoT devices in smart homes. These layers tallied with the three consecutive layers
(i.e., data link, network and transport layer) in the network OSI framework; this is to
ensure the collection of the information related to the data units of these 3 layers and
their subsequent use in training several ML classifiers, such SVM, NB, and DT for
detection attack. The 10T system's usual network behavior was built by connecting
all of the participating nodes through a single hub. The combination of the data from
the 3 network layers ensures that the model can enrich the training dataset and
perform accurate detection. But the issue with this method is that the extracted
information is only the metadata for the segments, frames, and packets, meaning that
the model may not accurately detect sophisticated attacks that involves data

manipulation and legitimate nodes impersonation.

Moustafa et al. (2018) presented ensemble-based IDS for the protection of loT nodes
from attacks that exploit the lapses on application layer protocols, such as HTTP,
DNS, and MQTT. Such protocols could facilitate the manipulation of the backend
systems that 10T nodes are connected to, thereby providing room for launching of
different forms of attacks, such leaking data, partial or complete system hijacking,
and disabling system services. The proposed approach relies on the protocols
characteristics to derive the statistical features via aggregation of the network traffic
and building an AdaBoost classifier using ANN, DT, and NB algorithms. The
proposed model was evaluated on two datasets, namely UNSW-NB15 and NIMS.
The aggregation negatively affected the capability of the derived features to capture

the intrinsic attack characteristics, thereby affecting the accuracy level of the model.

Being that 10T networks are distributed, the detection of external attacks is not
important when dealing with internal attacks. This provides the invader an
opportunity to evade the detection system by avoiding access through the network
entry point; hence, cannot be detected by the detection system. Furthermore, internal
attacks are usually launched by legitimate but compromised network nodes; hence,

they are more difficult to detect.
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2.5 Detection Of Internal Attacks

A distributed internal IDS for the detection of internally launched attacks from one or
more local nodes in 10T was proposed by Thanigaivelan et al. (2016). The proposed
system provides that each node monitors its surrounding nodes for deviations via
monitoring of the packet size and data rate of the one-hop neighboring nodes. The
study opted for information protection from manipulation via monitoring the features
of the one-hop neighboring nodes rather than relying on cryptography; this enables
identification of deviations in the network pattern. These observed characteristics
helps in assigning weights to each surrounding node and nodes that did not reach a
specific weight level are classified as anomalous. This approach makes the proposed
technique capable of addressing the issue of internal attacks detection that the
cryptography-based solutions cannot detect. However, the determination of
abnormalities based on weights as a threshold is an ineffective approach as most of
the misbehaving intruders and evasive attacks always strive to remain below the
threshold level within the limits of the normal profile. Hence, the detection of
compromised nodes that exhibits no suspicious features but still propagates false
information may not be possible with this approach. Furthermore, the calculated
weights by the proposed approach are static and may not be applicable to non-

stationary scenarios with continuously changing nodes behavior.

Ghaleb et al. (2018) examined the results of the Destination Advertisement Object
(DAO) control messages exploitation by a compromised node that sends false
information to its parents which prompts flooding of the network with DAO
messages and subsequent degradation of the 10T network performance. Such attack
was prevented by proposing SecRPL for the restriction of the number of DAOs
forwarded by a parent such that only a limited number of messages can be sent by
each parent to a specific child node. The problem of this approach is that it can be
easily fooled by attacks that flood a single child node by simultaneously exploiting

numerous parents.

CA-DC-MDS was proposed by Ghaleb et al. (2019) as a multidimensional context-
based anomaly detection system for deployment in smart vehicles. The proposed
approach protects messages from internal attacks by relying as context references for

capturing the non-stationary in these networks by using spatial-temporal correlations
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of the consistency of cooperative awareness messages. Particle and Kalman filters
were used to determine the spatial and temporal contextual thresholds. A major
problem of this approach is that all the nodes are assumed to exhibit similar normal
profile boundaries which are not true owing to the variation in the attitude and
discretion of the situation based on the driver. As such, an anomalous situation to one

vehicle could be considered normal for another vehicle.

A context-based IDS was developed by Pan et al. (2019) using the RIPPER
algorithm and Bayesian Network for the protection of building control and
automation networks. The system utilizes the heterogeneous data gathered from
different network components to solve the issue of vulnerability of such systems by
exploiting the increasing level of interaction between most of the weakly secured
components. Hence, attackers may exploit these nodes to launch different forms of
internal attacks. The model proposed in this study comprised of five different phases
which as feature selection, context modeling, behavior analysis, threat assessment, &
actions management. The study also proposed a novel Protocol Context-Aware data
structure for context modeling which will aid building of the contextual array
information that will serve as a segment of the training data. This will make the
system capable of monitoring the whole aspects of a heterogeneous network for
suspicious activities. However, the problem of the approach is the assumption of a
stationary nature of the contextual information which is not applicable to
heterogeneous scenarios like 10T where the misbehavior of one component affects
the performance of several other components, thereby rendering such operating

scenarios highly dynamic.

Li et al. (2019) presented a block chain-based system for internal attacks detection in
0T systems. The proposed system addressed the issue of vulnerabilities suffered by
collaborative 10T networks by combining different weakly secured nodes that may be
exploited by attackers to launch attacks against the neighboring nodes. The proposed
model is a combination of block chains and distributed signature-based IDS in an loT
platform for the generation and verification of attack signatures. The block chain
component aids in securely sharing of signatures among the 10T nodes. The study
also assumed that for each node, the public/private key pair is preserved. This may

be true, but it is not important because the attacker can decide to use the genuine
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pairs without having to alter the existing signatures since the node is already under
the control of the attacker. Despite the effectiveness of this approach in detecting
spoofing and resource exhaustion attacks, it cannot detect the malfunctioning nodes
propagated falsified information with their surrounding nodes. Attackers can exploit
this misbehavior to manipulate the security profiles and thresholds of the network.
Furthermore, such solutions are prone to concept drift due to the assumption that
both normal and attack are stationary, which is not the case in dynamic loT
environments. A summary of the related studies is presented in Table 2.2 and Table
2.3.

2.6 Issues Of The Existing External And Internal Attack Detection Systems In
loT

External attacks detection, as can be seen, is easier because it relies on the strategy
employed; the IDS is positioned at the network entry point to ensure efficient
monitoring of the incoming traffic; meaning that the attack data is scrutinized at the
network perimeter by the IDS. Contrarily, internal attack detection is a tedious task
because of the participation if the attackers in the network activity and the generated
attack data are not scrutinized by the IDSs. Despite the capability of host-based IDS
to address this issue, they normally assume that the normal profile of the nodes is
reliable, meaning that the existing host-based IDS are built on the premise of the
legitimacy of the nodes in the internal network, but this is not true as attackers may
hijack and use the legitimate nodes to launch attack on the normal node.
Furthermore, the existing IDS in loT assume the reliability of the data shared
between nodes, but this does not hold as such nodes can be compromised and
manipulated to share fake information with the other nodes. Sharing such fake
information will make the nodes that receive such information to react to false events
that could alter their security protocols and make them vulnerable to attacks. Hence,
reliance on such compromised data to build detection models means the accuracy of
the developed model will be low. Despite the effort to address these issues, some of
the previous studies presented models that were built on the assumption a summary
of the related studies of IDs bases 10T shown in Table 2.2 for outsider and Table 2.3

for insider bases of 10T that only few I0T nodes can be compromised by attackers,
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but this is not the case. These days, attackers exploit the advanced attack strategies,

such as botnets, to hijack numerous.

Table 2.2. A summary of the related studies of 1Ds for outsider bases IoT.

Author(s) Research Solution Limitation(s) Detection
Problem Type
Yang et al. | The lack of Utilizing the active - Involving human in Outsider
(2018) sufficient ground learning into model’s labeling process is labor-
truth (labeled) data | training process by intensive and error-prone.
necessary for incorporating the
machine learning concept of the human
classifiers to work | in the loop to enrich
properly. the training data and
compensate the lack of
labeled data in the
training set.
Raza et al. | Existing solutions | SVLETE incorporates | - It doesn't safeguard against | Outsider
(2013) do not provide IPSec and DTLS into data tampering within the
end-to-end security | RPL in 6LoWPAN device itself (If a valid
for the messages networks to secure the node is hacked, it does not
travel through the | data within the prevent the infected device
network. network. from sending misleading
information.)
Zeng et al. | Redundant Statistical flow-based | -There is a dependence on Outsider
(2019) observations in the | aggregation that workers who are active
traffic flows summarizes the traffic only on a single device,
adversely affect flow and removes the who can simultaneously
the ability of redundant produce context
detection solutions | observations generated information produced on
to detect attacks from flooding attacks other nodes. This
against loT such as DDoS. coexistence of data could
networks. be beneficial for detecting
attacks by complex robots
that work cooperatively
and covertly to alter
existing profile boundaries.
Zhou et al. | The heterogeneity | An automata-based - When there are a greater Outsider
(2021) of 10T nodes method that addresses variety of devices, the

makes it difficult
to create a unified
IDS detection
solution.

the heterogeneity issue
using an Labeled
Transition System
(LTS) extension helps
build a consistent
representation of all
10T system
components

dimensionality and scarcity

of data are also multiplied.
As a result, it becomes
increasingly difficult to
leave a single, coherent
legacy.
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Table 2.2. (Continued).

Author(s) | Research Problem | Solution Limitation(s) Detection
Type
Lyuetal. | Existing IDSs in The work employed the | - Any correlation Outsider
(2017) loT suffer from the | hyper ellipsoidal between the 10T nodes
processing clustering at the fog that are connected
overhead due to layer to relay the through the fog node,
limited resources in | processing overhead which can be valuable
loT nodes, which into the fog node and for spreading
renders detecting preserve the resources information about
the attacks at real of 10T nodes. emergent attacks taken
time challenging. out against one or more
nodes, is ignored by
this method.
Akyildiz Misuse-based An anomaly-based - Presumes the operating | Outsider
etal. intrusion detection detection model was environment is
(2006) approach is not able | trained with the normal stationary, with small
to detect the novel, | behavior of the 10T payload and stable
previously unseen nodes to build the packet losses limited to
attacks. normal profile such network traffic. The
that, any deviation from 10T networks are
the profile’s boundaries realistic in nature and
is considered as attack. dynamic.
— To feel attacks with the
required level of
accuracy, the limited
amount of information
is not detailed.
- The solution proposed
suffers with the high
fake alarm rate
Meidan et | Existing Botnet Deep Auto encoder was | -loT behavior assumes to | Outsider
al. (2018) | detection solutions | used to extract more be stationary that does

in 10T overlook the
evasive nature of
such botnets that
change its behavior
with each attack.

robust and
discriminative features
that represent such
evasive attacks.

not maintain the loT
environment, given its
dynamic nature.

-1t makes the unrealistic
assumption that all
features are present
everywhere, regardless
of network capacity,
such as sensors and
noise, both being faulty
and in the system.
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Table 2.2. (Continued).

Author(s) Research Problem | Solution Limitation(s) Detection
Type
Breitenbacher | Existing IDSs in Whitelisting procedure - Due to the dynamic | Outsider
et al. (2019) 10T are prone to that expounds on a set of 0T environment, a
obfuscation legal applications rigid whitelist
strategies that allowed run on the 10T cannot function as
sophisticated station was proposed. a safety
attackers employ to mechanism.
ggfg&gz?e - A whitelist canpot
be comprehensive,
as numerous
legitimate and
malicious
programs may be
omitted.
Aljawarneh Although the choice | The proposed GARUDA | - It makes the Outsider
and of distance from is based on clustering assumption that
Vangipuram centroid to the point | feature patterns data from loT
(2020) of interest is incrementally and then devices is typically
imperative for IDS | representing features in distributed, which
to judge an different transformation is not the case in
incoming space through using a many cases,
observation as novel fuzzy Gaussian particularly those
normal or abnormal, | dissimilarity measure. that operate in a
this challenge has The number of clusters highly dynamic
been understudied made is made by a environment.
and relatively less threshold that appears
addressed in the the allowable similarity
research literature. of the features in the
same group
Pamukov et Existing ISDs in Negative Selection - The definition of Outsider
al. (2018) 10T are unable to Algorithm (NSA) was self/non-self is

determine the zero-
day attacks.

employed to build two
profiles, normal and
malicious, using
self/non-self-concept.
The normal profile was
then used to detect the
zero-day attacks against
10T network.

assumed to be
stationary which
could not be
realistic since the
behavior of lIoT
applications
evolves over time
as loT
environment
dynamics.
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Table 2.2. (Continued).

Author(s) | Research Problem Solution Limitation(s) Detection

Type
Anthi et Existing solutions focused | The 3-layer model - Frame, package, Outsider
al. (2019) | on limited number of corresponds to the 3 and part metadata

attacks and the data used
for profiling those attacks
are limited. They also
have focused on detecting
whether the packet is
benign or malicious
without knowing the type
of the attack, which could
be important for
facilitating the
countermeasure.

successive layers of the
OSI Network model,
i.e. Inorder to
aggregate data about
data units (frames,
packets, and segments,
respectively) from these
three layers, it was
suggested the data
connection, network,
and transport layer.
Therefore, the dataset is
enriched with various
data.

is all that is
extracted. Because
of this, the model
may not have
been able to
manage
complicated
attacks that can
change (i.e. spoof)
this data and
mimic legal
devices.

The Table 2.3 is the summary of the related studies of Ids fon insider bases loT for
description type. The existing IDS in IoT assume the reliability of the data shared
between nodes, but this does not hold as such nodes can be compromised and
manipulated to share fake information with the other nodes.

Table 2.3. A summary of the related studies of I1Ds for insider bases IoT.

Author(s) Research Problem Solution Limitation(s) Detection
Type
Thanigaivelan | Cryptography based | One-hop neighbor | - Setting a weight Insider

et al. (2016)

security cannot
prevent the insider
attackers that have
the valid key or the
necessary
information to
perform activities
within the network.

node parameters
like as packet size
and data
throughput are

threshold as an
abnormality threshold is
ineffective since many
evasive attacks and

monitored by an
internal anomaly
detection system
to seek for any
network
anomalies.

invaders are attempting
to stay inside the typical
profile of the target. It's
impossible to discover
compromised nodes that
aren't exhibiting any
unusual behavior, yet are
sending out fake
information.

For non-stationary
situations, weights
estimated by the model
given are static.
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Table 2.3. (Continued).

Lietal. (2019) Combining A verifiable - The attacker Insider
different types of | method of may use the
weakly secured distributing parent pairs
10T nodes renders | signatures among | because he has
the network 10T nodes is already assumed
vulnerable to being developed control of the
attacks. by combining node.

block chains with
distributed
signature-based
IDSs.

Ghaleb et al. Attackers can Because each - It can be easily Insider

(2018) exploit parent can only deceived by
Destination transmit a limited | attacks that
Advertisement amount of exploit different
Object (DAO) in | messages to each | parent devices
An 10T node that | subnode using simultaneously to
has been SecRPL, each flood a particular
compromised will | parent can only sub-node.
broadcast redirect a certain
misleading number of DAOs
information to its | at a time.
parent nodes,
resulting in a
flood of DAO
messages.

Ghaleb et al. Existing IDS In order to reflect | - If we assume Insider

(2019) solutions assume | the non-stationary | that the majority
that the 1oT nature of these of the nodes
context is networks, (vehicles) are
stationary, which | dynamic secure, it is

does not keep
given the
dynamic nature of
0T environment.

thresholds were
used to provide
context
references.

possible that
adversaries can
leverage the
secure ones to
perform similar
attacks on other
ones that are not
secure, so that an
adversary-based
threat model may
not be realistic.
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3. METHODOLOGY

This chapter provides the developed methodology of the proposed Kalman and
Cauchy (KC) clustering for anomaly detection based on the authentication of nodes
within Internet of mobility networks (IloMTs) using extreme learning machines. In
Sub-section 3.1., the problem situation and solution concept discussed and the
simulation model and the problem definition were presented in Sub-section 3.2.
While the system architecture will presents in Sub-section 3.3. The sensor fusion for
trajectory estimation was presented in sub-section 3.4. Sub-section 3.5 presented the
hampel filter in sub-section 3.6 Cauchy-based anomaly detection system was
presented. The Sub-section 3.7 presented the intrusion detection system based on an
extreme learning machine. Then in sub-section 3.8 the Unified Modeling Language
(UML) diagram was described in details. Finally, in Sub-section 3.9 the evaluation

metrics was listed and explained.

3.1 The Problem Situation and Solution Concept

Following the discussion in Chapter 1, this study is focused on addressing the
problems associated with the existing host-based intrusion detection system (IDS) in
terms of their inability to detect attacks internally launched against loMT devices due
to issues of the unreliability of the nodes in the IoMT network, as well as the lack of
trust in the exchange of data between these nodes. Legitimate loMT nodes can be
manipulated by attackers in a bid to alter the integrity of the data it exchanges with
the rest of the nodes in the system. The consequence of such manipulation is the
outright corruption of the normal behavior of the nodes within the vicinity. Hence,
there is no reliability in the data shared between these nodes and this affects the
detection performance. This loMT node compromise can also lead to the exploitation
of the vulnerability of the compromised node to create and share unreliable data with
other nodes to compromise the security features of such nodes, thereby increasing the
vulnerability of the system.

Therefore, this study is aimed at providing the solution to the aforementioned issues
that will usher in accurate and reliable IDS and anomaly detection solutions for
IoOMT systems. The proposed solution is conceptualized on the evaluation of the
reliability of the loMT nodes, as well as an assessment of the trustworthiness of the
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shared data by these nodes. For the evaluation, the history of each node will be
considered and the nodes will be adaptively re-evaluated from both historical and
contextual perspectives. This ensures the detection of nodes that behave abnormally
and the influence of the data shared by such nodes will be minimized. Furthermore,
the impact of such data on the security status and profile of the model will be
reduced, thereby keeping the model strong from manipulators that aim to
compromise the security parameters and corrupt the knowledge-base of the models.
A summary of the problems and the proposed solution concepts is presented in Table
3.1.

Table 3.1. Summary of problem situation and solution concept.

Problem Description Solution Concept

The difficulty of assessing the reliability | Create a framework for intrusion
and trust levels of the data shared by the | detection using  mobility —anomaly
compromised nodes in loMT systems. detection and trained model for attacks

For estimating the trajectory of | Develop a Kalman filter-based model
pedestrians within an indoor
environment based on fusing WiFi with
IMU data.

For detecting anomaly behaviour in | A Cauchy-based clustering method
IoOMT based on the estimated trajectory
by Kalman filter.

For the training phase of an extreme | An extreme learning machine-based IDS
learning machine to improve the | model for IloMT systems using the

detection accuracy. Cauchy clustering scheme.
Evaluate the proposed algorithms Using classification and networking
metrics

3.2 Simulation Model and Problem Definition

Assuming that we have an Io0MT network consists of mobile wireless nodes with
wireless fidelity (WiFi) accessibility. The WiFi combines one of the sensors that
exists at each IoMT device for enabling the estimating its location prediction. The
WiFi accessibility is achieved by set of access points (APs) installed in the
environment at given points. In addition, the device contains inertial measurement
unit IMU (accelerometer and gyro). The role of the accelerometer is to measure the
acceleration and the role of the gyro is to measure the angular rate. The various sub-
blocks or assisting blocks of the system: APs, map, pedestrian generation model,

40




pedestrian mobility model, traffic generation model and performance logging. The
goal is to exploit the mobility information within IoMT for identifying nodes with
abnormal mobility patterns which might be associated to threats or intruders that risk
the network security. The simulation is depicted in Figure 3.1. We present an

overview of the individual sub-blocks as follows.

)

Traffic
Seneration Model

. -
APs
Y
A - Performance
> loMT > Logging
MAP
;‘\_/ A
Pedestrians Pedestrians
eneration Model Mobility Model
Figure 3.1. The simulation model for the loMT.
3.2.1 Map

The map represents the indoor environment of 3D architecture. We consider that the
environment consists of various rooms and multiple floors. In addition, we assume
that there is a corridor or multiple corridors that connects between the rooms. The
environment has fixed architecture for the operation of the model. However, the
dynamical aspect of the environment is considered through the APs and the

pedestrian’s density within the environment. For the former, the characteristics of the
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signal might change with time and for the latter the density is always subject to
change.

3.2.2 Access points

The role of access points is to provide WiFi accessibility to the pedestrians within the
environment. As it has been stated in the problem formulation, we have k APs
distributed in the environment, and each one has coverage radius R which enables
pedestrian’s accessibility from their WiFi sensors to more than three APs at one time
in order to enable location identification based on the fingerprint. The fingerprint of
each location is stored in the environment based on an offline site survey. Hence, we
assume that we have a dataset that represents the fingerprint throughout the

environment.

3.2.3 Pedestrians generation model

The goal of the pedestrian generation model is to generate new pedestrians to enter
the environment from an input point to the building (entrance). This model follows
normal distribution with an expected value u and standard deviation o for the
number of new arrived pedestrians and it follows exponential distribution for the
time interval between one batch of pedestrians and other with an expected arriving
rate A. For the exit from the building, we have one point as exit which enables
leaving the building in a probabilistic model with probability of 90% when the

pedestrian passes by the point.

3.2.4 Traffic generation model

At each floor, the pedestrians combine sub-network that enables them exchanging
various messages (considering that they are required to perform certain mission
inside the building). The network is IoMT that needs to accomplish higher quality of
service (QoS) and to be secured from attacks. The messages in the network are
generated based on normal distribution with parameters u,,, g, and with random time

interval that follows exponential distribution with parameter of 4,,.
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3.2.5 IoMT Sensing

The 1oMT network is combined of set of nodes where each node represents an 10T
device carried by the pedestrian while walking in the environment. The device has
two important sensors: WiFi and inertial measurement unit (IMU). The role of the
WiFi is to measure the WiFi fingerprint from the accessible APs which constructs a
vector of Received Signal  Strength  Index  (RSSI) signals as
RSSI = (rssiq rssi, ...rssi,) and the role of IMU is to measure the acceleration

(ax, ay,a;) and angular rate(wy, wy, w,).

Where

a, Denotes the acceleration on x axis

a,, Denotes the acceleration on y axis

a, Denotes the acceleration on z axis

w,, Denotes the angular rate with respect to x axis
w,, Denotes the angular rate with respect to y axis

w, Denotes the angular rate with respect to z axis
3.2.6 Performance logging

Performance Logging is an evaluation block that enables capturing the performance
of the network and saves it time series for comparison. It uses the traditional network
performance criteria, namely, Packet Delay Ratio (PDR), Received Packets, and End
to End delay (E2E). The pseudocode is presented Algorithm 1. The inputs of the
algorithm are list of the devices of the 10T network, the available packets in receiving
buffer, the dropped packets by the nodes, and the current time. The outputs are the
dropped packets, received packets, and E2E delay. In the beginning, the algorithm
checks the available packets whether their lifetime is higher than the current time or
not. In the case of lifetime is higher than the current time, this means that the packets
are not yet expired so they are counted as received packets and the number of
received packets is increased by one at the sink. Furthermore, the difference between
the current time and the packet generation time is calculated as E2E delay.
Otherwise, the packets are considered as dropped packets and the number of dropped

packet is increased by one.
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3.2.7 Mobility model

The pedestrian is assumed to move from in the corridor of the building in straight
line trajectory with fixed speed and to enter a room from the available rooms based

on Bernoulli distribution.

Algorithm 1 Sink Buffers processing.
Input:

(1)Devices: all devices that connected to the network.
(2) avilablePackets:array of the available packets in all devices.
(3)droppedPackets

(4)recivedPackets

(5)time

Output:

(1)droppedPackets

(2)recivedPackets

(3)E2EDelay

start algorithm

1: if any(avilablePackets) = 0 then

2: sencdingDevice < selctRandom(avilablePackets):
3: packet < extractP acket(Devices(sendingDevice)):
4: if packet.lifeTime >0 then

5 recivedPackets++

6 E2EDelay = time-packet.generationTime.
8: else

9 droppedPackets++

10: end if

11:end if

12: End algorithm

3.3 System Architecture

The role of the Kalman filter is to predict the location of the pedestrian with respect
to time and to provide it to the anomaly detection algorithm (Li et al. 2019). The
anomaly detection algorithm is used to detect any anomaly based on comparing the

location of the subject node with the location of the nearby nodes and to provide an
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anomaly index to the IDS which are used to filter out the malicious messages from
the raw received packets buffer. The result of IDS is the legitimate received packets
buffer which contains the legitimate messages after filtering out the malicious
messages. In addition, the output of the IDS is connected to the performance logging
block which is responsible of providing the performance metrics. The suggested
framework of integrated Anomaly and Intrusion Detection for loMT shown in Figure
3.2.

Anomaly
Detection
Algorithm

A

WiFi 5| Hampel R
fingerprint filter »| OSELM

Kalman Filter

Performance
Logging

IMU

Legitimate
Received
Packets Buffer

Raw Received
Packets Buffer

Figure 3.2. Framework of integrated anomaly and intrusion detection for loMT.

3.4 Sensor Fusion for Trajectory Estimation

In order to estimate the location of the pedestrian, there are two sensors used by
Kalman filter: the first is the WiFi data which does not give direct estimation of the
location but it is used in a machine learning model for this purpose. The second one

is the accelerometer data which is used inside the process model as an input vector.

Assuming that the fingerprint is D = {X;, Y;} where X, is a matrix with dimension
of n; X k, n; denotes the number of locations in the grid decomposition of the

environment during the site survey, k denotes the number of APs

Y; is a column with size of n; We build a machine learning model based similar to
the work of(Jiang et al., 2016) . We name this model as W and we used it for
predicting the location based on the equation z;, = f(W;,, x;.) wWhere z;, denotes
the predicted location of the pedestrian in the place(x;, v;.)". W; Represents the

model built for the user i and x; . denotes the sample obtained from the pedestrian i
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at momentt. We use ¥; . as part of the measurement vector directly inside Kalman.
Hence, the measurement data of Kalman divided between z, and u, = [ay, a,].

The process model is given by the Equation (3.1).
Xt_-l'l = A)?t + But_l (3'1)

The state vector is defined by X;, = (X;¢ ¥ir Vxi¢ Vy,ie)". The set of Equations (3.

2-9) are applied.

Xigr1 = Xip T TVt (3.2)

Vxit = Vxit—1 T Ty 1 (3.3)
Xipr1 = Xie T T(Uxip-1 + Tay-1) (3.4)
Xigrr = Xig + TOxieoq + TP g (3.5)
Vigr1 = Vi T TVt (3.6)

Vyit = Vyit-1tTay; (3.7)

Viter1 = YVie T T(Wyi0-1 +Tay 1) (3.8)
Vier1 =Yie T TVy 1+ Tzay,t—l (3.9)

Hence, we write the two matrices A and B

1 0T O
_(0 1 0o T
A= 00 1 0 (3.10)
0 0 0 1
T? 0
=0 T 3.11
B 00 (3.11)
0 0
The measurement model is given by Equation 3.12.
z, = HX; (3.12)

The measurement vector is defined based on the update from the WiFi that is

calculated by Equation 3.13.
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Zit = f(Wi,tﬂxi,t) (3.13)

H=(1 0 0 0)

0 1 .00 (3.14)

Hence, the predicted covariance matrix P; is given based on the Equation (3.15)

P, =APAT +Q (3.15)

Kalman filter gain is given by Equation (3.16)
K, = PFHI (H.,PfHF + R)™! (3.16)

Where
Q Denotes the process model covariance matrix

R Denotes the measurement model covariance matrix

Hence, after receiving the measurement, we correct both the state and the covariance

matrix using the two Equations (3.17-18)

X, =X; +K(z, — HX;) (3.17)
Pt == (I - KtH)Pt_ (3.18)

For calculating z;, = f(W;¢ x;¢), We adopt feature adaptive online sequential

extreme learning machine FA-OSELM given in.
3.5 Hampel Filtering

In order to improve the estimation of Kalman filter, we add Hampel filter at the
output of the WiFi sensor. The role of Hampel filter is to remove outliers (Yao et al.,
2019). It operates based on sliding window of the time series generated from the
sensor at each APs RSSI reading. For each position of the sliding window, it
calculated the median and standard deviation and replaces the samples that have
value than three times of the standard deviation with the median. Such process
considers that values that exceed the median deviation with three times of the

standard deviation as outlier.

47



The usage of Kalman filter and Hampel filter for localization is presented in
Algorithm 2. The input of the algorithm are: RSSIBuffer which represents the data
for the last RSSI measurements collected inside a window w which represents the
size of hample window, deviceGeometry which represents the geometrical data of
device, namely, position, velocity and acceleration, and Online Sequential Extreme
Learning Machine OSELM which represents a pre-trained model on the WiFi
fingerprint (Zou et al., 2015). The output of the algorithm is currentPos which
represents the current estimated position of the device. The operation of the

algorithm consists of three steps:

1- Filtering out the outliers using hample filter.

2- Calculating the current location using OSELM and filtered RSSI.

3- Using the current position as input to Kalman filter measurement vector to fuse
between RSSI and IMU.

Algorithm 2 Device Localization.
Input:

(1)RSSIBuffer: the RSSI data for the last w RSSI measurements where w is the size
of hample filter window

(2)deviceGeometry: the geometrical data of device (Position, velocity, acceleration)
(3)OSELM: the pre-trained OSELM module

Output:

currentPos: the current estimated position of the device.

start algorithm

1. FRSSI « hample(RSSIBuffer)

2: predictedPos «— eval(OSELM; FRSSI(:; end)) // estimate for the last RSSI

3: currentPos «— kalmanFilter(predictedPos; deviceGeometry)

4: end algorithm

3.6 Cauchy Based Anomaly Detection

To propose a weighted trustworthiness assessment for detecting anomaly behaviour
in IoMT based the estimated trajectory by Kalman filter and information gain

calculated from the network features.
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At every time moment, a new point is generated from Kalman filter are combined
with the network features data in one vector and projected to clustering space as one
point. The point is compared with the existing clusters and it is added to the cluster
that combines with the point maximum Cauchy density considering that the density
does not exceed certain threshold. Otherwise, the point is projected to an outlier. The
outlier is saved until collecting minimum number of points in the outlier that enables
converting the outlier to a cluster. The pseudocode used for this is given in
Algorithm 3. The input of the algorithms are: C which represents the Cauchy clusters
set, pedestriansPos which represents the pedestrians position, gammaC which
denotes density threshold of clustering, Anomaly which represents the detected
anomaly, interval which denotes pruning interval time, threshold which denotes the
anomaly threshold and the time. The outputs of the algorithm are C which denotes
the updated Cauchy clusters set and Anomaly also after being updated. The process
of the algorithm starts by checking the position and it uses it for creating a new
cluster in the case of the first sample or when the maximum density of the position
with respect to other clusters is less than a threshold gammac, otherwise it assigns it
to the cluster associated with the maximum density and it calls for this the
function UpdateCuster. The next step of the algorithm is label the anomaly samples
based on the criteria of having number of members within their clusters less than the
input threshold. Lastly, the packets that are associated with the anomaly samples are
deleted.
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Algorithm 3 Cauchy with anomaly detection.
Input:
(1)C: the cauchy clusters set.
(2)pedestriansPos:the pedestrians positions.
(3)gammacC: the density threshold of clustering.
(4)Anomaly: the detected anomaly
(5)interval: the pruning interval time
(6)threshold: the anomaly threshold
(7)Time
Output:
(1)C:updated cauchy clusters set.
(2)Anomaly:updated anomaly list.
start algorithm
1:for each P in pedestriansPos do
2: if C.numberOfClusters == 0 then
3:  addNewcCluster(p)

4: else

5. densities «— CalculateDensity(C; p)

6: [maxGammaj, maxIndex]=Max(densities);
7 if maxGammaj<gammac then

8: addNewCluster(p)

9: else

10: C = UpdateCluster(C(maxIndex),P)

11: endif

12: end if

13: end for

14: if mod(Time,interval)==0 then
15: for each cluster ci in C do
16: if ci.NumberOfMembers < threshold then

17: Anomaly=[Anomaly ci.Members]
18: delete(ci)

19: end if

20: end for

21:end if

22:End algorithm
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The pseudocode of creating the new clusters is presented in Algorithm 4. The inputs
of the algorithm are C which denotes the Cauchy clusters set and P which denotes
the pedestrian position. The output of the algorithm is the updated Cauchy clusters
set. The algorithm 5 creating new cluster from the input position, it uses its value for
the cluster center and it increases the number of points inside the clusters by one. In

addition, it initiates the value the parameters of the clusters.

Algorithm 4 addNewCluster.

Input:

(1)C: the cauchy clusters set.

(2)P:the pedestrian position.

Output:

(1)C:updated cauchy clusters set.

start algorithm

1: C.numberOfClusters++

2: C(C.numberOfClusters).numberOfMembers=1
3: C(C.numberOfClusters).Members = P
4: C(C.numberOfClusters).center = P

5: C.numberOfClusters).Sj =0

6: C.numberOfClusters).segmaj = 0

7: End algorithm

Algorithm 5 CalculateDensity.

Input:

(1)C: the cauchy clusters set.

(2)P:the pedestrian position.

Output:

(1)C:updated cauchy clusters set.
(2)densities:the densities of clusters.

start algorithm

: for each cluster ci in C do

d = distance(ci.center,P)

T = ((ci.numberOfMember-1)/(ci.numberOfMember))*trace(ci.segmaj)
r = T/(deltaS)

ci.gammaj = (1 + r)/(1 + (d/(deltaS)) +r)
: end for

: densities=[C.gammaj]

: End algorithm
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The pseudocode of the cluster head update is presented in Algorithm 6. It takes the
input corresponding cluster set as input as well as the pedestrian position and it
returns the updated cluster. It uses the position for updating the cluster center and

other parameters as it is shown in the pseudocode.

Algorithm 6 UpdateCluster.

Input:
(1)ci: the cauchy cluste to be updated.
(2)P:the pedestrian position.
Output:
(1)C:updated cauchy clusters set.
start algorithm
1: ci.numberOfMembers++
2: ci.Members= [ci.Members P]

: €] =P - ci.center

: ci.center = ci.center + ((1/ci.numberOfMembers)*ej)

3

4

5: ci.Sj = ci.Sj + e]"*ej

6: ci.segmaj = (1/ci.numberOfMembers)*ci.Sj
7

: End algorithm

3.7 Intrusion Detection System

The role of intrusion detection system is to operate with the anomaly detection that
marks the data that arrives from nearby nodes as associated with anomaly or being
normal. The prediction of anomaly that is carried by the anomaly detection which
operates based on Cauchy clustering is further used with the network data that are
obtained from the packets received buffer to give more confident decision about the
non-legitimate data because of black-hole attack or distributed denial of service
DDosS attack. This is used based on un-supervised learning approach carried by deep-
believe neural network. Hence, the final decisions will one of two labels for every
packet in the buffer: the first one is normal or legitimate packets and the second one
is packets attached with attack. The IDS was integrated in the sink buffer processing

algorithm 7.
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Algorithm 7 Sink IDS Buffers processing.
Input:
(1)Devices: all devices that connected to the network.
(2)avilablePackets:array of the avilable packets in all devices.
(3)droppedPackets
(4)recivedPackets
(5)time
(6)ELMIDS: the trained ELM for detecting intrusions
Output:
(1)droppedPackets
(2)recivedPackets
(3)E2EDelay
start algorithm
1:if any(avilableP ackets) = 0 then
2: sendingDevice «— selctRandom(avilableP ackets):
packet «— extractP acket(Devices(sendingDevice)):
if packet.lifeTime >0 A ELMIDS(packet) == 0 then
recivedPackets++

3
4
5
6: E2EDelay = time-packet.generationTime.
7. else

8 droppedPackets ++

9: endif

10:end if

11:End algorithm

3.7.1 Intrusion Detection based on extreme learning machine OSELM

According to the work of (Singh et al. 2015) , we can built the model from the

following steps :

1- We assume that we have a fingerprint dataset given as

R={(x,t)|x; R t; eN,i=1,---,N}

2- We decompose the labeled fingerprint data into two parts: the first one is the
boosting data which is given as X when i = 0,1, ... Nz where Ny denotes the size
of the boosting data, and the remaining is the training data.

3- We apply the boosting phase as given in the following steps :
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3-1 We generate randomly weights for the input hidden layer neurons w; and the

hidden layers biases b;.

3-2- We calculate the hidden output matrix using Equation (3.19).

HO = [hli"'ihﬁ]T (319)
Where
h; = [g(W; - x; + by), -, g(wg - x; + b)]"
i=1,-,N

g Denotes the activation function

3-3- estimate the hidden output weights using Moore-Penrose equations (3.20-
23).

L@ = M HIT, (3.20)
L© = M HIT, (3.21)
M, = (HgHo)™ (3.22)
Ho' = (HgHo)™"Hy (3.23)

3-4- For each new received chunk apply the recursive Equation (3.24).

T
M, =M, — lV[jhj+1hj+1lv[j
1=
/ 7 140 Mhy

. . . (3.24)
BUTV = U + Myyihya (¢ — 11y p9)
j=j+1
3-5- In case the number of features has changed, apply transfer learning

equations to preserve old weights when the neural network inputs are changed to

the new number.
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3.8 MUDI Stream: Multi-Density The Clustering Algorithm

In this study we prefer to use the MUDI Stream which is an Online-Offline
algorithm, this algorithm used to evaluate and benchmark the work of detecting
anomaly behavior and the IDs with the proposed algorithm the Kalman Cauchy
clustering. The MUDI Stream is an Online-Offline algorithm with four major
components. Algorithm 8 used during the online phase, it stores brief information
about the evolving Multi-Density data stream in the form of core Mini-Clusters.
While the algorithm 9 works as an offline phase uses an adapted Density-Based
clustering algorithm to generate the final clusters. The Grid-Based method is used as
an Outlier-Buffer to manage both noise and Multi-Density data to differentiate
between anomalies, normal packets and nodes, new point is generated from Kalman
filter are combined with the network features data in one vector and projected to
clustering space as one point. The point is compared with the existing clusters and it
is added to the cluster that combines with the point maximum Multi-density
considering that the density does not exceed certain threshold. Otherwise, the point is
projected to an outlier while also reducing clustering merging time. The algorithm is
evaluated on various synthetic and Real-World datasets using different quality
metrics and scalability performance is compared. The experimental results show that
the algorithm presented in the work of (Amini et al. 2016; Amini et al. 2014)
enhances clustering quality in Multi-Density environments and Density-Based
Spatial Clustering of Applications with Noise (DBSCAN) as shown in Figure 3.3 .
For this study we used the definition 1 to define the Neighboring grid (N;), Two
density grid; to detect the normal and legitimate nodes. And the definition 2 to
calculate the Outlier Wight Threshold (OWT) which used to know which points
exceeds the threshold to considered as anomaly. The algorithm 8 is for MUDI stream
online phase, and algorithm 9 is for Multi- density-based spatial clustering of

applications with noise (M-DBSCAN) for offline phase.

Definition1: Neighboring grid ( Ny), Two density grid:

g1=0t . jr ..., ji)and g, =(?, j? ..., j5) are neighbors if there exists
m,1 <m <d,jl=j¢,i=1,.m—-1,m+1,..d;and|j} — j4|=1.Then
g1 and g, are neighboring grids in the mth dimension.

Definition 2: Outlier Wight Threshold (OWT):
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If the last updated time of grid g is t,, then at the current time t., Outlier Weight
Threshold (OWT ) is defined as follows (t, > t, ), where c is the amount of the
time:

_( 1~ AMtc=tp+1))

OWT (ty t;) =~ Yl o - (3.25)
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Figure 3.3. Clustering-multi-density data (a) denseStream , ¢ = 0.05, (b) DBSCAN
c=0.05, (c) DBSCAN, c=0.21, MinPits =5 (Amini et al., 2016).

Algorithm 8 MUDI-Stream online phase (a, A, gridGranularity, N).
(1) Input: a data stream
(2) Output: core mini-clusters
1. ¢t

_ _—A
pt= [% logg/(a N@-2 ]

tc o, Initialize the grid structure using gridGranularity;
while not end of stream do

Read data point x from Data Stream;

cmcs <« find the nearest cmc to x in cmc list;

if distance(x , cms;) < Mcdeme then

cmeg «— cmeg + X,

else

map the new data point x to the grid,;

[EN
o

‘Ngeng + 1;

[EEY
[EEY

Wy 27y w () 4+ 1;

[EEN
»

Ltyete

[EEN
w

- Update GS ng, t,, ,wg;

[EEN
IS

- a
ifng > 1 andw, = A then
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15:

16:

17:

18:
19:
20:
21:
22:
23:
24:
25:
26:

27:

28:

29:
30:
31:

32:

33:
34:
35:
36:
39:

Weme € Wy

=10t ~Tiy(p;y

Ccmc - Weme ’
SP=1(te ~Ti yaistance (P; j Come) |
rcmc — Weme '
for data points pi in the grid g do
mcdeme «—Maximum distance {(ceme Pi)};
end for
end if
end if
if t. mod t,, == 0then
update the weight of all grids in grid list
(wg(te) = 274E7) + wy(t,))
for all grid g do
OWT (,¢.) — CESEN,
ifw, < OWT then
remove grid g from grid list;
end if
end for
for all { cmc} do
if Wepe < ﬁ then
remove cmc from { cmc} ;
end if
end for
end if
te «—t. +1;
end while
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Algorithm 9 M-DBSCAN (MinPts) — MUDI-Stream's offline phase.

(1) Input: core mini-clusters
(2) Output: arbitrary shape clusters

1: mark all cmcs as unvisited,

2. repeat

3. randomly choose an unvisited point cmcy,;

4. mark cmcyas Visited;

5: {Ngy (cmc, )} «—cmc, — grid —nieghborhood,;
6. If |{Ng (cmcey )} | > MinPts then

create a new cluster C, and add cmc, to C;

7: {Ncore }
— find MinPts — nearst nieghborhood cmc, {N4 (cmc, )} from cmc,

8: Calculate pu(Distore ) » and o (Distcore );

9: For each cmc, in {Noye } dO

10: If cmc, is unsupervised then

11: Mark cmc, as visited ;

12: {Ny (cmc, )} < cmc, — grid — nieghborhood;

13: If [{N, (cmc,)}|> MinPts then

14:  {Ns, (cmcy)} <« find MinPts-nearest-nighbors in {N, (cmc,)} from
cmey;

15: Calculate u(Distcmcq ),and o (Distcmcq );

16: If u(Disteme, JE[ u(Disteore ) = 0 (Disteore )  W(Disteore )t 0
(Distcore )] then

17: {Neore } < {Noore U {Ngy, (cmcg);

18: Update u(Dist.pre ) » and o (Distcore ) ;

19: End if

20: Endif

21: Endif

22:  If cmcyis not assigned to any cluster then
23: Add cmcgto cluster C ;

24: Endif

25: End for

26: Else

27: Mark cmc,, as noise ;

28: End if

29: Until no cmc is unvisited ;
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3.9 CEDAS: Fully Online Clustering Of Evolving Data Stream Into Arbitrary
Shaped Clusters

In this study we used the CEDAS algorithm to detect the anomaly behavior and used
with IDs to benchmark the results with the proposed algorithm to prove the best
algorithm which capture the anomalies in online phase, we discussed this algorithm
according to our proposal. It is a fully online algorithm for clustering an evolving
data stream into arbitrary-shaped clusters. This algorithm helps to detect the
abnormal and legitimate nodes in the floor , by using the following procedure ; It is a
two-stage tactic that is accurate, noise-resistant, algorithmically and memory
effective, and has a low time penalty as the number of data dimensions grows (Islam
et al., 2019) . The first stage generates microclusters, and the second stage combines
these microclusters to form macroclusters. That is means the algorithm help to
calculate the E2E and PDR Dimensional stability and high speed are achieved by
keeping the calculations simple and minimal by employing hyper spherical

microclusters (Hyde et al., 2017) the work presents in Figure 3.4 (Dong et al., 2018).

The CEDAS approach defined as the following:

1. Cluster Graph: the structure that specifies which microclusters combine to form
which macroclusters this is saved by noting the intersects of each micro-cluster in

'Edge," as well as the appropriate macro-cluster assignment in ‘Macro.'

2. Local density: the number of samples per micro-cluster

3. Macro-cluster: a cluster consisting of a number of intersecting microclusters.

4. Micro-cluster: a micro-cluster with a local density beneath the threshold.

5. Outlier-micro-cluster: a micro cluster with local density lower than the threshold.
6. Sample: any data point in “D” dimensions.

7. Threshold: the minimum number of samples within the micro-cluster radius of any

sample to form a micro-cluster.
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Figure 3.4. Example of the CEDAS algorithm micro-clusters and graph structure.
The data together with two macro-clusters in red and green are shows
the cluster graph structure with the nodes of the sub-graphs colored
according to the macroclusters (Hyde et al., 2017).

CEDAS, in general, is a data-driven approach to divide the data space into shell

regions and kernel based on a user defined radius, r,. Each micro-cluster made up of

a shell annulus region between radiusrz—0 , Toand a kernel region being r < TZ—O Any

microcluster that exceeds a certain density threshold is considered for membership in
the macrocluster. Macroclusters are formed when kernel regions of one microcluster
intersect the shell region of another microcluster. Micro-clusters that are larger than
the threshold but do not intersect; are also considered as macro-clusters. Shell
regions are thought to be the edges of macroclusters. New data from the data stream

will be classified into one of three categories:

1. Empty space, where it will form a new, outlier-micro-cluster represents in

algorithm 10.

2. A micro-cluster shell region, where it will be assigned to the cluster, the cluster
count updated and the micro-cluster center recursively updated to the mean of its

samples represents in algorithms 11 and 12.

3. A micro-cluster kernel region, where it will be assigned to the micro-cluster and

the cluster count updated as shown in algorithm 13.
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Algorithm 10 CEDAS: Initialization.

Input: x, ry
1. Create micro-cluster structure containing:

2: C1(Centre) =x
3: C1l(Count)=1
4. Cl(Macro) =1
5. Cl(Energy) =1
6: Cl(Edge) =1
7: Set number of micro-clusters to 1
8: Set modified micro-cluster number, for use updating the graph structure.
Algorithm 11 CEDAS: Update Micro-Cluster.
Input: x, C, ry

1. find distance to nearest micro-cluster centre, d,,;,
if dpin <1, then
reset micro-cluster Energy to 1
increment number of samples contained in micro-cluster
if data is within micro-cluster shell then
recursively update micro-cluster centre
end
else

Create new micro-cluster

[HEN
o

: end

Algorithm 12 CEDAS; Kill Micro-Cluster.

Input: C, Decay
1: Reduce all C(Energy) by Decay
if Any C(Energy) <0 then
Remove micro-cluster
Remove all edges containing the micro-cluster
Decrement the number of micro-clusters
End
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Algorithm 13 CEDAS: Update Graph.

1: if A micro-cluster has been modified then

2 if the micro-cluster edge list has changed then

3 Set a new macro-cluster number throughout the graph

4: end

5: end

6: if Any micro-clusters have died then

7:  Set new macro-numbers for the sub-graphs of its previous edges
8: End

3.10 Deep Belief Networks

The other benchmark algorithm is a Deep Belief Networks (DBNS) it is one of the
algorithms of convolution neural networks (CNN) which depends on the roles of
neural networks. They are probabilistic generative models with multiple layers that
can learn to extract a deep hierarchical representation of training data. We used
DBNs for detecting the anomaly behavior by improves the performance of this
algorithm after combined it with kalman filter and cauchy algorithm to improve the
results of proposed model. DBNs are made up of several layers of restricted
Boltzmann machines (RBMSs) with a classifier on top. DBNs can be trained quickly
by training multiple RBMs with the greedy layer-wise unsupervised training strategy
(Hinton et al., 2006). Following network pre-training, the network parameters are
fine-tuned using to achieve better classification results. RBMs are an energy model
in which the visible—hidden layers are fully connected but the visible—visible and
hidden—hidden layers are not (Ghojogh et al., 2021).

RBMs have found widespread application in classification, dimension reduction,
feature extraction, topic modeling, and collaborative filtering. RBM maps the sample
using visible and Bernoulli random-valued hidden units, and converts the sample
data from a dimension m input space to a dimension m feature space n, where n <
m, as shown in Figure 3.5. An RBM is an energy-based generation model that
contains a layer of visible nodes (v4, v5, - - -, v;, - * -, V) Showing the data and a

layer of hidden nodes (hy, hy,, - - -, hj,, - - =, hy,) learning to represent features, for
every v; € {0, 1} and h; € {0, 1}. We define that the biases of the visible nodes are

(b1, by, - - -, by, - - -, by), and the biases of the hidden nodes are (c;, ¢, - - -, ¢ , -
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-+, ¢n) (Ghojogh et al., 2021). The energy function E (v, h) of the joint configuration

{v, h} is defined as follows:

E(w,h) = —X¥iZ1 by vi - Xiea ¢ hy - XX wij vihy .26)
¢ <, ¢
Hidden Layer h, k)« (h)...(H celk
”“‘ ”.E:':v,‘“.r
Visible Layer v, By .0 @98 ... W) | OeR”
b, b, b, b,  Parameter

Figure 3.5. The graphical representation of an RBM with m visible nodes and n
hidden nodes (Yang et al., 2019).

According to the energy function E (v, h), the joint probability distribution for

hidden and visible vectors can be defined as follows:
P(v,h) = - exp(=E(v, h)) (3.27)

Where Z is the partition function which is the sum over all possible pairs of visible

and hidden vectors.
Z =Yy 2nexp(—E(v, h)). (3.28)

The probability assigned to a visible vector v is given by summing over all possible

binary hidden vectors h, as follows:
P(v) = %,P(v,h) = 1 exp(—E (v, h)). (3.29)

Because the same layers in an RBM do not have direct connections, the hidden units
are independent of the visible units, and vice versa and depends of the concepts of
the Machine Learning (ML). As a result, the conditional probability of the hidden

vector h given the visible vector v is:
P(hlv) = [Tj-1pChi|v) . (3.30)
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Similarly, given the hidden vector h, the conditional probability of the visible vector

v is given by:
P(wlh) = [IiZ1p(v; |h). (3.31)

The activation state of each hidden unit is conditionally independent because of a
given a visible vectorv. At this point; hj € {0, 1} and the activation probability of

the jth hidden unit is described as follows:
P(hj = 1|v) = Sigm( X7t wi; vi+c;) (3.32)

Where Sigm(x) =

= is the logistic sigmoid function.

As a result, when given a hidden vectorh, the activation probability of each visible

unit is conditionally independent:

An RBM is trained to decrease the energy in Equation (3.27) by finding the values of
the network parameters & = (W, b, ¢); the energy of the network is decreased if the
RBM has been trained. And the probability in Equation (3.34) is increased. To
increase the log-likelihood of P(v), its gradient with respect to the network
parameters 6 can be calculated as follows (Yang et al. 2019):

dlog P(v) _ 9E(w,h) ~ [OE@.h)
= Erou [ g | + oy [Tog (3.34)

The expectation operator is denoted by the operatorE. The expectation on the left
hand side of Equation (3.34) can be calculated precisely, while the expectation on the
right hand side is difficult to calculate. The Contrastive Divergence (CD) approach
for estimating log-likelihood gradient was devised to overcome the difficulties of
computing expectations. To update the network parameters, the CD-k algorithm
approximates the expectation by restricted k (typically k = 1) iterations of Gibbs
sampling.8 = (W, b, c). The Persistent Contrastive Divergence (PCD) algorithm is

an upgraded version of the CD algorithm 14 that makes the training process more
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efficient (Aldwairi et al. 2018; Tieleman 2008).The update process of parameter 6 is

as follows:
o1 ) , A
Oagp(v) — p(hlzllv) v — Zv'p(v )p(h] = 1|17 )_‘Ui (335)
Wij
dlog P ~
oagbi ® _ v, — Zv*'P(” ). v (3.36)
al , , ,
ﬁ§m=’%W=1W)—ZJWW)PWJ=1W) (3.37)

An RBM can be layered on top of another RBM after it has been trained. The first
RBM's hidden layer output is used as the visible layer input of the second RBM. As a
result, multiple layers of RBMs can be layered to automatically extract different
characteristics that indicate an increasingly more complicated structure in the data. In
practice, we stack RBMs and use a greedy layer-wise unsupervised learning
approach to train them. Each additional hidden layer is trained as an RBM during the
training phase. The network settings are set once the DBNs have been trained. The
network parameter, & = (W, b,c) are used to set up a multi-layer feed-forward
neural network's weights. The network parameters are 6 = (W,b,c) fine-tuned
using the back propagation technique to improve the detect performance of the
neural network (Yang et al. 2019). The DBNSs structural model is shown in Figure
3.6.

( Output )

|
| ee - oo |
Bp ! — y— 1
l W, Back propagation!
' -
|7 T TN p———t——— &
n, | (0000 00O |
| -
- | RBM-2 , f - '
g | Pre«traming W, Fine tuning :
; T el T T 1
©= " | [eoeeee - eeeeee|| |
2 : b i A b S, I —— I
g RBM-1 I Pre-training " Fine tuning :
T S T R N o e e A A e bakiat J
( Network data flow after preprocessing )

Figure 3.6. The DBNs structural model (Yang et al., 2019).
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Algorithm 14 Training a deep belief network.
Input: training data {x; }/-,
/I pre-training:
1. forlfrom#—-1do

2: if [ =1 then
3: {vitics —{adity
4: else
Il generate n hidden variables of previous
5. RBM:
6: — {h; }j=,Algorithm 1 for (I — 1) —th
I RBM — {v;}iz; <« {hi }ity
8: W, , b;, by, 1< Algorithm 2 for [ — th RBM
90—

/I fine-tuning using backpropagation:
10: Initialize network with weights {W, }-1 and
11: biases {b; }t_,.
12: {W, }Z1, {b, }¢_, < Backpropagate the error of loss from several epochs.

The Table 3.2 is the Summary of suggested contributions and methodologies
concept.

66



Table 3.2. Summary of suggested contributions and methodologies concept.

Research Theme Research Question | Methodology Performance
Objective Measures
For Develop a Kalman How to assess the Kalman filter-based | Detection
estimating filter-based model for | trustworthiness of model and fusing Accuracy,
the trajectory | estimating the data sent/received WiFi with IMU recall
of trajectory of by IoMT nodes? data. Jprecision,
pedestrians pedestrians within an Specifity,
within an indoor environment How to identify the NPV, G-
indoor based on compromised nodes mean, F-
environment within loMT measure
system?
For detecting | Trustworthiness How to detect A Cauchy-based Detection
anomaly assessment anomaly behaviour clustering method Accuracy,
behaviour in in loMT based on for detecting recall
IoMT the estimated anomaly behaviour | ,precision,
trajectory? in loMT based on Specifity,
the estimated NPV, G-
How to generate IDs | trajectory by mean, F-
in loMT Kalman filter. measure
environment? And an extreme
learning machine-
based IDS model
for loMT systems
using the Cauchy
clustering scheme
for the training
phase of an extreme
learning machine to
improve the
detection accuracy.
For the trust | Evaluate the proposed | How to improve the | Integrating anomaly | Detection
IDS model algorithm using detection accuracy? | detection with Accuracy,
for loMT classification and online learning for recall
systems networking metrics How to evaluate the | attacks Jprecision ,
proposed algorithm? | identification using | Specifity,
an Online NPV, G-
Sequential Extreme | mean, F-
learning machine measure

(OSELM).
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3.11 UML Design

Unified Modeling Language is the class diagram of the platform illustrated in Figure
3.7. It consists of the following classes; pedestrian class, building class, device class,

sink class, performance logging class and packet buffer class.

APsDataset
Map
Floors

Pedistrian 1D
Position

OldPosition
Grid

-Velocity
OldVelocity
Acceteration

-Devica

Pedestrians
Sink

OSELM
SAnomalyPercant

+getRSSIValue()

+scankloor()
Sink

-Device 1D RecivedPackets
-Pedestrian ID -DroppedPackets
-RSSis -DBN

JIMUIData NetworkFeatures

-Hampe Window E2EArray
KalmanFilter iProcessBufferst). T
average SizeOfPacket
-dataBufferSize

-dataPacke tStructure
-dataPacketlifeTime Performance lOBSi"'S
-interArrivalTime

-dataPacketGenerationMean -LoggingRate
nextTimeOfGeneration +logPerformance()

generatedDataBuffer

+GenerateDataPackets()

+Localization()
PacketBuffer

BufferSize

Head

Tail

Numbe rOfAvailablePackat
+addNewPacket])
+extractPacket()

Figure 3.7. System class diagram.
3.12 WiFi Fingerprinting

The distribution of measurement points for first floor is presented in Figure 3.8.The
measurement points means all the smart devices which are carried by the pedestrians
and the fixed devices available in the first floor. And the distribution of the

pedestrian movement simulator is presented in Figure 3.9 which showing the
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movement of pedestrians through the first floor by built the simulator by using

matlab program to simulate the reality.

40

distribution of measuring points for the first floor

30 1

20 r

Y axis
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-100 -80 -60 -40 -20 o 20 40
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Figure 3.8. First floor layout.
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3.13 Dataset

Figure 3.9. Pedestrian movement Simulator.

We used two types of data sets in this study , to achieve the results of the first part

which is related to anomaly detection we used the Tampere University Wi-Fi
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fingerprint dataset (Lohan et al., 2017). And for the second part which is related to
intrusion detection system we used the Knowledge Discovery and Data mining
(KDD99) data set (Moustafa & Slay, 2015).

3.13.1 Anomaly detection dataset

We used Tampere University Wi-Fi fingerprint dataset, comprised of 4648
fingerprints collected with 21 devices in a university building in Tampere, Finland.
We used the data of the first floor only as Aps Dataset. The floor layout illustrated in
Figure 3.8. And the Simulator layout illustrated in Figure 3.9.

3.13.2 IDS dataset

The second part of this study is to implement IDS using Extreme Learning Machine
(ELM) from the Online Sequential Extreme Learning Machine (OSELM). The
KDD99 dataset was used to emulate the intrusions of DoS type. 48562 records split
into 10000 records for training ELM -which has 50 hidden neurons and sig activation
function and random records selected from the other part and used to emulate the

network features during the simulation.
3.14 Evaluation Metrics

This section provides the various metrics used for evaluating our developed
algorithm and its comparison with state-of-the-art approaches.

3.14.1 Accuracy

The accuracy is given by Equation (3.38).1t is used to calculate the accuracy for
anomaly and IDS by using anomaly percentage, numbers of pedestrians and the

speed.

__ (True positive )TP+(True negative )TN _

ACC = P+N
TP+TN (3.38)
TP+TN+(Faks positive)FP+(False negative)FN
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3.14.2 Precision

Precision denotes the predictive position values for the anomaly and IDS by using
anomaly percentage, numbers of pedestrians and the speed. And it is given by
Equation (3.39).

PPV = 1 — (False positive rate)FPR (3.39)

TP+ FP
3.14.3 Recall

Recall denotes the true positive ratio for anomaly and IDS by using anomaly
percentage, numbers of pedestrians and the speed and it is given by the Equation
(3.40).

TP TP
(precision)P TP + FN

TPR = = 1 — ( False negative rate )FNR (3.40)

3.14.4 Specifity

Specifity denotes the false negative ratio for anomaly and IDS by using anomaly
percentage, numbers of pedestrians and the speed and it is given by the Equation
(3.41).

TN
TN+FP

(False positive rate) FPR = = 1 — (True positive rate) TPR (3.41)

3.14.5 G-Mean

Denotes the geometric mean of precision and recall after calculate each measure for
anomaly and IDS by using anomaly percentage, numbers of pedestrians and the

speed. It is given based on the Equation (3.42).

G — Mean = \/ precision recall (3.42)
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3.14.6 F-measure

It combines the precision and recall which are calculated before; for anomaly and
IDS by using anomaly percentage, numbers of pedestrians and the speed based on
the Equation (3.43).

precision - recall

fi=2 precision + recall (3.43)

3.14.7 NPV

It denotes to the percentage of true negative to total of negative records for anomaly
and IDS by using anomaly percentage, numbers of pedestrians and the speed. It is
given based on the Equation (3.44).

TN

(Negative predictive value )NPV = e (3.44)
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4. RESULT AND DISCUSSION

This section provides the experimental results and the analysis; it consists of
experimental designs and setups as provided in subsection 4.1, and the analysis of the

results as provided in Section 4.2.
4.1 Experimental Design And Setup

The experimental design is comprised of two parts; the first one is the design of the
anomaly detection model and the second one is the design of the entire
algorithms(KC-ELM , CEDAS , MUDI) for both anomaly and intrusion detection.
Table 4.1 presents the parameters settings used in this work for the simulator like;
TimeUnit ,Floor,Grid,HampleWindow and LoggingRate then we have to give value
for each parameter ;the value of TimeUnit is 0.1 sec , the value for floor is one
because we used only one floor which is the first floor,the grid is the dimensions of
the program window which is represent the simulation of the floor,HampleWindow
is the size of the hample window, the value of LoggingRate is two sec means the
period of logging form pedestrian to Aps dose not exceeds two seconds. While Table
4.2 presents the settings of the algorithms like the parameters which includes the
Decay, Radius, minThreshold, Streamspeed,C,,, Cl, Lamda, gridGranularity,
MinPts, Horizon, deltaS, gamaC .Each algorithm used it’s parameters as shown in
Table 4.2.

Table 4.1. Simulator Settings.

Parameters Value Description

TimeUnit 0.1 [Sec] simulator time step

Floors 1 number of floors

Grid [-90,40,-25,35,4] [minX,maxX,minY,maxY ,grid granularity]
HampleWindow | 10 hample window size

LoggingRate 2 [Sec] loggig data rate
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Table 4.2. Algorithms parameters.

Parameters KC- CEDAS (Islam et al. 2019) MUDI (Amini et al.,
ELM 2016)
Decay - Number of pedestrians -
Radius - 0.01 -
minThreshold - 3 -
Stream speed - - Number of
pedestrians
Cp, - - 1
Cl - - 0.5
Lamda - - 0.998
gridGranularity - - 10
MinPts - - 3
Horizon - - 2
deltaS 0.5 - -
gammaC 0.66 - -

4.2 Results Analysis

The results analysis consists of two sub-sections; the first is the analysis of the results
of the anomaly detection model as given in Sub-section 4.2.1 while the second is the

analysis of the results of the intrusion detection model as given in sub-section 4.2.2.

4.2.1 Anomaly detection results

The accuracy metric was generated for each of KC, MUDI, and CEDAS; firstly, the
accuracy of the models based on the scenarios of inserted anomalies was presented in
Table 4.3. It indicates the percentage of the true predicted records (anomaly versus
non-anomaly) to the total number of records. Three scenarios were used for testing;
the first one is for an anomaly percentage of 5%, the second one is for an anomaly
percentage of 10%, and the third one is for an anomaly percentage of 20%. The
analysis showed that KC maintained accuracy of over 85% for all the scenarios
which was superior to the accuracies of MUDI and CEDAS; for anomaly detection
of 5%, KC reached the accuracy of 94%. Additionally, the accuracy of the models
was presented based on the number of pedestrians in Table 4.4. Like the cases of the
percentage of inserted anomalies, it was found that for all scenarios, the accuracy
was higher than 85% and reached 91% for 25 pedestrians. This showed that the
integration of the Kalman-based state estimation with Cauchy in KC enabled

anomaly detection and sustained the performance despite the increase in the number
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of pedestrians or the increase in the percentage of anomalies. Table 4.5 provides the
classification metrics for the models based on the average speed of pedestrians.
Notably, KC performed better than the rest of the models (MUDI and CEDAS) in all
the scenarios. The best-achieved accuracy was 86% for KC when the average speed
was 1. Furthermore, the other classification metrics were also generated for the
scenarios of three anomalies percentages, number of pedestrians, and average speed
as presented in Tables 4.3, 4, and 5 respectively. It was also observed that KC
performed better than MUDI and CEDAS in all the scenarios based on the
considered metrics. The zero values presenting in some fields of tables which are
generated by the program and the (-) mean that there are unknown values generated
by the program. All figures and tables of the results in details shown in Appendix A
which includesAppendix A: Anomaly Detection Results Diagrams And Tables
(Appendix A- 1 : Metric Anomaly for 5%, 10% and 20% , Appendix A- 2 :Metric
Pedestrians for 25, 50 and 100 pedestrians , Appendix A- 3 : Metric Speed for 1, 2

and 3 m\sec) .

Table 4.3. Summary of the evaluation metrics for our KC and its comparison with
the benchmark in terms of anomaly detection for three anomalies
percentages 5%, 10% and 20%.

Percentage Measure KC MUDI CEDAS
5% Accuracy 94% 64% 86%
10% 93% 33% 83%
20% 86% 48% 84%
5% Precision 24% 1% 0%
10% 54% 1% 10%
20% 60% 16% 51%
5% Recall 100% 22% -
10% 100% 13% 88%
20% 91% 37% 82%
5% Specificity 94% 65% 86%
10% 93% 34% 83%
20% 85% 50% 85%
5% NPVs 100% 98% 100%
10% 100% 86% 100%
20% 97% 76% 96%
5% F measure 39% 2% -
10% 70% 2% 17%
20% 2% 22% 63%
5% G-mean 49% 5% -
10% 74% 4% 29%
20% 74% 24% 64%
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Table 4.4. Summary of the evaluation metrics for our KC and its comparison with
the benchmark in terms of anomaly detection for three scenarios of
number of pedestrians 25, 50 and 100.

Number of pedestrians Measure KC MUDI CEDAS
25 Accuracy 91% 20% 73%
50 86% 48% 84%
100 86% 27% 86%
25 Precision 68% 10% 42%
50 60% 16% 51%
100 57% 13% 60%
25 Recall 82% 30% 89%
50 91% 37% 82%
100 93% 45% 63%
25 Specificity 93% 16% 69%
50 85% 50% 85%
100 85% 22% 91%
25 NPVs 97% 42% 96%
50 97% 76% 96%
100 98% 62% 92%
25 F measure 75% 15% 57%
50 72% 22% 63%
100 71% 20% 62%
25 G-mean 75% 18% 61%
50 74% 24% 64%
100 73% 24% 62%
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Table 4.5. Summary of the evaluation metrics for our KC and its comparison with
the benchmark in terms of anomaly detection for three scenarios of
average speed 1, 2 and 3 [m/s].

Average speed of pedestrian Measure KC MUDI CEDAS
1 Accuracy 86% 48% 84%
2 87% 56% 78%
3 88% 52% 79%
1 Precision 60% 16% 51%
2 61% 17% 41%
3 64% 15% 42%
1 Recall 91% 37% 82%
2 91% 32% 82%
3 90% 29% 83%
1 Specificity 85% 50% 85%
2 86% 62% 77%
3 87% 58% 78%
1 NPVs 97% 76% 96%
2 97% 78% 96%
3 97% 77% 96%
1 F measure 2% 22% 63%
2 73% 22% 55%
3 75% 20% 56%
A G-mean 74% 24% 64%
2 75% 23% 58%
3 76% 21% 59%

4.2.2 1DS result

The results of the IDS were presented in different tables; Table 4.6 presents the
results for the first scenarios that represent the percentages of inserted anomalies;
Table 4.7 presents the results based on different numbers of pedestrians; and Table
4.8 that presents the results for different average speeds of the pedestrians. For the
first set of scenarios given in Table 4.6,when the Kalman Cauchy estimate with the
Extreme Learning Machine, KC ELM was found to be superior in terms of accuracy
(achieving 43% accuracy for 20 % of inserted attacks) compared to 31% for Kalman
Cauchy estimation with Deep Belief Network KC DBN, 29% for MUDI, and 21 %
for CEDAS. Considering the imbalance in the dataset (that is KDD 99) in terms of
having a low number of instances for some classes, and considering that KC is
integrated with ELM which is a supervised classifier, this has enabled better
prediction of performance. Additionally, we emphasize the fact that the classifier is
learning in an online way, meaning that it started with almost zero knowledge and

the knowledge keeps increasing with the arrival of more labeled batches to the

77




system. And all figures and tables details shown in Appendix B which includes;
Appendix B: IDS Result Diagrams and Tables (Appendix B-1: Metric Anomaly for
5%, 10% and 20%, Appendix B- 2: Metric Pedestrians for 25, 50 and 100 pedestrian,
Appendix B- 3: Metric Speed for 1, 2 and 3 m\sec).

Table 4.6. Summary of the evaluation metrics for our KC ELM and its comparison
with the benchmark in terms of intrusion detection for three anomalies
percentages 5%, 10% and 20%.

Percentage Measure KC ELM KC DBN MUDI CEDAS
5% Accuracy 30% 11% 29% 1%
10% 31% 13% 11% 5%
20% 43% 31% 29% 21%
5% Precision 3% 2% 1% 1%
10% 9% 7% 6% 5%
20% 31% 27% 23% 21%
5% Recall 100% 100% 100% 100%
10% 100% 100% 100% 89%
20% 100% 100% 100% 100%
5% Specificity 28% 9% 29% 0%
10% 25% 6% 6% 0%
20% 23% 7% 10% 0%
5% NPVs 100% 100% 100% -
10% 100% 100% 100% 0%
20% 100% 100% 100% -
5% F measure 5% 4% 2% 1%
10% 17% 14% 12% 10%
20% 47% 42% 37% 34%
5% G-mean 16% 15% 9% 8%
10% 30% 27% 25% 22%
20% 56% 52% 48% 46%

In addition to the scenario of different percentages of inserted anomalies, the
comparisons were also presented in Table 4.7 based on different numbers of
pedestrians. Observably, KC ELM achieved the best accuracy compared to the other
models; its accuracy was the highest when the number of pedestrians was equaled to
50.
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Table 4.7. Summary of the evaluation metrics for our KC ELM and its comparison
with the benchmark in terms of intrusion detection for three scenarios of
number of pedestrians 25, 50 and 100.

Number of Pedestrians | Measure | KC ELM [ KC DBN | MUDI CEDAS
25 Accuracy 42% 25% 31% 23%
50 43% 31% 29% 21%
100 41% 28% 35% 21%
25 Precision 24% 20% 23% 21%
50 31% 27% 23% 21%
100 26% 23% 24% 21%
25 Recall 100% 100% 100% 100%
50 100% 100% 100% 100%
100 100% 100% 100% 100%
25 Specificity 29% 8% 14% 4%
50 23% 7% 10% 0%
100 25% 9% 19% 0%
25 NPVs 100% 100% 100% 100%
50 100% 100% 100% -
100 100% 100% 100% -
25 F measure 39% 33% 37% 34%
50 47% 42% 37% 34%
100 42% 37% 39% 34%
25 G-mean 49% 45% 47% 46%
50 56% 52% 48% 46%
100 51% 47% 49% 45%

Similarly, the KC-ELM achieved the best accuracies for the scenario of average
speed, reaching an accuracy value of 43% compared to the other algorithms. The
comparisons were also presented in Table 4.8 based on different numbers of average
speed. Furthermore, it was independent of the average speed of pedestrians while the
accuracy for MUDI decreased from 2% at the average speed of 1 m/s to 22% at the
average speed of 3 m/s.In addition to accuracy, the tables provided the other
classification metrics, namely precision, recall, specificity, NPV, F-measure, and G-
mean. The results showed that KC-ELM achieved higher performance metrics
compared to KC-DBN, MUDI, and CEDAS.The E2E Delay and PDR for anomaly
detection for the pedesterians ,anomaly and speed metrics shown in details in
Appendix C, while the E2E Delay and PDR for IDS for the pedesterians ,anomaly

and speed metrics shown in details in Appendix D.

79



Table 4.8. Summary of the evaluation metrics for our KC ELM and its comparison
with the benchmark in terms of intrusion detection for three scenarios of
number of pedestrians 1, 2 and 3.

Average speed of Measure KC KC DBN | MUDI | CEDAS
pedestrian ELM
1 Accuracy 43% 31% 29% 21%
2 43% 31% 24% 21%
3 43% 31% 22% 21%
1 Precision 31% 27% 23% 21%
2 31% 27% 21% 21%
3 31% 27% 21% 21%
1 Recall 100% 100% 100% 100%
2 100% 100% 100% 100%
3 100% 100% 100% 100%
1 Specificity 23% 7% 10% 0%
2 23% 7% 4% 0%
3 23% 7% 2% 0%
1 NPVs 100% 100% 100% -
2 100% 100% 100% -
3 100% 100% 100% -
1 F measure 47% 42% 37% 34%
2 47% 42% 35% 34%
3 47% 42% 35% 34%
1 G-mean 56% 52% 48% 46%
2 56% 52% 46% 46%
3 56% 52% 46% 46%
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5. CONCLUSION AND FUTURE WORK

5.1 Conclusion

This thesis has provided a novel approach for handling intrusion on the Internet of
Mobility Things networks by exploiting the anomaly generated from the intruder and
reflected in its mobility behavior. Hence, this study has included a location
prediction model based on Wi-Fi location prediction using fingerprint trained online
sequential extreme learning machine for indoor environment and based on fusion
with IMU using the developed process and measurement model for Kalman filter.
Next, the result of the mobility estimation produced by the developed Kalman is fed
into Cauchy-based stream clustering for identifying anomalies. The results of the
predicted anomalies recognized from location prediction are added to the generated
packets in the network as security features and used for improving the results of the
intrusion detection (this is another online sequential extreme learning machine). The
developed algorithm was compared with two existing models for anomaly detection,
namely, a multi-density clustering algorithm for evolving data stream (MUDI) and
fully online clustering of evolving data streams into arbitrarily shaped clusters
(CEDAS). The results proved the superiority of the developed algorithm in this study
in terms of anomaly and intrusion detection under three different scenarios that
include different percentages of added anomalies, different numbers of pedestrians,
and different average speeds of pedestrians. This study uses the Extreme Learning
Machine (ELM) classifier to develop a Kalman and Cauchy clustering for anomaly
detection and uses it for authenticating nodes within loMTs. The Kalman filter-based
model for calculating the trajectory of pedestrians within an interior environment is
based on merging WiFi with IMU data from the algorithm's many components. Then
comes the evaluation of the validity of the Kalman filter-based predicted trajectory
for IoMT abnormal behavior detection. Finally, the Online Sequential Extreme
Learning Machine-based Trust IDS Model for IoMT Systems integrates anomaly
detection with online learning for attackers' identification (OSELM). The TamperU
dataset for WiFi fingerprinting and KDD99 for intrusion detection have both been

used in the implementation and evaluation of the OSELM algorithm.
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5.2 Future Work

Future works can be directed to the evaluation of the system from the perspective of
networking performance to show the enhanced achieved by the developed algorithm
on the networking metrics. The researchers may increase the range of distances
between the trajectory pedestrians by using more floors or buildings to detect the
intrusions. Or may use more effective algorithms to evaluate the trajectory

pedestrians if they have normal or abnormal anomaly behaviour.
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Figure Al.1. Accuracy Metric Anomaly.
Table Al.1. Accuracy Metric Anomaly.
KC MUDI CEDAS
0.937 0.642 0.863
0.932 0.326 0.831
0.858 0.475 0.843
Precision Metrie Anomaly
0.7 MKC
: EMUDI
IICEDAS
0.6
0.5
;§ 0.4
; 03
0.2
{ _ — ] .
5 10 20
Anomaly percentage
Figure Al.2. Precision Metric Anomaly.
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Figure Al.3. Recall Metric Anomaly.
Table A1.3. Recall Metric Anomaly.
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Figure Al.4. Specifity Metric Anomaly.
Table Al.4. Specifity Metric Anomaly.
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Figure A1.5. NPVs Metric Anomaly.
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Figure Al.6. F-Measure Metric Anomaly.
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Figure Al.7. G-Mean Metric Anomaly.
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APPENDIX A-2:

Accuracy Metric Pedestrians

Metric Pedestrians for 25, 50 and 100 pedesterians.

EKC
1 mEMupl
TTCEDAS
0.8 =
g'im
B 0.4
0.2
| I
25 50 1040
Number of Pedestrians
Figure A2.1. Accuracy Metric Pedestrians.
Table A2.1. Accuracy Metric Pedestrians.
KC MUDI CEDAS
0.910 0.195 0.731
0.858 0.475 0.843
0.861 0.268 0.857
Precision Metric Pedestrians
0.8 MKC
EMUDI
0.7 IICEDAS
0.6 —
s 0.5 =3
é 0.4
o

0.3

25

Number of Pedestrians

50

Figure A2.2. Precision Metric Pedestrians.

Table A2.2. Precision Metric Pedestrians.
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KC MUDI CEDAS
0.683 0.101 0.418
0.595 0.157 0.506
0.571 0.126 0.598
Recall Metric Pedestrians
MKC
1 mMuUDI
- [ICEDAS
0.8 ]
E i
=
0.4
0.2 I
0
25 a0 L0y
Number of Pedestrians
Figure A2.3. Recall Metric Pedestrians.
Table A2.3. Recall Metric Pedestrians.
KC MUDI CEDAS
0.823 0.301 0.892
0.912 0.373 0.817
0.9261 0.451 0.632
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Specifity Metric Pedestrians
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Figure A2.4. Specifity Metric Pedestrians.
Table A2.4. Specifity Metric Pedestrians.
KC MUDI CEDAS
0.927 0.162 0.690
0.845 0.501 0.848
0.847 0.223 0.907
NPV Metric Pedestrians
mKC
mMUDI
! _ - [ICEDAS
0.8
£ 0.6
.
0.4
0.2 I
ol L L
25 50 100
Number of Pedestrians
Figure A2.5. NPVs Metric Pedestrians.
Table A2.5. NPVs Metric Pedestrians.
KC MUDI CEDAS
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0.965 0.424 0.962
0.974 0.762 0.960
0.981 0.619 0.918
F-Measure Metrie Pedestrians
0.9 mKC
08 EmMUDI
[ICEDAS
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Figure A2.6. F-Measure Metric Pedestrians.
Table A2.6. F-Measure Metric Pedestrians.
KC MUDI CEDAS
0.747 0.152 0.569
0.720 0.221 0.625
0.706 0.197 0.615
G-Mean Metrie Pedestrians
0.9 MKC
0.8 mMUDI
‘ [ICEDAS
0.7
0.6 o i =3
E 0.5
& 04
0.3
0.2

50 100
Number of Pedestrians
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Figure A2.7. G-Mean Metric Pedestrians.
Table A2.7. G-Mean Metric Pedestrians.

KC MUDI CEDAS
0.750 0.175 0.611
0.736 0.242 0.643
0.727 0.239 0.615

APPENDIX A- 3 : Metric Speed for 1, 2 and 3 m\sec.

Aceuracy Metrie Speed

I MK
EMUDI
[ICEDAS
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0.2
{
2 3
average walking speed
Figure A3.1. Accuracy Metric Speed.
Table A3.1. Accuracy Metric Speed.
KC MUDI CEDAS
0.858 0.475 0.843
0.868 0.560 0.781
0.879 0.524 0.791
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Precision Metrie Speed
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Figure A3.2. Precision Metric Speed.
Table A3.2. Precision Metric Speed.
KC MUDI CEDAS
0.595 0.157 0.506
0.614 0.172 0.408
0.640 0.147 0.422
Recall Metric Speed
MKC
1 mMUDI
[ICEDAS
0.8 ] ] [
F 0.6
=
0.4
0.2
” - I B l e I
:lwrag; walking speed
Figure A3.3. Recall Metric Speed.
Table A3.3. Recall Metric Speed.
KC MUDI CEDAS
0.912 0.373 0.817
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0.911 0.317 0.821

0.900 0.290 0.830

Specifity Metric Speed
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2 3
average walking speed
Figure A3.4. Specifity Metric Speed.
Table A3.4. Specifity Metric Speed.
KC MUDI CEDAS
0.845 0.5015 0.848
0.857 0.621 0.774
0.874 0.5823 0.783
NPV Metric Speed
MKC
mMUDI
I ICEDAS
0.5
£ 0.6
<
0.4
0.2
0

2 3
average walking speed
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Figure A3.5. NPVs Metric Speed.

Table A3.5. NPVs Metric Speed.

KC MUDI CEDAS
0.974 0.762 0.960
0.974 0.784 0.958
0.972 0.766 0.960

0.9

0.8

0.6

F-Mecasure

F-Measure Metric Speed

-

average walking speed

Figure A3.6. F-Measure Metric Speed.

Table A3.6. F-Measure Metric Speed.

MKC
EMuDI
[ZICEDAS

KC MUDI CEDAS
0.720 0.221 0.625
0.734 0.223 0.545
0.748 0.195 0.559
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G-Mean Metric Speed
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Figure A3.7. G-Mean Metric Speed.
Table A3.7. G-Mean Metric Speed.
KC MUDI CEDAS
0.736 0.242 0.643
0.748 0.234 0.579
0.759 0.207 0.592
APPENDIX B : IDS Result Diagrams And Tables.
APPENDIX B- 1 : IDS Metric Anomaly for 5%, 10% and 20%.
IDS Accuracy Metric Anomaly
BEKC ELM
0.5 BEKC DBN
ZUCEDAS
EEMUDI
0.4
Z03

0.1

L

5

10 20
Anomaly percentage

Figure B1.1. IDS Accuracy Metric Anomaly.
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Table B1.1. IDS Accuracy Metric Anomaly.

KC ELM KC DBN MUDI CEDAS
0.296 0.109 0.294 0.005
0.305 0.125 0.112 0.052
0.429 0.305 0.289 0.207
IDS Precision Metric Anomaly
BEKC ELM
04 BEKC DBN
- “UCEDAS
i mMUDI
0.3
2023
?_ 0.2
=~
0.15
0.1
0.05
5 10 20
Anomaly percentage
Figure B1.2. IDS Precision Metric Anomaly.
Table B1.2. IDS Precision Metric Anomaly.
KC ELM KC DBN MUDI CEDAS
0.026 0.021 0.008 0.005
0.090 0.073 0.062 0.053
0.308 0.267 0.225 0.207
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1D5 Recall Metric Ansmaly
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BEKC DBN
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EMUDI
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5 10 20
Anomaly percentage
Figure B1.3. IDS Recall Metric Anomaly.
Table B1.3. IDS Recall Metric Anomaly.
KC ELM KC DBN MUDI CEDAS
1.000 1.000 1.000 1.000
1.000 1.000 1.000 0.888
1.000 1.000 1.000 1.000
IDS Specifity Metric Anomaly
0.4 BEKCELM
MEKC DBN
0.35 ZUCEDAS
mMUDI
0.3 .
,,0.25
£
E 0.2
i

0.15

0.1

0.05

5

1
Anomaly |

! IIJ Ill %

20
percentage

Figure B1.4. IDS Specifity Metric Anomaly.
Table B1.4. IDS Specifity Metric Anomaly.
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KC ELM KC DBN MUDI CEDAS
0.282 0.092 0.290 0
0.253 0.059 0.056 0
0.234 0.068 0.104 0
13 1DS NPV Metric Anamaly
- BKC ELM
MIKC DBN
1 - - TUCEDAS
mMUDI
0.8
& 0.6
0.4
02
] — —— _—
5 10 20
Anomaly percentage
Figure B1.5. IDS NPVs Metric Anomaly.
Table B1.5. IDS NPV Metric Anomaly.
KC ELM KC DBN MUDI CEDAS
1.000 1.000 1.000 -
1.000 1.000 1.000 0
1.000 1.000 1.000 -
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IDS F-Measure Metric Anomaly
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Figure B1.6. IDS F-Measure Metric Anomaly.
Table B1.6. IDS F-Measure Metric Anomaly.
KC ELM KC DBN MUDI CSDAS
0.052 0.041 0.016 0.011
0.166 0.136 0.118 0.100
0.4712 0.422 0.368 0.343
_' IDS G-Mean Metric Anomaly
ol WEKC ELM
MEKC DBN
0.6 CUCEDAS
mMUDI
0.5
50.4
'3 0.3
0.2 I I

0

Il I

10
Anomaly percentage

Figure B1.7. IDS G-Mean Metric Anomaly.

Table B1.7. IDS G-Mean Metric Anomaly.

108

20




KC ELM KC DBN MUDI CEDAS
0.163 0.145 0.090 0.076
0.301 0.271 0.250 0.217
0.555 0.517 0.475 0.455
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APPENDIX B-2:

IDS Accuracy Metric Pedestrians

IDS Metric Pedestrians for 25, 50 and 100 pedesterians.

BEKC ELM
0.5 BNKC DBN
ZUCEDAS
mMUDI
0.4
g()..% T e
0.2
0 — — -
25 50 100
Number of Pedestrians
Figure B2.1. IDS Accuracy Metric Pedestrians.
Table B2.1. IDS Accuracy Metric Pedestrians.
KC ELM KC DBN MUDI CEDAS
0.421 0.254 0.313 0.234
0.429 0.305 0.289 0.207
0.410 0.278 0.353 0.206
IDS Precision Metric Pedestrians
BEKC ELM
04 BEKC DBN
: CUCEDAS
035 EEMUDI
0.3
2025 e
€ 02
B
0.15

-

005"

I— ||

25 50

100

Number of Pedestrians

Figure B2.2. IDS Precision Metric Pedestrians.

Table B2.2. IDS Precision Metric Pedestrians.
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KC ELM KC DBN MUDI CEDAS
0.243 0.201 0.225 0.207
0.308 0.267 0.225 0.207
0.262 0.225 0.241 0.206
13 IDS Recall Metric Speed
- BKC ELM
MIKC DBN
1 - — - TUCEDAS
mMUDI
0.8
E 0.6
-]
0.4
021
ol L — —
2 3
average walking speed
Figure B2.3. IDS Recall Metric Pedestrians.
Table B2.3. IDS Recall Metric Pedestrians.
KC ELM KC DBN MUDI CEDAS
1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000
IDS Specifity Metrie Speed
035 BEKC ELM
BEKC DBN
0.3 ZUCEDAS
mMUDI
0.25
é' 0.2
::a().l.‘t

0.05

I’_—J ID

average walking speed
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Figure B2.4. IDS Specifity Metric Pedestrians.

Table B2.4. IDS Specifity Metric Pedestrians.

KC ELM KC DBN MUDI CEDAS
0.289 0.084 0.141 0.043
0.234 0.068 0.104 0
0.253 0.087 0.185 0
13 105 MNPV Metric Pedestrians
N BKC ELM
BKC DBN
| - INCEDAS
mMUDI
0.8
£ 0.6
0.4
0,2
]
25 50 100
Number of Pedestrians
Figure B2.5. IDS NPVs Metric Pedestrians.
Table B2.5. IDS NPVs Metric Pedestrians.
KC ELM KC DBN MUDI CEDAS
1.000 1.000 1.000 1.000
1.000 1.000 1.000 -
1.000 1.000 1.000 -
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IDS F-Measure Metric Pedestrians

0.6 WKC ELM
BKC DBN
0.5 SUCEDAS
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-
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Figure B2.6. IDS F-Measure Metric Pedestrians.
Table B2.6. IDS F-Measure Metric Pedestrians.
KC ELM KC DBN MUDI CEDAS
0.391 0.333 0.368 0.343
0.471 0.422 0.368 0.343
0.415 0.367 0.389 0.342
105 G-Mean Metrie Pedestrians
0.7 WKC ELM
BKC DBN
0.6 INCEDAS
mMUDI
05 - - _—
E 0.4
=
Gos
0.2
0.1
1= = L
25 50 100

Number of Pedestrians
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Figure B2.7. IDS G-Mean Metric Pedestrians.

Table B2.7. IDS G-Mean Metric Pedestrians.

KC ELM KC DBN MUDI CEDAS
0.493 0.447 0.474 0.455
0.555 0.517 0.475 0.455
0.512 0.474 0.491 0.454
APPENDIX B- 3 : IDS Metric Speed for 1,2 and 3 m\sec.
IDS Accuracy Metric Anomaly
BEKC ELM
0.5 MKC DBN
“UCEDAS
EEMUDI
0.4
gl).} G | I
0.2
0.1
i I . I \I .
5 10 20
Anomaly percentage
Figure B3.1. IDS Accuracy Metric Speed.
Table B3.1. IDS Accuracy Metric Speed.
KC ELM KC DBN MUDI CEDAS
0.429 0.305 0.289 0.207
0.429 0.305 0.236 0.207
0.429 0.305 0.224 0.207
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IDS Precision Metric Speed
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04 BEKC DBN
IUCEDAS
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average walking speed
Figure B3.2. IDS Precision Metric Speed.
Table B3.2. IDS Precision Metric Speed.
KC ELM KC DBN MUDI CEDAS
0.308 0.267 0.225 0.207
0.308 0.267 0.213 0.207
0.308 0.267 0.210 0.207
12 IDS Recall Metric Speed
N MKCELM
EEKC DBN
1 o IICEDAS
EMUDI
0.8
E 0.6
o
0.4

0.2

=

)

3_

average walking speed
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Figure B3.3. IDS Recall Metric Speed.

Table B3.3. IDS Recall Metric Speed.

KC ELM KC DBN MUDI CEDAS
1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000
IDS Specifity Metric Speed
33 BEKC ELM
MKC DBN
0.3 - CEDAS
mEMUDI
0.25
Fo.s
0.1 [
n “S I I I
: |
| 2 3
average walking speed

Figure B3.4. IDS Specifity Metric Speed.
Table B3.4. IDS Specifity Metric Speed.
KC ELM KC DBN MUDI CEDAS
0.234 0.068 0.104 0
0.234 0.068 0.037 0
0.234 0.068 0.022 0
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1Ds NPY Metric Speed
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Figure B3.5. IDS NPVs Metric Speed.
Table B3.5. IDS NPVs Metric Speed.
KC ELM KC DBN MUDI CEDAS
1.000 1.000 1.000 -
1.000 1.000 1.000 -
1.000 1.000 1.000 -
1DS F-Measure Metric Speed
0.5 MKC ELM
IKC DBN
05 TTCEDAS
- EMUDI
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= =
(¥} L)
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['.4. |‘ ||
= | I L
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average walking speed

Figure B3.6. IDS F-Measure Metric Speed.
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Table B3.6. IDS F-Measure Metric Speed.

KC ELM KC DBN MUDI CEDAS
0.471 0.422 0.368 0.343
0.471 0.422 0.351 0.343
0.471 0.422 0.348 0.343
IDS G-Mean Metric Speed
07 WKC ELM
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0.6 __CEDAS
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i
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average walking speed
Figure B3.7. IDS G-Mean Metric Speed.
Table B3.7. IDS G-Mean Metric Speed.
KC ELM KC DBN MUDI CEDAS
0.555 0.517 0.4751 0.455
0.555 0.517 0.461 0.455
0.555 0.517 0.459 0.455

APPENDIX C : E2E Delay & PDR for Anomaly Detection

APPENDIX C- 1 : E2E Delay & PDR Metric Pedestrians for 25, 50 and 100

pedesterians.
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Figure C1.1. E2E Delay Metric Pedestrians 25 Plot.
E2E Delay Metric # pedestrians 50
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Figure C1.2. E2E Delay Metric Pedestrians 50 Plot.
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E2E [Sec)

E2E Delay Metric # pedestrians 100
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Figure C1.3. E2E Delay Metric Pedestrians 100 Plot.
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Figure C1.4. PDR Metric Pedestrians 25 Plot.

120



PDR Metric # pedestrians 50
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Figure C1.5. PDR Metric Pedestrians 50 Plot.
PDR Metric # pedestrians 100
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Figure Cl.6. PDR Metric Pedestrians 100 Plot.
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APPENDIX C- 2 : E2E Delay & PDR Metric Anomaly for 5%, 10% and 20%.

E2E Delay Metric Anomaly 5§ %
KC
MUDI

= —+CEDAS|

E2E [Sec|

Time |See|

Figure C2.1. E2E Delay Metric Anomaly 5 % Plot.

E2E Delay Metric Anomaly 10 %
G = s —KC
g MUDI
— -~ CEDAS|

E2E [Sec]

Time |See|

Figure C2.2. E2E Delay Metric Anomaly 10 % Plot.
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E2E Delay Metric Anomaly 20 %
~-KC L
— © —— MUDI

/—*" == CEDAS

E2E [Sec]
~_

Time [Sec]

Figure C2.3. E2E Delay Metric Anomaly 20 % Plot.

PDR Metric Anomaly § %
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Figure C2.4. PDR Metric Anomaly 5 % Plot.
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PDR Metric Anomaly 10 %
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Figure C2.5. PDR Metric Anomaly 10 % Plot.
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Figure C2.6. PDR Metric Anomaly 20 % Plot.
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E2E Delay Metric average walking speed 1

E2E [Sec]

Time [Sec]

Figure C3.1. E2E Delay Metric average walking speed 1 Plot.

E2E Delay Metric average walking speed 2

APPENDIX C- 3 : E2E Delay & PDR Metric speed for 1, 2 and 3m\ces.

KC L
MUDI ~
CEDAS

KC

MUDI
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Figure C3.2. E2E Delay Metric average walking speed 2 Plot.
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E2E Delay Metric average walking speed 3
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Figure C3.3. E2E Delay Metric average walking speed 3 Plot.
PDR Metric average walking speed 1
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Figure C3.4. PDR Metric average walking speed 1 Plot.
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PDR Metric average walking speed 2
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Figure C3.5. PDR Metric average walking speed 2 Plot.
PDR Metric average walking speed 3
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Figure C3.6. PDR Metric average walking speed 3 Plot.
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APPENDIX D : E2E Delay & PDR for IDS

APPENDIX D- 1 : IDS E2E Delay & IDS PDR Metric pedestrians for 25,50 and

100 pedesterians.
IDS E2E Delay Metric # pedestrians 25
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Figure D1.1. IDS E2E Delay Metric pedestrians 25 Plot.

IDS E2E Delay Metric # pedestrians 50
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Time |See|

Figure D1.2. IDS E2E Delay Metric Pedestrians 50 Plot.
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IDS E2E Delay Metric # pedestrians 100
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Figure D1.3. IDS E2E Delay Metric Pedestrians 100 Plot.
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Figure D1.4. IDS PDR Metric Pedestrians 25 Plot.
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IDS PDR Metric # pedestrians 50
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Figure D1.5. IDS PDR Metric Pedestrians 50 Plot.

IDS PDR Metric # pedestrians 100
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Figure D1.6. IDS PDR Metric Pedestrians 100 Plot.
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APPENDIX D- 2 : IDS E2E Delay &IDS PDR Metric Anomaly for 5%, 10% and
20%.
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Figure D2.1. IDS E2E Delay Metric Anomaly 5 % Plot.
IDS E2E Delay Metric Anomaly 10 %
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Figure D2.2. IDS E2E Delay Metric Anomaly 10 % Plot.
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IDS E2E Delay Metric Anomaly 20 %
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Figure D2.3. IDS E2E Delay Metric Anomaly 20 % Plot.
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Figure D2.4. PDR Anomaly 5%.
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PDR Metric Anomaly 10 %
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Figure D2.5. PDR Anomaly 10%.
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Figure D2.6. PDR Anomaly 20%.
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IDS E2E & IDS PDR Metric speed for 1, 2 and 3 m\sec.

APPENDIX D- 3:
IDS E2E Delay Metric average walking speed 1
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Figure D3.1. IDS E2E Delay Metric average walking speed 1 Plot.

IDS E2E Delay Metric average walking speed 2
& e KC ELM

[\ / T KCDBN
| 3 ) | CEDAS =
- Al —MUDI
l \/

- |

/ \\ |

[\ |‘

E2E |Sec]

Time |See|

Figure D3.2. IDS E2E Delay Metric average walking speed 2 Plot.
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IDS E2E Delay Metric average walking speed 3
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Figure D3.3. IDS E2E Delay Metric average walking speed 3 Plot.
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Figure D3.4. IDS PDR Metric average walking speed 1 Plot.
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IDS PDR Metric average walking speed 2
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Figure D3.5. IDS PDR Metric average walking speed 2 Plot.
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Figure D3.6. IDS PDR Metric average walking speed 3
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