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ÖZET 

Genel olarak Nesnelerin İnterneti'nin (IoT'ler) ve özellikle Hareketli Nesnelerin 

İnterneti'nin (IoMT'ler) güvenlik açıkları, araştırmacıları davetsiz misafirlere ve 

saldırılara karşı güvenlik sistemleriyle donatmaya motive eder. IoMT'ler için 

anormallik tespitinin izinsiz giriş tespiti ile entegrasyonu yeterince ele alınmamıştır. 

Bu çalışma, anormallik tespiti için bir Kalman ve Cauchy kümelemesi oluşturarak ve 

bunu Extreme Learning Machine (ELM) sınıflandırıcısını kullanarak IoMT'ler 

içindeki kimlik doğrulama düğümleri için kullanarak bu sorunu ele almaktadır. 

Algoritma, çeşitli bileşenlerden oluşur. Bunlardan ilki, WiFi'yi IMU verileriyle 

birleştirmeye dayalı bir kapalı ortam içindeki yayaların yörüngesini tahmin etmek 

için Kalman filtresi tabanlı model, ikincisi Kalman filtresini kullanarak tahmini 

yörüngeye dayalı olarak IoMT'deki anormallik davranışını tespit etmek için 

güvenilirlik değerlendirmesi, üçüncüsü de, bir Online Sequential Extreme öğrenme 

makinesi (OSELM) kullanarak saldırıların tanımlanması için anormallik algılamayı 

çevrimiçi öğrenme ile entegre ederek IoMT sistemleri için IDS modelidir. OSELM 

algoritması, WiFi parmak izi için TamperU veri seti ve izinsiz giriş tespiti için 

KDD99 kullanılarak uygulanmış ve değerlendirilmiştir. Ayrıca, izinsiz giriş tespiti ve 

anormallik tespiti için karşılaştırma ölçütleri ile yapılan bir karşılaştırma, önerilen 

tüm sınıflandırma ölçütleri açısından önerilen yaklaşımın üstünlüğünü 

kanıtlamaktadır. Geliştirilen algoritma, anormallik tespiti için mevcut iki modelle, 

yani gelişen veri akışı için bir çok yoğunluklu kümeleme algoritması (MUDI) ve 

gelişen veri akışlarının rastgele şekillendirilmiş kümeler halinde tamamen çevrimiçi 

kümelenmesi (CEDAS) ile karşılaştırıldı. Sonuçlar, bu çalışmada geliştirilen 

algoritmanın, kullanılan anormalliklerin farklı yüzdeleri, farklı sayıda yaya sayısı ve 

farklı ortalama yaya hızlarını içeren üç farklı senaryo altında anormallik ve izinsiz 

giriş tespiti açısından üstünlüğünü kanıtlamıştır. 

 

Anahtar Kelimeler: Kalman filtresi, Anomali Tespiti, Saldırı Tespit Sistemleri, 

Aşırı Öğrenme Makinesi, Hareketli nesnelerin interneti, Wi-Fi sensörleri, Kalman 

Cauchy. 
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ABSTRACT 

The vulnerabilities of the Internet of Things (IoTs) in general and the Internet of 

Mobility Things (IoMTs) in particular motivate researchers to equip them with 

security systems against intruders and attacks. The integration of anomaly detection 

with intrusion detection for IoMTs has not been addressed adequately. This study 

tackles this issue through building a Kalman and Cauchy clustering for anomaly 

detection and using it for authentication nodes within IoMTs using the Extreme 

Learning Machine (ELM) classifier. The algorithm is composed of various 

components; firstly, the Kalman filter-based model for estimating the trajectory of 

pedestrians within an indoor environment based on fusing WiFi with IMU data. 

Secondly, trustworthiness assessment for detecting anomaly behaviour in IoMT 

based on the estimated trajectory using the Kalman filter. Thirdly, the trust IDS 

model for IoMT systems by integrating anomaly detection with online learning for 

attacks identification using an Online Sequential Extreme learning 

machine(OSELM). The OSELM algorithm has been implemented and evaluated 

using TamperU dataset for WiFi fingerprinting and KDD99 for intrusion detection. 

Furthermore, a comparison with benchmarks for intrusion detection and anomaly 

detection proves the superiority of the proposed approach in terms of all the 

considered classification metrics. The developed algorithm was compared with two 

existing models for anomaly detection, namely, a multi-density clustering algorithm 

for evolving data stream (MUDI) and fully online clustering of evolving data streams 

into arbitrarily shaped clusters (CEDAS). The results proved the superiority of the 

developed algorithm in this work in terms of anomaly and intrusion detection under 

three different scenarios that include different percentages of added anomalies, 

different numbers of pedestrians, and different average speeds of pedestrians.  

 

Keywords : Kalman filter, Anomaly Detection, Intrusion Detection Systems, 

Extreme Learning Machine, Internet of mobility things, Wi-Fi sensors, Kalman 

Cauchy. 
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 INTRODUCTION 1.

The constant development of the Internet of Things (IoT) technology has effectively 

aided society's progress in recent years. The IoT, which embeds wireless network 

connectivity, multi-sensors, and technology into traditionally non-smart everyday 

objects, is gradually making the concept of ―smart objects‖ a reality. Thinking about 

the IoT, we usually think of stationary objects like appliances, home automation 

systems, or stationery products like the Good Night Lamp. Moving things, such as 

self-driving cars and robots, and those that walk beside us (mobile devices and 

wearables), are anticipated to be key components of the IoT. The IoMT (Internet of 

Moving Things) takes it a step further, connecting moving objects such as cars, 

phones, robots, and mobile devices (Althobaiti, 2020). Moving things (such as 

automobiles, buses, lorries, trains, people, wearable gadgets, mobile phones, and 

tablets) and others that can be tracked, exchanged, or interacted with bits of data over 

mobile network or Wi-Fi Internet connections are included in the IoMT. Because 

moving things are so important in modern life, it's only logical that they'd be linked 

to networks (Junfeng Tian et al., 2019). Considering the vital role that moving items 

play in our modern lives, such as delivering people and goods, it becomes only 

natural that vehicles like cars, trucks, and trains would become networked. Both 

companies and people are interested in learning more about location, fuel efficiency, 

and the relationship to other vehicles, and being able to track data across multiple 

environments provides a more complete picture of our lives, which helps companies 

design and create products that make more sense for people.  

The application of anomaly detection in general has been addressed in different 

fields such as identifying abnormal behavior using Internet of Things (IoT), 

predictive maintenance in industrial environment, and detecting abnormal activities 

in networks (Gaddam et al., 2020), etc. However, one special type of anomaly 

detection has not received adequate attention from researchers is the anomaly 

identification in internet of moving things (IoMT). Considering the vulnerability of 

this networks in the aspect of falling under intrusion from outsiders, providing them 

with smart anomaly detection algorithm to assist the functionalities of intrusion 

detection is promising for increasing the security of them and alleviating the 

accuracy of attacks detection (Junfeng Tian et al., 2019) . 
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1.1 IoT Background  

Security concerns are impeding the adoption of IoT technology in everyday business  

and life (Arshad et al., 2020). In comparison to conventional networks, the Internet 

of Things environment is dynamic (Ghaleb, Maarof, Zainal, Al-Rimy, et al., 2019). 

As a result, standardizing a clear visualization for its topology is difficult. The vast 

majority of traditional security measures are incompatible with the Internet of Things 

paradigm (Moustafa et al., 2018). Furthermore, memory (Arshad et al., 2020) CPU, 

and power capacity are all limited in many IoT sensors and actuators. Due to these 

constraints, traditional security measures are computationally prohibitive. 

Furthermore, a new issue arises when attackers compromise susceptible nodes and 

exploit them to initiate a series of pipelined attacks from within the internal network. 

The high proportion of heterogeneous Internet of Things devices presents an 

additional challenge in this situation.  

Despite the fact that IoT devices differ in several ways, They must strive to achieve a 

shared task, such as , computational capacity, functionality ,  network connectivity 

and software specs (Granjal et al., 2015). Regardless, when the participating nodes 

use different protocols and standards, the heterogeneity of IoT nodes has an impact 

(Borgia, 2014). As a result of a lack of consistency among many of the protocols, 

traditional solutions are unable to cooperate with one another (Chen et al., 2018; 

Qadri et al., 2020). As a result, determining the presence of compromised nodes 

and/or attacks becomes difficult. Furthermore, the security levels of the various 

protocols vary. As a result, protocols with weak security pose a threat to the entire 

IoT system. 

In order to deal with IoT security concerns, several solutions have been developed, 

which can be classified into two categories: detection and  prevention (Singh and 

Kumar, 2020). Prevention is the first line of defence against an attack on the system 

or its data. To ensure that only those with the proper authorization have access to IoT 

resources, these solutions employ cryptography and biometrics (Allig et al., 2019). 

However, if the attacks were launched from a valid (but compromised) node within 

the network, the preventive measure is ineffective. In this scenario, the attacker has 

complete control over all resources, including encryption/decryption keys and login 

credentials. This compromised node appears legitimate to the rest of the network, 
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allowing the attacker to carry out malicious actions such as data falsification and 

manipulation (Albahri et al., 2021). 

 Insurance firms, for example, can track real-time driving behaviours and offer 

discounts to good drivers (and, presumably, raise the rates of bad drivers). Audi's 

Traffic Light Detection technology adjusts the vehicle's speed to match the speed of 

traffic lights, saving time and fuel (de Souza et al., 2015). On the Internet of Things, 

the Internet of Moving Things has gathered data on communication and the link 

between moving sensors and servers. Moving items data, such as self-driving cars, 

people, freight, robots, and drones, are generated swiftly in real life. These moving 

objects can collect a vast amount of related trajectory data via various sensors and 

upload it to a server over the network, where we can evaluate and detect anomalies. 

The Internet of Moving Things poses enormous challenges for city leaders today 

(Teng et al., 2019), but it also offers significant opportunities to leverage the mobile-

technology boom to improve everything, from city services to air quality, as well as 

provide new insights into public safety and long-term urban planning and air quality 

forecasting (Wang et al., 2019). When the above moving things move, position 

information is generated in the form of a trajectory, and multi-sensor data is 

generated at the same time. Human examination of these moving entities, particularly 

outlier analysis, has significant practical implications. People normally compare 

moving objects as a whole, and the complete moving object is the basic unit of 

outlier detection. We may not be able to detect outlying portions this way and use 

them for raising the security level of intruders in the network. This motivates 

developers of systems to integrate anomaly detection of IoMTs with IDSs to increase 

security and minimize vulnerability. Figure 1.1 presents the usage of IoMTs for 

detecting anomalies of vehicles driving on the highway. 
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Figure ‎1.1. Internet of Moving Things (IoMTs) sensors are useful for detecting 

anomalies in the roads to mitigates hazards (Wang et al., 2019). 

The application of anomaly detection, in general, has been addressed in different 

fields, such as identifying abnormal behaviors using IoT (Gaddam et al., 2020), 

predictive maintenance in industrial environments (De Benedetti et al., 2018), and 

detecting abnormal activities in networks (Salman et al., 2019), etc. Considering the 

vulnerability of these networks in the aspect of falling under intrusion from outsiders, 

providing them with a smart anomaly detection algorithm to assist the functionalities 

of intrusion detection is promising for increasing their security and alleviating the 

accuracy of attacks detection. The goal of this study is to develop an anomaly 

detection algorithm and IDS for IoMT. This algorithm exploits the mobility pattern 

of the individual nodes in the network by using Kalman filtering-based sensor fusion. 

The utilized sensors are WiFi and inertial measurement units carried by the 

pedestrians for estimating their trajectories. Next, the predicted trajectories are used 

as stream data input for the Cauchy-based clustering algorithm for anomaly 

detection. The anomaly detection is finally used to extend the feature space of the 

intrusion detection algorithm based on the extreme learning machine model.   

Literature evidence suggests that various approaches have been developed for 

anomaly detection based on stream data clustering, such as those proposed by ( Islam 

et al., 2019; Amini et al., 2016; (Škrjanc et al., 2018); (Weng & Liu, 2019). 

However, all these proposals were only made for clustering with identifying outliers 

(Amini et al., 2016); (Islam et al., 2019) for intrusion detection, but without 

exploiting special characteristics about the networks in general or the mobile nodes 

in IoMTs in particular (Škrjanc et al., 2018). On the other side, it is observed that the 
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linkage between the anomaly behaviour of mobile nodes and detecting the 

capabilities of intrusion detection systems in IoMTs has not been exploited nor 

addressed. In the work of (Junfeng Tian et al., 2019), the moving things outlier 

detection algorithm has been proposed for anomaly detection in IoMTs. The distance 

of the moving things is equal to the weighted sum of the location distance and the 

multi-sensor distance; a three-step framework is used to detect the generalized 

anomaly using multi-sensor data generalization, moving things partitioning, and 

anomaly detection. However, it misses a linkage with an IDS for securing the 

network against attacks. Furthermore, its anomaly detection does not provide 

integration between process models and measurement models for state estimation 

which is needed for using an accurate estimation in anomaly detection.  

Outsider attack detection is concerned with defending the IoT system against attacks 

from outside the network (Al-rimy et al., 2018); (Moustafa et al., 2018). This is 

usually accomplished by placing the IDS on the network's perimeter. As effective as 

this strategy may be in preventing external attacks (from the Internet, for example) 

from harming an IoT system, it has no effect on an attack initiated from within the 

system. It's possible for an attacker to avoid detection in this instance because it 

doesn't have to enter the network. As a result, the detection system would have no 

idea what was going on. 

This technique defends against attacks initiated from within the network itself ( 

Ghaleb et al., 2018; (Xia et al., 2019). In order to launch a series of attacks against 

the network, the attacker must employ legitimate but compromised nodes, which 

makes it harder to detect by existing solutions. Because the insider attacks are 

frequently performed out through authorized (trustworthy) nodes that the attackers 

have managed to corrupt, it becomes more difficult to identify the attacks. 

Insider attacks have been the subject of several proposals for solutions 

(Thanigaivelan et al., 2018); (B. Ghaleb et al., 2018)(F. A. Ghaleb, Maarof, Zainal, 

Al-Rimy, et al., 2019); (Foley et al., 2020). These solutions attempt to identify 

discriminative patterns that can be used to distinguish attack traffic from normal 

traffic. By watching the traffic transferred between neighbouring nodes, such as 

packet size and data rate, these systems can identify any network inconsistencies. It's 

possible that this approach could help identify resource exhaustion and spoofing 
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attacks, but it can't identify attacks that change data and spread misleading 

information to other nodes in close proximity (F. A. Ghaleb, Maarof, Zainal, Al-

Rimy, et al., 2019). 

Researchers assume that attackers maintain a consistent threat regime and never 

change their behaviour in these investigations. Many of these solutions are unaware 

of the complex obfuscation techniques employed by skilled attackers and malicious 

software to evade detection. When it comes to devising solutions, they assume that 

there is a steady stream of attacks on their systems. Because of the dynamic nature of 

the Internet of Things (IoT), advanced attackers are adapting their attack methods to 

escape detection. As a result, the defence systems become obsolete because of 

concept drift. 

1.2 Problem Statement 

Reading the literature, it is observed that various approaches were developed for 

anomaly detection based on stream data clustering such as the work of (Islam et al., 

2019); (Amini et al., 2016) (Škrjanc et al., 2018); (Weng & Liu, 2019). However, all 

of them were only made for clustering with identifying outliers (Amini et al., 2016) 

(Islam et al., 2019) or for intrusion detection but without exploiting special 

characteristics about the networks in general or the mobile nodes in IoMTs in 

particular (Škrjanc et al., 2018). On the other side, it is observed that linking between 

anomaly behaviour of mobile nodes and detecting capabilities of intrusion detection 

system in IoMTs has not been exploited nor addressed. In the work of (Junfeng Tian 

et al., 2019), The moving things outlier detection algorithm has been proposed for 

anomaly detection of the Internet of Moving Things. The distance of moving things, 

which is equal to the weighted sum of the location distance and the multi-sensor 

distance, and then apply a three-step framework to detect the generalized anomaly 

using multi-sensor data generalization, moving things partitioning, and anomaly 

detection.  However, it misses a linking with an IDS for securing the network against 

attacks. Furthermore, its anomaly detection does not provide an integration between 

process model and measurement model for state estimation which is needed for using 

an accurate estimation in the anomaly detection.  
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There are six sub questions that must be answered in order to understand the research 

aim. 

1. How to recognize the trustworthiness of transmitted/received data by IoMT 

nodes? 

2. How to recognize the compromised nodes within IoMT system? 

3. How to detect anomaly behaviour in IoMT based on the estimated trajectory? 

4. How to generate IDs in IoMT environment ? 

5. How to improve the detection accuracy? 

1.3 Research Aim and Contributions  

The aim of the proposed study is to develop an anomaly detection algorithm and IDS 

for IoMT. This algorithm exploits the mobility pattern of the individual nodes in the 

network by using Kalman filtering based sensor fusion. The used sensors are WiFi 

and inertial measurement units carried by the pedestrians for estimating their 

trajectories. Next, the predicted trajectories are used as stream data input to Cauchy 

based clustering algorithm for the functionality of anomaly detection. The anomaly 

detection is finally then used for extending the feature space of intrusion detection 

algorithm based on deep believe neural network model. 

This Aim is accomplished based on the following contributions :  

1. Create a framework for intrusion detection using mobility anomaly detection and 

trained model for attacks.  

2. Develop a Kalman filter-based model for estimating the trajectory of pedestrians 

within an indoor environment based on fusing WiFi with IMU data.  

3.  Propose a Cauchy-based clustering method for detecting anomaly behaviour in 

IoMT based on the estimated trajectory by Kalman filter. 

4. Propose an extreme learning machine-based IDS model for IoMT systems using 

the Cauchy clustering scheme proposed in (1) for the training phase of an 

extreme learning machine to improve the detection accuracy.  

5.  Evaluate the proposed algorithm using classification and networking metrics  
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1.4 Research Scope 

The developed algorithm aims at detecting anomaly in general and IDS in particular, 

that happens in internet of moving things IoMTs.  

1. The type of attacks that we are addressing are data tampering attacks. In data 

tampering, the attackers manipulate the user‘s information intentionally to disrupt 

their privacy using unwanted activities. 

2.  The IoT devices that carry important user‘s information such as location, fitness, 

billing price of smart equipment are in great danger to encounter these data 

tampering attacks (Junfeng Tian et al., 2019).  

3. The considered sensors are devices occupied with accelerometers, gyros, GPS, 

and heart rate sensor (X. Li & Zou, 2021) . 

Such attacks are threats to Identification, Authorization, Accessibility, 

Confidentiality, and Integrity. 

1.5 Problem Formulation 

Assuming that we have an indoor environment   combined of set of floors   given 

as: 

  {          }                                                     (1.1) 

Where  

   denotes floor of ID   

  denotes the maximum ID for floors  

And multi-room in each floor given as  

   {                                                       }                      (1.2) 

Where  

       denotes the number of rooms in floor    

Set of Pedestrians denotes by 

  {         }                                                   (1.3) 
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  denotes the number of Pedestrians. 

The Pedestrians are expected to be moving within the environment while they carry 

smart device or nodes with an IoMT networking connectivity. The nodes contains 

WiFi sensor which enables receiving WiFi signal from various access points located 

at given locations in the environment. The set of access points is given as  

   {            }                                             (1.4) 

Where  

  denotes the number of access points . 

The WiFi signal is used to predict the location of the Pedestrians based on the 

fingerprint. Hence, we have IoMT network that is consisted of the Pedestrians 

devices. The goal is to build a system that uses the location information of the 

neighboring nodes for detecting anomaly behaviour in the mobility. Next, we secure 

the network with an IDS system that detects two types of attacks, namely, blackhole 

and DDoS. 

1.6 Thesis Motivation  

The application of anomaly detection in general has been addressed in different 

fields such as identifying abnormal behavior using Internet of Things (IoT), 

predictive maintenance in industrial environment, and detecting abnormal activities 

in networks, (Breitenbacher et al., 2019) etc. However, one special type of anomaly 

detection has not received adequate attention from researchers is the anomaly 

identification in internet of moving things (IoMT) (Gaddam et al., 2020). 

Considering the vulnerability of this networks in the aspect of falling under intrusion 

from outsiders, providing them with smart anomaly detection algorithm to assist the 

functionalities of intrusion detection is promising for increasing the security of them 

and alleviating the accuracy of attacks detection (Arshad et al., 2020). 

1.7 Method of Study 

This thesis tackles the issue of Vulnerabilities Internet of Moving Things (IoMTs) 

through building a Kalman (Fan et al., 2019)
 
(Sung et al., 2018) and Cauchy 
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clustering for anomaly detection and using it for authentication nodes within IoMTs 

using extreme learning machine classifier (Škrjanc et al., 2018). The algorithm is 

combined of various components: firstly, Kalman filter-based model for estimating 

the trajectory of pedestrians within an indoor environment based on fusing WiFi with 

IMU data (X. Li & Zou, 2021). Secondly, trustworthiness assessment for detecting 

anomaly behaviour in IoMT based on the estimated trajectory by Kalman filter. 

Thirdly, trust IDS model for IoMT systems by integrating anomaly detection with 

online learning for attacks identification using online sequential extreme learning 

machine. The algorithm has been implemented and evaluated using TamperU dataset 

for WiFi fingerprinting (Lohan et al., 2017) and KDD99 for intrusion detection 

(Moustafa & Slay, 2015). Furthermore, a comparison with benchmarks for intrusion 

detection and anomaly detection proves the superiority in terms of all classification 

metrics.  

1.8 Thesis Outlines 

The rest of this thesis is organized as follows: 

 Chapter two: Presents the Literature survey and related works  

 Chapter three: Methodology  

 Chapter four: presents the experimental design, results, and analysis 

 Chapter five: presents the conclusion and future works. 
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 LITERATURE REVIEW  2.

Despite the crucial role of the Internet of Things (IoT) technology in our daily life 

and business activities, they have been associated with several security threats and 

concerns due to the heterogeneity and huge number of devices connected to the IoT, 

as well as the ineffectiveness of the conventional security protocols (Sha et al., 

2020). Even though there are obvious differences in the connected devices in terms 

of their function, software application, computational capability; and network 

connectivity, it is necessary that they work together to achieve a target (Granjal et al., 

2015). This implies that any fault in the security protocol of any of the connected 

devices will affect the performance of the entire system and prevent it from 

performing optimally. To ensure adequate protection of IoT systems, several security 

protocols have been developed; these security protocols can be categorized into 

reactive and proactive protocols. Regarding the proactive protocols, also called 

preventive approaches, they are developed to protect data and communications using 

authentication and cryptographic procedures (Chen et al., 2018). These preventive 

protocols can prevent attacks targeted at sensitive information and data on other 

nodes, but they cannot prevent a compromised node from propagating altered 

information with the rest of the network nodes (van der Heijden et al., 2018). On the 

other hand, the reactive protocols are developed to detect attacks and prevent them 

from occurring. One common example of the reactive protocols is the intrusion 

detection systems that identifies the existence of malicious network activities and 

identify the compromised devices.  

A typical IoT network is a system of numerous devices and components that are 

interconnected to a network for effective exchange of data and information between 

such components as exhibited in Figure 2.1 (Lo et al., 2019). Such systems exhibit 

better performance in terms of effectiveness, efficiency and productivity. However, a 

major problem of such integration of components and devices is the issue of security 

threats. As these systems are connected to the Internet, they are prone to several 

attacks that can compromise the integrity, confidentiality, and authenticity of the 

exchanged data.  

This literature provides a comprehensive explanation of Intrusion Detection Systems 

(IDS) in IoT and IoMT. Additionally, abuse-based detection and anomaly-based 
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detection which are the main classification of the Intrusion Detection System (IDS) 

had been explained in critical analysis. 

 
Figure ‎2.1. The main components of IoT architecture (Lo et al., 2019). 

2.1 Anomaly Detection In IoMT 

The existing literature contains a wide range of approaches developed for handling 

the problem of anomaly detection in general, and for the internet of mobile things in 

particular. From a general perspective, some approaches to anomaly detection were 

based on clustering. In the work of (Islam et al., 2019), a fully online density-based 

clustering algorithm for changing data streams was developed under the name of 

Buffer-based Online Clustering for Evolving Data Stream (BOCEDS). The micro-

cluster radius is recursively updated to its local optimal using this approach. It also 

includes a buffer for storing unnecessary micro-clusters and a fully online pruning 

mechanism for extracting the buffer's momentarily irrelevant micro-cluster. 

Furthermore, BOCEDS presents an online micro-cluster energy-updating mechanism 

based on the data stream's spatial information. The algorithm contains an outlier 

buffer that can be used for rejecting anomaly behavior or detecting it. Other 

algorithms were based on the density change to detect anomaly behavior with the 

inclusion of the historical behavior of algorithms. In the work of (Amini et al., 2016), 

Multi-Density (MUDI)-Stream was developed; it consists of four basic components 

and an online-offline algorithm. It stores summary information about a growing 

multi-density data stream in the form of core mini-clusters during the online phase. 

The final clusters are generated using an adapted density-based clustering algorithm 
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in the offline phase. The grid-based approach is utilized as an outlier buffer to handle 

noise, anomaly behavior, and multi-density data while also reducing the clustering 

merging time. Other algorithms were based on mathematical density models. The 

study by (Škrjanc et al., 2018) introduced the eCauchy approach for classification 

issues, which is a unique evolving probabilistic Cauchy clustering method. This 

approach was used to monitor cyber-attacks on a broad scale. The described strategy 

results in a more flexible system for detecting attacks. In the work of (Weng & Liu, 

2019), the statistical features of the subsequence of streams were considered. The 

work has provided an analysis of the differences between anomalies in single time 

series and anomalies in multi-dimensional time series. Next, it proposed a collective 

anomaly detection algorithm named iForestFS for a multi-dimensional stream based 

on iForest in a cloud environment. The Markov Jump Particle Filter was used in the 

work of (Slavic et al., 2020) to analyse multiple video situations where a semi-

autonomous vehicle accomplishes a set of tasks in a closed environment. The 

implementation of an automated data engineering pipeline for anomaly detection in 

IoT sensor data was proposed in the work of (X. Li and Zou, 2021). The method 

employs IoT sensors, Raspberry Pis, Amazon Web Services (AWS), and a variety of 

machine learning approaches to discover anomalous cases in the smart home security 

system. The moving things outlier identification algorithm was proposed in (Wang et 

al., 2019) as a generalized approach for anomaly detection from the Internet of 

Moving Things. The distance of moving things was proposed as being equal to the 

weighted sum of the location distance and the multi-sensor distance; the generalized 

anomaly was detected using a three-step framework that included multi-sensor data 

generalization, moving things partitioning, and anomaly detection. A similarity 

metric Convolutional Neural Network (CNN) based on a channel attention model 

was proposed for traffic anomaly detection task in the work by Kang et al. (2019). 

The method consists mostly of (i) a Siamese network with a hierarchical attention 

model based on word embedding that can measure similarities between anomalies 

and templates selectively; (ii) a deep transfer learning algorithm can automatically 

annotate an unlabeled collection while fine-tuning the network; (iii) a background 

modeling method for anomaly extraction that combines geographical and temporal 

information. The association between the experience of sleep deprivation among 

drivers during lengthy journeys and CO2 concentrations in automobiles was 

hypothesized in the study by (Chung & Kim, 2020). The assistant collects 
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multimodal signals using five sensors that detect CO, CO2, and particulate matter 

(PM), as well as the temperature and humidity data. These signals are then sent to a 

server via the IoT where they are analysed by a deep neural network to determine the 

vehicle's air quality. To create an air quality anomaly detection model, the deep 

network uses long short-term memory (LSTM), skip-generative adversarial network 

(GAN), and variational auto-encoder (VAE) models. The deep learning models use 

LSTMs to acquire data, while the semi-supervised deep learning models use GANs 

and VAEs. The goal of this assistant is to deliver real-time vehicle air quality 

information to drivers, such as PM alarms and sleep-deprived driving alerts to 

prevent accidents. A summary of the related studies is presented in Table 2.1. 

Table ‎2.1. A summary of the related studies of anomaly detection in IoMT. 

Author(s) Research Problem Solution Limitation(s) Detection 

Type 

Islam, et al. 

(2019) 

Most of the 

algorithms are 

either fully offline, 

hybrid 

online/offline, or 

cannot handle the 

property of evolving 

data stream. 

A fully online clustering 

algorithm for evolving 

data stream called 

CEDAS . The algorithm 

contains an outlier 

buffer that can be used 

for rejecting anomaly 

behavior or detecting it 

CEDASrequires 

predefining the global 

optimal radius of 

micro-clusters, which 

is a difficult tasks 

Insider 

Amini et al. 

(2016) 

Other algorithms 

were based on 

mathematical 

density models. 

Multi-Density (MUDI)-

Stream was developed; 

it consists of four basic 

components and an 

online-offline algorithm. 

It stores summary 

information about a 

growing multi-density 

data stream in the form 

of core mini-clusters 

during the online phase. 

The grid-based approach 

is utilized as an outlier 

buffer to handle noise, 

anomaly behavior, and 

multi-density data while 

also reducing the 

clustering merging time. 

Streaming algorithms 

must have a consistent 

and minimal memory 

storage, as well as a 

short computation 

time. 

MUDI-overall 

Stream's complexity is 

determined by the 

complexities of its 

components. 

Insider 

  

https://www.sciencedirect.com/topics/mathematics/sigma-property
https://www.sciencedirect.com/topics/computer-science/online-clustering
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Table 2.1. (Continued). 

Author(s) Research Problem Solution Limitation(s) Detection 

Type 

Škrjanc et al. 

(2018) 

Developing cyber-

attack monitoring 

methodology that 

can keep the 

classifier up to date. 

Introduced the eCauchy 

approach for 

classification issues, 

which is a unique 

evolving probabilistic 

Cauchy clustering 

method. This approach 

was used to monitor 

cyber-attacks on a broad 

scale. The goal is to 

create an IDS that can 

categorize intrusions as 

well as regular behavior 

based on input variables. 

A label (Action) is 

assigned to each 

connection vector, 

indicating the sort of 

connection. 

The method's current 

flaw is that it doesn't 

include a cluster 

merging mechanism, 

which might reduce 

the amount of clusters 

formed. 

Insider 

Weng and 

Liu (2019) 

Due to the 

variations between 

anomaly detection 

in multidimensional 

and univariate time 

series data, there are 

numerous issues 

with collective 

anomaly detection 

for 

multidimensional 

streams. 

Analysis of the 

differences between 

anomalies in single time 

series and anomalies in 

multi-dimensional time 

series. Next, it proposed 

a collective anomaly 

detection algorithm 

named iForestFS for a 

multi-dimensional 

stream based on iForest 

in a cloud environment. 

The proposed method 

was just tested to see if 

it was suitable for 

collective anomaly 

detection in 

multidimensional 

streams, but it was not 

compared to other 

methods. 

Insider 

Slavic et al. 

(2020) 

How anomalies 

were discovered and 

an algorithm was 

developed to detect 

anomalies at both 

the observation and 

prediction levels. 

The Markov Jump 

Particle Filter was used 

in this work  to analyse 

multiple video situations 

where a semi-

autonomous vehicle 

accomplishes a set of 

tasks in a closed 

environment. 

There are two types of 

abnormal situations: 

I Video sequences 

with previously unseen 

visuals; ii) Video 

sequences with 

previously seen images 

but new video 

dynamics/motions. 

This research was 

mostly focused on the 

first type. 

Insider 
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Table 2.1. (Continued). 

Author(s) Research Problem Solution Limitation(s) Detection 

Type 

Li and Zou 

(2021) 

The fast growth of 

System of Chip 

(SoC) technology, 

the Internet of Things 

(IoT), cloud 

computing, and 

artificial intelligence 

has opened up new 

avenues for 

improving and fixing 

current issues. 

An automated data 

engineering pipeline for 

detecting anomalies in 

IoT sensor data is 

investigated and 

proposed. The method 

employs IoT sensors, 

Raspberry Pis, Amazon 

Web Services (AWS), 

and a variety of machine 

learning approaches to 

discover anomaly cases in 

the smart home security 

system. 

It's employed in an anti-

theft home security 

system in a closed 

environment for an 

automated data pipeline 

for IoT sensor anomaly 

detection. 

Insider 

Wang et al. 

(2019) 

People's physical and 

emotional wellbeing 

are adversely harmed 

by poor air quality. 

Many practical 

elements will 

influence the change 

in smog 

concentration, and it 

will have nonlinear 

properties. 

Approach for anomaly 

detection from the 

Internet of Moving 

Things. The distance of 

moving things was 

proposed as being equal 

to the weighted sum of 

the location distance and 

the multi-sensor distance; 

the generalised anomaly 

was detected using a 

three-step framework that 

included multi-sensor 

data generalisation, 

moving things 

partitioning, and anomaly 

detection. 

It's possible that the data 

properties in this 

investigation weren't 

evident, or that the data 

varied so much that no 

acceptable model could 

be trained. 

Insider 

Kang et al 

(2019) 

Because the number 

of traffic anomalies 

is so small, typical 

deep learning 

approaches suffer 

from a severe over-

fitting problem. 

For traffic anomaly 

detection, the study 

suggested a similarity 

metric Convolutional 

Neural Network (CNN) 

based on a channel 

attention model. 

Used to tackle the 

shortfall of training data 

and overfitting. 

Insider 

Chung and 

Kim (2020) 

Traffic accidents can 

be caused by 

sleeplessness 

(fatigue) and 

decreased cognition, 

and the number of 

traffic accidents 

caused by driver 

sleepiness and 

exhaustion is 

increasing every 

year. 

The assistant collects 

multimodal signals using 

five sensors that detect 

CO, CO2, and particulate 

matter (PM), as well as 

the temperature and 

humidity data. These 

signals are then sent to a 

server via the IoT where 

they are analysed by a 

deep neural network to 

determine the vehicle's air 

quality. 

Excess notifications are 

not taken into account 

in this model. 

Insider 
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2.2 IDS-related Works For IoT 

The existing network intrusion detection systems can be divided into misuse-based 

and anomaly-based detection systems. To build a detection model for misuse-based 

IDS, they rely on already known attack signatures, however for anomaly-based IDS, 

they include identified patterns of the regular activities and treat all other patterns as 

malicious. These two categories of IDS are further detailed in the following sub-

sections. 

2.2.1 Misuse-based IDS 

The misuse-based IDS contain patterns of already known attacks and new patterns 

that match such patterns are considered as attack. Various studies have proposed and 

developed misuse-based IDS; for instance Yang et al. (2018); developed an IoT 

intrusion detection technique based on active learning which relies on the human-in-

the-loop concept to combine human intelligence with machine learning to ensure 

data sufficiency. The study addressed the issue of collecting numerous data for the 

training phase due to the limited wireless channel capacities between different IoT 

components by ensuring that only the helpful ‗unlabeled‘ data are labeled. The 

developed approach iteratively executed a supervised technique on the labeled data, 

selected the following group of data from the unlabeled data set for labeling by the 

expert. Then, the recently labeled data are added to the ground truth for the training 

of the supervised learning technique. This process is repeated until a predefined level 

of accuracy is reached. However, the training process requires human intervention 

which makes it labor and time intensive and susceptible to error. 

A real-time IDS called SEVLETE was developed by Raza et al. (2013); this system 

provides end-to-end security in 6LoWPAN networks using message security 

technologies such as IPSec and DTLS. The model was developed for the detection of 

routing attacks, such as spoofing, alteration, and sinkhole attacks. Hence, it can 

protect data from manipulation by identifying the malicious nodes in the network. 

One problem with this system is that it does not offer protection against tampering of 

data contained in the node itself (as in situations of a legitimate node been 

manipulated) and cannot stop the altered node from disseminating false information 

as shown in Figure 2.2. 
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Figure ‎2.2. IoT setup using a) IDS modules b) Node placement according to the 

experimental results (Raza et al. 2013). 

Moustafa et al. (2018) came up with an ensemble model (statistical flow features-

based) for the protection of network traffic in IoT infrastructures. One feature of this 

approach is that it can aggregate the flow of traffic while ensuring the removal of the 

redundant observations those results from flooding attacks, thereby improving the 

efficiency and effectiveness of the proposed system. The first phase of the model is 

the extraction of a set of specialized features from the network protocols, such as 

MQTT, HTTP, and DNS. Then, the extracted features are employed for the training 

of several machine learning frameworks, such as Artificial Neural Networks, Naïve 

Bayes, and Decision Tree. During the training, the individual decisions serve as the 

basis for the production of the final decision via a voting strategy. This increases the 

diversity of the classification strategies and encourages assessment of the network 

traffic from various perspectives, thereby improving the detection accuracy of the 

system. Meanwhile, the proposed system requires the presence of mobile agents that 

must be activated individually at a time. One drawback of this approach is the 

inability to identify the coexistence of the context information generated by the 

nearby nodes of the nodes that are currently active. The coexistence of such 

information could be useful in the detection of complicated botnet attacks that work 

evasively and cooperatively to deliberately alter the current limits of the normal 

traffic profile. 
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Zhou et al. (2021) presented the first automata-based IDS for use in IoT; this novel 

approach focused on addressing the issue of heterogeneity in IoT nodes by striving 

towards building a unified security solution for the whole network. The proposed 

method extended the Labeled Transition System to uniformly describe the whole 

components of the IoT system. Terms and graphs were used to provide a 

characterization of the amalgamation of these components in the form of abstracted 

actions. Then, the comparison of the new observations with the already built profile 

was done using these abstracted actions. However, increases in the heterogeneity of 

the components increases the sparsely and dimensionality of the data owing to the 

variations amongst the features of the different components, making the devising of a 

unified representation a tedious task. 

Arshad et al. (2020) proposed a lightweight IDS for energy conservation and 

preservation of communication overhead in IoT nodes with limited resources. In the 

proposed model, the nodes work together by sharing attacks info with an edge device 

which serves as the major IDS component as shown in Figure 2.3. Sustenance of 

network resources was ensured by allowing detection at both edge device and local 

nodes levels. However, the information propagated by the IoT nodes are not wholly 

trustworthy owing to the possibility of some of the nodes being manipulated and 

used by attackers for the transmission of adulterated or misleading information. 

Furthermore, internal attackers that sabotage the network from within using some 

compromised nodes may not have to worry about edge-based detection because it 

will be bypassed. Hence, the performance of the proposed system in attacks detection 

will be significantly reduced. 
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Figure ‎2.3. The architecture of the a) IoT b) Suggested framework (Li and Zou 

2021). 

Arshad et al. (2020) proposed a novel system for effective intrusion detection in 

machine-to-machine networks that does not impose significant energy and 

connectivity costs on the participating host and edge nodes. According to the results, 

the proposed solution has a low overhead in terms of energy usage and memory 

consumption. To overcome challenges of system are security problems, abnormality, 

and service failure, Atul et al. (2021) proposed an effective framework of energy 

aware smart home. The study employed the machine learning technique to 

distinguish the abnormality sources of the contact model. The said study that the 

result showed an 85% accuracy rate. Prabhakaran and Kulandasamy, (2021) 

proposed an attention-based recurrent convolutional neural network to detect 

intrusion or non-intrusion in text data. According to the authors, the proposed 

intrusion detection and safe data storage mechanism is highly secure and is never 

compromised by any kind of conspiracy attack. Tally and Amintoosi, (2021) 
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suggested a hybrid genetic algorithm approach for detecting intrusion and compared 

it to the traditional method. The proposed method outperformed the conventional 

method, according to the results. 

 

 Figure ‎2.4. Novel IDS a) Security threats b) Proposed framework (He et al., 2019). 

Based on a stacked auto encoder, He et al. (2019) proposed a novel intrusion 

detection scheme as shown in Figure 2.4. Despite the positive results of the proposed 

method, the authors pointed out that there is a gap in detection ability between 

lightweight intrusion detection and the deep learning method. To provide an easy-to-

use security vulnerability checking and analysis solution for the IoT related 

developers and users, Hong et al. (2017) designed and enhanced an interface for a 

web based security analysis software for the internet of things. Halder et al. (2019) 

devised a new strategy for overcoming the limitations of both uniform and Gaussian 

deployments for energy-efficient and quick detection. The authors thoroughly 

investigated the effects of various network parameters on detection probability and 

concluded that when compared to other methods, the detection probability increased 

by more than 25%. Han et al. (2015) suggested a motion detection and tracking 

system based on passive radio frequency recognition tags for efficient intrusion 
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detection. Twins is accurate in detecting moving objects, with very low position 

errors of 0.75 m on average, according to the findings as shown in Figure 2.5. 

 

Figure ‎2.5. Accurate in detecting moving objects a) Critical state of Twins b) 

Minimum power vs. distance (Han et al., 2015). 

Keung et al. (2012) investigated the intrusion detection issue in a mobile sensor 

network with an emphasis on k-barrier coverage against moving intruders. The study 

found that when compared to a static sensor area, coverage efficiency can be 

enhanced by an order of magnitude with the same number of sensors.  

Jie Tian et al. (2014) proposed a hybrid deployment of mobile and static sensors to 

detect smart intruders with the purpose of crossing the monitored domain. The 

findings demonstrated that the proposed scheme would achieve a high detection 

probability while consuming little energy from mobile sensors. In another respect, to 

minimize the distance an external attacker would travel before being detected, 

Katneni et al. (2012) suggested a hybrid Gaussian-ring deployment. On the other 

hand, the results of proposal presented by Hu et al. (2014) regarding the quality of 

the sensor in the network, uncovered that the network‘s lifetime has improved by 

17.4%, while the delay in detection has decreased by 101.6%. Shafiq et al. (2020( 

used an objective soft set technique to pick successful features, as well as a new 
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feature selection metric. The experimental findings obtained by proposed algorithms 

are promising, with more than 95% accuracy. 

The study by Kumar et al. (2020), presented a self-adaptive misuse-based IDS for 

dynamic IoT platforms, especially networks that permits nodes to frequently join and 

leave the network. The proposed system relied on self-taught learning for the 

classification of the unknown events into harmful and non-harmful classes while 

features extraction from the observed instances was based on deep learning. Then, 

the extracted features were used for the determination of the event category though 

this adaptive approach lacks a system of determining the status (harmful or non-

harmful) of the source of the unknown event, providing the room for the 

compromised node to disseminate harmful information with features that seem to be 

non-harmful. This adaptation process could cause a major deviation from the normal 

network profile and could be exploited by attackers to implement undetected attacks 

using the altered network profile. An IDS has been provided by (A. Li et al., 2020), 

for the protection of the perceptual layer of IoT systems owing to its proneness to 

numerous attacks, as well as the inability to implement a comprehensive IDS due to 

scarcity of resources. In the proposed solution, a clustering-based model was 

deployed on certain cluster heads for resource conservation while the model was 

built using Game theory and PSO. The model consolidated both misuse-based and 

anomaly-based approaches to enable high level attacks detection accuracy and low 

false alarms. However, the system is prone to internal attacks that can directly reach 

the IoT nodes because the deployment of the detection model on the cluster heads 

means that the scrutinization at the cluster heads will be bypassed.  

Attacks on IoT systems are mainly launched using sophisticated strategies that can 

implement sustainable attacks like botnets and malware. Hence, researches have 

been devoted to the development of approaches for the prevention and detection of 

such attacks. The available approaches for attacks detection and prevention can be 

classified into anomaly-based, misuse-based, specification-based techniques as 

discussed further in the following sub-sections.  
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2.2.1.1 Drawbacks of misuse-based IDS  

Misuse-based IDS are developed to only detect known attacks and not previously 

unknown attacks. This means that the misuse-based IDS have low accuracy level in 

the detection of zero-day attacks. Furthermore, attackers have access to more 

resources, and are highly intelligent to the point that they are also deploying 

measures to evade detection (Singh and Kumar, 2020). Most of the current attack 

forms cannot be accurately identified by the conventional misuse-based IDS; hence, 

there is a need to continuously update the existing attack detection methods to be at 

par with the trends in cyber-attacks (Al-rimy et al., 2018). Hence, misuse-based IDS 

cannot efficiently detect novel and emerging attack types.  

2.3 Anomaly-based IDS In IoT 

The anomaly-based IDS are developed with a normal profile of the normal system 

behavior for comparison and identification of abnormal system patterns. New 

network profiles are considered malicious if they deviate significantly from the 

already established normal profile, else, they are considered benign. The anomaly-

based IDS for IoT are classified into those for external attack detection and those for 

internal attack detection; this classification is based on the source of the attacks. 

External attacks can be prevented using the conventional security techniques, such as 

encryption and intrusion prevention techniques, but for internal attacks, they are not 

easily detected using such traditional mechanisms. Hence, various studies have been 

devoted to the development of measures to counter such attacks and the available 

solutions are classified into those for protection against external attacks and those for 

protection against internal attacks. Protection against external attacks is aimed at 

protecting the system from attacks launched from outside the network while internal 

attack detection aims to prevent the success of attacks launched from within the 

network. The major problem with internal attacks is that the attacker launches the 

attack using legitimate but compromised nodes from the targeted network in a 

manner that cannot be detected by the existing detection methods (Li et al., 2019). 

Several studies have been conducted on the detection of external and internal attacks 

on IoT networks and most of these studies proposed data-driven solutions that 

requires the collection of data during normal network operation or during attack 
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moments to build the detection models. With these data, models of the normal and 

attack profiles of the networks have been developed using several machine learning 

and AI algorithms to enable the detection and calculation of the parameters and 

thresholds.  

Li et al. (2019) demonstrated that using blockchain technology to create a signature 

database will help improve the robustness and efficacy of signature-based intrusion 

detection systems in adversarial scenarios. Li et al. (2018) proposed a compact but 

efficient message verification approach based on collaborative intrusion detection 

network. The findings uncovered that suggested approach can identify malicious 

nodes. Similarly, Madsen et al. (2018) examined the influence of intrusion sensitivity 

in a simulated collaborative intrusion detection network environment as shown in 

Figure 2.6. 

 

Figure ‎2.6. Improvement of the detection capabilities a) The typical high-level 

architecture of a challenge-based CIDN b) Trust values of malicious 

nodes (Madsen et al., 2018). 

To improve the detection capabilities of a single intrusion detection device, Li et al. 

(2018) used collaborative intrusion detection networks. The outcomes demonstrated 
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that the proposed mechanism can detect malicious nodes. Based on anomaly and 

specification intrusion detection modules, Bostani and Sheikhan (2017) proposed a 

novel real-time hybrid intrusion detection framework. According to the results, the 

proposed hybrid approach achieved a true positive rate of 76.19%. Yahyaoui et al. 

(2019) suggested a novel anomaly protocol to combine machine learning detection 

with a statistical method for malicious node localization. The authors claimed that 

the proposed protocol had a high accuracy rate of more than 95%. Farzaneh (2019) 

introduced an anomaly-based lightweight Intrusion Detection System that was 

completely effective in detecting attacks and applicable to large-scale networks as 

shown in Figure 2.7. 

 

 

Figure ‎2.7. Improved an IDS a) Proposed model b) Normal Distribution (Farzaneh et 

al., 2019). 

In the same way, Tama et al. (2019) improved an intrusion detection system based on 

hybrid feature selection and two-level classifier ensembles. The suggested model had 

an accuracy of 85.8%, a sensitivity of 86.8 %, and a detection rate of 88.0 %. Bagaa 

et al. (2020) proposed a new machine learning-based security architecture that 
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combines a monitoring agent and an AI-based reaction agent. The authors 

investigated existing possible solutions and claimed that the proposed model 

achieved 99.71 % accuracy in detecting anomalies. Nõmm and Bahşi (2018) reported 

that using Anomaly-based detection; it is possible to induce highly accurate 

unsupervised learning models with small feature set sizes. Verma and Ranga (2020) 

studied the prospects of using machine learning classification algorithms for securing 

Internet of Things against denial-of-service attacks. The authors employed Friedman 

and Nemenyi tests in their analyses and reported that classification and regression 

trees both are the suitable choice for building Internet of Things specific anomaly-

based intrusion detection systems.  

2.4 Detection of External Attacks 

External attack detection techniques, as earlier stated, were developed for the 

detection and prevention of external network attacks. Such techniques are normally 

deployed at the main points of connection between the internal network and the 

external environment, such as at the cluster heads, gateways, and fog layer.  

Akyildiz et al. (2006) developed a two-layer anomaly detection system for the 

automation systems in smart homes. The detection responsibility in the systems was 

divided between the service provider and the service user. On the side of the user, 

data collection is done at the local nodes and collected at the home gateway (HG). 

Being that the network traffic is monitored by the HG, the detection responsibility 

can be easily transferred to the HG to conserve the available computational resources 

at the nodes. Attack detection is done via comparison of the suspected pattern from a 

specific node with the related normal pattern already built for that node. On the side 

of the service provider, the anomalous pattern is further analyzed at the HG to 

establish similarities across the network. Hence, it is possible to detect similar 

abnormality by the other HGs, thereby helping in early detection of the attacks at the 

other premises. The study, however, assumes a stationary sensor and nodes operating 

environment, as well as limited data exchange between the nodes communication 

within the system; they also assumed a stable packet loss and small payload. This is 

not applicable to applications that co-interact and work collectively as the pattern of 

the whole system can be affected by a change in the pattern of one sensor. 

Furthermore, the HG only makes use of the packet header and some statistics on 
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packet information and this is not complex enough for efficient and accurate attacks 

detection.  

A deep learning-based anomaly detection model has been presented by Meidan et al. 

(2018) for the detection of evasive botnets that alters their behavior upon every 

attack on IoT nodes. The extracted statistical features from the snapshots of the 

pattern of benign traffic are used by the model for the training of the deep auto-

encoder model for every IoT device and for building the normal node profile. This 

profile contains the compressed representation at the potential layer of the auto-

encoder and this profile serves as the basis for the determination of the threshold 

separating the normal & malicious patterns. The respective features vector is applied 

at the detection time on the observed snapshot. Then, the auto encoder attempts 

reconstruction of the snapshot and if failed, the snapshot is considered malicious. 

However, the behavior of the IoT is assumed to be stationary in the proposed model. 

However, this assumption is not applicable to most IoT systems whose behaviors are 

subject to changes with time. Therefore, the performance of the model and its 

detection accuracy will be affected as a result of reliance on fixed thresholds. The 

model further supposes that all the considered snapshots come with a total set of 

features but this may not be true as many factors are responsible for the availability 

of those features, such as the running environment, the capacity of the network, the 

availability of data, the absence of bad sensors, and the presence of noise.  

The study by Breitenbacher et al. (2019)  developed an anomaly-based IDS for use 

on IoT components following the whitelisting approach; this approach stipulates a 

range of legitimate applications that can be executed on the IoT node in a manner 

that only the listed applications it is possible to run on the nearby IoT node. Hence, 

when malicious software uses obfuscation techniques to hide its true pattern, the 

model can detect these adaptive attacks by making them resemble the benign ones. 

The issue with this technique is its reliance on rigid whitelist that cannot be possible 

in dynamic IoT platforms. Furthermore, there is no guarantee that the whitelist can 

be exhaustive because it might contain some of the legitimate programs. There is a 

chance of updating the whitelist with newly discovered programs during the 

operational stage, but this can only be done if deemed necessary by the network 

operator.  
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GARUDA was proposed by Aljawarneh and Vangipuram (2020) as a Fuzzy 

Gaussian dissimilarity feature section method when building IDS for IoT devices. 

The highpoint of the proposed method is that it addressed the issue of standard 

similarity measures, such as Euclidean distance which has no upper boundary or 

cosine similarity that has no consideration of the magnitude of the vectors when 

determining the similarity between two vectors. With GARUDA, training data 

dimensionality is reduced by clustering the features incrementally; this ensures that 

only a small set of unique features are selected. The determination of the number of 

clusters is based on a threshold that represents the allowable limit of intra-cluster 

features dissimilarity. However, the study considers all the data generated by the IoT 

devices to follow the Gaussian distribution, which is not applicable in most cases, 

especially in an environment that is highly dynamic. Hence, the proposed GARUDA 

may not perform the dissimilarity calculations accurately.  

Pamukov et al. (2018) relied on the Negative Selection Algorithm (NSA) for normal 

behavior modeling using self and non-self-strategies. The proposed model comprised 

of two layers to ensure that the resource-constrained IoT nodes are protected from 

the burden of training since the normal training set is built by the first layer using the 

NSA, while the second layer relies on this training data to train the Neural Network 

(NN) algorithm. However, the study assumes a stationary definition of self and non-

self which may not be applicable to IoT applications as their behavior evolve with 

time due to the dynamicity of IoT environments.  

A fog-based IDS was proposed for IoT devices by Lyu et al. (2017) . The study 

strived for early detection of anomalies in IoT nodes by deploying hyper-ellipsoidal 

clustering at the fog layer in consideration of the based on the collected data at the 

nodes level. Hence, the processing overhead is relayed into the fog node for real-time 

accurate detection while ensuring low overhead on the IoT nodes. Each node is 

programmed to send data to the fog node at every predetermined time window either 

to implement sensor-level clustering by dealing with the data gathered by each 

sensor or fog level clustering by looking at the data together. Then, the new 

observations are categorized based on such clustering into anomalous or benign. The 

problem of this approach is that it did not consider the possible correlation that may 

exist between the fog node-connected IoT nodes; this correlation can be useful in the 
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propagation of the information about emerging attacks launched against one or more 

nodes.  

A three-layer supervised anomaly-based IDS was proposed by Anthi et al. (2019) for 

IoT devices in smart homes. These layers tallied with the three consecutive layers 

(i.e., data link, network and transport layer) in the network OSI framework; this is to 

ensure the collection of the information related to the data units of these 3 layers and 

their subsequent use in training several ML classifiers, such SVM, NB, and DT for 

detection attack. The IoT system's usual network behavior was built by connecting 

all of the participating nodes through a single hub. The combination of the data from 

the 3 network layers ensures that the model can enrich the training dataset and 

perform accurate detection. But the issue with this method is that the extracted 

information is only the metadata for the segments, frames, and packets, meaning that 

the model may not accurately detect sophisticated attacks that involves data 

manipulation and legitimate nodes impersonation.  

Moustafa et al. (2018) presented ensemble-based IDS for the protection of IoT nodes 

from attacks that exploit the lapses on application layer protocols, such as HTTP, 

DNS, and MQTT. Such protocols could facilitate the manipulation of the backend 

systems that IoT nodes are connected to, thereby providing room for launching of 

different forms of attacks, such leaking data, partial or complete system hijacking, 

and disabling system services. The proposed approach relies on the protocols 

characteristics to derive the statistical features via aggregation of the network traffic 

and building an AdaBoost classifier using ANN, DT, and NB algorithms. The 

proposed model was evaluated on two datasets, namely UNSW-NB15 and NIMS. 

The aggregation negatively affected the capability of the derived features to capture 

the intrinsic attack characteristics, thereby affecting the accuracy level of the model.  

Being that IoT networks are distributed, the detection of external attacks is not 

important when dealing with internal attacks. This provides the invader an 

opportunity to evade the detection system by avoiding access through the network 

entry point; hence, cannot be detected by the detection system. Furthermore, internal 

attacks are usually launched by legitimate but compromised network nodes; hence, 

they are more difficult to detect. 
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2.5 Detection Of Internal Attacks 

A distributed internal IDS for the detection of internally launched attacks from one or 

more local nodes in IoT was proposed by Thanigaivelan et al. (2016). The proposed 

system provides that each node monitors its surrounding nodes for deviations via 

monitoring of the packet size and data rate of the one-hop neighboring nodes. The 

study opted for information protection from manipulation via monitoring the features 

of the one-hop neighboring nodes rather than relying on cryptography; this enables 

identification of deviations in the network pattern. These observed characteristics 

helps in assigning weights to each surrounding node and nodes that did not reach a 

specific weight level are classified as anomalous. This approach makes the proposed 

technique capable of addressing the issue of internal attacks detection that the 

cryptography-based solutions cannot detect. However, the determination of 

abnormalities based on weights as a threshold is an ineffective approach as most of 

the misbehaving intruders and evasive attacks always strive to remain below the 

threshold level within the limits of the normal profile. Hence, the detection of 

compromised nodes that exhibits no suspicious features but still propagates false 

information may not be possible with this approach. Furthermore, the calculated 

weights by the proposed approach are static and may not be applicable to non-

stationary scenarios with continuously changing nodes behavior. 

Ghaleb et al. (2018) examined the results of the Destination Advertisement Object 

(DAO) control messages exploitation by a compromised node that sends false 

information to its parents which prompts flooding of the network with DAO 

messages and subsequent degradation of the IoT network performance. Such attack 

was prevented by proposing SecRPL for the restriction of the number of DAOs 

forwarded by a parent such that only a limited number of messages can be sent by 

each parent to a specific child node. The problem of this approach is that it can be 

easily fooled by attacks that flood a single child node by simultaneously exploiting 

numerous parents. 

CA-DC-MDS was proposed by Ghaleb et al. (2019) as a multidimensional context-

based anomaly detection system for deployment in smart vehicles. The proposed 

approach protects messages from internal attacks by relying as context references for 

capturing the non-stationary in these networks by using spatial-temporal correlations 
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of the consistency of cooperative awareness messages. Particle and Kalman filters 

were used to determine the spatial and temporal contextual thresholds. A major 

problem of this approach is that all the nodes are assumed to exhibit similar normal 

profile boundaries which are not true owing to the variation in the attitude and 

discretion of the situation based on the driver. As such, an anomalous situation to one 

vehicle could be considered normal for another vehicle. 

A context-based IDS was developed by Pan et al. (2019) using the RIPPER 

algorithm and Bayesian Network for the protection of building control and 

automation networks. The system utilizes the heterogeneous data gathered from 

different network components to solve the issue of vulnerability of such systems by 

exploiting the increasing level of interaction between most of the weakly secured 

components. Hence, attackers may exploit these nodes to launch different forms of 

internal attacks. The model proposed in this study comprised of five different phases 

which as feature selection, context modeling, behavior analysis, threat assessment, & 

actions management. The study also proposed a novel Protocol Context-Aware data 

structure for context modeling which will aid building of the contextual array 

information that will serve as a segment of the training data. This will make the 

system capable of monitoring the whole aspects of a heterogeneous network for 

suspicious activities. However, the problem of the approach is the assumption of a 

stationary nature of the contextual information which is not applicable to 

heterogeneous scenarios like IoT where the misbehavior of one component affects 

the performance of several other components, thereby rendering such operating 

scenarios highly dynamic.   

Li et al. (2019) presented a block chain-based system for internal attacks detection in 

IoT systems. The proposed system addressed the issue of vulnerabilities suffered by 

collaborative IoT networks by combining different weakly secured nodes that may be 

exploited by attackers to launch attacks against the neighboring nodes. The proposed 

model is a combination of block chains and distributed signature-based IDS in an IoT 

platform for the generation and verification of attack signatures. The block chain 

component aids in securely sharing of signatures among the IoT nodes. The study 

also assumed that for each node, the public/private key pair is preserved. This may 

be true, but it is not important because the attacker can decide to use the genuine 
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pairs without having to alter the existing signatures since the node is already under 

the control of the attacker. Despite the effectiveness of this approach in detecting 

spoofing and resource exhaustion attacks, it cannot detect the malfunctioning nodes 

propagated falsified information with their surrounding nodes. Attackers can exploit 

this misbehavior to manipulate the security profiles and thresholds of the network. 

Furthermore, such solutions are prone to concept drift due to the assumption that 

both normal and attack are stationary, which is not the case in dynamic IoT 

environments. A summary of the related studies is presented in Table 2.2 and Table 

2.3. 

2.6 Issues Of The Existing External And Internal Attack Detection Systems In 

IoT 

External attacks detection, as can be seen, is easier because it relies on the strategy 

employed; the IDS is positioned at the network entry point to ensure efficient 

monitoring of the incoming traffic; meaning that the attack data is scrutinized at the 

network perimeter by the IDS. Contrarily, internal attack detection is a tedious task 

because of the participation if the attackers in the network activity and the generated 

attack data are not scrutinized by the IDSs. Despite the capability of host-based IDS 

to address this issue, they normally assume that the normal profile of the nodes is 

reliable, meaning that the existing host-based IDS are built on the premise of the 

legitimacy of the nodes in the internal network, but this is not true as attackers may 

hijack and use the legitimate nodes to launch attack on the normal node. 

Furthermore, the existing IDS in IoT assume the reliability of the data shared 

between nodes, but this does not hold as such nodes can be compromised and 

manipulated to share fake information with the other nodes. Sharing such fake 

information will make the nodes that receive such information to react to false events 

that could alter their security protocols and make them vulnerable to attacks.  Hence, 

reliance on such compromised data to build detection models means the accuracy of 

the developed model will be low. Despite the effort to address these issues, some of 

the previous studies presented models that were built on the assumption a summary 

of the related studies of IDs bases IoT shown in Table 2.2 for outsider and Table  2.3 

for insider bases of IoT that only few IoT nodes can be compromised by attackers, 
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but this is not the case. These days, attackers exploit the advanced attack strategies, 

such as botnets, to hijack numerous. 

Table ‎2.2. A summary of the related studies of IDs for outsider bases IoT. 

Author(s) Research 

Problem 

Solution Limitation(s) Detection 

Type 

Yang et al. 

(2018) 

The lack of 

sufficient ground 

truth (labeled) data 

necessary for 

machine learning 

classifiers to work 

properly. 

Utilizing the active 

learning into model‘s 

training process by 

incorporating the 

concept of the human 

in the loop to enrich 

the training data and 

compensate the lack of 

labeled data in the 

training set. 

- Involving human in 

labeling process is labor-

intensive and error-prone. 

Outsider 

Raza et al. 

(2013) 

Existing solutions 

do not provide 

end-to-end security 

for the messages 

travel through the 

network. 

SVLETE incorporates 

IPSec and DTLS into 

RPL in 6LoWPAN 

networks to secure the 

data within the 

network. 

- It doesn't safeguard against 

data tampering within the 

device itself (If a valid 

node is hacked, it does not 

prevent the infected device 

from sending misleading 

information.) 

Outsider 

Zeng et al. 

(2019) 

Redundant 

observations in the 

traffic flows 

adversely affect 

the ability of 

detection solutions 

to detect attacks 

against IoT 

networks. 

Statistical flow-based 

aggregation that 

summarizes the traffic 

flow and removes the 

redundant 

observations generated 

from flooding attacks 

such as DDoS. 

-There is a dependence on 

workers who are active 

only on a single device, 

who can simultaneously 

produce context 

information produced on 

other nodes. This 

coexistence of data could 

be beneficial for detecting 

attacks by complex robots 

that work cooperatively 

and covertly to alter 

existing profile boundaries. 

Outsider 

Zhou et al. 

(2021) 

The heterogeneity 

of IoT nodes 

makes it difficult 

to create a unified 

IDS detection 

solution. 

An automata-based 

method that addresses 

the heterogeneity issue 

using an Labeled 

Transition System 

(LTS) extension helps 

build a consistent 

representation of all 

IoT system 

components 

- When there are a greater 

variety of devices, the 

dimensionality and scarcity 

of data are also multiplied. 

As a result, it becomes 

increasingly difficult to 

leave a single, coherent 

legacy. 

Outsider 
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Table 2.2. (Continued). 

Author(s) Research Problem Solution Limitation(s) Detection 

Type 

Lyu et al. 

(2017) 

Existing IDSs in 

IoT suffer from the 

processing 

overhead due to 

limited resources in 

IoT nodes, which 

renders detecting 

the attacks at real 

time challenging. 

The work employed the 

hyper ellipsoidal 

clustering at the fog 

layer to relay the 

processing overhead 

into the fog node and 

preserve the resources 

of IoT nodes. 

- Any correlation 

between the IoT nodes 

that are connected 

through the fog node, 

which can be valuable 

for spreading 

information about 

emergent attacks taken 

out against one or more 

nodes, is ignored by 

this method. 

Outsider 

Akyildiz 

et al. 

(2006) 

Misuse-based 

intrusion detection 

approach is not able 

to detect the novel, 

previously unseen 

attacks. 

An anomaly-based 

detection model was 

trained with the normal 

behavior of the IoT 

nodes to build the 

normal profile such 

that, any deviation from 

the profile‘s boundaries 

is considered as attack. 

- Presumes the operating 

environment is 

stationary, with small 

payload and stable 

packet losses limited to 

network traffic. The 

IoT networks are 

realistic in nature and 

dynamic. 

– To feel attacks with the 

required level of 

accuracy, the limited 

amount of information 

is not detailed. 

- The solution proposed 

suffers with the high 

fake alarm rate 

Outsider 

Meidan et 

al. (2018) 

Existing Botnet 

detection solutions 

in IoT overlook the 

evasive nature of 

such botnets that 

change its behavior 

with each attack. 

Deep Auto encoder was 

used to extract more 

robust and 

discriminative features 

that represent such 

evasive attacks. 

-IoT behavior assumes to 

be stationary that does 

not maintain the IoT 

environment, given its 

dynamic nature. 

-It makes the unrealistic 

assumption that all 

features are present 

everywhere, regardless 

of network capacity, 

such as sensors and 

noise, both being faulty 

and in the system. 

Outsider 
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Table 2.2. (Continued). 

Author(s) Research Problem Solution Limitation(s) Detection 

Type 

Breitenbacher 

et al. (2019) 

Existing IDSs in 

IoT are prone to 

obfuscation 

strategies that 

sophisticated 

attackers employ to 

deceive the 

detection. 

Whitelisting procedure 

that expounds on a set of 

legal applications 

allowed run on the IoT 

station was proposed. 

- Due to the dynamic 

IoT environment, a 

rigid whitelist 

cannot function as 

a safety 

mechanism.  

- A whitelist cannot 

be comprehensive, 

as numerous 

legitimate and 

malicious 

programs may be 

omitted. 

Outsider 

Aljawarneh 

and 

Vangipuram 

(2020) 

Although the choice 

of distance from 

centroid to the point 

of interest is 

imperative for IDS 

to judge an 

incoming 

observation as 

normal or abnormal, 

this challenge has 

been understudied 

and relatively less 

addressed in the 

research literature. 

The proposed GARUDA 

is based on clustering 

feature patterns 

incrementally and then 

representing features in 

different transformation 

space through using a 

novel fuzzy Gaussian 

dissimilarity measure. 

The number of clusters 

made is made by a 

threshold that appears 

the allowable similarity 

of the features in the 

same group 

- It makes the 

assumption that 

data from IoT 

devices is typically 

distributed, which 

is not the case in 

many cases, 

particularly those 

that operate in a 

highly dynamic 

environment. 

Outsider 

Pamukov et 

al. (2018) 

Existing ISDs in 

IoT are unable to 

determine the zero-

day attacks. 

Negative Selection 

Algorithm (NSA) was 

employed to build two 

profiles, normal and 

malicious, using 

self/non-self-concept. 

The normal profile was 

then used to detect the 

zero-day attacks against 

IoT network. 

- The definition of 

self/non-self is 

assumed to be 

stationary which 

could not be 

realistic since the 

behavior of IoT 

applications 

evolves over time 

as IoT 

environment 

dynamics. 

  

Outsider 
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Table 2.2. (Continued). 

Author(s) Research Problem Solution Limitation(s) Detection 

Type 

Anthi et 

al. (2019) 

Existing solutions focused 

on limited number of 

attacks and the data used 

for profiling those attacks 

are limited. They also 

have focused on detecting 

whether the packet is 

benign or malicious 

without knowing the type 

of the attack, which could 

be important for 

facilitating the 

countermeasure. 

The 3-layer model 

corresponds to the 3 

successive layers of the 

OSI Network model, 

i.e. In order to 

aggregate data about 

data units (frames, 

packets, and segments, 

respectively) from these 

three layers, it was 

suggested the data 

connection, network, 

and transport layer. 

Therefore, the dataset is 

enriched with various 

data. 

- Frame, package, 

and part metadata 

is all that is 

extracted. Because 

of this, the model 

may not have 

been able to 

manage 

complicated 

attacks that can 

change (i.e. spoof) 

this data and 

mimic legal 

devices. 

Outsider 

 

The Table 2.3 is the summary of the related studies of Ids fon insider bases IoT for 

description type. The existing IDS in IoT assume the reliability of the data shared 

between nodes, but this does not hold as such nodes can be compromised and 

manipulated to share fake information with the other nodes. 

 

Table 2.3.  A summary of the related studies of IDs for insider bases IoT. 

 
Author(s) Research Problem Solution Limitation(s) Detection 

Type 

Thanigaivelan 

et al. (2016) 

Cryptography based 

security cannot 

prevent the insider 

attackers that have 

the valid key or the 

necessary 

information to 

perform activities 

within the network. 

One-hop neighbor 

node parameters 

like as packet size 

and data 

throughput are 

monitored by an 

internal anomaly 

detection system 

to seek for any 

network 

anomalies. 

- Setting a weight 

threshold as an 

abnormality threshold is 

ineffective since many 

evasive attacks and 

invaders are attempting 

to stay inside the typical 

profile of the target. It's 

impossible to discover 

compromised nodes that 

aren't exhibiting any 

unusual behavior, yet are 

sending out fake 

information. 

- For non-stationary 

situations, weights 

estimated by the model 

given are static. 

Insider 
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Table 2.3. (Continued). 

Li et al. (2019)  Combining 

different types of 

weakly secured 

IoT nodes renders 

the network 

vulnerable to 

attacks.  

A verifiable 

method of 

distributing 

signatures among 

IoT nodes is 

being developed 

by combining 

block chains with 

distributed 

signature-based 

IDSs. 

- The attacker 

may use the 

parent pairs 

because he has 

already assumed 

control of the 

node. 

Insider 

Ghaleb et al. 

(2018) 
Attackers can 

exploit 

Destination 

Advertisement 

Object (DAO) in 

An IoT node that 

has been 

compromised will 

broadcast 

misleading 

information to its 

parent nodes, 

resulting in a 

flood of DAO 

messages. 

Because each 

parent can only 

transmit a limited 

amount of 

messages to each 

subnode using 

SecRPL, each 

parent can only 

redirect a certain 

number of DAOs 

at a time. 

- It can be easily 

deceived by 

attacks that 

exploit different 

parent devices 

simultaneously to 

flood a particular 

sub-node. 

Insider 

Ghaleb et al. 

(2019) 
Existing IDS 

solutions assume 

that the IoT 

context is 

stationary, which 

does not keep 

given the 

dynamic nature of 

IoT environment. 

In order to reflect 

the non-stationary 

nature of these 

networks, 

dynamic 

thresholds were 

used to provide 

context 

references. 

- If we assume 

that the majority 

of the nodes 

(vehicles) are 

secure, it is 

possible that 

adversaries can 

leverage the 

secure ones to 

perform similar 

attacks on other 

ones that are not 

secure, so that an 

adversary-based 

threat model may 

not be realistic. 

Insider 
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 METHODOLOGY  3.

This chapter provides the developed methodology of the proposed Kalman and 

Cauchy (KC) clustering for anomaly detection based on the authentication of nodes 

within Internet of mobility networks (IoMTs) using extreme learning machines. In 

Sub-section 3.1., the problem situation and solution concept discussed and the 

simulation model and the problem definition were presented in Sub-section 3.2. 

While the system architecture will presents in Sub-section 3.3. The sensor fusion for 

trajectory estimation was presented in sub-section 3.4. Sub-section 3.5 presented the 

hampel filter in sub-section 3.6 Cauchy-based anomaly detection system was 

presented. The Sub-section 3.7 presented the intrusion detection system based on an 

extreme learning machine. Then in sub-section 3.8 the Unified Modeling Language 

(UML) diagram was described in details. Finally, in Sub-section 3.9 the evaluation 

metrics was listed and explained. 

3.1 The Problem Situation and Solution Concept 

Following the discussion in Chapter 1, this study is focused on addressing the 

problems associated with the existing host-based intrusion detection system (IDS) in 

terms of their inability to detect attacks internally launched against IoMT devices due 

to issues of the unreliability of the nodes in the IoMT network, as well as the lack of 

trust in the exchange of data between these nodes. Legitimate IoMT nodes can be 

manipulated by attackers in a bid to alter the integrity of the data it exchanges with 

the rest of the nodes in the system. The consequence of such manipulation is the 

outright corruption of the normal behavior of the nodes within the vicinity. Hence, 

there is no reliability in the data shared between these nodes and this affects the 

detection performance. This IoMT node compromise can also lead to the exploitation 

of the vulnerability of the compromised node to create and share unreliable data with 

other nodes to compromise the security features of such nodes, thereby increasing the 

vulnerability of the system. 

Therefore, this study is aimed at providing the solution to the aforementioned issues 

that will usher in accurate and reliable IDS and anomaly detection solutions for 

IoMT systems. The proposed solution is conceptualized on the evaluation of the 

reliability of the IoMT nodes, as well as an assessment of the trustworthiness of the 
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shared data by these nodes. For the evaluation, the history of each node will be 

considered and the nodes will be adaptively re-evaluated from both historical and 

contextual perspectives. This ensures the detection of nodes that behave abnormally 

and the influence of the data shared by such nodes will be minimized. Furthermore, 

the impact of such data on the security status and profile of the model will be 

reduced, thereby keeping the model strong from manipulators that aim to 

compromise the security parameters and corrupt the knowledge-base of the models. 

A summary of the problems and the proposed solution concepts is presented in Table 

3.1. 

Table ‎3.1. Summary of problem situation and solution concept. 

Problem Description Solution Concept 

The difficulty of assessing the reliability 

and trust levels of the data shared by the 

compromised nodes in IoMT systems.  

Create a framework for intrusion 

detection using mobility anomaly 

detection and trained model for attacks 

For estimating the trajectory of 

pedestrians within an indoor 

environment based on fusing WiFi with 

IMU data.  

Develop a Kalman filter-based model 

For detecting anomaly behaviour in 

IoMT based on the estimated trajectory 

by Kalman filter. 

A Cauchy-based clustering method 

For the training phase of an extreme 

learning machine to improve the 

detection accuracy.  

An extreme learning machine-based IDS 

model for IoMT systems using the 

Cauchy clustering scheme. 

Evaluate the proposed algorithms Using classification and networking 

metrics 

3.2 Simulation Model and Problem Definition  

Assuming that we have an IoMT network consists of mobile wireless nodes with 

wireless fidelity (WiFi) accessibility. The WiFi combines one of the sensors that 

exists at each IoMT device for enabling the estimating its location prediction. The 

WiFi accessibility is achieved by set of access points (APs) installed in the 

environment at given points. In addition, the device contains inertial measurement 

unit IMU (accelerometer and gyro). The role of the accelerometer is to measure the 

acceleration and the role of the gyro is to measure the angular rate. The various sub-

blocks or assisting blocks of the system: APs, map, pedestrian generation model, 
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pedestrian mobility model, traffic generation model and performance logging. The 

goal is to exploit the mobility information within IoMT for identifying nodes with 

abnormal mobility patterns which might be associated to threats or intruders that risk 

the network security. The simulation is depicted in Figure 3.1. We present an 

overview of the individual sub-blocks as follows. 

 

Figure ‎3.1. The simulation model for the IoMT. 

3.2.1 Map  

The map represents the indoor environment of 3D architecture. We consider that the 

environment consists of various rooms and multiple floors. In addition, we assume 

that there is a corridor or multiple corridors that connects between the rooms. The 

environment has fixed architecture for the operation of the model. However, the 

dynamical aspect of the environment is considered through the APs and the 

pedestrian‘s density within the environment. For the former, the characteristics of the 
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signal might change with time and for the latter the density is always subject to 

change.  

3.2.2 Access points  

The role of access points is to provide WiFi accessibility to the pedestrians within the 

environment. As it has been stated in the problem formulation, we have   APs 

distributed in the environment, and each one has coverage radius   which enables 

pedestrian‘s accessibility from their WiFi sensors to more than three APs at one time 

in order to enable location identification based on the fingerprint. The fingerprint of 

each location is stored in the environment based on an offline site survey. Hence, we 

assume that we have a dataset that represents the fingerprint throughout the 

environment. 

3.2.3 Pedestrians generation model  

The goal of the pedestrian generation model is to generate new pedestrians to enter 

the environment from an input point to the building (entrance). This model follows 

normal distribution with an expected value   and standard deviation   for the 

number of new arrived pedestrians and it follows exponential distribution for the 

time interval between one batch of pedestrians and other with an expected arriving 

rate  . For the exit from the building, we have one point as exit which enables 

leaving the building in a probabilistic model with probability of 90% when the 

pedestrian passes by the point.  

3.2.4 Traffic generation model 

At each floor, the pedestrians combine sub-network that enables them exchanging 

various messages (considering that they are required to perform certain mission 

inside the building). The network is IoMT that needs to accomplish higher quality of 

service (QoS) and to be secured from attacks. The messages in the network are 

generated based on normal distribution with parameters   ,    and with random time 

interval that follows exponential distribution with parameter of   . 
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3.2.5 IoMT Sensing  

The IoMT network is combined of set of nodes where each node represents an IoT 

device carried by the pedestrian while walking in the environment. The device has 

two important sensors: WiFi and inertial measurement unit (IMU). The role of the 

WiFi is to measure the WiFi fingerprint from the accessible APs which constructs a 

vector of Received Signal Strength Index (      signals as 

                         and the role of IMU is to measure the acceleration 

           and angular rate          .  

Where  

   Denotes the acceleration on   axis  

   Denotes the acceleration on   axis  

   Denotes the acceleration on   axis  

   Denotes the angular rate with respect to   axis  

   Denotes the angular rate with respect to   axis  

   Denotes the angular rate with respect to   axis  

3.2.6 Performance logging 

Performance Logging is an evaluation block that enables capturing the performance 

of the network and saves it time series for comparison. It uses the traditional network 

performance criteria, namely, Packet Delay Ratio (PDR), Received Packets, and End 

to End delay (E2E). The pseudocode is presented Algorithm 1. The inputs of the 

algorithm are list of the devices of the IoT network, the available packets in receiving 

buffer, the dropped packets by the nodes, and the current time. The outputs are the 

dropped packets, received packets, and E2E delay. In the beginning, the algorithm 

checks the available packets whether their lifetime is higher than the current time or 

not. In the case of lifetime is higher than the current time, this means that the packets 

are not yet expired so they are counted as received packets and the number of 

received packets is increased by one at the sink. Furthermore, the difference between 

the current time and the packet generation time is calculated as E2E delay. 

Otherwise, the packets are considered as dropped packets and the number of dropped 

packet is increased by one.  
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3.2.7 Mobility model  

The pedestrian is assumed to move from in the corridor of the building in straight 

line trajectory with fixed speed and to enter a room from the available rooms based 

on Bernoulli distribution.  

Algorithm 1 Sink Buffers processing. 

Input: 

(1)Devices: all devices that connected to the network. 

(2) avilablePackets:array of the available packets in all devices. 

(3)droppedPackets 

(4)recivedPackets 

(5)time 

Output: 

(1)droppedPackets 

(2)recivedPackets 

(3)E2EDelay 

start algorithm 

1: if any(avilablePackets) = 0 then 

2:    sencdingDevice   selctRandom(avilablePackets): 

3:    packet   extractP acket(Devices(sendingDevice)): 

4:    if packet.lifeTime >0 then 

5:       recivedPackets++ 

6:       E2EDelay = time-packet.generationTime. 

8:    else 

9:       droppedPackets++ 

10:  end if 

11: end if 

12: End algorithm 

3.3 System Architecture  

The role of the Kalman filter is to predict the location of the pedestrian with respect 

to time and to provide it to the anomaly detection algorithm (Li et al. 2019). The 

anomaly detection algorithm is used to detect any anomaly based on comparing the 

location of the subject node with the location of the nearby nodes and to provide an 



45 

anomaly index to the IDS which are used to filter out the malicious messages from 

the raw received packets buffer. The result of IDS is the legitimate received packets 

buffer which contains the legitimate messages after filtering out the malicious 

messages. In addition, the output of the IDS is connected to the performance logging 

block which is responsible of providing the performance metrics. The suggested 

framework of integrated Anomaly and Intrusion Detection for IoMT shown in Figure 

3.2.  

 

Figure ‎3.2. Framework of integrated anomaly and intrusion detection for IoMT. 

3.4 Sensor Fusion for Trajectory Estimation  

In order to estimate the location of the pedestrian, there are two sensors used by 

Kalman filter: the first is the WiFi data which does not give direct estimation of the 

location but it is used in a machine learning model for this purpose. The second one 

is the accelerometer data which is used inside the process model as an input vector.  

Assuming that the fingerprint is   {     } where     is a matrix with dimension 

of     ,    denotes the number of locations in the grid decomposition of the 

environment during the site survey,   denotes the number of APs  

   is a column with size of    We build a machine learning model based similar to 

the work of(Jiang et al., 2016) . We name this model as   and we used it for 

predicting the location based on the equation                   where      denotes 

the predicted location of the pedestrian in the place           
 .    Represents the 

model built for the user   and      denotes the sample obtained from the pedestrian   
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at moment . We use  ̃    as part of the measurement vector directly inside Kalman. 

Hence, the measurement data of Kalman divided between    and               . 

The process model is given by the Equation (3.1).  

 ̂   
    ̂        (3.1) 

The state vector is defined by                               
 . The set of Equations (3. 

2-9) are applied.  

                    (3.2) 

  

                        (3.3) 

  

                                (3.4) 

  

                               (3.5) 

  

                    (3.6) 

  

                      (3.7) 

  

                                (3.8) 

  

                               (3.9) 

Hence, we write the two matrices   and   

  (

    
    
 
 

 
 

 
 

 
 

) (3.10) 

  

  (

   
   

  
  

) (3.11) 

The measurement model is given by Equation 3.12.  

     ̂ 
  (3.12) 

The measurement vector is defined based on the update from the WiFi that is 

calculated by Equation 3.13. 
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                  (3.13) 

  

  (
    
    

) 

 
(3.14) 

 

Hence, the predicted covariance matrix     
  is given based on the Equation (3.15) 

    
      

    (3.15) 

Kalman filter gain is given by Equation (3.16) 

     
   

      
   

       (3.16) 

 

Where  

  Denotes the process model covariance matrix  

  Denotes the measurement model covariance matrix  

Hence, after receiving the measurement, we correct both the state and the covariance 

matrix using the two Equations (3.17-18)  

 ̂   ̂ 
   (     ̂ 

 ) (3.17) 

  

            
  (3.18) 

For calculating                  , we adopt feature adaptive online sequential 

extreme learning machine FA-OSELM given in. 

3.5 Hampel Filtering  

In order to improve the estimation of Kalman filter, we add Hampel filter at the 

output of the WiFi sensor. The role of Hampel filter is to remove outliers (Yao et al., 

2019). It operates based on sliding window of the time series generated from the 

sensor at each APs RSSI reading. For each position of the sliding window, it 

calculated the median and standard deviation and replaces the samples that have 

value than three times of the standard deviation with the median. Such process 

considers that values that exceed the median deviation with three times of the 

standard deviation as outlier.  
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The usage of Kalman filter and Hampel filter for localization is presented in 

Algorithm 2. The input of the algorithm are: RSSIBuffer which represents the data 

for the last RSSI measurements collected inside a window   which represents the 

size of hample window, deviceGeometry which represents the geometrical data of 

device, namely, position, velocity and acceleration, and Online Sequential Extreme 

Learning Machine OSELM which represents a pre-trained model on the WiFi 

fingerprint (Zou et al., 2015). The output of the algorithm is currentPos which 

represents the current estimated position of the device. The operation of the 

algorithm consists of three steps:  

1- Filtering out the outliers using hample filter. 

2- Calculating the current location using OSELM and filtered RSSI. 

3- Using the current position as input to Kalman filter measurement vector to fuse 

between RSSI and IMU.   

Algorithm 2 Device Localization. 

Input: 

(1)RSSIBuffer: the RSSI data for the last w RSSI measurements where w is the size 

of hample filter window 

(2)deviceGeometry: the geometrical data of device (Position, velocity, acceleration) 

(3)OSELM: the pre-trained OSELM module 

Output: 

currentPos: the current estimated position of the device. 

start algorithm 

1:   FRSSI   hample(RSSIBuffer) 

2:   predictedPos   eval(OSELM; FRSSI(:; end)) // estimate for the last RSSI 

3:   currentPos   kalmanFilter(predictedPos; deviceGeometry) 

4: end algorithm 

3.6 Cauchy Based Anomaly Detection  

To propose a weighted trustworthiness assessment for detecting anomaly behaviour 

in IoMT based the estimated trajectory by Kalman filter and information gain 

calculated from the network features. 



49 

At every time moment, a new point is generated from Kalman filter are combined 

with the network features data in one vector and projected to clustering space as one 

point. The point is compared with the existing clusters and it is added to the cluster 

that combines with the point maximum Cauchy density considering that the density 

does not exceed certain threshold. Otherwise, the point is projected to an outlier. The 

outlier is saved until collecting minimum number of points in the outlier that enables 

converting the outlier to a cluster. The pseudocode used for this is given in 

Algorithm 3. The input of the algorithms are:   which represents the Cauchy clusters 

set,                which represents the pedestrians position,        which 

denotes density threshold of clustering,         which represents the detected 

anomaly, interval which denotes pruning interval time, threshold which denotes the 

anomaly threshold and the time. The outputs of the algorithm are   which denotes 

the updated Cauchy clusters set and         also after being updated. The process 

of the algorithm starts by checking the position and it uses it for creating a new 

cluster in the case of the first sample or when the maximum density of the position 

with respect to other clusters is less than a threshold       , otherwise it assigns it 

to the cluster associated with the maximum density and it calls for this the 

function             . The next step of the algorithm is label the anomaly samples 

based on the criteria of having number of members within their clusters less than the 

input threshold. Lastly, the packets that are associated with the anomaly samples are 

deleted.  
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Algorithm 3 Cauchy with anomaly detection. 

Input: 

(1)C: the cauchy clusters set. 

(2)pedestriansPos:the pedestrians positions. 

(3)gammaC: the density threshold of clustering. 

(4)Anomaly: the detected anomaly 

(5)interval: the pruning interval time 

(6)threshold: the anomaly threshold 

(7)Time 

Output: 

(1)C:updated cauchy clusters set. 

(2)Anomaly:updated anomaly list. 

start algorithm 

1:for each P in pedestriansPos do 

2:    if C.numberOfClusters    0 then 

3:       addNewCluster(p) 

4:    else 

5:       densities   CalculateDensity(C; p) 

6:       [maxGammaj, maxIndex]=Max(densities); 

7:       if maxGammaj<gammaC then 

8:          addNewCluster(p) 

9:       else 

10:        C = UpdateCluster(C(maxIndex),P) 

11:     end if 

12:  end if 

13: end for 

14: if mod(Time,interval)==0 then 

15:    for each cluster ci in C do 

16:       if ci.NumberOfMembers < threshold then 

17:          Anomaly=[Anomaly ci.Members] 

18:          delete(ci) 

19:       end if 

20:    end for 

21: end if 

22:End algorithm 
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The pseudocode of creating the new clusters is presented in Algorithm 4. The inputs 

of the algorithm are   which denotes the Cauchy clusters set and   which denotes 

the pedestrian position. The output of the algorithm is the updated Cauchy clusters 

set. The algorithm 5 creating new cluster from the input position, it uses its value for 

the cluster center and it increases the number of points inside the clusters by one. In 

addition, it initiates the value the parameters of the clusters.  

Algorithm 4 addNewCluster. 

Input: 

(1)C: the cauchy clusters set. 

(2)P:the pedestrian position. 

Output: 

(1)C:updated cauchy clusters set. 

start algorithm 

1: C.numberOfClusters++ 

2: C(C.numberOfClusters).numberOfMembers=1 

3: C(C.numberOfClusters).Members = P 

4: C(C.numberOfClusters).center = P 

5: C.numberOfClusters).Sj = 0 

6: C.numberOfClusters).segmaj = 0 

7: End algorithm 

 

Algorithm 5 CalculateDensity. 

Input: 

(1)C: the cauchy clusters set. 

(2)P:the pedestrian position. 

Output: 

(1)C:updated cauchy clusters set. 

(2)densities:the densities of clusters. 

start algorithm 

1: for each cluster ci in C do 

2:    d = distance(ci.center,P) 

3:    T = ((ci.numberOfMember-1)/(ci.numberOfMember))*trace(ci.segmaj) 

4:    r = T/(deltaS) 

5:    ci.gammaj = (1 + r)/(1 + (d/(deltaS)) + r) 

6: end for 

7: densities=[C.gammaj] 

8: End algorithm 
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The pseudocode of the cluster head update is presented in Algorithm 6. It takes the 

input corresponding cluster set as input as well as the pedestrian position and it 

returns the updated cluster. It uses the position for updating the cluster center and 

other parameters as it is shown in the pseudocode. 

Algorithm 6 UpdateCluster. 

Input: 

(1)ci: the cauchy cluste to be updated. 

(2)P:the pedestrian position. 

Output: 

(1)C:updated cauchy clusters set. 

start algorithm 

1: ci.numberOfMembers++ 

2: ci.Members= [ci.Members P] 

3: ej = P - ci.center 

4: ci.center = ci.center + ((1/ci.numberOfMembers)*ej) 

5: ci.Sj = ci.Sj + ej'*ej 

6: ci.segmaj = (1/ci.numberOfMembers)*ci.Sj 

7: End algorithm 

3.7 Intrusion Detection System  

The role of intrusion detection system is to operate with the anomaly detection that 

marks the data that arrives from nearby nodes as associated with anomaly or being 

normal. The prediction of anomaly that is carried by the anomaly detection which 

operates based on Cauchy clustering is further used with the network data that are 

obtained from the packets received buffer to give more confident decision about the 

non-legitimate data because of black-hole attack or distributed denial of service 

DDoS attack. This is used based on un-supervised learning approach carried by deep-

believe neural network. Hence, the final decisions will one of two labels for every 

packet in the buffer: the first one is normal or legitimate packets and the second one 

is packets attached with attack. The IDS was integrated in the sink buffer processing 

algorithm 7. 
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Algorithm 7 Sink IDS Buffers processing. 

Input: 

(1)Devices: all devices that connected to the network. 

(2)avilablePackets:array of the avilable packets in all devices. 

(3)droppedPackets  

(4)recivedPackets 

(5)time 

(6)ELMIDS: the trained ELM for detecting intrusions 

Output: 

(1)droppedPackets 

(2)recivedPackets 

(3)E2EDelay 

start algorithm 

1:if any(avilableP ackets) = 0 then 

2:    sendingDevice   selctRandom(avilableP ackets): 

3:    packet   extractP acket(Devices(sendingDevice)): 

4:    if packet.lifeTime > 0 ⋀  ELMIDS(packet)    0 then 

5:       recivedPackets++ 

6:       E2EDelay = time-packet.generationTime. 

7:    else 

8:       droppedPackets ++ 

9:    end if 

10:end if 

11:End algorithm 

3.7.1 Intrusion Detection based on extreme learning machine OSELM  

According to the work of (Singh et al. 2015) , we can built the model from the 

following steps : 

1- We assume that we have a fingerprint dataset given as  

  {                          } 

2- We decompose the labeled fingerprint data into two parts: the first one is the 

boosting data which is given as   when           where    denotes the size 

of the boosting data, and the remaining is the training data.  

3- We apply the boosting phase as given in the following steps : 
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3-1 We generate randomly weights for the input hidden layer neurons     and the 

hidden layers biases   .  

3-2- We calculate the hidden output matrix using Equation (3.19). 

           ̃   (3.19) 

 

Where  

                      ̃       ̃   

       ̃
  

  Denotes the activation function  

3-3- estimate the hidden output weights using Moore-Penrose equations (3.20-

23). 

         
    (3.20) 

  

         
    (3.21) 

  

      
       (3.22) 

  

  
     

        
  (3.23) 

3-4- For each new received chunk apply the recursive Equation (3.24). 

        
          

   

      
       

                    (  
      

     )

 

      

(3.24) 

3-5- In case the number of features has changed, apply transfer learning 

equations to preserve old weights when the neural network inputs are changed to 

the new number. 
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3.8 MUDI Stream: Multi-Density The Clustering Algorithm  

In this study we prefer to use the MUDI Stream which is an Online-Offline 

algorithm, this algorithm used to evaluate and benchmark the work of detecting 

anomaly behavior and the IDs with the proposed algorithm the Kalman Cauchy 

clustering. The MUDI Stream is an Online-Offline algorithm with four major 

components. Algorithm 8 used during the online phase, it stores brief information 

about the evolving Multi-Density data stream in the form of core Mini-Clusters. 

While the algorithm 9 works as an offline phase uses an adapted Density-Based 

clustering algorithm to generate the final clusters. The Grid-Based method is used as 

an Outlier-Buffer to manage both noise and Multi-Density data to differentiate 

between anomalies, normal packets and nodes, new point is generated from Kalman 

filter are combined with the network features data in one vector and projected to 

clustering space as one point. The point is compared with the existing clusters and it 

is added to the cluster that combines with the point maximum Multi-density 

considering that the density does not exceed certain threshold. Otherwise, the point is 

projected to an outlier while also reducing clustering merging time. The algorithm is 

evaluated on various synthetic and Real-World datasets using different quality 

metrics and scalability performance is compared. The experimental results show that 

the algorithm presented in the work of (Amini et al. 2016; Amini et al. 2014) 

enhances clustering quality in Multi-Density environments and Density-Based 

Spatial Clustering of Applications with Noise (DBSCAN) as shown in Figure 3.3 . 

For this study we used the definition 1 to define the Neighboring grid (  ), Two 

density grid; to detect the normal and legitimate nodes. And the definition 2 to 

calculate the Outlier Wight Threshold (     which used to know which points 

exceeds the threshold to considered as anomaly. The algorithm 8 is for MUDI stream 

online phase, and algorithm 9 is for Multi- density-based spatial clustering of 

applications with noise (M-DBSCAN) for offline phase. 

Definition1: Neighboring grid (   ), Two density grid: 

      
  ,   

  ,….,   
  ) and       

  ,   
  ,….,   

  ) are neighbors if there exists 

              
  =   

  ,                          |   
      

 | = 1 . Then 

   and    are neighboring grids in the  th dimension. 

Definition 2: Outlier Wight Threshold (    :  
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If the last updated time of grid   is    then at the current time   , Outlier Weight 

Threshold (    ) is defined as follows (        ), where c is the amount of the 

time: 

           ) = 
 

 
 ∑           

   
 = 

        (       )   

         
                            (3.25) 

 

Figure ‎3.3. Clustering-multi-density data (a) denseStream , c = 0.05, (b) DBSCAN , 

c = 0.05 , (c) DBSCAN , c = 0.21 , MinPits = 5 (Amini et al., 2016). 

Algorithm 8 MUDI-Stream online phase                          

(1) Input: a data stream  

(2) Output: core mini-clusters  

1:    
    [

 

 
      

            
]
   

2:          Initialize the grid structure                      ;  

3:  while not end of stream do  

4: Read data point   from Data Stream; 

5:       find the nearest     to   in     list;   

6: if distance                      
then  

7:                ;  

8: else  

9: map the new data point   to the grid; 

10:        ; 

11:       
            (   )    ; 

12:        ;  

13: Update               ; 

14: if        and    
 

        
  then 
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15:                       ;  

16:                      
∑                       

   
 

      
 ;  

17:                     
∑                                          

 

      
 ; 

18:                for data points    in the grid   do  

19:                             
  Maximum          {         

    };  

20:                      end for  

21:                 end if  

22:            end if  

23:       if                   then 

24:        update the weight of all grids in grid list  

25:       (                       (  )  

26:        for all grid   do   

27:                               
                 

          
;  

      28:         if            then  

                      remove grid   from grid list;  

     29:           end if 

     30:           end for 

     31:         for all {    } do  

     32:       if      < 
 

        
 then  

                         remove     from {    } ;  

    33:            end if  

    34:         end for  

    35:       end if  

                              ;  

    39:     end while 
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Algorithm 9 M-DBSCAN          – MUDI-Stream's offline phase. 

(1) Input: core mini-clusters  

(2) Output: arbitrary shape clusters  

1: mark all      as unvisited;  

2: repeat  

3: randomly choose an unvisited point     ; 

4: mark     as visited; 

5:            {    
        

 }         
                  ; 

6: If |{    
        

 } | ≥         then 

create a new cluster  , and add        
 to   ;  

7:                 {       
} 

                                         
{    

        
 } from        

 

       8:               Calculate  (          
  , and   (          

 ;  

       9:               For each        
in {       

} do 

      10:                 If        
is unsupervised then 

      11:                        Mark        
as visited ; 

      12:                      {    
        

 }          
                   ; 

      13:                       If  |{    
      } | ≥        then 

      14:     {     
      }   find       -nearest-nighbors in {    

      } from 

    ; 

      15:                     Calculate  (          
 ,and   (          

 ;  

      16:          If  (          
 ⋹[  (          

     (          
  ,  (          

 +   

(          
 ]                          then   

      17:                  {       
}   {       

}𝘜 {     
      }; 

      18:              Update  (          
  , and   (          

  ; 

      19:         End if  

      20:     End if 

      21:    End if 

      22:     If     is not assigned to any cluster then 

      23:       Add     to cluster   ; 

      24:     End if  

      25:   End for 

     26:  Else  

     27:  Mark      as noise ; 

     28:  End if 

     29:   Until no     is unvisited ; 
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3.9 CEDAS: Fully Online Clustering Of Evolving Data Stream Into Arbitrary 

Shaped Clusters 

In this study we used the CEDAS algorithm to detect the anomaly behavior and used 

with IDs to benchmark the results with the proposed algorithm to prove the best 

algorithm which capture the anomalies in online phase, we discussed this algorithm 

according to our proposal. It is a fully online algorithm for clustering an evolving 

data stream into arbitrary-shaped clusters. This algorithm helps to detect the 

abnormal and legitimate nodes in the floor , by using the following procedure ; It is a 

two-stage tactic that is accurate, noise-resistant, algorithmically and memory 

effective, and has a low time penalty as the number of data dimensions grows (Islam 

et al., 2019) . The first stage generates microclusters, and the second stage combines 

these microclusters to form macroclusters. That is means the algorithm help to 

calculate the E2E and PDR  Dimensional stability and high speed are achieved by 

keeping the calculations simple and minimal by employing hyper spherical 

microclusters (Hyde et al., 2017) the work presents in Figure 3.4 (Dong et al., 2018).  

The CEDAS approach defined as the following: 

1. Cluster Graph: the structure that specifies which microclusters combine to form 

which macroclusters this is saved by noting the intersects of each micro-cluster in 

'Edge,' as well as the appropriate macro-cluster assignment in 'Macro.' 

2. Local density: the number of samples per micro-cluster  

3. Macro-cluster: a cluster consisting of a number of intersecting microclusters. 

4. Micro-cluster: a micro-cluster with a local density beneath the threshold. 

5. Outlier-micro-cluster: a micro cluster with local density lower than the threshold. 

6. Sample: any data point in ―D‖ dimensions. 

7. Threshold: the minimum number of samples within the micro-cluster radius of any 

sample to form a micro-cluster.  
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Figure ‎3.4. Example of the CEDAS algorithm micro-clusters and graph structure. 

The data together with two macro-clusters in red and green are  shows 

the cluster graph structure with the nodes of the sub-graphs colored 

according to the macroclusters (Hyde et al., 2017). 

CEDAS, in general, is a data-driven approach to divide the data space into shell 

regions and kernel based on a user defined radius,   . Each micro-cluster made up of 

a shell annulus region between radius 
  

 
   ,    and a kernel region being    

  

 
. Any 

microcluster that exceeds a certain density threshold is considered for membership in 

the macrocluster. Macroclusters are formed when kernel regions of one microcluster 

intersect the shell region of another microcluster. Micro-clusters that are larger than 

the threshold but do not intersect; are also considered as macro-clusters. Shell 

regions are thought to be the edges of macroclusters. New data from the data stream 

will be classified into one of three categories: 

1. Empty space, where it will form a new, outlier-micro-cluster represents in 

algorithm 10. 

2. A micro-cluster shell region, where it will be assigned to the cluster, the cluster 

count updated and the micro-cluster center recursively updated to the mean of its 

samples represents in algorithms 11 and 12. 

3. A micro-cluster kernel region, where it will be assigned to the micro-cluster and 

the cluster count updated as shown in algorithm 13. 
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Algorithm 10 CEDAS: Initialization. 

Input: x,     

1: Create micro-cluster structure containing:  

2: C1(Centre) = x  

3: C1(Count) = 1  

4: C1(Macro) = 1  

5: C1(Energy) = 1  

6: C1(Edge) = 1  

7: Set number of micro-clusters to 1  

8: Set modified micro-cluster number, for use updating the graph structure. 

 

Algorithm 11 CEDAS: Update Micro-Cluster. 

Input: x, C,     

1: find distance to nearest micro-cluster centre,      

2:  if      <    then  

3:       reset micro-cluster Energy to 1 

4:        increment number of samples contained in micro-cluster 

5:     if data is within micro-cluster shell then 

6:         recursively update micro-cluster centre  

7:     end  

8:   else 

9:  Create new micro-cluster  

10:   end 

 

Algorithm 12 CEDAS; Kill Micro-Cluster. 

Input: C, Decay 

1: Reduce all C(Energy) by Decay  

2: if Any C(Energy) < 0  then  

3:     Remove micro-cluster 

4:     Remove all edges containing the micro-cluster 

5:     Decrement the number of micro-clusters 

6: End 
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Algorithm 13 CEDAS: Update Graph. 

1: if A micro-cluster has been modified then  

2:      if the micro-cluster edge list has changed then 

3:          Set a new macro-cluster number throughout the graph  

4:      end  

5: end  

6: if Any micro-clusters have died then 

7:    Set new macro-numbers for the sub-graphs of its previous edges  

8: End 

3.10 Deep Belief Networks  

The other benchmark algorithm is a Deep Belief Networks (DBNs) it is one of the 

algorithms of convolution neural networks (CNN) which depends on the roles of 

neural networks. They are probabilistic generative models with multiple layers that 

can learn to extract a deep hierarchical representation of training data. We used 

DBNs for detecting the anomaly behavior by improves the performance of this 

algorithm after combined it with kalman filter and cauchy algorithm to improve the 

results of proposed model. DBNs are made up of several layers of restricted 

Boltzmann machines (RBMs) with a classifier on top. DBNs can be trained quickly 

by training multiple RBMs with the greedy layer-wise unsupervised training strategy 

(Hinton et al., 2006). Following network pre-training, the network parameters are 

fine-tuned using to achieve better classification results. RBMs are an energy model 

in which the visible–hidden layers are fully connected but the visible–visible and 

hidden–hidden layers are not (Ghojogh et al., 2021).  

RBMs have found widespread application in classification, dimension reduction, 

feature extraction, topic modeling, and collaborative filtering. RBM maps the sample 

using visible and Bernoulli random-valued hidden units, and converts the sample 

data from a dimension m input space to a dimension m feature space n, where   

 , as shown in Figure 3.5. An RBM is an energy-based generation model that 

contains a layer of visible nodes (  ,   , · · · ,    , · · · ,   ) showing the data and a 

layer of hidden nodes (  ,   ,, · · · ,   , , · · · ,   ,) learning to represent features, for 

every      {0, 1} and      {   }. We define that the biases of the visible nodes are 

(  ,   , · · · ,    , · · · ,   ), and the biases of the hidden nodes are (  ,   , · · · ,    , · 
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· · ,   ) (Ghojogh et al., 2021). The energy function        of the joint configuration 

{   } is defined as follows:  

         ∑    
 
      - ∑    

 
      -  ∑ ∑     

 
                          .26) 

 

Figure ‎3.5. The graphical representation of an RBM with   visible nodes and   

hidden nodes (Yang et al., 2019). 

According to the energy function        , the joint probability distribution for 

hidden and visible vectors can be defined as follows: 

       =  
 

 
                                                    (3.27) 

Where   is the partition function which is the sum over all possible pairs of visible 

and hidden vectors. 

  = ∑ ∑               .                                       (3.28) 

 The probability assigned to a visible vector   is given by summing over all possible 

binary hidden vectors  , as follows: 

      ∑           
 

 
     (       )                        (3.29) 

Because the same layers in an RBM do not have direct connections, the hidden units 

are independent of the visible units, and vice versa and depends of the concepts of 

the Machine Learning (ML). As a result, the conditional probability of the hidden 

vector   given the visible vector   is: 

   |     ∏     
 
   |   .                                     (3.30) 
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Similarly, given the hidden vector  , the conditional probability of the visible vector 

  is given by: 

   |     ∏     
 
   |  .                                  (3.31) 

The activation state of each hidden unit is conditionally independent because of a 

given a visible vector . At this point;      {   } and the activation probability of 

the     hidden unit is described as follows: 

      |          ∑     
 
         )                       (3.32) 

Where          
 

       is the logistic sigmoid function. 

As a result, when given a hidden vector , the activation probability of each visible 

unit is conditionally independent: 

      |          ∑     
 
         )                      (3.33) 

An RBM is trained to decrease the energy in Equation (3.27) by finding the values of 

the network parameters            ; the energy of the network is decreased if the 

RBM has been trained. And the probability in Equation (3.34) is increased. To 

increase the log-likelihood of       its gradient with respect to the network 

parameters   can be calculated as follows (Yang et al. 2019): 

         

  
      |   *

       

  
+            *

         

  
+               (3.34) 

The expectation operator is denoted by the operator . The expectation on the left 

hand side of Equation (3.34) can be calculated precisely, while the expectation on the 

right hand side is difficult to calculate. The Contrastive Divergence (CD) approach 

for estimating log-likelihood gradient was devised to overcome the difficulties of 

computing expectations. To update the network parameters, the CD-k algorithm 

approximates the expectation by restricted k                   iterations of Gibbs 

sampling              The Persistent Contrastive Divergence (PCD) algorithm  is 

an upgraded version of the CD algorithm 14 that makes the training process more 
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efficient (Aldwairi et al. 2018; Tieleman 2008).The update process of parameter   is 

as follows: 

        

    

 =     = |  .      ∑            
    |   )   

                   (3.35) 

          

   
      ∑     

    
                                        (3.36) 

         

   
   (    | )   ∑     

    
         |                      (3.37) 

An RBM can be layered on top of another RBM after it has been trained. The first 

RBM's hidden layer output is used as the visible layer input of the second RBM. As a 

result, multiple layers of RBMs can be layered to automatically extract different 

characteristics that indicate an increasingly more complicated structure in the data. In 

practice, we stack RBMs and use a greedy layer-wise unsupervised learning 

approach to train them. Each additional hidden layer is trained as an RBM during the 

training phase. The network settings are set once the DBNs have been trained. The 

network parameter,             are used to set up a multi-layer feed-forward 

neural network's weights. The network parameters are              fine-tuned 

using the back propagation technique to improve the detect performance of the 

neural network (Yang et al. 2019). The DBNs structural model is shown in Figure 

3.6. 

 

Figure ‎3.6. The DBNs structural model (Yang et al., 2019). 
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Algorithm 14 Training a deep belief network. 

Input: training data {   }   
   

// pre-training:  

1: for   from   − 1 do 

2:        if   = 1 then  

3:             {  }   
    ← {   }   

   

4:        else  

// generate   hidden variables of previous  

5: RBM: 

6:       ← {   }   
 Algorithm 1 for         th  

7:        RBM ← {  }   
    ← {   }   

   

8:          ,    ,     ← Algorithm 2 for      RBM  

9:        ← {  }   
     

// fine-tuning using backpropagation:  

10: Initialize network with weights {   }   
    and  

11: biases {   }   
 . 

12: {   }   
   , {   }   

 ← Backpropagate the error of loss from several epochs. 

 

The Table 3.2 is the Summary of suggested contributions and methodologies 

concept. 
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Table  3.2. Summary of suggested contributions and methodologies concept. 

Research 

Objective 

Theme Research Question Methodology Performance 

Measures 

For 

estimating 

the trajectory 

of 

pedestrians 

within an 

indoor 

environment 

Develop a Kalman 

filter-based model for 

estimating the 

trajectory of 

pedestrians within an 

indoor environment 

based on 

 

How to assess the 

trustworthiness of 

data sent/received 

by IoMT nodes? 

 

How to identify the 

compromised nodes 

within IoMT 

system? 

 

Kalman filter-based 

model and fusing 

WiFi with IMU 

data. 

Detection 

Accuracy, 

recall 

,precision, 

Specifity, 

NPV, G-

mean, F-

measure 

For detecting 

anomaly 

behaviour in 

IoMT 

Trustworthiness 

assessment 

How to detect 

anomaly behaviour 

in IoMT based on 

the estimated 

trajectory? 

 

How to generate IDs 

in IoMT 

environment? 

A Cauchy-based 

clustering method 

for detecting 

anomaly behaviour 

in IoMT based on 

the estimated 

trajectory by 

Kalman filter. 

And an extreme 

learning machine-

based IDS model 

for IoMT systems 

using the Cauchy 

clustering scheme 

for the training 

phase of an extreme 

learning machine to 

improve the 

detection accuracy. 

 

Detection 

Accuracy, 

recall 

,precision , 

Specifity,  

NPV, G-

mean, F-

measure 

For the trust 

IDS model 

for IoMT 

systems 

Evaluate the proposed 

algorithm using 

classification and 

networking metrics 

How to improve the 

detection accuracy? 

 

How to evaluate the 

proposed algorithm? 

Integrating anomaly 

detection with 

online learning for 

attacks 

identification using 

an Online 

Sequential Extreme 

learning machine 

(OSELM). 

Detection 

Accuracy, 

recall 

,precision , 

Specifity, 

NPV, G-

mean, F-

measure 

 



68 

3.11 UML Design  

Unified Modeling Language is the class diagram of the platform illustrated in Figure 

3.7. It consists of the following classes; pedestrian class, building class, device class, 

sink class, performance logging class and packet buffer class. 

 

Figure ‎3.7. System class diagram. 

3.12 WiFi Fingerprinting  

The distribution of measurement points for first floor is presented in Figure 3.8.The 

measurement points means all the smart devices which are carried by the pedestrians 

and the fixed devices available in the first floor. And the distribution of the 

pedestrian movement simulator is presented in Figure 3.9 which showing the 
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movement of pedestrians through the first floor by built the simulator by using 

matlab program to simulate the reality. 

 

Figure ‎3.8. First floor layout. 

 

Figure ‎3.9. Pedestrian movement Simulator. 

3.13 Dataset 

We used two types of data sets in this study , to achieve the results of the first part 

which is related to anomaly detection we used the Tampere University Wi-Fi 
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fingerprint dataset (Lohan et al., 2017). And for the second part which is related to 

intrusion detection system we used the Knowledge Discovery and Data mining  

(KDD99) data set (Moustafa & Slay, 2015). 

3.13.1 Anomaly detection dataset  

We used Tampere University Wi-Fi fingerprint dataset, comprised of 4648 

fingerprints collected with 21 devices in a university building in Tampere, Finland. 

We used the data of the first floor only as Aps Dataset. The floor layout illustrated in 

Figure 3.8. And the Simulator layout illustrated in Figure 3.9. 

3.13.2 IDS dataset  

The second part of this study is to implement IDS using Extreme Learning Machine 

(ELM) from the Online Sequential Extreme Learning Machine (OSELM). The 

KDD99 dataset was used to emulate the intrusions of DoS type. 48562 records split 

into 10000 records for training ELM -which has 50 hidden neurons and sig activation 

function and random records selected from the other part and used to emulate the 

network features during the simulation.  

3.14 Evaluation Metrics  

This section provides the various metrics used for evaluating our developed 

algorithm and its comparison with state-of-the-art approaches.  

3.14.1 Accuracy  

The accuracy is given by Equation (3.38).It is used to calculate the accuracy for 

anomaly and IDS by using anomaly percentage, numbers of pedestrians and the 

speed. 

                                
                                     

   
 

                                             
     

                                          
  

(3.38) 
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3.14.2 Precision  

Precision denotes the predictive position values for the anomaly and IDS by using 

anomaly percentage, numbers of pedestrians and the speed. And it is given by 

Equation (3.39). 

    
  

     
                            (3.39) 

3.14.3 Recall 

Recall denotes the true positive ratio for anomaly and IDS by using anomaly 

percentage, numbers of pedestrians and the speed and it is given by the Equation 

(3.40). 

    
  

            
 

  

     
                              (3.40) 

3.14.4 Specifity  

Specifity denotes the false negative ratio for anomaly and IDS by using anomaly 

percentage, numbers of pedestrians and the speed and it is given by the Equation 

(3.41). 

(False positive rate) FPR = 
  

     
 = 1 – (True positive rate) TPR              (3.41) 

3.14.5 G-Mean  

Denotes the geometric mean of precision and recall after calculate each measure for 

anomaly and IDS by using anomaly percentage, numbers of pedestrians and the 

speed. It is given based on the Equation (3.42).  

    ean  √ precision recall  (3.42) 
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3.14.6 F-measure 

It combines the precision and recall which are calculated before; for anomaly and 

IDS by using anomaly percentage, numbers of pedestrians and the speed based on 

the Equation (3.43).  

     
 precision   recall 

 precision   recall 
 (3.43) 

3.14.7 NPV 

It denotes to the percentage of true negative to total of negative records for anomaly 

and IDS by using anomaly percentage, numbers of pedestrians and the speed. It is 

given based on the Equation (3.44).  

                                   (Negative predictive value )    
  

     
 (3.44) 



73 

 RESULT AND DISCUSSION 4.

This section provides the experimental results and the analysis; it consists of 

experimental designs and setups as provided in subsection 4.1, and the analysis of the 

results as provided in Section 4.2.  

4.1 Experimental Design And Setup  

The experimental design is comprised of two parts; the first one is the design of the 

anomaly detection model and the second one is the design of the entire 

algorithms(KC-ELM , CEDAS , MUDI) for both anomaly and intrusion detection. 

Table 4.1 presents the parameters settings used in this work for the simulator like; 

TimeUnit ,Floor,Grid,HampleWindow and LoggingRate then we have to give value 

for each parameter ;the value of TimeUnit is 0.1 sec , the value for floor is one 

because we used only one floor which is the first floor,the grid is the dimensions of 

the program window which is represent the simulation of the floor,HampleWindow 

is the size of the hample window, the value of LoggingRate is two sec means the 

period of logging form pedestrian to Aps dose not exceeds two seconds. While Table 

4.2 presents the settings of the algorithms like the parameters which includes the 

Decay, Radius, minThreshold, Streamspeed,  ,   , Lamda, gridGranularity, 

MinPts, Horizon, deltaS, gamaC .Each algorithm used it‘s parameters as shown in 

Table 4.2. 

Table ‎4.1. Simulator Settings. 

Parameters Value Description 

TimeUnit 0.1 [Sec] simulator time step 

Floors 1 number of floors 

Grid [-90,40,-25,35,4] [minX,maxX,minY,maxY,grid granularity] 

HampleWindow 10 hample window size 

LoggingRate 2 [Sec] loggig data rate 
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Table ‎4.2. Algorithms parameters. 

Parameters KC-

ELM 

CEDAS (Islam et al. 2019) MUDI (Amini et al., 

2016) 

Decay - Number of pedestrians - 

Radius - 0.01 - 

minThreshold - 3 - 

Stream speed - - Number of 

pedestrians 

   - - 1 

   - - 0.5 

Lamda - - 0.998 

gridGranularity - - 10 

MinPts - - 3 

Horizon - - 2 

deltaS 0.5 - - 

gammaC 0.66 - - 

 

4.2 Results Analysis  

The results analysis consists of two sub-sections; the first is the analysis of the results 

of the anomaly detection model as given in Sub-section 4.2.1 while the second is the 

analysis of the results of the intrusion detection model as given in sub-section 4.2.2. 

4.2.1 Anomaly detection results   

The accuracy metric was generated for each of KC, MUDI, and CEDAS; firstly, the 

accuracy of the models based on the scenarios of inserted anomalies was presented in 

Table 4.3. It indicates the percentage of the true predicted records (anomaly versus 

non-anomaly) to the total number of records. Three scenarios were used for testing; 

the first one is for an anomaly percentage of 5%, the second one is for an anomaly 

percentage of 10%, and the third one is for an anomaly percentage of 20%. The 

analysis showed that KC maintained accuracy of over 85% for all the scenarios 

which was superior to the accuracies of MUDI and CEDAS; for anomaly detection 

of 5%, KC reached the accuracy of 94%. Additionally, the accuracy of the models 

was presented based on the number of pedestrians in Table 4.4. Like the cases of the 

percentage of inserted anomalies, it was found that for all scenarios, the accuracy 

was higher than 85% and reached 91% for 25 pedestrians. This showed that the 

integration of the Kalman-based state estimation with Cauchy in KC enabled 

anomaly detection and sustained the performance despite the increase in the number 
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of pedestrians or the increase in the percentage of anomalies. Table 4.5 provides the 

classification metrics for the models based on the average speed of pedestrians. 

Notably, KC performed better than the rest of the models (MUDI and CEDAS) in all 

the scenarios. The best-achieved accuracy was 86% for KC when the average speed 

was 1. Furthermore, the other classification metrics were also generated for the 

scenarios of three anomalies percentages, number of pedestrians, and average speed 

as presented in Tables 4.3, 4, and 5 respectively. It was also observed that KC 

performed better than MUDI and CEDAS in all the scenarios based on the 

considered metrics. The zero values presenting in some fields of tables which are  

generated by the program and the (-) mean that there are unknown values generated 

by the program. All figures and tables of the results in details shown in Appendix A 

which includesAppendix A: Anomaly Detection Results Diagrams And Tables 

(Appendix A- 1 : Metric Anomaly for 5%, 10%  and 20% , Appendix A- 2 :Metric 

Pedestrians for 25, 50 and 100 pedestrians , Appendix A- 3 : Metric Speed for 1, 2 

and 3 m\sec) . 

Table ‎4.3. Summary of the evaluation metrics for our KC and its comparison with 

the benchmark in terms of anomaly detection for three anomalies 

percentages 5%, 10%  and 20%. 

Percentage Measure KC MUDI CEDAS 

5% Accuracy 94% 64% 86% 

10% 93% 33% 83% 

20% 86% 48% 84% 

5% Precision 24% 1% 0% 

10% 54% 1% 10% 

20% 60% 16% 51% 

5% Recall 100% 22% -  

10% 100% 13% 88% 

20% 91% 37% 82% 

5% Specificity 94% 65% 86% 

10% 93% 34% 83% 

20% 85% 50% 85% 

5% NPVs 100% 98% 100% 

10% 100% 86% 100% 

20% 97% 76% 96% 

5% F measure 39% 2% -  

10% 70% 2% 17% 

20% 72% 22% 63% 

5% G-mean 49% 5% -  

10% 74% 4% 29% 

20% 74% 24% 64% 
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Table ‎4.4. Summary of the evaluation metrics for our KC and its comparison with 

the benchmark in terms of anomaly detection for three scenarios of 

number of pedestrians 25, 50 and 100. 

Number of pedestrians Measure KC MUDI CEDAS 

25 Accuracy 91% 20% 73% 

50 86% 48% 84% 

100 86% 27% 86% 

25 Precision 68% 10% 42% 

50 60% 16% 51% 

100 57% 13% 60% 

25 Recall 82% 30% 89% 

50 91% 37% 82% 

100 93% 45% 63% 

25 Specificity 93% 16% 69% 

50 85% 50% 85% 

100 85% 22% 91% 

25 NPVs 97% 42% 96% 

50 97% 76% 96% 

100 98% 62% 92% 

25 F measure 75% 15% 57% 

50 72% 22% 63% 

100 71% 20% 62% 

25 G-mean 75% 18% 61% 

50 74% 24% 64% 

100 73% 24% 62% 
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Table ‎4.5. Summary of the evaluation metrics for our KC and its comparison with 

the benchmark in terms of anomaly detection for three scenarios of 

average speed 1, 2 and 3 [m/s]. 

Average speed of pedestrian Measure KC MUDI CEDAS 

1 Accuracy 86% 48% 84% 

2 87% 56% 78% 

3 88% 52% 79% 

1 Precision 60% 16% 51% 

2 61% 17% 41% 

3 64% 15% 42% 

1 Recall 91% 37% 82% 

2 91% 32% 82% 

3 90% 29% 83% 

1 Specificity 85% 50% 85% 

2 86% 62% 77% 

3 87% 58% 78% 

1 NPVs 97% 76% 96% 

2 97% 78% 96% 

3 97% 77% 96% 

1 F measure 72% 22% 63% 

2 73% 22% 55% 

3 75% 20% 56% 

1 G-mean 74% 24% 64% 

2 75% 23% 58% 

3 76% 21% 59% 

4.2.2 IDS result  

The results of the IDS were presented in different tables; Table 4.6 presents the 

results for the first scenarios that represent the percentages of inserted anomalies; 

Table 4.7 presents the results based on different numbers of pedestrians; and Table 

4.8 that presents the results for different average speeds of the pedestrians. For the 

first set of scenarios given in Table 4.6,when the Kalman Cauchy estimate with the 

Extreme Learning Machine, KC ELM was found to be superior in terms of accuracy 

(achieving 43% accuracy for 20 % of inserted attacks) compared to 31% for Kalman 

Cauchy estimation with Deep Belief Network KC DBN, 29% for MUDI, and 21 % 

for CEDAS. Considering the imbalance in the dataset (that is KDD 99) in terms of 

having a low number of instances for some classes, and considering that KC is 

integrated with ELM which is a supervised classifier, this has enabled better 

prediction of performance. Additionally, we emphasize the fact that the classifier is 

learning in an online way, meaning that it started with almost zero knowledge and 

the knowledge keeps increasing with the arrival of more labeled batches to the 
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system. And all figures and tables details shown in Appendix B which includes; 

Appendix B: IDS Result Diagrams and Tables (Appendix B-1: Metric Anomaly for 

5%, 10% and 20%, Appendix B- 2: Metric Pedestrians for 25, 50 and 100 pedestrian, 

Appendix B- 3:  Metric Speed for 1, 2 and 3 m\sec). 

Table ‎4.6. Summary of the evaluation metrics for our KC ELM and its comparison 

with the benchmark in terms of intrusion detection for three anomalies 

percentages 5%, 10%  and 20%. 

Percentage Measure KC ELM KC DBN MUDI CEDAS 

5% Accuracy 30% 11% 29% 1% 

10% 31% 13% 11% 5% 

20% 43% 31% 29% 21% 

5% Precision 3% 2% 1% 1% 

10% 9% 7% 6% 5% 

20% 31% 27% 23% 21% 

5% Recall 100% 100% 100% 100% 

10% 100% 100% 100% 89% 

20% 100% 100% 100% 100% 

5% Specificity 28% 9% 29% 0% 

10% 25% 6% 6% 0% 

20% 23% 7% 10% 0% 

5% NPVs 100% 100% 100% -  

10% 100% 100% 100% 0% 

20% 100% 100% 100% -  

5% F measure 5% 4% 2% 1% 

10% 17% 14% 12% 10% 

20% 47% 42% 37% 34% 

5% G-mean 16% 15% 9% 8% 

10% 30% 27% 25% 22% 

20% 56% 52% 48% 46% 

In addition to the scenario of different percentages of inserted anomalies, the 

comparisons were also presented in Table 4.7 based on different numbers of 

pedestrians. Observably, KC ELM achieved the best accuracy compared to the other 

models; its accuracy was the highest when the number of pedestrians was equaled to 

50. 
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Table ‎4.7. Summary of the evaluation metrics for our KC ELM and its comparison 

with the benchmark in terms of intrusion detection for three scenarios of 

number of pedestrians 25, 50 and 100. 

Number of Pedestrians Measure KC ELM KC DBN MUDI CEDAS 

25 Accuracy 42% 25% 31% 23% 

50 43% 31% 29% 21% 

100 41% 28% 35% 21% 

25 Precision 24% 20% 23% 21% 

50 31% 27% 23% 21% 

100 26% 23% 24% 21% 

25 Recall 100% 100% 100% 100% 

50 100% 100% 100% 100% 

100 100% 100% 100% 100% 

25 Specificity 29% 8% 14% 4% 

50 23% 7% 10% 0% 

100 25% 9% 19% 0% 

25 NPVs 100% 100% 100% 100% 

50 100% 100% 100% -  

100 100% 100% 100% -  

25 F measure 39% 33% 37% 34% 

50 47% 42% 37% 34% 

100 42% 37% 39% 34% 

25 G-mean 49% 45% 47% 46% 

50 56% 52% 48% 46% 

100 51% 47% 49% 45% 

Similarly, the KC-ELM achieved the best accuracies for the scenario of average 

speed, reaching an accuracy value of 43% compared to the other algorithms. The 

comparisons were also presented in Table 4.8 based on different numbers of average 

speed.  Furthermore, it was independent of the average speed of pedestrians while the 

accuracy for MUDI decreased from 2% at the average speed of 1 m/s to 22% at the 

average speed of 3 m/s.In addition to accuracy, the tables provided the other 

classification metrics, namely precision, recall, specificity, NPV, F-measure, and G-

mean. The results showed that KC-ELM achieved higher performance metrics 

compared to KC-DBN, MUDI, and CEDAS.The E2E Delay and PDR for anomaly 

detection for the pedesterians ,anomaly and speed metrics shown in details in 

Appendix C, while the E2E Delay and PDR for IDS for the pedesterians ,anomaly 

and speed metrics shown in details in Appendix D. 
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Table ‎4.8. Summary of the evaluation metrics for our KC ELM and its comparison 

with the benchmark in terms of intrusion detection for three scenarios of 

number of pedestrians 1, 2 and 3. 

Average speed of 

pedestrian 

Measure KC 

ELM 

KC DBN MUDI CEDAS 

1 Accuracy 43% 31% 29% 21% 

2 43% 31% 24% 21% 

3 43% 31% 22% 21% 

1 Precision 31% 27% 23% 21% 

2 31% 27% 21% 21% 

3 31% 27% 21% 21% 

1 Recall 100% 100% 100% 100% 

2 100% 100% 100% 100% 

3 100% 100% 100% 100% 

1 Specificity 23% 7% 10% 0% 

2 23% 7% 4% 0% 

3 23% 7% 2% 0% 

1 NPVs 100% 100% 100% -  

2 100% 100% 100% -  

3 100% 100% 100% -  

1 F measure 47% 42% 37% 34% 

2 47% 42% 35% 34% 

3 47% 42% 35% 34% 

1 G-mean 56% 52% 48% 46% 

2 56% 52% 46% 46% 

3 56% 52% 46% 46% 
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 CONCLUSION AND FUTURE WORK  5.

5.1 Conclusion  

This thesis has provided a novel approach for handling intrusion on the Internet of 

Mobility Things networks by exploiting the anomaly generated from the intruder and 

reflected in its mobility behavior. Hence, this study has included a location 

prediction model based on Wi-Fi location prediction using fingerprint trained online 

sequential extreme learning machine for indoor environment and based on fusion 

with IMU using the developed process and measurement model for Kalman filter. 

Next, the result of the mobility estimation produced by the developed Kalman is fed 

into Cauchy-based stream clustering for identifying anomalies. The results of the 

predicted anomalies recognized from location prediction are added to the generated 

packets in the network as security features and used for improving the results of the 

intrusion detection (this is another online sequential extreme learning machine). The 

developed algorithm was compared with two existing models for anomaly detection, 

namely, a multi-density clustering algorithm for evolving data stream (MUDI) and 

fully online clustering of evolving data streams into arbitrarily shaped clusters 

(CEDAS). The results proved the superiority of the developed algorithm in this study 

in terms of anomaly and intrusion detection under three different scenarios that 

include different percentages of added anomalies, different numbers of pedestrians, 

and different average speeds of pedestrians. This study uses the Extreme Learning 

Machine (ELM) classifier to develop a Kalman and Cauchy clustering for anomaly 

detection and uses it for authenticating nodes within IoMTs. The Kalman filter-based 

model for calculating the trajectory of pedestrians within an interior environment is 

based on merging WiFi with IMU data from the algorithm's many components. Then 

comes the evaluation of the validity of the Kalman filter-based predicted trajectory 

for IoMT abnormal behavior detection. Finally, the Online Sequential Extreme 

Learning Machine-based Trust IDS Model for IoMT Systems integrates anomaly 

detection with online learning for attackers' identification (OSELM). The TamperU 

dataset for WiFi fingerprinting and KDD99 for intrusion detection have both been 

used in the implementation and evaluation of the OSELM algorithm. 
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5.2 Future Work  

Future works can be directed to the evaluation of the system from the perspective of 

networking performance to show the enhanced achieved by the developed algorithm 

on the networking metrics. The researchers may increase the range of distances 

between the trajectory pedestrians by using more floors or buildings to detect the 

intrusions. Or may use more effective algorithms to evaluate the trajectory 

pedestrians if they have normal or abnormal anomaly behaviour.
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APPENDIX A : Anomaly Detection Results Diagrams And Tables 

APPENDIX A- 1 : Metric Anomaly for 5%, 10%  and 20%. 

 

Figure A1.1. Accuracy Metric Anomaly. 

Table A1.1. Accuracy Metric Anomaly. 

KC MUDI CEDAS 

0.937 0.642 0.863 

0.932 0.326 0.831 

0.858 0.475 0.843 

 

 

Figure A1.2. Precision Metric Anomaly. 

Table A1.2. Precision Metric Anomaly. 

KC MUDI CEDAS 
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0.241 0.012 0 

0.541 0.011 0.095 

0.595 0.157 0.506 

 

 

Figure A1.3. Recall Metric Anomaly. 

Table A1.3. Recall Metric Anomaly. 

KC MUDI CEDAS 

0.997 0.224 - 

0.997 0.125 0.883 

0.912 0.373 0.817 

 

Figure A1.4. Specifity Metric Anomaly. 

Table A1.4. Specifity Metric Anomaly. 

KC MUDI CEDAS 
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0.936 0.651 0.863 

0.926 0.339 0.830 

0.845 0.501 0.848 

 

 

Figure A1.5. NPVs Metric Anomaly. 

Table A1.5. NPVs Metric Anomaly. 

KC MUDI CEDAS 

0.999 0.976 1.000 

0.999 0.859 0.997 

0.974 0.762 0.960 

 

 

Figure A1.6. F-Measure Metric Anomaly. 

Table A1.6. F-Measure Metric Anomaly. 

KC MUDI CEDAS 

0.3893 0.024 - 
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0.702 0.021 0.172 

0.720 0.221 0.625 

 

 

Figure A1.7. G-Mean Metric Anomaly. 

Table A1.7. G-Mean Metric Anomaly. 

KC MUDI CEDAS 

0.491 0.053 - 

0.735 0.038 0.291 

0.736 0.242 0.643 
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APPENDIX A- 2 : Metric Pedestrians for 25, 50 and 100 pedesterians. 

 

Figure A2.1. Accuracy Metric Pedestrians. 

Table A2.1. Accuracy Metric Pedestrians. 

KC MUDI CEDAS 

0.910 0.195 0.731 

0.858 0.475 0.843 

0.861 0.268 0.857 

 

Figure A2.2. Precision Metric Pedestrians. 

 

 

 

Table A2.2. Precision Metric Pedestrians. 
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KC MUDI CEDAS 

0.683 0.101 0.418 

0.595 0.157 0.506 

0.571 0.126 0.598 

 

 

 

Figure A2.3. Recall Metric Pedestrians. 

Table A2.3. Recall Metric Pedestrians. 

KC MUDI CEDAS 

0.823 0.301 0.892 

0.912 0.373 0.817 

0.9261 0.451 0.632 
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Figure A2.4. Specifity Metric Pedestrians. 

Table A2.4. Specifity Metric Pedestrians. 

KC MUDI CEDAS 

0.927 0.162 0.690 

0.845 0.501 0.848 

0.847 0.223 0.907 

 

 

Figure A2.5. NPVs Metric Pedestrians. 

 

 

Table A2.5. NPVs Metric Pedestrians. 

KC MUDI CEDAS 
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0.965 0.424 0.962 

0.974 0.762 0.960 

0.981 0.619 0.918 

 

 

Figure A2.6. F-Measure Metric Pedestrians. 

Table A2.6. F-Measure Metric Pedestrians. 

KC MUDI CEDAS 

0.747 0.152 0.569 

0.720 0.221 0.625 

0.706 0.197 0.615 
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Figure A2.7. G-Mean Metric Pedestrians. 

Table A2.7. G-Mean Metric Pedestrians. 

KC MUDI CEDAS 

0.750 0.175 0.611 

0.736 0.242 0.643 

0.727 0.239 0.615 

 

APPENDIX A- 3 : Metric Speed for 1, 2 and 3 m\sec. 

 

Figure A3.1. Accuracy Metric Speed. 

 

Table A3.1. Accuracy Metric Speed. 

KC MUDI CEDAS 

0.858 0.475 0.843 

0.868 0.560 0.781 

0.879 0.524 0.791 
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Figure A3.2. Precision Metric Speed. 

Table A3.2. Precision Metric Speed. 

KC MUDI CEDAS 

0.595 0.157 0.506 

0.614 0.172 0.408 

0.640 0.147 0.422 

 

 

Figure A3.3. Recall Metric Speed. 

Table A3.3. Recall Metric Speed. 

KC MUDI CEDAS 

0.912 0.373 0.817 
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0.911 0.317 0.821 

0.900 0.290 0.830 

 

 

Figure A3.4. Specifity Metric Speed. 

 

 

Table A3.4. Specifity Metric Speed. 

KC MUDI CEDAS 

0.845 0.5015 0.848 

0.857 0.621 0.774 

0.874 0.5823 0.783 
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Figure A3.5. NPVs Metric Speed. 

Table A3.5. NPVs Metric Speed. 

KC MUDI CEDAS 

0.974 0.762 0.960 

0.974 0.784 0.958 

0.972 0.766 0.960 

 

 

 

Figure A3.6. F-Measure Metric Speed. 

Table A3.6. F-Measure Metric Speed. 

KC MUDI CEDAS 

0.720 0.221 0.625 

0.734 0.223 0.545 

0.748 0.195 0.559 
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Figure A3.7. G-Mean Metric Speed. 

 

 

Table A3.7. G-Mean Metric Speed. 

KC MUDI CEDAS 

0.736 0.242 0.643 

0.748 0.234 0.579 

0.759 0.207 0.592 

 

APPENDIX B : IDS Result Diagrams And Tables. 

APPENDIX B- 1 : IDS Metric Anomaly for 5%, 10%  and 20%. 

 

Figure B1.1. IDS Accuracy Metric Anomaly. 
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Table B1.1. IDS Accuracy Metric Anomaly. 

KC ELM KC DBN MUDI CEDAS 

0.296 0.109 0.294 0.005 

0.305 0.125 0.112 0.052 

0.429 0.305 0.289 0.207 

 

 

Figure B1.2. IDS Precision Metric Anomaly. 

Table B1.2. IDS Precision Metric Anomaly. 

KC ELM KC DBN MUDI CEDAS 

0.026 0.021 0.008 0.005 

0.090 0.073 0.062 0.053 

0.308 0.267 0.225 0.207 

 



106 

 

Figure B1.3. IDS Recall Metric Anomaly. 

 

 

 

Table B1.3. IDS Recall Metric Anomaly. 

KC ELM KC DBN MUDI CEDAS 

1.000 1.000 1.000 1.000 

1.000 1.000 1.000 0.888 

1.000 1.000 1.000 1.000 

 

Figure B1.4. IDS Specifity Metric Anomaly. 

Table B1.4. IDS Specifity Metric Anomaly. 
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KC ELM KC DBN MUDI CEDAS 

0.282 0.092 0.290 0 

0.253 0.059 0.056 0 

0.234 0.068 0.104 0 

 

 

Figure B1.5. IDS NPVs Metric Anomaly. 

Table B1.5. IDS NPV Metric Anomaly. 

KC ELM KC DBN MUDI CEDAS 

1.000 1.000 1.000 - 

1.000 1.000 1.000 0 

1.000 1.000 1.000 - 
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Figure B1.6. IDS F-Measure Metric Anomaly. 

 

 

Table B1.6. IDS F-Measure Metric Anomaly. 

KC ELM KC DBN MUDI CSDAS 

0.052 0.041 0.016 0.011 

0.166 0.136 0.118 0.100 

0.4712 0.422 0.368 0.343 

 

 

Figure B1.7. IDS G-Mean Metric Anomaly. 

Table B1.7. IDS G-Mean Metric Anomaly. 
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KC ELM KC DBN MUDI CEDAS 

0.163 0.145 0.090 0.076 

0.301 0.271 0.250 0.217 

0.555 0.517 0.475 0.455 
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APPENDIX B- 2 : IDS Metric Pedestrians for 25, 50 and 100 pedesterians. 

 

Figure B2.1. IDS Accuracy Metric Pedestrians. 

Table B2.1. IDS Accuracy Metric Pedestrians. 

KC ELM KC DBN MUDI CEDAS 

0.421 0.254 0.313 0.234 

0.429 0.305 0.289 0.207 

0.410 0.278 0.353 0.206 

 

 

Figure B2.2. IDS Precision Metric Pedestrians. 

 

Table B2.2. IDS Precision Metric Pedestrians. 
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KC ELM KC DBN MUDI CEDAS 

0.243 0.201 0.225 0.207 

0.308 0.267 0.225 0.207 

0.262 0.225 0.241 0.206 

 

 

Figure B2.3. IDS Recall Metric Pedestrians. 

Table B2.3. IDS Recall Metric Pedestrians. 

KC ELM KC DBN MUDI CEDAS 

1.000 1.000 1.000 1.000 

1.000 1.000 1.000 1.000 

1.000 1.000 1.000 1.000 
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Figure B2.4. IDS Specifity Metric Pedestrians. 

Table B2.4. IDS Specifity Metric Pedestrians. 

KC ELM KC DBN MUDI CEDAS 

0.289 0.084 0.141 0.043 

0.234 0.068 0.104 0 

0.253 0.087 0.185 0 

 

 

Figure B2.5. IDS NPVs Metric Pedestrians. 

 

 

Table B2.5. IDS NPVs Metric Pedestrians. 

KC ELM KC DBN MUDI CEDAS 

1.000 1.000 1.000 1.000 

1.000 1.000 1.000 - 

1.000 1.000 1.000 - 
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Figure B2.6. IDS F-Measure Metric Pedestrians. 

Table B2.6. IDS F-Measure Metric Pedestrians. 

KC ELM KC DBN MUDI CEDAS 

0.391 0.333 0.368 0.343 

0.471 0.422 0.368 0.343 

0.415 0.367 0.389 0.342 
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Figure B2.7. IDS G-Mean Metric Pedestrians. 

Table B2.7. IDS G-Mean Metric Pedestrians. 

KC ELM KC DBN MUDI CEDAS 

0.493 0.447 0.474 0.455 

0.555 0.517 0.475 0.455 

0.512 0.474 0.491 0.454 

 

APPENDIX B- 3 : IDS Metric Speed for 1,2 and 3 m\sec. 

 

Figure B3.1. IDS Accuracy Metric Speed. 

 

Table B3.1. IDS Accuracy Metric Speed. 

KC ELM KC DBN MUDI CEDAS 

0.429 0.305 0.289 0.207 

0.429 0.305 0.236 0.207 

0.429 0.305 0.224 0.207 
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Figure B3.2. IDS Precision Metric Speed. 

Table B3.2. IDS Precision Metric Speed. 

KC ELM KC DBN MUDI CEDAS 

0.308 0.267 0.225 0.207 

0.308 0.267 0.213 0.207 

0.308 0.267 0.210 0.207 
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Figure B3.3. IDS Recall Metric Speed. 

Table B3.3. IDS Recall Metric Speed. 

KC ELM KC DBN MUDI CEDAS 

1.000 1.000 1.000 1.000 

1.000 1.000 1.000 1.000 

1.000 1.000 1.000 1.000 

 

 

Figure B3.4. IDS Specifity Metric Speed. 

 

 

Table B3.4. IDS Specifity Metric Speed. 

KC ELM KC DBN MUDI CEDAS 

0.234 0.068 0.104 0 

0.234 0.068 0.037 0 

0.234 0.068 0.022 0 
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Figure B3.5. IDS NPVs Metric Speed. 

Table B3.5. IDS NPVs Metric Speed. 

KC ELM KC DBN MUDI CEDAS 

1.000 1.000 1.000 - 

1.000 1.000 1.000 - 

1.000 1.000 1.000 - 

 

 

 

 

Figure B3.6. IDS F-Measure Metric Speed. 
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Table B3.6. IDS F-Measure Metric Speed. 

KC ELM KC DBN MUDI CEDAS 

0.471 0.422 0.368 0.343 

0.471 0.422 0.351 0.343 

0.471 0.422 0.348 0.343 

 

 

Figure B3.7. IDS G-Mean Metric Speed. 

 

Table B3.7. IDS G-Mean Metric Speed. 

KC ELM KC DBN MUDI CEDAS 

0.555 0.517 0.4751 0.455 

0.555 0.517 0.461 0.455 

0.555 0.517 0.459 0.455 

 

APPENDIX C : E2E Delay & PDR for Anomaly Detection 

APPENDIX C- 1 : E2E Delay & PDR Metric Pedestrians for 25, 50 and 100 

pedesterians. 
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Figure C1.1. E2E Delay Metric Pedestrians 25 Plot. 

 

Figure C1.2. E2E Delay Metric Pedestrians 50 Plot. 
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Figure C1.3. E2E Delay Metric Pedestrians 100 Plot. 

 

 

Figure C1.4. PDR Metric Pedestrians 25 Plot. 
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Figure C1.5. PDR Metric Pedestrians 50 Plot. 

 

 

Figure C1.6. PDR Metric Pedestrians 100 Plot.
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APPENDIX C- 2 : E2E Delay & PDR Metric Anomaly for 5%, 10% and 20%. 

 

Figure C2.1. E2E Delay Metric Anomaly 5 % Plot. 

 

 

Figure C2.2. E2E Delay Metric Anomaly 10 % Plot. 
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Figure C2.3. E2E Delay Metric Anomaly 20 % Plot. 

 

 

Figure C2.4. PDR Metric Anomaly 5 % Plot. 
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Figure C2.5. PDR Metric Anomaly 10 % Plot. 

 

 

Figure C2.6. PDR Metric Anomaly 20 % Plot. 
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APPENDIX C- 3 : E2E Delay & PDR Metric speed for 1, 2 and 3m\ces. 

 

Figure C3.1. E2E Delay Metric average walking speed 1 Plot. 

 

 

Figure C3.2. E2E Delay Metric average walking speed 2 Plot. 
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Figure C3.3. E2E Delay Metric average walking speed 3 Plot. 

 

 

Figure C3.4. PDR Metric average walking speed 1 Plot. 
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Figure C3.5. PDR Metric average walking speed 2 Plot. 

 

 

Figure C3.6. PDR Metric average walking speed 3 Plot. 
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APPENDIX D : E2E Delay & PDR for IDS 

APPENDIX D- 1 : IDS E2E Delay & IDS  PDR  Metric pedestrians for 25,50 and 

100 pedesterians. 

 

Figure D1.1. IDS E2E Delay Metric pedestrians 25 Plot. 

 

 

Figure D1.2. IDS E2E Delay Metric Pedestrians 50 Plot. 

 

 



129 

 

Figure D1.3. IDS E2E Delay Metric Pedestrians 100 Plot. 

 

 

Figure D1.4. IDS PDR Metric Pedestrians 25 Plot. 
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Figure D1.5. IDS PDR Metric Pedestrians 50 Plot. 

 

 

Figure D1.6. IDS PDR Metric Pedestrians 100 Plot. 
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APPENDIX D- 2 : IDS E2E Delay &IDS  PDR Metric Anomaly for 5%, 10% and 

20%. 

 

Figure D2.1. IDS E2E Delay Metric Anomaly 5 % Plot. 

 

 

Figure D2.2. IDS E2E Delay Metric Anomaly 10 % Plot. 
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Figure D2.3. IDS E2E Delay Metric Anomaly 20 % Plot. 

 

 

Figure D2.4. PDR Anomaly 5%. 
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Figure D2.5. PDR Anomaly 10%. 

 

 

Figure D2.6. PDR Anomaly 20%. 
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APPENDIX D- 3 : IDS E2E & IDS PDR Metric speed for 1, 2 and 3 m\sec. 

 

Figure D3.1. IDS E2E Delay Metric average walking speed 1 Plot. 

 

 

Figure D3.2. IDS E2E Delay Metric average walking speed 2 Plot. 
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Figure D3.3. IDS E2E Delay Metric average walking speed 3 Plot. 

 

 

Figure D3.4. IDS PDR Metric average walking speed 1 Plot. 
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Figure D3.5. IDS PDR Metric average walking speed 2 Plot. 

 

 

Figure D3.6. IDS PDR Metric average walking speed 3 Plot.
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