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ABSTRACT

DISCOVERING SPECIFIC SEMANTIC RELATIONS AMONG WORDS

USING NEURAL NETWORK METHODS

Human-level language understanding is one of the oldest challenges in computer

science. Many scientific work has been dedicated to finding good representations for

semantic units (words, morphemes, characters) in languages. Recently, contextual lan-

guage models, such as BERT and its variants, showed great success in downstream natural

language processing tasks with the use of masked language modelling and transformer

structures. Although these methods solve many problems in this domain and are proved

to be useful, they still lack one crucial aspect of the language acquisition in humans:

Experiential (visual) information.

Over the last few years, there has been an increase in the studies that consider

experiential information by building multi-modal language models and representations. It

is shown by several studies that language acquisition in humans start with learning concrete

concepts through images and then continue with learning abstract ideas through text. In

this work, the curriculum learning method is used to teach the model concrete/abstract

concepts through the use of images and corresponding captions to accomplish the task

of multi-modal language modeling/representation. BERT and Resnet-152 model is used

on each modality with attentive pooling mechanism on the newly constructed dataset,

collected from the Wikimedia Commons. To show the performance of the proposed

model, downstream tasks and ablation studies are performed.

Contribution of this work is two-fold: a new dataset is constructed from Wikimedia

Commons and a new multi-modal pre-training approach that is based on curriculum

learning is proposed. Results show that the proposed multi-modal pre-training approach

increases the success of the model.
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ÖZET

YAPAY SİNİR AĞI YÖNTEMLERİ İLE SÖZCÜKLER ARASI ÖZEL

ANLAMSAL İLİŞKİLERİN KEŞFEDİLMESİ

Doğal dillerin anlaşılması, bilgisayar bilimlerinin en eski problemlerinden biridir.

O günlerden bu yana, birçok çalışma dillerdeki anlamsal birimlerin (kelime, hece ve harf)

temsiline adanmıştır. Yakın zamanda, BERT ve türevleri gibi bağlamsal dil modelleri,

maskelenmiş dil modelleme ve transformer yapıları kullanarak büyük başarılar göster-

miştir. Bu metodlar, alandaki birçok problemi çözmesine ve kullanışlılığını kanıtlamasına

rağmen dil öğreniminde önemli bir rolü olan deneyimsel (görsel) bilgiyi dikkate alma-

maktadır.

Son birkaç yılda deneyimsel bilgiyi göz önünde bulunduran çok-kipli dil modelleri

ve temsilleri üzerine olan çalışmalarda artış vardır. Birkaç çalışmanın gösterdiği üzere, dil

öğrenimi insanlarda imgelerden somut kavramları öğrenerek başlar ve yazım yoluyla soyut

kavramları öğrenerek devam eder. Bu çalışmada, somut kavramları imgeden öğrenen ve

soyut kavramları yazımdan öğrenen, izlence öğrenimi yöntemini kullanan bir çok-kipli

dil modeli/temsili önerilmiştir. Yazım ve imge kipleri için sırasıyla BERT ve Resnet-

152 modelleri, dikkat havuzlaması yöntemiyle biraraya getirilerek, yeni oluşturulmuş

Wikimedia Commons veri kümesi üzerinde kullanılmıştır. Önerilen metodun başarımı

doğal dil işleme görevleri üzerinde ve ablasyon çalışması ile sınanmıştır.

Bu çalışmanın katkısı iki yönlüdür: Wikimedia Commons kullanılarak yeni bir

veri kümesi oluşturulmuş ve izlence öğrenimine dayanan yeni bir çok-kipli ön-eğitim

yaklaşımı önerilmiştir. Elde edilen sonuçlar bu çok-kipli ön-eğitim yönteminin modelin

başarımını artırdığını göstermektedir.
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CHAPTER 1

INTRODUCTION

Understanding human languages has always been an important sub-challenge to-

wards intelligent machines. The effort of creating a language model and grasping the

meaning of words and sentences is almost as old as the computer science itself and can be

traced back to finite automata and Turing Machines. Since then, decades of scientific work

are made in order to find a good way of representing the meaningful units in languages

such as words, lexemes, and morphemes.

Initial works towards this goal showed an interest in representing the words as

discrete and independent one-hot vectors where each entry corresponds to a word in

dictionary. This orthogonal representation of words leads to an implicit assumption

that the words are independent from each other in meaning and distance. This leads to a

system where the words "dog, swimsuit" and the words "dog, cat" have similar distance and

difference in meaning. As a way of solving this problem, researchers introduced the count-

based language models, which are also called n-gram models (Chen and Goodman (1996),

Kneser and Ney (1995)), that rely on the distributional hypothesis (Harris (1954)). In an

n-gram model, words are represented with row vectors from a word-word co-occurrence

matrix. Although this method solves the independence problem and create a way for

measuring and representing the similarity among words, it still had two major drawbacks.

First is the inability to consider word order. Although word n-grams can compute the

possibility of words and their relations, they only do so in a bag-of-words fashion where

word order is ignored. Second major drawback is called the curse of dimensionality. There

are billions of different n-grams that can occur in any language and it is highly unlikely

to see most of the n-grams in training sets. For example, The Oxford English dictionary

has 171, 476 words which leads to a bi-gram count of 29, 404, 018, 576. Considering that

the entire Wikipedia dataset has 3.78 billion words, most of the bi-grams would remain

unseen during the training phase.

Neural network-based language models (Hinton et al. (1986), Elman (1990), Ben-

gio et al. (2003)) emerged as a solution to these problems. Early neural network models

mostly trained with next word prediction and use the weights of hidden layer as representa-

tion of words. This method allows the words to be represented by dense distributed vectors

which solves all of the problems of n-gram models mentioned above. They account for

word order since they use next word prediction as the training objective and they solve the
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curse of dimensionality because the representations of words come from the same hidden

layer. This means that the similar words will trigger the same type of output from the

system therefore bringing all of the words with similar meaning together even if they are

not seen in the training set. For example, even if the system does not see the sentence "dog

was running in the bedroom" in the training set, it can still learn the meanings if it sees the

sentence "cat was running in the bedroom". This is due to the fact that dogs and cats are

both animals and pets and therefore will be very close to each other in the vector space.

The breakthrough in word representations with neural networks drove the research

into focusing on specific aspects of representing words and their similarities such as sense

discrimination (Schütze (1998), Reisinger and Mooney (2010), Huang et al. (2012)),

identifying antonyms and synonyms (Nguyen et al. (2016), Yu et al. (2015)), representing

morphemes (Luong et al. (2013)) and many more. Although each such subtopic has seen

a substantial improvement, there was a lack of a model that combines each such property

into a single model and a single training scheme. The attempt of building a model that

encompasses all of these aforementioned properties led to algorithms with contextual

representations (Melamud et al. (2016), Howard and Ruder (2018), Peters et al. (2018),

Devlin et al. (2019)).

Instead of considering words as entities in a dictionary of word embeddings,

contextual representation models considered each word as the aggregate of the words

around them in a particular sentence. Therefore, each context can provide different

embedding/meaning for words, automatically capturing the sense and semantic relations

such as hypernymy/hyponymy and antonymy/synonymy. Various methods have been

proposed to create contextual models. Initially, research in this area (such as Melamud et al.

(2016) and Howard and Ruder (2018)) focused on using bidirectional LSTMs (Hochreiter

and Schmidhuber, 1997) with next word prediction. Later, this focus is shifted towards

transformer models (Vaswani et al., 2017) starting with BERT (Devlin et al., 2019) and

its variants (RoBERTa (Liu et al., 2019), AlBERT (Lan et al., 2020)). Contextual models

showed great success in many downstream tasks by exceeding human baselines in some

of the tasks while performing very close to them in others.

Although text-based language models show human-level performance in many

tasks, there have been studies that show language acquisition in children can mostly

be attributed to experiential information in early ages (Griffiths et al. (2007), Vigliocco

et al. (2009), Andrews et al. (2009)). It is mentioned in those work that the language

acquisition in children start with experiential information where we mostly learn about

concrete concepts in languages, and continue with textual information in later ages where

we mostly learn about abstract concepts. Thus, many researchers tried to build language

models with multi-modal information (Lu et al. (2019), Agrawal et al. (2018), Anderson

et al. (2018), and many more), leveraging both textual and visual inputs.

In this work, the aim is to create a multi-modal language model that uses both

2



textual and visual features, similar to what humans do. A neural network model is fine-

tuned using abstract/concrete concepts on each part of the model, textual and visual, to

reach the goal. Driven by the motivation of building a language model that mimics the

human language acquisition process, curriculum learning (Elman, 1993; Bengio et al.,

2009) is used to meaningfully order the training samples from easy to hard throughout the

training using concrete and abstract samples as difficulty measure.

Contribution of this work is two-fold: First, a new multi-modal dataset is con-

structed from Wikimedia Commons. The proposed dataset is comparable in size to the

largest multi-modal dataset available in literature and greater in size than most of the other

ones. In addition, unlike all the other available datasets, the proposed dataset includes

concreteness ratings associated with each sample as an additional feature. Second, a new

multi-modal pre-training approach that is based on curriculum learning (Bengio et al.,

2009) is proposed. Proposed multi-modal language model is trained with a meaningfully

ordered training set, starting with concrete (easy) samples and then switching to abstract

(hard) samples. This serves as a way of mimicking the learning behaviour of human lan-

guage acquisition process. To our knowledge, this is the first work that uses a curriculum

learning approach on multi-modal language models.

Results show that the proposed multi-modal pre-training method increases the

success of the model in downstream tasks. Also, it can be seen from the ablation study

that this increase in performance is consistent among all fusion techniques used in this

work. Best results are obtained when the multi-modal pre-training scheme is used with

attentive pooling as fusion mechanism. In addition to the tests mentioned above, several

tests are performed for measuring the informativeness of the newly constructed dataset.

Rest of the thesis is structured as follows: In Chapter 2, background information is

given on the task of language modeling. Model details and the new dataset are explained

in Chapter 3. Experimental results are shared in Chapter 4 along with the descriptions of

the datasets used. And finally in Chapter 5, final remarks are made with possible future

directions.
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CHAPTER 2

BACKGROUND

Finding good representations for words has always been one of the major goals in

natural language processing (NLP) since almost all of the downstream tasks in NLP such

as machine translation, text classification, question answering, etc. requires well-learned

representations of words as an input to work successfully.

The oldest NLP systems feed one-hot vectors as word representation to the models

where each word is represented with a unique vector with one of its index 1 (corresponding

to the specific word) and the rest of the indices are set to zero. i.e:

𝑑𝑜𝑔 = {0, 0, ..., 0, 0, 1, 0, ..., 0}

𝑐𝑎𝑡 = {0, 0, ..., 0, 1, 0, 0, ..., 0}

𝑏𝑎𝑛𝑘 = {0, 0, ..., 1, 0, 0, 0, ..., 0}

Orthogonality of the word vectors provides independence assumption between words

which in turn helps machine learning algorithms to solve the problems without any inherent

assumption on the relation of words. On the other hand, this independence assumption

leads to an important disadvantage: all the words have equal distance from each other which

means that the semantic relation of any two particular words is the same as the semantic

relation of them with a third one. This lead to an incorrect semantic representation

that makes the relation between dog and cat the same as the words dog and bank. Any

NLP model that is expected to work successfully should be able to differentiate the

semantic/syntactic relation of word pairs instead of assuming they are all the same.

The first solution to this problem was the count-based methods, also called the

n-gram models (Chen and Goodman (1996), Kneser and Ney (1995)). N-gram models

build a matrix of frequencies of each word in the dictionary with other words such as the

one shown in Table 2.1 (example of a 2-gram);

Each row in this matrix is taken as the representation of corresponding words.

The similarity between the words is then calculated from the similarity between their

corresponding rows (vectors). N sized windows are used on the words as the context in the

n-gram models (hence the name n-gram), but two specialized methods , called LDA (Blei

et al. (2003)) and LSA (Deerwester et al. (1990)), took this idea further by considering

topics as the context of words and by creating denser representations.

There are also generative probabilistic topic models that aim at creating word rep-
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Table 2.1: bi-gram representation of "The brown fox jump over the lazy dog"

the brown fox jump over lazy dog

the 0 1 0 0 0 1 0

brown 0 0 1 0 0 0 0

fox 0 0 0 1 0 0 0

jump 0 0 0 0 1 0 0

over 0 0 0 0 0 1 0

lazy 0 0 0 0 0 0 1

dog 0 0 0 0 0 0 0

resentations (Vigliocco et al. (2009), Griffiths et al. (2007), Andrews et al. (2009)). They

also propose that image plays an important role in language acquisition along with the text.

Therefore, they include experiential (visual) information to create word representations.

Before neural representation learning, representations of words or documents are

computed using such Vector Space Models (VSM) of semantics. Turney and Pantel

(2010) provide a comprehensive survey on the use of VSM for semantics. Although these

count-based representations (VSMs) are proved useful in addressing semantics, they are

bag-of-words approaches and are not able to capture both syntactical and semantic features

at the same time, which is required for performing well in NLP tasks.

2.1 Distributional Hypothesis

The idea of building word representation from such frequency statistics comes

from the "Distributional Hypothesis" (Wittgenstein (1953), Harris (1954)). Distributional

hypothesis states that the meaning of a word can be determined through the words that co-

occur with it in the same context. Famously, Harris (1954) states that the "words that occur

in the same context tend to have similar meanings". He states that at least certain aspects

of meaning are due to distributional relations. For instance, synonymy between two words

can be defined as having almost identical environments except chiefly for glosses where

they co-occur, e.g. oculist and eye-doctor. The author also suggests that sentences starting

with a pronoun should be considered the same context as the previous sentence where

the subject of the pronoun is given since their occurrence is not arbitrary and the fullest

environmental unit for the distributional investigation is the connected discourse structures

of such sentences.
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2.2 Distributional Representations

Although the count-based methods can leverage the distributional model to learn

the representation of words, they suffer from several drawbacks:

• lack of word order: n-gram models only look for the frequency of the words while

disregarding the order in which they appear, which can affect their meaning (i.e. fish

stick refers to the food of British cuisine, while stick fish refers to a type of tropical

fish species).

• unable to retrieve representations from partial information (generalization power):

Humans are able to retrieve memory from a given partial information, but n-gram

solutions lack this property by making the information available only if the vector

and n-grams are perfectly given.

• curse of dimensionality: they create millions, if not trillions, of different possible

n-grams which are very unlikely to be observed in the training data. This will lead

to a very sparse matrix with a lot of uninformative zero entries.

Neural network solutions emerged to solve these issues. In first such attempt,

Hinton et al. (1986) utilize the idea of distributed representations for concepts. They

propose to use patterns of hidden layer activations (which are only allowed to be 0 or 1) as

the representation of meanings instead of representing words with discrete entities such

as the number of occurrences together. They argue that the most important evidence of

distributed representations is their degree of similarity to the weaknesses and strengths of

the human mind. Unlike computer memory, the human brain is able to retrieve memory

from partial information. Distributed representations conform to this notion better than

local distributions (i.e. bag of words model, where each meaning is associated with a

single computational unit) since the meaning of a word is distributed across several units

and a loss of an activation will only slightly affect the memory retrieval process. The

rest of the activations that are still there will be able to retrieve the memory. Even if the

occlusion of activations is strong enough to lead the system to an incorrect meaning, it

will still result in a meaning close to that of the target word, such as instead of apricot the

word peach is recalled. The authors state that this phenomenon further reinforces the idea

of being similar to the human mind by showing the similarities with deep dyslexia that

occurs in adults with certain brain damage.
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2.3 Language Modeling

Language modelling is the task of predicting the next word given a sequence of

words. Formally, it is the prediction of the next word’s probability distribution given a

sequence of words (Equation 2.1).

𝑃(𝑥𝑡+1 |𝑥𝑡, ..., 𝑥1) (2.1)

In an alternative interpretation, a language model assigns a probability to a sequence

of words. The probability calculation can be formulated as the product of conditional

probabilities in each subsequent step having the assumption that they are independent

(Equation 2.2).

𝑃(𝑥1, ..., 𝑥𝑡) = 𝑃(𝑥1)𝑃(𝑥2 |𝑥1)𝑃(𝑥3 |𝑥2, 𝑥1)...𝑃(𝑥𝑡 |𝑥𝑡−1, ..., 𝑥1)

=
𝑡∏

𝑖=1

𝑃(𝑥𝑖 |𝑥𝑖−1, ..., 𝑥1)
(2.2)

In traditional language modelling, the next word’s probability is calculated based on the

statistics of n-gram occurrences. n-grams are 𝑛 consecutive words. In n-gram language

models (Chen and Goodman (1996), Kneser and Ney (1995)), an n-gram’s probability

is computed depending on the preceding 𝑛 − 1 words instead of using the product of

conditional probabilities of bi-grams, tri-grams, etc. to simplify the computation.

N-gram language models have some issues. When the length of n-grams increases,

their occurrence becomes sparse. This sparsity causes zero or division by zero probability

values. The former one is resolved by smoothing and back-off is used to deal with the

latter. Sparsity provides coarse-grained values in the resultant probability distribution.

Moreover, storing all n-gram statistics becomes a major problem when the size of 𝑛

increases. This curse of dimensionality is a bottleneck for n-gram language models.

2.4 Distributional Representations Through Language Modeling

Elman (1990) was the first to implement the distributional model proposed by

Hinton et al. (1986), in a language model. He proposes a specific recurrent neural network

structure with memory, called the Elman network, to predict bits in temporal sequences.

Memory is provided to the network through the use of context units that are fully connected

with hidden units (Figure 2.1).

To show that distributional representations can be learned through language mod-

elling, he makes two different experiments, the first of which involves a simulation to
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Figure 2.1: Elman Network (Elman (1990)).

predict bits in the XOR problem. The input sequence is in the form of an input pair

followed by an output bit. In the solution scheme, two hidden units are expected to repre-

sent two main patterns in the XOR truth table. That is one hidden unit should have high

activation for 01 or 10 patterns and the other should recognize 11 or 00 patterns. In his

second experiment, as an alternative problem, letter sequences that are generated partially

random and partially by a simple rule are tried to be learnt by a recurrent neural network

where hidden unit activations are used to represent word meanings. The idea is that by

using such network structures, time can be modelled implicitly. In other words, the use of

a recurrent neural network helps in learning temporal structure in language.

Xu and Rudnicky (2000) create the first language model based on neural networks.

Their proposed model is based on a single fully connected layer and uses one-hot vectors

of words as inputs and outputs. They highlight computational cost as the major problem

and in tackling the issue they mention the necessity of update mechanisms that only update

those weights with non-zero input value due to one-hot encoding.

Although these models build the theoretical and practical basis of neural word

representations, Bengio et al. (2003) popularize the distributional representation idea by

realizing it through a language model and lead to numerous other studies that are built

on it. In their model architecture, they use a feed-forward network with a single hidden

layer and optional direct connections from the input layer to the softmax layer (Figure 2.2).
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Figure 2.2: Neural Network Architecture in Bengio et al. (2003).

Weights of the hidden layer are then taken as a representation of words such as:

𝑑𝑜𝑔 = {0, 345, 0, 751, ...,−0.621}

𝑐𝑎𝑡 = {0.931, 0.003, ..., 0.169}

𝑏𝑎𝑛𝑘 = {−0.621, 0.413, ...,−0.884}

Cosine similarity of the above word vectors can then give us a measure of how

similar the given words are which can be quite useful in downstream NLP tasks compared

to one-hot vectors.

In addition to the advantages discussed by the aforementioned earlier works, they

argue that distributional representations also break the curse of dimensionality in tradi-

tional n-gram models (Chen and Goodman (1996), Kneser and Ney (1995)) where the

probability of each word depends on the discrete n-grams whose numbers can exceed

millions. A considerably high number of such n-grams will highly unlikely to be observed

in the training set which results in sparsity problems in conditional probability calcula-

tions. A real-valued feature vector representation of words will overcome this problem

by working with a smooth probability function. The conditional probability of seeing

a word given a context is calculated by updating the index of that word on the shared

representation matrix of all the vocabulary. The probability function is smooth in that the

updates that are caused by similar contexts are alike.

A second advantage of the model is the ability to capture context-based similarities.

In n-gram models, the sentences "the cat is walking in the bedroom" and "a dog was

running in a room" will be considered as dissimilar since they are unable to consider

contexts further than 1− 2 words and have no notion of similarity among word meanings.

On the other hand, in the proposed model, increasing the probability of the sentence "the
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cat is walking in the bedroom" will increase the probability of all the sentences below and

help us generalize better:

"a dog was running in a room"

"the cat is running in a room"

"a dog is walking in a bedroom"

2.5 Word Embeddings

Once it is shown that neural language models are efficiently computable by Bengio

et al. (2003), newer language models along with better word embeddings are developed

successively. Table 2.2 shows the properties of word embeddings mentioned in this section.

Alexandrescu and Kirchhoff (2006) (FNLM) improve the model proposed by

Bengio et al. (2003) by including word-shape features such as stems, affixes, capitalization,

POS class, etc. at the input.

Morin and Bengio (2005) focus on improving the performance of the earlier neural

language models. Instead of using softmax and predicting the output word over the entire

dictionary, they propose a hierarchical organization for vocabulary terms. A binary tree of

words is created based on the IS-A relation of the Wordnet hierarchy. Instead of directly

predicting each word’s probability, prediction is performed as a binary decision over the

constructed tree’s branches and leaves. This technique is an alternative to importance

sampling to increase efficiency. Although the authors report exponential speed-up, the

accuracy of the resultant word embeddings is a bit worse than the original method and

importance sampling.

Mnih and Hinton (2008) improve the hierarchical language model proposed by

Morin and Bengio (2005) by constructing and using a word hierarchy from distributional

representations of words rather than a hierarchy built out of Wordnet. Thus, their approach

is entirely unsupervised. They calculate feature vectors for words by training a hierarchical

log-bilinear model (HLBL) and apply EM algorithm on the mixture of two Gaussians to

construct a data-driven binary tree for words in the vocabulary. Authors also represent

different senses of words as different leaves in the tree which is proposed in Morin and

Bengio (2005) but not implemented. Their model outperforms non-hierarchical neural

models, the hierarchical neural language model that is based on Wordnet hierarchy, and

the best n-gram models (Chen and Goodman (1996), Kneser and Ney (1995)).

Mnih and Hinton (2007) propose three different language models that use dis-

tributed representation of words. In Factored Restricted Boltzmann Machine (RBM), they

put an additional hidden layer over the distributed representation of preceding words and
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Table 2.2: Properties of word embedding models.

Model Dimension NN Model Aim Knowledge-Base(s)

Bengio et al. (2003) 100 FFNN Training -

Morin and Bengio (2005) 100 FFNN Performance Wordnet

FNLM (Alexandrescu and Kirchhoff, 2006) 45-64 FFNN Training
LDC ECA,

Turkish News

LBL (Mnih and Hinton, 2007) 100 RBM, FFNN Training -

HLBL (Mnih and Hinton, 2008) 100 LBL Performance -

C&W (Collobert and Weston, 2008) 15-100 FFNN, CNN Training -

RNNLM (Mikolov et al., 2010) 60-400 RNN Training -

CBOW (Mikolov et al., 2013) 300-1000 FFNN Training -

Skip-Gram (Mikolov et al., 2013) 300-1000 FFNN Training -

SGNS (Mikolov et al., 2013) 300 FFNN Performance -

ivLBL/vLBL (Mnih and Kavukcuoglu, 2013) 100-600 LBL Performance -

GloVe (Pennington et al., 2014) 300 LBL+coocurence Matrix Training -

DEPS (Levy and Goldberg, 2014) 300 CBOW Training
Stanford tagger,

Dependency parser

Ling et al. (2015) 50 CBOW+Attn. Training -

SWE (Liu et al., 2015) 300 Skip-Gram Training Wordnet

Faruqui et al. (2015) - - fine-tuning

PPDB,

FrameNet,

WordNet

Yin and Schütze (2016) 200 - Ensemble -

Ngram2vec (Zhao et al., 2017) 300 SGNS+n-gram Training -

Dict2vec (Tissier et al., 2017) 300 Skip-Gram Training
Oxford, Cambridge,

and Collins dict.

exploit interactions between this hidden layer and the next word’s distributed representa-

tion. In temporal RBM, they further put temporal connections among hidden layer units

to capture longer dependencies in the previous set of words, and finally in the log-bilinear

model, called LBL, they use linear dependencies between the next word and the preceding

set of words. They report that the log-bilinear model outscores RBM models and also

n-gram models (Chen and Goodman (1996), Kneser and Ney (1995)).

Collobert and Weston (2008) and Collobert et al. (2011) (C&W) are among the

precursors in using distributed representations in various NLP problems such as part-of-

speech tagging, named entity recognition, chunking, and semantic role labelling. They

propose a unified architecture for all of the problems where the words in the sentences

are represented by word vectors trained from the Wikipedia Corpus in an unsupervised

fashion. Although they use feed-forward architecture with a sliding window approach

in word-level tasks, they utilize a convolutional neural network (CNN) architecture in

semantic role labelling. This is done to incorporate the varying lengths of sentences,

since, in semantic role labelling, sliding window-based approaches don’t work because

target words may depend on some other faraway words in a sentence. By making use of

trained word vectors and neural network architecture, their proposed method can capture

the meaning of words and succeed in various NLP tasks (almost) without making use

of hand-crafted features. Their overall scheme is described as semi-supervised being

composed of unsupervised language modelling and other supervised tasks.

Mikolov et al. (2010) propose a recurrent neural network based-language model

(RNNLM), from where word representations can be taken. The model can work on
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Figure 2.3: CBOW and Skip-Gram Model Architectures

contexts of arbitrary length, unlike the previous feed-forward methods where a context

size should be defined beforehand. The network can learn longer dependencies. It is

proved useful in tasks involving inflectional languages or languages with large vocabulary

when compared to n-gram language models (Chen and Goodman (1996), Kneser and Ney

(1995)).

Word2vec (Mikolov et al., 2013) is the first neural word embedding model that

efficiently computes representations to leverage the context of target words. Thus, it can

be considered as the initiator of early word embeddings (Tekir and Bastanlar, 2020).

Mikolov et al. (2013) propose word2vec to learn high-quality word vectors. The

authors removed the non-linearity in the hidden layer in the proposed model architecture

of Bengio et al. (2003) to gain an advantage in computational complexity. Due to this

basic change, the system can be trained using billions of words efficiently. word2vec has

two variants: Continuous Bag of Words model (CBOW) and Skip-gram model (Figure

2.3).

In CBOW, the middle word is predicted given its context, the set of neighbouring

left and right words. When the input sentence "nature is pleased with simplicity" is

processed, the system predicts the middle word "pleased" given the left and right contexts.

Every input word is in one-hot encoding where there is a vocabulary size (𝑉)

vector of all zeros except a one in that word’s index. In the single hidden layer, instead

of applying a non-linear transformation, the average of the neighbouring left and right

vectors (𝑤𝑐) is computed to represent the context. As the order of words is not taken into

consideration by averaging, it is named as a bag-of-words model. Then the middle word’s

(𝑤𝑡) probability given the context (𝑝(𝑤𝑡 |𝑤𝑐)) is calculated through softmax on context-

middle word dot product vector (Equation 2.3). Finally, the output loss is calculated based

on the cross-entropy loss between the system predicted output and the ground-truth middle

word.
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𝑝(𝑤𝑡 |𝑤𝑐) =
𝑒𝑥𝑝(𝑤𝑐 · 𝑤𝑡)∑

𝑗∈𝑉
𝑒𝑥𝑝(𝑤 𝑗 · 𝑤𝑡)

(2.3)

In Skip-gram, the system predicts the most probable context words for a given

input word. In terms of a language model, while CBOW predicts an individual word’s

probability, Skip-gram outputs the probabilities of a set of words, defined by a given

context size. Due to high dimensionality in the output layer (all vocabulary words have to

be considered), Skip-gram has higher computational complexi ty compared to CBOW.

To deal with this issue, rather than traversing all vocabulary in the output layer,

Skip-gram with Negative Sampling (SGNS) (Mikolov et al., 2013) formulates the problem

as a binary classification where one class represents the current context’s occurrence

probability whereas the other class is all other vocabulary terms’ occurrence probability

in the present context. In the latter probability calculation, a negative sampling method is

incorporated (Mnih and Teh, 2012), which is influenced by Noise Contrastive Estimation

(NCE) (Gutmann and Hyvärinen, 2012), to speed up the training process. As vocabulary

terms are not distributed uniformly in contexts, sampling is performed from a distribution

where the order of frequency of vocabulary words in corpora are taken into consideration.

SGNS incorporates this sampling idea by replacing the Skip-gram’s objective function.

The new objective function (Equation 2.4) depends on maximizing 𝑃(𝐷 = 1|𝑤, 𝑐) where

𝑤, 𝑐 is the word-context pair. This probability denotes the probability of (𝑤, 𝑐) coming

from the corpus data. Additionally, 𝑃(𝐷 = 0|𝑢𝑖, 𝑐) should be maximized if (𝑢𝑖, 𝑐) pair

is not included in the corpus data. In this condition, (𝑢𝑖, 𝑐) pair is sampled, as the name

suggests negative sampled 𝑘 times.

∑
𝑤,𝑐

(
log𝜎

(
−→𝑤 · −→𝑐

))
+

𝑘∑
𝑖=1

(
log𝜎

(
−−→−𝑢𝑖 ·

−→𝑐
))

(2.4)

Both word2vec variants produced word embeddings that can capture multiple

degrees of similarity including both syntactic and semantic regularities. The authors

also made a contribution by realizing that simple algebraic operations work on the word

representations. i.e. if we subtract the vector "man" from the vector "king" and add the

vector "woman", the closest word in the dictionary to the resulting vector is the vector

"queen".

Mnih and Kavukcuoglu (2013) introduce speedups to CBOW and Skip-gram mod-

els (Mikolov et al., 2013), called vLBL and ivLBL, by using noise-contrastive estimation

(NCE) (Gutmann and Hyvärinen (2012)) for the training of the unnormalized counterparts
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of these models. Training of the normalized model has a high cost due to normalization

over the whole vocabulary (denominator term in Equation 2.3). NCE trains the unnormal-

ized model by adapting a logistic regression classifier to discriminate between samples

under the model and samples from noise distribution. Thus, the computational cost and

accuracy become dependent on the number of noise samples. With the relatively small

number of noise samples, the same accuracy level with the normalized models is achieved

in considerably shorter training times.

Pennington et al. (2014) combine global matrix factorization and local context

window-based prediction to form a global log bilinear model called GloVe. GloVe uses

ratios of co-occurrence probabilities of words as weights in its objective function to

cancel out the noise from non-discriminative words. As distinct from CBOW and Skip-

gram (Mikolov et al., 2013), instead of cross-entropy, GloVe uses weighted least squares

regression in its objective function. For the same corpus, vocabulary, window size, and

training time, GloVe consistently outperforms word2vec.

Zhao et al. (2017) (ngram2vec) improve word representations by adding n-gram

co-occurrence statistics to the SGNS (Mikolov et al., 2013), GloVe (Pennington et al.,

2014), and PPMI models (Levy et al., 2015). To incorporate these statistics into the SGNS

model, instead of just predicting the context words, they also predict the context n-gram of

words. In order to add it to other systems, they just add n-gram statistics to co-occurrence

matrix of words. They show improved scores over the models that they are built upon.

Levy and Goldberg (2014) argue that although the word embeddings with Skip-

gram can capture very useful representations, they also learn from unwanted co-occurrences

in the context, e.g. Australian and discovers in the sentence "Australian scientist discovers
stars with a telescope". In order to create a different context, they use dependency trees

to link each word in the sentence to the other according to the relations they have. Their

experimental results show that while their model (DEPS) is significantly better at repre-

senting syntactic relationships, it is worse at finding semantic relationships. In this work,

they also share a non-trivial interpretation of how word embeddings learn representations,

which is very rare in neural network solutions, by examining the activations of context for

specific words.

Ling et al. (2015) augment CBOW (Mikolov et al., 2013) with an attention model in

order to solve the shortcomings of it: inability to account for word order and lack of treating

the importance of context words differently. They show that their method can obtain better

word representations than CBOW while still being faster than its complementary model

Skip-gram (Mikolov et al., 2013).

Yin and Schütze (2016) put forward the idea of ensembling the existing embeddings

in order to achieve performance enhancement and improved coverage of the vocabulary.

They propose four different ensemble approaches on five different word embeddings:

Skip-Gram (Mikolov et al., 2013), Glove (Pennington et al., 2014), C&W (Collobert and
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Weston, 2008), Huang (Huang et al., 2012), and Turian (Turian et al., 2010). The first

method CONC simply concatenates the word embeddings from five different models. SVD

reduces the dimensionality of CONC. 1toN creates meta-embeddings and 1to𝑁+ creates

OOV words for individual sets by randomly initializing the embeddings for OOVs and the

meta-embeddings, then uses a setup similar to 1toN to update meta-embeddings as well as

OOV embeddings. They also propose a MUTUALLEARNING method to solve the OOV

problem in CONC, SVD, and 1toN. They show that the ensemble approach outperforms

individual embeddings on similarity, analogy, and POS tagging tasks.

There has also been some work to improve early word embeddings through knowl-

edge bases.

Liu et al. (2015) (SWE) try to improve word embeddings by subjecting them to

ordinal knowledge inequality constraints. They form three different types of constraints:

1. Synonym-antonym rule: A synonym of a word should be more similar than an

antonym. They find these pair of words from the WordNet (Miller, 1995) synsets.

2. Semantic category rule: Similarity of words that belong to the same category should

be larger than the similarity of words that are in different categories. i.e. (hacksaw,

jigsaw) similarity should be greater than (hacksaw, mallet).

3. Semantic hierarchy rule: Shorter distances in hierarchy should infer larger similari-

ties between words compared to long-distance cases. i.e (mallet, hammer) similarity

should be larger than (mallet, tool).

The last two rules are constructed from the hypernymy-hyponymy information

from Wordnet. They combine these constraints with the Skip-gram algorithm (Mikolov

et al., 2013) to train word embeddings and show that they can improve upon the baseline

algorithm.

Faruqui et al. (2015) aim to improve word embeddings with information from

lexicons with a method called retrofitting. They use a word graph where each word is

a vertex and each relation in the knowledge-base is an edge between words. In their

algorithm, they bring closer the words that are shown to be connected in the word graph

and words that are found to be similar from the text. In other words, while they bring closer

the words related in synsets, they also preserve the similarity in the underlying pre-trained

word embeddings (Skip-gram (Mikolov et al., 2013), GloVe (Pennington et al., 2014),

etc.). They use various knowledge-bases such as PPDB (Pavlick et al., 2015), WordNet

(Miller, 1995), and FrameNet (Baker et al., 1998).

Tissier et al. (2017) (dict2vec) improve word2vec (Mikolov et al., 2013) by in-

corporating dictionary information in the form of strong and weak pair of words into the

training process. If a word 𝑎 is in the definition of the word 𝑏 in dictionary and 𝑏 is in

the definition of 𝑎 too, then it is a strong pair. On the other hand, if 𝑎 is in the definition
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of 𝑏 but 𝑏 is not in the definition of 𝑎, then they form a weak pair. The authors add this

positive sampling information into the training process proportional to hyperparameters.

Despite the success of these earlier word embeddings, there were still many lim-

itations in terms of the accuracy of representations each of which is targeted by many

research:

• Polysemy: All of the aforementioned models can learn only one vector for each

unique word in the dictionary, however, a polysemous word can have very different

meanings depending on the context they use. For example, the word "bank" can

refer to a completely different entity when it is used in the context of "finance" or

the context of "river". Since these models collapse all of the senses of a word in one

representation, they lose the accuracy of their representation for all senses.

• Morphology: Words are not the smallest unit of language that can carry a meaning, it

is the morphemes. In languages that are not morphologically rich, such as English,

this is not a big issue, but in languages such as Finnish and Turkish, it becomes

problematic. Some of the word forms that are constructed with suffixes, cannot be

seen much during the training phase. Therefore they cannot be learned with the

neural methods mentioned so far, although their meanings are indeed related to the

words they are built from.

• Antonymy/Synonymy: Since both antonyms and synonyms can have similar context

words, neural methods described above cannot differentiate between them success-

fully.

• Hypernymy/Hyponymy: Similar to the problem above hypernyms/hyponym words

also share a lot of their context words, therefore making them hard to differentiate

between.

In the next subsections, these limitations (such as morphology, senses, antonymy/

synonymy and so on) and the proposals to their solutions are discussed.

2.6 Embeddings Targeting Specific Semantic Relations

Although initial word embedding models were successful at identifying semantic

and syntactic similarities of words, they still need to be improved to address specific

semantic relations among words such as synonymy-antonymy and hyponymy-hypernymy.

To illustrate, consider the sentences "She took a sip of hot coffee" and "He is taking a

sip of cold water". The antonyms "cold" and "hot" are deemed to be similar since their
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Table 2.3: Embeddings Targeting Specific Semantic Relations.

Work Base Model Knowledge-Base Target Relations

Nguyen et al. (2016) SGNS WordNet, Wordnik Synonym-Antonym

Mrkšić et al. (2016) GloVe, paragram-SL999 WordNet, PPDB 2.0 Synonym-Antonym

Vulić et al. (2017) SGNS � Synonym-Antonym

Yu et al. (2015) � Probase Hyponym-Hypernym

Luu et al. (2016) � WordNet Hyponym-Hypernym

Nguyen et al. (2017) SGNS WordNet Hyponym-Hypernym

Wang et al. (2019) Skip-gram �
Synonym-Antonym,

Hyponym-Hypernym, Meronym

context is similar. Therefore, it becomes an issue to differentiate the synonyms "warm"

and "hot" from the antonyms "cold" and "hot" considering they have similar contexts in

most occurrences.

Table 2.3 presents the main approaches addressing synonym-antonym relations,

hyponym-hypernym relations, and a study covering all types of relations.

Nguyen et al. (2016) propose a weight update for SGNS (Mikolov et al., 2013) to

identify synonyms and antonyms from word embeddings. Their system (dLCE) increases

weights if there is a synonym in the context and makes a reduction in the case of an antonym.

To come up with a list of antonyms and synonyms, they use WordNet (Miller, 1995) and

Wordnik. They report state-of-the-art results in similarity tasks and synonym-antonym

distinguishing datasets.

Mrkšić et al. (2016) propose the counter-fitting method to inject antonymy (RE-

PEL) and synonymy (ATTRACT) constraints into vector space representations to improve

word vectors. The idea behind ATTRACT rule is that synonymous words should be closer

to each other than any other word in the dictionary and in a similar way, REPEL constraint

assumes that an antonym of a word should be farther away from the word than any other

word in the dictionary. As knowledge-bases, they use WordNet (Miller, 1995) and PPDB

2.0 (Pavlick et al., 2015), and as pre-trained word vectors, they use GloVe (Pennington

et al., 2014) and paragram-SL999 (Wieting et al., 2015). They report state-of-the-art

results on various datasets.

Vulić et al. (2017) use ATTRACT and REPEL constraints on pre-trained word

embeddings. The aim of their algorithm is to pull together ATTRACT pairs while pushing

REPEL pairs apart. For forming the ATTRACT and REPEL constraints, inflectional and

derivational morphological rules of four languages are used; English, Italian, Russian,

and German. ATTRACT constraints consist of suffixes such as (-s, -ed, -ing) to create

ATTRACT word pairs such as (look, looking), (create, created). On the other hand,

REPEL constraints consist of prefixes like (il-, dis-, anti-, mis-, ir-, ..) to create REPEL

word pairs such as (literate, illiterate), (regular, irregular). In order to balance the changes

they make to the original embeddings (they use SGNS (Mikolov et al., 2013)), there is a

third constraint that tries to pull word embeddings to their original position.
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In their work, Yu et al. (2015) train term embeddings for hypernymy identification.

They use Probase (Wu et al., 2012) as their training data for hypernym/hyponym pairs and

impose three constraints on the training process: 1) hypernyms and hyponyms should be

similar to each other (dog and animal), 2) co-hyponyms should be similar (dog and cat), 3)

co-hypernyms should be similar (car and auto). They create a neural network architecture

to update word embeddings without optimizing parameters. They use 1-norm distance as

a similarity measure. They use an SVM on the output term embeddings to decide whether

a word is a hypernym/hyponym to another word.

Luu et al. (2016) aim to identify is-a relationship through a neural network architec-

ture. First, they extract hypernyms and hyponyms using the relations in WordNet (Miller,

1995) to form a training set. Second, they create (hypernym, hyponym, context word)

triples by finding all sentences in the dataset that contain two of the hypernym/hyponyms

found in the first step and using the words between the hypernym and hyponym as context

words. Then, they give hyponym and context words as input to the neural network and

try to predict the hypernym by aggregating them with a feed-forward neural network. The

resultant hypernym, hyponym pairs along with an offset vector are given to SVM to predict

whether there is an is-a relationship or not. Authors state that since their method takes

context words into account, their embeddings have good generalization capability and able

to identify unseen words.

Nguyen et al. (2017) aim to learn hierarchical embeddings for hypernymy. They

leverage hypernymy-hyponymy information from WordNet (Miller, 1995) and propose ob-

jective functions over/above SGNS embeddings (Mikolov et al., 2013) to move hypernymy-

hyponymy pairs closer. The first objective function is based on the distributional inclusion

hypothesis while the second one adopts the distributional informativeness. They also pro-

pose an unsupervised hypernymy measure to be used by their hierarchical embeddings.

In the proposed hypernymy measure, the cosine similarity between the hypernym and

hyponym vectors (to detect the hypernymy) is multiplied by the hypernym to hyponym

magnitude ratio (to account for the directionality of the relation by the assumption that

hypernyms are more general terms, being more frequent and thus having a large magni-

tude compared to hyponyms). Their evaluation tests the generalization capability of their

hypernymy solution as well, which proves that the model learns rather than memorizing

prototypical hypernyms.

Wang et al. (2019) propose a neural representation learning model for predicting

different types of lexical relations e.g. hypernymy, synonymy, meronymy, etc. Their

solution avoids the "lexical memorization problem" because relation triples’ embeddings

are learned rather than computing those relations through individual word embeddings.

In order to learn a relation embedding for a pair of words, they use the Skip-gram model

(Mikolov et al., 2013) over the neighbourhood pairs where the similarity between pairs is

defined on hyperspheres. Their lexical relation classification results verify the effectiveness
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Table 2.4: Sense Embeddings.

Unsupervised
R&M (Reisinger and Mooney, 2010)

Supervised
Work Knowledge Base Probabilistic NN Model

Huang et al. (2012) � Spherical k-means
Custom Language Model using

both local and global context

Pelevina et al. (2016) � Graph clustering on ego network CBOW

TWE (Liu et al., 2015) � LDA Skip-gram

SenseEmbed (Iacobacci et al., 2015) BabelNet � CBOW

Chen et al. (2015) WordNet Context clustering CNN

Jauhar et al. (2015) WordNet Expectation-Maximization Skip-gram

Chen et al. (2014) WordNet � Skip-gram

Tian et al. (2014) � Mixture of Gaussians Skip-gram

Nieto Piña and Johansson (2015) SALDO � Skip-gram

MSSG (Neelakantan et al., 2014) � � Skip-gram

SAMS (Cheng and Kartsaklis, 2015) � � Recursive Neural Network

Li and Jurafsky (2015) � Chinese Restaurant Process CBOW-Skip-gram, SENNA

MSWE (Nguyen et al., 2017) � LDA Skip-gram

Guo et al. (2014) � Affinity Propagation Algorithm RNNLM

LSTMEmbed (Iacobacci and Navigli, 2019) BabelNet � LSTM

Kumar et al. (2019)
Knowledge Graph

Embedding
�

Framework consisting of

different types of Encoders

of their approach.

2.7 Sense Embeddings

Another drawback of early word embeddings is they unite all the senses of a word

into one representation. In reality, however, a word gets meaning in its use and can

mean different things in varying contexts. For example, even though the words "hot" and

"warm" are very similar when they are used to refer to temperature levels, they are not

similar in the sentences "She took a sip of hot coffee" and "He received a warm welcome".

In the transition period to contextual embeddings, different supervised and unsupervised

solutions are proposed for having sense embeddings.

Schütze (1998) was the first work aimed at identifying senses in texts. He defines

the problem of word sense discrimination as the decomposition of a word’s occurrences

into same sense groups. This definition is unsupervised in its nature. When the issue

becomes labelling those sense groups, the task becomes a supervised one and is named as

word sense disambiguation. The reader can refer to Navigli (2009) for a comprehensive

survey on word sense disambiguation and Camacho-Collados and Pilehvar (2018) for an

in-depth examination of sense embedding methods and their development.

Table 2.4 provides a classification of the studies that we analyze in this section. The

classification dimensions include unsupervised/supervised, knowledge base, probabilistic

approach, and NN model.

At the outset, unsupervised learning is used to discriminate the different senses of
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a word.

Reisinger and Mooney (2010) propose a multi-prototype based word sense discov-

ery approach. In their approach (R&M), a word’s all occurrences are collected as a set of

feature vectors and are clustered by a centroid-based clustering algorithm. The resultant

clusters (fixed number) for each word are expected to capture meaningful variation in word

usage rather than matching to traditional word senses. They define the similarity of words

𝐴 and 𝐵 as the "maximum cosine similarity between one of A’s vectors and one of B’s

vectors" and provide experimental evidence on similarity judgments and near-synonym

prediction. Moreover, variance in the prototype similarities is found to predict variation

in human ratings.

Following Reisinger and Mooney (2010), Huang et al. (2012) also aim at creating

multi-prototype word embeddings. They compute vectors using a feed-forward neural

network architecture with one layer to produce single prototype word vectors and then

perform spherical k-means to cluster them into multiple prototypes. They also introduce

the idea of using global context where the vectors of words in a document are averaged to

create a global semantic vector. The final score of embeddings is then calculated as the

sum of scores of each word vector along with the global semantic vector.

The authors also argue that available test sets for similarity measurements are not

sufficient for testing multi-prototype word embeddings because the scores of word pairs

in those test sets are given in isolation, which lacks the contextual information for senses.

Therefore, they introduce a new test set in which the word pairs are scored within a context

by mechanical turkers, where context is usually a paragraph from Wikipedia that contains

the given word. Finally, they show that their model is capable of outperforming the former

models when such a test set is used, although its performance is similar to others in

previous test sets.

Pelevina et al. (2016) aim at creating sense embeddings without using knowledge

bases. Their model takes existing single-prototype word embeddings and transform them

into multi-prototype sense embeddings by constructing an ego network and performing

graph clustering over it. The senses of a word they learn do not have to correspond to the

sense of that word in the dictionary. They evaluate their method on their crowd-sourced

dataset.

Liu et al. (2015) propose three different methods to create topical embeddings

(TWE). They create their topical embeddings without the use of any knowledge base but

instead rely on LDA (Blei et al., 2003) to find the topics of each document the word

occurs in. Topical embeddings they create are similar to sense embeddings with the only

difference being that the number of topics may not correspond to the number of senses in

the dictionary.

In their first model, named TWE-1, they learn word embeddings and topic em-

beddings separately and simultaneously with the skip-gram method by treating topic
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embeddings as pseudo-words, which appear in all positions of words under this topic.

Sense embeddings of a word 𝑤 for topic 𝑡 is then constructed by concatenating the word

embedding 𝑤 with the corresponding topic embedding 𝑡. Their second model TWE-2

treats word embeddings and topic embeddings as tuples and train them together. This

method may lead to sparsity issues since some words on a specific topic may not be

frequent. The last method they propose, TWE-3, also train word and topic embeddings

together but this time the weights of embeddings are shared over all word-topic pairs.

They show that the TWE-1 method gives the best results overall and the independence

assumption between words and topics in the first model is given as the reason behind its

performance.

Exploiting vast information in knowledge bases to learn sense representations

has proved useful. Approaches that rely mainly on knowledge bases to compute sense

embeddings include Iacobacci et al. (2015), Chen et al. (2015), Jauhar et al. (2015), and

Chen et al. (2014).

Iacobacci et al. (2015) (SenseEmbed) use BabelNet (Navigli and Ponzetto, 2012)

as a knowledge-base to retrieve word senses and to tag words with the correct sense.

They train the sense-tagged corpora on the CBOW architecture and achieve state-of-the

art results in various word similarity and relatedness datasets.

Chen et al. (2015) also use a knowledge base (WordNet) to solve the sense embed-

ding problem. They use CNN to initialize sense-embeddings from the example sentences

of synsets in WordNet. Then, they apply context clustering to create distributed represen-

tations of senses. The representation they obtain achieves promising results.

Jauhar et al. (2015) propose two models for learning sense-embeddings using

ontological resources like WordNet (Miller, 1995). In their first model, they retrofit pre-

trained embeddings by imposing two conditions on them: pulling together the words

that are ontologically related (by using the graphs constructed from the relationships in

WordNet) and leveraging the tension between sense-agnostic neighbours from the same

graph. They implement the first method over Skip-gram (Mikolov et al., 2013) and

Huang et al. (2012) and show that their method can improve the success of the previous

methods. Their second method constructs embeddings from scratch by training them with

an Expectation-Maximization (EM) objective function that pulls together ontologically-

related words similar to the first model and finds the correct sense of the word from

WordNet and creates a vector for each sense.

Chen et al. (2014) propose a unified model for word sense representation (WSR)

and word sense disambiguation (WSD). The main idea behind this is that both models may

benefit from each other. Their solution is composed of three steps: First, they initialize

single-prototype word vectors using Skip-gram (Mikolov et al., 2013) and initialize the

sense embeddings using the glosses in WordNet (Miller, 1995). They take the average

of words in WordNet synset glosses to initialize the sense embeddings. Second, they
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perform word sense disambiguation using some rules on the given word vectors and sense

vectors, and finally using the disambiguated senses, they learn sense vectors by modifying

the Skip-gram objective such that both context words and context words’ senses must be

optimized given the middle word in context.

Tian et al. (2014) propose a probabilistic approach to provide a solution to sense

embeddings. They improve the Skip-gram algorithm by introducing the mixture of Gaus-

sians idea to represent the given middle word in context in the objective function. Every

Gaussian represents a specific sense and the mixture is their multi-prototype vector. The

number of Gaussians, in other words, the number of senses is a hyperparameter of the

model. They use Expectation-Maximization (EM) algorithm to solve the probabilistic

model.

Nieto Piña and Johansson (2015) extend the Skip-gram (Mikolov et al., 2013)

method to find sense representations of words. They get the number of senses from a

knowledge base and for each word in the training corpus, they find the most probable

sense by using likelihoods of context words. They only train the sense with the high-

est probability. They train their system on Swedish text and measure their success by

comparing the senses to the ground-truth in the knowledge base (SALDO (Borin et al.,

2013)).

Neelakantan et al. (2014) (MSSG) also aim at creating word vectors for each sense

of a word. Different from most other models, they do it by introducing the sense prediction

into the neural network and jointly performing sense vector calculation and word sense

discrimination. Their first model relies on Skip-gram and induces senses by clustering

context word representations around each word. Then, the word is assigned to the closest

sense by calculating the distance to the sense-clusters’ centres. Here the count of clusters

is the same for all words and is a hyperparameter. Their second model is a non-parametric

variant of the first one where a varying number of senses is learnt for each word. A new

cluster (sense) for a word type is created with probability proportional to the distance of its

context to the nearest cluster (sense). They show that their second method can outperform

the first since it can learn the nature of senses better.

Cheng and Kartsaklis (2015) consider capturing syntactical information to better

address senses. They use recursive neural networks on parsed sentences to learn sense

embeddings. Each input is disambiguated to its sense by calculating the distance of

average of the words’ embeddings in the sentence to sense cluster means. They define

two negative sampling methods to train the network. One negative example is created to

swap the target word with a random word (as in Mikolov et al. (2013) and Gutmann and

Hyvärinen (2012)), another negative sampling is done by changing the order of words in

a sentence which further enforces the model (SAMS) to learn syntactic dependencies.

Li and Jurafsky (2015) decide the number of senses in an unsupervised fashion by

using the Chinese Restaurant Process (CRP). They combine the CRP with neural network
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training methods by deciding the sense of a word by looking at its context. They also com-

pare sense-embedding methods with single-prototype models across various NLP tasks to

see if they really are beneficial. They state that in some tasks (POS tagging, semantic relat-

edness, semantic relation identification) sense-embeddings outperform single-prototype

methods, but they fail to improve their score on some other tasks (NER, sentiment analysis).

Instead of getting the number of senses from a knowledge base, Nguyen et al.

(2017) (MSWE) use LDA (Blei et al., 2003) to find the word to topic and topic to document

probability distributions. Here the number of topics is a parameter to the model. They

train different weights for each sense of a word using two different optimization methods.

The first model learns word vectors based on the most suitable topic. On the other hand,

their second model considers all topics to learn them. They conclude that this second

method can be considered as a generalization of the Skip-gram model (Mikolov et al.,

2013) given the fact that it behaves as Skip-gram if the mixture weights are set to zero.

Guo et al. (2014) exploit bilingual resources to find sense embeddings, motivated

by the idea that if a word in source language translates into multiple words in the target

language that means different words in target language corresponds to a sense in the source

language. For this purpose, they use Chinese to English translation data to induce senses

in an unsupervised fashion. They represent the initial words with word embeddings from

C&W (Collobert and Weston, 2008) and use affinity propagation algorithm to cluster the

translated words into dynamic clusters which means that their method can learn different

number of senses for each word. Then, they use the RNNLM model (Mikolov et al., 2010)

to train the sense embeddings.

Iacobacci and Navigli (2019) propose an LSTM-based architecture (LSTMEmbed)

to jointly learn word and sense embeddings. Input contexts are provided from semantically

annotated data and one bidirectional LSTM processes the left context while another one

handles the right one. As an extra layer, the concatenation of both outputs is linearly

projected into a dense representation. Then, the optimization objective tries to maximize

the similarity between the produced dense output and pre-trained word embeddings from

SGNS. Consideration of these pre-trained word embeddings in the final phase increases

the vocabulary use of the proposed system. Their experiments on word to sense similarity

and word-based semantic evaluations prove the usefulness of their approach.

Kumar et al. (2019) propose a framework that combines context encoder with

definition encoder to provide sense predictions for out-of-vocabulary words. In the case

of rare and unseen words, most Word Sense Disambiguation (WSD) systems rely on

the Most-Frequent-Sense (MFS) on the training set. In the part of definition encoder,

sentence encoders along with knowledge graph embeddings are utilized. Here instead of

using discrete labels for senses, the score for each sense in the inventory is calculated by

the dot product of the sense embedding with the projected context-aware embedding.
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Table 2.5: Morpheme Embedding Models.

Model Year Training Corpus Knowledge-Base NN Model Dimension

Luong et al. (2013) 2013 Wiki Morfessor recNN 50

CLBL 2014 ACL MT Morfessor LBL -

Qiu et al. (2014) 2014 Wiki Morfessor,Root,Syllable CBOW 200

Bian et al. (2014) 2014 Wiki Morfessor, WordNet, Freebase, Longman Dict. CBOW 600

CharWNN 2014 Wiki - CNN 100

KNET 2015 Wiki Morfessor, Syllable Skip-Gram 100

AutoExtend 2015 Google News WordNet Autoencoder 300

Morph-LBL 2015 TIGER TIGER LBL 200

Soricut and Och (2015) 2015 Wiki - Skip-Gram 500

C2W 2015 Wiki - biLSTM 50

Cotterell et al. (2016) 2016 Wiki CELEX GGM 100

Fasttext 2016 Wiki - Skip-Gram 300

char2vec 2016 text8 (wiki) - LSTM+Attn 256

Kim et al. (2016) 2016 ACL MT - CNN+LSTM 300-650

LMM 2018 Gigaword Morfessor CBOW 200

2.8 Morpheme Embeddings

The quest for morphological representations is a result of two important limitations

of earlier word embedding models. The first point is, words are not the smallest units of

meaning in languages, morphemes are. Even if a model does not see the word unpleasant
in the training, it should be able to deduce that it is the negative form of pleasant.
Word embedding methods that don’t take morphological information into account can

not produce any results in such a situation. The second limitation is the data scarcity

problem of morphologically rich languages and agglutinative languages. Unlike English,

morphologically rich languages have many more nouns and/or verb forms inflected by

gender, case, or number, which may not exist in the training corpora. The same thing is

also valid for agglutinative languages in which words can have many forms according to

the suffix(es) they take. Therefore, models that take morphemes/lexemes into account is

needed.

Researchers propose several ways to target morphological information, in order

to obtain sub-word information for solving rare/unknown word problem of earlier word

embedding methods and also to have better representations of words for morphologically

rich languages. While some of the works are proposed to train embeddings directly from

morphemes/lexemes, others adjust the representations of other word embedding models.

The summary of these models and their properties can be seen in Table 2.5.

There are two main ways for training morpheme embeddings from scratch:
While some methods (Luong et al. (2013), Botha and Blunsom (2014), Qiu et al. (2014),

Bian et al. (2014), Cui et al. (2015), Cotterell and Schütze (2015), Xu et al. (2018),

Soricut and Och (2015)) propose to use tools or special rules for dissecting a text to its

morphemes, others (Bojanowski et al. (2016), Cao and Rei (2016), Ling et al. (2015),

Dos Santos and Zadrozny (2014)) prefer to use characters or character n-grams as input to
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learn morphemes along with their representations.

Luong et al. (2013)’s work is the first work that attempts to incorporate morpho-

logical information in word embeddings. They train morphological embeddings with

recursive neural networks. They divide words into (prefix, stem, affix) tuples by using

morfessor (Creutz and Lagus, 2007) and feed them to a recursive neural network. Word

embeddings are then constructed by a word-based Neural Language Model (NLM). In-

stead of initializing the vectors with random numbers, they initialize them with pre-trained

word embeddings from Collobert et al. (2011) and Huang et al. (2012) in order to focus

on learning the morphemic semantics.

Similar to Luong et al. (2013), Botha and Blunsom (2014) (CLBL) also use

morfessor (Creutz and Lagus, 2007) to find the morphemes of words in text and train both

the target word and context words by first factoring them into their morphemes. They learn

morphology-based word representations with an additive-LBL of their factor embeddings

e.g. surface form, stem, affixes, etc.

Qiu et al. (2014) incorporate morphemes into CBOW (Mikolov et al., 2013) ar-

chitecture: instead of predicting a word from the context words, they propose to use both

morphemes and words, as an input and for prediction. They control the relative contri-

butions of words and morphemes with two parameters that weigh the information to be

extracted from each input. They use three different tools for extracting morphemes from

corpus: morfessor (Creutz and Lagus, 2007), root, and syllable (Liang, 1983a).

Bian et al. (2014) investigate three different methods for finding better representa-

tions for words and morphemes: First by transforming CBOW (Mikolov et al., 2013) into a

new basis by using morphemes (segmented by using morfessor Creutz and Lagus (2007))

instead of words. They later represent words as the aggregate of the morphemes they are

composed of. Second, they provide additional information to their first model by feeding

semantic and syntactic information vectors as inputs along with the morpheme vectors.

As semantic and syntactic information, they use synsets, syllables, syntactical transfor-

mation, and antonym and synonyms from Freebase (Bollacker et al., 2008), WordNet

(Miller, 1995), and Longman dictionaries1. Finally, they use syntactic knowledge (POS

tagging vector) and semantic knowledge (entity vector and relation matrix) as auxiliary

tasks, where they use syntactic/semantic information as outputs around the centre word

to be predicted. Their relation matrix consists of relations such as belong-to and is-a
relation. They examine the effects of both semantic and syntactic information compared

to the baseline model (CBOW) and report the relative effects of each of them in various

tasks.

Soricut and Och (2015) aim at improving word vectors and solving rare word

problem by using morphology induction. In their method, they first extract candidate

morphological rules. In this step, they find word pairs (𝑤1, 𝑤2) such that 𝑤2 is formed

1www.longmandictionariesonline.com
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by substituting prefixes and suffixes up to 6 characters from 𝑤1 (i.e. (𝑏𝑜𝑟𝑒𝑑, 𝑏𝑜𝑟𝑖𝑛𝑔) is

produced from the rule (𝑠𝑢 𝑓 𝑓 𝑖𝑥 : 𝑒𝑑 : 𝑖𝑛𝑔)). Later they form their rules from word pairs.

After training their embeddings with the Skip-gram method (Mikolov et al., 2013), they

keep the rule if the word pair (𝑤1, 𝑤2) is similar in embedding space, otherwise, the rule

is removed from the candidate rule list. Thus, they use their morphological rules to obtain

representations for rare words that may or may not be in the training set.

Cui et al. (2015) (KNET) use co-occurrence statistics to construct word embed-

dings with sub-word information. They leverage four different morphological information

inspired by the advances in cognitive psychology: i) edit distance similarity ii) longest

common sub-string similarity, iii) morpheme similarity (share roots, affixes, etc. by using

morfessor (Creutz and Lagus, 2007)), and iv) syllable similarity (by using hyphenation

tool (Liang, 1983b)). They combine the aforementioned morphological information into

a relation matrix and construct morphological embeddings from it. On the other hand,

they also create word embeddings by using the Skip-gram method (Mikolov et al., 2013).

Combination of these two embeddings with weighted averaging is used to obtain the final

word embeddings. Different from most other word embedding methods, authors do not

change the digits in the text with zeros, instead, they change the digits with their text

counterparts in order to reflect the information better.

Different from other morphology-based models, Cotterell and Schütze (2015)

implement a semi-supervised approach (MorphLBL) where a partially morphologically

tagged dataset (TIGER dataset of German newspaper (Brants et al., 2004)) is used. They

augment the LBL model (Mnih and Hinton, 2007) to both predict word and morpheme

together. They also introduce a new metric for measuring the success of morphological

models called MorphDist.

Dos Santos and Zadrozny (2014), Ling et al. (2015), Bojanowski et al. (2016),

and Cao and Rei (2016) come up with character-based solutions instead of using a

tool/knowledge-base to find morphemes in sentences.

In their work (CharWNN), Dos Santos and Zadrozny (2014) use word embeddings

together with character embeddings to compensate for the need for hand-crafted features

in part-of-speech (POS) tagging, where the morphological structure of words plays a

significant role. In their architecture, they use Skip-gram (Mikolov et al., 2013) for word

embeddings and train their character embeddings from scratch.

The compositional model of Ling et al. (2015), called C2W, takes characters of a

word as input and uses bidirectional-LSTM (Graves and Schmidhuber, 2005) to construct

word vectors by concatenating the last state of LSTM in each direction.

Bojanowski et al. (2016) propose a model, called Fasttext, that takes character

3- to 6-grams of words and represent the words with bag of n-grams. i.e. for the word

"where" the 3-grams are: (<wh, whe, her, ere, re>), where < and > are special characters

for denoting the beginning and end of the word respectively. N-grams are then summed
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to produce word embeddings. Thus, as the model shares representations across words,

it is capable to have better representations for rare words. They perform extensive tests

on morphologically rich languages to see how their model works and learns the subword

information.

Cao and Rei (2016) aim at solving unsupervised morphology induction and learn-

ing word embeddings jointly by using bidirectional LSTMs (Hochreiter and Schmidhuber,

1997) with Bahdanau attention (Bahdanau et al., 2014) on characters. The output of the

attention layer is fed to Skip-gram (Mikolov et al., 2013) algorithm to compute word

representations. They prove that the attention layer learns how to split words into multi-

ple morphemes by showing that their algorithm outperforms other morpheme induction

methods although it is not only designed for solving that problem. They also show that

since their method (char2vec) is focused on finding morpheme representations through

characters, it is better at tasks that measure syntactic similarity. On the other hand, they

argue that their method is worse at tasks that measure semantic similarity since characters

do not convey any semantic information of words alone.

To address both syntactic and semantic features, Kim et al. (2016) use a mixture

of character and word-level features. In their model, at the lowest level of the hierarchy,

character-level features are processed by a CNN, after transferring these features over

a highway network, high-level features are learned by the use of an LSTM. Thus, the

resulting embeddings show good syntactic and semantic patterns. For instance, the closest

words to the word richard are returned as eduard, gerard, edward, and carl, where all of

them are person names and have syntactic similarity to the query word. Due to character-

aware processing, their models can produce good representations for out-of-vocabulary

words.

Xu et al. (2018) (LMM) also aim at enhancing word representations with morpho-

logical information. In incorporating morphological information, authors suggest using

the latent meaning of morphemes instead of morphemes themselves. They state that al-

though the words 𝑖𝑛𝑐𝑟𝑒𝑑𝑖𝑏𝑙𝑒 and 𝑢𝑛𝑏𝑒𝑙𝑖𝑒𝑣𝑎𝑏𝑙𝑒 have similar semantics, the methods based

on morphemes cannot catch it. Instead, they use the latent meaning of morphemes that they

extract from knowledge bases (i.e. in=not, un=not, ible=able, able=able, cred=believe,

believ=believe). They use CBOW (Mikolov et al., 2013) as pre-trained word embeddings

and show improvements using their method on them.

Among the models that adjust the pre-trained word embeddings, Rothe and

Schütze (2015) take any word embeddings and transform them into embeddings for lex-

emes and synsets. In order to do that they use WordNet (Miller, 1995) synsets and lexemes

although they note that their model (AutoExtend) can also get the information from other

knowledge bases such as Freebase (Bollacker et al., 2008). They consider words and

synsets as the sum of their respective lexemes and enforce three constraints on the system

i) synset constraint ii) lexeme constraint and iii) WordNet constraint (due to the fact that

27



some synsets contain only a single word). They use an autoencoder where the result of

the encoding corresponds to synset vectors, and the hidden layer in encoding and its coun-

terpart in decoding corresponds to lexeme vectors. Two lexeme vectors are then averaged

to produce the final lexeme embeddings.

On the other hand, Cotterell et al. (2016) use a Gaussian graphical model where

words’ embeddings are represented as the sum of their morphemes. Their system takes

the output of other word embedding methods as input and converts them by learning their

morpheme embeddings and calculating the word embeddings by summing them. They

also note that with their method it is also possible to extrapolate the embeddings of OOV

words since their morpheme embeddings can be calculated from the same morpheme in

other words.

2.9 Contextual Representations

As is shown in the last sections, many methods have been proposed for solving the

deficiencies of embedding methods. Each of them is specialized on a single problem such

as sense representation, morpheme representation, etc., while none of them was able to

combine different aspects into a single model, a single solution. It is the idea of contextual
representations to provide a solution that covers each aspect successfully. The main idea

behind contextual representations is that words should not have a single representation

to be used in every context. Instead, a representation should be calculated separately

for different contexts. Contextual representation methods calculate the embedding of a

word from the surrounding words each time the word is seen, contrary to the earlier

methods where each word is represented with a fixed vector of weights. This leads to an

implicit solution to many problems such as sense representations, antonymy/synonymy,

and hypernymy/hyponymy since now multi-sense words can have different representations

according to their context. Furthermore, it has also been proposed to use characters as input

which also incorporates the sub-word information into embeddings. Therefore, contextual

representation models, described below, can incorporate different aspects together into a

single model. Liu et al. (2020) examine contextual embeddings in detail by comparing

their pre-training methods, objectives, and downstream learning methods.

In such a first attempt to create contextual representations, Melamud et al. (2016)

develop a neural network architecture based on bidirectional-LSTMs to jointly learn con-

text embeddings with target word embeddings. They feed words to a 2-layer bidirectional

LSTM network in order to predict a target word in a sentence. They use sentences as

context and feed the left side of the target word to the left-to-right (forward) biLSTM and
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feed the right side of the target word to the right-to-left (backwards) biLSTM. To jointly

learn context and target word embeddings, they use a Skip-gram objective function that

is sampled on context-word occurrences. Furthermore, they show that this is equivalent

to the factorization of a context-target word co-occurrence matrix. Although previous

word embedding models create both context and target word embeddings, they only use

target-target similarity as representations and ignore the context embeddings. In this work,

authors also use context-context and context-target to show that contextual embeddings

can improve the performance of NLP systems significantly. They also show that since

bidirectional LSTM structures can learn long-term contextual dependencies, their model,

context2vec, is able to differentiate polysemous words with a high success rate.

CoVe (McCann et al., 2017) uses Glove (Pennington et al., 2014) as the initial

word embeddings and feeds them to a machine translation architecture to learn contextual

representations. The authors argue that pre-training the contextual representations on

machine learning tasks, where there are vast amounts of data, can lead to better contextual

representations to use as a transfer learning to other downstream tasks. They concatenate

the output of the encoder of a machine translation model (as contextual embeddings) with

GloVe embeddings to construct their final word representations.

Using language modelling and learning word representations as a pre-training

objective then fine-tuning the architecture to downstream tasks is first proposed by Dai

and Le (2015) and Howard and Ruder (2018). While Dai and Le (2015) propose to

use RNNs and autoencoders to tackle the issue, ULMFiT (Howard and Ruder, 2018)

introduces novel fine-tuning ideas such as discriminative fine-tuning, slanted triangular

learning rates, and gradual unfreezing to their LSTM model, inspired from the advances

in transfer learning in computer vision. After the success shown by these models, the aim

is shifted from creating word representations to using their system as pre-trained models

and then fine-tuning a classifier on top to perform on downstream tasks.

ELMO (Peters et al., 2018) improves on the character-aware neural language model

by Kim et al. (2016). The architecture takes characters as input to a CNN network from

where it is fed to a 2-layer bidirectional-LSTM network to predict a target word. They

show that this architecture can learn various aspects of words such as semantic, syntactic,

and sub-word information. First, they show that, since model takes characters as inputs,

it is able to learn sub-word information even for the unseen words. Second, they show

that while the first layer of biLSTM better captures the syntactic similarity of words, the

second layer better captures the semantics. Therefore, they propose to use the different

layers of the model to create word representations. They also propose to use a weighted

averaging method for combining the different layers. They show that including ELMO

representations can improve many state-of-the-art models in various NLP tasks.

Instead of using words as input, Flair (Akbik et al., 2018) uses a character-level

language model to learn contextual word representations. Different from ELMO (Peters
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et al., 2018) where character level inputs are later converted into word features, in this work

authors propose to use characters only. They feed the characters of an input string to a

single layer LSTM network and try to predict the next character. They, later, form the word

representation by concatenating the backwards LSTM output from the beginning of the

word with the forward LSTM output from the end of the word. They also try concatenating

other pre-trained word vectors with their contextual representations in downstream tasks

and show that this can improve the results.

BERT (Devlin et al., 2019) uses bidirectional transformer (Vaswani et al., 2017)

architecture to learn contextual word representations. Different from the earlier approaches

(ELMO (Peters et al., 2018), Melamud et al. (2016)) BERT is bidirectional. Although

ELMO also considers both sides of a target word, it considers them separately as the

left-side and right-side. Instead, BERT spans the entire sentence with both right-to-left

and left-to-right transformers. To be able to do so, without also spanning the target word,

they mask the target word. Therefore, they call this model, a masked language model

(MLM).

In addition to the token (word) embeddings, they also use segment (sentence)

embeddings and position embeddings (words’ position in segments) as input which enables

BERT to consider multiple sentences as context and to represent inter-sentence relations.

Giving multiple sentences as input helps BERT to be integrated into most downstream

tasks that require inter-sentence connection such as Question Answering (QA) and Natural

Language Inference (NLI) easily without requiring any other architecture. For further

details, the reader can refer to the work of Rogers et al. (2020), which provides an in-

depth survey on how exactly BERT works and what kind of information it captures during

training and fine-tuning.

XLNet (Yang et al., 2019) is an autoregressive method that combines the advantages

of two language modelling methods: Autoregressive models (i.e. transformer-XL (Dai

et al., 2019)) and autoencoder models (i.e. BERT (Devlin et al., 2019)). Specifically,

It takes into account both sides of the target word by employing a permutation language

modelling object without masking any words like BERT. This allows their model to capture

also the relation between the masked word and the context words, unlike BERT.

ALBERT (Lan et al., 2020) aims at lowering the memory consumption and training

times of BERT (Devlin et al., 2019). To accomplish this, they perform two changes on the

original BERT model: They factorize the embeddings into two matrices to be able to use

smaller dimensions and they apply weight sharing to decrease the number of parameters.

They state that the weight sharing also allows the model to generalize better. They show

that although they can obtain state-of-the-art results over BERT with fewer parameters,

ALBERT requires longer time to train than BERT.

RoBERTa (Liu et al., 2019) revises the pre-training design choices of BERT

(Devlin et al., 2019) by trying alternatives in a controlled way. Specifically, dynamic
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masking for the Masked Language Model (MLM), input format of full sentences from a

single document with the Next Sentence Prediction (NSP) loss removed, and byte-level

Byte Pair Encoding (BPE) vocabulary give better performance. Moreover, they extend

the training set size and the size of mini-batches in training. As a result, RoBERTa (Liu

et al., 2019) achieves state-of-the-art results in GLUE, RACE, and SQuAD benchmarks.

In their work, called ERNIE, Sun et al. (2019) improve on BERT by introducing

two knowledge masking strategies into their masked language modelling. In addition to

masking out random words in the sentence, they also mask phrases and named entities

in order to incorporate real-world knowledge into language modelling/representation. In

their successive work, ERNIE 2.0 (Sun et al., 2020), they implement continual multi-

task learning. Including the one in ERNIE, they define seven pre-training tasks that

are categorized into word-aware, structure-aware, and semantic-aware pre-training tasks,

where they aim to capture lexical, syntactic, and semantic relations respectively.

GPT and its variants rely on a meta-learner idea by using a conditional language

model in diverse NLP tasks. This conditional language model predicts the next word

conditioned both on an unsupervised pre-trained language model and the previous set

of words in context. In GPT-3, (Brown et al., 2020) pre-train a 175 billion parameter

transformer-based language model on a sufficiently large and diverse corpus and tests

its performance in zero-shot, one-shot, and few-shot settings. Their learning curves for

these three settings show that larger a model is better in learning a task from contextual

information. Authors apply task-specific input transformations e.g. delimiting context and

question from the answer in reading comprehension, to test the model’s performance in

different NLP tasks. Their few-shot results prove the effectiveness of their approach by

outperforming state-of-the-art on LAMBADA language modelling dataset (Paperno et al.,

2016), TriviaQA closed book open domain question answering dataset (Joshi et al., 2017),

and PhysicalQA (PIQA) common-sense reasoning dataset (Bisk et al., 2019).

2.10 Multi-Modal Word Embeddings

Initially, attempts to bring together textual and image features focused on using

one type of information to enhance the results of the other. Instead of training a joint

model, these works use the features of a trained model in one modality as target values

or additional feature vectors in other modality to enhance the latter’s performance. This

method is called transfer learning.

One of the first such attempts at transfer learning was zero-shot learning of image

classification methods. Zero-shot learning, as its name suggest, aim at successfully

31



predicting samples that model was not trained with. In order words, the models that

can predict unseen samples is called zero-shot learning models. Earlier models of image

classifiers (i.e. Deng et al. (2009), Szegedy et al. (2015), He et al. (2016)) were subject

to two main drawbacks: Inability to predict unknown classes and failure to identify the

relationship between different classes. Most of the image models are trained on the

ImageNet image classification dataset (Deng et al., 2009) with 1000 labels where each

label is considered distinct and independent from the others. Any model that is trained on

these classes was unable to make any predictions when a new class is given to the model.

Considering the fact that, there are new classes emerging in the world every day, such as

new car brands/models, discoveries, etc., training these models from scratch every time a

new class label is introduced, is very time consuming and not a feasible solution since it

requires a lot of training time. In addition to that, there may not be enough training data

for those emerging classes either. Therefore, there was a need for a model that can adjust

to the unseen classes without requiring re-training the neural network all over again. The

second problem of image models was the independence assumption among target classes.

Neural image models such as AlexNet (Krizhevsky et al., 2012), GoogleNET (Szegedy

et al., 2015) and Resnet (He et al., 2016), all use the softmax classification layer in order

to make predictions. This method draws out the difficulty in differentiating a class label

from another. However, nearly all classes in the imageNet dataset have a hierarchical

structure: Some classes in the dataset are more similar than they are to other classes. For

example, it is easier for any model (or any human annotator) to be confused about the

classification of an image between the classes "Australian terrier" and "Airedale terrier"
than to be confused between the classes "Australian terrier" and "container ship". Even

if a model makes a mistake in identifying the correct class label, it is more realistic and

more acceptable to make that mistake with a label very similar to the ground-truth label

rather than an irrelevant one.

2.10.1 Zero-Shot Learning

To solve the aforementioned problems, zero-shot learning methods propose to use

word embeddings as target values instead of using the softmax layer and one-hot target

vectors. This way the classifier is not limited to the number of classes in the training set

(which is 1000), instead it is limited by the size of the vocabulary of word embeddings

(which are in terms of millions). Furthermore, even if the model makes a mistake in the

prediction, it picks a similar class label to the ground-truth which makes the errors more

realistic and acceptable. In addition to the many benefits mentioned above, these models
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also produce multi-modal embeddings as a side effect.

To our knowledge, the first neural model to leverage the textual information for

zero-shot learning was Weston et al. (2010). They used a linear mapping from visual

features into a feature space where both image features and annotations are represented.

Rohrbach et al. (2011) examine the effectiveness of various methodologies of

knowledge transfer (KT) from text to image models: Hierarchy-based KT, attribute-based

KT, and finally direct similarity-based KT.

In their zero-shot learning model, Socher et al. (2013) use the method of Coates

and Ng (2011) to extract the set of features from images that are fed to a two-layer feed-

forward neural network for mapping them to the corresponding vectors in embedding

space. Huang et al. (2012) is used to create word embeddings. The authors also use

novelty detection algorithms to decide whether a given sample is unknown or it belongs

to an already trained class label.

DeViSE (Frome et al., 2013) trains separately an image model (AlexNet (Krizhevsky

et al., 2012)) and a language model (word2vec (Mikolov et al., 2013)). Then, the trained

word embeddings from the language model are used as target vectors for image classifica-

tion tasks.

Instead of training the image models by replacing the softmax layer with word

embeddings, ConSE (Norouzi et al., 2014) transforms the output of the softmax layer

to an embedding space. By using such transformation, they manage to build a zero-shot

learning system with the existing pre-trained models without requiring any further training.

Kodirov et al. (2017), on the other hand, states that naively replacing the target

one-hot vectors with word embeddings leads to domain shift problems. Although the

model can predict the labels that it does not train with in the first place, it does not preserve

the information coming from the textual embeddings after training. By introducing their

autoencoder approach, which tries to reconstruct the image input with the same embedding

(word2vec embeddings Mikolov et al. (2013) are used in their work) that it tries to predict,

they aim at overcoming the domain shift problem.

Xian et al. (2018) target the data imbalance problem between seen and unseen

classes. They propose a generative adversarial network model to circumvent the issue and

obtain a significant performance increase in many zero-shot learning tasks.

Similar to Norouzi et al. (2014), Changpinyo et al. (2016) also propose to transform

the model space into a semantic space. To do so, they use manifold learning on various

embedding models and image models.

Romera-Paredes and Torr (2015) propose a linear mapping approach for training the

image models with semantic labels. Different from Norouzi et al. (2014) and Changpinyo

et al. (2016), they use attribute signatures of images instead of using the outputs of image

models such AlexNET (Krizhevsky et al., 2012), Resnet (He et al., 2016), etc.

Xie et al. (2019) were the first to implement an attention mechanism in a zero-shot
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learning problem. For further improving the results of zero-shot learning systems, they

use an attentive regional embedding network with Resnet (He et al., 2016). Their network

can learn how to attend to image regions depending on the semantic embeddings used in

the sample.

As an alternative way of accomplishing the task of zero-shot learning, researchers

proposed to use generative adversarial networks (GAN) to create samples for unseen

classes. With this approach, for each unknown class, a pre-trained GAN model is run to

create samples from its embedding. Later, these synthesized samples are used to train

the model. This scheme allows the models to implicitly learn the textual features and use

traditional classification layers such as softmax.

In such a work, Ma et al. (2020) used a Wasserstein GAN to create synthesized

images from semantic embeddings to enhance the classification of unseen classes. Al-

though they mostly experimented with datasets which has a lower number of classes than

imageNET (Deng et al., 2009), they report a significant increase in performance.

Zhu et al. (2018) also make use of a GAN to create synthesized images, but instead

of using embeddings to create images, they used noisy textual descriptions (i.e. Wikipedia

articles).

These models and many more that followed them in their footsteps were able to

generalize better to unknown labels, making the models more successful for downstream

tasks. For further information on zero-shot learning, the reader can refer to the surveys of

Xian et al. (2019) and Wang et al. (2019).

2.10.2 Multi-Modal Representations and Language Models

Various studies examined the use of visual information for training language mod-

els. While some of those studies focused on producing better representations (Andrews

et al. (2009), Bruni et al. (2014a), Bruni et al. (2012), Kiros et al. (2014a), Liu et al.

(2017), Hill and Korhonen (2014), Ororbia et al. (2019), Kiros et al. (2014b)), most of

these models produce multi-modal embeddings as a side-product of a multi-modal task.

These tasks include image retrieval with text/captioning (Karpathy et al. (2014), Karpa-

thy and Fei-Fei (2017), Wang et al. (2016)), image-text alignment (Lee et al. (2018),

Socher and Fei-Fei (2010)), image segmentation using a target text (Yu et al. (2018)),

visual question answering (Anderson et al. (2018), Agrawal et al. (2018), Gao et al.

(2019)), visual common-sense reasoning (Zellers et al. (2019)), and image captioning
(Kiros et al. (2014b)). Some other studies also contributed to the field of multi-modal

language modelling by encompassing many of these models similar to contextual embed-
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ding (Lu et al. (2019)) or by enhancing the existing models (Shi et al. (2018)). As the

field is relatively new, most of these works focus on the fusion of modalities more than the

individual models.

One of the first models to experiment with multi-modal representations is Andrews

et al. (2009). In their work, they draw attention to advances in cognitive science where it

is shown that language acquisition in children mostly relies on experiential data. They use

LDA (Blei et al., 2003) on human generated data (experiential) and text (distributional)

to calculate multi-modal representation of words. They create three models: one model

from experiential data, one model from text and finally a combined LDA model that is

created from the combined data.

Similar to Andrews et al. (2009), the mixLDA model of Feng and Lapata (2010)

also ground their reasoning to advances in cognitive science which states that human

language perception relies significantly on experiential data. They use a modified version

of LDA to create their multi-modal representations.

Socher and Fei-Fei (2010) proposed the use of canonical correlation analysis (CCA)

for image-text alignment. They were able to form a joint latent meaning space of vision

and text for words.

Leong and Mihalcea (2011) use non-neural methods to find representations for

text and image and combine them by summing their relatedness ratings. They show that

information from images improves the models’ success in word relatedness tasks such

as MC (Miller and Charles, 1991), RG (Rubenstein and Goodenough, 1965) and WS

(Finkelstein et al., 2001).

Kiros et al. (2014a) use a language model based on LBL (Mnih and Hinton, 2007).

They learn the features of images through a CNN and feed them to their MLBL language

model along with the textual inputs.

Hill and Korhonen (2014) extend the word2vec model (Mikolov et al., 2013) to

incorporate the experiential information. They used the ESP game dataset (von Ahn and

Dabbish, 2004) and CSLB dataset (Devereux et al., 2014), where the objects in the image

are given for each sample, for obtaining visual features. While training the word2vec

model, if one of the words in the image dataset is encountered, the model is also run with

the pseudo-sentence created by concatenating object words in the image.

Instead of creating a joint embedding space of image and text, Karpathy et al.

(2014) and Karpathy and Fei-Fei (2017) create image and text representations separately

and use an alignment objective on the pairs of visual and textual features. Also, different

from many approaches mentioned here, they use dependency relations as input to the text

encoder instead of words in isolation.

Bruni et al. (2014a) and Bruni et al. (2012) combine the Scale-Invariant Feature

Transform (SIFT) feature vectors (Lowe, 1999) with word embeddings through weighted

averaging to form multi-modal embeddings. They show that their model performs worse
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than textual models in semantic relatedness tasks but outperform them in others.

Instead of fusing the multi-modal information together, SC-NLM (Kiros et al.,

2014b) learns separate embeddings and try to project them into a single joint embedding

space by pulling the image-text pairs together using pairwise ranking loss. In their work,

they also show that algebraic operations on multi-modal embeddings also work by showing

that *image of a blue car* - "blue" + "red" is near to the images of red cars.

Wang et al. (2016) use Hybrid Gaussian-Laplacian mixture model (HGLMM)

(Klein et al., 2015) and VGG-19 (Simonyan and Zisserman, 2015) to obtain features and

feed them through two feed-forward layers. They use the inner product of the modalities

in order to fuse them.

RRFNet (Liu et al., 2017) introduces the recurrent residual fusion (RRF) blocks to

further enhance and bridge the gap between textual and vision features they obtained with

Hybrid Gaussian-Laplacian mixture model (HGLMM) (Klein et al., 2015) and Resnet-152

(He et al., 2016) respectively. To combine the enhanced outputs of RRFs, they use the

inner product and calculate the loss with the bidirectional rank loss.

The method of Eisenschtat and Wolf (2017) differs from the other works in this

field in terms of the training scheme. Instead of training visual and textual inputs together

with a common classification task, they use a 2-way neural network architecture with

three feed-forward layers where each network receives the input in one modality and try to

reconstruct the input of the other modality. They use canonical correlation analysis (CCA)

on the middle layers with euclidean loss to train the network.

Shi et al. (2018) state that the multi-modal language models are vulnerable to

adversarial attacks. To overcome this issue, they train their model, VSE-C, with adversarial

examples that they created from the COCO dataset (Sharma et al., 2018). They fuse the

word embeddings with the image features from Resnet-152 (He et al., 2016) using the

embedding interaction method (Gong et al., 2017).

Collell Talleda et al. (2017) learn a mapping function that maps the textual em-

beddings to the output of a CNN, therefore learning to "imagine". Later, they concatenate

the textual embeddings with their corresponding mapped vector during testing to form

multi-modal embeddings.

MAttNet (Yu et al., 2018) aims at image segmentation with textual information.

Their model finds the segments in images that are described by the textual information such

as: "person on the left" or "the women with the short red hair". They use a bidirectional-

LSTM (Hochreiter and Schmidhuber, 1997) and experimented with both Resnet (He et al.,

2016) and faster-RCNN (Ren et al., 2015) for each modality respectively.

Anderson et al. (2018) propose to combine the image and textual features through

bottom-up and top-down attention mechanisms. They use an LSTM to compute a repre-

sentation for text and a combination of Resnet (He et al., 2016) and faster-RCNN (Ren

et al., 2015) to find image features. Later, they perform a weighted sum over the image
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features with the output of attention mechanism (either bottom-up or top-down) that uses

both image and text representations. Finally, they combine these weighted features of

images with textual features to feed to the final feed-forward layers and a classification

layer.

The SCAN (Lee et al., 2018) model uses the bottom-up attention mechanism for

image-text alignment, where the corresponding object is found in the image for each word

in the sentence. They compute the representation for images with a modified version of

the combination of faster-RCNN (Ren et al., 2015) and Resnet (He et al., 2016) and find

textual representations through a bidirectional GRU (Cho et al., 2014). They combine

the two modalities through a Stacked Cross Attention Network where the image patch is

compared to the attended sentence representation.

Lu et al. (2019) propose a concurrent pre-training scheme of image and text

models, called VilBERT. To accomplish that they use two BERT (Devlin et al., 2019)

models combined with the co-attention layers proposed by Ren et al. (2015). Each BERT

model is responsible for a different modality. One BERT model takes the text input while

the other processes the image features obtained with the object detection model Faster-

RCNN (Ren et al., 2015). Both model outputs are given to the multi-attention heads of the

other through the co-attention layers in order to form a joint feature space. Their training

objectives are followed from the original BERT model: masked multi-modal modelling

and multi-modal alignment prediction.

GVQA (Agrawal et al., 2018) has a similar approach to VilBERT by leveraging an

LSTM model (Hochreiter and Schmidhuber, 1997) for text input using GloVe embeddings

(Pennington et al., 2014) and VGG model (Simonyan and Zisserman, 2015) combined

with Stacked Attention Networks (SAN) (Yang et al., 2016) for image input. The major

difference between the two models is that the GVQA directly uses a pre-trained image

model without extra training and combine the models at the test time while VilBERT

also performs the pre-training on the combined model with the Microsoft COCO dataset

(Sharma et al., 2018). Although this extra training gives VilBERT an advantage over

GVQA, it might also introduce a training bias, since the VQA dataset (Antol et al., 2015)

also uses the COCO images.

In addition to their proposed model, the authors also state that the original VQA

dataset (Antol et al., 2015) contains bias and relies on language priors where questions

such as "what is the colour of" always leads to white/no. This causes a poor generalization

on test sets. To overcome this issue, they use different splits in training and test sets and

report their results on this modified dataset.

The DFAF (Gao et al., 2019) model uses faster-RCNN (Ren et al., 2015) and

GRU (Cho et al., 2014) network with GloVe embeddings (Pennington et al., 2014) for

encoding image and textual inputs respectively. After computing the features, they are

passed through inter and intra modality attention modules which attend over each modality
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individually and together to learn cross-modal features. They state that using attentions

between and across the modalities can lead the system to capture high-level interactions

between the language and vision domains.

The R2C model (Zellers et al., 2019) targets commonsense reasoning of movie

scenes. In their dataset, images from the movie scenes are paired with commonsense

reasoning questions such as "Why is [person1] pointing at [person2]?". The aim of the task

is to find the corresponding answer among given choices. Their model for solving this task

consists of three parts: grounding, contextualizing, and reasoning. In the grounding part,

a joint representation of image and text is found through bidirectional-LSTMs (Hochreiter

and Schmidhuber, 1997) and a CNN. The contextualization part involves an attention

mechanism between query and response over the learned representations. Finally, in the

last part, the reasoning, another bidirectional-LSTM is used to generate reasoning.

Anastasopoulos et al. (2019) experiment with various strategies for combining the

experiential information and textual information: combining them before feeding them to

the model (early fusion), combining them between the layers of the model (middle fusion),

and combining them after all the layers (late fusion). They also tried combining them as

a linear combination of the outputs in the classification layer. They show that the middle

fusion works the best. The major difference between their model and the others is that they

use videos instead of images for experiential information. As a language model, they use

a two-layered LSTM (Hochreiter and Schmidhuber, 1997) with wordpiece embeddings

and video embeddings. Although they did not test their model on downstream tasks, they

show that their model works with language model objectives.

Unified-VSE (Wu et al., 2019) also aims at forming a joint space of visual and

semantic embeddings, but the difference of their methods from the others is that they

form representations for different semantic components: objects, attributes, relations, and

scenes. They use the GloVe (Pennington et al., 2014) embeddings with a uni-directional

GRU (Cho et al., 2014) for textual parts and the Resnet-152 model (He et al., 2016)

for image parts. They use alignment losses for each semantic component and negative

sampling for training their joint model.

Ororbia et al. (2019) integrated the visual features they obtain with the inception

model (Szegedy et al., 2016) in various language models (RNN, LSTM (Hochreiter and

Schmidhuber, 1997) and GRU (Cho et al., 2014)). It is accomplished by feeding the image

features into every time-step of RNN/LSTM/GRU. Their reasoning was similar to ours:

Language is inseparable from the physical or social context.

Among these works, the closest to our study are VilBERT (Lu et al., 2019), and

Hill and Korhonen (2014). VilBERT is the only work to propose the use of additional

multi-modal pre-training similar to ours, but the difference between our model and theirs is

we take advantage of the concreteness information similar to curriculum learning (Bengio

et al., 2009), while they merely train with multi-modal data without regard for any inherent
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information. Hill and Korhonen (2014) on the other hand, do not perform extra pre-

training steps although they perform multi-modal training during the first pre-training

phase. Finally, the essential difference is, even though their model can differentiate the

concreteness levels of the words explicitly (they only train their model on images if one of

the words appears in images as objects), they compute their experiential features from the

text too, where the image and textual features do not align. As experiential features, they

do not use images themselves but use the textual embeddings of the objects that exist in

a particular image as if it is a sentence. Consequently, this leads to unaligned image-text

pairs during training.

2.11 Curriculum Learning

Many deep learning methods use randomly ordered samples during training which

contradicts how the humans learn the concepts: We start learning with easy concepts

and gradually increase the difficulty of the task as we get better. Curriculum learning

(CL), as a study, aims at creating a meaningfully ordered training set in terms of difficulty,

mimicking the human learning process.

Although curriculum learning has risen popularity in the last few years, similar to

neural network methods, it also has a long history of research dating back to the work of

Newport (1990) and Elman (1993).

In his "less is more" hypothesis, Newport (1990) provides empirical evidence that

early learners of languages are significantly more successful than the late learners. It is

shown that this is mainly due to starting from "less" towards "more" in terms of language

knowledge that is already acquired.

In his work, Elman (1993) shows that "starting small", both in terms of difficulty

of the training test and in terms of the the size of the network used, benefits language

learning process significantly. It is argued that this benefit comes mainly from the fact

that starting small reduces the number of error minima in the system therefore prevents

the system from falling into a local minima where it is very hard to escape from in later

stages of the training.

Bengio et al. (2009) was the work that popularized the idea of using a curriculum

learning for training deep neural networks. In their paper, they show that the curriculum

learning can help neural networks to converge faster and find a better minima in the case

of non-convex optimization.

Depending on how they classify a sample as easy or hard, the curriculum learn-

ing literature is divided into various sub-fields, described below (For further details on
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curriculum learning refer to the surveys of Soviany et al. (2021) and Wang et al. (2021)).

Traditional curriculum learning, also called as vanilla CL or easy-to-hard CL,

uses prior knowledge on the dataset to divide the samples into easy and hard. Mostly,

this separation is provided by the researchers heuristically, based on predefined difficulty

criteria on a sub-field.

Spitkovsky et al. (2009) use an easy-to-hard curriculum training for unsupervised

dependency parsing. Their easy samples are formed from short sentences in which it

is easier to determine the dependency (trivial case being one word sentences where the

dependency is on the word itself), to long sentences in which the complexity of determining

the dependency is increased (sentence of up to 45 words where there might be dozens of

words in between the dependents).

Caubrière et al. (2019) apply easy-to-hard CL to spoken language understanding

where the samples are ordered from the most generic concepts to more specific ones. They

define the generic as the level of information conveyed in the the training samples: most

generic samples are just plain words while the less generic ones also contain additional

information such as named entity tags.

Similar to Caubrière et al. (2019), Shi et al. (2013) also order the training samples

from generic to specific. In their case, their language model is trained with the texts of

more generic topics first, then the specific contexts specialized on various topics are used

to conclude the training.

Zaremba and Sutskever (2014) use easy-to-hard CL training for learning to under-

stand and execute computer programs with language models. Different from other vanilla

CL work, they also include some difficult examples early on in the training and increase

their ratio gradually throughout the training.

Instead of ordering samples, Kim et al. (2019) order the tasks from easy to hard

in order to train their multi-modal question answering model. Their model is composed

of three tasks: The easiest task, modality alignment is given priority at the beginning of

the training. Then, the temporal localization task is focused on. Finally, the question

answering task is set to higher priority for the training.

Instead of using prior knowledge, Self-Paced Learning (SPL) suggests using the

models’ own feedback as a measure of difficulty. Samples are classified as easy or hard

on the fly during training, using various metrics such as classification loss, confidence

intervals of prediction, etc.

Kumar et al. (2010) classify samples as easy if it is easy to predict the correct

output. They compute this with the degree of certainty of the model predictions.

Lee and Grauman (2011) determine the easiness of objects in images dynamically

with two criteria: 1) objectness: likelihood of object being in any generic category, 2)

context-awareness: likelihood of its surrounding objects are of familiar categories. They

start with a set of generic categories such as grass, sky, road, etc. and add the easiest
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unknown object category to it one by one throughout the training.

Xu et al. (2020) propose a SPL model for fine-tuning the language models on

natural language understanding. They use the success of their initial model as a deciding

factor for the difficulty of the samples and built their training set accordingly.

Xu et al. (2018) propose a self-paced learning approach to multi-modal image

classification. Their model feeds the classification losses for each modality into curriculum

learning module by using the modality weights. Curriculum learning model is, then used

for updating the modality weights. With this method, samples are fed into the training

from easy to hard gradually until the model converges.

Self-Paced Curriculum Learning (SPCL) is a combination of self-paced learning

and vanilla CL. It aims at combining the advantages of both by taking into account the

prior knowledge (as in vanilla CL) and the feedback from the learner (as in SPL).

Jiang et al. (2015) introduce the idea of self-paced curriculum learning, where the

learning scheme in curriculum learning is merged with the dynamic setting of self-paced

learning. SPCL manages to create a "student-teacher collaborative learning" environment

by both taking prior knowledge as in curriculum learning and dynamically arranging

training samples in terms of difficulty. A regularization term is used to determine the

difficulty of samples during training based on their losses.

All of the aforementioned CL training methods divide the training samples into

discrete categories depending on the prior knowledge, knowledge obtained during training,

or both. Progressive CL, on the other hand, does not use any discrete categories of

training samples. Instead, it aims at gradually increasing the difficulty of training samples

continuously throughout the training.

Morerio et al. (2017) propose to increase dropout rate for image inputs in order

to change difficulty at training. They state that the negative co-adaptations in neural

network occur during the later stages in training, therefore using a constant drop-rate is

not optimal. They show that using dynamic dropout-rate in a curriculum learning fashion

provides better results in training.

Braun et al. (2017) implement a progressive CL method on automatic speech

recognition by gradually increasing the noise from 0dB to 50dB as the training goes on.

Teacher-Student CL uses two models during training in order to create a curricu-

lum: A teacher network that decides which samples are easy and which ones are hard,

and a student network that learns the task at hand. While some studies use a static teacher

network with unaltered weights during training, some others train the teacher network as

well, alongside the student network.

Kim and Choi (2018) train two networks jointly: a student network that is trained

to determine the significance of the samples into easy and hard cases and a main network

that learns the task at hand. The significance of samples is computed using the losses of

both networks at each iteration in training.
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Hacohen and Weinshall (2019) use a pre-trained teacher network (Inception

Szegedy et al. (2016)) to classify the samples into easy and hard cases based on the

confidence level of predictions. Then, the student network is trained with the samples

with gradually increasing difficulty.

Gong et al. (2016) and Gong (2017) propose a teacher-student CL algorithm for

multi-modal classification tasks. It is argued in the paper that selecting easy samples

over all modalities with a common curriculum can be misleading since it does not take

into account the individuality of each modality. Therefore, they propose to use multiple

teacher models that work on an individual model, then, their outputs are used to decide

the easy samples for the student model. As a result, this "soft fusion" technique is able

to consider the individual characteristics of each modality while still being subject to

common curriculum criteria.

The final way of meaningfully building a curriculum is the Active Learning, which

orders the training samples using uncertainty rather than assessing the difficulty.

Chang et al. (2017) propose a system where the uncertainty in the prediction is

used as the method of distinction among samples instead of difficulty. Priority is given

to samples with low prediction variance, and later the model uses more the samples with

high prediction variance (samples that are predicted as different classes in different runs).

Tang and Huang (2019) combine the Active learning with self-paced learning to

benefit from the advantages of both methods. Their self-paced active learning method

simultaneously considers both the easiness of examples and their informativeness through

the use of uncertainty. They argue that although the active learning methods take into

consideration the informative and representative samples, they might select over-complex

samples in early stages of training. Therefore, the samples cannot be utilized fully on the

model at hand.

Lotfian and Busso (2019) implement an active learning framework for multi-modal

curriculum learning for speech emotion recognition. They use the disagreement between

the human annotators as the source of uncertainty, and use it to order the training samples

from the easier, unambiguous ones to harder and ambiguous cases.

There have been some studies among the aforementioned work that focused on

implementing curriculum learning on language models (Bengio et al., 2009; Shi et al.,

2013; Xu et al., 2020; Zaremba and Sutskever, 2014) and some studies that focused on

using curriculum learning on multi-modal tasks (Gong et al., 2016; Gong, 2017; Kim et al.,

2019; Xu et al., 2018; Lotfian and Busso, 2019). But, to our knowledge, this is the first

work that brings all these aspects together into a single model and a single training scheme

(Sezerer and Tekir, 2021). The training methodology in this work falls into easy-to-hard

curriculum learning category, since it uses prior knowledge to order the samples.
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2.12 Evaluation of Embedding Models

Due to the popularity of the field, many datasets are proposed and tested upon. In

this section, we report the structure of the datasets and the performance of the aforemen-

tioned word embedding models on them.

2.12.1 Datasets

Depending on their aim, datasets produced to measure the success of embedding

models can be divided into four categories: Similarity tasks, Analogy task, Synonym

selection tasks, and Downstream tasks.

2.12.1.1 Similarity Tasks

These datasets provide pairs of words whose similarity is rated by human judge-

ments. They all use Spearman’s rank correlation (𝜌) with average human judgement to

measure the performance and quality of embeddings.

• WordSim-353 (WS-353): Finkelstein et al. (2001) produced a corpus that contains

human judgements, rated from 1 to 10, on 353 pairs of words.

• SCWS: Huang et al. (2012) introduced this dataset in which the word pairs are

scored by mechanical turkers, within a context, which is usually a paragraph from

Wikipedia that contains the given word. The reason for introducing such a dataset is

that the available test sets for similarity measurements are not sufficient for testing

multi prototype word embeddings because the scores of word pairs in those test sets

are given in isolation, which lacks the contextual information for senses.

• RG-65: This dataset, developed by Rubenstein and Goodenough (1965), is com-

posed of 65 noun pairs whose similarity is rated by human annotators.

• MC-30: The dataset (Miller and Charles, 1991) contains 30 pairs of word swhose

similarity is rated by human annotators.

• MEN: It (Bruni et al., 2014b) contains 3000 pairs of words together with human

assigned similarity score obtained from Amazon Mechanical Turk.
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• YP-130: Similar to previous test sets, YP-130 (Yang and Powers, 2005) also contains

human assigned similarity scores to 130 word pairs.

• RW: Unlike previous word similarity datasets, RW (Luong et al., 2013) consists of

2034 pairs of rare words which are not frequently seen in texts. The motivation

behind this dataset is to provide sufficient number of complex and rare words to test

the expressiveness of morphological models since previous datasets mostly contain

frequent words that is insufficient for such tests.

• Simlex-999: Simlex-999 dataset (Hill et al., 2015) contains 999 pairs of words

whose similarity is annotated by mechanical turkers.

2.12.1.2 Analogy Task

Semantic-Syntactic Word Relationship test set (Google Analogy Task) introduced

by Mikolov et al. (2013) consists of pairs of words in the form of 𝑎 is to 𝑎∗ as 𝑏 is to 𝑏∗

(such as Paris is to France as London is to England). The aim is to find 𝑏∗, given 𝑎, 𝑎∗

and 𝑏 (cosine distance is used as a distance metric to find the missing word). There are

8869 semantic and 10675 syntactic questions in the dataset and the success is measured

by accuracy.

2.12.1.3 Synonym Selection Tasks

Given a word, the aim of this task is to select the most synonym-like of the word

among the list of candidates. Accuracy (%) is used to measure the performance.

• ESL-50 (Turney, 2001) : Contains 50 synonym selection questions from ESL

(English as a second language) tests.

• TOEFL-80 (Landauer and Dutnais, 1997): Contains 80 synonym selection questions

from TOEFL (Test of English as Foreign Language) tests.

• RD-300 (Jarmasz, 2003): Contains 300 synonym selection problems from Reader’s

Digest Power Game.
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2.12.1.4 Downstream Tasks

As representations and models get better and the difference between word embed-

ding methods and language models gets closer, experiments are shifted from similarity

and relatedness tasks to downstream tasks.

GLUE benchmark dataset (Wang et al., 2018) is introduced to provide a stable

testing environment for researchers. It consists of several downstream tasks:

• CoLA: The Corpus of Linguistic Acceptability (Warstadt et al., 2019) is a sentence

classification task where the aim is to determine whether a sentence is linguistically

acceptable or not. It contains 9594 sentences from linguistic publications and the

success is measured by Matthew’ Correlation Coefficient (MCC).

• SST-2: The Stanford Sentiment Treebank (Socher et al., 2013) consists of 68.8k

sentences from movie reviews. The aim is to classify the sentiment of sentences.

Accuracy is used to measure the performance.

• MRPC: Microsoft Research Paraphrase Corpus (Dolan et al., 2004) contains 5800

pairs of sentences from news sources on the web. Each pair is annotated by humans

indicating whether they are semantically equivalent or not. Performance is measured

by accuracy.

• STS-B: Semantic Textual Similarity Benchmark (Cer et al., 2017) is composed of

8628 pairs of sentences from various sources, annotated between 1 and 5, deter-

mining how similar they are. Success is measured by Spearman’s rank correlation

(𝜌).

• QQP: Quora Question Pairs (chen et al., 2018) dataset contains over 400k question

pairs where the aim is to determine whether the questions are semantically similar

or not. Success is measured by accuracy.

• MNLI: Multi-Genre Natural Language Inference (Williams et al., 2018) dataset is

composed of 430k crowd-sourced sentence pairs annotated with entailment informa-

tion. The aim is to predict whether a second sentence is a contradiction, entailment,

or neutral to the first one. Accuracy is used to measure the performance.

• QNLI: Questions Natural Language Inference (Rajpurkar et al., 2018a) dataset is a

modified version of the SQuAD dataset (Rajpurkar et al., 2016). It contains over

100k sentence/context pairs where the aim is to determine if the context contains an

answer to the question or not.
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• RTE: Recognizing Textual Entailment (Bentivogli et al., 2009) is similar to MNLI

where the aim is to predict the type entailment of a paragraph and a sentence between

entailment, contradiction and unknown.

• WNLI: Winograd Natural Language Inference (Levesque et al., 2012) dataset also

concerns with Natural language inference similar to the MNLI and the RTE datasets.

Stanford Question Answering Dataset (SQuAD 1.1 (Rajpurkar et al., 2016) and

SQuAD 2.0 (Rajpurkar et al., 2018b)) is a reading comprehension dataset that is composed

of wikipedia articles and question related to them. The aim is to find the text segment that

gives the answer to the corresponding question. There are 150k question 50k of which

is unanswerable from the given context article. Any model built for this task should also

determine whether the question is answerable or not in addition to answering the questions.

RACE dataset (Lai et al., 2017) is also a dataset for reading comprehension taken

from the English exams for middle and high school chinese students. The aim is to find

the correct answer to the questions about a certain text passage, among the choices. There

are approximately 28k passages and 100k questions.

Leaderboards of current state-ot-the-art can be tracked either from the respec-

tive websites or from ACL Wiki website (https://aclweb.org/aclwiki/State_of_

the_art). The reader can refer to Bakarov (2018) for comparisons, advantages, and

disadvantages of the evaluation methods of word embedding models.

2.12.2 Results

In this section, we report the results obtained by the models examined in this thesis

on aforementioned datasets. In Tables 2.6, 2.7, 2.8, and 2.9, results in similarity, analogy,

synonym selection, and downstream tasks are given respectively.

While reporting the results, we follow a few criteria to make it as fair and simple

as possible:

• Unless noted otherwise, all of the results are taken from the original papers.

• If more than one paper report results on the same model, we take the one in the

original paper.

• If the author(s) provide several variations of a model, we report only the one with

the best score.

Although some of the differences in performances of word representations are due

to the models themselves, it should be noted that the size of the datasets that the models
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Table 2.6: Word Embedding Models’ Performances in Similarity Tasks (in

Chronological Order). Bottom part shows the results of multi-modal embeddings

Model Dim. WS-353 SCWS (𝜌 × 100) RG-65 MEN YP-130 RW MC-30 Simlex-999

(𝜌 × 100) avgSim avgSimC globalSim localSim MaxSimC (𝜌 × 100) (𝜌 × 100) (𝜌 × 100) (𝜌 × 100) (𝜌 × 100) (𝜌 × 100)

HLBL 100 33.2] - - - - - - - - - - -

C&W 50 29.5 - - 57.0 - - 48.0 57.0 - - - -

C&W 50 49.8 - - - - - - - - - - -

R&M - 73.4 60.4 60.5 62.5 - 60.4 - - - - - -

RNNLM 640 - - - - - - - - - - - -

Huang et al. (2012) 50 71.3 62.8 65.7 58.6 26.1 - - - - - - -

CBOW 400 69.4 64.2 - - - - 73.2 66.5 34.3 - - -

Skip-Gram 100 58.9 - - - - - - - - - - -

Skip-Gram 300 70.4 66.6 66.6 65.2 - - - - - - - -

Skip-Gram 256 66.7 - - - - - - 55.7 - 38.8 - -

Luong et al. (2013) 50 64.6 - - 48.5 - - 65.4 - - 34.4 71.7 -

CLBL - 39.0 - - - - - 41.0 - - 30.0 - -

Tian et al. (2014) 50 - - 65.4 - - 63.6 - - - - - -

Qiu et al. (2014) 200 65.2 - - 53.4 - - 67.4 - - 32.9 81.6 -

MSSG 300 70.9 67.3 69.1 65.5 59.8 - - - - - - -

Chen et al. (2014) 200 - 66.2 68.9 64.2 - - - - - - - -

GloVe 300 75.9 - - 59.6 - - 82.9 - - 47.8 83.6 41.0

Guo et al. (2014) 50 - 49.3 - - - 55.4 - - - - - -

KNET 100 66.1 - - - - - - - - 39.3 - -

CNN-VMSSG 300 - 65.7 66.4 66.3 61.1 - - - - - - -

AutoExtend 300 - 68.9 69.8 - - - - - - - - -

SenseEmbed 400 77.9 62.4 - - - - 89.4 80.5 73.4 - - -

TWE-1 400 - - 68.1 - - 67.3 - - - - - -

Jauhar et al. (2015) 80 63.9 - - 65.7 - - 73.4 64.6 - - 75.8 -

SAMS 300 - 62.5 - 59.9 58.5 - - - - - - -

SWE 300 72.8 - - - - - - - - - - -

Soricut and Och (2015) 500 71.2 - - - - - 75.1 - - 41.8 - -

Cotterell et al. (2016) 100 58.9 - - - - - - - - - - -

char2vec 256 34.5 - - - - - - 32.2 - 28.2 - -

Bojanowski et al. (2016) 300 71.0 - - - - - - - - 47.0 - -

Yin and Schütze (2016) 200 76.0 - - - - - - 82.5 - 61.6 85.7 48.5

dLCE 500 - - - - - - - - - - - 59.0
Ngram2vec 300 - - - - - - - 76.0 - 44.6 - 42.1

MSWE 300 72.4 66.7 66.7 66.8 - - - 76.4 - 35.6 - 39.2

Dict2vec 300 75.6 - - - - - 87.5 75.6 64.6 48.2 86.0 -

LMM 200 61.5 - - 63.0 - - 63.1 - - 43.1 - -

LSTMEmbed 400 61.2 - - - - - - - - - - -

Bruni et al. (2014a) - 70.0 - - - - - - 69.0 - - - -

Collell Talleda et al. (2017) - 69.4 - - - - - - 81.3 - - - 41.0

are trained on can be different, therefore can affect the fairness of comparison.

Table 2.6 shows word embedding models’ performances in similarity tasks. SenseEm-

bed (Iacobacci et al., 2015) is the best performing model in WS-353, RG-65, and YP-130

datasets according to the reported results. Yin and Schütze (2016) has superior perfor-

mance in the datasets of MEN and RW, while Dict2vec (Tissier et al., 2017) outperforms

others on MC-30. In SCWS, AutoExtend (Rothe and Schütze, 2015) gives the highest

correlation coefficient scores. In general, GloVe (Pennington et al., 2014), SenseEm-

bed (Iacobacci et al., 2015), Yin and Schütze (2016), and Dict2vec (Tissier et al., 2017)

perform well on similarity datasets.

SenseEmbed’s (Iacobacci et al., 2015) success can be attributed to its capability

to disambiguate senses by being trained on sense-tagged corpora. Glove (Pennington

et al., 2014) is generally robust as it’s a mixture of global cooccurrence and local context-

based methods. When it comes to Yin and Schütze (2016), it is an ensemble of existing

embeddings including Glove, which produces better representations for OOV words due

to its ensemble nature. Thus, it has a good coverage of words in similarity datasets.

Dict2vec’s (Tissier et al., 2017) performance proves the effectiveness of positive sampling

over word2vec (Mikolov et al., 2013).

Word embedding models’ performances are tested on Google Analogy Task that

includes both syntactic and semantic analogies (Table 2.7). The best accuracy scores are

obtained by Yin and Schütze (2016) in this category. Glove (Pennington et al., 2014)

47



Table 2.7: Word Embedding Models’ Performances in Analogy Task (in Chronological

Order).

Model Dimension Google Analogy Task (acc. %)

Syntactic Semantic Total

C&W 50 9.3 12.3 11.0

RNNLM 640 8.6 36.5 24.6

CBOW 1000 57.3 68.9 63.7

Skip-Gram 1000 66.1 65.1 65.6

Skip-Gram 100 36.4 28.0 32.6

Skip-Gram 300 61.0 61.0 61.0

Skip-Gram 256 51.3 33.9 43.6

ivLBL 100 46.1 40.0 43.3

ivLBL 300 63.0 65.2 64.0

vLBL 300 64.8 54.0 60.0

vLBL 600 67.1 60.5 64.1

Qiu et al. (2014) 200 58.4 25.0 43.3

MSSG 300 - - 64.0

GloVe 300 69.3 81.9 75.0

KNET 100 46.9 24.9 36.3

char2vec 256 52.5 2.5 35.5

Fasttext 300 74.9 77.8 -

Yin and Schütze (2016) 200 76.3 92.5 77.0
Ngram2vec 300 71.0 74.2 72.5

MSWE 50 - - 69.9

LMM 200 20.4 - -

Table 2.8: Word Embedding Models’ Performances in Synonym Selection Tasks (in

Chronological Order).

Model Dimension ESL-50 (%) TOEFL-80 (%) RD-300 (%)

Skip-Gram 300 - 83.7 -

Skip-Gram 400 62.0 87.0 -

GloVe 300 60.0 88.7 -

MSSG 300 57.1 78.3 -

Jauhar et al. (2015) 80 63.6 73.3 66.7

Jauhar et al. (2015) 80 73.3 80.0 -

Li and Jurafsky (2015) 300 50.0 82.6 -

SWE 300 - 88.7 -

LSTMEmbed 400 72.0 92.5 -

follows it as the second best performing model. Results in Google Analogy task can be

interpreted much as those in similarity tasks.

In synonym selection tasks, Jauhar et al. (2015) provides the best results in ESL-50

dataset while LSTMEmbed (Iacobacci and Navigli, 2019) performs the best in TOEFL-80

dataset. Results can be seen in Table 2.8

In Table 2.9, word embedding models’ performances on downstream tasks are

provided. In GLUE benchmark, CBOW (Mikolov et al., 2013), BiLSTM+Cove+Attn

(McCann et al., 2017), and BiLSTM+Elmo+Attn (Peters et al., 2018) are behind human

baselines except for the task of QQP. In QQP, CBOW is still underperforming but BiL-

STM+Cove+Attn (McCann et al., 2017) and BiLSTM+Elmo+Attn (Peters et al., 2018)

are superior to human performance.
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Table 2.9: Word Embedding Models’ Performances in Downstream Tasks.

Model CoLA SST-2 MRPC STS-B QQP MNLI QNLI RTE WNLI SQuAD 2.0 RACE

(mcc) (%) (F1) (𝜌 × 100) (F1) m/mm (%/%) (%) (%) (%) (F1) (%)

CBOW 1 0.0 80.0 81.5 58.7 51.4 56.0/56.4 72.1 54.1 62.3

BiLSTM+Cove+Attn 1 8.3 80.7 80.0 68.4 60.5 68.1/68.6 72.9 56.0 18.3 - -

BiLSTM+Elmo+Attn 1 33.6 90.4 84.4 72.3 63.1 74.1/74.5 79.8 58.9 65.1 - -

GLUE Human Baselines 66.4 97.8 86.3 92.6 59.5 92.0/92.8 91.2 93.6 95.9 - -

SQuAD Human Baselines - - - - - - - - - 89.4 -

Turkers (Lai et al., 2017) - - - - - - - - - - 73.3

BERT 60.5 94.9 89.3 86.5 72.1 86.7/85.9 91.1 70.1 65.1 89.112 72.012

ERNIE 2.0 63.5 95.6 90.2 90.6 73.8 88.7/88.8 94.6 80.2 67.8 - -

XLNet (ensemble) 67.8 96.8 92.9 91.6 74.7 90.2/89.7 98.6 86.3 90.4 89.1 81.8

RoBERTa (ensemble) 67.8 96.7 92.3 91.9 74.3 90.8/90.2 98.9 88.2 89.0 89.8 83.2

ALBERT 71.4 96.9 90.9 93.0 - 90.8 95.3 89.2 - 90.9 86.5

ALBERT (ensemble) 69.1 97.1 93.4 92.5 74.2 91.3/91.0 99.2 89.2 91.8 92.2 89.4
GPT-3 Few-Shot - - - - - - - - 69.0 - 69.8 45

As for the original BERT (Devlin et al., 2019) and its variants, in the tasks of MRPC,

QQP, QNLI they consistently outperform human baselines. In SST-2, MNLI, RTE, and

WNLI, human performance is better. In STS-B, the only model with superior performance

to humans is ALBERT (Lan et al., 2020), In CoLA, and the tasks of question answering

(SQuAD 2.0) , and reading comprehension (RACE), starting from XLNET (Yang et al.,

2019) better performances over humans are observed. GPT-3 (Brown et al., 2020) is

promising with its language model meta-learner idea and gives its best performance in the

Few-Shot setting. Although it is behind the state-of-the-art by a large margin in GLUE

benchmark, in RTE its score is beyond CBOW (Mikolov et al., 2013), BiLSTM+Cove+Attn

(McCann et al., 2017), and BiLSTM+Elmo+Attn (Peters et al., 2018). Table 2.9 proves

the success of contextual representations especially the transformer-based models (BERT

(Devlin et al., 2019) and its successors) by going beyond human performance in most of

the downstream tasks. However, it can be said that in natural language inference tasks

such as MNLI, WNLI, and RTE, these probabilistic language representations still have

some limitations in meeting causal inference requirements.

Table 2.9 proves the success of contextual representations especially the transformer-

based models (BERT (Devlin et al., 2019) and its successors) by going beyond human

performance in most of the downstream tasks. However, it can be said that in natural

language inference tasks such as MNLI, WNLI, and RTE, these probabilistic language

representations still have some limitations in meeting causal inference requirements.

1reported as baselines in GLUE (Wang et al., 2018)
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CHAPTER 3

METHOD

In this chapter, the details of the proposed model and dataset are introduced.

First, a newly created dataset from Wikimedia Commons is explained in Section 3.1, in

detail. In the following Sections 3.2 and 3.3, individual parts of the model are explained

respectively, for both text processing and image processing. Methods for combining those

text and image parts are explained in Section 3.4. Finally, the last section introduces the

training method of the combined model. While Section 3.5.1 introduces the pre-training

of the multi-modal language model, Section 3.5.2 describes the fine-tuning steps where

the model is trained and tested on downstream tasks.

3.1 Wikimedia Commons Dataset

Wikimedia Commons1 is a repository of free-to-use images that is a part of Wiki-

media Foundation. Files from Wikimedia Commons are used across all Wikimedia

projects in all languages, including Wikipedia, Wiktionary, Wikibooks, Wikivoyage, Wik-

ispecies, Wikisource, and Wikinews, or downloaded for offsite use. It is comprised of

approximately 65 million images that take approximately 250 TB space. In addition to

the images, they also contain useful information such as caption, description, and the

timestamp of the images.

In order to retrieve the images, queries must be sent to Wikimedia Commons

website. To this end, we have used two different sets of query words to construct datasets.

For retrieving the entire dataset, the dictionary of the BERT model (Devlin et al., 2019)

is used. For retrieving the subset that we mostly used in this work, the words in UWA

MRC psycholinguistic dataset are used (explained in detail in Section 4.1.1). Each word

in that dataset contains a score of concreteness between 100 and 700 where 700 means

very concrete and 100 means very abstract. Therefore, we end up with images and their

corresponding captions and descriptions labelled with a level of concreteness.

For each word mentioned above, a query is sent to the Wikimedia Commons

1https://commons.wikimedia.org/wiki/Main_Page

50



Figure 3.1: Histogram of samples retrieved for words. Horizontal axis shows the number

of images retrieved while the vertical axis shows the amount of words which have that

many images associated with them.

website with 1000 as a maximum threshold of results for each word. Figure ?? shows the

number of words in UWA MRC psycholinguistic dataset and their corresponding sample

sizes. As can be seen from the graph, most of the query words returned less than 100

results despite a large threshold. Only around a hundred words have more than 500 images

associated with them. The number of samples collected can be seen in Table 3.1. More

than 43 Million images are collected using the dictionary of BERT, while approximately

3.2 images are collected using the words in UWA MRC psycholinguistic dataset. It can

also be observed that not all images have a description and/or caption associated with

them. Some images contain only captions, some images contain descriptions but no

caption and finally, some images do not contain any textual information at all. In total,

630k images contain captions and approximately 2M images contain descriptions. As has

been described above, there is an overlap between both sets which means that some images

contain both caption and description.

Retrieved images have many formats such as .jpeg, .jpg, .jpe .png, .apng, .gif, .tif,

.tiff, .xcf, .webp and many image modes such as RGB (3x8-bit pixels, true color), CMYK

(4x8-bit pixels, color separation), I (32-bit signed integer pixels), I;16 (16-bit unsigned

integer pixels). Although many of these formats and modes are supported, some of them

Table 3.1: Wikimedia Commons dataset statistics

Dataset # of images # of captions # of descriptions

Complete Dataset 43,726,268 1,022,829 17,767,000

Subset (queried w/ UWA MRC words) 3,206,765 629,561 1,961,567
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Table 3.2: Wikimedia Commons dataset statistics after filtering.

Dataset # of images # of captions # of descriptions

before preprocessing 3,206,765 629,561 1,961,567

after preprocessing - 603,089 -

abstract - 177,308 -

concrete - 425,781 -

Average word count - 8.80 42.79

needed to be eliminated. Images with the extension .xcf and .webp are filtered because

they are not supported by any of the mainstream image processing libraries. In addition

to this, images with mode I (and other modes of I such as I;16, I;16L, I16B and so on) are

eliminated because they are single-channel image modes and the neural network models

that process these images run with multi-channel inputs. Nearly 26k images are eliminated

after this filtering. Dataset statistics after applying the filters can be seen in Table 3.2. In

the final version of the dataset, there are approximately 600k images with captions where

177k belongs to abstract concepts while 425k belongs to concrete concepts.

Many images in Wikimedia Commons have a very high resolution (resolutions

such as 3000𝑥5000, 6000𝑥6000 are very common) therefore require huge storage space.

In addition to the filters applied above, a resize operation is performed on images after

the download is completed to cope with this storage problem. All images are converted

to a resolution of 224x224 since all the image models (AlexNet (Krizhevsky et al., 2012),

GoogleNet (Szegedy et al., 2015), VGG (Simonyan and Zisserman, 2015), Resnet (He

et al., 2016)) run with those.

Figure 3.2 shows some example images and their corresponding captions and

descriptions from the collected Wikimedia Commons dataset. Examples are selected

from images that contain both a caption and a description, except for the bottom-left

image where a description does not exist.

One thing to be observed from these images is, indeed the images and the texts

convey different information on the relationship of concepts. For example, in the top-

left image, there is no textual information, neither in the caption nor in the description,

about the buildings that can be seen in the image. But streets are mostly located near

buildings2, which is captured by the image. Therefore the system can learn a relationship

of concrete concepts such as "street" and "building" from the images without relying on

the text. Similarly, the image contains no definite information about where it is taken,

but it is understandable from both the caption and the description that it is in Mogadishu,

Somalia. The same thing can also be seen in the bottom-left image; there is no mention of

a sea/lake in the text but the lighthouse and the sea/lake can be seen together (which occur

with almost no exception in real life) in the image which will help the model to learn their

2almost 70% of all images from Wikimedia Commons contains buildings when you search for the

keyword "street"

52



Caption

Description

Mogadishu, Somalia. 10/10/2015. A man carries
a huge hammerhead shark  through the streets of
Mogadishu. A recent escalation of plunders of 
Somali waters by foreign fishing vessels could
mean the return of  hijackings, locals warn. The
country's waters have been exploited by illegal
fisheries and the economic infrastructure that
once provided jobs has been ravaged.  Somalia
has been at war for the last 25 years, but 2017 is
a turning point. This country in the Horn of
Africa is holding its first free elections since
1969; a whole culture is being overturned. Those
who created it have shot and killed, but finally,
they are on the losing side.

A man carries a huge hammerhead through the
streets of Mogadishu

A flock of sheep (Ovis aries) lounging in the
shade of a tree with the matriarch of the flock
standing outside the shade. The flock was kept in
the enclosed area of Röe Castle ruin to keep the
vegetation in check. The standing matriarch is
tagged in both ears meaning that she is selected
for breeding and will not be slaughtered after her
first year. The rest of the flock have tags in only
one ear and will be slaughtered withing twelve
months after their birth. Röe Castle ruin, Röe,
Lysekil Municipality, Sweden. The image is
stacked manually from two photos (handheld) for
focus and light.

Sheep lounging in the shade of a tree with
matriarch standing guard

Aniva lighthouse on a rocky promontory in
Sakhalin, Russia, with a flock of gulls circling in

the surrounding mists

A Javan Slow Loris (Nycticebus javanicus)
clings to a branch.

-

Caption

Description

The Javan slow loris (Nycticebus javanicus) is a
strepsirrhine primate and a species of slow loris
native to the western and central portions of the
island of Java, in Indonesia. Although originally 
described as a separate species, it was considered
a subspecies of the Sunda slow loris (N.
coucang) for many years, until reassessments of
its morphology and genetics in the 2000s
resulted in its promotion to full species status. It
is most closely related to the Sunda slow loris
and the Bengal slow loris (N. bengalensis). The
species has two forms, based on hair length and,
to a lesser extent, coloration.

Figure 3.2: Example images and their corresponding captions and descriptions from the

Wikimedia Commons Dataset.
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relationships better. So, a language model trained with both images and text can help to

improve the performances of language models.

Although both captions and descriptions are collected within the dataset, mostly

captions are used to train the multi-modal language models because of two main reasons.

Descriptions in Wikimedia Commons is observed to be unclean. There are many additional

texts which need to be cleaned extensively, such as copyright notices, information about

photographer or information about how the photograph is taken (such an example can be

seen in the last sentence of the top-right image of Figure 3.2). On the other hand, captions

are already cleaned and only contain information about the picture itself. Because of the

requirement of tedious cleaning, captions are easier to use.

The second but the most important reason is the image-text alignment issues.

Captions are written in a way that describe the images briefly without giving any other

information or making any other comment that can be classified as common-sense knowl-

edge or real-world knowledge. Contrarily, descriptions contain much information that

cannot be seen in or referred from the images. Although these additional pieces of knowl-

edge can be important and useful in other tasks, in language modelling, they break the

image-text alignment and lead to learning noisy contexts. If we take the top-right image

in Figure 3.2 as an example, we can see how this can affect the language models. Descrip-

tion of the top-right image provides many semantically similar words such as "breeding",

"slaughtered" and "vegetation" to the context of the image which is sheep lounging in a

field. But it also provides a lot of dissimilar or unrelated words such as "castle", "ruin",

"municipality" which has very little to do with the image itself. Consequently, this leads to

learning from an accidental relationship, for example, between the context of "sheep" and

the context of "municipality". On account of this fact, captions are used in all language

modelling tasks in this work to provide a better image-text alignment in training samples.

There have been several other multi-modal datasets proposed in the literature that

consist of image-text pairs such as Flickr (Young et al., 2014), MS COCO (Sharma et al.,

2018), Wikipedia, British Library, and ESP Game (von Ahn and Dabbish, 2004). Table

3.3 shows the collected dataset in comparison with these multi-modal datasets. The Flickr

dataset and MS COCO dataset contain image-caption pairs, while the Wikipedia dataset

provides the images in Wikipedia with their corresponding articles. The British Library

book dataset, on the other hand, contains historical books and the pictures depicted in

them. Finally, the ESP game dataset consists of 5 words for each image labeled by human

annotators. Although both Wikipedia and BL datasets provide much longer texts, they

lack the image-text alignment of caption datasets. Therefore, caption datasets such as

MS COCO, Flickr, or the proposed dataset in this work are more suited to the task of

multi-modal language modeling. Compared with these image captioning datasets, the size

of the collected dataset is much greater. As deep neural representations have massive data

requirements, it is preferable to have such a large amount of data. Recently, the WIT dataset
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Table 3.3: Comparison of Wikimedia Commons to other multi-modal datasets.

Dataset # of Images Textual Source Ave. Word Length Additional Info.

Flickr (Young et al., 2014) 32K Captions 9 -

COCO (Sharma et al., 2018) 123K Captions 10.5 -

Wikipedia 549K Articles 1397.8 -

BL 405K Books 2269.6 -

ESP(von Ahn and Dabbish, 2004) 100K Object Annotations 5 -

11.4M Captions/Articles - -

WIT(Srinivasan et al., 2021) 3.98M Captions/Article (En) - -

568K Captions (En) - -

3.2M - - Concreteness Ratings

Wikimedia Commons 629K Captions 10.2 Concreteness Ratings

(ours) 1.96M Descriptions 57.4 Concreteness Ratings

(Srinivasan et al., 2021) is also proposed with a large number of image-text pairs that can

be used for multi-lingual, multi-modal pre-training. It contains 11.4M unique images with

captions and descriptive text from Wikipedia articles for various languages. Among them,

3.98M images have textual information in English, where 568K of them have captions. In

addition to captions, the collection also includes contextual data such as page titles, page

descriptions, section titles with their descriptions. But, the most significant benefit of the

proposed dataset is the concreteness labels provided for each image-text pair which might

be very useful for various tasks, especially for the multi-modal language modeling. The

other datasets mentioned in this section, including WIT, do not contain that information.

3.2 Text Processing Model

In this work, BERT is mainly used for processing text input while DistilBERT is

also utilized in some of the tests. In this section, these two models will be presented along

with the reasons for their selection and text pre-processing methods.

BERT (Devlin et al. (2019)) is a neural network model that uses a bidirectional

transformer architecture (Vaswani et al. (2017)), a self-attention mechanism, to learn

contextual word embeddings. Figure 3.3 briefly shows the architecture of BERT. It has

multiple layers of transformers (12 in BERT-base, 24 in BERT-large) where each of these

individual layers has a hidden layer of size 768 and 1024 respectively for BERT-base and

BERT-large, and separate attention heads (12 in BERT-base, 16 in BERT-large). Each

attention head spans the entire sentence from both right-to-left and left-to-right, learning

"where to look" by producing probabilistic weights for each word.

Different from the earlier language modelling approaches, BERT does not use

next word prediction as an objective. Instead, it uses two training objectives: Masked

Language Modeling (MLM) and Next Sentence Prediction (NSP). For the MLM objective,

randomly selected words are occluded from the model and labelled as masks. Attention

heads do not span these masked words since it would create a bias for the prediction. Using
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Figure 3.3: BERT model architecture (Devlin et al., 2019). Taken from He et al. (2020).

MLM enables the model to learn contextual dependencies among words very successfully,

since the word embeddings of a word are computed depending on the surrounding words,

instead of using the same vector in embedding space for every instance of that word. For

the NSP objective, the model tries to predict whether the two sentences provided to the

model belongs to the same context or not. It helps BERT to consider multiple sentences

as context and to represent inter-sentence relations.

In addition to the token (word) embeddings, BERT also uses segment (sentence)

embeddings and position embeddings (words’ position in segments) as input. The input

structure of the BERT can be seen in Figure 3.4. While the sentence embedding determines

which sentence the word is in, positional embeddings provide information to the system

about the word order. A word’s embedding is therefore fed to the model as the average of

its token embedding, sentence embedding, and positional embedding. This input structure

has many benefits: positional embeddings raise the awareness of the model to word order

while segment embeddings help the model with the NSP objective. Also, giving multiple

Figure 3.4: BERT model input structure (Devlin et al., 2019). Taken from the original

article.
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sentences as input helps BERT to be integrated into most downstream tasks that require

inter-sentence connections such as Question Answering and Natural Language Inference

(NLI) easily without requiring any other architecture.

To integrate BERT to downstream tasks, an additional fully connected layer is

used on top of transformer layers to predict the given text’s class instead of predicting the

target (masked) word (can be observed in Figure 3.3). Usually, the Wikipedia dataset is

used to pre-train the model on MLM and NSP objectives, then the resulting parameters are

fine-tuned on the downstream task with the addition of the aforementioned fully connected

layer.

Some tests that are performed in this study also involve the DistilBERT language

model. DistilBERT (Sanh et al. (2019)) is based on the original BERT model. It is a more

efficient version of BERT in expense for a small deficiency in classification performance.

It retains 97% of BERT’s performance while using 40% fewer parameters. To accomplish

this, they use knowledge distillation, where a small model is trained to reproduce the be-

haviour of a larger model (DistilBERT and BERT, respectively, in this case). Knowledge

distillation aims to make the student model (DistilBERT) predict the same values as the

teacher model (BERT) using fewer parameters. This way, the knowledge learned by the

teacher model can be transferred to more efficient student models. Parameter reduction

from BERT to DistilBERT comes from the removal of some of the transformer layers in

BERT. Authors of DistilBERT show that some of the parameters of BERT are not used in

the prediction, therefore, do not contribute to learning downstream tasks. Consequently,

they suggest removing some layers and use the knowledge distillation technique to create

a more efficient language model.

3.3 Image Processing Model

Resnet (He et al., 2016) is used in this work as an image model mostly due to

its success in many image processing tasks. It is a very deep neural network model that

relies on Convolutional neural network architecture. At the time it is published, it was the

state-of-the-art model in ImageNet (Deng et al., 2009) object classification challenge.

Resnet has several different variations in terms of network depth: 34-layered

model Resnet34, 50-layered model Resnet50, 101-layered model Resnet101, and finally

the largest model with 152-layers Resnet152. Each layer consists of several 1x1 and 3x3

convolutions. Each model starts and end with an average pooling operation before the first

layer and after the last layer. The architecture of Resnet34 can be seen in Figure 3.6.
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Figure 3.5: Residual Connection. Taken

from the original article.

Figure 3.6: Resnet34 Architecture. Taken

from the original article.
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Stacking so many layers in deep neural networks naively does not immediately lead

to better results, instead, it causes performance degradation problems. When the depth of

a model increases, training errors increase and accuracy is saturated. To work around this

issue and build substantially deeper networks, authors needed a workaround. Therefore,

shortcut connections called residual connections (see in figure 3.5), are used. These

shortcut connections are used after every two layers in the architecture, propagating the

inputs to the outputs of those two layers. They are parameter-free, which means that they

do not perform any operation on the inputs such as pooling, convolution or multiplication,

therefore they do not contain any learnable parameters. They merely propagate the inputs

to the outputs where they are averaged. Shortcut connections have been proposed by many

scientific work with little variations. Its theoretical foundations are first discussed in Ripley

and Hjort (1995) and Bishop (1995). On the practical level, highway networks (Srivastava

et al. (2015a) and Srivastava et al. (2015b)) and the inception model of GoogleNET

(Szegedy et al., 2015) were the first works that leveraged shortcut connections. It is shown

that these shortcut connections can overcome the performance degradation problem in

very deep neural network architectures making models such as Resnet very successful at

stacking many layers and capturing more features than prior models.

In this work, Resnet152 is used because it is shown to outperform the smaller

Resnet models and the Wikimedia commons dataset was large enough to tune such a large

model.

3.4 Text-Image Combination Methods

Combining multiple modalities can be very problematic and carry the risk of

breaking the learned semantic relationship of words by individual models if it does not

work the way they are intended to be. To this extend, many studies in this field focuses

on the fusion of modalities rather than the individual models. In order to combine the

text and vision parts of the model, multiple methods are used in this study. The main

method proposed in this work is attentive pooling networks (Santos et al., 2016). Simple

averaging of both classifiers and combining them with fully connected layer(s) are also

experimented upon to show the effectiveness of the attentive pooling mechanism.

Simple Averaging: This is the simplest form of model combination. In the case of

simple averaging, each model is run separately and the predictions are averaged to form the

final multi-modal predictions. No additional parameters are used and models are trained

separately. Thus, the features learned by models cannot affect each other in any way.

Fully connected Layer(s): The second method of combination is realized through
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Figure 3.7: Attentive Pooling Networks (Santos et al., 2016).

additional fully connected layer(s) on top of the individual models (text and vision). In

this method, outputs from the last fully connected layer in Resnet and the hidden layer

outputs of the last transformer layer in BERT are concatenated. Afterwards, the resultant

vector is reduced to the number of classes through fully connected layer(s). The number

of fully connected layers and their sizes are hyperparameters to the model.

Attentive Pooling Networks: Figure 3.7 shows the model architecture with attentive

pooling as a combination mechanism. It is a two-way attention mechanism that is aware

of both modalities and jointly learns to attend over them through matrix multiplications

and pooling operations.

Attentive pooling takes the hidden states of each word in BERT as textual input

and takes the last layer of Resnet in the form of a matrix as visual input. These inputs are

multiplied with the matrix𝑈 which is composed of parameters to learn and passed through

𝑡𝑎𝑛ℎ activation. The result is a single matrix that is composed of visual features on the
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rows and textual features on the columns. This representation scheme allows features

from different modalities to be jointly represented in a single matrix where max-pooling

operation is performed over each row and column to find out the most important feature

that is also dependent upon the other modality. Two vectors, 𝐼𝑜𝑢𝑡𝑝𝑢𝑡 and 𝑇𝑜𝑢𝑡𝑝𝑢𝑡 , are the

outputs of the attentive pooling mechanism. For fine-tuning this model on downstream

tasks, these two outputs are concatenated and passed through an additional fully connected

layer to reduce the dimension to the number of classes.

3.5 Multi-Modal Language Model Training

Starting from the contextual language models and onward, the trend for building

language models is to pre-train them for language comprehension objectives first, then

fine-tuning them by training them on down-stream tasks.

3.5.1 Multi-Modal Language Model Pre-training

The idea of pre-training the neural language models is borrowed from the advances

in image processing models (Howard and Ruder, 2018). It is shown in both vision

and text models that pre-training the model on a preliminary image understanding/text

understanding tasks improves the performance vastly.

For image processing, the pre-training task is usually the object classification task

on the ImageNET dataset (Deng et al., 2009). ImageNET dataset has 1.2 million images

that are hand-labelled into 1000 categories. Respective models are trained to predict the

objects in each image by adding a fully connected layer on top to reduce the feature vectors’

size to 1000. The aim here is to teach the model basic image understanding: being able

to identify objects and entities in images. It is shown by many vision models that they are

even able to differentiate images of 120 different dog breeds in the imageNET dataset such

as "Australian terrier" and "Airedale terrier". They manage to do this by understanding

what is in the picture by using the shapes and colours of entities in the pictures. The

AlexNET model (Krizhevsky et al., 2012) showed that the vision models can learn various

colour and shape patterns by probing the learned parameters in their model.

The process is similar for language models with the only difference of pre-training

objectives. Earlier models (before BERT) used next word prediction in very large unla-

beled text such as Wikipedia and common crawl text. The aim was to predict the next
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word given the previous words. Starting from BERT and onward, the pre-training objec-

tive changed from the next word prediction to masked language modelling. Using very

large datasets that contain billions of words, this method allowed the text models to grasp

language understanding successfully. They were able to learn the meaning and seman-

tic/syntactic relations of words (due to distributional hypothesis) which are fundamental

to any downstream task.

In this work, the pre-training is realized through the objectives that are inspired by

the advances in cognitive psychology. It is shown that language acquisition in children

starts with experiential information and continue with textual information (Andrews et al.

(2009) and Vigliocco et al. (2009)). As Kiela et al. (2015) state, perceptual information

is more relevant for, e.g. elephant than it is for happiness. In other words, we first learn

the language through images and learn concrete concepts, then we start learning abstract

concepts from textual sources.

Advancements in computational linguistics also reinforce this idea by showing that

concrete examples in language are easier to learn while abstract ones are more challenging.

Hessel et al. (2018) show that the more concrete the downstream task gets, the easier it

becomes for language models. Bruni et al. (2014a) show that the semantic/syntactic

similarities of concrete examples on the MEN dataset are easier to learn while the abstract

words can get ambiguous. They prove this by showing that the concrete examples have a

0.78 Spearman correlation rank while the abstract examples have 0.52 (Contributing to an

overall of 0.76).

To adopt this learning scheme to this project, the Wikimedia Commons Dataset

(see Section 3.1) is divided into two categories: Abstract samples and concrete samples.

Concreteness levels of words from the UWA MRC Psycholinguistic Database are used

to accomplish that (MRC dataset is explained in Section 4.1.1 and Section 3.1 explains

how the samples are divided). First, the image model is trained with concrete samples,

then the textual model is trained with all of the samples concrete and abstract combined,

in a curriculum learning fashion (Bengio et al., 2009). Therefore, the learning model in

humans is mimicked through this pre-training process.

3.5.2 Multi-Modal Language Model Fine-tuning

Once the pre-training objective is completed and the image/text model gained

basic image/language understanding respectively, the last fully connected layer is removed

from the model and replaced with an appropriate classification layer according to the task

at hand. The model is, then, fine-tuned for the downstream task. For image models,
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downstream tasks can be object detection, semantic segmentation, etc. while on the

textual models they are composed of sentiment analysis, sentence classification, natural

language inference, and so on. There are also several tasks that can bring visual and

textual information together such as Visual question answering and image captioning.

Such tasks require multi-modal solutions where a pre-trained image model is combined

with a pre-trained text model.

In this work, a similar approach is taken on multi-modal tasks where each model is

pre-trained on the task at hand, then combined through various methods (see Section 3.4)

to produce feature vectors. Those feature vectors are, in turn, reduced to the number of

classes through the use of fully connected layers. But, unlike most models (VilBERT (Lu

et al., 2019) being the only exception), additional multi-modal pre-training step is applied

using abstract and concrete samples in a curriculum learning fashion. To accomplish

that, first, the image model is pre-trained with concrete samples, then the text model is

pre-trained with the abstract samples, mimicking the language acquisition in humans. The

next chapter introduces the tasks used in this work in detail while discussing the results

obtained with the model and curriculum learning scheme introduced in this chapter.
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CHAPTER 4

EXPERIMENTS

4.1 Datasets

Before delving deep into details about the experimental results, the datasets used

in this work are explained here in detail. Section 4.1.1 describes the UWA MRC Psy-

cholinguistic Database proposed by Coltheart (1981) and Section 4.1.2 introduces Visual

Question Answering (VQA) dataset of Antol et al. (2015).

4.1.1 UWA MRC Psycholinguistic Database

MRC Psycholinguistic Dataset (Coltheart, 1981) is a dataset, produced and main-

tained by researchers in University of Western Australia (UWA). The dataset contains

98538 words and their properties such as: type, meaningfulness, concreteness, part-of-
speech, familiarity, and many more. It is a combination of many different smaller datasets

produced by many different research. Concreteness scores which are used in this research

are derived from merging the two datasets provided by Paivio et al. (1968) and Gilhooly

and Logie (1980).

In this dataset, 4293 out of 98538 words have a concreteness rating, rated by

human annotators. Human annotators are asked to rate the concreteness of words between

(including) 1 and 7 where higher the score, more concrete the word is, and vice versa,

the lower the score, more abstract the word is. The mean of all users is used as the final

concreteness rating of the word between 100 and 700 (least significant two digits come

from the floating points in mean value. i.e. if the mean of a word’s concreteness is 3.452,

its concreteness score is 345). Overall, the most abstract word in the dataset is "as" with a

rating of 158, and the most concrete word is "milk" with a rating of 670. The mean rating

of all words is 438 and the standard deviation is 120.

The dataset is divided into two parts: abstract words and concrete words using 400

as a threshold. All the words below 400 rating is considered as abstract and all the words
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Table 4.1: Example words and their concreteness scores in UWA MRC Psycholinguistic

dataset.

Word Concreteness Rating Classification

As 158

Apt 183

Impossible 198

Humble 231

Maturity 234 Abstract

Optimism 240

Research 366

Math 386

Midnight 396

She 406

Weather 439

Shiver 455

Undergraduate 500

Equipment 532 Concrete

Shield 576

Ox 633

Tomato 662

Milk 670

above that value is considered as concrete. Table 4.1 shows some example words, their

ratings, and labels. It can be seen that the most concrete words are usually nouns that have

distinct properties with little to no variation such as "milk" (all milks are white and liquid),

"tomato" (almost all tomatoes are red or very close to red in color and have very similar

shapes), and "ox". On the opposite side of the spectrum, we mostly see adjectives such as

maturity, humble, and impossible that are mostly used as properties. They are very hard

to define and can vary a lot in meaning depending on what they refer to.

When we look at the middle of the spectrum of concrete words, we see words

such as "equipment", "shield", and "undergraduate". Although all of these words refer to

concrete objects which are easily observable and identifiable, they can be in very different

forms and shapes, making them more vague than the words such as "tomato" and "milk".

Such examples are given in Table 4.2 and 4.3. While the hypernym word "equipment" has

a concreteness of 532, its hyponyms are rated much higher with "mallet" being 623 and

"hammer" being 605. Similarly, we can observe this relationship with action/performer

pairs too: while the word "speak" has a lower concreteness rating, "speaker" and "speech"

have much higher ratings due to the fact that they are outputs of the action "speak" and

remove some ambiguity.

Words like "weather", "she", "midnight", and "math" constitute the close-to-neutral

part of the spectrum. It can be argued that although we can observe a lot of things that

either direct consequences or part of those words, it is very hard to define the boundaries
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Table 4.2: Concreteness scores of words

with hypernym/hyponym relation.

Word Concreteness Rating

Equipment 532

Hammer 605

Mallet 623

Table 4.3: Concreteness scores of

words with action/performer relation.

Word Concreteness Rating

Speak 419

Speech 453

Speaker 537

Table 4.4: UWA MRC Psycholinguistic Database statistics.

Abstract Concrete Total

Before stop-word removal 1851 2442 4293

After stop-word removal 1674 2434 4108

of the definition of those words, making them neutral in nature.

Qualitative examples above show that, the dataset is successful at capturing the

concreteness levels of words in language. But, in order to successfully integrate this dataset

into our task some processing is required. Although the UWA MRC Psycholinguistic

dataset is successful at identifying the concreteness of words, they consider the words in

isolation unlike this work, where contextual embeddings and language models are used

to consider words in their context. Therefore, all the stop-words are removed1 from

the dataset considering that they can appear in various contexts with different levels of

concreteness and therefore can lead to misleading results. It is observed from the dataset

that the lowest rated words are usually stop-words such as "as", "therefore", "and", and

so on. This leads to the removal of a lot of abstract words in the lower bound. The most

abstract word in the dataset after the removal is "apt" with a rating of 183. Table 4.4

shows the word counts of the dataset before and after the removal of stop-words. The final

version of the dataset contains 1674 abstract words and 2434 concrete words.

4.1.2 Visual Question Answering Dataset

Visual Question Answering dataset is a multi-modal dataset that is proposed by

Antol et al. (2015). It includes approximately 200k images from COCO dataset (Sharma

et al., 2018) paired with approximately 600k questions (3 for each image). Each image in

this dataset has multiple questions associated with it in various forms such as yes/no ques-

tions and open-ended questions (see Figure 4.1). Yes/No questions are binary questions

such as "Is the umbrella upside down?", while the open-ended questions such as "Who

is wearing glasses?" require more diverse answers. Close to 40% of all questions are

1Stop-words from NLTK library are used.
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Figure 4.1: Some questions in VQA dataset (Antol et al., 2015).

yes/no questions, where approximately 58% of answers is yes, and the rest is open-ended.

Open-ended questions have a variety of types including but not limited to "What is...?",

"Is there...?", "How many...?" and "Does the...?".

As it can be seen from Figure 4.1, questions require a lot of inference on objects

in terms of both intra and inter modality. For example, the top question in the aforemen-

tioned figure requires the identification of man, women, and glasses, both visually and

semantically, to match their representations with the other modality and infer the answer

by calculating the word "wearing" through proximity of objects in images. Similarly, the

bottom image requires the identification of the word umbrella in the image along with its

orientation.

Although the dataset requires a lot of inference between modalities, Agrawal et al.

(2018) state that the dataset includes bias towards some question/answer pairs. In their

work, they show that questions related to colours ("What is the colour of ...?" or "is ...

white?") almost always lead to the answers of white/no for open-ended and yes/no question

respectively. Similarly Goyal et al. (2017) suggest that answering the questions that are

starting with the phrase "Do you see a ...?" with yes blindly, leads to an accuracy of 87%

among those questions. Therefore, using language priors alone, a model can correctly

predict a significant amount of questions. Human baselines (Table 4.5. Calculated from 3𝑘

samples in the training set (Antol et al., 2015).) of the task further prove this point: Using

only the questions, humans were able to get 40% accuracy overall and 67% accuracy on

yes/no questions which clearly shows that the language priors play a significant role. In
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Table 4.5: Human baselines in VQA-v1 dataset.

Information Accuracy (%) Accuracy (%) of yes/no questions

Question 40.81 67.60

Question + Caption 57.47 78.97

Question + Image 83.30 95.77

Table 4.6: Results comparing the informativeness of the proposed dataset.

Model Wikimedia Captions Wikipedia Articles

Accuracy Precision Recall F1 Accuracy Precision Recall F1

Random 0.5171 0.5171 0.5171 0.5171 0.5255 0.5255 0.5255 0.5255

DistilBERT 80.91 80.89 80.91 80.83 86.54 86.69 86.54 86.58

(-2.47+2.28) (-2.47+2.31) (-2.47+2.28) (-2.41+2.36) (-0.97+0.53) (-1.08+0.83) (-0.97+0.53) (-0.99+0.50)

BERT 82.37 82.35 82.37 82.31 85.60 85.69 85.60 85.45

(-0.88+1.19) (-0.96+1.10) (-0.88+1.19) (-0.97+1.12) (-0.91+1.35) (-0.89+1.24) (-0.91+1.35) (-1.07+1.49)

order to overcome this problem, Goyal et al. (2017) come up with the second version of

the dataset which has additional samples to balance the biased question/answer pairs. This

increased the dataset size to 443K, 214K and 453K pairs (question, image) for train, dev,

and test sets respectively. The results reported in this Chapter refer to this new dataset as

v2, while they refer to the former as v1.

4.2 Results

The first step of experimentation was to measure the informativeness of the col-

lected dataset. A good way of doing this is to perform concreteness classification tasks on

multiple sources. Because obtaining the results for concreteness classification for captions

only would not be meaningful without any baseline for comparison, we decided to do the

same classification with the regular wikipedia articles in order to show the expressiveness

of the captions relative to regular texts. To accomplish this task, the June 2020 version of

wikidumps are downloaded which consists of 6, 957, 578 articles in total.

To prepare the dataset for a comparison, we search for articles in the Wikipedia

dataset about the words in UWA MRC Psycholinguistic dataset. Specifically, each article

titled with the corresponding words is retrieved. In order to match the samples with the

Wikipedia dataset, captions correspond to the same word are concatenated and the words

that do not have a wikipedia article are removed. This leaves 4108 samples in the dataset

which is partitioned into train (%70), dev (%10), and test (%20) sets randomly.

Table 4.6 shows the results of DistilBERT and BERT along with the random

baselines on the aforementioned datasets. Results show that, although the Wikimedia

captions give us worse results than the wikipedia articles, results are not far off, making

the wikimedia captions almost as informative as the wikipedia text itself.
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Table 4.7: Experimental results of the multi-modal pre-training task.

Model Accuracy P R F1 F1-abs F1-conc P-abs P-conc R-abs R-conc

Bert 0.8116 0.8057 0.8116 0.8069 0.6518 0.8708 0.7076 0.8461 0.6042 0.8971

Resnet 0.7001 0.6472 0.7001 0.6383 0.2144 0.8147 0.4658 0.7227 0.1393 0.9335

Table 4.7 shows the experimental results on the test splits of multi-modal pre-

training task. Although the image model and text model is trained with concrete and

abstract samples respectively, we show all results belonging to all models.

Several conclusions can be drawn from the results. Firstly, the results comply

with Hessel et al. (2018) and Bruni et al. (2014a): identifying concrete concepts is much

easier than identifying abstract concepts. Both Resnet and BERT models perform above

0.8 in terms of F1 scores for concrete class, while the F1 of abstract class turns out to be

significantly lower with 21.5 and 65.2 respectively. These results show that both image

and text models struggle more with abstract concepts compared to concrete concepts.

Secondly, the results of Resnet agrees with the scientific work (i.e. Andrews et al.

(2009), Vigliocco et al. (2009)) on human language acquisition and therefore comply with

the curriculum learning objectives in this work: experiential information is used early in

language acquisition on concrete concepts while leaving its place to textual information

for learning abstract concepts. Result show that the image model is capable at learning

concrete concepts with high precision and recall numbers (72.3 and 93.3 respectively)

while it fails at abstract concepts. This phenomenon is clearer in the case of recall value

(13.9) rather than precision (46.6) where the results are somewhat more acceptable. The

difference between the two values show that the image model is not sensitive towards

abstract samples. It can be argued that, no matter how abstract an idea is, one needs to

find a concrete example to show that in an image. For example, the image/caption pairs

returned for the search word "dream" frequently contain images of places. Although the

word itself can safely be considered as abstract, in order to represent it in the images one

needs to find a particular and concrete idea/object to represent it as an image. Therefore,

it can be stated that the images almost always contain concrete concepts and to determine

abstractness from images, the variance and diversity of images belonging to a particular

concept should be used instead of individual images 2.

The proposed model is also tested on the downstream task of Visual Question

answering. Results can be seen in Table 4.8. The best result is obtained when both Multi-

modal pre-training and attentive pooling mechanism are used, although the performance

is consistent across all configurations. In terms of accuracy, there is a 1.01% difference

between the best performing model (with Multi-modal pre-training and attentive pooling)

and the worst (with Fully connected layer and without multi-modal pre-training). Per-

2the variance in images for the word "tomato" is very low, with the first 25 results are all images of

single or a couple of red tomatoes, while the variance in images for the word "dream" is very high, ranging

from the picture of places, famous people to screenshots of literary work.
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Table 4.8: Model performance on VQA dataset. (FC = Fully-connected, AP = Attentive

pooling)

Model Multi-modal Pre-training Combination Method Accuracy F1 P R

Bert+Resnet � FC 53.12 50.71 54.07 53.12

Bert+Resnet � FC 53.17 52.79 53.34 53.17

Bert+Resnet � AP 53.56 52.91 53.69 53.56

Bert+Resnet � AP 54.13 54.08 54.07 54.13

Table 4.9: Results of the ablation study. Relative performance improvements (%) of each

component in terms of F1. (MMPT = Multi-modal pre-training, FC = Fully-connected,

AP = Attentive pooling)

FC MMPT + FC AP MMPT + AP

FC 0 4.10 4.34 6.65

MMPT + FC 0 0.23 2.44

AP 0 2.21

MMPT + AP 0

formance difference becomes more significant in terms of F1: a 3.37% increase can be

observed between the best and worst performing models (model with multi-modal pre-

training and attentive pooling, and model without multi-modal pre-training and with a

fully connected layer respectively, similar to the previous case).

Performance differences can be observed better with the ablation studies. Table

4.9 reports the relative improvements of each component. Each column represents the

percentage increase in relative performance when the feature/component in row is replaced

or enhanced by the feature/component in the column. It can be seen from the results

that multi-modal pre-training increases the performance of the model regardless of the

underlying fusion mechanism (Fully-connected or attentive pooling). It leads to 4.1%

increase when it is used with fully-connected layers and leads to 2.21% increase when it

is used with attentive pooling networks. Similarly, we can see that the attentive pooling

mechanism improves the performance of the model in both cases: when the fully-connected

layer is replaced with attentive pooling, it amount to an increase of 4.34% when there is

multi-modal pre-training and to an increase of 2.44% when there is no multi-modal pre-

training. Additionally, this shows that the benefit of using attentive pooling mechanism is

somewhat more than the benefit of using multi-modal pre-training. Overall, as the results

suggest, using both attentive pooling and multi-modal pre-training are proved to be useful

and lead to an increase in performance up to 6.65% compared to the baseline model.

It can be argued that the performance increase obtained by applying a curriculum

learning scheme could also be a by-product of additional data that is introduced to the

model via Wikimedia Commons dataset. To show whether the performance increase comes

from the additional data or the curriculum learning methodology itself, we conducted

an additional experiment where extra pre-training is performed without any curriculum
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Table 4.10: Effect of Curriculum Learning on the proposed model on VQA.

Multi-modal Pre-training Accuracy F1 P R

No additional pre-training 53.56 52.91 53.69 53.56

Additional pre-training 53.68 53.61 53.68 53.68

Additional pre-training w/ Curriculum Learning 54.13 54.08 54.07 54.13

structure. Instead, the model is trained with Wikimedia Commons data in random order.

The results can be seen in Table 4.10 where the results from performing no additional

pre-training, performing additional training with no curriculum learning and performing

the curriculum learning are compared. Although the experiments show that the additional

data can explain some of the performance gain, it cannot be accounted for all. The results

show that the model trained with a curriculum learning approach still outperforms the

model trained with randomly ordered training set.

Table 4.11 shows the performance of the models described in Section 2.10.2 on

the VQA task. We share the results on version 1 and version 2, though it would only be

fair to compare the models that run on the same version. Models that run on both versions

(Stacked attention network (SAN) and GVQA) suggest that a performance difference

between 3 − 7% can be expected between the versions, most likely due to the effect of

language priors mentioned in the previous sections. Human baselines, obtained on the 3k

samples in the training set of v1 dataset, are also provided.

Although human baselines are on v1 and our performance is on the v2 version of

the dataset, our 54.13% accuracy indicates that the model can perform similar to humans

when given only questions and corresponding captions without images. Compared to

the other models, ours’ performed better than the earlier models but can not reach the

success obtained by the state-of-the-art model (VilBERT), which has 70.92% accuracy.

VilBERT processes paired visiolinguistic data in the architecture of BERT to exploit visual

grounding in a task-agnostic way.

Table 4.11: Experimental results on VQA task. Top part shows human baselines.

Model Dataset Version Accuracy

Question v1 40.81

Question + Caption v1 57.47

Question + Image v1 83.30

SAN (Yang et al., 2016) v1 58.9

GVQA (Agrawal et al., 2018) v1 51.12

SAN (Yang et al., 2016) v2 52.2

GVQA (Agrawal et al., 2018) v2 48.24

Anderson et al. (2018) v2 70.34

DFAF (Gao et al., 2019) v2 70.34

VilBERT (Lu et al., 2019) v2 70.92

ours v2 54.13
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It should be noted that there are subtle but vital differences between our model and

the VilBERT model. The main focus of VilBERT is to process text and image streams

in parallel under the transformer architecture to encode their relationship in a pre-trained

model to have optimized performance in downstream tasks. On the other hand, the main

focus of this work is to optimize the model for the fusion of modalities and curriculum

learning. Although our work is much similar to earlier multi-modal works in this regard,

our model is a language pre-training model, not a task-specific architecture. The main

difference in our work is to add curriculum learning methodology on top of the pre-trained

models.

Other than the main focus described above, several reasons might lead to the

performance discrepancy between the proposed model and the state-of-the-art models,

such as VilBERT. First, the number of learnable parameters in VilBERT is much greater

than the proposed model (~600M vs. ~170M). Second, VilBERT uses the Faster-RCNN

Ren et al. (2015) model to match each word in the text with the corresponding image patch,

while our model uses the Resnet-152 model on the entire image. One could argue that

the better alignment provided by the faster-RCNN method might lead to better learning

since the model also learns which part in the image a particular word corresponds to.

Providing such an alignment could also benefit the proposed model for catching up with

the performance of the state-of-the-art models.
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CHAPTER 5

CONCLUSION & FUTURE WORK

The aim of this study is to provide a contribution to one of the oldest and most

predominant subjects in computer science: language modeling. Since the distributional

hypothesis was formed in early 1950’s, many models, which use many different architec-

tures and methodologies, have been introduced in this field. All of these aforementioned

models focused on a single modality where a language learner is trained with plain text.

Lately, however, the focus is shifted from single modal language models to multi-modal

language models. Increase in the success of neural models, cheaper and more powerful

hardware sources and the advances in the cognitive science were the major driving forces

behind this change.

Similar to this latest trend, the goal of this work is to create a language model/

representation technique inspired from the advances in cognitive science which states that

the language acquisition in humans start with the experiential information for concrete

concepts and continue with distributional information for abstract concepts. To this end,

a combination of BERT and Resnet models combined with attentive pooling mechanism

is proposed to construct multi-modal language model and embeddings, in addition to a

new dataset composed of image caption pairs from Wikimedia Commons. Image model

is trained with the concrete samples from Wikimedia samples first, then the text model is

trained with abstract samples in a curriculum learning fashion.

Contribution of this work is two-fold: First, a new dataset, created from Wikimedia

Commons, is introduced which has approximately 3.2𝑀 images, with 630𝑘 captions,

1.96𝑀 descriptions, and concreteness labels. Second, a new training scheme, multi-modal

pre-training, is introduced. This new learning scheme is inspired from the curriculum

learning approaches in artificial intelligence. The results show that, although the model

could not outperform state-of-the-art results, the multi-modal pre-training objective can

increase the performance of the models significantly. Our results also confirm the findings

in the literature by showing that it is harder to detect and classify abstract samples.

There are several arguments that can be made for the improvement of the proposed

model. Firstly, a safe bound can be used to differentiate concrete words from the abstract

words in the UWA MRC Psycholinguistic dataset . In its current stance, words that have

a concreteness rating just above the 400 threshold and words that have a concreteness

rating just below the 400 are categorized as concrete and abstract respectively. However,
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it can be argued that the differences between such words are negligible, therefore making

the samples obtained from them obscure and noisy. Discarding the words between the

concreteness rating of, i.e. 300−500, could help the dataset to reflect the nature of abstract

and concrete concepts better.

Second improvement may come from the usage of better image-text alignment

models. Although the model goes through each word individually with the text model, the

same feature space, constructed by the image model, is used for each word. As state-of-

the-art models suggest, better alignment can be provided if one can use an image model

that can match each word individually such as an object detection or object segmentation

method. In such models, image patches can be aligned with individual words to provide

an improved image-text alignment.

74



REFERENCES

Agrawal, A., D. Batra, D. Parikh, and A. Kembhavi (2018, June). Don’t just assume; look

and answer: Overcoming priors for visual question answering. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Akbik, A., D. Blythe, and R. Vollgraf (2018). Contextual string embeddings for se-

quence labeling. In COLING 2018, 27th International Conference on Computational
Linguistics, pp. 1638–1649.

Alexandrescu, A. and K. Kirchhoff (2006). Factored neural language models. In Pro-
ceedings of the Human Language Technology Conference of the NAACL, Companion
Volume: Short Papers, NAACL-Short ’06, Stroudsburg, PA, USA, pp. 1–4. Association

for Computational Linguistics.

Anastasopoulos, A., S. Kumar, and H. Liao (2019). Neural language modeling with visual

features. arXiv:1903.02930.

Anderson, P., X. He, C. Buehler, D. Teney, M. Johnson, S. Gould, and L. Zhang (2018).

Bottom-up and top-down attention for image captioning and visual question answering.

In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.

6077–6086.

Andrews, M., G. Vigliocco, and D. Vinson (2009). Integrating experiential and distribu-

tional data to learn semantic representations. Psychological Review 116(3), 463–498.

Antol, S., A. Agrawal, J. Lu, M. Mitchell, D. Batra, C. L. Zitnick, and D. Parikh (2015).

VQA: Visual Question Answering. In International Conference on Computer Vision
(ICCV).

Bahdanau, D., K. Cho, and Y. Bengio (2014). Neural machine translation by jointly

learning to align and translate. CoRR abs/1409.0473.

Bakarov, A. (2018). A survey of word embeddings evaluation methods.

CoRR abs/1801.09536.

Baker, C. F., C. J. Fillmore, and J. B. Lowe (1998). The berkeley framenet project. In

Proceedings of the 17th International Conference on Computational Linguistics - Vol-
ume 1, COLING ’98, Stroudsburg, PA, USA, pp. 86–90. Association for Computational

Linguistics.

75



Bengio, Y., R. Ducharme, P. Vincent, and C. Janvin (2003, March). A neural probabilistic

language model. J. Mach. Learn. Res. 3, 1137–1155.

Bengio, Y., J. Louradour, R. Collobert, and J. Weston (2009). Curriculum learning. In

Proceedings of the 26th Annual International Conference on Machine Learning, ICML

’09, New York, NY, USA, pp. 41–48. Association for Computing Machinery.

Bentivogli, L., I. Dagan, H. T. Dang, D. Giampiccolo, and B. Magnini (2009). The fifth

pascal recognizing textual entailment challenge. In In Proc Text Analysis Conference
(TAC’09.

Bian, J., B. Gao, and T.-Y. Liu (2014). Knowledge-powered deep learning for word

embedding. In Proceedings of the 2014th European Conference on Machine Learning
and Knowledge Discovery in Databases - Volume Part I, ECMLPKDD’14, Berlin,

Heidelberg, pp. 132–148. Springer-Verlag.

Bishop, C. M. (1995). Neural Networks for Pattern Recognition. USA: Oxford University

Press, Inc.

Bisk, Y., R. Zellers, R. L. Bras, J. Gao, and Y. Choi (2019). PIQA: reasoning about

physical commonsense in natural language. CoRR abs/1911.11641.

Blei, D. M., A. Y. Ng, and M. I. Jordan (2003, March). Latent dirichlet allocation. J.
Mach. Learn. Res. 3, 993–1022.

Bojanowski, P., E. Grave, A. Joulin, and T. Mikolov (2016). Enriching word vectors with

subword information. Transactions of the Association for Computational Linguistics 5,

135–146.

Bollacker, K., C. Evans, P. Paritosh, T. Sturge, and J. Taylor (2008). Freebase: A

collaboratively created graph database for structuring human knowledge. In Proceedings
of the 2008 ACM SIGMOD International Conference on Management of Data, SIGMOD

’08, New York, NY, USA, pp. 1247–1250. ACM.

Borin, L., M. Forsberg, and L. Lönngren (2013). Saldo: a touch of yin to wordnet’s yang.

Language Resources and Evaluation 47(4), 1191–1211.

Botha, J. A. and P. Blunsom (2014). Compositional morphology for word representations

and language modelling. In Proceedings of the 31st International Conference on Inter-
national Conference on Machine Learning - Volume 32, ICML’14, pp. II–1899–II–1907.

JMLR.org.

Brants, S., S. Dipper, P. Eisenberg, S. Hansen-Schirra, E. König, W. Lezius, C. Rohrer,

G. Smith, and H. Uszkoreit (2004, Dec). Tiger: Linguistic interpretation of a german

corpus. Research on Language and Computation 2(4), 597–620.

76



Braun, S., D. Neil, and S.-C. Liu (2017). A curriculum learning method for improved noise

robustness in automatic speech recognition. 2017 25th European Signal Processing
Conference (EUSIPCO), 548–552.

Brown, T. B., B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakan-

tan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger,

T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen,

E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Rad-

ford, I. Sutskever, and D. Amodei (2020). Language models are few-shot learners.

CoRR abs/2005.14165.

Bruni, E., G. Boleda, M. Baroni, and N.-K. Tran (2012, July). Distributional semantics

in technicolor. In Proceedings of the 50th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), Jeju Island, Korea, pp. 136–145.

Association for Computational Linguistics.

Bruni, E., N. K. Tran, and M. Baroni (2014a, January). Multimodal distributional seman-

tics. J. Artif. Int. Res. 49(1), 1–47.

Bruni, E., N. K. Tran, and M. Baroni (2014b, January). Multimodal distributional seman-

tics. J. Artif. Int. Res. 49(1), 1–47.

Camacho-Collados, J. and M. T. Pilehvar (2018, September). From word to sense em-

beddings: A survey on vector representations of meaning. J. Artif. Int. Res. 63(1),

743–788.

Cao, K. and M. Rei (2016, August). A joint model for word embedding and word

morphology. In Proceedings of the 1st Workshop on Representation Learning for NLP,

Berlin, Germany, pp. 18–26. Association for Computational Linguistics.

Caubrière, A., N. A. Tomashenko, A. Laurent, E. Morin, N. Camelin, and Y. Estève

(2019). Curriculum-based transfer learning for an effective end-to-end spoken language

understanding and domain portability. CoRR abs/1906.07601.

Cer, D., M. Diab, E. Agirre, I. Lopez-Gazpio, and L. Specia (2017, August). SemEval-2017

task 1: Semantic textual similarity multilingual and crosslingual focused evaluation.

In Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-
2017), Vancouver, Canada, pp. 1–14. Association for Computational Linguistics.

Chang, H.-S., E. Learned-Miller, and A. McCallum (2017). Active bias: Training more

accurate neural networks by emphasizing high variance samples. In Proceedings of
the 31st International Conference on Neural Information Processing Systems, NIPS’17,

Red Hook, NY, USA, pp. 1003–1013. Curran Associates Inc.

77



Changpinyo, S., W. Chao, B. Gong, and F. Sha (2016). Synthesized classifiers for zero-

shot learning. In 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 5327–5336.

Chen, S. F. and J. Goodman (1996). An empirical study of smoothing techniques for

language modeling. In Proceedings of the 34th Annual Meeting on Association for
Computational Linguistics, ACL ’96, pp. 310–318. Association for Computational

Linguistics.

Chen, T., R. Xu, Y. He, and X. Wang (2015). Improving distributed representation of

word sense via wordnet gloss composition and context clustering. In ACL.

Chen, X., Z. Liu, and M. Sun (2014, October). A unified model for word sense representa-

tion and disambiguation. In Proceedings of the 2014 Conference on Empirical Methods
in Natural Language Processing (EMNLP), Doha, Qatar, pp. 1025–1035. Association

for Computational Linguistics.

chen, Z., H. Zhang, X. Zhang, and L. Zhao (2018). Quora question pairs.

Cheng, J. and D. Kartsaklis (2015, September). Syntax-aware multi-sense word em-

beddings for deep compositional models of meaning. In Proceedings of the 2015
Conference on Empirical Methods in Natural Language Processing, Lisbon, Portugal,

pp. 1531–1542. Association for Computational Linguistics.

Cho, K., B. van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk,

and Y. Bengio (2014, October). Learning phrase representations using RNN encoder–

decoder for statistical machine translation. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, pp.

1724–1734. Association for Computational Linguistics.

Coates, A. and A. Y. Ng (2011). The importance of encoding versus training with sparse

coding and vector quantization. In Proceedings of the 28th International Conference
on International Conference on Machine Learning, ICML’11, Madison, WI, USA, pp.

921–928. Omnipress.

Collell Talleda, G., T. Zhang, and M.-F. Moens (2017). Imagined visual representations

as multimodal embeddings. pp. 4378–4384. Singh, Satinder P: AAAI.

Collobert, R. and J. Weston (2008). A unified architecture for natural language processing:

Deep neural networks with multitask learning. In Proceedings of the 25th International
Conference on Machine Learning, ICML ’08, New York, NY, USA, pp. 160–167.

78



Collobert, R., J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. Kuksa (2011,

November). Natural language processing (almost) from scratch. J. Mach. Learn.
Res. 12, 2493–2537.

Coltheart, M. (1981). The mrc psycholinguistic database. The Quarterly Journal of
Experimental Psychology Section A 33(4), 497–505.

Cotterell, R. and H. Schütze (2015, May–June). Morphological word-embeddings. In

Proceedings of the 2015 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Denver, Colorado, pp.

1287–1292. Association for Computational Linguistics.

Cotterell, R., H. Schütze, and J. Eisner (2016). Morphological smoothing and extrapolation

of word embeddings. In Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 1651–1660. Association for

Computational Linguistics.

Creutz, M. and K. Lagus (2007, February). Unsupervised models for morpheme segmen-

tation and morphology learning. ACM Trans. Speech Lang. Process. 4(1), 3:1–3:34.

Cui, Q., B. Gao, J. Bian, S. Qiu, H. Dai, and T.-Y. Liu (2015, August). Knet: A general

framework for learning word embedding using morphological knowledge. ACM Trans.
Inf. Syst. 34(1), 4:1–4:25.

Dai, A. M. and Q. V. Le (2015). Semi-supervised sequence learning. In Proceedings of
the 28th International Conference on Neural Information Processing Systems - Volume
2, NIPS’15, Cambridge, MA, USA, pp. 3079–3087. MIT Press.

Dai, Z., Z. Yang, Y. Yang, J. Carbonell, Q. Le, and R. Salakhutdinov (2019, July).

Transformer-XL: Attentive language models beyond a fixed-length context. In Pro-
ceedings of the 57th Annual Meeting of the Association for Computational Linguistics,
Florence, Italy, pp. 2978–2988. Association for Computational Linguistics.

Deerwester, S., S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. Harshman (1990).

Indexing by latent semantic analysis. JOURNAL OF THE AMERICAN SOCIETY FOR
INFORMATION SCIENCE 41(6), 391–407.

Deng, J., W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei (2009). Imagenet: A large-

scale hierarchical image database. In 2009 IEEE conference on computer vision and
pattern recognition, pp. 248–255. Ieee.

Devereux, B. J., L. K. Tyler, J. Geertzen, and B. Randall (2014). The centre for speech,

language and the brain (cslb) concept property norms. Behavior research methods 46(4),

1119–1127.

79



Devlin, J., M. Chang, K. Lee, and K. Toutanova (2019). BERT: pre-training of deep

bidirectional transformers for language understanding. In Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA,
June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186.

Dolan, B., C. Quirk, and C. Brockett (2004, aug 23–aug 27). Unsupervised construction

of large paraphrase corpora: Exploiting massively parallel news sources. In COLING
2004: Proceedings of the 20th International Conference on Computational Linguistics,
Geneva, Switzerland, pp. 350–356. COLING.

Dos Santos, C. N. and B. Zadrozny (2014). Learning character-level representations

for part-of-speech tagging. In Proceedings of the 31st International Conference on
International Conference on Machine Learning - Volume 32, ICML’14, pp. II–1818–

II–1826. JMLR.org.

Eisenschtat, A. and L. Wolf (2017). Linking image and text with 2-way nets. In 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1855–1865.

Elman, J. L. (1990). Finding structure in time. Cognitive Science 14(2), 179–211.

Elman, J. L. (1993). Learning and development in neural networks: the importance of

starting small. Cognition 48(1), 71–99.

Faruqui, M., J. Dodge, S. K. Jauhar, C. Dyer, E. Hovy, and N. A. Smith (2015, May–June).

Retrofitting word vectors to semantic lexicons. In Proceedings of the 2015 Confer-
ence of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Denver, Colorado, pp. 1606–1615. Association for

Computational Linguistics.

Feng, Y. and M. Lapata (2010). Visual information in semantic representation. In Human
Language Technologies: The 2010 Annual Conference of the North American Chapter of
the Association for Computational Linguistics, HLT ’10, USA, pp. 91–99. Association

for Computational Linguistics.

Finkelstein, L., E. Gabrilovich, Y. Matias, E. Rivlin, Z. Solan, G. Wolfman, and E. Ruppin

(2001). Placing search in context: The concept revisited. In Proceedings of the 10th
International Conference on World Wide Web, WWW ’01, New York, NY, USA, pp.

406–414. ACM.

Frome, A., G. S. Corrado, J. Shlens, S. Bengio, J. Dean, and T. Mikolov (2013). Devise:

A deep visual-semantic embedding model. In In NIPS.

80



Gao, P., Z. Jiang, H. You, P. Lu, S. C. H. Hoi, X. Wang, and H. Li (2019). Dynamic

fusion with intra- and inter-modality attention flow for visual question answering. In

2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.

6632–6641.

Gilhooly, K. J. and R. H. Logie (1980). Age-of-acquisition, imagery, concreteness,

familiarity, and ambiguity measures for 1,944 words. Behavior research methods &
instrumentation 12(4), 395–427.

Gong, C. (2017). Exploring commonality and individuality for multi-modal curriculum

learning. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence,

AAAI’17, pp. 1926–1933. AAAI Press.

Gong, C., D. Tao, S. J. Maybank, W. Liu, G. Kang, and J. Yang (2016). Multi-modal

curriculum learning for semi-supervised image classification. IEEE Transactions on
Image Processing 25(7), 3249–3260.

Gong, Y., H. Luo, and J. Zhang (2017). Natural language inference over interaction space.

CoRR abs/1709.04348.

Goyal, Y., T. Khot, D. Summers-Stay, D. Batra, and D. Parikh (2017). Making the v in

vqa matter: Elevating the role of image understanding in visual question answering.

In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.

6325–6334.

Graves, A. and J. Schmidhuber (2005). Framewise phoneme classification with bidirec-

tional lstm and other neural network architectures. Neural networks : the official journal
of the International Neural Network Society 18 5-6, 602–10.

Griffiths, T. L., J. B. Tenenbaum, and M. Steyvers (2007). Topics in semantic representa-

tion. Psychological Review 114, 2007.

Guo, J., W. Che, H. Wang, and T. Liu (2014, August). Learning sense-specific word em-

beddings by exploiting bilingual resources. In Proceedings of COLING 2014, the 25th
International Conference on Computational Linguistics: Technical Papers, Dublin,

Ireland, pp. 497–507. Dublin City University and Association for Computational Lin-

guistics.

Gutmann, M. U. and A. Hyvärinen (2012, February). Noise-contrastive estimation of

unnormalized statistical models, with applications to natural image statistics. J. Mach.
Learn. Res. 13(1), 307–361.

Hacohen, G. and D. Weinshall (2019, 09–15 Jun). On the power of curriculum learning

in training deep networks. In K. Chaudhuri and R. Salakhutdinov (Eds.), Proceedings

81



of the 36th International Conference on Machine Learning, Volume 97 of Proceedings
of Machine Learning Research, pp. 2535–2544. PMLR.

Harris, Z. S. (1954). Distributional structure. Word 10(2-3), 146–162.

He, K., X. Zhang, S. Ren, and J. Sun (2016). Deep residual learning for image recognition.

In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.

770–778.

He, M., Y. Song, K. Xu, and Y. Dong (2020). On the role of conceptualization in

commonsense knowledge graph construction. ArXiv abs/2003.03239.

Hessel, J., D. Mimno, and L. Lee (2018, June). Quantifying the visual concreteness of

words and topics in multimodal datasets. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers), New Orleans, Louisiana, pp. 2194–

2205. Association for Computational Linguistics.

Hill, F. and A. Korhonen (2014, October). Learning abstract concept embeddings from

multi-modal data: Since you probably can’t see what I mean. In Proceedings of the
2014 Conference on Empirical Methods in Natural Language Processing (EMNLP),
Doha, Qatar, pp. 255–265. Association for Computational Linguistics.

Hill, F., R. Reichart, and A. Korhonen (2015, December). SimLex-999: Evaluating

semantic models with (genuine) similarity estimation. Computational Linguistics 41(4),

665–695.

Hinton, G. E., J. L. McClelland, and D. E. Rumelhart (1986). Parallel distributed pro-

cessing: Explorations in the microstructure of cognition, vol. 1. Chapter Distributed

Representations, pp. 77–109. Cambridge, MA, USA: MIT Press.

Hochreiter, S. and J. Schmidhuber (1997, November). Long short-term memory. Neural
Comput. 9(8), 1735–1780.

Howard, J. and S. Ruder (2018, July). Universal language model fine-tuning for text

classification. In Proceedings of the 56th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), Melbourne, Australia, pp. 328–339.

Association for Computational Linguistics.

Huang, E. H., R. Socher, C. D. Manning, and A. Y. Ng (2012). Improving word repre-

sentations via global context and multiple word prototypes. In Proceedings of the 50th
Annual Meeting of the Association for Computational Linguistics: Long Papers - Vol-
ume 1, ACL ’12, Stroudsburg, PA, USA, pp. 873–882. Association for Computational

Linguistics.

82



Iacobacci, I. and R. Navigli (2019). Lstmembed: Learning word and sense representations

from a large semantically annotated corpus with long short-term memories. In Pro-
ceedings of the 57th Conference of the Association for Computational Linguistics, ACL
2019, Florence, Italy, July 28- August 2, 2019, Volume 1: Long Papers, pp. 1685–1695.

Iacobacci, I., M. T. Pilehvar, and R. Navigli (2015). Sensembed: Learning sense embed-

dings for word and relational similarity. In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the 7th International Joint Conference
on Natural Language Processing (Volume 1: Long Papers), pp. 95–105. Association

for Computational Linguistics.

Jarmasz, M. (2003). Roget’s thesaurus as a lexical resource for natural language processing.

ArXiv abs/1204.0140.

Jauhar, S. K., C. Dyer, and E. Hovy (2015, May–June). Ontologically grounded multi-

sense representation learning for semantic vector space models. In Proceedings of
the 2015 Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies, Denver, Colorado, pp. 683–693.

Association for Computational Linguistics.

Jiang, L., D. Meng, Q. Zhao, S. Shan, and A. G. Hauptmann (2015). Self-paced curriculum

learning. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence,

AAAI’15, pp. 2694–2700. AAAI Press.

Joshi, M., E. Choi, D. S. Weld, and L. Zettlemoyer (2017). Triviaqa: A large scale distantly

supervised challenge dataset for reading comprehension. In R. Barzilay and M. Kan

(Eds.), Proceedings of the 55th Annual Meeting of the Association for Computational
Linguistics, ACL 2017, Vancouver, Canada, July 30 - August 4, Volume 1: Long Papers,
pp. 1601–1611. Association for Computational Linguistics.

Karpathy, A. and L. Fei-Fei (2017). Deep visual-semantic alignments for generating image

descriptions. IEEE Transactions on Pattern Analysis and Machine Intelligence 39(4),

664–676.

Karpathy, A., A. Joulin, and L. Fei-Fei (2014). Deep fragment embeddings for bidirectional

image sentence mapping. In Proceedings of the 27th International Conference on
Neural Information Processing Systems - Volume 2, NIPS’14, Cambridge, MA, USA,

pp. 1889–1897. MIT Press.

Kiela, D., L. Rimell, I. Vulić, and S. Clark (2015, July). Exploiting image generality

for lexical entailment detection. In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the 7th International Joint Conference

83



on Natural Language Processing (Volume 2: Short Papers), Beijing, China, pp. 119–

124. Association for Computational Linguistics.

Kim, J., M. Ma, K. Kim, S. Kim, and C. Yoo (2019). Gaining extra supervision via

multi-task learning for multi-modal video question answering. 2019 International Joint
Conference on Neural Networks (IJCNN), 1–8.

Kim, T.-H. and J. Choi (2018). Screenernet: Learning self-paced curriculum for deep

neural networks. arXiv: Computer Vision and Pattern Recognition.

Kim, Y., Y. Jernite, D. A. Sontag, and A. M. Rush (2016). Character-aware neural language

models. In D. Schuurmans and M. P. Wellman (Eds.), Proceedings of the Thirtieth AAAI
Conference on Artificial Intelligence, February 12-17, 2016, Phoenix, Arizona, USA,

pp. 2741–2749. AAAI Press.

Kiros, R., R. Salakhutdinov, and R. Zemel (2014a). Multimodal neural language models.

In Proceedings of the 31st International Conference on International Conference on
Machine Learning - Volume 32, ICML’14, pp. II–595–II–603. JMLR.org.

Kiros, R., R. Salakhutdinov, and R. Zemel (2014b). Unifying visual-semantic embeddings

with multimodal neural language models. ArXiv abs/1411.2539.

Klein, B., G. Lev, G. Sadeh, and L. Wolf (2015). Associating neural word embeddings

with deep image representations using fisher vectors. In In CVPR.

Kneser, R. and H. Ney (1995, May). Improved backing-off for m-gram language model-

ing. In 1995 International Conference on Acoustics, Speech, and Signal Processing,

Volume 1, pp. 181–184 vol.1.

Kodirov, E., T. Xiang, and S. Gong (2017). Semantic autoencoder for zero-shot learning.

In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.

4447–4456.

Krizhevsky, A., I. Sutskever, and G. E. Hinton (2012). Imagenet classification with deep

convolutional neural networks. In Proceedings of the 25th International Conference on
Neural Information Processing Systems - Volume 1, NIPS’12, Red Hook, NY, USA, pp.

1097–1105. Curran Associates Inc.

Kumar, M., B. Packer, and D. Koller (2010). Self-paced learning for latent variable models.

In J. Lafferty, C. Williams, J. Shawe-Taylor, R. Zemel, and A. Culotta (Eds.), Advances
in Neural Information Processing Systems, Volume 23. Curran Associates, Inc.

Kumar, S., S. Jat, K. Saxena, and P. Talukdar (2019). Zero-shot word sense disambiguation

using sense definition embeddings. In Proceedings of the 57th Conference of the

84



Association for Computational Linguistics, ACL 2019, Florence, Italy, July 28- August
2, 2019, Volume 1: Long Papers, pp. 5670–5681.

Lai, G., Q. Xie, H. Liu, Y. Yang, and E. Hovy (2017, September). RACE: Large-scale

ReAding comprehension dataset from examinations. In Proceedings of the 2017 Confer-
ence on Empirical Methods in Natural Language Processing, Copenhagen, Denmark,

pp. 785–794. Association for Computational Linguistics.

Lan, Z., M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Soricut (2020). Albert:

A lite bert for self-supervised learning of language representations. In International
Conference on Learning Representations.

Landauer, T. K. and S. T. Dutnais (1997). A solution to plato’s problem: The latent

semantic analysis theory of acquisition, induction, and representation of knowledge.

PSYCHOLOGICAL REVIEW 104(2), 211–240.

Lee, K.-H., X. Chen, G. Hua, H. Hu, and X. He (2018). Stacked cross attention for

image-text matching. In Proceedings of the European Conference on Computer Vision
(ECCV), pp. 201–216.

Lee, Y. J. and K. Grauman (2011). Learning the easy things first: Self-paced visual

category discovery. In CVPR 2011, pp. 1721–1728.

Leong, C. W. and R. Mihalcea (2011, November). Going beyond text: A hybrid image-text

approach for measuring word relatedness. In Proceedings of 5th International Joint
Conference on Natural Language Processing, Chiang Mai, Thailand, pp. 1403–1407.

Asian Federation of Natural Language Processing.

Levesque, H., E. Davis, and L. Morgenstern (2012). The winograd schema challenge.

In Thirteenth International Conference on the Principles of Knowledge Representation
and Reasoning.

Levy, O. and Y. Goldberg (2014). Dependency-based word embeddings. In Proceedings
of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume
2: Short Papers), pp. 302–308. Association for Computational Linguistics.

Levy, O., Y. Goldberg, and I. Dagan (2015). Improving distributional similarity with

lessons learned from word embeddings. Transactions of the Association for Computa-
tional Linguistics 3, 211–225.

Li, J. and D. Jurafsky (2015, September). Do multi-sense embeddings improve natural

language understanding? In Proceedings of the 2015 Conference on Empirical Methods
in Natural Language Processing, Lisbon, Portugal, pp. 1722–1732. Association for

Computational Linguistics.

85



Liang, F. M. (1983a). Word hy-phen-a-tion by com-put-er. Technical report.

Liang, F. M. (1983b). Word Hy-phen-a-tion by Com-put-er (Hyphenation, Computer).
Ph. D. thesis, Stanford University, Stanford, CA, USA. AAI8329742.

Ling, W., C. Dyer, A. W. Black, I. Trancoso, R. Fermandez, S. Amir, L. Marujo, and

T. Luís (2015, September). Finding function in form: Compositional character models

for open vocabulary word representation. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing, Lisbon, Portugal, pp. 1520–1530.

Association for Computational Linguistics.

Ling, W., Y. Tsvetkov, S. Amir, R. Fermandez, C. Dyer, A. W. Black, I. Trancoso, and C.-C.

Lin (2015, September). Not all contexts are created equal: Better word representations

with variable attention. In Proceedings of the 2015 Conference on Empirical Methods
in Natural Language Processing, Lisbon, Portugal, pp. 1367–1372. Association for

Computational Linguistics.

Liu, Q., H. Jiang, S. Wei, Z.-H. Ling, and Y. Hu (2015, July). Learning semantic word

embeddings based on ordinal knowledge constraints. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Volume 1: Long Papers), Beijing, China,

pp. 1501–1511. Association for Computational Linguistics.

Liu, Q., M. J. Kusner, and P. Blunsom (2020). A survey on contextual embeddings.

ArXiv abs/2003.07278.

Liu, Y., Y. Guo, E. M. Bakker, and M. S. Lew (2017). Learning a recurrent residual

fusion network for multimodal matching. In 2017 IEEE International Conference on
Computer Vision (ICCV), pp. 4127–4136.

Liu, Y., Z. Liu, T.-S. Chua, and M. Sun (2015). Topical word embeddings. In Proceedings
of the Twenty-Ninth AAAI Conference on Artificial Intelligence, AAAI’15, pp. 2418–

2424. AAAI Press.

Liu, Y., M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer,

and V. Stoyanov (2019). Roberta: A robustly optimized bert pretraining approach.

ArXiv abs/1907.11692.

Lotfian, R. and C. Busso (2019, April). Curriculum learning for speech emotion recogni-

tion from crowdsourced labels. IEEE/ACM Trans. Audio, Speech and Lang. Proc. 27(4),

815–826.

86



Lowe, D. (1999). Object recognition from local scale-invariant features. In Proceedings
of the Seventh IEEE International Conference on Computer Vision, Volume 2, pp.

1150–1157 vol.2.

Lu, J., D. Batra, D. Parikh, and S. Lee (2019). Vilbert: Pretraining task-agnostic visi-

olinguistic representations for vision-and-language tasks. In H. Wallach, H. Larochelle,

A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (Eds.), Advances in Neural
Information Processing Systems, Volume 32. Curran Associates, Inc.

Luong, T., R. Socher, and C. Manning (2013, August). Better word representations

with recursive neural networks for morphology. In Proceedings of the Seventeenth
Conference on Computational Natural Language Learning, Sofia, Bulgaria, pp. 104–

113. Association for Computational Linguistics.

Luu, A. T., Y. Tay, S. C. Hui, and S. K. Ng (2016, November). Learning term embed-

dings for taxonomic relation identification using dynamic weighting neural network.

In Proceedings of the 2016 Conference on Empirical Methods in Natural Language
Processing, Austin, Texas, pp. 403–413. Association for Computational Linguistics.

Ma, Y., X. Xu, F. Shen, and H. T. Shen (2020). Similarity preserving feature generating

networks for zero-shot learning. Neurocomputing 406, 333–342.

McCann, B., J. Bradbury, C. Xiong, and R. Socher (2017). Learned in translation:

Contextualized word vectors. In I. Guyon, U. von Luxburg, S. Bengio, H. M. Wallach,

R. Fergus, S. V. N. Vishwanathan, and R. Garnett (Eds.), NIPS, pp. 6297–6308.

Melamud, O., J. Goldberger, and I. Dagan (2016). context2vec: Learning generic context

embedding with bidirectional LSTM. In Proceedings of the 20th SIGNLL Conference
on Computational Natural Language Learning, CoNLL 2016, Berlin, Germany, August
11-12, 2016, pp. 51–61.

Mikolov, T., K. Chen, G. Corrado, and J. Dean (2013). Efficient estimation of word

representations in vector space. CoRR abs/1301.3781.

Mikolov, T., M. Karafiát, L. Burget, J. Cernocký, and S. Khudanpur (2010). Recurrent

neural network based language model. In INTERSPEECH 2010, 11th Annual Confer-
ence of the International Speech Communication Association, Makuhari, Chiba, Japan,
September 26-30, 2010, pp. 1045–1048.

Mikolov, T., I. Sutskever, K. Chen, G. Corrado, and J. Dean (2013). Distributed rep-

resentations of words and phrases and their compositionality. In Proceedings of the
26th International Conference on Neural Information Processing Systems - Volume 2,

NIPS’13, USA, pp. 3111–3119. Curran Associates Inc.

87



Miller, G. A. (1995, November). Wordnet: A lexical database for english. Commun.
ACM 38(11), 39–41.

Miller, G. A. and W. G. Charles (1991). Contextual correlates of semantic similarity.

Language and Cognitive Processes 6(1), 1–28.

Mnih, A. and G. Hinton (2007). Three new graphical models for statistical language

modelling. In Proceedings of the 24th International Conference on Machine Learning,

ICML ’07, pp. 641–648.

Mnih, A. and G. Hinton (2008). A scalable hierarchical distributed language model. In

Proceedings of the 21st International Conference on Neural Information Processing
Systems, NIPS’08, USA, pp. 1081–1088. Curran Associates Inc.

Mnih, A. and K. Kavukcuoglu (2013). Learning word embeddings efficiently with noise-

contrastive estimation. In Proceedings of the 26th International Conference on Neural
Information Processing Systems - Volume 2, NIPS’13, USA, pp. 2265–2273. Curran

Associates Inc.

Mnih, A. and Y. W. Teh (2012). A fast and simple algorithm for training neural probabilistic

language models. In Proceedings of the 29th International Coference on International
Conference on Machine Learning, ICML’12, USA, pp. 419–426. Omnipress.

Morerio, P., J. Cavazza, R. Volpi, R. Vidal, and V. Murino (2017). Curriculum dropout.

2017 IEEE International Conference on Computer Vision (ICCV), 3564–3572.

Morin, F. and Y. Bengio (2005). Hierarchical probabilistic neural network language model.

In R. G. Cowell and Z. Ghahramani (Eds.), Proceedings of the Tenth International
Workshop on Artificial Intelligence and Statistics, pp. 246–252. Society for Artificial

Intelligence and Statistics.

Mrkšić, N., D. Ó Séaghdha, B. Thomson, M. Gašić, L. M. Rojas-Barahona, P.-H. Su,

D. Vandyke, T.-H. Wen, and S. Young (2016, June). Counter-fitting word vectors to

linguistic constraints. In Proceedings of the 2016 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technolo-
gies, San Diego, California, pp. 142–148. Association for Computational Linguistics.

Navigli, R. (2009, February). Word sense disambiguation: A survey. ACM Comput.
Surv. 41(2).

Navigli, R. and S. P. Ponzetto (2012, December). Babelnet: The automatic construction,

evaluation and application of a wide-coverage multilingual semantic network. Artif.
Intell. 193, 217–250.

88



Neelakantan, A., J. Shankar, A. Passos, and A. McCallum (2014, October). Efficient

non-parametric estimation of multiple embeddings per word in vector space. In Pro-
ceedings of the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP), Doha, Qatar, pp. 1059–1069. Association for Computational Linguistics.

Newport, E. L. (1990). Maturational constraints on language learning. Cognitive Sci-
ence 14(1), 11–28.

Nguyen, D. Q., D. Q. Nguyen, A. Modi, S. Thater, and M. Pinkal (2017, August). A

mixture model for learning multi-sense word embeddings. In Proceedings of the 6th
Joint Conference on Lexical and Computational Semantics (*SEM 2017), Vancouver,

Canada, pp. 121–127. Association for Computational Linguistics.

Nguyen, K. A., M. Köper, S. Schulte im Walde, and N. T. Vu (2017, September). Hier-

archical embeddings for hypernymy detection and directionality. In Proceedings of the
2017 Conference on Empirical Methods in Natural Language Processing, Copenhagen,

Denmark, pp. 233–243. Association for Computational Linguistics.

Nguyen, K. A., S. Schulte im Walde, and N. T. Vu (2016, August). Integrating distri-

butional lexical contrast into word embeddings for antonym-synonym distinction. In

Proceedings of the 54th Annual Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), Berlin, Germany, pp. 454–459. Association for

Computational Linguistics.

Nieto Piña, L. and R. Johansson (2015, September). A simple and efficient method to

generate word sense representations. In Proceedings of the International Conference
Recent Advances in Natural Language Processing, Hissar, Bulgaria, pp. 465–472.

INCOMA Ltd. Shoumen, BULGARIA.

Norouzi, M., T. Mikolov, S. Bengio, Y. Singer, J. Shlens, A. Frome, G. Corrado, and

J. Dean (2014). Zero-shot learning by convex combination of semantic embeddings. In

International Conference on Learning Representations.

Ororbia, A., A. Mali, M. Kelly, and D. Reitter (2019, July). Like a baby: Visually

situated neural language acquisition. In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, Florence, Italy, pp. 5127–5136. Association

for Computational Linguistics.

Paivio, A., J. C. Yuille, and S. A. Madigan (1968). Concreteness, imagery, and meaning-

fulness values for 925 nouns. Journal of experimental psychology 76(1p2), 1.

Paperno, D., G. Kruszewski, A. Lazaridou, Q. N. Pham, R. Bernardi, S. Pezzelle, M. Ba-

roni, G. Boleda, and R. Fernández (2016). The LAMBADA dataset: Word prediction

89



requiring a broad discourse context. In Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics, ACL 2016, August 7-12, 2016, Berlin,
Germany, Volume 1: Long Papers. The Association for Computer Linguistics.

Pavlick, E., P. Rastogi, J. Ganitkevitch, B. Van Durme, and C. Callison-Burch (2015,

July). PPDB 2.0: Better paraphrase ranking, fine-grained entailment relations, word

embeddings, and style classification. In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the 7th International Joint Conference
on Natural Language Processing (Volume 2: Short Papers), Beijing, China, pp. 425–

430. Association for Computational Linguistics.

Pelevina, M., N. Arefiev, C. Biemann, and A. Panchenko (2016). Making sense of word

embeddings. In Proceedings of the 1st Workshop on Representation Learning for NLP,

pp. 174–183. Association for Computational Linguistics.

Pennington, J., R. Socher, and C. D. Manning (2014). Glove: Global vectors for word

representation. In EMNLP, pp. 1532–1543. ACL.

Peters, M. E., M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and L. Zettlemoyer

(2018). Deep contextualized word representations. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, NAACL-HLT 2018, New Orleans, Louisiana, USA,
June 1-6, 2018, Volume 1 (Long Papers), pp. 2227–2237.

Qiu, S., Q. Cui, J. Bian, B. Gao, and T.-Y. Liu (2014, August). Co-learning of word

representations and morpheme representations. In Proceedings of COLING 2014,
the 25th International Conference on Computational Linguistics: Technical Papers,
Dublin, Ireland, pp. 141–150. Dublin City University and Association for Computational

Linguistics.

Rajpurkar, P., R. Jia, and P. Liang (2018a, July). Know what you don’t know: Unanswerable

questions for SQuAD. In Proceedings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Papers), Melbourne, Australia, pp.

784–789. Association for Computational Linguistics.

Rajpurkar, P., R. Jia, and P. Liang (2018b, July). Know what you don’t know: Unan-

swerable questions for SQuAD. In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume 2: Short Papers), Melbourne, Aus-

tralia, pp. 784–789. Association for Computational Linguistics.

Rajpurkar, P., J. Zhang, K. Lopyrev, and P. Liang (2016, November). SQuAD: 100,000+

questions for machine comprehension of text. In Proceedings of the 2016 Conference

90



on Empirical Methods in Natural Language Processing, Austin, Texas, pp. 2383–2392.

Association for Computational Linguistics.

Reisinger, J. and R. J. Mooney (2010). Multi-prototype vector-space models of word

meaning. In Human Language Technologies: The 2010 Annual Conference of the
North American Chapter of the Association for Computational Linguistics, HLT ’10,

Stroudsburg, PA, USA, pp. 109–117. Association for Computational Linguistics.

Ren, S., K. He, R. Girshick, and J. Sun (2015). Faster r-cnn: Towards real-time object

detection with region proposal networks. In Proceedings of the 28th International Con-
ference on Neural Information Processing Systems - Volume 1, NIPS’15, Cambridge,

MA, USA, pp. 91–99. MIT Press.

Ripley, B. D. and N. L. Hjort (1995). Pattern Recognition and Neural Networks (1st ed.).

USA: Cambridge University Press.

Rogers, A., O. Kovaleva, and A. Rumshisky (2020). A primer in bertology: What we

know about how bert works. ArXiv abs/2002.12327.

Rohrbach, M., M. Stark, and B. Schiele (2011). Evaluating knowledge transfer and zero-

shot learning in a large-scale setting. In CVPR 2011, pp. 1641–1648.

Romera-Paredes, B. and P. H. S. Torr (2015). An embarrassingly simple approach to

zero-shot learning. ICML’15, pp. 2152–2161. JMLR.org.

Rothe, S. and H. Schütze (2015). Autoextend: Extending word embeddings to embeddings

for synsets and lexemes. In Proceedings of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers), pp. 1793–1803. Association for

Computational Linguistics.

Rubenstein, H. and J. B. Goodenough (1965, October). Contextual correlates of synonymy.

Commun. ACM 8(10), 627–633.

Sanh, V., L. Debut, J. Chaumond, and T. Wolf (2019). Distilbert, a distilled version of

BERT: smaller, faster, cheaper and lighter. CoRR abs/1910.01108.

Santos, C. d., M. Tan, B. Xiang, and B. Zhou (2016). Attentive pooling networks. arXiv
preprint arXiv:1602.03609.

Schütze, H. (1998). Automatic word sense discrimination. Computational Linguis-
tics 24(1), 97–123.

Sezerer, E. and S. Tekir (2021). Incorporating concreteness in multi-modal language

models with curriculum learning. Applied Sciences 11(17).

91



Sharma, P., N. Ding, S. Goodman, and R. Soricut (2018, July). Conceptual captions:

A cleaned, hypernymed, image alt-text dataset for automatic image captioning. In

Proceedings of the 56th Annual Meeting of the Association for Computational Linguis-
tics (Volume 1: Long Papers), Melbourne, Australia, pp. 2556–2565. Association for

Computational Linguistics.

Shi, H., J. Mao, T. Xiao, Y. Jiang, and J. Sun (2018, August). Learning visually-grounded

semantics from contrastive adversarial samples. In Proceedings of the 27th International
Conference on Computational Linguistics, Santa Fe, New Mexico, USA, pp. 3715–3727.

Association for Computational Linguistics.

Shi, Y., M. Larson, and C. M. Jonker (2013). K-component recurrent neural network

language models using curriculum learning. In 2013 IEEE Workshop on Automatic
Speech Recognition and Understanding, pp. 1–6.

Simonyan, K. and A. Zisserman (2015). Very deep convolutional networks for large-scale

image recognition. CoRR abs/1409.1556.

Socher, R. and L. Fei-Fei (2010). Connecting modalities: Semi-supervised segmentation

and annotation of images using unaligned text corpora. In 2010 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, pp. 966–973.

Socher, R., M. Ganjoo, C. D. Manning, and A. Y. Ng (2013). Zero-shot learning through

cross-modal transfer. In Proceedings of the 26th International Conference on Neural In-
formation Processing Systems - Volume 1, NIPS’13, Red Hook, NY, USA, pp. 935–943.

Curran Associates Inc.

Socher, R., A. Perelygin, J. Wu, J. Chuang, C. D. Manning, A. Ng, and C. Potts (2013, Oc-

tober). Recursive deep models for semantic compositionality over a sentiment treebank.

In Proceedings of the 2013 Conference on Empirical Methods in Natural Language
Processing, Seattle, Washington, USA, pp. 1631–1642. Association for Computational

Linguistics.

Soricut, R. and F. J. Och (2015). Unsupervised morphology induction using word embed-

dings. In HLT-NAACL.

Soviany, P., R. T. Ionescu, P. Rota, and N. Sebe (2021). Curriculum learning: A survey.

CoRR abs/2101.10382.

Spitkovsky, V. I., H. Alshawi, and D. Jurafsky (2009). Baby steps: How “less is more”

in unsupervised dependency parsing. In NIPS 2009 Workshop on Grammar Induction,
Representation of Language and Language Learning.

92



Srinivasan, K., K. Raman, J. Chen, M. Bendersky, and M. Najork (2021). Wit: Wikipedia-

based image text dataset for multimodal multilingual machine learning. In Proceedings
of the 44th International ACM SIGIR Conference on Research and Development in
Information Retrieval, SIGIR ’21, New York, NY, USA, pp. 2443–2449. Association

for Computing Machinery.

Srivastava, R., K. Greff, and J. Schmidhuber (2015a). Highway networks.

ArXiv abs/1505.00387.

Srivastava, R., K. Greff, and J. Schmidhuber (2015b). Training very deep networks. In

NIPS.

Sun, Y., S. Wang, Y. Li, S. Feng, X. Chen, H. Zhang, X. Tian, D. Zhu, H. Tian,

and H. Wu (2019). Ernie: Enhanced representation through knowledge integration.

ArXiv abs/1904.09223.

Sun, Y., S. Wang, Y. Li, S. Feng, H. Tian, H. Wu, and H. Wang (2020). Ernie 2.0: A

continual pre-training framework for language understanding. ArXiv abs/1907.12412.

Szegedy, C., W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke,

and A. Rabinovich (2015). Going deeper with convolutions. In Computer Vision and
Pattern Recognition (CVPR).

Szegedy, C., V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna (2016). Rethinking the

inception architecture for computer vision. In 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 2818–2826.

Tang, Y.-P. and S.-J. Huang (2019, Jul.). Self-paced active learning: Query the right thing

at the right time. 33, 5117–5124.

Tekir, S. and Y. Bastanlar (2020). Deep learning: Exemplar studies in natural language

processing and computer vision. In Data Mining-Methods, Applications and Systems.
IntechOpen.

Tian, F., H. Dai, J. Bian, B. Gao, R. Zhang, E. Chen, and T.-Y. Liu (2014, August).

A probabilistic model for learning multi-prototype word embeddings. In Proceedings
of COLING 2014, the 25th International Conference on Computational Linguistics:
Technical Papers, Dublin, Ireland, pp. 151–160. Dublin City University and Association

for Computational Linguistics.

Tissier, J., C. Gravier, and A. Habrard (2017, September). Dict2vec : Learning word

embeddings using lexical dictionaries. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing, Copenhagen, Denmark, pp. 254–

263. Association for Computational Linguistics.

93



Turian, J., L. Ratinov, and Y. Bengio (2010). Word representations: A simple and general

method for semi-supervised learning. In Proceedings of the 48th Annual Meeting of
the Association for Computational Linguistics, ACL ’10, Stroudsburg, PA, USA, pp.

384–394. Association for Computational Linguistics.

Turney, P. D. (2001). Mining the web for synonyms: Pmi-ir versus lsa on toefl. In

L. De Raedt and P. Flach (Eds.), Machine Learning: ECML 2001, Berlin, Heidelberg,

pp. 491–502. Springer Berlin Heidelberg.

Turney, P. D. and P. Pantel (2010, January). From frequency to meaning: Vector space

models of semantics. J. Artif. Int. Res. 37(1), 141–188.

Vaswani, A., N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. u. Kaiser, and

I. Polosukhin (2017). Attention is all you need. In I. Guyon, U. V. Luxburg, S. Bengio,

H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Eds.), Advances in Neural
Information Processing Systems 30, pp. 5998–6008. Curran Associates, Inc.

Vigliocco, G., L. Meteyard, M. Andrews, and S. Kousta (2009). Toward a theory of

semantic representation. Language and Cognition 1(2), 219–247.

von Ahn, L. and L. Dabbish (2004). Labeling images with a computer game. In Proceed-
ings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’04,

New York, NY, USA, pp. 319–326. Association for Computing Machinery.

Vulić, I., N. Mrkšić, R. Reichart, D. Ó Séaghdha, S. Young, and A. Korhonen (2017,

July). Morph-fitting: Fine-tuning word vector spaces with simple language-specific

rules. In Proceedings of the 55th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), Vancouver, Canada, pp. 56–68. Association for

Computational Linguistics.

Wang, A., A. Singh, J. Michael, F. Hill, O. Levy, and S. Bowman (2018, November).

GLUE: A multi-task benchmark and analysis platform for natural language understand-

ing. In Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and
Interpreting Neural Networks for NLP, Brussels, Belgium, pp. 353–355. Association

for Computational Linguistics.

Wang, C., X. He, and A. Zhou (2019). Spherere: Distinguishing lexical relations with

hyperspherical relation embeddings. In Proceedings of the 57th Conference of the
Association for Computational Linguistics, ACL 2019, Florence, Italy, July 28- August
2, 2019, Volume 1: Long Papers, pp. 1727–1737.

Wang, L., Y. Li, and S. Lazebnik (2016). Learning deep structure-preserving image-text

embeddings. In 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 5005–5013.

94



Wang, W., V. W. Zheng, H. Yu, and C. Miao (2019, January). A survey of zero-shot

learning: Settings, methods, and applications. 10(2).

Wang, X., Y. Chen, and W. Zhu (2021). A survey on curriculum learning. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 1–1.

Warstadt, A., A. Singh, and S. R. Bowman (2019). Neural network acceptability judg-

ments. Transactions of the Association for Computational Linguistics 7, 625–641.

Weston, J., S. Bengio, and N. Usunier (2010). Large scale image annotation: Learning to

rank with joint word-image embeddings. In European Conference on Machine Learning.

Wieting, J., M. Bansal, K. Gimpel, and K. Livescu (2015). From paraphrase database

to compositional paraphrase model and back. Transactions of the Association for
Computational Linguistics 3, 345–358.

Williams, A., N. Nangia, and S. Bowman (2018). A broad-coverage challenge corpus for

sentence understanding through inference. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers), pp. 1112–1122. Association for

Computational Linguistics.

Wittgenstein, L. (1953). Philosophical Investigations. Basil Blackwell.

Wu, H., J. Mao, Y. Zhang, Y. Jiang, L. Li, W. Sun, and W.-Y. Ma (2019). Unified

visual-semantic embeddings: Bridging vision and language with structured meaning

representations. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR), pp. 6602–6611.

Wu, W., H. Li, H. Wang, and K. Q. Zhu (2012). Probase: A probabilistic taxonomy for text

understanding. In Proceedings of the 2012 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’12, New York, NY, USA, pp. 481–492. ACM.

Xian, Y., C. H. Lampert, B. Schiele, and Z. Akata (2019). Zero-shot learning—a com-

prehensive evaluation of the good, the bad and the ugly. IEEE Transactions on Pattern
Analysis and Machine Intelligence 41(9), 2251–2265.

Xian, Y., T. Lorenz, B. Schiele, and Z. Akata (2018). Feature generating networks

for zero-shot learning. 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 5542–5551.

Xie, G.-S., L. Liu, X. Jin, F. Zhu, Z. Zhang, J. Qin, Y. Yao, and L. Shao (2019, June).

Attentive region embedding network for zero-shot learning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

95



Xu, B., L. Zhang, Z. Mao, Q. Wang, H. Xie, and Y. Zhang (2020, July). Curriculum

learning for natural language understanding. In Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics, Online, pp. 6095–6104. Association

for Computational Linguistics.

Xu, W., W. Liu, X. Huang, J. Yang, and S. Qiu (2018). Multi-modal self-paced learning

for image classification. Neurocomputing 309, 134–144.

Xu, W. and A. Rudnicky (2000). Can artificial neural networks learn language models?

In Sixth International Conference on Spoken Language Processing.

Xu, Y., J. Liu, W. Yang, and L. Huang (2018, July). Incorporating latent meanings

of morphological compositions to enhance word embeddings. In Proceedings of the
56th Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), Melbourne, Australia, pp. 1232–1242. Association for Computational

Linguistics.

Yang, D. and D. M. W. Powers (2005). Measuring semantic similarity in the taxonomy

of wordnet. In Proceedings of the Twenty-eighth Australasian Conference on Com-
puter Science - Volume 38, ACSC ’05, Darlinghurst, Australia, Australia, pp. 315–322.

Australian Computer Society, Inc.

Yang, Z., Z. Dai, Y. Yang, J. Carbonell, R. R. Salakhutdinov, and Q. V. Le (2019). Xlnet:

Generalized autoregressive pretraining for language understanding. In H. Wallach,

H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (Eds.), Advances
in Neural Information Processing Systems 32, pp. 5753–5763. Curran Associates, Inc.

Yang, Z., X. He, J. Gao, L. Deng, and A. Smola (2016). Stacked attention networks for

image question answering. In 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 21–29.

Yin, W. and H. Schütze (2016, August). Learning word meta-embeddings. In Proceedings
of the 54th Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), Berlin, Germany, pp. 1351–1360. Association for Computational

Linguistics.

Young, P., A. Lai, M. Hodosh, and J. Hockenmaier (2014). From image descriptions to vi-

sual denotations: New similarity metrics for semantic inference over event descriptions.

Transactions of the Association for Computational Linguistics 2, 67–78.

Yu, L., Z. Lin, X. Shen, J. Yang, X. Lu, M. Bansal, and T. L. Berg (2018). Mattnet:

Modular attention network for referring expression comprehension. In CVPR.

96



Yu, Z., H. Wang, X. Lin, and M. Wang (2015). Learning term embeddings for hyper-

nymy identification. In Proceedings of the 24th International Conference on Artificial
Intelligence, IJCAI’15, pp. 1390–1397. AAAI Press.

Zaremba, W. and I. Sutskever (2014). Learning to execute. CoRR abs/1410.4615.

Zellers, R., Y. Bisk, A. Farhadi, and Y. Choi (2019, June). From recognition to cognition:

Visual commonsense reasoning. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR).

Zhao, Z., T. Liu, S. Li, B. Li, and X. Du (2017, September). Ngram2vec: Learning im-

proved word representations from ngram co-occurrence statistics. In Proceedings of the
2017 Conference on Empirical Methods in Natural Language Processing, Copenhagen,

Denmark, pp. 244–253. Association for Computational Linguistics.

Zhu, Y., M. Elhoseiny, B. Liu, X. Peng, and A. Elgammal (2018). A generative adversarial

approach for zero-shot learning from noisy texts. In 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 1004–1013.

97



APPENDIX A

Hyperparameters

Hyperparameters used in this work are listed below for each experiment. For the

tests where hyperparameter optmization is performed, the best performing parameters are

underlined.

A.1 Experiments in Table 4.6:

DistilBert: 𝐿𝑅 = 1𝑒−5

𝐸𝑝𝑜𝑐ℎ𝑠 = [1, 2, 3, 4, 5]

𝐶𝑙𝑖𝑝𝑝𝑖𝑛𝑔 = 1

𝐸𝑝𝑠𝑖𝑙𝑜𝑛 = 1𝑒−8

Bert: 𝐿𝑅 = 1𝑒−5

𝐸𝑝𝑜𝑐ℎ𝑠 = [1, 2, 3, 4, 5]

𝐶𝑙𝑖𝑝𝑝𝑖𝑛𝑔 = 1

𝐸𝑝𝑠𝑖𝑙𝑜𝑛 = 1𝑒−8
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A.2 Experiments in Table 4.7:

ResNet: 𝐿𝑅 = [1𝑒−3, 1𝑒−4, 1𝑒−5]

𝐸𝑝𝑜𝑐ℎ𝑠 = [2, 3, 4, 5, 6]

𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚 = 0.9

Bert: 𝐿𝑅 = [1𝑒−3, 1𝑒−4, 1𝑒−5]

𝐸𝑝𝑜𝑐ℎ𝑠 = [2, 3, 4, 5, 6]

𝐶𝑙𝑖𝑝𝑝𝑖𝑛𝑔 = 1

𝐸𝑝𝑠𝑖𝑙𝑜𝑛 = 1𝑒−8

A.3 Experiments in Table 4.8, 4.9, and 4.10:

𝐿𝑅 = 1𝑒−5

𝐸𝑝𝑜𝑐ℎ𝑠 = 3

𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚 = 0.9

𝐶𝑙𝑖𝑝𝑝𝑖𝑛𝑔 = 1

𝐸𝑝𝑠𝑖𝑙𝑜𝑛 = 1𝑒−8

|𝑈 |1 = 512

1Attentive pooling network size.
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