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ABSTRACT

INTEROPERABILITY BY MEANS OF CONFIGURABLE CONNECTORS

Kaya, Muhammed Çağrı

Ph.D., Department of Computer Engineering

Supervisor: Prof. Dr. Ali H. Doğru

May 2020, 109 pages

A configurable connector-based software development methodology for component-

based approaches is presented. This method involves the incorporation of variability

modeling capabilities into component modeling environments. The focus of this re-

search is on supporting technologies for the combination of parts that are not directly

compatible. In the scope of this research, firstly, proposals for the configurable con-

nector paradigm are put forth, that are, achieving interoperability among system com-

ponents by using existing connectors to increase reuse and customizing them through

simple user interfaces. This methodology is applied to the Live-Virtual-Constructive

simulation systems domain as a confıgurable gateway application between Data Dis-

tribution Service for Real-Time Systems (DDS) and High-Level Architecture (HLA)

standards. Finally, interoperability of different parties are investigated for Metrology

and the calibration industry, and an Industrial Internet of Things-based architecture is

established. Academic and industrial case studies have been conducted for proof of

concept. They show the practicality of the proposed approaches.

Keywords: component, connector, interoperability, software architecture, variability
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ÖZ

YAPILANDIRILABİLİR BAĞLAYICILAR ARACILIĞIYLA BİRLİKTE
ÇALIŞABİLİRLİK

Kaya, Muhammed Çağrı

Doktora, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Ali H. Doğru

Mayıs 2020 , 109 sayfa

Bu tezde bileşen tabanlı yazılım geliştirme yaklaşımları için yapılandırılabilir bağla-

yıcı tabanlı bir yöntem sunulmaktadır. Araştırmanın odak noktası, doğrudan uyumlu

olmayan parçaların tümleştirilmesi için destekleyici teknolojilerin irdelenmesidir. Bu

kapsamda, sistem bileşenleri arasında birlikte çalışabilirlik sağlanırken var olan bağ-

layıcıları kullanmayı önceleyen ve yapılandırılmalarını basit kullanıcı arayüzleri yo-

luyla yapmayı kapsayan bir yaklaşım önerilmektedir. Bu yöntemle Canlı-Sanal-Yapısal

benzetim sistemleri alanında Gerçek Zamanlı Sistemler için Veri Dağıtım Hizmeti

(DDS) ve Yüksek Seviye Mimari (HLA) standartları arasında yapılandırılabilir bir ağ

geçidi geliştirilmiştir. Son olarak, Metroloji ve kalibrasyon alanında farklı paydaşların

birlikte çalışabilirliğini sağlamak için araştırmalar yapılmış ve Nesnelerin Endüstriyel

İnterneti (IIoT) tabanlı bir mimari oluşturulmuştur. Yapılan akademik ve endüstriyel

vaka çalışmaları önerilen yöntemlerin uygulanabilirliğini göstermektedir.

Anahtar Kelimeler: bağlayıcı, bileşen, birlikte çalışabilirlik, yazılım mimarisi
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CHAPTER 1

INTRODUCTION

Already existing software components or even systems can be utilized in the composi-

tion of a new application. Such composition can even be carried out over the Internet.

This is becoming a necessity for large-scale systems where developing them from

scratch is costly and time-consuming. Moreover, not necessarily only for large-scale

software, it is desirable to offer software development means for a targeted domain

based on drag-and-drop activities to decrease costs and speed up time-to-market [1].

However, once a domain getting mature with pre-created software, it is inevitable

to have components that are created for different purposes of usage, with different

technologies of implementation and communication styles. The cost of this kind of

development methodology is the burden of interoperability among system compo-

nents.

The heterogeneity and the need for interoperability are noticeable problems for het-

erogeneous and distributed systems [2], either for a large system that is composed of

different subsystems belonging to different areas of application, or a smaller system

with components from the same domain. Considering the Internet of Things (IoT) as

an example, the variety in the included units can easily be observed [3]. There is no

limit to the types and capabilities of units and their communication styles that can be

connected. Proposed solutions for this kind of problems include gateway technolo-

gies focusing on different levels of communication, such as application or transport

[4, 5].

This thesis aims to provide interoperability solutions for component-based systems by

managing the variability of architectural connectors and evolve them into gateways

when possible. Besides, in a broader sense, other architectural solutions are also

1



investigated, focusing on the Industrial IoT (IIoT) domain.

The rest of this chapter clarifies the problem statement that the thesis aims to solve.

Then, the contributions of the thesis are explained. The chapter is concluded with the

outline of the thesis.

1.1 Motivation and Problem Definition

Managing interactions among components of a complex system is a challenging prob-

lem. The burden of interoperability is considerable especially when the system com-

ponents are heterogeneous, such as in a smart city application [6]. This heterogene-

ity may be caused by using different subsystems in the composition of a large-scale

system: using components developed through different technologies, system compo-

nents belonging to different disciplines, etc. The well-known separation of concerns

principle should be considered to overcome heterogeneity and reduce the complexity

of developing software systems: All components or subsystems of the system should

focus on their functionality and carry minimum concern if not none, about communi-

cating with the rest of the system.

Developing all of the components of a domain, e.g., IoT, in a way that all of them have

a common means of communication, such as a generic communication protocol, is

not realistic and feasible. Thus, devices or components in a domain may have various

implementation technologies, characteristics, power and computation constraints, and

purposes of usage. Moreover, most of the systems in different application domains

that we are dealing with do not have a static but a dynamic nature. For example, new

components may be added and removed from the system at different stages.

Components should adapt their communication channels with interacting parties.

This brings the duty of multi-interaction management to the component. This sit-

uation increases complexity and decreases the reusability of both components and

connectors as the interaction logic is incorporated inside the communicating com-

ponents. Following the separation of concerns principle, components should carry

out their core functionality, and connectors should satisfy interaction needs. Thus a

requirement of a highly reusable and dynamic infrastructure arises.

2



The idea of handling communication issues by architectural connectors comes to play

to ease software development by ensuring the separation of concerns. Moreover, this

is an established idea in the literature with more than a two-decade-old history; an

early example of this kind of research is [7]. Most of the literature, however, focus

on the development of connectors [8, 9] rather than choosing one of the existing and

configuring it for customization.

1.2 Contributions and Novelties

The main contribution of this dissertation is related with the incorporation of config-

urable connectors to component-based approaches. In its specifics, this involves the

incorporation of variability capability in the component-modeling approaches. Vari-

ability has already been practiced in Software Product Line Engineering. However, in

general terms, this research is about supporting technologies for the combination of

parts that are not directly compatible. Interoperability and adaptation are some associ-

ated concepts that are widely used. In other words, component connectors are fortified

with the ability to be configured through variability-modeling to adapt incompatible

components. This adaptation can serve the various dimensions of incompatibility and

even supports the coordination of the components in terms of their invocation control.

The main topic addressed in the article [10] is about the off-the-shelf connectors. The

topic introduces the need for such mechanisms that actually require proof of con-

cept at various levels: connectors are utilized for components of different granularity,

hence corresponding to different levels. Systems can be thought to be at the largest

granularity level. As the accompanying work concerning this level, the gateway work

[11] was developed. Here, platforms are adapted that can be considered as systems,

and from another perspective, even higher-level than systems because many systems

can be implemented on a platform. The configurable connector concept has been im-

plemented as a gateway application that governs the connectivity between two mid-

dleware platforms, namely DDS (Data Distribution Service for Real-Time Systems)

and HLA-RTI (High Level Architecture-Runtime Infrastructure).

In another aspect, the IIoT has been studied and reported in the related article [12].

3



As an IIoT-based architecture is proposed, this work can be assumed as comprising

different levels of granularity from the devices at the physical level to the systems at

the application level. Also, due to the popularity of IoT technologies, their specifics

serves a valid arena for adaptability research. Heterogeneity is especially reported

as a major problem in the IoT domain, hence suggesting this field as a very suitable

experimentation candidate.

As a summary, the three publications that were produced as the side-products of this

dissertation work can be classified as the main idea and two related implementations.

The two implementations have targeted different levels for the purpose of covering

the extremes for the broad area of implementation alternatives.

Contributions of this thesis research can be summarized as follows:

• A configurable connector based approach is proposed to provide interoperabil-

ity for component-based systems.

• Based on the proposed configurable connector approach, a DDS-HLA gateway

is developed and successfully deployed to an industrial application.

• An IIoT-based architecture is proposed, and its practicality is shown in the cal-

ibration domain to achieve interoperability in metrology applications.

1.3 The Outline of the Thesis

The rest of this thesis is constructed as follows:

• In Chapter 2, the configurable connector based methodology is explained. How

interoperability can be provided for components of different domains are shown

through academic case studies.

• Chapter 3 explains how the interoperability of LVC (Live-Virtual-Constructive)

simulation systems is achieved through a configurable gateway approach. The

gateway focuses on data interoperability between DDS and HLA. An industrial

case study and other academic work have been conducted to show the practi-

cality of the gateway approach.
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• In Chapter 4, interoperability among different stakeholders is demonstrated in

Metrology and the calibration domain. An IIoT based architecture is proposed

to help to establish standards and make basic services available for everyone in

the calibration industry. A “Scope of Accreditation” editor implementation is

adapted to the proposed architecture.

• Chapter 5 concludes the thesis with remarks and possible future work.
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CHAPTER 2

CONFIGURABLE CONNECTOR APPROACH

Solutions based on software components, especially for heterogeneous constituents

such as those pertaining to different disciplines suffer the interoperability burden.

Adaptor technologies have been introduced before, as a potential remedy and utilized

here through implementing them in component connectors. The main objective of

this research is to offer a consistent development environment that provides seamless

development especially for the component heterogeneity cases. A set of connectors

are introduced to a component-based development environment where a variability

model drives the configuration mechanisms in the flow of the application, compo-

nents, and connectors. The offered set of connectors are the enabling technology

incorporated through their selection and configuration. As demonstrated through an

example in this chapter, academic experimentation revealed the practicality of the

approach. Required adaptation can be achieved in connectors as the appropriate con-

stituent, avoiding additional functional load on the domain components.1

2.1 Introduction

Different approaches have been offered to software developers that exploit the at-

tractive capabilities of components. In an ever growing world of demand, supplying

software on time within expected quality has always been problematic and a source

of motivation for software engineers to devise techniques for quickly developing de-

pendable software. Currently, it is possible to classify such efforts into two categories

as compositional [13] and generative [14]. Either venue aims to reduce human code

1 The study described in this chapter was published in Journal of Integrated Design and Process Science in
2018 [10].
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development which is known to be unpredictable and error-prone [15]. Components,

therefore, emerge as an inevitable resource to offer reuse in a structured way that by-

passes code writing. Of course, one should ignore the development of components

themselves which is a lot easier and more predictable than the development of huge

software-intensive systems. We assume the sufficient existence of necessary software

components to support the desired level of production. We refer to a web-service

also as a component unless in a context that is dependent on the specific technology.

Between the two alternatives, generative techniques were experimented decades ago.

However, their formal specification requirements and lack of powerful tools incapaci-

tated such early attempts. Model-driven approaches, however, attained an impressive

level of success today in the generative direction. Besides the existence of complete

model-driven processes, it can be observed that many different approaches are also in-

corporating some model-driven techniques. Meanwhile, this study capitalizes on the

other alternative that is compositional. Looking at the compositional techniques, it is

possible to see the building blocks offered in the forms of component or web-service

technologies at a satisfactory level of capability to enable software development by

integration. However, such integration often requires code writing, at least for the

‘glue code’.

In this chapter, efforts for increasing reuse of software connectors are presented. The

main motivation is considering only bringing components and connectors together,

rather than developing the required modules. A development environment is proposed

that works based on the principles of the component-oriented approach. The goal is

adding connectors to the system through a drag and drop manner using a graphical

user interface (GUI). The necessary changes to adapt the connector to the system, in

other words, altering the reused connector for customization is done through the GUI

again using simple pop-up windows. Thus, the suggested development style may

prevent or at least reduce the need for the glue code.

Adaptation through connectors becomes especially important when a diversity con-

cerning the component domains is considered. Most of the software-intensive so-

lutions to new demands involve interdisciplinary collaboration, including the com-

ponents. Early statements concerning this phenomenon [16] indicate the consistent

development for interdisciplinary capabilities. Actually, a futuristic version of the
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concept manifests itself as transdisciplinary engineering [17]. Connectors could sup-

port the evolution from interdisciplinary to transdisciplinary development through

enabling the early and maturing attempts.

Some background information will be presented in the following section, on critical

constituents of compositional approaches. These constituents are mostly components

and connectors. Currently, components are commonly being used as important tech-

nologies. Recently connectors have also been emphasized besides the components.

Also, coordination is a related topic that has been addressed utilizing connectors and

will be introduced along with component-oriented representations such as COSEML.

A top-down strategy is emphasized for even coordination besides the structural de-

composition. Related work of the proposed methodology is presented. Then, an

example of the system development will be demonstrated after introducing the under-

lying methodology. Some remarks are provided in the discussion section before the

chapter is concluded.

2.2 Background

This section includes the introduction of notions that form the foundation for the sug-

gested approach. Mostly component related technologies and engineering approaches

that exploit them are involved.

2.2.1 Components

A component can be defined as an implemented building block for software devel-

opment. Components are used to yield a software system through composing from

pre-implemented blocks based on a composition protocol. They are independently

deployable. Meaning that the developers can use any components they desire without

having to worry about the obligation to use any other specific component. Interfaces

should accompany components to publish their provided, and sometimes required

services in order for a system to be synthesized and managed efficiently.

Originally introduced to the literature by Szyperski [18] the component technologies
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appeared as practical building blocks for software. Related capabilities were already

experimented using different approaches. For example, Dynamic Link Libraries of-

fered the capability to connect at run-time, for the units not included in the appli-

cation. This mechanism is reminiscent of the requirement for a component hence a

component-based system, that is the ability to integrate at run time. Even the earlier

concept of ‘virtual memory’ management for programs that move in a piece of code

to the memory from secondary storage (and moving out some other to vacate space)

is also a distantly related mechanism.

The era corresponded to the maturing times for graphical user interfaces that sup-

ported event-based programs: the main loop would wait for mostly a mouse or a

keyboard event to activate some function connected to the associated screen ele-

ment. Although components are far more general software units than serving such

‘windows-based’ user interfaces or event-based program control, early component

protocols reflected the requirements of that era. That is why the definition of a com-

ponent structure included events to subscribe and events to publish. These are in

addition to the fields that a ‘class’ would also declare such as properties and methods.

At first look, the components look just like objects, with the addition of event decla-

rations that could even be judged as methods with specific synchronization require-

ments – so, no big difference. Even though such declarations take place at different

locations: they are inside a class for objects, whereas they are inside additional units

that are called interfaces for components. However, the contribution does not lie in

the declaration structure. What makes a component useful is the hidden mechanisms

that implement compliance with the ‘component protocol’.

For efficient utilization of components, the protocol becomes very important. Soon,

common operating systems started to serve such protocols, almost including ‘mid-

dleware’ layers in them. Today, common desktop environments include component

protocols that can communicate with components before their integration to an ap-

plication, and after their integration, during the operation to carry messages in either

direction.

Early component models allocated only published methods. The required fields were

exclusive to events. Later models made room for required methods as well as pub-
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lished methods. Actually, a whole interface that included methods etc. could also

be declared as published or required. The interface concept became more established

with the components. Such improvements also have reflected to object-oriented mod-

elling and got accommodated in, for example, UML 2.0 [19].

As our current infrastructures move towards more and more automated composition,

concepts such as late binding, polymorphism, and dynamic configuration. gain more

importance. Sets of components for different domains continue to be offered as well

as component protocols or models. While specific capabilities are continuing to be

improved and added, fundamental design principles should be preserved with more

rigor – they include separation of concerns, cohesion etc. Meanwhile, improvement

in the utilization of components, (composition) has continued to be experienced. Less

and less code writing is on the agenda. In this research, connectors are emphasized

as the other important constituent of the composition.

2.2.2 Connectors

Modern complex software systems are usually a collection of components. Han-

dling of interactions among these components can be hard to manage because of the

complexity of the systems. To fight the complexity, the well-known principle of sep-

aration of concerns should be considered. A component should not carry information

about the rest of the system. Also, communication with its exterior should better be

assumed by external entities. This is where the connectors come to play.

Connectors were defined by Mehta et al. [20] as an architectural element that is re-

sponsible for the handling of the interactions among the components in a software

system. Connectors are classified into four general classes according to services they

provide: communication, coordination, conversion and facilitation. Furthermore,

eight connector types are defined according to the way in which they realize their

roles in the interactions: procedure call, event, data access, linkage, stream, arbitra-

tor, adaptor and distributor. In this way, connectors can be identified more effectively

in a complex system and can be differentiated from one another.
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2.2.3 Component-Based and Component-Oriented Software Engineering

Component-Based Software Engineering (CBSE) can be viewed as an approach that

supports the integration of components into applications. The spectrum can also in-

clude mechanisms that aid this objective: component search ability is nice to have as

well as the capability to build components. There can be mixed approaches allowing

for example object-oriented development that facilitates insertion of components into

the object-oriented models and eventually to the code. Component-Oriented Software

Engineering (COSE) on the other hand, does not address code-level development.

Other modeling notions such as objects are not retreated. Only component concept

is regarded throughout the lifecycle: in abstract representations for the earlier phases

and physical for the later phases.

COSE suggests a structural decomposition of the solution in terms of component

definitions. Referred to as packages, such definitions correspond to component ab-

stractions declared with the consideration in mind to match later with existing phys-

ical components. Comparable to the product engineering avenue of Software Prod-

uct Line (SPL) approaches, the emphasis is not in constructing the components –

rather, how to utilize existing components once an ordered product becomes the con-

cern. The methodology is based on iterations on the decomposition model, including

the abstractions and components until the ‘logical’ levels of decomposition are com-

pletely matched with existing components.

So far, we have discussed a static model. The decomposition represents the struc-

ture completely. Even connections among the required and published methods of

various components can be depicted. However, a dynamic view indicating the acti-

vation order among these method connections (i.e. messages) is missing. This view

was introduced later [21] in the form of a collaboration diagram inspired by UML,

superimposed on the decomposition: Numbering was superimposed on the message

connections. Further, a textual modeling language [22] for COSE included process

flow primitives to be listed inside packages. Although not centralized, now the pro-

cess model was represented as distributed among the packages of the system. This

language grew toward including variability in also connectors, after the work of Kaya

[23] that introduced variability to COSE.
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COSEML

Component-Oriented Software Engineering Modeling Language (COSEML) is a graph-

ical modeling language that is designed to take full advantage of COSE. It promotes

the build by integration paradigm rather than code writing from scratch. In COSEML,

design elements have their own graphical representations [24]. For instance, an inter-

face of a component can hold information about its properties, method-in and method-

out fields. Graphical representation of an interface and its structure is shown in Figure

2.1. Method-in fields contain the published methods of a component while method-

out fields represent the methods to access the resources outside the component (re-

quired methods).

The language has evolved through the years. Originally it was designed as a tool

for hardware-software co-design inspired by the Abstract Design Paradigm [25]. The

initial version was introduced to support building software by integration, however

without component technologies being around yet. Therefore, the earlier versions

were more declarative to specify general purpose software units. Abstractions were

designated for their compliance with data, function, or control dimensions of design.

UML was not around either. Consistent usage and evolution accommodated widely

accepted concepts, as they emerged. Icons were adapted to their UML correspon-

dences where possible. With the proliferation of component technologies, the ap-

proach finally was united with its enabling technologies. The whole idea would make

more sense if the well-established code could be coordinated by COSEML models,

to yield executing systems. Bottom-level notions were completely adapted to com-

ponents and interfaces. Over the years, only the structural element among the logical

level primitives, namely the ‘package’ survived for use, shadowing the data, function,

and control. Finally, the language was supported by a component-compliant process

[26].
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Figure 2.1: Graphical representation of an interface of a component.

The evolution kept following the improvement in the compositional approaches. Web

services were added to the environment [27]. Later variability was added [28] as

inspired by the SPL practices. The explicit modeling of the software process was

improved to a mechanism that could mimic that of the SOA by including process

flows [29]. Soon, connectors were reintroduced with serious roles to play [30]. The

final enhancements now offered the enabling technologies for reusable connectors to

complete the ‘structural’ spectrum for build by integration.

2.2.4 Coordination

Coordination can be described as managing data flow and exchanging control of the

system or a resource among components in a software system. There are approaches

that provide coordination through connectors. Also, some coordination languages are

presented and protocols are defined especially for SOA [31].

Mehta et al. [20] categorize coordination as a major role of connectors as they connect

interacting components in their research on connector classification. Coordination

connectors are mainly responsible for conveying control among components accord-

ing to their definition. They declare procedure call, event, and arbitrator as examples

of coordination connector types.
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Arbab [32] proposes Reo for the composition of software components. Reo is defined

as a “channelbased exogenous coordination model”. By composing simpler channels,

complex coordinators can be built. Reo can be used as a ‘glue code’ language to

compose software components or services to provide cooperative behaviour [33].

Linda [34] is proposed in the early 1980s as a coordination language. It is a com-

munication and coordination model for parallel processes that operate as an ordered

sequence. Another coordination language, Orc [35], is used for formal orchestration

modeling. Also, Coordination Behavioral Structure (CBS) is proposed to formalize

the service interactions and relationships [36].

The coordination concept is widespread in SOA literature. Papazoglou [37] describes

coordination as a function provided by a service aggregator that encompasses other

services to behave like a single composite service. This requires controlled execution

of the included services and supervision of the dataflow among them.

Web Services Coordination (WS-Coordination) was developed as a framework to pro-

vide a coordinator and a set of coordination protocols for distributed web services

[38]. WSAtomicTransaction [39] and WS-BusinessActivity [40] are covered in this

framework to support short-duration and long-duration activities, respectively. The

framework is extendable and can be used along with other protocols for web service

domains.

To be able to offer off-the-shelf connectors, a set of connectors that are capable of

serving any kind of connection needs should be available. This is not possible unless

offered in a classification with a degree of modification capability. Luckily [20] laid

out the fundamental expectations from connectors. Basically, a connection interme-

diates a function call. Functions are referred to as methods if they are members of an

object, a component, or a web-service. Also starting with object orientation, the calls

are supposedly carried by messages serving distributed requirements. Assuming the

duty of such a connection, a connector should know the calling party and the method

to call. On the other hand, a component should be system agnostic. In other words,

it is developed to be used in different systems. Therefore, components may not know

the exact names of the other components, the methods in them etc. yielding them

dependent on connectors or the glue code to work together in a system. If such infor-
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mation can be bound to the connectors during their configuration, it will be possible

to use a small set of off-theshelf connectors constituting the only required connection

technology. Here, a connector is mounted between a pair of components, or one end

can be connected to the central process. It serves general purposes including the du-

ties stated in [20]. Also, recent studies [41, 3] incorporated variability management

in the connectors offering this ‘configuration capability’ as a systematic step in the

development.

Connectors provide necessary services while also performing the basic message trans-

fer duty. If the fundamental message mechanisms are taken for granted, the specific

task for the connectors can be simplified as the adaptation. Actually, the categoriza-

tion study addresses two issues that are synchronization and adaptation, although the

former one can be thought of a kind of the latter. Messaging and synchronization have

been studied in various other platforms whereas adaptation gained special attention

since the introduction of components. An analytical study has been conducted by

Jololian and Tanik [42] that considers adaptation as the main concern in composition

and can be investigated in three dimensions that are data, function, and control. These

dimensions are very fundamental for computer science, accounting for the modeling

infrastructure for any kind of executable system [43].

Our abstraction of the connector duties includes coordination and adaptation. The cat-

egories and types of connectors defined in the work of Mehta et al. [20] can be viewed

in this scope. While higher-level aspects of coordination are left to the central process,

communication protocol level details are handled by the connectors. Sometimes the

adaptation could relate to coordination. Different synchronization styles may need to

be adapted. In this case, the coordination is the issue to be solved through an adap-

tation in the control dimension: the connector needs to provide a buffer to save the

answer until the requestor is ready to receive it.

As a result, with the definition of new connector structures, an important missing

link is substituted towards the realization of ‘build by integration’ paradigm. The

central process can be defined in a graphical model. Existing components can be

connected to this process through configuration-level input. Connectors will also be

needed to establish communication among components, and in some cases between
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a component and the central process. Components and connectors are also subject

to configuration. Configurations will be derived via the variability modeling that is

superimposed on the process and component model views.

2.3 Related Work

Studies that point out the importance of interoperability among components from dif-

ferent disciplines exist in the literature. One of them is the work of Costin and East-

man [44]. They describe the need for interoperability for smart and sustainable urban

systems. They introduce a review including principles, methods, and requirements.

According to the authors, semantic web technologies are promising for achieving

interoperability. There are also efforts to achieve interoperability among the compo-

nents developed for the same discipline by different producers, which causes hetero-

geneity. For example, Emmer et al. [45] introduce an approach for interoperability

in the field of 3D measurement data management (MDM). There are diverse mea-

surement equipment and measurement software from different producers. Therefore,

MDM provides integration of information flow through the use of neutral data for-

mats. They define a measurement data interface for this purpose.

The idea of adapting the connectors instead of components in case of incompatibility

is proposed by Garlan [7]. This adaptation can be done by using higher-order connec-

tors, operators that take connectors as parameters and produce them as a result. The

aim is generating powerful and customized connectors by using existing ones.

Dashofy et al. [46] provide an approach for implementing connectors by using OTS

middleware. This work differs from the proposed approach in this paper: while their

concern is more related to implementing connectors, ours is to use them in a drag

and drop manner. Authors also present their ideas of off-the-shelf connectors and

middleware technologies in a different study [47]. They present their work in C2-

Style architectures.

Xillio [48] defines ’off-the-shelf’ connectors for content migration from different

repositories. He also provides a middleware solution for content integration. The

system also allows the creation of new connectors through APIs (Application Pro-
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gramming Interface).

Perez et al. [49] propose a method called PRISMA that uses COTS in aspect-oriented

architectural models that are produced by Model-Driven Development (MDD) ap-

proach. They consider connectors as architectural elements that are responsible for

coordination among components. They claim that their connectors are reusable be-

cause they do not contain any reference to interacting components.

Spalazzese and Inverardi [8] describe the term ‘mediating connector’ for the interop-

erability of heterogeneous components. They also define ‘mediator patterns’ targeting

the basic mismatches that probably occur during component interaction. In another

work, Inverardi et al. describes a synthesis of application-layer connectors [50]. In a

more recent study, the similar connector synthesis approach is used to address func-

tional and non-functional interoperability of networked systems [51].

There are also studies that focus on connector variability. Cetina et al. [52] offer the

Model-Based Reconfiguration Engine (MoRE) that focuses on adaptation to changes

at runtime in the context of autonomic computing. Dynamic reconfiguration of the

system elements is done by activation/deactivation of features on a feature model.

The approach hides how variability in the feature model is applied to the connectors.

This may make the management difficult for large-scale systems.

FX-MAN [53] extends the X-MAN component model [54] with feature models. FX-

MAN uses a logical architecture of the system as a tree of interacting components

along with the feature model. By using variation operators and family connectors,

product families can be constructed. However, the connector variability logic is hid-

den in the logical architecture which derives variations for connectors.

Finally, a literature survey conducted to outline the status of variability in component

models has demonstrated the weakness of such capability [55]. Moreover, the current

state seems to exclude the connector emphasis.

The connector related research is improving. Our approach leverages on its outcome

for exploitation towards ‘build by integration’ that eliminates code-writing. Majority

of the work on connectors target at least partially, development of new connectors.
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2.4 Methodology

Off-the-shelf connectors for the component-oriented approach are presented in this

section. Then, the proposed software development approach is elaborated.

2.4.1 Off-the-shelf Connectors

Complying connectors, with the ambitious reusability objectives, can be an alterna-

tive to writing code for integration. They are also instrumental in completing the

spectrum of drag-and-drop activities for the composition of software. Figure 2.2 de-

picts a screen prototype for a tool where connectors can be selected and inserted in

the design, as well as components.

Figure 2.2: Tool bars for connectors and components for composition.

‘Connectors’ toolbar on the right-hand side of Figure 2.2 includes all of the connec-

tors which can be used in a specific domain. Also, these connectors are grouped under

eight classes to be identified more effectively based on the roles that they can possibly

take in the system. Some pre-built and ready to use adaptor connectors are given for

the ‘e-Commerce’ domain. The ‘e-POS’ connector is responsible for the handling of

credit card transactions between two parties. Similarly, the ‘WireTransfer’ connector
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can be used to manage direct money transfers among parties such as electronic funds

transfer (EFT). The ‘RegionSelector’ connector allows a business to gain the ability

to differentiate their services based on different regions. The ‘LanguageTranslation’

connector can be used to manage translations for previously defined conditions or

events occurring at runtime.

Connectors readily include some methods to carry out their duties. Also, connectors

have the ability to be configured in case of a required customization. A prototype

screen for the interface that can be used to configure a connector is given in Figure

2.3.

Figure 2.3: Configuration of a connector in the composition.

2.4.2 The Proposed Approach

Our aim in this research is to minimize, if not completely eliminate code writing. For

satisfying this objective, three domains in the modelling of any executable medium

can be identified: the overall coordination expressed as a process model, a set of

components, and connection mechanisms. The motivation behind such an architec-

tural style owes itself to the observation about the success in the Service Oriented

Architecture (SOA) field. There, a de-facto two-level architecture is proposed that

is supported with effective tools, protocols, and technologies. This architecture in-

cludes a global process model at the top level and a set of operations at the bottom

level that implement the ‘activities’ in the process model. Figure 2.4 presents a sim-

plified example for money withdrawal scenario represented in this architecture. Al-
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though many developers do not exploit this infrastructure and they combine many

techniques in the production of their code, this infrastructure offers a very easy to use

and a settled method to developing distributed systems. A central control structure

that can be developed in the graphical tools is the process model that would order

all the invocations in the system comprising the first level in the architecture. The

outcome is an ‘executable’ process model. Next, a collection of web services that

are connected to the activity nodes in the process model provide the necessary oper-

ations. Consequently, existing technologies support the two domains (process model

and components) satisfactorily. The last one of the three domains corresponds to

connections that serve two purposes: 1) adaptation among components; and 2) lower-

level coordination duties. Main coordination can be thought of being handled by

the central process model. This research introduces connector structures that abide

by this objective and offer the finalizing of software development that avoids code

writing.

The model presented in Figure 2.4 corresponds to an executable system. To describe

its execution in a consistent form, a simplified C language syntax is used for the code

provided in Listing 1 where the process model corresponds to the main program and

methods of the components correspond to functions. The main program corresponds

to the higher level in the two-level decomposition and the functions correspond to the

lower level. The bodies of the functions are not listed for brevity.

Figure 2.4: Money withdraw scenario in the SOA-inspired architecture.
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A brief description of the methodology for utilizing connectors in the efficient com-

position approach within a two-level decomposition architecture has been provided

in [22]. Here we are articulating more on the aspects that concern the plug-and-play

nature of the connectors. The whole process depends on the persuasion that no code

will be written but drag-and-drop operations will be supported with slot-based param-

eter instantiations to yield an executable system. That persuasion is materialized with

the trust on configurable connectors that will fill in for the gaps and incompatibilities

among a central process and a set of components.

Table 2.1: Modeling the executable system in a simplified C language representation.

1 / / Leve l 2 : A s e t o f f u n c t i o n s

2 getName ( ) . . . . . ;

3 g e t P a s s w o r d ( ) . . . . . ;

4 R e t r i e v e R e c o r d ( AccountID ) . . . . . ;

5 getAmount ( ) . . . . . ;

6 d i s p o s e ( amount ) . . . . . ;

7 p r i n t R e p o r t ( r e p o r t ) . . . . . ;

8

9 / / Leve l 1 : Ordered i n v o c a t i o n o f t h e f u n c t i o n s

10 i n t main ( )

11 getName ( ) ; g e t P a s s w o r d ( ) ; / / s e q u e n t i a l o r d e r

12 r e t r i e v e R e c o r d ( ) ; / / s e q u e n t i a l o r d e r

13 i f ( v e r i f i e d ) / / c o n d i t i o n a l o r d e r

14 amount = getAmount ( ) ; / / seq . i n s i d e cond . o r d e r

15 d i s p o s e ( amount ) ; ; / / seq . i n s i d e cond . o r d e r

16 e l s e / / c o n d i t i o n a l o r d e r

17 e r r o r M e s s a g e ( ) ;

18 p r i n t ( ) ;

19 ;

Figure 2.5 depicts the process model for the suggested software development ap-

proach. The process starts with the construction of a central control model. An
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executable process modelling tool will be instrumental in this step. There are con-

ventional executable engines for the Business Process Execution Language (BPEL)

that is graphical. Also, a more powerful modelling option is offered by the Business

Process Modelling Notation (BPMN) that is also supported by interpretive execution,

however not being as common.

The two-level hierarchy accommodates a single process model that is at the focus of

the execution: providing a central control analogous to a state machine that processes

the transitions of the whole system in a global, hence central state space. This corre-

sponds to a central control that excludes parallel or multithreaded execution modes.

However, this model can easily be adapted to its parallel versions by allocating more

than one processes that communicate. The BPMN or BPEL technologies are currently

capable of supporting such infrastructure. The discussed parallelism actually paves

the way for the implementation of distributed algorithms which are more powerful

than the central control model.

Figure 2.5: Connector supported two-level architecture-based composition.

Distributed or central, the main process is the important specification of the exe-

cutable system, due to our top-down persuasion for development that supports the
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convergence of the design decisions better, to the final product. Top-down approaches

allow the holistic view to be kept within consideration throughout the development.

Otherwise, starting with the components and integrating the application by partial

ordering (partial process models) and combining such models to the global process

model(s) is also possible.

The activity boxes in a process model can be linked to the methods of existing com-

ponents for executing the duties specified in the box. It is possible to execute parts of

the process model for prototyping purposes. It is not necessary therefore to complete

the whole process model before exercising with it.

Supporting the process model development with process decomposition, and espe-

cially offering a methodologic decomposition (hence, top-down definition) is also

studied in [56]. There, a little definition in any level of the architecture is confirmed

with the corresponding definition in other levels of the architecture. Here, definition

means a decomposition step because any new module appears as a result of decompo-

sition. Actually, the referred work suggests a simultaneous definition (decomposition)

of the process model and the other models such as the set of components. This is like

considering one level at a time as in a breadth-first strategy. In either case, completing

the whole process first or only a small part of it before components are connected, we

suggest a top-down approach. The process model comes first as it is the centre of

execution.

Process can also be shaped through instantiation from a domain model. A generic pro-

cess model could exist complementing a domain model such as in SPL approaches.

SPL approaches also propagate the variability management concept within their prac-

tices and to some extent, export the idea to other approaches. Here, variability ca-

pability will result in the configuration of a more generic process model to a specific

one, tailored for the current application. An example to instantiating a generic process

model can be given considering a multi-way branch that corresponds to a selection. In

an executable process model for an application, the branches all exist and at run time,

based on data values or decisions, one of the branches will be taken. However, during

the instantiation of a domain process model, the alternative paths that are marked as

variants for a variation point will be erased and excluded in the final product.
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An important expectation is the establishment of domain-specific development infras-

tructures, with developers who are familiar with their contents. Such mature domains,

that may currently be existing for the internal use of SPL incorporating organizations,

should be more commonplace. In that case, a match between the process model and

the components will be more successful. A better set of components to serve the

whole domain with known uses and descriptions provides leverage. Also, scenarios

that are experimented earlier to offer ordered set of activities to solve sub-problems

(as partial processes) will aid in more effective development of process models. Ac-

tivities defined at the process level, will match existing components with probably

a higher success rate. A similar pattern has been experienced in service orientation

where existing web-services that correspond to business functionalities have proven

desirable.

Development will continue with matching a component, actually a method in it, to

an activity in the process model. The component may go through configuration be-

fore this connection. Variability specifications in the domain model will provide the

desired guidance, preferably with totally automated configurations.

Configuring a component is not sufficient for its execution-level match with the sys-

tem. Connectors are required to connect their interface slots to correct counterparts.

In the simpler case of connecting the central process to one component, one would

assume the process playing the client role whereas the component playing the server

role. For a specific method invocation, the required interface in the process model,

specifying a function it needs, should be connected to the published interface in the

component for the specific service. Usually, we cannot tamper with a component

except for some small modification. It is possible that changing its method names

may not be allowed. Luckily the central process is ours, and it would include slots

to identify the component and its method so that it can send a message to the de-

sired target at run-time. In such cases of perfect matches, no need appears for a

connector. However, connectors do more than just name binding. Also, in the case

of component-to-component connections the existing method call from the requestor

(client) with a pre-defined function name, may require a name translation. Our con-

nectors have slots that record the expected method definitions for both the requesting

and the responding party’s existing method names.
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2.5 Case Study: e-Commerce System

In order to demonstrate the proposed approach and its abilities, an e-commerce sys-

tem is designed in COSEML. The system consists of ‘Item’, ‘Supplier’, ‘Shopping-

Cart’, ‘Order’, ‘Delivery’ and ‘Bank’ components. Structural decomposition of the

system is given in Figure 2.6. All of the interactions among these components will

be handled through connectors. It should be recalled that the higher-level units corre-

spond to logical level declarations.

A connector is used to relay messages. Therefore, messages are declared in con-

nectors. We followed a convention in such name assignments that would indicate

the name of both the requester and the responder parties. There could be more than

one message contained in a connector. When a requestor interface performs a re-

quest through its ‘Method-out’ slot from a related connector: the connector triggers

a connector message which starts with the received ‘Method-out’ call. The activated

connector message, in turn, activates the ‘Method-in’ of the responder interface. The

direction of the interaction is determined by a symbol attached before the connector

name. The ‘<’ symbol shows that the direction of the flow is from right to left, so the

interface given on the left would be the responder interface and the interface given

on the right would be the requester interface. The ‘>’ symbol is used to represent the

reverse direction.

Figure 2.6: Structural decomposition of the e-commerce system.

The connector with the name OrderCreator:ShoppingCart_Order handles the inter-
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actions between the ShoppingCart and the Order components is shown in Figure

2.7 where the components are not shown to save space: only the connection related

units (their interfaces and a connector) are included. In this figure, it is shown that

the orderItems_receiverOrder connector message is triggered through the orderItems

methodout of the ShoppingCart (requester) component. When the connector message

is triggered, it calls the receiveOrder method-in of the Order (responder) component.

Figure 2.7: Interactions between the interfaces of the ShoppingCart and the Order

components through the OrderCreator:ShoppingCart_Order connector.

In the e-commerce system, the communication among the ‘Order’, the ‘Delivery’ and

the ‘Bank’ components are handled through the ‘ShipmentManager:Order_Delivery’

and the ‘e-POS:Order_Bank’ connectors as it can be seen in Figure 2.8. When the

Order component receives an order through its ‘reveiveOrder’ method, it interacts

with the Bank component through the ‘e-POS:Order_Bank’ connector to charge the

customer with the ‘chargeCustomer’ method. However, this money transfer inter-

action may require currency conversion that could consider a variety of currencies.

It is possible to have different currency expectations on both sides of this interac-

tion. Such differences can add up to structures where mapping from one big list

to another will be implemented. This choice for configuration of the adaptation is

solved based on variability modeling, which will be explained soon below. When the

transaction is completed, the ‘Order’ component interacts with the ‘Delivery’ com-

ponent through the ‘ShipmentManager:Order_Delivery’ connector with its ‘shipmen-

tRequest’ method. This operation completes the purchase. Additionally, the Bank
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component has the ability to validate the payment method for security reasons if it

finds necessary. This validation related interaction would also be performed through

the ‘e-POS:Order_Bank’ connector. Also, the Order component has the functional-

ity to refund the customer if a customer returns the order with its ‘refundCustomer’

method.

Figure 2.8: Interactions between the interfaces of Order-Delivery and Order-Bank

Components through connectors.

The interaction involving the ‘charge customer’ request and the ‘finalize transac-

tion’ service is exploited in this example to illustrate the variability related devel-

opment steps. The ‘Order’ and the ‘Bank’ components are assumed to be manu-

factured for a fixed money currency. This is a typical simple example where some

adaptation is required. Since connectors are the chosen media for adaptation, the

‘e-POS:Order_Bank’ connector will assume such responsibility.

The adaptation corresponding to matching different currencies forms a good exam-

ple for variability: the options for converting currency offer a wide choice area for

different currencies. A short list is presented in this example.

Where to implement the variability is another issue. A connector housing only one

message could be selected for the mentioned interaction. However, assuming a com-

mon usage for such a domain-specific connector, we suggested this ‘Order_Bank’

connector to include the three messages that are expected to be used in most of the

order-to-bank connections. The message connecting the ‘charge customer’ request
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to the ‘finalize transaction’ is where such a currency conversion is needed. That is

why the mentioned variability is embedded in this method. Recalling that the con-

nectors have methods declared once per message connection, this ‘charge customer’

to ‘finalize transaction’ message has its own operation. Any connector capability is

potentially possible to be coded in this operation. Here, the operation will conduct

the adaptation, that will be for currency conversion and that will be configurable. The

configuration is how the variability is resolved. Also, coding a capability is a domain

engineering activity assumed completed before.

Figure 2.9 illustrates a screen design corresponding to the configuration of the ‘Or-

der_Bank’ connector. Once an instance of this connector (e-POS) is selected for mod-

ification such as through a double click or a right click on it, the developer should be

able to pick a method for its configuration. In this case, the first method ‘chargeCus-

tomer_finalizeTransaction’ is selected and variability management offers the avail-

able conversion options at the design-time.

Figure 2.9: Resolving the variability on currency conversion through connector con-

figuration.

Actually, the configuration was conducted due to the variability specifications that is

part of earlier specification activities than development. A feature model [57] could

be developed for the domain, that is used for specialization into separate feature mod-
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els for each product. Such specialization is conducted through resolving the variabil-

ity. Although it is possible to model variability in a feature model, it is preferred to

complement a feature model with a separate variability model. Such a separation is

necessary for huge models. Excerpts from a feature model and a variability model are

represented in Figure 2.10. The variability modeling representation complies with the

Orthogonal Variability Model [58] approach.

Figure 2.10: Excerpts from domain feature model and variability model.

2.6 Discussion

New connector structures are proposed to support development by integration, to be

used with component technologies. Although these connectors are flexible to be used

in any kind of composition frameworks, also a central process-driven architecture

is promoted. Inspired by the success in the utilization of SOA based technologies,

this approach suggests a two-level architecture where the ordering of operations is

specified in a process model and the activities in this model are conducted by exist-

ing components or web services. This is analogous to a main program that uses the

control structures (such as if, switch and loops), to execute the flow which includes

only function calls inside these structures. Whereas the algorithmic computations

are dispatched to a set of functions that are called by the main program. This view

suggests the modelling of a system in those two levels, ignoring nested function call

mechanisms and hierarchical organization of the process model. The ‘ignoring’ key-

word is important here, meaning they are not categorically ruled out. However, the
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main model should emphasize a two-level hierarchy. As a result, the vast experience

gathered in SOA can be leveraged. The process model can be developed by experi-

enced developers who know the component library and also similar solutions devised

before. Supported with the existence of many components/web-services at different

granularities and preferably handling business requirements directly, such two-level

decomposition would yield a very efficient development process.

Exceptions will always be with us: more levels in the decomposition can be intro-

duced where necessary. That may be due to a new problem that has not been coded

before requiring the construction of subassemblies that are not available in the form of

directly available components. Anyway, flexibility is usually desired. However, sim-

pler architectures as recommended here will prove more effective in the production

of software intensive systems. This will be possible as the development environments

mature rendering the saturation of the domains with components.

Connectors seem to be assuming partially the responsibilities of a middleware. This

is not one of the objectives of this study. For practical purposes, even connectors

may need to be implemented through component technologies (as components) and

they would also consult to a middleware for connectivity. The idea is to provide a

complete set of assets for development through configuration and integration. Any

systematic tool or support is welcome. Anyway, there is a potential for connectors to

mimic a middleware partially and hence provide some independence from them.

The proposed connector approach is an opportunity for the interaction of components

from various disciplines. In the e-Commerce case study producers, suppliers, delivery

departments and banks are meant to represent different domains. Incorporated pro-

cesses are required to be handled by capabilities residing in more than one discipline.

The communication with the third-parties that are out of discipline, can be handled

with the help of connectors. Reusing existing connectors and customizing them for

different applications reduce the cost of system development.
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2.7 Conclusions

An approach for effectively incorporating connectors in system development is pre-

sented. Domain specific environments are assumed for a default functionality served

by a set of present connector types. Those functionalities are not usually ready for

use, allowing room for finalization. Through variability modelling those expected

capabilities for a domain are offered in our ‘domain model’.

Product specific integration effort is supported by partially expected capabilities that

shape into the domain models in terms of variability. Final tailoring is conducted

through variability resolution. Although variability is supported to be specified at

other times, mostly design time configuration is incorporated.

Our experimentation with example designs has demonstrated the usability of the ap-

proach. Validation for the approach, however, suffers some serious drawbacks: A

real world development environment with its commercially developed requirements

and matured software assets and tools is not easy to acquire and then, to use. Such

items need to be artificially generated for use in proof-of-concept studies. Although

the overall feasibility of the approach can be demonstrated through artificial envi-

ronments, efficiency of validation may critically depend on the fidelity of the assets.

Following an expectation for the near future, such frameworks should appear and,

mature in time for more efficient development support.
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CHAPTER 3

LIVE-VIRTUAL-CONSTRUCTIVE INTEROPERABILITY THROUGH THE

DDS-HLA GATEWAY

Software systems need to be more complex and large-scale to keep up with growing

user expectations with ever-increasing technological improvements. Building these

systems from scratch is costly and time-consuming; thus, the importance of reuse

and interoperability is increasing. Employing more than one subsystem to yield a

more complex system in Live-Virtual-Constructive (LVC) simulation systems is fre-

quently seen. These subsystems may have different implementations and designs. In

such multi-architecture LVC environments, gateways are promising solutions to ad-

dress interoperability issues. In this chapter, a gateway-based solution is proposed

to achieve LVC interoperability with a particular focus on two standard middleware,

viz., Data Distribution Service for Real-Time Systems (DDS) and High-Level Ar-

chitecture (HLA) for distributed simulation. The gateway is capable of providing

two-way data transfer between DDS and HLA. The design of the gateway adheres

to the idea of configurable connectors, which allow users to generate a customized

gateway. The gateway is capable of converting primitive and structured data-types

between DDS and HLA. These conversions are specified by users resulting in dif-

ferent configurations of the gateway. The gateway can also be adapted to another

configuration at runtime. The applicability of the gateway is shown in academic and

industrial case studies.1

1 The study described in this chapter is currently under submission for publication.
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3.1 Introduction

As systems are getting more sophisticated and grow in size, the need for reusing exist-

ing software and combining heterogeneous subsystems into a bigger system becomes

a necessity. This case is usual for LVC simulation systems, where different kinds of

systems that have unique architectures are operated together. Thus, the interoperabil-

ity of multi-architecture LVC simulation systems is an open problem.

LVC Architecture Roadmap (LVCAR) was initiated to examine major simulation ar-

chitectures from different perspectives to increase interoperability in multi-architecture

simulation systems. The main goal is to reduce development time and costs and im-

prove quality [59]. The development of gateway and bridges to provide interoperabil-

ity solutions for LVC simulation systems take place in the core efforts of the LVCAR

study. Developing gateways specific to a system is an issue preventing reuse of it

for another system [60]. Configuring a pre-built gateway for a new system would

improve interoperability efforts for multi-architecture systems.

Combining real-time systems and simulation systems into a bigger one is a known

solution. The interoperability of these two kinds of systems in LVC simulation and

large-scale cyber-physical systems is crucial [61]. Using real-time systems and sim-

ulation systems in a combination decreases production costs, especially in the de-

fense industry [62]. Thanks to their advantageous combination, DDS and HLA are

frequently used together. Since their application areas differ, various solutions are

developed for the interoperability of these two middleware standards. While some

solutions have a single interface serving as a combination of both architectures [63],

some distributed simulation systems use DDS as a communication infrastructure for

its considerable quality of service (QoS) capabilities [64, 65].

The work presented in this chapter is efforts through supporting LVC interoperability.

DDS-HLA gateway is developed to help using these two architectures in the same sys-

tem. The initial need for DDS-HLA interoperability arises from an industrial project

that is a DDS-based avionic system development platform, namely HAVESIS [66].

This DDS-based system is intended to cooperate with an HLA-based tactical simu-

lation system. An architectural connector-based gateway is developed as a solution.
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Figure 3.1: Overall structure of the DDS-HLA gateway.

In software architecture, connectors are the elements where communication concerns

are handled. Accordingly, the proposed gateway handles the data transfer and con-

version tasks between DDS-based and HLA-based systems without modifying their

original structures. In our solution, we assume that the HLA-based system does not

use time management. Alternatively, it is assumed that the simulation system uses

physical time, as it is the case in the DDS-based system.

The gateway is conceptually composed of three main components: a gateway partic-

ipant, a gateway federate, and a data converter, as shown in Figure 3.1. The gateway

participant and the gateway federate establish the communication with DDS and HLA

systems. The data converter contains a shared data area that has primitive and struc-

tured data type declarations, and functions to transfer and convert data between DDS

and HLA. The data converter is the configurable part of the gateway to allow cus-

tomization [3]. Thus, only necessary data types, data structures, and related functions

are included in the gateway. The configuration of the gateway can be done both at

compile time and runtime.

The whole work done on the DDS-HLA gateway can be summarized as follows:

• Previous work: The prototype of the gateway was developed and integrated

into an industrial project [11]. Besides providing two-way communication be-

tween DDS and HLA, this version was also allowing the configuration of prim-

itive data type conversions.

• In this chapter;
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– The gateway is adapted to be configured dynamically.

– The gateway is enhanced to support the transfer and conversion of struc-

tured data types.

– More tests are conducted and use cases are provided to show the usability

of the gateway with its updated features.

The tests, including an industrial case study, show the applicability of our gateway

approach. Although other research provides DDS-HLA interoperability methods in

the literature, our approach differs in terms of configurability. Runtime adaptability

is also a plus since DDS and HLA environments themselves are usually prone to

unexpected changes during execution.

The rest of the chapter includes required background information that covers brief in-

formation about DDS, HLA, and dynamic adaptation. The related work is discussed,

including LVC interoperability, DDS-HLA interoperability in a comprehensive way,

and interoperability of different middleware technologies. Then, the DDS-HLA Gate-

way is elaborated: its design, configuration mechanism, and operation details are pre-

sented. Afterward, case studies are provided that include an industrial application,

other possible use case scenarios, and tests. The chapter is concluded after a discus-

sion section that contains some remarks.

3.2 Background

The necessary background information is provided in this section. Brief information

about DDS and HLA is given. Moreover, dynamic adaptability is mentioned.

3.2.1 Data Distribution Service

Object Management Group (OMG) recommended DDS [67] as a publish-subscribe

based standard for data sharing of large-scale systems to provide anonymous and

decoupled communication. The communication can be asynchronous and also real-

time. DDS has QoS policies for non-functional parameters, including data availabil-

ity, data delivery, and data timeliness.
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The distributed environment provided by DDS is through Global Data Space (GDS).

Publishers and subscribers can join and leave GDS at any time of the execution. They

are discovered dynamically by GDS. Because GDS has a fully distributed nature,

there is no single point of failure. As a powerful tool with the features mentioned

above, DDS is used for reliable and efficient data transmission and sharing in various

areas of application such as the Internet of Things (IoT) finance, smart cities, air

traffic control [68].

3.2.2 High-Level Architecture

HLA is a distributed simulation architecture framework composed of independent,

potentially reusable, loosely coupled components that allow a complex simulation

system to be decomposed [69]. The main goal is the reuse of simulation components.

Therefore, the coupling of components should be decreased, especially in terms of

communication dependencies. Runtime Infrastructure (RTI) is the mediator that pro-

vides services for simulation components, as a middleware.

A federate is a simulation application conforming to the HLA standards. A federation

is a simulation environment that is composed of federates. Federates communicate to

RTI using the standard services and interfaces to participate in the distributed simu-

lation and exchange data [70]. HLA is widely used in the defense industry. Besides,

it has many applications in civilian life, including space, aeronautics, air traffic man-

agement, production, disaster recovery, and transportation systems.

3.2.3 Dynamic Adaptation

Dynamically adaptable systems allow changes in their structure or behavior at run-

time without stopping the whole system [71]. Changing conditions or requirements

necessitate system reconfiguration. Then, reconfiguration is performed to keep the

system functional, or provide a better functionality under the new circumstances

[72]. These changes may also target non-functional parameters to improve them. Dy-

namically adaptable systems are in many fields, including IoT, ambient intelligence

(AmI), robotics, machine learning, as well as distributed simulation systems [73, 74].
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Dynamically adaptable systems are usually self-adaptive. These systems configure

themselves without human interaction by monitoring changes in their operating envi-

ronment [75].

One of our previous works is about the runtime adaptability of AmI systems. We

describe how a component-oriented AmI system reacts to changing conditions at run-

time in [76]. Runtime adaptability is performed by a runtime configurator based on

an ontology-based mechanism.

3.3 Related Work

Related work is categorized into three titles: LVC interoperability, DDS-HLA inter-

operability, and the interoperability of other multi-architecture systems.

3.3.1 LVC Interoperability

LVCAR initiative resulted in notable findings for interoperability. In LVCAR imple-

mentation, bridges and gateways are investigated to offer the LVC user community

better alternatives to discover, select, and configure [77].

In the LVCAR final report [59], architectural boundaries of interoperability are de-

fined, and recommendations are put forward. Moreover, Coolahan and Allen present

the results they obtain after applying recommendations of LVCAR [60]. They show

remarkable findings of the development of multi-architecture simulation systems.

In [77] and [78], authors present LVCAR enhancements for selecting and using gate-

ways. Gateway selection technologies and its process to select a convenient gateway

are handled in [77]. Gateway Mapping Language (GML) is introduced in [78] as a

formal language to specify required translations in a multi-architecture system. The

language provides the format to document the required translations for stakeholders,

and it helps to ensure agreement on them. Another formal language, Gateway Con-

figuration Language (GCL), is also introduced in the same work. GCL is used to

specify common gateway configuration parameters and some additional features. By

using GCL, gateway parameters can be documented independently from the gateway
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implementation. The documented information with the help of GML and GCL can

be used in the future for other gateway implementations.

As Hodson and Hill also declare, the need for interoperability is caused by the de-

mand for reuse [79]. Developing simulation systems from scratch is costly, especially

if they are complex. Also, again in [79], authors explain the differences in the defi-

nitions of the terms gateway and bridge. Bridges are used to provide interoperability

for different versions of the same architecture. However, gateways are utilized for

connecting different architectures.

Although they are not targeting the defense industry directly and categorizing their

work as a solution for an LVC training system, Ardila et al. [80] present an archi-

tecture that allows interoperability for joint real and virtual training in emergency

management. They extend MPEG-V standard and develop a middleware, namely

interconnection gateway, to provide interoperability for various applications.

3.3.2 DDS-HLA Interoperability

DDS-HLA interoperability approaches in the literature differ in terms of the meth-

ods used [81]. Some approaches use a combination of both architectures as infras-

tructures, aiming for a merge method abstracted from the characteristics of both ar-

chitectures. Another common use is to use DDS as a communication infrastructure

for HLA. In addition, there are models that provide interoperability with a gateway.

In the gateway approaches, interoperability is achieved without interfering with the

structure of the DDS-based and the HLA-based system. Consequently, DDS-HLA

interoperability approaches can be categorized into three groups: the fusion model,

the transport layer replacement model, and the gateway model.

3.3.2.1 Fusion Model

In the fusion model, an abstracted access model from both interfaces is obtained

with an additional layer built on top of the DDS and HLA interfaces. The main

purpose of this model is to isolate the interfaces of DDS and HLA compatible systems
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from interoperability problems by combining them with minimum effort in the later

stages. When this model is preferred for the integration of existing systems, it requires

changes in the interface implementations.

An example application of this approach is NCWare [82], which is a software ab-

straction layer that provides interoperability for DDS and HLA by combining their

standards. As a real-time networking middleware, it unifies DDS and HLA standards

through a single API (Application Programming Interface).

3.3.2.2 Transport Layer Replacement Model

In the transport layer replacement model, DDS is employed in the transport layer,

and HLA is used in an upper layer [64, 83]. Generally, DDS is the wire protocol

of an HLA-based system. Thus, the broad range of QoS capabilities of DDS can

be used while preserving HLA’s inter-simulation high-level architectural properties.

The resulting interface in the final system is HLA-compliant, and DDS acts as a

communication infrastructure. In this regard, this solution can be categorized as a

solution to increase the capabilities of inter-simulation middleware and a spectrum

extension rather than strictly an interoperability solution.

HLA-DDS wrapper proposed by Park and Min [83] is an example of the transport

layer replacement approach. In this method, the transport layer of an HLA-based

distributed simulation system is replaced with DDS, and APIs of HLA and DDS are

combined. The HLA-DDS wrapper is compatible with the HLA standard interface.

Thus, the proposed solution supports network-controlled distributed simulation sys-

tems and allows preserving of existing HLA-based distributed simulation systems.

3.3.2.3 Gateway Model

The gateway model ensures the resulting system to exhibit the characteristics of both

DDS and HLA, unlike the fusion and transport layer replacement approaches. In

this approach, the final system should transfer the functionality directed from DDS to

HLA as an HLA compliant federate, and from HLA to DDS as a DDS compliant
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participant. Oh et al. [62], achieves DDS-HLA interoperability by an ontology-

supported gateway solution. Their approach can serve for different systems that are

based on DDS, HLA, and also DIS (Distributed Interactive Simulation).

Park and Min introduce HLA-DDS bridging component in [84] that can be cate-

gorized as a counterpart for a gateway. The bridging component uses DDS-based

physical systems on HLA-based distributed simulations. It is located between a DDS

participant, and HLA federates of the system and provides two-way communication.

The component presents itself to the HLA-based system as a federate, and to the

DDS-based system as a participant. The bridging component consists of three parts:

an inner HLA federate, a data mapping object, and an inner DDS participant. Inner-

federate and inner-participant receive data from the HLA federation and the DDS

domain, respectively, and send data to the other side through the data mapping part.

Our gateway approach has a similar architectural design as the HLA-DDS bridging

component, and they both aim to achieve DDS-HLA interoperability. The proposed

solution in this study allows dynamic configuration capability through the deployment

of different configurations at various execution stages, including runtime. Moreover,

our work contains initial efforts for guiding the development of the gateway through

variability models, as explained in Section 3.6.

3.3.3 Interoperability of Other Multi-Architecture Systems

This section includes similar interoperability approaches in other multi-architecture

systems, not necessarily in LVC or between DDS and HLA. In [85], authors investi-

gate solutions to combine DDS and ARINC-653 standards. A combination of these

standards would be a remedy to interoperability needs in mission-critical and safety-

critical partitioned systems, such as avionics. In this sense, different integration ar-

chitectures are offered. Analysis of the integration of DDS and ARINC-653 is also

provided in the same study. In another DDS-based approach [86], authors present

their framework that provides interoperability solutions for real-time heterogeneous

participants to interact dynamically in dynamic distributed architectures.

Middleware technologies are helping to integrate various heterogeneous components,
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such as sensors and actuators, in robotics. However, using only one middleware tech-

nology may not be sufficient to provide all the required functionalities in an appli-

cation. Therefore, many applications need more than one framework. Authors in

[87] suggest a solution for interoperability between two standard robotics middle-

ware. Their approach is based on the idea of using the existing code for an applica-

tion while avoiding writing code for the cooperation of the two middlewares. Users

provide specifications for the communication needs between the middlewares as a

configuration file, then the necessary code for bridging is generated; this is a similar

method to our gateway configuration approach.

3.4 DDS-HLA Gateway

This section tackles the DDS-HLA gateway in detail: design decisions of the gateway,

the configuration ability, and execution details are provided.

3.4.1 Design Decisions for the Gateway

Architectural connectors inspire the design of the DDS-HLA gateway. Instead of be-

ing placed between two components, it links up two different systems.The gateway

aims to establish a two-way connection between the distributed applications running

on two different middleware. The application concept corresponds to the domain

application on the DDS side and the federation on the HLA side. Simulation com-

ponents that take part in the federation are called federates, and the members of the

domain application are known as participants. As the same as the domain applica-

tion, it is assumed that the federation is running in real-time. Therefore, the time

management services offered by the RTI are not used.

The gateway is composed of three conceptual parts: Gateway Participant, Data Con-

verter, and Gateway Federate. Figure 3.1 illustrates the general design of the gateway.

The gateway is implemented in a multi-threaded manner where these three abstract

parts are scattered into threads. In the current implementation, OpenSplice is used as a

DDS middleware software; Portico [88] or OpenRTI [89] is preferred as an HLA/RTI

middleware implementation. Qt [90] libraries are used to realize the multi-threaded
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design. The implementation language is C++.

The gateway component, in Figure 3.1, appears as a participant to the DDS side

(through “Gateway Participant”), and as a federate to the HLA/RTI side (through

“Gateway Federate”). Therefore, the gateway must join the domain as a DDS par-

ticipant, and the federation as a federate, and communication is conducted through

Gateway Participant and Gateway Federate. In Data Converter, the shared data area

contains the data type and structure definitions and declarations in which the commu-

nication data is recorded, and the functions used to perform read/write operations and

type conversions on the data.

In the gateway design, two-way traffic that may occur during data transmission is

taken into account. Messages that are sent from the DDS domain and the HLA feder-

ation may not be in a specific number and order. For this reason, the gateway should

be listening to both sides continuously and be able to transmit data in both directions.

Thus, a multi-threaded design is preferred for the gateway.

The detailed design of the gateway is depicted in Figure 3.2. The multi-threaded

model is composed of four threads where two of them for Gateway Participant (1, 4),

and two of them for Gateway Federate (2, 3):

(1) Inner DDS Subscriber: Receives messages from the DDS domain.

(2) Inner HLA Publisher: Sends messages to the HLA federation.

(3) Inner HLA Subscriber: Receives messages from the HLA federation.

(4) Inner DDS Publisher: Sends messages to the DDS domain.

These four sub-components of the gateway are allowed to access to the shared data

area. When subscribers receive data from the system that they are listening to, they

write this data to the corresponding locations in the shared data area and notify the

publisher-side of their type. Publishers read the data from the shared data area and

send it to the system that they are registered.

In the gateway design, all data types and structures are defined in a bi-directional

manner to prevent congestion. This mechanism applies to all primitive and structured
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Figure 3.2: Detailed design of the DDS-HLA gateway.

(such as arrays, lists) types of data transmitted between the DDS domain and the HLA

federation. Therefore, there is no waiting to write the incoming data to the shared data

area while transmitting data at the same time. The data transmission functions con-

duct data transfer in the shared data area. These functions are used to read and write

data from the DDS and HLA compatible variables and structures. Moreover, they

are utilized in inter-thread communication.When type conversion is needed before

transferring the data, data conversion functions are used. These functions accept the

source type as an argument and return the target type after the conversion.

3.4.2 Configuration of the Gateway Component

Data types of DDS and HLA may differ even if they are of the same type essentially.

For example, one side of the communication may use short integers while the other

side uses long integers. Moreover, users may deliberately want to transfer data to the

other side in a different format. For this reason, the gateway component is equipped

with configurability. The configuration takes place in accordance with the data map-
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pings defined by the user (or the target system). According to this configuration, the

source code of the gateway is generated and compiled before the deployment. The

deployment can occur at the development time or runtime.

The gateway component has a skeleton code structure. The code blocks for data type

and structure definitions, and related functions for data transmission and conversion

are automatically generated and added to this fixed structure according to the user-

defined mappings. Users can map data types of the DDS-based system and the HLA-

based system to each other through a textual or graphical UI. A tool is developed for

the code generation as depicted in Figure 3.3. The tool uses a simple graphical UI

for data type or structure mapping. After acquiring the mappings from the user, the

gateway code is generated. For each of the user mappings, required data definitions

and functions are injected into the skeleton code structure.

Data type conversions occur in the shared data area of the gateway (conceptually, the

Data Converter, as shown in Figure 3.1). Conversion is needed during data flow, such

as when transferring incoming data in a DDS topic to an HLA object instance. Fur-

thermore, there may also be user-defined conversions. The required code blocks for

data transmission and conversion are generated based on the types of source and des-

tination formats. There is a standard naming convention for the generated variables

and functions. The names are read from the IDL (Interface Description Language)

file of DDS and FOM (Federation Object Model) file of HLA and used in the code

generations adding postfixes to them indicating the direction of the communication

(such as dds_to_hla).

The gateway component must be included in the DDS topic space as a DDS partic-

ipant to be DDS compatible. As the scenario-specific topics may need to be pub-

lished and listened, knowing or anticipating DDS topics in advance in the case of a

potential data transformation scenario is not possible. Therefore, IDL is used to cre-

ate scenario-specific topics for the gateway. After that, the Gateway Participant of

the gateway component needs to be created by compiling the IDL source. The user

provides data types in the IDL file, and rules regarding how to convert data in the

configuration files. DDS-related gateway parts are created by compiling along with

the topics that contain data types. The same processes also are also applied for the
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Figure 3.3: Gateway configuration.

HLA-related parts of the gateway.

3.4.3 Operating the Gateway

The user initiates the gateway and it is triggered to join the DDS domain by using its

gateway participant. The gateway participant calls publishing and subscribing rou-

tines for topics related to the data sets defined at the compilation stage. Upon com-

pletion of this initialization, a similar process is initiated for the gateway federate.

The DDS domain and the HLA federation need to be created before the gateway de-

ployment. In other words, the gateway is not responsible for creating the domain and

the federation since its concern is establishing communication for existing systems.

The gateway performs two-way data conversion (from DDS to HLA and HLA to

DDS) during the execution after the deployment. The gateway participant receives

data updates from the DDS domain, and transformation routines are executed so that

the topic data can be interpreted by the gateway federate. Then, the gateway fed-

erate publishes the converted data on HLA/RTI. Similarly, data updates from HLA

federation are received by the gateway federate, converted, and passed to the gateway

participant to be published to the DDS domain.

A real-life scenario or a test case may have stages that require transferring different
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Figure 3.4: Runtime configuration.

types and amounts of data. When entering a new phase of the mission, the gateway

should tolerate this transition. If these stages are known in advance, different configu-

rations of the gateway can be created, and the corresponding configuration is deployed

when needed, at the runtime. If the requirements change during the mission, and there

is no previously created configuration for the new situation, the user can create a new

configuration by using the gateway configurator. After the new configuration is done,

the changed parts of the gateway are re-compiled, and new executables are created.

The new executables with the new configuration are deployed, then. To allow this

runtime reconfiguration, the gateway code that is responsible for user interaction is

separated from the code that is conducting scenario-specific data transmission and

conversion. In this way, the user can change the corresponding gateway parts at the

runtime without stopping it completely. Figure 3.4 depicts this process.

3.5 Case Studies

This section includes case studies to show the applicability of the proposed gateway

approach. An industrial case study by integrating the gateway into the HAVESIS

47



project, and an academic case study that tests different aspects of the gateway are

conducted.

3.5.1 Distributed Tactical Environment Simulation

The DDS-HLA gateway was developed within the scope of the HAVESIS project.

HAVESIS has four main components: Aircraft Emulator/Simulator Subsystem, Tac-

tical Environment Simulation Subsystem, Middleware Subsystem, and External Load

Subsystem. For an overview of the HAVESIS architecture, the reader may refer to

[66]. The Middleware Subsystem is responsible for data transmission among the

subsystems of HAVESIS. Therefore, The DDS-HLA gateway is deployed into the

Middleware Subsystem.

Middleware Subsystem provides a publish/subscribe mechanism for communication

of HAVESIS components ensuring certain quality requirements. The subsystem pro-

vides a DDS-based middleware service that enables virtual and real systems to be

run together to facilitate platform integration of avionics systems. It is also responsi-

ble for the management of the middleware QoS, and it hosts the DDS-HLA gateway.

Configuration management of the Middleware Subsystem uses the file management

mechanism of the operating system on which the subsystem is running. The configu-

ration files (".idl" and ".fed") are updated by the user to read/write data in the format

required by the configuration technology (DDS and HLA) through an editor.

Middleware Subsystem composed of two components, namely Data Distribution Com-

ponent, and DDS-HLA Gateway Component. Data Distribution Component contains

OMG 1.4 [91] compatible DDS interface configuration and their functions. This com-

ponent is offered as a commercial off-the-shelf product. Nevertheless, OpenSplice

Community 6.7 [92] is used as a distributed open-source software for concept veri-

fication purposes. Thanks to DDS, the parties conduct communication by means of

certain rules defined in the context of a publish/subscribe mechanism regardless of

the communication media and the connection protocol.

A Tactical Environment Simulation (TES) software, which has been developed as an

in-house project for HAVESIS, is employed as a proof of concept for the proposed
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Figure 3.5: TES Dataflow through DDS-HLA gateway.

gateway approach. TES, as a flexible, deterministic, and monolithic discrete-event

constructive simulation software, is a subsystem of the HAVESIS project. TES al-

lows running in a distributed environment by executing the instances of the same core

initialized to handle different portions of a simulation scenario. Moreover, the distri-

bution infrastructure can be modified via TES build settings to operate either on DDS

or HLA.

Two configurations of the TES software is used for this case study: The first one is

the DDS compliant TES subsystem that uses OpenSplice 6.7 library. The second one

is an HLA compliant TES subsystem and it uses Portico 2.1.0 [88] library. Both con-

figurations are set up to exchange winged aircraft objects with id, name, state vector

(position, velocity, roll, pitch, and heading) and other properties. Moreover, HLA

compliant TES uses two interactions (AdminInteraction and ServerStateInteraction)

for scenario management (such as start, stop, pause) operations, which are defined in

its “.fed” file. For the DDS side, these HLA interactions and winged aircraft are de-

fined as topics in the “.idl” file. The gateway component is configured and generated

for this scenario. The relationship of the gateway component with the TES software

is given in Figure 3.5.

TES runs in two different modes: master or slave. It reads the scenario file and
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controls other TES software in the master mode. In the slave mode, it accepts com-

mands from the master to run the scenario. A test scenario is established involving

two aircraft: one controlled by the TES HLA Federation and the other by the TES

DDS Domain. In this scenario, initially, TES Federation is executed in master mode

and TES Domain is executed in slave mode. A DDS domain and an HLA federation

are created. After that, Gateway Component is executed and its Gateway Participant

and Gateway Federate join the pre-created domain and DDS federation, respectively.

Then, the TES Federation starts the scenario and both TES instances create an aircraft

entity and begin exchanging aircraft state updates over the gateway component. TES

Federation publishes object attribute updates of its aircraft object. These updates are

received by the HLA Subscriber of the gateway component since it has a relevant

subscription to the federation. The data captured by the HLA Subscriber is converted

to a DDS message in the gateway and transferred to the DDS Publisher of the gate-

way component. DDS Publisher publishes this message and the message is received

by the TES Domain. For the other direction, TES Domain sends its aircraft’s updates

through the gateway in a similar manner but the relevant operations are conducted in

reverse order. Figure 3.5 indicates the data flow in this scenario by using arrows.

The performance of the gateway component during this case study is provided in

Table 3.1. The table contains delays experienced throughout a sample run of the

defined scenario. Experiments are conducted on a computer with Intel© Core i7-6700

CPU and 8 GB of RAM. Both TES instances and the Gateway were executed on the

same computer. In the scenario execution, the flight of two aircraft is simulated for

15 seconds. The provided results in Table 3.1 are the averages of 3000 messages that

are sent during the execution. The provided results are intended to give a rough idea

of scale and are prone to change with scenario variations and network configuration.

3.5.2 Use Cases for Dynamic Reconfiguration

Some inter-operations require the runtime configuration change during the execution

of the process. This subsection introduces some typical use case scenarios illustrating

the need for runtime reconfiguration capability of the proposed gateway.

It is sometimes desirable to transfer the attribute ownership for a simulation instance,
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Table 3.1: Gateway delays introduced during data flow for the TES case study.

Flow direction From To Delay (µsec) Total (µsec)

DDS→ HLA

TES DDS P. Inner DDS S. 7209

24764Inner DDS S. Inner HLA P. 8006

Inner HLA P. TES HLA S. 9549

HLA→ DDS

TES HLA P. Inner HLA S. 16195

103992Inner HLA S. Inner DDS P. 82251

Inner DDS P. TES DDS S. 5546

in order to facilitate the cooperative modeling of an object within the simulation [93].

Although ownership transfer is supported both by HLA within a federation [70] and

by DDS within a topic space [94], a transfer among HLA and DDS is not straight-

forward through a gateway. At this point, alteration of the ownership properties of

required objects could be updated during execution, by means of the runtime recon-

figuration property of the gateway. The transfer request can trigger a reconfiguration

process, which starts with the syntactic update of the configuration files for both DDS

and HLA sides, followed by the reconfiguration module to incorporate the new con-

figuration during runtime.

For embedded training settings, embedded virtual simulation components are used

for the integration of training functionality into operational equipment [95]. While

the integration through DDS is quite common in operational platforms, HLA is the

standard for simulation interoperability. The DDS-HLA gateway might offer a more

flexible design for inter-protocol embedded training networks. Moreover, with run-

time reconfiguration, it is easier to cope with hardware equipment related errors, since

it provides the opportunity to make recovery plans beforehand to replace malfunction-

ing subsystems online during training.

A straightforward, yet very handy use of runtime reconfiguration is the closed-loop

experimentation. If the simulation is closed-loop and driven by an experiment de-

sign, the same simulation scenario is to be repeated a number of times, depending

on the experimentation parameters, such as levels, number of trials, etc. In that case,

each execution of the scenario is, in fact, an altered instance of the base scenario. A
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number of the altered scenarios are likely to require configuration changes, which can

be managed via repetitive use of the runtime reconfiguration property of the gateway

throughout the experiment execution. Obviously, an experimentation policy defini-

tion mechanism would be required to ease the reconfiguration definition and incorpo-

ration.

3.5.3 A test case for Dynamic Reconfiguration

In this scenario, simulation of an aircraft and its communication with ground stations

is concerned. Each ground station has its area of responsibility. The aircraft commu-

nicates with one ground station at a time: the responsible ground station of the flight

zone in which it is flying. When the aircraft moves from one zone to another, the

station which it is in contact changes as well.

We consider a two-staged mission for the aircraft where it flies from one zone (Stage

1) to another (Stage 2). This transition also changes the contacted ground station.

While ground stations simulated as an HLA-based system, the aircraft is simulated

by DDS. Thus, the DDS-HLA gateway mediates the communication between the

aircraft and the ground station. We assume that these stations have different com-

munication parameters, e.g., they read/write through various object attributes in the

HLA federation. The exchanged information contains the current coordinates of the

aircraft, commands from the ground station, etc. For testing purposes, the size of the

exchanged messages is set to be the same.

In Stage 1, the aircraft is expected to send its geographic coordinates in every 12 sec-

onds and receive the updated commands from the ground station. In stage 2, the new

ground station wants to receive the aircraft’s coordinates as a list in every 60 seconds,

for a total of 5 messages of 12-second steps. In response, it sends its commands as

a list of 5 items. The gateway has a different configuration for each stage to keep

operating correctly.

The gateway is deployed between the aircraft and the first ground station at Stage

1. It is assumed that the communication details of the second ground station and

the necessary configuration of the gateway to establish a connection are known (the
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Table 3.2: Gateway delays introduced during Stage 1.

Flow direction From To Delay (ms) Total (ms)

DDS→ HLA

Aircraft Inner DDS S. 99.85

172.86Inner DDS S. Inner HLA P. 14.54

Inner HLA P. Ground St. 1 58.47

HLA→ DDS

Ground St. 1 Inner HLA S. 48.44

476.49Inner HLA S. Inner DDS P. 12.35

Inner DDS P. Aircraft 415.70

configuration for Stage 2) before. However, it is preferred not to deploy codes needed

for Stage 2 to the gateway in advance. In other words, the unnecessary code during the

first stage is avoided. If the communication requirements for a new stage is discovered

during the mission, and the configuration for the gateway is not prepared before, a

new configuration can be generated during the mission and deployed, as explained in

Section 3.4.3.

For testing purposes, the operation of each stage was observed for an equal amount

of time. Firstly, in Stage 1, a total of 25000 messages were sent; 12500 from DDS to

HLA and 12500 from HLA to DDS. Then the gateway is triggered for the dynamic

configuration. After the successful deployment of the configuration for Stage 2, a total

of 5000 messages were sent; 2500 from DDS to HLA and 2500 from HLA to DDS.

The DDS-based system, the HLA-based system, and the gateway are simulated on the

same PC that has a different processor and memory features than the PC described

in Section 3.5.1. The network delays are provided in Tables 3.2 and 3.3 for Stages 1

and 2, respectively, to give a rough idea about the gateway execution. The network

performance observed in Section 3.5.1 is different from the performance observed

in this section: While DDS to HLA performance is better in the setting described

in Section 3.5.1, HLA to DDS performance is better for the tests in this section.

Therefore, we can say that the performance of the gateway is highly dependent on

the host and systems that the gateway provides interoperability for them. It is worth

noting that, our primary goal is achieving interoperability rather than improving the

network performance of the gateway that may be subject to different research.
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Table 3.3: Gateway delays introduced during Stage 2.

Flow direction From To Delay (ms) Total (ms)

DDS→ HLA

Aircraft Inner DDS S. 102.81

165.24Inner DDS S. Inner HLA P. 17.10

Inner HLA P. Ground St. 2 45.33

HLA→ DDS

Ground St. 2 Inner HLA S. 49.80

274.19Inner HLA S. Inner DDS P. 14.13

Inner DDS P. Aircraft 210.26

There are also different results for Stage 1 and Stage 2. Although the size of the

information exchanged in both stages are about the same, performance in Stage 2

seems slightly better. It is because the number of messages is decreased using data

structures in Stage 2. Aircraft used a list of structs as a DDS participant in Stage 2,

and the second ground station employed a list of fixed records in HLA. The gateway

successfully converted these types to one another.

3.6 Variability-Guided Gateway Development

This section includes our suggestions about a variability-guided gateway develop-

ment process for LVC systems. Our previous work [1, 96] regarding compositional

development inspires this gateway development method.

The variability-guided development approach aims to increase reuse and reduce de-

velopment time and costs while achieving interoperability. The systematic definition

of common and variable parts of the gateway helps reusing already implemented parts

of the gateway. Feature model [57] and Orthogonal Variability Model (OVM) [58]

are famous models for showing common and variable parts of a system and can be

used to guide the development of the gateway. Figure 3.6 is an excerpt from an ex-

ample feature model for the aviation domain. From a top-down development point of

view, gateway development may start choosing the two architectures to be operated

together. In Figure 3.6 this option are represented by four options that are TENA,

DDS, HLA, and DIS. Our assumption is placing the gateway between two architec-
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Figure 3.6: An excerpt from a feature model prepared for the aviation domain.

tures. Thus, a numerical constraint may represent this choice, such as <2..2>, forcing

the developer to select the two architectures that the gateway to be placed in between.

Then, as we use in the DDS-HLA gateway, publisher and subscriber of the selected

architecture must be included in the gateway code. In another level of the model, dif-

ferent data descriptions, such as Object and Interaction classes for the HLA, can be

included in the gateway. Aviation domain-related parameters can be added to these

classes, as shown at the bottom-most level of the example feature model.

Another option for variability representation is the OVM model. Although the feature

model can show commonality and variability as well, OVM explicitly differentiates

variation points and variants. Also, OVM is a flat model, instead of being hierarchical,

that may ease to assess alternatives for a specific variation point.

The development approach suggested in this section would be possible in the case of

the existence of a mature domain [97]. A mature domain can be defined as populated

with developed components. After having a mature domain, products can be derived

directly from a configured domain feature model, i.e., the product feature model with

the help of a code generation tool such as pure::variants [98].
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3.7 Discussion

Gateway Component can be deployed and executed on any computer system on the

local area network. To increase efficiency, the gateway should be located close to the

publishers and/or subscribers of the related topics, e.g. on the same computer if pos-

sible. Moreover, it is possible to configure and deploy multiple gateway components

for a single LVC application considering various topics and Simulation Object Mod-

els (SOMs). This allows for a balanced distribution of gateway functionality. In a

scenario where multiple gateway components are deployed, the topics on the domain

should be segregated among the gateways. In this way, efficient use of resources on

the network through distribution is provided and the generated network traffic is min-

imized. In the final system, multiple gateways may be combined into a composite

gateway and presented as a single application.

While providing interoperability between a DDS-based system and an HLA-based

system, there may be a need for data conversion. Gateway configuration is done by

using another tool and necessary data structures and functions are generated and com-

piled. The deployment of the corresponding gateway code between the two systems

can be done at development time or runtime. Gateway configuration requires to know

in advance the data types used by the DDS-based system and the HLA-based system.

An IDL file contains the data types used by a DDS-based system. In the proposed

gateway approach, HLA FOM files are assumed to include the necessary data type

declarations just like in the IDL file of the DDS.

In order to prevent congestions, the gateway is designed for two-way communica-

tions. Moreover, the incoming data to the gateway, whether the source is the DDS-

based system or the HLA-based system, has to be unpacked before transferred or

converted. These decisions come with a cost by increasing the copying of the data

inside the gateway. Therefore, it is worth noting that, most of the delay reported in

Table 3.1 stems from parsing and conversion effort.

The presented gateway is assumed to be deployed between two different architectures.

In other words, the current version is not capable of handling communication of more

than two architectures. However, the architectural design of the gateway allows this
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kind of enhancement. Moreover, there is some research, including [62], that claims

to solve semantic mapping issues between DDS-HLA. In the current version of our

gateway, we deploy the code for semantic mappings into the skeleton code structure,

i.e., the commonality part of the gateway. Thus, we can say that our gateway is more

appropriate for syntactic interoperability. Furthermore, in this version, we are not

dealing with non-functional aspects of the interoperability, such as QoS parameters

in DDS. To summarize, our gateway provides functional and syntactic interoperability

for binary connections for components or systems.

Although increasing gateway’s performance is not our primary goal at this stage of

our work, we can state based on our observations that the gateway performance highly

depends on the configuration of both the DDS-based system and the HLA-based sys-

tem, and also the host of the gateway. For example, network delays for DDS to HLA

are better in the TES example, as introduced in Table 3.1. However, in the scenario

described in Section 3.5.3, HLA to DDS messaging is less time-consuming. It can

easily be observed from the results that the own performance of the DDS-based sys-

tem is better in the TES scenario: average network delay of messages that are sent

from TES DDS Publisher to the gateway is better than the delays of messages from

TES HLA Publisher to the gateway. This is the opposite of the scenario described in

Section 3.5.3.

It is also notable that DDS is used a lot for interoperability purposes. Most of the

works presented in the related work section use DDS as infrastructure or combine

it with another architecture or standard to provide interoperability for heterogeneous

components. This is because DDS is a powerful tool with its broad QoS support and

has established itself in various industries.

In the current version of the gateway, the variability models are considered only for

guiding the developer when configuring the gateway. The variable parts of this ver-

sion are related to data transfer and conversion: other parts of the gateway (such as

codes that help the gateway to enter a DDS domain) are considered as commonality

and included in the skeleton code structure. Gateway code generation is conducted

by the configuration UI, not by variability models yet.
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3.8 Conclusions

A dynamically reconfigurable gateway application for DDS-HLA interoperability is

presented. The increasing importance of LVC interoperability to reduce operation

costs, especially in the defense industry, calls for this kind of solution. An architec-

tural connector-based solution is implemented as a gateway between the DDS-based

and HLA-based systems. An early version of the gateway was successfully integrated

into the HAVESIS project. Then, the enhanced version of the gateway, in which struc-

tured data type transmission and runtime reconfiguration abilities are added, is devel-

oped and other case studies are conducted. What separates the proposed gateway

approach and other similar solutions in the literature is the configurability. The gate-

way can be configured to transfer various data types, including structured ones, and

perform conversions when needed for both sides of the communication: from DDS

to HLA and vice-versa. Different configurations of the gateway can be deployed

between the DDS and HLA systems at different development times. Moreover, the

configurability of the gateway is related to systematic variability modeling.
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CHAPTER 4

INTERNET OF MEASUREMENT THINGS ARCHITECTURE

Many industries, such as manufacturing, aviation, and power generation, employ sen-

sitive measurement devices to be calibrated by certified experts. The diversity and

sophistication of measurement devices and their calibration needs require networked

and automated solutions. Internet of Measurement Things (IoMT) is an architectural

framework that is based on the Industrial Internet of Things for the calibration indus-

try. This architecture involves a layered model with a cloud-centric middle layer that

solves interoperability issues of different applications. In this chapter, the realization

of this conceptual architecture is described. The applicability of the IoMT architec-

ture in the calibration industry is shown through an editor application for Scope of

Accreditation. The cloud side of the implementation is deployed to Microsoft Azure.

The editor itself is created as a cloud service, and IoT Hub is used to collect data from

calibration laboratories. By adapting the IoMT architecture to a commonly used cloud

platform, considerable progress is achieved to encompass Metrology data and serve

the majority of the stakeholders.1

4.1 Introduction

The usage of the Internet of Things (IoT) spreads to different domains as it provides

opportunities in big data analytics, machine learning, and cloud computing technolo-

gies in the industry. This emerging approach is called the Industrial Internet of Things

(IIoT) or Industry 4.0. Considering the benefits of this new trend, such as increased

productivity, short development periods, quickly developed customized products, and

resource efficiency [99], numerous solutions are proposed in different areas, includ-
1 The study described in this chapter was published in the Sensors journal in 2020 [12].
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ing farming, manufacturing, and telecommunications. When these characteristics of

IIoT technologies are taken into account, they seem to provide promising solutions

for the open research problems in Metrology and the calibration industry.

The notion of the “Internet of Measurement Things (IoMT)” was proposed in [100] as

a layered IIoT architecture that separates physical equipment, cloud-based services,

and applications. This architecture is inspired by the Metrology Information Infras-

tructure (MII) initiative and previous experiences with the Metrology.NET platform.

MII and Metrology.NET are efforts to develop community-driven standards and to

increase the usage of automation in the Metrology world. IoMT architecture aims to

advance previous work into an IIoT-based solution.

The IoMT architecture has three layers, namely physical, MII Cloud Services, and

application. The physical layer contains equipment for calibration, generally in cali-

bration laboratories (CLs). The MII-Cloud Services layer hosts the services that are

provided for the calibration industry. The application layer constitutes different sorts

of software that can be used in Metrology and the calibration industry, e.g., calibra-

tion automation systems, asset tracking systems, and scope of accreditation (SoA)

editors.

CLs operate with different capabilities. Their services may cover one or more dis-

ciplines such as Dimensional, Electrical, and Mechanical. Customers choose CLs

by checking their capabilities and whether the lab is certified by accreditation bodies

(ABs) pertaining to these capabilities. However, using current methods, customers

often have limited options to find the lab that best suits their needs.

An accreditation certificate declares the lab’s capabilities and guarantees an approved

quality of service to customers. For an accredited CL, SoA represents a documented

list of calibration fields, specific measurements, uncertainty values, and other param-

eters. A certificate of accreditation is accompanied by the scope document, and the

certificate is incomplete without it. The SoA document includes only the calibration

areas that a laboratory is accredited for, and only the listed areas may be offered as

accredited calibrations to customers. The format and other details are usually defined

by the AB.
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In this chapter, the realization of the conceptual IoMT architecture is elaborated. An

SoA editor is chosen for the case study. Previous work showed the principles of the

editor, some implementation detail, and how the editor fits the IoMT architecture.

However, the relationship of the editor with the cloud environment was conceptu-

ally explained. One of the well-known and well-established cloud computing service

providers, Microsoft Azure, is employed as the underlying platform, and the SoA ed-

itor is implemented as a cloud service. The data flow from the calibration devices in

the labs to the cloud is managed by Azure IoT Hub.

The whole work done on the IoMT concept can be summarized as follows:

• The IoMT architectural framework was presented in [100]. Based on MII con-

cepts and Metrology.NET experiences, an IIoT-based architecture was concep-

tually introduced to the calibration community.

• The SoA editor was introduced in [101] as an application conforming to the

previously proposed IoMT architecture. The components of the SoA editor fit

the architecture. However, the connections among the components of the editor

and the MII services remained conceptual.

• In [12]:

– The realization of the IoMT architecture is explained, including cloud-

side implementations.

– Microsoft Azure is chosen as the cloud provider.

– The SoA editor presented in [101] is chosen for the case study and re-

implemented as a cloud service.

– The implementation is partial for proof of concept. On the other hand, the

necessary steps to implement a full-scale IIoT application using Azure are

explained.

– Calibration devices are employed as IoT devices, and Azure IoT Hub is

used to collect data from them.

Although some research enriches Metrology with IoT technologies in recent years,

we can still say that we are witnessing the beginning of this transition process. More-
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over, to the best of our knowledge, there is not much work done to make calibration

automation easy for all stakeholders in the industry. In these aspects, this work is a

contribution to adapt Metrology and the calibration industry to IoT technologies in the

industrial scale. This improvement would ease the development of new applications

that use machine learning and big data analytics.

We employ calibration equipment as data producers of an IoT application. In this

sense, sensors in a common IoT application are replaced with calibration equipment

in the IoMT architecture. From another viewpoint, our architecture comprises ap-

plications and labs that focus on sensor calibration. An example of the use of IoT

in sensor calibration is provided in [102]. Moreover, standardization is essential for

sensor calibration [103]. Using the cloud for commonly used services would help

compliance with standards.

The rest of the chapter includes required background information that covers the SoA

concept, the MII initiative, the Metrology.NET platform, and Microsoft Azure along

with its IoT-related services. The related work is discussed, including similar IIoT

applications from different industries and similar work that use Azure. After the

related work section, the IoMT architecture is elaborated. Then, the SoA editor is

provided in detail along with the cloud implementation: how to develop the SoA

editor as a cloud service and other Azure services used in the proof of concept case

study. The chapter is concluded with remarks and possible future work.

4.2 Background

In this section, an introduction to the essential calibration domain terminology used

in this work is provided. A brief overview of the MII is also given.

4.2.1 Calibration

Calibration is an area of metrology, the science of measurement. It indicates the qual-

ity and accuracy of measurements performed in a domain. Measurement equipment

may have errors in their results as time progresses. These drifts can be caused by
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misuse or some external factors, such as temperature and humidity.

Each measurement device has a margin of error on its measurements, namely the

measurement uncertainty. By adjusting the device, it is intended to minimize the

measurement uncertainty or ensure that it remains at an acceptable level. Adjustment

is a different step that is separate from calibration and usually follows a calibration

job. Calibration only includes the testing of a customer unit, while the adjustment is

made to fix the possible divergence of a unit from its regular operation [104].

4.2.2 Scope of Accreditation

All CLs that are accredited as per ISO/IEC 17025 [105] (International Organization

for Standardization/International Electrotechnical Commission) have an SoA. The

scope of a lab represents its technical capabilities for which the lab has requested

the accreditation and was deemed to be competent by an AB. Customers can refer to

the SoA of a CL to find out if their unit can be calibrated by that lab and with how

much accuracy. The scope includes further details such as testing methods, types

of inspections, and certifications. This way, customers can also compare calibration

service providers and choose the one that best suits their needs.

Calibration and Measurement Capability (CMC) represents the best achievable mea-

surement uncertainty of ideal measurement equipment under normal operational con-

ditions in a CL. ABs assess CLs by these numbers, based on CLs’ personnel, equip-

ment, and processes. These values are represented in the form of constant values or

as formulas.

Table 4.1 shows an excerpt extracted from the SoA certificate of a CL issued by an

AB. The excerpt includes two parameters concerning two different calibration disci-

plines covered in the CL scope. Temperature-Measure (first row) is a Thermodynam-

ics parameter, and DC Voltage-Measure (second row) represents an Electrical param-

eter. The table shows uncertainty values (CMC column) for the specified ranges using

specific test equipment mentioned in the Comments column. The Range column may

include a fixed point or a range of values. Similarly, the CMC column may include a

constant value or a CMC equation (second row). The parameters and the formulation
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shown in an SoA certificate may consist of other variations and more complexities

than what is shown in Table 4.1.

Particular infrastructure needs to exist to provide better solutions for SoA related

problems. Such an infrastructure would provide data type standardization, commu-

nication protocols, technologies, and services, and it would lay the foundation for

automation solutions for accreditation processes. In recent years, there have been

endeavors in the advancement of such an infrastructure. The NCSLI (National Con-

ference of Standards Laboratories - International) MII working group is one of the

most active metrology communities working on digitalizing the SoA activities [106].

Table 4.1: An excerpt from an SoA certificate showing CL scope for two different

parameters.

Parameter/Equipment Range CMC (±) Comments

Temperature-Measure

(-50 to 0) ◦C

0 ◦C

(0 to 100) ◦C

(100 to 250) ◦C

0.36 ◦C

0.37 ◦C

0.41 ◦C

0.46 ◦C

Fluke 744

DC Voltage-Measure

(0 to 100) mV

(0.1 to 1) V

(1 to 10) V

(10 to 100) V

(100 to 1000) V

6.8 µV/V + 0.86 µV

6.0 µV/V + 0.80 µV

6.7 µV/V + 1.3 µV

7.0 µV/V + 32 µV

7.8 µV/V + 59 µV

HP 3458A

4.2.3 Metrology Information Infrastructure

Standards are essential for metrology to achieve reliable results. Similar to other do-

mains, metrology also needs automation and standardization. Standards can help to

increase quality in metrology when applied to various processes or data. Examples

can be listed as documentation, conformance testing, risk analysis, uncertainty anal-

ysis, product inspections, service procurement, and accreditation.
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Mark Kuster introduced MII in NCSLI Metrologist magazine in 2013 [107], initially

as Measurement Information Infrastructure. The motivation of MII is standardizing

data types in metrology, including SoA, instrument specification sheets, and calibra-

tion and testing certificates [108]. In this way, it is aimed to ease the communication

of world-wide measurement-related systems and replace manually processed docu-

ments with unambiguous machine-readable ones.

Figure 4.1 illustrates the flow of data among some critical stakeholders of the metrol-

ogy domain. Instrument specs, certificates, and SoA are different types of metrology

data shared among the stakeholders. Arrows in the figure represent the directions of

the data flow.

Measurement 
Consumer

Certificate
Instrument 

Specs
SoA

Manufacturer
Measuring 

Entity
AB

Figure 4.1: A Partial view of the metrology information flow.

4.2.4 Metrology.NET

Metrology.NET is a distributed automation platform for calibrating test equipment

[109, 110]. The platform design follows a modular approach for data management

and calibration automation. The platform connects multiple sub-systems to form a

system of systems to fill in the gaps among various metrology software systems cur-

rently used at CLs. It follows the Lego® analogy, where sub-systems are similar

to Legos that connect using a connector layer. The standardized connector layer is

supposed to join different systems together, which allows the user to build up a total

solution by choosing and configuring smaller block systems to work together.
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Figure 4.2 shows an overview of the Metrology.NET platform, and the system decom-

position with the connections among system components. The metrology engineer is

usually in charge of the server-side that commands the agents for their jobs. The agent

(testing terminal) is the computing machinery that communicates directly and phys-

ically with the testing hardware, including the unit under test (UUT) and reference

equipment. The agent runs the automation software. The typical way of connecting

the agent to the UUT and reference equipment is through the GPIB (General Purpose

Interface Bus).

The Metrology.NET platform follows a client-server architectural style. The server

side hosts the application services, and the clients act as testing workstations that run

the automation. Depending on a CL capacity, it can only consist of a single machine

running both the server and the client, or there may be a central server machine with

several client terminals that consume the services provided by the server. The web

interface of the server-side allows technicians who run calibration work orders to

locally or remotely control and interact with the running automation process.

The server side of the platform can be physically located anywhere, as long as there is

a network connection between the server and the client(s). A secure and fast network

connection between the remote server and the clients ensures automation gets done

in the correct order. The clients act like worker bees that collaboratively do the cal-

ibration job. They are all controlled through the central server. The server side also

keeps a database of the calibration-related data, including test points. This provides a

centralized monitoring of the increasing data and the involved processes. The server

can manage shared calibration jobs that can occur across labs and the data communi-

cation among labs. Another option for the server is to be hosted by a cloud service

and take advantage of the cloud technologies if that helps the business.
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Figure 4.2: An overview of the Metrology.NET system.

Metrology.NET seeks for separation of concerns in handling calibration data and pro-

cesses. A calibration technician examines a calibration work order in terms of a set

of test points for specific customer equipment. From that aspect, the calibration task

is the process of collecting measurement results for these test points. Once the results

are obtained, the job is almost complete, and the server-side can review these data

and issue the related certifications for the tested instrument.

Fully automated calibration increases productivity, accuracy, and repeatability in cal-

ibration processes. In Metrology.NET, a calibration task is a composition of smaller

reusable test modules that aim to test specific functionalities of a UUT using known

reference equipment configuration. Multiple subsets of test points may be passed to

different modules to perform the automation. Modules are loosely coupled, and they

handle their own job and send their results back to the application server.
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4.2.5 Microsoft Azure and IoT Services

Microsoft Azure is a cloud computing platform that contains Infrastructure as a Ser-

vice (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS). Providing

flexibility in using different programming languages and communication protocols,

Azure simplifies the development, deployment, and management of distributed appli-

cations for various application fields.

Azure Cloud Services is the PaaS environment of Azure [111]. Locally created ap-

plications are deployed to Azure cloud service and can run together with other Azure

services to compose a broader application.

Microsoft provides a set of cloud services to connect, monitor, and control IoT assets

[112]. These services are collectively called Azure Internet of Things. Some of these

services are IoT Central, IoT solution accelerators, IoT Hub, and Azure Digital Twins.

Users can select the service they need by deciding the amount of control they want to

have over the application. Also, some of these services provide templates based on

common IoT solutions. Alternatively, users can build their applications from scratch.

4.3 Related Work

This section contains related work in two main categories: Metrology and IoT appli-

cations, and Azure usage in the contexts of IoT and IIoT.

4.3.1 Metrology and IoT

The history of using IoT technologies in metrology applications is not very old. In one

of the recent works, Lazzari et al. [113] discuss the smart metrology term, arguing

that the big data collected in the industry is meaningful when it is reliable. Smart

metrology, a new interpretation of metrology based on reliability, is presented as a

solution. As an example of the benefits of this approach, it encourages Metrologists

to re-evaluate calibration intervals instead of regular calibrations enforced by the law.

In a literature survey, Daponte et al. present measurement applications based on IoT
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[114]. The authors investigate related work in different application fields: intelligent

transportation systems, smart and connected health, smart energy, smart environment,

smart building, and smart factory.

In a white paper [115], Monnier presents smart grid solutions and combines smart

meters with IoT. Also, existing smart grid connection approaches in the literature are

discussed. Then, solutions provided by the author’s company for smarter and more

connected smart grids are given. Angrisani et al. propose a LabVIEW-based platform

for remote programming of automatic test equipment [116]. It may be hard to have all

the necessary devices in the same lab when training technicians. In such a scenario,

it is critical that a lab with the necessary devices shares its resources with other labs.

Moreover, the platform allows connecting to a device and programming it remotely.

4.3.2 Azure usage in IoT and IIoT systems

There is plenty of research leveraging Azure in IIoT and IoT applications in the liter-

ature. This section covers some of them.

A recent study that employes Microsoft Azure in the IIoT context is conducted by

Haskamp et al. [117]. They explain the process of retrofitting a legacy automation

system to obtain an Industry 4.0-compliant system. In another study, Raju and Shenoy

explain the benefits of using the capabilities of cloud and IoT in the industrial domain

[118]. They use Azure IoT Hub in their case study.

Forsström and Jennehag evaluate an IIoT system’s monetary cost and network re-

sponse time performance [119]. The system uses OPC-UA (Open Plant Communica-

tion Universal Architecture) and Microsoft Azure IoT Hub. Their case study includes

a 1500-sensor real-life industrial system. They present results for fiber-based and mo-

bile internet communication. Also, a cost-wise evaluation is provided based on the

price plan of Azure IoT Hub.

Another category of research covers the Azure usage in IoT applications, not nec-

essarily in the industrial context. Shi et al. present their robust end-to-end security

solutions for IoT systems with limited budget in [120]. They integrate Azure Sphere

microcontroller unit and Microsoft Azure cloud services in their solution. Azure IoT
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Hub is used as the cloud gateway that handles message traffic between Azure ser-

vices and IoT end devices. Detailed descriptions of the system both for hardware and

software components and test results are provided in the study.

Microsoft Azure IoT cloud server is used to handle real-time traffic flow-data in an-

other study [121]. Collected data is analyzed to evaluate signal timings, and waiting

times are reduced. Another work suggests controlling of smart switches through a

web application and cloud technologies [122]. Microsoft Azure SQL (Structured

Query Language) database is used on the cloud side. Moreover, a reference architec-

ture is presented for IoT applications to ensure security and privacy [123]. Microsoft

Azure is used as the provider in their movie suggestion application case study.

Al-Masri et al. propose an approach to improve urban waste management [124]. Re-

cycle.io, an IoT-enabled approach, allows categorizing wastes at the time of disposal.

Smart recycle bins equipped with cameras and sensors are used. Collected images

and data are processed at the edge of a network and cloud. Microsoft Azure IoT Hub

is used for device management.

Another similar research that employs cloud technologies in IoT applications is con-

ducted by Ferrández-Pastor et al. [125]. The user-centered design model is used to

obtain knowledge of farmers to develop IoT systems for agriculture. Edge and fog

computing paradigms are used to implement IoT architecture, operating rules, and

smart processes.

4.4 Internet of Measurement Things

This section explains the previously proposed IoMT concept and provides a detailed

description of the proposed architecture. Based on the need for standardized software

in the calibration industry, an architectural framework was proposed [100]. This ar-

chitecture contains three layers, as shown in Figure 4.3: the Physical layer, the MII

Cloud Services layer, and the Application layer. This layered model conforms to

the reference architecture for IIoT proposed by Industrial Internet Consortium (IIC)

[126].
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Figure 4.3: The IoMT architecture description.

The physical layer consists of all the physical infrastructure in the calibration industry,

which produces measurement data. Physical equipment in this layer can be thought

of in different scales and configurations. For example, a small setup may contain a

UUT, and a reference device and a complicated setup may comprise tens of calibration

setups running at the same time. The physical layer can encapsulate all organizations

and domain people as a connected network at the largest scale.

The MII cloud services layer comprises the formatted measurement data and the ser-

vices that use it. Robust services based on agreed standards and protocols can encour-

age different organizations in the domain to adhere to the standardization. Therefore,

smaller solutions to the industry’s common problems are provided in this layer to be

added up to create bigger solutions. To provide interoperability for diverse applica-

tions, the data used by these services should be based on the standard formats and

schemas developed by the MII community. In this scenario, applications that reside
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in the application layer should also conform to the same standards.

The application layer consists of all different sorts of software that can be exploited

in the domain. Applications in this layer use services and the data stored in the MII

Cloud Services layer. An application can benefit from several services, and multiple

applications can use a service at the same time. Some examples of applications in this

layer are automated calibration system, accredited lab search engine, unit of measure

editor, and scope of accreditation editor. Some of these applications are already im-

plemented and in use (e.g., Qualer search engine [127]); they do not have an IoT

perspective, though. However, they can easily be adapted to the IoMT architecture if

they use MII cloud services since they are MII-aware.

In Figure 4.3, different users of the calibration industry who have different connec-

tions to the domain are depicted above the application layer. Some of these users are

ABs, national and international metrology institutes, CLs, calibration software com-

panies, equipment manufacturers, and customers, namely equipment end users. The

gray arrow from these users to the Application layer in the figure indicates a uses re-

lationship in the UML (Unified Modeling Language) terminology. Users have access

to the MII services in the MII Cloud Services layer through the applications in the

Application layer.

4.5 Case Study: SoA Editor

This section explains the SoA editor and its components, also, how they all fit into

the IoMT architecture. Figure 4.4 illustrates the SoA editor components on different

layers. Conceptually, the editor sits in the Application layer, and it uses services and

data on the MII-Cloud services layer. Arrows indicate this relationship in Figure 4.4.

The SoA editor is supposed to be used by different users of SoA data. These are

specifically CLs and ABs that can interchange SoA-related data through the infras-

tructure provided by MII components and the medium supplied by the editor. Since

the data in the cloud are stored based on specific formats and standards, third-party

application developers can develop other applications conforming to the provided in-

terfaces. An example application that uses SoA data in MII format is the Qualer
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Search Engine [127] that is shown as CL Search Engine in the Application layer in

Figure 4.4. The engine aims to provide search capability for accredited CLs around

the world. The engine works on the SoA repository developed by the MII group

and for the time being works for the calibration entities in North America. The tool

provides search criteria based on several parameters such as location, lab capability,

and measured quantities. In the rest of the section, we will explain the traditional

accreditation scenario and an alternative scenario that uses the SoA editor. Also, the

details about the main MII software elements that give power to the SoA editor are

explained.

Physical 

Layer

MII Cloud 

Services 

Layer

Application 

Layer

SoA 

Schema

SoA Service

SoA

Repository 
Metrology 

Taxonomy

UoM 

Database

Calibration 

Laboratory

Accreditation 

Body

Users

Equipment Setups at Calibration Laboratories

CL Search Engine

Calibration 

Consumer

UoM service Metrology 

Taxonomy Service

SoA Editor

Figure 4.4: The SoA editor and the IoMT architecture.
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4.5.1 Traditional vs MII-Aware Calibration Laboratory Accreditation

In this section, we present two scenarios for the accreditation process: The traditional

scenario, and an MII-aware scenario. Figure 4.5 illustrates these scenarios. We first

consider the traditional workflow of accreditation for CLs. The CL first prepares doc-

uments representing SoA based on its calibration parameters and uncertainties. These

documents are then passed to an AB for assessment. The AB checks the scope, and

after a detailed review, makes the decision. If it is approved, the lab scope is published

on the AB’s website in a known data format. The accreditation process is composed

of a detailed and complex set of activities and interactions between the CL and the

AB. It involves an intensive exchange of questions, answers, and modifications to the

scope. Customers can access a CL SoA through the documents published on the AB

website. The left-hand side of Figure 4.5 summarizes the process.

We now consider an alternative scenario for the accreditation process using MII tech-

nologies. CL creates SoA using an editor that stores the data in a standard format.

The tool then exports an SoA document conforming to the AB requirements. Then,

the document is passed to the AB over the Internet. Similar to the traditional scenario,

the AB performs the review and makes a decision. If the AB approves the scope, it

publishes the scope using a standard AB style sheet on its website. Along the process

of accreditation, data between the CL and the AB goes back and forth in a standard

way using the SoA editor. Because of the data format standardization, other tools can

be developed to use SoA data and provide several features to calibration customers.

The right-hand side of Figure 4.5 summarizes the process.

4.5.2 SoA Schema

SoA documents are written for human readers, and typically they are not in a machine-

readable format. To read these documents and interpret the information contained in

the CMC in them, one needs to have in-depth technical knowledge in Metrology. An

SoA data format was introduced by David Zajac [128] in 2016. In this pioneering

work, he presents an XML (Extensible Markup Language) schema that helps flexibly

formulate every SoA parameter into the schema. He described his initial ideas on
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how the schema should be designed and presented its overall functionality. An open-

source API (Application Programming Interface) was also developed that allows for

SoA data manipulation and calculations based on the given schema.

4.5.3 SoA Repository

The MII group is developing a cloud-hosted repository for SoA data [129]. The

repository allows for validation, access, and storing data based on the presented SoA

schema at [128] and other standards. Accordingly, the repository provides services

offered by the MII community, such as units of measure (UoM) and metrology tax-

onomy. The repository presently includes several hundred thousands of CMCs from

hundreds of calibration entities in the database. The data are mainly coming from

North American accredited labs.

4.5.4 Units of Measure Database

A UoM database is being developed by the MII group. The aim is to provide the

metrology application developers with a service that gives access to UoM data in a

uniform way. An editor for the database was also developed to allow the metrology

community to edit and expand the database [130]. The UoM editor takes advantage

of the MathML (Mathematical Markup Language) [131] to provide a rendered pre-

sentation for each UoM.

One reason for developing such a uniform database is to resolve possible ambiguities.

An example of ambiguity for UoM is the fpm case which can be interpreted in two

ways: Feet Per Minute or Flashes Per Minute. MII presents the measurement quantity

notion, which is paired with all measurement values and allows for the definition

of UoMs in an unambiguous way. In this example, we would have flash-rate and

speed quantities. The MII UoM also defines a singular base UoM, convertable to

UoM alternatives and aliases for all UoMs. For the mentioned example, the singular

base units would be flashes-per-second and meters-per-second, the convertable-to

alternatives would be flashes-per-minute and feet-per-minute respectively and aliases

could be fpm for both, since the quantities are different already.
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4.5.5 Measurement Taxonomy

The measurement taxonomy aims to provide a set of naming conventions and a hi-

erarchical data structure to encompass all types of measurements that can be taken.

The MII group wants to specify unique types that can clearly distinguish every sort

of measurement. The taxonomy of measurements helps to index, catalog, and easily

share measurement related data. Based on the proposed convention, a measurement

type starts with source or measure and progresses from general to more specific sub-

categories. The taxonomy definition also includes extra information about measure-

ment types, such as the specific required and optional input parameters used in that

measurement.

Figure 4.6 shows an example of measurement taxonomy in a tree view. Starting from

the root, it goes down to the leaves from general to more specific categories. For

example, if the measurement is about the AC voltage, the measurement type can be

formulated as “Measure.Volts.AC”. The number of sub-categories for the measure-

ment can vary based on its type. Each leaf on the taxonomy tree indicates the specific

required and optional input parameters. For example: “Source.Volts.DC” would re-

quire Volts.
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Figure 4.6: An example measurement taxonomy.
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4.6 SoA Editor Design and Implementation

This section provides details of the cloud implementation of the SoA editor. Figure

4.7 shows the overall architecture of the system. This architecture contains the core

subsystems defined in the Azure IoT reference architecture [132]. In our solution,

calibration equipment setups are IoT devices. During a calibration process, usually,

the device under test (DUT) and the reference device are connected to a PC (Personel

Computer). This PC can connect to the Internet to send messages to the cloud. This

part of the implementation composes of the physical layer of the IoMT architecture.

The IoT Hub is the cloud gateway in IoT applications. It allows scalable and secure

two-way communication between IoT devices and the cloud. The data collected by

IoT Hub is transferred to another service on the cloud side, such as Stream Analytics

or Azure Functions. IoT Hub can tolerate the management of thousands of IoT de-

vices. However, in the SoA editor scenario, scalability is not a critical issue because

the number of calibration equipment is not as large as other IoT applications, such

as wireless sensor networks. The number of devices may reach thousands when the

usage of the application becomes widespread, e.g., comprising all CLs in a country.

In the IoMT architecture, devices in a calibration setup correspond to IoT devices in

a typical IoT solution. However, UUT and the reference device do not have to be

IP-capable. Generally, they are connected to a PC which is IP-capable and can con-

nect to the cloud. This scenario fits well with the Field Gateway concept presented

in [132]. A Field Gateway is used to connect IoT devices to the cloud gateway. This

pattern is shown in Figure 4.8. Because it allows local processing, filtering, or data

aggregation, using a field gateway reduces the data transferred to the cloud. In our

scenario, the field gateway is a suitable place to do uncertainty calculations. To create

an SoA document for a CL, we do not need all measurement data produced in a cal-

ibration setup. Uncertainty calculations involve statistical analysis and comparisons

against universal standards after collecting a set of calibration data. These calcula-

tions can be done locally, and only the resulting value is sent to the cloud to reduce

the workload on the cloud side. Our experience with the Metrology.NET platform

helps us establishing this kind of setup for automating the calculations in the edge

and transferring required data to the cloud.
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Figure 4.7: Overall system architecture.

The job of stream analytics is to pre-process the data collected by IoT Hub. It allows

filtering the data based on queries and directing data to other services, such as a

database or another cloud service. It also allows for creating user-defined functions

to let more complex jobs. As an alternative to the edge computing in the SoA editor

scenario, uncertainty calculations to define CMCs in the SoA document can be done

in a stream analytics job. Then these values are forwarded to the SoA service. The

SoA Service saves SoA data in a database in XML format.

SoA related data and other required databases, UoM Database and Metrology Tax-

onomy, as shown in Figure 4.4, are kept as XML files, as MII suggests. The SoA

service uses these files to store the data of a CL, adding parameters to the company’s

calibration capabilities, etc. Blob Storage is a convenient environment to store these

XML files [133], considering the amount of storage needed for the SoA editor case

study. For another scenario that large-scale data is collected, Azure Data Lake is the

alternative to be used. Azure Data Lake allows storing large amounts of relational and

nonrelational data in a distributed manner [132]. It also allows big data analytics that

will be beneficial, especially for device producers who want to analyze their device’s

calibration performance.

Besides the data directed to the SoA service, a stream analytics job can directly save

some amount of data to the storage. For example, all of the calibration data of a

specific device may have great importance for its producer. Even though this data

is irrelevant for the SoA document itself, it can be significant for other services in
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the IoMT concept. An SQL database can be employed for this purpose, as shown in

Figure 4.7.

PC

(Field Gateway)

IoT Hub

(Cloud Gateway)

UUT

Reference

Device

Figure 4.8: A simple calibration setup connected to the cloud through a field gateway.

4.6.1 SoA Editor as an Azure Cloud Service

The SoA editor was implemented as a desktop application in [101]. To provide a clear

separation between the presentation layer (front-end) and business logic (back-end),

the design of the editor follows the Model-View-ViewModel (MVVM) architectural

design pattern [134]. The design pattern allows for the concurrent development of the

system components. Also, when you need to change the model, there is no need to

update the view, and vice versa. The UI (User Interface) of the editor was developed

using the Windows Presentation Foundation (WPF) of Microsoft [135].

Figure 4.9 shows a screenshot from the desktop version of the SoA editor. The screen

shows different elements that are used in adding a new measurement parameter to

a CL scope. Parameters are added based on the predefined measurement taxonomy

explained in Section 4.5.5.

The desktop application is converted to a cloud service to realize the IoMT archi-

tecture. Therefore, the editor can work in harmony with other cloud services. The

editor’s code run as a service on the cloud is presented in Figure 4.7 as SoA Services.

To create the cloud service, the WPF application created before is converted to an

Azure Cloud Service in Microsoft Visual Studio (VS). Both the applications are im-

plemented with C#. The layered implementation of the desktop application enables

the conversion to take place easily. The MVVM pattern is converted to ASP.NET
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Figure 4.9: A screenshot from the SoA editor desktop application.

Model-View-Controller (MVC) [136] pattern for the cloud application, since it will

be used as a web application. Model parts of the applications correspond directly.

View-Model and Controller parts require slight changes since the connection meth-

ods for the UI elements are different. The View layer for the cloud application is

re-written with ASP.NET. The following section provides the key details of the MVC

implementation.

4.6.2 Model-View-Controller Pattern

The SoA editor components based on the MVC pattern are explained in this section.

Figure 4.10 shows the layers. A brief explanation for each layer is provided below.

View

Controller

Model

Data Binding Update Read

(UI of the SoA editor) (SoA data & Business logic)

Figure 4.10: The SoA editor design in MVC.
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4.6.2.1 Model

The Model layer represents the data and business logic of the application. To be

decoupled from the Controller, it exposes the data through observables to that layer.

The data, as shown in Figure 4.4, is stored in the MII Cloud Services layer. The Model

uses the SoA Schema to handle the read/write of the SoA data, and the Metrology

Taxonomy to categorize measurements in a standardized way. The Model also takes

advantage of the UoM Database that keeps measurement units in a standard format

defined by the MII group.

4.6.2.2 View

The View layer includes all the elements about the UI of the editor. Its role is to sub-

scribe to the Controller observable(s). The UI events are also passed to the Controller,

which are then reflected in the database. The UI provided in Figure 4.9 is an example

of Views. The Controller layer handles the user inputs provided by the UI and does

the necessary operations based on the data standards defined in the Model layer.

4.6.2.3 Controller

The Controller layer behaves as a mediator between the View and the Model layers.

It interacts with the Model and supplies observable(s) to the View layer. As an im-

plementation strategy for this layer, the Controller is decoupled from the View, which

allows for an interchangeable View component for the editor. It also sends updates

made in the View layer back to the Model layer.

4.6.3 Deployment to Azure

The account used for the Azure portal can be the same Microsoft account that is used

in VS. In this way, deployment of the locally created service to the Azure can be done

easily. The required resources to run the service on cloud (namely, Cloud Service,

Storage Account, and Application Insights) can be created simply using a configura-
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tion window of VS, and deployment is done in this way. After deployment, Azure

provides a link to access the editor’s UI through the created cloud service. Other

services that are depicted in Figure 4.7 (IoT Hub, Stream Analytics, SQL Database,

and Blob Storage) are created by Azure Portal, and the required connections are per-

formed among the services to yield a running application. The resources and services

used in the SoA editor case study comply with the lowest pricing policy of the Azure.

Figure 4.11 shows the resources created on the Azure portal.

Figure 4.11: Allocated resources and services on the Azure portal.
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4.7 Implementation Alternatives

This section includes implementation alternatives for the IoMT architecture realiza-

tion. We briefly explain options for the cloud provider and an alternative application,

a test point editor.

4.7.1 Cloud Providers

Although we use Azure in our implementation, other cloud services could be used as

well. For example, AWS (Amazon Web Services) [137], Google Cloud [138], and

IBM Cloud [139] are other widely used cloud computing platforms.

As an alternative to the Azure application, we explain which AWS services can be

used for the SoA editor example. AWS IoT Core is the cloud application that allows

communication and management of IoT devices. IoT Core can be used to collect

data from CLs and transfer it to the cloud for further processing. AWS IoT Analytics

can be used to process collected data, e.g., for filtering or uncertainty calculations in

our SoA editor scenario. Amazon Relational Database Service (Amazon RDS) is an

option to store calibration data on the cloud. AWS S3 storage can store taxonomies

and other XML files that SoA Service uses and produces. SoA service can be imple-

mented on AWS Lightsail that allows creating simple web applications and websites.

4.7.2 Test Point Editor

IoMT architecture covers various applications and services other than that are used

for the SoA editor scenario. A test point editor implementation can be another exam-

ple application for the realization of IoMT, which includes other stakeholders in the

industry, namely equipment manufacturers.

Equipment manufacturers provide test points in the manuals that are delivered with

the equipment. Calibrators use this device-specific data during the calibration pro-

cess. These manuals are for humans, and they are not machine-readable. Because

there is no standard data format, manufacturers use their way to prepare these manu-
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als. This lack of standardization may cause a vast amount of diversity.

During a manual calibration, CL technicians read and follow calibration manuals.

Alternatively, CL can use off-the-shelf software for automation or create its own au-

tomation software. For the off-the-shelf software case, CL does not have to deal with

test point data as the off-the-shelf software already contains it. When CL uses its own

software, it has to translate the human-readable test point data to a machine-readable

format. This translation is cumbersome as it requires excessive time and effort.

IoMT architecture may help to handle test point data in a better way. Manufacturers

would use a test point editor to create test points. Produced test point data would be

stored in the cloud to allow the usage of manufacturers and other stakeholders. Ser-

vices that would be used by the test point editor are test point service and metrology

taxonomy service. CLs are the consumer of the test points as they use this data during

the calibration process. Therefore, CLs would use the test point editor with a differ-

ent UI or role. It is also possible that other applications in the application layer use

the test point service as test points are central to calibration. Calibration automation

software might be an example of such applications. Therefore, standardization helps

different applications to use the same data as storing and accessing it are handled by a

common service. Same as the SoA editor scenario, the physical layer of the test point

editor example composed of CL equipment.

4.8 Conclusions

We demonstrated the modeling of an SoA editor as a proof of concept towards veri-

fication of the IoMT architecture. We proposed the IoMT, an IoT-based architectural

framework for the calibration industry that is inspired by the MII works. Then, we

present the realization of the framework by implementing the SoA editor as a cloud

application. Also, the necessary steps to have a full-scale IIoT scenario by combin-

ing physical equipment and cloud services are explained. Microsoft Azure is chosen

as the cloud environment of the application. We believe the Metrology community

can benefit from the IoMT concept by complying with specific data standards and

employing more automation in calibration processes.
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SoA encompasses the statement of a CL’s capabilities. It can be of great importance

both to CLs and customers who want their equipment calibrated. ABs certify a CL’s

capabilities and thus the services offered by them. There were attempts to digital-

ize the traditional accreditation process. The MII initiative proposes new standards

and software tools and components to help digitalize this process. The SoA editor

can be classified in this kind of attempt. The traditional accreditation process in-

volves intense data exchange, which is paper-based, thus, cumbersome. The editor

facilitates this data exchange among stakeholders. The SoA editor is an open-source

project hosted at Github [140]. Therefore, the project is open to contributions from

the metrology community.

Bringing automation to the accreditation process also helps with the traceability.

Along the process, there may be a need for a high degree of interaction and data

exchange between a CL and AB. These may include several rounds of analyses done

by an AB on the calibration scope provided by a CL. This also can include some mi-

nor and major editions required by an AB to be fulfilled by a CL. Considering all this

communication done in an automated manner, the software can keep track of all the

steps along the whole process and thus improve the process traceability.

Other than traceability, there are different non-functional concerns to be considered

for the IoMT architecture. Some of them are confidentiality, reliability, governance/-

community process, and usability. Although some of these concerns are handled by

the cloud provider, they need to be investigated and addressed appropriately for the

architecture to gain acceptance.
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CHAPTER 5

CONCLUSIONS

This thesis includes efforts to provide interoperability for systems that have heteroge-

neous components by means of configurable connectors. The foundations of this idea

are introduced, and as an application of the proposed methodology, a configurable

gateway between DDS (Data Distribution Service for Real-Time Systems) and HLA

(High-Level Architecture) for LVC (Live-Virtual-Constructive) simulation systems

domain is presented. Moreover, for Metrology and the calibration industry, a layered

architectural solution based on the IIoT (Industrial Internet of Things) is proposed,

and necessary steps to take to develop applications conforming to this architecture

are explained. Industrial and academic studies for proof of concept support the idea

of applicability of proposed methodologies. The rest of this chapter includes brief

summaries of each chapter, remarks, and possible future work.

5.1 Summary

In Chapter 2, a set of connectors, described as off-the-shelf connectors, are introduced

to a component-based development environment where a variability model drives the

configuration mechanisms in the overall flow of the application, the components, and

connectors. The proposed solution includes using connectors in a new system by se-

lection and configuration. Solving communication heterogeneity problems by adapt-

ing connectors may avoid additional functional load on the domain components.

In Chapter 3, a configurable DDS-HLA gateway solution is elaborated for the LVC

simulation domain. The gateway is capable of providing two-way data transfer be-

tween DDS and HLA. The design of the gateway adheres to the idea of configurable
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connectors, which allow users to generate a customized gateway. The gateway is

capable of converting primitive and structured data-types between DDS and HLA.

These conversions are specified by users resulting in different configurations of the

gateway. The gateway can also be adapted to another configuration at runtime.

In Chapter 4, the Internet of Measurement Things (IoMT) architecture is presented.

This architecture involves a layered model, inspired by the IIoT architectures, with a

cloud-centric middle layer that solves interoperability issues of different applications.

The applicability of the IoMT architecture in the calibration industry is shown through

an editor application for Scope of Accreditation.

5.2 Remarks

The DDS-HLA gateway application presented in Chapter 3 validates the configurable

connectors paradigm provided in Chapter 2 to some extend. To fully validate the

proposed approach, ideally, there should be a mature domain, and gateway configura-

tions should be derived from totally existing implementations. Another shortcoming

is the gateway being implemented as a local application instead of a web service

that should be made available through the Internet. The current platform choice de-

creases the ability to serve a broader community and collect data about how effective

is the reuse of existing implementations. Moreover, the IIoT architecture presented in

Chapter 4 does not have an implementation of configurable connectors. Instead, it is

aimed to cover the interoperability in other points of view.

For the sake of simplicity, deploying one connector between two components in our

Component-Oriented Software Engineering development paradigm is one of the de-

sign decisions. Accordingly, descriptions and implementations presented for off-the-

shelf connectors in Chapter 2 and the DDS-HLA gateway in Chapter 3 follows this

principle. Therefore, the gateway is capable of handling the communication of two

different architectures, not more. However, from an architectural perspective, it may

be possible for the gateway to be deployed to provide interoperability for heteroge-

neous systems that contain more than two subsystems that each has a different archi-

tecture. Also, the multi-threaded application of the gateway may allow this improve-
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ment by employing more threads to communicate with the newly added architecture.

The gateway is not focused on non-functional interoperability, e.g., Quality of Ser-

vice (QoS) parameters of the DDS-based system. Furthermore, a gateway may solve

semantic interoperability issues as well, which is not the case for our current ver-

sion. In a nutshell, the current version of the DDS-HLA gateway provides functional

and syntactic interoperability for binary components that themselves are independent

systems in our application.

Performance analysis of the gateway application is in a preliminary stage. The gate-

way achieves interoperability; performance is also a critical factor for the gateway to

be employed as a solution, however. Because our first objective is interoperability, we

did not spare enough time to increase the gateway performance. However, in Chapter

3, we provide results for the gateway performance in terms of network delay. In this

stage, we observe that the performance is highly dependent on the configurations of

DDS-based and HLA-based systems. In two different settings, network performance

changed in favor of one side to another: While in the industrial application, network

delays were less in the DDS to HLA direction, whereas in the academic tests, HLA

to DDS performance was better.

5.3 Future Work

The future work for the configurable connectors is planned to offer a toolset over the

Internet for supporting wider usage. Both the approach and various domain models

are expected to be improved in an open environment. The tools should allow the

formation of components and connectors for example, defining a domain for software

development in new application fields.

For the DDS-HLA gateway, the required QoS parameters for LVC interoperability

will be investigated in the future. HLA’s QoS properties are limited compared to

DDS. The effects of this shortcoming on the interoperability with DDS should be ex-

amined. Moreover, how much of this issue can be handled via the gateway approach

is an open problem. Also, generating gateway code using configured variability mod-

els is considered as future work. It requires extending configuration options for the
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gateway, besides configuring the gateway for data interoperability. Configuration of

the system at a higher abstraction level, such as DDS topic and HLA FOM (Federa-

tion Object Model), can be considered.

The future work of the IoMT (Internet of Measurement Things) may contain adapt-

ing more applications to the architecture. Although there are already implemented

applications in the application layer of the IoMT architecture and further, they are

locally in use by some calibration laboratories, they are restricted in terms of data

sharing with the metrology community. In the future, these applications should be

encouraged to adapt themselves to IoMT architecture and provide service to other

stakeholders and calibration laboratories. To ensure that more applications are served

on IoMT, more common services are likely to be shared by many applications that

will be developed and deployed.
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105



PUBLICATIONS

Journal Articles

Science Citation Index Expanded

[1] Kaya, M.C., Saeedi Nikoo, M., Schwartz, M.L. and Oguztuzun, H., 2020. In-

ternet of Measurement Things Architecture: Proof of Concept with Scope of

Accreditation. Sensors, 20(2), p.503.

[2] Suloglu, S., Kaya, M.C., Karamanlioglu, A., Entekhabi, S., Nikoo, M.S., Tekin-

erdogan, B. and Dogru, A.H., 2018. Comparative Analysis of Variability Mod-

elling Approaches in Component Models. IET Software, 12(6), pp.437-445.

Other Indexes

[3] Kaya, M.C., Cetinkaya, A. and Dogru, A.H., 2018. Off-the-Shelf Connectors

for Interdisciplinary Components. Journal of Integrated Design and Process

Science, 22(3), pp.35-53.

National - Reviewed

[4] Temizer, S. and Kaya, M.C., 2013. Range Measurement Based Reliable Local-

ization Techniques and Sample Applications for Land and Air Vehicles (Mesafe

Ölçümü Tabanli Güvenilir Konum Tespiti Teknikleri ve Kara ve Hava Araçları

için Örnek Uygulamalar). Journal of Aeronautics and Space Technologies,

6(2), pp.33-48.

Book Chapters

[5] Suloglu, S., Kaya, M.C., Cetinkaya, A., Karamanlioglu, A. and Dogru, A.H.,

2020. Cloud-Enabled Domain-Based Software Development. In Software En-

gineering in the Era of Cloud Computing (pp. 109-130). Springer, Cham.

106



[6] Nikoo, M.S., Kaya, M.C., Schwartz, M.L. and Oguztuzun, H., 2019. Internet of

measurement things: Toward an architectural framework for the calibration in-

dustry. In The Internet of Things in the Industrial Sector (pp. 81-102). Springer,

Cham.

[7] Kaya, M.C., Suloglu, S., Tokdemir, G., Tekinerdogan, B. and Dogru, A.H.,

2019. Variability Incorporated Simultaneous Decomposition of Models Under

Structural and Procedural Views. Software Engineering for Variability Inten-

sive Systems: Foundations and Applications (pp.95-116). CRC Press.

[8] Kaya, M.C., Eroglu, A., Karamanlioglu, A., Onur, E., Tekinerdogan, B. and

Dogru, A.H., 2019. Runtime Adaptability of Ambient Intelligence Systems

Based on Component-Oriented Approach. In Guide to Ambient Intelligence in

the IoT Environment (pp. 69-92). Springer, Cham.

[9] Kaya, M.C., Nikoo, M.S., Suloglu, S., Tekinerdogan, B. and Dogru, A.H.,

2017. Managing heterogeneous communication challenges in the internet of

things using connector variability. In Connected Environments for the Internet

of Things (pp. 127-149). Springer, Cham.

International Conference Publications

[10] Kaya, M.C., Karamanlioglu, A., Çetintaş, İ.Ç., Çilden, E., Canberi, H. and
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